
i comprehensive guide to the

inner workings of your Amiga

Abacu
A Data Becker Book

Amiga System

Programmer's Guide

Dittrich

Gelfand

Schemmel

A Data Becker Book

First Printing, August 1988

Printed in U.S.A.

Copyright © 1987,1988 Data Becker, GmbH

Merowingerstrafie 30

4000 Dusseldorf, West Germany

Copyright © 1988 Abacus

5370 52nd Street SE

Grand Rapids, MI 49508

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise without the prior written permission of Abacus Software or Data

Becker, GmbH.

Every effort has been made to ensure complete and accurate information concerning the

material presented in this book. However, Abacus Software can neither guarantee nor be

held legally responsible for any mistakes in printing or faulty instructions contained in this

book. The authors always appreciate receiving notice of any errors or misprints.

AmigaBASIC and MS-DOS are trademarks or registered trademarks of Microsoft

Corporation. Amiga 500, Amiga 1000, Amiga 2000, Graphicraft, Musicraft, Sidecar and

Textcraft are trademarks or registered trademarks ofCommodore-Amiga Inc* Seka assembler

is a registered trademark ofKuma Corporation.

ISBN 1-55755-035-2

u

Contents

1 The Amiga Hardware 1

1.1 Introduction 3

1.2 Amiga system components 4
1.2.1 The 68000 processor 5
1.2.2 The 8250 CIA 10

1.2.3 The custom chips 22

1.2.3.1 Basic structure of the Amiga 23
1.2.3.2 The structure ofAgnus 26
1.2.3.4 The structure ofDenise 30
1.2.3.6 The structure ofPaula 33

1.2.3.7 Features of the Amiga 500 36

1.3 The Amiga interfaces 38
1.3.1 The audio/video interfaces 39
1.3.2 The RGB connector 40

1.3.3 The Centronics interface 42
1.3.4 The serial interface 45
1.3.5 External drive connector 47
1.3.6 The game ports 52

1.3.7 The expansion port 54

1.3.8 Supplying power from the interfaces 57

1.4 Thekeyboard 59

1.4.1 The keyboard circuit 60
1.4.2 Data transfer 62

1.4.3 Keyboard bugs 64

1.5 Programming the hardware 66
1.5.1 The memory layout 66

1.5.2 Fundamentals 75

1.5.3 Interrupts 86
1.5.4 The Copper coprocessor 88

1.5.5 Playfields 96

1.5.6 Sprites 122

1.5.7 Theblitter 134

1.5.8 Sound output 167
1.5.9 Tips, tricks, and more 182

1.5.10 Mouse, joystick and paddles 190
1.5.11 The serial interface 196

1.5.12 Data transfer with the Amiga UART 198
1.5.13 The disk controller 200

Hi

Contents Amiga System Programmers Guide

2 Exec 205

2.1 Operating system fundamentals 207

2.2 Introduction to programming the Amiga 208

208

210

213

215

220

224

226

226

228

228

234

235

236

244

247

247

249

251

261

265

266

268

270

271

273

275

276

276

278

281

286

287

292

295

295

298

302

303

307

iv

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.3.5

2.3.6

2.4

2.4.1

2.4.1.1

2.4.2

2.4.2.1

2.4.2.2

2.4.2.3

2.4.2.4

2.5

2.5.1

2.5.2

2.5.3

2.5.4

2.5.5

2.5.6

2.6

2.6.1

2.6.2

2.6.3

2.7

2.7.1

2.7.2

2.7.3

2.7.3.1

2.7.3.2

2.7.4

2.7.5

2.8

Differences between C and assembly language

Construction ofnodes

Lists

Exec routines for list management

Libraries

Opening a library

Closing a library

Structure of a library

Changing an existing library

Creating a custom library

The remaining library functions

Multitasking

The task structure

Task functions

Communication between tasks

The task signals

The signal functions

The message system

Message system, trap and exception functions

Amigamemory management

The AllocMemO andFreeMemO functions

The memory list structure

Memory management and tasks

Internal memory management

The Allocate and Deallocate functions

Remaining functions

I/O handling on the Amiga

The IORequest structure

Construction of a device

I/O control with functions

Interrupt handling on the Amiga

The interrupt structure

Soft interrupts

The CIA interrupts

The CIA resource structure

Managing the resource structure

Description of interrupt functions

Example ofan interrupt server

The ExecBase structure

Abacus Contents

2.9 Reset routine and reset-proof programs 315
2.9.1 Documentation of the reset routine 315
2.9.2 Resident structures 323
2.9.3 Reset-proofprograms and structures 328
2.9.4 A proper NoFastMem 331

3 AmigaDOS 333

3.1 TheDOS library 335

3.1.1 Loading the DOS library 335

3.1.2 Calling functions and passing parameters 336
3.1.3 The DOS functions 337
3.1.4 DOS error messages 347

3.2 Disks 350

3.2.1 Tlie boot procedure 351
3.2.2 File structures and data distribution 352
3.2.2.1 Disk layout 353

3.2.2.2 Program structure 358
3.2.2.3 The IFF 363

3.3 Programs 369

3.3.1 Program start and parameters 369
3.3.1.1 Calling from the CU 369

3.3.1.2 Starting from the Workbench 372

3.3.2 Structure of the transient CLI commands 378

3.4 Input/Output 381
3.4.1 Standard I/O 381

3.4.1.1 Keyboard and screen 383
3.4.1.2 Disk files 388
3.4.1.3 Serial interface 389
3.4.1.4 Parallel interface 390

4. Devices 393

4.1 TracKDisk device 395

4.2 Console device 405

4.3 Narrator device 410

4.4 Serial device 414

4.5 Printer device • 417

4.6 Parallel device 418

4.7 Gameport device 419

Appendix An overview of the library functions 423

1

The Amiga

Hardware

Abacus 1.1 Introduction

1.1 Introduction

The Commodore Amiga offers the user capabilities at a price which one

would never have dreamed of a few years ago. To make these features

possible, a powerful operating system and hardware work closely

together.

A high level of user friendliness was one of the main goals the

developers of (his computer had. The intent was to use the mouse and

the Workbench as a graphic user interface to make it easy to use the

computer. But not only did they want to make it easy to use, they

wanted to provide good support for programmers as well. For almost

any conceivable task there is a routine in the operating system which

makes direct programming ofthe hardware unnecessary.

But in spite of all of these system routines, for maximum speed you

can't avoid direct machine language programming. The speed of the

operating system routines are much slower than you would expect from

a computer as advanced as the Amiga. The reason for this is that large

parts of the Amiga's operating system were written in the C

programming language. The C language produces portable, readable and

quick running code, but programs developed in C are not as compact,

efficient or as fast as programs developed completely in machine

language.

If you want to write fast and efficient programs, or if you just want to

learn more about your Amiga, you have to work directly with the

hardware. The following chapter offers a description of the Amiga

hardware and the programming of the individual components.

1. The Amiga Hardware Amiga System Programmer's Guide

1.2 Amiga system

components

Essentially the Amiga hardware consists of the following components,

regardless of whether the system is an Amiga 500,1000 or 2000:

• The Motorola MC68000 microprocessor

• Two serial interfaces, type 8250

• Three custom chips from Commodore, called Agnus, Denise and

Paula

If you ignore the RAM and logic components for a moment, the six

chips listed above are responsible for all the functions of the Amiga.

Interfaces All of the necessary interfaces are also available on the Amiga:

Parallel printer port

Serial RS-232 interface

RGB monitor connection

Composite video connection (not on early Amiga 2000s)

Stereo audio output

Connector for an RF modulator (Amiga 1000 only)

Keyboard
Connector for an external disk drive (Shugart-bus compatible)

Two identical connectors for various input devices like a mouse,

joystick or paddle

• Connector for 256K RAM expansion (Amiga 1000—This will

not be discussed in this book because only the original

expansion from 256K to 512K bytes can be connected here. On

the Amiga 500 and 2000 these 256K bytes are already built in.

The Amiga 500 has a connection for a 512K RAM expansion,

but it's completely different from this connector)

• Expansion port to connect system expansions of all types (on

the Amiga 500 and 1000 this connection is on the side of the

case, while on the Amiga 2000 it is in the form of multiple card

connector inside the housing.)

In order to understand how all of these components work together, we

must first explain the function of the individual chips.

Abacus 1.2 Amiga system components

1.2.1 The 68000 processor

Figure 1.2.1.1

The 68000 from Motorola is unquestionably one of the most powerful
16-bit processors available. Although it has been on the market since
1979, it has only recently found its way into computers in the price
range of the Amiga.

Naturally, we can't give you a detailed description of the 68000 here,
since this is beyond the scope of this book. Those who want to know
more about programming the 68000 should seek out the appropriate
technical literature. Mentioned is the pin layout and a brief description
of the individual signal groups, since many books about programming
the 68000 offer a good instruction to the software side, but have little
to say about the hardware. A basic knowledge of the signals available
from the 68000 is essential to understanding the Amiga hardware.

NOTE: The arrows indicate the direction of the signal. A line above a
signal name means that the signal is active when low (0=active).

1. The Amiga Hardware Amiga System Programmer's Guide

The connections can be divided into the following function groups:

Power supply: Vcc and GND

The 68000 works with a simple power supply of 5 volts. There are two

connections each for power (Vcc) and ground (GND) and are centrally

located in order to keep voltage loss in the housing to a minimum.

The clock input: CLK

The 68000 needs only one clock. The frequency depends on the version

of the processor. The clock frequency of the Amiga's processor is 7.16

MHz.

The data bus: D0-D15

The data bus is set up as a 16-bit bus and can therefore transfer one

word (16 bits) at a time. When transferring a single byte (8 bits), only

one half of the lines are used. The byte is read or written through either

die lower 8 bits or the upper 8 bits.

The address bus: A1-A23

The address bus can address a total of 8 megawords with its 23 lines

(223 corresponds to 8 megawords or 16 megabytes). The UDS and LDS

signals (explained below) are used to make up for the lack of an A0

line.

Bus control lines in the asynchronous mode: AS, R/W, UDS, LDS, DTACK

The 68000 can perform memory access in two different modes. In the

asynchronous mode, the processor signals with AS (Address Strobe/

address valid) that a valid address is on the address bus. At the same

time it determines with the R/W line (Read/Write) whether a byte or

word is read or written. The selection between byte or word is made

with the two lines UDS and LDS (Upper Data Strobe and Lower Data

Strobe). Since memory is always word-addressed by the address bus, the

processor simply transfers either the upper half or lower half of a word

when doing a byte access. This is signaled through UDS and LDS. For

a word access, the 68000 sets both lines. To access a byte, it sets only

one line or the other to 9 (the other line stays at 1).

Once the processor has signaled its request with the AS, R/W, UDS and

LDS lines, it waits until the memory tells it that the desired data are

ready. The DTACK line is used for this, which is set to 0 by the

responding device as soon as the data is ready. If the processor is

writing data, the recipient uses the DTACK line to tell the processor

that it has received the data.

Thus in asychronous mode, the processor always adapts itself to the

speed of memory.

Abacus 1.2 Amiga system components

The individual words and bytes lie in memory as follows:

Address:

0

2

4

6

WordO

Wordl

Word2

Word 3

Data bus lines used

D8-15
UDS=Q

ByteO

Byte 2

Byte 4

Byte 6

DO-7
LDS =0

Bytel

Byte 3
Byte 5

Byte 7

Bus control signals in the synchronous mode: E, VPA, VMA

To make better sense of these signals, you have to understand the tech

nological situation when the 68000 was introduced onto the market. At

die time there were no peripheral chips available specifically for the

68000. The chips available from Motorola for the 68000 series (a

precursor of the 6502) could not be used with the asynchronous bus

control without additional hardware. Thus the 68000 was given a syn

chronous bus mode, such as that found on eight-bit processors like the

6800 or 6502.

The E line constantly outputs a clock which is a factor of ten less in

frequency than the processor clock, or 716KHz on the Amiga, which is

used as the clock for the peripheral chips. The switch from asynchron

ous to synchronous mode is made with the input VPA (Valid Peripheral

Address). This input must be set to 0 by an external address decoder as

soon as the address of a peripheral chip is recognized. The processor

answers this by bringing the VMA line (Valid Memory Address) to 0.

The appropriate peripheral chip must then receive or prepare the data

within one clock cycle of E. After that the 68000 automatically leaves

the synchronous mode until the next VPA signal occurs.

The system control signals: RESET, HALT, BERR

The most important task of a reset signal is to reset the system so that

all system components are placed in some known initial state and pro

gram execution can begin at a set address.

To generate such a system reset on the 68000, both the HALT and

RESET lines must be set to 0. As soon as these lines go to 1 again,

the 68000 starts execution at the address found in location 4.

The RESET line can also be pulled to 0 by the 68000 in order to

initialize the system without changing the processor state.

With the BERR (Bus ERRor) line an external circuit can inform the

processor that something is not in order. A reason for a bus error can be

a hardware error or an attempt to access something at a nonexistent

address.

1. The Amiga Hardware Amiga System Programmer's Guide

When a BERR signal occurs, the 68000 jumps to a special operating
system routine which then handles the error (e.g., Guru Meditation?). If

another bus error occurs during this error handling routine, the 68000

stops all processing and sets HALT low. This double bus error is, by

the way, the only situation in which the 68000 actually crashes and

refuses to execute anything. For all other errors it jumps through

special vectors to program routines which can then handle the error and
allow the system to continue operating. The Amiga's error handling is

not as friendly as it could be! (On the early Amiga's the frequency of

Guru Meditations, kept the Amiga true to Murphy's Law: A computer

always crashes whenever it is processing important data which has not

been saved yet).

Once the processor halts as a result of a double bus error, it can only be

restarted with a reset (HALT andRESET low).

Another function of the HALT line is to temporarily stop the proces

sor. If you bring HALT low, the 68000 finishes the current memory

access and waits until HALT goes high again.

There are other details concerning the interplay of BERR and HALT,

but they do not concern the operation of the Amiga.

The operating state ofthe processor: FC0, FCl, FC2

The lines FC0-FC2 signal the operating state of the processor. The fol

lowing states are possible:

FC2 FCl FCO State

0 0 1 Accessing user data

0 10 Accessing user program

10 1 Accessing supervisor data

110 Accessing supervisorprogram

111 Signals a valid interrupt

The processor can be run in two different modes: the user mode and the

supervisor mode. A program which runs in supervisor mode has unre

stricted access to all processor registers. The operating system, for

example, always runs in supervisor mode.

In the user mode, certain processor registers cannot be used. More about

this can be found in 68000 literature.

The three FCx lines allow system hardware to recognize the current

state of the processor and react to it. For example, access to the oper

ating system while in user mode can be made to cause a bus error

(BERR=0).

8

Abacus 1.2 Amiga system components

The interrupt inputs: IPLO, IPLJ, IPL2

The signals at the three interrupt inputs (IPL=Internipt Pending Level)
are interpreted by the 68000 as a 3-bit binary number. The 68000 can
therefore distinguish different interrupt signals, called interrupt levels,
whereby 0 means that no interrupt is present, while 7 signals an inter
rupt of the highest priority. Each of the seven interrupt levels has its
own interrupt vector which contains the address of the routine executed
when that interrupt occurs.

If an interrupt of the corresponding level is allowed, the processor
places a 1 on all FCx lines, signaling that it recognizes the interrupt
and that it is waiting for confirmation on the side of the interrupt. This
can be done with either VPA or DTACK. If the interrupt is confirmed

to the address it finds in the vector assigned to the given interrupt level.
This means that it can jump to seven different addresses (level 0 indi
cates that no interrupt is present).

If there are only seven interrupt sources in the system, then the software
doesn't have to try to figure out which device caused a given interrupt
You simply assign an interrupt level to each interrupt source and the
processor jumps to the appropriate routine. The Amiga only uses these
autovector interrupts.

More options for hardware recognition of various interrupt sources are
offered by the class of non-autovector interrupts. Since these are not
used in the Amiga, we will not discuss them any further here. We'll

only say that for non-autovector interrupts the interrupt is confirmed

with DTACK and the component which generated the interrupt can
place an interrupt vector on the data bus which then selects from up to

192 different interrupt vectors.

Bus control signals: BR, BG, BGACK

These three signals allow another chip to take control of the bus. This

might be the case for a hard disk controller, for example, which then

writes the data from the hard disk directly into memory (calledDMA =

Direct Memory Access).

These three signals are also unused in the Amiga, since DMA is real

ized in a different manner. This is explained at the end of this chapter.

1. The Amiga Hardware Amiga System Programmer's Guide

1.2.2 The 8250 CIA

Figure 1.22.1

\J

oo

21

NOTE: The arrows indicate the direction of the signal. A line above i

signal name means that the signal is active when low (O=active).

10

Abacus 12 Amiga system components

Figure 1222

8520 - block diagram

DO - D7

sp <+\ SP buffer

cnt <4-HCNT buffer [

tod —«TODbuffer|

flag—»|tTZKb buffer[-

IRQ -#—ITFSJbuffeT]

TimerA

CRA

8520 access control

R/5? ^2 CS A3 A2 Al A0 RES

Key:

: 8-bit line

s 1-bit line

11

1. The Amiga Hardware Amiga System Programmer's Guide

The 8250 The 8250 is a peripheral of the Complex Interface Adapter (CIA) class,

which basically means that the developers of the 8250 tried to put as

many functions into one chip as possible. If you look at the 8250 more

closely, you'll see that it bears a strong resemblance to the 6526 used
in the C64. Only the operation of registers 8 to 11 ($8 to $B) is

somewhat changed. This should be good news for those who have

programmed a 6526 before.

The 8250 has the following features: two programmable 8-bit parallel

ports (PA and PB), two 16-bit timers (A and B), a bidirectional serial

port (SP) and a 24-bit counter (event counter) with an alarm function

upon reaching a programmed value. All of the functions can generate

interrupts*

The functions of the 8250 are organized in 16 registers. To the proces

sor they look like ordinary memory locations, since all peripheral

components in a 68000 system are memory mapped. The registers of a

chip are accessed like memory locations.

Since the 8250 was originally developed for use with 8-bit processors,

the 68000 must access it in the synchronous mode (see Section 12.1).

The E clock on the 68000 is connected to the <t>2 input of the 8250. The

16 internal registers are selected with the four address inputs A0-A3.
Mace details about how the CIA are integrated in the Amiga system are

given at the end of this chapter.

Here is an explanation of the 16 registers (actually only 15 registers,

since register 11 ($B) is unused):

8250 registers Register Name Function

0

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

PRA

PRB

DDRA

DDRB

TALO

TAffl

TBLO

TBHI

Event low

Event med.

Event high
_

SP

ICR

CRA

CRB

PortA data register

PortB data register

Port A data direction register

Port B data direction register

Timer A lower 8 bits

Timer A upper 8 bits

Timer Blower 8 bits

Timer B upper 8 bits

Counter bits 0-7

Counter bits 8-15

Counter bits 16-23

Unused

Serial port data register

Interrupt control register

Control register A

Control register B

12

Abacus 12 Amiga system components

The parallel

ports

Reg. Name D7 D6 D5 D4 D3 D2 Dl DO

The timers:

0 PRA PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO

1 PRB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

2 DDRA DPA7 DPA6 DPA5 DPA4 DPA3 DPA2 DPA1 DPAO
3 DDRB DPB7 DPB6 DPB5 DPB4 DPB3 DPB2 DPB1 DPBO

The 8250 has two 8-bit parallel ports, PA and PB, each of which is

assigned a data register, PRA (Port Register A) and PRB (Port Register

B). The chip has 16 port lines, PA0-PA7 and PB0-PB7. Each port line

can be used as either an input or an output. The input or output of a

port line is called the data direction. The 82S0 allows the data direction
of each line to be controlled individually. Each port has data direction

registers, DDRA and DDRB. If a bit in the data direction register is 0,

the corresponding line is an input The state of the port lines can be

determined by reading the appropriate bits of the data direction register.

If a bit in the DDR is set to 1, then the corresponding port line

becomes an output. The signal on the port line then corresponds

directly to the value of the corresponding bit in the data register for that

port

In general, writing to a data register always stores the value in it, while

reading always returns the states of the port lines. The bits in the data

direction register determines whether the value of the data register is

placed on the port lines. Therefore when reading the port which is con

figured as an output, the contents of the data register are returned, while

when writing to an input port, the value is stored in the data register,

but doesn't appear on the port lines until the port is configured as out

put

To simplify the data transfer through the parallel ports, the 8250 has

two handshake lines, PC and FLAG.

The PC output goes low for one clock period on each access to data

register B (PRB, reg. 1). The FLAG input responds to such downward

transitions. Every time the state of the FLAG line changes from 1 to 0,

the FLAG bit is set in the interrupt control register (ICR, reg. $D).

These two lines allow a simple form of handshaking in which the

FLAG andPC lines of two CIAs are cross-connected.

The sender need only write its data to the port register and then wait for

a FLAG signal before sending each additional byte. Since FLAG can

generate an interrupt, the sender can even perform other tasks while it is

waiting. The same applies to the receiver, except that it reads the data

from the port instead of writing it

Readaccess

Reg. Name D7 D6 PS _D4__D3_ D2 Dl DO

0 TALO TAL7 TAL6 TAL5 TAW TAL3 TAL2 TALI TALO

1 TAHI TAH7 TAH6 TAH5 TAH4 TAH3 TAH2 TAH1 TAHO

2 TBLO TBL7 TBL6 TBL5 TOL4 TBL3 TBL2 TBL1 TBLO

3 TBHI TBH7 TBH6 TBH5 TBH4 TBH3 TBH2 TBH1 TBHO

13

1. The Amiga Hardware Amiga System Programmer's Guide

Write access

Reg. Name D7 D6 PS D4 D3 D2 Dl DO

0 PALO PAL7 PAL6 PALS PAL4 PAL3 PAL2 PALI PALO
1 PAHI PAH7 PAH6 PAHS PAH4 PAH3 PAH2 PAH1 PAHO

2 PBLO PBL7 PBL6 PBL5 PBL4 PBL3 PBL2 BL1 PBIO

3 PBHI PBH7 PBH6 PBH5 PBH4 PBH3 PBH2 PBH1 PBHO

The 8250 has two 16-bit timers. These timers can count from a preset

value down to zero. A number ofmodes are possible and can be selected

through a control register, one for each timer.

Each timer consists internally of four registers (timer A: TALO+TAHI

and PALO+ PAHI), or two register pairs, since each low and high reg

ister pair forms the 16-bit timer value. On each write access to one of

the timer registers the value is stored in a latch. This value is loaded

into the count register and decremented until the timer reaches zero.

Then the value is loaded from the latch back into the timer register.

When a timer register is read, it returns the current state of the timer.

To get a correct value, the timer must be stopped. The following exam

ple shows why:

• Timer state: $0100. A read access to register 5 returns the high

byte of the current state: $01

• Before the low byte (reg. 4) can be read, the timer is decremented

again and the timer count is now at $00FF.

The low byte is read: $FF.

• Resulting timer state: $01FF.

Instead of stopping the timer, which also causes problems since timer

pulses are ignored, a more elegant method can be used: Read the high

byte, then the low byte and then the high byte again. If the two high

byte values match, then the value read is correct If not, the procedure

must be repeated.

Bits 5 and 6 of the control register determine what signals decrement the

timers.

Timer A Only two sources are possible for timer A:

1. Timer A is decremented each clock cycle (since the CIAs in the

Amiga are connected to the E clock of the processor, the count

frequency is 716KHz). (INMODE=0)

2. Each high pulse on the CNT line decrements the timer.

(INMODE=1)

14

Abacus 1.2 Amiga system components

Timer B Timer B has four input modes:

1. Clock cycles (INMODE bits = 00 (binary—the first digit stands
for bit 6, the second for bit 5).

2. CNT pulses (INMODE bits = 01)

3. Timer A timeouts (allows two timers to form a 32-bit timer).
(INMODE bits =10)

4. Timer A timeouts when the CNT line is high (allows the length

of a pulse on the CNT line to be measured). (INMODE bits =11)

The timeouts of a timer are registered in the Interrupt Control Register

(ICR). When timer A timeouts, the TA bit (no. 0) is set, while when

timer B timeouts the TB bit is set (no. 1). These bits, like all of the

bits in the ICR, remain set until the ICR is read. In addition, it is also

possible to output the timeouts to parallel port B. If the PBon bit is set

in the control register for the given timer (CRA or CRB), then each

timeout appears on the appropriate port line (PB6 for timer A and PB7

for timer B).

Two output modes can be selected with the OUTMODE bit:

OUTMODE = 0 Pulse mode Each timeout appears as a positive

pulse one clock period long on the

corresponding port line.

OUTMODE =1 Toggle mode Each timeout causes the correspond

ing port line to change value from

high to low or low to high. Each

time the timer is started the output

starts at high.

The timers are started and stopped with the START bit in the control

registers. START = 0 stops the timer, START = 1 starts it

The RUNMODE bit selects between the one-shot mode and the contin

uous mode. In the one-shot mode the timer stops after each timeout and

sets the START bit back to 0. In the continuous mode the timer

restarts after each timeout

As mentioned before, writing to a timer register doesn't write the value

directly to the count register, but to a latch (also called the prescaler,

since the number of timeouts per second is equal to the clock frequency

divided by the value in the prescaler).

There are several ways to transfer the value from the latch to the timer

15

1. The Amiga Hardware Amiga System Programmer's Guide

1. Set the LOAD bit in the control register. This causes a forced
load, that is, the value in the latch is transferred to the timer

registers regardless of the timer state. The LOAD bit is called a

strobe bit, which means that it causes a one-time operation

instead of the value being stored. To cause another forced load, a

1 must be written in the LOAD bit

2. Each time the timer runs out, the latch is automatically trans

ferred to the counter.

3. After a write access to the timer high register, the timer is

stopped (stop - 0), it is automatically loaded with the value in

the latch. Therefore the low byte of the timer should always be

initialized first

Assignment of the bits in control register A:

Register No. 141 $E Name: CRA

JJ2 D6 PS D4 D3 E2 Pt DO

not used SPMOD INMODE LOAD RUNMODE OUIMODE PBon START
0=input 0-clock l-force 0«cont O-pulse 0=PB6off O-off

1-output 1-CNT load l*one- 1-toggle l-PB6on l«on

(strobe) shot

Assignment of the bits in control register B:

Register No. 151 $F Name: CRB

D7 D6+D5 D4 D3 D2 Dl DO

The event

counter

ALARM

0-TOD

l»Alarm

Reg.

8 $8

9 $9

10 $A

INMODE

00=clock

01-CNT

lOstimer A

LOAD

l»fora

load

ll«timer A+

CNT

Nftflie

LSB event

Event 8-15

MSB event

D7

E7

E15

E23

RUNMODE

> 0-cont

l»one-

(strobe)

D6 D5

E6 E5

E14 E13

E22 E21

OUTMODE

d«pulse
1-toggle

shot

D4 D3

E4 E3

E12 Ell

E20 E19

PBon

0«PB7off

l»PB7on

D2

E2

E10

E18

Dl
El

E9

E17

START

O-off

l»on

DO

E0

E8

E16

As mentioned before, there are only minor differences between the 82S0

and 6526. All of these differences concern the function of registers 8-11.

The 6526 has a real-time clock which returns the time of day in hours,

minutes, and seconds in the individual registers. On the 8250 this clock

is replaced by a simple 24-bit counter, called an event counter. This can

lead to some confusion, because Commodore often uses the old designa

tion TOD (Time-Of-Day) in their literature when referring to the 8250.

The operation of the event counter is simple. It is a 24-bit counter,

meaning that it can count from 0 to 16777215 ($FFFFFF). With each

rising edge (transition from low to high) on the TOD line, the counter

value is incremented by one. When the counter has reached $FFFFFF,

16

Abacus 12 Amiga system components

it starts over at 0 on die next count pulse. The counter can be set to a
defined state by writing the desired value into the counter register.

Register 8 contains bits 0-7 of the counter, the least significant byte

(LSB), in register 9 are bits 8-16, and in register 10 are bits 16-23, the

Most-Significant Byte (MSB) of the counter value.

The counter stops on each write access so that no errors result from a

sudden carry from one register to another. The counter starts running

again when a value is written into the LSB (reg. 8). Normally the coun

ter is written in the order: register 10 (MSB), then register 9, and finally

register 8 (MSB).

To prevent carry errors when the counter is read, the counter value is

written into a latch when the MSB (reg. 10) is read. Each additional

access to a count register now returns the value of the latch, which can

be read in peace while the counter continues to run internally. The latch

is turned off again when the LSB is read. The counter should be read in

the same order as it is written (see previous paragraph).

An alarm function is also built into the event counter. If the alarm bit

(bit 7) is set to 1 in control register B, an alarm value can be set by

writing registers 8-10. As soon as the value of the counter matches this

alarm value, the alarm bit in the interrupt control register is set. The

alarm value can only be set—a read access to registers 8-10 always

returns the current counter state, regardless of whether the alarm bit is

set in control register B or not

The Serial Register Name D7 D6 PS D4 D3 D2 Dl DO

port 12 $C SDR S7 S6 S5 S4 S3 S2 SI SO

The serial port consists of the serial data register and an 8-bit shift reg

ister which cannot be accessed directly. The port can be configured as

input (SPMODE = 0) or output (SPMODE=1) with the SPMODE bit

in control register A. In the input mode the serial data on the SP line

are shifted into the shift register on each rising edge on the CNT line.

After eight CNT pulses the shift register is full and its contents are

transferred to the serial data register. At the same time, the SP bit in the

interrupt control register is set If more CNT pulses occur, the data con

tinues to shift into the shift register until it is full again. If the user has

read the Serial Data Register (SDR) in the mean time, the new value is

copied into the SDR and the transfer continues in this manner.

To use the serial port as output, set SPMODE to 1. The timeout rate of

timer A, which must be operated in continuous mode, determines the

baud rate (number of bits per second). The data are always shifted out of

the shift register at half the timeout rate of timer A, whereby the maxi

mum output rate is one quarter of the clock-frequency of the 82S0.

17

1. The Amiga Hardware Amiga System Programmer's Guide

The transfer begins after the first data byte is transferred into the SDR.
The CIA transfers the data byte into the shift register. The individual
data bits now appear at half the timeout rate of timer A on the SP line
and the clock signal from timer A appears on the CNT line (it changes

value on each timeout so that the next bit appears on the SP line on

each negative transition [high to low]). The transfer begins with the

MSB of the data byte. Once all eight bits have been output, CNT

remains high and the SP line retains the value of the last bit sent In

addition, the SP bit in the interrupt control register is set to show that

the shift register can be supplied with new data. If the next data byte

was loaded into the data register before the output of the last bit, the

data output continues without interruption.

To keep the transfer continuous, die serial data register must be

supplied with new data at the proper time.

The SP and CNT lines are open-collector outputs so that CNT and SP

lines of multiple 8250's can be connected together.

The interrupt Read access = data register

control

register: Register

13 $D

Name D7 D6

ICR IR 0

Write access = mask register

Register Name D7 D6

D5

0

D5

D4

FLAG

D4

D3

SP

D2

Alarm

D2

PI
IB

Dl

PO
TA

PO
13 $D ICR S/C FLAG SP Alarm TB TA

The ICR consists of a data register and a mask register. Each of the five

interrupt sources can set its corresponding bit in the data register. Here

again are all five possible interrupt sources:

1. Timeout of timer A (TA, bit 0)

2. Timeout of timer B (TB, bit 1)

3. Match of the event counter value and alarm value (Alarm, bit 2)

4. The shift register of the serial port is full (input) or empty (out

put) (SP, bit 3)

5. Negative transition on the FLAG input (FLAG, bit 4)

If the ICR register is read, it always returns the value of the data reg

ister, which is cleared after it is read (all set bits, including the IR bit

are cleared). If this value is needed later, it must be stored somewhere

else.

The mask register can only be written. Its value determines whether a

set bit in the data register can generate an interrupt. To make an inter

rupt possible, the corresponding bit in the mask register must be set to

1. The 82S0 pulls the IRQ line low (it is active low) whenever a bit is

18

Abacus 1.2 Amiga system components

Integration of

CIAs into the

Amiga system

CIA-A:

Register

addresses

set in both the mask register and the data register and sets the IR bit (bit

7) in the data register so that an interrupt is also signalled in software.

The IRQ line does not return to 1 until the ICR is read and thus cleared.

The mask register cannot be written like a normal memory location. To

set a bit in the mask register, the desired bit must be set and the S/C bit

(Set/Clear, bit # 7) must also be set. All other bits remain unchanged.

To clear a bit, the desired bit must again be set, but this time the S/C

bit is cleared. The S/C bit determines whether the set bits are set (S/C =

1) or clear (S/C = 0) the corresponding bits in the mask register. All

cleared bits in the byte written to the ICR have no effect on it. Here is
an example:

We want to allow an interrupt through the FLAG line. The current

value of the mask register is 00000011 binary, meaning that timer

interrupts are allowed. The following value must be written into the

mask register 10010000 binary (S/G=l). The mask register then has
the following contents: 00010011. If you now want to turn the two

timer interrupts off, write the following value: 00000011 (S/C=0).
Now the mask register contains 00010000, and only the FLAG inter
rupt is allowed.

As already mentioned, the Amiga has two CIAs of the type 8250. The

base address of the first 8250, which we call 8250-A, is $BFE001. The
registers are not at contiguous memory addresses, however, but at 256

byte intervals. This means that all of the 8250-A registers are at odd
addresses because the 8250-A is connected to the lower 8-bits of the
processor data bus (DO-7). The following table lists the addresses of the
individual registers with their uses in the Amiga (see the chapter on
interfaces for more information on the individual port bits):

Name D7 D6

$BFB001

$BFE101

SBFE201

$BFE301

$BFE401

$BFE501

$BFE601

$BFE701

$BFE801

$BFE901

$BFEA01

$BFEB01

$BFEC01

$BFEE01

$BFEF01

IRA

FRB

DDRA

DDRB

TALO

TAHI

TBLO

TBHI

E.LSB

E8-15

E.MSB

SP

KR

CRA

CRB

-BL J3Q
/HR1 /HR0 /RDY /TK0 /WPR0 /CHNO /LED OVL
Centronics parallel port

0 0 0 0 0 0 1 1
input or output depending on the application

timerA is used by the operating system for communication
withthe keyboard

timerB is used by theOS for various tasks

The event counter in the OA-A counts 60Hz pulses

from the power supply (called ticks)

which are taken from the power-line frequency

Input for key codes from the keyboard

Interrupt control register

Control register A

Control register B

The second QA, CIA-B, is addressed at address $BFD000. Its registers
lie at even addresses because the data bus of CIA-B is connected to the
upper half of the processor data bus.

19

1. The Amiga Hardware Amiga System Programmer's Guide

CIA-B:

Register

addresses

Address Name J27__D6__D5__D4__D3__D2_ Dl DO

$BFDOOO PRA /DTR /RTS /CD /CTS /DSR /SEL POUT BUSY

$BFD100 PRB /MTR /SEL3 /SEL2 /SEL1 /SELO /SIDE DIR /STEP

SBFD200 DDRA 1 10 0 0 0 0 0

$BFD300 DDRB 1 111 1111

$BFD400 TALO Timer A is used only for serial transfers.

$BFD500 TAHI Otherwise it is free.

$BFD600 TBLO Timer B is used to synchronize the blitter with the screen

$BFD700 TBHI Otherwise it is free.

$BFD800 E. LSB The event counter in CIA-B counts the horizontal

$BFD900 E. 8-15 sync pulses.

$BFDA00 E.MSB

$BFDB00 SP unused

$BFDC00 ICR Interrupt control register

$BFDE00 CRA Control register A

$BFDF00 CRB Control register B

The addresses $BFD000 for CIA-B and $BFE001 for CIA-A are the base

addresses of the CIAs specified by Commodore. A closer look at the

schematic reveals that the two CIAs are addressed in the entire range

from AOxxxx to BFxxxx. The selection between the two CIAs is made

with address lines A12 and A13. CIA-A is selected when A12=0 and

CIA-B is selected when A13=0, assuming that the addresses are between

AOxxxx and BFxxxx. Since the data bus of CIA-A is connected to pro

cessor data lines DO-7 (odd addresses) and CIA-B to D8-15 (even addres

ses), the two can be accessed together in one word access if A12 and

A13 are both 0.

M0VE.W $BF0000J30 moves the PA registers of both CIAs into DO
such that the lower 8 bits ofDO contain the data from the PA of CIA-A

and bits 9-15 contain the contents ofPA from CIA-B.

The addressing scheme for the CIAs can be summarized as follows.

CIA-A is selected by the following addresses (binary):

lOlx xxxx xxxO rrrr xxxx xxxl

and CIA-B by:

10 lx xxxx xxOx rrrr xxxx xxxO

The four bits designated rrrr select the corresponding registers.

This information completely applies only to the Amiga 1000 only. It
is possible that this has changed in the newer Amiga models. To be
certain, use only the addresses specified by Commodore (CIA-A at

$BFE001 andOA-B at$BFD000).

The following list shows the various signal lines of the Amiga's CIAs:

20

Abacus 12 Amiga system components

CIA-A:

/IRQ

/RES

D0-D7

D0-A3

f2

R/W

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PAO

SP

CNT

PB0-PB7

PC

FLAG

CIA-B:

/IRQ

/RES

D0-D7

A0-A3

£2

R/W

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PAO

SP

CNT

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PBO

FLAG

PC

/INT2 input from Paula

System reset line

Processor data bus bits 0-7

Processor address bus bits 8-11

Processor E clock

Processor R/W

Game port 1 pin 6 (fire button)

Game port 0 pin 6 (fire button)

/RDY "disk ready" signal from disk drive

/TKO "disk track 00" signal from disk drive

/WPRO "write protect" signal from the disk drive

/CHNG "disk change" signal from disk drive

LED Control over the power LED (0=on, l=off)

OVL memory overlay bit (do not change!)

KDAT Serial keyboard data

KCLK Clock for keyboard data

Centronics port data lines

/DRDY Centronics handshake signal: data ready

JACK. Centronics handshake signal: data acknowledge

/INT6 input from Paula

System reset line

Processor data bus lines 8-15

Processor address bus lines 8-11

Processor E clock

Processor R/W

/DTR serial interface, /DTR signal

/RTS serial interface, /RTS signal

/CD serial interface, /CD signal

/CTS serial interface, /CTS signal

/DSR serial interface,/DSR signal

SEL "select" signal for Centronics interface

POUT "paper out" signal from Centronics interface

BUSY "busy" signal from Centronics interface

BUSY connected directly to PAO

POUT connected directly to PA1

/MTR "motor" signal to disk drive

/SEL3 "drive select for drive 3

/SEL2 "drive select?'for drive 2

/SEL1 "drive select" for drive 1

/SELO "drive select" for drive 0 (internal)

/SIDE "side select" signal to disk drive

DIR "direction" signal to disk drive

/STEP "step" signal to disk drive

/INDEX "index" signal from disk drive

not used

21

1. The Amiga Hardware Amiga System Programmer's Guide

1.2.3 The custom chips

The chips that we have discussed so far are rather boring in comparison

to what's coming up. Even the 68000, in spite of its power, is pretty

much a standard part these days available at most electronics stores.

Although the capabilities of the Amiga finally depend on the speed of

the processor, other things are more apparent to someone meeting the

Amiga for the first time. When broadcast quality computer graphics

appear on the screen and digitized orchestral music comes out of the

speakers, that's when the curiosity is aroused. Whether the computer

can also calculate so many prime numbers in fractions of a second or

whether it is scarcely faster than the old pocket calculator is something

that doesn't matter that much to the purchaser of a computer like the

Amiga.

The developers of the Amiga were aware of this and equipped it with

previously unheard of graphic and sound capabilities for a computer of

its price class. The goal of this section is to explain the hardware

responsible for the fantastic sound and graphics capabilities of the

Amiga and to give the reader a basis for programming these features of

the Amiga.

Agnus, Denise The foundation of all of the features mentioned is a set of three chips

and Paula developed specifically for the Amiga. Their part numbers are 8361,

8362 and 8364, but these numbers didn't have enough personality for

the Amiga developers, so they gave the chips the names Agnus (8361),

Denise (8362) and Paula (8364).

These custom chips take care of the sound generation, screen display,

processor-independent diskette access and much more. These tasks are

not strictly divided up among the chips so that one is in charge of

sound generation, one of graphics and another of diskette operation, as

is the case with most concurrent devices. Instead, the tasks are divided

up among all three chips so that graphic display is handled by two

chips.

The three chips could have been combined into one, but the manufac

ture of such a complex circuit would have been more expensive than

making the three separate chips.

Before we get into the details of how Agnus, Denise and Paula work,

we have a short introduction to the structure of the Amiga.

22

Abacus 12 Amiga system components

1.2.3.1 Basic structure of the Amiga

Figure

1.2.3.1.1
Amiga - basic block diagram

IS 1 -lines to and from interfaces

Kickstart

ROM

Processor

Chip RAM

^Processor data bus

(a

$

OL

s

Address

bus

buffer

Data bus

buffer

Chip ROM

Register

address bus

address bus

vChlp data bus

DLL

1

A simple computer system normally consists of a processor, the ROM

with the operating system, a certain amount of RAM, and at least one

peripheral component for data input and output. All components are

connected to the address and data bus. The processor controls the system

and only it can place addresses on the bus and thus write or read data to
or from various system components, such as RAM. It also controls bus

control signals like the R/W line (for the sake of simplicity these are

not drawn on Figure 1.2.3.1.1; the individual 68000 bus control signals
are explained in Section 1.2.1).

Every computer system also contains control circuits like an address

decoder, which activates certain components based on values on the
address bus.

But back to the Amiga. As you can see from Figure 1.2.3.1.1, the

structure of the Amiga deviates somewhat from what we described. On

the left side, you see the 68000 microprocessor whose data and address

lines are connected directly to the two 8250 CIA's and the Kickstart

ROM. This part of the Amiga is conventional—only the processor has

access to the two CIA's and the ROM. What does the right side look

like? Here we find the three custom chips Agnus, Denise and Paula, and
the chip RAM, which are all connected to a common data bus. How

ever, this data bus is separated from the processor data bus by a buffer

which can either connect the processor data bus to the data bus or can

23

1. The Amiga Hardware Amiga System Programmer's Guide

Multiplexed

addresses

DMA

separate the two. The three custom chips are connected to each other

through the register address bus, which can be connected to the proces
sor address bus or not

Since the chip RAM has a much larger address range than custom chips

and also requires multiplexed addresses, there is a separate chip RAM

address bus. Multiplexed addresses implies that the RAM chips in the

Amiga 1000 have an address range of 216 addresses (65536) and in order

to access all of the addresses of a chip, 16 address lines are needed. But

since the actual chips are very small, such a large number of address

lines would have lead to a very large enclosure. To get around this

problem, something called multiplexed addressing was introduced. The

package has only eight address lines which are first applied the upper

eight bits of the address and then the lower eight The chip stores the

upper eight and then, when the lower eight are applied to the address

lines, it has the 16 address bits which it needs.

Why are these two buses separated? The reason is that the various

input/output devices need a constant supply of data. For example, the

data for individual dots on the screen must be read from the RAM thirty

times per second, since a television picture according to the NTSC stan

dard is refreshed at the rate of thirty times per second.

A high-resolution graphic on the Amiga can require more than 64KB of

screen memory. This means that per second 30x64KB access must be

applied to memory. This is nearly 2 million memory accesses per

second! If the processor must perform this task, it would be hopelessly

overloaded. Even a 68000 cannot produce such a high data rate. And in

addition to this die Amiga can perform digital sound output and diskette

accesses in addition to the graphics, all without using the 68000. The

solution lies in a second processor which performs all of these memory

accesses itself. Such a processor is also called a DMA controller (Direct

Memory Access). On the Amiga this is contained in Agnus. This is

why Agnus is also connected to the chip RAM address bus.

The other two chips, Denise and Paula, and also the remainder of

Agnus, are constructed like standard peripheral chips. They have a

certain number of registers which can be read or written by the

processor (or the DMA controller). The individual registers are selected

through the register address bus. It has eight lines, so 256 different

states are possible. There is no special chip selection. If the address bus

has the value 255 or $FP, so that all lines are high, no registers are

selected. If a valid register number is on these lines, then the chip

containing the selected register recognizes this and activates it. This

task is performed in the individual chips by the register address decoders.

The fact that the selection of a register depends only on its register

address and not on the chip in which it is located means that two regis

ters in two different chips can be written with the same value if they

have the same register address. This capability is used for some of the

registers which contain data which is needed by more than one chip.

24

Abacus 12 Amiga system components

Read and

Write register

Bus

contention

Each chip register can be either a read register or a write register.

Switching between read and write is accomplished with a special R/W

line, something the 8250 doesn't have. The register address also deter

mines whether a read or write access is taking place. Registers which

can be read as well as written are realized such that the write access goes

to one register address and the read access goes to another. This property

is clearly shown in the list of the chip registers (see Section 1.5.1).

Since Agnus contains the DMA controller, it can access the custom

chip registers itself. It can output an address on the register address bus.

One obvious problem is still unresolved. There is only one data bus and

one address bus which both the processor and the DMA controller wants

to access. A bus can be controlled by one bus controller at a time. If

two chips try to place an address on the bus simultaneously, there

would be a problem known as bus contention, leading to a system

crash. Therefore the bus accesses must take turns and access the bus

alternately, whereby each access wants to have the bus for itself as often

as possible. This problem is elegantly solved on the Amiga in three

levels:

First, the normally continuous buses on the Amiga are divided into two

parts. One (on the left in the figure) connects all of the components

which can be accessed only by the processor. When the 68000 accesses

one of these components, the two buffers (in the middle of the figure),

break the connection between the processor data and processor address

buses and the chip data and chip address buses. This way the processor

can access things on its side undisturbed and Agnus can access the bus

on its side. The processor thus has undisturbed access to the operating

system and RAM expansions connected to the expansion port This

expansion is also called fast RAM because the processor can always

access it without loss of speed. (The RAM expansions which are

inserted on the front of the Amiga 1000 and on the underside of the

Amiga 500 belong to the chip RAM.)

Second, bus accesses from the processor and from Agnus are nested so

that normally even accesses to the chip RAM or the chip registers of

the 68000 are not slower. For such an access the buffers connect the

two systems again.

Third, the processor can wait until Agnus has finished its DMA

accesses and the bus is free again. This case occurs only when either

very high graphic resolutions are used or when the blitter is being used.

More about this later. Now we'll discuss the internal structure of the

three custom chips.

25

1. The Amiga Hardware Amiga System Programmer's Guide

1.2.3.2 The structure of Agnus

Figure

1.2.3.2.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

00

191)

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

Oft
CM

25

NOTE: The arrows indicate the direction of the signal. A line above a
signal name means that the signal is active when low (0=active).

26

Abacus 12 Amiga system components

Figure

1.2.3.2.2

As we mentioned before, Agnus contains all of the DMA circuitry.

Each of the six possible DMA sources has its own control logic. They

ate all connected to the chip RAM address generator as well as the regis

ter address generator. These address generators create the RAM address of

the desired chip RAM location and the register address of the destination

register. In this manner the DMA logic units supply the appropriate

chip registers with data from the RAM or write the contents of a given

register into RAM.

Also connected to the chip RAM address generator is the refresh counter

which creates the refresh signals necessary for the dynamic RAM chips.

Agnus also controls the regular operation of the individual DMA acces

ses. The basis of these is a screen line. In each screen line 225 memory

accesses take place, which are divided by Agnus among the individual

DMA channels and the 68000. Since Agnus always needs the current

row and column positions, it also contains the raster and column coun

ters. These counters for the beam position also create the horizontal and

vertical synchronization signals which signal the start of a new line (H-

sync) and that of a new picture (V-sync). The horizontal and vertical

synchronization signals can also be fed in from outside Agnus and then

control the internal raster line and column counters. This allows the

video picture of the Amiga to be synchronized to that of another source,

such as a video recorder. This genlock can thus be easily performed on

the Amiga. Simply put, synchonizing two video pictures means that

the individual raster lines and the individual pictures of the two signals

start at the same time.

27

1. The Amiga Hardware Amiga System Programmer's Guide

Two other important elements in Agnus are the blitter and the Copper

co-processor. The blitter is a special circuit which can manipulate or

move areas of memory. It can be used to relieve the 68000 of some

work, since it can perform these operations faster than the processor

can. In addition, the blitter is capable of drawing lines and filling sur
faces. The Copper is a simple co-processor. Its programs, called Copper

lists, contain only three different commands. The Copper can change

various chip registers at predetermined points in time.

Here are descriptions of the individual pins:

Data bus:D0-D15

The 16 data lines are connected directly to the chip RAM data bus.

Internally all of the chip registers are connected through buffers to the

bus.

Register address bus:RGA0-RGA8 (ReGisterAddress)

Agnus' register address bus is bidirectional. For a DMA access the

register address generatorplaces the desired register address on these bus

lines. If the processor is accessing the chip registers, these lines act as

inputs and the register address selected by the processor is sent to the

register address decoder inside Agnus. In general, if a value of $FF is on

the register address bus (all lines are high), no registers are selected.

The address linesfor the dynamic RAM: DRA0-DRA8 (DynamicRAMAddress)

These address lines are connected to the chip RAM address bus. They

are pure outputs and are always activated by Agnus when it wants to

perform a DMA access to the chip RAM. The addresses on these pins

are already multiplexed and can be connected directly to the address lines

of dynamic 32KB RAMs (type 412S6). This is the case in the Amiga

500 and 2000. On the old Amiga 1000 the RAMs have only eight

address lines. The ninth DRA line is again demultiplexed and used to

switch between various RAM banks.

The clock lines CCK and CCKQ: (Color Clock and Color Clock delay)

These two lines are the only clock lines in the Amiga. The frequency of

both signals is 3.58MHz, which is half of the processor frequency. The

CCKQ signal is delayed one quarter cycle (90 degrees) from the CCK

signal. All of Agnus' timing is set according to these two signals.

The bus control lines: BLS, ARW, DBR

These three lines are connected to control logic of the Amiga. Agnus

uses the DBR line (Data Bus Request) to tell this control logic that it

wants control of the bus in the next bus cycle. This line always has

precedence over a bus request from the processor. If Agnus needs the

bus for several successive bus cycles, the 68000 must wait.

28

Abacus 1.2 Amiga system components

The ARW line (Agnus RAM Write) signals the control logic that
Agnus wants to make a write access to the chip RAM.

The BLS signal (BLitter Slow down) signals Agnus that the processor

has already waited three bus cycles for an access. Depending on its

internal state, Agnus turns the bus over to the processor for one cycle.

The control signals: RES, INT3, DMAL

The RES signal (RESet) is connected directly to the processor reset line
and returns Agnus to a predefined start-up state.

The INT3 line (INTerrupt at level 3) is an output and is connected
directly to the Paula line with the same name. Agnus uses this line to

signal the interrupt logic in Paula that a component in Agnus has gen
erated an interrupt.

The DMAL line (DMA request Line) also connects Agnus to Paula,

only this time in the opposite direction. Paula uses this line to tell
Agnus to perform aDMA transfer.

The lines: HSY, VSY, CSY and LP

Normally the synchronization signals for the monitor to appear on the

HSY (Horizontal SYnc) and VSY (Vertical SYnc) lines. The signal on

the CSY (Composite SYnc) line is the sum of HSY and VSY and is

used to connect to monitors which need a combined signal, as well as

the circuit which creates the video signal, the video mixer.

The LP line (Light Pen) is an input and allows a light pen to be con

nected. The contents of the raster counter register is stored when a

negative transition occurs on this pin (see Section 1.5.2).

The HSY and VSY lines can also be used as inputs and thus allow

Agnus to be externally synchronized (genlock).

29

1. The Amiga Hardware Amiga System Programmer's Guide

1.2.3.4 The structure of Denise

Figure

1.2.3.4.1 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

V J
v /

CO
00

VI

"3

Q

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

NOTE: The arrows indicate the direction of the signal. A line above a

signal name means that the signal is active when low (0=active).

30

Abacus 12 Amiga system components

Figure

1.2.3.4.2

In general, the function ofDenise can be described as graph generation.

The first part of this task is already accomplished by Agnus. Agnus

fetches the current graphic data from the chip RAM and writes them in

the register responsible for the bit levels in Denise. It does the same for

the sprite data. Denise always contains all graphic and sprite data for IS

pixels, since a bit always corresponds to one pixel on the screen and the

data registers all have a width of one word, or 16 bits. These data must

be converted into the appropriate RGB representation by Denise. First

the graphic data are converted from a parallel 16-bit representation to a

serial data stream by means of the bit-level sequencer. Since a maxi

mum of six bit levels are possible, this function block is repeated six

times. The serial data streams from the individual bit-level sequencers

are now combined into a maximum 6-bit wide data stream.

The priority control logic selects the valid data for the current pixel

based on its priority from among the graphic data from the bit-level

sequencers and the sprite data from the sprite sequencers. According to

this data the color decoder selects one of the 32 color registers. The

value of this color register is then output as a digital RGB signal. If the

Hold-And-Modify (HAM) or Extra-Half-Bright (EHB) mode is selected,

the data from the color register are modified correspondingly before it

leaves the chip.

The data from the sequencers is also fed into the collision control logic

which, as the name implies, checks the data for a collision between the

bit levels and the sprites and places the result of this test in the colli

sion register.

1. The Amiga Hardware Amiga System Programmer's Guide

The last function of Denise has nothing to do with the screen display.

Denise also contains the mouse counter, which contains the current X

and Y positions of the mice.

Here is a function description ofDenise's pins:

The data bus: D0-D15

The 16 data bus lines are, like Agnus, connected to the chip data bus.

Register address bus: RGA1-RGA8

The register address bus is a pure input on Denise. The register address

bus selects the appropriate internal register with the help of the register

address decoder.

The clock inputs: CCK and 7M

Denise's timing is performed according to the CCK signal. The CCK

pin is connected to the CCK pin on Agnus. The clock signal on the

7M line (7 Megahertz) has a frequency of 7.15909 MHz. The Denise

chip needs this additional frequency to output the individual pixels

because the pixel frequency is greater than the 3.58MHz of the CCK

signal. A pixel at the lowest resolution has exactly the duration of a

7M clock cycle. In high-resolution mode (640 pixels/line) two pixels

are output per 7M clock, one per edge of 7M. The 7M clock is also the

68000's clock and is connected to the processor's clock input

The output signals: RO-3, GO-3, BO-3, ZD andBURST

The lines R0-3, GO-3 and BO-3 represent the RGB outputs of Denise.

Denise outputs the corresponding RGB values digitally. Each of the

three color components is represented by four bits. This allows 16 val

ues per component and 16x16x16 (4096) total colors. After they leave

Denise, the three color signals run through a buffer and then through

three digital-to-analog converters to transform them into an analog RGB

signal, which is then fed to the RGB port

An additional video mixer turns this RGB signal into the video signal

for the video connector. To do this it also needs the BURST signal

from Denise. The BURST signal is a oscillator with the same frequency

as CCK (3.58MHz). More about the function of the color burst can be

found in a book on television technology.

The last output signal is the ZD signal (Zero Detect or background

indicator). It is always low when a pixel in the background is being dis

played, that is, when the color comes from color register number zero.

This signal is used in the genlock adapter and is used to switch between

the external video signal, when ZD=0, and the Amiga's video signal,

when ZD=1. The ZD signal is also available on the RGB port More

about this in the section on interfaces.

32

Abacus 12 Amiga system components

The mouseljoystck inputs: MOH, M1H, MOV, M1V

These four inputs correspond directly to the mouse inputs of the two

game ports (or joystick connectors). Since the Amiga has two game

ports, it must actually have eight inputs. Apparently only four pins

were free on Denise so Commodore used the following method to read

all of the inputs: The eight input lines from the two game ports go to a

switch which connects either the four lines from the front or back port

to the four inputs on Denise. This switching is performed in synchon-

ization with Denise's clock so that Denise can divide these four lines
into two registers internally, one for each game port. More about the

game ports can be found in the section on interfaces.

1.2.3.6

Figure

1.2.3.6.1

The structure of Paula

DMAL«

00

03

3
03
PL.

NOTE: The arrows indicate the direction of the signal. A line above a

signal name means that the signal is active when low (O=active).

33

1. The Amiga Hardware Amiga System Programmer's Guide

Figure

1.2.3.6.2

DMAL

IRT6-

TPUm
TPI3

CCK

DMA
status

register

DMA

register

logic

Interrupt

status

mask

Interrupt

control

Chip

control

RGA1-8L

DO-15 <~

Disk

data
register

Disk Data
control I separator
logic

IT

— DKRD

-►DKWD

-►DKWE

UART

data

register

UART

control
register

-►TXD

—RXD

Audio
data

Audio
control

logic

Digital

Analog

converter ►AUDR

NData bus buffer I

Analog

port

data

register

Analog

port

control

register

Buffer ►

►

POTOX

POTOY

POT1X

POT1Y

Data bus: DO-15

Paula's tasks fall mainly in the I/O area, namely the diskette I/O, the

serial I/O, the sound output and reading the analog inputs. In addition,

Paula is in charge of all interrupt control. All of the interrupts which

occur in the system run through it From these fourteen possible inter

rupt sources Paula creates the interrupt signals for the 68000. Interrupts

on levels 1-6 are created on the IPL lines of the 68000. Paula gives the

programmer the possibility to allow or prohibit each of the fourteen

interrupt sources.

The disk data transfer and the sound output are performed through

DMA. When transferring data from the diskette it is not always pos

sible to predict when the next data word is ready for a DMA transfer by

Agnus. Reasons for this include unavoidable speed variations of the

disk drive. Even for the sound output, Agnus does not know when the

data are needed. To make a smooth DMA transfer possible, Paula has a

DMAL line which it can use to tell Agnus when a DMA access is

needed.

The serial communication is handled by a UART component inside

Paula. UART stands for Univeral Asynchronous Receive Transmit

The function of the UART and the four audio channels and the analog

ports are described later in the section on programming the custom

chips.

As previously, here is the description of the pin functions:

As with the other chips, connected to the chip data bus.

34

Abacus 13 Amiga system components

Register address bus: RGA1-8

As with Denise.

The clock signals and reset: CCK, CCKQ, andRES

Paula contains the same clock signals as Agnus. The reset line RES
returns the chip to a defined start-up state.

DMA request: DMAL

With this line Paula signals Agnus that aDMA transfer is needed.

Audio outputs: AUDL andAUDR

The outputs AUDL and AUDR (Left AUDio and Right AUDio) are
analog outputs on which Paula places the sound signals it generates.
AUDL carries the internal sound channels 0 and 3, and AUDR the
channels land2.

The serial interface lines: TXD andRXD

RXD (Receive Data) is the serial input to the UART and TXD (Trans
mit Data) is the serial output. These lines have TTL levels, which
means that their input/output voltages range from 0 to 5 volts. An
additional level converter creates the +12/-5 volts for the RS-232 inter
face standard.

The analog inputs: POTOX, POTOY, P0T1X, P0T1Y

The inputs POTOX and POTOY are connected to the corresponding lines
from game port 0, and POT1X and POT1Y are connected to port 1.
Paddles or analog joysticks can be connected to these inputs. These

input devices contain changeable resistances, called potentiometers,
which lie between +5 volts and the POT inputs. Paula can read the

value of these resistances and place this value in internal registers. The
POT inputs can also be configured as outputs through software.

The disk lines: DKRD, DRWD, DKWE

Through the DKRD line (DisKette ReaD) Paula receives the read data

from the diskette. The DKWD line (DisKette Write) is the output for

data to the disk drive. The DKWE line (DisKette Write Enable) serves

to switch the drive from read to write.

The interrupt lines: INT2, INT3, INT6 andlPLO, IPL1, IPL2

Paula receives instructions through the three INT lines to create an

interrupt on the appropriate level. The INT2 line is normally the one

connected to the CIA-A 8250. This line is also connected to the expan

sion port and the serial interface. If it is low, Paula creates an interrupt

on level 2 provided that an interrupt at this level is allowed. The INT3

35

1. The Amiga Hardware Amiga System Programmer's Guide

line is connected to the corresponding output from Agnus and the INT6
line to CIA-B and the expansion port All other interrupts occur within

the I/O components in Paula.

The IPL0-IFL2 lines (Interrupt Pending Level of the 68000, see Section
1.2.1) are connected directly to the corresponding processor lines. Paula
uses these to create a processor interrupt at a given level.

1.2.3.7 Features of the Amiga 500

The descriptions of the Amiga hardware in this section originally came
from the Amiga 1000. By large they also apply to the Amiga 500.
None of the fundamental structure is changed in the Amiga 500, but an
attempt was made to produce a less expensive version of the computer.

The biggest differences between the two models lie in the division of
the various hardware elements among the individual chips.

On the Amiga 1000, the custom chips require a large number of simple
logic circuits to create the clock signals and serve for bus control and
address decoding. On the Amiga 500, almost all of these logic functions

are combined into larger chips. A new section was added to the Agnus

chip and the new chip was given the name Fat Agnus (part number

8370).

Figure 8 8 S §
1.2.3.7.1

36

Abacus L2 Amiga system components

Clock

generation

The address

buffers

Control of the

chip RAM

Figure 1.2.3.7.1 shows the pin layout for Fat Agnus. If some of the

normal Agnus pins do not show up, it is because they were connected

to circuits which are now inside Fat Agnus. These are the new func

tions integrated into Agnus:

All clock generation for the Amiga system is now integrated into Fat

Agnus. Only the 28MHz main clock is needed. The lines belonging to

this function block are:

28MHz, XCLK, XCLKEN, 7MHz, CCKQ, CCK and CDAC

In Figure 1.2.3.1 we showed a buffer which connects the address bus of

die Amiga to the chip RAM address bus and multiplexed the register

address bus and the processor address correspondingly. This buffer is

completely integrated into Agnus. The processor address bus can now

be connected directly to the lines.Al to A18 of Fat Agnus. The address

decoder uses the two signals RAMEN (RAM ENable) and RGEN

(ReGister ENable) to signal that the processor wants to access RAM or

die register area. In addition, Agnus is now connected to the processor

signals UDS, LDS and PR/W (Processor Read/Write).

The control of the chip RAM is now handled entirely by Agnus. Agnus

creates the necessary RAS and CAS signals together with the multi

plexedRAM addresses. In addition, Agnus has the ability to manage an

additional 512KB RAM, for a total of 1 megabyte. The two banks are

selected by means of the RAM control signals RASO and CASO for the

chip RAM and RAS1 and CAS1 for the RAM expansion.

None of the principle functions of Agnus as described in Section

1.2.3.1 have changed.

In addition to Fat Agnus, a fourth custom chip was added. This chip is

called Gary and takes over the functions of the address decoder and bus

controller. It creates the control signals for all the chips in the Amiga,

as well as VPA andDTACK for the processor.

Also, Gary contains the reset logic and the motor flip-flop for the disk

drive (see Section 1.3.S).

37

1. The Amiga Hardware Amiga System Programmer's Guide

1.3 The Amiga interfaces

Figure 13.1
Amiga 500

12345 6 789 10

1 gameport 0

2 gameport 1

3 right audio channel
4 left audio channel
5 external disk drive interface

6 serial (RS232C) interface

7 Centronics printer interface

8 power connection (Amiga 500 only)

9 RGB connector

10 composite video jack

11 TV modulator jack (Amiga 1000 only)
12 Keyboard connection

38

Abacus 13 The Amiga interfaces

1.3.1

Figure 1.3.1J

The audio/video interfaces

TV modulator

s§) (Z
:3) (?) a

2 GND

3 Left audio channel

4 Composite video output

5 GND

6 -«

7 +12V

8 Right audio channel

Yellow jack

Composite video signal

Red jack

Left audio channel

White jack

Left audio channel

The video connectors are quite different from one Amiga model to

another. The most sparse of these is the early Amiga 2000, which had

no composite video connectors. It has a connector to add a video

modulator or a genlock interface available internally on the board. The

Amiga 500, the Amiga 1000 and later Amiga 2000s have a video

output in the form of a RCA jack phono connector. The video signal

on this connector is a standard NTSC signal and can be connected to

any standard monitor. The video signal travels through a transistor

buffer with an output resistance of 75 Ohms, making it short-circuit

proof.

On all Amiga models the audio signal is available through two phono

connectors on the rear of the case. The right stereo channel is the red
connector and the left is the white. A standard stereo phono cable can be

used to connect these jacks to a stereo (AUX, TAPE or CD input). The
output resistance of each channel is 1 KOhm (1000 Ohms). The out

puts are protected against short circuit and have 360 Ohms inpedance.

39

1. The Amiga Hardware Amiga System Programmer's Guide

The Amiga 1000 has another audio/video connector. The TV Mod con
nector was originally intended for connection of an RF modulator which

would allow an ordinary television to be used with the Amiga. This RF
modulator was never constructed

What's left is a connector which carried both the video signal as well as
both sound channels. This also includes a 12 volt connection intended

to power the modulator. The video output at this jack has its own tran

sistor buffer, and is not simply connected to the video phono jack. The

two audio pins also have their own IKOhm output resistances. But

since they do not have an internal load resistance, their signals in an
unloaded state is about four times higher than those at the audio phono

connectors.

The TV Mod jack is an eight-pin connector. Suitable plugs for such

connectors are hard to come by. It is useful to note, however, that the
TVMod connector is the same as the C64 video connector.

1.3.2

Figure 13.2.1

The RGB connector

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

IN/OUT

IN/OUT

OUTPUT

OUTPUT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

XCLK External clock frequency

XCLKEN Switch for external clock

R

G

B

DI

DB

DG

DR

Analog red signal

Analog green signal

Analog blue signal

Digital brightness signal

Digital blue signal

Digital green signal

Digital red signal

QCSY Buffered composite sync signal

HSY

VSY

GND

ZD

C1U

GND

GND

GND

GND

GND

-5

+12

+5

Horizontal synchronization signal

Vertical synchronization signal

Background indicator signal

Amiga C1U timer (3.58 MHz)

volts

volts

volts

40

Abacus 1j the Amiga interfaces

The RGB The RGB connector is the same on all three Amiga models. It allows
Connector various RGB monitors to be connected as well as special expansions

such as a genlock adapter. To connect an analog RGB monitor like the

Amiga monitor, all three analog RGB outputs and the Composite Sync

output are used The RGB signal on these three lines comes from the

conversion of the buffered digital RGB signals from Denise into suit

able analog signals by means of three 4-bit digital-to-analog converters.
The composite sync signal comes from Agnus and is formed by mixing
the horizontal and vertical sync signals. All of these four lines are pro-

The lines DI, DB, DG and DR are provided for connecting a digital
RGB monitor. The source of the digital RGB signals is the digital RGB
output from Denise (Fig. 1.2.3.4.1). The three color lines are connected

to the most signficant color line of Denise (for example, DB to B3
from Denise). A 74HC244 buffer lies between Denise and these
outputs. Interestingly, the intensity or brightness line DI is connected

to the BO line. The four lines have 47 Ohm output resistances and have
TTL levels, since they come from the 74HC244.

The HSY and VSY connections on the RGB connector are provided for
monitors which require separate synchronization signals. Caution

should be exercised with these lines since they are connected through 47
Ohm resistors directly to the HSY and VSY pins of Agnus. They also
have TTL levels.

If the genlock bit in Agnus is set (see the section on programming the

hardware), then these two lines become inputs. The Amiga then synch-
ionizes its own video signal to the synchronization signals on the HSY

and VSY lines. These lines also require TTL levels when they're input

As usual, the synchronization signals are active low, meaning that they

are normally at 5 volts. Only during the active synchronization pulse is

the line at 0 volts.

Another signal, related to genlock, is the ZD signal (Zero Detect). The

Amiga places this signal low whenever the pixel currently being dis

played is in the background, in other words, whenever its color comes

from color register 0.

During the vertical blanking gaps, when VSY=0, the function of the

ZD line changes. Then it reflects the state of the GAUD (Genlock

AUDio enable) bit from Agnus register $100 (BPLCON0). This signal

is used by the genlock interface to switch the sound signal

Normally the ZD line is not of interest to the normal user since it is
used only by the genlock interface. The ZD signal from Denise pin 33
is buffered with a 74HC244 driver, so that the signal has TTL levels.

The remaining lines of the RGB connector have nothing to do with the

RGB signal

41

1. The Amiga Hardware Amiga System Programmer's Guide

The C1U signal is a 3.58MHz clock line and corresponds to the invert

ed clock signal of the custom chip.

The XCLK (external CLocK) and XCLKEN (external CLocKENable)

lines are used to feed an external clock frequency into the Amiga. All
clock signals in the Amiga are derived from a single 28MHz clock.
This 28MHz master clock can be replaced by another clock frequency on

the XCLK input by pulling the XCLKEN low. This allows the Amiga
to be accelerated, for example, by placing a 32MHz or higher clock on
XCLK. How long the Amiga hardware continues to function at higher
speeds must be determined experimentally. The ground pin 13 should be
used when using the XCLK and XCLKEN lines. It is connected directly
to the ground line of the clock generation circuit

1.3.3 The Centronics interface

Figure 1.3.3.1

Amiga 1000

jnSEElHE

DB-25 male

Amiga 500/Amiga 2000

\ iTsiiT^fnjfnifr^

DB-25 female

42

Abacus 13 The Amiga interfaces

Output 1 /Strobe-data ready
VO 2 DatabitO
I/O 3 Data bit 1

VO 4 Data bit 2

VO 5 Databit3
VO 6 Data bit 4

VO 7 Data bit 5
VO 8 Data bit 6

VO 9 Databit7

Input 10 /Acknowledge -data received
VO 11 BUSY-printer busy
VO 12 Paper Out

VO 13 Select-printer ONLINE
14 +5 volts

15 unused

Output 16 Reset / buffered reset line from the Amiga
17-25 GND

On the Amiga 1000 some lines are used differently:

14-22 GND

23 +5 volts

24 unused

Output 25 Reset /buffered reset line from the Amiga

Centronics The Centronics interface on the Amiga should bring joy to any hacker's
interface heart. It is completely PC compatible. Any IBM-compatible printer can

be connected directly to it. This gives the Amiga a large supply ofprin

ters ready to be connected to it Unfortunately, this applies only to the

Amiga 500 and Amiga 2000. The Amiga 1000 Centronics port does
not conform to the PC standard. First, a female connector was used

instead of the usual male DB-2S connector, and second pin 23 is +5
volts instead of ground as it is usually on most printer cables. If such a

cable is used with the Amiga 1000, a short occurs and the Amiga can

be damaged. As a result, you are generally forced to make custom cables
for the Amiga 1000.

Internally all of the Centronics port lines (except for 5 volts and Reset)

are connected directly to the port lines of the individual CIA's. The

exact assignment is as follows:

43

1. The Amiga Hardware Amiga System Programmer's Guide

Centronics pin No.

1

2

3

4

5

6

7

8

9

10

11

12

13

Function

Strobe

Data bit 0

Data bit 1

Data bit 2

Data bit 3

Data bit 4

Data bitS

Data bit 6

Data bit 7

Acknowledgi

Busy

Paper Out

Select

CIA

A

A

A

A

A

A

A

A

A

e A

B

B

B

Pin Pin designation

18

10

11

12

13

14

15

16

17

24

2

and 39

3

and40

4

PC

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PB8

PAO

SP

PA1

CNT

PA2

The Centronics interface is a parallel interface. The data byte lies on the

eight data lines. When the computer has placed a valid byte on the data

lines it clears the STROBE line to 0 for 1.4 microseconds, signalling

the printer that a valid byte is read for it The printer must then acknow

ledge this by pulling the Acknowledge line low for at least one micro

second. The computer can then place the next byte on the bus.

The printer uses the BUSY line to indicate that it is occupied and can

not accept any more data at the moment This occurs when the printer

buffer is full, for example. The computer then waits until BUSY goes

high again before it continues sending data. With the Paper Out line the

printer tells the computer that it is out of paper. The Select line is also

controlled by the printer and indicates whether it is ONLINE (selected,

SEL high) or OFFLINE (unselected, SEL low).

The Centronics port is well suited as la universal interface for connect

ing home-built expansions or an audio digitizer or an EPROM burner,

since almost all of its lines can be programmed to be either inputs or

outputs.

44

Abacus 13 The Amiga interfaces

1.3.4 The serial interface

Figure

1.3.4.1

Amiga 500/Amiga 2000

DB-25 male

Amiga 1000

■■■■ ■■■^^^^H

Output

Input

Output

Input

Input

Input

Output

Input

Output

Input

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

DB-25 female

GND (chassis ground)

TXD Transmit Data

RXD Receive Data

RTS Request To Send

CTS Clear To Send

DSR Data Set Ready

GND (signal ground)

CD Carrier Detect

+12 volts

-12 volts

AUDOUT left sound channel output

unused

unused

unused

unused

unused

AUDIN input to right sound channel

unused

DTR Data Terminal Ready

unused

RI Ring Indicator

unused

unused

unused

45

1. The Amiga Hardware Amiga System Programmer's Guide

On the Amiga 1000 some lines are assigned differently:

Output

Input

Output

Input

Output

Output

Output

9

10

11

12

13

14

15

16

17

18
1017

20

21

22

23

24

25

unused

unused

unused

unused

unused

-5 volts

AUDOUT left sound channel output

AUDIN input to right sound channel

EBufferedE clock (716KHz)

/INT2 Interrupt on level 2 through Paula

unuscu

DTR Data Terminal Ready

+5 volts

unused

+12 volts

MCLK Clock output 2.58MHz

/MRES Buffered reset output

The serial interface has all of the usual RS-232 signal lines. In addition,

there are many signals on this connector which have nothing to do with

serial communications. Unfortunately, the assignment of the pins again

differs on the Amiga 500 and 1000.

Serial data The lines TXD, RXD, DSR, CTS, DTR, RTS and CD belong to the

lines RS-232 interface. The TXD and RXD lines are the actual serial data

lines. The TXD line is the serial output from the Amiga and RXD is

the input They are connected to the corresponding lines of Paula. The

DTR line tells the peripheral device that the Amiga's serial interface is

in operation. The RTS line tells the peripheral that the Amiga wants to

send data over the serial line. The peripheral uses the CTS line to tell

the Amiga that it is ready to receive it The CD signal is usually used

only with a modem and indicates that a carrier is being received.

These five RS-232 control lines are connected to CIA-B, PA3-PA7 as

follows: DSR-PA3, CTS-PA4, CD-PA5, RTS-PA6 and DTR-PA7.

The RI line is connected through a transistor to the SEL line of the

Centronics interface.

To bring the signals up to RS-232 standards, the CIA lines are routed

to the connector through RS-232 drivers. Inverting signal converters of

the 1488 type are used for the output drivers. They require a power sup

ply of +12 and -5 volts. The output voltage is also in this range. Chips

of the type 1489A are used for the input buffers. These accept voltages

between -12 and +0.S volts as low and the range +3 to +25 volts as

high.

The conventions for RS-232 interfaces dictate that the control lines be

active high, while on the data lines TXD and RXD a logical 1 be repre

sented as a low signal. Since the drivers invert, the corresponding port

46

Abacus 13 The Amiga interfaces

bits in CIA-B are also active low, so that a 0 value from CIA-B is used

to set the corresponding RS-232 control line to high. The same also

applies to the inputs, of course.

The remaining lines on the RS-232 connector have nothing to do with

RS-232. The AUDOUT line is connected to the left audio channel and

provided with its own 1 KOhm output resistance. The AUDIN line is

connected directly to the AUDR pin of Paula through a 47 Ohm resis

tor. Audio signals fed into the AUDIN line on the Amiga are sent along

with the right sound channel from Paula to the low-pass filter (see

audio programming) to the right audio output. Nothing else is done to

the signal. The INT2 input is directly connected to the INK input to

Paula and can generate a processor interrupt of level 2 if the correspond

ing mask bit is set in Paula (see the section on interrupts). The E line

is connected through a buffer to the processor E clock (see Section

1.2.1). A frequency of 3.58 MHz is available on the MCLK line. This

clock is not in phase with either the RGB clock or the 3.S8 MHz

clocks for the custom chips. Finally, the reset signal is also available
on this connector, naturally buffered.

1.3.5 External drive connector

Figure 1.3.5.1

\ EU E3 ED OEjj] EEEIlEzlEZIEI] E3/

DB-23 female

Input

Input

Output

Output

Output

Input

1

2

3

4

5

6

7

8

9

10

11

12

/RDY Disk ready signal

/DKRD Read data from disk

GND

GND

GND

GND

GND

/MTRX Motor on/off

/SEL2 Select drive 2

/DRES Disk reset (turn motors off)

/CHNG Disk change

+5 volts

47

1. The Amiga Hardware Amiga System Programmer's Guide

(Dutput

Input

Output

Output

Output

Output

Output

Output

Output

Input

Figure 1.3.5.2

2 4

13

14

15

16

17

18

19

20

21

22

23

6...

/SIDE Side selection k

/WPRO Write protect

/TKO Track 0 indicator

/DKWE Switch to write

/DKWD Write data to disk

/STEP Move the read/write head

/DIR Direction of head movement

/SEL3 Select drive 3

/SEL1 Select drivel

/INDEX Index signal from drive

+12 volts

3234

1 3 5... 3133

2-row, 34-pin plug

All odd pins are grounded.

2

6

10

14

18

22

26

30

34

/CHNG

unused

/SELO

unused

DIR

/DKWD

/TKO

/DKRD

/RDY

4

8

12

16

20

24

28

32

/INUSE (connected to /MTROD)

/INDEX

unused

/MTRO

/STEP

/DKWE

/WPRO

/SIDE

Power connector for the internal drive:

1

2

3

4

+5 volts

GND

GND

+12 volts

The disk drive connection on the Amiga is compatible with the Shugart

bus. It allows up to four Shugart-compatible disk drives to be connect

ed. The four drives are selected with the four drive selection SELx

signals, where x is the number of the drive to select Since the Amiga

already has a built-in disk drive, only the SEL1, SEL2 and SEL3 lines

are available on the external drive connector. The SELO line is connect

ed to the internal connector to which the built-in drive is connected.

Following is a description of the Shugart bus signals on the Amiga:

48

Abacus 13 The Amiga interfaces

Shugart bus SELX The Amiga uses the SELX line to select one of the four
signals drives. Except for the MTRX and DRES lines, all other

signals are active only when the corresponding SELX line is

activated.

MTRX Normally this line causes all connected drives to turn their
motors on. With a maximum of up to four drives, this is

not an acceptable solution. Therefore the Amiga has a flip-

flop for each drive which takes on the value of the MTRX

line whenever the SEL line for the given drive goes low.

The output of the flip-flop is connected to the MTR line of

the drive. This allows the drive motors to be turned on and

off independently. For example, if the SELO line is placed

low while the MTRX line is at 0, the motor on the internal

floppy turns on. For the internal drive this flip-flop is on

the motherboard. For each additional drive, an additional one

is needed. On the 1010 disk drive Commodore placed this
flip-flop on a small adapter board.

RDY When the MTR line of the corresponding drive goes to 0,

the RDY line (ready) signals the Amiga that the drive motor

has reached its optimum speed and the drive is now ready for

read or write accesses. If the MTR line is 1, so that the drive

motor is turned off, it is used for a special identification

mode (see below).

DRES The DRES line (Drive RESet) is connected to the standard

Amiga reset and is used only to reset the motor flip-flop so
that all motors are turned off.

DKRD The data from the drive selected by SELX travels to the

Amiga through the DKRD line (DisK Read Data) to the

DKRD line on Paula.

DKWD Data from Paula's DKWD pin to the current drive, which

then writes it to the diskette.

DKWE The DKWE line (DisK Write Enable) switches the drive

from read to write. If the line is high, the data are read from

diskette, while if it is low, data can be written to diskette.

SIDE The SIDE line selects which side of the diskette the data are

read from or written to. If it is high, side 0 (the lower read/

write head) is active. If it is low, side 1 is selected.

WPRO The WPRO line (Write PROtect) tells the Amiga that the

inserted disk is write-protected. If a write-protected disk is in

the drive, the WPRO line is 0.

49

1. The Amiga Hardware Amiga System Programmer's Guide

STEP A positive transition on the STEP line moves the read/write

head of the drive one track in or out, depending on the state

of the DIR line. The STEP signal should be at 1 when the

SEL line of the activated drive if set back to high or there

may be problems with the diskette-change detection.

DIR The DIR line (DIRection) sets the direction in which the

head moves when a pulse is sent on the STEP line. Low

means that the head moves in toward the center of the disk

and high indicates out toward the edge of the disk. Track 0 is

the outermost track on the disk.

TKO The TKO (TracK 0) line is low whenever the read/write head

of the selected drive is on track 0. This allows the head to be

brought to a defined position.

INDEX The INDEX signal is a short pulse which the drive delivers

once per revolution of the diskette, between the start and end

of a track.

CHNG With the CHNG (CHaNGe) line the drive signals the Amiga
that the diskette has been changed. As soon as the diskette

has been removed from the drive, the CHNG line goes low.

The line stays low until the computer issues a STEP pulse.

If there is a diskette in the drive again by this time, CHNG

goes back to 1. Otherwise it stays at 0 and the computer

must issue STEP pulses at regular intervals in order to

detect when a diskette has been inserted in the drive. These

regular STEP pulses are the cause of the clacking noises that

an Amiga drive makes when no diskette is inserted.

INUSE The INUSE line exists only on the external floppy connec

tor. If this line is placed low, the drive turns its LED on.

Normally this line is connected to the MTR line.

To recognize when a drive has been connected to the bus, there is a

special drive identification mode. A 32-bit word is read serially from the

drive. To start this identification, the MTR line of the drive in question

must be turned on and then off again (The description of the MTRX

line tells how this is done). This resets the serial shift register in the

drive. The individual data bits can then be read by placing the SELX

line low and reading the value of the RDY as a data bit and then placing

the SELX line high again. This process is repeated 32 times. The bit

first received is the MSB (Most-Significant Bit) of the data word. Since

the RDY line is active low, the data bits must be inverted.

The following are standard definitions for external drives:

$0000 0000 No drive connected (00)

$FFFF ffff Standard Amiga 3 1/2" drive (11)

$5555 5555 Amiga5 1/4" drive, 2x40 tracks (01)

50

Abacus 13 The Amiga interfaces

As you can see, there are currently so few different identifications that it
suffices to readjust the first two bits. The values in parentheses are the
combinations of these two bits.

As mentioned before, all of the lines except DRES affect only the drive
selected. Originally the MTRX line was also independent of SELX, but
the Amiga developers changed this by adding the motor flip-flop.

All lines on the Shugart bus are active low because the outputs in the
Amiga as well as the drives themselves are provided with open-collector
drives. In the Amiga these drives are 7407's.

The four inputs CHNG, WPRO, TKO and RDY are connected in this

order directly to PA4-PA7 of CIA-A. The eight outputs STEP, DIR,

SIDE, SELO, SEL1, SEL2, SEL3 and MTR come from CIA-B, PBO-7

and are connected through the 7407 drivers to the internal and external
drive connectors. Since these drivers are non-inverting, the bits from the

CIA's are inverted. The DKRD, DKWD and DKWE line come from

Paula. Except for the MTRX line and the SEL signals, the connections

to the internal and external floppies are the same. The internal drive is

connected to SELO. Its MTR line is derived from the flip-flop on the
motherboard

Connecting an It's pretty hard to get by with just one drive on the Amiga. But when
external drive the desire for a second drive becomes overpowering, the question arises:

to the Amiga Should I buy one or build it myself? Since normal two-sided 3 1/2"

drives, as used in the Amiga, have recently become available for a frac

tion of the price of the original Amiga second drive A1010, homebrew
is a good alternative. What has to be done?

The connector for a 3 1/2" drive like the NEC FD1035 or FD 1036 is

identical to the 34-pin connector used for the internal drive on the

Amiga, as is the power connector. To connect a drive like the FD1035,

all you have to do is add the motor flip-flop. Figure 1.3.S.3 shows the
corresponding circuit.

Figure 1.3S.3 +5 VOLTS

*—4INUSE

I—16MTR

2 CHNG

8 INDEX
10 SELO

10 DIR

20 STEP

22 DKWD

24 DKWE

26TKP

28 WPRO

30 DKRD

32 SIDE

34 RDY

all odd

51

1. The Amiga Hardware Amiga System Programmer's Guide

As you can see, the Fl flip-flop stores the signal on the MTRX line
when the SEL1 line goes from high to low. Since the flip-flop stores

the value on its data input on the leading edge of the clock, SEL1 must

be inverted. This is accomplished by the NAND gate Nl. The Q output

is connected directly to the MTR input of the second drive.

The N2 NAND gate has nothing to do with motor control. It is used for

the identification mode mentioned earlier, which most standard drives do

not support. Whenever the motor is turned off and the SEL1 line is

active (0), this gate pulls the RDY line low. Thus the Amiga recog

nizes this drive as a standard 3 1/2" drive with the number DF1:.

Since only half of the two IC's required are actually used, they can also

be used to add a second additional drive. The inputs ofNl must then be

connected to SEL2 (pin 9 on the external drive connector).

Some jumpers have to be added to most drives so that the CHNG line
works properly. The best source for this information is the manual for

the drive in question. As an example, jumper Jl has to be shorted on an

NEC FC1035.

1.3.6

Figure 1.3.6.1

The game ports

9-pin female

Use as:

Mouse port Joystick Paddle Lightpen

Input

Input

Input

Input

I/O

I/O

I/O

1

2

3

4

5

6

7

8

9

V-pulse

H-pulse

VQ-pulse

HQ-pulse

(Button 3)

Button 1

+5 volts

GND

Button 2

Up

Down

Left

Right

unused

Fire button

+5 volts

GND

unused

unused

unused

Left button unused

Right button unused

Right port button

unused LP signal

+5 volts

GND

Left port unused

52

Abacus 13 The Amiga interfaces

The game ports are inputs for input devices other than the keyboard,
such as a mouse, joystick, trackball, paddle or lightpen. There are two

game ports. The left one is numbered game port 0 and the right game

port 1. The pin assignment of both ports is identical, except that the

LP line is present only on game port 0. Internally the game ports are

connected to CIA-A, Agnus, Denise and Paula.

Game port 0:

Game port 1:

Pin no.

1

2

3

4

5

6

9

Pin no.

1

2

3

4

5

6

9

Chip

Denise

Denise

Denise

Denise

Paula

CIA-A

as well as Agnus

Paula

Chip

Denise

Denise

Denise

Denise

Paula

CIA-A

Paula

Pin

MOV (via multiplexer)

MOH (via multiplexer)

M1V (via multiplexer)

M1H (via multiplexer)

POY

PA6

LP

POX

Pin

MOV (via multiplexer)

MOH (via multiplexer)

M1V (via multiplexer)

M1H (via multiplexer)

P1Y

PA7

P1X

The function of the multiplexer is explained in Section 1.2.3.2.

The pin assignments for the various input devices were chosen so that

almost all standardjoysticks, mice, paddles and lightpens can be used. It

is possible to use lightpens intended for the C64, for example. The

button line is usually connected to a switch which is pressed when the

lightpen touches the screen. The LP line is the actual lightpen signal,

which is generated by the electronics in the pen when the electron beam

passes its tip.

All of the lines labelled button and the four directions for the joystick

are active low. In the various input devices are switches which are con

nected between the input and ground (GND). A high signal on the input

means an open switch, while a closed switch generates a low.

Paddles (varying resistances potentiometers) can be connected to the

POX, POY, P1X and P1Y analog inputs. Their value should be 470

KOhms and they should be connected between the corresponding input

and +5 volts.

The two fire-button lines connected to CIA-A can naturally be pro

grammed as outputs. Some care must be exercised not to overwrite the

lowest bit of the port register, or the system crashes (PA0:OVL).

53

1. The Amiga Hardware Amiga System Programmer's Guide

The section on programming the custom chips explains how the game

port lines are read.

The +5 volt line on the two game ports is not connected directly to the
Amiga power supply. A current-protection circuit is inserted in these

lines which limits the short-term peak current to 700 mA and the oper

ating current to 400 mA. This makes these outputs short-circuit proof.

To prevent the voltage on these two +5 volt pins from falling off too

much, the current draw on the two ports should not exceed a total of

250 mA.

Unfortunately, this protection measure has been omitted from the

Amiga 500 and 2000.

1.3.7

Figure 1.3.7.1

The expansion port

1 3 5 7-

2 4 6 8 —

... 79 81 83 85

"• 80 82 84 86

86-pin printed circuit connector

(Amiga 500/Amiga 1000)

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

GND

GND

+5 volts

Expansion

Exp. (28M on A2000)

Expansion

GND

CDAC

/OVR

/INT2

A5

A6

GND

A2

Al

FC0

FC1

FC2

GND

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

GND

GND

+5 volts

-5 volts

+12 volts

GND

/C3

/Cl

XRDY

/PALOPE (unsed on A2000)

/INT6

A4

A3

A7

A8

A9

A10

All

A12

54

Abacus 13 The Amiga interfaces

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

The expansion The

port trol

A13

A14

A15

A16

A17

GND

/VMA

/RES

/HLT

A22

A23

GND

PD15

PD14

PD13

PD12

PD11

GND

PDO

PD1

PD2

PD3

PD4

GND

expansic

lines anc

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

/IPLO

/IPL1

/IPL2

/BERR

/VPA

E

A18

A19

A20

A21

/BR

/BGACK

/BG

/DTACK

/PRW

/LDS

/UDS

/AS

PD10

PD9

PD8

PD7

PD6

PD5

The expansion port makes available virtually all of the important con

trol lines and bus signals present in the Amiga system. It can be used

to connect RAM expansions, new processors, hard disk controllers, etc.

On the Amiga 1000 this port is located near the two game ports behind

an easily removable plastic panel. On the Amiga 500 it is placed on the

left side of the case, as seen from the front. It takes the form of an 86-

pin edge connector. The distance between the pins is 1/10 inch. Suit

able sockets for this connector are not easy to find at this time.

On the Amiga 2000 there are two different connections. One is the

MMU connector which corresponds closely to that listed above (note

parentheses), and the other is the five 100-pin Amiga connectors (also

called the Zorro bus). On the Amiga 2000 these six connectors are

found on the motherboard inside the case. They are sockets for 86- or

100-pin edges card. The distance between contacts is again 1/10 inch.

Most of the signals on the expansion port are connected directly to the

corresponding lines of the 68000. The exact functions of these lines is

discussed in Section 1.2.1. These are the following signals:

55

1. The Amiga Hardware Amiga System Programmer's Guide

INT2 andINT6

A0-A23: Address bus

PD0-PD15: Processor data bus

IPL0-IPL2: Processor interrupt lines

FC0-FC2: Function code lines from the 68000

AS, UDS, LDS, PRW, DTACK, VMA, VPA: Bus control lines

RES, HLT, BERR, BG, BGACK, BR, E: Miscellaneous control

signals from the 68000

The remaining signals have the following functions:

These two lines are connected to the Paula pins with the same names.

They are used to generate a level 2 or level 6 interrupt.

CDAC, Cl, C3, and 28M on the Amiga 2000

Figure 13.72
28M

28.6 MHz

CDAC

7.16 MHz

C1

3.58 MHz

C3

3.58 MHz

7M

7.16 MHz

CCK

3.58 MHz

CCKQ

3.58 MHz

These are the various Amiga clock signals. Their frequency and phase

can best be gathered from the figure above. On die Amiga 2000 the
28.64 MHz master clock of the Amiga is also available on the expan

sion port The clock signals 7M, CCK and CCKQ shown above are not

on the expansion port. 7M is the 68000 clock and CCK and CCKQ are

connected to the custom chips.

56

Abacus 1.3 The Amiga interfaces

XRDY, OVR These signals are used to automatically configure an expansion board.

and PALOPE Unfortunately, their exact function is still unknown.

The lines labelled "Expansion" are not used. They are reserved for future

expansions to the Amiga hardware. On the Amiga 2000 they are already
used to a degree. One of the expansion lines is used to supply the 28M

clock signal.

1.3.8 Supplying power from the interfaces

All of the interface connectors carry one or more of the three power

supply voltages present in the Amiga. This makes it possible to supply

peripheral devices with power through the given interface. You must

take into account the maximum load capability of these connections.

The following table shows the maximum loads recommended by Com

modore on the Amiga 1000:

Interface +5 volts +12 volts -12 volts

TV Mod

RGB

RS232

External disk

Centronics
Expansion port

Game port 0

Game port 1

m

300 mA

100 mA

270 mA

100 mA

1000 mA

125 mA

125 mA

60 mA

175 mA

50 mA

160 mA

50 mA

-

-

50 mA

50 mA

50 mA

-

-

This table should only be used as a rough guideline. First of all, the

values given apply only when all of the ports are actually loaded at the

same time. For example, if the expansion port is not used, then an

extra 1000 mA is available at the other +5 volt connections. If it is

certain that some ports remain free in a given system configuration,

then more power remains for the other outputs. Of course, you can

always use the brute force method and continue connecting expansions

until the power supply shuts down. As (generally accidental) short

circuits have shown, this does not seem to hurt it. The reader must,

however, take responsibility himself for such experiments. Caution is

recommended especially for the +5 volt supply. A short circuit can

cause currents as high as 8 mA to flow.

Second, the table above applies only to the Amiga 1000. It cannot be

used for the Amiga 500 or 2000 since the power supplies for these

computers have been designed differently. On the Amiga 500 the power

capability of the supply is more limited. Expansions with heavy current

draws should be given their own power supplies.

57

1. The Amiga Hardware Amiga System Programmer's Guide

The power supply on the Amiga 2000 is clearly stronger than that on

the Amiga 1000. It must be able to power entire additional Amigas and

IBM cards.

Note: Another difference between the Amiga 500 power supply verses the

Amiga 1000 is the negative power supply. It is -12 volts instead of the

-5 volts found on the Amiga 1000. This means that wherever -5 volts

appears in this book, the Amiga 500 owner must allow for -12 volts

instead.

58

Abacus 1.4 The keyboard

1.4 The keyboard

Figure 1.4.1 American keyboard

loo

c in, in in \n Irs Ire Ir? Irs r» Ino Iccl

45 I 50 I 51 I 52 I 53 I 54 I 95 I 56 I 57 59 I 59 I 46

!• II Is I* I*II I U.[^ fi [ba
'03 M 04 I* 05 I* 06 I7 07 P 08 l» 09 ° OA " OB - OC I OD "A

A 1° r rr r r 1° x \° r i ! I
42 I 10 I 11 I 12 | 13 I 14 I 15 | 16 17 | 18 | 19 [< 1A |> IB | 44

20 I 21 I 221 23 I 24 25 | 26 I 27 28 '29

r» r» r» r
izrt I*- |-» I

3D

*2D

ID

•

SB

'2B

IB

OP

3P

*2P

•if

'sc

*4A 1 43

German keyboard

r so r 51 r $> r »3 p»« |w»» | s< |w 5? | $a | »» | «

' OoT Oil" 02 I" 03 I' 04 I OS I" 0« ' 071" 08 I" 0» I" OA OB * OC K 00 P-

- h h P I" I* I' lg I1 1° I' \b I* I I
I I I | | I 1» | 1« I 17 | 18 | 1» | 1A IB | 4442 I XO I 11

4»hJ. U ' U ' [■' !>' la' b1 fc
i3 n« 10 n mom as

' l> It ' b h ' I* l» I"
« «30 31 |3a » I »« " I 3< | 37 |» 38 |

P« (A)|

|

<1 4T 4.

3O

20

ID

3B

*2.

IB

or

*4A

3T

2T

*ir

3C

43

The Amiga keyboard is an intelligent keyboard. It has its own micro

processor which handles the time-consuming job of reading the keys

and return complete key codes to the Amiga. There have been many ver

sions of the Amiga keyboard, but they differ only in new keys added to

them and therefore new key codes as well. The figure shows the layout

of the keys and their codes for the German and American versions of the

keyboard. As you can see, the codes do not correspond to the ASCII

standard. The keyboard only returns raw key codes, which are converted

to ASCII by the operating system.

There is, however, a system to the key codes:

$00-$3F These are the codes for the letters, digits and punctuation.

Their assignments correspond to the arrangement on the

keyboard

59

1. The Amiga Hardware Amiga System Programmer's Guide

KEYupIdown

CAPS LOCK

$40-$4F The codes for the standard special keys like SPACE,
RETURN, TAB, etc.

$50-$5F The function keys like HELP.

$60-$67 Keys for selecting different control levels (Shift, Amiga,

Alternate and Control)

The keyboard processor can do even more. It can distinguish between

when a key is pressed and when it is released. As you can see, all
keyboard codes are only 7 bits wide (values range from $00-$7F). The

eight bit is the KEYup/down flag. It is used by the keyboard to tell the
computer whether the key was just pressed or released. If the eighth bit

is zero, this means that the key was just pressed (KEYdown). If it is 1,

then the key was just released (KEYup). This way the Amiga always
knows which keys are currently pressed. The keyboard can thus be used
for other purposes which require various keys to be held simultane

ously. This includes music programs, for example, which use the

keyboard for playing polyphonically.

One exception is the CAPS LOCK key. The keyboard simulates a

push-button switch with this key. When it's pressed the first time, it

engages and the LED goes on. It does not disengage until it is pressed

again. The LED then turns off. This behavior is also reflected in the

KEYup/down flag. If CAPS LOCK is pressed, the LED turns on and

the key code for CAPS LOCK is sent to the computer along with a

cleared 8th bit to show that a key was just pressed. When the key is

released, no KEYup code is sent and the LED stays on. Not until

CAPS LOCK is pressed again is a KEYup code sent (with a set 8th bit)

and the LED turns off.

1.4.1

Figure

1.4.1.1

The keyboard circuit

(kp)-numerfc keypad

all keycodes given In

hexadecimal

60

Abacus 1.4 xHE keyboard

650011 micro The heart of the keyboard circuit is the 6500/1 microprocessor. The
processor 6500/1 is what is called a single-chip microcomputer. It contains all of

the components necessary for a simple computer system to work. The
heart of 6500/1 is a 6502 microprocessor. In addition, it contains 2KB
ROM with the control program, 64 bytes of static RAM, 4 bidirec
tional 8-bit ports, a 16-bit counter with its own control input, and a

All the 6500/1 needs for operation is a supply voltage of 5 volts and a
crystal for the clock generation. The 6500/1 is operated with a 3MHz

crystal in the Amiga keyboard Since this frequency is divided by two
internally, the clock frequency is 1.5MHz.

The second chip on die keyboard is a 556 precision timer. Actually,

there are two of these precision timers in the package. The 556 and a

few other components are used to provide the reset signal for the
6500/1.

The keys are combined into two groups. The seven special-function

keys (Shift right, ALT right, Control, Amiga left, ALT left and Shift

left) are connected directly to the first seven port lines of the PB port

All remaining keys are set up in a matrix of six rows by 15 columns.

The rows are connected to lines PA2 to PA7 of port A. These six lines

are configured as inputs. The 15 columns are controlled by ports C and

D. The 16th column, connected to PD7 is not used in the current ver

sion of the keyboard

When the 6500/1 reads the keyboard, it pulls each of the individual

columns low in turn. Since the outputs of ports C and D are open-col

lector outputs without internal pull-up resistors, they are completely in

active when the output is set to 1. After the processor has pulled a line

low, it reads the six rows. The six rows are provided with internal pull-

up resistors so that all impressed keys are interpreted as high. Each

pressed key connects one column with one row. If keys are pressed in

the column currently activated by the 6500/1, the corresponding row

inputs are low. After all of the columns have been activated and the

corresponding rows have been read, the processor knows the state of all

the keys.

If this has changed since the last time the keys were read, it sends the

appropriate key codes to the computer.

61

1. The Amiga Hardware Amiga System Programmer's Guide

1.4.2 Data transfer

Figure 1A2JL f «j»

<« |M

Handshake

signal

The keyboard is connected to the Amiga through a four-line coiled

cable. Two of the lines are used to supply power to the keyboard elec

tronics (5 volts). The entire data transfer takes place on the remaining

two lines. One of the lines is used for data, KDAT, and the other is the

clock line, KLCK. Inside the Amiga, KDAT is connected to the serial

input SP and KCLK is connected to the CNT pin of CIA-A (see

Section 1.2.2).

The data transfer is unidirectional. It always runs from the keyboard to

die computer. The 6500/1 places the individual data bits on the data line

(KDAT), accompanied by 20 microsecond-long low pulses on the clock

line (KCLK). 40-microsecond pauses are placed between the individual

clock pulses. This means that the transfer time for each bit is 60 micro

seconds. This yields a 480-microsecond transfer time for one byte, or a

transfer rate of 16666 baud (bits/second).

After the last bit has been sent, the keyboard waits for a handshake

pulse from the computer. The Amiga sends this signal by pulling the

KDAT line low for at least 75 microseconds. The exact process can be

seen in the figure.

The bits are not sent in the usual order 7-6-5-4-3-2-1-0, but rotated one

bit position to the left: 6-5-4-3-2-1-0-7. For example, the key code for J

with the eight bit set = 10100110 and after rotation it is 01001101. The

KEYup/down flag is always the last bit sent

The data line is active low. This means that a 0 is represented by a high

signal and a 1 by a low.

The CIA shift register in the Amiga reads the current bit on the SP line

at each clock pulse. After eight clock pulses the CIA has received a

complete data byte. The CIA normally generates a level-2 interrupt,

which causes the operating system to do the following:

• Read the serial data register in the CIA

• Invert and right-rotate the byte to get the original key code back

• Output the handshake pulse

• Process the received code

62

Abacus 1.4 The keyboard

Synchoniza-

tion

Special Codes

In order to have an error-free data transfer, the timing of the sender and
receiver must match. The bit position for the serial transfer must be

identical for both. Otherwise the keyboard may have sent all eight bits,
while the serial port of the CIA is still somewhere in the middle of the
byte. Such a loss of synchronization occurs whenever the Amiga is
turned on or the keyboard is plugged into a running Amiga. The com
puter has no way of recognizing improper synchronization. This task is
handled by the keyboard

After each byte is sent, the keyboard waits a maximum of 145 milli
seconds for the handshake signal. If it does not occur in this time, the
keyboard processor assumes that a transfer error occurred and enters a
special mode in which it tries to restore the lost synchronization. It

sends a 1 on the KDAT line together with a clock pulse and waits
another 145ms for the synchronization signal. It repeats this until it
receives a handshake signal from the Amiga. Synchronization is now
restored.

The data byte received by the Amiga is incorrect, however. The state of
the first seven bits is uncertain. Only the last bit received is definitely a

1, because the keyboard processor only outputs Ts during the procedure
described above. Since this last bit is the KEYup/down flag, the incor

rect code is always a KEYup code, or a released key. This makes
program disturbances fewer than if an incorrect KEYdown code had been

sent. This is why each byte is rotated one bit to the left before it is
sent, so that the KEYup/down flag is always the last bit sent

There are some special cases in the transmission, which the keyboard

tells the Amiga through special key codes. The following table contains
all possible special codes:

Code Meaning

$F9 Last key code was incorrect

$FA Keyboard buffer is full

$FC Error in keyboard self test

$FD Start of the keys held down on power up

$FE End of the keys held on power up

$F9 The $F9 code is always sent by the keyboard after a loss of
synchronization and subsequent ^synchronization. This is

how the Amiga knows that the last key code was incorrect.

After this code the keyboard retransmits the lost key code.

$FA The keyboard has an internal buffer of 10 characters. When

this buffer is full, it sends an $FA to the computer to signal

that it must empty the buffer or lose characters.

63

1. The Amiga Hardware Amiga System Programmer's Guide

$FC After it is turned on, the keyboard processor performs a self-

test. This can be seen by the brief lighting of the CAPS

LOCK LED. If it discovers an error, it sends an $FC to the

Amiga and then goes into an endless loop in which it

flashes the LED.

$FD&$FE

If the self-test was successful, the keyboard transmits all of

the keys which were held when the computer was turned on.

To tell the computer this, it starts the transmission with the

$FD code. Following this it sends the codes for the keys
which were held down while the computer was turned on,

and then an $FE. Then the normal transfer starts.

If no keys were pressed, $FD and $FE are sent in succes

sion.

Reset through The keyboard can also generate a reset on the Amiga. If the two Amiga

the keyboard keys and the Ctrl key are pressed simultaneously, the keyboard pro
cessor pulls the KCLK line low for about 0.5 seconds. This tells the

reset circuit of the Amiga to generate a processor reset. After at least

one of these keys has been released, the keyboard also resets itself. This

can be seen by the flashing of the CAPS LOCK LED. (It is interesting

that this reset is triggered by the KCLK line, which is connected inter

nally to the CNT line of CIA-A. Apparently, you can cause a hardware

reset through appropriate programming of this CIA).

1.4.3 Keyboard bugs

Finally, we should mention something about the weaknesses of this

keyboard. If you have an Amiga 1000, try a little experiment: Press the

three keys A, Q and TAB at the same time. Don't worry, your Amiga

isn't broken. But it still is surprising that the CAPS LOCK LED

lights up without having pressed this key. The same thing works for all

other keys. For example, if you press S, W and D together, an E

always appears on the screen.

64

Abacus 1.4 The keyboard

Figure 1.4.3.1

1

A

w

1

Q

W

—

|

1
I

2

Keycodes produced:

This keycode occurs

without pressing the

actual key

The above figure illustrates this phenomenon. Each pressed key repre
sents a short space between a row and a column. The keyboard proces

sor controls a column and then reads the individual rows. The arrows
show the direction of this reading. It determines the order in which the
pressed keys are recognized, if more than one is held down. When the
column belonging to E is selected and the processor reads the corres
ponding row while D, W and S are pressed, it recognizes a short
between the row and column, which it naturally takes for a pressed E.
Actually, this short is caused by the other three keys, but the keyboard
processor has no way of recognizing this. It gets even more interesting

if you hold down five keys at once. With the combination D, S, A, Q,

1, four additional codes are generated: W, 2, E and 3.

This effect can be seen in many inexpensive matrix keyboards; it isn't
limited to just the Amiga.

The moral is that you shouldn't develop programs in which such key

combinations are required. This is also why the Amiga, Shift, Alter

nate, Commodore and Control keys, which are generally used in combi

nation with other keys, are left out of the normal key matrix.

65

1. The Amiga Hardware Amiga System Programmer's Guide

1.5 Programming the

hardware

The previous sections involved closer looks at the hardware structure of
die Amiga. The following pages show how die three custom chips are
programmed. Now that die hardware side is clear, we'll begin an intro

duction to software, especially concerning the creation of graphics and

sound.

For successful programming of the Amiga at the machine level, it is
necessary to know the memory layout and die addresses of die individ

ual chip registers.

1.5.1

Figure 1.5.1.1

The memory layout

Normal configuration

$000000

$080000

$100000

$180000

$200000

$A00000

$C00000

$C80000

$DC0000

$DF0000

$E00000

$E80000

$F00000

$F80000

$FC0000

512K chip RAM

copy of chip RAM

copy of chip RAM

copy of chip RAM

8MB fast RAM area

CIAs

512K expansion

(Amiga 500/2000)

Unused

Realtime clock

(Amiga 500/2000)

Custom chips

Unused

Expansion slot area

ROM module

256K copy of

KickStart ROM

256K

KickStart ROM

Copy of memory range

SFCOOOO - SFFFFFF

Starting address of CIA B

Starting address of CIA A

Base address - realtime clock |

Base address - custom chips |

66

Abacus 1.5 Programming the hardware

RAM

CIAs

The first figure shows the normal memory configuration of the Amiga

as it appears after booting. The entire address range of the 68000 com

prises 16 megabytes (addresses from 0 to $FFFFFF). Given its size,
it's no wonder that large areas are unused or that some chips appear at

several different addresses. There is no reason to be stingy with mem

ory. The days of memory bank switching are fortunately over thanks to

the 68000.

TheRAM area designated as chip RAM contains the normal memory of
the Amiga. If the memory expansion is not added to the Amiga 1000, it

extends only to $3FEFF. This 512K is called the chip RAM because

the three custom chips can access only this area ofmemory.

It is possible that processor accesses to the chip RAM can be slowed

down by the activities of the custom chips. To prevent this, the Amiga
can be expanded with what is called fast RAM. This lies at address

$200000 in memory and can accommodate up to eight megabytes.
Since the custom chips have no access to this memory, the 68000 can
operate at full speed in this area. This is the origin of the term fast

RAM. In the basic configuration, the Amiga does not have any fast
RAM.

The 512K expansion card for the Amiga 500 or 2000 lies at $C00000

to $C7FFFF. It has a special status and is neither true chip RAM nor
fast RAM. On one hand, the custom chips have no access to it, but on
the other hand, the processor can be slowed down by the custom chips

when it accesses this memory. This RAM expansion combines the bad

properties of both chip RAM and fast RAM without having any of

their positive qualities. The reason is not malice on the part of the

Amiga developers, just the simplicity of this RAM expansion, and

therefore its low manufacturing cost

The various registers of the CIAs appear multiple times in the range
from $A00000 to $BFFFFF. More about the addressing of the CIAs

can be obtained from Section 1.2. Here are the addresses of the individ

ual registers at their normal positions:

QA-A CIA-B Name Function

$BFE001

$BFE101

$BFE201

$BFE301

SBFE401

$BFE501
SBFE601

$BFE701

$BFE801

$BFE901

SBFEA01

SBFEB01

SBFEC01

$BFED01

$BFEE01

SBFEF01

$BFD000

$BFD100

$BFD200

$BFD300

SBFD400

$BFD500

SBFD600

$BFD700

SBFD800

SBFD900

$BFDA00

$BFDB00

$BFDC00

SBFDD00

$BFDE00

$BFDE00

PA

PB

DDRA

DDRB

TALD

TAHI

TBLO

TBHI

E.LSB

E.MID

E.MSB
—

SP

IRC

CRA

CRB

Port register A

Port register B

Data direction register A

Data direction register B

Timer A low byte

Timer A high byte

Timer B low byte

Timer B high byte

Event counter bits 0-7

Event counter bits 8-15

Event counter 16-23

Unused

Serial port register

Interrupt control register

Control register A

Control register B

67

1. The Amiga Hardware Amiga System Programmer's Guide

Custom chips The various custom chip registers occupy a 512-byte area. Each register

is 2 bytes (one word) wide. All registers are on even addresses.

The base address of the register area is at $DFF00. The effective address

is then $DFF000 + register address. The following list shows the

names and functions of the individual chip registers. Most of the regis

ter descriptions are unfamiliar now since we haven't discussed the func

tion of the registers, but this list will give you an overview and will

later serve as a reference.

There are four types ofregisters:

r (Read) This register can only be read,

w (Write) This register can only be written.

s (Strobe) An access to a register of this type causes a one-time action

to occur in the chip. The value of the data bus, that is, the

word which is written into the register, is irrelevant These

registers are usually only accessed by Agnus.

er (Early Read)

A register designated as early read is aDMA output register.

It contains the data to be written into the chip RAM through

DMA. There are two such registers (DSKDATR and

BLTDDAT—output registers for the disk and the blitter).

They are accessed only by the DMA controller in Agnus,

when their contents are written into the chip RAM. The pro

cessor cannot access these registers.

A, D, P These three letters stand for the three chips Agnus, Denise

and Paula. They indicate in which chip the given register is

found. It is also possible for a register to be located in more

than one chip. On such a write access, the value is then

written into two or even all chips. This is the case when the

contents of a given register are needed by more than one

chip.

For the programmer it is unimportant where the registers are

located. The entire area can be treated as one custom chip.

The programmer needs to know only the address and func

tion of the desired register.

p, d A lowercase d means that this register is accessible only by

the DMA controller. Registers with a small p in front of

them can be used only by the processor or the Copper. If

both letters are in front of a register, it means that it is usu

ally accessed by the DMA, but also by the processor from

time to time.

68

Abacus 1.5 Programming the hardware

DMAOONR 002

VPOSR 004

VHPOSR 006

DSKDATR 008

JOY0DAT 00A

JOY1DAT 00C

POT1DAT 014

Number ofregisters: 197

Registers which are normally accessed only by the DMA controller: 54

Base address of the register area: $DFF00

Register table Name Reg, addr. Chip R/W p/d Function

BLTDDAT 000 A er d BUtter output data (from bUtter
to RAM)

AP r p Read DMA controller register
A r p MSB of the vertical position

A r p Vertical and horizontal beam
position

P er d Disk read data (from disk to
RAM)

D r p Joystick/mouse position game
port 0

D r p Joystick/mouse position game
port 1

CLXDAT 00E D r p Collision register

ADKCONR 010 P r p Read audio/disk control register
POTODAT 012 P r p Read potentiometer on game

port 0

P r p Read potentiometer on game
port 1

POTGOR 016 P r p Read pot port data
SERDATR 018 P r p Read serial port and status
DSKBYTR 01A P r p Read disk data byte and status
INTENAR 01C P r p Read interrupt enable

INTREQR 01E P r p Read interrupt request
DSKPIH 020 A w p Disk DMA address bits 16-18

DSKFIL 022 A w p Disk DMA address bits 1-15

DSKLEN 024 P w p Disk DMA block length
DSKDAT 026 P w d Disk write data (from RAM to

disk)

REFPTR 028 A w d Refresh counter

VPOSW 02A A w p Write MSB of the vertical beam
position

VHPOSW 02C A w p Write vertical and horizontal
beam position

OOPCON 02E A w p Copper control register
SERDAT 030 P w p Write serial data and stop bite

SERPER 032 P w p Serial port control register and
baud rate

POTGO 034 P w p Write pot port data and start
bit

JOYTEST 036 D wt p Write in both mouse counters
STREQU 038 D s d Horizontal sync with VB and

equal frame

D s d Horizontal sync with vertical

blank

STRHOR 03C DP s d Horizontal sync signal

SIRLONG 03E D s d Long horizontal line marker

STRVBL 03A

69

1. The Amiga Hardware Amiga System Programmer's Guide

Copper

Registers

The following registers can be accessed by Copper when COPCON=1.

Name Reg addr Chip R/W p/d Function

Copper

Registers

BLTCONO 040 A w p

BLTCON1 042 A w p

BLTAFWM 044 A w p

BLTALWM 046 A w p

BLTCPTH 048 A w p

BLTCPTnL 04A A w p

BLTBPTH 04C A w p

BLTBFTL 04E A w p

BLTAFIH 050 A w p

BLTAFIL 052 A w p

BLTDFIH 054 A w p

BLTOFIL 056 A w p

BLTSIZE 058 A w p

— 05A

— 05C

— 05E

BLTCMOD 060 A w p

BLTBMOD 062 A w p

BLTAMOD 064 A w p

BLTDMOD 066 A w p

— 068

— 06A

— 06C

— 06E

BLTCDAT 070 A w d

BLTBDAT 072 A w d

BLTADAT 074 A w d

— 076

— 078

— 07A

— 07C

DSKSYNC 07E P w p

Blitter control register 0

Blitter control register 1

Mask for the first data word from A

Mask for the last data word from A

Address of the source data C bits 16-18

Address of the source data C bits 1-15

Address of the source data B bits 16-18

Address of the source data B bits 1-15

Address of the source data A bits 16-18

Address of the source data A bits 1-15

Address of the destination data D bits

16-18

Address of the destination data D bits

1-15

Start bit and size of the blitter window

unused

unused

unused

Blitter module for source data C

Blitter module for source data B

Blitter module for source data A

Blitter module for destination data D

unused

unused

unused

unused

Blitter source data register C

Blitter source data register B

Blitter source data register A

unused

unused

unused

unused

Disk sync pattern

The following registers can always by written by the Copper.

Name Reg addr Chip R/W p/d Function

COP1LCH 080

COP1LCL 082

COP2LCH 084

COP2LCL 086

COPJMP1 088

COPJMP2 08A

COPINS 08C

MWSTRT 08E

DIWSTOP 090

DDFSTRT 092

DDFSTOP 094

DMACON 096

CLXOON 098

INTENA 09A

A

A

A

A

A

A

A

A

A

A

A

ADP w

D w

P w

w

w

w

w

s

s

w

w

w

w

w

p Address of the 1st Copper list bits 16-18

p Address of the 1st Copper list bits 1-15

p Address of 2nd Copper list bits 16-18

p Address of the 2nd Copper list bits 1-15

p Jump to the start of the 1st Copper list

p Jump to the start of the 2nd Copper list

d Copper command register

p Upper left corner of the display window

p Lower right corner of the display window

p Start of the bit plane DMA (horiz. pos.)

p End of the bit plane DMA (horiz. pos.)

p Write DMA control register

p Write collision control register

p Write interrupt enable

70

Abacus 1.5 Programming the hardware

Copper

Registers

Name Reg addr Chip R/W p/d Function

1NTREQ

ADKCON

AUDOLCH

AUDOLCL

AUD01£N

AUDOPER

AUDOVOL

AUDODAT

—

AUD1LCH

AUD1LCL

AUD1LEN

AUD1PER

AUD1VOL

AUD1DAT

i,.,

—

AUD2LCH

AUD2LCL

AUD2LEN

AUD2PER

AUD2VOL

AUD2DAT

I,

—

AUD3LCH

AUD3LCL

AUD3LEN

AUD3PER

AUD3VOL

AUD3DAT

—.

BPL1PTH

BPL1PTL

BPL2FTH

BPL2PTL

BPL3PTH

BPL3PTL

BPL4PTH

BPL4PTL

BPL5PTH

BPL5PTL

BPL6PTH

BPL6PTL
—

—

—

—

BPLCONO

09C

09E

0A0

0A2

0A4

0A6

0A8

OAA

OAC

OAE

0B0

0B2

0B4

0B6

0B8

OBA

OBC

OBE

OCO

0C2

0C4

0C6

0C8

OCA

OCC

OCE

0D0

0D2

0D4

0D6

0D8

ODA

ODC

ODE

OEO

0E2

0E4

0E6

0E8

OEA

OEC

OEE

OFO

0F2

0F4

0F6

0F8

OFA

OFC

OFE

100

P

P

A

A

P

P

P

P

A

A

P

P

P

P

A

A

P

P

P

P

A

A

P

P

P

P

A

A

A

A

A

A

A

A

A

A

A

A

AD

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

p

p

p

p

p

p

p

d

p

p

p

p

p

d

p

p

p

p

p

d

P

p

p

p

p

d

p

p

p

p

p

p

p

p

p

p

p

p

D

Write interrupt request

Audio, disk, and UART control register

Address of the audio data bits 16-18

On sound channel 0, bits 1-15

Channel 0 length of audio data

Channel 0 period duration

Channel 0 volume

Channel 0 audio data (to the D/A

converter)

unused

unused

Address of the audio data bits 16-18

On sound channel 1, bits 1-15

Channel 1 length of audio data

Channel 1 period duration

Channel 1 volume

Channel 1 audio data (to the D/A

converter)

unused

unused

Address of the audio data bits 16-18

On sound channel 2, bits 1-15

Channel 2 length of audio data

Channel 2 period duration

Channel 2 volume

Channel 2 audio data (to the D/A

converter)

unused

unused

Address of the audio data bits 16-18

On sound channel 3, bits 1-15

Channel 3 length of audio data

Channel 3 period duration

Channel 3 volume

Channel 3 audio data (to the D/A

converter)

unused

Address of bit plane 1, bits 16-18

Address of bit plane 1, bits 1-15

Address of bit plane 2, bits 16-18

Address of bit plane 2, bits 1-15

Address of bit plane 3, bits 16-18

Address of bit plane 3, bits 1-15

Address of bit plane 4, bits 16-18

Address of bit plane 4, bits 1-15

Address of bit plane 5, bits 16-18

Address of bit plane 5, bits 1-15

Address of bit plane 6, bits 16-18

Address of bit plane 6, bits 1-15

unused

unused

unused

unused

Bit plane control register 0

71

1. The Amiga Hardware Amiga System Programmer's Guide

Copper

Registers

Name Reg addr Chip R/W p/d Function

BPLCON1 102

BPLCON2 104

— 106

BPL1MOD 108

BPL2MOD 10A

— IOC

— 10E

BPL1DAT 110

BPL2DAT 112

BPL3DAT 114

BPL4DAT 116

BPL5DAT 118

BPL6DAT 11A

— 11C

— HE

SPROPTH 120

SPROPTL 122

SPR1PTH 124

SPRIPTL 126

SPR2PTH 128

SPR2PTL 12A

SPR3PTH 12C

SPR3PTL 12E

SPR4FTH 130

SPR4PTL 132

SPR5FTH 134

SPR5PTL 136

SPR6PTH 138

SPR6PTL 13A

SPR7PTH 13C

SPR7FTL 13E

SPROPOS 140

SPROCTL 142

SPRODATA 144

SPRODATB 146

SPR1P0S 148

SPR1CTL 14A

SPR1DATA 14C

SPR1DATB 14E

SPR2POS 150

SPR2CTL 152

SPR2DATA 154

SPR2DATB 156

SPR3P0S 158

SPR3CTL 15A

SPR3DATA 15C

SPR3DATB 15E

SPR4P0S 160

SPR4CTL 162

SPR4DATA 164

SPR4DATB 166

SPR5P0S 168

SPR5CTL 16A

SPR5DATA 16C

SPR5DATB 16E

D w p Control register 1 (scroll values)

D w p Control register 2 (priority control)

unused

A w p Bit plane module for odd planes

A w p Bit plane module for even planes

unused

unused

D w d Bit plane 1 data (to RGB output)

D w d Bit plane 2 data (to RGB output)

D w d Bit plane 3 data (to RGB output)

D w d Bit plane 4 data (to RGB output)

D w d Bit plane 5 data (to RGB output)

D w d Bit plane 6 data (to RGB output)

unused

unused

A w p Sprite data 0, bits 16-18

A w p Sprite data 0, bits 1-15

A w p Sprite data 1, bits 16-18

A w p Sprite data 1, bits 1-15

A w p Sprite data 2, bits 16-18

A w p Sprite data 2, bits 1-15

A w p Sprite data 3, bits 16-18

A w p Sprite data 3, bits 1-15

A w p Sprite data 4, bits 16-18

A w p Sprite data 4, bits 1-15

A w p Sprite data 5, bits 16-18

A w p Sprite data 5, bits 1-15

A w p Sprite data 6, bits 16-18

A w p Sprite data 6, bits 1-15

A w p Sprite data 7, bits 16-18

A w p Sprite data 7, bits 1-15

AD w dp Sprite 0 start position (vert, and horiz.)

AD w dp Sprite 0 control reg. and vertical stop

D w dp Sprite 0 data register A (to RGB output)

D w dp Sprite 0 data register B (to RGB output)

AD w dp Sprite 1 start position (vert, and horiz.)

AD w dp Sprite 1 control reg. and vertical stop

D w dp Sprite 1 data register A (to RGB output)

D w dp Sprite 1 data register B (to RGB output)

AD w dp Sprite 2 start position (vert, and horiz.)

AD w dp Sprite 2 control reg. and vertical stop

D w dp Sprite 2 data register A (to RGB output)

D w dp Sprite 2 data register B (to RGB output)

AD w dp Sprite 3 start position (vert, and horiz.)

AD w dp Sprite 3 control reg. and vertical stop

D w dp Sprite 3 data register A (to RGB output)

D w dp Sprite 3 data register B (to RGB output)

AD w dp Sprite 4 start position (vert, and horiz.)

AD w dp Sprite 4 control reg. and vertical stop

D w dp Sprite 4 data register A (to RGB output)

D w dp Sprite 4 data register B (to RGB output)

AD w dp Sprite 5 start position (vert, and horiz.)

AD w dp Sprite 5 control reg. and vertical stop

D w dp Sprite 5 data register A (to RGB output)

D w dp Sprite 5 data register B (to RGB output)

72

Abacus Programming the hardware

Copper

Registers

Name Reg addr

SPR6POS

SPR6CTL

SPR6DATA

SPR6DATB

SPR7POS

SPR7CTL

SPR7DATA

SPR7DATB

COLOR00

COLOR01

COLOR02

CX)LOR03

COLOR04

COLOR05

COLOR06

COLOR07

CX)LOR08

COLOR09

COLOR10

CX)LOR11

COLOR12

CX)LOR13

COLOR14

CX)LOR15

COLOR16

COLOR17

COLOR18

CX)LOR19

OOLOR20

COLOR21

COLOR22

COLOR23

COLOR24

CX)LOR25

COLOR26

COLOR27

COLOR28

COLOR29

COLOR30

COLOR31

170

172

174

176

178

17A

17C

17E

180

182

184

186

188

18A

18C

18E

190

192

194

196

198

19A

19C

19E

1A0

1A2

1A4

1A6

1A8

1AA

1AC

1AE

1B0

1B2

1B4

1B6

1B8

1BA

1BC

1BE

Chip

AD

AD

D

D

AD

AD

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

R/W

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

p/d

dp

dp
dp
dp
dp

dp
dp
dp
P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Function

Sprite 6 start position (vert and horiz.)

Sprite 6 control reg. and vertical stop

Sprite 6 data register A (to RGB output)

Sprite 6 data register B (to RGB output)

Sprite 7 start position (vert and horiz.)
Sprite 7 control reg. and vertical stop

Sprite 7 data register A (to RGB output)

Sprite 7 data register B (to RGB output)

Color palette register 0 (color table)

Color palette register 1 (color table)

Color palette register 2 (color table)

Color palette register 3 (color table)

Color palette register 4 (color table)

Color palette register 5 (color table)

Color palette register 6 (color table)

Color palette register 7 (color table)

Color palette register 8 (color table)

Color palette register 9 (color table)

Color palette register 10 (color table)

Color palette register 11 (color table)

Color palette register 12 (color table)

Color palette register 13 (color table)

Color palette register 14 (color table)

Color palette register 15 (color table)

Color palette register 16 (color table)

Color palette register 17 (color table)

Color palette register 18 (color table)

Color palette register 19 (color table)

Color palette register 20 (color table)

Color palette register 21 (color table)

Color palette register 22 (color table)

Color palette register 23 (color table)

Color palette register 24 (color table)

Color palette register 25 (color table)

Color palette register 26 (color table)

Color palette register 27 (color table)

Color palette register 28 (color table)

Color palette register 29 (color table)

Color palette register 30 (color table)

Color palette register 31 (color table)

The registers firom 1C0 to 1FC are unoccupied.

Accessing register address 1FE has no effect The chips are not accessed

(see Section 1.2.3).

73

1. The Amiga Hardware Amiga System Programmer's Guide

ROM

Amiga 1000

WOM

Figure 1.5.1.1 shows the ROM area as its looks after booting. The

256KB ofROM at $FC0000 contains the Amiga Kickstart The range

from $F80000 to $FBFFFF is identical to the range from $FC0000 to

$FFFFFF. This is a mirror of the Kickstart ROM. This configuration

can change. After a reset, the 68000 fetches the address of the first

command from location 4, called the reset vector. Since the contents of

this location are undefined on power-up, the processor would jump to

some random address and the system would crash. The solution to this

is as follows: The chip which is responsible for the memory configura

tion has an input which is connected to the lowest port line of CIA-A

(PAO). This OVL line is normally at 0 and the memory configuration

corresponds to the figure. After a reset, the port line automatically goes

high, causing the ROM area at $F80000 to $FFFFFF to be mapped

into the range from 0 to $7FFFF. This means that address 4 (the reset

vector) corresponds to address $F80004. Here the 68000 finds a valid

reset address which tells it to jump to the Kickstart program. In the

course of this reset routine the OVL line is set to 0 and the normal

memory configuration returns.

You must be very careful when experimenting with this line. If the

program that tries to set the OVL line is running in chip RAM, the

result can be catastrophic, because the program more or less switches

itself out of the memory range and the processor lands somewhere in

the Kickstart, which takes the place of the chip RAM after the switch.

The Amiga 1000 models have additional special features. Owners of

these machines may be surprised that we keep talking about a Kickstart

ROM, even though the Amiga 1000 loads the Kickstart from disk when

it's turned on. The situation with the Amiga 1000 was the following:

The hardware was done, the machines were ready to be sold, but the

software in the form of the Kickstart operating system wasn't complete

and still had some bugs in it. A decision was made to provide the

Amiga with special RAM which would be loaded with the operating

system when the computer was turned on. After this, the Amiga would

prevent write accesses to this RAM, making it behave like a 2S6K

ROM. Commodore called the WOM, or Write-Once Memory. Now the

first Amigas could be delivered with the incomplete Kickstart 1.0. After

the new Kickstart versions were complete (1.1 and 1.2), the Amiga

owner simply had to insert new Kickstart disks.

Since this WOM is naturally more expensive than a simple ROM, the

Amiga 500 and 2000 are not equipped with it, since by then the final

Kickstart (V1.2) was finished.

The WOM raises some questions, however: Where is the program

which loads Kickstart? How can Kickstart be changed, since it is RAM?

74

Abacus 1.5 Programming the hardware

Reset

Normally, the Amiga 1000 operates just like the newer models, with
Kickstart at $FC0000 to $FFFFFF with a mirror at $F80000. If you

try to write into Kickstart, nothing happens. Write access is not possi

ble. The boot ROM which loads Kickstart is also nowhere to be found
in memory.

The whole process is controlled by the reset line. After a reset, whether
by turning the computer on, by pressing the Amiga, Commodore and

Control keys or by executing a 68000 reset command, the memory
configuration changes.

Immediately after a reset, the bootROM is at $F80000 (since on a reset
the OVL line is set, the reset vector also comes from boot ROM) and it

is possible to write into Kickstart It can be changed as desired! This
condition holds only until you try to write something in the boot ROM
range from $F8000 to $FBFFFF. Then the boot ROM is masked out

again and the Kickstart memory is write-protected. In short:

Reset keeps the Kickstart WOM in memory and enables the boot
ROM.

A write access to an address between $F80000 and $FBFFFF disables
the write protection and the boot ROM.

1.5.2 Fundamentals

Programming

the chip

registers

As mentioned in the previous section, there are some registers which

are accessed by the processor and some which are read and written

through DMA. We'll cover the first case first

The chip registers can be addressed directly. Example: Changing the

value of the background color register. Looking in the register table in

Section 1.5.1, you see that it has a register address of $180. To this we

must add the base address of the register area, that is, the address of the

first register in the address range which the 68000 accesses. This is

$DFF000. This plus the register address of COLOR00 yields

$DFF180. A simple MOVE.W command can be used to initialize the

register

MOVE.W #value,$DFF180 Rvalue in COLOR00

If more than one register is accessed, it is a good idea

to store the base address in an address register and use indirect addressing

with an offset Here is an example:

LEA $DFF000,A5

MOVE.W #valuel,$180 (A5)

MOVE.W #value2,$182 (A5)

MOVE.W ...etc.

;store base address in A5

;value 1 in COLOR00

jvalue 2 in COLOR01

75

1. The Amiga Hardware Amiga System Programmer's Guide

Normally the chip registers are accessed as shown above. The registers

can also be accessed as a long word, however. In this case two registers

are always written at once. This makes sense for the address registers,

which consist of a pair of registers holding a single 19-bit address, with

which the entire 512KB chip RAM area can be accessed. All of the data

for the custom chips must be in the chip RAM. Since the chips always

access the memory word-wise, the lowest bit (bit 0) is irrelevant. The

address registers point only to even addresses. Since a chip register is

only one word (16 bits) wide, two successive registers are used to store

a 19-bit address. The first register contains the upper three bits (bits 16

to 18) and the second contains the lower 16 (bits 0-15). This makes it
possible to initialize both registers with a single long-word access.

Example: Setting the pointer for the first bit plane to address $40000.
BPL1PTH is the name of the first register (bits 16-18) and BPL1PTL

(bits 0-15) is the name of the second. Register address of BPL1PTH:

$OEO,BPL1PTL«$OE2.

A5 contains the base address $DFF000.

MOVE.L #$40000,$0E0 (A5) ;initializes BPL1PTH and BPL1PTL

;with the correct values

It should be noted that any given register address can never be both read

from and written to. Most registers are write-only registers and cannot

be read. This also includes the registers mentioned above. Others can

only be read. Only a few can be both read and written, but these then
have two different register addresses, one for reading and one for writing.

The DMA control register, which is discussed in more detail shortly, is

such a register. It can be written through the register address $096

(DMACON), while address $002 is used for reading (DMACONR).

DMA access DMA, as described in Section 1.2.3, involves the direct access of a

peripheral chip, called the DMA controller, to the system memory. In

the case of the Amiga, the DMA controller is housed in Agnus. It

represents the connection between the various input/output components

of the custom chips and the chip RAM. A given I/O component, such

as the disk controller, needs new data or has data which it wants to store

in memory. The DMA controller waits until the memory for this DMA

channel is free (not being accessed by another DMA channel or the pro

cessor) and then transfers the data to or from RAM itself. For the sake

of simplicity there is no special transfer from the I/O device to the

DMA controller. It always takes place through registers. Each of these

I/O components has two different types of registers. One type is the

normal registers which are accessed by the processor and in which the

various operating parameters are stored. The second is the data registers

which contain the data for theDMA controller. For aDMA transfer this

involves simply the corresponding data register and a RAM location.

Depending on the direction of the transfer, either a read register is

selected and the chip RAM is set for write, or a write register is used

and the chip RAM is set for read. Since the two can be connected

76

Abacus 1.5 Programming the hardware

through the data bus, the data are automatically routed to their destina
tion. Data are not stored in any temporary registers.

The DMA transfer adds a third type of register the DMA address regis

ter which holds the address or addresses of the data in RAM, depending
on the needs of the I/O device.

There are many central control registers which are not assigned to a
special I/O device, but have higher-level control functions. The

DMACON register is one in this category.

The data registers can also be written by the processor, since they are

realized in the form of normal registers. This is not generally useful,
however, since the DMA controller can accomplish this faster and more
elegantly.

Some I/O components do not have DMA channels. The 68000 must
read and write their data itself. This group includes only those devices
which by their nature do not deal in large quantities of data, so that

DMA is not needed, such as the joystick and mouse inputs.

Present DMA Bit plane DMA Through this DMA channel the screen data are
channels: read from memory and written into the data

registers of the individual bit planes, from

where they go to the bit plane sequences which

convert the data for output to the screen.

Sprite DMA Transfers the sprite data from the RAM to the
sprite data register.

Disk DMA Data from the disk to RAM or from RAM to

the disk.

Audio DMA Reads the digital tone data from the RAM and

writes it to the appropriate audio data registers.

CopperDMA The coprocessor (Copper) receives its com

mand words through this channel.

Blitter DMA Data to and from the blitter.

There are a total of six DMA channels which all want to access the
memory, plus the processor which naturally wants to have the chip

RAM for itself as often as possible. To solve the problems that result

from this, a complex system of time multiplexing was devised in

which the individual channels have defined positions. Since this is ori

ented to the video picture, we must first go into its construction. This

section has been kept as untechnical as possible since this section
involves programming the custom chips, not the hardware.

77

1. The Amiga Hardware Amiga System Programmer's Guide

Construction

of the video

picture

Figure 1.5.2.2

Complete screen

First half

screen's

lines (all

odd-numbered

lines are in

long frame)

Second half

screen's

lines (all

even-numbered

lines are in

short frame)

The illustration in Figure l.S.2.2 displays the average screen design of

an Amiga model in Europe. European video equipment uses the PAL

standard, while the US relies on the NTSC standard.

The timing of the Amiga screen output corresponds exactly to the

television standard of the country where the Amiga is sold, PAL for

Europe and NTSC for the US. The 8361 Agnus chip is available in a

NTSC US version and a PAL version for Europe. A PAL video picture

consists of 625 horizontal rows an NTSC system of 525 horizontal

rows. Each of these rows is constructed from left to right. After each

line follows a pause, called the horizontal blanking gap, in which the

electron that draws the picture has time to go back from right to left.

During this blanking gap the electron beam is dark so that it cannot be

seen tracing back to the left side. Then the process starts from the

beginning and the next line results.

To keep the picture free of flickering, it must be continually redrawn.

Since your eyes cannot respond to changes above a certain frequency,

the number of pictures per second is placed above this limit. With the

PAL standard, the number of individual pictures is set to 50 per second

(30 per second for NTSC). But now we face a circumstance which com-

78

Abacus 1.5 Programming the hardware

plicates the whole matter. If all 625 lines where drawn SO times per

second, the result would be 312S0 lines per second. If monitors and

televisions were built to these specifications, they would not be afford-

ably priced, so a trick is used.

Flickering On one hand, the number of pictures should not be less than 50 per

second or the screen begins to flicker, while on the other hand there

must be enough lines per picture. The solution is as follows: 50 pic

tures are displayed per second, but the 625 lines are divided into two

pictures. The first picture contains all of the odd lines (lines 1, 3,5,...,

625) while the second contains all of the even lines (2,4, 6,..., 624).

Two of these half-pictures (called frames) are combined to form the

entire picture, which contains 625 lines. Naturally, the number of

complete pictures per second is only half as large as the number of half-

pictures, or 25 per second. The line frequency for this technique is only

15625 Hz (25x625 or 50x312.5).

In spite of the high resolution of 625 lines, flickering occurs when a

contour is restricted to only one line. Then it is displayed only every

25th of a second, which is perceived by the eye as a visible flickering.

This effect can be seen on televisions especially on the horizontal edges

of surfaces, since these consist of only a single horizontal line.

Interlacing The term for this technique of alternating display of even and odd lines

is called interlacing. Two additional terms are used to distinguish the

difference between the two types of half-pictures. A long frame is the

one in which the odd lines are displayed, and a short frame is the name

for the picture which displays just the even lines. They are called long

and short frame because there is one more odd line than even and it

therefore takes slightly longer to display the frame containing the odd

lines (from 1 to 625 there are 313 odd and 312 even numbers). After

each frame there is a pause before the next frame begins. This blank

space between frames is called the vertical blanking gap.

The picture created by the Amiga also follows this scheme, although

with some deviations.

Normally the second half-picture (short frame) is somewhat delayed so

that the even lines appear exactly between the odd lines.

On the Amiga, both frames are identical, so that the picture frequency is

actually 50Hz. As a result, the number of lines is limited to 313. This

can be clearly seen by the vertical distance between two lines on the

screen, since the frames are no longer displaced, but drawn on top of

each other.

To increase the number of lines, the Amiga can also create its picture in

interlace mode. Then a full 625 lines are possible, but the disadvantages

of interlace operation must be taken into account. More about this later.

79

1. The Amiga Hardware Amiga System Programmer's Guide

Construction

of the Amiga

screen output Bit plane structure : 320x200 pixels : restarting address

_. ^ _ - - Column o
Figure 1.5.2.3 Row n+0

16

n+2

32

n+4

304

n+38

1st word 2nd word J[3rd word 20th word

n+40 n+42 n+44 n+78

21st word | | 22nd word | | 23rd word | •• • | 40th word

n+7960 n+7962 n+7964 n+7998

199 3980th word 3981st word 3982nd word 4000th word

|15|14|13|12|11|1O|9|B|7|6|6|4|312111O1

Representation of bit plane's first word in the upper left-hand

corner of the visible screen

Bit planes The Amiga always displays its picture in a sort of graphic mode, that

is, each point on the screen has a corresponding representation in mem

ory. In the simplest case a set bit in RAM corresponds to a point on

the screen. This way of using screen memory is called a bit plane. It is

the basic element of each screen display on the Amiga. It consists of a

contiguous block of memory. There are certain number of words per

screen line, depending on the width of the screen. A word corresponds to

16 dots, since each bit represents a pixel. For a screen display with 320

pixels per line, 320/16 » 20 words are needed. Since only two states are

possible in a bit plane, namely the point is set or it is not, it is possi

ble to combine several bit planes. Bits at the same position in all

planes are logically associated. The first point on the screen results

from a combination of the first bit in the first word from all of the bit

planes. The value resulting from these bits then determines the color of

pixel on the screen. There are various ways to get from the bit combi

nation of a pixel to its color on the screen, as explained later in Section

1.5.5.

80

Abacus 1.5 Programming the hardware

Different

graphic

resolutions

Construction
of a horizon"

tal raster line

The Amiga has two different horizontal resolutions. The high-resolu
tion mode normally has 640 pixels per line, the lowest has 320 pixels.
The "normally" used in the last sentence means that this value can

change. It's better to define the two different resolutions in terms of the
time per pixel. One pixel in the high-resolution mode is displayed for

70 nanoseconds, or 140 nanoseconds in low-resolution mode. In the

doubled time the electron continues to trace on the screen, so the pixel
appears twice as wide in the lowest resolution.

It is more important for the programmer to know that in the high-reso

lution mode only four bit planes can be active at a time, while in low-
resolution mode, up to six planes are allowed.

A raster line is a complete horizontal line, that is, the horizontal

blanking gaps and their visible area. This raster line is used as the time
measure for all DMA processes, particularly for the screen DMA's. To

understand the division of the raster line, you must know how the

memory accesses to the chip RAM and the custom chip registers are

divided between the DMA controller and the processor. The accesses to
these two memory ranges must conform to what are called bus cycles.
The bus cycles determine the timing of the chip RAM. One memory

access takes place in each bus cycle. It doesn't matter whether the data

are read or written. If the processor wants to access the bus, it gets con

trol of the bus for one bus cycle. The DMA controller is not able to

access the RAM until the following cycle. A bus cycle lasts 280

nanoseconds. Almost four memory accesses are possible in one
microsecond.

The 68000 cannot access the memory this often, however. It is simply

not fast enough. With the clock frequency which the Amiga is driven, it

accesses memory at a maximum rate of once every 560 nanoseconds.

During this time, two bus cycles elapse. The 68000 can use only every

other bus cycle. These cycles are called even cycles. The remaining

cycles, the odd cycles, are reserved exclusively for the DMA controller.

81

1. The Amiga Hardware Amiga System Programmer's Guide

Figure 1.5.2.4
$18 $20

Refresh

$28

CDMA Audio DMA Earliest possible starting

time for bit plane DMAs

$30

Data fetch start

$38 $40 $48

S

16 low-res
^H[H]HHJH

Li

I

I

H|H

Bus cycle up to

$D8 is the same

as$40-$47

$C4 $C8

16hkes

pixels

Data fetch stop

$D0 $D8 $DF

LL

I 1

Latest possible end of

bit plane DMAs

Legend:

R = Refresh cycles

D = Disk DMA cycles

Ax=Audio DMA cycles, x=channel number

Sx=Sprite DMA cycles, x=sprite number

Lx=Low-res bit plane DMA cycles, x=bit plane number

Hx=High-res bit plane DMA cycles, x=bit plane number

M =Even bus cycles (processor or DMA) H »Odd bus cycles (DMA only)

Figure l.S.2.4 shows the development of a raster line over time. It

takes 63.5 microseconds. This yields 227.5 bus cycles per line. Of

these the first 225 can be taken by the DMA controller. The figure

shows how this is done: The letters within the individual cycles stand

for the corresponding DMA channel. While only the DMA controller

uses the odd cycles, it must share the odd cycles with the processor. The

DMA accesses always have priority. The blitter DMA and Copper

DMA take place only during even cycles, although there is no defined

timed for these two. The Copper DMA takes all even memory cycles

until it has finished its task. It has precedence over the blitter. The

blitter also takes all of the even cycles until it is finished, although it is

possible to leave some cycles free for the 68000.

82

Abacus 1.5 Programming the hardware

As you can see, disk, audio and sprite DMA accesses take only odd bus

cycles and therefore do not affect the speed of the processor. The bus

cycles designated with R are the refresh cycles. They are used to refresh
the contents of the chip RAM (see the end of this section).

DMA Somewhat more complicated is the distribution of the bit plane DMA.
In order to be able to display the first 16 pixels on the screen, all bit
planes must be read. While these 16 pixels appear on the screen, all of

the bit planes for the next 16 pixels must be read. If the lowest resolu
tion is enabled, 2 pixels are output during each bus cycle. This means

that the bit planes must be read every eight bus cycles. So long as no
more than four bit planes are active, the odd cycles suffice. If five or six
planes are used, two even cycles must also be used so that all of the

data can be read in eight bus cycles. It's even tighter in high-resolution
mode. Here four pixels are displayed per memory cycle. If only the odd
cycles are used, no more than two bit planes can be used. With the

maximum number of four hi-res bit planes, all bus cycles are taken. As
a result, the processor loses more than half of its free bus cycles! Its
speed also decreases by the same amount, assuming that the current

program is in the chip RAM, since the processor still has full-speed
access to the fast RAM and Kickstart ROM.

The times labelled as data fetch start and data fetch stop designate the
start and stop of the DMA accesses for the bit planes. They thereby

determine the width and horizontal position of the visible picture. If the
bit plane DMA starts early and ends late, more data words are read and
more pixels are displayed. The normal resolution of 640 or 320 points

per line can thus be changed by varying these values. If the data fetch

. start is set below $30, the bit plane DMA uses the cycles normally
reserved for the sprite DMA. Depending on the exact value, up to seven

sprites are lost this way. Only sprite 0, which is generally used for the

mouse pointer, cannot be turned off in this manner.

The top line in the figure represents the division of the DMA cycles for

a normal 320-point low-resolution picture. The start of the bit plane

DMA, data fetch start, is at $38, and the end, data fetch stop is $D0.

The data from bit plane number 1 is read in the cycles designated LI,

the bit plane 2 data in L2, and so on. If the corresponding bit planes are

not enabled, theirDMA cycles are also omitted

The second line represents the course of a raster line over time in which

the data fetch points are moved outward. Up to the data fetch start

everything is the same as the top line, but at $28 the bit plane DMA

starts. As a result, sprites 5 to 7 are lost. The data fetch stop position is

moved right to the maximum value of $D8.

The third line shows the distribution of the DMA cycles in a high-

resolution screen, whereby the data fetch values match those of the first

line.

No bit plane DMA accesses occur during the vertical blanking gaps.

83

1. The Amiga Hardware Amiga System Programmer's Guide

The DMA The individualDMA channels are enabled and disabled through a central
control DMA control register, DMACON.

register

DMACON Register addresses $096 (write) and $02 (read)

Bit Name Function (when set)

15 SET/CLR Set/clear bits

14 BBUSY Blitter busy (read only)

13 BZERO Result of all blitter operations is 0 (read only)

12 and 11 Unused
10 BLTPRI BlitterDMA has priority over processor

9 DMAEN Enable all DMA (for bits 0 to 8)

8 BPLEN Enable bit plane DMA

7 COPEN Enable CopperDMA

6 BLTEN Enable blitter DMA

5 SPREN Enable sprite DMA

4 DSKEN Enable diskDMA

3-0 AUDxEN Enable audio DMA for sound channel x (the
bit number corresponds to the number of the

sound channel).

The DMACON register is not written like a normal register. Bits can

only be set or cleared. This is determined by bit 15 in the data word
written to DMACON. If this bit is 1, all set bits of the data word are

also set in DMACON. If bit 15 is 0, all set bits are cleared in the
DMACON register. The remaining bits in DMACON are not affected.

Bit 9, designated as DMAEN is something of a main switch. If it is 0,
all DMA channels are inactive, regardless of bits 0 to 8. If DMA is

enabled, the bit for the appropriate DMA channel must be set and the

DMAEN bit must be set Here is an example:

Only the bit plane DMA is enabled (BPLEN=1), but without the

DMAEN bit. The value of the DMACON register is thus $0100. Now

you want to enable the disk DMA. DSKEN and DMAEN must be set

and BPLEN cleared

MOVE.W #$0100,$DFF096 ; clears the BPLEN bit (SET/CLR = 0)

MOVE.W #$8210,$DFF096 ; set DSKEN and DMAEN (SET/CLR = 1)

TheDMACON register now contains the desired value of $0210.

Bits 13 and 14 can only be read. They supply information about the

various states of the blitter, these are covered in the blitter section.

Bit 10 controls the priority of the blitter over the processor. If it is set,

the blitter has absolute priority over the 68000. This can go so far that

the processor may have no access at all to the chip registers or to the

chip RAM during the blitter operation. If it is cleared, the processor

gets every fourth even bus cycle from the blitter. This prevents the pro

cessor from being held up when it is executing an operating system

routine or a program in the fast RAM which wants to access the chip

RAM.

84

Abacus 1.5 Programming the hardware

Reading the

current beam

position

Since all DMA timing is oriented according to the position within a

raster line, it is sometimes useful to know where the electron beam is

currently located. Agnus has an internal counter which contains the

horizontal and vertical screen position. Two registers allow the proces

sor access to this counter

VHPOS $006 (read VHPOSR) and $02C (write VHPOSW)

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function: V7 V6 V5 V4 V3 V2 VI V0 H8 H7 H6 H5 H4 H3 H2 HI

VPOS $004 (read VPOSR) and $02A (write VPOSW)

Bit no.:

Function:

15

LOF

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V8

The bits designated HI to H8 represent the horizontal beam position

and they correspond directly to the numbers for the individual bus cycles

in Figure 1.5.2.4 and thus have an accuracy or two low-resolution

pixels or four high-resolution pixels. The value for the horizontal posi

tion can vary between $0 and $E3 (0 to 227). The horizontal blanking

gap falls in the range from $F to $35.

The bits for the vertical position, the current screen line, are divided

between two registers. The lower bits V0 to V7 are in VHPOS, while

the uppermost bit, V8, is in VPOS. Together they yield the number of

the current screen.

lines from 0 to 312 are possible. The vertical blanking gap (the screen

is always dark in this range) run from line 0 to 25.

The LOF bit (LOng Frame) indicates whether the current picture is a

long or short frame. This bit is needed only in the interlace mode.

Normally it is 1.

The beam position can also be set, but this capability is rarely needed.

The POS registers have another function in combination with a light-

pen. When the lightpen input of Agnus is activated (see Section 1.S.S)

and the lightpen is held against the screen, they store its position. This

means that their contents are frozen as soon as the lightpen detects the

electron beam moving past its tip. The counters are released again at the

end of the vertical blanking gap, line 26. The following procedure must

be used to read the lightpen position:

• Wait for line 0 (start of the vertical blanking gap). This can be

easily done by means of the vertical blanking interrupt.

• Read the two registers.

If the vertical position is between 0 and 25 (within the vertical blanking

gap), no lightpen signal was received. If the value is outside this range,

it represents the position of the lightpen.

85

1. The Amiga Hardware Amiga System Programmer's Guide

At the conclusion of this section there is some information concerning

the refresh cycles:

Agnus possesses an integrated 8-bit refresh counter. It can be written

through register $28 (Careful! The memory contents can be lost this

way!). At the start of each raster line, Agnus places four refresh

addresses on the chip RAM address bus. This means the contents of

each memory row are refreshed every four milliseconds.

While the row address is being output on the chip RAM address bus,

Agnus places the addresses of certain strobe registers on the register

address bus. These strobe signals are used to inform the other chips,

Denise and Paula, the start of a raster line or a picture. This is necessary

because the counter for the screen position is inside Agnus. There are

no lines for transmitting the synchronization signals to the other chips.

There are four strobe addresses:

Strobe Addr Chip Function

addresses: $38 D Vertical blanking gap of a short frame

$3A D Vertical blanking gap

$3C D P This strobe address is created in each raster line

outside the vertical blanking gap

$3E D Marker for a long raster line (228 cycles)

During the first refresh cycle, one of the three strobe addresses above is

always addressed. Normally this is $3C, and $38 or $3A within the
vertical blanking gap, depending on whether it is a short or long frame.

The situation is as follows with the fourth address: A raster line has a

purely computational length of 227.5 bus cycles. But since there are no

half-cycles, lines alternate between 227 and 228 bus cycles. The strobe

address $3E signals the 228-cycle-long lines and is created during the

second refresh cycle.

1.5.3 Interrupts

Almost all VO components of the custom chips and the two CIA's can

generate an interrupt. A special circuit in Paula manages the individual
interrupt sources and creates the interrupt signals for the 68000. The

processor's autovectors are used, levels 0 to 6. The non-maskable inter

rupt (NMI) level 7 isn't used. The two registers are the interrupt request

register (INTREQ) and the interrupt mask register (INTENA, INTerrupt

ENAble). The assignment of the bits in the two registers is identical.

86

Abacus 1.5 Programming the hardware

Interrupt Register addresses: INTREQ »$09C (write)
register layout INTREQR = $01E(read)

INTENA =$09A (write)

INTENAR = $01C(read)

FunctionBit

IS

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Name

SET/CLR

INTEN

EXTER

DSKSYN

RBF

AUD3

AUD2

AUDI

AUDO

BUT

VERTB

COPER

PORTS
SOFT

DSKBLK

TBE

IL

(6)
6

5

5

4

4

4

4

3

3

3

2

1

1

1

Write/read (see DMACON register)

Enable interrupts

Interrupt from CIA-B or expansion port

Disk sync value recognized

Serial receive buffer full

Output audio data channel 3

Output audio data channel 2

Output audio data channel 1

Output audio data channel 0
Blitter ready

Start of the vertical blanking gap reached

Reserved for the Copper intemipt

Interrupt from CIA-A or the expansion port

Reserved for software interrupts

DiskDMA transfer done

Serial transmit buffer empty

The lower thirteen bits stand for the individual interrupt sources. The

CIA interrupts are combined into a single interrupt. The bits in the

DMAREQ register indicate which interrupts have occurred. A bit is set

if the corresponding interrupt has occurred. In order to generate a

processor interrupt, the corresponding bit must be set in the DMAENA

register and the INTEN bit must also be set. The INTEN bit thus acts

as the main switch for the remaining 14 interrupt sources which can be

turned on or off with the individual bits of the INTENA register. Only

when INTEN is 1 can any interrupts be generated.

If both the INTEN bit and the two corresponding bits in the INTENA

and INTREQ registers are set, a processor interrupt is generated. The

corresponding autovector numbers are listed in the IL (Interrupt Level)

column in the table. Here are the addresses of the seven interrupt

autovectors:

Vector no.

25

26

27

28

29

30

(31

Address (Dec/hex)

100/ $64

104 / $68

108 / $6C

112/$70

116/$74

120/$78

124 / $7C

Autovector level

Autovector level 1

Autovector level 2

Autovector level 3

Autovector level 4

Autovector level 5

Autovector level 6

Autovector level 7)

As you can see, the interrupts which require faster processing are given

higher interrupt levels.

87

1. The Amiga Hardware Amiga System Programmer's Guide

procedure described for the DMACON registers with a SET/CLR bit

INTREQ After processing an interrupt the bit which generated it must be reset in
register the INTREQ register. In contrast to the CIA interrupt control registers,

the bits in the INTREQ register aren't automatically cleared on reading.

Setting a bit in the INTREQ register with a MOVE command has the
same effect as if the corresponding interrupt had occurred. This is how a

software interrupt is created, for example. The Copper can also create its

own interrupt only by writing into INTREQ.

One peculiarity is bit 14 in the INTREQ register which has no specific
function there as it does in ESfTENA. But when it is set by writing to
INTREQ and INTEN in the INTENA register is high, a level 6 inter

rupt is generated.

On each interrupt from CIA-A, bit 3 in the DMAREQ register is set.
For CIA-B this is bit 13. The interrupt source in the corresponding CIA
must be determined by reading the interrupt control register of the CIA.

The interrupts no. 3 and 13 can also be generated by expansion cards on

the expansion port

Interrupt bit 5 indicates the vertical blanking interrupt This occurs at
the start of each video frame at the start of the vertical blanking gap

(line 0), and thus SO times per second.

The remaining interrupts are handled in the appropriate sections.

1.5.4 The Copper coprocessor

MOVE

The Copper is a simple coprocessor. It has the task of writing certain

values into various registers of the custom chips. These are defined

points in time. More accurately, the Copper can change the contents of

some registers at certain screen positions. It can thus divide the screen

into different regions which can then have different colors and resolu

tions. This capability is used to implement multiple screens, for exam

ple.

The Copper is designated a coprocessor because it, like a real processor,

has a program which is stored in memory and it executes this program

command by command. The Copper recognizes only three different

commands, but they are quite versatile:

The MOVE command writes an immediate value into a custom-chip
register.

88

Abacus 1,5 Programming the hardware

WAIT

SKIP

The Copper

registers:

Copper

registers are

write-only

registers

TheWATTcommand waits until the election beam has reached a certain
screen position.

The SKIP command skips the next command if the electron beam has
already reached a certain screen position. This allows conditional
branches to be built into the program.

A Copper program is called a Copper list In it the commands come
one after ther other, whereby each command always consists of two
words. Example:

Wait (XI,Yl) ; waits until the screen position XI,Yl is

; reached

Move #0,$180 ; writes the value 0 into the background

; register

Move #9,$181 ; writes the value 1 into color register 1

Wait <X2,Y2) ; waits until the screen position X2,Y2 is

; reached

etc.

The Copper list alone is not sufficient to operate the Copper. Some

registers are necessary, which contain the necessary parameters for the
Copper.

Reg. Name Function

$080 COP1LCH

$082 COP1LCL

$084 COP2LCH

$086 COP2LCL

$088 COPJMP1

$08A COPJMP2

$02E COPCON

These two registers together contain the

18-bit address of the first Copper list

These two registers together contain the

18-bit address of the second Copper list

Loads the address of the first Copper list into the

Copper program counter

Loads the address of the second Copper list into the

Copperprogram counter

This register contains only one bit (bit 0). If it is

set, the Copper can also access the registers from

$040 to $07E (these registers belong to the blitter).

The two COPxLC registers contain the address of a Copper list Since

this list is 19 bits long, two registers are needed per address. As

described in Section 1.5.2, they can be written together with one

MOVE.L command. The Copper lists must, like all other data for the

custom chips, lie within the 512KB RAM chip.

The Copper uses an internal program counter as a pointer to the current

command. It is incremented by two each time a command is processed.

To make the Copper start at a given address, the start address of the

Copper list must be transferred to the program counter. The COPJMPx

registers are used for this. They are strobe registers, meaning that a

write access to one of them triggers an action in the Copper—they are

not used to store actual values. Thus the value written to them is com

pletely irrelevant.

89

1. The Amiga Hardware Amiga System Programmer's Guide

On the Copper these two registers cause the contents of the corres

ponding COPxLC registers to be copied into the program counter. If a

write access is made to COPJMP1, the address in COPILC is copied
into the program counter, which causes the Copper to execute the pro

gram at that address. The same holds for COPJMP2 and COP2LC.

At the start of the vertical blanking gap, line 0, the program counter is
automatically loaded with the value COPILC. This causes the Copper

to execute the same program for every picture.

The commands

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Lege

MOVE

BWl

X

X

X

X

X

X

X

RA8

RA7

RA6

RA5

RA4

RA3

RA2

RA1

0

n& x
RA

DW

VP

VM

HP

HM

BFD

BW2

DW15

DW14

DW13

DW12

DW11

DW10

DW9

DW8

DW7

DW6

DW5

DW4

DW3

DW2

DW1

DWO

WATT

BWl

VP7

VP6

VPS

VP4

VP3

VP2

VP1

VPO

HP8

HP7

HP6

HP5

HP4

HP3

HP2

1

BW2

BFD

VM6

VM5

VM4

VM3

VM2

VM1

VMO

HM8

HM7

HM6

HM5

HM4

HM3

HM2

0

SKIP

BWl

VP7

VP6

VP5

VP4

VP3

VP2

VP1

VPO

HP8

HP7

HP6

HP5

HP4

HP3

HP2

1

BW2

BFD

VM6

VM5

VM4

VM3

VM2

VM1

VMO

HM8

HM7

HM6

HM5

HM4

HM3

HM2

1

This bit is unsed. Should be initialized to 0.

Regisfjer address

Data word

Vertical beam position

Vertical mask bits

Horizontal beam position

Horizontal mask bits

Blitter finish disable

The MOVE The MOVE command is indicated by a 0 in bit 0 of the first command
command word. With this command it is possible to write an immediate value to

a custom-chip register. The register address of die desired register comes

from die lower 9 bits of the first data word. Bit 0 must always be 0 (is

already 0 for the register addresses because the registers lie only on even

addresses). The second command word contains the data byte to be writ

ten to the register.

There are some limitations regarding the register address. Normally the

Copper cannot affect the registers in the range from $000 to $07F. If

the lowest (and only) bit in the COPCON register is set, then the

Copper can access the registers in the range from $040 to $07F. This

allows the Copper to influence the blitter. Access to the lowest regis

ters ($000 to $03F) is never allowed.

90

Abacus L5 Programming the hardware

The WAIT The WATT command is indicated by a 1 in bit 0 of the first command

command word and a 0 in bit 0 of the second. It instructs the Copper to hold fur

ther execution until the desired beam position is reached. If it is already

greater than that specified by the WATT command when the command is

executed so that the beam is already past the specified position, the

Copper continues with the next instruction immediately.

This position can be set separately for the vertical lines and horizontal

rows. Vertically the resolution is one raster line. But since there are

only eight bits for the vertical position and there are 313 lines, the

WAIT command cannot distinguish between the first 256 and the

remaining 57 lines. The lowest 8 bits are the same for both line 0 and

line 256. To wait for a line in the lower range, two WATT commands

must be used.

1. WATT for line 255

2. WATT for the desired line, ignoring the ninth bit

Horizontally there are 112 possible positions, since the two lower bits

of the horizontal position, HPO and HP1, cannot be specified. The com

mand word of the WATT command contains only the bits HP2 to HP8.

This means that the horizontal coordinate of a WAIT command can

only be specified in steps of four low-resolution pixels.

The second command word contains mask bits. These can be used to

determine which bits of the horizontal and vertical position are actually

taken into account in the comparison. Only the position bits whose

mask bits are set are regarded. This opens up many possibilities:

Wait for vertical position $0F and vertical mask $0F

causes the WATT condition to be fulfilled every 16 lines, namely when

ever the lower four bits are all 1, since bits 4 to 6 are not taken into

account in the comparison (mask bits 4 to 6 are at 0). The seventh bit

of the vertical position cannot be masked. Thus the example above

works only in the range of lines from 0 to 127 and 256 to 313.

The BFD (Blitter Finish Disable) bit has the following function: If the

Copper is used to start 2l blitter operation, it must know when the

blitter finishes this operation. If the BFD is cleared, the Copper waits at

any WATT command until the blitter is done. Then the wait condition

is checked. This can be disabled by setting the BFD bit, causing the

Copper to ignore the blitter status. If the Copper does not affect any of

the blitter registers, this bit is set to 1.

91

1. The Amiga Hardware Amiga System Programmer's Guide

Construction

of a Copper

list

The Copper

interrupt

The SKIP The SKIP command is identical in construction to the WATT command.

command Bit 0 of the second command word is set in order to distinguish it from

the WATT command. The SKIP command checks to see if the actual

beam position is greater than or equal to that given in the command

word. If this comparison is positive, the Copper skips the next com

mand. Otherwise it continues execution of the program with the next

command. The SKIP command allows conditional branches to be con

structed. The command following SKIP can be aMOVE into one of the

COPJMP registers, causing ajump to be made based on the beam posi

tion.

A simple Copper list consists of a sequence of WATT and MOVE

commands, and a few SKIP commands. Its start address is found in

COPLC1. A trick must be used to end the Copper list After the last

instruction comes a WATT command with an impossible beam posi

tion. This effectively ends the processing of the Copper list until it is

restarted at the start of a new picture. WATT ($0,$FE) fulfills this con

dition, because a horizontal position greater than $E4 isn't possible.

As you know, there is a special bit in the interrupt registers for the

Copper interrupt. This interrupt can be generated with a MOVE com

mand to the INTREQ register.

MOVE #$8010,INTREQ ; set SET/CLR and COPPER

Any other bit in this register can be affected the same way, but bit 4 is

provided especially for the Copper.

A Copper interrupt can be used to tell the processor that a certain screen

position has been reached. This allows what are called raster interrupts

to be programmed, that is, the interruption of the processor in a certain

screen line (and column).

The Copper The Copper fetches its commands from memory through its own DMA

DMA channel. It uses the even bus cycles and has precedence over the blitter

and the 68000. Each command requires two cycles since two command

words must be read. The WATT command requires an additional cycle

when the desired beam position is reached. The Copper leaves the bus

free during the wait phase of aWATT command

The COPEN bit in the DMACON register is used to turn the Copper

DMA on and off. If this bit is cleared, the Copper releases the bus and

does not execute any more commands. If it is set, it starts its program

execution at the address in its program counter. It is therefore absolutely

necessary to supply this with a valid address before starting the Copper

DMA. A Copper running in an unknown area of memory can crash the

system. The usual initialization sequence for the Copper looks like

this:

92

Abacus 1.5 Programming the hardware

LEA $DFF000,A5 ; load base address into

Register A5

MOVE.W #$0080,DMACON (A5) ; copper DMA off

MOVE.L #copperlist,COPlLCH (A5) ; set address of the copper

Jlist

MOVE.W #0,COPJMP1 (A5) ; transfer this address into

;the copper' s program

Jcounter

MOVE.W #$8080,DMACON (A5) ; enable copper DMA

Finally, here is an example program. It uses two WATT commands and

three MOVE commands to display black, red and yellow bars on the
screen. It can be created with a simple Copper list and is a good exam

ple. Enter the program with a standard assembler for the Amiga (such as
AssemPro),

;*** Example for a simple Copperlist ***

/CustomChip-Register

INTENA = $9A ;Interrupt-Enable-Register (write)

DMACON = $96 /DMA-control register (write)

COLOR00 - $180 ;Color palette register 0

/Copper Register

COP1LC = $80 /Address of 1. Copper list

COP2LC - $84 /Address of 2. Copper list

COPJMP1 = $88 /Jump to Copper list 1

COPJMP2 = $8a /Jump to Copper list 2

/CIA-A Port register A (Mouse key)

CIAAPRA - $BFE001

/Exec Library Base Offsets

OpenLibrary - -30-522 /LibName,Version/al,dO

Forbid - -30-102

Permit - -30-108

AllocMem = -30-168 /Byte Size, Requirements/d0,dl

FreeMem = -30-180 /Memory Block, Byte Size/al,d0

/graphics base

StartList = 38

/other Labels

Execbase = 4

Chip = 2 /request Chip-RAM

/*** Initialize-programm ***

/Request memory for Copperlist

93

1. The Amiga Hardware Amiga System Programmer's Guide

Start:

move.l Execbase,a6

moveq #Clsize,dO /Set Parameter for AllocMem

moveq #chip,dl ;ask for Chip-RAM

jsr AllocMem(a6) /request memory

move.l dO,CLadr /Address of the RAM-area memory

beq.s Ende /Error! -> End

/copy Copperlist to CLadr

lea CLstart,aO

move.l CLadr,al

moveq #CLsize-l,dO /set loop value

CLcopy:

move.b (aO)+, <al)+ /copy Copperlist Byte for Byte

dbf dO,CLcopy

/*** Main programm ***

jsr forbid(a6) /Task Switching off

lea $dff000,a5 /Basic address of the Register

/to A5

move.w #$03aO,dmacon(a5) /DMA offn

move.l CLadr,copllc(a5) /Address of the Copperlist to

/COP1LC

clr.w copjmpl(a5) /Load copperlist in program

/counter

/Switch Copper DMA

move.w #$8280,dmacon(a5)

/wait for left mouse key

Wait: btst #6,ciaapra /Bit test

bne.s Wait /done? else continue.

.*** End programm ***

/Restore old Copper list

move.l #GRname,al /Set parameter for OpenLibrary

clr.l dO

jsr OpenLibrary(a6) /Graphics Library open

move.l dO,a4 /Address of GraphicsBase to a4

move.l StartList(a4),copllc(a5) /load address of

/Startlist

clr.w copjmpl(a5)

move.w #$83eO,dmacon(a5) /all JMA on

jsr permit(a6) /Task-Switching on

/Free memory of Copperlist

move.l CLadr,al /Set parameter for FreeMem

moveq #CLsize,dO

94

Abacus 1.5 programming the hardware

jsr FreeMem(a6) /memory freed

Ende: clr.l dO /error flag erased

rts ;end program

/Variables

CLadr: del 0

/Constants

GRname: dc.b "graphics.library",0

align /even for other assemblers

/Copperlist

CLstart:

dew colorOO,$0000 /Background color black

dew $640f,$fffe /On line 100 change to

dew color00,$0f00 /Red. Switch

dew $BE0f,$fffe /Line 190 to

dew colorOO, $0fb0 /Gold

dew $fffff$fffe /Impossible Position: End of

/the Copperlist

CLend:

CLsize = CLend - CLstart

end

/End of program

This program installs the Copper list and then waits until the left
mouse button is pressed. Unfortunately, it isn't as easy to do as it
sounds.

First, you need memory in which to store the Copper list Like all data

for the custom chips, it must be in the chip RAM. Since you can't be
sure whether the program is actually in the chip RAM, it is necessary

to copy the Copper list into the chip RAM. In a multi-tasking operat

ing system like that of the Amiga, you can't just write something into

memory anywhere you feel like it, you have to request the memory.

This is done in the program with the AllocMem routine. This returns

die address of the requested chip RAM in DO. The Copper list is then

copied into memory at this address.

Next, the task switching is disabled by a call to Forbid so that the

Amiga processes only your program. This prevents your program from

being disturbed by another.

Finally, the Copper is initialized and started.

After this, the program tests for the left mouse button by reading the

appropriate bit of CIA-A (see Section 1.2.2).

If the mouse button is pressed, the processor exits the wait loop.

95

1. The Amiga Hardware Amiga System Programmer's Guide

To get back to the old display, a special Copper list is loaded into the
Copper and started. This Copper list is called the startup Copper list
and it initializes the screen. Its address is found in the variable area for
the part of the operating system responsible for the graphics functions.

At die end, multi-tasking is re-enabled with Permit and the occupied

memory is released again with FreeMem.

This program contains a number of operating system functions which

you are probably not familiar with yet. Unfortunately this cannot be

avoided if you want to make the program work correctly. But it doesn't
matter if you don't understand everything yet. We are discussing the
Copper in this section, and this part of the program should be under
standable. In the later sections of this book you'll discover the secrets

of the operating system and its routines. Enter this example and exper

iment with the Copper list Change the WAIT command or add new

ones. Those who are interested can also experiment with a SKIP com

mand

One more thing about the Copper list: The two WATT commands con
tain $E as the horizontal position. This is the start of the horizontal
blanking gap. This way the Copper performs the color switch outside
the visible area. If 0 is used as the horizontal position, the color
switching can be seen at the extreme right edge of the screen.

Figure 13.4.1

Address Command

n

n+2

MOVE

WAIT

#blackr

0,100

Copper list

Copper active

COLOR00

MOVE #red,COLOR00 V
WAIT 0,190 ~

n+4

n=6

n+8 MOVE #gold,COL0R00

n+10 WAIT 254,255

Line

100

190

ElRed

Gold

1.5.5 Playfields

The screen output of the Amiga consists of two basic elements: sprites

and playfields. In this section we'll discuss the structure and program

ming of all types ofplayfields. The sprites are handled in Section 1.5.6.

96

Abacus 1-5 Programming the hardware

The various

display

options

Figure 13J.1

The playfield is the basis of the normal screen display. It consists of at

least one and a maximum of six bit planes. (The construction of a bit

plane was explained in Section 1.5.2.) A playfield is something like a

graphic screen which is composed of a variable number of individual

memory blocks, die bit planes. The Amiga offers a large number of

different possibilities for displaying playfields:

• Between 2 and 4096 simultaneous colors in one picture

Resolutions of 16 by 1 to 704 to 625 pixels

• Two completely independent playfields are possible

• Smooth scrolling in both directions

All of these capabilities can be grouped into two groups.

1. The combination of bit planes to achieve the color of a single

pixel (the display of the bit pattern from the bit plane on the

screen).

2. Determining the form, size and position structure of the play-
fields).

By using 1 to 6 bit planes, each point can be represented by as many

bits as you like. This value must then be converted into one of 4096

colors since each pixel on the screen can naturally have only one color.

The Amiga creates its colors by mixing the three component colors red,

green and blue. Each of these three components can have 16 different

intensity levels. This results in 4096 color shades (16x16x16 = 4096).

Four bits are needed per component to store the color values, or 12 bits

per color.

If you wanted to assign each pixel one of 4096 colors, you would need

12 bits per pixel. But a maximum of 6 bits is possible. Therefore the

six bits must be converted into one of the 4096 possible colors for the

visible point

1st color choice from color table

5-bit number from bit planes

pointer to color table

Color table

°l I I I I I I I Bit plane 5

COLOR 00

COLOR 01

COLOR 02

COLOR 03

COLOR 04

COLOR 05

COLOR 06

COLOR 07

0| Bit plane 4

MINIM | Bit plane 3

°l I I I I I I I Bit plane 2

11 I I I Bit plane 1

Pixel appears

In COLOR 05

MINI
Visible

ecreen

97

1. The Amiga Hardware Amiga System Programmer's Guide

Structure of a

table element:

The extra

half-bright

mode

A color palette or color table is used to do this. On the Amiga this

contains 32 entries, each of which can hold a 12-bit color value. The

value of the first color register COLOR00 is used for both the back

ground color and the border color. The color palette registers 0 to 32

(COLOR00 to COLOR31) are write-only:

Register addr.

$180

$182

$1BE

Color palette register

COLOR00

COLOR01

etc.

COLOR31

Bit:

COLORxx:

R0-R3

G0-G3

BOB3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x X R3 R2 Rl RO G3 62 61 GO B3 B2 Bl BO

Four-bit value for the red component

Four-bit value for the green component

Four-bit value for the blue component

The value obtained from the bit planes is used as a pointer to a table

element. Since there are only these 32 color table registers, a maximum

of 5 bit planes can be combined in this mode. The bit from the bit

plane with the lowest number supplies the LSB of this entry, and the

bit plane with the highest number supplies the MSB.

This method of obtaining the color from a table allows a maximum of

32 colors in a picture, but these colors can be selected from a total of

4096. In high-resolution mode only 4 planes can be active at one time.

Here 16 colors is the limit In this display mode it doesn't matter how

many planes are combined together. Some color registers remain un
used:

of bit planes Colors Color registers used

1

2

3

4

5

2

4

8

16

32

COLOR00-COLOR01

COLOR00-COLOR03

COLOR00-COLOR07

COLOR00-COLOR15

COLOR00-COLOR31

In the lowest resolution a maximum of 6 bit planes can be used This

yields a value range of 26 or 0 to 63. There are, however, only 32 color

registers available. The extra half-bright mode uses a special technique

to get around this. The lower five bits (bits 0 to 4 from planes 1 to 5)

are used as the pointer to a color register. The contents of this color

register is output directly to the screen if bit 5 (from bit plane 6) is 0. If

this bit is 1, the color value is divided by 2 before it is sent to the

screen.

Dividing by two means that the values of the three color components

are shifted 1 bit to the right, which corresponds to a division by two.

Since the individual components are thus only half as large, the same

color is displayed on the screen, but only half as bright (thus the name).

98

Abacus t.5 Programming the hardware

Example:

Bitno. 5 4 3 2 10

Value from the bit planes: 10 0 10 0

yields table entry no, 8 (binary 00100 is 8)

COLOR08 contains the following value (color: orange):

R3

1

R2

1

Since bit 5

R3

0

R2

1

Rl

1

= 1>

Rl

1

R0

0

G3

0

G2

1

Gl

1

the values are shifted by

R0

1

G3

0

G2

0

Gl

1

GO

0

lbit:

GO

1

B3

0

B3

0

B2

0

B2

0

Bl

0

Bl

0

BO

1

BO

0

This value still corresponds to orange, but now it's only half as bright

By selecting appropriate color values for the 32 registers, it is possible

for each pixel to take on one of 64 possible colors on the extra half-

bright mode. The color registers store the bright colors, which can then
be dimmed by setting bit 5.

This mode allows all 4096 colors to be used in a picture. Like the extra

half-bright mode, it can only be used in low-resolution mode since it

requires all 6 bit planes. In this mode we make use of the fact that the

colors in a normal picture seldom make radical changes from pixel to

pixel. Usually smooth transitions from bright to dark colors or vice
versa are needed.

The hold-and- In the hold.-and-modify mode, called HAM for short, the color of the
modify mode previous pixels is modified by the one which follows it. This makes

the fine color levels desired possible, for example by incrementing the

blue component by one step with each successive pixel. The limitation

is that only one component can be affected so that from one pixel to the

next, either the red, green or blue value can change, but never more than

one at a time. But to get a smooth transfer from dark to light, all three

color components must change for many color mixes. In the HAM

mode this can be accomplished only by setting one of the components

to the desired value at each pixel. This requires three pixels.

By comparison, the color of a pixel can also be changed directly by

fetching one of 16 colors from the color table.

How is the value from the bit planes interpreted in the HAM mode?

The upper two bits (bits 4 and 5 from bit planes 5 and 6) determine the

use of the lower four bits (bit planes 1 to 4). If bits 4 and 5 are 0, the

remaining four bits are used as a pointer into the color palette registers

as usual. This allows 16 colors to be selected directly. With a com

bination of bits 4 and 5 which are not 0, the color value of the last

pixel is used (to the left of the current pixel), two of the three color

components remains the same, while the third is replaced by the lower

99

1. The Amiga Hardware Amiga System Programmer's Guide

four bits of the current pixel. The top two bits determine the selection

of the three color components.

This all sounds more complicated than it is. The following table

explains the use of the various bit combinations:

Bit no:

5 4 1 0 Function

0 0 C3 C2 Cl

0 1 B3 B2 Bl

10 R3 R2 Rl

11 G3 G2 Gl

CO Bits CO to C3 are used as a pointer to

one of the color registers in the range

COLOROO to COLOR15. This is iden

tical to the normal color selection.

BO The red and green values of the last (left)

pixel are used for the current pixel. The

old blue value is replaced by the value

in BO to B3.

RO The blue and green values of the last

(left) pixel are used for the current pixel.

The old red value is replaced by the

value in BO to B3.

GO The blue and red values of the last (left)

pixel are used for the current pixel. The

old green value is replaced by the value

in BO to B3.

The border color (COLOROO) is used as the color of the previous pixel

for the first pixel on a line.

The dual

playfield mode

Figure J.5.5.2

2nd color choice in Dual Playfield mode

Value from odd bit plane

[oTTT -T

Color table
Playfield 1 color
from COLOR 01

Priority switch* If

no transparent

playfield exists,

the color with

100

Abacus 1.5 Programming the hardware

The previously described modes use only one playfield The dual play-
field mode allows two completely independent playfields to be displayed

simultaneously. It's like there are two screens, superimposed on each
other on the same monitor. They can (almost) be used completely inde

pendent ofone another.

This is especially interesting for games. For example, a telescope effect

can be produced very easily. The front playfield is filled with black

points, all except for a hole in the middle through which a section of

the second playfield can be seen.

Each of the two playfields gets half of the active bit planes. Playfield 1
is formed from the odd planes, and playfield 2 from the even ones. If an

odd number of bit planes is being used, playfield 1 has one more bit

plane available to it than playfield 2.

The color selection in the dual playfield mode is performed as usual:

The value belonging to a pixel from all of the odd bit planes (playfield

1) or the even planes (playfield 2) is used as a pointer to an entry in the

color table. Since each playfield can consist of a maximum of three

planes, a maximum of eight colors are possible. For playfield 1, the

lower eight entries of the color table are used (COLOR00 to

COLOR07). For playfield 2, an offset of 8 is added to the value from

the bit planes, which puts its colors in positions 8 to IS (COLOR08 to
COLOR15).

If the pixel has a value of 0, its color is not fetched from COLOR00 (or

COLOR08) as usual, it is made transparent. This means that screen
elements lying behind it can be seen. This can be the other playfield,

sprites or simply the background (COLOR00).

Hie dual playfield mode can also be used in the high-resolution mode.

Each playfield has only four colors in this mode. The division of the

color registers doesn't change, but the upper four color registers of each

playfield are unused (playfield 1: COLOR04 to 07, playfield 2:
COLOR12tol5).

Division of

the bit planes

Bit planes

1

2

3

4

5

6

Planes in plavfield 1

Plane 1

Plane 2

Planes 1 and 3

Planes 1 and 3

Planes 1,3 and 5

Planes 1,3 and 5

Planes in plavfield 2

none

Plane 2

Plane 2

Planes 2 and 4

Planes 2 and 4

Planes 2,4 and 6

101

1. The Amiga Hardware Amiga System Programmer's Guide

Color selection in the dual playfield mode:

Construction

of the

playfields

Playfield 1

Planes 5, 3,1

000

001

010

on

100

101

110

111

As mentioned,;

Color reg.

Transparent

COLOR01

COLOR02

COLOR03

COLOR04

COLOR05

COLOR06

COLOR07

a playfield consists

What do these bit planes look like?

were conceived as continuous areas

Planes 6,'

000

001

010

on

100

101

110

111

of a given

In Section

of memory,

Playfield 2

\,2 Color reg.

Transparent

COLOR09

COLOR10

COLOR11

COLOR12

COLOR13

COLOR14

COLOR15

number of bit planes.

1.5.2 we said that they

, whereby a screen line

Setting the

screen size

was represented by a number of words depending on the screen width. In

a normal case this is 20 words in the lowest resolution (320 pixels

divided by 16 pixels per word) and 40 (640/16) in the high resolution.

The following steps are needed to determine the exact construction of

the playfield:

• Define the desired screen size

• Set the bit plane size

• Select the number of bit planes

• Initialize the color table

• Set the desired mode (hi-res, lores, HAM, etc.)

Construct the Copper list

Initialize the Copper

Activate the bit plane and CopperDMA

The Amiga allows the upper left corner and the lower right corner of the

visible area of the playfield to be set anywhere. This allows both the

picture position and size to be varied. The resolution is one raster line

vertically and one low resolution pixel horizontally. Two registers con

tain the values. DIWSTRT (Display Window STaRT) sets the horizon-

tal and vertical start positions of the screen window, that is, the line and
column where the display of the playfield begins.

DIWSTOP (Display Window STOP) contains the end position +1.

This refers to the line/column after the playfield. If the playfield extends

up to line 250,251 must be given as the DISTOP value.

The border color is displayed outside the visible area (this corresponds

to the background color and comes from the COLOR00 register).

102

Abacus 1,5 Programming the hardware

DIWSTRT $08E (write-only)

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

V7 V6 V5 V4 V3 V2 VI V0 H7 H6 H5 H4 H3 H2 HI HO

DIWSTOP $090 (write-only)

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

V7 V6 V5 V4 V3 V2 VI V0 H7 H6 H5 H4 H3 H2 HI HO

The start position stored in DIWSTRT is limited to the upper left
quadrant of the screen, lines and columns 0 to 255, since the missing
MSB's, V8 and H8, are assumed to be 0. The same applies to the hori
zontal end position, except that here H8 is assumed to 1, so that the
horizontal position lies in the range 256 to 458. A different method is
used for the vertical end position. Positions both less and greater than
256 should be possible. Thus the MSB of the vertical position, V8, is
created by inverting the V7 bit This makes an end position in the range

of lines 128 to 312 possible. For end positions from 256 to 312, one
sets V7 and this V8 to 1. If V7 is 1 and thus V8 Opposition between
128 and 255 is achieved.

DIWSTOP and The normal screen window has an upper left corner position of hori-
DISTRT zontal 129 and vertical 41. The lower right corner lies at 448,296, so

(hat DIWSTOP must be set to 449, 297. The corresponding DISTRT
and DIWSTOP values are $2981 and $29C1. With these values the
normal PAL Amiga screen of 640 by 256 pixels (or 320 by 256) is
centered in the middle of the screen.

Why isn't the whole screen area used? There are several reasons for this.
First, a normal monitor does not display the entire picture. Its visible
range normally begins a few columns or lines after the blanking gap. In

addition, a picture tube is not rectangular. If the screen window was set

as high and wide as the monitor tube, the corners would hide part of the

picture.

Another limitation on the DIWSTRT and DIWSTOP values is imposed

by the blanking gaps. Vertically this is in the range from lines 0 to 25.

This limits the visible vertical area to lines 26 to 312 ($1A to $138).

The horizontal blanking gap lies between columns 30 and 106 ($1E

$6A). Horizontal positions from 107 ($6B) on are possible.

After the position of the screen window has been set, the start and end

of the bit plane DMA must be set. The data must be read from the bit

planes at the right times so that the pixels appear on the screen at the

desired time. Vertically this is no problem. The screen DMA starts and

ends in the same line as the screen window set with DIWSTRT and

DIWSTOP.

Horizontally it is somewhat more complicated. To display a pixel on

the screen, the electronics need the current word from each bit plane.

For six bit planes in the lowest resolution, eight bus cycles are neces

sary to read all of the bit planes. In high resolution there are only four

103

1. The Amiga Hardware Amiga System Programmer's Guide

(Reminder: In one bus cycle, 2 low resolution or 4 high resolution

pixels are displayed).

In addition, the hardware needs a half bus cycle before the data can
appear on the screen. The bit plane DMA must therefore start exactly

8.5 cycles (17 pixels) before the start of the screen window (4.5 cycles
or 9 pixels in high-resolution mode, see Figure 1.5.2.3).

The bus cycle of the first bit plane DMA in the line is stored in the
DDFSTRT register (Display Data Fetch STaRT), and that of the last in

DDFTSTOP (Display Data FeTch STOP):

DDFSTRT $092 (write-only)

DDFSTOP $094 (write-only)

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

Function: x x x x x xxxH8H7H6H5H4H3xx

DDFSTRT and The resolution is eight bus cycles in low-resolution mode, whereby H3
DDFSTOP is always 0, and four in high-resolution mode. Here H3 serves as the

lowest bit. The reason for the limited resolution lies in the division of

the bit plane DMA. In low-res mode each bit plane is read once every

eight bus cycles. For this reason, the DDFSTRT value must be an inte
ger multiple of eight (HI to H3 = 0). The same applies to the high-res
mode, except that the bit planes are read every four bus cycles (HI and
H2 = 0). Regardless of the resolution, the difference between DIWSTRT

and DIWSTOP must always be divisible by eight, since the hardware

always divides the lines into sections of 8 bus cycles. Even in high-res

mode the bit plane DMA is performed for 8 bus cycles beyond

DIWSTOP, so that 32 points are always read.

The correct values for DIWSTRT and DIWSTTO are calculated as

follows:

Calculation ofDDFSTRT and DDFSTOP in the low-res mode:

HStart = horizontal start of the screen window

DDFSTRT = (HStart/2 - 8.5) AND $FFF8

DDFSTOP = DDFSTRT + (pixels per line/2 - 8)

This yields $81 for HStart and 320 pixels per line:

DDFSTRT - ($81/2 - 8.5) AND $FFF8 = $38

DDFSTOP » $38 + (320/2 - 8) - $D0

Calculation ofDDFSTRT and DDFSTOP in the high-res mode:

DDFSTRT = (HStart/2 - 4.5) AND $fFFC

DDFSTOP = DDFSTRT + (pixels per line/4 - 8)

104

Abacus 1.5 Programming the hardware

Moving the

screen window

Setting bit

map addresses

This yields $81 for HStart and 640 pixels per line:

DDFSTRT = ($81/2 - 4.5) AND $FFFC = $3C

DDFSTOP = $3C + (640/4 - 8) = $D4

DDFSTRT cannot be less than $18. DDFSTOP is limited to a maxi

mum of $D8. The reasons for this are explained in Section 1.5.2. A

DDFSTRT value less than $28 has no purpose, since the pixels must
then be displayed during the horizontal blanking gap, which is not pos
sible (exception: scrolling). Since the DMA cycles of the bit planes and

the sprites overlap with DDFSTRT positions less than $34, some

sprites may not be visible, depending on the value ofDDFSTRT.

If you want to move the screen window horizontally by means of
DIWSTRT and DDFSTOP, it may occur that the difference between

DIWSTRT and DDFSTRT is not exactly 8.5 bus cycles (17 pixels),

since DDFSTRT can only be set in steps of eight bus cycles. In such a
case a part of the first data word in the invisible area to the left of the

screen window limit disappears. To prevent this, it is possible to shift

the data read before outputting it to the screen so that it matches the

start of the screen window. The section on scrolling explains how this

is done.

The values in DDFSTRT and DDFSTOP determine how many data
words are displayed per line. The start address must now be set for each

bit map so that the DMA controller can find the data. 12 registers con

tain these addresses. A pair of registers, BPLxPTH and BPLxPTL is

used for each bit plane. Together they are referred to simply as BPLxPT

(Bit PLane x PoinTer).

Addr. Name Function

$0E0

$0E2

$0E4

$0E6

$0E8

$0EA

$0EC
$0EE

$0F0

$0F2

$0F4

$0F6

BPL1PTH

BPL1PTL

BPL2PTH

BPL2PTL

BPL3PTH

BPL3PTL

BPL4PTH

BPL4PTL

BPL5PTH

BPL5PTL

BPL6PTH

BPL6PTL

Start address of

bit plane 1

Start address of

bit plane 2

Start address of

bit plane 3

Start address of

bit plane 4

Start address of

bit plane 5

Start address of

bit plane 6

Bits 16-18

Bits 0-15

Bits 16-18

Bits 0-15

Bits 16-18

Bits 0-15

Bits 16-18

Bits 0-15

Bits 16-18

Bits 0-15

Bits 16-18

Bits 0-15

The DMA controller does the following when displaying a bit plane:

The bit plane DMA remains inactive until the first line of the screen

window is reached (DIWSTRT). Now it gets the data words from the

various bit planes at the column stored in DFFSTRT, keeping to the

timing in Figure 1.5.2.3. It uses BPLxPT as a pointer to the data in the

chip RAM. After each data word is read BPLxPT is incremented by one

word. The words read go to the BPLxDAT registers. These registers are

105

1. The Amiga Hardware Amiga System Programmer's Guide

Scrolling and

extra-large

playfields

used only by the DMA channel. When all six BPLxDAT registers have

been provided with the corresponding data words from the bit planes,

the data goes bit by bit to the video logic in Denise, which selects one

of the 4096 colors depending on the mode and then outputs this to the

screen.

When DFFSTOP is reached, the bit plane DMA pauses until

DFFSTRT is on the next line, it repeats the process until the end of the

last line of the screen window (DIWSTOP) is displayed.

The BPLxPT now points to the first word after the bit plane. But since
BPLxPT should point to the first word in the bit plane by the next pic
ture, it must be set back to this value. The Copper takes care of this
quickly and easily. A Copper list for a playfield with 4 bit planes looks

like this:

AddrPlanexH = address of bit plane x, bits 16-18

AddrPlanexL = address of bit plane x, bits 0-15

MOVE #AddrPlanelH,BPLlPTH initialize pointer to bit plane 1

MOVE #AddrPlanelL,BPLlPTL

MOVE #AddrPlane2H,BPLlPTH initialize pointer to bit plane 2

MOVE #AddrPlane2L,BPLlPTL

MOVE #AddrPlane3H,BPLlPTH initialize pointer to bit plane 3

MOVE #AddrPlane3L,BPLlPTL

MOVE #AddrPlane4H,BPLlPTH Jinitialize pointer to bit plane 4

MOVE #AddrPlane4L,BPLlPTL

WAIT ($FF,$FE) ;end of the Copper list (wait for an

Jimpossible screen position)

Resetting the BPLxPT is absolutely necessary. If you don't use a Cop

per list, this must be done by the processor in the vertical blanking

interrupt

The previous playfields were always the same size as the screen. How

ever, it would often be useful to have a large playfield in memory, not

all of which is visible on the screen at one time, but which can be

smoothly scrolled in all directions. This is easily done on the Amiga.

The following sections illustrate this in both the X and Y directions.

106

Abacus 1.5 Programming the hardware

Figure 1.53.3

Extra-tall

playfields and

vertical

scrolling

Extra-wide

playfields and

horizontal

scrolling

Bit plane - Width:40 words; height: 400 lines

n+80

n+160

n+2

n+82

n+162

n+16Q80| n+160821 n+16084|

n+4

n+84

n+164 n+166

BPL*PT=n+164

Modulo=40 bytes (20 words)

Visible screen area:

Width:20 words; height: 200 lines

n+78

n+158

n+238

BPL*PT+80

moves the

visible screen

area 1 line

down

n+31920|

A scroll value from 0 to 15 moves the

visible screen area 0 to 15 pixels to the left

BPL*PT+2 moves the visible screen area 1 word to the right

^Starting address of the bit plane Total size of bit plane: 32,000 bytes

This can be done very easily vertically. The necessary bit planes are
placed in memory as usual, but this time they contain more lines than
the screen. In order to move the screen window smoothly of this tall
playfield, the values of BPLxPT are changed. For example, if you want
to display the areas from line 100 to 356, the BPLxPT must be set to
the first word of the 100th line. With a screen width of 320 pixels each
line occupies 20 words (40 bytes). Multiplies by 100 lines yields an
address of 4000. Add this to the start address of the playfield, and you
have the desired value for BPLxPT. To scroll the playfield in the screen
window, simply change this value by one or more lines with each pic
ture, depending on the scroll speed desired. Since the BPLxPT can only

be changed outside the visible area, a Copper list is used. You can then
change the values in the Copper list and the Copper automatically

writes them into the BPLxPT registers at the right time. You have to

be careful not to change the Copper list while the Copper is accessing

its commands. Otherwise the processor may change one word of the

address while the Copper is reading it and die Copper gets the wrong

Special registers are present for horizontal scrolling and extra-wide play-

fields (all write-only):

$108 BPL1MOD Modulo value for the odd bit planes

$10A BPL2MOD Modulo value for the even bit planes

BPLCON$102

Bit no.: 15-8 7 6 5 4 3 2 10

Function: unused P2H3 P2H2 P2H1 P2H0 P1H3 P1H2 P1H1 P1H0

P1H0-P1H3 Position of the even planes (four bits)

P2H0-P2H3 Position of the odd planes (four bits)

107

1. The Amiga Hardware Amiga System Programmer's Guide

Memory areas The modulo values from the BPLxMOD registers allow (so to speak)
rectangular memory areas. This principle is used often in the Amiga

hardware. Inside a large memory area divided into rows and columns it
allows a smaller area to be defined which possess a certain height and

width. Let's say that the large memory area, in this case our playfield,

is 640 pixels wide and 256 high. This gives us 256 lines of 40 words
each (80 bytes). The smaller area corresponds to the screen window and
has the normal size of 320 by 200 pixels, for only 20 words per line.
The problem is that when a line is output, BPLxPT is incremented by

20 words. In order to get to the next line of your playfield, it must be
incremented by 40 words. After each line, another 20 words must be
added to BPLxPT. The Amiga can take care of (his automatically. The

difference between the two different line lengths is written into the mod
ulo register. After a line is output, this value is automatically added to

(he BPLxPT.

Width of the playfield: 80 bytes (40 words)

Width of the screen window: 40 bytes (20 words)

Modulo value needed: 40 bytes (The modulo value must always

be an even number of bytes).

Start: start address of the first line of the playfield

Output of the 1st line:

Word: 0 1 2 3 19

BPLxPT: Start Start+2 Start+4 Start+6 ... Start+38

After the last word is output, BPLxPT is incremented by 1 word:

BPLxPT = Start+40.

After the end of the line, the modulo value is added to BPLxPT:

BPLxPT = BPLxPT + modulo BPLxPT - Start+40 + 40 - Start+80

Output of the 2nd line:

Word: 0 1 2 3 ... 19

BPLxPT: Start+80 Start+82 Start+84 Start+86 ... Start+118

etc. This example shows the left half of the large bit map being dis

played in the large screen window. To start at a different horizontal

position, simply add the desired number of words to the start value of

BPLxPT, whereby the modulo value remains the same.

The start values are as above. The only difference is that BPLxPT is not

at Start, but at Start+40 so that the right half of the large playfield is

displayed.

Word: 0 1 2 3 ... 19

BPLxPT: Start+40 Start+42 Start+44 Start+46 ... Start+78

108

Abacus 1.5 Programming the hardware

After outputting the last word:

BPLxPT = Start+80

Now the modulo value is added to BPLxPT:

BPLxPT = BPLxPT + modulo BPLxPT = Start+80 + 40 = Start+120

Output of the 2nd line:

Word: 0 1 2 3 ... 19

BPLxPT: Start+120 Start+122 Start+124 Start+126 ... Start+158

etc. Separate modulo values can be set for the even and odd bit planes.
This allows two different-sized playfields in the dual playfield mode. If
(his mode is not being used, set both BPLxMOD registers to the same
modulo value.

Scrolling The screen can be moved horizontally in steps of 16 pixels with the
help of the BPLxPT and BPLxMOD registers. Fine scrolling in single
pixel steps is possible with the BPLCON1 register. The lower four bits

contain the scroll value for the even planes, bits 4 to 7 are that of the
odd planes. This scroll value delays the output of the pixel data read for
the corresponding planes. If it is zero, the data are output exactly 8.5
bus cycles (4.5 in high-res) after the DDFSTRT position, otherwise
they appear up to 15 pixels later, depending on the scroll value. That is,

the picture is shifted to the right within the screen window by the value
inBPLCONl.

Smooth scrolling of the screen contents to the right can be accom

plished by incrementing the value of BPLCON1 from 0 to 15 and then

setting it back to 0 while decrementing the BPLxPT by one word as

described above.

Left scrolling can be accomplished by decrementing the scroll value

from 15 to 0 and then incrementing BPLxPT by one word. BPLCON1

should be changed only outside the visible area. This can be done either

during the vertical blanking interrupt, or the Copper can be used. The

values in the Copper list can be changed as desired and they are written

into the BPLCON1 register during the vertical blanking gap.

But if the picture is shifted to the right by means of the BPLCON1

value, the excess points on the left are chopped off correctly. New

pixels don't appear on the right since a new pixel data hasn't been read

there. To prevent this, the DDFSTRT value must be set ahead of its

normal start by 8 bus cycles (high-res: 4 bus cycles). The DDFSTRT

value is calculated as usual from the desired screen window and it is

decremented by 8 (or 4). This extra word is normally not visible. Only

when the scroll value is non-zero its pixels appear in the free positions

at the left of the screen window. If this is 320 pixels wide, 21 data

words instead of the usual 20 are read per line. This must be taken into

account when calculating the bit planes and the modulo values.

109

1. The Amiga Hardware Amiga System Programmer's Guide

The interlace

mode

Copper list

for an

interlace

playfield:

The screen window can also be positioned as desired by means of the

scroll value. If the difference between DIWSTRT and DIWSTOO is

more than 17 pixels, you simply shift the read data to the right by the

amount over 17.

Although the interlace mode doubles the number of lines which can be

displayed, it differs only by a different modulo value and a new Copper

list from the normal display mode. As described in Section 1.5.2, the

odd and even lines are displayed alternately in each picture. To allow an

interlace playfield to be represented normally in memory, the modulo

value is set equal to the number of words per line. After a line is out

put, the length of the line is added again to BPLxPT, which amounts to

skipping over the next line. In each picture only every other line is dis

played. Now the BPLxPT must be set to the first or second line of the

playfield, depending on the frame type, so that either the even or the odd

lines are displayed. In a long frame BPLxPT is set to line 1 (odd lines

only), and in a short frame it is set to line 2 (even lines only). The

Copper list for an interlace playfield is somewhat more complicated

because two lists are needed for the two frame types:

Linel = address of the first line of the bit plane

Line2 = address of the second line of the bit plane

Copperl:

MOVE #LinelHi,BPLxPTH

MOVE #LinelLo,BPLxPTL

MOVE #Copper2Hi,C0PlLCH

MOVE #Copper2Lo,C0PlLCL

WAIT <$FF,$FE)

Coppei2:

MOVE #Line2Hi,BPLxPTH

MOVE #Line2Lo,BPLxPTL

MOVE #CopperlHi,COPlLCH

MOVE #CopperlLo,COPlLCL

WAIT ($FF,$FE)

;set pointer for BPLxPT to

;the address of the first line

;other Copper commands

;set address of Copper list

;to Copper2

;end of the 1st Copper list

;set pointer for BPLxPT to

;the address of the first line

Jother Copper commands

;set address of Copper list

;to Copperl

;end of the 1st Copper list

The Copper continually alternates its Copper list after each frame by

loading die address of the other list into COP1LC at the end of a com

mand list. This address is automatically loaded into the program counter

of die Copper at the start of the next frame. The interlace mode should

be initialized carefully, so that the Copper list for odd lines is actually

processed within a long frame:

110

Abacus u Programming the hardware

Set COP1LC to Copperl

Set the LOF bit (bit 15) in the VPOS register ($2A) to 0. This
makes sure that the first frame after the interlace mode is enabled
in a long frame and is therefore suited to Copperl. The LOF bit
is inverted after each frame in the interlace mode. If it is set to 0,
it changes to 1 at the start of the next frame. This makes this
frame a long frame.

• Interlace modern

• Wait until the first line of the next picture (line 0)

• CopperDMA on

All other register functions are unchanged in the interlace mode. All
line specifications (such as DIWSTRT) always refer to the line number
within the current frame (0-311 for a short frame and 0-312 for a long
frame). If the interlace mode is enabled without changing other regis
ters, a faint flickering is noticeable because the lines of the frames are
now displaced from each other, even though both frames contain the
same graphics data. When doubly-large bit planes and the appropriate
modulo values are set up with suitable Copper lists so that different
data are displayed in each frame, then the desired increase in the number
of lines is noticed.

The interlace mode results in a strong flickering since each line is dis
played only once every two frames and is thus refreshed 25 times per
second. This flickering can be reduced to a minimum by selecting the
lowest possible contrast between colors displayed (lowest intensity dif-

The control There are three control registers for activating the various modes:
registers BPLCON0 to BPLCON2. BPLCON1 contains the scroll values. The

other two are constructed as follows:

BPLCON0$100

Bit no. Name Function

High-resolution mode on (HIRES=1)

The three BPUx bits comprise a three-bitnumber

which contains the number

of bit planes used (0 to 6).

Hold-and-modify on (HOMOEM)

Dual playfield on (DBPLF=1)

Video output color (COLOR=1)

Genlock audio on (GAUD=1)

unused

Lightpen input active (LPEN=1)

Interlace mode on (LACE=1)

External synchronization on (ERSY=1)

unused

111

15

14

13

12

11

10

9

8

7-4

3

2

1

0

HIRES

BPU2

BPU1

BPU0

HOMO!

DBPLF

COLOR

GAUD

LPEN

LACE

ERSY
—

1. The Amiga Hardware Amiga System Programmer's Guide

HIRES The HIRES bit enables the high-resolution display mode

(640 pixels /line).

BPL0-BPL2
These three bits form a 3-bit number which selects the
number of active bit planes. Values between 0 and 6 are

allowed.

HOMODandDBPLF

These two bits select the appropriate mode. They cannot

both be active at the same time. The extra-half-bright mode
is automatically activated when all six bit planes are enabled
and neither HOMOD orDBPLF is selected.

LACE When the LACE bit is set, the LFO frame bit in the VPOS
register is inverted at the start of each frame, causing the
desired alternation between long and short frames.

COLOR The color bit turns the color burst output of Agnus on.
Only when Agnus delivers this color burst signal can the
video mixer create a color video signal. Otherwise it is black
and white. The RGB is not affected by this.

ERSY The ERSY bit switches the connections for the vertical and
horizontal synchronization signals from output to input

This allows the Amiga to be synchronized by external sig
nals. The genlock interface uses this bit to be able to mix

the Amiga's picture with another video picture. The GAUD

bit is also provided for the genlock interface (see Section

1.3.2).

BPLCON2 $104

Bit no.: 15-7 6 5 4 3 2 10

Function: unused PF2PRI PF2P2 PF2P1 PF2P0 PF1P2 PF1P1 PF1P0

PF2P0-PF2P2 and PF1P0-FF1P2 determine the priority of the sprites

in relationship to the playfields (see the next section).

PF2PRI: If this bit is set, the even planes have priority over the odd

planes, meaning that they appear in front of the odd planes. This bit has

visible effect only in the dual playfield mode.

Activating the After all of the registers described thus far have been loaded with the

screen display desired values, the DMA channel for the bit planes must be enabled,

and, if the Copper is used (which is normally the case), its DMA

channel must also be enabled. The following MOVE command accom

plishes this by setting the DMAEN, BPLEN and COPEN bits in the

DMA control register DMACON:

MOVE.W #$8310,$DFF096

112

Abacus L5 Programming the hardware

Example Program 1: Extra-half-bright demo
programs

This program creates a playfield with the standard dimensions 320 by
200 pixels in the low-res mode. Six bit planes are used, so the extra-
half-bright mode is automatically enabled. At the beginning, the pro
gram allocates the memory needed. Since the addresses of the individual

bit planes are not known until this time, the Copper list is not copied
from the program, but created directly in the chip RAM. It contains
only commands to set the BPLxPT registers.

Tq show you something of the 64 possible colors, the program draws

16xl6-pixel-large blocks in all colors at random positions. The
VHPOS register is used as a random-number generator.

;*** Demo for the Extra-Halfbright-Mode ***

;CustomChip-Register

INTENA = $9A /Interrupt-Enable-Register (write)

DMACON = $96 ;DMA-Control register (write)

COLOR00 - $180 /Color palette register 0

VHPOSR - $6 ;Ray position (read)

;Copper Register

COP1LC = $80 /Address of 1. Copperlist

COP2LC = $84 /Address of 2. Copperlist

COPJMP1 « $88 /Jump to Copperlist 1

COPJMP2 = $8a /Jump to Copperlist 2

/Bitplane Register

BPLCON0 = $100 /Bitplane Control register 0

BPLCON1 = $102 /I (Scroll value)

BPLCON2 « $104 ;2 (SpriteoPlayfield Priority)

BPL1PTH - $0E0 /Number of 1. Bitplane

BPL1PTL = $0E2 /

BPL1MOD - $108 /Modulo-Value for odd Bit-Planes

BPL2MOD - $10A /Modulo-Value for even Bit-Planes

DIWSTRT = $08E /Start of the screen windows

DIWSTOP = $090 /End of the screen windows

DDFSTRT = $092 /Bit-Plane DMA Start

DDFSTOP = $094 /Bit-Plane DMA Stop

/CIA-A Port register A (Mouse key)

CIAAPRA = $bfe001

/Exec Library Base Offsets

OpenLibrary - -30-522 /LibName,Version/al,dO

Forbid * -30-102

Permit « -30-108

AllocMem ■ -30-168 /ByteSize,Requirements/d0rdl

FreeMem - -30-180 /MemoryBlock,ByteSize/al,dO

113

1. The Amiga Hardware Amiga System Programmer's Guide

/graphics

StartList

base

= 38

;other Labels

Execbase

Planesize

CLsize

Chip

Clear

= 4

= 40*200

= 13*4

= 2

= Chit>+$

;Size of Bitplane: 40 Bytes by

;200 lines

;The Copperlist with 13 commands

;Chip-RAM request

Chip+$10000 ;clear previous Chip-RAM

;*** Initialize program ***

Start:

/Request memory for the Bitplanes

move.l Execbase,a6

move.l #Planesize*6,dO /Memory size of all Planes

move.l #clear,dl /Memory to be with filled with

/nulls

jsr AllocMem(a6) /Request memory

move.l dO,Planeadr /Address of the first memory

/Plane

beq End /Error! -> End

/Request memory for Copperlist

moveq #Clsize,dO /Size of the Copperlist

moveq #chip,dl

jsr AllocMem(a6)

move.l dOfCLadr

beq FreePlane /Error! -> Free RAM for Bit

/planes

/Build Copperlist

moveq #5,d4 /6 Planes = 6 loops to run

/through

move.l d0fa0 /Address of the Copperlist to

/aO

move.l Planeadr,dl

move.w #bpllpth,d3 /first Register to d3

MakeCL: move.w d3,(a0)+ /BPLxPTH ins RAM

addq.w #2,d3 /next Register

swap dl

move.w dl,(a0)+ /Hi-word of the Plane address

/in RAM

move.w d3,(a0)+ /BPLxPTL ins RAM

addq.w #2,d3 /next Register

swap dl

move.w dl,(a0)+ /Lo-word of the Plane address in RAM

114

Abacus 1.5 Programming the hardware

add.l #planesize,dl /Address of the next Plane calculated

dbf d4,MakeCL

move.l #$fffffffe,(aO) ;End of Copperlist

;*** Main program ***

;DMA and Task switching off

jsr forbid(a6)

lea $dff000ra5

move.w #$03eO,dmacon(a5)

;Copper initialization

move.l CLadr,copllc(a5)

clr.w copjmpl(a5)

/Color table with different color fills

moveq #31,dO /Value for color register

lea color00(a5),al

moveq #l,dl /first color

SetTab:

move.w dl,(al)+ /Color in color register

mulu #3,dl /calculate next color

dbf dO,SetTab

/Playfield initialization

move.w #$3081,diwstrt(a5) /Standard value for

move.w #$30cl,diwstop(a5) /screen window

move.w #$0038,ddfstrt(a5) /and BitplaneDMA

move.w #$00d0,ddfstop(a5)

move.w #%0110001000000000,bplconO(a5) ;6 Bitplanes

clr.w bplconl(a5) /no Scrolling

clr.w bplcon2(a5) /Priority makes no difference

clr.w bpllmod(a5) /Modulo for all Planes equals

/Null

clr.w bpl2mod(a5)

/DMA on

move.w #$8380,dmacon(a5)

/Bitplane modification

moveq #40,d5 /Bytes per line

clr.l 62 /Begin with color 0

Loop: clr.l dO

move.w vhposr(a5),dO /Random value to dO

and.w #$3ffe,dO /Unnecessary Bits masked out

cmp.w #$2580,d0 /Large as Plane?

bcs Continue /When not, then continue

and.w #$lffe,dO /else erase upper bit

115

1. The Amiga Hardware Amiga System Programmer's Guide

Continue: move.l Planeadrfa4 /Address of the l.Bitplane to

;a4

add.l dO,a4 /Calculate address of the Blocks

moveq #5,d4 /Number for Bitplanes

move.l d2,d3 /Color in work register

Block:

clr.l dl

lsr #lrd3

negx.w dl

moveq #15,dO

move.l a4,a3

Fill:

move.w dl, (a3)

add.l d5,a3

dbf dO,Fill

add.l #Planesize,a4

dbf d4,Block

addq.b #l,d2

btst #6,ciaapra

bne Loop

/one Bit of color number in X-Flag

/use dl to adjust X-Flag

/16 lines per Block

/Block address in working register

/Word in Bitplane

/compute next line

/next Bitplane

/next color

/mouse key pressed?

/no -> then continue

;*** End program ***

/Activate old Copperlist

/Set parameter for OpenLibrary

/Graphics Library open

move.l #GRname,al

clr.l dO

jsr OpenLibrary(a6)

move.l dO,a4

move.l StartList(a4),copllc(a5) /Address of Startlist

clr.w copjmpl(a5)

move.w #$8060,dmacon(a5)

jsr permit(a6)

/reenable DMA

/Task-Switching on

/Free memory for Copperlist

move.l CLadr,al

moveq #CLsize,dO

jsr FreeMem(a6)

/Free memory for Bitplanes

FreePlane:

move.l Planeadr,al

move.l #Planesize*6,dO

jsr FreeMem(a6)

Ende:

clr.l dO

rts

/Variables

/Set parameter for FreeMem

/Free memory

/Program end

116

Abacus 1.5 Programming the hardware

CLadr: del 0

Planeadr: del 0

/Constants

GRname: dc.b "graphics.librarylf,0

/Program end

end

Program 2: Dual plavfield and smooth scrolling

This program uses several effects at once: First, it creates a dual play-
field screen with one low-res bit plane per playfield. Then it enlarges

the normal screen window so that no borders can be seen, and finally, it

scrolls playfield 1 horizontally and playfield 2 vertically.

The usual routines for memory allocation, etc. are used at the start and
end.

Both playfields are filled with a checkerboard pattern of 16x16 point
blocks.

The main loop of the program, which performs the scrolling, first waits

for a line in the vertical blanking gap, in which the operating system

processes all of the interrupt routines and the Copper sets BPLxPT.

After this it increments the vertical scroll counter, calculates the new

BPLxPT for playfield 2, and writes it into the Copper list

The horizontal scroll position results from separating the lower four

bits of the scroll counter from the rest The lower four bits are written

into die BFLCON1 register as the scroll value for playfield 1, and the

5th bit is used to calculate the new BPLxPT, which is copied into the
, Copper list

Both the horizontal and vertical scroll counters are incremented from 0

to 31 and then reset to 0. This is sufficient for the scrolling effect since
the pattern used for the playfields repeats every 32 pixels.

*** Dual-Playfield & Scroll Demo ***

/CustomChip-Register

INTENA « $9A /Interrupt-Enable-Register (write)

INTREQR = $le ;Interrupt-Request-Register (read)

DMACON - $96 /DMA-Control register (write)

COLOR00 = $180 /Color palette register 0

VPOSR = $4 /half line position (read)

/Copper Register

COP1LC = $80 /Address of 1. Copperlist

COP2LC - $84 /Address of 2. Copperlist

117

1. The Amiga Hardware Amiga System Programmer's Guide

COPJMPl » $88 /Jump to Copperlist 1

COPJMP2 = $8a ;Jump to Copperlist 2

;Bitplane Register

BPLCONO - $100 /Bitplane control register 0

BPLCON1 = $102 ;1 (Scroll value)

BPLCON2 - $104 ;2 (SpriteOPlayfield Priority)

BPL1PTH - $0E0 /Pointer to 1. Bitplane

BPL1PTL - $0E2 /

BPL1MOD - $108 ;Modulo-Value for odd Bit-Planes

BPL2MOD ■ $10A /Module-value for even Bit-Planes

DIWSTRT = $08E /Start of screen windows

DIWSTOP = $090 /End of screen windows

DDFSTRT = $092 /Bit-Plane DMA Start

DDFSTOP = $094 /Bit-Plane DMA Stop

/CIA-A Port register A (Mouse key)

CIAAPRA - $bfe001

/Exec Library Base Offsets

OpenLibrary « -30-522 /LibName,Version/al,dO

Forbid » -30-102

Permit - -30-108

AllocMem = -30-168 /ByteSize,Requirements/d0,dl

FreeMem * -30-180 /MemoryBlock,ByteSize/al,dO

/graphics base

StartList = 38

/Misc Labels

Execbase = 4

Planesize - 52*345 /Size of the Bitplane

Planewidth = 52

CLsize - 5*4 /The Copperlist contains 5 commands

Chip = 2 /request Chip-RAM

Clear = Chip+$10000 /clear previous Chip-RAM

/*** Pre-program ***

Start:

/Request memory for Bitplanes

move.l Execbase,a6

move.l #Planesize*2,dO /memory size of the Planes

move.l #clear,dl

jsr AllocMem(a6) /Request memory

move.l d0,Planeadr

beq Ende /Error! -> End

/Request memory for the Copperlist

moveq #Clsize,d0

118

Abacus 1.5 Programming the hardware

moveq #chipfdl

jsr AllocMem(a6)

move.l dO,CLadr

beq FreePlane ;Error! -> Free memory for the Planes

;Build Copperlist

moveq #l,d4 ;two Bitplanes

move.l dO,aO

move.l Planeadr,dl

move.w #bpllpth,d3

MakeCL: move.w d3,(aO)+

addq.w #2,d3

swap dl

move.w dlf(aO)+

move.w d3,(aO)+

addq.w #2,d3

swap dl

move.w dl,(aO)+

add.l #planesize,dl ;Address of the next Plane

dbf d4,MakeCL

move.l #$fffffffe,<aO) ;End of the Copperlist

;*** Main program ***

;DMA and Task switching off

jsr forbid(a6)

lea $dff000,a5

move.w #$01eO,dmacon(a5)

;Copper initialization

move.1 CLadr,copllc(a5)

clr.w copjmpl(a5)

;Playfield initialization

move.w #0,color00(a5)

move.w #$0f00,color00+2(a5)

move.w #$000f,color00+18(a5)

move.w #$la64,diwstrt(a5) /26,100

move.w #$39dl,diwstop<a5) ;313,465

move.w #$0020fddfstrt(a5) ;read one extra word

move.w #$00d8,ddfstop(a5)

move.w #%0010011000000000fbplcon0(a5) ;Dual-Playfield

clr.w bplconl(a5) ;and scroll to start on 0

clr.w bplcon2(a5) ;Playfield 1 or Playfield 2

move.w #4fbpllmod(a5) /Modulo on 2 Words

move.w #4,bpl2mod(a5)

;DMA on

move.w #$8180,dmacon(a5)

119

1. The Amiga Hardware Amiga System Programmer's Guide

;Bitplanes filled with checker pattern

move.l planeadrra0

move.w #planesize/2-l,dO ;loop value

move.w #13*16,dl /Height « 16 Lines

move.l #$ffff0000fd2 ;checker pattern

move.w dl,d3

fill: move.l d2,(aO) +

subq.w #lrd3

bne•s continue

swap d2 /pattern change

move.w dl,d3

continue: dbf dOrfill

/Playfields scroll

clr.l dO /vertical Scroll position

clr.l dl /horizontal Scroll position

move.l CLadr,al /Address of the Copperlist

move.l Planeadr,aO /Address of first Bitplane

/Wait on Raster line 16 (for the Exec-Interrupts)

wait: move.l vposr(a5)rd2 /read Position

and.l #$0001FF00,d2 /horizontal Bits masked

cmp.l #$00001000,d2 /wait on line 16

bne.s wait

/Playfield 1 vertical scroll

addq.b

cmp.w

bne.S

clr.l

novover;

move•1

lsr.w

mulu

add.l

add.l

move.w

swap

move.w

#2,dO

#$80rd0

novover

dO

dO,d2

#2,d2

#52,d2

aO,d2

#Planesize,d2

d2,14(al)

62

d2,10(al)

/Playfield 2 horizont

addq.b

cmp.w

bne.S

clr.l

nohover

move.1

lsr.w

move•1

#l,dl

#$80,dl

nohover

dl

dl,d2

#2,d2

d2,d3

/raise vertical Scroll value

/already 128 (4*32)?

/Then back to 0

/copy scroll value

/copy divided by 4 s

/Number Bytes per line * Scroll

/position

/plus Address of first Plane

/plus Plane size

/give End address for Copperlist

/raise horizontal Scroll value

/already 128 (4*32)

/then back to 0

/copy scroll value

/copy divided by 4

/copy Scroll position

120

and.w

sub.w

move.w

move.w

lsr.w

add.l

move.w

swap

move.w

btst

bne.s

#$FFF0,d2

d2rd3

d4,bplconl(a5)

d3,d4

#3,d2

aO,d2

d2,6(al)

d2

d2,2(al)

#6,ciaapra

wait

Abacus 1.5 Programming the hardware

/lower 4 Bit masked

;lower 4 Bit in d3 isolated

;last Value in BPLCON1

;new scroll value to d4

;new Address for Copperlist

;calculate

/and write in Copperlist

/Mouse key pressed?

/NO -> continue

;*** End program ***

/Activate old Copperlist

move.l #GRname,al /Set parameter for OpenLibrary
clr.l dO

jsr OpenLibrary<a6) /Graphics Library open
move.l dO,a4

move.l StartList(a4),copllc(a5)

clr.w copjmpl(a5)

move.w #$83e0fdmacon(a5)

jsr permit(a6) /Task-Switching permitted

/Free memory used by Copperlist

move.l CLadr,al /Set parameter for FreeMem

moveq #CLsize,dO

jsr FreeMem(a6) /Free memory

/Free memory used by Bit planes

FreePlane:

move.l Planeadr,al

move.l #Planesize*2,dO

jsr FreeMem(a6)

Ende:

clr.l dO

rts /Program ends

/Variables

CLadr: del 0

Planeadr: del 0

test: del 0

/Constants

GRname: deb "graphics.library",0

end

/Program end

121

1. The Amiga Hardware Amiga System Programmer's Guide

1.5.6 Sprites

Construction

of the sprites

Color

selection

Sprites are small graphic elements which can be used completely inde

pendent of the playfields. Each sprite is 16 pixels wide and can have a

maximum height of the entire screen window. It can be displayed any

where on the screen. Normally a sprite is in front of the playfield(s). Its

pixels therefore cover the graphic behind it. The mouse pointer, for

example, is implemented as a sprite. Up to eight sprites are possible on

the Amiga. A sprite normally has three colors, but it is possible to

The color selection for sprites is very similar to that of a dual-playfield

screen. A sprite is sixteen pixels wide, represented by two data words

which are used as sort of "mini bit planes." Like the bit planes, the
color of a pixel is formed from the corresponding bits in each of the bit

planes. With a sprite, the color of the first pixel (this is the leftmost

point of the sprite) is selected by the two highest-order bits (bit 15) of

the two data words. The two lowest-order bits (bit 0) determine the

color of the last pixel. Each pixel is thus represented by two bits,
which means it can have one of four different colors. The color table is

used to determine the actual color from this value. There are no special

color registers for the sprites. The sprite colors are obtained from the
upper half of the table, color registers 16-31. This means that sprite and
playfield colors do not come in conflict unless playfield with more than

16 colors are created.

The following table shows the assignment of color registers and sprites:

Color

registers and

Sprites

Sprite no.

0&1

2&3

4&5

6&7

Sprite data

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

Color register

transparent

COLOR17

COLOR18

COLOR19

transparent

COLOR21

COLOR22

COLOR23

transparent

COLOR25

COLOR26

COLOR27

transparent

COLOR29

COLOR30

COLOR31

Each two successive sprites have the same color registers.

122

Abacus L5 Programming the hardware

As in the dual-playfield mode, the bit combination of two zeros does
not represent a color, it causes the pixel to be transparent. This means

that the color of anything below this pixel is visible in its place,
whether this is another sprite, a playfield orjust the background

If three colors are not enough, two sprites can be combined with each
other. The two-bit combinations of the sprites then make up a four-bit
number. Sprites can only be combined in successive even-odd pairs, i.e.
no. 0 with no. 1, no. 2 with no. 3, etc. The two data words from the

sprite with the higher number are used as the two high-order bits of the
total 4-bit value. This is then used as a pointer to one of fifteen color
registers, whereby the value zero is again used as transparent The color
registers are the same for all four possible sprite combinations:
COLOR16 to COLOR31.

Sprite data Color register Sorite data

0000

0001

0010

0011

0100

0101

0110

0111

transparent

COLOR17

COLOR18

COLOR19

COLOR20

COLOR21

COLOR22

COLOT23

1000

1001

1010

1011

1100

1101

1110

1111

COLOR24

COLOR25

COLOR26

COLOR27

COLOR28

COLOR29

COLOR30

COLOR31

The sprite The Amiga sprites can be programmed very easily. Almost all of the
DMA work is handled by the sprite DMA channels. The only thing needed to

display a sprite on the screen is a special sprite data list in memory.

This contains almost all of the data needed for the sprite. The DMA
controller must still be told the address of this list in order for the sprite
to appear.

The DMA controller has a DMA channel for each sprite. This can read

only two data words in each raster line. This is why a normal sprite is
limited to a width of 16 pixels and four colors. Since these two data

words can be read in every line, the height of a sprite is limited only by

that of the screen window.

Construction Such a data list consists of individual lines, each of which contains two
of the sprite data words. One of these lines is read through DMA in each raster line.

data list They can contain either two control words to initialize the sprite, or

two data words with the pixel data.

The control words determine the horizontal columns and the first and

last lines of the sprite.

After the DMA controller has read these words and placed them in the

corresponding registers, it waits until the electron beam reaches the

starting line of the sprite. Then two words are read for each raster line

and are output by Denise at the appropriate horizontal position on the

screen until the last line of the sprite has been processed. The next two

123

1. The Amiga Hardware Amiga System Programmer's Guide

words in the sprite data list are again treated as control words. If they are
both 0, the DMA channel ends its activity. It is also possible to specify
a new sprite position, however. The DMA controller then waits for the

start line and repeats the process until two control words with the value

0 are found as the end marker of the list

Construction of a sprite data list (Start * starting address of the list in

chip RAM):

Address Contents

Start+4 1st and 2nd data words of the 1st line of the spnte

Start+8 1st and 2nd data words of the 2nd line of the sprite
Start+12 1st and 2nd data words of the 3rd line of the sprite
Start+4*n 1st and 2nd data words of the nth line of the sprite

Start+4*(n+l) 0,0 End of the sprite data list

Construction of the first control word

Bit no.: 15 14 3312111098765432 10

Function: K7 E6 E5 E4 E3 E2 ELH)HBH7H5H5H4IB H2 HL

1 0

18 H)

Construction of the second control word

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2
Function: L7 16 15 IA 13 12 UIOBTOOOOBB

H0toH8 Horizontal position of the sprite (HSTART)

EO to E8 First line of the sprite (VSTART)

L0toL8 Last line of the sprite + 1(VSTOP)

AT Attach control bit

Nine bits are provided for the horizontal and vertical position of the

sprite. These bits are divided somewhat unpractically between the two

registers.

Horizontal and The resolution in the horizontal direction is one low resolution pixel,

Vertical while in the vertical direction it is one raster line. These values cannot

position be changed since they are independent of the mode of the playfield(s).

The sprites are limited to the screen window (set by DIWSTRT and

DIWSTOP). If the coordinates set by the control words are outside this

area, the sprites are only partially visible, if at all, since all points

which are not within the screen window are cut off.

The horizontal and vertical start position refer to the upper left corner of

the sprite. The vertical stop position defines the first line after the

sprite, that is, the last line of the sprite + 1. The number of lines in the

sprite is thus VSTOP - VSTART.

The following example list displays a sprite at the coordinates 180,160,

roughly in the center of the screen. It has a height of 8 lines. The last

line (VSTOP) is thus 168.

124

Abacus 1.5 Programming the hardware

If you combine the two data words together, you get numbers between
0 and 3 which represent one of the three sprite colors or the transparent
pixels. This makes the sprite easier to understand:

0000002222000000

0000220000220000

0002200330022000

0022003113002200

0022003113002200

0002200330022000

0000220000220000

0000002222000000

In the data list the two values must be separated:

Start:

dew $A05A,$A800 JHSTART = $B4, VSTART=$A0, VSTOP=$A8

dew %0000 0000 0000 0000,%0000 0011 1100 0000

dc.w%0000 0000 0000 0000,%0000 1100 0011 0000

dc.w%0000 0001 1000 0000,%0001 1001 1001 1000

dc.w%0000 0011 1100 0000,%0011 0010 0100 1100

dc.w%0000 0011 1100 0000,%0011 0010 0100 1100

dc.w%0000 0001 1000 0000,%0001 1001 1001 1000

dc.w%0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0000 0000 0000,%0000 0011 1100 0000

dew 0,0 ;end of the sprite data list

The AT bit in the 2nd control word determines whether the two sprites
are combined with each other or not It has effect only for sprites with

odd numbers (sprites 1,3,5,7). For example, if it is set in sprite 1, its

data bits are combined with those from sprite 0 to make four-bit point
ers into the color table. The order of the bits is then as follows:

Sprite 1 (odd number), second data word Bit 3 (MSB)

Sprite 1, first data word Bit 2

Sprite 0 (even number), second data word Bitl
Sprite 0, first data word BitO(LSB)

15 Color If two sprites are combined in this manner, their positions must also
Sprites match. If this is not the case, the old three-color representation is auto

matically re-enabled. The simplest thing to do is to write the same

control words in the two sprite data lists. Here is an example of a sprite
data list for a fifteen color sprite.

For the sake of simplicity our sprite consists of only four lines. The

digits represent the color of the corresponding pixels. In order to display

all fifteen colors plus transparent, the hexadecimal digits "A" to "F" are
also used.

0011111111111100

1123456789ABCD11

11EFEFEFEFEFEF11

0011111111111100

125

1. The Amiga Hardware Amiga System Programmer's Guide

The structure of the data words needed can be seen from line 2:

Multiple

sprites

through one

DMA channel

Colors of the sprites:
Sprite 1, data word 2:

Sprite 1, data word 1:
Sprite 0, data word 2:

Sprite 0, data word 1:

1123456789ABCD11

0000000011111100

0000111100001100

0011001100110000

1101010101010111

Horizontal position (HSTART) is again 180. The first line of the sprite
(VSTART) is 160, and the last line (VSTOP) 164.

The data list for the entire sprite looks as follows:

StartSpriteO:

dew $A05A,$A400 ;HSTART=$84, VSTART=$A0, VSTOP=$A4, AT-0

dew %0011 1111 1111 1100,%0000 0000 0000 0000

dew %1101 0101 0101 0111,%0011 0011 0011 0000

dew %1101 0101 0101 0111,%0011 1111 1111 1100

dew %0011 1111 1111 1100,%0000 0000 0000 0000

dew 0,0

StartSpritel:

dew $A05A,$A480 ;HSTART=$84, VSTART=$A0, VSTOP=$A4, AT=l

dew %0000 0000 0000 0000,%0000 0000 0000 0000

dew %0000 1111 0000 1100,%0000 0000 1111 1100

dew %0011 1111 1111 1100,%00111111 1111 1100

dew %0000 0000 0000 0000,%0000 0000 0000 0000

dew 0,0

After a sprite has been displayed, the DMA channel is free again. In the
example above the last sprite data was read in line 163. After that the
sprite DMA channel is turned off with the two zeros. But as we men

tioned before, it is also possible to continue using the DMA channel.
To do this, simply put two new control words in place of the two zeros

in the data list The condition is that there must be at least one line free
between the first line of the next sprite and the last line of the previous

one. For example, if the previous sprite extends through line 163, then

the next cannot start before line 16S. The reason for this is that the two

control words must be read in the line in between (164). The sprite

DMA then proceeds as follows:

Line Data through the DMA channel

162 second-to-last line of the 1st sprite through this channel

163 last line of the 1st sprite

164 control words of the second sprite

165 first line of the 2nd sprite

166 second line of the 2nd sprite

126

Abacus 1.5 Programming the hardware

The following example displays the three-color sprite from our first
example in two different positions on the screen:

Start:

dew $A05A,$A800 ;HSTART = $B4, VSTART=$A0, VSTOP=$A8

dew %0000 0000 0000 0000,%0000 0011 1100 0000

dew %0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0001 1000 0000,%0001 1001 1001 1000

dew %0000 0011 1100 0000,%0011 0010 0100 1100

dew %0000 0011 1100 0000,%0011 0010 0100 1100

dew %0000 0001 1000 0000,%0001 1001 1001 1000

dew %0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0000 0000 0000,%0000 0011 1100 0000

;Now comes the second sprite in this DMA channel

/displayed at line 176 <$B0), horizontal position 300 ($12C)

dew $B096,$B800 ;HSTART=$12C, VSTART=$B0, VSTOP=$B8

dew %0000 0000 0000 0000,%0000 0011 1100 0000

dew %0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0001 1000 0000,%0001 1001 1001 1000

dew %0000 0011 1100 0000,%0011 0010 0100 1100

dew %0000 0011 1100 0000,%0011 0010 0100 1100

dew %0000 0001 1000 0000,%0001 1001 1001 1000

dew %0000 0000 0000 0000,%0000 1100 0011 0000

dew %0000 0000 0000 0000,%0000 0011 1100 0000

dew 0,0 ;end of tlO the sprite data list

Activating the After a correct sprite data list has been constructed in the chip RAM and

sprites the desired colors have been written into the color table, the DMA con

troller must be told at what address this list is stored, before the sprite

DMA can be enabled. Each sprite DMA channel has a register pair in

which the starting address of the data list must be written:

SPRxPT (SPRite x PoinTer):

Reg. Name Function

Pointer to the sprite data list bits 16-18

for sprite DMA channel 0 bits 0-15

Pointer to the sprite data list bits 16-18

for sprite DMA channel 1 bits 0-15

Pointer to the sprite data list bits 16-18

for sprite DMA channel 2 bits 0-15

Pointer to the sprite data list bits 16-18

for sprite DMA channel 3 bits 0-15

Pointer to the sprite data list bits 16-18

for sprite DMA channel 4 bits 0-15

Pointer to the sprite data list bits 16-18

for sprite DMA channel 5 bits 0-15

Pointer to the sprite data list bits 16-18

for sprite DMA channel 6 bits 0-15

Pointer to the sprite data list bits 16-18

for sprite DMA channel 7 bits 0-15

127

$120

$122

$124

$126

$128

$12A

$12C

$12E

$130

$122

$134

$136

$138

$13A

$13C
$13E

SPR0PTH

SPR0PTL

SPR1PTH

SPR1PTL

SPR2PTH

SPR2PTL

SPR3PTH

SPR3PTL

SPR4PTH

SPR4PTL

SPR5PTH

SPR5PTL

SPR6PTH

SPR6PTL

SPR7PTH

SPR7PTL

1. The Amiga Hardware Amiga System Programmer's Guide

DMA The DMA controller uses these registers as pointers to the current

controller address in the sprite data lists. At the start of each frame they contain
the address of the first control word. With each data word read they are

incremented by one word so that at the end of the picture they point to

the first word after the data list. For the same sprites to be displayed in

each frame, these pointers must be set back to the start of the sprite data

lists before each frame. As with the bit plane pointers BPLxPT, this is
easily done with the Copper in the vertical blanking gap. The corre

sponding section of the Copper list can look like this:

StartSpritexH = starting address of the sprite data list for sprite x, bits

16-18:

StartSpritexL = bits 0-15

CopperlistStart

MOVE #StartSpriteOH,SPROPTH /initialize sprite DMA

MOVE #StartSpriteOL,SPROPTL /channel 0

MOVE #StartSpritelH,SPRlPTH /initialize sprite DMA

MOVE #StartSpritelL,SPRlPTL /channel 1

MOVE #StartSprite2H,SPR2PTH /initialize sprite DMA

MOVE #StartSprite2L,SPR2PTL /channel 2

/same for channels 3 to 6

MOVE #StartSprite7H,SPR7PTH /initialize sprite DMA

MOVE #StartSprite7L,SPR7PTL /channel 7

/other copper tasks

WAIT $FFFE /end of the copper list

There is no way to turn the sprite DMA channels on and off individu
ally. The SPREN bit (bit no. 5) in the DMACON register turns the

sprite DMA on for all eight sprite channels. If you don't want to use all

of them, the unused channels must process empty data lists. To do this,
their SPRxPT's are set to two memory words with the content 0. The

two zeros at the end of an existing data list can be used for this.

All eight SPRxPT's must always be initialized in the vertical blanking

gap. Even if the data list is nothing but the two zeros, SPRxPT points
to the first word after them at the end of the frame.

Naturally, the SPRxPT registers can also be initialized by the processor

in the vertical blanking interrupt

As the last step, the sprite DMA must be enabled. As mentioned, this
is done for all eight sprite DMA channels by means of the SPREN bit

in the DMACON register. The following MOVE command accom

plished this:

MOVE.W #$8220,$DFF096 /set SPREN and DMAEN in DMACON

/register

128

Abacus 1.5 Programming the hardware

Moving The values of the two control words in the sprite data list determine the
sprites position of a sprite. In order to move a sprite, these values must be

changed step-by-step. This can be done directly with the processor by

means of appropriate MOVE commands. The only thing to watch out

for is that the control words must be modified at the right time. If this
is not done, the following problem can occur:

The processor modifies the first control word. Before it can change the

second, the DMA control reads the two words. Since they no longer

belong together, what appears on the screen may not make any sense.

The easiest way to avoid this is to change the control words during the

vertical blanking gap (in the vertical blanking interrupt, after the

Copper has initialized the SPRxPT).

The sprite/ The priority of a playfield or sprite determines whether it appears in
playfield front or behind the other screen elements. The sprite with the highest

priority priority appears in front of all others. Nothing can cover it The priority

of a sprite is determined by its number. The lower the number, the

higher the priority. Thus sprite 0 has priority over all other sprites.

For the playfields, a control bit determines whether number 1 or 2

appears in front*

But what is the priority of the sprites in reference to the playfields?

On the Amiga it is possible to position the playfields almost anywhere

between the sprites. The sprites are always grouped into pairs when it

comes to setting the priority of playfield vs. sprites. These are the same

combinations as those used for the fifteen color sprites. Always one
sprite with an even number and its odd successor

Sprites 0 & 1, Sprites 2 & 3, Sprites 4 & 5, Sprites 6 & 7

The four sprite pairs can be viewed as a stack of four elements. If you

look at the top of this stack, the underlying elements can only be seen

through holes in the overlying stack positions. The holes correspond to

the transparent points in the bit planes or sprites and the parts of the

screen that a sprite cannot cover because of its size. The order of ele

ments in the stack cannot be changed. But two other elements, namely

the playfields, can be placed anywhere between the four sprite pairs.

Five positions are possible for each playfield:

Position Order from top to bottom

0

1

2

3

4

PLF

SPR0&1

SPR0&1

SPR0&1

SPR0&1

SPR0&1

PLF

SPR2&3

SPR2&3

SPR2&3

SPR2&3

SPR2&3

PLF

SPR4&5

SPR4&5

SPR4&5

SPR4&5

SPR4&5

PLF

SPR6&7

SPR6&7

SPR6&7

SPR6&7

SPR6&7

PLF

129

1. The Amiga Hardware Amiga System Programmer's Guide

Collisions

between

graphic

elements

The BPLCON2 register contains the priority of the playfields with

respect to the sprites:

BPLC0N2 $104 (write-only)

Bit no.: 15-7 6 5 4 3 2 10

Function: unused PF2PRI PF2P2 PF2P1 PF2P0 PF1P2 PF1P1 PF1P0

PF2PRI

If this bit is set, playfield 2 appears in front of playfield 1.

FF1P0 to PF1P2

These three bits form a three-bit number which determines the

position of playfield 1 (all odd bit planes) between the four sprite

pairs. Values between 0 and 4 are allowed (see above table).

PF2P0 to PF2P2

These three bits have the same function as the bits PF1P0 to

PF1P2 except for playfield 2 (all even bit planes).

Example:

BPLCON2-$0003

This means that playfield 1 appears before playfield 2, PF2P0-2 = 0,

PF1P0-2 = 3. This yields the following order, from front to back:

PLF2 SPR0&1 SPR2&3 SPR4&5 PLF1 SPR6&7

If we look at it closely, something doesn't make sense. The PF2PRI

bit is 0, so playfield 1 should appear in front of playfield 2. In spite of

this, the order is as shown above. When one of the sprites 0 to 5 is

between playfield 1 and 2, it appears in front of playfield 1, according to

its priority. Since this is in front of playfield 2, the sprite is visible at

this point, although it must actually be behind playfield 2. If only
playfield 2 and the sprite are at a given position, playfield 2 covers the

sprite because of its priority.

This is because the playfield/playfield priority has precedence over the

sprite/playfield priority.

If the dual-playfield mode is not used, there is only one playfield which

is formed from the even and odd bit planes. The PLF2PRI and the

PL2P0-PL2P2 bits have no function in this case.

It is often very useful to know whether two sprites have collided with
each other or with the background. This makes writing game programs

much easier.

When the pixels of two sprites overlap at a certain screen position, that

is, they both have a set point (not transparent) at the same coordinates,

130

Abacus 1.5 Programming the hardware

this is treated as a collision between the two sprites. A collision of the
playfield with each other or with a sprite is also possible.

Each recognized collision is noted in the collision data register.
CLXDAT:

Collision data CLXDAT$00E (read-only)
register

Bit no. Collision between

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

unused

Sprite 4 (or 5) and sprite 6 (or 7)

Sprite 2 (or 3) and sprite 6 (or 7)

Sprite 2 (or 3) and sprite 4 (or 5)

Sprite 0 (or 1) and sprite 6 (or 7)

Sprite 0 (or 1) and sprite 4 (or 5)

Sprite 0 (or 1) and sprite 2 (or 3)
Playfield 2 (even bit planes) and sprite 6 (or 7)

Playfield 2 (even bit planes) and sprite 4 (or 5)

Playfield 2 (even bit planes) and sprite 2 (or 3)

Playfield 2 (even bit planes) and sprite 0 (or 1)

Playfield 1 (odd bit planes) and sprite 6 (or 7)

Playfield 1 (odd bit planes) and sprite 4 (or 5)

Playfield 1 (odd bit planes) and sprite 2 (or 3)

Playfield 1 (odd bit planes) and sprite 0 (or 1)
Playfield 1 and playfield 2

While on a sprite any non-transparent point can cause a collision, we
can set which colors on the playfield are regarded in collision detection.

Moreover, it is possible to include or exclude any odd-numbered sprite
from collision detection. All of this can be set with the bits in the col
lision control register, CLXCON.

Collision
/*/in/i*/)/
control

register

CLXCON $098 (write only)

Bit no.

15

13

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Name

ENSP7

ENSP5

ENSP3

ENSP1

ENBP6

ENBP5

ENBP4

ENBP3

ENBP2

ENBP1

MVBP6

MVBP5

MVBP4

MVBP3

MVBP2

MVBP1

Function

Enable collision detection for sprite 7

Enable collision detection for sprite 5

Enable collision detection for sprite 3

Enable collision detection for sprite 1

Compare bit plane 6 with MVBP6

Compare bit plane 5 with MVBP6

Compare bit plane 4 with MVBP6

Compare bit plane 3 with MVBP6

Compare bit plane 2 with MVBP6

Compare bit plane 1 with MV6P6

Value for collision with bit plane 6

Value for collision with bit plane 5

Value for collision with bit plane 4

Value for collision with bit plane 3

Value for collision with bit plane 2

Value for collision with bit plane1

131

1. The Amiga Hardware Amiga System Programmer's Guide

ENSPx bits TheENSPx bits (ENable SPrite x) determine whether the corresponding
odd-numbered sprite is regarded in collision detection. For example, if

the ENSP1 bit is set, a collision between sprite 1 and another sprite or

a playfield is registered. Such a collision sets the same bit in the colli
sion data register as for sprite 0. Therefore it is not possible to tell, by
looking at the register contents, whether sprite 0 or sprite 1 was

involved in the collision. In addition, no collisions between sprites 0
and 1 are detected. These facts should be kept in mind when selecting

and using sprites.

If two sprites have been combined into one fifteen-color sprite, the cor

responding ENSPx bit must be set in order to have correct collision

detection.

ENBPx bits For the playfields, the programmer can set which bit combinations of
(he bit planes generate a collision and which do not The ENBPx bits
(ENable Bit Plane) determine which bit planes are considered for colli
sion detection. If all ENBPx bits of a playfield are set, a collision is
possible on all points whose bit combinations match that of the MVBP

(Match Value Bit Plane x) bits.

The ENBPx bits determine whether the bits from plane x are compared
with the value of MVBPx. If the bits of all planes for which the
ENBPx bit is set match those of the corresponding MVBPx bits for a

given pixel, then this point can generate a collision.

Complicated? An example makes it clearer

The ENBPx bits are set, as are all of the MVBPx bits. Now only those

pixels of the playfield whose bit combinations are 111111 binary can

generate a collision. If only the lower three MVBPx bits are set, then a

collision is possible only if the pixel in the playfield has the combina

tion 000111.

If a collision is allowed for all pixels with bit combinations 000111,

000110, 000100 or 000101, the MVBP bits must be 000100. The

lower two bits should always satisfy the collision condition, so the
corresponding ENBPx bits are cleared, ENBP value: 111100.

Examples for possible bit combinations:

JSNBPx MVBPx Collision possible with bit pattern

linn

nun

111100

011111

000000

nun

111000
llllxx

xOOOOO

xxxxxx

mm

111000

liiioo, mioi, miio, linn

000000,100000

Collision possible with any bit pattern

(The values of bits marked with an x are irrelevant)

132

Abacus 1.5 Programming the hardware

Other sprite

registers

Displaying

sprites

without DMA

If fewer than six bit planes are active, the ENBPx bits for the unused
planes must be set to 0!

The various combinations of the ENBPx and MVBPx bits allow a
variety of different collision detection strategies. For example, the

CLXCON register can be set so that sprites can collide only with the

red and green pixels of the playfield, but not with other colors. Or so

that a collision is possible only at the transparent points of playfield 1

if the underlying points ofplayfield 2 are black, etc.

In addition to the SPRxPT registers, each sprite has four additional reg
isters. They are normally supplied with values automatically by the

DMA controller. It is also possible to access them by hand (through the
processor), however

SPRxPOS first control word

SPRxCTL second control word

SPRxDATA first data word ofa line Cow word)

SPRxDATB second data word of a line (high word)

(x stands for a sprite number from 0 to 7. The addresses of these regis

ters can be found in the register overview in Section 1.5.1).

The DMA controller writes the two control words of a sprite directly

into the two registers SPRxPOS and SPRxCTL. When a value is writ

ten into the SPRxCTL register, whether through DMA or by the

68000, Denise turns the sprite output off. The sprite can no longer be

output to the screen.

The DMA controller now waits for the line stored in VSTART. Then it

writes the first two data words into the SPRxDATA and SPRxDATB

registers. This causes the sprite to be displayed, because writing to the

SPRxDATA register causes Denise to enable the sprite output again. It

now compares the desired horizontal position from the SPRxCTL and

SPRxPOS registers with the actual screen column and displays the

sprite at the correct location on the monitor.

The DMA controller writes two new data words in SPRxDATA/B in

each line until the last line of the sprite is past (VSTOP). Then it

fetches the next control words and places them in SPRxPOS and

SPRxCTL. This turns the sprite off again until the next VSTART

position is reached. If both control words were zero, the DMA con

troller ends the sprite DMA for the corresponding channel until the start

of the next frame. At the end of the vertical blanking gap it starts again

at the current address in SPRxPT.

A sprite can also be easily displayed without the DMA channel. You

simply write the desired control words directly into the SPRxPOS and

SPRxCTL registers. Only the HSTART position and the AT bit have

to contain valid values. VSTART and VSTOP are used only by the

DMA controller.

133

1. The Amiga Hardware Amiga System Programmer's Guide

The sprite output can begin in any line by writing the two data words
into the SPRxDATA and SPRxDATB registers. Since writing to

SPRxDATA enables the sprite output, it is better to write SPRxDATB

first.

If the data in the two registers is not changed, they are displayed again

in each line. The result is a vertical column.

To turn the sprite off again, simply write some value to SPRxPOS.

1.5.7 The Witter

What is a blitter? The name blitter is an abbreviation of sorts for "block
image transfer." This is, in fact, the main task of the blitter: moving
and copying data blocks in memory, generally involving graphic data.
The blitter can also perform logical operations on multiple memory

areas and write the result back into memory. It accomplishes these tasks
very quickly. Simple data moves are accomplished at speeds of up to 16

million pixels per second!

In addition, the blitter can fill surfaces and draw lines. The combination

of these two capabilities allows filled rectangles to be drawn much fast

er than would be possible with the 68000.

The operating system uses the blitter for almost all graphic operations.

It handles the text output, draws gadgets, moves windows, etc. In addi
tion, it is used to decode data from the diskette, which shows that the

many-sided capabilities of the blitter are not limited to graphics.

Using the The blitter always follows the same procedure when copying data: One

blitter to copy to three memory areas, the data sources, are combined together using
data the selected logical operations and the result is written back into mem

ory. The spectrum ranges from simple copying to complex combina

tions of multiple data areas. The addresses of the source data areas,

named A, B and C, and the destination area D can be anywhere in the

chip RAM (addresses 0 to $7FFFF).

The number of words which can be processed in a blitter operation can

be up to 6SS36. Up to 128KB of data can be moved through the mem

ory in one pass.

The blitter supports "rectangular memory areas." That is, the memory,

like a bit map, is divided into columns and rows. It is also possible to

process small areas inside a large bit map by using what are called

modulo values. You can recall such modulo values that are also used in

conjunction with the playfields in order to define bit planes which are

larger than the screen window.

134

Abacus 1.5 Programming the hardware

The following steps are necessary to start a blitter operation:

• Select the blitter mode: Copy data

• Select the source data areas (not all three sources have to be used)
and the destination area

• Select the logical operation

• Define other operating parameters (scrolling, masking, address
direction)

• Define the window in which the blitter operations take place and
start the blitter

Defining the You may wonder why we're starting with a discussion of the last step.
blitter window Actually, the definition of the desired window is the basis of all of the

other settings. But when the blitter is programmed, this value is written

at the end into the corresponding register because it also starts the blit
ter. Therefore this point is also listed last in the list above. It is impor
tant to understand die term "blitter window" before trying to explain the

other values, however.

The blitter window is a memory area in which the blitter is to perform

the blitter operation. It is constructed like a bit plane, that is, divided
into rows and columns, whereby a column corresponds to one word (2

bytes). The number of words in the window is equal to the product of

the rows and columns: R*C.

Since the desired memory area is divided into rows and columns, the
blitter is very well suited for processing bit planes.

Linear memory areas can be accessed just as well, however. The divi

sion into rows and columns is just to make the programming easier. In

actuality the individual lines reside at contiguous addresses in memory.

For small data fields which are not divided into rows and columns, it is

also possible to set the window width or height to 1.

The blitter processes the blitter window line by line. The blitter opera

tion begins with the first word in the first line and ends with the last

word of the last line.

The BLTSIZE contains the window size:

BLTSIZE $058 (write-only)

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function: H9 H8 H7 H6 H5 H4 H3 H2 HI HO W5 W4 W3 W2 Wl WO

135

1. The Amiga Hardware Amiga System Programmer's Guide

H0-H9 These ten bits represent the height of the blitter window in
lines. The window can have a height between 1 and 1024
lines (210 - 1024). A height of 1024 lines is set by setting

the height value to 0. For all other values the height corre

sponds directly to the number of lines. A height of 0 lines is

not possible.

W0-W5 Six bits represent the width of the window. It can vary

between 1 and 64 words (26 = 64). In terms of graphic pixels
this ranges up to 1024 pixels. As with the height, the max

imum width of 64 words is set by making the width value -

0.

The following formula shows how to calculate the necessary BLTSIZE

value from the height and width: BLTSEE « Height*64 + Width.

To take the two extreme cases height = 1024 and Width - 64 into

account, the formula is:

BLTSIZE = (Height AND $3FF)*64 + (Width AND $3F)

The BLTSIZE register should always be the last register initialized. The

blitter is automatically started when a value is written to BLTSIZE.

Source and During a blitter operation, data are combined together from completely

data areas different areas of memory. Even though the blitter window defines the
number and organization of the data to be processed, the positioning of

this window within the three source and the destination data areas must

be defined.

Let's assume that you want blitter to copy a small rectangular graphic

stored somewhere in chip RAM into the screen memory. For this

simple task there is only one source area. The selection of the blitter

window is easy. The entire graphic is copied, so the width and height of

the blitter correspond to those of the graphic in memory.

So that the blitter also knows where this graphic can be found, write

the address of the first word in the top line into the appropriate register.

But how is the destination area defined? The graphic is copied into the

screen memory, so it must be transferred to the current bit plane (for the

sake of simplicity the graphic and the screen memory is assumed to

consist of just one bit plane). But this bit plane is significantly wider

than the small graphic. If the blitter copied it directly into the bit plane,

it would look rather strange. In addition to the address of the destination

area, the blitter must also know its width. This information is commu

nicated by the modulo values. The modulo value is added to the address

pointer after each processed line of the blitter window. Thus the words

which are not affected are skipped and the pointer is again at the start of

the next line. The source and destination areas have independent modulo

registers so that they can have different widths.

136

Abacus 1-5 Programming the hardware

Figure 1JSJ.1

Graphic Bit plane

00 02 0406 08

1012141618

20 22242628

3032343638

4042444648

00

20

40

60

80

100

120

140

160

180

02

22

42

62

82

102

122

142

162

182

04

24

44

64

84

104

124

144

164

184

06

26

46

66

86

106

126

146

166

186

08

28

48

68

88

108

128

148

168

188

10

30

50

70

90

110

130

150

170

190

12

32

52

72

92

112

132

152

172

192

14

34

54

74

94

114

134

154

174

194

16

36

56

76

96

116

136

156

176

196

18

38

58

78

98

118

138

158

178

198

Graphic copied

into bit plane

00

20

40

60

80

100

120

140

160

180

02

22

42

62

82

102

122

142

162

182

04

24

00
44

10
64

20
84

30
104

40
124

144

164

184

06

26

02
46

12
66

22
86

32
106

126

146

166

186

08

28

04
48

14
68

24
88

34

.44
lie

148

168

188

10

30

06
50

16
70

26
90

36
110

46
130

150

170

190

12

32

08
52

18
72

28
92

38
112

48
132

152

172

192

14

34

54

74

94

114

134

154

174

194

16

36

56

76

96

116

136

156

176

196

18

38

58

78

98

118

138

158

178

198

Figure 1.5.7.1 illustrates our example. The graphic consists of 5 lines,
each ten words wide. The numbers stand for the address of the corre

sponding word in relationship to the start address of the graphic. The bit

plane has a height of 20 words. How do we choose the blitter window,

starting addresses and modulo values?

The blitter window must correspond to the graphic, since it is copied

completely. The graphic is 5 lines high and 10 words wide, so the value

which must be written to the BLTSIZE register is 330, or $014A.

The starting address of the source data is equal to the address of the first

data word of the graphic. Since the width of a line of the graphic is

equal to the line width of the blitter window, the modulo value for the

source is 0.

The modulo value must now be calculated for the destination data area.

To do this, simply take the difference of the actual line width and that

of the blitter window. In our example this is 20 words minus 10 words:

The modulo value for the destination data area is 10 words. The modulo

value must be specified in bytes in the blitter modulo registers. Modulo

value = modulo in words * 2.

137

1. The Amiga Hardware Amiga System Programmer's Guide

How does the

blitter opera

tion proceed?

Finally, the blitter needs the starting address of the destination data.

This determines the position at which the graphic is copied and is equal
to the starting address of the bit plane plus the address of the word at
which the upper left corner of the graphic is placed. In our figure this is

the address of the bit plane plus 24.

After the addresses and the modulo values in our example have been

defined, the blitter starts to copy the data after BLTSIZE has been

initialized. It fetches the word from the starting address of the source

data and stores it at the destination address. Then it adds one word to

both addresses and copies the next word. This is repeated until the

number of words per line set in BLTSIZE have been processed. Before

the blitter continues with the next line, it adds the modulo value to the

address pointers so that the next line starts at the correct address.

After all of the lines have been copied, the blitter turns off and waits for

its next job.

After a blitter operation, the address registers contain the address of the

last word plus 2 and plus the modulo value.

The address registers are called BLTxPT, whereby the x stands for one

of the three sources A, B, C or the destination area D. As usual, the

address registers consist of one register for bits 0-15 and another for bits

16-18:

Reg. Name Function

Copying with

increasing or

decreasing

addresses

048

04A

04C

O4E

050

052

054

056

BLTCPTH

BLTCPTL

BLTBPTH

BLTBPTL

BLTAPTH

BLTAPTL

BLTDPTH

BLTDPTL

Starting address

of source data area C

Starting address

of source data area B

Starting address

of source data areaA

Starting address

of source data areaD

Each of the four areas has its own modulo register:

060

062

064

066

BLTCMOD

BLTBMOD

BLTAMOD

BLTDMOD

Modulo value for source C

Modulo value for source B

Modulo value for source A

Bits 16-18

Bits 0-15

Bits 16-18

Bits 0-15

Bits 16-18

Bits 0-15

Bits 16-18

Bits 0-15

Modulo value for destination dataD

In our example the blitter worked with increasing addresses, that is, it

started at the starting address and incremented this until the end address.

The end address is thus logically higher than the starting address.

There is a case in which such addresses leads to errors. Copying a mem

ory area to a higher address in which the source and data areas overlap in

part An example:

138

Abacus 1.5 Programming the hardware

Result

Address Source data Destination data desired actual
0 sourcel

2 source2

4 source3

6 source4 destl sourcel sourcel
8 sources dest2 source2 source2
10 dest3 source3 source3
12 dest4 source4 Jsourcel!
14 destS source5 !source2!

The five source data words are written at the address of the destination
data. If the blitter starts at sourcel, it overwrites source4 when it stores
sourcel at the desired destination address destl since source4 and destl
have the same address (the two areas overlap). The same happens for
source2anddest2.

When the blitter reaches die address of source4, it finds sourcel there
instead. Thus sourcel is copied to dest4 instead of source4 and source2
to destS instead of sources.

To solve this problem, the blitter has a decreasing address mode in

BLTxPT and decrements these values by 2 bytes after each word is
copied. Also, the modulo value is subtracted instead of added. The end

ss.

This must naturally be taken into account when initializing the
BPLxPTs. Normally these are set to the upper left corner of the blitter

window in the given data area (A, B, C or D). In the descending mode

the addressing is backwards. Correspondingly, BPLxPT must point to

the lower right corner.

The modulo and BLTSIZE values are identical to those for the ascend
ing mode.

In general, the following statements can be made about the two modes:

1. No overlap between source and destination areas:

Either ascending or descending mode; both work correctly in this

case.

2. Source and destination overlap partially, whereby the destination

area is before the source:

Only ascending mode works correctly.

3. Source and destination overlap partially, whereby the destination

area is after the source (see example):

Only the descending mode works correctly.

139

1. The Amiga Hardware Amiga System Programmer's Guide

Selecting the

logical

operations

As mentioned, there are three source data areas and these can be com
bined to form the destination data. These logical operations are always

bitwise, that is, the destination bit D must be obtained from the three

data bits A, B and C.

The blitter recognizes 256 different operations. These are divided into

two levels:

1. Eight different boolean equations are applied to the three data
bits. Each of these yields a 1 from a different combination of A,

BandC.

2. The right results of the above equations are selectively combined
with a logical OR. The result is the destination bit D.

The term "boolean equation" refers to a mathematical expression which
represents a combination of logical operations. This type of computa

tion is called boolean algebra after the English mathematician George

Boolen (1815 to 1864). The explanations of the logical functions of the

blitter can be understood without knowledge of boolean algebra, but the

boolean equations are included.

There are eight possible combinations for the three bits. Each of the
eight equations is true for one of them (its result is 1). By means of

eight control bits LFO to LF7 you can select whether the result of the

equation has any effect on the formation of D. All result bits whose
corresponding LFx bit is 1 are combined with a logical OR function.

An OR operation means that the result is 1 if at least one of the input

bits is 1. Put another way, a logical OR returns a 0 only if all inputs

areO.

The eight LFx bits can be used to select which combinations of the

three input bits A, B and C causes the output bit D to be 1.

The term for the eight boolean input equations is "minterm."

The following table gives an overview of the input combinations for

each LFx bit

(In the minterm row a lowercase letter stands for a logical inversion of

the corresponding input bit Normally this is indicated with a bar over

the letter.)

The Input bits row contains the bit combination for which the corre

sponding equation is true. The order of the bits is A B C.

LF7 LF6 LF5 LF4 LF3 LF2 LF1 LFO

Minterm ABC

Input bits: 111

ABc AbC Abe aBC aBc abC abc

110 101 100 Oil 010 001 000

140

Abacu

Minterms Selecting the individual minterms is easy. For each input combination
for which the output bit D should be 1, set the corresponding LFx bit

In our first example we simply copy the source data from A directly to

D. The B and C sources are not used. Which minterms must be selected
for this?

D can be 1 only when A=l. Thus only the upper four terms LF4 to

LF7 come into play, since A=l only for these terms. Since B does not

play a role, we choose a term in which Bis 1 and a term in which B is
0. but which are otherwise identical. Now B has no effect on D because
the remainder of the equation is unchanged for both values of B and its

result depends only on this remainder. The same holds for C. Ifwe look

at the table of input combinations, we see that LF4 to LF7 must be
activated. Then the result depends only on A since for any combination

ofB and C, one of these four equations is always true for A=l and thus
D is 1. If A=0, all four are false and D=0.

Those who are familiar with boolean algebra can derive the appropriate
minterms formally. The required expression is A=D. Since B and C are

always present in the blitter, they must be integrated into the equation
as well:

A*(b+B)*(c+C)=D

The term x+X is always true (equal to 1) and is used when the result is

independent of the value of X. To get the minterms needed, just multi
ply it out:

1. A*(b+B)*(c+C)=D
2. (A*b+A*B) * (C+C) =*D

3. A*b*c+A*B*c+A*b*C+A*B*C=D

or without the AND operators:

Abc+ABc+AbC+ABC » D

Now wejust have to set the LFx bits of the corresponding minterms.

Here are some examples of common blitter operations and the corre

sponding LFx bit settings:

• Invert a data area: a =*D

LFx combination: 00001111

Boolean algebra: a = D

a*(b+B)*(c+C) = D

(ab+aB)*(c+C) = D

abc+aBc+abC+aBC = D

141

1. The Amiga Hardware Amiga System Programmer's Guide

• Copy a graphic in a bit plane without changing the original

contents of die destination bit plane. This corresponds to logical

ly ORing the source and destination areas: A + B = D

LFx combination: A + B * D

A(b+B)(c+C)+B(a+A)(c+C) - D

(Ab+AB)(c+C)+(Ba+BA)(c+C) « D

Abc+ABc+AbC+ABC+Bac+BAc+BaC+BAC = D

Abc+ABc+AbC+ABC+aBc+aBC - D

Here again is the rule for determining the LFx bits needed:

1. Determine which of the eight combinations of ABCD should be

equal to 1.

2. Set the LFx bits accordingly.

3. If not all three sources are needed, all combinations in which the

unused bits occur and the desired bits have the proper value must

be selected.

Shifting the For some tasks the Witter's limitation to word boundaries can cause

input values trouble. For example, you may want to shift a certain area within a bit

map by a few bits. Or perhaps you want the blitter to write a graphic at

specific screen coordinates that do not match a word boundary.

In order to handle this problem, the blitter has the capability to shift the

words from sources A and B to the right by up to IS bits. This allows

it to move data to the desired bit position. All bits which are pushed

out to the right by the shift operation move into the free bits in the

next word. Thus the entire line is shifted bit by bit A device called a

barrel shifter is used inside the blitter in order to shift the words. It

requires no additional time for the shift operation, regardless of how

many bits are moved.

Example for shifting data by three bits:

Before:

Data word 1 Dataword 2 Data won! 3

0001111110011100 0001010101111111 1110000111100101

Aften

Data word 1 Data word 2 Data word 3

xxxOOOll 11110011 1000001010101111 11111100 00111100

The three xxx bits depend on the previous data word from which they

are shifted out

142

Abacus 1-5 Programming the hardware

Masking

Graphic data

in the bit

plane:

It is possible to use the blitter to copy a graphic from the screen mem
ory whose borders are not on word boundaries. The data to the left of
the graphic but which are still in the first data word should not be
copied along with the actual graphic data. To make this possible, the
blitter can apply a mask to the first and last data words of a line. This
permits undesired data to be erased from the edges of a line.

Only source A can be masked in this manner. Two registers contain the
masks for the two edges. A bit is copied in the blitter operation only if
it is set in the mask register. All others are cleared.

$044 BLTAFWMBlitter source A First WordMask

Mask for the first data word in the line.

$046BLTQLWMBlitter source A Last Word Mask

Mask for the last data word in the line.

Bits 0-15 contain the corresponding mask bits.

Example:

("1" stands for a set bit,"." for a cleared bit)

Column 1 Column 2 Column

llllllll llllllllllllini

llllll 1111 11 nil

...11 n nil.........in

...11 l lllll 11

...11 l lllll ii

...11 11 nil. in

llllll 1111 11 nil

llllllll 1111111111111111

1 11

nil mi

inn....mini

liiiiiiiniiiiii

liiiiiiiiiiiini

inn....liiini

mi mi

l ii

First Word Mask:

0000000011111111

Result:

Column 1 Column 2

Last Word Mask:

111111000000000000

Column 3

.liiiiiii liiiiiiiiiiiini

mi n mi

n mi in

l inn n

l inn n

n mi in

mi n mi

.liiiiiii liiiiiiiiiiiini

l

mi...

inn.,

linn,

linn,

inn.,

nil...

l

By masking out the unwanted picture elements at the edges, you get the

the desired graphic.

143

1. The Amiga Hardware Amiga System Programmer's Guide

The blitter

control

register

When the width of the blitter window is one word (BLTSIZE width=l),
both masks come together. They both operate on the same input word.

Only the input bits whose mask bits are set in both masks are let

through.

The blitter has two control registers, BLTCONO and BLTCONl. The
following blitter control bits are found in these two registers:

BLTCONO $040

Bit no. Name Function

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

BLTCONl

Bit no.

ASH3

ASH2

ASH1

ASHO

USEA

USEB

USEC

USED

LF7

LF6

LF5

LF4

LF3

LF2

LF1

LFO

$042

Name

ASH0-3 contain the shift distance

for the input data from source A

ASH0-3 = 0 means no shift

Enables the DMA channel for source A

Enables the DMA channel for source B

Enables the DMA channel for source C

Enables the DMA channel for destination D

Selects minterm ABC (bit comb, of ABC: 111)

Selects minterm ABc (bit comb, of ABC: 110)

Selects minterm AbC (bit comb, of ABC: 101)
Selects minterm Abe (bit comb, of ABC: 100)
Selects minterm aBC (bit comb, of ABC: 011)
Selects minterm aBc (bit comb, ofABC: 010)

Selects minterm abC (bit comb, of ABC: 001)

Selects minterm abc (bit comb, of ABC: 000)

Function

15 BSH3 BSH0-3 contain the shift distance

14 BSH2 for the input data from source B

13 BSH1 BSH0-3 = 0 means no shift

12 BSH0

11-5 unused

4 EFE Exclusive Fill Enable

3 IFE Inclusive Fill Enable

2 FCI Fill Carry In

1 DESC DESC = 1 switches to descending mode

0 LINE LINE = 1 activates the line mode

The LINE bit switches the blitter into its line drawing mode. If you

want to copy data with the blitter, LINE must be 0.

Ascending or descending addresses can be selected with the DESC bit If

DESC=0, the blitter works in ascending mode, else if DESC01, in

descending mode.

The EFE and IFE bits activate the surface-filling mode of the blitter.

They must both be 0 for the blitter to operate in the normal mode.

The FQ bit is used only in the fill mode.

144

Abacus 1.5 Programming the hardware

The blitter The data from the source areas A, BandC and the output dataDare read
DMA from or written to the memory through four DMA channels. This blit

ter DMA can be enabled for all channels with the BLTEN bit (bit 6) in

the DMACON registers. The blitter has four data registers for its DMA
transfers:

Addr. Name Function

000

070

072

074

BLTDDAT

BLTCDAT

BLTBDAT

BLTADAT

Output dataD

Data register for source C

Data register for source B

Data register for sourceA

The DMA controller reads the needed input values from memory and

writes them into the data registers. When the blitter has processed the

input data, BLTDDAT contains the result. The DMA controller then
transfers the contents ofBLTDDAT to the chip RAM.

The DMA transfer through these four registers can be enabled and

disabled through the four USEx bits. For example, USEA=0 disables

the DMA channel for data register A. The blitter continues to access the
data in BLTADAT, however, each new word from the active sources is

the same word always read from source A. This is why unused channels
must be disabled with USEx=0 and the effect of this source must be
effectively disabled by selecting the appropriate minterms. Another
option is to make use of the fact that the same word is always read

when the DMA channel is disabled. This can be used to fill the memory

with a given pattern, for example, by writing the appropriate value
directly into BLTxDAT.

In addition to BLTEN, three other bits in DMACON pertain to the
bUtter.

Bit 10BLTPRI

This bit was already explained in the Fundamentals section. If it is 1,

Bit 14BBUSY(read-only)

BBUSY indicates the state of the blitter. If it is 1, it is currently per

forming an operation.

After the blitter window is set in BLTSIZE the blitter starts its DMA

and sets BBUSY until the last word of the blitter window has been pro

cessed and written back into memory. It then ends its DMA and clears

BBUSY.

At the same time BBUSY is cleared, the blitter-finished bit is also set

in the interrupt request register.

145

1. The Amiga Hardware Amiga System Programmer's Guide

BU13BZERO

The BZERO bit indicates whether all of the result bits of a blitter oper

ation were 0. In other words, BZERO is set when none of the opera

tions performed on any of the data words resulted in a 1. One use of this

bit is to perform collision detection. The minterms are set such that D

is 1 only if the two sources are also 1. If the graphics in both sources

intersect at least one point, the result is 1 and BZERO is cleared. Thus

at the end of the blitter operation you can determine if a collision

occurred or not USED is set to 0 in this application so that the output

data are not written to memory.

Using the What does it mean to "fill a surface"?

blitter to fill
surfaces The blitter understands a surface to be a two-dimensional area ofmem

ory which is filled with points. Normally this surface belongs to a

graphic or bit plane.

In order to fill a surface, the blitter must recognize its boundaries. You

need a definition of a boundary line which the blitter can deal with.

Many fill functions exist in various drawing programs and also in

AmigaBASIC with the PAINT command. These functions cause an area

of the screen to be filled, starting with some initial points, until the

program encounters a boundary line. This allows completely arbitrary

surfaces to be filled, assuming that they are enclosed by a continuous

line. The blitter is not in a position to perform such a complex fill

operation. It only works line by line and fills the free space between

two set bits which mark the boundaries of the desired surface. Two

examples show how the blitter fill operation works:

Correct fill operation:

Before: After:

l.i in

l l liiiiiin....

l l liiiiiiiiiin. •

«....1....1...1....1........111111...llllll*

• ••••ia...i...i....i........mill...mill*

1 l lllllllllllll.•

1 l lllllllll...,

1 l lllllllllllll.,

Incorrect operation due to improper border bits:

Before: After:

ill llllliiilllili

...... .XXX..«XXX.«....««•«..••••••XXXXXXXXX.«««.«...

11. . .111. . .11 11111111111111. . .11

....1....1...1....1............111111...111111......

... .1. •• .1.. .1. ...1.......... ••111X11...HUXX......

11.. .111.. .11 11111111111111.. .11

1 1 lllllllll

lllllllllllll 1111111111111111111

146

Abacus 1.5 Programming the hardware

In the first example the surface is bounded properly for the Witter and is
thus filled correctly. Example 2 is a different matter, however. Here a
closed boundary line is drawn around the figure. If you attempt to fill
such a figure with the blitter, chaos results.

The FC bit The reason for this is the algorithm that the blitter uses. It is extremely
simple. The blitter starts at the right side of the line. It uses the Fill
Carry bit (FC) to determine if it must set a bit. Normally this is 0 at
the start. The blitter checks the value of the bit at the far right. If it is
zero, the value of the FC bit remains unchanged. It forms the corre
sponding bit of the output The blitter continues in this manner with
the neighboring bite until it finds one which is set to 1. This causes the
FC bit to be set Since the output bits correspond to die current value
of the FC bit, they are 1. The blitter does not clear the FC bit until it
encounters another set input bit. In this manner the area between two

set bits is always filled. As you can see from the second example, the
fill logic gets rather confused by an odd number of set bits.

The FQ bit (Fill Carry In) in BLTC0N1 determines the start value of
the FC bit IfFCI is cleared, everything proceeds as described above. If
FCI=1, the blitter starts to fill from the edge until it encounters the first
set bit The fill procedure is thus reversed.

Example of the effect of the FCI bit:

Output graphic FCT=O FCI«1

-. - -1 1 1111111 1X11111. -. .111111
. •. .1 1 11111111111... 11111 1111

.. .1 1.1... .1 111111.111111.. 1111 111 111

.. .1 1.1 1 111111.111111.. 1111 111 111

.. - .1 1 11111111111... 11111 1111

1 1 1111111 1111111 111111

In the examples up to now, the input bits (the boundaries of the sur

face) have been retained in the filled graphic. This is always the case

when the fill mode is activated by setting the ICE (Inclusive fill
Enable) bit in BLTC0N1.

ECE mode In contrast to this is the ECE mode (Exclusive fill Enable), which is
enabled by setting the bit with this name in the 8LTC0N1 register. In

this mode the boundary bits at the left edge of a filled surface (whenever

the fill carry bit changes from 1 to 0) is not retained in the output pic

ture. This causes all surfaces to become one bit pixel smaller. Only in

the ECE mode is it possible to get surfaces with a width of only one

bit This is impossible in the ICE mode because at least two boundary

bits are needed to define a surface and both will then appear in the out

put.

147

1. The Amiga Hardware Amiga System Programmer's Guide

Difference between the ICE andECE modes:

OutDut eraDhic ICE ECE

........ XX XX

.••...1...1....1.1

1......11...11...1

..X*.............X

....X...........X.

......X...X...XX*.

........XX......XJ.

11111....Ill

...111111111..1111

111111111111111111

..1111111111111111

.......

.......1XXX.....XJL

....1111.111...Ill

.1111111.1111.1111

...111111111111111

... .1111111111111 111111111111.

......11111...11..1111*...I*.

Bitwise operation of the different fill operations:

Input pattern: 11010010

Bit No.

_

0

1

2

3

4

5

6

7

Input bit

11010010

0

1

0

0

1

0

1

1

EC

0

1

1

1

0

0

1

0

FC3

ICE

FC

0

10

110

1110

11110

011110

1011110

11011110

: - o

ECE

0

10

110

1110

01110

001110

1001110

01001110

FCI - 1

k:

E

1

0

0

0

1

1

0

1

ICE

1

11

Oil

0011

10011

110011

1110011

11110011

ECE

1

01

00

0001

10001

110001

0110001

10110001

(FC«FCI) means that the FC bit assumes the value of the FCI bit at

the start of the fill operation.)

How is a The blitter can perform this fill operation in addition to a normal copy
blitter fill procedure. It is enabled by setting either the ICE or ECE bit in
operation BLTCON1 according to the desired mode. Blitter forms the output data
started? from the three sources A, B and C and the selected minterms as usual. If

neither of the two fill modes is active, the blitter writes this data
directly to its output data register (BLTDDAT, $000) from where it is
written to memory through DMA, assuming USEEM.

In the fill mode, the output dataD is used as input data for the fill cir
cuit The result of the fill operation is then written into the output

register BLDDAT.

The following steps are necessary to perform a fill operation:

• Select the BLTxPT, BLTxMOD, and minterms such that the

output dataD contain the correct boundary bits for the surface to

be filled.

• Select descending mode (the blitter fills from right to left and

this works only when the words are accessed with ascending

addresses).

• Select the desired fill mode: set ICE or ECE; set or clear FCI as

desired

148

Abacus 1.5 Programming the hardware

LINE = O(line mode off)

Set BLTSEE to the size of the graphic to be filled.

The blitter now starts with the fill procedure. When it is done, it sets
BBUSY toO as usual.

The speed of the blitter is not limited by activating the fill mode. In the
maximum case the blitter can fill surfaces at a speed of 16 million pix
els per second. The major application of the fill mode is in drawing
filled polygons. The desired polygon is drawn in an empty memory area
and the blitter then fills this area.

Using the The blitter is an extremely versatile tool. In addition to its excellent
blitter to draw capabilities for copying data and filling surfaces, it has a powerful mode
lines for drawing lines. Like the other blitter modes it is extraordinarily fast:

up to a million pixels per second. Even with a 68020 this speed can be
reached in software only with some effort. For the built-in 68000 it is
completely impossible.

When drawing a line, two points are to connect to each other by a con

tinuous series of points. Since the resolution of a computer graphic is
limited, the optimal points cannot always be chosen. The actual points
always lie either above or below the intended ideal line. Such a line
usually resembles a staircase more or less. The higher the resolution,
the smaller the steps, but they can never be completely eliminated.

Example of a line in a computer graphic:

What do

"drawing

lines" amount

to?

The two points are connected by a line

.111.

.111.

.mi.

.in.

.111.

The blitter can draw lines up to a length of 1024 points. Unfortunately,
you cannot specify the coordinates of the two end points. The lines

must be defined in a blitter style.

First, the blitter needs to know the octants in which the line is located.

The coordinate system is divided into eight parts, and you'll find that

the octants are found in many graphic processors.

149

223IaC
O"
5

o

Abacus IS Programming the hardware

Figure 13.7.3

Ending point

2>

Starting point

A(xry2)

Figure 1.5.7.2 shows this division. The starting point of the line is
located at the origin of the coordinate system (at the intersection of the
X and Y axes). The end point is located in one of the eight octants,
according to its coordinates. The number of this octant can be deter
mined with three logical comparisons. XI and Yl are the coordinates of
the start point and X2 and Y2 are those of the end point:

If XI is less than X2, the end point is in octant 0,1, 6 or 7, while if

XI is greater than X2, it is in 2,3,4 or 5. If XI and X2 are equal, it is

on the Y axis. Then all eight octants are possible.

Similarly: Yl is less than Y2, possible octants of the end points are 0,

1,2 or 3, if Yl is greater than Y2, possible octants are 4, 5, 6 or 7.

Y1=Y2: all octants.

For the last comparison we need the X and Y differences: DeltaX = |X2-

Xl|, DeltaY = |Y2-Y1|. If DeltaX is greater than DeltaY, the end point

can be located in octant 0,3,4 or 7. If DeltaX is less than DeltaY, it is

in octant 1,2,5 or 6. DeltaX = DeltaY: all octants.

The end point is located in the octant which occurred in all three com

parisons. If a point is on the border between two octants, it doesn't

matter which is chosen.

151

1. The Amiga Hardware Amiga System Programmer's Guide

Selecting the

correct octant:

Lines with

patterns

Point coordinates Octant Code

Yl <= Y2

X1<=X2 0 6
DeltaX>=DeltaY

Y1<=Y2

X1<=X2 1 1

DeltaX<= DeltaY

Y1<=Y2

X1>=X2 2 3
DeltaX<= DeltaY

Yl <= Y2

X1>=X2 3 7
DeltaX>=DeltaY

Point coordinates

Yl >=Y2

X1>=X2

DeltaX>=DeltaY

Y1>=Y2

X1>=X2

DeltaX<=DeltaY

Yl>-Y2

X1<=X2
DeltaX<-DeltaY

Y1>=Y2

X1<=X2

DeltaX»DeltaY

Octant Code

The digits in the Code column correspond to the circled numbers in
Figure 1.5.7.2. The blitter needs a special combination of three bits,
depending on the octant hi which the end point of the line is located.
These are SUD (Sometimes Up or Down), SUL (Sometimes Up or
Left), AUL (Always Up or Left). Code is the 3-bit number formed by
these three bits (SUD=msb and AUL=lsb).

When programming the lines you must first determine die octant of the

When drawing a line, the blitter uses a mask to determine whether the
points of the line are set, cleared or given a pattern. The mask is 16 bits
wide, so the pattern repeats every 16 bits. The relationship between the
pattern and the appearance of the line can best be understood with a

couple of examples:

("." = 0, "1* = 1, A = start point andB » end point)

Output picture: Mask = "111111111111111":

aaaallaaaa*aa

aaa*ll»aa«*aa

aaaaalla«a«aa

t ill ••!

11111111 B 11111111... .11B.

*««« »«•••• •lilt it«itlilil«tt«

aaaallaaaaaa*111••••11•••

aaaallaaaalllaaaaaaallaaa

| • « • •llllli • • i • • • • till * * t

M I • < lllli Hi •

All... .11111111

aaaaaa«llaaa

aaaaaaall«aa

aa«a*«llaaaa

•#! Ill ••*•«•

. .A 11111111

152

Abacus 1.5 Programming the hardware

Drawing

boundary lines

Definition of

slope

Zero bits in the mask cause line points to be cleared:

Output picture: Mask . €XXXXXXX)000000()00w:

...11111111111111111..B 11111111111111111..B.

.. .11111111111111111 11111111111111

.. .11111111111111111 111111111111. .111.

.. .11111111111111111 111111111.. .11111.

.. .11111111111111111 111111.. .11111111.

.. .11111111111111111 1111. .11111111111.

.. .11111111111111111 1.. .1111111111111.

.A.11111111111111111 A. .1111111111111

If we combine ones and zeros in the mask, the line takes on a pattern:

.Allllll

1U...1

.111111.

.111...11.

.11111.

.111...111....

1111.B

In the section on filling surfaces with the blitter we explained that the
boundary lines of these surfaces can only be one pixel wide. If these
lines are drawn with the blitter, it can occur that several line points lie
on the same horizontal line. To prevent this, the blitter can be made to
draw lines with only one point per raster line:

Normal line: Line with one noint/raster line*

nil

«..•«.«•••••mi. •••

........mi. «••••••

•«• * mi •...........

1111

So the blitter knows where to draw the line, it needs a blitter-style defi
nition of the slope in the line. This slope is formed from the results of
three terms, all based on the DeltaX and DeltaY values as explained in

the section on octants (DeltaX and DeltaY represent the width and

height of the rectangle whose diagonal line forms [see Figure 1.5.7.3]).

First the two values must be compared with each other to find the

larger/smaller of the two. We call the smaller delta Sdelta and the larger

Ldelta. Then the three expressions required by the blitter are as follows:

1. 2*Sdelta

2. 2*Sdelta-Ldelta

3. 2*Sdelta-2*Ldelta

In addition the blitter has a SIGN flag which must be set to 1 if

2*Sdelta< Ldelta.

153

1. The Amiga Hardware Amiga System Programmer's Guide

Register func- The blitter uses the same register when drawing lines as it does when
tions in line copying data (it doesn't have any more), but the functions change:

mode
BLTAFTL

The value of the expression 2*Sdelta-Ldelta must be written into

BLTAPTL.

BLTCPT & BLTDPT

These two register pairs (BLTCPTH and BLTCPTL, BLTDPTH
and BLTDPTL) must be initialized with the start address of the
line. This is the address of the word in which the start point of

the line is located.

BLTAMOD

The value of the expression "2*Sdelta-2*Ldelta" must be stored

in BLTAMOD.

BLTBMOD

"2*Sdelta"

BLTCMOD & BLTDMOD

The width of the entire picture in which the line is drawn must

be stored in these two modulo registers. As usual, this is done in
the form of an even number of bytes. With a normal bit plane of
320 pixels (40 bytes) in the X direction, the value for

BLTCMOD or BLTDMOD - 40.

BLTSEE

The width (bits 0 to 5) must be set to 2. The height (bits 6 to
15) contains the length of the line in pixels. A height of 0 cor

responds to a line with a length of 1024 points.

The correct line length is always the value of Ldelta.

Drawing a line is started by writing to the BLTSIZE register.

Therefore it should be the last register initialized.

BLTADAT

This register must be intialized to $8000.

BLTBDAT

BLTBDAT contains the mask with which the line is drawn.

BLTAWFM

$FFFF is stored in this mask register.

154

Abacus 1.5 Programming the hardware

1st step

BLTCONO

Bit no. Name Function

15

14

13

12

11

10

9

8

7

toO

START3

START2

START1

STARTO

USEA=1

USEB = 0

USEC m 1

USED=1

LF7

LFO

BLTCON1

Bit no. Name

The 4-bit value START0-3 contains the position

of the start point
of line within the word

at the start address of the line

(BLTCPT/BLTDPT)

Normally this is the four lower bits of the X

coordinate of the start point

This combination of the USEx bits is necessary

for the line mode

The LFx bits must be initialized with $CA
(D-aC+AB)

Function

IS Texture3 This is the value for shifting the mask

14 Texture2 Normally it TextureO-3 is set to StartO-3
13 Texturel The pattern in the mask register BLTBDAT

12 TextureO then starts with the first point of the line
11 to 7 =0 unused, always set to 0

6 SIGN If 2*Sdelta < Ldelta, set SIGN to 1
5 — unused, set to 0

4 SUL These three bits must be initialized
3 SUD with the SUL/SUD/AUL code
2 AUL of the corresponding octant (fig. 1.5.7.2)

1 SING = 1 Draw lines with only one point per raster line

0 LINE = 1 Put the blitter in line drawing mode

A numerical example:

You want to draw a line in a bit plane. The bit plane is 320 by 200

pixels large and lies at address $40000. The starting point of the line

has the coordinates X=20 and Y=185. The ending point lies at X=210

and Y=35 (The coordinates are in relation to the upper left corner of the

bit plane). DeltaX=190, DeltaY=150.

Find the octant of the end point

Three comparisons are performed to do this, result: X1<X2, Y1>Y2,

and DeltaX>DeltaY. This results in octant number 7 and a value for the

SUD/SUL/AUL code of 4.

155

1. The Amiga Hardware Amiga System Programmer's Guide

2nd step Address of the starting point

This is calculated as follows:

starting address of the bit plane + (number of lines - Yl -1) *

bytes per line + 2*(X1/16)

(The fractional portion of the division is ignored.)

After inserting the values:

$40000 + (100-185-l)*40 + 2 = $40232

This value is placed in BTLCPT and BLTDPT. The number of bytes

per line is also written into the BLTCMOD and BLTDMOD registers.

3rd step Starring point of the line in STARTO-3

Calculation: XI AND $F

Numerically: STARTO-3 = 20 AND $F = 4

4th Step Values for BLTAPTL. BLTAMOD. and BLTBMOD

DeltaY < DeltaX, meaning that Sdelta = DeltaY and Ldelta = DeltaX

BLTAPTL = 2*Sdelta-LDelta = 2*150-190 = 110

BLTAMOD = 2*Sdelta-2*Ldelta = 2*159-2*190 = -80

BLTBMOD - 2*Sdelta = 300

5th Step Length of the line for BLTSIZE

Length = Ldelta = DeltaX = 190

The value for the BLTSIZE register is calculated from the usual

formula: Length*64 + Width. Width must always be set to 2 when

drawing lines. BLTSIZE = DeltaX*64+2 = 12162 or $2F82.

6th step Combining the values for the two BLTCONx registers

The START value must be stored in the correct position in BLTCON0,

in addition to $CA for the LFx bits and 1011 for USEx. In the example

this results in $ABCA.

BLTCON1 contains the octant code and the control bits. We want to

draw our line normally, so SING=0. LINE must naturally be 1. SIGN

was already calculated as is 0 in this example. Together this makes

$0011.

In assembly language the initialization of the registers can look like

this:

156

Abacus 1.5 Programming the hardware

Other drawing

modes

The blitter

DMA cycles

LEA $DFF000,A5

MOVE.L #$40232, BLTCPTH(A5)

MOVE.L #$40232, BLTDPTH(A5)

MOVE.W #40, BLTCMOD(A5)

MOVE.W #40, BLTDMOD(A5)

MOVE.W #110, BLTAPTL(A5)

MOVE.W #-80, BLTAMOD(A5)

MOVE.W #300, BLTBMOD(A5)

MOVE.W #$ABCA, BLTCONO(A5)

MOVE.W #$11, BLTCONKA5)

MOVE.W #12162, BLTSIZE(A5)

;base address of the custom

;chips in A5

/start address to BLTCPT

;and BLTDPT

;width of bit plane to BLTCMOD

;and BLTDMOD

;now the blitter starts

/drawing the line

Up to now we always chose $CA as the value for the LFx bits. This

causes the points on the line to be set or cleared according to the mask,

while the other points remain unchanged.

But other combinations of LFx are also useful. To understand this, you

must know how the LFx bits are interpreted in the line mode:

The blitter can only address the memory word wise. In line mode the

input data enters the blitter through source channel C. The mask is

stored in the B register. The A register determines which point in the

word read is the line point It always contains exactly one set bit, which

is shifted to the correct position by the blitter. The normal LFx value

of $CA causes all bits for which the A bit is 0 to be taken directly from

source C. If A is 1, however, the destination bit is taken from the

corresponding mask bit

If you know how the LFx bits are used, you can choose other drawing

modes. $4A, for example, causes all the line points to be inverted.

As we explained in the section on fundamentals, the blitter uses only

even bus cycles. Since it thereby has priority over the 68000, it is

interesting to know how many cycles are left over for the processor.

This depends on the number of active blitter DMA channels (A, B, C
and D). The following table shows the course of a blitter operation for

all fifteen possible combinations of active and inactive DMA channels.

The letters A, B, C and D stand for the corresponding DMA channels.

The digit 1 is placed after the first word of the blitter operation, 3 after

the last operation, and 2 after all the ones in between. A dashed line (—)

indicates that this bus cycle is not used by the blitter.

157

1. The Amiga Hardware Amiga System Programmer's Guide

Blitter bus

cycle usage:

Comments:

Explanations:

Active DMA channels Usage of even bus cycles

none

D DO — Dl — D2

C CO — Cl — C2

CD CO Cl DO — C2 Dl — D2

B BO Bl B2

B D BO Bl DO — B2 Dl — D2

B C BO CO — Bl Cl — B2 C2

BCD BO CO Bl Cl DO — B2 C2 Dl — D2

A , AO — Al — A2

A D AO — Al DO A2 Dl — D2

AC AO CO Al Cl A2 C2

A CD AOCO—A1C1D0A2C2D1 — D2

A B AO BO — Al Bl — A2 B2

A B D AO BO — Al Bl DO A2 B2 Dl ~ D2

ABC AO BO CO Al Bl Cl A2 B2 C3

A B C D AO BO CO — Al Bl Cl DO A2 B2 B3 Dl D2

The table above is valid only when the following conditions are

fulfilled:

1. The blitter is not disturbed by the Copper or bit plane DMA

accesses.

2. The blitter is running in normal mode (neither drawing lines nor

filling surfaces).

3. The BLTPRI bit in the DMACON register is set and the blitter

has absolute priority over the 68000.

As you can see, the output datum DO doesn't get to RAM until the Al,

Bl and Cl data have been read. This results from the pipelining in the

blitter. Pipelining means that the data are processed in multiple stages

in the blitter. Each stage is connected to the output of the preceding on

and the input of its successor. The first stage gets the input data (for

example, AO, BO or CO), processes it and passes it on to the second.
While this stage processes the output of stage 1, the next input data is

fed into the input stage (Al, Bl or Cl). When the first data reaches the

output stage (DO), the blitter has long since read the next data. Two data

pairs are always in different processing stages of the blitter at any given

time during a blitter operation.

The table also allows the processing time of a blitter operation to be

calculated. Each microsecond the blitter has two bus cycles available. If
it's moving a 64K block (32768 words) from A to D, it needs 2*32768
cycles. But if the same block is combined with source C, a total of

3*32768 cycles are needed because two input words must be read for

each output word produced.

The table also shows that the blitter is not capable of using every bus

cycle if only one blitter DMA channel is active.

158

Abacus 1.5 Programming the hardware

Example Program 1 Lines with the blitter

programs

This program can be used as a universal routine for drawing lines with

the blitter. It shows how the necessary values can be calculated. The

program is quite simple:

At the start of the program the memory is requested and the Copper list

is constructed. The only new part is the OwnBlitter routine. Like the

name says, it can be used to gain control of the blitter. Correspond

ingly, there is a call to DisownBlitter at the end of the program so that

the blitter returns to the control of the operating system.

The program uses only one hi-res bit plane with standard dimensions of

640x200 pixels. In the main loop the program draws lines which go

from one side of the screen through the center of the screen to the other

side. When a screen has been filled the program shifts the mask used to

draw the lines and starts again.

Note: The coordinate specifications in the program start from point 0,0 in the

upper left corner of the screen and are not mathematical coordinates, as

were used in the previous discussions. In practice this means that when

comparing the Y values the greater/less than sign is reversed.

;*** Lines with the Blitter

/Custom chip register

INTENA = $9A /Interrupt enable register (write)

DMACON = $96 ;DMA-Control register (write)

DMACONR = $2 ;DMA-Control register (read)

COLOR00 = $180 /Color palette register

VHPOSR - $6 /Position (read)

/Copper Register

COP1LC = $80 /Addresse of 1st. Copper-List

COP2LC = $84 /Addersse of 2nd. Copper-List

COPJMP1 = $88 /Jump to Copper-List 1

COPJMP2 = $8a /Jump to Copper-List 2

/Bitplane Register

BPLCON0 = $100 /Bit plane control register 0

BPLCON1 = $102 /I (Scroll value)

BPLCON2 = $104 ;2 (SpriteOPlayfield Priority)

BPL1PTH = $0E0 /Pointer to 1st. bitplane

BPL1PTL = $0E2 /

BPL1MOD = $108 /Modulo value for odd Bit Planes

BPL2MOD = $10A /Modulo value for even Bit Planes

DIWSTRT - $08E /Start of screen window

DIWSTOP = $090 /End of screen window

DDFSTRT = $092 /Bit Plane DMA Start

159

1. The Amiga Hardware Amiga System Programmer's Guide

DDFSTOP = $094 ;Bit Plane DMA Stop

;Blitter Register

BLTCON0 « $40 ;Blitter control register 0 (ShiftA,Usex,LFx)

BLTCON1 = $42 ;Blitter control register 1 <ShiftB,misc. Bits)

BLTCPTH = $48 /Pointer to source C

BLTCPTL = $4a

BLTBPTH = $4c /Pointer to source B

BLTBPTL = $4e

BLTAPTH = $50 /Pointer to source A

BLTAPTL = $52

BLTDPTH = $54 /Pointer to targer data D

BLTDPTL = $56

BLTCMOD = $60 /Modulo value for source C

BLTBMOD = $62 /Modulo value for source B

BLTAMOD = $64 /Modulo value for source A

BLTDMOD = $66 /Modulo value for target D

BLTSIZE = $58 /HBlitter window width/height

BLTCDAT = $70 /Source C data register

BLTBDAT = $72 /Source B data register

BLTADAT = $74 /Source A data register

BLTAFWM = $44 /Mask for first data word from source A

BLTALWM = $46 /Mask for first data word from source B

/CIA-A Port register A (Mouse key)

CIAAPRA = $bfe001

/Exec Library Base Offsets

OpenLibrary * -30-522 /LibName,Version/al,dO

Forbid * -30-102

Permit = -30-108

AllocMem = -30-168 /ByteSize,Requirements/d0,dl

FreeMem = -30-180 /MemoryBlock,ByteSize/al,dO

/Graphics Library Base Offsets

OwnBlitter - -30-426

DisownBlitter = -30-432

/graphics base

StartList - 38

/other Labels

Execbase » 4

Planesize = 80*200 /Bitplane size: 80 Bytes by 200 lines

Planewidth = 80

CLsize = 3*4 ;The Copper-List contains 3 commands

Chip = 2 /allocate Chip-RAM

Clear = Chip+$10000 /Clear Chip-RAM first

/*** Initialization ***

Start:

160

Abacus 1.5 Programming the hardware

/Allocate memory for bit plane

move.l Execbase,a6

move.l #Planesize,dO /Memory requirment for bit plane

move.l #clear,dl

jsr AllocMem(a6) /Allocate memory

move.l dO,Planeadr

beq Ende /Error! -> End

/Allocate memory for Copper-List

moveq #Clsize,dO

moveq #chipf dl

jsr AllocMem(a6)

move.l dO,CLadr

beq FreePlane /Error! -> FreePlane

/Create Copper-List

move.l dO,aO /Address of Copper-List from aO

move.l Planeadr,dO /Address of Bitplane

move.w #bpllpth,(aO)+ /First Copper coommand in RAM

swap dO

move.w dO,(aO)+ /Hi-Word of Bit plane address in RAM

move.w #bpllptl,(aO)+ /second command in RAM

swap dO

move.w dO,(aO)+ /Lo-Word of Bitplane address in RAM

move.l #$fffffffe,(aO) /End of Copper-List

/Allocate Blitter

move.l #GRname,al

clr.l dO

jsr OpenLibrary(a6)

move.l a6,-(sp) /ExecBase from the Stack

move.l dO,a6 /GraphicsBase from a6

move.l a6,-(sp) /and from the Stack

jsr OwnBlitter(a6) /Take over Blitter

/*** Main program ***

/DMA and Task-Switching off

move.l 4(sp),a6 /ExecBase to a6

jsr forbid(a6) /Task-Switching off

lea $dff000,a5

move.w #$03e0,dmacon(a5)

/Copper initialization

move.l CLadr,copllc(a5)

clr.w copjmpl(a5)

/Set color

move.w #$0000,color00(a5) /Black background

move.w #$0fa0,color00+2(a5) /Yellow line

/Playfield initialization

move.w #$2081,diwstrt(a5) /20,129

move.w #$20cl,diwstop(a5) /20,449

move.w #$003c,ddfstrt(a5) /Normal Hires Screen

move.w #$00d4,ddfstop(a5)

move.w #%1001001000000000fbplconO(a5)

clr.w bplconl(a5)

clr.w bplcon2(a5)

clr.w bpllmod(a5)

clr.w bpl2mod(a5)

161

1. The Amiga Hardware Amiga System Programmer's Guide

;DMA on

move.w #$83C0fdmacon(a5)

;Draw lines

/Determine start values:

move.l Planeadr,aO /Constant parameter for DrawLine

move.w #Planewidth,al /into correct register

move.w #255,a3

move.w #639,a4

move.w #$0303,d7

/Size of Bitplane in Register

/Start pattern

Loop: rol.w #2,d7

move.w d7,a2

clr.w d6

LoopX:

clr.w dl

move.w a3,d3

move.w d6fd0

move.w a4rd2

sub.w d6,d2

bsr DrawLine

addq.w #4,d6

cmp.w a4fd6

ble.s LoopX

clr.w d6

LoopY:

move.w a4,d0

clr.w d2

move.w d6,dl

move.w a3,d3

sub.w d6,d3

bsr DrawLine

addq.w #2fd6

cmp.w a3fd6

ble.s LoopY

btst #6,ciaapra

bne Loop

/Shift pattern

/Pattern in register for DrawLine

/Clear loop variable

/Yl = 0

/Y2 = 255

/Xl = Loop variable

/X2 = 639-Loop variable

/Increment loop variable

/Test if greater than 639

/if not. continue loop

/Clear loop variable

IXI = 639

/X2 = 0

/Yl = loop variable

/Y2 = 255-loop variable

/Draw line

/Increment loop variable

/Is loop variable greater than 255?

/if not, continue loop

/Mouse key pressed?

/No, continue

.*** End program ***

/Wait till blitter is ready

Wait: btst #14,dmaconr(a5)

bne Wait

162

Abacus 1.5 Programming the hardware

/Activate old Copper-List

move.l (sp)+,a6 ;Get GraphicsBase from Stack

move.l StartList(a6),copllc(a5)

clr.w copjmpl(a5) ;Activare Startup-Copper-List

move.w #$8020,dmacon(a5)

jsr DisownBlitter(a6) /Release blitter

move.l (sp)+,a6 ;ExecBase from Stack

jsr Permit(a6) ;Task Switching on

/Release memory for Copper-List

move.l CLadr,al ;Set parameter for FreeMem

moveq #CLsize,dO

jsr FreeMem(a6) /Release memory

/Release Bitplane memory

FreePlane:

move.l Planeadr,al

move.l #Planesize,dO

jsr FreeMem(a6)

Ende:

clr.l dO

rts /Program end

/Variable

CLadr: del 0 /Address of Copper-List

Planeadr: del 0 /Address of Bitplane

/Constants

GRname: dc.b "graphics.library",0

align /even

.*** DrawLine Routine ***

/DrawLine draws a line with the Blitter.

/The following parameters are used:

/dO « XI X-coordinate of Start points

/dl = Yl Y-coordinate of Start points

/d2 = X2 X-coordinate of End points

/d3 = Y2 Y-coordinate of End points

/aO must point to the first word of the bitplane

;al contains bitplane width in bytes

/a2 word written directly to mask register

;d4 to d6 are used as work registers

163

1. The Amiga Hardware Amiga System Programmer's Guide

DrawLine:

/Compute the lines starting address

move.1

mulu

moveq

and.w

lsr.w

add.w

add.l

al,d4

dl,d4

#-$10,d5

dO,d5

#3,d5

d5,d4

aO,d4

/Width in work register

/Yl * Bytes per line

;No leading characters: $f0

/Bottom four bits masked from XI

/Remainder divided by 8

/Yl * Bytes per line + Xl/8

/plus starting address of the Bitplane

/d4 now contains the starting address

/of the line

/Compute octants and deltas

/Clear work register

/Y2-Y1 DeltaY from D3

/shift leading char from DeltaY in d5

/Restore N-Flag

/When DeltaY positive, goto y2gyl

/DeltaY invert (if not positive)

/X2-X1 DeltaX to D2

/Move leading char in DeltaX to d5

/Restore N-Flag

/When DeltaX positive, goto x2gxl

/DeltaX invert (if not positive)

/DeltaY to dl

/DeltaY-DeltaX

/When DeltaY > DeltaX, goto dygdx

/Smaller Delta goto d2

__„__ /d5 contains results of 3 comparisons

move.b Octant_table(pc,d5),d5 /get matching octants

add.w d2,d2 /Smaller Delta * 2

clr.l

sub.w

roxl.b

tst.w

bge.s

neg.w

y2gyl:

sub.w

roxl.b

tst.w

bge.s

neg.w

x2gxl:

move.w

sub.w

bge.s

exg

dygdx:

d5

dl,d3

#l,d5

d3

y2gyl

d3

dO,d2

#l,d5

d2

x2gxl

d2

d3,dl

d2,dl

dygdx

d2,d3

roxl.b #l,d5

/Test, for end of last blitter operation

WBlit: btst #14,dmaconr(a5)/BBUSY-Bit test

bne.s WBlit /Wait until equal to 0

12* smaller Delta to BLTBMOD

/2* smaller Delta - larger Delta

/When 2* small delta > large delta

/to signnl

#$40,d5 /Sign flag set

move.w d2,bltaptl(a5) /2*small delta-large delta

/in BLTAPTL

d3,d2 i2* smaller Delta - 2* larger Delta

move.w d2,bltbmod(a5)

sub.w d3,d2

bge.s signnl

or.b

signnl:

sub.w

move.w d2,bltamod(a5) /to BLTAMOD

164

Abacus 13 Programming the hardware

/Initialization other info

move.w

move.w

move.w

and.w

ror.w

or.w

move.w

move.w

move•1

move•1

move.w

move.w

#$8000,bltadat(a5)

a2,bltbdat<a5) ;Mask from a2 in BLTBDAT

#$ffff,bltafwm<a5)

#$OOOf,dQ

#4,d0

#$0bca,d0

dO,bltconO(a5)

d5rbltconl(a5)

d4,bltcpth(a5)

d4,bltdpth(a5)

al,bltcmod(a5)

al,bltdmod(a5)

/bottom 4 Bits from XI

;to STARTO-3

/USEx and LFx set

/Octant in Blitter

/Start address of line to

/BLTCPT and BLTDPT

/Width of Bitplane in both

/Modulo Registers

/BLTSIZE initialization and Blitter start

lsl.w #6,d3

addq.w #2,d3

move.w d3,bitsize(a5)

rts

/LENGTH * 64

/plus (Width 2)

Program 2

/Octant table with LINE =1:

/The octant table contains code values

/for each octant, shifted to the correct position

Octant_table:

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

end

Filling

0

4

2

5

1

6

3

7

*4+l

*4+l

*4+l

*4+l

*4+l

*4+l

*4+l

*4+l

surfaces

/yl<y2,

/yl<y2,

/yl<y2,

/yi<y2,

/yl>y2,

/yl>y2,

/yi>y2,

/yl>y2r

xl<x2,

xl<x2,

xl>x2,

xl>x2,

xl<x2,

xl<x2,

xl>x2f

xl>x2,

with the blitter

dx<dy = Okt6

dx>dy = Okt7

dx<dy = Okt5

dx>dy = Okt4

dx<dy = Oktl

dx>dy = OktO

dx<dy = Okt2

dx>dy = Okt3

This program is very similar to the first program. It shows how filled

polygons can be created by drawing boundary lines and filling them
with the blitter.

Since much of it's identical to the first program, we just printed the

parts which have to be changed in program 1 to get program 2.

The first part which must be changed is from the comment "Draw lines'

to the comment '*** End program ***' (page 162.) This area must be

replaced by the section in the following listing labeled Part 1.

165

1. The Amiga Hardware Amiga System Programmer's Guide

In addition, the old octant table at the end of the program must be

replaced by Part 2.

The new octant table is necessary because the blitter needs only one

point per boundary line when filling surfaces. The SING bit is set in

addition to the LINE bit in the new octant table.

The program labeled Part 1 draws two lines and then fills the area

between them with the blitter. Then it waits for the mouse button to be

clicked.

,.*** Fin area with Blitter ***

;Part 1:

;Draw filled triangle

;Set starting value

move.l Planeadr,aO ;Set constant parameters for

move.w #Planewidth,al ;the LineDraw routine

move.w #$ffff,a2 /Mask from $FFFF -> no pattern

;* Draw border lines *

;Line from 320,10 to 600,200

move.w #320,dO

move.w #10,dl

move.w #600,d2

move.w #200,d3

bsr drawline ;Line draw

;Line from 319,10 to 40,200

move.w #319,dO

move.w #10,dl

move.w #40,d2

move.w #200,d3

bsr drawline ;draw line

;* Fill area *

;Wait till the blitter draws the last line

Wline: btst #14,dmaconr(a5) ;BBUSY test

bne Wline

add.l #Planesize-2,aO /Address of last word

move.w #$09fO,bltconO(a5) ;USEA and D, LFx: D * A

move.w #$000a,bltconl(a5) /Inclusive Fill plus Descending

move.w #$ffff,bltafwm(a5) /First- and Last word mask set

move.w <#$ffff,bltalwm(a5)

move.l aO,bltapth(a5) /Address of last word of Bit-

move.1 aO,bltdpth(a5) /plane in the Address-Register

move.w #0,bltamod<a5) /no Modulo

166

Abacus 1.5 Programming the hardware

move.w #0,bltdmod(a5)

move.w #$ff*64+40,bltsize(a5) /Start Blitter

;Wait for mouse button

endl: btst #6,ciaapra /Mouse key pressed?

bne.S endl /no -> continue

/End of Part 1.

/Part 2:

/Octant table with SING =1 and LINE =1:

Octant table:

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

*4+3

*4+3

*4+3

*4+3

*4+3

6 M+3

3 *4+3

7 *4+3

/yl<y2,

/yl<y2,

/yl<y2,

/yl<y2f

/yl>y2,

;yi>y2,

/yl>y2,

/yl>y2,

xl<x2,

xl<x2,

xl>x2r

xl>x2,

xl<x2,

xl<x2,

xl>x2,

xl>x2f

dx<dy

dx>dy

dx<dy

dx>dy

dx<dy

dx>dy

dx<dy

dx>dy

Okt6

Okt7

Okt5

Okt4

Oktl

OktO

Okt2

Okt3

1.5.8 Sound output

Fundamentals

of electronic

music

When you hear sound, whether it's music, noise or speech, it all occurs

in the form of oscillations in the air, the sound waves which reach our

ears. A normal musical instrument creates these oscillations either

directly, such as a flute in which the air blown through is made to

oscillate, or indirectly, in which part of the instrument creates the tone

(oscillation) and then the air picks it up. This is what happens for all

string instruments, for example.

An electronic instrument creates electrical oscillations in its circuits,

which correspond to the desired sound. You can't hear these oscillations

until they're converted into sound oscillations by means of a loud

speaker. On the Amiga the speaker built into the monitor is generally

used. Unfortunately, because of its size and quality it is not capable of

converting the electrical oscillations into identical sound waves. In Eng

lish: It sounds bad. Therefore you should connect your Amiga to a good

amplifier/speaker system to get the full pleasure of its musical capabili

ties. But back to our theme:

167

1. The Amiga Hardware Amiga System Programmer's Guide

What parameters determine the sound which comes from the computer?

Frequency The first is the frequency of the sound. It determines whether the pitch

sounds high or low. Seen physically, the frequency is the number of
oscillations per second, measured in Hertz (Hz). One oscillation per

second is 1 Hz, and a kilohertz is 1000 Hz. The human ear can respond

to sounds between 16 and 16000 Hz. Those who know something

about music know that the standard A is 440 Hz. The connection

between frequency and pitch is as follows: With each octave the fre

quency doubles. The next A thus has a frequency of 880 Hz, while the

A on the octave below the standard has a frequency of220 Hz.

The frequency of sound does not have to be constant For example, it
can periodically vary around the actual pitch by a few Hz, creating an

effect called vibrato.

Volume The second parameter of a sound is its volume. By volume we mean the
amplitude of the oscillation. The volume of a tone is measured in deci-
Bels (dB). The range of human hearing is about 1 dB to 120 dB. Each

increase of about 10 dB doubles the audible volume. The volume of

sound is also called sound pressure.

The volume can be influenced by many parameters. The simplest is

naturally the volume control on the monitor or amplifier. This does

nothing other than change the amplitude of the electrical oscillation.

But the distance between the listener and the speaker also has an effect

on the volume. The further you are from the speaker, the softer the
sound. But also the furnishings in the room, open or closed doors, etc.,

all this can affect the amplitude of the sound waves. Therefore the

absolute volume is not that important. More interesting is the relative

volume of sounds between each other, such as whether a sound is louder

or softer than its predecessor.

There is a relationship between the volume of a sound and its frequency.

The cause of this is the sensitivity of the human ear. High and low

sounds are perceived as being softer than those in the middle range, even

if they physically have the same sound pressure in decibels. This middle

pitch range runs from about 1000 to 3000 Hz. In this frequency range

are also the oscillations for the human voice, which is probably the

reason for the higher sensitivity.

The volume of a sound can also change periodically within a given

range. This effect is called tremolo. Moreover, there is the variation in
volume from the start to the end of the sound. A sound can start out

loud and then slowly die out But it can also start out loud and then
drop a certain amount and then stop abruptly. Or it starts softly and

then slowly becomes louder. There are almost no limits to the combi

nations here.

168

Abacus 1-5 Programming the hardware

Figure 1.5.8.1
Sine Square

Triangle Sawtooth

Tone color or

timbre

The third and last parameter of a sound is somewhat more complicated.

This is the timbre, and it plays an important role. There are hundreds of

different instruments which can all play a sound with the same fre

quency and volume, but still they sound different from each other. The

reason for this is the shape of the oscillation. Figure 1.5.8.1 shows

four common waveforms. Why do they sound different?

Each waveform, regardless of what it looks like, can be represented as a

mix of sine waves of different frequencies. For a square wave, for

instance, the first wave has the fundamental frequency of the sound, the

second three times the fundamental but only a third of the volume. The

third harmonic has five times the frequency but a fifth of the amplitude,

and so on.

169

1. The Amiga Hardware Amiga System Programmer's Guide

Figure is.82 3 combined sine waves make a square wave

Noises

y=Sin X+

.or a sawtooth wave

y=sin x+ sin2x . sin3x

2 3

Figure l.S.8.2 shows this for a square wave and a sawtooth wave. For

the same simplicity only the first three harmonics are shown.

As we said, all periodic waveforms can be represented as sums of sine

waves. This is called the harmonic series of a sound. The pure sine

wave consists only of the fundamental frequency. A square wave con

sists of an infinite number of harmonics. The number of harmonics and

their frequency and amplitude relationship determine the timbre of the
sound. The harmonic series is important because the ear reacts only to

sine waves. A sound whose waveform deviates from a sound wave is

divided into its harmonics by the ear. Keep these facts in mind when

reading the rest of this section.

In addition to pitched tones there are also noises. While you can define a
tone very precisely and also create it electronically, this is much more

difficult for noises. They have neither a given frequency nor a defined
amplitude variation and no actual waveform. They represent an arbitrary

combination of sound events. The basis of many noises is called white
noise, which is a mix of an infinite number of sounds whose
frequencies and phases have no relationship to each other. The wind

produces this sound, because each of the millions of air molecules put
into oscillation collide with each other or with an object on the ground.

These oscillations make up an undefinable mixture of sounds (noise),

which is a typical sound of wind

170

Abacus 1.5 Programming the hardware

Figure i.s.8.3 Digitizing a waveform

127 - -

-128- *■

Sound The main criterion forjudging the acoustic capabilities of a computer is

creation on its versatility. The optimal case is where all three parameters of a
the Amiga sound, frequency, volume and timbre, can be set completely indepen

dent

On the Amiga the developers tried to get as close to this goal as possi

ble. Not to be limited to predefined waveforms, the digital equivalent of

the desired waveform is stored in memory and then conversion to the

corresponding electrical oscillation by a digital-to-analog converter. In

other words, the oscillation is digitized and stored in the computer.

During output, the digitized data are converted back to analog form and
sent to the amplifier.

In Figure 1.5.8.1 you saw various waveforms. To put these into a

understandable form to a computer, they must be converted into a series

of numbers.

To do this you divide one cycle of the desired waveform into an even

number of equal-sized sections. If possible, you want to start with a

point where the wave intersects, the X axis. For each of these sections

put the corresponding Y value into memory. This produces a sequence

of numbers whose elements represent snapshots of the wave at given

points in time. These digitized values are called samples.

171

1. The Amiga Hardware Amiga System Programmer's Guide

On output, the Amiga converts the number values from memory back
into the corresponding output voltages. But since the wave is divided
into a limited number of samples by the digitalization, the output curve

can only be reconstructed with this number. This results in the staircase

form of the wave shown in Figure 1.5.8.3.

The quality of sounds reproduced in this manner in comparison to their
original waveforms depends essentially on two quantities:

The resolution of the digitized signals. This is the value range of the
samples. On the Amiga this is 8 bits, or from -128 to +127. Each
input value can take one of 256 values in memory. Since the resolution
of analog signals is theoretically unlimited, but that of the individual
samples is limited, conversion errors result These are called quanitiza-
tion or rounding errors. When the input value lies somewhere between

two numbers (it doesn't correspond exactly to one of the 256 digital
steps), it's rounded up or down. The maximum possible quantization
error is 1/256 of the digitized value (also called an error of 1LSB).

A factor called the quantization noise is bound with the quantization

error. As the name says, this reveals itself as noise matching the mag

nitude of the quantization error.

A value range of eight bite allows moderately good reproduction of the
original wave. Higher resolution is needed for high-fidelity reproduc

tion, however. A CD player, for example, works with 16 bite.

The second parameter for the quality of digitized sound is the sampling
rate. This is the number of samples per second. Naturally, a higher
number of samples result in better reproduction. The sampling rate can

be set within certain bounds on the Amiga. First you must consider

how many samples are used per digitized cycle of the waveform. In the
example, Figure 1.5.8.3 this is 16 values. There is little audible differ

ence between the resulting staircase waveform and a normal sine signal.

The output of Once the desired waveform has been converted to the corresponding

the digitized numbers and written into memory, you naturally want to hear it The
sound Amiga has four sound channels which all work according to the fol

lowing principle:

A digitized wave is read from memory through DMA and output

through a digital/analog conversion. This process is repeated continual

ly so that the single cycle of the waveform creates a continuous tone.

Channels 0 and 3 are sent to the left stereo channel, while 1 and 2 are

sent to the right

172

Abacus 1.5 Programming the hardware

Each audio channel has its own DMA channel. Since the DMA on the

Amiga is performed on words, two samples are combined into one data

word. This is why you need an even number of samples. The upper half

of the word (bits 8-15) are always output before the lower bits (0-7).

The data list for our digitized sine wave looks as follows in memory,

whereby Start is the starting address of the list in chip RAM:

Alstart:

dc.b 0,49 ;lst data word, samples 1 and 2

dc.b 90,117 ;2nd data word, samples 3 and 4

dc.b 127,117 ;3rd data word, samples 5 and 6

dc.b 90,49 ;4th data word, samples 7 and 8

dc.b 0,-49 ;5th data word, samples 9 and 10

dc.b -90,-117 ;6th data word, samples 11 and 12

dc.b -127,-117 ;7th data word, samples 13 and 14

dc.b -90,-49 ;8th data word, samples 15 and 16

Alend:

The digital/analog converter requires the samples to be stored as signed

two's complement 8-bit numbers. The assembler converts the negative

values into two's complement for us so that you can write negative

values directly in the data list

Now you must select one of the four audio channels over which you

want to output the tone. The corresponding DMA channel must then be

initialized. Five registers per channel set the operating parameters. The

first two form an address register pair, which you should recognize from

the other DMA channels. These are called AUDxLCH and AUDxLCL,

or together AUDxLC, whereby x is the number of the DMA channel:

Reg. Name Function

Pointer to the audio data, bits 16-18

for channel 0, bits 0-15

Pointer to the audio data, bits 16-18

for channel 1, bits 0-15

Pointer to the audio data, bits 16-18

for channel 2, bits 0-15

Pointer to the audio data, bits 16-18

for channel 3, bits 0-15

The initialization of these address pointers can be accomplished with a

MOVEJL command as usual:

LEA$DFF000, A5 ;base address of custom chips in A5

MOVE.L #Start, ADD0LCH(A5) /write "Start" in AUD0LC

Next the DMA controller must be told the length of the digitized cycle,

that is, the number of samples it comprises. The appropriate registers

are the AUDxLEN registers:

$0A0

$0A2

$0B0

$0B2

$0CO

$0C2

$0D0
$0D2

AUD0LCH

AUD0LCL

AUD1LCH

AUD1LCL

AUD2LCH

AUD2LCL

AUD3LCH

AUD3LCL

173

1. The Amiga Hardware Amiga System Programmer's Guide

AUDxLEN

register

Reg.

$0A4

$0B4

$0C4

$0D4

Name

AUDOLEN

AUD1LEN

AUD2LEN

AUD3I£N

Function

Number of audio data words for channel 0

Number of audio data words for channel 1

Number of audio data words for channel 2

Number of audio data words for channel 3

The length is specified in words, not bytes. Thus the number of bytes

must be divided by two before it is written into the AUDxLEN register.

The AUDxLEN register can be initialized with the following MOVE

command. To avoid having to count all of the words, two labels are

defined: Alstart is the starting address of the data list, Alend is the end
address +1 (see example data list above). The base address of the custom

chips ($DFF000) is stored in AS:

MOVE.W # (Ende-Start) /2, ADDOLEN (A5)

Now comes the volume of sound. On the Amiga the volume for each
channel can be set separately. A total of 65 levels are available. The

range runs from 0 (inaudible) or 64 (full volume). The corresponding

registers are called AUDxVOL:

AUDxVOL

register

Reg.

$0A8

$0B8

$0C8

$0D8

Name

AUDOVOL

AUD1V0L

AUD2VOL

AUD3V0L

Function

Volume of audio channel 0

Volume of audio channel 1

Volume of audio channel 2

Volume of audio channel 3

Let's set our audio channel to half volume:

MOVE.W #32, AUDOVOL(A5)

The last parameter is the sampling rate. This determines how often a

data byte (sample) is sent to the digital/analog converter. The sampling
rate determines the frequency of the sound. As explained before, the fre
quency equals the number of oscillations (cycles) per second. An

oscillation consists of an arbitrary number of samples. In the example

it is 16. If the sampling rate represents the number of samples read per

second, the frequency of the sound corresponds to the sampling rate

divided by the number of samples per cycle:

Sound frequency ■•

Sampling rate

Samples per cycle

Unfortunately the sample rate cannot be specified directly in Hertz. The
DMA controller wants to know the number of bus cycles between the

output of two samples. A bus cycle takes exactly 279.365 nanoseconds

(billionths of a second) or 2.79365 * 10"7 seconds.

174

Abacus 1.5 Programming the hardware

To get from the sampling rate to the number of bus cycles, you need

the inverse of the sampling rate. This yields the period of a sample. If

you divide this value by the period of a bus cycle in seconds, you get

the number of bus cycles between two samples, called the sample
period:

Sample period =

Sampling rate * 2.79365 * 10"7

Let's assume that you want to play the example tone at a frequency of
440 Hz. The sampling rate is calculated as follows:

Sampling rate = frequency * samples per cycle

Sampling rate ■ 440 Hz * 16 = 7040 Hz

The necessary sample period can also be calculated quickly by inserting

the proper values:

1

Sample period = = 508.4583

7040 * 2.79365 * 10"7

Since only integer values can be specified for the sample period, you

round the result to 508. As a result the output frequency is not exactly
440 Hz, but the deviation is minimal, namely 0.4 Hz.

The sample period can theoretically be anything between 0 and 65535.

The actual range has an upper limit, however. As can be gathered from

Figure 1.5.3.2 in the Interrupts section, each audio channel has one

DMA slot per raster line, that is, one data word, or two samples, can be

lead from memory in each raster line. Thus the smallest possible value

for the sample period is 124. The corresponding sample frequency for

this value is 28867 Hz. If the sample period is made shorter than 124, a

data word can be output twice because the next one cannot be read on

time.

AUDxPER Reg. Name Function

register: $0A6 AUD0PER Sample period for audio channel 0
$0B6 AUD1PER Sample period for audio channel 1

$0C6 AUD2PER Sample period for audio channel 2

$0D6 AUD3PER Sample period for audio channel 3

MOVE.W #508, AUD0PER(A5) puts the sample rate you calculated

into the AUD0PER register. Now all of the registers for audio channel

number 0 have been supplied with the proper values for our sound. To

make it audible, you have to enable the DMA for audio DMA channel

0.

175

1. The Amiga Hardware Amiga System Programmer's Guide

Four bits in the DMACON register are responsible for the audio DMA

channels:

DMACON bit no. Name Audio DMA channel no.

3 AUD3EN 3

2 AUD2EN 2

1 AUD1EN 1

0 AUDOEN 0

To enable the audio DMA for channel 0 you must set the AUDOEN bit

to 1. Just to be sure, you should also set the DMAEN bit:

MOVE.W #$8201, DMACON (A5) ;set AUDOEN and DMAEN

Now the DMA controller starts to fetch the audio data from the memory

and output it through the digital/analog converter. The sound can be

heard through the speaker. To turn it off again, simply set AUDOEN »

0.

Whenever AUDxEN is set to 1, the DMA starts at the address in
AUDxLC. There is one exception: If the DMA channel was on,

AUDxEN = 1, and the bit is briefly cleared and then set back to 1 with

out the DMA channel reading a new data word in the meantime, the

DMA controller continues with the old address.

Audio The audio DMA always starts with the data byte at the address in

interrupt AUDxLC. Once the number of data words specified in AUDxLEN have

been read from memory and output, the DMA starts over at the

AUDxLC address. In contrast to the address registers for the blitter or

the bit planes, the contents of the AUDxLC registers are not changed

during the audio DMA. There is an additional address register for each

audio channel. Before the DMA controller gets the first data word from

memory it copies the value of the AUDxLC register into this internal

address register. It also transfers the AUDxLEN value into an internal

counter. As you read the section on interrupts, there is a separate

interrupt bit for each of the four audio channels. The processor interrupt

level 4 is reserved exclusively for these bits.

While the DMA controller now reads data words from memory, the

processor can supply AUDxLC and AUDxLEN with new values, since

the values of both registers are stored internally. Not until the counter

which is initialized at the beginning with the value of AUDxLEN

reaches 0 will the data from AUDxLC and AUDxLEN be read again.

The processor then has enough time to change the values of the two

registers, if necessary. This allows uninterrupted sound output

An interrupt is generated after each complete cycle. For high frequencies

this occurs very often.The interrupt enable bits (INTEN) for the audio

interrupts should be set only when they are actually needed, or the pro

cessor may not be able to save itself from all of the interrupt requests.

176

Abacus 1-5 Programming the hardware

Modulation of

volume and

frequency

To create specified sound effects, it's possible to modulate the frequency

and/or volume. One of the DMA channels acts as a modulator which
changes the corresponding parameter of another channel. This can be

done very simply: The modulation fetches its data from memory as

usual, but instead of sending it to the digital/analog converter, it is
written to the vplume or frequency register of the oscillator which it

modulates (AUDxVOL or AUDxLEN). It can also influence both regis

ters at the same time. In this case the data words read from its data list

are written alternately to the AUDxVOL or AUDxLEN registers. The

data words have the same format as their destination registers:

Volume: Bits 7-15 unused

Bits 0-6 volume value between 0 and 64

Frequency: Bits 0-15 sample period

The following table shows the use of data words of the modulation
oscillator for all three possible cases:

Data word

Number Frequency

Oscillator modulates:

Volume Frequency and volume

1

2

3

4

Period 1

Period 2

Period 3

Period 4

Volume 1

Volume 2

Volume 3

Volume 4

Volume 1

Period 1

Volume 2

Period 2

To activate an audio channel as a modulator, you must set the corre

sponding bits in the audio-disk control register (ADKCON). Each

channel can modulate only its successor, channel 0 modulates channel

1,1 modulates 2, 2 modulates 3. Channel 3 can also be switched as a
modulator, but its data words are not used to modulate another channel

and are lost If an audio channel is used as a modulator, its audio output
is disabled.

The ADKCON register contains, as its name says, control bits for the

disk controller in addition to the audio circuitry, and these control bits

are not explained here.

ADKCONregister $09E (write) $010 (read)

Bit no. Name Function

15 SET/CLR Bits are set (SET/CLR=1) or cleared

14 to 8 Used by the disk controller

7 USE3PN Audio channel 3 modulates nothing

6 USE2P3 Audio channel 2 modulates period of channel 3
5 USE1P2 Audio channel 1 modulates period of channel 2

4 USE0P1 Audio channel 0 modulates period of channel 1
3 USE3VN Audio channel 3 modulates nothing

2 USE2V3 Audio channel 2 modulates volume of channel 3
1 USE1V2 Audio channel 1 modulates volume of channel 2

0 USE0V1 Audio channel 0 modulates volume of channel 1

177

1. The Amiga Hardware Amiga System Programmer's Guide

Problems with

digital sound

generation

Figure 1.5.8.4

To recap: If a channel is used for modulation, its data words are simply

written into the corresponding register of the modulated channel. Oth

erwise the two operate completely independently of each other.

In the example we defined a cycle with 16 samples. The maximum

sampling rate is 28867 Hz. This yields a maximum frequency of 28867

/16-1460.4 Hz.

If you want a higher pitch, you must decrease the number of samples

per cycle. If you define a sine with half as many samples, the maxi

mum frequency increases to 3020.8 Hz. Eight data bytes are rather few

for a good sine wave, however. For even higher pitches the number of

samples decreases even more. For 6041.6 Hz there are only four.

Waveforms are scarcely recognizable with just four samples.

This is not all that noticeable in hearing, however. Our ear behaves

exactly the same way. The higher the frequency, the more difficult it is

to tell different sounds apart

Despite this, it can improve the sound quality to use multiple cycles to

define the desired waveform at high frequencies. This is illustrated in

Figure 1.5.8.4.

Digitizing multiple waves for improving

tone quality

S1 S2 S3 S4 S5 S6 S7 S8

S = sample

178

Abacus 1.5 Programming the hardware

Figure 1.5.8.5

The maximum frequency of the Amiga sound output is limited by
another factor, however. When converting the digital sound data back to

analog, two undesired alias frequencies arise due to oscillation facts

between the sampling rate and the desired sound frequency. One of these

is the sum of the sampling rate and the sound frequency and the other is
the difference of these two. These phenomena are called aliasing distor
tion.

For example, with a 3 kHz sound and a 12 kHz sampling rate, the dif

ference is 9 kHz and the sum is IS kHz.

In order to eliminate this aliasing distortion, a device called a low-pass

filter has been placed between the output of the digital/analog converter

and the audio connectors. Its functions are illustrated in Figure 1.5.8.5.

All frequencies up to 4 kHz pass through undisturbed. Between 4 and 7

kHz the signal decreases in amplitude until it's no longer passed above
7 kHz. Let's take the example from above: The 3 kHz tone is not

affected by the low-pass filter, but both the sum and the different fre

quencies of 16 and 9 kHz lie above the filter's cut-off frequency of 7

kHz, and is not allowed to pass through. Thus they are not heard

through the speaker either. But if you try to output the same 3 kHz

tone with a sampling rate of 9 kHz, the difference between the frequency

is 6 kHz and is diminished by the filter, however, it still lets through.

Volume (db)

0-

-30

Low-pass filter

Frequency drop

MINIMI I I I I I I I I I I I I I I I I I I

12 3 4 5 6 7 8 9 10111213141516171819

Frequency (kHz)

Volume (db)

0'

Ton<

freq

-30

Aliasing distortion

iency

Difference

Sampling rate

Sum
*

t

i

I I If ■ I I ■ I I 4 I I I I I I I
1 2.3 4 9 6 7 8 9 10111213141516171819

Audible aKasing distortion Frequency (kHz)

179

1. The Amiga Hardware Amiga System Programmer's Guide

Amplitude

envelope

Volume

modulation

To be sine that the different frequency always lies above the cut-off fre

quency of the filter, the following rule must be observed:

Sampling rate > highest frequency component + 7 kHz

It's not enough to ensure that the difference between the sampling

frequency and the desired output frequency is greater than 7 kHz. If a

waveform with many harmonics is used, each of the harmonics pro

duces its own different frequency with the sampling rate. This is why

the highest frequency component of the waveform must be used in the

expression above.

Not only does the low-pass filter hold back the aliasing distortion, it

also limits the frequency range of the Amiga. To be sure, tones with a
fundamental frequency between 4 and 7 kHz rarely occur in a musical
piece, but the harmonics of much lower fundamentals for certain wave

forms lie within this range. This is especially clear with a square wave.

In Figure 1.5.8.2 you saw that a square wave consists of the combina
tion of multiple sine waves having a set frequency relationship to each

other. In die figure the square wave consists ofjust two harmonics and

the fundamental tone. An actual square wave, however, consists of

many infinite harmonics. If the higher-order harmonics are limited or

removed by the filter, a deformed square wave results, as shown in Fig

ure 1.5.8.2. In the extreme case when the fundamental frequency of the

square wave approaches the cut-off frequency of the filter, only the fun

damental remains. This turns the original square wave into a sine wave.

In addition to the waveform the sound of an instrument is also influ

enced by its amplitude envelope. The Amiga can do almost anything in

the area ofwaveforms. How are specific envelopes programmed?

The envelope of a sound can be divided into three sections: the attack,

sustain and decay phases.

As soon as the sound is played the attack phase begins. It determines

how quickly the volume rises from zero to the sustain value. During

the sustain phase the sound remains at this volume. When the sound

ends, it enters the decay phase where the volume drops from the sustain

value back to zero.

The amplitude curve which this process represents is generally called an

envelope. How do you program such an envelope on the Amiga?

There are basically three possibilities:

A second sound channel is used to modulate the volume of the sound.
For example, channel 0 can be used to modulate channel 1. Channel 1

can continually output the desired sound with its volume set to zero.

The desired envelope is divided into two parts: attack phase and decay

phase. It is digitized (just like a waveform) and placed in memory in
two data lists. When the sound is played, channel 0 is set to the address

180

Abacus 1-5 Programming the hardware

Controlling

volume with

the processor

of the attack data and started. Since it modulates the volume of channel

1, the volume of the sound follows the desired attack phase exactly.

When the attack phase reaches the sustain value, the data list for chan

nel 0 has been processed. It then creates an interrupt and the data list

would normally be processed again from the beginning. The processor

must react to the interrupt and turn on channel 0 by means of the

AUDOEN bit in the DMACON register. Channel 1 remains at the
desired sustain volume.

When the tone is turned off again, set channel 0 to the start of the decay

data and start it. Again wait for the interrupt signalling that the decay

phase is done and then turn channel 0 off.

The channel 0 registers must be initialized as follows for this procedure:

USE0V1 This bit in the ADKCON register must be set to 1 so that

channel 0 modulates the volume of channel 1.

AUDOLC First set the data list for the attack phase and then to that

for the decay phase.

AUDOVOL Not used since the audio output of channel 0 is turned off.

AUDOPER The contents of the AUDOPER register determines the

speed at which the volume data are read from memory.

This can be used to set the length of the attack/decay

phase.

This method allows the desired envelope to be constructed perfectly.
Unfortunately it also has a big disadvantage: Two audio channels are
required for each sound. If you want four different sound channels, you
have to use an alternate method:

The desired envelope is placed in memory as described above. This
time, however, the processor changes the volume. The processor fetches
the current volume value from memory at regular intervals and writes it
to the volume register of the corresponding sound channel. The corre

sponding program must be run as an interrupt routine. This can be done
in the vertical blanking interrupt or one of the timer interrupts from
QA-Bcanbeused.

The disadvantage of this method is the amount ofprocessor time which
it requires, since the control of the volume is not performed by DMA.
Since the amount of time needed is reasonably limited, this is usually
the best method for most applications.

181

1. The Amiga Hardware Amiga System Programmer's Guide

Constructing This method is best for short sounds or sound effects. Instead of digi-

the envelope tizing just one cycle of the desired waveform, write the entire sound

in the sample into memory. This can either be calculated by a program, or an audio

data digitizer can be used. This allows a sound to be digitized by means of

an analog/digital converter. Several firms offer such devices for use with

the Amiga. Once the data are in the Amiga, they can be played back at

any pitch or speed. This allows complex effects such as laughter or

screams to be produced by the Amiga with considerable accuracy.

This method also has disadvantages: It involves either difficult calcula

tions or additional hardware in order to put the complete sound in digi

tized form in memory. In addition, this method requires large amounts

of memory. For example, if the sound is one second long with a sam

pling rate of 20 kHz, the sound data takes up 20K!

1.5.9 Tips, tricks, and more

Sound quality

Changing

waveforms

smoothly

The value range of the digital data is from -128 to 127. This range

should be used as fully as possible. The best situation is when the

amplitude of the digital waveform equals 2S6. If it's not, the sound

quality decreases audibly, since the size of the quantization error

increases with a decreasing value range.

Therefore you should avoid using the amplitude of the digitialized

signal to control the volume of the sound. Each channel has a

AUDxVOL register for this purpose. If the volume is reduced with this

register, the relationship between the desired sound and the distortion

remains the same and thus the sound quality is preserved.

To avoid annoying crackling, clicks or jumps in volume when chang

ing waveforms, the following rules must be kept in mind:

Each cycle should be digitized from zero-point to zero-point, that is,

each cycle should start at a point where the waveform crosses the X

axis. If this rule is kept, all waveforms in memory have the same start

ing and ending value, namely zero. Thus no sudden level jumps occur

when switching from one waveform to another.

Second, you should make sure that the total loudness of the two wave

forms is approximately the same. By this we mean the effective value

of the waveform. The effective value is the same as the amplitude of a

square wave signal whose surface under the curve is exactly as large as

that of the waveform.

This effective value determines the volume of an oscillation. Only for a

square wave does it equal the amplitude. If you change from one wave

form to one with a higher effective value, this sounds louder than its

182

Abacus 1.5 Programming the hardware

The effective value of a cycle can be easily calculated from its digitized

Playing nodes

Add the values of all the bytes and divide by the number of data bytes.

If you want to make full use of the eight bit value range for all wave

forms, your effective values will not always match. The volume can

then be changed accordingly with the AUDxVOL registers when chang

ing from one waveform to another.

Nonnally a musical piece is transcribed in a form of notes. If you want

to play such things on the Amiga, you must convert the note values

into the corresponding sample periods. To minimize the amount of cal

culation, it is generally best to use a table which contains the sample

period values for all of the half-tones in an octave:

Sample period

values for

music notes:

Note

C

c#

D

D#

E

F

F#

G

G#

A

A#

B

C

Frequency (Hz)

261.7

2772

293.7

311.2

329.7

349.3

370.0

392.0

415.3

440.0

466.2

493.9

523.3

Sample period for

427

404

381

359

339

320

302

285

269

254

240

226

214

AUDxLEN = 16

(262.0)

(276.9)

(293.6)

(311.6)

(330.0)

(349.6)

(370.4)

(392.5)

(415.8)

(440.4)

(466.0)

(495.0)

(522.7)

(The values in parentheses represent the actual frequency for the corre
sponding sampling period.)

A comment about calculating the values above: The frequency of a half

tone is always greater than its predecessor by the factor "twelfth root of

2". 440 (A) * 2<1/12> = 466.2 (A#), 466.2 * 2<1/12> = 493.9 (B), etc.

An octave always corresponds to doubling the frequency.

If you now want to play a note from an octave which is not listed in
the table, there are two options:

1. Change the sampling period. For each octave up the value must

be halved. An octave lower corresponds to doubling the sampling

period. This is simple, but one soon runs into certain limits.

With a data field of 32 bytes (AUDxLEN = 16) as in our table,

the smallest possible sampling period (124) is reached with the

second A. The data list must then be reduced in size.

In this case you get problems with lower tones, however, since

the aliasing distortion then becomes audible.

183

1. The Amiga Hardware Amiga System Programmer's Guide

A better solution is procedure 2:

2. A separate data list is created for each octave. The sampling

period value thus remains the same for each octave. It is used

only to select the half-tone. If a tone from an octave above that

in the table is required, you use a data list which is only half as

long. Correspondingly, a list twice as long is used for the next

lower octave.

The normal range of sound comprises eight octaves, meaning

that you need eight data lists per waveform.

To make up for the extra work this method involves, you always get

the optimal sound regardless of the pitch.

Creating The minimal sampling period is normally 124. The reason for this is

higher the audio DMA would not be able to read the data words fast enough to

frequencies support a shorter sampling period. The old data word is then output

more than once. This effect can be used to our advantage. Since the data

word read contains two samples, a high frequency square wave can be

created with it. With a sampling period of 1 you get a sampling fre

quency of 3.58 MHz and an output frequency of 1.74 MHz! To be able

to use this high-frequency output signal, you must intercept it before it

reaches the low-pass filter. The AUDIN input (pin 16) of the serial

connector (RS-232) allows you to do this. It is connected directly to the

right audio output of Paula (see the section on interfaces).

In order to create such high frequencies, AUDxVOL must be set to the

maximum volume (AUDxVOL ■ 64).

Playing Since the Amiga has four independent audio channels, it's easy to create

polyphonic four sounds at once. This allows any four-voice musical pieces to be

music played directly.

But there can be more. Just because there are four audio channels

doesn't mean that four voices is the maximum. It has already been

mentioned that each waveform is actually a combination of sine sig

nals. Just as these harmonics together make up the waveform, you can

also combine multiple waveforms into a multi-voiced sound. The out

put signals for audio channels 0 and 3 are also mixed together into one

stereo channel inside Paula. The waveforms of the two channels are

combined into a single two-voice channel.

But the same thing we do electronically with analog signals can be done

by computation with digital data. Add the digital data from two com

pletely different waveforms and output the new data to the audio channel
as usual. Now you have two voices per audio channel. Theoretically,
any number of voices can be played over a sound channel in this

manner*

184

Abacus 1.5 Programming the hardware

Audio output

without DMA

The audio data

registers

In practice the number of voices is limited by the speed of the com
puter, but 16 voices is certainly possible!

Calculating the summed signal from the components is very simple. At
each point in time the current values of all the sounds are added and the
result is divided by the number of voices.

As with all DMA channels, there are also data registers for the audio
DMA in which the data is stored and to which the processor can write:

Reg. Name Function

$0AA AUDODAT These four registers always contain the current
$0BA AUD1DAT audio data word, consisting oftwo samples.
$0CA AUD2DAT The sample in the upper byte (bits 8-15)
$0DA AUD3DAT is always output first

In order for the processor to be able to write to the audio data registers,
the DMA must be turned off with AUDxEN = 0. This also changes the
creation of audio interrupts. They always occur after the output of the

two samples in the AUDxDAT register instead of at the start of each
audio data list as before.

If a new data word is not loaded into AUDxDAT in time, the last two
samples are not repeated, as for the DMA operation, but the output

remains at the value of the last data byte (the lower half of the word in
AUDxDAT).

The direct programming of the audio data registers costs a good deal of
processing time. The audio DMA should be used except in special
cases.

A few facts: AUDxVOL- Value in decibels (Odb=full volume]

AUDxVOL

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

<B

0.0

-0.1

-0.3

-0.4

-0.6

-0.7

-0.9

-1.0

-1.2

-1.3

-1.5

-1.6

-1.8

-2.0

-2.1

-2.3

AUDxVOL

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

cB

-2.5

-2.7

-2.9

-3.1

-3.3

-3.5

-3.7

-3.9

-4.1

-4.3

-4.5

-4.8

-5.0

-5.2

-5.5

-5.8

AUDxVOL

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

I

<fi AUDxVOL

-6.0

-6.3

-6.6

-6.9

-7.2

-7.5

-7.8

-8.2

-8.5

-8.9

-9.3

-9.7

-10.1

-10.5

-11.0

-11.5

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

(B

-12.0

-12.6

-13.2

-13.8

-14.5

-15.3

-16.1

-17.0

-18.1

-192

-20.6

-22.1

-24.1

-26.6

-30.1

-36.1

(AUDxVOL = 0 corresponds to a dB value of minus infinity)

185

1. The Amiga Hardware Amiga System Programmer's Guide

Example

programs

Program 1

If AUDxVOL = 64, then a digital value of 127 corresponds to an output

voltage of about 400 millivolts and -128 corresponds to -400 milli

volts. A change of 1 LSB causes a change in the output voltage of

about 3 millivolts.

Creating a simple sine wave

This program creates a sine wave tone with a frequency of440 Hz. The

sample table presented in the text is used. The largest portion of this
program is again used to request chip RAM for the audio data list

The sound is produced over channel 0 until the mouse button is pressed.

The program then releases the occupied memory.

;*** create a simple sinewave ***

;Custom chip registers

intena = $9A

(write)

dmacon * $96

/Audio-Register

audOlc = $A0

audOlen = $A4

audOper = $A6

audOvol = $A8

adkcon = $9E

/Interrupt enable register

;DMA control register (write)

/Address of audio data list

/Length of audio data list

/Sampling period

/Volume

/Control register for modulation

/CIA-A Port register A (mouse button)

ciaapra = $bfe001

/Exec Library Base Offsets

AllocMem = -30-168

FreeMem = -30-180

/Other labels

/ByteSizefRequirements/d0,dl

/MemoryBlock, ByteSize/al,dO

Execbase

chip - 2

4

/Allocate chip RAM

ALsize = ALend - ALstart /Length of audio data list

;*** Initialization ***

start:

/Allocate memory for audio data list

move.l Execbase,a6

moveq #ALsize,dO

moveq #chip,dl

jsr AllocMem(a6)

beq Ende

/Size of audio data list

/Allocate memory

/Error -> End program

186

Abacus 1.5 Programming the hardware

/Copy audio data list in chip RAM

move.l d0ra0

move.1 #ALstart,al

moveq #ALsize-l,dl

/Address in chip RAM

/Address in program

;Loop counter

Loop: move.b (al)+,(aO)+ /Data list in chip RAM

dbf dl,Loop

/*** Main program

/Initialize audio registers

lea $DFF000,a5

move.w #$000f,dmacon(a5) /Audio DMA off

move.l d0raud01c(a5) /Set address of data list

move.w #ALsize/2raud01en(a5) /Length in words

move.w #32,aud0vol(a5) /Half volume

move.w #508,aud0per(a5) /Frequency: 440 Hz

move.w #$00ff,adkcon(a5) /Disable modulation

/Enable audio DMA

move.w #$8201rdmacon(a5) /Channel 0 on

/Wait for a mouse button

wait: btst #6,ciaapra

bne wait

/Disable audio DMA

move.w #$0001,dmacon(a5) /Channel 0 off

/Address of data list

/Length

/Release assigned memory

.*** End Of program ***

move.l dO,al

moveq #ALsize,dO

jsr FreeMem(a6)

Ende: clr.l dO

rts

/Audio data list

ALstart:

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

ALend:

/Program

end

0,49

90,117

127,117

90,49

0,-49

-90,-117

-127,-117

-90,-49

end

187

1. The Amiga Hardware Amiga System Programmer's Guide

Program 2 Sine wave with vibrato

This program is an extension of the previous one. The same sine wave

is output, but this time over channel 1. Channel 0 modulates the fre

quency of channel 1 and creates the vibrato effect. The data for the

vibrato represents a digitized sine wave whose zero point is the value of

the sampling period of 508 Hz A.

.*** creating a vibrato ***

/Custom chip register

INTENA = $9A /Interrupt enable register (write)

DMACON = $96 ;DMA control register (write)

/Audio registers

AUDOLC - $A0 /Address of audio data list

AUDOLEN = $A4 /Length der audio data list

ADDOPER = $A6 /Sampling eriod

AUDOVOL = $A8 /Volume

ADD1LC = $B0

AOD1LEN = $B4

AUD1PER = $B6

AUD1VOL « $B8

ADKCON = $9E /Control register for modulation

/CIA-A Port register A (mouse button)

CIAAPRA - $bfe001

/Exec Library Base Offsets

AllocMem = -30-168 /ByteSize,Requirements/dO,dl

FreeMem = -30-180 /MemoryBlock,ByteSize/al,dO

/Other labels

Execbase = 4

chip = 2 /Allocate chip RAM

ALsize = ALend - ALstart /Length of audio data list

Vibsize = Vibend - Vibstart /Length of vibrato table

Size = ALsize + Vibsize /Total length of both lists

;*** Initialization ***

start:

/Allocate memory for data lists

move.1 Execbase,a6

move.l #Size,dO /Length of both lists

moveq #chip,dl

jsr AllocMem(a6) /Allocate memory

beq Ende

188

Abacus 1.5 Programming the hardware

;Copy audio data list in chip RAM

move.l dO,aO /Address in chip RAM

move.l #ALstart,al /Address in program

move.l #Size-l,dl /Loop counter

Loop: move.b (al)+,(aO)+ /Lists in chip RAM

dbf dl,Loop

;*** Main program

/Initialize audio registers

move.l dO,dl /Audio data list address

add.l #ALsize,dl /Address of vibrato table

lea $DFF000,a5

move.w #$000f,dmacon(a5) /Audio DMA off

move.l dl,aud01c(a5) /Set to vibrato table

move.w #Vibsize/2,aud01en(a5) /Length of vibrato table

move.w #8961,aud0per<a5) /Vibrato frequency

move.l dO,audllc(a5) /Channel 1 from audio data list

move.w #ALsize/2,audllen(a5) /Length of audio data list

move.w #32,audlvol(a5) /Half volume

move.w #$00FF,adkcon(a5) /Disable other modulation

move.w #$8010radkcon(a5) /Channel 0 modulates period
/from channel 1

/Audio DMA on

move.w #$8203,dmacon(a5) /Channels 0 and 1 on

/Wait for a mouse button

wait: btst #6,ciaapra

bne wait

/Audio DMA off

move.w #$0003,dmacon(a5) /Channels 0 and 1 off

;*** End program ***

move.l dO,al /Address of lists

move.l #Size,dO /Length

jsr FreeMem(a6) /Release memory

Ende: clr.l dO

rts

189

1. The Amiga Hardware Amiga System Programmer's Guide

;Audio data list

ALstart:

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

ALend:

0,49

90,117

127,117

90,49

0,-49

-90,-117

-127,-117

-90,-49

/Vibrato table

Vibstart:

dew 508,513,518,522,524,525,524,522,518,513

dc.w 508,503,498,494,492,491,492,494,498,503

Vibend:

;Program end

end

1.5.10 Mouse, joystick and paddles

Mouse, joystick and paddles—all of these can be connected to the
Amiga. We'll go through them in order, together with the correspond

ing registers. The pin assignment of the game ports, to which all of
these input devices are connected can be found in the section on inter

faces. Let's start with the mouse:

The mouse The mouse is the most-often used input device. It's an important device
for using the user-friendly interfaces of the Amiga. But how does it
work and how is the mouse pointer on the screen created and updated?

If you turn the mouse over, you'll see a rubber-coated metal ball which
turns when the mouse is moved. These rotations of the ball are trans

ferred to two shafts, situated at right angles to each other so that one

turns when the mouse is moved along the X axis and the other when

the mouse is moved along the Y axis. If the mouse is moved diago

nally, both shafts rotate corresponding to the X and Y components of

the mouse movement

Unfortunately, rotating shafts don't help the Amiga when it wants to

determine the position of the mouse. Some conversion of the mechani

cal movement into electrical signals is necessary.

190

Abacus 1.5 Programming the hardware

Figure

1.5.10.1

A wheel with holes around its circumference is attached to the end of
each shaft. When it rotates it repeatedly breaks a beam of light in an

optical coupler. The signal which results from this is amplified and sent
out over the mouse cable to the computer.

Now the Amiga can determine when and at what speed the mouse is

moved. But it still doesn't know in what direction, that is, left or right,

forward or backward.

A little trick solves this problem. Two optical couplers are placed on

each wheel, set opposite from each other and offset by half a hole. If the

disk rotates in a given direction, one light beam is always broken before

the other. If the direction is reversed, the order of the two signals from

the optical couplers change correspondingly. This allows the Amiga to

determine the direction of the movement

The mouse therefore returns four signals, two per shaft They are called

Vertical Pulse, Vertical Quadrature Pulse, Horizontal Pulse and Hori

zontal Quadrature Pulse.

1. Right movement

H

X1

2. Left movement

H

Truth tables for XO and X1: H

0

0

1

1

HQ

0

1

0

1

XO

0

1

1

0

HQ 1

~
1

Ixi

n.
o

191

1. The Amiga Hardware Amiga System Programmer's Guide

Figure 1.5.10.1 shows the phase relationship of the horizontal pulse

(H) and quadrature pulse (HQ) signals, but it also holds for the vertical

signals. It's easy to see how H andHQ differ from each other depending

on the direction of movement. The Amiga combines these two signals

to obtain two new signals, X0 and XI. XI is an inverted HQ and X0

arises from an exclusive-OR or H and HQ. That is, X0 is 1 wheneverH

and HQ are at different levels (see truth table in Figure 1.5.10.1). With

these two signals the Amiga controls a 6-bit counter which counts up

or down on XI depending on the direction. Together with X0 and XI an

8-bit value is formed which represents the current mouse position.

If the mouse is moved right or down, the counter is incremented. If the

mouse is moved left or up, it is decremented.

JOYDAT0 and Denise contains four such counters, two per game port since a mouse

JOYDAT1: can be connected to each one. They are called JOYDAT0 and

JOYDAT1:

JOYODATSOOA JOY1DAT$OOC

(mouse on game port 0) (mouse on game port 1)

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

Function: Y7 Y6 Y5 Y4 Y3 Y2 Yl Y0 X7 X6 X5 X4 X3 X2 XI X0

(Both registers are read-only)

YO-7 Counter for the vertical mouse movements (Y direction)

HO-7 Counter for the horizontal mouse movements (X direction)

The mouse creates two hundred count pulses per inch, or about 79 per

centimeter, which means that the limit of the mouse counter is soon

reached. Eight bits yield a count range from 0 to 255. Moving the

mousejust over four centimeters overflows the counters. This can occur

when counting up (counter jumps from 255 to 0) as well as counting

down (jump from 0 to 255). Therefore the count registers must be read

at given intervals to check to see if an overflow or underflow has

occurred

The operating system does this during the vertical-blanking interrupt

This is based on the assumption that the mouse is not moved more

than 127 count steps between two successive reads. The new counter

state is compared with the last value read. If the difference is greater

than 127, then die counter overflowed and the mouse was moved right

or down. If it's less than -127, an underflow occurred corresponding to a

mouse movement left or up.

Old state

100

200

50

200

New state

200

100

200

50

Actual difference

-100

+100

-150

+150

Mouse movement

+100

-100

-105

+105

Ova/
underflow

no

no

underflow

overflow

192

Abacus 1.5 Programming the hardware

Difference = old counter state - new counter state

If an underflow occurred, the actual mouse movement is calculated as
follows:

-255 - difference, or in numbers: -255 - (50-200) - -105

For an overflow:

255 - difference, or in numbers: 255 - (200-50) * +105

A positive mouse movement corresponds to a movement right or down,
a negative value to left or up.

JOYTEST $036 (write-only)

The mouse counters can also be set through software. A value can be
written to the counter through the JOYTEST register. JOYTEST oper

ates on both game ports simultaneously, meaning that the horizontal
and vertical counters of both mouses are set to the same values
(JOY0DAT - JOY1DAT).

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Function: Y7 Y6 Y5 Y4 Y3 Y2 xx xx 7 X6 X5 X4 X3 X2 xx xx

As you can see, only the highest-order six bits of the counters can be
affected. This makes sense when you remember that the lowest two bits
are taken directly from the mouse signals and aren't located anywhere in
memory, and thus cannot be changed

The joysticks When you look at the pin-out of the game ports, you see that the four
direction lines for the joysticks occupy the same lines as those for the
mouse. It therefore seems reasonable that they can also be read with the
same registers. In fact, the joystick lines are processed exactly like the
mouse signals, each pair of lines is combined into the X0 and X1/Y0
and Yl bits. The joystick position can be determined from these four
bits:

Joystick right XI-1 (bit 1 JOYxDAT)
Joystick left Yl -1 (bit 9 JOYxDAT)

Joystick backward X0EORXl«l (bits 0 and 1 JOYxDAT)
Joystick forward Y0 EOR Yl. 1 (bits 8 and 9 JOYxDAT)

In order to detect whether the joystick has been moved up or down, you

must take the exclusive-OR of X0 and XI and Y0 and Yl. If the result

is 1, the joystick is in the position in question. The following assem

bly language program reads thejoystick on game port 1:

TestJoystick:

MOVE.W $DFFF000C, DO ;move JOY1DAT to DO

BTST #1, DO ;test bit no. 1

BNE RIGHT ;set? if so, joystick right

BTST #9, DO ;test bit no. 9

BNE LEFT ;set? if so, joystick left

193

1. The Amiga Hardware Amiga System Programmer's Guide

MOVE.W DO,D1 ;copy DO to Dl

LSR.W #1,D1 Jmove Yl and XI to position of YO and XO

EOR.W DO,D1 jexclusive OR: Yl EOR YO and XI EOR YO

BTST #0, Dl ;test result of XI EOR XO

BNE BACK ;equal 1? if so, joystick backward

BTST #8, Dl Jtest result of Yl EOR YO

BNE FORWARD ;equal 1? if so, joystick forward

BRA MIDDLE joystick is in the middle position

The exclusive-OR operation is performed as follows in this program:

A copy of the JOY1DAT register is placed in Dl and is shifted one bit

to the right. Now XI in Dl and XO in DO have the same bit position as

Yl and YO. An EOR between DO and Dl exclusive-ORs YO with Yl

and XO with XL All you have to do is test the result in Dl with the

appropriate BTST commands.

This program does not support diagonal joystick positions.

The paddles The Amiga has two analog inputs per game port so potentiometers can
be connected. These have a given resistance in each position which can

be determined by Paula. A paddle contains such a potentiometer which

can be set with a knob. Analog joysticks also work this way. One

potentiometer for the X and one for the Y direction determine the joy

stick position exactly.

Two registers contain the four eight-bit values of the analog inputs,

POT0DAT for game port 0 andPOT1DAT for game port 1.

POT0DAT $012 POT1DAT $014

Bit no.: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

Function: Y7 Y6 Y5 Y4 Y3 Y2 Yl YO X7 X6 X5 X4 X3 X2 XI XO

(Both registers are read-only)

How is the Since a computer can process only digital signals, it needs a special

resistance circuit to convert any analog signals it wants to work with. On the

measured? Amiga the value of external resistances is determined as follows:

The potentiometers have a maximum resistance of 470 kilo Ohms

(±10%). One side is connected to the five-volt output and the other to

one of the four paddle inputs of the game port These lead internally to

the corresponding inputs of Paula and to one of four capacitors con

nected between the input and ground.

The measurement is started by means of a special start bit Paula places

all paddle outputs at ground briefly, discharging the capacitors. Also,

the counters in the POTxDAT registers are cleared. After this the coun

ters increment by one with each screen line while the capacitors charge

through the resistors. When the capacitor voltage exceeds a given value,

the corresponding counter is stopped. Thus the counter state corresponds

194

Abacus 1.5 Programming the hardware

exactly to the size of the resistance. Small resistances correspond to
small counter values, large to high values.

The POTGO
register:

POTGO $034 (write-only) POTGOR $016 (read-only)

Bit no.

15

14

13

12

11

10

9

8

7tol

0

Name

OUTRY

DAIRY

OUTRX

DATRX

OUTLY

DAILY

OUTLX

DATLX

START

Function

Switch game port 1POTY to output

Game port 1 POTY data bit

Switch game port 1POTX to output

Game port 1 POTX data bit

Switch game port 0 POTY to output

Game port 0 POTY data bit

Switch game port 0 POTX to output

Game port 0 POTX data bit

unused

Discharge capacitors and start measurement

The input

device buttons

Game port 0:

(A write access to POTGO clears both POTxDAT registers.)

Normally you set the START bit to 1 in the vertical blanking gap. The

capacitors then charge up while the picture is being displayed, reach the

set value, and the counters stop. The valid potentiometer readings can
then be read in the next vertical blanking gap.

The four analog inputs can also be programmed as normal digital input/
output lines. The corresponding control and data bits are found together

with the start bit in the POTGO register. Each line can be individually
set to an output with the OUTxx bits (OUTxx=l). This separates them

from the control circuit of the capacitors and the value of the DATxx

bit in POTGO is output on these lines.

When reading the DATxx bits in POTGO the current state of the given

line is always returned

The following must be noted if the analog ports are used as outputs:

Since the four analog ports are internally connected to the capacitors for

resistance measurement (47 nF), it can take up to 300 microseconds for

the line to assume the desired level due to the charging/discharging of
the capacitor required.

Each of the three input devices mentioned so far have one or more but

tons. The following table shows which registers contain the status of

the mouse, paddle andjoystick buttons:

Left mouse button

Right mouse button

(Third mouse button

Joystick fire button

Left paddle button

Right paddle button

CIA-A, parallel port A, port bit 6

POTGO, DATLY

POTGO, DATLX)

CIA-A, parallel port A, port bit 6

JOY0DAT, bit 9 (l=button pressed)

JOY0DAT, bit 1 (l=button pressed)

195

1. The Amiga Hardware Amiga System Programmer's Guide

Game port 1: Left mouse button

Right mouse button

(Third mouse button

Joystick fire button

Left paddle button

Right paddle button

CIA-A, parallel port A, port bit 7

POTGO,DATRY

POTGO,DATRX)

CIA-A, parallel port A, port bit 7

JOY1DAT, bit 9 (l=button pressed)

J0Y1DAT, bit 1 (l=button pressed)

(Unless specified otherwise, all bits are zero-active, meaning that

0=button pressed.)

1.5.11 The serial interface

Serial data

line

Figure

1.5.11.1

As we discussed in Section 1.3.4, the Amiga has a standard RS-232

interface. The various lines of this connector can be divided into two

signal groups:

1. The serial data lines

2. The handshake lines

First about the handshake lines: The RS-232 interface has a number of
handshake lines. Normally they are not all used. Moreover, the behavior
of these signals is not the same from RS-232 device to device. The
operation and programming of these lines was already described in

Section 1.3.4.

The entire transfer of data takes place over these two data lines. The
RXD line receives the data and it is sent out over TXD. RS-232 com

munication can thus take place in two directions at once when two

devices are connected together throughRXD and TXD. TheRXD of one

device is connected to the TXD of the other, and vice versa.

Principle of serial RS-232 data transfer

+12V

OV,

mmmmtm

0 1 1

wsmmm

mmmmm

o 1 0 0 1

■■■■a

annan

0 1

V
0 .

0

"'0
t

Start

bit

Data

bits

Stop

bit

Earliest possible

time for start of

next character

196

Abacus 1.5 Programming the hardware

Principle of

serial RS-232

data transfer

The UART

register

Since only one line is available for the data transfer in each direction,
the data words must be converted into a serial data stream which can
then be transmitted bit by bit. No clock lines are provided in the RS-
232 standard. So that the receiver knows when it can read the next bit,
the time per bit must be constant, that is, the speed with which the data
is sent and received must be well defined. This is called the baud rate
and it determines the number of bits transferred per second. Common
baud rates are, for example, 300,1200,2400,4800 and 9600. You are
not limited to these baud rates, but care must be taken when using
strange baud rates that the sender and receiver actually match.

One more thing required for successful transfer is that the receiver must
know when a byte starts and ends. Figure 1.5.11.1 shows the transmis
sion of a byte on one of the data lines. Each byte begins with a start bit
which is no different from the normal data bits and which always has
the value 0. Following this are the data bits in the order LSB to MSB.
At the end are one or two stop bits which have the value 1. The receiver
recognizes the transition from one byte to the next by the level change
from 1 to 0 which occurs when a start bit follows a stop bit

The component which performs this serial transfer is called a Universal
Asynchronous Receiver/Transmitter, or UART. In the Amiga it is

contained in Paula and its registers are in the custom chip register area:

SERPER $032 (write-only)

Bit no. Name Function

IS LONG Set length of the receive data to 9 bits

0 to 14 RATE This 15-bit number contains the baud rate

SERDAT $030 (write-only)

SERDAT contains the send data

SERDATR $018 (read-only)

Bit no. Name Function

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

OVRUN

RBF

TBE

TSRE

RXD

_

STP

DB8

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

Overrun of the receiver shift register

Receive buffer full

Transmit buffer empty

Transmitter shift register empty

Corresponds to the level on the RXD line

unused

Stop bit

Depends on the data length

Receiver data buffer bit 7

Receiver data buffer bit 6

Receiver data buffer bit 5

Receiver data buffer bit 4

Receiver data buffer bit 3

Receiver data buffer bit 2

Receiver data buffer bit 1

Receiver data buffer bit 0

197

1. The Amiga Hardware Amiga System Programmer's Guide

One bit in the ADKCON register belongs to the UART control:

ADKCON$09E (write) ADKCONR $010 (read)

Bitno.ll:UARTBRK

This bit interrupts die serial output and sets TXD to 0

1.5.12 Data transfer with the Amiga UART

Receiving The reception of the serial data takes place in two stages. The bits
arriving on the RXD pin are received into the shift register at the baud
rate and are combined into a parallel data word When the shift register
is full its contents are written into the receiver data buffer. It is then free
for the next data. The processor can only read the received data buffer,
not the shift register. The corresponding data bits in the SERDATR

register are DBO to DB7 or DB8.

The Amiga can receive both eight and nine-bit data words. The UART
can be set to nine-bit words with the LONG bit (=1) in the SERPER

register.

The data length determines the format in the SERDATR register. With

nine bits, bit 8 of SERDATR contains the ninth data bit, while the
stop bit is found in bit 9. With eight data bits, bit 8 contains the stop

bit If two stop bits are present, the second lands in bit 9.

The state of the receiver shift register and the data buffer is given by

two signal bits in SERDATR:

RBF stands for Receive Buffer Full. As soon as a data word is trans
ferred from the shift register to the buffer, this bit changes to 1 and
thereby signals the microprocessor that it should read the data out of

SERDATR.

This bit also exists in the interrupt registers (RBF, INTREQ/INTEN

bit no. 11). After the processor has read the data it must reset RBF in

INTREQ. It then returns to zero in both INTREGR and in SERDATR.

MOVE.W #$0800,$DFF000+INTREQ

;clears RBF in INTREQ and SERDATR

If this is not done and the shift register has received another complete

data word, the UART sets the OVRUN bit. This signals that no more

data can be received because both the buffer (RBF=1) and the shift

register (OVRUN=1) are full. OVRUN returns to 0 when RBF is reset

RBF then jumps back to 1 because the contents of the shift register are

immediately transferred from DBO to DB8 in order to make the shift

register free for new data.

198

Abacus 1.5 Programming the hardware

Transmit

Setting the

baud rate

The sending procedure is also performed in two stages. The transmit
data buffer is found in the SERDAT register. As soon as a data word is

written into this register it is transferred to the output shift register.
This is signaled by the TBE bit TBE stands for Transmit Buffer Empty

and indicates that SERDAT is ready to receive more data. TBE is also
present in the interrupt registers (TBE, INTREQ/INTEN, bit no. 0).

Like RBF, TBE must also be reset in the INTREQ register.

Once the shift register has sent the data word, the next one is automati
cally loaded from the transmitter data buffer. If this is empty, the

UART sets the TSRE bit (Transmit Shift Register Empty) to 1. This

bit is reset when TBE is cleared.

The length of the data word and the number of stop bits are set by the

format of the data in SERDAT. You simply write the desired data word

in the lower eight or nine bits of SERDAT with one or two stop bits

in front of it depending on the number of stop bits. An eight-bit data
word with two stop bits would look like this, for example:

Bit no.: 15 14 13 12 11 10 9

Function: 0 0 0 0 0 0 1

876543210

1 D7 D6 D5 D4 D3 D2 Dl DO

DO to D7 are the eight data bits.

The two ones stand for the desired stop bits.

With a nine-bit data word and one stop bit the following data must be
written into SERDAT:

Bit no.: 15 14 13 12 11 10

Function: 0 0 0 0 0 0

Eight bits plus one stop bit:

Bit no.: 15 14 13 12 11 10

Function: 0 0 0 0 0 0

9876543210

1 D8 D7 D6 D5 D4 D3 D2 Dl DO

876543210

1 D7 D6 D5 D4 D3 D2 Dl DO

The LONG bit in the SERPER register affects only the length of the

data received. The format of the transmitted data is affected only by the

value in the SERDAT register.

The baud rate for both send and receiving data must be written in the

lower IS bits of the SERPER register. Unfortunately the baud rate can

not be set directly. You must select the number of bus cycles between

two bits (1 bus cycle takes 1.79365 * 10"7 seconds). If a bit is output
every n bus cycles, the value n-1 must be written in the SERPER reg

ister. The following formula can be used to calculate the necessary

SERPER value from the baud rate:

SERPER ="

baud rate * 2.79365 * 10"7

For example, for a baud rate of4800 baud:

-1

199

1. The Amiga Hardware Amiga System Programmer's Guide

SERPER = 1/(4800*2.79365*10-7)-1 = 1/0.00134-1=744.74

The calculated value is rounded and written in SERPER:

MOVE.W #745,$DFF000+SERPER Jset SERPER, LONG = 0

or MOVE.W #$8000+745,$DFF000+SERPER JLONG = 1

1.5.13 The disk controller

The hardware control of the disk drives is divided into two parts.

First there are the control lines which activate the desired drive, turn the
motor on, move the read/write head, etc. They all lead to various port

lines of the CIAs. Information about these control lines can be found in

Section 1.3.5.

Excluded from these are the data lines. These carry the data from the
read/write head to the Amiga and, when writing, in the opposite direc

tion from the Amiga to the diskette. A special component in Paula, the

disk controller, handles the processing of the data.

It has its ownDMA channel and writes or reads data by itself to or from

the disk.

Programming Before you start the disk DMA you must be sure that the previous disk
the disk DMA DMA is finished. If one interrupts a write operation in progress, the

data on the corresponding track can be destroyed. Let's assume that the

last disk DMA is done.

First we must define the memory address of the data buffer. The disk

DMA uses one of the usual address register pairs as a pointer to the

chip RAM. The registers are called DSKPTH and DSKPTL:

$20 DSKPTH Pointer to data from/to disk bits 16-18

$22 DSKPTL Pointer to data from/to disk bits 0-15

Next the DSKLEN register must be initialized. It is constructed as fol

lows:

DSKLEN$024 (write-only)

Bit no. Name Function

15 DMAEN Enable diskDMA

14 WRITE Write data to the disk

0-13 LENGTH Number ofdata words to be transferred

LENGTH The lower 14 bits of the DSKLEN register contain the

number ofdata words to be transferred

200

Abacus 1.5 Programming the hardware

WRITE WRITE =1 switches the disk controller from read to write.

DMAEN When DMAEN is set to 1 the data transfer begins. The fol
lowing points must be observed:

1. The diskDMA enables a bit in the DMACON register (DSKEN,
bit no. 4) must also be set

2. To make it more difficult to write to the disk accidentally, you
must set the DMAEN bit twice in succession. Then the disk
DMA begins. In addition, for safety's sake the WRITE bit
should only be 1 during a write operation. An orderly initializa
tion sequence forDMA disk is as follows:

1. Write a 0 to DSKLEN to turn DMAEN off.
2. If DSKEN in DMACON is not yet set, do so now.
3. Store the desired address in DSKPTH and DSKPTL.
4. Write the correct value forLENGTH and WRITE along with

a set DMAEN bit to DSKLEN.

5. Write the same value into DSKLEN again.

6. Wait until the disk DMA is done (see below).
7. For safety's sake, setDSKLEN back to zero.

The DSKBLK interrupt (disk block finished, bit no. 1 in INTREQ/
INTEN) is provided so that the processor knows when the disk con
troller has transferred the number of words defined in LENGTH. It is
generated when the last data word is read or written.

The current status of the disk controller can be read in the DSKBYTR
register

DSKBYTR $01A (read-only)

Bit no. Name Function

15

14

13

12

11 to 8

7toO

BYTEREADY

DMAON

DSKWRTTE

WORDEQUAL

DATA

This bit signals that the data byte in the

lower eight bits is valid.

DMACON indicates whether the disk

DMA is operating. To make DMAON=1

both DMAEN in DSKLEN andDSKEN

in DMACON must be set

Indicates the state of the WRITE in

DSKLEN.

Disk data equals DSKSYNC

unused

Current data byte from the disk

With the 8 DATA bits and the BYTEREADY flag you can read the data

from the disk with the processor instead of through DMA. Each time a

complete byte is received the disk controller sets the BYTEREADY bit

The processor then knows that the data byte in the 8 DATA bits is

valid. After the DSKBYTR register is read the BYTEREADY flag is

automatically reset

201

1. The Amiga Hardware Amiga System Programmer's Guide

Setting the

operating

parameters

Sometimes we don't want to read an entire track into memory at once.
In this case the DMA transfer can be made to start at a given position.

To do this, write the data word at which you want the disk controller to

start into the DSKSYNC register.

DSKSYNC $07E (write-only)

DSKSYNC contains the data word at which the transfer is to start

The disk controller then starts as usual after the disk DMA is enabled

and reads the data from the disk, but it doesn't write it into memory.

Instead, it continually compares each data word with the word in
DSKSYNC. When the two match it starts the data transfer, which then

continues as usual. Thus the disk controller can be programmed to wait

for the synchronization mark at the start of a data block.

The WORDEQUAL bit in the DSKBYTR register is 1 as soon as the
DATA read and DSKSYNC match. Since this match lasts only two (or

four) microseconds, WORDEQUAL is also set only during this time

span. An interrupt is also generated at the same time WORDEQUAL

goes to 1:

Bit no. 12 in the INTREQ and INTEN registers is the DSKSYN inter-
rupt bit It is set when the data from the disk matches DSKSYNC*

The data cannot be written to the disk in the same format as they are
found in memory. They must be specially coded. Normally the Amiga

uses MFM coding. It is also possible to use GCR coding, however.

Two steps are necessary for selecting the desired coding:

1. An appropriate routine must encode the data before it is written
to disk and decode the data read from disk.

2. The disk controller must be set for the appropriate coding. This

is done with certain bits in the ADKCON register.

ADKCON $09E (write) ADKCONR $010 (read)

Bit no. Name Function

15

14-13

12

11

10

9

SET/CLR

PRECOMP

Bit 14

0

0
1

1

MFMPREC

UARTNRK

WORDSYNC

MSBSYNC

Set (SET/OJU1) or clear bits

These bits contain the precompensation

value:

Bit 13 PRECOMP time

0 Zero

1 140 ns

0 280 ns

1 560 ns

0 * GCR, 1« MFM

not used for the disk controller, see UART

WORDSYNC=1 enables the synchronization

of the disk controller described above.

MSBSYNG-1 enables the GCR synchroni

zation

202

Abacus 1.5 Programming the hardware

8 FAST Disk controller clock rate:
FAST=1:2 microseconds/bit (MFM)

FAST=0:4 microseconds/bit (GCR)

7-0 AUDIO These bits do not belong to the disk
controller, see Section 1.5.8.

The disk As usual the DMA controller transfers data from the memory to and
controller data from the appropriate registers. The disk controller has one data register
registers for data read from the disk and one for the data to be written to the disk.

DSKDAT $026 (write-only)

Contains the data to be written to the disk.

DSKDATR $008 (read-only)

Contains the data from the disk. This is a early-read register and cannot
be read by the processor.

203

Exec

Abacus 2.1 Operating system fundamentals

2.1 Operating system

fundamentals

In this chapter we'll examine the Amiga's operating system, something

with which any successful programmer (or those who want to be) must

be familiar with.

The operating system at the top of the address space comprises 256K

($FC0000-$FFFFFF) while the Amiga 500 and 2000 contain this in

ROM. This large memory space contains a number of routines which

can make the programmer's work much easier. On the Amiga these

routines are grouped according to their various tasks. You can imagine

the system as a number of well-matched modules which divide the

various operating system tasks among themselves. The most important
parts are obvious: DOS (input/output control), graphics, Intuition (a

collection of large complex routines for window and screen manage

ment) and Exec.

The task ofExec is to manage the multitasking and thereby allow mul

tiple programs to operate concurrently. Exec also represents the lowest
level between the hardware and the program. From these tasks it's easy

to see that Exec is the most important part of the Amiga operating
system.

Each part of the system offers a number of powerful routines which can

be easily used by the programmer. To make them easier to call, the

routines belonging to a given part of the operating system are combined

into ajump table. Section 2.3 explains how these routines are called.

The communication between Exec and the hardware is not direct, but it

is handled by a device driver. Exec makes available a set of routines to

access the device handlers. Naturally, it is also possible to access the

Amiga hardware directly in machine language without using a device

driver, but in general this means that the multitasking capabilities of

the system must be forfeited.

207

2. Exec Amiga System Programmer's Guide

2.2 Introduction to

programming the Amiga

Now that we have explained the rough construction of the Amiga oper

ating system, we want to look more closely at the actual programming.

Note: All assembly language listings from the Kickstart area refer to Kickstart
Version 1.2, which is built into ROM on both the Amiga 500 and
2000. For owners of an Amiga 1000, these listings apply only if this

same version of Kickstart is used.

2.2.1 Differences between C and assembly

language

Everyone knows that assembly language is faster than C. This means

C or any other high-level language. What assembly language program

mers must take into account when using operating system routines or

structures is probably less well known, however.

Let's start with calling routines with parameters. In C it looks like

this:

Entry » FindName <list,name)

DO A0 Al

FindName is a routine for finding an entry in a list The parameters

which must be passed are a pointer to the start of the linked list and the

name of the entry to be found. For assembly language programmers the

registers in which the parameters must be passed are listed for the

routines (functions) which we describe. From the routine we get the
pointer to the entry, which in this example is stored in Entry. The

pointer returned by the function is passed for this and other function

calls in register DO. If there is more than one return parameter, other

registers are used.

The call is basically the same in assembly language. You just have to

pass the parameters to the routine in the appropriate registers.

208

22 Introduction to programming the Amiga

LEA.L LIST,A0

LEA.L NAME,A1

JSR FINDNAME

MOVE.L DO.MEMORY

NAME:

DC.B "NAME",0

First the pointer to the list must be written to AO. Al must contain a
pointer to the name for which you want to search. This string must be

terminated with a zero. The routine is then called and the pointer to the
entry found is returned in DO, where it can be stored somewhere else.

So much for calling routines. Next let's look at what structures look
like in C and assembly language.

struct {

struct Node * ln_Succ;

struct Node *ln_Pred;

UBYTE lnJType;

BYTE ln_Pri;

char *ln_Name;

We won't go into the meaning of the structure here. It is used only to
demonstrate the differences between C and assembly language. Initializ
ing the structure should be no problem.

Example:

ln_Pri = 20;

With this assignment the value 20 is stored as a signed single-byte

value in the structure. In assembly language such a C structure exists as

a table. The values are in the same order as that given in the structure,

placed in memory according to their length. You must know the base

address of such a table in order to access it

For this example it looks as follows:

Base h

Base h

Base H

BaseH

Base H

h 0

1-4

1-8

1- 9

1-10

$00000000

$00000000

$00

$00

$00000000

Pointer to successor ln__Succ

Pointer to predecessor ln__Pred

In Type

ln__Pri

Pointer to Name In Name

The zeros stand for any values and are used to show the length of the

entries. To set lnPri to 20 as in the previous C example, you must

know the base address of the structure. If this is the case, you are ready

to set the In Pri field.

209

2. Exec Amiga System Programmer's Guide

LEA.L Base+9,A0

MOVE.B #20, (AO)

You can see that accessing structures in assembly language doesn't rep

resent any problems. Naturally, it isn't quite as easy as in C. Assembly

language does have the advantage, however, that it is faster than C and

it allows better access to the hardware. Also, assembly language allows

access to some routines which cannot be used in C. These routines refer

to parts of the operating system which the normal programmer has no

need to access, but which are used for certain tricks, such as for man

aging the multitasking.

2.2.2 Construction of nodes

Next we want to discus, one of the most important basic structures. It
is essential that you understand this material in the following sections

for this to make any sense

First we present the node 'structure. It is used to create a linked list,
which are very common in the Amiga. It has the following appearance:

InC:

strticu
struct Node * ln_Succ;

struct Node *ln_Pred;

DBYTE ln_Type;

BYTE ln_Pri;

char *ln_Name;

in assembly language:

Base + 0 $00000000 Pointer to successor ln_Succ

Base + 4 $00000000 Pointer to predecessor ln_Pred

Base + 8 $00 ln_Type

Base + 9 $00 ln_Pri

Base + 10 $00000000 Pointer to Name ln_Name

This structure can be divided into two parts. The first is the link part

(lnJSucc and lnJRred) and the second is the data part (Type, Priority and

Name). ""

♦lnJSucc

This is a pointer to the next node (successor).

♦lnPred

This is a pointer to the previous node (predecessor).

210

Abacus 22 Introduction to programming the Amiga

inJType

The various types of the node are coded and stored in this byte.

ln_Pri

The priority of the node. Only in certain cases, such as for a task
node, does it make any sense to set this field to a value other
than zero. More about this later.

*ln_Name

In this long word a pointer to the null-terminated string is stored.
It's the name of the node, which is generally chosen such that
the node can be uniquely identified by its name, simplifying
debugging immensely.

Initializing a Before a node is appended to a list it must first be properly initialized.
node

First the type must be set. Here one has a choice between various stan
dardized types, listed below:

Node type

NT TASK

NT INTERRUPT

NT DEVICE

NT MSGPORT

NT MESSAGE

NTFREEMSG

NT REPLYMSG

NT RESOURCE

NT LIBRARY

NT MEMORY

NT SOFTINT

NT FONT

NT PROCESS

NT SEMAPHORE

Ovte

01

02

03

04

05

06

07

08

09

10

11

12

13

14

Thus specifying the node type is very easy. Simply find the type which
goes with your node and enter its code.

Let's assume that you want to initialize a node found in a task struc

ture. To understand how this initialization works, we'll first show how

a task structure is constructed.

struct Task {

struct Node tc_Node;

211

2. Exec Amiga System Programmer's Guide

The node type is initialized in C as follows:

struct Task mytask; /* mytask is the name of the task

structure */

mytask.tc_Node.ln_Type = NTJTASK;

Here is the same initialization in assembly language:

LEA.L mytask,A0 ;base address of the task in AO

MOVE.L #01,8 (AO) ;set type «task (value 01)

After the type has been set, the priority of the node is specified in rela

tionship to the other nodes. This can be a value between -128 and
+127, The larger the value, the higher the priority, so +127 is the

highest and -128 the lowest priority.

Some Exec lists are ordered according to the priorities of their entries,

whereby the entry with the highest priority is placed at the front Most

Exec lists do not use the lnJPri entry, however. It is best to set the

priority of such list entries (nodes) to zero.

The priority is set as follows:

mytask.tc_Node.ln_Pri - 5;

And in assembly language:

LEA.L mytask,A0 Jbase address of the task in AO

MOVE.L #05,9 (AO) ;set Pri to 5

Finally, we have to specify the name of the node and thereby that of the

task.

InC:

mytask.tc_Node.ln_Name = "Example task";

LEA.L mytask,A0 Jbase address of the task in AO

LEA.L Name,Al Jaddress of the name in Al

MOVE.L Al,10 (AO) ;enter pointer to name

Name:

DC.B "Example task",0

As said before, the string must be terminated with a zero byte.

This example shows that you must know the position of the corre

sponding entry in order to initialize the structure in assembly language.

This position is called the offset from the base address. In our last

example this offset was 10.

The initialization of ln_Succ and lnJPred is discussed in the next

section.

212

Abacus 22 Introduction to programming the Amiga

2.2.3 Lists

What exactly is a list and what does it contain? A list is a series ofnode
structures which are linked together in both directions (called a doubly-
linked list). In the first position of a node structure is a pointer
(ln_Succ) to the next node. In the second position is a pointer (lnJPred)
to the previous node.

In order to manage a linked list better, a head node is introduced which
is immediately found at the start or end of the linked list Apart from
this information, the structure also indicates what type of entries are
found in the list The list structure has the following appearance:

The numbers in front of the structure members in the following list
structure are their offsets so that they can also be accessed in assembly

language. The offsets do not belong to the C structure and thus are not

entered along with it They are only to aid the assembly language pro
grammer.

struct List {

0 struct Node *lh_Head;

4 struct Node *lh_Tail;

8 struct Node *lh_TailPred;

12 UBYTE lh_Type;

13 UBYTE lyjpad;

♦lhHead

is a pointer to the first entry (node) of the list

♦lhJTail

is always zero

♦ihJTailPred

is a pointer to the last valid entry in the list

lhJType

specifies the type of nodes in the list lh_Type is set as per the

type of the node

lhj>ad

is contained in the structure, but is not used

The pointer lnJSucc of the last entry in the list points to lhTail

(second entry of the list structure). lh_Tail is zero (NIL) and indicates

that the node which you attempted to access is no longer valid.

213

2. Exec Amiga System Programmer's Guide

Figure 2.2.3.1

The ln_Pred pointer of the first node points to lhJTail (also in the list
structure). The zero thus indicates that the previous entry read from the

list was die first.

Example of a linked list

lh_Head

0000000

IhJailPred

lh_Type

lh_pad

■> IhJHead

0000000

IhJTailPred

Ihjype

lh_pad

ln_Succ

ln_Pred

ln_Type

ln_Pri

ln_Name

ln_Succ

Injured

Injype

ln_Pri

In Name

InjSucc

Injured

ln_Type

ln_Pri

ln_Name

J»

Example of an empty list

ln_Succ

In^Pred

InJType

ln_Pri

ln_Name

Initializing a Now that we have seen what a linked list looks like, we want to toy to
list create one. We must first create a new list structure and designate it as

empty. The initialization of a task list in C looks like this:

#include "exec/lists.h"

main ()

{

struct List listl;

listl.lh__Head - (struct Node *) &listl.lh_Tail;

listl.lh_Tail = 0;

listl.lh_TailPred= (struct Node *) filistl.lhjtead;

listl.lhJType = NTJTASK;

In assembly language it looks like this:

LEA.L

MOVE.L

ADDQ.L

CLR.L

MOVE.L

MOVE.B

listl,A0

A0,(A0)

#04,(A0)

#04(A0)

A0,8(A0)

#01,12 (A0)

214

Abacus 22 Introduction to programming the Amiga

The list we just created is, of course, empty. We'll talk about inserting
nodes into the list later. Here we show how a list is recognized as

empty. There are two ways of doing this. First, you can test to see if

lh_Head is zero (NIL), or second, if lhJTailPRED points to the start of
the list (lhjfead). If this is the case, then the list in question is empty.

This is done in C as follows:

if (listl.TailPred==Slistl) {

printf("list is empty");

On

if (listl.lh_Head->ln_Succ==O)

printf("list is empty");

2.2.4 Exec routines for list management

Exec offers a variety of very useful functions for managing lists. The

first function is the Insert() function. It is used to insert nodes into a

list at a given position.

InsertQ Insert (list, node, predecessor)

AO Al A2

Offset- -234

Parameters:

list is a pointer to the list in which the node is inserted.

node is a pointer to the node to insert into the list.

is a pointer to the node after which the given node is inserted. If

this pointer is set to a value other than zero, the pointer passed

in the list parameter is no longer relevant The specified list is

not searched for the position of the specified node (in order to

determine if the desired node actually exists). Instead, the pre

decessor parameter is assumed to be correct and the node is

inserted. If the predecessor is zero, the node is inserted at the first

position. The second way of inserting a node in the first position

of a list is to set predecessor to lhJSead. Inserting at the last

position is accomplished by setting the predecessor parameter to

lhJTailPred. There are also separate functions for inserting in the

first or last positions.

215

2. Exec Amiga System Programmer's Guide

Remove() Remove (node)

Al

Offset: -252

Description:

Like the name says, this function removes a node from a list

Parameters:

node Pointer to the node to be removed. If node doesn't actually point
to a list entry, Exec tries to remove the node anyway, possibly

leading to information loss or a system crash.

AddHeadQ AddHead (list, node)

AO Al

Offset -240

Description:

This function is used to insert nodes at the head of a list

Parameters:

list is a pointer to the list in which the node is inserted.

node is a pointer to the node to be inserted.

RemHeadO RemHead (list)

AO

Offset -258

Description:

Removes the first node in a list

Parameters:

list is a pointer to the list whose first node is removed.

AddTailQ AddTail (list, node)

AO Al

Offset -246

Description:

Inserts a node as the last element of a list

Parameters:

list is a pointer to the list in which the node is inserted.

node is a pointer to the node to be inserted.

216

Abacus 22 Introduction to programming the Amiga

RemTailQ RemTail (list)

AO

Offset: -258

Description:

Removes the last node in a list

Parameters:

list is a pointer to the list whose last node is removed.

Enqueued Enqueue(list, node)
AO Al

Offset: -270

Description:

This function is used to order entries in a list according to their

priority. As explained in the section on nodes, nodes with higher

priorities are placed at the front of the list. If multiple nodes of

the same priority are present in a list, the most recently inserted
node is placed after the others.

Parameters:

list is a pointer to the list in which the node is entered.

node is a pointer to the node to be inserted.

FindNameQ Entry = FindName (list, "name")

DO AO Al

Offset: -276

Description:

FindName searches a list for a node with a given name.

Parameters:

list is a pointer to the list to be searched.

name is a pointer to the name for which to search. This string must be

terminated with a zero.

Result:

This function returns a pointer to the node found. If an entry with the

specified name is not found, a zero is returned.

217

2. Exec Amiga System Programmer's Guide

The following example shows how to determine whether a name occurs

twice in a node. This example cannot be run "as is" because the list
must be initialized before the FindName() call or the computer crashes.

#include <exec/lists.h>

main()

struct Node *FindName () ,*node;

struct List *listl;

if < (node - FindName (listl,"test node")) !=0)

if ((node = FindName (node, "test node")) !=0)

printf ("\n the name ftest node1 was found

twiceVn");

}

Now that we have listed the functions available for processing lists, we

should clarify them with an example. Our example shows how a list is

created, output, and how entries are deleted from it

List example: #include <exec/lists.h>

char *name[] - {"nodel","node2",ffnode3"};

struct List liste;

struct Node node[3],*np;

main ()

int i;

char n;

liste.lh_Head - (struct Node *) &liste.lh_Tail;

liste.lhJTail = 0;

liste.lh_TailPred - (struct Node *) &liste.lh_Head;

liste.lh_Type = NTJTASK;

for (i=0;i<=2;i++) {

node[i].ln_Type - NTJTASK;

node[i].ln_Name = name[i];

AddTail (Sliste,&node[i]);

output ();

printf ("\n Output the finished list.\n");

np = liste.lh_Head->ln_Succ;

Remove (np);

output();

printf ("\n 2nd node skipped.\n");

218

Abacus 22 Introduction to programming the Amiga

output ()

{

for (np = liste.lh_Head;

np != &liste.lh__Tail;

np = np->ln__Succ)

printf ("\n %s \nff,np->ln_Name)

}

Here is the output from the listjnodex program:

>list_node

nodel

node2

node3

Output the finished list,

nodel

node3

2nd node skipped.

219

2. Exec Amiga System Programmer's Guide

2.3 Libraries

This section is intended for both C and assembly language program

mers. It is essential to understand this material if you want to be able to

make full use of the Amiga's capabilities.

What actually is a library? A library in this sense is a set of functions

which can be used by the programmer. It is, to be precise, a large jump

table from which functions can be called. Libraries are used so that pro

grammers can use functions which are not available in C and not easily

available in assembly language, but which are made available by the
operating system. An example of this is the OpenScreen() function for

creating a custom screen. C doesn't offer this function, so it must be

called with the help of a library.

A library has the following appearance:

00060A JMP$FC2FD6

000610 JMP$FC0B28

000616 JMP $FC0AC0

The libraries are divided into various function groups. Most of these are
already contained in the ROM of the computer; some must be loaded in
from disk as required. The following libraries are available:

clistlib

console.lib

diskfontlib

dos.lib

expansion.lib

execlib

graphics.lib

icon.lib

intuition.lib

layers.lib

mathffp.lib

mathieeedoubbas.lib

mathtrans.lib

potgo.lib

ram.lib

timer.lib

translatorJib

220

Abacus 23 Libraries

The Exec library has a special status since its functions are available

immediately after reset. If you want to use a function from another

library, the system must be told, which then calls the corresponding

library. If this library was already called, the programmer tells the pro

gram where to find die library.

Normally all that is known about a library is its base address, from

which the desired function can be called with a negative offset

A library call looks like this:

move.l l±bBase,a6 Jbase address of the library

jsr offset(a6)

The offset of the corresponding function must be taken from the tables

in the Appendix of this book. The parameters (if any) must be loaded

into the appropriate registers before the function is called

As we said, the Exec library functions are available immediately after a

reset To call its functions, its base address must be known. The base

address of the Exec library is stored in memory location $04. You can

see this base address in C by reading the standard variable SysBase.

Calling an Exec library function from C is very easy. As an example

we show a call to the FindName function.

#include <exec/execbase.h>

struct ExecBase *SysBase;

struct Library *FindName (), *library;

main()

library = FindName (& (SysBase->LibList) ,"dos.library");

printf("\n %x \nM,library);

This little C program searches through the list of all available libraries

for the DOS library. If this is found, the address at which it is located is

printed, else a zero is printed.

You can see that except for the perhaps confusing-looking assignment

in the function call there is nothing unusual about Exec functions. You

know from the previous section that the FindName function must be

given a pointer to a list and the name of the node. The appearance of

this particular function call is discussed in the section on ExecBase.

Let's take a look at how the C compiler translates this program into

assembly language. If we restrict ourselves to the important parts, the

translated program looks like this:

221

2. Exec Amiga System Programmer's Guide

global _SysBase,4

global _library,4

_main:

pea *Node

move.l __SysBase,a6

pea 378 <a6)

jsr_FindName

move.l dO,_library

move.l _library,- (a7)

jsr_j>rintf

rts

;push pointer to Node onto the stack

;pointer to ExecBase (from $4)

;push pointer to list on the stack

;call FindName function

;save return value in library

;and pass to _printf

;on the stack

_FindName

movem.l 4 (sp) ,aO/al

move.l _SysBase,A6

jmp-276(a6)

;get parameters for FindName from the

;stack and load into the proper

Registers

;get base address of the Exec library

;call function FindName

The complete assembly listing produced by the compiler is somewhat

more comprehensive, but nothing essential to the understanding of the

library function call has been omitted.

JSysBase is a pointer to the Exec library, whose functions are called
with negative offsets. If you access memory with positive offsets on

JSysBase, you get the values of ExecBase (the main structure of the

operating system), which we'll go into later.

The compilation is a bit complicated, but it can still be readily under

stood.

The main program puts the pointers to the list and the node on the
stack and then calls the subroutine. There the parameters just stored are

loaded into the appropriate registers. Then the base address of the Exec

library is fetched and written in A6. Now everything is ready to call the
actual FindName function from the Exec library. The offset of this
function is -276, as can be found in its description in Section 2.2.4.

Thus the actual function call is "jmp -276(a6)". The parameter returned
is stored in Jibrary, pushed into the stack, and then printed with

jprintf.

Since the location of the Exec library is known to the system, its func
tions can be called without problems. If you want to call a function
from another library, neither the operating system nor the compiler

knows where this library can be found. Therefore the Exec library has a
function with which the base addresses of the other libraries can be
obtained. This function is called OpenLibrary and has the following

syntax:

222

Abacus 23 Libraries

LibPtr - OpenLibrary(LibName, Version)

DO Al DO

LibName LibName is a pointer to the zero-terminated name of the library to be
opened, such as intuition.library.

Version Version indicates the library version which the user wants to open. If
several libraries have the same name, the version is used to distinguish

them. If a new version is requested which is not available, the
OpenLibrary call fails.

LibPtr LibPtr contains, after the call, the base address of the desired library,
assuming it was found. If it was not, a zero is returned.

The variable name in which the base address of the library is stored
cannot be chosen at will. So that the C compiler knows the base

address of the library from which a function is being called, it must be

stored in a variable reserved for it. If this variable is declared but not
initialized to the proper value, the call to the library function causes the
program or computer to crash.

Listing of the predefined variables:

Library Variable

clistlib

diskfontlib

dos.lib

expansion.lib

execlib

graphics.lib

icon.lib

intuition.lib

layers.lib

mathffpjib

mathieeedoubbas.lib

mathtrans.lib

potgo.lib

translator.lib

CListBase

DiskFontBase

DosBase

ExpansionBase

SysBase

GfxBase

IconBase

IntuitionBase

LayersBase

MathBase

MathleeeDoubBasBase

MathTransBase

PotgoBase

TranslatorBase

There are various ways to declare this reserved variable. The easiest way

is to declare them as ULONG (Unsigned LONG word) to avoid pointer
conversion. Naturally, when declaring them as ULONG the include file

exec/types.h must also be included or the compiler won't know what

ULONG means.

223

2. Exec Amiga System Programmer's Guide

2.3.1 Opening a library

Let's take a look at an example of how to use and open a library. The

following example opens the Intuition library and then its own screen.

finclude <exec/types.h>

tinclude <intuition/intuition.h>

struct NewScreen ns ={

0,0,

640,200,

2,

0,1,
HIRES,

CUSTOMSCREEN,

NULL,

(UBYTE *) "My screen",

NULL,

NULL };

ULONG IntuitionBase;

main()

{
ULONG screen;

if (! (IntuitionBase -OpenLibrary ("intution.library")))

exit(100);

screen = OpenScreen(&ns);

>

After exec/types.h and the Intuition structures have been included, the

screen structure is declared and IntuitionBase is declared as ULONG.
IntuitionBase must be declared globally because it must be used by the
procedures linked into the program (OpenScreen). Then the OpenLi-

brary() function of the Exec library is called. The Intuition library is
opened and the base address of the library is stored in IntuitionBase. The

OpenScreen functions are then called.

Let's take a look at what the compiler turns this program into. The

actual compiled version is somewhat longer and the unimportant parts

are omitted here.

224

Abacus 23 Libraries

_ns:

dew 0

dew 0

dew 640

dew 200

dew 2

deb 0

debl

dew-32768

dew 15

del $0000

del .1+0

del $0000

del $0000
i •

deb "My screen",0

global _Intuitionbase,4

jnain:

movem.1 version,- (sp)

pea *name

jsr _ppenLibrary

move.l dO, IntuitionBase

tst.l dO

bne.5

pea 100

jsr_exit

>W a

pea__ns

jsr _OpenScreen

rts

OpenScreen:

initialize the screen struc

;lib version on the stack

^pointer to name on the stack

Jcall OpenLib function

;store return value

Jtest for zero

;not zero (ok)

;number for exit

;exit

pointer to screen structure

;call OpenScreen function

;return

move.l 4 (sp) ,a0 ^pointer to screen structure

move.l ^IntuitionBase, a6 ;get base address from the

;intuitionBase variable

jmp -198 <a6) ;call function

_OpenLibrary:

move.l _Sysbase,a6 ;get base address from Exec

move.l 4 < sp) ,al ;get pointer to name

move.l 8 (sp) ,d0 ;get version from stack

jmp -552 (a6) ;call OpenLibrary

Here you can see that the program could not be compiled without the

declaration of IntuitionBase, since this variable is used in OpenScreen.

If it is declared, but not initialized properly (with OpenLibrary), the pro

gram crashes.

225

2. Exec Amiga System Programmer's Guide

2.3.2 Closing a library

A library should always be closed when it is no longer needed so that
the operating system can remove this library from memory.

The Exec library offers such a function:

CloseLibrary CloseLibrary (library)

Al

library
is a pointer to the open library which you want to close.

2.3.3 Structure of a library

The library structure is set up in a C include file as follows:

tdefine LIB_VECTSIZE

#define LIB_RESERVED

#define LIB_BASE

#define LIBJUSERDEF

#define LIBMONSTD

#define LIBjOPEN

#define LIB__CLOSE

#define LIB_EXPUNGE

#define LIB_EXTFUNC

#define LIBF_SUMMING

#define LIBF_CHANGED

#define LIBF_SUMUSED

#define LIBFJDELEXP

6L

4L

<-LIB_VECTSIZE)

<LIB_BASE-

(LIB_RESERVED*LIB_VECTSIZE)]

<LIBJUSERDEF)

(-eh)

(-12L)

(-18L)

(-24L)

extern struct Library {

0

14

15

16

18

20

22

24

28

32

struct

UBYTE

UBYTE

UWORD

UWORD

UWORD

UWORD

APTR

ULONG

UWORD

Node lib_Node;

lib_Flags;

libjpad;

lib_NegSize;

lib_PosSize;

lib_Version;

lib_Revision;

lib_IdString;

lib_Sum;

lib_OpenCnt;

226

Abacus 2.3 Libraries

Structure libJSTode

entries: is a node structure, which we have already seen. The libraries are
chained into a list with the help of this structure. The type of the
entry is naturally NTJJBRARY and the name of the library is
the name of the node.

libjpad

is an extra byte used to align the following words and long words
to an even address.

lib_NegSize

specifies the size of the area for negative offsets.

libJPosSize

indicates the size of the library from the base address on. This

value is of interest because a library can contain more entries
than are indicated in the C structure. The number of these entries
and their meaning is library-dependent

lib_Version

specifies the library version.

lib_Revision

indicates the library revision.

libJdString

is a pointer to a string which contains more information about
the library.

libJSum

is a checksum for the library. If you change the library, the

checksum must be recalculated.

lib_OpenCnt

specifies how many tasks this library has open. It depends on the

type of the library whether or not it is removed when no tasks

have it open anymore.

The functions which a library offers to the user normally start at offset

-30, although they could theoretically start at -6. If you look at the first

offsets, you see that they point to functions which are used by Exec to

manage the library.

These involve functions to open and close the library and are accessed

by the corresponding Exec functions. Thus each library has its own

ppen and close functions. These routines also decide whether or not the

library is removed when it is no longer needed by any task.

As can be seen from the #defines in the include file, the four offsets

mentioned have the following meanings:

227

2. Exec Amiga System Programmer's Guide

LIB OPEN

LIB CLOSE

LIB EXPUNGE

LIB EXTFUNC

-6

-12

-18

-24

Open library

Close library

Remove library

free for expansion

The libraries which are not removed when they are no longer needed do
not use the LDB_EXPUNGE jump. All unused entries should point to a

routine which clears DO and then returns.

2.3.4 Changing an existing library

The Exec library contains a function for changing an existing library,

with which certain offset entry points can be modified. The function

looks like this:

SetFunctionf) SetFunction (library, offset, jump)

Al AO DO

Offset: -420

Description:

This function changes the entry to the desired negative-offset

function such that it points to the new routine. The library

checksum is recalculated

Parameters:

library

is a pointer to the library to be changed

offset specifies the offset of the function to be changed

entry is a pointer to the new routine.

2.3.5 Creating a custom library

Now that we have discussed how libraries are used, we should show you

how you can create your own libraries.

Creating a custom library is useful if several tasks are running concur

rently and all use a certain group of functions. In this case it is a good
idea to make a library so that each task can easily access the functions

and only one copy of them need be in memory.

228

Abacus 2.3 Libraries

The Exec library offers several functions for creating libraries.

InitStructQ InitStruct (initTable, memory, size)
Al A2 DO

Offset: -78

Description:

The function initializes a structure at the specified memory loca
tion according to the table given.

Parameters:

initTable

is a pointer to the table used for creating the structure.

memory

is a pointer to the allocated memory.

size indicates the size of the structure to be initialized. The memory
in which the structure is created needn't be cleared, this is handled
by InitStruct

The table which is used to create the structure looks rather confusing. It
consists of a command byte followed by data, the format of which

depends on the command byte. After the data comes another command

byte and more data. The length ofthe data also depends on the command
byte. The end of the table is signalled by a command byte of zero.

The command byte is divided into low and high nibbles. The bit pattern
in the high nibble (the upper four bits) indicates the command and the
low nibble the number ofcommand executions.

Let's look at the high nibble first This is divided into the upper and

two lower bits. The upper two bits indicate the actual command and the
lower two the size of the data on which it operates. The possible data
sizes are long, word or byte.

Four different commands can be coded into the top two bits:

Combination 00

This indicates that the data starting after the command word is

copied into the structure. The next two bits indicate the size of
the data (long words, words or bytes).

Combination 01

This indicates that the data byte following the command is used

to fill the structure created.

229

2. Exec Amiga System Programmer's Guide

Combination 10

This combination indicates that the byte after the command word

is used as an offset into the structure. The offset is added to the

starting address of the structure and the byte after this is copied

into this position of the structure. After this command ends, the

data which follows is copied into the position in the structure at

which this command ended.

Combination 11

This combination indicates that the three bytes after the com

mand byte is used as a 24-bit offset Otherwise it is identical to

the previous command.

The next two bits of the command byte (bits 4 and 5) specify the type

ofdata involved.

Combination: 00 long word (even addresses only)

Combination: 01 word (even addresses only)

Combination: 10 byte

Combination: 11 unused

The low nibble of the command byte specifies how often a given func

tion is performed; it is used as a counter. Since the counter is decre

mented to -1, the function is executed one more time than the count

value.

The command byte must be located at an even address.

Here are two examples:

dc.b%00010010,$00

dew $FFFF,$FFFF,$1234

The command byte is $12 = %00010010 and indicates that the three

words which follow it are copied into the structure. The zero-byte after

the command byte is needed because words must start on even addresses.

dc.b%10000001,$10

del $12341234,$ffff1111

The command byte indicates that two long words are copied into the

structure at position 16.

Program In this example memory space is reserved for a library structure and the

example: structure is partially initialized.

;InitStruct.asm

AllocMem = -198

FreeMem = -210

MemType = $10001

InitStruct = -78

StructSize = 34

Size = $300

230

Abacus 23 Libraries

move.l $4,a6

move.l #MeraType,dl

move.l #Size,dO

jsr AllocMem(a6)

tst.l dO

beq error

lea Table.al

move.l dO,a2

move.l StructSize,dO

jsr InitStruct(a6)

error: rts

name: dc.b 'Test1,0,0

Table:

dc.b %01000001,$00

del 0 ;node Succ and Pred

dc.b %00100001

dc.b $09,0,0 ;Type and Pri

dc.b %00011000,0

del name ;Name

dew 0,0,0,1,0 ;negS, PosS,Version,Revision

del name ;iDString

deb %00000000 ;end marker

MakeLibraryQ Library = MakeLibrary(vectors,structure,init,size,SegList)
DO AO Al A2 DO Dl

Offset: -84

Description:

With this function it is possible to create a custom library. The

memory space, the library structure, is initialized by the func

tion, as well as libJNfegSize and lib_PosSize.

Parameters:

vectors

is a pointer to a table for vectors library. The table contains

either the pointers directly to the various functions or offsets
which are added to the base address of the library in order to get

the entry point If you want to store offsets in the table, start it

with $FFFF (-1). The end marker for the table is -1 with the

same length as the table entries (word-length for an offset table,

long word for pointers to the functions).

Structure

is a pointer to an initialization table as described for the

InitStruct function. The library structure is constructed with this

table at the end of the MakeLibraryO function execution. The

entries lib_NegSize and lib_PosSize are calculated and initialized

by the function and overwrite any values stored there by the ini

tialization table. If the structure parameter in MakeLibraryO call

is not defined, no table is used for creating the structure and it

must be initialized by hand.

231

2. Exec Amiga System Programmer's Guide

init is a pointer to a program which is executed at the end of the
MakelibraryO function, assuming the pointer is defined. This

routine might initialize die library structure, for example, if this

was not done with an initialization table. The pointer to the

library structure is passed in DO and the pointer to the segment

list in AO. If the init routine changes DO, this change is returned

when the function ends.

SegList
is a pointer to a segment list (used by DOS) which is passed to

the init routine in AO.

library

is the pointer to the library structure returned by the function,
which should not be confused with the start of the memory

occupied by the library.

With this function it is possible to create a library of your own. This is
not inserted into the library list ExecBase structure, however. In addi

tion, the library checksum is not calculated. The Exec Library has

another function for doing this, called AddLibrary.

AddLibraryQ AddLibrary (library)

Al

Offset: -396

Parameters:

library
is a pointer to the library structure previously created with the

MakelibraryO function.

The following example program shows how to create a custom library

and how it is used.

;AddLibrary.asm

MakeLib - -84

AddLib - -396

OpenLib * -552

Blinker * -30

OpenCnt - 32

InitStruct - -78

StructSize * 34

move.l $4,a6

lea Vectors,aO ;Pointer to vectors

move.l #0fal /Clear structure

lea init,a2 ;Init routine

move.l #StructSize,dO /Structure size

clr.l dl ;Seg list

jsr MakeLib(a6)

tst.l dO

232

Abacus 23 Libraries

beq Error

move.l dO,'al

jsr AddLib(a6)

lea name,a1

move.l #l,dO

jsr OpenLib(a6)

tst.l dO

beq Error

move.l dO,LibBase

move.l dO,a6

move.l #$20000,dO

jsr blinker(a6)

Error: rts

init: move.l dO,aO

move.b #9,8(aO)

lea name,al

move.l al,10(a0)

move.l al,24(aO)

move.w #1,20(30)

rts

open: move.l a6,dO

add.w #$01,OpenCnt(a6)

rts

close: sub.w #$01,OpenCnt(a6)

clr.l dO

rts

expunge: clr.l dO

rts

extfunc: clr.l dO

rts

blink: move.w d0,$dffl80

sub.l #l,dO

bne blink

rts

LibBase: del 0

name: dc.b 'test.library',0,0

;Lib name

/Version

/Value for blinker

/Call function

/Enter type

/Enter name

/IDString

/Version

Name

Vectors:

del openf close,expunge,extfunc,blink,$ffffffff

end

The program creates a library with the name testlibrary. One function

is inserted, reachable at offset -30. The function is called Blinker and

briefly changes the screen color. The parameter for the flash duration is

passed in DO.

It's necessary to define entries for the library offsets -6 to -24, as

described previously.

233

2. Exec Amiga System Programmer's Guide

Since the structures Library, Resource and Device all contain a Library

structure as their standard header, it is also possible to create aDevice or

Resource structure with the MakeLibraryO function.

2.3.6 The remaining library functions

RemLibraryO Error = RemLibrary (library)

DO Al

Offset: -402

Description:

This function removes a Library structure from the library list in

the ExecBase structure. After the library is removed, it is no

longer possible to open it with Openlibrary().

Parameters:

library

is a pointer to the library structure.

error specifies whether an error occurred in the function. If this is the

case, the error message is returned in DO, else error is set to 0.

OldOpen library = OldOpenLibrary (libNaine)

LibraryQ DO Al

Offset: 408

Description:

This function is a holdover from Kickstart Version 1.0. It is also

used to open a library, but it doesn't check the version number of

the library to be opened. It is kept in the Exec library only so

that programs which were written for Kickstart 1.0 also work

with Version 12.

234

Abacus 2.4 Multitasking

2.4 Multitasking

Multitasking is one of the best features of Exec. Multitasking is the

ability of the operating system to run several programs or tasks at once.
Since the Amiga has only one processor, only one task can actually be

processed at a time, of course. To make it seem as though several tasks
are running at once, the 68000 is divided between the tasks. Each of the

programs gets the processor for a certain amount of time. This is called

time-multiplexing the processor among the various tasks.

Not all of the tasks which are present in the computer memory need to

be executed concurrently. Many ofthem are activated only when needed
Otherwise they may be waiting for a certain key, a mouse movement,
etc.

Thus the various tasks can be divided into the following categories
(called task states):

running This is the task to which the processor is currently assigned.
Only one task is ever in the running state.

ready All tasks which are ready to run but to whom the processor

has not yet allocated time, are in the ready state.

waiting Tasks in the waiting state are all those which are waiting for

a specific event and are not ready to be processed.

In addition, a task can also find itself in the following states:

added Such a task has just been added to the system and is not yet

in one of the three states above.

removed This task has just ended. It is no longer in one of the three

states above and are removed from the system.

exception A task exception is a special state in which the task can be

interrupted by a certain event. After processing this excep

tion it returns to one of the three states above.

A task consist basically of two elements: the actual program and the

task structure. This contains all of the information about the task which

Exec needs. To better understand the capabilities of a task, we should

first examine the task structure.

235

2. Exec Amiga System Programmer's Guide

2.4.1 The task structure

The task structure, as defined in the include file exec/tasks.h of a C

compiler, looks as follows (The numbers in parentheses indicates the

distance of an element from die base address of the structure):

extern struct Task {

struct Node tc_Node;

UBYTE tc_Flags;

tc__State;

tc_IDNestCnt; /*

tcJTDNestCnt; /* (17)

tc_SigAlloc; /* (18)

tc_SigWait;

tc_SigRecvd/

tc__SigExcept;

tcJTrapAlloc; /* (34)

tcJTrapAble; /* (36)

tc_ExceptData; /* (38)

tc_ExceptCode; /*

tc_TrapData;

tc_TrapCode;

tc_SPReg;

tc_SPLower;

tc__SPUpper;

(*tc__Switch) (

*tc_Launc)();

struct List tc_MemEntry;

APTR tcJJserData; /* (88)

UBYTE

BYTE

BYTE

ULONG

ULONG

ULONG

ULONG

UWORD

UWORD

APTR

APTR

APTR

APTR

APTR

APTR

APTR

VOID

VOID

/* (14)

/* (15)

(16)

/* (22)

/* (26)

/* (30)

(42)

/* (46)

/* (50)

(54)

(58)

/*
/*

/* (62)

I;/*

/*

(66)

(70)

*/

task state */

counter for Disable() */

counter for Forbid() */

allocated signal bits */

wait for these */

received signals */

exception gen. signals */

allocated trap commands */

allowed trap commands */

data for exceptions */

code for exceptions */

data for trap handler */

code for trap handler */

temp storage for SP */

lower stack bound */

upper stack bound + 2 */

task loses CPU */

task gets CPU */

/*(74) occupied memory */

pointer to task data */

As you can see the header of a task structure consists of the node struc

ture we discussed in the previous section. The reason is that Exec man

ages the tasks in two different lists, one for the ready tasks and one for

the waiting tasks. Thus the basic functions like Insert(), Remove() and

FindNameO can be used on the task list as well. There are also special

functions for managing the task lists.

236

Abacus 2.4 Multitasking

Each list also has a list header. In the case of the task lists these are in
the ExecBase structure. This structure is described later. The following
lines show how the task lists can be accessed:

#include <exec/execbase.h>

extern ExecBase *SysBase;

main()

struct task *waiting, *ready, *running;

waiting=(struct Task *)SysBase->TaskWait.lh__Head;

ready=(struct Task *)SysBase->TaskReady.lh_Head;

runnings(struct Task *)SysBase->ThisTask;

etc.

Task

switching

Switch

routine

The program places in waiting and ready, pointers to the first task
structure of these lists. Running is a pointer to the running task.

TaskWait and TaskReady are list headers, while ThisTask is just a

pointer. Since there can be only one running task, there is naturally no
list here.

Here we should say a few words about the central process which is
responsible for allowing multiple tasks to use the same processor. This

is called task switching, and it involves switching from one task to

another. If a task is found in one of the two task lists, it is automatical

ly brought into this process. The first question is:

How are the tasks switched?

A task doesn't know when it gets the processor or when it has to give

it up. If it looks at the ThisTask field in ExecBase, it only finds a

pointer to its task there since it can only read this field when the CPU

is allocated to it In reality however it can be interrupted at any time.

The whole process is triggered by an interrupt which occurs when the

task has used the amount of processor time alloted to it or when a more

important task must be processed immediately. The Switch routine of

die operating system accomplishes the actual switching. In contrast to

the task, which always runs in the user mode of the 68000, the Switch

routine is run in the supervisor mode. First the processor registers D0-

D7 and A0-A6 are saved on the task stack. The user stack pointer is

then stored in the tcJSPReg field of the task structure, followed by the

status register and the program on the user stack. They are automati

cally placed on die supervisor stack by the 68000 when the interrupt

occurs. The task is then placed in the ready list.

The new task comes from either the ready or waiting list. It is now

removed from there and entered in the ThisTask field. After this its

stackpointer is fetched from its tcJSPReg field and then its registers are

237

2. Exec Amiga System Programmer's Guide

fetched from the stack. Exec exits the Switch routine at the end with an

RTE causing a branch to the new task.

Of course, this is only a rough summary of what the Switch routine

does. Actually, mote data is exchanged and special cases checked. If the
task is in the exception state, the Switch routine can call the routines
whose addresses are in the tc_Launch and tcJSwitch entries of the task

structure either before or after the switch.

But as indicated, the entire switching procedure is completely auto

matic. You don't have to worry about it

The second question about task switching is: When will the tasks be

switched?

Task
scheduling get? The division of the processor time is called task scheduling. Exec

uses the lnPri field of the list node structure at the start of die task
structure as the basis of this. In general, the higher the priority of a
task, the more processor time it gets, and thus the faster it runs. Exec

starts with the task with the highest priority. It gets the processor for a
given time span. After this, the processor time which it used is sub
tracted from its relative priority in comparison to the ready tasks. Now

it is no longer the task with the highest priority and the processor

moves on to the next task. This procedure ensures that even tasks with
a low priority get the processor once in a while and that time-critical

tasks which need the processor immediately, but for only a short time,

get priority over the others.

The priority can be a value between -128 and 127. A normal task
should have a priority of 0. This is also the priority of a CLI task. The
remaining operating system tasks vary between -20 and 20, so it is not

necessary to write extreme values in the tc_Node.ln_Pri field of a task

structure.

Another field of the task structure is tc_Node.ln_Name. This contains a

pointer to the name of the task (see the section on lists). This makes it

easier to find a given task.

The tc_State field contains the task state. The following values are

assigned to the various states:

invalid

added

running

ready

waiting

exception

removed

= 0

-1

= 2

= 3

= 4

= 5

= 6

238

Abacus 2.4 Multitasking

The task stack

A word about

tcJSPUpper:

Enabling and

disabling task

switching

ForbidQ and

PermitQ

In addition to the task structure, a task also needs a stack. As mentioned
before, this is a user stack. TcJSPLower contains the lower bound of
the stack and tcJSPUpper the upper bound (recall that a stack always
grows from higher addresses to lower addresses).

The address in tcJSPReg is used as storage for the stack pointer. Nor
mally teJSPReg is set equal to tcJSPUpper, but any address between
tcJSPUpper and teJSPLower can be placed in tcJSPReg. The area
between teJSPReg and tcJSPUpper can then be used to store global
variables, etc.

TcJSPUpper points to the upper bound of the stack, the first address
after the stack area. The word at the last position of the stack has the
address tcJSPUpper minus 2.

Since Exec saves the registers on the task stack when switching tasks,
the task stack must be at least 70 bytes large. But then the task would
not be able to place any variables or return addresses on the stack. Since
C programs in particular make heavy use of the stack, at least IK
should be reserved for the stack.

Since a task consists of various elements, task structure, stack, pro
gram, etc., a certain amount of structure must also be reserved for it

This makes it possible to keep in the task structure a list which
contains all of the memory occupied by the task. The tc_MemEntry
contains the header of this list We'll explain how such a memory list
is constructed later.

Sometimes you may not want a processor to be able to leave a given
task at any time. Imagine that you want to display the list of waiting
tasks on the screen. But while your task is reading the entries, a ready

task changes to the waiting state, or vice versa. The values read are then
incorrect

In general, whenever a task access data structures which are open to

either the entire system or certain other tasks, the task switching must

first be disabled so that the data are not changed by some other task
during the access.

The Forbid() and PermitQ routines represent the first level of the task
switching enabling/disabling mentioned above. Forbid() prevents task

switching and Permit() allows it again. Both routines are called without
parameters and do not return values (C type: void).

239

2. Exec Amiga System Programmer's Guide

DisableQ and Often it is not sufficient just to turn task switching off. Many system
Enable() data structures are changed by Exec during interrupts. All interrupts can

be disabled with Disable() and enabled again with Enable(). But be care

ful! Turning off task switching, even for a long time, doesn't hurt

anything. This is not the case with interrupts, however. Their regular

occurrence is necessary for the life ofExec. If the interrupts are disabled

for too long, a system crash can occur when you try to re-enable multi
tasking. The task is completely undisturbed during Disable(), since

turning off the interrupts also turns off task switching.

It is also possible to nest several Forbid() or Disable() calls. Two

counters are maintained, TDNestCnt and IDNestCnt (Task Disable
Nesting Counter and Interrupt Disable Nesting Counter). Everytime

Foibid() is called, TDNestCnt is incremented by 1, and decremented by
1 on each call to Permit(). Task switching is possible only when

TDNestCnt < 0. This means that the number of Permit() calls must be
the same as the number of Forbid() calls before task switching is re-

enabled. This applies to Enable(), Disable() and IDNestCnt

The following program shows the use of the Enable() and Disable()

functions. It reads the points of all the task structures of the ready and
waiting tasks while the interrupts are disabled with Disable(). After

wards they are re-enabled with Enable() and the pointers stored are used
to display information about the task structures like name, stack and

priority on the screen.

The program shows what tasks are present on the Amiga. Experiment
with CLI commands like NEWCLI, RUN or SETTASKPRL

The running task is also displayed, which is naturally always the task

from which our program was called.

/** DISP-TASK.C **/

#include <exec/execbase.h>

struct ExecBase *SysBase;

main()

{
register struct Task *a_task;

APTR run, tnodes[50], wtask, ltask;

void ol(),o2();

register APTR Anode;

Disable();

Anode = tnodes;

run = (APTR)SysBase->ThisTask;

for(a_task=(struct Task *)SysBase->TaskReady.lh_Head;

a task->tc Node.In Succ;

240

Abacus 2.4 Multitasking

*Anode=(APTR)a_task,Anode++,

a_task=a_task->tc_Node.ln_Succ);

wtask=Anode;

for(a_task=(struct Task *)SysBase->TaskWait.lh_Head;

a_task->tc_Node.ln_Succ;

*Anode=(APTR)a_task,Anode++,

a_task=a_task->tc_Node.ln_Succ) ;

ltask=Anode;

Enable();

printf("\nTask in the running state:\n");ol();o2(run);

printf("\nTask(s) in the ready state:\nn);ol();

for(Anode=tnodes;Anode!=wtask;o2(*Anode),Anode++);

printf(M\nTask(s) in the waiting state:\n");ol();

for(;Anode!*ltask;o2(*Anode),Anode++);

void ol()

{

printf

("Stack adrs. Stacksize Priority Signals Name\n");

printf

>

void o2(at)

register struct Task *at;

{

printf("%101x%101x%81d%lllx %s\n"# at->tc_SPLower,

(ULONG)at->tc_SPUpper - (ULONG)at->tc_SPLower -2L,

(LONG)at->tc_Node.ln_Pri,

at->tc_SigWait, at->tc_Node. lnJSfame);

>

Since the program just saves pointers to the task structures and not the

contents of these structures, errors are always possible since a task can

be removed while the values are being displayed. This almost never

happens, however, and since it would require much more work to store

all of the task structures, we avoided it in this program. Other fields of

the task structures can also be printed by changing the ol() and o2()

routines.

Creating a Now that we have talked so much about tasks and task structures, we

task want to create a new task. What do we need?

First a task structure, then a stack, the task name (since the task struc

ture just contains a pointer to the actual name), and finally a program,

the actual task.

241

2. Exec Amiga System Programmer's Guide

Some problems arise here. A different area of memory is required for
each task since it must remain in memory after the program which

created it has ended

To make the program less complicated, the task structure, task name

and stack are combined into the structure alltask, for which one com

mon memory block is then allocated.

The actual task is written as a normal C function with the name "code".
All it does is increment a counter until it reaches $FFFFFF. This takes
several minutes. Its presence can be noticed by the fact that the Amiga
reacts more slowly, since our task also gets its share of processing
time. The previous example program can also be used to view the exis

tence of our task. It has the name "Sample task".

To copy the code function to its final memory position, its name is
used as a pointer to its address. The end function is just used to get the
end address of the code function. Since there is no way to determine the
memory requirements of a function in C, it is calculated as the differ

ence between the starting and ending addresses.

To keep the program simple, the occupied memory is not released, but

this amounts to just over a kilobyte.

/**** create a task ****/

#include <exec/types.h>

tinclude <exec/Tasks.h>

finclude <exec/memory.h>

#define STACK_SIZE 500 /* Stack size */

main()

{

void code(),end();

APTR mycode, AllocMemO;

static char Taskname[] = "Sample Task";

register APTR cl,c2;

struct alltask {

struct Task tc;

char Name[sizeof(Taskname)], Stack[STACK_SIZE];

> *mytask;

mytask = AllocMem((ULONG)sizeof(*mytask),

MEMF_PUBLIC|MEMFJCLEAR);

if(mytask==0)

{printf("No memory for the AllTask structure!\n");

return(0);

mycode = AllocMem((DLONG)end-(ULONG)code,MEMF_PUBLIC);

if(mycode==0)

{FreeMem(mytask,(ULONG)sizeof(*mytask));

242

Abacus 2.4 Multitasking

printf("No memory for the task code!\nM);

return(0);

strcpy(mytask->Name,Taskname);

mytask->tc.tc_SPLower=mytask->Stack;

mytask->tc.tc_SPUpper=mytask->Stack+STACK_SIZE;

mytask->tc.tc_SPReg=mytask->tc.tc_SPUpper;

mytask->tc.tc_Node.lnJType=NT_TASK;

mytask->tc.tc_Node. ln_Name!=^tiytask->Name;

for (cl=code, c2=mycode;cl<=end;*c2++=*cl++) /

AddTask (mytask, mycode, 0L) ;

>

/*** The "code- function is the task itself ***/

void code()

{

ULONG count;

for(count=0;count<0xffffff/count++);

>

void end<){}

As you can see, only a few of the fields in the task structure have to be
initialized:

tcSPLower with the lower stack bound

tcJSPUpper and tc_SPReg with the upper stack bound

te_Node.ln_Type with the list type NTJTASK

The name can also be omitted.

An important function was used in this program for the first time:

AddTaskQ AddTask (task, initialPC, finalPC)

This function inserts a new task into the system. Normally the new

task is immediately added to the ready list

The AddTask function requires the following parameters:

task This is a pointer to a task structure in which at least the

above four fields have been initialized.

initialPC This is the address at which the task program execution

begins. In our example this is the starting address of the

code function at its final address, stored in mycode.

243

2. Exec Amiga System Programmer's Guide

finalPC finalPC contains the address to which the processor jumps
when the task executes an RTS command. This can be the

address of a routine which releases the occupied memory,

closes open files, etc. If you specify 0 as the finalPC (as in
our example), Exec uses a default finalPC routine. This

releases the memory to which the tc_MemEntry field of the

task structure points. After this the task is removed from the

system lists.

Ending a task Hie description of finalPC brings us to the next topic. How is a task
ended? The following possibilities exist:

1. The task reaches an RTS command which does not represent (he
return from a JSR or BSR task. Then the procedure listed for

finalPC is performed.

2. A 68000 exception occurs which is not handled by the task, such
as a bus or address error, division by zero, etc. Exec then creates
its "Software error - Task Held" message or a Guru Meditation.

At the end of this section we'll show how to trap such errors.

3. A call to the RemTask function, which removes the task from

the system.

2.4.1.1 Task functions

Exec contains certain functions for creating and removing tasks and for

managing the task lists:

AddTask() AddTask (task, initialPC, finalPC)

A0 Al A2

Offset: -282

Description:

AddTask adds a new task to the system,

Parameters:

task is a pointer to a task structure. The fields tcJSPUpper,

tcJSPLower, tcjSPReg and tc_Node.ln_Type must be properly

initialized.

initialPC

is the address at which the execution of the task begins.

244

Abacus 1A Multitasking

finalPC

is the return address which is placed on the stack before the start
of the task. If the task executes an extra RTS, this address is
branched to. If finalPC is 0, Exec uses the address of its default
finalPC routine.

FindTaskQ Task = FindTask (name)

DO Al

Offset: -294

Description:

FindTask searches the task lists for a task with the specified
name and returns a pointer to it if it found such a task. If 0 is
given as the name, the function returns a pointer to the task
structure of the current task.

Parameter:

name is a pointer to the name of the task to be found.

Result:

Task is a pointer to the task structure of the node found

RemTaskQ RemTask (task)

Al

Offset -288

Description:

RemTask removes a task from the system. If the tc_MemEntry

field points to a MemEntry list, this memory is released. All of
the other system resources occupied by the task must have been

released prior to invoking this function.

Parameter:

task Pointer to the task structure of the task to be removed. If task=0,

the current task is removed.

SetTaskPriQ oldPriority - SetTaskPri (task, newPriority)

DO Al DO

Offset: -300

Description:

SetTaskPri returns the old priority of a task and sets the current

priority to a new value. This performs an operation called

rescheduling, meaning that the processor divides its time among

the individual tasks differently as a result of the new priority. If a

245

2. Exec Amiga System Programmer's Guide

task is set to a high priority, it is generally serviced immediately

by the processor.

Parameters:

task Pointer to the task structure of the task.

newPriority
new priority of the task (in the lower eight bits of DO).

Result:

oldPriority

Old priority of the task (in the lower eight bits of DO).

ForbidQ Forbid ()

Offset -132

Description:

Prevents task switching and increments TDNestCnt.

PermitO Permit ()

Offset: -138

Description:

Decrements TDNestCnt and permits task switching if

TDNestCnt < 0.

DisableQ Disable ()

Offset: -120

Description:

Disables all interrupts and increments IDNestCnt

Enable() Enable ()

Offset -126

Description:

Decrements IDNestCnt and permits interrupts again if IDNestCnt

246

Abacus 2.4 Multitasking

2.4.2 Communication between tasks

Not every task can operate on its own. Most tasks want to exchange

data with others. This generally involves input/output processes, since
the routines which control the various I/O devices, such as the key
board, screen and disk drives are set up as separate tasks.

It has been mentioned that some tasks just wait for signals from other
tasks before going into action. These signals are the subject of this
section.

2.4.2.1 The task signals

Signal Bits Each task has 32 signal bits which allow it to distinguish various

events. Each task can use this signal as it desires. A given signal can

have complete meanings to two different tasks. Certain system

functions, such as Intuition, use various signals for messages. If a task

wants to use one of its signals, it must first allocate it This is done

with the AllocSignalO function. Normally the lower 16 bits are

reserved for system functions, leaving the other 16 free.

A given signal can be allocated with AllocSignalO by passing it the

number of the desired signal as an argument, or you can let

AllocSignalO find the next free signal by passing a -1 to it

The result returned is the number of the desired signal, provided it is not

already allocated, or a -1 as an error message. AllocSignal(-l) only

returns -1 when no more free signals could be found.

The following C program allocates the next free signal with the

AllocSignal function:

Signal=AllocSignal(-1

Signal < 0?

printf("No more free signals available"):

printf ("Signal number %ld has been allocated",(long)Signal);

There are two ways to specify a given signal. The first is to specify its

number. This is a number between 0 and 31 which corresponds to the

bit number of the corresponding signal.

247

2. Exec Amiga System Programmer's Guide

The second option is to specify the entire signal word. In this signal
mask die state of a bit indicates the corresponding signal The advantage

of specifying the desired signal in the form of a signal mask is that

several signals can be selected at once. AllocSignal returns the signal
number. To get from this to the signal mask, the bit at the position

indicated by the signal number must be set This can be done in C as

follows:

signal_mask=l<<signal_number

Or in machine language:

MOVE.W signal_number,DO

MOVE.L signal_mask,Dl

BSET DO,D1

whereby signal_mask and signaljnumber are the addresses of the given

values (not the values themselves).

The signals allocated by a task are stored as a signal mask in the

tcJSigAlloc field of a task.

Waiting for The main reason that signals are used is so that tasks can wait for them.
signals This sounds rather strange, but it's true. Let's say that a task is waiting

for a certain key. It could do this in the form of a loop, but this would

waste computer time without actually doing anything. To prevent this,

a task can be made to wait for an event such as a key being pressed with
the help of the task signals. Any task can wait for signals and while it

is waiting it is put in the waiting list and this doesn't use any processor

time.

The Wait function is used to make a task wait for a signal. It needs
only one parameter, a signal mask which contains the signals to be

waited for. This makes it possible to wait for more than one signal at a

time. As soon as one of the specified signals is set by another task, the
Wait function comes back and returns a signal mask containing the

signal(s) which occurred. The desired signals and the signal mask

returned by Wait() can be logically ANDed to determine which signal
actually occurred. The following hypothetical C fragment demonstrates

this:

unsigned long Signals;

Signals - Wait(Key|Mouse_buttonIMenu);

if (Signals & Key) { /* key pressed */ >

if (Signals & Mouse_button) { /* mouse button pressed */ >

iff (Signals & Menu) { /* menu option activated */ }

If one of the desired signals is set before the call, Wait() returns to the

program immediately.

The signals for which a task is waiting are stored in its tcJSigWait field

and those which it has received are stored in tcJSigRecvd.

248

Abacus 2.4 Multitasking

If the task switching or interrupts are turned off before calling Wait(),
they are turned on again. The disabled state is restored when WaitO
returns to the calling program.

This is accomplished by storing the contents of the TDNestCnt and
IDNestCnt counters in the appropriate fields of the task structure:
teJIDNestCnt and teJDNestCnt

There are five important routines which have to do with task signals.
The SetSignalsQ function is not required for normal applications.

2.4.2.2 The signal functions

AllocSignalQ

FreeSignalQ

Signal_number = AllocSignal (Signal_nuxnber)
DO DO

Offset -330

Description:

A task signal can be reserved with the AllocSignal function. If -1
is passed instead of the signal number, AllocSignal searches for
the next free signal and allocates it. If the desired signal is already
allocated, AllocSignal returns -1.

AllocSignal can only be used to allocate signals for the current
task. Also, AllocSignal should not be called within an excep
tion.

Parameter:

Signaljiumber

The number of the signal to be allocated (0-31) or -1 for the next
free signal.

Result:

Signal number

The number of the allocated signal or -1 if the desired signal (or
all signals for AllocSignal(-l)) is already allocated.

FreeSignal(Signal_number)

DO

Offset: -336

Description:

FreeSignal() is the opposite of AllocSignal. The signal with the

number specified is released. As with AllocSignal(), FreeSignalO

should not be called in an exception.

249

2. Exec Amiga System Programmer's Guide

Parameter

Signaljiumber

The number of the signal to be released (0-31).

SetSignals() OldSignals = SetSignals (NewSignals, mask)

DO DO Dl

Offset -306

Description:

SetSignalsO transfers the state of the signals whose correspond
ing bits are set in the mask from NewSignals to the task signals
(tcJSigRecvd). If a bit in NewSignals and the mask are both 1,
the corresponding task signal is set If it is 0 in NewSignals and
1 in the mask, it is cleared. If a mask bit is 0, the corresponding

task signal is not changed.

Parameters:

NewSignals

contains the new state of the signals.

mask determines which signal bits are changed.

Result

OldSignals

indicates the old state of the task signals.

SetSignals(0L,0L) returns the current signal state without changing any

signals.

SignalQ Signal (Task, Signals)

Al DO

Offset -324

Description:

This function allows the signals of another task to be set It is
the main function of the signal system since it allows signals to

be sent from task to task. If the receiver task has been waiting
for the sent signal, it returns to the ready or running state. This

function is used mainly by the message system, discussed in the

next section.

Parameters:

Task Pointer to the task structure of the receiver task.

Signals
A signal mask which contains the signal bits to be sent

250

Abacus 2.4 Multitasking

WaitQ Signals = Wait (Signaljmask)
DO DO

Offset: -318

Description:

Wait waits for the signals in the specified signal mask. This
means that the task remains in the waiting state until one of the
signals is set by another task or an interrupt. If one of the sig
nals was already set before the call to the Wait function, Wait

returns immediately. The result which Wait returns is a signal
mask which contains all of the signals which occurred for which
it was waiting.

Note:

The function can be called only in the USER mode.

Parameter

Signaljmask

Wait waits for the signals in this signal mask.

Result:

Signals

These are the signals from the signal mask which were received.

2.4.2.3 The message system

The task signals form the basis of another communication system

between tasks, called the message system. This allows not only signals

to be transferred, but also messages which can contain any data. This

system also forms queues automatically if the receiver isn't fast enough

to react to a message. Something called a message port is used as the

basis for this type of communication. This is another data structure. In

C it has the following format (exec/ports.h):

struct MsgPort {

struct Node mp_Node;

UBYTE mp_Flags; /* (14) flags for action mode */

UBYTE mp_SigBit; /* (15) signal bit of the t*ask */

struct Task *mp_SigTask; /* (16) pointer to receiver task*/

struct List mp_MsgList;/* (20) list header or message list */

A message port serves as a collecting point for messages to a task (or

software interrupt). Any task can send data to a message port, but only

one task is informed when messages arrive.

251

2. Exec Amiga System Programmer's Guide

mp_Node

mpJFlags

mp_SigBit

mp_SigTask

mp_MsgList

Construction

of a message

The individual fields of a message port structure have the following

meanings:

The mp_Node is a node structure as presented in section 1. A pointer to

(he name of the message port is stored in its ln_Name field. This makes

it easier to find a given message port

The node type in lnJTyp is always NT_MSGPORT for a message port.

The other fields of the node structure are used only when you want to

put a message port in a list This can be either a private list or a list of

the public ports. This is the list of all message ports which are known

to Exec.

The lower two bits in this field determine what happens when the mes
sage port receives a message. The following options are available (the

corresponding bit combinations are contained in the include file "exec

/ports.h"):

PA_IGN0RE(2)

This combination of flag bits determines that nothing happens

when a message is received.

PA_SIGNAL(O)

Each time the message port receives a message, (he signal from
(he mpJSigBit field is sent to the destination task.

PA_SOFI1NT(1)

A software interrupt is generated each time a message is received.

More about software interrupts can be found in the next section.

In this field is stored the number of the signal bit which is set to (he

task when mpJPlags = PASIGNAL. This is a signal number between

0 and 31, so that only one signal bit of a message port can be affected.

This field must contain a pointer to the task structure of a task to which

(he signal in mpJSigBit is sent

If the PAJSOFTINT mode is set, mpJSigTask contains a pointer to (he

interrupt structure of the corresponding software interrupt instead.

This is the list header for the list of all messages received. Each mes

sage received is appended to the end of this list and this either causes

nothing to happen (PAJGNORE), a software interrupt to be generated

(PAJSOFITNT), or a signal to send to the receiver task (PAJSIGNAL).

This list header must be initialized properly. This can be done with

NewList(), for example.

Each message consists of a message structure and a message, which can

be a maximum of 64K long. The message is appended directly to the

message structure. This structure is also contained in the include file

exec/ports.h:

252

Abacus 2.4 Multitasking

struct Message {

struct Node mn_Node;

struct MsgPort *mn_ReplyPort;/* (14) reply port*/

UWORD mn_Length; /* (18) length of the message in bytes */

Sending a

message

mn_Node

mnNode is a normal node structure. It is used to chain the mes

sage in the list of received messages. The lnJTyp field is set to

the node type NT_MESSAGE. A message can be given a name,

but this is not necessary.

mnJLength

mnJLength contains the length of the message in bytes. As

mentioned, the message is appended immediately after the
mn_Length field.

A message is sent to a port by means of the PutMsg function.

PutMsg(Message_port, Message) sends Message to Messagejx>rt Both

are pointers to the appropriate structures. The following example sends

a string as a message to a hypothetical message port:

/* pointer to the message port */

5 "This is a sample message";

extern APTR Port;

static char text[]

static struct {

struct Message msg;

char contents[sizeof(text)];

} mes;

mes.msg.mn_Node.ln__Type - NT_MESSAGE;

strcpy(mes.contents,text);

PutMsg(Port,&mes);

When a message is sent it is simply appended to the list of received
messages, the mpMsglist. This is done as usual with the lnJSucc and

inJPred fields in the node structure of the message, mn_Node. The
message is not copied! This means that the entire message is still part

of the task which sent it Sending a message thus allows the receiver
task to use part of the memory area of the sender task.

Receiving a Receiving a message normally consists of two parts. First a task waits
message for a signal from the message port, and when this signals that a mes

sage has been received, it is then read

Assuming that the message port has been properly initialized, there are

two ways for a task to wait for the arrival of a message at the message
port:

It can use either the Wait() function or WaitPort().

Message - WaitPort(Port);

253

2. Exec Amiga System Programmer's Guide

This function waits for a message to be received at the message port

"Port". If one or more messages are already present there, WaitPortO

returns to the program immediately. Otherwise, like the Wait function,

it puts the task in the waiting state until a message arrives. WaitPort()

returns a pointer to the message structure of the first message, but the

message is not removed from the message port.

When shouldWait() or WaitPortO be used?

WaitQ Wait() has the advantage that it can be used to wait for more than one
signal at a time. This is the best function to use in cases where you
want to wait for multiple events. But if the task is really only waiting

for a message on a given message port, WaitPortO is better. This func

tion waits only when the message port is empty. Wait(), on the other

hand, works with signals. For example, if the message port has already
received two signals before WaitO, the following problem occurs:

The first Wait() call returns immediately because the two messages have
already set the corresponding signal. If Wait() is now used to wait for
the next message, it can wait forever, since the desired message has
long since arrived. The cause of this problem is that a signal is set only
once, even if several messages arrive. Thus you must test to see if the
next message has arrived before the second Wait(). This is why it is
better to use WaitPortO if the task is just waiting for a message.

The GetMsg function is used to get a message from a port

Message = GetMsg(Port);

This function gets the first message from the specified port and returns
a pointer to its message structure. The message is then removed from
the message port list. GetMsgO gets the message from the first posi
tion of this list. Since new messages are appended at the end, the list
represents a FIFO buffer or queue. FIFO stands for First In, First Out
and means that the element which was first placed in the list is the first

taken from it

Thus you can use GetMsgO to get all of the message received by a port
in order. Ifno more messages are present, GetMsgO returns with a ()•

The following example uses WaitPortO and GetMsgO to get a message

from a hypothetical port:

extern struct MsgPort *Port;

struct Message *GetMsg();

int signal;

if ((signal=AllocSignal(-1L))<0)

{ printf ("No more free signals"); return(0);}

Port->mp_FLags = PA_SIGNAL;

Port->mp_SigBit = signal;

254

Abacus 2.4 Multitasking

Replying to

message

Creating a

new message

port

Port->mp_SigTask - FindTask (0); /* this task */

WaitPort(Port);

message = GetMsg(Port);

Once a task has sent a message, it probably wants to know if it was

received. The reason for this is that the entire message, including the

message structure, belongs to it. By sending it, the task gave the

receiver permission to read the memory in which the message was

located. In addition the receiver can also store various replies or results

in the message. Since the sender probably wants to use the memory for

other purposes, like a new message, it has to know when the receiver

has received and processed it. It can't just simply erase it without

knowing whether it has been read or not. Therefore a reply port is set
up. A reply port can be any port belonging to the sender task. There is

a field in the message structure which is used to tell the receiver the

address of this port:

mn_ReplyPort

mnJReplayPort contains the address of the reply port of the

sender task. In order to reply to a message, the receiver simply

sends a message to this port after it has read and processed the

first one. The sender thus knows that the message has been

pied or simply return it to the system.

To create a new message port, all that has to be done is to place a cor
rectly initialized message port structure in memory. The easiest way to
do this is with a C structure with the memory class static. The neces

sary memory can also be obtained from the system with AllocMemO

and initialized.

Once a message port structure has been completed, you must decide
whether it is inserted into the list of public message ports. This can be
done with the AddPort function. This function also initializes the
mp_MsgList field of the structure and makes it unnecessary to call

NewList(). AddPort requires as its parameter the address of the message
structure. The advantage of placing a message port in the list of public

ports is that another task can easily find this port by its name. If a port
is not added to this list, every task which communicates with it must

The FindPort function is used to find a port based on its name:

Port = FindPort(Name);

searches for a message port with the specified name and, if it finds it,
returns its address. If you add a port to the system with AddPort(), you

should first check to make sure that a port with this name is not already
present

255

2. Exec Amiga System Programmer's Guide

If a port is no longer needed, it can simply be deleted after all outstand

ing messages have been received and acknowledged with ReplyMsg().

If the message port is in the public list, it must be removed from the

system with RemPort(Port) before it can be deleted (or its memory

released).

A CreatePort function makes it easier to create a new message port.

This function is not part of the operating system, but is found in the

run-time library of an Amiga C compiler (amigaJib). Its C source code

goes like this:

finclude <exec/exec.h>

extern APTR AllocMem ();

extern UBYTE AllocSignal ();

extern struct Task *FindTask ();

struct MsgPort *CreatePort (Name, Pri)

char *name;

BYTE Pri;

{
BYTE Signal;

struct MsgPort *Port;

if ((Signal - AllocSignal (-1)) — -1)

return ((struct MsgPort *) 0);

Port - AllocMem ((ULONG) sizeof (*Port),MEMF_CLEAR

IMEMFJPUBLIC);

if (port — 0) {

FreeSignal(Signal);

return ((struct MsgPort *) 0);

>

Port->mp_Node.ln_Name = Name;

Port->mp_Node.ln_Pri - Pri;

Port->mp_Node.ln_Type - Type;

Port->mp_Flags - PA_SIGNAL;

Port->mp_SigBit ■ Signal;

Port->mp_SigTask - FindTask(0);

if (name !*0)

AddPort(Port);

else

NewList(&(Port->mp_MsgList));

return(Port);

>

This function creates a message port with the specified name and
priority. It returns the address of the new port or 0 if no memory or
signals are free. If the pointer to the name is not zero, the port is added

256

Abacus 2.4 Multitasking

to the list of public ports. This function can be used to quickly build a

reply port, for example.

There is also a function in amiga.lib for deleting a port:

DeletePort(Port)

struct MsgPort *Port;

{

if ((Port->mp_node.ln_Name) !=0)

RemPort(Port);

Port->mp_Node.ln_Type « OxFF;

Port->mp_MsgList.lh_Head= (struct Node *) -l;

FreeSignal(Port->mp_SigBit);

FreeMem(Port,(ULONG) sizeof <*Port));

}

DeletePort() deletes the specified port. If it has a name it is also

removed from the public list

Task There are some cases where we want a task to keep on running while it

exception is waiting for a signal. Let's say that a task is drawing a mathematical

function. Since this takes a long time, we want to have the option of

stopping the process by pressing a key. This is indicated through a

message port. We would have to continually test inside the drawing

loop to see if the port has a received message. This slows the drawing

loop down, however. But we don't have to live with this unsatisfactory

solution on the Amiga. We can make use of something called a task

exception.

Similar to an interrupt, the task is interrupted by the occurrence of a

signal. This can happen at any time. The exception handler is then

called. This is part of the original task and thus has access to its data

(provided they are not local). In our example it could set the loop vari

able to the end value and thus stop the drawing. In machine language

you have more options and die task can be manipulated directly.

The following steps are needed to make task exceptions possible:

1. The start address of the exception handler must be placed in the

corresponding field of the task structure, tc_ExceptCode. A

pointer to common data can also be written in tc_ExceptData.

2. The signals which are allowed to cause an exception must be

determined. The tcJSigExcept field in the task structure deter

mines this. Each set signal there generates an exception when it

is received by a task. There a special function makes it easier to

set and clear the bits in the field: SetExcept Its exact descrip-tion

is found in the function overview at the end of this section.

257

2. Exec Amiga System Programmer's Guide

If an exception occurs, Exec first places the current contents of the pro

cessor registers (PC, SR, D0-D7 and A0-A6) on the task stack in order

to allow the task to be continued at the end of the exception.

Then a signal mask containing the exception signals which occurred is

placed in DO. The address in the tc_ExceptData field is copied into Al.

The exception code is then executed starting at the address in

tc_ExceptCode.

An RTS must be at the end of an exception. Exec then restores the old

register contents from the stack and continues with the task.

During an exception Exec prohibits other exceptions from occurring.

To allow other exceptions to occur at the end of the current one, you

must place the same value back in DO as was passed in it at the begin

ning.

If a signal occurs during an exception which generates a new exception,

this new exception is processed at the end of the current one.

If a signal was already set before it was permitted with SetExcept, the

exception occurs immediately.

Processor Another type of exception are the traps. These are the 68000 processor

traps exceptions, as they are called by Motorola, and should not be confused
with the task exceptions described above. The following 68000 excep

tions are viewed as traps by Exec:

Traps:

2

3

4

5

6

7

8

9

10
11

32-37

Bus error

Address error

Illegal instruction

Division by zero

CHK instruction

TRAPV instruction

Privilege violation

Trace

line 1010 emulator

line 1111 emulator

Trap instructions

A trap is always the direct result of an instruction in the program. It can

be either desired (CHK, TRAP, TRAPV, 1010,1111 or Trace) or it can

occur as a result of a program error (bus or address error, division by

zero or privilege violation).

When a processor trap occurs, Exec jumps to its trap handler. The

address of this handler is fetched from the tcJTrapCode field. Normally a
pointer to the standard Exec trap handler is found there. This (unfor

tunately) creates the "Software error - Task held" requester or even a

Guru Meditation.

258

Abacus 2.4 Multitasking

The address in tcJTrapCode can be redirected to a custom handler, how
ever. This handler can either react to all traps, or just certain ones,
passing on the rest to the standard handler.

A trap handler is jumped to almost directly. Exec simply places the trap
number (see list above) on the stack. This has the following results:

First, the computer goes into the supervisor mode with the supervisor
stack. Task switching is thus disabled during the trap handler. Second,

the contents of the stack can vary. Normally it has the following
format:

Stack pointer (SSP) Trap number (long wonl)
Stack pointer +4 Status register (word)

Stack pointer +2 Return address (long word)

More information is placed on the stack if an address or bus error
occurred, however. Also, this changes completely with new members of
the 680x0 family, such as the 68010 and 68020. A good 68000 book is
recommended as a reference if you try to make your trap handler handle
all cases.

Otherwise, you couldjump to the Exec trap handler when an address or
bus error occurs, since there usually isn't anything that can be done
about these errors.

To exit the trap handler, the trap number is removed from the stack (it's
a long word) and an RTE (ReTurn from Exception) instruction is

executed. Since Exec doesn't save any other registers on the stack, die
contents of the processor register cannot be changed by the trap handler.

The following example uses a trap handler to catch a division by zero
error. Since trap handlers cannot be written well in C, it is written in

machine language and integrated into the source code with #asm and
#endasm. Since not all C compilers recognize these preprocessor
instructions (the program was written for Aztec C), the C and machine
language portions may have to be compiled/assembled separately and
then linked together.

/**** Trapping a 68000 exception ****/

finclude <exec/execbase•h>

extern struct ExecBase *SysBase;

mainO

{

/*** Inserting the trap handler ***/

extern APTR Trap;

APTR oldtrap;

DSHORT digit1,digit2/

struct Task *ThisTask;

259

2. Exec Amiga System Programmer's Guide

oldtrap=SysBase->ThisTask->tc_TrapCode;

SysBase->ThisTask->tc_TrapCode=&Trap;

SysBase->ThisTask->tc_TrapData=(APTR)0;

/*** Configure a "Division by zero" trap ***/

digitl = 10; digit2 - 0;

digitl - digitl/digit2;

if((ULONG)SysBase->ThisTask->tc_TrapData==O)

printf("Haven•t reached this point!")/

else

printf

("Exception recognized, since tc_TrapData =

TrapNumber:%ld\n",

SysBase->ThisTask->tc_TrapData) /

/*** Remove trap handler ***/

SysBase->ThisTask->tc_TrapCode=oldtrapj

/*** Trap-Handler ***/

/** RUNS WITH AZTEC C ONLY **/

/** TAB before opcode necessary! **/

#asm

_Trap move.l aO,-(sp)

move.l 4,aO ;SysBase

move.l 276(aO),aO ;SysBase->ThisTask

move.l 4(sp)r46(a0) ;Trap-Number after

;SysBase->ThisTask->tc_TrapData

move.l (sp),aO

add.l #8,sp

rte

tendasm

Without the trap handler this program would crash with a "Software

error - Task held" because digitl (10) is divided by 0. The If command
proves that this has really generated a trap. Only the track can set

tcJTrapData to a non-zero value after it was previously cleared by the
task. But immediately after the illegal division Exec jumps to the trap

handler. This takes the trap number off the supervisor stack and writes

it in the tcJTrapData field. This is why the printf() call prints the num

ber 5, the number of the division-by-zero trap, on the screen.

260

Abacus 2.4 Multitasking

The trap A trap generated by one of the 16 trap commands (trap numbers 32 to
commands 47) also causes a jump to the trap handler. It is possible to allocate

specific traps in advance, similar to the way signals are allocated and

released. Allocating and releasing traps is just for preserving order so

that it is always clear which traps are being used and which are not If a

trap command occurs, the trap handler is always called, regardless of

whether a trap command is allocated with AllocTrap or not

2.4.2.4

AddPortQ

AllocTrapO

Message system, trap and exception functions

AddPort(Port)

Al

Offset: -354

Description:

AddPort() inserts the specified message port into the list of pub

lic ports. This list is ordered according to priority. The list header

of this list can be accessed through SysBase->PortList AddPortQ

also initializes the mp_MsgList structure in the message port

Parameters:

Port Pointer to a message port structure.

Trap_number = AllocTrap (Trap_number)

DO DO

Offset: -342

Description:

AllocTrap allocates one of the 68000 trap commands. A number

between 0 and IS can be specified as the trap number in order to

allocate the corresponding trap command. If -1 is passed as the

trap number, AllocTrap searches for the next free trap commands.

Parameter.

Trapjmmber

A number between 0 and IS for a given trap number or -1 for the

first free one.

Result:

Trapjiumber

contains the actual allocated trap command or -1 if the desired

trap command was not free or no more trap commands were free.

261

2. Exec Amiga System Programmer's Guide

FindPortQ

FreeTrapQ

PutMsgQ

Port = FindPort (Name)

DO Al

Offset: -390

Description:

FindPortO searches the list of public message ports for the next

one with the specified name. If such a port exists, it returns a

pointer to this port

Parameter

Name
The name ofthe port to be found

Result:

Port A pointer to a message port with the specified name, or zero if

no such port exists.

FreeTrap(Trap_number)

DO

Offset: -348

Description:

FreeTrap releases the trap command with the specified number.

Parameter:

Trapjmmber

The number of the trap command (0 to IS).

PutMsg (port, message)

A0 Al

Offset -366

Description:

PutMsg sends a message to the message port specified. There it
is appended to the list of received messages and the appropriate

action is initiated based on the contents of the mp_Flags field.

Parameters:

port The address of the message port structure.

message

Pointer to the message structure of the message.

262

Abacus 2.4 Multitasking

RemPortQ

ReplyMsgO

RemPort(port)

Al

Offset: -360

Description:

This function removes a message port from the list of public

ports. It is then no longer possible to access it with FindPort

Parameter:

port Pointer to the message port

ReplyMsg (message)

Al

Offset -378

Description:

ReplyMsgO sends a message back to its reply port If the

mn_ReplyPort field of the message structure is zero, nothing is
done

Parameter:

Pointer to the message structure.

SetExceptQ OldSignals = SetExcept (NewSignals, mask)
DO DO Dl

Offset -312

Description:

SetExcept determines which signals can generate an exception.

The exact behavior of this function corresponds to that of
SetSignals().

Parameters:

NewSignals

are the new states of the exception signals.

mask The mask determines which exception signals are changed

Result:

OldSignals

are the states of the exception signals before the change.

263

2. Exec Amiga System Programmer's Guide

WaitPortQ Message - WaitPort (port)

AO

Offset -384

Description:

WaitPort waits for a message to be received on the given port

When a message arrives or if a message had already arrived befoie

WaitPortO was called, WaitPort returns with the address of this

message. The message is not removed from the list of received

messages, however. GetMsgO must be used for this*

Parameter:

port Address of the port

Result:

Message

Pointer to the first message in the list

264

Abacus 2.5 Amiga memory management

2.5 Amiga memory

management

The Amiga uses dynamic memory management, which means that
screen memory, disk storage, etc. as well as the programs loaded are not

placed at any predefined location in memory but can be assigned a

different location each time they are loaded. This dynamic memory
management makes it possible to run several programs in memory at

once, since no program is assigned a specified area of memory as is the
case on other computers, such as the C64.

The system need only be told that memory is needed, whereupon it is
assigned to the user, assuming that it is still free. The system doesn't
make note of which program (task) was allocated the memory, only that
it is no longer available for use by other tasks. More precisely: the sys
tem doesn't keep track of what memory is allocated, only what is still
free.

When a task no longer needs a given area of memory, it should tell the
system this so that the memory can be assigned to another task. If the

unneeded memory isn't returned to the system, it remains allocated until

a reset is performed. The result is naturally a drastic decrease in avail
able memory.

Memory can be allocated only in eight-byte steps. If the amount of

memory requested is not a multiple of eight, the system rounds it up to

the next eight-byte increment. Thus the minimal amount of memory

which can be allocated is eight bytes.

The Exec library contains several functions for allocating and releasing

memory. These two are used most often: AllocMem() and FreeMem().

When allocating memory you must tell the system what type of

memory you want and whether it should have certain properties.

These requirements, which can be chosen, are:

MEMF_CHIP

specifies that the memory must be in chip memory. Chip mem

ory is the lower 512K range which can be addressed by chips like

the blitter. Graphics, sound, etc. must be in this area. Even if

you only have 512K and therefore this condition is always

fulfilled you should still specify it when necessary in order to

maintain compatibility with devices with more memory. The

code for this requirement is $02 and, like the other requirements,

is defined in C by the memory include file.

265

2. Exec Amiga System Programmer's Guide

MEMF.FAST
specifies that the memory to be allocated lies outside the lower

512K. This works only when using a RAM expansion, however.

The code for the requirement is $04.

MEMFJPUBLIC

specifies that the memory cannot be moved after it has been
allocated. Memory blocks aren't moved anyway in the current

version of the operating system, but it should be used for tasks,

interrupts/message ports, etc. for sake of future compatibility.

The code for this requirement is $01.

MEMFJXEAR

specifies that the allocated memory should be cleared with zeros.

The code is $10000.

MEMF_LARGEST

specifies that the allocated memory should be the largest avail

able memory block. The code for this is $20000.

If you want to have multiple requirements, like chip and clear, the codes

must be ORed together. If neither chip memory nor fast memory is

specified, the operating system attempts to allocate fast RAM first If

this fails, it tries the chip RAM.

Note: You should not try to allocate or release memory inside an interrupt

routine because the routines which perform these operations on the

Amiga do not disable interrupts. If a task is in a routine for managing

memory and is interrupted by an interrupt which also accesses the mem

ory routines, the system can get in big trouble. The same applies for

any routines called from an interrupt which must not be interrupted but

which do not disable interrupts.

2.5.1 The AllocMemQ and FreeMemQ functions

AllocMemQ Memory = AllocMem (MemSize, requirements)

DO DO Dl

Description

The function searches for a free memory area which corresponds

to the specified requirements and marks it as allocated. The start

ing address of the memory is returned in DO. If it's not possible

to allocate the desired memory, a zero is returned in DO as an

error message.

Parameters:

MemSize

indicates the amount ofmemory to be allocated.

266

Abacus 2.5 Amiga memory management

requirements

are the requirements described before which are passed to the
AllocMemO function and which governs the search for a suitable
area ofmemory.

AllocMem() cannot be used to allocate a specific area of memory, just
one of specific size. The operating system determines where in memory
it is located.

FreeMem() FreeMem (MemBlock, Size)

Al DO

Offset -210

Description:

This function releases the previously allocated block of memory
back to the system and allows it to be used by other tasks. The
parameters passed to the function are rounded.

Parameters:

MemBlock

is a pointer to the start of the memory area to be returned to the
system. The pointer is rounded to the next multiple of eight

Size specifies how much memory is released. The size is also rounded
to the next multiple of eight.

Note: If an attempt is made to release memory which is already marked as
free, a crash with Guru number 81000009 occurs.

The following C program shows how memory can be allocated and
released again.

#include <exec/memory.h>

#include <exec/types.h>

#define SIZE 1000

main()

{

ULONG mem;

AllocMem(SIZE,MEMF_CHIP | MEMF_PUBLIC);

if (mem = 0) {

printf ("\n Memory could not be allocated\n");

exit(0);

}

printf ("\n Memory allocated\n");

FreeMem(SIZE, mem);

The starting address of the allocated memory is stored in mem.

267

2. Exec Amiga System Programmer's Guide

2.5.2 The memory list structure

Often it is necessary to allocate several different areas ofmemory. To do
this you could call the AllocMem() function for each individual area.

You can clearly see that this can be a lot of work. Therefore the Exec
library has two functions which make this task easier for us. These

functions are called AllocEntryO and FreeEntryO-

Before these functions can be called (how could it be otherwise on the

Amiga) a structure must be initialized from which the functions get

their parameters.

The MemList The structure is called MemList and looks like this:

structure:
struct MemList {

0 struct Node ml_Node;

14 UWORD ml_NumEntries;

16 struct MemEntry ml_ME[l];

};

mlJNode

is a node structure for chaining multiple MemList structures

together.

mTNumEntries

specifies how many memory areas are allocated.

ml_ME[l]

is another structure in which you enter the requirements for the

memory to be reserved and the size of the memory block. This

structure looks like this:

struct MemEntry {

union {

DLONG meu_Reqs;

APTR meu_Addr;

} me_Un;

ULONG me_Length;

tdefine me_un me_Un

tdefine meJReqs me_Un. meuJReqs

#define me_Addr me_Un.meu_Addr

268

Abacus 2.5 Amiga memory management

meJUn

The contents of meJJn can vary due to the union. meJJn can

contain the requirements for the memory allocation or a pointer
to the reserved memory. When creating the MemEntry structure
for calling the AllocEntryO function this contains the require-
ments (such as MEMF_CHIP) for the memory allocation, and

after the call it contains the starting address of the allocated
memory.

meJLength

specifies the length ofmemory to be allocated.

AllocEntryQ List = AllocEntry (MemList)
DO AO

Offset -222

Description:

The function is passed a pointer to the MemList structure in AO.
The function then tries to allocate all of the memory blocks

entered in the structure. If an area is allocated, a pointer replaces
die requirements in the structure.

Result:

List is a pointer to the newly-created MemList structure. If an error
occurred during the allocation, the requirements of the unavail

able memory is returned in DO, whereby the top bit (bit 31) is
set In this case no memory is allocated, even if other entries

could have been allocated successfully.

FreeEntryQ FreeEntry (List)

AO

Offset: -228

Description:

This function returns all of the memory blocks in the MemList

structure back to the system.

Parameter

List is a pointer to the MemList structure returned from the

AllocEntryO function.

It is not possible to manage multiple chained MemList structures with

either the AllocEntryO or FreeEntryO functions.

You may ask how it is possible to initialize multiple entries with a

MemList structure, since there is clearly only one MemEntry structure

(ml_ME[l]) in the MemList structure. A trick is used to initialize

multiple entries. A custom structure must be created, one such as this:

269

2. Exec Amiga System Programmer's Guide

struct {

struct MemList me_Head;

struct MemEntry me_More[3];

> myList;

Now you pass the pointer to this structure to AllocEntryO instead of
the pointer to a MemList structure. This structure allows multiple
entries to be initialized. In the example above four memory blocks are
allocated by the AllocEntry function.

Let's look at an example of how the AllocEntryO function is used.

finclude <exec/memory.h>

#include <exec/types.h>

struct mList {

struct MemList me_Head;

struct MemEntry me_More[2]; };

mainO

{
struct MemList *MemoryList, *AllocEntry();

struct mList MyList;

myList.me_Head.ml_NumEntries = 3;

myList.me_Head.ml_me[O].me_Reqs = MEMF_CLEAR;

myList.me_Head.ml_me[O] .me_Length = 100;

myList.meJIead.ml_me[l] .meJReqs = MEMF_CLEAR | MEMF_FAST;

myList.me_Head.ml_me[l] .me__Length » 1900;

myList,me_Head.ml_me[2].me_Reqs = MEMF_PUBLIC | MEMF_CHIP;

myList.meJiead.mljme[2] .me_Length = 300;

MemoryList = AllocEntry(&MyList);

if < ((ULONG)MemoryList) » 30) {

printf("\n Not all entries could be allocated\n");

exit(0); >

2.5.3 Memory management and tasks

270

When memory is allocated by a task, it's a good idea to allocate the

memory with the AllocEntryO function. A list structure (tc_MeniEntry)

is included in the task structure which the allocated memory can be

chained in the form of a MemList structure. The memory in this list

can then be easily released by the routine which invoked the task.

Abacus 25 Amiga memory management

Another advantage to entering the memory used in a list is that the task
can also find out what memory blocks it has allocated.

Naturally it's also possible to allocate a block of memory with
AllocMem() and then enter it in such a list

2.5.4 Internal memory management

Now that you know how to reserve memory for your purposes, we
want to look at how the memory is managed internally.

As you might guess, the memory is managed with a structure. This
structure looks as follows:

The struct Memheader {

Memheader 0 struct Node mh_Node;

Structure: 14 DWORD mh_Attributes;
16 struct MemChunk *mh_First;

20 APTR mh_Lower;

24 APTR mh_Upper;

28 DLONG mh_Free;

>

fdefine MEMF_PUBLIC (1L«O)

fdefine MEMF_CHIP <1L«1)

#define MEMF_FAST

#define MEMF_CLEAR

#define MEMF_LARGEST

#define MEM_BLOCKSIZE 8L

#define MEM_BLOCKMASK 7L

mhJNode

is a node structure used to put the MemHeader structure in a list

mh_Attributes

specifies the requirements for memory, such as MEMFJFAST.

♦mhJFirst

is a pointer to the first MemChunk structure. The construction

and purpose of this structure is explained later.

mhJjower

is a pointer to the start of memory managed by the header.

mh_Upper

is a pointer to the end ofmemory managed by the header.

mhJFree

specifies how much memory is available through this header.

271

2. Exec Amiga System Programmer's Guide

MemChunk As we've already mentioned, the system doesn't keep track of what
memory is allocated, but what memory is still free. The unallocated
memory blocks are combined with the help of a MemChunk structure..

The size and position of the free memory blocks can easily be deter
mined with these structures. The structure has the following appearance:

struct MemChunk {

0 struct MemChunk *mc_Next;

4 ULONG mc_Bytes;

}

*mc_Next

is a pointer to the next MemChunk structure.

mcJBytes

specifies how many bytes are free in this memory block.

The mh_First entry in the MemHeader structure points to the first
MemChunk structure, which is at the start of the first free memory
block. The first four bytes of this free block are the pointer to the next
free memory area (and the next MemChunk structure). The next four
bytes specify how large the memory area is. In the last MemChunk
structure the mc_Next pointer is set to zero and mc_Bytes indicates how
many bytes are between the current memory position and the value in

mhJJpper.

One MemHeader structure manages the entire chip memory and the fast
memory, if this is present These structures are chained into a list con
tained in the ExecBase structure. This list is called MemList and is at

offset 322.

The MemHeader priority for the fast memory area is zero and the prior

ity for the chip memory area is -10. This is why Exec always tries to
allocate memory in fast RAM first and then chip RAM.

When a task now wants to allocate memory, Exec looks in the

MemList of the ExecBase structure to see if the requirements in the

AllocMem() function match the requirements in the MemHeader struc

ture. Second, it checks to see if the free memory indicated in mh_Free

is sufficient to reserve the quantity of memory requested. If one of the

conditions is not fulfilled, Exec checks to see if another MemHeader

structure is present. If no more are reachable, a negative value is

returned to the AllocMem() function. Otherwise die pointer mhFirst is

fetched and the first MemChunk structure is checked to see if it contains

enough memory to satisfy the request. If not, the next MemChunk

structure is checked. If no sufficiently large contiguous block of mem

ory is found, a negative value is returned. If a suitable block is found,

the amount of free memory left is calculated and a MemChunk structure

is inserted at the position where the free memory begins and this is

inserted in the list. The newly allocated block is removed from the list

and the number of allocated bytes are subtracted from the total.

272

Abacus 2-5 Amiga memory management

2.5.5 The Allocate and Deallocate functions

Allocate()

Deallocate!)

It is possible to create a MemHeader structure and manage a separate
memory area with the Allocate*) and Deallocate*) functions. These func
tions only allow memory to be allocated and released, however.
Requirements may not specified.

Memory-Allocate (MemHeader, ByteSize)

DO AO DO

Offset: -186

Description:

The function allocates the specified memory managed by the
specified MemHeader structure.

Parameters:

MemHeader

is a pointer to a MemHeader structure.

ByteSize

specifies how much memory is allocated

Result:

Memory

is a pointer to the allocated memory. Ifno memory was found, a
zero is returned.

Deallocate (MemHeader, Memory, ByteSize);

AO Al AO

Offset -192

Description:

This function releases the allocated memory back to the

MemHeader structure.

Parameters:

MemHeader

is a pointer to the MemHeader structure.

Memory

is a pointer to the start ofmemory to be released.

ByteSize

indicates how much memory is released.

273

2. Exec Amiga System Programmer's Guide

The following program illustrates how these functions are used.

#include <exec/execbase.h> /* Aztec C use option +L */

#include <exec/memory.h>

#include <exec/types.h>

#define Byte_Size 10000

struct ExecBase *SysBase;

main()

{
struct MemHeader *header;

struct MemChunk *chunk;

APTR Amtmemory, AllocMemO, Allocate();

header = (struct MemHeader *)

AllocMem(sizeof(struct MemHeader)

,MEMF_PUBLIC | MEMF_CLEAR)

if (Amtmemory =0) {

printf ("\n AlloMem 1 unsuccessful\nIf);

exit (0);

Amtmemory = AllocMem(Byte_Size

,MEMF_PUBLIC I MEMFjCLEAR);

if (Amtmemory =0) {

printf (M\n AlloMem 2 unsuccessful\n");

FreeMem(header, sizeof(struct MemHeader));

exit (0);

chunk = (struct MemChunk *) Amtmemory;

chunk ->mc_Next =0;

chunk ->mc_Bytes = Byte__Size;

header ->mh_Node • ln_Type = NT__MEMORY;

header ->mh_Node.ln_Pri = -100;

header ->mh_Node.ln_Name = "MemHeader";

header ->mh_Attributes - MEMF_PUBLIC I MEMF_CHIP;

header ->mh_First = chunk;

header ->mh_Lower = Amtmemory;

header ->mh_Upper = Amtmemory + Byte_Size;

header ->mh_Free « Byte_Size;

AddTail (fiSysBase ->MemListfheader);

T^mtmemory = Allocate (header, 500);

if (Amtmemory =0) {

printf ("\n Allocate unsuccessful\n");

exit (0);

>

Deallocate (header,Amtmemory,500);

printf ("\n Allocate and deallocate successful!\n");

274

Abacus Amiga memory management

2.5.6 Remaining functions

AvailMemO

AllocAbsQ

AvailMem (Requirements)

Dl

Offset: -216

Description:

This function returns the size of memory relative to the require
ments.

Memory = AllocAbs (ByteSize, Position)

DO DO Al

Offset: -204

Description:

This function allows a specific memory area to be allocated.

Parameters:

ByteSize

specifies the amount ofmemory to be allocated.

Position

is a pointer to the memory to be allocated.

Result:

Memory

Is a pointer to the allocated memory, which also corresponds to

Position. If it was not possible to allocate the specified memory,

a zero is returned as an error message.

275

2. Exec Amiga System Programmer's Guide

2.6 I/O handling on the

Amiga

In this section we'll show how Exec performs the I/O management.
Less emphasis is placed on various devices themselves. The DOS part
of this book shows how die Amiga input/output control is used in pro-

ing this material.

2.6.1 The IORequest structure

To conduct input and output processes you need an IORequest structure

to transfer your commands to the device.

There arc two kinds of IORequest structures, called IORequest and
IOStdReq (10 Standard Request). The IOStdReq structure is an exten

sion of the IORequest structure. The structures look like this:

struct IORequest {

0 struct Message io_Message;

20 struct Device *io_Device;

24 struct Unit *io_Unit;

28 UWORD iojCommand;

30 DBYTE io_Flags;

31 BYTE io Error;

io_Message

is a message structure as described in Section 2.4. It's needed so

that the device can tell us that it's done processing the I/O com

mand. The message structure must be initialized correctly before

the I/O can function.

♦ioJDevice

is a pointer to the device structure to be used, described shortly.

♦ioJLJnit

is a pointer to a unit structure, described below.

iojCommand

is a word in which the command to be executed is passed.

276

Abacus 2.7 I/O handling on the Amiga

io_Hags

is needed in order to pass device-specific status messages or com

mands. The byte is divided into high and low nibbles. The lower

four bits are used by Exec for internal purposes. The upper four

bits can be used by the programmer to communicate with the
device.

io^Error

is used to pass error messages to the programmer.

Often this structure is not sufficient to use a device. In this case there is
another structure which offers the user more possibilities. It looks like
this:

struct IOStdReq {

0 struct Message io_Message;

20 struct Device *io_Device;

24 struct Unit *iq_Unit;

28 DWORD iojCommand;

30 DBYTE io_Flags;

31 BYTE io_Error;

32 ULONG ioJVctual;

36 ULONG io_Length;

40 APTR ioJData;

44 ULONG iojOffset;

io_Actual

indicates the number of bytes transferred. The value cannot be

read until the end of the transfer.

io_Length

specifies the number of bytes to be transferred. This value must

be initialized before the transfer. Often the value is set to -1 to

transfer a variable number of bytes.

ioJData

is a pointer to the data buffer in which the data are placed.

io_Offset

specifies the offset, which is device specific. With a TrackDevice

the block to be used is passed in the offset

277

2. Exec Amiga System Programmer's Guide

2.6.2 Construction of a device

The device structure looks like a library:

struct Device {

struct Library dd_Library;

#define DEVJBEGINIO (-30L)

#define DEV_ABORTIO (-36L)

#define IOB__QUICK (OL)

#define IOF_QUICK <1L«O)

#define CMDJENVALID (OL

#define CMD_RESET 1L

#define CMD_READ 2L

#define CMD_WRITE 3L

#define CMDJJPDATE 4L

#define CMD__CLEAR 5L

#define CMDJSTOP 6L

#define CMD__START 7L

#define CMD_FLUSH 8L

#define CMD_NONSTD 9L

To use a device, it must first be opened. The command for opening a

device is:

Error = OpenDevice (Name, Unit, IORequest, flags)

DO AO DO Al Dl

The IORequest structure must be initialized before the OpenDevice

function is used.

Like the libraries, each device has ajump table in which the entries are

reached with negative offsets. The functions reached through the jump

table are used to open and close a device as well as to perform I/O. Such

a routine is necessary so that a function like OpenDeviceO can open any

device, even when the tasks to be accomplished vary from device to

device. The OpenDeviceO function thus jumps to the routine for the

corresponding device for the device-specific processes.

The most important functions which each device offers are:

Offset Function

-36

-30

-12

-6

AbortIO

BeginIO

Close

Open

Let's take a closer look at the assembly language routine to see what

happens when a device is opened.

278

Abacus 2.7 I/O HANDLING ON THE AMIGA

The routine shown here is the most important part of the OperiDevice()
function, but it is not called by the Exec library directly but by a rou
tine in the RAM library.

Routine entry

parameters:

Entry for

device not

found (error):

DO = Unit

Dl = flags

AO = pointer to the: device name

Al = pointer to IORequest

A6 = pointer to ExecBase

fcO666 move.l

fcO668 move.l

fcO66a clr.b

fcO66e movem.l

fcO672 move.l

fcO674 lea

fcO678 addq.b

fcO67c bsr.l

fc0680 move.l

fcO682 movem.l

fcO686 move.l

fcO68a beq.s

fcO68c clr.l

fc0690 move.l

fcO692 move.l

fcO694 move.l

fcO696 jsr

fcO69a move.l

fcO69c move.b

fcO6aO ext.w

fcO6a2 ext.l

fcO6a4 jsr

fcO6a8 move.l

fcO6aa rts

fcO6ac moveq

fcO6ae move.b

fcO6b2 bra.s

A2,-(A7)

A1,A2

31(Al)

Dl-D0,-(a7)

AO,A1

350<A6),A0

#1,295 (A6)

$fcl65a

D0,A0

<a7)+,Dl-D0

A0,20(A2)

$fcO6ac

24(A2)

A2,A1

A6,-(A7)

A0,A6

-6<A6)

<A7)+,A6

31<A2),D0

DO

DO

-138<A6)

(A7)+,A2

#$ff,D0

D0,31(A2)

$fcO6a4

save A2

pointer to IORequest in A2

clear error flag

save DO and Dl

pointer to name in Al

pointer to DeviceList in AO

forbid

find name in DeviceList

(FindNameO)

pointer to device in AO

restore DO and Dl

enter pointer to device in

IORequest

error, device not present

clear pointer to Unit

pointer to IORequest in Al

save A6

pointer to Device in A6

jump to OpenDevice

restore A6

error flag in DO

sign-extend error

sign-extend error

Permit()

restore A2

return

error value in DO

write in error flag

unconditional branch

The following routine is the most important portion of the

QoseDeviceO function.

The routine is entered with:

Al = pointer to IORequest

A6 = pointer to ExecBase

fcO6b4 addq.b #1,295<A6) Forbid

fcO6b8 move.l A6,-<A7) save A6

fcO6ba move.l 2O(A1),A6 pointer to device in A6

fcO6be jsr -12(A6) jump to CloseDevice

fcO6c2 move.l (A7)+,A6 restore A6

fcO6c4 jsr -138<A6) Permit

fcO6c8 rts return

279

2. Exec Amiga System Programmer's Guide

We use the OpenDevice routine of the TrackDisk device as an example

of a OpenDevice routine which is called through offset -6 from the
device and which performs device-specific tasks when opening the

device.

For the TrackDevice the unit number specifies the number of the drive
to be accessed. A pointer in the device structure is reserved for each of
the four possible drives which points to the corresponding message port

for the drive, assuming that the drive is present. This port, like die
device itself, has additional entries in addition to the standard entries
defined in the C structure, such as a counter for the number of accesses

to the message port structure.

The routine is called with:

DO = Unit number

Dl = flags

Al = pointer to IORequest

A6 = pointer to device

fe9f42

fe9f46

fe9f48

fe9f4a

fe9f50

fe9f52

fe9f54

fe9f56

fe9f58

fe9f5c

fe9f5e

fe9f60

fe9f62

fe9f64

fe9f68

fe9f6a

fe9f6e

fe9f70

fe9f74

movem.l

move.l

move.1

cmpi•1

bcs.s

moveq

bra.s

lsl.w

lea

adda.l

move•1

move.l

bne.s

bsr.l

tst.l

bne.l

move.1

move.l

addq.w

fe9f78 addq.w #1,36<AO)

fe9f7c movem.l

fe9f80 rts

save D2, A2, A4

pointer to IORequest to A4

drive number to D2

number too large?

branch if number ok

else error number in DO

return error, done

number*4 for offset

pointer to drive port

add offset

drive port to AO

is drive present?

branch if everything ok

else determine drive port

port found?

branch if not found

enter port in device

enter port in IORequest

increment number of

accesses to device

increment number of access

to drive port

<A7)+,A4/A2/D2 restore D2, A2, A4

return

A4/A2/D2,-(A7)

A1,A4

D0,D2

#$00000004,DO

$fe9f56

#$20,DO

$fe9f82

#2, DO

36(A6),A2

D0,A2

<A2),A0

A0,D0

$fe9f70

$fe9d3e

DO

$fe9f82

A0,(A2)

A0,24(A4)

#1,32(A6)

Entry for error fe9f82 move.b

in drive port fe9f86 move.w

assignment: fe9f88 move.l

fe9f8c move.l

fe9f90 bra.s

D0,31(A4) error number in error flag

#$ff,D0 error number in DO

D0,24(A4) clear pointer to unit

D0,20(A4) clear pointer to device

$fe9f7c unconditional branch

TrackDisk The CloseDevice() function jumps to a device-specific routine at offset

-12. The routine for the TrackDisk device looks like this:

280

Abacus 2.7 I/O HANDLING ON THE AMIGA

fe9f92 movem.l

fe9f96 move.l

fe9f98 move.l

fe9f9c subq.w

fe9faO bne.s

fe9fa2 bset

fe9fa8 subq.w

fe9fac moveq

fe9fae move.l

fe9fb2 move.l

fe9fb6 movem.l

fe9fba moveq

fe9fbc rts

A3-A2,-(A7) save A2 and A3

Al, A2 pointer to IORequest to A2

24(A2),A3 pointer to drive port to A3

#1,36(A3) decrement number of accesses

$fe9fa8 branch is drive still needed

#3,64 (A3) set flag

#1,32(A6) decrement number of accesses

to the device

#$ff,D0 load clear value

D0,24(A2) clear pointer to port

D0,20(A2) clear pointer to device

(A7)+,A3-A2 restore A2 and A3

#$00,DO return message zero in DO

return

2.6.3 I/O control with functions

DoIOQ

SendlOQ

CheckIO()

For each device there is always a task where commands can be passed.
The following routines are used to send commands to a device:

Error = DoIO(IORequest)

DO Al

Offset: -456

Description:

This function is usually used for I/O control. It waits until the
command passed has been completed and then returns to the call
ing program. In the intervening time the task is set to wait

SendIO(IORequest)

Al

Offset -462

Description:

This function is used to send a I/O request to the corresponding
device, but it doesn't wait for it to finish.

done = ChecklO (IORequest)

DO Al

Offset: -468

Description:

The function checks if a given I/O process has been processed. If

this is the case, a pointer to the corresponding IORequest struc

ture is returned in DO. If the process is not finished, a zero is
returned

281

2. Exec Amiga System Programmer's Guide

WaitlOQ WaitIO(IORequest)

Al

Offset: -474

AbortlOQ

Description:

This function waits until the I/O process has been completed.
During this time the current task is set to wait so that other

tasks can be processed. The SendIO and WaitIO functions

together are equivalent to DoIO.

Abort10 (IORequest)

Al

Offset: -480

Description:

This function terminates an I/O process.

After this brief description of the functions, let's look at how they

appear in the operating system.

Dolo routine The DoIO assembIy language routme looks wee tnis:

A pointer to the initialized IORequest structure is in Al.

fcO6dc move.l

fcO6de move.b

fcO6e4 move.l

fcO6e6 move.l

fcO6ea jsr

fcO6ee move.l

fcO6fO move.l

A1,-<A7)

#$01,30(Al)

A6,-(A7)

2O(A1),A6

-30<A6)

(A7)+,A6

<A7)+,A1

save Al

set quick bit

save A6

get pointer to device

jump to IO execution

get A6

get Al

Here begins the WaitIO function which is used by the DoIO function.

fcO6f2 btst

fcO6f8 bne.s

fcO6fa move.l

fcO6fc move.l

fcO6fe move.l

fc0702 move.b

fc0706 moveq

fc0708 bset

fc070a move.w

fcO712 addq.b

fcO716 cmpi.b

fcO71c beq.s

fcO71e jsr

fcO722 bra.s

fcO724 move.l

fcO726 move.l

fcO728 move.l

fcO72c move.l

#0,30(Al)

$fcO744

A2,-(A7)

A1,A2

14(A2),A0

15(A0),Dl

#$00,DO

D1,DO

test quick bit

done if set

save A2

pointer to IORequest to A2

pointer to Reply port

get signal bit for port

clear DO

set bit for signal

#$4000,$dff09a disable

#1,294 (A6)

#$07,8(A2)

$fcO724

-318(A6)

$fcO716

A2,A1

(Al),A0

4(A1),A1

A0(Al)

macro

type of msg = reply msg?

branch if type ok

else wait for msg (waitO)

unconditional jump

IORequest to Al

remove node

from reply msg list

282

Abacus 2.7 I/O handling on the Amiga

fcO72e move.l Al,4(A0)

fcO732 subq.b #1,294(A6) enable

fcO736 bge.s $fc0740

fcO738 move.w #$c000,$dff09a macro

fcO74O move.l A2,A1 pointer to IORequest to Al
fcO742 move.l <A7)+,A2 restore A2

fcO744 move.b 31(A1),DO error flag to DO

fcO748 ext.w DO sign extend

fcO74a ext.l DO sign extend

fcO74c rts return j

In the routine above, the quick bit is set immediately. Then the pointer
to the device is placed in A6 and the BeginIO function is called, which
is described later for the TrackDisk device. This routine checks the
command to be performed for validity and then passes it on to the
TrackDisk task. When the program returns from this routine, the
message type in the IORequest structure is always set to "message."
The task is passed the IORequest structure as a message.

The command passing is all done now. You just have to wait for it to
finish. If the quick bit has not been cleared, the routine ends. Otherwise
it checks to see if the I/O process is done. To do this it simply checks
to see if the type of the message structure is 4<reply message." If this is
not the case, the task waits until the appropriate message is received.

It may be necessary to explain more clearly why it suffices to test the
substructure Message in the IORequest structure for the type reply
message.

The BeginIO routine (the routine which the device makes available at
offset -30) sends a message to the corresponding task which executes

the command. The message which is sent is our IORequest structure,
sent with the PutMsgO function. The type of the message to be sent is

automatically set to "message" (byte value OS). Our IORequest structure

has the same location in memory, but it's now appended to the message
list of the task by its Node structure. The task processes your command

and sends a reply message to indicate that it's finished. The message
returned is the IORequest structure again. The type of message sent is

automatically set to ReplyMsg (byte value 07) by the ReplyMsgO

function and appends to the message list of the reply port. The WaitlOO
function checks the type of the message structure in your IORequest

structure, determines that it is a reply message, and removes it from the

ReplyMsg list

The SendIO The pointer to the IORequest structure is in Al:
function:

fcO6ca clr.b 30(Al) clear all flags

fcO6ce move.l A6,-(A7) save A6

fcO6dO move.l 20<Al),A6 get pointer to device

fcO6d4 jsr -30<A6) jump to BeginIO

fcO6d8 move.l (A7)+,A6 get A6

fcO6da rts return

283

Abacus 2.7 Interrupt handling on the Amiga

These interrupt vector structures don't have to be initialized by hand if
you want to use an interrupt handler. The initialization is done by call

ing the Exec function SetlntVector. To use an interrupt with an inter
rupt handler the interrupt structure must be initialized and the
SetlntVector function called.

Let's look at how an interrupt is processed after it has been started by

the processor. As an example, the following listing is an interrupt han

dler which manages a level 3 (priority 3) interrupt

$FC0CD8 is the entry where the processor jumps after recognizing a
level-3 interrupt This address applies only to Kickstart 1.2 in ROM in
the Amiga 500 or 2000. On the Amiga 1000 the routine is the same,
but shifted slightly depending on the version of Kickstart.

movem.l A6-A5/A1-A0/D1-D0,-

lea $dff000,A0

move.l $0004,A6

move.w 28(AO),D1

btst

beq.l

and.w

btst

beq.s

movem.l

pea

jmp

L2:

btst

beq.s

movem.l

pea

jmp

L3:

btst

beq.s

movem.l

pea

jmp

#14,Dl

LI

30(A0),Dl

#6,D1

L2

156<A6),A5/A1

-36 (A6)

(A5)

#5,D1

L3

144(A6),A5/A1

-36(A6)

(A5)

#4,D1

LI

132(A6),A5/A1

-36<A6)

<A5)

(A7) save registers on the

stack

start of register to A0

SysBase to A6

read interrupt enable

register

test master bit

no interrupts allowed

filter out the allowed

interrupts with the interrupt

request register

test bit for blitter done

no, test other bit

get pointers to data and

program from IntVector

structure

set return to ExitInter

jump to interrupt

test bit for Rasterlnter

no, keep testing

get pointers to data and

program from IntVector

structure

set return to ExitInter

jump to interrupt

test bit for copper interrupt

no, then done

get pointers to data and

program from IntVector

structure

set return to ExitInter

jump to interrupt

289

2. Exec Amiga System Programmer's Guide

Ll:

movem.l <A7)+,A6-A5/A1-AO/D1-DO restore registers

rte return

From the assembly listing you can see which registers you can use in

your interrupt program and which contain specific values you can use.

The registers DO, Dl, AO, Al, A5 and A6 are saved on the stack before
the actual interrupt program is executed. The return address is also saved
on the stack so that the interrupt program must be terminated with

RTS.

Description of DO contains no useful information
the registers: Dl contains the AND of IntEnaReg and IntReqReg and thus shows

which interrupts are currently enabled

Al is a pointer to the start of the hardware registers
AS is a pointer to the code to be executed

A6 is a pointer to SysBase

None of these registers need be restored to their old values before the

interrupt program returns.

When an interrupt handler is used, the actual interrupt program is exe
cuted with "jmp (a5)". The interrupt program must be terminated with

RTS.

When interrupts are managed by an interrupt server the individual inter
rupt programs which are executed when an interrupt occurs must be

linked into a list by their interrupt structures. The processing order cor

responds to the priorities stored in their is_Node structures.

The list structure in which the interrupts are stored looks like this:

struct ServerList {

0 struct List sl_List;

14 UWORD sl_IntClrl;

16 UWORD sl_IntSet;

18 UWORD sl_IntClr2;

20 UWORD sljpad;

}

sl_List

is a list structure.

slJtatClrl and siJntClr22

are words in which the bit responsible for the interrupt in the
interrupt request register is set. The Clr/Set bit (#15), explained
in Chapter 1, is cleared here. If this value is written into the
interrupt request register, the interrupt bit is cleared.

290

Abacus 2.7 Interrupt handling on the Amiga

slJntSet

is a word with the same contents as slJtatClr but with the Or/
Set bit set

is a word which is always zero.

This structure is not included into any include file and must be declared
by hand if it is needed.

Since we now want to use an interrupt server, the initialization of the

interrupt vector structure is such that (*iv_Code)() is a pointer to a rou
tine which manages an interrupt list

This routine is called with "jmp (A5)"> lies at address $FC12FC, and
looks like this:

Al contains the pointer to the ServerList structure.

fcl2fc move.w 18(A1),-(A7)

fcl300 move.l A2,-<A7)

fcl302 move.l <A1),A2

fcl304 move.l <A2),D0

fcl306 beq.s $fcl316

fcl308 movem.l 14<A2),A5/A1

fcl30e jsr

fc!310 bne.s

(A5)

$fcl316

fcl312 move.l <A2),A2

fcl314 bra.s $fcl304

fcl316 move.l <A7)+,A2

fcl318 move.w <A7)+,$dffO9c

fcl31e rts

read and store sl_IntClr

save A2

pointer to first interrupt

see if interrupt present

branch if not present

al = is_Data and a5 =

<*is_Code) ()

jump to interrupt program

branch if return message is

not zero

set pointer to next

interrupt

restore A2

clear interrupt bit in

interrupt request register

return

When one interrupt is processed, the next one is called immediately,

assuming another one is present and the previous one returned a zero

value. The return value is generally passed in DO.

The same registers are free here as for the interrupt handler. The only

difference is in the values which they pass.

291

2. Exec Amiga System Programmer's Guide

Description of DO is a pointer to the next interrupt

the registers: Dl unknown value
Al is a pointer to the interrupt buffer

A5 is a pointer to the actual interrupt program

A6 unknown value

To make it easier to understand the management of an interrupt through
an interrupt server, we'll explain the process using the port interrupt

generated by CIA-A as an example.

The interrupt vector structure for this interrupt is at offset 120 from the
ExecBase structure and is initialized as follows:

ivJJata

points to die ServerList structure.

(♦ivCodeX)
is a pointer to a subroutine which manages the server list This
routine is at $FC12FC on the Amiga 500 and 2000 (1.2.)

♦ivNode

is not initialized because the interrupt structures are linked in the

ServerList structure.

The initialized ServerList structure looks like this:

si List
is initialized like any list structure. The interrupt structures are

linked together in this list

slJntOr and slJntSet

have the value $0008 since bit 3 of the interrupt request register

is responsible for this interrupt

si IntSet

has the value $8008.

2.7.2 Soft interrupts

The CauseQ

function

Like the name says, these are interrupts which are generated by soft
ware. These interrupts have a higher priority than tasks, but lower than
hardware interrupts and can be used to execute various synchronous

processes.

The Cause() function is used to call such a function. When this is called
the running task is interrupted and the interrupt is executed. If the
Cause() function is called by a hardware interrupt service routine, it is

ended before the soft interrupt is generated.

292

Abacus 2.7 Interrupt handling on the Amiga

To create a software interrupt, the interrupt structure must first be ini
tialized, as for all interrupts. The Cause() function can then be called,
whereby the pointer to the structure is passed in Al.

A soft interrupt can be assigned only five different priorities: -32, -16,
0, +16, +32. This is because there is a SoftlntList structure in the
ExecBase structure for each priority and there is only room for five
structures.

Each of the structures looks like this:

struct SoftlntList {

0 struct List sh_List;

14 DWORD sh_Pad;

shJList
is a standard list structure.

shJPad

is a word which is used only to align the structure to a long word
boundary. It is always zero.

Five of these structures are found in the ExecBase structure. They are

The following assembly language programs show how Exec manages

fcl320

fcl328

fcl32c

fcl332

fcl334

fcl33a

fcl33c

fcl340

fcl334

fcl346

fcl34a

fcl34c

fcl350

fcl354

fcl358

fcl35a

fcl35e

fcl360

fcl362

fcl368

fcl370

move.w

addq.b

cmpi.b

beq.s

move.b

moveq

move.b

andi.w

ext.w

lea

adda.w

lea

move.l

move.l

move.1

move.l

move.l

move.l

bset

move.w

subq.w

#$4000,$dff09a

#1,294<A6)

#$0b,8(Al)

$fcl370

#$0b,8(Al)

#$00,DO

9<A1),DO

#$00f0,D0

DO

466<A6),A0

D0,A0

4<A0),A0

4<A0),D0

Al,4(A0)

A0,(Al)

DO,4(A1)

D0,A0

Al, (A0)

#5,292<A6)

#$8004,$dff09c

#1,294(A6)

disable all interrupts

increment IdNestCount

test type for Softlnt

branch if type Softlnt

else enter new

priority in DO

clear unpermitted bits

and sign extend

pointer to int. with pri. 0

determine position of the

SoftlntList by the priority

pointer to lh_Tail

pointer to last member in DO

enter new interrupt as last

set int. successor to zero

set pointer to predecessor

pointer to previous int.

successor to current

.permit Softlnt in SysFlag

generate interrupt

decrement IdNestCount

293

2. Exec Amiga System Programmer's Guide

fcl374 bge.s $fcl37e

fcl376 move.w #$c000,$dff9a

fcl73e rts

branch if int. cannot be

allowed yet

enable interrupts

return

The listing shows how a soft interrupt is created. Before the interrupt

can be executed it must first be entered in one of the five SoftlntList

structures. The priority determines which of these structures it is placed
in. From the way the structure is determined you can see why only pri

orities -32, -16,0, +16 and +32 are allowed. Each SoftlntList structure

is 16 bytes long. A pointer to the middle structure is created. The
priority is added to this pointer, yielding the position of the desired

structure.

After the appropriate SoftlntList structure has been determined, the

structure of the interrupt to be created is appended to the list as the last
member and SysFlags in the ExecBase is updated to indicate that a soft

interrupt is present. The bit for executing a soft interrupt is set in the

interrupt request register and it is indicated as allowed in the ExecBase
structure. After all this is done, the interrupts, which were disabled at

the start of the routine, are enabled again.

The soft interrupt is now executed and the pointer to the program to be
executed, which manages the SoftlntList structures, is fetched from the
interrupt vector structure. This program lies at $FC1380.

clear interrupt request bit

clear SysFlag bit, test

branch if interrupt allowed

return

clear interrupt enable bit

enable all processor

interrupts

pointer to first interrupt

is node valid?

branch if no more int.

remove first interrupt from

list

exchange Al and DO

set ln_Pred to list

pointer to first interrupt

set ln_Type to int.

disable all interrupts

Al = isJData, A5 =

(*is_Code) ()

jump

number of int. lists -1

pointer to int. list with

highest priority

clear int request bit

list empty?

branch if not empty

fcl380

fcl388

fcl38e

fcl390

fcl392

fcl39a

fcl39c

fcl3aO

fcl3a2

fcl3a4

fcl3a6

fcl3a8

fcl3aa

fcl3ae

fcl3bO

fcl3b6

fcl3ba

fcl3cO

fcl3c2

fcl3c4

fcl3c8

fcl3dO

fcl3d4

move.w

bclr

bne.s

rts

move.w

bra.s

move

move.l

move.l

beq.s

move.l

exg

move.l

move.l

move.b

move

movem.l

jsr

moveq

lea

move.w

cmpa.l

bne.s

#$0004,$dff09c

#5,292(A6)

$fcl392

#$0004,$dff09a

$fcl3c2

#$2700,SR

(A0),Al

(A1),DO

$fcl3ae

DO,(A0)

DO,A1

AO,4(A1)

DO,A1

#$O2,8(A1)

#$2000,SR

14(A1),A5/A1

(A5)

#$04,DO

498<A6),A0

#$0004,$dff09c

8(A0),A0

$fcl39c

294

Abacus 2.7 Interrupt handling on the Amiga

fcl3d6 lea

fcl3da dbf

fcl3de move #$2100,SR

fcl3e2 move.w

fcl3ea rts

-16(A0),A0 else set pointer to int

list with lowest priority

D0,$fcl3d0 branch if not all lists

searched

disable all interrupts

except pri. 1

#$8004,$dff09a allow soft interrupt again

return

First the routine above checks to see if the bit which indicates the soft
interrupts are allowed is set, as it is by the Cause() function. If this is
the case, the routine is executed. Next the interrupt request bit is cleared
and the soft interrupt lists are searched for their interrupt structures.
Once a list is processed or if it is empty the next list is searched. The
lists are processed in descending order ofpriority.

2.7.3 The CIA interrupts

Now that we've discussed interrupt handling on the Amiga in general,
we should make special mention of the interrupts generated by the
CIAs. The processor priorities of the two components are 6 for CIA-B
and 2 for CIA-A and both are managed by an interrupt server. Therefore

the iv_Code element of the interrupt vector structure points to a
Serverlist structure and (*iv_Code)() points to the routine for managing

the server list. The interrupt vector structures for CIA-A are at offset
120 and for CIA-B at offset 240 in the ExecBase structure.

2.7.3.1 The CIA resource structure

Normally there is only one interrupt structure in the interrupt server

list. But in this case the interrupt structure is part of the CIA resource
structure. The isJData pointer points to the resource structure and

(*is_Code)() points to a routine which manages the resource structure.

The routine, with help from the structure, manages all of the CIA
interrupts:

TimerA interrupt

Timer B interrupt

Real-time clock alarm interrupt

Serial port or keyboard interrupt
Flag line interrupt

295

2. Exec Amiga System Programmer's Guide

CIA resource The CIA resource structure is basically a library structure which has
structure been extended with some additional entries. The CIA resource structure

looks like this (breakdown ofthe substructures indented):

Offset Meaning

0 structNodelib_Node
0 Pointer to next resource

4 Pointer to the previous resource

8 Node type

9 Nodepri

10 Pointer to resource name

14 UBYTE lib_Flags * $00 *\
15 UBYTE libj>ad *$00*\
16 UWORD lib_NegSize * $0018 *\
18 UWORD lib_PosSize * $007C *\
20 UWORD lib_Version * $0000 *\
22 UWORD libjlevision *$0000*\

24 APTR libJdString * $00000000 *\
28 ULONG lib_Sum * $00000000 *\
32 UWORD lib_OpenCnt * $0000 *\

34 APTR CiaStartPtr

38 WORDIntRequestBit

40 BYTEIntEnableCia

41 BYTEIntRequestCia

42 struct Interrupt ciajhterrupt

42 Pointer to the next interrupt

46 Pointer to the previous interrupt

50 Node type

51 Nodepri

52 Pointer to the interrupt name

56 Pointer to data buffer (here resource)

60 Pointer to code to be executed

64 struct IntVector Timer A

CIA-AandCIA-B

64 not initialized (00000000)

68 not initialized (00000000)

72 not initialized (00000000)

76 struct IntVector Timer B

CIA-A:

76 Pointer to data buffer

80 Entry at $FE9726

84 Pointer to interrupt structure

CIA-B:

76 not initialized (00000000)

80 not initialized (00000000)

84 not initialized (00000000)

296

Abacus 2.7 Interrupt handling on the Amiga

Offset Meaning

88 struct IntVectorTOD Alarm

CIA-A:

88 not initialized (00000000)

92 not initialized (00000000)

96 not initialized (00000000)

CIA-B:

88 Pointer to graphiclibrary

92 Entry at $FC6D68

96 Pointer to interrupt structure

100 struct IntVector serial data

CIA-A:

100 Pointer to keyboard.device

104 Entty for keyboaidread ($FE571C)

108 Pointer to interrupt structure

CIA-B:

100 not initialized (00000000)

104 not initialized (00000000)

108 not initialized (00000000)

112 struct IntVector Flag line

CIA-A:

112 not initialized (00000000)

116 not initialized (00000000)

120 not initialized (00000000)

CIA-B:

112 Pointer to dislcresource

116 Entry at $FC4AB0

120 Pointer to interrupt structure

We should make a few comments about some of the structure compo
nents.

CiaStartPtr

is a pointer to the start of the CIA register. For CIA-A this is

$BFE001 and for CIA-B $BFD0OO.

IntRequestBit

is the bit which is set in the interrupt request register when the

interrupt is generated. For CIA-A this is $0008 and for CIA-B
$2000.

IntEnableCia

is a byte which stores information on which interrupts are
allowed and which are not

IntRequestCia

is a byte which indicates which CIA interrupt occurred.

297

2. Exec Amiga System Programmer's Guide

The vectors for the individual CIA interrupts are stored in the IntVector

structure. Uninitialized structures are not used by the operating system

and can be used by the programmer.

2.7.3.2 Managing the resource structure

Now that you know what the structure looks like, we'll look at the
routines which manage it The start of the resource structure is stored in

Al.

Entry forCIA-B:

fc4610 movem.l

fc4614 move.b

fc461a bra.s

Entry for CIA-A:

fc461c movem.l

fc4620 move.b

fc4626 blcr

fc462a or.b

fc462e move.b

fc4632 and.b

fc4636 beq.s

fc4638 move.l

fc463a eor.b

to be pro-

fc463e lsr.b

fc4640 bcs.s

fc4642 lsr.b

fc4644 bcs.s

fc4646 beq.s

fc4648 lsr.b

fc464a bcs.s

fc464c beq.s

fc464e lsr.b

fc4650 bcs.s

fc4652 beq.s

fc4654 lsr.b

fc4656 bcs.s

fc4658 movem.l

fc465c rts

A2/S2,-(A7)

$bfdd00,D2

$fc4626

A2/D2,-(A7)

$bfed01

#7rD2

41(A1),D2

D2,41(A1)

40<Al),D2

$fc4658

A1,A2

D2,41(A2)

#1,D2

$fc465e

#1,D2

$fc4668

$fc4658

#1,D2

$fc4672

$fc4658

#1,D2

$fc467c

$fc4658

#1,D2

$fc4686

<A7)+,A2/D2

save D2 and A2

Int. Cont. Reg. to D2

unconditional jump

(CIA-B)

save D2 and A2

Int. Cont. Reg to D2 (CIA-A)

clear top bit

OR old bits with new

and enter in Int. Req. byte

AND req. with enable bte

branch if int. not allowed

pointer to resource in A2

clear bits of the interrupt

cessed in the request reg.

bit for timer A into carry

branch if timer A int.

bit for timer B into carry

branch if timer B int.

branch if no interrupts left

bit for TOD alarm into carry

branch if TOD alarm

branch if no interrupts left

bit for serial data into

carry

jump is serial data int.

branch is no interrupts left

bit for flag int. into carry

branch if flag interrupt

restore A2 and D2

return

This routine immediately enters each arriving interrupt into the inter
rupt request byte of the resource structure, checks to see if the interrupt
is allowed, and clears the corresponding request bits if it is allowed.
Then the bits of (he occurring interrupts are systematically shifted into
the carry flag and checked to see if they are allowed. If so, the corre-

298

Abacus 2.7 Interrupt handling on the Amiga

Timer A

interrupt:

Timer B

interrupt:

TOD alarm

interrupt:

Serial data

interrupt:

Flag

interrupt:

sponding interrupt is executed. The routines for executing an interrupt
ate described below.

The pointer to the resource structure is in A2.

fc465e movem.l

fc4664 jsr

fc4666 bra.s

fc4668 movem.l

fc466e jsr

fc4670 bra.s

fc4672 movem.l

fc4678 jsr

fc467a bra.s

fc467c movem.l

fc4682 jsr

fc4684 bra.s

fc4686 movem.l

fc468c jsr

fc468e bra.s

64(A2),A5/A1

<A5)

$fc4642

76A2),A5/A1

<A5)

$fc4648

88<A2),A5/A1

(A5)

$fc464e

100<A2),A5/Al

(A5)

$fc4654

112(A2),A5/A1

<A5)

$fc4658

get entry and data pointer

jump to routine

back to the int. evaluation

get entry and data pointer

jump to routine

back to the int. evaluation

get entry and data pointer

jump to routine

back to the int. evaluation

get entry and data pointer

jump to routine

back to the int. evaluation

get entry and data pointer

jump to routine

back to the int. evaluation

Like a library, the resource structure also has routines available to make

managing it easier. These functions are accessed with negative offsets

from the base address. The CIA resource structure has four functions.
They are:

Offset

-6

-12

-18

-24

Function

Setlnterrupt

Clrlnterrupt

Clr/SetEnableBits

Executelnterrupt

Setlnterrupt

Set IntVector structure according to specifications and allow
interrupt (enable bit). The pointer to the interrupt structure must
be in Al and the number of the interrupt in DO. The number 0
stands for the timer A interrupt and 4 for the Hag interrupt. With

this function it's not possible to change already initialized
IntVector structures. To do this the structure must first be erased

with Clrlnterrupt The specified interrupt is also enabled.

Clrlnterrupt

Erase IntVector structure and disable interrupt. DO contains the

number of the IntVector structure to be erased. The specified
interrupt is also disabled.

299

2. Exec Amiga System Programmer's Guide

Or/Set EnableBits

Set the interrupt enable bits in the hardware register and the

resource structure. The bits to be changed must be set in DO. Bit

7 indicates whether these bits are cleared or set If bit 7 is cleared,

the specified bits are also cleared in the interrupt enable register.

With DO = $03 both timer interrupts are disabled The return

value in DO is the old state of the hardware interrupt register.

Executelnterrupt

With this function it is possible to generate in software a CIA

interrupt with a specified source. In DO the bit which stands for a

given interrupt source in the CIA interrupt request register must

be set. In addition, bit 7 of DO must be set. The function must

be called with DO - $81 to create a Timer A interrupt The return

value in DO is the old state of the hardware interrupt request

register.

The functions can be called successfully only if the pointer to the

resource structure is in AS.

move.b #$02,d0

move.l ResourceBase,a6

jsr-18(A6)

disables the Timer B interrupt

Here are the assembly language listings of the individual functions.

Setlnterrupt: fc4690

fc4692

fc4694

fc4698

fc469c

fc46a4

fc46a8

fc46ac

fc46bO

fc46b2

fc46b6

fc46bc

fc46c2

fc46c6

fc46c8

fc46ca

fc46cc

fc46ce

fc46d2

fc46d6

fc46d8

fc46eO

fc46e2

fc46e4

moveq

move.b

mulu

move.l

move.w

addq.b

lea

move.l

bne.s

move.l

move.l

move•1

move.w

bset

move.w

bsr.s

moveq

move.l

subq.b

bge.s

move.w

rts

move.l

bra.s

#$OO,D1

DO,D1

#$000cfDl

$0004,AO

#$4000,$dff90a

#1,294<A0)

64(A6,D1.W),AO

8(A0)rDl

$fc46e2

Al,8(A0)

18<A1),4(AO)

14<Al),0(A0)

#$0080rDl

D0,Dl

Dl,D0

$fc470a

#$00,DO

$0004,AO

#1,294(AO)

$fc46eO

#$c000,$dff09a

Dl,D0

$fc46ce

clear Dl

int. number to Dl

calculate proper offset

ExecBase in AO

disable

macro

determine start of

structure

was structure already

initialized?

branch if so

set *iv_node

set <*iv_Code)()

set iv_Data

set Clr/Set bit to set

enter bit to be set

transfer value to DO

to function Clr/Set

EnableBit

clear DO

ExecBase to A0

enable

macro

return

section of program

not used

300

Abacus 2.7 Interrupt handling on the Amiga

Clrlnterrupt: fc46e6 moveq

fc46e8 move.b

fc46ea mulu

fc46ee move.l

fc46f2 move.w

fc46fa addq.b

fc46fe lea

#$00,Dl

DO,D1

#$000c,Dl

$0004,AO

#$4000,$dff90a

#1,294<AO)

64(A6,Dl.W)fA0

fc4702 clr.l 8(A0)

clear Dl

structure number to Dl

calculate proper offset

ExecBase in A0

disable

macro

determine start of

structure

clear pointer to interrupt

structure to indicate that

structure is empty

ClrlSet

EnableBits:

Execute

Interrupt:

Entry from

CLRISet

EnableBits

from $FC4726

fc4706

fc4708

fc470a

fc470e

fc4716

fc471a

fc471e

fc4722

fc4726

fc4728

fc472c

fc4734

fc4738

fc473c

fc4740

fc4744

fc4748

fc474c

fc474e

fc4750

fc4752

fc4754

fc4758

fc475a

fc475c

fc475e

fc4760

fc4762

fc4766

fc476a

fc476c

fc4770

fc4774

fc477a

fc477e

fc4782

fc4784

fc478c

fc478e

moveq

bra.s

move.l

move.w

addq.b

move.l

move.b

lea

bra.s

move.l

move.w

addq.b

move.l

move.b

bclr

or.b

lea

moveq

move.b

tst.b

beq.s

blcr

bne.s

not.b

and.b

bra.s

or.b

move.b

and.b

beq.s

move.w

ori.w

move.w

move.l

subq.b

bge.s

move.w

move.l

rts

#$00,Dl

$fc46c6

$0004,A0

#$4000,$dff90a

#l,294(A0)

34(A6),A0

4O(A6),A1

4O(A6),A1

$fc474c

$0004,A0

#$4000,$dff90a

#1,294(A0)

34(A6),A0

3328(AO),D1

#7,D1

D1,41(A6)

41<A6),A1

#$00,Dl

(A1),D1

DO

$fc4762

#7,DO

$fc4760

DO

DO, (Al)

$fc4762

DO, <A1)

40(A6),D0

41(A6),D0

$fc477a

38(A6),D0

#$8000,D0

D0,$dff09c

$0004,A0

#l,294(A0)

$fc478c

#$c000,$dff09a

D1,DO

clear Dl

clear EnableBits

ExecBase in A0

disable

macro

CiaStartPtr to A0

pointer to IntEnableCia

pointer to IntEnableCia

Set bits

ExecBase in A0

disable

macro

CiaStartPtr to A0

Read Cia Int Con Reg

clear top bit

OR with IntRequestCia

set pointer to

IntRequestCia

clear Dl

IntRequestCia to Dl

is DO set?

branch if not set

clear top bit

if set then branch to set

bits

negate bits to clear

clear corresponding bits

set corresponding bits

check if an

interrupt is allowed

end if not allowed

get IntRequestBit from

structure

set Clr/Set bit

Generate interrupt

get ExecBase

enable

macro

return previous request bits

return

301

2. Exec Amiga System Programmer's Guide

2.7.4 Description of interrupt functions

SetlntVectorQ Interrupt ■ SetIntVector (intNum, int)

DO DO Al

Offset: -162

Description:

This function initializes the IntVector structure to be used with
an interrupt handler. The return parameter is a pointer to the pre

vious interrupt structure used for this interrupt

Parameters:

intNum

specifies the number of the interrupt to be used. Number 1, for
example, is the interrupt handler for "Disk block processed".

int is a pointer to the initialized interrupt structure.

Result:

Interrupt

A pointer to the previously used interrupt structure is returned in

DO.

AddlntServerQ AddlntServer (intNum, int)

DO Al

Offset -168

Description:

This function inserts the specified interrupt structure to the
interrupt server list The priority in the node structure determines
where the interrupt is inserted into the list An interrupt with a
higher priority is executed before an interrupt with lower prior

ity.

Parameters:

intNum

specifies the number of the interrupt to be used.

int is a pointer to the initialized interrupt structure.

302

Abacus 2.7 Interrupt handling on the Amiga

Remlnt
ServerQ

CauseQ

RemlntServer (intNum, int)

DO Al

Offset -174

Description:

The specified interrupt structure is removed from the interrupt
server list.

Parameters:

intNum

specifies the number of the interrupt to be used.

int is a pointer to the initialized interrupt vector.

Cause(interrupt)

Al

Offset -180

Description:

An interrupt can be generated in software by a task or another

interrupt. The priority of this interrupt is lower than that of a

hardware interrupt, but higher than that of a task and thereby is

used to start synchronous control processes.

Parameters:

interrupt

is a pointer to the initialized interrupt pointer.

2.7.5 Example of an interrupt server

Now that we've discussed the theory of interrupt programming, we have

an example of a practical application of what we have learned.

The following program, which in this form is only of interest to own

ers of a RAM expansion, makes is possible to allocate all of the fast

memory with F10 and release it again with F9. Fl is used to turn off

the interrupt The program can be modified so that other processes can
also be executed with certain keys.

mem

Availmem

memtype

numData

Allocmem

Freemem

- $20004

« -216

- $10004

= 300

- -198

= -210

303

2. Exec Amiga System Programmer's Guide

addlntServer

RemlntServer

akey

pri

Type

intNum

is Data

is_Code

In Type

ln_Pri

ln_Name

move.

move.

move*

jsr

tst.l

beq

move.

add.l

move.

move.

move.

move.

jsr

tst.3

bne

move.

move.

jsr

jmp

a

a

=

s

a

s

a

s

a

s

3

1

1

1

1

1

b

b

1

,1

,1

» -168

• -174

• $bfec01

• 100

• 2

= 3

• 14

= 18

» 8

• 9

• 10

$4,a6

#numData,dO

#memtype,dl ;fast,CLR

Allocmem(a6)

dO

error

dO,a2

#32,dO ;start of data storage

dO,is Data(a2)

#pri,ln_Pri(a2)

#Type,ln_Type(a2)

#Ende-Start+8,dO ;Code size set for program

Allocmem(a6)

dO ;error?

okl ;NO

a2ral . ;*Interrupt

tnumData,dO

Freemem(a6) ;Free up memory

error

okl: move.l dO,a3

move.l a3fis_Code(a2)

move.l a2,al ;*Interrupt structure

lea Start,a2

move.l #Ende-Start#d0

11: move.b (a2)+,<a3)+

dbf d0rll

move.l #intNumrd0 ;For key Int

jsr addlntServer(a6)

rts

error: rts

;A1 is pointer to data storage

;Used only with dO,dl,al,a5#a6

Start: move.l dO,a5 ;*Next interrupt

move.b akey,dO

not dO

ror.b #l,dO

cmp.b #$59#d0 ;F10

beq Memoryout

304

Abacus 2.7 Interrupt handling on the Amiga

cmp.b

beq

cmp.b

beq

error1:clr.1

rts

Memoryout:

move.l

tst.l

bne

move•1

move.l

16: move.l

jsr

tst.l

beq

move.l

jsr

tst.l

beq

move.l

bra

endl: clr.l

bra

Memoryin:

move.1

move.1

tst.l

beq

clr.l

17: tst.l

beq

move.l

move.l

jsr

bra

end2: bra

#$58,dO

Memoryin

#$50,dO

Readout

dO

al,a5

<a5)

errorl

#$ffffffff,(a5)+

$4,a6

#mem,dl

Availmem(a6)

dO

endl

dO,(a5)+

Allocmem(a6)

dO

endl

dO, (a5) +

16

<a5)

blink

al,a5

$4,a6

(a5)

errorl

(a5) +

(a5)

end2

<a5)+,dO

<a5)+,al

Freemem(a6)

17

blink

;F9

Readout:

move.l 4(a5)fal /Interrupt after al

move.l #intNum,dO

move.l $4,a6

jsr RemintServer(a6)

bra blink

blink: move.l #$2000,dO

15: move.w d0,$dffl80

sub.l #$01,d0

bne 15

rts

Ende:

end

305

2. exec Amiga System Programmer's Guide

With this program an interrupt structure is opened and inserted into the
keyboard interrupt Since the priority of our interrupt structure is higher
than the (me which reads the keyboard, our interrupt routine is executed
first Here we test for certain keys. If FIO was pressed, all of the fast
memory is allocated and the pointer to the allocated areas with their
lengths are stored in the interrupt data buffer. If F9 is pressed, the
pointers saved in the interrupt data buffer are used to release the memory
again. When Fl is pressed, the interrupt structure is removed from the

the screen flashes briefly.

306

Abacus 2.8 The ExecBase structure

2.8 The ExecBase structure

The Exec The ExecBase structure is the main structure of Exec in which all of the
Library important parameters are stored, such as which task is currently run

ning. The base address of the structure is also the base address of the
Exec library and can be addressed from C with SysBase. SysBase is a
standard variable which stores the position of the Exec library.

In order to access the structure in assembly language, you must first
determine its base address, which is always at memory location
$000004.

Move.1 $4,a6 moves the base address of the Exec library or ExecBase
structure into register A6.

Since this structure is initialized by the reset routine at power up, its
base address is always the same. It is moved only when the size of the
location of RAM changes. After this change its position is always
constant again.

On an Amiga with 512K ofRAM, the position of the ExecBase struc
ture is $676, as long as Kickstart Version 1.2 is used. When expanded
to 1MB, the ExecBase structure moves to $C00276, but this applies
only if the additional RAM lies at $C00000.

The ExecBase Offset Address for

structure: Dec Hex 512KB 1MB

0

34

36

38

42

46

50

54

58

62

66

70

74

78

82

84

96

108

120

132

$000

$022

$024

$026

$02A

$02E

$032

$036

$03A

$03E

$042

$046

$04A

$04B

$052

$054

$060

$06C

$078

$084

$676

$698

$69A

$69C

$6A0

$6A4

$6A8

$6AC

$6B0

$6B4

$6B8

$6BC

$6C0

$6C4

$6C8

$6CA

$6D6

$6E2

$6EE

$6FA

$c000276

$C00298

$C0029A

$C0029C

$C002A0

$C002A4

$C002A8

$C002AC

$C002B0

$C002B4

$C002B8

$C002BC

$C002C0

$C002C4

$C002C8

$C002CA

$C002O6

$C002E2

$C002EE

$C002FA

struct

struct

UWORD

WORD

ULONG

APTR

APTR

APTR

APTR

APTR

ULONG

APTR

APTR

APTR

APTR

UWORD

struct

ExecBase {

Library LibNode;

SoftVer;

LowMenChkSum;

ChkBase;

ColdCapture;

CoolCapture;

WarmCapture;

SysStkUpper;

SysStkLower;

MaxLocMem;

DebugEntry;

DebugData;

AlertData;

MaxExtMem;

ChkSum;

IntVector IntVects[16];

Serial output

Disk block

SoftInterrupt

CIA-A

Copper

Pril

Pril

Pril

Pri2

Pri3

307

2. Exec Amiga System Programmer's Guide

The ExecBase

structure:

Offset

Dec

144

156

168

180

192

204

216

228

240

252

264

276

280

284

288

290

292

294

295

296

298

300

304

308

312

316

320

322

336

350

364

378

392

406

420

434

514

530

531

532

546

550

554

558

568

Hex

$090

$09C

$0A8

$0B4

$0C0

$0CC

$0D8

$0E4

$0F0

$0FC

$108

$114

$118

$11C

$120

$122

$124

$126

$127

$128

$12A

$12C

$130

$134

$138

$13C

$140

$142

$150

$15E

$16C

$17A

$188

$196

$1A4

$1B2

$202

$212

$213

$214

$222

$226

$22A

$22E

$22F

Address for

512KB 1MB

$706

$712

$71E

$72A

$736

$742

$74E

$75A

$766

$772

$77E

$78A

$78E

$792

$796

$798

$79A

$79C

$79D

$79E

$7A0

$7A2

$7A6

$7AA

$7AB

$7B2

$7B6

$7B8

$7C6

$7D4

$7E2

$7F0

$7FE

$80C

$81A

$828

$878

$888

$889

$88A

$898

$89C

$8A0

$8A4

$8AE

$C00306

$C00312

$C0031E

$C0032A

$C00336

$C00342

$C0034E

$C0035A

$C00366

$C00372

$C0037E

$C0038A

$C0038E

$C00392

$C00396

$C00398

$C0039A

$C0039C

$C0039D

$C0039E

$C003A0

$C003A2

$C003A6

$C003AA

$C003AE

$C003B2

$C003B6

$C003B8

$C003C6

$C003D4

$C003E2

$C003F0

$C003FE

$C0040C

$C0041A

$C00428

$C00478

$C00488

$C00489

$C0048A

$C00498

$C0049C

$C004A0

$C004A4

$C004AB

struct

ULONG

ULONG

UWORD

UWORD

UWORD

BYTE

BYTE

UWORD

UWORD

APTR

APTR

APTR

APTR

ULONG

UWORD

struct

struct

struct

struct

struct

struct

struct

struct

struct

Raster beam

Blitter done

Audio channel 0

Audio channel 1

Audio channel 2

Audio channel 3

Serial input

Disk sync.

CIA-B

Internal interrupt

NMI

Task *ThisTask;

IdleCount;

DispCount;

Quantum;

Elapsed;

SysFlags;

IDNextCnt;

TDNestCnt;

AttnFlags;

AttnResched;

ResModules;

TaskTrapCode;

TaskExceptCode;

TaskExitCode;

TaskSigAlloc;

TaskTrapAlloc;

List MemList;

List ResourceList;

List DeviceList;

List IntrList;

List LibList;

List PortList;

List TaskReady;

List TaskWait;

SoftlntList

Softlnts[5];

LastAlert [4] ;

UBYTE

UBYTE

struct

APTR

APTR

APTR

UBYTE

UBYTE

VBlankFrequency;

Pri3

Pri3

Pri4

Pri4

Pri4

Pri4

Pri5

Pri5

Pri6

Pri6

Pri7

PowerSupplyFrequency;

List SemaphoreList;

KickMemPtr;

KickTagPtr;

KickCheckSum;

ExecBaseReserved[10];

ExecBaseNewReserved[20];

#define SYSBASESIZE ((long)sizeof(struct ExecBase))

#define AFB_68010 0L

#define AFB_68020 1L

#define AFB_68881 4L

#define AFF_68010

#define AFF__68020

tdefine AFF_68881 (1L«4)

#define AFB_RESERVED8 8L

#de£ine AFB RESERVED9 9L

308

Abacus 2.8 The ExecBase structure

IibNode- Offset 0

is the library structure of the Exec library, with a positive size of

$24C and a negative size of $276 bytes. From positive size you
can see that the ExecBase structure really is quite a large library

structure.

SoftVer- Offset 34

LowMemChkSum - Offset 36

can be used by the programmer to equalize the checksum calcu

lated over the range 34 to 78 if custom vectors are inserted. How

the actual checksum is calculated and discussed under ChkSum
(offset 82).

Chkbase-Offset 38

is used to check the position of ExecBase on reset The position

of ExecBase is added to ChkBase, whereby the result must be

$FFFFFFFF. If this isn't the case, a significant error must have
occurred, in which case it's best to recreate the ExecBase struc

ture. Otherwise time is saved and the structure is not completely
initialized.

ColdCaptuie - Offset 42

is a vector which can be used by the programmer to branch to a

custom routine during a reset. If this vector is not used, it points

to zero. The reset routine detects when the vector has been set

and branches to the specified routine. The return address is placed

in AS. Before the jump the vector is automatically reset to zero.

Up to this time nothing noteworthy has happened beyond disab

ling interrupts and DMA. In this custom routine no operations
which affect the stack should be performed because it has not

been initialized correctly yet This is also true when the return

address is passed in AS and the routine is not called through JSR.

CoolCapture - Offset 46

can also be used to branch to a user routine during a reset The

difference between ColdCapture and CoolCapture is that the
CoolCapture routine is called considerably later. CoolCapture is
not reset by the reset routine. Since the stack, the memory, the

exception table and the Exec library have already been initialized

by this time, this vector is better suited for most applications
than the ColdCapture vector. Control is returned to the reset rou
tine with RTS.

WarmCapture - Offset 50

is another reset vector, but to the best of our knowledge it is
never called

SysStkUpper - Offset 54

indicates the upper limit of the supervisor stack.

309

2. Exec Amiga System Programmer's Guide

SysStkLower - Offset 58

specifies the lower limit of the supervisor stack.

MaxLocMem - Offset 62

specifies the maximum addressable chip memory, which in 1.2

is 512KB or $80000 bytes.

DebugEntry - Offset 66

is a pointer to the entry to the Amiga debugger.

DebugData - Offset 70

is a pointer to the debugger data buffer (zero).

AterfData- Offset 74

MaxExtMem - Offset 78

indicates the upper limit of the available memory. With a mem

ory expansion to 1MB this is $C80000.

ChkSum- Offset 82

is a checksum over the range from offset 34 to 78 and is checked

before the jump to ColdCapture. If custom vectors are placed in

this range, the checksum must be recalculated or equalized in

LowChkSum. The checksum is calculated as follows:

fc0440

fc0444

fcO448

fc044a

fc044e

fc0450

lea

move.w

add.w

dbf

not.w

move.w

34(A6),A0

#$0016,DO

(A0)+,Dl

D0,$fc0448

Dl

D1,82(A6)

set pointer to start

number of words-1 in

counter

add words

decrement counter

negate and

store in checksum

lhtVects[O]- Offset 84

Interrupt on serial output Not initialized after reset

IntVects[l]-Offset 96

Interrupt after a disk block has been transferred. After reset this is

an interrupt handler.

IhtVects[2]-Offset 108

Soft interrupt For exact description see Section 2.6.

lhtVects[3] - Offset 120
CIA-A interrupt After reset this interrupt serves mainly for read

ing the keyboard (interrupt server).

lhtVects[4]- Offset 132

Copper interrupt

310

Abacus 2.8 The ExecBase structure

IhtVects[5] - Offset 144

Interrupt which is generated when the raster beam passes raster

line zero. This interrupt is also the clock signal for task
switching (interrupt server).

IhtVectsft]- Offset 156

The interrupt is generated when the blitter finishes its work
(interrupt handler).

IhtVects[7]-Offset 168

Audio channel 0 (interrupt handler).

IhtVects[8]- Offset 180

Audio channel 1 (interrupt handler).

lhtVects[9]. Offset 192

Audio channel 2 (interrupt handler).

IhtVects[10]-Offset204

Audio channel 3 (interrupt handler).

IntVects[ll]-Offset 216

The interrupt is generated when a serial input arrives (not
initialized after reset).

IhtVects[12]-Offset 228

This interrupt signals disk synchronization (interrupt handler).

IhtVects[13]-Offset240

The interrupt is generated when an interrupt is created by CIA-B
(interrupt server).

IhtVects[14]-Offset 252

This interrupt can only be generated through software (not
initialized after reset).

IntVects[15]-Offset 264

Non-maskable interrupt. The interrupt is not used but it's
initialized as an interrupt server.

♦ThisTask - Offset 276

is a pointer to the task structure which is currently being pro

cessed. You cannot read the pointer to this task structure from a

program that runs in a task and gets useful results because you

always get the pointer to the same task structure. The only way

to get useful values is to read the value from an interrupt

Interrupt 5 (raster beam) is used for this.

311

2. Exec Amiga System Programmer's Guide

idleCount - Offset 280

DispCount - Offset 284

Quantum-Offset 288

Elapsed -Offset 290
SysHags-Offset 292

Various system flags are stored in this location.

Bit 5:0 » soft interrupt disabled, 1 - enabled

IDNestCnt-Offset 294

specifies whether interrupts are allowed or not. If IDNestCnt is
$FF (-1), interrupts are allowed, otherwise they are disabled with
the Disable function. Each time the Disable function is called
IDNestCnt is incremented by one. The Enable function
decrements IDNestCnt by one. The interrupts are enabled again
when IDNestCnt reaches -1 (the master bit is set again).

TDNestCnt- Offset 295
indicates whether the Forbid function has been called. If it was,
TDNestCnt is incremented by one. Task switching is enabled
when TDNestCnt is at -1. The Permit function decrements

TDNestCnt again and enables task switching when TDNestCnt

reaches -1.

AttnFlags-Offset 296

specifies which processors are connected:

#define AFF_68010

#define AFF_68020

♦define AFF_68881 (1L«4)

AttnResched - Offset 298

ResModules - Offset 300
is a pointer to resident modules. These are structures whose
routines are called from a routine $FC0AF0. The modules are
called at reset There is also a function for searching for these

modules by name. It is called FindResident.

TaskTrapCode - Offset 304

TaskExceptCode - Offset 308

TaskExitCode - Offset 312

TaskSigAlloc - Offset 316

TaskTrapMloc - Offset 320

MemList- Offset 322
is a pointer to the memory list which indicates which memory
areas are free and which are allocated

ResourceList - Offset 336

is a list structure in which the resource structures are linked.

Devicelist-Offset 350

is a list structure in which the device structures are linked.

312

Abacus 2.8 The ExecBase structure

IntList- Offset 364

Not used

liblist-Offset 378

is a list structure in which the library structures are linked.

PortList- Offset 392

is a list structure in which the port structures are linked.

TaskReady- Offset 406

is a list structure in which the Task structures which are
currently ready are linked.

TaskWait-Offset 420

is a list structure in which the task structures which are currently
waiting are linked.

Softlnts[0]-Offset 434

is a list structure of the soft interrupts which are waiting for
processing and which have priority -32 are linked.

Sofltnts[l] - Offset 450

is a list structure in which the soft interrupts which are waiting
for processing and which have priority -16 are linked.

Softlnts[2]- Offset 466

is a list structure in which the soft interrupts which are waiting
for processing and which have priority 0 are linked.

Softlnfs[3]- Offset 482

is a list structure in which the soft interrupts which are waiting

for processing and which have priority +16 are linked.

Softlnts[4]-Offset 498

is a list structure in which the soft interrupts which are waiting

for processing and which have priority +32 are linked.

LastAlert[4] - Offset 514

here the data for the alert are stored after they have been fetched

by the reset routine.

VBlankFrequency - Offset 530

specifies the frequency at which the raster beam constructs a

picture.

PowerSupplyFrequency - Offset 531

specifies the frequency of the line voltage.

SemaphoreList - Offset 532

is a list structure in which all of the semaphore structures used

are linked.

313

2. Exec Amiga System Programmer's Guide

KickMemPtr - Offset 546
is a pointer to a MemList structure whose memory is allocated

on a reset

KickTagPtr- Offset 550

is a pointer to a resident table which is linked in when creating

the main resident table.

KickCheckSum - Offset 554

is the checksum calculated by the SumKickData() function.

ExecBaseReserved[10] - Offset 558
are 10 bytes which are ieserved for the ExecBase structure so that

Exec can store values there. (Not used)

ExecBaseReserved[20] - Offset 568
are twenty bytes which are reserved for the ExecBase structure so

that Exec can store values there. (Not used)

314

Abacus 2.9 Reset routine and reset-proof programs

2.9 Reset routine and reset-

proof programs

In this section we'll discuss exactly what the reset routine does, how

the memory size is determined, and whether it is possible to write reset-

proofprograms.

2.9.1 Documentation of the reset routine

fc00d2 lea

fc00d8 move.l

fcOOde subq.l

fcOOeO bgt.s

$040000,A7

#$00020000,DO

#1,DO

$fc00de

fc00e2 lea -228(PC)(=$fc0000),A0

fc00e6 lea

fcOOec cmpa.l

fcOOee beq.s

fcOOfO lea

fc00f4 cmpi.w

fc00f8 bne.s

fcOOfa jmp

fcOOfe move.b

fc0106 move.b

fcOlOe lea

fcO114 move.w

fcO118 move.w

fcOllc move.w

fc0120 move.w

fcO124 move.w

fcO12a move.w

fc0130 move.w

fcO136 move.w

$f00000fAl

Al,A0

$fc00fe

12(PC)(=$fc00fe),A5

#$1111,(Al)

$fc00fe

2(A1)

#$03,$bfe201

#$02,$bfe001

$dff000,A4

#$7fff,D0

D0,154(A4)

D0,156(A4)

D0,150(A4)

#$0200,256(A4)

#$0000,272(A4)

#$0444,384(A4)

#$0008,AO

fcO13a move.w #$002d,Dl

fcO13e lea 1140(PC)(=$fcO5b4),

fcO142 move.l

fcO144 dbf

fcO148 bra.l

Al, (A0) +

Dl,$fcO142

$fc30c4

set stack pointer

value for delay loop

decrement value

branch if not

decremented

set pointer to

Kickstart ROM

load comparison value

is Reset at $F00000

branch if so

set pointer to

program continuation

is module at $F00000?

branch if not

else enter

switch port to output

turn LED off

pointer to chip

addresses

load value

disable all

interrupts

clear interrupts

disable DMA

set color

set pointer to

exceptions

counter for number of

vectors

set pointer to hard

error routine

enter exceptions

branch if not done

check guru

315

2. Exec Amiga System Programmer's Guide

This routine checks if a reset resulted from a guru meditation. IF so, put

guru number in D7 and memory pointer in D6. Otherwise $FFFFFFFF

is loaded into D6. The reset is then continued.

fcO14c

fc0150

fcO154

fcO156

fcO158

fcO15c

fcO15e

move•1

btst

bne.s

move.1

add.l

not.l

bne.s

$0004,DO

#0,D0

$fc01ce

D0fA6

38(A6),D0

DO

$fc01ce

get ExecBase

ExecBase at even address?

error if odd

Execbase to DO

add ChkBase

invert result

branch if error

llie cITOi uwwuid whch uic pumici iv uic uAt^uaot duuwuu^ id juiv^v/aawvu

fc0160 moveq #$00,Dl clear Dl for checksum

fcO162

fcO166

fcO168

fcO16a

fcO16e

fc0170

fcO172

fcO176

fcO178

fcO17a

fcO17e

fcO182

fcO184

fcO18c

fc0190

fcO194

fcO196

fcO19a

fcOlaO

fc01a2

fc01a8

fcOlaa

fcOlae

fcOlbO

fc01b4

fcOlba

fcOlbc

fc01c2

fc01c4

fc01c6

fcOlcc

lea

moveq

add.w

dbf

not.w

bne.s

move.l

beq.s

move.l

lea

clr.l

jmp

bchg

move.l

cmp.l

bne.s

move.l

cmpa•1

bhi.s

cmpa.l

bcs.s

move.l

move.1

beq.l

cmpa.l

bhi.s

cmpa.l

bcs.s

move.l

andi.l

beq.s

34(A6),A0

#$18,DO

<AO)+,D1

D0,$fc0168

Dl

$fc01ce

42(A6),D0

$fcO184

D0,A0

set pointer to ChkBase

value for loop counter

generate checksum

branch until checksum

generated

invert result

error if not zero

ColdCapture to DO

branch if not set

pointer to A0

8(PC)(=$fcO184),A5 return pointer

42 (A6)

(A0)

#l,$bfe001

clear ColdCapture

jump

turn LED on

-382(PC)(=$fc0010),D0 compare Kickstart

20(A6),D0

$fc01ce

62(A6),A3

#$00080000,

$fc01ce

#$00040000,

$fc01ce

78(A6),A4

A4fD0

$fc0240

#$00dc0000,

$fc01ce

#$00c40000,

$fc01ce

A4rD0

#$0003ffff,

$fc0240

A3

A3

A4

A4

DO

version

with that of Execlib

error if versions differ

upper limit of chip RAM

512KB chip RAM?

error if larger

256KB chip RAM?

error if smaller

MaxExtMem to A4

check for external memory

branch if not

upper limit at $DC0000?

error if higher

upperlimit at $C40000?

error if smaller

???, A4 = DO

is boundary on even addr?

yes, else error

316

Abacus 2.9 Reset routine and reset-proof programs

Here begins the part of the routine which is called only when
something is wrong with the initialization of the ExecBase structure. It
must be reinitialized

fcOlce lea $0400,A6

fc01d2 suba.w #$fd8a,A6

fc01d6 lea

fcOldc lea

$c00000,A0

$dc0000,Al

lowest possible RAM area

find address of ExecBase,

if no fast memory

lowest fast memory area

highest possible RAM

limit

fc01e2 lea 6(PC)(=$fc01ea),A5 return pointer

fc01e6 bra.l $fcO61a get upper memory limit

The routine called here determines where the upper limit of the fast
RAM is. It returns a pointer to the end ofRAM in A4. If no fast RAM
is available, a zero is returned in A4. This recognition of the fast RAM

works only if the RAM is at $C00000. Owners of an Amiga 1000 can

modify the Kickstart disk to make an auto-configuring memory
expansion which does not lie at $C00000.

fcOlea move.l

fcOlec beq.s

fcOlee move.l

fc01f4 suba.w

fc01f8 move.l

fcOlfa lea

fc0200 lea

fc0204 bra.l

A4,D0

$fc0208

#$00c00000,A6

#$fd8a,A6

A4,D0

$c00000,A0

6(PC) (=$fc0208),A5

$fc0602

fast RAM present?

branch if not present

lower limit in A6

find position on

ExecBase

upper limit in DO

lower limit in A0

return pointer

clear memory

The fastRAM area is cleared with zeros in this routine.

fc0208 lea $0000,A0 lowest RAM bound

fc020c lea $200000,Al upper limit of contiguous

memory

fcO212 lea 6(PC)(=$fcO21a) ,A5 return pointer

fcO216 bra.l $fcO592 get lower memory size

The lower memory area may lie from $0000 to $200000. The routine
checks to see how large the lower contiguous memory is. The memory
size is returned in A3.

fcO21a cmpa.l

fc0220 bcs.s

fcO222 move.l

fcO22a move.l

fcO22c lea

fc0230 lea

fcO234 bra.l

#$00040000, A3 area smaller than 256KB?

$fC0238 yes, then error, hard

reset

#$00000000,$0000 clear $0000

A3, DO upper memory bound in DO

$00c0,A0 determine lower bound

14(PC)(=$fc0240),A5 return pointer

$fc0602 clear lower memory

This routine was just used to clear the fast RAM. It clears the area from
$00C0 to the upper memory bound of the lower contiguous memory.

317

2. Exec Amiga System Programmer's Guide

fcO238 move.w #$00c0,D0

fcO23c bra.l $fcO5b8

screen color for reset

hard reset (flash LED 11 times)

In this reset entry the LED is flashed 11 times, whereupon the boot

ROM is called and the reset is restarted. This routine is also called if an

exception error occurs during the first part of the reset

fc0240 lea $dff000,A0

fcO246 move.w #$7fff,150(AO)

fcO24c move.w #$0200,256(AO)

#$0000,272(AO)

#$0888,384(AO)

fcO252 move.w

fcO258 move.w

fcO25e lea 84(A6),A0

fcO262 movem.l 546(A6),D4-D2

fcO268 moveq #$00,DO

fcO26a move.w

fcO26e move.l DO,(A0)+

fc0270 dbf

fcO274 movem

Dl,$fcO26e

1 D4-D2,546(A6)

fcO27a move.l A6,$0004

fcO27e move.l A6,D0

fc0280

fcO282

fcO286

fcO288

fcO28a

fcO28c

fcO28e

fcO292

fcO298

fcO29c

fcO2aO

fcO2a4

not.l

move.l

move.l

bne.s

move.l

move.l

move.l

subi.l

move•1

move.1

move.l

bsr.l

DO

D0,38(A6)

A4,D0

$fcO28c

A3, DO

D0,A7

D0,54(A6)

#$00001800,DO

D0,58(A6)

A3,62(A6)

A4,78(A6)

$fc30e4

pointer to chip addresses

disable DMA

set screen color

pointer to first IntVector

store KickMemPrt,

KickTagPrt,KickCheckSum

clear DO

#$007d,Dl set counter

clear from A0 to ExecBase

branch if not done

set KickMemPrt, KickTagPrt

and KickCheckSum

set ExecBase pointer

pointer to DO

calculate ChkBase

enter ChkBase

upper RAM limit to DO

branch if fast RAM

available

else set upper chip RAM

limit as system stack

and enter

subtract length of stack

and set as lower limit

set limit of chip RAM

set limit of fast RAM

enter Last Alert

The values fetched from $FC0148 and stored in D6 and D7 are written
into the spaces reserved for them (Last Alert (offset 514)).

fcO2a8 bsr.l $fcO546 processor test

This routine tests which processors are attached. Recognized: 68000,
68010,68020 and 68881. Bits in DO are set as appropriate.

fcO2ac or.w D0,296(A6) set bits in AttnFlags

fcO2bO lea 32(PC)(=$fcO2d2),Al pointer to table

0(A6,D0.W),A0

fcO2b4 move.w (Al)+,D0

fcO2b6 beq.l $fcO33e

fcO2ba lea

fcO2be move.l A0f(A0)

fcO2cO addq.l #4f(A0)

fcO2c2 clr.l 4(A0)

fcO2c6 move.l A0,8(A0)

offset in DO

end if no more offsets

set pointer to position

enter list header

point to lh_Tail

clear lhJTail

set lh TainPred

318

Abacus 2.9 Reset routine and reset-proof programs

fcO2ca move.w (A1)+,DO

fcO2cc move.b D0,12(A0)

fcO2dO bra.s $fcO2b4

get lh_Type

and set

unconditional jump

The routine just described places the following list structures in Exec-
Base:

MemList

ResourceList

DeviceList

LibList

PortList

TaskReady

TaskWait

InterList

SoftlntList (all 5)

SemaphoreList

fcO2d2

Tables for creating the lists

fc030c

Values for creating the Exec library structure.

fcO326

ASCII strings: chip RAM

fcO332

ASCII strings: fast RAM

fcO33e

fcO33e lea 11380(PC)<=$fc2fb4),A0 set pointer to

TaskTrapCode

enter in TaskTrapCode

.enter in

TaskExceptCode

enter TaskExitCode

enter TaskSigAlloc

enter TaskTarpAlloc

pointer to

LibNode. ln__Type

fcO342 move.l A0,304(A6)

fcO346 move.l A0,308(A6)

fcO34a move.l #$00fclcec,312(A6)

fcO352 move.l #$0000ffff,316(A6)

fcO35a move.w #$8000,320(A6)

fc0360 lea 8<A6),A1

319

2. Exec Amiga System Programmer's Guide

fcO364 lea -90(PC)(=$fc030c),A0 pointer to table

fcO368 moveq #$0c,D0 set counter

fcO36a move.w (A0)+,(Al)+ create Exec library

structure

fcO36c dbf D0,$fc036a branch if not done

fc0370 move.l A6,A0 pointer to ExecBase

in A0

fcO372 lea 5836(PC)(=$fcla40),A1 pointer to table

fcO376 move.l A1,A2

fcO378 bsr.l $fcl576 function:

MakeFunction()

Execlibrary is created in the routine called here. The table is at

$FC1A40. The length of the library is returned in DO.

fcO37c move.w DO, 16(A6) enter library length

fc0380 move.l A4,D0 is fast RAM present?

fcO382 beq.s $fcO3a8 branch if no fast RAM

fcO384 lea 88(A6),A0 pointer to end of

ExecBase

fcO388 lea -88(PC)(=$fcO332),A1 String Fast Mem.

fcO38c moveq #$00,D2 priority of the

MemHeader

fcO38e move.w #$0005,Dl memory attributes

(Public, Fast)

fcO392 move.l A4,D0 pointer to end of

fast RAM

fcO394 sub.l A0,D0 subtract ExecBase

structure

fcO396 subi.l #$00001800,DO subtractSysStack

fcO39c bsr.l $fcl9ea create MemHeader

structure

The routine at $FC19EA creates a MemHeader structure with the

specified data. The size of the available memory area is in DO.

fcO3aO lea

fcO3a4 moveq

fcO3a6 bra.s

fcO3a8 lea

fcO3ac move.l

fcO3b2 move.w

fcO3b6 move.l

fcO3b8 lea

fcO3bc moveq

fcO3be add.l

fcO3cO sub.l

fcO3c2 bsr.l

$0400,A0

#$00,DO

$fcO3b2

588(A6),A0

#$ffffe800,D0

#$0003,Dl

A0,A2

-148 (PC) (=$fcO326)

#$f6,D2

A3, DO

A0,D0

$fcl9ea

A6.A1

start of chip RAM

clear DO

unconditional jump

pointer to ExecBase

end

memory attributes

(Public, Chip)

pointer to start

RAM

,A1 String Chip Mem.

priority of the

MemHeaders

calculating the

effective memory

area

create MemHeader

structure

ExecBase to Al

of

320

Abacus 23 Reset routine and reset-proof programs

fcO3c8 bsr.l $fcl40c calculate library

checksum

fcO3cc lea 938(PC)(=$fcO778),AO pointer to exceptions

fcO3dO

fcO3d2

fcO3d6

fcO3d8

fcO3dc

fcO3de

fcO3eO

fcO3e2

fcO3e6

fcO3ea

fcO3ec

fcO3fO

fcO3f4

fcO3f6

fcO3f8

fcO4OO

fc0408

fc040c

fc040e

fcO416

fcO41e

fcO422

fcO428

fcO42e

fcO434

fcO43a

fcO43e

fcO44O

fcO444

fcO448

fcO44a

fcO44e

fc0450

fcO454

fcO458

move.l

move.w

bra.s

lea

move.l

move.w

bne.s

move.w

btst

beq.s

lea

move.w

move.l

move.l

move.l

move.l

btst

beq.s

move.l

move.l

bsr.l

lea

move.w

move.w

move.w

bsr.l

moveq

lea

move.w

add.w

dbf

not.w

move.w

lea

bsr.l

AO,A1

#$0008,A2

$fcO3de

0<A0,D0.W),A3

A3, (A2) +

<A1)+,DO

$fcO3d8

296(A6),D0

#0,D0

$fcO41e

1166(PC)(=$fc087c),A0

#$0008,Al

AO, (Al) +

A0r (Al) +

#$00fc08ba,-28(A6)

#$42c04e75,-528(A6)

#4,DO

$fcO41e

#$00fcl08a,-52(A6)

#$00fcl0e8,-58(A6)

$fcl25c

$dff000,A0

#$8200,150(AO)

#$c000,154(A0)

#$ffff,294(A6)

$fc22fa

#$00,Dl

34(A6),A0

#$0016,D0

(A0)+,Dl

D0,$fc0448

Dl

D1,82(A6)

118(PC)(=$fc04cc),A0

$fcl91e

pointer to exceptions

inAl

pointer to destination

in A2

unconditional branch

calculate address

and enter

get offset

branch if not done

get AttnFlags

68010 used?

branch if not present

pointer to new traps

pointer to destination

enter exceptions

enter exceptions

enter expansion

enter expansion

68881 used?

branch if not present

enter expansion

enter expansion

enter interrupt

structure

pointer to chip

addresses

allow blitter DMA

allow interrupts

clear IDNestCnt

install debugger

clear Dl

pointer to SoftVer

counter to DO

calculate checksum

branch if not done

invert value

and store in ChkSum

pointer to MemList

structure

AllocEntryO

In this routine a MemList structure is created and $1024 bytes are
reserved for the task and its stack.

fcO45c move.l D0,A2

fcO45e lea

fcO462 lea

4112(A2),A0

8(AO),A1

fcO466 addi.l #$00000010,DO

pointer to MemList

structure

pointer to start for

calculate MemEntry

add MemList

321

2. Exec Amiga System Programmer's Guide

fcO46c

fc0470

fcO474

fcO478

fcO47a

fcO47e

fcO484

move.l

move•1

move.l

move

clr.b

move.b

move.l

DO,58(A1)

AO,62(A1)

AO,54(A1)

A0,USP

9(A1)

$0001,8(Al)

#$00fc00a8,j

set SpLower

set SpDpper

set SpReg

also set as stack

clear pri

in tc_Type value

LO(A1) pointer to name

The name of the task is execlibrary. It will be removed later.

fcO48c

fc0490

fcO492

fcO494

fcO498

fcO49c

fcO49e

fcO4a2

fcO4a4

fcO4a8

fcO4aa

fcO4ac

fcO4bO

fcO4b4

fcO4ba

lea

move.l

addq.l

clr.l

move.l

exg

bsr.l

exg

move.l

suba.l

move.1

bsr.l

move.1

move.b

bsr.l

74<A1),AO

AO,(AO

#4,(AO)

4(A0)

A0,8(A0)

A2,A1

$fcl5d8

A2,A1

A1,276(A6)

A2,A2

A2,A3

$fclc48

276(A6),A1

#$O2,15(A1)

$fcl600

pointer to tc_MemEntry

lists

for MemEntries

create

exchange MemList and task

pointers

AddHeadO

'swap back

enter task as ThisTask

initPc

and clear finalPC

AddTaskO

pointer to task in Al

zet tc_State to RUN

Remove() task from list

for

The task is set to running and removed from the TaskReady list, which
means that the current running program is processed as a task.

fcO4be

fcO4c2

fcO4c6

fcO4ca

andi

addq

jsr

bra.

•w

.b

s

#$0000,SR

#lr295(A6)

-138(A6)

$fc0500

fc04cc

disable all interrupts

set SysFkag

Permit () (task)

Data for

MemList

structure
fcO4fe

fc0500 lea -30(PC)(=$fcO4e4),A0

fc0504 bsr.l $fc0900 find resident structure

The routine finds all of the resident structures in ROM and places the
pointers to these structures in a table. It also checks to see if the
KickMemPtr, KickTagPtr and KickCheckSum values are all set in the

ExecBase structure. If this is the case, the specified memory areas are

allocated and the specified resident structures are placed in the table,
terminated with zero. The order of the entries in the table corresponds to
the priorities of the resident structures. The pointer to the table is stored

in ResModules.

322

Abacus 23 Reset routine and reset-proof programs

fc0508

fc050c

fcO514

fcO518

fcO51a

fcO51c

fcO51e

fc0520

fcO522

move.l

bclr

move.l

beq.s

move.l

jsr

moveq

moveq

bsr.l

D0,300(A6)

#l,$bfe001

46(A6),D0

$fcO51e

D0,A0

(AO)

#$01,DO

#$00,Dl

$fcOafO

turn LED on (is already on)

get CoolCapture

branch if not set

CoolCapture to AO

jump

set startClass

set Version

process InitCodeO, resident

structures

The following program fragment is no longer accessed

fcO526

fcO52a

fcO52c

fcO52e

fc0530

fcO532

fcO534

fcO538

fcO53c

fc0540

fcO544

move.l

beq.s

move.l

jsr

moveq

clr.l

dbf

movem.l

jsr

move.1

bra.s

50(A6),D0

$fc0530

D0,A0

(AO)

#$0d,D0

-<A7)

D0,$fc0532

get WarmCapture

branch if not set

WarmCapture to AO

jump

set value for counter

clear stack

branch if not done

<A7)+,A5-A0/D7-D0

-114 (A6)

$0004,A6

$fcO53c

jump to debugger

ExecBase to A6

2.9.2 Resident structures

To better understand how it is possible to "build in" reset-proof

modules, we first have to explain what resident structures are and how

they are managed

Resident Resident structures are structures in the operating system which are
structures located on a reset. They are found using their identification code, which

is stored at the start of the structure. The positions of all found resident

structures are stored in a table and a pointer to this table is stored in

ResModules (in the ExecBase structure).

As the reset progresses, the pointer to the previously created table is

fetched and the InitCodeO function is executed. The resident structures

are located again with the help of the pointers in the table.

It is in this function that the purpose of the resident structures first

become clear. Such a structure contains, among other things, a pointer

which points either to a table for the registers for a call to MakeLib() or

a program to be executed, depending on the flags stored in the resident

structure. Simply stated, a resident structure allows a program or the

MakeLib function to be called

323

2. Exec Amiga System Programmer's Guide

Calling the If you want to call the MakeLibO function, other variations are possi-
MakeLibQ ble. You can decide whether the structure created by MakeLibO is

function inserted in the library list with AddLibraryO, the device list with
AddDeviceO or the resource list with AddResource(). These options are
possible because the library, device and resource structures are all

similar and can all be created by MakeLibO-

Aresident structure has the following appearance:

struct Resident {

0 UWORD rt_MatchWord;

2 struct Resident *rt_MatchTag;

6 APTR rt_EndSkip;

10 UBYTE rtJFlags;

11 UBYTE rt_Version/

12 UBYTE rt_Type;

13 BYTE rt_Pri;

14 char *rt_Name;

18 char *rt_IdString;

22 APTR rtJLnit;

#define RTC_MATCHWORD 0x4AFCL

#define RTF_AUTOINIT <1L«7)

fdefine RTF_COLDSTART (1L«O)

#define RTMJWHEN 3L

#define RTWJSEVER OL

#define RTWjCOLDSTART 1L

#endif

rt_MatchWord
is a word by which the structure is recognized. After reset the
computer searches for this identification word to find the resident

structures. The word must have the value $4AFC so that the

structure is found.

rt_MatehTag
is a pointer to the structure itself and is used to recognize the
structure in memory. After the match word is found, the compu

ter checks to see if the word after it points to the structure. If it

does, then the resident structure is recognized.

rt_EndSkip

is a pointer to the end of the structure. With this pointer it is
possible to make the structure long and store important data in

it.

rt_Flags

indicates whether or not the resident structure should be processed
at all, and if so, whether only the specified command is executed

or whether the specified program is executed. If the uppermost

bit (bit 7) is cleared, the program stored in the structure is called.

324

Abacus 23 Reset routine and reset-proof programs

If it is set, then rtjnit points to a table needed for the MakeUb()
function.

reversion

indicates the version of the structure.

j

indicates which command is performed.

rtJName

is a pointer to the name of the structure.

rtJdString

is a pointer to the string which explains the structure.

rtjtait

is a pointer to die program to be executed or a pointer to the

table of the register contents to be loaded when MakeLib() is

called. If the MakeLib() function is called, the following registers

must be placed in the table in the specified order:

DO = DataSize

Dl = CodeSize

A0 = FuncMt

Al = Structlnit

A2 = LibInit

The following table shows what a table of pointers to resident struc

tures to which ResModules points (in the ExecBase structure) looks

like. The end marker of the table is the last long word which has the
value zero.

The table is normally created by the reset routine.

If the uppermost bit (bit 31) of a long word in the table is set, it means

that the rest of the word is a pointer to the continuation of the table.

OOfc

OOfc

OOfc

OOfc

OOfe

OOfe

00b6

450c

5378

34cc

98e4

MOO

OOfc

OOfc

OOfe

OOfe

OOfd

OOff

4afc

4794

502e

50c6

3f5c

425a

OOfe

OOfe

OOfe

OOfe

OOfc

OOfe

4880

4774

507a

0d90

323a

8884

OOfe

OOfe

OOfe

OOfe

OOfe

0000

4fe4

49cc

.90ec

510e

424c

0000

325

2. Exec Amiga System Programmer's Guide

Let's look at the second resident structure in the table. It looks like

this:

fc4afc 4afc OOfc 4afc OOfc 516c 8121 096e OOfc

fc4b0c 4b48 OOfc 4bl6 OOfc 4b38 6578 7061 6e73 expans

fc4blc 696f 6e20 3333 2e31 3231 2028 3420 4d61 ion 33.121 (4 Ma

fc4b2c 7920 3139 3836 290d OaOO 0000 0000 01c8 y 1986)

fc4b3c OOfc 4b86 OOfc 4b5a OOfc 4bee 6578 7061 expa

fc4b4c 6e73 696f 6e2e 6c69 6272 6172 7900 eOOO nsion.library...

To better complete the initialization of the structure, the appropriate

values are listed again in the following structure:

struct Resident {

0 UWORD rtJMatchWord; $4AFC

2 struct Resident *rt_MatchTag; $FC4AFC

6 APTR rt_EndSkip; $FC516C

10 UBYTE rt_Flags; %10000001

11 UBYTE rtj/ersion; 33

12 UBYTE rt_Type; Library

13 BYTE rt_Pri; 110

14 char *rt_Name; expansion.library

18 char *rt_IdString; $FC4B16

22 APTR rt_Init; $FC4B38

The rtJFlag byte is set to %10000001. The top bit is set, so rtjnit
points to data for the registers needed for the call to the AddLibraryO

function. Here AddLibraryO is called because the type of the resident

structure is "library" (NTJLIBRARY = 09).

The following options are available:

Type Function call

03 = Device AddDeviceO
08 = Resource AddResourceO

09 = Library AddlibiaryO

The InitCodeO function is responsible for searching for the resident

structures. When called the two parameters StartClass and Version are

passed. Only resident structures whose version component matches the

version password is executed. The value passed in StartClass is ANDed
with rtJFlags. If the result is not zero, the structure is executed, with
the initResident structure. StartClass and rt_Flags thus determine which

resident structures are executed when the InitCode function is called

On a reset the InitCode function is called with the parameters StartClass

= 01 and version ■ 00. Only resident structures whose bit 0 is set in

rtJFlags is executed.

To show you how the routines just described work in detail, here are the

assembly language listings.

326

Abacus 2.9 Reset routine and reset-proof programs

InitCode()

lnitResident

InitCode (StartClass, Version]

FCOAFO

FC0AF4

FC0AF8

FCOAFA

FCOAFC

FCOAFE

FC0B00

FC0B02

FC0B06

FC0B08

FCOBOA

FCOBOC

FC0B10

FC0B12

FC0B16

FC0B18

FC0B1A

FC0B1C

FC0B20

FC0B22

FC0B26

DO A2

MOVEM.L D2-D3/A2,-(A7)

MOVEA.L 300(A6),A2

MOVE.B D0,D2

MOVE.B D1,D3

MOVE.L <A2)+,D0

BEQ.S $FC0B22

BGT.S $FCOBOA

BCLR #31,DO

MOVEA.L D0,A2

BRA.S $FC0AFC

MOVEA.L DO,A1

CMP.B 11(A1),D3

BGT.S $FC0AFC

MOVE.B 10(Al),D0

AND.B D2,D0

BEQ.S $FC0AFC

MOVEQ #O,D1

JSR -102(A6)

BRA.S $FC0AFC

MOVEM.L (A7)+,D2-D3/A2

RTS

1

Reserve register

Pointer to Resmodule

StartClass to D2

version to D3

Get Pointer from table

Branch at end mark

Branch if Top Bit

(Bit 31) is unset

Else Clear Bit 31

Save pointer

Frontable as a new

pointer

uncondition jump

Pointer to resident

(Al)

Resident version too

old

Get rt_flags

compare w/start class

branch if not starting

set seglist to null

unconditional jump

get registers back

Return

lnitResident(resident, segList)

FC0B28

FC0B2E

FC0B30

FC0B34

FC0B36

FC0B38

FC0B3A

FC0B3C

FC0B40

FC0B44

FC0B48

FC0B4C

FC0B50

FC0B52

FC0B54

FC0B56

FC0B5A

FC0B5E

FC0B60

FC0B64

Al Dl

BTST #7,1O(A1)

BNE.S $FC0B3C

MOVEA.L 22<A1),A1

MOVEQ #0,D0

MOVEA.L D1,AO

JSR (Al)

BRA.S $FC0B7E

MOVEM.L A1-A2,-(A7)

MOVEA.L 22(A1),A1

MOVEM.L (Al),D0/A0-A2

JSR -84 (A6)

MOVEM.L <A7)+,A0/A2

MOVE.L D0,-(A7)

BEQ.S $FC0B7C

MOVEA.L DO,A1

MOVE.B 12<A0),D0

CMPI.B #3,DO

BNE.S $FC0B66

JSR -432(A6)

BRA.S $FC0B7C

Test Bit 7 from

rt_flags

If not set,

Execute command

Else GOTO beginning

Clear DO

Seglist to A0

Beginning

Unconditional jump

Reserve register

Get pointer from

register

Get register for

function

Return register

Get return message

If its an error, END

pointer from library to

Al

rt_type to DO

rt_type = device

Branch if not device

else ADDDEVTCEO

Unconditional jump

327

2. Exec Amiga System Programmer's Guide

FC0B66

FC0B6A

FC0B6C

FC0B70

FC0B72

FC0B76

FC0B78

FC0B7C

FC0B7E

CMPI.B #9,DO

BNE.S $FC0B72

JSR -396(A6)

BRA.S $FC0B7C

CMPI.B #8,DO

BNE.S $FC0B7C

JSR -486(A6)

MOVE.L <A7)+,D0

RTS

rt_type = LIBRARY?

Branch if not library

Else ADDLIBRARYO

unconditional jump

re_type = resource

Branch if it isn't

resource

Else Addresource

RETURN DO

RETURN

2.9.3 Reset-proof programs and structures

Now that we have taken care of all the prerequisites, we can now dis

cuss how to write reset-proof programs and structures.

There are two ways. First, you can branch to user programs through the
ColdCapture and CoolCapture vectors, and second, memory areas can be
reallocated with the help of the KickMemPrt and KickTagPrt vectors

and insert the resident structure in the resident vector table. All of these

vectors are located in the ExecBase structure.

To simply avoid resets, the ColdCapture entry is the best. All you have
to do is set this vector to a routine which resets the ColdCapture vector

and then runs in an infinite loop.

When initializing the ColdCapture vector you must also recalculate the

checksum which is formed from the first ExecBase vectors. A routine to

disable the reset might look like this:

run:

allocMem =

require =

ColdCapture =

move.1

move.1

move.1

jsr

tst.l

beq

move.1

move.1

move.w

lea.l

11: move.b

dbf

-198

1

42

$4,a6

#ende-start,dO

#require,dl

allocMem(a6)

dO

error

dO,al

al,ColdCapture(a6)

#ende-start,dO

start,aO

<aO)+, <al) +

dO,ll

; recalculate checksum

328

Abacus 2.9 Reset routine and reset-proof programs

12:

error:

clr.l

lea.l

move.w

add.w

dbf

not.w

move.w

rts

; routine which

start:

13:

ende:

end

lea.l

move.1

move.1

jmp

dl

34<a6),aO

#$16,dO

<aO)+,dl

dO,12

dl

dl,82(a6)

is executed on res

start(pc),aO

$4,a6

aO,ColdCapture(a6)

13 (pc)

The program first allocates the memory required, copies the program
which is executed on reset to this area, enters the starting address of the
program in ColdCapture and recalculates the checksum.

Resetting the ColdCapture vector is necessary because it is cleared by
the reset routine.

When the program is started and a reset performed, only turning the
computer off will save you.

ColdCapture causes a routine to be executed very early in the reset rou
tine. You can see the jump to the documented reset routine at
$FC0172. Up to this time not much has happened. The screen color
has been set to black, all interrupts and DMA disabled, and the check
sum of the ExecBase structure calculated.

If the ColdCapture is set, it is cleared again by the reset routine, the
address where the reset routine is continued is passed in AS, and the
routine specified by ColdCapture is called. This routine cannot use the
stack and cannot call subroutines, since the stack has not been initial
ized yet

The reset routine is continued with JMP (AS).

The other vector which can be used to branch to a user program out of
the reset routine is called CoolCapture. When the user program is
called, the memoiy has been organized again, the ExecBase structure and
the Exec library created, the interrupts are set up, and the exceptions are
set back to their proper values.

CoolCapture is called with JSR (AO) and thus can be terminated with a
normal RTS. This vector can be used to activate a memory expansion
that is not automatically activated. The jump from the reset routine is
at$FC051G

329

2. Exec Amiga System Programmer's Guide

KickSumData

function:

KickSum

DataQ

The procedure is the same as for the ColdCapture vector. The vector is
entered and the checksum of the ExecBase structure is recalculated The

example program for the ColdCapture vector shows how the checksum

can be calculated.

The best way to get reset-proof programs and structures is to create
them with the help of the ExecBase entries KickMemPtr, KickTagPtr

and KickCheckSum.

By using these entries you can allocate memory areas with their old

values and insert new resident structures in the table of resident structure

pointers. To do this, KickMemPtr must point to a MemList structure,

whose entries are reallocated during an interrupt. KickTagPtr is a poin

ter to a resident table which looks like the one ResModules points to in
the ExecBase. The resident structures saved in the table are linked inde

pendent of their priorities in the table of all resident structures, to be

created late.

These two pointers are used only when KickCheckSum (the check sum

of the resident table and the MemList structures) is correct The Exec

library function KickSumData() is used to calculate the checksum.

Sum = KickSumData ()

DO

Offset: -612

Description:

The function calculates the checksum of the MemList structure

specified in KickMemPtr as well as the resident table specified

by KickTagPtr. The result of the calculation is returned in DO.

If you would like to reallocate certain areas of memory after a reset

without losing data, these areas must be stored in a MemList structure

and allocated with AllocEntry(). The MemList structure itself must also

be allocated. It is also possible to chain multiple MemList structures

together.

If you also want to execute custom programs during a reset, then you

must create resident structures with which the desired programs are

called. The pointers to the resident structures must be combined into a

table which is terminated with zero. The memory which the resident

structures occupy as well as the resident table must also be allocated
with a MemList structure and inserted into the list of the memory to be

allocated on a reset The pointer to the resident table is entered in

KickTagPtr.

After these steps have been taken, the KickSumDataO function is called
and the calculated checksum is stored in KickCheckSum.

Now the specified memory areas are reset-proof and the programs stored

in the resident structures are executed on a reset

330

Abacus 23 Reset routine and reset-proof programs

To give you an idea of what priorities the custom resident structures
must have in order to be executed at a given time, the following table

shows which resident structures with which priorities are executed on a
reset.

Pri.

120

110

100

80

70

70

70

65

60

60

50

40

40

31

20

20

10

5

0

0

0

-60

Resident dos.

$FC00B6

$FC4AFC
$FE4880

$FC450C

$FC4794

$FE4774

$FE49CC

$FC5378
$FE502E

$FE507A

$FE90EC

$FC34CC

$FE50C6
$FE0D90

$FE510E

$FE98E4

$FD3F5C
$FC323A

$FE424C

$FEB400

$FF425A

$FE8884

Description

Create Exec lib (not allowed)

Create Exception lib

Create Potgo lib

Create CIA resources

Create disk resource

Create misc resource

Create RAM lib (not allowed)

Create graphics lib

Create keyboard device

Create gameport device

Create timer device

Create audio device

Create create input device

Create Layers lib

Create console device

Create trackdisk device

Create intuition lib

Output gurus ifpresent

Create Math lib

Workbench task (not allowed)

Create DOS lib (not allowed)

Jump to boot procedure

Since the last resident structure doesn't return to the InitCode() func
tion, no more resident structures can be executed after it Therefore it

doesn't make any sense to have a priority lower than -60.

2.9.4 A proper NoFastMem

To conclude this chapter we want to show another way to disable the
fast memory.

The previous NoFastMem routines simply allocated the entire fast
memory so that additional programs have to be loaded into the chip

RAM. But if you think about it, all of the important structures such as

the ExecBase structure or the interrupts are already initialized during a

reset and are therefore in fast RAM. This can prevent some programs

from running even though fast RAM is disabled in the previous man
ner. A reset routine offers us another alternative, however.

331

2. Exec Amiga System Programmer's Guide

All we need is a program which accomplishes all of the important steps

which are performed during a reset and then jumps back into the reset

routine at a suitable location. In this custom routine we can "trick" the

reset routine into thinking that there is no fast RAM present. If we then

jump into the reset routine at the location where all the structures are

reinitialized and the reset routine believes that there is no fast RAM,

then all structures are initialized in the chip RAM.

This deception remains unless the ExecBase structure is destroyed by a

program, in which case the computer again checks to see how much

memory is really present Otherwise the belief that there is no fast

RAM to be found is fetched from the ExecBase structure at each reset

and all structures are initialized accordingly.

Such a program looks like this:

reset2:

move.b

move.b

lea

move.w

move.w

move.w

move.w

move.w

move.w

move.w

lea

suba.w

lea

lea

move.l

move.l

move.l

move.l

jmp

#$03,$bfe201

#$02,$bfe001

$dff00,a4

#$7fff,dO

dO,154(a4)

dO,156(a4)

d0,150(a4)

#$0200,256 <a4)

#$0000,272 (a4)

#$0444,384 (a4)

$400,a6

#$fd8a,a6

$c00000,a0

$dc0000,al

#$00,a4

a4,d0

#$40000,a7

#$ffffffff,d6

$fc0208

;port to output

;turn LED off

Jdisable DMA

determine ExecBase base

;no fast RAM present

;value for no alarm found

;jump to reset

end

332

3

AmigaDOS

Abacus 3.1 The DOS library

3.1 The DOS library

For the user, the most important part of the Amiga operating system is

DOS, the Disk Operating System. Its task is to take care of all input/

output functions, such as disk operations or keyboard inputs. The var

ious functions which are required for this are made available to the user
in the form of a library, which is constructed similar to the Exec
library.

Like the Exec library, die DOS library doesn't exist as a file on the
disk, like the Intuition library. If must still be opened before it can be

used. As a result of this process the opening program can access the
DOS functions through a pointer table.

3.1.1 Loading the DOS library

If a program or function wants to use the DOS library, it must first be
opened. An Exec function by the name ofOldOpenLibraiy is used to do
this. This function is passed a pointer to the name of the library. The
name must be in lowercase and terminated with a zero. The

OpenLibrary function can also be used, which must be passed an

additional parameter: the desired version of the library. If the version
number of the library is greater than or equal to this number, it is

opened. Therefore a zero is usually passed for the version so that any
version is opened.

In C this is quite simple. Through the line

DOSBase = OpenLibrary(wdos.libraryM,0);

a pointer to the DOS library is transferred by Exec to DOSBase. The
pointer doesn't have to be saved or used explicitly later—the C compi
ler takes care of this. The value returned can only be used to check if the
DOS library was opened properly: it is zero if an error occurred. This
can be done as follows:

if (DOSBase — 0) exit <DOS_OPEN_ERROR);

In machine language this is not so simple, but it is still easy to under
stand. Opening the DOS library is programmed as follows:

335

3. AmigaDOS Amiga System Programmer's Guide

EXECJBase = 4

OldOpenLibrary = -408

move.l EXEC_BASE,a6 ;pointer to Exec base in a6

lea DOS_Name,al jpointer to library name

jsr OldOpenLibrary (a6) ;open library

move.l d0,DOS_Base ;save pointer to DOS base

beq error ;error occurred

■ a •

error: ;error handling

• a a

Dos_Base: del 0 Jspace for DOS base

DOS_Name: dc.b"dos.library",0

The pointer contained in DO is needed for each subsequent call to a DOS

function. If die library was not opened successfully, a zero is returned in

DO and in this program the error handling routine "error" is called

In the program above the DOS library is made available through the

pointer. The library is constructed similarly to the Exec library and is

thus used in the same manner. The entry addresses of the individual

functions lie below the DOS_Base base address and are called with neg

ative offsets.

3.1.2 Calling functions and passing parameters

To call a DOS function, you need to know its address and you usually
need to pass some parameters to it These parameters are passed in the

processor data registers Dl to D4.

An example: The DOS Open() function is used to open a simple win

dow. The following parameters are needed:

• A pointer to the name of the file, terminated with a zero byte, in
register Dl. For our example the name of the window definition

CON: is used.
• The file access mode must be specified in D2. This mode indi

cates whether the file already exists or is created. For the window

to be opened in the example, pass the mode "old" so that you can

also read from the window.

The assembly language program for this example looks something like

this:

Open =-30

Mode_old -1005

move.l #FileName,dl ;pointer to file definition

move #Mode_old,d2 ;mode: old

336

Abacus 3.1 The DOS library

;DOS base address in A6

jopen file (window)

;save file handle pointer

Jerror occurred!

Jspace for file handle

deb "CON:10/10/620/170/** Test window **",0

A later section explains the exact use of the standard channel CON:.

move.l

jsr

move.l

beq

ConHandle:

FileName:

D0S_Base,a6

0pen(a6)

dO,ConHandle

error

dc.10

deb "CON:10/

3.1.3 The DOS functions

1) GeneralI/OJunctions

OpenQ

This section contains all of the DOS functions. The offsets are speci

fied, as well as the registers in which the various parameters must be

Handle = Open (name, mode)

DO -30 Dl D2

Open file

Opens the file defined by the zero-terminated string to which Dl points.

The mode in D2 can be Mode_readwrite (1004 for DOS 1.2) for reading

and writing, Mode_old (1005) for reading, or Modejnew (1006) for

writing to the file.

A pointer to the file handle structure is returned in DO, or a zero if the

function could not be executed. The file handle structure has the follow
ing appearance:

Meaning

Unused

If <>0, the file is interactive

File identification number

Pointer to internal memory required

Internal pointer

Internal pointer

Pointer to routine called when buffer is empty

Pointer to routine called when buffer is full

Pointer to routine called when file is closed

File-type-dependent arguments

Most entries are reserved for internal use by AmigaDOS. These values
should not be manipulated.

Offset

0

4

8

12

16

20

24

28

32

36

40

Name

link

Interact

ID

Buffer

CharPos

BufEnd

ReadFunc

WriteFunc

CloseFunc

Argument!

Argument2

337

3. AmigaDOS Amiga System Programmer's Guide

CloseQ

ReadQ

j

WriteQ

SeekQ

Close(handle)

-36 Dl

Close file

Closes the file opened with Open. The pointer passed in Dl is the poin

ter to the file handle structure returned by the Open function.

Number = Read (handle, buffer, length)

DO -42 Dl D2 D3

Read data

Reads up to length bytes into memory at address buffer from the file

specified by handle.

The value returned in DO is the number of bytes actually read. If this

number is 0, the end of the file was reached. If an error occurs, -1 is

returned

■ Write (handle, buffer, length)

-48 Dl D2 D3

Number

DO

Write data

Writes length bytes fiom memory at address buffer to the file specified

by handle.

The number of bytes actually written is returned in DO. If this value is

-1, an error occurred.

Position = Seek(handle, distance, mode)

DO -66 Dl D2 D3

Set file pointer

This function sets the internal pointer in the file specified by handle.

The mode determines whether the value in distance is treated as relative

to the start of the file, to die current file position, or to the end of the
file. Distance can be a signed value, allowing die file pointer to be

moved backwards.

The possible modes are: OFFSETJBEGINNING -1

OFFSET_CURRENT 0

OFFSET END I

The return value indicates the current position of the pointer after the

function was executed. This function can be used to determine the cur

rent pointer position by using the "relative to current position" mode
(OFFSET_CURRENT) and moving 0 bytes: the return value is then

the same as the old pointer position.

338

Abacus 3.1 The DOS library

InputQ Handle:

DO

•- Input ()

-54

OutputQ

Determine standard input channel

This function returns the handle of the channel from which the standard
inputs are read. If the program has been called from the CLI, then this
is the handle of the CLI window. If input redirection was used in the
CLI command which called the program, the handle of the selected
channel is returned. An example:

>program_name <DF0:filename

allows inputs through Read within the program called to come from the
file filename.

Handle = Output ()

Determine standard output channel

This function returns the handle of the channel to which the standard
outputs are written. If the program has been called from the CLI, then

this is the handle of the CLI window. If output redirection was used in
the CLI command which called the program, the handle of the selected
channel is returned. An example:

>program_name >PRT:

sends the standard outputs from the called program to the printer.

WaitForCharQ status«

DO

•- WaitForChar (handle, timeout)

-204 Dl D2

Wait for a character

This function waits the number of microseconds specified by timeout
for a character to be received from the channel specified by handle (such
as RAW: window, wait for a keypress). If no character is received in
this time, a 0 is returned, else the value -1. The character can be read
with the Read function.

This function is accessible only when the channel is interactive (virtual
term.), such as a RAW: window, in which input and output can occur
simultaneously and the data doesn't necessarily arrive on command.

IsInteractiveQ Status = Islnteractive (handle)
DO -216 Dl

Determine channel type

A true value (-1) is returned if the channel specified by handle is a vir
tual terminal, with which input and output can occur. Otherwise a false
value (0) is returned.

339

3. AmigaDOS Amiga System Programmer's Guide

IoErrQ Error ■

DO

IoErrO

-132

2)

Determine I/O error

If an error is signalled after calling a function, generally by returning
zero in DO, the exact error message can be determined by calling IoErrQ.

DO contains the number of the previous error (cf. CLI WHY

command).

The next section contains a list of the error values.

Disk operations

CreateDirQ

LockQ'

CurrentDirQ

Lock = CreateDir (name)

DO -120 Dl

Create subdirectory

The subdirectory name is created in the current directory.

The return value is a pointer to a file structure (lock), which has the

following construction:

Offset

0

4

8

12

16

Name

NextBlock

DiskBlock

AccessType

ProcessE)

VolNode

Description

Pointer to the next lock chained to this one, or

zero

Block number of the directory or the file header

-1 = exclusive access, -2 = general access

Identification number

Pointer to disk info

This structure is the "key" to the file or directory, since it can be used

to access it (cf. CLI MAKEDIR command).

lock = Lock (name, mode)

DO -84 Dl D2

Determine file key

The disk is searched for a file or directory of name and a structure is
created for it. The mode determines the type of access to the file. If it is
read (-2), then multiple tasks can read from this file, if it is written (-1)

then only this program can write to it.

oldLock - CurrentDir (lock)

DO -126 Dl

Make current working directory

The directory specified by lock is made the current working directory

(see CLI CD command).

The value returned is a pointer to the previous directory (its lock).

340

Abacus 3.1 The DOS library

ParentDirQ newLock = ParentDir (lock)

DO -210 Dl

Determine the patent directory

The parent directory of the one specified by lock is determined and its
lock is returned in DO. If lock belongs to the root directory, a zero is

returned in DO.

DeleteFileQ Status = DeleteFile (name)
DO -72 Dl

Delete file

Hie specified file is deleted. The name must be a zero-terminated string.

An error message is returned in DO if the function could not be executed
(file not found, file write-protected, directory not empty, etc.).

If a directory is specified to be deleted, it must be empty.

RenameQ Status - Rename (oldName,newName)
DO -78 Dl D2

Rename file

The file or directory with the name oldName is renamed to newName. If

a file with the new name already exists, the function is terminated and
an error returned.

The two name parameters can also contain paths. In this case the file is
moved from one directory to the other. This works only on the same
disk.

DupLockQ newLock - DupLock (lock)

DO -96 Dl

Copy lock

The old lock is copied into a new one. DO points to the new structure.
This can be used if multiple processes want to access the same file. No
locks which are write access can only be copied, since only exclusive
access is allowed to such a file.

UnLockQ UnLock (lock)

-90 Dl

The lock structure created with Lock(), DupLock() or CreateDir() is
removed and the memory it occupied is released.

341

3. AmigaDOS Amiga System Programmer's Guide

Examine()

ExNextQ

Status = Examine (lock, InfoBlock)

DO -102 Dl D2

Get file information

The structure to which D2 points is filled with information about the

file specified by lock. This structure is called FilelnfoBlock and is con

structed as follows:

Offset

0

4

8

116

120

124

128

132

136

140

144

Name

DiskKey-L

DirEntryTVpel-
FileName

Protection!

EntryType.L

Size.L

NumBlocksl

Days!

Minute!

Tick.L

Comment

Description

Disk number

Entry type (+=directory, -=file)

108 bytes with the filename

File protected?

Entry type

File length in bytes

Number of allocated blocks

Creation date

Creation time

Creation time

116 bytes comment

DO contains zero if the function could not be executed.

Status = ExNext (lock, InfoBlock)

DO -108 Dl D2

Determine next directory entry

This function is passed the InfoBlock filled by ExamineO as well as the
lock of the selected directory. The information about the first matching

entry in this directory is placed in the InfoBlock. The next time

ExNextO is called, the next matching entry in this directory is found
and its information returned. If no more entries can be found or another
error occurred, a zero is returned in DO.

The directory of a disk can be read with the Lock(), ExamineO and

ExNextO commands as follows:

1. The key to the desired directory is created with LockO-
2. The directory name or disk name can be read with ExamineO. At

the same time, die FilelnfoBlock is created which is needed for

the next function.
3. The individual directory entries are read with multiple calls to the

ExNextO function and the information transferred to the

FilelnfoBlock. This is repeated until the ExNextO function

returns zero: no more entries.

Here is a short assembly language program which performs these steps.

The print routine called is not listed here—it could print the names and
lengths of the files on the screen, for example.

342

Abacus 3.1 The DOS library

The DOS library must be opened and the DOSbase address placed in
DOSbase before this routine is called.

Lock

Examine

ExNext

IoErr

directory:

move.l

move.l

move.l

jsr

tst.l

beq

move.l

move.l

move.l

move.l

jsr

tst.l

beq

bra

loop:

move.l

move.l

move.l

jsr

tst.l

beq

outpuff:

bsr

bra

error:

move.l

jsr

rts

name:

align

locksav:

fileinfo:

= -84

= -102

= -108

= -132

dosbase,a6

#name,dl

#-2,d2

Lock(a6)

dO

Error

dO,locksav

dosbase,a6

locksav,dl

#fileinfo,d2

Examine(a6)

dO

error

outpuff

dosbase,a6

locksav.dl

#fileinfo,d2

ExNext(a6)

dO

error

Print

loop

dosbase,a6

IoErr(a6)

deb 'DFO:1^

;even

blk.l 0

blk.1260

;* directory of DFO:

JDOS base address in A6

jpointer to path/filename

;"read' mode

;find file

;found?

;no!

;else save key

;DOS base address

;key in Dl

;pointer to FilelnfoBlock

;get disk name

;OK?

;no (rarely occurs)

;else output name

;* read filename

;DOS base address

;key in Dl

^pointer to FilelnfoBlock

;find next file

;found?

;no: done

;* output name

;output/evaluate name

Jand continue...

;* determine I/O status

;DOS base address in A6

;get status

;end...

After this routine ends the error code from the IoErr() function is
returned in DO. The code should be 232 (nojnore entries), otherwise
something has gone wrong.

343

3. AmigaDOS Amiga System Programmer's Guide

lnfoQ

InfoData

structure

Status - Info (lock, InfoData)

DO -104 Dl D2

Get disk information

The parameter block to which D2 points is filled with information

about the disk used. This block must start on a long-word-aligned

address (divisible by 4).

Lock must be for the disk, file or directory on the disk.

The parameter block InfoData has the following structure:

Offset Name Description

0 NumSoftEiTors

4 UnitNumber

8 DiskState

12 NumBlocks

16 NumBlocksUsed
20 BytesPerBlock

24 DiskType

28 VolumeNode
32 InUse

Number of disk errors

Installed disk device

Disk status

Number of blocks on the disk

Number of blocks used

Number of bytes per block

Disk type (see below)

Pointer to the disk name

<>0 if disk is active

DiskState indicates the status of the disk. The following values are

possible:

80 Disk is write-protected

81 Disk is being repaired (validated)

82 Disk OK and writable

DiskType contains the type of disk, if one is inserted as a string. The

possible values are:

-1 No disk inserted

BAD Disk unreadable (improper format)

DOS DOS diskette

NDOS Format OK, but not a DOS disk

KICK Kickstartdisk

SetComment() Status;

DO

• SetComment (name, comment)

-180 Dl D2

Set file comment

The file or directory name has a comment associated with it The com
ment can be up to 80 characters long and must be terminated with a

zero byte.

344

Abacus 3.1 The DOS library

SetProtec

tion()

CreateProcQ

DateStampO

Delay()

Status = SetProtection (name, mask)

DO -186 Dl D2

Set file status

The read/write status of the specified file or directory is set The lower
four bits of the mask have the following meanings:

BiL_ _Meanin£*if_set

0 File not deletable
1 Not executable

2 Notoverwritable
3 Notreadable

Process = CreatePorc (name, pri, segment, stack)

DO -138 Dl D2 D3 D4

Create a new process

A new process structure is created under the name to which Dl points.

This process runs with the priority set by pri and has a stack of size
stack.

A pointer to a segment list in which the program code to start is defined

is passed in segment. The program should thus start in the first seg
ment of the list

The result of the function is the new process ID, or a 0 if an error
occurred.

DateStamp (vector)

-192 Dl

Determine date and time

A pointer to a table of three long words is returned in Dl. If the time in

the Amiga is not set, all of these long words contain 0. Otherwise the

first long word contains the days elapsed since January 1, 1978, the

second the number of minutes since midnight, and the third the number

of sixteenths of a second elapsed in this minute. This value is always a

multiple of 60, however, so this value is just the number of seconds

times 60.

Delay(time)

-198 Dl

The running process is paused

The running process is stopped for the number of sixteenths of a second

specified by time.

345

3. AmigaDOS Amiga System Programmer's Guide

DeviceProcQ

Exit()

ExecuteQ

LoadSegf)

Process = DeviceProc (name)

DO -174 Dl

Determine the process using I/O

The identification of the process which is currently using the I/O chan

nel specified by name is returned, or aO if no process was found.

If the name refers to a disk channel, a pointer to the lock structure of

the corresponding directory can be returned with the IoErr() function.

Exit (parameter)

-144 Dl

Endprogram

The current program is stopped. If the program was called from the

CLI, control is returned to the CLI and the integer value passed in

parameter is interpreted as a return value from the program. If the pro

gram was started as a process, this process is removed by Exit() and the

stack, segment and process memory it occupied is released.

Status = Execute (command, input, output)

DO -222 Dl D2 D3

Call CLI command

The CLI command string to which Dl points is executed. The input

and output of the CLI command can be directed to any channels by

passing their handles as input and/or output. If 0 is specified for input

or output, the standard channel is used.

These commands make it easy to create your own CLI, which, for

instance, opens its own window and then calls Execute() with the win

dow handle for input and an empty command string. The command is

then entered in the window and the output is also sent to this window.

This CLI can also be ended with the ENDCLI command, whereby the

RUN program must be in the C: directory.

Segment = LoadSeg (name)

DO -150 Dl

Load program file

The program filename is loaded into memory. The program can be div

ided up among several memory modules if not enough contiguous
memory is available. The resulting segments are linked together in that

the first entry of segment is a pointer to the next segment in the list. If

this pointer is 0, then this is the last segment.

If an error occurs during this process, all loaded segments are released
and a 0 is returned in DO. Otherwise DO contains a pointer to the first
segment.

346

Abacus 3.1 the DOS library

withUnLoadSegO.

UnLoadSegO UnLoadSeg (segment)

-156 Dl

Remove loaded program file

The program file loaded with LoadSeg is removed and the memory it
occupied is released The pointer in Dl points to the first segment in
the list (see LoadSeg).

GetPacket() Status - GetPacket (WaitFlag)
DO -162 Dl

Get packet

Packet sent from another process is fetched. If the WaitFlag is true (-1),

the function waits for the reception of the packet, otherwise it will not
wait and returns a zero ifno packet is present.

QueuePacketO Status - QueuePacket (packet)

Send packet

The packet to whose structure Dl points is sent. If this is done success
fully, then a non-zero value is returned in DO.

3.1.4 DOS error messages

The following is a list of the error codes returned by IoErr() or the CLI

WHY command and their names and descriptions.

103 insufficient free store

Not enough memory is free.

104 task table full

There are already 20 processes active—this is the maximum.

120 argument line invalid or too long

The argument list for this command is incorrect or contains too

many arguments.

121 file is not an object module

The called file cannot be executed.

347

3. AmigaDO S Amiga System Programmer's Guide

122 invalid resident library during load

The resident library called is invalid.

202 object in use

The specified file or directory is currently being used by another

program and cannot be used for other applications.

203 object already exists

The specified filename already exists.

204 directory not found

The directory selected does not exist

205 object not found

The channel with the name specified does not exist

206 invalid window

The parameters specified for the window to be opened are not

correct

209 packet requested type unknown

The desired function is not possible on the specified device.

210 invalid stream componentname

The filename is not valid (too long or contains illegal

characters).

211 invalid object lock

The specified lock structure is invalid.

212 object not ofrequired type

Filename and directory name were interchanged.

213 disk not validated

Either the disk was not recognized by the system or it is

defective.

214 diskwrite-protected

The disk is write-protected.

215 rename across devices attempted

The rename function is possible only on the same drive.

216 directory not empty

Anon-empty directory cannot be deleted.

348

Abacus 3.1 the DOS library

218 device not mounted

The disk selected is not inserted.

219 seek error

The Seek() function had illegal parameters.

220 comment too big

The file comment is too long.

221 disk full

The disk is full or does not have enough room for this operation.

222 file is protected from deletion

The file cannot be deleted or is delete-protected.

223 file is protected from writing

The file cannot be overwritten.

224 file is protected fromreading

The file cannot be read. With the last three error messages you

can use the LIST command to check the status of the files in
question.

225 not aDOS disk

This disk is not in AmigaDOS format.

226 no disk in drive

There is no disk in the specified drive.

232 no more entries in directory

The last ExNextO function could not find a matching file in the
directory.

349

3. AmigaDOS Amiga System Programmer's Guide

3.2 Disks

The Amiga is very heavily disk-oriented, that is, it often has to load

something from disk. Therefore it is important that the information on

a disk is stored securely and can be retrieved quickly again. In this sec

tion we'll look at the structure of the disk and the interpretation of the

data on it

The basic structure of the disk is as follows:

• Side of head number (0 or 1)

• Track or cylinder (0 or 79)

Sector (0-10)

Every Amiga disk is double-sided. Each side of the disk is in turn divid-

Figure 3.2.1

The outer track is numbered 0 and the inner 79. These tracks are also

sometimes called cylinders.

Track 0

Track 79

Blocks

Blocks

11-21

00-10

"1
i i i i i i i i m

Side

mmm i i i i i i i

Side

1

I

0

350

Abacus 3#2 disks

Each of these tracks is in turn divided into 11 sectors, which are num
bered from 0 to 10. The sectors are also sometimes referred to as
blocks, but while the sectors are numbered from 0 to 10, the blocks are
numbered from 0 to 1759, since these designate the logical sector num
bers of the disk.

Each of these sectors contains 512 bytes of available information,
whereby each disk can contain 512*11*80*2 = 901120 bytes. Not all of
this is available for storing user data, since managing the data also
requires some space.

The first logical sector, the first block on the disk, lies on side 0, track
0, sector 0. The following block is the next sector of this track, and so
on. Block 11 is not the first sector of the second track, but the first
sector of the first track on the other side of the disk (side 1). The disk is
always read or written on alternating sides in this manner.

3.2.1 The boot procedure

The first contact with the disk takes place when the Amiga is turned on.
After some hardware initializations in the computer have been com
pleted, drive 0 starts to run. What is going on?

Regardless of whether Kickstart is built into the Amiga or not, it

always tries to load something from the disk in this drive. If Kickstart
is not built in, the computer loads it from disk, otherwise it looks for a
Workbench diskette. This loading process when the computer is turned
on is called booting.

The first thing loaded from the inserted diskette are the boot blocks,
which occupy the first two sectors (0 and 1) of the disk. These contain
information about the type of diskette. The possible types are:

• Kickstart

DOS, a loadable DOS diskette (Workbench)

• Unformatted or non-Amiga-format disk

The first four bytes of the first block of the disk indicate its type. Here

there are either the letters DOS with a terminating zero byte for a DOS

diskette or KICK for a Kickstart disk. If something else is found here,
then the disk is not recognized (BAD).

The four bytes which follow represent the checksum of the boot block

as a long word. If this sum is correct, the Amiga assumes that the disk
is a Workbench disk.

351

3. AmigaDO S Amiga System Programmer's Guide

The next long word contains the number of the disk block called the

root block, which is normally $370 (880). The meaning of this block

is explained shortly.

A program starts at the seventh word. This program, if the checksum is

correct, is executed. A pointer to the Exec base is passed in A6 so that

Exec functions can be called.

Boot block (sector 0)

L-wonl Name Contents Description

0 Disk type DOS, KICK Four letter disk type

1 Checksum ??? Block checksum

2 Root block $370 Number of the root block

3-127 Data Bootprogram

The program which is usually located here uses the FindlibraryO func

tion of Exec to determine if the DOS library is present. If this is not

die case, the value -1 is returned in DO. If so, a zero is returned in DO

and a pointer to the DOS initialization routine in A0.

With a custom program the entire boot procedure and thereby the ini

tialization of the Amiga can be customized here. This allows you to

create your own Workbench disk, since several disk monitor programs

can create the checksum. This checksum is absolutely necessary if the

Amiga is to recognize this block as a boot block.

3.2.2 File structures and data distribution

In order to store data on a disk with a capacity of about 880K in a man
ner such that it can be retrieved again later, there are some rules about

die distribution of data. These rules are naturally known to AmigaDOS,
so you don't necessarily have to know them. But if an error ever occurs

on the disk, you have to know how to be able to save the remaining

data.

This is the purpose of the DISKDOCTOR program. To understand the

operation of this rescuer, you have to look at various aspects of the disk

format

An important point is the distribution of files on the disk and the

structure of the directory.

352

Abacus 3.2 Disks

3.2.2.1 Disk layout

in contrast to many disk formats, the directory of the Amiga disk is not

found in a group of contiguous sectors. This is why the output of the
directory takes so long.

This method has advantages and disadvantages. The disadvantage is the
long access time to the directory. This disadvantage is offset by a sig
nificant advantage, however the possibility of "repairing" a damaged
diskette.

If an error occurs in the directory track of another system, such as the
Atari ST, big problems result. The position of the data and the corre
sponding sectors is no longer known and the data can be saved only
with an enormous effort (if at all).

This is not the case with the Amiga. As the existence of the DISK-

DOCTOR makes clear, the individual files are relatively easy to find
without a central directory. This is achieved through substantial redun

dancy, which takes up room on the disk, but which also increases the
security of the data.

How does this work? To understand how the data are distributed on the
disk, we must first look at the structure of the various disk sectors.

Root block Aside from the boot sectors, the root block is found at a defined loca
tion on the disk. This is normally side 0, track 40, sector 0, and thus

block number 880 ($370). The third long word of the boot sector also
contains this number.

This block contains the root of the entire disk. Here lies the top direc

tory as well as the disk name and its creation date. The structure of this

block is as follows (all values are long words, 4 bytes):

Word

0

1

2

3

4

5

Name

Type

HeaderKey

HighSeq

HTsize

reserved

Checksum

Contents

2

0

0

$48

0

m

Description

Type 2 (T.SHORT) means that this

block is the starting block of a

structure.

has no meaning here

has no meaning here

This is the size of the table in

which the starting blocks of the

files and subdirectories are listed

(hash table), linked together.

has no meaning here

Contains a value which brings the

sum of all words in this block to

zero

353

3. AmigaDOS Amiga System Programmer's Guide

Woid Name Contents Description

6

78

79

105

106

107

108

121

122

123

124

125

126

127

Hash table

BMflag

BMpages

Days

Mins

Ticks

Disk name

Create days

Create mins

Create ticks

Next hash

Parent dir

Extension

Sec. type

-1

0

0

0

1

Here begins the table in which the

starting blocks of the files and

directories are stored

This flag contains -1 (true) if the

disk bit map is valid

The following table contains

pointers to the blocks which con

tain the bit map. Usually this is

only one block so that the remain

ing pointers in the table are zero.

Contains the date when the disk

was last modified

Time of modification

Seconds ofmodification

Name of the disk as a BCPL string,

that is, the first byte contains the
number of characters in the name

(max. j\j)

Creation date of the disk

Creation time

Creation seconds

always zero

Pointer to the parent directory,

always zero

always zero

This word represents the secondary

type of the block. For the root

block this is 1.

The values in the hash table specify the blocks in which the file or
directory chains start within the root directory. Since this table doesn't
contain enough values, chains are formed from the files and directories

whose names have a certain relationship.

A value is calculated from the file/directory name which lies between 6
and 77. The long word in the hash table which indicates that the chain

begins is accessed with this value.

The function used to calculate this value is:

Hash=length of the name

per letter of the name

Hash=Hash *13

Hash=Hash +ASCII value of character (always uppercase)

Hash=Hash& $7FF (logical AND)

Hash=Hash modulo 72

Hash=Hash +6

The section about the TrackDisk device contains an assembly language

program for evaluating the hash table to illustrate how this algorithm

can be programmed.

354

Abacus 3.2 Disks

File header

block

The start of the chain thus lies where the calculated pointer in the hash
table points. The 124th long word of this block contains the number of

the next entry in the chain, and so on, until a zero in the pointer indi

cates the end of the chain.

These blocks, which form the start of a file or directory structure, are
specially constructed. Let's start with the first block of a file, the file
header block.

This block contains information about the corresponding file. This

includes its name, time of creation, and a comment about the file as
well as the size and location of the file on the disk.

The structure of this block is as follows:

Word

0

1

2

3

4

5

6

78

79

80

81

82

105

106

107

108

124

Name Contents

Type

Headerkey

High seq

Data size

First data

Checksum

Data blocks

reserved

reserved

Protect

Byte size

Comment

Days

Mins

Ticks

Filename

Hash chain

2

0

0

m

0

0

Description

Type 2 (T.SHORT) means that this block

is the starting block of a structure.

The block number

Contains the total number of blocks in

this file

Here is the number of the first data block

in the file. This value is also in word no.

77.

Contains a value which makes the sum of

all words in the block zero

Here begins the table in which the data

blocks of the file ate listed. The table

starts at word no. 77 and works backwards.

This word contains the status of the file in

the lower four bits:

Bit Protected against, if set

0 Delete

1 Modification

2 Write

3 Read

Length of the file in bytes

Here begins the file comment as a BCPL

string (max. 22 characters)

Contains the date when the file was created

Time of creation

Seconds of creation

Name of the file as a BCPL string, that is,

the first byte contains the number of char

acters in the name (max. 30)

Block number of the next file in this chain

or zero

355

3. AmigaDOS Amiga System Programmer's Guide

Woid Name Contents Description

125 Parent

126

127

Pointer to the directory in which this file

Extension 0

Sec. type -3

Pointer to the extension block or zero

This word represents the secondary type of

the block. For the file header block this is

-3 ($FFFD).

Entry no. 126 is always non-zero when the data block table is not long

enough to store all of the blocks for this file. If this is the case, it

points to a block in which this list is continued.

File list block This block, which continues the block list, is called the file list block

and is constructed is follows:

User directory

block

Word

0

1

2

3

4

Name

Type

Headerkey

Highseq

Data size

First data

Contents

$10

0

0

Description

Type $10 (TUST) means that this

block is an extension of a file struc

ture.

The block number

Contains the total number of

entries in the data block table

Here is the number of the first data

5 Checksum 717

6 Data blocks

78

124

125

126

info

Hash chain

Parent

Extension

127 Sec. type

0

-3

block in the file. This value is also

in word no. 77.

Contains a value which makes the

sum of all words in the block zero

Here begins the table in which the

data blocks of the file are listed.

The table starts at word no. 77 and

works backwards.

reserved

Block number of the next file in

this chain (always zero)

Pointer to the file header block

Pointer to the extension block or

zero

This word represents the secondary

type of the block.

Each directory starts with such a block, constructed similarly to the root

block:

Won! Name Contents Description

0 Type 2 Type 2 (T.SHORT) means that this

block is the starting block of a struc

ture.

1 HeaderKey 0 The block number

2 HighSeq 0 has no meaning here

3 HTsize 0 has no meaning here

356

Abacus 3.2 Disks

Word Name Contents Description

4

5

6

78

80

82

105

106

107

108

124

125

126

127

reserved

Checksum

Hash table

reserved

Protect

Comment

Days

Mins

Ticks

Dir. name

Next hash

Parent dir

Extension

Sec. type

0

m

0

0

2

has no meaning here

Contains a value which brings the

sum of all words in this block to zero

Here begins the table in which the

starting blocks of the files and direct

ories are stored

has no meaning here

This word contains the status of the

file in the lower four bits:

Bit Protected against, if set

0 Delete

1 Modification

2 Write

3 Read

Here begins the directory comment as

a BCPL string (max. 22 characters)

Contains the date when the directory
was created

Time of creation

Seconds of creation

Name of the directory as aBCPL

string (max. 30)

Next entry of the same chain

Pointer to the parent directory

Always zero

This word represents the secondary

type of the block. For the user direct

ory block this is 2.

Of course, in addition to these structure blocks there are also data blocks
on the disk. These have the simplest structure:

Data block Word Name Contents Description

•type

Headerkey

Seqnum

Data size $1E8

Next data

Checksum ?7?

Data

Type 8 (T.DATA) means that this is

a data block

Here is the block number of the file

header

Running number of the data blocks in

this file

Valid data words in this block ($1E8

or fewer).

Number of the next data block of this

file

Contains a value which brings the

sum of all words in this block to zero

Here the data itself starts

Now all we're missing is the block containing the bit map mentioned

in conjunction with the root block. This block contains one bit for each

357

3. AmigaDOS Amiga System Programmer's Guide

block on the disk, indicating whether the block is free or allocated. The

structure of the bit map block is very simple:

Bit map block Word Name Contents Description

0 Checksum W Block checksum

1-55 Bitmap Allocation bits for all blocks. Bit 0 of

the first long word stands for block 2,

etc. A set bit indicates a free block.

After this look at the layout of the files on the disk, we'll now see how

such a file is constructed.

3.2.2.2 Program structure

Actually a program is nothing more than a set of binary data words
forming a machine language program. On the "good old eight-bitters"

storing such a program wasn't a problem: just write the program from

memory onto disk and you're done.

A machine like the Amiga, however, presents a number of problems

which make this method unusable. The first problem is the allocation

of memory. If the memory in which the program was run the first time

is already occupied the next time it's called, it would no longer be pos
sible to just do a "straight load" of the program. The program must be

loaded at a different location in memory, which for a normal machine

language program which uses absolute addresses means that it won't

run.

This program was solved on the Amiga by storing a program on the

disk such that all absolute addresses in the program are set up for a start

address of $0000. If the program is then started at $20000, for instance,

then all of these incorrect addresses must be corrected before the pro

gram can be started, that is, they must be incremented by $20000. So
that the DOS, which accomplishes this, can find the addresses in the
program which needs to be changed, a table must be stored along with

the actual program. This table contains all of the offsets which point to

a long word to be changed.

So now there are two sections which have to be saved in a program file:
the program itself and the table, called the relocation table. But there is
a whole set of such pieces which the Amiga uses. A program fragment

composed of such parts is called a hunk. One or more hunks make up a
program unit, of which one or more form an object file. A load file

consists of one or more object files, and this load file is the executable

program*

358

Abacus 3.2 disks

The difference between these two file types is that an object file con
tains a not-yet executable program that was created by a compiler or
assembler, for example. If you wish to make an executable program out
of one or more of these files, a linker must be used. This is a program
which links object files together into a single program, which is then
stored as a load file. The result can be started simply by entering its
name in the CLI.

The advantage of this method is that various parts of a program which
call each other can be created and compiled separately. The main
program, which might be written in C and which contains the main

routine, can then simply call the functions in the other files. Removing
the functions from the main program makes the program more readable,
since it can be much shorter than the entire program.

The reason that the individual programs cannot run separately becomes
clear. Parts of the program are called which are not actually contained in
this program! Not until the sections are processed by the linker are all
functions combined into a single program file.

Let's start with the smallest sections which make up hunks. Some of
these program file parts occur only in object files, some only in load
files. They start with a given long word, which is listed in hexadecimal
in parentheses in the following list.

Overview of hunkjmit ($3E7)

possible hunk A program unit in an object file starts with this part. After the
parts: code $3E7 comes the length of the name of this unit and then the

name itself, which must end on a long word boundary.

hunkjiame ($3E8)

Here lies the hunk name: After the $3E8 comes the length of the

name and then the name itself, which must end on a long word
boundary.

hunk_code($3E9)

This part contains a program fragment which can run after the

absolute addresses have been corrected. After the code $3E9

comes the number of long words in the program and then the

long words themselves.

hunk_data($3EA)

This is also the start of a program segment, but it contains ini

tialized data for the program. Some of these data can also require

address correction. Following the code is the number of data and

the data themselves.

hunk_bss ($3EB)

The data in this section belongs to the program itself, but they

have no defined contents. Thus after the code is only the number

of long words needed, but not the data itself.

359

3. AmigaDO S Amiga System Programmer's Guide

hunkjeloc32($3EC)
This block contains the offsets which point to the address long

words in the program to be corrected. These offsets are valid for
the entire program. The division of this block is as follows:

After the code $3EC comes the number of offsets contained in the first
table. The next long word indicates the number of the hunk to which

these offsets refer, followed by the offsets themselves. The next long
word is again a number, followed by the hunk number for this table,

etc., until a zero occurs as the number and this hunk section ends.

$3EC (hunk_reloc32)

Number of offsets

Hunk number

Offsets...

Number of offsets (or 0: end)

Hunknumber

Offsets...

• 0: end of hurik_reloc32

In this manner the table can cover all hunks which make up the

program.

hunkjelocl6 ($3EC)
This table is constructed just like hunk_reloc32 except that these

offsets refer to 16-bit addresses. Such addresses occur only for

PC-relative addressing.

hunkjreloc8($3EE)

This table also has the same format as hunkjeloc32. The offsets

contained here are used for 8-bit addresses, which occur in PC-

relative addressing.

hunk_ext($3EF)

This block contains the names of the external references. Such

references occur only in object files. These involve addresses of

functions or subroutines which are unknown to the program frag

ment and which must be resolved by the linker.

Following the code are several "symbol data units," which are termi

nated by a zero word. These symbol definitions have the following

structure:

360

Abacus 3#2 disks

1 byte: symbol type. Possible values:

Name Value Symbol type

ext_symb 0 Symbol table for debugging
extjdef 1 Definition to be corrected
ext_abs 2 Absolute definition

extjes 3 Reference to resident library
ext_ref32 129 32-bit correction

ext_common 130 General 32-bit correction

ext_refl6 131 16-bit correction
extjrefB 132 8-bit correction

3-byte value for the length of the name (in long words)

Symbol value hunk_symbol ($3F0)

and other data This block contains symbols with their names and values. These
symbols are of interest to the debugger, not the linker. A debug
ger is a program for debugging other programs and this table
allows the debugger to refer to addresses in the program by name
rather than number. The code $3F0 is followed by symbol data
units, terminated by a zero.

hunkjlebug($3Fl)

The construction of this block is not completely defined. It can
contain information about the program which can be accessed by

the debugger. The block must simply start with $3F1 followed
by the number of long words it contains.

hunk_end($3F2)

This is the necessary block in the hunk. It consist only of the

code, which is also the last long word of a program on the disk.

hunk_header($3F3)

A load file starts with this block. Here is specified the number of

hunks in the program to be loaded and how large they are. In

addition this block contains the names of the resident libraries

which must be loaded along with this program. The structure is
as follows:

• Hunk header ($3F3)

• Length of the name of the first hunk (in long words)

• Hunk name

• Length of the name of the second hunk (or 0: end)

• Hunk name

0: end of the name list

Highest hunk number + 1: table length

Number of hunk to be loaded first

Number ofhunk to be loaded last

Here start the program hunks

361

3. AmigaDOS Amiga System Programmer's Guide

hunk_overlay ($3F5)
This block is needed when working with overlays. This is when

a memory area occupied by the program is overwritten by

another program or data segment. The table after the $3F5 code

contains specifications about the table size, the highest level of

overlays (the number of overlay processes) and the data to be

loaded itself.

hunkJbreak($3F6)

This code marks the end of the overlay program section.

To take some of the confusion out of this program structure and to

demonstrate it, here is a short example. In Section 3.3 we presented a

short machine language program which represented the CLI command
FONT. You can use the TYPE command of the CLI to see how the
program was placed on the disk (by the assembler) by listing the con

tents of the program file Font Your output may differ depending on

what assembler you used. This can be done on the screen with

>type Font opt h

or cm the printer with

>type Font to PRT: opt h

You then get the following output:

0000:

0010:

0020:

0030:

0040:

0050:

0060:

0070:

0080:

0090:

00A0:

00B0:

00C0:

00D0:

00E0:

000003F3

00000001

00000024

000A51C8

2C790000

FE6823C0

00884EAE

00000009

0008203C

4EAEFF70

79009B30

3B4F7065

00000018

00000046

000003F2

00000000

00000024

/ 53406700

FFF66000

000443F9

00000088

FFC42200

2C790000

FFFFFFFF

4E75646F

3B33313B

/ 000003EC

00000024

00000052

/ 000003EB

00000002

00000001

00180C18

000813E0

00000072

67000028

243C0000

00884EAE

22002C79

732E6C69

34306D00

00000007

00000030

00000068

00000001

00000000

/ 000003E9

00206600

0000007F

70004EAE

2C790000

007E263C

FFD06000

00000088

62726172

00000000

00000000

0000003A

00000000 /

/ 000003F2

The slashes are not in the output—we just added them to separate'the

individual hunk sections. Let's take a look at these sections:

At the start is the code $3F3, hunkjheader. The $0 which follows it

indicates that there is no hunk name. The $2 indicates that this program

file consists of only two hunks. The first hunk to be loaded is number

$0, the last is number $1. The sizes of these two hunks are $24 and $1.

362

Abacus 3.2 Disks

The section containing the program code starts with the code $3E9
(hunk_code). The length is specified by $24. Following this are $24
(36) long words ofprogram code.

After this is the table of offsets for correcting the addresses, starting
with the code $3EC (hunk_reloc32). The number is specified by $7 and
these offsets refer to hunk number $0. Now come the seven offsets
themselves. The first of these offsets, $18, refers to the value
$0000007F, which is the $18th word of the code. When the program is
loaded the starting address is added to this long word so that the effective

memory address of the addressed byte results. The same is done with the
other offsets in the reloc32 list

The list is followed by a $0, which marks the end of the hunk reloc32
list.

The $3F2 code (hunk_end) which follows indicates the end of the first
hunk. The second follows, with a length of $1.

After this is the code $3EB (hunk_bss), followed by the number $1.

This means that one long word is reserved, in which the program stores
the DOS base address.

The conclusion is the code $3F2 (hunk_end) which signals the end of
the second hunk and also the program.

3.2.2.3 The IFF format

IFF stands for Interchange File Format, so IFF format is a little redun

dant. This is a format in which diverse data files are constructed so that

they can be read and evaluated by other programs.

Actually this does not belong in an Amiga programmer's book, since

IFF is not directly related to the Amiga. It was developed by the Elec

tronic Arts company and has become such a standard that has appeared

in many places since. This is why we want to present an overview of

the IFF structure here.

Why do you need a standardized format? Imagine that you have drawn a

picture on the Amiga with some program. This picture consists Of data

which causes the various colors to appear on the screen.

If you want to save these data on the disk so that they can be retrieved

again later, some problems arise: How large should the picture contain

ing these data be? What color mixes should be used?

363

3. AmigaDOS Amiga System Programmer's Guide

As you can see, the screen data alone are not enough. You must store

additional information in the file in such a manner that other programs

can retrieve it.

This problem was solved by the introduction of the IFF. Here data are
stored in a predefined manner. Each of the various data blocks has a
header which consists of four words and a data word containing the

block length.

The word FORM marks the start of an IFF file, meaning that this is
the start of a given user form (text, graphic, etc.). The long word which
follows specifies the length of the form. This form is a combination of
data blocks, called chunks. An IFF file can theoretically consist of
multiple forms, such as text and graphic files combined. Generally a
file consists of just one form, however, since it is usually just a text,

graphics or sound file.

After the word FORM comes a long word with the length of this form

in bytes, which is usually the file length -8. Then comes another four-
letter word which specifies the type of the file (ILBM, WORD, etc.).

Immediately after the type is the code for the first chunk, followed by
its length. After this are the data, padded to an even address if necessary,

then the next chunk, and so on until the end of the form is reached.

An overview:

"FORM" ;start of an IFF form

Form length ;length of the form in bytes

Type ;code, such as ILBM, WORD, SMUS, 8SVX

Chunk name ;name of the chunk, such as NAME, AUTH, BODY

Chunk length ;length of the chunk in bytes

etc.

There are a large number of chunk types. Here is an overview of the

most important types, along with their codes and descriptions:

Text file BODY Main data section for graphics

(WORD) COLR Color of the text

DOC Document style

FOOT Footer

FONT Text font

FSCC Text color information

HEAD Header line

PARA Layout information (margins, etc.)

PCTS Information about the graphics to integrate into the text

PINF Information about the graphics themselves

TABS Tab information

TEXT Actual text section

364

Abacus 3.2 Disks

Graphics file BMHD

(ILBM) CMAP

BODY

Music file

(SMUS)

8-bit digitized

sound file

(8SVX)

SHDR

NAME

(c)
AUTH

ANNO

TRAK

VHDR

NAME

(c)
AUTH

ANNO

BODY

ATAK

RLSE

Graphics control data

Color table

Graphics data

Sound control data (tempo, volume, sound channel)
Name of the music piece

Copyright notice

Name of the author

Comment about the piece

Channel specification

Control data (type, tempo, octave, volume)

Name of the sound
Copyright notice

Name of the author

Comment about the sound

Sound data

Attack information

Release information

If you have an IFF file on a disk, you can look at its structure. The fol
lowing assembly language program displays all of the codes and chunk
lengths in a window. The name of the file is inserted directly into the
program.

;***** iff Demo program 6/87 S.D. *****

;*Start from CLI only

OpenLlb

closelib

ExecBase -

Open -

Close

Seek

Read =

Write

mode_old

key = $bfec01

—408

=-414

-4

=-30

=-36

=-66

=-42

=-48

=1005

run:

;special key status

jPointer to Exec library

;open DOS library

move.l execbase,a6

lea dosname(pc) ,al

moveq #0,d0

jsr openlib(a6)

move.l dO.dosbase

beq error

move.l #consolname,dl jconsoie definition

move.l #mode_old,d2

move.l dosbase,a6

jsr open(a6)

beq error

;CON: open window

365

3. AmigaDOS Amiga System Programmer's Guide

move.l dO,conhandle

move.l

move.l

move.l

jsr

beq

move.l

loop:

cmp.b

beq

#filename,dl

#mode_old,d2

dosbase,a6

open(a6)

error

dO,filehandle

#$37,key

qu

;open file

Alternate pressed?

;yes, quit

move.l #-l,dO

del:

dbra dO,del ;short pause for reading.,

bsr

beq

bmi

move.l

move.l

move.l

jsr

beq

move.l

cmp.l

bne

st

bra

noform:

tst

beq

clr

move.l

bsr

bra

form:

bsr

beq

bmi

move.l

bsr

cmp.l

beq

move.l

move.l

addq.l

bclr

read4

qu

error

conhandle.dl

#buffer,d2

#6,d3

write (a6)

error

buffer,d5

#'FORM\d5

noform

flag

form

flag

form

flag

;read decelerator

;EOF

;Error

{buffer address

;4 characters

;outpuff declarator

Jsave declarator

;FORM?

;no

;else set flag

;and continue

;code?

;no

jelse clear flag

#• \outbuff Jidentification

print

loop

read4

qu

error

buffer,dO

phex

t'FORM'.dS

loop

filehandle,dl

. buffer,d2

#l,d2

#0,d2

;and continue

;read length

;EOF

^Irror

;value in DO

;and display

;form?

;yes: next

;on even address

366

Abacus

move.l

jsr

bra

qu:

move.l

move.l

move.l

jsr

move.l

move.l

move.l

jsr

bra

error:

ende:

move.l

move.l

jsr

move.l

jsr

move.l

move.l

jsr

rts

read4:

move.l

move.l

move.l

jmp

phex:

lea

move

move

niblop:

rol

move

and

add

cmp

bis

add

nibok:

move.b

dbra

move.b

print:

move.l

#0,d3

Seek(a6)

loop

conhandle,dl

#endtext,d2

#25,d3

Write(a6)

conhandle,dl

#buffertd2

#l,d3

Read(a6)

ende

conhandle,dl

dosbase9a6

Close(a6)

filehandle,dl

Close(a6)

dosbase,al

execbase,a6

CloseLib(a6)

filehandle,dl

#bufferfd2

#4,d3

Read(a6)

outbuff,aO

dO,d2

#3fd3

#4,d2

d2,dl

#$f,dl

#$30,dl

t'^.dl

nibok

#7,dl

dl,(aO) +

d3,niblop

#$a,(aO)

dosbase,a6

3.2 Disks

jmode: OFFSET_CURRENT

;find next part

;continue...

;end of text

Joutput

puffer address

;l character

;read

;close window

Jclose file

;close DOS.lib

;done!

;read 4 characters

puffer address

;read 4 characters

;output DO in hexadecimal

;4 digits

;shift left nibble down

;mask

jconvert to ASCII

Jdigit?

;yes

Jelse correct

;character in output buffer

Jcontinue loop

;return to end

367

3. AmigaDOS Amiga System Programmer's Guide

move.l

move.l

move.l

jmp

align

dosbase:

conhandle:

filehandle:

flag:

outbuff:

buffer:

consolname:

dosname:

filename:

endtext:

align

conhandle,dl

#outbufffd2

#5,d3

Write(a6)

;output buffer

;5 characters

Joutput

;even

dc.10

dc.10

dc.10

dew 0

dc.b ' •

dc.b • ■

deb »RAW:0/10/400/240/** IFF format',0

deb 'dos.librarySO

deb 'IFF file ",0

deb ****** Press any key ******

;even

The program opens a window and outputs the codes and lengths of the

chunks in the file. The name of the file must be entered as filename: in

the program. A short delay loop is included in the output to make the
output easier to read. If it is taking too long for you or the file is not an

IFF file, you can end the program by pressing the Alternate key. It then

waits for a keypress and the window is closed.

368

Abacus 3.3 Programs

3.3 Programs

Aprogram created by a linker or directly by an assembler can be started

simply by entering its name in the CLI. If you want to start it from

the Workbench, an .info file must also be created which contains the

icon of the program that is displayed in the Workbench window.

This icon can then be clicked to start the program.

3.3.1 Program start and parameters

As you already know from the CLI command, it is possible to specify

parameters in the line calling the program which can then be read and

evaluated by the program. Such a line cannot be entered when starting

from the Workbench, of course. There is a distinct difference between

passing parameters to a program between the CLI and Workbench.

The program which is being called must therefore distinguish which

user interface it is being called from and then get its parameters accord

ingly. Let's first look at the simpler case, starting the program from the
CLI.

3.3.1.1 Calling from the CLI

A program started from the CLI gets information about its parameters

in two registers. The address register contains the address in memory of

the text following the program name entered in the CLI. In addition,

the number of characters behind the actual program name is passed in
DO.

With these two pieces of information the program can easily read and

evaluate the parameters. In order to demonstrate this, a short assembly

language program follows which can be called with or without parame
ters.

This program is a CLI command which you can also copy to the C

directory. It has the job of changing the appearance of the text that

follows the call. For example, you can use it in your startup sequence if

you want to display a message underlined or in italics.

369

3. Disks Amiga System Programmer's Guide

If you have saved the program in the C folder under the name Font, it

can be called with the command:

>Font n

The parameter n can also be omitted and the program switches back to

normal text

If you specify a parameter, it must be a digit between 0 and 7. The

effects of these digits are:

0 Normal

1 Bold

3 Italic

4 Underline

7 Inverse video

You can also set bold and underline by calling Font 1 and Font 4 in

succession.

Here is the program:

;***** FONT command *****

; EXEC offsets

OpenLib =

ExecBase =

/ AmigaDOS

Write

Output =

Exit

run:

subq

beq

search:

cmp.b

bne

dbra

bra

found:

move.:

normal:

move.

lea

moveq

jsr

move.

beq

-30-378

4

offsets

-30-18

-30-30

-30-114

#l,d0

normal

#$20, (a0) +

found

dO,search

normal

b -<a0),ftext+l

1 execbase,a6

dosname,al

#0,d0

OpenLib(a6)

1 d0,dosbase

error

/byte number-1

/no parameters?

/find argument

/found

/set normal font

/set style

/pointer to Exec library

/open DOS library

/didn't work

370

Abacus 33 Programs

move•1

jsr

move.1

move.1

move.1

move.1

jsr

bra

error:

move.1

ende:

move.l

move • 1

jsr

rts

dosbase: dc,

dosname: dc.

dosbase, a6

Output<a6)

dO,dl

#ftext,d2

#tende-ftext,d3

dosbase,a6

Write <a6)

ende

#l,dO

dOrdl

dosbase, a6

exit (a6)

,1 0

,b 'dos.library',0

ftext: dc.b $9bf■0|31/40m1

tende:

;get standard output

/output handle in Dl

/text address in D2

/length in D3

/output text

/OK: done

/error status

/return parameter

/end of the program

/never returns

It's easy to write a C program which uses parameters. You just have to

use the startup.o file as the first element in the linker instruction,

which is generally done anyway. The parameter line is found in the

The startup program actually does even more. It also opens the DOS

library and sets up the standard I/O channels with the DOS functions

Ihput() and OutputO* The handles of these channels ate then in stdin and

stdout. The routine then starts the main routine of your C program.

Another piece of information that can be passed to the program from

the CLI is the size of the stack area to be reserved. This lies below the

return address of the CLI on the stack and can be read with the

command:

MOVE.L 4(SP),D0

This way the program can check to see if it has enough room on the

stack for its special requests.

In addition to these parameters, several others are passed by the CLI.

These parameters offer many possibilities for simplifying a CLI

program. More information is found in the section on transient CLI

commands.

This is the process for initializing a program started from the CLI.

Let's look at the other case: starting a program from the Workbench.

371

3. Disks Amiga System Programmer's Guide

3.3.1.2 Starting from the Workbench

When you start a program by double-clicking on its icon in the

Workbench window, the program is started under the displayed
name. This program has then passed parameters, but this time in the
form of a message rather than a text line.

Startup If you have written a program in C and provided it with the startup
program program through the linker, then you don't have to worry about this

lowing tasks when it determines that it's been started from the

Workbench:

1. First it opens the DOS library.

2. It waits for the startup message (WaitPort).

3. The message is fetched (GetMsg).

4. The number of arguments in the message is tested If it is 0, the

next step is skipped

5. Hie arguments which were passed are interpreted as a lock struc
ture and a corresponding directory is made in the current

directory.

6. The smJToolWindow argument is tested If it is 0, the specified

window is opened and its handle, if it was opened successfully, is

made the standard input

What does a program have to look like which does not have this startup

program available, such as an assembly language program?

Even if you don't need the message which the Workbench sends to your

program, you still have to fetch it Otherwise the guru inside your

computer starts to meditate. At the next I/O function, such as opening a

window, a message arrives at the message port which is not suitable for

this function.

You have to perform the same functions in your program that the

startup program does. First you call the Exec FindTask() function to get

a pointer to the structure of the process, your program. As an argument,

pass a zero in Al:

execbase » 4

FindTask « -294

WaitPort - -384

GetMsg = -372

372

Abacus 3.3 Programs

move.l execbase,a6 ;Exec base address in A6

suba.l al,al ;clear argument Al

jsr FindTask(a6) ;get pointer

In DO you get a pointer to your process structure. This structure con

tains information about whether the process was started from the CLI

or the Workbench:

move.l dO,a4 /pointer to process in A4

tst.l $ac(a4) ;pr_CLI: CLI or Workbench?

bne fromCLI /it was CLI!

If the tested argument is zero, the program was started from the Work

bench.

If this is the case, you have to wait for the receipt of the startup mes

sage. This is done with the WaitPort() function:

lea $5c (a4) ,aO ;pr_MsgPort: MessagePort in AO

jsr WaitPort(a6) ;wait for message

This function waits for a message to arrive at the message port In our

case this is the startup message from the Workbench. This message

must now be fetched so that it is removed from the message queue. The

GetMsgO function is used:

lea $5c(a4),aO ;RastPort address in AO

jsr GetMsg(a6) ;get message

You can now evaluate this message if necessary. In DO you get a

pointer to the message structure with the name WBStartup.

This message contains the following elements:

Offset Name Description

$14

$18

$1C

$20

$24

smJProcess

smJSegment

sm_NumArgs

smJToolWindow

sm ArgList

Process descriptor

Program segment descriptor

Number of arguments passed

Description of the window to open

Pointer to the arguments themselves

smArgList points to the elements of the arguments passed. These

arguments contain the information about the activated icons at the time

the program was started. Some programs use this so that a data file can

be selected along with the program by shift-clicking and then loaded and

processed by the program. The arguments of the list to which

sm_ArgList points consist of pointers:

waLock file lock (directory description)

wa_Name pointer to filename

373

3. Disks Amiga System Programmer's Guide

Icon library

To demonstrate the use and programming of this message evaluation,
we'll write a program which determines and outputs the tool types.

These tool types are the entries which can be written to the given file
with the Workbench INFO program. To do this, select a file (click

once) and then select the Info option in the Workbench menu. A dialog

window opens in which you can make entries in the input mask. You

can select tool types by clicking on Add. These entries are used by

some programs (such as Notepad).

These data are stored in the .info file which belong to the program. This
file also contains the data for the icon, its position in the window and
much more. To access this data from within a program there is another
library on the Workbench disk in the LIBS directory: the Icon library.

This library contains functions for processing the .info file. One of
them is the GetDiskObjectO function, which loads the .info file and
returns a pointer to its structure. Our program also uses this function.
Before we go into the details of the icon library and the DiskObject
structure, here is the program:

;** Workbench and .info evaluation demo S.D. **

execbase = 4

FindTask = -294

WaitPort = -384

GetMsg - -372

OpenLib » -408

CloseLib - -414

Open = -30

Close = -36

Read = -42

Write = -48

CurrentDir = -126

mode_old = 1005

GetDiskObject = -78

;EXEC base address

;find task

;wait for message

;fetch message

;open library

;close library

;open channel

;close channel

;read data

;output data

;set current directory

;mode for open

;load DiskObject

run:

move.l execbase,a6 ;Exec base address

suba.l al,al

jsr FindTask(a6)

move.l d0,a4

tst.l $ac(a4)

bne fromCLI

lea

jsr

$5c(a4),aO

WaitPort(a6)

jsr GetMsg(a6)

move.l d0fmessage

. **** open libraries and window ****

;find task

/pointer in A4

;pr_CLI: CLI or Workbench?

;CLI! done...

;WBench message

;wait

;get message

;save pointer

374

Abacus 3.3 programs

; **** open libraries and window ****

lea iconname,al ;"icon.library"

clr.l dO

jsr OpenLib(a6) /open ICON.library

move.l dO,iconbase ;save base

beq ~ end3 /error occurred!

lea dosname,al /Mdos.library"

clr.l dO

jsr OpenLib(a6) /open DOS

move.l dO,dosbase

beq end2 /error occurred!

move.l dO,a6

move.l #conname,dl

move.l #mode_old,d2

jsr 0pen(a6) /open CON window

move.l dO,conbase

beq endl /error occurred!

/**** Set the current directory, if necessary ****

move.l message,aO /pointer to WBMessage

move.l $24(aO),aO /sm__ArgList:

/pointer to arguments

beq ende /no arguments!

move.l (aO),dl /Dl => Lock

move.l dosbase,a6

jsr CurrentDir(a6) /set current directory

; **** Load DiskObject (.info file) ****

move.l message,aO

move.l $24(aO),aO /sm_ArgList pointer

move.l 4{aO),aO /wa_Name: pointer to name

move.l iconbase,a6

jsr GetDiskObject(a6) /load DiskObject

/ **** Output tool type entries in window ****

move.l dO,al /pointer to DiskObject structure

move.l $36(al),al /do_ToolTypes:

/pointer to ToolType array

move.l al,typetext /save text pointer

typesloop:

move.l typetext,al /load text pointer

move.l (al)+,aO /pointer to test in AO

cmp.l #0,a0 /test present?

beq nomore /no: end of output

move.l al,typetext /else save pointer

move.l aO,d2 /= text address for output

375

3. Disks Amiga System Programmer's Guide

lenlop:

tst.b (aO)+ ;find end

bne lenlop

sub.l aO,d3 /calculate length of text

not.l d3 ;and correct

move.l dosbase,a6

move.l conbase,dl

jsr Write(a6) ;output text in window

move.l conbase,dl

move.l #lf,d2 /Linefeed:

move.l #l,d3

jsr Write(a6) ;next line

bra typesloop ;to next entry!

; **** Thatfs all, now wait for a key ****

nomore:

move.l conbase,dl

move.l #l,d3 ;a character

move.l #buffer,d2 ;in buffer

jsr Read(a6) /read (wait for Return)

. ***• Program end: close everything and return ****

ende: move.l conbase,dl

move.l dosbase,a6

jsr Close(a6) /close window

endl:

move.l execbase,a6

move.l dosbase,al

jsr Closelib(a6) /close DOS

end2:

move.l iconbase,al

jsr Closelib(a6) /close ICON.library

fromCLI:

end3:

rts /End of program

. **** Data fields ****

dosbase: blk.l 1 /DOS base address

conbase: blk.l 1 /Window base

iconbase: blk.l 1 /icon.library base

message: blk.l 1 /pointer to WBMessage

typetext: blk.l 1 /text pointer

dosname: dc.b •dos.library',0

iconname: dc.b •icon.library■,0

conname: dc.b 'CON:10/20/300/100/** Message output SO

If: dc.b $a

buffer: blk.b 2

end

376

3.3 Programs

This program works only when it's started from the Workbench. Oth
erwise it is simply terminated (from CLI). In order to be able to start it
you have to make an icon for the program. This can be easily done with

the icon editor. Then it must be saved under the same name as the pro
gram above—the suffix info is appended automatically.

Once this is done you can click on the icon and select the Info item in

the Workbench menu. In the menu which appears you can then make
one or more entries in tool types and save them with SAVE.

When you then activate your icon with a double click, the correspond
ing program is loaded and started. The program then executes the
required steps to get and evaluate the Workbench startup message
(WBStartup) and the DiskObject structure.

The

DiskObject

structure

Offset

0

2

4

$30

$32

$36

$3A

$3E

$42

$46

$4A

Name

do Magic

do Version

dq_Gadget

doJType

doJDefaultTool

doJToolTypes

do_CunentX

do_CurrentY

do DrawerData

doJToolWindow

do StackSize

Contents

A "magic number" which indicates that this
file is valid ($E310)

Version number (1)

Here begins a gadget structure which

determines the appearance and position of
tint* \t*f\nuic lwun

Object type (tool, project, etc.)

Standard program for disk

Pointer to text field for types

Icon position in window

Pointer to subdirectory window structure

Standard window for tools

Stack size for tools

The pointer doJToolTypes points to a pointer list whose entries point

to the strings of the tool types entered in the Info window and end

with zero. These pointers can be used in the program to output the

strings.

From the example program you can easily see how you can access die

tool types of your program. The tool types can contain basic entries

which control the function of the program. This is also used in the

Workbench Notepad program, where the tool types parameter is used to

set the size of the input window, the file type and the font used.

The tool type entries are generally of the form:

NAME»<parameter>[I<parameter>]

This is also required by the Notepad. The advantage of this entry

method is that there are two functions in the icon library which can

check these lines.

377

3. Disks Amiga System Programmer's Guide

The first function, FindToolTypeO, with offset -96, searches the entries

of the tool types for a specific name. In the Notepad example, it
searches for a line with the name WINDOW. A pointer is then returned

to the parameters following the equals sign, or a zero if no line with

this name was found.

This pointer is then passed to another function, MatchToolType() with

offset -102, together with another pointer to a comparison parameter.

The resulting value indicates whether the comparison parameter

appeared in the line or not

This is used, for example, when a program can read files, but it is only

supposed to read certain types of files. If these types are entered in the
tool types, then you can check the type of the file to be loaded with the

types of those allowed.

3.3.2 Structure of the transient CLI commands

As you already know, the commands of the normal CLI are all tran

sient, that is, they are stored as programs on the diskette in the C
directory. When you enter something in the CLI, a check is made to

see if it's a filename in the current directory or if it's a command,
whose name is found in the C directory. If this is the case, the corre

sponding program is called.

Almost all commands need access to the DOS library in order to per

form the desired function. So that these programs open the DOS library

again, the programs do not have to pass parameters in the processor

registers.

The registers DO and A0 contain the length and address of the parameter

string which is entered after the command. This was explained earlier in

conjunction with the FONTS example.

The other registers contain values ofmore intrest:

Register Contents

DO Number of parameter characters

A0 Address of the parameter string

Al Pointer to start of stack

A2 Pointer to internal DOS library

A3 Pointer to stack size

A4 Pointer to start of program

A5 Pointer to routine for function call

A6 Pointer to return routine

Let's look at registers A2, AS and A6. With these registers you can

write a CLI command which doesn't have to open the DOS library

itself.

378

Abacus 3.3 Programs

The convention for calling these routines is somewhat different from
normal DOS calls. At the address to which A2 points lie a set ofjump
addresses which point to individual DOS routines. They are not called
directly, however, but with the address in A4 through JSR (A5). The
return parameter is passed in Dl, not DO. Also, the offsets in the table
are different from those in a normal call.

These offsets are not permanently set, since they are not documented by
Commodore. The offsets listed below are correct for the current Amiga
version.

Before listing the offsets for direct calls to DOS functions, we should
first explain how to use them. Below is a short program which does
nothing more than open a small window, wait for the Return key to be
pressed, and close the window again. These are three DOS functions
which are called without opening the DOS library.

A macro is used here for the function call. This macro is inserted wher
ever the macro name (doscall) appears in the program. The parameter
specified can also be inserted where \1 appears. This parameter is our
offset

;*****from the CLI: Basic DOS functions 6/87 s.D.*****

Open =$ff

Close =$5d

Read =$fd

;DOS command: Open

; Close

; Read

mode_old=l005

s

;*** Defined using AssemPro Amiga other assemblers macro

; call may differ ****

; **** Definition of the macro •doscall1 ****

doscall: MACRO $\1

move.b #\l,dO

ext.w dO

ext.l dO

lsl #2,dO

move.l 0(a2,d0),a4

moveq #$c,dO

jsr <a5)

ENDM

; ** direct DOS call **

/offset in long words

;convert

/function address

/function call

; **** Start of program ****

run:

move.l #consolname,dl /console definition

move. 1 #mode_old, 62 / mode

doscall Open /open CON: window

move.1 dl,conhandle

move.1 conhandle,dl

move.l #inbuff,d2 /buffer address

379

3. Disks Amiga System Programmer's Guide

move.l #l,d3

doscall Read

move.1 conhandle,dl

doscall Close

clr.l

jsr

dO

(a6)

;1 character

;read character (Return)

/close window

;with Close

';Status: OK

;end of the program

. ***• Data fields ****

conhandle: del 0

inbuff: blk.b 8

consolname: dc.b 'RAW:100/50/300/100/** Test window ',0

end

You see how easy it is to write a CLI command. Three DOS functions
were performed in a total of 12 lines of program text The FONTS pro
gram presented earlier can also be made shorter using this method.

The function offsets of the DOS functions are, as you can see, different
from those for the normal DOS calls. Here is a list ofDOS commands
and the offsets which are valid for the direct-call method:

DOS

commands

Offset

$FF

$5D

$FD

$FA

$41

$42

$F8

$F7

$F6

$F5

$6D

$71

$F4

$F3

$F2

$F1

$F0

Function name

Open

Close

Read

Write

Input

Output

Seek

Delete

Rename

Lock

UnLock

DupLock

Examine

ExNext

Info
CreateDir

CurrentDir

Offset

$EF

$EE

$02

$ED

$52

$EC

$EB

SEA

$E9

$E8

$E7

$2F

$57

$23

$E6

$E5

Function name

IoErr

CreateProc

Exit

LoadSeg

UnLoadSeg

GetPacket

QueuePacket

DeviceProc

SetComment

SetProtect

DateStamp

Delay

WaitForChar

PaientDir

Islnteractive

Execute

Actually, these are not really offsets but the number of the vectors to be

used in die table to which A2 points. The values over $7F are negative

values, meaning that an address below the address in A2 is used.

380

Abacus 3.4 Input/Output

3.4 Input/Output

A very important part of a program is the exchange of data with the

outside world, through the screen, keyboard, diskettes or other interfaces

and devices. This input/output (I/O) is what allows a program to make

full use of the computer on which it runs. There are three basic ways to
accomplish this.

The first is I/O through the appropriate DOS functions like Open(),

CloseO, Read() and Write(). This method is clearly the easiest because it

requires the least effort when programming. The disadvantage is that the

function must be completed before your program can continue.

The second method doesn't have this disadvantage. The magic word here

is "device". With these devices you can make the I/O run independently

while your program continues to run. The I/O thus runs in the back

ground, parallel to your program, and costs relatively little useful

processor time. The disadvantage of this technique is that it requires

significantly more programming effort

The third method for I/O is to program the hardware of the Amiga

directly. This assumes very precise knowledge of the system, however,

and has further disadvantage that it can lead to major complications in

the multitasking mode. More information about this method can be

found in the hardware section of this book.

Let's start by looking at I/O programming by the standard method:
using the DOS functions.

3.4.1 Standard I/O

As already mentioned, there are four DOS functions Open(), Close(),

Read() and Write() which are responsible for input and output of data.

Most of the functions which a program requires can be performed with
these.

I/O channels There is a whole set of I/O channels available which DOS knows by
name. These names can then be used in an Open command. The stan

dard channels are:

DFn: Designates the disk drive with the number n, which can be

0,1,2 or 3.

SYS: Designates the drive from which the system was loaded.

381

3. Disks Amiga System Programmer's Guide

RAM: Stands for the RAM disk, which is always available and

whose size conforms to the data it contains. It can be used

like a disk drive except that the information is stored in the

RAM of the computer instead of on a diskette.

NIL: This channel is a blackhole for data: data written to it is
thrown away and doesn't affect anything. This is sometimes

quite useful, such as when a program wants to output things

which you don't need.

SER: Stands for the serial interface (RS-232) and allows I/O

through this port

PAR: Designates the parallel printer port, which contains eight

input/output lines. You can read or write parallel data

directly with this port

PRT: Also stands for the parallel printer port, except that this

channel is used to address a printer. If the printer is defined
for the serial interface, then it is accessed through this chan

nel. The printer definitions can be made with the Preferences

program.

CON: Supplies a window for input/output This window is auto

matically opened when the channel is opened. The window

parameters are specified as follows:

CON:x/y/w/h/Name

x and y represent the coordinates of the upper left-hand
corner of the window on the screen, w and h are the width

and height of the window in pixels, and Name is the title of

the window. Thus:

CON:20/10/200/100/Test window

defined a window with the name Test window which starts

and positions x=20 and y=10 and which is 200 pixels wide

and 100 high.

RAW: Represents a window and echoes input and output in this
window. In contrast to CON:, no functions are provided
(such as editing a line) so that this window can only be used

in certain ways.

♦ Stands for the current window.

Let's start with probably the most important application: keyboard

input and screen output

382

Abacus 3.4 Input/Output

3.4.1.1 Keyboard and screen

As you can see in the previous table, AmigaDOS offers three options
for screen I/O: CON:, RAW: and *.

CON: window The DOS Open() function is used to open a CON: window. The func
tion expects a pointer to the name of the channel to be opened and the
mode in which it is opened The mode can be one of:

Modejiew

for a channel for writing only

Modejold

for a channel also used for reading, and

Mode_readwrite

in DOS Version 1.2, for a channel which can be both read and
written.

The Mode_old mode is used for opening a CON: or RAW: window

since the channel is already known and you can also read from it

To demonstrate this, here is a short assembly language program which

when started from the CLI, opens the CON: window, outputs a string

in it, waits for an input and then closes the window:

;***** simple CON: I/O *****

OpenLib - -408

closelib - -414

ExecBase « 4

; Amiga DOS offsets

Open ■ -30

Close = -36

Read - -42

Write =-48

Exit =-144

Mode_old = 1005

run:

move.l execbase,a6 /pointer to Exec library

lea dosname,al

moveq #0fd0

jsr openlib(a6) /open DOS library

move.1 dO,dosbase

beq error /didn't work

383

3. Disks Amiga System Programmer's Guide

move•1 dosbase,a6

move.1

move.1

jsr

move.1

beq

#name,dl

#mode_old, d2

Open(a6)

dO, conhandle

error

move.1 conhandle,dl

move.l #ttext,d2

move.1 #tende-ttext,d3

jsr Write(a6)

move.1 conhandle,dl

move.l #buffer,d2

move.l #80,d3

jsr Read(a6)

move.1 conhandle,dl

jsr Close(a6)

bra ende

error:

move.l #-l,dO

ende:

move.l dO,dl

move•1 dosbase, a6

jsr Exit(a6)

rts

dosname:

name:

ttext:

tende:

buffer:

align

dosbase:

conhandle:

end

;DOS base address in A6

;pointer to name

;mode

;open window

;save handle

;window handle in Dl

;text address in D2

;length in D3

/output text

/window handle

/buffer address

/max. length

/wait for input

/close window

/done

/error status

/end of the program

/never occurs

dc.b 'dos.library',0

dc.b 'CON^O/lO/aOO/lOO/** Test window

dc.b 'Enter some text! •,<)

blk.b 80

del 0

del 0

■,o

RAW: window The program above can also be run with RAW: instead ofCON:. If you
try this you will see the difference immediately. While the CON:

version waits for you to press Return, the RAW: version returns

immediately after any key is pressed. This also holds for the cursor and

function keys, which are not recognized by the CON: window.

A CON: window offers greater ease of use when entering strings, but a

RAW: window makes the whole keyboard available.

Both windows support more than the normal character representation.

Other styles, like underline and bold can be used. In addition, other
functions can be used to manipulate the window. The window contents

can be cleared, moved up or down, etc. All of these functions are called

384

Abacus 3.4 Input/Output

through control sequences, sometimes with parameters, output in the
window.

Here is a list of the control characters which perform functions. These
characters are listed in hexadecimal.

Sequence Function

08 Backspace

0A Linefeed, cursor down

OB Cursor one line up

0C Clear window

OD Carriage Return, cursor in first column

OE Switch to normal display (reverse OF)

OF Switch to special characters

IB Escape

The following sequences start with the characters $9B, the CSI (Control

Sequence Introducer). The characters following this generate a function.

The values in square brackets can be omitted. The specification n is

given as one or more number in ASCII characters. The value assumed

for n if it's omitted is given in parentheses.

Sequence Function

9B [n] 40 Insert n spaces

9B [n] 41 Cursor n (1) lines up

9B [n] 42 Cursor n (1) lines down

9B [n] 43 Cursor n (1) characters right

9B [n] 44 Cursor n (1) characters left

9B [n] 45 Cursor n (1) lines down n column 1

9B [n] 46 Cursor n (1) lines up in column 1

9B [n] [3B n] 48 Set cursor in line; column

9B4A Clear window at cursor

9B 4B Clear line at cursor

9B4C Insert line

9B4D Delete line

9B [n] SO Delete n characters at cursor

9B [n] S3 Move n lines up

9B [n] 54 Move n lines down

9B 32 30 68 Fromnow on: Linefeed => Linefeed+Return

9B 32 30 6C Fromnow on: Linefeed => nur Linefeed

9B 6E Send the cursor position. A string of the

following form is returned:

9B (line) 3B (column) 52

9B (style);(foreground color);(background color) 6D

The three parameters are decimal numbers in ASQI format They mean:

Style: 0=normal

l=bold

3=italic

4=underline

7=inverse video

385

3. Disks Amiga System Programmer's Guide

Foreground colon

30-37: Colors 0-7 for text

Background colon

40-47: Colors 0-7 for background

9B (length) 74 Sets maximum number of displayed lines

9B (width) 75 Sets maximum line length

9B (margin) 78 Defines the left margin in number of pixels

9B (margin) 79 Defines the top margin in pixels

The last four functions can be used to return to the normal settings by

omitting the parameters.

9B 30 20 70 Make cursor invisible

9B 20 70 Make cursor visible

9B 71 Send window dimensions. A string of the following

form is returned:

9B 31 3B 313B (lines) 3B (columns) 73

To demonstrate the use of these control characters, output the following

text in your window from the previous program:

text: dc.b $9b,"4;31;40m"

dc.b "underlined"

dc.b $9b,"3;33;40m",$9b,"5;20H"

dc.b "** Hello, world! **",0

The parameters for the control sequences are simply specified as ASCII

strings.

These sequences are received just as they are sent, when a function key

or cursor key is pressed on the keyboard. The characters which are

received are as follows (<CSI> stands for $9B):

Key

Fl

F2

...

F9

F10

HELP

up

down

left

right

Without shift

<CSI>0~

<CSI>1~

<CSI>8~

<CSI>9~

<CSI>?~

<CSI>A

<CSI>B

<CSI>C

<CSI>D

With shift

<CSI>10~

<CSI>11~

<CSI>18-

<CSI>19-

<CSI>?~

<CSI>T~

<CSI>S~

<CSI> A-

<CSI> @-

In this manner the program can determine almost everything the user

does with the keyboard. If this is still not sufficient, there is another

source of information: the RAW input events. These are events which

386

Abacus 3.4 Input/Output

can be reported by a sequence, if desired. The DOS can translate the
message from these events into a sequence which looks like this:

<CSI>n{

The n stands for a number between 1 and 16 which corresponds to the
event. These events are as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Key pressed

Mouse button pressed

Window was activated

Mouse moved

unused

Timer

Gadget selected

Gadgetreleased

Requester enabled

Menu selected

Window closed (see console device)

Window size changed

Window refreshed

Settings changed

Disk removed from drive

Disk inserted

Some of these events (10, 11) are not available in this case since a

window opened with DOS cannot access menus or the close symbol.

These things become interesting if you construct your own console

window, however. This is possible only through the combination of

Intuition and devices and is discussed later in the section on the console
device.

When an event occurs (such as the insertion of a disk), a sequence of the

following format is sent:

<CSI><class>;<subclass>;<key>;<status>;<X>;<Y>;<seconds>;

<microseconds>|

where:

CSI

Class

Subclass

Key

Status

The control sequence introducer $9B

The event number

Not used, always zero

Key code of the last key or mouse button

Keyboard status
Bit Mask

0 0001

1 0002

2 0004

3 0008

4 0010

Description

left Shift key

right Shift key

Caps Lock key

Control

left Alternate key

387

3. Disks Amiga System Programmer's Guide

Bit
5

6

7

8

9

10

11

12

13

14

15

Mask

0020

0040

0080

0100

0200

0400

0800

1000

2000

4000

8000

XandY

Seconds

Microseconds System time of event

Description

right alternate key

left Amiga key

right Amiga key

keypad

key repeat

interrupt (unused)

active window

left mouse button

right mouse button

middle mouse button (unused)

relative mouse coordinates

Coordinates of the mouse

pointer at the mouse event

The values which are obtained by this method are decimal numbers in

ASCII. If you want to evaluate these values in a program, they must

first be converted.

* window Most CLI commands use *, since this is the simplest method. Since

this specifies the current window, which is naturally open, no channel

has to be opened and closed.

The Read() and Write() functions need the handle of a channel from

which to read or write the data to, so you have to find out what it is.

InputO and The DOS functions InputO and Output() are provided for this purpose.

Output() These functions require no parameters and return the handle of the corre

sponding standard channel. This is the CLI window if the program was

simply called from the CLI. If the input or output was redirected with

< or > in the CLI, the handle derived from these functions is returned

by InputO or Output().

3.4.1.2 Disk files

Disk files can be opened and processed in the same manner as the
CON: or RAW: windows. The mode used when opening a file plays a

big role: if Mode_old is chosen, DOS looks for an existing file on the

disk, which can be read only. For Modejiew a file is created or an

existing file with the same name is erased. The file opened in this

manner can only be written. With Modejiew an existing file can be

both read and written.

TheDOS functions ReadO, Write() and CloseO operate the same way as
for screen I/O. However, some additional functions are available which

are very useful for working with disk files.

388

Abacus 3.4 Input/Output

Since data can be read again and again from a file, the system must have

some way of noting the last location accessed in die file. This is

accomplished with a pointer, which can also be set directly. The Seek()

function allows the file pointer to be moved forward and backward. The

new position can be specified as an absolute position, relative to the

current position, relative to the start of the file, or relative to the end of

the file.

Another DOS function allows a file to be removed from the disk: the

Delete() function. This can also be used to delete directories, provided

they are empty.

The names of files can be changed with the Rename() function. Here the

old and new filenames are simply passed to the function. An interesting

feature of this function is that you can change not only the name of a

file, but also its location in the logical structure of the disk. If a differ

ent path is specified in the new name, the file is moved (not copied) to

this new directory. This cannot be used to move a file from one disk to
another.

A disk file can also be protected against various operations. This is

determined by a mask passed to the SetProtection() function. The first

four bits of this mask (bits 0-3) indicate whether the file is protected

against the following actions:

Bit Meaning, if set

0 File cannot be deleted

1 File cannot be executed

2 File cannot be overwritten

3 File cannot be read

3.4.1.3 Serial interface

The serial interface can be treated just like the screen I/O. A channel

with the name SER: is opened and read and write can be performed with
this channel. However, three problems can occur in this process:

1) When the Read() function is called the Amiga waits for one or

more characters to be received from the serial interface. If none

arrive, the Amiga waits in vain. Therefore, a program which

wants to read data from this interface but is not absolutely sure

that any arrive should use the WaitForChar() function before

calling Read(). This function can be used to wait for a specified

length of time (given in microseconds) for a character to arrive. If

nothing arrives in this time, a zero is returned and the program

can output an error message and quit If something arrived, a -1

is returned and it can then be read.

389

3. Disks Amiga System Programmer's Guide

2) Data were received, but it does't know how many. The problem

described under 1) can occur. This is also why you never see

anything if you try to use COPY SER: TO * from the CLI. Tlie

CLI doesn't know when the data start and stop. Unfortunately,

such a command can be stopped only with reset

3) A program wants to send or receive data over the interface, but

the settings do not match. The Preferences program can be used

to change the settings and the process can be restarted, but this is

rather inconvenient The program can make these changes itself.

This cannot be done with a simple DOS function, however, and

requires the serial device I/O functions as described in the corre

sponding section.

3.4.1.4 Parallel interface

Programming the parallel interface is normally unnecessary because the

printer is usually connected to it. This device is quite interesting

because it can be used to both send and receive data.

The simplest way to program this interface is directly through the hard

ware registers. This has the disadvantage that problems can occur with

multitasking if another program wants to access this interface. Thus it

is better to access it through DOS. The data format is then predefined

but you lose the ability to program individual bits as inputs and out

puts, however.

390

4

Devices

Abacus 4. Devices

4. Devices

The devices represent one of the major strengths of the Amiga. These

involve program packages which perform certain tasks. These tasks are

assigned to the devices by a running program which can then either wait

for the result or continue. This allows a program to make easy use of

multitasking.

How devices The basic structure of such a device has already been explained in the

are Exec chapter. In this chapter we concern ourselves with the practical

programmed application. First a look at the general manner in which devices are

programmed:

1. Since the device uses a message to report when it has finished a

task, the receiver of this message, the program which initiated

the task must be determined. This is done with the FindTask()

function of Exec by passing it a zero as a parameter. The value

received is used in the next step.

2. A port is set up with the AddPort function for the message from

the device. This is a reply port. The pointer to the task structure

just obtained is entered in the SigTask entry (port address + $10)

of the message port structure.

3. The device is opened by means of the OpenDevice() function. A

pointer to the device name and one to the I/O structure must be

passed.

4. The parameters for the desired function are then entered in the I/O

structure. The number and types of these parameters differ widely

from function to function.

5. The device operation is started with Dolo() or Sendlo(). With

DoIO() the calling program waits for the OK signal from the

reply port, while SendIO() simply starts the process and the pro

gram can continue.

Here two structures appeared which control the communication between

the user program and the devices. These are the port and I/O structures,

which have already been described in other places. Here again is the

standard structure for I/O operations:

393

4. Devices Amiga System Programmer's Guide

STRUCT Offset Name Description

MsgNode

STRUCT

WExt

STRUCT

0

4

8

9

10

14

18

Offset

20

24

28

30

31

Offset

Succ

Red

"type
Pri

Name

Reply port

MNLength

Name

10 DEVICE

10 UNIT

10 COMMAND

10 FLAGS

I0_ERR0R

Name

Pointer to the next entry

Pointer to the previous entry

Entry type

Priority

Pointer to name

Pointer to reply port

Node length

Description

Pointer to device node

Internal unit number

Command

Flags

Error status

Description

WStdExt 32 I0_ACTUAL Number of bytes transferred

36 I0_LENGTH Number of bytes to be transferred

40 IOJDATA Pointer to data buffer

44 IOJDFFSET Offset (for TrackDisk device, for example)

48 Begins the extended structure

The normal I/O functions are performed by standard commands which

belong to the I/O definitions.

CMD

CMD"
CMD"
CMD'
CMD

CMD"
CMD

CMD"
CMD"

INVALID (0)

RESET (1)

READ (2)

WRITE (3)

"UPDATE (4)
"CLEAR
"STOP
"START
"FLUSH

(5)

(6)
(7)

(8)

Invalid command

Reset the device to original state

Read from the device

Write to the device

Process the buffer

Clear all buffers

Insert pause

Continue after pause

Stop current task

In addition to these commands, there are additional ones for each device

which are explained in the examples which follow.

On a normal Workbench diskette some devices are found in the DEVS
directory. Other devices are not in the directory, but can still be accessed

because they are resident in the Amiga.

We'll look at examples ofprogramming the more important devices.

394

Abacus 4.1 Accessing disks

4.1 TrackDisk device:

Accessing disks

The TrackDisk device is the connection to the disks provided by the
operating system. This is also used by DOS. It offers the ability to
access the disks directly without having to access hardware registers.

The extended I/O structure contains the following two entries (long
words) which are only necessary for the extended commands:

IOTD_COUNT

IOTD SECLABEL

Number ofdisk changes allowed

Pointer to the sector header field, which must

contain 16 bytes per sector to be read.

The device has a number of additional commands. A distinction is made
between the normal and extended TrackDisk command. Here is a list of
all valid TrackDisk commands:

Standard

commands:

TrackDisk

commands:

CMD READ

CMD WRITE

CMD UPDATE

CMD_CLEAR

TD MOTOR

TD SEEK

TD FORMAT

TDJUEMOVE

TD CHANGENUM

TD__CHANGESTATE

TD PROTSTATUS

TDRAWREAD

TDJIAWWRTTE

TD GETDMVETYPE

TD GETNUMTRACKS

TD^ADDCHANGEINT

TD REMCHANGEINT

TD LASTCOMM

(2)
(3)
(4)

(5)

(8)
(10)

(11)
(12)

(13)
(14)

(15)

(16)
(17)
(18)

(19)
(20)

(21)

(22)

Read one or more sectors from the disk

Write one or more sectors to the disk

Write track buffer back to the disk

Declare track buffer invalid

Turn drive motor on/off

Position read/write head to a given track

Initialize one or more tracks

Install interrupt routine which is called

when the disk is changed

Determine number of disk changes

Determine if disk is inserted

Determine if disk is write protected

Read the unprocessed diskette contents

Write unprocessed disk contents

Determine drive type (1=3 1/2,2=5 1/4 inch)

Determine total number of tracks

Install interrupt routine which is called

when the disk is changed

Disable above routine

Determine last command

Extended commands (all numbers +32768 [$8000]):

395

4. Devices Amiga System Programmer's Guide

Same functions as above, except the disk must not have been changed:

ETD READ

ETD WRITE

ETD UPDATE

ETD CLEAR

ETD MOTOR

ETD SEEK

ETD FORMAT

ETDRAWREAD

ETD RAWWRITE

(2)
(3)
(4)

(5)
(9)
(10)

(U)
(16)

(17)

Now let's look at a short assembly language program which uses the
TrackDisk device. For a simple example we'll just read a few sectors
from the disk into memory. If you have an assembler/debugger package

such as AssemPro Amiga, you can view the result directly. Otherwise

you can also write the data to a file on the disk with the Open() and
WriteO AmigaDOS functions and then output it to the screen or printer

with TYPE and the H option.

;*** Trackdisk device

ExecBase

FindTask

AddPort

RemPort

OpenLib

CloseLib

OpenDev

CloseDev

Dolo

4

-294

-354

-360

-408

-414

-444

-450

-456

demo: Read sectors 6/87 S.D.

/Exec base address

;Find task structure

/Create port

/Remove port

/Open library

/Close library

/Open device

/Close device

/Start I/O and wait

run:

move.1

sub.l

jsr

move.l

lea

jsr

lea

move.l

dr.l

lea

jsr

tst.l

bne

lea

move.l

move

move.l

execbase,a6 /Pointer to Exec library

al,al /this task

FindTask(a6) /find it

d0,readreply+$10 /SigTask: this task

readreply,al

AddPort(a6)

diskio,al

#0,d0

dl

trddevice,aO

OpenDev(a6)

dO

error

;Add reply port

;I/O structure

;drive DFO:

;no flags

/device name

/open trackdisk.device

;OK?

;no: error occurred!

diskio,al

#readreply,14(al) ;set reply port

#2,28 (al) /command: READ

♦diskbuff,40(al) /buffer

396

Abacus 4.1 Accessing disks

move.l

move.l

move•1

jsr

move.l

lea

move

move•1

jsr

lea

jsr

lea

jsr

error:

rts

trddevice:

align

diskio:

readreply:

diskbuff:

end

#2*512,36(al)

#880*512,44(al)

execbase, a6

Dolo(a6)

diskio+32,d6

diskio,al

#9,28(al)

#0,36(al)

Dolo(a6)

readreply,al

RemPort(a6)

diskio,al

closedev(a6)

dc.b 'trackdisk

blk.l 20,0

blk.l 8,0

blk.b 512*2,0

/length: 2 sectors

/offset: 880 sectors

/(root)

/Exec base address

/read sectors

/IO_ACTUAL in D6

/command: TD_MOTOR

/Turn motor off

/Remove port

/Close TrackDisk dev

/End

.device',0

In this example sectors 880 and 881 are loaded from drive 0 into mem

ory at diskbuff. Sector 880 is the root block containing the diskette

name and other information.

Then DoIO() is called to turn the drive motor off again (to turn it on we

had to write a 1 in 36(A1)).

About the A pointer to the current task structure is returned by calling the Find-

program: Task() function with a zero as the argument in Al. This pointer is then

stored in the port structure so that the system knows what task to wake

up after the I/O.

Next, this port is installed in the system.

The TrackDisk device is opened. In DO you can select which drive this

function uses. If you want to use several drives at the same time, you

must prepare multiple I/O structures and make multiple calls to

OpenDevice().

If an error occurs while opening the device, the program branches to the

error label, where the program is ended. Otherwise the I/O structure is

provided with the necessary data:

• The pointer to the reply port structure for receiving the OK

message

• The command to be executed at the next I/O operation (here:

2=CMD_READ)

397

4. Devices Amiga System Programmer's Guide

• A pointer to the buffer memory to be filled

• The length of this memory

• The offset of the sectors to be read from the start of the diskette,

which corresponds to the sector or block number * 512

This I/O structure is then passed to the system with DoIO() and the
selected function is performed. The program waits until the I/O
operation is done. A return parameter, such as that returned by the
TD_PROTSTATUS command, is then returned in IO_ACTUAL and
loaded into data register D6 with the subsequent MOVE.L instruction.

In the example above this is the value $400, which corresponds to the

number of bytes read. The data register is not used after this, but can be

examined with a debugger.

Following this is another call to the DoIO() function, this time with
the TD_MOTOR command (9). The parameter in IOJJENGTH (diskio

When this is done, the port is removed and the device is closed. That's

it.

If a function fails, a status value is returned in the IOJERROR byte.

The possible values here are:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

NotSpecified

NoSecHdr

BadSecPreamble

BadSecID

BadHdrSum

BadSecSum

TooFewSecs

BadSecHdr

WriteProt

DiskChanged

SeekError

NoMem

BadUnitNum

BadDrivelVpe

DriveMJse

PostReset

Unknown error

No sector header present

Invalid sector header

Invalid sector ID

Incorrect header checksum

Incorrect sector checksum

Not enough sectors available

Illegal sector header

Diskette write-protected

Diskette was changed

Track not found

Not enough memory

Illegal sector number

Illegal drive type

Drive already active

Reset phase

This was one direction. The other, writing data to the diskette, works

just the same except that the command must be changed to 3

(CMD_WRITE). Be sure to try this only on diskettes where loss of data

doesn't matter, however.

Another command is quite interesting, TDJFORMAT. With this com

mand one or more tracks of the diskette can be formatted. The data,

which must be prepared in memory and to which the IOJDATA pointer

398

Abacus 4.1 accessing disks

points, are written to each of the specified tracks. No test is made for a
diskette change. This command can be used not only to format diskettes
but also to copy them by reading the sectors from one diskette and then
writing them back to the second with TO_FORMAT. The advantage of
this method over CMEMVRITE is simply that the destination diskette
doesn't have to be formatted.

Formatting If you want to format an entire diskette and don't want to use the
FORMAT command of the CLI, remember that the data for the tracks
must be prepared in a certain format (see the diskette section), which
means quite a bit of work. To use the TD^FORMAT command requires
so much effort that it really isn't worth it

Now we'll turn to an application of the TrackDisk device which can be
used to learn various information about the distribution of data on the
diskette. The assembly language program presented next can be used as
a diagnosis program, either out of curiosity or to determine if files have
been lost as a result of a diskette error.

The program is called from the CLI, whereby a filename must be sup
plied as a parameter. The program calculates the hash number from this

name and outputs it. Then it loads the root sector of the diskette and
outputs the diskette name. With the help of the hash number, the hash

chain is then searched for the desired name. If it is not found or the
entry in the hash table is unoccupied, -unknown- is printed and the pro
gram stops.

If the file or directory header is found, its block number and the number
ofdata blocks occupied by the file is printed.

All of these data blocks are then loaded in order and their numbers are
printed. It would also be possible to get these block numbers from the
file header block and its extension block, if present, but there would be
no guarantee that they would be in order. If the requester with the mes

sage "Disk structure corrupt" appears, you can use this program to
check your important files.

To preserve the readability of the program, it is not possible to test

files in subdirectories. This can be done by modifying the program so

that it uses the hash table of a directory header block instead of the root
block.

Here is the program. It contains several interesting functions which you

may want to use in your own programs. The program was written with

the AssemPro Amiga assembler, but adapting it to other assemblers

should be easy.

399

4. Devices Amiga System Programmer's Guide

;***** pile tracer; 6/87 S.D. *****

/Assemble to Chip RAM

ExecBase

FindTask

AddPort

RemPort

OpenLib

CloseLib

OpenDev

CloseDev

Dolo

output

write

run:

move.

move.

move.

lea

clr.l

jsr

move.

beq

move.

jsr

move.

sub.]

move,

move,

clr.J

move,

subq

hashloop:

mulu

move

bsr

add

and

dbra

divu

swap

addq

move

=

=

=

=

=

«

3=

=

1

1

1

1

,1

,1

L

,1

.1

L

.1

.b

4 ;Exec base address

-294 ;find task structure

-354 /create

-360 /remove

port

port

-408 /open library

-414 /close library

-444 /open device

-450 /close

-456 /start

device

I/O and wait

-60 /determine standard output

-48 /output

aO,commpnt

dO,commlen

execbase,a6

dosname,al

dO

openlib(a6)

dO,dosbase

nodos

dosbase,a6

output(a6)

dO, outbase

#1,commlen

commpnt,aO

commlen,dO

d2

dO,dl

#l,dl

#13,dO

<aO)+,d2

upper

d2,dO

#$7ff,dO

dl,hashloop

#72,dO

dO

#6,dO

dO,hash

data

/name: dos.library

/open DOS

/standard output channel

/correct length of name

/* calculate hash value *

;Hash=length

/counter=length-l

/hash=hash*13

/convert to upper case

/hash=hash+character

/AND $7FF

/loop

/hash modulo 72

/+6

/hash calculated!

move.l #hashtxt,d2

bsr prtxt

move hash,dO

bsr phex

/output "Hash:11

/output- hash number

move.l execbase,a6 /pointer to Exec library

sub.l al,al /this task

jsr FindTask(a6) /find task

move.l d0,readreply+$10 /set SigTask

400

Abacus 4.1 Accessing disks

lea

jsr

readreply,al

AddPort(a6)

lea diskio,al

clr.l

clr.l

lea

jsr

tst.l

bne

move.1

bsr

move • 1

bsr

move.1

move•1

move.l

clr.l

move.b

jsr

lea

clr.l

move

lsl

move.l

tst.l

beq

loadloop:

move.l

bsr

move.l

lea

move.l

cmp.b

bne

subq

namelop:

move.b

bsr

move

move.b

bsr

cmp.b

bne

dbra

bra

nextsec:

move.l

tst.l

dO

dl

trddevice,aO

OpenDev(a6)

dO

error

#880,dO

loadsec

#voltxt,d2

prtxt

dosbase, a6

outbase,dl

#diskbuff+433,d2

d3

diskbuff+432,d3

write<a6)

diskbuff,aO

dO

hash,dO

#2,dO

0<a0,d0),d0

dO ;Zeiger da?

none

dO,sector

loadsec

commpnt,aO

diskbuff+432,al

commlen,dO

<al)+,dO

nextsec

#l,dO

<al)+,d2

upper

d2,dl

<aO)+,d2

upper

dl,d2

nextsec

dO,namelop

sectorok

diskbuff+496,dO

dO

/add reply port

/open trackdisk.device

/sector 880 (root sector

;load in disk buffer

/output "Volume:"

/name address

/name length

/output disk name

/hash*4=sector pointer

/get sector number

/no: hash entry empty!

/load next sector

/name length from header

/does length match?

/no

/character to upper case

/character to upper case

/compare characters

/wrong

/name matches

/pointer to next sector

/is one there?

401

4. Devices Amiga System Programmer's Guide

bne

none:

move • 1

bsr

bra

sectorok:

move•1

bsr

move•1

bsr

cmp.l

bne

move.1

bsr

bra

nodir:

move.1

tst.l

beq

move.l

move.l

bsr

move.1

bsr

noextens:

move. 1

bsr

move•1

bsr

move•1

bsr

clr

bra

secloop:

move. 1

bsr

add

cmp

bne

clr

move.l

bsr

seclopl:

move•1

tst.l

beq

'£ move.l

+ bsr
bra

loadloop

#unknown,d2

prtxt

ende

#header,d2

prtxt

sector,dO

phex

#2,diskbuff+508

nodir

#dirtxt,d2

prtxt

ende

diskbuff+504,dO.

dO

noextens

dO,-(sp)

#extxt,d2

prtxt

<sp)+,dO

phex

#crtxtfd2

prtxt

diskbuff+8,dO

phex

#sectxtfd2

prtxt

counter

seclopl

sector,dO

phex

#1,counter

#8,counter

seclopl

counter

#crtxt,d2

prtxt

diskbuff+16,dO

dO

ende

dO,sector

loadsec

secloop

;yes: continue

;else

;print "-unknown-"

;and quit

/output "Header:"

;sector header number

;output

;dir header?

;no

;print "Directory"

;and quit

/extension

/existent?

;no

;save DO

/output "Extension"

/get sector #

/and print

/output CR

/output sector number

/output "sectors"

/column counter=0

/output sectors

/output sector number

/counter+1

;8 numbers printed?

/no

/else clear counter

/and output CR

/next sector

/present?

/no: done

/load next sector

/etc...

402

Abacus 4.1 Accessing disks

ende:

move.1

bsr

move•1

lea

jsr

lea

jsr

error:

move.1

jsr

nodos:

rts

loadsec:

lea

move•1

move

move.1

move•1

mulu

move•1

move•1

jsr

lea

move

move.l

jsr

rts

phex:

lea

move

move

niblop:

rol

move

and

add

cmp

bis

add

nibok:

move.b

dbra

move.b

move.1

move.1

move.1

move•1

jmp

prtxt:

move•1

move.l

#crtxt,d2

prtxt

execbase,a6

readreply, al

RemPort(a6)

diskio,al

closedev(a6)

dosbase, al

closelib(a6)

diskio,al

#readreply,14 <al)

#2,28(al)

#diskbuff,40(al)

#512,36<al)

#512,dO

dO,44(al)

execbase, a6

Dolo(a6)

diskio,al

#9,28(al)

#0,36(al)

Dolo(a6)

outpuff,aO

dO,d2

#3,d3

#4,d2

d2qdl

#$f,dl

#$30,dl

#'9',dl

nibok

#7,dl

dl,<a0)+

d3,niblop

#$20,(aO)

dosbase,a6

outbase,dl

#outpuff,d2

#5,d3

Write(a6)

dosbase,a6

outbase,dl

/output CR

/remove port

/close TrackDisk device

/close DOS

/done

/load sector DO

/set reply port

/command: READ

/buffer

/length: 1 sector

/offset: sector number+

/read sector

/TD_MOTOR

/motor off

/output DO in hex

/4 digits

/left nibble down

/mask

/convert to ASCII

/digit?

/yes

/else correct

/character in output bu

/continue loop

/space at end

/output buffer

;5 characters

/print

/output text at <D2)

403

4. Devices Amiga System Programmer's Guide

move.1

jmp

upper:

cmp.b

bio

cmp.b

bhi

sub

upperx:

rts

trddevice:

dosname:

hashtxt:

voltxt:

unknown:

header:

extxt:

dirtxt:

sectxt:

crtxt:

#12,d3

Write <a6)

#'a',d2

upperx

#'z\d2

upperx

#$20,d2

I12 char length

/print string

/convert D2 to uppercase

/char <'a'?

/yes: leave it along

/char >'z'?

/yes: leave it alone

/else correct

/done

dc.b ■ trackdisk.device',0

dc.b 'dos.library',0

dc.b $a,'Hashnum:

dc.b $a,"Volume:

dc.b $a,'-unknown-

dc.b $a,'Header:

dc.b $a,'Extension:

dc.b $a,'Directory ',$a

dc.b 'Sectors: ',$a

dc.b ' ',$a

data

align

outpuff:

sector:

counter:

dosbase:

outbase:

hash:

commpnt:

commlen:

diskio:

message:

io:

ioreq:

readreply:

diskbuff:

blk.b 6

blk.l 1

blk.w 1

blk

blk

blk

blk

,1 1

,1 1

,w 1

,1 1

blk.l 1

/buffer for hex output

/sector scratch storage

/counter for output formatting

/DOS base address

/standard output handle

/hash number

/pointer to input line

/length of input line

/disk I/O structure

blk.b 20,0

blk.b 12,0

blk.b 16,0

blk.l 8,0

blk.b 512,0

This technique can be used to write a program which loads a file from

diskette without using DOS. It only has to copy the actual data out of

die data blocks into memory.

404

Abacus 4.2 Editor window

4.2 Console device:

Editor window

This device, where keyboard I/O can be prepared and processed, is little

out of the scope of standard devices. It cannot simply be opened and
used but must be used in connection with a window. This window is
then used for I/O with the console device.

Before the device itself can be opened you must first open a window. To
do this you have to open the Intuition library, a screen and then a win
dow. The pointer to the window structure obtained by this is then
passed when the console device is opened

pie result is a window on its own screen in which the cursor is visible
in the upper left corner. This cursor has no function yet; you have to
program the output of characters in the window first

You need two I/O structures, one for inputs and one for outputs. Natu
rally these also have message ports associated with them so that the
device can determine where die data is to go/come from.

Before we continue with such dry theory, you should first take a look at
the following program, which performs the steps described above. It
opens a screen and a window in which I/O then occurs through die con

sole device. The characters entered through the keyboard are output
again in the window, Return and Backspace are handled separately. If the
close box of the window is clicked with the mouse, the program is
ended. Additional actions of the mouse can also be evaluated.

Here is the program:

** Demo program for the console device 6/87

openlib *

closelib »

AddPort

RemPort ■

OpenDev *

CloseDev *

execbase ■

GetMsg

FindTask ■

Dolo *

Sendlo s

« -408

■ -414

« -354

■ -360

» -444

■ -450

» 4

« -372

« -294

= -456

= -462

;open library

;close library

/create port

/remove port

/open device

/close device

/Exec base address

/get message

/determine task

/perform I/O

/start I/O

; ** Intuition functions **

openscreen = -198 /open screen

405

4. Devices Amiga System Programmer's Guide

closescreen = -66

openwindow » -204

closewindow = -72

/close screen

/open window

/close window

run:

bsr

bsr

bsr

openint

scropen

windopen

move.1 execbase,a6

sub.l

jsr

move.l

lea

jsr

lea

jsr

lea

move.1

move.1

clr.l

clr.l

lea

jsr

tst.l

bne

move•1

move.l

al,al

FindTask(a6)

d0,readreply+$10

readreply,al

AddPort(a6)

writerep,al

AddPort(a6)

/open Intuition

/open Screen

/open screen

/pointer Exec library

/this task

/find task

/set SigTask

/add read reply port

/add write reply port

readio,al

windowhd,readio+$28 /our window

#48,readio+$24 /length of the structure

dO

dl

devicename,aO

OpenDev(a6) /open console device

dO

error

readio+$14,writeio+$14 /copy DEVICE and

readio+$18,writeio+$18 /UNIT

go:

bsr queueread

loop:

/start input

/* evaluate events *

move.1

move.1

move•1

jsr

tst.l

bne

lea

jsr

tst.l

beq

cevent:

bsr

cmp.b

bne

move.b

execbase,a6

windowhd, aO

86(aO),aO

GetMsg(a6)

dO

wevent

readreplyfa0

GetMsg(a6)

dO

loop

conout

#$d,buffer

nol

#$a,buffer

/window user port

/window event

/console event (key)?

/no event

/* process key *

/output character

/Return?

/no

/else output LF

406

Abacus 4.2 Editor window

nol:

no2:

bsr

crop*

bne

move

bsr

move

bsr

bra

b

.b

.b

conout

#$8,buffer

no2

#• ', buffer

conout

#8,buffer

conout

cro

/Backspace?

/else erase character

/and back again

/and so on

wevent: /* evaluate window event *

move.l dO,aO

move.l $16(aO),d6 /message in D6

cmp.l #$2000000,d6 /window close?

beq ende /yes: end

/* additional evaluations can take place here: *

move•1 windowhd,aO

move.l 12(aO)fd5 /mouse position in D5

/* e.g. set cursor to mouse position... *

ende: /* End of program: close everything *

lea

jsr

lea

jsr

lea

jsr

error:

bsr

bsr

bsr

rts

readreply,al

RemPort(a6)

readio,al

closedev(a6)

writerep,al

RemPort(a6)

windclose

scrclose

closeint

/remove port

/close device

/remove port

/close window

/clsoe screen

/close Intuition

/* end *

/** Subroutines **

queueread: /* start console input *

move•1 execbase,a6

lea readio,al

move #2,28(al) /command: READ

move.l #buffer,40(al) /buffer

move.l #l,36(al) /length:

move.l treadreply,14(al) /set reply port

jsr sendlo(a6) /perform function

rts

conout: /* output 1 character *

move.l execbase,a6

407

4. Devices Amiga System Programmer's Guide

lea

move

move.l

move • 1

move.l

jsr

rts

openint:

move.1

lea

jsr

move.l

rts

writeio,al

#3,28<al)

#bufferr40(al)

#l,36(al)

#writerep,14(al)

Dolo(a6)

execbase,a6

intname,al

openlib(a6)

dO,intbase

/command: WRITE

/buffer

/length:

/set reply port

/execute function

/* open Intuition *

/library name

closeint:

move.1 execbase,a6

move•1 intbase,al

jsr closelib(a6)

rts

/* close Intuition *

scropen:

move.1

lea

jsr

move.1

rts

scrclose:

move.1

move.l

jsr

rts

windopen:

move.1

lea

jsr

move•1

rts

windclose:

move•1

move.l

jsr

rts

intbase,a6

screen_defsfaO

openscreen(a6)

dO,screenhd

;* open screen

/* close screen *

intbase,a6

screenhd,aO

closescreen(a6)

intbase,a6

windowdef,aO

openwindow(a6)

dO,windowhd

/* open window

intbase,a6

windowhd,aO

closewindow(a6)

/* close window *

screenjdefs:

dew 0,0

dew 640,200

dew 4

deb 0,1

dew $800

dew 15

del 0

del titel

/* screen structure *

/position

/size

/bit maps

/colors

/mode

/type

/standard font

/screen title

408

Abacus 4.2 Editor window

del

del

windowdef:

dew 10,20

dew 300,150

deb 0,1

del $208

del $100f

del 0

del 0

/standard title

/no gadgets

/* window structure *

/position

/size

/colors

/IDCMP flags

/window flags

/no gadgets

/no menu checks

del windname /window name

screenhd: del 0

del 0

dew 100,50

dew 300,200

dew $f

/screen structure pointer

/no bit map

;min. size

/max. size

/screen type

titel:

windname:

intname:

devicename:

align

windowhd:

intbase:

conbase:

readio:

message:

io:

ioreq:

writeio:

readreply:

writerep:

buffer:

end

deb "Editor screen", 0

deb "Console window ",0

deb "intuition.library",0

deb 'console.device',0

/even

blk.l 1

blk.l 1

blk.l 1

blk.b 20,0

blk.b 12,0

blk.b 16,0

blk.b 20,0

blk.b 12,0

blk.b 16,0

blk.l 8,0

blk.l 8,0

blk.b 80,0

The sequences used to perform various functions in DOS RAW: and

CON: windows can also be used here.

409

4. Devices Amiga System Programmer's Guide

4.3 Narrator device:

speech output

The narrator is a device which allows the Amiga to express itself ver

bally, to speak out loud. The narrator is a program package which is

constructed as a device. It can be used to output text while the computer

is performing other tasks. The extended I/O structure of the narrator

Wad

0

1

2

3

4

6

7

8

9

Name

RATE

PITCH

MODE

SEX

CHMASKS

NUMMASKS

VOLUME

SAMPFREQ

MOUTHS
CHANMASK

Description

Speech speed in words/minutes

Basic speech frequency in Hertz

Speech mode (0=with, l=without expression)

Sex of voice (0=male, l=female)

Pointer to channel mask field

Number ofchannel masks

Volume

Sampling rate

Mouth creation flag (byte)

Current channel (internal meaning only)

Programming Programming the narrator device is similar to the other devices. An

the narrator additional component is using the translator, which converts normal
device text into the notation of the narrator. This translator is not a device but

a library, which contains only one function.

Here is an assembly language program which outputs an example text

You can experiment with this program by changing the parameters and
trying out the result It's helpful to use an assembler with a built-in
debugger like AssemPro, which this program was written with.

;***** Narrator-Demo 6/87 S.D. CHIP RAM *****

ExecBase

FindTask

AddPort

RemPort

OpenLib

closelib

OpenDev

CloseDev

Dolo

Sendlo

Translate

run:

move

- 4

=-294

=-354

=-360

=-408

=-414

=-444

=-450

=-456

= -462

=-30

;EXEC-Base address

;Find Task

;Add Port

/Remove Port

;0pen Library

;Close Library

;0pen Device

/Close Device

/Do I/O

/Send I/O

/Translate Text

/** Initialize and open system **

•1 execbase,a6

410

Abacus 43 SPEECH OUTPUT

lea

moveq

jsr

move.l

beq

sub.l

move.l

jsr

move.l

lea

jsr

lea

move•1

clr.l

clr.l

lea

jsr

tst.l

bne

lea

move.l

move

move

move

move

move.l

move

move

move

sayit:

lea

move.1

lea

move.1

move.l

jsr

lea

move

move.1

move.1

move.l

jsr

qu:

transname,al

#0,d0

openlib(a6)

dO,tranbase

error

/Open Translator Library

al,al ;Task Number - 0: Your own tas*

execbase,a6

FindTask(a6)

d0,writerep+$10

writerep,al

addport <a6)

talkio,al

#writerep,14(al)

dO

dl

nardevice,aO

opendev(a6)

dO

error

talkio,al

#writerep,14(al)

#150,48(al)

#110,50(al)

#0,52(al)

#0,54(al)

#amaps,56(al)

#4,60(al)

#64,62(al)

#22200,64(al)

;**

intext,a0

#outtext-intext,

outtext,al

#512,dl

tranbase,a6

Translate(a6)

talkio,al

#3,28(al)
#512,36(al)

#outtext,40(al)

execbase,a6

Dolo(a6)

;**

lea writerep,al

jsr RemPort(a6)

lea talkio,al

jsr closedev(a6)

/Find Task

;set SigTask

;Add Reply-Port

/Enter Reply

/Open Narrator.device

/set Reply-Port (*)

/Rate (40-400)

/Pitch (65-320)

/Mode: inflected (0/1)

/Gender:male (0/1)

/Masks (*)

;4 Masks <*)

/Volume (0-64)

/Sampling rate (5000-28000)

Examine and say text **

/Original text

dO /Text length

/Buffer for translation

/Buffer length

/Translate text

/Command: Write

/Length

/Buffer

/Say it!!

End **

/Remove Port

/Close Narrator

411

4. Devices Amiga System Programmer's Guide

move.l tranbase,al

jsr closelib(a6) ;Close Translator-Lib

clr.l dO

error:

rts

transname: dc.b "translator.library",0

nardevice: dc.b 'narrator.device',0

amaps: dc.b 3,5,10,12

intext: dc.b 'this is from the abacus book amiga

system programming',0

align ; even

outtext:

tranbase:

narread:

talkio:

writerep:

end

blk.l

blk.l

blk.l

blk.l

blk.l

128,0

1,0

20,0

120,0

8,0

When preparing the I/O area with the various modes and rates, only the

values which are marked with an asterisk in the listing above must

absolutely be supplied. All others are automatically set to the default

values. These values are shown in the program and can be varied in the

range given in the parentheses.

The narrator device also possesses the ability to send data to the calling

program during speech output Naturally, this is possible only when

the speech output was started with SendIO() and not DoIO(), so that the

data can also be received during the speech output

The data received represents a bit pattern, which when sent to the

screen, represents a mouth moving in unison with the spoken sounds.

We won't discuss this any further here, however, since it involves

graphic output and really belongs in a graphics book. We'll only say

that these graphics are relatively primitive since they represent the

mouth only as a parallelogram of the corresponding height The width

and height of this form is received from the device in the extension of

the read request I/O structure.

This extension has the following structure:

Offset Name Contents

48

49

50

51

MRB WIDTH

MRB HEIGHT

MRB SHAPE

MRB PAD

Width of the "mouth form"

Height

Internal data byte

Pad byte for even address

The I/O function can also go wrong. The error messages which then

result can have the following values:

412

ABACUS

Narrator error Number

messages: -2

-3

-4

-5

-6

-7

-8

-9

-20

-21

-22

-23

-24

-25

-26

43 SPEECH OUTPUT

Description

Not enough memory

Audio device not present

Library cannot be created

Wrong unit number in the I/O structure (0 only)

No audio channels available

Unknown command

Mouth data read but not written

Open impossible

Text cannot be spoken

Invalid rate

Invalid pitch

Invalid sex

Invalid mode

Invalid sample rate

Invalid volume

413

4. Devices Amiga System Programmer's Guide

4.4 Serial device: the

RS-232 interface

This device is responsible for the serial communcations with the
outside world. Input and output through the serial port can also be per

formed with DOS functions by specifying SER: as the filename. This

method has a significant disadvantage, however.

The usual disadvantage of using DOS is, of course, that die I/O does
not run in the background and the program must wait until it is done.

This can be avoided by programming the device with the SendIO()

function.

Another disadvantage which occurs is that the transmission parameters

like the baud rate must be set prior to use with the Preferences program.

The serial device offers its own function for setting the parameters. An
extended I/O structure is used for this and die other functions, and it
contains the following entries (default values in parentheses):

Returned bits

of status word

Offset

0

1

2

3

4

5

6

7

8

9

10

11

12

13-15

IO Name Contents

0

4

8

12

16

20

28

29

30

31

32

Bit

CTLCHAR

RBUFLEN

WBUFLEN

BAUD

BRKHME

TERMARRAY

READLEN

WRTTELEN

STOPBITS

SERFLAGS

STATUS

If

Control character: xON, xOFF, free, free

($11130000)

Input buffer length ($200)

Output buffer length ($200)

Baudrate (9600)

Break length in microseconds (250000)

Termination character array (8 Bytes)

Bits per character when reading (8)

Bits per character when writing (8)

Number of stop bits (1)

Serial Hags (see below) ($20)

Status word

Then

0

0

0

0

0

0

0

0

1

1

1

1

1

busy, transfer in progress

paper out, receiver not ready

select

Data Set Ready (DSR)

Clear To Send (CTS)

Carrier Detect (CD)

Ready To Send (RTS)

Data Terminal Ready (DTR)

read overrun

break sent

break received

transmit x-OFF

receive x-OFF

reserved

414

Abacus 4.4 THE RS-232 INTERFACE

IO SERFLAG

biFs
Bit Name Meaning, if set

0

1

2

3

4

5

6

7

PARTITION

PARITY_ODD

QUEUEDBRK

RAD_BOOGIE

SHARED

EOFMODE

XDISABLED

Parity on

Odd parity

Unused

Break in background

High speed mode on

General access allowed

EOF recognition enabled

xON/xOFF disabled

In addition to the standard commands, the serial device has three others:

Number SDCMD Name Function

9

10

11

QUERY

BREAK

SETPARAMS
Send break

Set parameters

To demonstrate these commands, especially the last one, SDCMD
JSETPARAMS, another example program follows. In this program the
baud rate is set to 1200 and the famous "Hello, world!" text is sent

;***•* Serial-Device-Demonstration 6/87 S.D. *****

ExecBase = 4 /EXEC base address

FindTask « -294 /Search for Task-Structure

AddPort = -354 ;Add a port

RemPort = -360 /Remove a port

OpenLib = -408 /Open library

CloseLib « -414 /Close library

AddDev = -432 / add device

OpenDev « -444 /Open device

CloseDev « -450 /Close device

Dolo = -456 /Start I/O and wait

output = -60 /Send standard output

write « -48 /Display data

run:

move.l execbase,a6

sub.l al,al

jsr FindTask<a6)

/Pointer to EXEC library

/Your own task

/Search for task

move

lea

jsr

lea

clr.

clr.

lea

jsr

tst.

.1

1

1

1

d0rreply+$10

reply,al

AddPort(a6)

devio,al

dO

dl

devicename,a0

OpenDev(a6)

dO

/Set

/Add

SigTask

Reply-Port

/Pointer to I/O-Structure

/Opei

/OK?

i serial device

415

4. Devices Amiga System Programmer's Guide

bne

lea

move

move

move

jsr

move

move

move

jsr

error:

lea

jsr

lea

jsr

.1

.1

.1

.1

error

devio,al

#reply,14(al)

#ll,28(al)

#1200,ioextd+12

Dolo(a6)

#3,28(al)

#ttext,40(al)

#textl,36(al)

Dolo(a6)

reply,al

RemPort(a6)

devio, al

CloseDev(a6)

;N0: End

;set Reply-Port

;Command: SETPARAMS

;1200 baud

;Set parameters

/Command: WRITE

;Buffer

;length

/Send text

/Remove Port

/Close Device

rts /End

devicename

ttext:

textl:

align

devio:

message:

io:

ioreq:

ioextd:

reply:

: dc.

dc.

,b "s

,b "h

= 13

blk.w

blk.w

blk.w

blk.w

blk.l

10,0

6,0

8,0

17,0

8,0

/ even

end

416

Abacus 4.5 printer device

4.5 Printer device

The printer can also be accessed in ways other than the PRT: channel.
This is what the printer device is for, which has an additional interest
ing feature besides the normal printer operation. This is the ability to

32

34

35

36

37

io PrtCommand

io ParamO

io Paraml

io Param2
io Param3

For normal printer operation, the following I/O structure extension,
called IOPrtCmdReq, is required:

Offset Name Contents

Printer command

Command parameter

Commandparameter

Command parameter

Command parameter

Here the control commands are passed to the printer to set the type
style, etc. This is output in connection with the PRTCOMMAND
command*

The commands which this device offers in addition to the standard com
mands are the following:

Value Name Function

9 PRDJRAWWRITE Print without interpreting control char
10 PRD_PRTCOMMAND Send printer command
11 FRDJXJMPRPORT Print screen or window contents

If WRITE is used to output the data instead of RAWWRITE, the
standard Amiga control characters are converted to the printer-specific
control characters according to the printer installed. Thus a program can
send its output to any printer without having to know anything about
the features or characteristics of this printer.

The DUMPRPORT command, as mentioned already, allows the con
tents of a window or screen to be sent to the printer. The I/O structure
extension required for this is conducted as follows:

Offset Name Contents

Pointer to the RastPort to be output

Pointer to the color table

Graphic mode of the ViewPort

X position of the window/screen

Y position

Window/screen width

Window/screen height

Destination width

Destination height

Hags for special functions

417

32

36

40

44

46

48

50

52

56

60

RastPort

ColorMap

Modes

SicX

SrcY

SrcWidth

SrcHeight

DestCols

DestRows

Special

4. Devices Amiga System Programmer's Guide

4.6 Parallel device:

digital I/O

Other devices can be connected to the same connection to which the
printer is usually connected^provided they have the appropriate electical
characteristics. Digital data can then be both sent and received. It is also
possible to program individual bits of the eight data lines as inputs and
the rest as outputs. This is only possible with direct programming of

the hardware register $BFE301.

Here we'll just look at using the entire port as input or output There is
also a device for this: the parallel device. An extension must be made to
the normal I/O structure in order to use this device. This extension has

the following construction:

Offset Name Contents

48 PWBufLen Length of the output buffer

52 ParStatus Status of the device

53 ParFlags Parallel flags

54-61 PTermArray Termination mask

The status byte contains the following status bits:

Bit Name Meaning, if set

0 PSEL Printer selected

1 PAPEROUT No more paper

2 PBUSY Printer busy

3 RWDIR Data direction (0=read, l=write)

The following bits represent the parallel flags:

Bit Name Meaning, if set

1 EOFMODE EOF mode enabled

5 SHARED Access possible for other tasks

If you want to read from the parallel port, the question arises as to how

the receiver is to recognize the end of the transfer. It is possible to use a

given byte sequence to stop the reception. This sequence is stored in the

two long words of TermArray. This termination sequence is activated if

bit 1 of the flag byte is set (EOFMODE) and the SETPARAMS com

mand (10) is then called.

418

Abacus 4.7 MOUSE AND JOYSTICK

4.7 Gameport device:

mouse and joystick

InputEvent

structure

This device processes all the inputs from the two gameports. The I/O

structure of this device doesn't need an extension, but two additional

structures are used.

One of these structures is the event structure, which was present in the
section on the RAW: window. This structure is called InputEvent and

is constructed as follows:

Offset Name Contents

0

4

5

6

8

10

12

14

NextEvent Pointer to the next structure

Class Even class

SubClass Subclass of the event

Code Event code

Qualifier Event type

X X position

Y Y position, usually relative

TimeStamp Seconds, microseconds

The other structure is needed for setting the event which causes the

parameters to be transferred in the even structure. This can be pressing

or releasing a button or the horizontal or vertical movement of the

mouse orjoystick. The desired value is entered in the appropriate word

of the following structure, called GamePortTriggen

GamePort

Trigger

structure

Offset

0

2

4

6

Name

Keys

Timeout

XDelta

YDelta

Contents

Key modification:

Bit 0: key pressed

Bit 1: key released

Terminate after this number of 1/60 seconds

Horizontal movement

Vertical movement

For example, if you want to wait 10 seconds until the joystick is

moved or its button is pressed, you would write a 1 in Keys (key

pressed), a 600 in Timeout (600/10=10 seconds) and a 1 in XDelta.

Before this monitoring process can be started, some preparations must

be made. First the Gameport device must be opened, the port in which

the joystick is inserted must be configured as a joystick port, and then

you can wait for the desired event. The commands available for this

device are:

419

4. Devices Amiga System Programmer's Guide

GamePort Command Name Description

commands 9 READEVENT Start monitoring

10 ASKCTYPE Read port type

11 SETCTYPE Set port type

12 ASKTRIGGER Determine triggering event

13 SETTRIGGER Set triggering event

The possible port types which can be set with SETVTYPE are:

Number Name Description

0 NOCONTROLLER Disable port

1 MOUSE Mouse port

2 RELJOYST1CK Port for relative joysticks

3 ABSJOYSTICK Port for absolute joysticks and

the type

-1 ALLOCATED

which can result from ASKCTYPE; the port is then allocated by

another task.

The difference between a relative joystick and an absolute joystick is

that the X and Y values of a relative joystick are continually incre

mented or decremented if the joystick is held in one position, while

with an absolute joystick there is only one position value change per

movement

To demonstrate the programming of the gameport device, here is an

assembly language program which montiors ajoystick in the right port

(port 2):

.***** Gameport-Device-Demo: Joystick 6/87 S.D. *****

ExecBase = 4

FindTask = -294

AddPort = -354

RemPort = -360

OpenLib = -408

CloseLib = -414

QpenDev = -444

CloseDev = -450

Dolo = -456

Sendlo = -462

run:

move.l execbase,a6

sub.l al,al

jsr FindTask(a6)

move.l d0,readreply+$10

lea readreply,al

jsr AddPort(a6)

/Pointer to EXEC library

;Your own task

/Search task

/Set SigTask

/Add Reply-Port

lea devio,al

420

Abacus 4.7 mouse and joystick

move.l #l,dO /Unit 1: Right port

clr.l dl

lea devicename,aO

jsr 0penDev(a6) /Open Gameport-Device

tst.l dO

bne error

;*** set Port type ***

move #ll,28(al) /Command: SETCTYPE

move.l #Event,40(al) /Buffer

move.l #l,36(al) /Length

move.b #3fNextEvent /ABSJOYSTICK

lea devio,al

move.l #readreply,14<al) /Set Reply Port

move.l execbase,a6

jsr Dolo(a6) /Read joystick

/*** Define solution ***

move #13,28(al) /Command: SETTRIGGER

move.l #trigger,40(al) /Buffer

move.l #8,36<al) /length

move #3,Keys /DOWN & UP

move #0,Timeout /Timeout

move #l,XDelta /XDelta

move #l,YDelta /YDelta

lea devio,al

move.l #readreply,14(al) /set Reply-Port

move.l execbase,a6

jsr Dolo(a6) /Set code

/*** Start task ***

move #9,28(al) /Command: READEVENT

move.l #Event,40(al) /Puffer

move.l #22,36(al) /Length of one event

clr.b 30(al) /Flags

lea devio,al

move.l #readreply,14(al) /set Reply-Port

move.l execbase,a6

jsr Dolo(a6) /Wait for an ev^nt

/*** Return port control ***

move #ll,28(al) /Command: SETCTYPE

move.l #Event,40(al) /Buffer

move.l #l,36(al) /Length

move.b #0rNextEvent /NOCONTROLLER

lea devio,al

move.l #readreply,14(al) /set Reply-Port

move.l execbase,a6

jsr Dolo(a6) /Read joystick

421

4. Devices Amiga System Programmer's Guide

ende:

lea

jsr

lea

jsr

error:

rts

readreply,al

RemPort(a6)

devio,al

closedev(a6)

/Remove port

/Close device

;* End *

devicename: dc.b 'gameport.device1 f0

align ;some assemblers use even

devio:

message: blk.b 20,0

io: blk.b 1

Normally it makes more sense to start the monitoring with SendIO() so

that the program does not have to wait for a joystick event and can go

on processing. For this example it is better to wait, however, because

otherwise the device would be disabled before the event, which can lead

to problems. To see how this program performs in the AssemPro

Debugger, set a breakpoint at erron when the program is started it will

wait for ajoystick event before reaching the breakpoint

422

Abacus An overview of library functions

Appendix

An overview of library

functions

clist.library

-$001E

-$0024

-$002A

-$0030

-$0036

-$003C

-$0042

-$0048

-$004E

-$0054

-$005A

-$0060

-$0066

-$006C

-$0072

-$0078

-$007E

-$0084

-$008A

-$0090

-$0096

-$009C

-30

-36

-42

-48

-54

-60

-66

-72

-78

-84

-90

-96

-102

-108

-114

-120

-126

-132

-138

-144

-150

-156

console.library

-$002A

-$0030

-42

-48

The following table gives you an overview of all of the available

libraries and their functions. The title of each library is given, followed

by its functions.

These functions are listed with their negative offsets in hex and decimal,

their names and their parameters. The parameter names are specified in

parentheses behind the function name, and the second set ofparentheses

contains the registers in the same order as the parameters are passed. If

no parameters are required, this is indicated by 0-

InitCLPool (cLPool, size) (A0,D0)

AllocCList (cLPool)(Al)

FreeCList (cList)(A0)

FlushCList (cList) (A0)

SizeCList (cList)(A0)

PutCLChar (cList,byte) <A0,D0)

GetCLChar (cList)(A0)

UnGetCLChar (cList,byte) <A0,D0)

UnPutCLChar (cList)(A0)

PutCLWord (cList.word) (A0,D0)

GetCLWord (cList)(A0)

UnGetCLWord (cList,word) (A0,D0)

UnPutCLWord (cList) (A0)

PutCLBuf (cList,buffer,length) (A0,Al,Dl)

GetCLBuf (cList,buffer,maxLength) (A0,Al,Dl)

MarkCList (cList.offset) (A0.D0)

IncrCLMark (cList)(A0)

PeekCLMark (cList)(A0)

SplitCList (cList)(AO)

CopyCList (cList)(AO)

SubCList (cList,index,length) (AO^OjDl)

ConcatCList (sourceCList.destCList) (A0.A1)

CDInputHandler (events,device) (A0,Al)

RawKeyConvert (events,buf fer,length, keyMap) (AO,A1,D1,A2)

423

Appendix Amiga system programmer's guide

diskfont.library

-$001E -30 OpenDiskFont (textAttr)(A0)

-$0024 -36 AvailFonts (buffer,bufBytes,flags) (A0,D0,Dl)

Open (name,accessMode) (D1,D2)

Close (file) (Dl)

Read (file,buffer,length) (D1,D2,D3)

Write (file,buffer.length) (D1,D2,D3)

Input ()

Output ()

Seek (file,position,offset) (D1,D2,D3)

DeleteFile (name)(Dl)

Rename (oldName,newName) (D1,D2)

Lock (name,type) (D1,D2)

UnLock (lock) (Dl)

DupLock (lock)(Dl)

Examine (lock,fileInfoBlock) (D1,D2)

ExNext (lock,fileInfoBlock) (D1,D2)

Info (lock,parameterBlock) (D1,D2)

CreateDir (name)(Dl)

CurrentDir (lock)(Dl)

IoErr ()

CreateProc (name,pri,segList,stackSize) (D1,D2,D3,D4)

Exit (returnCode)(Dl)

LoadSeg (fileName) (Dl)

UnLoadSeg (segment)(Dl)

GetPacket (wait)(Dl)

QueuePacket (packet)(Dl)

DeviceProc (name)(Dl)

SetComment (namefcomment) (D1,D2)

SetProtection (name,mask) (D1,D2)

DateStamp (date) (Dl)

Delay (timeout) (Dl)

WaitForChar (file.timeout) (D1,D2)

ParentDir (lock)(Dl)

Islnteractive (file)(Dl)

Execute (string,file,file) (D1,D2,D3)

Supervisor ()

Exitlntr ()

Schedule ()

Reschedule ()

Switch ()

Dispatch ()

Exception ()

InitCode (startClass.version) (DO,D1)

InitStruct (initTable,memory,size) (Al,A2,D0)

MakeLibrary (funclnit.structlnit,liblnit.dataSize,

codeSize) (AO,A1,A2,DO,D1)

-$005A -90 MakeFunctions (target,functionArray,funcDispBase)

dos.hbrary

-$001E

-$0024

-$002A

-$0030

-$0036

-$003C

-$0042

-$0048

-$004E

-$0054

-$005A

-$0060

-$0066

-$006C

-$0072

-$0078

-$007E

-$0084

-$008A

-$0090

-$0096

-$009C

-$00A2

-$00A8

-$00AE

-$00B4

-$00BA

-$00C0

-$00C6

-$00CC

-$00D2

-$00D8

-$00DE

exec.library

-$001E

-$0024

-$002A

-$0030

-$0036

-$003C

-$0042

-$0048

-$004E

-$0054

-30

-36

-42

-48

-54

-60

-66

-72

-78

-84

-90

-96

-102

-108

-114

-120

-126

-132

-138

-144

-150

-156

-162

-168

-174

-180

-186

-192

-198

-204

-210

-216

-222

-30

-36

-42

-48

-54

-60

-66

-72

-78

-84

424

Abacus An overview of library functions

(AO,A1,A2)

-$0060 -96 FindResident (name)(Al)

-$0066 -102 InitResident (resident,segList) (A1,D1)

-$006C -108 Alert (alertNum,parameters) (D7,A5)

-$0072 -114 Debug ()

-$0078 -120 Disable ()

-$007E -126 Enable ()

-$0084 -132 Forbid ()

-$008A -138 Permit ()

-$0090 -144 SetSR (newSR,mask) (DO,D1)

-$0096 -150 Superstate ()

-$009C -156 UserState (sysStack)(DO)

-$00A2 -162 SetlntVector (intNumber.interrupt) (D0,Al)

-$00A8 -168 AddlntServer (intNumber.interrupt) (D0,Al)

-$00AE -174 RemlntServer (intNumber.interrupt) (D0,Al)

-$00B4 -180 Cause (interrupt)(Al)

-$00BA -186 Allocate (freeList,byteSize) (A0,D0)

-$00C0 -192 Deallocate (freeList,memoryBlock,byteSize) (A0,Al,D0)

-$00C6 -198 AllocMem (byteSize,requirements) (D0,Dl)

-$00CC -204 AllocAbs (byteSize,location) (D0,Al)

-$00D2 -210 FreeMem (memoryBlock,byteSize) (Al,D0)

-$00D8 -216 AvailMem (requirements) (Dl)

-$00DE -222 AllocEntry (entry)(A0)

-$00E4 -228 FreeEntry (entry)(A0)

-$00EA -234 Insert (list,node,pred) (AO,A1,A2)

-$00F0 -240 AddHead (list,node) (A0,Al)

-$00F6 -246 AddTail (list,node) (A0,Al)

-$00FC -252 Remove (node)(Al)

-$0102 -258 RemHead (list) (A0)

-$0108 -264 RemTail (list) (A0)

-$010E -270 Enqueue (list,node) (A0.A1)

-$0114 -276 FindName (list.name) (A0,Al)

-$011A -282 AddTask (task,initPC,finalPC) (A1,A2,A3)

-$0120 -288 RemTask (task)(Al)

-$0126 -294 FindTask (name)(Al)

-$012C -300 SetTaskPri (task,priority) (Al,D0)

-$0132 -306 SetSignal (newSignals.signalSet) (DO,D1)

-$0138 -312 SetExcept (newSignals,signalSet) (DO,D1)

-$013E -318 Wait (signalSet)(DO)

-$0144 -324 Signal (task.signalSet) (Al,D0)

-$014A -330 AllocSignal (signalNum)(DO)

-$0150 -336 FreeSignal (signalNum)(DO)

-$0156 -342 AllocTrap (trapNum) (DO)

-$015C -348 FreeTrap (trapNum)(DO)

-$0162 -354 AddPort (port)(Al)

-$0168 -360 RemPort (port)(Al)

-$016E -366 PutMsg (port,message) (A0,Al)

-$0174 -372 GetMsg (port)(A0)

-$017A -378 ReplyMsg (message)(Al)

-$0180 -384 WaitPort (port)(A0)

-$0186 -390 FindPort (name)(Al)

-$018C -396 AddLibrary (library) (Al)

-$0192 -402 RemLibrary (library)(Al)

-$0198 -408 OldOpenLibrary (libName)(Al)

-$019E -414 CloseLibrary (library)(Al)

-$01A4 -420 SetFunction (library,funcOffset,funcEntry) (Al,A0,D0)

425

Appendix

-$01AA

-$01B0

-$01B6

-$01BC

-$01C2

-$01C8

-$01CE

-$01D4

-$01DA

-$01E0

-$01E6

-$01EC

-$01F2

-$01F8

-$01FE

-$0204

-$020A

-$0210

-$0216

-$021C

-$0222

-$0228

-426

-432

-438

-444

-450

-456

-462

-468

-474

-480

-486

-4 92

-498

-504

-510

-516

-522

-528

-534

-540

-546

-552

Amiga system programmer's guide

SumLibrary (library)(Al)

AddDevice (device)(Al)

RemDevice (device)(Al)

OpenDevice (devName,unit,ioRequest,flags) (AO>DO,A1,D1)

CloseDevice (ioRequest)(Al)

DoIO (ioRequest)(Al)

SendIO (ioRequest) (Al)

ChecklO (ioRequest)(Al)

WaitIO (ioRequest)(Al)

AbortIO (ioRequest)(Al)

AddRescource (rescource)(Al)

RemRescource (rescource)(Al)

OpenRescource (resName,version) (Al,D0)

RawIOInit ()

RawMayGetChar ()

RawPutChar (char)(DO)

RawDoFmt () (AO,A1,A2,A3)

GetCC ()

TypeOfMem (address) (Al)

Procedure (semaport,bidMsg) (A0,Al)

Vacate (semaport) (A0)

OpenLibrary (libName.version) (A1,DO)

graphics.library

-$001E -30 BltBitMap (srcBitMap,srcX,srcY,destBitMap,destX,destY,

sizeX,sizeY,minterm,mask,tempA) (A0,D0,Dl,AlfD2,D3,D4f

D5,D6,D7,A2)

-$0024 -36 BltTemplate (source,srcX,srcMod,destRastPortfdestX,destYf

sizeX.sizeY) <AO,DO,D1,A1,D2,D3,D4,D5)

-$002A -42 ClearEOL (rastPort)(Al)

-$0030 -48 ClearScreen (rastPort)(Al)

-$0036 -54 TextLength (RastPort,string,count) (Al,A0,D0)

-$003C -60 Text (RastPort,String,count) (Al,A0,D0)

-$0042 -66 SetFont (RAstPortlD.textFont) (Al,A0)

-$0048 -72 OpenFont (textAttr)(A0)

-$004E -78 CloseFont (textFont)(Al)

-$0054 -84 AskSoftStyle (rastPort)(Al)

-$005A -90 SetSoftStyle (rastPort,style.enable) (Al,D0,Dl)

-$0060 -96 AddBob (bob.rastPort) (A0,Al)

-$0066 -102 AddVSprite (vSprite,rastPort) (A0,Al)

-$006C -108 DoCollision (rastPort)(Al)

-$0072 -114 DrawGList (rastPort,viewPort) (Al,A0)

-$0078 -120 InitGels (dummyHead,dummyTail,GelsInfo) (AO,A1,A2)

-$007E -126 InitMasks (vSprite)(A0)

-$0084 -132 RemlBob (bob,rastPortfviewPort) (AO,A1,A2)

-$008A -138 RemVSprite (vSprite)(A0)

-$0090 -144 SetCollision (type,routine,gelslnfo) (D0,A0,Al)

-$0096 -150 SortGList (rastPort)(Al)

-$009C -156 AddAnimObj (obj,animationKey,rastPort) (AO,A1,A2)

-$00A2 -162 Animate (animationKey,rastPort) (A0.A1)

-$00A8 -168 GetGBuffers (animationObj,rastPort,doubleBuffer)

(A0,Al,D0)

-$00AE -174 InitGMasks (animationObj)(A0)

-$00B4 -180 GelsFuncE ()

-$00BA -186 GelsFuncF ()

426

Abacus An overview of library functions

-$00C0 -192 LoadRGB4 (viewPort,colors,count) (AO,A1,DO)

-$00C6 -198 InitRastPort (rastPort)(Al)

-$00CC -204 InitVPort (viewport)(A0)

-$00D2 -210 MrgCop (view)(Al)

-$00D8 -216 MakeVPort (view,viewPort) (AO,A1)

-$00DE -222 LoadView (view) (Al)

-$00E4 -228 WaitBlit ()

-$00EA -234 SetRast (rastPort,color) (Al,D0)

-$00F0 -240 Move (rastPort,x,y) (A1,DO,D1)

-$00F6 -246 Draw (rastPort,x,y) (A1,DO,D1)

-$00FC -252 AreaMove (rastPort,x,y) (A1,DO,D1)

-$0102 -258 AreaDraw (rastPort,x,y) (Al,D0,Dl)

-$0108 -264 AreaEnd (rastPort) (Al)

-$010E -270 WaitTOF ()

-$0114 -276 QBlit (blit)(Al)

-$011A -282 InitArea (areaInfo,vectorTable,vectorTableSize) (A0,Al,D0)

-$0120 -288 SetRGB4 (viewport,index,r,g,b) (A0,D0,Dl,D2,D3)

-$0126 -294 QBSBlit (blit)(Al)

-$012C -300 BltClear (memory,size,flags) (Al,D0,Dl)

-$0132 -306 RectFill (rastPort,xl,yl,xu,yu) (A1,DO,D1,D2,D3)

-$0138 -312 BltPattern (rastPort,ras,xl,yl,maxX,maxY,fillBytes)

(Al,A0,D0,Dl,D2,D3,D4)

-$013E -318 ReadPixel (rastPort,x,y) (Al,D0,Dl)

-$0144 -324 WritePixel (rastPort,x,y) (Al,D0,Dl)

-$014A -330 Flood (rastPort,mode,x,y) (A1,D2,DO,D1)

-$0150 -336 PolyDraw (rastPort,count,polyTable) (Al,D0,A0)

-$0156 -342 SetAPen (rastPort,pen) (Al,D0)

-$015C -348 SetBPen (rastPort.pen) (Al,D0)

-$0162 -354 SetDrMd (rastPort,drawMode) (Al,D0)

-$0168 -360 InitView (view) (Al)

-$016E -366 CBump (copperList)(Al)

-$0174 -372 CMove (copperList,destination,data) (Al,D0,Dl)

-$017A -378 CWait (copperList,x,y) (Al,D0,Dl)

-$0180 -384 VBeamPos ()

-$0186 -390 InitBitMap (bitMap,depth,width,heigth) (A0,D0,Dl,D2)

-$018C -396 ScrollRaster (rastPort,dX,dY,minx,miny,maxx,maxy) (Al,D0,

D1,D2,D3,D4,D5)

-$0192 -402 WaitBOVP (viewPort)(A0)

-$0198 -408 GetSprite (simpleSprite.num) (A0,D0)

-$019E -414 FreeSprite (num)(DO)

-$01A4 -420 ChangeSprite (vp,simpleSprite,data) (AO^V1,A2)

-$01AA -426 MoveSprite (viewPort,simpleSprite,x,y) (A0,Al,D0,Dl)

-$01B0 -432 LockLayerRom (layer) (A5)

-$01B6 -438 UnlockLayerRom (layer) (A5)

-$01BC -444 SyncSBitMap (1) (A0)

-$01C2 -450 CopySBitMap (11,12) (A0,Al)

-$01C8 -456 OwnBlitter ()

-$01CE -462 DisownBlitter ()

-$01D4 -468 InitTmpRas (tmpras,buff,size) (A0,Al,D0)

-$01DA -474 AskFont (rastPort,textAttr) (Al,A0)

-$01E0 -480 AddFont (textFont)(Al)

-$01E6 -486 RemFont (textFont)(Al)

-$01EC -492 AllocRaster (width,heigth) (D0,Dl)

-$01F2 -498 FreeRaster (planeptr,width,heigth) (A0,D0,Dl)

-$01F8 -504 AndRectRegion (rgn,rect) (A0,Al)

-$01FE -510 OrRectRegion (rgn,rect) (A0,Al)

427

Appendix

-$0204

-$020A

-$0210

-$0216

-$021C

-$0222

-$0228

-$022E

-$0234

-$023A

-$0240

-$0246

-$024C

-$0252

-$0258

-516

-522

-528

-534

-540

-546

-552

SjLZ€

-558

-564

-570

-576

-582

-588

-594

-600

-$025E

Amiga system programmer's guide

NewRegion ()

** reserved **

ClearRegion (rgn)(A0)

DisposeRegion (rgn)(A0)

FreeVPortCopLists (viewport)(A0)

FreeCopList (coplist)(A0)

ClipBlit (srcrp,srcX,srcY,destrp,destX,destY,sizeX,

sizeY,minterm) (AO,DO,D1,A1,D2,D3,D4,D5,D6)

XorRectRegion (rgn,rect) (A0,Al)

FreeCprList (cprlist)(A0)

GetColorMap (entries) (DO)

FreeColorMap (colormap) (A0)

GetRGB4 (colormap,entry) (A0,D0)

ScrollVPort (vp)(A0)

UCopperListlnit (copperlist,num) (A0,D0)

FreeGBuffers (animationObj,rastPortf

doubleBuffer) (A0,Al,D0)

-606 BltBitMapRastPort (srcbitysrcx^rcyjdestrpjdestXjdestY,

sizeX,sizeY,minter) (AO,DO,D1,A1,D2,D3,D4,D5,D6)

icon.library

. -$001E -30

-$0024 -36

-$002A -42

-$0030 -48

-$0036 -54

-$003C -60

-$0042 -66

-$0048 -72

-$004E -78

-$0054 -84

-$005A -90

-$0060 -96

-$0066 -102

-$006C -108

GetWBObject (name)(A0)

PutWBObject (name,object) (A0,Al)

Getlcon (name,icon,freelist) (AO,A1,A2)

PutIcon (nameficon) (A0,Al)

FreeFreeList (freelist)(A0)

FreeWBObject (WBObject)(A0)

AllocWBObject ()

AddFreeList (freelist,mem,size) (AO,A1,A2)

GetDiskObject (name)(A0)

PutDiskObject (name,diskobj) (A0,Al)

FreeDiskObj (diskobj)(A0)

FindToolType (toolTypeArray,typeName) (A0,Al)

MatchToolValue (typeString.value) (A0,Al)

BumbRevision (newname,oldname) (A0,Al)

intuition.library

-$001E -30

-$0024 -36

-$002A -42

-$0030 -48

-$0036 -54

-$003C -60

-$0042 -66

-$0048 -72

-$004E -78

-$0054 -84

-$005A -90

-$0060 -96

-$0066 -102

-$006C -108

-$0072 -114

Openlntuition ()

Intuition (ievent)(A0)

AddGadget (AddPtr,Gadget,Position) (A0,Al,D0)

ClearDMRequest (Window)(A0)

ClearMenuStrip (Window)(A0)

ClearPointer (Window)(A0)

CloseScreen (Screen)(A0)

CloseWindow (Window)(A0)

CloseWorkBench ()

CurrentTime (Seconds,Micros) (A0,Al)

DisplayAlert (AlertNumber,String,Height) (DO,AO.D1)

DisplayBeep (Screen)(A0)

Doubleclick (sseconds,smicros,cseconds,cmicros)

(DO,D1,D2,D3)

DrawBorder (Rport,Border,LeftOffset,TopOffset)

(A0,Al,D0,Dl)

Drawlmage (RPort,Image,LeftOffset,TopOffset) (A0,Al,D0,Dl)

428

Abacus An overview of library functions

$0078

$007E

$0084

$008A

$0090

$0096

$009C

$00A2

$00A8

$00AE

$00B4

$00BA

$00C0

$00C6

$00CC

$00D2

$00D8

$00DE

$00E4

$00EA

$00F0

$00F6

$00FC

$0102

$0108

$010E

$0114

$011A

$0120

$0126

$012C

$0132

$0138

$013E

$0144

$014A

$0150

$0156

$015C

$0162

$0168

$016E

$0174

$017A

$0180

$0186

$018C

$0192

$0198

$019E

-120

-126

-132

-138

-144

-150

-156

-162

-168

-174

-180

-186

-192

-198

-204

-210

-216

-222

-228

-234

-240

-246

-252

-258

-264

-270

-276

-282

-288

-294

-300

-306

-312

-318

-324

-330

-336

-342

-348

-354

-360

-366

-372

-378

-384

-390

-396

-402

-408

-414

EndRequest (requester.window) (AO,A1)

GetDefPrefs (preferences.size) (A0,D0)

GetPrefs (preferences,size) (A0,D0)

InitRequester (req)(A0)

ItemAddress (MenuStrip,MenuNumber) (A0,D0)

ModifyIDCMP <Window,Flags) (A0,D0)

ModifyProp (Gadget,Ptr,Reg,Flags,HPos,VPos,HBody,VBody)

(AO,A1,A2,DO,D1,D2,D3,D4)

MoveScreen (Screen,dx,dy) (A0,D0,Dl)

MoveWindow (Window,dx,dy) (AQ,D0,Dl)

OffGadget (Gadget,Ptr,Req) (AO,A1,A2)

OffMenu (Window,MenuNumber) (A0,D0)

OnGadget (Gadget,Ptr,Req) <AO,A1,A2)

OnMenu (Window,MenuNumber) (A0,D0)

OpenScreen (OSArgs)(A0)

OpenWindow (OWArgs)(A0)

OpenWorkBench <)

PrintIText (rp,itext,left,top) (A0,Al,D0,Dl)

RefreshGadgets (Gadgets,Ptr,Req) (AO,A1,A2)

RemoveGadgets (RemPtr,Gadget) (A0,Al)

ReportMouse (Window,Boolean) (A0,D0)

Request (Requester,Window) (A0,Al)

ScreenToBack (Screen)(A0)

SCreenToFront (Screen)(A0)

SetDMRequest (Window,req) (A0,Al)

SetMenuStrip (Window,Menu) (A0,Al)

SetPointer (Window>Pointer,Height,Width>XOffset,YOffset)

(AO,A1,DO,D1,D2,D3)

SetWindowTitles (Window,windowTitle,screenTitle)

<AO,A1,A2)

ShowTitle (Screen.ShowIt) (A0,D0)

SizeWindow (Window,dx,dy) (AO,DO,D1)

ViewAddress ()

ViewPortAddress (Window)(A0)

WindowToBack (Window)(A0)

WindowToFront (Window)(A0)

WindowLimits (Window,minwidth,minheight,maxwidth,

maxheight) (A0,D0,Dl,D2,D3)

SetPrefs (preferences,size,flag) (A0,D0,Dl)

IntuiTextLength (itext)(A0)

WBenchToBack ()

WBenchToFront ()

AutoRequest (WIndow,Body,PText,NText,PFlag,NFlag,W,H)

(AO,A1,A2,A3,DO,D1,D2,D3)

BeginRefresh (Window)(A0)

BuildSysRequest (Window,Body,PosText,NegText,Flags,W,H)

(AO,A1,A2,A3,DO,D1,D2)

EndRefresh (Window,Complete) (A0,D0)

FreeSysRequest (Window)(A0)

MakeScreen (Screen)(A0)

RemakeDisplay ()

RethinkDisplay ()

AllocRemember (RememberKey,Size,Flags) (A0,D0,Dl)

AlohaWorkbench (wbport)(A0)

FreeRemember (RememberKey,ReallyForget) (A0,D0)

LocklBase (dontknow)(DO)

429

Appendix Amiga system programmer's guide

-$01A4 -420 DnlocklBase (IBLock)<A0)

layers.library

-$001E

-$0024

-$002A

-$0030

-$0036

-$003C

-$0042

-$0048

-$004E

-$0054

-$005A

-$0060

-$0066

-$006C

-$0072

-$0078

-$007E

-$0084

-$008A

-$0090

-$0096

-$009C

-$00A2

-$00A8

-30

-36

-42

-48

-54

-60

-66

-72

-78

-84

-90

-96

-102

-108

-114

-120

-126

-132

-138

-144

-150

-156

-162

-168

mathffp.library

-$001E -30

-$0024 -36

-$002A -42

-$0030 -48

-$0036 -54

-$003C -60

-$0042 -66

-$0048 -72

-$004E -78

-$0054 -84

InitLayers <li)(A0)

CreateUpfrontLayer (li,bm,xO,yO,xl,yl,flags,bm2) (A0,Al,

DO,D1,D2,D3,D4,A2)

CreateBehindLayer (li,bm,x0,y0,xl,yl,flags,bm2) (A0,Al,D0,

D1,D2,D3,D4,A2)

UpfrontLayer (li,layer) (A0,Al)

BehindLayer (li,layer) (A0,Al)

MoveLayer (li,layer,dx,dy) (A0,Al,D0,Dl)

SizeLayer (li,layer,dx,dy) (A0,Al,D0,Dl)

ScrollLayer <li,layer,dx,dy) (A0,Al,D0,Dl)

BeginDpdate (layer)(A0)

EndUpdate (layer)(A0)

DeleteLayer (li,layer) (A0,Al)

LockLayer (li,layer) (A0,Al)

UnlockLayer (li,layer) (A0,Al)

LockLayers (li)(A0)

UnlockLayers (li)(A0)

LockLayerlnfo (li)(A0)

SwapBitsRastPortClipRect (rp,cr) (A0.A1)

WhichLayer (li,x,y) (A0,D0,Dl)

UnlockLayerlnfo (li)(A0)

NewLayerlnfo ()

DisposeLayerlnfo (li)(A0)

FattenLayerlnfo (li)(A0)

ThinLayerlnfo (li)(A0)

MoveLayerInFrontOf (layer_to_move,layer_to_be_in_front_

of) (A0.A1)

SPFix

SPFlt

SPCmp

SPTst

SPAbs

SPNeg

SPAdd

SPSub

SPMul

SPDiv

(float)(DO)

(integer)(DO)

(leftFloat.rightFloat) (D1,DO)

(float)(Dl)

(float)(DO)

(float)(DO)

(leftFloat,rightFloat) (D1,DO)

(leftFloat,rightFloat) (D1,DO)

(leftFloat,rightFloat) (D1,DO)

(leftFloat,rightFloat) (D1,DO)

mathieeedoubbas.library

-$001E -30 IEEEDPFix (integer,integer) (DO,D1)

-$0024 -36 IEEEDPFlt (integer)(DO)

-$002A -42 IEEEDPCmp (integer,integer,integer, integer) (DO,D1,D2,D3)

-$0030 -48 IEEEDPTst (integer,integer) (DO,D1)

-$0036 -54 IEEEDPAbs (integer,integer) (DO,D1)

-$003C -60 IEEEDPNeg (integer,integer) (DO,D1)

-$0042 -66 IEEEDPAdd (integer,integer,integer, integer) (DO,D1,D2,D3)

-$0048 -72 IEEEDPSub (integer,integer,integer, integer) (DO,D1,D2,D3)

430

Abacus An overview of library functions

IEEEDPMul (integer,integer,integer, integer) (DO,D1,D2,D3)

IEEEDPDiv (integer,integer,integer, integer) (DO,D1,D2,D3)

SPAtan (float)(DO)

SPSin (float)(DO)

SPCos (float) (DO)

SPTan (float)(DO)

SPSincos (leftFloat,rightFloat) (D1,DO)

SPSinh (float) (DO)

SPCosh (float) (DO)

SPTanh (float) (DO)

SPExp (float) (DO)

SPLog (float) (DO)

SPPow (leftFloat,rightFloat) (D1,DO)

SPSqrt (float)(DO)

SPTieee (float)(DO)

SPFieee (float)(DO)

SPAsin (float)(DO)

SPAcos (float)(DO)

SPLoglO (float)(DO)

-$0006 -6 AllocPotBits (bits)(DO)

-$000C -12 FreePotBits (bits)(DO)

-$0012 -18 WritePotgo (word,mask) (DO,D1)

-$004E

-$0054

-78

-84

mathtrans.library

-$001E

-$0024

-$002A

-$0030

-$0036

-$003C

-$0042

-$0048

-$004E

-$0054

-$005A

-$0060

-$0066

-$006C

-$0072

-$0078

-$007E

potgo.library

-30

-36

-42

-48

-54

-60

-66

-72

-78

-84

-90

-96

-102

-108

-114

-120

-126

timer.library

-$002A -42 AddTime (dest,src) (A0,Al)

-$0030 -48 SubTime (dest.src) (A0,Al)

-$0036 -54 CmpTime (dest,src) (A0,Al)

translator.library

-$001E -30 Translate (inputString.inputLength, output Buffer,

bufferSize) (A0,D0,Al,Dl)

431

Index
(*iv_CodeX)
*io Device

*io Unit

*iv_Node
*mc Next

*mh_First

*ThisTask

68000 processor

AbortIO

AddHead

Add&itServer
Addlibrary

AddPort

address buffers
AddTail

AddTask

Agnus

AlertData

aliasing distortion

AllocAbs

Allocate
AllocEntry

AllocMem

AllocSignal

AllocTrap

ARWline

AttnFlags

AttnResched

AUDOLC

AUDOPER

AUD0VOL

AUDINline

AUDL

AUDOUTline
AUDR

AUL

autovectors

AvailMem

baud rate

BBUSY

BERRline

BFDbit

Bit map block

Bit planes

bitmap

blitter 28,134,135,

288,292

276

276

288,292

272

271

311

5

282,284

216

302

232

261

37

216

243,244

22,23

310

179

275

273

269

266

249

261

29

312

312

181

181

181

47

35

47

35

152

87

275

199

145

7

91

358

80

105

149,157

blitter control register

blitter DMA

BLS signal

boolean algebra

boot procedure

boundary lines
BURST signal

bus contention

bus cycles

busenor

BUSY line

BYTEREADYflag
BZERO

CAPS LOCK key

CauseO
CCK signal

CD signal

Centronics interface
ChecklO

chip registers

Chkbase

ChkSum

CHNG

CIA interrupts
CiaStartPtr

CLI

clock generation

Close

CloseLibrary

Or/Set EnableBits

Clrbiterrupt
CMD CLEAR.

CMD READ.

CMD UPDATE.

CMD WRITE.

CNT pulses

ColdCapture
COLOR

color selection

144

145

29

140

351

153

32

25

81,83

8

44

201

146

60

292,303
28,32

46

42,43

281,284

75

309

310

50

67,295

297

369

37

338

226

300

299

395

395

395

395

17

309, 329

112

122

Complex Interface Adapter 12

control registers

CoolCapture

Copper

CreateDir

CreatePorc

CSYline

CurrentDir

111

309

28,88-96

340

345

29

340

433

Index Amiga System Programmer's Guide

Custom chips

Data block

Data transfer

data bus

data fetch start/stop

DateStamp

DBPLF

DBRline

DDFSTOP

DDFSTRT

Deallocate

DebugData

DebugEntry

Delay

DeleteFile

DeletePoitO
Denise

device driver

device handlers

DeviceList

DeviceProc

Devices.

DIR

DisableO

disk controller

DISKDOCTOR

diskette VO

DiskObject

DisownBlitter

DispCount

DISTRT

DIWSTOP

DIWSTRT

22,68

357

61

23

83

345

112

28

104

104

273

310

310

345

341

257

22,23

207

207

312

346

393

50

240,246

200

352

34

377

159

312

103

103,104

104

DKRD/DKWD/DKWEline 35,49

DMA 24,

DMACONregister

DMAEN

DMALline

DMAREQ register

DoIO

DOS library

doubly-linked list

DRES

DSKDATR

DTACK

dual playfield mode

DUMPRPORT.

DupLock

Early Read

ECEmode

76-77,83,128

84

201

29

87

281

335

213

49

68

6,9

101

417

341

68

147

EFE/IFEbits

Elapsed

EnableO
Enqueue

ENSPx bits

EPROM burner

error messages

ERSY

even cycles

Examine

exception

Exec library

ExecBaseReserved

Execute

Executelnterrupt

Exit

ExNext

expansion port

fast RAM

Fat Agnus

FCbit

File header block

File list block

144

312

240,246

217

132

44

347

112

81

342

235

307

314

346

300

346

342

54

25,67

36

147

355

356

FindName() 208,217,221,236

FindPort

FindTask

FindToolTypeO

FLAG input

flip-flop

Forbid()

forced load

Formatting

FieeEntry

FreeMem

FreeSignal

FreeTrap

frequency

game ports

Gary

GAUD bit
genlock adapter

GetPacket

graphic resolutions

H-sync

HALT

hardware

HIRES

hold-and-modify mode

HOMOD

262

245

378

13

52

95,239,246

16

399

269

267

249

262

168

52,53

37

41

32

347

81

27

7

4

112

99

112

434

Abacus Index

Horizontal Pulse
hunk

ICE mode

idleCount

IDNestCnt
IFF

INDEX

Info

InitCode

InitResident
InitStruct

Input/Output

InsertO
INT lines

INTENbit

IntEnableCia

interfaces

interlacing

Interrupt Control Register

interrupt levels
Interrupts
IntList

INTREQ register

IntRequestBit/Cia
IntVects

INUSE

IoErr

IORequest structure

IOTD COUNT.

IOTD SECLABEL.
IPL0-IPL2 lines

is_(*Code)0
is Data

is_Node
Islnteractive

iv_Data

ivJDate

joysticks

KDAT

keyboard circuit
keyboard processor

KEYdown/up

KickCheckSum

KickMemPtr

KickSumDataO
KickTagPtr

KLCK

LACE

LastAlert

191,192

358-362

147

312

312

363

50

344

327

327

229
339, 381

215,236

29,35

87

297

4

79,110

15

9

86

313

88

297

310

50

340

276-277

395

395

36

288

288

287

339

288,292

288

193

62

61

65

60

314, 330

314, 330

330

314, 330

62

112

313

Ldelta

LDS

LENGTH

lh_pad

lh_Type

LIB_EXPUNGE
libJdString

lib_NegSize

lib_Node

lib_OpenCnt
lib_pad

libJPosSize

lib_Revision

lib_Sum

lib_Version

LibList

LibName
LibNode

LibPtr

LINE bit

Lists

lnPri

_p

LOAD bit

load file

LoadSeg

Lock

LOFbit

LowMemChkSum

LPline

MakeLibrary

Masking

MaxExtMem

MaxLocMem

mc_Bytes

me_Length

me_Un

MEMF_CHIP

MEMF_CLEAR

MEMF_FAST

MEMF_LARGEST

MEMF_PUBLIC

MemHeader

memory layout

message system

mh_Attributes

mh_Free

mh_Lower

mh_Node

mh_Upper

153

6

200

213

213

228

227

227

227

227

227

227

227

227

227

313

223

309

223

144,166

213

211

211

16

358

346

340

85

309

29

231

143

310

310

272

269

269

265

266

266

266

266
272

66

251

271

271

271

271

271

435

Index Amiga System Programmer's Guide

minterms

ml ME[1]

ml_Node

mfNumEntries
MMU connector

mn_Length

mn~Node
mnReplyPort

Mode new

Modejold

Modejeadwrite

modulo value

mouse

mp_Flags

mp_MsgList

mp Node

mp_SigBit

mp SigTask

MRB HEIGHT.

MRB'PAD.
MRB SHAPE.

MRB WIDTH.

MTRX

Multiplexed addresses

Multitasking

MVBPbits

NoFastMem

noises

non-autovector interrupts

NTLIBRARY

odd cycles

OldOpenLibrary

OpenO

OpenDeviceO
OpenScreenO
oscillation

Output

OVLline

OwnBlitter

PA IGNORE

PA SIGNAL

PA SOFTINT

paddles

PAINTcommand

PAL standard

Parallel interface

parameters

ParentDir

Paula

141

268

268

268

55

253

253

255

383

383

383

137

190
252

252

252

252

252

412

412

412

412

49

24

235

132

331

170

9

227

81

234

336, 337

278

220

171

339

74

159

252

252

252

194

146

78

390

369

341

22,23

PermitO 96,

Pipelining

Playfields

PortList

POS registers

POT inputs

PowerSupplyFrequency

PR/W

Printer device

processor

PutMsg

quadrature pulse

Quantum

QueuePacket

RAM

RAMEN

raster line

RBF

RDY

Read

read register

ready

RemHead
RemlntServer

RemLibrary

Remove()
RemPort

RemTail

RemTask

Rename

ReplyMsg

RES signal

RESET line

Reset

Resident structures

ResModules

ResourceList

RGB connector

RGEN

ROM

Root block

rtJSndSkip

rt_Flags

rtjdString

rt Init

rt MatchTag

rt_MatchWord

rt Name

rt_Type

rt Version

239, 246

158

96

313

85

35

313

37

417

25

262

192

312

347

67

37

81

198

49

338

25

235

216

303

234

216,236

263

217

245

341

263

29

7

75

323

312

312

41

37

74

353

324

325

325

325

324

324

325

325

325

436

Abacus Index

RUNMODEbit

tunning

RXD

scroll counter

Scrolling

Sdelta

Seek

SELX

SemaphoreList

SendIO

Serial interface
serial I/O

serial port

SetComment
SetExcept

SetFunction

Setlnterrupt

SetlhtVector

SetProtection

SetSignals
SetTaskPri

Shugart bus signals

SIDE

Signal

sine waves

SING bit

SKIP

slope

sm_ArgList

Soft interrupts

Softlnts

SoftVer

Sound output

SPREN bit

Sprites

START bit
STEP

STROBE line

strobe addresses
SUD

SUL

supervisor mode

synchronization

SysFlags

SysStkLower/Upper

task exception

task signals

task structure

task switching

TaskReady

15

235

35

117

109

153

338

49

313

281, 283

389

34

17

344

263

228

299

302

345

250

245

49

49

250

170

166

89,92

153

373

290-293
313

309

167

128

122-125

15

50

44

86

152

152

8

63

312

310

257

247

236, 239

237

313

TaskWait

Tc_SPUpper

TDNestCnt

timbre

timeout

TK0

TrackDisk device

Transmit

transparent points

tremolo

TSRE bit

TTL levels

TV Modjack

TXD

UART component

UART register

UDS

ULONG

UnLoadSeg

UnLock

USE0V1

User directory block

user mode

user stack

V-sync

VBlankFrequency

Version

Vertical Pulse

vibrato

VMA

volume

VPA

WaitO 89,91,
WaitForChar

waiting

WaitIO

WaiJPorK)

WarmCapture

white noise

window

WOM

WORDEQUAL

WPRO

WRITE

write register

XCLK/XCLKEN lines

ZD signal

Zorrobus

313

239

312

169

339

50

395

199

129

168

199

41

40

35,46

34

197

6

223

347

341

181

356

8

239

27

313

223

191

168

7

168

7

251, 254

339

235

282

254,264

310

170

384

74

202

49

201, 338

25

42

32,41

55

437

Optional Diskette

System Programmer's

For your convenience, the program listings contained in this book are available on an

Amiga formatted floppy disk. You should order the diskette if you want to use the

programs, but don't want to type them in from the listings in the book.

All programs on the diskette have been fully tested. You can change the programs for your

particular needs. The diskette is available for $14.95 plus $2.00 ($5.00 foreign) for postage

and handling.

When ordering, please give your name and shipping address. Enclose a check, money order

or credit card information. Mail your order to:

Abacus Software

5370 52nd Street SE

Grand Rapids, MI 49508

Or for fast service, call 616/698-0330.

438

ROFESSIONAL

File your other databases away!
Professional DataRetrieve, for the Amiga 500/1000/2000, is a friendly easy-to-operate
professional level data management package with the features of a relational data base system.

Professional DataRetrieve has complete relational data management capabilities. Define
relationships between different files (one to one, one to many, many to many). Change
relations without file reorganization.

Professional DataRetrieve includes an extensive programming language which includes
more than 200 BASIC-like commands and functions and integrated program editor. Design
custom user interfaces with pulldown menus, icon selection, window activation and more.

Professional DataRetrieve can perform calculations and searches using complex
mathematical comparisons using over 80 functions and constants.

Professional DataRetrieve's features:

• Up to 8 files can be edited simultaneously

• Maximum size of a data field 32,000 characters (text fields only)
• Maximum number of data fields limited by RAM

• Maximum record size of 64,000 characters

• Maximum number of records disk dependant

(2,000,000,000 maximum)

• Up to 80 index fields per file

• Up to 6 field types - Text, Date, Time,

Numeric, IFF, Choice

• Unlimited number of searches and sub

range criteria

• Integrated list editor and full-page printer

mask editor

• Index accuracy selectable from 1 -999

characters

• Multiple file masks on-screen

• Easily create/edit on-screen masks for one

or many files

• User-programmable pulldown menus

• Operate the program from the mouse or from

the keyboard

• Calculation fields, Date fields

• IFF Graphics supported

• Mass-storage-oriented file organization

• Not Copy Protected, no dongle: can be installed on your hard drive

5370 52nd St. SE Grand Rapids Ml 49508 - Order Toll Free! 800-451-4319

New Software
The Ideal Amiga wordprocessor

TextPro
Amiga
TextPro Amiga upholds the true spirit of the Amiga:

it's powerful, it has a surprising number of"extra"

features, but it's also very easy to use. TextPro

Amiga—the Ideal Amiga word processor that proves

just how easy word processing can be. You can write

your first documents immediately, with a minimum of

learning—without even reading the manual. But

TextPro Amiga is much more than a beginner's

package. Ultra-fast onscreen formatting, graphic merge

capabilities, automatic hyphenation and many more

features make TextPro Amiga ideal for the

professional user as well. TextPro Amiga features:

High-speed text input and editing

Functions accessible through menus or shortcut keys

Fast onscreen formatting

Automatic hyphenation

Versatile function key assignment

Save any section of an Amiga screen & print as text

Loading and saving through the RS-232 interface

Multiple tab settings

Accepts IFF format graphics in texts

Extremely flexible printer adaptations. Printer drivers

for most popular dot-matrix printers included

Includes thorough manual

Not copy protected

TextPro Amiga

sets a new standard

for word processing

packages in its price

range. So easy to

use and modestly

priced that any

Amiga owner can

use it—so packed

with advanced

features, you can't

pass it up.

Suggested retail price:

TextPro
Amiga

Abaci
HMM

jswi

All Abacus software runs on the Amiga 500, Amiga

1000 orAmiga 2000. Eachpackage isfully compatible

with our otherproducts in the Amiga line

More than word processing...

BeckerText
Amiga
This is one program for serious Amiga owners.

BeckerText Amiga is more than a word processor. It

has all the features ofTextPro Amiga, but it also has

features that you might not expect:

• FastWYSIWYG formatting

• Calculations within a text—like having a spreadsheet

program anytime you want it

• Templates for calculations in columns

• Line spacing options

• Auto-hyphenation and Auto-indexing

• Multiple-column printing, up to 5 columns on a single

page

• Online dictionary checks spelling in text as it's written

• Spell checker for interactive proofing of documents

• Up to 999 characters per line (with scrolling)

• Many more features for the professional

BeckerText Amiga

is a vital addition for

C programmers—it's

an extremely flexible

C editor. Whether

you're deleting,

adding or duplicating

a block ofC source-

code, BeckerText

Amiga does it all,

automatically. And

the online dictionary

acts as a C syntax

checker and finds

syntax errors in a

flash.

BeckerText Amiga. When you need more from your

word processor than just word processing.

$150.00

BeckerText

Amiga

$79.95 Suggested retail price:

Imagine the perfect database

DataRetrieve
Amiga
Imagine, for a moment, what the perfect database for

your Amiga would have. You'd want power and speed,

for quick access to your information. An unlimited

amount of storage space. And you'd want it easy to

use—no baffling commands or file structures—with a

graphic interface that does your Amiga justice.

Enter DataRetrieve Amiga. It's unlike any other

database you can buy. Powerful, feature-packed, with

the capacity for any business or personal application—

mailing lists, inventory, billing, etc. Yet it's so simple to

use, it's startling. DataRetrieve Amiga's drop-down

menus help you to define files quickly. Then you con

veniently enter information using on-screen templates.

DataRetrieve Amiga takes advantage of the Amiga's

multi-tasking capability for optimum processing speed.

DataRetrieve Amiga features:

• Open eight files simultaneously

• Password protection

• Edit files in memory

• Maximum of80 index fields with variable precision

(1-999 characters)

• Convenient search/select criteria (range, AND/OR

comparisons)

• Text, date, time, numeric and selection fields, IFF file

reading capability

• Exchange data with other software packages (for form

letters, mailing lists, etc.)

• Control operations with keyboard or mouse

• Adjustable screen masks, up to 5000 x 5000 pixels

• Insert graphic elements into screen masks (e.g.,

rectangles, circles, lines, patterns, etc.)

• Screen masks support different text styles and sizes

• Multiple text fields with word make-up and

formatting capabilities

• Integrated printer masks and list editor.

• Maximum filesize 2 billion characters

• Maximum data record size 64,000 characters

• Maximum data set 2 billion characters

• Unlimited number ofdata fields

• Maximum field size 32,000 characters

DataRetrieve.Amiga —It'll handle your data with the

speed and easy operation that you've come to expect

fromAbacus products for the Amiga.

DataRetrieve

Amiga
AssemPro

Amiga

AssemPro
Amiga

AssemPro Amiga lets every Amiga owner enjoy the

benefits of fast machine language programming.

Because machine language programming isn'tjust for

68000 experts. AssemPro Amiga is easily learned and

user-friendly—it uses Amiga menus for simplicity. But

AssemPro Amiga boasts a long list ofprofessional

features that eliminate the tedium and repetition of M/L

programming. AssemPro Amiga is the complete

developer's package for writing of 68000 machine

language on the Amiga, complete with editor, debugger,

disassembler andreassembler. AssemPro Amiga is the

perfect introduction to machine langage development

and programming. And it's even got whatyou 68000

experts need.

AssemPro Amiga features:

• Written completely in machine language, for ultra-fast

operation

• Integrated editor, debugger, disassembler, reassembler

• Large operating system library

• Runs under CLI andWorkbench

• Produces either PC-relocatable or absolute code

• Macros possible for nearly any parameter (of different

types)

• Error search function

• Cross-reference list

• Menu-controlled conditional and repeated assembly

• Full 32-bit arithmetic

• Debugger with 68020 single-step emulation

• Runs on any Amiga with 512K and Kickstart 1.2.

Suggested retail price: $79.95 Suggested retail price: $99.95

Amiga System Programmer's Guide

Amiga System Programmer's Guide has a wealth of information about
what goes on inside the amiga. Whether you want to know about the
Amiga kernal or DOS commands, Amiga System Programmer's Guide

has the information you need, explained in a manner that you can

easily understand. Just a few of the things you will find inside:

EXEC Structure

Multitasking functions
I/O management through devices and I/O request
Interrupts and resource management

RESET and its operation

DOS libraries
Disk Management

Detailed information about the CLI and its commands

Much more—over 600 pages worth

Suggested retail price: $34.95

Optional program diskette available: $14.95

AmigaDOS Inside & Out

AmigaDOS covers the insides of AmigaDOS from the intemal design
up to practical applications. There is also a detailed reference section

which helps you find information in a flash, both alphabetically and in

command groups.

Topics include:

68000 microprocessor architecture

AmigaDOS - Tasks and handling
Detailed explanations of CLI commands and their functions

DOS editors ED and EDIT

Operating notes about the CLI (wildcards, shortening input
and output)

Amiga devices and how the CLI uses them

Batch files - what they are and how to write them

Changing the startup sequence

AmigaDOS and multitasking

Writing your own CLI commands
Reference to the CLI, ED and EDIT commands
Resetting priorities - the TaskPri command

Protecting your Amiga from unauthorized use

Suggested retail price: $19.95

Optional program diskette available: $14.95

5370 52nd St. SE Grand Rapids Ml 49508 - Order Toll Free 800-451-4319

Amiga

Books
Great introductory book!

Amiga for Beginners
Aperfect introductory book if you're a new or prospective Amioa

owner. Amiga for Beginners introduces you to Intuition (the

Amioa's graphic interface), the mouse, the windows, the versatile

CLI—this first volume in our Amioa series explains every

practical aspect of the Amiga in plain English. Includes clear,

step-by-step instructions for common Amiga tasks. Amiga for

Beginners is all the info you need to get up and running with

your Amiga 500,1000 or 2000. Topics include: •Unpacking and

connecting the Amioa's components •Starting up your Amioa

•Windows •Files •Customizing the Workbench •Exploring the

Extras disk 'Taking your first steps in the AmigaBASIC

programming language •BASIC graphics commands *BASIC

animation •AmioaDOS functions -Using the CLI to perform

"housekeeping" chores -First Aid appendix -Keyword appendix

•Technical appendix •Glossary. 200 pages. (Optional program

diskette not available).

(630) $16.95

"How-to" BASIC tutorial

AmigaBASIC—

Inside & Out
Above and beyond any BASIC tutorial you've ever seen. This

definitive 550-page volume will turn you into an AmigaBASIC

SEQS& AmigaBASIC—Inside & Out teaches you Amiga-

BASIC with a "hands-on," program-oriented approach, and

explains the language in a clear, easy to understand style. Topics

include: -Fundamental concepts of BASIC •Completely details

all AmioaBASIC commands, with syntax and parameters

•Graphic objects and color control -Interchange file format (IFF)

•Voice synthesis, sound & music -Sequential & random access

files •Complete Reference Section includes Glossary,

AmigaBASIC Reference Guide, error message descriptions.

After you've learned BASIC with AmigaBASIC—Inside &

Out, you'll have many useful, working programs: -Video titling

program for high-quality OBJECT animation on your VCR tapes

•IFF-compatible paint program (lets you load in graphics created

on other graphic programs) •Bar graph & pie chart program

•Simple music synthesizer -Speech synthesis utility program

•Full-featured database.

550 pages.

(610) $24.95

(612) Optional program diskette $14.95

Insider's secrets!

Amiga Tricks & Tips
Asuperb collection of quick hitters for all Amiga owners.

Patterned after our best-selling Tricks & Tips books for the

Commodore 64 & Commodore 128, Amiga Tricks A Tips

contains dozens of programming techniques and program listings

that anyone with an Amiga computer can use, whether you're a

beginner or a seasoned programmer. Amiga Tricks & Tips is

easy to understand, and lists program examples in BASIC. It's

packed with vital Amiga info: •Details on windows and gadgets

•Using disk-resident fonts •Tips for printing hardcopy •Creating

yourownrequesters -Accessing Amioa libraries fromBASIC

•Reserving important 68000 memory •CLI command overview

•Getting the most out of the ED editor •Customizing your own

Workbench •Controlling Intuition •AmioaDOS functions •Hints

for effective programming

(615) $19.95

(617) Optional program diskette $14.95

Guide to Amiga 68000 language

Amiga Machine Language
The practical guide for learning how to program your Amioa in

ultrafast machine language. Used in conjunction with our

AssemPro Amiga software package, Amiga Machine

Language is a comprehensive introduction to 68000 assembler/

machine language programming. Topics include:

• 68000 microprocessor architecture -68000 address modes and

instruction set •Accessing the Amiga's RAM memory, operating

system and multitasking capabilities •Details the powerful Amiga

libraries for using AmioaDOS (input, output, disk and printer

operations) •Details Intuition (windows, screens, requesters,

pulldowri menus) •Speech and sound facilities from machine

Many useful programs listed and explained.

$19.95

$14.95

!■■■■■■■■■

(660)

(662) Optional program diskette

Optional Program Diskettes

contain all ofthe programsfound in these

books—complete, error-free and ready to run.

Save yourselfthe time and and trouble oftyping

in theprogram listings. Each diskette: $1495.

More Amiga hooks

coming soon!

Amiga Disk Drives Inside and Out
AmigaBASIC 3-D Graphics

Amiga 'C For Beginners

Advanced Amiga 'C

How to Order
Abaci! 5370 52nd Street SE Grand Rapids, Ml 49508

All of our Amiga products-application and language

software, and our Amiga Reference Library-are available at

more than 2000 dealers in the U.S. and Canada. To find out

the location of the Abacus dealer nearest you, call:

Toll Free 1-800-451-4319

8:30 am-8:00 pm Eastern Standard Time

Or order from Abacus directly by phone with your credit

card. We accept Mastercard, Visa and American Express.

Every one of our software packages is backed by the
Abacus 30-Day Guarantee—if for any reason you're not
satisfied by the software purchased directly from us, simply

return the product for a full refund of the purchase price.

Order Blank

Name:

Address:

Citv State Zio Country

Phone:

Qty. Name of product

Mich, residents add 4% sales tax

Shipping/Handling charge

(Foreign Orders $12 per Item)

Check/Money order TOTAL enclosed

Price

Credit Card#

Expiration date

1

hardware, EXEC or DOS, you'll find all

this information and more in the Amiga

System Programmer's Guide. This book

explains how the Amiga operating system

works, in plain simple English.

Amiga System Programmer's Guide

explains in detail the Amiga chips (68000,

CIA, Agnus, Denise, Paula) and how to

access them. All the Amiga's powerful

interfaces and features are explained and

documented in a clear precise manner.

Amiga System Programmer's Guide

topics include: • Interfaces (audio, video,

RGB, Centronics, serial, disk, expansion

port, and keyboard) • Programming

hardware (memory layout, interrupts,

Copper, blitter, disk controller) • EXEC

structures (Node, List, libraries, tasks) ■

Multitasking functions (task switching,

communication between tasks, exceptions,

traps, and memory management) • I/O •

handling through devices and I/O Request •

RESET-proof programs and structures, plus

documentation of the RESET routine •

EXEC-base (documentation and use of

system variables) • DOS libraries

(functions, parameters, error messages) •

Program starts, parameters CLI and

Workbench calls, detailed descriptions of

the internal design of CLI commands

(internal DOS library) • Devices (Trackdisk,
Console, Narrator, SER, PAR, PRT,

Gameport)

.hensive guide

to the inner workings

of your Amiga

A complete guide to the

Internals of the Amiga:

• The Amiga hardware

• The Blitter

• Interrupts

• The Exec

• AmigaDOS

• Soft-Interrupts explained

• Reset-Routine documented

• IFF Format ;

• Track-disk, Console, Narrator devices

• Serial, Printer, Parallel devices

Amiga System Programmer's Guide is

packed with all the reference material you

need to get the most out of programming

on your Amiga.

Optional Program Diskette available:

Contains every program listed in the book—

complete, error-free and ready to run!

Saves you hours of typing in machine

5370 52nd Street SE - Grand Rapids, Ml 49508

a registered ifademarti o! Commodore■Amiga In

