aW\% 1 (@2 ROM Kernel
Reference Manual:
' Exec

Commodore Business Machines, Inc.

Amiga,
ROM Kernel Reference Manual

Exec

Amiga,
ROM Kernel Reference Manual

Exec

Commodore Business Machines, Inc.

Amiga Technical Reference Series

VAV
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California Don Mills, Ontario

Wokingham, England Amsterdam Bonn Sydney Singapore
Tokyo Madrid Bogotda Santiago San Juan

Authors: Carl Sassenrath, Rob Peck, and Susan Deyl
Program examples by Carl Sassenrath

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book and Addison-Wesley was aware of a trademark claim, the designations have been printed in initial
caps.

Library of Congress Cataloging-in-Publication Data

Amiga ROM kernel reference manual.

(Amiga technical reference series)

Includes index.

1. Amiga (Computer)-Programming. 2. Read-only
storage. 1.. Commodore Business Machines.
QA76.8.A177A655 1986 005.4°46 86-10887
ISBN 0-201-11099-7

COPYRIGHT © 1986 by Commodore Electronics, Ltd.

Al rights reserved. No part of this publication may be reproduced, stored, in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

DISCLAIMER

COMMODORE-AMIGA, INC,, (“COMMODORE") MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED, WITH
RESPECT TO THE PROGRAMS DESCRIBED HEREIN, THEIR QUALITY, PERFORMANCE, MERCHANTABILITY, OR FIT-
NESS FOR ANY PARTICULAR PURPOSE. THESE PROGRAMS ARE SOLD “AS IS.” THE ENTIRE RISK AS TO THEIR
QUALITY AND PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING
PURCHASE, THE BUYER (AND NOT THE CREATOR OF THE PROGRAMS, COMMODORE, THEIR DISTRIBUTORS OR
THEIR RETAILERS) ASSUMES THE ENTIRE COST OF ALL NECESSARY DAMAGES. IN NO EVENT WILL COMMODORE
BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT
IN THE PROGRAMS EVEN IF IT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSE-
QUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Amiga is a trademark of Commodore-Amiga, Inc.

Printed from camera-ready mechanicals supplied by the authors.

DEFGHIJ-BA-98987

Fourth Printing, January 1987

PREFACE

System Software Architecture

The Amiga kernel consists of a number of system modules, some of which reside per-
manently in the protected kickstart memory and others that are loaded as needed from
the system disk. Figure P-1 illustrates how the various modules interact with one
another. At the top of the hierarchy are Workbench and the Command Line Interface
(CLI), the user-visible portions of the system. Workbench uses Intuition to produce its
displays and AmigaDOS to interact with the filing system. Intuition, in turn, uses the
input device to retrieve its input and the graphics and layers library routines to produce
its output.

AmigaDOS controls processes and maintains the filing system and is in turn built on
Exec, which manages tasks, task switching, interrupt scheduling, message-passing, 1/0,
and many other functions.

At the lowest level of the hierarchy is the Armiga hardware itsell. Just above the
hardware are the modules that control the hardware directly. Exec controls the 68000,
scheduling its time among tasks and maintaining its interrupt vectors, among other
things. The trackdisk device is the lowest-level interface to the disk hardware, perform-
ing disk-hcad movement and raw disk 1/0. The keyboard and gameport devices handle
the keyboard and gameport hardware, queuing up input events for the input device to

process. The audio device, serial device, and parallel device handle their respective
hardware. Finally, the routines in the graphics library handle the interface to the graph-
ics hardware.

Programming

The functions of the kernel were designed to be accessed from any language that follows
the Amiga’s standard interface conventions. These conventions define the proper nam-
ing of symbols, the correct usage of processor registers, and the format of public data
structures.

REGISTER CONVENTIONS

All system functions follow a simple set of register conventions. The conventions apply
when any system function is called; programmers are encouraged to use the same con-
ventions in their own code.

The registers DO, D1, AO, and Al are always scratch; they are free to be modified at any
time. A function may use these registers without first saving their previous contents.
The values of all other data and address registers must first be preserved. If any of
these registers are used by a function, their contents must be saved and restored
appropriately.

If assembly code is used, function parameters may be passed in registers. The conven-
tions in the preceding paragraphs apply to this use of registers as well. Parameters
passed in DO, D1, AO, or A1 may be destroyed. All other registers must be preserved.

If a function returns a result, it is passed back to the caller in DO. If a function returns
more than one result, the primary result is returned in DO and all other results are
returned by accessing reference parameters.

The AG register has a special use within the system, and it may not be used as a param-
eter to system functions. It is normally used as a pointer to the base of a function vec-
tor table. All kernel functions are accessed by jumping to an address relative to this
base.

Vi

Workbench
AmigaDOS CLI Icons/Drawers/
and Utilities Utl'ltles
|
AmigaDOS Console Intuition
Processes, Device Windows, Menus,
File System L Gadgets, Events
Input Layers
Device Library
Keyboard . Serial
Exec Track- Graphics .
Tasks, :Aessages Disk and Renderizg'. Text, Audio and
Interrupts, 110 Device Gameport Gels Device Parallel
' Devices Devices
T v v T
! | | ‘ 1
' Disk | Keyboard i 1 |
68000 Processor 1 ol and ! Graphics ! Audo , VO Ports
! ontro ! Mouse ! |
! L 1 L !

Amiga Hardware

Figure P-1: Amiga System Software Modules

vii

DATA STRUCTURES

The naming, format, and initial values of public data structures must also be consistent
The conventions are quite simple and are summarized below.

1. All non-byte fields must be word-aligned. This may require that certain fields be
padded with an extra byte.

2. All address pointers should be 32 bits (not 24 bits) in size. The upper byte must
never be used for data.

3. Fields that are not defined to contain particular initial values must be initialized to
zero. This includes pointer fields

4. All reserved fields must be initiahized to zero (for future compatibility).

5. Data structures to be accessed by custom hardware must not be allocated on a pro-
gram stack.

6. Public data structures (such as a task control structure) must not be allocated on a
program stack.

7. When data structures are dynamically allocated, conventions 3 and 4 above can be

satisfied by specifying that the structure is to be cleared upon allocation.

OTHER PRACTICES

A few other general programming practices should be noted.

1. Never use absolute addresses. All hardware registers and special addresses have
symbolic names (see the include files and amiga.lib).

2. Because this is a multitasking system, programs must never directly modify the pro-
cessor exception vectors (including traps) or the processor priority level.

3. Do not assume that programs can access hardware resources directly. Most
hardware is controlled by system software that will not respond well to interference.
Shared hardware requires programs to use the proper sharing protocols.

4. Do not access shared data structures directly without the proper mutual exclusion.

Remember, it is a multitasking system and other tasks may also be accessing the
same structures.

Vi

5. Most system functions require a particular execution environment. For example,
DOS functions can be executed only from within a process; execution from within a
task is not sufficient. As another example, most kernel functions can be executed
from within tasks, but cannot be executed from within interrupts.

6. The system does not monitor the size of a program stack. Take care that your pro-
grams do not cause it to overflow.

7. Tasks always execute in the 68000 processor user mode. Supervisor mode is reserved
for interrupts, traps, and task dispatching. Take extreme care if your code executes
in supervisor mode. Exceptions while in supervisor mode are deadly.

8. Do not disable interrupts or multitasking for long periods of time.

9. Assembly code functions that return a result do not necessarily affect the processor
condition codes. By convention, the caller must test the returned value before act-
ing on a condition code. This is usually done with a TST or MOVE instruction.
Do not trust the condition codes returned by system functions.

68010 AND 68020 COMPATIBILITY

If you wish your code to be upwardly compatible with the 68010/68020 processors, you
must avoid certain instructions and you must not make assumptions about the format of
the supervisor stack frame. In particular, the MOVE SR,<ea>> instruction is a
privileged instruction on the 68010 and 68020. If you want your code to work correctly
on all 680x0 processors, you should use the GetCC() function instead (see the Exec
library function descriptions in the appendixes to Amiga ROM Kernel Reference
Manual: Libraries and Devices).

USING AMIGA EXEC FUNCTIONS

The following guidelines will be helpful when you are trying to determine which func-
tions may be run from within a task or from within interrupt code, when to forbid or
permit task switching, and when to disable or enable interrupts.

Functions That Tasks Can Perform

Amiga system software distinguishes between tasks and processes. Figure P-1 illustrated
this difference. Specifically, the information in a task control block is a subset of the
information contained in a process control block. Consequently, any functions that

ix

expect to use process control information will not function correctly if provided with a
pointer to a task. Generally speaking, tasks can perform any function that is described
in this manual. A task cannot, however, perform any function that is related to
AmigaDOS (such as printf, Read, Write, and so on). If you want a task to perform
DOS-related functions, you should arrange for the task to send a message to a “process,”
which in turn can perform the function (filling a bufler that is passed to the task, for
example) and signal that the job has been done. The alternative is to use the DOS func-
tion CreateProc() instead of the Exec support function CreateTask() for tasks that
you spawn yourself. A process can call all functions, including DOS functions.

More information about tasks can be found in the “Tasks’ chapter.

Functions That Interrupt Code Can Perform

The following Exec functions can be safely performed during interrupts:

Alert() FindPort()
Disable() FindTask()
Cause() PutMsg()

Enable() ReplyMsg()

FindName() Signal()

In addition, if you are manipulating your own list structures during interrupt code, you
can also use the following functions:

AddHead()
AddTail()
Enqueue()
RemHead()
RemTail()

General Information about Synchronization

The system functions Enable() and Disable() are provided to enable and disable inter-
rupts. The system functions Forbid() and Permit() disallow or allow task switching.
You need only determine what you are trying to synchronize with before deciding if you
must wrap an Enable()/Disable() pair around a function call, use Forbid()/Permit(),
or simply allow the system to interrupt or switch tasks at its whim.

If you are trying to modily a data structure common to two tasks, you must assure that
your access to these structures is consistent. One method is to put Forbid()/Permit()
around anything that modifies (or reads) that structure. This makes the function
atomic; that is, the structure is stable and consistent after each full operation by either
task. If you are trying to synchronize with something that might happen as a result of
interrupt code (for example, Exec data structures), you put Disable()/Enable() around
any of your own operations that might interact with such operations. There are other
methods (sending messages, using semaphores, and so on), but they are somewhat more
involved.

Note that if you are trying to read the contents of a data structure while it is being
changed, it is possible to generate an address error that will be sensed by the 68000,
causing an exception. This is caused by reading a pointer that is supposed to point to
where the data is located. If the pointer value is no longer valid, it may point to a
nonexistent memory location that, when read, causes an exception.

Contents of This Manual

This manual describes the functions of Amiga’s multi-tasking executive (Exec). For infor-
mation about the graphics support routines (including text and animation) and the I/O
devices, see Amiga ROM Kernel Manual: Libraries and Devices. Also included in that
volume are the Workbench, which is an environment for running programs, and the
floating point mathematics library.

The discussion of the data structures and routines in this manual is reinforced through
numerous C-language examples. The examples are kept as simple as possible. Whenever
possible, each example demonstrates a single function. Where appropriate, there are
complete sample programs.

Boldface type is used for the names of functions, data structures, macros, and variables.
System header files and other system file names are shown in italics.

In code examples that show data structures and pointers, this book adheres to the fol-
lowing naming conventions. For example, the name node refers to an instance of a

Node and In refers to a pointer to a Node.

For more information, see also Amiga Intuition Reference Manual, AmigaDOS User’s
Manual, AmigaDOS Developer’s Manual, and AmigaDOS Technical Reference Manual.

X1

Contents

PREFACE ...

System Software Architecture

Programming ...

REGISTER CONVENTIONS ..

DATA STRUCTURES

OTHER PRACTICES

68010 AND 68020 COMPATIBILITY
USING AMIGA EXEC FUNCTIONS
Contents of This Manual

Chapter 1 LISTS AND QUEUES ..

Introduction

List StIrUCLUTe oo

NODE STRUCTURE

NODE INITIALIZATION

HEADER STRUCTURE

HEADER INITIALIZATION ...

List Functions ..

INSERTION AND REMOVAL

SPECIAL CASE INSERTION ..

SPECIAL CASE REMOVAL ...

PRIORITIZED INSERTION

SEARCHING BY NAME

List Macros

Empty Lists

Scanning a List ...

Chapter 2 TASKS .. S

Introduction ...

SCHEDULING ...ccouunrevermmmmrenresrennns

TASK STATES

TASK QUEUESmrnrerinrirninns
PRIORITY ..ooomcrrmrerrsmnsescerenssesessassvnns

STRUCTURE

Creation ...

STACK .oosecicrincersmsmsessesssssesseenes

Termination ...

Signals .o
ALLOCATION ..coovrerrrrrarerenens

WAITING FOR A SIGNAL ...

GENERATING A SIGNAL ...

...................

Exclusion reereeeneneeseas e sensensseaseses

— xiil -

CoSEVER SO G R

QWWVONNNNJOOOO,

FORBIDDING SO 22

DISABLING .. 23
SEMAPHORESoesiseesssissssssssssssssssssassssssssssessssssssossessesssssssasssessesassassans 25
EXCEPIONS oot ssssssssssssssssssssnnnanns s 25
Traps 26
HANDLERS ...ttt sssssssss s sssssssssssessssasssssssssssssasssnsssasssnsasssnnes 27
TRAP INSTRUCTIONS ettt s tes 27
Chapter 3 MESSAGES AND PORTS ... 29
Introduction ... 29
POTES oot 30
STRUCTURE ..o sisssstessssssssssssssssssssssssssss s sessses s sassssssssssssssssssssssssassons 30
CREATION ... 32
DELETION ..ottt stsssessass st s s sss s sessasessssssssassns osssses 33
RENDEZVOUS . vt e tenanee 33
IMESSAZES ...ooovceeree e s 33
PUTTING A MESSAGEeererrersssseesssesssesenees cerverreererasaeraenen 34
WAITING FOR A MESSAGE ...ttt tesse s s sesaesas 35
GETTING A MESSAGE ...ttt ses st sasssesses s sess s s sesens 36
REPLYING ...t seetsssnsss s ssssss s et e sas s s sesasssssessssssssssasseran 37
Chapter 4 INPUT/OUTPUT ... ssssssssssssssssssssssssssssssse 39
INELOAUCEION w.cooovoveeeeece s 39
ReqUESt SHUIUCLUTE .o 40
Interface FUnCIONS .o esssssssssssssssssnss e 43
Standard CoOMMANAS ...ooocvceeveeeeeeeecreereeeeesesessesssessesesssssssssseeesessssssssaseeseeesssssssssssenessens 44
Performing I/ O . essssessssssssssssssssss s ssssessss s 45
PREPARATION ... ettt nanee 45
SYNCHRONOUS REQUESTS ... sassesssssnsssssessssssssssssssssssnnes 46
ASYNCHRONOUS REQUESTS ...ttt rssesas st senaens 47
CONCLUSION ..ottt ssessessaes s esss e s s s st s s saesassae s snesanen 48
QUICK I/O ettt eess s sesss e sesssssssssssss e ss s ssss st sesssssssssssesssessnees 48
StANAArd DEVICESooooceoerecvvvervrvrvrerssessessssssssssssssssssssssssssssssssesssssssssssssesssssssssssasaneees 49
Chapter 5 INTERRUPTS ...t seesssssssssss s sssssss s esssssnns 51
INETOAUCTION ..o esssnies 51
SEQUENCE OF EVENTS ...ttt sssssssssssssssssssssssssssssens 52
INTERRUPT PRIORITIES ...t sasassssssssssessessss e sensens 53
NONMASKABLE INTERRUPT ...ttt sssessesssssenssesenees 55
Servicing INEEITUPES oo 55
DATA STRUCTURE ..ot ee 55
ENVIRONMENT ..ottt st e s sas st bs st essnsees 56
INTERRUPT HANDLERS ...ttt eersesse s ss s sassassss s snssenans 56
INTERRUPT SERVERS ..ottt ssssesssssses s s sseane 60
SOtWAre TNEEITUPES oovvvvvvveoveeeeeeeeesee s ssssrssssssssssssss s 62
Disabling INLEITUPES oo ssesesens 63

- XIv —

Chapter 6 MEMORY ALLOCATION ... 65

INETPOAUCEION oottt eessssesssesssssass s ssssssssssssssssss s sessnsnes 65
Using Memory Allocation Routines ... 66
MEMORY REQUIREMENTS ..ot saseens 66
MEMORY HANDLING ROUTINES ... 67
SAMPLE CALLS FOR ALLOCATING SYSTEM MEMORY ... 68
SAMPLE FUNCTION CALLS FOR FREEING SYSTEM
MEMORY oottt et es s st bbb sa e s 68
ALLOCATING MULTIPLE MEMORY BLOCIKS ..., 69
Memory Allocation and TasKs ... 71
MEMORY ALLOCATION AND MULTITASKING ... 72
MANAGING MEMORY WITH ALLOCATE() AND
19 27N 9 e TeT 0\ F 72
Chapter 7 LIBRARIES ..ot sssssssssssssssssssssssssessssessssansssssnens 75
What IS @ LIDTATYT e eseeesessssseessessssssnssesseesssssssssssee s 76
How TO ACCESS @ LIDTATY oot sesessesssesessssssn s 76
OPENING A LIBRARY .ottt sttt e et bt s 76
USING A LIBRARY TO CALL A ROUTINE ...t 77
USING A LIBRARY TO REFERENCE DATA ..., 78
CACHING LIBRARY POINTERS ..ottt ectcnsestessesessens s ersssenne 78
CLOSING A LIBRARY ..ottt sesssss e ssss s sssssssssssssssessassssessessssssans 79
Adding a Library et st 79
MAKING A NEW LIBRARY ...ttt ses s sesss s 79
MINIMUM SUBSET OF LIBRARY CODE VECTORS ... 80
STRUCTURE OF A LIBRARY NODE ...ttt s 81
CHANGING THE CONTENTS OF A LIBRARYocrrrermrrrensirseesirnnnns 82
Relationship of Libraries to Devices ... 82
Chapter 8 ROM-WACGK ... ssssesesssesissssessesssssssesssessssessasessnsesses 83
Introduction eeeeeseee e A1 R 83
GELEING 10 WACK o tmasssssssssssmmssssssssssssssesssssssssssssssssssssssees 84
Keystrokes, Numbers, and SYmDbOILS ... seseeree 84
REZISEEr FTAIIE .ot sesssse s ssessss s sessssesnesssese st sssnenens 85
DiSPLay FTaMIES ..o eneecesesesssssssssssssssssss s sesssssssssssssssssssssssssessssesssssssssees 86
Relative POSIEIONINE w..ccovevvveorceeeeereeeescsesssssssssssssssssssnsnsnsssssssssssssssssssssssssssssnsssssssssssses 87
ADbSOIULE POSILIONIIIE ..oooooeeeceeeverevesmsssssssssssssssssssessssssssssssssseseessssessssssssssssssesssssece 88
Altering Memory .. e e 89
EXeCUtION CONEIOL wooieeeeeeceeviviseeesssessssssssssesssssssssss s sssssssssssssssssssssassmsasesssesses 91
BreaKPOINUS ..o seessssssssssssssssssssensssss s 91
Returning to Multitasking After a Crash ... 91

Appendix A C EXEC INCLUDE FILES ..o A-1

Appendix B OTHER ROUTINESieeesesssensssssssssessisesessns B-1
Exec Support Library
Debug.lib Functions
Amiga.lib Functions
AmigaDOS General Information
Interchange File Format

Appendix C MEMORY/DISK INFORMATION ... C-1
Software Memory Map
Disk Format Information

T A X ettt eese ettt et ettt et ae e rear s e resasenanes Index-1

- XVl —

Amiga,
ROM Kernel Reference Manual

Exec

Chapter 1

LISTS AND QUEUES

A thorough understanding of the basic elements of Exec lists and queues is necessary to
write programs that deal properly with Exec. Subjects related to lists and queues
include the node structure of lists, the linkage and initialization of list structures, and
the list support functions and macros. Queues and priority sorted lists, which are

achieved through the use of the list functions applied in a certain order, are also
important.

Lists and Queues 1

Introduction

The Amiga system software operates in a highly dynamic environment of control data
structures. An early design goal of Exec was to keep the system flexible and open-ended
by not creating artificial boundaries on the number of system structures used. Rather
than using static sized system tables, Exec uses dynamically created structures that are
attached to the system as needed. This concept is central to the design of Exec.

Exec uses lists to maintain its internal database of system structures. Tasks, interrupts,
libraries, devices, messages, I/O requests, and all other Exec data structures are support-
ed and serviced through the consistent application of Exec’s list mechanism. Lists have
a common data structure, and a common set of functions is used for manipulating them.
Because all of these structures are treated in a similar manner, only a small number of
list handling functions need be supported by Exec.

List Structure

A list is composed of a header and a chain of linked elements called nodes. The header
maintains memory pointers to the first and last nodes of the linked chain of nodes. The
address of the header serves as the handle to the entire list. When referring to a list,
you refer to the address of its header. In addition, the header specifies the data type of
the nodes in a list. Node data typing will be discussed later.

NODE STRUCTURE

A node is divided into two parts: list linkage and node content. The linkage part con-
tains memory pointers to the node’s successor and predecessor nodes, the node data
type, and the node priority. The content part stores the actual data structure of
interest. As a C language structure, the linkage part of a node is defined as follows:

struct Node {

struct Node *In_Succ;
struct Node *In_Pred;
UBYTE In_Type;
BYTE In_Pri;
char *In_Name;

}s

2 Lists and Quecues

where

In_Suce

points to the next node in the list (successor),

In_Pred

points to the previous node in the list (predecessor),

In_Type
defines the type of the node,

In_Pri

specifies the priority of the node, and

In_Name

points to a printable name for the node.
As usual, node refers to an instance of a node, and In is a pointer to a node.

The Exec Interrupt structure, a complete node, is defined as follows:

struct Interrupt {

struct Node is_Node;
APTR is_Data;
VOID (*is_Code)();

}5

Here the is_Data and is_Code fields represent the useful content of the node.

NODE INITIALIZATION

Before you link a node into a list, you should initialize it. The initialization consists of
setting the In_Type, In_Pri, and In_Name fields to their appropriate values. The
In_Succ and In_Pred ficlds do not require initialization. The In_Type field contains
the data type of the node. This indicates to Exec (and other interested subsystems) the
type, and hence the structure, of the content portion of the node. Some of the standard
system types are defined in the exec/nodes.i and exec/nodes.h include files. Some exam-
ples of standard system types are NT_TASK, NT_INTERRUPT, NT_DEVICE,
and NT_MSGPORT. These are defined in exec/nodes.h.

Lists and Queues 3

The In_Pri field uses a signed numerical value ranging from -128 to +127 to indicate the
priority of the node relative to other nodes in the same list. Higher-priority nodes have
more positive values; for example, 127 is the highest priority, zero is nominal priority,
and -128 is the lowest priority. Some Ixec lists are kept sorted by priority order. In
such lists, the highest-priority node is at the head of the list, and the lowest-priority
node is at the tail of the list. For most Exec node types, priority is not used. In such
cases it is a good practice to initialize the priority field to zero.

The In_Name field is a pointer to a null-terminated string of characters. Node names
are used mostly to bind symbolic names to actual nodes. They are also useful for debug-
ging purposes. It is always a good idea to provide every node with a name.

Here is a C example showing how you might initialize a node called myInt, which is an
instance of the interrupt structure defined above:

struct Interrupt mylInt;
myInt.In_Type = NT_INTERRUPT;
myInt.In_Pri = 20;

myInt.In_Name = ”"sample.interrupt”

HEADER STRUCTURE

As mentioned earlier, the header maintains memory pointers to the first and last nodes
of the linked chain of nodes. This header also serves as a handle for referencing the en-
tire list.

Here is the C-structure of a list header:

struct List {
struct Node *lh_Head;
struct Node *lh_Tail;
struct Node *lh_TailPred;

UBYTE Ih_Type;
UBYTE lh_pad;
b
where:
1h_Head

points to the first node in the list,

4 Lists and Queues

Ih_Tail

is always zero,

lh_TailPred

points to the last node in the list,

lh_Type
defines the type of nodes within the list, and

l1h_pad

is merely a structure alignment byte (not used).
As usual, list refers to an actual instance of a list, and lh is a pointer to a node.

One subtlety here should be explained further. The head and tail portions of the header
actually overlap. This is best understood if you think of the head and tail as two
separate nodes. The lh_Head field is the In_Succ field of the first node in the list, and
the lh_Tail field is its In_Pred. The lh_Tail is set permanently to zero to indicate
that this node is the first on the list—that is, it has no successors. A similar method is
used for the tail node. The lh_Tail field is the lh_Succ field of the last node in the list
and the lh_TailPred ficld is its In_Pred. In this case, the zero lh_Tail indicates that
the node is the last on the list—that is, it has no predecessors.

HEADER INITIALIZATION

List headers must be properly initialized before use. It is not adequate to initialize the
entire header to zero. The head and tail entries must be set up correctly.

The header should be initialized as follows:
1. Assign the lh_Head field to the address of 1h_Tail.
2. Assign the lh_TailPred field to the address of lh_Head.
3. Clear the ITh_Tail field.

4. Set lh_Type to the same data type as that of the nodes to be kept in this list.

In C. an example initialization might look like this:

Lists and Queues 5

struct List list;

list.]lh_Head = &list.lh_Tail;
list.lh_TailPred = &list.lh_Head;
list.1h_Tail = 0;

list.lh_Type = NT_INTERRUPTS;

In assembly code, only four instructions are necessary to initialize the header:

MOVE.L AO0,(A0)

ADDQL #LH_TAIL,(A0)

CLR.L LH_TAIL(A0)

MOVE.L A0 ,LH_TAILPRED(A0)

Note that this sequence of instructions is the same as is used in the macro NEWLIST,
contained in the file exec/lists.i. The sequence performs its function without destroying
the pointer to the list header in AO (which is why ADDQ.L is used). This function may
also be accessed from C as a call to NewList(lh) where lh is the address of the list
header. See the source code for CreatePort() in chapter 3, “Messages and Ports,” for
one instance of its use.

List Functions

14
Exec provides a number of symmetric functions for handling lists. There are functions
for inserting and removing nodes in lists, for adding and removing tail and head nodes in
lists, for inserting nodes in a priority order, and for searching a list for a node with a
particular name.

INSERTION AND REMOVAL

The Insert() function is used for inserting a new node into any position in a list. It al-
ways inserts the node following a specified node that is already part of the list. For ex-
ample, Insert(lh,ln,pred) inserts the node after pred in the specified list. If the pred
node points to the list header or is null, the new node will be inserted at the head of the
list. Similarly, if the pred node points to the list lh_Tail field, the new node will be in-
serted at the tail of the list. However, both of these actions can be better accomplished
with the functions mentioned in the “Special Case Insertion” section below.

6 Lists and Queues

The Remove() function is used to remove a specified node from a list. For example,
Remove(Iln) will remove the specified node from whatever list it is in. Please note: to
be removed, a node must actually be in the list. If you attempt to remove a node that is
not in a list, you will cause serious system internal problems.

SPECIAL CASE INSERTION

Although the Insert() function allows new nodes to be inserted at the head and the tail
of a list, the AddHead() and AddTail() functions will do so with higher efliciency.
Adding to the head or tail of a list is common practice in queue type operations, as in
first-in-first-out (FIFO) or last-in-first-out (LIFO or stack) operations. For example,
AddHead(lh,ln) would insert the node at the head of the specified list.

SPECIAL CASE REMOVAL

The two functions RemHead() and RemTail() are used in combination with
AddHead() and AddTail() to create special list ordering. When you combine
AddTail() and RemHead(), you produce a first-in-first-out (FIFO) list. When you
combine AddHead() and RemHead() a last-in-first-out (LIFO or stack) list is pro-
duced. RemTail() exists for symmetry. Other combinations of these functions can also
be used productively. For example, RemTail(lh) removes the last node from the

specified list and returns a pointer to it as a result. If the list is empty, it returns a zero
result.

PRIORITIZED INSERTION

None of the list functions discussed so far makes use of the priority field in the list data
structure. The Enqueue() function makes use of this field and is equivalent to Insert()
for a priority sorted list. It performs an insert on a priority basis, keeping the higher-
priority nodes towards the head of the list. All nodes passed to this function must have
their priority assigned prior to the call. For example, Enqueue(lh,ln) inserts the node
into the prioritized list alter the last node of same or higher priority.

As mentioned earlier. the highest-priority node is at the head of the list, and the lowest-
priority node is at the tail of the list. The RemHead() function will return the
highest-priority node, and RemTail() will return the lowest-priority node.

Note that if you insert a node that has the same priority as another node in the list,
Enqueue() will use FII'O ordering. The new node is inserted following the last node of
equal priority.

Lists and Queues 7

SEARCHING BY NAME

Because most lists contain nodes with symbolic names attached (via the In_NName field),
it is possible to find a node by its name. This naming technique is used throughout Exec
for such nodes as tasks, libraries, devices, and resources.

The FindName() function is provided to search a list for the first node with a given
name. For example, FindName(lh, ‘“Furrbol”) returns a pointer to the first node
named “Furrbol.” If no such node exists, a zero is returned. The case of the name char-
acters is significant; “foo” is different from “Foo.”

To find multiple occurrences of nodes with identical names, the FindName() function is
called multiple times. For example, if you want to find the second node with the
“Furrbol” name:

struct List *1h;
struct Node *In, *FindName();
In = FindName(lh, “Furrbol”);
if (In !'=0) {
In = FindName(In, “Furrbol”);

}

Notice that the second search uscs the node found by the first search. The
FindName() function never compares the specified name with that of the starting node.
It always begins the search with the successor of the starting node.

List Macros

£

Assembly code programmers may want to optimize their code by using assembly code
list macros. Because these macros actually embed the specified list operation into the
code, they result in slightly faster operations. The file exec/lists.i contains the recom-
mended set of macros. For example, the following instructions implement the

REMOYVE macro:

MOVE.L (A1),A0 * get, successor
MOVE.L LN_PRED(A1),A1 * get predecessor
MOVE.L A0,(A1) * fix up predecessor’s succ pointer

MOVE.L A1, LN_PRED(A0) * fixup successor’s pred pointer

8 Lists and Quecues

Empty Lists

It is often important to determine if a list is empty. This can be done in many ways,
but only two are worth mentioning. If either the lh_TailPred field is pointing to the
list header or the In_Succ field of the]h_Head is zero, then the list is empty.

In C, for example, these methods would be written as follows:

if (list.1h_TailPred == &list) {
printf ("list is empty”);
}

or

if (list.]lh_Head->In_Succ == 0) {
printf ("list is empty”);
}

In assembly code, if AO points to the list header, these methods would be written as
follows:

CMP.L LH_TAILPRED(AO0),A0
BEQ list_is_empty

or

MOVE.L LH_HEAD(AO0),A1
TST.L LN_SUCC(A1)
BEQ list_is_empty

Because LH_HEAD and LN_SUCC are both zero oflsets, the second case can be
simplified.

Scanning a List

Occasionally a program may need to scan a list to locate a particular node, find a node
that has a field with a particular value, or just print the list. Because lists are linked in
both the forward and backward directions, the list can be scanned from either the head
or tail.

Lists and Queues 9

Here is an example of C code that uses a for loop to print the names of all nodes in a
list:

struct List *lh;

struct Node *In;

for (In = lh -> 1h_Head; In -> In_Succ; In = In -> In_Succ) {
printf ("node %Ix is named %s”, In, In -> In_name);

}

In assembly code, it is more eflicient to use a lookahead cache pointer when scauning a
list. In this example the list is scanned until the first zero-priority node is reached:

MOVE.L (A1),D1 * first node
scan:
MOVE.L D1,A1
MOVE.L (A1),D1 * lookahead to next

BEQ.S not_found * end of list
TST.B LN_PRI(A1)
BNE.S scan

* found one
not_found:

Important Note: 1t is possible to collide with other tasks when manipulating shared sys-
tem lists. For example, if some other task happens to be modifying a list while your
task scans it, an inconsistent view of the list may be formed. This can result in a cor-
rupted system. Generally it is not permissible to read or write a shared system list
without first locking out access from other tasks (and in some cases locking out access
from interrupts). This technique of mutual exclusion is discussed in the “Tasks”
chapter.

10 Lists and Quecues

Chapter 2

TASKS

The management of tasks on the Amiga involves task creation, termination, event sig-
nals, traps, exceptions, and mutual exclusion. The discussions in this chapter assume

that you have a basic understanding of lists (see chapter 1) and some understanding of
multitasking principles.

Tasks 11

Introduction

Multitasking is one of the primary features supported by Exec. Multitasking is the abil-
ity of an operating system to manage the simultaneous execution of multiple indepen-
dent processor contexts. In addition, good multitasking does this in a transparent
fashion: a task is not forced to recognize the existence of other tasks. In Exec this
involves sharing the 68000 processor among a number of concurrent programs, providing
each with its own virtual processor.

' SCHEDULING

Exec accomplishes multitasking by multiplezing the 68000 processor among a number of
task contexts. Every task has an assigned priority, and tasks are scheduled to use the
processor on a priority basis. The highest-priority ready task is selected and receives
processing until a higher-priority task becomes active, the running task exceeds a preset
time period (a quantum) and there is another equal-priority task ready to run, or the
task needs to wait for an external event before it can continue.

Task scheduling is normally preemptive in nature. The running task may lose the pro-
cessor at nearly any moment by being displaced by another more urgent task. Later,
when the preempted task regains the processor, it continues from where it left off.

It is also possible to run a task in a nonpreemptive manner. This mode of execution is
generally reserved for system data structure access. It is discussed in the ‘“Exclusion”
section toward the end of this chapter.

In addition to the prioritized scheduling of tasks, time-slicing also occurs for tasks with
the same priority. In this scheme a task is allowed to execute for a quantum (a preset
time period). If the task exceeds this period, the system will preempt it and give other
tasks of the same priority a chance to run. This will result in a time-sequenced round
robin scheduling of all equal-priority tasks.

Because of the prioritized nature of task scheduling, tasks must avoid performing the
busy wait technique of polling. In this technique, a piece of code loops endlessly waiting
for a change in state of some external condition. Tasks that use the busy wait technique
waste the processor and eat up all its spare power. In most cases this prevents lower-
priority tasks from receiving any processor time. Because certain devices, such as the
keyboard and the disk, depend on their associated tasks, using a busy wait at a high
priority may defer important system services. Busy waiting can even cause system
deadlocks.

12 Tasks

When there are no ready tasks, the processor is halted and only interrupts will be ser-
viced. Because task multiplexing often occurs as a result of events triggered by system
interrupts, this is not a problem. Halting the processor often helps improve the perfor-
mance of other system bus devices.

TASK STATES

For every task, Exec maintains state information to indicate its status. A normally
operating task will exist in one of three states:

running

ready

waiting

A task that is running is one that currently owns the processor. This
usually means that the task is actually executing, but it is also possible
that it has been temporarily displaced by a system interrupt.

A task that is ready is one that is not currently executing but that is
scheduled for the processor. The task will receive processor time based
on its priority relative to the priorities of other running and ready tasks.

A task that is waiting is in a paused state waiting for an external event
to occur. Such a task is not scheduled to use the processor. The task
will be made ready only when one of its external events occurs (see the
“Signals” section below).

A task may also exist in a few transient states:

added

removed

exception

A task in the added state has just been added to Exec and has not yet
been scheduled for processing.

A task in the removed state is being removed. Tasks in this state are
effectively terminated and are usually undergoing clean-up operations.

A task in the exception state is scheduled for special exception
processing.

TASK QUEUES

Tasks that are not in the running state are linked into one of two system queues. Tasks
that are marked as ready to run but awaiting an opportunity to do so are kept in the
ready queue. This queue is always kept in a priority sorted order with the highest priori-
ty task at the head of the queue. A waiting queue accounts for tasks that are awaiting
external events. Unlike the ready queue, the waiting queue is not kept sorted by priori-
ty. New entries are appended to the tail of the queue. A task will remain in the waiting
queue until it is awakened by an event (at which time it is placed into the ready queue).

PRIORITY

A task’s priority indicates its importance relative to other tasks. Higher-priority tasks
receive the processor before lower-priority tasks do. Task priority is stored as a signed
number ranging from -128 to +127. Higher priorities are represented by more positive
values; zero is considered the neutral priority. Normally, system tasks execute some-
where in the range of +20 to -20.

It is not wise to needlessly raise a task’s priority. Sometimes it may be necessary to
carefully select a priority so that the task can properly interact with various system
tasks. The ChangePri() Exec function is provided for this purpose.

STRUCTURE

Exec maintains task context and state information in a task-control data structure. Like
most Exec structures, these structures are dynamically linked onto various task queues
through the use of a prepended list Node structure. The C-language form of this struc-
ture is defined in the ezec/task.h include file as follows:

14 Tasks

extern struct Task {
struct Node tc_Node;
UBYTE tc_Flags;
UBYTE tc_State;

BYTE tc_IDNestCnt; /* intr disabled nesting */
BYTE tc_TDNestCnt; /* task disabled nesting */
ULONG tc_SigAlloc; /* sigs allocated */

ULONG tc_SigWait; /* sigs we are waiting for */
ULONG tc_SigRecvd; /* sigs we have received */
ULONG tc_SigExcept; /* sigs we will take excepts for */
UWORD tc_TrapAlloc; /* traps allocated */
UWORD tc_TrapAble; /* traps enabled */

APTR tc_ExceptData; /* points to except data */
APTR tc_ExceptCode; /* points to except code */
APTR tc_TrapData; /* points to trap code */
APTR tc_TrapCode; /* points to trap data */
APTR tc_SPReg; /* stack pointer */

APTR tc_SPLower; /* stack lower bound */
APTR tc_SPUpper; /* stack upper bound + 2%/
VOID (*te_Switch)(); /* task losing CPU */
VOID (*tc_Launch)(); /* task getting CPU %/
struct List tc_MemEntry; /* allocated memory */
APTR tc_UserData; /* per task data */

¥
A similar assembly code structure is available in the exec/tasks.7 include file.

Most of these fields are not relevant for simple tasks; they are used by Exec for state
and administrative purposes. A few fields, however, are provided for the advanced pro-
grams that support higher level environments (as in the case of processes) or require pre-
cise control (as in devices). The following sections explain these fields in more detail.

Creation

To create a new task you must allocate a task structure, initialize its various fields, and
then link it into Exec with a call to AddTask(). The task structure may be allocated
by calling the AllocMem() function with the MEMF_CLEAR and MEMF_PUBLIC
allocation attributes. These attributes indicate that the data structure is to be pre-
initialized to zero and that the structure is shared.

Tasks 15

The Task fields

that require initialization depend on how you intend to use the task.

For the simplest of tasks, only a few fields must be initialized:

tc_Node
The
its n

tc_SPLower
The

tc_SPUpper
The

tc_SPReg
The

this

Zeroing all other

task list node structure. This includes the task’s priority, its type, and
ame (refer to the “Lists and Queues” chapter).

lower memory bound of the task’s stack
upper memory bound of the task’s stack
initial stack pointer. Because task stacks grow downward in memory,

field is usually set to the same value as tc_SPUpper.

unused fields will cause Exec to supply the appropriate system default

values. Allocating the structure with the MEMF_CLEAR attribute is an easy way to
be sure that this happens.

Once the structure has been initialized, it must be linked to Exec. This is done with a
call to AddTask() in which the following parameters are specified:

task

initialPC

finalPC

A pointer to an initialized task structure.

The entry point of your task code. This is the address of the first in-
struction the new task will execute.

The finalization code for your task. This is a code fragment that will
receive control if the initialPC routine ever performs a return (RTS).
This exists to prevent your task from being launched into random
memory upon an accidental return. The finalPC routine should usu-
ally perform various program-related clean-up duties and should then
remove the task. If a zero is supplied as this parameter, Exec will use
its default finalization code (which simply calls the RemTask()
function)

Depending on the priority of the new task and the priorities of other tasks in the sys-
tem, the newly added task may immediately begin execution.

Here is an example of simple task creation:

16 Tasks

#include ”exec/types.h”
#include "exec/memory.h”
#include ”exec/tasks.h”
#define STACK_SIZE 1000
extern APTR AllocMem();
extern EntryPoint();

SimpleTask()

{

struct Task *tc;
APTR stack;
stack = (APTR) AllocMem (STACK_SIZE, MEMF_CLEAR);
if (stack ==0) {
printf ("not enough memory for task stack”);
return(0);

}

tc = (struct Task *) AllocMem (sizeof(struct Task),
MEMF_CLEAR | MEMF_PUBLIC);

if (tc ==0) {
printf ("not enough memory for task control structure”);
FreeMem (stack, STACK_SIZE);
return(0);

}

task = (struct Task *) AllocMem (sizeof(struct Task),
MEMF_CLEAR | MEMF_PUBLIC);

if (tc ==0) {
printf ("not enough memory for task name”);
FreeMem (stack, STACK_SIZE);
return(0);

}

tc -> tc_SPLower = (APTR) stack;
tc -> tc_SPUpper = (APTR) (STACK_SIZE + (ULONG) stack);
tc -> tc_SPReg = tc-> tc_SPUpper;

tc -> tc_Node.In_Type = NT_TASK;
tc -> tc_Node.In_Name = "example.task”;

AddTask (tc, EntryPoint, 0);

Tasks

17

STACK

Every task requires a stack. All task stacks are user mode stacks (in the language of the
68000) and are addressed through the A7 CPU register. All normal code execution oc-
curs on this task stack. Special modes of execution (processor traps and system inter-
rupts for example) execute on a single supervisor mode stack and do not directly affect
task stacks.

Task stacks are normally used to store local variables, subroutine return addresses, and
saved register values. Additionally, when a task loses the processor, all of its current re-
gisters are preserved on this stack (with the exception of the stack pointer itself, which
must be saved in the task structure).

The amount of stack used by a task can vary widely. The minimum stack size is 70
bytes, which is the number required to save 17 CPU registers and a single return ad-
dress. Of course, a stack of this size would not give you adequate space to perform any
subroutine calls (because the return address occupics stack space). On the other hand, a
stack size of 1K would suflice to call most system functions but would not allow much in
the way of local variable storage.

Because stack-bounds checking is not provided as a service of Exec, it is important to
provide enough space for your task stack. Stack overflows are always diflicult to debug
and may result not only in the erratic failure of your task but also in the mysterious
malfunction of other Amiga subsystems.

Termination

Task termination may occur as the result of a number of situations:

1. A program returning from its initialPC routine and dropping into its finalPC
routine or the system default finalizer.

o

A task trap that is too serious for a recovery action. This includes traps like
processor bus error, odd address access errors, etc.

3. A trap that is not handled by the task. For example, the task might he ter-
minated if your code happencd to encounter a processor TRAP instruction and
you did not provide a trap handling routine.

4. An explicit call to the Exec RemTask() function.

18 Tasks

Task termination involves the deallocation of system resources and the removal of the
task structure from Execc. The most important part of task termination is the dealloca-
tion of system resources. A task must return all memory that it allocated for its private

use, it must terminate any outstanding I/O commands, and it must close access to any
system libraries or devices that it has opened.

It is wise to adopt a strategy for task clean-up responsibility. You should decide wheth-
er resource allocation and deallocation is the duty of the creator task or the newly creat-
ed task. Sometimes it is easier and safler for the creator to handle the necessary resource
allocation and deallocation on behalf of its offspring. On the other hand, if you expect
the creator to terminate before its offspring, it would not be able to handle resource

deallocation. In such a case, each of its child tasks would need to deallocate its own
resources.

.Signals

Tasks often need to coordinate with other concurrent system activities (other tasks and
interrupts). Such coordination is achieved through the synchronized exchange of specific
event indicators called signals. This is the primary mechanism responsible for all inter-
task communication and synchronization on the Amiga.

The signal mechanism operates at a low level and is designed for high performance. Sig-
nals often remain hidden from the user program. The message system, for instance, may

use signals to indicate the arrival of a new message. The message system is described in
more detail in chapter 3.

The signal system is designed to support independent simultaneous events. Signals may
be thought of as occurring in parallel. Each task may define up to 32 independent sig-
nals. These signals are stored as single bits in a few fields of the task control structure,
and one or more signals can occur at the same time.

All of these signals are considered fask relative: a task may assign its own significance to
a particular signal. Signals are not broadcast to all tasks; they are directed only to indi-
vidual tasks. A signal has meaning to the task that defined it and to those tasks that
have been informed of its meaning. For example, signal bit 12 may indicate a timeout
event to one task, but to another task it may indicate a message arrival event.

Tasks 19

ALLOCATION

As mentioned above, a task assigns its own mcaning to a particular signal. Because cer-
tain system libraries may occasionally require the use of a signal, there is a convention
for signal allocation. It is unwise ever to make assumptions about which signals are ac-
tually in use.

Before a signal can be uscd, it must be allocated with the AllocSignal() function. This
marks the signal as being in use and prevents the accidental use of the same signal for
more than one event. You may ask for either a specific signal number or the next free
signal. The state of the newly allocated signal is cleared (ready for use). Generally it is
best to let the system assign you the next free signal. Of the 32 available signals, the
lower 16 are usually reserved for system use. This leaves the upper 16 signals free for
the user. Other subsystems that you may call depend on AllocSignal().

The following C example asks for the next free signal to he allocated for its use:

signal = AllocSignal(-1);

if (signal ==-1) {
printf(”no signal bits available”);
return;

} else {

printf("allocated signal number %1d”, signal);

}

Note that the value returned by AllocSignal() is a signal bit number. This value can-

not be uscd directly in calls to signal-related functions without first being converted to a
mask:

mask = 1 < < signal;
When a signal is no longer needed, it should be freed for reuse with FreeSignal().

It is important to realize that signal bit allocation is relevant only to the running task.
You cannot allocate a signal from another task.

20 Tasks

WAITING FOR A SIGNAL

Signals are most often used to wake up a task upon the occurrence of some external
event. This happens when a task is in its wait state and another task (or a system in-
terrupt) causes a signal. The Wait() function specifies the set of signals that will wake
up the task and then puts the task to sleep (into the waiting state). Any one signal or
any combination of signals from this set are sufficient to awake the task. Wait() returns
a mask indicating which signals from this set satisfied the wait. The Wait() function

implicitly clears those signals that satisfied the wait. This effectively resets those signals
for reuse.

Because tasks (and interrupts) normally execute asynchronously, it is often possible to
receive a particular signal before a task actually waits for it. To avoid missing any
events, programs should hold signals until the Wait() function is called, or until it is ex-
plicitly cleared (with SetSignal()). In such cases a wait will be immediately satisfied,
and the task will not be put to sleep.

As mentioned earlier, a task may wait for more than one signal. When the task returns
from the wait, the actual signal mask is returned. Usually the program must check
which signals occurred and take the appropriate action. The order in which these bits
are checked is often important. Here is a hypothetical example:

signals = Wait (newCharSig | cancelSig | timeOutSig);
if (signals & cancelSig) {
printf (”canceled”);

if (signals & newCharSig) {
printf ("new character”);
}

if (signals & timeOutSig) {
printf ("timeout”);
}

This will put the task to sleep, waiting for a new character, a cancel event, or the ex-
piration of a time period. Notice that this code checks for a cancel signal before check-
ing for a new character or a timeout. Although a program can check for the occurrence
of a particular event by checking whether its signal has occurred, this may lead to busy
wait polling. Such polling is wasteful of the processor and is usually detrimental to the
proper function of the system.

Tasks 21

GENERATING A SIGNAL

Signals may be generated from both tasks and system interrupts with the Signal() func-
tion. For example Signal(tc,mask) would signal the task with the mask signals. More
than one signal can be specified in the mask.

Exclusion

From time to time the advanced system program may find it necessary to access globhal
system data structures. Because these structures are shared by the system and by other
tasks that execute asynchronously to your task, it is wise for you to exclude simultane-
ous access to these structures. This can be accomplished by forbidding or disabling, or
with the use of semaphores. A section of code that requires the use of any of these
mechanisms to lock out access by others is termed a critical section.

FORBIDDING

Forbidding is used when a task is accessing shared structures that might also be accessed
at the same time from another task. It effectively eliminates the possibility of simultane-
ous access by imposing nonpreemptive task scheduling. This has the net effect of disa-
bling multitasking for as long as your task remains in its running state. While forbid-
den, your task will continue running until it performs a call to Wait() or exits from the
forbidden state. Interrupts will occur normally, but no new tasks will be dispatched, re-
gardless of their priorities.

When a task running in the forbidden state calls the Wait() function, it implies a tem-
porary exit from its forbidden state. While the task is waiting, the system will perform
normally. When the task receives one of the signals it is waiting for, it will again reenter
the forbidden state. To become forbidden, a task calls the Forbid() function. To es-
cape, the Permit() function is used. The use of these functions may be nested with the
expected affects; vou will not exit the forbidden mode until you call the outermost Per-
mit().

As an example, Exec memory region lists should he accessed only when forbidden. To
access these lists without forbidding jeopardizes the integrity of the entire system.

struct ExecBase *eb;
struct MemHeader *mbh;
APTR firsts]ARRAYSIZE];
int count;

Forbid();
for (mh = (struct MemHeader *) eb -> MemlList.lh Head
mh -> mh_Node.ln_Succ;
mh = mh -> mh_Node.In_Succ) {
firsts[count++] = mh -> mh_First;

}

Permit();

As this program traverses down the memory region list, it remains forbidden to prevent
the list from changing as it is being accessed.

DISABLING

Disabling is similar to forbidding, but it also prevents interrupts from occurring during a
critical section. Disabling is required when a task accesses structures that are shared by
interrupt code. It eliminates the possibility of an interrupt accessing shared structures
by preventing interrupts from occurring.

To disable interrupts you can call the Disable() function. If you are writing in assem-
bly code, the DISABLE macro is more eflicient (but consumes more code space). To
enable interrupts again, use the Enable() function and ENABLE macros.

Like forbidden sections, disabled sections can be nested. Also like forbidden sections, the
Wait() function implies an Enable() until the task again regains the processor.

It is important to realize that there is a danger in using disabled sections. Because the
software on the Amiga depends heavily on its interrupts occurring in nearly real time,
you cannot disable for more than a very brief instant. A rule of thumb is to disable for
no more than 250 microseconds.

Masking interrupts by changing the 68000 processor interrupt priority levels with the
MOVESR instruction can also be dangerous and is generally discouraged. The disable-
and enable-related functions and macros control interrupts through the 4703 custom
chip and not through the 68000 priority level. In addition, the processor priority level
can be altered only from supervisor mode (which means this process is much less
efficient).

Tasks 23

It is never necessary to both disable and forbid. DBecause disable prevents interrupts, it
also prevents preemptory task scheduling. Many Exec lists can only be accessed while

disabled.

Suppose you want to print the names of all waiting tasks. You would need to

access the task list from a disabled section. In addition, you must avoid calling certain
system functions that require multitasking to function properly (printf() for example).
In this example, the names are gathered into a name array while the code section is dis-
abled. Then the code section is enabled and the names are printed.

#include "exec/types.h”

#include ”"exec/execbase.h”
#include "exec/tasks.h”

extern struct ExecBase *SysBase;

main()

{

}

struct Task *task;
char *names[20];
int count, i;

count = 0;
Delay(50);
Disable();

for (task = (struct Task *)SysBase->TaskWait.lh_Head;
task->tc_Node.ln_Succ; /* stop when Successor node == 0 */
task = (struct Task *)task->tc_Node.lIn_Succ) {
names[count++] = task->tc_Node.In_Name;

}
Enable();
for (i=0; i < count; i++)

printf (* %s\n ”, namesli));

}

Of course, the code in this example will have problems if a waiting task is removed be-
fore its name is printed. If this were to happen, the name-string pointer would no longer
be valid. To avoid such problems it is a good programming practice to copy the entire
name string into a temporary bufler.

24 Tasks

SEMAPHORES

Messages and message ports can be used as semaphores for the purposes of mutual exclu-
sion. With this method of locking, all tasks agree on a locking convention before access-
ing shared data structures. Tasks that do not require access are not affected and will
run normally, so this type of exclusion is considered preferable to forbidding and disa-
bling. Unfortunately, semaphores also represent a considerable amount of overhead for
simple system operations and are not used internal to Exec for efliciency reasons. This
form of exclusion is explained in more detail in the ‘“Messages and Ports” chapter.

Exceptions

Tasks can specify that certain asynchronous events cause exceptions, which are task-
private interrupts that redirect a task’s flow of control. The task essentially suspends
what it is doing and enters a special routine to process its exceptional event.

Exceptions are driven by the task signal mechanism described earlier in this chapter. In-
stead of waiting for a signal to occur, you indicate that it is an exception signal with the
SigExcept() function. When the signal occurs, the task will be “interrupted” from its
normal execution and placed in a special exception handler.

The tec_ExceptCode and tc_ExceptData task ficlds are used to establish the excep-
tion handler. The ficld tc_ExceptCode points to the routine that will handle the ini-
tial processing of all exceptions. If this field is zero, Exec will ignore all exceptions. The
tc_ExceptData field can be used to provide a pointer to related data structure.

On entry to the exception code, the system passes certain parameters in the processor re-
gisters. DO contains a signal mask indicating whick exception has just occurred, and Al
points to the related exception data (from tc_ExceptData). In addition, the previous
task context is pushed onto the task’s stack. This includes the previous PC, SR, D0-D7,
and AO-AG registers. You can think of an exception as a subtask outside of your normal
task. Because task exception code executes in user mode, however, the task stack must
be large cnough to supply the extra space consumed during an exception.

While processing a given exception, Iixec prevents that exception from occurring recur-
sively. At exit from your exception-processing code you should return the same value in
DO to re-cnable that exception signal. When the task executes the RTS at the end of
the handler, the system restores the previous contents of all of the task registers and
resumes the task at the point where it was interrupted by the exception signal. When
two or more exception codes occur simultaneously, the exception-processing code
determines the order in which they are handled by the order in which the signal bits are
examined.

Tasks 25

Traps

Task traps are synchronous exceptions to the normal flow of program control. They are
always generated as a direct result of an operation performed by your program’s code.
Whether they are accidental or purposely generated, they will result in your program be-
ing forced into a special condition in which it must immediately handle the trap. Ad-
dress error, privilege violation, zero divide, and trap instructions all result in task traps.
They may be generated directly by the 68000 processor (Motorola calls them ‘“excep-
tions”) or simulated by software.

A task that incurs a trap has no choice but to respond immediately. The task must
have a module of code to properly handle the trap. Your task may be aborted if a trap
occurs and no means of handling it has been provided.

You may choose to do your own processing of traps. The tc_TrapCode field is the ad-
dress of the handler that you have designed to process the trap. The tc_TrapData
field is the address of the data area for use by the trap handler.

The 68000 traps of interest are:

2 Bus error

3 Address error

4 Illegal instruction

5 Zero divide

6 CHK instruction

7 TRAPYV instruction
8 Privilege violation
9 Trace

10 Line 1010 emulator
11 Line 1111 emulator

32-47 Trap instructions

26 Tasks

The actual stack frames generated for these traps are processor-dependent. The 68010
and 68020 processors will generate a different type of stack frame than the 68000. If you
plan on having your program handle its own traps, you should not make assumptions
about the format of the supervisor stack frame. Check the flags in the AttnFlags field
of the ExecBase structure for the type of processor in use and process the stack frame
accordingly.

HANDLERS

For compatibility with the 68000, Exec performs trap handling in supervisor mode. This
means that all task switching is disabled during trap handling. At entry to the task’s
trap handler, the system stack does contain the trap frame as defined in the 68000
manual. A longword exception number is added at the bottom of this frame. That is,

when a handler gains control, the top of stack contains the exception numbher and the
68000 frame immediately follows.

To return from trap processing, remove the exception number from the stack (note that

this is the supervisor stack, not the user stack) and then perform a return from excep-
tion (RTE).

Because trap processing takes place in supervisor mode, with task dispatching disabled,
it is strongly urged that you keep trap processing as short as possible or switch back to
user mode from within your trap handler. If a trap handler already exists when you add
your own trap handler, it is smart to propagate any traps that you do not handle down
to the previous handler. This can be done by saving the previous tc_TrapCode and
tc_TrapData for use by your handler.

TRAP INSTRUCTIONS

The TRAP instructions in the 68000 generate traps 32-47. Because many independent
pieces of system code may desire to use these traps, the AllocTrap() and FreeTrap()
functions are provided. These work in a fashion similar to that used by AllocSignal()
and FreeSignal(), mentioned above.

Allocating traps is simply a bookkeeping job within a task. It does not affect how the
system calls the trap handler; it helps coordinate who owns what traps. Exec does noth-
ing to determine whether or not the task is prepared to handle this particular trap. It
simply calls your code. It is up to your program to handle the trap.

Tasks 27

To allocate any trap, you can use the following code:

trap = AllocTrap(-1);

if (trap ==-1) {
printf(”all trap instructions are in use”);
return;

}

or you can select a specific trap using this code:

trap = AllocTrap(3);

if (trap ==-1) {
printf("trap #3 is in use”);
return;

}

To free a trap you use FreeTrap().

28 Tasks

Chapter 3

MESSAGES AND PORTS

Introduction

For intersystem communication, Exec provides a consistent, high-performance mechan-
ism of messages and ports. This mechanism is used to pass message structures of arbi-
trary sizes from task to task, interrupt to task, or task to software interrupt. In addi-

tion, messages are often used to coordinate operations between a number of cooperating
tasks.

Messages and Ports 29

A message data structure has two parts: system linkage and message body. The sys-
tem linkage is used by Exec to attach a given message to its destination. The message
body contains the actual data of interest. The message body is any arbitrary data block
less than 64K bytes in size.

Messages are always sent to a predetermined destination port. At a port, incoming mes-
sages are queued in a first-in-first-out (FIFO) order. There are no system restrictions on
the number of ports or the number of messages that may be queued to a port (other
than the amount of available system memory).

Messages are always queued by reference. For performance reasons message copying is
not performed. In essence, a message between two tasks is a temporary license for the
receiving task to use a portion of the memory space of the sending task—that portion
being the message itself. This means that if task A sends a message to task B, the mes-
sage is still part of the task A context. Task A, however, should not access the message
until it has been replied —that is, until task B has sent the message back, using the
ReplyMsg() function. This technique of message exchange imposes important restric-
tions on message access.

Ports

Ports are rendezvous points at which messages are collected. A port may contain any
number of outstanding messages from many diflerent originators. When a message
arrives at a port, the message is appended to the end of the list of messages for that
port, and a prespecified arrival action is invoked. This action may do nothing, or it may
cause a predefined task signal or software interrupt (see the “Interrupts” chapter).

Like many Exec structures, ports may be given a symbolic name. Such names are par-
ticularly useful for tasks that must rendezvous with dynamically created ports. They
are also useful for debugging purposes.

STRUCTURE

A message port consists of a MsgPort structure as defined in the ezec/ports.h and
exec/ports.i include files. The C structure for a port is as follows:

30 Messages and Ports

struct MsgPort {
struct Node mp_Node;
UBYTE mp_Flags;
UBYTE mp_SigBit;
struct Task *mp_SigTask;
struct List mp_MsgList;

}s

where
mp_Node
is a standard Node structure. This is useful for tasks that might want to
rendezvous with a particular message port by name.
mp_Flags

are used to indicate message arrival actions. See the explanation below.

mp_SigBit
is the signal bit number when a port is used with the task signal arrival
action.

mp_SigTask
is a pointer to the task to be signaled. If a software-interrupt arrival action
is specified, this is a pointer to the interrupt structure.

mp_MsgList
is the list header for all messages queued to this port. (See the ‘“Lists and
Queues” chapter).

The mp_Flags field contains a subfield indicated by the PF_ACTION mask. This
sub-field specifies the message arrival action that occurs when a port receives a new mes-
sage. The possibilities are as follows:

PA_SIGNAL

This subfield tells the program to signal the specified task on the arrival of
a new message. Every time a message is put to the port another signal will
occur regardless of how many messages have been queued to the port.

PA_SOFTINT

This subfield causes the specified software interrupt. Like PA_SIGNAIL,
PA_SOFTINT will cause the software interrupt to be posted every time a
message is received.

Messages and Ports 31

PA_IGNORE
This subfield tells the program to perform no operation other than queuing
the message. This action is often used to stop signaling or software inter-
rupts without disturbing the contents of the mp_SigTask field.

It is important to realize that a port’s arrival action will occur for each new message
queued, and that there is not a one-to-one correspondence between messages and signals.
Task signals are only single-bit flags so there is no record of how many times a particu-
lar signal occurred. There may be many messages queued and only a single task signal.
All of this has certain implications when designing code that deals with these actions.
Your code should not depend on receiving a signal for every message at your port. All
of this is also true for software interrupts.

CREATION

To create a new message port, you must allocate and initialize a MsgPort structure. If
you desire to make the port public, you will also need to call the AddPort() function.
Port structure initialization involves setting up a Node structure, establishing the mes-
sage arrival action with its parameters, and initializing the list header. The following
example of port creation is equivalent to the CreatePort() function as supplied in
amzga.lib:

extern APTR AllocMem();
extern UBYTE AllocSignal();
extern struct Task *FindTask();

struct MsgPort *
CreatePort (name, pri)
char *name;
BYTE pri;
{

int sigBit;

struct MsgPort *mp;

if ((sigBit = AllocSignal (-1)) ==-1)
return ((struct MsgPort *) 0);

port = AllocMem (sizeof(*port), MEMF_CLEAR | MEMF_PUBLIC);
if (port == 0) {

FreeSignal (sigBit);

return ((struct MsgPort *) (0));

32 Messages and Ports

mp->mp_Node.In_Name = name;
mp->mp_Node.In_Pri = pri;
mp->mp_Node.In_Type = NT_MSGPORT;

mp->mp_Flags = PA_SIGNAL;
mp->mp_SigBit = sigBit;
mp->mp_SigTask = FindTask (0);

if (name !=0) {

AddPort (mp);
1 else {

NewList (&mp->mp_MsgList);
}

return (mp);

DELETION

Before a message port is deleted, all outstanding messages from other tasks must be
returned. This is done by replying to each message until the message queue is empty.
Of course, there is no need to reply to messages owned by the current task (the task per-

forming the port deletion). Public ports attached to the system with AddPort() must
be removed from the system with RemPort().

RENDEZVOUS

The FindPort() function provides a means of finding the address of a public port given
its symbolic name. For example, FindPort(‘“‘Spyder”’) will return either the address of
the message port or a zero indicating that no such public port exists. Names should be
made rather unique to prevent collisions among multiple applications. It is a good idea
to use your application name as a prefix for your port name.

Messages

As mentioned earlier, a message contains both system header information and the actual
message content. The system header is of the Message form defined in ezec/ports.h
and ezec/ports.i. In C this structure is as follows:

Messages and Ports 33

struct Message {
struct Node mn_Node;
struct MsgPort *mn_ReplyPort;
UWORD mn_Length;

¥
where

mn_Node
is a standard Node structure used for port linkage.

mn_ReplyPort
is used to indicate a port to which this message will be returned when a
reply is necessary.

mn_Length
indicates the length of the message body in bytes.

This structure is always attached to the head of all messages. For example, if you want

a message structure that contains the x and y coordinates of a point on the screen, you
could define it as follows:

struct XYMessage {

struct Message xy_Msg;
UWORD «x,y;

}

For this structure, the mn_Length field should be set to sizeof XYMessage.

PUTTING A MESSAGE

A message is delivered to a given destination port with the PutMsg() function. The
message is queued to the port, and that port’s arrival action is invoked. If the action
specifies a task signal or a software interrupt, the originating task may temporarily lose
the processor while the destination processes the message. If a reply to the message is
required, the mn_ReplyPort field must be set up prior to the call to PutMsg().

Here is a simple program fragment for putting a message to a public port:

34 Messages and Ports

struct MsgPort *mp, *replymp;
struct XYMessage *xymsg;

xymsg = (struct XYMessage*) AllocMem (sizeof(*xymsg), MEMF_PUBLIC);

if (xymsg ==0) {
printf ("not enough memory for message”);
return;

}

replymp = CreatePort ("xyreplyport”,0);
/* as defined earlier in this chapter */

if (replymp == 0) {
printf ("could not create the reply port”);
FreeMem (xymsg, sizeof(*xymsg));
return;

}

xymsg -> xy_Msg.mn_Node.In_Type = NT_MESSAGE;
xymsg -> xy_Msg.mn_ReplyPort = replyport;

mp = FindPort ("Spyder”);

if (mp == 0) {
printf ("Spyder port not found”);
return;

}

PutMsg (mp, xymsg);

WAITING FOR A MESSAGE

A task may go to sleep waiting for a message to arrive at one or more ports. This tech-
nique is widely used on the Amiga as a general form of event notification. For example,
it is used extensively by tasks for I/O request completion.

To wait for the arrival of a message, the message port must be properly initialized. In
particular, the mp_SigTask field must contain the address of the task to be signaled
and mp_SigBit must contain a preallocated signal number (as described in the “Tasks”
chapter). You can call the WaitPort() function to wait for a message to arrive at a
port. This function will return the first message queued to a port. If the port is empty,

your task will go to sleep waiting for the first message. If the port is not empty, your
task will not go to sleep.

Messages and Ports 35

A more general form of waiting for a message involves the use of the Wait() function
(see the “Tasks” chapter). This function waits for task event signals directly. If the
signal assigned to the message port occurs, the task will awaken. Using the Wait()
function is more general because you can wait for more than just a single message port.
For example, you may want to wait for a message and a timeout signal. The Wait()

function lets you specify a mask containing the signals associated with your message
port and your timeout signal.

Here’s an example using WaitPort():

struct MsgPort *mp;
struct Message *msg, *WaitPort();
int SigBit;

SigBit = AllocSignal (-1);

if (SigBit == -1) {
printf ("no free signal bits”);
return;

}

mp -> mp_Flags |—= PA_signal;
mp -> mp_SigBit = SigBit;
mp -> mp_SigTask = FindTask (0); /* self */
msg = WaitPort (mp);
Note that WaitPort() only returns a pointer to the first message in a port. It does not

actually remove the message from the port queue.

GETTING A MESSAGE

Messages are usually removed from ports with the GetMsg() function. This function
removes the next message at the head of the port queue and returns a pointer to it. If
there are no messages in a port, this function returns a zero.

The example below illustrates the use of GetMsg() to print the contents of all messages
in a port:

while ((msg = GetMsg (mp)) !=0) {
printf ("x=%ld y=%1d”, msg->x, msg->y);
}

36 Messages and Ports

Certain messages may be more important than others. Because ports impose FIFO ord-
ering, these important messages may get queued behind other messages regardless of
their priority. If it is necessary to recognize more important messages, it is easiest to
create another port for these special messages.

REPLYING

When the operations associated with receiving a new message are finished, it is usually
necessary to send the message back to the originator. The receiver replies the message
by returning it to the originator using the ReplyMsg() function. This is important
because it notifies the originator that the message can be reused or deallocated. The
ReplyMsg() function serves this purpose. It returns the message to the port specified
in the mn_ReplyPort field of the message. If this field is zero, no reply is returned.

The previous example can be enhanced to reply to each of its messages:

while ((msg = GetMsg (mp)) != 0) {
printf ("x=%Ild y=%Id”, msg->x, msg->Yy);
ReplyMsg (msg);

}

Notice that the reply does not occur until after the message values have been used.

Often the operations associated with receiving a message involve returning results to the
originator. Typically this is done within the message itself. The receiver places the
results in fields defined (or perhaps reused) within the message body before replying the
message back to the originator. Receipt of the replied message at the originator’s reply
port indicates it is once again safe for the originator to use or change the values found
within the message.

Messages and Ports 37

Chapter 4

INPUT/OUTPUT

Introduction

One of the primary purposes of Exec is to provide a standard form for all device
input/output (I/O). This includes the definition of a standard device interface, the for-
mat for I/O requests, and the establishment of rules for normal device/task interaction.
In addition, the guidelines for nonstandard device I/O are also defined. In the design of
the Amiga I/O system, great care has been taken to avoid dictating the form of imple-
mentation or the internal operational characteristics of a device.

Input/Output 39

In its purest sense, a device is an abstraction that represents a set of well-defined
interactions with some form of physical media. This abstraction is supported by a stan-
dard Exec data structure and an independent system code module. The data structure
provides the external interface and maintains the current device state. The code module
supplies the operations necessary to make the device functional. (In many operating sys-
tems, this code module is referred to as a device driver. See Amiga ROM Kernel Refer-
ence Manual: Libraries and Devices for the source assembly language code for a disk-
resident device driver with its own task for handling I/O requests.)

A device unit is an instance of a device. It shares the same device data structure and
code module with all other units of the same device; however, it operates in an indepen-
dent fashion. Often units correspond to separate physical subsystems of the same gen-
eral device class. For example, each Amiga floppy disk drive is an independent unit of
the same device. There is only one device data structure and one code module to sup-
port all of these units.

Exec I/O is often performed using the message system described in the chapter 3. Most
aspects of message passing are concealed within the Exec I1/O support routines. How-
ever, it is important to realize that I/O request blocks, once issued, must not be modified
or reused until they are returned to your program’s control by Exec.

Request Structure

An I/O request is always directed to a device unit. This request is organized as a control
block and contains a command to be performed on a specified unit. It is passed through
a standard device interface function, where it is processed and executed by the device’s
code module. All request parameters are included in the request control block, and 1/O
request results are returned in the same control block.

Every device unit responds to a standard set of commands, and may optionally provide
a nonstandard set of commands as well. The standard commands are explained later in
this chapter. Nonstandard commands are discussed in the documentation pertaining to
the particular device involved.

An I/O request always includes at least an IORequest data structure. This is a stan-

dard header used for all I/O requests. It is defined in the exec/¢0.h and exec/70.7 include
files as follows:

40 Input/Output

where

struct IORequest {

struct Message *io_Message;
struct Device =*io_Device;
struct Unit *io_Unit;

UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;

b5

io_Message

is a message header (see the “Messages and Ports” chapter). This header is
used by the device to return I/O requests upon completion. It is also used
by devices internally for I/O request queuing. This header must be prop-
erly initialized for I/O to work correctly.

io_Device

is a pointer to the device data structure node. This field is automatically
set up by an Exec function when the device is opened.

io_Unit

specifies a unit to the device internally. This is a device private field and
should not be accessed by the user. The format of this field is device
dependent and is set up by the device during the open sequence.

io_Command

is the command requested. This may be either one of the system standard
commands or a device-specific command.

io_Flags

is used to indicate special request options and state. This field is divided
into two subfields of four bits each. The lower four bits are for use by Exec
and the upper four bits are available to the device.

io_Error

is an error or warning number returned upon request completion.

The io_Device, io_Unit, and io_Command fields are not affected by the servicing of
the request. This permits repeated /O using the same request.

Input/Output 41

The standard I/O requests use an expanded form of the IORequest structure:

struct IOStdReq {

struct Message io_Message;
struct Device *io_Device;
struct Unit *io_Unit;

UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;
ULONG io_Actual;
ULONG io_Length;
APTR io_Data;
ULONG io_Offset;

}

where the additional fields are used as follows:

io_Actual

indicates the actual number of bytes transferred. This field is valid only
upon completion.

io_Length
is the requested number of bytes to transfer. This field must be set up

prior to the request. A special length of -1 is often used to indicate
variable-length transfers.

io_Data
is a pointer to the transfer data buffer.

io_Offset
indicates a byte offset (for structured devices). For block-structured devices

(such as a floppy disk device) this number must be a multiple of the block
size.

Devices with nonstandard commands may add their own special fields to the I/O request
structure as needed. Such extensions are device specific.

42 Input/Output

Interface Functions

Four Exec functions are responsible for interfacing I/O requests to actual device drivers.
These functions operate independently of the particular device command requested.
They deal with the request block as a whole, ignoring its command and its command
parameters.

DolO() is the most commonly used I/O function. It initiates an I/O request and
waits for its completion. This is a synchronous form of device I/O; control
is not returned to the caller until completion.

SendIO()
is used to initiate an I/O request without waiting for completion. This is

an asynchronous form of device I/O; control is returned even if the request
has not completed.

WaitIO()
is used to wait for the completion of a previously initiated asynchronous
I/O request. This function will not return control until the request has
completed (successfully or unsuccessfully).

CheckIO()
is used to see if an asynchronous I/O request has completed.

In addition to the above Exec functions, there are two I/O related functions that are
actually direct entries into the device driver itself. These functions are part of the
actual device driver interface to the system and should be used with care. They incur
slightly less overhead but require more knowledge of the I/O system internals (you must
know how quick 1/O works, for instance):

BeginlO()

initiates an 1O request. The request will be synchronous or asynchronous
depending on the device driver.

AbortIO()
attempts to cancel a previous I/O request. This function is easily accessed
as an assembly code macro ABORTIO or through the C library Exec sup-
port function AbortIO().

Input/Output 43

Standard Commands

There are eight standard commands to which all devices are expected to respond. If the
device is not capable of performing one of these commands, it will at least return an
error indication that the command is not supported. These commands are defined in the
ezec/io.h and ezxec/70.7 include files.

CMD_RESET
This command resets the device unit. It completely initializes the device
unit, returning it to its default configuration, aborting all of its pending
I/O, cleaning up any internal data structures, and resetting any related
hardware.

CMD_READ
This command reads a specified number of bytes from a device unit into
the data buffer. The number of bytes to be read is specified in the

io_Length field. The number of bytes actually read is returned in the
io_Actual field.

CMD_WRITE
This command writes a specified number of bytes to a device unit from a
data buffer. The number of bytes to be written is specified in the

io_Length field. The number of bytes actually written is returned in the
io_Actual field.

CMD_UPDATE
This command forces out all internal buffers, causing device internal
memory buffers to be written out to the physical device unit. A device will
transparently perform this operation when necessary, but this command
allows you to request explicitly that such an action take place. It is useful
for devices that maintain internal caches, such as the floppy disk device.

CMD_CLEAR
This command clears all internal buflers. It deletes the entire contents of a
device unit’s internal buflers. No update is performed; all data is lost.

CMD_STOP
This command stops the device unit immediately (at the first opportunity).
All T/O requests continue to queue, but the device unit stops servicing
them. This command is useful for devices that may require user interven-
tion (printers, plotters, data networks, etc.).

44 Input/Output

CMD_START
This command causes the device unit to continue after a previous
CMD_STOP command. The device resumes from where it was stopped.

CMD_FLUSH
This command aborts all I/O requests, returning all pending I/O requests
with an error message.

CMD_NONSTD
Any nonstandard commands begin here. Non standard commands are
designated as CMD_NONSTD+0, CMD_NONSTD+1, and so on.

CMD_INVALID
This is a command to which the device should not respond.

Performing I/O

In Exec, I/O is always performed using I/O request blocks. Before I/O is performed, the
request block must be properly initialized by both the system and the user. Once this
has been done, normal I/O may commence.

PREPARATION

Devices are identified within the system by name (a null-terminated character string).
Device units are usually identified by number. The OpenDevice() function maps the
device name to an actual device and then calls the device to perform its initialization.
The device will map the unit number into an internal form for later use. Both Exec and
the device driver will initialize the I/O request passed to OpenDevice().

For example, OpenDevice(‘“‘trackdisk.device”,1,ior,0) will attempt to open unit one
of the floppy disk device, mapping its symbolic name into the address of a device data
structure. It also sets up a few internal fields of the request. OpenDevice() will return
a zero if it was successful and a nonzero error number if it was not.

Input/Output 45

SYNCHRONOUS REQUESTS

Synchronous I/O requests are initiated with the DoIO() function mentioned earlier.
DolIO() will not return control until the request has completed. Because the device may
respond to a request immediately or queue it for later action, an undetermined amount
of time may pass before control is returned. With this type of 1/O, only one request is
serviced at a time.

To perform synchronous 1/O, the 1/O request block must be prepared as described in
the previous section. In addition, io_Message, io_Command, and perhaps other fields -
must be initialized.

The io_Message field is set up in the same manner as a message. This is described in
the “Messages and Ports’ chapter.

The io_Command field is set to the desired command. For example:

ior->io_Command = CMD_RESET;
DolO (ior);

performs a reset command.

More involved commands require other fields to be initialized. For example, the com-
mands to read a sector from a disk might look something like the following:

ior- >io_Command = CMD_READ;
ior->io_Length = TD_SECTOR;
ior->io_Offset = 20 * TD_SECTOR;
ior->io_Data = buffer;

DolO (ior);

When the request has completed, the request block is returned with the command

results. If an error occurred, DoIO() will return the error number. The error number is
also indicated in the io_Error field of the request.

46 Input/Output

ASYNCHRONOUS REQUESTS

More eflicient programs can take advantage of the multitasking characteristics of the
I/O system by using asynchronous I/O, which allows many requests to be performed at
the same time. This type of I/O is supported by the SendIO(), WaitIO(),
CheckIO(), BeginIO(), and AbortIO() functions. Asynchronous I/O requests will
return almost immediately to the user regardless of whether the request has actually
completed. This lets the user maintain control while the I/O is being performed. Multi-
ple I/O requests can be posted in this fashion.

In the disk read example above, asynchronous I/O could be performed by changing the
DoIO() call to a SendIO():

ior->io_Command = CMD_READ;
ior->io_Length = TD_SECTOR;
ior->io_Offset = 20 * TD_SECTOR;
ior->io_Data = buffer;

SendIO (ior);

From the time the I/O has been initiated to the time it completes, the request block
should not be directly accessed by the program. The device can be said to “own” the

request block. Only after the request has completed or successfully aborted should your
program access it.

When the I/O completes, the device will return the I/O request block to the reply port
specified in its io_Message field. After this has happened, you know that the device
has finished the I/O. The reply port used to receive the returned request can be set up
to cause a task signal when the reply arrives. This technique lets a task sleep until the
the request is complete. The WaitIO() function can be called to wait for the comple-
tion of a previously initiated request.

WaitIO() will handle all of the interaction with the message reply port automatically.
If you are using just the Wait() function, do not forget to remove the I/O request from
your reply port with GetMsg(). Once this is done, the request may be reused.

The CheckIO() function is handy to determine if a particular I/O request has been
satisfied. This function deals with some of the subtleties of I/O in the proper manner.

If you wish to queue several I/O requests to a device, you must issue multiple SendIO()
requests, each with its own separately-opened request structure. This type of 1/O is sup-
ported by most devices. A task can also request I/O from a number of devices and then
check later for their completion.

Input/Output 47

Exec also allows for certain types of optimization in device communication. One form of
optimization, in which you call the device driver directly, is called quick I/O. This con-
cept is discussed later in this chapter.

CONCLUSION

When a request has completed its 1/O, access to the device should be concluded with
CloseDevice(). This function will inform the device that no further I/O is to be per-

formed with this request. For every OpenDevice() there must be a corresponding
CloseDevice().

QUICK I/0

For some types of I/O, the normal internal mechanisms of I/O may present a large
amount of overhead. This is mostly true for character-oriented I/O, in which each char-
acter might be transferred with a separate I/O request. The overhead for such requests
could significantly overload the I/O system, resulting in a loss of efficiency for the overall
system.

To allow devices to optimize their I/O handling, a mechanism called quick I/O was
created. In the IORequest data structure, one of the io_flags is reserved for quick I/0O.
When set prior to an I/O request, this flag indicates that the device is allowed to handle
the I/O in a special manner. This enables some devices to take certain “‘short-cuts”
when it comes to performing and completing the request.

The quick I/O bit (IOB_QUICK) allows the device to avoid returning the I/O request to
the user via the message system (for example, via ReplyMsg()) if it can complete the
request immediately. If the IOB-QUICK bit is still set at the end of the BeginIO() call,
the request has already completed and the user will not find the I/O request on his reply
port.

The DolIO() function normally requests the quick /O option, whereas the SendIO()
function does not. Complete control over the mode for quick I/O is possible by calling a
device’s BeginIO() entry directly.

It is up to the device to determine whether it can handle a request marked as quick I/O.
If the quick I/O flag is still set when the request has completed, the /O was performed
quickly. This means that no message reply occurred, so the message has not been
queued to the reply port.

48 Input/Output

Standard Devices

The following standard system devices are normally available when the Amiga starts up.

Each of these devices is described in Amiga ROM Kernel Reference Manual: Libraries
and Devices.

Timer Provides a flexible way of causing task signals or interrupts at second and
microsecond intervals.

Trackdisk Provides direct access to the 3 1/2-inch and 5 1/4-inch floppy disk drives.
Among the functions provided are format, seek, read, and write. Nor-
mally, trackdisk is used only by AmigaDOS; its functions are enumerated
here for direct access where required.

Keyboard Handles raw information from the keyboard and converts it into input
events that can be retrieved and interpreted. IKeyboard input events are
queued so that no keystrokes will be missed.

Gameport Handles raw information from the mouse or a joystick device. Gameport
events are queued so that no movements will be missed. You can tell the
system what type of device is connected and how often to check and report
the current status of the device.

Input The input device combines requests from both the keyboard and the
gameport device. Input events from both are merged into a single input
event stream on a first-in-first-out basis.

Console The console device receives its input from the input device. The input por-
tion of the console device is simply a handler for input events filtered by
Intuition. It provides what might be called the ‘“traditional” user

interface.
Audio The audio device is provided to control the use of the audio channels.
Narrator The narrator device is loaded from disk and uses the audio device to pro-

duce humanlike synthesized speech.
Serial The serial device is loaded from disk and initialized on being loaded. It

controls serial communications buflering of the input/output, baud rate,
and so on.

Input/Output 49

Parallel The parallel device is loaded from disk and initialized on being loaded. It
controls parallel communications. The parallel device is most often used
by a parallel printer driver.

Printer The printer device driver is loaded from disk. Printers that are supported
as of this writing are specified in the “Printer Device Support Code”
appendix of the Amiga ROM Kernel Reference Manual: Libraries and
Devices.

Clipboard The clipboard device provides a means of “cutting” data from and ‘“past-
ing” data into applications.

50 Input/Output

Chapter 5

INTERRUPTS

Introduction

Exec manages the decoding, dispatching, and sharing of all system interrupts. This
includes control of hardware interrupts, software interrupts, task-relative interrupts (see
the “Tasks” chapter), and interrupt disabling/enabling. In addition, Exec supports a
more extended prioritization of interrupts than that provided in the 68000.

Interrupts 51

The proper operation of multitasking depends heavily on the consistent management of
the interrupt system. Task activities are often driven by intersystem communication
that is originated by various interrupts.

SEQUENCE OF EVENTS

Before useful interrupt handling code can be executed, a considerable amount of
hardware and software activity must occur. Each interrupt must propagate through
several hardware and software interfaces before application code is finally dispatched:

1.

o

A hardware device decides to cause an interrupt and sends a signal to the
interrupt control portions of the 4703 custom chip.

The 4703 interrupt control logic notices this new signal and performs two pri-
mary operations. First, it records that the interrupt has been requested by set-
ting a flag bit in the INTREQ register. Second, it examines the INTENA regis-
ter to determine whether the corresponding interrupt and the interrupt master
are enabled. If both are enabled, the 4703 generates a set of three 68000
interrupt request signals. See the Amiga Hardware Reference Manual for a
more complete explanation of how this is done.

These three signals correspond to seven interrupt priority levels in the 68000. If
the priority of the new interrupt is greater than the current processor priority,
an interrupt sequence is initiated. The priority level of the new interrupt is
used to index into the top seven words of the processor address space. The odd
byte (a vector number) of the indexed word is fetched and then shifted left by
two to create a low memory vector address.

The 68000 then switches into supervisor mode (if it is not already in that
mode), and saves copies of the status register and program counter (PC) onto
the top of the system stack. The processor priority is then raised to the level of
the active interrupt.

From the low memory vector address (calculated in step three above), a 32-bit
autovector address is fetched and loaded into the program counter. This is an
entry point into Exec’s interrupt dispatcher.

Exec must now further decode the interrupt by examining the INTREQ and
INTENA 4703 chip registers. Once the active interrupt has been determined,
Exec indexes into an ExecBase array to fetch the interrupt’s handler entry
point and handler data pointer addresses.

52 Interrupts

7. Exec now turns control over to the interrupt handler by calling it as if it were a
subroutine. This handler may deal with the interrupt directly or may pro-
pagate control further by invoking interrupt server chain processing.

You can see from the above discussion that the interrupt autovectors should never be
altered by the user. If you wish to provide your own interrupt handler, you must use the
Exec SetIntVector() function. Changing the content of any autovector location
violates the design rules of the Multitasking Executive.

Task multiplexing usually occurs as the result of an interrupt. When an interrupt has
finished and the processor is about to return to user mode, Exec determines whether
task-scheduling attention is required. If a task was signaled during interrupt processing,
the task scheduler will be invoked. Because Exec uses preemptive task scheduling, it can
be said that the interrupt subsystem is the heart of task multiplexing. If, for some rea-
son, interrupts do not occur, a task might execute forever because it cannot be forced to
relinquish the CPU.

INTERRUPT PRIORITIES

Interrupts are prioritized in hardware and software. The 68000 CPU priority at which
an interrupt executes is determined strictly by hardware. In addition to this, the
software imposes a finer level of pseudo-priorities on interrupts with the same CPU
priority. These pseudo-priorities determine the order in which simultaneous interrupts
of the same CPU priority are processed. Multiple interrupts with the same CPU priority
but a different pseudo-priority will not interrupt one another.

Table 5-1 summarizes all interrupts by priority.

Interrupts 53

Table 5-1: Interrupts by Priority

4703 CPU Pseudo

Name Priority Priority Purpose

NMI 7 15 Nonmaskable

INTEN 6 14 Special (Copper)
EXTER 6 13 8520B, external level 6
DSKSYNC 5 12 Disk byte

RBF 5 11 Serial input

AUD1 4 10 Audio channel 1
AUD3 4 9 Audio channel 3
AUDO 4 8 Audio channel O
AUD2 4 7 Audio channel 2

BLIT 3 6 Blitter done

VERTB 3 5 Vertical blank
COPER 3 4 Copper

PORTS 2 3 8520A, external level 2
TBE 1 2 Serial output
DSKBLK 1 1 Disk block done
SOFTINT 1 0 Software interrupts

The 8520s (also called CIAs) are peripheral interface adapter chips. For more informa-
tion about them, see Amiga Hardware Reference Manual.

As described in the Motorola 68000 programmer’s manual, interrupts may nest only in
the direction of higher priority. Because of the time-critical nature of many interrupts
on the Amiga, the CPU priority level must never be lowered by user or system code.
When the system is running in user mode (multitasking), the CPU priority level must
remain set at zero. When an interrupt occurs, the CPU priority is raised to the level
appropriate for that interrupt. Lowering the CPU priority would permit unlimited
interrupt recursion on the system stack and would “short-circuit’ the interrupt-priority
scheme.

Because it is dangerous on the Amiga to hold off interrupts for any period of time,
higher-level interrupt code must perform its business and exit promptly. If it is neces-
sary to perform a time-consuming operation as the result of a high-priority interrupt, the
operation should be deferred either by posting a software interrupt or by signalling a
task. In this way, interrupt response time is kept to a minimum. Software interrupts
are described in a later section.

54 Interrupts

NONMASKABLE INTERRUPT

The 68000 provides a nonmaskable interrupt (NMI) of CPU priority 7. Although this
interrupt cannot be generated by the Amiga hardware itself, it can be generated on the
expansion bus by external hardware. Because this interrupt does not pass through the
4703 interrupt controller circuitry, it is capable of violating system code critical sections.
In particular, it short-circuits the DISABLE mutual-exclusion mechanism. Code that
uses NMI must not assume that it can access system data structures.

Servicing Interrupts

Interrupts are serviced on the Amiga through the use of interrupt handlers and servers.
An interrupt handler is a system routine that exclusively handles all processing related
to a particular 4703 interrupt. An interrupt server is one of possibly many system rou-
tines that are invoked as the result of a single 4703 interrupt. Interrupt servers provide

a means of interrupt sharing. This concept is useful for general-purpose interrupts such
as vertical blanking.

At system start, Exec designates certain 4703 interrupts as handlers and others as server
chains. The PORTS, COPER, VERTB, BLIT, EXTER, and NMI interrupts are initial-
ized as server chains; hence, each of these may execute multiple interrupt routines per
each interrupt. All other interrupts are designated as handlers and are always used
exclusively.

DATA STRUCTURE

Interrupt handlers and servers are defined by the Exec Interrupt structure. This struc-
ture specifies an interrupt routine entry point and data pointer. The C definition of this
structure is as follows:

struct Interrupt {
struct Node is_Node;
APTR is_Data;
VOID (*is_Code)();

b

Once this structure has been properly initialized, it can be used for either a handler or a
server.

Interrupts 55

ENVIRONMENT

Interrupts execute in an environment different from that of tasks. All interrupts execute
in supervisor mode and utilize a single system stack. This stack is large enough to han-
dle extreme cases of nested interrupts (of higher priorities). Obviously, interrupt pro-
cessing has no effect on task stack usage.

All interrupt processing code, both handlers and servers, is invoked as assembly code-
subroutines. Normal assembly code CPU register conventions dictate that the DO, D1,
A0, and Al registers be free for scratch use. In the case of an interrupt handler, some of
these registers also contain data that may be useful to the handler code. See the section
on handlers below.

Because interrupt processing executes outside the context of most system activities, cer-
tain data structures will not be self-consistent and must be considered off limits for all
practical purposes. This happens because certain system operations are not atomic in
nature and may be interrupted only after executing part of an important instruction
sequence. For example, memory allocation and deallocation routines forbid task switch-
ing but do not disable interrupts. This results in the finite possibility of interrupting a
memory-related routine. In such a case, a memory linked list may be inconsistent when
examined from the interrupt code itself. To avoid serious problems, the interrupt rou-
tine must not use any of the memory allocation or deallocation functions.

INTERRUPT HANDLERS

As described above, an interrupt handler is a system routine that exclusively handles all
processing related to a particular 4703 interrupt. There can only be one handler per
4703 interrupt. Every interrupt handler consists of an Interrupt structure (as defined
above) and a single assembly code routine. Optionally, a data structure pointer may
also be provided. This is particularly useful for ROM-resident interrupt code.

An interrupt handler is passed control as if it were a subroutine of Exec. Once the
handler has finished its business, it must return to Exec by executing an RTS (return
from subroutine) instruction rather than an RTE (return from exception) instruction.
Interrupt handlers should be kept very short to minimize service-time overhead and thus
minimize the possibilities of interrupt overruns. As described above, an interrupt
handler has the normal scratch registers at its disposal. In addition, A5 and AG are free
for use. These registers are saved by Exec as part of the interrupt initiation cycle.

For the sake of efliciency, Exec passes certain register parameters to the handler (see the

list below). These register values may be utilized to trim a few microseconds off the exe-
cution time of a handler.

56 Interrupts

DO is scratch and contains garbage.

D1 is scratch but contains the 4703 INTENAR and INTREQR registers values
ANDed together. This results in an indication of which interrupts are enabled
and active.

AO points to the base address of the Amiga custom chips. This information is use-
ful for performing indexed instruction access to the chip registers.

Al points to the data area specified by the is_Data field of the Interrupt struc-
ture. Because this pointer is always fetched (regardless of whether you use it),
it is to your advantage to make some use of it.

A5 is used as a vector to your interrupt code. It is free to be used as a scratch
register, and it is not necessary to restore its value prior to returning.

A6 points to the Exec library base (SysBase). You may use this register to call
Exec functions or set it up as a base register to access your own library or dev-
ice. It is mot necessary to restore this register prior to returning.

Interrupt handlers are established by passing the Exec function SetIntVector() your
initialized Interrupt structure and the 4703 interrupt bit number of interest. The
parameters for this function are as follows:

INTB_RBF
This is the bit number for which this interrupt server is to respond. Other pos-
sible bits for interrupts are defined in hardware/intbits.h.

RBFInterrupt
This is the address of an interrupt server node as described earlier in this

chapter.

Keep in mind that certain interrupts are established as server chains and should not be
accessed as handlers.

Here is a C code example of proper handler initialization and set-up:

Interrupts 57

#include ”exec/types.h”
#include "exec/memory.h”
#include ”exec/interrupts.h”
#include "hardware/custom.h”
#include "hardware/intbits.h”

extern void RBFHandler();

extern struct Interrupt *SetIntVector();

extern struct Custom custom; /* get base of custom chips */
struct Interrupt *RBFInterrupt, *PriorInterrupt;

/* To try this, user must have a 9600 baud terminal connected to serial
* port and run this from a newcli window and must have a separate

* way to view buffer contents as characters arrive. The Wait(0) is

* used merely to make this a runnable example demonstrating setting
* the vector. If the setup routine ever exits, various pointers

* become invalid (Buffer, In_Name) and there is no checking for

* buffer overflow included either. */

main()

{

setup();

setup()

{

short *Buffer;
/* allocate an Interrupt node structure: */

RBFInterrupt = (struct Interrupt *)
AllocMem (sizeof(struct Interrupt), MEMF_PUBLIC);
if (RBFInterrupt == 0) {
printf ("not enough memory for interrupt handler”);
exit (100);
}
/* allocate an input buffer: x/
Buffer = (short *)AllocMem (512, MEMF_PUBLIC);
if (Buffer == 0) {
FreeMem (RBFInterrupt, sizeof(struct Interrupt));
printf ("not enough memory for data buffer”);
exit (100);

}
printf(” Address of buffer is: %Ix\n”, Buffer);

/* initialize the Interrupt node: */

58 Interrupts

RBFInterrupt->is_Node.In_Type = NT_INTERRUPT;
RBFInterrupt->is_Node.ln_Pri = 0;
RBFInterrupt->is_Node.In_Name = "RBF-example”;
RBFInterrupt->is_Data = (APTR)&Buffer;
RBFInterrupt->is_Code = RBFHandler;

/* enable the RBF interrupt if not already enabled */
custom.intena = INTF_SETCLR | INTF_RBF;

/* put the new interrupt handler into action: */
PriorInterrupt = SetIntVector (INTB_RBF, RBFInterrupt);

if (PriorInterrupt != 0) {
printf ("we just replaced the %%s interrupt handler”,
PriorInterrupt->is_Node.ln_Name);
}
Wait(0); /* wait forever, ("illustrative example only”... if it exits,
* pointer to Buffer and In_Name will become invalid) */
}

In this example, note the correct initialization of the Node structure.

The external interrupt handler code used above, RBFHandler, grabs the input charac-
ter from the serial port and stores it into the buffer. Notice that the address of the
buffer is passed to the handler (shown below) via the is_Data pointer. This pointer is
updated for every character stored.

XDEF _RBFHandler

_RBFHandler:
MOVE.L (A1),A5 ;get buffer pointer
MOVE.W SERDATR(AO0),(A5)+ ;store the input word
MOVEW #INTF_RBF,INTREQ(AO) jclear the interrupt
MOVE.L A5,(A1) srestore new buffer pointer
RTS sreturn to exec
END

In this example, the bufler holds complete 4703 serial data words that contain not only
the input character, but special serial input flags as well (for example, data overrun).
This data word is deposited directly into the bufler, and the 4703 RBF interrupt request
is cleared. A more sophisticated example might perform various tests on the input word
prior to storing it into the buffer.

Interrupts 59

INTERRUPT SERVERS

As mentioned above, an interrupt server is one of possibly many system interrupt rou-
tines that are invoked as the result of a single 4703 interrupt. Interrupt servers provide
an essential mechanism for interrupt sharing.

Interrupt servers must be used for PORTS, COPER, VERTB, BLIT, EXTER, or NMI
interrupts. For these interrupts, all servers are linked together in a chain. Every server
in the chain will be called until one returns with the Z bit of the 68000’s condition code
register clear (indicating a non-zero result). If the interrupt was specifically for your
server, you should return to Exec with the Z bit of the condition codes clear so that the
whole chain does not have to be searched to find the interrupt. Note that VERTB
servers (that is, servers that are bound to vertical blank) should always return with the
Z bit set. Note that this is different from the normal calling convention (with the result
in DO) to save time during time-critical interrupts.

The easiest way to set the condition code register is to do an immediate move to the DO
register as follows:

InterruptNotProcessed:
MOVEQ #0,D0
RTS

InterruptProcessed:
MOVEQ #1,D0
RTS

The same Exec Interrupt structure used for handlers is also used for servers. Also, like
interrupt handlers, servers must terminate their code with an RTS instruction.

Interrupt servers are called in priority order. The priority of a server is specified in its
is_Node.In_Pri field. Higher-priority servers are called earlier than lower-priority
servers. Adding and removing interrupt servers from a particular chain is accomplished
with the Exec AddIntServer() and RemlIntServer() functions. These functions
require you to specify both the 4703 interrupt number and a properly initialized
Interrupt structure.

Servers have different register values passed than handlers do. A server cannot count on

the DO, D1, or A6 registers containing any useful information. A server is free to use
DO-D1 and A0-A1/AS5 as scratch.

60 Interrupts

In a server chain, the interrupt is cleared automatically by the system. Having a server
clear its interrupt is not recommended and not necessary (clearing could cause the loss of
an interrupt on PORTS or EXTER).

Here is an example of a program to set up and clean up a low-priority vertical blank
interrupt server:

/* vertb.c *x/

#include ”exec/types.h”
#include ”exec/memory.h”
#include ”exec/interrupts.h”
#include "hardware/custom.h”
#include "hardware/intbits.h”

struct Interrupt *VertBlntr;
long count;
/* To try this program, save as ‘“vertb,” then type ‘“vertb” to run it.
* If you type “run vertb,” the program won’t be connected to a CLI and
* it will not be possible to send ‘“q’’ to it to stop the program.
* Compiling info: lc2 -v (disable stack checking so no need to use lc.lib)
* Linking info: Astartup.obj, vertb.c, vb.obj, amiga.lib
*/
main()

{

extern void VertBServer();

/* allocate an Interrupt node structure: */
VertBIntr = (struct Interrupt *)
AllocMem (sizeof(struct Interrupt), MEMF_PUBLIC);
if (VertBIntr == 0) {
printf ("not enough memory for interrupt server”);
exit (100);

}

/* initialize the Interrupt node: */
VertBIntr->is_Node.ln_Type = NT_INTERRUPT;
VertBlIntr->is_Node.ln_Pri = -60;
VertBlIntr->is_Node.In_Name = "VertB-example”;
VertBlntr->is_Data = (APTR)&count;
VertBlIntr->is_Code = VertBServer;

/* put the new interrupt server into action: */
AddIntServer (INTB_VERTB, VertBIntr);
printf(” Type q to quit... reports how many vblanks since start\n”);

Interrupts 61

while (getchar () !="q’); /* wait for user to type 'q’ */

RemlIntServer (INTB_VERTB, VertBlntr);
printf (”%Ild vertical blanks occurred\n”, count);
FreeMem (VertBlntr, sizeof(struct Interrupt));

}

The VertBServer might look something like this:

XDEF _VertBServer

_VertBServer:
MOVE.L A1,A0 ;get address of count
ADDQ.L #1,(A0) ;increment value of count
MOVEQ.L #0,D0 ;continue to process other vb-servers
RTS
END

Software Interrupts

Exec provides a means of generating software interrupts. This type of interrupt is useful
for creating special-purpose asynchronous system contexts. Software interrupts execute
at a priority higher than that of tasks but lower than that of hardware interrupts, so
they are often used to defer hardware interrupt processing to a lower priority. Software
interrupts use the same Interrupt data structure as hardware interrupts. As described
above, this structure contains pointers to both interrupt code and data.

A software interrupt is usually activated with the Cause() function. If this function is
called from a task, the task will be interrupted and the software interrupt will occur. If
it is called from a hardware interrupt, the software interrupt will not be processed until
the system exits from its last hardware interrupt. If a software interrupt occurs from
within another software interrupt, it is not processed until the current one is completed.

Software interrupts are prioritized. Unlike interrupt servers, software interrupts have
only five priority levels: -32, -16, 0, +16, and +32. The priority should be put into the
In_Pri field prior to calling Cause().

Software interrupts can also be caused by message port arrival actions. See the “Mes-
sages and Ports” chapter.

62 Interrupts

Disabling Interrupts

As mentioned in the “Tasks” chapter, it is sometimes necessary to disable all interrupts
when examining or modifying certain shared system data structures. Interrupt disabling
is controlled with the DISABLE and ENABLE macros and the Disable() and
Enable() C functions.

In some system code, there are nested disabled sections. This type of code requires that
interrupts be disabled with the first DISABLE and not re-enabled until the last
ENABLE. The system enable/disable macros and functions are designed to permit this
sort of nesting. For example, if there is a section of system code that should not be
interrupted, the DISABLE macro is used at the head and the ENABLE macro is used
at the end.

Here is an assembly-code macro definition for DISABLE. This routine assumes that A6
holds a pointer to the base of the Exec library.

DISABLE MACRO
MOVE. W #$4000,_intena
ADDQ.B #1,IDNestCnt(AS6)
ENDM

DISABLE increments a counter, IDNestCnt, that keeps track of how many levels of
disable have been issued up to now. Only 126 levels of nesting are permitted. Notice
that interrupts are disabled before the IDNestCnt variable is incremented.

Similarly, the ENABLE macro will reenable macros if the last disable level has just
been exited:

ENABLE MACRO
SUBQ.B #1,IDNestCnt(A6)
BGE.S ENABLEQ
MOVE.W #$C000,_intena
ENABLEQ:
MEND

ENABLE decrements the same counter that DISABLE increments. Notice that
interrupts are enabled after the IDNestCnt variable is decremented.

See the “Tasks” chapter for a better explanation of mutual exclusion using interrupt
disabling.

Interrupts 63

Chapter 6

MEMORY ALLOCATION

Introduction

Areas of free memory are maintained as a special linked list of free regions. Each
memory allocation function returns the starting address of a block of memory at least as
large as the size that you requested to be allocated. Any memory that is linked into this
system free list can be allocated by the memory allocation routines. The allocated
memory is not tagged or initialized in any way unless you have specified, for example,

Memory Allocation 65

MEMF_CLEAR. Only the free memory area is tagged to reflect the size of the chunk
that has been freed.

You should return allocated memory to the system when your task completes. As noted
above, the system only keeps track of available system memory and has no idea which
task may have allocated memory and not returned it to the system free list. If your pro-
gram does not return allocated memory when its task exits, that memory is unavailable
until the system is powered down or reset. This can be critical, especially when using
graphics routines that often need large blocks of contiguous RAM space. Therefore, if
you dynamically allocate RAM, make sure to return it to the system by using the
FreeMem() or FreeEntry() routines described below.

When you ask for memory to be allocated, the system always allocates blocks of memory
in even multiples of eight bytes. If you request more or less than eight bytes, your
request is always rounded up to the nearest multiple of eight. In addition, the address
at which the memory deallocation is made is always rounded down to the nearest even
multiple of eight bytes.

Compatibility Note: Do not depend on this size! Future revisions of the system may
require a different size to guarantee alignment of the requested area to a specific boun-
dary. You can depend upon allocation being aligned to at least a longword boundary.

Using Memory Allocation Routines

Note: Do not attempt to allocate or deallocate system memory from within interrupt
code. The “Interrupts” chapter explains that an interrupt may occur at any time, even
during a memory allocation process. As a result, system data structures may not neces-
sarily be internally consistent.

MEMORY REQUIREMENTS

You must tell the system about your memory requirements when requesting a chunk of
memory. There are four memory requirement possibilities. Three of these tell where
within the hardware address map memory is to be allocated. The fourth,
MEMF_CLEAR, tells the allocator that this memory space is to be zeroed before the
allocator returns the starting address of that space.

66 Memory Allocation

The memory requirements that you can specify are listed below:

MEMF_CHIP
This indicates a memory block that is within the range that the special-

purpose chips can access. As of this writing, this is the lowest 512K of the
Amiga.

MEMF_FAST
This indicates a memory block that is outside of the range that the special
purpose chips can access. “FAST” means that the special-purpose chips
cannot cause processor bus contention and therefore processor access will

likely be faster. The special-purpose chips cannot use memory allocated in
this way.

MEMF_PUBLIC

This indicates that the memory requested is to be used for different tasks
or interrupt code, such as task control blocks, messages, ports, and so on.
The designation MEMF_PUBLIC should be used to assure compatibility
with future versions of the system.

MEMF_CLEAR
This indicates that memory is to be cleared before returning.

If no preferences are specified, MEMF_FAST is assumed first, then MEMF_CHIP.

MEMORY HANDLING ROUTINES

Exec has the following memory allocation routines:

AllocMem() and FreeMem()

These are system-wide memory allocation and deallocation routines. They use a
memory free-list owned and managed by the system.

AllocEntry() and FreeEntry()

These are routines for allocating and freeing different-size and different-type
memory blocks with a single call.

Allocate() and Deallocate()

These are routines that may be used within a user-task to locally manage a
system-allocated memory block. You use these routines to manage memory
yourself, using your own memory free lists.

Memory Allocation 67

SAMPLE CALLS FOR ALLOCATING SYSTEM MEMORY

The following examples show how to allocate memory.

APTR mypointer,anotherptr;
mypointer = (APTR)AllocMem(100, 0);

AllocMem() returns the address of the first byte of a memory block that is at least 100
bytes in size or null if there is not that much free memory. Because the requirement
field is specified as 0, memory will be allocated from any one of the system-managed
memory regions.

anotherptr = (APTR)AllocMem(1000, MEMF_CHIP | MEMF_CLEAR);

Memory is allocated only out of chip-accessible memory; zeroes are filled into memory
space before the address is returned. If the system free-list does not contain enough con-
tiguous memory bytes in an area matching your requirements and of the size you have
requested, AllocMem() or Allocate() returns a zero.

SAMPLE FUNCTION CALLS FOR FREEING SYSTEM MEMORY

The following examples free the memory chunks shown in the earlier call to the system
allocation routines.

FreeMem(mypointer,100);
FreeMem(anotherptr,1000);

Note: Because of the internal operations of the allocator, your allocation request may
result in an allocation larger than the number of bytes you requested in the first place.
However, the FreeMem() routine adjusts the request to free memory in the same way
as AllocMem() adjusts the size, thereby maintaining a consistent memory free-list.

The routine FreeMem() returns no status. However, if you attempt to free a memory

block in the middle of a chunk that the system believes is already free, you will cause a
system crash.

68 Memory Allocation

ALLOCATING MULTIPLE MEMORY BLOCKS

Exec provides the routines AllocEntry() and FreeEntry() to allocate multiple memory
blocks in a single call. AllocEntry() accepts a data structure called a MemList, which
contains the information about the size of the memory blocks to be allocated and the
requirements, if any, that you have regarding the allocation. The MemList structure is
found in the include file exec/memory.h and is defined as follows:

struct MemList {

struct Node ml_Node;
UWORD ml_NumEntries; /* number of MemEntrys */
struct MemEntry ml_me[1]; /*where the MemEntrys begin*/
b5
where:
Node

allows you to link together multiple MemLists. However, the node is ignored
by the routines AllocEntry() and FreeEntry().

ml_NumEntries
tells the system how many MemEntry sets are contained in this MemList.
Notice that a MemList is a variable-length structure and can contain as many
sets of entries as you wish.

The MemEntry structure looks like this:

struct MemEntry {

union {
ULONG meu_Regs;/* the AllocMem requirements */
APTR meu_Addr;/* address of your memory */
}me_Un;
ULONG me_Length; /* the size of this request */

b3

#define me_Regs me_Un.meu_Reqgs
#define me_Addr me_Un.meu_Addr

Memory Allocation 69

Sample Code for Allocating Multiple Memory Blocks

#include "exec/types.h”
#include "exec/memory.h”

struct MemList *mymemlist; /* pointer to a MemList */
/* define new structure because C cannot initialize unions */
struct myneeds {
struct MemList mn_head; /* one entry in the header */
struct MemEntry mn_body|[3]; /* additional entries follow
* directly as part of
* same data structure */
} myneeds;

myneeds.mn_head.ml_NumEntries = 3;
myneeds.mn_body[0].me_Reqs = MEMF_PUBLIC;
myneeds.mn_body[0].me_Length = 104;
myneeds.mn_body[1].me_Reqs=MEMF_FASTMEMF_CLEAR;
myneeds.mn_body[1].me_Length = 8000;
myneeds.mn_body[2].me_Reqs=MEMF_CHIP | MEMF_CLEAR;
myneeds.mn_body[2].me_Length = 256;

mymemlist = (struct MemListx)AllocEntry(&myneeds);

/* saying ”struct MemEntry mn_body|[3]” is simply
* a way of adding extra MemEntry structures

* contiguously at the end of the first such

* structure at the end of the MemList. Thus

* members of the MemList of type MemEntry can
* be referenced in C as additional members of

* the "me[]” data structure.

*/

AllocEntry() returns a pointer to a new MemList of the same size as the MemList
that you passed to it. For example, ROM code can provide a MemList containing the
requirements of a task and create a RAM-resident copy of the list containing the
addresses of the allocated entries.

70 Memory Allocation

Result of Allocating Multiple Memory Blocks

The MemList created by AllocEntry() contains MemEntry entries. MemEntrys
are defined by a union statement, which allows one memory space to be defined in more
than one way.

If AllocEntry() returns a value with bit 31 clear, then all of the meu_Addr positions
in the returned MemList will contain valid memory addresses meeting the requirements
you have provided.

To use this memory area, you would use code similar to the following:

struct MemList *ml;
APTR mydata, moredata;

if (((ml & (1<<31)) < 0)

mydata = ml->ml_me[0].me_Addr;
moremydata = ml->ml_me[1].me_Addr;

}

else

}
{

If AllocEntry() has problems while trying to allocate the memory you have requested,
instead of the address of a new MemlList, it will return the memory requirements value
with which it had the problem. Bit 31 of the value returned will be set, and no memory
will be allocated. Entries in the list that were already allocated will be freed.

exit (200); /* error during AllocEntry */

Memory Allocation and Tasks

If you want your task to cooperate fully with Exec, use the MemList and AllocEntry()
facility to do your dynamic memory allocation.

In the task control block structure, there is a list header named tc_MemEntry. This is
the list header that you initialize to point to the MemLists that your task has created
by call(s) to AllocEntry(). Here is a short program segment that handles task memory
list header initialization only. It assumes that you have already run AllocEntry() as
shown in the simple AllocEntry() example above.

Memory Allocation 71

struct Task *tc;
struct MemList *ml;
NewList(tc->.tc_MemEntry); /* Initialize the task’s
* memory list header */

AddTail(tc->.tc_MemEntry, ml);

Assuming that you have only used the AllocEntry() method (or AllocMem() and built
your own custom MemList), your task now knows where to find the blocks of memory
that your task has dynamically allocated. If your clean-up routine (the task’s finalPC
routine) finds items on the tc_MemEntry list when RemTask(&mytask) is exe-
cuted, your routine can wind through all linked lists of MemLists and return all allo-
cated memory to the system free-list.

MEMORY ALLOCATION AND MULTITASKING

To make sure that you are working effectively in the multitasking system as a cooperat-
ing task, you can do one of the following:

o Globally allocate and free memory blocks by using AllocMem() and
FreeMem(), adding each block when allocated and deleting each when it is
freed.

o Allocate one or more blocks of memory from the system global pool using
AllocEntry() when your task begins and then manage those blocks internally
using Allocate() and Deallocate().

MANAGING MEMORY WITH ALLOCATE() AND DEALLOCATE()

Allocate() and Deallocate() use a memory region header, called MemHeader, as part
of the calling sequence. You can build your own local header to manage memory locally.
This structure takes the form:

72 Memory Allocation

struct MemHeader {

UWORD mh_Attributes; /* characteristics */

struct MemChunk *mh_First;/* first free region */

APTR mh_Lower; /* lower memory bounds */
APTR mh_Upper; /* upper memory bounds + 1 */
ULONG mh_Free; /* number of free bytes */

b5
where

mh_Attributes
is ignored by Allocate() and Deallocate().

mh_First
is the pointer to the first MemChunk structure.

mh_Lower

is the lowest address within the memory block. This must be a multiple of eight
bytes.

mh_Upper
is the highest address within the memory block + 1. The highest address will
itself be a multiple of eight if the block was allocated to you by AllocMem().

mh_Free
is the total free space.

This structure is included in the include-files exec/memory.h and exec/memory.i.
The following sample program fragment shows the correct initialization of a

MemHeader structure. It assumes that you wish to allocate a block of memory from
the global pool and thereafter manage it yourself using Allocate() and Deallocate().

Memory Allocation 73

struct MemHeader memheader;

APTR myblock;

struct MemChunk {
struct MemChunk *mc_Next;
ULONG mc_bytes;

35
struct MemChunk *mc;

/* get a block from the system */
myblock = (APTR) AllocMem(8000, MEMF_PUBLIC | MEMF_CLEAR);

memheader.mh_Lower = myblock;
memheader.mh_First = (ULONG) myblock;
memheader.mh_Upper = (ULONG)myblock + 8000;

/* takes 8 bytes for the memory chunk headers that tag free memory */
memheader.mh_Free = 8000 - (sizeof (struct MemChunk));

/* initialize the free memory list */
mc = (struct MemChunk *) myblock;
me->mec_Next = NULL;
mc->mec_Size = memheader.mh_Free;

/* now mymembhead is ready to use with
* calls to Allocate(&memheader, size);
* or Deallocate(&memheader, size); */

Note that only free memory is “tagged’” using a MemChunk linked list. Once memory
is allocated, the system has no way of determining which task now has control of that
memory.

If you allocate a large chunk from the system, you can assure that in your finalPC rou-
tine (specified when you perform AddTask()) you deallocate this large chunk as your
task exits. Thus, local memory allocation and deallocation from a single large block can
perhaps save some bookkeeping— that which might have been required if you had exten-
sively used AllocMem() and FreeMem() instead. This can most easily be done by
recording the allocated block in your task’s tc_MemEntry structure.

74 Memory Allocation

Chapter 7

LIBRARIES

Using a properly designed machine code interface, it is possible to call any of the system
routines without knowing in advance its absolute location in the system. This chapter
shows how libraries are designed and used but does not cover the internal library struc-
ture. For more information, see the “Library Base Offsets’’ appendix.

Libraries 75

What Is a Library?

A library is a collection of jump instructions, a system library node, and a data segment.
System library conventions require that each code vector occupy six bytes. The size and
content of a library node is specified below in the topic titled “Structure of a Library
Node.” The size of the data segment varies, depending on the needs of the library itself.

How To Access a Library

You must perform two steps to access a library that is already initialized. First, you
must open the library. Second, you must access the jump instructions or data by speci-
fying an offset (negative or positive) from the library base pointer returned by
OpenLibrary(). This form of indirection allows you to develop code that is not depen-
dent on the absolute locations of the system routines. Note that in the same release of
an Exec kernel, it is possible that routines can have different addresses. This depends,
for example, on whether the hardware options are different or if the user asks for a
different configuration. Therefore, accessing the system routines through library calls is
the most expedient way of assuring that your code will work on different machines.

OPENING A LIBRARY

You prepare a library for use by calling the routine OpenLibrary(). This call takes the
form

LibPtr = OpenLibrary(LibName, Version)

Do Al Do
where
LibPtr
is a pointer value that is nonzero if the requested library has been located. Be
sure to check that the returned value is nonzero before attempting to use
LibPtr. If it is zero, the open failed.
LibName

is a pointer to a string variable (null-terminated) that contains the name of the
library that you wish to open.

76 Libraries

Version
is the version number of the library that you expect to use. Libraries of the
same name will be compatible with previous versions. However, if you specify a
newer version than is present, the open will fail. Use the value 0 if you simply
want ‘“‘any” version of the named library.

The routine OpenLibrary() causes the system to search for a library of that name
within the system library list. If such an entry is found, the library’s open-entry routine
is called. If the library is not currently RAM-resident, AmigaDOS will search the direc-
tory currently assigned to LIBS:. If that library is present, it will be loaded, initialized,
and added to the system library list. If the library allows you access, the library pointer
will be returned in LibPtr.

USING A LIBRARY TO CALL A ROUTINE

A typical way to use the library interface once a library has been opened is to use assem-
bly language code as follows. Note that this save/restore is necessary only if A6 does
not already contain the correct value.

move.l A6,-(SP) ;save current contents of A6
move.l <libptr>,A6 smove library pointer into A6
jsr _LVO<routineName>(A6) sthrough library vector table
move.l (SP)+,A6 srestore A6 to original value

The example above is the actual assembly code generated by the use of a machine
language macro named LINKLIB:

LINKLIB functionOffset, libraryBase
where

functionOffset
is “_LVO” followed by the name of the routine as called from C.

libraryBase
is the address of the base of the library.

For example,

LINKLIB _LVODisplayBeep,IntuitionBase

Libraries 77

produces the same code sequence as shown above. This macro is located in the file
exec/libraries.h. Notice that it handles only the linkage to the routine. It does not save
any registers or preload any registers for passing values to the routine. Negative offsets,
in multiples of six bytes, access the code vectors within the library.

By convention, A6 must contain the library pointer when a library routine is called.
This allows any library routine to locate the library and access its data or any of its
other entry points. Registers A0, Al, DO, and D1 may be used as scratch registers by
any routine. All other registers, both address and data, if used in a routine, should be
saved and restored before exit.

USING A LIBRARY TO REFERENCE DATA

You can use the LibPtr to reference a data segment associated with a library by speci-
fying a positive offset from LibPtr, such as:

move.l <libptr>,Al ; Move library base
move.l <offset>(A1),D0 ; Retrieve data located at <offset>

Library data is not usually accessed directly from outside of a library, but rather is
accessed by the routines that are part of the library itself. The sample code retrieves
data specifically associated with that library. Note that different languages have
different interface requirements. This example shows only a typical assembly language
interface. When you design your own libraries, you may decide how the associated data
segment is to be used. The system itself places no restrictions on its use.

CACHING LIBRARY POINTERS

To make your library calls more eflicient, you may cache various pointers if you wish.
These pointers are are the libPtr itself (because the library node, while it is open, may
not be moved) and the address within the library at which a jump instruction is located
(because offsets from the libPtr do not change). You should not, however, cache the
jump vector from within the library. You will always expect to be calling the current
library routine and therefore should not cache the jump vector.

78 Libraries

CLOSING A LIBRARY

When your task has finished using a specific library, your program should call the rou-
tine CloseLibrary(). This call takes the form:

CloseLibrary(libPtr)
Al

where libPtr is the value returned to you by the call to OpenLibrary().

You close a library to tell the library manager that there is one fewer task currently
using that library. If there are no tasks using a library, it is possible for the system, on
request, to purge that library and free up the memory resources it is currently using.
Each successful open should be matched by exactly one close. Do not attempt to use a
library pointer after you have closed that library.

Adding a Library

You can add your own library to the system library list, provided that it is constructed
as indicated below. You add a library to the system by using the AddLibrary() func-
tion. The format of the call to this function is as follows:

AddLibrary(libPtr)
Al

This command links a new library to the system and makes it available to all tasks.

MAKING A NEW LIBRARY

A function called MakeLibrary() is a convenient way for you to construct a library.
After running MakeLibrary(), you will normally add that library to the system library
list.

libAddr = MakeLibrary(vectors, structure, init, dataSize, SegList)
Do A0 Al A2 DO D1
AddLibrary(libAddr)
Al

Libraries 79

MakeLibrary() allocates space for the code vectors and data area, initializes the library
node, and initializes the data area according to your specifications. Its parameters have
the following meanings:

vectors
This is a pointer to a table of code pointers terminated with a -1. vectors must
specify a valid table address.

structure
This parameter points to the base of an InitStruct() data region. That is, it
points to the first location within a table that the InitStruct() routine can use
to initialize various memory areas. InitStruct() will typically be used to initial-
ize the data segment of the library, perhaps forming data tables, task control
blocks, I/O control blocks, etc. If this entry is a 0, then InitStruct() is not
called.

init
This parameter points to a routine that is to be executed after the library node
has been allocated and the code and data areas have been initialized. When this
routine is called, the libAddr (address of this library) is placed into data regis-
ter DO. If init is zero, no init routine is called.

dataSize
This variable specifies the size of the data area to be reserved for the library. It
includes the standard library node data as well as the reserved data area itself.

SegList
This is a pointer to the AmigaDOS memory segment list (for libraries loaded by
DOS).

MINIMUM SUBSET OF LIBRARY CODE VECTORS

The code vectors of a library must include at least the following entries: OPEN,
CLOSE, EXPUNGE, and one reserved entry.

OPEN is the entry point called when you use the command OpenLibrary().
In the system libraries, OPEN increments the library variable OpenCnt.

This variable is also used by CLOSE and EXPUNGE.

CLOSE is the entry point called when you use the command CloseLibrary(). It
decrements the library variable OpenCnt and may do a delayed
EXPUNGE.

80 Libraries

EXPUNGE

prepares the library for removal from the system. This often includes
deallocating memory resources that were reserved during initialization.
EXPUNGE not only frees the memory allocated for data structures, but
also the areas reserved for the library node itself.

The remaining vector is reserved for future use. It should always return zero.

STRUCTURE OF A LIBRARY NODE

A library node contains all of the information that the system needs to manage a library.
Here is the library structure as it appears in the exec/libraries.h include file:

struct Library {

struct
UBYTE
UBYTE
UWORD
UWORD
UWORD
UWORD
APTR
ULONG
UWORD

}5

Node libNode;
lib_Flags;
lib_pad;
lib_NegSize;
lib_PosSize;
lib_Version;
lib_Revision;
lib_IdString;
lib_Sum;
lib_Open_Cnt;

#define LIBF_SUMMING (1 << 0)

#define LIBF_CHANGED (1 << 1)

#define LIBF_SUMUSED (1 << 2)

#define LIBF_DELEXP (1 << 3)

/* link into the system library list */
/* flag variables */

/* unused */

/* size of jump vectors in bytes. */
/* data size */

/* checksum */
/* count how many tasks
* have this library open */

/* meaning of the flag bits: */

/* bit position says some task
* is currently running a
* checksum on this library */

/* bit position says one or more entries
* have been changed in the library
* code vectors used by SumLibrary */

/* bit position says user wants a check-
* sum fault to cause a system panic */

/* says there is a delayed expunge.
* Some user has requested expunge but
* another user still has the library open. */

Libraries 81

CHANGING THE CONTENTS OF ALIBRARY

After a library has been constructed and linked to the system library list, you can use
the routine SetFunction() either to add or to replace the contents of one of the library
vectors. The format of this routine is as follows:

SetFunction(Library, FuncOffset, FuncEntry)
Al A0 Do

where

Library
is a pointer to the library in which a function entry is to be changed.

FuncOffset
is the offset (negative) at which the entry to be changed is located.

FuncEntry

is a longword value that is the absolute address of the routine that is to be
inserted at the selected position in the library code vectors.

When you use SetFunction() to modify a function entry in a library, it automatically
recalculates the checksum of the library.

Relationship of Libraries to Devices

A device is an interface specification and an internal data structure based on the library
structure. The interface specification defines a means of device control. The structures
of libraries and devices are so similar that the routine MakeLibrary() is used to con-
struct both libraries and devices. Devices require the same basic four code vectors but
have additional code vectors that must be located in specific positions in the code vector
table. The functions that devices are expected to perform, at minimum, are shown in
chapter 4, “Input/Output.” Also, a skeleton device (source code) is provided in the
“Skeleton Device/Library Code” appendix of the Amiga ROM Kernel Reference Manual:
Devices and Libraries.

82 Libraries

Chapter 8

ROM-WACK

Introduction

Wack is a keystroke-interactive bug exterminator used with Amiga hardware and
software. ROM-Wack is a small, ROM-resident version primarily useful for system-crash
data-structure examination. ROM-Wack’s command syntax and display formats are
identical to Grand-Wack, of which it is functionally a subset. Grand-Wack includes
both the ROM-resident and the remote versions of Wack.

ROM-Wack 83

Getting to Wack

ROM-Wack will be invoked by Exec automatically upon a fatal system error, or it can
be explicitly invoked through the Exec Debug() function. Once invoked, communica-
tion is performed through the RS-232-C serial data port at 9600 baud.

When a fatal system error occurs, Wack can be used to examine memory in an attempt
to locate the source of the failure. The state of the machine will be frozen at the point
in which the error occurred and Wack will not disturb the state of system beyond using
a small amount of supervisor stack, memory between 200 and 400 hex, and the serial
data port.

A program may explicitly invoke Wack by calling the Exec Debug() function. This is
useful during the debug phase of development for establishing program breakpoints. For
future compatibility, Debug should be called with a single, null parameter—for exam-
ple, Debug(0). Please note however, that calling the Debug() function does not neces-
sarily invoke ROM-Wack. If Grand-Wack or a user supplied debugger has been
installed, it will be invoked in place of ROM-Wack.

When Wack is called from a program, system interrupts continue to process, but multi-
tasking is disabled. Generally this is not harmful to the system. Your graphics will still
display, keys may be typed, the mouse can be moved, and so on. However, many inter-
rupts deposit raw data into bounded or circular buffers. These interrupts often signal
related device tasks to further process these buffers. If too many interrupts occur, device
buffers may begin to overflow or wrap around. You should limit the number of inter-
rupt actions (typing keys on the Amiga keyboard for example) you perform while execut-
ing in Wack.

Finally, certain system failures are so serious that the system is forced to reboot. Before
rebooting takes place, the power LED will flash slowly. If you type a Del character (hex
7F) while the LED is flashing, the system will enter Wack before rebooting.

Keystrokes, Numbers, and Symbols

Wack performs a function upon every keyboard keystroke. In ROM-Wack, these func-
tions are permanently bound to certain keys. For example, typing “>" will immediately
result in the execution of the next-word function. This type of operation gives a
“keystroke-interactive” feel to most of the common Wack commands.

84 ROM-Wack

Whenever a key is pressed, it is mapped through a KeyMap, which translates it into an
action. A key can have different meanings in different contexts. For simplicity, ROM-
Wack applies keys consistently in all contexts (the Grand-Wack feature of arbitrary key
binding is not available in ROM-Wack).

In the default keymap, most punctuation marks are bound to simple actions, such as
displaying a memory frame, moving the frame pointer, or altering a single word. These
actions are always performed immediately. In contrast, the keys A-Z, a-z, and 0-9 are
bound to a function that collects the keys as a string. When such a string is terminated
with <RETURN>>, the keys are interpreted as a single symbol or number.

In ROM-Wack, symbols are treated only as intrinsic functions. Macros, constants,
offsets, and bases are not supported. Hence, typing a symbol name will always result in
the invocation of the symbol’s statically bound function.

If a string of keys forms a number, that number is treated as a hexadecimal value. If a
string of keys is neither a number nor a known symbol, the message ‘“‘unknown symbol”
is presented.

During the “collection” of a symbol or number string, typing a backspace deletes the
previous character. Typing <CTRL-X> deletes the entire line.

Register Frame

When Wack is invoked for any reason, a register frame is displayed:

ROM-Wack

PC: FO0OAB4 SR: 0000 USP: 001268 SSP: 07'FE8 TRAP: 0000 TASK: 000888

DR: 00000001 00000004 0000000C 00000AB4 00000001 0000001C 00000914 00000914
AR: 00000AB4 00F0D348 00011A80 00000B9C 00I'20770 00F20380 00000604

SF: 0000 00F0 0AB4 0014 00F0 0AB4 0014 00F0 0AB4 0004 00F0 0AB4 0000 0004 0000

This frame displays the current processor state and system context from which you
entered Wack. If you are familiar with the M68000 processor, most of this frame should
be obvious: USP for user stack pointer, SSP for system stack pointer, etc.

The TRAP field indicates the trap number that forced us into Wack. Motorola uses the

term exceptions for these traps. In Exec, the term ezception is used for asynchronous
task events. The standard TRAP numbers are

ROM-Wack 85

0 normal entry

2 bus error

3 address error

4 illegal instruction

5 zero divide

6 CHK instruction (should not happen)

7 TRAPYV instruction (should not happen)

8 privilege violation

9 trace (single step)

A line 1010 emulator

B line 1111 emulator

2N trap instruction N (2F normally for breakpoint)

The TASK field indicates the task from which the system entered Wack. If this field is
zero, the system entered Wack from supervisor mode.

The SF line provides a backtrace of the current stack frame. This is often useful for
determining the current execution context (last function called, for example). The user
stack is displayed for entry from a task; the system stack for entry from supervisor

mode. (Note: Version 25.1 always shows the system stack, never the user stack. This
will change.)

Display Frames

Wack displays memory in fixed size frames. A frame may vary in size from 0 to 64K
bytes. Frames normally show addresses, word size hex data, and ASCII equivalent
characters:

86 ROM-Wack

F000C4 6578 6563 2E6C 6962 7201 7279 0000 4ATFC e x e c . 1l i brary...
F0o00D4 00F0 00D2 00F0 2918 0019 0978 00F0 00C4)'X.."Y'I x...

By default, Wack will pack as much memory content as it can onto a single line. Some-
times it is preferable to see more or less than this default frame size. The frame size
may be modified with :n. Here “n” represents the number of bytes (rounded to the next
unit size) that will be displayed.

:4

F000C4 6578 8563 e x e ¢

:20

FOO0C4 8578 6583 2E6C 6962 7281 7279 0000 4ATC e x e c . | i brary...
FOoOOD4 00F0 00D2 OOF0 2918 0019 0978 O0F0 00C4)XY I... ..

A “:0” frame size is useful for altering the write-only custom chip registers.

Relative Positioning

Wack functions as a memory editor; nearly all commands are performed relative to your
current position in memory. The following commands cause relative movement:

. forward a frame

, backward a frame
> forward a word
< backward a word
+n forward n bytes
-n backward n bytes
<RETURN>

redisplay current frame

<SPACE>
forward a word

ROM-Wack 87

<BKSP >

backward a word

An example of the use of these commands is provided below:

< RETURN >
f00200 7072 6573
f00210 6173 6820
’

f00200 7072 8573
>

f00202 8573 656¢
<

f00200 7072 8573
+24

foo224 290d 0a00
-38

f00lec 6c¢65 290d

658e

2d20

B858e

7429

656¢

2028

0a00

7429

6361

7429

0d0a

7429

626f

2028

0d0a

BebBe

0d0a

0000

0d0a

6f74

8eBf

Absolute Positioning

0000

6174

0000

2028

0000

2004

2064

2028

2072

2028

6372

2028

6570

6562

6372

6563

6372

6173

6372

6963

7567

present)MIJ...
a s h - cannot
present)MIJ...
esent)MIJ.... (
present)MIJ...
)M .. (boot d

1 e)’MJ.. (no d

There are a few commands that perform absolute positioning. Typing a hex number

moves you to that position in memory:

10ec

0010ec 00f0 17c0 4ef9 00f0 179a 4ef8 00f0 1786

<« W..N...... W..

Also, Wack maintains an indirection stack to help you walk down linked lists of absolute

pointers:

4

000004 0000 1lec 00f0 Oa8e 00f0 0a90 00f0 0a92
[(use current longword as the next address)
00llec 0000 18f6 0000 1332 0900 00fO 086a 0000

] (return to the previous "indirected” address)

000004 0000 1lec 00f0 OaB8e 00fO 0a90 0OfO 0a92

88 ROM-Wack

Qe o PR o PR
Kevennn *S 2°T.vunnn..
Qe o PR o P

The find command finds a given pattern in memory, and the limit command determines
the upper bound of the search. The pattern may be from one to four bytes in length.
The pattern is not affected by the alignment of memory; that is, byte alignment is used
for all searches regardless of the pattern size.

To set the upper bound for a find command, type an address followed by limit or *
The default bound is 1000000 hex.

Altering Memory

The = command lets you modify your current memory word:

20134

020134 0000 0000 0000
020134 0000 = 767

020134 0767 0000 0000 "G g........

If the frame size is zero, the contents of the word will not be displayed prior to your
modification of that word:

:0
dffogc
DIT09C xxxx = 7{If

If you decide not to modify the contents after typing a =, press <RETURN>
without typing a number. If you have already typed a number, type <CTRL-X>.

The alter command performs a repeated = which is handy for setting up tables. While

in this mode, the > and < will move you forward or backward one word. To exit from
this mode, type a <RETURN> with no preceding number.

ROM-Wack 89

alter
001400 0280
001402 00C8
001400 0222 = 333

001402 00C8 = 444

001404 0000 =0

001408 3700 = >

001408 0000 — 666
00140A 0000 = < RETURN >

(I
A ®
[
[

You can modify registers when single-stepping or breakpointing. Typing ! followed by
the register name (D0-D7, A0-AG), U) lets you make modifications. SR and SSP cannot
be modified.

The fill command fills memory with a given pattern from the current location to an
upper bound. The limit command determines the upper bound of the fill. The size of

the fill pattern determines the number of bytes the pattern occupies in memory. For ex-
ample, typing

fill <KRETURN>
45

fills individual bytes with the value 45. Typing

fill <KRETURN>
045

fills words, and

fill <KRETURN>
0000045

fills longwords.

Caution: Using the fill command without properly setting the limit can destroy data in
memory. To set the upper bound for a fill, type an address followed by limit ora * .

90 ROM-Wack

Execution Control

These commands control program execution and system reset:
go execute from current address

resume resume at current PC address

"D resume at current PC address

"I (tab) single instruction step

boot reboot system (cold-reset)
ig reboot system (cold-reset)
Breakpoints

ROM-Wack has the ability to perform limited program breakpoints. Up to 16 break-
points may be set. The breakpoint commands are as follows:

set set breakpoint at current address

clear clear breakpoint at current address

show show all breakpoint addresses

reset clear all breakpoints

To set a breakpoint, position the address pointer to the break address and type set.
Resume program execution with go or resume. When your breakpoint has been

reached, Wack will display a register frame. The breakpoint is automatically cleared
once the breakpoint is reached.

ROM-Wack 91

Returning to Multitasking After a Crash

The user command forces the machine back into multitasking mode after a crash that
invoked ROM-Wack. This gives your system a chance to flush disk buflers before you
reset, thus securing your disk’s super-structures.

Once you type user, you cannot exit from ROM-Wack, so you should use this command

only when you want to reboot after debugging. Give your disk a few seconds to write
out its buffers. If your machine is in serious trouble, the user command may not work.

92 ROM-Wack

Appendix A

C EXEC INCLUDE FILES

This appendix contains the C-language include files that define the system data struc-
tures used by Exec routines.

This appendix is a printed copy of the Exec portion of the the SYS:includes directory on
the Amiga C (Lattice C) disk.

/x Asousu ou ‘oorTe sueld welT

/y Aaowsut ou ‘3uaod sjesan

/x ©dA13ebpen Ny 3O waojy Ausaoosa
/¥ ©dA3 3speb umousun

/¥ Asowsu ou ‘dew3tglitg

/x seydwy 103 Asowsw ou ‘3Ixo3
/% Aouwsu ou ‘1113 pooTj

/y Aaowsu ou ‘sured] Juoys

/x Alowsw ou ‘sureay Huol

/s Kaowswt ou ‘pesy 3st1 Jaddoo

/x PEOTJISA0 3STT ojeTpautejutr Jaddoo
/% peoTa@no 3sTT Joddoo

/s Klowsw ou ‘3STT uot3onuasutr Jaddos
/% Ktowsur ou ‘3s71 Aerdstp aeddoo

/+ ©0an0s Y¥IAvY ue jo ()3onaasaturl
/» SJoAsSs 3dnauasjutr a03 Aldowsw ou
/x 3sTT Aaowsw pojdnauaoo

/¥ AxeaqT] ofew o3 Adowsw ou

/¥ @InTTe] ums>osyo Adeaqri

/¥ UMSHODUD SSeqoaxa

/x UMSHo8YUD 10308A uoT3desxs (0089

«*«**««««««***ﬁ*««««««««*«*****«*««*««««««*««*«*«1*«*««««*«««*«*«

*««««««***#%««*ﬁ*«**«*«««i««««««**«*«*««******«**#*«««««««**«*«««««*«\

£000T0H0%0 DOTTYWSII NY SUTjop# ZTT
Z000TO¥8X0 3II0Jo3ee D NY Sutjep# TIT
T00000%0%0 Jebpegpeg Ny SUTISPH OTT
T00000%8x0 =dAr3sbpeg Nv @uljep# 60T
000000%0%0 UOT3ITNIUI NY SUTI=p¥ 80T
/¥ AJRAQTT UOT3ITNIUT -—--mm- «/ LOT
90T
000000£0%0 qrsteleT Ny Sutjep# S0T
/v Kaeaqr1-saehel ------ +/ ¥OT
€0T
Y000T0Z8%0 deW3Tg3Td NY SuTIop# 70T
6000T0Z0%x0 seycdurixel Ny Sutjep# T0T
8000T0Z8X0 TITIPOOTI NY DUTIop# 00T
£000T0Z8X0 SWelJllous NY SUTISPH 66
9000T0Z8X0 sures3BUCT NY SUTISP# 86
S000T0Z8X0 PeSH3ISTIdOD NY SUTIopH L6
$0000028%0 42A03STIIdOD NY @UTIoPH 96
€0000028%X0 I2A03STIAOD NV SUTI®PH S6
2000T0Z8%0 a3surdony”NY uTiep# ¥6
T000T0zex0 Aerdstqdop NV SuTjop# €6
00000020%0 qrIsoTydedg NY SUTIoP# 76
/¥ Areaqri-soryded ------ /16
06
L00000T8X0 23JV3ITUT NY SUTISPH# 68
900000T8%0 WORIIUI NY SUTIeop# 88
$00000T8x0 3dnJIoDWS NV @UTI=pH L8
$00000T8X0 WSNATT NY SUTIap# 98
£00000T8X0 UMSNUDATT NY SUTIopH S8
700000T8X0 umSUDesed NY SUTI=®P# 18
T00000T8X0 308A3dOXTNY SUTISDH# €8
000000T0X%0 q1Ioexg NY @uTiep# 78
/x AXeaqri oexe ------ ¥/ 18
08
6L
¥ 8L
s3IeTY pug-pesq o13To0ds ¢ LL
x 9L
SL
BL
€L
T£080000%0 UDUSCPIOM OY SUTISR¥ 7L
0£080000%0 dea3syoog QY SUTISPE L
72080000%0 DASYOSTW OV SUTISPH 0L
TZ080000%0 DASPISTA OV SUTISP# 69
0Z080000%0 DASYYID OV SUTISP# 89
ST080000%0 ARQISUTL OV QUTISPH L9
PT080000X0 ASEST@IOEAL OV @UTjap# 99
£T080000X0 ASQPAeOqA®) OV @UTIep# G9
ZT080000X0 ASQILOJewes OV SUTISPE 19
TT080000%0 ASQOIOSUOD OV SUTIOP# €9
0T080000%0 ARQOTPNY OV SUTIep# 79
60080000%0 qITUODI OV @UTiep# 19
20080000%0 QU TNV OV @UTIap#’ 09
L0080000X0 qrIsSod OY uliadpH 65
90080000%0 qTIISTID OV @UTjop# 85
S0080000%0 qTTYIEW OV @UTjepH LS

7 obed Y- sjaere/oexe 9861 67:¥T T

Ady

v0080000%X0 UOTRITNIUI Oy SuUTjap#
£€0080000%0 qrIsa@AeT OV SUTjep#
Z0080000X0 qrISoTYdes Oy SUuTIoph
T0080000%0 qTIoexXd Oy SuljspH
/% :s3oelqo ja@Te -.-___ v/
00009000%0 J0ILOT OV SuUTIopH
60005000%0 seyuady oY SuTIepH
0000¥000%X0 rsquady oy SuTjopH
0000€000X0 qiuedgToy auTyep
00002000%0 qQUIoNEW OV @utIsp#
0000T000%0 AsouspoN Oy SuTIopH
/x sepoo juate osodund Tesousb ---- .- v/
60000000X0 AJ2A0DY IV SUTIopH
00000008%0 pugpesq LY Suljop#

/¥ sedAy jue1e oo +/

\«%«««««««««*«««*«*«*««*«««*(«*««««*«««««*«*%«*««*«**««**«*««i«%x*««*«
5

S3ISTY pug-pesq [etous

¥
i*«««««««««1*«*««««i««*i«*«««i**«**««*««***«**i«i%*i**«*«««««««««\

Ty
1Telop &Jouw sejedTpul :Jouuay oTjToadg

¥

SEM 10149 BY} Jeym so3eoTpur ATubnod :uaouayg [edsuen .

FIeqUNU WB3SASANS WOY SO3e0TPUT pIsAsang ¥

34eTe pugpesq :Q *

M

|||||||||||||||||||||||||||||||| e e e s ¥
Jdoaag o13Toeds weisisang | doaag Tessueny | pIsAsang Iql x
|||||||||||||||||||||||||||||||| e it e e T ¥
¥

DISUNU OIS JUSTEe SU} JO Jewdod

¥

/

FXFXFFRFRFRFFFXFFFFFNXFFFFFNRFFRFFXFFFNFFFFNFFXFFFFFNFNFFXFFXXFFFFF¥XY/

/x BerasAg-esegosxg ut 4/ (I>>T) MOVMINATY 3S SUTIopH

\«***«**i«««***««««*«««*««***«*#««**ﬁ***%*«*ﬂ««*«««**««««««**«*«*«««««
& aeooTs
¢ dxg Tred $H:50:ST 8Z/80/58 0°T A'U SIIOTe :ISpesHs

I TOAJUOD DDANOG

* K K K K K K

FAFXFFRFFNFNFFFFFFFFF RN FFFFFFFXFFFFFFFRFFF R FF XN N FXXFFXFFFFFFRFFXFFFX¥
¥
*OUI “ebTWy-D10poumo) i
¥

©1TJ spnIoul @AT3Inoexy welsAg butjeusdy WOy --
«««**««««««#**«*«««“««««««««««««**«««*1***«*««««««t««««««*«i«««««««««\

H SI¥ATY DFXd 2uTiep#
H SINATY 03X ISpuiTH

T sbeq U sjuo1e/00%8 986T 6% %1

ANMOENO>D0N

xdy

/¥ 10418 Ue pauIn3dd DPOD 300q

/% 3Tun ®AT30E Ou :3dnaus3ut
/¥ ASTp sey Apesate :3tun 396

/s asenbaa peq

/¥ 3ITEM JSWT] UO Jouud :AKeTap

s/

s/

s/

+/

H SI¥3ATY O3Xdi ITPush €61

6T

000000TEX0 YOUS{IOM NY DuTiap# T6T
/¥ UOUSIIOM ------ ¥/ 06T

68T

T000000EX0 Jloa13300g Ny SuTiop# 88T
0000000€X0 dea3gioog Ny Sutisp# L8T
/s dexysjooq ------ ¥/ 981

<S8T

00000022%0 DASYOSTW NV SuTISpH 8T
/¥ S0JN0SOA OSTU -—-m-m ¥/ €8I

Z8T

200000T2%0 JOYONIUIYA NV SuTisp§ 18T
T00000TZX0 YSTASEHYA NV 2uTiep# 08T
000000TZX0 DUSYPISTA NV SUTISPH 6L
/¥ ©OMOSOUNSTP ------ ¥/ 8LI

LLT

00000002%0 DASYYID NY SuTIop# 9OLT
/¥ S0INOSOA eTD —-mmem +/ SLT

LT

T00000STX0 baypegnI "NV @utiop# €LT
€00000STX0 ASQISUTITNY SuTiop# 2ZLT
/¥ OOTASD" JBWTY ------ ¥/ TLT

oLT

200000%T*0 Ae1oqar NV SuTISpH# 69T

p obeq y-s3tore/ooxe 9g6T 6%:%T T dy

/¥ 202140 >P9S :®3eaqITed y/ T00000HTX0 HOOSATTeDAL NY SUuTIop#

/¥ Kerasno peq

/¥ QOCW& 3O 3no Aex

¥ 1047 STP

/¥ UMSHO3YD PTTeAUT

/x 9943 Apeaare Aoy

/x 3dnauoo deugtq

/% d04J9 @ouenbes >o01q ASTP
/+ POITe] OoASRLZ

/¥ PoATaO9. 32oed pajoadxaun
/¥ @aniTe; Pdd

/¥ 3,UpTpP >selpud

/x dnjaeas e Auowsu ou

/¥ @OTASp 9T0SuU0D 3y3 uado 3,upTnod

/¢ uoTsusysadwoout Hursneo oyod piATaM
/¥ dADAT Aq peaTeoa. sbessaw peq

/¥ UOT3TNIU] HuTuejue uJnNjSL o3e3s peq
/s Kaowsw ou ‘moputm uado

/x Kaowsw ou ‘sysbpeb MS ppe

/¥ ©dA3 umowiun ‘useuos sAs uedo

/¥ Kaouwsw ou ‘oofTe Je3sea ‘usduos uado
/¥ Atowsw ou ‘useuos uado

/¥ oJdozT19¥ > do3 xoq we3y

/¥ KAsowsw ou ‘ocorre suerd

/¥ Atowsw ou ‘oorTe qns

000000bTX0 ASMIST@HOBAL™NY SUTIOpH
/¥ SOTASP HSTP}ORIF ------ ¥/

000000ETX0 ASQpPIeoghe) Ny SutjepH
/¥y OOTASD PABOQASH ------ v/

000000ZTX0 AS(Q3L0gaures Ny SuTIap#
/¥ @0TASp Jiodowed ------ v/

000000TTX0 ASUDIOSUOD NY SUTIop#
/¥ OOTASD STOSUOD ------ v/

ASJOTPNY NY SuTjop#
/¥ ©0TASp OTPNE —----- +/

QUTUOST NY SUTIopH
...... +/

00000080%0 qQUIAVI NV SuTjop#
/v Areaqry-qriures ------ +/

000000010

00000060%0
/+ Kxeaqry- qriuwres

000000L0%0 AerJeagpeg Ny autjop#
€900000£0%0 obueyhe)y Ny SuTIep#
Y00000£L0%0 A0AAPISTINY SUTISpH
600000£L0%0 umSUOPed NV SUTIopH
800000£0%0 9913A0) NY DUTIopH
£00000L0%0 de3 T NY 2uTjop#
900000L0%0 boS1g3STA™NY SuT3op#
S00000L0%0 DONSDITTNY SUTIpH
¥00000L0%0 PIJOUASY NY SuTIopH#
€00000L0%0 TTeadPIdO NV DUTIopH
200000L0X%0 dselpui NY SUTIop#
T000TO0LOX0 WSWILeISTNY SUTISpH
000000£L0%0 qTISOd NY SUTIopH
/+ Kxeaqry-sop ------ 4

90000090%0 qQTTISTIO NY SuTIapH
/¥ A1eaqr1-3STIO ------ ¥/
60000050%0 qTTUIEW NY SuTIop#
/¥ Ateaqri yyew ------ ¥/
J00000b8X0 STOSUODON NY SDuTIopH
400000¥8X0 OUDIPATOM NY SutIapH
a00000v8x0 obesssppeg Ny SuTISpPH
00000058%0 @3e3gpeg NV SUTIop#
€g000TOY8X0 MopuTMUSAD NY SUTISp#
Y000TOH8X0 39DPesMSPPY NY SuTIop#
600000¥8%x0 ©dATuaoSsAS™NY SuTjopH
8000TOYSX0 3ISeYULOSUSAO NY SUTIopH
L000TObSX0 uSDIogUSd) NY SUTIopH
900000¥8%x0 dorxogue3II NV SUTISpPH
S000TOYSX0 OOTTVoUeld NV SUTIop#
$000T0H0%0 0T TVYANS™NY SuTIop#

¢ obeq y-sjuore/ooxe 9g6T 6%:%T T Ady

89T
L9T
99T
SoT
¥otr
€9T
(4518
19T
091
6ST
8ST
LST
9sT
SST
St
€ST
{413
ST
0ST
6%1T
8vT
LYT
91T
SHT
14749
€91
(4748
9T
0vT
6€T
8€T
LET
9€T
SET
el
€eT
ZET
T€T
0ET
621
8¢T
LTt
9cT
SZT
vt
€T
(449
1T
0zt
61T
81T
LTT
ott
STT
Pt
€TT

/+ U3busT pTTEA ® j0U y/ p- HIONTIAVE JJIIOI SuTI=Sp#

/x po3doddns jou pueuwiod y/ €- @ADON WMIOI SuTIopH

/+ Po3J0qe 3senbaa y/ z- QALNOEY ¥IAOI SuTISpPH

/¥ uedo 03 paTTey 3JTUN/20TASP 4/ T- ‘TIVANIAO JJIOI Surisp#

Ty
§ :a00TS
¢ dx3 T4eo $T:L0:ST 82/80/58 0'T AU SI04ID :.Jopesys

: 10JA3UO) B0ANOS

* K K K K K &

I A 2222
¥
STTJ Spnoul SATINOSXT we3sAg burzessdp WOY -- "2ul ‘ebTuny-oJa0poumio)

¥
««««#*c*«««ﬂ««#«««*««**««*******««**ﬁ#«.*«**«,i**«««««««««««««««*«*««\

T obed y-stolue/oaxe 986T L¥:ZZ

HNOIN OO

ITpust

(T>>T) JSYINI ILINN SUTIop#
(0>>T) IAIIOV JLINN SuUTIopi

H{
/¥ suedo sAT3OE JO Joqumu i/ ‘quouadpT3TUN QYOMN
‘pedT3Tun FIRdN
‘sberzTaTUun FIXAN
/¥ sobesssu passeoosdun 103 ansnb 4/ 3a0gbSW 3TUNy FA0dDSH 3onAaS

} 3tun 3on43S

T

{
{RaeaqrTpp Ateaqr 3onuags
} eotA®Q 30ona3s

R EEEFRERERRE RN FFFFFEFERR R RRRRF YRR R ¥y OOTASA yyvvvy/
H™SI¥0d DaXdi FTpus#

WU s3dod/oaxe,, SpnIouTH

H SI¥0d 2dXd I=puzT#

HSATINIAIT 0aXdi FTPusH

WU SeTJeuqi/ooxe, SpNIoUTH

H™SAIIIdIT 0dXd IPpUITH
TSI
§ aPOoTS

¢ dx3 T4ed 0G:90:ST 82/80/S8 0°T A'U SSOTASP :JopeaH$

: T0A3U0) D0INOS

*K oK K K K K K

FEXFFFRFFFIFFFFXFFXFFFFFFFFFRFFXNFFFFFANFXNFFFXFFFFFFFXNFXFFFFFFXFFF¥XY
¥
91TJ SpnTou] SATINOSxT wa3sAg burjeasdy WO -- "Oul ‘ebTuly-o.J0poumuc) y

¥
«««««««««*«****«~««««««*«««*«**«««««**«««*««««**««««*«««H««««*««««««*\
H SADIAIQ DIXd dutisp#

H SADIAIA 03Xd IOPUITH

1 sbeq y-seoTASp/ooX® 986T L¥:ZZ

O dANNHNONDVDOOSHANM I NGO
NOOOONOOONONOPFE I

~
NN
4

CHNMINOVOROONO AN N Y
A A A A A A A AN NN NNNN

HNOFINO>O0N

g€ uer

{[9T]s309A3uT 10309A3UI 3oNU3S

Fevvexvvvrrrrrvevrrrryyyrrrrryyyrrrrryyy POIRISY IANAUSIUT yyxyxs/

umSYy) qyomn

axgpasy YIdv

‘ejeq3AOTY YLV

‘ejegbngsq Jrav

‘Axqugbnoeg ¥Idv

{WSWOOTXEW ONOTIN

/x (punoq uemor) >joeas walysAs jo dojz 4/ faemoPiISsAS WIAW
/s (punoq ueddn) oseq >oe3s welsdAs y/ aoddmiassAS ¥idv
‘eanydepueM JIdY

‘eanydenT1o0) JIAY

/x 2103997 3JOS 31e3spToo g/ ‘eanydenpro) ¥IAY

/¥ 3usweTdwoo uejutod aseq welsAs y/ lase@u) ONOIN
{UMSHUDWSWMOT QYOM
/+ JoquMu SSesTdX JIeISHOTY y/ {I9A3JO0S qQEOMN

‘opoNqTT AreaqrT 3onais

} osegosxg jonuags

H SSVLI DaXdi JTpus#
:n.wmeU\ooxm: spniouTH
H SYMSWI DIXd IopuiT#

H SaTIVIEIT OdXdi I Tpus#
WU’ SOTIedqTT/209X, SpnIouTH

H SITIVIEIT OIXd ISPutH

H SIANYYAINI OIXdi I TPus#
WU’ sadnaasqut /09X, SpNIouTH

H SIANJYJYIINI DIXI ISPUFTH#

H SISIT D3xdi JTpusH
WU SoTleuqr1/o9xD, SpnIouTH
H SISIT D3Xd ISpujTi

****«««**«*1««««***«*«*«*«*«ﬁ«4«««*«*«***«#«««««**i«*«#««««*i««i«ii*«

$ 1D :uD0TS

¢ dx3g T4ed 9z:0T:9T ¢T/T1/S8 T'T A'Y'SSeqoexe :Jepesys

: 10A3U0) 204N0g

* K K K K K XK

FFAFFNFRFNFFFFFFFFNFNFFFFFNFNFFXFNFNFFFFXFFFXFNFNFFFRFFXFNFFFFXNNNNN¥Y

¥

SITJ 9pnToul SATINOSXT Wa3sAg burzeasdp) WO¥ -- ‘OUI ‘eDTuny-S10poumo) x

¥
i
H ISvEDaxXd DIXd SuTIsp

H ISvalaxd 0axd IopuIT#

1 obeg y-oseqosxa/ooxe 986T L¥:ZZ € uep

AANOINO>00

L

LU 0T/2e9xs,, apniout#

LU SeOTASP/09XD,, SPNIOUTH
LU SeTxeuaqr1/o9xe, Spniout#
WU SYSel/09xe, 9pniouTiH

LU s310d/o8xs,, opn{ouTH

WU Axowsur/ooxs,, SpnTouTH

LU s3dnaueiut /osxe,, epnouTH#
LU SISTI/09X3, SpPNIOUTH

U’ sepou/caxa, apnIouT#

ebeg y-osxs/oaxa 9861 Ly:TZ

o -
— o~

HANOLEN OS> 00

€ uep

JTpusi 80T
o3ey JooT) ZHOS 93d¥ Sutlisp# L0T
OSIN/Tvd Tvd €4¢ SuTiep# 90T

18889 ddY SUTISpP# GOT
02089 day ouriap# HOT
/¥ (11®m se ¢z0g9 103 3°S uTewdA TTTH) ¥/ 070897 €AY SUTIoP# €0T
/x :sJdossaoouad-o) pue suossaooad ¢/ Z0T

/xx¥vyy SPRTIUIIV yxxxxy/ 10T

© X 0o

00T

(osegoexg Jonuys)joszrs IZISASYYSAS PUTFOPH 66
p 86

{ w6

! [8]ponsosaygssegoaxa ONOT 9%

S6

! [p]l3se1y3seT ONOT ¥6

€6

Jxvrrrrrvrrrrrrrrvvrrrrv v R rrrr ey reresy S[RAOTD IOUI0 syxxvy/ T6
16

![s]s3urazos 3asTIUIRzOS 3oNA3S 06

68

‘3Temisef 3ISTT Jonags 88

{Apeowpisel, ISTT 3IoNI3S L8

13sTI340d 3IST] 3onags 98

13STIATT 3ISTT onags S8

{3STILIUT 3IST] 3onags v8 o
{3STTEOTAS(Q 3ISTT 3onags €8
3sTTe0Janossy 3ISTT Jonaays z8
I3STURK ISTT 3ondas 18 <

08

Jevvvvvvvnvvvvrrnvvrvvrrvryyyrrrrrrrvrrrrrrrs SISTI WOISAS yywess/ 6L
8L

LL

rootTydespysel QoM aL
00T TyDTSMSEL ONOTN SL
19poDITXPISEL ULV YL
‘opop3deoxdise], IV €L
topopdespyisel, ULdY L

TL

/s Ao3utod KAeaae oynpow uspTsar x/ !SOTINPONSaY NIdY oL
/¥ UOT3US33e ButTnpayosal 4/ {payosSaYuUIIY QUOMN 69

/x sber3 uotjusije Tersads ,/ !sbetaulav gyoMn 89

L9

/¥ 3unoo Buryssu 91qesTp Msel y/ ‘Jup3seNgl dIxd 99

/¥ 3unoo Hurysau o1qesTp 3dnauequr 4/ {3uDp3seNgI JLxd s9
/x sber3 weisAs ostw 4/ ‘sberashAg quomn 9

/x SAOT3 umzuenb juoxnd y/ ‘posderd qioMA €9

/x umauenb 80TTS awry 4/ ‘umauend QYOMN (4°)

/x .,Wus:oo yozedstp & {3unondsTq ONOIN 19

¥ JO3UNOD BTPT ¢ 13UNODPTPI ONOTIN 09

/¥ ¥se3 qusauno o3 asjutod y/ /MSEISTULy MSelL 3onJ3s 6S
WALRIqTT " 0OX0, TWYNDIXT SUTISpH 7 8s

/¥ 'oul ‘ebruy-ouopoumo) 5/ T

T obed y-aweusexs/ooxe 9g6T L¥:ZZ € Uep

SR s R RN R R RN R RIFRNNRER N RFF R RN NFF ¥y y SOTACTICA UBISAS yyxvvy/ LS

7 obed y-eseqoexs/oexs 98T Lp:ZZ € uep

v dIvaan aWo Sutiep#
€ AITIM QWD SuTj=p
4 QVIyd aWD SuTIapH
T L3STY QWD dutiepi
0 QITVANI QWD @uTjop#

(0>>T) M0INY~a0T suTIoPH
0 DING E0I SuTyopk
{
/¥
‘zpeAIesaYOT ONOIN
{TpeAtesay oT ONOIN ¥/
¥ SODTASD pPaJAN3IONUI3S MOO[Q A0J 38SIJ0 4/ !39S3J0TOT ONOIN
/« ®S2e ejep o3 sjurtod 4/ ‘eyeq ot ALdY
/ypoaaa3sueny so3hq Jequmu psiysenbad i/ ‘yzbusToT ONOIN
/¥ poaueysueay seojAq Jjo Jequmu Tenjoe i/ Ten3oy oT ONOTIN
/s umu ButuleM 10 J0UID 4/ laoaxagToT ARG
‘sbergor FLXAN
/¥ PUEUMIOD 90TASp 4/ puenmio) oT Q¥OMN
/+ (®3eATad J09ATapP) 3TUN 4/ ‘3TUNTOT 3TU 3IONU3S
/¥ J@3juTod spou 80TASp y/ !9DTAS(J 0Ty ©OTAS(] 3IONJ3S
!sbesssly 0T obessop Jonuags
} bayp3soI 3onaas
q
/x umu BuTuleM 10 J0XIS g/ faoaxag ot IIAG
‘sberg ot dLxdn
/¥ PUBUMOD SOTASP 4/ ‘pueuwo)ToOT q¥OMN
/¢ (@3eATad J8ATIP) JTUN 4/ 13TUNTOT ¢ 3TU 3oNA3sS
/¥ @3uTod spou e0TASp y/ !90TAS(0Ty 90TA] 3ONJ3S
!sbessa) 0T obesssol onuas

} a3senbayor 3onuaas

H SI¥Od DaXdi 3FTpusH

WU s3uod/owxs, opniouT

H SILMOd 0dXd FopuiTH#
«««««*««*«««««*««««*«««««*««««««*«%«««««««*«««*«««««i««««««*«i*«*
$ aD0TS

$ dxg Txed 0g£:0T:ST 87/80/S8 0'T A‘Y OT :JopesHs

1 10A3UOD DOIN0Y

* K K K K KK

FREXFFFXFRNFFFNFFFFFFNNFFFFFFFNFFXNNNNFFFAFFFXFFFFFFXFFXFFFFFFFFRXFFXXXF
¥

8113 @pn[oul 2ATINoaxg walsAg burjessdp WOY -- "OUl “ebTuy-s10poumo)
¥
%««*««««4«««««i«**«*««««««««**«*«**««4«*««««*««i*«««1«*««««%*«*«*««\
H 01 DaXd auTjap#

H OI' DIXd JIopuiT#

T sbeq y-or/ooxe 986T Ly:TC

NN O>0N

uep

JTpUSH
(03%0) MNSWWINJ HIS ®uTiop#

{
‘pedUsS QEOMN
!3STTUS 3STT 30on43S

/% iXINO @sn oexg 103 5/ } 3ISTTIUIIFOS IONJIS

-~

!{SpPON"ATy SPON 3JONJ3S
() (@po~ATy) aIoA
‘eyed AT MIdY

/% iRINO ®sn ooxg Jo3 y/ } ao3089A3uI 3ona3s
{
/x Kajus spoo usAes y/ () (@poo7sTy) aIoAn
/¢ 2Juswbes ejep JoAlLS ¢/ leyeq ST 41dv

!OPONTST SPON 3IonJA3s
} 3dnaasjur 3onags

H SISIT OaXdi I TPusH
ZU SISTT/oOX9, 2pNTouTH
H™SISIT O3Xd ISPuITH#
H SIAON OAXdi I TpusH
WU Sepou/oexa, SpnTouTH#
H SIAON DIXA ISPUI T#

*«**#««««««**«*#i««i«***««*««*««««m*«(««««iﬁ«*«««*1«1«««*««1«*%**«#««

SRS S tetels]

¢ dxg Taed £5:60:ST 82/80/S8 0°T A'U sadnatejur :.aopesys

: 10A3U0) 900G

* oK K K K K K

I I e s
¥

o173 9pnToul SATINOSXT We3sAg burjesedp WOY -- OUI “EDTU-SI0pOWMIO)
¥
«*«%***«««««****«*«««««««««««««««««**i*««««*««««««««*«*i«««««««««««««\
H SIANWIAINI DIXT Sutisp#

H™SIANYYAINI OIXd ISpuITH#

1 ebedq y s3dnaasjur/osxe 9867 HS:ET

ANOFN OO0

1

ady

/¥ 9bundxs palerop

/s UMS 03 Jeyjoq pinous oM JT 38S
/¥ QIT ®U3 pebueyo 3snf arey om
/x Butumms)osyo A1jueland aue om

/x suedo jusaand Jo Jaqumu
/% 3TSIT ums>oayd a3

/s Axeaqi1 aeaje sejhq jo Joqunu
/¥ Axeaqi] @u03j9q so3Aq JO JSqUMU

ozTgboN qIT @2TSBONTUT SuTIopH
pedqr1 ped Y1 SuTIopH
sbergqrr sbera ur sutioph
SpoN~qTT SpPONTUT 2uT3op#

/+ A3T1TqT3RdWO) Aseaodwey 4/

¥/ (e>>T) axd130—39I7 @uTIop#
/ (z>>1) QasnWNs™agI1 SuTIopH
i/ (T>>T) QIONVYHD3gI7T SuTIopH

4 (0>>T) ONIWWNS™3QIT SUTIopk
{

¥/ f3upuadyTqTT QIOMN

¥/ ‘umgTqIT ONOTIN

{Buta3spI ATl dLav
‘UOTSTASY qIT QIOMN

{UOTSUBA QTT QNOMN
s/ fozTgSod Il (QNOMN
x/ ‘ozTgbaNATT QNOMN

‘ped qIT ALA4N
‘sbeja qrt d1Adn

{OPON QT SPON 3OonL3s
} Axeaqr 3onua3s uaezxe
(vz-) ONNAIXT IT SuTIapH#
(s1-) FONNAXT 91T DUTIopH
(z1-) 3450107917 duTIopH
(9-) NIdO 917 @uTIopH
{330¥93sn7€17) QLSNON 917 @utTjop#
((3Z1S103A"91T+QINYISTY GIT) -ASVE91) 33qy¥dsn~aI1 sutIepH
(3z18103A78117-) aSvg g1 SuTIopH

\««««««*«*««««ﬁa«««***««««««i*«*««««

$ dx3 142 9g:01:ST 87/8

XF¥FXYFFNFNFFFNIFFFFFFFNNFFFNNNNNNNY

9113 9@pn1ou] SATINOaXY wajsAg Hurzeu

FIFNFFFNIFFNFFANNFNRFNFFFFFFFNNFFXXY

14 Q3A¥IsSIy g1 duUTISpH
9 4ZISLOIA GIT1 @ulIopH

H S3CON O3X3i 3FTpusi

WU’ Sepou/osxe,, spniout#

H S3QON O3X3 3opuj T
FRXFXFIFFRRFIFFNFFFFNRFFFNFRNFNNEXYF
SRS ©) elola

0/S8 0°'T A’Y SSTJIeJqT] :JopesHs

: 1OA3UOD) @04Nn0g

oK K K K K K

FIFFFFFFFFXAFFFFFFFFFFRFFFFFFFFFNY
¥
od0 WOY -- 'OUl ‘ebTun/-o10poumio)

¥
srvvrrrevrerrerrrrrerrerrerrereer/
H S3aTavydIT DIXd 2uTISp#

H SATAV¥EIT O3Xd 3IopuitH#

1 obed y-soTIeaqTT/09%e 986T Lb:ZC

9s
SS
12
€S
[49)
1s
0S
(37
5§74
Ly
%
Sy
%44
374
(474
187
134
6t
8¢
LE
9€
o€
e
€€

CrHNNMPNONDOTOATNNMHFNONODNS AN
ArA A A AAAAAANNNNNNNNNNOOOM

HANOFENO>DN

€ uep

jTpusf 9

€9

QISNON AW Sutjsp# 9
19

HSN'1d QWD SuTISph 09
IJVIS QWD SuTispH 65
dOLS WD dutjep# 85
AYATD AWD dUTIapH LS

nosrao o

Z obed yror/oexe ogel L¥:ZZ € uepr

FTpusi 0¢

’ 67
! 87 (o)
‘ped™T FTXAN L
‘edAr YT 3rXdn 9z <
{pRAJTTeLl YIx OPON 3ONAIS sz
{1Tel Ylx SPON 3IONI3S 44
!pesH YTy ©PON 3IONA3S 54
} ast1 3aonags gz
144
0z

H SIAON OFXdi ITPuef 6T
U sepou/oaxe, epniout# 8T

H SIAON OIXT IopuwiT# LT

ST

*****«««««««««i*««««««*««*«*«**«**««*«**%**«i*****««i*«*«*««t****««*(ST

y T1

¢ :aoooTs ¢ €T

¥ CT

$ dxg [4€0 gZ:TT:GT 82/80/68 0'T A'U'SISTT :40PESHE » TT

¥ OT

:70A3U0) @0AN0S x 6
¥ 8 Jtousk $9
L T T T T I T S T A €9
¥ 9 Jupuedgqry upuadp Ul SuTISPk 9
©1TJ 9pnIoul oATINOSXy wajysAg Burjeasdp WOY -- *oul ‘ebTuly-oiopoumo) x S umgTqTT ums Y[duTISpk 19
. b BuTIaSPIqTT BUTIISPI UL SUTISp# 09
e UOTSTASY QI UOTSTASY Y[SuTljispH# 6S
HSISIT DIXd outrieph ¢ UOTSISA™QTT UOTSJISA UL SUuriepH 85
HSISITOIXd Jopuité T 9zZTSSod qTT 9zISsod Y[Sutisp# LS

T abeg y-sasyi/oex® 986T Lb:ZZ € uepr 7 obed y-soTIeIqTT/O0X® 986T L¥:ZZ € Uer

JTpusH

L DISYRDIDOTE WAW Sutioph
8 FZISND01g WIA SUTIopH

(LT>>T) ISIOIVT ININ SuTIopH
(9T>>T) ¥VIATO AWIW SUuTISp#H

(z>>T) ISYI IATW SUTIopH
(T>>T) dIHD ZWAW SUTIopH
(0>>T) DITGNd™IWAW SUTISPH

Jpm e sedA], JusweiTnbay Asowsy ~---- x/

/¥ Aatrrqryeduco / AN TW SwT W SUTISPH

o
/¥ Axyus 3sa13 89Uz 4/ 1) awTw Aajugwel 3onuas
/¥ 3°NA3S STU3 UT SSTJIJUS JO Jaqumu y/ !seTa3ugqUMNTTW QI0MN
{BPONT W SPON Fonals

} IsTIeW 3onaas

SRR AR R AR RERRRAFFNARRERFRNR ORI vy vy evryrry ISTIUON yyyyrx/

7 obeg y-Aiowsw/oexe 986T SS BT T

JAppy naw- uTau
sbaynaw- up~su

Jppy T Sur suTyopH#
sbey sw sutjep#

/¥ KatTTqTIRdWOD 4/ un s unTeu SutIspi
{
/x uotbeua Asowsu sTU3 jo yibusl auyz 4/ ‘y3busT uw OZOAM
‘unTeuw
/¥ uotbax Auowsw STY3 JO SsaJppe oyl 5/ ! ppy nsw d1dv
/¥ S3jusweJITnbal WSKOOTTY 943 5/ !sbeymaw ONOIN
} uotun
} Axqugwe 3ona3s
Jxxxxxxrxrrvvrvrrrvervrecrrerrrrnrrrrerrrrerrrrrryrrny ASIUTUON yyyxre/
{
/+ so3hq 8843 Jo Joqumu Te30% y/ ‘eday Ty ONOIN
/x T+punog Asowsw taddn 4/ ¢ aaddnyw qLavy
/¥ punoq AJousul 1oMOT y/ {aemo qLdY
/x uotbaa 3043 ISATI / 3ISATI YUy DUNUDWSH IONA3S
/x UOTD®U STY3 JO SOTISTIAD3Oe.eyD 4/ !se3nqTJaA33y uW QIOMN
ISPON YW SPON 3IonU3s
} uspesquel — 3onJ3sS

SRR RN NFFFFAA ARV Y R ¥R RN ERFF XN ¥y ¥y ODCOHUSN xyyyyyr/

H

‘se3hgTow ONOIN

IJXON TOWy HUNUDWS 3onJa3s
T} junyouely 3onJa3s

/x 9zTS 23Aq Munud /
/¥ Munyo 3xau o3 Jojutod o/

T T I e o Y

H SIAON DIXTi I TpusH

LU’ Sepou/oexe, SpniouTH

H SIQON DaXd Iopui T
«««««*«#««i*««*«***««*****««««««*««*««««««*«*«%«*«««««««*«**«««**
[SEEES > taTels (]

$ dxg 142 6B:TT:GT 8Z/80/S58 0°T A'U Adowsw :.Iopesys

1 7043U0) S04AN0Y

* Kk K X K K K

FEFRNFFFFFFNNFFFFFRF RN FFF RN NN FFFFFERFFFFFFRFFEFAFRFXFFFNFFFXFFFFFEXY
¥

S1TJ @pnIoul aaTInosaxy waisAg Sutjedsdy WOY -- “OUT eDTuy-S10pOUMIo)
¥
«*«*1««*«««*«*«*1««*«****««««««««««*««««**««*«*«««%*«««*«*«««««««\
H XIOWIN DIXd SuTISp#

H XIOWAW D3Xd FSPuITH

1 ebeg y-Auouew/ooxe GgET SS:HT

A-10

o
/+ se3hq uT usT obesssuw 4/ apbueTTuwr qIOMN
/s 3od A1deux obesseuwr 4/ !3aoghtdey uw, juogbsl 3onugs
{SpoNTUU SPON FonJa3s

} sbesssy jonays

RN RN FE YRR ERNRF NI EANNFANEFENRRT X NEF Yy ¥ ¥y 5y ODCSSON yyxyyy/

RIONOT Vd dBuTIopH
INILIOS™Vd Sutiep#
TUNOIS Vd SuTrIepH#

o~ N

€ NOIIOV 3d SuTIop#
serbrsTdu JuIlzogTdu SUTIepH

{
/s 3STT padur] sbessau 4/ £3sTIBSW d 3sTT 3ona3s
/¥ pOTRUDTS 2q 03 sey g/ iserbrsTduy Xsel, 3onaas
/¥ Joqumu 31q Teubts y/ !3tgbts™dw FIRAN
‘sbergdu grxdn
!spoN~du @poN 3Ionuags

} 3t0gbsp 3ona3s

Jevvrevvrrrvrrrrrrrrrversrrererrrrv v ereryrrvrvrrvyry FOIOSH yyrryy/

H SMSYI DIXdi FTPusH
WU Sse3/oexs, spnouTH
HSNSVI O3Xd JopujiTi
HSISIT DaXdi JTpueH
WU’ SASTT/29X3,, SpnIouTH
HSISIT DdXd 39PU3Ti
H S3QON DOaXdi I TPusi
U Sepou/oexs, SpnIouTH
H SEAON OdXd ISpuiTi

\««««*««*««*«**%**««*#*«***««««**«*«««««*ﬁ«*«*****««**«a***«**«««««t««
$ ao0TS
¢ dxg 1xed gp:TT:8T ZT/T1/S8 T'T A'Y's3tod :JuepesHs

: 10A3U0) S0IN0S

K K K K K K K

FRFPFFEFRRFFAFNFFEFRFFFFFFFAFFFFRFFFXFFFFFFXFFFANFFESFFFFFFFFFEFFFXFXNFY
¥
91TJ SpNTOUT SATINOSXY waysAg Butjessdp WOY -- DUl ‘ebDTuy-SI0pOUmIO) ¢

¥
««:«««::««:«:«*::«*::«:«:«:«««:«:«:H::«H««««:««««:\
HSIN0d D3Xd SuTisp#

H'SI¥0d 03Xd 3I°pultH

1 ebedg Y- siytod/oexs 986T 9G:%T

CHNOMFNOVNOROANNHINWORONHNOANM w0 oo
A AT A A A A A ANNNNNNNNNNM O ﬂ(ﬂ;%(ﬂ 8 gg%(ﬂ v*§13333$ Q gszgzs 8;3 S 8:%:3:3

—HANOINOS0N

JTpUSH

¥T TIOHAVWIS IN SuTiopH
€T SSI00Yd IN SuTISpH
T INOJA™IN Sutjop#
1T INILIOS IN 2uTiop#
0T KJOWIW IN SUTI=p#
AIV39IT IN Sutiep#
J04N0STY IN SuTISpH
OSWATIIY IN SuTiep#
OSWITIT IN 2uTIop#
JOVSSIW IN SUuTIep
JI0OIOSW IN SuTyop#
IDIAIA IN 2uTISpH
IdNYIAINT IN SuTiep#
JSYLTIN Sutjep#
NMONDINA™IN SUuTISpi
S —— SodK], SpON -----y/

1

CrHNMIFNONSDON

!swreN Ul ¥
‘Tagut
fodAT Ut
!paad Uiy SPON 3IONAIS
!o0NGTUTy SPON 3ONJ3S
} spoN 3onaas

xeys
JIXd
dLXdN

««*#*«i«*««ii«*««#«*««#**«******«*«««««ii««**i*«««**«*««4***«**
¢ a{D0T¢
$ dx3 T4ed €G:2Z:8T 2T/TT/S8 1'T A’Y'SSpOU :JopesHs

: [013UCD 904N0g

* K K K K K K

PR F PR R R RN NN RN NN NN FFFFFFFFXFXNNRFFFFFFFFFFXFFNFAFFFXFXFFFFF ¥ ¥ Y
¥

S1TJ ©pnToul 2ATINOSxT waysAg Burjeusdp WOY -- ‘oUI “EDTuy-2.J0poumio) g
¥

««::«««««f:«:«*«::«*««««:«««::««:::«:::««H«I«::::\
H SHAON DdXd Sutiop#
H SZAON DaXT 3IopulTH#

T obeg y-sepous/oaxe 9geT Lb:ZZ

OCHNMNMFNOUNDONOANNHNOVOEDNNOANM
ArrmA A A Al A A A NANNNNNNNNOO®OM g Q g g % % g ? g g

ANOFENOS00

g€ uepr

ITpUSH

T IYVISAQIOO MI¥ Sutieph
0 YINANMIY SuTIopH
€ NIHM WI¥ SUTjspH

/¢ A3t1TqT3RdWOD 4/

{0>>T) I9VISAI0D "3T9 SuTISPH
(¢>>T) IINIOINY 3I¥ Sutiopy

Od¥bX0 (IOMHOIVW D19 SuTrjisp

{

/¥ 8poo 3TuT 03 Jojutod 4/ {3TUT 3 ¥IdY

/x putays guspt o3 aojutod y/ :BuTA3SPI Iy Jdeyd

/¥ aureu apou o3 Jojurtod i/ {SUreN 3Ay JIEUD

/% A3taotad uoT3EZTTRTITUT 4/ Tad 34 3LAd

/x (e1oumuIN) o1npow jo adA3 4/ ‘odA1 734 FLAGN
/¥ JS0UNU UOTSJIOA 9sea[ad y/ UOTSISA™ I JLAEN

/¥ sber3y Bej snotaea ¢/ rsberd 34 41.x4N

/x uens SNUTIUOD OF SSTJPPE 5/ (didspug ™34 ¥IAY

/x anoqe ay3z o3 aojutod y/ DeJyuojep 3ay JUSPTSSY 3ONA3S
/¥ (T¢I TII) uo ysjew 03 pJioM x/ {PAOMUDIEW 34 QYOMN

} juepTsey jonu3s

H SIAON"DOAXTi I Tpual
+U’° SOpou/oexa,, apniouT#
H SIAON"OIXd Fopuj T

\««&«««««««*««««*«««««*««**«««««***««*«««««**«***«*«««*«««*««*««««*«*«

$ ae00TS
¢ dxg 142 §Z:€T:ST 8Z/80/S8 0'T A'U JUSPTSSL : IopeoH$

: TOIJUCH 0IN0G

* K K K K KK

XFFRF IR FF R FF XN FFXFFF XN FFF XX FFFFFFNNNFFNFANXFFNNFFFNFFFNFNNNFIFRNFXR¥Y

¥

o113 opniou] aa13noaxy weisAg burjyeasdp WO -- oUI ‘ebTung-ssopoumio) i

¥
««**««««««««««*««*«««**«%*«««««*«*«*i«««««*««*«««*««***«««*««««««««««\

H IN3AISIY OIXd Sutjeph
HINIAISIY OIXd I=pult

1 obed Y quepTsel/oexe 986T Lb:7C

HNOSED OO0

g uef

A-12

JTpuef G9

Hserb1s~du BsppiooTws suTiepk 19
€9

{29

‘sprg ws (IOM 19

{34040s|Tws 3404bsp 3oNJ3S 09
} eaoydewsg 3onua3s 65

8S

T ra st yexvee/ LS

¢ obed y-sjdod/ooxs 96T 95:%T T Ady

ITpusk

(8>>T) SOA™A0IS DuUTISpH
{(v>>1) 11797 39IS ®uTIapH
(1>>T) Q1IHD™30IS SuTjoph
(0>>T) Idog¥ 39IS Sutjepy

.................. sTeub1s pauTjopold -----y/

QIAOWIN ST duTIopH
1d30Xd"SL auTiepH
LIVM SL @utjep#
AQVIY SL suTyepH
NIRI™SL Sutjopd
d3qav—sL sutysp#
AITYANI™ ST SuTjepH

O = NMFE LN

......................... so3e3s HseL -----y4/

Z obeg y-'sise3/osxe 98T Lbizz £ Uepr

SL
YL
€L
L
e
0L
69
89
L9
99
<9
9
€9
9
19
09
6S
85
LS

L HONNV'T €1 Sutyep#
9 HOLIMS €1 ®ut3iopi
S Idd0Xd 9l SuTIopH
¥ JHONOVIS 9l dutjep#
0 IWILOOJYd 91 SutIopi

[e e e e e e s3tg Per3 ----- s/

{
~ /x e3ep >iseq uad 4/ ‘ejeqaesn o3 qLdvy
/v Kaowsu pajecorte 4/ {Aaquguep™™3 3ST7 3ona3s
« Nd> bur3zed sex 4/ *() (youneT034) aIon
/) ndo mcwon sses *\ NAVA:oummm 23¢) aIon
¥y + PpUNOQq Jadan oels g laaddngsTo3 JLdvY
/¥ punoq JIoMOT >oe3s y/ { 12MOTdSTO3 ¥1dvy
/x aejutod >oe3s y/ ‘boyds ™3 ¥Ldv
/¥ e3ep deay o3 sjutod y/ ‘spopdeay o3 q1dvy
/¥ ©poo deay o3 sjutod y/ ‘ejeqdear o3 ¥Idv
/x ©poo 3deoxe o3 sjutod y/ ‘apon3deoxg o3 LAY
/x e3ep wmwoxm o3 mumﬁom «“ umumoummoxmlou ALdv
¥ P9TqeuUS sded3 g ‘e1qydedr ™3 q¥OMN
/x pojecorte sdeay 5/ ‘oo1Tydedr ™3 qIoMn
/¥ 203 s3deoxa axe3 T1TM oM sDTs 4/ ‘3deox3b1sS™3 ONOIN
/¥ POATOO®. @ney oM sDTs 4/ pAdSybISTOI ONOIN
/¥ 403 mcwuqm: oue oM mwﬂm «“ wuﬂmawﬂwuou ONO'IN
¥ PS3edoTTe SbIS I20TTV¥DTIS™@3 ONOIN
/+Butyseu parqestp disel y/ ‘3uD3SeNaL 23 J1Ad
/+But3seu pa1qestp J3uT 4/ ‘3uD3seNdI o3 J1Ad

‘e3e3g™o3 ILAAN

‘sbetg ™3 dI1xdn
{OPONTD3 SpON 3ONJIS

} >seg 3ona3s ude3xa

H SISIT OaxXdi JITpus#
LU’ S3IST1/o9x9,, @pn(oul#
H SLSIT DaXd JopujTi

H SAAON DIXdi JTpusH
WU’ Sepou/oexa, SpnTouTH#
H SHAON DIXd ISpujTi

«««*«««*«*««««««*««*«**««««««««««««*«««««««««««««*««*«*«««i«««*««««

¢ dxg 140 6T:HT:ST 8Z/80/S8 0°'T A'Y S)Hsel :.uopesHs

& u{D0T¢

1 70A3U0D ©24N0S

* K K K K K K

FXFFXFXFFXFFXFFFNNFFXNFFFFFFFFFFFFXFFXFFFNFFNNFNXFFFFFFFFFXFXFNNNFXX¥Y

¥

o113 opnIoul aATinoaxy wojysAg butjeasdp WO -- OUI ‘eDTuwy-o10pouwo)

¥
«««««««ii«««*«*««««««*«««««««««««*««*«****««**««*«««««««««««*««««««\

H SMSWL OdXd Suljsepi
H SASVL OaXd Iopujt

T obed y-sise3z/ooxe 9867 Lb:TC

A-13

g€ uep

T€ NOISYIA XJIVIEIT Sutioph
33x0 JISYWALXL SuTISpH

0 TINN SuTIspi

0 ASTVa SuTIopH#

T NI SuTiop#

‘IXaL Xeyo paubtsun jepadAy
‘71006 Ja0ys yepedAy
IINNOON 30ys paubrsun yepedAy
{INNOD 3J0ys yepadhy
{a1dnod arqnop 3epadAy
‘IV0Td Jeo13 jopadAy

/% sotTjuewss oT13T0ads Y3Th sodAl 4/

/¢ (qgomn) A3tjuenb 31q-9T poubTsun y/ ‘INOHSN 34oys poubTsun jopadAy
/% (@ioM) A3tauenb 31q-9T poubts y/ !IJOHS ja0ys yopadAy
/% (@p0oo msu ut esn 3,uop) :ATuo A3TrTqejedwos Jog i/

/x J@jurod Aiowsw @3antosqe y/ {9IAV AIQIS 3opadhy
/x Je3utod Buta3s y/ PMIQAIS¥ Jeuo peubtsun japadAy
/x Atrenpratpur pejerndruew s3tq 8 ¥/ ‘SLIGIIAD Xeyo paubrsun jepadhy

/x A313uenb 31q-g peubtsun y/ ‘drxdn Xeyo paubrsun jepedAy

/x A313uenb 31q-8 paubts 4/ ‘41Ad Jeyo yopadAy

/x KAtrenpratpur pejerndruew S3Tq 9T y/ ‘SITAQIOM 3I20Us paubrsun jopadAy
/+ A3t3uenb 31q-9T paubrsun 4/ ‘@goMn 320ys paubtsun jepadAy

/x KAatauenb 31q-9T peubts 4/ Hap:(0'] 30us 3epadia

/% Atrenptatput pejerndruew s31q Z€ ¥/ ‘SLIGONOT Huol poubtsun jepadAy
/+ A313Uenb 371q-z¢ poubtsun y/ ‘ONOTIn Buol peubrsun jepadA3

/x K3t3uenb 31q-7¢ poubts 4/ {ONOT buot jepediy

/¥ @39 >uom 03 wees jou s0p JopadAy y/ PTOA QIOA Sutisp#
/+ STqetteA usastbox (Aringedoy) e 4/ Jo3sTbea YAISTOTY SuTIoph

/¥ ®TqeTJeA o13e3s Ted0l e y/ oT3e3s DIIVIS UTIopH

/¥ TEUISIXD ue 03 SousJISJaL 5/ u1e3X® T¥OJWI SuTIop#

/¥ TeuJelxa ue jo asn Axojexerosp ay3 y/ uJe3xe TYgOIo SuTISpH

\«««««««««*««*«*««««fc««««««««««a««**«««««**««««ﬁ«««««*««f««««««««««««
$ a0
¢ dxg T4eo Le:€H:LT ST/TT/S8 T'T A'yrsedhy :aspesys

1 ToA3uU0) |0JANog

* KK K K K K

F¥FFFRFFFFFNFFFFFFFFF R RN F IR R FFAFFXFRFFFFFFFFFFFFFAFFFFFFFFFFNNFXEY
¥
91T apnTou] aATInoaxg weisAg Huryessdp WOY ~-- *OUI ‘ebTuny-S.10poumo) y

¥
««««t«««««t#*«**«**«*««««««««««««ﬁ««««%«««*«««**«««««««««««««««««««««\

JTpuel 8s
LS

z obeg y-sedA3z/oexe o9geT L¥izz £ uer

H S3dAL™D3Xd outjsp
H SEdALD03X3 JIopuiTH#

T obeg y-sadhy/oexe 986T Lb:2¢

8
A-14

ANOIWNOS0N

g€ uep

1I7s319v™oaX3i oaNd 88

L8

WANT o8

(ov) 3TwaegonT™ dqse]
OUOWH IIWNEd 8

€8

z8

WANZ 18

(ow)3up3asenar‘1# g Oaay 08
ONOVI arig¥od 6L

8L

LL

Wang oL

ITUIBGOAT™ 3IEX St
395330 JUDISONQL 403 , T OSeqodxd, FANTONI ¥ bL
O4DWA SITEVISYL €L

ZL
|| ¥ TIL
¥ 0L

S020ely COMMZHUXN mCﬂ¥WMH ¥ 69

¥ 89
|| ¥ L9
99

s9

WaNg 39

oaNd €9

_ :@\ITEwNT 79
BUSIUT™'00000$# M’ IAOW 19
E\I1g¥NI S 39 09
(t\)3uo3senNa1’T# 9 3ans 65
NP T IA0W 8s

T\ ONJI LS

g ebeq 1'solqe/oex® 9EET Ly:iZZ € uer

oaNg
HoNeyizU et
NIINI"AI+TIOTIS Al 'UDIUTT000208# M" IAOW
O\I19YNT S°3d

(ov)3uoaseNar‘T# g 0dns
..\.H/. od1
[6oquozeaos] y ONOWW JT9YNa
WaN3
OaNE

(T\)3uoaseNar’T# € Oaav

NAINI~3I+ (¥1013S~aI ION) » BUSUT000H0%H# M IAOW
I\’ T JAOH
..s.ﬁ/_ ONJI
OaNT
(ov)3uoaseNar ' T# 4 Oaav
NAINI~3I+ (¥I01IS~AI ION) » 'USIUT T/ 000F0SH M' IAOW
v TN\ oar
[baguogesos] y OIOWW 79vsId
WaNg
euSUT™ JTEX
STqeuUs/STP J0J STeUISIX® O4OVAW SITEVINI

I73SvaDaxXaT oaxXdi OANT

WT oseqosxa/oexs,, JIANTONI
1734SvEa0axXa 03xXd dnNat
I7SIARL™0IXdi OANT

W sedAy/oexe,, JANTONT
1I7S3dAL OIXd ANAT

FEXFFRRSFFEF RN RN FFFF RN R IR FFFFFFFFRFFFRFFENFFFFFFFFAN I FEFFAFRFENNFNRY
$ 1aDOTS
$ dxg 140 0£:50:ST 8Z/80/S8 0°T A’T SO[qe :JopesHs

1 [OA3UOD DIN0G

* K K K K K K

FRFFFFFFFNFFXFFFFFFFFRFFNNFFFFFFFFFFFFNFFFFFFNFFFNFF NN FFFNNFNFFFFF XYY
¥

STTJ SpNTOoUI SATINOSXT We3sAg burjessd) WOY -- ‘oul ‘ebruy-siopoumo)
¥
FRXFFXFFFFFFRFFFFFFFFXFFFNFFXFFXFFFFFFRFFXFFXFFFFFFFFFNXNFFFFFFXFFNF¥ Y

T I3S I s3a1gvy oaxd
1I7s479v¢ 03Xd aNdal

T obeq T-sorqe/osxe 98eT Lb:ZZ

9s
Ss
s
€S
s
1s
0s
6%
8%
Ly
9%
sy
144
124
(474
154
o
6¢€
8¢
LE
9€
St
e
€€
(4
1€
0g
6C
8¢
Lz
9z
14
ve
€
zz
1e
0C
6T
8T
LT
91
ST
v1
€T
(43
1T

A-15

AANOFEN OO0

g uep

3sT11 Aaousu psidnauos

Areaqr1 axeu o3 Auousuw ou
SanTTel ums3osyD Ateuqry
uMSH3o3YD DSRIISXD

umS3oaYD JI0309A uoT3deoxs (0089 !

S00000T8¢ nbe 3dnaloDuBK NY
$0C00018¢ nba WSNGTT NY
€00000T8¢ nbo uMSMOATT NV
200000T8% nbe umS OSSR NY
T00000T8% nbe® 3o@p3doxT Ny
0000600T0$ nba qTIoexXd NY

Axexqrq ooxa ------!

on an en en

i*i*«*«*«***«*«*««*#**«*«***«««*««««*«*i«*%*******««i«««««««#**«*«****
¥
TV’ (0v) ‘3dnaaopuep Ny I¥ITY x

¥
3sTT Atowsuw pejdnaros -- Areaqry-ooxe :o1dwexa 103 &

¥

IS3IOTY pud-pesq oT3Toeds

¥
*«*i«*«******«i#*«**««*«*«i*****i*****t«*««**««*fi«««*«*««**«*t*%«««««

TE080000¢ nbe yYousS{IOM OV
0£080000% nbe dea3gjoog OV

22080000% nba DASYOST OY
TZ080000% nba DASYISTA OY
0Z080000% nba 2ISAYID OY
ST080000¢ nbe AequeuTI OV

$T080000$ nbe ASMST@HORAL OV
€T080000% nba Asgpreoghsy OV
2T080000% nbs Asq30gewes OV
TT080000% nba asgeTosuocy OV

0T080000¢ nba ASQOTPNY OV
60080000% nba qTTUOdI OV
80080000¢ nbe AT TNVY OY
£0080000$ nbe qUISOd OY
90080000¢ nbe qUIISTIO OY
S0080000$ nba qrTUIeN oY

$0080000¢ nbe uoT3ITNIUT OV
€0080000¢ nbe qrIsieleT O¥
20080000% nba qrisoTydess OV
100800004 nbe qrIoexXy oY

:s309(qo jio1e ------!

00009000¢ mba 2043401
00005000% nba soyusdy oY
0000%000¢ nbo AsquadyToY

0000£000¢ nba qruedg oy
00002000$ nba qrIoNeN Oy
0000T000¢ nbe AxowsoN OV

S8poo juoTe osodund Tessusb ------!

00000000 nba Kionoooy 1w
00000008$ nbo pugpesq IV
sadA3 ji9T@ ~-----!

*««««««**1««*«*««*****#«*««1*««*««««*«#*««*«*«****«««««««i**#««i««**««
¥
TV’ (0V) * (AT TU3eW OV GTTUsdy OV ASQISUTI NY) INITY ¥

Z obeg 1-sjuere/00X® 986T LS:HT T JAdy

Z1T
11T
0TT
60T
80T
LOT
90T
SOT
PoT
€0T
20T
T0T
00T
66
86
L6
96
S6
v6
€6
6
16
06
68
88
L8
98
S8
¥8
€8
Z8
18
08
6L
8L
LL
9L
SL
vL
€L
L
TL
0L
69
89
L9
99
S9
9
€9
Z9
19
09
6S
89
LS

M_.

:Areaqr1-yjew uado jouues aoTASP-JawTy :aTdwexs Jog

¥

S3I9TY PUF-pex] Telous)

¥

R I e e R s s R S a2 st T
wpus
ge/se/ip’+(ds) 1 weaow

(9')3e0TvONT™ asf
(iiisureu aodoad osn) ! ge’p T-onow

OAdNT

ge’z\ esr
o002\ ONAI
LP'T\# T onou

(ds) - ‘ge/ge/Lp 1 wenow
(yoyeaos ‘Keaayurexed ‘soqumpyitsre) oJaoeu I8ITY
*MOU JOJ 3JOM PINOYS 3T Ing | UOTIED0T
uo Burddezs 3TT - -uoTidnuatoo Alowsw 03 SATITSUSS AJSA ST 3T

iZONVHD AYW O¥DVA SIHL °349Te Ue Dursned Joj oJoew STy osg

X K K K K

IR R R R R R R R R R R R S R R R R R R SRR S S 22
raoaag oT3To9dg

$JSQUNU 04D JI9Te SY} JO Jeuliog

1Te39p DJI0U S33edTPUT ¥

SeMm JOJUS Y3 Jeym so3eoTpur ATYbnox :uouug Tedsuss ¥

 Joqumu wo3sAsqns WOJ So3eoTpuT :pIsAgqng ¥

3Jo7e pugpesq :Q ¥

¥

|||||||||||||||||||||||||||||||| o b e, e ——— ¥
Jaoaa3 o13Toedg weysAgang | toaag Tessusn | prshsans |al M
|||||||||||||||||||||||||||||||| L e et ¥
¥

¥

¥

¥

FRFFXFFFFFRFFFFFNNFRRFFF RN NN FFFFFRFXFFFAFFFFFFFFXFXFXFRFFNFFFFFXNFXY

sber3sAg-osegooxy UT y T’MOVMINATY’'S JIALId
FXRFRXRFXFFRFFIFNFFFFFFNFFRRRRFF RS FFXF RSN FFFFFFF RN AN FENFREFXFXFFFFE¥Y
$:A9D078

$ dx3 1482 85:50:ST 82/80/58 0°T A’T'S3JoTe :JopesHs

:70A3U0) BOINOG

* K K K K K

ERXXFFERFFFEXFFFFEFFFFRFNRFFRFFXFFXFFFFFFXXFFFFFEFANFFXFFXFFFFRFFFFFF¥Y
¥
STTJ opnToul SATINOSXT Wa3ysAg burjesadp WOY -~ *OUI ‘ebTuny-o0pousio)
¥
FXXRXFXFRFRFIFNFFFRFFAFFIFFFFFFNFFFFFFFFFFFFFFFFF X FRRFFFFFFFXFFFEFXNFY

T I3S I SI¥dTY OIXd
I7SI¥ITV OIXd ANII

A-16

T obeg T-sjaer1e/oo%0 986T LS:¥T T ady

JA04JS Ue pauaniad 3pod 300

3TUN SAT3oE ou :3dnausjur

JySTp Ssey Apesaare :3Tun 396

3senbau peq

JTeM JaWT3 U0 J04u :Aersp
JOJIJD MNSIS :93euqITed

Ketasno peq
obuex Jo 3no Asy

’

I7SI¥ITV 0aXdi OANT

000000T€$ MbS UOUSCHLIOM™NY
YOUSCPHIOM == !

T000000€$ nba xoaxgizoog Ny
0000000€$ Wbo dea3gioog NV
dea3s3jooq ------ !

000000Z2¢ nbe o»w&odelZ/w
90INOSOX " OSTW -====-

Z00000TZ$ nba 3OYONIUTIA NY
T00000TZ$ nbo >STASEHYA NY
000000TZ$ nba OISPISTANY

90AN0SOA°)STP

0000000Z$ nbo OISYVID | z<
S0INOSBA €TD —==-==!

T00000ST$ nbe baypegWr NY
000000ST$ Mb® ASQISWTL™NY

SOTASP JUWTY --=-==!
Z00000%T¢ nbe Ke1aqar NV
T00000%T$ nba >eoSqTTedAL NY

000000%T$ TbS ASDISTEIORALNY

®0ﬂ>®v JSTPOeAF ———-m=!

000000€T$ Mbd Asqpreoqhey~NY
SOTASD PIeOgADN] ----=-!

000000ZT$ nbe Asg3togowes | NY
20TA9p " JI0dowed ------!

000000TT$ nbS ASQSTOSUOT NY
DOTASP 'D[OSUOD ---==-=.

0000000T$ nbo >®Qoav:<|z<
S0TASP OTPNE —ovo--!

00000060¢ nba qTTUOST NY
Axeaqr1 UODT ------ !

00000080¢ nba U NY
Areaqrr qriwed ------!

000000L0% nbe Aereroped NV
€00000L0$ mbe sbueyhiey NV

L1z
912
S1e
vic
€12
[4y4
112
01
60¢
80z
L0Z
90¢
S0Z
1444
€02
zoz
T0C
002
66T
86T
L6T
96T
S6T
ve1
€61
6T
T6T
06T
68T
88T
L8T
98T
S8T
¥8T
€8T
Z8T
18T
08T
6LT
8LT
LLT
9LT
SLT
LT
E€LT
LT
LT
0LT
691

y obed T's3ysere/oex® 986T LS:HT T Ady

J0a4 NSTP
uMSH>@ooYD PTTeAUT

2043 Apeoaure Aoy

3dnuauoo deuytq

J0aJ2 aousnbas 3o0Tq MSTP
poTTe] O9ADRAT

paATa0aa 3ioed pajoadxsun
euntTey P

3,UpTp Mserpug

dnjae3s je Auousw ou

90TASpP STOSUOD ay3 uado 3,upTnod
uoTsusya1dwoouT Bursneo oyos paAToM
dWaI Aq poatsoaa sbessau peq
uoT3TN3UI HuTaojue uanjeua a3e3s peq
Aaowsur ou ‘moputm uado

Kaousw ou ‘s3sbpeb Mg ppe

adA3 umowiun ‘ussuos sAs uado
Kiousu ou ‘o0TTe J93sed ‘usaaos uado
Kaowsuw ou ‘useuos usdo

oaaz19y > do3 xoq we3T

Kaowswr ou ‘oo1Te auerd

AKiowsut ou ‘oo0TTe qns

Kaowswr ou ‘oorte suerd welT

AKaouwsut ou ‘3u0d a3esu0
adAz39bpes Ny Jo uxoy AusAaooed
adA3 3epeb umowijun

Kaowsw ou ‘dep3atgatd

seyduy, 103 Aaowsw ou ‘3x93

Kaowswr ou ‘T{TJ POoTF

Kaowsw ou ‘swreay 3aoys

Kaowsw ou ‘surexy Buot

Kaowsw ou ‘pesy 3stT7 Aoddoo
peoTJ2A0 3STT o3eTpswsejur Jeddoo
peoTaoA0 3sTT Joddoo

Kiowsw ou ‘3STT uoT3zona3sut Jgoddoo
Aaouowr ou ‘3sTT Aerdstp Jeddoo

20.nos JIdv¥ ue 3o ()3onaasitur
sJoAtes 3dnaaejur 03 Asowsuw ou

L R R S R XY

CENETNREN

CENETNEIN

LR R R T R TS

[T R TR Y

CENEYN

o

CENIEEN

V00000L0$ nba
600000,0¢ nba

JOIPISTANY 89T
umsS>UOPed NY 9T
800000L0¢ nba o2uJAS) NV 99T
L00000L0$ nbs deW3tg Ny 9T
900000L0% nbe baTE@NSTA™NY 9T
S00000L0¢ nba OOASRII NY €91
$00000,0$ nba PIGOUASY NV 79T
€00000L0$ nba 1TedPdS NY 19T
200000L0$ nba dSeIpud NY 09T
T000T0LOS nb® wep3areas™NY 6ST
000000L0$ nba qrISOd NY 8ST

Kreaqry-sop ------! LST

ST

00000090% nbo qQrIIsTIO | z< SST
Axeaq11°3sTO ------ ¥ST

€ST

00000050$ nbo Q._.....EumZIZ,& (418
AreaqrT yrewl ------ 1ST

0ST

J00000¥8% nbe ©TOSUOCHON NV 6%T
400000¥8¢ nb® oUYSIPATEM NV 8HT
d00000%8¢ nbo obesseppegd NV LbT
000000¥8¢ nba o3e3gped NV 9%T
€000TOY8s nbe moputMuadDo NV SHT
Y000T0¥8¢ nba 39bpegMSPPY NV HHT
600000%8¢ nbe odALUIOSSAS™NY €51
8000T0Y8¢ nba 3seyuaoguedo™NY ZHT
L000T0Y8$ nba ussaogURdO NV THT
900000¥8¢ nbe dorxogwelI NV 0%T
S000T0b8s nbe ooTTyoURTd NY 6€T
$000T0%0$ nbe SOTTVANS NV 8€T
€000TOV0$ Nb® OOTTWWRII NY LET
Z000TO¥8$ Nb® 3Ju0de3ed1D NV 9€T
T00000%0¢ nb® 3=bpegpegd NV ST
T00000%8$ nbe odA13ebpes NV FET
000000%0$ nbe® uoT3TN3UT z< €€T

A-17

AxeaqTT uoOT3ITNIUT —---=- Z€T
T€T

000000€0$ nbe qrIsueleT z< 0€T
Axeaqry - sioher ------ 62T

8ZT

deW3Td3td Ny LZT
seydwLIXdL NY 92T
TITIPOOTA NY SZT
L000T0Z8¢ nbo Swes33Jous NV ¥ZT
9000T0Z8$ nbo auwresjzbuoT NV €ZT
S000T0Z8$ nbo pesHIsTIdOO NY 22T
$00000Z8¢ nbe 12A03STIIdOD NV TZT
£00000Z8¢ nbe 4oA03STTdOO™NY 02T
z000T0z8s mbe x3surdoy NV 6TT
T000T0Z8¢ nba Aerdstqdoo™Nv STT
000000Z0¢$ nbo qrIsoTydeay NY LTT
Axeaqr1-sotydedd ------! oTT

STT
[IVITUINY HTT
WSNAFUINY €TT

Y000T0Z8$ nbo
6000T0Z0$ nba
8000T0Z8$ nba

£00000T8$ nba
90000018$ nba

obeg 1°sytere/oexe 986T LS:HT T v

I7S¥0WIT DIXTi OANT

iii ZAOWIY ¥ IIVANIO ¥JI0I NOT IDIAIANIGO JdI

- nOd HIONITIAWE ¥II0I
€- 03 AWOON ¥¥I0T
Z- 003 QaTIoaY JIF0I
I- NO0F TIVANIJO WII0I

y3zbust prTeA B J0U
pe3toddns jou pueumos
pozioqe 3senbad

uado o3 poITeJ 3Tun/asTASP

x K K X

:sa0dag QI pPAepueyS —-=---- ¥

FEAFF RN AR IR RN X RN P F XX F R F AR F IR FFFFFFF R RN FNF NN FXF XX NN FXFFXFAFNFFXFX
[SRS > feTely -]

$ dxg Taed 9Z:L0:ST 82/80/S8 0°T AT SJ0LIS :JopesHs

: TOAJUOD) 204N08

* K K KK K K

LR e e e e
¥
STTJ 9pnToul SATINOSxy WwolsAg butjesedp WOJ -- “QUI “ebDTuY-SI0pOoulo)
*
FFXFF NN F RPN R F AR RN F NN RN FF R X R RN RN RN FXFFENNFANNFFXFRFFXFXXFFFXRNYY

T 13S I Syow¥d DaXd
17SY0¥¥d OAXd ANAT

1 sbeq 1°stoaue/09xe 986T L¥:2Z

uep

I7SIOIAIA 0IXFi OANT

Nse] s, JOATJIp UT Butuuna
SATIOR ST JIDATIP y

T'JSVINI'LINN 333114
0 IAIIDV IINN 330114

1SUOT3TUTI®P V13 LINA ------ ¥
AZISTLING TE9V1
INDONZdO LINA Q¥OMN
ped 1INN JLAAN
SOVIITLING ILAAN
s3senbaa 103 enenb 9ZIS dW’'IIND FANIONALS
....... o e ey

AxexqT] 03 TeDTIUSPT 4ZI1saa 1Agvl

JZ1s7dI1°ad FENTIMILS

17SI¥04d 0FXdi OAaNd
W T's3a0d/osxe,, FANTIONI
17S1¥0d 2dXd ANAT
1T7SIIYVIAIT DaXdi OANT

W1 S9TXeUqTT /28X, HANTONI
I7SIIYVIEIT DIXd ANAT

FRXFFXFFFFFFFFF RN R RN F AR F RN FFRFFF XX RN AFFXFFX RN RN RFFXNRXRFRNNRNFXNFNEXY
§ ID0TS
$ dxg Taed Z0:L0:ST 8Z/80/S8 0°T A'T SSOTASD :J8peSHs$

: TOA3UOD BSOS

* K K K K K K

FAEXFFFXFFRFFNNNFFFFFFXFF SRR FFFANFFRNNAFFXNFFRNNFFXXFFFNNNFFFFSXFFFFFY
¥
STTJ 9pnIoul SATINOSxY wejsAg Butrjeaadp WOY -- "OUT ‘ebDTUN-SI0POUIO) ¢
¥
FRFFFFFFFFFFNFFFFFFFFFRFFRFFRFFXFFFFFXRFFXFFFFFFFFFFXFFXNFFYFXFFXFXFXY
T I3S I SIOIAIQ OIXH

I7SEDIAAA O3Xd ANAI

¥S
€S
4}
1s
0S
(574
8%
Ly
174
5174
4%
1374
(474
1874
o
6€
8¢
LE
9€
€
e
€€
(43
1€
0¢
6z
8¢
Le
9T
=14
124
€T
[44
1z
0¢
6T
8T
LT
o1
ST
vT
€T
T
1T

HANOFHDO0ON

A-18

T obeq T-seoTasp/ooxe 98eT Lb:ZZ € el

Teubtgeaag
TeubtsooT 1Y
Teubts
aTeM
adeoxg3ag
Teubrg3eg
TAPiselIss
dserput
sseIwsy
>serppy
SureNpuT
ananbug
1TeIuRy
pesquey
EYXeli=
TTelrpy
PeSHPPY
Jaesu]
Kaqugseag
KaqugooTiv
UST TeAY
[NEACTRE |
SAYooTTIVY
WSWOOT TY
o3eoo11Eaqg
o3e00TTY
asne)
JaAISSIUTUSY
JSAISSIUTPPY
10308A3UI3eS
s3e3gles(
a3ejguadng
ysIss
JTuLIeg
prgog
oTqeug
a1qesig
bnaaq
3BTy
JUSPTSSYITUT
JUSPTSaYPUT I
suoTIOoUNIX3EW
AreaqiIoden
3ONI3SITUT
®poj3TUT
uot3deoxy
yozedstq
ys3THS
aTnpayssay
aTnpayssg
43uI3TXg
xostasedng
RTTEOIIVWOLAY IT1INg I11d :11ad

JdaonNnd
A3AaoNNdg
JdaoNnd
J4aoNnd
J3aoNnd
JJadoNnd
J3dONN4
J4aoNNd
J3ADONNA
J3doNNnd
JdadNnd
J3dONNa
J3AONNa
J4doONNn4d
J3aoNnd
J3adNnd
JaaoNnd
J3aONNd
J3aoONNd
J3aoNnd
2daoNnd
J3aoNnd
J3aoONNd
J4aoNnd
JJaoNnd
33aoNNd
JdaoNnd
J3aONNd
J3adoNna
JIaoNNd
JdaoNnd
J3doONNd
J4aoNnd
43aoNnd
J4ADNNA
J43aoNna
J4adoNnd
J4aoNna
J3adONNn3
J3adNnd
J43AadONNn3
J3aoNnd
33daoNnad
J3aoNNd
J3aoNnd
JdaONnd
J3AONNI
J3AONNd
JJadNnd
JJaoNNd
J3aONNd
440ONN3
ION Od ¥x+»

$ dxg 1aed Lp:60:8T 80/0T/S8 6°Z AW TT-USD :.10pedHS yy»
S86T 9%:0S:9T ZT AON anJ, Uo paje.susb SITI STUL xx»
*ouJ ebTuNy-210pOulIo) yyy

T obeg T-qrIToOX8/00X® 986T LH:ZZ € uep

HANOFHNO>0N

:d.Oﬂ\OOX@:

W I'S80TABp/O8X3,,
W1 SeTaeaqri/oexs,,
W T Sisey/oexs,,

T s310d/oexe,,
W T Aoumsu/ooxa,,

o1 sadnaasqur /oexs,,
#I7S3sT1/09X%8,,

« T Sopou/oaxs,,

T obedq 1 oexa/oexa

A-19

o
-

JANTONI
JANTIONI
JANTIONI
JANIONI
JANTONT
JANIONI
JANTONI
JANIONI
JanTONI

HANMOFINO~O0D

9861 L¥:CZ € uep

JZIS AI'INIIIOSAI IODNILS
dZISTAI'NIENSAAI IONYLS

dZISTAI'39IAI IONYIS

S309AUI TGV

U U o e Tey BB S)

aAoqe @Yy Jo [1e 403

paAIeSaL

Jusuwbas ejep JJaoTe

Jusuwbas ejep Jobbngep Teqolb
qutod Aujus aebbngap TeqOTD

Xew Auowsw Ted00T paje[noled 3sel
(punoq aemMOT) >oe3s wa3sAs jo dog
(punoq aeddn) aseq >oe3s we3sAs
10309A @an3ded 3JOS waeM

10309A @an3yded 330S 100D

20309A @an3ded 330S pPToo
JuawaTdwoo Jojutod aseq we3sAs
suao309A dea3 (0089 JO UMSMHOSUD
Jaqunu 9SesTad 3JAe3sSHOTH

spou Axeuqrl pJlepuels

s> ud qIoM

IXIPASY ULV
ejeqlLeTyY YIdY
exegbnaeq YIdv

Axqugbngeq ¥Idv
WSWOOTXEW ONOIN
I8oMOPIISSAS ALY
soddpiassAs ¥Idv
sunydesuaeM JIAY
sanyden1o0) ¥IAY
aun3deop1od ¥IAY
ased> Ud ONOTIN

UMSHUDUBKMOT qIOM

I9A3FOS QYOMN

dzIs dI1’esegoexd FUNIONYLS

Y FEYYFFFYKXKFFFFFFRNNNNNNRFFRR ¥ ¥y ¥y SOLQRTIRA WOISAS OT3e3S yyyyyvx

I7SATIVIAIT OaXdi OANT
W T soTXeaqri/ooxe, FANTONI
I-SAI¥VIEIT 0dXd ANAT

1™ SIAMNAINI DaXdi OANT
uT"s3dnasequr/oexe, 4aNTONT

I7SIANYYAINI O3Xd ANAT

I"SISIT oaXdi OaNd
WT°S3ISTT/09%9, JANTONI
I SISIT OdXd ANAI

FEFFFRFNFFFFIFFFFFFFFFFFFFNRRNFNFNFFFNFNFFFFFFFFFXFNFFFFFFFFFFFFFFF¥XY

$ TaeD :u00TS

¢ dxg 1aed TS:0T:9T ZT/TT/S8 T°T AT 9Seqooxd :JopesH$

: 10I3U0) 904N08g

* K K K K K K

FEUFFFFRFRFFFFFFFFFXFXFFFNFXFFNFNFNFXFNFNFFFFFFFFFFFNFFFFXFNFFFFNFFF¥¥Y

¥

STTJ opnToul aAT3noaxg weysAg burjesady WOY -- OUI ‘ebrung-saopoumo) y

¥

FEUFAFFFFFFFFFFFFFFFFFFFFFFFFFNFNFFFFFFFFFXFFFFFFFFFFFXFXFFFFXFXFXFF XY

T I3S I dSvEDIXd 03X
173SvE0aXd DdXd ANAI

T obeg T'oseqosxs/oexs 986T LS:HT T Adv

q

1s

KreaqtTuadp
o3eo0ep
sunooag

w3 0RAAT,
00399
Jugoqmey
xeypingmey
Jeynjeohepmey
ITUIOIMEY
ooanosayuadp
Soanosayuey
20aN0SaYPPY
OI310qy
0I3TeM
OIo9U)
oIpuss

oI1oda
S0TAS(QISSOT)
ooTABqUSd)
S0TASqWRY
@OTASIPPY
KAreaqrumg
uoT3oUN IS
Kreaqrosord
Kxeaqruedop1o
Axeaqruey
AxeaqrIPPY
340dputd
310d3TeM
bspA1deoy
[SSARES)
bspang
3a0quey
310dPpPY
deagsoag
deagoo1 1V

J4doONNna
J4doNna
J3aoONNa
JAJAONNI
J3dONNA
JdaONNd
JJaONNd
JdaONNd
J3AONNI
JIaONN3
J4aONNd
J4dONNd
J3dONN4
J4AONNA
J3AONNA
J3aONNA
J3doONNd
J3AONNA
J3adNN4
J3aONNA
JddoONNd
J30aONN4
J4dONNa
J3aONNA
J4doNN4a
J3aoNNna
J4dONNd
J3aONN43
J30AONNA
J4adNNa
J30aONN4A
J3adNN3
J4doONNA
J3doNNA
J3AaONN4
J4adNNA

6
16
06
68
88
L8
98
S8
¥8
€8
Z8
18
08
6L
8L
LL
oL
SL
L
€L
L
L
0L
69
89
L9
99
S9
9
€9
[4°]
19
09
6S
8s
LS

A-20

7z obeg T'qrT O9X9/09XD 96T L¥:ZZ € uepr

1dSYH0aXT DaxXdi DANT
@3ey 001D 6
OSIN/TYd 8

{(1TeM Se 07089 107 39S uUTeuwdI TTTH)

14
T
0

noda ZH0S dav
nda g 947
n01 18889 9av
nda 0z089 gav
ndd 01089 dav

:S405s9004d-00) pue SI0SSI004d ¢

¢ obed t-oseqoexs/ooxe 9geT LS HT T dy

SbRTIUIIY syryxvx

0zt
61T
81T
LTT
91T
STT
49"
E€TT

sisew deay pajesorresad
Jseu Teubts pajeocorreauad
9poD JTXS >sel I[neidp
opoo uoT3deoxs >sej 3Tnejsp
autrjnox deuay sejl 3[nejsp

Aeaxe arnpow juspTsax o3 Jojutod
uoT3juS33e BuTnpsyssal
sbe1J uotjuszye Teroads

junoo Bur3ysau a1gesTp Xsel

JZISISVESAS TV

8x¥ 'PoAIOSSYRSEgOSXT ONOT

~ RS TO P

.o

.

¥y 3I49TVISET IONULS
S¥IZISTHSSUIIIOS IDNVLS
dZISTHI3Temisel, ION¥IS
dZIS H1 Apeswpisel IONILS
dZISTHT'3ISTIIIO0d ION¥IS
AZIS HI'ISTIAUT IONYLS
dZISTHT'ISTTAUT ION¥IS
JZIS HI'ISTIe0TASd IOMNIS
dZISTHT'3ISTIeOAn0s8y IDMILS
dZISTHT'ISTNRN IDNYLIS

NYFERFFENFFNG v, i PYEYFEFEYFFFERY¥FR¥¥yy SIOPESH ISTT WOISAS yyryyvs

ooTTydes>sel qIoMn
DOTTVDTSISEL ONO'IN
®poD3ITXPSE], LAY
spop3deoxpisel YLdY
spopdepyse], JLdY

SOTNPONSDY YLV
PaUOSaYUIIY QIOMN
sbe1qu3lzy qaoMn

: JUDISONAL FLAd

Junoo Hur3issu STqesTp 3dniauL3uT
sPber3 wolsAs osTw

S)oT3 umjuenb jusauano

umyuenb 20T[S awWTy

J23unod yojedstp
J23Unod a1pT

JUDISONAI JLAG
sbe13sAs qiomMn
posdeTd qioMn
um3ueny qIOMN
3unopdsTg ONOTIN
3unoDBTPI ONOIN

3se3 juaJaano 03 Jaa3utod

e

FZIS AT IWNAL
HZISTAL ‘NAINIAL
dZI1STAL “¥3IXFAT

JZIS AL ONASHSAAI

4ZIS AL’ 3GINI
dZISAL’€QNVAI
dZIS AL 'ZANVAI
dZISTAL ' TANVAI
dZIS AL’ 0QNVAL
AZIS AL 'IIT8AT
JZISTAL ‘9139AAT
JZIS AL ¥IdOOAI
dZIS AL’'SINOdAI

ASelsSTUL dLd¥

ERERRNRFEERFERRRNNNRNFRNRXRRrrrpyyyy SOLQETIEA WOISAG OTWeuAq syyxrss

IoNALS
LONJLS
LoNJLs
LONYLS
IONYLS
LONJLS
LONJLS
LONYLS
LOMILS
LONYIS
LONYLS
LONJLS
LONYLS

(484
11T
01T
60T
80T
L0T
90T
SO0T
¥oT
€0T
20T
10T
00T
66
86
L6
96
S6
6
€6
6
16
06
68
88
L8
98
S8
¥8
€8
Z8
8
08
6L
8L
LL
9L
SL
L
€L
L
L
0L
69
89
L9
29
S9
9
€9
[4°)
19
09
&S
8S
LS

A-21

z obeg T-oseqoexs/oex® 986T LS:HT T Ady

$ dxa Tred 62:60:ST 82/80/58 0°T AT SIOZTTRTITUT :JIOPEsHS

(2333089 (2\)) M oa
(33083 (9T1<< (2\))) g°2a
020$ i\ q-2a
oand
LIXAW
z\ g:0a
ossi (E\@D) 4°0a
ssz-(2\) 141
(@\1Nnooi (#>> (T\))) 13s B\awo
2and
B\ 13s ®\INNOD
RS AW ONJI
XINE
0 13s B\INNOD
RS AW 041
0 M sa
JUNODR ‘BNTBAR ISSIFOR'OZTSY ¥ O¥OWW IONUISIINI
WaNd
2\ 12d
T\ M 2a
0 a-0d
028 g°-oa
enTeAs 39SIJOP y OYOWW ONOTILINI
WANT
Z\ M 0a
™ M A
0 a:2a
ops$ a-2a
onTeAy‘3@S3JO® ¥y OYOWH QEOMIINI
WaNg
0 g0d
2\ g2a
N M
0 g°2a
0o g'0a
oNTeAR 39SIJOP y OUDVKH FIXGLINI

XFFFFFFFAFFNFNFFFFRFFFFFRFFNFRFAFAFNFFRFAFFXFNFNFIFFFFFRNFNFFNFFXFFFFEF

$ IPOTS

1 10A3U0) 80aN0g

* H K K K K X

FFFFFFRFFF RPN FFNF IR RN XFF NN FFNRNFFFFFEFIFFFFNFNFAFRFNFFFEFFRINRY

¥

STJ 9pnToul SATINOSxT weisAg Butzessdp WOJ -- "oUI ‘eDTuy-S10pouto)

¥

FFFFFFF NN RN R F R RN FF NN FF AR X F AR RN FFFFFFFFFFXFFFFXFRNNFNNFXNFFFFNRFFY

T 138 I S¥4ZI'TVILINI O3X3
I SYIZITIVILINI O3Xd ANAI

T obeg T-ssozTTRTITUT/OSX® O86T Ly:iZZ

I BAYNOIXT OaXdi OANT

wpud
0 #M'sp
¢’ , Lreaqri-ooxe, q-op
oxoeut FWYNDIXT
*OuUl ‘eDTuNy-SI0POoUIIo)
T I3S I JWYNOIXT 0IXd
ITIWYNDIXT OIXT ANJI

HNOISINO>00NO

—

A-22

1 obed T-oureusoxs/osx® 986T LV:ZZ € uer

€T INIS’'S 33A1Ig

peyosed o3 awrl -- popusdxs umijuenb swTy $1°301°s 33alld
peatnbea uoTjuslje BUTINpaYSs ¢ ST’dAYS’s JiIarigd
(sbergsAg-asegsAg utr) s3T1q Belj welsAS ------ ¥

dZIS AT TIEVI
HAON AT dLaY
JA0D AL JLav
YIVA AL Jrav
0°'Al TEAIDONELS

4Z1S7SI TIEVI

33q00°SI dLdv

VIVd SI dLdav
FZISTNT'SI RANIDOMYLS

I7SISIT DaXdi OaNd
WT°S3STT/29%9, HFANTONI
I7SISIT DaXd ANAI
17SHAON D3Xdi OANZ
:H.M@ﬁOC\U@X@: JANIONI
17SIAON DaXd ANAI

««*«*«««««*«*«*«*«««*«««««*«i«««*1**«««««*****«*«#*%*««*«i****««««*««*
$ 1IO0TS
$ dxg 1aeo 9T:0T:$T 82/80/S8 0°T A’T-sadnisequr :aspesys

: 70A3U0D ©5.aN0G

® K K K K K K

FEFFRFXRFNFFFFRNFFFFRNFFXFFNFFRFXREFRNXNFFRFFRRRFRFFFAFFXNFFFFXFFXFXFY
¥
STTJ SpNTouUl SATINOSXY waysAg burjeaedp WOY -- OUI ‘eDTU-D10p0UMIOD ¥
¥
T T T T a s
T 13S I SIANYIIINI OAXT

I7SIANYIIINI OIXd GNAT

T sbeg T-sidnaaequr/osxe 9g6T L¥:ZZ € Uel

9s
<s
s
€S
s
s
0S
(574
i
Ly
9%
¥4
{44

OANMNMYFNONVNOHNNHIN OO ANMHLN Do —HNM
r{ﬁ-ﬂriHxﬁriﬁr4r1NfﬂNfV04N<VFQN(Vﬂ)m(ﬁﬂ)mfﬂggsggﬂ7¢‘$<‘¢

HANOSFEN OO0

A-23

I SYAZITWILINI OdXdi OANT 6S
85
WANT LS

g obeg 1 siezTTeTITUT/OOXS® O86T L¥:CT € Uel

ApoTnb 01 @391cdWwoo 00Ind°0I Jdarid 95

sg

SUOTITUTISP 319 SOVIA OI ------ ¥ S
€5

zs

4ZISTAISOI TdavI 15

Z03ngdsay OI ONOIn x 0S
TQ3IA¥ISIY OI ONOIN ¥ 6%

S90TASp BuDiess 103 38S7J0 & 13SJ30 01 ONO'IN 8%
eoJe ejep 03 Jejutod y YIvad OI dLdav LY
pais3sueay sa3Aq Jo # pajsenbod HIONITOI ONOIN ig
paJsjsueay sa3Aq Jo # Tenjoe TVALOY 01 ONOIN)74
474
:uoTsue3xa 3senbaua QI plepuels ------ ¥y €F
(474
v
JZI1S70I 139V'1 1}
opod Butusem 10 J0aUD qOXEA 0T 41xd 6€
sbery teroeds SOVIA0I AnAdn 8¢
PUEWOD S0TASP x ANVYWWOD 01 agomn LE
(e3eATad JoATIp) 3TUM & LINNTOI qLav o¢
Js3uTod Spou SOTASP y IDIAIA 01 dLdv SE
JZISTNW'OI TWNIONJIS ¥€
€€
:3senbaa 01 Jo uot3isod paatnbsy ------ ¥ 2€
1€
|| ¥ OF
¥ 6C
soan3onayg 3senbay 01 x 82 M}n
¥ LT '
|| ¥ 9T
sz <
44
I7SATIVIEAIT D3Xdi OANT €Z
W T SoTxeuqr1/29%9, JANTONI (44
17SIIYVIEIT O3Xd AN4AI iv4
0
I7SI¥0d 0dXdi OANd 6T
W T s320d/09x%9, FANTONI 8T
I7S130d 03Xd ANAI LT
9T
I I R N T T T I I I I T T I I SIANYIAINI OIXdi OANT TL
¥ V1 oL
$ aPoTs ¥ €T S ndd SANANG HIS 69
¥ CT 030¢ nO3 MNSVWI¥d HIS 89
$ dxg Txe0 €%:0T:ST 82/80/S8 0°T A'T'OT :uopesps x 1T L9
¥ 0T dZISTHS 139V 99
$1043U0D 204n0g ¥ 6 avd HS QyoMn S9
¥ 8 dZISTHT'HS TINIONIIS ¥9
FEFFFFFFFFFFFFFFFFNFRFFFNFFF SN FFFFFFFF RN R FFFRFFFFFFFFXFFFFFFFFFFFN¥Y L €9
¥ 9 meeee e e emmceee——ee - ¥ 29
©ITJ SpNToU] aATINOSXT waisAg Burjeuadp WOY -- "oul ‘ebrung-oqopoumo) y S ¥ 19
x ¥ suopeay 3sTT 3dnaaeojul @uem3jos y 09
FRPFFFFEFF RN FXFFFFFFFFFFFF X FFFFFFFFFFFFRFFFNFF XS FFFFFFFFFFFFFFFF¥XY m ¥ 6S
T L3S ITTOI DAXH T = S e e e e e e e e moosesoosesoee—— ¥ 8S
1701 03Xd aNAI T LS

T obeg T'oT/09%e 986T 8S:PT T v z obeq T s3dnauejur/ooxe 986T LY:ZZ € uer

PUEULIOD PTTEAUT QITVANI QWD QWDAHA zIT
1T
0 IINIAZQ 01T
60T
:Spuelwuod 20TASP pJAepuelg —----- ¥ 80T
L0T
90T
WaNZ SoT
T+INNOD AWD I3s INNOO aWD 0T
INNCO @WD ndd T\ €01
Sureupus ¥ O¥DYW @oAId 20T
T0T
WaNZ 00T
OaNT 66
™ I3S INNOD AWD 86
T\ ONAI L6
OaNg 96
QISNON (WD I1ds INNOD WD Sé
AW 241 ¥6
[des330°seq] ¢ OWOWN LINIAIG €6
$0J0eW UOT3TUTIOpP UC&EEOU |||||| ¥ 6
16
|| ¥ 06
¥ 68
SUOTITUTIS(Q pueuwmio) SOTASJ plepueis x g8
¥ L8
|| ¥ 98
S8
¥3
WaNd €8
(Tv) 30IAIATO1 ‘OIINOEY AId GITINIT 78
QIO oIINOgY 18
08
WaNT 6L
(Tv) 30IAFAOI 'OINTIOFE Add GIDINIT 8L
OUOWH OINIOZd LL
oL
|| ¥ SL
x YL
sSoJadely uotioung QI ¥ €L
¥ CL
170I7DaXdi OANA LZT e s TL
ozt 0L
AISNON @D @ADAIA szT 69
74" 3senbau QI 3doqe 4 0IINOaY AId JAIAAIT 89
:ontjea puesuwod SDTASP pAepuelisuou u.W\S....m |||||| ¥ €CT MW@SU@# oI ssoooud ¥ OHZHOmm|>m~Q J4ad11 L9
27T Q9
12T LINIEIT 59
M HSNIZ AAD QWOAId 0ZT 19
do3s Je3je jaeysed IIVIS AN @WOAId 6TT e e ¥ €9
penonb pue jueaano proy ¢ dOIS AWD @WDAId 81T %+ 29
sa93INnq T1e 1eSTD JvIATO GND AWDOAIA LTT suotjoung Axeaqr] 90TAS(Q plepuelSs s T9
¥
2
¥
¥

A-25

ananb aaTjus j10qe

SA933ng 1 3INO S3T™M JIVAdN AWD AWOAFd 91T ¥ 09
o3TAm plepuels JITAM @D AWDAIA L S et x 6S

pesd plepuels aQvad @iO AWDAId PiT 85

peaTut 3snl 3T se josou I3ISIT AN<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>