

AMIGA

ROM KERNEL MANUAL

Authors: Rob Pack, Carl S •• ..,..rath, Su.an Deyl

Program Examples by: Rob Peck, Carl S,..rath, Sam Dicker, Tom Pohorsky, Larry Hildenbrand

Acknowledgement.:

The following psrsonnel have contributed .Ignlflcantly to the oontent. of thla manual:

: : : : : : : : g:~\~a~jl~:"V:::T~kIM= B=.p:r:!IC~~ ~FlknkeSI'tLarry.!'.!.~and, Nell Katln, Dale Luck, , .., , a y, an SI_ w, and Barry Whltebook.

Thl. edition of the Amlga ROM Kernel Manual correspond. to version 1. 1 of the Amlga kernel system software.

COPVRIGHT

Thl. manual Copyright @ 1986 Commodor Ami I II !)hotocopled reproduced ' e- ga, nc., A Rights Reserved. This document may not In whole or In part be copied
Corn~Amlga, lno.' tran.lated, or reduced to any electronic medium or machine readable form Wlth~t prior oonsent, In ~rltlng, f~ = ~:=t= and .ale ~ thl. ~rr:: are Intanded for the use of the original purchasar only. Lawful users of this program are hereby licensed
seiling, or otharw~r=irl=nc:~hIS ~!tt~srr:=t:' ~co;"~:: solely for the purpose of executing the program. Duplicating, copying,

DISCLAIMER

COMMODORE-AMlGA, INC. MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THE PROGRAM DESCRIBED
HEREIN, ITS QUAUTY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. THIS PROGRAM IS SOLD
• AS IS.· THE ENTIRE RISK AS TO ITS QUAUTY AND PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAM PROVE DEFECTIVE
FOLLOWING ITS PURCHASE, THE BUYER (AND NOT THE CREATOR OF THE PROGRAM, COMMODORE-AMIGA, INC., THEIR
DISTRIBUTORS OR THEIR RETAILERS) ASSUMES THE ENTIRE COST OF ALL NECESSSARY DAMAGES. IN NO EVENT WILL
COMMODORE-AMIGA, INC. BE UABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN ADVISED OF THE POSSIBLITY OF SUCH DAMAGES. SOME LAWS 00 NOT ALLOW THE
EXCLUSION OR UMiTATlON OF IMPUED WARRANTIES OR UABUTIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
UMITATION OR EXCLUSION MAY NOT APPLY.

The following trademarkl are acknawladgad:

Amlga II a trademark of Commodore-Amlga, Inc.
Macintosh, MaoPalnt, Resouroe Mover and QulckDraw are trademarks of Apple Computer, Inc.
OIF Is a trademark of Software Artl, Inc.
M88000 and MC88000 are trademark. of Motorola, Inc.
PostlCrlpt II a trademark of Adobe Sy.tem., Inc.
Intersorlpt and Smalltalk are trademarka of Xerox Corp.
MS-DOS II a trademark of MIcrosOft Corp.
Electronic Artl II a trademark of ElectroniC Arta, Inc.

Printed In U.S.A.

all' Product Number 32.72.71-02. rev 2. 12..9.S!

Preface

This preface introduces kernel programming on the Amiga and gives a brief overview of the
contents of this manual.

System Software Architecture

The Amiga kernel consists of a number of system modules some of which reside permanently
in the protected kickstart memory and others that are loaded on a demand basis from the
system disk. These modules form a hierarchy as illustrated in figure 1. As you look at the
figure, you can see how the various modules interact with each other.

At the top of the chain are Workbench and the CLI (Command Line Interface), the user
visible portions of the system. Workbench utilizes Intuition to produce its displays and
AmigaDOS to interact with the filing system. Intuition, in turn, uses the input device to
retrieve its input and the graphics and layers library routines to produce its output.

AmigaDOS controls processes and maintains the filing system, and is in turn built on Exec,
which manages tasks, task switching, interrupt scheduling, message passing, I/O and many
other functions.

At the lowest level is the Amiga hardware itself. Just above the hardware are the modules
that control the hardware directly. Exec controls" the 68000, scheduling its time among tasks
and maintaining its interrupt vectors, among other things. The trackdisk device is the
lowest-level interface to the disk hardware, performing disk head movement and raw disk
I/O. The keyboard and gameport devices handle the keyboard and gameport hardware,
queueing up input events for the input device to process. The audio device, serial device,
and parallel device handle their respective hardware. Finally, the routines in the graphics
library handle the interface to the graphics hardware.

-lll-

Workbench
AmigaDOS CLI Icons/Drawers/

and Utilities Utilities

I I

I I

AmigaDOS Console
Intuition

Processes, Device
" Windows, Menus,

File System "Gadgets, Events

I
I

Input Layers
Device Library

Keyboard Graphics
Serial

Exec Track-
and Audio and

Tasks, Messages Disk
Gameport

Rendering, Text, Device Parallel
Interrupts, I/O Device

Devices
Gels Devices

!
I

I I I I
I Disk

, Keyboard I I
68000 Processor I and I Graphics I Audio I/O Ports I

Control I I I I
I I Mouse I
I I I

I I I I L I I
I

Amiga Hardware

Amiga System Software Mod ules

-iv-

Programming

The functions of the kernel were designed to be accessed from any language that follows our
standard interface conventions. These conventions define the proper naming of symbols, the
correct usage of processor registers, and the format of public data structures.

Register Conventions

All system functions follow a simple set of register conventions. The conventions apply when
calling any system function, and we also encourage programmers to use the same conven tions
in their own code.

The registers DO, Dl, AO, and Al are always scratch; they are free to be modified at any
time. They may be used by a function without first saving their previous contents.

All other data and address registers must have their values preserved. If any of these regIs
ters are used by a function, their contents must be saved and restored appropriately.

If you are using assembly code, function parameters may be passed in registers. The con ven
tions in the preceding paragraphs apply to this use of registers as well. Parameters passed in
DO, Dl, AO, or Al may be destroyed. All other registers will be preserved.

If a function returns a result, it is passed back to the caller in DO. If a function returns more
than one result, the primary result is returned in DO and all other results are returned by
accessing reference parameters.

The A6 register has a special use within the system, and it may not be used as a parameter
to system functions. It is normally used as a pointer to the base of a function vector table.
All kernel functions are accessed by jumping to an address relative to this base.

-v-

Data Structures

In addition to the naming of public data structures, the format and initial values of these
structures must also be consistent. The conventions are quite simple and are summarized
below.

1. All non-byte fields must be word-aligned. This may require that you pad certain fields
with an extra byte.

2. All address pointers should be 32 bits (not 24 bits) in size. The upper byte must never
be used for data.

3. Fields that are not defined to contain particular initial values must be initialized to zero.
This includes pointer fields.

4. All reserved fields must be initialized to zero (for future compatibility).

5. Data structures to be accessed by custom hardware must not be allocated on your pro
gram stack.

6. Public data structures must not be allocated on your program stack (a task control
structure for example).

7. When data structures are dynamically allocated, items 3 and 4 above can be satisfied by
specifying that the structure is to be cleared upon allocation.

Other Practices

A few other general programming practices should be noted.

1. Never use absolute addresses. All hardware registers and special addresses have symbolic
names (see the include files and amiga.lib).

2. Because this is a multitasking system, you must never directly modify the processor
exception vectors (including traps) or the processor priority level.

-VI-

3. Do not assume that you can access hardware resources directly. ~ost hardware is con
trolled by system software that will not respond well to interference. Shared hardware
requires you to use the proper sharing protocols.

4. Do not access shared data structures directly without the proper mutual exclusion.
Remember, it's a multitasking system and other tasks may also be accessing the same
structures.

5. Most system functions require a particular execution environment. For example, DOS
functions can only be executed from within a process; execution from within a task is not
sufficient. As another example, most kernel functions can be executed from within tasks,
but cannot be executed from within interrupts.

6. The system does not monitor the size of your program stack. You should take care not
to overflow it.

7. Tasks always execute in the 68000 processor user mode. Supervisor mode is reserved for
in terru pts, traps, and task dispatching. Take extreme care if your code executes in
supervisor mode. Exceptions while in supervisor mode are deadly.

8. Do not disable interrupts or multitasking for long periods of time.

68010 and 68020 Compatibility

If you wish your code to be upwardly compatible with the 68010/68020 processors, you must
avoid certain instructions and you must not make assumptions about the format of the
supervisor stack frame.

In particular, the MOVE SR,<ea> instruction is a privileged instruction on the 68010 and
68020. If you want your code to work correctly on all 680xO processors, you should use the
GetCCO function instead (see the Exec library function descriptions in the appendices to
this manual).

Using Amiga Exec Functions

The following guidelines will be helpful when you are trying to determine which functions
may be run from within a task or from within interrupt code, when to forbid or permit task
switching, and when to disable or enable interrupts.

-Vll-

Functions that Tasks Can Perform

Amiga system software distinguishes between tasks and processes. Figure 1 in this preface
showed this difference. Specifically, the information in a task control block is a su bset of the
information contained in a process control block. Consequently, any functions that expect to
use process control information will not function correctly if provided with a pointer to a
task. Generally speaking, tasks can perform any function that is described in this manual.

A task cannot, however, perform any function that is related to AmigaDOS (such as printf,
file-read, file-write, and so on). If you want a task to perform DOS-related functions, you
should arrange for the task to send a message to a "process," which in turn can perform the
function (filling a buffer that is passed to the task, for example) and signal that the job has
been done. The alternative is to use the DOS function CreateProcO instead of the Exec
support function CreateTaskO for tasks that you spawn yourself. A process can call all
functions, including DOS functions.

More information about tasks can be found in the "Tasks" chapter.

Functions that Interrupt Code Can Perform

The following Exec functions can be safely performed during interrupts:

AlertO
DisableO
CauseO
EnableO
FindNameO

FindPortO
FindTaskO
PutMsgO
ReplyMsgO
SignalO

In addition, if you are manipulating your own list structures during interrupt code, you can
also use the following functions:

AddHeadO
AddTailO
EnqueueO
RemHeadO
RemTailO

-viii-

General Information about Synchronization

The system functions EnableO and DisableO are provided to enable and disable interrupts.
The system functions ForbidO and PermitO disallow or allow task switching. You need
only determine with what you are trying to synchronize before deciding if you must wrap an
EnableO/DisableO pair around a function call, use ForbidO/PermitO, or simply allow
the system to interrupt or switch tasks at its whim.

If you are trying to modify a data structure common to two tasks, you must assure that
your access to these structures is consistent. One method is to put ForbidO/PermitO
around anything that modifies {or' reads) that structure. This makes the function atomic;
that is, the structure is stable and consistent after each full operation by either task. If you
are trying to synchronize with something that might happen as a result of interrupt code (for
example, Exec data structures), you put DisableO/EnableO around any of your own opera
tions that might interact with such operations. There are other methods (sending messages,
using semaphores, and so on) but they are somewhat more involved.

Note that if you are trying to read the contents of a data structure while it is being changed,
it is possible to generate an address error that will be sensed by the 68000, causing an excep
tion. This is caused by reading a pointer which is supposed to point to where the data is
located. If the pointer value is no longer valid, it may point to a nonexistent memory loca
tion that, when read, causes an exception.

Contents of this Manual

This manual describes the Amiga's system software. For the most part, the software
described here is ROM-resident. It includes the multi-tasking executive (Exec), the graphics
support routines (including text and animation), and the I/O devices. Also included are the
Workbench, an environment for running programs, and the floating point mathematics
library.

For all parts of the system software, the discussion of the data structures and routines is
reinforced through numerous C-Ianguage examples. The examples are kept as simple as pos
sible. Whenever possible, each example demonstrates a single function. Where appropriate,
there are complete sample programs.

This book is organized into four parts, which are largely tutorial, and eight appendices,
which con tain reference material.

-lX-

Part I describes the functions of Exec. The chapters in this part are:

o . Chapter 1: Lists and Queues-the basic elements of lists and queues, node struc
ture of lists, linkage and initialization of list structures, and list support functions
and macros.

o Chapter 2: Tasks-the management of tasks, task creation and termination, event
signals, traps, exceptions, and mutual exclusion.

o Chapter 8: Messages and Ports-inter-system communication in the kernel, struc
ture of messages and ports, message exchange methods, arrival notification actions,
and various support functions.

o Chapter -I.' I/O-toncepts of I/O on system devices, form of I/O requests, device
interface functions and Exec support functions, standard device commands, and how
to perform I/O

o Chapter 5: Interrupts-the software interface to interrupts, normal interrupt
sequence of events, interrupt priorities, interrupt handlers, interrupt servers,
software interrupts, and interrupt exclusion.

o Chapter 6: Memory Allocation-routines for dynamic memory allocation and deal
location, how to specify memory allocation according to the actual needs of a task
and the hardware it expects to use.

o Chapter 7: Libraries-how libraries are designed and used.

o Chapter 8: ROM- Wack-how to enter and use the ROM-resident versIOn of the
Amiga debugger.

Part II covers the graphics, text, and animation routines. Because this part is organized in
the form of a tutorial about the graphics, you should read each chapter in sequence. Part I
con tains the following chapters:

o Chapter 1: Graphics Primitives-how to use the basic graphics tools: support
structures, display routines, and drawing routines.

o Chapter 2: Layers-how to use the layers library, which allows video display to be
split into overlapping, independently controllable areas.

o Chapter 8: Animation-how to use the animation routines to produce the two
kinds of animated graphics images: sprites and play field animation.

o Chapter 4: Text-how to use the text support routines to print text either in the
default text fonts or your own fonts.

-x-

Part III contains a chapter for each of the Amiga I/O devices. For general information
about I/O, see the chapter called "I/O" in Part I. Also, the Amiga Hardware Manual
specifies a direct hardware interface for many of the devices covered here. The chapters in
this part are:

o Chapter 1: Audio Device-how to use the Amiga's four audio channels to produce
sound and some considerations for producing clear, quality audio effects. The audio
software is implemented as a standard Amiga input/output device with commands
and functions that allocate audio channels and control the sound output.

o Chapter 2: T£mer Device- how to use the timer device to produce a semi-precise
time delay.

o Chapter 8: Trackdisk Device-how to use the device that actually directly drives
the disk, controls the disk motors, and reads and write raw data to the tracks. The
trackdisk driver is the lowest level software access to the disk data, and is used by
AmigaDOS.

o Chapter 4: Console Device-describes how to do keyboard and screen I/0.

o Chapter 5: Input Device- the input device is a combination of three other devices
in the system: keyboard device, gameport device, and timer device. The input dev
ice merges together separate input event streams from the keyboard, mouse and
timer into a single stream which can then be interpreted by input handlers.

o Chapter 6: Keyboard Device-describes the keyboard device, which gives system
access to the Amiga keyboard.

o Chapter 7: Gameport Device-shows you how to use the gameport device, which is
the access to the Amiga gameports.

o Chapter 8: Narrator Device-how to use the speech synthesizer.

o Chapter 9: Serial Device-describes software access to the serial port.

o Chapter 10: Parallel Device- describes software access to the parallel port.

o Chapter 11: Printer Device-describes the various ways of doing output to a
printer, including graphics, and how to create your own printer device driver.

Part IV contains the following chapters:

o Chapter 1: Math Functions- describes the structure and calling sequences required
to access the Motorola fast floating point library.

-Xl-

o Chapter 2: Workbench-shows how to interface your program to the program that
(1) provides a screen where other applications can run, (2) gives users an icon inter
face to the Amiga file system, and (3) gives the programmer access to library func
tions for manipulating objects and icons.

The Appendixes contain reference material:

o Appendix A contains the summarized references for the built-in libraries of routines.

o Appendix B con tains the summarized references for all device commands.

o Appendix C contains the summarized references for resources.

o Appendix D contains printouts of the C-language include files.

o Appendix E contains printouts of the assembly-language include files.

o Appendix F is a printout of the Exec support library.

o Appendix G covers some AmigaDOS topics that are not included III the senes of
AmigaDOS manuals.

o Appendix H describes the IFF standard for interchange format files.

o Appendix I contains the printer-dependent sample code referenced III the "Printer
Device" chapter.

o Appendix J is the hardware memory map.

o Appendix f(contains source code for a skeleton device and a skeleton library.

o Appendix L contains information about the Amiga disk format.

Other Manuals

See also Intuition: The Amiga User Interface, AmigaDOS User's Manual, AmigaDOS
Developer '8 Manual, and AmigaDOS Technical Reference Manual.

-Xll-

Text Conventions

Boldface type is used for the names of functions, data structures, macros, and variables.

System header files and other system file names are shown in italics, and italics are also used
for emphasis.

-Xlll-

Table of Contents

PART I

Chapter 1 Lists and Queues ... 1-1
1.1 INTRODUCTION ... 1-1
1.2 LIST STRUCTURE .. :.. 1-2

Node Structure ... 1-2
Node Initialization ... 1-3
Header Structure ... 1-4
Header Initialization ... 1-5

1.3 LIST FUNCTIONS ... 1-6
Insertion and Removal .. 1-6
Special Case Insertion .. 1-7
Special Case Removal .. 1-7
Prioritized Insertion .. 1-7
Searching by Name .. 1-8

1.4 LIST MACROS ... 1-8
1.5 EMPTY LISTS .. 1-9
1.6 SCANNING A LIST ... 1-10

Chapter 2 Tasks .. 1-11
2.1 INTRODUCTION ... 1-11

Scheduling ... 1-11
Task States .. 1-12
Task queues .. 1-13
Priority ... 1-14
Structure .. 1-14

2.2 CREATION ... 1-15
Stack .. 1-17

2.3 TERMINATION ... 1-18
2.4 SIGNALS ... 1-19

Allocation .. 1-19
Waiting for a Signal .. 1-20
Generating a Signal ... 1-21

2.5 EXCLUSION ... 1-21

- xv-

Forbidding .. 1-22
Disabling .. 1-23
Semaphores ... 1-24

2.6 EXCEPTIONS ... 1-24
2.7 TRAPS ... 1-25

Handlers 1-26
Trap Instructions .. 1-26

Chapter 3 Messages and Ports .. 1-29
3.1 INTRODUCTION ... 1-29
3.2 PORTS ... 1-30

Structure .. 1-30
Creation .. 1-31
Deletion ... 1-33
Rendezvous ... 1-33

3.3 MESSAGES ... 1-33
Putting a Message ... ; 1-34
Waiting for a Message ... 1-35
Getting a Message .. 1-36
Replying ... 1-37

Chapter 4 I/O ... 1-39
4.1 INTRODUCTION ... 1-39
4.2 REQUEST STRUCTURE .. 1-40
4.3 INTERFACE FUNCTIONS .. 1-42
4.4 STANDARD COtvfMANDS .. 1-43
4.5 PERFORMING I/O ... 1-44

Preparation ... 1-44
Synchronous Requests ... 1-45
Asynchronous Requests ... 1-46
Conclusion ... 1-47
Quick I/O .. 1-47

4.6 STANDARD DEVICES .. 1-48

Chapter 5 Interrupts .. 1-49
5.1 INTRODUCTION ... 1-49

Sequence of Events .. 1-49
Interrupt Priorities .. 1-51
Non-maskable Interrupt .. 1-52

5.2 SERVICING INTERRUPTS ... 1-52
Data Structure ... 1-53
Environment .. 1-53
Interrupt Handlers ... 1-54
In terru pt Servers .. 1-56

5.3 SOFTWARE INTERRUPTS .. 1-58

- XVI -

.5.4 DISABLING INTERRUPTS .. 1-58

Chapter 6 Memory Allocation ... 1-61
6.1 INTRODUCTION .. 1-61
6.2 USING MEMORY ALLOCATION ROUTIl'\ES ... 1-62

Memory Requirements ... 1-62
Memory Handling Routines .. 1-63
Sample Calls for Allocating System Memory.. 1-63
Sample Function Calls for Freeing System Memory... 1-64
Sample Code for Allocating MultipleMemory Blocks 1-66

6.3 MEMORY ALLOCATION AND TASKS ... 1-67
Memory Allocation and the Multi-Tasking System .. 1-68
Managing Memory with AllocateO and DeallocateO 1-69

Chapter 7 Libraries .. 1-71
7.1 WHAT IS A LIBRARY? .. 1-71
7.2 HOW TO ACCESS A LIBRARY ... 1-71

Opening a Library .. 1-72
Using a Library to Call a Routine .. 1-73
Using A Library To Reference Data ... 1-74
Caching Library Pointers .. 1-74
Closing A Library ... 1-75

7.3 ADDING A LIBRARY .. 1-75
Making a New Library ... 1-76
Minimum Subset of Library Code Vectors ... 1-77
Structure of a Library Node 1-77
Changing The Contents Of A Library .. 1-78

7.4 RELATION TO DEVICES ... 1-79

Chapter 8 ROM-Wack ... 1-81
8.1 INTRODUCTION ... 1-81
8.2 GETTING TO WACK .. 1-81
8.3 KEYSTROKES, NUMBERS, AND SYMBOLS .. 1-82
8.4 REGISTER FRAME .. 1-83
8.5 DISPLAY FRAMES ... 1-84
8.6 RELATIVE POSITIONING ... 1-84
8.7 ABSOLUTE POSITIONING ... 1-85
8.8 ALTERING MEMORY .. 1-86
8.9 EXECUTION CONTROL .. 1-88
8.10 BREAKPOINTS ... 1-88
8.11 RETURNING TO MULTI-TASKING AFTER A CRASH 1-89

- XVIl -

PART II

Chapter 1 Graphics Primitives ... 2-1
1.1 INTRODUCTION .. 2-1

Components of a Display ... 2-2
Introduction to Raster Displays ... 2-3
Interlaced and Non-Interlaced Mode.. 2-4
High and Low Resolution Modes .. 2-6
Forming an 1m age .. 2-7
Role of the Copper (Coprocessor) ... 2-10

1.2 DISPLAY ROUTINES AND STRUCTURES .. 2-10
Limitations on the Use of ViewPorts .. 2-11
Characteristics of a ViewPort ... 2-12
ViewPort Size Specifications ... 2-13
ViewPort Color Selection ... 2-15
ViewPort Display Modes .. 2-16
ViewPort Display Memory .. 2-20
Forming a Basic Display .. 2-23
Loading and Displaying the View .. 2-28
Graphics Example Program ... 2-28
Advanced Topics ... 2-32

1.3 DRAWING ROUTINES .. 2-37
Initializing a BitMap Structure .. 2-37
Initializing a RastPort Structure .. 2-38
Using the Graphics Drawing Routines .. 2-46

Chapter 2 Layers .. 2-67
2.1 INTRODUCTION ... 2-67

Definition of Layers ... ,. 2-68
Types of Layers Supported ... 2-68

2.2 LAYERS LIBRARY ROUTINES ... 2-69
Initializing and Deallocating Layers .. 2-70
In tertask Operations ... 2-70
Creating and Deleting Layers ... 2-71
Moving Layers .. 2-72
Sizing Layers 2- 72
Changing a View Poin t .. 2-72
Reordering Layers .. 2-73
Determining Layer Position .. 2-73
Su b-Layer Rectangle Operations .. 2- 74

2.3 THE LAYER'S RASTPORT .. 2-75
Simple Refresh Layer ... 2-75
Smart Refresh Layer ... 2-76

- XVlll -

Superbitmap Layer. 2-76
Backdrop Layer 2-77

2.4 USING THE LAYERS LIBRARY 2-77
Opening the Layers Library................ 2-77
Opening the Graphics Library.. 2-78
Creating a Viewing Workspace ... 2-78
Creating the Layers.. 2-79
Getting the Pointers to the RastPorts 2-79
Using the RastPorts for Display... 2-80
Layers Example 2-80

2.5 CLIPPING RECTA;\iGLE LIST 2-84
Damage List 2-8.5
Repairing the Damage 2-85

2.6 REGIONS 2-86
Creating and Deleting Regions 2-86
Changing a Region 2-87
Clearing a Region 2-87
Using Regions
Sample Application for Regions

2-87
2-89

Chapter 3 Animation 2-95
3.1 IVfRODUCTION 2-9.')

Preparing to Use Graphics Animation 2-96
Types of Animation .. 2-96
The GELS System 2-98

3.2 USING SI~lPLE (HARDWARE) SPRITES .. 2-103
Controlling Sprite DMA ... 2-103
Accessing a Hardware Sprite 2-104
Changing the Appearance of a Simple Sprite................. 2-105
~,1oving a Simple Sprite .. 2-106
Relinquishing a Simple Sprite .. 2-113

3.3 USING YSPRITES ... 2-113
Specifying the Size of a YSprite 2-114
Specifying the Colors of a YSprite 2-114
Specifying the Shape of a YSprite 2-115
Specifying YSprite Position 2-117
Using YSprite Flags ... 2-117
Adding a YSprite ... 2-119
Removing a YSprite................. . .. 2-119
Getting the YSprite List in Order .. 2-120
Displaying the YSprites .. 2-120
YSprite Operations Summary .. 2-124
YSprite Advanced Topics ... 2-125

3.4 USING BOBS 2-129

- XIX-

Linking a Bob to a VSprite Structure ... 2-130
Specifying the Size of a Bob .. 2-1;31
Specifying the Colors of a Bob 2-131
Specifying the Shape of a Bob ... 2-132
Other Items Influencing Bob Colors .. 2-134
Specifying Bob Position .. 2-138
Bob Priorities .. 2-138
Saving the Playfield Display 2-140
l;sing Bob Flags ... 2-141
Adding a Bob .. 2-145
Removing a Bob ... 2-145
Getting the List of Bobs in Order .. 2-146
Displaying Bobs ... 2-147
Changing Bobs .. 2-147
Double-Buffering ... 2-148
Bob Operations Summary ... 2-150
Bob Advanced Topics 2-152

3.5 VSPRITE AND BOB TOPICS ... 2-153
Detecting GEL Collisions .. 2-153
BobjVSprite Collision Boundaries Within a RastPort 2-162
Adding New Features to BobjVSprite Data Structures 2-163

3.6 ANUv1A.TION STRUCTURES AND CONTROLS ... 2-164
General Characteristics of the Animation System .. 2-165
Keeping Track of Graphic Objects................... . .. 2-165
Classes of Animation Objects .. 2-166
Positions of Animation Objects 2-166
Animation Types ... 2-168
Initializing the Animation System 2-172
Specifying the Animation Objects ... 2-173
Specifying Animation Components ... 2-174
Drawing Precedence 2-176
Animation Sequencing ... 2-177
Specifying Time for Each Image ... 2-178
Your Own Animation Routine Calls .. 2-180
~loving the Objects................ 2-181

Chapter 4 Text 2-183
4.1 INTRODUCTION .. 2-183
4.2 PRINTING TEXT I1\'TO A DRA WI;\G AREA .. 2-184

Cursor Position .. 2-184
Baseline Of The Text .. 2-184
Size of the Font 2-186
Printing the Text ... 2-186
Sample Print Routine" " 2-186

- xx -

SELECTING THE FONT 2-187
4.3 SELECTING THE TEXT COLOR .. 2-189
4.4 SELECTING A DRA\VING MODE .. 2-190
4.5 EFFECTS OF SPECIFYIKG FONT STYLE 2-192
4.6 ADDING A NEW FONT TO THE SYSTE~f ... 2-193
4.7 USING A DISK FONT ... 2-194
4.8 FINDING OUT WIIICH FONTS ARE AVAILABLE 2-195
4.9 CONTENTS OF A FONT DIRECTORy .. 2-195
4.10 THE DISK FONT ... 2-196
4.11 DEFINING A FONT 2-197

The Text Node 2-197
Font Height 2-197
Font Style ... 2-198
Font Preferences 2-198
Font Width 2-199
Fon t Accessors .. 2-199
Ch aracters Represen ted by Th is F on t ... 2-199
The Character Data ... 2-200
A Complete Sample Font ... 2-202

4.12 SAl\;IPLE PROGRAM ... 2-206

- XXI-

PART III

Chapter 1 Audio Device ", .. ,""," .. ,."" .. , ... ', ,." " , .. ,." .. , , ," 3-1
1.1 INTRODUCTIO:'-1 , .. " ", .. ,,, .. , , .. ,,,, ,... .. ,,,, .. , .. ,,,, , ,, , ,"..... 3-1
1,2 DEFINITIONS" "'''" ... ,''''''''''''" " ... ,''" " .. "., .. ,, ,", , " .. "",, ... ,' ,.,'..... 3-2
1.3 AUDIO FUNCTIONS AND COMMANDS " " .. ,,, , ,,.,, , 3-3

Audio as a Device ",.................. ... , "" " " .. " .. ,,""' .. ,," 3-4
Scope of Commands ""."."" .. ,""""" '''" .. , .. , .. "'.' '''" ... ,."" .. "" .. "."'' .. "''''" "".",,.,'',,... 3-4
Allocation and Arbitration " .. ", .. "" .. ".""."""." , .. "" .. '" "" ... ,.,, " ... ,', .. " ,. 3-5
Performing Audio Commands .. ,""."" .. "" .. "". "',."" " ... ,,""'" '''" "". 3-7
Command Types ."."""""".."".".,,''',,. """ ... ""., .. "'"."""'" ".,',",, ,",,. 3-7
System Functions " ... '" ".,"" .. ".""" .. " .. " .. ,.,'" ... "., ,, "', ... " ... , .. ," .. " .. ' .. ".,,," 3-8
Allocation/Arbitration Commands .. "." ,,""", .. ,"., """ "."",, ,,"""... 3-9
Hardware Control Commands ".,"" .. ,""""".".,"".'.'."" " .. " .. " " ... " .. ,"" .. 3-14

1.4 E~fPLE PROGRAMS """"" " """ .. " "" "" ,, ,, 3-19
1.5 Stereo Sound Example "" .. " .. ,""""" .. " .. "''''',,.,',.,,'''' .,""""."",,.

Double-duffered Sound Synthesis Example " .. , , ,," .,"""".,""""., .. " .. ," .. ,, ..
3-19
3-23

Chapter 2 Timer Device '''' ... ".,,' " .. " ,,"" ,.,."." ... " .. ". "'"'''''''''''''''''''''''''''''''' 3-29
2.1 INTRODUCTION "" """" " ", "" " ,, " .. ". 3-29
2.2 TIMER DEVICE UNITS ."" "" "" " "'''''"."'''',,.,,'''',, ,................... 3-29
2.3 SPECIFYING THE TIME REQUEST , "",', ... ,,,., .. , .. ,, .. "' ,,, , ,, 3-30
2.4 OPENING A TIMER DEVICE "."" "" """""" "" """ "" " ,,... 3-31
2.5 ADDING A TIME REqUEST." ""....... " """ ... " .. "" ... "" " " .. 3-32
2.6 CLOSING A TIMER "".,." ,''' , .. , .. "" .. "."......." .. ,." " "',, , " .. ,," ... 3-32
2,7 ADDITIONAL TIMER FUNCTIONS AND COM~lANDS 3-32

System Time " , " " ,." " .. , , ,., .. , " ... ' " " ... " ,',. 3-33
Using the Time Arithmetic Routines " ... " .. ".""" ' ,, 3-34
Why Use Time Arithmetic " ... "" ,,,.,, ... ,,,, ... ,,.,,,, ,,,, .. ,, .. ,,,, 3-35

2.8 Sfu'vfPLE TIMER PROGRAM " "" " " ... "... " ".". 3-36

Chapter 3 Trackdisk Device ."" " " "" .. " """ "" ... " 3-43
3.1 INTRODUCTION " , '" , , , 3-43
3.2 THE A.}"lIGA FLOPPY DISK , "......"."".".,."."" " 3-44
3,3 TRACKDISK DRIVER COMMANDS .. """ ""." ... ".".""...."....." .. '"'''''''''''''''' 3-45
3.4 CREATING AN I/O REQUEST ... """ ... " " , ""." .. "." " ,,.......... 3-46
3.5 OPENING A TRACKDISK DEVICE , , ,..... ,., ", , , ... " .. 3-47
3.6 SENDING A COMMAND TO THE DEVICE " ,,, , , ,, " 3-48
3.7 TERMINATING ACCESS TO THE DEVICE ,,, .. ,,.,," "" .. ". " " """""" ,, .. 3-49
3.8 DEVICE-SPECIFIC COMMANDS '''''''''''''''''''''''''''''''''''''''."".",,,.,,,,,,.,,,,.,,,,. 3-49
3.9 STATUS COMMANDS " " " .. " """ """ ... "" " "" .. """ .. ,, ... ,," 3-.52
3.10 CO~fl\1ANDS FOR DIAGNOSTICS AND REPAIR ".,"""."" .. " .. """"." 3-53
3.11 TRACKDISK DRIVER ERRORS """""" """""."." .. " """""."" " .. ,,., 3-.53
3.12 E~fPLE PROGRAM "" "" .. " "." """"" " " ... " "." " .. "" .. ",,. 3-.54

- xxii -

Chapter 4 Console Device ... ""'"'' 3-57
4.1 INTRODUCTION .. 3-57
4.2 SYSTEM FUNCTIONS. 3-57
4.3 CONSOLE I/O ." 3-58

General Console Screen Ou t put "'"'''''''''''''''''' 3-58
Console Keyboard Input 3-58

4.4 CREATING AN I/O REQUEST 3-59
4 . .5 OPENING A C00.'SOLE DEVICE 3-50

Sending a Character Stream to the Console Device 3-60
4.6 C00.'TROL SEQUENCES FOR SCREEN OUTPUT 3-52

Reading from the Console .. 3-57
Information About the Read-Stream 3-58
Cursor Position Report 3-59
Window Bounds Report 3-70
Selecting Raw Input Events .. '''''''''''''''''''''''''''''''''''' 3-70

4.7 COMPLEX INPUT EVE:\TT REPORTS .. 3-71
4.8 KEYtv1APPING 3-79

About Qualifiers...... .. 3-82
Keytype Table Entries. .. 3-84
String-Output Keys 3-84
Capsable Bit Table 3-86
Repeatable Bit Table 3-85
Default Low Key Map 3-87
Default High Key Map 3-88

4.9 CLOSING A CONSOLE DEVICE .. 3-89
4.10 EXAMPLE PROGRAM .. 3-90

Chapter 5 lnput Device 3-101
5.1 INTRODUCTION. 3-101
5.2 INPUT DEVICE COJ\IMANDS 3-102

IND_ADDHANDLER Command .. 3-103
IND_REMHANDLER Command 3-105
IND_ WRITEEVENT Command 3-105
IND _SETTHRESH Command 3-107
Il\D_SETPERIOD Command ... 3-107

5.3 INPUT DEVICE AND INTUITION ... 3-107
5.4 SAMPLE PROGRAM ... 3-108

Chapter 6 Keyboard Device ... 3-115
5.1 INTRODUCTION.................... 3-115
5') KEYBOARD DEVICE COM.?vlANDS """"""""'' 3-116
5.3 EXA:.\H>LE KEYBOARD READ-EVENT PROGRA,,\1 3-120

Chapter 7 Gameport Device .. 3-123
7.1 INTRODUCTION .. 3-123

- XXIII -

7.2 GAMEPORT DEVICE C01v1MANDS ... 3-123
GPD_SETCTYPE .. 3-124
GPD_GETCTYPE .. 3-125
GPD_SETTRIGGER 3-126

7.3 EXAMPLE PROGRA.MS 3-127
Mouse Program ... 3-127
Joystick Program 3-133

Chapter 8 Narrator Device 3-139
8.1 INTRODUCTION ... 3-139
8.2 THE TRAl':SLATOR LIBRARy ... 3-139

Using the Translate Function 3-140
Additional Notes About Translate .. 3-141

8.3 THE NARRATOR DEVICE .. 3-141
Opening the Narrator Device ... 3-141
Contents of the Write Request Block .. 3-142
Contents of the Read Request .. 3-143
Opening the Narrator Device ... 3-144
Performing a Write and a Read 3-144

8.4 SA1\1PLE PROGRAM ... 3-145
8.5 HOW TO WRITE PHONETICALLY FOR NARRATOR 3-150

Phonetic Spelling ... 3-150
Choosing the Right Vowel 3-151
Choosing the Right Consonant 3-1.51
Contractions and Special Symbols 3-152
Stress and Intonation .. 3-1.53
How and Where To Pu t the Stress :Marks .. 3-153
\Vhat Stress Value Do I Use? .. 3-154
Punctuation .. 3-155
Hints for Intelligibility 3-156
Example of English and Phonetic Texts ... 3-156
Concluding Remarks ... 3-157

8.6 THE MORE TECHNICAL EXPLANATION .. 3-157
8.7 TABLE OF PHONE~lES 3-1.58

Chapter 9 Serial Device .. 3-161
9.1 INTRODUCTION 3-161
9.2 OPENING THE SERIAL DEVICE ... 3-16i
9.3 READING FRO.\I THE SERIAL DEVICE ... 3-163

First Alternative }.fode for Reading .. 3-163
Second Alternative Mode for Reading .. 3-165
Termination of the Read ... 3-166

9,4 WRITING TO THE SERIAL DEVICE 3-166
9.5 SETTING SERIAL PARAMETERS ... 3-168

- XXIV -

Serial Flags 3-170
Setting the Parameters 3-171

9.6 ERRORS FROM THE SERIAL DEVICE :)-171
9.7 CLOSING THE SERIAL DEVICE ;)-172
9.8 E~\fPLE PROGRA .. lvl :3-17:3

Chapter 10 Parallel Device3-179

10.1 INTRODUCTIO:\""... :.3-179

10.2 OPE:'-.'ING THE PARALLEL DEVICE :3-179

10.3 READIl\G FRO~f TlIE PARALLEL DEVICE.......... 3-181
Alternative ~lode for Reading 3-181
Termination of the Read 3- 183

10.4 WRITI:\""G TO THE PARALLEL DEVICE3-18:3
........ 3-18.5 10.5 SETTING PARALLEL PARA:vfETERS

Parallel Flags 3-185
Setting the Parameters 3-186

10.6 ERRORS FROM THE PARALLEL DEVICE :3-186
10.7 CLOSING THE PARALLEL DEVICE 3-187
10.8 EXAl'vIPLE PROGRAM 3-188

Chapter 11 Printer Device 3-191

11.1 INTRODUCTION 3-191
PRT: the DOS Printer Dev ice 3-192
SER: the DOS Serial Device 3-192
PAR: the DOS Parallel Device 3-19:3
The Prin ter Device 3-193

11.2 PRIl\'TER DEVICE OUTPUT ... 3-193
11.3 OPEl\'ING THE DOS PRIl\'TER DEVICE 3-193
11.4 DATA STRUCTURES USED DURING PRIl\TER 1/0.... ... 3-19,)
11.5 CREATING AN I/O REQUEST3-195
11.6 OPENING A PRINTER DEVICE ;3-196
11.7 WRITING TO THE PRINTER.3-196

Printer Command Definitions.
11.8 TRANSMITTING A COMMAi'\D TO THE PRl:\""TER DEVICE

.3-197

. :1-200
1l.9 DUMPING A RASTPORT TO TilE PRll\TER 3-201

Additional Notes About Graphics Dumps 3- 20:.3
11.10 CREATI:\""G A PRINTER DRIVER :3-204

:3-207 Sample Code Provided
Writing a Custom Graphics Printer Driver ...
Writing a Custom Alphanumeric Printer Driver

- xxv -

. 3-207
.................. 3-213

PART IV

Chapter 1 Math Functions ... 4-1
1.1 INTRODUCTION ... 4-1
1.2 FFP FLOATING POINT DATA FOR1-fAT .. 4-1
1.3 FFP BASIC 1fATHEMATICS LIBRARY ... 4-3
1.4 FFP TRANSCEI\'DENTAL MATHE;-'fATICS LIBRARy........................ 4-7
1.5 FFP MATHE~1ATICS CON\fERSION LIBRARy 4-15
1.6 IEEE DOUBLE-PRECISION BASIC MATH LIBRARy...................... 4-17

Chapter 2 Workbench ... 4-23
2.1 INTRODUCTION ... 4-23
2.2 THE ICON LIBRARY .. 4-24
2.3 THE INFO FILE 4-24

The DiskObject Structure .. 4-25
The Gadget Structure ... 4-25
Icons with No Position... 4-28

2.4 WORKBENCH ENVIROl\TMENT ... 4-28
Startup tvlessage .. 4-28
The Standard Startup Code .. 4-30

2.5 TOOL TYPES .. 4-31
2.5 EXAMPLE PROGRAMS .. 4-32

FriendlyTool 4-32
ReadInfoFile .. 4-33
Startup Program ... 4-35
ReadlnfoFile 4-42

- XXVI -

Appendix A Routine Summaries

Appendix B Device Summaries

Appendix C Resource Summaries

Appendix D C Include Files (.h)

Appendix E Assembly Include Files (.i)

Appendix F Exec Support Library

Appendix G AmigaDOS Topics

Appendix H IFF Interchange File Format

Appendix I Printer-Dependent Example Code

Appendix J Software Memory Map

Appendix K Skeleton Device, Skeleton Library

Appendix L Disk Format Information

Index

- XXVII -

Part I

Chapter 1

Lists and Queues

This chapter describes the basic elements of Exec lists and queues. It discusses the node
structure of lists, the linkage and initialization of list structures, and the list support func
tions and macros. Queues and priority sorted lists are achieved through the use of the list
functions applied in a certain order and are also discussed.

A thorough understanding of this chapter is necessary to properly write programs that deal
with Exec.

1.1. INTRODUCTION

The Amiga system software operates in a highly dynamic environment of control data struc
tures. An early design goal of Exec was to keep the system flexible and open-ended by not
creating artificial boundaries on the number of system structures used. Rather than using
static sized system tables, Exec uses dynamically created structures that are attached to the
system as needed. This concept is central to the design of Exec.

Exec uses lists to maintain its internal data base of system structures. Tasks, interrupts,
libraries, devices, messages, I/O requests, and all other Exec data structures are su pported
and serviced through the consistent application of Exec's list mechanism.

Lists have a common data structure and a common set of functions for manipulating them.
Because all of these structures are treated in a similar manner, only a small number of list
handling functions need be supported by Exec.

Lists and QUf'ues 1-1

1.2. LIST STRUCTURE

A list is composed of a header and a chain of linked elements called nodes.

The header maintains memory pointers to the first and last nodes of the linked chain of
nodes. The address of the header serves as the handle to the entire list. When referring to a
list, you refer to the address of its header. In addition, the header specifies the data type of
the nodes in a list. We'll discuss node data typing later.

Node Structure

A node is divided into two parts: list linkage and node content. The linkage part contains
memory pointers to the node's successor and predecessor nodes, the node data type, and the
node priority. The content part stores the actual data structure of interest.

As a C language structure, the linkage part of a node is defined:

where

struet Node {

};

struct Node *In_Succ;
struct Node *In_Pred;
UBYTE In_Type;
BYTE In_P ri;
char *In_Name;

In_Suce

poin ts to the next node in the list (successor),

In_Pred

points to the previous node in the list (predecessor),

In_Type

defines the type of the node,

In_Pri

specifies the priority of the node, and

1-2 Lists and Queues

In_Name

points to a printable name for the node.

As an example of a complete node, the Exec Interrupt structure is defined as:

struct Interrupt {

};

struct Node is_Node;
APTR is_Data;
VOID (*is_Code)O;

Here the is_Data and is_Code fields represent the useful content of the node.

Node Initialization

Before you link a node into a list, you should initialize it first. The initialization consists of
setting the In_Type, In_Pri, and In_Name fields to their appropriate values. The In_Succ
and In_Pred fields do not require initialization.

The In_Type field contains the data type of the node. This indicates to Exec (and other
interested subsystems) the type and hence the structure, of the content portion of the node.
A few of the standard system types are defined in the exec/nodes.i and /exec/nodes.h
include files. A few examples are: NT_TASK, NT_INTERRUPT, NT_DEVICE,
NT_MSGPORT, etc.

The InYri field indicates the priority of the node relative to other nodes in the same list.
This is a signed numerical value ranging from +127 to -128. Higher priority nodes have
more positive values; for example, 127 is the highest priority, zero is nominal priority, -128 is
the lowest priority.

Some Exec lists are kept sorted by priority order. In such lists the highest priority node is at
the head of the list; the lowest priority node is at the tail of the list. For most Exec node
types, priority is not used. In such cases it is a good practice to initialize the priority field to
zero.

The In_Name field is a pointer to a null-terminated string of characters. Node names are
used mostly to bind symbolic names to actual nodes. They are also useful for debugging pur
poses. It is always a good idea to provide every node with a name.

Here is a C example showing how you might initialize a node called myInt, which IS an
instance of the interrupt structure defined above:

Lists and QUE-ues 1-3

myInt.ln_Type = NT_INTERRUPT;
myInt.ln_Pri = 20;
myInt.ln_Name = "sample.interrupt"

Header Structure

As mentioned earlier the header maintains memory pointers to the first and last nodes of the
linked chain of nodes. This header also serves as a handle for referencing the entire list.

Here is the C-structure of a list header:

where:

struct List {

};

struct Node *lh_Head;
struct Node *lh_Tail;
struct Node *lh_TailPred;
UBYTE Ih_Type;
UBYTE lh_pad;

Ih_Head

points to the first node in the list,

is always zero,

Ih_TailPred

points to the last node in the list,

Ih_Type
defines the type of nodes within the list, and

Ih_pad

is just a structure alignment byte (not used).

1-4 Lists and Queues

There is one subtlety here that should be further explained. The head and tail portions of
the header actually overlap. This is best understood if you think of the head and tail as two
separate nodes. The Ih_Head field is the In_Succ field of the first node in the list and the
Ih_Tail field is its In_Pred. The Ih_Tail is set permanently zero to indicate that this node
is the first on the list; that is, it has no successors.

A similar method is used for the tail node. The Ih_Tail field is the Ih_Succ field of the last
node in the list and the Ih_TailPred field is its In_Pred. In this case, the zero Ih_Tail
indicates that the node is the last on the list; that is, it has no predecessors.

Header Initialization

List headers must be properly initialized before use. It i8 not adequate to initialize the entire
header to zero. The head and tail en tries must be set up correctly.

Here is how the header should be initialized:

1. Assign the Ih_Head field to the address of Ih_Tail.

2. Assign the Ih_TailPred field to the address of Ih_Head.

3. Clear the Ih_Tail field.

4. Set Ih_Type to the same data type as that of the nodes to be kept in this list.

In C an example initialization might look like:

list.lh_Head = &list.lh_ Tail;
list.lh_TailPred = &list.lh_Head;
list.lh_Tail = 0;
list.lh_Type = NT_INTERRUPTS;

In assembly code only four instructions are necessary to initialize the header:

MOVE.L AO,(AO)
ADDQ.L #LH_TAIL,(AO)
CLR.L LH_TAIL(AO)
MOVE.L AO ,LH_TAILPRED(AO).

Lists and QUt'llE'S 1-.5

Note that this is the same as the macro NE\VLIST, contained in the file exec/lists.i. It
performs its function without destroying the pointer to the list header in AD (which is why
ADDQ.L is used). This function may also be accessed from C as a call to NewList(lh)
where Ih is the address of the list header. See the source code for CreatePortO in chapter
3, "Messages and Ports", for one instance of its use.

1.3. LIST FUNCTIONS

Exec provides a number of symmetric functions for handling lists. There are functions for
inserting and removing nodes in lists, for adding and removing tail and head nodes in lists,
for inserting nodes in a priority order, and for searching a list for a node with a particular
name.

Insertion and Removal

The InsertO function is used for inserting a new node into any position in a list. It always
inserts the node following a specified node that is already part of the list.

For example, Insert(list,node,pred) inserts the node after pred in the specified list. If the
pred node points to the list header or is null, the new node will be inserted at the head of
the list. Similarly, if the pred node points to the list Ih_Tail field, the new node will be
inserted at the tail of the list. However, both of these actions can be better accomplished
with the functions men tioned in the "Special Case Insertion" section below.

The RemoveO function is used to remove a specified node from a list. For exam pIe
Remove(node) will remove the specified node from whatever list it's in. Please n()te:
removing a node requires that it actually be in the list. If you attempt to remoyc a node
that is not in a list, you will cause serious system internal problems.

1-6 Lists and Queues

Special Case Insertion

Although the InsertO function allows new nodes to be inserted at the head and the tail of a
list, the AddHeadO and AddTailO functions will do so with higher efficiency. Adding to
the head or tail of a list is common practice in queuing type operations, as in first-in-first-out
(FIFO) or last-in-Iast-out (LIFO or stack) operations.

For example AddHead(list,node) would insert the node at the head of the specified list.

Special Case Removal

The two functions RemHeadO and RemTailO are used in combination with AddHeadO
and AddTailO to create special list ordering. When you combine AddTailO and
RemHeadO, you produce a first-in-first-out (FIFO) list. When you combine AddHeadO
and RemHeadO a last-in-first-out (LIFO or stack) list is produced. RemTailO exists for
symmetry. Other combinations of these functions can also be used productively.

For example RemTail(list) removes the first node from the specified list and retuns a
pointer to it as a result. If the list is empty, it returns a zero result.

Prioritized Insertion

None of the list functions discussed so far make use of the priority field in the list data struc
ture. The EnqueueO function makes use of this field and is equivalent to InsertO for a
priority sorted list. It performs an insert on a priority basis, keeping the higher priority
nodes towards the head of the list. All nodes passed to this function must have their priority
assigned prior to the call.

For example, Enqueue(list,node) inserts the node into the prioritized list after the last node
of same or higher priority.

As mentioned earlier, the highest priority node is at the head of the list, the lowest priority
node is at the tail of the list. Using the RemHeadO function will return the highest priority

Lists and Queues 1-7

node, and RemTailO the lowest priority node.

Note that if you insert a node that has the same priority as another node in the list,
EnqueueO will use FIFO ordering. The new node is inserted following the last node of
equal priority.

Searching by N aTIle

Since most lists contain nodes with symbolic names attached (via the In_Name field), it is
possible to find a node by its name. This naming technique is used throughout Exec for such
nodes as tasks, libraries, devices, and resources.

The FindNameO function is provided to search a list for the first node with a given name.
For example, FindName(list,"Furrbol") returns a pointer to the first node named
"Furrbol". If no such node exists, a zero is returned. The case of the name characters is
significatn; "foo" is different from "Foo."

To find multiple occurrences of nodes with identical names, the FindNameO function is
called multiple times. For example, if you want to find the second node with the "Furrbol"
name:

struct Node node;
node = FindName(list,"Furrbol");
if (node != 0) {

node = FindName(node,"Furrbol");
}

Notice that the second search uses the node found by the first search. The FindNameO
function never compares the specified name with that of the starting node. It always begins
the search with the successor of the starting node.

1.4. LIST MACROS

Assembly code programmers may want to optimize their code by using assembly code list
macros. Because these macros actually em bed the specified list operation in to the code, they
result in slightly faster operations. The file exec/lists.i contains the recommended set of
macros.

1-8 Lists and Queues

For example, the following instructions implement the REMOVE macro:

MOVE.L (Al),AO • get successor
• get predecessor MOVE.L LN_PRED(Al),Al

MOVE.L AO,(Al) • fixup predecessor's succ pointer
MOVE.L Al,LN_PRED(AO) • fixup successor's pred pointer

1.5. EMPTY LISTS

It is often important to determine if a list is empty. This can be done in many ways. bu t
only two are worth mentioning. If either the Ih_TailPred field is pointing to the list
header, or the In_Succ field of the Ih_Head is zero, then the list is empty.

In C, for example, these would be:

or

if (list.lh_TailPred == &list) {
printf ("list is empty");

}

if (list.lh_Head->ln_Succ == 0) {
printf ("list is empty");

}

In assembly code if AO points to the list header, these would be:

and

CMP.L
BEQ

LH_TAILPRED(AO),AO
list_is_empty

MOVE.L LH_HEAD(AO),Al
MOVE.L LN_SUCC(Al),DO
BEQ list_is_empty

Lists and QllE'UeS 1-9

Because LH_HEAD and LN_SUCC are both zero offsets, the second case can be simplified.

1.6. SCANNING A LIST

Occasionally a program may need to scan a list to locate a particular node, find a node that
has a field with a particular value, or just print the list. Because lists are linked in both the
forward and backward directions, the list can be scanned either from either the head or tail.

Here is an example of C code that uses a for loop to print the names of all nodes in a list:

for (node = list -> Ih_Head; node -> In_Succ; node = node -> In_Succ) {
printf (" node %lx is named %8", node, node - > In_name);

}

In assembly code it is more efficient to use a lookahead cache pointer when scanning a list.
In this example the list is scanned until the first zero priority node is reached:

scan:
MOVE.L (Al),Dl

MOVE.L
MOVE.L
BEQ.S
TST.B
BNE.S

Dl,Al
(Al),Dl
not_found
LN_PRI(Al)
scan

• first node

• lookahead to next
• end of list

• found one

Important Note: It is possible to collide with other tasks when manipulating shared system
lists. For example, if some other task happens to be modifying a list while your task scans
it, an inconsistent view of the list may be formed. This can result in a corrupted system.
Generally it is not permissible to rea.d or write a shared system list without first locking out
access from other tasks (and in some cases locking out access from interrupts). This tech
nique of mutual-exclusion is discussed in the "Tasks" chapter.

1-10 Lists and Queues

Chapter 2

Tasks

This chapter describes the management of tasks on the Amiga. It includes explanations of
task creation, termination, event signals, traps, exceptions, and mutual exclusion. This
chapter assumes that the reader has a basic understanding of lists (from the previous
chapter) and some understanding of multitasking principles.

2.1. INTRODUCTION

Multitasking is one of the primary features supported by Exec. Multitasking is the ability of
an operating system to manage the simultaneous execution of multiple independent processor
contexts. In addition, good multitasking does this in a transparent fashion; a task is not
forced to recognize the existence of other tasks. In Exec this involves sharing the 68000 pro
cessor among a number of concurrent programs, providing each with its own virtual proces
sor.

Scheduling

Exec accomplishes multitasking by multiplexing the 68000 processor among a number of task
contexts. Every task has an assigned priority and tasks are scheduled to use the processor
on a priority basis. The highest priority ready task is selected and receives processing un til:

1. a higher priority task becomes active,

Tasks 1-11

2. the running task exceeds a preset time period (a quantum) and there is another equal
priority task ready to ru n, or

3. the task needs to wait for an external event before it can continue.

Task scheduling is normally preemptive in nature. The running task may lose the processor
at nearly any moment by being displaced by another more urgent task. Later, when the
preempted task regains the processor it continues from where it left off.

It is also possible to run a task in a non-preemptive manner. This mode of execution is gen
erally reserved for system data structure access. It is discussed in the "Exclusion" section
toward the end of this chapter.

In addition to the prioritized sched uling of tasks, time-slicing also occurs for tasks with the
same priority. In this scheme a task is allowed to execute for a quantum (a preset time
period). If the task exceeds this period, the system will preempt it and give other tasks of
the same priority a chance to run. This will result in a time-sequenced round robin schedul
ing of all equal priority tasks.

Due to the prioritized nature of task scheduling, tasks must avoid performing the busy wait
technique of polling. This is where a piece of code loops endlessly waiting for a change in
state of some external condition. Tasks that use the busy wait technique waste the processor
and eat up all its spare power. In most cases this prevents lower priority tasks from receiv
ing any processor time. Because certain devices such as the keyboard and the disk depend
on their associated tasks, using a busy wait at a high priority may defer important system
services. Busy waiting can even cause system deadlocks.

When there are no ready tasks, the processor is halted and only interrupts will be serviced.
Since task multiplexing often occurs as a result of events triggered by system interrupts, this
is not a problem. Halting the processor often helps improve the performance of other system
bus devices.

Task States

For every task Exec maintains state information to indicate its status. A normally operating
task will exist in one of three states:

runnmg indicates that a task currently owns the processor. This usually means that the
task is actually executing, but it is also possible that it has been temporarily
displaced by a system interrupt.

1-12 Tasks

ready indicates that a task is not currently executing but is scheduled for the proces
sor. The task will receive processor time based on its priority relative to the
priorities of other running and ready tasks.

waiting marks a task as waiting for an external event to occur. It is not scheduled to
use the processor. The task will only be made ready when one of its external
events occurs (see "Signals" section below).

It is also possible for a task to exist in a few transien t states:

added indicates that a task has just been added to Exec and has not yet been
sched uled for processing.

removed
marks that the task is being removed. Tasks in this state are effectively ter
minated and are usually undergoing cleanup operations.

exception
indicates that a task is scheduled for special exception processing.

Task Queues

Tasks that are not in the running state are linked into one of two system queues. Tasks that
are marked as ready to run but awaiting an opportunity to do so are kept in the ready
queue. This queue is always kept in a priority sorted order with the highest priority task at
the head of the queue.

A waiting queue accounts for tasks that are awaltmg external events. Unlike the ready
queue, there is no reason to keep this queue sorted by priority. New entries are appended to
the tail of the queue. A task will remain in the waiting queue until it is awakened by an
event (at which time it is placed into the ready queue).

Tasks 1-13

Priority

A task's priority indicates its importance relative to other tasks. Higher priority tasks
receive the processor before lower priority tasks.

Task priority is stored as a signed number ranging from -128 to +127. Higher priorities are
represented by more positive values and zero is considered the neu tral priority. Normally
system tasks execute somewhere in the range of +20 to -20.

It is not wise to needlessly raise a task's priority. Sometimes it may be necessary to carefully
select a priority so that the task can properly interact with various system tasks. The
ChangePriO Exec function is provided for this purpose.

Structure

Exec maintains task context and state information in a task control data structure. As with
most Exec structures these are dynamically linked onto various task queues through the use
of a prepended list Node structure. The C-language form of this structure is defined in the
execj task.h include file as:

1-14 Tasks

extern struct Task {

};

struct Node tc_Nodej
UBYTE tc_Flagsj
UBYTE tc_Statej
BYTE tc_IDNestCnt;
BYTE tc_TDNestCnt;
ULONG tc_SigAlloc;
ULONG tc_SigWait;
ULONG tc_SigRecvdj
ULONG tc_SigExcept;
UWORDtc_TrapAlloc;
UWORDtc_TrapAble;
APTR tc_ExceptData;
APTR tc_ExceptCode;
APTR tc_TrapData;
APTR tc_TrapCode;
APTR tc_SPReg;
APTR tc_SPLower;
APTR tc_SPUpper;
VOID (*tc_Switch)Oj
VOID (*tc_Launch)O;
struct List tc_MemEntry;
APTR tc_UserData;

/ * intr disabled nesting * /
/ * task disabled nesting * /
/ * sigs allocated * /
/ * sigs we are waiting for * /
/ * sigs we have received * /
/ * sigs we will take excepts for * /
/ * traps allocated * /
/* traps enabled * /
/ * points to except data * /
/* points to except code * /
/ *. points to trap code * /
/ * points to trap data * /
/ * stack pointer * /
/ * stack lower bound * /
/* stack upper bound + 2*/
/ * task losing CPU * /
/ * task getting CPU * /
/ * allocated memory * /
/ * per task data * /

A similar assembly code structure is available in the exec/ tasks. i include file.

Most of these fields are not relevant for simple tasks; they are used by Exec for state and
administrative purposes. A few fields, however, are provided for the advanced programs that
support higher level environments (as in the case of processes) or require precise control (as
in devices). The following sections explain these fields in more detail.

2.2. CREATION

To create a new task you must allocate a task structure, initialize its various fields, and then
link it into Exec with a call to AddTaskO.

The task structure may be allocated by calling the AllocMemO function with the
MEMF _CLEAR and MEMF _PUBLIC allocation attributes. These attributes indicate
that the data structure is to be pre-initialized to zero and that the structure is shared.

The Task fields that require initialization depend on how you intend to use the task. For
the simplest of tasks, only a few fields must be initialized:

Tasks 1-1.5

tc_Node
the task list node structure. This includes the task's priority, its type, and
its name (refer to the "Lists" chapter).

tc_SPLower
the lower memory bound of the task's stack

tc_SPUpper
the upper memory bound of the task's stack

tc_SPReg
the initial stack pointer. Since task stacks grow downward in memory, this
field is usually set to the same value as tc_SPUpper.

Zeroing all other unused fields will cause Exec to supply the appropriate system default
values. Allocating the structure with the MEMF _CLEAR attribute is an easy way to be
sure that this happens.

Once the structure has been initialized, it must be linked to Exec. This is done with a call to
AddTaskO with the following parameters:

task is a pointer to an initialized task structure.

initialPC

finalPC

is the en try point of your task code. This is the address of the fi rst instruction
the new task will execute.

is the finalization code for your task. This is a code fragment that will receive
control if the initialPC routine ever performs a return (RTS). This exists to
prevent your task from being launched into random memory upon an accidental
return. The finalPC routine should usually perform various program related
clean-up and remove the task. If a zero is supplied as this parameter, Exec will
use its default finalization code (which simply calls the RemTaskO function).

Depending on the priority of the new task and the priorities of other tasks in the system, the
newly added task may immediately begin execution.

Here is an example of simple task creation:

1-16 Tasks

#define STACK_SIZE 1000
extern APTR AllocMemO;
extern EntryPointO;

SimpleTaskO
{

struct Task *task;

stack = AllocMem (STACK_SIZE, MEMF _CLEAR);
if (stack == 0) {

}

printf (" not enough memory for task stack");
return;

task = AllocMem (sizeof(struct Task *), MEMF _CLEAR I MEMF _PUBLIC);
if (newTask == 0) {

}

Stack

}

printf ("not enough memory for task control structure");
FreeMem (stack, STACK_SIZE);
return;

task - > tc_SPLower = stack;
task - > tc_SPU pper = stack + STACK_SIZE;
task -> tc_SPReg = stack + STACK_SIZE;

task -> tc_Node.ln_Type = NT_TASK;
task - > tc_Node.ln_Pri = 0;
task -> tc_Node.ln_Name = "example.task";

Add Task (task, EntryPoint, 0);

Every task requires a stack. All task stacks are user mode stacks (in the language of the
68000) and are addressed through the A7 CPU register. All normal code execution occurs on
this task stack. Special modes of execution (processor traps and system interrupts for exam
ple) execute on a single supervisor mode stack and do not directly affect task stacks.

Task stacks are normally used to store local variables, subroutine return addresses, and
saved register values. Additionally, when a task loses the processor all of its current registers
are preserved on this stack (with the exception of the stack pointer itself, which must be
saved in the task structure).

Tasks 1-17

The amount of stack used by a task can vary widely. The mlllimum stack size IS that
required to save 17 CPU registers and a single return address. This totals to 70 bytes. Of
course, a stack of this size would not give you adequate space to perform any subroutine calls
(because the return address occupies stack space). On the other hand a stack size of IK
wouid suffice to call most system functions but would not allow much in the way of local
variable storage.

Because stack bounds checking is not provided as a service of Exec, it is very important to
provide enough space for your task stack. Stack overflows are always difficult to debug and
may result not only in the erratic failure of your task but also in the mysterious malfunction
of other Amiga subsystems.

2.3. TERMINATION

Task termination may occur as the result of:

1. a program returning from its initialPC routine and dropping into its finalPC rou
tine or the system default finalizer.

2. a task trap that is too serious for a recovery action. This includes traps like proces
sor bus error, odd address access errors, etc.

3. a trap that is not handled by the task. For example, this might occur if your code
happened to encounter a processor TRAP instruction and you did not provide a
trap handling routine.

4. an explicit call to the Exec RemTaskO function.

Task termination involves the deallocation of system resources and the removal of the task
structure from the Exec.

The most important part of task termination is the de allocation of system resources. A task
must return all memory that it allocated for its private use, it must terminate any outstand
ing 10 commands, and it must close access to any system libraries or devices that it has
open.

It is wise to adopt a strategy for task cleanup responsibility. You should decide whether
resource allocation and deallocation is the duty of the creator task or the newly created task.
Sometimes it is easier and safer for the creator to handle the necessary resource allocation
and deallocation on behalf of its offspring. On the other hand, if you expect the creator to
terminate before its offspring, it would not be able to handle resource deallocation. In such a
case each of its child tasks would need to deallocate its own resources.

1-18 Tasks

2.4. SIGNALS

Tasks often need to coordinate with other concurrent system activities (other tasks and
interrupts). Such coordination is achieved through the synchronized exchange of specific
event indicators called signals. This is the primary mechanism responsible for all inter-task
communication and synchronization on the Amiga.

The signal mechanism operates at a low level and is designed for high performance. Signals
often remain hidden from the user program. The message system, for instance, may use sig
nals to indicate the arrival of a new message. The message system is described in more detail
in the next chapter.

The signal system is designed to support independent simultaneous events. Signals may be
thought of as occurring in parallel. Each task may define up to 32 independent signals.
These signals are stored as single bits in a few fields of the task control structure and one or
more signals can occur at the same time.

All of these signals are considered task relative: a task may assign its own significance to a
particular signal. Signals are not broadcast to all tasks; they are directed only to individual
tasks. A signal has meaning to the task that defined it and to those tasks that have been
informed of its meaning. For example, signal bit 12 may indicate a timeout event to one
task but to another task it may indicate a message arrival event.

Allocation

As mentioned above, a task assigns its own meaning to a particular signal. Because certain
system libraries may occasionally require the use of a signal, there is a convention for signal
allocation. It is unwise to ever make assumptions about which signals are actually in use.

Before a signal can be used it must first be allocated with the AllocSignalO function. This
marks the signal as being in use and prevents the accidental use of the same signal for more
than one event. You may ask for either a specific signal number or just the next free signal.
The state of the newly allocated signal is cleared (ready for use).

Generally it is best to let the system assign you the next free signal. Of the 32 available sig
nals the lower 16 are usually reserved for system use only. This leaves the upper 16 free for
the user. Other subsystems that you may call depend on AllocSigna10.

This C example asks for the next free signal to be allocated for its use:

Tasks 1-1 9

signal = AllocSignal(-l);
if (signal == -1) {

}
else {

}

printf(" no signal bits available");
return;

printf("allocated signal number %ld", signal);

Take note of the fact that the value returned by AllocSignalO is a signal bit number. This
value cannot be used directly in calls to signal-related functions without first converting it to
a mask:

mask = 1 < < signal;

When a signal is no longer needed, it should be freed for reuse with FreeSignalO.

It is important to realize that signal bit allocation is only relevant to the running task. You
cannot allocate a sign al from another task.

Waiting for a Signal

Signals are most often used to wake up a task upon the occurrence of some external event.
This happens when a task is in its wait state and another task (or a system interrupt) causes
a signaL

The WaitO function specifies the set of signals that will wake up the task and then puts the
task to sleep (into the waiting state). Anyone signal or any combination of signals from this
set are sufficient to awake the task. WaitO returns a mask indicating which signals from
this set satisfied the wait.

The WaitO function implicitly clears those signals that satisfied the wait. This effectively
resets those signals for reuse.

Because tasks (and interrupts) normally execute asynchronously it is often possible to receive
a particular signal before a task actually waits for it. To avoid missing any events, signals
will be held until the WaitO function is called, or until it is explicitly cleared (with
SetSignalO). In such cases a wait will be immediately satisfied, and the task will not be put
to sleep.

1-20 Tasks

As mentioned earlier, a task may wait for more than one signal. When the task returns from
the wait, the actual signal mask is returned. Usually the program must check which signals
occurred and take the appropriate action. The order in which these bits are checked is often
important. Here is a hypothetical example:

signals = Wait (newCharSig I cancelSig I timeOutSig);
if (signals & cancelSig) {

printf (" canceled");
}
if (signals & newCharSig) {

printf ("new character");
}
if (signals & timeOutSig) {

printf ("timeout");
}

This will put the task to sleep waltmg for either a new character, a cancel event, or the
expiration of a time period. Notice that we check for a cancel signal before checking for a
new ch aracter or a timeou t.

Although a program can check for the occu rrence of a particular even t by checking whether
its signal has occurred, this may lead to busy wait type polling. Such polling is wasteful of
the processor and is usually detrimental to the proper function of the system.

Generating a Signal

Signals may be generated from both tasks and system interrupts with the SignalO function.
For example Signal(task,mask) would signal the task with the mask signals. More than
one signal can be specified in the mask.

2.5. EXCLUSION

From time to time the advanced system program may find it necessary to access global sys
tem data structures. Because these structures are shared by the system and by other tasks
which execute asynchronously to your task, it is wise for you to exclude simultaneous access
to these structures. This can be accomplished by forbidding, disabling, or with the use of
semaphores. A section of code that requires the use of any of these mechanisms to lock out
access by others is termed a critical section.

Tasks 1-21

Forbidding

Forbidding is used when a task is accessing shared structures that might also be accessed at
the same time from another task. It effectively eliminates the possibility of simultaneous
access by imposing non-preemptive task scheduling. This has the net effect of disabling mul
titasking for as long as your task remains in its running state.

While forbidden, your task will continue running until it performs a call to WaitO or exits
from the forbidden state. Interrupts will occur normally, but no new tasks will be
dispatched regardless of their priorit£es.

When a task running in the forbidden state calls the WaitO function, it implies a temporary
exit from its forbidden state. While the task is waiting, the system will perform normally.
When the tasks receives one of the signals it's waiting for, it will again re-enter the forbidden
state.

To become forbidden, a task calls the ForbidO function. To escape, the PermitO function
is used. The use of these functions may be nested with the expected affects; you will not exit
the forbidden mode until you call the outermost PermitO.

As an example, Exec memory region lists should be accessed only when forbidden. To access
these lists without forbidding jeopardizes the integrity of the entire system.

ForbidC);
for (mem = (struct MemHeader *) eb -> MemList.lh_Head;

}

mem -> mh_Node.ln_Succ; mem = mem -> mh_Node.ln_Succ) {
firsts[count++l = mem -> roh_First;

PermitC);

As this program traverses down the memory regIOn list, it remains disabled to prevent the
list from changing as it is being accessed.

1-22 Tasks

Disabling

Disabling is similar to forbidding but, in addition it prevents interrupts from occurring dur
ing a critical section. It is required when a task accesses structures that are shared by inter
rupt code. Disabling, eliminates the possibility of an interrupt accessing shared structures by
preventing interrupts from occurring.

To disable interrupts you can call the DisableO function. If you're wntmg in assembly
code, the DISABLE macro is more efficient (but consumes more code space). To enable
interrupts again the EnableO function and ENABLE macros are provided.

Like forbidden sections, disabled sections can be nested. Also like forbidden sections, the
WaitO function implies an EnableO until the task again regains the processor.

It is important to realize that there is a danger in using disabled sections. Because the
software on the Amiga depends heavily on its interrupts occurring in nearly real time, you
cannot disable for more than a very brief instant. A rule of thumb is to never disable for
more than 250 microseconds.

Masking interrupts by changing the 68000 processor interrupt priority levels with the
MOVESR instruction can also be very dangerous and is generally discouraged. The disable
and enable related functions and macros control interrupts through the 4703 custom chip
and not through the 68000 priority level. In addition, the processor priority level can only be
altered from supervisor mode (which means it is a lot less efficient).

It is never necessary to both disable and forbid. Because disable prevents interrupts, it also
prevents preemptory task scheduling.

Many Exec lists can only be accessed while disabled. Suppose you want to print the names
of all waiting tasks. You would need to access the task list from a disabled section. In addi
tion you must avoid calling certain system functions that require multitasking to function
properly (printfO for example). In this example we gather the names into a name array first
while disabled, then we enable and print the names.

DisableO;
for (task = execbase -> TaskWait.tc_Node.lh_Head; task -> tc_Node.ln_Succ;

task = task - > tc_N ode.ln_Succ) {
names[count++l = task -> tc_Node.ln_Name;

}
EnableO;

for (i = 0; i < count; i++) {
printf (" %s " , names[i]);

}

Tasks 1-23

Of course this example will have problems if a waltmg task is removed before its name is
printed. If this were to happen, the name string pointer would no longer be valid. To avoid
such problems it is good programming practice to copy the entire name string into a tem
porary buffer.

Semaphores

Messages and message ports can be used as semaphores for the purposes of mutual exclusion.
With this method of locking, all tasks agree on a locking convention before accessing shared
data structures. Tasks that do not require access are not affected and will run normally, so
this type of exclusion is considered preferable to forbidding and disabling. Unfortunately,
semaphores also represent a considerable amount of overhead for simple system operations
and are not used internal to Exec for efficiency reasons. This form of exclusion is explained
in more detail in the "Messages and Ports" chapter.

2.6. EXCEPTIONS

Tasks can specify that certain asynchronous events cause exceptions, which are sort of task
private interrupts that redirect a task's flow of contro!' The task essentially suspends what
it is doing and enters a special routine to process its exceptional event.

Exceptions are driven by the task signal mechanism described earlier in this chapter. Instead
of waiting for a signal to occur, you indicate that it is an exception signal with the
SigExceptO function. When the signal occurs, your task will be "interrupted" from its nor
mal execution and placed in a special exception handler.

The tc_ExceptCode and tc_ExceptData task fields are used to establish your exception
handler. tc_ExceptCode points to the routine that will handle the initial processing of all
exceptions. If this field is zero, Exec will ignore all exceptions. The tc_ExceptData field
can be used to provide a pointer to related data structure.

On entry to your exception code the system passes certain parameters in the processor regis
ters. DO contains a signal mask indicating which exception has just occurred, and Al points
to your related exception c1ata (from tc_ExceptData). In addition your previous ta...'3k con
text is pushed onto the task's stack. This includes the previous PC, SR, DO-D7, and AO
A6 registers. You can think of an exception as a subtask outside of your normal task.
Because task exception cocle executes in user mode, however, the task stack must be large
enough to supply the extra space consumed during an exception.

\Vhile processing a given exception, Exec prevents it from occurring recursively. At exit from
your exception processing code you should return the same value in DO to re-enable that

1-24 Tasks

exception signal. When your task executes the RTS at the end of your handler, the system
restores the previous contents of all of your task registers, and resumes the task at the point
where it was interrupted by the exception signal. Your exception-processing code determines
the order of handling exception signals that occur simultaneously by the order in which you
examine the signal bits.

2.7. TRAPS

Task traps are synchronous exceptions to the normal flow of program con trot. They are
always generated as a direct result of an operation performed by your program's code.
Whether they are accidental or purposely generated, they will result in your program being
forced into a special condition in which it must immediately handle the trap. Address error,
privilege violation, zero divide, and trap instructions all result in task traps. They may be
generated directly by the 68000 processor (Motorola calls them "exceptions") or sim ulated by
software.

A task that incurs a trap has no choice but to respond immediately. The task must have a
module of code to properly handle the trap. Your task may be aborted if you get a trap and
have not provided a means of handling it.

You may choose to do your own processing of traps. tc_TrapCode is the address of the
handler that you have designed to process the trap. tc_TrapData is the address of the
data area for use by your trap handler.

The 68000 traps of interest are:

2 bus error

3 address error

4 illegal instruction

5 zero divide

6 CHK instruction

7 TRAPV instruction

8 privilege violation

9 trace

10 line 1010 emulator

Tasks 1-2.5

11 line 1111 emulator

32-47 trap instructions

The actual stack frames generated for these traps are processor dependent. The 68010 and
68020 processors will generate a different type of stack frame than the 68000. If you plan on
handling your own traps, you should not make assumptions about the format of the supervi
sor stack frame. Check the flags in the AttnFlags field of the ExecBase structure for the
type of processor in use, and process the stack frame accordingly.

Handlers

For compatibility with the 68000, Exec performs trap handling ill superVIsor mode. This
means that all task switching is disabled during trap handling.

The system stack does, at entry to the task's trap handler, contain the trap frame as defined
in the 68000 manual. A long word exception number is added at the bottom of this frame.
That is, when a handler gains control the top of stack contains the exception number and
the 68000 frame immediately follows.

To return from trap processing, remove the exception number from the stack (note that this
is the supervisor stack, not the user stack) and then perform a return from exception (RTE).

Because trap processing takes place in supervisor mode, with task dispatching disabled, it is
strongly urged that you keep trap processing as short as possible or switch back to user
mode from within your trap handler.

If a trap handler already exists when you add your own trap handler, it is smart to pro
pagate any traps that you do not handle down to the previous handler. This can be done by
saving the previous tc_TrapCode and tc_TrapData for use by your handler.

Trap Instructions

The TRAP instructions in the 68000 generate traps 32-47. Since many independent pieces
of system code may desire to use these traps, the AllocTrapO and FreeTrapO functions
are provided. These work in a fashion similar to AllocSignalO and FreeSignalO men
tioned above.

1-26 Tasks

Allocating traps is simply a bookkeeping job within your task. It does not affect how the
system calls your trap handler; it helps coordinate who owns what traps. Exec does nothing
to determine whether or not your task is prepared to handle this particular trap. It simply
calls your code. It is up to you to properly handle the trap.

To allocate any trap you can use:

trap = AllocTrap(-I);
it (trap == -1) {

}

printf("all trap instructions are in use");
return;

or to select a specific trap:

trap = AllocTrap(3);
it (trap == -1) {

}

printf("trap #3 is in use");
return;

To free a trap you use FreeTrapO.

Tasks 1-27

Chapter 3

Messages and Ports

This chapter describes Exec support for inter-system communication in the Amiga kernel. It
discusses the structure of messages and ports, message exchange methods, arrival notification
actions, and various support functions.

3.1. INTRODUCTION

For inter-system communication, Exec provides a consistent, high performance mechanism of
messages and ports. This mechanism is used to pass arbitrary size message structures from
task to task, interrupt to task, or task to software interrupt. In addition, messages are often
used to coordinate operations between a number of cooperating tasks.

A message data structure has two parts: system linkage and message body. The system
linkage is used by Exec to attach a given message to its destination. The message body con
tains the actual data of interest. The message body is any arbitrary data block less than
64K bytes in size.

Messages are always sent to a predetermined destination port. At a port incoming messages
are queued in a first-in-first-out (FIFO) order. There are no system restrictions on the
number of ports or the number of messages that may be queued to a port (other than the
amount of available system memory).

Messages are always queued by reference. For performance reasons message copying is not
performed. In essence, a message between two tasks is a temporary license for the receiving
task to use a portion of the memory space of the sending task - that portion being the mes
sage itself. This means that if task A sends a message to task B, the message is still part of
the task A context; however, task A should not access the message un til it has been replied
(explained below). This technique of message exchange imposes important restrictions on
message access.

Messages and Ports 1-29

3.2. PORTS

Ports are rendezvous points where messages are collected. A port may contain any number
of outstanding messages from many different originators. When a message arrives at a port,
the message is appended to the end of the list of messages for that port, and a pre-specified
arrival action is invoked. This action may do nothing, or it may cause a pre-defined task sig
nal or software interrupt (see the "Interrupts" chapter).

As with many Exec structures, ports may be given a symbolic name. This is particularly
useful for tasks that must rendezvous with dynamically created ports. It is also useful for
debugging purposes.

Structure

A message port consists of a MsgPort structure as defined III the exec/ ports.h and
exec/ ports. i include files. The C structure for a port is:

where

struct MsgPort {

};

struct Node mp_Node;
UBYTE mp_Flags;
UBYTE mp_SigBit;
struct Task *mp_SigTask;
struct List mp_MsgList;

mp_Node
is a standard Node structure. This is useful for tasks which might want to
rendezvous with a particular message port by name.

mp_Flags
are used to indicate message arrival actions. See the explanation below.

mp_SigBit
is the signal bit number when a port is used with the task signal arrival action.

mp_SigTask
is a pointer to the task to be signaled, or if a software interrupt arrival action is
specified this is a pointer to the interrupt structure.

1-30 Messages and Ports

mp_MsgList
the list header for all messages queued to this port. (See the "Lists" chapter).

The mp_Flags field contains a sub-field indicated by the PF _ACTION mask. This sub
field specifies the message arrival action that occurs when a port receives a new message.
The possibilities are:

PA_SIGNAL
signal the specified task on the arrival of a new message. Every time a message
is put to the port another signal will occur regardless of how many messages
have been queued to the port.

PA_SOFTINT
cause the specified software interrupt. Just like with PA_SIGNAL, every
message will cause the software interrupt to again be posted.

PA_IGNORE
perform no operation other than queuing the message. This action is often used
to stop signaling or software interrupts without disturbing the contents of the
mp_SigTask field.

It is important to realize that a port's arrival action will occur for each new message queued,
and that there is not a one-to-one correspondence between messages and signals. Task sig
nals are only single-bit flags so there is no record of how many times a particular signal
occurred. There may be many messages queued and only a single task signal. All of this has
certain implications when designing code that deals with these actions. Your code should not
depend on receiving a signal for every message at your port. All of this is also true for
software in terrupts.

Creation

To create a new message port you must allocate and initialize a MsgPort structure. If you
desire to make the port public you will also need to call the AddPortO function.

Port structure initialization involves setting up a Node structure, establishing the message
arrival action with its parameters, and initializing the list header.

The following example of port creation is equivalent to the CreatePortO function as sup
plied in amiga.lib:

Messages and Ports 1-31

extern APTR AllocMemO;
extern UBYTE AllocSignalO;
extern struct Task *FindTaskO;

struct MsgPort *
CreatePort (name, pri)

char *name;

{

}

BYTE pri;

UBYTE sigBit;
struct MsgPort *port;

if «sigBit = AllocSignal (-1)) == -1)
return «struct MsgPort *) 0);

port = AllocMem (sizeofC*port), MEMF _CLEAR I MEMF _PUBLIC);
if (port == 0) {

FreeSignal (sigBit);
return «struct MsgPort *) (0));

}

port->mp_Node.ln_Name = name;
port->mp_Node.ln_Pri = pri;
port->mp_Node.ln_Type = NT_MSGPORT;

port->mp_Flags = PA_SIGNAL;
port- > mp_SigBit = sigBit;
port->mp_SigTask = FindTask (0);

if (name != 0)
AddPort (port);

else
NewList (&port- >mp_MsgList);

return (port);

1-32 Messages and Ports

Deletion

Before delHing a message port, all outstanding messages from other tasks must be returned.
This is done by replying to each message until the message queue is empty. Of course there
is no need to reply to messages owned by the curren t task (the task performing the port dele
tion).

Public ports attached to the system with AddPortO must be removed from the system with
RemPortO·

Rendezvous

The FindPortO function provides a means of finding the address of a public port given its
symbolic name. For example, FindPort("Spyder") will return either the address of the
message port or a zero indicating that no such public port exists. Names should be made
rather unique to prevent collisions among multiple applications. It is a good idea to use your
application name as a prefix for your port name.

3.3. MESSAGES

As mentioned earlier, a message contains both system header information and the actual
message content. The system header is of the Message form defined in exec/ ports.h and
exec/ ports. i. In C this structure is:

struct Message {
struct Node mD_Node;
struct MsgPort *mn_ReplyPort;
UWORD mn_Length;

};

where

Messages and Ports 1-33

mD_Node
is a standard Node structure used for port linkage.

mD_ReplyPort
is used to indicate a port to which this message will be returned when a reply is
necessary.

mD_Length
indicates the length of the message body in bytes.

This structure is always attached to the head of all messages. Assume that you want a mes
sage structure which contains the x and y coordinates of a point on the screen. It could be
defined as:

atruct XYMessage {
struct Message xy _Msg;
UWORD x,y;

}

For this structure the mD_Length field would be set to two times the size of UWORD, or
four bytes.

Putting a Message

A message is delivered to a given destination port with the PutMsgO function. The mes
sage is queued to the port, and that port's arrival action is invoked. If the action specifies a
task signal or a software interrupt, the originating task may temporarily lose the processor
while the destination processes the message.

If you require a reply to the message, the mn_ReplyPort field must be setup prior to the
call to PutMsgO.

Here is a simple example of putting a message to a public port:

1-34 Messages and Ports

struct MsgPort *port, *replyport;
struct XThfessage *xymsg;

xyrnsg = AllocMem (sizeof(*xymsg), MEMF _PUBLIC);
if (rnsg == 0) {

printf (" not enough memory for message");
return;

}

replyport = CreatePort ("xyreplyport" ,0); /* as defined earlier in this chapter f
if (replyport == 0) {

}

printf (" could not create the reply port");
FreeMem (msg, sizeof(*xymsg));
return;

xyrnsg -> xy_Msg.mn_Node.ln_Type = NT_MESSAGE;
xyrnsg -> xy_Msg.mn_ReplyPort = replyport;

port = FindPort (" Spyder");
if (port == 0) {

printf ("Spyder port not found");
return;

}

PutMsg (port, xymsg);

Waiting for a Message

A task may go to sleep waiting for a message to arrive at one or more ports. This technique
is widely used on the Amiga as a general form of event notification. For example, it is used
extensively by tasks for I/O request completion.

Waiting for the arrival of a message requires that the message port be properly initialized. In
particular, the rnp_SigTask field must contain the address of the task to be signaled and
mp_SigBit must contain a pre-allocated signal number (as described in the "Tasks"
chapter).

You can call the WaitPortO function to wait for a message to arrive at a port. This func
tion will return the first message queued to a port. If the port is empty, your task goes to
sleep waiting for the first message. If the port is not empty, then your task will not go to
sleep.

Messages and Ports 1-35

A more general form of waiting for a message involves the use of the WaitO function (see
the "Tasks" chapter). This function waits for task event signals directly. If the signal
assigned to the message port occurs, the task will awaken. Using the WaitO function is
more general because you can wait for more than just a single message port. For example,
you may want to wait for a message and a timeout signal. The WaitO function lets you
specify a mask containing the signals associated with your message port and your timeout
signal.

Here's an example using WaitPortO:

signal = AllocSignal (-1);
if (signal == -1) {

}

printf (" no free signal bits");
return;

port - > mp_Flags 1= P A_signal;
port - > mp_SigBit = signal;
port -> mp_SigTask = FindTask (0);

msg = WaitPort (port);

/* self * /

Note that WaitPortO only returns a pointer to the first message in a port. It does not
actually remove the message from the port queue. That's described in the next section.

Getting a Message

Messages are usually removed from ports with the GetMsgO function. This function
removes the next message at the head of the port queue and returns a pointer to it. If there
are no messages in a port, this function returns a zero.

The example below illustrates the use of GetMsgO to print the contents of all messages in a
port:

while ((msg = GetMsg (port)) != 0) {
printf ("x=%ld y=%ld", msg->x, msg->y);

}

Certain messages may be more important than other messages. Because ports impose FIFO
ordering, these important messages may get queued behind other messages regardless of their
priority. If it is necessary to recognize more important messages, it is easiest to create

1-36 Messages and Ports

another port for these special messages.

Replying

When the operations associated with receiving a new message are finished, it is usually neces
sary to send the message back to the originator. This is important because it notifies the ori
ginator that the message can be reused or deallocated.

The ReplyMsgO function is provided to serve this purpose. It will return the message to
the port specified in the mn_ReplyPort field of the message. If this field is zero, then no
reply is done.

The previous example can be enhanced to reply to each of its messages:

while ((msg = GetMsg (port)) != 0) {

}

printf ("x=%ld y=%ld", msg->x, msg->y);
ReplyMsg (rusg);

Notice that the reply doesn't occur until after the message values have been used.

Often the operations associated with receiving a message involve returning results to the ori
ginator. Typically this is done within the message itself. The receiver places the results in
fields defined (or perhaps reused) within the message body before replying the message back
to the originator. Receipt of the replied message back at the originator's reply port indicates
it is once again safe for the originator to use or change the values found within the message.

Messages and Ports 1-37

Chapter 4

I/O

This chapter presents the key concepts that must be understood before performing input and
output on system devices. It describes the standard form of an 10 Request, device interface
functions, Exec support functions, standard device commands, and how to aCtually perform
I/O on the Amiga. This chapter does not discuss how to create your own device driver.
Appendix K contains source assembler code for a disk-resident device driver with its own
task to handle I/O requests.

4.1. INTRODUCTION

One of the primary purposes of Exec is to provide a standard form for all device I/O. This
includes the definition of a standard device interface, the format for I/O requests, and the
establishment of rules for normal device/task interaction. In addition, the guidelines for
non-standard device I/O are also defined. In the design of the Amiga I/O system great care
has been taken to avoid dictating the form of implementation or the internal operational
characteristics of a device.

A device in its purest sense is an abstraction that represents a set of well defined interactions
with some form of physical media. This abstraction is supported by a standard Exec data
structure and an independent system code module. The data structure provides the external
interface and maintains the current device state. The code module supplies the operations
necessary to make the device functional. (In many operating systems this code module is
referred to as a device driver).

A device unit is an instance of a device. It shares the same device data structure and code
module with all other units of the same device; however, it operates in an independent
fashion. Often units correspond to separate physical sub-systems of the same general device
class. For example, each Amiga floppy disk drive is an independent unit of the same device.
There is only one device data structure and one code module to support all of these units.

Exec I/O is often performed using the message system described in the previous chapter.

I/O 1-39

often Most aspects of message passing are concealed within the Exec I/O support routines.
However, it is important to realize that I/O request blocks, once issued, must not be modified
or reused until they are returned to your control by Exec.

4.2. REQUEST STRUCTURE

An I/O request is always directed to a device unit. This request is organized as a control
block and contains a command to be performed on a specified unit. It is passed through a
standard device interface function where it is then processed and executed by the device's
code module. All request parameters are included in the request control block, and the I/O
request results are also returned in the same control block.

Every device unit responds to a standard set of commands, and may optionally provide a
non-standard set of commands as well. The standard commands are reset, read, write,
update, clear, stop, start, and flush. They will be explained later in this chapter. Non
standard commands are discussed in the documentation pertaining to the particular device of
interest.

An I/O request always includes at least an IORequest data structure. This is a standard
header used for all I/O requests. It is defined in the exec/io.h and exec/£o.i include files as:

struct IORequest {

};

where

struct Message io_Message;
struct Device *io_Device;
struct Unit*io_Unit;
UWORDio_Command;
UBYTE io_Flags;
BYTE io_Error;

io_Message
is a message header (see "Messages and Ports" chapter). This is used by the
device to return your I/O request upon completion. It is also used bv devices
internally for I/O request queuing. This header must be properly initi~lized for
I/O to work correctly.

io_Device

1-40 I/O

is a pointer to the device data structure node. This field is automatically setup
by an Exec function when the device is opened.

specifies a unit to the device internally. This is a device private field and should
not be accessed by the user. The format of this field is device dependent and is
setup by the device during the open sequence.

io_Command

io_Flags

is the command requested. This may be either one of the system standard com
mands or a device specific command.

is used to indicate special request options and state. It is divided into two sub
fields of four bits each. The lower four bits are for use by Exec and the upper
four bits are available to the device.

io_Error
is an error or warning number returned upon request completion.

The io_Device, io_Unit, and io_Command fields are not affected by the servicing of the
request. This permits repeated I/O using the same request.

The standard I/O requests use an expanded form of the IORequest structure:

struct IOStdReq {

}

struct Message io_Message;
struct Device *io_Device;
struct Unit *io_Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;
ULONG io_Actual;
ULONG io_Length;
APTR io_Data;
ULONG io_Offset;

where the additional fields

io_Actual
indicates the actual number of bytes transferred. This field is only valid upon
completion.

io_Length
is the requested number bytes to transfer. This field must be setup prior to the
request. A special length of -1 is often used to indicate variable length
transfers.

I/O 1-41

is a pointer to the transfer data buffer.

io_Offset
indicates a byte offset (for structured devices). For block structured devices
(like the floppy-disk) this number must be a multiple of the block size.

Devices with non-standard commands may add their own special fields to the I/O request
structure as needed. Such extensions are device specific.

4.3. INTERFACE FUNCTIONS

Four Exec functions are responsible for interfacing 10 requests to actual device drivers.
These functions operate independently of the particular device command requested. They
deal with the request block as a whole, ignoring its command and its command parameters.

DoIOO is the most commonly used I/O function. It initiates an 10 request and waits
for its completion. This is a synchronous form of device I/O; control is not
returned to the caller until completion.

SendIOO
is used to initiate an 10 request without waltmg for completion. This is an
asynchronous form of device I/O; control is returned even if the request has
not completed.

WaitIOO
is used to wait for the completion of a previous initiated asynchronous 10
request. This function will not return control until the request has completed
(either successfully or not).

CheckIOO
is used to see if an asynchronous I/O request has completed.

In addition to the above Exec functions there are two I/O related functions that are actually
direct entries into the device driver itself. These functions are part of the actual device
driver interface to the system, and should be used with care. They incur slightly less over
head but require more knowledge of the I/O system internals (how QuickIO works for
instance):

1-42 I/O

BeginIOO
lllltiates an 10 request. The request will be synchronous or asynchronous
depending on the device driver.

AbortIOO
attempts to cancel a previous I/O request. This function is easily accessed as
an assembly code macro ABORTIO, or through the C library Exec support
function AbortIOO.

4.4. STANDARD COMMANDS

There are eight standard commands to which all devices are expected to respond. If the dev
ice is not capable of performing one of these commands, it will at least return an error indi
cation that the command is not supported. These commands are defined in the exec/ io.h
and exec/ io.i include files.

CMD_RESET
reset the device unit. This command competely initializes the device unit,
returning it to its default configuration, aborting all of its pending I/O, cleaning
up any internal data structures, and reseting any related hardware.

CMD_READ
read a specified number of bytes from a device Ulllt lllto the data buffer. The
n urn ber of bytes to read is specified in the io_Length field. The n urn ber of
bytes actually read is returned in the io_Actual field.

CMD_WRITE
write a specified number of bytes to a device unit from a data buffer. The
number of bytes to write is specified in the io_Length field. The number of
bytes actually written is returned in the io_Actual field.

CMD_UPDATE
force out all internal buffers. This command will cause device internal memory
buffers to be written out to the physical device unit. A device will tran
sparently perform this operation when necessary, but this command causes it to
occur explicitly. It is useful for devices that maintain internal caches, such as
the floppy disk device.

CMD_CLEAR
clear all internal buffers. This command will delete the entire content of a dev
ice unit's internal buffers. No update is performed; all data is lost.

I/O 1-43

CMD_STOP
immediately stop the device unit. This command stops a device unit at its first
opportunity. All I/O requests continue to queue, but the device unit stops ser
vicing them. This command is useful for devices that may require user inter
vention (printers, plotters, data networks, etc).

CMD_START
continue after a previous stop command. The device resumes from where it was
stopped.

CMD_FLUSH
abort all I/O requests. This command will return all pending I/O requests with
an error.

4.5. PERFORMING I/O

I/O in Exec is always performed using I/O request blocks. Before performing I/O the request
block must be properly initialized by both the system and the user. Once this has been
done, normal I/O may commence.

Preparation

Devices are identified within the system by name (a null-terminated character string). Device
units are usually identified by number. The OpenDeviceO function maps both the device
name to an actual device and then calls the device to perform its initialization. The device
will map the unit number into an internal form for later use. Both Exec and the device
driver will initialize the I/O request passed to OpenDeviceO.

For example, OpenDevice("trackdisk.device" ,1,request,O) will attempt to open unit one
of the floppy disk device, mapping its symbolic name into the address of a device data struc
ture. It also sets up a few internal fields of the request. OpenDeviceO will return a zero if
it was successful, or a nonzero error number if it was not.

1-44 I/O

Synchronous Requests

Synchronous I/O requests are initiated with the DolOO function mentioned earlier. DolOO
will not return control until the request has completed. Since the device may respond to a
request immediately or queue it for later action, an undetermined amount of time may pass
before control is returned.

To perform synchronous I/O requires that you prepare the I/O request block as described in
the previous section. In addition you must initialized the io_Message, io_Command, and
perhaps other fields.

The io_Message field is setup in the same manner as a message. This is described m the
"Messages and Ports" chapter.

The io_Command field is set to the desired command. For example:

request- >io_Command = CMD_RESET;
DolO (request);

performs a reset command.

More involved commands require yet other fields to be initialized. To read a sector from a
disk might look something like:

request->io_Command = CMD_READ;
request- >io_Length = TD_SECTOR;
request->io_Offset = 20 * TD_SECTOR;
request- >io_Data = buffer;
DolO (request);

When the request has completed the request block is returned with the command results. If
an error occurred, DolOO will return the error number. The error number is also indicated
in the io_Error field of the request.

With this type of I/O only one request is serviced at a time. Sometimes it is necessary to
perform many requests at the same time. This is the subject of the next section.

I/O 1-45

Asynchronous Requests

More efficient programs can take advantage of the multitasking characteristics of the I/O
system by using asynchronous I/O. This type of I/O is supported by the SendIOO,
WaitlOO, ChecklOO, BeginIOO, and AbortlOO functions.

Asynchronous I/O requests will return almost immediately to the user regardless of whether
the request has actually completed. This lets the user maintain control while the I/O is
being performed. Multiple I/O requests can be posted in this fashion.

In the disk read example above, asynchronous I/O could be performed by changing the
00100 call to a SendIOO.

request->io_Command = CMD_READ;
request->io_Length = TD_SECTOR;
request->io_Offset = 20 * TD_SECTOR;
request->io_Data = buffer;
SendlO (request);

From the time the I/O has been initiated to the time it completes the request block should
not be directly accessed by the user. The device can be said to "own" the request block.
Only after the request has completed or successfully aborted should you access it.

When the I/O completes, the device will return the I/O request block to the reply port
specified in its io_Message field. When this has happened you know that the device has
finished the I/O.

The reply port used to receive the returned request can be setup to cause a task signal when
the reply arrives. This technique lets a task sleep un til the the request is complete. The
WaitlOO can be called to wait for the completion of a previously initiated request.

WaitIOO will handle all of the interaction with the message reply port automatically. If
you are using just the WaitO function, do not forget to remove the I/O request from your
reply port with GetMsgO. Once this is done, the request may be reused.

The ChecklOO function is handy to determine if a particular I/O request has been satisfied.
This function deals with some of the su btleties of I/O in the proper manner.

If you wish to queue several I/O requests to a device, you must issue multiple SendlOO
requests, each with its own separately-opened request structure. This type of I/O is sup
ported by most devices. A task can also request I/O from a number of devices then check
later for their completion.

Exec also allows for certain types of optimization 10 device communication. One form of

1-46 I/O

optimization, in which you call the device driver directly, is called "quickIO". This concept
is discussed later in this chapter.

Conclusion

When a request has completed its I/O, access to the device should be concluded with
CloseDeviceO. This function will inform the device that no further I/O is to be performed
with this request. For every OpenDeviceO there must be a corresponding CloseDeviceO.

Quick I/O

For some types of I/O the normal internal mechanisms of I/O may present a large amount of
overhead. This is mostly true for character oriented I/O, where each characters might be
transferred with a separate I/O request. The overhead for such requests could significantly
overload the I/O system, resulting in a loss of efficiency for the system overall.

To allow devices to optimize their I/O handling a mechanism of QuickiO was created. In the
IORequest data structure one of the io_flags is reserved for QuicklO. When set prior to an
I/O request, this flag indicates that the device is allowed to handle the I/O in a special
manner. This enables some devices to take certain "short-cuts" when it comes to perform
ing and completing the request.

The DolOO function normally requests the QuickIO option, whereas the SendlOO function
does not. Complete control over the mode for QuicklO is possible by calling a device's
BeginlOO en try directly.

It is up to the device to determine whether it can actually handle a request marked as
QuicklO. When the request has completed, if the QuicklO flag is still set, then the I/O was
performed quickly. This means that no message reply occurred, so the message has not been
queued to the reply port.

I/O 1-47

4.6. STANDARD DEVICES

The following standard system devices are normally available at boot-time. Each of these
devices is described in a separate chapter in Part 3 of this manual.

Timer Provides a flexible way of causing task signals or interrupts at second and
microsecond intervals.

TrackDisk Provides direct access to the 3 1/2-inch floppy disks. Among the functions pro
vided are format, seek, read, and write. Normally trackdisk is only used by
AmigaDos, however its functions are enumerated here for direct access where
required. Note that the trackdisk driver is associated with the disk.resource.

Keyboard Handles raw information from the keyboard and converts it into input events
which you can retrieve and interpret. Keyboard input events are queued so
that you won't miss any keystrokes.

Gameport Handles raw information from the mouse, or a joystick device. Gameport
events are queued so that you won't miss any movements. You can tell the
system what type of device is connected, and also tell it how often to check and
report the current status of the device.

Input The console device, as an input device, combines both the keyboard and the
gameport device. Input events from both are merged together into a single
in pu t even t stream on a first- in fi rst-ou t basis.

Console The console device receives its input from the input device. The input portion
of the console device is simply a handler for input events filtered by Intuition.
It provides what one might call the "traditional" user interface.

Audio The audio device is provided to control the use of the audio channels. A
separate chapter in this manual is dedicated to the audio device.

Narrator The narrator device is loaded from disk and uses the audio device to produce
human-like synthesized speech. The "Narrator Device" chapter also describes
the text-to-phoneme rou tines in the translator library.

Serial The serial device is loaded from disk and initialized on being loaded. It con
trols serial communications buffering of the input/output, baud rate and so on.

Parallel The parallel device is loaded from disk and initialized on being loaded. It con
trols parallel communications. The parallel device is most often used by a
parallel printer driver.

Printer The printer device driver is loaded from disk. Printers that are supported as of
this writing are specified in appendix I. In addition to showing how to use the
device, the "Printer Device" chapter describes the creation of a printer driver.
Source code for four different printer drivers is also included (in appendix I).

1-48 I/0

Chapter 5

Interrupts

This chapter discusses the software interface to interrupts. It describes the normal interrupt
sequence of events, interrupt priorities, interrupt handlers, interrupt servers, software inter
rupts and interrupt exclusion.

5.1. INTRODUCTION

Exec manages the decoding, dispatching, and sharing of all system interrupts. This includes
control of hardware interrupts, software interrupts, task-relative interrupts (see the "Tasks"
chapter), and interrupt disabling/enabling. In addition, Exec supports a more extended
prioritization of interrupts than that provided in the 68000.

The proper operation of multitasking depends heavily on the consistent management of the
interrupt system. Task activities are often driven by inter-system communication originated
by various interrupts.

Sequence of Events

Before useful interrupt handling code can be executed, a considerable amount of hardware
and software activity must occur. Each interrupt must propagate through several hardware
and software interfaces before application code is finally dispatched.

Interrupts 1-49

1. A hardware device decides to cause an interrupt, and sends a signal to the interrupt
control portions of the 4703 custom chip.

2. The 4703 interrupt control logic notices this new signal, and performs two primary
operations. First, it records that the interrupt has been requested by setting a flag
bit in the INTREQ register. Second, it examines the INTENA register to determine
whether the corresponding interrupt and the interrupt master are enabled. If both
are enabled, the 4703 generates a set of three 68000 interrupt request signals. See
the Amiga Hardware Reference Manual for a more complete explanation of how this
is done.

3. These three signals correspond to 7 interrupt priority levels in the 68000. If the
priority of the new interrupt is greater than the current processor priority, an inter
rupt sequence is initiated. The priority level of the new interrupt is used to index
in to the top 7 words of the processor address space. The odd byte (a vector
number) of the indexed word is fetched and then shifted left by two to create a low
memory vector address.

4. The 68000 then switches into supervisor mode (if it isn't in that mode already), and
saves copies of the status register and program counter (PC) onto the top of the sys
tem stack. The processor priority is then raised to the level of the active interrupt.

5. From the low memory vector address (calculated in step three above), a 32-bit auto
vector address is fetched and loaded into the program counter. This is an entry
poin t in to Exec's in terrupt dispatcher.

6. Exec must now further decode the interrupt by exammmg the INTREQ and
INTENA 4703 chip registers. Once the active interrupt has been determined, Exec
indexes into an ExecBase array to fetch the interrupt's handler entry point and
handler data pointer addresses.

7. Exec now turns control over to the mterrupt handler by calling it as if it is a sub
routine. This handler may deal with the interrupt directly, or propagate control
further by invoking in terrupt server chain processing.

You can see from the above discussion that the interrupt autovectors should never be altered
by the user. If you wish to provide your own interrupt handler, you must use the Exec
SetlntVectorO function. To change the content of any autovector location violates the
design rules of the Multitasking Executive.

Task multiplexing usually occurs as the result of an interrupt. When an interrupt has
finished and the processor is about to return to user mode, Exec determines whether task
scheduling attention is required. If a task was signaled during interrupt processing, then the
task sched uler will be in voked.

Since Exec uses pre-emptive task scheduling, it can be said that the interrupt subsystem is
the heart of task multiplexing. If for some reason interrupts do not occur, then a task might
execute forever because it cannot be forced to relinquish the CPU.

1-50 Interrupts

Interrupt Priorities

Interrupts are prioritized in hardware and software. The 68000 CPU priority at which an
interrupt executes is determined strictly by hardware. In addition to this, the software
imposes a finer level of pseudo-priorities on interrupts with the same CPU priority. These
pseudo-priorities determine the order in which simultaneous interrupts of the same CPU
priority are processed. Multiple interrupts with the same CPU priority but a different
pseudo-priority will not interrupt one another.

This table summarizes all interrupts by priority:

Table 5-1: Interrupts by Priority

4703 CPU Pseudo
Name Priority Priority Purpose

NMI 7 15 nonmaskable

INTEN 6 14 special (copper)
EXTER 6 13 8520B, external6

DSKSYNC 5 12 disk byte
RBF 5 11 serial input

AUDl- 4 10 audio channel 1
AUD3 4 9 audio channel 3
AUDO 4 8 audio channel 0
AUD2 4 7 audio channel 2

BLIT 3 6 blitter done
VERTB 3 5 vertical blank
COPER 3 4 copper

PORTS 2 3 8520A, external2

TBE 1 2 serial output
DSKBLK 1 1 disk block done
SOFTINT 1 0 software interrupts

As described in the Motorola 68000 programmer's manual, interrupts may only nest in the
direction of higher priority. Because of the time-critical nature of many interrupts on the
Amiga, the CPU priority level must never be lowered by user or system code. When the sys
tem is running in user mode (multitasking) the CPU priority level must remain set at zero.
When an interrupt occurs, the CPU priority is raised to the level appropriate for that inter
rupt. Lowering the CPU priority would permit unlimited interrupt recursion on the system
stack and would "short-circuit" the interrupt priority scheme.

Interrupts 1-51

Because it is dangerous on the Amiga to hold off interrupts for any period of time, higher
level interrupt code must perform its business and exit promptly. If it is necessary to per
form a time-consuming operation as the result of a high priority interrupt, the operation
should be deferred to a lower priority by using a software interrupt. In this way interrupt
response time is kept to a minimum. Software interrupts are described in a later section.

Non-maskable Interrupt

The 68000 provides a non-maskable interrupt (NMI) of CPU priority 7. Although this inter
rupt cannot be generated by the Amiga hardware itself, it can be generated on the expansion
bus by external hardware. Since this interrupt does not pass through the 4703 interrupt con
troller circuitry, it is capable of violating system code critical sections. In particular it short
circuits the DISABLE mutual-exclusion mechanism. Code that uses NMI must not assume
that it can access system data structures.

5.2. SERVICING INTERRUPTS

Interrupts are serviced on the Amiga through the use of interrupt handlers and servers.

An interrupt handler is a system routine that exclusively handles all processing related to a
particular 4703 interrupt.

An interrupt server is one of possibly many system routines that get invoked as the result of
a single 4703 interrupt. Interrupt servers provide a means of interrupt sharing. This concept
is useful for general purpose interrupts like vertical blanking.

At system start, Exec designates certain 4703 interrupts as handlers and others as server
chains. The PORTS, COPER, VERTB, BLIT, EXTER, and NMI interrupts are initialized
as server chains; hence, each of these may execute multiple interrupt routines per each inter
rupt. All other interrupts are designated as handlers and are always used exclusively.

1-52 Interrupts

Data Structure

Interrupt handlers and servers are defined by the Exec Interrupt structure. This structure
specifies an interrupt routine entry point and data pointer. The C definition of this structure
IS:

struct Interrupt {

};

struct Node is_Node;
APTR is_Data;
VOID (*is_Code)();

Once this structure has been properly initialized, it can be used for either a handler or server.

Environment

Interrupts execute in an environment unIque from that of tasks. All interrupts execute in
supervisor mode and utilize a single system stack. This stack is large enough to handle
extreme cases of nested interrupts (of higher priorities). Obviously, interrupt processing has
no effect on task stack usage.

All interrupt processing code, both handlers and servers, is invoked as assembly code subrou
tines. Normal assembly code CPU register conventions dictate that the DO, Dl, AO, and Al
registers are free for scratch use. In the case of an interrupt handler, some of these registers
also contain data which may be useful to the handler code. See the section on handlers
below.

Because interrupt processing executes outside the context of most system activities, certain
data structures will not be self-consistent and must be considered off limits for all practical
purposes. This happens because certain system operations are not atomic in nature and may
be interrupted after only executing part of an important instruction sequence. Take the
memory allocation and deallocation routines as an example. These routines disable task
switching but do not disable interrupts. This results in the finite possibility of interrupting a
memory related routine. In such a case, a memory linked list may be inconsistent when
examined from the interrupt code itself. To avoid serious problems, the interrupt routine
must not use any of the memory allocation or deallocation functions.

Interrupts 1-.53

Interrupt Handlers

As described above an interrupt handler is a system routine that exclusively handles all pro
cessing related to a particular 4703 interrupt. There can only be one handler per 4703 inter
rupt.

Every interrupt handler consists of an Interrupt structure (as defined above and a single
assembly code routine. Optionally, a data structure pointer may also be provided. This is
particularly useful for ROM-resident interrupt code.

An interrupt handler is passed control as if it were a subroutine of Exec. Once the handler
has finished its business it must return to Exec by executing an RTS (return from subrou
tine) instruction rather than an RTE (return from exception) instruction.

Interrupt handlers should be kept very short to minimize service time overhead and thus
minimize the possibilities of interrupt overruns.

As described above, an interrupt handler has the normal scratch registers at its disposal. In
addition A5 and A6 are also free for use. These registers are saved by Exec as part of the
in terru pt initiation cycle.

For the sake of efficiency, Exec passes certain register parameters to the handler. These
register values may be utilized to trim a few microseconds off the execu tion time of a
handler.

DO is scratch and contains garbage.

Dl is scratch but contains the 4703 INTENAR and INTREQR registers values ANDed
together. This results in an indication of which interrupts are enabled and active.

AO points to the base address of the Amiga custom chips. This is useful for performing
indexed instruction access to the chip registers.

Al points to the data area specified by the is_Data field of the Interrupt structure.
Since this pointer is always fetched (regardless of whether you use it), it is to your
advantage to make some use of it.

A5 is used as a vector to your interrupt code. It is free to be used as a scratch register,
and it is not necessary to restore its value prior to returning.

A6 points to the Exec Library base (SysBase). You may use this register to call Exec
functions or set it up as a base register to access your own library or device. It is
not necessary to restore this register prior to returning.

I-54 Interrupts

Interrupt handlers are established by passing the Exec function SetIntVeetorO your initial
ized Interrupt structure and the 4703 interrupt bit number of interest. See the appendix
for a complete description of this function. Keep in mind that certain interrupts are esta
blished as server chains and should not be accessed as handlers.

Here is a C code example of proper handler initialization and setup:

struct Interrupt .RBFInterrupt, .Priorlnterrupt;

setupO
{

}

extern void RBFHandlerO;
short .Buffer;

/. allocate an Interrupt node structure: .. /
RBFInterrupt = AllocMem (sizeof(struct Interrupt ..), MEMF _PUBLIC);
if (RBFInterrupt == 0) {

}

printf ("not enough memory for interrupt handler");
exit (100);

/* allocate an input buffer: • /
Buffer = AllocMem (512, MEMF _PUBLIC);
if (Buffer == 0) {

}

FreeMem (RBFInterrupt, sizeof(struct Interrupt.));
printf ("not enough memory for data buffer");
exit (100);

/. initialize the Interrupt node: .. /
RBFinterrupt->is_Node.ln_Type = NT_INTERRUPT;
RBFinterrupt- >is_Node.ln_Pri = 0;
RBFinterrupt- > is_Node.ln_N arne = "RBF -example";
RBFInterrupt- > is_Data = Buffer;
RBFInterrupt- > is_Code = RBFHandler;

/. put the new interrupt handler into action: • /
PriorInterrupt = SetIntVector (INTB_RBF, RBFInterrupt);

if (PriorInterrupt != 0) {

}

printf ("we just replaced the %s interrupt handler",
Prior Inter ru pt- > is_N ode.ln_N arne);

In this example note the correct initialization of the Node structure.

The external interrupt handler code used above, RBFHandler, grabs the input character
from the serial port and stores it into the buffer. Notice that the address of the buffer is

Interrupts 1-5.5

passed to the handler (shown below) via the is_Data pointer. This pointer is updated for
every character stored.

XDEF

_RBFHandler:

_RBFHandler

move.l
move.w
move.w
move.l
rts

(al),a5
serdatr(aO),(a5)+
#INTF _RBF ,intreq(aO)
a5,(al)

In this example the buffer holds complete 4703 serial data words which contain not only the
input character, but special serial input flags as well (e.g. data overrun). This data word IS

deposited directly into the buffer, and the 4703 RBF interrupt request is cleared.

A more sophisticated example might perform various tests on the input word prior to storing
it into the buffer.

Interrupt Servers

As mentioned above, an interrupt server is one of possibly many system interrupt routines
that get invoked as the result of a single 4703 interrupt. Interrupt servers provide an essen
tial mechanism for in terrupt sharing.

Interrupt servers must be used used for PORTS, COPER, VERTB, BLIT, EXTER, or l\'MI
interrupts. For these interrupts, all servers are linked together in a chain. Every server in
the chain will be called until one returns a value of TRUE (nonzero) in register DO or until
the end of the chain is reached. Normally interrupt servers return a value of zero in DO
which indicates that the chain should not be prematurely terminated.

The same Exec Interrupt structure used for handlers is also used for servers. Also, like
interrupt handlers, servers must terminate their code with an RTS instruction.

Interrupt servers are called in priority order. The priority of a server is specified in its
is_Node.ln_Pri field. Higher priority servers get called earlier than lower priority servers.

Adding and removing interrupt servers from a particular chain is accomplished with the Exec
AddIntServerO and RemIntServerO functions. These functions require you to specify
both the 4703 interrupt number and a properly initialized Interrupt structure.

Servers have different register values passed than handlers. A server cannot count on the
DO, Dl, or A6 registers containing any useful information. A server is free to use DO-Dl

1-56 Interrupts

and AO-A1/A5 as scratch.

In a server chain the interrupt is cleared automatically by the system. It is not recom
mended (and not necessary) that a server clear its interrupt (clearing could cause the loss of
an interrupt on PORTS or EXTERN.

Here is an example of a program to setup and cleanup a low priority vertical blank interrupt
server:

struct Interrupt ... VertBIntr;
long count;

mainO
{

extern void VertBServerO;

/ ... allocate an Interrupt node structure: ... /
VertBIntr = AllocMem (sizeof(struct Interrupt *), MEMF _PUBLIC);
if (VertBIntr == 0) {

}

}

printf ("not enough memory for interrupt server");
exit (100);

/ ... initialize the Interrupt node: * /
VertBIntr->is_Node.ln_Type = NT_INTERRUPT;
VertBIntr->is_Node.ln_Pri = -60;
VertBIntr- > is_N ode.ln_N arne = "VertB-example";
VertBIntr-> is_Data = &count;
VertBIntr->is_Code = VertBServer;

/ * put the new interrupt server into action: * /
AddIntServer (INTB_VERTB, VertBIntr);

while (getchar 0 != 'q')i / ... wait for user to type 'q' ... /

RemIntServer (INTB_VERTB, VertBIntr);
printf ("%ld vertical blanks occurred", count);
FreeMem (VertBIntr, sizeof(struct Interrupt *»;

The VertBServer might look something like:

Interrupts 1-.57

XDEF

_VertBServer:

_VertBServer

move.l
addq.l
moveq.l
rts

(al),aO
#l,(aO)
#O,dO

get address of count
bump value of count
continue server chain

5.3. SOFTWARE INTERRUPTS

Exec provides a means of generating software interrupts. This type of interrupt is useful for
creating special purpose asynchronous system contexts. Software interrupts execute at a
priority higher than that of tasks but lower than normal interrupts, so they are often used to
defer normal interrupt processing to a lower priority.

Software interrupts use the same Interrupt data structure as normal hardware interrupts.
As described above, this structure contains pointers to both interrupt code and data.

A software interrupt is usually activated with the CauseO function. If this function is
called from a task, the task will be interrupted and the software interrupt will occur. If it is
called from a hardware interrupt, the software interrupt will not be processed until the sys
tem exits from its last hardware interrupt. If a software interrupt occurs from within another
software interrupt, it does not get processed until the current one completes.

Software interrupts are prioritized. Unlike interrupt servers, there are only five priority lev
els for software interrupts: -32, -16, 0, +16, and +32. The priority should be put into the
In_Pri field prior to calling CauseO.

Software interrupts can also be caused by message port arrival actions. See the "Messages
and Ports" chapter.

5.4. DISABLING INTERRUPTS

As mentioned in the "Tasks" chapter, it is sometimes necessary to disable all interrupts
when examining or modifying certain shared system data structures.

Interrupt disabling is controlled with the DISABLE and ENABLE macros and the
DisableO and EnableO C functions.

1-58 Interrupts

In some system code, there are nested disabled sections. This type of code requires that
interrupts be disabled with the first DISABLE and not re-enabled until the last ENABLE.
The system enable/disable macros and functions are designed to permit this sort of nesting.

For example, if there is a section of system code that should not be interrupted, the
DISABLE macro is used at the head and the ENABLE macro is used at the end.

Here is an assembly code macro definition for DISABLE:

DISABLE MACRO
MOVE.W#$4000,_intena
ADDQ.B #1,IDNestCnt(A6)
ENDM

DISABLE increments a counter, IDNestCnt that keeps track of how many levels of disable
have been issued up to now. Only 126 levels of nesting are permitted. Notice that inter
rupts are disabled before the IDNestCnt variable is incremented.

Similarly, the ENABLE macro will re-enable macros if the last disable level has j list been
exited:

ENABLE MACRO
SUBQ.B #1,IDNestCnt(A6)
BGE.S ENABLE@
MOVE.W#$COOO,_intena

ENABLE@:
MEND

ENABLE decrements the same counter that DISABLE increments. Notice that interrupts
are enabled after the IDNestCnt variable is decremented.

See the "Tasks" chapter for a better explanation of mutual exclusion using interrupt disa
bling.

Interrupts 1-059

Chapter 6

Memory Allocation

This chapter describes the routines used for dynamic memory allocation and de allocation on
the Amiga. These routines allow the user to specify memory allocation according to the
actual needs of a task and the hardware it expects to use.

6.1. INTRODUCTION

Areas of free memory are maintained as a special linked list of free regions. Each memory
allocation function returns the starting address of a block of memory at least as large as the
size that you requested to be allocated. Any memory that is linked into this system free list
can be allocated by the memory allocation rou tines.

The allocated memory is not tagged or initialized in any way unless you have specified, for
example, MEMF _CLEAR. Only the free memory area is tagged to reflect the size of the
chunk that has been freed.

You should return allocated memory to the system when your task completes. As noted
above, the system only keeps track of available system memory and has no idea which task
may have allocated memory and not returned it to the system free list. If you don't return
allocated memory when your task exits, that memory is unavailable until the system is
powered clown or reset.

This can be very critical, especially when using graphics routines that often need large blocks
of contiguous flAM space. Therefore, if you dynamically allocate flA~'I, make sure to return
it to the system by using the Free~femO or FreeEntryO routines described below.

\Vhen you ask for memory to be allocated, the system always allocates blocks of memory in
even multiples of 8 bytes. If you request more or less than 8 bytes, your request is always
rounded up to the nearest multiple of 8. In addition, the address at which the memory deal
location is made is always rounded down to the nearest even multiple of 8 bytes.

Memory Allocation 1-61

CO"fPA. TIBILITY NOTE: Don't depend on this size! Future revisions of the system may
require a different size to guarantee alignment of the requested area to a specific boundary.
You can depend upon allocation being aligned to at least a longword boundary.

6.2. USING MEMORY ALLOCATION ROUTINES

NOTE: Do not attempt to allocate or deallocate system memory from within interrupt
code. The "Interrupts" chapter explains that an interrupt may occur at any time, even dur
ing a memory allocation process. As a result, system data structures may not necessarily be
in tern ally consisten t.

Memory Requirements

You must tell the system about your memory requirements when requesting a chunk of
memory. There are four memory requirement possibilities. Three of these tell where within
the hardware address map memory is to be allocated. The fourth, MEMF _CLEAR, tells
the allocator that this memory space is to be zeroed before the allocator returns the starting
address of that space.

The memory requirements that you can specify are:

ME:\1F _CHIP
Indicates a memory block that is within the range th:lt the special-purpose
chips C:ln access. As of this writing, this is the lowest 512K of the c\mig:l.

MEMF_FAST
Indicates a memory block that is outside of the range that the special purpose
chips can access. "FAST" means that the special-purpose chips cannot cause
processor bus con ten tion and therefore processor access will likely be faster.
The special-purpose chips cannot use memory allocated in this way.

MEMF _PUBLIC
Indicates that the memory requested is to be used for different tasks or inter
rupt code. This would be for task control blocks, messages, ports and so on.
The designation MEMF _PUBLIC should be used to assure compatibility with
future versions of the system.

1-62 Memory Allocation

MEMF_CLEAR
Indicates clear memory to zero before returning.

If no preferences are specified, MEMF _FAST is assumed first, then MEMF _CHIP.

Memory Handling Routines

Exec has the following memory allocation routines:

AllocMemO and FreeMemO

System-wide memory allocation and deallocation rou tines. These rou tines use a
memory free-list owned and managed by the system.

AllocEntryO and FreeEntryO

Routines for allocating and freeing different size, different type memory blocks with a
single call.

AllocateO and DeallocateO

Routines that may be used within a user-task to locally manage a system-allocated
memory block. You use these routines to manage memory yourself, using your own
memory free lists.

Sample Calls for Allocating System Memory

The following examples show how to allocate memory.

struct APTR mypointer,anotherptr;
mypointer = AllocMem(lOO, 0);

AllocMemO returns the address of the first byte of a memory block that is at least 100
bytes in size or null if there is not that much free memory. Since the requirement field is
specified as 0, memory will be allocated from anyone of the system-managed memory
regIOns.

~Iemory Allocation 1-63

anotherptr = AllocMem(lOOO,MEMF _CHIP I MEMF _CLEAR);

Memory is allocated only out of chip-accessible memory; zeroes are filled into memory space
before the address is returned.

If the system free-list does not contain enough contiguous memory bytes in an area matching
your requirements and of the size you have requested, AllocMem() or AllocateO returns a
zero.

Sample Function Calls for Freeing System Memory

The following examples free the memory chunks shown in the earlier call to the system allo
cation routines.

FreeMem(mypointer,100);

FreeMem(anotherptr,lOOO);

NOTE: Due to the internal operations of the allocator, your allocation request may result in
an allocation larger than the number of bytes you requested in the fI rst place. However, the
FreeMemO routine adjusts the request to free memory in the same \Vay as AllocMemO
adjusts the size, thereby maintaining a consistent memory free-list.

The rou tine FreeMemO doesn't return any status. However, if you attempt to free a
memory block in the middle of a chunk that the system already belicH'S is frec. you will
cause a system crash.

Pa.rtial blocks can be deallocated, but not2 again that Free·MemO rounds your aclclrrss
c10\\"ll to the nearest even multiple of),IE!\CBLOCKSIZE and the size up to the Ilea.rest mul
tiple before the FreeMemO request is performed.

1-64 j\1emory Allocation

Allocating ~lultiple Memory Blocks

Exec provides the routines AllocEntryO and FreeEntryO to allocate multiple memory
blocks in a single call. AllocEntry() accepts a data structure called a MemList, which COI1-

tains the information about the size of the memory blocks to be allocated and the require
ments, if any, that you have reg:lI'cling the allocation. The ~femList structure is found in
the include-file eIfe/ memor!!.1! and is defined as:

where:

Node

struct MemList {
struct Node ml_Node;
UWORD ml_NumEntries; / .. number of MemEntries .. /
struct MemEntry ml_me[I]; / .. where the MemEntries .. /
begin
};

:1llows you to link together multiple ~1emLists. Howeyer, the node IS ignored by the
routines AllocEntryO and FreeEntryO.

ml_NumEntries
tells the system how many MemEntry sets are contained in this MemList. l\otice that
a MemList is a variable-length structure and can contain as many sets of entries as you
,,·ish.

For the purposes of AllocEntry(), the MemEntry structure looks like this:

struct MemEntry {
union {

ULONG meu_Reqs; / * the AllocMem requirements * /
APTR meu_Addr;

}me_Un;
ULONG meu_Length; / * the size of this request .. /

'Memory Allocation 1-6.5

Sample Code for Allocating Multiple Memory Blocks

#define me_Reqs me_Un.meu_Reqs
#define me_Addr me_Un.meu_Addr

struct :MemList .. mymemlist;
struct myneeds {

/ * pointer to a MemList * /

struct MemList mn_head; /* one entry in the header * /
struct MemEntry mn_body[2J; /* additional entries follow

* directly as part of
.. same data structure * /

};

myneeds.mn_head.ml_NumEntries = 3;
myneeds.mn_head.me[O].me_Reqs = MEMF _PUBLIC;
myneeds.mn_head.me[O].me_Length = 104;
myneeds .mn_head .me [1] .me_Reqs=MEMF _F ASTiMEMF _CLEAR;
myneeds.mn_head.me[l].me_Length = 8000;
myneeds.mn_head.me[2J.me_Reqs=MEMF _CHIP I MEMF _CLEAR;
myneeds.mn_head.me[2J.me_Length = 256;

mymemlist = AllocEntry(&myneeds);

/ .. saying" struct MemEntry mo_body[2]" is simply a way of
.. adding extra MemEntry structures contiguously at the end
* of the first such structure at the end of the MemList.
* Thus members of the MemList of type MemEntry can be
.. referenced in C as additional members of the)) mel]"
* data structure

*/

AllocEntry() returns a pointer to a ne,\" MemList of the same size as the ~lemList that
you passed to it. For example, RO~f code can provide a :MemList containing the require
ments of a task and create a RAi'lf-resiclent copy of the list containing the addresses of the
alloc:1t.ed en tries.

1-66 lI-Iemory Allocation

Result of Allocating Multiple Memory Blocks

The MemList created by AllocEntryO contains MemEntry entries of the second possible
form (MemEntrys are defined by a union statemen t, which allows one memory space to be
defined in more than one way.)

struct MemEntry {
APTR meu_Addr; I'" the address of the region'" /
ULONG meu_Length; / '" the size of this request * /

};

If AllocEntryO returns a value with bit 31 clear, then all of the meu_Addr positIOns in
your MemList will contain valid memory addresses meeting the requirements which you
have provided.

To use this memory area, you would use code similar to the following:

APTR mydata, moredata;

if (((mymemlist & (1 < <31)) < 0)
{

}
else

mydata = mymemlist->ml_me[O].me_Addr;
moremydata = mymemlist->ml_me[l].me_Addr;

exit (200); 1* error during AllocEntry * /

If AllocEntryO has problems while trying to allocate the memory you have requested,
instead of the address of a new MemList, it will return the memory requirements value with
which it had the problem. Bit 31 of the value returned will be set, and no memory will be
allocated. Entries in the list that were already allocated will be freeel.

6.3. MEMORY ALLOCATION AND TASKS

If you want your task to be fully cooperative with Exec, use the MemList and
AllocEntry() facility to do your dynamic memory allocation.

Memory Allocation 1-67

In the task control block structure, there is a list header named tc_MemEntry. This is the
list header that you initialize to point to the MemLists that your task has created by call(s)
to AllocEntryO·

Here is a short program segment that handles task memory list header initialization only. It
assumes that you have already run AllocEntryO as shown in the simple AllocEntryO
example above.

NewList(&mytask.tc_MemEntry); /* Initialize the task's
* memory list header * /

AddTail(&mytask.tc_MemEntry, mymemlist);

Assuming that you have only used the AllocEntry() method (or AllocMemO and built
your own custom MemList), your task now knows where to find the blocks of memory that
your task has dynamically allocated. If your cleanup routine (the task's finalPC routine)
finds items on the tc_MemEntry list when RemTask(&mytask) is executed, your rou
tine can wind through all linked lists of MemLists and return all allocated memory to the
system free-list.

Memory Allocation and the Multi-Tasking System

To ensure that you are effectively working in the multi-tasking system as a cooperating task,
you can either:

o Globally allocate and free memory blocks by using AllocMemO and FreeMemO;
adding each block when allocated and deleting each when it is freed, on your task's
MemList, or

o Allocate one or more blocks of memory from the system global pool usmg
AllocEntryO when your task begins, then manage those blocks internally usmg
AllocateO and DeallocateO.

1-68 Memory Allocation

Managing Memory with AllocateO and DeallocateO

Allocate() and DeallocateO use a memory region header, called MemHead, as part of the
calling sequence. You can build your own local header to manage memory locally. This
structure takes the form:

struct MemHead {
UWORD mh_Attributes; / * characteristics * /
AP TR mh_First; / * first free region * /
APTR mh_Lower; /* lower memory bounds */
APTR mh_Upper; / * upper memory bounds + 1 * /
ULONG mh_Free; /* number of free bytes */

};

where:

mh_Attributes
is ignored by AllocateO and DeallocateO.

mh_First
is the address of the first free region in the memory block.

mh_Lower
is the lowest address within the memory block, must be a multiple of 8 bytes.

mh_Upper
is the highest address within the memory block + 1. The highest address will itself
be a multiple of 8 if the block was allocated to you by AllocMemO.

mh_Free
is the total free space.

This structure is included in the include-files exec/memory.h and exec/memory.i.

The following sample program fragment shows the correct initialization of a MemHead
structure. It assumes that you wish to allocate a block of memory from the global pool and
thereafter manage it yourself using AllocateO and DeallocateO.

Memory Allocation 1-69

struct MemHead mymemhead;
APTR myblock;

struct MemChunk {
APTR next;
ULONG size;

};

struct MemChunk *m;

myblock = AllocMem(8000, MEMF_PUBLIC I MEMF_CLEAR);
/ * get a block from the system * /

mymemhead.mh_First = myblock;
mymemhead.mh_Lower = myblock;
mymemhead.mh_Upper = (int)myblock + 8000 + 1;
mymemhead.mh_Free = 8000 - (sizeof MemChunk);

/ * takes 8 bytes for the memory chunk headers
* which tag free memory * /

m = myblock;
m->next = NULL; /* initialize the free memory list */
m- >size = mymemhead.mh_Free;

/ * now mymemhead is ready to use with calls to:

*
* Allocate(&mymemhead, size);
* or
* Deallocate(&mymemhead, size);

*/

Note that only free memory is "tagged" using a MemChunk linked list. Once memory is
allocated, the system has no way of determining which task now has control of that memory.

If you allocate a large chunk from the system, you can assure that in your "final PC" routine
(specified when you perform AddTaskO) you deallocate this large chunk as your task exits.
Thus, local memory allocation and deallocation from a single large block can perhaps save
some bookkeeping which might otherwise be required if you had extensively used
AllocMemO and FreeMemO instead.

1-70 Memory Allocation

Chapter 7

Libraries

Using a properly designed machine code interface, it is possible to call any of the system rou
tines without knowing in advance its absolute location in the system. This chapter shows
how libraries are designed and used but does not dover the internal library structure. For
more information, see appendix K, which cont.ains source for a two-routine, disk-loadable
library.

7.1. WHAT IS A LIBRARY?

A library is a collection of jump instructions, a system library node, and a data segment.
System library conventions require that each code vector occupy six bytes. The size and con
tent of a library node is specified below in the topic titled "Structure of a Library I\'ode".
The data segment is of variable size and depends on the needs of the library itself.

7.2. HOW TO ACCESS A LIBRARY

There are two steps that you must perform to access a library that is already initialized.
The first step is to open the library. The second step is to access the jump instructions or
data by specifying an offset (negative or positive) from the library base pointer returned by
OpenLibrary().

This form of indirection allows you to develop code which is not dependent on the absoiu te
locations of the system routines. \\Jote that in t.he same release of an Exec kernel, it is possi
ble that different routines can have difTerent addresses. This depends, for example, on
whether the hardware options are difTerent or if the user asks for a difTerent configuration.
Therefore, accessing the system routines t.hrough library calls is the most expedient way of
assuring that your code will work on different machines.

Libraries 1-71

Opening a Library

You prepare a library for use by calling the routine OpenLibraryO· This call takes the
form:

LibPtr = OpenLibrary(LibName, Version)
DO Al DO

where:

LibPtr
is a pointer value which is non-zero if the requested library has been located. Be
sure to check that the returned value is non-zero before attempting to use LibPtr.
If it is zero, the open failed.

LibName
is a pointer to a string variable (null-terminated) which contains the name of the
library that you wish to open.

Version
is the version number of the library that you expect to use. Libraries of the same
name will be compatible with previous versions. However, if the user expects a
newer version than is present, the open will fail. Use the value 0 if you simply want
"any" version of the named library.

The routine OpenLibraryO causes the system to search for a library of that name within
the system library list. If such an entry is found, the library's open-entry routine is called.
If the library is not currently RAM-resident, AmigaDOS will search the directory currently
assigned to DEVS:. If that library is present, it will be loaded, initialized, and added to the
system library list.

If the library allows you access, the library pointer will be returned in LibPtr.

1-72 Libraries

Using a Library to Call a Routine

A typical way to use the library interface once a library has been opened is to use assembly
language code as follows. Note that this save/restore is only necessary if A6 does not already
con tain the correct value.

move.l
move.l
jsr

A6,-(SP) ; save current contents of A6
<libptr> ,A6 ; move library pointer into A6
<_LVO<routineName>(A6) ; through library vector table
move.l (SP)+,A6 ; restore A6 to original value

This is the actual assembly code generated by the use of a machine language macro named
LINKLIB as in:

LINKLIB functionOffset, libraryBase

where:

function Offset
is "_LYO" followed by the name of the routine as called from C.

libraryBase
is the address of the base of the library.

For example:

LINKLIB _LVODisplayBeep,IntuitionBase

produces the same code sequence as shown above. This macro is located in the file
exec/Hbraries.h. Notice that is handles only the linkage to the routine. It does not save any
registers or preload any registers for passing values to the routine.

Negative offsets, in multiples of six bytes, access the code vectors within the library.

By convention A6 must contain the library pointer when a library routine is called. This
allows any library routine to locate the library and access its data or any of its other entry
points.

Registers AO, AI, DO, and DI may be used as scratch registers by any routine, All other
registers, both address and data, if used in a routine, should be saved and restored before
exit.

Libraries 1-73

Using A Library To Reference Data

You can use the LibPtr to reference a data segment associated with a library by specifying a
positive offset from of LibPtr, such as:

move.!
move.l

<libptr> ,AI
< offset> (AI) ,DO

; Move library base
; Retrieve data located at < offset>

Library data is not usually accessed directly from outside of a library, but rather is accessed
by the routines which are part of the library itself. The sample code retrieves data
specifically associated with that library. Note that different languages will have different
interface requirements. This example shows only a typical assembly language in terrace.
\Vhen you design your own libraries, you may decide on how the associated data segment is
to be used. The system itself places no restrictions on its use.

Caching Library Pointers

To make your library calls more efficient, there are various pointers that you may cache if
you wish. These are:

a) the libPtr itself (since the library node, while it is open, may not be moved, and

b) the address within the library at which a Jump instruction IS located (since offsets
from the libPtr do not change).

You should not, however, cache the jump vector from within the library. You will always
expect to be calling the current library routine and therefore should not cache the jump vec
tor.

1-74 Libraries

Closing A Library

When your task has finished using a specific library, you should call the routine
CloseLibraryO. This call takes the form:

CloseLibrary(libPtr)
Al

where libPtr is the value returned to you by the call to OpenLibraryO.

You close a library to tell the library manager that there is one less task currently using that
library. If there are no tasks using a library, it is possible for the system, on request, to
purge that library and free up the memory resources which it is currently using.

Each successful open should be matched by exactly one close. Do not attempt to use a
library pointer after you have closed that library.

7.3. ADDING A LIBRARY

You can add your own library to the system library list, provided that it is constructed as
indicated. You add a library to the system by using the AddLibraryO function. The for
mat of the call to this function is:

AddLibrary(libPtr)
Al

This command links a new library to the system and makes it available to all tasks.

Libraries 1-75

Making a New Library

A function called MakeLibraryO is a convenient way for you to construct a library. After
running MakeLibraryO you will normally add that library to the system library list.

libAddr =~keLibrary(vectors, structure, init, dataSize, SegList
DO AO Al

AddLibrary(libAddr)
Al

A2 DO Dl

MakeLibraryO allocates space for the code vectors and data area, initializes the library
node, and initializes the data area according to your specifications. Its parameters have the
following meanings:

vectors
a pointer to a table of code pointers terminated with a -1. vectors must specify a
valid table address.

structure

init

points to the base of an InitStructO data region. That is, it points to the first loca
tion within a table which the InitStructO routine can use to initialize various
memory areas. InitStructO will typically be used to initialize the data segmen t of
the library, perhaps forming data tables, task control blocks, I/O control blocks and
the like. If this entry is a 0, then InitStructO is not called.

points to a routine which is to be executed after the library node has been allocated,
and the code and data areas have been initialized. When this routine is called, the
libAddr (address of this library) is placed into data register DO. If init is zero, no
ini t rou tine is called.

dataSize
this variable specifies the size of the data area to be reserved for the library. It
includes the standard library node data as well as the reserved data area itself.

SegList
a pointer to the AmigaDOS memory segment list (for libraries loaded by DOS).

1-76 Libraries

Minimum Subset of Library Code Vectors

The code vectors of a library must at least include the following en tries: OPEN, CLOSE,
EXPUNGE, and one reserved entry.

OPEN

CLOSE

is the entry point called when you use the command OpenLibraryO. In the
system libraries, OPEN incremen ts the library variable OpenCnt. This vari
able is also used by CLOSE and EXPUNGE.

is the entry point called when you use the command CloseLibraryO. It
decrements the library variable OpenCnt and may do a delayed EXPUNGE.

EXPUNGE
prepares the library for removal from the system. This often includes dealle
eating memory resources which were reserved during initialization.
EXPUNGE not only frees the memory allocated for data structures, but also
the areas reserved for the library node itself.

The remaining vector is reserved for future use. It should always return zero.

Structure of a Library Node

A library node contains all of the information which the system needs to manage a library.
Here is the library structure as it appears in the exec/ libraries.1! include file:

Libraries 1-77

struct Library {

};

struct Node libNode; / * link into the system library list * /
/* flag variables */ UBYTE lib_Flags;

UBYTE lib_Pad;
UWORD lib_N egSize;
UWORDlib_PosSize;
UWORDlib_ Version;
UWORDlib_Revision;

/* unused * /
/* size of jump vectors in bytes. */
/ * data size * /

ULONG lib_Sum; /* checksum */
UWORDlib_OpenCnt; / * count how many tasks have this library OPEN * /

/ * meaning of the library flag bits>: * /

#define LIBF _SUMMING (1 < < 0) /* bit position says some task is
currently running a checksum on this library * /

#define LIBF _CHANGED (1 < < 1) /* bit position says one or more
entries have been changed in the library
code vectors, used by SumLibrary * /

#define LIBF _SUMUSED /* bit position says user wants a
checksum fault to cause a system panic * /

#define LIBF _DELEXP / * says there is a delayed expunge
some user has requested expunge but
another user still has the library open * /

Changing The Contents Of A Library

After a library has been constructed and linked to the system library list, you can use the
routine SetFunctionO to either add or replace the contents of one of the library vectors.
The format of this routine is as follows:

SetFunction(Library, FuncOffset, FuncEntry)
Al AO DO

where:

1-78 Libraries

Library
is a pointer to the library in which a function entry is to be changed.

FuncOffset
is the offset (negative) at which the entry to be changed is located.

FuncEntry
is a longword value which is the absolute address of the routine which IS to be
inserted at the selected position in the library code vectors.

·When you use SetFunctionO to modify a function entry in a library, it automatically recal
culates the checksum of the library.

7.4. RELATION TO DEVICES

A device is an interface specification and an internal data structure based on the library
structure. The interface specification defines a means of device control. The structures of
libraries and devices are so similar that the routine MakeLibrary() is used to construct
both libraries and devices. Devices require the same basic four code vectors, but have addi
tional code vectors which must be located in specific positions in the code vector table. The
functions that devices are expected to perform, at minimum, are shown in chapter 4, "I/O".
Also, a skeleton device (s~urce code) is provided in appendix F.

Libraries 1-79

Chapter 8

ROM-Wack

This chapter describes the ROM resident version of the Amiga debugger. It discusses how to
enter and use this debugger.

8.1. INTRODUCTION

Wack is a keystroke-interactive bug exterminator used with Amiga hardware and software.
ROAf- Wack is a small, ROM-resident version primarily useful for system crash data structure
examination. Its cGmmand syntax and display formats are identical to Grand- Wack l of
which it is functionally a subset.

8.2. GETTING TO WACK

RO}'·1-Wack will be automatically invoked by Exec upon a fatal system error, or it can he
explicitly invoked through the Exec Debug() function. Once invoked, communication is per
formed through the serial RS-232 data port at 9600 baud.

\Vhen a fatal system error occurs, \Vack can be used to examine memory in an attempt to
locate the source of the failure. The state of the machine will be frozen at the point in which
the error occurred and Wack will not disturb the state of system beyond using a small
amount of supervisor stack, memory between 200 and 400 hex, and the serial data port.

A program may explicitly invoke wack by calling the Exec Debug() function. This is useful
during the debug pha..'ie of development for establishing program breakpoints. For future
compatibility, Debug should be called with a single, null parameter; for example, Debug(O).

1 The RAM resident and remote versions of \Vack.

ROM- Wack 1-81

Please note however, that calling the DebugO function does not necessarily invoke ROM
Wack. If Grand-Wack or a user supplied debugger has been installed, it will be invoked in
place of ROM-Wack.

When Wack is called from a program, system interrupts continue to process, but multi
tasking is disabled. Generally this is not harmful to the system. Your graphics will still
display, keys may be typed, the mouse can be moved, and so on. However, many interrupts
deposit raw data into bounded or circular buffers. These interrupts often signal related dev
ice tasks to further process these buffers. If too many interrupts occur, device buffers may
begin to overflow or wrap-around. You should limit the number of interrupt actions (typing
keys on the Amiga keyboard for example) you perform while executing in Wack.

8.3. KEYSTROKES, NUMBERS, AND SYMBOLS

Wack performs a function upon every keyboard keystroke. In ROM-Wack, these functions
are permanently bound to certain keys. For example, typing" >" will immediately result in
the execution of the next-word function. This type of operation gives a "keystroke interac
tive" feel to most of the common \Vack commands.

Whenever a key is pressed, it is mapped through a KeyMap which translates it into an
action. This action is context-dependent. A key can have different meanings in different
contexts. For simplicity, RO~f-Wack applies keys consistently in all contexts2 .

In the default keymap most punctuation marks are bound to simple actions, such as display
ing a memory frame, moving the frame pointer, or altering a single word. These actions are
always performed immediately. In contrast, the keys A-Z, a-z, and 0-9 are bound to a func
tion that collects the keys as a string. When such a string is terminated with <RETURN>,
the keys are interpreted as a single symbol or number.

In ROM-Wack, symbols are only treated as intrinsic functions. Macros, constants, offsets,
and bases are not supported. Hence, typing a symbol name will always result in the invoca
tion of the symbol's statically bound function.

If a string of keys forms a number, that number is treated as a hexadecimal value. If a
string of keys is neither a number nor a known symbol, the message "unknown symbol" is
presented.

During the "collection" of a symbol or number string, typing a backspace deletes the prevI
ous character. Typing <CTRL-X> deletes the entire line.

Z The Grand-Wack feature of arbitrary key bmding is not available in ROM-Wack.

1-82 ROM-Wack

8.4. REGISTER FRAME

\Vhen \Vack is invoked for any reason, a Register Frame is displayed:

RCl\1-Wack

pc: FOOAB4 SIT: 0000 USP: 001208 SSP: 07FFE8 TRAP: 0000 TASK: 0008B8

DR: 00000001 00000004 OOOOOOOC 00000r\B4 00000001 0000001C 00000914 00000914

AU: 00000Ail4 00FOD348 00011A80 00000ll9C 00F20770 00F20380 00000004

SF: 0000 OOFO OAil4 0014 OOFO OAB4 OOH OOFO OAB'l 0004 OOFO OAil4 0000 0004 0000

This frame displays the current processor state and system context from which you entered
Wack. If you are familiar with the MG8000 processor, most of this frame should be obvious:
USP for user stack pointer, SSP for system stack pointer, etc.

The TRAP field indicates the t rap3 number which forced us into \Vack. The standard
TRAP numbers are:

o normal entry

2 bus error

3 address error

4 illegal instruction

5 zero divide

6 CHK instruction (should not happen ..)

7 TRAPV instruction (should not happen ..)

8 privilege violation

9 trace (single step)

A line 1010 emulator

B line 1111 emulator

2N trap instruction N (2F normally for breakpoint)

The TASK field indicates the task from which the system entered Wack. If this field IS zero,
the system entered \Vack from supervisor mode.

3 Motorola calls these exceptIOns. We use the word "exception" for asynchronous task events

ROM- Wack 1-83

The SF line provides a backtrace of the current stack frame. This is often useful for deter
mining the current execution context (last function called, for example). The user stack4 is
displayed for entry from a task; the system stack for entry from supervisor mode.

8.5. DISPLAY FRAMES

Wack displays memory in fixed size frames. A frame may vary in size from 0 to 64K bytes.
Frames normally show addresses, word size hex data, and ASCII equivalent characters:

FOOOC4 6578 6563 2E6C 61162 7261 72711 0000 4AFC
FOOOD4 OOFO 00D2 OOFO 21118 00111 01178 OOFO 00C4

e x e c • I i b I' a I' y ...

) ·X .. 'Y' I x •••

By default, Wack will pack as much memory content as it can onto a single line. Sometimes
it is preferable to see more or less than this default frame size. The frame size may be
modified with :n. Here "n" represents the number of bytes (rounded to the next unit size)
that will be displayed.

:4
FOOOC4 6578 6563 e x e c

:20
FOOOC4 6578 6563 2E6C 61162 7261 72711 0000 4AFC e x e c I i b r a r y •.•

FOOOD4 OOFO OODZ OOFO Zll18 00111 01178 OOFO 00C4) ·X .. 'Y' I ...•.

A ":0" frame size is useful for altering the write-only custom chip registers.

8.6. RELATIVE POSITIONING

Wack functions like a memory editor; nearly all commands are performed relative to your
current position in memory. The following commands cause relative movement:

forward a frame

• Version 25.1 always shows the system stack, never the user stack. This will change.

1-84 ROM-Wack

backward a frame

> forward a word

< backward a word

+n forward n bytes

-n backward n bytes

<RETURN>
redisplay current frame

<SPACE>
forward a word

<BKSP>
backward a word

For example:

< RETIJRN' >
r00200 7072 6573 656e 7420 OdOa 0000 2028 6372 pre sen t)AMAJ •••

r00210 6173 6820 2d20 6361 6e6e 6f74 2072 6563 ash can not

r00200 7072 6573 656e 7420 OdOa 0000 2028 6372 p r e s e n t) 'MA J ...

>
r00202 6573 656e 7420 OdOa 0000 2028 6372 6173 e s e n t) AM' J ••••

<
r00200 7072 6573 6S6e 7420 OdOa 0000 2028 6372 p r e s e n t) AM' J ...

+24
r00224 200d OaOO 2028 626r 6t74 2064 6576 6063) 'M' J •. b o 0 t d

-38
roo lee 6e65 200d OaOO 2028 6e6 r 2064 6562 7567 I e) AM' J .. n 0 d

8.7. ABSOLUTE POSITIONING

There are a few commands that perform absolute positioning. Typing a hex number moves
you to that position in memory:

ROM- Wack 1-85

10ec

OOIOec ooro 17cO 4er9 ooro 179B. {er9 ooro 1786 AW .• N 'W ..

Also, \Vack maintains an indirection stack to help you walk down linked lists of absolute
poin ters:

4

000004 0000 11ec ooro Oa8e OOfO Oa90 ooro Oa92 AQ AJ ..•... AJ
(use current longword as the next address)

0011ec 0000 18f6 0000 1332 0900 ooro 086a 0000 '" .AX AS 2Al
(return to the previous" indirected" address)

000004 0000 11ec ooro Oa8e ooro Oa90 OOfO Oa92 AQ AJ AJ

The "find" command finds a given pattern in memory, and the "limit" command determines
the upper bound of the search. The pattern may be from one to four bytes in length. The
pattern is not affected by the alignment of memory; that is, byte alignment is used for all
searches regardless of the pattern size.

To set the upper bound for a "find" command, type an address followed by "limit" or "A".
The default bound is 1000000 hex.

8.S. ALTERING MEMORY

The = commancl lets you modify your current memory word:

20134
020134 0000 0000 0000
020134 0000 = 767
020134 0767 0000 0000 AG g.

If framesize is zero, the contents of the word will not be displayed prior to letting you modify
it:

:0
dff09 c
DFF09C xxxx - 7fff

If you decide not to modify the contents after typing an =, press <RETURN> without
typing a number. If you've already typed a number, type <CTRL-X>.

1-86 ROM-Wack

The alter command performs a repeated = which is handy for setting up tables. While in
this mode, the > and < will move you forward or backward one word. To exit from this
mode, type a <RETURN> with no preceding number.

alter
001400 0280 = 222
001402 00C8 =<
001400 0222 = 333
001402 00C8 =444
001404 0000 = 0
001406 3700 = >
001408 0000 = 666
00140A 0000 = < RETIJRN >

You can modify registers when single-stepping or breakpointing. Typing "!" followed by the
register name (DO-D7, AO-A6), U) lets you make modifications. SR and SSP cannot be
modified.

The "fill" command fills memory with a given pattern from the current location to an upper
bound. The "limit" command determines the upper bound of the fill. The size of the fill
pattern determines the number of bytes the pattern occupies in memory. For example, typ
lllg:

fill <RETURN>
45

fills individual bytes with the value 45. Typing:

fill <RETURN>
045

fills words, and

fill <RETURN>
0000045

fills longwords.

CAUTION Using the fill command without properly setting the limit can destroy data in
memory. To set the upper bound for a fill, type an address followed by "limit" or a"'''.

ROM- Wack 1-87

8.9. EXECUTION CONTROL

These commands con trol program execu tion and system reset:

go execute from current address

resume resume at current PC address

AD resume at current PC address

AI (tab) single instruction step

boot reboot system (cold-reset)

19 re boot system (cold- reset)

8.10. BREAKPOINTS

ROl-.I-Wack has the ability to perform limited program breakpoints. Up to 16 breakpoints
may be set. The breakpoint commands are:

set set breakpoint at current address

clear clear breakpoint at current address

show show all breakpoint addresses

reset clear all breakpoints

To set a breakpoint, pOSitIOn the address pointer to the break address and type set. Resume
program execution with go or resume. \Vhen your breakpoint has been reached, Wack will
display a register frame. The breakpoint is automatically cleared once the breakpoint is
reached.

1-88 ROM-Wack

8.11. RETURNING TO MULTI-TASKING AFTER A CRASH

The "user" command forces the machine back into multi-tasking after a crash that invoked
ROM- Wack. This gives your system a chance to flush disk buffers before you reset, thus
securing your disk's super-structures.

Once you type "user", you cannot exit from ROM- 'Nack, so you should use this command
only when you want to reboot after debugging. Give your disk a few seconds to write out its
buffers. If your machine is in a bad way, the "user" command may not work.

ROM- Wack 1-89

Part II

Chapter 1

Graphics Primitives

This chapter describes the basic graphics tools. It covers the graphics support structures,
display rou tines, and drawing rou tines.

Many of the operations described in this section are also performed by the Intuition software.
See the book called Intuition: The Amiga User Interface for more information.

1.1. INTRODUCTION

The Amiga has two basic types of graphics support routines: display routines and drawing
routines. These routines are very versatile and allow· you to define any combination of
drawing and display area you may wish to use.

Section 1.2 of this chapter defines the display routines. These routines show you how to
form and manipulate a display, including the following:

o how to identify the memory area that you wish to have displayed

o how to position the display area window to show only a certain portion of a larger
drawing area

o how to split the screen into as many vertically stacked slices as you wish

o whether to use high-resolution (640 pixels across) or low-resolution (320 pixels across)
display mode for a particular screen segment, and whether to use interlaced (400
lines top to bottom) or nonin terlaced (200 lines) mode

o how to specify how many color choices per pixel are to be available in a specific sec
tion of the display

Graphics Primitives 2-1

Section 1.3 explains all of the available modes of drawing supported by the system software,
including how to:

o reserve memory space for use by the drawing routines

o define the colors that can be drawn into a drawing area

o define the colors of the drawing pens (foreground pen, background pen for patterns,
and outline pen for area-fill outlines)

o define the pen position in the drawing area

o draw lines, define vertex points for area-filling, and specify the area-fill color and pat
tern

o define a pattern for patterned line drawing·

o change drawing modes

o read or write individual pixels in a drawing area

o copy rectangular blocks of drawing area data from one drawing area to another

o use a template (predefined shape) to draw an object into a drawing area

Components of a Display

In producing a display, you are concerned with two primary components: sprites and the
play field . Sprites are the easily movable parts of the display. The playfield is the static part
of the display and forms a backdrop against which the sprites can move and with which the
sprites can interact.

This chapter covers the creation of the background. Sprites are described in Chapter 3,
"Animation" .

2-2 Graphics Primitives

Introduction to Raster Displays

The Amiga prod uces its video displays on standard television or video monitors by using ras
ter display techniques. The picture you see on the video display screen is made up of a series
of horizontal video lines stacked one on top of another, as illustrated in Figure 1-1. Each line
represents one sweep of an electronic video beam, which "paints" the picture as it moves
along. The beam sweeps from left to right, producing the full screen one line at a time.
After producing the full screen, the beam returns to the top of the display screen.

Figure 1-1: How the Video Display Picture is Produced

The diagonal lines in the figure show how the video beam returns to the start of each hor
izontalline.

Affect of Display Overscan on the Viewing Area

To assure that the picture entirely fills the viewable region of the screen, the manufacturer of
the video display usually creates a deliberate overscan. That is, the video beam is swept
across a larger section than the front face of the screen can actually display. The video beam
actually covers 262 vertical lines. The user, however, only sees the portion of the picture
that is within the center region of the display, which is is about 200 rows, as illustrated III

Figure 1-2 below. The graphics system software lets you specify more than 200 rows.

Graphics Primitives 2-3

0 ',';:> 1""" elii ;t ;.::;" ,<'SiT ;ct s the amount of video data that can appear on each display line. The
O' F "t,eJ. , ·' ,.·;Vh.'. f t' 'i.:lu' \" ;; you to specify a display width of up to 352 pixels (or 704 in high
, >;:V, I'l i L ' ;[n:;-, .j l'.) r)l' ~' !,~' r' lo [)ul line . You should generally, however, use the standard values
c; [:'; ~ () : :,i r, F) ", r ;1' h - I' ·::--(, I .. H l') D mode) for most applications.

1- ·- --·· ·_ ·_··· ·-· _·· ._ - - - .-.. -----------------------------,
! ,

' :': -

,

~ Overscan region. You cannot
/' see it on the video screen.

/' Viewable region . Contains
approximately 200 video lines
and 320 pixels across .

,~~ .. -- ~, .. -... -... . -. __ __ ._ .. ------ ._--------------------'

F!;;:-L ;I"' 1-'..: Dispi3Y Overscan Restricts Usable Picture Area

T h\" :illl " : i'.1 · ; ·, ~,; ..• ·hld, th " vid <,o beam is in the region below the bottom line of the viewable
: 1i" ~ ·1 ,. , , : ;;: '" , .' t !", v 'r' iI ;-> (' of thE" next display field is called the vertical blanking interval.

(. o~(,,: i !dorQ}.3tico fOl' the Video Lines

Th :' ;" , ~ ' \. ' ~ .. "' : ::;" : ~. , :, :, ' -;; lfl iO display memory to obtain the color information for each line.
:\" h ·, ' j,' t.· ;'1 \ J-, ,' :trrt sweeps across the screen producing the display line, it changes
(. · () l \·;~· : . ;" .. I'.: ·" i ''; Ih" I;!l::<",es you have defined.

Intet1.r.iceci and Non-Interlaced Mode

it : ;,; .. ".: £I~ t !\(' (O mpI (,l e J ~~p lay (262 video lines), the video display device produces the top
1m;.' \,1'. (,' 1 ; h fi "':!. kn':n lip-e, then the next until it reaches the bottom of the screen. When
1'. ",e, ' l ,;," ~!I ~ ' ,, ' tt·,! ." !I. rdurns to the top to start a new scan of the screen. Each complete
," ;,.: . ,j . 1-: ls]Jla y field It takes about 1/ 60th of a second to produce a com-

The Amiga has two vertical display modes: interlaced and non-interlaced. In non-interlaced
mode, the video display produces the same picture for each successive display field. A non
interlaced display normally has about 200 lines in the viewable area (for a full-screen size
display).

To make the display more precise in the vertical direction, you use interlaced mode, which
displays twice as much data in the same vertical area as non-interlaced mode. Within the
same amount of viewable area, you can display 400 video lines instead of 200.

For interlaced mode, the video beam scans the screen at the same rate {1/60th of a second
per complete video display field}; however, it takes two display fields to form a complete
video display picture. During the first of each pair of display fields, the system hardware
shows the odd numbered lines of an interlaced display (1, 3, 5, and so on). During the
second display field, it shows the even numbered lines (2, 4, 6 and so on). These sets of lines
are taken from data defining 400 lines. During the display, the hardware moves the second
display field's lines downward slightly from the position of the first, so that the lines in the
second field are "interlaced" with those of the first field, giving the higher vertical resolu tion
of this mode. For an interlaced display, the data in memory defines twice as many lines as
for a non-interlaced display as shown in Figure 1-3.

DATA AS
DISPLAYED

Odd field - Line 1
Even field - Line 1
Odd field Line 2
Even field - Line 2

Odd field Last line
Even field - Last line

DATA
IN MEMORY

Line 1
Line 2
Line 3
Line 4

Line 399
Line 400

Figure 1-3: Interlaced Mode - Display Fields and Data in Memory

Figure 1-4 shows a display formed as display lines I, 2, 3, 4, ... 400. The 400-line interlaced
display uses the same physical display area as a 200-line non-interlaced display.

Graphics Primitives 2-5

Field 1

Line 1

!\~Linel
~~~/ 

Line 1 

Field 2 

Video Display 
(400 lines) 

Figure 1-4: Interlaced Mode DOli bles Vertical Resolu tion 

Line 2 

During an interlaced display, it appears that both display fields are present on the screen at 
the same time and form one complete picture. This phenomenon is called video persistence. 

High and Low Resolution Modes 

The Amiga also has two horizontal display modes: ht'gh-resolution and low-resolution. 
High-resolution mode provides (nominally) 640 distinct pixels (picture elements) across a hor
izontalline. Low-resolution provides (nominally) 320 pixels across each line. 

Low-resolution mode allows up to 32 colors at one time, and high-resolution mode allows 16 
colors (out of 4,096 choices) at one time. 

One other display mode affects the number of colors you can display at one time: hold-and
mod~Jy. Hold-and-modify mode allows you to display all 4,096 colors on-screen at once. 

2-6 Graphics Primitives 



Forming an Image 

To create an image, you write data ("draw") into a memory area in the computer. From 
this memory area, the system can retrieve the image for display. You tell the system exactly 
how the memory area is organized, so that the display is correctly produced. You use a 
block of memory words at sequentially increasing addresses to represent a rectangular region 
of data bits. Figure 1-5 shows the contents of three example memory words; O-bits are shown 
as blank rectangles, and I-bits as filled-in rectangles. 

Contents of three memory words, all adjacent to each other. Note that N is expressed as a byte-address. 

I I I I I I I Ell I I I I I I I I I I I I II I[lll I I I I I I I I I I I I III I I I I I I 

Mem. Location N Mem. Lac. N+2 Mem. Lac. N+4 

Figure 1-5: Sample Memory Words 

The system software lets you define linear memory as rectangular regions, called bit-planes. 
Figure 1-6 shows how the system views the same 3 words as a bit-plane, wherein the data 
bits form an X-Y plane. 

Graphics Primitives 2-7 



Three memory words, organized as a bit-plane. 

1IIIII11lj flllill 
Mem. Location N 

Mem. Location N+2 

Mem. Location N+4 

Figure 1-6: A Rectangular "Look" at the Sample Memory Words 

Figure 1-7 shows how 4,000 words (8,000 bytes) of memory can be organized to provide 
enough bits to define a single bit-plane of a full-screen low-resolution video display 
(320 x 2(0). 

111111111---------..-111111111 
Mem. Location N Mem. Location N+38 

111111111 .. 111111111 
Mem. Location N+40 Mem_ Loatlon N+78 

I 

111111111----·--........... 111111111 
Mem. Location N+7960 Mem. LOCiition N+7998 

Figure 1-7: Bit-Plane for a Full-Screen Low-Resolution Display 

Each memory data word contains 16 data-bits. The color of each pixel on a video display 
line is directly related to the value of one or more data-bits in memory as follows: 

2-8 Graphics Primitives 



o If you create a display where each pixel is related to only one data-bit, then you can 
only select from one of two possible colors, because each bit can only have a value of 
o or 1. 

o If you use two bits per pixel, there is a choice of 4 differen t colors because there are 4 
possible combinations of the values of 0 and 1 from each of the two bits. 

o If you specify 3, 4 or 5 bits per pixel, you will have 8, 16 or 32 possible choices of a 
color for each pixel respectively. 

To create multi-colored images, you must tell the system how many bits are to be used per 
pixel. The number of bits per pixel is the same as the number of bit-planes used to define 
the image. 

As the video beam sweeps across th.e screen, the system retrieves one data bit from each bit
plane. Each of the data bits is taken from a different bit-plane, and one or more bit-planes 
are used to fully define the video display screen. For each pixel, data-bits in the same x,y 
position in each bit-plane are combined by the system hardware to create a binary value. 
This value determines the color that appears on the video display for that pixel. 

Color 
Selection 
Circuitry 

I [] 

I 0 ~ O. 

~on'Ofth' 
9 ~ 

pixel positions Video display 
made from the 

f-- combined bit· planes. 
I--

Bit-Planes defining a low-res display 

Figure 1-8: Bits From Each Bit-Plane Select Pixel Color 

You will find more information showing how the data bits actually select the color of the 
displayed pixel in the section called "ViewPort Color Selection". 

Graphics Primitives 2-9 



Role of the Copper (Coprocessor) 

The Amiga has a special-purpose coprocessor, called the Copper, that can control nearly the 
entire graphics system. The Copper can control register updates, reposition sprites, change 
the color palette, and update the blitter. The graphics and animation routines use the 
Copper to set up lists of instructions for handling displays, and advanced users can write 
their own "user Copper lists". 

1.2. DISPLAY ROUTINES AND STRUCTURES 

CAUTION 

Section 1.2 describes the lowest level graphics interface to the system hardware. If 
you use any of the routines and the data structures described in these sections, 
your program will essentially take over the entire display. It will not, therefore, be 
compatible with the multi-window operating environment, known as Intuition, 
which is used by AmigaDOS. 

The descriptions of the display routines, as well as those of the drawing routines, occasionally 
use the same terminology as that in Intuition: The Amiga User Interface. These routines and 
data structures are the same ones that Intuition software uses to produce its displays. 

The computer produces a display from a set of instructions you define. You organize the 
instructions as a set of parameters known as the View structure. 

Figure 1-9 shows how the system interprets the contents of a View structure. This drawing 
shows a complete display composed of two different component parts, which could, for exam
ple, be a low-resolution, multi-colored part and a high-resolution, two-colored part. 

A complete display consists of one or more ViewPorts, whose display sections are separated 
from each other by at least one blank line. The viewable area defined by each ViewPort is 
a rectangular cut from the same size (or larger) raster. You are essentially defining a display 
consisting of a number of vertically stacked display areas in which separate sections of graph
ics rasters can be shown. 

2-10 Graphics Primitives 



A complete display is composed of 
one (or more) "ViewPorts" 

Background color shows here 

ViewPort :it 1 

Video Display 

;:==================~t------ViewPorts 
must be 

ViewPort #2 

separated 
by at least 

one blank line 
(may need more 

than one blank line) 

Figure 1-9: The Display is Composed of View Ports 

Limitations on the Use of ViewPorts 

The system software for defining View Ports allows only vertically stacked fields to be 
defined. Figure 1-10 shows acceptable and unacceptable display configurations. If you wan t 
to create overlapping windows, define a single ViewPort and manage the windows yourself 
within that ViewPort. 

Graphics Primitives 2-11 



I I 
I I 
I I 

Incorrect 
Acceptable (Does not use at least one 

blank I ine between 
ViewPorts) 

~ ~ D D 
Incorrect for ViewPorts I ncorrect for ViewPorts 
(Overlapping vertical (Cannot create multiple 

windows) horizontal windows) 

Figure 1-10: Correct and Incorrect Uses of View Ports 

A ViewPort is related to the custom screen option of Intuition. In a custom screen, you can 
split the screen into slices as shown in the "correct" illustration of Figure 1-10. Each custom 
screen can have its own set of colors, its own resolution, and show its own display area. 
Within a ViewPort, actually within its associated RastPort (drawing area definition), it is 
possible to split the display into separate drawing areas called windows. The ViewPort is 
simply an indivisible window onto a possibly larger complex drawing area. 

Characteristics of a ViewPort 

To describe a ViewPort fully, you need to set the following parameters: 

o height 

2-12 Graphics Primitives 



o width 

o display mode 

In addition to these parameters, you must also tell the system 

o from where in memory to retrieve the data for the View Port display, and 

o how to position the final ViewPort display on the screen. 

ViewPort Size Specifications 

Figure 1-11 illustrates that the variables DHeight, and DWidth specify the size of a 
ViewPort. 

... 

Display Bit·Planes 

DWidth = how many pixels wide 

DHeight = how 
many I ines tall 

Figure 1-11: Size Definition for a ViewPort 

Graphics Primitives 2-13 



ViewPort Height 

The variable DHeight determines how many video lines will be reserved to show the height 
of this display segment. The size of the actual segment depends on whether you define a 
non-interlaced or an interlaced display. An interlaced display is half as tall as a non
interlaced display of the same number of lines. 

For example, a View consisting of two ViewPorts might be defined as follows: 

o ViewPort #1 is 150 lines, high-resolution mode (uses the top 3/4 of the display) 

o ViewPort #2 is 49 lines of low-resolution mode (uses the bottom 1/4 of the display, 
and allows the space for the one blank line between ViewPorts which is required by 
the system) 

The user interface software (Intuition) assumes a standard configuration of 200 rows (400 in 
interlaced mode). 

ViewPort Width 

The DWidth variable determines how wide, in current pixels, the display segment will be. If 
you are using low-resolution mode, you should specify a width of 320 pixels per horizontal 
line. If you are using high-resolution mode, you should specify a width of 640 pixels. You 
may specify a smaller value of pixels per line to produce a narrower display segment. 

Although the system software allows you define low-resolution displays as wide as 352 pixels 
and high-resolution displays of 704 pixels, you should not exceed the normal values of 320 or 
640, respectively. Because of display overscan, many video displays will not be able to show 
all of a wider display and sprite display may be affected. If you are using hardware sprites or 
VSprites with your display, and you specify ViewPort widths exceeding 320 or 640 pixels 
(for low- or high-resolution, respectively), it is likely that hardware sprites 5, 6, and 7 will 
not be rendered on-screen. These sprites may not be rendered because playfield DMA (direct 
memory access) takes precedence over sprite DMA when an extra-wide display is produced. 

2-14 Graphics Primitives 



ViewPort Color Selection 

The maximum number of colors that a ViewPort can display is determined by the depth of 
the BitMap that the ViewPort displays. The depth is specified when the BitMap is ini
tialized. See the section below called "Preparing the BitMap Structure". 

Depth determines the number of bit-planes used to define the colors of the rectangular image 
you are trying to build (the raster image) and the number of different colors that can be 
displayed at the same time within a ViewPort. For any single pixel, the system can display 
anyone of 4,096 possible colors. 

Table 1-1 shows depth values and the corresponding number of possible colors for each value. 

Table 1-1: Depth Values and Number of Colors in the ViewPort 

Colors Depth Value 

2 1 
4 2 
8 3 

16 4 (Note 1) 
32 5 (Notes 1,2) 

4096 6 (Notes 1,2,3) 
64 6 (Note 1,2,) 

NOTES: 

1. Single-playfield mode only - ViewPort mode not DUALPF 

2. Low-resolution mode only - ViewPort mode not HIRES 

3. Hold-and-modify mode only-ViewPort mode = HAM 

The color palette used by a ViewPort is specified in a ColorMap. See the "Preparing the 
ColorMap" below for more information. 

Depending on whether single- or dual-playfield mode is used, the system will use different 
color register groupings for interpreting the on-screen colors. Table 1-2 below details how the 
depth and the Modes variable in the ViewPort structure affect the registers the system 
uses. 

Graphics Primitives 2-1.5 



Table 1-2: Single Playfield Mode (Modes variable not equal to DUALPF) 

Color 
Depth Registers Used 

1 0,1 
2 0-3 
3 0-7 
4 0-15 
5 0-31 
6 0-16 (if modes = HAM) 

Table 1-3 shows the five possible combinations when the Modes variable is set to DUALPF. 

Table 1-3: Dual Playfield Mode (Modes variable = DUALPF) 

Color Color 
Depth (PF-l) Registers Depth (PF-2) Registers 

1 0,1 1 8,9 
2 0-3 1 8,9 
2 0-3 2 8-11 
3 0-7 2 8-11 
3 0-7 3 8-15 

ViewPort Display Modes 

The system has eight different display modes that you can specify for each ViewPort. The 
8 bits that control the modes are DUALPF, PFBA, HIRES, LACE, HAM, SPRITES, and 
VP _HIDE. A mode becomes active if you set the corresponding bit to 1 in the Modes vari
able of the ViewPort structure. After you initialize the ViewPort, you can set the bit(s) 
for the modes you want. (See the section below called "Preparing the ViewPort Structure" 
for more information about initializing a ViewPort). 

Modes DUALPF and PFBA are related. DUALPF tells the system to treat the raster 
specified by this ViewPort as the first of two independent and separately controllable 
playfields. It also modifies the manner in which the pixel colors are selected for this raster. 

2-16 Graphics Primitives 



When PFBA is a 1, it specifies that a second playfield has video pr ic) r, [y ')\' t'r , it r- tl rc' ( ') 11 1' 

Playfield relative priorities can be controlled when the playfi eid is split i r,' : ) : '.': c; :;[,m :,;; 

regions. Single-playfield and dual-playfield modes are d iscusspd tIl '.\d v ZiT, .'>' i., " ,\ 

HIRES tells the system that the raster specified by this ViewPDrt ;" ~.\: 

640 horizontal pixels rather than 320 horizon tal pixels 

LACE tells the system that the raster specified by this ViewPort i:, k. hi' rji:' i ): :l . d I:' :~ l p r · 

laced mode. If the ViewPort is non-interlaced and the Vi~w is inte~t ;< , , · :·:l .. i:; \;if';vPo rl 

will be displayed at its specified height and will look only slightly <LfT" H' l:t : ';:; ,J '.\ :!d L~.J k 

when displayed in a non-interlaced View, See "Interlaced Mode VS. :";"1 1· 1,,; : h ·" t]\ \ud,, " 

below for more information . 

HAM tells the system to use "hold-and- mod ify" rnc-de, a spec!;); mod r h : :~:, , ' :: '\ 1" p : :,.y 
up to 4096 colors on screen at the same time, It is descri bed i.n tid /\ d Y :ll i '·'.'~ 1" ;': : s :",(,' 

tion. 

SPRITES tells the system that you are using YSprites or Simple S Prl t. ;·,: i,': H :i, ; !i 1 <f' T~!s 

bit, when a 1, tells the software to load color registers for sprites See Cb,~! :f'r ' ~ 'A r.im ~ ,· 

tion", for more information about sprites , 

VP _HIDE tells the system that this ViewPort is obscured b y od!': t 'Vie ,"-'Pol p Vllhe;:) 

View is constructed, no display instructions are generated for this Viey,Porf, 

EXTRA_HALFBRITE is reserved for future use. 

Single-Playfield Mode vs Dual-Playfield Mode 

When you specify single-play field mode, you ask that the syst.em ~ r e ~t t ail lHI,-i,!an", I ." [)?'.n 

of the definition of a single playfield image. Each of the bit- pianr::s ridi 1\'·:3 ,;~ (l;~n ,,r this 
ViewPort contributes data bits that determine the color of t he pixeb ii ; :l ~'), Ili( . ;- d .yf .. ,!d 

\. r:- ,~ . . - ), . . " 17 



Display Screen 

Scene (Playfleld 1) 

Background color shows here 

Everything on the 
display is part of 
the same playfield. 

Figure 1-12: A Single Playfield Display 

If you use dual-playfield mode (ViewPort.Modes = DUALPF), you can define two indepen
dent, separately controllable playfield areas. 

Display Screen 

Control Panel (Playfie Id 2) 

Background color shows here 

Figure 1-13: A Dual Playfield Display 

2-18 Graphics Primitives 

Two independently· 
controllable displays. 
One has video priority 
over the other. 



In Figure 1-13, the display mode bit PFBA is set to 1. If PFBA = 0, the relative priorities 
will be reversed; playfield 2 will appear to be behind playfield 1. 

Low-Resolution Mode VB High-Resolution Mode 

In low-resolution mode, horizontal lines of 320 pixels fill most of the ordinary viewing area. 
The system software lets you define a screen segment width up to 352 pixels in this mode, or 
you can define a screen segment as narrow as you desire. In high-resolution mode (also called 
"normal" resolu tion), 640 pixels fill a horizon tal line. In this mode you can specify any range 
from 0 to 704 pixels wide. Overscan normally limits you to showing only 0 to 320 pixels per 
line in low-resolution mode or 0 to 640 pixels per line in high-resolution mode. Intuition 
assumes the nominal 320-pixel or 640-pixel width. 

320 Pixels Across ViewPort.Modes = 0 
(width of 352 is possible) 

640 Pixels Across 
ViewPort. Modes = HIRES 

(width of 704 is possible) 

Figure 1-14: How HIRES Affects Width of Pixels 

Interlaced Mode VB Non-Interlaced Mode 

In interlaced mode, there are twice as many lines available, providing better vertical resolu
tion in the same display area. 

Graphics Primitives 2-19 



I 
200 lines define 
a fu II screen 

View. Modes = 0 

400 lines define View. Modes = LACE 
a full screen 

Figure 1-15: How LACE Affects Vertical Resolution 

If the View structure does not specify LACE, and the ViewPort specifies LACE, you may 
only see every other line of the ViewPort data. If the View structure specifies LACE and 
the ViewPort is non-interlaced, then the same ViewPort data is repeated in both fields. 
The height of the ViewPort display is the height specified in the ViewPort structure. If 
both the View and the ViewPort are interlaced, then the ViewPort is built with double 
the normal vertical resolution. That means it will need twice as much data space in memory 
as a non-interlaced picture for this display. 

ViewPort Display Memory 

The picture you create in memory can be larger than the screen image that can be displayed 
within your ViewPort. This big picture (called a raster and represented by the BitMap 
structure) can have a maximum size of 1024 by 1024. Because a picture this large cannot fit 
fully on the display, you specify which piece of it to display. Once you have selected the 
piece to be shown, you can specify where it is to appear on the screen. 

The example in Figure 1-16 introduces terms that tell the system how to find the display 
data and how to display it in the ViewPort. These terms are RHeight, RWidth, RyOffset, 
RxOfIset, DHeight, DWidth, DyOffset and DxOfIset. 

2-20 Graphics Primitives 



(0,0) RxOffset Large picture 1024 by 800 (called a "Raster") 

RyOffset 

~--RWidth = 1024 

(0,0) 

Background Color 

Figure 1-16: ViewPort Data Area Parameters 

The terms RHeight and RWidth do not appear in actual system data structures. They refer 
to the dimensions of the raster and are used here to relate the size of the raster to the size of 
the display area. RHeight is the number of rows in the raster, and RWidth is bytes per row 
times 8. The raster shown in the figure is too big to fit entirely in the display area, so you 
tell the system which pixel of the raster should appear in the upper left corner of the display 
segment specified by your ViewPort. The variables that control that placement are 
RyOffset and RxOffset. 

To compute RyOffset and RxOffset, you need RHeight and RWidth and DHeight and 
DWidth. The DHeight and DWidth variables define the height and width in pixels of the 
portion of the display that you want to appear in the ViewPort. The example shows a 
full-screen, low-resolution mode (320 pixel), non-interlaced (200 line) display formed from the 
larger overall picture. 

Graphics Primitives 2-21 



Normal values for RyOffset and RxOffset are defined by the formulas: 

o < = RyOffset < = (RHeight - DHeight) 
o < = RxOffset < = (RWidth - DWidth) 

Once you have defined the size of the raster and the section of that raster that you wish to 
display, you need only specify where on-screen to put this ViewPort. This is controlled by 
the variables DyOffset and DxOffset. A value of 0 for each of these offsets places a 
normal-sized picture in a centered position at the top, bottom, left and righ t on the display 
screen. Possible values for DyOffset range from -16 to +200 (-32 to +400 if View.Modes 
includes LACE). Possible values for DxOffset range from -16 to +352 (-32 to +704 if 
ViewPort.Modes includes HIRES). 

The parameters shown in the figure above are distributed in the following data structures: 

o Raslnfo (information about the raster) contains the variables RxOffset and 
RyOffset. It also contains a pointer to the BitMap structure. 

o The View (information about the whole display) includes the variables that you use 
to position the whole display on the screen. 

The View structure contains a Modes variable used to determine if the whole 
display is to be interlaced or non-interlaced. It also contains pointers to its list of 
ViewPorts and pointers to the Copper instructions produced by the system to 
create the display you have defined. 

o ViewPort (information about this piece of the display) includes the values 
DxOffset and DyOffset that are used to position this slice relative to the overall 
View. 

The ViewPort also contains the variables DHeight and DWidth, which define the 
size of this slice, a Modes variable, and a pointer to the local ColorMap. 

Each ViewPort also contains a pointer to the next ViewPort. You create a linked 
list of ViewPorts to define the complete display. 

o BitMap (information about memory usage) tells the system where to find the 
display and drawing area memory and shows how this memory space is organized. 

You must allocate enough memory for the display you define. The memory you use for the 
display may be shared with the area control structures used for drawing. This allows you to 
draw into the same areas that you are currently displaying on-screen. 

As an alternative, you can define two BitMaps. One of them can be the active structure 
(that being displayed) and the other can be the inactive structure. If you draw in to one 
BitMap while displaying another, the user cannot see the drawing taking place. This is 
called double-buffering of the display. See "Advanced Topics" below for an explanation of 
the steps required for double-buffering. Double-buffering takes twice as much memory as 
single-buffering because two full displays are produced. 

2-22 Graphics Primitives 



To determine the amount of required memory for each ViewPort for single-buffering, you 
can use the following formula. 

bytes-per_ ViewPort = Depth * RASSIZE (Width, Height); 

RASSIZE is a system macro attuned to the current design of the system memory allocation 
for display rasters. 

For example, a 32-color ViewPort (depth = 5), 320 pixels wide by 200 lines high (as of this 
writing) uses 40,000 bytes. A 16-color ViewPort (depth = 4), 640 pixels wide by 400 lines 
high (as of this writing) uses 128,000 bytes. 

Forming a Basic Display 

This section begins an example that shows how to create a single ViewPort with a size of 
200 lines, where the area displayed is the same size as the big picture (raster) stored in 
memory. It also shows how this ViewPort becomes the single display segment of a View 
structure. Following the description of the individual operations, the "Graphics Example 
Program" section pulls all of the pieces into a complete executable program. Instead of link
ing these routines to drawing routines, the example allocates memory specifically and only for 
the display (instead of sharing the memory with the drawing routines) and writes data 
directly to this memory. This keeps the display and the drawing routines separate for pur
poses of discussion. 

Here are the data structures that you need to define to create a basic display: 

struct View v; 
struct ViewPort vp; 
struct BitMap b; 
struct RasInfo ri; 

1* The name used here for a View is v, *1 
1* for a ViewPort is vp, *1 
1* for a BitMap is b, *1 
1* and for a Raslnfo is rio *1 

Opening the Graphics Library 

Most of the system routines used here are located in the graphics library. When you compile 
your program, you must provide a way to tell the compiler to link your calling sequences in to 
the routine library in which they are located. You accomplish this by declaring the variable 

Graphics Primitives 2-23 



called GfxBase. Then, by opening the graphics library, you provide the value (address of 
the library) that the system needs for linking with your program. See the "Libraries" 
chapter in Part I for more information. 

Here is a typical sequence: 

struct GfxBase *GfxBase; /* declare the name *GfxBase as a 
pointer to the corresponding library */ 

Preparing the View Structure 

The following code section prepares the View structure for further use: 

InitView( &v ); /* initialize the View structure * / 

v.ViewPort = &vp; /* tell the View structure where to find the 
first ViewPort in a possible list of Viewports */ 

Preparing the ViewPort Structure 

The following code section prepares the ViewPort structure for further use: 

InitVPort( &vp ); /* initialize the structure (set up default values) */ 

vp.DWidth = WIDTH; /* how wide is the display */ 
vp.DHeight = HEIGHT; /* how tall is the display for this viewport */ 
vp.RasInfo = &ri; /* pointer to a Raslnfo structure * / 
vp.ColorMap = GetColorMap(32); /* using a 32-color map */ 

The InitVPortO routine presets certain default values. The defaults include: 

o Modes variable set to zero- this means you select a low-resolution display. 

2-24 Graphics Primitives 



o Next variable set to zero-no other ViewPort linked to this one. If you want to 
have multiple View Ports in a single View, you must create the link yourself. The 
last ViewPort in the chain must have a Next value of O. 

If you have defined two ViewPorts, such as 

struct ViewPort vpA; 
struct ViewPort vpB; 

and you want them to both be part of the same display, you must create a link between 
them, and a NULL link at the end of the chain of ViewPorts: 

vpA.Next = &vpB; 
vpB.Next = NULL; 

/* tell first one the address of the second * / 
/* after this one, there are no others */ 

Preparing the BitMap Structure 

The BitMap structure tells the system where to find the display and drawing memory and 
how this memory space is organized. The following code section prepares a BitMap struc
ture, including allocation of memory for the bit-map. This memory is, for this example, used 
only for the display and is not shared with any drawing routines. The example below writes 
directly to the display area. 

/ * initialize the bitmap struct ure * / 
InitBitMap( &b, DEPTH, WIDTH, HEIGHT ); 

/* now allocate some memory that can 
be linked into the bitmap for display purposes */ 

for( i=O; i<DEPTH, i++) 
{ 
b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH, HEIGHT); 

This code allocates enough memory to handle the display area for as many bit-planes as the 
depth you have defined. This code segment does not include the error checking that is 
present in the full example later on. 

Graphics Primitives 2-25 



Preparing the Raslnfo Structure 

The RasInfo structure provides information to the system about the location of the 
BitMap as well as the positioning of the display area as a window against a larger drawing 
area. Use the following steps to prepare the RasInfo structure: 

ri.BitMap = &b; /* specify address of the bitmap structure * / 
ri.RxOffset = 0; 
ri.RyOffset = 0; /* match the upper left-hand corner of the 

display area with the upper left corner of 
the drawing area- see Figure 1-16 */ 

ri.next = NULL; /* for a single playfield display, there 
is only one Raslnfo structure presen t * / 

Preparing the ColorMap Structure 

The ColorMap structure tells the system which real colors should be used to display this 
ViewPort. When the View is created, Copper instructions are generated to change the 
current contents of each color register just before the topmost line of a ViewPort so that 
this ViewPort's color registers will be used for interpreting its display. 

Here are the steps normally used for initializing a ColorMap: 

UWORD colortable [] = { 0, OxfOO, OxOfO, OxOOf } 
/* define some colors in an array of words * / 

vp.ColorMap = GetColorMap (4); 
/* allocate space and get a pointer to it */ 
/* 4 colors in this table (4 registers for 

Copper to reload before this ViewPort 
is displayed * / 

LoadRGB4{ vp, ColorTable, 4 ) 

NOTE: The 4 in LoadRGB40 refers to the fact that each of the red, green, and blue 
values in a color table entry consists of four bits. It has nothing to do with the fact that this 
particular color table contains four entries, which is a consequence of the choice of DEPTH 

2-26 Graphics Primitives 



= 2 for this example. 

From the section called "ViewPort Color Selection", notice that you might need to specify 
more colors in the color map than you think. Namely, if you use a dual-playfield display 
(covered later in this chapter) with a depth of 1 for each of the two playfields, this means a 
total of four colors (two for each playfield). However, because playfield 2 uses color registers 
starting from number 8 on up when in dual-playfield mode, the color map must be initialized 
to contain at least 10 entries. That is, it must contain entries for colors 0 and 1 (for playfield 
1), color numbers 8 and 9 (for playfield 2). Space for sprite colors must be allocated as well. 

Creating the Display Instructions 

Now that you have initialized the system data structures, you can request that the system 
prepare a set of display instructions for the Copper using these structures as input data. 
During the one or more blank vertical lines that precede each ViewPort, the Copper is busy 
changing the characteristics of the display hard ware to match the characteristics you expect 
for this ViewPort. This may include a change in display resolution, a change in the colors 
to be used or other user-defined modifications to system registers. 

Here is the code that creates the display instructions: 

MakeVPort( &v, &vp ); 

where &v is the address of the View structure and &vp is the address of the first 
ViewPort structure. Using these structures, the system has enough information to build 
the instruction stream that defines your display. 

MakeVPortO creates a special set of instructions that controls the appearance of the 
display. If you are using animation, the graphics animation routines create a special set of 
instructions to control the hardware sprites and the system color registers. In addition, the 
advanced user can create special instructions to change system operations based on the posi
tion of the video beam on-screen (user Copper instructions). 

All of these special instructions must be merged together before the system can use them to 
produce the display you have designed. This is done by the system routine MrgCopO 
(stands for "Merge Coprocessor Instructions"). Here is a typical call: 

MrgCop (&v); /* merge this View's Copper 
instructions in to a single instruction list * / 

Graphics Primitives 2-27 



Loading and Displaying the View 

To display the View, you need to load it, usmg LoadViewO, and turn on the direct 
memory access (DMA). 

A typical call is shown below. 

LoadView( &v ); 

where &v is the address of the View structure defined in the example above. 

Two macros control display DMA: ON_DISPLAY and OFF_DISPLAY. They simply turn 
the display DMA control bit in the DMA control register on or off. After you have loaded a 
new View, you use ON_DISPLAY to allow the system DMA to display it on-screen. 

If you are drawing to the display area and don't want the user to see intermediate steps in 
the drawing, you can turn off the display. Because OFF_DISPLAY shuts down the display 
DMA and possibly speeds up other system operations, it can be used to provide additional 
memory cycles to the blitter or the 68000. The distribution of system DMA, however, allows 
4-channel sound, disk read/write, a 16-color, low-resolution display (or 4-color, high
resolution display) to operate at the same time with no slowdown (7.1 megahertz effective 
rate) in the operation of the 68000. 

Graphics Example Program 

The program below creates and displays a single-playfield display that is 320 pixels wide, 200 
lines high, and two bit-planes deep. 

#include "exec/types.h" 
#include "graphics/ gfx.h" 
#include "hardware/dmabits.h" 
#include "hardware/ custom.h" 
#include "hardware/blit.h" 
#include "graphics/ gfxmacros. h" 
#include "graphics/copper.h" 
#include "graphics/view.h" 
#include "graphics/ gels.h" 
#include "graphics/regions.h" 
#include "graphics/ clip.h" 

2-28 Graphics Primitives 



#include "exec/exec.h" 
#include "graphics/text.h" 
#include "graphicsl gfxbase.h" 

#define DEPTH 2 
#define WIDTH 320 
#define HEIGHT 200 
#define NOT_ENOUGH_MEMORY -1000 
1* construct a simple display *1 

struct View v; 
struct ViewPort vp; 
struct ColorMap *cm; 1* pointer to colormap structure, dynamic alIoc * / 
struct RasInfo ri; 
struct BitMap b; /* note: Due to the static allocation of a 

* structure accessed directly by the custom 
* chips, this program will only work if it 
* resides entirely within the lower 512k 
* bytes of memory (CHIP memory) 

*/ 
struct RastPort rp; 

LONG i; 
SHORT j,k,n; 

extern struct ColorMap *GetColorMap{); 
struct GfxBase *GfxBase; 

struct View *oldview; 1* save pointer to old view so can restore */ 

USHORT colortable[] = { OxOOO, OxfOO, OxOfO, OxOOf }; /* my own colors */ 
/* black, red, green, blue */ 

SHORT boxoffsets[] = { 802, 2010, 3218}; /* where to draw boxes */ 

UBYTE *displaymem; 
UWORD *colorpalette; 

mainO 
{ 

GfxBase = (struct GfxBase * )OpenLibrary(" graphics.library" ,0); 
if (GfxBase == NULL) exit{l); 
oldview = GfxBase->ActiView; /* save current view to restore later */ 
/ * example steals screen from In tu ition if started from WBench * / 

InitView(&v); /* initialize view */ 
InitVPort(&vp); 1* init view port */ 
v.ViewPort = &vp; /* link view into viewport */ 

/* init bit map (for rasinfo and rastport) */ 
InitBitMap{&b,DEPTH,WIDTH,HEIGHT); 

Graphics Primitives 2-29 



/ * (init RasInfo) * / 
ri.BitMap = &b; 
ri.RxOffset = 0; 
ri.RyOffset = 0; 
ri.Next = NULL; 

/ * now specify critical ch aracteristics *1 
vp.DWidth = WIDTH; 
vp.DHeight = HEIGHT; 
vp.Raslnfo = &ri; 

/* (init color table) */ 
cm = GetColorMap(4}; /* 4 entries, since only 2 planes deep */ 
colorpalette = (UWORD * )cm- > ColorTable; 
for(i=O; i<4; i++) 

*colorpalette++ = colortable[i]; 

/* copy my colors into this data structure */ 
vp.ColorMap = cm; /* link it with the viewport */ 

/* allocate space for bitmap */ 
for(i=O; i<DEPTH; i++) 
{ 

} 

b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH,HEIGHT); 
if(b.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY); 

Make VPort( &v, &vp ); / * construct copper instr (prelim) list * / 
MrgCop( &v ); /* merge prelim lists together into a real 

* copper list in the view structure. * / 

for(i=O; i<2; i++) 
{ 

} 

displaymem = (UBYTE *}b.Planes[i]; 
for(j=O; j <RASSIZE(WIDTH,HEIGHT); j++) { 

*displaymem++ = 0; 
} 
/* zeros to all bytes of the display area */ 

LoadView( &v); 
/* now fill some boxes so that user can see something */ 
/ * always draw into both planes to assure true colors * / 
for(n=l; n<4; n++) /* three boxes */ 
{ 

for(k=O; k<2; k++) 
{ 

/ * boxes will be in red, green and blue * / 
displaymem = b.Planes[k] + boxoffsets[n-l]; 
Draw FilledBox( n,k); 

2-30 Graphics Primitives 



} 
} 

for(i=O; i<100000;i++) ; /* do nothing for a while */ 

LoadView(oldview)j /* put back the old view */ 

/* exit gracefully */ FreeMemoryO; 
CloseLibrary( GfxBase); /* since opened library, close it */ 

} /* end of mainO */ 

/* return user and system-allocated memory to sys manager */ 
FreeMemoryO 
{ 

} 

/* free drawing area */ 
for(i=O; i<DEPTHj i++) 

FreeRaster(b.Planes[ij,WIDTH,HEIGHT}; 
/* free the color map created by GetColorMap(} */ 
FreeColorMap( cm); 
/* free dynamically created structures */ 
Free VPortCopLists( &vp); 
FreeCprList( v .LOFCprList); 
return(O}; 

DrawFilledBox( fi llcolor ,plane) 
SHORT fillcolor,plane; 
{ 

} 

UBYTE value; . 
for(j=O; j < 100; j++) 
{ 

} 

if«fillcolor & (1 < < plane)) != 0) 
value = Oxff; 

else 
value = OJ 

for(i=O; i<20; i++) 
{ 

*displaymem++ = value; 
} 
displaymem += (b.BytesPerRow - 20); 

return(O); 

Graphics Primitives 2-31 



Exiting Gracefully 

The sample program above provides a way of exiting gracefully, returning to the memory 
manager all dynamically-allocated memory chunks. 

Notice the calls to FreeRasterO and FreeColorMapO. These calls correspond directly to 
the allocation calls AllocRasterO and GetColorMapO located in the body of the program. 

Now look at the calls within FreeMemoryO to FreeVPortCopListsO and FreeCprListO. 

When you call MakeVPortO, the graphics system dynamically allocates some space to hold 
intermediate instructions from which a final Copper instruction list is created. When you 
call MrgCopO, these intermediate Copper lists are merged together into the final Copper 
list, which is then given to the hardware for interpretation. It is this list that provides the 
stable display on-screen, split into separate ViewPorts with their own colors and resolutions 
and so on. 

When your program completes, you must see that it returns all of the memory resources that 
it used, so that those memory areas are again available to the system for reassignment to 
other projects. Therefore, if you use the routines MakeVPortO or MrgCopO, you must 
also arrange to use FreeCprListO (pointing to each of those lists in the View structure) 
and FreeVPortCopListsO (pointing to the ViewPort that is about to be deallocated). If 
your view is interlaced, you will also have to call FreeCprList(&v.SHFCprList) because 
an interlaced view has a separate copper list for each of the two fields displayed. 

As a final caveat, notice that when you do free everything, the memory manager or other 
programs may immediately change the contents of the freed memory. Therefore, if the 
Copper is still executing an instruction stream (as a result of a previous LoadViewO) when 
you free that memory, the display will go "south". when you free that memory, You will 
probably want to turn off the display, or provide an alternate Copper list when this one is to 
be deallocated. 

2-32 Graphics Primitives 



Advanced Topics 

Creating a Dual-Playfield Display 

In dual-playfield mode, you have two separately controllable playfields. In this mode, you 
always define two RasInfo data structures. Each of these structures defines one of the 
playfields. There are five different ways you can configure a dual-playfield display, because 
there are five different distributions of the bit-planes which the system hardware allows. 
Table 1-4 shows these distributions. 

Table 1-4: Bit-Plane Assignment in Dual-playfield Mode 

Number of Playfield 1 Playfield 2 
Bit-planes Depth Depth 

0 0 0 
1 1 0 
2 1 1 
3 2 1 
4 2 2 
5 3 2 
6 3 3 

Recall that if you set PFBA in the ViewPort Modes variable to 1, you can swap playfield 
priority and display Playfield 2 in front of Playfield 1. In this way, you can get more bit
planes in the background playfield than you have in the foreground playfield. If you create a 
display with multiple ViewPorts, only for this ViewPort will the playfield priority be 
changed. 

Playfield 1 is defined by the first of the two RasInfo structures. Playfield 2 is defined by 
the second of the two RasInfo structures. 

When you call MakeVPortO, you use parameters as follows: 

MakeVPort( &view, &viewport ); 

Graphics Primitives 2-33 



The ViewPort Modes variable must include the DUALPF bit. This tells the graphics sys
tem that there are two RasInfo structures to be used. 

In summary, to create a dual-playfield display you must: 

o allocate one View structure 

o allocate two BitMap structures 

o allocate two RasInfo structures (linked together), each pointing to different 
BitMaps 

o allocate one View Port structure 

o set up a pointer in the ViewPort structure to the playfield 1 RasInfo 

o initialize each BitMap structure to describe one playfield, using one of the permissi
ble bit-plane distributions shown in Table 1-4 and allocate memory for the bit-planes 
themselves. 

Note that BitMap 1 and BitMap 2 need not be the same width and height. 

o initialize the ViewPort structure 

o set the DUALPF (and possibly the PFBA) bit in the ViewPort Modes variable 

o call MakeVPortO 

o call MrgCopO 

For display purposes, each of the two BitMaps is assigned to a separate play field display. 

To draw separately into the BitMaps, you must also assign these BitMaps to two separate 
RastPorts. The section called "Initializing the RastPort" shows you how to use a 
RastPort data structure to control your drawing routines. 

Creating a Double-Buffered Display 

To produce smooth animation or other such effects, it is occasionally necessary to double
buffer your display. To prevent the user from seeing your graphics rendering while it is in 
progress, you will want to draw into one memory area while actually displaying a different 
area. 

2-34 Graphics Primitives 



Double-buffering consists of creating two separate display areas and two sets of pointers to 
those areas for a single View. 

To create a double-buffered display, you must: 

o Allocate two BitMap structures. 

o Allocate one RasInfo structure. 

o Allocate one ViewPort structure. 

o Allocate one View structure. 

o Initialize each BitMap structure to describe one drawing area and allocate memory 
for the bit-planes themselves. 

o Create a pointer for each BitMap. 

o Create a pointer for the View long-frame Copper list (LOFCprList) and short
frame Copper list (SHFCprList) for each of two alternate display fields. The 
SHFCprList is for interlaced displays. 

o Initialize the RasInfo structure, setting the BitMap pointer to point to one of the 
two BitMaps you have created. 

o Call MakeVPortO. 

o Call MrgCopO. 

When you call MrgCopO, the system uses all of the information you have provided in the 
various data structures to create a list of instructions for the Copper to execute. This list 
tells the Copper how to split the display and how to specify colors for the various portions of 
the display. When the steps shown above have been completed, the system will have allo
cated memory for a long-frame (LOF) Copper list list) and a short-frame (SHF) Copper list 
and set pointers called LOFCprList and SOFCprList in the View structure. The long
frame Copper list is normally used for all non-interlaced displays, and the short-frame 
Copper list is used only when interlaced mode is turned on. The pointers point to the two 
sets of Copper instructions. 

The LOFCprList and SHFCprList pointers are initialized when MrgCop() is called. The 
instruction stream referenced by these pointers includes references to the first BitMap. 

You must now do the following: 

o Save the current values in backup pointers and set the values of LOFCprList and 
SHFCprlist in the View structure to zero. When you next perform MrgCop(), 
the system au tomatically allocates another memory area to hold a new list of 

Graphics Primitives 2-35 



instructions for the Copper. 

o Install the pointer to the other BitMap structure in the Raslnro structure before 
your call to MakeVPortO, and then call MakeVPort and MrgCop. 

Now you have created two sets of instruction streams for the Copper, one of which you have 
saved in a pair of pointer variables. The other has been newly created and is in the View 
structure. You can save this new set of pointers as well, swapping in the set which you want 
to use for display, and meanwhile drawing into the BitMap which is not on the display. 
Remember that you will have to call FreeCprListO on both sets of copper lists when you 
have finished. 

Hold-and-modify Mode 

In hold-and-modify mode you can create a single-playfield display in which 4,096 different 
colors can be displayed simultaneously. This requires that your ViewPort be defined usmg 
6 bit-planes and that you set the HAM bit in the ViewPort Modes variable. 

When you draw into the BitMap associated with this ViewPort, you can choose one of 
four different ways of drawing into the BitMap. (Drawing into a BitMap is shown in Sec
tion 1-3, "Drawing Routines".) If you draw using color numbers 0-15, the pixel you draw will 
appear in the color specifi.ed in that particular system color register. 

If you draw with any other color value from 16-31, the color displayed depends on the color 
of the pixel which is to the immediate left of this pixel on-screen. For example, hold con
stant the contents of the red and the green parts of the previously produced color, and take 
the rest of the bits of this new pixel's color register number as the new contents for the blue 
part of the color. Hold-and-modify means hold part and modify part of the preceding 
defined pixel's color. 

Note that a particular hold-and-modify pixel can only change one of the three color values at 
a time. Thus, the effect has a limited control. 

In hold and modify mode, you use all six bit-planes. planes 5 and 6 are used to modify the 
way bits from planes 1 - 4 are treated, as follows: 

o If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal 
color selection procedure is followed. Thus, the bit combinations from planes 4-1, in 
that order of significance, are used to choose one of 16 color registers (registers ° -
15). 

If only 5 bit-planes are used, the data from the 6th plane is automatically supplied 

2-36 Graphics Primitives 



with the value as O. 

o If the 6-5 bit combination is 01, the color of the pixel immediately to the left of this 
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are 
used to replace the 4 "blue" bits in the pixel color without changing the value in any 
color register. 

o If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this 
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are 
used to replace the 4 "red" bits. 

o If the 6-5 bit combination is 11, the color of the pixel immediately to the left of this 
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are 
used to replace the 4 "green" bits. 

1.3. DRAWING ROUTINES 

Most of the graphics drawing routines require information about how the drawing is to take 
place. For this reason, the graphics support routines provide a data structure called a 
RastPort, which contains information essential to the graphics drawing functions. You 
must pass a pointer to your RastPort structure to most of the drawing functions. Associ
ated with the RastPort is another data structure called a BitMap, which contains a 
description of the organization of the data in the drawing area. 

Initializing a BitMap Structure 

The RastPort contains information for controlling the drawing. In order to use the graph
ics, you also need to tell the system the memory area location where the drawing will occur. 
You do this by initializing a BitMap structure, defining the characteristics of the drawing 
area, as shown in the following example. This was already shown in the section called 
"Forming a Basic Display", but is repeated here because it relates to drawing as well as to 
display routines. You need not necessarily use the same BitMap for both the drawing and 
the display. 

Graphics Primitives 2-37 



struct BitMap myBitMap; 
SHORT depth = 3; /* max of 8 colors ... going to 

* need 3 bit planes to represent 
* th is n urn ber of colors * / 

SHORT width = 320; 
SHORT height = 200; 

InitBitMap( &myBitMap, depth, width, height); 

Initializing a RastPort Structure 

Before you can use a RastPort for drawing, you must initialize it. Here is a sample initiali
zation sequence: 

struct RastPort myRastPort; 
InitRastPort( &myRastPort); 

/* now link together the bitmap and the rastport */ 
myRastPort.BitMap = &myBitMapi 

Note that you cannot perform the link until after the RastPort has been initialized. 

The RutPort data structure can be found in the include files rastport.h and rastport.i. It 
contains the following information: 

o Drawing pens 

o Drawing modes 

o Patterns 

o Text attributes and font information 

o Area filling information 

o Graphics elements information for animation 

o Current pen position 

2-38 Gra.phics Primitives 



o A write mask 

o Some graphics private data 

o A pointer for user extensions 

The following sections explain each of the items in the RastPort structure. 

Drawing Pens 

The Amiga has three different drawing "pens" associated with the graphics drawing routines. 
These are: 

o FgPen-the foreground or prImary drawing pen. For historical reasons, it's also 
called the A-Pen. 

o BgPen- the background or secondary drawing pen. For historical reasons, it's also 
called the B-Pen. 

o AOlPen-the area outline pen. For historical reasons, it's also called the O-Pen. 

A drawing pen variable in the RastPort contains the current value (range 0-255) for a par
ticular color choice. This value represents a color register number whose contents are to be 
used in rendering a particular type of image. In essence, the bits of a "pen" determine which 
bit-planes are affected when a color is written into a pixel (as determined by the drawing 
mode and modified by the pattern variables and the write mask as described below). The 
drawing routines support BitMa.ps up to 8 planes deep, allowing for future expansion in the 
hardware. 

NOTE 

The Amiga 1000 contains only 32 color registers. Any range beyond that repeats 
the colors in 0-31. For example, pen numbers 32-63 refer to the colors in registers 
0-31. 

The color in FgPen is used as the primary drawing color for rendering lines and areas. This 
pen is used when the drawing mode is JAMl (see the next section for drawing modes). 
JAM! specifies that only one color is to be "jammed" into the drawing area. 

Graphics Primitives 2-39 



You establish the color for FgPen by the statement: 

SetAPen( &myRastPort, newcolor ); 

The color in BgPen is used as the secondary drawing color for rendering lines and areas. If 
you specify that the drawing mode is JAM2, (jamming 2 colors) and a pattern is being 
drawn, the primary drawing color (FgPen) is used where there are I's in the pattern. The 
secondary drawing color (BgPen) is used where there are O's in the pattern. 

You establish the drawing color for BgPen by the statement: 

SetBPen( &myRastPort, newcolor ); 

The area outline pen AOIPen is used in two applications: area fill and flood fill. (See 
"Area Fill Operations" below.) In area fill, you can specify that an area, once filled, can be 
outlined in this AOlPen color. In flood fill (in one of its operating modes) you can fill until 
the flood-filler hits a pixel of the color specified in this pen variable. 

You establish the drawing color for AOlPen by the statemen t: 

SetOPen( &myRastPort, newcolor ); 

Drawing Modes 

There are four drawing modes that you can specify: 

JAM I 

JAM2 

Whenever you execute a graphics drawing command, one color is jammed 
into the target drawing area. You use only the primary drawing pen color 
and for each pixel drawn, you replace the color at that location with the 
FgPen color. 

Whenever you execute a graphics drawing command, two colors are jammed 
into the target drawing area. This mode tells the system that the pattern 
(both line pattern and area pattern-see the next section) variables are to be 
used for the drawing. Wherever there is a I-bit in the pattern variable, the 
FgPen color replaces the color of the pixel at the drawing position. Wher
ever there is a O-bit in the pattern variable, the BgPen color is used. 

2-40 Graphics Primitives 



COMPLEMENT 
For each I-bit in the primary drawing pen (FgPen) the corresponding bit in 
the target drawing area is complemented; that is, its state is reversed. Com
plement mode is often used for drawing, then erasing, lines. 

INVERSEVID 
This is the drawing mode used primarily for text. If the drawing mode is 
(JAMI I INVERSEVID), the text appears as a transparen t letter surrounded 
by the FgPen color. If the drawing mode is (JAM21 INVERSEVID), the text 
appears as in (JAM! I INVERSEVID) except that the BgPen color is used to 
draw the text character itself. In this mode, the roles of FgPen and BgPen 
are effectively reversed. 

You set the drawing modes with the statement: 

SetDrMd( &myRastPort, newmode ); 

Patterns 

The RaatPort data structure provides two different pattern variables which it uses during 
the various drawing functions: a line pattern, and an area pattern. 

The line pattern is I6-bits wide and is applied to all lines. When you initialize a RastPort, 
this line pattern value is set to allI's (hex FFFF), so that solid lines are drawn. 

You can also set this pattern to other values to draw dotted lines if you wish. For example, 
you can establish a dotted line pattern with the statement: 

SetDrPt( &myRastPort, Oxcccc ); 

where "ecce" is a bit-pattern, 1100110011001100, to be applied to all lines drawn. If you 
draw multiple, connected lines, the pattern cleanly connects all the points. 

The area pattern is 16 bits wide and its height is some power of two. This means that you 
can define patterns in heights of 1, 2, 4, 8, 16, and so on. To tell the system how large a pat
tern you are providing, include this statement: 

SetAfPt( &myRastPort, &my AreaPattern, power_oCtwo ); 

Graphics Primitives 2-41 



where &myAreaPattern is the address of the first word of the area pattern and 
power _of_two specifies how many words are in the pattern. For example: 

USHORT my AreaPattern [ 1 = { 
OxffOO, 
OxffOO, 
OxOOff, 
OxOOff, 
OxfOfO, 
OxfOfO, 
OxOfOf, 
OxOfOf }; 

SetAfPt( &myRastPort, &myAreaPattern, 3 ); 

This example produces a pattern which is a large checkerboard above a small checkerboard. 
Because power_oCtwo is set to 3, the pattern is 2 to the 3rd, or 8 rows high. 

Pattern Positioning 

The pattern is always positioned with respect to the upper left corner of the RastPort 
drawing area (the 0,0 coordinate). If you draw two rectangles whose edges are adjacent, the 
pattern will be continuous across the rectangle boundaries. 

Multi-Colored Patterns 

The last example above produces a two-color pattern with one color where there are 1 's and 
the other color where there are O's in the pattern. A special mode allows you to develop a 
pattern having up to 256 colors. To create this effect, specify power _of_two as a negative 
value instead of a positive value. 

The following initialization establishes an 8-color checkerboard pattern where each square in 
the checkerboard has a different color. The checkerboard is 2 squares wide by 4 squares 
high. 

2-42 Graphics Primitives 



USHORT myAreaPattern[ 1 = { 

OxOOOO, 
OxOOOO, 
Oxffff, 
Oxffff, 
Oxoooo, 
Oxoooo, 
Oxffff, 
Oxffff, 

OxOOOO, 
OxOOOO, 
OxOOOO, 
OxOOOO, 
Oxffff, 
Oxffff, 
Oxffff, 
Oxffff, 

/* plane 2 pattern */ 

OxffOO, /* plane 3 pattern */ 
OxffOO, 
OxffOO, 
OxffOO, 
OxffOO, 
Ox ffOO , 
OxffOO, 
OxffOO }; 

SetAfPt( &myRastPort, &myAreaPattern, -3 ); 

/* when doing this, best to set three other parameters as follows: */ 
SetAPen( &myRastPort, 255); 
SetBPen( &myRastPort, 0); 
SetDrMd( &myRastPort, JAM2); 

If you use this multi-colored pattern mode, you must provide as many planes of pattern data 
as there are planes in your BitMap. 

Graphics Primitives 2-43 



Text Attributes 

Text attributes and font information are set by calls to the font routines. These are covered 
separately in Chapter 4, "Text". 

Area Fill Information 

Two structures in the RastPort, Arealnfo and TmpRas, define certain information for 
area filling operations. The AreaInfo pointer is initialized by a call to the routine Init
AreaO· 

InitArea (&myRastPort, &areabuffer, count); 

To use area fill, you must first provide a work space in memory for the system to store the 
list of points that define your area. You must allow a storage space of 5 bytes per vertex. 
To create the areas in the work space, you use the functions AreaMoveO, AreaDrawO, 
and AreaEndO. 

Typically, you prepare the RastPort for area filling by a sequence like the following. 

UWORD areabuffer [250]; 
/* allow up to 100 vertices in the definition of an area * / 

InitArea (&my RastPort, &areabuffer[O], 100); 

The area buffer must start on a WORD boundary. That is why the sample declaration 
shows areabuff'er as composed of unsigned words (250), rather than unsigned bytes (500). It 
still reserves the same amount of space, but aligns the data space correctly. 

In addition to the Arealnfo structure in the RastPort, you must also provide the system 
with some work space to build the object whose vertices you are going to define. This 
requires that you initialize a TmpRas structure, then point to that structure for your 
RastPort to use. 

Here is sample code that builds and initializes a TmpRas. Note that the area to which 
TmpRas.RasPtr points must be at least as large as the area (width times height) of the 
largest rectangular region you plan to fill. Typically, you allocate a space as large as a single 

2-44 Graphics Primitives 



bit-plane (usually 320 by 200 bits for low-resolution mode, 640 by 200 bits for high-resolution 
mode). 

PLANEPTR myplane; 
myplane = AllocRaster(320,200); /* get some space */ 
if (myplane == 0) exit(l); /* stop if no space */ 
my RastPort.TmpRas= InitTm pRas{ &myTm pRas, 

myplane,RASSIZE(320,200)); 

When you use functions that dynamically allocate memory from the system, you must 
remember to return these memory blocks to the system before your program exits. See the 
description of FreeRasterO in the appendixes. 

Graphics Element Pointer 

The graphics element pointer in the RastPort structure is called GeIslnfo. If you are doing 
graphics animation using the GELS system, this pointer must refer to a properly initialized 
GeIsInfo structure. See Chapter 3, "Animation", for more information. 

Current Pen Position 

The graphics drawing routines keep the current position of the drawing pen in the variables 
cp_x and CPJ", for the horizontal and vertical positions, respectively. The coordinate loca
tion 0,0 is in the upper left corner of the drawing area. The x value increases proceeding to 
the right; the y value increases proceeding toward the bottom of the drawing area. 

Write Mask 

The write mask is a RastPort variable that determines which of the bit-planes are currently 
writable. For most applications, this variable contains all 1 's (hex ff). This means that all 
bit-planes defined in the BitMap are affected by a graphics writing operation. You can 

Graphics Primitives 2-45 



selectively disable one or more bit-planes by simply specifying a O-bit in that specific position 
in the control byte. For example: 

/* disable bit plane 2 * / 

myRastPort.Mask = OxFB; 

Using the Graphics Drawing Routines 

This section shows you how to use the Amiga drawing routines. All of these routines work 
either on their own or with the windowing system and layer library. See Chapter 2, 
"Layers" or Intuition: The Amiga User Interface for details about using the layer library and 
windows. 

As you read this section, keep in mind that to use the drawing routines, you need to pass 
them a pointer to a RastPort. You can define the RastPort directly, as shown in the sam
ple program segments in preceding sections, or you can get a RastPort from your window 
structure with code like the following. 

struct Window *w; 
struct RastPort *usableRastPort; 

/* and then, after your Window is initialized ... */ 
usableRastPort = w- > RastPort; 

You can also get the RastPort from the layer structure, if you are not using Intuition. 

Drawing Individual Pixels 

You can set a specific pixel to a desired color by using a statemen t like this: 

INT result; 
result = WritePixel( &myRastPort, x, y); 

WritePixelO uses the primary drawing pen and changes the pixel at that x,y position to the 
desired color if the X,y coordinate falls within the boundaries of the RastPort. A value of 0 
is returned if the write was successful; a value of -1 is returned if x,y was outside the range 

2-46 Graphics Primitives 



of the RastPort. 

Reading Individual Pixels 

You can determine the color of a specific pixel with a statement like this: 

INT result; 
result = ReadPixel{ &myRastPort, x, y); 

Rea.dPixelO returns the value of the pixel color selector (from ° to 255) at the specified x,y 
location. If you specify an x,y outside the range of your RastPort, this function returns a 
value of -1. 

Drawing Lines 

Two functions are associated with line drawing: MoveO and Dra.wO. MoveO simply 
moves the cursor to a new position. It is like picking up a drawing pen and placing it at a 
new location. This function is executed by the statement: 

Move{ &myRastPort, x, y); 

DrawO draws a line from the current X,y position to a new X,y position specified in the 
statement itself. The drawing pen is left at the new position. This is done by the statement: 

Draw( &myRastPort, x, y); 

DrawO uses the pen color specified for FgPen. Here is a sample sequence that draws a red 
line from location (0,0) to (100,50). Assume that the value in color register 2 represents red. 

SetAPen( &myRastPort, 2); /* make primary pen red */ 
Move{ &myRastPort, 0, 0); /* move to new location * / 
Draw( &myRastPort, 100,50); /* draw to a new location * / 

Graphics Primitives 2-47 



CAUTION 

If you attempt to draw a line outside the bounds of the BitMap, using the basic 
initialized RastPort, you may possibly crash the system. You must either do your 
own software clipping to assure that the line is in range, or use the layer library. 
Software clipping means that you need to determine if the line will fall outside 
your BitMap before you draw it. 

Drawing Patterned Lines 

To turn the example above into a patterned line draw, simply add the following statement: 

SetDrPt( &myRastPort, Oxaaaa); 

Now all lines drawn appear as dotted lines. To resume drawing solid lines, execute the state
ment: 

SetDrPt( &my RastPort, -1); 

Drawing Multiple Lines with a Single Command 

You can use multiple DrawO statements to draw connected line figures. If the shapes are 
all definable as interconnected, continuous lines, you can use a simpler function, called 
PolyDrawO. PolyDrawO takes a set of line endpoints and draws a shape using these 
points. You call PolyDrawO with the statement: 

PolyDraw( &myRastPort, count, arraypointer); 

PolyDrawO reads an array of points and draws a line from the current pen position to the 
first, then a connecting line to each succeeding position in the array until count points have 
been drawn. This function uses the current drawing mode, pens, line pattern and write mask 
specified in the target RastPort; for example: 

2-48 Graphics Primitives 



SHORT linearray[ 1 = { 
3,3, 
15,3, 
15,15, 
3,15, 
3,3 }; 

PolyDraw( &myRastPort, 5, &linearray[O]); 

draws a rectangle, using the 5 defined pairs of x,y coordinates. 

Area Fill Operations 

Assuming that you have properly initialized your RastPort structure to include a properly 
initialized Arealnfo, you can perform area fill by using the functions described in this sec
tion. 

AreaMoveO tells the system to begin a new polygon, closing off any other polygon which 
may already be in process by connecting the end-point of the previous polygon to its starting 
point. AreaMoveO is executed with the statement: 

AreaMove{ &myRastPort, x, y); 

AreaDrawO tells the system to add a new vertex to a list which it is building. No drawing 
takes place when AreaDrawO is executed. It is executed with the statement: 

AreaDraw{ &myRastPort, x, y); 

AreaEndO tells the system to draw all of the defined shapes and fill them. When this func
tion is executed, it obeys the drawing mode and uses the line pattern and area pattern 
specified in your RastPort to render the objects you have defined. Note that to fill an area, 
you do not have to AreaDrawO back to the first point before calling AreaEndO. 
AreaEndO automatically closes the polygon. AreaEndO is executed with the following 
statement: 

AreaEnd( &myRastPort); 

Here is a sample program segment that includes the Arealnfo initialization. It draws a pair 
of disconnected triangles, using the currently defined FgPen, BgPen, AOIPen, 

Graphics Primitives 2-49 



DrawMode, LinePtrn, and AreaPtrn: 

WORD areabuffer[250]; 
struct RastPort *rp; 
struct TmpRas tmpras; 
struct AreaInfo my Arealnfo; 

InitArea( my Arealnfo, areabuffer, 100); 
rp- > AreaInfo = &my AreaInfo; 
rp->TmpRas = InitTmpRas( &tmpras, AllocRaster(320,200), RASSIZE(320,200) ); 

/* area routines need a temporary raster buffer at least 
* as large as the largest object to be drawn 
* If a single task uses multiple rastports, it is sometimes 
* possible to share the same. TmpRas structure among multiple rastports 
* Multiple tasks, however, cannot share a TmpRas, 
* as each task won't know when 
* another task has a drawing partially completed. 

*/ 

AreaMove( rp, 0,0 ); 
AreaDraw( rp, 0,100); 
AreaDraw( rp, 100,100); 

AreaMove( rp, 50,10); 
AreaDraw( rp, 50,50); 
AreaDraw( rp, 100,50); 

AreaEnd ( rp ); 

If you had executed the statement "SetOPen( &myRastPort, 3)" in the area fill example, 
then the areas that you had defined would have been outlined in pen color 3. To turn off the 
outline function, you have to set the RastPort Flags variable back to ° by: 

BOUNDARY _OFF( rp); 

Otherwise, every subsequent area fill or rectangle fill operation will use the outline pen. 

CAUTION 

If you attempt to fill an area outside the bounds of the BitMap, using the basic 
initialized RastPort, it may possibly crash the system. You must either do your 
own software clipping to assure that the area is in range, or use the layer library. 

2-50 Graphics Primitives 



Flood Fill Operations 

Flood fill is a technique for filling an arbitrary shape with a color. The Amiga flood fill rou
tines can use either a plain color or combine the drawing mode, FgPen, BgPen, and the 
area pattern to do the fill. 

There are two different modes for flood fill: 

o In outline mode you specify an X,y coordinate, and from that point the system 
searches outward in all directions for a pixel whose color is the same as that specified 
in the area outline pen. All horizontally or vertically adjacent pixels not of that 
color are filled with a colored pattern or plain color. The fill stops at the outline 
color. Outline mode is selected when the mode variable is a "0". 

o In color mode you specify an X,y coordinate, and whatever pixel color is found at 
that position defines the area to be filled. The system searches for all horizontally or 
vertically adjacent pixels whose color is the same as this one and replaces them with 
the colored pattern or plain color. Color mode is selected when the mode variable is 
a "1". 

You use the FloodO rou tine for flood fill. The syn tax for this routine follows. 

Flood( rp, mode, x, y); 

where: 

rp is a pointer to the RastPort 

x,y 
is the starting coordinate in the BitMap 

mode 
tells how to do the fill 

The following sample program fragment creates and then flood fills a triangular region. The 
overall effect is exactly the same as shown in the preceding area fill example above except 
that flood fill is slightly slower than area fill. Mode 0 (fill to a pixel that has the color of the 
outline pen) is used in the example. 

Graphics Primitives 2-51 



oldFgPen = myRastPort.FgPen; 
SetAPen( &myRastPort, myRastPort.AOlPen); 

/* using mode ° * / 
Move( &myRastPort, 0, 0); 
Draw( &myRastPort, 0, 1(0); 
Draw( &myRastPort, 100, 1(0); 

/ * triangu lar sh ape * / 
Draw( &myRastPort, 0, 0); / * close it * / 

SetAPen( &myRastPort, oldFgPen); 
Flood(&myRastPort,O, 10, 50); 

This example saves the current FgPen value and draws the shape in the same color as AOI
Pen. Then FgPen is restored to its original color so that FgPen, BgPen, DrawMode, 
and AreaPtrn can be used to define the fill within the outline. 

Rectangle Fill Operations 

The final fill function, RectFillO, is for filling rectangular areas. The form of this function 
follows. 

RectFill( rp, xmin, ymin, xmax, ymax); 

where: 

xmin and ymin 
represent the upper left corner of the rectangle 

xmax and ymax 
represent the lower right corner of the rectangle 

rp points to the RastPort that receives the filled rectangle 

Rectangle fill uses FgPen, BgPen, AOlPen, DrawMode and AreaPtrn to fill the area 
you specify. Remember that the fill can be multi-colored as well as single- or twcrcolored. 

The following three sets of statements perform exactly the same function: 

2-52 Graphics Primitives 



/ * areafill a rectangular area * / 
SetAPen(rp,I); 
SetOPen(rp,3); 
AreaMove(rp,O,O); 
AreaDraw(rp,O,I00); 
AreaDraw( rp, 100,100); 
AreaDraw( rp, 100,0); 
AreaEnd(rp); 

/ * ftoodfill a rectangular area * / 
SetAPen( rp ,3); 
SetOPen(rp,3); 
Move(rp,O,O); 
Draw(rp,O,I00); 
Draw( rp, 100,1(0); 
Draw(rp,lOO,O); 
Draw(rp,O,O); 
SetAPen(rp,l); 
Flood(rp,O,50,50); 

/* rectfill a rectangular area */ 
SetAPen{ rp, 1); 
SetOPen(rp,3); 
Rectfill(rp,O,O,lOO,lOO); 

Not only is the RectFillO routine the shortest, it is also the fastest to execute. 

Data Move Operations 

The graphics support functions include several routines for simplifying the handling of the 
rectangularly organized data that you would encounter when doing raster-based graphics. 
These routines: 

Graphics Primitives 2-53 



o Clear an en tire segmen t of memory 

o Set a raster to a specific color 

o Scroll a subrectangle of a raster 

o Draw a pattern "through a stencil" 

o Extract a pattern from a bit-packed array and draw it into a raster 

o Copy rectangular regions from one bit-map to another 

o Control and utilize the hardware-based data mover, the blitter. 

The following sections cover these routines in detail. 

Clearing a Memory Area 

For memory that is accessible to the blitter (that is, internal CHIP memory), the most 
efficient way to clear a range of memory is to use the the blitter. 

You use the blitter to clear a block of memory with the statement: 

BltClear( memblock, bytecount, flags); 

where membloek is a pointer to the location of the first byte to be cleared, and byteeount 
is the number of bytes to set to zero. 

This command accepts the starting location and count and clears that block to zeros. For 
the meanings of settings of the flags variable, see the summary page for this routine in the 
appendixes. 

2-54 Graphics Primitives 



Setting a Whole Raster to a Color 

You can preset a whole raster to a single color by using the function SetRastO. A call to 
this function takes the following form. 

SetRast( RastPort, pen); 

where: 

RastPort 
is a pointer to the RastPort you wish to use 

pen 
is the pen value that you wish to fill that RastPort 

Scrolling a Sub-Rectangle of a Raster 

You can scroll a sub-rectangle of a raster in any direction-up, down, left, right, or diago
nally. To perform a scroll, you use the ScrollRasterO routine and specify a dx and dy 
(delta-x, delta-y) by which the rectangle image should be moved towards the (0,0) location. 

As a result of this operation, the data within the rectangle will become physically smaller by 
the size of delta-x and delta-y, and the area vacated by the data when it has been cropped 
and moved is filled with the background color (color in BgPen). 

Here is the syntax of the ScrollRasterO function: 

ScrollRaster( rp, dx, dy, xmin, ymin, xmas, ymax ); 

where: 

rp is a pointer to a RastPort. 

Graphics Primitives 2-.55 



dx,dy 
are the distances (positive, 0, or negative) to move the rectangle 

xmin, xmax, ymin, ymax 
specify the outer bounds of the sub-rectangle 

Here are some examples that scroll a sub-rectangle: 

ScrollRaster{ &myRastPort,0,2,10,1O,50,50); 
/* scroll up 2 */ 

ScrollRaster( &my RastPort,1 ,0,10, 10,50,50); 
/ * scroll left 1 * / 

Drawing Through a Stencil 

The routine BltPatternO allows you to change only a very selective portion of a drawing 
area. Basically, this routine lets you define the rectangular region to be affected by this 
drawing operation and a mask of the same size that defines how that area will be affected. 

Figure 1-17 shows an example of what you can do with BltPatternO. The O-bits are 
represented by blank rectangles, the I-bits by filled-in rectangles. 

2-56 Graphics Primitives 



I······ •.• ·· 

i 
l. 

. ..... 

Mask contains: Result of BitPattern(): Drawing area contains: 

Figure 1-17: Example of Drawing Through a Stencil 

In the area where the x's have been substituted, the target drawing area has been affected. 
Exactly what goes into the drawing area where the mask has 1 's is determined by your 
FgPen, BgPen, DrawMode, and AreaPtrn. 

The variables that control this function are: 

rastport a pointer to the drawing area. 

mask a pointer to the mask (mask layout explained below). 

xl, maxx upper left corner x, and lower right corner x. 

yl, maxy upper left corner y, and lower right corner y. 

bytecnt number of bytes per row for the mask (must be an even number of bytes). 

You call BltPatternO with: 

BltPattern( rastport, mask, xl, yl, maxx, maxy, bytecnt) 

Graphics Primitives 2-57 



The mask parameter is a rectangularly organized, contiguously stored pattern. This means 
that the pattern is stored in linearly increasing memory locations stored as (maxy - yl) rows 
of bytecnt bytes per row. 

NOTE 

These patterns must obey the same rules as BitMaps. This means that they 
must consist of an even number of bytes per row. For example, a mask such as: 

010000 1 OOOOOOOOO 
00 1 00 1 0000000000 
0001100000000000 
00 1 00 1 0000000000 

is stored in memory beginning at a legal word address. 

Extracting From a Bit-Packed Array 

You use the routine BltTemplateO to extract a rectangular area from a source area and 
place it into a destination area. Figure 1-18 shows an example. 

Array start: 
line end+l 

....................................... 

Character starts n·bits in from starting point 
on the left edge of the array. 

Line end (first line) 

Figure 1-18: Example of Extracting from a Bit-Packed Array 

If the character is to be represented as a rectangle within a larger, rectangularly organized 
bit-array, the system must know how the larger array is organized. This allows the system 
to extract each line of the object properly. For this extraction to occur properly, you need to 

2-58 Graphics Primitives 



tell the system the modulo for the array. The modulo value is the value that must be added 
to the address po in ter so that it points to the correct word in the next line in this rectangu
larly organized array. 

Figure 1-19 represents a single bit-plane and the smaller rectangle to be extracted. The 
modulo in this instance is 4, because at the end of each line, you must add 4 to the address 
pointer to make it point to the first word in the smaller rectangle. 

20 21 22 23 24 25 26 .. 
27 28 29 30 31 32 33 

34 35 36 37 38 39 40 

41 42 43 44 45 46 47 

48 49 50 51 52 53 54 

55 56 57 58 59 60 61 

Figure 1-19: Modulo 

Note that the modulo value must be an even number of bytes. 

BltTemplateO takes the following arguments: 

source the source pointer for the array. 

Larger source 
bit·plane image 

Smaller rectangle 
to be extracted. 

srcX source X (bit position) in the array at which the rectangle begins. 

srcMod source modulo so it can find the next part of the source rectangle. 

destRastPort the destination RastPort. 

destX, destY destination x and y showing where to put the rectangle. 

sizeX, sizeY size x and y so it knows how much data to move. 

You call BltTemplateO with: 

BltTemplate( source, srcX, srcMod, destRastPort, destX, destY, sizeX, sizeY ); 

Graphics Primitives 2-59 



BltTemplateO uses FgPen, BgPen, DrawMode and Mask to place the template into the 
destination area. This routine differs from BltPatternO in that only a solid color is dep<r 
sited in the destination drawing area, with or withou t a second solid color as the background 
(as in the case of text). Also, the template can be arbitrarily bit-aligned and sized in x. 

Copying Rectangular Areas 

Two routines copy rectangular areas from one section of chip-memory to 
another: BltBitMapO and ClipBlitO. BltBitMapO is the basic routine, taking 
BitMaps as part of its arguments. It allows you to define a rectangle in a source region and 
copy it to a destination area of the same size elsewhere in memory. This routine is often 
used in graphics rendering. 

ClipBlitO takes most of the same arguments, but it works with the RastPorts and layers. 
Before ClipBlitO moves data, it looks at the area from which and to which the data is being 
copied (RastPorts, not BitMaps) and determines if there are overlapping areas involved. 
It then splits up the overall operation into a number of bit maps to move the data in the 
way you request. 

Here is a sample call to ClipBlitO. This call is used in an Image editor to transfer a rec
tangular block of data from the screen to a backup area. 

ClipBlit( &rastport, / * on-screen area * / 
x,y, / * upper left corner of rectangle * / 
&undorastport, /* screen editor can undo 

0,0, 
SIZEx,SIZEy 
min term); 

* things, has a rastport 
* specifically for undo * / 

/* upper left corner of destination */ 
/* how big is the rectangle */ 

The minterm variable is an unsigned byte value whose leftmost 4 bits represent the action 
to be performed during the move. This routine uses the blitter device to move the data and 
can therefore logically combine or change the data as the move is made. The most common 
operation is a direct copy from source area to destination, which is the hex value co. 

You can determine how to set the minterm variable by using the logic equations shown in 
Table 1-5. 

2-60 Graphics Primitives 



Table 1-5: Minterm Logic Equations 

Logic Term 
in Leftmost 4 Bits 

8 

4 

2 

1 

Logic Term Included 
in Final Output 

BC 

BC 

Source B contains the data from the source rectangle, and source C contains the data from 
the destination area. If you choose bits 8 and 4 from the logic terms (CO), in the final desti
nation area you will have data that occurs in source B only. Thus, CO means a direct copy. 
The logic equation for this is: 

BC + BC = B (C + C) = B 

Logic equations may be used to decide on it number of different ways of moving the data. 
For your convenience, a few of the most common ones are listed in Table 1-6. 

Table 1-6: Some common Logic Equations for Copying 

Hex 
Value Mode 

30 Replace destination area with inverted source B. 

50 Replace destination area with inverted version 
of original of destination. 

60 Put B where C is not, put C where B is not (cookie cut). 

80 Only put bits into destination where there is 
a bit in the same position for both source 
and destination (sieve operation). 

Refer to the summary in the appendixes for BltBitMapO. 

Graphics Primitives 2-61 



Controlling the Blitter 

To use the blitter, you must first be familiar with how its registers control its operation. 
This topic is covered thoroughly in the Amiga Hardware Manual and is not repeated here. 

There are four routines that you can use to control the blitter: 

o OwnBlitterO allows your task to obtain exclusive use of this device. 

o DisownBlitterO returns the device to shared operation. 

o QBlitO and QBSBlitO let your task queue up requests for the use of the blitter on 
a non-exclusive basis 

You provide a data structure called a bltnode (blitter node). The system can use this struc
ture to link blitter usage requests into a first-in, first-out (FIFO) queue. When your turn 
comes, your own blitter routine can be repeatedly called until your routine says it is finished 
using the blitter. 

Two separate queues are formed. One queue is for the QBlitO routine. You use QBlitO 
when you simply want something done and you don't necessarily care when it happens. This 
may be the case when you are moving data in a memory area which is not currently being 
displayed. 

The second queue is maintained for QBSBlitO. QBS stands for "queue beam synchronized" 
blitter operations. QBSBlitO forms a beam-synchronized FIFO. When the video beam gets 
to a predetermined position, your routine is called. Beam synchronization takes precedence 
over the simple FIFO. This means that if the beam sync matches, the beam-synchronous 
blit will be done first, then the non-synchronous blit in the first position in the queue. You 
might use QBSBlitO to draw into an area of memory that is currently being displayed to 
modify memory that has already been "passed-over" by the video beam. This avoids display 
flicker as an area is being updated. 

The input to each routine is a pointer to a bltnode data structure. The required items of 
the data structure are: 

o a pointer to a bltnode 

o a pointer to a function to perform 

2-62 Graphics Primitives 



o a beamsync value (used if this a a beamsync blit) 

o a status flag indicating whether the blitter control should perform a "cleanup" rou
tine when the last blit is finished 

o the address of the cleanup routine if the status flag states that it should be used 

The bltnode data structure is contained in the include file blit.h. Here is a copy of that data 
structure, followed by details about the items which you must initialize. 

struct bltnode 
{ 
struct bltnode *n; 
in t (*function)( ); 
char 
short 
int 
}; 

stat; 
beamsync; 

(*cleanup)( ); 

The contents of bltnode are as follows: 

struct bltnode *n; 

a pointer to the next bltnode, which, for most applications will be zero 

You should not link bltnodes together. This is to be performed by the system by 
way of a separate call to QBlitO or QBSBlitO. 

int (*function)( ); 

This position is occupied by the address of a function which the blitter queuer will 
call when your turn comes up. Your routine must be formed as a subroutine, with 
an RTS at the end. Using the C language convention, the returned value will be in 
DO (C returns its value by the return(value) statement). 

If you return a nonzero value, the system will again call your routine until you 
finally return o. This is to allow you to maintain control over the blitter; for exam
ple, for all 5 bit planes if you are blitting an object that spans that number, or for 
some other purpose. For display purposes, if you are blitting multiple objects and 
then saving and restoring the background, you must be sure that all planes of the 
object are positioned before another object is overlaid. This is the reason for the 
lockup in the blitter queue; it allows all work per object to be completed before going 
on to the next one. 

Actually, the system tests the status codes for a condition of EQUAL or 
NOTEQUAL. When the C language returns the value of 0, it sets the status codes 
to EQUAL. When it returns a value of -1, it sets the status code to NOTEQUAL, so 
they would be compatible. Functions (*function)()) that are written for QBlitO and 
QBSBlitO are not normally written in C. They are usually written in assembly 
language as they then can take advantage of the ability of the queue routines to pass 

Graphics Primitives 2-63 



them parameters in the system registers. The register passing conventions for these 
routines are as follows. 

o Register AO receives a pointer to the system hardware registers so that all 
hardware registers can be referenced as an offset from that address. 

o Register Al contains a pointer to the current bltnode. You may have queued 
up multiple blits each of which perhaps uses the same blitter routine. You can 
access the data for this particular operation as an offset from the value in AI. A 
typical user of these routines will precalculate the hardware register values that 
are stuffed into the registers and, during the routine, simply stuff them. For 
example, you can create a new structure such as the following: 

struct myblit { 
struct bltnode; /* make this new structure 

compatible with the bltnode 
by making it the first elemen t * / 

short bltconI; /* contents to be stuffed into 
blitter control register 1 */ 

short fwmask,lwmask; 
/ * first and last word masks * / 

short bltmdc, bltmdb, bltmda; 
/ * mod ulos for sources a, b, and c * / 

char *bltpta, *bltptb, *bltptc; 
/* pointer to source data for sources */ 
}; 

Other forms of data structures are certainly possible, but this should give you the 
general idea. 

char stat; 

Tells the system whether or not to execute the cleanup routine at the end. This 
byte should be set to CLEANUP (Ox40) if cleanup is to be performed. If not, then 
the bltnode cleanup variable can be zero. 

short beamsync; 

The value that should be in the VBEAM counter for use during a beam-synchronous 
blit before the functionO is called. 

The system cooperates with you in planning when to start a blit in the routine 
QBSBlitO by not calling your routine until, for example, the video beam has 
already passed by the area on-screen into which you are writing. This is especially 
useful during single buffering of your displays. There may be time enough to write 
the object between scans of the video display. You won't be visibly writing while 

2-64 Graphics Primitives 



the beam is trying to scan the object. This avoids flicker (part of an old view of an 
object along with part of a new view of the object). 

int (.cleanup )0; 

The address of a routine which is to be called after your last return from the 
QBlitO routine. When you return a zero finally, the queuer will call this subrou tine 
(ends in RTS or returnC);) as the cleanup. Your first entry to the function may 
have dynamically allocated some memory or something else which must be undone to 
make for a clean exit. This routine must be specified. 

Graphics Primitives 2-65 





Chapter 2 

Layers 

The layers library enables you to create displays containing overlapping display elements. 
This chapter describes the layers library routines and how you use them in creating graphics. 

2.1. INTRODUCTION 

The layers library contains routines that: 

o multiplex a BitMap among various tasks by creating "layers" in the BitMap. 

o create separate writable BitMap areas, some portions of which may be in the com
mon (perhaps on-screen) BitMap, and some portions in an obscured area. In two 
modes, called smart-refresh and superbitmap, graphics are rendered into both the 
obscured and the non-obscured areas. 

o move, size or depth-arrange the layers, bringing obscured segments into a non
obscured area. 

Tasks can create layers in a common BitMap, then output graphics to those layers without 
any knowledge that there are other tasks currently using this BitMap. 

To see what the layers library provides, you need only look at the Intuition user interface, as 
used by numerous applications on the Amiga. The windows that Intuition creates are based, 
in part, on the underlying strata of the layers library. You can find more details about Intui
tion in the book titled Intuition: The Amiga User Interface. 

If you wish, you can use the layers library directly to create your own windowing system. 
The layers library takes care of the difficult things, that is, the bookkeeping jobs that are 
needed to keep track of where to put which bits. Once a layer is created, it may be moved, 
sized, depth-arranged or deleted using the routines provided in this library. In performing 

Layers 2-67 



their rendering operations, the graphics routines know how to use the layers and only draw 
into the correct drawing areas. 

Definition of Layers 

The internal definition of the layers resembles a set of clipping rectangles in that a drawing 
area is split into a set of rectangles. A clipping rectangle is a rectangular area into which the 
graphics routines will draw. Some of the rectangles are visible, some invisible. If a rectangle 
is visible, the graphics can draw directly into it. If a rectangle is obscured by an overlapping 
layer, the graphics routine may possibly draw into some other memory area. This memory 
area must be at least large enough to hold the obscured rectangle so the graphics routines 
can, on command, expose the obscured area. 

The layers library manages in teractions between the various layers by using a data structure 
called Layer_Info. Each major drawing area, called a BitMap (which all windows share), 
requires one Layer_Info data structure. 

You may choose to split the viewing area into multiple parts by providing multiple indepen
dent ViewPorts. If you use the layers library to subdivide each of these parts into layers 
(effectively providing windows within these subdivisions), then you must provide one 
Layer_Info structure for each of these parts. 

Types of Layers Supported 

The layers library supports four types of layers: 

o Simple Refresh 

No backup area is provided. Instead, when an obscured section of the layer is 
exposed to view, the routine using this layer is told that a "refresh" of that area is in 
order. This means that the program using this layer must redraw those portions of 
its display that are contained in the previously obscured section of the layer. All 
graphics rendering routines are "clipped" so that they will only draw into exposed 
sections of the layer. 

o Smart Refresh 

The system provides one or more "backup" areas into which the graphics routines 
can draw whenever a part of this layer is obscured. 

2-68 Layers 



o Superbitmap 

There is a single backup area, which is permanently provided to store what is not in 
the layer. The backup area may be larger than the area that is actually shown in 
the on-screen BitMap. 

o Backdrop 

A backdrop layer always appears behind all other layers that you create. The 
current implementation of backdrop layers prevents them from being moved, sized, 
or depth-arranged. 

2.2. LAYERS LIBRARY ROUTINES 

The layers library contains routines for: 

Operation 

Allocating a Layer_Info 
structure 

Deallocating a Layer_Info 
structure 

Routine 

NewLayerlnfoO 

DisposeLayerlnfoO 

Intertask operations LockLayerO, UnLockLayerO, 
LockLayersO, UnlockLayersO, 
LockLayer InroO, U nlockLayer Info 

Creating and deleting layers CreateUpfrontLayerO, 
C reateBehindLayerO, 
DeleteLayerO 

Moving layers MoveLayerO 

Sizing layers SizeLayerO 

Changing a viewpoint ScrollLayerO 

Reordering layers BehindLayer, UpfrontLayerO 

Determining layer position WhichLayerO 

Sub-layer rectangle operations SwapBitsRastPortClipRectO 

Layers 2-69 



Initializing and Deallocating Layers 

The function NewLayerInfo(} allocates and initializes a Layer_Info data structure and 
allocates some extra needed memory for the 1.1 release. After the call to NewLayerInfoO, 
you can use the layer operations described in the following paragraphs. 

The function DisposeLayerInfo(} de allocates a Layer_Info structure that was allocated 
with a call to NewLayerInfoO and frees the extra memory that was allocated. 

NOTE: Prior to the current 1.1 release, Layer_Info structures were initialized with the 
InitLayers(} function. For backwards compatibility, you can still use this function with 
newer software. For optimal performance, however, you should call FattenLayerInfoO to 
allocate the needed extra memory, and ThinLayerInfoO to return the memory to the sys
tem free-list. Failure to deallocate memory will result in loss of available memory. 

Intertask Operations 

This section shows the use of the routines LockLayerInfoO, UnlockLayerInfo(}, Lock
LayerO, UnlockLayerO, LockLayersO, and UnlockLayersO. 

LockLayerlnfoO and UnlockLayerlnfoO 

You create layers by usmg the routines CreateUpFrontLayerO and 
CreateBehindLayerO· If multiple tasks are all trying to create layers on the same screen 
or ViewPort, each task will be trying to affect the same data structures while creating its 
layers. The Layer_Info data structure can trois the layers. LockLayer InfoO ensures th at 
the Layer_Info data structure remains intact and tasks can obtain this exclusive access. 

LockLayerInfoO waits (sleeps) until there are no other tasks that have done a 
LockLayerlnfoO· Then it grants exclusive access to the locking task. 

2-70 Layers 



LockLayerO and UnlocklayerO 

If a ta.sk is making some changes to a particular layer, such a.s resizing it or moving it, the 
ta.sk must inhibit the graphics rendering into the layer. LockLayerO blocks graphics out
put once the current graphics function ha.s completed. The other ta.sk goes to sleep only if it 
attempts to draw graphics. LockLayerO returns exclusive access to the layer once other 
ta.sks, inel ud ing graphics, are finished with th is layer. 

UnlocklayerO frees the locked layer for other operations. 

If more than one layer must be locked, then these LockLayerO calls must be surrounded by 
LockLayerlnfoO and UnLockLayerlnfoO. This is to prevent deadlock situations. 

LockLayersO and U nlockLayersO 

Sometimes it is necessary to lock all layers at the same time. For example, under Intuition, a 
rubber-band box is drawn when a window is being moved or sized. To draw such a box, 
Intuition must stop all graphics rendering to all windows (and associated layers) so that it 
can draw a line using the graphics complement drawing mode. If other graphics draw over 
this line, it would not be possible for Intuition to era.se it again, using a subsequent comple
ment operation over the same line. Thus LockLayersO is used to lock all layers in a single 
command. UnlockLayersO releases the layers. 

You can simulate LockLayersO by calling LockLayerO for each layer in the LayerList. 
However, in that ca.se, you must call LockLayerlnfoO before and UnlockLayerlnfoO 
after each LockLayerO call. 

Creating and Deleting Layers 

CreateUpFrontLayerO creates a layer that is in front of all other layers. Intuition uses 
this function to create certain types of new windows, a.s well a.s other Intuition components. 

Layers 2-71 



CreateBehindLayerO creates a layer that is behind all other layers. Intuition uses this 
function to create a new "Backdrop" window. 

Each of the routines that create layers return a pointer to a layer data structure (shown III 

the include file layers.h). 

NOTE: When you create a layer, the system automatically creates a RastPort to go along 
with it. Because a RastPort is specified by the drawing routines, if you use this layer's 
RastPort, you will draw into specifically and only the area that you have designated on
screen for this layer. See also the topic called "The Layer's RastPort" below. 

DeleteLayerO is used to remove a layer from the layer list. It is one of the functions used 
by Intuition to close a window. 

For these functions, you need to perform LockLayerlnfoO and UnlockLayerInfoO 
because you need to access the Layer_Info structu re itself. 

Moving Layers 

MoveLayerO moves a layer to a new location. When you move a layer, the move command 
affects the list of layers that is being managed by the Layer_Info data structure. The sys
tem locks the Layer_Info for you during this operation. 

Sizing Layers 

The SizeLayerO command changes the size of a layer by leaving the coordinates of the 
upper left corner the same and modifying the coordinates of the lower right corner of the 
layer. The system locks the Layer_Info for you during this operation. 

Changing a View Point 

ScrollLayerO is for superbitmap layers only. This command changes the portion of a 
superbitmap that is shown by a layer. An analogy is a window in a wall. If the homeowner 
doesn't like the view he sees from a particular window, he might either change what he sees 
by planting trees (that is, new graphics rendering) or he might decide to move the window to 

2-72 Layers 



see another part of the great outdoors (changing the portion of the superbitmap shown by a 
layer). You must provide a superbitmap; the ScrollLayerO command repositions the 
smaller layer against the larger superbitmap, thus showing a different part of it. 

Because the layer size and on-screen position do not change while this operation is taking 
place, it is not necessary to lock the Layer_Info data structure. However it is necessary to 
prevent graphics rendering operations from drawing into this layer or its associated superbit
map while ScrollLayerO is performing the repositioning. Thus, the system locks the layer 
for you while this operation is taking place. 

Reordering Layers 

BehindLayerO and UpfrontLayerO are used, respectively, to move a layer behind all 
other layers or in front of all other layers. BehindLayerO also considers any backdrop 
layers, moving a current layer behind all others except backdrop layers. The system per
forms LockLayersO and LockLayerlnfoO for you during this operation. 

Determining Layer Position 

If the viewing area has been separated in to several layers, you may wish to fi nd ou t wh ich 
layer is topmost at a particular x,y coordinate. For example, Intuition does this while keep
ing track of the mouse position. When you move the mouse into one of the windows and 
click the left button, Intuition feeds the current X,y coordinate to WhichLayerO. In return, 
WhichLayerO tells Intuition which layer has been selected, and thus it knows with which 
window you wish to work. 

If you wish to be sure that no task changes the sequence of layers (by using 
UpfrontLayerO, BehindLayerO, CreateUpFrontLayerO, DeleteLayerO, 
MoveLayerO or SizeLayerO) before your task can use this information, call 
LockLayerlnfoO before calling WhichLayerO. Then, after receiving and using the infor
mation that WhichLayerO delivers, you can call UnlockLayerlnfoO. In this way you will 
be acting on data that was true as of the moment it was received. 

Layers 2-73 



Su b-Layer Rectangle Operations 

The SwapBitsClipRectRastPortO routine is for users who don't want to worry about 
clipping rectangles. The need for this routine goes a bit deeper than that. It is a routine 
that actually enables the menu operations of Intuition to function much more quickly than 
they would if this rou tine were not provided. 

Consider the case where there are several windows open on an Intuition screen. If you wish 
to produce a menu, there are two ways to do it: 

a) Create an up-front layer with CreateUpfrontLayerO, then render the menu in it. 
This could use lots of memory and require a lot of (very temporary) "slice-and-dice" 
operations to create all of the clipping rectangles for the existing windows and so on, 
OR 

b) use SwapBitsClipRectRastPortO, directly on the screen drawing area: 

o Render the menu in a backup area off-screen, then lock all of the on-screen 
layers so that no task can use graphics routines to draw over your menu area 
on-screen. 

o Next, swap the on-screen bits with those off-screen, making the menu appear. 

o When you finish with the menu, swap again, and unlock the layers. 

The second rendering method is faster and leaves the clipping rectangles and most of the rest 
of the window data structures untouched. 

Notice that all of the layers must be locked while the menu is visible. Any task that is using 
any of the layers for graphics output will be halted while the menu operations are taking 
place. If, on the other hand, the menu is rendered as a layer, no task need be halted while 
the menu is up because the lower layers need not be locked. It is a tradeoff decision that you 
must make. 

2-74 Layers 



2.3. THE LAYER'S RASTPORT 

When you create a layer, you au tomatically get a RastPort. The poin ter to the RastPort 
is contained in the layer data structure and can be retrieved typically by the statement: 

rp = layer- > rp; / * copy the poin ter from the layer structure 
* into a local poin ter for further use * / 

Using this RastPort, you can draw anywhere into the layer's defined rectangle. Location 
(0,0) is the coordinate location for the upper left corner of the rectangle, and location (xmax, 
ymax) is the lower right corner. If you try to draw to any location outside of this coordi
nate system, the graphics routines will clip the drawing to the inside boundaries of this area. 

The type of layer you specify by the Flags variable determines the other facilities the layer 
provides. The following paragraphs describe the types of layers -simple refresh, smart 
refresh, superbitmap, and backdrop- and the flags you set for the type you want. Note 
that the three layer-type Flags are mutually exclusive. That is, you cannot specify more 
than one layer-type flag-LA YERSIMPLE, LA YERSMART, LA YERSUPER. 

Simple Refresh Layer 

When you draw into the layer, any portion of the layer that is visible (not obscured) will 
have its drawing rendered into the common BitMap of the viewing area. 

If another layer operation is performed that causes part of a simple refresh layer to be 
obscured and then exposed, you must restore the lost the part of the drawing that your 
application rendered into the obscured area. 

Simple refresh has two basic advantages: 

o It uses no backup area (BitMap) to save drawing sections that cannot be seen any
way (and therefore saves memory). 

o When an application tries to restore the layer by performing a full-layer redraw, 
(sandwiched between a BeginUpdateO, EndUpdateO pair), only those damaged 
areas are redrawn, making the operation very time efficient. 

Its disadvantage is that the application needs to watch to see if its layer needs refreshing. 
This test can be performed, typically, by a statement set such as the following. 

Layers 2-75 



refreshstatus = layer- > Flags & LA YERREFRESH; 
if (refreshstatus != 0) refresh(layer); 

NOTE: Applications using Intuition typically get their refresh notifications as event mes-
sages passed through an Intuition Direct Communications Message Port (IDCMP). 

Smart Refresh Layer 

If any portion of the layer is hidden by another layer, the bits for that obscured portion are 
rendered into a backup area. 

With smart refresh layers, the system handles all of the refresh requirements except when the 
layer is made larger. Its disadvantage is the additional memory needed to handle this 
automatic refresh. 

Superhitmap Layer 

A superbitmap layer is similar to a smart refresh layer. It too has a backup area into which 
drawings are rendered for currently obscured parts of the display. However, it differs from 
smart refresh in that: 

o The backup BitMap IS user-supplied, rather than being allocated dynamically by 
the system. 

o The backup BitMap may be larger than the area of this BitMap that is currently 
showing within the current size of this layer. 

To see a larger portion of a superbitmap in the on-screen layer, you use SizeLayer{). To see 
a different portion of the superbitmap in the layer, you use ScrollLayerO. 

When the graphics routines perform your drawing commands, part of the drawing appears in 
the common BitMap (the on-screen portion). Any drawing outside the layer itself is ren
dered into the superbitmap. When it is time to scroll or size the layer, the layer contents are 
copied into the superbitmap, the scroll or size positioning is modified, and the appropriate 
portions are then copied back into the layer. 

2-76 Layers 



Backdrop Layer 

Any layer can be designated a backdrop layer. You can turn off the backdrop flag tem
porarily and allow a layer to be depth-arranged. Then by restoring the backdrop flag, you 
can again inhibit depth-arrangement operations. 

You change the backdrop flag typically by the statements: 

/* turn off the backdrop bit * / 
layer->Flags &= LAYERBACKDROP; 

1* turn on the backdrop bit *1 
layer->Flags 1= LAYERBACKDROP; 

2.4. USING THE LAYERS LIBRARY 

The following is a step-by-step example showing how the layers library can be used in your 
programs. Note that the Intuition software, which is part of the system as well, manages 
many of these items for you. The example below can be started up under Intuition, but 
requires that the Amiga be reset in order to exit the program. 

The example program explains the individual parts separately, then merges the parts into a 
single working example. This simple example produces three rectangles on-screen: one red, 
one green, and one blue. Each rectangle is rendered as a rectangle-fill of one of three smart 
layers created for the example. 

Opening the Layers Library 

As with all library routines, before the layers library can be used, it must be opened. This is 
done typically by the following code: 

Layers 2-77 



struct LayersBase *LayersBase; 

LayersBase = (struct LayersBase * )OpenLibrary(" layers. library" ,0); 
if(LayersBase == NULL) 

exit(NO_LA YERS_LIBRARY _FOUND); 

Opening the Graphics Library 

Because the example uses various graphics library functions as well as the layers library, you 
must also open the graphics library with the following code: 

struct GfxBase *GfxBase; 

GfxBase = (struct GfxBase * )OpenLibrary(" graphics.library" ,0); 
if(GfxBase == NULL) 

exit(NO _GRAPHICS_LIBRARY_FOUND); 

Creating a Viewing Workspace 

You can create a viewing workspace by usmg the primitives InitVPortO, In itView ° , 
MakeVPortO, MrgCopO, and LoadViewO. See the "Graphics Example" section in 
Chapter 1, "Graphics Primitives". You add the following statements. 

struct Layer_Info *li; 
li=N ewLayerInfo(); 

This provides and initializes a Layer_Info data structure with which the system can keep 
track of layers that you create. 

2-78 Layers 



Creating the Layers 

You can create layers in this common bit map by calling CreateUpfrontLayerO (or 
CreateBehindLayerO), with a sequence like the following. The Flags value in this exam
ple is LAYERSMART (see "clip.hl! in the appendixes for all other flag values). This 
sequence requests construction of a smart refresh layer. 

#define FLAGS LA YERSMART 

struct RastPort *rp[3]; 
/* allocate a rastport pointer for each layer */ 

struct Layer *layer[3]; 
/ * allocate a layer poin ter for each layer * / 

layer[O] = CreateU pfrontLayer( &li,&b,20,20,lOO,80,FLAGS,NULL); 
/* layerinfo, common bitmap, xl,yl,x2,y2, 
* flags = 0 (smart refresh), null pointer to superbitmap */ 

layer[l] = CreateU pfron tLayer( &li,&b,30,30, 110,90,FLAGS,NULL); 
layer[2] = CreateUpfrontLayer(&li,&b,40,40,120,lOO,FLAGS,NULL); 

if(layer[O]==NVLL Illayer[l]==NULL Illayer[2]==NULL) exit(3); 
/* if not enough memory, can't continue the example */ 

Getting the Pointers to the RastPorts 

Each layer pointer data structure contains a pointer to the RastPort that it uses. Here is 
the assignment from the layer structure to a set of local pointers: 

for(i=O; i<3; i++) 
rp[i] = layer[i]->rp; 

Layers 2-79 



Using the RastPorts for Display 

Here are the rectangle-fill operations that create the display: 

for(i=O; i<3; i++) 
{ 
SetAPen(rp [i],i+ 1); 
SetDrMd(rp[i],JAMI ); 
RectFill( rp[i] ,0,0,80,50); 
} 

If you perform an UpfrontLayerO or BehindLayerO command prior to the Delay shown 
in the complete example below, all of the data contained in each layer is retained and 
correctly rendered automatically by the layers library. This is because these are all smart
refresh layers. If you change the example to use a Flags value of LA YERSIMPLE, and then 
perform UpfrontLayerO or BehindLayerO, the obscured portions of the layers, now 
exposed, contain only the background color. This illustrates that simple-refresh layers may 
have to be redrawn after layer operations are performed. 

Layers Example 

Here is the complete example, pulled together from the complete example in Chapter 1, as 
well as the pieces given above. Sections of the example that differ from those shown in the 
Chapter 1 example are indicated through comments to show the additions adding the layers 
library demonstration. 

/* ************************************************************ 
* THIS EXAMPLE SHOWS HOW TO USE THE layers.library. Certain 
* functions are not available in the system software prior to 
* the release of version 1.1. Therefore this example can only 
* be compiled if your C-disk supports version 1.1 or beyond. 
*********************************************************** */ 

#include "exec/types.h" 
#include "graphics/ gfx.h" 
#include "hardware/dmabits.h" 
#include "hardware/ custom.h" 
#include "hardware/blit.h" 
#include "graphics/ gfxmacros. h" 

2-80 Layers 



#include "graphics/copper.h" 
#include "graphics/view.h" 
#include "graphics/gels.h" 
#include "graphics/regions.h" 
#include "graphics/clip.h" 
#include "exec/exec.h" 
#include "graphics/text.h" 
#include "graphics/gfxbase.h" 
/* ************ added for layers support ************************ */ 
#include "graphics/layers.h" 
#include "graphics/clip.h" 
/* ************ added for layers support ************************ */ 

#define DEPTH 2 
#define WIDTH 320 
#define HEIGHT 200 
#define NOT_ENOUGHJyfEMORY -1000 
#define FOREVER for(;;) 

/* construct a simple display */ 

#define FLAGS LAYERSMART 
struct View *oldview; /* save pointer to old view so can go back to sys */ 
struct View v; 
struct ViewPort vp; 
struct ColorMap *cm; /* pointer to colormap structure, dynamic alloc */ 
struct RasInfo ri; 
struct BitMap b; 
/* made 3 separate rastports for layers testing ************ */ 
struct RastPort *rp[3]; /* rastport for each layer */ 
/* dynamically created RastPorts from the calls to CreateUpfrontLayer */ 

short i,j ,k ,n; 
struct (jolorMap *GetColorMapO; 
struct GfxBase *GfxBase; 

SHORT boxoffsets[] = { 802, 2010, 3218 }; 
USHORT colortable[] = { OxOOO, OxfOO, OxOfO, OxOOf }; 

/* black, red, green, blue */ 
UBYTE *displaymem; 
UBYTE *colorpalette; 

long LayersBase; 
struct Layer_Info *li; 
struct Layer *layer[3]; 
extern struct Layer *CreateUpfrontLayerO; 
extern struct Layer_Info *NewLayerInfoO; 

mainO 
{ 

Layers 2-81 



GfxBase = (struct GfxBase * )OpenLibrary(" graphics.library" ,0); 
if (GfxBase == NULL) exit(1); 

LayersBase = OpenLibrary(" layers.library" ,0); 
if(LayersBase == NULL) exit(2); 

oldview = GfxBase->ActiView; /* save current view, go back later */ 
/* example steals screen from Intuition if started from WBench * / 

Ii = NewLayerInfoO; /* get a LayerInfo structure * / 
if{li == NULL) exit(lOO); 

/* not needed if gotten by NewLayerInfo InitLayers{li); * / 

/* initialize view */ 
InitView(&v); 

/* link view into viewport */ 
v.ViewPort = &vp; 

/* init view port */ 
Init VPort( &vp); 

/ * now specify critical characteristics * / 
vp.DWidth = WIDTH; 
vp.DHeight = HEIGHT; 
vp.RasInfo = &ri; 

/* init bit map (for rasinfo and rastport) */ 
InitBitMap(&b,DEPTH.WIDTH,HEIGHT); 

/* (init RasInfo) */ 
ri.BitMap = &b; 
ri.RxOffset = 0; / * align upper left corners of display 

ri.RyOffset = 0; 
ri.Next = NULL; 

* with upper left corner of drawing area */ 

/ * (init color table) * / 
cm = GetColorMap(4); /* 4 entries, since only 2 planes deep */ 
colorpalette = (UBYTE * )cm- > ColorTable; 
for(i=O; i<4; i++) 

*colorpalette++ = colortable[i]; 
/* copy my colors into this data structure */ 

vp.ColorMap = cm; /* link it with the viewport */ 

/* allocate space for bitmap */ 
for(i=O; i<DEPTH; i++) 

{ 
b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH,HEIGHT); 
if{b.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY); 
} 

MakeVPort( &v, &vp ); /* construct copper instr (prelim) list */ 
MrgCop( &v ); /* merge prelim lists together into a real 

* copper list in the view structure. * / 

2-82 Layers 



for(i=O; i<2; i++) 
{ 
displaymem = (UBYTE * )b.Planes[i]; 
for(j=O; j <RASSIZE(WIDTH,HEIGHT); j++) 

*displaymem++ = 0; 
/* zeros to all bytes of the display area * / 

LoadView{ &v); 

/* now fill some boxes so that user can see something */ 

layer[O] = CreateUpfrontLayer(li,&b,5,5,85,65,FLAGS,NULL); 
/* layerinfo, common bitmap, x,y,x2,y2, 
* flags = 0 (simple refresh), null pointer to superbitmap */ 

if(layer[O] == NULL) goto cleanupl; 

layer[l] = CreateUpfrontLayer(li,&b,20,20,lOO,80,FLAGS,NULL); 
if(layer[l] == NULL) goto cleanup2; 

layer[2] = CreateUpfrontLayer(li,&b,45,45,125,105,FLAGS,NULL); 
if(layer[2] == NULL) go to cleanup3; 

for(i=O; i<3; i++) /* layers are created, now draw to them */ 
{ 
rp[i] = layer[i]- >rp; 
SetAPen(rp [i],i+ 1); 
SetDrMd(rp[i],JAMl}; 
RectFill( rp[i],O,O, 79,59); 
} 
SetAPen(rp[O],O); 
Move( rp[O],5,30}; 
Text(rp[O],"Layer 0" ,7); 

SetAPen(rp[I],O}; 
Move(rp[l ],5,30); 
Text(rp[I],"Layer 1" ,7); 

SetAPen(rp[2],0}; 
Move( rp[2],5,30); 
Text(rp[2J,"Layer 2" ,7}; 

Delay(120);/* 2 seconds before first change */ 
BehindLayer( li,layer [2]); 

Delay(120); /* another change 2 seconds later * / 

Upfron tLayer(li, layer[O]); 

for(i=O; i<30; i++) 
{ 

} 

Layers 2-83 



MoveLayer(li,layer[1],1,3); 
Delay(10); /* wait .16 seconds (uses DOS function) */ 

} 

cleanup3: 
LoadView( oldview); 
DeleteLayer( Ii, layer [2 J); 

cleanup2: 
DeleteLayer(li,layer [1 J); 

cleanup1: 
DeleteLayer(li,layer[O]); 

Disp06eLayerlnfo(li); 
FreeMemoryO; 
CloseLibrary( GfxBase); 

/* put back the old view */ 

} /* end of mainO * / 

FreeMemoryO 
{ /* return user and system-allocated memory to sys manager */ 

} 

for(i=O; i<DEPTH; i++) /* free the drawing area */ 
FreeRaster(b.Planes[i],WIDTH,HEIGHT); 

FreeColorMap(cm); /* free the color map */ 
/* free dynamically created structures */ 

Free VPortCopLists( &vp); 
FreeCprList( v .LOFCprList); 
return{O); 

2.5. CLIPPING RECTANGLE LIST 

When you perform the various graphics drawing routines, you will notice that the routines 
draw into Intuition windows even though the windows might be partially or totally obscured 
on-screen. This is because the layer library functions split the drawing area to provide lists 
of drawing areas which the graphics drawing can use for its operations. 

In particular, the layer library functions split the windows into rectangles. You need only 
concern yourself with a single overall RastPort that contains the description of the com
plete area that you are managing. When either you or Intuition use the layer library, the 
graphics routines will be able to tell how the drawing area is split and where rendering can 
occur. 

2-84 Layers 



The set of rectangles compnsmg the layer is known as a clipping rectangle list (ClipRect 
structure). A clipping rectangle is a rectangular area into which the graphics routines will 
draw. All drawing that would fall outside of that rectangular area is clipped (not rendered). 

Damage List 

For a smart refresh window, the system automatically generates off-screen buffer spaces, 
essentially linked into the clipping rectangle list. Thus, parts of the display that are on
screen are rendered into the on-screen drawing area, and parts of the display that are 
obscured are drawn into a backup area. When segments are exposed, the backup area infor
mation is brought to view automatically during the routines UpfrontLayerO and 
BehindLayerO, as well as during MoveLayerO. 

For a simple refresh window however, any section of a drawing area that is not covered in 
the clipping rectangle list is not drawn into by the graphics routines. When obscured areas 
are exposed, they will not contain any graphics rendering at all. As the system creates and 
moves layers in front of such simple refresh windows, the layers library keeps track of the 
rectangular segments that have not been drawn and are therefore not part of any automati
cally saved backup areas. This list of non-drawn areas is called a DamageList. 

Repairing the Damage 

When you receive a REFRESH event from Intuition for a simple refresh window, you are 
being told that Intuition, through the layers library, has done something to change the por
tions of your window that are exposed to view. In other words, there is likely to be a blank 
space where there is supposed to be some graphics. 

To update only those areas that need updating, you call BeginUpdateO. BeginUpdateO 
saves the pointer to the current clipping rectangles. It also installs in the layer structure a 
pointer to the set of ClipRects generated from the DamageList. In other words, the 
graphics rendering routines see only those rectangular spaces that need to be updated and 
refuse to draw into any other spaces within this layer. If, for example, there are only one or 
two tiny rectangles that need to be fixed, the graphics can ignore all but these spaces and 
repair them very quickly and efficiently. To repair the layer, you ask the graphics routines 
to redraw the whole layer, but the graphics uses the new clipping rectangle list (that is, the 
damage list) to speed the process. 

To complete the update process, call EndUpdateO, to restore the original ClipRect list. 

Layers 2-85 



2.6. REGIONS 

Regions are rectangles that, when combined, can become part of a DamageList. The 
graphics.library contains several support routines for regions. Among these are routines for: 

Operation Routine 

Creating and deleting regions NewRegionO, DisposeRegionO 

Changing a region AndRectRegionO, OrRectRegion, 
XorRectRegionO 

Clearing a region ClearRegionO 

Basically, the region commands let you construct a custom DamageList, which you can use 
with your graphics rendering routines. With this list, you can selectively update a custom
sized, custom-shaped part of your display area without disturbing any of the other layers 
that migh t be presen t. 

Creating and Deleting Regions 

NewRegionO allocates and initializes a new data structure that may be thought of as a 
blank painter's easel. 

If this new region is to be used as the basis for a DamageList, and you asked the graphics 
routines to draw something through this DamageList, nothing would be drawn as there is 
nothing in the region. The region that you produce can be thought of as patches of canvas. 
A new region has no canvas. 

Because a region is dynamically created by using NewRegionO, the procedure 
DispoaeRegionO is provided to return the memory to the system when you have finished 
with it. Note that not only the region structure is deallocated, but also any rectangles that 
have been linked into it. 

2-86 Layers 



Changing a Region 

OrRectRegionO modifies a region structure by or'ing a clipping rectangle in to the region. 
This has an effect similar to adding a rectangle of canvas to the easel. If you now exercise 
the drawing routines, the rendering will occur in the areas where the region has been or'ed 
(canvas rectangle has been added) and inhibited elsewhere. 

AndRectRegionO modifies a region structure by and'ing a clipping rectangle into the 
region. This has an effect similar to using the rectangle as an outline for a position on the 
easeL Any area of canvas that falls outside this outline is clipped and discarded. 

XorRectRegionO applies the rectangle to the region in an exclusive-or mode. That is, 
wherever there is no canvas, canvas is applied to the easel. Wherever there is canvas present 
within the rectangle, a hole is created. Thus it is a combination of OrRectRegionO and 
AndRectRegionO in a single application. 

Clearing a Region 

While you are performing various types of selective drawing area updates, you may wish to 
do some of your graphics rendering with one form of region, and some with a different form 
of region. You can perform ClearRegionO to go from one form back to a fresh, empty 
region. Then you can begin again to compose yet another modified region for the next draw
ing function. 

Using Regions 

The region routines typically are used in a sequence like the following: 

Layers 2-87 



struct Region *r; 
struct Rectangle *rectl, *rect2, rect3; 

r = NewRegionO; 
OrRectRegion(rectl, r); /* add a rectangle */ 
AndRectRegion( rect3, r); / * patch a rectangle * / 
XorRectRegion(rect2, r); /* weird patch * / 

/* in this section of code: 

*/ 

1. Save curren t poin ter to DamageList for the 
Layer you wish to affect. 

2. Equate the region address (r) to the DamageList 
pointer in the Layer structure. 

3. Perform whatever drawing functions you wish into 
this layer 

4. Restore the original DamageList pointer. 

DisposeRegion( r); 

The drawing will only occur in those areas of the drawing area that you have specified should 
be updated. Graphics rendering is often made faster because not all of the area need be 
updated. 

A typical sequence using ClearRegionO might be: 

struct Region *r; 
struct Rectangle *rectl, *rect2, rect3; 
struct Layer_Info *li; 

r = NewRegionO; 
OrRectRegion{rectl, r); 
OrRectRegion(rect2, r); 

(swap in as a damaged list) 
BeginUpdate(li); 

(draw, draw, draw something) 
EndU pdate(li); 

(restore original damaged list) 

ClearRegion( r); 
AndRectRegion(rect3, r); 

(swap, draw, restore) 

o isposeRegion (r); 

2-88 Layers 



Sample Application for Regions 

For example, assume that you are producing a display that requires a view through a fence. 
You can create th is "slats" effect by using regions, as follows: 

a) Create a new region. 

b) Create several rectangles representing the open areas of the slats in the fence. 

c) Or these in to the region. 

d) Save the DamageList pointer in the affected layer so it can be restored later. 

e) Copy the region address into DamageList pointer. 

f) Draw the scene into the entire layer using the graphics 

g) Restore the original DamageList pointer. 

h) Dispose of the region. 

Here is a sample application. It is based on the sample layers library program shown above. 
For brevity, the comments have been stripped out except where new material, pertinent to 
regions, has been inserted. 

/* SIMPLE REGIONS EXAMPLE .... DRAW BEHIND A FENCE */ 
/* Certain layers.library routines are used herein that aren't 
* available until Amiga C compiler version 1.1 and beyond. */ 

#include < exec/types.h > 
#include <graphics/gfx.h> 
#include <hardware/dmabits.h> 
#include <hardware/custom.h> 
#include <graphics/gfxmacros.h> 
#include <graphics/regions.h> 
#include <graphics/clip.h> 
#include <graphics/text.h> 
#include <hardware/blit.h> 
#include < graphics/ gfxbase.h > 
#include <graphics/copper.h> 
#include <graphics/gels.h> 
#include <graphics/rastport.h> 

Layers 2-89 



#include <graphics/view.h> 
#include <exec/exec.h> 
#include <graphics/layers.h> 

#define FLAGS LA YERSIMPLE 
extern struct Layer *CreateUpfron tLayerO; 

struct GfxBase *GfxBase; 

long LayersBase; 

#define DEPTH 2 
#define WIDTH 320 
#define HEIGHT 200 
#define NOT_ENOUGH_MEMORY -1000 
#define FOREVER for(;;) 

struct View *oldview; 
struct View v; 
struct ViewPort vp; 
struct ColorMap *cm; 
struct Raslnfo ri; 
struct BitMap b; 
struct Ra..<;tPort *rp; /* one rastport for one layer */ 

short i,j,k,n; 
struct ColorMap *GetColorMapO; 

USHORT colortable[] = { OxOOO, OxfOO, OxOfO, OxOOf }; 
/* black, red, green, blue */ 

UBYTE *displaymem; 
UWORD *colorpalette; 

struct Layer_Info *li; 
struct Layer * layer; / * one layer pointer * / 

extern struct Region *NewRegion(); 
struct Region * rgn; / * one region poin ter * / 
struct Rectangle rect[14]; /* some rectangle structures */ 
struct Region *oldDamageList; 

extern struct Layer_Info *NewLayerInfoO; 

mainO 
{ 

SHORT x,y; 

GfxBase = (struct GfxBase * )OpenLibrary(" graphics.library" ,0); 
if (GfxBase == NULL) exit(l); 
LayersBase = OpenLibrary(" layers.library" ,0); 

2-90 Layers 



if(LayersBase == NULL) exit(2); 

oldview = GfxBase- >AetiView; 

Ii = NewLayerInfoO; /* vl.l compiler only */ 
Init View( &v); 
v.ViewPort = &vp; 
Init VPort( &vp); 
vp.DWidth = WIDTH; 
vp.DHeight = HEIGHT; 
vp.RasInfo = &ri; 
InitBitMap(&b,DEPTH,WIDTH,HEIGHT); 
ri.BitMap = &b; 
ri.RxOffset = 0; 
rLRyOffset = 0; 
ri.Next = NULL; 
em = GetColorMap(4); 
colorpalette = (UWORD * )cm- > ColorTable; 
for(i=O; i<4; i++) 

*eolorpalette++ = eolortable[iJ; 
vp.ColorMap = cm; 
for(i=O; i<DEPTH; i++) 
{ 

} 

b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH,HEIGHT); 
if(b.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY); 

MakeVPort( &v, &vp )i 
MrgCop( &v ); 
for(i=O; i<2; i++) 

{ 
displaymem = (UBYTE *)b.Planes[i]; 
for(j=O; j <RASSIZE(WIDTH,HEIGHT); j++) 

*displaymem++ = 0; 
/ * zeros to all bytes of the display area * / } 

LoadView( &v); 
layer = CreateUpfrontLayer(li,&b,0,0,200, 140,FLAGS,NULL); 
if(layer==NULL) exit(3); 

rp = layer- >rp; 

SetAPen(rp,3); 
RectFill(rp,0,0,199,139); /* show the layer itself */ 

j=10; /* initialize the rectangles * / 
for(i=O; i< 10; i++) 

{ 
rect[iJ.MinX = j; 

Layers 2-91 



rect[i.].MaxJC = j + 8; 
rect[i].MinY = 20; 
rect[iJ.MaxY = 120; 
j += 16; 
} 

rgn = NewRegion(); /* get a new region to use */ 
if(rgn == NULL) eXit(4); 

for(i=O; i<14; i++) 
OrRectRegion(rgn,&rect[i]); 

oldDamageList = layer- >DamageList; 
layer->DamageList = rgn; 

Begin U pd ate(layer); 

/* here insert the drawing rou tines to draw something 
* behind the slats. 

*/ 
x = 4; y = 10; 
SetAPen(rp,O); 
SetDrMd( rp,JAMl); 
RectFill(rp,O,O, 1 99,139); 
SetAPen(rp,I); 
SetBPen(rp,O); 
SetDrMd( rp,JA1\12); 
for(i=O; i<14; i++) 
{ 

} 

Move(rp, x, y); 
Text(rp,"Behind A Fence" ,14); 
x += 4; y += g; 

EndUpdate(layer); 
layer- > DamageList = oldDamageList; 
DisposeRegion( rgn); 

Delay(300); 

DeleteLayer(li, layer); 
DisposeLayerlnfo(li); 

LoadView( oldview); 

FreeMemoryO; 
CloseLibrary( GfxBase); 

} /* end of mainO */ 

2-92 Layers 



FreeMemoryO 
{ /* return user and system-allocated memory to sys manager * / 

} 

for{i=O; i<DEPTH; i++) /* free the drawing area */ 
FreeRaster(b.Planes[ij,WIDTH,HEIGHT); 

FreeColorMap(cm); /* free the color map */ 
/* free dynamically created structures */ 

Free VPortCopLists( &vp); 
FreeCprList( v .LOFCprList); 
return{O); 

Layers 2-93 





Chapter 3 

Animation 

This chapter shows how you can use the graphics animation routines to produce and animate 
graphics images. 

3.1. INTRODUCTION 

The graphics animation routines let you define images by specifying various characteristics of 
graphic objects, such as the following: 

o height 

o width 

o colors 

o shape 

o position in the drawing area 

o how to draw the object 

o how to move the object 

o how the object interacts with other elemen ts 

The objects you define are called GELS (for "graphic elements"). You can draw GELS into 
or onto a background display of some type. The graphics animation routines operate on a 
list of GELS to produce a list of instructions that cause the system to draw the GELS in the 
manner you have specified. 

Animation 2-9.5 



Preparing to Use Graphics Animation 

Because the animation routines have been designed to interact with a background display, 
you must first make sure that such a display is already defined. 

To define a display with which the GELS can interact, you define View, ViewPort, and 
RastPort structures. For details on the construction of these structures, see chapter 1, 
"Graphics Primitives" and chapter 2, "Layers". 

The graphics animation routines described in this chapter create additional material that is 
linked into the View structure. This material consists of additional instructions for color 
changes and dynamic reassignment of the hardware resources that create the display anima
tion effects you specify. 

Types of Animation 

Using the Amiga system tools, you can perform two different kinds of image animation: 

o Sprite animation 

o Playfield animation 

Sprite Animation 

Sprites are hardware objects that you create and move independently of the playfield display. 
Sprites are always 16 low-resolution pixels wide, and are as high as you specify. 

To move sprites, you must define where they are on-screen. The built-in priority circuitry 
determines how the sprite appears on-screen relative to the playfield elements or to other 
sprites. 

2-96 Animation 



You can manipulate sprites directly through a simple sprite set of routines, or by using the 
graphics kernel VSprite routines. 

Playfield Animation 

Sprites are normally moved against a background. This background area is called the 
playfield. You may treat the playfield area as a single background or separate it into two 
separately controllable sections, using dual-playfield mode. See chapter 1, "Graphics Primi
tives", for details on how to create and control playfields. 

In playfield animation, sections of the playfield are modified. You draw, erase, and redraw 
objects into the playfield, creating an animation effect. 

To move the data quickly and efficiently, the system uses one of the specialized built-in 
hardware devices, the blitter. The system uses the blitter to move the playfield objects, while 
it saves and restores the background. The objects controlled by the blitter are called Bobs, 
for "blitter objects". 

Playfield animation is somewhat more complicated than VSprite animation from the point 
of view of system design, but not much more complicated for you as the user of the anima
tion routines. The hardware displays the VSprites over the playfield automatically, and the 
priority overlay circuitry assures that they will be displayed in the correct order. If you are 
animating multiple Bobs, you control their video priority by defining the sequence in which 
the system draws them. The last one drawn has the highest video priority in the sense that 
it appears to be in front of all other Bobs. 

A Bob is physically a part of the playfield. When the system displays a Bob, it must first 
save a copy of the playfield area into which the Bob will be drawn. Then the system can 
restore the playfield to its original condition when moving the Bob to a new location. Once 
the playfield areas have been saved, the system can draw the Bob. To move the Bob, the 
system must first restore the playfield area (thus, erasing the object) before it saves the 
playfield at th~! new location and draws the Bob there. 

Bobs offer more flexibility and many more features than VSprites. Bob animation is less 
restrictive but slower than VSprite animation. VSprites are superior to Bobs in speed of 
display, because VSprites are mostly hardware-driven and Bobs are part hardware and part 
software. Bobs, on the other hand, are superior to VSprites because they offer almost all of 
the benefits of VSprites but suffer none of the limitations, such as size or number of colors. 
Both are very powerful and useful. The requirements of your particular application deter
mine the type of GEL to use. 

Animation 2-97 



The GELS System 

The acronym GEL describes all of the graphic "objects" supplied by the Amiga ROM kernel. 
Both VSprites and Bobs are GELS, a.s are the more advanced animation elements known a.s 
AnimComps and AnimObs. 

Initializing the GEL System 

To initialize the graphics element animation system, you provide the system with the 
addresses of two data structures. The system uses these data structures to keep track of the 
GELS that you will later define. To perform this initialization, you call the system routine 
InitGelsO, which takes the form: 

InitGels( head, tail, Ginfo ); 

where: 

head 
is a pointer to the VSprite structure to be used a.s the GEL list head 

tail 
is a po in ter to the VSprite structure to be used as the GEL list tail 

Ginfo 
is a pointer to the Gelslnfo structure to be initialized 

The graphics animation system uses two "dummy" VSprites a.s place holders in the list of 
GELS that you will construct. The dummy VSprites are used a.s the head and tail elements 
in the system list of GELS. You add graphics elements to or delete them from this list. 

The call to InitGelsO forms a linked list of GELS which is empty except for these two 
dummy elements. When the system initializes the list with the dummy VSprite, it 
automatically gives the VSprite at the head the maximum possible negative y and x posi
tions and the VSprite at the tail the maximum possible positive y and x positions. This 
assures that the two dummy elements are always the outermost elements of the list. 

2-98 Animation 



The y,x values are coordinates that relate to the physical position of the GEL within the 
drawing area. The system uses the y,x values as the basis for the placement (and later sort
ing) of the GELS in the list. 

When you add a GEL to the list of graphics elements, the system links that GEL into the list 
shown above. Then the system adds any new element to the list immediately ahead of the 
first GEL whose y,x value is greater than or equal to that of the new GEL being added. 

Types of GELS 

Figure 3-2 shows how you can view the components of GELS as inter-related layers of graph
ics elemen ts. 

AnimComp AnimComp AnlmComp AnimComp 

Bob Bob Bob Bob 

VSprite VSprite VSprite VSprite 

Figure 3-1: Shells of Gels 

The types of GELS are listed below. 

o Simple (hardware) sprites 

o VSprites 

Animation 2-99 



o Bobs 

o AnimComps 

o AnimObs 

VSprites and Bobs are the primary software-controlled animation objects. They are part 
of an integrated animation system. The simple sprites, on the other hand, are separate from 
the animation system. It is up to you to decide which type of sprite to use. The next sec
tions describe all of these animation components. 

Simple (Hardware) Sprites 

The simple sprite is a special graphics element, related to the graphics animation system only 
in that it vies with the VSprites for the use of the same underlying hardware elements, the 
real hardware sprites. 

The Amiga hardware has the ability to handle up to eight sprite objects. Each sprite is pro
duced by one of the eight hardware sprite DMA channels. Each sprite is 16-bits wide and 
arbitrarily tall. The Amiga software provides a choice about how you can use these 
hardware elements. 

You can either allocate one or more hardware sprites for your exclusive use, or you can allow 
all sprites to be managed by the system software and assigned as virtual sprites by the sys
tem. Using virtual sprites, it can appear as though you have an unlimited set of sprites with 
which to work. If you need only a few sprites, however, you may wish to use the less com
plex routines shown in Section 3.3, "Using Simple Sprites". 

VSprites 

The virtual sprite is the most elemental component. It contains a little more information 
than is needed to define a hardware sprite. The system temporarily assigns each VSprite to 
a hardware sprite, as needed. 

The information in the VSprite structure allows the system to main tain the more general 
GEL functions, such as collision detection and double-buffering. After a sprite DMA channel 
has displayed the last line of a sprite, the system can reuse the channel to display a different 

2-100 Animation 



image lower on the screen. The system software takes advantage of this reusability to 
dynamically assign hardware sprites to carry VSprite images. 

The VSprite is a data structure closely related to hardware sprites. The VSprite structure 
contains the following information: 

o Size 

o Image display data 

o Screen coordinates 

o Collision descriptors 

o A pointer to color information 

Bobs 

The Bob (for blitter object) is the next outermost level of the GEL system. It is like an 
expanded hardware sprite done in software. It uses the same information defined in a 
VSprite, but adds other data that further defines this type of object. Bobs and VSprites 
differ in that the system draws Bobs into the play field using the blitter, while it assigns 
VSprites to hardware sprites. 

A Bob structure contains the following information: 

o A pointer to a VSprite 

o Priority descriptors 

o Variables and pointers that define how and where to save the background 

Animation 2-101 



AnimComps 

The AnimComp (for "animation component") is a data structure that extends the 
definition of a Bob. It allows the system to include the Bob as part of a total animation 
object. An AnimComp expands on the Bob data. AnimComps include the following: 

o a pointer to this AnimComp's Bob 

o links that define the sequence of animation drawings 

o information that describes the screen coordinates of the AnimComp with respect to 
the position of the AnimOb, described below. 

o timing information for sequencing this AnimComp as part of the list of animation 
drawings 

o a pointer to a user routine to execute in conjunction with this AnimComp 

AnimObs 

The AnimOb (for "animation object") is the primary animation object. It is a pseudo
object whose primary purpose is to link one or more AnimComps into a single overall 
object. As the AnimOb moves, so move its AnimComps. When the Bobs move with 
their AnimComps, the system sets the screen coordinates in the VSprite accordingly. 
AnimObs include the following: 

o A pointer to this AnimOb's first AnimComp 

o Links to previous or succeeding AnimObs 

o Information that describes the position of this AnimOb on the screen, as well as its 
velocity and acceleration 

2-102 Animation 



o Information for double-buffering this AnimOb, if desired 

o A pointer to a user routine to execute in conjunction with this AnimOb 

3.2. USING SIMPLE (HARDWARE) SPRITES 

To use simple sprites, define their data structures and use the following routines: 

o ON_SPRITE - a system macro to turn on Sprite DMA. 

o OFF_SPRITE - a system macro to turn off Sprite DMA. 

o GetSpriteO - attempts to allocate a sprite from the virtual sprite machine for 
your exclusive use 

o ChangeSpriteO - modifies the sprite's appearance 

o MoveSpriteO - changes the sprite's position 

o FreeSpriteO - returns the sprite to the virtual sprite machine 

These routines are described in detail in the following sections. 

To use these simple sprite routines or the VSprite routines, you must incude the SPRITE 
flag in the data structure for OpenScreenO. Or, if you are not using Intuition, this flag 
must be specified in the View and ViewPort data structures before MakeViewO is called. 

Controlling Sprite DMA 

You can use the graphics macros ON_SPRITE and OFF _SPRITE to control sprite DMA. 
OFF_SPRITE prevents the system from displaying any sprites, whether hardware or 
VSprite. ON_SPRITE restores the sprite data access and display. Note that the Intuition 
cursor is a sprite. Thus, if you use OFF_SPRITE, you make Intuition's cursor invisible as 
well. 

Animation 2-103 



Accessing a Hardware Sprite 

You use GetSpriteO to gain access to a new hardware sprite. You use a call such a..<;: 

status = GetSprite( sprite, number) 

GetSpriteO allocates a hardware sprite for your exclusive use. The virtual sprite allocator 
can no longer assign this sprite. Note that if you steal one sprite, you are effectively stealing 
two. The sprite pairs 0/1, 2/3, 4/5, and 6/7 share the same color registers. If you are steal
ing a hardware sprite, you steal its color registers as well. So you might as well ask for the 
other sprite in the pair. Table 3-1 shows the color registers assigned to each sprite pair. 

Table 3-1: Sprite Color Registers 

Color 
Registers Sprite 

16-19 o or 1 
2(}'23 2 or 3 
24-27 4 or 5 
28-31 6 or 7 

You are not granted exclusive use of the color registers. If the ViewPort is 5 bit-planes 
deep, all 32 of the system color registers win still be used by the playfield display hardware. 

Note, however, that registers 16, 20, 24, and 28 always generate the "transparent" color 
when selected by a sprite, regardless of which color is actually in them. Their true color will 
only be used if they are selected by a playfield. For further information, see the Amiga 
Hardware Reference lvfanual. 

Also note that sprites and sprite colors are bound to the ViewPort in that you can reload 
the colors between View Ports. In other words, if a user in a ViewPort located in the top 
part of the screen allocates sprite 0 and a user in the a ViewPort at the bottom of the 
screen allocates sprite 1, these two sprites will not necessarily have the same color set, as the 
two ViewPorts can have totally independent sets of colors. 

The inputs to the GetSpriteO routine are: 

sprite A pointer containing the address of a data structure called SimpleSprite 

2-104 Animation 



number The number (0-7) of the hardware sprite you wish to reserve. If number is -1, 
the system gets any sprite. 

A value of 0-7 is returned in "status" if your request was granted, specifying which sprite 
you have allocated. A value of -1 means that this sprite is already allocated. 

The structure for a simple sprite is shown below: 

struct SimpleSprite { 

}; 

/* pointer to the definition data of the hardware 
** sprite to be displayed 
*/ 
UWORD *posctldata; 
UWORD height; /* the height of this simple sprite in rows */ 
UWORD x,y; /* current position */ 
/* the number (0-7) of the hardware sprite associated 
** with this simple sprite 

*/ 
UWORD num; 

This data structure is found in the sprite.h file in the appendixes to this manual. 

Changing the Appearance of a Simple Sprite 

The ChangeSpriteO routine changes the appearance of a reserved sprite. It is called by the 
following sequence: 

ChangeSprite( vp, s, newdata ) 

ChangeSpriteO substitutes a new data content for that currently used to display a 
reserved hardware sprite. 

The inputs to this routine are: 

vp 

8 

A pointer to the ViewPort for this sprite or 0 if this sprite relative 
only to the current View 

A pointer to a SimpleSprite structure 

Animation 2-10S 



newdata A pointer to a data structure containing the new data to be used 

The structure for the new data is shown below: 

struct userspritedata 
{ 

}; 

/ * position and con trol information for this sprite * / 
liWORD posctl[2]; 
/* two words per line of sprite height, first of the two 
** words contains msbit for color selection, second word 
** contains Isbit (colors 0,1,2,3 from allowable color 
** register selection set). Color '0' for any sprite 
** pixel makes it transparent. 

*/ 
UWORD sprdata[2][height]; /* actual sprite image */ 

/* initialize to 0, ° for unattached simple spites */ 
UWORD reserved[2]; 

Moving a Simple Sprite 

MoveSpriteO repositions a reserved hardware sprite. It is called as follows: 

MoveSprite( vp, sprite, x, y ) 

After you call this routine, the reserved sprite IS moved to a new position relative to the 
upper left corner of the ViewPort. 

The inputs to MoveSpriteO are as follows: 

vp 

sprite 

X,Y 

2-106 Animation 

A pointer to the ViewPort with which this sprite interacts or 0 if this 
sprite's position is relative only to the current View 

A pointer to a SimpleSprite structure 

Pixel position to which a sprite is to be moved. If the sprite is being 
moved over a high-resolution display, the system can only move the 
sprite in two-pixel increments. In low-resolution mode, single-pixel 
increments in the x direction are acceptable. For an interlaced mode 
display, the y direction motions are in two line incremen ts. The same 



image of the sprite is placed into both even and odd fields of the inter
laced d isp lay. 

The upper left corner of the ViewPort area has coordinates (0,0). The motion of the sprite 
is relative to this position. 

The following example demonstrates how you move a simple sprite. 

/* This program creates and displays a 320 by 200 by 2 bit-plane 
* single playfield display and adds one simple sprite to it. 

*/ 

#include "exec/types.h" 
#include "graphics/gfx.h" 
#include "hardware/dmabits.h" 
#include "hardware/custom.h" 
#include "hardware/blit.h" 
#include "graphics/ gfxmacros.h" 
#include " graphics/copper.h" 
#include "graphics/view.h" 
#include "graphics/gels.h" 
#include "graphics/regions.h" 
#include "graphics/clip.h" 
#include "exec/exec.h" 
#include "graphics/text.h" 
#include "graphics!gfxbase.h" 
#include "graphics/sprite.h" 

#define DEPTH 2 
#define WIDTH 320 
#define HEIGHT 200 
#define NOT_ENOUGH_MEMORY -1000 

/* construct a simple display */ 

struct View view; 
struct ViewPort viewport; 

/* pointer to colormap structure, dynamically allocated *! 
struct ColorMap *cm; 

struct RasInfo rasinfo; 
struct BitMap bitmap; 

SHORT xmove, ymove; 

extern struct ColorMap *GetColorMapO; 
struct GfxBase *GfxBase; 

Animation 2-107 



/ * save poin ter to old view so can restore * / 
struct View *oldview; 

USHORT colortable[] = { 

}; 

/* black, red, green, blue */ 
OxOOO, OxfOO, OxOfO, OxOOf, 
0,0,0,0, 
0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, /* sprites from here up */ 
0,0,0,0,0,0,0,0 

/* where to draw boxes */ 
SHORT boxoffsets[] = { 

802, 2010, 3218 
}; 

UWORD *colorpalette; 

struct SimpleSprite sprite; 

/* Last entry is "position control" for 
** the next reuse of the hardware sprite. 
** Simple sprite machine supports only one 
** use of a hardware sprite per video frame. 
** Any combination of binary bits from word 
** 1 and word 2 per line establishes the 
** color for a pixel on that line. 
** Any nonzero pixels in lines 1-3 are color 
** "1" of the sprite, lines 4-6 are color "2", 
** lines 7-9 are color" 3" 

*/ 
UWORD sprite_datal ] = { 

}; 

0,0, / * position control * / 
OxOfc3, OxOOOO, /* image data line 1*/ 
Ox3ff3, OxOOOO, /* image data line 2*/ 
Ox30c3, OxOOOO, /* image data line 3*/ 
OxOOOO, Ox3c03, /* image data line 4*/ 
OxOOOO, Ox3fc3, /* image data line 5* / 
OxOOOO, Ox03c3, /* image data line 6*/ 
Oxc033, Oxc033, /* image data line 7*/ 
OxffcO, OxffcO, /* image data line 8*/ 
Ox3f03, Ox3f03, /* image data line 9*/ 

/* NOTE this last line specifies unattached, simple sprites */ 
0, ° /* next sprite field */ 

/******************************************************************* 
** FOLLOWING IS FOR INFORMATION ONL Y. ... the simple-sprite machine 

2-108 Animation 



** directly sets these bits; the user has no need to fiddle with any 
** of them. Use the functions ChangeSprite, and MoveSprite to have 
** an effect on the sprite. 
** 
** position control: 
** 
** first UWORD: 
** bits 15-8, start vertical value, lowest 8 bits 
** of this value contained here. 
** bits 7-0, start horizontal value, highest 8 bits 
** of this value contained here. 
** 
** second UWORD: 
** bits 15-8, end (stopping) vertical value, lowest 
** 8 bits of this value contained here. 
** bit 7 = Attach-bit (used for attaching sprites to 
** get additional colors (15 instead 
** of 3, supported by the hardware but 
** NOT supported by the simple sprite 
** machine). 
** bits 6-4 (unused) 
** bit 2 start vertical value; bit 8 of that value. 
** bit 2 end vertical value; bit 8 of that value. 
** bit 2 start horizontal value; bit 0 of that value. 
** 
*********************************************************************/ 

mainO 
{ 

LONG i; 
SHORT j,k,n; 
SHORT spgot; 
UBYTE *displaymem; 

GfxBase = (struct GfxBase * )OpenLibrary( "graphics.library" , 0 ); 
if( GfxBase == NULL) exit(lOO); 

/* save current view to restore later */ 
old view = GfxBase- > ActiView; 

/* example steals screen from Intuition if started from WBench */ 

InitView( &view ); /* initialize view */ 
InitVPort( &viewport ); /* init view port */ 
view.ViewPort = &viewport; /* link view into viewport */ 

/* in it bit map (for rasinfo and rastport) */ 
InitBitMap( &bitmap, DEPTH, WIDTH, HEIGHT ); 

/* init RasInfo */ 

Animation 2-109 



rasinfo.Bit~ap = &bitmap; 
rasinfo.RxOffset = 0; 
rasinfo.RyOtIset = 0; 
rasinfo.Next = NULL; 

/* now specify critical characteristics * / 
viewport.DWidth = WIDTH; 
viewport.DHeight = HEIGHT; 
viewport.Raslnfo = &rasinfo; 

/* initalize the color map. It has 32 entries. Sprites take up 
**the top 16 and we want to specify some sprite colors 
*/ 
cm = GetColorMap{ 32 ); 

/* no memory for color map */ 
if( cm == NULL) { 

FreeMemoryO; 
exit( 100 ); 

} 

colorpalette = (UWORD * )cm- >ColorTable; 
for(i=O; i<32; i++) { 

*colorpalette++ = colortable[i]; 
} 

/* copy my colors into this viewport structure */ 
viewport.ColorMap = cm; 

/* addition for simple sprite: */ 
vp.Modes = SPRITES; 

/* allocate space for bitmap */ 
for(i=O; i<DEPTH; i++) { 

} 

bitmap.Planes[i] = (PLA~EPTR) AllocRaster( WIDTH, HEIGHT ); 
if( bitmap.Planes[i] == NULL) exit( NOT_ENOUGH_MEMORY ); 

/* clear the display area */ 
BltClear( bitmap.Planes[i]' RASSIZE(WIDTH,HEIGHT), 1 ); 

/* construct copper instr (prelim) list */ 
Make VPort( &view, &viewport ); 

/* merge prelim lists together into a real 
** copper list in the view structure. 

*/ 
MrgCop( &view ); 
LoadView( &view ); 

2-110 Animation 



/* now fill some boxes so that user can see something */ 
/* always draw into both planes to assure true colors */ 
for(n=l; n<4; n++) /* three boxes */ 
{ 

} 

for(k=O; k<2; k++) 
{ 

} 

/* boxes will be in red, green and blue */ 
displaymem = bitmap.Planes[k] + boxoffsets[n-l]; 
DrawFilledBox( n, k, displaymem ); 

/********************************************** 
/* now we are ready to play with the sprites! 
***********************************************/ 

/* Get the next available sprite. We should do an error 
** check, if returns -1, then no sprites are available 

*/ 
spgot = GetSprite( &sprite, -1 ); 

/* initialize position and size info * / sprite.x = 0; 
sprite.y = 0; 
sprite.height = 9; 

/* matches that shown in sprite_data * / 
/* so that system knows layout of data later */ 

/* now put some colors into this sprite's color registers so as 
** to custom control the colors this particular sprite will display. 
** NOTE: sprite pairs share color registers; i.e. sprite 0 and 1, 
** 2 and 3, 4 and 5, 6 and 7 as pairs share the same sets of color 
** registers (see the Amiga Hardware manual for details). 
** The code following figures out which sprite the system gave us, 
** and sets that sprite's color registers to the correct value 

*/ 
k = ((spgot & Ox06)*2) + 16; 

/* convert sprite number into the base number for its color reg set */ 
/ * value at k treated as transparen t * / 
SetRGB4( &viewport, k+l, 12, 3, 8 ); 
SetRGB4( &viewport, k+2, 13, 13, 13 ); 
SetRGB4( &viewport, k+3, 4, 4, 15 ); 

/* top of sprite is red, middle is white, bottom is blue-ish */ 
ChangeSprite(&viewport,&sprite,sprite_data); 

MoveSprite(0,&sprite,30,0); 

xmove = 1; ymove = 1; 
for( n = 0; n < 4; n++ ) { 

i=O; 
while( i++ < 185 ) { 

Animation 2-111 



} 

} 

MoveSprite( 0, &Sprite, sprite. x + xmove, sprite.y + ymove ); 

/* slow it down to one move per video frame * / 
WaitTOFO; 

ymove = -ymove; 
xmove = -xmove; 

/* free this sprite so others can use it also */ 
FreeSprite( spgot ); 

/ *' restore the system to its original state * / 
LoadView( oldview ); 
FreeMemoryO; 
CloseLibrary( GfxBase ); 

} /* end of mainO */ 

/* return user and system-allocated memory to sys manager */ 
FreeMemoryO 
{ 

} 

LONG i; 

/* free drawing area * / 
for( i=O; i<DEPTH; i++ ) { 

if( bitmap.Planes[i] != NULL) { 
FreeRaster{ bitmap.Planes[i], WIDTH, HEIGHT ); 

} 
} 
/ *' free the color map created by GetColorMapO * / 
if( cm != NULL) FreeColorMap( cm ); 

/* free dynamically created structures */ 
Free VPortCopLists( &viewport ); 
FreeCprList( view.LOFCprList ); 
return( 0 ); 

DrawFilledBox( fillcolor, plane, displaymem ) 
SHORT fillcolor,plane; 
UBYTE *displaymem; 
{ 

UBYTE value; 
LONG j; 

for(j=O; j < 100; j++) { 
if((fillcolor & (1 < < plane)) != 0) { 

value = Oxff; 

2-112 Animation 



} 

} 

} else { 
value = 0; 

} 
for{i=O; i<20; i++) { 

*displaymem++ = value; 
} 
displaymem += (bitmap.BytesPerRow - 20); 

return{O); 

Relinquishing a Simple Sprite 

The FreeSpriteO routine returns an allocated sprite to the virtual sprite machine. The vir
tual sprite machine can now reuse this sprite to allocate virtual sprites. The syntax of this 
routine is: 

FreeSprite{ num ) 

where num is the number (0-7) of the sprite you want to return. 

NOTE: You must free sprites after you have allocated them using GetSpriteO. If you do 
not free them, and your task ends, the system will have no way of reallocating those sprites 
until the system is rebooted. 

3.3. USING VSPRITES 

This section tells how to define a VSprite. It describes how to: 

o Specify the size of the VSprite object 

o Select its colors 

o Form its image 

o Specify its position within the drawing area 

Animation 2-113 



o Add it to the list of GELS 

o Control it after you add it to the list 

The system software also provides a way to detect collisions between individual VSprites 
and other on-screen objects. Collision detection applies to both VSprites and to Bobs. It 
appears as a separate topic under "VSprite and Bob Topics". 

The first step in defining a VSprite is telling its dimensions to the system. 

Specifying the Size of a VSprite 

A VSprite is always 16 pixels wide and may be any number of lines high. Each pixel is the 
same size as a pixel in low-resolution mode (320 pixels across a horizontal line) of the graph
ics display. 

To specify how many lines make up the VSprite Image, you use the VSprite structure 
Height variable. 

If your VSprite is 12 lines high and the name of your VSprite structure is myVSprite, then 
you can set the height value with the following statement: 

myVSprite.Height= 12; 

Each line of a VSprite requires two data words to specify the color content of each pixel. 
This means that the data area containing the VSprite image is 12 x 2 or 24 words long. 

See the next section for details on how bits of these data words select the color of the 
VSprite pixels. 

Specifying the Colors of a VSprite 

Because VSprites are so closely related to the hardware sprites, the choice of colors for 
VSprites is limited in the same way. Specifically, each pixel of a VSprite can be anyone of 
three different colors, or it may be transparent. However, the system software provides a 
great deal of versatility in the choice of colors for the virtual sprites. Each virtual sprite may 
have its own set of three unique colors. 

2-114 Animation 



When the system assigns a hardware sprite to carry the VSprite's image, it assigns that 
VSprite's color set to the hardware sprite that will produce that image. To define which set 
of three colors to use for this VSprite, you initialize the VSprite structure pointer named 
SprColors, SprColors points to the first data item of three sequentially-stored 16-bit 
values. The system then jams these values into the selected hardware sprite's color registers 
when it is being used to display this YSprite. 

Every time you direct the system to redraw the VSprites, the GEL system re-evaluates the 
current on-screen position of each VSprite and decides which hardware sprite will carry this 
VSprite's image for this rendering. It creates a customized Copper instruction sequence 
including both the repositioning of hardware sprites and reloading of sprite color registers for 
various screen positions. Thus, during a move sequence, a VSprite may be represented by 
one or many different real hardware sprites, depending on its current position relative to 
other VSprites. 

For example, if your set of colors is defined by the statement: 

WORD spriteColors = { OxOOF, OxOFO, OxFOO }; 

and if your VSprite is named "myVSprite", then to set the VSprite colors you would use 
the following statement: 

myVSprite.SprColors = &spriteColors; 

How you specify the VSprite colors may affect how many VSprites you can show on-screen 
at anyone time. For further information, see "How VSprites are Assigned" later on. 

Now that you've specified the size and colors of the VSprite, it's time to tell the system 
about its form. 

Specifying the Shape of a VSprite 

To define the appearance of a VSprite, initialize the VSprite structure pointer called 
ImageData to point to the first word of the image data. A VSprite image is defined 
exactly as the image of a real hardware sprite. It takes two sequential 16-bit data words to 
define each line of a VSprite. 

To select colors for the pixels of a YSprite, examine the combination of the data bits in 
corresponding locations in each of the two data words that define each line. The first of each 
pair of data words supplies the low-order bit of the color selector for that pixel; the second 
word of the pair supplies the high-order bit. 

Animation 2-115 



For example: 

mem 0101111111111111 
mem + 1 0011111111111111 

Reading from left to right, the combinations of these two sequential memory data words 
form the binary values of 00, aI, 10, 11, and so on. These binary values select colors as fol
lows. 

00 - selects VSprite color of "transparent" 
01 - selects the first of three VSprite colors you have defined 
10 - selects the second VSprite color 
11 - selects the third VSprite color 

In those areas where the combination of bits yields a value of 00, the VSprite is transparent. 
Any object whose priority is lower than that of the VSprite will show through in tran
sparen t sections of the VSprite. 

Thus, you might form a full three-color image, with some transparent areas, from a data set 
like the following sample: 

VSprite Data 

mem 1111111111111111 Defines top line -
mem + 1 1111111111111111 contains only Color 3 

mem + 2 0011111111111100 Defines second line -
mem + 3 0011000000001100 contains colors 1 & 3 and 

some transparency 

mem + 4 0000 11 000011 0000 Defines third line -
mem + 5 0000111111110000 contains colors 2 & 3 

and some transparency 

mem + 6 000000100 1 000000 Defines fourth line -
mem + 7 0000001111000000 contains colors 2 and 3 

and some transparency 

mem + 8 0000000110000000 Defines last line -
mem + 9 0000000110000000 contains color 3 and 

and some transparency 

The VSprite Height for this sample image is 5. 

SprColors must point to the set of three colors that are to be used to display this VSprite, 
and ImageData must point to the location ("mem" in the example) that contains the first 
word of the VSprite definition. 

After you've specified the shape of the VSprite, you tell the system where to display it. 

2-116 Animation 



Specifying VSprite Position 

To control the positIOn of a VSprite, you use the y and x variables within the VSprite 
structure. You specify the position of the upper left corner of a VSprite relative to the 
upper left corner of the drawing area where you wish the VSprite to appear. 

Assign a value of 0,0 for y,x to make the VSprite appear with its upper left corner against 
the upper left corner of the drawing area. You can use values of y and x to move the 
VSprite en tirely off-screen, if you wish. 

You resolve the vertical positioning for VSprites in terms of the non-interlaced mode of the 
display. When you position a VSprite so that its y-value is within the visible area of the 
screen, you can select anyone of 200 possible positions down the screen at which its topmost 
edge can be placed. 

You resolve the horizon tal positioning for VSprites in terms of the low-resolution mode of 
the screen display. When you position a VSprite so that its x-value is within the visible 
area of the screen, you can select anyone of 320 possible positions across the screen at which 
its leftmost edge can be placed. Note that if you are using VSprites under Intuition and 
within a screen, they will be positioned relative to the upper left-hand corner of the screen. 

Now that you've defined the VSprite's size, colors, shape, and position, you may want to 
know where to add information to the data structures or where to check about the progress 
of the system routines. The following sections describe the functions of the VSprite flags, 
the variables that let you do some of these activities. 

Using VSprite Flags 

The VSprite data structure contains a variable named Flags that has information about its 
data and about the progress of the system routines. The following sections describe the uses 
of the VSPRITE, VSOVERFLOW, and GELGONE flags. You can use these flags to perform 
these tasks: 

VSPRITE 

VSOVERFLOW 

Indicate whether the system should treat the structure as a VSprite 
or part of a Bob. 

Check on the VSprites the system can't display. (This IS a read
only system variable.) 

Animation 2-117 



GELGO,'.fE 

VSPRITE Flag 

Find out if the system has moved a GEL outside the clipping region 
of the drawing area. (This is a read-only system variable.) 

To tell the GEL routines to treat this VSprite structure as a VSprite instead of a Bob, set 
the VSPRITE flag to 1. This affects the interpretation of the data layout and the use of 
various system variables. If you set the VSPRITE flag bit to zero, the GEL routines treat 
this VSprite structure as though it defined a Bob instead of a VSprite. 

NOTE: Under Intuition, VSprites work only in screens, not in windows. Bobs work in 
both screens and in windows. Thus, if you wish to use VSprites and Bobs together, you 
can only do so by writing directly to the RastPort of a screen. 

VSOVERFLOW Flag 

If you have currently defined more VSprites at the same horizontal line than the system can 
possibly assign to the real hardware sprites, then the VSprites that the system can't display 
have their VSOVERFLOW flag set. This means that it is possible that one or more 
VSprites will not appear on the display for this pass of producing the GELS. 

GELGONE Flag 

When the GELGONE flag is set to 1, you know that the system has moved a GEL (VSprite 
or a Bob) entirely outside of the clipping region of the drawing area. You can assume that 
the system will fully or at least partially draw any objects within the clipping region. 
Because the system will not draw this object that is outside the clipping area, you may wish 
to use RemVSpriteO to delete the VSprite from the GEL list in order to speed up process
ing of the rest of the list. Of course, VSprites that you remove from the list are no longer 
managed or checked by the system. 

2-118 Animation 



Now that you've learned how to use the VSprite flags to control the VSprites and to check 
on the system routines, you are ready to tell the system how many VSprites to handle. 

Adding a VSprite 

To control VSprites, you first describe them using the VSprite structure variables men
tioned above. Next you tell the system (by adding the VSprites to the GEL list) which 
VSprites to handle. This section tells you how to add a VSprite to the GEL list. 

To add a VSprite to the system GEL list, call the system routine AddVSpriteO, and 
specify the address of the VSprite structure that controls this VSprite 88 well as the 
RastPort with which it is associated. 

A typical system call for this purpose follows. 

struct VSprite myVSprite; 

AddVSprite( &myVSprite, &rastport ); 

The next section tells how to remove a VSprite from the system list. 

Removing a VSprite 

To remove a VSprite from the list of controlled objects, use the system routine 
RemVSpriteO. This function takes the following form: 

Rem VSprite( VS ); 

where VS is a pointer to the VSprite structure to be removed from the GEL list 

Once you 've specified which VSprites you want to add to or remove from the list of con
trolled objects, you need to organize that list. 

Animation 2-11 9 



Getting the VSprite List in Order 

When the system has displayed the last line of a VSprite, it reassigns the hardware sprite to 
another VSprite located at a lower, farther left position on-screen. The system allocates 
hardware sprites in the order in which it encounters the VSprites in the list. Therefore, you 
must sort the list of VSprites before the system can assign the use of the hardware sprites 
correctly. 

When you first enter VSprites into the list using AddVSpriteO, the system uses the y,x 
coordinates to place the VSprites in to the correct position in the list. If you change the y,x 
coordinates after they are in the list, you must reorder the list before the system can use it to 
prod uce the display. 

You use the routine SortGListO (for "sort the GEL list") to get them in the correct order 
before asking the system to display them. This sorting step is essential! You call this func
tion as follows: 

SortGList( RPort ); 

where RPort is a pointer to the RastPort structure containing the Gelslnfo 

Note that there may be a GEL list in more than one RastPort. You must sort all of them. 

Now that you've put the list in order, you are ready to display the VSprites using the sys
tem functions described in the following sections. 

Displaying the VSprites 

The next few sections explain how to display the VSprites. You use the following system 
routines: 

o ON_DISPLAY - to turn on the playfield display 

o ON_SPRITE - to turn on the VSprites display 

o DrawGListO - to draw the elements into the current RastPort 

2-120 Animation 



o MrgCopO - to install the VSprites into the display 

o LoadViewO - to ask the system to display the new View 

o WaitTOFO - to synchronize the routines with the display 

Turning on the Display 

Before you can view a display on-screen, you must enable the system direct memory access 
for both the hardware sprites and the playfield display. To enable the display of both 
playfield and VSprites, use the system macro calls: 

ON_DISPLAY; 
ON_SPRITE; 

Drawing the Graphics Elements 

The system routine called DrawGListO looks through the list of controlled GELS. It 
prepares necessary instructions and memory areas to display the data according to your 
requ ire men ts. You call this rou tine as follows. 

DrawGList( RPort, VPort ); 

where: 

RPort 
is a poin ter to the RastPort 

VPort 
is a poin ter to the View 

Animation 2-121 



Because the system links VSprites to a View, the use of a RastPort is not significant for 
them. However, you can use DrawGListO for Bobs as well as VSprites, so it is required 
that you pass the pointer to the RastPort to the routine. DrawGListO actually draws 
Bobs into that RastPort when you execute the instructions. 

Once DrawGListO has prepared the necessary instructions and memory areas to display the 
data, you'll need to install the VSprites into the display with MrgCopO. 

Merging VSprite Instructions 

Recall that the call to DrawGListO did not actually draw the VSprites. It simply pro
vided a new set of instructions that the system uses to assign the VSprite images to real 
hardware sprites, based on their positions. The View structure already has a set of instruc
tions that specifies how to construct the display area. It includes pointers to the set of 
VSprite instructions that was made by the call to DrawGListO. To install the current 
VSprites into the display area, you call the routine MrgCopO to merge together all of the 
display-type instructions in the View structure. You call this routine as follows. 

MrgCop( View); 

where View is a pointer to the view structure whose Copper instructions are to be merged 

DrawGListO handles Bobs as wells as VSprites. Therefore, the call to DrawGListO, 
although it did not really draw the VSprite images yet, does draw the Bobs into the selected 
RastPort. 

Loading the New View 

Now that the display instructions include the definition of the VSprites, you can ask that 
the system prepare to display this newly configured View. You do this with the following 
system routine: 

LoadView( view); 

where: 

2-122 Animation 



view 
is a poin ter to the View that con tains the poin ter to the Copper instruction list 

The Copper instruction lists are double-buffered, so this instruction does not actually take 
effect un til the next display field occurs. This avoids the possibility of some routine trying to 
update the Copper instruction list while the Copper is trying to use it to create the display. 

Now you'll want to make sure that the timing of the routines coincides with that of the 
display. 

Synchronizing with the Display 

To synchronize your routines with the display, you use a call to the system routine 
WaitTOFO. Although your routines may possibly be capable of generating more than 60 
complete display fields per second, the system itself is limited to 60 displays per second. 
Therefore, after generating a complete display, you may wish to wait until that display is 
ready to be shown on-screen before starting to generate the next one. WaitTOFO holds 
your task until the vertical blanking interval (blank area at the top of the screen) has begun. 
At that time, the system has retrieved the current Copper instruction list and is ready to 
allow generation of a new list. 

The call to the vertical blanking synchronization routine takes the following form: 

WaitTOFO; 

Now that you've learned how to add and display VSprites, you may want want to change 
some of their characteristics, as shown in the following section. 

Changing VSprites 

Once the VSprite has been added to the GEL list and 1S III the display, you can change 
some of its characteristics with the following operations: 

o Pointing to a new VSprite image (change the ImageData pointer) 

Animation 2-123 



o Pointing to a new VSprite color set (change the SprColors pointer) 

o Defining a new VSprite position (change the y,x values) 

The section immediately following provides a summary of the VSprite operations in their 
proper sequence. 

VSprite Operations Summary 

o Define a View structure tha.t you can later merge with the VSprite instructions. 

o Initialize the GEL system (call InitGelsO). This only needs to be done once. 

o Define the YSprite: 

Height 

On-screen position 

Where to find ImageData data 

Where to find SprColors to use 

Define VSprite structure flags to show that this is a VSprite. 

o Add the VSprite to the GEL list. 

o Change the VSprite appearance by 

Changing the pointer to ImageData 

Changing its height 

o Change the VSprite colors by changing the pointer to SprColors 

o Move the VSprite by defining a new y,x position 

2-124 Animation 



o Display the VSprite with this sequence of routines: 

ON_DISPLAY; 

ON_SPRITE; 

SortGListO 

DrawGListO 

MrgCopO 

LoadViewO 

Once you've mastered the basics of handling VSprites, you may want to study the next two 
sections to find out how to reserve hardware sprites for use outside the VSprite system and 
how to assign the VSprites. 

VSprite Advanced Topics 

This section describes advanced topics pertaining to VSpritee. It conta.ins details a.bout 
reserving hardware sprites for use outside of the VSprite system, information about how 
VSprites are assigned, and more information about VSprite colors. 

Reserving Hardware Sprites 

To prevent the VSprite system from using specific hardware sprites, you can write into the 
variable named sprRsrvd in the GelsInfo structure. The pointer to the GelsInfo structure 
is contained in the RastPort structure. If the contents of this 8-bit value is zero, then all of 
the hardware sprites may be used by the VSprite system. If any of the bits is a 1, then the 
sprite corresponding to that bit will not be utilized by VSprites. Note that this increases 
the likelihood of a VSprite VSOVERFLOW. See the next section, "How VSprites are 
Assigned", for further details on this topic. 

Animation 2-125 



Hardware sprite usage corresponds to the bit assignment shown below: 

RESERVE SPRITE NUMBER: 7 6 5 4 3 2 1 0 

If this sprRsrvd bit is a 1: 7 6 5 4 3 2 1 0 

You normally assign hardware sprites in pairs, as suggested by this example. Suppose you 
want to reserve sprites 0 and 1. Your program would typically include the following kinds of 
statements: 

struct RastPort myRastPort; /* the view structure is defined */ 

myRastPort->Ge\sInfo->sprRsrvd = Ox03; /* reserve 0 and 1 */ 

If you reserve a hardware sprite for your own use, the system is unable to use that hardware 
sprite when it makes a VSprite assignment. In addition, because pairs of hardware sprites 
share color register sets, reserving one hardware sprite effectively eliminates two. 

If you are using the simple sprite system to allocate sprites, you can look in the GfxBase 
structure to see which sprites are already in use. 

NOTE: If Intuition is running, sprite 0 is already reserved for use as the cursor. 

The reserved sprite status is accessible as: 

currentreserved = GfxBase- >SpritesReserved. 

The next section presents a few trouble-shooting techniques for VSprite assignment. 

How VSprites are Assigned 

Each VSprite can display three possible colors plus transparent. To define colors for 
VSprites, you use the SprColors pointer. SprColors points to the first of three word 
quantities, representing the three possible pixel colors for that virtual sprite. 

Although the VSprites are handled by the automatic routines, the system may run out of 
sprites. If you ask that the software display more than 4 VSprites on a single horizontal 
scan line, it is possible that one or more sprites may disappear until the conflict is resolved. 

2-126 Animation 



Here is the reason that the VSprite routines might have problems, and some suggestions on 
how to avoid them. There are 8 real sprite DMA channels. Sprites 0 and 1 share color regis
ters 17-19; sprites 2 and 3 share registers 21-23; sprites 4 and 5 share registers 25-27; and 
sprites 6 and 7 share registers 29-31. 

When the VSprite routines use the sorted list of VSprite elements, they build a Copper 
instruction list that decides when to re-use a sprite DMA channel. They also build a Copper 
instruction stream that stuffs the color register set for the sprite selected at that time on
screen to represent this VSprite image. 

This process consists of the following steps: 

1. Use real sprite 0 to represent the first virtual sprite. Load that virtual sprite's colors 
into the three color registers for sprite 0 (registers 17, 18, 19). 

2. Now look at the rest of the virtual sprites the user wishes to display on this same 
horizon tal line. 

3. If the VSprite-color pointers are all different from the pointer found in the sprite 0 
pointer, then it will not be possible to use the real sprite 1 DMA channel for display 
on this line because it shares the real sprite 0 colors. 

4. Conversely, if one of the other virtual sprites to appear on this line shares the same 
virtual-color pointer, then the VSprite routines can use sprite DMA channel 1 to 
represent that second virtual sprite. 

5. The VSprite routines continue to map virtual sprites against the real sprites until 
either of the following even ts occurs: 

a. All virtual sprites are assigned, or 

b. The system runs out of real sprites that it can use. 

The system will run out of real sprites to use if you ask the virtual sprite system to display 
more than four sprites having different pointers to their color table on the same horizontal 
line. 

During the time that there is a conflict, one or more of your virtual sprites will disappear. 

You can avoid the above problems by taking the following precautions: 

o Minimize the number of VSprites you wish to appear on a single horizontal line. 

Animation 2-127 



o If colors for some virtual sprites are the same, assure that the pointer for each of the 
VSprite structures for these virtual sprites points to the same memory location, 
rather than to a duplicate set of colors elsewhere in memory. 

The following section explores what happens if you don't specIfy the colors of a VSprite. 

If You Don't Specify VSprite Colors 

To pick the set of colors to use, you specify the pointer named SprColors. If you specify a 
o value for SprColors, then that VSprite does not generate a color-change instruction 
stream for the Copper when the system displays it. Instead, the VSprite appears drawn in 
the color set that is currently written into the color registers for the hardware sprite 
currently selected to display this VSprite. 

Table 3-2 shows how the hardware sprites use the color registers to select their possible range 
of colors: 

Table 3-2: Hardware Sprite Color Registers 

Hardware Sprite 

o and 1 
2 and 3 
4 and 5 
6 and 7 

Color Registers 

17 - 19 
21 - 23 
25 - 27 
29 - 31 

During one screen display, the system may use hardware sprite number 1 to display a 
VSprite. In this case, the VSprite selects its three available colors from color register 
numbers 17-19. On another screen display, the system may select hardware sprite number 7 
to display the same VSprite. In this case, the hardware sprite uses color registers 29-31. 

Therefore, if you make the SprColors pointer a 0, specifying that color does not matter, the 
system may display your VSprite in anyone of a set of four different possible color group
ings as indicated in the table above. 

The next section clarifies how the VSprite and playfield colors interact. 

2-128 Animation 



How VSprite and Playfield Colors Interact 

The VSprites use system color registers 16 through 31 to hold the VSprite color selections. 
There are only 32 color registers in the system. The highest 16 color registers (16-31) are 
shared with the playfield color selections. If you are working in 32-color low-resolution mode, 
the system makes the first 16 color selections for the playfield pixels from color registers 0-15, 
and then makes remaining color selections from color registers 16-31. 

If you are using the VSprite system and specifying the colors (using SprCo!ors) for each 
VSprite, then the contents of color registers 16-31 will be constantly changing as the video 
display beam progresses down the screen. The Copper instructions change the registers to 
display the correct set of colors for your VSprites depending on their positions. If you have 
any part of a 32-color playfield display drawn in any of the colors shown in Table 3-2, those 
colors appear to flicker and change as your VSprites move. 

This problem also affects 32-color Bobs because Bobs are actually drawn as part of the 
playfield display. Anything that affects the playfield affects the Bobs as well. 

You can avoid this flickering and changing of colors by taking the following precautions: 

a. Use no more than 16 colors in the playfield display whenever you use VSprites, or 

b. If you are using a 32-color playfield display, do not use any colors other than 0-15, 
16, 20, 24, and 28. The remaining color numbers are used by the VSprite system, 
or 

c. Specify the VSprite SprColors pointer as a value of 0. This avoids changing the 
contents of any of the hardware sprite color registers, but may cause the VSprites 
to change colors depending on their positions relative to each other, as described in 
the previous section. 

Alternatives a and b are the easiest to implement. 

3.4. USING BOBS 

Because Bobs and VSprites are both graphics objects handled by the GEL system, they 
share many of the same data requirements. VSprites and Bobs differ primarily in that 
Bobs are drawn into the playfield using the blitter, while VSprites are assigned to hardware 
sprites. 

Animation 2-129 



The following sections describe how to define a Bob. These sections include how to: 

o specify its size 

o select its colors 

o form its image 

o specify its on-screen position 

Because a Bob is a more complex object than a VSprite, you must also define various other 
items, such as the color depth of the Bob, how to handle the drawing of the Bob, and cer
tain other variables that the GEL system requires when Bobs are used. 

To define a Bob, you must first link it to a VSprite structure. 

Linking a Bob to a VSprite Structure 

To fully define a Bob, you define two different structures: a VSprite structure and a Bob 
structure. 

The graphics animation system has been designed as a set of inter-related elements, each of 
which builds on the information provided by the underlying structure to create additional 
versatility. 

The common elements, such as height, collision-handling information, position in the drawing 
area, and pointers to the data definition are part of the VSprite structure. The added 
features, such as drawing sequence, data about saving and restoring the background, and 
other features not common to VSprites are part of the Bob structure instead. 

The VSprite and Bob structures must point to the other, so that the system knows where 
all of the appropriate variables are defined. For example, suppose your program defines two 
structures that are to define a Bob named "my Bob": 

struct Bob myBob; 
struct VSprite myVSprite; 

You must create a link between the two structures with a set of program statements such as: 

2-130 Animation 



myBob.BobVSprite = &myVSprite; 
myVSprite.VSBob = &myBob; 

Now the system can go back and forth between the two structures to obtain the various ele
ments as needed to define the Bob. 

Now that you've linked the two structures, you're ready to define the size of the Bob. 

Specifying the Size of a Bob 

Whereas a VSprite was limited to 16 pixels of width, a Bob can be any size you wish to 
define. To specify the size of a Bob, you use not only the Height but also the Width vari
able. You specify these variables in a VSprite structure associated with the Bob. Specify 
the width as the number of 16-bit words it takes to fully contain the object. 

As an example, suppose the Bob is 24 pixels wide and 20 lines tall. You use statements such 
as the following to specify the size: 

myVSprite.Height = 20; j* 20 lines tall */ 
myVSprite.Width = 2; j* 2 words = 24 pixels wide, rounded 

up to the next multiple of 16 pixels. */ 

Because Bobs are drawn into the playfield background, the pixels of the Bob are the same 
size as the background pixels. With hardware sprites, the pixels are of a fixed size (low reso
lution). 

The next step is to tell the system the colors you wan t for this Bob. 

Specifying the Colors of a Bob 

Because a Bob is drawn into the playfield area, it can have as many colors as the playfield 
area itself. Typically a 5-bit-plane, low-resolution mode display allows you to select playfield 
pixels (and therefore, Bob pixels) from any of 32 active colors out of a system palette of 4096 
different color choices. The set of colors you select for the playfield area is the set of colors 
the system uses to display the Bobs. 

Animation 2-131 



For Bobs, the system ignores the SprColors variable in the VSprite structure. You use the 
Depth variable in the VSprite structure to define how much data is provided to define the 
Bob. This variable also defines how many different colors you can choose for each of the 
pixels of a Bob. 

The Depth variable specifies how many bit-plane images the system must retrieve from the 
Bob image data area to make up the Bob. These are called bit-plane images as the system 
will write each image into a different bit-plane. The combination of bits in identical y,x posi
tions in each bit-plane determines the color of the pixel at that position. 

For example, if you specify only one plane, then the bits of that image let you select only 
two different colors: one color for each bit that is a 0, a second color for each bit that is a l. 
Likewise, if there are 5 images stored sequentially, and you specify a depth of 5, each image 
contributes one bit for each position in the image to the color number selector, allowing up 
to 32 different choices of color for each Bob pixel. 

You specify depth by a state men t such as the following: 

myVSprite.Depth = 5; / * allow 32 colors, 
requires that a 5-bit-plane-deep image 
be present in data area. * / 

After you've specified Bob colors, you're ready to tell the system about Bob shape. 

Specifying the Shape of a Bob 

The organization in memory of a Bob is different from that of a VSprite because of the way 
the system retrieves data to draw Bobs. To define a Bob, you must still initialize the 
ImageData pointer to point to the first word of the image definition; however, the layout of 
the data is different for Bobs than for VSprites. 

The sample image below shows the same image defined as a VSprite in the VSprite section 
above. The data, however, is stored in a way typical of a Bob. 

If a shape is 2-bits "deep" and is a triangular shape, you would lay it out in memory as fol
lows: 

2-132 Animation 



BOB LAYOUT 

< first bit-plane data> 

mem + 1 
mem + 2 
mem + 3 
mem + 4 

mem 
00 11 00000000 11 00 
0000111111110000 
00000o 1111 00000o 
0000000 11 0000000 

<second bit-plane data> 

mem + 5 
mem + 6 
mem + 7 
mem + 8 
mem+ 9 

1111111111111111 
0011111111111100 
0000110000110000 
0000001111000000 
0000000110000000 

< <third bit-plane data> 

< <fourth bit-plane data> 

< < fifth bit-plane data> 

To state the width of the Bob image, you use 16-bit words. The width value is the number 
of words that fully contain the image. For example, you store a 29-bit wide image in 32 bits 
(2 data words of 16 bits each) for each line of its data. 

You still specify the number of lines with the Height variable in the VSprite data struc
ture. However, you treat Height somewhat differently for a Bob than for a VSprite. 
Specifically, for a VSprite, two adjacent data words that always occur together define the 
colors of each VSprite pixel. For a Bob, the Height variable defines how many adjacent 
data words it takes to define one complete bit-plane image. That is, for a Bob the number 
of adjacent data words in each bit-plane image definition is given by the following 
formula: Height x Width. 

The Depth variable defines how many adjacent (end-to-end) images there are in the data 
area to define the shape of the Bob. See the example at the end of the "PlaneOnOff" sec
tion below. 

The next few sections describe other variables that affect the color of Bob pixels. 

Animation 2-133 



Other Items Influencing Bob Colors 

Three other variables in the VSprite structure affect the color of Bob pixels: PlanePick, 
PlaneOnoff, and ImageShadow. 

PlanePick 

Let's assume that you have defined a playfield composed of 5 bit-planes. The variable 
PlanePick in the VSprite structure lets you specify which of the bit-planes are to be 
affected when the system draws the Bob. PlanePick binary values affect the bit-planes 
according to the following pattern: 

Draw Bob into plane: 
If this PlanePick bit is a 1: 

For example, if PlanePick has a binary value of: 

00011 

543210 
543210 

then the system draws the first bit-plane image of the Bob into bit-plane 0 and the second 
image into plane 1. 

Suppose that you still want to define an image of only 2 bit-planes, but wish to draw the 
Bob in to bit-planes 1 and 4 instead of 0 and 1. Simply choose a PlanePick value of: 

10010 

This value means "write first image into plane 1, second image into plane 4". 

Now that you've defined the bit-planes you wish to have the system draw the Bob into, you 
may want to set the pointer for your sprite shadow mask. The next section describes what 
the shadow mask is and how to set a pointer to it. 

2-134 Animation 



Sprite Shadow Mask 

The variable named ImageShadow is a pointer to a memory area that you have reserved 
for holding the shadow mask of a Bob. A shadow mask is the logical or combination of all 
I-bits of a Bob image. There is a variable in the VSprite structure called CollMask 
(pointer to a collision mask, covered under "VSprite and Bob Topics") for which you reserve 
some memory space. The ImageShadow and CollMask pointers usually, but not neces
sarily, point to the same data. 

Figure 3-3 shows an example of a shadow mask with only the I-bits. 

If this is the image in: 

Plane 1 Plane 2 

1111111111111 
1 1 

1 1 1 1 

1 1 
1 

Then its I mage Shadow is: 

1111 1111 11 
1 

1 1 1 

1 
1 

Figure 3-2: An Image and Its ImageShadow 

The system uses the shadow mask along with the variable PlaneOnOff, discussed in the 
next section. Because ImageShadow in the Bob structure is a pointer to a data area con
taining the sprite shadow, you must provide space that the the system can use for this pur
pose. You must then initialize the pointer to the first location within the data area that you 
have set aside. You can calculate the minimum size of this area as follows: 

shadow size = Height * Width 

So, for example, an object 5 lines high by 32 bits wide (VSprite or Bob) requires a sprite 
shadow storage area of at least 5 x 2, or ten I6-bit locations. The example in the 

Animation 2-135 



"PlaneOnOff" section below shows how to reserve the memory for the sprite shadow and 
then how to tell the system where to find it. 

PlaneOnOff 

The variable named PlaneOnOff tells the system what to do with the playfields that are 
not "picked" (affected) by PlanePick. The binary bit positions for PlaneOnOff are the 
same as those for PlanePick (lowest bit position specifies the lowest numbered bit-plane). 
However, their meaning differs. 

For every plane position not selected by PlanePick, parts of the non-selected plane are filled 
with the value shown in the corresponding position of PlaneOnOff. The parts that are 
filled are the positions where there is a I-bit present in the sprite's image shadow. 

This provides a great deal of versatility. You can use a 2-plane VSprite image as the source 
for many Bob images. Yet, because of the color combinations each contains, it may seem 
that there several different images present. 

For example, assume that the data shown in the Bob layout above defines a 2-bit-plane Bob 
image that selects its colors from color registers 0, 1, 4, and 5. To initialize the Bob and 
VSprite structures, you need to provide the following types of statements: 

2-136 Animation 



/* data definition from example layout * / 
WORD BobData[]= { 

}; 

OxFFFF, Ox300C, OxOFFO, Ox03CO, Ox0180, 
OxFFFF, Ox3FFC, OxOC30, Ox03CO, Ox0180 

/* reserve space for the collision mask for this Bob */ 
WORD BobCollision[10]; 

myVSprite.Width = 1; 
myVSprite.Height = 5; 
myVSprite.Depth = 2; 

/* sample image is 16 pixels wide (1 word) */ 
/* takes 5 lines to define each image of the Bob */ 
/* only two bit-plane images are defined in BobData */ 

/* show the system where it can find the data image of the Bob * / 
myVSprite.ImageData = BobData; 

/* binary = 00101, means draw into only bit-planes 0 and 2 */ 
myVSprite.PlanePick = Ox05; 

/* binary = 00000, means for planes not picked, that is, 1, 3, and 4, 
**fill those planes with O's wherever there is a 1 in the sprite shadow mask 

*/ 
myVSprite.PlaneOnOff = OxOO; 

/* where to put collision mask */ 
myVSprite.CollMask = BobCollision; 

/* tell the system where it can assemble a sprite shadow */ 
/* point to same area as CollMask */ 
myBob.lmageShadow = BobCollision; 

/* create the sprite collision mask for this Bob's VSprite structure *1 
InitMasks( &myVSprite ); 

Whenever the system draws this Bob, it fills any posltion where there is a 1 in the sprite 
shadow with a 0 for any plane not selected by PlanePick. Therefore, the only binary com
binations the Bob pixels can form are as shown below. Because of PlanePick, l's can only 
appear at these two locations: 0 0 1 0 1. 

So the color choices are limited to the following: 

Animation 2-137 



Color Binary 
Selected Combination 

color 0 00000 
color 1 00001 
color 4 OOiOO 
color 5 00101 

These color choices fulfill the requirements specified for the example. 

When you've considered and worked out the factors that influence Bob color, you're ready to 
specify the Bob position. 

Specifying Bob Position 

To select the position of a Bob, specify the y and x variables in the VSprite structure asso
ciated with the Bob. For example: 

myVSprite.y = 100; 
myVSprite.x = 100; 

You've now defined the size, shape, color, and position of a Bob. You can now decide either 
to specify when the system draws it or to let the system choose. 

Bo b Priorities 

This section describes the two choices you have for system priorities between Bobs. You can 
ignore the priority issue and let the system decide which Bob has the highest priority, or you 
can specify the drawing order yourself. When you specify the drawing order, you control 
which Bob the system draws last, and therefore, which one appears in front of other Bobs. 

2-138 Animation 



Letting the System Decide Priorities 

If you want the system to decide, you set the pointers in the Bob data structure named 
Before and After to zero. In this case, the system draws the Bobs in their y,x positional 
order on-screen. In other words, the system draws whichever object is on-screen and is 
currently the highest within the drawing area (lowest y coordinate value). If two objects 
have the same y coordinate, then the object that has the lowest x coordinate value is drawn 
first. 

The Bob drawn first has the lowest priority. The Bob drawn last has the highest priority 
because later objects overlap the objects drawn earlier. 

As you use the animation system to move objects past each other on-screen, you'll notice 
that sometimes the objects switch priorities as they pass each other. For example, suppose 
you want the system to establish the priorities of the Bobs, and there are two Bobs defined 
in the system-myBob2, myBob3. You set the Before and After pointers as follows: 

myBob2.Before = 0; 
myBob2.After = 0; 
myBob3.Before = 0; 
myBob3.After = 0; 

Specifying the Drawing Order 

If you wish to specify the priorities, simply specify the pointers as follows. Before points to 
the Bob that this Bob should be drawn before, and After points to the Bob that this Bob 
should be drawn after. This guarantees that Bob objects retain their relative priorities. 

For example, suppose you want to assure that myBob3 always appears in front of myBob2. 
You must initialize the Before and After pointers so that the system will always draw 
myBob3 last; that is, after myBob2. 

Animation 2-139 



myBob2.Before = &myBob3; 
myBob2.After = 0; 
myBob3.After = &myBob2; 
myBob3.Before = 0; 

/* draw Bob2 before drawing Bob3 */ 
/* draw Bob2 after no other Bob */ 
/* draw Bob3 after drawing Bob2 * / 
/* draw Bob3 before no other Bob */ 
/* draw nothing in particular after this Bob */ 

If you decide to specify the Before and After pointers for anyone Bob in a group, then 
you must also at least set to zero the Before and After pointers for all of the rest of the 
Bobs in that group. 

For example, if there are 10 Bobs, and you only care that the system draws numbers 4, 6, 
and 9 in that sequence, then you must properly fill in the Before and After pointers for 
these three Bobs. If you don't care in which order the system draws the other 7 Bobs, you 
need only initialize their Before and After pointers to a value of 0 to assure correct treat
ment by the system. 

You must properly point all Before and After pointers of a group to each other because the 
Bob which is the upper-leftmost becomes the first the system considers for drawing. The sys
tem follows the Before pointers until it finds one having a zero value, and draws that Bob 
first. It then draws other Bobs in the sequence you have specified. 

In the example code sequence above, the comment "draw nothing in particular after this 
Bob" simply means that once the drawing sequence for this set of Bobs has been performed, 
the system still proceeds to find and draw all other Bobs currently linked into the GEL list. 
To continue the drawing operation, the system simply goes on searching the list for the next 
Bob whose Before pointer is O. 

Specifying Priority Between Bobs and VSprites 

See "VSprite and Bob Topics" below for details. 

Saving the Playfield Display 

Once the system has drawn the Bobs, they become part of the playfield segment of the 
display. The image of a Bob overlays part of the background area. To move a Bob from 
one place to another, you must tell the system to save the background before it draws the 
Bob, and to restore the background to its original condition when it moves the Bob. 

2-140 Animation 



A variable called sprFlag in the VSprite structure contains a flag called SAVEBACK. To 
cause the system to save and restore the background for that Bob, set the SAVEBACK flag 
to 1. 

In addition to the sprFlag variable, you must also tell the system where it can put this 
saved background area. For this, you use the SaveBuft'er variable. For example, if the 
Bob is 48 pixels wide and 20 lines high, and the system is drawing it into a 5 bit-plane 
playfield, you must allocate space for storing the following: 

(48 pixels/16 pixels per word) * (20 lines) * (5 bit-planes) = 300 words 

To allocate this space, use the graphics function AllocRasterO· When you use 
AllocRasterO for this purpose, you can specify the area size in bits, so it may well be the 
most convenient way to reserve the space you need. For example: 

myBob.SaveBuffer = AllocRaster(48,20 * 5); 
/* save space to store 48 
bits times 20 words times 5 bit-planes * / 

Note that the AllocRasterO function rounds the width value up to the next integer multi
ple of 16 bits. 

Using Bob Flags 

The following sections describe the Bob flags. Some of these are in the VSprite structure 
associated with the Bob; others are in the Bob structure itself. The description of each flag 
tells the structure in which the flag is located. 

VSPRITE Flag 

If you are using the VSprite structure to describe a Bob, set VSPRITE to zero. 

The VSPRITE flag is located in the VSprite structure. 

Animation 2-141 



SA VEBACK Flag 

If you want the GEL routines to save the background before the Bob is drawn and to 
restore the background after the Bob is removed, set the SAVEBACK (for "save the back
ground") flag in VSprite structure to 1. 

If you set this flag, you must have allocated the buffer named SaveBuffer. 

OVERLAY Flag 

If the system should use the sprite shadow mask when it draws the Bob into the back
ground, set the OVERLAY flag in the VSprite structure to 1. If this flag is set, it means 
that the background original colors show through in any section where there are O-bits in the 
sprite shadow mask. Essentially, then, those O-bits define areas of the Bob that are "tran
sparent" . 

If you set the OVERLAY bit to a value of 0, then the system uses the entire rectangle of 
words that define the Bob image and uses its contents to replace the playfield area at the 
specified y,x coordinates. 

If you set this flag, you must have allocated space for the ImageShadow and must also 
have initialized the ImageShadow. 

See the section above called "Sprite Shadow Mask" for details on the shadow mask. 

GELGONE Flag 

The system sets this flag in the VSprite structure to indicate when the Bob has been moved 
to y,x coordinates entirely outside of the "clipping region". 

2-142 Animation 



When an object crosses over certain specified boundaries in the drawing area, the system 
does not draw all of the object into the background but "clips" (truncates) it to those limits. 
At the time of this writing, the variables named topmost, bottommost, leftmost and 
rightmost define the minimum and maximum y,x coordinates of this clipping region. 

When the system sets the GELGONE flag to a 1, you know that the object has passed 
en tirely beyond those limits and that the system will not draw any part of the object in to 
the drawing area. On the basis of that information, you may decide that the object need no 
longer be part of the GEL list and may decide to remove it to speed up the consideration of 
other objects. 

SA VEBOB Flag 

To tell the system not to erase the old image of the Bob when the Bob is moved, set the 
SAVEBOB flag in the Bob structure to 1. This lets you use the Bob like a paintbrush if 
you wish. It has the opposite effect of SAVEBACK. 

NOTE: It takes longer to preserve and restore the raster image than simply to draw a new 
Bob image wherever required. 

BOBISCOMP Flag 

If this Bob is part of an AnimComp, set the BOBISCOMP flag in the Bob structure to 1. 
If the flag is a 1, you must also initialize the pointer named BobComp. Otherwise, the sys
tem ignores the pointer, and it may be left alone. See "Animation Structures and Controls" 
for a discussion of AnimComps. 

BWAITING Flag 

When a Bob is waiting to be drawn, the system sets the BWAITING flag in the Bob struc
ture to 1. This only occurs if the system has found a Before pointer in this Bob's structure 
that points to another Bob. Thus, the system flag BWAITING provides current draw-status 

Animation 2-143 



to the system. Currently, the system clears this flag on return from each call to 
DrawGListO· 

BDRAWNFlag 

The BDRAWN system status flag in the Bob structure tells the system that this Bob has 
already been drawn. Therefore, in the process of examining the various Before and After 
flags, the drawing routines may determine the drawing sequence. Currently, the system 
clears this flag on return from each call to DrawGListO. 

BOBSA WAY Flag 

To initiate the removal of a Bob during the next call to DrawGListO, set BOBSAWAY to 
1. Either you or the system may set this Bob structure system flag. The system restores 
the background where it has last drawn the Bob. The system will unlink the Bob from the 
system GEL list the next time DrawGListO is called unless you are using double-buffering. 
In that case, the Bob will not be unlinked and completely removed until two calls to 
DrawGListO have occurred and the Bob has been removed from both buffers. 

BOBNIX Flag 

\Vhen a Bob has been completely removed, the system sets the BOBNIX flag to 1 on return 
from DrawGListO. In other words, when the background area has been fully restored and 
the Bob has been removed from the GEL list, this flag in the removed Bob is set to a l. 
BOBNIX is significant in cases where you use double-buffering because once you ask that a 
Bob be removed, the system must remove it from the active drawing buffer and from the 
display buffer. Once BOBNIX has been set for a double-buffered Bob, it has been removed 
from both buffers and you are free to re-use it or de-allocate it. 

This flag is in the Bob structure. 

2-144 Animation 



SA VEPRESERVE Flag 

The SAVEPRESERVE flag is a double-buffer version of the SAVEBACK flag. If you are 
using double-buffering and wish to save and restore the background, you set SAVEBACK to 
1. SAVEPRESERVE is used by the system to indicate whether the Bob in the "other" 
buffer has been restored; it is for system use only. 

Adding a Bob 

To add a Bob to the system GEL list (the same list you created for VSprites using 
InitGelsO), you use the AddBobO routine. It is advisable that you initialize the different 
variables you plan to use within the Bob structure before you ask that the system add this 
Bob to the list. 

For example: 

struct GelsInfo myGelslnfo; 
struct VSprite dummySpriteA, dummySpriteB; 
struct Bob myBob; 

/* done ONCE, for this GelsInfo */ 
InitGels( &d ummySpriteA, &dummySpriteB, &myGelslnfo ); 

/* here initialize the Bob variables */ 
AddBob( &myBob, &rastport ); 

Removing a Bob 

You have two methods for removing a Bob. This section describes the system routine for 
each. 

Animation 2-145 



The first method uses the RemBob() routine. You call this routine as follows: 

RemBob ( &myBob, &rastport ); 

RemBob() causes the system to remove the Bob during the next call to DrawGList() (or 
two calls to DrawGListO if the system is double-buffered). RemBohO asks the system to 
remove the Bob "at its next convenience". 

The second method is to call the RemIBobO routine. For example: 

RemIBob ( &myBob, &rastport, &viewport ); 

RemmobO tells the system "remove this Bob immediately!". It causes the system to erase 
the Bob from the drawing area and causes the immediate erasure of any other Bob which 
had been drawn subsequent to this one. The system then unlinks the Bob from the system 
GEL list. To redraw the Bobs that were drawn on top of the one just removed, you must 
make another call to DrawGListO. 

Now that you've seen how to add and remove Bobs from the system GEL list, you'll need to 
learn how to organize that list. 

Getting the List of Bobs in Order 

As with VSprites, the list of GELS must be in the proper y,x sorted order from top of 
screen to bottom and from left to right. The system uses the position information to decide 
drawing sequences if you have not specified otherwise by using the Before and After 
pointers. You must therefore assure that the GEL list is sorted before you ask the system to 
display the Bobs. 

To sort the GEL list, you call SortGListO. For example: 

SortGList( &rastport ); 

Once the list is sorted, it's time to instruct the system to display the Bobs. 

2-146 Animation 



Displaying Bobs 

This section provides the typical sequence of operations for drawing the Bobs on-screen. It 
is very similar to that shown for VSprites as both Bobs and VSprites are GELS and are 
part of the same list of controlled objects. 

Specifically, the system automatically synchronizes the drawing routines to the display beam 
and may not require that the display be turned off during the update. If large Bobs or 
many Bobs are created, you may be interested in double-buffering. See the section called 
"Double-Buffering" in this chapter for details. 

When you call DrawGListO, the system actually draws any Bobs on this list into the area 
you have specified. The system saves the backgrounds if you have provided for the save and 
then performs the drawing sequence in the order you requested. To initiate this drawing, call 
DrawGListO. For example: 

struct RastPort *rp; 
struct ViewPort *vp; 

DrawGList( rp, vp); /* draw the elements */ 

Now that you know how to instruct the system to draw the Bobs into the area you've 
specified, you may want to tryout several ways to change the characteristics of those Bobs. 

Changing Bobs 

You can change the following characteristics of Bobs: 

o To change their appearance, change the pointer to the ImageData in the associated 
VSprite structure. Note that the change in the ImageData pointer also requires a 
change in the ImageShadow or a recalculation of the object mask, using 
InitMasksO· 

o To change their color choices, change their PlanePick and/or PlaneOnOff values, 
as well as the depth parameters if the sprite image has multiple planes defined. 

o To change the location in the drawing area, change the y,x values in the associated 
VSprite structure. 

Animation 2-147 



o To change the object priorities, change the drawing sequence by altering the Berore 
and Arter flags in the Bob structures. 

o To change the Bob into a paintbrush, set the SA VEBOB flag to a 1 In the Bob 
structure. 

NOTE: Neither these nor other changes actually happen until you call SortGListO and 
then DrawGListO· 

Dou hIe-Buffering 

Double-buffering is the technique of supplying two different memory areas in which the draw
ing routines may create images. The system displays one memory space while you are draw
ing into the other area. This assures that you never see any display fields on-screen that 
consist partly of old material and partly of new material. 

The system animation routines use an extension that you establish to the Bob structure. 
Also, if you do not not care to use double-buffering, you need not tie up precious memory 
resources for unneeded variable storage space. 

To find whether a Bob is to be double-buffered, the system examines the pointer named 
DBuffer in the Bob structure. If this pointer has a value of 0, the system does not use 
double-buffering for this Bob. 

NOTE: If you do not wish to use double-buffering, you must initialize the DBuffer pointer 
to zero. For example: 

myBob.DBuffer = 0; /* do this if this Bob 
is NOT double-buffered */ 

The next section discusses several other variables that you must describe if you want to use 
double-buffering. NOTE: if any of the Bobs are double-buffered, then all of them must be 
dou ble-buffered. 

Variables Used in Double-Buffering 

2-148 Animation 



To use double-buffering for a given Bob, you must provide a data packet for the system to 
store some of the variables it needs to handle double-buffering. This data packet is a struc
ture named DBufPacket which consists of the following variables: 

BufY,BufX 
System variables that let the system keep track of where the object was located "last 
screen" (as compared to the Bob structure variables called oldY and oldX that tell 
where the object was two-screens ago). BufY and BufX provide for correct restora
tion of the background within the currently active drawing buffer. 

BufPath 
System variable related to the drawing order used to draw this Bob into the back
ground. BufPath assures that the system restores the backgrounds in the correct 
sequence; it relates to the system variables DrawPath and ClearPath (found in 
this Bob's VSprite structure). 

Buffiuffer 
You must set this field to point to a buffer as big as this Bob's SaveBuffer to allo
cate separate space for buffering the background on which you are drawing the Bob. 
This buffer is used to store the background for later restoration when the system 
moves the object. 

The next section shows how to pull all these variables together to make a double-buffered 
Bob. 

Creating a Double-Buffered Bob 

To create a double-buffered Bob, you must initialize all of the normal Bob variables and 
pointers and execute a code sequence similar to the following: 

Animation 2-149 



struct DBufPacket myDBufPacket; 

/* allocate a DBufPacket for my Bob */ 

/* same size as previous example in 
**"Saving the Playfield Display" 

*/ 
myDBufPacket.BufBuffer = AllocRaster( 48, 20 * 5 ); 

/* tell Bob about its double buff status */ 
myBob.DBuffer = myDBufPacket; 

The next section summarizes the steps you take to define, move, and display a Bob. 

Bo b Operations SUIIlIIlary 

o Define a RastPort structure for the drawing routine to use. 

o Initialize the GEL system (call InitGelsO) for this RastPort. You only need to do 
this once. 

o Create and link a Bob and a VSprite structure. 

o Define the following Bob parameters: 

Height 

Width 

Depth 

Position 

Where to find ImageData data 

Which planes to pick for writing this Bob 

How to treat the planes not picked 

2-150 Animation 



VSprite structure flags to show that this is a Bob 

Space for the sprite shadow 

Pointer to a DBufPacket if you want to use double-buffering (Otherwise, make 
this pointer a NULL (0) value.) 

o Call InitMasksO to create the sprite shadow. 

o Add the Bob to the GEL list. 

o Change the Bob appearance by 

Changing the pointer to ImageData 

Changing its height, width or depth. 

o Change the Bob colors by 

Changing the playfield color set 

Changing PlanePick and PlaneOnOff. 

o Move the Bob by defining a new y,x position. 

o Display the Bob by calling: 

SortGListO; 

DrawGListO; 

Now that you've mastered the basics of handling VSprites and Bobs, you may want to find 
out about some of the interactions between the two and how to cope with these interactions. 
Or, you may want to skip these advanced topics and read about software collisions, clipping, 
and adding new features in "VSprite and Bob Topics" below. 

Animation 2-151 



Bob Advanced Topics 

This section provides information pertaining to more advanced uses of the Bob system. 

How Bob Colors are Controlled 

Bobs do not use the SprColor pointer. To determine the color of a Bob, you use the exist
ing colors in the 32-entry color table. The lower 16 of the 32 possible color selections (regis
ters 0-15) are always dedicated to playfield color selections, providing 16 unique colors for the 
Bobs, since they are play field objects. 

However, the playfields and the VSprites share the upper 16 of the 32 color entries (registers 
16-31). If you are using 5 bit-planes to display the Bobs, then any Bob with a pixel whose 
color value exceeds 15 may change color if the virtual sprites are running at the same time. 

NOTE: This also applies to any static part of the display area (the playfield), whether a 
Bob or simply part of the background display, for which a 5 or 6 bit-plane image is used if 
the color n urn ber for a specific pixel exceeds the value of 15. 

To explain further, the virtual sprite routines, notably SortGListO and DrawGListO, 
work together to decide which real sprite will be used at any point on-screen. DrawGListO 
makes up a Copper instruction list to change the contents of the upper 16 color registers, 
perhaps several times within a single display field. Therefore, depending on where a Bob 
image may be on-screen relative to a virtual sprite, and depending on its color content, a 
Bob may take on different colors (perhaps even within only a part of its body). 

To minimize color interactions between Bobs and virtual sprites, take the appropriate pre
cautions: 

o Limit the background to 4 bit-planes or less and thus limit the Bob color choices to 
16 or less. 

o Use 5 bit-planes, but specify Bob colors or background colors from the colors ° 
through 15, or 16, 20, 24, or 28 only. Colors 16, 20, 24, and 28 are used neither by 
real sprites nor by virtual sprites and are treated as transparent areas. Therefore, if 
you use only these colors for Bobs, the simultaneous use of virtual sprites will not 
affect the Bob or background colors. 

2-152 Animation 



o Use sprRsrvd to "fence-oW' certain sprite pairs, so you can also use their colors for 
Bobs. 

Now that you've seen some of the ways to handle VSprite and Bob color interaction, you 
may want to read about some topics they share. 

3.5. VSPRITE AND BOB TOPICS 

This section explores topics common to both VSprites and Bobs. It includes a discussion of 
software collision detection, ways of expanding the VSprite and Bob data structures, and a 
way of expanding the scope of the Bob and VSprite structures. 

Detecting GEL Collisions 

To detect collisions between graphics elements, you use the DoCollisionO routine. 
DoCollisionO determines if there are any pixels of one graphics element currently touching 
those of another graphics element, or if any of the graphics elements have passed outside of 
specified screen boundaries. 

Whenever there is a collision, the system performs one of 16 possible collision routines. The 
addresses of the collision routines are kept in a table called the collision handler table. 
DoCollisionO examines the HitMask and MeMask of each of the VSprite structures in 
the GEL list, and determines if there is a collision between any two GELS. It then calls the 
collision handler routine at the table position corresponding to the bits in the HitMask and 
MeMask, as ou tlined below. 

NOTE: The current form of these routines does not use the built-in hardware collision 
detection. You may, if you wish, reserve one or more sprites for your own use and move 
them using your own routines. When specific sprites have been reserved for your own use, 
you may choose to use the hardware collision detection to sense collisions between your own 
objects and other on-screen elements. See the Amiga Hardware Reference Manual for infor
mation about hardware collision detection. 

Animation 2-153 



Default Kinds of Collisions 

The two kinds of software collision sensing built into the collision routines are: 

o boundary hits 

o GEL to GEL hits 

You can set up as many as 16 different kinds of collisions using the VSprite structure 
MeMask and HitMask. When you call a collision routine, you give it certain kinds of 

. information about the colliding elements, as described in the next two sections. 

Boundary Hits 

During the operation of the DoCollisionO routines, if you have enabled boundary collisions 
for a GEL and it crosses a boundary, the system calls the boundary hit routine you have 
defined. Note that the system calls the routine once for each GEL that has gone outside of 
the boundary. 

The system will call your routine with the following two arguments: 

o A pointer to the VSprite structure of the GEL that hit the boundary 

o A flag word containing one to four bits set, representing top, bottom, left and right 
boundaries, telling you which one or more boundaries it has hit or exceeded. To test 
these, use the names TOPHIT, BOTTOMHIT, LEFTHIT and RIGHTHIT. 

2-154 Animation 



GEL to GEL Collisions 

If, instead of a GEL to boundary collision, DoCollisionO senses a GEL to GEL collision, the 
system calls your collision routine with the following two parameters. They will be different 
from those in the GEL to boundary collision. 

o Address of the VSprite structure that defines the uppermost (or leftmost if y coor
dinates are identical) object of a colliding pair, and 

o Address of the VSprite structure that defines the lowermost (or rightmost if y coor
dinates are identical) object of a colliding pair. 

Handling Multiple Collisions 

When multiple elements collide within the same display field, the following set of sequential 
calls to the collision routines occurs: 

o The system issues each call in a sorted order, for GELs starting at the upper left
hand corner of the screen and proceeding to the right and down the screen. 

o For any two colliding graphics elements, the system issues only one call to the colli
sion routine for this pair. The system bases the collision call on the object that is 
the highest and leftmost of the pair on-screen. 

Animation 2-1.55 



Preparing for Collision Detection 

Before you can use the system to detect collisions between GELS, you must initialize the 
table of collision detection routines. This table points to the actual routines that you will 
use for the various collision types you have defined. Also, you must prepare certain variables 
and pointers within the VSprite structure: BorderLine, CollMask, HitMask, and 
MeMask. 

Building a. Ta.ble of Collision Routines 

To add to or change the table entries for the collision routines, call the SetCollisionO rou
tine. The syntax this routine follows. 

SetCollision( num, routine, Ginfo) 

where: 

num 
is the collision vector number. 

routine 
is a pointer to the user collision routine. 

GInfo 
is a pointer to a GelsInfo structure. 

When the View structure is first initialized, the system sets all of the values of the collision 
routine pointers to zero. You must initialize those table entries corresponding to the Hit
Mask and MeMask bits that you have set. Only those can cause the system to call the col
lision routines. 

You must also allocate a table, pointed to by GelsInfo, for vectors. The table needs to be 
only as large as the number of bits for which you wish to provide collision processing. For 
example: 

2-156 Animation 



VOID myCollisionRoutine( GELM, GELN) /* sample collision routine */ 
struct VSprite *GELM; 
struct VSprite *GELN; 
{ 

printf("GEL at %lx has hit GEL at %lx", (long)GELM, (long)GELN); 
} 

/* sample initialization */ 
ReadyGels(gelsinfo, rastport); /* use exec_support function */ 
SetCollision( 15, myCollisionRoutine, &gelsinfo ); 

Collision Ma.sk 

The variable named CollMask is a pointer to a memory area that you have reserved for 
holding the collision mask of a GEL. A collision mask is usually the same as the shadow 
mask of the GEL, formed from a logical-or combination of all I-bits in all planes of the 
image. Figure 3-3 shows an example collision mask. 

If this is the image in: 

Plane 1 Plane 2 

1111111111111 
1 1 

1 1 1 1 1 
1 1 

Then its Coli Mask is: 

1111111111111 
1 

1 1 1 1 

1 1 

1 1 
1 

Figure 3-3: A Collision Mask 

Animation 2-157 



You normally use this collision mask to control drawing of the object and to define essen
tially the positions where there is an image-bit present. After you have defined the collision 
mask through the routine InitMasks(), you may specify that the system is to store both the 
shadow mask and the collision mask in the same location. 

For example, here are typical program statements to reserve an area for the sprite shadow, 
initialize the pointer correctly, and then specify that the system uses the same mask for colli
sions (assumes a 2-word wide, 4-1ine high image): 

/* reserve 8 16-bit locations for sprite shadow to be stored into by the system. */ 
WORD myShadowData[8]; 
myVSprite.lmageShadow = myShadowData; /* and point to it */ 
myVSprite.CollMask = myShadowData; /* collision mask is same as shadow * / 

As an alternative, for certain game-oriented applications, you may design certain objects 
with sensitive regions and non-sensitive regions. For example, if you have designed a ship 
with some kind of superstructure, a missile that strikes in the superstructure perhaps should 
pass through without registering a collision, but a missile that strikes into the heart of the 
ship should cause it to explode. The collision mask gives you the versatility to perform this 
kind of operation. 

Suppose you have an object with an outer layer that is to be insensitive and an inner core 
that you want to register collisions for the overall object. Using the same ship with a super
structure, refer to Figure 3-4. 

If the current CollMask is: 

1111111111111 
1 1 

1 1 1 1 
1 

1 

Perhaps you only want to 
have a sensitive area which 
has this shape: 

1 1 1 
1 

Figure 3-4: Shadow Mask for a Sensitive Area 

2-158 Animation 



Therefore, you would define your own shadow mask with I-bits in the appropriate positions 
to define the desired sensitive area. 

BorderLine Image 

For fast collision detection, the system uses the pointer named BorderLine. BorderLine 
specifies the location of the horizontal logical-or combination of all of the bits of the object. 
It may be compared to taking the whole object and squashing it down into one single hor
izontalline. Here is a sample of an object and its BorderLine image: 

OBJECT 

001100001100 
000 11 00 11 000 
000011110000 
000110011000 
001100001100 

BORDERLINE IMAGE 

001111111100 

The borderline image establishes a single set of words (represented by the collision mask) 
that have I-bits at the outermost edges of the object. Using this squashed image, the system 
can quickly determine if the image is touching the left or rightmost boundary of the drawing 
area. 

To establish the borderline data, you make a system call to InitMasksO. Before calling 
InitMasks(), you provide the system with a place to store the image it creates. The size of 
the data area you reserve must be at least as large as the image is wide. 

In other words, if it takes three 16-bit words to hold the width of a GEL, then you must 
reserve three words for the borderline image. For example: 

/* reserve some space for the border image to be stored for this Bob */ 
WORD myBorderLineData[3]; 

/* tell the system where to put the BorderLine image it will form * / 
myVSprite.BorderLine = myBorderLineData; 

Animation 2-159 



NOTE: Both Bobs and VSprites participate in the software-collision detection. 

The next section tells how to turn on the software-collision detection independently for each 
GEL. 

Software Collision Detect Control Variables 

You can enable or disable software collision detection for each GEL independently. In addi
tion, any time the system senses a collision, you can specify which routines, out of 16 possible 
collision routines, you wish to have automatically executed. The HitMask and MeMask 
variables in the VSprite structure let you specify the relationships between different GELS. 

By specifying the bits in these masks, you can control how and when the system senses colli
sions between objects. The collision testing routine, in addition to sensing an overlap 
between objects, also uses these masks to determine which routine(s) (if any) the system will 
call when a collision occurs. 

When the system determines a collision, it ands the HitMask of the upper-leftmost object in 
the colliding pair with the MeMask of the lower-rightmost object of the pair. The bits that 
are l's after the and operation choose which of the 16 possible collision routines to perform. 

o If the collision is with the boundary, bit 0 is a 1 and the system calls the collision 
handling routine number O. You assign bit 0 to the condition called "boundary hit". 
The system uses the flag called BORDERHIT to indicate that an object has landed 
on or moved beyond the outermost bounds of the drawing area (the edge of the clip
ping region). 

o If you set anyone of the other bits (1 to 15), then the system calls the collision han
dling rou tine corresponding to the set bit. 

If more than one bit is set III both masks, the system calls the vector corresponding to the 
rightmost bit. 

2-160 Animation 



Using HitMa.sk and MeMask 

This section provides an example of the use of the HitMa.sk and MeMask to define a new 
form of collision detection. 

Suppose there are two classes of objects that you wish to control on-screen: ENEMYTANK 
and MYMISSILE. Objects of class ENEMYTANK should be able to pass across each other 
without registering any collisions. Objects of class MYMISSILE should also be able to pass 
across each other without collisions. However, when MYMISSILE collides with 
ENEMYT ANK, or ENEMYTANK collides with MYMISSILE, then the system should process 
a collision routine. 

Choose a pair of collision detect bits not yet assigned within MeMa.sk, one to represent 
ENEMYTANK, the other to represent MYMISSILE. You will use the same two bits in the 
corresponding HitMask. 

MeMask HitMask 

Bit # 2 1 2 1 

GEL #1 0 1 1 0 ENEMYTANK 

GEL .#2 0 1 1 0 ENEMYTANK 

GEL #3 1 0 0 1 MYMISSILE 

In the example, bit 1 represents ENEMYTANK objects. In the MeMask, bit 1 is a 1 for 
GEL #1 and says "I am an ENEMYTANK". Bit 2 is a zero says this object is not a MYM
ISSILE object. 

In bit 1 of the HitMask of GEL #1, the O-bit there says, "I will not register collisions with 
other ENEMYTANK objects." However, the I-bit in Bit 2 says, "I will register collisions with 
MYMISSILE objects" . 

Thus when a call to DoCollisionO occurs, for any objects that appear to be colliding, the 
system antis the MeMask of one object with the HitMask of the other object. If there are 
non-zero bits present, the system will call one (or more) of your collision rou tines. 

In this example, suppose that the system senses a collision between ENEMYTANK #1 and 
ENEMYTANK #2. Suppose also that ENEMYTANK #1 is the top/leftmost object of the 
pair. Here is the way that the collision testing routine performs the test to see if the system 
will call any collision handling routines: 

Animation 2-161 



Bit # 2 1 

ENEMYTANK #1 MeMask 0 1 

ENE:MYT ANK #2 HitMask 1 0 

Result of and 0 0 

Therefore, the system doesn't call a collision routine. 

Suppose that DoCollisionO finds an overlap between ENEMYTANK #1 and MYMISSILE, 
and MYMISSILE is the top/leftmost of the pair: 

Bit # 2 1 

MYMISSILE #1 MeMask 1 0 

ENEMYT ANK #2 HitMask 1 0 

Result of and 1 0 

Therefore, the system calls the collision routine at position 2 in the table of collision-handling 
routines. 

Bo b /VSprite Collision Boundaries Within a RastPort 

To specify a region within the RastPort (drawing area) that the system will use to define 
the outermost limits of the GEL boundaries, you use the following variables: topmost, bot
tommost, leftmost, and rightmost. The DoCollisionO rou tine tests these boundaries 
when determining collisions within this RastPort. 

Here is a typical program segment that assigns the variables correctly. It assumes that you 
already have a RastPort structure named myRastPort. 

my RastPort- > Gelslnfo- > topmost = 50; 
myRastPort- > Gelslnfo- > bottommost = 100; 
myRastPort- > GelsInfo- > leftmost = 80; 
myRastPort- > Gelslnfo- >rightmost = 240; 

2-162 Animation 



The current release of the system software makes use of the clipping rectangle feature of the 
Ra.stPorta to create clipping to the RastPort's limits. However, you may base the "boun
dary collision" limits for this RastPort on the variables shown here. 

Adding New Features to Bob/VSprite Data Structures 

This section describes how to expand the size and scope of the VSprite or Bob data struc
tUres. In the definition for the VSprite and the Bob structures, there is an item called 
UserExt at the end of the structure. If you want to add something to these structures 
(specifically, a user extension), you simply specify that the User Ext variable is composed of 
a specific type. 

Why would you want to add things to the structure? When the DoCollisionO routine 
passes control to your collision processing function, you may wish to change some variable 
associated with the GEL. The example below places speed and acceleration figures with each 
GEL. When you perform the collision routine, it exchanges these values between the two 
colliding objects. The system uses additional routines during the no-collision times to calcu
late the new positions for the objects. 

You could define a structure similar to the following: 

struct mylnfo { 
short xvelocity; 
short yvelocity; 
short xaccel; 
short yaccel; 

}; 

that you want to have associated with each of the GELS. These variables are, for example, 
your user extensions. 

You would also provide the following line: 

For VSprites: 
#define VUserStuff struct mylnfo 

For Bobs: 
#define BUserStuff struct myInfo 

For AnimObs: 
#define AUserStuff struct myInfo 

Animation 2-163 



When the system is compiling the gels.h file with your program, the compiler substitutes 
struct mylnfo everywhere that UserExt is used in the header. The structure is thereby cus
tomized to include the items you wish to associate with it. 

NOTE: The header files include the following UserStuff variables for VSprites, Bobs, and 
AnimObs: 

VSprites: 
Bobs: 
AnimObs: 

VUserStuff 
BUserStuff 
AUserStuff 

Once you've added Bobs and VSprites and worked with the collision routines and data 
structure extensions, you'll probably want to perform animations. The following sections 
outline the system animation support for Bobs only. 

3.6. ANIMATION STRUCTURES AND CONTROLS 

The Amiga currently provides animation support for Bobs. 

In the section called "Bob Priorities" you learned how to control the priorities of Bobs with 
respect to each other by specifying the drawing sequence. The following sections explain how 
to link objects and how to specify an animation completely by linking different views of 
objects into a sequence. 

To perform animation, an artist produces a series of drawings. Each drawing differs from the 
preceding one so that when they are sequenced, the object appears to move naturally. An 
animation in the Amiga consists of: 

o a linked list of the components of the animation object, and 

o each component as a linked list of the different drawings in its sequence. 

To perform the actual animation, you make a call to a system routine called AnimateO. 
When you call AnimateO, the software follows all of your animation instructions and 
"moves" the objects accordingly. When you next call DrawGListO, the system draws all 
objects in the position caused by your calls to AnimateO. Essentially, AnimateO simply 
manipulates a set of instructions in a set of object lists. Only when the system draws the 
objects are your instructions visually displayed. 

As you recall, the system draws the currently sorted objects from its GELS list. 

2-164 Animation 



General Characteristics of the Animation System 

The animation system lets you define a series of Bobs, which it then links into an overall 
object. The combined object consists of one or more Bobs that comprise the overall object 
and additional Bobs that comprise alternate appearances (animation sequences) for the vari
ous component parts. 

You specify: 

o the initial appearance of an .overall object by defining Bobs as its components. 

o alternate views of various components by defining additional bobs. 

o the drawing precedence for the initial appearance of the object among the Bobs that 
comprise the initial appearance. 

The animation system: 

o moves all linked objects simultaneously. 

o maintains inter-object prioritization. 

o sequences alternate views to provide animation through user-specified timing vari
ables. 

Keeping Track of Graphic Objects 

The section called "Getting the List of Bobs in Order", described how the system maintains 
a list of Bobs to draw on-screen according to your instructions. The animation system selec
tively adds items to and removes items from this list of screen objects during the AnimateO 
routine. The next time you call DrawGListO, the system will draw the current Bobs in 
the list into the selected RastPort. 

The next few sections define the two kinds of animation objects. 

Animation 2-165 



Classes of Animation Objects 

You have two classes of objects to consider: AnimObs and AnimComps. The AnimOb is 
the primary animation object. It is this object whose position you are specifying with respect 
to the coordinates of the drawing area. Actually, an AnimOb itself contains no imagery. It 
is merely the top-level data structure which organizes the components that it manages and 
specifies a position relative to which everything else is drawn. The AnimComp, on the 
other hand, is an animation component - for example, an arm, leg or head - of an anima
tion object. The animation object consist of animation components that you specify. 

To define an AnimOb, you specify several characteristics of the primary animation object, 
including the following: 

o The initial position of this object. 

o Its velocity and acceleration in the X and Y directions. 

o How many calls to DrawGListO you have made while this object has been active. 

o A pointer to a special animation routine related to this object (if desired). 

o A pointer to the first of its animation components. 

o Your own extensions to this structure, if desired. 

Positions of Animation Objects 

The next two sections teli how to specify the initial position of an AnimOb and its Anim
Compo 

2-166 Animation 



Position of an AnimOb 

To specify a registration point within the drawing area (the RastPort) for all components, 
you use the variables AnX and AnY in the AnimOb structure. Figure 3-5 illustrates that 
each component has its own offset from the object's registration point. 

AnY 

AnX 
RastPort Drawing Area 

Registration point 
(reference) for all 
parts of an AnimOb. 

X increases from left to right 

Y increases from 
top to bottom of 
drawing area 

Figure 3-5: Specifying an AnimOb Position 

Position of an AnimComp 

To specify where the component is to be located relative to the position of the registration 
point, you use variables in the AnimComp structure. When you move the animation 
object, all of the component parts of this animation object move with it as illustrated in Fig
ure 3-6. 

Animation 2-167 



XTrans 

AnX 
RastPort Dr awing Area 

YTrans Object #2 I 
XTrans 

AnY 
Object 

"1=1 

YTrans 
Object #3 

Figure 3-6: Specifying an AnimComp Position 

To specify the relative placement of a component with respect to the registration point of the 
AnimOb, you assign the values of XTrans and YTrans in the AnimComp structure. 
These values can be either positive (as shown for object #3), or negative (as shown for object 
#2) or zero (as shown for component #1) in Figure 3-6 above. 

Now that the system knows the position of the objects and components you wish to animate, 
you can tell the system how to animate them. The following sections describe the animation 
choices provided for you by the system. 

Animation Types 

The system software allows two forms of animation: 

o sequenced drawing 

o motion control 

2-168 Animation 



Sequenced Drawing 

In sequenced drawing, an artist produces a sequence of views of an object, where each view is 
a modification of a preceding view. To produce apparent motion of the object, the artist 
draws each new view of an object at a position somewhat farther from a common reference 
point than the preceding view. 

If an animation is to be continuous, based on a repeating sequence, then the last drawing in 
the series should allow the first drawing in the series to be the next-in-line, creating a con
tinuity of motion. Figure 3-7 shows four out of a sequence of drawings that could use this 
technique for animation. (The other intermediate steps are not shown.) 

As you will notice, each of the drawings, reading from right to left, is a little closer to its 
registration point (the reference point). The upper level of the figure shows the figures indi
vid ually. The lower level shows the figures overlaid, demonstrating th at smooth motion 
would be possible. To the left of the overlaid figures is a second set, drawn in gray, 
representing the reinitialization of the sequence of drawings again, beginning with number 
one. 

Animation 2-169 



The figure moves 
as each of the 
sequenced 
drawings is 
produced in 
place of the 
previous one 
in the sequence. 

Animator's Registration Marks 

Shows only 4 views from a full walk sequence 

Figure 3-7: A Sequenced Drawing 

When the sequenced 
drawing reaches the end 
and restarts with drawing 1 
again, the registration mark 
is moved so that a smooth 
transition is formed. 

Sequenced animation often consists of a closed "ring" of drawings. When the last drawing of 
the sequence has been completed, the first drawing in the sequence is repeated again, becom
ing the first in the next part of the animation, offset by a specific position in space. 

To specify sequenced drawing, use the variables called compFlags in the AnimComp struc
ture, and RingXTrans and RingYTrans in the AnimOb structure. 

To move the registration mark to a new location, you set the RINGTRIGGER bit for a com
ponent in its compFlags variable. The system software adds the values of RingXTrans 
and RingYTrans found in the AnimOb structure to the values of AnX and AnY of the 
head object (the registration mark), thereby moving the reference point to the new location. 
The next time you execute DrawGListO, the drawing sequence starts over again at the new 
location, mating properly with the final drawing of the sequence at the old registration mark. 

You usually set RINGTRIGGER in only one of the animation components in a sequence; 
however, you can choose to use this flag and the translation variables in any way you wish. 

2-170 Animation 



The next section shows how to tell the system to control the movement of the animation 
objects. 

Motion Control 

In the second form of animation, you can specify objects that have independently controll
able velocities and accelerations in the X and Y directions. Components can still sequence. 
Furthermore, you can use ring and velocity simultaneously if you wish. 

The variables that control this motion are located in the AnimOb structure, and are called: 

o YVel, XVel-the velocities in the y and x directions 

o YAeeel, XAccel-the accelerations in the y and x directions 

Velocities and accelerations can be either positive or negative. 

The system treats the velocity numbers as though they are fixed-point binary fractions, with 
the decimal point fixed at position 6 in the word. That is: 

vvvvvvvvvv .f f ff ff 

where v stands for actual values that you add to the X or Y (AnX, AnY) positions of the 
object for each call to AnimateO, and f stands for the fractional part. By using a fractional 
part, you can specify the speed of an object in increments as precise as 1/54th of an interval. 

In other words, if you set the value of XVel at OxO001, it will take 54 calls to the 
AnimateO routine before the system will modify the object's X coordinate position by a 
step of one. The system requires a value of Ox0040 to move the object one step per call to 
AnimateO· 

Each call you make to AnimateO simply adds the value of XAccel to the current value of 
XVel, and YAccel to the current value of YVel, modifying these values accordingly. 

The following section considers the relative merits of the two animation techniques offered by 
the system. 

Animation 2-171 



Using Sequenced Drawing and Motion Control 

If you are using sequenced drawing, you will probably set the velocity and acceleration vari
ables to zero. This allows you to produce the animation exactly in the form in which the 
artist ha.s designed it in the first place. 

Consider an example of a person walking. As each foot falls, with sequenced drawing, it is 
positioned on the ground exactly a.s originally drawn. If you include a velocity value, then 
the person's foot will not be stationary with respect to the ground, and the person appears to 
"skate" rather than walk. If you set the velocity and acceleration variables at zero, you can 
avoid this problem. 

Once you've specified the sequence of the drawings or the acceleration and velocity variables, 
it's time to initialize the animation system. 

Initializing the Animation System 

To initialize the system, you must define a pointer to an AnimOb. The system uses this 
pointer to keep track of all of the real AnimObs that you create. The following typical 
code sequence accomplishes this: 

struct AnimOb *animKey; 

animKey = NULL; 

NOTE: Before you can use the animation system, you must call the routine InitGelsO. 
Therefore, you must initialize the GEL system a.s well a.s the animation system. See the "Ini
tializing the GEL System" section for details on InitGelsO, the Bob-control system that 
even tually displays the objects that you manipulate. 

Now you're ready to add animation objects and components, a.s described In the following 
two sections. 

2-172 Animation 



Specifying the Animation Objects 

To add animation objects to the controlled object list, you use the routine AddAnimObO. 
Figure 3-8 shows how to build a list of controlled objects using this routine. The animKey 
always points to the object most recently added to the list. 

Most·recently 
added AnimOb 

Next AnimOb 

Previous AnimOb 

Other 
Variables 

Next AnimOb 

Previous AnimOb 

Other 
Variables 

Next AnimOb 

Previous AnimOb 

Other 
Variables 

Null 

Last 
AnimOb 
added to 
a list 

Typical 
middle 
AnimOb 

Null 

First 
AnimOb 
added to 
a list 

animKey - always points to the 
last AnimOb added 
to the list 

This AnimOb list 
is the complete 
list of all of the 
AnimObs being 
handled by the 
system. 

Figure 3-8: Linking AnimObs into a List 

Next, you tell the system about the components that make up the object. 

Animation 2-173 



Specifying Animation Components 

As previously stated, each animation object consists of one or more individual component 
parts. The parts may be, for example, the body of an object, its arms, its legs, and so on. 
Not only does the system animator move parts from place to place, but it also offers different 
views of each of the parts. 

To specify the relationships between the individual parts and views of those parts, you llll

tialize various poin ters within the AnimComp structure. 

You use the pointers called PrevSeq and NextSeq to build a doubly-linked list of a set of 
animation components used for sequenced drawing; as outlined above. In all cases, when you 
specify AnimComps, you must initialize these pointers to build the sequence that you wish 
the system to follow for drawing the various views of this component. The "Animation 
Sequencing" section below shows how the system uses these pointers. 

To link the components together into a whole object, use the pointers called PrevComp and 
NextComp. When you build an animation object, you must initialize the PrevComp and 
NextComp pointers for only the initial view of the animation object. Whenever the anima
tion system senses that one of the animation objects has "timed out" and switched to a new 
sequence of that component, the system automatically adjusts the PrevComp and 
NextComp pointers so that it retains the complete animation object. 

Figure 3-9 shows an animation object built of several components. The AnimOb points to 
the head component. Notice that the "head" component may be anyone of the components 
of the object. A pointer in the structure of the head component, in turn, points to the next 
one, and so on (building the initial view of the object). 

To point around the ring for each of the component sequenced views (although the objects 
do not necessarily have to form a ring), you initialize the sequence pointers NextSeq and 
PrevSeq. The animation system ignores the PrevComp and NextComp pointers for each 
of the non-current components. 

2-174 Animation 



Next AnimOb 

Previous AnimOb 

Original (first view) 
of an AnimOb, 

designed by the user. 

Next AnimComp 

NON,CURRENT 
additional views of 
each component, 

waiting to be used. 

Next AnimComp 

Previous AnimComp 

Sequence Linkage -+--t-+- Sequence Linkage +---... 

Next AnimComp 

Previous AnimComp 

.... --_ ... 

Next AnimComp Next AnimComp 

Previous AnimComp Previous AnimComp 

Sequence Linkage -+---+- Sequence Linkage +---. · · 

Figure 3-9: Linking AnimComps to Form an AnimOb 

Now that you've explained the relationship of the components and views to the system, it's 
time to specify the order in which to draw them. 

Animation 2-175 



Drawing Precedence 

The sequence in which you link the components in a list to define the object itself is imma
terial. The system simply uses this list of components to define the overall object. 

To specify the drawing precedence for the objects in an animation object, you use the 
Before and Mter pointers in the Bob structure Jor the initial sequence oj the animation 
object. 

If you refer to the description of adding Bobs in the section called "Adding a Bob", you will 
see that when you add Bobs to the system, the Before and After pointers control the 
drawing sequence and thereby the precedence of the objects. Once you've added the Bobs 
to the system with AddBobO, you must assign a fixed set of pointers to establish the 
correct drawing order. 

Animation components may have several views, each of which points to a Bob structure. 
However, only one of those views is actually "active" for that component at anyone time, 
making up part of the overall animation object. The animation system adjusts the Before 
and Mter pointers of the Bob structure for each of the current views to maintain the 
sequence of drawing for each of the components the same as that you have defined for the 
initial view. Adjustments take place in the sequencing any time anyone of the animation 
components "times out" and proceeds to show a new sequence. 

Therefore, if you are defining Bobs as part of the animation system, you only need to initial
ize the Before and Mter pointers within the Bob structure for the initial sequence of each 
of the components. 

You may wish to define multiple animation objects. To assure that one complete object 
always has priority over another object, you can use the initial sequence linkage to control 
this as well. You use the Bob Before and Mter pointers to link together the last 
AnimComp's Bob of one AnimOb to the first AnimComp's Bob of the next AnimOb. 
The system maintains the drawing order during calls to AnimateO from that time onward. 

You may modify the drawing order during part of the animation, (such as to make one 
object pass in front of another during one display sequence, then pass behind it on the next 
sequence). You can perform this kind of activity, if you wish, during an AnimORoutine or 
AnimCRoutine. See the section called "Your Own Animation Routine Calls" for details. 

The next step is to tell the system about the sequence of the drawings. 

2-176 Animation 



Animation Sequencing 

To perform sequenced drawing, you must define the sequence in which you wish the drawings 
to be made. For each of the animation components, there is a set of pointers that allows you 
to define the exact sequence in which the drawings should appear. 

After a period of time that you've specified, which is separately controllable for each com
ponent, the system software automatically switches from the current drawing in the sequence 
to the next one. For this purpose, you provide three pieces of information in the Anim
Comp structure: pointers to the previous and next drawings in the sequence that you have 
defined, a user flag variable called Flags, and a TimeSet variable. 

After the specified time interval for each of the sequenced drawings, the system software 
switches to show the next drawing specified in the sequence. The next section shows how 
you specify the time. 

Figure 3-10 illustrates how the system uses the "next sequential image" pointer to step from 
one image to the next at the specified time. 

If you set the RINGTRIGGER bit in the Flags variable, the system adjusts the reference 
point for the sequenced drawing. See the "Sequenced Drawing" section above for details. 

Animation 2-177 



Sample Animation Sequence 

Ani~~~m/ 
link/ AnimBob = Bobl 

AnimBob = Bob2 
(a/so called" Bob4") 

~ AnimBob = Bob 3 

Notice that, in the sample shown, it is only 
necessary to store 3 images in order to 
allow a four image animation to be performed. 

AnimBob = Bob 2 

Figure 3-10: Linking AnimComps for Sequenced Drawing 

Specifying Time for Each Image 

Bobl's 
Image 

Bob2's 
and 
Bob4's 
Image 

Bob3's 
Image 

When you have defined all of your animation objects and components, you call the 
AnimateO routine. To manipulate the objects, you set the variable called Timer in the 
AnimComp structure, and you set a corresponding variable called TimeSet (also in the 
AnimComp structure). 

When the system selects the animation component, the system copies the value currently in 
TimeSet into the variable named Timer. If Timer has a nonzero value when you call 
AnimateO, then the curren t view of the animation component remains the active view for 
as many calls to AnimateO as you specify with the value in Timer. When the Timer 

2-178 Animation 



value counts down to zero, the system makes the next sequential view active. 

If you set the value in TimeSet to zero, then Timer remains zero. Timer never triggers 
from a non-zero state and, therefore, does not cause any change in the view. 

When the system activates a new sequence component, it checks that component's compFlag 
to see if the RINGTRIGGER flag bit is set. If so, the system performs ring processing, which 
means that it adds the values RingYTrans and RingXTrans to AnY and AnX respec
tively. See the section called "Animation Types" for details. 

Now let's see how this process works in an actual animation. Let's say that you are animat
ing the figure of a man. As he walks across the screen, he swings his arm back and forth at 
a fixed rate. Let's say you have three drawings of the arm: swung forward, at a center 
position, and swung back. To animate the arm, you may follow these steps: 

1. Define 4 Bobs: the first for the forward swing, the second for the center, the third 
for the back swing, and the fourth centered again. 

2. Define 4 AnimComps, one for each of these Bobs. To link them together in a 
sequence (forward, center, back, center), use the PrevSeq and NextSeq pointers. 

3. Link one of the AnimComps in this sequence to the AnimComp that defines the 
body of the man, using the AnimComp, PrevComp, and NextComp pointers. 

4. Set the Timer variable for each sequenced AnimComp to a value appropriate for 
him to hold that pose. For example, three calls to AnimateO for forward and back, 
and two calls for each of the two centered positions of his arm might be appropriate 
values. 

5. Set the value of XTrans and YTrans for each AnimComp to posItIOn the arm 
properly with respect to the rest of the body for each sequence of the arm swing. 

6. Continue the arm sequence by setting the RINGTRIGGER bit in the flags variable 
of the last sequence, thereby triggering a re-sequence to the first view again when the 
timer of the last view times out. 

Now, each time you call AnimateO, the animation system checks all of the Timer vari
ables, as well as calling your AnimCRoutines and AnimORoutines. When each of the Timer 
variables becomes a zero, the next sequenced view of the AnimComp replaces the current 
sequence. When an AnimComp becomes "current", the value in its TimeSet variable is 
copied into its Timer variable. 

This also means that you've told the system two things: first, to remove the Bob of the 
current sequence from the system Bob list the next time you call DrawGListO; and second, 
to use the Bob representing the new sequence in its place. The system automatically copies 
the Bob Before and After pointers from the current sequence into the new sequence 
AnimComp's Bob to assure that the object is still drawn in the same order, maintaining its 
priority relative to other objects in the drawing area. 

Animation 2-179 



The next section shows some possible uses for the AnimOb routines. 

Your Own Animation Routine Calls 

The AnimOb and AnimComp structures include pointers to your own routines that you 
want the system to call. If you want a routine to be called, you must specify the address of 
the routine in this variable. If no routine is to be called, you must set this variable to zero. 
No values are passed to these routines, except a pointer to its AnimOb or AnimComp, 
respectively. However, because you set each AnimORoutine (the AnimOb routine) and 
AnimCRoutine (the AnimComp routine), you can use the extensions to the AnimOb or 
Bob or VSprite structures to hold the variables you need for your own routines. 

Suppose you are creating the following animation: 

o A man is walking a dog down a street. There is a fireplug at one side of the screen. 
Let's say you wish to change the appearance of the fireplug if the dog approaches too 
closely . You would, therefore, design an Anim ORou tine to do a proximity check on 
the dog. 

o To allow the fireplug to have different appearances, you might provide three indivi
dual views. One is normal, one is an intermediate view (comparable to the center 
arm-swing mentioned earlier), and the final view is a "strength pose", saying "back 
off dog!". 

o You may set the TimeSet and Timer variables for the "normal" appearance for 
the fireplug at zero. This means that it should never change from this appearance 
no matter how many calls to AnimateO occur, as defined above. (If it's already 
zero, it won't decrement; therefore, it can never go from non-zero to zero). 

o You may set the TimeSet variable for the intermediate view to 1 (stay in the inter
mediate pose for only one call to AnimateO). In addition, you may set the 
TimeSet variable for the strength pose to 10 (stay strong for 10 calls to 
AnimateO)· 

o For each call to AnimateO, the AnimORoutine for the fireplug checks how close the 
dog has approached. If it is within a certain range, the AnimORoutine changes the 
Timer variable for the normal fireplug pose to a 1. 

o The next call to AnimateO finds a value of 1 in the Timer variable and decrements 
it. This makes a value of 0, forcing a change to the next sequence (the intermediate 
pose). The system will remove the normal pose Bobs from the system Bob list it is 
to draw and the next call to DrawGListO will therefore draw the intermediate pose 
instead. 

2-180 Animation 



o The next call to AnimateO finds a value of 1 in the Timer variable for the inter
mediate pose, and decrements it, causing a change to the strength pose. The fireplug 
remains in the strength pose for ten calls to AnimateO, returning through the inter
mediate pose for one call, then to the normal pose again. 

o Now that the Timer value has become zero again, the fireplug returns to the origi
nal state, staying in its normal pose until the dog again approaches within range. 

The next section discusses AnimateO, the routine you call to actually move the objects. 

Moving the Objects 

When you have defined all of the structures and have established all of the links, you can call 
the AnimateO routine to move the objects. AnimateO adjusts the positions of the objects 
as described above, and calls the various subroutines (AnimCRoutine, AnimORoutine) that 
you have specified. 

After the system has completed the AnimateO routine, as the screen objects have been 
moved, their order in the graphics objects list may possibly be incorrect. Therefore, as 
always, before ordering the system to redraw the objects, you must sort them first. 

If you perform DoCollisionO when the system has newly positioned the objects after your 
call to AnimateO, your collision routines may also have an effect on the ultimate position of 
the objects. Therefore, you should again call SortGListO to assure that the system 
correctly orders the objects before you call DrawGListO, as illustrated in the following typi
cal call sequence: 

/* ... setup of graphics elements and objects */ 

Animate( key, rp ); 
SortGList( rp ); 
DoCollision( rp ); 
SortGList( rp ); 
DrawGList( vp, rp ); 

/* "move" objects per instructions */ 
/* put them in order */ 
/* software collision detect/action */ 
/* put them back into right order */ 

/* draw into current RastPort */ 

Animation 2-181 





Chapter 4 

Text 

This chapter describes how to use text in Amiga displays. 

4.1. INTRODUCTION 

Text on the Amiga is simply another graphics prImitive. Because of this, you can easily 
in termix text and graphics on the same screen. Typically, a 320 by 200 graphics screen can 
contain 40-column, 25-line text using a text font defined in an 8-by-8 matrix. The same type 
of font can be used to display 80-column text if the screen resolution is extended to 640 by 
200. Window borders and other graphics embellishments may reduce the actual available 
area. 

The text support routines use the RastPort structure to hold the variables that control the 
text drawing process. Therefore, any changes you make to RastPort variables affect both 
the drawing routines and the text routines. 

In addition to the basic fonts provided in the ROMs, you can link your own font into the 
system, and ask that it be used along with the other system fonts. 

This chapter shows you how to: 

o print text into a drawing area 

o specify the character color 

o specify which fon t to use 

o access disk-based fonts 

Text 2-183 



o link in a new font 

o define a new font 

o define a disk-based font 

4.2. PRINTING TEXT INTO A DRAWING AREA 

The placement of text in the drawing area depends on several variables. Among these are: 

o the current position for drawing operations, 

o the font width and height, and 

o the placement of the font baseline within that height. 

Cursor Position 

Text posltlon and drawing position use the same variables in the RastPort structure
CP-Y and ep_x, the current vertical and horizontal pen position. The text character begins 
at this point. You use the graphics call Move(&rastPort, x, y) to establish the cp-y and 
cp_x position. 

Baseline Of The Text 

The ep-y position of the drawing pen specifies the position of the baseline of the text. In 
other words, all text printed into a RastPort using a single "write string" command is posi
tioned relative to this CP-Y as the text baseline. Here is some sample text which includes a 
character which has 1 dot below the baseline, and a maximum of 7 dots above and including 
the baseline. 

2-184 Text 



For clarity, periods (.) and asterisks (*), rather than O's and l's, are used for the figure. 

~~+¥*~=r---Baseline for the 
L...L..-.L.1--1.-L-'----'--L-J~ c ha r act e r 5 et 

Figure 4-1: Text Baseline 

The figure shows that for this font, the baseline value is 6. The baseline value is the number 
of lines from the top of the character to the baseline. 

When the text routines output a character to a RastPort, the leftmost edge of the character 
position is specified by the cp_x (current horizontal position) variable. 

After all characters have been written to the RastPort, the variable cp....y is unchanged. 
The value of cp-" will be changed by the number of horizontal positions that were needed to 
write all characters of the specified text. Both fixed-width and proportionally spaced charac
ter sets are accommodated. 

The default fonts in the system are all designed to be above and below the baseline, where 
the baseline position is at line 6 of the character font. This means that you must specify a 
cp....y value of at least 6 when you request that text be printed to a RastPort in order to 
assure that you stay within the memory bounds of the RastPort itself. Location (0,0) 
specifies the upper left-hand corner of the memory space that is dedicated to the RastPort. 
Since all text will be written above and below the baseline, you must start at a proper posi
tion or the routines will write into non-RastPort memory. 

You should not request that the text routines write beyond the outer bounds of the Rast
Port memory, either horizon tally or vertically. Text written outside the RastPort bounds 
may be clipped if the RastPort supports clipping (most do). Clipping means that the sys
tem will display only that portion of the text that is written into the boundaries of the 
RastPort. 

Text 2-185 



Size of the Font 

Font design is covered later in this chapter. For now, simply note that the width and height 
of the font affect how many characters you may print on a line. The position of the baseline 
affects where you print a line. 

Printing the Text 

You may print text into a RastPort by using the TextO routine. A typical call to this rou
tine is: 

Text( &rastPort, string, count) 

where: 

&rastPort is a pointer that describes where the text is to be output 

string is the address of the string output 

count is the string length 

Sample Print Routine 

Here is an example showing a string to be written to a RastPort. 

The example assumes that you have alrady prepared a RastPort into which the text can be 
rendered. 

2-186 Text 



/* sample routine to print a single line of 
text to the screen. * / 

struct RastPort *rp; 
test{ ) 
{ 
SetAPen( rp, 1); 

/* use color number 1 to draw the text */ 
Move( rp, 0, 40); 

/* start down a few lines from the top */ 
Text( rp, "This is test text", 17); 
returnO; 
} 

SELECTING THE FONT 

Character fonts each have a name. There are two default character fonts provided in the 
ROMs. One font produces either 40- or 80-column text (depending on the use of a. 320 or 
640 horizontal resolution respectively). The other font produces either 32- or 64-column text. 
The names and specifications of these default fonts are: 

Table 4-1: Default Character Fonts 

Font Type Height Name 

40/80 8 topaz.font 

32/64 9 topaz.font 

To specify which font the system should use, you call the system routine OpenFontO or 
OpenDiskFontO, followed by SetFontO. A typical call to these routines follows. 

where: 

font=OpenFont( textattr); 
font=OpenDiskFont(textattr); 
SetFont( font, rp ) 

Text 2-187 



font 

is a pointer to a TextFont data structure, returned either by OpenFontO or 
. OpenDiskFontO· 

textattr 

rp 

This structure is located in the include file named text.h. It contains a pointer to a 
null-terminated string that specifies the name of the font, font height, font style bits, 
and font preference bits. 

is the address of the RastPort which is to use that font until told to use a different 
one. 

The call to OpenFontO or OpenDiskFontO says "give me a font with these characteris
tics". The system attempts to fulfill your request by providing the font whose characteristics 
best match your request. The table above shows that both of the system fonts have the 
name "topaz.font". In the system font selections, the height of the characters distinguishes 
between them. If OpenFontO cannot be satisfied, it returns a O. 

NOTES: 

1. In Chapter 1, "Graphics Primitives", you saw that the routine InitRastPortO initial
izes certain variables to default values. This routine automatically sets the default to 
topaz.font with the correct width according to Preferences. 

The example below shows how a new font is selected. 

2-188 Text 



/* sample routine to print 2 lines of text to 
the screen; each line of text in a different font, 
again assumes RastPort already set up elsewhere */ 

test( ) 
{ 
struct TextAttr f; 

/* provide a font structure to build on for font change */ 
struct TextFont *font; 
f.Name = "topaz.font"; 

/* set font name into font descriptor struct */ 
/* initial font default is "topaz.font" */ 

f.YSize = 8; 
/* define font size */ 

f.Style = 0; 
/* define font style */ 

f.Preferences = 0; 
/* define font preferences */ 

font=OpenFont(&f); 
if (font !-O) { 

{ 

SetFont( rp, font); 
/* ask system to find & set one like this */ 

Move( rp, 0, 40); 
Text( rp, "topaz.font, 8 dots high", 23 ); 
CloseF on t( fon t); 

f.Ysize=9; 
fon t=OpenFon t( &f); 
if (font != 0) { 

{ 

SetFon t( rp,fon t); 
Move( rp, 0, 48); 

/* start a few lines down from the top * / 
Text( rp, "topaz.font, 9 dots high", 23); 
CloseFont(font ); 

return(O); 
} 

4.3. SELECTING THE TEXT COLOR 

You can select which color to use for the text you print by using the graphics calls SetA
PenO and SetBPenO and by selecting the drawing mode in your RastPort structure. The 
combination of those values determine exactly how the text will be printed. 

Text 2-189 



4.4. SELECTING A DRAWING MODE 

The DrawMode variable of a RastPort determines how the text will be combined with the 
graphics in the destination area. 

NOTE: The DrawMode selections are values, not bits. You can select from anyone of 
the following DrawModes. 

If DrawMode is JAMl, it means that the text will be drawn in the color of FgPen (the 
foreGround, or primary drawing Pen). Wherever there is a I-bit in the text pattern, the 
FgPen color will overwrite the data present at the text position in the RastPort. This is 
called overstrike mode. 

If DrawMode is JAM2, it means that the FgPen color will be used for the text, and the 
BgPen color (the background or secondary drawing color Pen) will be used as the back
ground color for the text. The rectangle of data bits which defines the text character com
pletely overlays the destination area in your RastPort. Where there is a I-bit in the char
acter pattern definition, the FgPen color is used. Where there is a O-bit in the pattern, the 
BgPen color is used. This mode draws text with a colored background. 

If DrawMode is COMPLEMENT, it means that wherever the text character is drawn a posi
tion occupied by a I-bit causes bits in the destination RastPort to be changed as follows: 

o If a text-character I-bit is to be written over a destination area O-bit, it changes the 
destination area to a I-bit. 

o If a text-character 1- bit is to be written over a destination area I-bit, the result of 
combining the source and destination is a O-bit. In other words, whatever is the 
current state of a destination area bit, a I-bit in the source changes it to the oppo
site state. 

o Zero-bits in the text character definition have no effect on the destination area. 

2-190 Text 



I" 

Text Character Memory Area Result of printing it in complement 
mode with left edges al igned as shown. 

Figure 4-2: Complement Mode 

If you set the INVERSVID flag to a 1, it will change all I-bits to O-bits and vice versa in a 
text or other RastPort writing operation before writing them into the destination area. If 
the drawing mode at that time is JAM2, then the pattern colors will be reversed as well. If 
DrawMode is INVERSVID, you can produce inverse video characters. 

Here is an example showing each of the three modes of text that you can produce: 

Text 2-191 



/* sample routine to print 4 lines of text to 
the screen; each line of text in a different mode */ 

test( ) 
{ 
SetAPen( rp, 2); 

/* use color 2 as primary drawing color */ 
SetBPen{ rp, 3); 

/* use color 3 as secondary drawing color * / 
Move( rp, 0, 6); 

/* move the drawing position near upper left */ 
SetDrMd( rp, JAM1 ); 

/ * Jam 1 color in to target raster * / 
Text( rp, "This is JAM1 mode", 17 ); 
Move( rp, 0, 46); 

/ * move the drawing position for next line * / 
SetDrMd( rp, JAM2 ); 

/* Jam 2 colors into target raster */ 
Text( rp, "This is JAM2 mode", 17 ); 
Move( rp, 0, 86); 

/* move the drawing position for next line * / 
SetDrMd( rp, COMPLEMENT ); 

/* use exclusive-or (COMPLEMENT) to write */ 
Text( rp, "This is COMPLEMENT mode", 23 ); 
Move( rp, 0, 126 ); 
SetDrMd(rp,JAM1+INVERSEVID); 
Text( rp, "INVERSE", 7 ); 
return; 
} 

4.5. EFFECTS OF SPECIFYING FONT STYLE 

When you call OpenFontO, specifying certain style characteristics, the system searches the 
loaded fonts to find the closest match to the font you requested. If the remainder of the 
characteristics match what you have requested, but the style does not match, the text rou
tines AskSoftStyleO and SetSoftStyleO create a font styled as you have requested by 
modifying the existing font (that is, modifying a normal fon t to italic or bold by modifying 
its characters.) Since many fonts do not lend themselves to such modifications, it is always 
preferred that the font of the specific style be loaded for use. The system always tries to find 
the exact specified font before attempting to modify another to fit your request. 

If there is a font present in the system that matches your OpenFontO request both in name 
and size, but not in style, (as determined by looking at the font style field), you may set Set
SortStyleO to generate the selected style algorithmically as follows: 

2-192 Text 



NORlv1AL 

The font is used exactly as defined. 

UNDERLINED 

An underline is generated one pixel below the baseline position. 

ITALIC 

The character is given a slant to the right, starting from the bottom line, and shift
ing subsequent upward line positions to the right one bit position for every second 
count up from the bottom of the character. 

EXTENDED 

(This attribute cannot be set with SetSoftStyleO.) 

If you use a font that has the various style characteristics built-in, rather than generated, the 
internal spacing and kerning tables tell the system how to leave the proper amount of space 
between characters if you are simply printing them one at a time. 

If you ask TextO to output the characters individually, TextO calculates character position
ing and width based on the normal width and inter-character spacing that it finds in the font 
descriptor. After printing one or more characters, it automatically positions the drawing pen 
(cp_x) at the position it believes to be correct for the next output character. This may cause 
adjacent characters to overlap when printed individually. 

There is a solution. If you are using generated style for a font, you must take care to build 
your output strings of characters before calling TextO to output them. TextO can handle 
character strings, correctly generating the desired style with correct inter-character spacing. 

To increase inter-character spacing, you can set a field called rp_TxSpacing in the Rast
Port. The spacing is specified in pixels. 

4.6. ADDING A NEW FONT TO THE SYSTEM 

The ROM Exec code maintains a list of the text fonts that are currently linked into the sys
tem. To add another font, you must: 

A. Open a disk font using the diskfont.library, or 

B. Define the font 

Text 2-193 



1. Reserve some memory where the font can be loaded 

2. Move the font definition into that memory area 

3. Link the font name and location into the system font list. 

4.7. USING A DISK FONT 

To use an existing disk font, you must perform the following steps: 

A. Open the diskfont library 

B. Open a disk font 

Here are the program fragmen ts you need to open the library. This gIves you access to 
whatever routines the diskfont library contains: 

struct Library *DiskfontBase; 

DiskContBase = (struct Library *) 
OpenLibrary(" diskfon t.library" ,O}; 

Before trying to use the diskfont routines, you should check that the OpenLibraryO call 
returned a value other than NULL. 

Here is the program fragment you need to actually load a disk-based font. It assumes that 
you already know the name of the font you want to load. 

struct TextFont *font; 
struct myTextAttr = { "sapphire.Cont" ,17,0,0 }; 

Cont = OpenDiskFont(&myTextAttr}; 

2-194 Text 



4.8. FINDING OUT WHICH FONTS ARE AVAILABLE 

The function AvailFontsO fills in a memory area designated by you to hold a list of all of 
the fonts available in the entire system. AvailFontsO searches the AmigaDOS directory 
path currently assigned to FONTS: and locates all available fonts. If you haven't issued a 
DOS ASSIGN command to change the FONTS: directory path, the system will search the 
sys:fonts directory. 

The test program "whichfont.c" at the end of this chapter provides a list of the fonts you 
can use and shows you how to find the appropriate items to put into the text attribute data 
structure for the call to OpenDiskFontO· 

4.9. CONTENTS OF A FONT DIRECTORY 

In a font directory, you will usually find two names for each font type. A typical pair of 
entries in the fonts directory is: 

sapphire.font 
sapphire( dir) 

The file named sapphire.font doesn't contain the actual font. It contains the description of 
the contents of that font family. The contents are described by a FontContentsHeader 
and one or more FontContents data structure entries. The FontContentsHeader struc
ture is defined as: 

where: 

struct FontContentsHeader { 
UWORD fch_FileID; /* FCH_ID */ 
UWORD fch_NumEntries; /* the number of FontContents elements */ 

/* FontContents (lor more) follow here */ 
}; 

fch_FileID 
is simply a numeric identifier for this file type. The value is OxfOO. 

rch_NumEntries 
says how many entries of type FontContents follows this header. 

Text 2-195 



The FontContents structure is defined as: 

where 

struct FontContents { 
char fc_FileName[MAXFONTPATH]; 
UWORD fc_YSize; 
UBYTE fc_Style; 
UBYTE fc_Flags; 
}; 

fc_FileN arne 
is the pathname which the DOS must follow to find the actual diskfont descriptive 
header along with the TextFont data structure of which this font is composed. 
Once DOS reaches the path named in FONTS:, it finds the filename by the path 
shown in this en try in FontContents. 

fc_YSize, fe_Style, and fc_Flags 
correspond to their equivalents III the TextAttr data structure (ta_ YSize, 
ta_Style, and tc_Flags). 

As an example, a typical entry in sapphire.font is: 

"sapphire/14", a null terminated string, padded out with 

14, 
00, 
60 (hex) 

zeros for a length of MAXFONTP ATH bytes, 
the value for fc_ YSize, 
the value for fc_Style, 

the value for fc_Flags. 

This entry indicates that the actual DiskFontHeader for the font to be loaded is in path 
FONTS:sapphire/14. This means that the sapphire subdirectory in the fonts directory must 
have a file named 14 in order to allow this font to be loaded. 

4.10. THE DISK FONT 

A disk font is constructed as a load able, executable module. In this manner, AmigaDOS can 
be used to perform LoadSegrnentO and UnloadSegrnentO on it. AmigaDOS can there
fore allocate memory for the font, and return the memory when the font is unloaded. The 
contents of the DiskFont are described in the include-file diskfont.h. The most significant 
item in this structure, the em bedded TextFont structure, is described below in the topic 
"Defining A Font". 

2-196 Text 



4.11. DEFINING A FONT 

To define a font, you must specify its characteristics using the TextFont structure. The 
Tex:tFont structure is specified in the include-file named text.h. 

The following topics show the meaning of the items in a TextFont structure. Following the 
structure description is an example showing a four-character font, which is defined using this 
structure and can be linked into the system using AddFontO. 

The Text Node 

The first item in the Tex:tFont structure is a listNode by which the system can link this 
font structure into the system TextFonte list. You specify the name of the font using the 
name pointer field of the font listNode. 

For example: 

struct TextFont suitFont: 
/* name chosen for sample font here */ 

suitFont.textNode.ln_name = "suits.font"; 

Font Height 

You specify the height in the ySize variable. All characters of the font must be defined 
using this number of lines of data even if they do not require that many lines to contain all 
font data. Variable height fonts are not supported. 

For example: 

8uitFont.ySize = 8; 
/* all characters are 8 lines high * / 

Text 2-197 



Font Style 

You can specify the style of the font by specifying certain bits a.s 1 's in the TF style vari
able. The value of style is determined by the sum of the style bits, defined as: 

NORMAL (value = 0), 
UNDERLINED (value = 1), 
BOLD (value = 2), 
ITALIC (value = 4), 
EXTENDED (value = 8), 

The text font is used exactly a.s defined. 
The font is underlined. 
The font is bold. 
The fon t is italic. 
The font is stretched out (width). 

In the font structure, these bits indicate style attributes a.s intrinsically a part of the font; 
that is, the font already has them and you can never take them away. 

Font Preferences 

This variable provides additional information that tells the font routines how to create or 
access the characters. The preferences variable is composed of the sum of the preference bits, 
defined as follows: 

FPB_ROMFONT (value = 0) 

The font is located in ROM. If you are making up your own font, this variable will 
not be zero unless you are burning new system ROMs yourself. 

FPB_REVP A TH (value = 2) 

The font is designed to be rendered from right to left (for example, Hebrew). 

FPB_PROPORTIONAL (value = 32) 

The characters in the font are not guaranteed to be xSize wide (see "Font Width" 
below.. Each character has its own width and positioning in the character space. 
The bit-packing of the characters is of great importance, as described below. The 
variables modulo, charloe, and eharspaee define how the characters are defined 
and bit-packed. 

2-198 Text 



Font Width 

The xSize variable specifies the nominal width of the font. For example: 

suitFont.width = 14; 
/* specify 14 bits width */ 

Font Accessors 

If you have added a font to the system list, it is possible that more than one task will be 
accessing a character font. A variable in the font structure keeps track of how many acces
sors this font currently has. Whenever you call OpenFontO or OpenDiskFontO, this 
variable is incremented for the font and decremented by CloseFontO. The font accessor 
value should never be reduced below zero. This accessor count should be initialized to zero 
before you first link a new font into the system, but is managed by the system after the link 
is performed. 

If you wish to remove a font from the system to free the memory that it is currently using, 
you must ensure that the number of accessors is zero before ordering its removal. 

Characters Represented by This Font 

It is possible to create a font consisting of 0 to 255 characters. Some fonts can be exceed
ingly large because of their design and the size of the characters. For this reason, the text 
system allows the design and loading of fonts that may consist of only a few of the charac
ters. The variables loChar and hiChar specify the numerical values for the characters 
represented in this font. As an example, one font could contain only the capital letters. A 
second font could contain the small letters; and a third could contain the punctuation marks 
and numerals. Depending on the size of the font itself, you may arrange to subdivide the 
font even further. 

In the example that is being built for this chapter, a font consisting of four playing card suits 
is being constructed. This font might consist of only 4 items, one for each of the playing 
suits. For example: 

Text 2-199 



suitFont.loChar = 160; 
/* value to use for first character chosen at whim */ 

suitFont.hiChar = 163; 
/* 160 to 163 range says that there are 4 characters 
represen ted in this fon t * / 

As part of the character data, in addition to defining the included character numbers, you 
must also define a character representation to be used as the image of a character number 
requested but not defined in this font. This character is placed at the end of the font 
definition. 

For this example, any character number outside the range of 160-163 inclusive would print 
this "not in this font" character. 

The Character Data 

The font structure includes a pointer to the character set data along with descriptions of the 
how the data is packed into an array. The variables used are: 

charData 

a pointer to the memory location at which the font data begins. This IS the bit
packed array of character information. 

modulo 

the row modulo for the font. The font is organized with the top line of the first 
character bit-adjacent to the top line of the second character and so on. 

For example, if the bit-packed character set needs 10 words of 16-bits each to hold 
the top line of all of the characters in the set, then the value of the modulo will be 
20 (bytes). Twenty is the number which must be added to the pointer into the char
acter matrix to go from the first line to the second line of a specific character. 

charLoc 

a pointer to an array of paired values. The values are the bit-offset into the bit
packed character array for this character, and the size of the character in bits. 
Expressed in C language, this array of values can be expressed as: 

2-200 Text 



struct charDef = { 
WORD charOffset; 
WORD charBit Wid th; 
} 

and in the program definition, the array to which charLoc points can be expressed 
as: 

struct charDef suitDef[5]; 
/* define an array of 4 sets of character, 
and one "not a character" 
bit-packed placement and width information */ 

For all proportional fonts, there must be one set of descriptors for each character 
defined in the character set. 

charS pace 

a pointer to an array of words of proportional spacing information. This is the 
width of each character rectangle, in other words, how many bits width are used to 
contain the edge to edge width of this character's bit definition. 

For example, a narrow character may still be stored within a wide space . 

•.. ;:' .. ~ 
::~ 

::::: 
::::: 
::;: 

::::: :::: ::: . 
...... . . . . . . ., 

(Value = 5 for this example) Kern = 2 

Figure 4-3: CharSpace Figure 

If this pointer is null, use the nominal width for each character (xSize). 

charKern 
a pointer to an array of words of character kerning data. Kerning is the offset from 
the character pointer to the start of the bit data. 

Text 2-201 



· .....• (Value ~ 2 for this example) 

Figure 4-4: CharKern Figure 

If this pointer is null, kerning is zero. 

A Complete Sample Font 

The sample font below pulls together all of the pieces from the above sections. It defines a 
font whose contents are the four suits from a set of playing cards: clubs, hearts, spades and 
diamonds. 

The suits are defined as proportionally spaced to provide a complete example, even though 
each suit could as easily have been defined in a 14 wide by 8 high matrix. There is an open
centered square, which is used if you ask for a character not defined in this font. 

* A complete sample font. To test this font, the following must be done: 

* * 1. In the AmigaDOS SYS:fonts directory, install a file by the name of 
* test.font, containing 264 bytes. 

* * The first two bytes must contain the value hex Of 00 , the 
* identifier for a font header. 

* * The next word (2 bytes), should contain the value 0001, 
* which is the number of FontContents elements. There is 
* only going to be one font in the directory that this 

2-202 Text 



* font description covers. 

* * Follow this header material with the ascii value for 
* 'testiS'; the next 250 bytes should be set to zero. 
* This represents the pathname for AmigaDOS to follow 
* from the directory SYS:fonts in order to reach this test font. 
* 'test' is the directory it should go to and'S' is the font 
* file itself, as assembled and linked below. 

* * The next two bytes (as one word) contain the font YSize, in 
* this case OOOS. 

* * The next byte contains the font Flags, in this case 00. 

* * The last byte contains the fon t characteristics, in this 
* case hex 60, this says it is a disk-based font (bit 1 set) 
* and the font has been removed (bit 7 set) saying that the 
* font is not currently resident. 

* * Summary (all in hex) of test.font file: 

* * Of 00 0001 test/8 ........ 0008 00 60 
* word word 256-bytes ...... word byte byte 

* * 2. Create a directory named 'test' in SYS:fonts. 

* * Copy the file created by assembling and linking the test font 
* below into a file named '8' in subdirectory SYS:fonts/test. 

* * Use the font under the Notepad program or any other. It 
* defines ascii characters 'a' 'b' 'c' and 'd' only. All 
* other characters print an "unknown character", a rectangle. 

* 
* *------ Included Files -----------------------------------------------

INCLUDE 
INCLUDE 
INCLUDE 

" exec/types.i" 
" exec/nodes.i" 
"libraries/ diskfont.i" 

MOVEQ #O,DO ;provide an easy exit in case somebody 
;tries to RUN this file instead of loading it. 

RTS 
DC.L 0 ; In_Succ 
DC.L 0 ; In_Pred 
DC.B NT_FONT ; In_Type 
DC.B 0 ; In_Pri 
DC.L fontName ; In_Name 
DC.W DFH_ID ; FileID 
DC.W 1 ; Revision 

Text 2-203 



DC.L 0 ; Segment 
fontName: 

DS.B M,ucFONTNAME ; Name 
font: 

DC.L 0 ; In_Succ 
DC.L 0 ; In_Pred 
DC.B NT_FONT ; In_Type 
DC.B 0 ; In_Pri 
DC.L fontName ; In_Name 
DC.L 0 ; mn_ReplyPort 
DC.W fontEnd-font ; mn_Length 
DC.W 8 ; tCYSize 
DC.B 0 ; tCStyle 
DC.B FPF _DESIGNED+FPF _PROPORTIONAL ; tCFlags 
DC.W 14 ; tCXSize 
DC.W 6 ; tCBaseline 

* baseline must be no greater a value than YSize-1, otherwise algorithmically 
* generated sty Ie (italic particularly) can corrupt system memory. 

DC.W 
DC.W 
DC.B 
DC.B 
DC.L 
DC.W 

DC.L 

DC.L 
DC.L 

1 
o 

97 
100 

; tCBoldSmear 
; tCAccessors 
; tCLoChar 
; tCHiChar 

; tCCharData fontData 
8 ; tCModulo, no of bytes to add to 

; data pointer to go from one row of 
; a character to the next row of it. 

fontLoc ; tCCharLoc, bit position in the 
; font data at which the character 
; begins. 

fontSpace ; tCCharSpace 
fontKern ; tCCharKern 

******************************************************************* 
* These are the suits-characters that this font data defines. 
* ascii lower case a,b,c,d. The font descriptor says that there 
* are 4 characters described here. The fifth character in the 
* table is the character that is to be output when there is 
* no character in this character set that matches the ascii 
* value requested. 

2-204 Text 



* 
* 97 98 99 100 256 

*< >< >< >< >< > 
* @OO @OO @ @ @OO ~ 

* OOOO@ OOOO@ @OOOO @OO @OOQ.'@ 00 00 

* ~ @@@OOOO@@ OOOO@ 00 @ 00 00 00 

* @'@@:OOOO ~ OOOOOO@ ~ 00 00 

* ~ @@@ @ @@@ OOOO@ 00 @ 00 00 00 

* OO@ @ OO@ @ 00 00 

* @ @@@@@ @ ~ ~ 

* 
*******************.******* ••••••••••• ********* •• **.** •• *** •• ****** 
fontData: 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

$071 CO,$08040,$070FF ,$OFOOO 
$OFBE3,$OEOEO,$OF8CO,$03000 
$07FCF ,$OF9F3,$026CO,$03000 
$03F9F ,$OFFFF ,$OFFCO,$03000 
$0IFOE,$OB9F3,$026CO,$03000 
$OOEOO,$080EO,$020CO,$03000 
$00403,$OE040,$OF8FF ,$OFOOO 
$00000,$00000,$00000,$00000 
$00000, $00000, $00000, $00000 

* font data is bit-packed edge to edge to save space; thats what the 
* fontLoc is all abou t. 

fontLoc: 
DC.L $OOOOOOOOB,$OOOOBOOOB,$00016ooo7,$OOOIDOOOB 
DC.L $OOO28000C 

* Each pair of words specifies how the characters are bit-packed. For 
* example, the first character starts at bit position 0000, and is OOOB 
* (11) bits wide. The second character starts at bit position OOOB and 
* is OOOB bits wide, and so on. Tells font handler how to unpack the 
* bits from the array. 

fontSpace: 
DC.W 000012,000012,000008,000012,000013 

* fontSpace array: Use a space that is this-wide to contain this character 
* when it is printed. 

fontKern: 
DC. W 00000 1 ,00000 1 ,000001,00000 1,000001 

fontEnd: 
END 

Text 2-20.5 



4.12. SAMPLE PROGRAM 

The following sample program asks AvailFontsO to make a list of the fonts that are avail
able, then opens a separate window and prints a description of the various attributes that 
can be applied to the fon ts, in the font itself. Notice that not all fonts accept all attribu tes 
(garnet9 for example, won't underline). If you run this program, note also that not all fonts 
are as easily readable in the various bold and italicized modes. This rendering is done in a 
fixed manner by software and the fonts were not necessarily designed to accept it. It is 
always best to have a font that has been designed with a bold or italic characteristic built-in 
rather than trying to italicize and embolden an existing plain font. 

/* "whichfont.c" */ 

#define AFTABLESIZE 2000 

#include "exec/types.h" 
#include "exec/io.h" 
#include "exec/memory.h" 

#include "graphics/gfx.h" 
#include "hardware/dmabits.h" 
#include "hardware/custom.h" 
#include "hardware/blit.h" 
#include "graphics/gfxmacros.h" 
#include "graphics/copper.h" 
#include "graphics/view.h" 
#include "graphics/ gels.h" 
#include "graphics/regions.h" 
#include "graphics/clip.h" 
#include "exec/exec.h" 
#include "graphics/text.h" 
#include " graphics/ gfxbase.h" 
#include "devices/keymap.h" 
#include "libraries/dos.h" 
#include "graphics/text.h" 
#include "libraries/diskfont.h" 
#include "intuition/intuition.h" 

struct AvailFonts *af; 
struct AvailFon tsHeader *afh; 
extern int AvailFontsO; 

struct TextFont *tf; 
struct TextAttr ta; 

ULONG DosBase; 
ULONG DiskfontBase; 
ULONG IntuitionBase; 

2-206 Text 



ULONG GfxBase; 

struct NewWindow nw = { 
10, 10, 1* starting position (left,top) *1 
520,40, 1* width, height *1 
-1,-1, 1* detailpen, blockpen *1 
0, 1* flags for idcmp *1 
WINDOWDEPTHIWINDOWSIZINGIWINDOWDRAGISIMPLE_REFRESHI 

ACTIVATEIGI:MMEZEROZERO, 
1* window gadget flags *1 

0, 1* pointer to 1st user gadget *1 
NULL, 1* pointer to user check *1 
"Text Font Test", 1* title *1 
NULL, 1* pointer to window screen *1 
NULL, 1* pointer to super bitmap *1 
100,45, 1* min width, height *1 
540,200, 1* max width, height *1 
WBENCHSCREEN}; 

struct Window *w; 
struct RastPort *rp; 

SHORT text_styles[ ] = { FS_NORMAL, FSF _UNDERLINED, FSF _ITALIC, FSF _BOLD, 
FSF _ITALIC I FSF _BOLD, FSF _BOLD I FSF _UNDERLINED, 
FSF _ITALIC I FSF _BOLD I FSF _UNDERLINED }; 

char *text[ ] = { " Normal Text", " Underlined", " Italicized", " Bold", 
" Bold Italics", " Bold Underlined", 
" Bold Italic Underlined" }; 

char textlength[ ] = { 12, 11, 11, 5, 13, 16, 23 }; 

char *pointsize[] = { " 0" " I" " 2" " 3" " 4" " 5" " 6" " 7" " 8" " 9" , , ~ , , , , , , , 
"10"," 11"," 12"," 13" ," 14" ," IS" ," 15" ," 17" ," 18"," 19", 
"20" ,"21" ,"22" ,"23" ,"24" ,"25" ,"25" ,"27" ,"28" ,"29", 
"30" "31"}' , , 

char fontname[40]; 
char dummy[l00]; 1* provided for string length calculation *1 
char outst[l00]; 1* build something to give to Text, see note in 

* the program body about algorithmically 
* generated styles 

*1 

mainO 
{ 

UBYTE fonttypes; 
int j,k,m; 
SHORT afsize; 
SHORT style; 
SHORT sEnd; 1* numerical position of end of string terminator, 

Text 2-207 



* and coinciden tly the length of the string. * / 

if( (DosBase = OpenLibrary("dos.library", 0)) == NULL) exit(-l); 
if((Diskfon tBase=OpenLibrary(" diskfon t.library" ,0) )==NULL) exit( -4); 
if((In tuitionBase=OpenLibrary(" in tuition. library" ,O))==NULL) exit( -2); 
if(( GfxBase=OpenLibrary(" graphics.library" ,O))==NULL) exit( -3); 

tf=NULL; /* no font currently selected */ 
afsize = AFTABLESIZE; /* show how large a buffer is available */ 
fonttypes = Oxff; /* show us all font types */ 

afh = (struct AvailFontsHeader *) AllocMem(afsize, MEMF _CLEAR); 
if(afh == NULL) exit(-5); 

printf("\nSearching for Fonts\n"); 
AvaiIFonts(afh, afsize, fonttypes); 

af = (struct AvailFonts *) &afh[l]; /* bypass header to get to the 
* first of the availfonts */ 

for (j = 0; j < afh->afh_NumEntries; j++) 
{ 
if((af- >aCAttr.ta_Flags & FPF _REMOVED) II 

(af->aCAttr.ta_Flags & FPF _REVPATH) II 
((af->aCType&AFF -.MEMORY)&& 

(af-> aCAttr.ta_Flags&FPF _DISKFONT))) 
/* do nothing if font is removed, or if 
* fon t designed to be rendered rt- > left 
* (simple example writes left to right) 
* or if font both on disk and in ram, 
* don't list it twice. * / 

/* AvailFonts performs an AddFont to the system list; 
* if run twice, you get two entries, one of "aCType I" saying 
* that the font is memory resident, and the other of "aCType 2" 
* saying the font is disk-based. The third part of the 
* if-statement lets you tell them apart if you are scanning 
* the list for unique elements; it says "if its in memory and 
* it is from disk, then don't list it because you'll find another 
* entry in the table that says it is not in memory, but is on disk. 
* (Another task might have been using the font as well, creating 
* the same effect). 

*/ 

else 
{ 

printf("\nFont name found was: %ls" ,af- >aCAttr.ta_Name); 
printf(" and its point size is: % ld",af->aCAttr.ta_YSize); 
/* Style parameter is in af->aCAttr.ta_Style, 
* Flags parameter is in af- > af~ttr.ta_Flags, 

2-208 Text 



*/ 
} 

af++; 
} 
/* now that we've listed the fonts, lets look at them */ 

w = (struct Window *)OpenWindow(&nw); 
rp = w- > RPort; 

for(m=O; m<2; m++) /* do normal video, then inverse video */ 
{ 

af = (struct AvailFonts *)&afh[lj; /* reset value of af to original */ 
SetAPen(rp,l); 

if(m == O)SetDrMd(rp,JAMl); 
else SetDrMd( rp,JAMl +INVERSVID); 

/* now print a line that says what font and what style it is */ 

for (j=0; j < aCh->afh_NumEntries; j++) 
{ 
CStringAppend( &fon tname[Oj ,af- > aCAttr.ta_Name); 

/* copy name into build-name area */ 
/* already has ".font" onto end of it */ 

ta.ta_Name = &fontname[Oj; 
ta.ta_YSize = af->aCAttr.ta_YSize; /* ask for this size */ 
ta.ta_Style = af->aCAttr.ta_Style; /* ask for designed style */ 
ta.ta_Flags = FPF _ROMFONTIFPF J)ISKFONTI 

FPF YROPORTIONALIFPF _DESIGNED; 
/* accept it from anywhere it exists */ 

style = ta.ta_Style; 

if(!((af- >aCAttr.ta_Flags & FPF _REMOVED) II 
(af->aCAttr.ta_Flags & FPF_REVPATH) II 
(( aC- > aCType&AFF _MEMORY)&& 
(af- >aCAttr.ta_Flags&FPF J)ISKFONT)))) 

/* this is an IF -NOT, the reverse of the earlier if-test on 
* these same parameters 

*/ 
{ 

tf = (struct TextFont *) OpenDiskFont(&ta); 

if (tf != 0) 
{ 
SetFont(w->RPort, tf); 
for(k=O; k<7; k++) 

{ 

Text 2-209 



style = text_styles[k]; 
SetSoftSty le( w- > RPort,style,255}; 

SetRast(rp,O};/* erase any previous text */ 
Move(rp,1O,20); /* move down a bit from the top */ 
sEnd = CStringAppend(&outst[O],af->aCAttr.ta_Name); 
sEnd = sEnd + CStringAppend(&outst[sEnd]," "); 
sEnd = sEnd + CStringAppend(&outst[sEnd]' 

pointsize[af- > aCAttr.ta_ YSize]); 
sEnd = sEnd + CStringAppend(&outst[sEnd]''' Points, "); 
CStringAppend( &outst [sEnd] ,text[k]); 
Text( rp, &ou tst [0] ,CStringAppend( &d ummy [O],&ou tst [0])); 

/* Have to build the string before sending it out to 
* text IF ALGORITHMICALLY GENERATING THE STYLE since 
* the kerning and spacing tables are based on the 
* vanilla text, and not the algorithmically generated 
* style. If you send characters out individually, 
* it is possible that the enclosing rectangle of 
* a later character will chop off the trailing edge 
* of a preceding character 

*/ 

/* ************************************************** 
This alternate method, when in INVERSVID, exhibits the 
problem described above. 

Text(rp,af- > aCAttr. ta_Name,STRLEN( af- > aCAttr.ta_Name)); 
Text(rp," ",2); 
Text(rp,pointsize[af- > aCAttr.ta_ YSize],2); 
Text(rp" Points " 9)· J , , , 

Text( rp, text[k], textlength [k]); 
************************************************** */ 

Delay( 40); /* use the DOS time delay function 
* specifies 60ths of a second * / 

} 
CloseFont(tf); /* close the old one */ 

/* NOTE: 
* Even though you close a font, it doesn't get unloaded 
* Memory unless a font with a different name is specified 
* for loading. In this case, any font (except the topaz 
* set) which has been closed can have its memory area 
* freed and it will no longer be accessible. If you close 
* a font to go to a different point-size, it will NOT cause 
* a disk-access. 

* * ALSO NOTE: 
* Loading a font loads ALL of the point 

2-210 Text 



} 

* sizes contained in that font's directory!!!! 

*/ 

} /* end of if-tf-ne-O * / 
} /* end of if-(in memory but from disk} */ 

af++; 
} /* Do next font now */ 

} /* end of for-loop, controlled by m */ 

FreeMem( afh ,AFTABLESIZE); 
Close Window( w); 
CloseLibrary(IntuitionBase ); 
CloseLibrary(DosBase ); 
CloseLibrary(Diskfon tBase); 
CloseLibrary( GfxBase); 

/* copy a string and return the number of characters added to 
* a string. Effectively returns the length of the string if 
* not adding anything */ 

int CStringAppend(dest, source) 
char *dest; 
char *source; 
{ 

} 

int i=O; 
char *s = source; 
char *d = dest; 
while (( i <79 )&&( *d = *8 )) { d++; s++; i++; } 

/* if find a NULL in source, end the copy, but the NULL itself 
* gets copied over to the destination. If no NULL, then 79 
* characters get copied, then a terminating NULL is added * / 

if(i < 79) return{i); 
else {*d = 0; return{i); } 

/* value returned is the position of the terminating NULL 
* to allow other strings to be appended simply using the 
* next append command in sequence * / 

Text 2-211 





Part ITI 





Chapter 1 

Audio Device 

This chapter describes the functions and commands of the audio device. 

1.1. INTRODUCTION 

The Amiga has four hardware audio channels-two of the channels produce audio output 
from the left audio connector and two from the right. These channels can be used in many 
ways. You can combine a right and a left channel for stereo sound, use a single channel, or 
playa different sound through each of the four channels. 

The audio software is implemented as a standard Amiga input/output device with com
mands that allocate audio channels and control the sound output. 

Some of the audio device commands isolate the programmer from some of the idiosyncrasies 
of the special-chip hardware. You can also produce sound on the Amiga by directly accessing 
the hardware registers. For certain types of sound synthesis, this is more CPU-efficient. 
Some of the audio commands make most sound synthesis easier. Other commands enable 
your program to co-reside with other programs using the multi-tasking environment to pro
duce sound at the same time. Programs can co-reside because the audio device handles allo
cation of audio channels and arbitrates among programs competing for the same resources. 

Most personal computers that produce sound have hardware designed for one specific syn
thesis technique. The Amiga uses a very general method of digital sound synthesis which is 
quite similar to the method used in digital hi-fi components and state-of-the art keyboard 
and drum synthesizers, with one significant difference. The Amiga has a tightly-coupled 
68000 microprocessor capable of generating and modifying the digital data while the sound is 
playing. How much of the CPU you can afford to use for sound synthesis depends on your 
application. 

For programs that can afford the memory, playing sampled sounds gives you a simple and 
very CPU-efficient method of sound synthesis. When a sound is sampled, the amplitude of 
the waveform that represents a sound is measured (sampled) by an analog-to-digital 

Aud io Dev ice 3-1 



converter at a fixed interval (period) in time. This results in a table of numbers. When the 
sound is played back by the Amiga, the table is fed by a DMA channel into one of the four 
digital-to-analog converters in the custom chips. The digital-to-analog converter converts the 
samples into voltages that can be played through amplifiers and loudspeakers, reproducing 
the sound. 

On the Amiga you can create sound data in many other ways. For instance, you can use tri
gonometric functions in your programs to create the more traditional sounds-sine waves, 
square waves, or triangle waves by using tables that describe their shape. Then you can 
combine these waves for richer sound effects by adding the tables together. Once the data is 
entered, you can modify it with techniques described in section 1.3, "Audio Functions and 
Commands". 

For information about the limitations of the audio hardware and suggestions for improving 
system efficiency and sound quality, refer to the Amiga Hardware ReJerence ~fanual. 

The following works are recommended for information about computer sound generation m 
general: 

o Musical Applt'cations oj Microprocessors by Hal Chamberlain (Hayden, 1980) 

o Foundations oj Computer Music by Curtis Roads and John Strawn (Cambridge: MIT 
Press, 1985) 

o Dig£tal A udio Signal Processing by John Strawn (Los Altos, California: William 
Kaufmann, Inc., 1985) 

1.2. DEFINITIONS 

Some of the terms used in the following discussions may be unfamiliar. Some of the more 
important terms are defined below. 

buffer 
An area of con tin uous memory, typically used for storing blocks of data. 

amplitude 
The height of a waveform, corresponds to the amount of voltage or current m the 
electronic circuit. 

amplitude modulation 
A means of producing special audio effects by using one channel to alter the ampli
tude of another. 

3-2 Audio Device 



cycle 
One repetition of a waveform. 

channel 
One "unit" of the audio device. 

frequency 
The number of times per second a waveform repeats. 

frequency modulation 
A means of producing special audio effects by using one channel to affect the period 
of the waveform produced by another channel. 

period 
The time elapsed between the output of successive sound samples, III units of system 
clock ticks. 

precedence 
Priority of the user of a sound channel. 

sample 
Byte of audio data, one of the fixed-interval points on the waveform. 

volume 
The decibel level of sound coming from an audio channel. 

waveform 
Graph that shows a model of how the amplitude of a sound vanes over time
usually over one cycle. 

1.3. AUDIO FUNCTIONS AND COMMANDS 

The first part of this section gives some general information about audio functions and com
mands. Following the general information there is a brief description of each command. For 
complete specifications, see the command and functivn reference section and the header files, 
audio.i and audio.h in the appendixes to this manual. 

Audio Device 3-3 



Audio as a Device 

The audio device has much in common with the other I/O devices, so general information 
about device I/O is not repeated here. Before reading further, you should become familiar 
with the general description of device I/O in the chapter in Part I called "I/O". 

Audio device commands use an extended IORequest block instead of the standard 
IORequest block. When usmg an audio command, refer to the audio.i and audio.h files for 
the extended fields. 

Scope of Commands 

All audio commands (except for CMD_WRITE, ADCMD_WAITCYCLE, and CMD_READ) 
can operate on multiple channels. CMD_WRITE, ADCMD_WAITCYCLE, and CMD_READ 
operate on only one channel. 

You tell the audio device driver which channels you wan t a command to act upon by setting 
the least significant four bits of the io_unit field of the IORequest block. You specify a 1 
in the position of the channel you want to affect and a 0 in all other positions. For instance, 
you specify 5 to use channels 0 and 2: 

0101 

Certain of the audio device commands are actually higher level functions in that they execute 
more than one audio device command with a single call. For example, the OpenDeviceO 
function, when used for the audio device, can perform an ADCMD_ALLOCATE command so 
that you can start writing data immediately. The CloseDeviceO function can perform a 
ADCMDJREE command to relinquish the channel(s) so you can exit immediately after clos
ing the audio device. 

3-4 Audio Device 



Allocation and Arbitration 

You request the use of one or more audio channels by performing the ADC:\ID __ ALLOCATE 
command. If possible, ADCMD_ALLOCATE obtains the channels for you. When you 
request a channel, you specify a precedence number from -128 (the lowest precedence) to 127 
(the highest). If a channel you want is being used and you have specified a higher precedence 
than the current user, ADCMD_ALLOCATE will "steal" the channel from the other user. 
Later on, if your precedence is lower than that of another user who is performing an alloca
tion, the channel may be stolen from you. If, after allocating a channel with the appropriate 
precedence, you raise the precedence to the maximum precedence with the 
ADCMD_SETPREC command, then no other allocation call can steal a channel from you. 
When you've finished with a channel, you must relinquish it with the ADCMD_FREE com
mand to make it available for other users. 

Table 1-1 shows suggested precedence values. 

Audio Device 3-.5 



Table 1·1: Suggested Precedences for Channel Allocation 

Predecence 

127 

90 - 100 

80 - 90 

75 

50 - 70 

-50 - 50 

·70 . 0 

-100 - ·80 

-128 

Type of Sound 

Unstoppable. Sounds first allocated at lower 
precedence, then set to this highest level. 

Emergencies. Alert, urgent situation that 
requires immediate action. 

Annunciators. Attention, bell (CTRL-G). 

Speech. Synthesized or recorded speech 
(narrator .device). 

Sonic cues. Sounds that provide informa
tion that is not provided by graphics. Only 
the beginning of each sound (enough to 
recognize it) should be at this level; the rest 
should be set to sound effects level. 

Nfusic program. Musical notes in music
oriented program. The higher levels should 
be used for the attack portions of each note. 
Notes should separately allocate channels at 
the start and free them at the end. 

Sound effects. Sounds used in conjunction 
with graphics. More important sounds 
should use higher levels. 

Background. Theme music and restartable 
background sounds. 

Silence. Lowest level (freeing the channel 
completely is preferred). 

When you first perform a channel allocation request, the audio device provides you with an 
"allocation key" that is unique to the granting of your current allocation request. The allo
cation key is also copied in the ioa_AllocKey field of your I/O control block and is used by 
all audio commands. Later, as you queue output requests to the audio device, the device can 
compare the allocation key in your request block to the key currently assigned for that chan
nel (or channels). If the channel is stolen from you by another channel user that has a higher 
precedence, the copy of the key maintained by the audio channel is changed. If you attempt 
to perform a command on a channel that has been stolen from you, an 
AUDIO_NOALLOCATION error is returned and the bit in the io_unit field corresponding 
to the stolen channel is cleared so you know which channel was stolen. 

There is no specific separate "audio resource". Instead, the audio device, with its allocation 
key management, arbitrates the use of the physical audio resources. 

3-6 Audio Device 



Performing Audio Commands 

To perform an audio command, sometimes you must use the system function BeginIOO 
rather than SendlOO or DoIOO. This is because the latter two functions clear the device
specific bits in the io_Flags field of the IORequest (bits 4 thru 7). Some of the audio com
mands use these bits to select options. If you use SendIOO or DoIOO, the flags will be set 
to 0 (FALSE), which may not be desirable. 

Command Types 

Commands and functions for audio use can be divided into three categories: system func
tions, allocation/arbitration commands, and hardware control commands. There are also 
three audio device flags. 

The system functions are 

o OpenDeviceO 

o CloseDeviceO 

o BeginIOO 

o AbortI00 

The allocation/arbitration commands are 

o ADCMO_ALLOCATE 

o ADCMD_SETPREC 

o ADCMD_LOCK 

Audio Device 3-7 



The hardware control commands are 

0 CMD_WRITE 

0 ADCMD_FINISH 

0 ADCMD_PERVOL 

0 CMD_FLUSH 

0 CMD_RESET 

0 ADCMD_ WAITCYCLE 

0 CMD_STOP 

0 CMD_START 

0 CMD_READ 

The following paragraphs describe each function and command. 

System Functions 

These are standard Amiga device functions. They are used for communication with the dev
Ice. 

OpenDeviceO 

The audio device adds to the normal operation of this function. When you open the audio 
device with a nonzero ioa_Length field, then OpenDeviceO will attempt to allocate chan
nels based on allocation mask just as if you called the ADCMD_ALLOCATE command. 
This allocation is done with the ADIOF _NOWAIT flag set, so ADCMD_ALLOCA TE will 
return immediately if it fails. If you are opening the device and are not ready to have a 
channel allocated to you just then, set the ioa_Length field to zero. 

3-8 Audio Device 



CloseDeviceO 

When used with the audio device, CloseDeviceO performs an ADCMD_FREE command on 
any channels selected by the io_Unit field. If you have different allocation keys for the 
channels you are using, you can't use this function to close all of them at once. Instead, you 
will have to issue one ADCMD_FREE command for each unique allocation that you are 
using. After issuing the ADCMD_FREE command(s), you can call CloseDeviceO. 

BeginIOO 

This function differs from normal only by taking a pointer to an IOAudio structure as its 
only a.rgumen t. 

AbortIOO 

This function can be used to cancel requests for ADCMDftLOCATE, ADCMD_LOCK, 
CMD_WRITE, or ADCMD_WAITCYCLE. When used with the audio device, AbortIOO 
alwa.ys succeeds. 

Allocation/Arbitration Commands 

These commands allow the audio channels to be shared among different tasks and programs. 
None of these commands can be called from interrupt code. 

Audio Device 3-9 



ADCMD_ALLOCATE 

This command gives access to channels. You perform this command with a pointer to a data 
array that describes the channels you want to allocate. For example, if you want a pair of 
stereo channels and you have no preference about which of the left and right channels the 
system will choose for the allocation, you can pass the command a poin ter to an array con
taining 3, 5, 10, and 12. Channels 0 and 3 output sound on the left side, and channels 1 and 
2 on the right side. The following table shows how this array corresponds to all the possible 
combinations of a right and a left channel. 

Table 1-2: Possible Channel Combinations 

Decimal 
Channel 3 Channel 2 Channell Channel 0 Value of 

left right right left Allocation Mask 

0 0 1 1 3 
0 1 0 1 5 
1 0 1 0 10 
1 1 0 0 12 

How ADCMD...A,LLOCATE Operates 

The ADCMD_ALLOCATE command tries the first combination, 3, to see if channels 0 and 1 
are not being used. If they are available, the 3 is copied into the io_unit field and you get 
an allocation key for these channels. You copy the key into other I/O blocks for the other 
commands you may want to perform using these channels. When finished with the chan nels, 
you perform the ADCMD_FREE command. If channels 0 and 1 are being used, 
ADCMO_ALLOCATE tries the other combinations in turn. If all the combinations are in 
use, AOCMD_ALLOCATE checks the precedence number of the users of the channels and 
finds the combination that requires it to steal the channel or channels of the lowest pre
cedence. If all the combinations require stealing a channel or channels of equal or higher pre
cedence, then the I/O request ADCMD_ALLOCATE fails. Precedence is in the In_Pri field 
of the io_Message in the IORequest block you pass to ADCMO_ALLOCATE; it has a 
value from -128 to 127. 

3-10 Audio Device 



The ADIOF _NOW AIT Flag 

If you need to produce a sound right now and otherwise you don't want to allocate, set the 
ADIOF _NOW AIT flag to 1. This will cause the command to return an 
IOERR_ALLOCF AILED error if it cannot allocate any of the channels. If you are producing 
a non-urgent sound and you can wait, set the ADIOF _NOWAIT flag to O. Then, the 
IORequest block returns only when you gets the allocation. If ADIOF _NO WAIT is set to 
0, the audio device will continue to retry the allocation request whenever channels are freed 
until it is successful. If the program decides to cancel the request, AbortIOO can be used. 

ADCMD_ALLOCATE Examples 

Following are some more examples of how to tell ADCMD_ALLOCATE your channel prefer
ences. If you want any channel but want to try to get a left channel first, use an array con
taining 1, 8, 2, and 4: 

0001 
1000 
0010 
0100 

If you want only a left channel, use I and 8 (channels 0 and 3) 

0001 
1000 

For a right channel, use 2 and 4 (channels I and 2): 

0010 
0100 

To produce special effects, such as hardware-controlled amplitude and frequency mod u lation, 
you may need to allocate channels that can be "attached" to each other. The following allo
cation map specifies the allowable combinations. (For further information about amplitude 
and frequency modulation, see the Amiga Hardware Reference Manual.) 

Audio Device 3-11 



0011 3 
0110 6 
1100 12 

If you want all the channels: 

1111 15 

If you want to allocate a channel and keep it for a sound that can be interrupted and res
tarted, allocate it at a certain precedence. If it gets stolen, allocate it again with the 
ADIOF _NOWAIT flag set to O. When the channel is relinquished, you will get it again. 

The Allocation Key 

If you want to perform multi-channel commands, all the channels must have the same key 
since the IORequest block has only one allocation key field. The channels must all have 
that same key even when they were not allocated simultaneously. If you want to use a key 
you already have, you can pass in that key in the allocation key field and 
ADCMD~LLOCATE can allocate other channels with that eXIstmg key. The 
ADCMD~LLOCATE command only returns you a new and unique key if you pass in a zero 
in the allocation key field. 

ADCMD_FREE 

ADCMD_FREE is the opposite of ADCMD_ALLOCATE. When you perform 
ADCMD_FREE on a channel, it does a CMD_RESET command on the hardware and 
"unlocks" the channel. It also checks to see if there are other pending allocation requests. 
You do not need to perform ADCMD_FREE on channels stolen from you. 

3-12 Audio Device 



ADCMD_SETPREC 

This command changes the precedence of an allocated channel. As an example of the use of 
ADCMD_SETPREC, assume that you are making sound of a chime that takes a long time to 
decay. It is important that user hears the chime but not so important that he hears it decay 
all the way. You could lower precedence after the initial attack portion of the sound to let 
another program steal the channel. You can also set the precedence to maximum (1~7) if 
you cannot have the channel(s) stolen from you. 

ADCMD_LOCK 

The ADCMD_LOCK command performs the "steal verify" function. When a user is 
attempting to steal a channel or channels, ADCMD_LOCK gives you a chance to clean up 
before the channel is stolen. You perform a ADCMO_LOCK command right after the 
ADCMD_ALLOCATE command. ADCMD_LOCK does not return until a higher priority 
user attempts to steal the channel(s) or you perform an ADCMD_FREE command. If some
one is attempting to steal, you must finish up and ADCMD_FREE the channel as quickly as 
possible. 

ADCMD_LOCK is only necessary if you want to store directly to the hardware registers 
instead of using the device commands. If your channel is stolen, you don't get notified 
without the ADCMD_LOCK command, and this could cause problems for the user who has 
stolen the channel and is now using it. ADCMD_LOCK sets a switch that is not cleared 
until you perform an ADCMD_FREE command on the channel. Canceling an 
ADCMO_LOCK request with AbortIOO will not free the channel. 

The following outline describes how ADCMD_LOCK works when a channel IS stolen and 
when it is not stolen. 

1. User A allocates a channel. 

2. User A locks the channel. 

If User B allocates the channel with a higher precedence: 

Audio Device 3-13 



3. User B's ADCMD_ALLOCATE command is suspended (regardless of the setting of 
the ADIOF _NOWAIT flag). 

4. User A's ADCMD_LOCK command IS replied with an error 
(ADIOF _CHANNELSTOLEN). 

5. User A does whatever is needed to finish up when a channel is stolen. 

6. User A frees the channel with ADCMD_FREE. 

7. User B's ADCMD_ALLOCATE command is replied. Now User B has the channel. 

If the channel is not allocated by another user: 

3. User A finishes the sound. 

4. User A performs the ADCMD_FREE command. 

5. User A's ADCMD_LOCK command is replied. 

Never make the freeing of a channel (if the channel is stolen) dependent on allocating 
another channel. This may cause a deadlock. To keep a channel and never let it be stolen, 
set precedence to maximum (127). Don't use a lock for this purpose. 

Hardware Control Commands 

These commands change hardware registers and affect the actual sound output. 

CMD_WRITE 

This is a single-channel command and is the main command for making sounds. You pass 
the following to CMD_ WRITE: 

3-14 Audio Device 



o A pointer to the waveform to be played (must start on a word boundary and must 
be in memory accessible by the custom chips, MEMF _CHIP), 

o The length of the waveform in bytes (must be an even number), and 

o A count of how many times you want to play the waveform. 

If the count is 0, CMD_WRITE will play the waveform from beginning to end, then repeat 
the waveform continuously until something aborts it. 

If you want period and volume to be set at the start of the sound, you set the \\lRITE 
command's ADIOF _PERVOL flag. If you don't, the previous volume and period for that 
channel will be used. This is one of the flags that would be cleared by DolOO and 
SendlOO. The ioa_ WriteMsg field in the lORequest block is an extra message field that 
can be replied at the start of the CMD_ WRITE. This second message is used only to tell 
you when the CMD_WRITE command starts processing, and is used only when the 
ADIOF _ WRITEMSG flag is set to 1. 

If a CMD_STOP has been performed, the CMD_WRITE requests are queued up. 

The CMD_WRITE command does not make its own copy of the waveform, so any 
modification of the waveform before the CMD_ WRITE command is finished may affect the 
sound. This is sometimes desirable for special effects. 

To splice together two waveforms without clicks or pops, you must send a separate, second 
GMD_WRITE command while the first is still in progress. This technique is used in double
buffering, which is described below. 

Double-Buffering 

By using two waveform buffers and two CMD_WRITE requests you can compute a 
waveform continuously. This is called double-buffering. The following describes how you use 
dou ble- buffering. 

1. Compute a waveform in memory buffer A. 

2. Issue CMD_WRITE command A with io_Data pointing to buffer A. 

3. Continue the waveform in memory buffer B. 

4. Issue CMD_WRITE command B with io_Data pointing to Buffer B. 

Audio Device 3-1.5 



5. Wait for CMD_ WRITE command A to finish. 

6. Continue the waveform in memory buffer A. 

7. Issue CMD_WRITE command A with io_Data pointing to Buffer A. 

8. Wait for CMD_WRITE command B to finish. 

9. Loop back to step 3 until the waveform is finished. 

10. At the end, remember to wait until both CMD_WRITE command A and 
CMD_WRITE command B are finished. 

ADCMD _FINISH 

The ADCMD_FINISH command aborts (calls AbortIOO) the current write request on a 
channel or channels. This is useful if you have something playing, such as a long buffer or 
some repetitions of a buffer, and you want to stop it. 

ADCMD_FINISH has a flag you can set (ADIOF _SYNCCYCLE) that allows the waveform to 
finish the current cycle before aborting it. This is useful for splicing together sounds at zero 
crossings or some other place in the waveform where the amplitude at the end of one 
waveform matches the amplitude at the beginning of the next. Zero crossings are positions 
within the waveform at which the amplitude is zero. Splicing at zero crossings gives you 
fewer clicks and pops when the audio channel is turned off or the volume is changed. 

ADCMD_PERVOL lets you change the volume and period of a CMD_WRITE that is in pr<>
gress. The change can take place immediately or you can set the ADIOF _SYNCCYCLE flag 
to have the change occur at the end of the cycle. 

This is useful to produce vibratos, glissandos, tremolos, and volume envelopes in music or to 
change the volume of a sound. 

3-16 Audio Device 



CMD_FLUSH 

CMD_FLUSH aborts (calls AbortIOO) all CMD_WRITEs and all ADCMD_WAITCYCLEs 
that are queued up for the channel or channels. It does not abort ADCMD_LOCKs (only 
ADCMD_FREE clears locks). 

CMD_RESET 

CMD_RESET restores all the audio hardware registers. It clears the attach bits, restores the 
audio interrupt vectors if the programmer has changed them, and performs the 
CMD_FLUSH command to cancel all requests to the channels. CMD_RESET also unstops 
channels that have had a CMD_STOP performed on them. 

CMD_RESET does not unlock channels that have been locked by ADCMD_LOCK. 

ADCMD_WAITCYCLE 

This is a single-channel command. ADCMD_WAITCYCLE is replied when the current cycle 
has completed, that is, after the current CMD_ WRITE command has reached the end of the 
current waveform it is playing. If there is no CMD_WRITE in progress, it returns immedi
ately. 

Audio Device 3-17 



This command stops the current write cycle immediately. If there are no CMD_WRITEs in 
progress, it sets a flag so any future CMD_WRITEs are queued up and don't begin process
ing (playing). 

CMD_START 

CMD_START undoes the CMD_STOP command. Any cycles that were stopped by the 
CMD_STOP command are actually lost beca.use of the impossibility of determining exactly 
where the DMA ceased. If the CMD_ WRITE command was playing two cycles and the first 
one was playing when CMD_STOP was issued, the first one is lost and the second one will be 
played. 

This command is also useful when you are playing the same wave form with the same period 
out of multiple channels. If the channels are stopped, when the CMD_WRITE commands 
are issued, CMD_START exactly synchronizes them, avoiding cancellation and distortion. 
When channels are allocated, they are effectively started by the CMD_START command. 

CMD_READ 

CMD.-R,EAD is a single-channel command. Its only function is to return a pointer to the 
current CMD_WRITE command. It enables you to determine which request is being prer 
cessed. 

3-18 Audio Device 



1.4. EXAMPLE PROGRAMS 

1.5. Stereo Sound Example 

This program demonstrates allocating a stereo pair of channels using the 
allocation/arbitration commands. For simplicity, it uses no hardware control commands and 
writes directly to the hardware registers. To prevent another task from stealing the channels 
before writing to the registers it locks the channels. 

/********************************************************* 

* * Stereo Sound Example 

* 
* Sam Dicker 
* 3 December 1985 
* (created: 17 October 1985) 

* 
*********************************************************/ 

#include "exec/types.h" 
#include "exec/memory.h" 
#include "hardware/custom.h" 
#include "hardware/dmabits.h" 
#include "libraries/dos.h" 
#include "devices/audio.h" 

/* audio channel assignment */ 
#define LEFTOB 0 
#define RIGHTOB 1 
#define RIGHT1B 2 
#define LEFT1B 3 
#define LEFTOF 1 
#define RIGHTOF 2 
#define RIGHT1F 4 
#define LEFT1F 8 

/* used by example sound */ 
#define WAVELENGTH 2 
#define CLOCK 3579545 
#define LEFTFREQ 50.0 
#define RIGHTFREQ 50.1 
#define MAXVOLU~1E 64 
#define SOUNDPREC -40 

Audio Device 3-19 



extern struct MsgPort *CreatePortO; 
extern struct AudChannel aud[]; 
extern UWORD dmacon; 

/* four possible stereo pairs */ 
UBYTE allocationMap[] = { 

LEFTOF I RIGHTOF, 
LEFTOF I RIGHTIF, 
LEFTIF I RIGHTOF, 
LEFTIF I RIGHTIF 

}; 

struct IOAudio *allocIOB = 0; /* used by cleanUp to determine 
* what needs to be 'cleaned up' */ 

struct IOAudio *lockIOB = 0; 
struct Device *device = 0; 
struct MsgPort *port = 0; 
BYTE *squareWaveData = 0; 

mainO 
{ 

UBYTE channels; 
struct AudChannel *leftRegs, *rightRegs; 

/* allocate I/O blocks from chip public memory and initialize to zero */ 

if (((aBocIOB = (struct IOAudio * )AllocMem(sizeof{struct IOAudio), 
MEMF _PUBLIC I MEMF _CLEAR)) == 0) " 
({lockIOB = (struct IOAudio *)AllocMem(sizeof(struct IOAudio), 
MEMF_PUBLIC I MEMF_CLEAR)) == 0)) 

cleanUp("Out of memory"); 

/* open the audio device * / 

if (OpenDevice(AUDIONAME, 0, allocIOB, 0) != 0) 
clean U p(" Cannot open audio device"); 

device = allocIOB- > ioa_Request.io_Device; 

/* initialize I/O block for channel allocation */ 

allocIOB- >ioa_Request.io_Message.mn_Node.ln_Pri = SOUNDPREC; 
if ({port = CreatePort("sound example", 0)) == 0) 

cleanUp("Cannot create message port"); 
allocIOB- > ioa_Request.io_Message.mn_ReplyPort = port; 
aliocIOB- > ioa_Request.io_Command = ADCMD_ALLOCATE; 

/* if no channel is available immediately, abandon allocation */ 
aliocIOB->ioa_Request.io_Flags = ADIOF _NOWAIT; 
allocIOB- >ioa_Data = allocationMap; 

3-20 Audio Device 



aliocIOB- > ioa_Length = sizeof( allocationMap); 

1* allocate channels now. Alternatively, ADCMD_ALLOCATE could have been 
* preformed when audio was first OpenDevice'd by setting up ioa_Data and 
* ioa_Length before OpenDevice'ing * / 

BeginIO( aliocIOB); 
if (WaitIO(alloclOB)) 

cleanUp("Channel allocation failed"); 

1* initialize 1/0 block for to lock channels *1 

lockIOB->ioa_Request.io_Message.mn_ReplyPort = port; 
lockIOB- >ioa_Request.io_Device = device; 

/* one lock command to lock both channels */ 
lockIOB- >ioa_Request.io_Unit = allocIOB- > ioa_Request.io_Unit; 
10ckIOB->ioa_Request.io_Command = ADCMD_LOCK; 
lockIOB- > ioa_AllocKey = allocIOB- > ioa_AllocKey; 

/* lock the channels */ 
SendIO(lockIOB); 

I * if lock returned there is an error * / 
if (CheckIO(lockIOB)) 

/* the channel must have been stolen * / 
cleanUp("Channel stolen"); 

/* compute the hardware register addresses *1 

channels = (ULONG)(allocIOB->ioa_Request.io_Unit); 
leftRegs = (channels & LEFTOF) ? &aud[LEFTOB] : &aud[LEFTIBJ; 
rightRegs = (channels & RIGHTOF) ? &aud[RIGHTOB] : &aud[RIGHT1B]; 

/* allocate waveform memory from chip addressable ram. AIlocMem always 
* allocates memory on a word boundary which is necessary for audio 
* waveform data * / 

if ((squareWaveData = (BYTE *)AllocMem(WAVELENGTH, MEMF _CHIP)) == 0) 
cleanUp("Out of memory"); 

1* a two cycle square wave (how complex!) *1 

squareWaveData[O] = 127; 
squareWaveData[l] = -127; 

1* these registers are described in detail in the Amiga Hardware Manual */ 

1* write only hardware registers must be loaded separately. 

Audio Device 3-21 



} 

* <reg1> = <reg2> = <data> may not work with some compilers */ 
leftRegs- >ac_ptr = {UWORD *}squareWaveData; 
righ tRegs- > ac_ptr = (UWORD * )square WaveData; 
leftRegs- > ac_Ien = WAVELENGTH / 2; 
righ tRegs- > ac_Ien = WAVELENGTH / 2; 

/* a slightly different frequency is used in each channel to make the 
* sound a bit more in teresting * / 

leftRegs->ac-per = CLOCK / LEFTFREQ / WAVELENGTH; 
rightRegs->ac_per = CLOCK / RIGHTFREQ / WAVELENGTH; 

leftRegs->ac_vol = MAXVOLUME; 
rightRegs->ac_vol = MAXVOLUME; 
dmacon = DMAF _SETCLR I channels < < DMAB_AUDO; 

/* play sound until the user press CTRL-C or lock is replied*/ 

pu ts(" Press CTRL-C to stop"); 
while(Wait(SIGBREAKF _CTRL_C 11 < < port->mp_SigBit) != SIGBREAKF _CTRL_C) 

/* each time the port signals, check if lock is replied 
* (a sign al is not gu aran teed to be valid) * / 

if (CheckIO(lockIOB)) { 
puts(" Channel stolen"); 
break; 

} 

/* free any allocated audio channels. In this instance explicitly 
* performing the ADCMD_FREE command is unnecessary. CloseDevice'ing 
* with allodOB performs it and frees the channels automaticly */ 

allodOB- >ioa_Request.io_Command = ADCMD_FREE; 
DoIO( allocIOB); 

/* free up resources and exit */ 
clean U pC""); 

/* print an error message and free allocated resources */ 

clean U p( message} 
TEXT *message; 
{ 

pu ts{ message}; 
if (squareWaveData != 0) 

FreeMem{squareWaveData, WAVELENGTH); 
if (port != 0) 

3-22 Audio Device 



} 

DeletePort(port ); 
if (device != 0) 

CloseDevice( allocIOB); 
if (lockIOB != 0) 

FreeMem{lockIOB, sizeof(struct IOAudio)); 
if (allocIOB != 0) 

FreeMem{allocIOB, sizeof(struct IOAudio)); 
exitO; 

Double-duffered Sound Synthesis Example 

This program demonstrates double-buffered writing to an audio channel using the hardware 
control commands. This technique can be used to synthesize sound in "real-time". This 
program uses the mouse as a simple input device and to keep the example simple, directly 
reads the mouse register. 

Real-time synthesis code should always be written in the fastest assembly language possible 
(unlike this example) and should try to pre-compute as much data as possible. In this exam
ple, a sine wave lookup table is pre-computed. Then, while the sound is being played, the 
table is scanned at a rate dependent on a variable (frequency) and the scanned values are 
copied into temporary buffers. This frequency variable is modified by mouse movement, 
effectively making the mouse a pitch control. In a "real" program, since pitch is the only 
parameter being controlled, it would be much more efficient to modify the "period" and play 
one fixed sine wave waveform buffer (or one waveform for each octave). 

Two temporary buffers are used. One must be computed and sent to the audio device before 
the other one has finished playing. Otherwise, the audio device turns off the sound, making 
a pop. This program runs in software interrupts to insure that it gets adequate processor 
time to avoid this problem. 

Audio Device 3-23 



/********************************************************* 

* 
* Double-Buffered Sound Synthesis Example 

* 
* Sam Dicker 
* 3 December 1985 (created: 8 October 1985) 

* 
*********************************************************/ 

#include "exec/types.h" 
#include "exec/memory.h" 
#include "exec/interrupts.h" 
#include "exec/errors.h" 
#include "hardware/custom.h" 
#include "libraries/dos.h" 
#include "devices/audio.h" 

#define BUFFERSIZE250 
#define SINETABLEPOWER2 10 
#define SINETABLESIZE (1 < < SINETABLEPOWER2) 
#define SINETABLESTEP (2 * 3.141593 / SINETABLESIZE) 

/* mouse register addresses * / 
#define XMOUSEREG (*((BYTE *)&joyOdat + 1)) 
#define YMOUSEREG (-(*(BYTE *)&joyOdat)) 

extern struct MsgPort *CreatePortO; 
extern struct Library *OpenLibraryO; 
extern struct Ta.sk *FindTa.skO; 
extern UWORD joyOdat; 

/* channel allocation map */ 
UBYTE allocationMap[] = { 1, 8, 2, 4 }; 

struct Library *MathBa.se = 0; /* used by cleanUp to determine 
* what needs to be 'cleaned up' */ 

struct NIsgPort *allocPort = 0; 
struct IOAudio *allocIOB = 0; 
struct Device *device = 0; 
struct Interrupt *interrupt = 0; 
struct MsgPort *soundPort = 0; 
BYTE *buffer[2] = { 0 }; 
struct IOAudio *soundIOB[2] = { 0 }; 

int newBufferO; 
UBYTE sineTable[SINETABLESIZE]; 
ULONG angle = 0; 
ULONG frequency = Ox2000000; 
BYTE la.st YMouse; 

3-24 Audio Device 



mainO 
{ 

in t i; 
FLOAT sine = 0.0; 
FLOAT cosine = 1.0; 

/* open the math library *; 

if ((MathBase = OpenLibrary(" mathffp.library", 0)) == 0) 
cleanUp("Cannot open math library"); 

/* generate the sine lookup table */ 

for (i = 0; i < SINETABLESIZE; ++i) { 

} 

/* generate table values between -128 and 127 */ 
sineTable[i] = 127 * sine + 0.5; 

/* compute the next point in the table. The table could have been 
* computed by calling the 'sin' function for each point, but this 
* method is a little faster where great accuracy is not required */ 

sine += SINETABLESTEP * (cosine -= SINETABLESTEP * sine); 

/ * read the starting mouse coun t * / 
lastYMouse = YMOUSEREG; 

/* initialize I/O block to allocate a channel when the audio device is 
* OpenDevice'd */ 

if ((allocPort = CreatePort("sound example", 0)) == 0) 
clean U p{" Cannot create reply port"); 

if ((allocIOB = (struct IOAudio *)AllocMem(sizeof(struct IOAudio), 
MEMF _PUBLIC I MEMF _CLEAR)) == 0) 

cleanUp("Out of memory"); 

/ * allocation precedence * / 
allocIOB- >ioa_Request.io_Message.mn_Node.ln_Pri = -40; 

allocIOB- >ioa_Request.io_Message.mn_ReplyPort = allocPort; 

/* allocate from any channel */ 
allocIOB- >ioa_Data = allocationMap; 
allocIOB- > ioa_Length = sizeof( allocationMap); 

/* open the audio device with channel allocation and check for errors */ 

switch (OpenDevice(AUDIONA...\1E, 0, allocIOB, 0)) { 
case IOERR_OPENF AIL: 

clean U p(" Cannot open audio device"); 

Audio Drvice 8-2.5 



case ADIOERR_ALLOCFAILED: 
cleanUp{"Cannot allocate audio channel"); 

} 
device = allocIOB-"> ioa_RequesLio_Device; 

/* initialize the software interrupt structure */ 

if ((interrupt =--= (struct Interrupt *)AllocMem(sizeof(struct Interrupt), 
MEMF _CLEAR I ~1E~fF _PUBLIC)) == 0) 

cleanUp("Out of memory"); 
interrupt- > is_Code = (VOID (* )())newBuffer; 

/* initialize the reply port for CMD_WRITE's to generate software 
interrupts */ 

if ((soundPort = (struct MsgPort *}AllocMem(sizeof(struct MsgPort), 
MEMF _CLEAR I MEMF _PUBLIC)) == 0) 

cleanUp("Out of memory"}; 
soundPort- > mp_Flags =-,--= PA_SOFTINT; 
soundPort->mp_SigTask = (struct Task *)interrupt; 
soundPort->mp_Node.ln_Type = NT_MSGPORT; 
NewList( &soundPort- > mp_MsgList); 

/* initialize both I/O blocks for the CMD_WRITES */ 

for (i = 0; i < 2; T+i) { 

/* allocate waveform memory from chip addressable ram. AllocMem 
* always allocates memory on a word boundary which is necessary 
* for audio waveform data */ 

if ((buffer[i] = (BYTE *)AllocMem(BUFFERSIZE, MEMF _CHIP}) 
== 0) 

cleanCp("Out of memory"); 

if ((soundIOB[i] = (struct IOAudio *)Alloc:vIem(sizeof(struct IOAudio), 
MEMF._PUBLIC I MEMF _CLEAR)) == 0) 

cleanUp(" Out of memory"); 
soundIOB[iJ- > ioa_Request.io_Message.mn_ReplyPort = soundPort; 
soundIOB[i]- > ioa_Request.io_Device = device; 
soundIOB[i]- > ioa_Request.io_Unit = allocIOB- >ioa_Request.io_Unit; 
soundIOB[i]- > ioa_Request.io_Command = CMD_ 'NRITE; 

/* load the volume and period registers */ 
soundIOB[iJ- > i03_Request.io_Flags = ADIOF _PERVOL; 

soundIOB[i]- > ioa_AliocKey = allocIOB- >ioa_AlIocKey; 
soundIOB[i]- > ioa_Data = buffer[i]; 
soundIOB[ij- > ioa_Length == BUFFERSIZE: 

l* some arbitrary period and volume *.' 

3-26 Audio Device 



} 

} 

soundIOB[i]- > ioa_Period = 200; 
soundIOB[i]- > ioa_ Volume = 64; 

/* play one cycle of each buffer, then reply * / 
soundIOB[i]- > ioa_Cycles = 1; 

/* this really "primes the pump" by causing the reply port 
* to generate a software interrupt and write the first buffers * / 

Reply Msg( sou ndIOB[i]); 

/ * wait for CTRL-C to stop the program * / 

puts("Press CTRL-C to stop"); 
Wait(SIGBREAKF _CTRL_C); 

/* free up resources and exit */ 
cleanUp(""); 

/ * print an error message and free allocated resources * / 

clean U p( message) 
TEXT *message; 
{ 

int i; 

pu ts( message); 
if (device != 0) 

/* CloseDevice'ing with 'allodOB' preforms an ADCMD_FREE on any 
* channel allocated with 'allocIOB's ioa_AllocKey. ADCMD_FREE 
* performs a CMD_RESET, which performs a CMD_FLUSH, which AbortlO's 
* any CMD_ WRITES to those channels */ 

CloseDevice( allodOB); 

for (i = 0; i < 2; ++i) { 
if (soundIOB[i]) 

} 

FreeMem(soundIOB[i], sizeof(struct IOAudio)); 
if (buffer[i]) 

FreeMem(buffer[i], BUFFERSIZE); 

if (soundPort) 
FreeMem(soundPort, sizeof(struct MsgPort)); 

if (interrupt) 
FreeMem(interrupt, sizeof(struct Interrupt)); 

if (allodOB) 
FreeMem( allodOB, sizeof{struct IOAudio)); 

if (allocPort) 
DeletePort( allocPort, sizeof( struct MsgPort)); 

Audio Device 3-27 



} 

if (MathBase) 
CloseLibrary(MathBase ); 

exitO; 

/* software interrupt server code */ 

newBufferO 
{ 

} 

int i; 
struct IOAudio *ioa; 
BYTE *buffer; 
BYTE mouseChange, curYMouse; 
ULONG newFreq; 

/* get I/O block from reply port * / 
ioa = (struct IOAudio *)GetMsg(soundPort); 

/* check if there really was an I/O blocks on the port and if there 
* are no errors. An error would indicate either the channel was 
* aborted from being stolen (IOERR_ABORTED), it stolen before the 
* write was performed and had the wrong allocation key 
* (ADIOF _NOALLOCATION), or it was aborted by being CloseDevice'd 
* In any case if there is an error do not send the next write. The 
* program will just wait around silently */ 

if (ioa && ioa->ioa_Request.io_Error == 0) { 

} 

/* determine how far the mouse has moved */ 

curYMouse = YMOUSEREG; 
mouseChange = curYMouse - lastYMouse; 
lastYMouse = curYMouse; 

/* modify the frequency proportionally */ 
newFreq = frequency + mouseChange * (frequency> > 6); 

/* limit the frequency range */ 
if (newFreq > Ox800000 && newFreq < Ox40000000) 

frequency = newFreq; 

/* scan the table and copy each new sample into the audio waveform buffer */ 

for (i = 0, buffer = ioa->ioa_Data; i < BUFFERSIZE; ++i) 
*buffer++ = sineTable[(angle += frequency) > > 

(32 - SINETABLEPOWER2)]; 

/* send the write I/O block */ 
BeginIO(ioa); 

3-28 Audio Device 



Chapter 2 

Timer Device 

This chapter describes the Amiga timer device, which provides a general time delay capabil
ity. 

2.1. INTRODUCTION 

The timer device can signal you when at least a certain amoun t of time has passed. Because 
the Amiga is a multi-tasking system, the timer device cannot guarantee that exactly the 
specified amount of time has elapsed. 

To use a timer device you open up a channel of communication to the device and send the 
device a message saying how much time should elapse. At the end of that time, the device 
returns a message to you stating that the time has elapsed. 

2.2. TIMER DEVICE UNITS 

There are two units in the timer device. One uses the vertical blank interrupt for its "tick" 
and is called UNIT _ VB LANK. The other uses a programmable timer in the 8520 CIA chip 
and is called UNIT_MICROHZ. These are the names you use when calling OpenDeviceO. 
The examples at the end of the chapter demonstrate how you call OpenDeviceO. 

The VBLANK timer unit is very stable and has a precision comparable to the vertical blank
ing time, that is, +/- 16.67 milliseconds. When you make a timing request, such as "signal 
me in 21 seconds," the reply will come in 21 + j- .017 seconds. This timer has very low over
head, and should be used for all long duration requests. 

The MICROHZ timer unit uses the built-in precision hardware timers to create the timing 
interval you request. It accepts the same type of command -"signal me in so many seconds 
and microseconds." The microhertz timer has the advantage of greater resolution than the 

Timer Device 3-29 



vertical blank timer, but it has less accuracy over comparable periods of time. The 
microhertz timer also has much more system overhead. It is primarily useful for short burst 
timing where critical accuracy is not required. 

2.3. SPECIFYING THE TIME REQUEST 

Both timer units have identical external interfaces. Time is specified via a timeval struc
ture. 

struct time val { 
ULONG seconds; 
ULONG micro; 

}; 

The time specified is measured from the time the request is posted. For example, you must 
post a timer request for 30 minutes, rather than for 10:30 pm. The micro field is the 
number of microseconds in the request. Logically, seconds and microseconds are con
catenated by the driver. The number of microseconds must be "normalized"; it should be a 
value less than one million. 

The primary means of specifying a requested time is via a timeRequest structure. A time 
request consists of an IORequest structure followed by a timeval structure as shown below. 

struct timeRequest { 

}; 

struct IORequest tr_node; 
struct timeval tr_time; 

Note that the timer driver does not use a "standard extension" IORequest block. It only 
uses the base IORequest structure. When the specified amount of time has elapsed, the 
driver will send the IORequest back via ReplyMsgO (the same as all other drivers). This 
means that you must fill in the ReplyPort pointer of the IORequest structure if you wish 
to be sign aled. 

When you submit a timer request, the driver destroys the values you have provided III the 
timeval structure. This means that you must reinitialize the time specification before 
reposting the IORequest. 

Multiple requests may be posted to the timer driver. For example, you can make 3 time 
requests in a row to the timer, specifying: 

3-30 Timer Device 



Signal me in 20 seconds (request 1) 
Signal me in 30 seconds (request 2) 
Signal me in 10 seconds (request 3) 

As the timer queues these requests, it changes the time values and sorts the timer requests to 
service each request at the requested interval, resulting effectively in the following order: 

(request 3) in now+ 10 seconds 
(request 1) 10 seconds after request 3 is satisfied 
(request 2) 10 seconds after request 1 is satisfied 

A sample timer program is given at the end of this chapter. 

2.4. OPENING A TIMER DEVICE 

To gain access to a timer unit, you must first open that unit. This is done by using the sys
tem command OpenDeviceO. A typical C-language call is shown below: 

struct timereq timer _request_block 
error = OpenDevice{TIMERNAME,UNIT_ VBLANK,timer_request_block,O); 

The parameters shown above are: 

TIMERNAME 
a define for the null-terminated string, currently "timer.device" 

unit_num ber 
which timer unit you wish to use. See below for definition. 

timer_request_block 
the address of an IORequest data structure which will later be used to communi
cate with the device. The OpenDeviceO command will fill in the unit and device 
fields of this data structure. 

Timer Device 3-31 



2.5. ADDING A TIME REQUEST 

You add a timer request to the device by passing a acorrectly initialized I/O request to the 
timer. The code fragment below demonstrates a sample request: 

se t_timer{ seconds, microseconds) 
ULONG seconds, microseconds; 
{ 

} 

timermsg- > io_Command = TR_ADDREQUEST; 
timermsg- > SECONDS = seconds; 
timermsg- >MICROSECONDS = microseconds; 
DoIO{ timermsg); 

NOTE: Using DolOO here puts your task to sleep until the time request has been satisfied 
(see the sample program at the end of the chapter). 

If you wish to send out multiple time requests, you have to create multiple request blocks 
(referenced here as "timermsgs" and then use SendIOO to transmit each to the timer. The 
program named "timer2.c" demonstrates this alternate technique. 

2.6. CLOSING A TIMER 

After you have finished using a timer device, you should close it: 

CloseDevice{ timermsg); 

2.7. ADDITIONAL TIMER FUNCTIONS AND COMMANDS 

There are two additional timer commands (accessed as standard device commands, using an 
IORequest block as shown above) and three additional functions (accessed as though they 
were library functions). 

The additional timer commands are: 

3-32 Timer Device 



o TR_GETSYSTIME - get the system time 

o TR_SETSYSTIME - set the system time 

The additional timer library-like functions are: 

o SubTime( Dest, Source) - subtract one time request from another 

o Add Time( Dest, Source) - add one time request to another 

o result = CmpTime( Dest, Source) - compare the time in two time requests 

System Time 

The "system timer" is unrelated to the system time as it appears in the DateStamp com
mand of AmigaDOS. It is provided simply for the convenience of the developer and is util
ized by Intuition. 

The command TR_SETSYSTIME sets the system's idea of what time it is. The system 
starts out at time "zero" so it is safe to set it forward to the "real" time. However, care 
should be taken when setting the time backwards. System time is specified as being mono
tonically increasing. 

The time is incremented by a special power supply signal that occurs at the external line fre
quency. This signal is very stable over time, but it can vary by several percent over short 
periods of time. System time is stable to within a few seconds a day. 

In addition, system time is changed every time someone asks what time it is using 
TR_GETSYSTIME. This way the return value of the system time is unique and unrepeat
ing. This allows system time to be used as a unique identifier. 

NOTE: The timer device set system time to zero at boot time. The DOS will set the system 
time when it reads in the boot disk if it has not already been set by someone else (more 
exactly, if the time is less than 86 400 seconds [one day]). The DOS sets the time to the last 
modification time of the boot disk. The time device does not interpret system time to any 
physical value. The DOS treats system time relative to midnight, 1 January 1978. 

Here is a program which can be used to inquire the system time. Instead of using the Exec 
support function CreateStdIOO for the request block, the block is initialized "correctly" 
for use as a timeval request block. The command is executed by the timer device and, on 
return, the caller can find the data in his request block. 

Timer Device 3-33 



/* TIMER PROGRAM TO INQUIRE WfLA..T IS THE CURRENT "SYSTEM TIME" */ 

#include < exec /types.h > 
#include <exec/lists.h> 
#include < exec /nodes.h > 
#include < exec /ports.h > 
#include < exec /io.h > 
#include < exec / devices.h > 
#include <devices/timer.h> 
#define msgblock tr.tr_node.io_Message 
struct timerequest tr; 

mainO 
{ 

} 

msgblock.mn_Node.ln_Type = NT_MESSAGE; 
msgblock.ln_Pri = 0; 
msgblock.ln_Name = NULL; 
msgblock.mn_ReplyPort = NULL; 

msgblock.io_Command = TR_GETSYSTIME; 
DoIO(&tr}; 

printf(" \ \nSystem Time is: % Id Seconds, % Id Microseconds", 
tr.tr_time.tv _secs, tr.tr_time.tv _micro); 

Using the Tim.e Arithm.etic Routines 

As indicated above, the time arithmetic routines are accessed in the timer device structure as 
though it was a routine library. To use them, you create an IORequest block and open the 
timer. In the IORequest block is a pointer to the device's base address. This address is 
needed to access each routine as an offset-for example, _LVOAddTime, _LVOSubTime, 
_L VOCmpTime - from that base address. (See the function appendixes for these com
mands.) 

There are C-Ianguage interface routines in amiga.lib which perform this interface task for 
you. They are accessed through a variable called TimerBase. You prepare this variable by 
the following method (not a complete example, only a partial example): 

3-34 Timer Device 



struct timeval time 1 , time2, time3; 
SHORT result; 

struct Device *TimerBase; / * declare the in terface variable * / 

/* see "timedelay" example above for in it of "timermsg" pointer */ 

TimerBase = timermsg->Device; 

/* now that TimerBase is initialized, it is permissable to call 
* the time comparison or time arithmetic rou tines * / 

time1.tv_secs = 3; 
time2.tv_secs = 2; 
time3.tv_secs = 1; 

timel.tv_micro = 0; /* 3.0 seconds */ 
time2.tv _micro = 500000; /* 2.5 seconds * / 
time2.tv_micro = 900000; /* 1.9 seconds */ 

/* result of this example is +1 ... first parameter has 
* greater time value than second parameter 
*/ 

result = CmpTime( &timel, &time2 ); 

/* add to timel the values in time2 * / 
AddTime( &timel, &time2); 
/* subtract values in time3 from the value currently in timel */ 
SubTime( &timel, &time3); 

Why Use Time Arithmetic 

As mentioned earlier in this section, because of the multi-tasking capability of the Amiga, the 
timer device can provide timings that are at least a slong as the specified amount of time. If 
you need more precision than this, using the system timer along with the time arithmetic 
routines can at least, in the long run, let you synchronize your software with this precision 
timer after a selected period of time. 

Say, for example, that you select timer intervals so that you get 161 signals within each 3-
minute span. Therefore, the timeval you would have selected would be 180/161 which 
comes out to 1 second and 118012 microseconds per interval. Considering the time it takes 
to set up a call to set_timer and delays due to task-switching (especially if the system is 
very busy) it is possible that after 161 timing intervals, you may be somewhat beyond the 3 
minutes time. Here is a method you can use to keep in sync with system time: 

Timer Device 3-35 



O. Begin. 

1. Read. system time; save it. 

2. Perform your loop however many times in your selected interval. 

3. Read. system time again, compare it to the old value you saved. (for this example, it 
will be more or less than 3 minutes as a total time elapsed). 

4. Calculate a new value for the time interval; that is, one that (if precise) would put 
you exactly in sync with system time the next time around. Timeval will be a lower 
value if the loops took too long, and a higher value if the loops didn't take long 
enough. 

5. Repeat the cycle. 

Over the long run, then, your average number of operations within a specified period of time 
can become precisely what you have designed. 

2.8. SAMPLE TIMER PROGRAM 

Here is an example program showing how to use a timer device. 

/* SIMPLE TIMER EXAMPLE PROGRAM: 

* 
* Includes dynamic allocation of data structures needed to communicate 
* with the timer device a.s well a.s the actual device 10 

*/ 

#include "exec/types.h" 
#include "exec/nodes.h" 
#include "exec/lists.h" 
#include "exec/memory.h" 
#include "exec/interrupts.hl> 
#include "exec/ports.h" 
#include "exec/libraries.h" 
#include "exec/ta.sks. h" 
#include "exec/io.h" 
#include "exec/devices.h" 
#include "devices/timer.h" 

APTR TimerBa.se; /* to get at the time comparison functions * / 

/* manifest constants -- "never will change" */ 
#define SECSPERMIN (60) 

3-36 Timer Device 



#define 
#define 

SECSPERHOUR (60*60) 
SECSPERDAY (50*50*24) 

mainO 
{ 

LONG seconds; 

/* save what system thinks is the time .... we'll advance it 
* temporarily 
*/ 

struct timeval oldtimeval; 
struct timeval mytimeval; 
struct timeval currentval; 

printf("\ntimer test\n"); 

/ * sleep for two seconds * / 
curren tval. tv _secs = 2; 
currentval.tv_micro = 0; 
TimeDelay( &currentval, UNIT_ VBLANK ); 
printf( "After 2 seconds delay\n" ); 

/* sleep for four seconds */ 
currentval.tv_secs = 4; 
curren tval.tv _micro = 0; 
TimeDelay( &currentval, UNIT_ VBLANK ); 
printf( "After 4 seconds delay\n" ); 

/ * sleep for 500,000 .micro-seconds = 1/2 second * / 
currentval.tv_secs = 0; 
curren tval. tv_micro = 500000; 
TimeDelay( &currentval, UNIT_MICROHZ ); 
printf( "After 1/2 second delay\n" ); 

I 

prin tf( "\n" ); 

(void) Execute( "date", 0, 0 ); 

printf( "\n" ); 

GetSysTime( &oldtimeval ); 
printf( "Current system time is %ld current seconds\n", 

old timeval. tv_sees ); 

printf("Setting a new system time\n"); 

seconds = 1000 * SECSPERDA Y + old timeval. tv_sees; 

SetNewTime( seconds ); 
/* (if user executes the AmigaDOS DATE command now, he will 

Timer Device 3-37 



} 

* see that the time has advanced something over 1000 days * / 

prin tf( "\n" ); 
(void) Execute( "date", 0, 0 ); 

prin tf( "\n" ); 

/* added the microseconds part to show that time keeps 
* increasing even though you ask many times in a row * / 

GetSysTime( &mytimeval ); 
printf( "Original system time is % Id.%06Id\n", 

mytimeval. tv _secs, mytimeval. tv_micro); 

GetSysTime( &mytimeval ); 
printf( "First system time is % Id.%06Id\n", 

mytimeval.tv _secs, mytimeval. tv_micro ); 

GetSysTime( &mytimeval ); 
printf(1 "Second system time is % Id.%061d\n", 

mytimeval.tv _secs, mytimeval.tv _micro ); 

printf( "Resetting to former time\n" ); 
SetNewTime( oldtimeval.tv_secs ); 

GetSysTime( &mytimeval ); 
printf( "Current system time is % Id.%06Id\n", 

mytimeval.tv _secs, mytimeval.tv _micro ); 

/* just shows how to set up for using 
* the timer functions, does not demonstrate 
* the functions themselves. (TimerBase must 
* have a legal value before AddTime, SubTime or CmpTime 
* are performed. 
*/ 

tr = CreateTimer( UNIT_MICROHZ ); 
TimerBase = (APTR)tr- >tr_node.io_Device; 

/ * and how to clean up afterwards * / 
TimerBase = -1; 
DelteTimer( tr ); 

extern struct MsgPort *CreatePortO; 
extern struct IORequest *CreateExtIOO; 

struct timerequest * 
CreateTimer( unit) 
ULONG unit; 
{ 

3-38 Timer Device 



/* return a pointer to a time request. If any problem, return NULL */ 

} 

int error; 

struct MsgPort *timerport; 
struct timerequest *timermsg; 

timermsg = (struct timerequest *) 
CreateExtIO( timerport, sizeof( struct timerequest ) ); 

if( timermsg == NULL) { 
return( NULL ); 

} 

timerport = CreatePort( 0, 0 ); 
if( timerport == NULL) { 

DeleteTimer{ timermsg ); 
return( NULL ); 

} 

error = OpenDevice( TIME RNAME , unit, timermsg, 0 ); 
if( error != 0 ) 
{ 

} 

DeleteTimer( timermsg ); 
return( NULL ); 

return( timermsg ); 

/* more precise timer than AmigaDOS DelayO */ 
TimeDelay( tv, unit) 
struct timeval *tv; 
int unit; 
{ 

in t precise; 
struct timerequest *tr; 
if( seconds < 0 II unit == UNIT.-MICROHZ ) { 

/J,: do delay in terms of microseconds * / 
/* yes, use the precision timer. */ 
unit = UNIT_MICROHZ; 

} else { 

} 

/* use the more efficient vertical blank timer */ 
unit = UNIT _ VBLANK; 

/ * get a pointer to an initialized timer request block * / 
tr = CreateTimer( unit ); 

/* any nonzero return says timedelay routine didn't work. */ 

Timer Device 3-39 



if( tr == NULL) return{ -1 ); 

WaitForTimer{ tr, tv); 

1* deallocate tern nOTary structu res * / 
f .. '" I 

DeleteTimer( tr ); 
return( 0 ); 

} 

void 
WaitForTimer( tr, tv ) 
ULONG seconds,microseconds; 
struct time request *tr; 
struct timeval *tv; 
{ 

} 

int 

tr- > tr_node.io_Command = TR __ ADDREQUEST; /* add a new timer request * / 

/* structure assignment * / 
tr->tv_time = *tv; 

/* post request to the timer -- will go to sleep till done */ 
DoIO( tr ); 

SetNewTime( secs ) 
LONG secs; /* seconds since 1 Jan 78 */ 
{ 

} 

int 

struct timerequest *tr; 

tr = CreateTimer( UNIT _MICROHZ ); 

/* non zero return says error */ 
if( tr == 0) return( -1 ); 

tr- >tr_node.io_Command = TR_SETSYSTIME; 
tr- > tr_time. tv _secs = secs; 
tr->tr_time.tv_micro = 0; 
DoIO( tr ); 

DeleteTimer( tr); 
return(O); 

GetSysTime( tv) 
struct timeval *tv; 
{ 

struct timerequest *tr; 

3-40 Timer Device 



} 

void 

tr = CreateTimer( UNIT_MICROHZ ); 

/* non zero return says error */ 
if( tr == 0 ) return( -1 ); 

tr- > tr_node.io_Command = TR_GETSYSTlME; 
DoIO( tr ); 

/* structure assignment */ 
*tv = tr- > tr_time; 

DeleteTimer( tr ); 
return( 0 ); 

DeleteTimer( tr ) 
struct time request *tr; 
{ 

} 

struct MsgPort *tp; 

if( tr != 0 ) 
{ 

} 

tp = tr- >tr_node.io_Message.mn_ReplyPort; 
if(tp != 0) { 

DeletePort( tp); 
} 

CloseDevice( tr ); 
DeleteExtIO( tr, sizeof(struct time request) ); 

Timer Device 3-41 





Chapter 3 

Trackdisk Device 

This chapter covers the Amiga trackdisk device, which directly drives the disk, controls the 
disk motors, reads raw data from the tracks, and writes raw data to the tracks. 

3.1. INTRODUCTION 

Normally, you use the AmigaDOS functions to write or read data from the disk. The track
disk driver is the lowest level software access to the disk data and is used by AmigaDOS to 
get its job done. 

The trackdisk device supports the usual commands such as CMD_ WRITE and CMD_READ. 
In addition, it supports an extended form of these commands to allow additional control over 
the disk driver. 

The trackdisk device can queue up command sequences so that your task can do something 
else while it is waiting for a particular disk activity to occur. If several sequenced write com
mands are queued to a disk, a task assumes that all such writes are going to the same disk. 
The trackdisk driver itself can stop a command sequence if it senses that the disk has been 
changed, returning all subsequent IORequest blocks to the caller with an error ("disk 
changed"). 

When the track disk device is requested to provide status information for commands such as 
TO_REMOVE or TD_CHANGENUM, the value is returned in the io_Actual field of the 
IORequest. 

Trackdisk Device 3-43 



3.2. THE AMIGA FLOPPY DISK 

The Amiga floppy disk consists of NUMHEADS (2) heads, NUMCYLS (80) cylinders, and 
NUMSECS (11) sectors per cylinder. Each sector has TD_SECTOR (512) usable data bytes 
plus TD_LABELSIZE (16) of sector label area. This gives useful space of 880K bytes plus 
28K bytes of label area per floppy disk. 

Although the disk is logically divided up into sectors, all I/O to the disk is implemented as 
an entire track. This allows access to the drive with no interleaving and increases the useful 
storage capacity by about 20 percent. Normally, a read of a sector will only have to copy 
the data from the track buffer. If the track buffer contains another track's data, then the 
buffer will first be written back to the disk (if it is "dirty") and the new track will be read in. 
All track boundaries are transparent to the user. The driver ensures that the correct track is 
brought into memory. 

The performance of the disk is greatly enhanced if you make effective use of the track buffer. 
The performance of sequential reads will be up to an order of magnitude greater than reads 
scattered across the disk. 

The disk driver uses the blitter to encode and decode the data to and from the track buffer. 
Because the blitter can only access chip memory (memory that is accessible to the special 
purpose chips and within the lowest 5121( bytes of the system, known as MEMF _CHIP to 
the memory allocator AllocMemO) all buffers submitted to the disk must be in chip 
memory. In addition, only full sector writes on sector boundaries are supported. Note also 
that the user's buffer must be word aligned. 

The disk driver is based upon a standard driver structure. It has the following restrictions: 

o All reads and writes must use an io_Length that IS an integer multiple of 
TD_SECTOR bytes (the sector size in bytes). 

o The offset field must be an integer multiple of TD_SECTOR. 

o The data pointer must be word-aligned. 

o The data pointer must be in ME~IF _CHIP memory. This is because the disk driver 
uses the blitter to fill the data buffer. 

o. Only the 3 1t~-inch disk format is supported by the trackdisk driver. The oS 1/4 
inch-format is supported by the IBM PC emulation software. 

3-44 Trackdisk Device 



3.3. TRACKDISK DRIVER COMMANDS 

The trackdisk driver allows the following system interface functions and commands. In addi
tion to the usual device commands, the trackdisk driver has a set of extended commands. 

The system interface functions are 

OpenDeviceO 
CloseDeviceO 
ExpungeO 
BeginIOO 
AbortIOO 

Obtain exclusive use of a particular disk unit. 
Release the unit to another task. 
Remove the device from the device list. 
Dispatch a device command; queue commands. 
Abort a device command. 

The device-specific commands are 

CMD_READ 
CMD_WRITE 
CMD_UPDATE 
CMD_CLEAR 
TD_MOTOR 
TD_SEEK 
TD_FORMAT 
TD_REMOVE 
TD_CHANGENUM 
TD_CHANGESTATE 
TD_PROTSTATUS 

Read one or more sectors. 
Write one or more sectors. 
Write out a track buffer. 
Mark a track buffer as invalid. 
Turn the motor on or off. 
Move the head to a specific track. 
Initialize one or more tracks. 
Establish a software interrupt procedure for disk removal. 
Discover the current disk-change number. 
See if there is a disk present in a drive. 
See if a disk is write-protected. 

In addition to the device-specific commands listed above, the trackdisk driver has the follow
ing extended commands. These commands are similar to their normal counterparts but have 
the following additional features: 

o They allow you to control whether a command will be executed if the disk has been 
changed. 

o They allow you to read or write to the sector label portion of a sector. 

Extended commands take a slightly larger I/O request block, which contains information 
that is needed only by the extended command and is ignored by the standard form of that 
command. The extra information takes the form of two extra longwords at the end of the 
data structure. These commands are performed only if the change count is less than or equal 
to the one in the iotd_Count field of the command's I/O request block. 

Trackdisk Device 3-45 



ETD_READ 
ETD_WRITE 
ETD_MOTOR 
ETD_UPDATE 
ETD_CLEAR 
ETD_SEEK 

Read one or more sectors. 
Write one or more sectors. 
Turn the motor on or off. 
Write out a track buffer. 
Mark a track buffer ll."i invalid. 
Move the head to a specific track. 

3.4. CREATING AN I/O REQUEST 

The trackdisk device, like other devices, requires that you create an I/O request message that 
you pass to the device for processing. The message contains the command and several other 
items of control information. 

Here is a program fragment that can be used to create the message block that you use for 
trackdisk communications. In the fragment, the routine CreateStdIOO is called to return a 
pointer to a message block. This is acceptable for the standard form of the commands. If 
you wish to use the extended form of the command, you will need an extended form of the 
request block. In place of CreateStdIOO, you can use the routine CreateExtI00, a list
ing of which appears in the appendix under the heading "Exec Support Functions". 

struct IOStdReq *diskreq; /* I/O request block pointer for 
non-extended commands * / 

struct IOExtTD *diskextreq; /* I/O request block pointer for 
extended commands */ 

struct Port *diskreqPort; /* a port at which to receive replies * / 

diskreqPort = CreatePort{" diskreq.port" ,0); 
if(diskreqPort == 0) exit(lOO); /* error in createport */ 
diskreq = CreateStdIO(diskreqPort); 
if( diskreq == 0) { DeletePort( diskreqPort); eXit(200); } 

/* error in createstdio */ 
diskextreq = CreateExtIO(diskreqPort,sizeof(struct IOExtTd)); 
if(diskextreq == 0) { DeletePort(diskreqPort); exit(300) }; 

The routine CreatePortO is part of amiga.lib. It returns a pointer to a Port structure 
that can be used to receive replies from the trackdisk driver. 

The routine CreateStdIOO is also in amiga.lib. It returns a pointer to an IOStdReq block 
that becomes the message you pass to the trackdisk driver to tell it the com mand to per
form. CreateExtIOO is provided in source form in the appendixes to this manual. 

The data structure IOExtTD takes the form: 

3-46 Trackdisk Device 



where 

struct IOExtTD { 

}; 

struct IOStdReq iotd_Req; 
ULONG iotd_Count; 
ULONG iotd_SecLabel; 

IOStdReq 
is a standard IORequest block that contains fields llsed to transmit the standard 
commands (explained below). 

iotd_Count 
helps keep old I/O requests from being performed when the diskette has been 
changed. All extended commands treat as an error any case where the disk change 
counter is greater than iotd_Count. Any I/O request found with an iotd_Count 
less than the current change counter value will be returned with a characteristic 
error (TDERR_DiskChange) in the io_Error field of the I/O request block. This 
allows stale I/O requests to be returned to the user after a disk has been changed. 
The current disk-change counter value can be obtained by TD_GHANGENUM. 

If the user wants extended disk I/O but does not care about disk removal, then 
iotd_Count may be set to the maximum unsigned long integer value 
(OxFFFFFFFF). 

iotd_Secla bel 
allows access to t,he sector identification section of the sector header. 

Each sector has 16 bytes of descriptive data space available to it; the disk driver 
does not interpret this data. If iotd_Seclabel is null, then this descriptive data is 
ignored. If it is not null, then iotd_Seclabel should point to a series of If>..byte 
chunks (one for each sector that is to be read or written). These chunks will be writ
ten out to the sector's label region on a write or filled with the sectors's label area on 
a read. If a CMD_WRITE (the standard write call) is done, then the sector label 
area is left unchanged. 

3.S. OPENING A TRACKDISK DEVICE 

To gain access to a disk unit, you must first open the unit by USlllg the system command 
OpenDeviceO. A typical C-language call is shown below: 

error = OpenDevice(TD_NAME, un it_nu mber ,disk_request __ block,flags); 

Trackdisk Device 3-47 



where: 

TD_NAME 
is a define for the null-terminated string, currently "trackdisk.device". 

unit_number 
is the disk unit you wish to use (defined below). 

disk_request_block 
is the address of an IORequest data structure that will later be used to communi
cate with the device. The OpenDeviceO command will fill in the unit and device 
fields of this data structure. 

flags 
tell how the I/O is to be accomplished. For an OpenDevice{) command, this field 
is normally set to zero. 

The unit_number can be any value from 0 to 3. Unit 0 is the built-in 3 1/2-inch disk. 
Units 1 through 3 represen t additional 3 1/2-inch disks which may be daisy-chained from the 
external disk unit connector on the back of the Amiga. The first unit (plugged directly into 
the Amiga) is unit 1. The second unit (plugged into unit 1), is designated as unit 2. The 
end-unit, farthest electrically from the Amiga, is unit 3. 

Following are some common errors that may be returned from an OpenDevice{) call. 

Device in use 
Some other task has already been granted exclusive use of this device. 

Bad unit number 
Either you have specified a unit number outside the range of 0-3 or you don't have a 
unit connected in the specified position. 

Bad device type 
You may be trying to use a 5 1/4-inch drive with the trackdisk driver. This is not 
supported. 

3.6. SENDING A COMMAND TO THE DEVICE 

You send a command to this device by initializing the appropriate fields of your IOStdReq 
or IOExtTD and then using SendIO{), DoIOO, or BeginIOO to transmit the command 
to the device. Here is an example: 

3-48 Trackdisk Device 



MotorOnO 
{ 

diskreq->io_Length = 1; /* 1 says turn it on */ 
diskreq->io_Command = TD_MOTOR; 
DoIO(diskreq); /* task sleep till command done */ 
return(O); 

} 

3.7. TERMINATING ACCESS TO THE DEVICE 

As with all exclusive-access devices, you must close the trackdisk device when you have 
finished using it. Otherwise, the system will be unable to allocate the device to any other 
task until the system is rebooted. 

3.S. DEVICE-SPECIFIC COMMANDS 

The following device-specific commands are supported. 

ETD_READ obeys all of the trackdisk driver restrIctIOns noted above. ETD_READ 
transfers data from the track buffer to the user's buffer, if and only if the disk has not been 
changed. If the desired sector is already in the track buffer, no disk activity is initiated. If 
the desired sector is not in the buffer, the track containing that sector is automatically read 
in. If the data in the current track buffer has been modified, it is written out to the disk 
before the new track is read. CMD_READ does not check if the disk has been changed 
before executing this command. 

Trackdisk Device 3-49 



ETD_WRITE and CMD_WRITE 

ETD_ WRITE obeys all of the trackdisk driver restrictions noted above. ETD_ WRITE 
transfers data from the user's buffer to track buffer if and only if the disk has not been 
changed. If the track that contains this sector is already in the track buffer, no disk activity 
is initiated. If the desired sector is not in the buffer, the track containing that sector is 
automatically read in. If the data in the current track buffer has been modified, it is written 
out to the disk before the new track is read in for modification. CMD_ WRITE does not 
check for disk change before performing the command. 

ETD_UPDATE obeys all of the trackdisk driver restrictions noted above. The Amiga track
disk driver doesn't write data sectors unless it is necessary (you request that a differen t track 
be used) or until the user requests that an update be performed. This improves system speed 
by caching disk operations. Therefore, ETD_UPDATE writes out the track buffer if and 
only if the data in that buffer is known to have been modified since it was read in and checks 
that the disk hasn't been changed. ETD_UPDATE ensures that any buffered data is flushed 
out to the disk. CMD_UPDATE, doesn't check for a disk change before performing the 
update. 

ETD_CLEAR and CMD_CLEAR 

ETD_CLEAR marks the track buffer as invalid, forcing a re-read of the disk on the next 
operation. 

ETD_UPDATE or CMD_UPDATE would be used to force data out to the disk before turn
ing the motor off. ETD_CLEAR or CMD_CLEAR is usually used after the disk has been 
removed, to prevent caching of data to the new diskette. ETD_CLEAR or CMD_CLEAR 
will not do an update, nor will an update command do a clear. CMD_CLEAR doesn't check 
for disk change. 

3-50 Trackdisk Device 



TO_MOTOR is called with a standard IORequest block. The io_Length field contains the 
requested state of the motor. A 1 will turn the motor on; a 0 will turn it off. The old state 
of the motor is returned in io_Actual. If io_Actual is zero, then the motor was off. Any 
other value implies that the motor was on. If the motor is just being turned on, the driver 
will delay the proper amount of time to allow the drive to come up to speed. Normally, 
turning the drive on is not necessary-the driver does this automatically if it receives a 
request when the motor is off. However, turning the motor off is the user's responsibility. In 
addition, the standard instructions to the user are that it is safe to remove a diskette if and 
only if the motor is off (that is, the disk light is off). 

TD_FORMAT 

TO_FORMAT is used to write data to a track that either has not yet been formatted or has 
had a hard error on a standard write command. TO_FORMAT completely ignores all data 
currently on a track and doesn't check for disk change before performing the command. 
TO_FORMAT is called with a standard IORequest. The io_Data field must point to at 
least one track worth of data. The io_Offset field must be track aligned, and the 
io_Length field must be in units of track length (that is, NUMSECS*TD_SECTOR). The 
driver will format the requested tracks, filling each sector with the contents of the io_Data 
field. You should do a read pass to verify the data. The command TO_FORMAT does not 
check whether the disk has been changed before the command is performed. 

If you have a hard write error during a normal write, you may find it necessary to use the 
TD_FOR~1AT command to reformat the track as part of your error recovery process. 

TD_REMOVE 

TO_REMOVE is called with a standard IORequest. The APTR io_Data field points to a 
software interrupt structure. The driver will post this software interrupt whenever a disk is 
inserted or removed. To find out the current state of the disk, TD_CHANGENUM and 

Trackdisk Device ;3-51 



TD_CHANGESTATE should be used. If TD_REMOVE is called with a null io_Data argu
ment, then disk removal interrupts are suspended. 

3.g. STATUS COMMANDS 

The commands that return status on the current disk in the unit are TD_CHANGENUM, 
TD_CHANGESTATE, and TD_PROTSTATUS. 

TD_CHANGENUM 

TD_CHANGENUM returns the current value of the disk-change counter (a.s used by the 
extended commands-see below). The disk change counter is incremented each time the 
disk is inserted or removed. 

TD_CHANGESTATE 

TD_CHANGESTATE returns zero if a disk is currently in the drive, and nonzero if the drive 
ha.s no disk. 

TD_PROTSTATUS 

TD_PROTSTATUS returns nonzero if the current diskette is write-protected. All these rou
tines return their values in io_Actual. These routines are safe to call from an interrupt rou
tine (such as the software interrupt specified in TD_REMOVE). However, care should be 
taken when calling these routines from an interrupt. You should never WaitO for them to 
complete while in interrupt processing-it is never legal to go to sleep on the interrupt 
stack. 

3-52 Trackdisk Device 



3.10. COMMANDS FOR DIAGNOSTICS AND REPAm 

There is currently only one command, TD_SEEK, provided for internal diagnostics and for 
disk repair. 

TD_SEEK is called with a standard IORequest. The io_Offset field should be set to the 
(byte) offset to which the seek is to occur. TD_SEEK will not verify its position until the 
next read. That is, TD_SEEK only moves the heads; it does not actually read any data and 
it does not check to see if the disk has been changed. 

3.11. TRACKDISK DRIVER ERRORS 

Following is a list of error codes that can be returned by the trackdisk driver. When an 
error occurs, these error numbers will be returned in the io_Error field of your IORequest 
block. 

Table 3-1: Trackdisk Driver Error Codes 

Error Name 

TD ERR_NotS pecified 
TDERR_NoSecHdr 
TDERR_BadSecPream hIe 
TDERR_BadSecID 
TDERR_BadHdrSum 
TDERR_BadSecSum 
TDERR_TooF ewSecs 
TDERR_BadSecHdr 
TDERR_ WriteProt 
TDERR_DiskChanged 

TDERR_SeekError 

TDERR_NoMem 

TDERR_BadUnitNum 

TDERR_BadDriveType 

TDERR_DriveInUse 

Error Number 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

30 

31 

32 

33 

34 

Meaning 

Error couldn't be determined 
Couldn't find sector header 
Error in sector pream ble 
Error in sector identifier 
Header field has bad checksum 
Sector data field has bad checksum 
Incorrect number of sectors on track 
Unable to read sector header 
Disk is write-protected 
Disk has been changed 
or is not currently present 
While verifying seek position, 
found seek error 
Not enough memory to do this 
operation 
Bad unit number 
(unit # not attached) 
Bad drive type 
(not an Amiga 3 1/2 inch disk) 
Drive already in use 
(only one task exclusive) 

Trackdisk Device 3-.53 



3.12. EXAMPLE PROGRAM 

The following sample program exercises a few of the trackdisk driver commands. 

#include "exec/types.h" 
#include "exec/nodes.h" 
#include "exec /lists.h" 
#include "exec/memory.h" 
#include "exec /interrupts.h" 
#include "exec/ports.h" 
iF.include "exec/libraries.h" 
#include "exec/io.h" 
#include "exec /tasks.h" 
#include "exec/execbase.h" 
#include "exec / devices.h" 
#include "devices/trackdisk.h" 

#define TD_READ CMD_READ 
#define BLOCKSIZE TD_SECTOR 

SHORT error; 
struct MsgPort *diskport; 
struct IOExtTD *diskreq; 
BYTE diskbuffer[BLOCKSIZE]; 
BYTE *diskdata; 
SHORT testval; 

extern struct MsgPort *CreatePortO; 
extern struct IORequest *CreateExtIOO; 

ULONG diskChangeCount; 

ReadCylSec{cyl, sec, hd) 
SHORT cyl, sec, hd; 
{ 

LONG offset; 

diskreq- > iotd_Req.io_Length = BLOCKSIZE; 
diskreq->iotd_Req.io_Data = (APTR)diskbuffer; 

/* show where to put the data when read * / 
diskreq->iotd_Req.io_Command = ETD_READ; 

/* check that disk not changed before reading'" / 
diskreq- > iotd_ Coun t = diskChangeCoun t; 

/'" convert from cylinder, head, sector to byte-offset value to get 
* right one (as dos and everyone else sees it) ... * / 

/* driver reads one CYLINDER at a time (head does not move for 
* 22 sequential sector reads, or better-put, head doesnt move for 
* 2 sequential full track reads.) 

*/ 

3-54 Trackdisk Device 



offset = TD_SECTOR * (sec + NUMSECS * hd + NUMSECS * NUMHEADS * cyl); 
diskreq-> iotd_Req.io_Offset = offset; 
DoIO( diskreq); 
return(O}; 

} 

MotorOnO 
{ 

/* TURN ON DISK MOTOR ... old motor state is returned in io_Actual * / 
diskreq-> iotd_Req.io_Length = 1; 

} 

/* this says motor is to be turned on */ 
diskreq->iotd_Req.io_Command = TD_MOTOR; 
/* do something with the motor */ 
DoIO( diskreq); 
printf{"\nOld motor state was: % ld" ,diskreq- > iotd_Req.io_Actual); 
printf(" \nio_Error value was: % Id" ,diskreq- > iotd_Req.io_Error); 
return(O); 

MotorOffO 
{ 

} 

printf(" \n \nNow turn it off"); 
diskreq- > iotd_Req.io_Length = 0; 
/ * says that motor is to be turned on * / 
diskreq->iotd_Req.io_Command = TD_MOTOR; 
/* do something with the motor * / 
DoIO( diskreq); 
printf{" \nOld motor state was: % ld" ,diskreq- > iotd_Req.io_Actual); 
printf(" \nio_Error value was: % Id" ,diskreq- > iotd_Req.io_Error); 
return(O); 

SeekFuliRange(howmany) 
SHORT howmany; 
{ 
int i; 
for(i=O; i<howmany; i++) 

{ 
diskreq- > iotd_Req.io_Offset = 

((NUMCYLS -l)*NlJMSECS*NUMHEADS -1 ) * 512; 
/ * seek to cylinder 79, head 1 * / 
diskreq- > iotd_Req.io_Command = TD _SEEK; 
DoIO( diskreq); 
if( diskreq- > iotd_Req.io_Error != 0) 

printf("\nSeek Cycle Number % Id, Error = % Id" , 
i, diskreq- >iotd_Req.io_Error); 

diskreq- >iotd_Req.io_Offset = 0; 
/* seek to cylinder 0, head 0 * / 

diskreq- > iotd_Req.io_Command = TD _SEEK; 
DoIO( diskreq}; 
if( diskreq- > iotd_Req.io_Error != 0) 

printf("\nSeek Cycle Number % Id, Error = % Id", 
i, diskreq- > iotd_Req.io_Error); 

Trackdisk Device 3-.55 



printf("\nCompleted a seek"); 
} 
return(O); 

} 

mainO 
{ 

SHORT cylinder,head,sector; 

diskdata = &diskbuffer[O]; 
/* point to first location in disk buffer * / 

diskport = CreatePort(O,O); 
if(diskport == 0) exit(100); /* error in createport */ 
diskreq = (struct IOExtTD *)CreateExtIO(diskport, 

sizeof(struct IOExtTD)); 
/* make an io request block for communicating with the disk * / 

if(diskreq == 0) { DeletePort(diskport); exit(200); } 

error = OpenDevice(TD_NAME,O,diskreq,O); 
/* open the device for access, unit 0 is builtin drive * / 

printf("\nError value returned by OpenDevice was: % lx" , error); 

/* now get the disk change value * / 
diskreq->iotd_Req.io_Command = TD_CHANGENUM; 
DoIO( diskreq); 
diskChangeCount = diskreq- > iotd_Req.io~ctual; 
printf(" \nChange number for disk is currently % ld" ,diskChangeCount); 

MotorOnO; 
SeekFullRange( 10); 
for(cYlinder=O; cylinder<80; cylinder++) /* tracks to test */ 

{ 
for(head=O; head<2; head++) /* number of heads to test */ 

for(sector=O; sector<U; sector++) /* sectors to test */ 
{ 
ReadCyISec(cylinder, sector, head); 
if( diskreq- > iotd_Req.io_Error != 0) 

} 

printf("\nError At Cyl=% ld, Sc=% ld, Hd=% ld, Error=% ld" , 
cy linder,sector ,head, 
diskreq- > iotd_Req.io_Error); 

printf("\nCompleted reading Cylinder=% ld" ,cylinder); 
} 

MotorOffO; 
CloseDevice( diskreq); 

DeleteExtIO( diskreq, sizeof(struct IOExtTD)); 
DeleteP ort( disk port ); 

} /* end of main */ 

3-56 Trackdisk Device 



Chapter 4 

Console Device 

This chapter describes how you do console (keyboard and screen) input and output on the 
Amiga. The console device acts like an enhanced ASCII terminal. It obeys many of the 
standard ANSI sequences as well as additional special sequences unique to the Amiga. 

4.1. INTRODUCTION 

Console I/O is tied closely to the Amiga Intuition interface; a console must be tied to a win
dow that is already opened. From the Window data structure, the console device deter
mines how many characters it can display on a line and how many lines of text it can display 
in a window without clipping at any edge. 

You can open the console device many times, if you wish. The result of each open call is a 
new console unit. AmigaDOS and Intuition see to it that only one window is the currently 
active one, and its console, if any, is the only one (with a few exceptions) that receives 
notification of input events, such as keystrokes. Later in this chapter you'll see that other 
Intuition events can be sensed by the console device as well. 

NOTE: For this entire chapter the characters" <CSI>" represent the control sequence 
introducer. For output you may either use the two-character sequence "<Esc> [" or the 
one-byte value $9B (hex). For input you will receive $9B's. 

4.2. SYSTEM FUNCTIONS 

The various system functions, such as DoIOO, SendIOO, AbortIOO, CheckIOO and so 
on operate normally. The only caveats are that CMD_WRITE may cause the caller to wait 
internally, even with SendIOO, and a task waiting on response from a console is at the 
user's whim. If a user never reselects that window, and the console response provides the 
only wakeup-call, that task may well sleep indefinitely. 

Console Device 3-.57 



4.3. CONSOLE I/O 

The console device may be thought of as a kind of a terminal. You send a character stream 
to the console device. You also receive a character stream from the console device. These 
streams may be characters or special sequences. 

General Console Screen Output 

Console character screen output (as compared to console command sequence transmission) 
outputs all standard printable characters (character values hex 20 thru 7E and AO thru FF) 
normally. Many con trol characters such as BACKSPACE and RETURN are translated in to 
their exact ANSI equivalent actions. The line-feed character is a bit different, in that it can 
be translated into a new-line character. The net effect is that the cursor moves to the first 
column of the next line whenever a <LF> is displayed. This is set via the mode control 
sequences discussed under "Control Sequences for Screen Output". 

Console Keyboard Input 

If you read from the console device, the keyboard inputs are preprocessed for you. You will 
get the ASCII characters such as "B". Most normal text gathering programs will read from 
the console device in this manner. Special programs like word processors and music key
board programs will use raw input. Keys are converted via the keymap associated with the 
unit. 

The sections below deal with the following topics: 

o Setting up for console I/O (creating an I/O request structure) 

o \Vriting to the console to con trol its behavior 

o Reading from the console 

o Closing down a console device 

This section shows you how to set up for console I/O. 

3-58 Console Device 



4.4. CREATING AN I/O REQUEST 

Console I/O, like other devices, requires that you create an I/O request message that you 
pass to the console device for processing. The message contains the command, as well as a 
data area. In the data area, for a write, there will be a pointer to the stream of information 
you wish to write to the console. For a read, this data pointer shows where the console is to 
copy the data it has for you. There is also a length field that says how many characters 
(maximum) are to be copied either from or to the console device. 

Here is a program fragment that can be used to create the message block that you use for 
console communications. 

For writing to the console: 

struct IOStdReq *consoleWriteMsg; /* I/0 request block pointer * / 
struct Port *console WritePort; /* a port at which to receive replies* / 

console Write Port = CreatePort{" mycon. write" ,0); 
if{consoleWritePort == 0) exit(lOO); /* error in create port */ 
console WriteMsg = CreateStd IO( console W ri tePort); 
if{consoleWriteMsg == 0) exit(200); /* error in createstdio */ 

For reading from the console: 

struct 10StdReq *consoleReadMsg; 
struct Port *consoleReadPort; 

/* I/O request block pointer */ 
/* a port at which to receive replies */ 

consoleReadPort = CreatePort("mycon.read" ,0); 
if( consoleReadPort == 0) exit(300); /* error in createport * / 
consoleReadMsg = CreateStdI O( consoleReadPort); 
if(consoleRead~1sg == 0) exit(400); /* error in createstdio */ 

These fragments show two messages and ports being set up. You would use this if you want 
to have a read command continuously queued up while using a separate message with its 
associated port to send con trol command sequences to the console. 

In addition, if you want to queue up multiple commands to the console, you may wish to 
create multiple messages (but probably just one port for receiving replied messages from the 
device). 

Console Device 3-59 



4.5. OPENING A CONSOLE DEVICE 

For other devices, you normally use OpenDeviceO to pass an uninitialized IORequest 
block to the device. For a console device, this is slightly different. You must have initialized 
two fields in the request block; namely, the data pointer and the length field. Here is a sub
routine that can be used to open a console device (attach it to an existing window). It 
assumes that intuition.library is already open, a window has also been opened, and this new 
console is to be attached to the open window. 

/* this function returns a value of 0 if the console 
* device opened correctly and a nonzero value (the error 
* returned from OpenDevice) if there was an error. 

*/ 
OpenConsole( write request, read request, window) 

struct IOStdReq *writerequest; 
struct IOStdReq *readrequest; 
struct Window *window; 
{ 

} 

int error; 
write request- > io_Data = (APTR) window; 
write request- > io_Length = sizeof( *window); 
error = OpenDevice(" console.device" , 0, writerequest, 0); 
readrequest- > io_Device = writerequest- >io_Device; 
read request- > io_ Unit = writerequest- > io_ Unit; 

/* clone required parts of the request */ 
return( error); 

Notice that this routine opens the console using one I/O request (write), then copies the write 
request values into the read request. This assures that both input and output go to the same 
console device. 

Sending a Character Stream to the Console Device 

To perform console I/O, you fill in fields of the console I/O standard request, and pass this 
block to the console device using one of the normal I/O functions. When the console device 
has completed the action, the device returns the message block to the port you have desig
nated within the message itself. The function CreateStdIOO initializes the message to con
tain the address of the ReplyPort. 

3-60 Console Device 



The following subroutines use the IOStdReq created above. Note that the IOStdReq itself 
contains a pointer to the unit with which it is communicating. Thus, a single function can 
be used to communicate with multiple consoles. 

/* output a single character to a specified console */ 

ConPu tCh ar( request,character) 
struct IOStdReq *request; 
char character; 
{ 

} 

request- > io_Command = CMD _WRITE; 
request- > io_Data = &character; 
request- >io_Length = 1; 
DoIO(request); 
return; 

/* output a stream of known length to a console */ 

Con Write( request,string,length) 
struct IOStdReq *request; 
char *string; 
int length; 
{ 

} 

request->io_Command = CMD_WRITE; 
request- > io_Data = string; 
request- > io_Length = length; 
DoIO( request); 
return; 

/* output a NULL-terminated string of characters to a console */ 

ConPu tStr( request,string) 
struct IOStdReq *request; 
char *string; 
{ 
request->io_Command = CMD_WRITE; 
request- > io_Data = string; 
request- >io_Length = -1; /* tells console to end when it 

* sees a terminating zero on 
* the string. * / 

DoIO( request); 
return; 

} 

Console Device 3-61 



4.6. CONTROL SEQUENCES FOR SCREEN OUTPUT 

Table 4·1 lists the functions that the console device supports, along with the character 
stream that you must send to the console to produce the effect. Where the function table 
indicates multiple characters, it is more efficient to use the ConWriteO function rather than 
ConPutCharO since it avoids the overhead of transfering the message block multiple times. 
The table below uses the second form of < CSI >, that is, the hex value 9B, to minimize the 
number of characters to be transmitted to produce a function. 

In table 4·1, if an item is enclosed in square brackets, it is an option al item and may be omit. 
ted. For example, for INSERT [N] CHARACTERS the value for N or M is shown as 
optional. The console device responds to such optional items by treating the value of N as if 
it is not specified. The value of N or M is always a decimal number, having one or more 
ASCII digits to express its value. 

Table 4·1: Console Control Sequences 

Command 

BACKSPACE (move left one column) 
LINE FEED (move down one text line 

as specified by the mode 
function below) 

VERTICAL TAB (move up one text line) 
FORM FEED (clear the console's screen) 
CARRIAGE RETURN (move to first column) 
SHIFT IN (undo SHIFT OUT) 
SHIFT OUT (set MSB of each character 

before displaying) 

ESC (escape; can be part of the control 
sequence introducer) 

CSI (control sequence introducer) 
RESET TO INITIAL ST ATE 

INSERT [NjCHARACTERS 
(Inserts one or more spaces, shifting the 
remainder of the line to the right.) 

CURSOR UP [N] CHARACTER POSITIONS 
(default = 1) 

CURSOR DOWN [Nj CHARACTER 
POSITIONS 
(default = 1) 

CURSOR FORWARD rNj CHARACTER 
POSITIONS (default = 1) 

3·62 Console Device 

Sequence of 
Characters 
(in hexadecimal) 

08 
OA 

OB 
OC 
OD 
OE 
OF 

IB 

9B 63 

9B [N]40 

9B [N]41 

9B [N]42 

9B [Nj43 



CURSOR BACKWARD [N] CHARACTER 
POSITIONS (default = 1) 

CURSOR NEXT LINE [N] (to column 1) 
CURSOR PRECEDING LINE [N] 

(to column 1) 

9B [N]44 

9B [N]45 
9B [N]46 

MOVE CURSOR TO ROW; COLUMN 
where N is row, M is column, and 
semicolon (hex 3B) must be present 

9B [N] [3B N] 48 

as a separator, or if row is left 
out, so the console device can tell 
that the number after the semicolon 
actually represents the column number. 

ERASE TO END OF DISPLAY 9B 4A 

ERASE TO END OF LINE 9B 4B 

INSERT LINE (above the line containing 9B 4C 
the cursor) 

DELETE LINE (remove current line, move 9B 4D 
all lines up one position to fill 
gap, blank bottom line) 

DELETE CHARACTER [N] (that cursor is 9B [N] 50 
sitting on and to the right if 
[N] is specified) 

SCROLL UP [N] LINES (Remove line(s) from 9B [N] 53 
top of screen, move all other lines 
down, blanks [N] bottom lines). 

SCROLL DOWN [N] LINES (Remove line(s) 9B [N]54 
from bottom of screen, move all 
other lines up, blanks [N] top lines). 

SET MODE "(cause LINEFEED to respond as 9B 32 30 68 
RETURN- LINEFEED) 

RESET MODE (cause LINEFEED to respond 9B 32 30 6C 
on ly as LINEFEED) 

DEVICE STATUS REPORT (cause console to 9B 6E 
insert into your read-stream a CURSOR 
POSITION REPORT; see "Reading from 
the Console" for more info). 

SELECT GRAPHIC RENDITION See note below. 
<style> ;<fg>; <bg> 
(select text style 
foreground color, 
background color) 
(See the note below.) 

Console Device 3-63 



NOTE: For SELECT GRAPHIC RENDITION any number of parameters, in any order, are 
valid. They are separated by semicolons. The parameters follow. 

<style> = 
o plain text 
1 bold-face 
3 italic 
4 underscore 
7 inverse-video 

<fg> = 
30 - 37 selecting system colors 0-7 for foreground 

transmitted as two ASCII characters 

<bg> = 
40 - 47 selecting system colors 0-7 for background 

transmitted as two ASCII characters 

For example, to select bold-face, with color 3 as foreground and color 0 as back
ground, send the sequence: 

9B 31 3B 33 33 3B 34 30 6D 

representing the ASCII sequence: 

"<CS!> 1;33;40m" 

where <CS1> is the control sequence introducer, here used as the single-character 
value 9B hex. 

The following are not ANSI standard sequences; they are private Amiga sequences. 

In the four command descriptions that follow, length, width, and offset are 
comprised of one or more ASCII digits, defining a decimal value. 

Command Sequence of 
Characters 

SET PAGE LENGTH (in character raster lines, 
causes console to recalculate, 

(in hexadecimal) 

using cu rren t fon t, how many text 9B < length> 74 
lines will fit on the page. 

SET LINE LENGTH (in character positions, 
using current font, how many characters 
should be placed on each line). 9B <width> 75 

SET LEFT OFFSET (in raster columns, how far 
from the left of the window 

3-64 Console Device 



should the text begin). 

SET TOP OFFSET (in raster lines, how far 
from the top of the window's 
RastPort should the topmost 
line of the character begin). 

9B <offset> 78 

9B <offset> 79 

NOTE: The console normally handles the above four functions automatically. 
To allow it to do so again after setting your own values, you can send the function 
without a parameter. 

Command 

SET RAW EVENTS-see the separate topic 
"Selecting Raw Input Events" 
below for more details. 

RESET RAW EVENTS-see 
"Selecting Raw Input Events" below. 

SET CURSOR RENDITION - make the cursor 
visible or invisible: 

invisible: 
visible: 

WINDOW STATUS REQUEST - ask the console 
device to tell you the current 
bounds of the window, in 
upper and lower row and column 
character positions. 
(User may have resized or repositioned 
it). See "Window Bounds Report" below. 

Examples 

Move cursor right by 1: 

Sequence of 
Characters 
(in hexadecimal) 

9B 30 20 70 
9B 20 70 

9B 71 

Character string equivalents: <CSI>C or <CSI> lC 
Numeric (hex) equivalents: 9B 43 9B 31 43 

Move cursor right by 20: 

Console Device 3-6.5 



Character string equivalent: <CSI>20C 
Numeric (hex) equivalent: 9B 32 3043 

Move cursor to upper left corner (home): 

Character string equivalents: 
<CSI>H or 
<CSI> 1;1H or 
<CSI>;1H or 
<CSI>1;H 

Numeric (hex) equivalents: 
9B 48 
9B 31 3B 31 48 
9B 3B 31 48 
9B 31 3B 48 

Move cursor to the fourth column of the first line of the window: 

Character string equivalents: 
<CSI> 1;4H or 
<CSI>;4H 

Numeric (hex) equivalents: 
9B 31 3B 34 48 
9B 3B 3448 

Clear the screen: 

Character string equivalents: 
<FF> or CTRL-L {clear screen character} or 
<CSI>H<CSI>J {home and clear to end of screen} or 

Numeric (hex) equivalents: 
OC 
9B 48 9B 4A 

3-66 Console Device 



Reading from the Console 

Reading input from the console device returns an ANSI 3.64 standard byte stream. This 
stream may contain normal characters and lor RAW input event information. You may also 
request other RAW input events using the SET RAW EVENTS and RESET RAW EVENTS 
control sequences discussed below. See "Selection of Raw Input Events". 

The following subroutines are useful for setting up for console reads. Only a single
character-at-a-time version is shown here. 

NOTE: This example does not illustrate the fact that a request for more than one character 
can be satisfied by only one, thus requiring you to look at io_Actual. 

1* queue up a read request to a console, show where to 
* put the character when ready to be returned. Most 
* efficien t if th is is called right after console is 
* opened *1 

QueueRead{request,whereto) 
struct IOStdReq *request; 
char *whereto; 
{ 

} 

request->io_Command = CMD_READ; 
request- > io_Data = whereto; 
request- > io_Length = 1; 
SendIO( request); 
return; 

1* see if there is a character to read. If none, don't wait, 
* come back with a value of -1 *1 

int 
ConMayGetCh ar( consoiePort,request, w hereto) 
struct Port *consolePort 
struct IOStdReq *request; 
char *whereto; 
{ 

} 

register temp; 

if ( GetMsg(consolePort) == NULL) return(-l); 
temp = *whereto; 
QueueRead( request, whereto); 
return( temp); 

Console Device 3-67 



/* go and get a character; put the task to sleep if 
* there isn't one present */ 

UBYTE 
ConGetChar( consolePort,request, whereto) 
struct IOStdReq *request; 
struct Port *consolePort; 
char *whereto; 
{ 

register temp; 
w h ile(( GetMsg( consolePort) == NULL)) WaitPort( consolePort); 
temp = *whereto; /* get the character */ 
QueueRead( request, whereto); 
return( temp); 

} 

Information About the Read-Stream 

For the most part, keys whose keycaps are labeled with ANSI standard characters will ordi
narily be translated into their ASCII equivalent character by the console device through the 
use of its keymap. A separate section in this chapter has been dedicated to the method used 
to establish a keymap and the internal organization of the keymap. 

For keys other than those with normal ASCII equivalents, an escape sequence is generated 
and inserted into your input stream. For example, in the default state (no raw input events 
selected) the function and arrow keys will cause the following sequences to be inserted in the 
input stream: 

3-68 Console Device 



Table 4-2: Special Key Report Sequences 

Key Unshifted Sends Shifted Sends 

F1 <CSI>O- <CSI>10-
F2 <CSI>r <CSI>l1-
F3 <CSI>2- <CSI> 12-
F4 <CSI>3- <CSI>13-
F5 <CSI>4- <CSI> 14-
F6 <CSI>S- <CSI>lS-
F7 <CSI>6- <CSI> 16-
FS <CSI>7- <CSI>17-
F9 <CSI>S- <CSI>lS-
FlO <CSI>9- <CSI>19-

HELP <CSI>r <CSI>?- (same) 

Arrow keys: 

Up <CSI>A <CSI>T-
Down <CSI>B <CSI>S-
Left <CSI>C <CSI> A- (notice the space) 

Right <CSI>D <CSI> @- (notice the space) 

Cursor Position Report 

If you have sent the DEVICE STATUS REPORT command sequence, the console device 
returns a cursor position report into your input stream. It takes the form: 

<CSI> <row>;<column>R 

For example, if the cursor is at column 40, and row 12, here are the ASCII values you receive 
in a stream: 

9B 34 30 3B 31 3252 

, 

Console Device 3-69 



Window Bounds Report 

A user may have either moved or resized the window to which your console is bound. By 
issuing a WINDOW STATUS REPORT to the console, you can read the current position 
and size in the input stream. This window bounds report takes the following form: 

<CSI>1;1;<bottom margin>;<right margin>r 

Note that the top and left margins are always 11 for the Amiga. The bottom and right mar
gins give you the window row and column dimensions as well. For a window that holds 20 
lines with 60 characters per line, you will receive the following in the input stream: 

9B 31 3B 31 3B 32 30 3B 36 30 73 

Selecting Raw Input Events 

If the keyboard information, including "cooked" keystrokes does not give you enough infor
mation about input events you can request additional information from the console driver. 

The command to SET RAW EVENTS is formatted as: 

"<CS!> [event-types-separated-by-semicolons] {" 

If, for example, you need to know when each key is pressed and released you would request 
"RAW keyboard input". This is done by writing "<CSI>l{" to the console. In a single 
SET RAW EVENTS request, you can ask the console to setup for multiple event types at 
one time. You must send multiple numeric parameters, separating them by semicolons (;). 
Example: ask for gadget pressed, gadget released and close gadget events - write: 
"<CSI>7;8;11{" (all as ASCII characters, without the quotes). 

You can reset, that is, delete from reporting, one or more of the raw input event types by 
using the RESET RAW EVENTS command, in the same manner as the SET RAW 
EVENTS was used to establish them in the first place. This command stream is formatted 
as: 

3-70 Console Device 



<CSI> [even t-types-separated-by-semicolons]} 

So, for example, you could reset all of the events set in the above example by transmitting 
the command sequence: "<CSI>7;8;11}" Here is a list of the valid raw input event types: 

Table 4-3: Raw Input Event Types 

Request 
Number Description 

0 nop Used in te rn ally. 
1 RAW keyboard input In tuition swallows all except 

the select button. 
2 RAW mouse input 
3 Event Sent whenever your 

window is made active. 
4 Pointer position 
5 (unused) 
6 Timer 
7 Gadget pressed 
8 Gadget released 
9 Requester activity 
10 Menu numbers 
11 Close Gadget 
12 Window resized 
13 Window refreshed 
14 Preferences changed 
15 Disk removed 
16 Disk inserted 

4.7. COMPLEX INPUT EVENT REPORTS 

If you select any of these events you will start to get information about the events in the fol
lowing form: 

where: 

<CSI> <class>; <subclass>;< keycode>; <qualifiers>; <x> ;<y >; 
<seconds>; <microseconds> I 

Console Device 3-71 



<CSI> 
is a one-byte field. It is the "control sequence introducer", 9B in hex. 

<class> 
is the RAW input event type, from the above table. 

<subclass> 
is usually O. If the mouse is moved to the right controller, this would be 1. 

<keycode> 
indicates which key number was pressed (see figure 4-1 and table 4-5). This field can 
also be used for mouse information. 

<qualifiers> 
indicates the state of the keyboard and system. The qualifiers are defined as follows: 

Table 4-4: Input Event Qualifiers 

Bit Mask Key 

0 0001 left shift 
1 0002 right shift 
2 0004 capslock * Associated keycode is 

special; see below. 
3 0008 control 
4 0010 left ALT 
5 0020 right ALT 
6 0040 left Amiga key pressed 
7 0080 righ t Amiga key pressed 
8 0100 numeric pad 
9 0200 repeat 
10 0400 interrupt Not currently used. 
11 0800 multi broadcast This window (active one) 

or all windows. 
12 1000 left mouse button 
13 2000 right mouse button 
14 4000 middle mouse button (Not available on standard mouse.) 
15 8000 relative mouse Indicates mouse coordinates 

are relative, not absolute. 

The CAPS LOCK key is handled in a special manner. It only generates a keycode when it is 
pressed, not when it is released. However the up/down bit (80 hex) is still used and reported. 
If pressing the caps lock key causes the LED to light then key code 62 (caps lock pressed) is 
sent. If pressing the caps lock key extinguishes the LED then key code 190 (caps lock 
released) is sent. In effect, the keyboard reports this key as held down until it is struck 
again. 

3-72 Console Device 



The <x> and <y> fields are filled by some classes with an Intuition address: x < < 15+y. 

The <seconds> and <microseconds> fields contain the system time stamp taken at the 
time the event occurred. These values are stored as long-words by the system. 

With RAW keyboard input selected, keys will no longer return a simple one-character "A" to 
"z" but will rather return raw keycode reports of the form: 

<CSI> 1;0;<keycode> ;<qualifiers> ;0;0; <seconds>; <microseconds> I 

For example, if the user pressed and released the "B" key with the left shift and right Amiga 
keys also pressed you might receive the following data: 

< CSI > 1 ;0;35; 129;0;0;23987;9gl 
< CSI> 1'0'163'1 <)9'0'0'24003'181 " ,-", , 

The <keycode> field is an ASCII decimal value representing the key pressed or released. 
Adding 128 to the pressed key code will result in the released keycode. Figure 4-1 lets you 
convert quickly from a key to its keycode. The tables let you convert quickly from a keycode 
to a key. 

ESC Fl 

45 
7 B 9 

00 3D 3E 3F 
TAB 4 5 6 

2D 2E 2F 
eTR l 1 2 3 

63 10 lE 1 F 
SHIFT 0 

30 31 OF 3C 
A ENTEP 

64 66 4A 43 

Figure 4-1: The Amiga Keyboard, Showing Keycodes in Hex 

Console Device 3-73 



The default values given correspond to: 

1) The values the console device will return when these keys are pressed, and 

2) The Keycaps as shipped with the standard American keyboard. 

3-74 Console Device 



Table 4-5: System Default Console Key Mapping 

Raw Unshifted Shifted 
Key Keycap Default Default 
Number Legend Value Value 

00 ' - , (Accent grave) - (tilde) 
01 1 ! 1 ! 
02 2@ 2 @ 

03 3# 3 # 
04 4$ 4 $ 
05 5% 5 % 
06 6 ' 6 
07 7& 7 & 
08 8 * 8 * 09 9 ( 9 ( 
OA o ) 0 ) 
OB - (Hyphen) _ (Underscore) 
OC =+ + 
OD \1 \ 1 
OE (undefined) 
OF 0 0 o (Numeric pad) 

10 Q q Q 
11 W w W 
12 E e E 
13 R r R 
14 T t T 
15 Y y Y 
16 U u U 
17 I I 
18 0 0 0 
19 P p P 
lA [ { [ { 
IB 1 } 1 } 
lC (undefined) 
1D 1 1 1 (Numeric pad) 
IE 2 2 2 (Numeric pad) 
IF 3 3 3 (Numeric pad) 

20 A a A 
21 S s S 
22 D d D 
23 F f F 
24 G g G 
25 H h H 
26 J J J 
27 K k K 
28 L I L 
29 , . 

Console Device 3-75 



2A ' " , (single quote) " 
2B (RESERVED) (RESERVED) 
20 (undefined) 
2D 4 4 4 (Numeric pad) 
2E 5 5 5 (Numeric pad) 
2F 6 6 6 (Numeric pad) 

30 (RESERVED) (RESERVED) 
31 Z z Z 
32 X x X 
33 C c C 
34 V v V 
35 B b B 
36 N n N 
37 M m M 
38 ,< , (comma) < 
39 .> . (period) > 
3A / ? / ? 
3B (undefined) 
3C . (Numeric pad) 
3D 7 7 7 (Numeric pad) 
3E 8 8 8 (Numeric pad) 
3F 9 9 9 (Numeric pad) 

40 (Space bar) 20 20 
41 BACK SPACE 08 08 
42 TAB 09 09 
43 ENTER OD OD (Numeric pad) 
44 RETURN OD OD 
45 ESC IB IB 
46 DEL 7F 7F 
47 (undefined) 
48 (undefined) 
49 (undefined) 
4A - (Numeric Pad) 
4B (undefined) 
4C Up Arrow <CSI>A - <CSI>T-
4D Down Arrow <CSI>B- <CSI>S-
4E Forward Arrow <CSI>C- <CSI> A- 2 

4F Backward Arrow <CS1>D- <CS1> @-

2 In shifted Forward Arrow and Backward arrow, note blank space after < OSI > 

3-76 Console Device 



Raw Unshifted Shifted 
Key Keycap Default Default 
Number Legend Value Value 

50 F1 <CSI>O- <CSI>lO-

51 F2 <CSI>1- <CSI>1C 
52 F3 <CSI>2- <CSI> 12-

53 F4 <CSI>3- <CSI>13-

54 F5 <CSI>4- <CSI> 14-

55 F6 <CSI>5- <CSI>15-

56 F7 <CSI>6- <CSI>16-

57 F8 <CSI>T <CSI>1T 
58 F9 <CSI>8- <CSI>18-

59 FlO <CSI>9- <CSI> 19-
5A (undefined) 
5B (undefined) 
5C (undefined) 
5D (undefined) 
5E (undefined) 
5F HELP <CSI>?- <CSI>?-

Console Device 3-77 



Raw 
Key 
Number 

60 

61 

62 

63 

64 
65 

66 
67 

68 

69 

6A 

68 
60 
6D 
6E 
6F 

3-78 Console Device 

Function or 
Keycap 
Legend 

SHIFT (left of space bar) 

SHIFT (rigb t of space bar) 

CAPS LOCK 

CTRL 

(Left) ALT 
(Right) ALT 

Amiga (left of space bar) 
Amiga (right of space bar) 

Left mouse button 
(not converted) 

Right mouse button 
(not con verted) 

Middle mouse button 
(not converted) 

(undefined) 
(undefined) 
(undefined) 
(undefined) 
(undefined) 

Close Amiga 
Open Amiga 

Inputs are only for the 
mouse connected to Intuition, 
currently "gameport" one. 



Raw Key Number 

70-7F 

80-F8 

F9 

FA 
FB 

FC 

FD 

FE 

FF 
FF 

Notes about the preceding table: 

Function 

(undefined) 

Up transition (release or unpress key of one 
of the above keys). 80 for 00, F8 for 7F. 

Last keycode was bad 
(was sen t in order to resynchronize). 

Keyboard buffer overflow. 

(undefined, reserved for 
keyboard processor catastrophe) 

Key board self test failed. 

Power-up key stream start. 
Keys pressed or stuck at power-up 
will be sent between FD and FE. 

Power-up key stream end. 

(undefined, reserved) 

Mouse event, movement only, 
no button change. 
(not converted) 

1) "(undefined)" indicates that the current keyboard design should not generate this 
number. If you are using SetKeyMapO to change the key map the entries for these 
n urn bers must still be included. 

2) "(not converted)" refers to mouse button events. You must use the sequence 
"<CSI>2{" to inform the console driver that you wish to receive mouse events; 
otherwise these will not be transmitted. 

3) "(RESERVED)" Indicates that these keycodes have been reserved for non-US key
boards. The "2B" code key will be between the double-quote(") and RETURN keys. 
The "30" code key will be between the SHIFT and" Z" keys. 

4.8. KEYMAPPING 

The Amiga has the capability of mapping the keyboard in any manner that you wish. In 
other computers, this capability is normally provided through the use of "keyboard enhanc
ers". In the Amiga, however, the capability is already present and the vectors that control 
the remapping are user accessible. 

Console Device 3-79 



The functions called GetKeyMapO and SetKeyMapO each deal with a set of 8 longword 
pointers, known as the KeyMap data structure. The KeyMap data structure is shown 
below. 

struct Key Map { 
APTR km_LoKeyMapTypes; 
APTR km_LoKeyMap; 
APTR km_LoCapsable; 
APTR km_LoRepeatable; 
APTR km_HiKeyMapTypes; 
APTR km_HiKeyMap; 
APTR km_HiCapsable; 
APTR km_HiRepeatable; 
}; 

GetKeyMapO returns a pointer to this table of pointers, showing where in memory each of 
the tables representing the keymapping may be found. 

As a prelude to the following material, note that the Amiga keyboard transmits raw key 
information to the computer in the form of a key position and a transition. Figure 4-1 shows 
a physical layout of the keys and the hexadecimal number that is transmitted to the system 
when a key is pressed. When the key is released, its value, plus hexadecimal 80, is transmit
ted to the computer. The key mapping described herein refers to the translation from this 
raw key transmission into console device output to the user. 

The low key map provides translation of the key values from hex 00-3F; the high key map 
provides translation of key value from hex 40-67. 

Raw output from the keyboard for the LoKey Map does not include the space bar, TAB, 
ALT, CTRL, arrow keys and several other keys (shown in HiKeyMap, below). 

3-80 Console Device 



00 01 02 03 04 05 06 07 08 09 OA OB OC OD 3D 3E 3F 
10 11 12 13 14 15 16 17 18 19 1A 1B 2D 2E 2F 

20 21 22 23 24 25 26 27 28 29 2A ID 1E 1F 
31 32 33 34 35 36 37 38 39 3A OF 3C 

1! 2@ 3# 4$ 5% 6- 7& 8* 9( 0) =+ \I 7 8 9 
qQ wW eE rR tT yY uU 11 00 pP [{ ]} 4 5 6 

aA sS dD IT g:; hH jJ kK lL '" 1 2 3 , . 
zZ xX cC vV bB nN mM ,< .> /? 0 

Figure 4-2: Low Key Map Translation Table 

Table 4-6: High Key Map Hex Values 

40 Space 
41 Backspace 
42 Tab 
43 Enter 
44 Return 
45 Escape 
46 Delete 
4A Numeric Pad -
4C Cursor Up 
4D Cursor Down 
4E Cursor Forward 
4F Cursor Backward 
50-59 Function keys F1-F10 
5F Help 
60 Left Shift 
61 Right Shift 
62 Caps Lock 
63 Control 
64 Left Alt 
65 Right Alt 
66 Left Amiga 
67 Right Amiga 

Console Device 3-81 



The keymap table for the low and high keymaps consists of 4-byte entries, one per hex key
code. These entries are interpreted in one of two possible ways: 

a. as 4 separate bytes, specifying how the key is to be interpreted when pressed: 

o alone 

o with one qualifier 

o with another qnalifier 

o with both qualifiers 

where a qualifier is one of three possible keys: 

o CTRL (control) 

o ALT 

o SHIFT 

b. as a longword contammg the address of a string descriptor, where a string of hex 
digits is to be output when this key is pressed. If a string is to be output, any com
bination of qualifiers may affect the string that may be transmitted. 

NOTE: The keymap table must begin aligned on a word boundary. Each entry is 4-bytes 
long, thereby maintaining word alignment throughout the table. This is necessary since 
some of the entries may be longword addresses and must be aligned properly for the 68000. 

About Qualifiers 

As you may have noticed, there are three possible qualifiers, but only a 4-byte space in the 
table for each key. This does not allow space to describe what the computer should output 
for all possible combinations of qualifiers. This problem is solved by only allowing all three 
qualifiers to affect the output at the same time in string mode. Here is how that works. 

For "vanilla" keys, such as the alphabetic keys, use the 4 bytes to represent the data output 
for the key alone, shifted key, ALT'ed key, and shifted-and-AL T'ed key. Then for the 
CTRL-key-plus-vanilla-key, use the code for the key alone with bits 6 and 5 set to O. 

3-82 Console Device 



For other keys, such as the return key or escape key, the qualifiers specified in the keytypes 
table (up to two) are the qualifiers used to establish the response to the key. This is done as 
follows. In the keytypes table, the values listed for the key types are those listed for the 
qualifiers in keymap.h and keymap. i. Specifically, these qualifier equates are: 

KC_NOQUAL OxOO 
KCF_SHIFT OxOl 
KCF_ALT Ox02 
KCF _CONTROL Ox04 
KC_VANILLA Ox07 
KCF_DOWNUP Ox08 
KCF_STRING Ox40 

As shown above, the qualifiers for the various types of keys occupy specific bit positions in 
the key types control byte. 

A keymap table entry looks like this, in assembly code: 

SOME_KEY: 
DC.B VALUE_I, VALUE_2, VALUE_3, VALUE_4 

Here is how you interpret the keymap for various combinations of the qualifier bits: 

Table 4-7: Keymap Qualifier Bits 

If Keytype is: 

KC_NOQUAL 
KCF_SHIFT 
KCF_ALT 
KCF _CONTROL 
KCF _ALT+KCF _SHIFT 
KCF _CONTROL+KCF _AL T 
KCF _CONTROL+KCF _SHIFT 
KC_VANILLA 

Then value in this position in the 
key table is output when the key is 
pressed along with: 

SHIFT 
ALT 
CTRL 

SHIFT+ALT ALT SHIFT 
CTRL+ALT CTRL ALT 
CTRL+SHIFT CTRL SHIFT 
SHIFT+ALT ALT SHIFT 

alone 
alone 
alone 
alone 
alone 
alone 
alone 
alone* 

* special case-CTRL key, when pressed with one of the alphabet keys and certain 
others, is to output key-alone value with the bits 6 and 5 set to zero. 

Console Device 3-83 



Keytype Table Entries 

The vectors named km_LoKeyTypes and km_HiKeyTypes contain one byte per raw key 
code. This byte defines the entry type that is made in the key table by a set of bit positions. 

Possible key types are: 

o any of the qualifier groupings noted above, or 

o KCF _STRING + any combination of KCF _SHIFT, KCF _ALT, KCF _CONTROL 
(or KC_NOQUAL) if the result of pressing the key is to be a stream of bytes (and 
key-with-one-or-more-qualifiers is to be one or more alternate streams of bytes). 

Any key can be made to output up to 8 unique byte streams if KCF _STRING is set 
in its keytype. The only limitation is that the total length of all of the strings 
assigned to a key be within the "jump range" of a single byte increment. See the 
"String-Output Keys" section below for more information. 

The low key type table covers the raw keycodes from hex 00-3F, and contains one byte per 
keycode. Therefore this table contains 64 (decimal) bytes. The high key type table covers 
the raw keycodes from hex 40-67, and contains 38 (decimal) bytes. 

String-Output Keys 

When a key is to output a string, the keymap table contains the address of a string descrip
tor in place of a 4- byte mapping of a key as shown above. Here is a partial table for a new 
high key map table which contains only three entries thus far. The first two are for the 
space bar and the backspace key; the third is for the tab key, which is to output a string 
that says "[TAB]". An alternate string, "[SHIFTED-TAB]", is also to be output when a 
shifted TAB key is pressed. 

newHiMapTypes: 

DC.B 
DC.B 

3-84 Console Device 

Table 4-8: Composing an Alternate Key Map 

KCF _ALT,KC_:\'OQUAL, 
KCF _STRING+KCF _SHIFT, 

;(more) 



newHiMap: 

DC.B 
DC.B 
DC.L 

newkey42: 

DC.B 

DC.B 

DC.B 

DC.B 

new42us: 

DC.B 

new42ue: 

new42ss: 

DC.B 

new42se: 

0,0,$AO,$20 
0,0,0,$08 
newkey42 

new42ue - new42us 

new42us - newkey42 

new42se - new42ss 

new42ss - newkey42 

'[TAB]' 

'fSHIFTED-TAB]' 

;space bar, and AL T-space bar 
;BACKSPACE key only 
;new definition for string to 
;output for TAB key 
;(more) 

;length of the 
;unshifted string 

;number of bytes from start of 
;string descriptor to start of 
;this string 

;length of the shifted string 

;number of bytes from start of 
;string descriptor to start of 
;this string 

The new high map table points to the string descriptor at address newkey42. The new high 
map types table says that there is one qualifier, which means that there are two strings in 
the key string descriptor. 

Each string in the descriptor takes two bytes in this part of the table; the first byte is the 
length of the string, the second byte is the distance from the start of the descriptor to the 
start of the string. Therefore, a single string (KCF _STRING...;.. KC_NOQUAL) takes 2 bytes 
of string descriptor. If there is one qualifier, 4 bytes of descriptor are used. If there are two 
qualifiers, 8 bytes of descriptor are used. If there are 3 qualifiers, 16 bytes of descriptor are 
used. All strings start immediately following the string descriptor in that they are accessed 
as single byte offsets from the start of the descriptor itself. Therefore, the distance from the 
start of the descriptor to the last string in the set (the one that uses the en tire set of 
specified qualifiers) must start within 255 bytes of the descriptor address. 

Since the length of the string is contained in a single byte, the length of any single string 
must be 255 bytes or less while also meeting the "reach" requirement. However, the console 
input buffer size limits the string output from any individual key to 32 bytes maximum. 

The length of a keymap containing string descriptors and strings is variable and depends on 
the number and size of the strings that you provide. 

Console Device 3-85 



Capsable Bit Table 

The vectors called km_LoCapsable and km_HiCapsable point to the first byte in an 8-byte 
table that contains more information about the key table entries. 

Specifically, if the CAPS LOCK key has been pressed the CAPS LOCK LED is on), and if 
there is a bit on in that position in the capsable map, then this key will be treated as though 
the shift-key is now currently pressed. For example, in the default key mapping, the alpha
betic keys are "capsable" but the punctuation keys are not. This allows you to set the 
shift-lock, just as on a normal typewriter, and get all capital letters. However, unlike a nor
mal typewriter, you need not go out of shift-lock to correctly type the punctuation symbols 
or numeric keys. 

In the table, the bits that control this feature are numbered from the lowest bit in the byte, 
and from the lowest memory byte address to the highest. For example, the bit representing 
capsable status for the key that transmits raw code 00 is bit 0 in byte 0; for the key that 
transmits raw code 08 it's bit 0 in byte 1, and so on. 

There are 64 bits (8-bytes) in each of the two capsable tables. 

Repeatable Bit Table 

For both the low and high key maps there is an 8-byte table that provides one bit per possi
ble raw key code. This bit indicates whether or not the specified key should repeat at the 
rate set by the Preferences program. The bit positions correspond to those specified in the 
capsable bit table. 

If there is a 1 in a specific pOSitIOn, the key can repeat. The vectors that point to these 
tables are called km_LoRepeatable and km_HiRepeatable. 

3-86 Console Device 



Default Low Key Map 

In the default low key map, all of the keys are treated in the same manner. That is: 

o When pressed alone, they transmit the ASCII equivalent of the unshifted key. 

o When shifted, they translate the ASCII equivalent of the shifted value when prin ted 
on the keycap. 

o When "ALT'ed" (pressed along with an ALT key), they transmit the alone-value 
with the high bit of a byte set (value plus hex SO). 

o When shifted and AL T'ed, they transmit the shifted-value plus hex SO. 

In this table, the bytes that describe the data to be transmitted are positioned as the exam
ple for the "A" key shown here: 

DC.B 
DC.B 
DC.B 
DC.B 

('A')+$SO 
('a')+$SO 
('A') 
Ca') 

;shifted and ALT'ed 
;AL T'ed only 
;shifted only 
;not shifted or AL T'ed. 

In addition to the response to the key alone, shifted, AL T'ed and shifted-and-AL T'ed, the 
default low keymap also responds to the key combination of "CTRL + key" by stripping off 
bits 6 and 5 of the generated data byte. For example, CTRL + A generates the translated 
keycode 01 (61 with bits 6 and 5 set to 0). 

All keys in the low key map are mapped to their ASCII equivalents as noted in the low key 
map key table shown above. 

Since the low key table contains 4 bytes per key, and describes the keys (raw codes) from hex 
00-3F, there are 64 times 4 or 256 bytes in this table. 

Console Device 3-87 



Default High Key Map 

Most of the keys in the high key map generate strings rather than single character mapping. 
The following keys map characters with no qualifier, along with their byte mapping: 

Key 

BACKSP 
ENTER 
DEL 

Generates Value: 

$08 
$OD 
$7F 

The following keys map characters and use a single qualifier: 

Key 

SPACE 
RETURN 
ESC 

numeric pad '-' 

Generates value: 

$20 
$OD 
$1B 

$2D 

The following keys generate strings: 

3-88 Console Device 

If used with qualifier, 
Generates value: 

$AO (qualifier = ALT) 
$OA (qualifier = CONTROL) 
$9B (qualifier = AL T) 

$FF (qualifier = ALT) 



Key Generates value: If used with <SHIFT>, 
generates value: 

TAB $09 $9B, followed by 'z' 

cursor: 

UP $9B, followed by 'A' $9B, followed by 'T' 
DOWN $9B, followed by 'B' $9B, followed by'S' 
FWD $9B, followed by 'c' $9B, followed by , " 

followed by '@' 

BACKWD $9B, followed by 'D' $9B, followed by , " 
followed by 'A' 

function 
keys: 

F1 $9B, followed by '0- , $9B, followed by '10- , 
F2 $9B, followed by '1 - , $9B, followed by '11- , 
F3 $9B, followed by '2- , $9B, followed by '12- , 
F4 $9B, followed by '3- , $9B, followed by '13- , 
F5 $9B, followed by '4- , $9B, followed by '14- , 
F6 $9B, followed by '5- , $9B, followed by '15- , 
F7 $9B, followed by '6- , $9B, followed by '16- , 
F8 $9B, followed by '7- , $9B, followed by '17- , 
F9 $9B, followed by '8- , $9B, followed by '18- , 
FlO $9B, followed by '9- , $9B, followed by '19- , 

HELP $9B, followed by '?- , (no qualifier used) 

4.9. CLOSING A CONSOLE DEVICE 

When you have finished using a console, it must be closed so that the memory areas it util
ized may be returned to the system memory manager. Here is a sequence that you can use 
to close a console device: 

CloseDevice( req u es tB loc k ); 

Note that you should also delete the messages and ports associated with this console after 
the console has been closed: 

Console Device 3-89 



DeleteStdIO( console WriteMsg); 
DeleteStdIO( consoleReadMsg); 
DeletePort( console WritePort); 
DeletePort( consoleReadPort); 

If you have finished with the window used for the console device, you can now close it. 

4.10. EXAMPLE PROGRAM 

The following is a console device demonstration program with supporting macro routines .. 

/* cons.c */ 

/* This program is supported by the Amiga C compiler, version 1.1 and beyond. 
* (v1.0 compiler has difficulties if string variables do not have their 
* initial character aligned on a longword boundary. Compiles acceptably 
* but won't run correctly.) 
*/ 

#include "exec/types.h" 
#include "exec /io. h" 
#include "exec/memory.h" 

#include "graphics/gfx.h" 
#include "hardware/dmabits.h" 
#include "hardware/custom.h" 
#include "hardware/blit.h" 
#include "graphics/ gfxmacros.h" 
#include "graphics/copper.h" 
#include "graphics/view.h" 
#include "graphics/gels.h" 
#include "graphics/regions.hl) 
#include "graphics/clip.h" 
#include "exec/exec.h" 
#include "graphics/ text.h" 
#include "graphics/ gfxbase.h" 

#include "devices/console.h" 
#include "devices/keymap.h" 

#include "iibraries/dos.h" 
#include "graphics/text.h" 
#include "libraries/diskfont.h" 
#include "intu ition/in tuition. h" 

3-90 Console Device 



UBYTE escdata[] = { Ox9b, '@', 
Ox9b. 'A', 
Ox9b, 'B', 
Ox9b, 'C', 
Ox9b, 'D', 
Ox9b, 'E', 
Ox9b, 'F', 
Ox9b, 'J', 
Ox9b, 'K', 
Ox9b, 'L', 
Ox9b, 'M', 
Ox9b, 'P', 
Ox9b, 'S', 
Ox9b, 'T', 
Ox1 b, 'c', 
Ox9b, 'q', 
Ox9b, 'n', 
Ox9b, ' " 'p', 
Ox9b, '0', ' " 'p', 
Ox9b, '2', '0', 'h', 
Ox9b, '2', '0', 'I', 

}; 

/ * insert character * / 
/* cursor up */ 
/* cursor down */ 
/ * cursor left * / 
/* cursor right */ 
/* cursor next line */ 
/* cursor prev line */ 
/ * erase to end of display * / 
/* erase to end of line */ 
/ * insert line * / 
/* delete line */ 
/* delete character */ 
/* scroll up */ 
/* scroll down */ 
/ * reset to initial state * / 
/* window status request */ 
/* device status report */ 
/* cursor on */ 
/* cursor off */ 
/* set mode */ 
/* reset mode */ 

/* COVER A SELECTED SUBSET OF THE CONSOLE AVAILABLE FUNCTIONS */ 

#define INSERTCHARSTRING 
#define CURSUPSTRI.:\G 
#define CURSDOWNSTRING 
#define CURSFWDSTRING 
#define CURSBAKSTRING 
#define CURSNEXTLINE 
#define CURSPREVLINE 
#define ERASEEODSTRING 
#define ERASEEOLSTRING 
#define INSERTLINESTRING 
#define DELETELINESTRING 
#define DELCHARSTRING 
#define SCROLLUPSTRING 
#define SCROLLDOWNSTRING 
#define RESETINITSTRING 
#define WINDOWSTATSTRING 
#define DEVSTATSTRING 
#define CURSONSTRING 
#define CURSOFFSTRING 
#define SETMODESTRING 
#define RESETMODESTRING 

#define BACKSPACE(r) 
#define TAB(r) 
#define LINEFEED(r) 

&escdata[O] 
&escdata[0+2] 
&escdata[0+4] 
&escdata[0+6] 
&escdata[O+S] 
&escdata[O+lO] 
&escdata[O+ 12] 
&escdata[0+14] 
&escdata[O+ 16] 
&escdatarO+1S] 
&escdata[0+20j 
&escdata[0+22] 
&escdata[0+24] 
&escd ata[O+ 26] 
&escdata[0+2S] 
&escdata[0+30] 
&escdata[O+32] 
&escdata[O+34] 
&escd ata[O+37] 
&escdata[O+41] 
&escd ata[O+45] 

ConP u tCh ar( r ,OxOS) 
ConPu tChar(r,Ox09) 
ConPu tChar(r,OxOa) 

Console Device 3·91 



#define VERTICALTAB(r) 
#define FORMFEED(r) 
#define CR{r) 
#define SHIFTOUT(r) 
#define SHIFTIN(r) 
#define CLEARSCREEN(r) 

#define RESET(r) 
#define INSERT(r) 
#define CURSUP(r) 
#define CURSDOWN(r) 
#define CURSFWD(r) 
#define CURSBAK(r) 
#define CURSNEXTLN(r) 
#define CURSPREVLN(r) 
#define ERASEEOD(r) 
#define ERASEEOL(r) 
#define INSERTLINE(r) 
#define DELETELINE(r) 
#define SCROLLUP(r) 
#define SCROLLDOWN(r) 
#define DEVICESTATUS(r) 
#define WINDOWSTATUS(r) 
#define DELCHAR(r) 
#define CURSORON{r) 
#define CURSOROFF(r) 
#define SETMODE(r) 
#define RESETMODE(r) 

#define CloseConsole(r) 

ULONG DosBase; 
ULONG DiskfontBase; 
ULONG IntuitionBase; 
ULONG GfxBase; 

struct NewWindow nw = { 

ConPu tChar( r,OxOb) 
ConPu tCh ar( r ,0xOc) 
ConPu tCh ar( r ,0xOd) 
ConP u tCh ar( r ,0xOe) 
ConPu tChar( r,OxOf) 
ConPutChar( r,OxOc) 

Con Write(r,RESETINITSTRING,2) 
Con Write(r,INSERTCHARSTRING,2) 
Con Wri te( r, CURSUPSTRING,2) 
Con Wri te( r, CURSDOWNSTRING,2) 
Con Write(r,CURSFWDSTRING,2) 
Con Write(r,CURSBAKSTRING,2) 
Con W rite( r, CURSNEXTLINE,2) 
Con Write(r,CURSPREVLINE,2) 
Con Write(r,ERASEEODSTRING,2) 
Con Write(r,ERASEEOLSTRING,2) 
Con Write(r,INSERTLINESTRING,2) 
Con Write(r,DELETELINESTRING,2) 
Con Write(r,SCROLLUPSTRING,2) 
Con Write(r,SCROLLDOWNSTRING,2) 
Con Write(r,DEVSTATSTRING,2) 
ConWrite(r,WINDOWSTATSTRING,2) 
Con Write(r,DELCHARSTRING,2) 
Con Write(r,CURSONSTRING,3) 
Con Write(r,CURSOFFSTRING,4) 
Con Write(r,SET~10DESTRING,4) 
ConWrite(r,RESETMODESTRING,4) 

CloseDevice( r) 

10, 10, /* starting position (left, top) */ 
620,90, /* width, height */ 
-1,-1, /* detailpen, blockpen */ 
0, /* flags for idcmp */ 
WINDOWDEPTHIWINDOWSIZINGIWINDOWDRAGISIMPLE_REFRESH 

!ACTIVATEIGHviMEZEROZERO, 
/ * window gadget flags * / 

0, / * poin ter to 1st user gadget * / 
NULL, /* pointer to user check * / 
"Console Test", /* title */ 
NULL, /* pointer to window screen */ 
NULL, /* pointer to super bitmap */ 

3-92 Console Device 



100,45, /* min width, height */ 
640,200, /* max width, height */ 
WBENCHSCREEN}; 

struct Window *w; 
struct RastPort *rp; 

struct IOStdReq *consoleWriteMsg; 
struct MsgPort *consoleWritePort; 
struct IOStdReq *consoleReadMsg; 
struct MsgPort *consoleReadPort; 

/* I/O request block pointer */ 
/* a port at which to receive */ 

/* I/O request block pointer */ 
/* a port at which to receive */ 

extern struct MsgPort *CreatePortO; 
extern struct IOStdReq *CreateStdIOO; 

char readstring[200]; /* provides a buffer even though using only one char */ 

mainO 
{ 

SHORT i; 
SHORT status; 
SHORT problem; 
SHORT error; 
problem = 0; 

if((DosBase = OpenLibrary("dos.library", 0)) == NULL) 
{ problem = 1; goto cleanup1; } 

if( (Diskfon tBase=OpenLibrary(" d iskfon t.library" ,0) )==NULL) 
{ problem = 2; goto cleanup2; } 

if((IntuitionBase=OpenLibrary("intuition.library" ,O))==NULL) 
{ problem = 3; goto cleanup3; } 

if((GfxBase=OpenLibrary("graphics.library" ,O))==NULL) 
{ problem = 4; goto cleanup4; } 

console Write Port = CreatePort(" my .con. write" ,0); 
if(consoleWritePort == 0) 

{ problem = 5; goto cleanupS; } 
console WriteMsg = CreateStdIO( console WritePort); 
if(consoleWritePort == 0) 

{ problem = 6; goto cleanup6; } 

consoleReadPort = CreatePort("my.con.read" ,0); 
if(consoleReadPort == 0) 

{ problem = 7; goto cleanup7; } 
consoleReadMsg = CreateStdIO( consoleReadPort); 
if( consoleReadPort == 0) 

{ problem = 8; goto cleanup8; } 

w = (struct Window *)OpenWindow(&nw); /* create a window */ 

Console Device 3-93 



if( w == NULL) 
{ problem = 9; goto cleanup9; } 

rp = w->RPort; / * establish its rast port for later * / 

/* *******-**********************.***************************************** */ 
/* NOW, Begin using the actual console macros defined above. */ 
/* ************************************************************************ */ 

error = OpenConsole( console WriteMsg,consoleReadMsg, w); 
if( error != 0) 

{ problem = 10; goto cleanuplO; } 
/* attach a console to this window, initialize 
* for both write and read * / 

QueueRead{consoleReadMsg,&readstring[O]); /* tell console where to 
* put a character that 
* it wants to give me 
* queue up first read */ 

Con Write{ consoleWriteMsg,"Hello, World\r\n" ,14); 

ConPutStr{ consoleWriteMsg," testing BACKSPACE"); 
for(i=O; i<lO; i++) 

{ BACKSPACE(consoleWriteMsg); Delay(30); } 

ConPutStr( console WriteMsg," \r\n"); 

ConPutStr( console WriteMsg," testing TAB\r"); 
for(i=O; i < 6; i++) 

{ TAB(consoleWriteMsg); Delay(30); } 

ConPutStr( console WriteMsg," \r\n"); 

ConPutStr( console WriteMsg," testing LINEFEED\r"); 
for(i=O; i<4; i++) 

{ LINEFEED{consoleWriteMsg); Delay(30); } 

ConPu tStr( console WriteMsg," \r\n"); 

ConPu tStr( console WriteMsg," testing VERTICAL TAB\r"); 
for(i=O; i<4; i++) 

{ VERTICALTAB(consoleWriteMsg); Delay(30); } 

ConPu tStr( console WriteMsg," \r\n"); 

ConPutStr(consoleWriteMsg,"testing FORMFEED\r"); 
Delay(30); 
for(i=O; i<2; i++) 

{ FORMFEED(consoleWriteMsg); Delay(30); } 

3-94 Console Device 



ConPu tStr( console WriteMsg," \r\n"); 

ConPu tStr{ console Writetvisg," testing CR"); 
Delay(30); 
CR( console WriteMsg); 
Delay(60); 
ConPu tStr{ console Write~isg," \r\n"); 

ConPu tStr( console WriteMsg," testing Il'\SERT\r"); 
for(i=O; i<4; i++) 

{ INSERT(consoleWriteMsg); Delay(30); } 

ConPu tStr( consoie WriteMsg,"\r\n"); 

ConPutStr(consoleWriteMsg," testing DELCHAR\r"); 
CR(consoleWriteMsg); 
for{i=O; i<4; i++) 

{ DELCHAR(consoleWriteMsg); Delay(30); } 

ConPu tStr( console WriteMsg," \r\n"); 

ConPutStr( consoleWriteMsg," testing INSERTLINE\r"); 
CR( console WriteMsg); 
for(i=O; i<3; i++) 

{ INSERTLINE{ console WriteMsg); Delay(30); } 
ConPu tStr( console WriteMsg," \r\n"); 

ConPutStr( console Write~ilsg," testing DELETELINE\r"); 
CR( console WriteMsg); 
LINEFEED{ console WriteMsg); 
Delay(60); 
for(i=O; i<4; i++) 

{ DELETELINE(consoleWriteMsg); Delay(30); } 
ConPu tStr( console WriteMsg,"\r\n"); 

ConPu tStr( console WriteMsg," testing CURSUP\r"); 
for(i=O; i<4; i++) 

{ CURSUP( consoleWriteMsg); Delay(30); } 

ConPu tStr( console WriteMsg,"\r\n"); 

ConPutStr(console WriteMsg," testing CURSDOWN\r"); 
for(i=O; i < 4; i++) 

{ CURSDOWN( consoleWriteMsg); Delay(30); } 

ConPutStr( console WriteMsg," \r\n"); 

ConPutStr( consoleWriteMsg," testing CURSFWD\r"); 
for(i=O; i<4; i++) 

{ CURSFWD(consoleWriteMsg); Delay(30); } 

Console Device 3-95 



ConPu tStr( console WriteMsg," \r\n"); 

ConPutStr(consoleWriteMsg," testing CURSBAK"); 
for{i=O; i < 4; i++) 

{ CURSBAK(consoleWrite.Msg); Delay(30); } 

ConPu tStr( console WriteMsg," \r\n"); 

ConPutStr(consoleWriteI>.1sg,"testing CURSPREVLN"); 
for(i=O; i<4; i++) 

{ CURSPREVLN(consoleWriteMsg); Delay(30); } 

ConPu tStr( console WriteMsg, n \r\n"); 

ConPu tStr( console WriteMsg," testing CURSNEXTLN"); 
for(i=O; i<4; i++) 

{ CURSNEXTLN(consoleWriteMsg); Delay(30); } 

ConPu tStr{ console WriteMsg," \r\n"); 

ConPu tStr( console WriteMsg," testing ERASEEOD"); 
CURSPREVLN( console WriteMsg); 
CURSPREVLN(consoleWriteMsg); 
CURSPREVLN(consoleWriteMsg); 
Delay(60); 
for(i=O; i < 4; i++) 

{ ERASEEOD(consoleWriteMsg); Delay(30); } 

ConPutStr( console WriteMsg," \r\n"); 

ConPutStr( consoleWriteMsg," testing ERASEEOL.junk"); 
CURSBAK( console WriteMsg); 
CURSBAK( console WriteMsg); 
CURSBAK( console WriteMsg); 
CURSBAK( console WriteMsg); 
CURSBAK( console WriteMsg); 
Delay(60); 
ERASEEOL( console WriteMsg); 
Delay(30); 
ConPu tStr( console WriteMsg," \r\n"); 

ConPutStr(console WriteMsg," testing SCROLL UP"); 
for(i=O; i<4; i++) 

{ SCROLLUP( console WriteMsg); Delay(30); } 

ConPu tStr( console WriteMsg," \r\n"); 
ConPutStr( console WriteMsg," testing SCROLLDOWN"); 
ConPu tStr( console WriteMsg," \n \n \n"); 
for(i=O; i<4; i++) 

{ SCROLLDOWN(consoleWriteMsg); Delay(30); } 

3-96 Console Device 



ConPu tStr( console WriteMsg," \r\n"); 

ConPutStr( console WriteMsg," testing CURSOROFF"); 
CURSOROFF(consoleWrite~Isg}; 
ConPu tStr( console WriteMsg, "prin ted .with.cursor .off'}; 
Delay(60); 
ConPutStr( console WriteMsg," \r\n"); 

CURSORON( console WriteMsg}; Delay(30}; 
ConPu tStr( console WriteMsg," testing CURSORON"); 

/* ************************************************************************ */ 
Delay(120);/* wait 2 seconds (120/60 ticks) */ 

status = CheckIO( consoleReadMsg); /* see if console read 
* anything, abort if not * / 

if( status == FALSE) AbortIO{ consoleReadMsg); 
WaitPort{consoleReadPort); /* wait for abort to complete */ 
GetMsg{ consoleReadPort); /* and strip message from port * / 

CloseConsole( console WriteMsg); 
cleanuplO: 
cleanup9: 

CloseWindow(w); 
cleanupS: 

DeleteStdIO{ consoleReadMsg); 
cleanup7: 

DeletePort{ consoleReadPort); 
cleanup6: 

DeleteStdIO( console W riteMsg); 
cleanupS: 

DeletePort( console WritePort); 
cleanup4: 

CloseLibrary( GfxBase); 
cleanup3: 

CloseLibrary(IntuitionBase ); 
cleanup2: 

CloseLibrary(DiskfontBase ); 
cleanupl: 

CloseLibrary(DosBase ); 
if{problem > 0) exit(problem+lOOO); 
else 

return(O); 

} /* end of mainO * / 

/ * Open a console device * / 

Console Device 3-97 



/* this function returns a value of 0 if the console 
* device opened correctly and a nonzero value (the error 
* returned from OpenDevice) if there was an error. 

*/ 

int 
OpenConsole( write request ,read request, window) 

struct IOStdReq *writerequest; 
struct IOStdReq *readrequest; 
struct Window *window; 
{ 

} 

int error; 
writerequest- > io_Data = (APTR) window; 
writerequest- > io_Length = sizeof{ *window); 
error = OpenDevice{" console.device" , 0, writerequest, 0); 
readrequest- > io_Device = writerequest- > io_Device; 
readrequest->io_Unit = writerequest->io_Unit; 

/* clone required parts of the request */ 
return{ error); 

/* Output a single character to a specified console */ 

int 
ConPutChar{request,character) 

struct IOStdReq *request; 
char character; 
{ 

} 

request->io_Command = CMD_WRITE; 
request- >io_Data = (APTR)&character; 
request->io_Length = 1; 
DoIO( request); 
/* command works because DolO blocks until command is 
* done (otherwise pointer to the character could become 
* invalid in the meantime). 
*/ 

return{O); 

/* Output a stream of known length to a console */ 

int 
Con W rite( request,string,length) 

struct IOStdReq *request; 
char *string; 
int length; 
{ 

request->io_Command = CMD_WRITE; 
request- >io_Data = (APTR)string; 
request- > io_Length = length; 

3-98 Console Device 



} 

DoIO( request); 
/* command works because DolO blocks until command is 
* done (otherwise pointer to string could become 
* invalid in the meantime). 

*/ 
return{O); 

/* Output a NULL-terminated string of characters to a console */ 

int 
ConPu tStr( request,string) 

struct IOStdReq *request; 
char *string; 
{ 

request->io_Command = CMD_WRITE; 
request- >io_Data = (APTR)string; 

} 

request->io_Length = -1; /* tells console to end when it 
* sees a terminating zero on 

DoIO{ request); 
return(O); 

* the string. * / 

/* queue up a read request to a console, show where to 
* put the character when ready to be returned. Most 
* efficient if this is called right after console is 
* opened */ 

int 
QueueRead(request,whereto) 

struct IOStdReq *request; 
char *whereto; 
{ 

} 

request->io_Command = CMD_READ; 
request- > io_Data = (APTR)whereto; 
request- > io_Length = 1; 
SendIO( request); 
return(O); 

/* see if there is a character to read. If none, don't wait, 
* come back with a value of -1 * / 

int 
ConMayGetChar(request,requestPort, whereto) 

struct IOStdReq *request; 
char *whereto; 
{ 

register temp; 

Console Device 3-99 



} 

if ( GetMsg(requestPort) == NULL) return(-l); 
temp = *whereto; 
QueueRead{ requ est, whereto); 
return( tern p ); 

/* go and get a character; put the task to sleep if 
* there isn't one present */ 

UBYTE 
ConGetChar( consolePort,request, whereto) 

struct IOStdReq *request; 
struct MsgPort *consolePort; 
char *whereto; 
{ 

register UBYTE temp; 
while((GetMsg(consolePort) == NULL)) WaitPort(consolePort); 
temp = *whereto; /* get the character */ 
QueueRead( request, w hereto); 
return( temp); 

} 

3-100 Console Device 



Chapter 5 

Input Device 

This chapter describes the Amiga input device, which is a combination of three other 
devices: keyboard device, game port device, and timer device. The input device merges 
separate input event streams from the keyboard, mouse, and timer into a single stream. 
This single stream can then be interpreted by the prioritized linked list of input handlers 
that are watching the input stream. 

Note that two additional messages can appear in the input stream: "disk inserted" and 
"disk removed". These messages come from AmigaDOS and are sent to the input device for 
further propgation. 

5.1. INTRODUCTION 

The input device is automatically opened by AmigaDOS by any call to open the console dev
ice. ·When the input device is opened, a task, appropriately named "input.device", is started. 
The input device task communicates directly with the keyboard device to obtain raw key 
inputs. It also communicates with the game port device to obtain mouse button and mouse 
movement events and with the timer device to obtain time events. In addition to these 
event streams, you can also directly input an event to the input device, to be fed to the 
handler chain. This topic is also covered below. 

The keyboard device is also accessible directly. However, while the input device task is 
operating, it attempts to retrieve all incoming keyboard events and add them to the input 
stream. 

The game port device has two units available to it. As you view the Amiga looking at the 
gameport connectors, connector "I" is assigned as the primary mouse input for Intuition and 
contributes gameport input events to the input event stream. Connector "2" is handled by 
the other gameport unit and is currently unassigned. Each unit of the gameport device is an 
exclusive access object, in that you can specify what type of controller is attached. It is then 
assumed that only one task is sending requests for input from that unit. While the input 
device task is running, that task expects to read the input from connector 1. Direct use of 

Input Device 3-101 



the gameport device is covered in a separate chapter of this manual. 

The timer device provides time events for the input device. It also provides time interval 
reports for controlling key repeat rate and key repeat threshold. The timer device is a 
shared-access device and is described in its own separate 'iE'ctiOil. 

5.2. INPUT DEVICE COMMANDS 

The input device allows the following system functions: 

Command Operation 

OpenDeviceO 
C loseDeviceO 
DoIOO 
SendIOO 
AbortIOO 

Obtain shared use of the inpu t device. 
Relinquish use of the input device. 
Initiate a command, and wait for it to complete. 
Initiate a command, and return immediately. 
Abort a command already in the queue. 

Only the Start, Stop, Invalid, and Flush commands have been implemented for this device. 
All other commands are no-operations. 

The input device also supports the following device-specific commands: 

I/O Command 

I;\D_ WRITEEVENT 
IND_ADDHANDLER 
IND_RE~dHANDLER 

IND_SETPERIOD 
IND_SETMPORT 

Table 5-1: Input Device Commands 

Operation 

Propagate an input event stream to all devices 
Add an input-stream handler into the handler chain. 
Remove an input-stream handler from the handler 
chain. 
Set the repeating key hold-down time before repeat 
starts. 
Set the period at which a repeating key repeats. 
Set the game port port to which the mouse is 
connected. 
Read conditions that must be met by a mouse before 
a pending read request will be satisfied. 
Set the type of device at the mouse port. 

The device-specific commands outlined above are described in the following paragraphs. A 
description of the contents of an input event is given first because the input device deals in 
input events. An input event is a data structure that describes: 

3-102 Input Device 



o the class of the event-often describes the device that generated the event 

o the subclass of the event-space for more information if needed 

o the code-keycode if keyboard, button information if mouse, others 

o a qualifier such as "ALT key also down", "key repeat active" 

o a position field which contains a data address or a mouse position count. 

o a time stamp, showing the sequence in which events have occurred 

o a link-field by which input events are linked together 

The various types of input events are listed in the include-file devices/ inputevent.h. That 
information is not repeated here. You can find more information about input events in the 
chapters titled "Gameport Device" and "Console Device". 

There is a difference between simply receiving an input event from a device (gameport, key
board, or console) and actually becoming a handler of an input event stream. A handler is a 
routine that is passed an input event, and it is up to the handler to decide if it can process 
the input event. If the handler does not recognize the event, it passes the address of the 
event as a return value. 

Because of the input event field called ie_NextEvent, it is possible for the input event to be 
a pointer to the first event in a linked list of events to be handled. Thus the handler should 
be designed to handle multiple events if such a link is used. Note that handlers can, them
selves, generate new linked lists of events which can be passed down to lower priority 
handlers. 

IND_ADDHANDLER Command 

You add a handler to the chain by the command IND_ADDHANDLER. Assuming that you 
have a properly initialized an IOStdReq block as a result of a call to OpenDeviceO (for 
the input device), here is a typical C-language call to the IND_ADDHANDLER function: 

Input Device 3-103 



struct In terru pt hand lerS tu ff; 
handlerS tuff. is_Data = &hsData; 

/* address of its data area * / 
handlerStufT.is_Code = my handler; 

/* address of entry point to handler */ 
handlerStuff.is_Node.ln_Pri = 51; 

/* set the priority one step higher than 
* Intution, so that our handler enters 
* the chain ahead of Intuition. 
*/ 

inputRequestBlock.io_Command = IND_ADDHANDLER; 
inpu tRequestBlock.io_Data = &handlerStuff; 

DoIO( &inputRequestBlock); . 

Notice from the above that Intuition is one of the input device handlers and normally distri
butes all of the input events. Intuition inserts itself at priority position 50. You can choose 
the position in the chain at which ·your handler will be inserted by setting the priority field III 

the list-node part of the interrupt data structure you are feeding to this routine. 

Note also that any processing time expended by a handler subtracts from the time available 
before the next event happens. Therefore, handlers for the input stream must be fast. 

Rules for Input Device Handlers 

The following rules should be followed when you are designing an input handler: 

1. If an input handler is capable of processing a specific kind of an input event and that 
event has no links (ie_NextEvent = 0), the handler can end the handler chain by 
returning a NULL (0) value. 

2. If there are multiple events linked together, the handler can feel free to delink an 
event from the input event chain, thereby passing a shorter list of events to subse
quent handlers. The starting address of the modified list is the return value. 

3. If a handler wishes to add new events to the chain that it passes to a lower priority 
handler, it may initialize memory to contain the new event or event chain. The 
handler, when it again gets control on the next round of event handling, should 
assume nothing about the current contents of the memory blocks it attached to the 
event chain. Lower priority handlers may have modified the memory as they han
dled their part of the event. The handler that allocates the memory for this purpose 

3-104 Input Device 



should keep track of the starting address and the size of this memory chunk so that 
the memory can be returned to the free memory list when it is no longer needed. 

Your routine should be structured so that it can be called as though from the following C
language statement: 

newEventChain = yourHandlerCode(oldEventChain, yourHandlerData); 

where: 

o yourHandlerCode is the entry point to your routine, 

o oldEventChain is the starting address for the current chain of input events, and 

o newEventChain is the starting address of an event chain which you are passing to 
the next handler, if any. 

A NULL (0) value terminates the handling. 

Memory that you use to describe a new inpu t even t that you've added to the even t chain is 
available for re-use or deallocation when the handler is called agam or after the 
IND_REMHANDLER command for the handler is complete. 

Because IND_ADDHANDLER installs a handler in any position in the handler chain, it can, 
for example, ignore specific types of input events as well as act upon and modify existing 
streams of input. It can· even create new input events for Intuition or other programs to 
interpret. 

IND_REMHANDLER Command 

You remove a handler from the handler chain with the command IND_RE~fHANDLER. 
Assuming that you have a properly initialized IOStdReq block as a result of a call to 
OpenDeviceO (for the input device) and you have already added the handler using 
IND_ADDHANDLER, here is a typical C-Ianguage call to the Il'\D_REMHANDLER func
tion: 

inputRequestBlock.io_Command = IND_REMHANDLER; 
inputRequestBlock.io_Data = &handlerStuff; 

/* tell it which one to remove */ 
DoIO( &inpu tRequestBlock); 

Input Device 3-105 



IND_ WRITEEVENT Command 

As noted in the overview of this chapter, input events are normally generated by the timer 
device, keyboard device or gameport device. A user can also generate an input event and 
send it to the input device. It will then be treated as any other event and passed through to 
the input handler chain. You can create your own stream of events, then send them to the 
input device using the IND_ WRITEEVENT command. Here is an example, assuming a 
correctly initialized input_request_hlock. The example sends in a single event, which is a 
phony mouse-movement: 

struct InputEvent phony; 

input_request_block.io_Command = IND_ WRITEEVENT; 
input_request_block.io_Flags = 0; 
inpu t_request_block .io_Length = sizeof( struct In pu tEven t); 
input_request_block.io_Data = &phony; 

phony.ie_NextEvent = NULL; /* only one */ 
phony.ie_Class = IECLASS_RAW!vIOUSE; 
phony.ie_TimeStamp.tv_secs = 0; 
phony.ie_TimeStamp.tv_micro = 0; 
phony.ie_Code = IECODE_NOBUTTON; 
phony.ie_Qualifier = IEQUALIFIER_RELATIVEMOUSE; 
phony.ie_X = 10; 
phony.ie_Y = 5; 

/* mouse didn't move, but program made 
* system think that it did. 
*/ 

DoIO( &in p u t_request_block); 

NOTE: This command adds the input event to the end of the current event stream. The 
system links other events onto the end of this event, thus modifying the contents of the data 
structure you constructed in the first place. 

3-106 Input Device 



IND_SETTHRESH Command 

This command sets the timing in seconds and microseconds for the in pu t device to indicate 
how long a user must hold down a key before it begins to repeat. This command is normally 
performed by the Preferences tool or by Intuition when it notices that the Preferences have 
been changed. If you wish, you can call this function. The following typical sequence 
assumes that you have already correctly initialized the request block by opening the input 
device. Only the fields shown here need be initialized. 

struct InputEvent thresh_event; 

input_request_block.io_Command = Il'\D_SETTlIRESH; 
input_request_block.io_Flags = 0; 
input_request_block.io_Data = &thresh_event: 

thresh3vent.ie_NextEvent = 0; 
thresh_even t.ie-'fimeStamp. tv _secs = 1; / * one second * / 
thresh_event.ie_TimeStamp.tv_micro ~ .')00000; 

/* 500,000 microseconds = 1/2 second * / 
DoIO( &in pu t_request_block); 

IND SETPERIOD Command 

This command sets the time period between key repeat events once the initial period thresh
hold has elapsed. Again, it is a command normally issued by Intuition and preset by the 
Preferences tool. A typical calling sequence is as shown above; change the command number 
and the timing period values to suit your application. 

5.3. INPUT DEVICE AND INTUITION 

There are several ways to receive information from the various devices that are part of the 
input device. The first way is to communicate directly with the device. This way is, as 
specified above, occasionally undesirable (while the input device task is running). The second 
way is to become a handler for the stream of events which the input device produces. That 
method is also shown above. 

Input Device 3-107 



The third method of getting input from the input device is to retrieve the data from the con
sole device or from the IDCMP (Intuition Direct Communications 'Message Port). 

If you choose this third method, you should be aware of what happens to input events if 
your task chooses not to respond to them. If there is no active window and no active con
sole, then input events (key strokes or left button mouse clicks usually) will simply be 
ignored. If, however, there is an active window (yours), and you choose to simply let the 
messages pile up without responding to them as quickly as possible, here is what happens: 

o Another event occurs, If the system has no empty message that it can fill in to 
report this new event, then memory is dynamically allocated to hold this new infor
mation and the new message is transmitted to the message port for the task. 

o \Vhen the task finally responds to the message, the allocated memory isn't returned 
to the system until the window is closed. Therefore, a task that chooses not to 
respond to its incoming messages for a long period of time can potentially remove a 
great deal of memory from the system free memory list, making that memory space 
unavailable to this or other tasks until this task is completed. 

Thus it is always a good idea to respond to input messages as quickly as possible to maxim
ize the amount of free memory in the system while your task is running. 

5.4. SAMPLE PROGRAM 

This sample program adds an input handler to the input stream. Note that this program 
also uses the PrepareTimerO and SetTimerO and DeleteTimerO routines described in the 
example program of the "Timer Device" chapter. Note also that compiling this program 
native on the Amiga requires a separate compile for this program, a separate assembly for 
the "handler.interface.asm", and a separate alink phase. Alink will be used to tie together 
the object files produced by the separate language phases. 

#include <exec/types.h> 
#include <exec/ports.h> 
#include <exec/memory.h> 
#include <exec/io.h> 
#include <exec/tasks.h> 
# include < exec/in terru pts. h > 
#include < devices/in pu t.h > 
#include <exec/devices.h> 
#include <devices/inputevent.h> 

#define FIKEYUP Ox DO 
struct InputEvent copyevent; /* local copy of the event */ 

/* assumes never has a next.event attached * / 

3-108 Input Device 



struct ~/fsgPort *inputDevPort; 
struct IOStdReq *inputRequestBlock; 
struct Interrupt handlerStuff; 

struct InputEvent dummyEvent; 

extern struct tvfsgPort *CreatePort(); 
extern struct IOStclReq *CreateStclIO(); 

struct MemEntry me[lO]; 

/* If we want the input handler itself to add anything to the 
* input stream, we will have to keep track of any dynamically 
* allocated memory so that we can later return it to the system. 
* Other handlers can break any internal links the handler puts 
* in before it passes the input events. 

*/ 

struet In pu tEven t 
*myhandler(ev, mydata) 

struet InputEvent *ev; /* and a pointer to a list of events */ 
struet MemEntry *mydata[]; /* system will pass me a pointer to my 

* own data space. 

{ 
/* demo version of program simply reports input events as 
* its sees them; passes them on unchanged. Also, if there 
* is a linked chain of input events, reports only the lead 
* one in the chain, for simplicity. 

*/ 
if(ev->ie_Class == IECLASS_TIMER) 
{ 

return( ev); 
} 
/* don't try to print timer events!!! they come every l/lOth sec. */ 
else 
{ 

Forbid(); / * don't allow a mix of even ts to be reported * / 
eopyevent.ie_Class = ev- > ie_Class; 
eopyeven t.ie_Su bClass = ev- > ie_Su bClass; 
copyevent.ie_Cocle = ev->ie_Cocle; 
copyevent.ie_Qualifier = ev- > ie_Qualifier; 
copyeven t.ie_X = ev- > ie_X; 
copyevent.ie_Y = ev->ie_Y; 
copyevent.ie_TimeStamp.tv _sees = ev- > ie_TimeStamp. tv_sees; 
copyevent.ie_TimeStamp. tv_micro = ev- > ie_TimeStamp. tv_micro; 
PermitO; 

} 

/* There will be lots and lots of events coming through here; 

Input Device 3-109 



} 

* rather than make the system slow down because something 
* is busy printing the previous event, lets just print what 
* we find is current, and if we miss a few, so be it. 

* Normally this loop would" handle" the even t or perhaps 
* add a new one to the stream. (At this level, the only 
* events you should really be adding are mouse, rawkey or timer, 
* because you are ahead of the intuition interpreter.) 
* No printing is done in this loop (lets mainO do it) because 
* printf can't be done by anything less than a 'process' 

*/ 
return(ev); 
/* pass on the pointer to the event (most handlers would 
* pass on a pointer to a changed or an unchanged stream) 
* (we are simply reporting what is seen, not trying to 
* modify it in any way) * / 

/* NOTICE: THIS PROGRAM LINKS ITSELF INTO THE INPUT STREAM AHEAD OF 
* INTUITION. THEREFORE THE 00JLY INPUT EVENTS THAT IT WILL SEE AT 
* ALL ARE TIMER, KEYBOARD and GAMEPORT. AS NOTED IN THE PROGRAM, 
* THE TIMER EVENTS ARE IGNORED DELIBERATELY */ 

extern struct Task *FindTaskO; 
struct Task *mytask; 
LONG mysignal; 
extern HandlerInterfaceO; 

struct time request *mytimerRequest; 

extern struct timerequest *PrepareTimerO; 
extern in t WaitTimerO; 
extern int DeleteTimerO; 

mainO 
{ 

SHORT error; 
ULONG oldseconds, oldmicro, old class; 

/* init dummy event, this is what we will feed to other handlers 
* while this handler is active */ 

dummyEvent.ie_Class = IECLASS_NULL; /* no event happened */ 
dummyEvent.ie_NextEvent = NULL; /* only this one in the chain * / 

inputDevPort = CreatePort(O,O); 
if(inputDevPort == NULL) exit(-l); 

3-110 Input Device 

/* for input device */ 
/* error during createport */ 



inputRequestBlock = CreateStdIO(inputDevPort); 
if(inputRequestBlock == 0) { DeletePort(inputDevPort); exit(-2); } 

/* error during createstdio */ 

mytimerRequest = PrepareTimerO; 
if(mytimerRequest == I'\ULL) exit(-3); 

handlerStuff.is_Data = (APTR)&me[O]; 
/* address of its data area */ 

handlerStuff.is_Code = (VOID)HandlerInterface; 
/* address of entry point to handler * / 

handlerStuff.is_Node.ln_Pri = 51; 
/* set the priority one step higher than 
* Intution, so that our handler enters 
* the chain ahead of Intuition. 

*/ 
error = OpenDevice(" input.device" ,O,inpu tRequestBlock,O); 
if( error == 0) prin tf(" \n Opened the inpu t device"); 

inputRequestBlock- > io_Command = INDj\DDHANDLER; 
inputRequestBlock- > io_Data = (APTR)&handlerStuff; 

DoIO(in pu tRequestBlock); 
copyevent.ie_TimeStarnp.tv _sees = 0; 
copyevent.ie_TirneStarnp.tv_micro = 0; 
copyevent.ie_Class = 0; 
oldseconds = 0; 
old micro = 0; 
old class =0; 

for(;;) /* FOREVER */ 
{ 
WaitForTimer(rnytimerRequest, 0, 100000); 

/* TRUE = wait; time = l/lOth second */ 

/* note: while this task is asleep, it is very very likely that 
* one or more events will indeed pass through the input handler. 
* This task will only print a few of them, but won't intermix 
* the pieces of the input event itself because of the ForbidO 
* and Perm itO (not allow task swapping when a data structure 
* isn't internally consistent) 

*/ 
if(copyevent.ie_Class == IECLASS_RAWKEY & 

else 
{ 

& copyevent.ie_Code == F1KEYUP) break; 
/* exit from forever * / 

ForbidO; 
if( copyevent.ie_TimeStamp. tv_sees != oldseconds II 

copyevent.ie_TimeStamp.tv_micro != old micro II 

Input Device 3-111 



copyevent.ie_Class )= oldclass ) 

} 
} 

{ 

} 
PermitO; 

oldseconds = copyevent.ie_TimeStamp.tv _sees; 
oldmicro = copy even t.ie_TimeStamp. tv_micro; 
old class = copyevent.ie_Class; 
showEvents( &copyevent); 

/* Although this task sleeps (main loop), the handler is independently 
* called by the input device. 

*/ 

/* For keystrokes that might be recognized by AmigaDOS, such as 
* alphabetic or numeric keys, you will notice that after the 
* first such keystroke, AmigaDOS appears to lock ou t your task 
* and accepts all legal keystrokes until you finally hit return. 
* This is absolu tely true .... w hen both you and AmigaDOS try to 
* write into the same window, as is true if you run this program 
* from the CLI, the first keystroke recognized by AmigaDOS locks 
* the layer into which it is writing. Any other task trying 
* to write into this same layer is put to sleep. This allows 
* AmigaDO::3 to edit the input line and prevents other output to 
* that same window from upsetting the input line appearance. 
* In the same manner, while your task is sending a line of output, 
* AmigaDOS can be put to sleep it too must output at that time. 

* * You can avoid this problem if you wish by opening up a separate 
* window and a console device attached to that window, and output 
* strings to that console. If you click the selection button on 
* this new window, then AmigaDOS won't see the input and your 
* task will get to see all of the keystrokes. The other alternative 
* you can use, for demonstration sake, is to: 

* 
* 1. 1fake the AmigaDOS window slightly smaller in the 
* vertical direction. 
* 2. Then click in the \Vorkbench screen area outside 
* of any window. 

* * Now there is no console device (particularly not AmigaDOS's 
* console) receiving the raw key stream and your task will report 
* as many keystrokes as it can catch (while not sleeping, that 
* is). 

*/ 

/* remove the handler from the chain */ 
inputRequestBlock- >io_Command = IND_REMHAl\'DLER; 
inputRequestBlock- > io_Data = (APTR)&handlerStuff; 
DoIO(inpu tRequestBlock); 

3-112 Input Device 



/* close the input device */ 
CloseDev ice( in pu tRequestBlock); 

/* delete the 10 request */ 
DeleteS tdI O( in p u tReqllcstBloc k); 

/* free other system stuff */ 
DeletePort(inpu tDev Port); 
DeleteTimer( mytimerReqllest): 

} /* end of main */ 

in t 
sho\vEven ts( e) 
struct InputEvent *e; 
{ 

printf("\n\nNew Input Event"); 
printf("\nie_Class = % Ix" ,e- > ie_Class); 
printf(" \nie_Su bClass = % Ix" ,e- >ie_SubClass); 
printf("\nie_Code = %Ix", e->ie_Code); 
prin tf(" \nie_Qualifier = % Ix" ,e- > ie_Qualifier); 
printf("\nie_X = %Id", e->ie_X); 
printf("\nie_Y = %Id", e->ie_Y); 
printf("\nie_TimeStamp(seconds) = %Ix", e->ie_TimeStamp.tv_secs); 
return(O); 

} 

************************************************************************* 
* Handlerlnterface() 

* 
* This code is needed to convert the calling sequence performed by 
* the input.task for the input stream management into something 
* that a C program can understand. 

* 
* This routine expects a pointer to an InputEvent in AO, a pointer 
* to a data arca in AI. These values are transferred to the stack 
* in the order that a C program would need to find them. Since the 
* actual handler is written in C, this works out fine. 

XREF _myhancller 
XDEF _HandlerInterface 

_Handlerln terface: 
MOVEM.L AO/ A1,-(A7) 
JSR _myhandler 
ADDQ.L #8,A7 
RTS 

END 

Input Device 3-113 





Chapter 6 

Keyboard Device 

This chapter describes the keyboard device, which gloVes system access to the Amiga key
board. 

6.1. INTRODUCTION 

When you send this device the command to read one or more keystrokes from the keyboard, 
for each keystroke (whether key-up or key-down) the keyboard device creates a data struc
ture called an input event, to describe what happened. A keyboard input event includes: 

o the key code (including up or down transition status) 

o information about the current state of the left and right shift key 

o whether the key came from the numeric keypad area 

Thus the keyboard device provides more information than simply the "raw"key input that 
might be obtained by directly reading the hardware registers. Tn addition, the keyboard dev
ice can buffer keystrokes for you. If your task takes more time to process prior keystrokes, 
the keyboard device senses additional keystrokes and saves several keystrokes as a type
ahead feature. If your task takes an exceptionally long time to read this information from 
the keyboard, any keystrokes queued up beyond the number the system can handle will be 
ignored. Normally, the input device task processes these keyboard events, turning them into 
input device events to that no keystrokes are lost. You can find more information about 
keyboard event queueing in the chapter titled "Inpu t Device" in the topic titled "Inpu t Dev
ice and Intuition". 

Key board Device 3-115 



6.2. KEYBOARD DEVlCE COMMANDS 

The keyboard device allo'ws the following system functions. The system functions operate 
normally. 

Command Operation 

OpenDeviceO 
C loseDeviceO 
DoIOO 
SendIOO 
AbortIOO 

Obtain shared use of the keyboard device. 
Relinquish use of the keyboard device. 
Initiate a command, and wait for it to complete. 
Initiate a command, and return immediately. 
Abort a command already in the queue. 

The keyboard device also responds to the following commands: 

I/O Command 

KBD_ADDRESETHANDLER 
KBD _REMRESETHAND LER 
KBD_RESETHANDLERDONE 

KBD_READt-.L\ TRIX 
KBD_READEVEl'\T 

KBD_ADDRESETHANDLER 

Operation 

add a reset handler to the device. 
remove a reset handler from the device. 
indicate that a handler has completed 

its job and reset could possible occur now. 
read the state of every key in the keyboard. 
read one (or more) key event from the 
keyboard device. 

This command adds a routine to a chain of reset-handlers. \Vhen a user presses the key 
sequence CTRL-left AMIGA-right A...\HGA (the reset sequence), the keyboard device senses 
this and calls a prioritized chain of reset-handlers. These might be thought of as cleanup 
routines that "must" be performed before reset is allowed to occur. For example, if a disk 
write is in process, the system should finish that before resetting the hardware so as not to 
corrupt the contents of the disk. There are probably few reasons why a program may wish 
to add its own reset handler as well. Note that if you add your own handler to this chain, 
you must ensure that your handler allows the rest of reset processing to occur. Reset must 
continue to function. 

You add a handler to the chain by the command KBD_ADDRESETHANDLER. Assuming 
that you have a properly initialized IOStdReq block as a result of a call to OpenDeviceO 
(for the input device), here is a typical C-language call to the IND_ADDRESETHANDLER 
function: 

3-116 Keyboard Device 



struct In terru pt resetHand lerS tuff; 
resetHandlerStuff.is_Data = &resetHandlerData; 

/* address of its data area */ 
resetHandlerStuff.is_Code = myResetHandler; 

/* address of entry point to handler */ 
resetHandlerStuff.is_Node.ln_Pri = myPriority; 
keyboardRequestBlock.io_Command = KDD_ADDRESETHANDLER; 
keyboardRequestBlock.io_Data = &resetHandlerStuff; 

DoIO( &keboardRequestBlock); 

The Priority field in the list node structure establishes the sequence in which reset handlers 
are processed by the system. Your routine should be structured so that it can be called as 
though from the following C-Ianguage sequence: 

my ResetHandler( resetHandlerData); 

Any return value from this routine IS ignored. All keyboard reset handlers are activated if 
time permits. 

The final command 1Il your handler routine should be KBD_RESETHANDLERDONE, as 
described below. 

NOTE: Due to the time-critical nature of handlers, handlers are usually written in assem
bly code. However, keyboard reset processing can take a little longer and is therefore less 
critical if written in a language such as C. 

KBD _REMRESETHANDLER 

This command is used to remove a keyboard reset handler from the system. The only 
differences from the calling sequence shown in KBD_ADDRESETHANDLER above is a 
change in the command number to KBD_REMRESETIIANDLER, and there is no need to 
specify the priority of the handler. 

Key board Device 3-117 



KBD_RESETHANDLERDONE 

This command tells the system that this handler is finished with its essential activities. If 
this is the last handler in the chain, it completes the reset sequence. If not, then the next 
handler in the chain gets its chance to function. 

Here is a typical statement sequence used to end a keyboard reset handler, again assuming a 
properly initialized inputRequestBlock: 

keyboardRequestBlock.io_Command = KBD_RESETHANDLERDONE; 
keyboardRequestBlock.io_Data = &resetHandlerStuff; 
SendIO( &keyboardRequestBlock); 
return; /* return so that other handlers can 

* also do their jobs 

*/ 

Note that SendlOO is used instead of DoIOO. This routine is being executed within a 
software interrupt, and it is illegal to allow a WaitO within such routines. 

KBD _READMA TRIX 

This command lets you discover the current state (UP = 0, DOWN = 1) of every key in the 
key matrix. You provide a data area which is at least large enough to hold one bit per key, 
approximately 16 bytes. The keyboard layout is shown in the figure below, indicating the 
numeric value each transmits (raw) when it is pressed. This value is the numeric position 
that this key occupies in the key-matrix read by this command. 

3-118 Keyboard Device 



ESC F' 

45 46 

00 
TA. 

CTRL 

63 
SHIFT 

A 
66 

HELP 

~ ALT 

40 67 

Figure 6-1: Raw Key Matrix 

) 8 9 

3D 3E 3F 
• 5 6 

20 2E 2F 
1 2 J 

10 lE 1 F 
0 

OF 3C 
- ENTER 

4A 43 

Assuming that you have already initialized an IOStdReq block for communication with the 
keyboard device, here is a typical calling sequence for sending the read-matrix command: 

UBYTE keylvIatrix[16]; 
keyboardRequestBlock.io_Command = KBD_READ~'V\ TRIX; 
keyboardRequestBlock.io_Data = &key~1atrix[O]; 

/* where to put the key matrix * / 
DoIO( &keyboardRequestBlock); 

l\"ow to find the status of a particular key (for example, if the F2 key is down), you find the 
bit that specifies the current state by dividing the key matrix value (hex 51 = decimal 81) 
by 8. This indicates that the bit is in byte number 10 of the matrix. Then take the same 
number (decimal 81) modulo 8 to determine which bit position within that byte represents 
the state of the key. This yields a value of 1. So, by reading bit position 1 of byte number 
10, you determine the status of the function key F2. 

Keyboard Device 3-119 



KBD_READEVENT 

Reading keyboard events is normally done at a different level than by direct access to the 
keyboard device. See the documentation for the input device for the intimate linkage 
between that device and the keyboard device. This section is provided primarily to show 
you the parts of which a keyboard input event is composed. 

The figure above shows the code value which each key places in to the ie_Code field of the 
input event for a key down event. For a key up event, a value of hexadecimal 80 is or'ed 
with the value shown above. Additionally, if either shift key is down, or if the key is one of 
those in the numeric keypad, the qualifier field of the keyboard input event will be filled in 
accordingly. 

NOTE: The keyboard device can queue up several keystrokes without a task requesting a 
report of keyboard events. However, when the keyboard event buffer has been filled with no 
task interaction, additional keystrokes will be discarded. 

6.3. EXAMPLE KEYBOARD READ-EVENT PROGRAM 

NOTE: This sample program will run properly only if the DOS and input device are not 
active. 

/* sample program to demonstrate direct communications with the keyboard, 
* won't work unless input device is disabled, so that keyboard can 
* be accessed individually. (It will compile and it will run, but 
* this program will get some of the keyboard's inputs, and the input 
* device will steal the rest... no guarantee that Fl I\.ey ca.n break it out. 

* 
* To try the program, if run under the AmigaDOS CLI, strike any key, then 
* hit return. (You won't see any responses until each return key ... DOS 
* is sitting on the input stream with its input editor as well as the 
* input device.) By rapidly hitting F1 then Return several times, 
* eventually you can generate a hex 50 that exits the program. This 
* program is provided for those who are taking over the machine. It 
* is not intended as a general purpose keyboard interface under DOS. 

*/ 

#include <exec/types.h> 
#include <exec/io.h> 
#include <exec/devices.h> 

3-120 Key board Device 



#include < devicesikeyboard.h > 
#include < devices/ inputevent.h > 

#define FIKEY Ox50 

extern struct MsgPort *CreatePort(); 
extern struct IOStdReq *CreateStdIO(); 

SHORT error; 

struct IOStdReq *keyreq; 
struct MsgPort *keyport; 
struct InputEvent *keydata; /* pointer into the returned data area 

where an input event has been sent */ 
BYTE keybuffer[sizeof( struct InputEvent )]; 

main() 
{ 

keyport = CreatePort(O,O); 
if(keyport == 0) { printf("\nError during CreatePort"); 

exit(-l); 
} 

keyreq = CreateStdIO(keyport); 
/* make an io request block for 
* communicating with the keyboard */ 

if(keyreq == 0) { printf("\nError during CreateStdIO"); 
DeletePort(keyport ); 
exit( -:.~); 

} 
error = OpenDevice("keyboarcl.device" ,0,keyreq,0); 

/* open the device for access */ 

if (error != 0) { printf("\nCan't open keyboard!"); 
ReturnMemoryToSystem(); 
exit( -100); 

} 
keyreq->io_Length = sizeof(struct InputEvent); 
/* read one event each time we go back to the keyboard */ 

keyreq- > io_Data = (APTR )key buffer; 
/* show where to put the data when read * / 

keydata = (struct InputEvent * )keybuffer; 

keyreq->io_Command = KBD_READEVENT; /* get an event" */ 

for(:;) * FOltEVER */ 
{ 
prin tf(" \n Ready to retrieve another keyO); 

Keyboard Device :3-1~1 



} 

DoIO( keyreq ); 
if(keydata->ie_Code == FIKEY) break; 
printf("\n Raw key found this time was % Ix" ,keydata- > ie_Code); 
} 
printf(" \nFINALLY found an Fl key11i Exiting ... "); 
ReturnMemoryToSystemO; /* can't get here because of FOREVER, 

* but if user provides an exit ..... */ 

Return~lemoryToSystemO 

{ 

} 

DeleteS td IO( keyreq); 
DeletePort(keyport ); 
return(O); 

3-122 Keyboard Device 



Chapter 7 

Gameport Device 

This chapter shows you how to use the game port device, which is the means of access to the 
Amiga gameports. 

7.1. INTRODUCTION 

There are two units in the gameport device. Unit 0 controls the front gameport connector 
(connector 1). Unit 1 controls the rear gameport connector (connector 2). 

You must tell the system the type of device connected to the gameport connector and how 
the device is to respond. That is, should the device return status immediately each time you 
ask for information, or should it only return status once certain conditions have been met? 

\Nhen the input device is operating, the left gameport connector is usually dedicated to that 
device. Therefore, this chapter's examples concentrate on the right connector, which is not 
dedicated to the input device. Note that if the input device is not started, the left connector, 
as gameport unit 0, can perform the same functions as shown below for the right connector. 

When a gameport unit finally reponds to a request for input, it formulates an input event. 
The contents of the input event vary based on the type of device you have told the unit is 
connected and the trigger conditions it must look for. 

7.2. GAMEPORT DEVICE COMMANDS 

The gameport device allows the following system functions. 

Gameport Device 3-123 



Command 

OpenDeviceO 

CloseDeviceO 
DolOO 
SendIOO 
AbortIOO 

Operation 

Obtain exclusive use of one unit of 
the game port device. 
Returns an error value of -1 if another 
task already has control of the unit 
you have requested. 
Relinquish use of the gameport device. 
Initiate a command and wait for it to complete. 
Initiate a command and return immediately. 
Abort a command already in the queue. 

The gameport device also responds to the following commands: 

I/O Command 

GPD_SETCTYPE 
GPD_ASKCTYPE 
GPD _SETTRI GGER 

GPD_ASKTRIGGER 

GPD_READEVENT 

GPD_SETCTYPE 

Operation 

set the type of the controller to be monitored .. 
ask the type of the controller being monitored. 
preset the conditions that will trigger a 
gameport event. 
inquire the conditions that have been preset 
for triggering. 
read one (or more) gameport even ts from an 
initialized unit. 

This command establishes the type of controller that is to be connected to the specific 
gameport device. You must have already successfully opened that specific unit before you 
will be able to tell it what type of controller is connected. As of this writing, there are three 
different legal controller types: mouse, absolute-joystick, relative-joystick, and "no
con troller". 

A mouse controller can report input events for one, two or three buttons, and for positive or 
negative (x,y) movements. A trackball controller or driving controller for various games is 
generally of the same type, and can be declared as a mouse controller. 

An absolute joystick is one that reports one single event for each change in its current loca
tion. If, for example, the joystick is centered and a user pushes the stick forward, a 
forward-switch event will be generated. A relative joystick, on the other hand, is comparable 
to an absolute joystick with "autorepeat" installed. As long as the user holds the stick III a 
position other than centered, the gameport device continues to generate position reports. 

3-124 Gameport Device 



As of this writing, there IS no direct system software support for proportional joysticks or 
proportion al con trollers. 

You specify the controller type by the following code or its equivalent: 

struct IOStdReq *gameIOrvfsg; 

setCon trollerType( type) 
UBYTE *type; 
{ 
gameIOMsg->io_Command = GPD_SETCTYPE; 

/ * set type of con troller * / 
gameIOMsg- >io_Data = &type; 

/* show where data can be found */ 
DoIO(gameIO~1sg); 
return(O); 
} 

GPD_GETCTYPE 

You use this command to find out what kind of controller has been specified for a particular 
unit. This command puts the controller type into the data area that you specify with the 
command. Here is a sample call: 

SHORT getControllerType( type); 
UBYTE *type; 
{ 
gameIOMsg- >io_Command = GPD_GETCTYPE; 

/* get type of controller */ 
g:llneIOMsg- > io_Data = &type; 

/* show where data should be placed * / 
DoIO(gameIOMsg); 
return (gamebuffer[O]); 
} 

The value that is returned corresponds to one of the four controller types noted in 
GPD_SETCTYPE above. Controller type definitions can be found in the include-file named 
gameport.h. 

Gameport Device 3-125 



GPD_SETTRIGGER 

You use this command to specify the conditions that can trigger a gameport event. The dev
ice won't reply to your read request until the trigger conditions have been satisfied. 

For a mouse device, you can trigger on a certain minimum-sized move in either the x or y 
direction, on up or down transitions of the mouse buttons, on a timed basis, or any combina
tion of these conditions. Here is an example that shows why you might want to use both 
time and movement. Suppose you normally signal mouse events if the mouse moves at least 
10 counts in either the x or y directions. If you are moving the cursor to keep up with mouse 
movements and the user moves the mouse less than 10 counts, after a period of time you will 
want to update the position of the cursor to exactly match the mouse position. Thus the 
timed report with curren t mouse coun ts will be desirable. 

For a joystick device, you can select timed reports as well as button-up and button-down 
report trigger conditions. 

The information needed for gameport trigger setting IS placed into a GameTrigger data 
structure: 

struct GamePortTrigger { 
UWORD gpt_Keys; 
UWORD gpt_Timeout; 
UWORD gpt.:.XDelta; 
UWORD gpt_ YDelta; 
}; 

/ * key transition triggers * / 
/* time trigger (vertical blank units) * / 
/* X distance trigger */ 
/* Y distance trigger */ 

The field gpt_Keys can be set to a value of GPTF _UPKEYS to report up-transitions or 
GPTF _DOWNKEYS to report down-transitions. 

The field gpt_Tireout is set to count how many vertical blank units should occur (1/60th 
of a second each between reports in the absence of another trigger condition. Thus, this 
specifies the maximum report interval. 

NOTE: If a task sets trigger conditions and does not ask for the position reports (by send
ing an IORequest to be filled-in with available reports), the gameport device will queue up 
several additional reports. If the trigger conditions again occur and there as many events as 
the system can handle are already queued, the additional triggers will be ignored until the 
buffer of one or more of the existing triggers is read by a device read request. 

3-126 Gameport Device 



struct GamePortTrigger mouse trigger = { 

GPTF _UP KEYS + GPTF _DOWNKEYS, 
1800, 
XMOVE, 
YMOVE }; 
/ * trigger on all mouse key transitions, 
every 30 seconds, (1800 = 30 times 60 per sec) 
for any 10 in an x or y direction */ 

You set the trigger by using the following code or the equivalent: 

gameIOMsg- > io_Command = GPD_SETTRIGGER; 
/* command to set the trigger conditions */ 

gameIOMsg- > io_Data = &mousetrigger; 
/* show where to find the trigger condition info * / 

DoIO(gameIOMsg); 

7.3. EXAMPLE PROGRAMS 

Mouse Program 

Here is a complete sample program that lets you open the right gameport device unit and 
define it as a mouse device. You are directed to unplug the mouse and plug it into the right 
connector. t-.fouse moves and button clicks are reported to the console device that started 
the program. If you don't move the mouse for 30 seconds, a report is generated automati
cally. If you don't move it for 2 minutes, the program exits. 

/* ******************************************************************** */ 
/* mouse test, for right game port on the Amiga. 

Notes: The right port is used for this test because the input.device 
task is busy continuously with the lefthand port, feeding input events 
to intuition or console devices. If Intuition is not activated 
(applications which take over the whole machine may decide not to 
activate Intuition), and if no console.device is activated either, 
the input.device will never activate ... allowing the application 
free reign to use either the left OR the right hand joystick/mouse 

Gameport Device 3-127 



port. If either intuition or the console device are activated, 
the lefthand port will yield, at best, every alternate input 
event to an external application such as this test program. 

This will undoubtedly mess up either of the two applications 
and should therefore be avoided. It was ok to use the right 
port in this case, since the system has no particular interest 
in monitoring it. 

Csing a function called SetMPort, you can reconfigure so that the 
mouse is expected in the other port, but that isnt demonstrated here. 

********************************************************************** */ 

#include <exec/types.h> 
#include <exec/devices.h> 
#include <graphics/gfx.h> 
#include <devices/ gameport.h > 
#include <devices/inputevent.h> 

LOi\G GfxBase=O; 

#define XMOVE 10 
#define YMOVE 10 
#define tv1AX(m,n) (m > n ? m : n) 

/ * trigger on all mouse key transitions, and every 
* 30 seconds, and for any 10 in an x or y direction * / 

struct GamePortTrigger mousetrigger = { 

GPTF _UP KEYS + GPTF _DOWNKEYS, 
1800, 
AI-.10VE, 
Y:\10VE }; 

struct InputEvent *game_data; /* pointer into the returned data area 
* where input event has been sent */ 

SHORT 

BYTE 
BYTE 

SHORT 

struct MsgPort 

error; 

gamebuffer[sizeof( struct InputEvent )]; 
*gamedata; 

testval; 

SHORT movesize; 
extern struct MsgPort *CreatePortO; 
extern struct IOStdReq *CreateStdIO(); 

3-128 Gameport Device 



SHORT codeval, timeouts; 

mainO 
{ 

GfxBase = OpenLibrary(" graphics. library" , 0); 
if (GfxBase == NULL) 
{ 

} 

printf("Unable to open graphics library\n"); 
exit(lOOO); 

prin tf(" Mouseport Demo \ n"); 
printf("\nMove MOllse from Left Port to Right Port\n"); 
printf("\nThen move the mOllse and click its buttons"); 

timeouts = 0; 

gamedata = &gamebuffer[O]; 
/* point to first location in game buffer */ 

game_msg_port = CreatePort(O,O); 
/* provide a port for the 10 response */ 
if(game_msg_port == 0) 
{ 

} 

printf("\nError While Performing CreatePort"); 
exit( -1); 

game_io_msg = CreateStdIO(game_msg_port); 
/* make an io request block for communicating with 

the keyboard */ 

if(game_io_msg == 0) 
{ 

} 

printf("\nError While Performing CreateStdIO"); 
DeletePort(game_msg_port ); 
exit(-2); 

error = OpenDevice(" gameport.device", 1 ,game_io_msg,O); 
/* open the device for access, unit 1 is right port * / 

if( error != 0) 
{ 

printf("\nError while opening the device, exiting"); 
DeleteStdIO(game_io_msg); 
DeletePort(game_msg_port) ; 

Gameport Device 3-129 



exit( -3); 
} 

game_io_msg- >io_Length = sizeof(struct InputEvent); 
/* read one event each time we go back to the gameport */ 

game_io_msg- >io_Data = (APTR)gamebufTer; 
/* show where to put the data when read */ 

game_data = (struct InputEvent *)gamebufTer; 

/ * test the mouse in this loop * / 

set_con troller _type( G PCT _MOUSE); 

/* specify the trigger conditions */ 
game_io_msg->io_Command = GPD_SETTRIGGER; 
/* show where to find the trigger condition info */ 
game_io_msg- >io_Data = (APTR)&mousetrigger; 

/* this command doesn't wait ... returns immediately */ 
SendIO(game_io_msg); 
\V aitPort(game_msg_port); 
GetMsg(game_msg_port) ; 

prin tf(" \nI will report:"); 
printf("\n Mouse X or Y moves if either is over 10 counts"); 
printf("\n Button presses (along with mouse moves if any)"); 
prin tf(" \n Or every 30 seconds (along with mouse moves if any)"); 
prin tf(" \n if neither move or click happens\n"); 
printf("\nIf no activity for 2 minutes, the program exits\n"); 

/* from now on, just read input events 
* into the input buffer, one at a time. 
* read-event waits for the preset conditions */ 

game_io_msg- >io_Command = GPD_RE.\DEVE;\IT; 
game_io_msg- >io_Data = (APTR)gamebufTer; 

IF _NOT_IDLE_TWO_MINUTES 
{ 

game_io_msg- > io_Length = sizeof( struct In pu tEven t); 
/* read one even t each time we go back to the game port * / 

printf("\n Waiting For Mouse Report\n"); 

WaitPort(game_msg_port ); 
/* this is NOT a busy wait... it is a task-sleep */ 

3-130 Gameport Device 



} 

codeval = game_data- > ie_Code; 
switch( codeval) 
{ 
case IECODE_LBUTTON: 

printf("\n~1ouse Left Button Pressed"): 
may be_mouse_moved(); 
break; 

case IECODE_RI3UTTON: 
printf("\nMouse Right Buttofl Pressed"); 
maybe_mouse_movedO; 
break; 

case (IECODE_LBUTTON + IECODE_UP _PREFIX): 
printf("\nMouse Left Button Released"); 
may be_mouse_movedO; 
break; 

case (IECODE_RBUTTON + IECODE_UP _PREFIX): 
prin tf(" \nMouse Iligh t Button Released"); 
may be_mouse_moved(); 
break; 

case IECODE_NOBUTTON: 
timeouts++; /* after 2 minutes, dump program 

* if user loses in terest 

*/ 
movesize = maybe_mouse_movedO; 
if(movesize == 0) 
{ 

printf("\n30 seconds passed, no trigger events"); 
} 
else if(movesize < XMOVE && movesize < YMOVE ) 
{ 

} 

printf("\n(Even though less than trigger count,"); 
printf("\n reporting mouse move at the selected"); 
printf("\n timing interval for user info)"); 

break; 
default: 

break; 
} 

set_controller_type(GPCT_NOCONTROLLER); 

CloseDevice(game_io_msg); 
DeleteStdIO(game_io_msg); 

Gameport Device 3-131 



} 

DeletePort(game_msg_port ); 

prin tf(" \nExiting program ... 2 min utes with no activity sensed\n 1> "); 
return(O); 

/* if mouse didnt move far enough to trigger a report, then caller 
* will also report that 30 seconds (1800 vblanks) has elapsed 

*/ 

int maybe_mouse_moved() 
{ 

} 

int xmove, ymove; 
xmove = game_data- > ie_X; 
ymove = game_data->ie_Y; 

if(xmove '= 0 II ymove != 0) 
{ 

} 

printf(" \nMouse ""loved by X-value % Id, Y-value % Id" , 
xmove, ymove); 
timeou ts = 0; 

if(xmove < 0) xmove = -xmove; 
if(ymove < 0) ymove = -ymove; 

return(MAX(xmove,ymove )); 

int set_controller_type(type) 
SHORT type; 
{ 

} 

/* set type of controller to mouse */ 
game_io_IDsg- >io_Command = GPD_SETCTYPE; 

*gamedata = type; 

/ * set it up * / 
/* this command doesn't wait ... returns immediately */ 
SendIO(game_io_msg); 

WaitPort(game_IDsg_port ); 
GetMsg(game_msg_port ); 
return(O); 

3-132 Gameport Device 



Joystick Program 

/* *********************************************************************** */ 
/* joystick test, for right game port on the Amiga. 

Notes: The right port is used for this test because the input.device 
task is busy continuously with the lefthand port, feeding input events 
to intuition or console devices. If Intuition is not activated 
(applications which take over the whole machine may decide not to 
activate Intuition), and if no console.device is activated either, 
the input.device will never activate ... allowing the application 
free reign to use either the left OR the right hand joystick/mouse 
port. If either intuition or the console device are activated, 
the lefthand port will yield, at best, every alternate input 
event to an external application such as this test program. 
This will undoubtedly mess up either of the two applications 
and should therefore be avoided. It was ok to use the right 
port in this case, since the system has no particular interest 
in monitoring it. 

*********************************************************************** *1 

#include <exec/types.h> 
#include <exec/devices.h> 
#include <graphics/gfx.h> 
#include <devices/gameport.h> 
#include < devices/inputeven t.h > 

LONG GfxBase=O; 

#define XMOVE 10 
#define Y:t\10VE 10 
#clefine MAX(m,n) (m > n ? m : n) 
#define FOREVER for(;;) 
struct InputEvent *game_data; /* pointer into the returned clata area 

* where input event has been sent */ 
SHORT error; 

struct IOStdReq *game_io_msg; 

BYTE 
BYTE 

SHORT 
SHORT 

gamebuffer[sizeof( struct InputEvent )]; 
*gamebuff; 

testval; 
codevalue; 

I 

Gameport Device 3-133 



SHORT movesize; 
extern struct MsgPort *CreatePortO; 
extern struct IOStdReq *CreateStdIOO; 

SHORT codenl, timeou ts; 

mainO 
{ 

printf(" Joystick Demo\n"); 
printf("\nPlug a Joystick Into Right Port\n"); 
printf("\nThen move the stick and click its buttons"); 

/* point to first location in game buffer */ 
gamebuff = &gamebuffer[O]; 

/* SYSTEM DEVICE COMMUNICATIONS SUPPORT SETUP ROUTINES ****** */ 

/* provide a port for the 10 response */ 
game_msg_port = CreatePort(O,O); 
if(game_msg_port == 0) 
{ 

} 

printf{"\nError While Performing CreatePort"); 
exit( -1); 

/* make an io request block for communicating with the gameport */ 
game_io_msg = CreateStdIO(game_msg_port); 

if(game_io_msg == 0) 
{ 

} 

printf("\nError While Performing CreateStdIO"); 
DeletePort(game_msg_port ); 
exit(-2); 

/* ********************************************************* */ 
/* OPEN THE DEVICE */ 

/* open the device for access, unit 1 is right port * / 
error = OpenDevice(" gameport.device", 1,game_io_msg,O); 

if( error != 0) 
{ 

printf(" \nError white opening the device, exiting"); 
DeleteStdIO(game_io_msg); 
DeletePort(game_msg_port) ; 

3-134 Gameport Device 



exit(-3); 
} 
/* ******************************************************** */ 
/* SET THE DEVICE TYPE *i 

game_data = (struct InputEvent *)gamebuffer; 

/* test the joystick in this loop */ 

if (set_controUer_type(GPCT_ABSJOYSTICK) != 0) 
{ 

printf("\nError while trying to set GPCT_ABSJOYSTICK"); 
DeleteStdIO(game_io_msg); 
DeletePort(game_msg_port ); 
exit(-4); 

} 
/* ************************************************************ */ 
/* SET THE DEVICE TRIGGER */ 
if (set_controller_triggerO != 0) 
{ 

} 

printf("\nError while trying to set controller trigger"); 
DeleteStdIO(game_io_msg); 
DeletePort(game_msg_port) ; 
exit(-4); 

/* ************************************************************ */ 
/* TELL USER WHAT YOU WILL BE DOING */ 

printf("\nI will report: \n"); 
printf("\n Stick X or Y moves"); 
printf("\n Button presses (along with stick moves if any)"); 

/* *********************************************************** */ 
/* SETUP THE 10 1IESSAGE BLOCK FOR THE ACTUAL DATA READ */ 

/* from now on, just read input events into the 
* input bufTer, one at a time; read-event waits 
* for the preset conditions * / 

game_io_msg- >io_Command = GPD_READEVENT; 
game_io_msg- >io_Data = (APTR)gamebufTer; 

/* read one event each time we go back to the gameport * / 
game_io_msg- > io_Length = sizeof(struct Inpu tEvent); 

/* dont use quick io */ 
game_io_msg- > io_Flags = 0; 

/* ******************************************************** */ 
/* LOOP FOREVER */ 

Gameport Device 3-13.5 



} 

FOREVER 
{ 

} 

/* read one even t each time we go back to the gameport * / 
game_io_msg- > io_Length = sizeof(struct JnputEven t); 

printf("\n Waiting For Joystick Report\n"); 
SendIO(game_io_msg); 
WaitPort(game_msg_port ); 
/* this is NOT a busy wait ... it is a task-sleep */ 
GetMsg(game_msg_port ); 

codevalue = game_data- > ie_Code; 

if{codevalue == IECODE_LBUTTON) 
printf{"\nFire Button pressed"); 

if( codevalue == (IECODE_LBUTTON + IECODE_UP _PREFIX)) 
printf("\nFire Button released"); 

which_directionO; 
showbugsO; 

/* PROGRAM EXIT ..... temporarily no way to get here from FOREVER */ 
set_con troller_type( GPCT _NOCO NTROLLER); 

CloseDevice(game_io_msg); 
DeleteStdIO(game_io_msg); 
DeletePort(game_msg_port ); 

printf("\nExiting program ... 2 minutes with no activity sensed\n1> "); 
return{O); 

int which_directionO 
{ 

SHORT xmove, ymove; 
xmove = game_data- > ie_X; 
ymove = game_clata- >ie_ Y; 

switch(ymove) 
{ 

case (-1): 
printf(" \nForward"); 
break; 
case (I): 
printf(" \nBack"); 
break; 

default: 
break; 

} 

3-136 Gameport Device 



} 

switch(xmove) 
{ 

case (-1): 
prin tf(" \nLeft"); 
break; 
case (1): 
printf(" \nRigh t"); 
break; 

default: 
break; 

} 
return(O); 

in t set_con troller _type( ty pe) 
SHORT type; 
{ 

} 

game_io_msg- >io_Command = GPD_SETCTYPE; 
/ * set type of con troller to mouse * / 
game_io_msg- >io_Length = 1; 
game_io_msg- >io_Data = (APTR)gamebuff; 
*gamebuff = type; 

SendIO(game_io_Insg); 
/ * se tit up * / 
/* this command doesn't wait ... returns immediately */ 
WaitPort(game_msg_port); 
GetMsg(game_msg_port) ; 
return((in t )game_io_msg- > io_Error); 

in t set_con troller _triggerO 
{ 

} 

struct GamePortTrigger gpt; 

game_io_msg- >io_Command = GPD_SETTRIGGER; 
gamc_io_msg- > io_Length = sizeof(gpt); 
game_io_ffisg- > io_Data = (APTR)&gpt; 
gpt.gpt_Keys = GPTF _UPKEYS+GPTF _DOWNKEYS; 
gpt.gpt_Timeout = 0; 
gpt.gpt_XDelta = 1; 
gpt.gpt_YDelta = 1; 

showbugsO 
{ 

struct InputEvent *e; 

Gameport Device 3-137 



} 

e = (struct InputEvent *)&garnebuffer[O]; 
/* where the input event gets placed */ 
printf("\nie_Class = % Ix" ,e- > ie_Class); 
prin tf(" \nie_Su bClass = % Ix" ,e- > ie_Su bClass); 
printf("\nie_Code = %Ix", e->ie_Code); 
printf{"\nie_Qualifier = % Ix" ,e- > ie_Qualifier); 
printf{"\nie_X = %Id", e->ie_X); 
printf{"\nie_Y = %ld", e->ie_Y); 
printf{"\nie_TirneStarnp{seconds) = % Ix", e- >ie_TimeStarnp.tv _sees); 
return{O); 

3-138 Garneport Device 



Chapter 8 

Narrator Device 

This chapter provides routines for accessing both the narrator device and the translator 
library and shows how some of the parameters passed to the device can affect the output. 

In addition, this chapter contains a non-technical explanation of how to effectively utilize the 
speech device. A more technical explanation is also provided for those who may be in teres ted 
in how the speech is actually produced. 

8.1. INTRODUCTION 

Two different subsystems comprise the speech system on the Amiga. They are 

o The narrator device, which communicates with the audio device to actually produce 
human-like speech. 

o The translator library, which contains a routine that translates english text into 
phonemes suitable for the narrator device. 

8.2. THE TRANSLATOR LIBRARY 

The translator library provides a single routine, named TranslateO, that converts an 
English language string into a phonetic string. To use this function, you must first open the 
library. 

Setting a global variable, TranslatorBase, to the value returned from the call to 
OpenLibraryO enables the Amiga linker to correctly locate the translator library: 

Narrator Device 3-139 



struct Library *TranslatorBase; 

TranslatorBase = OpenLibrary(" translator.library" ,REVISION); 
if(TranslatorBase == NULL) exit (CAI\T_OPEN_TRANSLATOR); 

Note that to allow the OpenLibraryO call to succeed, the directory currently assigned by 
AmigaDOS as "LIBS:" must contain translator.library. 

Using the Translate Function 

Once the library is open, you can call the translate function: 

UBYTE *sampleinput; 
UBYTE outputstring[500J; 
SHORT rtnCode; 

/* pointer to sample input string */ 
/* place to put the translation */ 

/* return code from function */ 

sampleinput = "this is a test"; /* a test string of 14 characters */ 
rtnCode = Translate(sampleinpu t, 14,ou tpu tstring,500); 

The input string will be translated into its phoneme equivalent, and can be used to feed the 
narrator device. 

If you receive a nonzero return code, you haven't provided enough output buffer space to 
hold the en tire translation. In this case, the TranslateO function breaks the translation at 
the end of a word in the input stream and returns the position in the input stream at which 
the translation ended. You can use the output buffer, then call the TranslateO function 
again, starting at this original ending position, to continue the translation where you left off. 

Note, however, that the value returned is negative. Therefore you must use -rtnCode as 
the starting poin t for a new translation. 

3-140 Narrator Device 



Additional Notes About Translate 

The English language has many words that don't sound the same as they are spelled. The 
translator library has an exception table that it consults as the translation progresses. 
Words that are not in the exception table are translated literally. Therefore, it is possible 
that certain words will not translate well. You can improve the quality of the translation, by 
handling those words on your own, using the tutorial information included at the end of this 
chapter. 

As with all other libraries of routines, if you have opened the translator library for use, be 
sure to close it before your program exits. If the system needs memory resources, it can then 
expell closed libraries to gain additional space. 

8.3. THE NARRATOR DEVICE 

The narrator device on the Amiga provides two basic functions: 

o You can write to the device and ask it to speak a phoneme-encoded string In a 
specific manner-pitch, male/female, various speaking rates, and so on. 

o You can read from the device. As it speaks, the device can generate mou th shapes 
for you and you can use the shapes to perform a graphics rendering of a face and 
mouth. 

Opening the Narrator Device 

To use the narrator device, you must first open the device. The narrator device is disk
resident. For the OpenDevice() call to succeed, the narrator device must be present in the 
directory currently assigned by AmigaDOS to the "DEVS:" directory. 

As with all devices, you must pass to OpenDeviceO an IORequest block for communicat
ing with the device. The block used by the narrator device for a write is a special format 
called a narrator _r b. The block used for a read is also a special format, called a 
mouth_rb. Both blocks are described in the sections that follow. A sample OpenDeviceO 
sequence for the narrator device follows. Notice that two request blocks are created, one for 

Narrator Device 3-141 



writing to the device, and one for reading from it. For brevity, the error checking is left out 
of this short example. It is, however, utilized in the sample program later on. 

struct narrator_rb *writeNarrator; 
struct narrator_rb *readNarrator; 
writeport = CreatePort(O,O); 
readport = CreatePort(O,O); 
writeNarrator = (struct narrator_rb *)CreateExtIO(writeport, 

sizeof(struct narrator_rb); 
read Narrator = (struct mouth_rb *)CreateExtIO(readport, 

sizeof(struct mou th_rb); 

The routine CreateExtIOO is in the Exec support routines appendix of this manual. 
CreatePortO is contained in amiga.lib and can be accessed by linking your program to 
amiga.lib. 

Contents of the Write Request Block 

You can control several characteristics of the speech, as indicated III the narrator request 
block structure shown below. 

where: 

struct narrator_rb { 

}; 

struct IOStdReq message; 
UWORD rate; 
UWORD pitch; 
UWORD mode; 
UWORD sex; 
UBYTE *ch_masks; 
UWORD nm_masks; 
UWORD volume; 
UWORD sampfreq; 
UBYTE mouths; 
UBYTE chanmask; 
UBYTE numchan; 
UBYTE pad; 

3-142 Narrator Device 

/* Standard IORB */ 
/* Speaking rate (words/minute) */ 
/* Baseline pitch in Hertz * / 
/* Pitch mode * / 
/* Sex of voice */ 
/* Pointer to audio alloc maps * / 
/* Number of audio alloc maps */ 
/* Volume. ° (off) thru 64 */ 
/* Audio sampling freq * / 
/* If non-zero, generate mouths */ 
/* Which ch mask used (internal)*/ 
/* Num ch masks used (internal) * / 
/* For alignment */ 



rate 
is the speed in words per minute that you wish it to speak. 

pitch 
is the baseline pitch. If you are using an expressive voice rather than a monotone, 
the pitch will vary above and below this baseline pitch. 

mode 
determines whether you have a monotone or expressive voice. 

sex 
determines if the voice is male or female. 

ch_masks, nm_masks, volume, sampfreq 
are described in the chapter called "Audio Device." 

mouths 
is set to nonzero before starting a write if you want to read mouths usmg the read 
command while the system is speaking. 

chanmask, numchan, pad 
are for system use only. 

The system default values are shown in the files narrator·.1l and narrator.i. vVhen you call 
OpenDeviceO, the system initializes the request block to the default values. If you want 
other than the defaults, you must change them after the device is open. 

Contents of the Read Request 

The mouth_rb data structure follows. I':otice that it IS an extended form of the 
narrator _rb structure. 

struct mouth_rb { 
struct narrator_rb voice; 
UBYTE width; 
UBYTE height; 
UBYTE shape; 
UBYTE pad; 
}; 

/* Speech lORB */ 
/* Width (returned value) */ 
/* Height (returned value) * / 
/* Internal use, do not modify * / 
/* For alignment * / 

The fields width and height will, on completion of a read-request, contain an in teger value 
proportional to the mouth width and height that are appropriate to the phoneme currently 
being spoken. \Vhen you send a read request, the system doesn't return any response until 

l\'arrator Device 3-143 



one of two things happens Either a different mouth size is available (this prevents you from 
drawing and redrawing the same shape or having to check whether or not it is the same) or 
the speaking has completed. You must check the error return field when the read request 
block is returned to determine if the request block contains a new mouth shape or simply IS 

returning status of ND_NoWrite (no write in progress, all speech ended for this request). 

Opening the Narrator Device 

This section demonstrates opening the device as well as synchronizing a read request so that 
it responds only to the write request for which the device is opened. You can only read the 
mouth shapes if the write request contains the same unit number and a write is currently in 
progress; the system returns an error if the numbers don't match or if the write ha..<; com
pleted. Note agam that error checking is deferred to the example program at the end of the 
chapter. 

SHORT openError; 

open Error = Open Dev ice(" narrator.device" ,0, writeNarrator,O); 
/* after error checking, synchronize the read and write requests * / 

readN arrator- > narrator_rb.message.io_Device = 
writeNarrator- >message.io_Device; /* copy device info * / 

readNarrator- > narrator_rb.message.io_Unit = 

write Narrator- > message.io_Unit; /* copy unit info * / 

At this point, it is acceptable to change the default values before issuing a write. 

More details about what OpenDeviceO performs are contained in the narrator device sum
mary pages. 

Performing a Write and a Read 

You normally perform a write command by using the functions BeginIOO or SendIOO to 
transmit the request block to the narrator device. This allows the narrator's task to begin 
the I/O, while your task is free to do something else. The something else may be issuing a 
series of read commands to the device to determine mouth shapes and drawing them on
screen. The following sample set of function calls implements both the write and read com
mands in a single loop. Again, error checking is deferred to the sample program. 

3-144 Narrator Device 



SHORT readError; 

writeN arrator- > message.io_Length = strlen( ou tpu tstring); 
/* tell it how many characters the translate function returned * / 

writeNarrator->message.io_Data = outputstring; 
/* tell it where to find the string to speak */ 

SendIO( writeNarrator); 
/* return immediately, run tasks concurrently */ 

read1'\arrator->voice.message.io_Error = 0; 
while((readError = readNarrator->voice.message.io_Error) != 

ND_NoWrite) 
{ 

DoIO( read Narrator); 
/* put task to sleep waiting for a different 
* mou th shape or return of the message block 
* with the error field showing no write in 
* process 

*/ 
DrawMouth(readNarrator- >width,readNarrator- > height); 

/* user's own unique routine, not provided here */ 
} 
GetMsg(writeport); /* remove the write message from the 

* writeport so th at it can be reused * / 

The loop continues to send read requests to the narrator device until the speech output has 
ended. DolOO automatically removes the read request block from the readport for reuse. 
SendlOO is used to transmit the write request. When it completes, the write request will be 
appended to the writeport, and must be removed before it can be reused. 

8.4. SAMPLE PROGRAM 

The following sample program uses the system default values returned from the 
OpenDeviceO call. It translates and speaks a single phrase. 

#include "exec/types.h" 
#include "exec/exec.h" 

#include "exec/nodes.h" 
#include "exec/lists.h" 
#include "exec/ memory .h" 
#include "exec/interrupts.h" 
#include "exec/ports.h" 
#include "exec/libraries.h" 

1'\ arrator Device 3-145 



#include "exec/io.h" 
#include "exec/tasks.h" 
#include "exec/execbase.h" 

#include "devices/narrator.h" 
#include )) libraries/translator.h" 

struct MsgPort *readport=O; 
struct MsgPort *writeport=O; 

extern struct MsgPort *CreatePortO; 
extern struct IORequest *CreateExtIOO; 

struct narrator_rb *writeNarrator=-O; 
struct mouth_rb *readNarrator=O; 
struct Library *TranslatorBase=O; 
UBYTE *sampleinput; /* pointer to sample input string */ 
UBYTE outputstring[500]; /* place to put the translation */ 
SHORT rtnCode; /* return code from function */ 
SHORT read Error; 
SHORT writeError; 
SHORT error; 
BYTE audChanMasks[4] = { 3,5,10,12 }; /* which channels to use * / 

#define CANT_OPEN_TRANSLATOR -100 
#define CANT _OPEN_NARRATOR -200 
#define CREATE_PORT _PROBLEMS -300 
#define CREATE_IO_PROBLEMS -400 
#define CANT _PERFOR~C WRITE -500 
#define REVISION 1 

extern struct Library *OpenLibraryO; 

mainO 
{ 

TranslatorBase = OpenLibrary(" translator.library" ,REVISION); 
if(TranslatorBase == NULL) exit (CANT_OPEN_TRANSLATOR); 
sampleinput = "this is a test"; /* a test string of 14 characters */ 
rtnCode = Translate(sampleinput, 14,ou tputstring,500); 
error = rtnCode + 100; 
if(rtnCode != 0) gote cleanupO; 

writeport = CreatePort(O,O); 
if(writeport == NULL) { error=CREATE_PORT_PROBLEMS; goto cleanup1; } 
readport = CreatePort(O,O); 
if(readport == NULL) { error=CREATE_PORT_PROBLEMS; goto cleanup2; } 
writeNarrator = (struct narrator_rb * )CreateExtIO( writeport, 

sizeof(struct narrator_rb )); 
if(writeNarrator == NULL) { error=CREATE_IO_PROBLEMS; goto cleanup3; } 
readNarrater = (struct mou th_rb * )CreateExtIO( read port, 

3-146 Narrator Device 



sizeof(struct mouth_rb)); 

if(readNarrator == NULL) { error=CREATE_IO_PROBLEMS; goto cleanup4; } 
/* SET UP PARAMETERS FOR WRITE-MESSAGE TO THE NARRATOR DEVICE */ 

/* show where to find the channel masks */ 
writeNarrator- >ch_masks = (audChanMasks); 

!* and tell it how many of them there are * / 
~riteNarrator- > nm_~asks = sizeof( audCh~nMasks); 

/* tell it where to find the string to speak * / 
writeN arrator- > message.io_Data = (APTR )ou t pu tstring; 

/* tell it how many characters the translate function returned * / 
writeNarrator- > message.io_Length = strlen( outpu tstring); 

/* if nonzero, asks that mouths be calculated during speech */ 
writeNarrator-> mouths = 1; 

/* tell it this is a write-command */ 
writel'\arrator- >message.io_Command =, CtvlD_ WRITE; 

/* Open the device */ 

error = OpenDevice(" narrator.device", 0, writeNarrator, 0); 
if(error != 0) goto cleanup4; 

/* SET UP PARA.J.\1ETERS FOR READ-MESSAGE TO TIlE NARRATOR DEVICE */ 

/* tell narrator for whose speech a mouth is to be generated */ 
readNarrator- >voice.message.io_Device = 

writeNarrator- > message.io_Device; 
read Narrator- >voice.message.io_U nit = 

write Narrator- > message.io_Unit; 

read Narrator- >width = 0; 
readN arratOl"- > height = 0; /* in itial mou til parameters * / 

readNarrator- >voice.message.io_Command = CMD_READ; 
/ * initial error value * / 

read Narrator- > voice.message.io_Error = 0; 

/* Send an asynchronous write request to the device * / 

writeError = SendIO(writeNarrator); 
if(writeError!= NULL) { error=CANT_PERFORM_WRITE; go to cleanup5; } 
/* return immediately, run tasks concurrently */ 

/* keep sending reads until it comes back saying "no write in progress" */ 

Narrator Device 3-147 



while( (readError = readN arrator- > voice.message.io_Error) != 
ND_NoWrite) 

{ 

} 

DoIO( readN arrator); 
/* put task to sleep waiting for a different 
* mouth shape or return of the message block 
* with the error field showing no write in 
* process 

*/ 
DrawMouth(readNarrator- > width,readNarrator- > height); 
/* user's own unique routine, not provided here */ 

Delay(30); 

rtnCode = Translate("No it is not" ,13,outputstring,500); 
writeNarrator- >sex = FEMALE; . 
writeNarrator->pitch = :MAXPITCH; /* raise pitch from default value */ 
writeNarrator- > message.io_Data = (APTR)outputstring; 
writeNarrator- > message.io_Length = strlen( outpu tstring); 
DoIO( writeN arrator); 

Delay(30); 

rtnCode = Translate("Please! I am speaking now!" ,26,outputstring,500); 
writeNarrator- >sex = MALE; 
writeNarrator- > pitch = DEFPITCH; 
writeNarrator->message.io_Data = (APTR)outputstring; 
writeNarrator- > message.io_Length = strlen( ou tpu tstring); 
DoIO( writeN arrator); 

Delay(30); 

rtnCode = Translate( 
"Well, you are not very interesting, so I am going home!", 
55,outpu tstring,500); 

write Narrator- >sex = FEMALE; 
writeNarrator- > pitch = :MAXPITCH; 
writeNarrator->message.io_Data = (APTR)outputstring; 
writeNarrator- > message.io_Length = strlen( outpu tstring); 
DoIO( writeN arrator); 

Delay(30); 

rtnCode = Translate("Bye Bye" ,7,outputstring,500); 
writeNarrator- >sex = ~LI\LE; 

writeNarrator- > pitch = DEFPITCH; 
writeNarrator- > rate = 7; /* slow him down * / 
writeNarrator- >message.io_Data = (APTR)outputstring; 
writeNarrator- > message.io_Length = strlen( outputstring); 

3-148 Narrator Device 



DoIO( writeN arrator); 

cleanup5: 
if( writeN arrator != 0) 

CloseDevice( writeN arrator); 
/* terminate access to the device */ 

/* now return system memory to the memory allocator */ 

cleanup4: 
if(readNarrator != 0) 

DeleteExtIO(readN arrator ,sizeof(struct mouth_rb)); 
cleanup3: 

if(writeNarrator != 0) 
DeleteExtI O( writeN arrator,sizeof( struct narrator _rb)); 

cleanup2: 
if(readport != 0) 

DeletePort( read port ); 
cleanupl: 

if( write port != 0) 
DeletePort( writeport); 

cleanupO: 
if(TranslatorBase != 0) 

CloseLibrary(Translator Base); 
/* terminate access to the library */ 

if( error != 0) exit( error); 
} /* end of test */ 

DrawMouth(w,h) 
SHORT w,h; 
{ return(O); /* dummy routine */ } 

in t strlen( string) 
char *string; 
{ 

int i,length; 
length = -1; 
for(i=O; i<256; i++) /* 256 characters max length at this time */ 

{ 
if( *string++ == ' ') { length = i+ 1; break; }; 
} 

return(length ); 
} 

The loop continues to send read requests to the narrator device until the write request has 
completed. Then the program cleans up and exits. 

Narrator Device 3-149 



You can experiment with the narrator device by using other than the default values, chang
ing them before the write command is sent to the device. 

8.5. If OW TO WRITE PHONETICALLY FOR NARRATOR 

This section describes in detail the procedure used to specify phonetic strings to the Narrator 
speech synthesizer. }\;o previous experience with phonetics is required. The only thing you 
may need is a good pronouncing dictionary for those times when you doubt your own ears. 
'{ou do not have to learn a foreign language or computer language. You are just going to 
learn how to writr dowil the English that comes out of your own mouth. In writing phoneti
cally you do not have to know how a word is spelled, just how it is said. 

l\'arrator works on utterances at the sentence level. Even if you want to say only one word, 
l\'arrator will treat it as a complete sentence. Therefore, Narrator wants one of two punctua
tion marks to appear at the end of every sentence- a period (.) or a question mark (?). If no 
punctuation appears at the end of a string, Narrator will append a period to it. The period 
is used for almost all utterances and will cause a final fall in pitch to occur at the end of a 
sentence. The question mark is used at the end of yes/no questions only, and results in a 
final rise in pitch. For example, the question, "Do you enjoy using your Amiga?", would 
take a question mark at the end because the answer to the question is either yes or no. The 
question, "\Vhat is your favorite color?" would not take a question mark and should be fol
lowed by a period. Narrator recognizes other punctuation marks as well, but these are be 
left for later discussion. 

Phonetic Spelling 

Utterances are usually written phonetically using an alphabet of symbols known as I.P.A. 
(for "International Phonetic Alphabet"). This alphabet is found at the front of most good 
dictionaries. The symbols can be hard to learn and are not available on computer keyboards, 
so the Advanced Research Projects Agency (ARPA) came up with Arpabet, a way of 
representing each symbol using one or two upper-case letters. Narrator uses an expanded 
version of A.rpabet to specify phonetic sounds. 

A phonetic sound, or phoneme, is a basic speech sound, almost a speech atom. vVorking 
backwards, sentences can be broken into words, words into syllables, and syllables into 
phonemes. The word "cat" has three letters and (coincidentally) three phonemes. Looking 
at the table of phonemes we find the three sounds that make up the word "cat". They are 
K, A.E, and T, written as KA.ET. The word "cent" translates as S, EH, Nand T, or 
SEHNT. l\'otice that both words begin with a "c" but because the "c" says "k" in "cat" we 
use the phoneme K. In "cent" the "c" says "s" so we use the phoneme S. You may also 
have noticed that there is no C phoneme. 

3-150 Narrator Device 



The above example illustrates that a ",>'ord rarely s(,unds like 't. looK,., ia Engl\~h spf'lling. 
These examples introduce you to a very importC:l1r concert: ,";1':[ it like it s,';lnds, not, like it 
looks. 

Choosing the Right Vowel 

Phonemes, like letters, are divided into the two categ(}i'i,cs ()f \'OW(·;~. ,lilt] COll;-,'\llar:1:., Lnosely 
defined, a vowel is a continuous sound madE' ,,,,iln the v()cd ('01'(\", vibnting; cud atr exitillg 
the mouth (as opposed to the nose). AU vowpls u~'{' a tW{I-i.-flt'r ('un· .. ~. r()n,~ondnt is any 
other sound, such as those made by rushing a;l (like S or '1'l!!. (,f by l;ltnr pt ns in air flow 
by the lips or tongue (like B or T). Consonail t.'l use a OiH'- ( , ..• ,,)-le\ fi"l" C(,':!' 

In English we write with only five vowels: a, e, i. C) ;10<1 It. It would be t';],,.,",'f if we onlv said 
five vowels. Unfortunately, we say more than 15 vowels. ?'Jarrator provides for most of 
them. You choose the proper vowel by list.ening. ;-';,1), the \\I;)1'd out. loud, pt>rhaps extending 
the vowel sound you want to hear. Comp;lre rhe sound \'(. ;i!(' making tt) til" sounds made 
by the vowels in the example words to the nght cf the pi;'II,'r~)(' list. Ii'·r f',::,.rnple, the "a" 
in "apple" sounds the same a.s the "a" Hj "C;Lf ," not li~(; Ih., "<1,"", in _.\rli;~;lL", "talk," or 
"made." Notice also that some of the example words in the list do r;,)t even use any of the 
same letters contained in the phoneme code, like .\.--\ ·.is ill 'hot"-

Vowels are divided into two groups: those that rnaintJiL : ,. '<lune :iUU'::i r:lfoughout their 
durations and those that change their sound 'The ones lh.:.' ,l::lll;.::e are '.I;it'd >":liphthonMs". 
Some of us were taught the terms "long" :wd ·',.,hort" tu Ck,,"lliJe vowpl sound:" Diphthongs 
fall into the long category, but these two terms are inadequ:tte to fu llv differe!'ltiate between 
vowels and should be avoided. The diphthongs a;-I' the la.sL'iix vo',;;e!s listed in the table. 
Say the word "made" out loud very slowiy. l'<otlce how tlll~ "a" "it?.!'ts cut Eke the "e" in 
"bet" but ends up like the> e OO in "beet." The "a" therefore Ie' :1. clipht.hc>·~g In this word and 
we would use EY to represer,t it. Some ~;pel'dl synthesl5 c.:,';t :')115 rt'cjllire .\'e)l) to specifv the 
changing sounds in diphthcngs 8B separate t'lements, bIt ~'';:Hi':It(>r takes ('in;' of t.he assembly 
of diphthongal sounds for you. 

Choosing the Right Consonant 

Consonants are divided into many catagorips by phon! tl('):1I1S. hIlt \\f' IlH>d 11(")t ('oncern our
selves with most of them. Picking the correct con~;or;.jr.t; is very '1-, i' you pay attPfltion to 
just two catagories: voiced and liIlvoiced. A voiced (',ns>,'iU!lt 1:- m:t')'- with the vocal cords 
vibrating, and an unvoiced one is made \\hE'j\ the vocal -';."[,, Lre ."ilt'flt. :"''illHimes Engk;h 
uses the same letter combinations to ff'prCsent hoth (" ')':lre the ",h' 11' "thin" ar;ci If' 

"then." r\otice that the first is made with air t!lsh;ng h·I'., Ihi~ rr'J) C"lr;d upper tl'dh. 



In the second, the vocal cords are vibrating also. The voiced "th" phoneme is DH, the 
unvoiced is TH. Therefore "thin" is spelled TH, IH, N or THIHN and "then" is spelled DH, 
EH, N or DHEHN. A sound that is particularly subject to mistakes is voiced and unvoiced 
"s" spelled Z or S. To put it clearly, "bats" ends in S, "suds" ends in Z. What kind of "s" 
does "closet" have? How about "close"? Say all of these words out loud to find out. Actu
ally "close" changes its meaning when the "s" is voiced or unvoiced: "I love to be close to 
you." versus "\Vhat time do you close?" 

Another sound that causes some confusion is the "r" sound. There are two different r-like 
phonemes in the Narrator alphabet, R under the consonants and ER under the vowels. 
Which one do you use? Use ER if the "r" sound is the vowel sound in the syllable. Words 
that take ER are "absurd", "computer" and "flirt". Use R if the "r" sound precedes or fol
lows another vowel sound in that syllable, such as in "car," "write," or "craft". "Rooster" 
uses both kinds of "r". Can you tell which is which? 

Contractions and Special Symbols 

There are several phoneme combinations that appear very often in English words. Some of 
these are caused by our laziness in pronunciation. Take the word "connector" for example. 
The "0" in the first syllable is almost swallowed out of existence. You would not use the AA 
phoneme; you would use the AX instead. It is because of this "relaxation" of vowels that we 
find ourselves using A..X and IX very often. Since this relaxation frequently occurs before I, m 
and n, Narrator has a shortcut for typing these combinations. Instead of "personal" being 
spelled PERSIXNAXL, we can spell it PERSII'\UL, making it a little more readable. "Ano
maly" goes from AXNAAMAXLIY to UNAAMuLIY, and KAAMBIXNEYSHIXN becomes 
KAAMBINEYSHIN for "combination". It may be hard to decide whether to use the AX or 
IX brand of relaxed vowel. The only way to find out is to try both and see which sounds 
best. 

Other special symbols are used internally by Narrator. Sometimes they are inserted into or 
substituted for part of your input sentence. You can type them in directly if you wish. The 
most useful is probably the Q or glottal stop; an interruption of air flow in the glottis. The 
word "Atlantic" has one between the "t" and the "I". l\:arrator knows there should be a 
glottal stop there and saves you the trouble of typing it. But Narrator is only close to per
fect, so sometimes a word or word pair might slip by that would have sounded better with a 
Q stuck in someplace. 

3-152 Narrator Device 



Stress and Intonation 

It isn't enough to tell Narrator what you want said. For the best results you must also tell 
Narrator how you want it said. In this way you can alter a sen tence's meaning, stress impor
tant words, and specify the proper accents in polysyllabic words. These things improve the 
naturalness and thus the intelligibility of Narrator's spoken output. 

Stress and intonation are specified by the single digits 1-9 following a vowel phoneme code. 
Stress and intonation are two different things but are specified by a single number. Stress is, 
among other things, the elongation of a syllable. Because a syllable is either stressed or not, 
the presence of a number after the vowel in a syllable indicates stress on that syllable. The 
value of the number indicates the intonation. From this point onward, these numbers will be 
referred to as "stress marks". Intonation here means the pitch pattern or contour of an 
utterance. The higher the stress mark, the higher the potential for an accent in pitch (a rise 
and fall). A sentence's basic contour is comprised of a quickly rising pitch gesture up to the 
first stressed syllable in the sentence, followed by a slowly declining tone throughout the sen
tence, and finally a quick fall to a low pitch on the last syllable. The presence of additional 
stressed syllables causes the pitch to break its slow, declining pattern with rises and falls 
around each stressed syllable. Narrator uses a very sophisticated procedure to generate 
natural pitch contours based on how you mark the stressed syllables. 

How and Where To Put the Stress Marks 

The stress marks go immediately to the right of vowel phoneme codes. The word "cat" has 
its stress marked after the AE so we get KAE5T or KAE9T. You generally have no choice 
about the location of a number; there is definitely a right and wrong. Either a number 
should go after a vowel or it shouldn't. Narrator won't flag an error if you forget to put a 
stress mark in or if you place one on the wrong vowel. It will only tell you if a stress mark is 
in the wrong place, such as after a consonant. 

The rules for placing stress marks are: 

1) Always place a stress mark in a content word. A content word is one that contains 
some meaning. Nouns, verbs, and adjectives are all content words. "Boat", "huge", 
"tonsils" and "hypertensive" are all content words; they tell the listener what you're 
talking about. "Vords like "but", "the", "if" and "is" are not content words. They 
don't convey any real world meaning at all but are required to make the sentence 
function. Thus, they are given the name Junction words. 

Narrator Device 3-153 



2) Always place a stress mark on the accented syllable(s) of polysyllabic words, whether 
they are content or function words. A polysyllabic word is any word of more than 
one syllable. "Commodore" has its stress (or accent as it is often called) on the first 
syllable and would be spelled KAA.5~1A..'\:DOHR. "Computer" is stressed on the 
second syllable, giving KutvlPYUW5TER. 

If you are in doubt about which syllable gets the stress, look the word up in a dic
tionary and you will find an accent mark over the stressed syllable. If more than one 
syllable in a word receives stress, they usually are not of equal value. These are 
referred to as primary and secondary stresses. The word "understand" has its first 
and last syllables stressed, with "stand" getting primary stress and "un" secondary, 
giving AH1NDERSTAE4ND. Syllables with secondary stress should be marked with 
a value of only 1 or 2. 

Compound words (words with more than one root) such as "base/ball", "soft/ware", 
"lunch/wagon" and "house/boat" can be written as one word but should be thought 
of as separate words when marking stress. Thus) "Iunchwagon" would be spelled 
LAH5NCHWAE2GIN. Notice that "lunch" got a higher stress mark than "wagon". 
This is common in compound words; the first word usually receives the primary 
stress. 

What Stress Value Do I Use? 

If you get the spelling and stress mark posltlOns correct, you are 95 percent of the way to a 
good sounding sentence. The next thing to do is decide on the stress mark values. They can 
be roughly related to parts of speech, and you can use the following table as a guide to 
assign values. 

3-154 Narrator Device 



Table 8-1: Recommended Stress Values 

Part of Speech Stress Value 

Nouns 5 
Pronouns 3 
Verbs ·1 
Adjectives .) 

Adverbs 7 
Quantifiers 7 
Exclamations 9 
Articles 0 (no stress) 
Prepositions 0 
Conjunctions 0 
Secondary stress 1 (sometimes 2) 

The above values merely suggest a range. If you want attention directed to a certain word, 
raise its value. If you want to downplay a word, lower it. Sometimes even a function word 
can be the focus of a sentence. It is quite conceivable that the word "to" in the sentence 
"Please deliver this to Mr. Smith." could receive a stress mark of 9. This would add focus 
to the word "to" indicating that the item should be delivered to Mr. Smith no less than in 
person. 

Punctuation 

In addition to the period or question mark that is required at the end of a sen tence, Narrator 
recognizes several other punctuation marks. These are the dash, comma, and parentheses. 
The comma goes where you would normally put a comma in an English sentence. It causes 
Narrator to pause with a slightly rising pitch, indicating that there is more to come. The use 
of additional commas, that is, more than would be required for written English is often help
ful. They serve to set clauses off from one another. There is a tendency for a listener to lose 
track of the meaning of a sentence if the worels run together. Read your sentence aloud 
while pretending to be a newscaster. The locations for additional commas should leap out at 
you. 

The dash serves almost the same purpose as the comma, except that the dash does not cause 
the pitch to rise so severely. A rule of thumb is: Use dashes to divide phrases, commas to 
divide clauses. For a definition of these terms, consult a high school English book. 

Parentheses provide additional information to Narrator's intonation routine. They should be 
put around noun phrases of two or more content words. This means that the noun phrase, 
"a giant yacht" should be surrounded with parentheses because it contains two content 
words, "giant" and "yacht". The phrase "my friend" should not have parentheses around it 

Narrator Device 3-1.55 



because it contains only one content word. Noun phrases can get pretty big like, "the silliest 
guy I ever saw" or "a big basket of fruit and nuts". The parentheses really are most 
effective around these large phrases; the smaller ones can sometimes go without. The effect 
of parentheses is a subtle one and in some sentences you might not even notice their pres
ence. In sentences of great length, however, they help provide for a very natural contour. 

Hints for Intelligibility 

There are a few tricks you can use to improve the intelligibility of a sentence. Often, a 
polysy lIabic word is more recognizable than a monosyllabic word. For instance, instead of 
saying "huge", say "enormous". The longer version contains information in every syllable, 
th us giving the listener three times the chance to hear it correctly. This can be taken to 
extremes, so try not to do things like "This program has a plethora of insects in it." 

Another good practice is to keep sentences to an optimal length. Writing for reading and 
writing for speaking are two different things. Try not to write a sentence that cannot be 
easily spoken in one breath. Such a sentence tends to give the impression that the speaker 
has an infinite lung capacity. Try to keep sentences confined to one main idea. A run-on 
sentence tends to lose its meaning after a while. 

New terms should be highly stressed the first time they are heard. If YOll are doing a tutorial 
or something similar, stress a new term at its first occurrence. All subsequent occurrences of 
that term need not be stressed as highly because it is now "old news." 

The above techniques are but a few ways to enhance the performance of Narrator. You will 
probably finel some of your own. Have fun. 

Example of English and Phonetic Texts 

Careliomyopathy. I had never heard of it before, but there it was listed as the form of heart 
disease that felled not one or two but all three of the artificial heart recipients. A little 
research produced some interesting results. According to an article in the Nov. 8, 1984, New 
England Journal of Medicine, cigarette smoking causes this lethal disease that weakens the 
heart's pumping power. \Vhile the exact mechanism is not clear, Dr. Arthur J. Hartz specu
lated that nicotine or carbon monoxide in the smoke somehow poisons the heart and leads to 
heart failure. 

KAA1RDIYOWMA Y AA5P A..XTHIY. A Y /HAED NEHI VER HER4D AXV IHT BIXFOH.5R, 
BAHT DHEH5R IHT WAHZ - LIH4STIXD AEZ (DHAX FOH5RM AXV /HAA5RT 
DIHZIYSZ) DHAET FEH4LD (NAAT WAH5N OHR TUW5) - BAHT (A07L THRIY5 AXV 

3-156 ;'\Tarrator Device 



DHA.X AASRTA.XFIHSHUL /HAA5RT RIXSIHSPIYINTS). (AH LIHSTUL RIXSERSCH) 
PROHDUWSST (SAHM IHSNTRIHSTIHNX RIXZAHSLTS). AHKOHSRDIH~'X TUW 
(AEN AASRTIHKUL IHN DHAX ]\;OWVEHS1,fBER EY2TH NAYSl\TIYNEYTIYFOHIR 
NUW IYSNXGLIND JERSNUL A.XV MEHSDIXSIN), (SIHSGEREHT SMOWSKIHNX) 
KA04ZIHZ (DHIHS LIY5THUL DIHZIYSZ) DHAET WIY 4KINZ (DHAX /HAA5RTS 
PAH4r.fPIHNX PAW2ER). WAYL (DHIY IHGZAESKT ~1EHSKINIXZUM) IHZ NAAT 
KLIYSR, DAA5KTER AA.SRTHER JEY2 /HAASRTS SPEHSKYULEYTIHD DHAET 
NIHSKAXTIYN OHR KAASRBIN MUNAASKSA YD IHN DHAX SMOWSK 
SAHSM/HAWI POY4ZI0:Z DHAX /HAASRT - AEND LIY4DZ TUW UHAASRT 
FEY5LYER). 

Concluding Remarks 

This guide should get you off to a good start in phonetic writing for Narrator. The only way 
to get really proficient is to practice. Many people become good at it in as little as one day. 
Others make continual mistakes because they find it hard to let go of the rules of English 
spelling, so trust your ears. 

8.6. THE MORE TECHNICAL EXPLANATION 

The SoftVot'ce speech synthesis system is a computer model of the human speech production 
process. It attempts to produce accurately spoken utterances of any English sentence, given 
only a phonetic representation as input. Another program in the system, Translator, derives 
the required phonetic spelling from English text. Timing and pitch contour are produced 
au tomatically by the syn thesizer software. 

In humans, the physical act of producing speech sounds begins in the lungs. To create a 
voiced sound, the lungs force air through the vocal folds (sometimes called the vocal cords), 
which are held under tension and periodically interrupt the flow of air, thus creating a buzz
like sound. This buzz, which has a spectrum rich in harmonics then passes through the vocal 
tract and out the lips which alters its spectrum drastically. This is because the vocal tract 
acts as a frequency filter, selectively reinforcing some harmonics and surpressing others. 

It is this filtering that gives a speech sound its identity. The amplitude versus frequency 
graph of the filtering action is called the "vocal tract transfer function". Changing the shape 
of the throat, tongue and mouth retunes the filter system to accent different frequencies. 

The sound travels as a pressure wave through the air, and if we're not talking to ourselves, it 
causes the listener's eardrum to vibrate. The ear and brain of the listener decodes the 
incoming frequency pattern. From this the listener can subconsciously make a judgement 
about what physical actions were performed by the speaker to make the sound. Thus the 
speech chain is completed, the speaker having encoded his physical actions on a buzz via 

Narrator Device 3-1Si 



selective filtering and the listener having turned the sound into guesses about physical 
actions by frequency decoding. 

Now that we know how we do it, how does a machine do it? It turns out that the vocal 
tract is not random, but tends to accentuate energy in narrow regions called formants. The 
formant positions move smoothly as we speak, and it is the formant frequencies to which our 
ears are sensitive. So, luckily, we do not have to model throat, tongue, teeth and lips with 
our computer, we can imitate formant action. 

A good representation of speech requires up to five formants, but only the lowest three are 
required for intelligibility. We begin with an oscillator that produces a waveform similar to 
that wh ich is prod uced by the vocal folds, and pass it through a series of resonators each 
tuned to a different formant frequency By controlling the volume and pitch of the oscillator 
and the frequencies of the resonators, we can produce highly intelligible and natural sounding 
speech. Of course the better the model, the better the speech; but more importantly, experi
ence has shown that the better the control of the model's parameters, the better the speech. 

Oscillators, volume controls and resonators can all be simulated mathematically in software, 
and it is by this method that the SoftVoice system operates. The input phonetic string is 
converted into a series of target values for the various parameters illustrated. A system of 
rules then operates on the string to determine things like the duration of each phoneme and 
the pitch contour. Transitions between target values are created and smoothed to produce 
natural continuous changes from one sound to the next. 

New values are computed for each parameter for every 8 ms. of speech. That's about 120 
acoustic changes per second. These values drive a mathematical model of the speech syn
thesizer. The accuracy of this simulation is quite good. Human speech has more formants 
than the SoftVoice model, but they are low in energy content. 

The human speech production mechanism is an extremely complex and wonderful thing. 
The more we learn about it, the better we can make our computer simulations. Meanwhile, 
we can use synthetic speech as yet another computer output device to enhance the 
man/machine dialogue. 

8.7. TABLE OF PHONEMES 

Vowels 

Phoneme Example Phoneme Example 

IY beet IH bit 
EH bet AE bat 
AA hot AH under 
AO talk CH look 
ER bird OH border 
AX* about IX* solid 

3-158 l\'" arrator Device 



*AX and IX should never be used in stressed syllables. 

Diphthongs 

Phoneme Example Phoneme Example 

EY made AY hide 
OY boil AW power 
OW low UW crew 

Consonants 

Phoneme Example Phoneme Example 

R red L yellow 
W away Y yellow 
M men N men 
NX smg SH rush 
S sail TH thin 
F fed ZH pleasure 
Z has DH then 
V very J judge 
CH check IC loch 
jH hole P put 
B but T toy 
D dog G guest 
K Commodore 

Narrator Device 3-159 



3-160 Narrator Dev ice 

Special Symbols 

Phoneme Example 

DX pity 
(tongue flap) 

Q kitt_en 
(glottal stop) 

QX pause 
(silent vowel) 

RX car 
LX call 
(postvocalic Rand L) 

Contractions 

(see text) 

UL A.,(L 
IL 1XL 
UM AXM 
1M IXlvI 
UN AXN 
IN IXN 

Digits and Punctuation 

Digits 1-9 Syllabic stress, 

? 

, 
( ) 

ranging from secondary 
through emphatic 

Period-sentence final 
character 

Question mark -sentence final 
character 

Dash-phrase delimiter 
Comma-clause delimiter 
Parentheses-noun phrase 

delimiters (see text) 



Chapter 9 

Serial Device 

This chapter describes software access to the serial port. The serial device is accessed via the 
standard system device access routines and provides some additional functions specificaily 
appropriate to use of this device. 

9.1. INTRODUCTION 

The serial device can be opened in either exclusive access mode or shared mode. The serial 
device can be set to transmit and receive many different baud rates (send and receive baud 
rates are identical). It can support a seven-wire handshaking as well as a three-wire intercon
nect to a serial hardware device. 

Handshaking and access mode must be specified before the serial device is opened. Other 
serial parameters can be specified using the SDCMD_SETPARAMS command after the 
device has been opened. 

9.2. OPENING THE SERIAL DEVICE 

Typically, you open the serial device by using the following function calls: 

Serial Device 3-161 



LONG error: 
stru ct Port ·w ySnPo rt , 
sHun, IOExt,:;;er *n:y:"3trHeq; 

* (' r p~i t f ~ t !"f ' ply pert ~ ~ () \\.-h lch Sf' ia.l 
'* d e\' i l ' ~::' can rl~t!lrn t. ~~ f' req1.iE'st ,... 

rn \ Se r P,:,n Cn' ;lttI' o rtl my Ser at" ,0); 
iIi m \''::;< d'' )rr\ , T,L) f'xiti J 00): i t. cant create port? */ 

/ . (,!,f'atl: a request bl ock appro pri ate to serial . / 

rnySerl{eq (Sf rllc t 10 b tSc r • )CreateExtIO( mySerPort, 
s:?ro;'(:-lrun IOExtSer)); 

if(rnyS er H eq .\CLL! boLo cleanupl; / * error during CreateExtIO? */ 

mySt'rHc(j-:- io _Sf'rFI:)gs ec : = 0: 
~. acc('pt the dl'f:tlllr , 1. ('. Exci :l s ive Access and 
• X C):'-: X()FF p rr)tcwol 15 enahled, 
#: r~ {'nia; ~!, in?!. fl ~lg~ : '~11 J,(' fC } , ~(' (, de ;;ices/ seria!.h 
* ['(_', r h I?- P C;~!. t.ln!! :~ 1)( 'fnlti () :1s lri C'lud f' d in. this 
:4< C h ;:'ll)r r 

"nor 0;'('1: [)('\ ' sni :t!.devi cc ·' ,O,my;~erReq , O); 

d"( trrt)i' !-. - U) gc· (() I, 'l~:;l ; ~ tl j' '2 ; , .. de~" ice not available? */ 

c:e:UIUp~: 

DC'1e tf ' 1-::'.: t I O( n i v :-.:" 1'1\ eq ,si ze,)i'(s t ru ct rOE" tSer)); 
cleanupi: 

T) eletc? ,-) j" ! \. tq\' ~"'; ~ 'rPort); 

T he roo '.in C's Creat.~P ort() and DeletePortO are part. of amiga..lib. Information about the 
ro utine" CreateEx tIO () and DeleteExtIOO can be found in the appendixes of this 
mall II a.! 

Durilli( () IICit , ; :" u ll h' !hg:'i ti:;lt the seria'! d ev ice p ays any attention to are the 
S b :HCd p \" k ."I Vt> <, (· \ ' i.' SS ILtt: :Uld the seven-wire f1a ,g (the seven-wire flag enables RS-232-C 
DTRDSH . .ln ..: / cr~ h ~i,ndsllak l[l h protocol). Al l other bits in io_SerFlags are ignored . 
Howe ',e e, (or (, ' ) li:~;s: ('n(y rh ,' oth e r ilag bjt ~; should be set to zero when the device is opened. 

\Vhen th e SCflc11 d(' '-'lCt~ i:i op(" I , 'd it open s th e timer device and then allocates an input buffer 
of the size last use d (G('i'aui t a.n d minimum = 512 bytes) . As with any of the other serial 
port pa ra meters , ye'll c, n iatfr ('h an~e the value used for the read buffer size with the 
SDCMD SETP ARMS (' ()[fl;11and The OpenDevice() routine will fill the latest parame
te r settings in to the io_Request b loc k 

Onel' UiE' ':; (' flai d e','l ,:e l ' ( ·j) " ;i ed. ,ti l ch<tracters received will be saved, even if there is no 
current r er;\l (:, :~ 1. ,',:,(, ch e r!l \,:'t f' that a. paramete r change cannot Se performed while actually 
processlilg an r U 'eq 'J (sr [,ecause i t would !oval,date req uest handling already in progress. 



Therefore you must use SDCMD_SETP ARAMS only when you have no serial I/O 
requests pending. 

9.3. READING FROM THE SERIAL DEVICE 

You read from the serial device by sending your IORequest (IOExtSer) to the device, with 
a. read command. You specify how many bytes are to be transferred, and where the data is 
to be placed. Depending OIl how you have set your parameters, the request may read the 
requested number of characters, or it may terminate early. 

Here is a sample read command: 

char myDataArea[lOO]; 
mySerReq->IOSer.io_Data = &myDataArea[O]; /* where to put the data */ 
mySerReq- > rOSer.io_Length = 100; /* read 100 characters * / 
mySerReq->IOSer.io_Command = CNID_READ; /* say it is a read */ 
DoIO(mySerReq); /* synchronous request * / 

If you use this example, your task will be put to sleep waitIng until the serial device reads 
100 bytes (or terminates early) and copies them into your read-buffer. Early termination can 
be caused by error conditions or by the serial device sensing an end of file condition. 

Note that the io_Length value, if set to -1, tells the serial device that you want to read a 
null terminated string. The device will read ail incoming characters up to and including a 
byte value of OxOO in the input stream, then report to you an io_Actual value that is the 
actual length of the string, excluding the 0 value. Be aware that you must encounter a 0 
value in the input stream before the system fills up the buffer you have specified. The 
io_Length is, for all practical purposes, indefinite. Therefore, you could potentially 
overwrite system memory if you never encountered the null termination (zero value byte) in 
the in pu t stream. 

First Alternative Mode for Reading 

As an alternative to DolOO you can use SendlOO to transmit the command to the device. 
In this case, your task can go on to do other things \vhile the serial device is collecting the 
bytes for you. You can occasionally do a ChecklO(mySer Req) to see if the I/O is com
pleted. 

Serial Device 3-163 



struct r.lessage *myIO; 

/* same code as in above example, except: */ 
SendIO(mySerReq); 

/* do something * / 
/* (user code) */ 

myIO = CheckIO(mySerReq); 
if(my10 ,= FALSE) got a ioDone; /* this 10 is done */ 

/* do something else */ 
/* (user code) */ 

WaitIO(mySerReq); 
myIO = mySerReq; /* if had to wait, 

* need a value for mylO */ 
} 
ioDone: 

Remove(mySerPort- >mp_"M.sgList,myIO); 
/* use the Remove function rather than the GetMsg function */ 

/* now check for errors, and so on. * / 

The RemoveO function is used instead of the GetMsgO function to demonstrate that you 
might have established only one port at which all of your I/O requests will be returned, and 
you may be checking each request, in turn, with CheckIOO to see if it has completed 
(maybe a disk request, a serial request and a parallel request, all simultaneously outstanding, 
all using SendIOO to transmit their commands to the respective devices). 

It is possible that while you are doing other things and checking for completion of I/O, one 
device may complete its operations and append its message block to your reply port while 
you are about to check the status of a later-arriving block. If you find that this later one has 
completed and you call GetMsgO, you will remove whichever message is at the head of the 
list. This message may not necessarily be the one you expect to be removing from the port. 
CheckIOO returns the address of the IORequest if the I/O is complete, and you can use 
this address for the RemoveO function to remove the correct request block for processing 
and reuse. 

3-164 Serial Device 



Second Alternative Mode for Reading 

Instead of transmitting the read command with either DolOO or SendlOO, you might elect 
to use BeginlOO, (the lowest level interface to a device) with the "quick I/O" bit set in the 
io_Flags field. 

/* same code as in read example, except: */ 
mySerReq->IOSer.io_Flags = IOF _QUICK; /* use QUICKIO */ 

BeginIO(mySer Req); 

The serial device may support quick I/O for certain read requests. As documented in the 
"I/O" chapter in this manual, this command may be synchronous or asynchronous. Any 
write request always clears the quick I/O bit. Various read commands mayor may not clear 
it, depending on whether or not quick I/O occurs. 

After executing the code shown above, your program needs to know if the I/O happened syn
chronously and it must also test to see if the I/O took place. 

if(( mySerReq- > lOSer. io_F lags & IOF _QUICK) == 0) 
{ 
/* QUICKIO couldn't happen for some reason, so it did 
* it normally ... queued the request, cleared the QUICKIO 
* bit, and used the equivalent of SendIO. Might want to 
* have the task doing something else while awaiting the 
* completion * of the I/O. After knowing it is done, must 
* remove the message from the reply port for possible reuse. 

else 

*/ 
WaitIO(mySerReq); 

} 

{ 

/* assumes single threaded I/O, as compared to 
* the SendIO example in the previous section * / 

/* If flag is still set, 10 was synchronous, 
* means that the IORequest was NOT appended 
* to the reply port and there is no need to 
* remove the message from the reply port; 
* continue on with something else. 

*/ 

} 

Serial Device 3-165 



The way you read from the device depends on your need for processing speed. Generally the 
BeginIOO route provides the lowest system overhead when quick I/O is possible. However, 
if quick I/O didn't work, it still requires some overhead for handling of the IORequest 
block. 

Termination of the Read 

Reading from the serial device can terminate early if an error occurs or if an end-of-file is 
sensed. You can specify a set of possible end-of-file characters that the serial device is to 
look for in the input stream. These are contained in an io_TerrnArray that you provide, 
using the SDCMD_SETP ARAMS command. NOTE: io_TermArray is used only 
when EOF mode is selected. 

If EOF mode is selected, each input data character read into the user's data block, is com
pared against those in io_TermArray. If a match is found, the IORequest is terminated as 
complete, and the count of characters read (induding the TermChar) is stored in 
io_Actual. To keep this search overhead as efficient as possible, the serial device requires 
that the array of characters be in descending order (an example is shown in the summary 
page in the appendixes for SDCMD_SETPARAMS). The array has eight bytes and all 
must be valid (that is, don't pad with zeros unless zero is 3" valid EOF character). 

Fill to the end of the array with the least value TermChar. When making an arbitrary 
choice of EOF character(s), it's advisable to use the lowest value(s) available. 

9.4. WRITING TO THE SERIAL DEVICE 

You can write to the serial device as well as read from it. It may be wise to have a separate 
block for reading and writing to allow simultaneous operation of both reading and writing. 
The sample coele below creates a separate reply port and request for writing to the serial dev
ice. Note that it assumes that the OpenDeviceO function worked properly for the read. It 
copies the initialized read request block to initialize the write request block. Error checking 
has been deliberately left out of this code fragment for brevity but should, of course, be pro
vided in a functional program. 

3-166 Serial Device 



LONG i; 
BYTE *b,*c; 

struct Port *mySerWritePort; 
struct IOExtSer *mySer\VriteReq; 

mySerWritePort = CreatePort(" mySerialWrite" ,0); 

mySerWriteReq = (struct IOExtSer *)CreateExtIO(mySerWritePort, 
sizeof(struct IOExtSer)); 

b = (BYTE * )mySerReq; /* start of read request block * / 
c = (BYTE *)mySerWriteReq; /* start of write request block */ 

for(i=O; i< sizeof(struct IOExtSer); i++) 
*c++ = *b+--l-; 

/* clones the request block on a byte by byte basis * / 
/* NOTE: it might simply be easier, here, to have opened the 
* serial device twice. This would reflect the fact that 
* there are two "software entities" that are currently 
* using the device. However, if you are using exclusive 
* access mode, this is not possible and the request block 
* must be copied anyway. 

*/ 

Note that this code would require the following cleanup at the termination of the program: 

cleanupWriteIO: 
DeleteExtIO( mySer W ri teReq); 

cleanup WritePort: 
DeletePort( mySerWritePort); 

Now, to perform a write: 

char dataToWrite[1001; 
mySerReq->IOSer.io_Data = &dataTo\Vrite:O]; * where to get the data */ 
mySerReq->IOSer.io_Length = n; /* write n characters */ 
mySerReq->IOSer.io_Command = C~1D_WRITE; /* say it is a write */ 
DoIO(mySerReq); /* synchronous request * / 

You can use the SendlOO or BeginlOO functions as well as DoIOO. The same warnings 
apply as shown above in the discussions about alternative modes of reading. 

Serial Device 3-167 



Note that if io_Length is set to -1, the serial device will output your serial buffer until it 
encounters a value of OxOO in the data. It transmits this 0 value in addition to the data to 
match the technique used for serial read shown above. (You can also read data zero
terminated). 

9.5. SETTING SERIAL PARAMETERS 

You can con trol the following serial parameters. The parameter name within the serial data 
structure is shown below. All of the fields described in this section are filled in when you call 
OpenDeviceO to reflect the current settings of the serial device. Thus, you needn't worry 
about any parameter that you don't need to change. 

Table 9-1: Serial Parameters 

Parameter Name Characteristic It Controls 

io_CtlChar Control characters to use for XON, XOFF, INQ, ACK 
respectively. Positioned within an unsigned long word in 
the sequence from low address to high as listed. INQ and 
ACK handshaking is not currently supported. 

io_RBufLen Size of the buffer that the serial device should allocate for 
incoming data. Minimum size is 512 bytes. It won't 
accept a smaller value. This buffer is dynamically allo
cated by the serial device. If, as you do an 
SDCMD_SETP ARAl\1S command, it senses a difference 
between its current value and the value of buffer size you 
request, it dcallocates the old buffer and allocates a new 
one. Note that it discards all characters that may already 
be in that old buffer that you may not have yet had a 
chance to read. Thus it is wise to assure that you don't 
attempt buffer size changes (or any change to the serial 
device, for that matter) while any I/O is actually taking 
place. 

io _ExtF lags 

3-168 Serial Device 

Reserved for fu ture use. 

The real baud rate you wish to use. A long value from 110 
to 292000. When a value of 110 is requested, it defaults to 
112 (the lowest value the hardware can support). 
Although baud rates above 19200 are supported by the 
hardware, software overhead may limit your ability to 
"catch" every single character th at should be received. 
Output data rate, however, is not software dependent. 



lo_ReadLen 

io_SerFlags 

If you issue a break command, this variable specifies how 
long, in microseconds, the break condition lasts. This 
value controls the break time for all future break com
mands until modified by another 
SDCMD_SETP ARAMS. 

A byte-array of eight termination characters, must be in 
descending order. If EOFMODE is set in the serial flags, 
this array specifies 8 possible choices of character to use as 
an end of file mark. See the section above titled "Termi
nation of the Read" and the SDCMD_SETPARAMS 
summary page in the function appendix for more informa
tion. 

How many bits per read character. Typically a vaiue of 7 
or 8. 

How many bits per write character. Typically a value of 7 
or 8. 

How many stop bits are to be expected when reading a 
character and to be produced when writing a character. 
Typically 1. A value of 2 is allowed if io_ WriteLen = 7. 

Explained below; see "Serial Flags". 

Bit Active Function 

0 low (reserved) 
1 low (reserved) 
2 low (reserved) 
3 low Data set ready 
4 low Clear to send 
S low Carrier detect 
6 low Ready to send 
7 low Data terminal ready 
8 high Read overrun 
9 high Break sent 

10 high Break received 
11 high Transmit x-OFFed 
12 high Receive x-OFFed 

13-15 (not) (reserved) 

Serial Device 3-169 



Serial Flags 

The following flags can be set to affect the operation of the serial device. Note that. the 
default state of all of these flags is zero. 

Flag Name 

SERB_XDISABLED 

SERB_EOFMODE 

3-170 Serial Device 

Table 9-2: Serial Flags 

Effect on Device Operation 

Disable XON-XOFF feature, 

Set this bit if you want the serial device to check I/O 
characters against io_ TermArray and terminate the 
IORequest immediately if ,tn rnd-or-file character has 
been encountered, 1\"OTE: This bit can be set and 
reset directly in the user's IORequest (IOExtSer) 
block without a call to SDCMD_SETPARAMS, 

Set this bit if yO\l W;l'lL to allow oUler tasks to simul
taneously access the serial port. The default is 
exclusive-access, If someone already has the port, 
whether for exclusive or shared, and you ask for 
exclusive-access, your OpenDeviceO call will fail 
(should be modified only at OpenDeviceO), 

If set, this bit activates high-speed mode, Certain peri
pheral devices, (~nDI, for example) may require high 
serial throughput. Setting tillS bit high callses the serial 
device to skip certain of iL, internal checking code so as 
to speed throughput. In particular, it: 

- disables parity checking 
- bypasses XOl'\iXOFF handling 
- uses only 8- bit character length 
- won't test for a break signal 
- au tomatica,lly set:" SERB_XDISABLED bit 

l\ote that the Amiga is a multi-tasking system and has 
immediate processing of software interrupts, If there 
are other tasks running, it is possible that the serial 
driver may be unable ~o keep up with high data 
transfer rates, even with this bit set, 



SERB_QUEUEDBRK 

SERB_P AR TY _ODD 

SERB_P ARTY_ON 

If set, every break command that you transmit will be 
enqueued. This means that the current serial output 
commands will be executed in sequence. Then the 
break command will be executed, all on a FIFO (first in, 
first out) basis. If this bit is cleared (the default), a 
break command takes immediate precedence over any 
serial output already enqueued. \Vhen the break com
mand has finished, the interrupted request will continue 
(if it's not aborted by the user). 

If set (should be established only at OpenDeviceO), 
the serial device is to use a seven-wire handshaking for 
RS-232-C communications. Default is three-wire (pins 
2,3, and 7). 

If set, selects odd parity. If clear, selects even parity. 

If set, parity usage and checking is enabled. 

Setting the Parameters 

You set the serial parameters by setting the flags and parameters as you desire, then 
transmitting the command SDCMD_SETP ARAMS to the device. Here is an example: 

mySerReq- >IOSer.io_SerFlags &= - SERF _PARTY _0DD; /* 'and' with inverse */ 
mySerReq->IOSer.io_SerFlags 1= SERF _QUEUEDBRK 1 SERF _PARTY_ON; 
mySerReq->io_BrkTime = .500000; /* SOOk microseconds = 1/2 second */ 
mySerReq- > lOSer.io_Command = SDCMD_SETP ARAMS; 
DoIO(mySerReq); /* synchronous request */ 

The above command would set the bits for queued break and even parity while leaving the 
other flags unchanged. Notice the difference between the flag names and the flags that you 
actually set using C. "SERB ... " is the name applied to the bit-position within the flag word. 
"SERF ... " is the name of a 1 bit in a mask at that bit position. 

9.6. ERRORS FROM THE SERIAL DEVlCE 

The possible error returns from the serial device are listed below. The abbreviated nammg 
shown for the error numbers is self-explanatory. 

Serial Device :3-171 



Table 9-3: Serial Device Errors 

#define SerErr_DevBusy 1 
#define SerErr_BaudMismatch 2 
#define SerErr_Inv Baud 3 
#define SerErr_BufErr 4 
#define SerErr_InvParam 5 
#define SerErr_LineErr 6 
#define SerErr_NotOpen 7 
#define SerErr_PortReset 8 
#define SerErr_ParityErr 9 
#define SerErclnitErr 10 
#define SerErr_TimerErr 11 
#define SerErr_BufOverflow 12 
#define SerErr_NoDSR 13 
#define SerErr_NoCTS 14 
#define SerErr_DetectedBreak 15 

9.7. CLOSING THE SERIAL DEVICE 

When the (final, if shared access) CloseDeviceO is performed, the input buffer is deallo
cated, the timer device is closed, and the latest parameter settings are saved for the next 
open. 

Typically, you close the serial device with the following function call: 

CloseDevice(mySerReq); 

This assumes that the serial device has completed all activities you have requested and has 
returned all I/O requests to you. 

When you have finished with the serial device, it is up to you to deallocate any memory and 
dependencies you might have used for the serial device communications. If you have used 
the techniques shown earlier in this chapter to establish the communications in the first 
place, your cleanup typically will consist of the following code: 

3-172 Serial Device 



cleanup2: 
DeleteExtlO( mySer Req,sizeof( struct IOExtSer)); 

cleanup1: 
DeletePort( mySerPort); 

cleanup WriteIO: 
DeleteExtI O( mySer W ri teReq); 

clean up vVritePort: 
DeletePort( mySer WritePort); 

9.S. EXAMPLE PROGRAM 

Here is an example program that uses static rather than dynamic allocation of the IOExtSer 
request block. It assumes that you have connected a serial terminal device to the Amiga 
serial port, and it uses the baud rate you have established in Preferences. The program out
puts the following status lines to the eLI window: 

Serial Device opened and accepted parameters 

Testing character exact-count output thru SendWaitWrite 

Test string length of -1 (make system find end of string) 

Type 16 characters to send to amiga ... 

If no external terminal is attached, waits forever! 

and outputs the following lines to the external terminal: 

Device opened ok 

User counts characters in string to send 

or if null terminated string, say '-1' 

Type 16 characters to send to Amiga. 

At this point, you must type 16 characters on your external terminal. This sample program 
does not echo characters that you type, so you will not see anything more until all 16 have 
been typed. Finally the program will respond (to the external terminal) with: 

You typed these prin table characters: 
<here it lists the 16 characters> 
End of test 
54321.. ... exit 

Serial Device 3-173 



Then the program exits, printing "Test completed!" to the CLI window. 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

" exec/types.h" 
" exec/nodes.h" 
" exec/lists. h" 
" exec/ports.Il" 
" exec/libraries.h" 
"exec/ devices.h" 
" exec/io.h" 
" devices/serial.h" 

struct IOExtSer *IORser; 
struct MsgPort *port; 
char buffer[200]; 
extern struct MsgPort *CreatePortO; 
extern struct IORequest *CreateExtIOO; 

/* note: to run this program, you must have an external terminal, set 
* at 9600 baud, attached to the Amiga serial port. Additionally the 
* serial.device file must be located in the directory currently 
* assigned to DEVS: (to check this, in AmigaDOS, type: ASSIGN 
* then check the directory (usually the boot CLI disk volume, devs directory.) 

*/ 

mainO 
{ 

in terror; 
int actual; 
unsigned long rbl; 
unsigned long brk; 
unsigned long baud; 
unsigned ch ar rw 1; 
unsigned char wwl; 
unsigned char sf; 
unsigned long to; 
unsigned long tl; 

/* SET UP the message port in the I/O request * / 
port = CreatePort (SERIALNAME,O); 
if (port == NULL) { 

} 

prin tf(" \nProblems during CreatePort"); 
exit(lOO); 

/* Create the request block for passing info 
* to and from the serial device. * / 

10Rser = (struct IOExtSer *)CreateExtIO(port,sizeof(struct 10ExtSer)); 
if (IORser == NULL) 
{ 

3-174 Serial Device 



open: 

} 

printf("\nProblems during CreateExtIO"); 
goto clean u pI; 

/ * OPEN the serial.device * / 
if ((error = OpenDevice (SERIALNAME, 0, IORser, 0)) != 0) { 

printf (" Serial device did not open, error = % ld" ,error); 
goto clean u pI: 

} 

/* SET PARAMS for the serial.device */ 
rbl = 4096; 
rwl = Ox08; 
wwl = Ox08; 
brk = 750000; 
baud= 9600; 
sf = OxOO; 
to = Ox51040303; 
t 1 = Ox03030303; 

if ((error = SetParams (IORser,rbl,rwi,wwl,brk,baud,sf,tO,tl)) != 0) { 
printf ("Set parameters command returned an error: % ld" ,error); 
goto clean u p~; 

} 

printf("\nSerial Device opened and accepted parameters"}; 
WriteSer (IORser,"\n\015Device opened ok\n\015", -1); 

printf("\nTesting character exact-count output thru SendWaitWrite"}; 
SendWaitWrite (IORser, 

"User counts characters in string to send\n\015", 42); 

printf("\nTest string length of -1 (make system find end of string)"); 
SendWaitWrite (IORser, 

"or if null terminated string, say '-l'\n\015", -1); 

printf("\nType 16 characters to send to amiga ... "); 
printf("\nlf no external terminal is attached, waits forever!!"); 
WriteSer (IORser, 

"\n\015Type 16 characters to send to amiga\n\015", -1); 
actual = ReadSer (IORser,bufTer,16); 
WriteSer (IORser, 

"\n\015You typed these printable characters:\n\015", -1); 
WriteSer (IORser,bufi'er, actual); 
WriteSer (IORser,"\n\OI5End of test\n\015", -1); 
WriteSer (IORser," 543~1.. ... exit\n \015", 16); 
printf("\nTest completed!\n"); 

/* CLOSE the serial.device */ 

Serial Device 3-175 



cleanup2: 
CloseDevice (lORser); 

cleanup1: 

} 

DeletePort (port); 
exit (0); 

/* SERIAL I/O functions * / 

SetParams(io,rbuClen ,rlen, wlen, brk; baud,sf,taO, tal) 

struct IOExtSer *io; 
unsigned long rbuClen; 
unsigned char rlen; 
unsigned char wlen; 
unsigned long brk; 
unsigned long baud; 
unsigned char sf; 
unsigned long taO; 
unsigned long tal; 

{ 

} 

in terror; 

io- >io_ReadLen = rlen; 
io- >io_BrkTime = brk; 
io- > io_Baud = baud; 
io->io_WriteLen = wlen; 
io->io_StopBits = OxOl; 
io- >io_RBufLen = rbuClen; 
io- >io_SerFlags = sf; 
io- >IOSer.io_Command = SDCMD_SETPARAr.fS; 
io- > io_TermArray .TermArrayO = taO; 
io->io_TermArray.TermArrayl = tal; 

if ((error = DolO (io)) != 0) { 
printf ("seriaJdevice setparams error %ld \n", error); 

} 
return (error); 

ReadSer( io,data, length) 
struct IOExtSer *io; 
char *data; 
ULONG length; 
{ 

int error; 

io- >IOSer.io_Data = data; 
io- > IOSer.io_Length = length; 

3-176 Serial Device 



io->IOSer.io_Command = C~vfD_READ; 

if ((error = DolO (io)) != 0) { 
printf ("serial.device read error % Id \n", error); 

} 
return (io- > IOSer.io_Actual); 

} 

W ri teSer( io,d ata,length) 
struct IOExtSer *io; 
char *data; 
int length; 
{ 

} 

int error; 

io- >IOSer.io_Data = data; 
io- >IOSer.io_Length = length; 
io->IOSer.io_Command = CMD_WRITE; 

if (( error = DolO (io)) != 0) { 
printf ("serial.device write error % Id \n", error); 

} 
return (error); 

Send Wait W rite( io,data, length) 
struct IOExtSer *io; 
char *data; 
int length; 
{ 

} 

in terror; 

io- > IOSer.io_Data = data; 
io- >IOSer.io_Length = length; 
io->IOSer.io_Command = CMD_WRITE; 

SendIO (io); 

if ((error = WaitIO (io)) != 0) { 
printf ("serial.device waitio error % Id \n", error); 

} 
return (io- > IOSer.io_Actual); 

Serial Device 3-177 





Chapter 10 

Parallel Device 

This chapter describes software access to the parallel port. The parallel device is accessed 
via the standard system device access routines and provides some additional functions 
specifically appropriate to use of this device. 

10.1. INTRODUCTION 

The parallel device can be opened either in exclusive access or shared mode. Other parallel 
device parameters can be specified using the PDCMD_SETPARAMS command after the dev
ice has been opened. 

10.2. OPENING THE PARALLEL DEVICE 

Typically, you open the parallel device by using the following function calls: 

Parallel Device 3-179 



LO]\;G error; 
struct Port *myParPort; 
struct IOExtPar *myParReq; 

/* create a reply port to which parallel 
* device can return the request */ 

myParPort = CreatePort("myParallel" ,0); 
if(myParPort == NULL) exit(lOO); /* cant create port? */ 

/* create a request block appropriate to parallel */ 
myParReq = (struct IOExtPar * )CreateExtIO(myParPort, 

sizeof(struct IOExtPar)); 
if{myParReq == NULL) goto cleanupl; /* error during CreateExtIO? */ 

myParReq- >io_ParFlags = 0; 
/* accept the default, i.e. Exclusive Access 
* Remaining flags all zero, see devices/parallel.h 
* for bit-positions. Definitions included in this 
* chapter. * / 

error ~ OpenDevice(" parallel.device" ,0,myParReq,0); 
if{error != 0) go to cleanup2; /* device not available? */ 

cleanup2: 
DeleteExtIO{ my ParReq,sizeof(struct IOExtPar )); 

c1eanupl: 
DeletePort( my ParPort); 

The routines CreatePortO and DeletePortO are part of amiga.lib. Information about the 
routines CreateExtiOO and DeleteExtIOO can be found in the appendixes of this 
man ual. 

The parallel device is disk-resident. If it hasn't yet been loaded from disk, it will be read 
from "DEVS:parallel.device" on the boot AmigaDOS disk. Its parameters will be set up from 
default values. 

During open, the only flag that the parallel device uses is the shared/exclusive-access flag. 
For consistency, however, the other flag bits should be set to zero when the device is opened. 

When the parallel device is opened, it opens the timer device, and fills the latest parameter 
settings into the io_Request block. The OpenDeviceO routine will fill the latest parameter 
settings into the io_Request block. Note that a parameter change cannot be performed 
while actually processing an I/O request, because it would invalidate request handling 
already in progress. Therefore you must use PDCMD _SETP ARAMS only when you have 
no parallel I/O requests pending. 

3-180 Parallel Device 



10.3. READING FROM THE PARALLEL DEVICE 

You read from the parallel device by sending your IORequest (IOExtPar) to the device 
with a read command. You specify how many bytes are to be transferred and where the 
data is to be placed. Depending on how you have set your parameters, the request may 
read the requested number of characters, or it may terminate early. 

Here is a sample read command: 

char myDataArea[100]; 
myParReq->IOPar.io_Data = &myDataArea[O]; 1* where to put the data *1 
myParReq->IOPar.io_Length = 100; 1* read 100 characters *1 
myParReq- >IOPar.io_Command = GtviD_READ; 1* say it is a read *1 
DoIO(myParReq); 1* synchronous request *1 

If you use this example, your task will be put to sleep waiting unt.il the parallel device reads 
100 bytes (or terminates ea.rly) and copies them into your read-buffer. Early termination can 
be caused by error conditions or by the parallel device sensing an end of file condition. 

Note that the io_Length value, if set to -1, tells the parallel device that you want to read a 
null terminated string. The device will read all incoming characters up to and including a 
byte value of OxOO in the input stream, then report to you an io_Actual value that is the 
actual length of the string, excluding the 0 value. Be a\"rare that you must encounter a 0 
value in the input stream before the system fills up the buffer you have specified. The 
io_Length is, for all practical purposes, indefinite. Therefore, you could potentially 
overwrite system memory if you never encountered the null termination (zero value byte) in 
the input stream. 

Alternative Mode for Reading 

As an alternative to DolOO you can use SendIOO to transmit the command to the device. 
In this case, your task can go on to do other things while the parallel device is collecting the 
bytes for you. You can occasionally do a CheckIO(myParReq) to see if the 1/0 is com
pleted. 

Parallel Device 3-181 



struct Message *myIO; 

/* same code as in above example, except: */ 
SendIO(myParReq); 

1* do somethinO" */ I . 0 

/* (user code) */ 

myIO = CheckIO(myParReq); 
if(myIO != FALSE) goto ioDone; /* this 10 is done */ 

/* do something else */ 
/* (user code) */ 

WaitIO(myParReq); 
myIO = myParReq; /* if had to wait, 

* need a value for myIO */ 
} 
ioDone: 

Remove(myParPort- > mp_MsgList,myIO); 
/* use the Remove function rather than the GetMsg function */ 

/* now check for errors, and so on. */ 

The RemoveO function is used instead of the GetMsgO function to demonstrate that you 
might have established only one port at which all of your I/O requests will be returned, and 
you may be checking each request, in turn, with CheckIOO to see if it has completed These 
requests could be, for example, a disk request, a parallel request and a serial request, all 
simultaneously outstanding and all using SendIOO to transmit their commands to the 
respective devices. 

It is possible that while you are doing other things and checking for completion of I/O, one 
device may complete its operations and append its message block to your reply port while 
you are about to check the status of a later-arriving block. If you find that this later one has 
completed and you call GetMsgO, you will remove the message at the head of the list. This 
message may not necessarily be the one you expect to be removing from the port. 
CheckIOO returns the address of the IORequest if the I/O is complete, and you can use 
this address for the RemoveO function to remove the correct request block for processing 
and reuse. 

3-182 Parallel Device 



Termination of the Read 

Reading from the parallel device can terminate early if an error occurs or if an end-of-file i", 
sensed. You can specify a set of possible end-of-file characters that the parallel device is to 
look for in the input stream. These are contained in an io_TermArray that you pr~vide, 
using the PDCMD_SETP ARAMS command. NOTE: io_TermArray is used only 
when EOF mode is selected. 

If EOF mode is selected. each input data character read into the user's data block, is com
pared against those in io_TermArray. If a match is found, the IORequest is terminated as 
complete, and the count of characters read (including the TermChar) is stored in 
io_Actual. To keep this search overhead as efficient as possible, the parallel device requires 
that the array of characters be in descending order (an example is shown in the summary 
page in the appendixes for PDCMD_SETP ARAMS). The array has eight bytes and all 
must be valid (that is, don't pad with zeros unless zero is a valid EOF character). 

Fill to the end of the array with the least value TermChar. \Vhen making an arbitrary 
choice of EOF character(s), it's advisable to use the lowest value(s) available. 

10.4. WRITING TO THE PARALLEL DEVICE 

You can write to the parallel device as well as read from it. It may be wise to have a 
separate IORequest block for reading and writing to allow simultaneous operation of both 
reading and writing. The sample code below creates a separate reply port and request for 
writing to the parallel device. :'\ote that it assumes that the OpenDeviceO functIOn worked 
properly for the read. It copies the initialized read request block to initialize the write 
request block. Error checking has been deliberately left out of this code fragment for brevity 
but should, of course, be provided in a functional program. 

Parallel Device 3-183 



LONG i; 
BYTE *b,*c; 

struct Port *myParWritePort; 
struct IOExtPar *myPar\VriteReq; 

myParWritePort = CreatePort("myParalleIWrite" ,0); 

myParWriteReq = (struct IOExtPar *)CreateExtIO(myParWritePort, 
sizeof(struct IOExtPar)); 

b = (BYTE *)myParReq; /* start of read request block */ 
c = (BYTE *)myParWriteReq; /* start of write request block */ 

for(i=O; i< sizeof(struct IOExtPar); i++) 
*c++ = *b++; 

/* clones the request block on a byte by byte basis */ 
/* NOTE: it might simply be easier, here, to have opened the 
* parallel device twice. This would reflect the fact that 
* there are two "software entities" that are currently 
* using the device. However, if you are using exclusive 
* access mode, this is not possible and the request block 
* must be copied anyway. 

*/ 

Note that this code would require the following cleanup at the termination of the program: 

cleanup \VriteIO: 
DeleteExtIO(myParWriteReq); 

cleanup WritePort: 
DeletePort( my ParWritePort); 

Now, to perform a write: 

char dataToWrite[lOO]; 
myParReq->IOPar.io_Data = &dataToWrite[O]; /* where to get the data */ 
myParReq->IOPar.io_Length = n; 1* write n characters */ 
myParReq->IOPar.io_Command = CMD_\VRITE; /* say it is a write */ 
DoIO(myParReq); /* synchronous request */ 

You can use the SendIOO or BeginlOO functions as well as DoIOO. The same warnings 
apply as shown above in the discussions abou t alternative modes of reading. 

3-184 Parallel Device 



Note that if io_Length is set to -1, the parallel device will output your parallel buffer until 
it encounters a value of OxOO in the data. It transmits this 0 value in addition to the data to 
match the technique used for parallel read shown above. (You can also read data zero
terminated). 

10.5. SETTING PARALLEL PARAMETERS 

You can control the following parallel parameters. The parameter name within the parallel 
data structure is shown below. All of the fields described in this section are filled in when 
you call OpenDeviceO to reflect the current settings of the parallel device. Thus, you 
needn't worry about any parameter that you don't need to change. 

Table lO-l: Parallel Parameters 

Parameter Name Characteristic It Controls 

io_PExtFlags Reserved for fu ture use. 

io_TermArray A byte-array of eight termination characters, must be in 
descending order. If EOFMODE is set in the parallel flags, 
this array specifies 8 possible choices of character to use as 
an end of file mark. See the section above titled "Termi
nation of the Read" and the PDCMD_SETP ARAMS 
summary page in the function appendix for more informa
tion. 

Explained below; see "Parallel Flags". 

Parallel Flags 

The following flags can be set to affect the operation of the parallel device. Note that the 
default state of all of these flags is zero. 

Parallel Device 3-18.5 



Flag Name 

Table 10-2: Parallel Flags 

Effect on Device Operation 

Set this bit if you want the parallel device to check I/O 
characters against io_TermArray and terminate the 
IORequest immediately if an end-of-file character has 
been encountered. NOTE: This bit can be set and 
reset directly in the user's IORequest (IOExtPar) 
block without a call to PDCMD_SETP ARAMS. 

Set this bit if you want to allow other tasks to simul
taneously access the parallel port. The default is 
exclusive-access. If someone already has the port, 
whether for exclusive or shared, and you ask for 
exclusive-access, your OpenDeviceO call will fail 
(should be modified only at OpenDevice()). 

Setting the Parameters 

You set the parallel parameters by setting the flags and parameters as you desire, then 
transmitting the command PDCMD_SETP ARAMS to the device. Here is an example: 

myParReq->IOPar.io_ParFlags &= - PARF _EOF~rODE; /* 'and' with inverse */ 
myParReq- >IOPar.io_Command = PDC~1D_SETPARAMS; 
DoIO(myParReq); /* synchronous request */ 

The above command would cancel EOFMODE (use of the io_TermArray) leaving the other 
flags unchanged. Notice the difference between the flag names and the flags that you actu
ally set using C. "PARB ... " is the name applied to the bit-position within the flag word. 
"PARF ... " is the name of a 1 bit in a mask at that bit position. 

10.6. ERRORS FROM THE PARALLEL DEVICE 

The possible error returns from the parallel device are listed below. The abbreviated naming 
shown for the error numbers is self-explanatory. 

3-186 Parallel Device 



Table 10-3: Parallel Device Errors 

#clefine ParErr_DevBusy 1 
#define ParErr_InvParam 3 
#define ParErr_LineErr 4 
#define ParErr_NotOpen 5 
#define ParErr_PortReset 6 
#define ParErr_InitErr 7 

10.7. CLOSING THE PARALLEL DEVICE 

\Vhen the (final, if shared access) CloseDeviceO is performed, the timer device is closed, and 
the latest parameter settings are saved for the next open. 

Typically, you close the parallel device with the following function call: 

CloseDev ice( my P ar Req); 

This assumes that the parallel device has completed all activities you have requested and has 
returned all I/O requests to you. 

\Vhen you have finished with the parallel device, It IS up to you to deallocate any memory 
and dependencies you might have used for the parallel device communications. If you have 
used the techniques shown earlier in this chapter to establish the communications in the first 
place, your cleanup typically will consist of the following code: 

cleanup2: 
DeleteExtI O( my P ar Req,sizeof( struct I OExtPar)); 

cleanupl: 
DeletePort( my ParPort); 

cleanup WriteIO: 
DeleteExtIO( my Par W riteReq); 

clean up \VritePort: 
DeletePort( my Par WritePort); 

Parallel Device 3-187 



10.8. EXAMPLE PROGRAM 

Here is an example program that uses static rather than dynamic allocation of the 
IOExtPar reqllest block. It ,1Ssumes that you have connected a parallel I/0 device to the 
Amiga parallel port. 

#inclucle 
#include 
#inclucle 
#include 
#include 
#include 
#include 
#include 

" exec/types.h" 
" exec/nodes.h" 
" exec/lists.h" 
"exee l ports. h" 
" exec/libraries.h" 
"exec/ devices. h" 
" exec/io.h" 
» devices/parallel.h" 

struct IOExtPar IORpar; 
struct MsgPort *port; 
char buffer[640001; 
extern struct J\cfsgPort *CreatePortO; 

mainO 
{ 

in terror; 
int actual; 
unsigned char pflags; 
unsigned long ptO; 
unsigned long ptl; 

open: 
/* OPEN the parallel.device */ 

if ((error = OpenDevice (PARALLELNAME, 0, &IORpar, 0)) != 0) { 
prin tf (" bad news % ld on Open \n", error); 
exit (error); 

} 

/* SET UP the message port in the I/O request */ 
port = CreatePort (PARALLELNAME,O); 
IORpar.IOPar.io_~vressage.mn_ReplyPort = port; 

/* SET PARAMS for the parallel.device * / 
pflags = PARF _EOF:~vl0DE; 
ptO = Ox510,10303; 
ptl = Ox03030303; 

if ((error = setparams (pfiags,ptO,ptl)) != 0) { 
printf ("bad news %lcl on setup \n", error); 
DeletePort(); 
exit (error); 

3-188 Parallel Device 



} 

actual = readPar (buffer,60000); 

/* CLOSE the parallel.device */ 
CloseDevice (&IORpar); 
DeletePort (port); 
exit (0); 

} 

/* PARALLEL I/O functions */ 

setparams(pf,taO, tal) 

{ 

} 

unsigned char pf; 
unsigned long taO; 
unsigned long tal; 

int error; 

10Rpar.io_ParFlags = pf; 
IORpar.IOPar.io_Command = PDCMD_SETPARAMS; 
10Rpar.io_PTermArray.PTermArrayO = taO; 
IORpar.io_PTermArray.PTermArrayl = tal; 

if ((error = DolO (&IORpar)) != 0) { 
printf (" parallel.device setparams error % ld \n", error); 

} 
return (error); 

readPar( data,length) 
char *data; 
ULONG length; 

{ 

} 

int error; 

10Rpar.IOPar.io_Data = data; 
IORpar.IOPar.io_Length = length; 
IORpar.IOPar.io_Command = CMD_READ; 

if ((error = DolO (&IORpar)) != 0) { 
printf ("parallel.device read error % Id \n", error); 

} 
return (IORpar.lOPar.io_Actual); 

writePar( data, length) 
char *data; 

Parallel Device 3-189 



{ 

} 

int length; 

int error; 

lORpar.IOPar.io_Data = data; 
IORpar.IOPar.io_Length = length; 
IORpar.IOPar.io_Command = C\1D_WRlTE; 

if ((error = DolO (&IORpar)) 1= 0) { 
printf ("parallel.device write error %ld \n", error); 

} 
return (error); 

3-190 Parallel Device 



Chapter 11 

Printer Device 

This chapter deals with the following basic topics: 

o Using the AmigaDOS pathways to the printer device (opening the printer as an out
put file). 

o Setting up for Exec printer I/O (creating an I/O request structure). 

o vVriting to the ExcC' printer to con trol its behavior. 

o vVriting characters or causing a graphics dump to a graphics capable printer. 

o Closing the printer device. 

o Creating your own printer device driver. 

11.1. INTRODUCTION 

There are four basic ways of doing output to a printer on the Amiga computer and three 
basic kinds of output you can send. You can send your output to: 

o PR T: the DOS prin ter device 

o SER: the DOS serial device 

o PAR: the DOS parallel dev lce 

Prin tel' Device 3-1 9 1 



o printer.device (directly access the printer device itself) 

Your output can take the form of: 

o A character stream, consisting of commands and data (if sent through DOS or 
directly to the printer device) 

o A command (if sent directly to the printer device) 

o A graphics dump (also sent directly to the printer device) 

The following section explains the various possible access pathways to the printer itself, along 
with advantages and disadvantages of each. 

PRT: the DOS Printer Device 

PRT: is the AmigaDOS printer device. By using the Workbench Preferences tool, you can 
direct the output to either a serial or parallel printer, which is the generic printer configured 
on the system. You may print (output) escape sequences to PRT: to specify the options you 
want. The escape sequences you send are interpreted by the printer driver and (usually 
different) escape sequences are forwarded to the printer. This is by far the easiest method for 
most applications. PRT: may be opened just like any other AmigaDOS file. 

SER: the DOS Serial Device 

SER: is the AmigaDOS serial device. If you "know" that the printer is connected to the 
serial port (you shouldn't) and you "know" what kind of printer it is (again, you shouldn't) 
then you could use AmigaDOS to open SER: and output characters to it, causing it to print. 
This practice is strongly discouraged! Characters you send are not examined or converted. 

3-192 Printer Device 



PAR: the DOS Parallel Device 

PAR: is the AmigaDOS parallel device. The warnings gIven In the paragraph above apply 
h ere as well. 

The Printer Device 

By opening the Exec printer device directly, you have full control over the printer. You can 
either send escape sequences as shown in the command definitions table below for prin ter 
control, or call the RawWriteO routine to send raw characters directly to your printer with 
no processing at all. Using this technique would be similar to sending raw characters to 
SER: or PAR: from AmigaDOS, (but you don't need to know which one has the printer 
connected). Also note that all "commands" to the printer transmitted through the DOS 
printer access path must take the form of a character stream. Direct access to the printer 
device allows you to transmit other commands, such as reset or flush or, for graphics dumps, 
DumpRPortO (dump a raster to a graphics-capable printer). 

11.2. PRINTER DEVICE OUTPUT 

The printer device can be thought of as kind of a filter, in that some printers respond in one 
way to a command output and some respond in another. The printer device, as a standard 
printer interface, recognizes command sequences. Depending on the printer-dependent 
configuration that is currently loaded (by the Preferences tool), the printer device either 
ignores the command sequences or perhaps translates them into an entirely different sequence 
that this printer can actually understand and obey. 

11.3. OPENING THE DOS PRINTER DEVICE 

You can open the DOS printer device just as though it were a normal DOS output file. Here 
is an example program segment that accomplishes this: 

Printer Device 3-193 



struct File *file; 

file = Open( "PRT:", MODE_NEWFILE ); 
if (file == 0) exit(PRINTER_WONT_OPEN); 

. " 

Then, to print use code like this: 

actual_length = Write(file, dataLocation, length); 

where: 

file 
is a file handle (see the AmigaDOS Developers Manua~. 

dataLocation 
is a pointer to the first character in the output stream you wish to write. 

length 
is the length of the output stream. 

actual_length 
is the actual length of the write, which, for the printer device, if there are no errors, 
is likely to always be the same as the length of write requested. The only exception 
is if you specify a value of -1 for length. In this case, -1 for length means that a null 
(0) terminated st'ream is being written to the printer device. The device returns the 
count of characters written prior to encountering the null. If it returns a value of -1 
as actual_length, there has been an error. 

Note that the OpenO function could be called with SER: or PAR: if you don't want to 
have any character translation performed during the printer I/O. 

\Vhen the printer I/O is complete, and your program is ready to exit, you should, as with all 
DOS devices (or Exec devices) close the device, Here is a sample function call that you could 
use: 

Close( file); 

Note that printer I/O through the DOS versions of the printer device must be done by a pro
cess, not by a task. DOS utilizes information in the process control block and would become 
confused if a simple task attempted to perform these activities. Printer I/O using the printer 
device directly, however, can be performed by a task. 

3-194 Prin ter Device 



11.4. DATA STRUCTURES USED DURING PRINTER I/O 

This section shows you how to set up for Exec printer I/O. There are three distinct kinds of 
data structures required by the printer I/O routines. Some of the printer commands, such as 
start, stop, and flush, require only an IOStdReq. Others, such as write, require a larger 
data structure called an IODRPReq (for "dump a RastPort") or IOPrtCmdReq (for 
"printer command request"). For convenience, the printer device has defined a single data 
structure, called printerIO, that can be utilized to represent any of the three different kinds 
of printer communications request blocks. 

The data structure type printerIO used III the following examples IS a C-Ianguage ulllon 
defined as: 

union { 
struct 10StdReq ios; 
struct 10DRPReq iodrp; 
struct iOPrtCmdReq iopc; 
} prin terIO; 

This means that one memory area can be used to represent three distinct forms of memory 
layout for the three different types of data structures that must be used to pass commands 
to the printer device. Some of the commands are simple and can use an IOStdReq. Some 
of the commands require many more parameters and extend the basic I/O request block 
accordingly. If you use the function CreateExtIOO, you can automatically allocate enough 
memory to hold the largest structure in the union statemen t. 

11.5. CREATING AN I/O REQUEST 

Printer I/O, like the I/O of other devices, requires that you create an I/O request message 
that you pass to the printer device for processing. The message contains the command as 
well as a data area. For a write, there will be a pointer in the data area to the stream of 
information you wish to write to the printer. 

The following program fragment can be used to create the message block that you use for 
printer communications. 

union printerIO *printerMsg; /* I/O request block pointer */ 
struct Port *printerPort; /* a port at which to receive */ 

printerPort = CreatePort("my.print.port" ,0); 
printerMsg = (union printerIO *)CreateExtIO(printerPort, 

sizeof(union printerIO)); 

Printer Device 3-195 



Error handling is not shown here. It is deferred to the example at the end of the chapter. 

The routine CreatePortO is part of amiga.lib. The routine CreateExtIOO is in the Exec 
support functions printed in the appendix of this manual. 

Note that there are two additional kinds of I/O request blocks that, for some commands, 
must be prepared for sending to the printer. They are called IODRPReq and 
IOPrtCmdReq. Both are outlined in the include file devices/printer.h. The function call 
to CreateExtIOO returns a pointer to a memory block the size of the largest form of 
printer IORequest. 

11.6. OPENING A PRINTER DEVICE 

You open a path to the printer device using code like the following. 

int 
OpenPrin ter( request) 
union printerlO *request; 
{ 

return{OpenDev ice(" prin ter.device" ,O,request,O)); 
} 

This routine returns a value of zero if the printer device was opened successfully and a value 
other than zero if it did not open. 

11.7. WRITING TO THE PRINTER 

There are three forms of writing to the printer. The first uses a character stream that you 
create, possibly containing escape sequences to be processed by the printer driver ("Print
String" example) or containing just about anything else that is to be passed directly to the 
printer ("PrintRaw" example). The second form of write passes a command to the printer( 
"PrintCmd" example). The third form asks for a graphics dump of a drawing area ("Prin
terDump" example). 

To write to the printer, you pass to the printer device the system standard command 
CMD_ WRITE. Here are routines that can be used to send this command. 

3-196 Printer Device 



/* Send a NULL terminated string to the printer */ 

/* Assumes printer device is open and printerMsg 
* is correctly initialized. Watches for embedded 
* "escape-sequences" and handles them as defined. 

*/ 

int 
Prin tString( request,string) 
char *string; 
printerIO *request; 
{ 

} 

request- >ios.io_Command = CMD_ WRITE; 
request- > ios.io_Data = string; 
request->ios.io_Length = -1; 

/* if -1, the printer assumes it has been given 
* a null terminated string. 

*/ 
return(DoIO( request)); 

/* Send RAW character stream to the printer directly, 
* avoid "escape-sequence" parsing by the device. 

*/ 

int 
Prin tRaw( request, buffer ,coun t) 
char *buffer; /* where is the output stream of characters */ 
prin terIO *request; / * a properly initialized request block * / 
int count; /* how many characters to output */ 
{ 

} 

/* queue a printer raw write */ 
request->ios.io_Command = PRD_RAWWRITE; 
request- >ios.io_Data = buffer; 
request- > ios. io_Length = count; 
return(DoIO( request)); 

Printer Command Definitions 

The following table describes the supported printer functions. You can use the escape 
sequences with PRT: and the printer device. 

Printer Device 3-197 



To transmit a command to the printer device, you can either: 

o formulate a character stream containing the material shown III the "Escape 
Sequence" column of the table below, or 

o send an IORequest to the printer device specifying which of these commands you 
wish to have performed. A sample routine for transmitting commands is shown 
immediately following the command table. 

Again, recall that SER: and PAR: will ignore all of these and pass them directly on to the 
attached device. 

Table 11-1: Printer Device Command Functions 

Cmd Escape Defined 
Name No. Sequence Function by: 

aRIS 0 ESCc reset ISO 
aRIN 1 ESC#1 initialize +++ 
aIND 2 ESCD If ISO 
aNEL 3 ESCE return,lf ISO 
aRI 4 ESCM reverse If ISO 

aSGRO 5 ESC[Om normal char set ISO 
aSGR3 6 ESC[3m italics on ISO 
aSGR23 7 ESC[23m italics off ISO 
aSGR4 8 ESC[4m underline on ISO 
aSGR24 9 ESC[24m underline off ISO 
aSGRI 10 ESC[lm boldface on ISO 
aSGR22 11 ESC[22m boldface off ISO 
aSFC 12 ESC[nm set foreground color ISO 

where n stands for a pair 
of ASCII digits, 3 followed 
by any number 0-9 

aSBC 13 ESC[nm set background color ISO 
where n stands for 
a pair of ASCII digits, 4 
followed by any number 0-9 

aSHORPO 14 ESC[Ow normal pitch DEC 
aSHORP2 15 ESC[2w elite on DEC 
aSHORPI 16 ESC[lw elite off DEC 
aSHORP4 17 ESC[4w condensed fine on DEC 
aSHORP3 18 ESC[3w condensed off DEC 
aSHORP6 19 ESC[6w enlarged on DEC 
aSHORP5 20 ESC[5w en larged off DEC 

aDEN6 21 ESC[6"z shadow print on DEC (sort of) 
aDEN5 22 ESC[5"z shadow print off DEC 

3-198 Printer Device 



aDEN4 23 ESC[4"z doublestrike on DEC 
aDEN3 24 ESC[3"z dou b lestrike off DEC 
aDEN2 25 ESC[2"z NLQ on DEC 
aDENl 26 ESC[l"z NLQ off DEC 

aSUS2 27 ESC[2v superscript on +++ 
aSUSl 28 ESC[l v superscript off +++ 

~ aSUS4 29 ESC[4v su bscrip t on +++ : 

aSUS3 30 ESCr3v subscript off +++ 
aSuso 31 ESC[Ov normalize the line +++ 
aPLU 32 ESCL partial line up ISO 
aPLD 33 ESCK partial line down ISO 

aFNTO 34 ESC(B US char set DEC 
aFNTl 35 ESC(R French char set DEC 
aFNT2 36 ESC(K German char set DEC 
aFNT3 37 ESC(A UK char set DEC 
aFNT4 38 ESC(E Danish I char set DEC 
aFNT5 39 ESC(H Swedish char set DEC 
aFNT6 40 ESC(Y Italian char set DEC 
aFNT7 41 ESC(Z Spanish char set DEC 
aFNT8 42 ESC(J Japanese char set +++ 
aFNT9 43 ESC(6 Norwegian char set DEC 
aFNTlO 44 ESC(C Danish II char set +++ 
aPROP2 45 ESC[2p proportional on +++ 
aPROP1 46 ESC[lp proportional off +++ 
aPROPO 47 ESC[Op proportional clear +++ 
aTSS 48 ESC[n E set proportional offset ISO 
aJFY5 49 ESC[5 F au to left justify ISO 
aJFY7 50 ESCf7 F au to right justify ISO 
aJFY6 51 ESC[6 F auto full justify ISO 
aJFYO 52 ESC[O F au to justify off ISO 
aJFY3 53 ESC[3 F letter space (justify) ISO (special) 
aJFY1 54 ESC[l F word fill(auto center) ISO (special) 
aVERPO 55 ESC[Oz 1/8" line spacing +++ 
aVERPl 56 ESC[lz 1/6" line spacing +++ 
aSLPP 57 ESC[nt set form length n DEC 
aPERF 58 ESC[nq perf skip n (n >0) +++ 
aPERFO 59 ESC[Oq perf skip off +++ 
aLMS 60 ESC#9 Left margin set +++ 
aRMS 61 ESC#O Right margin set +++ 
aTMS 62 ESC#8 Top margin set +++ 
aBMS 63 ESC#2 Bottom margin set +++ 
aSTBM 64 ESC[n;nr T&B margins DEC 
aSLRM 65 ESC[n;ns L&R margin DEC 
aCAM 66 ESC#3 Clear margins +++ 
aHTS 67 ESCH Set horiz tab ISO 
aVTS 68 ESCJ Set vertical tabs ISO 
aTBCO 69 ESC[Og Clr horiz tab ISO 
aTBC3 70 ESC[3g Clear all h tab ISO 

Printer Device 3-199 



aTBCl 71 ESC[lg Clr vertical tabs ISO 
aTBC4 72 ESC[4g Clr all v tabs ISO 
aTBCALL 73 ESC#4 Clr all h & v tabs +++ 
aTBSALL 74 ESC#5 Set default tabs +++ 
aEXTEND 75 ESC[n"x Extended commands +++ 

Legend: 

ISO indicates that the sequence has been defined by the In ternational Standards 
Organization. This is also very similar to ANSI x3.64. 

DEC 

+++ 

n 

indicates a control sequence defined by Digital Equipment Corporation. 

indicates a sequence unique to Amiga. 

stands for a decimal number expressed as a set of ascii digits, for example 
12. 

11.8. TRANSMITTING A COMMAND TO THE PRINTER 
DEVICE 

As noted above, to transmit a command to the printer device, you can either formulate an 
escape sequence and send it via the CMD_WRITE command, or you can utilize the com
mand names and pass parameters and the command to the device. Here is a sample routine 
that uses the system command PRD_PRTCOMMAND to transmit a command to the 
device: 

in t 
PrintCommand(request,command, pO, pI, p2, p3) 
union printerIO *request; 
int command, pO, pI, p2, p3; /* command and its parameters */ 
{ 

} 

/* queue a printer command */ 
request->iopc.io_Command = PRD_PRTCONIMAND; 
request- > iopc.io_PrtCommand = command; 
request- >iopc.io_ParmO = pO; 
request->iopc.io_Parml = pI; 
request- > iopc.io_Parm2 = p2; 
request- > iopc.io_Parm3 = p3; 
return(DoIO( request)); 

3-200 Printer Device 



As an example, suppose you wanted to set the left and right margins on your printer to 
columns 1 and 79 respectively. Here is a sample call to the PrintCommandO function for 
this purpose: 

PrintCommand(aSLRM, 1, 79, 0, 0); 

Consult the function table. Vv"herever there is a value of "n" to be substituted, it will be 
utilized from the next available parameter for this command. Most of the commands in the 
table need no parameters; some need one; some need two. Few if any require more than two 
parameters; however, this function provides room for expansion. 

11.9. DUMPING A RASTPORT TO THE PRINTER 

You can dump a RastPort (drawing area) to the printer by sending the command 
PRD_DUMPRPORT to the printer, along with several parameters that define how the 
dump is to be accomplished. The parameters shown in the sample dump function below are 
completely described in the summary section titled "printer.doc" in appendix B of this 
manual under the heading "printer.device/DumpRPort". 

int 
DumpRPort(request,rastPort, colodvfap, modes, sX,sy, sW,sh, dc,dr, s) 

union printerIO *request; 

{ 

} 

struct RastPort *rastPort; 
struct ColorMap *colorMap; 
ULONG modes; 
UWORD sx, sy, sw, sh; 
LONG dc, cir; 
UWORD s; 

request- > iodrp.io_Command = PRD_DUMPRPORT; 
request- > iodrp.io_RastPort = rastPort; 
request- > iodrp.io_ColorMap = colorMap; 
request- > iodrp.io_Modes = modes; 
request- >iodrp.io_SrcX = sx; 
request- >iodrp.io_SrcY = sy; 
request->iodrp.io_SrcWidth = sw; 
request- > iodrp.io __ SrcHeigh t = sh; 
request- > iodrp.io_DestCols = dc; 
request- > iodrp.io_DestRows = cir; 
request- >iodrp.io_Special = s; 
retu rn(DoIO( request)); 

Printer Device 3-201 



As an example of this function, suppose you wanted to dump the current contents of the 
'Workbench screen to the printer. The typical program code shown below would accomplish 
it. Note that during the dump no other tasks should be writing to the screen, nor should 
you use the mouse to move windows or otherwise modify the screen appearance. 

#include "exec/types.h" 
#include "intuition/in tuition. h" 
#include "devices/printer.h" 
#define INTUITION_WONT_OPEN 1000 

extern union printerIO *request; 
extern int DumpRPortO; 
extern struct IORequest *CreateExtIOO; 

struct IntuitionBase *IntuitionBase; 

struct NewWindow nw = { 
0, 0, 100, 40, 0, 1, 0, 0, NULL, NULL, NULL, NULL, NULL, 
0, 0, 0, 0, WBENCHSCREEN 
}; 

mainO 
{ 

struct 'Window *w; 
struct Screen *screen; 
struct RastPort *rp; 
struct ViewPort *vp; 
struct Color~1ap *cm; 
int modes,width,height; 
struct Port *printerPort; /* at which to receive reply */ 
IntuitionBase = OpenLibrary("intuition.library", 0); 
if (IntuitionBase == NULL) exit(INTUITION_WONT_OPEN); 

w = Open Window(&nw); 
if(w == NULL) goto cleanup!; 

screen = w->\VScreen; /* get screen address from window */ 
CloseWindow(w); /* once have screen address, no 

* more need for window, close it. 

*/ 
vp = &screen->ViewPort; /* get screen's ViewPort, from 

* which the colormap will be gotten * / 
rp = &screen- > RastPort; /* get screen's RastPort, which 

* is what gets dumped to printer * / 

cm = vp->ColorMap;/* retrieve pointer to colormap for 
* the printer dump * / 

modes = vp->Modes;/* retrieve the modes variable */ 
width = vp->DWidth; /* retrieve width to print */ 
height = vp->DHeight; /* retrieve height to print */ 

3-202 Printer Device 



printerPort = CreatePort(" my.print.port" ,0); 
request = (union printerIO *)CreateExtIO(printerPort, 

sizeof(union printerIO)); 

error = OpenPrinter( request); 
if( error ,= 0) goto clean u p2; 

error = DumpRPort( 
request,/* pointer to initialized request */ 
rp, / * rast port poin ter * / 
em, / * color map poin ter * / 
modes, /* low, high res, ete (display modes)*/ 
0, 0, /* x and y offsets into rastport */ 
width,height, /* source size */ 
width,height, /* dest rows, columns */ 
o /* io Special value, says print 

* as pixels only, direct copy */ 
}; 

ClosePrin ter(request); 
cleanup2: 

DeleteExtIO( request, sizeof( union prin terIO)); 
DeletePort( prin terPort); 

cleanup!: 
CloseLibrary(In tuitionBase); 

} /* end of demo screen dump */ 

Additional Notes About Graphics Dumps 

The print command accepts a 'use the largest area you've got' specification, that looks at the 
preferences active print width and active print height to bound the size of the print. These 
values are specified as a character count and a character size specification. Thus the width 
of the print is bounded by the number of inches specified by the following equation: 
(RIGHT_MARGIN - LEFT_MARGIN + 1) / CHARACTERS_PER_INCH. The height is 
specified by the equation: LENGTH / LINES_PER_INCH. Therefore, if characters are nar
rower, a constant number of them are also narrower. 

NumRows in the printer tag refers to the number of dots in the graphics print element. and 
can be used by graphics render code to determine how much buffer space is needed to com
pose a line of graphics output. It has not been used in practice; the number has instead been 
hard coded into the render function specific to the printer. 

Printer Device 3-203 



If the printer you are developing for can be set to uni-directional mode under software con
trol, we recommend that you put this in the initialization code for the printer (case 0 Master 
Initialization). This produces better looking printouts and (believe it or not) under most con
ditions, a faster printout. 

11.10. CREATING A PRINTER DRIVER 

Creating a printer-dependent code fragment for the printer device involves writing the data 
structures and code, compiling and assembling it, and linking it to produce an Amiga object 
binary file. The first piece in that file is the PrinterSegment structure described in 
dev£ces/prtbase.h and devices/prtbase.£ (which is pointed to by the BPTR returned by the 
LoadSegO of the object file). 

You specify the printer-dependent object file to load by specifying "custom printer" in 
Preferences and filling in the custom printer name with the name of the object file (relative 
to the directory DEVS:pr£nters/). 

The printer-dependent code PrinterSegment contains the PrinterExtendedData (PED) 
structure (also described in devices/prtbase.h and devices/prtbase.i at the beginning of the 
object). The PED structure contains data describing the capabilities of the printer, as well 
as pointers to code and other data. Here is the assembly code for a sample 
PrinterSegment, which would be linked to the beginning of the sequence of files describing 
the printer dependent code fragment. 

********************************************************************** 
* 
* printer deVice dependent code tag 

* 
********************************************************************** 

; named sections are easier to exactly place in the linked file 
SECTION custom 

*------ Inel u ded Files -----------------------------------------------

INCLUDE 
INCLUDE 

INCLUDE 

INCLUDE 

"exec / types.i" 
" exec/nodes.i" 

" rev ision. i" 

" devices/prtbase.i" 

; contains VERSION & REVISION 

*------ I m ported Names -----------------------------------------------

3-204 Printer Device 

XREF 
XREF 
XREF 

_Init 
_Expunge 
_Open 



XREF 
XREF 
XREF 
XREF 

_Close 
_CommandTable 
_DoSpecial 
_Render 

*------ Exported Names ---------------------------------------- -------

XDEF _PEDData 

********************************************************************** 

; in case anyone tries to execute this 
MOVEQ #O,DO 
RTS 

DC.W VERSION 
DC.W REVISION 

_PEDData: 
DC.L printerName 
DC.L - Init 
DC.L _Expunge 
DC.L _Open 
DC.L Close -
DC.B PPC_BWGFX ; Prin terClass 
DC.B PCC_BW ; ColorClass 
DC.B 80 ; MaxColumns 
DC.B 1 ; NumCharSets 
DC.W 8 ; NumRows 
DC.L 960 ; MaxXDots 
DC.L 0 ; MaxYDots 
DC.W 120 ; XDotsInch 
DC.W 82 ; YDotslnch 
DC.L - CommandTable ; Command Strings 
DC.L _DoSpecial ; Command Code 
DC.L - Render ; Graphics Render 
DC.L 30 ; Timeout 

printerName: 
DC.B 'Custom Printer Name' 
DC.B 0 
EVEN 

The printer name should be the brand name of the printer that is available for use by pro
grams wishing to be specific about the printer name in any diagnostic or instruction mes
sages. The four functions at the top of the structure are used to initialize this printer depen
dent code: 

Printer Device 3-205 



(* (PED- > ped_Init) )(PD); 
is called when the printer-dependent code is loaded, and provides a pointer to the 
printer device for use by the printer-dependent code. It can also be used to open up 
any libraries or devices needed by the printer-dependent code. 

(*(PED->ped_Expunge))O; 
is called immediately before the printer-dependent code IS unloaded, to allow it to 
close any resources obtained at initialization time. 

(*(PED- >ped_Open))(ior); 
is called in the process of an OpenDeviceO call, after the Preferences are read and 
the correct primitive I/O device (parallel or serial) is opened. It must return zero if 
the open is successful, or nonzero to terminate the open and return an error to the 
user. 

(* (PED- > ped_Close) )(ior); 
is called in the process of a CloseDeviceO call to allow the printer-dependent code 
to close any resources obtained at open time. 

The pd_ variable provided as a parameter to the initialization call is a pointer to the 
PrinterData structure described in devices/prtbase.h and devices/prtbase.i. This is also the 
same as the io_Device entry in printer I/O requests. 

pd_SegmentData 
points back to the PrinterSegment, which contains the PED. 

pd_PrintBuf 
is available for use by the printer-dependent code-it is not otherwise used by the 
printer device. 

(*pd_PWrite)(data, length); 
is the interface routine to the primitive I/O device. This routine uses two I/O 
requests to the primitive device, so writes are double-buffered. The data parameter 
points to the byte data to send, and the length is the number of bytes. 

(*pd_PBothReady)O; 
waits for both primitive I/O requests to complete. This is useful if your code does 
not want to use double buffering. If you want to use the same data buffer for succes
sive pd_PWrites, you must separate them with a call to this routine. 

pd_Preferences 
is the copy of Preferences III use by the printer device, obtained when the printer 
was opened. 

The timeout field is the number of seconds that an I/O request from the printer device will 
remain posted and unsatisfied to the primitive I/O device (parallel or serial) before the 
timeout requester is presented to the user. This value should be large enough to avoid the 

3-206 Printer Device 



requester during normal printing. 

Sample Code Provided 

To help you in developing custom printer drivers for the Amiga, four sets of source files have 
been included as a part of this document. The files include "init.asm", "printertag.asm", 
"data.c", "render.c", and "dospecial.c". 

Four sets of files for four different types of printers are provided: 

diablo_c - an example of a ymcb color printer 
epson - an example of a b/w printer 
okimate20 - an example of a ymc_bw printer (has two render.c functions) 
hpplus - an example of a single sheet multiple density printer 

The source files for the hpplus includes one additional C-Ianguage source, named "density.c". 

In addition, you will also need certain files that are common to all printer drivers. These are 
called macTos.i and are printer assembly code macros that "init.asm" uses. All of these files 
are in appendix H of this manual. 

Writing a Custom Graphics Printer Driver 

Designing the graphics portion of a custom printer driver consists of two steps: WrItlllg a 
printer specific "render.c" function, and replacing the printer-specific values III 

"prin te rtag. asm". 

Note that a printer that does not support graphics has a very simple form of RenderO; it 
returns an error. Here is sample code for RenderO for a non-graphics prin ter (typically, an 
alphacom or diablo_630): 

Printer Device 3-207 



#include "exec/types.h" 
#include "devices/printer.h" 
int 
RenderO 
{ 

return(PDERR_NOTGRAPHICS); 
} 

The following section describes the contents of a typical driver for a printer that actually 
supports graphics. The example code for the Epson printer, contained in appendix H, shows 
a typical RenderO function based on this description. 

Render.c 

This function is the main printer-specific code module and consists of six parts: 

o Master initialization 

o Pixel rendering 

o Dumping a pixel buffer to the printer 

o Clearing and initializing the pixel buffer 

o Closing down 

o Density selection 

Master Initialization (case 0) 

When this call is made, you are passed the width (in pixels) in x and the height (in pixels) in 
y of the picture as it should appear on the printer. Note that the printer non-specific code 
(using the prin ter specific values in printertag.asm (that will be discussed later), has already 
verified that these values are within range for the printer. It is recommended that you use 

3-208 Printer Device 



these values to allocate enough memory for a temporary buffer in which to build a command 
buffer for the printer. The buffer size needed is dependent on the specific printer, (usually) 
the width, and (sometimes) the height. In general, the buffer represents the commands and 
data required for one pass of the print head and usually takes the form of: 

<start gfx cmd> <data> <end gfx cmd> 

where: 

<start 
is the command required to define the graphic dump for each line. 

<data> 
is the binary data. 

<end 
is a terminator telling the printer to print the data (usually a carriage return). 

For color printers, (usually) enough buffer space must be allocated for each different color rib
bon, ink, and so on that the printer has (the okimate-20 and diablo_c-150 are provided as 
examples of this). Please refer to the sample drivers. 

The example "render.c" functions use double buffering to reduce the dump time, that is why 
the AllocMemO call is for 

(BUFSIZE times two) 

where BUFSIZE represents the amount of memory for one entire print cycle (usually one 
pass of the print head). 

Printers that would do more than one pass of the print head on a dump call are those that 
have to do a pass for each different main color that they want to lay down on the paper (like 
the okidata-20 with three colors and the epson-.Jx-80 with four colors). A printer such as the 
diablo3-150 that can lay down all the colors in a single pass only needs to do one pass. 

The number of passes the printer has to do is irrelevent to you. This topic was specified 
mainly to illustrate the true meaning of the term "one print cycle." You want to send the 
printer an entire print cycle to allow the main non-printer-specific driver to continue onward, 
computing the values for the next print cycle while the printer is printing the previous dots. 
This is why you will find double buffering used in the example driver code. 

Any other initialization that the printer requires should also be done at this time. It is advis
able that you also do a reset command so that you know what state the printer is in before 
you try to send it any further commands. 

Printer Device 3-209 



In addition, after performing a reset command it is advisable to send no other commands for 
at least one second to allow the printer to "calm down". Waiting after a reset is strongly 
recommended. The function PWait(seconds,microseconds) has been provided in the 
wait.asm file (see Appendix H) for this purpose. The wait.asm file must be assembled and 
linked into your custom printer device code. 

3-210 Printer Device 



Render Pixel (case 1) 

When this call is made, your routine will be passed the X,y position of a single pixel and its 
color type. Note that the X,y value is an absolute value and you will have to do some 
modulus math (usually an AND) to compute the relative pixel position in your buffer. The 
absolute values will range from 0 to width-l for x and 0 to height-l for y. The color types 
are O-black, I-yellow, 2-magenta, and 3-cyan. Currently there is no provision for an RGB 
(red-green-blue) printer. 

Dump Buffer to Printer (case 2) 

When this call is made, you must send the buffer to the printer. As it now stands, there 
should be no need for you to change this routine. It should be common to all printers. It 
simply sends the buffer that you have been filling (via Case 1) to the printer. 

You would want to change this routine only if you need to do some post-processing on the 
buffer before it is sent to the printer. For example, if your printer uses the hexadecimal 
number $03 as a command and requires that you send $03 $03 to send $03 as data, you 
would probably want to scan the buffer and expand $03's to $03 $03. Of course, you'll need 
to allocate space somewhere in order to expand the buffer. 

Since the printer driver does not send you the blank pixels, you must initialize the buffer to 
values for blank pixels (usually 0). Clearing the buffer should be the same for all printers. 
Initializing the buffer is printer-specific and it includes placing the printer-specific control 
codes in the buffer ahead and behind of where the data will go. 

Closing Down (case 4) 

When this call is made you must wait for the print buffers to clear and then de-allocate the 
memory. This routine should be common to all printers. It simply waits for both buffers to 
empty, then deallocates the memory that they used. There should be no need for you to 
change this routine. If you do change it, however, make sure that the amount of memory 
allocated for Case 0 is deallocated by this routine. 

Printer Device 3-211 



Pre-Master Initialization (case 5) 

Currently this option is implemented only on the HPLaserJet and HPLaserJet PLUS 
printers, although the call is made to each printer specific driver. Ignoring it causes no prob
lems a.<; the call is made simply to give you a chance to select a different density from the 
default one. You shculd note that this call is made before the master initialization call (case 
0) and gives you a chance to alter any variables that the master initialization may use to 
program the printer. Refer to the HPLaserJet PLUS printer driver for an example of density 
selection. 

Printertag.asrn 

The printer specific values that need to be filled in here are: 

MaxXDots 
the maximum number of dots the printer can print across the page. 

MaxYDots 
the maximum number of dots the printer can print down the page. Generally, if the 
printer supports roll or form feed paper this value should be 0 indicating that there 
is no limit. If the printer has a definte y dots maximum (as the HPLaserJet) this 
n urn ber should be en tered here. 

XDotsInch 
the dot density in x (ie. 120 dpi). 

YDotslnch 
the dot density in y (ie. 144 dpi). 

PrinterClass 
the printer class the printer falls into. Current choices are: 

PPC_BWALPHA - alphanumeric, no graphics. 
PPC_BWGFX - black&white (only) graphics. 
PPC_COLORGFX - color (and maybe b/w) graphics. 

3-212 Printer Device 



ColorClass 
the color class the printer falls into. Current choices are: 

PCC_BW - Black&White only (for example, EPSON). 
PCC_YMC - Yellow Magenta Cyan only. 
PCC_YMC_BW - Yellow or Black&White but not both 

(for example, Okimate 20). 
PCC_YMCB - YellowMagentaCyanBlack (for example, Diablo_c-150). 

NumRows 
the number of pixel rows printed by one pass of the print head. This number is used 
by the non-printer-specific code to determine when to make a case 2 (see above) call 
to you. You have to keep this number in mind when determining how big a buffer 
you'll need to store one print cycle's worth of data. 

Writing a Custom Alphanumeric Printer Driver 

This alphanumeric section is meant to be read with the alpha listing for the EpsonX80 and 
Diablo Adv 25 close at hand. 

The alphanumeric portion of the printer driver is designed to convert ANSI x3.64 style com
mands into the specific escape codes required by each individual printer. For example, the 
ANSI code for italics on is ESC[3m. The Epson FX80 printer would like a ESC%G to begin 
italic output mode. By using the printer driver all printers may be handled in a similar 
manner. 

There are two parts to the alphanumeric portion of the printer driver: the 
Command Table data table and the DoSpecialO routine. 

Command Table 

The CommandTable is used to convert all escape codes which can be handled by simple 
substitution. It has one entry per ANSI command supported by the printer driver. When 
you are creating a custom Command Table, you must maintain the order of the commands 
in the same sequence as that shown in printer.h and printer.i. By placing the specific codes 
for your printer in the proper position, the conversion takes place automatically. 

Printer Device 3-213 



NOTE: If the code for your printer requires a decimal 0 {an ASCII NULL character}, you 
enter this NULL into the Command Table as octal 376 (decimal 254). 

Placing an octal value of 377 (255 decimal) in a position in the command table indicates to 
the printer device that no simple conversion is available on this printer for this ANSI com
mand. For example, if a printer does not support one of the functions (for example, if a 
daisy wheel printer does not have a foreign character set), 377 octal (255 decimal) is placed in 
that position. However, 377 in a position can also mean that the ANSI function is to be han
dled by code located in the DoSpecialO function. 

DoSpecialO Function 

The DoSpecialO function is meant to implement all the ANSI functions that can't be done 
by simple substitution, but can be handled by a more complex sequence of control characters 
sent to the printer. These are functions that need parameter conversion, read values from 
Preferences, and so on. 

The DoSpecialO function is set up as follows: 

where: 

#include "exec/types.h" 
#include " .. /devices/printer.h" 
#include " .. /devices/prtbase.h" 

extern struct PrinterData *PD; 

DoSpecial( command ,ou tpu tBu ffer ,v line,curren t VMI,crlfFlag,Parms) 
char outputBuffer[]; 
UWORD *command; 
BYTE *vline; 
BYTE *currentV1vfI; 
BYTE *crlfFlag; 
UBYTE Parms[]; 

{ / * code begins here ... * / 

command 
points to the command number. The printer.h contains the definitions for the rou
tines to use (aRIN is initialize, and so on). 

3-214 Printer Device 



vline 
points to the value for the current line position. 

currentVMI 
points to the value for the current line spacing. 

crlfFlag 
points to the setting of the "add line feed after carriage return" flag. 

Parms 
contain whatever parameters were given with the ANSI command. 

outputBuffer 
points to the memory buffer into which the converted command is returned. 

Almost every printer will require an aRIN (initialize) command in DoSpecialO. This com
mand reads the printer settings from Preferences and creates the proper control sequence for 
the specific printer. Also, it returns the character set to normal (not italicized, not bold, and 
so on). Other functions depend on the printer. 

Certain functions are implemented both in the Command Table and the DoSpecialO rou
tine. These are functions like superscript, subscript, PLU (partial line up) and PLD (partial 
line down) that can often be handled by a simple conversion. However, certain of these func
tions must also adjust the printer device's line position variable. 

Prin ter Device 3-215 





Part IV 





Chapter 1 

Math Functions 

This chapter describes the structure and calling sequences required to access the Motorola 
Fast Floating Point and IEEE Double Precision math libraries via the Amiga-supplied inter
faces. 

1.1. INTRODUCTION 

In its present state, the FFP library consists of three separate entities: the basic math 
library, the transcendental math library, and C and ASM interfaces to the basic math library 
plus FFP conversion functions 

The IEEE Double Precision library presently consists of one (1) entity: the basic math 
library 

1.2. FFP FLOATING POINT DATA FORMAT 

FFP Floating point variables are defined within C by the float or FLOAT directive. In 
assembler they are simply defined by a DC.L/DS.L statement. All FFP floating point vari
ables are defined as 32-bit entities (long words) with the following format: 

Table 1-1: FFP Floating Point Variable Format 

rvLv.1.M1vil\1J\fNfM MNfMMM:MMJ.\1 MlvfMMMlvilVfM SEEEEEEE 
31 23 15 7 

:"1ath Functions 4-1 



where: 

M = 24-bit mantissa 

S = Sign of FFP number 

E = Exponen t in excess-54 notation 

The mantissa is considered to be a binary fixed-point fraction; except for 0, it is always nor
malized (has a 1 bit in its highest position). Thus, it represents a value of less than 1 but 
greater than or equal to 1/2. 

The sign bit is reset (0) for a positive value and set (1) for a negative value. 

The exponent is the power of two needed to correctly position the mantissa to reflect the 
number's true arithmetic value. It is held in excess-54 notation which means that the twos
complement values are adjusted upward by 64, thus changing $40 (-64) through $3F (+63) to 
$00 through $7F. This facilitates comparisons among floating point values. 

The value of 0 is defined as all 32 bits being Os. The sign, exponent and mantissa are 
en tirely cleared. Thus, Os are always treated as positive. 

The range allowed by this format is as follows: 

DECIMAL: 

9.22337177 x 10**18 > + VALUE > 5.42101070 x 10**-20 

-9.22337177 x 10**18 < -VALUE < -2.71050535 x 10**-20 

BINARY (HEXADECIMAL): 

.FFFFFF x 2**63 > +VALUE > .800000 x 2**-53 

-.FFFFFF x 2**63 < -VALUE < -.800000 x 2**-54 

Remember that you cannot perform any arithmetic on these variables without using the fast 
floating point libraries. The formats of the variables are incompatible with the arithmetic 
format of C-generated code, hence all floating point operations are performed through func
tion calls. 

4-2 Math Functions 



1.3. FFP BASIC MATHEMATICS LIBRARY 

The FFP basic math library resides in ROM and is opened by making a call to the 
OpenLibraryO function with mathffp.library as the argument. In C, this might be 
implemented as shown below. 

int MathBase; 

mainO 
{ 

} 

char lib_name [] = "mathffp.library"; 

if ((MathBase = OpenLibrary(lib_name, 0)) < 1 ) { 
printf("Can't open %s: vector = %08x\n", lib_name, 

MathBase); 
exitO; } 

The global variable MathBase is used internally for all future library references. 

This library contains entries for the basic mathematics functions such as add, subtract, and 
so on. The C-called entry points are accessed via code generated by the C compiler when 
standard numerical operators are given within the source code. Note that to use either the C 
or assembly language interfaces to the basic math library all user code must be linked with 
the library math/ink. lib. The C entry points defined for the basic math functions are 

ffixi Con vert FFP variable to in teger 

Usage: il = (int) f1; 

fflti Convert integer variable to FFP 

Usage: f1 = (FLOAT) il; 

fcmpi Compare two FFP variables 

Usage: if (f1 < > f2) {}; 

ftsti Test an FFP variable against zero 

Usage: if (!£1) {}; 

fabsi Take absolute value of FFP variable 

Usage: f1 = abs(f2); 

Math Functions 4-3 



fnegi Take 2's complement of FFP variable 

Usage: f1 = -f2; 

faddi Add two FFP variables 

Usage: f1 = f2 + f3; 

fsubi Subtract two FFP variables 

Usage: f1 = f2 - f3; 

fmuli Multiply two FFP variables 

Usage: f1 = f2 * f3; 

fclivi Divide two FFP variables 

Usage: fl = f2 /f3; 

Be sure to include proper data type definitions as shown in the example below. 

#include <mathffp.h> 
in t MathBase; 

mainO 
{ 

FLOAT f1, [2, [3; 
int iI, i2, i3; 
char lib_name[] = "mathffp.library"; 

} 

if((MathBase = OpenLibrary(lib_name, 0)) < 1 ) { 
printf("Can't open %s: vector = %08x\n", lib_name, 

MathBase); 
exitO; } 

il = (int) £1; 
fi = (FLOAT) il; 

if (fl < f2) {}; 
if (!£1) {}; 

fl = abs(f2); 
£1 = -f2; 
fl = f2 + f3; 
f1 = f2 - f3; 
f1 = f2 * f3; 
f1 = f2 1 f3; 

1 * Call ffixi en try *1 
1* Call fflti entry *1 

1* Call fcmpi entry *1 
1* Call ftsti entry *1 

1* Call fabsi entry *1 
1* Call fnegi entry *1 
1 * Call faddi en try *1 
1* Call fsubi entry *1 
1* Call fmuli entry *1 
1* Call fclivi entry *1 

4-4 Math Functions 



The Amiga assembly language interface to the Motorola Fast Floating Point basic math rou
tines is shown below, including some details about how the system flags are affected by each 
operation. This interface resides in the library file mathlink.lib and must be linked with the 
user code. Note that the access mechanism from assembly language is: 

LEA 
JSR 

_LVOSPFix -

_LVOSPFlt -

_LVOSPFix,A6 
_MAthBase(A6) 

Convert FFP to integer 

Inputs: 
Outputs: 
Condition codes: 

Convert integer to FFP 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPCmp - Compare 

Inputs: 

Outputs: 

Condition codes: 

DO = FFP argument 
DO = Integer (2's complement) result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if overflow occurred 
C = undefined 
X = undefined 

DO = Integer (2's complement) argument 
DO = FFP result 
N = 1 if result is negative 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

D1 = FFP argument 1 
DO = FFP argument 2 
DO = +1 if arg1 < arg2 
DO = -1 if arg1 > arg2 
DO = 0 if arg1 = arg2 
N=O 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 
GT = arg2 > arg1 
GE = arg2 > = arg1 
EQ = arg2 = arg1 
NE = arg2 < > argl 
LT = arg2 < arg1 
LE = arg2 <= arg1 

Math Functions 4-5 



_LVOSPTst - Test 

Inputs: 
Outputs: 

Condition codes: 

_LVOSPAbs - Absolute value 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPNeg - Negate 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPAdd - Addition 

Inputs: 

Outputs: 

Condition codes: 

4-6 Math Functions 

D1 = FFP argument 
DO = +1 if arg > 0.0 
DO = -1 if arg < 0.0 
DO = 0 if arg = 0.0 
N = 1 if result is negative 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 
EQ = arg = 0.0 
NE = arg <> 0.0 
PL = arg >= 0.0 
~ = arg < 0.0 

DO = FFP argument 
DO = FFP absolute value result 
N=O 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

DO = FFP argument 
DO = FFP negated result 
N = 1 if result is negative 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

D1 = FFP argument 1 
DO = FFP argument 2 
DO = FFP addition of 
arg1 +arg2 result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 



_LVOSPSub - Subtraction 

Inputs: 

Outputs: 

Condition codes: 

_LVOSPMul - Multiply 

Inputs: 

Outputs: 

Condition codes: 

_LVOSPDiv - Divide 

Inputs: 

Outputs: 

Condition codes: 

Dl = FFP argument 1 
DO = FFP argument 2 
DO = FFP su btraction of 
argl-arg2 result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 

Dl = FFP argument 1 
D2 = FFP argument 2 
DO = FFP multiplication of 
argl*arg2 result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 

Dl = FFP argument 1 
DO = FFP argument 2 
DO = FFP division of 
argl/arg2 result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 

1.4. FFP TRANSCENDENTAL MATHEMATICS LIBRARY 

The FFP transcendental math library resides on disk and must be accessed in the same way 
as the basic math library after it is loaded into system RAM. The name to be included III 

the OpenLibraryO call is mathtrans.library. In C, this might be implemented as follows. 

Math Functions 4-7 



in t ~'1athBase; 
in t ~hth TransBase; 

main() 
{ 

} 

char bmath_name[] = "mathffp.library"; 
char tmath_name[] = "mathtrans.library"; 

if((~hthBase = OpenLibrary(bmath_name, 0)) < 1 ) { 
printf("Can't open %s: vector = %08x\n", bmath_name, 

MathBase); 
exit(); } 

if((MathTransBase = OpenLibrary(tmath_name, 0)) < 1 ) { 
printf("Can't open %8: vector = %08x\n", tmath_name, 
MathTransBase); 

exitO; } 

The global variables MathBase and MathTransBase are used internally for all future 
library references. Note that the transcendental math library is dependent upon the basic 
math library and, therefore, is opened after the basic math library has been opened. 

This library contains entries for the transcendental math functions sine, cosine, and so on. 
The C-called entry points are accessed via code generated by the C compiler when the actual 
function names are given within the source code. The C entry points defined for the tran
scendental math functions are 

SPAsin 

SPAcos 

SPAtan 

SPSin 

Return arcsine of FFP variable. 

Usage: f1 = SP Asin(f2); 

Return arccosine of FFP variable. 

Usage: f1 = SPAcos(f2); 

Return arctangent of FFP variable. 

Usage: f1 = SPAtan(f2); 

Return sine of FFP variable. This function accepts an FFP radian argument 
and returns the trigonometric sine value. For extremely large arguments 
where little or no precision would result, the computation is aborted and the 
"V" condition code set. A direct return to the caller is made. 

Usage: f1 = SPSin(f2); 

4-8 Math Functions 



SPCos 

SPTan 

Return cosine of FFP variable. This function accepts an FFP radian argu
ment and returns the trigonometric cosine value. For extremely large argu
ments where little or no precision would result, the computation is aborted 
and the "V" condition code set. A direct return to the caller is made. 

Usage: f1 = SPCos(f2); 

Return tangent of FFP variable. This function accepts an FFP radian argu
ment and returns the trigonometric tangent value. For extremely large argu
ments where little or no precision would result, the computation is aborted 
and the "V" condition code set. A direct return to the caller is made. 

Usage: f1 = SPTan(f2); 

SPSincos Return sine and cosine of FFP variable. This function accepts an FFP radian 
argument and returns both the trigonometric sine and cosine values. If both 
the sine and cosine are required for a single radian value of interest, this func
tion will result in almost twice the execution speed of calling the sin and cos 
functions independently. For extremely large arguments where little or no 
precision would result, the computation is aborted and the "V" condition 
code set. A direct return to the caller is made. 

SPSinh 

SPCosh 

SPTanh 

Usage: f1 = SPSincos(&f3, f2); 

Return hyperbolic sine of FFP variable. 

Usage: fl = SPSinh(f2); 

Return hyperbolic cosine of FFP variable. 

Usage: fl = SPCosh(f2); 

Return hyperbolic tangent of FFP variable. 

Usage: fl = SPTanh(f2); 

SPExp Return e to the FFP variable power. This function accepts an FFP argument 
and returns the result representing the value of e (2.71828 ... ) raised to that 
power. 

Usage: fl = SPExp(f2); 

SPLog Return natural log (base e) of FFP variable. 

Usage: fl = SPLog(f2); 

SPLoglO Return naparian log (base 10) of FFP variable. 

Usage: fl = SPLogI0(f2); 

SPPow Return FFP arg2 to FFP argl. 

Usage: fl = SPPow(f3, f2); 

SPSqrt Return square root of FFP variable. 

Usage: fl = SPSqrt(f2); 

Math Functions 4-9 



SPTieee Convert FFP variable to IEEE format 

Usage: il = SPTieee(fl); 

SPFieee Convert IEEE variable to FFP format. 

Usage: fl = SPFieee(iI); 

Be sure to include proper data type definitions as shown in the example below. 

#include <mathffp.h> 

int MathBase; 
in t Math TransBase; 

mainO 
{ 

FLOAT fl, f2, f3; 
int iI, i2, i3; 
char bmath_name[] = "mathffp.library"; 
char tmath_name[] = "mathtrans.library"; 

if((MathBase = OpenLibrary(bmath_name, 0)) < 1 ) { 
printf("Can't open %s: vector = %08x\n", bmath_name, MathBase); 
exitO; } 

if((MathTransBase = OpenLibrary(tmath_name, 0)) < 1 ) { 
printf("Can't open %s: vector = %08x\n", tmath_name, MathTransBase); 
exitO; . } 

f1 = SPAsin(f2); 
fl = SP Acos(f2); 
fl = SPAtan(f2); 

fl = SPSin(f2); 
fl = SPCos(f2); 
f1 = SPTan(f2); 
f1 = SPSincos(&f3, f2); 

f1 = SPSinh(f2); 
fl = SPCosh(f2); 
f1 = SPTanh(f2); 

fl = SPExp(f2); 
f1 = SPLog(f2); 
f1 = SPLogl0(f2); 
fl = SPPow(f2); 
fl = SPSqrt(f2); 

il = SPTieee(f2); 

! * Call SP Asin en try *! 
! * Call SP Acos en try *! 
!* Call SPAtan entry *1 

!* Call SPSin entry *1 
1* Call SPCos entry *1 
I * Call SPTan en try *1 
! * Call SPSincos en try *1 

! * Call SPSinh en try *1 
I * Call SPCosh en try *! 
1* Call SPTanh entry *1 

1* Call SPExp entry *1 
!* Call SPLog entry *1 
1* Call SPLoglO entry *! 
I * Call SPPow en try *1 
1* Call SPSqrt entry *1 

! * Call SPTieee en try *1 

4-10 Math Functions 



f1 = SPFieee( il); 
} 

/ * Call SPF ieee en try * / 

The section below describes the Amiga assembly language interface to the Motorola Fast 
Floating Point transcendental math routines and includes some details about how the system 
flags are affected by the operation. Again, this interface resides in the library file mathlink.lib 
and must be linked with the user code. Note that the access mechanism from assembly 
language is: 

LEA 
JSR 

_LVOSP Asin -

_LVOSPAcos -

_L VOSP Asin ,AB 
_Mat h TransBase( A6) 

Arcsine 

Inputs: 
Outputs: 
Condition codes: 

Arccosine 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPAtan - Arctangent 

Inputs: 
Outputs: 
Condition codes: 

DO = FFP argument 
DO = FFP arctangent radian result 
N=O 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

DO = FFP argument 
DO =FFP arctangent radian result 
N=O 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

DO = FFP argumen t 
DO = FFP arctangent radian result 
N=O 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

Math Functions 4-11 



_LVOSPSin - Sine 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPCos - Cosine 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPTan - Tangent 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPSincos - Sine and cosine 

Inputs: 

Outputs: 

Condition codes: 

4-12 Math Functions 

DO = FFP argument in radians 
DO = FFP sine result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result is meaningless 
(that is, input magnitude too large) 
C = undefined 
X = undefined 

DO = FFP argument in radian 
DO = FFP cosine result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result is meaningless 
(that is, input magnitude too large) 
C = undefined 
X = undefined 

DO = FFP argument in radians 
DO = FFP tangent result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result is meaningless 
(that is, input magnitude too large) 
C = undefined 
X = undefined 

DO = FFP argumen t in radians 
Dl = Address to store cosine result 
DO = FFP sine result 
(D1) = FFP cosine result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result is meaningless 
(that is, input magnitude too large) 
C = undefined 
X = undefined 



_LVOSPSinh - Hyperbolic sine 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPCosh - Hyperbolic cosine 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPTanh - Hyperbolic tangent 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPExp - Exponential 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPLog - Natural logarithm 

Inputs: 
Outputs: 
Condition codes: 

DO = FFP argument in radians 
DO = FFP hyperbolic sine result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if overflow occurred 
C = undefined 
X = undefined 

DO = FFP argument in radians 
DO = FFP hyperbolic cosine result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if overflow occurred 
C = undefined 
X = undefined 

DO = FFP argument in radians 
DO = FFP hyperbolic tangent result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if overflow occurred 
C = undefined 
X = undefined 

DO = FFP argument 
DO = FFP exponential result 
N=O 
Z = 1 if resu It is zero 
V = 1 if overflow occurred 
C = undefined 
Z = undefined 

DO = FFP argument 
DO = FFP natural logarithm result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if argument negative or zero 
C = undefined 
Z = undefined 

Math Functions 4-13 



_LVOSPLoglO - Naparian (base 10) logarithm 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPPow - Power 

Inputs: 

Outputs: 
Condition codes: 

_LVOSPSqrt - Square root 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPTieee - Convert to IEEE format 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPFieee - Convert from IEEE format 

Inputs: 
Outputs: 
Condition codes: 

4-14 Math Functions 

DO = FFP argument 
DO = FFP natural logarithm result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if argument negative or zero 
C = undefined 
Z = undefined 

D1 = FFP argument value 
DO = FFP exponent value 
DO = FFP result of arg taken to exp power 
N=O 
Z = 1 if result is zero 
V = 1 if result overflowed or arg < 0 
C = undefined 
Z = undefined 

DO = FFP argument 
DO = FFP square root result 
N=O 
Z = 1 if resu It is zero 
V = 1 if argument was negative 
C = undefined 
Z = undefined 

DO = FFP format argument 
DO = IEEE floating point format result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = undefined 
C = undefined 
Z = undefined 

DO = IEEE floating point format argument 
DO = FFP format result 
N = undefined 
Z = 1 if result is zero 
V = 1 if result overflowed FFP format 
C = undefined 
Z = undefined 



1.5. FFP MATHEMATICS CONVERSION LIBRARY 

The FFP mathematics conversion library is accessed by linking code into the executable file 
being created. The name of the file to include in the library description of the link command 
line is mathlink_h·b.lib. With this inclusion, direct calls are made to the conversion functions. 
Only a C interface exists for the conversion functions; there is no assembly language inter
face. The basic math library is required in order to access these functions and might be 
opened as shown below. 

int MathBase; 

mainO 
{ 

char bmath_name[] = "mathffp.library"; 

if ((MathBase = OpenLibrary(bmath_name, 0)) < 1 ) { 
printf("Can't open %s: vector = %08x\n", bmath_name, 

MathBase); 
exitO; } 

} 

The global variable MathBase is used internally for all future basic math library references. 

This library contains entries for the conversion functions associated with math library usage. 
The C-called entry points are accessed via code generated by the C compiler when the actual 
function names are given within the source code. The C entry points defined for the math 
conversion functions are: 

afp Convert ASCII string into FFP equivalent. 

Usage: fnum = afp(&string[O]); 

fpa Convert FFP variable into ASCII equivalent. 

Usage: exp = fpa(fnum, &string[O]); 

arnd Round ASCII representation of FFP number. 

Usage: arnd(place, exp, &string[O]); 

dbf Convert FFP dual-binary number to FFP equivalent. 

Usage: fnum = dbf(exp, mant); 

Math Functions 4-15 



fpbcd Convert FFP variable to BCD equivalent. 

Usage: fpbcd(fnum, &string[O]); 

Be sure to include proper data type definitions as shown in the example below. Print state
ments have been included to help clarify the format of the math conversion function calls. 

#include <mathffp.h> 

char stl [80] = "3.1415926535897"; 
char st2[80] = "2.718281828459045"; 
char st3[80], st4[80]; 

int MathBase; 

mainO 
{ 

FLOAT numl, num2, num3, num4, num5, num6, num7, num8, num9; 
FLOAT nl, n2, n3, n4, n5, n6, n7, n8, n9; 
int iI, i2, i3, i4, is, i6, i7, i8, i9; 
int exp1, exp2, exp3, exp4, mantI, mant2, 

mant3, mant4, placel, place2; 

if ((MathBase=OpenLibrary(" mathffp.library" ,0)) < 1 ) { 
printf("Can't open mathffp.library:vector =%08x\n", 

MathBase); 
exitO; 

} 

n1 = afp(stl); /* Call afp entry */ 
n2 = afp(st2); /* Call afp entry */ 
prin tf(" \n \nASCII % s converts to floating poin t % f" , 

st1, n1); 
printf("\nASCII %s converts to floating point %f", 

st2, n2); 

num1 = 3.1415926535897; 
num2 = 2.718281828459045; 

exp1 = fpa(numl, st3); /* Call fpa entry */ 
exp2 = fpa(num2, st4); /* Call fpa entry */ 
prin tf(" \n \nfloating point % f converts to ASCII % s" , 

num1, st3); 
printf("\nfloating point %f converts to ASCII %s", 

num2, st4); 

place1 = -2; 
place2 = -1; 
arnd(place1, expl, st3); 

4-16 Math Functions 

/* Call arnd entry */ 



} 

arnd( place2, exp2, st4); / * Call arnd en try * / 
printf("\nASCII round of %f to %d places yields %s", 

num1, place1, st3); 
printf("\nASCII round of %f to %d places yields %s", 

num2, place2, st4); 

exp1 = -3; exp2 = 3; exp3 = -3; exp4 = 3; 
mantl = 12345; mant2 = -54321; mant3 = -12345; 
t4 = 54321; 
n1 = dbf(exp1, mantl); /* Call dbf entry */ 
n2 = dbf(exp2, mant2); /* Call dbf entry */ 
n3 = dbf(exp3, mant3); /* Call dbf entry */ 
n4 = dbf(exp4, mant4); /* Call dbf entry */ 
printf("\n\ndbf of exp = %d and mant = %d yields FFP number 

of %f", exp1, mantI, n1); 
printf("\ndbf of exp = %d and mant = %d yields FFP number 

of %f", exp2, mant2, n2); . 
printf("\ndbf of exp = %d and mant ~ %d yields FFP number 

of %f", exp3, mant3, n3); 
printf("\ndbf of exp = %d and mant = %d yields FFP number 

of %f", exp4, mant4, n4); 

num1 = -num1; 
fpbcd(num1, st3); /* Call fpbcd entry */ 
st3[8] = '\0'; 
strcpy( &i2, &st3 [4]); 
st3[4] = '\0'; 
strcpy( &i1, st3); 
prin tf(" \n \nfloating point % f converts to BCD 

%08x%08x", num1, iI, i2); 
num2 = -num2; 
fpbccl(num2, st4); /* Call fpbcd entry */ 
st4[8] = '\0'; 
strcpy(&i4, &st4[4]); 
st4[4] = '\0'; 
strcpy(&i3, st4); 
printf("\nfloating point %f converts to BCD 

%08x%08x", num2, i3, i4); 

1.6. IEEE DOUBLE-PRECISION BASIC MATH LIBRARY 

The IEEE double precision basic math library resides on disk and is opened by making a call 
to the OpenLibraryO function with mathieeedoubbas.library as the argument. In C, 
this might be implemented as shown below. 

Math Functions 4-17 



in t MathleeeDou bBasBase; 

mainO 
{ 

} 

char lib_namel] = "mathieeedoubbas.1ibrary"; 

if ((MathleeeDoubBasBase = OpenLibrary(1ib_name, 0)) < 1 ) { 
printf("Can't open %s: vector = %08x\n", lib_name, 

MathleeeDoubBasBase); 
exitO; } 

The global variable MathleeeDoubBasBase is used internally for all future library refer
ences. 

This library contains entries for the basic mathematics functions such as add, subtract, and 
so on. The C-called entry points are accessed via code generated by the C compiler when the 
actual function names are given within the source code. The C entry points defined for the 
IEEE double precision basic math functions are 

IEEEDPFix 
Convert IEEE double precision variable to integer 

Usage: il = IEEEDPFix(fl); 

IEEEDPFlt 
Convert integer variable to IEEE double precision 

Usage: f1 = IEEEDPFlt(i1); 

IEEEDPCmp 
Compare two IEEE double precision variables 

Usage: switch (IEEEDPCmp(fl, f2)) {}; 

IEEEDPTst 
Test an IEEE double precision variable against zero 

Usage: switch (IEEEDPTst(f1)) {}; 

IEEEDPAbs 
Take absolute value of IEEE double precision variable 

Usage: f1 = IEEEDP Abs(f2); 

4-18 Math Functions 



IEEEDPNeg 
Take 2's complement of IEEE double precision variable 

Usage: f1 = IEEEDPNeg(f2); 

IEEEDPAdd 
Add two IEEE double precision variables 

Usage: fl = IEEEDP Aclcl(f2, f3); 

IEEEDPSub 
Subtract two IEEEDPSub variables 

Usage: fl = IEEEDPSub(f2, f3); 

IEEEDPMul 
Multiply two IEEE double precision variables 

Usage: fl = IEEEDPMul(f2, f3); 

IEEEDPDiv 
Divide two IEEE double precision variables 

Usage: fl = IEEEDPDiv(f2, f3); 

Be sure to include proper data type definitions as shown in the example below. 

in t MathIeeeDou bBasBase; 

mainO 
{ 

} 

double fl, f2, f3; 
int iI, i2, i3; 
char lib_name[] = "mathieeedoubbas.library"; 

if((MathleeeDoubBasBase = OpenLibrary(lib_name, 0)) < 1 ) { 
printf("Can't open %s: vector = %08x\n", lib_name, 

MathIeeeDoubBasBase ); 
exitO; } 

il = IEEEDPFix(fl); 
fi = IEEEDPFlt(iI); 
switch (IEEEDPCmp(f1, f2)) {}; 
switch (IEEEDPTst(fl)) {}; 
fl = IEEEDPAbs(f2); 
f1 = IEEEDPNeg(f2); 
fl = IEEEDP Add(f2, f3); 
f1 = IEEEDPSub(f2, f3); 
fl = IEEEDPMul(f2, f3); 
fl = IEEEDPDiv(f2, f3); 

/* Call IEEEDPFix entry */ 
/* Call IEEEDPFlt entry */ 

/* Call IEEEDPCmp entry */ 
/ * Call IEEEDPTst en try * / 

/* Call IEEEDPAbs entry */ 
/* Call IEEEDPNeg entry */ 
/* Call IEEEDPAdd entry */ 
/* Call IEEEDPSub entry * / 
/* Call IEEEDPMul entry */ 
/* Call IEEEDPDiv entry * / 

Math Functions 4-1 9 



The Amiga assembly language interface to the IEEE double preCISion floating point basic 
math routines is shown below, including some details about how the system flags are affected 
by each operation. Note that the access mechanism from assembly language is: 

LEA _LVOIEEEDPFix,A6 
JSR _MathIeeeDoubBasBase{A6) 

_L VOIEEEDPFix -

_LVOIEEEDPFlt -

_LVOIEEEDPCmp -

4-20 Math Functions 

Convert IEEE dou ble precision to in teger 

Inputs: 
Outputs: 
Condition codes: 

DOjDl = IEEE dou ble precision argument 
DO = Integer (2's complement) result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if overflow oecurred 
C = undefined 
X = undefined 

Con vert in teger to IEEE dou ble precision 

Inputs: 
Outputs: 
Condition codes: 

DO = Integer (2's complement) argument 
DOjDl = IEEE double precision result 
N = 1 if result is negative 
Z = 1 if result is zero 
v=O 
C = undefined 
X = undefined 

Compare two IEEE double precision values 

Inputs: 

Outputs: 

Condition codes: 

DOjDl = IEEE double precision argument 1 
D2jD3 = IEEE double precision argument 2 
DO = +1 if argl < arg2 
DO = -1 if argl > arg2 
DO = 0 if argl = arg2 
N=O 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 
GT = arg2 > argl 
GE = arg2 > = argl 
EQ = arg2 = argl 
NE = arg2 < > argl 
LT = arg2 < argl 
LE = arg2 <= argl 



_LVOIEEEDPTst -

_LVOIEEEDP Abs -

_LVOIEEEDPNeg -

_L VOIEEEDP Add -

Test an IEEE double-precision value against zero 

Inputs: 
Outputs: 

Condition codes: 

Absolute value 

Inputs: 
Outputs: 

Condition codes: 

Negate 

Inputs: 
Outputs: 
Condition codes: 

Addition 

Inputs: 

Outputs: 

Condition codes: 

DOjD1 = IEEE double precision argument 
DO = +1 if arg > 0.0 
DO = -1 if arg < 0.0 
DO = 0 if arg = 0.0 
N = 1 if result is negative 
Z = 1 if resu It is zero 
v=o 
C = undefined 
X = undefined 
EQ = arg = 0.0 
NE = arg <> 0.0 
PL = arg >= 0.0 
MI = arg < 0.0 

DOjD1 = IEEE double precision argument 
DOjD1 = IEEE double precision absolute 
value result 
N=O 
Z = 1 if result is zero 
v=o 
C = undefined 
X = undefined 

DOjD1 = IEEE double precision argument 
DOjD1 = IEEE double precision negated result 
N = 1 if result is negative 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

DOjDl = IEEE double precision argument 1 
D2/D3 = IEEE double precision argument 2 
DO/D1 = IEEE double precision addition of 
argl+arg2 result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 

Math Functions 4-21 



_LVOIEEEDPSub - Subtraction 

Inputs: 

Outputs: 

Condition codes: 

_LVOIEEEDPMul- Multiply 

Inpu ts: 

Outputs: 

Condition codes: 

_LVOIEEEDPDiv - Divide 

Inputs: 

Outputs: 

Condition codes: 

4-22 Math Functions 

DO/Dl = IEEE double precision argument 1 
D2/D3 = IEEE double precision argument 2 
DO/Dl = IEEE double precision subtraction 
of argl-arg2 result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 

DO/Dl = IEEE dou ble precision argument 1 
D2/D3 = IEEE double precision argument 2 
DO/Dl = IEEE double precision multiplication 
of argl *arg2 result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 

DO/Dl = IEEE double precision argument 1 
D2/D3 = IEEE double precision argument 2 
DO/Dl = IEEE double precision division 
of argl/arg2 result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 



Chapter 2 

Workbench 

This chapter shows how to use the Workbench facilities in your applications. For informa
tion about IconEd, the icon editor for making Workbench icons, see the appendixes of the 
Introduction to Amiga manual for revision 1.1 of the system software. 

2.1. INTRODUCTION 

vVorkbench is both an application program and a screen where other applications can run. 
Workbench allows users to interact with the Amiga file system by using icons, and it gives 
the programmer access to a body of library functions for manipulating the application's 
objects and icons. 

Here are definitions of some terms that may be unfamiliar or used in unfamiliar ways. 

Workbench object 
A Workbench object contains all the information that Workbench needs to display 
and use a project, tool, drawer, etc. The two kinds of Workbench objects are 
WBObject (as Workbench uses objects) and DiskObject (as most other users will 
view objects in memory or in a file on disk). 

icon 
This is a shorthand name for a Workbench object. An icon may be in memory or on 
disk or both. 

info jile 
The disk representation of an icon. The format of an icon on disk IS slightly 
different from an icon in memory, but one is obtainable from the other. 

strings 
A null-terminated sequence of bytes. 

Workbench 4-23 



activating 
The act of starting a tool, opening a drawer, and so on. The term opemng IS 

reserved for windows and files. 

tool 
An application program or system utility. 

project 
Something produced by an executable program and associated with an executable 
program. For example, a text file or a drawing. 

drawer 
A disk-based directory. 

2.2. THE ICON LIBRARY 

The icon library, "icon.library", library has memory managment routines, icon input and 
output routines, and string manipulation routines. The function appendix to this manual 
contains the reference pages for this library. 

2.3. THE INFO FILE 

The info file is the center of interaction between applications and Workbench. This file 
stores all the necessary information to display an icon and to start up an application. An 
info file can contain several different types of icons, as shown in table 2-1. 

Table 2-1: Contents of a Workbench Info File 

Icon Name 

WBDISK 
WBDRAWER 
WBTOOL 
WBPROJECT 
WBGARBAGE 
WBIGCK 

Object 

the root of a disk 
a directory on the disk 
a directly runnable program 
a data file of some sort 
the trash can directory 
a non-DOS disk 

The actual data present in the info file depends on the icon type. Note that any graphical 
image can be used for any icon type in the info file. In fact, the graphical image need not be 
unique for each type of icon. However, it is strongly recommended as a matter of 

4-24 Workbench 



programming style that each different type of icon have a unique graphical image associated 
with it. In fact, you may want to have several unique images associated with an icon type. 
For example, you can have several different images associated with the WBTOOL type of 
icon info file. 

Most people will not access the info file directly. The icon manipulation library does all the 
work needed to read and write info files. Three routines are especially 
helpful: GetDiskObjectO, PutDiskObjectO, and FreeDiskObjectO· The calling 
sequence of each of these is given in the icon library reference pages in the function appendix. 

The DiskObject Structure 

The DiskObject structure is at the beginning of all info files, and is used in 
GetDiskObjectO, PutDiskObjectO, and FreeDiskObjectO. The structure is defined in 
include/ workbench/ workbench. h and con tains the following elemen ts: 

do_Magic 
A magic number that the icon library looks for to make sure that the file it is read
ing really contains an icon. It should be the manifest constant WB_DISKMAGIC. 
PutDiskObjectO will put this value in the structure, and GetDiskObject will not 
believe that a file is really an icon unless this value is correct. 

do_Version 
This provides a way to enhance the info file in an upward-compatible way. It should 
be WB_DISKVERSION. The icon library will set this value for you, and will not 
believe weird values. 

do_Gadget 
This contains all the Imagery for the Icon. See the "Gadget Structure" section for 
more details. 

do_Type 
The type of the icon (WBTOOL, WBPROJECT, and so on). 

do_DefaultTool 
Default tools are used for projects and disks. For projects the default tool is the 
program invoked when the project is activated. This tool may either be absolute 
(DISK:file), relative to the root of this disk (:file), or relative to the project (file). If 
the icon is of type WBDISK, the default tool is the diskcopy program that will be 
used when this disk is the source of a copy. 

Note that if the tool is run via the default tool mechanism (for example, a project 
was activated, not a tool) then all the information in the project's info file is used, 
and the tool's info file is ignored. This is especially important for variables like 

Workbench 4-25 



StackSize and ToolWindow. 

do_ToolTypes 
ToolTypes is an array of free-format strings. \Vorkbench does not enforce any 
rules on these strings, but they are useful for passing environment information. See 
the "TooITypes" section for more information. 

do_CurrentX, do_CurrentY 
Drawers have a virtual coordinate system. The user can scroll around in this system 
using the scroll gadgets on the "drawers" window. Each icon in the drawer has a 
position in the coordinate system. CurrentX and CurrentY are the icon's current 
position in the drawer. 

do_DrawerData 
If the icon is capable of being opened as a drawer (WBDISK, WBDRA WER, 
WBGARBAGE) then it needs a DrawerData structure to go with it. This struc
ture contains an Intuition NewWindow structure l ; Workbench uses this to hold 
the current window position and size of the window so it will reopen in the same 
place. The CurrentX and CurrentYof the origin of the window is also stored. 

do_ ToolWindow 
By default, Workbench will start a program without a window. If ToolWindow is 
set, this file will be opened and made the standard input and output of the program. 
This window will also be put into the process's pr_WindowPtr variable and will be 
used for all system requesters. Note that this work is actually done in the language
dependent startup script; if you are coding in assembly or an unsupported language, 
you will have to do the work yourself. The only two files that it makes sense to 
open are "CON:" or "RAW:". See the AmigaDOS manual for the full syntax that 
these devices accept. 

do_StackSize 
This is the size of the stack used for running the tool. If this is null, then Work
bench will use a reasonable default stack size (currently 4K bytes). 

The Gadget Structure 

\Vorkbench uses an Intuition Gadget structure, defined in include/intuition/intudion.h or 
include/intuition/intuition.i for the assembly language version, to hold the icon's image. 
Workbench restricts some of the values of the gadget. Any unused field should be set to O. 
For clarity in presentation, you can use the assembly language version of these structures, 

1 See the manual called Intuition: The Amiga U8er Interface for more information about win
dows. 

4-26 Workbench 



NOTE: The C version has the leading "gg_" stripped off. (\Vorkbench structure members 
have the same name in all languages supported by Amiga). The Intuition gadget structure 
members that Workbench pays attention to are 

gg_Width 
This is the width (in pixels) of the active icon's active region. Any mouse button 
press within this range will be interpreted as having selected this icon. 

gg_Height 
The same as Width, only in the vertical direction. 

gg_Flags 
Currently the gadget must be of type GADGIMAGE. There are three highlight 
modes supported: GADGHCOMP, GADGHlMAGE, and GADGBACKFILL. 
GADGHCOMP complements the image specified (as opposed to Intuition, which 
complements the select box). GADGHlMAGE uses an alternate selection image. 
GADGBACKFILL is similar to GADGHCOMP, but ensures that there is no "orange 
ring" around the selected image. It does this by first complementing the image, and 
then flooding all orange pixels that are on the border of the image to blue. (In case 
you do not use the default colors, orange is color 3 and blue is color 0.) All other flag 
bits should be O. 

gg_Activation 
The activation should have only RELVERIFY and GADGIMMEDIATE set. 

gg_Type 
The gadget type should be BOOLGADGET. 

gg_ G adgetRender 
Set this to an appropriate Image structure. 

gg_SelectRender 
Set this if and only if the highlight mode is GADGHIrv1AGE. 

The Image structure is typically the same size as the gadget, except that ig_Height is often 
one pixel less than the gadget height. This allows a blank line between the icon image and 
the icon name. The image depth must be 2; ig_PlanePick must be 3; and ig_PlaneOnOff 
should be O. The ig_NextImage field should be null. 

Workbench 4-27 



Icons with No Position 

Picking a position for a newly created icon can be tricky. NO_ICON_POSITION is a magic 
value for do_CurrentX and do_CurrentY that instructs \Vorkbench to pick a reasonable 
place for the icon. 'Workbench will place the icon in an unused region of the drawer. If there 
IS no space in the drawers window, the icon will be placed just to the right of the visible 
reglOn. 

2.4. WORKBENCH ENVIRONMENT 

When a user activates a tool or project, \Vorkbench runs a program. This program IS a 
separate process, and runs asynchronously to \Vorkbench. This allows the user to take 
advantage of the multiprocessing features of the Amiga. 

The environment for a tool under the Workbench is quite different from the environment 
when a tool is run from the CLI. The CLI does not create a new process for a program; it 
jumps to the program's code and the program shares the process with the CLI. This means 
that the program has access to all the CLI's environment, but the program must be very 
careful to restore all the correct defaults before returning. \Vorkbench starts a tool from 
scratch and explicitly passes the environment to the tool. 

One of the things that a workbench program must set up is stdin and stdout. By default 
workbench program does not have a window for its output to go to. Therefore stdin and 
stdout do not point to legal file handles. If one attempts to printfO one will destroy the 
system. 

Startup Message 

Right after the tool is started, Workbench sends the tool a message, which is posted to the 
message port in the tool's process. This message contains the environment and the argu
ments for the tool. 

Each icon that is selected in the Workbench is passed to the tool. The first argument is the 
tool itself. If the tool was derived from a default tool, then this is passed in addition to the 
project. All other arguments are passed in the order in which the user selected them; the 
first icon selected will be first. 

4-28 Workbench 



The tool may do what it wishes with the startup message; however, it must deallocate the 
message sooner or later. If the message is replied to Workbench, then Workbench will take 
care of all the cleanup. The tool should not do this until it finishes executing because part of 
the cleanup is freeing the tool's data space. 

The startup message, whose structure is outlined in include/ workbench/ startup.h, has the fol
lowing structure elements. 

sm_Message 
A standard Exec message. The reply port is set to the Workbench. 

sm_Process 
The process descriptor for the tool (as returned by CreateProcessO). 

sm_Segment 
The loaded code for the tool (returned by LoadSegO). 

sm_NumArgs 
The number of arguments in sm_ArgList 

sm_ToolWindow 
This is the same string as the DiskObject's do_ToolWindow. It is passed here so 
the tool's startup code can open a window for the tool. If it is null, no default win
dow is opened. 

sm_ArgList 
This is the argumen t list itself. 

Each argument has two parts to it. The wa_Name element is the name of the argument. If 
this is not a default tool or a drawer-like object, this will be the same as the string displayed 
under the icon. A default tool will have the text of the wo_DefaultTool pointer; a drawer 
will have a null name passed. The wa_Lock is always a lock on a directory, or is NULL (if 
that object type does not support locks). 

The following code fragment will work for all arguments (assuming that open will work on 
them at all). 

Workbench 4-29 



LockArg( arg ) 
struct WBArg *arg; 
in t open mode; 
{ 

} 

LONG olddir; 
LONG lock; 

/ * see if this type can be locked * / 
if( arg- > wa_Lock == NULL) { 

} 

/* cannot lock it -- it must be a device (for example, DFO:) */ 
return( NULL ); 

/* change directory to where the argument is */ 
olddir = CurrentDir{ arg->wa_Lock ); 

/* open the argument up */ 
lock = Lock( arg->wa_Name, SHARED_LOCK ); 
if( lock == NULL) { 

} 

/* who knows: maybe the user canceled a disk insertion 
* request. The real reason can be gotten by IoErrO 

*/ 
return( NULL ); 

/* set the directory back */ 
CurrentDir( olddir ); 

return( lock ); 

For more routines to manipulate Workbench arguments, see the function appendix. 

The Standard Startup Code 

The standard startup code handles the worst of the detail work of interfacing with the sys
tem. The C startup code (startupoobj) waits for the startup message, opens the tool win
dow (if one has been requested), sets up SysBase and DOSBase, and passes the startup 
message on to mainO. When mainO returns (or exitO is called) it replies the message back 
to Workbench. 

4-30 Workbench 



The mainO procedure is called with two parameters: argv and argc. If argc is not NULL, 
you have been called from the CLl. If argc is NULL, you have been called from Workbench. 
The global variable WBenchMsg points to the Workbench startup message. 

NOTE: A word of warning for those of you who don't use the standard startup 
sequence: you must turn off task switching (with ForbidO) before replying the message to 
\Vorkbench. This will prevent Workbench from unloading your code before you can tell the 
DOS that you want to exit. See the C startup code in the "Example Programs" section. 

2.5. TOOLTYPES 

This section shows how the ToolTypes array should be formated, and describes the stan
dard entries in the ToolTypes array. In brief; ToolTypes is an array of strings. These 
strings can be used to encode information about the icon that will be available to all who 
wish to use it. The formats are user-definable and user-extensible. 

Workbench does not enforce very much about the ToolTypes array, but some conventions 
are strongly encouraged. A string may be up to 32K bytes large, but you should not make it 
over a line long. The alphabet is 8-bit ANSI (for example, normal ASCII with foreign 
language extensions). To see what it looks like, try typing with the <alt> key held down. 
Avoid special or non-printing characters. The case of the characters is significant. The gen
eral format is 

< name>=<value> [I <value> j* 

where <name> is the field name and <value> is the text to associate with that name. If 
the ID has multiple values, the values may separated by a vertical bar. Currently, the value 
should be the name of the application that understands this file. For example, a basic pro
gram might be 

FILETYPE=ABasiC. program I text 

This notifies the world that this file is acceptable to a program that is either expecting any 
arbitrary type of text (for example, an editor) or to someone who only understands a basic 
program. 

There are two routines provided to help you deal with the tool type array. 
FindToolTypeO returns the value of a tool type element. Using the above example, if you 
are looking for FILETYPE, the string "ABasic.programl text" will be returned. 

MatchToolValue() returns nonzero if the specified string is in the reference value string. 
This routine knows how to parse vertical bars. For example, using the reference value string 
of "ABasic.programl text", MatchToolValueO will return TRUE for "text" and 
"ABasic.program", and FALSE for everything else. 

Workbench 4-31 



2.6. EXAMPLE PROGRAMS 

Some example programs, including a startup sequence, are shown below in the following sec
tions. 

FriendlyTool 

This program tells the application if it can understand a particular object. 

/* 
* * INPUTS 
* diskobj -- a workbench DiskObject (a returned by GetDiskObject) 
* id -- the application identifier 

* 
* OUTPUTS 
* nonzero if it understands this object's type 

* 
*/ 

#include "exec/types.h" 
#include "workbench/workbench.h" 
#include "workbench/icon.h" 

LONG IconBase; 

FriendlyTool( diskobj, id ) 
struct DiskObject *diskobj; 
char *id; 
{ 

char **toolarray; 
char *value; 

/* default return value is failure */ 
int isfriendly = 0; 

/* this assumes that you have not already opened the icon library 
* else where in your program ... You undoubtedly have, because 
* you managed to get a diskobject structure ... 

*/ 
IconBase = OpenLibrary( ICONNAME, 1 ); 
if( IconBase == NULL ) { 

/* couldn't find the library??? */ 

4-32 Workbench 



} 

return( 0 ); 
} 

/* extract the tool type value array */ 
toolarray = diskobj- >do_TooIType; 

/* find the FILETYPE entry */ 
value = FindToolType( toolarray, "FILETYPE" ); 
if( value) { 

/* info file did define the FILETYPE entry */ 

isfriendly = MatchToolValue( value, id ); 
} 

Close( IconBase ); 

/* protect ourselves from inadvertent use */ 
IconBase = -1; 

return( isfriendly ); 

ReadInfoFile 

This program reads in an icon's info file from a \Vorkbench argument structure. 

/* 
* 
* don't forget to FreeDiskObject() the object when you are done 
* with it ... 

* 
* INPUTS 
* wbarg -- a workbench argument structure 

* * OUTPUTS 
* a disk object structure if successful, else null. 

* 
*/ 

#include "exec/types.h" 
#include "exec/memory.h" 
#include "workbench/workbench.h" 
#include "workbench/icon,h" 

Workbench 4-33 



LONG IconBase; 

struct DiskObject * 
ReadInfoFile( wbarg ) 
struct WBArg wbarg; 
{ 

struct DiskObject *diskobj = NULL; 
LONG olddir; 

/* assume failure */ 

/* this assumes that you have not already opened the icon library 
* else where in your program ... 

*/ 
IconBase = OpenLibrary( ICOl\'NAME, 1 ); 
if( IconBase == NULL) { 

} 

/* couldn't find the library??? */ 
return( NULL ); 

/* check for those things that do not have info files */ 
if( wbarg->wa_Lock == NULL) { 

/* must be a device */ 
goto end; 

} 

olddir = CurrentDir( wbarg- >wa_Lock ); 

if( wbarg- >wa_:\'ame[O] != ' , ) { 
/* this is a tool or a project */ 
diskobj = GetDiskObject( wbarg- >wa_Name ); 

} else { . 

} 

/* this is a drawer-type object. The lock points to the 
* object itself. we must go up a level to get the info 
* fi Ie. 

*/ 

diskobj = getDrawerObject( wbarg ); 

CurrentDir( olddir ); 

end: 

} 

/* 

Close{ IconBase ); 

/* protect ourselves from inadvertent use */ 
IconBase = -1; 

return( diskobj ); 

4-34 Workbench 



* this routine is split off because getting a drawer object's 
* info file is something most applications won't want to do, 
* because they won't be able to do anything useful with a 
* drawer. These applications will probably just give an 
* error at this poin t. 

*/ 
getDrawerObject( wbarg ) 
struct WBArg wbarg; 
{ 

struct FileInfoBlock *fib; 
LONG oldlock, parentlock; 
struct DiskObject *diskobj = NULL; /* assume failure */ 

fib = (struct FilelnfoBlock *fib) 
AllocMem( sizeof( struct FilelnfoBlock ), MEMF _CLEAR ); 

/ * check to see if there was enough memory * / 
if( fib == NULL) return( NULL ); 

/* use examine to get the object's name */ 
if( ! Examine( wbarg->wa_Lock, fib ) ) goto err; 

parentlock = ParentDir( wbarg- >wa_Lock ); 
if( parentlock ) { 

/* this is a normal drawer -- it has a parent directory */ 
oldlock = CurrentDir( parentlock ); 
diskobj = GetDiskObject( fib->fib_FileName ); 
CurrentDir( oldlock ); 
U nLock( paren tlock ); 

} else { 

} 

/* ParentDir failed. Either something is seriously wrong, 
* or we were fed the root of a volume. 

*/ 
if( IoErrO == NULL) { 

/* this is the root */ 
diskobj = GetDiskObject( "Disk" ); 

} 

err: 

} 

FreeMem( fib, sizeof( struct FilelnfoBlock ) ); 
return( diskobj ); 

Workbench 4-35 



Startup Program 

4-36 

************************************************************************ 
* * C Program Startup/Exit (Combo Version: CLI and WorkBench) 

* 
************************************************************************ 

** **** * Included Files ***** * ** * *** ***** **** * *** * ***** * ** * **** **** ** *** * 

INCLUDE "exec/types.i" 
INCLUDE" exec/alerts.i" 
INCLUDE" exec/nodes.i" 
INCLUDE" exec/lists.i" 
IN CL UD E "exec / ports. j" 
INCLUDE" exec/libraries.i" 
INCLUDE" exec/tasks.i" 
INCLUDE "libraries/dos.i" 
INCLUDE" libraries/dosextens.i" 
INCLUDE "workbench/startup.i" 

*** **** 1m ported ** * ***** ************* **** **** * * ** *** ** ** ********* *** *** 

xlib macro 
xref LVOI -
endm 

xref _AbsExecBase 
xref _Input 
xref _Output 

xref - mam ; C code entry point 

xlib Alert 
xlib FindTask 
xlib Forbid 
xlib GetMsg 
xlib OpenLibrary 
xlib CloseLibrary 
xlib RepliMsg 
xlib Wait 
xlib WaitPort 

xlib CurrentDir 
xlib Open 

Workbench 



******* Exported ******************************************************* 

xdef _SysBase 
xdef _DOSBase 

xdef errno -
xdef _stdin 
xdef _stdout 
xdef _stderr 

xdef exit -

callsys macro 
CALLLIB _LVOI 
endm 

; standard C exit function 

************************************************************************ 

* 
* Standard Program Entry Point 

* 
************************************************************************ 

* 
* main (argc, argv) 
* int argc; 
* char *argv[]; 

* 
************************************************************************ 

startup: ; reference for Wack users 
move.! sp,initialSP ; initial task stack pointer 
move.l dO,dosCmdLen 
move.l aO,dosCmdBuf 
c!r.! returnMsg 

;------ get Exec's library base poin ter: 
move.! ~bsExecBase,a6 

move.! a6,_SysBase 

;------ get the address of our task 
suba.l al,al 
callsys FindTask 
move.! dO,a4 

;------ are we running as a son of \Vorkbench? 
tst.l pr_CLI(A4) 
beq from Workbench 

;==~==~=================================== 

CLI Startup Code 
;========================================= 

Workbench 4-37 



fromCLI: 
;------ attempt to open DOS library: 

bsr openDOS 

;------ find command name: 
move.l pr_CLI(a4),aO 
add.l aO,aO ; bcpl pointer conversion 
add.! aO,aO 
move.l c1i_CommandName(aO),aO 
add.l aO,aO ; bcpl poin ter con version 
add.l aO,aO 

;------ create buffer and array: 
* link a6,#-(lOO+ 16*4+2*4) 

movem.l d2/a2/a3,-(sp) 
lea argvBuffer,a2 
lea argv Array ,a3 

* move.l a3,16(sp); save 
moveq.l #1,d2 ; param counter 

;------ fetch command name: 
moveq.l #O,dO 
move.b (aO)+,dO 
move.l a2,(a3)+ 
bra.s 1$ 

; size of command name 
; ptr to command name 

2$: move.b (aO)+,(a2)+ 
1$: dbf dO,2$ 

clr.b (a2)+ 

;------ collect parameters: 
move.l dosCmdLen,dO 
move.I dosCmdBuf,aO 

;------ skip control characters and space: 
3$: move.b (aO)+,dl 

subq.l #1,dO 
ble.s parmExit 
cmp.b #' ',dl 
bIe.s 3$ 

;------ copy parameter: 

4$: 

5$: 

4-38 Workbench 

addq.l #l,d2 
move. I a2,(a3)+ 
bra.s 5$ 
move.b 
subq.l 
cmp.b 
ble.s 6$ 
move.b 
bra.s 4$ 

(aO)+,dl 
#1,dO 
#' ',dl 

dl,(a2)+ 



6$: 
elr.b (a2)+ 
bra.s 3$ 

parmExit: elr.b (a2)+ 
elr.l (a3)+ 

move.l d2,dO 
movem.l (sp )+,d2/a2/a3 
pea argv Array 
move.l dO,-(sp) 

* * The above code relies on the end of line containing a control 
* character of any type, i.e. a valid character must not be the 
* last. This fact is ensured by DOS. 

* 

;------ get standard input handle: 
jsr _Input 
move. I dO,_stdin 

;------ get standard output handle: 
jsr _Output 
move.! dO,_stdout 
move.! dO,_stderr 

;------ call C main entry point 
Jsr _main 

;------ return success code: 
moveq.l #O,DO 
move.l initialSP ,sp ; restore stack ptr 
rts 

"------------------------------------------------------------------------------------, 
Workbench Startup Code 

0 ______ -------------------------------------._----------------------------------------, 
from Workbench: 

;------ open the DOS library: 
bsr openDOS 

;------ we are now set up. wait for a message from our starter 
bsr waitmsg 

;------ save the message so we can return it later 
move.l dO,returnMsg NOTE: no GetMsg performed 

;------ push the message on the stack for wbmain 

Workbench 4-39 



c!r.l -(SP) indicate: run from Workbench 
move.! dO,-(SP) 

;------ get the first argument 
move.l dO,a2 
move.! sm_ArgList(a2),dO 
beq.s docons 

;------ and set the current directory to the same directory 
move.! _DOSBase,a6 
move.! dO,aO 
move.l wa_Lock(aO),dl 
callsys Cu rren tD ir 

docons: 
;------ get the toolwindow argument 

move.! sm_Too!Window(A2),dl 
beq.s domain 

;------ open up the file 
move.! #MODE_OLDFILE,c12 
callsys Open 

;------ set the C input and output descriptors 
move.! c10,_stdin 
move.! dO,_stdout 
move.! dO,_stderr 
beq.s domain 

;------ set the console task (so Open( "*", mode) will work 
waitmsg has left the task pointer in A4 for us 
lsI.! #2,dO 
move.l dO,aO 
move.! fh_Type( aO),pr_ConsoleTask(A4) 

domain: 
. . 
Jsr rn alIl 
moveq.l #O,dO Successful return code 
bra.s exit2 

************************************************************************ 
* 
* C Program Exit Function 

* 
************************************************************************ 
* 
* Warning: this function really needs to do more than this. 

* 
************************************************************************ 

4-40 Workbench 



exit2: 
move.l 4(SP),dO ; extract return code 

move.! initialSP ,SP 
move.! dO,-(SP) 

;------ close DOS library: 

; restore stack pointer 
; save return code 

move.! _AbsExecBase,A6 
move.l _DOSBase,al 
callsys CloseLibrary 

;------ if we ran from CLI, skip workbench cleanup: 
tst.l returnMsg 
beq.s exitToDOS 

;------ return the startup message to our parent 
we forbid so workbench can't UnLoadSegO us 
before we are done: 
callsys Forbid 
move.l returnMsg,al 
callsys ReplyMsg 

;------ this rts sends us back to DOS: 
exitToDOS: 

noDOS: 

move.l 
rts 

ALERT 
moveq.l 
bra.s 

(SP)+,dO 

(AG_OpenLib!AO_DOSLib) 
#lOO,dO 
exit2 

; This routine gets the message that workbench will send to us 
; called with task id in A4 

waitmsg: 
lea pr_MsgPort(A4),aO 
callsys WaitPort 
lea pr_MsgPort(A4),aO 
callsys GetMsg 
rts 

; Open the DOS library: 

openDOS 
lea DOSName,Al 

* our process base 

* our process base 

Workbench 4-41 



callsys OpenLibrary 
move.l DO,_DOSBase 
beq noDOS 
rts 

************************************************************************ 

DATA 

************************************************************************ 

VerRev dc.w 1,0 

_SysBase dc.l 0 
DOSBase dc.! 0 -

_errno dc.! 0 
_stdin de.! 0 
_stdout de.l 0 
_stderr dc.l 0 

initialSP de.l 0 
returnMsg dc.! 0 

dosCmdLen dc.! 0 
dosCmdBuf de.! 0 

argvArray ds.l 32 
argvBuffer ds.b 256 

DOSName DOS NAME 

END 

ReadlnfoFile 

/*** echo.e *************************************************************** 
* 
* Eeho out all of our arguments 

* 
****************************************************************************/ 

#include "exec/types.h" 

4-42 Workbench 



#include "workbench/startup.h" 

extern struct WBStartup *WBenchMsg; 

main( argc, argv ) 
int argc; 
char **argv; 
{ 

LONG file; 
BYTE c; 

if( argc ) { 

printcliargs( Output(), argc, argv ); 

} else { 

file = Open( "RAW:50/20/440/150/Echo Window", MODE_OLDFILE ); 
if( fi Ie == NULL ) { 

} 
} 

return; 
} 

printwbargs( file, WBenchMsg ); 

/* wait for some input */ 
Read( file, &c, 1 ); 

Close( file ); 

printwbargs( file, msg ) 
ULONG file; 
struct WBStartup *msg; 
{ 

} 

struct WBArg *arg; 
int i; 

arg = msg- >sm_ArgList; 
for( i = 0; i < msg- >sm_NumArgs; i++, arg++ ) { 

printarg( i, arg, file ); 
} 

printarg( i, arg, file) 
int i; 
struct WBArg *arg; 
LONG file; 
{ 

fprintf( file, "arg %2Id: lock Ox%061x name <%s>\r\n", 

Workbench 4-43 



i, arg->wa_Lock, arg->wa_Name ); 
} 

printcliargs( file, argc, argv ) 
LONG file; 
int argc; 
char **argv; 
{ 

} 

in t i; 

for( i = 1; i < argc; i++ ) { 

} 

if( i != 1 ) fprintf( file, " " ); 
fprintf( file, "%s") argv[i] ); 

fprintf( file, "\n" ); 

4-44 Workbench 



4703 custom chip, 1--50 .' AbortIOO, 1-43, 1-46, 3-.57 
ABORTIO macro, 1-43 
AddAnimObO,2-173 
AddBob(), 2-145 
AddHeadO, 1-7 
AddlntServerO, I-55 
AddLibraryO, 1-75 
AddPortO, 1-31, 1-33 
address error, 1-25 
AddTailO, 1-7 
AddTaskO, 1-15 
AddTimeO,3-33 
AddVSpriteO,2-119 
After pointer 

changing Bob priority, 2-148 
in animation precedence, 2-175 
in Bob priority, 2-139, 2-139 
in linking AnimComps, 2-179 

AllocateO, 1-68, 1-69 
allocating memory, I-51 
AllocEntryO, I-53, I-55, I-57 
AllocMemO, 1-15, 1-63, I-58, 2-141 
AllocRasterO 

allocating memory, 2-32 
in saving background, 2-141 , 2-25 

AllocSignalO, 1-19, 1-25 
AllocTrapO, 1-26 
ALT key, 3-103, 3-87 
AMIGA keys, 3-73 
AndRectRegionO, 2-87 
AnimateO, 2-164, 2-178, 2-181 
animation 

acceleration, 2-171 
AnimCRoutine, 2-176 
AnimORoutine, 2-175 
motion control, 2-171, 2-172 
sequenced drawing, 2-159, 2-172 
types, 2-96, 2-97 

Index 

velocity, 2-171 
AnimComp 

\-

BobComp, 2-143 
BOBISCO.MP flag, 2-143 
definition, 2-166 
Flags variable, 2-177 
position, 2-167 
TimeSet variable, 2-177 

AnimCRoutine 
in creating animation, 2-180 
with AnimateO, 2-181 

AnimOb 
definition, 2-166 
position, 2-167 

AnimORoutine 
in creating animation, 2-180 
with AnimateO, 2-181 

AnX variable 
in ring processing, 2-179 
in velocity and acceleration, 2-171 
moving registration point, 2-170 
specifying registration point, 2-167 

AnY variable 
in ring processing, 2-179 
in velocity and acceleration, 2-171 
moving registration poin t, 2-170 
specifying registration point, 2-167 

AOlPen variable 
in filling, 2-40 
in RastPort, 2-39 

A-Pen 
see FgPen, 2-39 

area buffer, 2-44 
area pattern, 2-41 
AreaDrawO 

adding a vertex, 2-49 
in area fi ll, 2-44 

AreaEndO 
drawing and filling shapes, 2-49 



in area fill, 2-44 
Arealnfo pointer, 2-44 
AreaMoveO 

beginning a polygon, 2-49 
in area fill, 2-44 

AskSoftStyleO, 2-192 
AUDO-AUD3 interrupts, 1-51 
audio channels 

allocation, 3-10, 3-5 
allocation key, 3-12, 3-6 
changing the precedence, 3-13 
freeing, 3-12, 3-13 

audio device 
AbortIOO, 3-9 
allocation/arbitration commands, 3-9 
BeginIOO, 3-9 
CloseDeviceO, 3-9 
double-buffering, 3-15 
hardware control commands, 3-14 
IORequest block, 3-4 
OpenDeviceO, 3-8 
playing the sound, 3-14 
precedence of users, 3-5 
scope of commands, 3-4 
starting the sound, 3-18 
stopping the sound, 3-16, 3-17, 3-18 
use of BeginIOO function, 3-7 

autovector address, 1-50 
AvailFontsO, 2-195 
background pen, 2-39 
background play field, 2-33 
BDRAWN flag, 2-144 
beam synchronization, 2-62 
Before pointer 

changing Bob priority, 2-148 
in animation precedence, 2-176 
in Bob priority, 2-139, 2-139 
in linking AnimComps, 2-179 

BeginIOO, 1-42, 1-46 
Begin UpdateO, 2-85 
BehindLayerO, 2-73 
BgPen, 2-190 
BitMap 

address, 2-26 
in dou ble-buffering, 2-36 
in superbitmap layers, 2-76 
software clipping, 2-50 

-11-

with write mask, 2-45 
BitMap structure 

in dual-playfield display, 2-34 
preparing, 2-25 

bit-planes 
extracting a rectangle from, 2-59 
in dual-playfield display, 2-33 

BLIT interrupts, 1-51, 1-56 
blitter 

in Bob animation, 2-101 
in copying data, 2-62 
in disk driver, 3-44 
VBEA.\1 counter, 2-64 

BltBitMapO, 2-60 
BltClearO, 2-54 
bltnode structure 

creating, 2-64 
linking blitter requests, 2-62 

BltPatternO, 2-56 
BitTempiateO, 2-58 
BobComp pointer, 2-143 
BOBISCOMP flag, 2-143 
BOBNIX flag, 2-144 
BOBSAWAY flag, 2-144 
Bobs 

adding new features, 2-163 
as a paintbrush, 2-143 
as part of AnimComp, 2-143 
Before, After poin ters, 2-176 
bit-planes, 2-134, 2-136 
changing, 2-147 
clipping, 2-142 
colors, 2-131, 2-134, 2-136, 2-152 
defining, 2-130 
definition, 2-101 
displaying, 2-147 
double-buffering, 2-145, 2-148 
drawing order, 2-138 
list, 2-140 
priorities, 2-138 
removing, 2-144 
saving the background, 2-140 
shadow mask, 2-135, 2-142 
shape, 2-132 
size, 2-131 
sorting the list, 2-146 
structure, 2-130 



transparency, 2-142 
troubleshooting, 2-152 

DORDERHIT flag, 2-160 
BorderLine pointer, 2·159 
BOTTOMHIT flag, 2-154 
bottommost variable 

in Bobs clipping region, 2-143 
in BobjVSprite collision, 2-162 

BOuNDARY_OFF macro, 2-50 
B-Pen 

see BgPen, 2-39 
BufPath variable, 2-149 
BurY, BufX variables, 2-149 
bus error, 1-25 
busy wait, 1-12 
BufBuffer variable, 2-149 
BWAITING flag, 2-143 
bytecnt variable, 2-57 
bytecount pointer, 2-54 
CAPS LOCK key, 3-72, 3-86 
CauseO, 1-58 
ChangePriO, 1-14 
ChangeSpriteO, 2-105 
CheckIOO, 1-42, 1-46, 1-46, 3-164, 3-182, 

3-57 
CHK instruction, 1-25 
cleanup variable, 2-64 
ClearRegionO, 2-87 
ClipBlitO, 2-60 
clipping 

in area fill, 2-50 
in line drawing, 2-48 
text, 2-18.5 

clipping rectangles 
in BobjVSprite collision, 2-163 
in layer operations, 2-74 
in layers, 2-68, 2-85 
modifying regions, 2-87 

clipping region 
in Bobs, 2-142 
in boundary collisions, 2-160 
in VSprites with GELGONE, 2-118 

ClipRect structure, 2-85 
CloseDeviceO, 1-47,3-89 
CloseO,3-194 
CloseLibraryO, 1-75 
CMD_CLEAR command, 3-50 

CMD_CLEAR commands, 1-43 
CMD_FLUSH commands, 1-44 
CMD_READ commands, 1-43 
CMD_RESET commands, 1-43 
CMD_START commands, 1-44 
CMD_STOP commands, 1-44 
CMD_UPDATE command, 3-50 
CMD_UPDATE commands, 1-43 
CMD_WRITE command, 3-50 
CMD_ WRITE commands, 1-43 
CmpTimeO, 3-33 
collisions 

between GEL objects, 2-153 
boundary, 2-160 
boundary hits, 2-154 
collision mask, 2-157 
detection in hardware, 2-153 
fast detection, 2-159 
GEL to GEL, 2-155 
in animation, 2-153 
multiple, 2-155 
sensitive areas, 2-158 
user routines, 2-161 

ColTh.1ask variable 
in Bobs, 2-135 
with collision mask, 2-157 

color 

-lll-

affect of display mode on, 2-6 
Bobs, 2-131, 2-152 
ColorMap structure, 2-26 
flickering, 2-129 
in dual playfield mode, 2-16 
in flood fill, 2-51 
in hold-and-modify mode, 2-36 
interaction between VSprites and Bobs, 

2-152 
mode in flood fill, 2-51 
of individual pixel, 2-46 
playfield and VSprites, 2-129 
relationship to bit-planes, 2-9 
relationship to depth of BitMap, 2-15 
simple sprites, 2-104 
single-color raster, 2-55 
sprites, 2-17 
transparency, 2-116 
VSprite, 2-114 
VSprites, 2-128 



ColorMap structure, 2-26 
CommandTable, 3-214 
compFlags variable, 2-170 
COMPLEMENT, 2-190 
complement mode, 2-41 
concurrent programs, 1-11 
ConMayGetChar(), 3-67 
ConPutCharO, 3-62 
console 

alternate key maps, 3-84 
capsable keys, 3-86 
character output, 3-58 
cl~ing, 3-89 
control sequence introducer, 3-71 
control sequences, 3-62 
high key map, 3-80, 3-88 
input event qualifiers, 3-72 
input stream, 3-68 
keyboard input, 3-58 
keymapping, 3-75, 3-79 
keymapping qualifiers, 3-82, 3-82 
key types, 3-84 
low key map, 3-80, 3-87 
mouse button events, 3-79 
raw events, 3-70 
raw input types, 3-71 
reads, 3-67 
repeatable keys, 3-86 
string output keys, 3-84 
window bounds, 3-70 

console device, 3-103 
Con WriteO, 3-62 
cookie cut, 2-61 
CO PER interrupts, 1-51, 1-.56 
Copper 

changing colors, 2-26 
display instructions, 2-27 
in drawing VSprites, 2-115 
in in terlaced displays, 2-35 
long-frame list, 2-35 
MakeVPortO,2-32 
MrgCopO, 2-27, 2-35 
short-frame list, 2-35 

copymg 
d;:..ta, 2-61 
rectangles, 2-60 

count variable, 2-48 

CPU priority level, 1-51 
cp_x variable 

in drawing, 2-45 
in text, 2-184 

cpS variable 
in drawing, 2-45 
in text, 2-184 

crashing 
with drawing routines, 2-48 
with fill routines, 2-50 

CreateBehindLayerO, 2-70, 2-71 
CreateExtIOO, 3-162, 3-180, 3-195, 3-46 
CreatePortO, 1-31, 3-162, 3-180, 3-196, 

3-46 
CreateStdIOO, 3-46, 3-60 
CreateUpFrontLayerO, 2-70, 2-71 
critical section, 1-21 
CTRL key, 3-87 
DamageList structure 

in layers, 2-85 
in regions, 2-86 

DBufl'er pointer, 2-148 
DBufPacket structure, 2-149 
DeallocateO, 1-63, 1-68, 1-69 
deallocation 

- IV -

Copper list, 2-32 
memory, 1-61, 2-32,2-45 

DebugO, 1-81 
debugger, 1-81 
DeleteExtIOO, 3-162, 3-180 
DeleteLayerO, 2-72 
DeletePortO, 3-162, 3-180 
DeleteStdIOO, 3-89 
depth, 2-15 
Depth variable, 2-132, 2-133 
destRastPort variable, 2-59 
destX variable, 2-59 
destY variable, 2-59 
devices 

definition, 1-39 
driver, 1-39 
input/output, 1-39 
standard, 1-48 
Task structure fields for, 1-15 
unit, 1-39 

DHeight variable 
in ViewPort, 2-22 



in ViewPort display memory, 2-20 
DisableO, 1-23, 1-58 
DISABLE macro, 1-23, 1-58 
DISABLE mutual-exclusion mechanism, 

1-52 
disabling 

interrupts, 1-23, 1-53 
maximum disable period, 1-23 

disabling interrupts, 1-58 
diskfont library, 2-193 
disk/ont.h, 2-196 
DisownBlitterO, 2-62 
display fields, 2-5 
display modes, 2-16 
display wid th 

affect of overscan on, 2-4 
effect of resolution on, 2-19 

DisposeRegionO, 2-85 
DMA 

displaying the View, 2-28 
playfield, 2-14 

DoCollisionO 
purpose, 2-153 
with collision masks, 2-161 

DoIOO, 1-42, 1-45, 3-57 
DoSpecialO, 3-213, 3-214, 3-215 
dotted lines, 2-41 
double-buffering 

allocations for, 2-34 
Copper in, 2-36 
Copper lists, 2-123 
with Bobs, 2-148 

DrawerData structure, 4-25 
DrawO 

in line drawing, 2-47 
multiple line drawing, 2-48 

DrawGListO 
and BDRAWN flag, 2-144 
and BOB NIX flag, 2-144 
and BOBSAWAY flag, 2-144 
and BWAITING flag, 2-144 
animation, 2-154 
changing Bobs, 2-148 
displaying Bobs, 2-147 
linking AnimComps, 2-179 
moving registration poin t, 2-170 
preparing the GELS list, 2-121 

removing Bobs, 2-146 
with DoCollisionO, 2-181 

drawing 
changing part of drawing area, '2-56 
clearing memory, 2-54 
colors, 2-39 
complement mode, 2-41 
lines, 2-47 
memory for, 2-37 
modes, 2-40, 2-41 
moving source to destination, 2-58 
pens, 2-39, 2-39 
pixels, 2-46 
shapes, 2-51 
turning off outline, 2-50 

drawing pens 

-v-

color, 2-39 
current position, 2-45 

DrawMode variable 
in area drawing and filling, 2-49 
in flood fill, 2-52 
in stencil drawing, 2-57 
with BltTemplate, 2-60 , 2-190 

DSKBLK interrupts, 1-51 
DSKSYNC interrupts, 1-51 
dual playfields 

bit-planes, 2-33 
color map, 2-27 
colors, 2-16 
priority, 2-33 

DUALPF flag 
in dual playfield display, 2-33 
in ViewPort, 2-16 

DumpRPortO, 3-193,3-201 
DWidth variable 

in ViewPort, 2-13, 2-14, 2-22 
in ViewPort display memory, 2-20 

DxOffset variable 
effect on display window, 2-22 
in View Port display memory, 2-20 

DyOffset variable 
effect on display window, 2-22 
in ViewPort display memory, 2-20 

EnableO, 1-23, 1-58 
ENABLE macro, 1-23, 1-58 
EndUpdateO, 2-85 
EnqueueO, 1-7 



EQUAL status code, 2-63 
ETD_CLEAR command, 3-50 
ETD_MOTOR command, 3-51 
ETD_READ command, 3-49 
ETD_UPDATE command, 3-50 
ETD_ WRITE command, 3-50 
events, 1-19 
exception signal, 1-24 
exceptions 

synchronous, 1-205 
exclusion, 1-21 
exec/libraries.h, 1-77 
EXTER in terru pts, 1-05 1, 1-56 
EXTRA_HALF BRITE flag, 2-16, 2-17 
fa.st floating point library, 4-1 
fatal system error, 1-81 
FattenLayer InCoO, 2- 70 
FgPen, 2-190 
FgPen variable 

in area drawing and filling, 2-49 
in complement mode, 2-41 
in flood fill, 2-051, 2-.52 
in JAMI mode, 2-39 
in line drawing, 2-47 
in RastPort, 2-39 
in rectangle fill, 2-052 
with BltTemplate, 2-60 

FindNameO, 1-8 
FindPort(), 1-33 
FindToolTypeO, 4-31 
first-in-first-out (FIFO), 1-29, 1-7 
Flags variable 

in AnimComps, 2-177 
in layers, 2-75 
in VSprites, 2-117 
with BOUNDARY_OFF macro, 2-050 

flicker, 2-62, 2-65 
FloodO, 2-51 
floppy disk, 3-44 
FontContents structure, 2-195 
FontContentsHeader structure, 2-195 
fonts, 2-183 
forbidding, 1-22 
ForbidO, 1-22, 4-31 
foreground pen, 2-39 
FOREVER loop, 2-32 
free memory, 1-70 

FreeColorMapO, 2-32 
FreeCprListO, 2-32 
FreeDiskObjectO, 4-25 
FreeEntryO, 1-63, 1-65 
FreeMemO, 1-64, 1-64, 1-68 
FreeRasterO, 2-32 
FreeSigna10, 1-20, 1-26 
FreeSpriteO, 2-113 
FreeTrapO, 1-26 
FreeVPortCopListsO, 2-32 
Gadget structure, 4-26 
game port connectors, 3-101 
game port device 

connectors, 3-123 
system functions, 3-123 
triggering events, 3-126 
units, 3-101, 3-123 

gameport.h, 3-125 
GameTrigger structure, 3-126 
GELGONE flag 

in Bobs, 2-142 
with VSprites, 2-118 

GELS 
initializing, 2-98 
list, 2-98 
types, 2-99 

Gelslnfo pointer, 2-45 
Gelslnfo structure, 2-125 
GetColorMapO,2-32 
GetDiskObjectO, 4-25 
GetKeyMapO, 3-80 

- VI -

GetMsgO, 1-36, 1-46,3-164, 3-182 
GetSpriteO, 2-104 
GfxBase variable, 2-24 
GPD_GETCTYPE command, 3-125 
GPD_SETCTYPE command, 3-124 
GPD_SETTRIGGER command, 3-126 
Grand-Wack, 1-81 
graphics library, 2-23 
H.AM flag, 2-16, 2-36 
hardware interrupts, 1-49 
hardware sprites 

allocation, 2-104 
in animation, 2-27 
reserving, 2-125 

Height variable 
in Bobs, 2-131, 2-133 



in ViewPort, 2-13 
in VSprites, 2-114 

HIRES flag, 2-16 
HitMask variable, 2-161 
hold-and-modify mode, 2-6 
icon library, 4-24 
IDeMP, 3-108 
IDNestCnt counter, 1-59 
illegal instruction, 1-25 
ImageData pointer 

changing Bobs, 2-147 
changing VSprites, 2-124 
in Bobs, 2-132 
in VSprites, 2-115,2-116 

Image structure, 4-27 
ImageShadow variable 

in Bobs, 2-135 
with OVERLAY flag, 2-142 

IND_ADDHANDLER command, 3-103 
IND_REMHANDLER command, 3-105 
IND_SETPERIOD command, 3-107 
IND_SETTHRESH command, 3-107 
IND_WRITEEVENT command, 3-106 
info file, 4-24 
InitAreaO,2-44 
InitGelsO, 2-98 
initialPC, 1-16 
InitLayersO,2-70 
InitMasksO 

changing Bob image shadow, 2-147 
defining collision mask, 2-158 
with Borderline, 2-159 

InitRastPortO, 2-188 
input device 

adding a handler, 3-103 
commands, 3-102 
designing an input handler, 3-104 
generating input events, 3-106 
IOStdReq block, 3-103 
key repeat even ts, 3-107 
memory deallocation, 3-105 
opening, 3-101 
removing a handler, 3-105 
setting key repeat in terval, 3-107 
setting key repeat timing, 3-107 

input event chain, 3-104 
input event structure, 3-102 

input events 
generators of, 3-106 
Intuition handling of, 3-104 
mouse button, 3-108 

inputevent.h, 3-103 
input_request_block, 3-106 
InsertO, 1-6 
INTEN interrupts, 1-51 
INTENA register, 1-50 
Interrupt structure, 1-3, 1-53 
interrupts 

68000 interrupt request signals, 1-50 
68000 priority levels, 1-50 
autovectors, 1-50 
deferred, 1-52 
disable, 1-53 
disabling, 1-58 
handlers, 1-52, 1-54 
hardware registers, 1-50 
non-mask able (NMI), 1-52 
priorities, 1-51 
server return value, 1-56 
servers, 1-52, 1-56 
software, 1-58 

inter-system communication, 1-29 
INTREQ register, 1-50 
Intuition 

as input device handler, 3-104 
mouse input, 3-101 , 2-103 

Il\vERSEVlD,2-191 
INVERSEVID mode 

in drawing, 2-41 
I/O 

asynchronous, 1-42, 1-46 
performing, 1-44 
Quick I/O, 1-47 
synchronous, 1-42, 1-45 

I/O commands 

- Vll -

abort all I/O requests, 1-44 
clear internal buffers, 1-43 
continue after a stop, 1-44 
definition of, 1-40 
force out internal buffers, 1-43 
non-standard, 1-40, 1-42 
read from a device unit, 1-43 
reset the device unit, 1-43 
standard, 1-40, 1-43 



stop device unit, 1-44 
when errors occur, 1-45 
w.-ite to a device unit, 1-43 

I/O requests 
completion, 1-46 
definition of, 1-40 
multiple, 1-46, 1-46 
standard, 1-41 

IODRPReq structure, 3-195 
IOExtPar structure, 3-181 
IOExtSer structure, 3-163, 3-174 
IOExtTD structure, 3-46 
io.h, 1-43 
io.i, 1-43 
IOPrtCmdReq structure, 3-195 
IORequest structure, 1-40 
IOStdReq structure, 1-41, 3-61 
io_TermArray, 3-183 
io_TermArray, 3-166 
JA..\11, 2-190 
JAMI mode 

in drawing, 2-39 
with INVERSEVID, 2-41 

JA..\12 mode 
in drawing, 2-40 
in text, 2-190 

joystick con troller, 3-124 
KBD_ADDRESETHAl':DLER command, 

3-116 
KBD_READEVENT command, 3-120 
KBD_READMATRIX command, 3-118 
KBD_REMRESETHAl':DLER command, 

3-117 
KBD_RESETHANDLERD00lE command, 

3-118 
keyboard device 

keyboard events, 3-115 
system functions, 3-116 

keyboard layout, 3-73 
KeyMap structure, 3-80 
keymap.h, 3-83 
keymap. i, 3-83 
LACE flag 

in View and ViewPort, 2-20 
in ViewPort, 2-16 

last-in-last-out (LIFO), 1-7 
layer refresh 

simple refresh, 2-75 
sma.rt refresh, 2-76 
superbitmap, 2-76 

LAYER BACKDROP flag, 2-77 
Layer_Info structure, 2-70, 2-78 

layers 
accessing, 2-70, 2-71 
backdrop, 2-77 
blocking output, 2-71 
clipping rectangle list, 2-85 
creating, 2-70, 2-71, 2-79 
creating the workspace, 2-78 
deleting, 2-72 
moving, 2-72 
order, 2-73 
redrawing, 2-85 
scrolling, 2-72 
simple refresh, 2-85 
sizing, 2-72 
su b-layer operations, 2-74 
updating, 2-85 

layers library 
con ten ts, 2-67 
opening, 2-77 

LA YERSIMPLE flag, 2-75 
LA YERS1-fART flag, 2-75 
LA YERSUPER flag, 2-75 
LEFTHIT flag, 2-154 
leftmost variable 

in Bobs clipping region, 2-143 
in Bob/VSprite collision, 2-162 

libraries 
adding, 1-75 
caching a pointer, 1-74 
calling a library routine, 1-73 
CLOSE vector, 1-77 
definition of, 1-71 
EXPUNGE vector, 1-77 
OPEN vector, 1-77 
relation to devices, 1-79 

line 1010 emulator, 1-25 
line 1111 emulator, 1-26 
line drawing, 2-47 
line pattern, 2-41 
LinePtrn variable, 2-49 
lines 

multiple, 2-48 

- Vlll -



patterned, 2-48 
list 

linkage, 1-2 
List structure, 1-2, 1-4 
lists 

empty lists, 1-9 
prioritized insertion, 1-7 
scanning a list, 1-10 
searching by name, 1-8 

shared system lists, 1-10 
sorted, 1-3 

lists.i, 1-8 
LoadRGB40, 2-26 
LoadViewO 

effect of freeing memory, 2-32 
in display ViewPorts, 2-28 

locking, 1-24 
LocklayerO, 2-71 
LoekLayerInfoO,2-70 
LockLayersO,2-71 
LOFCprList variable, 2-35 
logic equations, 2-60 
long-frame Copper list, 2-35 
MakeLibraryO, 1-76 
MakeViewO 

with simple sprites, 2-103 
MakeVPortO 

allocating memory, 2-32 
in double-buffering, 2-35 
in dual playfield display, 2-33 , 2-27 

Mask variable, 2-45, 2-60 
masking interrupts, 1-23 
MatchTooIValueO,4-31 
math library, 4-1 
mathffp.library, 4-3 
mathieeedoubbas_lib.lib, 4-20 
mathieeedoubbas.library, 4-17 
mathlink.lib, 4-11, 4-5 
mathtrans.library, 4-7 
maxx variable, 2-57 
maxy variable, 2-57 
MeMask variable, 2-161 
memblock pointer, 2-54 
MemEntry structure, 1-65 
MEMF _CHIP, 1-62 
MEMF _CLEAR, 1-63 
MEMF _FAST, 1-62 

MEMF _PUBLIC, 1-62 
MemList structure, 1-65 
memory 

allocation for BitMap, 2-25 
allocation within interrupt code, 1-62 
clearing, 2-54 
deallocation of, 2-45 
deallocation within interrupt code. 1-62 
for area fill, 2-44 
free, 1-61, 1-70 
freeing, 2-32 

memory.h, 1-65, 1-69 
memory.i, 1-69 
message, 1-29 
message arrival action, 1-31 
message ports 

creation, 1-31 
deletion, 1-33 
public, 1-31 

messages 
getting, 1-36 
putting, 1-34 
replying, 1-37 
waiting for, 1-35 

.\;IICROHZ timer unit, 3-29 
minterm variable, 2-60 
Modes variable 

- IX-

in View structure, 2-22 
in ViewPort, 2-15, 2-16 

modulo, 2-59 
mouse button, 3-103 
mouse button events, 3-101, 3-79 
mouse controller, 3-124 
mouse movement events, 3-101 
mouth structure, 3-143 
MoveO, 2-184, 2-47 
MoveLayer(), 2- 72 
MoveSpriteO, 2-106 
MrgCopO 

in graphics display, 2-27 
installing VSprites, 2-122 
merging Copper lists, 2-32 , 2-35 

MsgPort structure, 1-30 
multitasking, 1-11 
mutual exclusion, 1-24, 1-53 
mylnfo structure. 2-164 
narrator device 



Arpabet, 3-150 
consonants, 3-151 
content words, 3-153 
contractions, 3-152 
controlling speech characteristics, 3-142 
function words, 3-153 
improving intelligibility, 3-156 
mouth shape, 3-143 
opening, 3-141 
opening the device, 3-144 
output buffer, 3-140 
phonemes, 3-150 
phonetic spelling, 3-150 
punctuating phonetic strings, 3-150 
punctuation, 3-155 
reading and writing, 3-144 
recommended stress values, 3-154 
special symbols, 3-152 
speech synthesis system, 3-157 
stress and intonation, 3-153 
stress marks, 3-153 
translator library, 3-139 
vowels, 3-151 

narrator.h, 3-143 
narrator.i, 3-143 
narrator_rb structure, 3-142 
nested disabled sections, 1-59 
NewLayerInfoO, 2-70 
NEWLIST macro, 1-6 
NewRegionO, 2-86 
NewWindow structure, 4-26 
NextComp pointer 

in linking AnimCom ps, 2-179 
in sequenced drawing, 2-174 

Next variable, 2-25 
NextSeq pointer 

in link ing Anim Com ps, 2-179 
in sequenced drawing, 2-174 

l\1}.11 interrupts, 1-51, 1-56 
Node structure, 1-2 
nodes 

adding, 1-6 
data type, 1-3 
initialization, 1-3 
inserting, 1-6 
names, 1-3 
priority, 1-3 

removing, 1-6 
successor and predecessor, 1-2, 1-5 
content, 1-2 

nodes.h, 1-3 
nodes.i, 1-3 
NOTEQUAL status code, 2-63 
ON_DISPLAY macro, 2-121 
ON_SPRITE macro, 2-121 
O-Pen 

see AOIPen, 2-39 
OpenConsoleO, 3-60 
OpenDeviceO, 1-44, 1-47 
OpenDiskFontO, 2-187,2-199 
OpenFontO, 2-187, 2-199 
OpenO, 3-194 
OpenLibraryO, 1-71, 1-72, 1-75 
OpenScreenO, 2-103 
OrRectRegionO,2-87 
outline mode, 2-51 
outline pen, 2-39 
OVERLAY flag, 2-142 
OwnBlitterO, 2-62 
PAR:, 3-193 
parallel device 

closing, 3-187 
EOF mode, 3-183, 3-185, 3-185 
errors, 3-186 

-x-

flags, 3-185 
IOExtPar block, 3-181 
io_TermArray, 3-183, 3-185 
loading from disk, 3-180 
opening, 3-179, 3-180 
opening timer device, 3-180 
PDCMD_SETPARAMS, 3-180 
reading, 3-181, 3-181 
setting parameters, 3-180, 3-185, 3-186 
shared access, 3-185 
terminating the read, 3-183 
termination characters, 3-185 
writing, 3-183 

PDCMD_SETPARAMS, 3-180 
PED structure, 3-204 
PermitO, 1-22 
PFBA flag 

in dual playfield mode, 2-19 
in ViewPort, 2-16 

pixel width, 2-19 



PlaneOnOff variable 
changing Bob color, 2-147 
in Bobs, 2-136 

PlanePiek variable 
changing Bob color, 2-147 
in BobSt 2-134, 2-136, 2-137 

PLANEPTR, 2-25 
polling, 1-12 
PolyDrawO, 2-48 
polygons, 2-49 
port, 1-29 
PORTS interrupts, 1-51, 1-56 
ports.h, 1-30, 1-33 
ports.i, 1-30, 1-33 
power _oCtwo variable, 2-42 
PRD_DUMPRPORT,3-201 
PRD_PRTCOMMAND, 3-200 
predecessor, 1-2, 1-5 
pre-emptive task scheduling, 1-50 
Preferences, 3-193, 3-204 
PrevComp pointer 

in linking AnimComps, 2-179 
in sequenced drawing, 2-174 

PrevSeq pointer 
in linking AnimComps, 2-179 
in sequenced drawing, 2-174 

PrintCommandO,3-201 
printer device 

alphanumeric drivers, 3-213 
buffer deallocation, 3-211 
buffer space, 3-208 
closing DOS printer device, 3-194 
command buffer, 3-208 
command functions, 3-197 
CommandTable, 3-213 
creating an I/O request, 3-195 
creating drivers, 3-204 
data structures, 3-195 
density, 3-212 
direct use, 3-193 
DOS parallel dev ice, 3-193 
DOS prin ter device, 3-192 
DOS serial device, 3-1\)2 
double buffering, 3-209 
dumping a RastPort, 3-201 
dumping buffer, 3-211 
Exec printer I/O, 3-195 

graphics printer drivers, 3-207 
opening, 3-196 
opening DOS printer device, 3-193 
output forms, 3-192 
output methods, 3-191 
PAR:, 3-193 
Preferences, 3-193, 3-204, 3-206, 3-215 
printer types, 3-207 
processes and tasks, 3-194 
PRT:, 3-192 
PRT:, 3-197 
reset command, 3-210 
SER:, 3-192 
timeout, 3-206 
transmitting commands, 3-200 
writing, 3-196 

PrinterData structure, 3-206 
PrinterExtendedData. structure, 3-204 
printerIO structure, 3-195 
privilege violation, 1-25 
processes, 1-15 
processor 

halting, 1-12 
in terru p t priority levels, 1-23 

PRT:, 3-192 
PutDiskObjeetO, 4-25 
PutMsgO, 1-34 
PWaitO, 3-210 

- Xl-

QBlitO 
linking bltnodes, 2-63 
waiting for the blitter, 2-62 

QBSBlitO 
avoiding flicker, 2-62 
linking bltnodes. 2-63 
waiting for the blitter, 2-62 

quantum, 1-12, 1-12 
QueueReadO, 3-67 
RasInfo structure, 2-22 
RASSIZE macro, 2-23 
raster 

depth,2-15 
dimensions, 2-21 
in dual-playfield mode, 2-16 
memory allocation, 2-23 
one color, 2-55 
Raslnfo structure, 2-22 
scrolling, 2-55 



RastPort 
in area fill, 2-44 
in layers, 2-75 
poin ter to, 2-46 

RastPort structure, 2-183 
ra.stport variable, 2-57 
rastport.h, 2-38 
rastport. i, 2-38 
RawWriteO,3-193 
RBF interrupts, 1-51 
ReadPixe10, 2-47 
rectangle fill, 2-52 
rectangle scrolling, 2-55 
RectFillO, 2-52 
regions 

changing, 2-87 
clearing, 2-87 
creating, 2-86 
removing, 2-86 

register parameters, 1-54 
registration po in t, 2-170 
RemBobO, 2-146 
RemHead{), 1-7 
RemIBob{),2-146 
RemlntServerO, 1-56 
REMOVE macro, 1-9 
RemoveO, 1-6,3-164,.3-182 
RemPortO, 1-33 
RemTailO, 1-7 
RemTaskO, 1-18 
RemVSpriteO, 2-118, 2-119 
RenderO, 3-207, 3-208 
rendezvous, 1-33 
replying, 1-29, 1-37 
ReplyMsgO, 1-37 
ReplyPort, 3-60 
ReplyPort pointer, 3-30 
RHeight, 2-21 
RIGHTHIT flag, 2-154 
rightmost variable 

in Bobs clipping region, 2-143 
in Bob jVSp rite collision, 2-162 

RINGTRIGGER flag 
in AnimComps, 2-177 
in linking AnimCom ps, 2-179 
moving registration poin t, 2-170 

RingXTrans variable 

in ring processing, 2-179 
moving registration point, 2-170 

RingYTrans variable 
in ring processing, 2-179 
moving registration point, 2-170 

ROM-Wack, 1-81 
RTE instruction, 1-54 
RWidth, 2-21 
RxOffset variable 

effect on display, 2-21 
in Raslnfo structure, 2-22 
in View Port display memory, 2-20 

RyOffset variable 
effect on display, 2-21 
in Raslnfo structure, 2-22 
in ViewPort display memory, 2-20 

SA VEBACK flag 
in Bobs, 2-142 
saving the background, 2-141 

SAVEBOB flag 
changing Bobs, 2-148 
in Bobs, 2-143 

SaveBuffer variable 
in saving background, 2-141 
with SA VEBACK, 2-142 

SAVEPRESERVE flag, 2-145 
Scheduling, 1-11 
scrolling, 2-55 
ScrollLayerO, 2-72, 2-76 
ScrollRasterO, 2-55 
SDCMD_SETP ARAMS, 3-163 
semaphores, 1-24 
SendIOO, 1-42, 1-46, 3-57 
SER:, 3-192 
serial device 

- xii -

alternative reading modes, 3-163, 3-165 
baud rate, 3-168 
bits per read, 3-169 
bits per write, 3-169 
break commands, 3-171 
break conditions, 3-169 
buffer size, 3-168 
buffers, 3-162 
closing, 3-172 
end-of-file, 3-169 
EOF mode, 3-166,3-169,3-170 
errors, 3-172 



exclusive access, 3-162 
flags, 3-162 
high-speed mode, 3-170 
I/O request structures, 3-163 
IOExtSer block, 3-174 
io_TermArray, 3-166 
modes, 3-161 
opening timer device, 3-162 
parameter changes, 3-163 
parity, 3-171 
quick I/O, 3-165 
reading, 3-163 
SDCMD_SETPARAMS, 3-163 
serial flags, 3-169, 3-170 
serial parameters 

XON, XOFF, 3-168 , 3-171 
seven-wire access, 3-171 
seven-wire flag, 3-162 
shared access, 3-162, 3-170 
stop bits, 3-169 
terminating the read, 3-166 
writing, 3-166 
XON, XOFF, 3-168, 3-170 

SetAPenO, 2-189 
SetBPenO, 2-189 
SetCollisionO,2-156 
SetDrPtO, 2-48 
SetFontO, 2-187 
SetFunctionO, 1-78 
SetlntVectorO, 1-50, 1-55 
SetKeyMapO,3-80 
SetRastO, 2-55 
SetSigna10, 1-20 
SetSoftStyleO,2-192 
SHFCpriist variable, 2-35 
short-frame Copper list, 2-35 
SigExceptO, 1-24 
signal bit number, 1-30 
SignalO, 1-21 
signals 

allocation, 1-19 
coordination, 1-19 
exception, 1-24 
on arrival of messages, 1-31 
waiting for, 1-20 

simple refresh, 2-85 
simple sprites 

definition, 2-100 
GfxBase, 2-126 
in Intuition, 2-103 
position, 2-107 
rou tines, 2-103 

SimpleSprite structure, 2-105 
single- buffering, 2-23 
SizeLayerO, 2-72, 2-76 
SOFTINT interrupts, 1-51 
software clipping 

in fi \ling, 2-50 
in line drawing, 2-48 

software interrupts, 1-30, 1-31, 1-49, 1-52, 
1-58 

SortGListO 
changing Bobs, 2-148 
ordering GEL list, 2-120 
sorting Bobs, 2-146 
with DoCollisionO, 2-181 

sound synthesis, 3-1 
source variable, 2-59 
speech 

see narrator device, 3-139 
SprColors pointer 

changing VSprites, 2-124 
in VSprite troubleshooting, 2-126 
in VSprites, 2-115, 2-116 
when a 0, 2-128 

sprFlag variable, 2-141 
sprite DMA, 2-127 
SPRITE flag, 2-103 
sprites 

color, 2-17 
colors, 2-104 
display, 2-14 
hardware, 2-100 
pairs, 2-104 
reserving, 2-125 
reusability, 2-100 
simple, 2-100 
virtual, 2-100 

sprRsrvd variable 
effect on Bob color, 2-153 
in reserving sprites, 2-125 

srcMod variable, 2-59 
srcX variable, 2-59 
stack overflows, 1-18 

- XIII -



stencil drawing, 2-57 
structures 

access to global system structures, 1-21 
shared, 1-21 

SubTimeO, 3-33 
successor, 1-2, 1-5 
supervisor modes, 1-26, 1-50, 1-53 
SwapBitsClipRectRastPortO, 2-74 
system stack, 1-26, 1-53 
system time, 3-33 
task signal, 1-30 
Task structure, 1-14 
task.h, 1-14 
task-private interrupts, 1-24 
task-relative interrupts, 1-49 
tasks 

cleanup, 1-18 
communication, 1-19 
coordination, 1-19 
creation 

initialPC, 1-16 
stack, 1-15 

deallocation of system resources, 1-18 
finalPC, 1-18 
forbidding, 1-22 
initialPC, 1-18 
non-preemptive, 1-22 
priority, 1-14 
queues 

ready queue, 1-13 
waiting queue, 1-13 

scheduling 
non-preemptive, 1-12 
preemptive, 1-12 

stack 
minimum size, 1-18 
overflows, 1-18 
supervisor mode, 1-17 
user mode, 1-17 

states 
added, 1-13 
exception, 1-13 
removed, 1-13 
running, 1-12 
waiting, 1-13 

termination, 1-18 
tasks.i, 1-15 

TBE interrupts, 1-51 
TD_CHANGENUM command, 3-52 
TD_CHANGESTATE command, 3-52 
TD_FORMA T command, 3-51 
TD_MOTOR command, 3-51 
TD_PROTSTATUS command, 3-52 
TD_REMOVE command, 3-51 
TD_SEEK command, 3-53 
text 

adding fonts, 2-193 
baseline, 2-184 
changing font style, 2-192 
character data, 2-200 
color, 2-189, 2-190 
default fonts, 2-187 
defining fon ts, 2-197 
disk fonts, 2-196 
f on t accessors, 2-199 
in ter-character spacing, 2-193 
printing, 2-186 
selecting a font, 2-187 

TextAttr structure, 2-188 
TextFont structure, 2-197 
TextO, 2-186, 2-193 
text.h, 2-188 
ThinLayerlnfoO, 2-70 
time even ts, 3-10 1 
timer device 

arithmetic routines, 3-34 
OpenDeviceO, 3-31 
units, 3-29 
with 

parallel, 3-180 
with serial device, 3-162 

TimerBase variable, 3-34 
timeRequest structure, 3-30 
Timer variable, 2-178 
TimeSet variable 

with AnimateO, 2-178 , 2-177 
time-slicing, 1-12 
timeval structure, 3-30 
ToolTypes array, 4-31 
TOP HIT flag, 2-154 
topmost variable 

in Bobs clipping region, 2-143 
in BobjVSprite collision, 2-162 

trace, 1-25 

- XIV -



trackdisk device 
diagnostic commands, 3-53 
error codes, 3-53 
OpenDeviceO, 3-47 
status commands, 3-52 

TranslateO, 3-139 
translator library 

exception table, 3-141 
TRAP 

address error, 1-25, 1-83 
bus error, 1-25, 1-83 
CHK instruction, 1-25, 1-83 
illegal instruction, 1-25, 1-83 
line 1010 emulator, 1-25, 1-83 
line 1111 emulator, 1-26, 1-83 
normal entry, 1-83 
privilege violation, 1-25, 1-83 
trace, 1-25 
trace (single step), 1-83 
trap instruction N, 1-83 
trap instructions, 1-26 
TRAPV instruction, 1-25, 1-83 
zero divide, 1-25, 1-83 

TRAP instruction, 1-18 
traps 

instructions, 1-26 
supervisor mode, 1-26 
trap handler, 1-26 , 1-25 

TRAPV instruction, 1-25 
TR_GETSYSTIME, 3-33 
TR_GETSYSTIME command, 3-32 
TR_SETSYSTIME command, 3-32, 3-33 
UnlocklayerO,2-71 
UnlockLayersO,2-71 
UpfrontLayerO,2-73 
UserExt variable, 2-163 
UaerStuff variables, 2-164 
VBEAM counter, 2-64 
VBLANK timer unit, 3-29 
VERTB interrupts, 1-51, 1-56 
video priority 

Bobs, 2-97 
in d ual-playfield mode, 2-17 

View structure 
Copper lists in, 2-35 
function, 2-10 
preparing, 2-24 

ViewPort 
colors, 2-15, 2-26 
display instructions, 2-27 
display memory, 2-20 
displaying, 2-11 
function, 2-10 
height, 2-14 
in screens, 2-12 
interlaced, 2-20 
low-resolution, 2-24 
modes, 2-15, 2-16 
multiple, 2-25 
parameters, 2-12 
width, 2-14 
width of and sprite display, 2-14 
windows, 2-12 

ViewPort structure, 2-24 
VP _HIDE flag, 2-17 
VSOVERFLOW flag 

reserving sprites, 2-125 
with VSprites, 2-118 

VSPRITE flag 
in Bobs, 2-141 
in VSprites, 2-118 

VSprites 

- xv-

adding new features, 2-163 
building the Copper list, 2-121 
changing, 2-123 
color, 2-114 
colors, 2-128 
definition, 2-100 
dummy, 2-98 
hardware sprite assignment, 2-120, 2-127 
in Intuition, 2-117 
merging instructions, 2-122 
play field colors, 2-129 
position, 2-117 
shape, 2-115 
size, 2-114 
sorting the GEL list, 2-120 
trou bleshooting, 2-126 
turning on the display, 2-121 

Wack, 1-81 
WaitO, 1-20, 1-22, 1-23, 1-36, 1-46 
WaitIOO, 1-42, 1-46, 1-46 
WaitPortO, 1-35 
WaitTOFO, 2-123 



WhichLayerO, 2-73 
Width variable, 2-131 
Window structure, 3-57 
Workbench 

info file, 4-24 
sample startup program, 4-36 
startup code, 4-30 
startup message, 4-29, 4-30 
ToolTypes, 4-31 

Workbench object, 4-23 
WritePixelO, 2-46 
XAccel variable, 2-171 
xl variable, 2-57 
xmax variable, 2-52 
xmin variable, 2-52 
XorRectRegionO, 2-87 
XTrans, 2-168 
XVel variable, 2-171 
YAccel variable, 2-171 
yl variable, 2-57 
ymax variable, 2-52 
ymin variable, 2-52 
YTrans, 2-168 
YVel variable, 2-171 
zero divide, 1-25 

- XVI-












