ROM Kernel Manual

Volume 1

AMIGA

ROM KERNEL MANUAL

Authors: Rob Peck, Carl Sassenrath, Susan Deyl
Program Examples by: Rob Peck, Carl Sassenrath, Sam Dicker, Tom Pohorsky, Larry Hildenbrand

Acknowledgements:

The following personnel have contributed significantly to the contents of this manual:

«++ Bruce Barrett, Dave Berezowski, Bob Burns, Sam Dicker, Andy Fin debr
«+«+++.. . Dave Lucas, Jim Macraz, R. J. l'wcal, Bob barlsoau, Tor;-\ Podhgrsk;fels'tk:"syh:;lard, :nng' B'::l'lyKV?/trlnll“t' e Luck,

This edition of the Amiga ROM Kernel Manual corresponds to version 1.1 of the Amiga kernel system software.
COPYRIGHT

This manual Copyright © 1985, Commodore-Amiga, Inc., All Rights Reserved. This document may not, in whole or in part, be copied,

photocopied, r uced, tran:
v A:w%?, lnc.' slated, or reduced to any electronic medium or machine readable form without prior consent, in writing, from

The distribution and sale of this product are intended for the use of the original purchaser only. Lawtul users of this program are hereby licensed

only to read the program, from its medium into memory of a computer, solely f copy!|
selling, or otherwise dlet'rlbutlng this product is a vlgl'Ztlon of th: law: oly for the purpase of executing tha program. Dupllcatieg. na:

DISCLAIMER

COMMODORE-AMIGA, INC. MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THE PROGRAM DESCRIBED
HEREIN, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. THIS PROGRAM IS SOLD
“AS1S." THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAM PROVE DEFECTIVE
FOLLOWING ITS PURCHASE, THE BUYER (AND NOT THE CREATOR OF THE PROGRAM, COMMODORE-AMIGA, INC., THEIR
DISTRIBUTORS OR THEIR RETAILERS) ASSUMES THE ENTIRE COST OF ALL NECESSSARY DAMAGES. IN NO EVENT WILL
COMMODORE-AMIGA, INC. BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN ADVISED OF THE POSSIBLITY OF SUCH DAMAGES. SOME LAWS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABLITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY.

The following trademarks are acknowledged:

Amiga Is a trademark of Commodore~Amiga, Inc.

Magcintosh, MacPaint, Resource Mover and QuickDraw are trademarks of Apple Computer, Inc.
DIF is a trademark of Software Arts, Inc.

M68000 and MC68000 are trademarks of Motorola, inc.

Postscript Is a trademark of Adobe Systems, Inc.

Interscript and Smalitalk are trademarks of Xerox Corp.

MS-DOS is a trademark of Microsoft Corp.

Electronic Arts is a trademark of Electronic Arts, Inc.

Printed in U.S.A.

CBM Product Number 327271-02 rev 2 12.9.85

Preface

This preface introduces kernel programming on the Amiga and gives a brief overview of the
contents of this manual.

System Software Architecture

The Amiga kernel consists of a number of system modules some of which reside permanently
in the protected kickstart memory and others that are loaded on a demand basis from the
system disk. These modules form a hierarchy as illustrated in figure 1. As you look at the
figure, you can see how the various modules interact with each other.

At the top of the chain are Workbench and the CLI (Command Line Interface), the user-
visible portions of the system. Workbench utilizes Intuition to produce its displays and
AmigaDOS to interact with the filing system. Intuition, in turn, uses the input device to
retrieve its input and the graphics and layers library routines to produce its output.

AmigaDOS controls processes and maintains the filing system, and is in turn built on Exec,

which manages tasks, task switching, interrupt scheduling, message passing, I/O and many
other functions.

At the lowest level is the Amiga hardware itself. Just above the hardware are the modules
that control the hardware directly. Exec controls’the 68000, scheduling its time among tasks
and maintaining its interrupt vectors, among other things. The trackdisk device is the
lowest-level interface to the disk hardware, performing disk head movement and raw disk
I/O. The keyboard and gameport devices handle the keyboard and gameport hardware,
queueing up input events for the input device to process. The audio device, serial device,
and parallel device handle their respective hardware. Finally, the routines in the graphics
library handle the interface to the graphics hardware.

-iii-

Workbench

AmigaDOS CLI lcons/Drawers/
and Utilities Utilities
) |
AmigaDOS . Intuition
Processes, . Windows, Menus,
File System ‘Gadgets, Events
pnssss——
Layeré
Library
Serial
Exec Track- Ke;;l:‘zard Graphics Audio and
Tasks, Messages Disk Gameport Rendering, Text, Device Parallel
Interrupts, 1/0 Device Devices Gels Devices
T T T l '
| (]]]
N isk | Keyboard ! |
68000 Processor Dis | X and ! Graphics ! Audio | VO Ports
: Contro ! Mouse : :)
! 1 1 3 !

Amiga Hardware

Amiga System Software Modules

-iv-

Programming

The functions of the kernel were designed to be accessed from any language that follows our
standard interface conventions. These conventions define the proper naming of symbols, the
correct usage of processor registers, and the format of public data structures.

Register Conventions

All system functions follow a simple set of register conventions. The conventions apply when

calling any system function, and we also encourage programmers to use the same conventions
in their own code.

The registers DO, D1, AO, and Al are always scratch; they are free to be modified at any
time. They may be used by a function without first saving their previous contents.

All other data and address registers must have their values preserved. If any of these regis-
ters are used by a function, their contents must be saved and restored appropriately.

If you are using assembly code, function parameters may be passed in registers. The conven-
tions in the preceding paragraphs apply to this use of registers as well. Parameters passed in
DO, D1, A0, or A1 may be destroyed. All other registers will be preserved.

If a function returns a result, it is passed back to the caller in DO. If a function returns more

than one result, the primary result is returned in DO and all other results are returned by
accessing reference parameters.

The A6 register has a special use within the system, and it may not be used as a parameter
to system functions. It is normally used as a pointer to the base of a function vector table.
All kernel functions are accessed by jumping to an address relative to this base.

-V-

Data Structures

In addition to the naming of public data structures, the format and initial values of these
structures must also be consistent. The conventions are quite simple and are summarized

below.

1. All non-byte fields must be word-aligned. This may require that you pad certain fields
with an extra byte.

2. All address pointers should be 32 bits (not 24 bits) in size. The upper byte must never
be used for data.

3. Fields that are not defined to contain particular initial values must be initialized to zero.
This includes pointer fields.

4. All reserved fields must be initialized to zero (for future compatibility).

5. Data structures to be accessed by custom hardware must not be allocated on your pro-
gram stack.

6. Public data structures must not be allocated on your program stack (a task control
structure for example).

7.

When data structures are dynamically allocated, items 3 and 4 above can be satisfied by
specifying that the structure is to be cleared upon allocation.

Other Practices

A few other general programming practices should be noted.

1.

Never use absolute addresses. All hardware registers and special addresses have symbolic
names (see the include files and amiga.lib).

Because this is a multitasking system, you must never directly modify the processor
exception vectors (including traps) or the processor priority level.

-Vi-

3. Do not assume that you can access hardware resources directly. Most hardware is con-
trolled by system software that will not respond well to interference. Shared hardware
requires you to use the proper sharing protocols.

4. Do not access shared data structures directly without the proper mutual exclusion.
Remember, it’s a multitasking system and other tasks may also be accessing the same
structures.

5. Most system functions require a particular execution environment. For example, DOS
functions can only be executed from within a process; execution from within a task is not
sufficient. As another example, most kernel functions can be executed from within tasks,
but cannot be executed from within interrupts.

6. The system does not monitor the size of your program stack. You should take care not
to overflow it.

7. Tasks always execute in the 68000 processor user mode. Supervisor mode is reserved for
interrupts, traps, and task dispatching. Take extreme care if your code executes in
supervisor mode. Exceptions while in supervisor mode are deadly.

8. Do not disable interrupts or multitasking for long periods of time.

68010 and 68020 Compatibility

If you wish your code to be upwardly compatible with the 68010/68020 processors, you must

avoid certain instructions and you must not make assumptions about the format of the
supervisor stack frame.

In particular, the MOVE SR,<ea>> instruction is a privileged instruction on the 68010 and
68020. If you want your code to work correctly on all 680x0 processors, you should use the

GetCC() function instead (see the Exec library function descriptions in the appendices to
this manual).

Using Amiga Exec Functions

The following guidelines will be helpful when you are trying to determine which functions

may be run from within a task or from within interrupt code, when to forbid or permit task
switching, and when to disable or enable interrupts.

-vVil-

Functions that Tasks Can Perform

Amiga system software distinguishes between tasks and processes. Figure 1 in this preface
showed this difference. Specifically, the information in a task control block is a subset of the
information contained in a process control block. Consequently, any functions that expect to
use process control information will not function correctly if provided with a pointer to a
task. Generally speaking, tasks can perform any function that is described in this manual.

A task cannot, however, perform any function that is related to AmigaDOS (such as printf,
file-read, file-write, and so on). If you want a task to perform DOS-related functions, you
should arrange for the task to send a message to a ‘“‘process,” which in turn can perform the
function (filling a buffer that is passed to the task, for example) and signal that the job has
been done. The alternative is to use the DOS function CreateProc() instead of the Exec
support function CreateTask() for tasks that you spawn yourself. A process can call all
functions, including DOS functions.

More information about tasks can be found in the “Tasks” chapter.

Functions that Interrupt Code Can Perform

The following Exec functions can be safely performed during interrupts:

Alert() FindPort()
Disable() FindTask()
Cause() PutMsg()

Enable() ReplyMsg()

FindName() Signal()

In addition, if you are manipulating your own list structures during interrupt code, you can
also use the following functions:

AddHead()
AddTail()
Enqueue()
RemHead()
RemTail()

-viii-

General Information about Synchronization

The system functions Enable() and Disable() are provided to enable and disable interrupts.
The system functions Forbid() and Permit() disallow or allow task switching. You need
only determine with what you are trying to synchronize before deciding if you must wrap an
Enable()/Disable() pair around a function call, use Forbid()/Permit(), or simply allow
the system to interrupt or switch tasks at its whim.

If you are trying to modify a data structure common to two tasks, you must assure that
your access to these structures is consistent. One method is to put Forbid()/Permit()
around anything that modifies (or reads) that structure. This makes the function atomic;
that is, the structure is stable and consistent after each full operation by either task. If you
are trying to synchronize with something that might happen as a result of interrupt code (for
example, Exec data structures), you put Disable()/Enable() around any of your own opera-
tions that might interact with such operations. There are other methods (sending messages,
using semaphores, and so on) but they are somewhat more involved.

Note that if you are trying to read the contents of a data structure while it is being changed,
it is possible to generate an address error that will be sensed by the 68000, causing an excep-
tion. This is caused by reading a pointer which is supposed to point to where the data is
located. If the pointer value is no longer valid, it may point to a nonexistent memory loca-
tion that, when read, causes an exception.

Contents of this Manual

This manual describes the Amiga’s system software. For the most part, the software
described here is ROM-resident. It includes the multi-tasking executive (Exec), the graphics
support routines (including text and animation), and the I/O devices. Also included are the

Workbench, an environment for running programs, and the floating point mathematics
library.

For all parts of the system software, the discussion of the data structures and routines is
reinforced through numerous C-language examples. The examples are kept as simple as pos-

sible. Whenever possible, each example demonstrates a single function. Where appropriate,
there are complete sample programs.

This book is organized into four parts, which are largely tutorial, and eight appendices,
which contain reference material.

-1x-

Part I describes the functions of Exec. The chapters in this part are:

o - Chapter 1. Lists and Queues—the basic elements of lists and queues, node struc-
ture of lists, linkage and initialization of list structures, and list support functions
and macros.

o Chapter 2: Tasks—the management of tasks, task creation and termination, event
signals, traps, exceptions, and mutual exclusion.

o Chapter 8: Messages and Ports—inter-system communication in the kernel, struc-
ture of messages and ports, message exchange methods, arrival notification actions,
and various support functions.

o Chapter 4: I/O—Lkoncepts of I/O on system devices, form of I/O requests, device
interface functions and Exec support functions, standard device commands, and how
to perform I/O

o Chapter 5: Interrupts—the software interface to interrupts, normal interrupt
sequence of events, interrupt priorities, interrupt handlers, interrupt servers,
software interrupts, and interrupt exclusion.

o Chapter 6: Memory Allocation—routines for dynamic memory allocation and deal-
location, how to specify memory allocation according to the actual needs of a task
and the hardware it expects to use.

o Chapter 7: Libraries—how libraries are designed and used.

o Chapter 8: ROM-Wack—how to enter and use the ROM-resident version of the
Amiga debugger.

Part II covers the graphics, text, and animation routines. Because this part is organized in
the form of a tutorial about the graphics, you should read each chapter in sequence. Part I
contains the following chapters:

o Chapter 1: Graphics Primitives—how to use the basic graphics tools: support
structures, display routines, and drawing routines.

o Chapter 2: Layers—how to use the layers library, which allows video display to be
split into overlapping, independently controllable areas.

o Chapter 3: Animation—how to use the animation routines to produce the two
kinds of animated graphics images: sprites and playfield animation.

o Chapter 4: Text—how to use the text support routines to print text either in the
default text fonts or your own fonts.

-X-

Part III contains a chapter for each of the Amiga I/O devices. For general information
about 1/O, see the chapter called “I/O” in Part I. Also, the Amiga Hardware Manual
specifies a direct hardware interface for many of the devices covered here. The chapters in
this part are:

Chapter 1: Audio Device—how to use the Amiga’s four audio channels to produce
sound and some considerations for producing clear, quality audio effects. The audio
software is implemented as a standard Amiga input/output device with commands
and functions that allocate audio channels and control the sound output.

Chapter 2: Timer Device—how to use the timer device to produce a semi-precise
time delay.

Chapter 8: Trackdisk Device—how to use the device that actually directly drives

the disk, controls the disk motors, and reads and write raw data to the tracks. The

trackdisk driver is the lowest level software access to the disk data, and is used by
AmigaDOS.

Chapter 4: Console Device—describes how to do keyboard and screen I/O.

Chapter 5: Input Device—the input device is a combination of three other devices
in the system: keyboard device, gameport device, and timer device. The input dev-
ice merges together separate input event streams from the keyboard, mouse and

timer into a single stream which can then be interpreted by input handlers.

Chapter 6: Keyboard Device—describes the keyboard device, which gives system
access to the Amiga keyboard.

Chapter 7: Gameport Device—shows you how to use the gameport device, which is
the access to the Amiga gameports.

Chapter 8: Narrator Device—how to use the speech synthesizer.
Chapter 9: Serial Device—describes software access to the serial port.
Chapter 10: Parallel Device— describes software access to the parallel port.

Chapter 11: Printer Device—describes the various ways of doing output to a
printer, including graphics, and how to create your own printer device driver.

Part IV contains the following chapters:

o

Chapter 1: Math Functions—describes the structure and calling sequences required
to access the Motorola fast floating point library.

-Xl-

o Chapter 2: Workbench—shows how to interface your program to the program that
(1) provides a screen where other applications can run, (2) gives users an icon inter-
face to the Amiga file system, and (3) gives the programmer access to library func-
tions for manipulating objects and icons.

The Appendixes contain reference material:

o Appendiz A contains the summarized references for the built-in libraries of routines.
o Appendiz B contains the summarized references for all device commands.

o Appendiz C contains the summarized references for resources.

o Appendiz D contains printouts of the C-language include files.

o Appendiz F contains printouts of the assembly-language include files.

o Appendiz F is a printout of the Exec support library.

o Appendiz G covers some AmigaDOS topics that are not included in the series of
AmigaDOS manuals.

o Appendiz H describes the IFF standard for interchange format files.

o Appendiz [contains the printer-dependent sample code referenced in the “Printer
Device” chapter.

o Appendiz Jis the hardware memory map.
o Appendiz K contains source code for a skeleton device and a skeleton library.

o Appendiz L contains information about the Amiga disk format.

Other Manuals

See also Intuition: The Amiga User Interface, AmigaDOS User’s Manual, AmigaDOS
Developer’s Manual, and AmigaDOS Technical Reference Manual.

-Xli-

Text Conventions

Boldface type is used for the names of functions, data structures, macros, and variables.

System header files and other system file names are shown in italics, and italics are also used
for emphasis.

-xili-

Table of Contents

PART 1
Chapter 1 Lists and Queues ... 1-1
1.1 INTRODUGTION oo s eeeeeeeeeeseeeeeseseesesses s s s eee s e 1-1
1.2 LIST STRUCTURE ..o eeseeeseseesseeessesesseeeesesseenees 1-2
INOAE SETUCLUTE | oo 1-2
Node INTEIANZALIONcooooioiooeeeeeeeeeeeeee e ses s 1-3
Header StruCtUre ... 1-4
Header Init1allZation ... 1-5
1.3 LIST FUNGCTIONS oo eseeeeeeseseeeeeses e sesseses e esesesess s sessesse s s 1-6
Insertion and Removal .. e, 1-6
Special Case INSErtIon ... s 1-7
Special Case Removal ..., 1-7
Prioritized INSeTtION ... 1-7
Searching by NAMe ..o 1-8
1.4 LIST MAGROS e eeeeeeeeeeesee s s s s ses e es s s s 1-8
1.5 EMPTY LISTS oo eeeeeeeeeeeesee e erees s esessessses s 1-9
1.6 SCANNING A LIST L...ooooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeee e esssseseeessssens 1-10
Chapter 2 Tasks ... 1-11
2.1 INTRODUGTION oo 1-11
SCREAUIINE ..o oo s s sessseees 1-11
TASK SEALES ..ot s 1-12
TaSk QUEUESoooeoeeceeeeeeeeeeeeeeeee e 1-13
PlIOTIEY et eesennes 1-14
SETUCLUTE | et 1-14
2.2 CREATION Lo eeeeeseeesee e e eessesses e 1-15
SEACK ..o e 1-17
2.3 TERMINATION Lo 1-18
2.4 SIGNALS Lo 1-19
ALLOCAION ... e s ees e s esereseesreene 1-19
Waiting for @ SIGNAl ..o 1-20
Generating & SIZNAL ..ot ese s 1-21
2.5 EXCLUSION Lo oo eeeseese e e 1-21

FOTDIAAING .o e s eees e 1-22

DiASADIING oo eereenns 1-23
SeMAPROTES | .t 1-24
2.6 EXCEPTIONS oo oo esese e eeseeeesesess 1-24
2.7 TRAPS oot e oot ereenens 1-25
HADAIETS ettt 1-26
Trap INSETUCTIONS .ot 1-26
Chapter 3 Messages and Ports 1-29
3.1 INTRODUGTION e esve e e 1-29
3.2 PORTS oot esee oo oo 1-30
SETUCEUTE | e se e e 1-30
CTEALION ...ttt es s eeeene 1-31
DIEIEEION ..o ettt 1-33
RENAEZVOUS | eee e eseese s eeeennes 1-33
3.3 MESSAGES et ettt eet e seenres 1-33
Putting @ MeSSAZE ... es oo eesinnen 1-34
Waiting for @ MeSSAZEo eeeeeveeeeseseeeere s seseeseeseenne 1-35
Getting & MESSAZE ..ot 1-36
REPLYING oot st sens et ae s e 1-37
Chapter 4 I/ O ..ttt 1-39
4.1 INTRODUGTION oo sesee s ses s sessesees s seessss s areeeeese 1-39
4.2 REQUEST STRUCTURE ..o seess s 1-40
4.3 INTERFACE FUNCTIONS e seeeesessssenon 1-42
4.4 STANDARD COMMANDS oo eeseoe 1-43
4.5 PERFORMING /Oooooiooeeeeeeoeeeseeeesseeseeeeseeseesees e seeseesereseeeeeene 1-44
Preparation ... e reene 1-44
Synchronous ReqQUESES ... 1-45
Asynchronous Requests 1-46
CONCIUSION ..o es et s s 1-47
QUICK T/ e e 1-47
4.6 STANDARD DEVICES | ..o seeeeeeseee e esoseoe oo 1-48
Chapter 5 Interrupts ... 1-49
5.1 INTRODUGTION oo sseeseesess s sesssese e 1-49
Sequence of EVeNts ... 1-49
INterrupt PriOTItIeS | ..o eeeeeeeeeeee s oo 1-51
Non-maskable INterrupt | ... 1-52
5.2 SERVICING INTERRUPTS ... e eeeeseseeeeeeesoeeeeeeeeeoe oo 1-52
Data SETUCLUTE _...cccoooooioecoceeeee s ssseses e 1-53
EDVITONIMENY ..ottt eree e 1-53
Interrupt Handlers ... 1-54
INEEITUDPE SEIVEIS | oooeeeeeeeeseeseeeeeeesse e oo ee s e 1-56
5.3 SOFTWARE INTERRUPTS oo 1-58

- xvi -

5.4 DISABLING INTERRUPTS

... 1-58
Chapter 6 Memory Allocation 1-61
6.1 INTRODUGTION oo, 1-61
6.2 USING MEMORY ALLOCATION ROUTINES ..., 1-62
Memory ReqUITeMENntS ..o s, 1-62
Memory Handling RoOUtines ..., 1-63
Sample Calls for Allocating System Memory ... 1-63
Sample Function Calls for Freeing System Memory ... 1-64
Sample Code for Allocating Multiple Memory Blocks ... 1-66
6.3 MEMORY ALLOCATION AND TASKS oo 1-67
Memory Allocation and the Multi-Tasking System ... 1-68
Managing Memory with Allocate() and Deallocate() ..., 1-69
Chapter 7 Libraries ... 1-71
7.1 WHAT IS A LIBRARY? et 1-71
7.2 HOW TO ACCESS A LIBRARY ..o 1-71
Opening a LIBTary ..o, 1-72
Using a Library to Call a Routine ... 1-73
Using A Library To Reference Data 1-74
Caching Library PoInbers ...t 1-74
Closing A LIDTATY oo 1-75
7.3 ADDING A LIBRARY ..o 1-75
Making a New LIDTATY .o 1-76
Minimum Subset of Library Code Vectors ..., 1-77
Structure of a Library NOe ... eeeeeens 1-77
Changing The Contents Of A Library ..., 1-78
7.4 RELATION TO DEVICES e 1-79
Chapter 8 ROM-Wack . 1-81
8.1 INTRODUCGTION e 1-81
8.2 GETTING TO WACK ..ot 1-81
8.3 KEYSTROKES, NUMBERS, AND SYMBOLS oo, 1-82
8.4 REGISTER FRAME oo 1-83
8.5 DISPLAY FRAMES | eeeeeeeeeeeeeeeveoeeeeee oo 1-84
8.6 RELATIVE POSITIONING _....occooiooeoeeeeccceeeeeeeeeeeeeoeeeee e 1-84
8.7 ABSOLUTE POSITIONING ... oo 1-85
8.8 ALTERING MEMORY oo 1-86
8.9 EXECUTION CONTROL ..o 1-88
8.10 BREAKPOINTS e et 1-88
8.11 RETURNING TO MULTI-TASKING AFTER A CRASH ... 1-89

- xvil —

PART II

Chapter 1 Graphics Primitives
1.1 INTRODUCTION

Components of a Display
Introduction to Raster Displays
Interlaced and Non-Interlaced Mode
High and Low Resolution Modes
Forming an Image
Role of the Copper (Coprocessor)
1.2 DISPLAY ROUTINES AND STRUCTURES
Limitations on the Use of ViewPorts
Characteristics of a ViewPort
ViewPort Size Specifications
ViewPort Color Selection
ViewPort Display Modes
ViewPort Display Memory
Forming a Basic Display
Loading and Displaying the View
Graphics Example Program
Advanced Topics
1.3 DRAWING ROUTINES

Initializing a BitMap Structure
Initializing a RastPort Structure
Using the Graphics Drawing Routines

Chapter 2 Layers
2.1 INTRODUCTION

Definition of Layers ...
Types of Layers SUPPOTLed ..o
2.2 LAYERS LIBRARY ROUTINES e,
Initializing and Deallocating Layers
Intertask OPerations ... e oo
Creating and Deleting Layers
Moving Layers
SIZINE LAY @IS et e oo
Changing a View Point
Reordering Layers ..o
Determining Layer POSItION ...
Sub-Layer Rectangle Operations
2.3 THE LAYER’S RASTPORTooeeeeeeeeoeseceoeeeeseeesoseeeeeeeeeoeoeoeoooeeoeoee oo
Simple Refresh Layer
Smart Refresh Layer

~ XVill -

2-67
2-68
2-68

Superbitmap Layer

... 2-76
Backdrop Layer e, 2-77
2.4 USING THE LAYERS LIBRARY oo 2-77
Opening the Layers Library ... 2-77
Opening the Graphics Library 2-78
Creating a Viewing Workspace ..., 2-78
Creating the Layers ..., 2-79
Getting the Pointers to the RastPorts ... 2-79
Using the RastPorts for Display ..., 2-80
Layers Example 2-80
2.5 CLIPPING RECTANGLE LIST oo, 2-84
Damage LISt e 2-85
Repairing the Damage ..., 2-85
2.8 REGIONS e e 2-86
Creating and Deleting Reglons ..o 2-86
Changing a ReGION ..o 2-87
Clearing a Reglon e, 2-87
USINE ReGIONS e 2-87
Sample Application for Regions 2-89
Chapter 3 Animation ..., 2-95
3.1 INTRODUCGTION e 2-95
Preparing to Use Graphics Animation ... 2-96
Types of ANIMALION e, 2-96
The GELS SYSEeIM oot 2-98
3.2 USING SIMPLE (HARDWARE) SPRITES | ., 2-103
Controlling Sprite DMA oo 2-103
Accessing a Hardware SPrite ... 2-104
Changing the Appearance of a Simple Sprite ... 2-105
Moving a SIMPLe SPIIe oo 2-106
Relinquishing a Simple SPTIte ... e 2-113
3.3 USING VSPRITES e 2-113
Specifying the Size of a VSprite 2-114
Specifying the Colors of @ VSPIIte ..ot 2-114
Specifying the Shape of a VSPIiteo, 2-115
Specifying VSprite POSIbION ... 2-117
UsSINg VSPIite FLAGS oot 2-117
AdAING @ VSPTIEE Lot eeee oo s 2-119
RemoOvVING @ VISPIIbe oot 2-119
Getting the VSprite List in Order, 2-120
Displaying the VSPIItes ..o 2-120
VSprite Operations SUMMATY | ..., 2-124
VSprite Advanced Topies ... 2-125
3.4 USING BOBS e 2-129

- XIX —

Linking a Bob to a VSprite Structure 2-130

Specifying the Size of a Bob ..., 2-13
Specifying the Colors of a Bob 2-131
Specifying the Shape of a Bob ..., 2-132
Other Items Influencing Bob Colors ... 2-134
Specifying Bob Position ..., 2-138
BOD PrIOTICIES oo, 2-138
Saving the Playfield DiSplay ..., 2-140
UsIng Bob Flags e, 2-141
AddIng @ BOD e 2-145
Removing a Bob | e 2-145
Getting the List of Bobs in Order ..., 2-146
Displaying BobS ..o 2-147
Changing Bobs e 2-147
Double-Buffering ... e 2-148
Bob Operations SUMIMATY ... oo 2-150
Bob Advanced TOPICS ..o 2-152
3.5 VSPRITE AND BOB TOPICS | oo, 2-153
Detecting GEL COllISIONS ..o 2-153
Bob/VSprite Collision Boundaries Within a RastPort ... 2-162
Adding New Features to Bob/VSprite Data Structures ... 2-163
3.6 ANIMATION STRUCTURES AND CONTROLS 2-164
General Characteristics of the Animation System ... 2-165
[Keeping Track of Graphic Objects ..., 2-165
Classes of Animation ObJeCtS ... 2-166
Positions of Animation ObjJects, 2-166
ANIMation Ty PeS e 2-168
Initializing the Animation SyStem ..., 2-172
Specifying the Animation Objects ..., 2-173
Specifying Animation Components ... 2-174
Drawing Precedence ... 2-176
AnImation SeQUENCING ... 2-177
Specifying Time for Each Image . . . 2-178
Your Own Animation Routine Calls ... 2-180
Moving the ObJects o e 2-181
Chapter 4 Text ..o 2-183
4.1 INTRODUCGCTION oo 2-183
4.2 PRINTING TEXT INTO A DRAWING AREA . 2-184
LO118 To0 N o 1 LoS N 2-184
Baseline Of The TeXtb ..o 2-184
Size of the FONt e 2-186
Printing the TeXt .. ooeeoeeeeeoeoeeeeeeeeeeseeees oo 2-186
Sample Print ROUCINE ..o 2-186

4.3 SELECTING THE TEXT COLOR
4.4 SELECTING A DRAWING MODE
4.5 EFFECTS OF SPECIFYING FONT STYLE
4.6 ADDING A NEW FONT TO THE SYSTEM

4.7 USING A DISK FONT

4.8 FINDING OUT WHICH FONTS ARE AVAILABLE
4.9 CONTENTS OF A FONT DIRECTORY

4.10 THE DISK FONT

The Text Node ...

Font Height

Font Preferences
Font Width

Characters Represented by This Font

The Character Data

A Complete Sample Font

4.12 SAMPLE PROGRAM

Font Style ...

— XX1 —

PART III

Chapter 1 Audio Device

... 3-1
1.1 INTRODUGCTION oo eeee e ee e ee e 3-1
L2 DEF NI T ION S et 3-2
1.3 AUDIO FUNCTIONS AND COMMANDS e 3-3

Audio as @ DeVICE ..o 3-4
Scope of COMMANAS ... 3-4
Allocation and ATDISTAtION ..., 3-5
Performing Audio Commands ..., 3-7
Command TYPeS ..o 3-7
System Functions, 3-8
Allocation /Arbitration Commands ... 3-9
Hardware Control Commands ..., 3-14
1.4 EXAMPLE PROGRAMS . eeeeeeeeeeeeeseseeeeeeeee e eeeseee e seenenens 3-19
1.5 Stereo Sound EXample ... 3-19
Double-duffered Sound Synthesis Example ... 3-23
Chapter 2 Timer Device ... 3-29
2.1 INTRODUGTION oo e 3-29
2.2 TIMER DEVICE UNITS oo 3-29
2.3 SPECIFYING THE TIME REQUEST e 3-30
2.4 OPENING A TIMER DEVICE e 3-31
2.5 ADDING A TIME REQUEST oo 3-32
2.6 CLOSING A TIMER e 3-32
2.7 ADDITIONAL TIMER FUNCTIONS AND COMMANDS ... 3-32
System TIME oo 3-33
Using the Time Arithmetic Routines ... 3-34
Why Use Time Arithmetic ..., 3-35
2.8 SAMPLE TIMER PROGRAM e 3-36
Chapter 3 Trackdisk Device 3-43
3.1 INTRODUGTION oo 3-43
3.2 THE AMIGA FLOPPY DISK .o 3-44
3.3 TRACKDISK DRIVER COMMANDS 3-45
3.4 CREATING AN I/O REQUEST ... e 3-46
3.5 OPENING A TRACKDISK DEVICE oo, 3-47
3.6 SENDING A COMMAND TO THE DEVICE . 3-48
3.7 TERMINATING ACCESS TO THE DEVICE . oo 3-49
3.8 DEVICE-SPECIFIC COMMANDS e 3-49
3.9 STATUS COMMANDS | oo 3-52
3.10 COMMANDS FOR DIAGNOSTICS AND REPAIR . 3-53
3.11 TRACKDISK DRIVER ERRORS ... 3-53
3.12 EXAMPLE PROGRAM | e 3-54

— XX11l —

Chapter 4 Console Device ..., 3-57

4.1 INTRODUCTION oo 3-57
4.2 SYSTEM FUNCTIONS e 3-57
4.3 CONSOLE /0 e 3-58
General Console Screen OUtPUb ..o 3-58
Console Keyboard Input, 3-58
4.4 CREATING AN I/O REQUEST e, 3-59
4.5 OPENING A CONSOLE DEVICE ..o 3-60
Sending a Character Stream to the Console Device ... 3-60
4.6 CONTROL SEQUENCES FOR SCREEN OUTPUT ... 3-62
Reading from the Console ... 3-67
Information About the Read-Stream 3-68
Cursor Position RePOTt ..o 3-69
Window Bounds Report ..., 3-70
Selecting Raw Input Events ... e, 3-70
4.7 COMPLEX INPUT EVENT REPORTS ..o 3-71
4.8 IKEYMAPPING oo 3-79
About QUALITIETS | 3-82
[Keytype Table ENUIies ..o 3-84
String-Output IKeys e 3-84

Capsable Bit Table . . 3-86
Repeatable Bit Table

... 3-86
Default Low Key Map e 3-87
Default High ey Map e, 3-88
4.9 CLOSING A CONSOLE DEVICE e 3-89
4.10 EXAMPLE PROGRAM oot 3-90
Chapter 5 Input Device ... 3-101
5.1 INTRODUCGCTION oo 3-101
5.2 INPUT DEVICE COMMANDS oo 3-102
IND_ADDHANDLER Command ... 3-103
IND_REMHANDLER Command ... 3-105
IND_WRITEEVENT Command ..., 3-106
IND_SETTHRESH Command ... 3-107
IND_SETPERIOD Command ... 3-107
5.3 INPUT DEVICE AND INTUITION e, 3-107
5.4 SAMPLE PROGRAM e sesea 3-108
Chapter 8 Keyboard Device 3-115
6.1 INTRODUGTION e 3-115
6.2 KEYBOARD DEVICE COMMANDS e, 3-116
6.3 EXAMPLE KEYBOARD READ-EVENT PROGRAM 3-120
Chapter 7 Gameport Device ... 3-123
7.1 INTRODUCGTION e, 3-123

— XXl —

7.2 GAMEPORT DEVICE COMMANDS 3-123

GPD _SETCTYPE et 3-124
GPD _GET CTYPE e 3-125
GPD_SETTRIGGER ..ot 3-126
7.3 EXAMPLE PROGRAMS oo 3-127
MoOuse PTOGIAIM oo 3-127
JOYStick PTOGTAIM oo 3-133
Chapter 8 Narrator Device ..., 3-139
8.1 INTRODUGCTION oo 3-139
8.2 THE TRANSLATOR LIBRARY ..o 3-139
Using the Translate Function ... 3-140
Additional Notes About Translate ... 3-141
8.3 THE NARRATOR DEVICE e 3-141
Opening the Narrator Device 3-141
Contents of the Write Request Block) 3-142
Contents of the Read Request ..., 3-143
Opening the Narrator Device ..., 3-144
Performing a Write and a Read ..., 3-144
8.4 SAMPLE PROGRAM e 3-145
8.5 HOW TO WRITE PHONETICALLY FOR NARRATOR ... 3-150
Phonetic Spelling e 3-150
Choosing the Right Vowel e 3-151
Choosing the Right Consonant ..., 3-151
Contractions and Special Symbols ... 3-152
Stress and INtONAtION . e 3-153
How and Where To Put the Stress Marks 3-153
What Stress Value Do T USe? | oo, 3-154
PUunctuation e 3-155
Hints for Intelligibility | e 3-156
Example of English and Phonetic Texts ..., 3-156
Concluding Remarks ... 3-157
8.6 THE MORE TECHNICAL EXPLANATION . o 3-157
8.7 TABLE OF PHONEMES oo 3-158
Chapter 9 Serial Device 3-161
9.1 INTRODUGTION e eeeeeeeee e 3-161
9.2 OPENING THE SERIAL DEVICE | oo 3-161
9.3 READING FROM THE SERIAL DEVICE 3-163
First Alternative Mode for Readingo, 3-163
Second Alternative Mode for Reading ..., 3-165
Termination of the Read, 3-166
9.4 WRITING TO THE SERIAL DEVICE oo, 3-166
9.5 SETTING SERIAL PARAMETERS oo, 3-168

— XXIV —

Serial Flags e 3-170

Setting the Parameters ... 32171
9.6 ERRORS FROM THE SERIAL DEVICE .. 3-171
9.7 CLOSING THE SERIAL DEVICE e 32172
9.8 EXAMPLE PROGRAM e 3-173
Chapter 10 Parallel Device 3-179
10.2 OPENING THE PARALLEL DEVICE ... 3179
10.3 READING FROM THE PARALLEL DEVICE . . o 3-181
Alternative Mode for Reading ... 32181
Termination of the Read 3-183
10.4 WRITING TO THE PARALLEL DEVICE oo 3-183
10.5 SETTING PARALLEL PARAMETERS 3-185
Parallel F1ags . .o 3- 185
Setting the Parameters . 3-186
10.6 ERRORS FROM THE PARALLEL DEVICE . . 3-186
10.7 CLOSING THE PARALLEL DEVICE 3-187
10.8 EXAMPLE PROGRAM e, 3-188
Chapter 11 Printer Device ... 3-191
11.1 INTRODUCTION e 3-191
PRT: the DOS Printer Device ... 3-192
SER: the DOS Serial Device, 3-192
PAR: the DOS Parallel Device ... e 3-193
The Printer DeviCe ..o 3-193
11.2 PRINTER DEVICE OUTPUT . . 32193
11.3 OPENING THE DOS PRINTER DEVICE ... oo 3-193
11.4 DATA STRUCTURES USED DURING PRINTER [/O ... 3-195
11.5 CREATING AN I/O REQUEST | .. 3-195
11.6 OPENING A PRINTER DEVICE e 3-196
11.7 WRITING TO THE PRINTER e 3-196
Printer Command Definitions ... 3-197
11.8 TRANSMITTING A COMMAND TO THE PRINTER DEVICE . .. 3-200
11.9 DUMPING A RASTPORT TO THE PRINTER o3-201
Additional Notes About Graphics Dumps ... 3-203
11.10 CREATING A PRINTER DRIVER o 3-204
Sample Code Provided ... 3-207
Writing a Custom Graphics Printer Driver . 3-207
Writing a Custom Alphanumeric Printer Driver ... 3-213

— XXV —

PART IV

Chapter 1 Math Functions

.. 4-1

1.1 INTRODUCGTION oo 4-1
1.2 FFP FLOATING POINT DATA FORMAT e, 4-1
1.3 FFP BASIC MATHEMATICS LIBRARY e 4-3
1.4 FFP TRANSCENDENTAL MATHEMATICS LIBRARY . 4-7
1.5 FFP MATHEMATICS CONVERSION LIBRARY o 4-15
1.6 IEEE DOUBLE-PRECISION BASIC MATH LIBRARY .. 4-17
Chapter 2 Workbench 4-23
2.1 INTRODUGTION oo e 4-23
2.2 THE ICON LIBRARY oo e 4-24
2.3 THE INFO FILE oo eeeeeeeee e srereeon, 4-24
The DiskObject StrUCCUTE ..o eeseeee e 4-25

The Gadget SETUCLUTE oo 4-26

Icons with NO POSILION oo, 4-28

2.4 WORKBENCH ENVIRONMENT oo, 4-28
SArtUD MeSSAZE | et 4-28

The Standard Startup Code ..., 4-30

2.5 TOOLTYPES oot 4-31
2.6 EXAMPLE PROGRAMS e 4-32
FriendlyTool e eeseeeee e 4-32
ReadInfoF1le e 4-33
Startup PrOGLam | ..ot 4-36
ReadInfolile oo, 4-42

— XXVl —

Appendix A Routine Summaries

Appendix B Device Summaries

Appendix C Resource Summaries

Appendix D C Include Files (.h)

Appendix E Assembly Include Files (.i)
Appendix F Exec Support Library

Appendix G AmigaDOS Topics

Appendix H IFF Interchange File Format
Appendix 1 Printef-Dependent Example Code
Appendix J Software Memory Map

Appendix K Skeleton Device, Skeleton Library
Appendix L Disk Format Information

Index

— XXVIil —

Part I

Chapter 1

Lists and Queues

This chapter describes the basic elements of Exec lists and queues. It discusses the node
structure of lists, the linkage and initialization of list structures, and the list support func-
tions and macros. Queues and priority sorted lists are achieved through the use of the list
functions applied in a certain order and are also discussed.

A thorough understanding of this chapter is necessary to properly write programs that deal
with Exec.

1.1. INTRODUCTION

The Amiga system software operates in a highly dynamic environment of control data struc-
tures. An early design goal of Exec was to keep the system flexible and open-ended by not
creating artificial boundaries on the number of system structures used. Rather than using
static sized system tables, Exec uses dynamically created structures that are attached to the
system as needed. This concept is central to the design of Exec.

Exec uses lists to maintain its internal data base of system structures. Tasks, interrupts,
libraries, devices, messages, [/O requests, and all other Exec data structures are supported
and serviced through the consistent application of Exec’s list mechanism.

Lists have a common data structure and a common set of functions for manipulating them.

Because all of these structures are treated in a similar manner, only a small number of list
handling functions need be supported by Exec.

Lists and Queues 1-1

1.2. LIST STRUCTURE

A list is composed of a header and a chain of linked elements called nodes.

The header maintains memory pointers to the first and last nodes of the linked chain of
nodes. The address of the header serves as the handle to the entire list. When referring to a
list, you refer to the address of its header. In addition, the header specifies the data type of
the nodes in a list. We'll discuss node data typing later.

Node Structure

A node is divided into two parts: list linkage and node content. The linkage part contains
memory pointers to the node’s successor and predecessor nodes, the node data type, and the
node priority. The content part stores the actual data structure of interest.

As a C language structure, the linkage part of a node is defined:

struct Node {
struct Node *In_Succ;
struct Node *In_Pred;
UBYTE In_Type;
BYTE In_Pri;

char *In_Name;

35

where

In_Succ

points to the next node in the list (successor),

In_Pred

points to the previous node in the list (predecessor),

In_Type
defines the type of the node,

In_Pri

specifies the priority of the node, and

1-2 Lists and Queues

In_Name

points to a printable name for the node.

As an example of a complete node, the Exec Interrupt structure is defined as:

struct Interrupt {
struct Node is_Node;
APTR is_Data;
VOID (*is_Code)();
b

Here the is_Data and is_Code fields represent the useful content of the node.

Node Initialization

Before you link a node into a list, you should initialize it first. The initialization consists of
setting the In_Type, In_Pri, and In_Name fields to their appropriate values. The In_Succ
and In_Pred fields do not require initialization.

The In_Type field contains the data type of the node. This indicates to Exec (and other
interested subsystems) the type and hence the structure, of the content portion of the node.
A few of the standard system types are defined in the ezec/nodes.t and /ezec/nodes.h

include files. A few examples are: NT_TASK, NT_INTERRUPT, NT_DEVICE,
NT_MSGPORT, etc.

The In_Pri field indicates the priority of the node relative to other nodes in the same list.
This is a signed numerical value ranging from +127 to -128. Higher priority nodes have

more positive values; for example, 127 is the highest priority, zero is nominal priority, -128 is
the lowest priority.

Some Exec lists are kept sorted by priority order. In such lists the highest priority node is at
the head of the list; the lowest priority node is at the tail of the list. For most Exec node

types, priority is not used. In such cases it is a good practice to initialize the priority field to
zero.

The In_Name field is a pointer to a null-terminated string of characters. Node names are
used mostly to bind symbolic names to actual nodes. They are also useful for debugging pur-

poses. It is always a good idea to provide every node with a name.

Here is a C example showing how you might initialize a node called myInt, which is an
instance of the interrupt structure defined above:

Lists and Queues 1-3

mylInt.ln_Type = NT_INTERRUPT;
mylnt.In_Pri = 20;
mylInt.ln_Name = "sample.interrupt”

Header Structure

As mentioned earlier the header maintains memory pointers to the first and last nodes of the
linked chain of nodes. This header also serves as a handle for referencing the entire list.

Here is the C-structure of a list header:

struct List {
struct Node *1h_Head;
struct Node *lh_Tail;
struct Node *lh_TailPred;
UBYTE lh_Type;
UBYTE Ilh_pad;

b5

where:

lh_Head
points to the first node in the list,

lh_Tail

1s always zero,

lh_TailPred

points to the last node in the list,

lh_Type
defines the type of nodes within the list, and

lh_pad

is just a structure alignment byte (not used).

1-4 Lists and Queues

There is one subtlety here that should be further explained. The head and tail portions of
the header actually overlap. This is best understood if you think of the head and tail as two
separate nodes. The lh_Head field is the In_Succ field of the first node in the list and the
lh_Tail field is its In_Pred. The lh_Tail is set permanently zero to indicate that this node
is the first on the list; that is, it has no successors.

A similar method is used for the tail node. The lh_Tail field is the Ih_Succ field of the last

node in the list and the lh_TailPred field is its In_Pred. In this case, the zero lh_Tail
indicates that the node is the last on the list; that is, it has no predecessors.

Header Initialization

List headers must be properly initialized before use. It is not adequate to initialize the entire
header to zero. The head and tail entries must be set up correctly.

Here is how the header should be initialized:

1. Assign the lh_Head field to the address of lh_Tail.
2. Assign the lh_TailPred field to the address of lh_Head.

3. Clear the lh_Tail field.

4. Set lh_Type to the same data type as that of the nodes to be kept in this list.

In C an example initialization might look like:

list.lh_Head = &list.lh_Tail;
list.lh_TailPred = &list.lh_Head;
list.lh_Tail = 0;

list.]h_Type = NT_INTERRUPTS;

In assembly code only four instructions are necessary to initialize the header:

MOVE.L A0,(A0)

ADDQ.L #LH_TAIL,(A0)

CLR.L LH_TAIL(AO0)

MOVE.L A0 ,LH_TAILPRED(AO).

Lists and Queues 1-5

Note that this is the same as the macro NEWLIST, contained in the file ezec/lists.i. It
performs its function without destroying the pointer to the list header in AO (which is why
ADDQ.L is used). This function may also be accessed from C as a call to NewList(lh)
where 1h is the address of the list header. See the source code for CreatePort() in chapter
3, “Messages and Ports‘, for one instance of its use.

1.3. LIST FUNCTIONS

Exec provides a number of symmetric functions for handling lists. There are functions for
inserting and removing nodes in lists, for adding and removing tail and head nodes in lists,
for inserting nodes in a priority order, and for searching a list for a node with a particular
name.

Insertion and Removal

The Insert() function is used for inserting a new node into any position in a list. It always
inserts the node following a specified node that is already part of the list.

For example, Insert(list,node,pred) inserts the node after pred in the specified list. If the
pred node points to the list header or is null, the new node will be inserted at the head of
the list. Similarly, if the pred node points to the list lh_Tail field, the new node will be
inserted at the tail of the list. However, both of these actions can be better accomplished
with the functions mentioned in the “Special Case Insertion’ section below.

The Remove() function is used to remove a specified node from a list. For example
Remove(node) will remove the specified node from whatever list it’s in. Please note:
removing a node requires that it actually be in the list. If you attempt to remove a node
that is not in a list, you will cause serious system internal problems.

1-6 Lists and Queues

Special Case Insertion

Although the Insert() function allows new nodes to be inserted at the head and the tail of a
list, the AddHead() and AddTail() functions will do so with higher efficiency. Adding to
the head or tail of a list is common practice in queuing type operations, as in first-in-first-out
(FIFO) or last-in-last-out (LIFO or stack) operations.

For example AddHead(list,node) would insert the node at the head of the specified list.

Special Case Removal

The two functions RemHead() and RemTail() are used in combination with AddHead()
and AddTail() to create special list ordering. When you combine AddTail() and
RemHead(), you produce a first-in-first-out (FIFO) list. When you combine AddHead()
and RemHead() a last-in-first-out (LIFO or stack) list is produced. RemTail() exists for
symmetry. Other combinations of these functions can also be used productively.

For example RemTail(list) removes the first node from the specified list and returns a
pointer to it as a result. If the list is empty, 1t returns a zero result.

Prioritized Insertion

None of the list functions discussed so far make use of the priority field in the list data struc-
ture. The Enqueue() function makes use of this field and is equivalent to Insert() for a
priority sorted list. It performs an insert on a priority basis, keeping the higher priority

nodes towards the head of the list. All nodes passed to this function must have their priority
assigned prior to the call.

For example, Enqueue(list,node) inserts the node into the prioritized list after the last node
of same or higher priority.

As mentioned earlier, the highest priority node is at the head of the list, the lowest priority
node is at the tail of the list. Using the RemHead() function will return the highest priority

Lists and Queues 1-7

node, and RemTail() the lowest priority node.

Note that if you insert a node that has the same priority as another node in the list,
Enqueue() will use FIFO ordering. The new node is inserted following the last node of
equal priority.

Searching by Name

Since most lists contain nodes with symbolic names attached (via the In_Name field), it is
possible to find a node by its name. This naming technique is used throughout Exec for such
nodes as tasks, libraries, devices, and resources.

The FindName() function is provided to search a list for the first node with a given name.
For example, FindName(list,"Furrbol”’) returns a pointer to the first node named
“Furrbol”. If no such node exists, a zero is returned. The case of the name characters is
significatn; “foo’’ is different from ‘“‘Foo.”

To find multiple occurrences of nodes with identical names, the FindName() function is
called multiple times. For example, if you want to find the second node with the “Furrbol”
name:

struct Node node;
node = FindName(list,"Furrbol”);
if (node !=0) {
node = FindName(node,*Furrbol”);

}

Notice that the second search uses the node found by the first search. The FindName()
function never compares the specified name with that of the starting node. It always begins
the search with the successor of the starting node.

1.4. LIST MACROS

Assembly code programmers may want to optimize their code by using assembly code list
macros. Because these macros actually embed the specified list operation into the code, they
result in slightly faster operations. The file exec/lists.i contains the recommended set of
macros.

1-8 Lists and Queues

For example, the following instructions implement the REMOVE macro:

MOVE.L (A1),A0 » get successor
MOVE.L LN_PRED(A1),A1 =* get predecessor
MOVE.L A0,(A1l) * fixup predecessor’s succ pointer

MOVE.L A1,LN_PRED(AO0) * fixup successor’s pred pointer

1.5. EMPTY LISTS

It is often important to determine if a list is empty. This can be done in many ways. but
only two are worth mentioning. If either the lh_TailPred field is pointing to the list
header, or the In_Succ field of the]lh_Head is zero, then the list is empty.

In C, for example, these would be:
if (list.lh_TailPred == &list) {
printf ("list is empty”);
}
or
if (list.lh_Head->In_Suce == 0) {
printf ("list is empty”);
}
In assembly code if AO points to the list header, these would be:

CMP.L LH_TAILPRED(AO0),A0
BEQ list_is_empty

and

MOVE.L LH_HEAD(A0),A1
MOVE.L LN_SUCC(A1),D0
BEQ list_is_empty

Lists and Queues 1-9

Because LH_HEAD and LN_SUCC are both zero offsets, the second case can be simplified.

1.6. SCANNING A LIST

Occasionally a program may need to scan a list to locate a particular node, find a node that
has a field with a particular value, or just print the list. Because lists are linked in both the
forward and backward directions, the list can be scanned either from either the head or tail.

Here is an example of C code that uses a for loop to print the names of all nodes in a list:
for (node = list -> lh_Head; node -> In_Succ; node = node -> In_Succ) {

printf ("node %Ix is named %s”, node, node -> In_name);
}

In assembly code it is more efficient to use a lookahead cache pointer when scanning a list.
In this example the list is scanned until the first zero priority node is reached:

MOVE.L (A1),D1 * first node
scan:
MOVE.L D1,Al
MOVE.L (A1),D1 * lookahead to next

BEQ.S not_found * end of list
TST.B LN_PRI(A1l)
BNE.S scan

* found one

not_found:

Important Note: It is possible to collide with other tasks when manipulating shared system
lists. For example, if some other task happens to be modifying a list while your task scans
it, an inconsistent view of the list may be formed. This can result in a corrupted system.
Generally it is not permissible to read or write a shared system list without first locking out
access from other tasks (and in some cases locking out access from interrupts). This tech-
nique of mutual-exclusion is discussed in the “Tasks” chapter.

1-10 Lists and Queues

Chapter 2

Tasks

This chapter describes the management of tasks on the Amiga. It includes explanations of
task creation, termination, event signals, traps, exceptions, and mutual exclusion. This
chapter assumes that the reader has a basic understanding of lists (from the previous
chapter) and some understanding of multitasking principles.

2.1. INTRODUCTION

Multitasking is one of the primary features supported by Exec. Multitasking is the ability of
an operating system to manage the simultaneous execution of multiple independent processor
contexts. In addition, good multitasking does this in a transparent fashion; a task is not
forced to recognize the existence of other tasks. In Exec this involves sharing the 68000 pro-

cessor among a number of concurrent programs, providing each with its own virtual proces-
SOT.

Scheduling

Exec accomplishes multitasking by multiplezing the 68000 processor among a number of task
contexts. Every task has an assigned priority and tasks are scheduled to use the processor
on a priority basis. The highest priority ready task is selected and receives processing until:

1. a higher priority task becomes active,

Tasks 1-11

2. the running task exceeds a preset time period (a quantum) and there is another equal
priority task ready to run, or

3. the task needs to wait for an external event before it can continue.

Task scheduling is normally preemptive in nature. The running task may lose the processor
at nearly any moment by being displaced by another more urgent task. Later, when the
preempted task regains the processor it continues from where it left off.

It is also possible to run a task in a non-preemptive manner. This mode of execution is gen-
erally reserved for system data structure access. It is discussed in the ‘“Exclusion” section
toward the end of this chapter.

In addition to the prioritized scheduling of tasks, time-slicing also occurs for tasks with the
same priority. In this scheme a task is allowed to execute for a quantum (a preset time
period). If the task exceeds this period, the system will preempt it and give other tasks of
the same priority a chance to run. This will result in a time-sequenced round robin schedul-
ing of all equal priority tasks.

Due to the prioritized nature of task scheduling, tasks must avoid performing the busy wast
technique of polling. This is where a piece of code loops endlessly waiting for a change in
state of some external condition. Tasks that use the busy wait technique waste the processor
and eat up all its spare power. In most cases this prevents lower priority tasks from receiv-
ing any processor time. Because certain devices such as the keyboard and the disk depend
on their associated tasks, using a busy wait at a high priority may defer important system
services. Busy waiting can even cause system deadlocks.

When there are no ready tasks, the processor is halted and only interrupts will be serviced.
Since task multiplexing often occurs as a result of events triggered by system interrupts, this
is not a problem. Halting the processor often helps improve the performance of other system
bus devices.

Task States

For every task Exec maintains state information to indicate its status. A normally operating
task will exist in one of three states:

running indicates that a task currently owns the processor. This usually means that the
task is actually executing, but it is also possible that it has been temporarily
displaced by a system interrupt.

1-12 Tasks

ready indicates that a task is not currently executing but is scheduled for the proces-
sor. The task will receive processor time based on its priority relative to the
priorities of other running and ready tasks.

waiting marks a task as waiting for an external event to occur. It is not scheduled to
use the processor. The task will only be made ready when one of its external
events occurs (see “‘Signals” section below).

It is also possible for a task to exist in a few transient states:

added indicates that a task has just been added to Exec and has not yet been
scheduled for processing.

removed
marks that the task is being removed. Tasks in this state are effectively ter-
minated and are usually undergoing cleanup operations.

exception
indicates that a task is scheduled for special exception processing.

Task Queues

Tasks that are not in the running state are linked into one of two system queues. Tasks that
are marked as ready to run but awaiting an opportunity to do so are kept in the ready
queue. This queue is always kept in a priority sorted order with the highest priority task at
the head of the queue.

A waiting queue accounts for tasks that are awaiting external events. Unlike the ready
queue, there is no reason to keep this queue sorted by priority. New entries are appended to
the tail of the queue. A task will remain in the waiting queue until it is awakened by an
event (at which time it is placed into the ready queue).

Tasks 1-13

Priority

A task’s priority indicates its importance relative to other tasks. Higher priority tasks
receive the processor before lower priority tasks.

Task priority is stored as a signed number ranging from -128 to +127. Higher priorities are
represented by more positive values and zero is considered the neutral priority. Normally
system tasks execute somewhere in the range of +20 to -20.

It is not wise to needlessly raise a task’s priority. Sometimes it may be necessary to carefully
select a priority so that the task can properly interact with various system tasks. The
ChangePri() Exec function is provided for this purpose.

Structure

Exec maintains task context and state information in a task control data structure. As with
most Exec structures these are dynamically linked onto various task queues through the use

of a prepended list Node structure. The C-language form of this structure is defined in the
ezxec/task.h include file as:

1-14 Tasks

extern struct Task {
struct Node tc_Node;
UBYTE tc_Flags;
UBYTE tc_State;

BYTE tc_IDNestCnt; /* intr disabled nesting */
BYTE tc_TDNestCnt; /* task disabled nesting */
ULONG tc_SigAlloc; /* sigs allocated */

ULONG tc_SigWait; /* sigs we are waiting for »/
ULONG tc_SigRecvd; /* sigs we have received */
ULONG tc_SigExcept; /* sigs we will take excepts for */
UWORDtc_TrapAlloc; /* traps allocated */
UWORDtc_TrapAble; /* traps enabled */

APTR tc_ExceptData; /* points to except data */
APTR tc_ExceptCode; /* points to except code */
APTR tc_TrapData; /* points to trap code */
APTR tc_TrapCode; /* points to trap data */
APTR tc_SPReg; /* stack pointer */

APTR tc_SPLower; /* stack lower bound */
APTR tc_SPUpper; /* stack upper bound + 2%/
VOID (*tc_Switch)(); /* task losing CPU =/
VOID (*tc_Launch)(); /* task getting CPU */
struct List tc_MemEntry; /* allocated memory */
APTR tc_UserData; /* per task data */

};
A similar assembly code structure is available in the ezec/tasks.? include file.

Most of these fields are not relevant for simple tasks; they are used by Exec for state and
administrative purposes. A few fields, however, are provided for the advanced programs that
support higher level environments (as in the case of processes) or require precise control (as
in devices). The following sections explain these fields in more detail.

2.2. CREATION

To create a new task you must allocate a task structure, initialize its various fields, and then
link it into Exec with a call to Add Task().

The task structure may be allocated by calling the AllocMem() function with the
MEMF_CLEAR and MEMF_PUBLIC allocation attributes. These attributes indicate

that the data structure is to be pre-initialized to zero and that the structure is shared.

The Task fields that require initialization depend on how you intend to use the task. For
the simplest of tasks, only a few fields must be initialized:

Tasks 1-15

tc_Node
the task list node structure. This includes the task’s priority, its type, and
its name (refer to the “Lists” chapter).

tc_SPLower
the lower memory bound of the task’s stack

tc_SPUpper
the upper memory bound of the task’s stack

tc_SPReg
the initial stack pointer. Since task stacks grow downward in memory, this
field is usually set to the same value as te_SPUpper.

Zeroing all other unused fields will cause Exec to supply the appropriate system default
values. Allocating the structure with the MEMF_CLEAR attribute is an easy way to be
sure that this happens.

Once the structure has been initialized, it must be linked to Exec. This is done with a call to
AddTask() with the following parameters:

task is a pointer to an initialized task structure.

initialPC
is the entry point of your task code. This is the address of the first instruction
the new task will execute.

finalPC
is the finalization code for your task. This is a code fragment that will receive
control if the initialP C routine ever performs a return (RTS). This exists to
prevent your task from being launched into random memory upon an accidental
return. The finalPC routine should usually perform various program related
clean-up and remove the task. If a zero is supplied as this parameter, Exec will
use its default finalization code (which simply calls the RemTask() function).

Depending on the priority of the new task and the priorities of other tasks in the system, the
newly added task may immediately begin execution.

Here is an example of simple task creation:

1-16 Tasks

#define STACK_SIZE 1000
extern APTR AllocMem();
extern EntryPoint();
SimpleTask()

struct Task *task;

stack = AllocMem (STACK_SIZE, MEMF_CLEAR);

if (stack == 0) {
printf ("not enough memory for task stack”);
return;

}

task = AllocMem (sizeof(struct Task *), MEMF_CLEAR | MEMF_PUBLIC);
if (newTask == 0) {

printf ("not enough memory for task control structure”);

FreeMem (stack, STACK_SIZE);

return;

}

task -> tc_SPLower = stack;
task -> tc_SPUpper = stack + STACK_SIZE;
task -> tc_SPReg = stack + STACK_SIZE;

task -> tc_Node.In_Type = NT_TASK;
task -> tc_Node.ln_Pri = 0;
task -> tc_Node.In_Name = "example.task”;

AddTask (task, EntryPoint, 0);

Stack

Every task requires a stack. All task stacks are user mode stacks (in the language of the
68000) and are addressed through the A7 CPU register. All normal code execution occurs on
this task stack. Special modes of execution (processor traps and system interrupts for exam-
ple) execute on a single supervisor mode stack and do not directly affect task stacks.

Task stacks are normally used to store local variables, subroutine return addresses, and
saved register values. Additionally, when a task loses the processor all of its current registers

are preserved on this stack (with the exception of the stack pointer itself, which must be
saved in the task structure).

Tasks 1-17

The amount of stack used by a task can vary widely. The minimum stack size is that
required to save 17 CPU registers and a single return address. This totals to 70 bytes. Of
course, a stack of this size would not give you adequate space to perform any subroutine calls
(because the return address occupies stack space). On the other hand a stack size of 1K
would suffice to call most system functions but would not allow much in the way of local
variable storage.

Because stack bounds checking is not provided as a service of Exec, it is very important to
provide enough space for your task stack. Stack overflows are always difficult to debug and

may result not only in the erratic failure of your task but also in the mysterious malfunction
of other Amiga subsystems.

2.3. TERMINATION

Task termination may occur as the result of:

1. a program returning from its initialPC routine and dropping into its finalPC rou-
tine or the system default finalizer.

1S4

a task trap that is too serious for a recovery action. This includes traps like proces-
sor bus error, odd address access errors, etc.

3. a trap that is not handled by the task. For example, this might occur if your code
happened to encounter a processor TRAP instruction and you did not provide a
trap handling routine.

4. an explicit call to the Exec RemTask() function.

Task termination involves the deallocation of system resources and the removal of the task
structure from the Exec.

The most important part of task termination is the deallocation of system resources. A task
must return all memory that it allocated for its private use, it must terminate any outstand-

ing IO commands, and it must close access to any system libraries or devices that it has
open.

It is wise to adopt a strategy for task cleanup responsibility. You should decide whether
resource allocation and deallocation is the duty of the creator task or the newly created task.
Sometimes it is easier and safer for the creator to handle the necessary resource allocation
and deallocation on behalf of its offspring. On the other hand, if you expect the creator to
terminate before its offspring, it would not be able to handle resource deallocation. In such a
case each of its child tasks would need to deallocate its own resources.

1-18 Tasks

2.4. SIGNALS

Tasks often need to coordinate with other concurrent system activities (other tasks and
interrupts). Such coordination is achieved through the synchronized exchange of specific
event indicators called signals. This is the primary mechanism responsible for all inter-task
communication and synchronization on the Amiga.

The signal mechanism operates at a low level and is designed for high performance. Signals
often remain hidden from the user program. The message system, for instance, may use sig-
nals to indicate the arrival of a new message. The message system is described in more detail
in the next chapter.

The signal system is designed to support independent simultaneous events. Signals may be
thought of as occurring in parallel. Each task may define up to 32 independent signals.
These signals are stored as single bits in a few fields of the task control structure and one or
more signals can occur at the same time.

All of these signals are considered task relative: a task may assign its own significance to a
particular signal. Signals are not broadcast to all tasks; they are directed only to individual
tasks. A signal has meaning to the task that defined it and to those tasks that have been
informed of its meaning. For example, signal bit 12 may indicate a timeout event to one
task but to another task it may indicate a message arrival event.

Allocation

As mentioned above, a task assigns its own meaning to a particular signal. Because certain
system libraries may occasionally require the use of a signal, there is a convention for signal
allocation. It is unwise to ever make assumptions about which signals are actually in use.

Before a signal can be used it must first be allocated with the AllocSignal() function. This
marks the signal as being in use and prevents the accidental use of the same signal for more

than one event. You may ask for either a specific signal number or just the next free signal.
The state of the newly allocated signal is cleared (ready for use).

Generally it is best to let the system assign you the next free signal. Of the 32 available sig-
nals the lower 16 are usually reserved for system use only. This leaves the upper 16 free for

the user. Other subsystems that you may call depend on AllocSignal().

This C example asks for the next free signal to be allocated for its use:

Tasks 1-19

signal = AllocSignal(-1);

if (signal == -1) {
printf(”no signal bits available”);
return;

else {

printf(”allocated signal number %ld”, signal);

}

Take note of the fact that the value returned by AllocSignal() is a signal bit number. This
value cannot be used directly in calls to signal-related functions without first converting it to
a mask:

mask = 1 < < signal;

When a signal is no longer needed, it should be freed for reuse with FreeSignal().

It is important to realize that signal bit allocation is only relevant to the running task. You
cannot allocate a signal from another task.

Waiting for a Signal

Signals are most often used to wake up a task upon the occurrence of some external event.
This happens when a task is in its wait state and another task (or a system interrupt) causes
a signal.

The Wait() function specifies the set of signals that will wake up the task and then puts the
task to sleep (into the waiting state). Any one signal or any combination of signals from this
set are sufficient to awake the task. Wait() returns a mask indicating which signals from
this set satisfied the wait.

The Wait() function implicitly clears those signals that satisfied the wait. This effectively
resets those signals for reuse.

Because tasks (and interrupts) normally execute asynchronously it is often possible to receive
a particular signal before a task actually waits for it. To avoid missing any events, signals
will be held until the Wait() function is called, or until it is explicitly cleared (with
SetSignal()). In such cases a wait will be immediately satisfied, and the task will not be put
to sleep.

1-20 Tasks

As mentioned earlier, a task may wait for more than one signal. When the task returns from
the wait, the actual signal mask is returned. Usually the program must check which signals
occurred and take the appropriate action. The order in which these bits are checked is often
important. Here is a hypothetical example:

signals = Wait (newCharSig | cancelSig | timeOutSig);
if (signals & cancelSig) {
printf ("canceled”);

if (signals & newCharSig) {

printf ("new character”);

if (signals & timeOutSig) {
printf ("timeout”);
}

This will put the task to sleep waiting for either a new character, a cancel event, or the

expiration of a time period. Notice that we check for a cancel signal before checking for a
new character or a timeout.

Although a program can check for the occurrence of a particular event by checking whether
its signal has occurred, this may lead to busy wait type polling. Such polling is wasteful of
the processor and is usually detrimental to the proper function of the system.

Generating a Signal

Signals may be generated from both tasks and system interrupts with the Signal() function.
For example Signal(task,mask) would signal the task with the mask signals. More than
one signal can be specified in the mask.

2.5. EXCLUSION

From time to time the advanced system program may find it necessary to access glohal sys-
tem data structures. Because these structures are shared by the system and by other tasks
which execute asynchronously to your task, it is wise for you to exclude simultaneous access
to these structures. This can be accomplished by forbidding, disabling, or with the use of

semaphores. A section of code that requires the use of any of these mechanisms to lock out
access by others is termed a critical section.

Tasks 1-21

Forbidding

Forbidding is used when a task is accessing shared structures that might also be accessed at
the same time from another task. It effectively eliminates the possibility of simultaneous
access by imposing non-preemptive task scheduling. This has the net effect of disabling mul-
titasking for as long as your task remains in its running state.

While forbidden, your task will continue running until it performs a call to Wait() or exits
from the forbidden state. Interrupts will occur normally, but no new tasks will be
dispatched regardless of their priorities.

When a task running in the forbidden state calls the Wait() function, it implies a temporary
exit from its forbidden state. While the task is waiting, the system will perform normally.
When the tasks receives one of the signals it’s waiting for, it will again re-enter the forbidden
state.

To become forbidden, a task calls the Forbid() function. To escape, the Permit() function
is used. The use of these functions may be nested with the expected affects; you will not exit
the forbidden mode until you call the outermost Permit().

As an example, Exec memory region lists should be accessed only when forbidden. To access
these lists without forbidding jeopardizes the integrity of the entire system.

Forbid();
for (mem = (struct MemHeader *) eb -> MemList.lh_Head;
mem -> mh_Node.In_Succ; mem = mem -> mh_Node.ln_Succ) {
firsts[count++] = mem -> mh_First;

}

Permit();

As this program traverses down the memory region list, it remains disabled to prevent the
list from changing as it is being accessed.

1-22 Tasks

Disabling

Disabling is similar to forbidding but, in addition it prevents interrupts from occurring dur-
ing a critical section. It is required when a task accesses structures that are shared by inter-
rupt code. Disabling, eliminates the possibility of an interrupt accessing shared structures by
preventing interrupts from occurring.

To disable interrupts you can call the Disable() function. If you’re writing in assembly
code, the DISABLE macro is more efficient (but consumes more code space). To enable
interrupts again the Enable() function and ENABLE macros are provided.

Like forbidden sections, disabled sections can be nested. Also like forbidden sections, the
Wait() function implies an Enable() until the task again regains the processor.

It is important to realize that there is a danger in using disabled sections. Because the
software on the Amiga depends heavily on its interrupts occurring in nearly real time, you
cannot disable for more than a very brief instant. A rule of thumb is to never disable for
more than 250 microseconds.

Masking interrupts by changing the 68000 processor interrupt priority levels with the
MOVESR instruction can also be very dangerous and is generally discouraged. The disable
and enable related functions and macros control interrupts through the 4703 custom chip
and not through the 68000 priority level. In addition, the processor priority level can only be
altered from supervisor mode (which means it is a lot less efficient).

It is never necessary to both disable and forbid. Because disable prevents interrupts, it also
prevents preemptory task scheduling.

Many Exec lists can only be accessed while disabled. Suppose you want to print the names
of all waiting tasks. You would need to access the task list from a disabled section. In addi-
tion you must avoid calling certain system functions that require multitasking to function

properly (printf() for example). In this example we gather the names into a name array first
while disabled, then we enable and print the names.

Disable();
for (task = execbase -> TaskWait.tc_Node.lh_Head; task -> tc_Node.In_Succ;
task = task -> tc_Node.In_Succ) {
names[count++] = task -> tc_Node.In_Name;

Enable();

for (i = 0; i < count; i++) {
printf (” %s ”, namesli]);
}

Tasks 1-23

Of course this example will have problems if a waiting task is removed before its name is
printed. If this were to happen, the name string pointer would no longer be valid. To avoid
such problems it is good programming practice to copy the entire name string into a tem-
porary buffer.

Semaphores

Messages and message ports can be used as semaphores for the purposes of mutual exclusion.
With this method of locking, all tasks agree on a locking convention before accessing shared
data structures. Tasks that do not require access are not affected and will run normally, so
this type of exclusion is considered preferable to forbidding and disabling. Unfortunately,
semaphores also represent a considerable amount of overhead for simple system operations
and are not used internal to Exec for efficiency reasons. This form of exclusion is explained
in more detail in the “‘Messages and Ports” chapter.

2.6. EXCEPTIONS

Tasks can specify that certain asynchronous events cause exceptions, which are sort of task-
private interrupts that redirect a task’s flow of control. The task essentially suspends what
it is doing and enters a special routine to process its exceptional event.

Exceptions are driven by the task signal mechanism described earlier in this chapter. Instead
of waiting for a signal to occur, you indicate that it is an exception signal with the
SigExcept() function. When the signal occurs, your task will be “interrupted’’ from its nor-
mal execution and placed in a special exception handler.

The te_ExceptCode and tc_ExceptData task fields are used to establish your exception
handler. tc_ExceptCode points to the routine that will handle the initial processing of all
exceptions. If this field is zero, Exec will ignore all exceptions. The tc_ExceptData field
can be used to provide a pointer to related data structure.

On entry to your exception code the system passes certain parameters in the processor regis-
ters. DO contains a signal mask indicating which exception has just occurred, and A1 points
to your related exception data (from tc_ExceptData). In addition your previous task con-
text is pushed onto the task’s stack. This includes the previous PC, SR, D0O-D7, and AO-
AB registers. You can think of an exception as a subtask outside of your normal task.
Because task exception code executes in user mode, however, the task stack must be large
enough to supply the extra space consumed during an exception.

While processing a given exception, Exec prevents it from occurring recursively. At exit from
your exception processing code you should return the same value in DO to re-enable that

1-24 Tasks

exception signal. When your task executes the RTS at the end of your handler, the system
restores the previous contents of all of your task registers, and resumes the task at the point
where it was interrupted by the exception signal. Your exception-processing code determines
the order of handling exception signals that occur simultaneously by the order in which you
examine the signal bits.

2.7. TRAPS

Task traps are synchronous exceptions to the normal flow of program control. They are
always generated as a direct result of an operation performed by your program’s code.
Whether they are accidental or purposely generated, they will result in your program being
forced into a special condition in which it must immediately handle the trap. Address error,
privilege violation, zero divide, and trap instructions all result in task traps. They may be

generated directly by the 68000 processor (Motorola calls them ‘“‘exceptions”) or simulated by
software.

A task that incurs a trap has no choice but to respond immediately. The task must have a
module of code to properly handle the trap. Your task may be aborted if you get a trap and
have not provided a means of handling it.

You may choose to do your own processing of traps. tc_TrapCode is the address of the
handler that you have designed to process the trap. tc_TrapData is the address of the
data area for use by your trap handler.

The 68000 traps of interest are:

2 bus error

3 address error

4 illegal instruction

5 zero divide

6 CHK instruction

7 TRAPYV instruction
8 privilege violation
9 trace

10 line 1010 emulator

Tasks 1-25

11 line 1111 emulator

32-47 trap instructions

The actual stack frames generated for these traps are processor dependent. The 68010 and
68020 processors will generate a different type of stack frame than the 68000. If you plan on
handling your own traps, you should not make assumptions about the format of the supervi-
sor stack frame. Check the flags in the AttnFlags field of the ExecBase structure for the
type of processor in use, and process the stack frame accordingly.

Handlers

For compatibility with the 68000, Exec performs trap handling in supervisor mode. This
means that all task switching is disabled during trap handling.

The system stack does, at entry to the task’s trap handler, contain the trap frame as defined
in the 68000 manual. A long word exception number is added at the bottom of this frame.
That is, when a handler gains control the top of stack contains the exception number and
the 68000 frame immediately follows.

To return from trap processing, remove the exception number from the stack (note that this
is the supervisor stack, not the user stack) and then perform a return from exception (RTE).

Because trap processing takes place in supervisor mode, with task dispatching disabled, it is
strongly urged that you keep trap processing as short as possible or switch back to user
mode from within your trap handler.

If a trap handler already exists when you add your own trap handler, it is smart to pro-
pagate any traps that you do not handle down to the previous handler. This can be done by
saving the previous tc_TrapCode and tc_TrapData for use by your handler.

Trap Instructions

The TRAP instructions in the 68000 generate traps 32-47. Since many independent pieces
of system code may desire to use these traps, the AllocTrap() and FreeTrap() functions
are provided. These work in a fashion similar to AllocSignal() and FreeSignal() men-
tioned above.

1-26 Tasks

Allocating traps is simply a bookkeeping job within your task. It does not affect how the
system calls your trap handler; it helps coordinate who owns what traps. Exec does nothing
to determine whether or not your task is prepared to handle this particular trap. It simply
calls your code. It is up to you to properly handle the trap.

To allocate any trap you can use:

trap = AllocTrap(-1);

if (trap == -1) {
printf(”all trap instructions are in use”);
return;

or to select a specific trap:

trap = AllocTrap(3);

if (trap == -1) {
printf("trap #3 is in use”);
return;

To free a trap you use FreeTrap().

Tasks 1-27

Chapter 3

Messages and Ports

This chapter describes Exec support for inter-system communication in the Amiga kernel. It
discusses the structure of messages and ports, message exchange methods, arrival notification
actions, and various support functions.

3.1. INTRODUCTION

For inter-system communication, Exec provides a consistent, high performance mechanism of
messages and ports. This mechanism is used to pass arbitrary size message structures from
task to task, interrupt to.task, or task to software interrupt. In addition, messages are often
used to coordinate operations between a number of cooperating tasks.

A message data structure has two parts: system linkage and message body. The system
linkage is used by Exec to attach a given message to its destination. The message body con-
tains the actual data of interest. The message body is any arbitrary data block less than
64K bytes in size.

Messages are always sent to a predetermined destination port. At a port incoming messages
are queued in a first-in-first-out (FIFO) order. There are no system restrictions on the

number of ports or the number of messages that may be queued to a port (other than the
amount of available system memory).

Messages are always queued by reference. For performance reasons message copying is not
performed. In essence, a message between two tasks is a temporary license for the receiving
task to use a portion of the memory space of the sending task —that portion being the mes-
sage itself. This means that if task A sends a message to task B, the message is still part of
the task A context; however, task A should not access the message until it has been replied

(explained below). This technique of message exchange imposes important restrictions on
message access.

Messages and Ports 1-29

3.2. PORTS

Ports are rendezvous points where messages are collected. A port may contain any number
of outstanding messages from many different originators. When a message arrives at a port,
the message is appended to the end of the list of messages for that port, and a pre-specified
arrival action is invoked. This action may do nothing, or it may cause a pre-defined task sig-
nal or software interrupt (see the “Interrupts’” chapter).

As with many Exec structures, ports may be given a symbolic name. This is particularly
useful for tasks that must rendezvous with dynamically created ports. It is also useful for
debugging purposes.

Structure

A message port consists of a MsgPort structure as defined in the ezec/ports.h and
ezec/ports.i include files. The C structure for a port is:

struct MsgPort {
struct Node mp_Node;
UBYTE mp_Flags;
UBYTE mp_SigBit;
struct Task *mp_SigTask;
struct List mp_MsgList;

}s

where
mp_Node
is a standard Node structure. This is useful for tasks which might want to
rendezvous with a particular message port by name.
mp_Flags
are used to indicate message arrival actions. See the explanation below.
mp_SigBit

is the signal bit number when a port is used with the task signal arrival action.
mp_SigTask

is a pointer to the task to be signaled, or if a software interrupt arrival action is
specified this is a pointer to the interrupt structure.

1-30 Messages and Ports

mp_MsgList
the list header for all messages queued to this port. (See the “Lists’ chapter).

The mp_Flags field contains a sub-field indicated by the PF_ACTION mask. This sub-
field specifies the message arrival action that occurs when a port receives a new message.
The possibilities are:

PA_SIGNAL
signal the specified task on the arrival of a new message. Every time a message

is put to the port another signal will occur regardless of how many messages
have been queued to the port.

PA_SOFTINT

cause the specified software interrupt. Just like with PA_SIGNAL, every
message will cause the software interrupt to again be posted.

PA_IGNORE

perform no operation other than queuing the message. This action is often used

to stop signaling or software interrupts without disturbing the contents of the
mp_SigTask field.

It is important to realize that a port’s arrival action will occur for each new message queued,
and that there is not a one-to-one correspondence between messages and signals. Task sig-
nals are only single-bit flags so there is no record of how many times a particular signal
occurred. There may be many messages queued and only a single task signal. All of this has
certain implications when designing code that deals with these actions. Your code should not

depend on receiving a signal for every message at your port. All of this is also true for
software interrupts.

Creation

To create a new message port you must allocate and initialize a MsgPort structure. If you
desire to make the port public you will also need to call the AddPort() function.

Port structure initialization involves setting up a Node structure, establishing the message
arrival action with its parameters, and initializing the list header.

The following example of port creation is equivalent to the CreatePort() function as sup-
plied in amiga.lib:

Messages and Ports 1-31

extern APTR AllocMem();
extern UBYTE AllocSignal();
extern struct Task *FindTask();

struct MsgPort *
CreatePort (name, pri)
char *name;

BYTE pri;
{
UBYTE sigBit;
struct MsgPort *port;
if ((sigBit = AllocSignal (-1)) == -1)
return ((struct MsgPort *) 0);
port = AllocMem (sizeof(*port), MEMF_CLEAR | MEMF_PUBLIC);
if (port == 0) { '
FreeSignal (sigBit);
return ((struct MsgPort *) (0));
}
port->mp_Node.ln_Name = name;
port->mp_Node.ln_Pri = pri;
port->mp_Node.ln_Type = NT_MSGPORT;
port->mp_Flags = PA_SIGNAL;
port- >mp_SigBit = sigBit;
port- >mp_SigTask = FindTask (0);
if (name !=0)
AddPort (port);
else
NewList (&port- >mp_MsgList);
return (port);
}

1-32 Messages and Ports

Deletion

Before deleting a message port, all outstanding messages from other tasks must be returned.
This is done by replying to each message until the message queue is empty. Of course there
is no need to reply to messages owned by the current task (the task performing the port dele-
tion).

Public ports attached to the system with AddPort() must be removed from the system with
RemPort().

Rendezvous

The FindPort() function provides a means of finding the address of a public port given its
symbolic name. For example, FindPort(‘“Spyder”) will return either the address of the
message port or a zero indicating that no such public port exists. Names should be made
rather unique to prevent collisions among multiple applications. It is a good idea to use your
application name as a prefix for your port name.

3.3. MESSAGES

As mentioned earlier, a message contains both system header information and the actual
message content. The system header is of the Message form defined in ezec/ports.h and
exec/ports.i. In C this structure is:

struct Message {
struct Node mn_Node;
struct MsgPort *mn_ReplyPort;
UWORD mn_Length;

b

where

Messages and Ports 1-33

mn_Node
is a standard Node structure used for port linkage.

mn_ReplyPort
is used to indicate a port to which this message will be returned when a reply is
necessary.

mn_Length
indicates the length of the message body in bytes.

This structure is always attached to the head of all messages. Assume that you want a mes-
sage structure which contains the x and y coordinates of a point on the screen. It could be
defined as:

struct XYMessage {
struct Message xy_Msg;
UWORD «x,y;

}

For this structure the mn_Length field would be set to two times the size of UWORD, or
four bytes.

Putting a Message

A message is delivered to a given destination port with the PutMsg() function. The mes-
sage is queued to the port, and that port’s arrival action is invoked. If the action specifies a
task signal or a software interrupt, the originating task may temporarily lose the processor
while the destination processes the message.

If you require a reply to the message, the mn_ReplyPort field must be setup prior to the
call to PutMsg().

Here is a simple example of putting a message to a public port:

1-34 Messages and Ports

struct MsgPort *port, *replyport;
struct XYMessage *xymsg;

xymsg = AllocMem (sizeof(*xymsg), MEMF_PUBLIC);
if (msg == 0) {
printf ("not enough memory for message”);
return;

}

replyport = CreatePort ("xyreplyport”,0); /* as defined earlier in this chapter d
if (replyport == 0) {

printf ("could not create the reply port”);

FreeMem (msg, sizeof(*xymsg));

return;

}

xymsg -> xy_Msg.mn_Node.ln_Type = NT_MESSAGE;
xymsg -> xy_Msg.mn_ReplyPort = replyport;

port = FindPort ("Spyder”);

if (port == 0) {
printf ("Spyder port not found”);
return;

}

PutMsg (port, xymsg);

Waiting for a Message

A task may go to sleep waiting for a message to arrive at one or more ports. This technique
is widely used on the Amiga as a general form of event notification. For example, it is used
extensively by tasks for I/O request completion.

Waiting for the arrival of a message requires that the message port be properly initialized. In
particular, the mp_SigTask field must contain the address of the task to be signaled and

mp_SigBit must contain a pre-allocated signal number (as described in the “Tasks”
chapter).

You can call the WaitPort() function to wait for a message to arrive at a port. This funec-
tion will return the first message queued to a port. If the port is empty, your task goes to

sleep waiting for the first message. If the port is not empty, then your task will not go to
sleep.

Messages and Ports 1-35

A more general form of waiting for a message involves the use of the Wait() function (see
the “Tasks” chapter). This function waits for task event signals directly. If the signal
assigned to the message port occurs, the task will awaken. Using the Wait() function is
more general because you can wait for more than just a single message port. For example,
you may want to wait for a message and a timeout signal. The Wait() function lets you
specify a mask containing the signals associated with your message port and your timeout
signal.

Here’s an example using WaitPort():

signal = AllocSignal (-1);

if (signal == -1) {
printf ("no free signal bits”);
return;

}

port -> mp_Flags |= PA_signal;
port -> mp_SigBit = signal;
port -> mp_SigTask = FindTask (0); /* self */

msg = WaitPort (port);

Note that WaitPort() only returns a pointer to the first message in a port. It does not
actually remove the message from the port queue. That’s described in the next section.

Getting a Message

Messages are usually removed from ports with the GetMsg() function. This function
removes the next message at the head of the port queue and returns a pointer to it. If there
are no messages in a port, this function returns a zero.

The example below illustrates the use of GetMsg() to print the contents of all messages in a
port:

while ((msg = GetMsg (port)) !=0) {

printf ("x=%Ild y=%]Id”, msg->x, msg->y);

Certain messages may be more important than other messages. Because ports impose FIFO
ordering, these important messages may get queued behind other messages regardless of their
priority. If it is necessary to recognize more important messages, it is easiest to create

1-36 Messages and Ports

another port for these special messages.

Replying

When the operations associated with receiving a new message are finished, it is usually neces-

sary to send the message back to the originator. This is important because it notifies the ori-
ginator that the message can be reused or deallocated.

The ReplyMsg() function is provided to serve this purpose. It will return the message to
the port specified in the mn_ReplyPort field of the message. If this field is zero, then no
reply is done.

The previous example can be enhanced to reply to each of its messages:

while ((msg = GetMsg (port)) != 0) {
printf ("x=%ld y=%Id”, msg->x, msg->Yy);
ReplyMsg (msg);

Notice that the reply doesn’t occur until after the message values have been used.

Often the operations associated with receiving a message involve returning results to the ori-
ginator. Typically this is done within the message itself. The receiver places the results in
fields defined (or perhaps reused) within the message body before replying the message back
to the originator. Receipt of the replied message back at the originator’s reply port indicates
it 1s once again safe for the originator to use or change the values found within the message.

Messages and Ports 1-37

Chapter 4

1/0

This chapter presents the key concepts that must be understood before performing input and
output on system devices. It describes the standard form of an IO Request, device interface
functions, Exec support functions, standard device commands, and how to actually perform
I/O on the Amiga. This chapter does not discuss how to create your own device driver.
Appendix K contains source assembler code for a disk-resident device driver with its own
task to handle I/O requests.

4.1. INTRODUCTION

One of the primary purposes of Exec is to provide a standard form for all device I/O. This
includes the definition of a standard device interface, the format for I/O requests, and the
establishment of rules for normal device/task interaction. In addition, the guidelines for
non-standard device I/O are also defined. In the design of the Amiga I/O system great care
has been taken to avoid dictating the form of implementation or the internal operational
characteristics of a device.

A device in its purest sense is an abstraction that represents a set of well defined interactions
with some form of physical media. This abstraction is supported by a standard Exec data
structure and an independent system code module. The data structure provides the external
interface and maintains the current device state. The code module supplies the operations
necessary to make the device functional. (In many operating systems this code module is
referred to as a device driver).

A device unit is an instance of a device. It shares the same device data structure and code
module with all other units of the same device; however, it operates in an independent
fashion. Often units correspond to separate physical sub-systems of the same general device
class. For example, each Amiga floppy disk drive is an independent unit of the same device.
There is only one device data structure and one code module to support all of these units.

Exec I/O is often performed using the message system described in the previous chapter.

/O 1-39

often Most aspects of message passing are concealed within the Exec I/O support routines.
However, it is important to realize that I/O request blocks, once issued, must not be modified
or reused until they are returned to your control by Exec.

4.2, REQUEST STRUCTURE

An I/O request is always directed to a device unit. This request is organized as a control
block and contains a command to be performed on a specified unit. It is passed through a
standard device interface function where it is then processed and executed by the device’s
code module. All request parameters are included in the request control block, and the I/O
request results are also returned in the same control block.

Every device unit responds to a standard set of commands, and may optionally provide a
non-standard set of commands as well. The standard commands are reset, read, write,
update, clear, stop, start, and flush. They will be explained later in this chapter. Non-
standard commands are discussed in the documentation pertaining to the particular device of
interest.

An I/O request always includes at least an IORequest data structure. This is a standard
header used for all I/O requests. It is defined in the ezec/10.h and ezec/io0.1 include files as:

struct IORequest {
struct Message io_Message;
struct Device *io_Device;
struct Unit*io_Unit;
UWORDio_Command;
UBYTE io_Flags;
BYTE io_Error;

35

where

io_Message
is a message header (see ‘‘Messages and Ports” chapter). This is used by the
device to return your I/O request upon completion. It is also used by devices

internally for I/O request queuing. This header must be properly initialized for
I/O to work correctly.

io_Device

is a pointer to the device data structure node. This field is automatically setup
by an Exec function when the device is opened.

1-40 1/0

io_Unit
specifies a unit to the device internally. This is a device private field and should
not be accessed by the user. The format of this field is device dependent and is
setup by the device during the open sequence.

io_Command
is the command requested. This may be either one of the system standard com-
mands or a device specific command.

io_Flags
is used to indicate special request options and state. It is divided into two sub-
fields of four bits each. The lower four bits are for use by Exec and the upper
four bits are available to the device.
io_Error
is an error or warning number returned upon request completion.
The io_Device, io_Unit, and io_Command fields are not affected by the servicing of the

request. This permits repeated /O using the same request.

The standard I/O requests use an expanded form of the IORequest structure:

struct IOStdReq {

struct Message io_Message;
struct Device *io_Device;
struct Unit *io_Unit;

UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;
ULONG io_Actual;
ULONG io_Length;
APTR io_Data;
ULONG io_Offset;

where the additional fields

io_Actual

indicates the actual number of bytes transferred. This field is only valid upon
completion.

io_Length
is the requested number bytes to transfer. This field must be setup prior to the

request. A special length of -1 is often used to indicate variable length
transfers.

1/0 1-41

io_Data
is a pointer to the transfer data buffer.

io_Offset
indicates a byte offset (for structured devices). For block structured devices
(like the floppy-disk) this number must be a multiple of the block size.

Devices with non-standard commands may add their own special fields to the I/O request
structure as needed. Such extensions are device specific.

4.3. INTERFACE FUNCTIONS

Four Exec functions are responsible for interfacing 1O requests to actual device drivers.
These functions operate independently of the particular device command requested. They
deal with the request block as a whole, ignoring its command and its command parameters.

DolIO() is the most commonly used I/O function. It initiates an IO request and waits
for its completion. This is a synchronous form of device 1/O; control is not
returned to the caller until completion.

SendIO()
is used to initiate an IO request without waiting for completion. This is an

asynchronous form of device 1/O; control is returned even if the request has
not completed.

WaitIO()

is used to wait for the completion of a previous initiated asynchronous 10
request. This function will not return control until the request has completed
(either successfully or not).

ChecklIO()
is used to see if an asynchronous [/O request has completed.

In addition to the above Exec functions there are two I/O related functions that are actually
direct entries into the device driver itself. These functions are part of the actual device
driver interface to the system, and should be used with care. They incur slightly less over-

head but require more knowledge of the I/O system internals (how QuicklO works for
instance):

1-42 1/0

BeginIO()
initiates an IO request. The request will be synchronous or asynchronous
depending on the device driver.

AbortIO()

attempts to cancel a previous I/O request. This function is easily accessed as
an assembly code macro ABORTIO, or through the C library Exec support
function AbortIO().

4.4. STANDARD COMMANDS

There are eight standard commands to which all devices are expected to respond. If the dev-
ice is not capable of performing one of these commands, it will at least return an error indi-
cation that the command is not supported. These commands are defined in the ezxec/i0.h
and ezec/t0.1 include files.

CMD_RESET

reset the device unit. This command competely initializes the device unit,
returning it to its default configuration, aborting all of its pending I/O, cleaning
up any internal data structures, and reseting any related hardware.

CMD_READ
read a specified number of bytes from a device unit into the data buffer. The

number of bytes to read is specified in the io_Length field. The number of
bytes actually read is returned in the io_Actual field.

CMD_WRITE

write a specified number of bytes to a device unit from a data buffer. The
number of bytes to write is specified in the io_Length field. The number of
bytes actually written is returned in the io_Actual field.

CMD_UPDATE
force out all internal buffers. This command will cause device internai memory
buffers to be written out to the physical device unit. A device will tran-
sparently perform this operation when necessary, but this command causes it to

occur explicitly. It is useful for devices that maintain internal caches, such as
the floppy disk device.

CMD_CLEAR

clear all internal buffers. This command will delete the entire content of a dev-
ice unit’s internal buffers. No update is performed; all data is lost.

[/O 1-43

CMD_STOP
immediately stop the device unit. This command stops a device unit at its first
opportunity. All I/O requests continue to queue, but the device unit stops ser-
vicing them. This command is useful for devices that may require user inter-
vention (printers, plotters, data networks, etc).

CMD_START

continue after a previous stop command. The device resumes from where it was
stopped.

CMD_FLUSH

abort all I/O requests. This command will return all pending I/O requests with
an error.

4.5. PERFORMING I/O

I/O in Exec is always performed using I/O request blocks. Before performing I/O the request
block must be properly initialized by both the system and the user. Once this has been
done, normal I/O may commence.

Preparation

Devices are identified within the system by name (a null-terminated character string). Device
units are usually identified by number. The OpenDevice() function maps both the device
name to an actual device and then calls the device to perform its initialization. The device
will map the unit number into an internal form for later use. Both Exec and the device
driver will initialize the I/O request passed to OpenDevice().

For example, OpenDevice(‘‘trackdisk.device”,1,request,0) will attempt to open unit one
of the floppy disk device, mapping its symbolic name into the address of a device data struc-
ture. It also sets up a few internal fields of the request. OpenDevice() will return a zero if
it was successful, or a nonzero error number if it was not.

1-44 1/0

Synchronous Requests

Synchronous /O requests are initiated with the DoIO() function mentioned earlier. DoIO()
will not return control until the request has completed. Since the device may respond to a

request immediately or queue it for later action, an undetermined amount of time may pass
before control is returned.

To perform synchronous I/O requires that you prepare the I/O request block as described in
the previous section. In addition you must initialized the io_Message, io_Command, and
perhaps other fields.

The io_Message field is setup in the same manner as a message. This is described in the
“Messages and Ports’’ chapter.

The io_Command field is set to the desired command. For example:

request- >io_Command = CMD_RESET;
DolIO (request);

performs a reset command.

More involved commands require yet other fields to be initialized. To read a sector from a
disk might look something like:

request- >io_Command = CMD_READ;
request- >io_Length = TD_SECTOR;
request- >io_Offset = 20 * TD_SECTOR;
request- >io_Data = buffer;

DolO (request);

When the request has completed the request block is returned with the command results. If
an error occurred, DoIO() will return the error number. The error number is also indicated
in the io_Error field of the request.

With this type of I/O only one request is serviced at a time. Sometimes it is necessary to
perform many requests at the same time. This is the subject of the next section.

/0 1-45

Asynchronous Requests

More efficient programs can take advantage of the multitasking characteristics of the I/O
system by using asynchronous I/O. This type of I/O is supported by the SendIO(),
WaitIO(), CheckIO(), BeginIO(), and AbortIO() functions.

Asynchronous I/O requests will return almost immediately to the user regardless of whether
the request has actually completed. This lets the user maintain control while the I/0O is
being performed. Multiple I/O requests can be posted in this fashion.

In the disk read example above, asynchronous I/O could be performed by changing the
DoIO() call to a SendIO().

request- >io_Command = CMD_READ;
request- >io_Length = TD_SECTOR;
request- >io_Offset = 20 * TD_SECTOR;
request- >io_Data = buffer;

SendIO (request);

From the time the I/O has been initiated to the time it completes the request block should
not be directly accessed by the user. The device can be said to ‘“own’ the request block.
Only after the request has completed or successfully aborted should you access it.

When the I/O completes, the device will return the I/O request block to the reply port
specified in its io_Message field. When this has happened you know that the device has
finished the I/O.

The reply port used to receive the returned request can be setup to cause a task signal when
the reply arrives. This technique lets a task sleep until the the request is complete. The
WaitIO() can be called to wait for the completion of a previously initiated request.

WaitIO() will handle all of the interaction with the message reply port automatically. If
you are using just the Wait() function, do not forget to remove the I/O request from your
reply port with GetMsg(). Once this is done, the request may be reused.

The CheckIO() function is handy to determine if a particular I/O request has been satisfied.
This function deals with some of the subtleties of I/O in the proper manner.

If you wish to queue several I/O requests to a device, you must issue multiple SendIO()
requests, each with its own separately-opened request structure. This type of I/O is sup-
ported by most devices. A task can also request I/O from a number of devices then check
later for their completion.

Exec also allows for certain types of optimization in device communication. One form of

1-46 1/0

optimization, in which you call the device driver directly, is called ““quicklO”. This concept
is discussed later in this chapter.

Conclusion

When a request has completed its I/O, access to the device should be concluded with
CloseDevice(). This function will inform the device that no further I/O is to be performed
with this request. For every OpenDevice() there must be a corresponding CloseDevice().

Quick I/O

For some types of I/O the normal internal mechanisms of I/O may present a large amount of
overhead. This is mostly true for character oriented I/O, where each characters might be
transferred with a separate I/O request. The overhead for such requests could significantly
overload the I/O system, resulting in a loss of efficiency for the system overall.

To allow devices to optimize their /O handling a mechanism of QuickIO was created. In the
IORequest data structure one of the io_flags is reserved for QuicklO. When set prior to an
[/O request, this flag indicates that the device is allowed to handle the I/O in a special
manner. This enables some devices to take certain ‘‘short-cuts’’ when it comes to perform-
ing and completing the request.

The DoIO() function normally requests the QuickIO option, whereas the SendIO() function
does not. Complete control over the mode for QuicklO is possible by calling a device’s
BeginIO() entry directly.

It is up to the device to determine whether it can actually handle a request marked as
QuickIO. When the request has completed, if the QuickIO flag is still set, then the [/O was
performed quickly. This means that no message reply occurred, so the message has not been
queued to the reply port.

I[/O 1-47

4.6. STANDARD DEVICES

The following standard system devices are normally available at boot-time. Each of these
devices is described in a separate chapter in Part 3 of this manual.

Timer

TrackDisk

Keyboard

Gameport

Input

Console

Audio

Narrator

Serial

Parallel

Printer

1-48 1/O

Provides a flexible way of causing task signals or interrupts at second and
microsecond intervals.

Provides direct access to the 3 1/2-inch floppy disks. Among the functions pro-
vided are format, seek, read, and write. Normally trackdisk is only used by
AmigaDos, however its functions are enumerated here for direct access where
required. Note that the trackdisk driver is associated with the disk.resource.

Handles raw information from the keyboard and converts it into input events
which you can retrieve and interpret. Keyboard input events are queued so
that you won’t miss any keystrokes.

Handles raw information from the mouse, or a joystick device. Gameport
events are queued so that you won’t miss any movements. You can tell the
system what type of device is connected, and also tell it how often to check and
report the current status of the device.

The console device, as an input device, combines both the keyboard and the
gameport device. Input events from both are merged together into a single
input event stream on a first-in first-out basis.

The console device receives its input from the input device. The input portion
of the console device is simply a handler for input events filtered by Intuition.
It provides what one might call the “traditional” user interface.

The audio device is provided to control the use of the audio channels. A
separate chapter in this manual is dedicated to the audio device.

The narrator device is loaded from disk and uses the audio device to produce
human-like synthesized speech. The “Narrator Device” chapter also describes
the text-to-phoneme routines in the translator library.

The serial device is loaded from disk and initialized on being loaded. It con-
trols serial communications buffering of the input/output, baud rate and so on.

The parallel device is loaded from disk and initialized on being loaded. It con-
trols parallel communications. The parallel device is most often used by a
parallel printer driver.

The printer device driver is loaded from disk. Printers that are supported as of
this writing are specified in appendix I. In addition to showing how to use the
device, the “Printer Device” chapter describes the creation of a printer driver.
Source code for four different printer drivers is also included (in appendix I).

Chapter 5

Interrupts

This chapter discusses the software interface to interrupts. It describes the normal interrupt
sequence of events, interrupt priorities, interrupt handlers, interrupt servers, software inter-
rupts and interrupt exclusion. '

5.1. INTRODUCTION

Exec manages the decoding, dispatching, and sharing of all system interrupts. This includes
control of hardware interrupts, software interrupts, task-relative interrupts (see the “Tasks”
chapter), and interrupt disabling/enabling. In addition, Exec supports a more extended
prioritization of interrupts than that provided in the 68000.

The proper operation of multitasking depends heavily on the consistent management of the

interrupt system. Task activities are often driven by inter-system communication originated
by various interrupts.

Sequence of Events

Before useful interrupt handling code can be executed, a considerable amount of hardware
and software activity must occur. Each interrupt must propagate through several hardware
and software interfaces before application code is finally dispatched.

Interrupts 1-49

1. A hardware device decides to cause an interrupt, and sends a signal to the interrupt
control portions of the 4703 custom chip.

2. The 4703 interrupt control logic notices this new signal, and performs two primary
operations. First, it records that the interrupt has been requested by setting a flag
bit in the INTREQ register. Second, it examines the INTENA register to determine
whether the corresponding interrupt and the interrupt master are enabled. If both
are enabled, the 4703 generates a set of three 68000 interrupt request signals. See
the Amiga Hardware Reference Manual for a more complete explanation of how this
1s done.

3. These three signals correspond to 7 interrupt priority levels in the 68000. If the
priority of the new interrupt is greater than the current processor priority, an inter-
rupt sequence is initiated. The priority level of the new interrupt is used to index
into the top 7 words of the processor address space. The odd byte (a vector
number) of the indexed word is fetched and then shifted left by two to create a low
memory vector address.

4. The 68000 then switches into supervisor mode (if it isn’t in that mode already), and
saves copies of the status register and program counter (PC) onto the top of the sys-
tem stack. The processor priority is then raised to the level of the active interrupt.

5. From the low memory vector address (calculated in step three above), a 32-bit auto-
vector address is fetched and loaded into the program counter. This is an entry
point into Exec’s interrupt dispatcher.

6. Exec must now further decode the interrupt by examining the INTREQ and
INTENA 4703 chip registers. Once the active interrupt has been determined, Exec
indexes into an ExecBase array to fetch the interrupt’s handler entry point and
handler data pointer addresses.

7. Exec now turns control over to the interrupt handler by calling it as if it is a sub-
routine. This handler may deal with the interrupt directly, or propagate control
further by invoking interrupt server chain processing.

You can see from the above discussion that the interrupt autovectors should never be altered
by the user. If you wish to provide your own interrupt handler, you must use the Exec
SetIntVector() function. To change the content of any autovector location violates the
design rules of the Multitasking Executive.

Task multiplexing usually occurs as the result of an interrupt. When an interrupt has
finished and the processor is about to return to user mode, Exec determines whether task

scheduling attention is required. If a task was signaled during interrupt processing, then the
task scheduler will be invoked.

Since Exec uses pre-emptive task scheduling, it can be said that the interrupt subsystem is
the heart of task multiplexing. If for some reason interrupts do not occur, then a task might
execute forever because it cannot be forced to relinquish the CPU.

1-50 Interrupts

Interrupt Priorities

Interrupts are prioritized in hardware and software. The 68000 CPU priority at which an
interrupt executes is determined strictly by hardware. In addition to this, the software
imposes a finer level of pseudo-priorities on interrupts with the same CPU priority. These
pseudo-priorities determine the order in which simultaneous interrupts of the same CPU
priority are processed. Multiple interrupts with the same CPU priority but a different
pseudo-priority will not interrupt one another.

This table summarizes all interrupts by priority:

Table 5-1: Interrupts by Priority

4703 CPU Pseudo

Name Priority Priority Purpose

NMI 7 15 nonmaskable
INTEN 6 14 special (copper)
EXTER 6 13 8520B, external6
DSKSYNC 5 12 disk byte

RBF 5 11 serial input
AUD1. 4 10 audio channel 1
AUD3 4 9 audio channel 3
AUDO 4 8 audio channel 0
AUD?2 4 7 audio channel 2
BLIT 3 6 blitter done
VERTB 3 5 vertical blank
COPER 3 4 copper

PORTS 2 3 8520A, external2
TBE 1 2 serial output
DSKBLK 1 1 disk block done
SOFTINT 1 0 software interrupts

As described in the Motorola 68000 programmer’s manual, interrupts may only nest in the
direction of higher priority. Because of the time-critical nature of many interrupts on the
Amiga, the CPU priority level must never be lowered by user or system code. When the sys-
tem is running in user mode (multitasking) the CPU priority level must remain set at zero.
When an interrupt occurs, the CPU priority is raised to the level appropriate for that inter-
rupt. Lowering the CPU priority would permit unlimited interrupt recursion on the system
stack and would “short-circuit” the interrupt priority scheme.

Interrupts 1-51

Because it is dangerous on the Amiga to hold off interrupts for any period of time, higher
level interrupt code must perform its business and exit promptly. If it is necessary to per-
form a time-consuming operation as the result of a high priority interrupt, the operation
should be deferred to a lower priority by using a software interrupt. In this way interrupt
response time is kept to a minimum. Software interrupts are described in a later section.

Non-maskable Interrupt

The 68000 provides a non-maskable interrupt (NMI) of CPU priority 7. Although this inter-
rupt cannot be generated by the Amiga hardware itself, it can be generated on the expansion
bus by external hardware. Since this interrupt does not pass through the 4703 interrupt con-
troller circuitry, it is capable of violating system code critical sections. In particular it short-
circuits the DISABLE mutual-exclusion mechanism. Code that uses NMI must not assume
that it can access system data structures.

5.2. SERVICING INTERRUPTS

Interrupts are serviced on the Amiga through the use of interrupt handlers and servers.

An interrupt handler is a system routine that exclusively handles all processing related to a
particular 4703 interrupt.

An interrupt server is one of possibly many system routines that get invoked as the result of
a single 4703 interrupt. Interrupt servers provide a means of interrupt sharing. This concept
1s useful for general purpose interrupts like vertical blanking.

At system start, Exec designates certain 4703 interrupts as handlers and others as server
chains. The PORTS, COPER, VERTB, BLIT, EXTER, and NMI interrupts are initialized

as server chains; hence, each of these may execute multiple interrupt routines per each inter-
rupt. All other interrupts are designated as handlers and are always used exclusively.

1-52 Interrupts

Data Structure

Interrupt handlers and servers are defined by the Exec Interrupt structure. This structure
specifies an interrupt routine entry point and data pointer. The C definition of this structure
is:

struct Interrupt {
struct Node is_Node;
APTR is_Data;
VOID (*is_Code)();

}s

Once this structure has been properly initialized, it can be used for either a handler or server.

Environment

Interrupts execute in an environment unique from that of tasks. All interrupts execute in
supervisor mode and utilize a single system stack. This stack is large enough to handle

extreme cases of nested interrupts (of higher priorities). Obviously, interrupt processing has
no effect on task stack usage.

All interrupt processing code, both handlers and servers, is invoked as assembly code subrou-
tines. Normal assembly code CPU register conventions dictate that the DO, D1, AO, and Al
registers are free for scratch use. In the case of an interrupt handler, some of these registers

also contain data which may be useful to the handler code. See the section on handlers
below.

Because interrupt processing executes outside the context of most system activities, certain
data structures will not be self-consistent and must be considered off limits for all practical
purposes. This happens because certain system operations are not atomic in nature and may
be interrupted after only executing part of an important instruction sequence. Take the
memory allocation and deallocation routines as an example. These routines disable task
switching but do not disable interrupts. This results in the finite possibility of interrupting a
memory related routine. In such a case, a memory linked list may be inconsistent when
examined from the interrupt code itself. To avoid serious problems, the interrupt routine
must not use any of the memory allocation or deallocation functions.

Interrupts 1-53

Interrupt Handlers

As described above an interrupt handler is a system routine that exclusively handles all pro-
cessing related to a particular 4703 interrupt. There can only be one handler per 4703 inter-
rupt.

Every interrupt handler consists of an Interrupt structure (as defined above and a single
assembly code routine. Optionally, a data structure pointer may also be provided. This is
particularly useful for ROM-resident interrupt code.

An interrupt handler is passed control as if it were a subroutine of Exec. Once the handler
has finished its business it must return to Exec by executing an RTS (return from subrou-
tine) instruction rather than an RTE (return from exception) instruction.

Interrupt handlers should be kept very short to minimize service time overhead and thus
minimize the possibilities of interrupt overruns.

As described above, an interrupt handler has the normal scratch registers at its disposal. In
addition A5 and AB are also free for use. These registers are saved by Exec as part of the
interrupt initiation cycle.

For the sake of efficiency, Exec passes certain register parameters to the handler. These

register values may be utilized to trim a few microseconds off the execution time of a
handler.

DO is scratch and contains garbage.

D1 is scratch but contains the 4703 INTENAR and INTREQR registers values ANDed
together. This results in an indication of which interrupts are enabled and active.

AO points to the base address of the Amiga custom chips. This is useful for performing
indexed instruction access to the chip registers.

Al points to the data area specified by the is_Data field of the Interrupt structure.
Since this pointer is always fetched (regardless of whether you use it), it is to your
advantage to make some use of it.

A5 is used as a vector to your interrupt code. It is free to be used as a scratch register,
and it is not necessary to restore its value prior to returning.

A6 points to the Exec Library base (SysBase). You may use this register to call Exec

functions or set it up as a base register to access your own library or device. It is
not necessary to restore this register prior to returning.

1-54 Interrupts

Interrupt handlers are established by passing the Exec function SetIntVector() your initial-
ized Interrupt structure and the 4703 interrupt bit number of interest. See the appendix
for a complete description of this function. Keep in mind that certain interrupts are esta-
blished as server chains and should not be accessed as handlers.

Here is a C code example of proper handler initialization and setup:

struct Interrupt *RBFInterrupt, *PriorInterrupt;

setup()

extern void RBFHandler();
short *Buffer;

/* allocate an Interrupt node structure: */
RBFInterrupt = AllocMem (sizeof(struct Interrupt *), MEMF_PUBLIC);

if (RBFInterrupt == 0) {
printf ("not enough memory for interrupt handler”);
exit (100);

/* allocate an input buffer: x/
Buffer = AllocMem (512, MEMF_PUBLIC);
if (Buffer == 0) {
FreeMem (RBFInterrupt, sizeof(struct Interrupt *));

printf ("not enough memory for data buffer”);
exit (100);

}

/* initialize the Interrupt node: */

RBFinterrupt- >is_Node.ln_Type = NT_INTERRUPT;
RBFinterrupt->is_Node.ln_Pri = 0;
RBFinterrupt->is_Node.In_Name = "RBF-example”;
RBFInterrupt- >is_Data — Buffer;

RBFInterrupt- >is_Code = RBFHandler;

/* put the new interrupt handler into action: */
PriorInterrupt = SetIntVector (INTB_RBF, RBFInterrupt);

if (PriorInterrupt !=0) {
printf ("we just replaced the %%s interrupt handler”,
PriorInterrupt->is_Node.ln_Name);

In this example note the correct initialization of the Node structure.

The external interrupt handler code used above, RBFHandler, grabs the input character
from the serial port and stores it into the buffer. Notice that the address of the buffer is

Interrupts 1-55

passed to the handler (shown below) via the is_Data pointer. This pointer is updated for
every character stored.

XDEF _RBFHandler

_RBFHandler:
move.l (al),ab
move.w serdatr(a0),(a5)+
move.w #INTF_RBF,intreq(a0)
move.l a5,(al)
rts

In this example the buffer holds complete 4703 serial data words which contain not only the
input character, but special serial input flags as well (e.g. data overrun). This data word is
deposited directly into the buffer, and the 4703 RBF interrupt request is cleared.

A more sophisticated example might perform various tests on the input word prior to storing
it into the buffer.

Interrupt Servers

As mentioned above, an- interrupt server is one of possibly many system interrupt routines
that get invoked as the result of a single 4703 interrupt. Interrupt servers provide an essen-
tial mechanism for interrupt sharing.

Interrupt servers must be used used for PORTS, COPER, VERTB, BLIT, EXTER, or NMI
interrupts. For these interrupts, all servers are linked together in a chain. Every server in
the chain will be called until one returns a value of TRUE (nonzero) in register DO or until
the end of the chain is reached. Normally interrupt servers return a value of zero in DO
which indicates that the chain should not be prematurely terminated.

The same Exec Interrupt structure used for handlers is also used for servers. Also, like
interrupt handlers, servers must terminate their code with an RTS instruction.

Interrupt servers are called in priority order. The priority of a server is specified in its
is_Node.In_Pri field. Higher priority servers get called earlier than lower priority servers.

Adding and removing interrupt servers from a particular chain is accomplished with the Exec
AddIntServer() and RemIntServer() functions. These functions require you to specify
both the 4703 interrupt number and a properly initialized Interrupt structure.

Servers have different register values passed than handlers. A server cannot count on the

DO, D1, or AB registers containing any useful information. A server is free to use D0O-D1

1-56 Interrupts

and A0-A1/AS5 as scratch.

In a server chain the interrupt is cleared automatically by the system. It is not recom-

mended (and not necessary) that a server clear its interrupt (clearing could cause the loss of
an interrupt on PORTS or EXTERN.

Here is an example of a program to setup and cleanup a low priority vertical blank interrupt
server:

struct Interrupt *VertBlntr;
long count;

main()

{

extern void VertBServer();

/* allocate an Interrupt node structure: */

VertBIntr = AllocMem (sizeof(struct Interrupt *), MEMF_PUBLIC);
if (VertBIntr == 0) {

printf ("not enough memory for interrupt server”);
exit (100);

/* initialize the Interrupt node: */
VertBIntr->is_Node.In_Type = NT_INTERRUPT;
VertBlIntr- >is_Node.In_Pri = -60;

VertBIntr- >is_Node.In_Name = "VertB-example”;
VertBIntr->is_Data = &count;
VertBIntr->is_Code = VertBServer;

/* put the new interrupt server into action: */
AddIntServer (INTB_VERTB, VertBlIntr);

while (getchar () !="q’); /* wait for user to type ’q’ */

RemlIntServer (INTB_VERTB, VertBIntr);
printf (”%ld vertical blanks occurred”, count);
FreeMem (VertBlntr, sizeof(struct Interrupt *));

The VertBServer might look something like:

Interrupts 1-57

XDEF _VertBServer

_VertBServer:
move.l (al),a0 get address of count
addq.l #1,(a0) bump value of count
moveq.l #0,d0 continue server chain
rts

5.3. SOFTWARE INTERRUPTS

Exec provides a means of generating software interrupts. This type of interrupt is useful for
creating special purpose asynchronous system contexts. Software interrupts execute at a
priority higher than that of tasks but lower than normal interrupts, so they are often used to
defer normal interrupt processing to a lower priority.

Software interrupts use the same Interrupt data structure as normal hardware interrupts.
As described above, this structure contains pointers to both interrupt code and data.

A software interrupt is usually activated with the Cause() function. If this function is
called from a task, the task will be interrupted and the software interrupt will occur. If it is
called from a hardware interrupt, the software interrupt will not be processed until the sys-
tem exits from its last hardware interrupt. If a software interrupt occurs from within another
software interrupt, it does not get processed until the current one completes.

Software interrupts are prioritized. Unlike interrupt servers, there are only five priority lev-
els for software interrupts: -32, -16, 0, +16, and +32. The priority should be put into the
In_Pri field prior to calling Cause().

Software interrupts can also be caused by message port arrival actions. See the ‘“Messages
and Ports” chapter.

5.4. DISABLING INTERRUPTS

As mentioned in the ‘“Tasks” chapter, it is sometimes necessary to disable all interrupts
when examining or modifying certain shared system data structures.

Interrupt disabling is controlled with the DISABLE and ENABLE macros and the
Disable() and Enable() C functions.

1-58 Interrupts

In some system code, there are nested disabled sections. This type of code requires that
interrupts be disabled with the first DISABLE and not re-enabled until the last ENABLE.
The system enable/disable macros and functions are designed to permit this sort of nesting.

For example, if there is a section of system code that should not be interrupted, the
DISABLE macro is used at the head and the ENABLE macro is used at the end.

Here is an assembly code macro definition for DISABLE:

DISABLE MACRO
MOVE.W#$4000,_intena
ADDQ.B #1,IDNestCnt(A8)
ENDM

DISABLE increments a counter, IDNestCnt that keeps track of how many levels of disable
have been issued up to now. Only 126 levels of nesting are permitted. Notlce that inter-
rupts are disabled before the IDNestCnt variable is incremented.

Similarly, the ENABLE macro will re-enable macros if the last disable level has just been
exited:

ENABLE MACRO
SUBQ.B #1,IDNestCnt(AS)
BGE.S ENABLE®Q@
MOVE.W#$C000,_intena
ENABLE®G:
MEND

ENABLE decrements the same counter that DISABLE increments. Notice that interrupts
are enabled after the IDNestCnt variable is decremented.

See the “Tasks’” chapter for a better explanation of mutual exclusion using interrupt disa-
bling.

Interrupts 1-59

Chapter 6

Memory Allocation

This chapter describes the routines used for dynamic memory allocation and deallocation on
the Amiga. These routines allow the user to specify memory allocation according to the
actual needs of a task and the hardware it expects to use.

6.1. INTRODUCTION

Areas of free memory are maintained as a special linked list of free regions. Each memory
allocation function returns the starting address of a block of memory at least as large as the
size that you requested to be allocated. Any memory that is linked into this system free list
can be allocated by the memory allocation routines.

The allocated memory is not tagged or initialized in any way unless you have specified, for
example, MEMF_CLEAR. Only the free memory area is tagged to reflect the size of the
chunk that has been freed.

You should return allocated memory to the system when your task completes. As noted
above, the system only keeps track of available system memory and has no idea which task
may have allocated memory and not returned it to the system free list. If you don’t return

allocated memory when your task exits, that memory is unavailable until the system is
powered down or reset.

This can be very critical, especially when using graphics routines that often need large blocks
of contiguous RAM space. Therefore, if you dynamically allocate RAM, make sure to return
it to the system by using the FreeMem() or FreeEntry() routines described below.

When you ask for memory to be allocated, the system always allocates blocks of memory in
even multiples of 8 bytes. If you request more or less than 8 bytes, your request is always
rounded up to the nearest multiple of 8. In addition, the address at which the memory deal-
location is made is always rounded down to the nearest even multiple of 8 bytes.

Memory Allocation 1-61

COMPATIBILITY NOTE: Don’t depend on this size! Future revisions of the system may
require a different size to guarantee alignment of the requested area to a specific boundary.
You can depend upon allocation being aligned to at least a longword boundary.

6.2. USING MEMORY ALLOCATION ROUTINES

NOTE: Do not attempt to allocate or deallocate system memory from within interrupt
code. The “Interrupts’ chapter explains that an interrupt may occur at any time, even dur-
ing a memory allocation process. As a result, system data structures may not necessarily be
internally consistent.

Memory Requirements

You must tell the system about your memory requirements when requesting a chunk of
memory. There are four memory requirement possibilities. Three of these tell where within
the hardware address map memory i1s to be allocated. The fourth, MEMF_CLEAR, tells
the allocator that this memory space is to be zeroed before the allocator returns the starting
address of that space.

The memory requirements that you can specify are:

MEMF_CHIP
Indicates a memory block that is within the range that the special-purpose
chips can access. As of this writing, this is the lowest 312K of the Amiga.

MEMF_FAST
Indicates a memory block that is outside of the range that the special purpose
chips can access. “FAST” means that the special-purpose chips cannot cause
processor bus contention and therefore processor access will likely be faster.
The special-purpose chips cannot use memory allocated in this way.

MEMF_PUBLIC
Indicates that the memory requested is to be used for different tasks or inter-
rupt code. This would be for task control blocks, messages, ports and so on.
The designation MEMF_PUBLIC should be used to assure compatibility with
future versions of the system.

1-62 Memory Allocation

MEMF_CLEAR

Indicates clear memory to zero before returning.

If no preferences are specified, MEMF_FAST is assumed first, then MEMF_CHIP.

Memory Handling Routines

Exec has the following memory allocation routines:

AllocMem() and FreeMem()
System-wide memory allocation and deallocation routines. These routines use a
memory free-list owned and managed by the system.

AllocEntry() and FreeEntry()
Routines for allocating and freeing different size, different type memory blocks with a
single call.

Allocate() and Deallocate()

Routines that may be used within a user-task to locally manage a system-allocated
memory block. You use these routines to manage memory yourself, using your own
memory free lists.

Sample Calls for Allocating System Memory

The following examples show how to allocate memory.

struct APTR mypointer,anotherptr;
mypointer = AllocMem(100, 0);

AllocMem() returns the address of the first byte of a memory block that is at least 100
bytes in size or null if there is not that much free memory. Since the requirement field is
specified as 0, memory will be allocated from any one of the system-managed memory
regions.

Memory Allocation 1-63

anotherptr = AllocMem(1000,L MEMF_CHIP | MEMF_CLEAR);

Memory is allocated only out of chip-accessible memory; zeroes are filled into memory space
before the address is returned.

If the system free-list does not contain enough contiguous memory bytes in an area matching
your requirements and of the size you have requested, AllocMem() or Allocate() returns a
zero.

Sample Function Calls for Freeing System Memory

The following examples free the memory chunks shown in the earlier call to the system allo-
cation routines.

FreeMem(mypointer,100);

FreeMem(anotherptr,1000);

NOTE: Due to the internal operations of the allocator, your allocation request may result in
an allocation larger than the number of bytes you requested in the first place. However, the
FreeMem() routine adjusts the request to free memory in the same way as AllocMem()
adjusts the size, thereby maintaining a consistent memory free-list.

The routine FreeMem() doesn’t return any status. However, if you attempt to free a
memory block in the middle of a chunk that the system already believes is free, you will
cause a system crash.

Partial blocks can be deallocated, but not: again that FreeMem() rounds vour address
down to the nearest even multiple of MEM _BLOCKSIZE and the size up to the nearest mul-
tiple before the FreeMem() request is performed.

1-64 Memory Allocation

Allocating Multiple Memory Blocks

Exec provides the routines AllocEntry() and FreeEntry() to allocate multiple memory
blocks in a single call. AllocEntry() accepts a data structure called a MemList, which con-
tains the information about the size of the memory blocks to be allocated and the require-

ments, if any, that you have regarding the allocation. The MemList structure is found in
the include-file exrec/memory.h and is defined as:

struct MemList {
struct Node ml_Node;
UWORD ml_NumkEntries; /* number of MemEntries */

struct MemEntry ml_me[l]; /*where the MemEntries */
begin

¥

where:

Node

allows you to link together multiple MemLists. However, the node is ignored by the
routines AllocEntry() and FreeEntry().

ml_NumEntries

tells the system how many MemEntry sets are contained in this MemList. Notice that

a MemList is a variable-length structure and can contain as many sets of entries as you
wish.

For the purposes of AllocEntry(), the MemEntry structure looks like this:

struct MemEntry {
union {

ULONG meu_Reqs; /* the AllocMem requirements */
APTR meu_Addr;

}me_Un;
ULONG meu_Length; /* the size of this request */

15

Memory Allocation 1-65

Sample Code for Allocating Multiple Memory Blocks

#define me_Regs me_Un.meu_Reqs
#define me_Addr me_Un.meu_Addr

struct MemList *mymemlist; /* pointer to a MemList */

struct myneeds {
struct MemList mn_head; /* one entry in the header */
struct MemEntry mn_body|2]; /* additional entries follow

* directly as part of

* same data structure */

};

myneeds.mn_head.ml_NumEntries = 3;
myneeds.mn_head.me[0].me_Reqs = MEMF_PUBLIC;
myneeds.mn_head.me[0].me_Length = 104;
myneeds.mn_head.me[l].me_Reqs=MEMF_FASTMEMF_CLEAR;
myneeds.mn_head.me[1].me_Length = 8000;
myneeds.mn_head.me[2].me_Reqs=MEMF_CHIP | MEMF_CLEAR;
myneeds.mn_head.me[2].me_Length = 256;

mymemlist = AllocEntry(&myneeds);

/* saying "struct MemEntry mn_body[2]” is simply a way of
* adding extra MemEntry structures contiguously at the end
of the first such structure at the end of the MemList.

Thus members of the MemList of type MemEntry can be
referenced in C as additional members of the "me|[|’

data structure

/

* ¥ X X ¥

AllocEntry() returns a pointer to a new MemList of the same size as the MemList that
vou passed to it. For example, ROM code can provide a MemList containing the require-
ments of a task and create a RAM-resident copy of the list containing the addresses of the
allocated entries.

1-66 Aemory Allocation

Result of Allocating Multiple Memory Blocks

The MemlList created by AllocEntry() contains MemEntry entries of the second possible

form (MemEntrys are defined by a union statement, which allows one memory space to be
defined in more than one way.)

struct MemEntry {
APTR meu_Addr; /* the address of the region */
ULONG meu_Length; /* the size of this request */
13

If AllocEntry() returns a value with bit 31 clear, then all of the meu_Addr positions in

your MemList will contain valid memory addresses meeting the requirements which you
have provided.

To use this memory area, you would use code similar to the following:

APTR mydata, moredata;
if (((mymemlist & (1< <31)) < 0)

mydata = mymemlist- >ml_me[0].me_Addr;
moremydata = mymemlist- >ml_me[l].me_Addr;

}

else
exit (200); /* error during AllocEntry */

If AllocEntry() has problems while trying to allocate the memory you have requested,
instead of the address of a new MemList, it will return the memory requirements value with
which it had the problem. Bit 31 of the value returned will be set, and no memory will be
allocated. Entries in the list that were already allocated will be freed.

6.3. MEMORY ALLOCATION AND TASKS

If vou want your task to be fully cooperative with Exec, use the MemList and
AllocEntry() facility to do your dynamic memory allocation.

Memory Allocation 1-67

In the task control block structure, there is a list header named te_MemEntry. This is the
list header that you initialize to point to the MemLists that your task has created by call(s)
to AllocEntry().

Here is a short program segment that handles task memory list header initialization only. It
assumes that you have already run AllocEntry() as shown in the simple AllocEntry()
example above.

NewList(&mytask.tc_MemEntry); /* Initialize the task’s
* memory list header */

AddTail(&mytask.tc_MemEntry, mymemlist);

Assuming that you have only used the AllocEntry() method (or AllocMem() and built
your own custom MemList), your task now knows where to find the blocks of memory that
your task has dynamically allocated. If your cleanup routine (the task’s finalPC routine)
finds items on the tc_MemEntry list when RemTask(&mytask) is executed, your rou-
tine can wind through all linked lists of MemLists and return all allocated memory to the
system free-list.

Memory Allocation and the Multi-Tasking System

To ensure that you are effectively working in the multi-tasking system as a cooperating task,
you can either:

o Globally allocate and free memory blocks by using AllocMem() and FreeMem();
adding each block when allocated and deleting each when it is freed, on your task’s
MemlList, or

o Allocate one or more blocks of memory from the system global pool using
AllocEntry() when your task begins, then manage those blocks internally using
Allocate() and Deallocate().

1-68 Memory Allocation

Managing Memory with Allocate() and Deallocate()

Allocate() and Deallocate() use a memory region header, called MemHead, as part of the
calling sequence. You can build your own local header to manage memory locally. This
structure takes the form:

struct MemHead {
UWORD mh_Attributes; /* characteristics */
APTR mh_First; /* first free region */
APTR mh_Lower; /* lower memory bounds */
APTR mh_Upper; /* upper memory bounds + 1 */
ULONG mh_Free; /* number of free bytes */

where:

mh_Attributes
is ignored by Allocate() and Deallocate().

mh_First
is the address of the first free region in the memory block.

mh_Lower
is the lowest address within the memory block, must be a multiple of 8 bytes.

mh_Upper
is the highest address within the memory block + 1. The highest address will itself
be a multiple of 8 if the block was allocated to you by AllocMem().

mh_Free
1s the total free space.
This structure is included in the include-files exec/memory.h and exec/memory.z.
The following sample program fragment shows the correct initialization of a MemHead

structure. It assumes that you wish to allocate a block of memory from the global pool and
thereafter manage it yourself using Allocate() and Deallocate().

Memory Allocation 1-69

struct MemHead mymemhead;
APTR myblock;

struct MemChunk {
APTR next;
ULONG size;

5
struct MemChunk *m;

myblock = AllocMem(8000, MEMF_PUBLIC | MEMF_CLEAR);
/* get a block from the system */

mymemhead.mh_First =— myblock;
mymemhead.mh_Lower = myblock;
mymemhead.mh_Upper = (int)myblock + 8000 + 1;
mymemhead.mh_Free = 8000 - (sizeof MemChunk);

/* takes 8 bytes for the memory chunk headers

* which tag free memory */
m = myblock;
m->next = NULL; /* initialize the free memory list */
m->size — mymemhead.mh_Free;

/* now mymemhead is ready to use with calls to:
*

* Allocate(&mymembhead, size);

* or

* Deallocate(& mymembhead, size);

*/

Note that only free memory is ‘“‘tagged” using a MemChunk linked list. Once memory is
allocated, the system has no way of determining which task now has control of that memory.

If you allocate a large chunk from the system, you can assure that in your “final PC” routine
(specified when you perform AddTask()) you deallocate this large chunk as your task exits.
Thus, local memory allocation and deallocation from a single large block can perhaps save
some bookkeeping which might otherwise be required if you had extensively used
AllocMem() and FreeMem() instead.

1-70 Memory Allocation

Chapter 7

Libraries

Using a properly designed machine code interface, it is possible to call any of the system rou-
tines without knowing in advance its absolute location in the system. This chapter shows
how libraries are designed and used but does not dover the internal library structure. For

more information, see appendix K, which contains source for a two-routine, disk-loadable
library.

7.1. WHAT IS A LIBRARY?

A library is a collection of jump instructions, a system library node, and a data segment.
System library conventions require that each code vector occupy six bytes. The size and con-
tent of a library node is specified below in the topic titled “Structure of a Library Node”.
The data segment is of variable size and depends on the needs of the library itself.

7.2. HOW TO ACCESS A LIBRARY

There are two steps that you must perform to access a library that is already initialized.
The first step is to open the library. The second step is to access the jump instructions or

data by specifying an offset (negative or positive) from the library base pointer returned by
OpenLibrary().

This form of indirection allows you to develop code which is not dependent on the absolute
locations of the system routines. Note that in the same release of an Exec kernel, it is possi-
ble that different routines can have different addresses. This depends, for example, on
whether the hardware options are different or if the user asks for a different configuration.

Therefore, accessing the system routines through library calls is the most expedient way of
assuring that your code will work on different machines.

Libraries 1-71

Opening a Library

You prepare a library for use by calling the routine OpenLibrary(). This call takes the
form:

LibPtr = OpenLibrary(LibName, Version)

Do Al Do
where:

LibPtr
is a pointer value which is non-zero if the requested library has been located. Be
sure to check that the returned value is non-zero before attempting to use LibPtr.
If it is zero, the open failed.

LibName
is a pointer to a string variable (null-terminated) which contains the name of the
library that you wish to open.

Version

is the version number of the library that you expect to use. Libraries of the same
name will be compatible with previous versions. However, if the user expects a
newer version than is present, the open will fail. Use the value 0 if you simply want
“any” version of the named library.

The routine OpenLibrary() causes the system to search for a library of that name within
the system library list. If such an entry is found, the library’s open-entry routine is called.
If the library is not currently RAM-resident, AmigaDOS will search the directory currently
assigned to DEVS:. If that library is present, it will be loaded, initialized, and added to the
system library list.

If the library allows you access, the library pointer will be returned in LibPtr.

1-72 Libraries

Using a Library to Call a Routine

A typical way to use the library interface once a library has been opened is to use assembly

language code as follows. Note that this save/restore is only necessary if A6 does not already
contain the correct value.

move.l A6,-(SP) ; save current contents of A6

move.l <libptr>,A8 ; move library pointer into A8

jsr <_LVO<routineName>(AS8) ; through library vector table
move.l (SP)+,A6 ; restore A6 to original value

This is the actual assembly code generated by the use of a machine language macro named
LINKLIB as in:

LINKLIB functionOffset, libraryBase

where:

functionOffset
is “_LVO?” followed by the name of the routine as called from C.

libraryBase
is the address of the base of the library.

For example:

LINKLIB _LVODisplayBeep,IntuitionBase

produces the same code sequence as shown above. This macro is located in the file
exec/libraries.h. Notice that is handles only the linkage to the routine. It does not save any
registers or preload any registers for passing values to the routine.

Negative offsets, in multiples of six bytes, access the code vectors within the library.

By convention A6 must contain the library pointer when a library routine is called. This

allows any library routine to locate the library and access its data or any of its other entry
points.

Registers AO, Al, DO, and D1 may be used as scratch registers by any routine. All other

registers, both address and data, if used in a routine, should be saved and restored before
exit.

Libraries 1-73

Using A Library To Reference Data

You can use the LibPtr to reference a data segment associated with a library by specifying a
positive offset from of LibPtr, such as:

move.l <libptr>,A1l ; Move library base
move.l <offset>(A1),D0O ; Retrieve data located at <offset>

Library data is not usually accessed directly from outside of a library, but rather is accessed
by the routines which are part of the library itself. The sample code retrieves data
specifically associated with that library. Note that different languages will have different
interface requirements. This example shows only a typical assembly language interface.
When you design your own libraries, you may decide on how the associated data segment is
to be used. The system itself places no restrictions on 1its use.

Caching Library Pointers

To make your library calls more efficient, there are various pointers that you may cache if
you wish. These are:

a) the libPtr itself (since the library node, while it is open, may not be moved, and

b) the address within the library at which a jump instruction is located (since offsets
from the libPtr do not change).

You should not, however, cache the jump vector from within the library. You will always

expect to be calling the current library routine and therefore should not cache the jump vec-
tor.

1-74 Libraries

Closing A Library

When your task has finished using a specific library, you should call the routine
CloseLibrary(). This call takes the form:

CloseLibrary(libPtr)
Al
where libPtr is the value returned to you by the call to OpenLibrary().
You close a library to tell the library manager that there is one less task currently using that
library. If there are no tasks using a library, it is possible for the system, on request, to

purge that library and free up the memory resources which it is currently using.

Each successful open should be matched by exactly one close. Do not attempt to use a
library pointer after you have closed that library.

7.3. ADDING A LIBRARY

You can add your own library to the system library list, provided that it is constructed as

indicated. You add a library to the system by using the AddLibrary() function. The for-
mat of the call to this function is:

AddLibrary(libPtr)
Al

This command links a new library to the system and makes it available to all tasks.

Libraries 1-75

Making a New Library

A function called MakeLibrary() is a convenient way for you to construct a library. After
running MakeLibrary() you will normally add that library to the system library list.

l1ibAddr = MakeLibrary(vectors, structure, init, dataSize, SegLi
Do A0 Al A2 Do D1

AddLibrary(1libAddr)
Al

MakeLibrary() allocates space for the code vectors and data area, initializes the library
node, and initializes the data area according to your specifications. Its parameters have the
following meanings:

vectors

a pointer to a table of code pointers terminated with a -1. vectors must specify a
valid table address.

structure
points to the base of an InitStruct() data region. That is, it points to the first loca-
tion within a table which the InitStruct() routine can use to initialize various
memory areas. InitStruct() will typically be used to initialize the data segment of
the library, perhaps forming data tables, task control blocks, I/O control blocks and
the like. If this entry is a O, then InitStruct() is not called.

init
points to a routine which is to be executed after the library node has been allocated,
and the code and data areas have been initialized. When this routine is called, the

libAddr (address of this library) is placed into data register DO. If init is zero, no
init routine is called.

dataSize

this variable specifies the size of the data area to be reserved for the library. It
includes the standard library node data as well as the reserved data area itself.

SegList
a pointer to the AmigaDOS memory segment list (for libraries loaded by DOS).

1-76 Libraries

Minimum Subset of Library Code Vectors

The code vectors of a library must at least include the following entries: OPEN, CLOSE,
EXPUNGE, and one reserved entry.

OPEN is the entry point called when you use the command OpenLibrary(). In the
system libraries, OPEN increments the library variable OpenCnt. This vari-
able is also used by CLOSE and EXPUNGE.

CLOSE is the entry point called when you use the command CloseLibrary(). It
decrements the library variable OpenCnt and may do a delayed EXPUNGE.

EXPUNGE

prepares the library for removal from the system. This often includes deallo-
cating memory resources which were reserved during initialization.
EXPUNGE not only frees the memory allocated for data structures, but also
the areas reserved for the library node itself.

The remaining vector is reserved for future use. It should always return zero.

Structure of a Library Node

A library node contains all of the information which the system needs to manage a library.
Here is the library structure as it appears in the ezec/libraries.h include file:

Libraries 1-77

struct Library {
struct Node libNode; /* link into the system library list */
UBYTE lib_Flags; /* flag variables */
UBYTE lib_Pad; /* unused */
UWORDIib_NegSize; /* size of jump vectors in bytes. */
UWORDIib_PosSize; /* data size */
UWORDIib_Version;
UWORDIib_Revision;
ULONG lib_Sum; /* checksum */
UWORDIib_OpenCnt; /* count how many tasks have this library OPEN * /

}s
/* meaning of the library flag bits>: */

#define LIBF_SUMMING (1 << 0) /* bit position says some task is
currently running a checksum on this library */

#define LIBF_CHANGED (1 << 1)/#* bit position says one or more
entries have been changed in the library
code vectors, used by SumLibrary */

#define LIBF_SUMUSED /* bit position says user wants a
checksum fault to cause a system panic */

#define LIBF_DELEXP /* says there is a delayed expunge
some user has requested expunge but
another user still has the library open */

Changing The Contents Of A Library

After a library has been constructed and linked to the system library list, you can use the
routine SetFunction() to either add or replace the contents of one of the library vectors.
The format of this routine is as follows:

SetFunction(Library, FuncOffset, FuncEntry)
Al A0 Do

where:

1-78 Libraries

Library
is a pointer to the library in which a function entry is to be changed.

FuncOffset
is the offset (negative) at which the entry to be changed is located.

FuncEntry

is a longword value which is the absolute address of the routine which is to be
inserted at the selected position in the library code vectors.

When you use SetFunction() to modify a function entry in a library, it automatically recal-
culates the checksum of the library.

7.4. RELATION TO DEVICES

A device is an interface specification and an internal data structure based on the library
structure. The interface specification defines a means of device control. The structures of
libraries and devices are so similar that the routine MakeLibrary() is used to construct
both libraries and devices. Devices require the same basic four code vectors, but have addi-
tional code vectors which must be located in specific positions in the code vector table. The
functions that devices are expected to perform, at minimum, are shown in chapter 4, “I/O”.
Also, a skeleton device (source code) is provided in appendix F.

Libraries 1-79

Chapter 8

ROM-Wack

This chapter describes the ROM resident version of the Amiga debugger. It discusses how to
enter and use this debugger.

8.1. INTRODUCTION

Wack is a keystroke-interactive bug exterminator used with Amiga hardware and software.
ROM-Wack is a small, ROM-resident version primarily useful for system crash data structure

examination. Its command syntax and display formats are identical to Grand-Wack! of
which it is functionally a subset.

8.2. GETTING TO WACK

ROM-Wack will be automatically invoked by Exec upon a fatal syvstem error, or it can be
explicitly invoked through the Exec Debug() function. Once invoked, communication is per-
formed through the serial RS-232 data port at 9600 baud.

When a fatal system error occurs, Wack can be used to examine memory in an attempt to
locate the source of the failure. The state of the machine will be frozen at the point in which
the error occurred and Wack will not disturb the state of system beyond using a small
amount of supervisor stack, memory between 200 and 400 hex, and the serial data port.

A program may explicitly invoke wack by calling the Exec Debug() function. This is useful
during the debug phase of development for establishing program breakpoints. For future
compatibility, Debug should be called with a single, null parameter; for example, Debug(0).

1 The RAM resident and remote versions of Wack.

ROM-Wack 1-81

Please note however, that calling the Debug() function does not necessarily invoke ROM-
Wack. If Grand-Wack or a user supplied debugger has been installed, it will be invoked in
place of ROM-Wack.

When Wack is called from a program, system interrupts continue to process, but multi-
tasking is disabled. Generally this is not harmful to the system. Your graphics will still
display, keys may be typed, the mouse can be moved, and so on. However, many interrupts
deposit raw data into bounded or circular buffers. These interrupts often signal related dev-
ice tasks to further process these buffers. If too many interrupts occur, device buffers may
begin to overflow or wrap-around. You should limit the number of interrupt actions (typing
keys on the Amiga keyboard for example) you perform while executing in Wack.

8.3. KEYSTROKES, NUMBERS, AND SYMBOLS

Wack performs a function upon every keyboard keystroke. In ROM-Wack, these functions
are permanently bound to certain keys. For example, typing “>"" will immediately result in
the execution of the next-word function. This type of operation gives a ‘‘keystroke interac-
tive’’ feel to most of the common Wack commands.

Whenever a key is pressed, it 1s mapped through a KeyMap which translates it into an
action. This action is context-dependent. A key can have different meanings in different
contexts. For simplicity, ROM-Wack applies keys consistently in all contexts?.

In the default keymap most punctuation marks are bound to simple actions, such as display-
iIng a memory frame, moving the frame pointer, or altering a single word. These actions are
always performed immediately. In contrast, the keys A-Z, a-z, and 0-9 are bound to a func-
tion that collects the keys as a string. When such a string is terminated with <RETURN>,
the keys are interpreted as a single symbol or number.

In ROM-Wack, symbols are only treated as intrinsic functions. Macros, constants, offsets,

and bases are not supported. Hence, typing a symbol name will always result in the invoca-
tion of the symbol’s statically bound function.

If a string of keys forms a number, that number is treated as a hexadecimal value. If a

string of keys is neither a number nor a known symbol, the message ‘“‘unknown symbol” is
presented.

During the “collection’ of a symbol or number string, typing a backspace deletes the previ-
ous character. Typing <CTRL-X> deletes the entire line.

2 The Grand-Wack feature of arbitrary key binding is not available in ROM-Wack.

1-82 ROM-Wack

8.4. REGISTER FRAME

When Wack is invoked for any reason, a Register Frame is displayed:

R(M-Wack

PC:
DR:
AR:
SF:

F0o0oAB4 SR: 0000 USP: 001268 SSP: 07FFE8 TRAP: 0000 TASK: 0008BS
00000001 00000004 0000000C 00000AB4 00000001 0000001C 00000914 00000914
00000AB4 00[F0D348 00011A80 00000B9C 00F20770 00F20380 00000604

0000 O00FO0 0AB4 0014 00F0 0AB4 0014 00FO0 0AB4 0004 00FO0 OAB4 0000 0004 0000

This frame displays the current processor state and system context from which you entered
Wack. If you are familiar with the M68000 processor, most of this frame should be obvious:
USP for user stack pointer, SSP for system stack pointer, etc.

The TRAP field indicates the trap3 number which forced us into Wack. The standard
TRAP numbers are:

0

(]

normal entry

bus error

address error

illegal instruction

zero divide

CHK instruction (should not happen ..)
TRAPYV instruction (should not happen ..)
privilege violation

trace (single step)

line 1010 emulator

line 1111 emulator

2N trap instruction N (2F normally for breakpoint)

The TASK field indicates the task from which the system entered Wack. If this field is zero,
the system entered Wack from supervisor mode.

3 Motorola calls these exceptions. We use the word “exception” for asynchronous task events.

ROM-Wack 1-83

The SF line provides a backtrace of the current stack frame. This is often useful for deter-
mining the current execution context (last function called, for example). The user stack? is
displayed for entry from a task; the system stack for entry from supervisor mode.

8.5. DISPLAY FRAMES

Wack displays memory in fixed size frames. A frame may vary in size from 0 to 64K bytes.
Frames normally show addresses, word size hex data, and ASCII equivalent characters:

F000C4 6578 6563 2E6C 6962 7281 7279 0000 4AFC e x e ¢ . | i br ar y...
Foo0oD4 O00F0 00D2 OOFO0 29018 0019 0978 O00F0 00C4)XY I x...

By default, Wack will pack as much memory content as it can onto a single line. Sometimes
it is preferable to see more or less than this default frame size. The frame size may be
modified with :n. Here “n” represents the number of bytes (rounded to the next unit size)
that will be displayed.

4
FO000C4 6578 6563 e x e c

:20
F0o00C4 6578 6583 2E6C 6962 7261 7279 0000 4AFC e x e ¢ . | i br ar y...
FoooD4 OOF0 00D2 OOFO0 2818 0019 09878 00F0 00C4)AX..AY‘I

A :0” frame size is useful for altering the write-only custom chip registers.

8.6. RELATIVE POSITIONING

Wack functions like a memory editor; nearly all commands are performed relative to your
current position in memory. The following commands cause relative movement:

forward a frame

4 Version 25.1 always shows the system stack, never the user stack. This will change.

1-84¢ ROM-Wack

, backward a frame

> forward a word
< ba;.ckward a word
+n forward n bytes
-n backward n bytes
<RETURN>

redisplay current frame

<SPACE>
forward a word

<BKSP>
backward a word

For example:

< RETURN >
f00200 7072 68573 656e 7429 0dOa 0000 2028 6372 p r e s en t)MJ...

f00210 6173 6820 2d20 63061 BeBe 6f74 2072 6563 a s h - canno t
’

f00200 7072 6573 656e 7429 0d0a 0000 2028 6372 pr e s en t)MJ...
> .

f00202 6573 858e 7429 0d0a 0000 2028 6372 6173 e s e n
<

f00200 7072 68573 B856e 7428 0d0a 0000 2028 8372 p r e s en t) MJ...
+24

c+

yM I, (

f00224 290d 0a00 2028 B826f 8f74 2084 65706 6963)"M"J.. (boot d
-38
fOOlec B8cB85 2900d 0a00 2028 BeBf 2064 6582 7567 | e)™M J.. (no d

8.7. ABSOLUTE POSITIONING

There are a few commands that perform absolute positioning. Typing a hex number moves
you to that position in memory:

ROM-Wack 1-85

10ec
0010ec 00f0 17c0 4ef8 00f0 179a 4ef9 00f0 1786 W..N...... W. .

Also, Wack maintains an indirection stack to help you walk down linked lists of absolute
pointers:

4

000004 0000 llec 00fO 0a8e 00f0 0a80 00fO0 0a92 Q...... [S R IS
[(use current longword as the next address)

00llec 0000 18f6 0000 1332 0900 00f0 088a 0000 X...... S 2°I....... ..
] (return to the previous "indirected” address)

000004 0000 1lec 00fO0 0a8e 00fO 0a90 00fO0 0a92 Q...... B I [

The “find”’ command finds a given pattern in memory, and the “limit” command determines
the upper bound of the search. The pattern may be from one to four bytes in length. The
pattern is not affected by the alignment of memory; that is, byte alignment is used for all
searches regardless of the pattern size.

To set the upper bound for a “find”’ command, type an address followed by “limit”” or “"”.
The default bound is 1000000 hex.

8.8. ALTERING MEMORY

The = command lets you modify your current memory word:
20134

020134 0000 0000 0000

020134 0000 = 767

020134 0767 0000 0000 G g........

[f framesize is zero, the contents of the word will not be displayed prior to letting you modify
it:

:0
dffo9c
DFF09C xxxx = 7fff

If you decide not to modify the contents after typing an ==, press <RETURN> without
typing a number. If you’'ve already typed a number, type < CTRL-X>.

1-86 ROM-Wack

The alter command performs a repeated = which is handy for setting up tables. While in
this mode, the > and < will move you forward or backward one word. To exit from this
mode, type a <RETURN> with no preceding number.

alter

001400 0280 = 222

001402 00C8 = <

001400 0222 = 333

001402 00C8 = 444

001404 0000 = O

001406 3700 = >

001408 0000 =— 6686
00140A 0000 = < RETURN >

You can modify registers when single-stepping or breakpointing. Typing “!” followed by the
register name (D0-D7, A0-A6), U) lets you make modifications. SR and SSP cannot be
modified.

The “fill” command fills memory with a given pattern from the current location to an upper
bound. The “limit” command determines the upper bound of the fill. The size of the fill
pattern determines the number of bytes the pattern occupies in memory. For example, typ-
ing:

fil <RETURN>
45

fills individual bytes with the value 45. Typing:

fil <RETURN>
045

fills words, and

fill <RETURN>
0000045

fills longwords.

CAUTION: Using the fill command without properly setting the limit can destroy data in
memory. To set the upper bound for a fill, type an address followed by “limit” or a “"”.

ROM-Wack 1-87

8.9. EXECUTION CONTROL

These commands control program execution and system reset:
go execute from current address

resume resume at current PC address

"D resume at current PC address

“I (tab) single instruction step

boot reboot system (cold-reset)

ig reboot system (cold-reset)

8.10. BREAKPOINTS

ROM-Wack has the ability to perform limited program breakpoints.

may be set. The breakpoint commands are:

set set breakpoint at current address
clear clear breakpoint at current address
show show all breakpoint addresses
reset clear all breakpoints

Up to 16 breakpoints

To set a breakpoint, position the address pointer to the break address and type set. Resume
program execution with go or resume. When your breakpoint has been reached, Wack will
display a register frame. The breakpoint is automatically cleared once the breakpoint is

reached.

1-88 ROM-Wack

8.11. RETURNING TO MULTI-TASKING AFTER A CRASH

The ““user’” command forces the machine back into multi-tasking after a crash that invoked
ROM-Wack. This gives your system a chance to flush disk buffers before you reset, thus
securing your disk’s super-structures.

Once you type ‘“‘user’”’, you cannot exit from ROM-Wack, so you should use this command
only when you want to reboot after debugging. Give your disk a few seconds to write out its
buffers. If your machine is in a bad way, the “user” command may not work.

ROM-Wack 1-89

Part 11

Chapter 1

Graphics Primitives

This chapter describes the basic graphics tools. It covers the graphics support structures,
display routines, and drawing routines.

Many of the operations described in this section are also performed by the Intuition software.
See the book called Intuition: The Amiga User Interface for more information.

1.1. INTRODUCTION

The Amiga has two basic types of graphics support routines: display routines and drawing
routines. These routines are very versatile and allow you to define any combination of
drawing and display area you may wish to use.

Section 1.2 of this chapter defines the display routines. These routines show you how to
form and manipulate a display, including the following:

o how to identify the memory area that you wish to have displayed

o how to position the display area window to show only a certain portion of a larger
drawing area

o how to split the screen into as many vertically stacked slices as you wish
o whether to use high-resolution (640 pixels across) or low-resolution (320 pixels across)
display mode for a particular screen segment, and whether to use interlaced (400

lines top to bottom) or noninterlaced (200 lines) mode

o how to specify how many color choices per pixel are to be available in a specific sec-
tion of the display

Graphics Primitives 2-1

Section 1.3 explains all of the available modes of drawing supported by the system software,
including how to:

o reserve memory space for use by the drawing routines

o define the colors that can be drawn into a drawing area

o define the colors of the drawing pens (foreground pen, background pen for patterns,
and outline pen for area-fill outlines)

o define the pen position in the drawing area

o draw lines, define vertex points for area-filling, and specify the area-fill color and pat-
tern

o define a pattern for patterned line drawing

o change drawing modes

o read or write individual pixels in a drawing area

o copy rectangular blocks of drawing area data from one drawing area to another

o use a template (predefined shape) to draw an object into a drawing area

Components of a Display

In producing a display, you are concerned with two primary components: sprites and the
playfield. Sprites are the easily movable parts of the display. The playfield is the static part
of the display and forms a backdrop against which the sprites can move and with which the
sprites can interact.

This chapter covers the creation of the background. Sprites are described in Chapter 3,
“Animation”.

2-2 Graphics Primitives

Introduction to Raster Displays

The Amiga produces its video displays on standard television or video monitors by using ras-
ter display techniques. The picture you see on the video display screen is made up of a series
of horizontal video lines stacked one on top of another, as illustrated in Figure 1-1. Each line
represents one sweep of an electronic video beam, which “paints” the picture as it moves
along. The beam sweeps from left to right, producing the full screen one line at a time.
After producing the full screen, the beam returns to the top of the display screen.

Figure 1-1: How the Video Display Picture is Produced

The diagonal lines in the figure show how the video beam returns to the start of each hor-
izontal line.

Affect of Display Overscan on the Viewing Area

To assure that the picture entirely fills the viewable region of the screen, the manufacturer of
the video display usually creates a deliberate overscan. That is, the video beam is swept
across a larger section than the front face of the screen can actually display. The video beam
actually covers 262 vertical lines. The user, however, only sees the portion of the picture
that is within the center region of the display, which is is about 200 rows, as illustrated in
Figure 1-2 below. The graphics system software lets you specify more than 200 rows.

Graphics Primitives 2-3

AT wiSe w1z the amount of video data that can appear on each display line. The
‘1 sectware anows vou to specify a display width of up to 352 pixels (or 704 in high-
it oooede) per forizontal line. You should generally, however, use the standard values
- 040 s Pigheresolition mode) for most applications.

I — Overscan region. You cannot
T ———— - see it on the video screen.

? % e te—— /

% Viewable region. Contains
approximately 200 video lines
Video Display and 320 pixels across.

Freure i-20 Display Overscan Restricts Usable Picture Area

The i du oy whick the video beam is in the region below the bottom line of the viewable

sewa s sheove the torn hine of the next display field is called the vertical blanking interval.

Coiny fuiormation for the Video Lines

Be s Twore wegs tho wvstemn display memory to obtain the color information for each line.
As che oo iy beam sweeps across the screen producing the display line, it changes

olor vareiuciig the inages you have defined.

Interlaced and Non-Interlaced Mode

i proeta o the complete display (262 video lines), the video display device produces the top

hen the gewi fower line, then the next until it reaches the bottom of the screen. When

11 reachen Sl Dot

«cntese it oreturns to the top to start a new scan of the screen. Each complete
o4 dusplay field. Tt takes about 1/60th of a second to produce a com-

The Amiga has two vertical display modes: interlaced and non-interlaced. In non-interlaced
mode, the video display produces the same picture for each successive display field. A non-
interlaced display normally has about 200 lines in the viewable area (for a full-screen size
display).

To make the display more precise in the vertical direction, you use interlaced mode, which
displays twice as much data in the same vertical area as non-interlaced mode. Within the
same amount of viewable area, you can display 400 video lines instead of 200.

For interlaced mode, the video beam scans the screen at the same rate (1/60th of a second
per complete video display field); however, it takes two display fields to form a complete
video display picture. During the first of each pair of display fields, the system hardware
shows the odd numbered lines of an interlaced display (1, 3, 5, and so on). During the
second display field, it shows the even numbered lines (2, 4, 6 and so on). These sets of lines
are taken from data defining 400 lines. During the display, the hardware moves the second
display field’s lines downward slightly from the position of the first, so that the lines in the
second field are ““interlaced’ with those of the first field, giving the higher vertical resolution
of this mode. For an interlaced display, the data in memory defines twice as many lines as
for a non-interlaced display as shown in Figure 1-3.

DATA AS DATA
DISPLAYED IN MEMORY
Odd field — Line 1 Line 1
Even field — Line 1 Line 2
Odd field — Line 2 Line 3
Even field — Line 2 Line 4
Odd field — Last line Line 399
Even field — Lastline Line 400

Figure 1-3: Interlaced Mode — Display Fields and Data in Memory

Figure 1-4 shows a display formed as display lines 1, 2, 3, 4, ... 400. The 400-line interlaced
display uses the same physical display area as a 200-line non-interlaced display.

Graphics Primitives 2-5

Line 1

— Line 1

Line 2

Video Display
(400 lines)

N\

Line 1

-n
§
Q
N

Figure 1-4: Interlaced Mode Doubles Vertical Resolution

During an interlaced display, it appears that both display fields are present on the screen at
the same time and form one complete picture. This phenomenon is called video persistence.

High and Low Resolution Modes

The Amiga also has two horizontal display modes: high-resolution and low-resolution.
High-resolution mode provides (nominally) 640 distinct pixels (picture elements) across a hor-
izontal line. Low-resolution provides (nominally) 320 pixels across each line.

Low-resolution mode allows up to 32 colors at one time, and high-resolution mode allows 16
colors (out of 4,096 choices) at one time.

One other display mode affects the number of colors you can display at one time: hold-and-
modify. Hold-and-modify mode allows you to display all 4,096 colors on-screen at once.

2-6 Graphics Primitives

Forming an Image

To create an image, you write data (‘‘draw”) into a memory area in the computer. From
this memory area, the system can retrieve the image for display. You tell the system exactly
how the memory area is organized, so that the display is correctly produced. You use a
block of memory words at sequentially increasing addresses to represent a rectangular region
of data bits. Figure 1-5 shows the contents of three example memory words; O-bits are shown
as blank rectangles, and 1-bits as filled-in rectangles.

Contents of three memory words, all adjacent to each other. Note that N is expressed as a byte-address.

OITITTEETTITITIT [T T T TEFTT T T T 01T1]
Mem. Location N Mem. Loc. N+2 Mem. Loc. N+4

Figure 1-5: Sample Memory Words

The system software lets you define linear memory as rectangular regions, called bit-planes.

Figure 1-6 shows how the system views the same 3 words as a bit-plane, wherein the data
bits form an X-Y plane.

Graphics Primitives 2-7

Three memory words, organized as a bit-plane.

Mem. Location N

Mem. Location N+2

Mem. Location N+4

Figure 1-6: A Rectangular ‘“Look’ at the Sample Memory Words

Figure 1-7 shows how 4,000 words (8,000 bytes) of memory can be organized to provide
enough bits to define a single bit-plane of a full-screen low-resolution video display
(320 x 200).

Mem. Location N Mem. Location N+38

'

Mem. Location N+40 Mem. Location N+78

- ——

v

Mem. Location N+7960 Mem. Location N+7998

Figure 1-7: Bit-Plane for a Full-Screen Low-Resolution Display

Each memory data word contains 16 data-bits. The color of each pixel on a video display
line is directly related to the value of one or more data-bits in memory as follows:

2-8 Graphics Primitives

o If you create a display where each pixel is related to only one data-bit, then you can

only select from one of two possible colors, because each bit can only have a value of
Oorl.

o If you use two bits per pixel, there is a choice of 4 different colors because there are 4
possible combinations of the values of 0 and 1 from each of the two bits.

o If you specify 3, 4 or 5 bits per pixel, you will have 8, 16 or 32 possible choices of a
color for each pixel respectively.

To create multi-colored images, you must tell the system how many bits are to be used per

pixel. The number of bits per pixel is the same as the number of bit-planes used to define
the image.

As the video beam sweeps across the screen, the system retrieves one data bit from each bit-
plane. Each of the data bits is taken from a different bit-plane, and one or more bit-planes
are used to fully define the video display screen. For each pixel, data-bits in the same x,y
position in each bit-plane are combined by the system hardware to create a binary value.
This value determines the color that appears on the video display for that pixel.

> Color
»| Selection
l é] Circuitry
[| o
O y
\ — »
One of the ' .
pixel positions Video display
made from the
— combined bit-planes.

Bit-Planes defining a low-res display

Figure 1-8: Bits From Each Bit-Plane Select Pixel Color

You will find more information showing how the data bits actually select the color of the
displayed pixel in the section called “ViewPort Color Selection”.

Graphics Primitives 2-9

Role of the Copper (Coprocessor)

The Amiga has a special-purpose coprocessor, called the Copper, that can control nearly the
entire graphics system. The Copper can control register updates, reposition sprites, change
the color palette, and update the blitter. The graphics and animation routines use the
Copper to set up lists of instructions for handling displays, and advanced users can write
their own ‘“‘user Copper lists”.

1.2. DISPLAY ROUTINES AND STRUCTURES

CAUTION

Section 1.2 describes the lowest level graphics interface to the system hardware. If
you use any of the routines and the data structures described in these sections,
your program will essentially take over the entire display. It will not, therefore, be
compatible with the multi-window operating environment, known as Intuition,
which is used by AmigaDOS.

The descriptions of the display routines, as well as those of the drawing routines, occasionally
use the same terminology as that in Intuition: The Amiga User Interface. These routines and
data structures are the same ones that Intuition software uses to produce its displays.

The computer produces a display from a set of instructions you define. You organize the
instructions as a set of parameters known as the View structure.

Figure 1-9 shows how the system interprets the contents of a View structure. This drawing
shows a complete display composed of two different component parts, which could, for exam-
ple, be a low-resolution, multi-colored part and a high-resolution, two-colored part.

A complete display consists of one or more ViewPorts, whose display sections are separated
from each other by at least one blank line. The viewable area defined by each ViewPort is
a rectangular cut from the same size (or larger) raster. You are essentially defining a display
consisting of a number of vertically stacked display areas in which separate sections of graph-
ics rasters can be shown.

2-10 Graphics Primitives

A complete display is composed of Video Display
one (or more) "“ViewPorts”’

Background color shows here

ViewPort #1

A

ViewPorts
must be
separated
by at least
one blank line
(may need more
than one blank line)

ViewPort #2

Figure 1-9: The Display is Composed of ViewPorts

Limitations on the Use of ViewPorts

The system software for defining ViewPorts allows only vertically stacked fields to be
defined. Figure 1-10 shows acceptable and unacceptable display configurations. If you want

to create overlapping windows, define a single ViewPort and manage the windows yourself
within that ViewPort.

Graphics Primitives 2-11

ey

l
=
L]

Acceptable

Incorrect
(Does not use at least one
blank line between

ViewPorts)
Incorrect for ViewPorts Incorrect for ViewPorts
(Overlapping vertical (Cannot create multiple
windows) horizontal windows)

Figure 1-10: Correct and Incorrect Uses of ViewPorts

A ViewPort is related to the custom screen option of Intuition. In a custom screen, you can
split the screen into slices as shown in the ‘“‘correct” illustration of Figure 1-10. Each custom
screen can have its own set of colors, its own resolution, and show its own display area.
Within a ViewPort, actually within its associated RastPort (drawing area definition), it is
possible to split the display into separate drawing areas called windows. The ViewPort is
simply an indivisible window onto a possibly larger complex drawing area.

Characteristics of a ViewPort

To describe a ViewPort fully, you need to set the following parameters:

o height

2-12 Graphics Primitives

o width

o display mode
In addition to these parameters, you must also tell the system

o from where in memory to retrieve the data for the ViewPort display, and

o how to position the final ViewPort display on the screen.

ViewPort Size Speciﬁdations

Figure 1-11 illustrates that the variables DHeight, and DWidth specify the size of a
ViewPort.

Display Bit-Planes

DHeight = how
many lines tall

A
Y

DWidth = how many pixels wide

Figure 1-11: Size Definition for a ViewPort

Graphics Primitives 2-13

ViewPort Height

The variable DHeight determines how many video lines will be reserved to show the height
of this display segment. The size of the actual segment depends on whether you define a
non-interlaced or an interlaced display. An interlaced display is half as tall as a non-
interlaced display of the same number of lines.

For example, a View consisting of two ViewPorts might be defined as follows:

o ViewPort #1 is 150 lines, high-resolution mode (uses the top 3/4 of the display)

o ViewPort #2 is 49 lines of low-resolution mode (uses the bottom 1/4 of the display,
and allows the space for the one blank line between ViewPorts which is required by
the system)

The user interface software (Intuition) assumes a standard configuration of 200 rows (400 in
interlaced mode).

ViewPort Width

The DWidth variable determines how wide, in current pixels, the display segment will be. If
you are using low-resolution mode, you should specify a width of 320 pixels per horizontal
line. If you are using high-resolution mode, you should specify a width of 640 pixels. You
may specify a smaller value of pixels per line to produce a narrower display segment.

Although the system software allows you define low-resolution displays as wide as 352 pixels
and high-resolution displays of 704 pixels, you should not exceed the normal values of 320 or
640, respectively. Because of display overscan, many video displays will not be able to show
all of a wider display and sprite display may be affected. If you are using hardware sprites or
VSprites with your display, and you specify ViewPort widths exceeding 320 or 640 pixels
(for low- or high-resolution, respectively), it is likely that hardware sprites 5, 6, and 7 will
not be rendered on-screen. These sprites may not be rendered because playfield DMA (direct
memory access) takes precedence over sprite DMA when an extra-wide display is produced.

2-14 Graphics Primitives

ViewPort Color Selection

The maximum number of colors that a ViewPort can display is determined by the depth of
the BitMap that the ViewPort displays. The depth is specified when the BitMap is ini-
tialized. See the section below called “Preparing the BitMap Structure”.

Depth determines the number of bit-planes used to define the colors of the rectangular image
you are trying to build (the raster image) and the number of different colors that can be
displayed at the same time within a ViewPort. For any single pixel, the system can display

any one of 4,096 possible colors.

Table 1-1 shows depth values and the corresponding number of possible colors for each value.

Table 1-1: Depth Values and Number of Colors in the ViewPort

Colors Depth Value

2 1

4 2

8 3

16 4 (Note 1)

32 5 (Notes 1,2)
4096 6 (Notes 1,2,3)

64 6 (Note 1,2))

NOTES:

1. Single-playfield mode only —ViewPort mode not DUALPF
2. Low-resolution mode only —ViewPort mode not HIRES
3. Hold-and-modify mode only —ViewPort mode = HAM

The color palette used by a ViewPort is specified in a ColorMap. See the “Preparing the
ColorMap” below for more information.

Depending on whether single- or dual-playfield mode is used, the system will use different
color register groupings for interpreting the on-screen colors. Table 1-2 below details how the

depth and the Modes variable in the ViewPort structure affect the registers the system
uses.

Graphics Primitives 2-15

Table 1-2: Single Playfield Mode (Modes variable not equal to DUALPF)

Color
Depth Registers Used

01

0-3

0-7

0-15

0-31

0-16 (if modes = HAM)

UL W e

Table 1-3 shows the five possible combinations when the Modes variable is set to DUALPF.
Table 1-3: Dual Playfield Mode (Modes variable = DUALPF)

Color Color

Depth (PF-1) Registers Depth (PF-2) Registers
1 0,1 1 8.9
2 0-3 1 8,9
2 0-3 2 8-11
3 0-7 2 8-11
3 0-7 3 8-15

ViewPort Display Modes

The system has eight different display modes that you can specify for each ViewPort. The
8 bits that control the modes are DUALPF, PFBA, HIRES, LACE, HAM, SPRITES, and
VP_HIDE. A mode becomes active if you set the corresponding bit to 1 in the Modes vari-
able of the ViewPort structure. After you initialize the ViewPort, you can set the bit(s)
for the modes you want. (See the section below called “Preparing the ViewPort Structure”
for more information about initializing a ViewPort).

Modes DUALPF and PFBA are related. DUALPF tells the system to treat the raster

specified by this ViewPort as the first of two independent and separately controllable
playfields. It also modifies the manner in which the pixel colors are selected for this raster.

2-16 Graphics Primitives

When PFBA is a 1, it specifies that a second playfield has video pricrity over the
Playfield relative priorities can be controlled when the playfeld is sphiv e s o
regions. Single-playfield and dual-playfield modes are discussed i “Advano 0 7

HIRES tells the system that the raster specified by this ViewPory ot bo iy o winhy
640 horizontal pixels rather than 320 horizontal pixels.

LACE tells the system that the raster specified by this ViewPort 1= to he dispia d n inrer
laced mode. If the ViewPort is non-interlaced and the View is interbuoed i “iewPart
will be displayed at its specified height and will look only slightly diffecent w0 w o nld Lok
when displayed in a non-interlaced View. See “Interlaced Mode vs. Nou-fnterivod Mode”
below for more information.

HAM tells the system to use “hold-and-modify” macde, a specini mode vhut fooe o dspiay
up to 4096 colors on screen at the same time. It is described in the “Ad ' ‘
tion.

SPRITES tells the system that you are using VSprites or Simple Spritos in this
bit, when a 1, tells the software to load color registers for sprites See Chap
tion”’, for more information about sprites.

VP_HIDE tells the system that this ViewPort is obscured by other ViewForiz, When a
View is constructed, no display instructions are generated for this ViewPory

EXTRA_HALFBRITE is reserved for future use.

Single-Playfield Mode vs Dual-Playfield Mode

When you specify single-playfield mode, you ask that the system treat all Lit-nlanes as part
of the definition of a single playfield image. Each of the bit-planes dcfined o vere of this
ViewPort contributes data bits that determine the color of the pixeis in a simgle o vield

Display Screen

Everything on the
display is part of
the same playfield.

[Scene (Playfield 1) }

Background color shows here

Figure 1-12: A Single Playfield Display

If you use dual-playfield mode (ViewPort.Modes — DUALPF), you can define two indepen-
dent, separately controllable playfield areas.

Display Screen

i 2.
81 Scene (Playfield 1)

00000

Control Panel (Playfield 2)

Two independently-
controllable displays.
One has video priority
over the other.

Background color shows here

Figure 1-13: A Dual Playfield Display

2-18 Graphics Primitives

In Figure 1-13, the display mode bit PFBA is set to 1. If PFBA = 0, the relative priorities
will be reversed; playfield 2 will appear to be behind playfield 1.

Low-Resolution Mode vs High-Resolution Mode

In low-resolution mode, horizontal lines of 320 pixels fill most of the ordinary viewing area.
The system software lets you define a screen segment width up to 352 pixels in this mode, or
you can define a screen segment as narrow as you desire. In high-resolution mode (also called
“normal” resolution), 640 pixels fill a horizontal line. In this mode you can specify any range
from O to 704 pixels wide. Overscan normally limits you to showing only O to 320 pixels per
line in low-resolution mode or 0 to 640 pixels per line in high-resolution mode. Intuition
assumes the nominal 320-pixel or 640-pixel width.

320 Pixels Across
(width of 352 is possible)

ViewPort.Modes = 0

" 640 Pixels Across
(width of 704 is possible)

ViewPort.Modes = HIRES

Figure 1-14: How HIRES Affects Width of Pixels

Interlaced Mode vs Non-Interlaced Mode

In interlaced mode, there are twice as many lines available, providing better vertical resolu-
tion in the same display area.

Graphics Primitives 2-19

200 lines define

View.Modes = 0
a full screen

400 lines define View.Modes = LACE
a full screen

Figure 1-15: How LACE Affects Vertical Resolution

If the View structure does not specify LACE, and the ViewPort specifies LACE, you may
only see every other line of the ViewPort data. If the View structure specifies LACE and
the ViewPort is non-interlaced, then the same ViewPort data is repeated in both fields.
The height of the ViewPort display is the height specified in the ViewPort structure. If
both the View and the ViewPort are interlaced, then the ViewPort is built with double
the normal vertical resolution. That means it will need twice as much data space in memory
as a non-interlaced picture for this display.

ViewPort Display Memory

The picture you create in memory can be larger than the screen image that can be displayed
within your ViewPort. This big picture (called a raster and represented by the BitMap
structure) can have a maximum size of 1024 by 1024. Because a picture this large cannot fit
fully on the display, you specify which piece of it to display. Once you have selected the
piece to be shown, you can specify where it is to appear on the screen.

The example in Figure 1-16 introduces terms that tell the system how to find the display

data and how to display it in the ViewPort. These terms are RHeight, RWidth, Ry Offset,
RxOffset, DHeight, DWidth, DyOffset and DxOffset.

2-20 Graphics Primitives

(0,0) RxOffset
-

Large picture 1024 by 800 (called a “’Raster"’)

RyOffset 2
I — RHeight = 800

Display this
part of the 200
big picture

 |320

DxOffset ————_RWidth = 1024

y

(0.0) Video Display Screen

DyOffset
DHeight = 200

DWidth = 320

Background Color

Figure 1-16: ViewPort Data Area Parameters

The terms RHeight and RWidth do not appear in actual system data structures. They refer
to the dimensions of the raster and are used here to relate the size of the raster to the size of
the display area. RHeight is the number of rows in the raster, and RWidth is bytes per row
times 8. The raster shown in the figure is too big to fit entirely in the display area, so you
tell the system which pixel of the raster should appear in the upper left corner of the display
segment specified by your ViewPort. The variables that control that placement are
RyOffset and RxOffset.

To compute RyOffset and RxOffset, you need RHeight and RWidth and DHeight and
DWidth. The DHeight and DWidth variables define the height and width in pixels of the
portion of the display that you want to appear in the ViewPort. The example shows a
full-screen, low-resolution mode (320 pixel), non-interlaced (200 line) display formed from the
larger overall picture.

Graphics Primitives 2-21

Normal values for RyOffset and RxOffset are defined by the formulas:

0 < = RyOffset << = (RHeight - DHeight)
0 < = RxOffset < = (RWidth - DWidth)

Once you have defined the size of the raster and the section of that raster that you wish to
display, you need only specify where on-screen to put this ViewPort. This is controlled by
the variables DyOffset and DxOffset. A value of O for each of these offsets places a
normal-sized picture in a centered position at the top, bottom, left and right on the display
screen. Possible values for DyOffset range from -16 to +200 (-32 to +400 if View.Modes
includes LACE). Possible values for DxOffset range from -16 to +352 (-32 to +704 if
ViewPort.Modes includes HIRES).

The parameters shown in the figure above are distributed in the following data structures:

o RasInfo (information about the raster) contains the variables RxOffset and
RyOffset. It also contains a pointer to the BitMap structure.

o The View {information about the whole display) includes the variables that you use
to position the whole display on the screen.

The View structure contains a Modes variable used to determine if the whole
display is to be interlaced or non-interlaced. It also contains pointers to its list of
ViewPorts and pointers to the Copper instructions produced by the system to
create the display you have defined.

¢ ViewPort (information about this piece of the display) includes the values
DxOffset and DyOffset that are used to position this slice relative to the overall
View.

The ViewPort also contains the variables DHeight and DWidth, which define the
size of this slice, a Modes variable, and a pointer to the local ColorMap.

Each ViewPort also contains a pointer to the next ViewPort. You create a linked
list of ViewPorts to define the complete display.

o BitMap (information about memory usage) tells the system where to find the
display and drawing area memory and shows how this memory space is organized.

You must allocate enough memory for the display you define. The memory you use for the
display may be shared with the area control structures used for drawing. This allows you to
draw into the same areas that you are currently displaying on-screen.

As an alternative, you can define two BitMaps. One of them can be the active structure
(that being displayed) and the other can be the inactive structure. If you draw into one
BitMap while displaying another, the user cannot see the drawing taking place. This is
called double-buffering of the display. See “Advanced Topics’” below for an explanation of
the steps required for double-buffering. Double-buffering takes twice as much memory as
single-buffering because two full displays are produced.

2-22 Graphics Primitives

To determine the amount of required memory for each ViewPort for single-buffering, you
can use the following formula.

bytes_per_ViewPort = Depth * RASSIZE (Width, Height);

RASSIZE is a system macro attuned to the current design of the system memory allocation
for display rasters.

For example, a 32-color ViewPort (depth = 5), 320 pixels wide by 200 lines high (as of this
writing) uses 40,000 bytes. A 16-color ViewPort (depth = 4), 640 pixels wide by 400 lines
high (as of this writing) uses 128,000 bytes.

Forming a Basic Display

This section begins an example that shows how to create a single ViewPort with a size of
200 lines, where the area displayed is the same size as the big picture (raster) stored in
memory. It also shows how this ViewPort becomes the single display segment of a View
structure. Following the description of the individual operations, the “Graphics Example
Program” section pulls all of the pieces into a complete executable program. Instead of link-
ing these routines to drawing routines, the example allocates memory specifically and only for
the display (instead of sharing the memory with the drawing routines) and writes data
directly to this memory. This keeps the display and the drawing routines separate for pur-
poses of discussion.

Here are the data structures that you need to define to create a basic display:

struct View v; /* The name used here for a View is v, */
struct ViewPort vp; /* for a ViewPort is vp, */

struct BitMap b; /* for a BitMap is b, */

struct RasInfo ri; /* and for a Raslnfo is ri. */

Opening the Graphics Library

Most of the system routines used here are located in the graphics library. When you compile
your program, you must provide a way to tell the compiler to link your calling sequences into
the routine library in which they are located. You accomplish this by declaring the variable

Graphics Primitives 2-23

called GfxBase. Then, by opening the graphics library, you provide the value (address of
the library) that the system needs for linking with your program. See the ‘Libraries”
chapter in Part I for more information.

Here is a typical sequence:

struct GfxBase *GfxBase; /* declare the name *GfxBase as a
pointer to the corresponding library */

Preparing the View Structure

The following code section prepares the View structure for further use:

InitView(&v); /* initialize the View structure */

v.ViewPort = &vp; /* tell the View structure where to find the
first ViewPort in a possible list of Viewports */

Preparing the ViewPort Structure

The following code section prepares the ViewPort structure for further use:

InitVPort(&vp); /* initialize the structure (set up default values) */
vp.DWidth = WIDTH; /* how wide is the display */

vp.DHeight = HEIGHT; /* how tall is the display for this viewport */
vp.RasInfo = &ri; /* pointer to a RasInfo structure */
vp.ColorMap = GetColorMap(32); /* using a 32-color map */

The InitVPort() routine presets certain default values. The defaults include:

o Modes variable set to zero—this means you select a low-resolution display.

2-24 Graphics Primitives

o Next variable set to zero—no other ViewPort linked to this one. If you want to
have multiple ViewPorts in a single View, you must create the link yourself. The
last ViewPort in the chain must have a Next value of 0.

If you have defined two ViewPorts, such as

struct ViewPort vpA,
struct ViewPort vpB;

and you want them to both be part of the same display, you must create a link between
them, and a NULL link at the end of the chain of ViewPorts:

vpA.Next = &vpB; /* tell first one the address of the second */
vpB.Next = NULL; /* after this one, there are no others */

Preparing the BitMap Structure

The BitMap structure tells the system where to find the display and drawing memory and
how this memory space is organized. The following code section prepares a BitMap struc-
ture, including allocation of memory for the bit-map. This memory is, for this example, used

only for the display and is not shared with any drawing routines. The example below writes
directly to the display area.

/* initialize the bitmap structure */
InitBitMap(&b, DEPTH, WIDTH, HEIGHT),
/* now allocate some memory that can

be linked into the bitmap for display purposes */
for(1=0; i<DEPTH, i++)

{
b.Planes[ij = (PLANEPTR)AllocRaster(WIDTH, HEIGHT);

This code allocates enough memory to handle the display area for as many bit-planes as the

depth you have defined. This code segment does not include the error checking that is
present in the full example later on.

Graphics Primitives 2-25

Preparing the RasInfo Structure

The RasInfo structure provides information to the system about the location of the
BitMap as well as the positioning of the display area as a window against a larger drawing
area. Use the following steps to prepare the RasInfo structure:

ri.BitMap = &b; /* specify address of the bitmap structure */
ri.RxOffset = 0;
ri.RyOffset = 0; /* match the upper left-hand corner of the
display area with the upper left corner of
the drawing area - see Figure 1-16 */
rinext = NULL; /#* for a single playfield display, there
is only one RasInfo structure present */

Preparing the ColorMap Structure

The ColorMap structure tells the system which real colors should be used to display this
ViewPort. When the View is created, Copper instructions are generated to change the
current contents of each color register just before the topmost line of a ViewPort so that
this ViewPort’s color registers will be used for interpreting its display.

Here are the steps normally used for initializing a ColorMap:

UWORD colortable [] = { 0, 0xf00, 0x0f0, 0x00f }
/* define some colors in an array of words */
vp.ColorMap = GetColorMap (4);
/* allocate space and get a pointer to it */
/* 4 colors in this table (4 registers for
Copper to reload before this ViewPort
is displayed */
LoadRGB4(vp, ColorTable, 4)

NOTE: The 4 in LoadRGB4() refers to the fact that each of the red, green, and blue
values in a color table entry consists of four bits. It has nothing to do with the fact that this
particular color table contains four entries, which is a consequence of the choice of DEPTH

2-26 Graphics Primitives

= 2 for this example.

From the section called ‘“ViewPort Color Selection”, notice that you might need to specify
more colors in the color map than you think. Namely, if you use a dual-playfield display
(covered later in this chapter) with a depth of 1 for each of the two playfields, this means a
total of four colors (two for each playfield). However, because playfield 2 uses color registers
starting from number 8 on up when in dual-playfield mode, the color map must be initialized
to contain at least 10 entries. That is, it must contain entries for colors 0 and 1 (for playfield
1), color numbers 8 and 9 (for playfield 2). Space for sprite colors must be allocated as well.

Creating the Display Instructions

Now that you have initialized the system data structures, you can request that the system
prepare a set of display instructions for the Copper using these structures as input data.
During the one or more blank vertical lines that precede each ViewPort, the Copper is busy
changing the characteristics of the display hardware to match the characteristics you expect
for this ViewPort. This may include a change in display resolution, a change in the colors
to be used or other user-defined modifications to system registers.

Here is the code that creates the display instructions:

MakeVPort(&v, &vp);

where &v is the address of the View structure and &vp is the address of the first
ViewPort structure. Using these structures, the system has enough information to build
the instruction stream that defines your display.

MakeVPort() creates a special set of instructions that controls the appearance of the
display. If you are using animation, the graphics animation routines create a special set of
instructions to control the hardware sprites and the system color registers. In addition, the
advanced user can create special instructions to change system operations based on the posi-
tion of the video beam on-screen (user Copper instructions).

All of these special instructions must be merged together before the system can use them to

produce the display you have designed. This is done by the system routine MrgCop()
(stands for “Merge Coprocessor Instructions’). Here is a typical call:

MrgCop (&v); /* merge this View’s Copper
instructions into a single instruction list */

Graphics Primitives 2-27

Loading and Displaying the View

To display the View, you need to load it, using LoadView(), and turn on the direct
memory access (DMA).

A typical call is shown below.

LoadView(&v);
where &v is the address of the View structure defined in the example above.

Two macros control display DMA: ON_DISPLAY and OFF_DISPLAY. They simply turn
the display DMA control bit in the DMA control register on or off. After you have loaded a
new View, you use ON_DISPLAY to allow the system DMA to display it on-screen.

If you are drawing to the display area and don’t want the user to see intermediate steps in
the drawing, you can turn off the display. Because OFF_DISPLAY shuts down the display
DMA and possibly speeds up other system operations, it can be used to provide additional
memory cycles to the blitter or the 68000. The distribution of system DMA, however, allows
4-channel sound, disk read/write, a 16-color, low-resolution display (or 4-color, high-
resolution display) to operate at the same time with no slowdown (7.1 megahertz effective
rate) in the operation of the 68000.

Graphics Example Program

The program below creates and displays a single-playfield display that is 320 pixels wide, 200
lines high, and two bit-planes deep.

#include "exec/types.h”
#include ”graphics/gfx.h”
#include "hardware/dmabits.h”
#include "hardware/custom.h”
#include "hardware/blit.h”
#include ”graphics/gfxmacros.h”
#include ”graphics/copper.h”
#include ”graphics/view.h”
#include ”graphics/gels.h”
#include ”graphics/regions.h”
#include ”graphics/clip.h”

2-28 Graphics Primitives

#include ”exec/exec.h”
#include ”graphics/text.h”
#include ”graphics/gfxbase.h”

#define DEPTH 2

#define WIDTH 320

#define HEIGHT 200

#define NOT_ENOUGH_MEMORY -1000
/* construct a simple display */

struct View v;
struct ViewPort vp;
struct ColorMap *cm; /* pointer to colormap structure, dynamic alloc */
struct RasInfo ri;
struct BitMap b; /* note: Due to the static allocation of a
* structure accessed directly by the custom
* chips, this program will only work if it
* resides entirely within the lower 512k
* bytes of memory (CHIP memory)
*
/

struct RastPort rp;

LONG i;
SHORT j,k,n;

extern struct ColorMap *GetColorMap();
struct GfxBase *GfxBase;

struct View *oldview; /* save pointer to old view so can restore */

USHORT colortable[] = { 0x000, 0xf00, 0x0f0, Ox00f }; /* my own colors */
/* black, red, green, blue */
SHORT boxoffsets(] = { 802, 2010, 3218 }; /* where to draw boxes */

UBYTE *displaymem,;
UWORD *colorpalette;

main()

{
GfxBase = (struct GfxBase *)OpenLibrary(”graphics.library”,0);
if (GfxBase == NULL) exit(1);
oldview = GfxBase- > ActiView; /* save current view to restore later */
/* example steals screen from Intuition if started from WBench */

InitView(&v); /* initialize view */
InitVPort(&vp); /* init view port */

v.ViewPort = &vp; /* link view into viewport */

/* init bit map (for rasinfo and rastport) */
InitBitMap(&b,DEPTH,WIDTH HEIGHT);

Graphics Primitives 2-29

/* (init Raslnfo) */
ri.BitMap = &b;
ri.RxOffset = 0;
ri.RyOffset = O;
ri.Next = NULL;

/* now specify critical characteristics */
vp.DWidth = WIDTH;

vp.DHeight = HEIGHT;

vp.Raslnfo = &ri;

/* (init color table) */
cm = GetColorMap(4); /* 4 entries, since only 2 planes deep */
colorpalette = (UWORD *)cm- > ColorTable;
for(i=0; i<4; i++)
*xcolorpalette++ = colortableli];

/* copy my colors into this data structure */
vp.ColorMap = c¢m; /* link it with the viewport */

/* allocate space for bitmap */
for(i=0; i<DEPTH; i++)

b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH,HEIGHT);
if(b.Planes(ij == NULL) exit(NOT_ENOUGH_MEMORY);

MakeVPort(&v, &vp); /* construct copper instr (prelim) list */
MrgCop(&v); /* merge prelim lists together into a real
* copper list in the view structure. */

for(i=0; i<2; i++)
{
displaymem = (UBYTE *)b.Planesli;
for(j=0; j < RASSIZE(WIDTH,HEIGHT); j++) {
*displaymem++ = O;
}

/* zeros to all bytes of the display area */

}
LoadView(&v);

/* now fill some boxes so that user can see something */
/* always draw into both planes to assure true colors */
for(n=1; n<4; n++) /* three boxes */
{
for(k=0; k<2; k++)
{
/* boxes will be in red, green and blue */
displaymem = b.Planes[k] + boxoffsets[n-1};
DrawFilledBox(n,k);

2-30 Graphics Primitives

}

for(i=0; 1<100000;i++) ; /* do nothing for a while */

LoadView(oldview); /* put back the old view */
FreeMemory(); /* exit gracefully */
CloseLibrary(GfxBase); /* since opened library, close it */

} /* end of main() */

/* return user and system-allocated memory to sys manager */
FreeMemory()

/* free drawing area */
for(i=0; i<DEPTH; i++)

FreeRaster(b.Planes(i|, WIDTH,HEIGHT);
/* free the color map created by GetColorMap() */
FreeColorMap(cm);
/* free dynamically created structures */
FreeVPortCopLists(&vp);
FreeCprList(v.LOFCprList);
return(0);

}
DrawFilledBox(fillcolor,plane)
SHORT fillcolor,plane;

UBYTE value; .
for(j=0; j<100; j++)

if((fillcolor & (1 < < plane)) != 0)
value = OxfT;

else
value = 0;

for(i=0; i<20; i++)

{
}

displaymem += (b.BytesPerRow - 20);

*displaymem++ = value;

return(0);

Graphics Primitives 2-31

Exiting Gracefully

The sample program above provides a way of exiting gracefully, returning to the memory
manager all dynamically-allocated memory chunks.

Notice the calls to FreeRaster() and FreeColorMap(). These calls correspond directly to
the allocation calls AllocRaster() and GetColorMap() located in the body of the program.

Now look at the calls within FreeMemory() to FreeVPortCopLists() and FreeCprList().

When you call MakeVPort(), the graphics system dynamically allocates some space to hold
intermediate instructions from which a final Copper instruction list is created. When you
call MrgCop(), these intermediate Copper lists are merged together into the final Copper
list, which is then given to the hardware for interpretation. It is this list that provides the
stable display on-screen, split into separate ViewPorts with their own colors and resolutions
and so on.

When your program completes, you must see that it returns all of the memory resources that
it used, so that those memory areas are again available to the system for reassignment to
other projects. Therefore, if you use the routines MakeVPort() or MrgCop(), you must
also arrange to use FreeCprList() (pointing to each of those lists in the View structure)
and FreeVPortCopLists() (pointing to the ViewPort that is about to be deallocated). If
your view is interlaced, you will also have to call FreeCprList(&v.SHF CprList) because
an interlaced view has a separate copper list for each of the two fields displayed.

As a final caveat, notice that when you do free everything, the memory manager or other
programs may immediately change the contents of the freed memory. Therefore, if the
Copper is still executing an instruction stream (as a result of a previous LoadView()) when
you free that memory, the display will go “south”. when you free that memory, You will

probably want to turn off the display, or provide an alternate Copper list when this one is to
be deallocated.

2-32 Graphics Primitives

Advanced Topics

Creating a Dual-Playfield Display

In dual-playfield mode, you have two separately controllable playfields. In this mode, you
always define two RasInfo data structures. Each of these structures defines one of the
playfields. There are five different ways you can configure a dual-playfield display, because
there are five different distributions of the bit-planes which the system hardware allows.
Table 1-4 shows these distributions.

Table 1-4: Bit-Plane Assignment in Dual-playfield Mode

Number of Playfield 1 Playfield 2

Bit-planes Depth Depth
0 0 0
1 1 0
2 1 1
3 2 1
4 2 2
5 3 2
6 3 3

Recall that if you set PFBA in the ViewPort Modes variable to 1, you can swap playfield
priority and display Playfield 2 in front of Playfield 1. In this way, you can get more bit-
planes in the background playfield than you have in the foreground playfield. If you create a
display with multiple ViewPorts, only for this ViewPort will the playfield priority be
changed.

Playfield 1 is defined by the first of the two RasInfo structures. Playfield 2 is defined by
the second of the two RasInfo structures.

When you call MakeVPort(), you use parameters as follows:

MakeVPort(&view, &viewport);

Graphics Primitives 2-33

The ViewPort Modes variable must include the DUALPF bit. This tells the graphics sys-
tem that there are two RasInfo structures to be used.

In summary, to create a dual-playfield display you must:

o allocate one View structure
o allocate two BitMap structures

o allocate two RasInfo structures (linked together), each pointing to different
BitMaps

o allocate one ViewPort structure
o set up a pointer in the ViewPort structure to the playfield 1 RasInfo
o initialize each BitMap structure to describe one playfield, using one of the permissi-

ble bit-plane distributions shown in Table 1-4 and allocate memory for the bit-planes
themselves.

Note that BitMap 1 and BitMap 2 need not be the same width and height.
o initialize the ViewPort structure
o set the DUALPF (and possibly the PFBA) bit in the ViewPort Modes variable
o call MakeVPort()

o call MrgCop()

For display purposes, each of the two BitMaps is assigned to a separate playfield display.

To draw separately into the BitMaps, you must also assign these BitMaps to two separate
RastPorts. The section called “Initializing the RastPort” shows you how to use a
RastPort data structure to control your drawing routines.

Creating a Double-Buffered Display

To produce smooth animation or other such effects, it is occasionally necessary to double-
buffer your display. To prevent the user from seeing your graphics rendering while it is in
progress, you will want to draw into one memory area while actually displaying a different
area.

2-34 Graphics Primitives

Double-buffering consists of creating two separate display areas and two sets of pointers to
those areas for a single View.

To create a double-buffered display, you must:

o Allocate two BitMap structures.
o Allocate one RasInfo structure.
o Allocate one ViewPort structure.
o Allocate one View structure.

o Initialize each BitMap structure to describe one drawing area and allocate memory
for the bit-planes themselves.

o Create a pointer for each BitMap.

o Create a pointer for the View long-frame Copper list (LOFCprList) and short-
frame Copper list (SHFCprList) for each of two alternate display fields. The
SHF CprList is for interlaced displays.

o Initialize the RasInfo structure, setting the BitMap pointer to point to one of the
two BitMaps you have created.

o Call MakeVPort().

o Call MrgCop().

When you call MrgCop(), the system uses all of the information you have provided in the
various data structures to create a list of instructions for the Copper to execute. This list
tells the Copper how to split the display and how to specify colors for the various portions of
the display. When the steps shown above have been completed, the system will have allo-
cated memory for a long-frame (LOF) Copper list list) and a short-frame (SHF) Copper list
and set pointers called LOFCprList and SOFCprList in the View structure. The long-
frame Copper list is normally used for all non-interlaced displays, and the short-frame
Copper list is used only when interlaced mode is turned on. The pointers point to the two
sets of Copper instructions.

The LOFCprList and SHFCprList pointers are initialized when MrgCop() is called. The
instruction stream referenced by these pointers includes references to the first BitMap.

You must now do the following:

o Save the current values in backup pointers and set the values of LOFCprList and
SHF Cprlist in the View structure to zero. When you next perform MrgCop(),
the system automatically allocates another memory area to hold a new list of

Graphics Primitives 2-35

instructions for the Copper.

o Install the pointer to the other BitMap structure in the RasInfo structure before
" your call to MakeVPort(), and then call MakeVPort and MrgCop.

Now you have created two sets of instruction streams for the Copper, one of which you have
saved in a pair of pointer variables. The other has been newly created and is in the View
structure. You can save this new set of pointers as well, swapping in the set which you want
to use for display, and meanwhile drawing into the BitMap which is not on the display.
Remember that you will have to call FreeCprList() on both sets of copper lists when you
have finished.

Hold-and-modify Mode

In hold-and-modify mode you can create a single-playfield display in which 4,096 different
colors can be displayed simultaneously. This requires that your ViewPort be defined using
6 bit-planes and that you set the HAM bit in the ViewPort Modes variable.

When you draw into the BitMap associated with this ViewPort, you can choose one of
four different ways of drawing into the BitMap. (Drawing into a BitMap is shown in Sec-
tion 1-3, “Drawing Routines’.) If you draw using color numbers 0-15, the pixel you draw will
appear in the color specified in that particular system color register.

If you draw with any other color value from 16-31, the color displayed depends on the color
of the pixel which is to the immediate left of this pixel on-screen. For example, hold con-
stant the contents of the red and the green parts of the previously produced color, and take
the rest of the bits of this new pixel’s color register number as the new contents for the blue
part of the color. Hold-and-modify means hold part and modify part of the preceding
defined pixel’s color.

Note that a particular hold-and-modify pixel can only change one of the three color values at
a time. Thus, the effect has a limited control.

In hold and modify mode, you use all six bit-planes. planes 5 and 6 are used to modify the
way bits from planes 1 - 4 are treated, as follows:

o If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal
color selection procedure is followed. Thus, the bit combinations from planes 4-1, in

that order of significance, are used to choose one of 16 color registers (registers O -
15).

If only 5 bit-planes are used, the data from the 6th plane is automatically supplied

2-36 Graphics Primitives

with the value as 0.

o If the 6-5 bit combination is 01, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are
used to replace the 4 “blue” bits in the pixel color without changing the value in any
color register.

o If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are
used to replace the 4 “‘red”’ bits.

o If the 6-5 bit combination is 11, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are
used to replace the 4 ‘‘green’’ bits.

1.3. DRAWING ROUTINES

Most of the graphics drawing routines require information about how the drawing is to take
place. For this reason, the graphics support routines provide a data structure called a
RastPort, which contains information essential to the graphics drawing functions. You
must pass a pointer to your RastPort structure to most of the drawing functions. Associ-
ated with the RastPort is another data structure called a BitMap, which contains a
description of the organization of the data in the drawing area.

Initializing a BitMap Structure

The RastPort contains information for controlling the drawing. In order to use the graph-
ics, you also need to tell the system the memory area location where the drawing will occur.
You do this by initializing a BitMap structure, defining the characteristics of the drawing
area, as shown in the following example. This was already shown in the section called
“Forming a Basic Display”, but is repeated here because it relates to drawing as well as to

display routines. You need not necessarily use the same BitMap for both the drawing and
the display.

Graphics Primitives 2-37

struct BitMap myBitMap;

SHORT depth = 3; /* max of 8 colors ... going to
* need 3 bit planes to represent
* this number of colors */

SHORT width = 320;

SHORT height = 200;

InitBitMap(&myBitMap, depth, width, height);

Initializing a RastPort Structure

Before you can use a RastPort for drawing, you must initialize it. Here is a sample initiali-
zation sequence:

struct RastPort myRastPort;
InitRastPort(&myRastPort);

/* now link together the bitmap and the rastport */
myRastPort.BitMap = &myBitMap;
Note that you cannot perform the link until after the RastPort has been initialized.

The RastPort data structure can be found in the include files rastport.h and rastport.i. It
contains the following information:

o Drawing pens

o Drawing modes

o Patterns

o Text attributes and font information

o Area filling information

o Graphics elements information for animation

o Current pen position

2-38 Graphics Primitives

o A write mask
o Some graphics private data

o A pointer for user extensions

The following sections explain each of the items in the RastPort structure.

Drawing Pens

The Amiga has three different drawing ‘‘pens’ associated with the graphics drawing routines.
These are:

o FgPen—the foreground or primary drawing pen. For historical reasons, it’s also
called the A-Pen.

o BgPen—the background or secondary drawing pen. For historical reasons, it’s also

called the B-Pen.

o AOIPen—the area outline pen. For historical reasons, it’s also called the O-Pen.

A drawing pen variable in the RastPort contains the current value (range 0-255) for a par-
ticular color choice. This value represents a color register number whose contents are to be
used in rendering a particular type of image. In essence, the bits of a “pen’’ determine which
bit-planes are affected when a color is written into a pixel (as determined by the drawing
mode and modified by the pattern variables and the write mask as described below). The

drawing routines support BitMaps up to 8 planes deep, allowing for future expansion in the
hardware.

NOTE

The Amiga 1000 contains only 32 color registers. Any range beyond that repeats

the colors in 0-31. For example, pen numbers 32-63 refer to the colors in registers
0-31.

The color in FgPen is used as the primary drawing color for rendering lines and areas. This
pen is used when the drawing mode is JAMI1 (see the next section for drawing modes).
JAMI specifies that only one color is to be ‘“‘jammed” into the drawing area.

Graphics Primitives 2-39

You establish the color for FgPen by the statement:

SetAPen(&myRastPort, newcolor);

The color in BgPen is used as the secondary drawing color for rendering lines and areas. If
you specify that the drawing mode is JAM2, (jamming 2 colors) and a pattern is being
drawn, the primary drawing color (FgPen) is used where there are 1’s in the pattern. The
secondary drawing color (BgPen) is used where there are O’s in the pattern.

You establish the drawing color for BgPen by the statement:

SetBPen(&myRastPort, newcolor);

The area outline pen AOIlPen is used in two applications: area fill and flood fill. (See
“Area Fill Operations” below.) In area fill, you can specify that an area, once filled, can be
outlined in this AOIPen color. In flood fill (in one of its operating modes) you can fill until
the flood-filler hits a pixel of the color specified in this pen variable.

You establish the drawing color for AOIPen by the statement:

SetOPen(&myRastPort, newcolor);

Drawing Modes

There are four drawing modes that you can specify:

JAM1 Whenever you execute a graphics drawing command, one color is jammed
into the target drawing area. You use only the primary drawing pen color
and for each pixel drawn, you replace the color at that location with the
FgPen color.

JAM?2 Whenever you execute a graphics drawing command, two colors are jammed
into the target drawing area. This mode tells the system that the pattern
(both line pattern and area pattern—see the next section) variables are to be
used for the drawing. Wherever there is a 1-bit in the pattern variable, the
FgPen color replaces the color of the pixel at the drawing position. Wher-
ever there is a O-bit in the pattern variable, the BgPen color is used.

2-40 Graphics Primitives

COMPLEMENT

For each 1-bit in the primary drawing pen (FgPen) the corresponding bit in
the target drawing area is complemented; that is, its state is reversed. Com-
plement mode is often used for drawing, then erasing, lines.

INVERSEVID
This is the drawing mode used primarily for text. If the drawing mode is
(JAML1 | INVERSEVID), the text appears as a transparent letter surrounded
by the FgPen color. If the drawing mode is (JAM2|INVERSEVID), the text
appears as in (JAM1|INVERSEVID) except that the BgPen color is used to
draw the text character itself. In this mode, the roles of FgPen and BgPen
are effectively reversed.

You set the drawing modes with the statement:

SetDrMd(&myRastPort, newmode);

Patterns

The RastPort data structure provides two different pattern variables which it uses during
the various drawing functions: a line pattern, and an area pattern.

The line pattern is 16-bits wide and is applied to all lines. When you initialize a RastPort,
this line pattern value is set to all 1's (hex FFFF), so that solid lines are drawn.

You can also set this pattern to other values to draw dotted lines if you wish. For example,
you can establish a dotted line pattern with the statement:

SetDrPt(&myRastPort, Oxccce);

where “cccc” is a bit-pattern, 1100110011001100, to be applied to all lines drawn. If you
draw multiple, connected lines, the pattern cleanly connects all the points.
The area pattern is 16 bits wide and its height is some power of two. This means that you

can define patterns in heights of 1, 2, 4, 8, 16, and so on. To tell the system how large a pat-
tern you are providing, include this statement:

SetAfPt(&myRastPort, &myAreaPattern, power_of_two);

Graphics Primitives 2-41

where &myAreaPattern is the address of the first word of the area pattern and
power_of_two specifies how many words are in the pattern. For example:

USHORT myAreaPattern| | = {
0xff00,
0xff00,
0x00ff,
0xO00ff,
0xfofo,
0xf{0f0,
0xOfOf,
0x0fof };

SetAfPt(&myRastPort, &myAreaPattern, 3);

This example produces a pattern which is a large checkerboard above a small checkerboard.
Because power_of_two is set to 3, the pattern is 2 to the 3rd, or 8 rows high.

Pattern Positioning

The pattern is always positioned with respect to the upper left corner of the RastPort
drawing area (the 0,0 coordinate). If you draw two rectangles whose edges are adjacent, the
pattern will be continuous across the rectangle boundaries.

Multi-Colored Patterns

The last example above produces a two-color pattern with one color where there are 1’s and
the other color where there are 0’s in the pattern. A special mode allows you to develop a
pattern having up to 256 colors. To create this effect, specify power_of_two as a negative
value instead of a positive value.

The following initialization establishes an 8-color checkerboard pattern where each square in

the checkerboard has a different color. The checkerboard is 2 squares wide by 4 squares
high.

2-42 Graphics Primitives

USHORT myAreaPattern| | = {

0x0000,
0x0000,
OxfIff,
Oxfiff,
0x0000,
0x0000,
OxfTff,
OxfIff,

0x0000 /* plane 2 pattern */

0x{f00, /* plane 3 pattern */

oxffloo };
SetAfPt(&myRastPort, &myAreaPattern, -3);
/* when doing this, best to set three other parameters as follows: */
SetAPen(&myRastPort, 255);

SetBPen(&myRastPort, 0);
SetDrMd(&myRastPort, JAM?2);

If you use this multi-colored pattern mode, you must provide as many planes of pattern data
as there are planes in your BitMap.

Graphics Primitives 2-43

Text Attributes

Text attributes and font information are set by calls to the font routines. These are covered
separately in Chapter 4, “Text”.

Area Fill Information

Two structures in the RastPort, Arealnfo and TmpRas, define certain information for
area filling operations. The AreaInfo pointer is initialized by a call to the routine Init-
Area().

InitArea (&myRastPort, &areabuffer, count);

To use area fill, you must first provide a work space in memory for the system to store the
list of points that define your area. You must allow a storage space of 5 bytes per vertex.

To create the areas in the work space, you use the functions AreaMove(), AreaDraw(),
and AreaEnd().

Typically, you prepare the RastPort for area filling by a sequence like the following.

UWORD areabuffer [250];
/* allow up to 100 vertices in the definition of an area */
InitArea (&myRastPort, &areabuffer(0], 100);

The area buffer must start on a WORD boundary. That is why the sample declaration
shows areabuffer as composed of unsigned words (250), rather than unsigned bytes (500). It
still reserves the same amount of space, but aligns the data space correctly.

In addition to the Arealnfo structure in the RastPort, you must also provide the system
with some work space to build the object whose vertices you are going to define. This
requires that you initialize a TmpRas structure, then point to that structure for your
RastPort to use.

Here is sample code that builds and initializes a TmpRas. Note that the area to which
TmpRas.RasPtr points must be at least as large as the area (width times height) of the
largest rectangular region you plan to fill. Typically, you allocate a space as large as a single

2-44 Graphics Primitives

bit-plane (usually 320 by 200 bits for low-resolution mode, 640 by 200 bits for high-resolution
mode).

PLANEPTR myplane;

myplane = AllocRaster(320,200); /* get some space */

if (myplane == 0) exit(1); /* stop if no space */

myRastPort. TmpRas= InitTmpRas(&myTmpRas,
myplane, RASSIZE(320,200));

When you use functions that dynamically allocate memory from the system, you must
remember to return these memory blocks to the system before your program exits. See the
description of FreeRaster() in the appendixes.

Graphics Element Pointer

The graphics element pointer in the RastPort structure is called GelsInfo. If you are doing
graphics animation using the GELS system, this pointer must refer to a properly initialized
GelsInfo structure. See Chapter 3, “Animation”, for more information.

Current Pen Position

The graphics drawing routines keep the current position of the drawing pen in the variables
cp_x and cp_y, for the horizontal and vertical positions, respectively. The coordinate loca-
tion 0,0 is in the upper left corner of the drawing area. The x value increases proceeding to
the right; the y value increases proceeding toward the bottom of the drawing area.

Write Mask

The write mask is a RastPort variable that determines which of the bit-planes are currently
writable. For most applications, this variable contains all 1’s (hex ff). This means that all
bit-planes defined in the BitMap are affected by a graphics writing operation. You can

Graphics Primitives 2-45

selectively disable one or more bit-planes by simply specifying a 0-bit in that specific position
in the control byte. For example:

/* disable bitplane 2 */

myRastPort.Mask = O0xFB;

Using the Graphics Drawing Routines

This section shows you how to use the Amiga drawing routines. All of these routines work
either on their own or with the windowing system and layer library. See Chapter 2,
“Layers” or Intuition: The Amiga User Interface for details about using the layer library and
windows.

As you read this section, keep in mind that to use the drawing routines, you need to pass
them a pointer to a RastPort. You can define the RastPort directly, as shown in the sam-

ple program segments in preceding sections, or you can get a RastPort from your window
structure with code like the following.

struct Window *w;
struct RastPort *usableRastPort;

/* and then, after your Window is initialized... */
usableRastPort = w->RastPort;

You can also get the RastPort from the layer structure, if you are not using Intuition.

Drawing Individual Pixels

You can set a specific pixel to a desired color by using a statement like this:

INT result;
result = WritePixel(&myRastPort, x, y);

WritePixel() uses the primary drawing pen and changes the pixel at that x,y position to the
desired color if the x,y coordinate falls within the boundaries of the RastPort. A value of 0
is returned if the write was successful; a value of -1 is returned if x,y was outside the range

2-46 Graphics Primitives

of the RastPort.

Reading Individual Pixels

You can determine the color of a specific pixel with a statement like this:

INT result;
result = ReadPixel(&myRastPort, x, y);

ReadPixel() returns the value of the pixel color selector (from O to 255) at the specified x,y

location. If you specify an x,y outside the range of your RastPort, this function returns a
value of -1.

Drawing Lines

Two functions are associated with line drawing: Move() and Draw(). Move() simply
moves the cursor to a new position. It is like picking up a drawing pen and placing it at a
new location. This function is executed by the statement:

Move(&myRastPort, x, y);

Draw() draws a line from the current x,y position to a new x,y position specified in the
statement itself. The drawing pen is left at the new position. This is done by the statement:

Draw(&myRastPort, x, y);

Draw() uses the pen color specified for FgPen. Here is a sample sequence that draws a red
line from location (0,0) to (100,50). Assume that the value in color register 2 represents red.

SetAPen(&myRastPort, 2); /* make primary pen red */
Move(&myRastPort, 0, 0); /* move to new location */
Draw(&myRastPort, 100,50); /* draw to a new location */

Graphics Primitives 2-47

CAUTION

If you attempt to draw a line outside the bounds of the BitMap, using the basic
initialized RastPort, you may possibly crash the system. You must either do your
own software clipping to assure that the line is in range, or use the layer library.
Software clipping means that you need to determine if the line will fall outside
your BitMap before you draw it.

Drawing Patterned Lines

To turn the example above into a patterned line draw, simply add the following statement:

SetDrPt(&myRastPort, Oxaaaa);

Now all lines drawn appear as dotted lines. To resume drawing solid lines, execute the state-
ment:

SetDrPt(&myRastPort, -1);

Drawing Multiple Lines with a Single Command

You can use multiple Draw() statements to draw connected line figures. If the shapes are
all definable as interconnected, continuous lines, you can use a simpler function, called
PolyDraw(). PolyDraw() takes a set of line endpoints and draws a shape using these
points. You call PolyDraw() with the statement:

PolyDraw(&myRastPort, count, arraypointer);

PolyDraw() reads an array of points and draws a line from the current pen position to the
first, then a connecting line to each succeeding position in the array until count points have
been drawn. This function uses the current drawing mode, pens, line pattern and write mask
specified in the target RastPort; for example:

2-48 Graphics Primitives

SHORT linearray| | = {
33
15,3,
15,15,
3,15,
3,3 };
PolyDraw(&myRastPort, 5, &linearray [0});

draws a rectangle, using the 5 defined pairs of x,y coordinates.

Area Fill Operations

Assuming that you have properly initialized your RastPort structure to include a properly
initialized Arealnfo, you can perform area fill by using the functions described in this sec-
tion.

AreaMove() tells the system to begin a new polygon, closing off any other polygon which
may already be in process by connecting the end-point of the previous polygon to its starting
point. AreaMove() is executed with the statement:

AreaMove(&myRastPort, x, y);

AreaDraw() tells the system to add a new vertex to a list which it is building. No drawing
takes place when AreaDraw() is executed. It is executed with the statement:

AreaDraw(&myRastPort, x, y);

AreaEnd() tells the system to draw all of the defined shapes and fill them. When this func-
tion is executed, it obeys the drawing mode and uses the line pattern and area pattern
specified in your RastPort to render the objects you have defined. Note that to fill an area,
you do not have to AreaDraw() back to the first point before calling AreaEnd().

AreaEnd() automatically closes the polygon. AreaEnd() is executed with the following
statement:

AreaEnd(&myRastPort);

Here is a sample program segment that includes the Arealnfo initialization. It draws a pair
of disconnected triangles, using the currently defined FgPen, BgPen, AOIPen,

Graphics Primitives 2-49

DrawMode, LinePtrn, and AreaPtrn:

WORD areabuffer[250];
struct RastPort *rp;

struct TmpRas tmpras;
struct Arealnfo myArealnfo;

InitArea(myArealnfo, areabuffer, 100);
rp- > Arealnfo = &myArealnfo;
rp->TmpRas = InitTmpRas(&tmpras, AllocRaster(320,200), RASSIZE(320,200));

/* area routines need a temporary raster buffer at least

* as large as the largest object to be drawn

* If a single task uses multiple rastports, it is sometimes

* possible to share the same TmpRas structure among multiple rastports
* Multiple tasks, however, cannot share a TmpRas,

* as each task won’t know when

* another task has a drawing partially completed.

*/
AreaMove(rp, 0,0);
AreaDraw(rp, 0,100);
AreaDraw(rp, 100,100);
AreaMove(rp, 50,10);
AreaDraw(rp, 50,50);
AreaDraw(rp, 100,50);
AreaEnd (rp);
If you had executed the statement ‘“SetOPen(&myRastPort, 3)” in the area fill example,

then the areas that you had defined would have been outlined in pen color 3. To turn off the
outline function, you have to set the RastPort Flags variable back to O by:

BOUNDARY_OFF(rp);

Otherwise, every subsequent area fill or rectangle fill operation will use the outline pen.

CAUTION

If you attempt to fill an area outside the bounds of the BitMap, using the basic
initialized RastPort, it may possibly crash the system. You must either do your
own software clipping to assure that the area is in range, or use the layer library.

2-50 Graphics Primitives

Flood Fill Operations

Flood fill is a technique for filling an arbitrary shape with a color. The Amiga flood fill rou-

tines can use either a plain color or combine the drawing mode, FgPen, BgPen, and the
area pattern to do the fill.

There are two different modes for flood fill:

In outline mode you specify an x,y coordinate, and from that point the system
searches outward in all directions for a pixel whose color is the same as that specified
in the area outline pen. All horizontally or vertically adjacent pixels not of that
color are filled with a colored pattern or plain color. The fill stops at the outline
color. Outline mode is selected when the mode variable is a ‘0.

In color mode you specify an x,y coordinate, and whatever pixel color is found at
that position defines the area to be filled. The system searches for all horizontally or
vertically adjacent pixels whose color is the same as this one and replaces them with
the colored pattern or plain color. Color mode is selected when the mode variable is
a ((17).

You use the Flood() routine for flood fill. The syntax for this routine follows.

Flood(rp, mode, x, y);

where:

rp

X,y

is a pointer to the RastPort

is the starting coordinate in the BitMap

mode

tells how to do the fill

The following sample program fragment creates and then flood fills a triangular region. The
overall effect is exactly the same as shown in the preceding area fill example above except

that flood fill is slightly slower than area fill. Mode O (fill to a pixel that has the color of the
outline pen) is used in the example.

Graphics Primitives 2-51

oldFgPen = myRastPort.FgPen;
SetAPen(&myRastPort, myRastPort.AOIPen);
/* using mode 0 */
Move(&myRastPort, 0, 0);
Draw(&myRastPort, 0, 100);
Draw(&myRastPort, 100, 100);
/* triangular shape */
Draw(&myRastPort, 0, 0); /* close it */

SetAPen(&myRastPort, oldFgPen);
Flood(&myRastPort, 0, 10, 50);

This example saves the current FgPen value and draws the shape in the same color as AOIl-
Pen. Then FgPen is restored to its original color so that FgPen, BgPen, DrawMode,
and AreaPtrn can be used to define the fill within the outline.

Rectangle Fill Operations

The final fill function, RectFill(), is for filling rectangular areas. The form of this function
follows.

RectFill(rp, xmin, ymin, xmax, ymax);
where:
xmin and ymin
represent the upper left corner of the rectangle

xmax and ymax
represent the lower right corner of the rectangle

rp points to the RastPort that receives the filled rectangle
Rectangle fill uses FgPen, BgPen, AOIPen, DrawMode and AreaPtrn to fill the area
you specify. Remember that the fill can be multi-colored as well as single- or two-colored.

The following three sets of statements perform exactly the same function:

2-52 Graphics Primitives

/* areafill a rectangular area */
SetAPen(rp,1);

SetOPen(rp,3);
AreaMove(rp,0,0);
AreaDraw(rp,0,100);
AreaDraw(rp,100,100);
AreaDraw(rp,100,0);
AreaEnd(rp);

/* floodfill a rectangular area */
SetAPen(rp,3);

SetOPen(rp,3);

Move(rp,0,0);

Draw(rp,0,100);
Draw(rp,100,100);
Draw(rp,100,0);

Draw(rp,0,0);

SetAPen(rp,1);
Flood(rp,0,50,50);

/* rectfill a rectangular area */
SetAPen(rp,1);

SetOPen(rp,3);
Rectfill(rp,0,0,100,100);

Not only is the RectFill() routine the shortest, it is also the fastest to execute.

Data Move Operations

The graphics support functions include several routines for simplifying the handling of the
rectangularly organized data that you would encounter when doing raster-based graphics.
These routines:

Graphics Primitives 2-53

o Clear an entire segment of memory

o Set a raster to a specific color

o Scroll a subrectangle of a raster

o Draw a pattern ‘“‘through a stencil”

o Extract a pattern from a bit-packed array and draw it into a raster
o Copy rectangular regions from one bit-map to another

o Control and utilize the hardware-based data mover, the blitter.

The following sections cover these routines in detail.

Clearing a Memory Area

For memory that is accessible to the blitter (that is, internal CHIP memory), the most
efficient way to clear a range of memory is to use the the blitter.

You use the blitter to clear a block of memory with the statement:

BltClear(memblock, bytecount, flags);

where memblock is a pointer to the location of the first byte to be cleared, and bytecount
is the number of bytes to set to zero.

This command accepts the starting location and count and clears that block to zeros. For
the meanings of settings of the flags variable, see the summary page for this routine in the
appendixes.

2-54 Graphics Primitives

Setting a Whole Raster to a Color

You can preset a whole raster to a single color by using the function SetRast(). A call to
this function takes the following form.

SetRast(RastPort, pen);
where:
RastPort
is a pointer to the RastPort you wish to use

pen
is the pen value that you wish to fill that RastPort

Scrolling a Sub-Rectangle of a Raster

You can scroll a sub-rectangle of a raster in any direction —up, down, left, right, or diago-
nally. To perform a scroll, you use the ScrollRaster() routine and specify a dx and dy
(delta-x, delta-y) by which the rectangle image should be moved towards the (0,0) location.
As a result of this operation, the data within the rectangle will become physically smaller by
the size of delta-x and delta-y, and the area vacated by the data when it has been cropped
and moved is filled with the background color (color in BgPen).

Here is the syntax of the ScrollRaster() function:

ScrollRaster(rp, dx, dy, xmin, ymin, xmas, ymax);

where:

rp is a pointer to a RastPort.

Graphics Primitives 2-55

dx, dy
are the distances (positive, O, or negative) to move the rectangle

xmin, xmax, ymin, ymax

specify the outer bounds of the sub-rectangle

Here are some examples that scroll a sub-rectangle:

ScrollRaster(&myRastPort,0,2,10,10,50,50);
/* scroll up 2 */

ScrollRaster(&myRastPort,1,0,10,10,50,50);
/* scroll left 1 x/

Drawing Through a Stencil

The routine BltPattern() allows you to change only a very selective portion of a drawing
area. Basically, this routine lets you define the rectangular region to be affected by this
drawing operation and a mask of the same size that defines how that area will be affected.

Figure 1-17 shows an example of what you can do with BltPattern(). The O-bits are
represented by blank rectangles, the 1-bits by filled-in rectangles.

2-56 Graphics Primitives

Mask contains: Result of BitPattern(): Drawing area contains:

Figure 1-17: Example of Drawing Through a Stencil

In the area where the x’s have been substituted, the target drawing area has been affected.
Exactly what goes into the drawing area where the mask has 1’s is determined by your
FgPen, BgPen, DrawMode, and AreaPtrn.

The variables that control this function are:

rastport a pointer to the drawing area.

mask a pointer to the mask (mask layout explained below).
x], maxx upper left corner x, and lower right corner x.

yl, maxy upper left corner y, and lower right corner y.

bytecnt number of bytes per row for the mask (must be an even number of bytes).

You call BltPattern() with:

BltPattern(rastport, mask, xl, yl, maxx, maxy, bytecnt)

Graphics Primitives 2-57

The mask parameter is a rectangularly organized, contiguously stored pattern. This means
that the pattern is stored in linearly increasing memory locations stored as (maxy - yl) rows
of bytecnt bytes per row.

NOTE

These patterns must obey the same rules as BitMaps. This means that they
must consist of an even number of bytes per row. For example, a mask such as:

0100001000000000
0010010000000000
0001100000000000
0010010000000000

is stored in memory beginning at a legal word address.

Extracting From a Bit-Packed Array

You use the routine BltTemplate() to extract a rectangular area from a source area and
place it into a destination area. Figure 1-18 shows an example.

Array start: Line end (first line)
line end+1

Character starts n-bits in from starting point
on the left edge of the array.

Figure 1-18: Example of Extracting from a Bit-Packed Array

If the character is to be represented as a rectangle within a larger, rectangularly organized
bit-array, the system must know how the larger array is organized. This allows the system
to extract each line of the object properly. For this extraction to occur properly, you need to

2-58 Graphics Primitives

tell the system the modulo for the array. The modulo value is the value that must be added
to the address pointer so that it points to the correct word in the next line in this rectangu-
larly organized array.

Figure 1-19 represents a single bit-plane and the smaller rectangle to be extracted. The
modulo in this instance is 4, because at the end of each line, you must add 4 to the address
pointer to make it point to the first word in the smaller rectangle.

20 21 22 23 24 25 26 |<—— Larger source

bit-plane image
27 28 29 30 3 32 33

34 35|36 37 38| 39 40

A

Smaller rectangle
41 42 | 43 44 45 | 46 47 to be extracted.

48 49 | 50 51 52| 53 54
55 56 57 58 59 60 61

Figure 1-19: Modulo

Note that the modulo value must be an even number of bytes.

BltTemplate() takes the following arguments:

source the source pointer for the array.
srcX source X (bit position) in the array at which the rectangle begins.
srcMod source modulo so it can find the next part of the source rectangle.

destRastPort the destination RastPort.
destX, destY destination x and y showing where to put the rectangle.

sizeX, sizeY size x and y so it knows how much data to move.

You call BltTemplate() with:

BltTemplate(source, srcX, srcMod, destRastPort, destX, destY, sizeX, sizeY);

Graphics Primitives 2-59

BltTemplate() uses FgPen, BgPen, DrawMode and Mask to place the template into the
destination area. This routine differs from BltPattern() in that only a solid color is depo-
sited in the destination drawing area, with or without a second solid color as the background
(as in the case of text). Also, the template can be arbitrarily bit-aligned and sized in x.

Copying Rectangular Areas

Two routines copy rectangular areas from one section of chip-memory to
another: BItBitMap() and ClipBlit(). BItBitMap() is the basic routine, taking
BitMaps as part of its arguments. It allows you to define a rectangle in a source region and
copy it to a destination area of the same size elsewhere in memory. This routine is often
used in graphics rendering.

ClipBlit() takes most of the same arguments, but it works with the RastPorts and layers.
Before ClipBlit() moves data, it looks at the area from which and to which the data is being
copied (RastPorts, not BitMaps) and determines if there are overlapping areas involved.
It then splits up the overall operation into a number of bit maps to move the data in the
way you request.

Here is a sample call to ClipBlit(). This call is used in an image editor to transfer a rec-
tangular block of data from the screen to a backup area.

ClipBlit(&rastport, /* on-screen area */
X,Y, /* upper left corner of rectangle */
&undorastport, /* screen editor can undo

* things, has a rastport
* specifically for undo */

0,0, /* upper left corner of destination */
SIZEx,SIZEy /* how big is the rectangle */
minterm);

The minterm variable is an unsigned byte value whose leftmost 4 bits represent the action
to be performed during the move. This routine uses the blitter device to move the data and
can therefore logically combine or change the data as the move is made. The most common
operation is a direct copy from source area to destination, which is the hex value CO.

You can determine how to set the minterm variable by using the logic equations shown in
Table 1-5.

2-60 Graphics Primitives

Table 1-5: Minterm Logic Equations

Logic Term Logic Term Included
in Leftmost 4 Bits in Final Output
8 BC
4 BC
2 BO
1 BC

Source B contains the data from the source rectangle, and source C contains the data from
the destination area. If you choose bits 8 and 4 from the logic terms (CO0), in the final desti-
nation area you will have data that occurs in source B only. Thus, CO means a direct copy.
The logic equation for this is:

BC + BC=B(C+C)—=B

Logic equations may be used to decide on a4 number of different ways of moving the data.
For your convenience, a few of the most common ones are listed in Table 1-6.

Table 1-6: Some common Logic Equations for Copying

Hex
Value Mode
30 Replace destination area with inverted source B.
50 Replace destination area with inverted version
of original of destination.
60 Put B where C is not, put C where B is not (cookie cut).
80 Only put bits into destination where there is

a bit in the same position for both source
and destination (sieve operation).

Refer to the summary in the appendixes for BltBitMap().

Graphics Primitives 2-61

Controlling the Blitter

To use the blitter, you must first be familiar with how its registers control its operation.
This topic is covered thoroughly in the Amiga Hardware Manual and is not repeated here.

There are four routines that you can use to control the blitter:

o OwnBlitter() allows your task to obtain exclusive use of this device.
o DisownBlitter() returns the device to shared operation.

o QBIlit() and QBSBIit() let your task queue up requests for the use of the blitter on
a non-exclusive basis

You provide a data structure called a bltnode (blitter node). The system can use this struc-
ture to link blitter usage requests into a first-in, first-out (FIFO) queue. When your turn
comes, your own blitter routine can be repeatedly called until your routine says it is finished
using the blitter.

Two separate queues are formed. One queue is for the QBIit() routine. You use QBIlit()
when you simply want something done and you don’t necessarily care when it happens. This
may be the case when you are moving data in a memory area which is not currently being
displayed.

The second queue is maintained for QBSBIit(). QBS stands for ‘“‘queue beam synchronized”
blitter operations. QBSBIit() forms a beam-synchronized FIFO. When the video beam gets
to a predetermined position, your routine is called. Beam synchronization takes precedence
over the simple FIFO. This means that if the beam sync matches, the beam-synchronous
blit will be done first, then the non-synchronous blit in the first position in the queue. You
might use QBSBIlit() to draw into an area of memory that is currently being displayed to
modify memory that has already been ‘‘passed-over”” by the video beam. This avoids display
flicker as an area is being updated.

The input to each routine is a pointer to a bltnode data structure. The required items of
the data structure are:

o a pointer to a bltnode

o a pointer to a function to perform

2-62 Graphics Primitives

o a beamsync value (used if this a a beamsyne blit)

o a status flag indicating whether the blitter control should perform a ‘“‘cleanup” rou-
tine when the last blit is finished

o the address of the cleanup routine if the status flag states that it should be used

The bltnode data structure is contained in the include file blit.h. Here is a copy of that data
structure, followed by details about the items which you must initialize.

struct bltnode

struct bltnode *n;
int (*function)();
char stat;

short beamsync;
int (*cleanup)();

)

The contents of bltnode are as follows:

struct bltnode *n;

a pointer to the next bltnode, which, for most applications will be zero

You should not link bltnodes together. This is to be performed by the system by
way of a separate call to QBIlit() or QBSBIit().

int (*function)();

This position is occupied by the address of a function which the blitter queuer will
call when your turn comes up. Your routine must be formed as a subroutine, with
an RTS at the end. Using the C language convention, the returned value will be in
DO (C returns its value by the return(value) statement).

If you return a nonzero value, the system will again call your routine until you
finally return 0. This is to allow you to maintain control over the blitter; for exam-
ple, for all 5 bit planes if you are blitting an object that spans that number, or for
some other purpose. For display purposes, if you are blitting multiple objects and
then saving and restoring the background, you must be sure that all planes of the
object are positioned before another object is overlaid. This is the reason for the

lockup in the blitter queue; it allows all work per object to be completed before going
on to the next one.

Actually, the system tests the status codes for a condition of EQUAL or
NOTEQUAL. When the C language returns the value of O, it sets the status codes
to EQUAL. When it returns a value of -1, it sets the status code to NOTEQUAL, so
they would be compatible. Functions (*function)()) that are written for QBIlit() and
QBSBIit() are not normally written in C. They are usually written in assembly
language as they then can take advantage of the ability of the queue routines to pass

Graphics Primitives 2-63

them parameters in the system registers. The register passing conventions for these
routines are as follows.

o Register AO receives a pointer to the system hardware registers so that all
hardware registers can be referenced as an offset from that address.

o Register Al contains a pointer to the current bltnode. You may have queued
up multiple blits each of which perhaps uses the same blitter routine. You can
access the data for this particular operation as an offset from the value in A1. A
typical user of these routines will precalculate the hardware register values that
are stuffed into the registers and, during the routine, simply stuff them. For
example, you can create a new structure such as the following:

struct myblit {
struct bltnode; /* make this new structure
compatible with the bltnode
by making it the first element */

short bltconl; /* contents to be stuffed into
blitter control register 1 */
short fwmask,lwmask;
/* first and last word masks */
short bltmde, bltmdb, bltmda;
/* modulos for sources a, b,and ¢ */
char *bltpta, *bltptb, *bltptc;
/* pointer to source data for sources */

h

Other forms of data structures are certainly possible, but this should give you the
general idea.

char stat;

Tells the system whether or not to execute the cleanup routine at the end. This
byte should be set to CLEANUP (0x40) if cleanup is to be performed. If not, then
the bltnode cleanup variable can be zero.

short beamsync;

The value that should be in the VBEAM counter for use during a beam-synchronous
blit before the function() is called.

The system cooperates with you in planning when to start a blit in the routine
QBSBIit() by not calling your routine until, for example, the video beam has
already passed by the area on-screen into which you are writing. This is especially
useful during single buffering of your displays. There may be time enough to write
the object between scans of the video display. You won’t be visibly writing while

2-64 Graphics Primitives

the beam is trying to scan the object. This avoids flicker (part of an old view of an
object along with part of a new view of the object).

int (*cleanup)();

The address of a routine which is to be called after your last return from the
QBIit() routine. When you return a zero finally, the queuer will call this subroutine
(ends in RTS or return();) as the cleanup. Your first entry to the function may
have dynamically allocated some memory or something else which must be undone to
make for a clean exit. This routine must be specified.

Graphics Primitives 2-65

Chapter 2

Layers

The layers library enables you to create displays containing overlapping display elements.
This chapter describes the layers library routines and how you use them in creating graphics.

2.1. INTRODUCTION

The layers library contains routines that:

o multiplex a BitMap among various tasks by creating “layers” in the BitMap.

o create separate writable BitMap areas, some portions of which may be in the com-
mon (perhaps on-screen) BitMap, and some portions in an obscured area. In two
modes, called smart-refresh and superbitmap, graphics are rendered into both the
obscured and the non-obscured areas.

o move, size or depth-arrange the layers, bringing obscured segments into a non-
obscured area.

Tasks can create layers in a common BitMap, then output graphics to those layers without
any knowledge that there are other tasks currently using this BitMap.

To see what the layers library provides, you need only look at the Intuition user interface, as
used by numerous applications on the Amiga. The windows that Intuition creates are based,
in part, on the underlying strata of the layers library. You can find more details about Intui-
tion in the book titled Intuttion: The Amiga User Interface.

If you wish, you can use the layers library directly to create your own windowing system.
The layers library takes care of the difficult things, that is, the bookkeeping jobs that are
needed to keep track of where to put which bits. Once a layer is created, it may be moved,
sized, depth-arranged or deleted using the routines provided in this library. In performing

Layers 2-67

their rendering operations, the graphics routines know how to use the layers and only draw
into the correct drawing areas.

Definition of Layers

The internal definition of the layers resembles a set of clipping rectangles in that a drawing
area is split into a set of rectangles. A clipping rectangle is a rectangular area into which the
graphics routines will draw. Some of the rectangles are visible, some invisible. If a rectangle
is visible, the graphics can draw directly into it. If a rectangle is obscured by an overlapping
layer, the graphics routine may possibly draw into some other memory area. This memory
area must be at least large enough to hold the obscured rectangle so the graphics routines
can, on command, expose the obscured area.

The layers library manages interactions between the various layers by using a data structure
called Layer_Info. Each major drawing area, called a BitMap (which all windows share),
requires one Layer_Info data structure.

You may choose to split the viewing area into multiple parts by providing multiple indepen-
dent ViewPorts. If you use the layers library to subdivide each of these parts into layers
(effectively providing windows within these subdivisions), then you must provide one
Layer_Info structure for each of these parts.

Types of Layers Supported

The layers library supports four types of layers:

o Simple Refresh

No backup area is provided. Instead, when an obscured section of the layer is
exposed to view, the routine using this layer is told that a ‘“refresh” of that area is in
order. This means that the program using this layer must redraw those portions of
its display that are contained in the previously obscured section of the layer. All
graphics rendering routines are ‘clipped” so that they will only draw into exposed
sections of the layer.

o Smart Refresh

The system provides one or more “backup’ areas into which the graphics routines
can draw whenever a part of this layer is obscured.

2-68 Layers

o Superbitmap

There is a single backup area, which is permanently provided to store what is not in
the layer. The backup area may be larger than the area that is actually shown in

the on-screen BitMap.

o Backdrop

A backdrop layer always appears behind all other layers that you create.

The

current implementation of backdrop layers prevents them from being moved, sized,

or depth-arranged.

2.2. LAYERS LIBRARY ROUTINES

The layers library contains routines for:

Operation

Allocating a Layer_Info
structure

Deallocating a Layer_Info
structure

Intertask operations

Creating and deleting layers

Moving layers

Sizing layers
Changing a viewpoint
Reordering layers

Determining layer position

Sub-layer rectangle operations

Routine

NewLayerInfo()

DisposeLayerInfo()

LockLayer(), UnLockLayer(),
LockLayers(), UnlockLayers(),
LockLayerInfo(), UnlockLayerInfo
CreateUpfrontLayer(),
CreateBehindLayer(),
DeleteLayer()

MoveLayer()

SizeLayer()

ScrollLayer()

BehindLayer, UpfrontLayer()
WhichLayer()

SwapBitsRastPortClipRect()

Layers

2-69

Initializing and Deallocating Layers

The function NewLayerInfo() allocates and initializes a Layer_Info data structure and
allocates some extra needed memory for the 1.1 release. After the call to NewLayerInfo(),
you can use the layer operations described in the following paragraphs.

The function DisposeLayerInfo() deallocates a Layer_Info structure that was allocated
with a call to NewLayerInfo() and frees the extra memory that was allocated.

NOTE: Prior to the current 1.1 release, Layer_Info structures were initialized with the
InitLayers() function. For backwards compatibility, you can still use this function with
newer software. For optimal performance, however, you should call FattenLayerInfo() to
allocate the needed extra memory, and ThinLayerInfo() to return the memory to the sys-
tem free-list. Failure to deallocate memory will result in loss of available memory.

Intertask Operations

This section shows the use of the routines LockLayerInfo(), UnlockLayerInfo(), Lock-
Layer(), UnlockLayer(), LockLayers(), and UnlockLayers().

LockLayerInfo() and UnlockLayerInfo()

You create layers by using the routines CreateUpFrontLayer() and
CreateBehindLayer(). If multiple tasks are all trying to create layers on the same screen
or ViewPort, each task will be trying to affect the same data structures while creating its
layers. The Layer_Info data structure controls the layers. LockLayerInfo() ensures that
the Layer_Info data structure remains intact and tasks can obtain this exclusive access.

LockLayerInfo() waits (sleeps) until there are no other tasks that have done a
LockLayerInfo(). Then it grants exclusive access to the locking task.

2-70 Layers

LockLayer() and Unlocklayer()

If a task is making some changes to a particular layer, such as resizing it or moving it, the
task must inhibit the graphics rendering into the layer. LockLayer() blocks graphics out-
put once the current graphics function has completed. The other task goes to sleep only if it
attempts to draw graphics. LockLayer() returns exclusive access to the layer once other
tasks, including graphics, are finished with this layer.

Unlocklayer() frees the locked layer for other operations.

If more than one layer must be locked, then these LockLayer() calls must be surrounded by
LockLayerInfo() and UnLockLayerInfo(). This is to prevent deadlock situations.

LockLayers() and UnlockLayers()

Sometimes it is necessary to lock all layers at the same time. For example, under Intuition, a
rubber-band box is drawn when a window is being moved or sized. To draw such a box,
Intuition must stop all graphics rendering to all windows (and associated layers) so that it
can draw a line using the graphics complement drawing mode. If other graphics draw over
this line, it would not be possible for Intuition to erase it again, using a subsequent comple-
ment operation over the same line. Thus LockLayers() is used to lock all layers in a single
command. UnlockLayers() releases the layers.

You can simulate LockLayers() by calling LockLayer() for each layer in the LayerList.
However, in that case, you must call LockLayerInfo() before and UnlockLayerInfo()
after each LockLayer() call.

Creating and Deleting Layers

CreateUpFrontLayer() creates a layer that is in front of all other layers. Intuition uses
this function to create certain types of new windows, as well as other Intuition components.

Layers 2-71

CreateBehindLayer() creates a layer that is behind all other layers. Intuition uses this
function to create a new ‘‘Backdrop” window.

Each of the routines that create layers return a pointer to a layer data structure (shown in
the include file layers.h).

NOTE: When you create a layer, the system automatically creates a RastPort to go along
with it. Because a RastPort is specified by the drawing routines, if you use this layer’s
RastPort, you will draw into specifically and only the area that you have designated on-
screen for this layer. See also the topic called “The Layer’s RastPort” below.

DeleteLayer() is used to remove a layer from the layer list. It is one of the functions used
by Intuition to close a window.

For these functions, you need to perform LockLayerInfo() and UnlockLayerInfo()
because you need to access the Layer_Info structure itself.

Moving Layers

MoveLayer() moves a layer to a new location. When you move a layer, the move command
affects the list of layers that is being managed by the Layer_Info data structure. The sys-
tem locks the Layer_Info for you during this ope