

Amiga
ROM Kernel Reference Manual:
Libraries and Devices

Commodore-Amiga, Incorporated

Amiga Technical Reference Series

A
vv

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Amiga ROM Kemel Reference Manual: Libraries and Devices
This manual corresponds to the V1.3 Commodore Amiga system software release.

The text of the original version of this manual was written by Amiga engineers and writers including:

Bruce Barrett, Mark Barton, Dave Berezowski, Bob "Kodiak" Bums, Susan Deyl, Sam Dicker, Andy Finkel, Larry Hildenbrand, Neil Katin,
Joe Katz, Dale Luck, Dave Lucas, Jim Mackraz, R.J. Mical, Bob Pariscau, Rob Peck, Tom Pohorsky, Carl Sassenrath, and Stan Shepard

This manual was revised and updated by Commodore Applications and Technical Support (CATS)
and Commodore-Amiga engineers including:

Dan Baker, Steve Beats, Dave Berezowski, Ray Brand, Bob Bums, Peter Cherna, Eric Cotton, Ken Farinsky, Andy Finkel, Mark Green,
Randell Jesup, David Junod, Kevin Klop, Adam K. Levin, Dale Luck, Jim Mackraz, Bryce Nesbitt, Nancy Rains, Marc Rifkin, Michael Sinz,
Darius Taghavy, Ewout Walraven, Bart Whitebook, and Rob Wyesham. Special thanks to Dave Lucas for his contributions to this manual.

Project Leader: Ken Farinsky

Printed on the the NEC LC890 Silentwriter™ laser printer.

This manual is dedicated to the machine it was published on, our Amiga AMIX™ node *‘CBMCATS”, and to the
individual Amigas that allowed each writer to edit, correspond, compile, test, typeset, and print concurrently.

Copyright € 1990 by Commodore-Amiga, Inc,

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book and Addison-Wesley was aware of a trademark claim, the designations have been printed in initial caps. Amiga is a registered
trademark of Commodore-Amiga, Incorporated and is used herein with their permission. Amiga 500, Amiga 1000, Amiga 2000, AmigaDOS,
Amiga Workbench, Amiga Kickstar, the Boing! and rainbow Checkmark logos are trademarks of Commodore-Amiga, Inc. 68000, 68020,
68030, 68040 and Motorola are trademarks of Motorola, Inc. CBM, Commodore, the Commodore logo, and AUTOCONFIG are registered
trademarks of Commodore Electronics Limited. Alphacom is a registered trademark and Alphapro is trademark of Alphacom, Inc. Aztec C and
Manx are trademarks of Manx Sofiware Systems. Brother is a registered trademark of Brother Industries, Ltd. Canon is a registered trademark of
Canon USA Inc. CAPE and Inovatronics are trademarks of Inovatronics, Inc. Centronics is a registered trademark of Centronics Data Computer
Corp. ColorMaster is a trademark of CalComp. Diablo is a registered trademark of Xerox Corporation. Epson is registered trademark of Epson
America, Inc. Hisoft and Devpac are trademarks of HiSoft. IBM is a registered trademark and Proprinter is a trademark of Intemational Business
Machines Corp. Imagewriter and Apple II are trademarks of Apple Computer, Inc. LaserJet and PaintJet are trademarks of the Hewlett Packard
Company. Lattice is a registered trademark of Lattice, Inc. LetterPro 20 is a trademark of Qume Corporation. NEC is a registered trademark of
NEC Information Systems. Okidata is a registered trademark of Okidata, a division of Oki America, Inc. Okimate 20 is a trademark of Okidata, a
division of Oki America, Inc. Pinwriter is a registered trademark of NEC Information Systems. UNIX is a registered trademark of AT&T.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder. Printed in the United
States of America from camera-ready mechanicals supplied by the authors. Published simultaneously in Canada.

The software described in this document is fumished under a license agreement or non-disclosure agreement. The software may be used or copied
only under the terms of that agreement.

Commodore item number: 363099-01

ISBN 0-201-18187-8
BCDEFGHIJ-AL-93210

Second Printing, June 1990

WARNING: The information described in this manual may contain errors or bugs, and may not function as described. An attempt has been made to warn software
developers of known bugs, however, not all bugs will be so marked. All information is subject to enhancement or upgrade for any reason including to fix bugs, add

'Y

ar ge perfor . As with all software upgrades, full compatibility, although a goal, cannot be guaranteed, and is in fact unlikely.

DISCLAIMER: COMMODORE-AMIGA, INC. (**COMMODORE'") AND THE AUTHORS MAKE NO WARRANTIES, EITHER EXPRESSED OR IMPLIED,
WITH RESPECT TO THE INFORMATION DESCRIBED HEREIN, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. SUCH INFORMATION IS PROVIDED ON AN “AS IS” BASIS. THE ENTIRE RISK AS TO ITS QUALITY AND
PERFORMANCE IS WITH THE USER. CURRENT INFORMATION IS SUBJECT TO FUTURE CHANGE WITHOUT NOTICE. SHOULD THE
INFORMATION PROVE DEFECTIVE, THE USER (AND NOT THE AUTHORS, COMMODORE, THEIR DISTRIBUTORS NOR THEIR RETAILERS)
ASSUMES THE ENTIRE COST OF ALL NECESSARY DAMAGES. IN NO EVENT WILL COMMODORE OR THE AUTHORS BE LIABLE FOR DIRECT,
INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE INFORMATION EVEN IF THEY HAVE BEEN
ADVISED OF THE POSSIBILITY. OF SUCH DAMAGES. SOME LAWS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED
WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION BY
COMMODORE MAY NOT APPLY.

Introduction

The Amiga family of computers consists of several models, each of which has been designed on the same premise -
to provide the user with a low cost computer that features high cost performance. There are three distinct models
that make up the the Amiga line: the A500, the A1000, the A2000. Though the models differ in price and features,
they have a common hardware nucleus, and use the same powerful proprietary operating system software.

About this book

The Amiga Technical Reference Series is the official guide to programming the Commodore-Amiga computers.
This revised edition has been updated for version 1.3 of the Amiga operating system and the new Amiga computer
systems. The series has been reorganized into three volumes. This volume, the Amiga ROM Kernel Reference
Manual: Libraries and Devices, contains tutorial-style chapters on the use of the Amiga system library functions and
device commands.

The other manuals in this series are the Amiga Hardware Reference Manual, a guide to hardware level programming
of the Amiga custom and peripheral chips, and the Amiga Rom Kernel Reference Manual: Includes and Autodocs, an
alphabetically organized reference of autodoc function summaries, listings of the Amiga system include files, and
the IFF Interchange File Format.

System Software Architecture

The Amiga kemel consists of a number of system modules, known as Libraries and Devices, some of which reside
in ROM (or in the protected kickstart memory on an A1000) and others that are loaded as needed from the system
disk. Each Library contains a set of functions for interacting with a particular part of the operating system. Each
Device provides commands and functions for interacting with a particular parts of the Amiga hardware.

At the top of the hierarchy are Workbench and the Command Line Interface (CLI), the user-visible portions of the
system., Workbench uses Intuition to produce its displays, and AmigaDOS to interact with the filing system.
Intuition, in turn, uses the input device to retrieve its input and the graphics and layers library routines to produce its
output.

AmigaDOS controls processes and maintains the filing system. It is in turn built upon Exec, which manages tasks,
task switching, interrupt scheduling, message-passing, I/O, and many other functions.

At the lowest level of the hierarchy is the Amiga hardware itself. Just above the hardware are the modules that
control the hardware directly. Exec controls the 68000, scheduling its time among tasks and maintaining its
interrupt vectors, among other things. The trackdisk device is the lowest-level interface to the disk hardware,
performing disk-head movement and raw disk I/O. The keyboard and gameport devices handle the keyboard and
gameport hardware, quening up input events for the input device to process. The audio device, serial device, and
parallel device handle their respective hardware. Finally, the graphics library handles the interface to the graphics
hardware.

Introduction

The following diagram illustrates the hierarchy of the Amiga system software modules:

) Workbench
AmigaDOS CLI icons/Drawers/
and Utilities Utilities
]
e
AmigaDOS Console ' Intuition
Processes, Device Windows, Menus,
File System L Gadgets, Events
Input Layers
Device Library
Serial
Exec Track— Keyboard Graphics .)
. and A Audio and
Tasks, Messages Disk Gameport Rendering, Text, Device Paraliel
Interrupts, 1/0O Device Devices Gels Devices
T T T 1
] +] l]
, . | Keyboard i 1 i
68000 Processor 1 Disk : and ' Graphics ! Audio , /O Ports
: Control Mouse) |
[}]
! ; H !

1

Amiga Hardware

Introduction

About the Examples

68000

assembly language examples have been assembled under the either the Metacomco assembler V11.0, the

Inovatronics CAPE assembler V2.0, or the HiSoft Devpac assembler V1.2, No substantial changes should be
required to switch between assemblers.

C examples have been compiled under Lattice C, version 5.02 or 5.04. Except as noted, C examples were generally
compiled with the following Lattice compiler flags:

LC -bl -cfist-v -y

where:

~bl = small data model...
~cf = Function prototypes...

i = Don’t multi-include include files...

s = Make all literal strings that are the same

be stored in the same place...

t = Warnings for structures used before defined...

-v = Turn off stack checking...

~y = Load the LinkerDB (ad4) at start of all functions...

The -v and -y flags are generally only needed when parts

of the program code will be called directly by the system
(for instance interrupt servers, handlers, and subtasks).
as shown in some of the manual examples.

Note that some of these flags have been picked to make the C source
source as vanilla as possible.

Code was generally linked by either adding a -L in the LC command line
(ie. let the compiler select the startup and the linker libraries),

or by explicitly using Blink to link with startup c¢.o and library
LC.lib, amiga.lib. Notes on exact flags and linkage may be found

in the initial comment of many manual examples. Note that most

manual examples assume 32-bit ints. If your development environment
assumes 16-bit ints, you may need to explicitly cast or type

certain arguments as longs (for example: 1L << sigbit instead of

1

<< sigbit).

An effort was made to keep the C code examples as standard as possible, for easy porting to other compilers. The
examples should port fairly easily to the Manx Aztec C68K compiler. Some necessary modifications for porting to

Manx would be:
1. Replace #include <protos/all.h> with #include <functions.h>
2. Replace CXBRK line (if any) which disables Lattice CTRL~C handling with:

/* Before main(), reference abort enable */
extern int Enable Abort;

/* As first line in main() turn off CTRL-C */
Enable_Abort=0;

. Check your compiler manual to chose compiler flags with

similar effect to those the example was compiled with.

Introduction

Amiga Development Guidelines

The environment of the Amiga computer is quite dlffetent than that of many older computers. The Amiga is
multitasking, which means multiple programs must share the same machine without interfering with each other. It
also means that certain guidelines must be followed during programming.

» Always make sure you actually GET what you ask fdr, This applies to memory allocations, windows, screens,
file handles, libraries, devices, ports, etc. Where an error value or return is possible, ensure that there is a
reasonable failure path. Many poorly written programs will appear to be reliable, until some error condition
(such as memory full or a disk problem) causes the program to continue with an invalid or null pointer, or
branch to untested error handling code.

» Always clean up after yourself. This applies for both normal program exit and program termination due to
error conditions. Anything that was opened must be closed, anything allocated must be deallocated. It is
generally correct to do closes and deallocations in reverse order of the opens and allocations. Be sure to check
your development language manual and startup code; some items may be closed or deallocated automatically,
especially in abort conditions. If you write in the C language, make sure to provide your own CTRL-C
handling to free any Amiga-specific resources and structures,

+ Remember that memory, peripheral configurations, and ROMs differ between models and between individual
systems. Do not make assumptions about memory address ranges, storage device names, or the locations of
system structures or code. Never call ROM routines directly. Beware of any example code you find which
calls routines at addresses in the $F00000 range. These are ROM routines and they will move with every OS
release. The only supported interface to system ROM code is through the provided library, device, and
resource calls.

» Do not assume library bases or structures will exist at any particular memory location. The only absolute in the
system is address 0x00000004, which contains a pointer to the exec.library base. Do not modify or depend on
the format of private system structures. . This include the poking of copper lists, memory lists, and library bases.

» Do not assume that programs can access hardware resources directly. Most hardware is controlled by system
software and resources that will not respond well to interference. Shared hardware requires programs to use the
proper sharing protocols. Using the defined interface enhances the probability that your software will continue
to operate on future Amiga computers.

» Do not access shared data structures directly without the proper mutual exclusion (locking). Remember that
other tasks may be accessing the same structures.

+ Do not assume that system flags and options are limited to current possible values or choices. For example, do
not assume a display must be PAL if not NTSC, and do not assume an event must be SELECTUP if not
SELECTDOWN. Explicitly check for the values or choices you support, and provide a default case for
everything else (for example a default ReplyMsg() for unknown IntuiMessages).

« The system does not monitor the size of a program’s stack. Take care that your program does not cause stack

overflow, and provide enough leeway for the possibility that future revisions of system functions might require
additional stack space.

Introduction

If your program waits for external events like menu selection or key-strokes, do not bog down the multitasking
system by busy-waiting in a loop. Instead, let your task go to sleep by WaitQing on its signal bits. For
example:

ULONG windowsig 1L << window->UserPort->mp_ SigBit;

ULONG consolesig 1L << consoleport->mp_SigBit;
signals = (ULONG) Wait(windowsig | consolesig);

This turns the signal bit number for each port into a mask, then combines them as the argument for the
exec.library/Wait() function. When your task is awakened, handle all of the messages at each port where the
SigBit is set. There may be more than one message per port, or no messages at the port. Make sure that you
ReplyMsg() to all messages that are not replies themselves.

Tasks (and Processes) execute in 68000 processor user mode. Supervisor mode is reserved for interrupts, traps,
and task dispatching. Take extreme care if your code executes in supervisor mode. Exceptions while in
supervisor mode are deadly.

Most system functions require a particular execution environment. All DOS functions and any functions that
might call DOS (such as the opening of a disk-resident library, font, or device) can only be executed from a
process. A task is not sufficient. Most other ROM Kernel functions may be executed from tasks. Only a few
may be executed from interrupts.

Do not disable interrupts or multitasking for long periods. If you use Forbid() or Disable(), be aware that use of
any system function that Waits will temporarily suspend your Forbidden or Disabled state, and allow
multitasking and interrupts to occur. Such functions include almost all forms of DOS and device IO, including
common ‘‘stdio" functions like *‘printf”’.

Do not tie up system resources unless it is absolutely necessary. For example, if your program does not require
constant use of the printer, open the printer.device only when you need it. This will allow other tasks to use the
printer while your program is running. You must provide a reasonable error response if a resource is not
available when you need it.

Check for memory loss. Operate your program, then exit. Write down the amount of free memory. Repeat the
operation of your program and exit. The amount of free memory remaining should be exactly the same. Any

difference may signal some serious problem in your cleanup. A useful tool for memory testing is the
“LoadWB -debug’’ command; this will start the Workbench tool with a special invisible debug menu. The
“flushlibs’’ option of this menu can cause unused libraries and devices to be flushed out of memory. (The
““debug’’ option invokes the ROM debugger, RomWack, on the serial port at 9600 baud.)

All data for the custom chips must reside in CHIP type memory. This includes bitplanes, sound samples,
trackdisk buffers, and images for sprites, bobs, pointers, and gadgets. (On the current generation of machines,
CHIP memory is the lowest 512K or 1 Meg of memory in the system.) The AllocMem() call takes a flag
(MEMF_CHIP) for specifying CHIP type memory. On machines with expansion (FAST) memory, programs
will by default load into FAST memory, and allocations which are not specified as MEMF_CHIP will receive
FAST memory. On machines with CHIP memory only, all program code and data, and all allocations will
automatically be in CHIP ram, and this can mask the symptoms of improper placement of custom chip data or
buffers. Most compilers have options to mark specific data structures or object modules so that they will load
into CHIP ram. Some older compilers provide the Atom utility for marking object modules. If this method is
unacceptable, use the AllocMem() call to dynamically allocate CHIP memory, and copy your data there. When
making allocations that do not require CHIP memory, do not explicitly ask for MEMF_FAST. Ask for
memory type OL or MEMF_PUBLIC as appropriate. If FAST memory is available, you will get FAST
memory. :

Introduction

Do not use software delay loops! Under the multitasking operating system, the time spent in a loop can be
better used by other tasks. Even ignoring the effect of multitasking, timing loops are inaccurate and will wait
widely varying amounts of time depending on the configuration and processor of the computer. The
timer.device can provide accurate timing for use under the multitasking system. The AmigaDOS Delay()
function provides a simple interface for longer delays. The 8520 I/O chips provide timers for developers who
are bypassing the operating system (see the Amiga Hardware Reference Manual for more information).

Obey structure conventions!
- All non-byte fields must be word aligned.

- All address pointers should be 32 bits (not 24 bits). The upper byte must never be used for data.

- Fields that are not defined to contain particular initial values must be initialized to zero. This includes
pointer fields.

- All reserved or unused fields must be initialized to zero for future compatibility.

- Data structures to be accessed by the custom chips, public data structures (such as a task control block),
and structures which must be longword aligned must NOT be allocated on a program’s stack.

- Dynamic allocation of structures with AllocMem provides longword aligned memory of a specified type
with optional initialization to zero, which is useful in the allocation of structures.

For 68010/68020/68030 compatibility

Special care must be taken to be compatible with the entire family of 68000 processors:

Do not use the upper 8 bits of a pointer for storing unrelated information. The 68020 uses all 32 bits for
addressing.

Do not use signed variables or signed math for addresses.
Do not use self-modifying code.

Do not use software delay loops, and do not make assumptions about the order in which asynchronous tasks
will finish,

The stack frame used for exceptions is different on each member of the 68000 family. The type identification
in the frame must be checked! In addition, the interrupt autovectors may reside in a different location on
processors with a VBR register.

Do not use the “MOVE SR,...”” instruction! This 68000 instruction acts differently on other members of the
68000 family. If you wish a copy of the processor condition codes, use the exec.library/GetCC() function.

Do not use the CLR instruction on a hardware register which is triggered by access. The 68020 CLR
instruction does a single Write access. The 68000 CLR instruction does a Read access first, then a Write
access. This can cause a hardware register to be triggered twice. Use MOVE(.whatever) #0, address instead.

Introduction

Hardware Programming Guidelines

If you find it necessary to program the hardware directly, then it is your responsibility to write code which will work
properly on various various models and configurations. Be sure to properly request and gain control of the hardware
resources you are manipulating, and be especially careful in the following areas:

All custom chip registers are READ ONLY or WRITE ONLY. Do not read Write-only registers, and do not
write to Read-only registers.

Do not write spurious data to, or interpret undefined data from, currently unused bits or addresses in the custom
chip space. To be software-compatible with future chip revisions, all undefined bits must be set to zeros on
writes, and must be masked out on reads before interpreting the contents of the register.

Do not write past the current end of custom chip space. Custom chips may be extended or enhanced to provide
additional registers, or to use bits which are currently undefined in existing registers.

Do not read, write, or use any currently undefined address ranges. The current and future usage of such areas is
reserved by Commodore and is subject to change.

Additional Assembler Development Guidelines

Do not use the *“TAS”’ instruction on the Amiga. System DMA can conflict with this instruction’s special
indivisible read-modify-write cycle .

System functions must be called with A6 containing the library or device base. Libraries and devices assume
AG6 is valid at the time of any function call. Even if a particular function does not currently require its base
register, you must provide it for compatibility with future system software releases.

Except as noted, system library functions use registers DO, D1, A0, and Al as scratch registers and you must
consider their former contents to be lost after a system library call. The contents of all other registers will be
preserved. System functions which provide a result will return the result in DO.

System functions that return a result may not necessarily affect the processor condition codes. The caller must

test the returned value before acting on a condition code. This is usually done with a TST or MOVE
instruction. ,

Introduction

Commodore Applications and Technical Support (CATS)

Commodore currently maintains a technical support group dedicated to helping developers achieve their goals with
the Amiga. Available technical support programs are tailored both to the needs of smaller independent developers
and larger corporations. Subscription to the support publication AmigaMail is available to anyone with an interest in
the latest news, Commodore software and hardware changes, and tips for developers.

To request an application for the Commodore-Amiga Developer Programs, lists of CATS technical publications, or
information regarding electronic developer support, send a self-addressed, stamped, 9" x 12" envelope to:

CATS-Information
1200 West Wilson Drive
West Chester, PA 19380-4231

Error Reports

In a complex technical manual, errors are often found after publication. When errors in this manual are found or
reported through the proper channels, they will be filed for reference during future revisions. Important updates or
corrections may be published in the AmigaMail technical support publication.

Bug reports can be sent to Commodore electronically or by mail. Submitied reports must be clear, complete, and
concise. Reports must include a telephone number and enough information so that the bug can be quickly verified
from your report (i.e. please describe the bug and the steps that preceded it).

Amiga Software Engineering Group
ATTN: BUG REPORTS
Commodore Business Machines
1200 Wilson Drive

West Chester, PA 19380-4231
USA

BIX: afinkel USENET: bugs@commodore.COM or uunet!cbmvax!bugs
Enhancement requests may be mailed to "suggestions” instead of "bugs”.

Cautions

Additional warnings and specifications on the usage of individual Amiga system software functions and commands
may be found in the Addison-Wesley Amiga ROM Kernel Reference Manual: Includes and Autodocs. Additional
wamings and specifications regarding programming of the Amiga hardware may be found in the Addison-Wesley
Amiga Hardware Reference Manual.

WARNING

Failure to regard warnings and specifications in this and other manuals can result in system failures
including, but not limited to, incorrect operation, corruption of memory, corruption of storage media,
and incompatibility with operating system revisions and hardware configurations.

Introduction

Chapter 1 Intuition: Introduction

Chapter 2 Intuition: Screens

Chapter 3 Intuition: Windows

Table of Contents

How the User Sees an Intuition APPLCAtIONivsecsiernsestisenssnsnsnsicsisssnessesessassassessssssssesesesssesresases
The Right Approach t0 Using INTHHHONvviieirsinsissenissiisinssssnininineveissssssssasssssssonsmssssassssissssssanss
INEUION COMPONENLS. ..vitirerreasrersrmrsmsesmssintsssusssssesesssssesssestssssissssstasssssssssssassssissesssersssiosssonssiasssnsansasans
General Program Requirements and INfOrmMAationouueeriieinimnmsesesessisissssnsmsssssssssssssssssssssssssssnenss

THE INTUITION EVENT LOOP......ciiiiinisisninmsssnsisiscssssisssssiisnseeassasssnssassorsnssssss

ADOUL SCICEIIS veeverraersssessonescsssssrsssesssnossasssnnesssssssesssssessssssssssessssasssssssansssssssas sosessssssssssssnsssssssssssssssssnssns
ThE WOTKDENCH SCIEEIM .ccueieeertirieiecsiesierseesaesasessssssssresnsssasssesneessssnnsarsessenasassossssssorsssssssassssssessessasnnes

TYPE STYLES .ottt evinrieseireseivessssessisersisesiosssssssorssssssesssssssssansssassasassesassssnssssssssssssssassosssssosssssnesns
SCREEN POSITION AND DIMENSIONScoctctnererssrssnsaisresnerassasssssssrssssrsssssntsssssssossessassesses
APPLICATION-MANAGED CUSTOM SCREENSccoccnineciscssnearmmsisamsssstsmsesesssssnsessaress
SCREEN TITLEcocesvieineiereeesersssessssessenssssasnesssssassssesssssmssesssssssssssssnsssessss siasssassassssssassssssensesoses
CUSTOM GADGETScccirvrrererasesrassesassesessssesssssssssesassesassesassssesssassssssssesssassssassassassssssssssssssosssses
SCIEEN DAL SIIUCIUIES 1evurerrereieesersessesaesseressasssssessssssssesressessansosssseransssssssserssstoss sresscs ssesssssssestsssssssassnses
NEWSCREEN STRUCTUREccoevineiiresseressernsioressssassssessescssssessssessssssasorsasessessssssss st sssssssssssss
SCREEN STRUCTUREccccvnevtrursrreramnssassesisnssssssssssessssssssassssassssassesaesssnsssssissssossssssssssassasssssss
SCREEN FUNCTIONSseeesiereseressersossrersssssersssensesssssnssssssssssesssssssanssesassessssassssssssssosssssssssssss
EXAIMPIES..c.cucverereriennrnsnsrenirssecscsemssssessssasiessassosstsssssasass sessssssssssas stssssessssssasasssasassassssnsssssaserssrsassssssnsaess
LOW-RES SCREEN EXAMPLE.........ccccveveceeermsiracienesseresesseseesssesssrasssressossssssorsssorssssssssassasasass
DUAL-PLAYFIELD SCREEN EXAMPLEcccvvevevrenmeniccacessanscressssesssnssesassssssssssosssssasssssssses

ADOUL WINAOWS .vevverenrerservessessersssassessessasasesesassessesansssssssnessessssasssssssrassasssssisssss sastsassssnessarssssessessasiosses
WINDGW INPUT/OUTPUT.......oocvviriressereessesersassesssssesssssssasssssnssssnsmsassssrsssssssassnssossssssssssssassnsess
OPENING WINDOWS ...oucrrererrervrsrssnersrsssiseressssrsessossenssnsssssassassssssssssssssassionssosssasasssssssssssissssas
WINDOWS AND SCREENScocvuninimnirininiinimssisssissssssssnssssnsssssssssssessssssssssssssssssssssssess
THE ACTIVE WINDOW.ocereerereerereerersrnssesnssmsssnsssssssnssesassassssssases soosesssassssssssssessssssassssssssssses
CLOSING WINDOWS...cvorireererioresesserssosesersonsnsssssesssssasssssssssssssssssessssessssssssssssesssrssssassssasassesases
SPECIAL WINDOW TYPES.....cocccceteiesiserressnessssesasssssssanssessssstsssssssossssssissssassesns ssssnsssessesssssssnas
WINDOW GADGETS.....coviveereerrsivessssnsssssossssessssssessonssssonesssssssassssssorssassassssssssessassasssssassssssosssasns
WINDOW BORDERScovrtetenerereraseisersisserssasrsossssssssssssnsassasstsssssssessssssssssssssessssesaessasssssssssrsasons
PRESERVING THE WINDOW DISPLAYoooveevieerincseensssssessivesssensssssssssssssssssssessorsssssossessoss
REFRESHING THE WINDOW DISPLAYccvrierrrverienestennsemsessesmesssssassassssssssssssesssssssssorssversons

GRAPHICS AND TEXT IN WINDOWScuvitrisinniniensnsnnsssssssnssssssssssessansssssssssssssssssssssens 47

WINDOW COLORSooiiicrinninnesssssresssssssrmressssssessasssssessssssssassssssssssesssssssscssase 47
WINDOW DIMENSIONS.....coucuiinitiinisensinsesnessesssssssssssssmssnsmsssssssssssssssssssssssssessssssessssssessosssssses 47
The NEWWiINAOW STUCLUIC....couvmvisircusesssmssssisssissisinmransassssssssssssonsosssseresssssssrsressassassesessssssosssssassasssmaas 47
WINDOW STRUCTURE.......couvvcsmirmrerersasrersecssarasassns . 52
WINDOW FUNCTIONS........couvveveven eeesiesssinrsssn e e rinerersasasasnenensreses 52
SETTING UP A SUPERBITMAP WINDOW.ccocvvurirmresenensssnssseseesssssesssssossssssosssssssssssisens 56
SETTING UP A CUSTOM POINTERcccoovvrrruererrrnnne ressrsasaeasstsnsnsnsaseern st st e ananans 57
EXAMDPIES ..uviuieensiisniirisisisinsmnssisisssisssssssssssssmsssansasessssassessssasarsssesesessssssssssssesmtsasossasesssessrssessasssssasasssnsase 59
BACKDROP WINDOW EXAMPLE.......cccoveevunnnnnssssesesssssosssasssssnessssssnsens . 59
TWO WINDOW EXAMPLEc.ocvuuiisicssssnnersnsnssesssesssensssesssssssissssssasssssssssssessessssesssssssssssssesesns 62
INVISIBLE POINTER EXAMPLEcrircenanireinmrenrssssssssssssssssosessssessssssssssosonssssssssssssans 66
SUPERBITMAP WINDOW EXAMPLE...........cccocervurtrmreasmresseeseressassssesssssssssseseses 66
Chapter 4 Intuition: Gadgets 71
ADOUL GAAZELS...ucuersrssisiraesisssnisssrsssssasasenmsenssssssssssssssssrasssessssssssesosorsassssassessssssssesssssssnsssssssssssasasssnsnsnss 71
SYSIEM GAAGELS...creerirerisnrsesssssnsessssssissisassississsensesssssssssssssssnsssssssessssessessssessasessssersssssstsssssssssasssessessoss 73
SIZING GADGETuuucevirversusisssassssnssssssasssassesssssssessssessoses 74
DEPTH-ARRANGEMENT GADGETScccveensunemmrmssessssssssmsssssnssessessssessssssssssssssessosssssssses 74
DRAGGING GADGET........cccorvrrvensarereraensnsssas . w 14
CLOSE GADGET......ccoeovisrennssereesensanene bt st sss s e ssasa st b nes 74
AppPLCAtON GAAZELS.....ueisissrrriscssssaseresssasassssssssnserersasesssareassssssssassssssssessns crrasasasasssssianerrnans 75
RENDERING GADGETS......cuctimiuisiunissssissesssssssssssmsessasssssssssssssmsssnsssnssssssssssossssossssessesssseses 75
USER SELECTION OF GADGETScccocvnrssnnninserensassrssssssmssssesssssenssssssssssssssssssssssssssssssssss 77
GADGET SELECT BOXccoeuneee. retasa s ssasa st tasasase s s sensnsenes w 17
GADGET POINTER MOVEMENTS .. ceststtses st e e e rere e e asaenena s ren 78
GADGETS IN WINDOW BORDERSccocovmmermereanssrnsrersaresssmssssesssessssasssessssssssssossassssassssasssns 79
MUTUAL EXCLUDEcocuvisieninssssssssssssssssssssisssmsssssssssssssssssassssasssssossessssssssssssssossesssssssssssosssss 79
ALLOWABLE TYPE OF GADGETS FOR MUTUAL EXCLUSION..........ccccccvervrsersmnracsrerines 79
ALLOWABLE TYPES OF HIGHLIGHTING FOR MUTUAL EXCLUSION........ccceoeeevvernnee 79
HANDLING OF MUTUALLY EXCLUSIVE GADGETS.co.... 80
GADGET HIGHLIGHTING e e bt a e e seasnereressesasnaneR R raanene 80
GADGET ENABLING AND DISABLING.......ccccevietntnnrensensnssesssssmsssssssssssessssessessssssssssosssssesns 81
GADGET REFRESHING BY INTUITION.......cccceceesmruessercserersrssssssesssssssasesssssssossssassssassssassses 81
GADGET REFRESHING BY YOUR PROGRAM.......ccccrerverrrrererssnersermnsssssssssssessssssessssessssesions 82
BOOLEAN GADGET TYPEc.cvcovinininensensssssssmmsssensssssssssssssssasesssssssassssasassssasssssssssssssssessesssss 82
MASKED BOOLEAN GADGETScccuesuneueeemseresssrarseressssessessasesssssssssesesssssssses 83
PROPORTIONAL GADGET TYPE......ccccoeeneremrnrnseserssssssssesssssssesessessssosssssans 83
SCROLLING THROUGH GRAPHICAL OR TEXTUAL INFORMATION........ccccouesvsererusnene 85
ADJUSTING A LEVEL ..u.cuiiiininsennssssssssssssessinsssssinsssssnssssssssssesssssssstssssssssessssssesssssssssssssssssssses 85
STRING GADGET TYPE.......cceceinnsinusissssenssscssmmnssessssssssessssssssssssssessssssssssssossssessssesssssssssssessons 87
INTEGER GADGET TYPEuciiitiiisusensensessessmsersansessssmssnssssssssssasssssssssssssssssessossssossossesssses 88
COMBINING GADGET TYPES......cccccnsmmmenmenminmsnsssmsssrssssssesssssssssessessosssssseres 89
Gadget ACHVAtIoN MESSAZES.......cccrvrereresnrernssnresnseserosesesissssassessssasessossranss 89
GADGET STRUCTURE ...cuvirunissisisssssessissessssssssssssssmsssssssssssssassasssssssssssssssssssssessesssssssssssssasses 90
FLAGS....ccovninisinrnraceneens . derssssssssstsssesasnsnerenas w 92
ACTIVATION FLAGS ...covovienennnsenisssesisssssnsssssssssasessssssssssssssnssessssssesssssssassssssssassssasessasossossses 93
SPECIALINFO DATA STRUCTUREScccoceevsuumenmanensesessssssssssasessessssessssesssesessasssssssssessassss 94
GADGET FUNCTIONSccouirsinnssesmmsssenssssnsssssmsesssmsssssnssnssssssssssssssssarsssssessssssssssssssssssssessivessses 98
EXAMPIE .cooviiiiriririsiisinisisiiisissiirsssssssssssmsasasssessssssssssssssssnsasass sessessassssssessssssssesssssassenssenssssssstsssasansss 100
Chapter 5 Intuition: Menus 109
ADOUL MENUS......cvirerineriisinisnesesstscsssssassssssssssssessessssmsessrsssssssasessesssssssssssssssssssessssesssss 109

ABOUT MENU ITEM BOXES w.cvvoeeversnssssesssssssssssssssssmsssssss s sssessssesssemssemssssssssssssns
ACTION/ATTRIBUTE ITEMS AND THE CHECKMARKcovvsvrsssrssssessssemssemessssssssssncs
TOGGLE-SELECTION....oocevssnssssssesssssssessssssssssssssssesssssssssssesssesssssssnssssss s ssss s
MUTUAL EXCLUSIONoocossrssessessssssssssssssssseess
COMMAND-KEY SEQUENCES AND IMAGERY ..ooccomuerrsersssssssessssresmresesssssecssesssssss
ENABLING AND DISABLING MENUS AND MENU ITEMS.........ucrsmesssssssesssssessssssseos
CHANGING MENU STRIPS wcvvvvvevssessessssssssssssssssssssssssssesssssssesssssessssssssssssnssnssssss
MENU NUMBERS AND MENU SELECTION MESSAGES ..c.cvcvrecrsesen

HOW MENU NUMBERS REALLY WORK ...occ.cucvrssssssssssssssssssesssssesssssssmsssssssesssasssns
INTERCEPTING NORMAL MENU OPERATIONS «.covovveevsesssessssssssssssssssssmssssssnsses
REQUESTERS AS MENUS ...ccooouvrsssmsssssssssssssssssssssrsssssssscssscsesnes

MENU STRUCTURES ..ccvvvevsssrsssssssssssssesessssssssssssessssssssssssssssessessessasssssssssssssesssnss
MENU FUNCTIONS <.c.cccevoevsssssssssssssssssesesssssssssssesssesssssssssssssessesssssssssssssecansssssnss

Chapter 6 Intuition: Requesters and Alerts
ADOUL REQUESLETS ..vevvececrcieisesusssesisisssisisssasasssasesessaorssssssssssessasasasastosssarsassonsassssssssstas st sessssss st sesssssnssssses
RENDERING REQUESTERSccceseusinimsuescrsssnnens verersesssnssssssnsssasar s ssaes
REQUESTER DISPLAY POSITIONccoiniimusisisesnnismsnsensnsmsasossssasssessssssssssssanssssssssssssssssssss
DOUBLE-MENU REQUESTERSccosisnnsmmscssssssesssnsasssssssssssasasess
GADGETS IN REQUESTERSocveeeeennrmessssssssssisissasassssssasssssssssssssssesersasasssssssssssssnsassssnsssnssssns
IDCMP REQUESTER FEATURES.........cocosnmimmmesmmasssanssessesesescacrsnssrasansasssesssssasssssnssssssssasaorsess

A SIMPLE, AUTOMATIC REQUESTERcoovvsisinisienirivnrsesssascosasnsssranesces
User ReNdering.coueessceesseesecusesessesisnssssessassasnsnsaeseanas .“ “
REQUESTER STRUCTURE ..
THE VERY EASY REQUESTERccoctiininsisssiessnsensssssssssssssssssssssenssssassassssesassessossasssscssnsss
REQUESTER FUNCTIONScccocvunierusennannnes vreremessereners et s s s ase s st sees

EXAMDPIES...cvierierismresassisesesstssnsiscseasassoscssssensasseinsssnsssssrasassanes
AUTOREQUEST EXAMPLE cerererssessasasassssenaen esienasnas
DISPLAY ALERT EXAMPLE........cossiismmisnisiiiisisisssssississssssssssssisssssorssssssssessssssssassnsassasss
DOUBLE MENU REQUEST EXAMPLE.........cccssnmmmsisnsssnsasens

Chapter 7 Intuition: Input and Output Methods
An Overview of Input and Output ereteaeeesreassaertet et ab Rt IR R IR SRR SRR SR SR SR SRS RO SHR S e e R RS R SR OO
About Input and OUIPHLcceiemiinisiiesmsncesesisesssesssmnsssssssasssiasmssssnssses .
Using the IDCMP vereesrerre e erh R e R s sasReRe PO T A SR sh SRR AR bR SR SR s e R SR SRR S

INTUIMESSAGES.coceiensesnsssrsssssssssssssssasssssssssasasess

IDCMP FLAGS ..coviivniinsimssesiscsssssssssssssissssssmsasssisssissssssssssasssssssssssossssssassassssssassssosssasssssesessasnans

SETTING UP YOUR OWN IDCMP MONITOR TASK AND USER PORTcccensmnsnsensacee
EXamples......ccuisresmesmessesassenns eereesenerrenesnesssnessrtsssrastsnes

Chapter 8 Intuition: Images, Line Drawing, And Text
Using INtuition GIAPhiCS......ocermiisisisimniiniisississisinssinsniasasisissmsssssssessssossssssssssssssssassssssssssas
DISPLAYING BORDERS, INTUITEXT, AND IMAGEScc.ccnveuinnene
CREATING BORDERScccoverenenrnnmssssersssrisssssssssssimesssssssssasssssssassssssssssses “
CREATING TEXTcocervrenrnreensnnsrsenssnssmsssssssasassisssassssssasssssessssestsssssssstsasssansessssasssesssassssssasansases
CREATING IMAGEScoererinmsnenisnsismmosssssisismssssssssasssesssssssssssssssssssssssssssssssisssasessssassassssssasnens
INTUITION GRAPHICS FUNCTIONSccccccnirismsnsnsmrmsessissssscsssssssessrsasesssnsssssassassssastsnsssssrssssne

Chapter 9 Intuition: Mouse and Keyboard
AbOUL the MOUSE....ccernesnsrsnerssssmsrsnsessesesesssnses eveesaten sbeatte et et Iee SRR LA SRS IRE SR SRS A OSBRSS SR SRS SR 04
Mouse MeSSages ...cvivunnrscssersencsnsnssssssssases teesasresrsseerasaessrsaton it asssRe s SRt sR RS SR e SR sR TR SRR sa e sOesnbes
AbOUut the Keyboard.......cmuiminiiismiemsemssmsssismssssiomissssssssssssses

Using the Keyboard as an Alternate to the Mouse

MOUSE AND KEYBOARD EXAMPLEccocveeunesssrensserseressssersaressssssssssssssssssessasessasssossssssns 193
Chapter 10 Intuition: Other Features 199
INOQUCHON c.vurevscninirsrsisnnsaiesisssssasiissssesssssssssssssasasssssssssssassssssssnsssasasase 199
Locking IntuitionBase ressarasasnssasesneasasrsnnssbinentras 199
Easy Memory Allocation and DealloCation...........ceeererssssresensersesersassssenes 200
INTUITION HELPS YOU REMEMBER..........cceecersesensarssensorsnsenes 200

HOW TO REMEMBER rsussssnnsrrastsassensaareneRsveirasear R seEiaraTar ses ST aR OSSO eSO e RS Ke e e R e RO R e bee 201

THE REMEMBER STRUCTURE . 201

AN EXAMPLE OF REMEMBERINGccevveenenne 202
Preferences........ 204
PREFERENCES STRUCTUREccceuvernssiirsemssnssssrsssssessiasessssssssssssssssess 205
PREFERENCES FUNCTIONS 208
Remaking the VIEWPOILScccocuicvisisisnnisrrsasesamseonesnasasssssssssassassssssercassassnsssssessessssssssssssensissesessnsaseseses 209
Current Time Values ressersssnsasssssnsnsnsasesenr st srsnnenan 209
Flashing the DiSplay.......ccreeessessesarsressersensnsascesessasese 210
Using Sprites in Intuition Windows and Screens 210
Chapter 11 Intuition: Style 211
MENU SEYIC cruvcrererireisnsisisesesisssisisesssesssssisrasissssassssssserssnssssssssrentsssessrsssasssssassessasssasasssasassesesensassasesssassnsas 212
PROJECT MENLUS......... . 213

EDIT MENUS 213

GAAGEL SEYIE cuururiisirerenessrsressiamiresiasssasesistsissemssassesssssasasssssasssssssssssssssassssasssssssssss sssesotssssrssssssssssssssess 214
Requester Styleccereenr 215
The Sides of Good and Badcuesimersesssernnrseressassssssssnersssssssasens 215
Command Key Style.............. 216
THE HELP KEY ..veverieirernnensassrassenensasssnssersmsssassssarsssssasesssssssssssssnssasessnssssossssasssssessassassassasssssssars oses 217

Cursor Key Style.....iveeenees 217

Mouse Style.....coennirnnniassenns 218
Window and Screen Style......cuemeremensmerrrsasasasessasssesaeaseres . 218
Miscellaneous Style NOIES ...c.vveirieessssmririsssssnssssescssranses 218
Chapter 12 Intuition: Functions 221
Assembly Language Conventions...... 223
Chapter 13 Intuition: Internal Procedures 225
SEtPIEfS()eereercrerencssenctossesencrevnereransansee 226
AlChaWOTKDENCH()...ctieirrrerercerrecneneesesessessesssreresnsnesesserseseressasasassssisosenessses 226
J510FLE (o) 11 2 227
Chapter 14 Exec: Libraries 229
What Is @ Library? 229
How To Access a Libraryccoeereeeneeeesesens 230
OPENING A LIBRARY ...ccocsisinisintersssssrsrssscssssesssesesssesessaisesssesesssssssssssesssesssssssessaenssssesessaonssessss 230
CALLING A LIBRARY FUNCTION.....ccceceerereesssarersesmrserarsansasersrsasersasessassasssesnse 232

USING A LIBRARY TO REFERENCE DATA.........c.cce0e.. . 233
CACHING LIBRARY POINTERS.........cccoonrrerercenns 233
CLOSING A LIBRARY ..uurcictininiisisssscscsssssisssssscssasasmsssassossssssssesssssssssssessasssssssssssassssssossrsssass 234

AdAING 8 LIDIATY ...cocviniininisinnrinsissssesssssnsasessssenseressssassasisossssesssssssssssasssesasossssrasessassssesssossssssssssssnans 234
RESIDENT (ROMTAG) STRUCTURE. 234
MINIMUM SUBSET OF LIBRARY CODE VECTORS ... 235
STRUCTURE OF A LIBRARY NODE.........ccocorurenssenssessasisesesasessresesarassiasssesssssasess 236

CHANGING THE CONTENTS OF A LIBRARY ...

236

Relationship of LIbIaries t0 DEVICES .v.uuumresersmenmscrsssmssssssasssesssssssssssssssasssssssssasssmsssssssssens 237

Chapter 15 Exec: Memory Allocation 239
IDUTOAUCLION vuvovretrrernssressnessnsnsnsmsestsesssssssssesssssssssasesssssssssssssssssesssssssssesssonsasssross ossssassassonsseassnsssassassss 239
Using Memory Allocation Routines............... 240

MEMORY REQUIREMENTS........ccceceennurusnnmsinsnsennns 240
SAMPLE CALLS FOR ALLOCATING SYSTEM MEMORY 241
SAMPLE FUNCTION CALLS FOR FREEING SYSTEM MEMORYcoomnenursssiasnersrsasacs 241
Using Memory Information Routines ; 242
MEMORY REQUIREMENTS . 242
SAMPLE CALLS INFORMATION ROUTINES 242
Using Memory Copy Routinesooueeveene 242
SAMPLE CALLS FOR COPYING SYSTEM MEMORY 243
SUMMARY OF SYSTEM CONTROLLED MEMORY HANDLING ROUTINES.........cccee0u. 243
Allocating Multiple Memory Blocks.......... 243
Memiory Allocation and Tasks 246
SUMMARY OF MULTIPLE MEMORY BLOCKS ALLOCATION ROUTINES.......ccceesenuee 246
Managing Memory With Allocate() And Deallocate()everrerreesenrsnssnrssssanensensssssssssssses 246
Allocating Memory at an AbSOIULE AdArEss.....cmeneresirensssensennssessssassassssssessasenses 248

Chapter 16 Exec: Lists and Queues 249
Introduction sessserasnesasasens 249
LASE SITUCKUTE .o cvveerevenererssnssssesessassreassssaresassssasssssssnssssessssssossassssassesesassanssessssssessnssssessesssssnsanasssonsenass saons 250
LSt FUNCHONS. c0.vevereeerssssssrrsssssssassssesssssasasssssssssorsassnssanssssas 250

INSERTION AND REMOVAL 250
SPECIAL CASE INSERTIONccccecvsmnnssssssmsensassenssmssasssnsssssssssssasassonsasssssasaonss 251
SPECIAL CASE REMOVAL 251
MINLIST / MINNODE OPERATIONS o 251
PRIORITIZED INSERTION (QUEUES) 251
SEARCHING BY NAME 252
NODE STRUCTURE DEFINITION 253
NODE INITIALIZATION 254
LIST HEADER STRUCTURE DEFINITION 254
HEADER INITIALIZATION.......... 255
MORE ON THE USE OF NAMED LISTS......ccccosmnsisinmsmsasisssssssismsssssiserssasssesasssasssssesssssasarssssse 257
List Macros for Assembly Language Programmers.......oueessssesssissssesssasasss 257
Empty ListS ..ccccoersnrnsnenss - 257
Scanning & List.....cccvuvunmsnsssnscsnsninninsennisssssssosesssssessaosas 258
Important Note - Shared LiStSceruerrremssrssssssossssesssssasees - 260

Chapter 17 Exec: Tasks 261
Introduction werervesresnassonss 261
Tasks on the Amiga 262

SCHEDULING vereer ettt Re s s e R e R e R s ssR S OSSO RAS S AR RS e b SR SR b 8 262
WAITING.... reeetsereubae s s aa R R TR OesEY RS T SE SRS R R T SO R RS RS 4SS S8 SRS R 0L SE SR SR RS S SR SRS A RS SE SH R SRS 263
TASK STATES......cccconnurune 263
TASK QUEUEScccvrerersnnerminisssssssssssasasssssssasssssssrsrsssnsasassss 264
PRIORITY ...cccvnvennrsunersanaas 264
STRUCTURE rerertreasasaenoneneasaseTEet St RS A UOOSHSEASRSRSE SR SER R R RS Se e 000 264
CIEAtiON. ..cvurrrvererorsesarssmesssnsaressases teeussnenesessaratsessssnenasastsnesasnen - 265
CREATETASK........ . " 266
STACK ceeresisnesssenaen 267
Terminationccuisesessissssssssserssmsisessessasseresessesssssssassisasssasaoses wees 268

SIENALS ..crrrereeerrrrrreseesnstsnseresnsnsessesssarssssssasssnsmsesisssersrrssssssrsnas 269

GENERATING A SIGNAL ...ccovotveverersirenseessossessessssessesssessosssassssssssssssssssssssassesssssesssss sssossssssssssos
EXCIUSION..ceverrererverernesenns . eereesersensrtsssarsaeresasrsnersnssesassnsnes veerenssreneerersorsnsonens

Chapter 18 Exec: Messages and Ports
Introductionoieenreecscsnnenes w ceerersasssnsnsinsssasensersnenes SN

MESSAZES cevuveerrrsenrerisnssracsinnstiasissisisessssssesssssnssssssssesstssssssssisssesssssssassssesrssensasnsensssnsssssssens sessasssasassnsesanass
PUTTING A MESSAGEoivninnnninsiniinicsssmessmssssimsmnisssssssssisssasssssssssssssssssssssss sssssssssssessens

Chapter 19 Exec: Input/Output
INEOAUCHIONcocisiiiiiirisirnccnnnnssereressssseseremsessseasnsssssessencsesesssesssssersssassassssssssasissssssssssssssassasensornes
REQUESE STUCIUIE c.uvvveierveiansiintscstessisnessssssssssiassssssrsersaserssssssssssssasssssssssssssssssssssssssasssssssessssasssssssasens
INEIfACE FUNCLONS ...cuviieiiririsirisnsisresesnsmsesessasmnereresssessaesesssesssssssssssesssssassssasassssst st sbasessessssassensasseses

PerfOrmMing I/ c..ccuuimiiiriiericnrnrrenssnisesssnesssnnenenssssesesssesassssersssssasssssessssssssssssisisssssassssssnsasssnssossssssnssens
PREPARATION FOR EXEC IfO...c.cooieumerirersrsssincssrsrssresisersrsssssssossssssassssssssrsssssssessossssssssssssssns
SYNCHRONOUS REQUESTSc.ocevniummrersmmnmsmsssmsessssssssssnsssssssssssssssessssesssssssssossasssnssssssssssssese
ASYNCHRONOUS REQUESTS...c.covceersirimenmrmsnrssrsssnsssessansssssesssssssssssssssssesssssassnsossasessssssoses
COMPLETING THE USE OF A DEVICEccocevnevmseneresssensescsssserescssssssssssssmssssssssssssssasssnens
QUICK I/O e ciirirciscierenissssssisisisissssssssssnsssssessssssssensrssonsssssasesssssssssossesssssnsssasasssssassosssssasssssssassns

EXampIe Of DEVICE USE...cuouvurimiisisiissneninsnersrssnsssssssssessnmsssensasssrssssnsassssosssssssssssssassssserossssonsassassassseses

SANAAIA DEVICES. cuuuiuerriiiniestiisssessensscsmmasssessasssssessrmmsssssssssessssssssnssssesssssssossossssanenssnsssssssasssssessasessssssssns

Chapter 20 Exec: Semaphores
INrOAUCLION cucvsvvcinesisssssssssssscssasssssnsssessssssesssessssssasessrssesssreseassossnsssassssansases

Chapter 21 Exec: Interrupts
INITOQUCHON ... cuvctinsevsisnrennescacsesssenssssise s sssseassssessssssarssssnsnssssasssssssssssssessssessssessaressssassssssssssssssonsansrsns
SEQUENCE OF EVENTS DURING AN INTERRUPTcccvuuemrrerssrenrsssssssssssasassssossosseiness
INTERRUPT PRIORITIEScoovtivsiisissnssssmnssssssorearssssssnssssssssesssnsasssassassssssssssssssassssssessassssasessass

SEIVICING INIEITUPLS .vtrercuiesssssnssrerermresssessssnsssesnsssssssssaesssssssssssssssesssssssssssssssssssssssssssssestossessssrensensas
INTERRUPT DATA STRUCTUREccuovurererirnrrecnrerasessessosssne ereestsasenssssnartessensenrness
ENVIRONMENTcucocuiimesensissnsssarsarssssssssssssssssssssssasssssssssssssossesssassssosssssssssssssnsssssssssssssssssssnsses

INTERRUPT SERVERScoiuiiiiininisnsisssnisssmsnmmsissssssssssssssssssssssssesssssssssssssssssossasssssssoses
SOLEWATE INLETTUPLS c.vuuvuersecssenssisssssesssnsmnsnmssssssssessessesssssesssssssssesssssassessssessassassastssstosssssssssssssssssessssssnns

DiSabliNg INLEITUPLS e vetrecnisesrssessssisessssnssssstssesssssissssssssssassesssasssnsassissssssssisasassssssssesssnesssssssassssossaasasasss 319
Chapter 22. Exec: ROM-Wack 321
INTOAUCHON cuvvrvrcirernssnsnssssnsssisssssessasansassssssasssessassssstsnssssassssssssessessassssssssssstssnsassrssassassassassostassnsanaes 321
Getting to ROM-Wack.......oceevevenvnnnennnas T ettt arsnesnsnssansntsnsntsnns 321
Keystrokes, Numbers, and SYMDOIS w.....coiiniininiiniiississsasasasssssessssssesss 322
Register Framecocovveeevceenenns e sh s sh e b SR e SRR s SRR R A e e Sh R e RS SE SRS SR SRS SR SRS 322
Display Framescoeeseseenssescsesnsensennes O SO 323
Relative POSIONING ..cviviiniirinsnsiseessaisnssssssssssssssssssassssesssssssosssorsssasssssssssssnssssssssssassssssassssrsssrsassasesssssss 324
Absolute Positioning errarereteEeEeeEtEees et aEeas et et e SOR LSO SRR SR SESE RS SE L H SRR O EE SR SRS S8 SOOI R RRO SR OO S 324
Altering Memory & S1Ored REGISIETS ...eueeereererersserseressrassescsesssssssessssssseassiassssssssssressssssssassensnsssrssasesssns 324
EXCCULION CONMIOL covoverirerrsesrssesssssasassessessssssanisisesssasssssssssssssesssssssssssssssssissssssssssssssssnssssssistsassossasossesssns 325
BIEAKPOINLS ..vivvurseresenssessssisresssasstsesasasastsesesssssssssosssssssssssssssssesssssssssssssissssssssnisssesssssssistsssssessatsesesssssesess 325
OLher COMIMANGS ...cvivesnrirnssssssosssisissssisisisssnessssssssssssessssssisonssasssssssssssssssssssessosssssarsssssssssssssssssssssssassons 326
Returning to Multitasking After @ Crash.....uuecimisnsmniniesossmesisisssmessssssenses 326
Chapter 23 Graphics: Primitives 327
INEOQUCHION......oemmirearcnsesrsisessssssesisi st sesesssssnsses seetseseesbesosistrs st SR s s et b s sea e basanes 327
COMPONENTS OF A DISPLAYcccotiumiannnisinisesssnsessmsescrssessransasasssessesssssssens . 328
INTRODUCTION TO RASTER DISPLAY S.....cocoeinenererercesisssnecsssssessesssssssssssssssssessassesssssens 328
INTERLACED AND NON-INTERLACED MODES............ccccorvnerrninnrmrmrsessssssssssssssasesssnsasase 330
HIGH- AND LOW-RESOLUTION MODESccceeoveenmrmrmirirenmseseresssesssssrssssssssssersssssasasasasasase 332
FORMING AN IMAGEcviiirinennenrisiiisssssssmsnsassonssssssssstsssssssassstsssssissssssss ivasssssssss sesssssssssssss 332
ROLE OF THE COPPER (COPROCESSORY)cccreeemsmrursesrsesrsssssssesssnsesesssasssessnsnsasssesesesassseacs 334
Display Routines and SITUCIUIEScecereerereerssserereseeressesssessesssrsssassssesssssssssessssssssrsassssssssassssanassssesessses 335
LIMITATIONS ON THE USE OF VIEWPORTSccccecvrrrrrrenasesasssnsasasssssssesssasasssssassseraseseses 336
CHARACTERISTICS OF A VIEWPORTccccvenesesmsesemerssesescsesessisesssseasassssssessncsssssensasasnssens 337
VIEWPORT SIZE SPECIFICATIONScceeveviririesennsssnissesesesnsasasesasasasasessssserssnsssssasarssassssasssrensss 337
VIEWPORT COLOR SELECTIONccceriurnitrmensssressesssamsesasesesnsasssrosssssssacsasessssresnsssesessserese 339
VIEWPORT DISPLAY MODESccccovirrrnennsnmnsesesnsnionens derusesasaesssssssssasssrssssantrsssnss 340
VIEWPORT DISPLAY MEMORYcccoerrmirirmnmenenmiinsasssssrsmasessessenss . 343
FORMING A BASIC DISPLAY ...ccerereremeesenesssesesssnsessssssssssssssssssssssasssssssssssssssssssassssssssansssssseses 346
LOADING AND DISPLAYING THE VIEW......cccceevnmrinrsersissmsesssssnsssmserisssisessorsssesssesssssssarsssss 350
GRAPHICS EXAMPLE PROGRAMcciiiicnnnnininnsinreresnsenmraossssssssersessssssssassesssssssassssesssassssases 350
AGVANCEA TOPICS.cuurrerrrrsrerssinsmsinsissssssssssissesiesisiimesesiessmssssssissessassssossesssssssssessasessssessassasssassasess 354
CREATING A DUAL-PLAYFIELD DISPLAYc...cccceesesmsmsiorsesesesasasessssssresssssssessmssasassssnssnss 354
CREATING A DOUBLE-BUFFERED DISPLAYccucereteussssmmensmssssssssesssssessssssssassssssssasaranass 355
EXTRA-HALF-BRITE MODE.ccccvrvuruerensesesrsesesnseess cesesereresssereraresansneres 356
HOLD-AND-MODIFY MODE......ccccorseensrensensrssnresarionss wererensressnsasasssssnsnsaesensrnrares 357
Drawing ROULINES ..iveveeseisisisnseeriossasesasssassssssssasssssissssisesnsssesssssssssassesssssssssissssssersssssassasssasssonss sassessses 358
INITIALIZING A BITMAP STRUCTUREcceeerenerenmnmninrnresmsensrsassssessssssnsasasasninsasssassssssssssss 358
INITIALIZING A RASTPORT STRUCTURE..........ccoererenmuenmmrerernirsersrasessssssnsasasssasssssssssssasasess 358
USING THE GRAPHICS DRAWING ROUTINES...... resereaseessssssssasnsrsreenssreasrsranes 364
USET COPPEE LiSIS.cueueuiersersssssssssnsssssssrssnsssssscsssssssssssssssssssssssssnsesasassssesinsasssassssbonssasssssnsssssssnassssssssssonias 381
Advanced Graphics EXamPIESccccecvesernarsesnssreresressassessesses teerssnsensstasssasenassnsanase 385
DUAL-PLAYFIELDS EXAMPLEcccvcimminnsmmsiniissmsmsmsssnsssesssnsasissssststsrsssssssnssssssssssssranss 385
HOLD-AND-MODIFY MODE EXAMPLEccccosmumrsessssasassssssassmssssssesssrsassasasasessrsasssersssns 388
Chapter 24 Graphics: Text 395
INIOAUCHON .. vsreesennesctseneessisesnsnstisesissstsassssssesssassssesnsssassssnsssassssssssssssssssessssssrs ssnssssessnsssssssssssssssnssoses 395
Printing Text int0 @ DIAWINE ATCu...ccvenerrereersensiveressssescssssesssssesssessosensssssrsssssessssasssassssssssssessssssssssass 396
CURSOR POSITION ...cvnnuersesssssrsssrsssssrsmsssasssssssesssssssssssenssessssssssasnssssesssonssssesssssssesesssasssssensrsnsase 396
BASELINE OF THE TEXT ...ccccninininiccscrnsisssmmsmsniensusssssssssssisssersssssessssssessssssssssssssas sersrsssassss 396
SIZE OF THE FONTcvinmsisienisisisinmscsssassssssssasasssssessssssssssesssssssssssesssssssstsrserssessesssensssssssssase 397

PRINTING THE TEXTcccoiviimnnnnniniinissnsiinissssssessssssesssssissssssssssessssassessssasssasasassassss 397

SeleCtiNg the FOML....uiiiimiiininsiiisissisiisessssianssmisissssstsissssssssssssrssesmss sassssssns 398
Selecting the TEXE COLOT it resssm oo saonssesss 400
Selecting @ Drawing MOGE......ccuiuiiicninsisicsismssssaiisssnssississmisissosmsmissisississesssmssssssssssssssssasssssssssns 400
Effects of Specifying FONL SLYIE ...cciiiciemmmsmiiinsimimsioossssosssessmssssessssssssisssssssessssssssssassons 402
USING 8 DISK FOML ..cvveriviisensimieesisssmenssosmmsssnsssessssssssssissossessroisssssasssssssssesesssessossomsesassasssesssnssssssssssssasns 403
USING FONTS IN OTHER DIRECTORIESccccoversvenmrnercrsssssssersasasssasssrsasasssssesssssssaseseses 403
Finding Out Which Fonts Are AVaIlaDIEcecicrininicnsnasmsmnismisssmmiismsissesserisnasscsssssisssssssssssssaens 404
Contents Of 2 FONt DITECIOTY wuiuiicireosmrsressisssessssssisssssassssssmsasssssrssssssnssssasassesssessnsinesesssessssssssssssasssoass 408
ThE DISK FODL.....vccieinuisisiosinsiisissisissssrssisossorissstssestssissssmsssssosssrsssssssossssstsssasassnssbesssssssossassssnsssnsssnses 410
DEfiNING 8 FONL.....c.iconvieieiseniesiiinssisssmsssiietssisssisssssssmsssssssssssssssssssssssssosssssessessrsrsisasssssssasssssens 410
THE TEXT NODE......cccicenreesesrssersasessorsesesssssssssssesasssesssssasasasasssasssasassscsescosssassercsesestssssssmsasnsasien 410
FONT HEIGHToovcrreeeiennecnsesssmsisconsissmsesissstssssssssessssssssssisorsssssssorssssessssssssesssassonsasssssssssssensssss 410
FONT STYLEcoviveirtereensenesesssnmnesesssassssessosssssssessssssssssssessisersosst ssarssssbossessssessossssissssssssasssssssssss 411
FONT FLAGS ...cveeviniesmresnssssseresirssontossersnssinssesssssssonssssaressssssiorssssssssst stasssssssssessassesss st ststsssssssises 411
FONT WIDTH....coovvetrereresssioaseserssesssasrsasssssssssesssssssssssssasssssssensasrsssssasssssssasesestsssrsasssssesesesssssssesis 412
FONT ACCESSORScvcevecerectrisrisesmsnssioesssssissascasesssssssssssssosionsssnssssesssssassesssssassssasssasssssrsssnsssss 412
CHARACTERS REPRESENTED BY THIS FONT.......coeccsumrensnsnnssssssssssssssssesssessssssssssensasesns 412
THE CHARACTER DATA.....coivmennmrmmiinsiisisesssssssssscsssassssssssnssssssisssnsssssssassssssnsssassssssssssssssssosss 412

A COMPLETE SAMPLE FONTcocvtinecesesestinsasesesesssmsasmsssssnsmsasssssssssassessosssesessocssassssessasssssncs 414
WIADPET COAR c.errvrrrerennniesinrenssssentssosssnessossssssesessesssssnsosestossstsssssessstessssessssesssssnsssorssssuesson . 417
Chapter 25 Graphics: Sprites, Bobs and Animation 421
Introduction — SOME TEITS......cciierencriessiesrsssssssisesssasnsssresssestssssssssssssssansssssssssssssssssssssssssssssssssssssons 422
TYPES Of ANIMALION. .cverrerrurreececicrsesensessnssessnssencacssssssssnsmsnsessonsisrsssssssssrsasasaseststsensssesesecsesmersses 423
ANIMOCOMPS c1rririaniirisisririsiniiniit s sssestsnsasssssstssst sassssssssssssssstssssssssessssssssssssassssssssasesaess 424
Preparing To Use GraphiCs ANIMAIONeesirrereseseerssssmassssssessersorsrsnssssssssnisesesastsassesisssnssesssnsnss 425
Using Simple (HArdWare) SPIILES .c..coisuseccesisnssmmissssmsissssiossesssssssassorsosserssssssssssssssssssssssssossssssasssssssss 427
Controlling Sprite DMAcccocinmimrisemsestississsmssssisssessrsseses rervarererersatesareseateseenersenerressrrarannes 429
ACCESSING A HATAWAETE SPIILE «..c.vvveerereererrerserinsrsscrsessssmsessssesssssssssssssssssessssesassssassesesnsossassasassnsas 429
Changing The Appearance Of A SImpIe SPLIte.......cccovevirrreeeesesrsrsrsressesesseensmisessossensssnsssnsnssssenes 430
MOVING A SIMPIE SPIILE «..ccueoeeerercenersarrrinensssrsrsrersasssssesssasasssssssssasasssasssarsrssesssassraserssesesensreraseses 430
Relinquishing A SIMPIE SPIILE ...cccccevrerrrrerirearrrrerssrersseensarensaconsssesssssresesressarssessessisensorsssesensasenses 431
Complete SPrite EXAMPIC .iucvvveisinisenrisermsmsmsmnisisissimsensssssssssissssrssnsssssmsassessssssssssssssssssssssnsssssssass 431
THUC VSPIIES vevvvrereerrrerereseresssronsaressarssssrsssarssssssassssssssansasassssassssss sasessasessaressssassssesessessssesssserassesssnessns 433
VSPIIE SEUUP «vuvuicererrrenrrenssstsmsssssssssssesssssesssssseseassessaseressnsssssssssssssssssssssnsesssenssrsssssssesesssorsnsarassssaans 433
SPECIFICATION OF VSPRITE STRUCTUREcccovuensneressseeniaesosssercrssesssssessrsnssssssivsiosenes 433
RESERVED VSPRITE MEMBERScccccirnirrnnrnrniinsnssnsrsrerssssersessssssssssssssssssssssssssssssensassses 435
USING VSPRITE FLAGS.....ccorenirimmssersisssssesssnsassssssersssssssasssssssssasssssssssssssssssssssssasssssssssssssssssnses 436
VSPRITE POSITIONcccoverenersmsirrsnsssesssmsaasasesssssasssesssssssesessssssssaesessssssssserssesssssssessrassrssssssasssencs 436
VSPRITE IMAGE SIZE.......ccccovrerrunnnssmsesesssssssssasesssessssssnssessssssssseresssesssssenersssssssnsssrsssasssssasssnsans 437
VSPRITE MEMBERS FOR COLLISION DETECTION........ccccoerersrerersrarcrssecssnssersasssrsssssssssaen 437
VSPRITE IMAGEDATAcccoiimininiemrennstinssesssessssorsssssssssssssssssssssssssesasssnssssassessssssassssserssssasess 437
SPECIFYING THE COLORS OF A VSPRITE.........occceecesmmninenesmsssnssesssssssasssssssssiosssssssessasanes 438
ADDING A VSPRITE.......ccceerrrrrrnsrsasesssmsesesssssssisasssesssssssssesssssssssencsisassssssserssasssssesersasnssssansrssenes 439
REMOVING A VSPRITEcocvviinrerirsnsssessssssmssmssssssssssesssssssssssssssssssssssssssssssssssssssessssssssves 439
CHANGING VSPRITEScccouiriiisimermssneserseresorssasasssssssssssssssisssesssssssssssssassssassssssssssssssssssessssssars 440
VSPRITE ADVANCED TOPICScoiiisinnisniicsiniensenasessssssrsmsssassssssssssassrssssssssasrsssssssstssssssssssssss 440
VSPRITE MAGCHINE.......cooveerrerrensrersrssssessssstsssasssssasssssssasssssssssssssssssesssasasssssssssasssssssssssssssssesss 440
GETTING THE VSPRITE LIST IN ORDERccccecvninnrnnenssssesesssnsesssssssssssesesmsasssssssessssssssseses 442
DISPLAYING THE VSPRITESociieccrinsincniccssesesismmosssstsossssssssssesierssssasssssssstssssssssssassaness 443
Complete VSPrite EXAMPIEccccveviveerrsresisrennererenressaresesrsssssssmsrsssoressesssmssescosessssesessssessesssressasinsssassssens 445
USINE BODS ..cciiuerrverismssississsessisssssssissssssesssronssessstsssstsssssssssassssassassssssssassssssasssssasssassssessasssossassesensonsesonns 448

THE VSPRITE STRUCTURE AND BOBScouctirimriimmsinssimmsssssisssinssssmssssssissimssssins 448

Chapter 26 Layers Library

VSPRITE FLAGS AND BOBS.....covticeineneiesiensersersosnenssssssssssnsssssssssssassssasssssassssasssssesassserass
THE BOB STRUCTUREceoceereerernrenrrnsnennsmsasssesesssssssssessssesssnesssssssssessssssssesasssenssssansassassssasasses
LINKING A BOB TO A VSPRITE STRUCTUREcoccvvvurrrernsrnsreerarsessessessesnmassasssssesassnsnsans
USING BOB FLAGS.....oorievtirevecrenenenreeensssnsssstessssssesassessssssessenssssssssssassensssessssssasasassas sisassases s
SPECIFYING THE SIZE OF A BOB......cvcererennionieinissrsssrsssssassssssssssossssssssssssssssasissssses
SPECIFYING THE SHAPE OF A BOBi.....cccoioivieeisenerecseseessstesssssssssssrsssssenmetontsssssssssennonsnios
SPECIFYING THE COLORS OF A BOB......cvcivsnrinninsnsnessssssssssesessssressessssesssssssssssessssssasssssos
OTHER ITEMS INFLUENCING BOB COLORSoccievceerveneeenceneessesessssassesassssesassesassssens
BOB PRIORITIES ...c.ucovtvisrrsncnresensinsnsensanssssersessensssssansasssssassesssssnssesssonsssonsestsss sassssssasssassssossassssss
ADDING A BOBcoiirirrensnsrnsnerssseissrsesessesssssssssssssssnssssassnssasssssassssnsossssessssssssssssssssssssssssssssssassns
REMOVING A BOBi.....ccciincninnnneiniseninessessossessersossosssnssnssssssssssssosssnssssssasssssssessassssssssassasasssnsns
GETTING THE LIST OF BOBS IN ORDER........c.cocevinmininnnenensssessaressessssssassaessssssessasassssasses
DISPLAYING BOBSoocriererrmnrseieesarnssesesassessssssssasssssssesssassasassasessassessssessssassssssssasssssesassonassas
CHANGING BOBS.....c.ccoevveerecnricsisseesssesessssassesosssssesesesnssssassssassesassesassasesosss assessasasssssisssussosssses
COMPLETE BOB EXAMPLEcovcvvunenrirvennensersorserseresasersrasstssssesssasssssressssasesssasssssassassasassns
DOUBLE-BUFFERING.cccocrtvnmeinnssemummesersossassscsorsssnssesassasrassassasessansassssssssssssarnssssssssssnsssssnssns
Collisions And User Structure EXIENSIONScoveveerreresrerecssnesssseesersserssessesssasesssssssasnssaserasssesansonsasare
DETECTING GEL COLLISIONSccccvurrtrrererressrsrsraessossssnsnnsssssssnsessonsanssassesassssssssnsessosssssassass
SETTING UP FOR BOUNDARY COLLISIONSccccecreerrersersnreesasecssssssarsassassssansasonsosessssasaas
ADDING USER EXTENSIONS TO GEL DATA STRUCTURESccoevrvenirecnrnerasensersnsasens
AnIMation CONCEPLS....ocuierinmssmnisesisnsissssssissisisseossesosssssassesssssssssssnsssenssssens
Animation STuctures and CONITOIS ... iuiivesssserusasesessesssssessessessessossessssssssssssssrsssssssssesssssessossossess
ANIMATION TYPES ...ocovrvetecrcirensncrerenesenssssasssesssasesssnsssssssssssassnsssonnassnsssssssssassassassessassassesasses
CHARACTERISTICS OF THE ANIMATION SYSTEMcccoiinmnrrmecrensioneessesenssssssssssssasssns
SPECIFYING ANIMATION COMPONENTScccovvenreneesscssersssassassesassans
SEQUENCING COMPONENTSccermrerrrrereesssassnssesessassrsassessronsases “
SequenCe LiSt TIAVEISAL....ivicimssmminnennoniosisiosssssssssssssssisssnssssssanissssssarissssosssssssssnsssassssssssssnessons
ComMPONENt OFACIING.....cviiiciiieiniiriiestsiriiesssssiisisesssssssssiss st st sssss s s assasssssssssssssssnsninessssssassses
ANIMATION SEQUENUCINGcccoovvurerenermreerreressersesnesssssssessesssssessesssrsossosssassessssnssssss saesasssssass
SPECIFYING TIME FOR EACH IMAGEccccconirerrerioraressstsssmscsessesssssessesnssnssasescrsssssessassnssans
ANOTHER LOOK AT THE ANIMOBccccovnveniinenremssrecsesesssrsrsssssisssassssssssasssssessorssressissssnss
ADDING ANIMATION OBJECTScvievnininierienriicnsssessessesssssessessessssssssosssssssassassessossosssssssasses
YOUR OWN ANIMATION ROUTINE CALLS.......cccocvcerrerasrereresersnsasssrerserassessesesssnsessassarassns
MOVING THE OBJIECTS.....cooieerereciverernerereesessssssssssssssessssesassssassssssssrnsssnsansssssasnssasnonssssnssarasans
THE ANIMATE(Q) SYSTEM CALL......ccovminrnirrrnernireneisessesesrissssssssssssasssrsssssassessssesasssssrassssasses
THE ANIMEKEYciciiiiniininiiienneisionsremnesssessssssssssnesersssnssssrassnsssssssessssesesnssssnsessesaesessasnessessases
STANDARD GEL RULES STILL APPLY ..c.ucvvevireenrenssseesensssssessessorsessssessessisssssesesassaosaasasenes
ANIMATIONS SPECIAL NUMBERING SYSTEMccccvmniurereresessnressessssessesessssssasassnsassaresses
Complete EXamPIE PrOZTAML c..vviieiieveninnisnssssssssmisismssnensssssnsssssassssassssassessisesessassssssasessssassssssssssesasses

INUPOAUCLION ... eerveeeressiresissersrerssssnssnsssnssnsssnsssessnssnssssssssssasssssassrsssossnossassaossassssssassasssassesssassassassanssnesanes

TYPES OF LAYERS SUPPORTED.......cccovininiisiasisusinmomsssssisissssssissssssasssissssssasisssssssssssasssss
Layers Library ROULNES...cueiinmmmasissrissstssisnsesssassieesssssssasnossressssssnsossssssresssssesassissssssssansssssssorsasses
ALLOCATING AND DEALLOCATING LAYER_INFO......cccvnummnnissmsisisissusssiosssassaseons
ALLOCATING AND DEALLOCATING LAYERS.......ccuevintetsrnesesesssnsessessssnmesesssssssensns
CREATING AND DELETING LAYERS......cccocviimmmimniesssssnsmsiisiisissssssssassses
MOVING LAYERS ...ttt snssssssisssss it sassssssssssssssnssssssns
SIZING LAYERS ...t sssscsessassessesssssnesisassssssasassasstess sbassessssssssssssnassnsns sassassassres
CHANGING A VIEWPOINTccconinniisimsssisssissiisamisnisssstosasssssssmsssssssissssssssses
REORDERING LAYERSccovmnninnccinnimmmiiisassssssssmssssmimiiisssssssesssstsesssesess
DETERMINING LAYER POSITIONcccnnmnmimiimmisssismimsimmmisssssssssses
INTERTASK OPERATIONSciivinireimsiirinissnsis e sesssessssssassinsesssssssessessasssessssssases

SUB-LAYER RECTANGLE OPERATIONS.....ccccommmmiessisrmmsssssssisisisssssssssssssssssesssssssssssssssen
The Layer’s RASIPOIL....c.cciiimiiiinsiiiissiscsisssssisisasissssssisssssmaassssssssassesasssssssassssssssss
SIMPLE REFRESH LAYER.....ccccniciiniississmisssisssassscsssssorsssrisssisssrsssssossssssssosssssssssessnsonsessessass
SMART REFRESH LAYERcocciineninenricsninmsnssnnesesessseesssssisussssensosssssssssssssreassassssssssssensossssssssos
SUPERBITMAP LAYER.......covuniniictiarisosissssossnsssssssscassssssssssssontsussssonssssesssassesesnsassssssssssssssssons
BACKDROP LAYER.....coiciniinncmeminissscisimsmmmssenssnssssssissssesssssssssserissssssssssssssssssnsassassssssssosss
USINg the Layers LIDIATYccieemiismssrsssssiisissriisrimnsmsmmismsrsssssisssssssssstesssisssssssessarossesssasssssssess
OPENING THE LAYERS LIBRARYcccniiiiininiessssssnssssassisisssssssssisssssssssassssesssssssses
OPENING THE GRAPHICS LIBRARY ...cccocninisirmsnsemsmssmsmssassisssssassisosssssssnssssssssssssassesssassssenes
CREATING A VIEWING WORKSPACEcocccnmnenmisismsissnnnssssessssssssssisnssssssisnsessenssssnssssoses
CREATING THE LAYERSoirnnniiincsisisiiiississsssssissssssssesssssssessssasssssssssssssasiosossssssisssos
GETTING THE POINTERS TO THE RASTPORTScccocnvecrnmsnessrisorcsosssssresasssnsessssonssassasses
USING THE RASTPORTS FOR DISPLAYcocvninsirmsasesssassisassssssessssassssorissssessssssssessssssassrsss
REZIONS....cciririisieienmaiinsssnscsimssesesssesesnssessssssssons seetsseassesisasntessssnstsns s st b s Rt astsasharesaas st Os
CREATING AND DELETING REGIONS.........ccccovnriissomsiesnasorsmsssssssessenssssssssssssssrsssessssssanss
INSTALLING REGIONS.......ccovumnimressmminssisarsssssssorsssssosercsesessssssssesssassessssssssssssisessensssasassesasassoses
CHANGING A REGION ...cciniiniisisissmsesmmessisesmsssesssssssissssiosssressssasrssssssssssssssssssssesesssassssases
CLEARING A REGION......c.cconisnsrissassesesssassssssesesssssrssaseses reeeenensrsas st srs b aassanns
LAYERS EXAMPLE ...cviciinninsmsinsmmssssssssesssmsssssessssssssessssssssssssssssssscssassssssssssssssssassorssass sasss

Chapter 27 Expansion Library
AUTOCONFIGM,cveverrersrsrsssesssesssasssssmsesssersssssasasssssasssssnesssssssssssssssssssssssssssssessssesesassoosesesesensssasseses
The EXPAnSion SEQUENCE wvieneismimsismissismsisimssssisssssessisssissssssssmssssesssesessssssssesanssssncnsssssssonssnsss
ExXpansion BOArd DIIVELScccimiisiiiniiiessiiiissimmsmsiimsesimssssssssssssssssssssssvansssssses

DISK BASED DRIVERScococvviireesnsnsisnscsssasssssassassssssissssssssssissssssssssssssssossssssssssssisssasssssssesensas
MakeDosNode AND AJADOSNOGE......couersssesssissssessrssarssssssssssinssssssssssesessssssesssasassssenssssssuesssoses
ROM BASED AND AUTOBOOT DRIVERS.......cccuimmsisisimmmieisisisssssssssssisesssssessssssasssssaes
EVENTS AT DIAG TIMEccoomerenmnnnimsinssssisiinssssssssssesssssssissscsssssssssssssssssssssssssssssessssssnsnins
EVENTS AT ROMTAG INIT TIME.......ccccveernrrmrraresesnssseresresasasesesssensassssensasssssssssssissossasssosssssn
EVENTS AT BOOT TIMEcocceeceerersnsscesesesnsmssessesssrsasssasssesasasesesessnsssssssssinisssssssssonssssssssssssss
RigidDiskBlock and Alternate FIlESYSIEMS .ucucccisnicmsisseesmorsssssoresssasassssssssssessssssssesssasasassasssssens
RigIADISKBIOCK. cc.eueievreemimsaencstsesssssesssusssiisesssssssasssssssassenes Lerserrrererersrsneasasstnsastsnsasteeasasbenerases
BadBIOCKBIOCKcoerercereiiivnssssnnssnssssssssnsississssissssisisansssssossssonsssssssssssssassssassssasssssssssssanssasssssasses
PartitiONBLOCK ...cvciiviniiiesimsmmmsnnniiissisnisissisniisnssissmssssimssssssssemsasessssissssssssstssessssesssrsssssssssss
FileSYSHEAAEIBIOCK. c..cccrunerinninisimsisirininisninssssinsinssisssesssessssssssssisasissssisssssnssessssssissassesssasssesss
LOAASEEBIOCK ...cevcrrrererreeniinenraisssisrssisassssoessssssnsssssssssssssssssssossssssssssssssssssssssasssssssssssssssssnsss sussssbe
FIlESYSTES.I ANA F.verrererernrenisisssisisnisiesssnsnsesssnissss s sssssssasssssssssssssssssssssssssasasssensassses

Chapter 28 Math Libraries ‘
INITOQUCHION ...ccveeeeeissisnsessisnsssssssssssanssnsnssssssssssssssnassssssssssssonssssssssssss sassssssss sbsssas sasss sessassasassssssssanssssnssns
FFP Floating Point Data FOTMAL.....cccueinuiessssnesississsmisrorssissssssssmssssissssssssssssossssssessssssasssssssssssassssss
FFP Basic Mathematics LIDIATYc.cccoueerierrrerseesiccsnsaesesansnsssansesansssassasansssssssosssssssonsssonsrssnsassnssssssas
FFP Transcendental Mathematics LIDIarycccoeeeeceereererenennenensnsnessssnsssssssssssnssesassssasassnsasssssssnsas
FFP Mathematics CONVETSION LIDIATYc.ccecsereerrerrersesssessnsessaserssasersssssnsssnsrssessesssssasssasss st ssssssspsises
IEEE Double-Precision Data FOIMAL.........coeereerecesrssssensesesasmsrsssssssssnsrsrssssssasssesssssasessserersssssssasssssssass
IEEE Double-Precision Basic Math LIDIAryccccevveerrierrerinsesreisnmesmmesnssnssssssssssssssssssssssssossssssions
IEEE Double-Precision Transcendental Math LIBIaryccccvccveccnneeiesensessssesesensassessnssssssssassnsssses

Chapter 29 Translator Library
OPENING THE TRANSLATOR LIBRARYocccovmnmninmmninnsmissmcsssmesssassessssssissssssnes
USING THE TRANSLATE FUNCTIONccoconiinnnminmsiisssmessssmisissssssses
CLOSING THE TRANSLATOR LIBRARYccoiiimminiissnsssenienssssssssniimnmssssssssssserssses
ADDITIONAL NOTES ABOUT TRANSLATEcccnussuisuscsssusrisisssssssssssssssssssnassssssessasases

Chapter 30 Workbench

579

INETOGUCHION ...cvveveevessnssisnsransassnsssssssssssassssssesssesssessorssnsessssssnsssessesssssssesrssaossesassnsst sssssnstessssssssssssnssnssesrass 579
The Icon Librarycceeeeenennes et taan e e e Sh AL SRR e SR E RS SO SO S AL SaS SRR RS SRS R RO SR E SEe RS e sea SR SO SR SRS 580
The INO Fle...ueeueiiseccsrnnsscsessassscnssnssrisssssmsnessssssnesnsssssnssssssssasssssssssssssseneosnossesnensestors sanssassarnssssssasssasses 581
THE DISKOBJECT STRUCTURE........coccceruintnrsnsnsescssssssnsssesessssssensssssassssssssssassrssasesssassassssssans 581
THE GADGET STRUCTUREcoceeeveerermmesssssesmassssssssessassssssssssssssassasssrsesesasssrsasssssosssisrssssssnnarss 583
ICONS WITH NO POSITIONccceeverermrreesseressssserssssesmssssssssssssssssssssssrsssesasasasssssssesnsssasssessrsaras 584
Workbench ENVITONMENE c..ceiceiisisresisirisnsrsssssimssssssnsssssssrsossssesssssssssnsssssssssmsnsssssssessssassesssesssssessssoses 584
WBSTARTUP MESSAGE.......coiieerermneesesesssrsssasesssssssssssessssssssssssssssesssasssssesssesesssasssensasssions 584
THE TOOITYPES AITAY «ueuvirirrrerisiirmsessisssiinsissesisisissssssssssisssssssisssisassossstssssessassessosssesesassssssssensosseassssss 586
EXAMPIE COURcotirieriinsiinininsisisssssssssissontasisismsssassrusrssnssrrsstsresssssassrsssssensst sisssonsssassssasssssnsstss sasatosses 587
PrATES.Couuceccereerrrrersnrerersesssnsnsnesnsiosassesassssaessnsssssensnssssnen srresrsressstsassssnisnentes . 587
REKM_ICON_EXAMPIE.C.vveerereeraesrenssrnensrnssnsessersasseerssrasasssssassssenssassssssssrsrarassessasssssasensesssess 589
PROGRAM STARTUP CODEcocovmiricincrnnrsrsmeesesssesmemsesssmsmscsrsesssisisessssssssssssssssssssssssssasseson 593
Standard Amiga StArtUP SOUICE c..ceucerererserermsereesseeseressseessssesessesesessesserssssnsssssssassonssssssssssesasseses 594
Chapter 31 Audio Device 607
INUOGUCHON 1. cerieertisiisnsessisnsnsissiassnssssessesssssassassessssssessssrssessonsasnssesssssassansonssssessssstssssssssesessansasssssansssses 607
DEFINITIONScoreeeeniniissessssssssesssssesssssesssesesssessassssssmasssssssssssessassnsnsssssssssssssssssssenssesnsasssasases 608
Audio Functions and COMMANS..........cccveresmressnserersssssssesesesssssssrsssssasassassssssssasssssssssssassasssssassssssases 609
COMMAND TYPESooicunssisnsnsmsessrmrissnsesasssssasesassorsssssssssssssasissssassnsasssssessrssssssssssassssssesessasnsss 609
SCOPE OF COMMANDS......cccocoritirsusnsesisrsessersrsnsrsssassssmsssessessassssasesassisssssssnssssssssssrssessssssnsasss 610
SYSTEM FUNCTIONSooeeurnrerereseessasessessesssnreressasssasssassrenssssssssssssssssesssssessassssasensasnssessssssasns 610
ALLOCATION AND ARBITRATIONccvetererererssrsnsasnsasesesssassssasssassesssrsassssssesasssnsssssssssensase 614
ALLOCATION/ARBITRATION COMMANDScccvurmresmrremessersasssrsssssssnsasssesessnssssssssssssanes 615
HARDWARE CONTROL COMMANDSccoovmivrmsesssonesrsesrsssssssssssssssrsesesesasasasesssssasarssssesessasss 618
DOUBLE BUFFERED SOUND EXAMPLEcccconvmmimmmmmimsanssnsesssssasasssrsesesssassssessrsanse 620
Chapter 32 Clipboard Device 627
INITOQUCHION coviuiriisesreresssssssassssnsasssssserasessissnssnsrssossssassasssssasssssarsssssssntsssssasssssssanssossossrassresessasesssssssssssass 627
CLipb0ard COMIMANGS .cceoievrvierenssssssaisninesarssensassessnsnssssassasassnsesassesassesassessssassssasassassrsassesasassesassesasses 627
CHPDOAIA DALAcvccirrerseirnnennseessnssisisnssesesssnensressssssassmasssssssssssssasseassesesssasassssssssssssassssasassssesastssseanssnsns 629
CHPDOAIA MESSAZES «ovrersercosesssessorssessssssssssassosaresssssssssssassssassonssssssesnssesssessessentesssansasssassasassasassosssosesases 629
MUultiple CHPS c.oocvvcecninneniniiisssssiissassssssssssssssssssstsnsanassasessss 630
EXamDIe PIOGIAMccuiiriinniiismsmssesssronsnsssnsssssasssssisssmssossessionssassassssssnsasssnsssesss sessssssaessssassessassssssossnsas 631
Support Functions Called from Example PrOEIAIc.ccerrveerrecsrerserssesserescsessseensessassessssnsaasesesns 633
Chapter 33 Console Device 637
INOAUCHON ..viveirrecsnsastivesescsrensaossssssssensasessesasasssossssasssnssssnss 637
SYSIEM FUNCLONS ...coviririnnarnsressmasssorssnsrsasssnsasnsesisnsssnsmssssssssssssssssssssssssssnsssssssssseresssssssssesessssssasassasanssss 638
CONSOIE I/D o.crreevrenenserrsnsnensasnsnessesesasssssssasssnsassssresssssssssssesersisssassessasassssenensssasassassssssosssses 638
GENERAL CONSOLE SCREEN QUTPUTcccccrnverecmmmrerssessmseresssssessssssssssssasssssssssassonss 638
CONSOLE KEYBOARD INPUTccveriritnrssnnsssesesasssssssssessssersesssssssssrsssassssssssseserssssssasssssnsss 638
Creating an I/O Request...........cccceruene evereeserarssstesraterssTe R TRt s tRO e sRO e sHeRe SR e RO SO SR OSSR SRS SRS OB TS UR SRR PO RO e R OO s 640
Opening a8 ConSOole DEVICE......ccuiruninsnsssecsmmiismissmsasimosimississssssssssmmssisisssssssssssstsssssssssasssrssssssss 640
THE CONUNIT STRUCTURE.......ccsvnmsinmrersririnmrsasnsrssismesssssrsrsasssesssssasisssssssssrssssssssassssasssossasaans 641
SENDING A CHARACTER STREAM TO THE CONSOLE DEVICE.........cccoceevrerinereressrsens 641
Control Sequences for WiNAOW OULPULcesierereisoereresssassesssesersossnesssassasersassesassesssssssasssnsassssssssses 642
READING FROM THE CONSOLE......cc.ccvueurveens censrerees e erartresesnenertresisnntatnnesssintanans 647
Closing 2 CONSOIE DEVICE......ureerererrernsreseesssaesnssssnsesssssssssssssssssasessssessessssssasssnssssassssarssssssssassnssasassssns 648
Console Device EXamPple COde... . iimmmmniammnnmisinmmmoimmimioesmsssssssssssssssssssssssssrasess 648
INFORMATION ABOUT THE READ-STREAM........coururrivnnrinsmsssssssssssisssosssssssssossssssssssseneas 653
CURSOR POSITION REPORTcoovremmmmaessasssnsrsnsasssssrssseeasasssssssassssssssssssasssssesssasssssssssssssesass 654
WINDOW BOUNDS REPORTcccovvviirensssesasesesesssesessnsressssssssssassssesssssssassssssssssssssassssisssssssssss 654

SELECTING RAW INPUT EVENTS.......counitinnnnnnininsninenmsarsssssssssssssmsssssssssssisesasasssssssssssissssssnens 655

Complex Input Event Reports reerensaisesreseastonsrtasessae s et raserenarteter SNSRI SIORR NI eSO RSB S SO SRS R S RS S e e OO REOR OO 656
Using the Console Device Without a Wlndow reenereeneisssrsssaeatsaeRs e sa s b ssaanaresnens 662
KEYMAPPING .vvevcrninseirinremrsasssssssssasssssrsssssssssssssssssssssssssassssestassssssssssssssss s ssssasesssssnssasssssstsssssasssssssssss 663
ABOUT QUALIFIERS......ccovvisennisssessssssssisisemsssssnssssssssssssassssssssnsssssassssssssssssssssssssssssosnsssssasasses 665
KEYTYPE TABLE ENTRIES......c.cooveuu reesebestbeae bttt Sesas R R e sesE e s RsE S EseR SRR RS SR SRR SR 008 666
STRING-OUTPUT KEYS...oecicreurimnnenasrsnsnmsessssssissasssssssssssssssasssssssisssssssmansssssssssssssssnssssssasss 666
CAPSABLE BIT TABLEccoervuiteerersmmsmsssssssssssissstssssassssssssssssssssesssssssensssssssssasassssssssssonsasssses 667
REPEATABLE BIT TABLE......cccovutrreenacnsesmsssssssscssssssstsssssrsnsssssssssessossastonsasssisssssssssssnssaassssses 668
KEY MAP STANDARDSccovtcteieretnrerstssmsesssmsmsmssssisssssssssssessssssssserssssessrsnssessssssssasssassssssssoses 668
DEAD-CLASS KEYS ...oioirovrreserisisrsermmsssesesssssmsmsssssssssssssssssssssssssssesesssarasesssssssssssssssssessassonsasses 669
DoUbIE-DEad KEYS ..vcrrsisssersisssessssmsenssissssnossssistssssssnsesssssstacsssssssssssssasesssessssssssssonssseassasssssssssssass 671
Complete Keymap SOUrce EXAMPIE ...uuueecrinrvsrismsmsmssnssssssasessssssusssssesessssssssissssssssssssstsssasenssessesssss 672
Chapter 34 Gameport Device 683
TIIOGUCHION «..cvvevevreresesiesnesssneseonosnsnsusresnssesssssassrnnssssst sssss sabsssrassssesasssssaressssesnessaress shssssssssssersssesesesansesaese 683
Gameport Device COMMANAS ...vucverririrsoseressssssssisssnsansessesssssissssssssantsmamssssssnssssssssmssnsessssssasssssacsses 684
GPD_ASKCTYPE......occnnrisrissnsssnsnsesssssasesine ceeseseacuene et seseR e SRS A SR bR R SR seR a0 684
GPD_SETCTYPE.....cccvmrmrnesssssssssssissssasssssissssnsassssasssssssssossssassnssssssssresssssssases eer 085
GPD_SETTRIGGERccovccenvneriinrusuinians reussaesers st ta e R bt sEsR eSS S san bbb sE SR SRR H RS Sn SRR RO 686
GPD_ASKTRIGGERccovurerceernererssssssssisssismssssssssssessssaserssonsssssassistssssnsnsssssssssssssssssssesesasssossssass 688
GPD_READEVENTcciiinenrrisiasissssssssscsmissesnsisssssssssissnsnsasasasssssnsasssnssssssnes . 688
Joystick EXample PrOgram........euseeercsssrssssesssasssssssssssssssssssnsnsssissssssssssssassinss RO 689
Chapter 35 Input Device 693
TIEOAUCHON cuvvvevererionsureereressssersassessnesasasnsasssssssbsssesssassssssessasssssssestasssesessensasssassssnsssssasassasssessesses sessssases 693
Input Device COMMANMS......oimiirereereesssisunssinnssssssssssssnssnsssssssssssssssssssssisessssssrsssssssassassnssssssssssssasnanass 694
IND_ADDHANDLER COMMAND.........ccocvunmumutsssinmsosmmsmssssssssaasssisissssssssassssssssssssassssassness 695
IND_REMHANDLER COMMAND.......ccocsunmesmsissnsssmmmmesssesssssssonsssssssssssrsnsrsnsssssssasesssesessases 697
IND_WRITEEVENT COMMAND......cococsemmsinsunmsesssssessnsssessssssssiserssssssssrsnsssasisssssssssssssssesssesens 697
IND_SETTHRESH COMMAND.......ccccoursrnmursssssisissssrsasisessasssesssesssssssrsmsassasssssssssssssssssssssasssssoss 699
IND_SETPERIOD COMMAND......covvcsssimisisisissasmismsessaassnssassessesssssssnsasssssssassssssssessassssssssasns 699
Input Device and INUIHONcveivireiriesiireriesnsinsessessmsenssnsessessmssssssssssisssssssssisssssnssnssssassassansessssssassossses 700
SAMPIE PIOZIAM.....cucvirririisimsissensessersssessassessssssssssssssssssssssssesstssssssssssssssssesssssssssnsssssssssssssossasassassssannss 700
Chapter 36 Keyboard Device 705
INUTOAUCHON cuv.vevverensnereessessrsssnsesassssssissssssssssssssssassssasesassssesssnssessassasssssassesssssasnssssisssassnaasasess sassssasrsnsans 705
Keyboard Device COMMANGS ...uucuserverresessesersmnsssississsesssssssssssssesssssesssssssssssstssissssassinsssssssssassassasassss 706
KBD_READMATRIX.........cee.. 706
KBD_ADDRESETHANDLERcccoeiuriesmnsresmsssesssssssssesssssssesmsssssssesssssaresssssessasnsnsisasasssnsssassss 708
KBD_REMRESETHANDLERccceeeeeenmrmreesisimsssssssisssssesssssssssssssssssssssssssssnssssssssssassssssassasasss 709
KBD_RESETHANDLERDONEccccvuseresemssmsessassasssosssssssnssisssssassssasasssssossessssssnsassansrsssssnssasssss 709
KBD_READEVENTcoccevveventsnnsasesssssmssssssststsastsissssssssssasstsessssssassssssssssssorsssssssnsnsrassasassst sssssoss 712
Example Keyboard Read-event PrOZIam......cuuieisnmnnsmnimsissssisssssssnsnssssssisisssssismsmssisssns 73
Chapter 37 Narrator Device 715
INEEOAUCTION .vevvererrerisnersensesserssassesssnnessnssssnssrssssssessssssssssssssssnasssssssssssessasessssassssssssssenssasasassssasarsnssnsasens 715
The TranSIAtor LIDIATY v...ceucreersesereerensestsisnsssssesssssesssssesssssassissssesesssssossassssssssssnssnsssasssasasasnnsssssssasssssss 716
USING THE TRANSLATE FUNCTION ... 716
THE NAITAIOT DEVICE.eccreersrcrsnnrerisnsssssaesencssascsssssstssassesassssasssnesenssssssrosssssssssssssssssssssssasssssssssssasenssosaasssss n7
OPENING THE NARRATOR DEVICE.....ccccconmiimsnimininiiiiisesssisesssssonsssssssassssssnestss n7
CONTENTS OF THE WRITE REQUEST BLOCK......cccoiininniiniininsmemiesmssssssonsssss 17
CONTENTS OF THE READ REQUESTccvumesssinumnsniissssssosesssssisssssarsssssssessanssassasssssasss 719

PERFORMING A WRITE AND A READ.......ciiminmimninmnrinnsimsnmsssssssiiissssie 719

EXamDPIE PIOZIAML..c.ceuveuisiuensisinissessssssssisssssssssrsassasssnsesessssssssessssrissensasssssssasssssosssssssssssssssessastsessaosssssss 720

How to Write PhonetiCally fOr NAITAIOL........cccvvvvnrereererenssereensssceseesesssesseessasssssnsssssssesssssssssssssssnssnses 720
PHONETIC SPELLINGccoiitiininrinisssssssssnmsesensssennesorssssssssssssrsassssssssessasessossssssossosssssssssessssas 721
CHOOSING THE RIGHT VOWEL........ccocovcermrmrnreivienerssmasaesssossssaserenss 721
CHOOSING THE RIGHT CONSONANTcovvrerrrivrsesnrsssssasssisesencrssssssssassssssssssssasssssssssssoss 722
CONTRACTIONS AND SPECIAL SYMBOLS.ccovcnurrirmrernersssmsisssssesssssassensesssssesmssssnssssssns 722
STRESS AND INTONATION......cccereverrrerivnsnserssssesmmresesssnsnssssssssssessans 722
HOW AND WHERE TO PUT THE STRESS MARKS 723
WHAT STRESS VALUE DO TUSE.....ccvinirmrneninansnsssnssvssssssssssssesssssesssssssssssasssssosssssssosssens 724
PUNCTUATION ...cocriiiinssisnserissssssmassssasmsnissssessssssassssssmsssasasessissasssessossscsssssssissensssssssssssasssnsss 724
HINTS FOR INTELLIGIBILITYcoceccecttreesserensssinsaerossassressrsssessssssssasercrsssnsssssssssossessssessisssessans 725
EXAMPLE OF ENGLISH AND PHONETIC TEXTS. ...cocoveveveereevsneses 725
CONCLUDING REMARKScccovccemssessnisinsnsrsrrsrssssssssssssonssssssssssssssssssessessssssossasssessossssosasnses 726

The More TechniCal EXPlANatiOn.......ccecussemerersesessssiosressssseisasarsssssesessssasasssesssssssssssssssssassessassnsssnss 726

Table of PhONEMES......cvueceeeeerensnnensereneeensessereessens Ceesrsese ettt ass et st s e asasarenrarensans 727

Chapter 38 Parallel Device 737

INITOAUCHONc.cririreriscsisitcisscsissarisssessninsasasassssasassssnsasssssesastssassassasessssssssransetsssssnsasssssssesesensossosssssonses 737

Opening & Closing the Parallel DEVICE.....uuueeeeecrerverssserersrmsmsnrsssssmsassssssssssssesiesessssssssssssssssnssssssns 738

Termination of Reads...... esbsarsassisastste st bessene e snesesaesesressanernanarasseses 740

Setting Parallel Parameters 740
PARALLEL FLAGS (io_ParFlags) . 741
SETTING THE PARAMETERSc.ooisesisinrrireneressesensnessnsassssssssnssssssrssssssassossssassasssesesssssssssasssse 741

Errors from the Paralle]l DEVICE.....cuiiciecneererserssesesessssssssesssssassosesssoressessaesessssssesesess v 142

Chapter 39 Printer Device 743

Introduction ereeet s SRR SRR O oA e b SRR eSS4 S4SAS SR an SRR RS TSRS 0808 SES SRS SR SERe e SRS RS Sa SRR BRSSO st s e R e R e R R s 743

Using the Printer Device as an AmigaDOS Hle........oveeireeeerreneensrssssnns 744
OPENING THE AMIGADOS PRINTER DEVICE..........cocoerensmserenssercrsansssssisssnssssssssasssssessassse 744
CLOSING THE AMIGADOS PRINTER DEVICE........c.cornureusuensennsssersssesessismssssssssssessasssssonsises 745

Using the Printer DEVICE DITECHYccurrrereerrierrsenssssesssssssssseressssesssssssmsssssssssssssessssssssesssmsnsinsesssonss 745
DATA STRUCTURES USED DURING PRINTER I/O.......occceurirrreeririmsnsinnenensssosesenseseese 745
CREATING AN T/O REQUESTcoeccvervrrernrrrmmmmssscssarassmessassosssseasssssessasssesenssssssons 746
OPENING THE PRINTER DEVICEc.ccooovneniennsisenrensusassssssssssssssessssssssssssssssssnes 746
SENDING I/O COMMANDS TO THE PRINTER DEVICE........ccovvviuisione .. 147
WRITING TEXT TO THE PRINTERccoccetreunensunenmrecssrersesssssssarsssssessassssassrsssssssassesssssensnas 748
SENDING PRINTER COMMANDS TO THE PRINTER. 749
PRINTER COMMAND DEFINITIONS...........cccocernnsnne 749
DUMPING A RASTPORT TO THE PRINTER.........c.cocouvvueenererisrressersasssssesessnsesens 752
PRINTER SPECIAL FLAGSoovviierernernienssssesssssessessssssssssssssssssnssasssssssssessinsssssssssssssassssssses 753
PRINTING WITH CORRECTED ASPECT RATIO.......ccccvnerreererernsssssssssessanssssnae 753
HANDLING PRINTER ERROR CODESc.ccoetvurnemrnermrsansarssssssssssassssssessssssssssesssssssssssssssssns 755
STRIP PRINTINGcortceernnensnsssssscsssmmssnmssesssssassesssesssnsassssssssssssssessssssessnssmssessssossssssssassnssssssses 759
GETTING INFORMATION ABOUT THE PRINTERocccevniinninrereneunmsiseseasissssasessssssssssssonses 760
CHANGING THE PRINTER PREFERENCES SETTINGS........ocecourireumssvessmsessssnsssssensssssorsnsns 762
ADDITIONAL NOTES ABOUT GRAPHIC DUMPS.....cccouirernrinirerieenanressssessens 763

Creating @ PHINLET DIIVET.......icoiemmecrecensminnmmersssessssssssssssesssssssssssssnsssssesssssnssssossesssssssassssossassssessassssens 763
WRITING A GRAPHICS PRINTER DRIVERcccovnnmercenisasisssosssssersasssesesssmsssssssssrsssssssssnens 766
WRITING AN ALPHANUMERIC PRINTER DRIVERccocovninennnmnnsaeisesessssesssssesesessassones 772
TESTING THE PRINTER DRIVER.......cccscvirummrnesssesnsssresssmsessssssssosassarssssssssssssssasessssssassassssens 776

Example Printer DIiver SOUICE COUC.......ccveuemeenrrerrrrrrersrmnisresmsesesssssssssssssasessssasesssessssssanssssssssssssasssosen 7717

IACTOS. L uviuisisesssesnsaessssassssossnssomsnmrsssasassassssssssssrssassssssasssnserssssasesssssessssssssassantessensassasssssesenasssareresssssasans 177

EPSONX ..oiivcucivininisisisennsassnesisessasssnssesssesssnsetssesssssstsssssssssssssssassssstssstasesssesasssesssssesssssensnsssesssssasnsas 779

EPSONX_REV.I....cccevuenne cetesseseaesessensere T rtasas i s S LS SR Sh SRS OSSR SRR R R RS SRR RS SR SRS RS 00 782

EPSONX: INIT.ASMeciirereirenenessersrensssssassasnsssssssisssssssassssessasssnsasnsnseesssssse st sesesnsnsusassnasnsasssss 782
EPSONX: DATALC ooiervreceererrressnessessescersssossessesssssssesssssssssionsasassnsinsssss inassss ssssnsosssssssassnassss svassas sos 784
EPSONX: DOSPECTIAL.C ...evetitiisceceesensenesiersssssasesssssssssssssssssssssssssssssmsssssssstssssassssssssassasssssses 788
EPSONX: RENDER.C ...vovvveereemiessesesssssssisssssesesssassncassessassssssssesssosssensssnsssasast ststsassssssstssassasasesesss 791
EPSONX: DENSITY.C cuvvverreeresesrssisersssensserssassinsssssssssssisessassassssssssssssssssssstsnsiassssssssssssesssassasssases 796
EPSONX: TRANSFER.ASMcocovvisiversesseseseseresssesssesessssssosssssssssssmnsasasnsasasssssssssssassossssesnsnasasses 797
EPSONX: TRANSFER.C ...cocveviueniriresesssisenssssssssssssssssssesssssssssosorsssnsssssnsrssatssssssstssasesssassnasesasssss 801
EPSONQ ..urevuivissessonssssisassssssssstsssssssssssissssssssss esssssasssasassssssssss sesss s assssss sssssssssssassassssasssssssssssasssssonss 804
EPSONQ: PRINTERTAG.ASM ..vvninirnnnscnissssnmnsssssssmnmsrssnssssssssssssiasissssssssssissassssssnsssssssssses 804
EPSONQ: EPSONQ _REV.L....ccovivrurrencmsessismrsnsmmnssssssensenssrssssasssssssesssssssssnsssssssssssnssssssassssssssss 806
EPSONQ: INIT.ASM...... - et sesissasasas s sebsRsr e . 806.
EPSONQ: DATA.C cueucierrecrsnnsessississssasinsssssssssassstsnsssssassasssssssssssssansassssssssssssssssassssssssstassasssstsssss 809
EPSONQ: DOSPECIAL.Cccovimsensessiseessisnnsssssssmssmssossasssssssssosessissssssssssssssssssssossasssssssenssessssesns 812
EPSONQ: RENDER.C ...coccvmmiennumsssseessssssssssssssssssmssssssnsassssssssssssossssssssssssssssssiassasesssstossassssssssss 815
EPSONQ: DENSITY.C .. reeesesssssesasssrstas e R e RS RO RO R e R SR SRS 0L SO SERES RS OE VeSS VOO RIS S0 00 819
EPSONQ: TRANSFER.C....cocvunnrinnnssnssmmssnsnsmesssssssassasincasescssnses rerevesnenssssserasrsssess 819
HP_LASERIET ...covciunnnennssusinissserssssmsssssssasmmsssssssnssasssssssasssssssssssssanssssnses verrenensnerenas 822
HP_LASERJET: PRINTERTAG.ASM.....ccovueeiitnnrmsssinssonssscesssssssssssessssssmsssssasssssnsssssssssnssssses 822
HP_LASERIJET: HP_REV L....uoiviiitirresirsnensssnrsssssasassssssssssssessasnses 825
HP_LASERJET: INIT.ASM....ouciiiimiuseiniinesssnsssssssmssnsessssssssssessesssssssssssssnsnsssssssssssssssessssssns 825
HP_LASERIET: DATA.C....coocovsinnnirersirssnssssssssssssssassnssnssssssssssisssssssessssssssssnssssssssssassassssssssses 827
HP_LASERJET: DOSPECIAL.C....ccocvunnurirnesssmsnasssssnssnsissssescases w 829
HP_LASERJET: RENDER.C.....ccovcnsiuiinnnnmisrrensssnsssssissnssssssssssssssssssissssssssssssssssmsssasssssasssssssssses 833
HP_LASERJET: DENSITY.C....covtiininrrrirsrsmsesesmmmsmssesisssssmsssssssssmmsssessrssssssnsssssssssasssisssssnsnsasasass 836
HP_LASERJET TRANSFER.Cccoesimreiuirnrisssssssmssssssmssssssssissssssssstassssssssnsnsasssssassastasssssssssases 836
XEROX 4020 ...0000ererseremressessssssssssssssssssssssssessassssssssssssssssssassssssssosssssssss s sssssssssssssssssssassnsssssssssassssees 838
XEROX_4020: PRINTERTAG.ASM ...coiirmnrmrsrnrnnsssnnasisssssssinses 838
XEROX_4020: XEROX_4020_REV.I reersesaeeetstssee bt ererer bR TS SS e SRR TR RS S RSB R R SRS S OO R ORI 0 08 840
XEROX_4020: INIT.ASM rereesseensaessasntnsssnssesesenes - 841
XEROX_4020: DATA.C ..ovvereriinresensnsesmsssisnisssssessasinmssssssssssssssssenssnssstssssssssssssssssssssnssasssssssssss 843
XEROX_4020: DOSPECIAL.Ccvvsusivniscscessssssesessensissussstsssssssssassassss 847
XEROX_4020: RENDER.Ccvineensrsessinssssisissssssssssssossasssssessesssssssessassssasssssesssensasnsasensassassssassans 850
XEROX_4020: TRANSEER.C....cccovtnrisinmecsssessessesssesssssnsssssmssnsssssstsssessssssssasasssassssssssasssasssasss 855
Chapter 40 Serial Device 859
TIUTOAUCHON 1. evvencrrsssssseseessenesesesersssesssssressasssssst shssssssssasssnsssasessssss sassssssessasstssss sassessssasssesssassssssesassnsss 859
Opening the Serial DEVICEccvvummersrsmmssmsnssssssssessessssissssimnsssssssssnssssssssnes .. 860
CloSING the SErial DEVICE....uuvumriisrssrssrsmssnsssissssassrsssssssssssssssssssmssssssssesssssssssssssssssss s st sssssssssssoses 861
Writing to the Serial Device... “ reetesereseassesssensnesnet st s s asash e ees , 861
Reading from the Serial DEVICEwuuriemmssmmmisserssnsstssssssssssssississsssmssissssssssssssssssssssssenssisssssssssisssss 862
FIRST ALTERNATIVE MODE FOR INPUT OR OUTPUTc.ccoveerenmnsrsesessscas 862
SECOND ALTERNATIVE MODE FOR INPUT OR OQUTPUTcccocveerennsnsssnssnsssssmsnsecsssens 863
HIGH SPEED OPERATION......cccceouuisitrreunaananns reeesessessrsssrsatre s ea SR e R T s SSE SR SRS R b on SR SRR RS RS 863
USE OF BEGINIO WITH THE SERIAL DEVICE.......cccosuiinmmnninimmmmesisssmsmssssssssess 864
TERMINATION OF THE READcccvnnnrennsencsrsssmcasssnsemsassssssssssssssrsasssssssssssssssssnssssssssssssssssas 864
Using Separate Read and WIIte TaSKS c..c..c.ucersssisesssscissssmmsmmsssssssissssrssssssssssissssimssamsssssssssnssssnies 865
Setting Serial Parameters - SDCMD_SETPARAMScounminimmsissnismsimmnssssssssmsssssnssssisnss 866
SERIAL FLAGS (bit definitions for i0_SErFIags)ceuessmimscnsisinicssssnssissssisisssemnmsissssnsiiaens 868
SETTING THE PARAMETERScovniirvrrneeenenscsisssesisssenmssassissssnsrsssssssssistasssssssssasassarsasssensss 869
Error codes from the SErial DEVICE ...uuevereeereeessisississeresossssssesiesisnessassssarssssssssssssssssasssasssesaamananisssases 869
Multiple SETial POIL SUPPOIL...cuuucusersssnsisessssssrsssissassssssssssssssssermasasmesssssanssasssssrssssssus sssssssssssssssrsssasesenes 869

Taking Over the HardWare..........uererersrsnmssminsssscssessascssimssssmssnssisssasanses “ . 870

Chapter 41 Timer Device
INETOUCLIONcvversreseiesissnsenerse e senssnnenssss e ersesesssnss b s ssb b s bmsasassesss s s s ab b st bt s assascasassasssssasnssnsins

Opening & TIMET DBVICEucieiiiimiinsererrsiirarsssssersssssssassessssrsssssssssssasssssssssssssesorsisasssasssassosessss
AdAIng 2 TiME REQUESL....curmemsrrrreresrsrsasssesesssaseessererarsrssesesesesssesssssassserssesssesssssesssasasssssssssseseseserenerssssns
AbOrting @ TIMET REQUESE.......ovvvueirerersemsisasssessassssissssssssssssnsassrsssssssssssssssssssssrsssessssssssserssssassssssssssesss
CIOSING @ TiIMEL.cveveseeisicsrersrireessenseessasasssssssasssnssessesssssssssssesssnssssesssarenssesesssssssssesesesesssmsessassssssssonsnssssses
Additional Timer Functions and COMMANUSc.eeeseressrveseesersesersssssrererrassssessssssessssnsassasasssnsssososess

SYSTEM TIME .ucvviniisinsnsnssssssmsisssmisisessssessssssasesssssssssssesessssssssssseressssssassssssssassessesssssssssssseses

WHY USE TIME ARITHMETIC?ocuvuvirninsnsussensossnessnssnsesessassssassssssssssssssssssssssssssanssnssessens
Sample TiMEr PIOZIAM ...c.cccceicsnsismsemmesessssssnnrseresssssssssssssssasssssesesessasssensns

Chapter 42 Trackdisk Device
INEEOAUCTION ..vuvessatssssssrissisescsssasisisisssssesssesssssmsessssssenssssvssssssssstsssssessssssssessasssessssssssesesssssssassassssasssses
The Amiga FIOPDPY DiSK.uicviniiimmsisninminnmesesiesiommssssssssssersismsssessssrsssssssesssssssssssssssesessssssss

Trackdisk Device COMMANGSceoevueureserrrererssnrarnssisrmnssessssermsesessssssessssssarssossssesssossrssansonssssssorisnene
Creating an IfO REQUESL........iviieeisisssisiscsinsmersansssssssesssssssssssnsreesssesssssssarssssssssessssssssessssssrassosessasses
Opening a TraCKAisk DEVICE.....cuiiiiuicccsnesnirnmmrensesrerssnmssssssmrssssnssssssssssssasssssesesssssssssssassesssssssanssssones
Sending a Command t0 the DEVICE.........vewerenieresessrssssseisisssississsesssssssrsssssssssesssessssssasssnsenes
Terminating Access t0 the DEVICEccucvrerrerersvererersssnssrsssesmessessasersrassasssosess
Device-Specific COMMANGS......ccverismrisssscsiesssssisssensssmsasesssesmaessssssesssssversasarsrsrssssssssssssrsssssssssssasassossess
ETD_READ and CMD_READcccviiiimiceermsnnnmrsnssssssssessusisssssesssssssssesssssssssssssssssssssassssses
ETD_WRITE and CMD_WRITE.........ccceermureerrernreresesssssmsersersrssassssssisssssmssssesssssssssassossssenoneses
ETD_UPDATE AND CMD_UPDATE........cccccevsurussssssanisesarsrssseseressassssrersrsssssesssssssasssssssssesossass
ETD_CLEAR and CMD_CLEAR...........cstssmeesesasacessesassserssssseresssasssssossssssssssossssssensssssssosssssen
ETD_MOTOR and TD_MOTOR........uvcrerrcrnniesserenssrmremssesesssrersasssssssssssssssssssansssssssssssissasss
ETD_FORMAT and TD_FORMATccccovvrinenninmrensssrssssnssessssssssssessssssessmsssssssonssssassassasssssnans
StAtus COMMANMAS.....ccveriirrsisensssnnsirmresimmesesessssssrrasnesssessasnerssesssesssstsssssssssssssssssssessssssssessesssasssssssssenes
TD_CHANGENUMcocscimiiminnssnnnssrserersessssssssssesssensassssssasesssesesssses .
TD_CHANGESTATEccoiniinnnessnsssssssnsssmnmsessssssssssssessassssssssesssssssesssssssssisessssssssssssonsssssssosssssns
TD_PROTSTATUSocuiiiicistnienncenssrsnsesnsessssssssssssssssssasssesssssssssssssesssasesssssesssssesssssssssssassssseses
TD_GETDRIVETYPEcccscniriinsssniscsssnmmsmmnessssessssssssssssssssssssssssssssonssasssssnsssssssssasenossssssssasssnans
TD_GETNUMTRACKSocviiitirnenennsaeisnssesssrisssssssssisssssesessssssnssesssssssssesssssssssasssssssssesssasasases
Being Notified Of DiSk CRANEESivvieiccererrmmnerersesessserssnrsersssssssssssstsassessasssssesossasssssonsrssssasssssssenssonss
TD_ADDCHANGEINTccocovvevererener ettt e Rt RSO S4 44t s r e R SR e RS Rt SR SR SRRSO S SE 08 VRS RO ROS SO e "
TD_REMCHANGEINTcccoeniunivnssssnrnresmssesmsssssssessssrsssasssssissssssssssessasssssessasasesosarsssesssssssssssssssss
Commands fOr LOW-LEVEl ACCESS.....cuciueermmrmiasiesssarssensensssssssssssssssssessessessssossssarosssssssssesssssssasens
ETD_RAWREAD and TD_RAWREADccvcviieinennmrenennrsrsiesessssssssessssesssssssesssssassssssssssseses
ETD_RAWWRITE and TD_RAWWRITE.........ccvcvveremivsrnsensnssrensssessessssssssessrorssssssssssssasssssns
Commands for Diagnostics and REPAIT...........cvreeeeersieneireemssesmessesssissssssssssssssessessssssssssssssssssssmsesensnne
ETD_SEEK and TD_SEEK.......ccccvemeeeremneereserermsensesssssssssssseressasssssosssrssssssssesssssssssssssssssssssasossene
TrackdiSk DEVICE EITOTScuiuviviinitecnssnssscssssesssasernmsmsensessssssssassssassessssssssossssesessessssssasesnssesesssssonsasasens
EXQMPIE PrOZIAM......ovneriirinnisinsiiieinninnsesisssssssssssisssssssssersssssssssssssssessosassssssssssssessessasssessssssassasess

Chapter 43 Resources
INITOQUCHION o... ot et cveceenierreeracensacesisnrssseseessssssssssassssnensssssssssessasss saasssssssssssssssassssasasssssssssessssssssssssssons
DIiSK RESOUICE ..uvierisesrisseassensssnsnsosiessssaesrosssesessssssnsesessrsssssssesssessstessssssssnsssesssssssassesessosssonsrensessoseseses

Appendix A Troubleshooting Your Software

GENERAL DEBUGGING TECHNIQUESccosetvsuersmsismsinssserensasensnnne
A FINAL WORD ABOUT TESTINGccovvveemnrrnrsrssssnsissississncrsnssssnssasssns

..................................

..................................

Appendix B Linker Libraries

IIITOGUCKHION v evverereonereesssssrossosssrsrssarsessrsossssasassarsssstssssnsssssasnesasrorsonssassesansssisasssses
AMIGALLIB....c.cceviucecessasenisssssssosssesssasnsssssssssssssssasssssasassssssonsssssassssassssss
DEBUG.LIB ..ooveeeerisstssesssstssssessssssssssnsessssessstossssssssssissssnssmasssnenssrsncorssassonss

AMIGALD..vocrerreiinirnirisiisriiress st s s s st et e
EXEC_SUPPORTccvuerensrenssssssssesssstssssasssssssssssnssssnssssssssssssissssssrsnsssessosas

DEBULZIID.verrsrssiiseisersrssisnsassssssssssessssssssesssassssseisisss st ssssssssssssnssnssuss s sasesse

Appendix C Floppy Boot Process and Physical Layout

..................................

..................................

..................................

..................................

oooooooooooooooooooooooooooo

............................

909
914
914

915
915
916
916
917
917
917
918
919

921

List of Figures

Figure 1-1 A Screen With WINAOWS.......covieerrrninnseenssmsmessesnsssossmsssssssssssesssesssssssssssssssssssesssssessessaons 3
Figure 1-2 Menu Items and SUDIEMSccuevveremersierimesnssesssesnesssssesssssssssnsssosssssssssssesssessensessssssesssssees 3
FAZUIE 1-3 A REQUESIET ...vuurvriesinsiisiesensarssesssssansesssessssssssssssssessssssssassssssossssssssssssssssssssssosssssssssesssssssasesses 4
FIGUIE 1-4 AN ACTL...uucoirirncricriisiiesnnsssnssesessessssssssissssssssssssssssssssssssssassosssesossssssssssssssssssesnesmsensessessassseses 5
Figure 2-1 A Screen and WIAOWSccvcevenmrsersemsssismsssensenssessissmessessssssssssesssssssssssssssssssssssssssssssenses 12
Figure 2-2 Screen and Windows with Menu LiSt DiSPlayedc..eueeeeeeerseremsesesemsesesssssssssessssesssssseens 13
Figure 2-3 The Workbench Screen and the Workbench ApPpPLICAtioNu..vveerssesseserermrssesessssssssssseeneens 14
Figure 2-4 Topaz Font in 60-column and 80-COIUMN TYPESccvvvvrnerceecrsemsrscrseeeeesessssssesssssessssessossene 19
Figure 3-1 A High-resolution Screen and WindOWS..........ceueemeessessienesessesesssesssssssssssssssssssisssessessssens 34
Figure 3-2 System Gadgets fOr WINAOWScveevrvenrereresersennessissesssesssisssensensssessssessssesssssssnsessssassssssaes 40
Figure 3-3 SImPle REfTESN c..vuiuieiriciicisiineinscinennninsnsneisesssssssssssssssessssssssssssssssssssssessssesessseseasssssssnssssons 43
Figure 3-4 SMAart REMTESH......cuuiiiniiitireccisssenensnsssssn st sessssssss e ssssssosmssssssssssssssssesssssssssssseensssssasees 44
Figure 3-5 SuperBitMap REfTESN.......ccccvvuerrurrrmersnssssnnssemnessessssssessesssssssssssessssssessssssssssessesssssssasssssssasses 45
Figure 3-6 The X-Shaped CuStom POIMIET.........cevuuvvereeressnmsessesssresessseseeseessesssosesnessssssssesesssssssssosssosns 58
Figure 4-1 System Gadgets in @ LOW-TeSOIItION WINAOW.......c.ecoviunereesseseesenesseessesssssssssssssssssessssessssesnses 73
Figure 4-2 Hand-drawn Gadget — Unselected and SEIECIEdvueveiverereererrsesrererssesiesssssssessesensens 75
Figure 4-3 Line-drawn Gadget — Unselected and SEIECIEd........vuvmvereeeeerreesmseessessessssesnesnesssesesessssorns 76
Figure 4-4 Example of COmbining GadZet TYPESecerersiivereersenssseeesesssssssssesssssesessessesnssssssessessessossns 89
Figure 5-1 Screen with Menu Bar Displayed...........courereiveesnnnenenns cesrtastsesssssensrennasasnesesonans 111
Figure 5-2 EXamPle M BOX...ucucuiunerecsrssimnnnnnsesnssnsssssssssisesseseesorsssssesssssssssssssssssssssesssssssssssssssssssssesens 112
Figure 5-3 EXample SUDIEM BOX...ccuiuiuirinrresenrmsersnsssnsssssessssssssssssssssssesssesesssssssssesssssssssensesssssesssseres 113
Figure 5-4 Menu Items with Command Key SHOTICULSueeeeneseeseneceseesssessssssssssessessssssnssnssssssessssseseens 115
Figure 6-1 REQUESIET DEIUXE «....vuvusiiceesmesersenrssasnssnsissssssssssssessesssessssssssssssssmsessssssssssasessnssssssssasssssessssssns 136
Figure 6-2 A Simple Requester Made with AUtOREGUESE)cvueveevrremererorcnesescersasersessessesssssessessssessseres 140
Figure 6-3 The ““Out Of MEMOTY’? AlCIL.....verrevusreensensisnenssesmsssssssseasssssssssnsnsossssssessssssssnssesessssssesssssons 146
Figure 7-1 WatChing the StrEaMcierrvcrisrenmeeeeesesisemssnssessscsssssssssssssssessesssssssssssssssssssmssssssessessssssossosas 156
Figure 7-2 Input from the IDCMP, Output through the Graphics PrmitiVeS..........ceeeeeerreesreresessossssssases 158
Figure 7-3 Input and Output through the CONSOIE DEVICE.......ceeueeureeeereersesseesessrssesssssssssssssssssssersesionsens 159
Figure 7-4 Full-system Input and Output (2 BUSY PrOgram)c.eeeveeseueeeseeseessssecsesiossesssesssssosssossosases 160
FIgure 7-5 OULPUL ONIY ...ucuuivcecerorenrrerrenssimnsisssssererscsssssivsssesssssesssssssssssssssssssssssssssessessssssssessosssssessns 161
Figure 8-1 Example of Border RElative POSILION.u.ereeuveeescmsessiesssssesesssnesesesmonsansessessessssssssessssssessasses 176
Figure 8-2 Intuition’s High-resolution Sizing Gadget IMAEEeuevereneeceererserosssssssesesssssssssssssssessesens 182
Figure 8-3 Example of PlanePick and PlaneOnOfR...........c..cevueesiensnsessssssssssssessersessessssssssssssssossssssons 184
Figure 8-4 Example Image — the FIONt GAGZEL..........o.uvvueuereeeceroreeesensensenessennsmsssssssssssssssasssossssssosnees 186
Figure 11-1 The Dreaded Erase-DisSK REQUESIET.........uevurimseesseessessessrssessessmsessssssesssssssesseessesssssessssssens 214
Figure 16-1 Simplified OVErview Of an EXEC LStcuuvvveevsereomreeirsnessernssessesssessessessssesnsssssssssssosssensens 250
Figure 16-2 Complete Sample List Showing all INIEICONNECHONS «.vuvveveerereereeerreseeeserserssssessesessessessssssense 252
Figure 16-3 List HEAdeT OVETIAPurverenrsiernrnsissisnsscsseressssssessessessssssssnsssssssessesssassssssesssssessessossssiosssns 256
Figure 16-4 Initializing a LiSt HEAAET SIUCIUIE .u.vvvvviviusivsirirecesessssineensesssssssessessssssssnssssssssssssssessossssossses 256
Figure 23-1 How the Video Display Picture IS PrOGUCEQ..........evveerurereermecnsessmsenssssssssssssesessssnensessssseseens 329

Figure 23-2 Display Overscan Restricts USable PICIUIE ATEAcvvuseeeeeverecesesssesssesssssssssssssesssorsosssses 330

Figure 23-3 Interlaced Mode — Display Fields and Data in MEMOIY w..vceeverucsneemsstssesmssssmisssmssannsnnes 331

Figure 23-4 Interlaced Mode Doubles Vertical RESOIUtON w....uuurvvsirisssnissssssssnssssssssssssssssssisssssssssenneenns 331
Figure 23-5 Sample MemOry WOTAS.....ceeeussereressseessssssissnensssmssissnsmsssssssssessssssssmssssssssassessssnsssasasssssssiassssss 332
Figure 23-6 A Rectangular ‘‘Look’” at the Sample Memory Wordscoveuvuussceeessssssssssssssssssssssurinennnes 333
Figure 23-7 Bit-Plane for a Full-screen, Low-1esolution DiSplaycoerrsssserssssssmssecsmssnersnsssinassssinses 333
Figure 23-8 Bits from Each Bit-Plane Select PiXel COIOr c.....imimmrivssnisssrisssnssessisssinssissninassirnsserisens 334
Figure 23-9 The Display Is Composed Of VIEWPOILS c...ccvvuviimismmnsiersssmsssemssssssssssssssenssmmssssssssmssssissenss 336
Figure 23-10 Correct and Incorrect Uses Of VIEWPOIS ...uvcimismssimsssissmssemmsssssssissismnsesssssssmmsssissssusense 337
Figure 23-11 Size Definition fOr @ VIEWPOTIL....ccuueimmecummnnresssssmsssssrsssssssssssssassssssssssssssssssmissanssssssisasses 338
Figure 23-12 A Single-playfield Displaycccccvuuissuricseusseninns . . 341
Figure 23-13 A Dual-playfield Display......couscesssuscinseiesssemmsssssinsssisssmscssstssssisssmmnsessnsissssmisissenes 342
Figure 23-14 How HIRES Affects Width 0f PiXelS ...t 342
Figure 23-15 How LACE Affects Vertical RESOIULON ...cuu.ivucininmmsssissersssnsssmmsssssssisssisssssssnissssnsnssasssissssse 343
Figure 23-16 ViewPort Data Area PArameters... o cimecisismmismissssusssssssesmssssnssssanssssssssnssssmssinisssssasess 344
Figure 23-17 Example of Drawing Through @ StenCil......ccccuuvmeuisssersseersssissssscsmssssinssemissssmassssneacens 374
Figure 23-18 Example of Extracting from a Bit-Packed ATTaY c....coucrssssmmmsicscumsssssinminsssssrminssssisnasees 375
FAGUIE 23-19 MOGUIO cccuvvvriummerissnmssinsssesssssssssssesssssssssssosesmsss st ssssassssssssssssssassssst s sasssssanssssnsns s sssssssesassss 376
Figure 24-1 TeXt BaSEhNC...uuuuuuummmssssnsssissessermsssssssssessssnsssmmsssmsssssssiassssssssssssssssssssssssssssssmsssssssmmssasisssasssassss 396
Figure 24-2 Complement MOGC.....uurruseruusssmmmsessssssssnsssssssnssssssmissssssssassssssssessssissnsssssssssmsssmmmsssisssssessecss 401
FAUIE 24-3 CRAISPACE....eucussersssssssssssssssessssnsssssssssssssssssssosssssssssssssssssssssssasss ssssnssssssssssssssssssssssssssssssssssses 413
Figure 24-4 CRATKETT c....cuuuummmmuunsssssssssssssmssssssssssssssesssssssssssssssssssssssssssassssssssssasisssssssssssssssssssssssssnamssnssssssas 414
Figure 25-1 GEL StUCIUTE LAYOUL cvvvuurerssreussessssssssisssnssmsmesssssssssisssssisssssssssssssssssssssmssssssssssmmsssasinssesssssses 425
Figure 25-2 Sprite COIOr REZISIETS ..vvuuruserusreseussserssrtuerssissssssssssssessassusssnsssmsssssssssnsessssmsssansssisasssassaseses 428
Figure 25-3 A COIlSION MASK ..vvvrureuuecrmenssssssssmssecssssssssssnsmsssmmssmssssussesssansssstsssssisssssssesssanassssssssssessenss 467
Figure 25-4 Ring MOHON COMMIOL..uuiiuerrsserscessesssssssrsisssmmsessmsmsesmansssonssssesssessessessesssssussanssmsssmyssisstasssssses 474
Figure 25-5 Linking AnimComps For a Multiple Component ANIMOD...eevveveceirnsnisreseicsnssssnnasssssssensas 4717
Figure 25-6 Specifying an AnimOb POSION....c..ciumimmmsimmssmmmsssrmsssissssssssssssissssssanessssssssssimsssss 479
Figure 25-7 Linking of an ANIMODc..cccusimsimusscunsssisssesrsmmimsssmnsssmsssssssrssssssssisissmssssssssmsssssmsssesssesss 480
Figure 33-1 Amiga CharaCEr SELeveuermmmsmrssserssssissssssssinsssanssstsssmsssasiusssssssssssssisssessssssssssissssasmnssssissess 639
Figure 33-2 Amiga 1000 Keyboard Showing Keycodes il HeX...wwuerrsserssssssnsmssanssssssmnsssssssnnssens 658
Figure 33-3 Amiga 500/2000 Keyboard Showing Keycodes it HEX w....ovwvvmsssemmississisissssseisinsssssnisssses 658

Figure 36-1 Raw KEY MAlIIX c...uemeeiunsessssssssseesssssssssssssumnsssssissssmmssssssssssssssssssssssisssassssanssssssmssssmssssssssssses 707

List of Tables

Table 2-1 Screen Depth and COlOT........couureieriinenersessesessssiesssssssssesssssissssessessssessosssessstassssssssssssssssssssns
Table 4-1 System Gadget Placement in Windows and SCIEENS.........cuuuevvreerisiserseesssessessesssssesessessssessens
Table 4-2 Editing Keys and Their FUNCHONSeeceevirerversmsiseresssesssssssssssesessessssessssssensssesssssssssonssssssnns
Table 9-1 MOUSE ACHVILIES. c.vvrsuersirsssssressssmsrnssnssessessssssssassesssssssssssssssssssesssssssssssssssssessssssensssessesssasensssness
Table 9-2 Special Command Keys........cvrrererersrseserersesssensesssssssenses ceorsassesssasassersassanens
Table 11-1 PrOJECEMENUSc..cuveveenrrrsnnssnssennsssssssssmssenssssessssessessssssssssssssssssssssssssssssensessssssessossssesssssses
Table 11-2 EdIt MENUSccirrircrstrivrennnsssesnscsissenssessessesssessosssssssssssssssesesssscnsessssssssasssssssassessssssssssssossasssns
Table 11-3 SElECHON SNOTICULScvevuirerirsersrrmnerssssssnsessessessssessissssssssesssssssssssssosesssessesssrssssssssssssssssssses
Table 11-4 Information (MenU) SHOTICULSev.vereeneserrereesiessessmsasesnsessssassssssesesssssessssssssssssssesessssesssessons
Table 11-5 Cursor KEYScvcurererereressrmmereresssssssssesssssssesssesssssesens cereesesrsersteessessantustarnerennen
Table 17-1 Traps (68000 Exception Vector NUMDEIS)cuvueerccersssesssessessereseresesesenssses

Table 21-1 INEITUPLS DY PIiOTILY...c.ovccvvrererercersisuseressseseeseensecsesesssesersssnesssssensaenens
Table 23-1 Depth Values and Number 0f COlOrS il the VIEWPOTITveceeescerescssseessesersnsesessssssssessensasasess
Table 23-2 Single-playfield Mode (DUALPF not specified in Modes variable).............ccerneessresseesueennsne
Table 23-3 Dual-playfield Mode (DUALPF specified in Modes variable)eveeesecesecnsensesessensersees
Table 23-4 Bit-Plane Assignment in Dual-playfield MOGE..........coureeermrenrneeeesscesensessnsessasessssnesssssssssessens
Table 23-5 Minterm Logic Equations..........cuuieceennnenes sessessrirssasssnantsensnsasens
Table 23-6 Some Common Logic EQuations fOr COPYINGccuurreessesisnesemesssesssssssessssnsessssssasssssens
Table 24-1 Default Character FONLSc.vvuseerresessessssssersersssssssssssssesssssasssssasessaes
Table 30-1 WOTKbENCH OBJECE TYPES ..cvvrerrrererrerernrsesresisesesssssssenssssssssssresessesssssssnsesessasesesssssssssessensssessse
Table 31-1 Suggested Precedences for Channel AIIOCALIONveceesceeeseeressmsessesessesessasssessessssssnssesseses
Table 31-2 Possible Channel CombINAtionsvcirseeeiseesesessscssmeeessessssesssssessases .
Table 33-1 Console CONOl SEQUENCESccvrveerrrerrriisresnsrsesissesssssessasssssssesmsssesensssssessssesssssssassssesasaene
Table 33-2 Amiga Console-CONIOL SEQUENICES ...c.cvvvrrerrrerrnsessssmserssarrsessssessessssssssssasssssnsnsesssssssssnssesssses
Table 33-3 Special Key REPOIt SEQUENCESevuvurerenicrrearensenserenesrrrssssssssssssssnsssssssssesssssssssssssssesssnessens
Table 33-4 Raw INPUL EVENE TYPES w.cocevrvrrenensnrnnssnsenssessisssssssssssssmsssssssssssssssessssssssessssssssssssssssssasssessons
Table 33-5 Input EVEnt QUALIfIEIS........ccvvereveresemsisenensrsssessresesssssssessessiosssssassssonsssssssssassssesessssesesssst seessanes
Table 33-6 ROM Default (USAQ) and USA1 Console Key MapPING......oucerrensesrnsennnsensssesssesssssessnsssesss
Table 33-7 High Key Map HEX VAlUES........eceverrrnrrerrssinssmsessessesssssssrssessssssesssssesssssessosssssssssssssssssssssssses
Table 33-8 Keymap QUALTIET BilScvccveuruerirresrsssesissersersesssssssssssssssessesmasssssssessessensssssssssssesssssssssnssors

Table 38-1 Parallel Parameters (IOEXIPAT).......coveiiinicrncnsesesisssessesssssasasssssssessesssensssssesssssessssssesissssssesens
Table 38-2 Parallel Flags (10_ParFIags)..........ocvueerernimmernesssisesessessenssecsessssssssssssassssssssssssssasssssssssssssossens
Table 38-3 Parallel DEVICe EITOIS.......coccvververnrvereserssnsessssessisesssssssessssssssssssnssssssess sssssssnssssesssesssssensassasns

Table 40-2 Serial Flags (10_SerFlags).......ceureeereresessesesenssressscsnenses seorrsseststentteneasnanassensrerane
Table 42-1 Trackdisk DeViCe EITOr COUES...uuuuruniririsssssnsmsersesssrensesenssesesessssssossesssssessssssssessnsesesesessrosssaees

Chapter 1

Intuition: Introduction

Welcome to Intuition, the Amiga user interface.

What is a user interface? This sweeping phrase covers all aspects of getting input from and sending output to the
user. It includes the innermost mechanisms of the computer and rises to the height of defining a philosophy to guide
the interaction between man and machine. Intuition is, above all else, a philosophy turned into software.

Intuition’s user interface philosophy is simple to describe: the interaction between the user and the computer should
be simple, enjoyable, and consistent; in a word, intuitive. Intuition supplies a bevy of tools and environments that
can be used to meet this philosophy.

Intuition was designed with two major goals in mind. The first is to give users a convenient, constant, colorful
interface with the functions and features of both the Amiga operating system and the programs that run in it. The
other goal is to give application designers all the tools they need to create this colorful interface and to free them of
the responsibility of worrying about any other programs that may be running at the same time, competing for the
same display and resources.

The Intuition software manages a many-faceted windowing and display system for input and output. This system
allows full and flexible use of the Amiga’s powerful multitasking, multi-graphic, and sound synthesis capabilities.
Under the Amiga Executive operating system, many programs can reside in memory at the same time, sharing the
system’s resources with one another. Intuition allows these programs to display their information in overlapping
windows without interfering with one another; in addition, it provides an orderly way for the user to decide which
program to work with at any given instant, and how to work with that program.

Intuition: Introduction 1

Intuition is implemented as a library of functions. These functions are available to high-level language programmers
via interface libraries and to assembly-language programmers. Application programmers use these routines along
with simple data structures to generate program displays and to interface with the user.

A program can have access to all the functions and features of the machine by opening its own virtual terminal.
When a virtual terminal is opened, your program will seem to have the entire machine and display to itself. It may
then display text and graphics to its terminal, and it may ask for input from any number of sources, ignoring the fact
that any number of other programs may be performing these same operations. In fact, your program can open several
of these virtual terminals and treat each one as if it were the only program running on the machine.

The user sees each virtual terminal as a window. Many windows can appear on the same display. Each window can
be the virtual terminal of a different application program, or several windows can be created by the same program.

The Amiga also gives you powerful graphics and audio tools for your applications. There are many display modes
and combinations of modes (for instance, four display resolutions, hold-and-modify mode, dual-playfield mode,
different color palettes, double-buffering, and more) plus animation and speech and music synthesis. You can
combine sound, graphics, and animation in your Intuition windows. As you browse through the Intuition chapters,
you’ll find many creative ways to turn Intuition and the other Amiga tools into your own personal kind of interface.

How the User Sees an Intuition Application

From the user’s viewpoint, the Amiga environment is colorful and graphic. Application programs can use graphics
as well as text in the windows, menus, and other display features described below. You can make liberal use of
icons (small graphic objects symbolic of an option, command, or object such as a document or program) to help
make the user interface clear and attractive.

The user of an Amiga application program, or of the AmigaDOS operating system, sees the environment through
windows, each of which can represent a different task or context (see figure). Each window provides a way for the
user and the program to interact. This kind of user interface minimizes the context the user must remember. The
user manipulates the windows, screens (the background for windows), and contents of the windows with a mouse or
other controller. At his or her convenience, the user can switch back and forth between different tasks, such as
coding programs, testing programs, editing text, and getting help from the system. Intuition remembers the state of
partially completed tasks while the user is working on something else.

The user can charnge the shape and size of these windows, move them around on the screen, bring a window to the
foreground, and send a window to the background. By changing the arrangement of the windows, the user can select
which information is visible and which terminal will receive input. While the user is shaping and moving the
windows around the display, your program can ignore the changes. As far as the application is concerned, its virtual
terminal covers the entire screen, and outside of the virtual terminal there’s nothing but a user with a keyboard and a
mouse (and any other kind of input device, including joysticks, graphics tablets, light pens, and music keyboards).

Screens can be moved up or down in the display, and they can be moved in front of or behind other screens. In the
borders of screens and windows there are control devices, called gadgets, that allow the user to modify the
characteristics of screens and windows. For instance, there is a gadget for changing the size of a window and a
gadget for arranging the depth of the screens.

2 Intuition: Introduction

Figure 1-1: A Screen with Windows

Applications can use a variety of custom gadgets. For example, the program might use a gadget to request that the
user type in a string of characters. Another gadget might be used to adjust the sound volume or the color of the
screen.

At any time, only one window is active in the sense that only one window receives input from the user. Other
windows, however, can work on some task that requires no input. For the active window, the screen’s title bar can
be used to display a list of menus (called the menu bar) at the user’s command. By moving the mouse pointer along
the menu bar, the user can view a list of menu items for each menu category on the menu bar. Each item in the list
of menus can have its own subitem list (see figure).

Edit

Fonts Help

Fornat

Figure 1-2: Menu Items and Subitems

Intuition: Introduction 3

Menus present lists of options and commands. The user can make choices from menus by using the mouse pointer
and buttons. Applications can also provide the user with key-sequence shortcuts, as an alternative to the mouse.
Intuition supplies certain key-sequence shortcuts automatically.

Windows can present the user with special requester boxes, invoked by the system or by applications (see figure).
Requesters provide extended communication between the user and the application. When a requester is displayed,
interaction with that window is halted until the user takes some action. The user, however, can make some other
window active and deal with the requester later. If you wish, you can let the user bring up a requester on demand.

,,:| — SAVE PAINTING—— ——

PLEASE TYPE IN A PAINTING NAME I

| Illunination of Twilightll |

OK?* CANCEL I —‘"

Figure 1-3: A Requester

The alert (see figure) is another kind of special information exchange device invoked by the system or an
application. The alert display is dramatic. It appears in red and black at the top of the display, with text and a
blinking border. ‘Alerts are meant to be used when a serious problem has occurred or when the user must take some
action immediately. The application may also try to get the user’s attention by flashing the screen or windows in a
complementary color.

4 Intuition: Introduction

Sof tware Failure. Press left mouse button to continue.

Guru Meditation #8188889,88C03786

Figure 1-4: An Alert

The Right Approach to Using Intuition

Intuition is a very flexible program environment, with a vast number of features and defaults. The tools and devices
are well defined and easily accessible. Although many default values are provided for you to rely on, few
restrictions are placed on you. You are encouraged to let your creativity flow. Taking advantage of the many
Intuition features enables you to spend less time implementing user-interaction mechanisms of your own, since
Intuition already provides a wide range of them for you; in addition, the user of your code gets to work in an
environment that does not change radically from one application to another.

For example, you can define the windows for your program in the standard Workbench screen provided by Intuition.
Then you can use the standard system requesters and gadgets and simple menu facilities. Alternatively, you can
design a custom screen using your own choice of modes and colors. You can use Intuition’s standard imagery for
your windows and gadgets, or you can design completely custom graphics. Intuition allows you to create your own
pointer and to combine elaborate graphic images and text strings in menu items. You can also choose to mix
predefined features and custom designs. Your creative freedom is practically limitless under Intuition.

No matter how simple, complex, or fanciful your program design, it will fit within the basic Intuition framework of
windows and screens, gadgets, menus, requesters, and alerts. The users of the Amiga will come to understand these
basic Intuition elements and to trust that the building blocks remain constant. This consistency ensures that a well-
designed program will be understandable to the naive user as well as to the sophisticate. This is the essence and the
beauty of the Intuition philosophy.

Intuition: Introduction 5

Intuition Components

These are Intuition’s major components:

* Windows provide the means for obtaininglinput from the user; they are also the normal destination for the
program’s output.

+ Screens provide the background for opening windows.
« Numerous mechanisms exist for interaction between users and applications:
* Menus present users with options and give them an easy way of entering commands.

« Requesters provide a menu-like exchange of information.

Gadgets are the main method of communication.

» Alerts are for emergency communications.

» The mouse is the user’s primary tool for making selections and entering commands.

» The keyboard is used for entering text and as an alternate shortcut method of entering commands.

« Other input devices, like graphics tablets or music keyboards, provide additional means of user input.
» The methods of program input and output are as follows:

« Input is received through the éonsole device or Intuition Direct Communication Message Ports
(known as the IDCMP).

+ Output is transmitted through the console device or directly to the graphics, text, and animation
library functions, as well as through speech and sound.

General Program Requirements and Information

The sample Intuition shell program that follows shows all of the basic requirements for an Intuition application.
There are three important points:

¢ You must open the Intuition library before you can use the Intuition functions,

» Certain languages such as *‘C’’ require the pointer to the Intuition library be assigned to a variable called
‘“IntuitionBase’’.

e Resources must be returned to the System.

6 Intuition: Introduction

THE INTUITION EVENT LOOP

The Intuition event loop that we’ll use is called ‘‘main.c’’. It opens a window on a custom screen, then waits for you
to click on the close gadget. When you do, it closes the window, the screen, and Intuition. We will use main.c for
most of our Intuition examples. It will vary from example to example, as our needs dictate. Each different window

has its own header file. So, we’ll sometimes ‘‘#include "sandstoneWindow.h"*’ or

“‘agateWindow.h’’, instead of

the customary “graniteWindow.h’’. (All of the window header files are named after rocks, for consistency in

naming. The names convey nothing about the window characteristics.)

/* sysgads.h */
/* These are, respectively, the sum of the widths of the*/
/* close gadget and depth arrangement gadgets; and the */

/* sum of the heights of the sizing gadget and the */
/* depth arrangement gadgets. These values are merely */
/* advisory, since the height depends on the font */

/* height, and the width depends on the screen width. */

#define SYSGADSWIDTH 80
#define SYSGADSHEIGHT 19

/* end of sysgads.h */

/* hires.h -- Declare and initialize a NewScreen structure */

struct NewScreen fullHires =

{

o, /* the LeftEdge must be zero */
0, /* TopEdge */
640, /* Width (high-resolution) */

STDSCREENHEIGHT, /* Height (non-interlace) ¥/

2, /% Depth (4 colors will be available) */
-1,-1, /* Default DetailPen and BlockPen */
HIRES, /* the high-resolution display mode */
CUSTOMSCREEN, /* the screen type */
NULL, /* no special font */
wour Own Screen®, /* the screen title */
NULL, /* no special screen gadgets */
NULL /* no CustomBitMap */
}:

/* end of hires.h */

/* graniteWindow.h -- This file implements a fairly ordinary window. */

#include "sysgads.h"

#define GRAN_LEFTEDGE 20
#define GRAN_TOPEDGE 20
#define GRAN_WIDTH 400
#define GRAN_HEIGHT 150

struct NewWindow graniteWindow =

{

GRAN_LEFTEDGE,

GRAN_TOPEDGE,

GRAN_WIDTH,

GRAN_HEIGHT,

0,1, /* Plain vanilla DetailPen and BlockPen. */
CLOSEWINDOW, /* Tell program when close gadget has been hit */
WINDOWCLOSE | SMART_REFRESH | ACTIVATE | WINDOWDRAG |

WINDOWDEPTH | WINDOWSIZING | NOCAREREFRESH,

NULL, /* Pointer to the first gadget -- */
/% may be initialized later. *x/
NULL, /* No checkmark. */

Intuition: Introduction 7

ugraniteWindow", /* Window title. %/

NULL, /* Attach a screen later. */
NULL, /* No bitmap. */
SYSGADSWIDTH, /* Minimum width. */
SYSGADSHEIGHT, /* Minimum height. */
OXFFFF, /* Maximum width. */
OxFFFF, /* Maximum height. */
CUSTOMSCREEN /* A screen of our own. */

}:
/* end of graniteWindow.h */

/* main.c - This is' the progrém shell we’ll be using with our examples. */

/* Compiled with Lattice C v5.02 */
/* Compiler flags were %-bl -cfist -L -v -w") */
/* where the file Include.q is a precompiled header file of all of the */
/* Amiga "include" files, plus the Lattice-supplied "proto" files */

#include <exec/types.h>

#include <intuition/intuition.h>
#include <libraries/dos.h>
#ifdef LATTICE

#include <proto/all.h>

#include <stdlib.h>

int CXBRK(void) {return(0);}

#endif
/* Include other required vendor- or Commodore-Amiga-supplied header */
/* f£iles here.) */

/* Include user-written header files here. For illustration, we show, */
/* two header files which we will use frequently. */
#include "hires.h®

#include "graniteWindow.h"

/* Use lowest non-obsolete version that supplies the functions you need. */
#define INTUITION_REV 33

extern VOID cleanExit(struct Screen *, struct Window *, int);
extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;

VOID main({int argc, char *argv(])
{ .
/* Declare variables here */
ULONG signalmask, signals;
UBYTE done = 0;)
struct Screen *screenl NULL;
struct Window *windowl = NULL;

/* Open the Intuition Library */
IntuitionBase = (struct IntuitionBase ¥)
OpenLibrary(“intuition.library",INTUITION REV);

if (IntuitionBase == NULL)
cleanExit (screenl, windowl, RETURN_WARN};

/* Open any other required libraries */
/* Make the assignments that were postponed above */
/* Open the screen */
screenl = OpenScreen{&fullHires);
if (screenl == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

/* Attach the window to the open screen ... */
graniteWindow.Screen = screenl;

/* ... and open the window */

windowl = OpenWindow({&graniteWindow);
if (windowl == NULL)

8 Intuition: Introduction

}

cleanExit (screenl, windowl, RETURN_WARN) ;

/* set up the signals that you want to hear about ...
signalmask = 1L << windowl->UserPort->mp_SigBit;

/* call the functions that do the main processing */

/* And wait to hear from your signals %/
while(!done)
{
signals = Wait (signalmask);
if (signals & signalmask)
done = handleIDCMP (windowl);
}; :

/* Exit the program */
cleanExit {screenl, windowl, RETURN_OK) ;

UBYTE handleIDCMP(struct Window *win)

{

}

UBYTE flag = 0; i
struct IntuiMessage *message = NULL;
ULONG class;

/* Examine pending messages */

while(message = (struct IntuiMessage *) GetMsg (win->UserPort))

{

class = message->Class;

/* When we're through‘with a message, reply */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch{ class)
{ i
case CLOSEWINDOW:
flag = 1;
break;
default:
break;

}

}
return(flagqg);

VOID cleanExit{ scrn, wind, returnValue)
struct Screen *scrn;

struct Window *wind;

int returnValue;

{

/* Close things in the reverse order of opening */
/* Close the window and the screen */

if (wind) CloseWindow{ wind);

if (scrn) CloseScreen{ scrn);

/* Close the library, and then exit */

if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase);

exit (returnvalue);

*/

Intuition: Introduction 9

Chapter 2

Intuition: Screens

Screens are the basis for all Intuition displays. They set up the environment for overlapping windows and they give
you easy access to all the Amiga display modes and graphics features. In this chapter you will learn how to use the
Workbench screen provided by Intuition and how to create your own custom screens.

About Screens

The screen is Intuition’s basic unit of display. By using an Intuition screen, you can create a video display with any
combination of the many Amiga display modes. Certain basic parameters of the video display (such as fineness of
vertical and horizontal resolution, number of colors, and color choices) are defined by these modes. By combining
modes, you can have many different types of displays. For example, the display may show eight different colors in
low-resolution mode or 32 colors in interlaced mode (high resolution of lines). For a descnpnon of all the different
display modes, see the ‘‘Custom Screens’’ section below.

Every other Intuition display component is defined with respect to the screen in which it is created. Each screen’s
data structure contains definitions that describe the modes for the particular screen. Windows inherit their display
parameters from the screens in which they open, so a window that opens in a given screen always has the same
display modes and colors as that screen. If your program needs to open windows that differ from one another in
their display characteristics, you can open more than one screen.

Intuition: Screens 11

Screens are always the full width of the display. This is because the Amiga hardware allows very flexible control of
the video display, but imposes certain restrictions. Sometimes it is not possible to change display modes in the
middle of a scan line. Even when it is possible, it is usvally aesthetically unpleasant or visually jarring to do so. To
avoid these problems, Intuition imposes its own display restriction, allowing only one screen (one collection of
display modes) per video line. Because of this, screens can be dragged vertically but not horizontally. This allows
screens with different display modes to overlap, but prevents any changes in display mode within a video line.

Screens provide display raster memory, which is the RAM in which all imagery is first rendered and then translated
by the hardware into the actual video display. The Amiga graphics structure that describes how rendering is done
into display memory is called a RastPort. The RastPort also has pointers into the actual display memory locations.
The screen’s display memory is also used by Intuition for windows and other high-level display components that
overlay the screen. Application programs that open custom screens can use the screen’s display memory in any way
they choose.

Screens are rectangular in shape. When they first open they usually cover the entire surface of the video display,
although they can be shorter than the height of the display. Like windows, screens can be moved up or down and
arranged at different depths by using special control mechanisms called gadgets. Unlike windows, however, screens
cannot be made larger or smaller, and they cannot be moved left or right.

The dragging and depth-arrangement gadgets reside in the title bar at the top of all Intuition screens. In the title bar
there may also be a line of text identifying the screen and its windows,

The figure shows a screen with open windows. The depth-arrangement gadgets (front gadget and back gadget) are at
the extreme right of the screen title bar. The drag gadget (for moving the screen) occupies the entire area of the
screen title bar not occupied by other gadgets. The user changes the front-to-back order of the displayed screens by
using a controller (such as a mouse) or the keyboard cursor control keys to move the Intuition pointer within one of
the depth-arrangement gadgets. When the user clicks the left mouse button (known as the select button), the
screen’s depth arrangement is changed.

A AUARAANARSAARAAAAAARAARAARAR
SIS EVVEVERTEVEvEvYEy LUV TEVEVVIY

[AnigaShell =
15 files - 15 blocks used
1 cogz dfe: 1 s libs:
ans. xbrary..copled
xcon. f..copxe
transl a or. library, ,copied
info,libravy, .copied
nathieeedoubbas, lbravg. copied
version, llhrary..cople
diskfont, librany, .copied
" isathueedoubtrans.h pary. .copied

&

Figure 2-1: A Screen and Windows

The user moves the entire screen up or down on the video display by moving the pointer w1th1n the drag gadget,
holding down the left mouse button while moving the pointer, and finally releasmg the button when the screen is in
the desired location.

12 Intuition: Screens

The screen’s title bar is also used to display a window’s menus when the user asks to see them. Typically, when the
user presses the right mouse button (the menu button), a list of menu topics called a menu list appears across the title
bar. The figure shows a screen after the user has displayed the menu list.

o e Disk i |

Tevialee

(sl

2) avail
Tope. Available

313 M Laesst
chl .
fist N2 4134275 1478532

- - st Tseiie
Sprig bl | ot raste s eaaont i

15 files - 13 blocks used

1 coa digilibs libs: |
pathtpans, library, .copied
icon,library, . copied
translator, library. copied
info,libpary, .copied .
nathieeedoubbas., xbngrg. .copied
vepsion, libpary..copie
diskfont, libnary..copied .
iathleeedoubtrans.h ary, . copied

n %)

Figure 2-2: Screen and Windows with Menu List Displayed

By further mouse movement and mouse button manipulation, the user can see a list of menu items and subitems for
each of the topics in the menu list. The menu list, menu items, and subitems that are displayed pertain to the
currently active window, which is the window receiving the user’s input. Only one window is active at any time.
The screen containing the active window can be thought of as the active screen. Because there is only one active
window, there can be only one active menu list at a time. The menu list appears on the title bar of the active screen.
Menus are handled by the Intuition menu system. See the chapter entitled ‘‘Intuition: Menus,”” for more information
about putting menus together and attaching them to windows.

Both you and the user will find working with screens much like working with windows—for you, the data structures
and the functions for manipulating screens and windows are similar. For the user, moving and arranging screens
will require the same steps as moving and arranging windows. However, the user will be less aware of screens than
of windows, since user input and application output occur mostly through windows.

There are two kinds of screens—the standard Workbench screen supplied by Intuition and custom screens created by
you.

The Workbench Screen

Workbench is both a screen and an application. It is a high-resolution four-color screen. On An NTSC Amiga, the
nominal dimensions of the Workbench screen are 640 pixels x 200 lines (400 lines if the user has chosen an
interlaced Workbench screen using Preferences), but see the section below, "Screen Position and Dimensions™ for
more details. The default colors are blue for the background, white and black for details, and orange for the text
cursor and highlighting (see figure).

Intuition: Screens 13

Horkbench release, 4147576 free nenopy

1) copy df0:1j -
uaogztrgns.libraw, .copied
uon.hbrarr,.copled .
translator. library. .copied
mfo,lnbram..cog;ed]
Mathieeedoubbas.) jbrary, .copied Workbenchi.3
yension, library, .copie
diskfont. libvary, ,copied .
Mathieeedoubtrans,li ugiécopud

b
1

isplay adamipics/gi_2n,

1y
b

g

Figure 2-3: The Workbench Screen and the Workbench Application

The Workbench screen is used by both the Amiga Command Line Interface (CLI) and the Workbench application.
If you want to use the Workbench as a screen for the windows of your program, you just specify a window type of
WBENCHSCREEN in the data structure called NewWindow, which you initialize when opening a window.

Any application program can use the Workbench screen for opening its windows. Developers of text-oriented
applications are especially encouraged to open in the Workbench screen. This is convenient for the user because
many windows will open in the same screen, requiring less movement between screens. Using the Workbench
screen is also memory-efficient, because you will not be allocating the memory for your own custom screen.

Your application should not change the colors of the Workbench screen, because other applications may depend on
the constancy of the Workbench colors. For instance, a business package that runs on the Workbench screen may
expect the colors to be reasonable for a dither pattern in a graph. If you change the colors, that program’s graphics
display may not look as intended, making the program harder to use, and defeating the purpose of the Workbench
screen.

Generally, an application which creates a custom screen is responsible for closing it, but there is a special function,
CloseWorkBench(), which allows your program to close the Workbench screen. If your application needs more
memory than is available, it can attempt to reclaim the memory used by the Workbench screen by calling
CloseWorkBench(). If you use this, you should call OpenWorkBench() as your program exits.

The Workbench screen does not close even if all the windows in it are closed, and it automatically reopens when all
other screens close down.

The Workbench application program allows users to interact with the Amiga file system, using icons (small graphic
images) to represent files. Intuition freats the Workbench application as a special case, communicating with it in
extraordinary ways. For example, you can open or close the Workbench screen by calling the Intuition functions
OpenWorkBench() and CloseWorkBench(), even though the Workbench application may have open windows in
the screen. CloseWorkBench() will fail, however, if the user has other windows open on the Workbench screen.

Library functions allow you to create and manipulate the Workbench application’s objects and icons. The functions
in the library allow you to create disk files that the user can handle within the context of the Workbench program.

14 Intuition: Screens

The user can change the colors of the Workbench screen via Preferences. For more information about Preferences,
see the chapter entitled ‘‘Intuition: Other Features.”’

Custom Screens

Typically, you create your own screen when you need a specific kind of display that is not offered by the Workbench
screen or when you want to modify the screen or its parameters directly—as in changing colors or directly
modifying the Copper list or display memory. The Copper is the display-synchronized coprocessor that handles the
actual video display by directly affecting the hardware registers. For example, you might need a display in which
you can have movable sprite objects. Alternatively, you might have your own display memory that you want to use
for the screen’s display memory or you may want to allow the user to play with the colors of a display that you've
created. If you want to do these sorts of things, you’ll have to create a custom screen.

If you have opened a custom screen, you must call CloseScreen() to close it, before your program exits. Otherwise,
your screen would stay around forever.

When you create a custom screen, you have a great deal of latitude in specifying screen parameters, including;
« Height of the screen and starting point of the screen when it first opens.
« Depth of the screen, which determines how many colors you can use for the display.

« Choice of the available colors for drawing details, such as gadgets, and for doing block fills, such as the
title bar area.

« Display modes—high or low resolution, interlaced or non-interlaced, sprites, and dual playfields.
« Initial display memory.

You can also use the special Intuition graphics, line, and text structures and functions within the windows in your
custom screen. See the chapter entitled ‘‘Intuition: Images, Line Drawing, and Text,”” for details about these.

With some care, you may also render directly into your screen’s display memory using the full complement of
graphics primitives—or even directly manipulating the screen display memory using the processor—bypassing the
protocol of Intuition windows. You can do color animation, scrolling, patterned line drawing and patterned fills, and
much more. Although you can still combine such use of a screen with other Intuition features—for example,
windows, menus, and requesters—these features draw into your display. The interactions described in the next
paragraph are those that take place when you write to the custom screen while windows and menus are being
displayed and moved over the screen.

First, Intuition does not save background screen information when a window is opened, sized, or moved. Screen
areas that are subsequently revealed are restored to a blank background color, obliterating any data you might have
written into the display memory area of your screen. Second, menus are protected from data being output to the
windows behind them but not from data being output to screens. When a menu is on the screen, all underlying
windows are locked against graphical output to prevent such output from trashing the menu display. Menus cannot,
however, lock direct graphical output to the display memory of a screen. Therefore, be careful about writing to a
screen that has or can have menus displayed in it. You can easily overrun the menus and obliterate the information
contained in them.

Intuition: Screens 15

In summary, keep in mind that the user can modify the display by moving things around (by using window gadgets)
or making things appear and disappear (menus and requesters). If you want to write directly to a custom screen’s
display memory, you have to design the pieces carefully so that they interact without conflict. If you want complete
control of the screen display memory and are willing to give up some windowing capabilities (such as menus and
window sizing and dragging), you can use a custom screen. If you want to control the display memory and run
windows and menus in the custom screen, you need to deal with the hazards. Always bear in mind that playing with
screen displays in this way requires detailed knowledge of how screens and windows work. You should not attempt
it lighdy.

What if you want a screen with your own full-screen display , one you can manipulate any way you choose, but you
still want access to all the windowing and menu capabilities without worry? A special kind of window satisfies all
of these needs—the Backdrop window, which always stays in the background and can be fashioned to fill the entire
display area. Writing to this kind of window is almost as flexible as writing directly to display memory and requires
only a little more overhead in memory management and performance. Menus and ordinary windows can safely
reside over this window. You can also cause the screen’s title bar to disappear behind a Backdrop window by
calling the ShowTitle() function, thereby filling the entire video display with your display memory. This is the
Intuition-blessed way to fill the entire display and still exist in an Intuition environment. For more information
about setting up Backdrop windows, see the “‘Intuition: Windows”’ chapter.

When you are using the graphics primitives (functions) in your custom screen, the functions sometimes require
pointers to the graphics control structures that lie beneath the Intuition display. These graphics structures are the
RastPort, ViewPort, and View. For more information and details about how to get the pointers into the display
memory, see the chapter entitled *‘Intuition: Images, Line Drawing, and Text.”

Screen Characteristics

The following characteristics apply to both the Workbench screen and custom screens. Keep in mind, however, that
you should not change the characteristics of the Workbench screen.

DISPLAY MODES

You can use any or all of the following display modes in your custom screens. The windows that open in a screen
inherit the screen’s display modes and colors.

There are two modes of horizontal display: low resolution and high resolution. In low-resolution mode, there are
nominally 320 pixels across a horizontal line. In high-resolution mode, there are 640 pixels across. A pixel is the
smallest addressable part of the display and corresponds to one bit in a bit-plane. Twice as many pixels are
displayed in high-resolution mode. However, low-resolution mode gives you twice as many potential colors, 32
instead of 16.

There are two choices of vertical resolution: interlaced and non-interlaced. You can have nominally 200 vertical
lines of display in non-interlaced mode (256 vertical lines in PAL), and 400 lines in interlaced mode (512 lines in
PAL). See also the section, "Screen Position and Dimensions." Twice as many display rows are displayed in
interlaced mode. Typically, applications use non-interlaced mode, which requires half as much memory and creates
a display that does not have the potential for flickering, as interlaced displays tend to do. Intuition supports
interlaced mode because some applications will want to use it; for instance, a computer-aided design package
running on a high-persistence monitor will want to use it, and it is often a requirement for video applications.

16 Intuition: Screens

In sprite mode, you can have up to eight small moving objects on the display. You define sprites with a simple data
structure and move them by specifying a series of x,y coordinates. Sprites can be up to sixteen bits wide and any
number of lines tall, can have three colors (plus transparent), and pairs of sprites can be joined to create a fifteen-
color (plus transparent) sprite. They are also reusable vertically, so you can really have more than eight at one time.
The Amiga GELS system, described elsewhere in this manual, provides just such a multiplexing, or interleaving, of
sprites for you. The chapter entitled *‘Intuition: Windows’’ contains a brief description of a sprite used as a custom
pointer. L

Dual-playfield mode is a special display mode that allows you to have two display memories. This gives you two
separately controllable and separately scrollable entities that you can display at the same time, one in front of the
other. With this mode, you can have some really interesting displays, because wherever the front display has a pixel
that selects color register 0, that pixel is displayed as if it were transparent. You can see through these transparent
pixels into the background display. In the background display, wherever a pixel selects color register 0, that pixel is
displayed in whatever color is in color register 0. You should not try to implement a dual playfield display by
setting the DUALPF flag in the NewScreen structure before opening your screen. We illustrate the correct method in
our examples.

Hold-and-modify mode gives you extended color selection.

Extra-halfbright mode provides one exira bitplane that defines colors with the EHB bit set as half the RGB level of
colors without that bit set. This can be used, together. with the blitter, as an easy way to produce shadows, for
example. :

If you want to use sprites, hold-and-modify mode, or Extra-half Bright, you should read about all of their features
elsewhere in this manual.

DEPTH AND COLOR

Screen depth refers to the number of bit-planes in the the screen display. This affects the colors you can have in
your screen and in the windows that open in that screen.

Display memory for a screen is made up of one or more of bit-planes, each of which is a contiguous series of
memory words. When they are displayed, the planes are overlapped so that each pixel in the final display is defined
by one bit from each of the bit-planes. For instance, each pixel in a three-bit-plane display is defined by three bits.
The binary number formed by these three bits specifies the color register to be used for displaying a color at that
particular pixel location. In this case, the color register would be one of the eight registers numbered 0 through 7.
The thirty-two system color registers are completely independent of any particular display. You load colors into
these registers by specifying the amounts of red, green, and blue that make up the colors. To load colors into the
registers, you use the graphics primitive SetRGB4(). The table shows the relationship between screen depth,
number of possible colors in a display, and the color registers used.

Intuition: Screens 17

Table 2-1: Screen Depth and Color

Maximum Color Register
Depth Number of Colors Numbers
1 2 0-1
2 4 0-3
3 8 0-7
4 16 0-15
5 32 0-31
6 64 0-31*
6 4096 , 0-15+
* Extra-halfbright
+ Hold-and-modify

The maximum number of bit-planes in a screen depends upon the dual-playfields display mode, and the HIRES flag.
The first four lines in the previous table apply to all display modes. Any of the display modes can have up to four
bitplanes. Five or six bitplanes are possible only in the low resolution mode. In particular, both the extra-halfbright
and hold-and-modify modes require a lo-res display. For dual playfields, you can have from two to six bitplanes,
which are divided between the two playfields (see the dual playfields example, below). For hold-and-modify mode
you need six bit-planes.

The color register numbers are also known as ‘‘pen”’ colors. If you specify a depth of 5, for instance, then you also
have 32 choices (in low-resolution mode) for the DetailPen and BlockPen fields in the structure. DetailPen is used
for details such as gadgets and title bar text. BlockPen is used for block fills, such as all of the title bar area not
taken up by text and gadgets.

TYPE STYLES

‘When you open a custom screen, you can specify a text font for the text in the screen title bar and the title bars of all
windows that open in the screen. A font is a specification of type size and type style. The system default font is
called “Topaz.”” Topaz is a fixed-width font and comes in at least two sizes:

» Eight display lines tall with 80 characters per line in a 640-pixel high-resolution display (40 characters in
low resolution).

» Nine display lines tall with 64 characters per line in a high-resolution display (32 characters in low
resolution).

On a television screen, you may not be able to see all 640 pixels across a horizontal line. On any reasonable
television, however, a width of 600 pixels is a safe minimum, so you should be able to fit 60 columns of the large
Topaz font.

NOTE

Font is a Preferences item and the user can choose either the 80- or 64-column (8- or 9-line) default,
whichever looks best on his or her own monitor (see figure). You can use or ignore the user’s choice of
default font size. See the chapter entitled ‘‘Intuition: Other Features,”’ for more information about
Preferences items.

18 Intuition: Screens

This is Topaz—Sixty
AaBbCcDdAdEeFfGagHhIi JIJKKL1MM

This is Topaz-Eighty
AaBbCcDdAEeFfAgHhIiJJKKL1Mn

Figure 2-4: Topaz Font in 60-column and 80-column Types

If you want the default Topaz font in the default size currently selected by the user, set the Font field in the screen
structure to NULL. If you want some other font, you specify it by creating a TextAttr structure and setting the
screen’s Font field to point to the structure. See elsewhere in this manual for further information about text-support
primitives.

SCREEN POSITION AND DIMENSIONS

When you open a custom screen, you specify the initial starting location for the top line of the screen in the
TopEdge and LeftEdge fields of the screen structure. After that, the user can drag the screen up or down. You
must always set the LeftEdge field (the x coordinate) to 0. (This parameter is included only for upward
compatibility with future versions of Intuition.)

APPLICATION-MANAGED CUSTOM SCREENS

You specify the dimensions of the screen in the Height and Width fields. You can set the screen height to values
less than the maximum allowed, but do not make it too small for the title bar to appear. The width may also be less
than the maximum allowed value, but, again, don’t make it extraordinarily small.

The default maximum screen dimensions are 640 x 200 (640 x 400 interlaced) for NTSC, and 640 x 256 (640 x 512
interlaced) for PAL. Using the utility MoreRows (which induces the System to overscan its display,
the user can slightly increase these maximum values.

The true current maximum screen dimensions are stored in the graphics library fields GfxBase-

>NormalDisplayColumns and GfxBase->NormalDisplayRows. These fields have values defined for a high-
resolution interlaced display (e.g. 650 x 412) and must be scaled to provide maximum dimensions for other modes.

Intuition: Screens 19

There is a simple method to open screens to their full height on any display. You do this by specifying the value
STDSCREENHEIGHT in the NewScreen.Height field (this constant is defined in intuition/screens.h).

SCREEN TITLE

The screen title is used for two purposes: to identify the screen like an identification tab on a file folder and to
designate which window is the active one.

Although the initial screen title is set in the. NewScreen structure, it can change according to the preferences of the
windows that open in the screen. Each screen has two kinds of titles that can be displayed in the screen title bar:

s A “‘default’’ title, which is specified in the NewScreen structure and is always displayed when the screen
first opens.

* A “‘curmrent” title, which is associated with the currently active window. When the screen is first opened,
the current title is the same as the default title. The current title depends upon the preferences of the
currently active window.

Each window can have its own title, which appears in its own title bar, and its ‘‘screen title,”” which appears in the
screen's title bar. When the window is the active window, its screen title will be displayed in the screen’s title bar.
The function SetWindowTitles() allows you to specify, change, or delete both the window’s own title and its screen
title.

Screen title display is also affected by calls to ShowTitle(), which coordinates the display of the screen title and
windows that overlay the screen title bar. Depending upon how you call this function, the screen’s title bar can be
behind or in front of any special Backdrop windows that open at the top of the screen. By default, the title bar is

displayed in front of a Backdrop window when the screen is first opened. Non-Backdrop windows always appear in
front of the screen title bar.

CUSTOM GADGETS

You cannot attach custom gadgets directly to a screen. You can, however, attach custom gadgets to a borderless
backdrop window and monitor their activity through the window’s input/output channels. See the chapter on
‘‘Intuition: Gadgets," for information about custom gadgets.

Screen Data Structures
Below, we describe the most important fields in the two data structures pertaining to screens.

NEWSCREEN STRUCTURE

Here are the specifications for the NewScreen structure:

20 Intuition: Screens

struct NewScreen
{
SHORT LeftEdge, TopEdge, Width, Height, Depth;
UBYTE DetailPen, BlockPen;
USHORT ViewModes;
USHORT Type;
struct TextAttr *Font;
UBYTE *DefaultTitle;
struct Gadget *Gadgets;
struct BitMap *CustomBitMap;
}:

The meanings of the variables and flags in the NewScreen structure are as follows:

LeftEdge .
Initial x position for the screen. This field is not currently used by Intuition; however, for upward
compatibility, always set this field to 0.

TopEdge
Initial y position of the screen. Set this field to a value representing the screen offset, in scan lines, from
the top of the display. Most often, this value should be zero.

Width
Width of the screen. Values of 320 for low-resolution mode or 640 for high-resolution mode, are
acceptable.

Height
Height of the screen in number of lines. Values of 200 for non-interlaced mode and 400 for interlaced
mode, are acceptable.

Depth
Number of bit-planes in the screen. Set this field from 1 to 6, but be careful to specify a value which is
appropriate for the screen’s display mode.

DetailPen
Color register number for details such as gadgets and text in the title bar.

BlockPen
Color register number for block fills, such as the title bar area.

ViewModes
These flags select display modes. You can set any or all of them:

HIRES
Selects high-resolution mode (640 pixels across). The default is 320 pixels across.

LACE

Selects interlaced mode (400 lines). The default is 200 lines. For a PAL Amiga, the recommended
values are 512 and 256, respectively.

SPRITES
Set this flag if you want to use sprites in the display.

DUALPF

Set this flag if you want two playfields, but it is better to convert a normal screen into dual-playfield
after it is opened. See the example below.

Intuition: Screens 21

HAM
Set this flag if you want hold-and-modify mode.

EXTRA_HALFBRITE
Set this flag if you want the additional colors provided by the extra-halfbright mode. This mode is
supported by all but the earliést Amiga 1000’s.

Type
CUSTOMSCREEN
Indicates that this will be a custom screen. All screens you open will be custom screens, since the
Workbench screen is managed by Intuition and the functions OpenWorkBench() and
CloseWorkBench().
SCREENBEHIND
Indicates that when the screen is opened, it should be behind all other screens. Among other
uses, this method allows a program to prepare imagery in the screen, change its colors, and so on,
bringing it to the front when it becomes presentable.
SCREENQUIET
Allows fancy viewport operations in your custom screen. A screen opened with this flag will not
have a title bar nor visible gadget rendering, but dragging and depth arrangement still function. In
order to prevent Intuition from rendering into your screen, you must intercept the menu button in
each window in the screen, using MENUVERIFY or RMBTRAP.
CUSTOMBITMAP
Set this flag if you want to use your own bitmap and display memory for this screen.
Font

A pointer to the default TextAttr structure for this screen and all Intuition-managed text that appears in
the screen and its windows. Set this to NULL if you want to use the default Intuition font. NOTE:
Intuition will not be able to load a font from disk, so to guarantee that the font will be available, it is a
good idea to open it yourself, before calling OpenScreen(). Don’t forget to close the font later, if you do
this.

DefaultTitle
A pointer to a null-terminated line of text that will be displayed in the screen’s title bar; this should be set
to NULL if you want a blank title bar. Null-terminated means that the last character in the text string is
NULL, which is automatic in the C language.

Gadgets
This field is not used at this time, It should be set to NULL.

CustomBitMap

If you intend to provide your own CUSTOMBITMAP for the screen, you need to know how big the
screen will be before opening it. This is done by examining the public field GfxBase-
>NormalDisplayRows (see graphics/gfxbase.h). NormalDisplayRows specifies the non-interlaced
count, which is 200 on NTSC machines. The CustomBitMap field holds a pointer to a BitMap structure,
used if you want your own display memory to be used as the display memory for this screen. You inform
Intuition that you want to supply your own display memory by setting the flag CUSTOMBITMAP in the
Type variables above, creating a BitMap structure that points to your display memory and having this
variable point to it.

22 Intuition: Screens

SCREEN STRUCTURE

You create a custom screen by passing the address of your NewScreen structure to the function OpenScreen(),
which, if successful, will return a valid pointer to a Screen structure. The following list shows the variables of the
Screen structure that may be of interest to you. This is not a complete list of the Screen variables; only the more
‘useful ones are described. Also, most of these variables are for use by advanced programmers, so you may choose
to ignore them at first.

TopEdge
Examine this to see where the user has positioned your screen.

MouseX, MouseY
You can look here to see where the mouse is with respect to the upper left corner of your screen.

ViewPort, RastPort, BitMap, LayerInfo
For hard-core graphics users, these are actual instances of these graphics structures (Note: not pointers to
structures). For normal use of custom screens, these structures can be ignored.

BarLayer
This is the pointer to the Layer structure for the screen’s title bar.

SCREEN FUNCTIONS

Here is a quick rundown of Intuition screen functions.

Opening a Screen

This is the basic function to open an Intuition custom screen according to the parameters specified in NewScreen.
This function sets up the screen structure and substructures, does all the memory allocations, and links the screen’s
ViewPort into Intuition.

= OpenScreen (NewScreen)

The argument is a pointer to an instance of a NewScreen structure. The function returns a pointer to a Screen
structure.

Showing a Screen Title Bar

This function causes the screen’s title bar to be displayed or concealed, according to your specification of the
ShowlIt parameter and the position of the various types of windows that may be opened in the screen.

s ShowTitle (Screen, ShowIt)
The screen’s title bar can be behind or in front of any Backdrop windows that are opened at the top of the

screen. The title bar is always concealed by other windows, no matter how this function sets the title bar. The
parameter Screen is a pointer to a Screen structure. Set the variable ShowIt to boolean TRUE or FALSE

Intuition: Screens 23

according to whether the title is to be hidden behind Backdrop windows. When Showlt is TRUE, the screen
title bar is shown in front of Backdrop windows. When ShowlIt is FALSE, the screen title bar is always behind
any window. The function returns nothing.

Moving a Screen

With this function, you can move the screen vertically.

« MoveScreen (Screen, DeltaX, DeltaY)
Moves the screen in a vertical direction by the number of lines specified in the DeltaY argument. (DeltaX is
here for upward compatibility only. You should pass zero for DeltaX. 'Screen is a pointer to the screen
structure. The function returns nothing. Calls to MoveScreen are asynchronous; when you call the function, the
screen is not necessarily moved immediately. If the calls happen too quickly, there may be unexpected results.

One way to pace these calls is to call the function one time for each INTUITICK event. For information on
INTUITICKS, see the chapter "Input and Output Methods".

Changing Screen Depth Arrangement

These functions change the screen’s depth arrangement with respect to other displayed screens. Screen is a pointer
to the screen structure.

+ ScreenToBack (Screen)
Sends the specified screen to the back of the display. Returns nothing.
« ScreenToFront (Screen)

Brings the specified screen to the front of the display. Returns nothing,

Closing a Screen

The following function unlinks the screen and its substructures and deallocates everything that Intuition allocated
when it opened the screen. It ignores any windows attached to the screen. All windows must be closed first.
Attempting to close a screen with open windows will crash the system. If this is the last screen displayed, Intuition
attempts to reopen the Workbench, The function returns nothing.

+ CloseScreen (Screen)

The variable Screen is a pointer to the screen to be closed.

Finding Out About a Screen

This function is typically used to find out about the Workbench screen.

24 Intuition: Screens

GetScreenData(Buffer,Size,Type,Screen)

Programs opening windows on the Workbench screen may inquire to find out its size, the size of its menu bar
area, and so on, by using the function GetScreenData(). This function will open the Workbench screen if it
happens to be closed. This is best suited for use by a program about to open a window on the Workbench
screen. Workbench screen inquiry also applies to custom screens, but the need for that will be rare.
Buffer is a CPTR (see exec/types.h), Size and Type are USHORT’s, and Screen is a pointer to a screen
structure,

Handling the Workbench

These functions are for opening, closing, and modifying the Workbench screen.

OpenWorkBench()

This routine attempts to open the Workbench screen. If not enough memory exists to open the screen, this
routine fails. Also, if the Workbench tool is active, it will attempt to reopen its windows. This function takes
no arguments, and returns a pointer to a Screen structure.

CloseWorkBench()

This routine attempts to close the Workbench screen. If another application (other than the Workbench tool)
has windows opened in the Workbench screen, this routine fails, and returns FALSE. If only the Workbench
tool has opened windows in the Workbench screen, the Workbench tool will close its windows, allow the
screen to close, and return TRUE. This function takes no arguments, and returns a BOOL.

WBenchToFront(), WBenchToBack()

If the Workbench screen is opened, calling these routines will cause it to be in front or in back of other screens,
depending on which command is used. If the Workbench screen is closed, these routines have no effect. These
functions take no arguments, and return BOOL.

Advanced Screen and Display Functions

These functions are for advanced users of Intuition and graphics. They are used primarily in programs that make
changes in their custom screens (for instance, in the Copper instruction list). These functions cause Intuition to
incorporate a changed screen and merge it with all the other screens in a synchronized fashion. These. functions
return nothing. For more information about these functions, see the chapter *‘Intuition: Other Features.”

MakeScreen(Screen)

This function is the Intuition equivalent of the lower-level MakeVPort() graphics library function.
MakeScreen() performs the MakeVPort() call for you, synchronized with Intuition’s own use of the screen’s
ViewPort. The variable Screen is a pointer to the screen that contains the ViewPort that you want remade.
RethinkDisplay()

This procedure performs the Intuition global display reconstruction, which includes massaging some of

Intuition’s internal state data, rethinking all of the Intuition screen ViewPorts and their relationship to one
another, and, finally, reconstructing the entire display by merging the new screens into the Intuition View

Intuition: Screens 25

structure. This function calls the graphics primitives MrgCop() and Load View(). It takes no arguments.
. RemakeDisplay()

This routine remakes the entire Intuition display. It performs a MakeVPort() (graphics primitive) on every-
Intuition screen and then calls RethinkDisplay() to recreate the view. It takes no arguments.

Examples

LOW-RES SCREEN EXAMPLE

This example is called "greetings.c”. It opens a window on a low-resolution screen, and prints a message in it.

/* greetings.c -- Opens a window on a low-res screen and writes a greeting. */

#include <exec/types.h>

#include <intuition/intuition.h>
#include <libraries/dos.h>
$ifdef LATTICE

#include <proto/all.h>

#include <stdlib.h>

int CXBRK(void) ({return{(0);}

#endif
/* Include other required vendor- or Commodore-Amiga-supplied header */
/* files here. */

/* Include user-written header files here. */
#include "hires.h"
#include "graniteWindow.h®

/* Use lowest non-obsolete version that supplies the functions you need. */
#define INTUITION_REV 33
#define GRAPHICS_REV 33

extern VOID cleanExit(struct Screen *, struct Window *, int)};
extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;
struct GfxBase *GfxBase = NULL;

VOID main(int arge, char *argvi{})
{

/* Declare variables here */
ULONG signalmask, signals;

UBYTE done = 0;

struct Screen *screenl
struct Window *windowl

NULL;
NULL;

/* Open the Intuition Library */
IntuitionBase = (struct IntuitionBase ¥)
OpenLibrary(¥intuition.library", INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit (screenl, windowl, RETURN_WARN) ;

/* Open any other required libraries */
GfxBase = (struct GfxBase ¥%)
OpenLibrary(“graphics.library",GRAPHICS_ REV);

if (GfxBase == NULL)
cleanExit (screenl, windowl, RETURN_WARN) ;

26 Intuition: Screens

/* Make the assignments that were postponed above */

fullHires.Width = 320; /* Make custom screen low-res */
fullHires.ViewModes = NULL;
graniteWindow.Width /= 2; /* cut the window to fit */

/* Open the screen */
screenl = OpenScreen(&fullHires);
if (screenl == NULL)
cleanExit {screenl, windowl, RETURN_WARN);

/* Attach the window to the open screen ... */
graniteWindow.Screen = screenl;

/* ... and open the window */
windowl = OpenWindow(&graniteWindow);
if (windowl == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

/* Set up the signals that you want to hear about ... */
signalmask = 1L << windowl->UserPort->mp_SigBit;

/* call the functions that do the main processing */

/* Write the message into the window */
Move (windowl->RPort, 20, 20}; .
Text (windowl->RPort, "Hello Worldi", 12);

/* And wait to hear from your signals */
while(!done)
{
signals = Wait (signalmask);
if (signals & signalmask)
done = handleIDCMP (windowl);
Yi

/* Bxit the program */
cleanExit (screenl, windowl, RETURN_OK);
}

UBYTE handleIDCMP(struct Window *win)
{

UBYTE flag = 0;

struct IntuiMessage *message = NULL;
ULONG class;

/* Examine pending messages %/
while{ message = (struct IntuiMessage *)GetMsg(win->UserPort)

{

class = message->Class;

/* When we’re through with a message, reply */
ReplyMsg{ {struct Message *)message);

/* See what events occurred */
switch{ class)
{
case CLOSEWINDOW:
flag = 1;
break;
default:
break;
}
}
return(flag);
}

VOID cleanExit{ scrn, wind, returnvalue)
struct Screen *scrn;

struct Window *wind;

int returnValue;

{

/* Close things in the reverse order of opening */

Intuition: Screens 27

/* Close the window and the screen */

if (wind) CloseWindow(wind);
if (scrn) CloseScreen(scrn);

/* Close the library, and then exit */
if (GfxBase) CloselLibrary((struct Library *)GfxBase);
if (IntuitionBase) CloselLibrary({struct Library *)IntuitionBase)2

exit (returnvalue);

}

DUAL-PLAYFIELD SCREEN EXAMPLE

This example shows how to create a dual-playfield display. It makes a dual-playfield out of the Workbench screen,
but we hasten to warn that this is only for illustration. You would normally make a dual-playfield display out of a

custom screen. Try it!

Setting the DUALPF flag in the NewScreen.Flags field is not the best method of obtaining a dual playfield
viewport for your screen. It is better to open a standard screen, passing to Intuition (or letting Intuition create) only
one of your playfield bitmaps (the frontone). Then you allocate and set up a second BitMap, its bit-planes, and a
RasInfo structure. Install these into new screen’s viewport, change the viewport modes to include DUALPF,
MakeScreen(), and RethinkDisplay(). This method keeps Intuition rendering (gadgets, menus, windows) in a single

playfield. This is the method that we demonstrate here.

/* dualpf.c - Shows a dual-playfield.

#include <exec/types.h>

#include <intuition/intuition.h>
#include <libraries/dos.h>
#ifdef LATTICE

#include <proto/all.h>

#$include <stdlib.h>

int CXBRK(void) {return{(0);}
$endif

/* Include other required vendor- or Commodore-Amiga-supplied header */

/* files here.
#include <exec/memory.h>

*/

/* Include user-written header files here. */

#include "graniteWindow.h®

/* Use lowest non-obselete version that supplies the functions you need.

#define INTUITION_REV 33
#define GRAPHICS_REV 33

extern VOID cleanExit{ struct Screen *, struct Window *, struct
struct BitMap *, struct RastPort *, int,

extern VOID drawSomething(struct RastPort *);

extern UBYTE handleIDCMP(struct Window ¥);

struct IntuitionBase *IntuitionBase

struct GfxBase *GfxBase = NULL;

VOID main(int argc, char *argv[])
{

/* Declare variables here */
ULONG signalmask, signals;

URYTE done = 0;

struct Screen *wbscreen = NULL;
struct Window *windowl = NULL;

struct RasInfo *rinfo2 = NULL;
struct BitMap *bmap2 = NULL;
struct RastPort *rport2 = NULL;
int it_is_done = 0;

28 Intuition: Screens

/*
/*
/*
/*

NULL;

Second playfield rasinfo
Second playfield bitmap
Used to render into bmap2
Success flag

RasInfo *,
int);

*/
*/
*/
*/

/* Open the Intuition Library */
IntuitionBase = (struct IntuitionBase ¥)
OpenLibrary(“intuition.library", INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit (wbscreen, windowl, rinfo2, bmap2, rport2,
it_is_done, RETURN_WARN);

/* Open any other required libraries */
GfxBase = (struct GfxBase *)
OpenlLibrary(*graphics.library%, GRAPHICS_REV);

if (GfxBase == NULL)
cleanExit { wbscreen, windowl, rinfo2, bmap2, rport2,
it_is_done, RETURN_WARN) ;

/* Make the assignments that were postponed above */

graniteWindow.DetailPen = ~1;
graniteWindow.BlockPen = -1;

graniteWindow.Title = " Dual Playfield Mode *;
graniteWindow.Type = WBENCHSCREEN;

/* Open the screen */
/* Workbench is already open */

/* Open the window */
windowl = OpenWindow(&graniteWindow) ;
if (windowl == NULL)
cleanExit (wbscreen, windowl, rinfo2, bmap2, rport2,
it_is_done, RETURN_WARN) ;

/* Set up the signals that you want to hear about ... */
signalmask = 1L << windowl->UserPort->mp_SigBit;

/* Call the functions that do the main processing */
wbscreen = windowl->WScreen; /* Find the Workbench screen */

/* Allocate the second playfield’s rasinfo, bitmap, and bitplane */
rinfo2 = (struct RasInfo *) AllocMem((ULONG)sizeof(struct RasInfo),
(ULONG) MEMF_PUBLIC|MEMF_CLEAR);

if (rinfo2 == NULL)
cleanExit { wbscreen, windowl, rinfo2, bmap2, rport2,
it_is_done, RETURN_WARN);

bmap2 = (struct BitMap *) AllocMem((ULONG)sizeof (struct BitMap),
(ULONG) MEMF PUBLIC|MEMF_CLEAR});

if (bmap2 == NULL)
cleanBxit (wbscreen, windowl, rinfo2, bmap2, rport2,
it_is_done, RETURN_WARN);

InitBitMap (bmap2, (BYTE)1l, (LONG)wbscreen->Width, {LONG)wbscreen->Height);

/* We’ll use one bitplane */
bmap2->Planes[0] = (PLANEPTR} AllocRaster((LONG)wbscreen->Width,
(LONG) wbscreen->Height) ;

if (bmap2->Planes[0] == NULL)
cleanExit (wbscreen, windowl, rinfo2, bmap2, rport2, it_is_done, RETURN_WARN);

/* Get a rastport, and set it up for rendering into bmap2 */
rport2 = (struct RastPort *) AllocMem((ULONG)sizeof (struct RastPort),
(ULONG) MEMEF_PUBLIC); '

if (rport2 == NULL)
cleanExit (wbscreen, windowl, rinfo2, bmap2, rport2,
it_is_done, RETURN_WARN);

InitRastPort (rport2);

rport2->BitMap = bmap2;
SetRast (rport2, (UBYTE}O);

Intuition: Screens 29

/* Manhandle the viewport: install second playfield and change modes */
Forbid():
rinfo2->BitMap = bmap2; /* Install new bitmap into new rasinfo */

/% Install rinfo for viewport’s second playfield */
wbscreen->ViewPort .RasInfo->Next = rinfo2;

wbscreen->ViewPort .Modes |= DUALPF; /* Convert viewport */
it_is_done = 1;
Permit () ;

/* set foreground color; color 9 is color 1 for second */
/% playfield of hi-res viewport */
SetRGB4 (swbscreen->ViewPort, (SHORT)S, (UBYTE)O, (UBYTE)OxF, (UBYTE)O):;

/* Put viewport change into effect */
MakeScreen (wbscreen);
RethinkDisplay();

/* Now ... */
drawSomething (rport2);

/* And wait to hear from your signals */
while(!done)
{
signals = Wait(signalmask);
if {(signals & signalmask)
done = handleIDCMP (windowl);
}:

/* Exit the program */
cleanExit { wbscreen, windowl, rinfo2, bmap2, rport2, it_is_done, RETURN_WARN);
}

VOID drawSomething(struct RastPort *rp)
! ,

int width, height;

int r, c;

width = rp->BitMap->BytesPerRow * 8;
height = rp->BitMap->Rows;

SetAPen({rp, 1lL);

for (r = 0; r < height; r += 40)
for (¢ = 0; ¢ < width; ¢ += 40)
{
Move (rp, OL, (LONG) r);
Draw(rp, (LONG) ¢, OL);

}
UBYTE handleIDCMP{ struct Window *win)
{

UBYTE flag = 0;

struct IntuiMessage *message = NULL;
ULONG class;

/* Examine pending messages */
while(message = (struct IntuiMessage *)GetMsg(win->UserPort))
{

class = message->Class;

/* When we’re through with a message, reply */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch(class)
{
case CLOSEWINDOW:
flag = 1;
break;

30 Intuition: Screens

default:
break;

}

return(flag);
}

VOID cleanExit(scrn, wind, rasi, bitm, rasp, flag,
struct Screen *scrn;

struct Window *wind;

struct RasInfo *rasi;

struct BitMap *bitm;

struct RastPort *rasp;

int flag, returnvValue;

{

/* clean up dual-playfield trick */
if (flag)

{

Forbid();
scrn->ViewPort .RasInfo->Next = NULL;
scrn->ViewPort .Modes &= ~“DUALPF;
Permit ();
MakeScreen{scrn) ;
RethinkDisplay();

}

/* Close things in the reverse order of opening */

returnValue)

if (rasp) FreeMem(rasp, (ULONG)sizeof(struct RastPort));

if (bitm)
{
if (bitm->Planes(0])

FreeRaster (bitm->Planes[0], (LONG)scrn->Width, (LONG)scrn->Height);

FreeMem(bitm, (ULONG)sizeof(struct BitMap)):
}

if (rasi) FreeMem(rasi, (ULONG)sizeof (struct RasInfo)):;

/* Close the window and NOT the screen */
if (wind) CloseWindow(wind)

/* Close the libraries, and then exit */

if (GfxBase) CloselLibrary((struct Library *)GfxBase):
if (IntuitionBase) Closelibrary((struct Library *)IntuitionBase);

exit(returnValue);,

}

Intuition; Screens 31

Chapter 3

Intuition: Windows

This chapter provides a general description of windows: how to handle the I/O of the virtual terminal; how to
preserve the display when windows get overlapped; how to open windows and define their characteristics; and how
to get the system gadgets for shaping, moving, closing, and depth-arranging windows. It also explains the special
windows, and how to customize windows by adding touches like a custom pointer.

About Windows

The windows you open can be colorful, lively, and interesting places for the user to work. You can use all of the
standard Amiga graphics, text, and animation primitives (functions) in every one of your windows. You can also use
the quick and easy Intuition structures and functions for rendering images, text, and lines into your windows. The
special Intuition features that go along with windows, like the gadgets and menus, can be visually exciting as well.

Each window can open an Intuition Direct Communications Message Port (IDCMP), which offers a direct
communication channel with the underlying Intuition software, or the window can open a console device for input
and output. Either of these communication methods turns the window into a visual representation of a virtual
terminal, where your program can carry on its interaction with the user as if it had the entire machine and display to
itself. Your program can open more than one window and treat each separately as a virtual terminal.

Intuition: Windows 33

Both you and the user deal with each individual window as if it were a complete terminal. The user has the added
benefit of being able to arrange the windows front to back, shrink and expand them, or overlap them.

Windows are rectangular display areas whose size and location can be adjusted in many ways. The user can shape
windows by making them wider or longer or both to reveal more of the information being output by the program.
He can also shrink windows into long, narrow strips or small boxes to reveal other windows or to make room for
other windows to open. Multiple windows can be overlapped, and the user can bring a window up front or send it to
the bottom of the stack with a click of the mouse button. While the user is doing all this shaping and rearranging
and stacking of windows, your program need not pay any attention. To the program, there is nothing out there but a
user with a keyboard and a mouse (or, in place of a mouse, there could be a joystick, a graphics tablet, or practically
any other input device).

Horkbench Screen

[Anigashell ==
15 files - 1) blocks used
1} co dﬂ lxhs ibs:

ans. library, .copied
xcon. marg..copled
trans]ator, library. copied
info,libsary, .copied
mathieeedoubbas, library. .copied
version, libpary, .eople
diskfont, libbary. .co
Eathueedoubtrans.l w. «Copied

1 g

Figure 3-1: A High-resolution Screen and Windows

Your program can open as many of these virtual terminal windows as the memory configuration of your Amiga will
allow. Each window opens in a specific screen, and several windows may open in the same screen. Even windows
opened by different programs may coexist in the same screen.
Your program can open windows for any purpose. For example, different windows of an application can represent:

« - Different interpretations of an object, such as the same data represented as a bar chart and a pie chart.

* Related parts of a whole, such as the listing and output of a program.

« Different parts of a document or separate documents being edited simultaneously.
You open a window by specifying its structure and issuing a call to a function that opens windows. After that, you
can output to the user and receive input while Intuition manages all the user’s requests to move, shape, and depth-
arrange the window. Intuition lets you know if the user makes a menu choice, chooses one of your own custom
gadgets, or wants to close the window. If you need to know when the user changes the window’s size or moves the

pointer, Intuition will tell you about that, too.

Custom gadgets, menus, input/output, and controllers are dealt with in later chapters. The balance of this section
deals with some important concepts you’ll need to know before attempting to open your own windows,

34 Intuition: Windows

WINDOW INPUT/OUTPUT

You can choose from two different paths for input and two for output. Each path satisfies particular needs. The two
paths for user input are as follows:

o Intuition Direct Communications Message Ports (IDCMPs). The message ports give you mouse (or other
controller) events, keyboard events, and Intuition messages in their most raw form; in addition, these ports
supply the way for your program to send messages fo Intuition.

« Console device. The console ports give you processed input data, including keycodes translated to ASCII
characters and Intuition event messages converted to ANSI escape sequences. If you wish, you can also
get raw (untranslated) input through the console device.

There are also two paths for program output:

o Text is output through the console device, which formats and supplies special text primitives and text
functions, such as automatic line wrapping and scrolling.

e Graphics are output through the general-purpose Amiga graphics primitives, which provide rendering
functions such as area fill and line-drawing and animation functions.

If you use the console device for input, output, or both, you need to open it after opening your window. If you want
the IDCMP for input, you specify one or more of the IDCMP flags in the NewWindow structure. This
automatically sets up a pair of message ports, one for Intuition and one for you. Although the IDCMP does not offer
text formatting or character positioning, it has many special features that you may want, and it requires less RAM
and less processing overhead.

For more information about I/O methods read the chapter entitled ‘‘Input and Output Methods.”’

OPENING WINDOWS

Before your program can open a window, you need to initialize a NewWindow structure. This structure contains all
the arguments needed to define and open a window, including initial position and size, sizing limits, color choices
for window detailing, gadgets to attach, how to preserve the display, IDCMP flags, window type if it is one of the
special windows, and the screen in which the window should open.

A window is opened and displayed by a call to the OpenWindow() function, whose only argument is a pointer to
the NewWindow structure. After successfully opening a window, you receive a pointer to another structure, the
Window structure.

WINDOWS AND SCREENS

You may open your window on the Workbench screen or on your own custom screen. To use the Workbench screen,
set the Type field in your NewWindow structure to WBENCHSCREEN. If you want to use a custom screen, first
open your screen, then put a pointer to the resulting screen structure in the Screen field of your NewWindow
structure, and set the Type field to CUSTOMSCREEN.

Intuition: Windows 35

System requesters appear on the Workbench screen by default. It is possible to redirect system requesters to appear
on your custom screen, instcad. You must open a window on your screen in order to do this. You assign your
window pointer to the pr_WindowPtr field of your Process structure, right after you open your window, Just before
you close your window, you restore the old value of the pr_WindowPtr ficld. Examples one and two at the end of
this chapter show how to do this.

When the system wants to open a requester for your process, it looks in the pr_WindowPtr field of the Process
structure to find out where your window is. It then tries to put the requester in the same place as your window. If the
pr_WindowPtr field is NULL, then the system will open the requester on the default screen. If the pr_ Wmdothr
field is -1, then the system assumes that the user pressed cancel, and the requester does not open.

System requesters not associated with your process can’t be redirected to your screen. One example is the system
requester that informs you that ‘“You MUST replace volume x in unit y.” This requester is associated with a
filesystem instead of your process.

THE ACTIVE WINDOW

Only one window is active in the system at a time. The active window is the one that is receiving user input through

-a keyboard and mouse (or some other controller). Some areas of the active window are displayed more boldly than
those on inactive windows. In particular, the title bars of inactive windows are covered with a faint pattern of dots,
rendering them slightly less distinct. This is called ghosting. When the user brings up a menu list in the screen title
bar, the active window’s menu list is displayed.

Your program need not worry about whether or not one of its windows is active. The inactive windows can just wait
for the user to get back to them, or they can be doing some background task that requires no user input. The job of
activating windows is mostly left up to the user, who activates a window by moving the pointer into the window and
clicking the left mouse button. There is, however, an ACTIVATE flag in the NewWindow structure. Setting this
flag causes the window to become active when it opens. If the user is doing something else when a window opens
with the ACTIVATE flag set, input is immediately redirected to the newly opened window. In general, you should
set the ACTIVATE flag only in a window which opens as a direct response to the user’s action, such as starting your
program or asking for some operation which necessitates a new window.

After your window is opened, you can discover when it is activated and when it is inactivated by setting the IDCMP
flags ACTIVEWINDOW and INACTIVEWINDOW. If you set these flags, the program will receive a message
every time the user activates your window or causes your window to become inactive by activating some other
window.

CLOSING WINDOWS

Although there is a window closing gadget, a window does not automatically close when the user selects this gadget.
Intuition sends the program a message about the user’s action. The program can then do whatever clean-up is
necessary, such as replying to any outstanding Intuition messages or verifying that the user really meant to close the
window, and then call CloseWindow().

When the active window is closed, the previously active window may become the active window. The window (call
it window A) that was active when this one was opened will become the active window. If window A is already
closed, then the window (if any) that was active when window A opened will become the active window, and so on.
However, you are not to count on this behavior. If you care whether your window becomes active, set the
ACTIVEWINDOW IDCMP flag, in order to receive messages from Intuition to that effect.

36 Intuition: Windows

SPECIAL WINDOW TYPES

Intuition’s special windows give you some very useful bonus features, in addition to all the normal window features.
The Backdrop window stays anchored to the back of the display and provides a way to take over the display without
taking over the machine. The Borderless window supplies a window with no drawn border lines. Gimmezerozero
windows give you all the border features plus the freedom to ignore borders altogether when you are drawing into
the window. :

NOTE

There is a good deal of overhead in using Gimmezerozero windows as they use a separate layer for the
border display. See the ‘‘Layers’ chapter for information on setting up user clip regions to limit
graphics display in the window.

Finally, the SuperBitMap window not only gives you your own display memory in which to draw, but also frees you
from ever worrying about preserving the window when the user sizes it or overlaps it with another window.

Notice that these are not necessarily separate, discrete window types. You can combine them for even more special
effects. For instance, you can create a Backdrop, Borderless window that fills the entire screen and looks like a
normal computer display terminal.

Borderless Window Type

This window is distinguished from other windows by having no default borders. With normal windows, Intuition
creates a thin border around the perimeter of the window, allowing the window to be easily distinguished from other-
windows and the background. When you ask for a Borderless window, you do not get this default thin border;
however, your window can still have borders. It can have borders based solely on the location of border gadgets and
whether or not you have supplied title text, or it may have no gadgets or text and thus no visible borders and no
border padding at all. You can use this window to cover the entire video display. It is especially effective combined
with a Backdrop window. This combination forms a window that you can render in almost as freely as writing
directly to the display memory of a custom screen. It has the added benefit that you can render in it without running
the risk of trashing menus or other windows in the display.

If you use a Borderless window that does not cover the entire display, be aware that its lack of borders may cause
visual confusion on the screen.” Since windows and screens share the same color palette, borders are often the only
way of distinguishing a window from the background.

Set the BORDERLESS flag in the NewWindow structure to get this window type.

Gimmezerozero Window Type

The unique feature of a Gimmezerozero window is that there are actually two “‘planes’ to the window: a larger,
outer plane in which the window title, gadgets, and border are placed; and a smaller, inner plane (also called the
inner window) in which you can draw freely without worrying about the window border and its contents. The top
left coordinates of the inner window are always (0,0), regardless of the size or contents of the outer window; thus the
name ‘‘Gimmezerozero.”’

Intuition: Windows 37

The area in which you can draw is formally defined as the area within the variables BorderLeft, BorderTop,
BorderRight, and BorderBottom. These variables are computed by Intuition when the window is opened. To
draw in normal windows with the graphics primitives (for instance to draw a line from the top left to somewhere else
in the window), you have to start the line away from the window title bar and borders. Otherwise, you risk drawing
the line over the title bar and any gadgets that may be in the borders. In a Gimmezerozero window, you can just
draw a line from (0,0) to some other point in the window without worrying about the window borders.

The Gimmezerozero window uses more RAM than other window types and degrades performance in the moving
and sizing of windows. There can be a noticeable performance lag, especially when several Gimmezerozero
windows are open at the same time,

There are some special variables in the Window structure that pertain only to Gimmezerozero windows. The
GZZMouseX and GZZMouseY variables can be examined to discover the position of the mouse relative to the
inner window. The GZZWidth and GZZHeight variables can be used to discover the width and height of the inner
window.

The console device gives you another kind of encumbrance-free window. If you are using the console device, any
formatted text you output goes into an inner window automatically; you need not worry about gadgets. Therefore,
you do not need a Gimmezerozero window just for the purpose of text output. See the chapter entitled ‘‘Input and
Output Methods,”” for more information about this aspect of the console device.

Requesters in a Gimmezerozero window are positioned relative to the inner window. If you are bringing up
requesters in the window, you may wish to take this into consideration when deciding where to put them. See the
chapter entitled ‘‘Requesters and Alerts,’’ for more information about requester location.

To specify a Gimmezerozero window, set the GIMMEZEROZERO flag in the window structure’s flags. All system
gadgets you attach to this type of window will go into the outer window automatically; however, if you are attaching
custom gadgets and you want the gadgets to appear in the border (nof in the inner window), be sure to set the
GZZGADGET flag in your gadget structures. If you do not, Intuition will draw custom gadgets in the display of the
inner window.

Backdrop Window Type

The Backdrop window is always in back of any other kind of window. Its great advantage is that other windows can
overlap it and be depth-arranged without ever going behind the Backdrop window. Because of this characteristic,
you can use the Backdrop window as a primary display surface while opening other auxiliary windows on top of it.

The Backdrop window is like normal windows except that:

« Italways opens behind all other windows (including other Backdrop windows that you might already have
opened). '

+ The only system gadget you can attach is the close-window gadget. (You can attach your own gadgets as
usual.)

* Normal windows in the same screen open in front of all Backdrop windows and always stay in front of
them. No amount of depth arranging will ever send a non-Backdrop window behind a Backdrop window.

You might want to use a Backdrop window, for example, in a simulation program in which the environment is
rendered in the Backdrop window while the simulation controls exist in normal windows that float above the
environment. Another example is a sophisticated graphics program where the primary work surface is on the
Backdrop window while auxiliary tools are made available in normal windows in front of the work surface.

38 Intuition: Windows

You can often use a Backdrop window instead of drawing directly into the display memory of a custom screen. If
you want to draw in your background with the graphics primitives, you may even prefer a Backdrop window to a
custom screen because you do not run the danger of writing to the window at the wrong time and trashing a menu
that is being displayed. In fact, if you also set the BORDERLESS flag and you create a window that is the full-
screen width and height, you get a window that fills the entire screen and stays in the background. If you also
specify no gadgets, there will be no borders. Finally, if you add a call to ShowTitle() with an argument of FALSE,
the window will conceal the screen title. (See The Amiga ROM Kernel Reference Manual: Includes and Autodocs
for a complete list of arguments for ShowTitle().) All of these steps result in a window that fills the entire video
display, has no borders, and stays in the background.

To use the Backdrop feature, you set the BACKDROP flag in the window structure.

SuperBitMap Window

SuperBitMap is both a window type and a way of preserving and redrawing the display. This window is like other
windows except that you supply your own bit-map instead of using the one belonging to the screen. The windowing
system displays some portion of the window’s bit-map in the screen’s raster according to the dimensions and limits
you specify and the user’s actions. You can make the bit-map any size as long as the window sizing limits are set
accordingly.

This window is handy when you want to give the user the flexibility of scrolling around and revealing any portion of
the bit-map. You can do this because the entire bit-map is always available to be displayed.

To get this type of window, set the SUPER_BITMAP flag in the window structure and set up a BitMap structure.
You probably want to set the GIMMEZEROZERO flag also, so that the borders and gadgets will be rendered in a
separate bit-map. You need to be certain that the size-limiting variables in the window structure are properly set,
considering the size of the bit-map and how much of it you want to display.

For complete information about SuperBitMap, see ‘‘Setting Up a SuperBitMap Window’’ later in this chapter.

WINDOW GADGETS

The easiest way for a user to communicate with a program running under Intuition is through the use of window
gadgets. There are two basic kinds of window gadgets—system gadgets that are predefined and managed by
Intuition and your own custom application gadgets.

System Gadgets

System gadgets are supplied to allow the user to manage the following aspects of window display: size and shape of
windows, location of windows on the screen, and depth arrangement. Also, there is a system gadget for the user to
tell the application when he or she is ready to close the window. These gadgets save you a lot of work because, with
the exception of the close gadget, your program never has to pay any attention to what the user does with them. On
the other hand, if you want to be notified when the user sizes the window because of some special drawing you may
be doing in the window, Intuition will let you know. For more information, read about the IDCMP verify functions
in the chapter *‘Input and Output Methods."’

In the NewWindow structure, you define the starting location and starting size of a window and a maximum and
minimum height and width for sizing the window. When the window opens, it appears in the location and in the

Intuition: Windows 39

size you have specified. After that, however, the user normally has the option of shaping the window within the
limits you have set, moving it about on the screen and sending it into the background behind all the other displayed
windows or bringing it into the foreground. To give the user this freedom, plus the ability to request that the
window be closed, you can attach system gadgets to the window. The graphic representations of these gadgets are
predefined, and Intuition always displays them in the same standard locations in the window borders. In the window
structure, you can set flags to request that all, some, or none of these system gadgets be attached to your window.
The system gadgets and their locations in the window are:

» A sizing gadget in the lower right of the window. With the sizing gadget, the user can stretch or shrink the
height and width of the window. You set the maximum and minimum limits for sizing. You can specify
whether this gadget is located in the right border or bottom border, or in both borders.

« Two depth-arrangement gadgets in the upper right of the window. One sends the window behind all other
displayed windows (back gadget) and the other brings the window to the front of the display (front
gadget).

» Adrag gadget, which occupies every part of the window title bar not taken up by other gadgets. The drag
gadget allows the user to move the window to a new location on the screen. A title in the title bar does not
interfere with drag gadget operation.

* A close gadget in the upper left of the window, which allows the user to request that the window be
closed.

The figure shows how all the system window gadgets look and where they are located in the window borders.

‘Fron Here To Katnandu=

Figure 3-2: System Gadgets for Windows

40 Intuition: Windows

Application Gadgets

Four types of application gadgets are available—proportional, boolean, string, and integer. You can use application
gadgets to request various kinds of input from the user, and that input can affect the application in any way you like.
You design gadgets as text and graphic images to go anywhere in the window. For application gadgets, you define a
data structure for each one and create a linked list of these structures. To attach your list of gadgets to a window, set
a pointer in the NewWindow structure to point to the first gadget in the list. For details about creating gadgets, see
the chapter *‘Gadgets.”

WINDOW BORDERS

Intuition offers you several possibilities for handling window borders. You can take advantage of the fancy border
features, such as automatic double border lines around the window and automatic padding of borders to allow for
gadgets. If you'd rather, you can eliminate borders completely, or you can use the Gimmezerozero window, which
gives you all the border features and then lets you ignore them. :

The actual border lines are drawn around the perimeter of the window and are mostly distinct from the border area
in which border gadgets are placed. Intuition automatically draws a double border around a window unless you ask
for something different (such as by setting the BORDERLESS flag.) This nominal border consists of an outer line
around the entire window, rendered in the BlockPen color, and within this a second line, rendered in the pen 0 color,
the background color of Workbench. The inner line is most easily seen in a program like Notepad, the Workbench
notepad utility, which uses a different background color than Workbench. BlockPen is defined, along with its mate,
DetailPen, in the NewWindow structure.

The default minimum thickness of the border areas depends upon certain parameters set in the definition of the
underlying screen, certain choices the user has made with Preferences, and the default font. If the window is not a
special Borderless window, the borders will be at least the default thickness. Intuition adjusts the size of a window’s
border areas to accommodate system gadgets or your own application gadgets.

You can find the thickness of the border areas in the variables BorderLeft, BorderTop, BorderRight, and
BorderBottom. These variables are computed when the window is opened and can be found in the Window
structure. You may want to use them to position visual elements within your window, for example, if you are
drawing lines in the window with graphics primitives, which require you to specify a set of coordinates as the
beginning and ending points for the line. In a typical window, you cannot specify a line from (0,0) to (50,50)
because you may draw a line over the window title bar. Instead, you would use the border variables to specify a line
from (0+BorderLeft, 0+BorderTop) to (50+BorderLeft), S0+BorderTop). This may look clumsy, but it offers a
way of avoiding a Gimmezerozero window, which—although much more convenient 0 use—requires extra
memory and degrades performance. :

For the top bordcr,‘ in addition to the system gadgets and your own gadgets, you can specify a window title. The
window title bar does not appear unless you specify one of the following: '

* A window title.
« Any of the system gadgets for window dragging, window depth arranging, or window closing.
Usually, borders are drawn automatically and adjusted within the dimensions you specify in the NewWindow

structure. In the special Borderless and Gimmezerozero windows, however, borders are handled differently. A
Borderless window has no drawn borders and no automatic border spacing or padding. If you have system gadgets

Intuition: Windows 41

or your own gadgets with a border flag set, borders may be visually defined by the gadgets. A Gimmezerozero
window places the borders and gadgets in their own bit-map, separate from the window’s bit-map. This means you
can draw freely across the entire surface of the window without worry about scribbling over the gadgets.

You can specify whether or not your application gadgets reside in the borders, and in which border, by setting a flag
in the Gadget structure. See the chapter ‘‘Gadgets,’’ for more information about gadgets and how to place them
where you want them,

PRESERVING THE WINDOW DISPLAY

When a window is revealed after having been overlapped, the display has to be redrawn. Intuition offers three ways
of preserving the display:

* Inthe Simple Refresh method, your program redraws the display.
* In the Smart Refresh method, Intuition keeps a copy of the display in RAM buffers.
* Inthe SuperBitMap method, you allocate an entirely separate display memory for your window.

Smart Refresh and SuperBitMap use the window’s idea of its display memory space to save the parts of the window
that are not currently being displayed. Windows and other high-level display components, such as menus and
gadgets, have a ‘‘virtual’’ understanding of their display memory. The application can ignore other windows being
displayed and write into its own virtual memory area. The Amiga graphics software then takes these requests to
draw in virtual display memory and translates them into real operations that are placed in save buffers (for Smart
Refresh) or in areas of a private bit-map (for SuperBitMap) maintained by the application.

The three methods of preservation are explained below. You must choose one of them.

Simple Refresh

With the Simple Refresh redrawing method, Intuition does not need to remember anything about windows that are
overlapped. For the most part, the program is responsible for redrawing the window. If the user sizes the window
larger on either axis or reveals a window that was overlapped, the program must redraw the display. However, if the
user merely drags the window around, Intuition preserves it and redisplays it in the new location. Simple Refresh
tends to be slower than other methods, but it is memory-efficient, since no RAM is consumed in saving the obscured
portions of a window. Simple Refresh uses the screen’s display memory for the window’s display.

Your program can be notified by Intuition when part of a window needs to be redrawn. In addition, Intuition supplies
functions that limit the redrawing to the *“‘damaged’’ area, without your program having to know which part of the
window was affected. This greatly speeds up the refresh process. A Simple Refresh window is appropriate when
your application can redraw its visuals relatively rapidly.

42 Intuition: Windows

SIMPLE REFRESH

The obscured portion
is discarded.

Figure 3-3: Simple Refresh

Smart Refresh

With the Smart Refresh redrawing method, Intuition keeps all information about the window in RAM, whether the
window is currently concealed or is up front. If the user reveals a window that was overlapped, Intuition recreates
the display. If the window has a sizing gadget, then when the user makes the window larger, the application is still
responsible for creating the display in the new portion of the window. Intuition will notify your application and
offers the same ability to constrain the redrawing as is done for Simple Refresh. Smart Refresh windows are
appropriate when regenerating the display would take too long. Smart Refresh uses the screen’s display memory for
the window display and requires extra buffers for the off-screen portions of the window (portions not currently being
displayed). Smart Refresh uses more display memory but redraws the display faster than Simple Refresh.

Intuition: Windows 43

SMART REFRESH

The obscured portion is
preserved offscreen.

Figure 3-4: Smart Refresh

SuperBitMap

This is both a special type of window and a method of redrawing the display. When you choose this method of
redrawing, you get your own bit-map to use as display memory instead of using the screen’s display memory. You
make this bit-map as large as the window can get (or larger). You never have to worry about redisplay after the
window is uncovered because the entire display is always there in RAM.

44 Intuition: Windows

SUPER B|T MAP

Portions of your offscreen
bitmap are shown onscreen.

Figure 3-5: SuperBitMap Refresh

REFRESHING THE WINDOW DISPLAY

If you open either a Simple Refresh or a Smart Refresh window, your program may be asked to refresh part of your
display at some time. When a Simple Refresh window is moved or sized, or when other windows are moved or
sized in such a way that areas of a Simple Refresh window are revealed, the window will have to be refreshed. With
Smart Refresh windows, the window must be sized larger on either axis to generate a REFRESHWINDOW event.

The program finds out that the window needs refreshing via either source of input, the IDCMP or the console device.
A message of the class REFRESHWINDOW arrives at the IDCMP, telling the program that the window needs to be
refreshed. Every time the program leams that it should refresh a window, it must take some action, even if it is just
the acceptable minimum action described below. (See the chapter “Input and Output Methods™ for further
information.)

When the program is asked to refresh a window, before actually starting to refresh it the program should call the
Intuition function BeginRefresh(). This function makes sure that refreshing is done in the most efficient way, only
redrawing those portions of the window that really need to be redrawn. The rest of the rendering commands are
discarded.

After BeginRefresh() is called, the program should redraw its display. Then, call EndRefresh() to restore the state
of the internal structures.

When using Begin/EndRefresh() restrict your operations to simple rendering. All of the rendering functions in
intuition.library and graphics.library are safe. RefreshGadgets() is also permissible, but probably unnecessary.
Avoid calls that may lock the LayerInfo, or get complicated in Intuition, since BeginRefresh() leaves the window’s
layer or layers locked. Avoid AutoRequest(), and therefore all direct or indirect disk-related DOS calls. Though
BeginRefresh() and EndRefresh() provide good results in refreshing a smart window, the refreshing of gadgets can
be more complicated. This topic is covered in the gadgets chapter.

Intuition: Windows 45

Even if you don’t want the program to redraw immediately, you should make sure the program at least calls
Begin/EndRefresh() each time it is asked to refresh a window. This helps Intuition and the layer library keep things
sorted and organized.

If you are opening a window that you will never care to refresh, no matter what happens to it or around it, then you
can avoid having to call BeginRefresh() and EndRefresh() by setting the NOCAREREFRESH flag in the
NewWindow structure when you open your window.

WINDOW POINTER

The active window contains a pointer to allow the user to make selections from menus, choose gadgets, and so on.
The user moves the pointer around with a mouse controller, other kinds of controllers, or the keyboard cursor keys.

Pointer Position

If your program needs to know about pointer movements, you can either look at the position variables or arrange to
receive messages each time the pointer moves. The MouseX and MouseY fields of the Window structure always
contain the current pointer x and y coordinates, whether or not your window is the active one. If you elect to receive
messages, you get a set of x,y coordinates each time the pointer moves. These coordinates are relative to the upper
left corner of your window and are reported in the resolution of your screen, even though the pointer’s visible
resolution is always in low-resolution mode (note that the pointer is actually a sprite).

If your window is a Gimmezerozero window, you can examine the variables GZZMouseX and GZZMouseY in the
Window structure to find the position of the mouse relative to the upper left corner of the inner window.

To get messages about pointer movements, either InputEvents or message-port messages, you must set the
REPORTMOUSE flag in your window structure. Thereafter, whenever your window is active, you'll get a
broadcast every single time the pointer moves. This can be a lot of messages, so be prepared to handle them
efficiently. If you want to change whether or not you are following mouse movements, you can call
ReportMouse(). :

You can also get messages about pointer movements by setting the flag FOLLOWMOUSE in your application
gadget structures. If this flag is set in a gadget, the current pointer position is reported as long as that gadget is
selected by the user. This can result in a lot of messages, too.

Custom Pointer

You can set up your window with a custom pointer to replace the default arrow pointer. Your custom pointer will be
displayed whenever your window is the active one. Good uses include a cross-hair pointer for a paint-program, or a
“‘busy’’ pointer to indicate that your program is performing some operation and is not ready to respond to new
requests from the user. To define the pointer, set up a sprite data structure (sprites are one of the general-purpose
Amiga graphics structures). To place your custom pointer in the window, call SetPointer(). To remove your
custom pointer from the window, call ClearPointer(). Both of these functions take effect immediately if yours is
the active window. ‘

Also, you can change the colors of the Intuition pointer. The Intuition pointer is always sprite 0. To change the

colors of sprite 0, call the graphics library routine SetRGB4(). Refer to chapter on style for more information about
this.

46 Intuition: Windows

See the last section of this chapter for a complete example of a custom pointer.

GRAPHICS AND TEXT IN WINDOWS

There are two ways of rendering graphics, lines, and text into windows. You can use all of the Amiga graphics,
animation, and text primitives in any window. Also, you can use the quick and easy Intuition structures and
functions to display Intuition Image, Border, or IntuiText structures in windows. See the chapter entitled
“‘Images, Line Drawing, and Text,” for more information about Images, Borders, and IntuiText.

WINDOW COLORS

The number of colors you can use for the window display and the actual colors that will appear in the color registers
are defined by the screen in which the window opens. In the window structure, you specify two color register
numbers (“‘pens’’), one for the border outline, text and gadgets and one for block fills (such as the title bar and menu
backgrounds). These pen colors are also a function of the screen. You can specify different colors for the pens than
those used by the screen or you can use the screen’s pen colors.

WINDOW DIMENSIONS

In the NewWindow structure, you define the dimensions and the starting location of your window on the screen.
The position and dimensions of the window undergo error checking when the window is opened. The maximum
dimensions of the window, specified as NewWindow.MaxWidth and NewWindow.MaxHeight,

are unsigned and may legally be set to the maximum by using the value OXFFFF, better expressed as “0.

If you are letting the user change the size and shape of the window, you also need to specify the minimum size to
which the window can shrink and the maximum size to which it can grow. If you do not ask that the window sizing
gadget be attached to the window, then you need not initialize any of these maximum and minimum values.

In setting all these size dimensions, bear in mind the horizontal and vertical resolutions of the screen in which you
are opening the window.

If you want to change the sizing limits after you have opened the window, you can call WindowLimits() with the
new values. :

The NewWindow Structure

Here are the specifications for the NewWindow structure:

struct NewWindow

{
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
UBYTE DetailPen, BlockPen;
ULONG IDCMPFlags;
ULONG Flags;
struct Gadget *FirstGadget;
struct Image *CheckMark;
UBYTE *Title;

Intuition: Windows 47

struct Screen *Screen;
struct BitMap *BitMap;
SHORT MinWidth, MinHeight;
USHORT MaxWidth, MaxHeight;
USHORT Type:; ‘

}:

The fields in the NewWindow structure are explained below. Some of the fields contain variables to which you
need to assign a value, some contain flag bits to set or unset, and some are pointers to other structures.

LeftEdge, TopEdge, Width and Height

These fields describe where your window will first appear on the screen and how large it will be initially. These
dimensions are relative to the top left corner of the screen, which has the coordinates (0,0):

LeftEdge The initial x position, which represents the offset from the first pixel on the line, pixel 0.

TopEdge The initial y position, which represents how many lines down from the top (line 0) you want the
window to begin,

Width The initial width in pixels.

Height The initial height in lines.

DetailPen and BlockPen

These fields contain the *‘pen’’ numbers used to render details of the window. The colors associated with the pens
are a function of the screen. If you supply a value of -1 for either of these, you will get the screen’s value for that

pen by default.
DetailPen The pen number (or -1) for the rendering of window details like gadgets or text in the title bar

BlockPen The pen number (or -1) for window block fills (like the title bar) and the outer rim of the window

border.
Flags
System Gadget Flags
WINDOWSIZING

This flag allows the user to change the size of the window. Intuition places the window’s sizing
gadget in the lower right of your window. By default, the right border is adjusted to accommodate
the sizing gadget, but you can change this with the following two flags, which work in conjunction
with WINDOWSIZING. The sizing gadget can go in either the right or bottom border (or both) of
the window.

* The SIZEBRIGHT flag, which is the default, puts the sizing gadget in the right border.

48 Intuition: Windows

« The SIZEBBOTTOM flag puts the sizing gadget in the bottom border. You might wish to set this
flag to put the sizing gadget in the bottom border if you want all possible horizontal bits—for
instance, for 80-column text—and are willing to sacrifice vertical space.

WINDOWDEPTH
Setting this flag adds both the UPFRONT gadget to bring the window into the foreground and the
DOWNBACK gadget to send it behind other currently displayed windows. o

This allows the user to change the window’s depth arrangement with respect to all other currently
displayed windows. Intuition places the window depth-arrangement gadgets in the upper right of the
window.

WINDOWCLOSE
Setting this flag attaches the standard close gadget to the upper left of the window. When the user
selects this gadget, Intuition transmits a message to your application. It is up to the application to call
CloseWindow() when ready.

WINDOWDRAG
This flag turns the entire title bar of the window into a drag gadget, allowing the user to move the
window into a different position on the screen by clicking anywhere in the window title bar and
moving the mouse or other controller. ‘

NOTE

Even if you do not specify a text string in the Text variable shown below, a title bar appears if
you use any one of the system gadgets WINDOWDRAG, WINDOWDEPTH, or
WINDOWCLOSE. If no text is provided, the title bar is blank.

GIMMEZEROZERO
Set this flag if you want a Gimmezerozero window.

Window Refresh Flags

The following four flags determine how Intuition preserves the display when an overlapped window is
uncovered by the user. You must select one of the first three.

SIMPLE_REFRESH
When this flag is set, every time a portion of the window is revealed the application program must
redraw its display. ”

SMART_REFRESH -
When this flag is set, the only time you have to redraw your display is when the window’s sizing
gadget is used to make the window larger. ‘

NOTE
If you open a SMART_REFRESH window without asking for the sizing gadget, then

Intuition never tells you to redraw this window.

SUPER_BITMAP
Setting this flag means you are allocating and maintaining your own bit-map. You must also set the
BitMap field to point to your own BitMap structure. For complete information about SuperBitMap,
see *‘Setting Up a SuperBitMap Window’’ later in this chapter, and the example "dualpf.c”, at the

Intuition: Windows 49

end of the chapter.

OTHER_REFRESH
Reserved.

Special Window Flags

BACKDROP
Set this flag if you want a Backdrop window.

BORDERLESS
This flag creates a window with none of the default border padding and border lines.

NOTE

Be careful when you set this flag. It may cause visual confusion on the screen. Also, there
may still be some borders if you have selected some of the system gadgets, supplied text for
the window’s title bar, or specified that any of your custom gadgets go in the borders.

Message Flags

REPORTMOUSE
This flag sets the window to receive pointer movements as x,y coordinates. Also see the description
of the IDCMP flag, MOUSEMOVE, in the chapter entitled *‘Input and Output Methods.’’

ACTIVATE
When this flag is set, the window automatically becomes active when it is opened.

NOTE

Use this flag carefully. Itcan change where the user’s input is going.

NOCAREREFRESH
Set this flag if you do not want to receive messages telling you to refresh your window.

RMBTRAP
Set this flag if you do not want any menu operations at all for your window. Whenever the user
presses the right mouse button while this window is active, the program will receive normal
MOUSEBUTTON events. ~

This flag may be modified on-the-fly by your program. The recommended way to set or clear this
flag is as an atomic operation. Caution: Intuition can preempt a multistep set or clear operation, i.e.
read contents of address into register, perform bit operation on register, and write register out to
address. This can cause Intuition to become confused. An atomic operation could be done in
assembler, using 68000 instructions that operate directly on memory, or it could be done by locking
out Intuition with a Forbid()/Permit() pair. Here, you would call Forbid(), do the operation on
Window.Flags, and then call Permit().

IDCMPFlags

The IDCMPFlags are listed and described in The Amiga ROM Kernel Reference Manual: Includes and
Autodocs for the OpenWindow() function and in the chapter in this manual entitled *‘Input and Output

50 Intuition: Windows

Methods.” If any of these flags are set, Intuition creates a pair of message ports and uses them selectively for
sending input to the task opening this window instead of using the console device.

FirstGadget ’
This is a pointer to the first in the linked list of custom Gadget structures that you want included in the

window.

CheckMark
This is a pointer to an instance of a custom image to be used when menu items selected by the user are to be
checkmarked. If you just want to use the default checkmark (\1), set this field to NULL.

Title
This is a pointer to a null-terminated text string, which becomes the window title and is displayed in the
window title bar. Intuition draws the text using the colors in the DetailPen and BlockPen fields and displays
as much as possible of the window title, depending upon the current width of the title bar. You get the screen’s
default font.

NOTE
The window title is not an instance of IntuiText; it is simply a string ending in a NULL.
Type
This contains the screen type for this window. The currently available types are WBENCHSCREEN and
CUSTOMSCREEN.
IMPORTANT

If you choose CUSTOMSCREEN, you must have already opened your custom screen via a call to
OpenScreen(), and you must copy that pointer into the Screen ficld (see next entry), before you open
your window.

Screen
If your type is WBENCHSCREEN, then this argument is ignored. If Type is CUSTOMSCREEN, point this t0
your custom screen structure.

BitMap
If you specify SUPER_BITMAP as the refresh type, this flag must be a pointer to your own BitMap structure.
If you specify some other refresh type, Intuition ignores this field.

The following four variables are used to set the minimum and maximum size to which you allow the user to size the
window. If you do not set the flag WINDOWSIZING, then these variables are ignored by Intuition.

If you set any of these variables to 0, that means you want to use the initial setting for that dimension. For example,
if MinWidth is 0, Intuition gives this variable the same value as the opening Width of the window.

NOTE
To change the limits after the window is opened, call WindowLimits().

MinWidth
The minimum width for window sizing, in pixels.

MinHeight
The minimum height for window sizing, in lines.

Intuition: Windows 51

MaxWidth
The maximum width for window sizing, in pixels. Use (“0) to allow a window as wide as the screen.

MaxHeight
The maximum height for window sizing, in lines. Use ("0) to allow a window as high as the screen.

WINDOW STRUCTURE

If you have successfully opened a window by calling the OpenWindow() function, you receive a pointer to a
Window structure. This section describes some of the more useful variables of the Window structure. A complete
description of the Window structure is given in The Amiga ROM Kernel Reference Manual: Includes and Autodocs.

LeftEdge, TopEdge, Width and Height
As the user moves and sizes your window, these variables will change to reflect the new parameters.

MouseX, MouseY, GZZMouseX, GZZMouseY
These variables always reflect the current position of the Intuition pointer, whether or not your window is
currently the active one. The GZZMouse variables reflect the position of the pointer relative to the inner
window of Gimmezerozero windows and the offset into normal windows after taking the borders into account.

ReqCount
You can examine this variable to discover how many requesters are currently displayed in the window.

WScreen
This variable points to the data structure for this window’s screen. If you have opened this window in a custom
screen of your own making, you should already know the address of the screen. However, if you have opened
this window on the Workbench screen, this variable will point you to that screen’s data structure.

RPort
This variable is a pointer to this window’s RastPort. You may need the address of the RastPort when using
the graphics, text, and animation functions.

BorderLeft, BorderTop, BorderRight, BorderBottom
These variables describe the current size of the respective borders that surround the window.

BorderRPort
With Gimmezerozero windows, this variable points to the RastPort for the outer window, in which the border
gadgets are kept.

UserData
- This is a memory location that is reserved for your use. You can attach your own block of data to the window
structure by setting this variable to point to your data.

WINDOW FUNCTIONS

Here's a quick rundown of Intuition functions that affect windows. For a complete description of these functions,
sce The Amiga ROM KerneL Reference Manual: Includes and Autodocs.

52 Intuition: Windows

Opening the Window

Use the following function to open a window:

OpenWindow (NewWindow)

NewWindow is a pointer to a NewWindow structure. If successful, a pointer to a Window structure is
returned. This pointer is required by many of the other functions listed below.

Activating a Window

Use the following function to activate windows:

ActivateWindow(Window)

Window is a pointer to a Window structure. This function call may have its action deferred. Don’t assume that
the selected window has become active just because you called this function for it. You can detect when this
window has become active by using the ACTIVEWINDOW IDCMP message. We suggest that you use this
function only in response to some user action. An example of a system program using this function on a (long,
narrow) window along with the related function ActivateGadget(), is the Workbench Rename function.

Menus

Use the following functions to attach and remove menus:

SetMenuStrip(Window, Menu)

This function attaches menus to a window.

ClearMenuStrip(Window)

This function removes the menu strip from a window. After this is done, the user can no longer access menus

for this window. If you have called SetMenuStrip(), you should call ClearMenuStrip() before closing your
window.

See the chapter ‘‘Menus,”” for complete information about setting up your menus.

Changing Pointer Position Reports

Although you decide when opening the window whether or not you want messages about pointer position, you can
change this later with the following function:

ReportMouse(Window, Boolean)

Intuition: Windows 53

ReportMouse(Boolean, Window)

This function determines whether or not mouse movements in this window are reported. While most code will
use the first form of the call, some compilers require the second. Consult your compiler manual for the correct
calling sequence. From assembler, the interface is always the same: Boolean in DO, Window in A0, It is still
endorsed to simply set, or reset, the REPORTMOUSE flag bit in Window->Flags on your own, in an atomic
way, as explained for RMBTRAP, above.

Closing the Window

After the user selects the close gadget, the program can do whatever it needs to do to clean up and then actually
close the window with the CloseWindow (Window) function. This function closes a window.

Requesters in the Window

The following two functions allow requesters to become active:

Request (Requester, Window)
This function activates a requester in the window.
SetDMRequest (Window, Requester)

This function sets up a requester that the user can bring up in the window by clicking the menu button twice.

These two functions disable requesters:

EndRequest (Requester, Window)
This function removes a requester from the window.
ClearDMRequest (Window, Requester)

This function clears the double-click requester, so that the user can no longer access it.

Custom Pointers

The following functions apply if you have a custom pointer:

SetPointer (Window, Pointer, Height, Width, Xoffset, Yoffset)

This function sets up the window with a sprite definition for a custom pointer. If the window is active, the
change takes place immediately.

ClearPointer (Window)

This function clears the sprite definition from the window and resets to the default Intuition pointer.

54 Intuition: Windows

Changing the Size Limits

The following function changes the limits for window sizing:

WindowLimits (Window, MinWidth, MinHeight, MaxWidth, MaxHeight)

This function changes the maximum and minimum sizing of the window from the initial dimensions in the.
NewWindow structure. If you do not want to change a dimension, set the corresponding argument to 0. Out-
of-range numbers are ignored. If the user is currently sizing the window, new limits take effect after the user
releases the select button.

Changing the Window or Screen Title

The following function changes the window title after the window has already been displayed:

SetWindowTitles (Window, WindowTitle, ScreenTitle)

This function changes the window title (and screen title, if this is the active window) immediately.
WindowTitle or ScreenTitle can be -1, 0, or a null-terminated string:

-1 Do not change this title.

0 Leave a blank title bar

string Change to the title given in this string.
Refresh Procedures

The following functions allow you to refresh your window in an optimized way:

BeginRefresh (Window)

This function initializes Intuition and layer library internal states for optimized refresh. After you call this
procedure, you may redraw your entire window. Only those portions that need to be refreshed will actually be
redrawn; the other drawing commands will be discarded.

EndRefresh (Window, boolean)

After you've refreshed your window, call EndRefresh() to restore the internal states of Intuition and the layer
library. The boolean value determines whether you are completely finished with refreshing or not. If you set it
to FALSE, you may perform further refreshing between subsequent BeginRefresh()/EndRefresh() pairs. You
should set the boolean to TRUE for the last call to EndRefresh().

RefreshWindowFrame(Window) Refreshes the border of a window, including the title region and the
gadgets. It’s provided in case your program has been trashing borders and you want to clean up.

Intuition: Windows 55

Program Control of Window Arrangement

These functions allow you to modify the arrangement of your window as if the user were activating the associated
system window gadgets. These four are among the Intuition functions that are asynchronous. The window will not

be affected by them immediately; rather, Intuition will act on it the next time Intuition receives an input event, which
happens currently at a minimum rate of ten times per second, and a maximum of sixty times per second. Remember
that the actions you call for with these commands may not occur immediately. In some cases, there are IDCMP
messages you can request and wait for, which will let you know when the change has occurred (for example
NEWSIZE).
« -~ MoveWindow (Window, DeltaX, DeltaY)

This function allows you to move the window to a new position in the screen.
e SizeWindow (Window, DeltaX, DeltaY)

You can change the size of your window with a call to this procedure.
e WindowToFront (Window)

This function causes your window to move in front of all other windows in this screen.

* . WindowToBack (Window)

This function causes your window to move behind all other windows in this screen.

SETTING UP A SUPERBITMAP WINDOW

For a SuperBitMap window, you need to set up your own bit-map, since you will not be using the screen’s display
memory. To set up the bit-map, you need to create a BitMap structure and allocate memory space for it.

The general-purpose graphics function InitBitMap() prepares a BitMap structure, which describes how a linear
memory area is organized as a series of one or more rectangular bit-planes. Here is the specification for this
function:

« InitBitMap (bitmap, depth, bitwidth, bitheight)

bitmap
- This is a pointer to the BitMap structure to be initialized.

depth
This specifies the number of bit-planes to set up.

bltw1dth
This specifies how wide each bit-plane should be, in bits. Should be a multiple of 16.

bitheight
This specifies how high each bit-plane should be, in lines.

56 Intuition: Windows

The general-purpose graphics function AllocRaster() allocates the memory space for the BitMap. Here is the
specification for this function:

« AllocRaster (width, height)

The arguments width and height are the maximum dimensions of the array in bits. An‘ example of the use of
AllocRaster() appears in the example “‘dualpf.c”’, in the previous chapter. One of the examples below
demonstrates a SuperBitMap window.

SETTING UP A CUSTOM POINTER

Follow these procedures to replace the default pointer with your own custom pointer:
1. Create a sprite data structure. (This is explained below.)
2. Call SetPointer(). If your window is active, the new pointer will be attached to the window.

An extra requirement is imposed on sprite data (and Image data). It must be located in chip memory, whicil is
memory that can be accessed by the special Amiga hardware chips. Expansion memory cannot be addressed by the
custom chips. ,

To write a program that will survive in multiple configurations of Amiga hardware, you must ensure that your sprite
and Image data reside in this chip memory. You can make sure that your data is in chip memory by using the tools
or flags provided by your compiler for this purpose. If none are provided, see the last paragraph in the *‘Other
Features’’ chapter for another method.

To allocate chip memory, call the Exec function AllocMem() with MEMF_CHIP as the requirements argument.
See the chapter entitled ‘‘Exec: Memory Allocation’’, for more information.

The Sprite Data Structure

A sprite data structure is made up of words of data. In a pointer sprite, the first two words and the last two words are
reserved for the system. These should be set to 0’s. All the other words represent the sprite image.

The example X-shaped custom pointer is nine lines high and two bit planes deep. So, the sprite image consists of 18
words (2 planes x 9 lines = 18 words). If we add the four words reserved for the system we get the following
definition:

#define XPTR_WIDTH 9
#define XPTR_HEIGHT 9
#define XPTR_XOFFSET -4
#define XPTR_YOFFSET -4

USHORT XPointer([]=

{
0x0000, 0x0000, /* Position and control words */

0xC180,0x4100, /* 1lst line of the sprite image */
0x6380, 0xA280, /* 2nd line of the sprite image */
0x3700,0x5500,
0x1600,0x2200,
0x0000, 00000,
0x1600,0x2200,
0x2300,0x5500,

Intuition; Windows 57

0x4180, 0xA280,
0x8080,0x4100, /* 9th line of the sprite image */

0x0000,0x0000 /* Reserved for system */
}:

The first two words of image data, 0xC180 and 0x4100, represent the top line of the sprite. To find out what colors
will appear on the top line of the sprite, take a bit from 0xC180 and the corresponding bit from 0x4100. This will
give a 2-bit number from 0-3 representing the color register for the given pixel. For instance, the top left pixel of
our example pointer gets color info from color register 01.

LSB MSB
First two lines of
sprite data in hex: 0xC180 0x4100

In binary: 1100... 0100...
Color register used: 01 11 00 00....

NOTE

The first word in a line gives the least significant bit of the color register and the second word gives the
most significant bit. As you can see, sprites get their color information from the color registers much
like screens do.

This example sprite creates an Intuition pointer that looks like the one shown in the figure.

Figure 3-6: The X-Shaped Custom Pointer

Attaching the Pointer to the Window

58 Intuition: Windows

You call SetPointer() with the following arguments:

Window

This is a pointer to the window that is to receive this pointer definition.

Pointer

This is a pointer to the data definition of a sprite.

Height

This specifies the height of the pointer; it can be as tall as you like.

Width

This specifies the width of the sprite (must be less than or equal to 16).

XOffset, YOffset
The XOffset and YOffset are used to offset the top-left corner of the hardware sprite imagery from what
Intuition regards as the current position of the pointer. Another way of describing it is as the offset from
the *‘hot spot’’ of the pointer to the top-left corner of the sprite. For instance, if you specify offsets of
zero, zero, then the top-left comer of your sprite image will be placed at the pointer position. On the other
hand, if you specify an XOffset of -7 (remember, sprites are 16 pixels wide) then your sprite will be
centered over the pointer position. If you specify an XOffset of -15, the right edge of the sprite will be

over the pointer position.

NOTE

For compatibility, you must tell Intuition that the “‘hot spot’” of the pointer sprite is one pixel to
the left of the position you actually intend. Changes to the pointer done by your program must
compensate for this. The Preferences pointer editor correctly handles this situation.

Examples

BACKDROP WINDOW EXAMPLE

This program opens a borderless backdrop window, and writes a greeting to the location normally occupied by the
screen title bar. After a pause of about three seconds, it goes away.

/* agateWindow.h -~ This file implements a borderless backdrop */

/*

#define
#define
#define
#define

window. */

AGAT_LEFTEDGE 0
AGAT_TOPEDGE O
AGAT_WIDTH -1 /* Width and height are supposed to be the */
AGAT HEIGHT -1 /* same as the screen width and height. */

struct NewWindow agateWindow =

{

AGAT_LEFTEDGE,
AGAT_TOPEDGE,

640,
200,
0,1, /* Plain vanilla DetailPen and BlockPen. */
NULL, /* IDCMP Flags can be added later. */
SMART_REFRESH | ACTIVATE | NOCAREREFRESH | BORDERLESS

| BACKDROP,
NULL, /* Pointer to the first gadget -- */

Intuition: Windows 59

/* may be initialized later. */

NULL, /* No checkmark. */

NULL, /* No title. x/

NULL, /* Attach a screen later. */

NULL, /* No BitMap. *x/

AGAT WIDTH, /* Minimum width. */

AGAT_HEIGHT, /* Minimum height. */

AGAT_WIDTH, /* Maximum width. */

AGAT_HEIGHT, /* Maximum height. */

CUSTOMSCREEN /* A screen of our own. */

};

/* End of agateWindow.h */

/* hellotext.h */

struct IntuiText hello

{

1, /* Use color register 1 (BlockPen) for the FrontPen ¥/
2, /* Color register 2, but not used in JAM1 mode. */
JAM1, /* Use the background color */
0, /* As far to the left as possible. */
NULL, /* I want to use the font height -- *x/
/* - postpone this till later. *x/
NULL, /* Font to use: the default. */
"Hello, World! ", /* The text */
NULL /* No more IntuiText */

End of hellotext.h */

/* borderless.c - Opens a borderless backdrop window, writes a message. */
#include <exec/types.h>

#include <intuition/intuition.h>

#$include <libraries/dos.h>

$ifdef LATTICE

#include <proto/all.h>

#include <stdlib.h>

int CXBRK(void) {return(0);}

#endif

/* Include user-written header files here. */
#include "hires.h"

#include "“agateWindow.h"

#include "hellotext.h®

/* Use lowest non-obsolete version that supplies the functions you need. */
#define INTUITION REV 33
#define GRAPHICS REV 33

/* TICKS_PER_SECOND is defined in libraries/dos.h
NEVER call Delay() with an argument of 0 !
*/

#$define PAUSE (seconds)

extern VOID cleanExit (
struct
struct

/* The
struct
APTR oldwindowptr

VOID main(int argc,
{

IntuitionBase *IntuitionBase
GfxBase *GfxBase

(Delay ((seconds) * TICKS_PER_SECOND))

struct Screen *, struct Window *, int);

NULL;

NULL;

next two declarations are for redirecting system requesters. */
Process *myProcess
NULL;

NULL;

char *argv{])

/* Declare variables here */

SHORT 1i;
SHORT txWidth;

struct Screen *screenl = NULL;

60 Intuition: Windows

’

}

struct Window *windowl = NULL;

/* Open the Intuition Library */
IntuitionBase = (struct IntuitionBase ¥)
OpenLibrary(®"intuition.library"®, INTUITION_ REV);

if (IntuitionBase == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

/* Open any other required libraries */
GfxBase = (struct GfxBase ¥)
Openlibrary ("graphics.library",GRAPHICS_REV);

if (GfxBase == NULL)
cleanExit (screenl, windowl, RETURN_WARN)

/* Open the screen */
screenl = OpenScreen(&fullHires);
if (screenl == NULL)
cleanExit (screenl, windowl, RETURN_WARN) ;

/* Attach the window to the open screen ... */
agateWindow.Screen = screenl;

/* Conceal the screen title */
ShowTitle(screenl, (BOOL)FALSE);

/* ... and open the window */
windowl = OpenWindow(&agateWindow);
if (windowl == NULL)
cleanExit {screenl, windowl, RETURN_WARN);
/* Now is the time to redirect system requesters. */
myProcess = (struct Process *)FindTask (NULL); /* Finds our process */

oldwindowptr = myProcess->pr_WindowPtr;
myProcess->pr_WindowPtr = (APTR)windowl;

/* Write at the top edge of the window *x/
/* Get the text width to space the greeting properly. */
txWidth = IntuiTextLength(&hello);
/* Print text five times, one pixel down from the top. */
for (1 =0; i < 5; i++)

PrintIText (windowl->RPort, &hello, i*txwWidth, 1);

PAUSE(6);

/* Set up the signals that you want to hear about ... */
/* No signals in this program */

/* Exit the program */

cleanExit (screenl, windowl, RETURN_OK);

VOID cleanExit{ scrn, wind, returnValue)
struct Screen *scrn;

struct Window *wind;

int returnvValue;

{

Intuition: Windows 61

/* Close things in the reverse order of opening */
/* Restore the old window pointer to our process, */
/* and close the window and the screen. */

if (oldwindowptr)
myProcess->pr_WindowPtr = oldwindowptr;

if (wind) CloseWindow(wind);

if (scrn) CloseScreen(secrn);

/* Close the library, and then exit */
if (GfxBase) CloseLibrary((struct Library *)GfxBase);
if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase)2

exit (returnValue);

TWO WINDOW EXAMPLE

The following program, twowindows.c, opens two windows, and writes messages into them with IntuiText. It
shows the function of the ACTIVATE flag, and illustrates how to get messages from two or more windows. It also
shows how to redirect system requesters, that were initiated by your program, to your custom screen.

/* hellogoodbye.h */

struct IntuiText hello =

{

1, /* Use color register 1 (BlockPen) for the FrontPen */
2, /* Color register 2, but not used in JAM1 mode. */
JAM1, /* Use the background color */
o, /* As far to the left as possible. */
NULL, /* I want to use the font height -- */

/* postponie this till later. */
NULL, /* Font to use: the default. */
"Hello, World! ", /* The text *x/

NULL /* No more IntuiText */

struct IntuiText other([3] =

{1, 3, JaM2, 0, 0, NULL, "You clicked in the", NULL },
{0 2, JaMm2, 8, 0, NULL, "other window!", NULL }e
{ 3, 2, JaM2, 40, 0, NULL, "GOODBYE!", NULL }

/* End of hellogoodbye.h */
/* twowindows.c */

#include <exec/types.h>

#include <intuition/intuition.h>
#include <libraries/dos.h>
#ifdef LATTICE

#include <proto/all.h>

#include <stdlib.h>

int CXBRK(void) {return(0);}
#endif

/* Include user-written header files here. For illustration, we show */
/* two header files which we will use frequently. */
#include "hires.h"

#include "“graniteWindow.h"

#include "hellogoodbye.h"

62 Intuition: Windows

/* Use lowest non-obsolete version that supplies the functions you need. */
#define INTUITION_REV 33
#define GRAPHICS REV 33

/* TICKS PER_SECOND (defined in libraries/dos.h)
NEVER call Delay() with an argument of 0 !
*/
#define PAUSE (seconds) (Delay ((seconds) * TICKS_PER_SECOND))

extern VOID cleanExit(struct Screen *, struct Window *, struct Window *,
int returnvalue);
extern UBYTE handleIDCMP{ struct Window *)

struct IntuitionBase *IntuitionBase = NULL;

struct GfxBase *GfxBase = NULL;

/* The following two lines are for system requester redirection. */
APTR oldwindowptr = NULL;

struct Process *myProcess = NULL;

VOID main(int argc, char *argv([])
{
/* Declare variables here */
ULONG aSignalmask, bSignalmask, signals;
USHORT aDone = FALSE, bDone = FALSE, i, fontHeight;
struct Screen *screenl = NULL;
struct Window *aWindow = NULL, *bWindow = NULL;
/* Open the Intuition Library */

IntuitionBase = (struct IntuitionBase ¥)
OpenLibrary("intuition.library™, INTUITION_REV };

if (IntuitionBase == NULL)
cleanExit (screenl, aWindow, bWindow, RETURN_WARN) ;

/* Open any other required libraries */

GfxBase = (struct GfxBase *)
OpenLibrary("graphics.library", GRAPHICS_REV);

if (GfxBase == NULL)
cleanExit (screenl, aWindow, bWindow, RETURN_WARN) ;

/* Make the assignments that were postponed above */
graniteWindow.Width = 300;
graniteWindow.Height = 100;
graniteWindow.Title = "aWindow";
/* Open the screen */
screenl = OpenScreen(&fullHires);
if (screenl == NULL)
cleanExit (screenl, aWindow, bWindow, RETURN_WARN) ;
/* Attach the window to the open screen ... */
graniteWindow.Screen = screenl;
/* ... and open the window */
aWindow = OpenWindow(&graniteWindow);

if (aWindow == NULL)
cleanExit (screenl, aWindow, bWindow, RETURN_WARN) ;

/* Now is the time to redirect system requesters. */

Intuition; Windows 63

myProcess = (struct Process ¥*)FindTask (NULL); /* Finds our process */
oldwindowptr = myProcess->pr_ WindowPtr;

myProcess->pr_WindowPtr = (APTR)aWindow;

/* Now find out how big the font is, and write the greeting */

fontHeight = (SHORT)aWindow->RPort->Font->tf YSize;
hello.TopEdge = fontHeight;

PrintIText (aWindow->RPort, &hello, 5, (LONG) fontHeight);
PAUSE (3L) ;

/* The NewWindow structure is now free to be modified for */
/* the other window. */

graniteWindow.LeftEdge = 330;
graniteWindow.Title = "bWindow";

bWindow = OpenWindow(&graniteWindow);
if (bWindow == NULL)

cleanExit (screenl, aWindow, bWindow, RETURN_WARN) ;
PrintIText {(bWindow->RPort, &hello, 5, {(LONG) fontHeight);

/* Now's a good time to finish initializing the IntuiText. */

other{0] .NextText = &other[l];
other{l] .NextText = &other(2]};

/* Fill in the IntuiText vertical offset for the message */

for (1 =0; 1 < 3; 1 ++)
other[i].TopEdge = (i + 1) * fontHeight;

/* Set up the signals that you want to hear about ... */

aSignalmask
bsignalmask

1L << aWindow->UserPort->mp_ SigBit;
1L << bWindow->UserPort->mp_SigBit;

/* Call the functions that do the main processing */
/* And wait to hear from your signals */
while(taDone || !bDone) {

signals = Wait (aSignalmask | bSignalmask);
if (signals & aSignalmask)
aDone = handleIDCMP (aWindow);
if (signals & bSignalmask)
bDone = handleIDCMP (bWindow);
if (aWindow && aDone) { /* Close bWindow! */

PrintIText (bWindow->RPort, &other(0], 5L, 20L);
PAUSE(3L); '

CloseWindow (bWindow) ;

bWindow = NULL;

bSignalmask = 0L;

}
if (bWindow && bDone) { /* Close aWindow! */

PrintIText (aWindow->RPort, &other[0], 5L, 50L);
PAUSE(3L };

/* We’re about to close the window that our Process
*.is pointing to, so we must switch our Process
* to the other window, first.

*/

myProcess->pr_WindowPtr = (APTR)bWindow;

CloseWindow (aWindow) ;

64 Intuition: Windows

aWindow = NULL;
aSignalmask = OL;

/* If either window has been closed, then the user cannot */

/* close the remaining window, so we must close it and */
/* go away. */
if (taWindow || !bWindow)

break;

}
/* Exit the program */

PAUSE(3L);
cleanExit { screenl, aWindow, bWindow, RETURN_WARN) ;

}

UBYTE handleIDCMP(struct Window *win)

{
UBYTE flag = 0;
struct IntuiMessage *message = NULL;
ULONG class;

while(message = (struct IntuiMessage *) GetMsg (win->UserPort) } {

class = message~>Class;
ReplyMsg((struct Message *)message) ;

switch(class) {
case CLOSEWINDOW:

flag = 1;
break;

default:

break;

}

return(flag);
}

VOID cleanExit(scrn, aWind, bWind, returnValue)
struct Screen *scrn;

struct Window *aWind, *bWind;

int returnvValue;

{

/* Close things in the reverse order of opening */
/* Restore the old window pointer in our process,
/* and closé the window and the screen */
if (oldwindowptr)

myProcess->pr_WindowPtr = oldwindowptr;

if (bWind) CloseWindow(bWind);
if (aWind) CloseWindow(aWind);

if (scrn) CloseScreen(scrn);

/* Close the library, and then exit */
if (GfxBase) CloseLibrary((struct Library *)GfxBase):
if (IntuitionBase) CloseLibrary((struct Library *) IntuitionBase);

exit (returnvalue);

Intuition: Windows 65

INVISIBLE POINTER EXAMPLE

The following fragment shows how to make your pointer invisible. It allocates six words, 12 bytes, corresponding to

the four leading and trailing control words, together with the two data words, which are both zero.

/* For AllocMem() to define new pointer */
#define PDATASZ 12
UWORD *pdata;

/* Allocate 6 words for blank pointer sprite data in chip ram */
if(pdata = (UWORD *)AllocMem(12,MEMF_CHIP |MEMF_CLEAR))

{

SetPointer (windowl, pdata,l1l,16,0,0);

}

/* restore the default pointer image */
ClearPointer (windowl);

/* free our data for blank pointer sprite data */
if (pdata) FreeMem(pdata,PDATASZ) ;

SUPERBITMAP WINDOW EXAMPLE

This example shows how to implement a superbitmap, and uses a host of Intuition facilities. We suggest that you

look over it quickly for now, and come back to it when you have digested all of the other Intuition material.

/*
* Lines.c -- implements a superbitmap with scroll gadgets
*

*/
#include <exec/types.h>
#include <exec/memory.h>

#include <intuition/intuition.h>

#include <proto/all.h>

#define WIDTH_SUPER 800
#define HEIGHT_SUPER 600
#define DEPTH_SUPER 2

extern struct GfxBase *GfxBase;
extern struct IntuitionBase *IntuitionBase;

struct LayersBase *LayersBase;

/* WindowInfo helps keep track of where the line is */

struct WindowInfo
{
SHORT LineX1;
SHORT LineYl;
SHORT LineX2;
SHORT LineY2;
SHORT LineX1d;
SHORT LineYld;
SHORT LineX2d;
SHORT LineY2d;
SHORT pen;
}:

#define GetGadgetID(x) (((struct Gadget *) (msg-~>IAddress))->GadgetID)

66 Intuition: Windows

#define GetLayerXOffset (x) (x->RPort->Layer->Scroll_X)
#define GetLayerYOffset (x) (x->RPort->Layer->Scroll_Y)

#define UP_DOWN_GADGET 0
gdefine LEFT RIGHT_ GADGET 1
#define NO_GADGET 2

$define MAXVAL OxFFFFL
struct Image Images[2];

/* The special data needed for the two proportional gadgets */
struct PropInfo GadgetsSInfo[2] =

{
{FREEVERT | AUTOKNOB, 0,0,-1,-1,},
{FREEHORIZ | AUTOKNOB, 0,0,-1,-1,}

}:

/* The usual data needed for any gadget */

struct Gadget Gadgets[2] =

{

/* Gadgets[0] */
{&Gadgets(1],-15,10,16,-18,
GRELRIGHT |GRELHEIGHT,
RELVERIFYlGADGIMMEDIATEIRIGHTBORDER,PROPGADGETIGZZGADGET,
(APTR)&Images[O],NULL,NULL,NULL,
(APTR)&GadgetsSInfo[O],UP_DOWN_GADGET,NULL),

/* Gadgets([1l] */
{NULL,0,~-8,-14,9,
GRELBOTTOM |GRELWIDTH,
RELVERIFYIGADGIMMEDIATEIBOTTOMBORDER,PROPGADGETIGZZGADGET,
(APTR) &Images[1],NULL, NULL, NULL,
(APTR)&GadgetsSInfo[l],LEFT_RIGHT_GADGET,NULL)

}:

static struct NewWindow NewLinesWindow =

{

150,55, /* window XY origin relative to ToplLeft corner of screen */
165,94, /* window width and height */
0,1, /* detail and block pens */

GADGETUP | GADGETDOWN | NEWSIZE | INTUITICKS | CLOSEWINDOW, /* IDCMP flags */

WINDOWSIZING | WINDOWDRAG | WINDOWDEPTH | WINDOWCLOSE |

SUPER_BITMAP | GIMMEZEROZERO | NOCAREREFRESH, /* other window flags */
Gadgets, /* first gadget in gadget list */

NULL, /* custom CHECKMARK imagery */

"Lines 2.0", /* window title */

NULL, /* custom screen pointer */

NULL, /* custom bitmap */

90,40, /* minimum width and height */

WIDTH_SUPER, HEIGHT_SUPER, /* maximum width and height */

WBENCHSCREEN /* destination screen type */

}:

ULONG Seed=0x1437289L;

SHORT Rand (SHORT max) /* A simple random number generator */
{

ULONG tmp;

tmp=(Seed<<8) + (Seed>>8);
Seed~=tmp;
return({tmp % max);

}

/* Checks to see if a delta would cause a point to be outside of
* its range, and adjusts the delta accordingly.

*/

VOID CheckBounce (SHORT point,SHORT *delta, SHORT *pen,SHORT max)
{

Intuition: Windows 67

point+=*delta;
if (point < 0)

*delta=Rand (8) +1;
*pen=(*pen % 3) + 1;
}
if (point > max)
{
*delta=~ (Rand (8) +1);
*pen={*pen % 3) + 1;

}

/* This function does all the work of drawing the lines */
VOID Do _DrawStuff (struct Window *window)

{

struct RastPort *rp;

struct WindowInfo *myinfo;

rp=window->RPort;
myinfo=(struct WindowInfo *) (window->UserData);

Move (rp,myinfo->LineX1l,myinfo->LineYl);
Draw(rp,myinfo->LineX2,myinfo->LineY2);

CheckBounce(myinfo->LineX1,&myinfo—>Linede,&myinfo->pen,WIDTH_SUPER);
CheckBounce(myinfo~>LineY1,&myinfo—>LineYld,&myinfo->pen,HEIGHT_SUPER);
CheckBounce(myinfo—>LineX2,&myinfo—>LineX2d,&myinfo—)pen,WIDTH_SUPER);
CheckBounce(myinfo—>LineY2,&myinfo—>LineY2d,&myinfo->pen,HEIGHT_SUPER);

SetAPen (rp,myinfo->pen);

myinfo->LineXl+=myinfo->LineX1ld;

myinfo->LineYl+=myinfo->LineYld;

myinfo->LineX2+=myinfo->LineX2d;

myinfo->LineY¥2+=myinfo->LineY2d;
}

/* This function provides a simple interface to ScrollLayer */
VOID slide_BitMap(struct Window *window,SHORT Dx, SHORT Dy)

{
}

Scrolllayer (0, window->RPort->Layer, Dx,Dy) ;

VOID Do_NewSize (struct Window *window)

{
ULONG. tmp;

tmp=GetLayerXOffset (window) + window~->GZZWidth;
if (tmp>=WIDTH_SUPER) Slide_BitMap(window, WIDTH_SUPER-tmp, 0) ;

NewModifyProp(&Gadgets[LEFT_RIGHT_GADGET],window,NULL,AUTOKNOBIFREEHORIZ,

((GetLayerXOffset (window) * MAXVAL) /
(WIDTH_SUPER - window->GZZWidth)),

NULL,

({(window->GZZWidth * MAXVAL) / WIDTH_SUPER),

MAXVAL,

1)

tmp=GetLayerYOffset (window) + window~>GZZHeight;
if (tmp>=HEIGHT SUPER) Slide_BitMap(window,O,HEIGHT*SUPER-tmp);

NewModifyProp (&§Gadgets [UP_DOWN_GADGET], window, NULL, AUTOKNOB | FREEVERT,
NULL,
((GetLayerYOffset (window) * MAXVAL) /
(HEIGHT SUPER - window->GZZHeight) },
MAXVAL,
{ (window->GZZHeight * MAXVAL) / HEIGHT SUPER),
1
}

VOID Check_Gadget (struct Window *window,USHORT gadgetID)

68 Intuition: Windows

{

ULONG tmp;
SHORT dX=0;
SHORT dY=0;

switch (gadgetlD)

{

case UP_DOWN_GADGET: tmp=HEIGHT SUPER - window->GZZHeight;
tmp=tmp*GadgetsSInfo [UP_DOWN_GADGET] .VertPot;
tmp=tmp / MAXVAL;
dY=tmp - GetLayerYOffset (window);
break;

case LEFT_RIGHT_GADGET: tmp=WIDTH_SUPER - window->GZZWidth;
tmp=tmp*GadgetsSInfo[LEFT_RIGHT_GADGET].HorizPot;
tmp=tmp / MAXVAL;
dX=tmp - GetLayerXOffset (window):;
break;

}
if (ax (1 dY) Slide_BitMap(window,dX,dY);
}

VOID Do_MainLoop({struct Window *window)
{

struct IntuiMessage *msg; .

SHORT flag=TRUE;

USHORT CurrentGadget=NO_GADGET;

SetDrMd (window->RPort, JAM1) ;
Do_NewSize (window);

while (flag)

{

/* Whenever you want to wait on just one message port */
/* you can use WaitPort(). WaitPort () doesn’t require */
/* the setting of a signal bit. The only argument it *x/
/* requires is the pointer to the window’s UserPort */
WaitPort {(window->UserPort);
while (msg=(struct IntuiMessage *)GetMsg {window->UserPort))
{
switch (msg->Class)
{
case CLOSEWINDOW: flag=FALSE;
break;
case NEWSIZE: Do_NewSize (window) ;
break;
case GADGETDOWN: CurrentGadget=GetGadgetID (msq);
break;
case GADGETUP: Check_Gadget(window,CurrentGadget);
CurrentGadget=NO_GADGET;
break;
case INTUITICKS: Check_Gadget(window,CurrentGadget);
}
ReplyMsg ((struct Message *)msq);
}

Do_DrawStuff (window);

}

VOID main(VOID)

{

struct BitMap *BigOne;

struct Window *window;

struct WindowInfo MyWindowInfo;
ULONG RasterSize;

SHORT Loop;

SHORT Flag;

if (IntuitionBase=(struct IntuitionBase *)
OpenLibrary("intuition.library",33L))

if (GfxBase={(struct GfxBase ¥)
OpenLibrary("graphics.library",33L))

{

Intuition: Windows 69

if (LayersBase=(struct LayersBase *)
OpenLibrary("layers.library",33L))
{
if (BigOne=AllocMem(sizeof (struct BitMap) ,MEMF_PUBLIC|MEMF_CLEAR))
{
InitBitMap (BigOne, DEPTH_SUPER, WIDTH_SUPER, HEIGHT_SUPER) ;
RasterSize=BigOne->BytesPerRow * BigOne->Rows;
Flag=TRUE;
for (Loop=0;Loop<DEPTH_SUPER;Loop++)
{
BigOne->Planes[Loop]=AllocMem(RasterSize,
MEMF_CHIP |MEMF_CLEAR| MEMF_PUBLIC) ;
if (!BigOne->Planes{Loop]) Flag=FALSE;
}
if (Flag)
{

NewLinesWindow.BitMap=BigOne;
if (window=OpenWindow(&NewLinesWindow))
{
window->RPort->Layer->Window=(APTR) window;

MyWindowInfo.LineX1=0;
MyWindowInfo.LineY1=0;
MyWindowInfo.LineX1d=5;
MyWindowInfo.LineYld=2;
MyWindowInfo.LineX2=WIDTH_SUPER >> 2;
MyWindowInfo.LineY2=HEIGHT_ SUPER >> 2;
MyWindowInfo.LineX2d=2;
MyWindowInfo.LineY2d=~5;
MyWindowInfo.pen=3;

window->UserData=(BYTE *)&MyWindowInfo;
Do_MainLoop (window) ;

CloseWindow (window) ;
}
}
for (Loop=0;Loop<DEPTH_SUPER; Loop++)
{
if (BigOne->Planes|[Loop])
{

}

FreeMem(BigOne->Planes[Loop],RasterSize);

}
FreeMem(BigOne, sizeof (struct BitMap));

}

CloseLibrary((struct Library *)LayersBase):

}
CloseLibrary({struct Library *)GfxBase);

}

CloselLibrary{(struct Library *)IntuitionBase);
}

}
/* End of lines.c */

70 Intuition: Windows

Chapter 4

Intuition: Gadgets

This chapter describes the workhorses of Intuition—the multipurpose input devices called gadgets. Most of the
user’s input to an Intuition application can take place through the gadgets in your windows and requesters. Gadgets
are also used by Intuition itself for handling screen and window movement and depth arrangement, as well as
window sizing and closing.

About Gadgets

Gadgets can make the user’s interaction with your application consistent, easy, and fun. There are two kinds of
gadgets: predefined system gadgets and custom application gadgets. The system gadgets help to make the user
interface consistent. They are used for dragging and arranging the depth of screens and for dragging, sizing, closing
and arranging the depth of windows. Since they always have the same imagery and always reside in the same
location, they make it easy for the user to manipulate the windows and screens of any application.

Application gadgets add power and fun to Intuition-based programs. These gadgets can be used in a multitude of
ways in your programs. You can design your own gadgets for your windows and requesters.

Intuition: Gadgets 71

There are four basic types of application gadgets:
* . Boolean gadgets elicit true/false or yes/no kinds of answers from the user.

* Proportional gadgets are flexible devices that you use to get some kind of proportional setting from the
user or to simply display proportional information. With the proportional gadget, you can use imagery
furnished by Intuition or design any kind of image you want for the slider or knob used to pick a
proportional setting,

* String gadgets are used to get text from the user. A number of editing functions are available for users of
string gadgets.

» The integer gadget is a special class of string gadget that allows the user to enter integer values only.

Although system gadgets are always in the borders of windows and screens, your own gadgets can go anywhere in
windows or requesters and can be any size or shape.

Application gadgets are not supported in screens. Placing a gadget in a backdrop window allows you to receive
gadget-related messages through that window’s input/output channels. See the chapter ““Intuition: Input and Qutput
Methods,”” for details.

You can choose from the following ways of highlighting gadgets to emphasize that the gadget has been selected:
« Alternate image or alternate border.
» Abox around the gadget.
» Color change (by complementing the colors).

You can elect to have your gadgets change in size as the user sizes the window. Also, window gadgets can be
located relative to one of the window’s borders so that they move with the borders as the vser shapes or sizes the
window. If you want the gadget in the border, as are the system gadgets, Intuition can adjust the border size
accordingly.

Typically, the user selects a gadget by moving the pointer within an area called the select box; you define the
dimensions of this area. Next, the user takes some action that varies according to the type of gadget. For a boolean
gadget, the user may simply choose an action by clicking the mouse button. For a string or integer gadget, a cursor
appears and the user enters some data from the keyboard. For a proportional gadget, the user might either move the
knob with the mouse or click the mouse button to move the knob by a set increment.

Although you attach a list of predefined application gadgets when you define a window or requester structure, you
can make changes to this list later. You can enable or disable gadgets, add or remove gadgets, modify the internal
states of gadgets, and redraw some or all of the gadgets in the list.

When one of your application gadgets is selected by the user, your program learns about it from either the IDCMP or
the console device. See the chapter ““Intuition: Input and Output Methods,’’ for details about these messages.

72 Intuition: Gadgets

System Gadgets

Intuition automatically attaches system gadgets to every screen. For windows, you specify which system gadgets
you want. The system gadgets for screens are for dragging and depth arrangement. The system gadgets for
windows for are dragging, depth arrangement, sizing, and closing.

System gadgets have fixed, standard locations in screens and windows, as shown in the following table and figure.

Table 4-1: System Gadget Placement in Windows and Screens

System

Gadget Location

Sizing Lower right

Dragging Entire title bar in all areas

not used by other gadgets
Depth arrangers ~ Top right
Close Top left

Your program need never know that the user selected a system gadget (with the exception of the close gadget); you
can let Intuition attach these gadgets to your windows and do the work of responding to the user’s wishes. .

A Simple Hindo
Hello HWorld

Figure 4-1: System Gadgets in a Low-resolution Window

Intuition: Gadgets 73

SIZING GADGET

When the user selects the window-sizing gadget, Intuition is put into a special state. The user is allowed to elongate
or shrink a rectangular outline of the window until the user achieves the desired new shape of the window and
releases the select button. The window is then reestablished in the new shape, which may involve asking the
application to redraw part of its display. For more information about the application’s responsibilities in sizing, see
the discussion about preserving the display in the chapter on windows.

You attach the sizing gadget to your window by setting the WINDOWSIZING flag in the Flags variable of the
NewWindow structure when you open your window. If you are using the IDCMP for input, you can elect to receive
a message when the user attempts to size the window. A special IDCMP flag, SIZEVERIFY, allows you to hold off
window sizing until you are ready for it. See the chapter ‘‘Intuition: Input and Output Methods,” for more
information about SIZEVERIFY.

DEPTH-ARRANGEMENT GADGETS

The depth arrangers come in pairs—one for bringing the window or screen to the front of the display and one for
sending the window or screen to the back. Notice that the actual depth arrangement of windows and screens is
transparent to your program. The only time you might leam about it even indirectly is when Intuition notifies your
program that it needs to refresh its display.

You attach the depth arrangement gadgets to your window by setting the WINDOWDEPTH flag in the Flags
variable of the NewWindow structure when you open your window. You get screen depth arrangement gadgets
automatically with every screen you open,

DRAGGING GADGET

The dragging gadgets are also known as drag bars because they occupy the entire title bar area that is not taken up by
other gadgets. Users can slide screens up and down, much as some classroom blackboards can be moved, to reveal
more pertinent information. They can slide windows around on the surface of the screen to arrange the display any
way they want.

In dragging a window, the user actually drags a rectangular outline of the window to the new position and releases
the select button. The window is then reestablished in its new position. As in window sizing, this may involve
asking the application to redraw part of its display. If you want the window drag gadget, set the WINDOWDRAG
flag in the Flags variable of the NewWindow structure when you open your window. You get the screen drag
gadget automatically with every screen you open.

CLOSE GADGET

The close gadget is a special case among system gadgets, because Intuition notifies your program about the user’s
intent but doesn’t actually close the window. When the user selects the close gadget, Intuition broadcasts a message
to your program. It is then up to the program to call CloseWindow() when ready. You may want or need to take
some actions before the window closes; for instance, you may want to bring up a requester to verify that the user
really wants to close that window. To get the window close gadget, set the WINDOWCLOSE flag in the Flags
variable of the NewWindow structure when you open your window.

74 Intuition: Gadgets

Application Gadgets

Intuition gadgets imitate real-life gadgets. They are the switches, knobs, controllers, gauges, and keys of the
Intuition environment. You can create almost any kind of gadget that you can imagine, and you can have it do just
about anything you want it to do. You can create any visual imagery that you like for your gadgets, including
combining text with hand-drawn imagery or supplying coordinates for drawing lines.

You can also choose a highlighting method to change the appearance of the gadget after it is selected. All of this
flexibility gives you the freedom to create gadgets that mimic real devices, such as light switches or joysticks, as
well as the freedom to create devices that satisfy your own unique needs.

RENDERING GADGETS

You can draw your gadgets by hand, specify a series of lines for a simple line gadget, or have no imagery at all.

Hand-drawn Gadgets

Because you are allowed to supply a hand-drawn image, there is no limit to the designs you can create for your
- gadgets. You can make them simple and elegant or whimsical and outrageous. You design the imagery using one
of Amiga’s many art tools and then translate your design into an instance of an Image structure. The following
figure shows an example of a gadget made of hand-drawn imagery. It also shows how you can use an alternate
image when the gadget is selected.

r
. .'.lr"q,‘ :
.

Figure 4-2: Hand-drawn Gadget — Unselected and Selected

Intuition: Gadgets 75

You incorporate a hand-drawn image into your gadget by setting the GADGIMAGE flag in the gadget variable
Flags to indicate that this gadget should be rendered as an Image. Then you put the address of your Image structure
into the gadget variable GadgetRender. For more information about creating an Image structure, see the chapter
‘“Intuition: Images, Line Drawing, and Text.”’

Line-Drawn Gadgets

You can also create simple designs for gadgets by specifying a series of lines to be drawn as the imagery of your
gadget. These lines can go around or through the select box of your gadget, and you can specify more than one
group of lines, each with its own color and drawing mode.

The following figure shows an example of a gadget that uses line-drawn imagery. It also shows an example of the
complement-mode method of highlighting a gadget when it is selected. Furthermore, it shows additional text that
has been included in the gadget imagery.

I";-'i'-:- o -:l I-:Je.-;'.

Figure 4-3: Line-drawn Gadget — Unselected and Selected

After deciding on the placement and color of your lines, you create an instance of a Border structure to describe
your design. You incorporate the Border structure of your line-drawn imagery into your gadget by not setting the
GADGIMAGE flag in the gadget’s Flags variable, thus specifying that this is a Border, not an Image. Also, you
put the address of your Border structure into the gadget variable GadgetRender. For more information about
creating a Border structure, see the chapter *‘Intuition: Images, Line Drawing, and Text.""

Gadgets without Imagery

You can also create gadgets that have no imagery at all. For instance, you may want to follow the user’s mouse
activity without cluttering the display with unnecessary graphics. An example of such a gadget is the window and
screen dragging gadget, which displays no actual imagery. The title bar itself sufficiently implies the imagery of the
gadget. You specify no imagery by not setting the gadget’s GADGIMAGE flag and by setting the GadgetRender
variable to NULL.

76 Intuition; Gadgets

USER SELECTION OF GADGETS

When the user positions the pointer over a gadget and presses the select button, that gadget becomes ‘selected’” and
is immediately highlighted. Intuition has two different ways of notifying your program about gadget selection,

If you want the program to find out immediately when the gadget has been selected, you can set the
GADGIMMEDIATE flag in the Activation field of the Gadget structure. When the user selects that gadget, an
IDCMP event of class GADGETDOWN will be received. If you set only this flag, the program will hear nothing
more about that gadget until it is selected again. :

On the other hand, if you want to be absolutely sure that the user wanted to select the gadget, you can set the
RELVERIFY flag (for ‘‘release verify’’). When RELVERIFY is set and the user selects the gadget, the program
will learn that the gadget was selected only if the user still has the pointer over the select box of the gadget when the
select button is released. You may want to know this about some gadget selections whose consequences may be
serious—for instance, the window close gadget. If you set the RELVERIFY flag, the program will learn about these
events via an IDCMP message of the class GADGETUP, which you must set in the IDCMPFlags field of the
NewWindow structure. There are two main benefits to RELVERIFY: the unsure user gets one last chance to
reconsider, and using RELVERIFY helps avoid casual errors caused by the user brushing against or resting fingers
on the mouse button.

If you want the program to receive both a GADGETDOWN and GADGETUP message, set both the
GADGIMMEDIATE and RELVERIFY flags.

GADGET SELECT BOX

To use a gadget, the user begins by moving the pointer into the gadget select box. You define the location and
dimensions of the select box in the Gadget data structure. The location is an offset from one of the corners of the
display element (window or requester) that contains the gadget. You place the left and top coordinatés in the
LeftEdge and TopEdge fields of the gadget structure.

LeftEdge describes a coordinate that is either an absolute offset from the left edge of the element or a negative offset
(with an explicit minus sign) from the current right edge. The offset method is determined by the GRELRIGHT
flag. For instance:

. If GRELRIGHT is cleared and LeftEdge is set to 25, the select box of the gadget starts 25 pixels from the
left edge of the display element.

. If GRELRIGHT is set and LeftEdge is set to -25, the select box of the gadget starts 25 pixels left of the
(current) right edge.

In the same way, TopEdge is either an absolute offset from the top of the element or a negative offset from the
current bottom edge, according to how the flag GRELBOTTOM is set:

« If GRELBOTTOM is cleared, TopEdge is an absolute offset from the top of the element.

« If GRELBOTTOM is set, TopEdge is a negative offset (with an explicit minus sign) from the current
bottom edge.

Intuition: Gadgets 77

Similarly, the height and width of the gadget can be absolute or relative to the height and width of the display
element in which it resides. If you set the width of a window gadget to -28, for example, and you set the gadget’s
GRELWIDTH flag, then the gadget’s select box will always be 28 pixels less than the width of the window. If
GRELWIDTH is not set and you set the width of the gadget to 28, the gadget’s select box will always be 28 pixels
wide. The GRELHEIGHT flag has the same effect on the height of the gadget select box.

Here are some examples of how you can take advantage of the special relativity modes of the select box.

+ Consider the Intuition window sizing gadget. The LeftEdge and TopEdge of this gadget are both defined
relative to the right and bottom edges of the window. No matter how the window is sized, the gadget
always appears in the lower right corner.

* Inthe window-dragging gadget, the LeftEdge and TopEdge are always absolute in relation to the top left
corner of the window. Also, Height is always an absolute quantity. Width of the gadget, however, is
defined to be zero. When Width is combined with the effect of the GRELWIDTH flag, the dragging
gadget is always as wide as the window.

* Assume that you are designing a program that has several requesters, and each requester has a pair of
“OK”* and *““CANCEL’’ gadgets in the lower left and lower right comners of the requester. You can
design *‘OK™ and ‘“CANCEL" gadgets that can be used in any of the requesters simply by virtue of their
positions relative to the lower left and lower right corners of the requester. Regardless of the size of the
requesters, these gadgets appear in the same relative positions.

The GRELRIGHT, GRELBOTTOM, GRELWIDTH, and GRELHEIGHT flags belong to the Flags field of the
Gadget structure.

GADGET POINTER MOVEMENTS

If you set the FOLLOWMOUSE flag for a gadget, you will receive mouse movement broadcasts as long as the
gadget is selected. You may want to follow the mouse, for example, in a sound-effects program in which you use
the mouse movement to change some quality of the sound.

The broadcasts received differ according to the following flag settings (remember, these examples assume you’ve set
FOLLOWMOUSE):

» If you set the GADGIMMEDIATE and RELVERIFY flags, the program learns that the gadget was
selected, gets some mouse reports (if the mouse moves), and finds out that the mouse button was released
over the gadget.

+ If you set only the GADGIMMEDIATE flag, the program learns that the gadget was selected and gets
some mouse reports. Then the mouse reports will stop (when the user releases the select button), although
the program will have no way of knowing for sure that this has happened.

» If you set only the RELVERIFY flag, the program gets some mysterious, anonymous mouse reports
(which may be just what you want to get) followed, perhaps, by a release event for a gadget.

 If you set neither the GADGIMMEDIATE nor the RELVERIFY flag, the program gets only mouse
-reports. This may be exactly what you want the program to receive.

The FOLLOWMOUSE, GADGIMMEDIATE, and RELVERIFY flags belong to the Activation field of the Gadget
structure.

78 Intuition: Gadgets

GADGETS IN WINDOW BORDERS

You can put your own gadgets in the borders of your window. In the Gadget structure, you set one or more of the
border flags to tuck your gadget away into the window border. Setting these flags also tells Intuition to adjust the
size of the window’s borders to accommodate the gadget.

NOTE

Borders are adjusted only when the window is opened. Although you can add and remove window
gadgets after the window s opened, with AddGadget(/AddGList() and
RemoveGadget()/RemoveGList(), Intuition does not readjust the borders.

You can put a given gadget in more than one border by setting more than one border flag. Ordinarily, it
makes sense to put a gadget only into two adjoining borders. If you set both side border flags or both
the top and bottom border flags for a particular gadget, you get a window that is all border.

The border flags are called RIGHTBORDER, LEFTBORDER, TOPBORDER, and BOTTOMBORDER,; they
belong to the Activation field of the gadget structure.

MUTUAL EXCLUDE

Though mutual exclusion of boolean gadgets is not supported by Intuition, we can recommend the following flexible
method of doing it yourself: it is up to your application to handle turning off excluded gadgets in a way that is
friendly to Intuition. Intuition owns your gadgets and knows how to render them. You must proceed with caution so
as not to get yourself or your gadget imagery out of synchronization with Intuition.

ALLOWABLE TYPE OF GADGETS FOR MUTUAL EXCLUSION

When performing mutual exclusion, you must use hit-select (not TOGGLESELECT) boolean gadgets, with the
GADGIMMEDIATE activation type (not RELVERIFY). You must execute your state changes upon receiving the
GADGETDOWN Intuition message for these gadgets.

ALLOWABLE TYPES OF HIGHLIGHTING FOR MUTUAL EXCLUSION

If you choose complement mode highlighting for these gadgets (gadget Flags of GADGHCOMP), you must supply
an Image that is at least the size of the complemented area (the gadget select area). You may use an extended
boolean gadget with a mask, to constrain the area that is highlighted.

You may use an Image and an alternate Image (gadget Flags of GADGIMAGE and GADGHIMAGE) provided
these two images have exactly the same size and position. Likewise, you may use a Border and an alternate Border
(gadget Flags of GADGHIMAGE), provided the two Borders are identical in shape, differing only in color.

You may NOT use other combinations such as a gadget with a Border that uses complement mode highlighting, or
any gadget which uses GADGHBOX (highlighting by drawing a box).

Intuition: Gadgets 79

HANDLING OF MUTUALLY EXCLUéIVE GADGETS

Use RemoveGList() to remove a boolean gadget from the window or requester it is attached to. Set or clear the
SELECTED flag to reflect the state of the gadget you desire to display to the user. Replace the gadget using
AddGList() and refresh its imagery with RefreshGList(). You may of course handle several gadgets with a single
call to each of these functions.

GADGET HIGHLIGHTING

In general, the appearance of a selected gadget changes to tell the user that the gadget has indeed been selected. You
select a highlighting method by setting one of the highlighting bits in Flags. There are three methods of
highlighting after selection: highlighting by color complementing, by drawing a box and by an alternate image or
border.

NOTE

You must specify one of the highlighting values. If you do not want any highlighting, set the
GADGHNONE bit,

Highlighting by Color Complementing

You can highlight by complementing all of the colors in the gadget’s select box. In this context, complementing
means the complement of the binary number used to select a particular color register. For example, if the color in
color register 2 is used (binary 10) in some of the pixels in the selected gadget, those pixels get changed to whatever
color is in color register 1 (binary 01).

Only the select box of the gadget is complemented; any portion of the text, image, or border which is outside of the

select box is not disturbed. See the chapter ‘‘Intuition: Images, Line Drawing, and Text,”’ for more information
about complementing and about color in general. \

Highlighting by Drawing a Box

To highlight by drawing a simple border around the gadget’s select box, set the GADGHBOX bit in the Flags field.

Highlighting with an Alternate Image or Alternate Border

You can supply altemate Image or Border imagery as highlighting,. When the gadget is selected, the alternate
Image or Border is displayed in place of the non-highlighted Image or Border, respectively. For this highlighting
method, you should set the SelectRender field of the Gadget structure to point to the Image structure or Border
structure for the alternate display.

An Image or Border structure contains a set of coordinates that specifies its location when displayed. Intuition
renders the image or border relative to the top left corner of the gadget’s select box.

80 Intuition: Gadgets

In the same way as you set the GadgetRender field of the Gadget structure to point to your normal gadget imagery,
you should set the SelectRender field to point to the alternate Image or Border of your design. You must also
indicate that highlighting is to be done with alternate imagery by setting the GADGHIMAGE flag in the Flags ficld
of the Gadget structure. If you are using a pair of images, then set GADGIMAGE,as well.

For information about how to create an Image or Border structure, see the chapter ‘‘Intuition: Images, Line
Drawing, and Text.”’

GADGET ENABLING AND DISABLING

You can disable a gadget so that it cannot be selected by the user. When a gadget is disabled, its image is ghosted,
and it cannot be selected. Ghosted means that the normal image is overlaid with a pattern of dots, thereby making
the image less distinct. Before you first submit your gadget to Intuition, you initialize whether your gadget is
disabled by setting or not setting the GADGDISABLE flag in the gadget’s Flags field. If you always want the
gadget to be enabled, you can ignore this flag.

After you have submitted a gadget for Intuition to display, you can change its current enable state by calling
OnGadget() or OffGadget(). If it is a requester gadget, the requester must currently be displayed. If you use
OnGadget() to enable a previously disabled gadget, its image is returned to its normal, nonghosted state.

You may also enable or disable multiple gadgets by removing them, changing the state of the GADGDISABLED
flag, putting them back, and refreshing them.

GADGET REFRESHING BY INTUITION

Intuition refreshes gadgets whenever a layer operation has damaged the layer of the window or requester they are
attached to. In the processing of the REFRESHWINDOW message, the typical program doesn’t need to call
RefreshGadgets(), or RefreshGList(), at all.

~ Intuition’s refreshing of the gadgets of a damaged layer is done through the layer's damage list. This means that
rendering is clipped to the layer’s damage region — the part of the window’s layer which needs refreshing because it
has been exposed by a layer operation. .

To be precise, Intuition calls the layers.library functions BeginUpdate() and EndUpdate(), so that rendering is
restricted to the Region Layer.DamageList. Your equivalents to these library functions are BeginRefresh() and
EndRefresh(). For more information on BeginRefresh() and EndRefresh(), see the ‘‘Intuition: Windows™
chapter, and The Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Gadgets which are positioned, using GRELBOTTOM or GRELRIGHT, or sized, usingk GRELWIDTH, or
GRELHEIGHT, relative to the dimensions of their window, pose a problem when the window is sized, since the
images for these gadgets must change, even though they are not necessarily in the damage region.

Therefore, Intuition must add the original and new visual regions for such relative gadgets to the damage region
before it refreshes gadget rendering.

The result of this is that you should ensure that any gadgets with relative position do not have Border, Image, or
IntuiText imagery that extends beyond their respective select boxes.

Intuition: Gadgets 81

GADGET REFRESHING BY YOUR PROGRAM

If you add gadgets to your window or requester, using one of the functions AddGlist() or AddGadgets(), you must
subsequently call RefreshGList() or RefreshGadgets() to get the image of your gadget drawn.

New gadget refreshing functions has been added since the V1.1 release of the system software. These new functions
are more efficient than the old set, since the old functions refreshed all the gadgets in the gadget list starting with the
specified gadget, while the new functions allow you to specify the number of gadgets to be refreshed, which could
be one or more.

The new functions are RefreshGList(), which is the alternative to RefreshGadgets(), and NewModifyProp(), the
alternative to ModifyProp(). The last two functions of the older set, OnGadget() and OffGadget(), have no new
equivalents, since they can each be implemented by manually modifying the GADGDISABLED flag and calling
RefreshGList(), as described below.

Some programs use RefreshGadgets() (or RefreshGList()), to update the display after they have made state
changes to the gadgets. The types of changes include: the SELECTED flag for boolean gadgets to implement
mutually exclusive gadgets, the GadgetText of some gadget to change its label, the GADGDISABLED flag, and the
contents of the StringInfo.Buffer of a string gadget. When performing these state changes, be sure to
RemoveGadget(), or RemoveGList, any gadget before altering it. Boolean gadgets rendered with borders, instead
of images, or highlighted with surrounding boxes (GADGHBOX) are handled very simply by Intuition, and
complicated transitions done by your program (and in some cases the user’s own actions) can get the rendering out
of phase, '

BOOLEAN GADGET TYPE

Boolean gadgets are simple TRUE or FALSE gadgets. You can choose from two methods of selecting such
gadgets—hit select or toggle select:

. Hit select means that when the gadget is hit (that is, when the user moves the pointer into the select box
and presses the mouse select button) the gadget becomes selected and the select highlighting method is
employed. When the mouse select button is released, the gadget is unselected and unhighlighted.

. Toggle select means that when the gadget is hit, it toggles between selected and unselected. That is, if
the user selects the gadget, it remains selected when the user releases the button. To ‘‘unselect’”” the
gadget, the user has to repeat the process of hitting the gadget. You can have the imagery reflect the
selected/unselected state of the gadget by supplying an alternate image as the highlighting mode of the
gadget. When the gadget is selected, the chosen highlighting method is employed.

You need to set the TOGGLESELECT flag in the Activation field of the Gadget structure if you want
the gadget to be toggle-selected. The SELECTED flag in Gadget structure Flags determines the initial
and current on/off selected state of a toggle-selected gadget. If SELECTED is set, the gadget will be
highlighted. You can set the SELECTED flag before submitting the gadget to Intuition if you like. The
program can examine this flag at any time to determine whether the user has selected this gadget.

If a boolean gadget is sclected by the user, the application will hear about it. If it is never selected, the application
will never know.

82 Intuition: Gadgets

MASKED BOOLEAN GADGETS

The simplest imagery for boolean gadgets is rectangular, but non-rectangular boolean gadgets are possible, with
some restrictions. An auxiliary bit plane called a mask may be associated with a boolean gadget. When the user
clicks within the select box of the gadget, a further test is made to sce if the selection point is contained in the mask.
Only if it is, does the interaction count as a gadget-hit. :

If the gadget has highlight type GADGHCOMP then the complement rendering is restricted to the mask, which
allows, for example, an oval gadget which highlights nicely, only within the oval.

However, there are some shortcomings to all non-rectangular boolean gadgets. The gadget image is not rendered
through the mask. For example, in the case of an oval mask the image is still a rectangle, and when it is displayed, it
will clobber the corner areas even though they are outside of the oval. Therefore, gadgets can’t be crowded together
without care.

Likewise, the ghosting of a disabled gadget does not respect the mask, so ghosting of the corners around an oval
may be visible, depending on the colors involved.

To use a masked boolean gadget, you must fill out an instance of the BoolInfo structure. The Boollnfo structure
contains a pointer to the mask plane data. You must also set the BOOLEXTEND flag in the gadget’s Activation
field.

PROPORTIONAL GADGET TYPE

Proportional gadgets are enormously flexible input devices. You can use one of these to get a proportional setting
from the user or to display a proportional value to the user. Best of all, you can use the same gadget to accomplish
both of these feats.

The user can adjust the setting of a proportional gadget to specify how much of some measurable data or attribute is
desired. For instance, the user may adjust a proportional gadget to specify a location in a text file or a desired
volume setting. The current setting of a proportional gadget may also be set by the program as an indicator of how
much of some measurable data or attribute is visible or available. For instance, the proportional gadget of a text
editor’s window might show how many lines are currently being displayed out of the total lines in the text file. A
graphics program may allow the user to set the amount of red, green, and blue in a color, providing a proportional
gadget for each of the three hues. The graphics program would initialize these settings to designate how much red,
green, and blue is already contained in the color. An audio program may deal with the volume of the sound being
produced by providing a gadget that allows the user to set the volume and to see what the current volume isin -
relation to the highest and lowest possible volume settings.

Proportional gadgets can do all of these things and more because they can take many shapes and sizes and get
fractional settings on either the vertical or horizontal axis or both.

A proportional gadget has several parts that work together to give the gadget its flexibility. They are the the pot
variables, the body variables, the knob, and the container.

* The HorizPot and VertPot variables contain the actual proportional values. The word pot is short for
potentiometer, which is an electrical analog device that can be used to adjust some variable value. The
proportional gadget pots enable the user or program to set how much of the total data is visible or available.
Because they represent fractional parts of a whole, the values in these variables ranges from 0 to (almost) 1.

Intuition: Gadgets 83

The data, then, ranges from none visible or available to all of it visible or available.

There are two pot variables because proportional gadgets are adjustable on the horizontal axis or the vertical
axis or both. For example, a gadget that allows the user to center the screen on the video display or to center
his gunsights on a flecing enemy must be adjustable on both axes.

Pot values change while the user is playing with the gadget. You can initialize the pot variables to whatever
you want. In the case of the color gadgets, you might want to initialize them to some current color. The
program may read the values in the pots at any time after it has submitted the gadget to the user via Intuition.
The values will always have the current settings as adjusted by the user.

* The HorizBody and VertBody variables describe the increment, or typical step value, by which the pot
variables change. For example, the proportional gadgets for color mixing might allow the user to add or
subtract a color by 1/16 of the full value each time, as there are 16 possible settings for each RGB (red, green,
blue) component of a color on the Amiga. The proportional gadget for centering the screen might allow the
user to move the screen vertically a line at a time, or you may choose to set the step increment to a large
number of lines, leaving the fine-resolution tuning to the use of the gadget’s knob.

Body variables are also used in conjunction with the auto-knob (described below) to display for the user how
much of the total quantity of data is directly available. For instance, if the user is working on a text file that is
fifteen lines long, and five lines of the file are currently visible in the window, then you can graphically
represent the total size of the file by setting the body variable to one-third (OxFFFF / 3 = 0x5555). In this case,
the auto-knob would fill one-third of the container (the gadget box), which represents the proportion of the
visible text lines to the total number of text lines. Also, the user can tell at a glance that clicking the mouse
button with the cursor in the container (not on the knob) will advance the text file by one-third in any direction,
to the next “‘window”’ of data. .

You can set the two body variables to the same or different increments. When the user clicks the mouse button
in the container, your pot variables are adjusted by the amount set in the body variables.

* The knob is the object actually manipulated by the user to change the pot variables by the increments specified
in the body variables. The knob is directly analogous to proportional controls, such as the volume knob on a
radio, if the Intuition knob is restricted to one axis of movement. If the knob is free to move on both axes, it is
more analogous o, say, a control-stick of an airplane. The user can move the knob by placing the pointer on it
and dragging it on the vertical or horizontal axis or by moving the pointer near it (within the select box) and
clicking the mouse button. With each click, the pot variable is increased or decreased by one increment,
defined by the settings of the body variables. The current position of the knob reflects the pot value. For
instance, in the color-selection gadget, the knob slides in a long narrow container. As the user moves the knob
to the right, more of that color is added. When the knob is halfway along the container, the value in HorizPot
is also halfway.

You can design your own imagery for the knob or use Intuition’s handy auto-knob. The auto-knob is a
rectangle that can move on either axis and changes its length or height according to the current body settings.
The auto-knob is proportional to the size of the gadget. Therefore, you can place an auto-knob in a proportional
gadget that adjusts its size relative to the size of a window, and the auto-knob will always be proportionally
correct. For example, consider a proportional gadget with auto-knob being used as a scroll bar in the right
border of a window. If the VertBody variable is set to show that one-third of a text file is being displayed in
the window, the auto-knob fills one-third of the container. If the user makes the window (and therefore the
container) larger, the auto-knob gets larger, too, so that it still visually represents one-third. This is yet another
visual aid for the user, one that helps make the user interface of the Amiga as intuitive to use as possible.

* The container is the area in which the knob can move. It is actually the select box of the gadget. The size of
the container, like that of any other gadget select box, can be relative to the size of the window.

84 Intuition: Gadgets

The pot variable is a 16-bit word that contains a value ranging from 0 to OxFFFF. For clarity, you may wish to use
the constant MAXPOT, which is equivalent to OxFFFF. This value range represents a fixed-point fraction that
ranges from 0 to (almost) 1. You need to convert the current setting of the pot variable to a number that you can use.

There are two general ways in which proportional gadgets are used, namely to -scroll through graphical or textual
information (such as in a scrolling list or a text editor) or to adjust some level (such as a volume control or a color
palette).

The Body and Pot values of a proportional gadget are "Intuition-friendly" numbers, in that they represent concepts
convenient to Intuition, and not to your application. Fortunately, it is not too hard to convert the numbers you would
like to deal with into Body and Pot values.

The following code fragment illustrates this conversion. You must supply four variables that describe your setup,

namely “topLine", "visibleLines", "totalLines", and "Overlap". These will be defined by example:

SCROLLING THROUGH GRAPHICAL OR TEXTUAL INFORMATION

If a text-editor has a 25-line view of a 100-line document, then "visibleLines" would be 25 and "totalLines" would
be 100. If the first visible line was the 10th line of the file, the "topLine" would be 9 (since for topLine, we count
from zero). It is a good idea to arrange things so that when the user clicks in the container of a proportional gadget,
the view shifts by a bit less than one full view’s size (say only 24 lines), creating an overlap between successive
views. The extra line is the overlap, hence "Overlap” should be 1.

ADJUSTING A LEVEL

If a volume control may go from O to 49, then choose "totalLines" of 50. If the current volume is 23, then "topLine"
is 23. For correct behavior of level controls, always set "visibleLines" to 1 and "Overlap” to zero.

/%
** Finding VertPot and VertBody based on "application-friendly"
*% parameters.

x/

/* You must supply values for these four: */
UWORD Overlap, totallLines, visibleLines, topLine;

UWORD hidden;

/* Find the number of hidden lines, those that don’t fit in the
visibleLines portion. It turns out to be useful in further
calculations: */

hidden = MAX(totallLines - visibleLines, 0);

/* If topLine is so great that the remainder of the lines won’t even
£i1ll the displayable area, reduce topLine: */
if (topLine > hidden)
topLine = hidden;

/* Body is the relative size of the proportional gadget’s body.
Its size in the container represents the fraction of the total
that is in view. If there are no lines hidden, then Body
should be full-size (MAXBODY). Otherwise, Body should be the
fraction of (the number of displayed lines - Overlap) over
(the total number of lines - Overlap). */

if (hidden > 0)

VertBody = (UWORD) (((ULONG) (visibleLines - Overlap) * MAXBODY) /
(totalLines - Overlap)); :

Intuition: Gadgets 85

else
VertBody = MAXBODY;

/* Pot is the position of the proportional gadget body, with zero
meaning that the scroll gadget is all the way up (or left),
and full (MAXPOT) meaning that the scroll gadget is all the way
down (or right). If we can see all the lines, Pot should be zero.
Otherwise, Pot is the top displayed line divided by the number of
unseen lines. */

if (hidden > 0)

VertPot = (UWORD) (((ULONG) topLine * MAXPOT) / hidden);
else

VertPot = 0;

}

After the user has adjusted the proportional gadget, you will want to determine the new value of topLine. Of course,
you should only redraw your display if topLine actually changed from its previous value. You do not want to do any
rendering if the proportional gadget moved, but not far enough to actually change topLine.

/%

** Finding the new toplLine after the user has adjusted a
*¥¥ proportional gadget.

*/

/* Again, we need the number of hidden lines */
UWORD hidden;

hidden = MAX(totalLines - visibleLines, 0);

/* Pot can be thought of as the fraction of the hidden lines that
are before the displayed part, in other words a Pot of zero
means all hidden lines are after the displayed part
(i.e. topLine = 0), and a Pot of MAXPOT means all
the hidden lines are ahead of the displayed part
(i.e. topLine = hidden). */

topLine = (((ULONG) hidden * VertPot) + (MAXPOT/2)) / MAXPOT;

You set up a proportional gadget as you do any other gadget, except for the extra PropInfo data structure (shown
below under *‘Using Application Gadgets’”). Carry out the following procedures to set up the PropInfo structure:

» If you want the auto-knob, set the AUTOKNOB flag in the Flags field. If you want your own knob
imagery instead, see below,

» Set either or both of the FREEHORIZ and FREEVERT flags according to the direction(s) you want the
knob to move. '

» Initialize either or both of the HorizPot and VertPot variables to their starting values.

» Seteither or both of the HorizBody and VertBody variables to the increment you want. If there is no data
to show or the total amount displayed is less than the area in which to display it, set the body variables to
the maximum (OxFFFF, or equivalently, MAXBODY).

» The remaining variables and flags are used by Intuition,

In the Gadget structure, set the GadgetType field to PROPGADGET and set the Speciallnfo field to point to your
Proplnfo structure (i.e., the one just described).

86 Intuition: Gadgets

If you chose to use the auto-knob, set GadgetRender to point to an Image. In this case, you do not initialize the
Image structure. You simply declare, for example:

struct Image iml; :
<propgadgetname>.GadgetRender = &iml

where <propgadgetname> is the name of the gadget structure.

To use your own knob imagery, set GadgetRender to point to a real, ﬁlled-dut, Image or Border structure. If your
highlighting will be by an alternate knob image (GADGHIMAGE), be sure to make the alternate image the same
size as the normal knob image.

To change the flags and the pot and body variables, your program can call ModifyProp(Q, or the better
NewModifyProp(), after the gadget is displayed. The gadget’s internal state will be recalculated and the imagery
will be redisplayed to show the new state.

If the program receives a message saying that the user has played with this gadget, the program can examine the
KNOBHIT flag in the PropInfo structure. This flag indicates whether the user hit the knob or hit in the container
but not on the knob itself. If the flag is set, the user hit the knob and moved it.

STRING GADGET TYPE

A string gadget promplts the user to enter some text. Like a proportional gadget, a string gadget can be used in many
different ways. String gadgets also require their own special structure, called the StringInfo structure.

A string gadget consists of a container and buffers to hold the strings. You supply two buffers for the string gadget.
The input buffer contains the initial string, and the other is an optional undo buffer. The string you place in the initial
buffer will be displayed, and can be edited by the user. When the user selects a string gadget with the mouse, the
gadget’s cursor moves to the position of the mouse.

If a string gadget has an undo buffer, the current string is copied into the undo buffer when the user selects the
gadget. The user can revert to this initial string at any time by typing ‘‘Right-AMIGA-Q.” (To type this key
sequence, the user holds down the right AMIGA key while pressing the Q-key.) Because there is only one active
gadget at a time, all string gadgets can share the same undo buffer as long as the undo buffer is as large as the largest
input buffer. '

You specify the size of the container into which the user types the string. Like the container for the proportional
gadget, the container for the string gadget is its select box. As the user types text into a string gadget, the characters
appear in the gadget’s container.

You can change the justification of the string as it is displayed in the container. The default is left justification. If
the flag STRINGCENTER is set, the text is center-justified; if STRINGRIGHT is set, the text is right-justified.

An important and useful feature of the string gadget is that you can supply a buffer to contain more text than will fit
in the container. This allows the program to get text strings from the user that are much longer than the visible
portion of the buffer. Intuition maintains the cursor position and scrolls the text in the container as needed.

You can initialize the input buffer to any starting value, as long as the initial string is terminated with a null. If you
want to initialize the buffer to the null string (no characters), you must put a null character in the first position of the
buffer. After the gadget is deselected by the user (either by hitting the RETURN key or by using the mouse to select
some other operation), the program can examine this buffer to discover the current string.

Intuition; Gadgets 87

String gadgets feature auto-insert, which allows the user to insert ASCII characters wherever the cursor is. The
simple editing functions shown in the following table are available to the user.

Table 4-2: Editing Keys and Their Functions

Key(s) Function
«or— Move the cursor around the current string.
SHIFT ¢ or — Move the cursor to the beginning or end of current
string.
DEL Delete the character under the cursor.
BACKSPACE Delete the character to left of cursor.
RETURN Terminate input and deselect the gadget. If the

RELVERIFY activation flag is set, the program will
receive a GADGETUP event for this gadget.

Right - AMIGA - Q Undo (cancel) the last editing change to the string.

Right- AMIGA -X Clears the input buffer. The undo buffer is left
undisturbed.

You can supply any type of image for the rendering of this gadget—Image, Border, or no image at all. For this
release of Intuition, you must specify that the highlighting is of type GADGHCOMP (complementary), and you
cannot supply an alternate image for highlighting.

The string gadget inherits the input attributes and the font of the screen in which it appears. If you have not done
anything fancy, the strings will appear in the default font with simple ASCII key translations. If you are using the
console device for input, you can set up alternate key-mapping any way you like. If you do, Intuition will use your
key map. See the ‘‘Console Device’’ chapter for more information about the console device and key-mapping.

For a string gadget, you set the GadgetType field to STRGADGET in the Gadget structure. Also set the
Speciallnfo field to point to an instance of a StringInfo structure, which you must fill in with buffer and container
information, ‘

INTEGER GADGET TYPE

The integer gadget is really a special sort of string gadget. You initialize it as you do a string gadget, except that you
also set the flag LONGINT in the gadget’s Activation field. The user interacts with an integer gadget using exactly
the same rules as for a string gadget, but Intuition filters the input and allows the user to enter only a plus or minus
sign and digits. The integer gadget returns a signed 32-bit integer in the StringInfo variable LongInt.

To initialize an integer gadget you need to preset the buffer by putting an initial integer string in it. It is not
sufficient to initialize an integer gadget by merely setting a value in the LongInt variable.

88 Intuition: Gadgets

To specify that this string gadget is an integer gadget, set the flag LONGINT in the gadget’s Activation variable.
String gadgets of integer type have the LongInt value updated whenever the textual contents of the gadget changes,
and again, when the gadget is deactivated.

COMBINING GADGET TYPES

You can make some very useful gadgets by combining gadgets of several types. As an example, you can make a
horizontal or vertical scroll bar with a proportional gadget and two boolean gadgets.

OPEN PAINTING
PLEASE SELECT A PAINTING NAME

transfer lyf
] safe .

debue
libs

OR TYPE IN A NAME P
- | face l
- OK? I CAMCEL I |

Figure 4-4: Example of Combining Gadget Types

If the scroll bar goes in the right border of the window, you may wish to place the system sizing gadget in the right
border by setting the flag SIZEBRIGHT in the NewWindow structure. Remember that the sizing gadget has to fit in
either the right or the bottom border. If you are going to cause the right edge border to be wide enough to
accommodate a scroll bar, then you might as well put the sizing gadget there, too.

Gadget Activation Messages

The Intuition IntuiMessage structure has a field named IAddress. If the user presses the select button over the select
box of a gadget, the IAddress ficld of the GADGETDOWN IDCMP message will contain the Gadget structure
address of the selected gadget. If you have three gadgets in your window, all with the GADGIMMEDIATE flag set,
and with GadgetID’s of 10, 11, and 12, the following code fragment shows the correct way to process a gadget
event from one of these gadgets:

Intuition: Gadgets 89

class = msg->Class;
iaddress = msg->IAddress;
ReplyMsg (msg) ;
switch (class)

{

case GADGETDOWN:

switch (((struct Gadget *)iaddress)->GadgetID)
{

case 10:
/* Perform gadget ten’s function */
break;
case 11:
/* Perform gadget eleven’s function */
break;
case 12:
/* Perform gadget twelve’s function */
break;
}
break;
case default:
/* Take default action */
break;

GADGET STRUCTURE

Here is the general specification for a Gadget structure:

struct Gadget

{
struct Gadget *NextGadget;

SHORT LeftEdge, TopEdge;
SHORT Width, Height;
USHORT Flags;

USHORT Activation;
USHORT GadgetType;

APTR GadgetRender;

APTR SelectRender;
struct IntuiText *GadgetText;
LONG MutualExclude;
APTR Speciallnfo;

USHORT GadgetID;

APTR UserData;

}

The variables and flags in the Gadget structure are explained below.

NextGadget ‘
This is a pointer to the next gadget in the list. The last gadget in the list should have a NextGadget value of

NULL.

LeftEdge, TopEdge, Width, Height
These variables describe the location and dimensions of the select box of the gadget. Both location and
dimensions can be either absolute or relative to the edges and size of the window, or requester that contains the
gadget.

LeftEdge and TopEdge are relative to one of the comers of the display element, according to how
GRELRIGHT and GRELBOTTOM are set in the Flags variable (see below).

Width and Height can be either absolute dimensions or a negative increment to the width and height of a

requester, or alert or the current width and height of a window, according to how the GRELWIDTH and
GRELHEIGHT flags are set (see below).

90 Intuition: Gadgets

Flags
The Flags field is shared by your program and Intuition. See the section below called *“Flags’’ for a complete
description of all the flag bits.

Activation
This field is used for information about some gadget attributes. See the ‘‘Activation Flags’® section below for a
description of the various flags.

GadgetType
This field contains information about gadget type and in what sort of display element the gadget is to be
displayed. You must set one of the following flags to specify the type:

BOOLGADGET
Boolean gadget type.

STRGADGET
String gadget type.

For an integer gadget, also set the LONGINT flag. See the ‘‘Flags’’ section below.

PROPGADGET
Proportional gadget type.

The following flags tell Intuition if the gadget is for a requester or a Gimmezerozero window:

GZZGADGET
If this gadget is for a Gimmezerozero window, setting this flag puts the gadget in the special bit-map for
gadgets and borders (and out of your inner window). If you do not set this flag, the gadget will go into
your inner window. If the destination of this gadget is not a Gimmezerozero window, do not set this bit.

REQGADGET
Set this bit if this is a requester gadget; otherwise, be sure this bit is clear.

GadgetRender

This is a pointer to the Image or Border structure containing the graphics of this gadget. If this field is set to
NULL, no rendering will be done.

If the graphics of this gadget are to be implemented with an Image structure, this field must be made to point to
that structure, and the GADGIMAGE bit must be set in the Flags field. If a Border structure is to be used
instead, this field must be made to point to that Border structure, and the GADGIMAGE bit must not be used.

SelectRender
If you don’t want alternate graphics to indicate highlighting, set this field to NULL. If you do want alternate
graphics to indicate highlighting, set the GADGHIMAGE flag in the Flags field (see below), and set the
SelectRender field to point to the Image or Border structure that implements your alternate image.

GadgetText ,
If you want text printed after this gadget is rendered, set this field to point to an IntuiText structure. The
offsets in the IntuiText structure are relative to the top left of the gadget’s select box.

Set this field to NULL if the gadget has no associated text.

Intuition: Gadgets 91

MutualExclude
This field is currently ignored by Intuition, but is reserved. If this is a boolean gadget with BOOLEXTEND
activation, this variable must point to an instance of a BoolInfo data structure.

Speciallnfo
If this is a proportional gadget, this variable must point to an instance of a PropInfo data structure. If this is a
string or integer gadget, this variable must point.to a StringInfo data structure. Otherwise, this variable is
ignored. The structure contains the special information needed by the gadget. If the gadget is not of type
proportional, string, or integer, this variable is ignored.

GadgetID
This variable is strictly for your own use. Assign any value you would like here. This variable is ignored by
Intuition. Typical uses in C are in switch and case statements, and in assembly langunage, table lookup.

UserData
A pointer to any general data you would care to associate with this particular gadget. This variable is ignored
by Intuition.

FLAGS

The following are the flags you can set in the Flags variable of the Gadget structure.

GADGHIGHBITS
Combinations of these bits describe what type of highlighting you want when the user has selected this
gadget. There are four highlighting methods to choose from. You must set one of the four flags below.

GADGHCOMP
This flag selects highlighting by complementing all of the bits contained within this gadget’s select
box.

GADGHBOX
This flag selects highlighting by drawing a box around this gadget’s select box.

GADGHIMAGE
If you intend to indicate highlighting with alternate graphics, set this flag.

GADGHNONE
Set this flag if you want no highlighting.

GADGIMAGE ‘
If your gadget has a graphic, and it is implemented with an Image structure, set this bit. If the graphic is
implemented with a Border structure, make sure this bit is clear. This bit is also used by SelectRender.

GRELBOTTOM
Set this flag if the gadget’s TopEdge variable describes an offset relative to the bottom of the display
element (window or requester) containing it. Clear this flag if TopEdge is relative to the top.

GRELRIGHT
Set this flag if the gadget’s LeftEdge variable describes an offset relative to the right edge of the display
element containing it, Clear this flag if LeftEdge is relative to the left edge.

92 Intuition: Gadgets

GRELWIDTH
Set this flag for ‘‘relative gadget width’’ if you want your gadget’s width to change automatically
whenever the width of its window changes. When this flag is set, you set the gadget’s Width field to a
negative value (including minus sign). This value is added to the width of the gadget’s display element, to
determine the actual width of the gadget. Do not set this flag if Width is an absolute value.

GRELHEIGHT
Set this flag for “‘relative gadget height’” if you want your gadget’s height to change automatically
whenever the height of its window changes. When this flag is set, you set the gadget’s Height field to a
negative value (including minus sign). This value is added to the height of the gadget’s display element,
to determine the actual height of the gadget. Do not set this flag if Height is an absolute value.

SELECTED
Use this flag to preselect the on/off selected state for a toggle-selected gadget. If the flag is set, the gadget
starts off being on and is highlighted. If the flag is clear, the gadget starts off in the unselected state.

GADGDISABLED
If this flag is set, this gadget is disabled. If you want to enable or disable a gadget later on, you can change
the current state with the routines OnGadget() and OffGadget(), or you may remove one or more gadgets,
change the state of this flag, put them back, and refresh them.

You do not need to use this flag if you want the gadget to always remain enabled.

ACTIVATION FLAGS

Here are the flags you can set in the Activation variable of the Gadget structure:

TOGGLESELECT
This flag applies only to a boolean gadget, and tells Intuition that it is to be a toggle-select gadget, not a
hit-select one.

You preset the selection state with the gadget Flag SELECTED (see above); the program later discovers
the selected state by examining SELECTED.

GADGIMMEDIATE
Set this bit if you want the program to know immediately, viaa GADGETDOWN IDCMP message, when
the user selects this gadget.

RELVERIFY
This is short for “‘release verify.’”” Set this bit if you want this gadget selection broadcast to your program
only if the user still has the pointer positioned over this gadget when releasing the select button.

ENDGADGET
This flag pertains only to gadgets attached to requesters. To make a requester go away, the user must
select a gadget that has this flag set,

See the chapter “‘Intuition: Requesters and Alerts,”” for more information about requester gadget
considerations.

FOLLOWMOUSE

When the user selects a gadget that has this flag set, the program will receive mouse position broadcasts
every time the mouse moves at all.

Intuition: Gadgets 93

You can use the following flags in window gadgets to adjust the size of a window’s borders when you want to
tuck your own window gadgets out of the way into the window border:

RIGHTBORDER

If this flag is set, the width and position of this gadget are used in deriving the width of the window’s
right border.

LEFTBORDER

If this flag is set, the width and position of this gadget are used in deriving the width of the window’s
left border.

TOPBORDER
If this flag is set, the height and position of this gadget are used in deriving the height of the
window’s top border. It can also be set to tell Intuition that this gadget must be refreshed after
Intuition has rendered in the top border area of a window.

BOTTOMBORDER

If this flag is set, the height and position of this gadget are used in deriving the height of the
window’s bottom border.

The following flags apply to string gadgets:

STRINGCENTER
If this flag is set, the text in a string gadget is centered when rendered.

STRINGRIGHT
If this flag is set, the text in a string gadget is right-justified when rendered.

LONGINT
If this flag is set, the user can construct a 32-bit signed integer value in a normal string gadget. You must
also preset the string gadget input buffer by putting an initial integer string in it.

ALTKEYMAP
This flag specifies that you have an alternate keymap. You also need to put a pointer to the keymap in the
StringInfo structure variable AltKeyMap.
The following flag applies to Boolean gadgets:

BOOLEXTEND
If this flag is set, then this boolean gadget has a BoolInfo structure associated with it.

SPECIALINFO DATA STRUCTURES

The following are the specifications for the structure pointed to by the Speciallnfo pointer in the Gadget structure.

94 Intuition: Gadgets

Boollnfo Structure

This is the special data required for a masked boolean gadget.

struct BoolInfo
{
USHORT Flags;
UWORD *Mask;
ULONG Reserved;
}:

The meanings for the fields in this structure are as follows:

Flags
Flags must be given the value BOOLMASK,

Mask

This is a bit mask for highlighting and selecting the gadget. Construct the mask the way you would construct a
single plane of Image data. The image’s width and height are determined by the width and height of the

gadget’s select box. The mask data must be in chip memory.

Reserved
Set this field to NULL.

PropInfo Structure

This is the special data required by the proportional gadget.

struct PropInfo

{
USHORT Flags;
USHORT HorizPot;
USHORT VertPot;
USHORT HorizBody;
USHORT VertBody;
USHORT CWidth;
USHORT CHeight;
USHORT HPotRes, VPotRes;
USHORT LeftBorder;
USHORT TopBorder;

}:

The meanings of the fields in this structure are as follows:

Flags
In the Flags variable, these flag bits can be specified:

AUTOKNOB
Set this if you want to use the auto-knob.

FREEHORIZ
If this is set, the knob can move horizontally.

Intuition: Gadgets 95

FREEVERT
If this is set, the knob can move vertically.

KNOBHIT
This is set by Intuition when this knob is hit by the user.

PROPBORDERLESS
Set this if you want your proportional gadget to appear without a border drawn around its container.

Initialize these variables before the gadget is added to the system; then look here for the current settings:

HorizPot
Horizontal quantity fraction.

VertPot
Vertical quantity fraction,

These variables describe what fraction of the entire body is actually shown at one time:

HorizBody
Horizontal body.

VertBody
Vertical body.

Intuition sets and maintains the following variables, which are private to Intuition:

CWidth
Container real width.

CHeight
Container real height.

HPotRes, VPotRes
Pot increments.

LeftBorder
Container real left border.

TopBorder
Container real top border.

StringInfo Structure

This is the special data required by the string gadget.

96 Intuition: Gadgets

struct StringInfo
{
UBYTE *Buffer;
UBYTE *UndoBuffer;
SHORT BufferPos;
SHORT MaxChars;
SHORT DispPos;
SHORT UndoPos;
SHORT NumChars;
SHORT DispCount;
SHORT CLeft, CTop;
struct Layer *LayerPtr;
LONG LongInt;
struct KeyMap *AltKeyMap;
}:

The meanings of the fields in this structure are given below.
You initialize the following variables and Intuition maintains them:

Buffer
This is a pointer to a buffer containing the start and final string. The string you write into this buffer must
be null-terminated.

UndoBuffer
This is an optional pointer to a buffer for undoing the current entry. If you are supplying an undo buffer,
the memory location should be as large as the buffer for the start and final string. Because only one string
gadget can be active at a time under Intuition, all of your string gadgets can share the same undo buffer.
However, the undo buffer must be large enough to hold the largest buffer for starting and final strings.

MaxChars
This must be set to the maximum number of characters that will fit in the buffer, including the terminating
NULL.

BufferPos
This specifies the initial character position of the cursor in the buffer.

DispPos
This specifies the buffer position of the first displayed character.

Intuition initializes and maintains these variables for you:

UndoPos
This specifies the character position in the undo buffer.

NumChars
This specifies the number of characters currently in the buffer.

DispCount ,
This specifies the number of whole characters visible in the container.

CLeft, CTop
This Intuition-private field specifies the top left offset of the container.

LayerPtr
This Intuition-private field specifiés the layer containing this gadget.

Intuition: Gadgets 97

LongInt
After the user has finished entering an integer, you can examine this variable to discover the value if this is
an integer string gadget. ;
AltKeyMap

This variable points to your own alternate keymap; you must also set the ALTKEYMAP bit in the Activation
flags of the gadget.

GADGET FUNCTIONS

These are brief descriptions of the functions you can use to manipulate gadgets. For complete descriptions see The
Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Adding and Removing Gadgets from Windows or Screens

Use the following functions to add a gadget to or remove a gadget from the gadget list of a window.
» AddGadget(AddPtr, Gadget, Position)
This function adds one gadget to the gadget list of a window.
+ RemoveGadget(RemPtr, Gadget)
This function removes one gadget from the gadget list of the specified window.
Use the following functions to add a sublist of gadgets to or remove a sublist of gadgets from the gadget list of a
window or requester. A sublist may be the entire gadget list. A sublist of gadgets is a collection of gadgets that are
linked by the Gadget.NextGadget field.
* AddGList(Window, Gadget, Position, Numgad, Requester)
This function adds up to Numgad gadgets, from a sublist beginning with the specified gadget, to a window or
requester. You also supply the position in the gadget list where these gadgets should go. Use a position of -1
(ie. (USHORT) ~0) to denote the end of the gadget list.
+ RemoveGList(Window, Gadget, Numgad)

This function removes up to Numgad gadgets from a window or requester, beginning with the specified one.

Disabling or Enabling a Gadget

The following functions disable or enable a gadget in a window, screen, or requester.
* OnGadget(Gadget,Ptr,Requester)

This function enables the specified gadget.

98 Intuition: Gadgets

OffGadget(Gadget, Ptr, Requester)

This function disables the specified gadget.

Redraw the Gadget Display

RefreshGList(Gadgets, Window, Requester, NumGad)

Redraws no more than NumGad gadgets, starting with the specified gadget, in a window or requester. You
should refresh any gadgets after you add them. You might want to use this if you have modified the imagery of
your gadgets and want to display the new imagery. You might also use it if you think some graphic operation
has trashed the imagery of the gadgets.

RefreshGadgets(Gadgets, Ptr, Requester)

Redraws all of the gadgets in the gadget list of a window or requester, starting with the specified gadget. In a
requester, all of the gadgets are redrawn. This function is superceded by the more flexible RefreshGList().

Modifying a Proportional Gadget

Use the following functions to modify the current parameters of a proportional gadget.

NewModifyProp(Gadget, Window, Requester, Flags, HorizPot, VertPot, HorizBody, VertBody,
NumGad)

This function modifies the parameters of a proportional gadget. The gadget’s internal state is recalculated and
the imagery is redisplayed.

ModifyProp(Gadget, Ptr, Requester, Flags, HorizPot, VertPot, HorizBody, VertBody)

This is the same as NewModifyProp(), except that it refreshes all the gadgets, beginning with the specified
one. You will want to use the more flexible NewModifyProp(), instead.

Activating a String Gadget via Program

ActivateGadget(Gadget, Window, Request)

This function allows your program to activate a string gadget. If successful, this function has the same effect as
the user clicking the SELECT button when the mouse pointer is within the gadget’s select box. Subsequent
keystrokes accomplish entry and editing on the gadget’s string. This function will fail if the user is in the
middle of some other interaction, such as menu or proportional gadget operations.

The window or requester containing the string gadget to be activated must itself be open and active. Since some
operations in Intuition may occur after the function that initiates them completes, calling ActivateGadget()
after OpenWindow() or Request() is no guarantee that the gadget will actually activate. Instead, you should

* call ActivateGadget() only after having received an ACTIVEWINDOW or REQSET IDCMP message for a

newly opened window or requester, respectively. Of course, you must set the window’s IDCMP flags such that
you will hear those messages, t0o.

Intuition: Gadgets 99

NOTE: It is incorrect to simply insert a small delay between the call to OpenWindow() or Request() and the
call to ActivateGadget(). Such schemes fail under various conditions, including processor speed and CPU
loading.

Example

This example implements string, proportional, and boolean gadgets. The boolean gadget is masked. It also includes
examples of Image, Border, and IntuiText structures.

/* Gadgets.h -- has all of the structures needed for the gadgets */

struct TextAttr TOPAZ80 =

{
(STRPTR) "topaz.font", TOPAZ_EIGHTY, 0,0

¥z
UBYTE Buffer{512]; /* This is for showing any messages or entries */

struct IntuiText Messages =

{
1,0,JaM2,0,0, «TOPAZBO, sBuffer [0],NULL

}:

struct Image BackImagel =
{

0,0, /* X, Y origin relative to ToplLeft of Gadget */
150, 90, /* Image width and height in pixels */
0, /* number of bitplanes in Image */
NULL, /* pointer to ImageData, NULL for Rectangle */
0x0000, 00002, /* PlanePick and PlaneOnOff */
NULL /* next Image structure */
}:
struct Gadget BackDrop = /* This is just for our blank images */

{

NULL,5,1,1, 1, GADGIMAGE, NULL, BOOLGADGET, (APTR) §BackImagel,
NULL, NULL, NULL, NULL, 0, NULL

}:

USHORT chip MaskDatalll= /* N¢ Border Button Mask Data */
{
0x07FF, OXFFFF, OXFFFF, OXFFFF, OxF000, Ox3FFF, OXxFFFF, OXFFFF,
OxFFFF, OXFEQO, OX7FFF, OXFFFF, OXFFFF, O0XFFFF, OXFFQ0, OXFFFF,
OxFFFF, OXFFFF, OXFFFF, OxFF80, OXFFFF, 0XFFFF, OXFFFF, OXFFFF,
OxXFF80, OXFFFF, OXFFFF, OXFFFF, OxFFFF, 0XFF80, OXFFFF, OXFFFF,
OxFFFF, OXFFFF, OXFF80, Ox7FFF, OXxFFFF, 0xFFFF, OXFFFF, OXFFOO,
Ox3FFF, OXFFFF, OXFFFF, OXFFFF, OxFE0O0, 0x07FF, OXxFFFF, OXFFFF,
OxXFFFF, 0xXF000
};

struct Image ButtonIl =
{
0,0,73,10,1,MaskDatal, 0x0001, 0x0000, NULL
}:

/* Text for our buttons */
struct IntuiText ITextl
struct IntuiText IText2

{2,0,JAM1,14,1,&TOPAZ80, “"Cancel®,NULL};
{2,0,JAM1, 20,1, sTOPAZ80, "OKAY", NULL};

/* Mask information for gadget */
struct BoolInfo OkayMask = {BOOLMASK,MaskDatal,0};

struct Gadget ButtonGads[] =

{
{

100 Intuition: Gadgets

&BackDrop,

NULL,
Y.

{
&ButtonGads (0],

RELVERIFY|GADGIMMEDIATE | BOOLEXTEND, BOOLGADGET,
&IText2, NULL,

NULL,
}
};

SHORT BorderVectors3([] =
{
0,0,
151,0,
151,91,
0,91,
0,0
Y:
struct Border Border3d =

{

~1,-1, /*
1,0,JaM1, /*

' /*
BorderVectors3, /*
NULL /%

}:

struct Gadget EntryBox =
{
&ButtonGads[1l],
5,1, /*
150,90, /*
GADGHBOX | GADGHIMAGE, / *

/*

RELVERIFY|GADGIMMEDIATE,

BOOLGADGET, /*
(APTR) &Border3, /*
NULL, /*
NULL, /*
NULL, /*
NULL, /*
1, /*
NULL /*

}:

SHORT BorderVectors4([] =
{
0,0,
169,0,
169,10,
0,10,
0,0
}:
struct Border Border4 =
{
-1,-1,
1,0,JaM1,
5,
BorderVectors4,
NULL
}i

UBYTE UNDOBUFFER([255];
UBYTE NameGadSIBuff([255];

100,106,
RELVERIFY |GADGIMMEDIATE | BOOLEXTEND, BOOLGADGET,
&ITextl, NULL,

73,10, GADGHCOMP |GADGIMAGE,
(APTR) &ButtonIl,

(APTR) §0kayMask, 7, NULL

5,106, 73,10, GADGHCOMP |GADGIMAGE,

(APTR) &ButtonIl,
(APTR) &OkayMask, 6, NULL

XY origin relative to TopLeft */
front pen, back pen and drawmode */
number of XY vectors */

pointer to XY vectors */

next border in list */

next gadget */

origin XY of hit box relative to window TopLeft */
hit box width and height */

gadget flags */

/* activation flags */

gadget type flags */

gadget bordér or image to be rendered */
alternate imagery for selection */

first IntuiText structure */

gadget mutual-exclude long word */
SpecialInfo structure */

user-definable data */

pointer to user-definable data */

/*
/*
/%
/*
/*

XY origin relative to ToplLeft */
front pen, back pen and drawmode */
number of XY vectors */

pointer to XY vectors */

next border in list */

struct StringInfo NameGadSInfo =

{

NameGadSIBuff, /¥
UNDOBUFFER, /*
0, /*
25, /*
o, /*

buffer where text will be edited */

optional undo buffer */

character position in buffer */

maximum number of characters to allow */
first displayed character buffer position */

Intuition: Gadgets 101

¢,0,0,0,0, /* Intuition initialized and maintained variables */

0, /* Rastport of gadget */
0, /* initial value for integer gadgets */
NULL /* alternate keymap (fill in if you set the flag) */

}:

struct Gadget NameGad =

{

&EntryBox,

5,94,

168, 9,

NULL,

RELVERIFY|GADGIMMEDIATE |LONGINT, /* Make into a Integer gadget */

STRGADGET, /% String gadget */

(APTR) &Border4,

NULL,

NULL,

NULL,

(APTR) &NameGadSInfo, /* Speciallnfo structure */

5,
NULL
¥

USHORT chip DArrowDataf] = /* Down Arrow */
{
OXFFFF, OxF81F, OxF81F, 0xF81F, OxF81F, 0x8001, 0xE007, OXF81F, 0XxFETF
};

USHORT chip UArrowDatal] = /* Up Arrow */
{
OxFETF, 0xF81F, 0xE007, 0x8001, 0xF81F, 0xF81F, OXF81F, OxF81F, OXFFFF
}:

USHORT chip RArrowData{] = /* Right Arrow */
{
OxFFFF, 0xFF3F, OXFFOF, 0xC003, 0xC000, 0xC003, OXFFOF, O0xFF3F, OXFFFF
}:

USHORT chip LArrowData(] = /* Left Arrow */
{
OxFFFF, 0xFCFF, 0xFOFF, 0xC003, 0x0003, 0xC003, OXFOFF, OXFCFF, 0XFFFF
i

struct Image Arrows[] =

{
{0,0,16,9,2,UArrowbData, 0x0001, 0x0000, NULL},
(0,0,16,9,2,DArrowData, 0x0001, 020000, NULL},
{0,0,16,9,2, LArrowData, 0x0001, 0x0000, NULL},
{0,0,16,9,2,RArrowData, 0x0001, 0x0000, NULL}
}:

struct Gadget ArrowGads[] =

{
{
&NameGad, 158, 73, 16,9, GADGIMAGE, RELVERIFY|GADGIMMEDIATE,
BOOLGADGET, (APTR) &Arrows (0], NULL, NULL, NULL, NULL, 4, NULL
Yo
{
&ArrowGads[0], 158, 83,16, 9, GADGIMAGE, RELVERIFY|GADGIMMEDIATE,
BOOLGADGET, (APTR) &Arrows[1l], NULL, NULL, NULL, NULL, 3, NULL
}

}:

struct PropInfo VertSliderSInfo =
{
AUTOKNOB |FREEVERT, /* ProplInfo flags */
-1,-1, /* horizontal and vertical pot values */
-1,-1, /* horizontal and vertical body values */
}:

struct Image Image3 =
{0,0,7,72,0, NULL,O0x0000,0x0000, NULL};

102 Intuition: Gadgets

struct Gadget VertSlider =
{

&ArrowGads {1}, 158,0, 16,72, NULL,

RELVERIFY|GADGIMMEDIATE,
PROPGADGET,

(APTR) &Image3,

NULL, NULL, NULL,

(APTR) &VertSlidersSInfo,
2, NULL

}:

struct NewWindow NewWindow =
{
160,25, 178,150, 0,1,
INTUITICKS |GADGETDOWN |GADGETUP
WINDOWDRAG | WINDOWDEPTH |

/* Proportional Gadget */
/* slider Imagry */

/* SpecialInfo structure */

| CLOSEWINDOW,

WINDOWCLOSE | ACTIVATE | NOCAREREFRESH,

NULL,NULL, “Gadgets", NULL, NULL, 0,0, -1,-1, WBENCHSCREEN

}i
/* End of gadgets.h */

/* Gadgets.c 10/89

* Compiled with Lattice 5.04: LC -bl -cfist -L -v -w

*/

#include <exec/types.h>

#include <intuition/intuition.h>
$include <graphics/gfxbase.h>
#include <libraries/dos.h>
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#ifdef LATTICE
#include <proto/all.h>

#endif

#define RP window->RPort
#define TOT_DISPLAY 10
#define LINE_HEIGHT 9
#define MAX VALUE 9999

#include "Gadgets.h®

/* function declarations */
VOID OpenAll (VOID);
VOID cleanExit (int);

USHORT HandleUGad(struct IntuiMessage ¥);

USHORT HandleDGad(struct IntuiMessage ¥*);

VOID InitSlider (struct Gadget *gq);

VOID GetSlider (struct Gadget *, int);

VvOID DisplayEntries (VOID);

VOID PrintText (struct RastPort *rp, UBYTE *msg,

LONG x, LONG y, USHORT £, USHORT b);

/* global declarations */

struct GfxBase *GfxBase = NULL;

struct IntuitionBase *IntuitionBase = NULL;
struct Window *window = NULL;

/* for showing the list information */

LONG numentries;

LONG topentry;

VOID main(int arge, char *argv([l)

{

struct IntuiMessage *msg = NULL;
ULONG class;
USHORT flagi;

OpenAll();

Intuition: Gadgets 103

flagi=TRUE;
while (flagi) {
Wait (1L << window->UserPort->mp_SigBit);
while (msg=(struct IntuiMessage *)GetMsg(window->UserPort)) {
class=msg->Class;
switch(class) |
case INTUITICKS:
if (ArrowGads (0] .Flags&SELECTED) GetSlider(&VertSlider,~1);
if(VertSlider.Flags&SELECTED) GetSlider (&VertSlider, 0);
if (ArrowGads[1] .Flags&SELECTED) GetSlider (&VertSlider, 1);
break;
case GADGETDOWN:
flagi=HandleDGad (msg); break;
case GADGETUP:
flagi=HandleUGad (msg); break;
case CLOSEWINDOW:
flagi=FALSE; break;
default: break;
}
ReplyMsg((struct Message *)msg);
}
}

cleanExit (0);

/* For this example, this is just used to clear the
* message areas. You could use it to start a function
* on the down-press of a gadget

*/
USHORT HandleDGad (struct IntuiMessage *m)
{
struct Gadget *g;
USHORT id;

UBYTE msg[l2];
USHORT retval;

retval=TRUE;

strcpy (msg, ® oon) ;

g = (struct Gadget *)m->IAddress;
id = g->GadgetID;

/* clear the entry number area */
PrintText (RP, msg, 10, 139, 1, 0);

/* clear the button number area */
sprintf{msg, "ID %-4dd*, id);
PrintText (RP, msg, 104, 139, 1, 0);

/* return */
return(retval);

}

USHORT HandleUGad (struct IntuiMessage *m)
{

struct Gadget *g;

USHORT id;

UBYTE msg[12];

USHORT retval;

USHORT "entry;

retval=TRUE;

g = (struct Gadget *)m->IAddress;

id = g->GadgetID;

switch (id) {

case 1: /* The ENTRY area */

entry = topentry + ((m->MouseY - g->TopEdge + 1) / LINE_HEIGHT) + 1;
if(entry > numentries) entry = 0;
sprintf(msg, "Entry %-4d"“, entry);
PrintText (RP, msg, 10, 139, 1, 0);

104 Intuition: Gadgets

break;
case 2: /* Clicked in the body of the Vertical PROP */
GetSlider(&VertSlider, 0);
break;
case 5: /* The STRING gadget */
/* Get the number of entries. Filter it out, put it back
* into the String gadget and display it.

x/
numentries = NameGadSInfo.LongInt;
if (numentries>MAX_VALUE) numentries=MAX_ VALUE;

sprintf (NameGadSIBuff, "%d\000%, numentries);
RefreshGList (&NameGad, window, NULL, 1);
InitSlider{(&VertSlider);
break;
case 6: /* OKAY button ¥/
case 7: /* CANCEL button */
retval = FALSE;
break;
default:
break;
}
/* show the button number that we pushed */
sprintf(msg, “ID %-4du*, id);
PrintText (RP, msg, 104, 139, 1, 0);

/* return */
return{retval);

}

/* Initialize the proportional gadget
*/

VOID InitSlider (struct Gadget *g)
{

topentry=0;

if (numentries>TOT_DISPLAY)

{

NewModifyProp(g,window,NULL,AUTOKNOBIFREEVERT,
NULL, ((MAXBODY*topentry)/ (numentries)),
MAXBODY,((MAXBODY*TOT_DISPLAY)/numentries),lL);

}
else

NewModifyProp (g, window, NULL, AUTOKNOB | FREEVERT,
NULL, NULL, MAXBODY, MAXBODY, 1L) ;

}
/* clear the entry area */

RefreshGList (&BackDrop, window, NULL, 1) ;
/* display the current entries */

DisplayEntries();
}

/* Get the current entry, based on either the movement of the
* proportional gadget, or the pressing of the arrow keys.
*/

VOID GetSlider (struct Gadget *g, int dir)
{

USHORT potv;

struct PropInfo *p;

static USHORT update=0;

p=(struct PropInfo *)g->Speciallnfo;
if(dir!=0)
{
topentry += dir;
if (topentry>0 && topentry<(numentries-TOT_DISPLAY))

potv=((MAXBODY*topentry)/(numentries—TOT_DISPLAY));
update=0;

Intuition: Gadgets 105

}

else

/* It is necessary that the check for topentry>=numentries
* is before topentry<=0 to catch the instance when
* numentries < TOT_DISPLAY
*/
if(topentry>=(numentries-TOT_DISPLAY))
{
potv=MAXBODY;
topentry=(numentries-TOT_DISPLAY);
update++;
}
if (topentry<=0)
{
potv=0;
topentry=0;
update++;
}
}
if (numentries>TOT_DISPLAY && update<3)
(;
NewModifyProp (g, window, NULL, AUTOKNOB | FREEVERT,
NULL, potv, MAXBODY,
((MAXBODY*TOT_DISPLAY)/numentries—TOT_DISPLAY),1L);
}
}
else
{
if (numentries>TOT_DISPLAY)
topentry=(p->VertPot* (numentries-TOT_DISPLAY)) /MAXBODY;
else
topentry=0;
}
DisplayEntries();

/* Update the display to show the current view of entries.
* This example DOESN’T show how to handle situations
* where the number of entries are less than what fits

VOID

{

*

*/

in the view. :

DisplayEntries (VOID)

UBYTE msgl[5];
register USHORT i;

/* update the display */

for(i=0; (i<TOT_DISPLAY && i<numentries); i++)
{

sprintf (msg, "$4d", i + topentry + 1);
PrintText (RP, msg,
7, (USHORT) (EntryBox.TopEdge + (i * LINE_HEIGHT)), 1, 2);
}

/* put the pen back the way it was */

}

VOID

{

}

VOID

{

SetBPen(RP, 0);

PrintText (struct RastPort *rp, UBYTE *msg,
LONG x, LONG y, USHORT £, USHORT b)

strepy (Buffer, msg);
Messages.FrontPen = f;
Messages.BackPen = b;
PrintIText (rp, &Messages, x, y);

cleanExit (int retval)

106 Intuition: Gadgets

if (window) CloseWindow (window) ;

if (GfxBase) CloseLibrary({struct Library *)GfxBase);

if (IntuitionBase) Closelibrary((struct Library *)IntuitionBase);
exit (retval);

}

VOID OpenAll (VOID)
{
struct Gadget *g;

if (! (IntuitionBase=(struct IntuitionBase *)

OpenLibrary(“intuition.library",33)))
cleanExit(ERROR_INVALID_RESIDENT_LIBRARY);

if (! (GfxBase=(struct GfxBase *)OpenLibrary("graphics.library®”,33}))
cleanExit(ERROR_INVALID_RESIDENT_LIBRARY);

/* center the window */

NewWindow.TopEdge = (GfxBase->NormalDisplayRows - NewWindow.Height) / 2;
NewWindow.LeftEdge= (GfxBase->NormalDisplayColumns-NewWindow.Width) / 2;

/* open the window */
if (! (window=OpenWindow (&«NewWindow)))
cleanExit (ERROR_NO_FREE_STORE) ;

/* Adjust the top of the gadgets relative to the upper border.
* Usually is 11 if using Topaz80, 12 if using Topaz60
*/
g=&VertSlider;
while (g)
{
g->TopEdge += window->BorderTop;
g = g->NextGadget;
}

/* pre-initialize the list variables */
numentries=100;

/* just to show how many entries we’re working with */
sprintf (NameGadSIBuff, *$d\000", numentries);

/* hook the gadgets to the window */
AddGList (window, &VertSlider, 0, -1, NULL);

/* update the display to show the new gadgets */
RefreshGList (§VertSlider, window, NULL, -1};

/* update the vertical proportional gadget information */
InitSlider (&VertSlider);

Intuition: Gadgets 107

Chapter 5

Intuition: Menus

This chapter shows how to set up the menus that let the user choose from your program’s commands and options.
The Intuition menu system handles all of the menu display from menu data structures that you set up. If you wish,
some or all of your menu selections can be graphic images instead of text.

About Menus

Intuition’s menu system provides you with a convenient way to group together and display the functions and options
that your application presents to the user. For instance, in a word-processor environment, menus may provide the
following functions:

» Access to text files.

» Editing functions.

» Search and replace facilities.

» Formatting capabilities.

Intuition: Menus 109

» Muliple fonts.
« A general help facility.
In a game, menus may provide the user with choices about how to:
« Load a new game or save the current one.
» Get hints.
* Bring up special information windows.
o Set the difficulty level.
* Auto-annihilate the enemy.

Menu commands are either actions or attributes. Actions are represented by verbs and attributes by adjectives. An
attribute stays in effect until canceled, while a command is executed and then forgotten. You can set up menus so
that some attribute items are mutually exclusive (selecting an attribute cancels the effects of one or more other
attributes), or you can allow a number of attributes to be in effect at the same time. For example, an adventure game
might have a menu list for things that the hero is holding in his hand. He could hold several small, lightweight
objects, but holding the heavy sword excludes holding anything else. In a database program, you might be able to
choose to send a report to a file, to the window, or to a printer. You could, for example, send it to both a window
and a printer, while the “*file’’ option excludes the other two.

After you set up a linked list of menu structures (called a menu strip) and attach the list to a window, the menu
system handles the menu display. Using this list and any graphic images you have designed, the menu system
displays the menu bar text that appears across the screen title bar when requested by the user. It also creates the lists
of menu items and sub-menus that appear at the user’s request. The application does not have to worry about menus
until Intuition sends a message with news that the user has selected a menu item. This message gives the application
the number of the selected item.

You can enable and disable menu items or whole menus, and make changes to the menus you previously attached to
a window. Disabling an item prevents the user from selecting it, and disabled items are ghosted to look different
from enabled items.

Menu items can be graphic images or text. When the user positions the pointer over an item, the item can be
highlighted through a variety of techniques. Items can also show that they have been selected by having an image
rendered next to them, usually a checkmark. Next to the menu items, you can display command-key alternatives.

To activate the menu system, the user presses the mouse menu button (or an appropriate command-key sequence) to

display the menu bar in the screen title area. The menu bar displays a list of topics (called menus) that have menu
items associated with them (see the figure).

110 Intuition: Menus

dit Spvecial Color [ETTEErush i
1-1+10] -
EEER
BEOREC

Custonn Brush|

Figure 5-1: Screen with Menu Bar Displayed

When the user moves the mouse pointer to a topic in the menu bar, a list of menu items appears below the topic
name. To select an item, the user moves the mouse pointer in the list of menu items while holding down the menu
button, releasing the button when the pointer is over the desired item. If an item has a subitem list, moving the
pointer over the item reveals a list of subitems. The user moves the pointer over one of the subitems and makes a
selection in the same way as an item is selected. If there is a command-key sequence alternative, the user can make
menu selections with the keyboard instead of the mouse. Furthermore, the user can select multiple items by:

+ Pressing and releasing the mouse select button without releasing the menu button. This selects that item
and keeps the user in ‘‘menu state’” so that other items can be selected.

« Holding down both mouse buttons and moving the pointer over several items. This is called drag-

selecting.

SUBMITTING AND REMOVING MENU STRIPS

Once you have constructed a menu strip, you submit it to Intuition using the function SetMenuStrip(). You must
ultimately remove every menu strip that you have submitted. When you want to remove the menu strip, you call
ClearMenuStrip(). If you want to change the menu strip, you call ClearMenuStrip(), change the menu, and
resubmit it with SetMenuStrip().
The flow of events for menu operations should be:

1. OpenWindow().

2. Zero or more iterations of SetMenuStrip() and ClearMenuStrip().

Intuition: Menus 111

3. . CloseWindow().

You must clear the menu strip before closing the window.

ABOUT MENU ITEM BOXES

The item box is the rectangle containing your menu items or subitems. You do not have to describe the size and
location of the item or subitem boxes directly. You describe the size indirectly by how you place items and
subitems. Intuition figures out the size of the minimum box required. It then adjusts the size of the box-to make
sure your menu display conforms to certain design philosophy constraints for items and subitems. See the following
figures for examples of item and subitem box structures. '

Left edge of the item box can Right edge of the item box can
be no further right than this. be no further left than this.

MENU HEADER

The item box overlaps the
menu bar by one line.

The item box is tall enough
/_to hold your lowest item.

Example Item Box

Figure 5-2: Example Item Box

The item box must start no further right than the leftmost position of the menu header’s select box. It must end no
further left than the rightmost position of the menu header’s select box. The top edge of the menu box must overlap
the screen’s title bar by one line. The subitem box must overlap its item’s select box somewhere.

NOTE

Do not leave space between the select boxes of your menu items and (especially) your subitems. When
the pointer moves off one subitem into the gap between it and the next subitem, the entire submenu is
erased and redrawn, which causes ugly flickering. Even a space of a single line will cause flickering. For
example, if the Height field of a menu item is ten, and the TopEdge field of the next menu item is 12,
flickering will occur. The TopEdge field should be 11, in this case.

112 Intuition: Menus

MENU HEADER

The subitem box must overlap
/_the item’s select box somewhere.

(It does not matter where.)

SUBITEM 1
R S S
SUBITEM 2 :

Example Subitem Box

Figure 5-3: Example Subitem Box

ACTION/ATTRIBUTE ITEMS AND THE CHECKMARK

Menu action items are selected and acted upon immediately. Action items can be selected repeatedly. Every time
the user selects an action item, the selection is transmitted to your program.

Menu attribute items may be toggle-selected or mutually exclusive. A toggle-selected item is selected or deselected
when the user accesses it. Accessing a mutually exclusive menu attribute item puts it in the selected state, where it
remains until it is mutually excluded by the selection of some other attribute item. Intuition puts a checkmark beside
any attribute item which has been selected. While the checkmark is the default symbol, you may have Intuition use a
symbol of your own design.

You specify that a particular menu item is an attribute item by setting the CHECKIT flag in the Flags variable of the
item’s Menultem structure.

You can initialize the state of an attribute item by presetting the item’s CHECKED flag. If this flag is set when you
submit your menu strip to Intuition, then the item is considered to be already selected and the checkmark will be
drawn,

You can use the default Intuition checkmark (¥) or you can design your own and set a pointer to it in the
NewWindow structure when you open a window. See the chapter on windows for details about supplying your own
checkmark.

If your items are going to be checkmarked, you should leave sufficient blank space at the left edge of your select box
for the checkmark imagery. If you are taking advantage of the default checkmarks, you should leave
CHECKWIDTH amount of blank pixels on high-resolution screens and LOWCHECKWIDTH amount of blank
pixels on low-resolution screens. These are defined constants describing the pixel width in high and low resolution.

Intuition; Menus 113

They define the space required by the standard checkmarks (with a bit of space for aesthetic purposes). If you would
normally place the LeftEdge of the image within the item’s select box at 5, and you decide that you want a
checkmark to appear with the item, then you should start the item at 5S+CHECKWIDTH instead. You should also
make your select box CHECKWIDTH wider than it would be without the checkmark.

TOGGLE-SELECTION

You can make some of your attribute items toggle-select. Each time the user accesses such an item, it changes state,
selected or unselected. to make an attribute item toggle-select, set both the CHECKIT and the MENUTOGGLE flags
for that menu item. Of course, you may rpe-set the CHECKED flag to the desired initial state.

MUTUAL EXCLUSION

You can choose to have some of your attribute items, when selected, cause other items to become unselected. - This
is known as mutual exclusion. For example, if you have a list of menu items describing the available type sizes for a
particular font, the selection of any type size would mutually exclude all other type sizes. You use the
MutualExclude variable in the Menultem structure to specify other menu items to be excluded when the user
selects an item. Exclusion also depends upon the CHECKED and CHECKIT flags of the Menultem, as explained
below.

» If CHECKED is not set, then this item is available to be selected. If the user selects this item, the
CHECKED flag is set and the user cannot then reselect this item. If the item is selected, the CHECKED
flag will be set, and the checkmark will be drawn to the left of the item.

» If the item selected has bits set in the MutualExclude field, the CHECKED flag is examined in the
excluded items. If any item is currently CHECKED, its checkmark is erased, and its CHECKED flag is
cleared.

* Mutal exclusion is an active event. It pertains only to items that have the CHECKIT flag set. Attempting
to exclude items that do not have the CHECKIT flag set has no effect.

NOTE
It is up to you to track internally which excluded items have been disabled and deselected.
In the MutualExclude field, bit O refers to the first item in the item list, bit 1 to the second, bit 2 to the third, and so

on. In the adventure game example described earlier, in which carrying the heavy sword excludes carrying any other
items, the MutualExclude fields of the four items would look like this:

Heavy sword OxFFFE

Stiletto 0x0001
Rope 0x0001
Canteen 0x0001

‘*‘Heavy Sword”’ is the first item on the list. You can see that it excludes all items except the first one. All of the
other items exclude only the first item, so that carrying the rope excludes carrying the sword, but not the canteen.

114 Intuition: Menus

COMMAND-KEY SEQUENCES AND IMAGERY

A command-key sequence is an event generated when the user holds down one of the AMIGA keys (the ones with
the fancy A) and presses one of the normal alphanumeric keys at the same time. You can associate 2 command-key
sequence with a particular menu item. Menu command-key sequences are combinations of the right AMIGA key
with any alphanumeric character. If the user presses a command-key sequence that is associated with one of your
menu items, Intuition will send the program an event that will look like the user went through the entire process of
selecting the menu item manually. This allows you to provide shortcuts to the user, because many people find it
easy to memorize the command-key sequences for often-repeated menu selections. When accessing those often-
repeated selections, most users would rather keep their hands on the keyboard than go to the mouse to make a menu
selection.

You associate a command-key sequence with a menu item by setting the COMMSEQ flag in the Flags variable of
the Menultem structure and by putting the ASCII character (upper or lower case) that you want associated with the
sequence into the Command variable of the Menultem structure. Intuition ignores case when checking for
command-key equivalents.

When items have alternate key sequences, the menu boxes show a special AMIGA key icon rendered about one
character span plus a few pixels from the right edge of the menu select box and the command-key used with the
AMIGA key rendered immediately to the right of the AMIGA key image, at the rightmost edge of the menu select
box (see the figure).

If you want to show a command-key sequence for an item, you should make sure that you leave blank space at the
right edge of your select box and imagery. You should leave COMMWIDTH amount of blank space on high-
resolution screens, and LOWCOMMWIDTH amount of space on low-resolution screens.

iy

9 Undo

 Pro.ject IX}gMSpecial Color Shape Brush

=] F1r-ane
JCut
Copy

1Erase
Al ter
Erase Screen

Figure 5-4: Menu Items with Command Key Shortcuts

Intuition; Menus 115

ENABLING AND DISABLING MENUS AND MENU ITEMS

Disabling menu items makes them unavailable for selection by the user. Disabled menus and menu items are
displayed in a *‘ghosted’” fashion; that is, the imagery is overlaid with a faint pattern of dots, making it less distinct.
Enabling or disabling a menu or menu item is always a safe procedure, whether or not the user is currently using the
menus. A problem arises only if the program disables a menu item that the user has already selected with extended
select. The program will receive a MENUPICK message for that item, even though it thinks it has already disabled
it. The program will have to ignore items that it knows are already disabled.

You use the routines OnMenu() and OffMenu() to enable and disable individual subitems, items or whole menus.
These routines check if the user is using the menus and whether the menus need to be redrawn to reflect the new
states.

CHANGING MENU STRIPS

If you want to make changes to the menu strip you previously attached to your window, you must first call
ClearMenuStrip(). You may alter the menu strip only after it has been removed from the window.

To add a new menu strip to your window, you must call ClearMenuStrip() before you call SetMenuStrip() with
the new menus. :

MENU NUMBERS AND MENU SELECTION MESSAGES

An input event is generated every time the user activates the menu system by pressing the mouse menu button (or
entering an appropriate command-key sequence). Your program receives a message of type MENUPICK telling
which menu item has been selected. If one of your items has a subitem list, the menu number your program receives
for that item includes some subitem selection.

Even if the user presses and releases the menu button without selecting any of the menu items, an event is generated.
If the user presses and releases the menu button without selecting one of the menu items, the program receives a
message with the menu number equal to MENUNULL. In this way, the program can always find out when the user
has simply clicked the menu button rather than making a menu selection.

The user can select multiple menu items with one of the extended selection procedures (pressing the mouse select
button without releasing the menu button or drag-selecting). Your program finds out whether or not multiple items
have been chosen by examining the field called NextSelect in the Menultem data structure. After taking the
appropriate action for the item selected by the user, the program should check the NextSelect field. If the number
there is equal to the constant MENUNULL, there is no next selection. However, if it is not equal to MENUNULL,
the user has selected another option after this one. The program should process the next item as well, by checking
its NextSelect field, until it finds a NextSelect equal to MENUNULL.

The following code fragment shows the correct way to process a menu event:

116 Intuition: Menus

while (MenuNumber != MENUNULL)

{

Item = ItemAddress (MenuStrip, MenuNumber);
/* process this item */

MenuNumber = Item->NextSelect;

}

When the user performs multiple selection, you will receive only one message of class MENUPICK. For your
program to behave correctly, you must pay attention to the NextSelect field of the Menultem, which will lead you
to the other menu selections.

The number given in the MENUPICK message describes the ordinal position of the Menu in your linked list, the
ordinal position of the MenulItem beneath that Menu, and (if applicable) the ordinal position of the subitem beneath
that Menultem. Ordinal means the successive number of the linked items, starting from 0. To discover the Menus
and Menultems that were selected, you should use the following macros:

Use MENUNUM(num) to extract the ordinal menu number from the value.
Use ITEMNUM(num) to extract the ordinal item number from the value.
Use SUBNUM(num) to extract the ordinal subitem number from the value.
MENUNULL is the constant describing ‘‘no menu selection made.”
Likewise, NOMENU, NOITEM, and NOSUB are the null states of the parts.

For example:

if (number == MENUNULL) then no menu selection was made, else
MenuNumber = MENUNUM (number);

ItemNumber = ITEMNUM(number);

SubNumber = SUBNUM(number);

if there were no subitems attached to that item, SubNumber will equal NOSUB.

The menu number received by the program describes either MENUNULL or a valid menu selection, If it is a valid
selection, it will always have at least a menu number and a menu item number. Users can never ‘‘select’ the menu
text itself, but they always select at least an item within a menu. Therefore, the program always gets one menu
specifier and one menu item specifier. If a given menu item has a subitem, a subitem specifier will also be received.
Just as it is not possible to select a menu, it is not possible to select a menu item that has a list of subitems. The user
must select one of the options in the subitem list before the program ever hears about it as a valid selection.

If the user enters a command-key sequence, Intuition checks to see if the sequence is associated with a current menu
item. If so, Intuition sends the menu item number to the program with the active window just as if the user had
made the selection using the mouse buttons.

The function ItemAddress() translates a menu number into an item address.

HOW MENU NUMBERS REALLY WORK

The following is a description of how menu numbers really work. It should illuminate why there are certain numeric
restrictions on the number of menu components Intuition allows. You should not use the information given here to
access the menu number information directly. This discussion is included only for completeness. To assure upward
compatibility, always use the macros supplied. To extract the item number from the variable MenuNumber, for
example, call ITEMNUM(MenuNumber). See the previous section, ‘‘Menu Numbers and Menu Selection
Messages,”’ for a complete description of the menu number macros.

Intuition: Menus 117

Menu numbers are 16-bit numbers with 5 bits used for the menu number, 6 bits used for the menu item number, and
5 bits used for the subitem number. Everything is specified by its ordinal position in a list of same-level pieces, as
shown below.

ccccbbbbbbaaaaa

| |

| > These bits are for the menu number.
|
>

¢
l
|
|
| These bits are for the menu items within the menu.
|

> These bits are for the subitems within the menu items.

Thus, for each level of menu item and subitem, up to 31 pieces can be specified. There are 63 item pieces that you
can build under each menu, which is a lot, especially with 31 subitems per item. You can have 31 menu choices
across the menu bar (it would be a tight squeeze, but in 80-column mode you could do it), and each of those menus
can exercise up to 1,953 items. You should not need any more choices than that.

The value *‘all bits on’’ means that no selection of this particular component was made. MENUNULL actually
equals ‘“‘no selection of any of the components was made’” so MENUNULL always equals ‘‘all bits of all
components on.”’

Here’s an example. Say that your program gets back the menu number (in hexadecimal) 0xOCAO. I» binary that
equals:

0001 0010100000

1
| |
i > Menu number 0
|

> Menu item number 0x25 = 37

v ———=—==0

Subitem number 1

Again, it is never safe to examine these numbers directly. Use the macros described above if you want to design
sanely and assure upward compatibility.

INTERCEPTING NORMAL MENU OPERATIONS

You have two convenient ways to intercept the normal menu operations that take place when the user presses the
right mouse button. The first, MENUVERIFY, gives your program the opportunity to react before menu operations
take place and, optionally, to cancel menu operations. The second, RMBTRAP, allows the program to trap right
mouse button events for its own use.

A Warning on the MENUSTATE Flag

The MENUSTATE flag is set by Intuition in Window.Flags when the menus of that window are in use. Beware: in
typical event-driven programming, such a state variable is not on the same timetable as your input message handling,
and should not be used to draw profound conclusions in your program. To synchronize yourself with the menu
handling, use MENUVERIFY,

118 Intuition: Menus

Menu-verify

Menu-verify is one of the Intuition verification functions. These functions allow you to make sure that your program
is prepared for some event before it takes place. Using menu-verify, Intuition allows all windows in a screen to
verify that they are prepared for menu operations before the operations begin. In general, you use this if the program
is doing something special to the display of a custom screen, and you want to make sure it has completed before
menus are rendered.

Any window can access the menu-verify feature by setting the MENUVERIFY flag in the NewWindow structure
when opening the window. When your program gets a message of class MENUVERIFY, menu operations will not
proceed until the program replies to the message.

The active window gets special menu-verify treatment. It is allowed to see the menu-verify message before any
other window and has the option of canceling menu operations altogether. You could use this, for instance, to
examine where the user has positioned the mouse when the right button was pressed. If the pointer is in the menu
bar area, then you can let normal menu operations proceed. If the pointer is below the menu bar, then you can use
the right button event for some non-menu purpose.

Your program can tell whether or not it is in the active window by examining the code field of the MENUVERIFY
message. If the code field is equal to MENUWAITING, your window is not the active one and Intuition is simply
waiting for you to verify that menu operations may continue. However, if the code field is equal to MENUHOT,
your window is the active one and it gets to decide whether or not menu operations should proceed. If the program
does not want them to proceed, it should change the code field of the message to MENUCANCEL before replying to
the message. This will cause Intuition to cancel the menu operations.

Shortcuts and MENUVERIFY

The idea behind MENUVERIFY (and to some degree SIZEVERIFY and REQVERIFY) is to synchronize your
program with Intuition’s menu handling sessions. The motive was to allow your program to arbitrate access to your
screen’s bitmap, so that Intuition doesn’t put menus in the way of your drawing.

Some programs use MENUVERIFY to permit them to intercept the right mouse button for their own purposes.
Other’s use it to suspend menu operations while they recover from Wild Phenomena before menu operations
proceed. These phenomena may be illegible colors of the screen or double buffering and related ViewPort
operations.

In any case, it is vital to know when menu operations terminate. This is typically detected by watching for the
MENUPICK IDCMP message. If you intercepted (MENUCANCEL) the menu operations, you will instead receive
a MOUSEBUTTONS message with code equal to MENUUP. Menu shortcut keystrokes, for compatibility, also
respect MENUVERIFY. They are always paired with a MENUPICK message so that your program knows the
menu operation is over.

You may call ModifyIDCMP() to turn MENUVERIFY and the other VERIFY IDCMP options off. It is important
that you do so if you ever do anything that directly or indirectly has you waiting for Intuition (since Intuition may be
waiting for you).

You cannot wait for a gadget or mouse event without checking also for any MENUVERIFY event messages that
may require your response. The most common problem area is System Requesters (AutoRequest()). Before
AutoRequest() returns control to your program, Intuition must be free to run and accept a response from the user. If
the user presses the menu button, Intuition will wait for you to MENUVERIFY and a deadlock results. Therefore, it

Intuition: Menus 119

is extremely important to use ModifyIDCMP() to turn off all verify messages before you call AutoRequest() or,
directly or indirectly, AmigaDQOS, since many error conditions in the DOS require user input in the form of
Autorequests. Indirect DOS calls include OpenLibrary(), OpenDevice(), and OpenDiskFont().

Intuition’s Use of Your RastPort

Intuition has many rendering chores: screen and window titles and borders, gadgets, menus, and so on. Intuition uses
a copy of the RastPort of the screen in which the rendering is to take place. This copy determines the bitmaps the
rendering will end up in, and often the font and similar modal information.

One thing Intuition sets each time is the mask value of the RastPort. It is set to all ones (0xFFFF). If you wish to
restrict Intuition’s rendering to all bitplanes of your screen, you may change the Depth and Planes values in
Screen.RastPort.BitMap. This will only affect rendering into the screen itself, which consists of the Screen title and
gadgets, and menus. Window gadgets are not fooled, since they use the mask in the window’s layer’s rastport,
which you should not be changing. :

No Menu Operations — Right Mouse Button Trap

By setting the RMBTRAP flag in the NewWindow structure when you open your window, you indicate that you do
not want any menu operations at all for your window. Whenever the user presses the right button while your
program’s window is active, the program will receive right button events as normal MOUSEBUTTON events.

REQUESTERS AS MENUS

You may, in some cases, want to use a requester instead of a menu. A requester can function as a ‘‘super-menu’’
because you can attach a requester to the double-click of the mouse menu button. This allows users to bring up the
requester on demand. With a requester, however, the user must make some response before resuming input to the
window. See the chapter entitled ‘Intuition: Requesters and Alerts,”” for more information.

MENU STRUCTURES

The specifications for the menu structures are given below. Menus are the headers that show in the menu bar, and
Menultems are the items and subitems that can be chosen by the user.

Menu Structure

Here is the specification for a Menu structure:

struct Menu
{
struct Menu *NextMenu;
SHORT LeftEdge, TopEdge, Width, Height;
USHORT Flags;
BYTE *MenuName;
struct Menultem *FirstItem;

}:

120 Intuition: Menus

The variables in the Menu structure have the following meanings:

NextMenu
This variable points to the next Menu header in the list. The last Menu in the list should have a NextMenu
value of NULL.

LeftEdge, TopEdge, Width, Height .
These fields describe the select box of the header. Currently, any values you may supply for TopEdge and
Height are ignored by Intuition, which uses instead the screen’s TopBorder for the TopEdge and the height of
the screen’s title bar for the Height. LeftEdge is relative to the LeftEdge of the screen plus the screen’s left
border width, so if you say LeftEdge is 0, Intuition puts this header at the leftmost allowable position.

Flags
The flag space is shared by your program and Intuition. The flags are:

MENUENABLED
This flag indicates whether or not this Menu is currently enabled. You set this flag before you submit the
menu strip to Intuition. If this flag is not set, the menu header and all menu items below it will be
disabled, and the user will be able to view, but not select any of the items. After you submit the strip to
Intuition, you can change whether your menu is enabled or disabled by calling OnMenu() or OffMenu().

MIDRAWN
This flag indicates whether or not this Menu’s items are currently displayed to the user.

MenuName
This is a pointer to a null-terminated character string that is printed on the screen’s title bar starting at the
LeftEdge of this Menu’s select box and at the TopEdge just below the screen title bar’s top border.

FirstItem
This points to the first item in the linked list of this Menu’s items (Menultem structures).

Menultem Structure

Here is the specification for a Menultem structure (used for both items and subitems):

struct Menultem

{
struct Menultem *NextlItem;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
USHORT Flags;
LONG MutualExclude;
APTR ItemFill;
APTR SelectFill;
BYTE Command;
struct Menultem *Subltem;
USHORT NextSelect;

}:

The fields have the following meanings:
NextItem

This field is a pointer to the next item in the list. The last item in the list should have a NextItem value of
NULL.

Intuition: Menus 121

LeftEdge, TopEdge, Width, Height v
These fields describe the select box of the Menultem. The LeftEdge is relative to the LeftEdge of the Menu.
The TopEdge is relative to the topmost position Intuition allows. TopEdge is based on the way the user has
the system configured — which font, which resolution, and so on. Use 0 for the topmost position.

Flags
The flag space is shared by your program and Intuition. See ‘‘Menultem Flags’’ below for a description of the
flag bits.

MutualExclude
This LONG word refers to the items that may be on the same ‘‘plane’” as this one (maximum of 32 items).
You use these bits to describe which if any of the other items are mutually excluded by this one. This does not
mean that you cannot have more than 32 items in any given plane, just that only the first 32 can be mutually
excluded.

ItemFill
This points to the data used in rendering this Menultem. It can point to either an instance of an IntuiText
structure with text for this Menultem or an instance of an Image structure with image data.” Your program
tells Intuition what sort of data is pointed to by this variable by either setting or clearing the Menultem flag bit
ITEMTEXT. See ‘‘Menultem Flags’’ below for more information about ITEMTEXT.

SelectFill
If you select the Menultem highlighting mode HIGHIMAGE (in the Flags variable), Intuition substitutes this
alternate image or text for the original rendering described by ItemFill. SelectFill can point to either an Image
or an IntuiText, and the flag ITEMTEXT describes which.

Command
This variable is storage for a single alphanumeric character. If the Flag COMMSEQ is set, the user can hold
down the right AMIGA key on the keyboard (to mimic using the right mouse menu button) and press the key
for this character as a shortcut for using the mouse to select this item. If the user does this, Intuition transmits
the menu number for this item to your program. It will look to your program exactly as if the user had selected
a menu item using menus and the pointer.

SubItem
If this item has a subitem list, this variable should point to the first subitem in the list.
NOTE
A subitem cannot have a subitem attached to it. If this item is not an item, this variable is ignored.
NextSelect
This field is filled in by Intuition when this item is selected by the user. If this item is selected by the user, your
program should process the request and then check the NextSelect field. If the NextSelect field is equal to

MENUNULL, no other items were selected; otherwise, there is another item to process. See ‘‘Menu Numbers
and Menu Selection Messages’’ above for more information about user selections.

Menultem Flags

Here are the flags that you can set in the Flags field of the Menultem structure:
CHECKIT

You set this flag to inform Intuition that this item is an attribute item and you want a checkmark to precede this
item if the flag CHECKED is set. See the section ‘‘Action/Attribute Items and the CheckMark’’ above for full

122 Intuition: Menus

details.

CHECKED
For an item with the CHECKIT flag set, set this bit to specify that this item has a checkmark. When you first
submit the menu strip to Intuition, it maintains this bit based on effects from other items’ mutual exclusions, or
for MENUTOGGLE items, when the user accesses this item.

ITEMTEXT
You set this flag if the representation of this item (pointed to by the ItemFill field and possibly by SelectFill) is
text and points to an IntuiText; you clear it if the item is graphic and points to an Image,

COMMSEQ :
If this flag is set, this item has an equivalent command-key sequence (see the Command field above).

MENUTOGGLE
Set this flag for a CHECKIT menu item or subitem, and the item can be selected to turn the checkmark off, as
well as on.

ITEMENABLED
This flag describes whether or not this item is currently enabled. If an item is not enabled, its image will be
ghosted and the user will not be able to select it. Set this flag before you submit the menu strip to Intuition.
Once you have submitted your menu strip to Intuition, you enable or disable items only by using OnMenu() or
OffMenu(). If this item has subitems, all of the subitems are disabled when you disable this item.

HIGHFLAGS
An item can be highlighted when the user positions the pointer over the item. These bits describe what type of
highlighting you want, if any. You must set one of the following bits according to the type of highlighting you
- want:

HIGHCOMP
This complements all of the bits contained by this item’s select box.

HIGHBOX
This draws a box outside this item’s select box.

HIGHIMAGE
This displays the alternate imagery in SelectFill (textual or image). For alternate text, make sure that
ITEMTEXT is set, and that the SelectFill field points to an IntuiText structure.

HIGHNONE
This specifies no highlighting.

The following two flags are used by Intuition:

ISDRAWN

Intuition sets this flag when this item’s subitems are currently displayed to the user and clears it when they are
not.

HIGHITEM
Intuition sets this flag when this item is highlighted and clears it when the item is not highlighted.

Intuition: Menus 123

MENU FUNCTIONS

There are menu functions for attaching and clearing menu strips, for enabling and disabling menus or menu items,
and for finding a menu number.

Attaching and Removing a Menu Strip

. The following functions attempt to attach a menu strip to a window or clear a menu strip from a window:
» SetMenuStrip(Window, Menu)
Menu is a pointer to the first menu in the menu strip. This procedure sets the menu strip into the window.
» ClearMenuStrip(Window)

This procedure clears any menu strip from the window.

Enabling and Disabling Menus and Items

You can use the following functions to enable and disable items after a menu strip has been attached to the window.
If the item component referenced by MenuNumber equals NOITEM, the entire menu will be disabled or enabled.
If the item component equates to an actual component number, then that item will be disabled or enabled.

You can enable or disable whole menus, just the menu items, or just single subitems.

+ To enable or disable a whole menu, set the item component of the menu number to NOITEM. This will
disable all items and any subitems.

« To enable or disable a single item and all subitems attached to that item, set the item component of the
menu number to your item’s ordinal number. If your item has a subitem list, set the subitem component of
the menu number to NOSUB. If your item has no subitem list, the subitem component of the menu
number is ignored.

» Toenable or disable a single subitem, set the item and subitem components appropriately.

* OnMenu(Window, MenuNumber)
This function enables the given menu or menu item.

» OffMenu(Window, MenuNumber)

This function disables the given menu or menu item.

124 Intuition: Menus

Getting an Item Address

This function finds the address of a menu item when given the item number:
o ItemAddress(MenuStrip, MenuNumber)

MenuStrip is a pointer to the first menu in the menu strip.

Example

This example shows how to implement menus. If you look at the sample program for IDCMP’s in ‘‘Intuition: Input
and Output Methods’’, you'll see that the menu code is simply part of the processing for Intuition messages.

The example implements extended selection for menus, adaptation to fonts of different sizes, mutual exclusion, and
checkmarks.

/* Menus.h -~ All the structures needed to make the menus */

#define IWIDTH 96
#define IHEIGHT 8

/* Topaz 8, just in case we can’t handle the default font */
struct TextAttr TOPAZ80 =
((STRPTR)"topaz.font“,TOPAZ_EIGHTY,0,0);

/* Preferences Item IntuiText */
struct IntuiText PrefText[] =
{
{2,1,JAM2,CHECKWIDTH, 1, NULL, ® Sound...", NULL},
{2,1,JAaM2, CHECKWIDTH, 1, NULL, * Auto Save", NULL},
{2,1,JAM2, CHECKWIDTH, 1, NULL, * Have Your Cake", NULL},
{2,1,JAM2,CHECKWIDTH, 1, NULL, " Eat It Too", NULL}
}:

struct Menultem Prefltem(] =
{

/* ¥“Sound..." */

{&PreflItem[l], O, O, IWIDTH, IHEIGHT,
ITEMTEXT | ITEMENABLED |HIGHCOMP, 0,
(APTR) &PrefText {0], NULL, NULL, NULL, MENUNULL

}.

/* "Auto save"™ (toggle-select, initially selected) */
{&PrefItem(2], 0, 10, IWIDTH, IHEIGHT,

ITEMTEXT | ITEMENABLED | HIGHCOMP | CHECKIT | MENUTOGGLE | CHECKED, 0,
(APTR) &PrefText [1], NULL, NULL, NULL, MENUNULL

}e

/* "Have Your Cake" (initially selected, excludes "Eat It Too") */
{¢PrefItem{3], 0, O, IWIDTH, IHEIGHT,

ITEMTEXT | ITEMENABLED | HIGHCOMP | CHECKIT |CHECKED, 8,
(APTR) &PrefText [2], NULL, NULL, NULL, MENUNULL

Yo

/* “Eat It Too"™ (excludes "Have Your Cake") %/

{NULL , 0, 0, IWIDTH, IHEIGHT,

ITEMTEXT | ITEMENABLED | HIGHCOMP | CHECKIT, 4,
(APTR) &PrefText [3], NULL, NULL, NULL, MENUNULL

}

¥

/* Edit Menu Item IntuiText */

Intuition: Menus 125

struct IntuiText EditText (] =

{
{2,1,JAM2,2,1, NULL, "Undo%, NULL},
{2,1,JAM2,2,1, NULL, "Cut"™, NULL},
{2,1,JaM2,2,1, NULL, “Copy"“, NULL},
{2,1,JaM2,2,1, NULL, “Paste", NULL},
{2,1,JaM2,2,1, NULL, “Erase All", NULL}

}:

/* Edit Menu Items */
struct Menultem EditItem[] =

/* "Undo" Menultem (key-equivalent: f27) */
{sBditItem{1l], 0, O, IWIDTH, IHEIGHT,
ITEMTEXT | COMMSEQ | ITEMENABLED | HIGHCOMP, O,
(APTR) &EditText {0}, NULL, ‘Z’, NULL, MENUNULL
.
/* wCut" (key-equivalent: ’X’') ¥/
{&BditItem[2], 0, 10, IWIDTH, IBEIGHT,
ITEMTEXT | COMMSEQ | ITEMENABLED |HIGHCOMP, O,
(APTR) &EditText [1], NULL, 'X’, NULL, MENUNULL
},
/* uCopy" (key-equivalent: C’) */
{sEditItem[3], 0, 20, IWIDTH, IHEIGHT,
ITEMTEXT | COMMSEQ | ITEMENABLED |HIGHCOMP, O,
(APTR) &EditText'[2], NULL, ‘C’, NULL, MENUNULL
Y,
/* "Paste" (key-equivalent: V') */
{&EditItem[4], O, 30, IWIDTH, IHEIGHT,
ITEMTEXT | COMMSEQ | ITEMENABLED | HIGHCOMP, O,
(APTR) &EditText [3], NULL, ‘V‘, NULL, MENUNULL
},
/* “Erase All" (disabled) */
{NULL, 0, 40, IWIDTH, IHEIGHT,
ITEMTEXT |HIGHCOMP, O,
(APTR) &EditText {4], NULL, NULL, NULL, MENUNULL
}
}i

/* IntuiText for the Print Sub-Items */
struct IntuiText PrtText{] =
{
{2, 1, JamM2,2,1, NULL, “NLQ%, NULL},
{2, 1, JaM2,2,1, NULL, “Draft®, NULL}
}:

/* Print Sub-Items */
struct Menultem Prtltem{] =
{
/* "NLQ" */
{&PrtItem(1}, 61,-1, IWIDTH, IHEIGHT, ITEMTEXT|ITEMENABLED|HIGHCOMP,
(APTR) &PrtText [0], NULL, NULL, NULL, MENUNULL
},
/* “Draftw */

{NULL, 61, 9, IWIDTH, IHEIGHT, ITEMTEXT|ITEMENABLED|HIGHCOMP,

(APTR) &PrtText {1], NULL, NULL, NULL, MENUNULL
}
};

/* Uses the >> character to indicate a sub-menu
* 273 Octal, 0xBB Hex or ALT-0 from the Keyboard
*/

/* Project Menu Item IntuiText */
struct IntuiText ProjText[] =

{

{2, 1, Jam2,2,1, NULL, " New", NULL},
{2, 1, JAM2,2,1, NULL, " Open..."%, NULL},
{2, 1, JAM2,2,1, NULL, ™ Save", NULL},
{2, 1, JaM2,2,1, NULL, ™ Save As...%, NULL},
{2, 1, JamM2,2,1, NULL, "273 Print", NULL},

{2, 1, Jam™M2,2,1, NULL, * About...%, NULL},

126 Intuition: Menus

{2, 1, JAM2,2,1, NULL, * OQuit", NULL}
}:

/* Project Menu Items */
struct Menultem ProjItem[] =
(/* "New" */
{sProjitem{1),0, 0, IWIDTH, IHEIGHT,
ITEMTEXT | ITEMENABLED | HIGHCOMP, 0O,
(APTR) &ProjText [0], NULL, NULL, NULL, MENUNULL
Yo
/* "Open..." (key-equivalent: 70') */
{&ProjItem[2],0,10, IWIDTH, IHEIGHT,
ITEMTEXT | COMMSEQ | ITEMENABLED | HIGHCOMP, O,
(APTR) &ProjText {11, NULL, ’“0’, NULL, MENUNULL
}e
/* “"Save" (key-equivalent: 7S’) */
{&ProjItem{3],0,20, IWIDTH, IHEIGHT,
ITEMTEXT | COMMSEQ | ITEMENABLED | HIGHCOMP, O,
(APTR) &ProjText (2], NULL, ’S’, NULL, MENUNULL
},
/* “Save As..." */
{&ProjItem(4],0,30, IWIDTH, IHEIGHT,
ITEMTEXT | ITEMENABLED | HIGHCOMP, O,
(APTR) &ProjText (3], NULL, NULL, NULL, MENUNULL
}e
/* “Print" (has sub-menu) */
{&ProjItem([5],0,40, IWIDTH, IHEIGHT,
ITEMTEXT | ITEMENABLED | HIGHCOMP, O,
(APTR) &ProjText [4], NULL, NULL, &PrtItem{0), MENUNULL
},
/* “About..." ¥/
{sProjItem[6],0,50, IWIDTH, IHEIGHT,
ITEMTEXT | ITEMENABLED |HIGHCOMP, O,
(APTR) &ProjText {5}, NULL, NULL, NULL, MENUNULL
}e
/* "Quit™ (key-equivalent: 7Qf */
{NULL, 0,60, IWIDTH, IHEIGHT,
ITEMTEXT | COMMSEQ | ITEMENABLED | HIGHCOMP, O,
(APTR) &ProjText (6], NULL, ‘Q’, NULL, MENUNULL
o)
}:

/* Menu Titles */
struct Menu Menus|[] =

{

{&sMenus{1}, 0, 0, 63, 0, MENUENABLED, "Project"®, &ProjItem[0]},
{&Menus {2}, 70, 0, 39, 0, MENUENABLED, "Edit®, &EditItem{0]},
{NULL, 120, 0, 88, 0, MENUENABLED, "Preferences",&PreflItem[0]},

};

/* A pointer to the first menu for easy reference */
struct Menu *FirstMenu = &Menus[0];

/* Window Text for Explanation of Program */
struct IntuiText WinText[] =

{
{3, 0, JaM2, .54, 28, &TOPAZ80, "How to do a Menu", NULL},
{3, 0, JaM2, 70, 38, &TOPAZ80, “(with Style)", &WinText [0]}
}:

/* NewWindow structure for our example window */
struct NewWindow NewWindow =

{

202,66, 234,66, 2,1, MENUPICK|CLOSEWINDOW,

WINDOWDRAG | WINDOWDEP TH | WINDOWCLOSE | ACTIVATE | NOCAREREFRESH,
NULL, NULL, “Menus", NULL, NULL, 0, 0, -1, -1, WBENCHSCREEN
};

/* End of Menus.h */

/* Menus.c */

Intuition: Menus 127

#include <exec/types.h>

#include <intuition/intuition.h>
#include <intuition/intuitionbase.h>
#include <libraries/dos.h>
#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#$ifdef LATTICE

#include <proto/all.h>

int CXBRK (void) {return(0);}
$endif

#include "Menus.h"

/* Use lowest non-obsolete version that supplies the functions you need. */
#define LIB_REV 33

/* prototypes */
UBYTE handleIDCMP {struct Window *);

VOID OpenAll (VOID);

VOID cleanExit (int);

/* prototypes for functions used to determine menu sizing */

BOOL AdjustMenus (struct Menu *, struct TextAttr ¥);

VvOID AdjustItems (struct RastPort *, struct Menultem *, struct TextAttr
USHORT, USHORT, USHORT, USHORT) ;

VOID AdjustText (struct IntuiText *text, struct TextAttr *attr);

USHORT MaxLength(struct RastPort *, struct Menultem *, USHORT);

/* Globals */

struct IntuitionBase *IntuitionBase = NULL;
struct GfxBase *GfxBase = NULL;
struct Window *window = NULL;

VOID main (int argc, char *argv(])
{

/* Declare variables here */

ULONG signalmask, signals;

UBYTE done = 0;

OpenAll();

/* Set up the signals that you want to hear about ... */
signalmask = 1L << window->UserPort->mp_SigBit;

/* And wait to hear from your signals */
while(!done)
{
signals = Wait (signalmask);
if(signals & signalmask)
done = handleIDCMP (window);
}:

/* Exit the program */
cleanExit (RETURN_OK) ;
}

/* Handle the IDCMP messages */

UBYTE handleIDCMP(struct Window *win)
{

UBYTE flag = 0;

USHORT code, selection, flags;

struct IntuiMessage *message = NULL;
ULONG c¢lass, menuNum, -itemNum, subNum;

/* Examine pending messages */

while (message = (struct IntuiMessage *)GetMsg(win->UserPort))
{
class = message->Class;
code = message->Code;

128 Intuition: Menus

/* When we’re through with a message, reply */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch(class)
{
case CLOSEWINDOW:
flag = 1;
break;
case MENUPICK:
selection = code;
while (selection != MENUNULL)
{
menuNum = MENUNUM(selection);
itemNum ITEMNUM (selection);
subNum SUBNUM (selection);
flags = {({struct Menultem ¥*)
ItemAddress (FirstMenu, {LONG) selection)) ~>Flags;
printf (¥Selected %);
1f(flags&CHECKED)
printf (" (Checked) %);
switch{ menuNum)

{

case 0: /* Project Menu */
switch (itemNum)

{

case 0:
printf ("New0) ;
break;

case 1:
printf (“Openl);
break;

case 2:
printf (*Save0);
break;

case 3:
printf (“Save AsQ);
break;

case 4:

printf ("Print ");
switch (subNum)

{

case 0:
printf (“*Draft0);
break;
~case 1:
printf ("NLQO) ;
break;
}
break;
case 5:
printf ("Aboutl);
break;
case 6:
printf (¥Quit0);
flag = 1;
break;
default:
break; .
} /* end switch */
break;
case 1: /* Edit Menu */
switch (itemNum)
{
case 0:
printf (¥"Undo0) ;
break;
case 1:
printf (*Cut0);
break;
case 2:

printf ("Copy0);

Intuition: Menus 129

break;
case 3:
printf ("Pastel);
break;
case 4:
printf (“"Erase All0);
break;
default:
break;
} /* end switch */
break;)
case 2: /* Preferences Menu */
switch (itemNum)
{
case 0:
printf ("Sound0) ;
break;
case 1:
printf ("Auto Save0);
break;
case 2:
printf({"Have Your Cake0);
break;
case 3:
printf("Eat It Too0);
break;
default:
break;
}
break;
default:
break;
} /* end switch */
selection = ((struct Menultem *)ItemAddress
(FirstMenu, (LONG) selection))->NextSelect;
} /* end while */
break; /* case of MENUPICK */
default:
break;
} /¥ end switch */
} /* end while */
return(flag);
}

/* Open the needed libraries, windows, etc. */
VvoIbD OpenAll (VOID)
{
/* Open the Intuition Library */
IntuitionBase = (struct IntuitionBase ¥*)
OpenLibrary("intuition.library%,LIB_REV);
if (IntuitionBase == NULL)
cleanExit (RETURN_WARN) ;

/* Open the Graphics Library */
GfxBase = (struct GfxBase ¥*) s
OpenLibrary("graphics.library", LIB REV);
if (GfxBase == NULL)
cleanExit (RETURN_WARN) ;

/* Open the window */
window = OpenWindow (&NewWindow);
if (window == NULL)

cleanExit (RETURN_WARN) ;

/* Give a brief explanation of the program */
PrintIText (window->RPort, &WinText [1],0,0);

/* Adjust the menu to conform to the font (TextAttr) */
AdjustMenus (FirstMenu, window->WScreen->Font);

/* attach the menu to the window */

130 Intuition: Menus

SetMenuStrip{window, FirstMenu);

}

/* Free up all the resources that we where using */
VOID cleanExit (int returnvValue)
{
if (window)

{
/* If there is a menu strip, then remove it */

if (window->MenuStrip)

ClearMenuStrip (window);

/* Close the window */
CloseWindow (window) ;

}

/* Close the library, and then exit */
if (GfxBase)
Closelibrary({struct Library *)GfxBase);

if{IntuitionBase)
CloseLibrary({struct Library *)IntuitionBase);
exit (returnValue);

}

~
%*

The following routines adjust an entire menu system to conform to

This is necessary for a clean look regardless of what the users

* % % % ¥ % %

screen due to large fonts, too many items, lo-res screen.

*
~

BOOL AdjustMenus (struct Menu *firstmenu, struct TextAttr *attr)

{

struct RastPort textrp = {0}; /* Temporary RastPort */
struct Menu *menu;

struct TextFont *font; /* Font to use */
USHORT start, width, height, space;

BOOL retval = FALSE;

/* open the font */
if ((font = OpenFont (attr)))
{

SetFont (&textrp, font); /* Put font into temporary RastPort */

width = font->tf_XSize; /* Get the Width of the Font */

/* To prevent crowding of the Amiga key when using COMMSEQ,
* don’t allow the items to be less than 8 pixels high.

*/
height = (font->tf ¥YSize < 8) ? 8 : font->tf_YSize;
height++;
start = 2; /* Set Starting Pixel */

/* Step thru the menu structure and adjust it */
menu = firstmenu;
while (menu)
{
menu->LeftEdge = start;
menu->Width = space =
TextLength {&textrp, menu->MenuNane,
(LONG) strlen (menu->MenuName)) + width;
AdjustItems (&textrp, menu->Firstitem, attr, width, height, 0,
menu = menu->NextMenu;
start += (space + (width * 2));
}
CloseFont {font) ; /* Close the Font */

the specified fonts’ width and height. Allows for Proportional Fonts.

preference in Fonts may be. Using these routines, you don’t need to
specify TopEdge, LeftEdge, Width or Height in the Menultem structures.

This set of routines does NOT check/correct if the menu runs off the

Intuition: Menus 131

retval = TRUE;
}
return(retval);
}

/* Adjust the Menultems and Subltems */

VOID

AdjustItems (struct RastPort *txtrp, struct Menultem *fi,
struct TextAttr *atr, USHORT wdth, USHORT hght,
USHORT 1lvl, USHORT edge)

{

struct Menultem *item = fi;

register USHORT num;

USHORT strip width, sub_edge;

1f(fi==NULL) return;
strip width = MaxLength(txtrp, item, wdth);
num = 0;
while(item)
{
item~->TopEdge = {(num * hght) - 1lvl;
item->LeftEdge = edge;
item->Width = strip_width;
item->Height = hght;
sub_edge = strip width - wdth;
AdjustText ((struct IntuiText *)item->ItemFill, atr);
AdjustItems (txtrp, item->SubItem, atr, wdth, hght, 1, sub_edge);
item = item->NextItem;
num++;

}

/* Steps thru each item to determine the maximum width of the strip */
USHORT MaxLength (struct RastPort *txtrp, struct Menultem *fi, USHORT width)
{

USHORT maxval = 0, textlen;

struct Menultem *item = fi;

struct IntuiText *itext;

while (item)

{
if(item->Flags&COMMSEQ)
{
width += (width + COMMWIDTH);
break;
}
item = item~>NextItem;
}
item = fi;
while (item)
{
itext = (struct IntuiText *)item->ItemFill;
textlen = itext->LeftEdge +
TextLength (txtrp, itext->IText,
(LONG) strlen(itext->IText)) + width;
/* returns the greater of the two */
maxval = (textlen<maxval)?maxval:textlen;
item = item->NextItem;
}
return{maxval);

}

/* Adjust the Menultems font attribute */
VOID AdjustText (struct IntuiText *text, struct TextAttr *attr)
{
struct IntuiText *nt;
nt = text;
while (nt)
{

132 Intuition: Menus

nt->ITextFont = attr;
nt = nt->NextText;

}

Intuition: Menus 133

Chapter 6

Intuition: Requesters and Alerts

Requesters are information exchange boxes that can be displayed in windows by the system or by application
programs. There are also requesters that the user can bring up on demand. They are called requesters because the
user has to ‘‘satisfy the request’ before continuing input through the window. Alerts are similar to requesters but
are reserved for emergency messages.

About Requesters

Requesters (see figure) are like menus in that both menus and requesters offer options to the user. Requesters,
however, go beyond menus. They become ‘super menus’® because you can place them anywhere in the window,
design them to look however you want, and bring them up in the window whenever your program needs to elicit a
response from the user—and they come replete with any kind of gadget you care to use. The most fundamental
differences between requesters and menus are that requesters require a response from the user and that while the
requester is in the window, the window locks out all user input. (See the NOISYREQ flag under *‘Requester
Structure’’ for an exception.) The requirement of a user response is virtually the only restriction placed on your
program’s use of requesters. '

Intuition: Requesters and Alerts 135

Figure 6-1: Requester Deluxe

Requester Display

Requesters can be brought up in a window in three different ways.

» System requesters are invoked by the operating system; your program has no control over these. For
example, someone using a text editor might try to save a file to disk when there is no disk in the drive.
The system requester comes up and makes sure the user understands the situation and requests a response
from the user.

* Your program can bring up regular application requesters whenever it needs input from the user.

* You can attach a requester to a double-click of the mouse menu button. Users can bring up this *“double-
menu request’’ whenever they need the particular option supplied by the requester.

Once a requester is brought up in a window, all further input to the program from that window is blocked (unless
that requester is of type NOISYREQ). This is true even if the user brought up the requester. The requester remains
in the window and input remains blocked until the user satisfies the request by choosing one of the requester
gadgets. You decide which of your gadgets meets this criterion. While the requester is in the window, the only
input the program receives from that window is made up of broadcasts when the user selects a requester gadget.
Even though the window containing the requester is locked for input, the user can work in another application or
even in a different window of your application and respond to the requester later.

A window with an unsatisfied requester is zot blocked for program output. Nothing prevents your program from
writing to the window. Be aware, however, that the requester obscures part of the display. This may hinder the user.
Fortunately, there are several ways to monitor the comings and goings of requesters, which your program can use o
ensure that it can safely bring up an application requester. (See ‘‘IDCMP Requester Features’’ below.)

In displaying any kind of requester (except the super-simple yes-or-no kind created with AutoRequest()), you can

specify the location in one of two ways. You can select either a constant location that is an offset from the top left
corner of the window or a location relative to the current location of the pointer. Displaying the requester relative to

136 Intuition: Requesters and Alerts

the pointer can get the user’s attention immediately and closely associates the requester with whatever the user was
doing just before the requester came up in the window.

You can nest several application requesters in the same window, and the system may present requesters of its own
that become nested with the application requesters. These are all satisfied in reverse sequence; the last requester to
be displayed must be satisfied first.

Application Requesters

In adding requesters to your program, you have several options. You can supply a minimum of information and let
Intuition do the work of rendering the requester or you can design a completely custom requester, drawing the
background, borders, and gadgets yourself and submitting the requester to Intuition for display.

You can select that a requester be rendered by Intuition in one of two ways. If the requester is complex and you
want to attach gadgets and have some custom features, you initialize a requester for general usage. In the requester
structure, you supply the gadget list, borders, text, and size of the rectangle that encloses the requester. Intuition will
allocate the buffers, construct a bit-map that lasts for the duration of the display, and render the requester in the
window on demand from your program or the user. Alternatively, if the requester requires only a simple yes or no
answer from the user, you can use the special AutoRequest() function that builds the requester, displays it, and
waits for the user’s response. ,

On the other hand, you can design your own custom requester with your own hand-drawn image for the background,
gadgets, borders, and text. You get your own bit-map with a custom requester, so you can design the imagery pixel
by pixel if you wish, using any of the Amiga art creation tools. When you have completed the design, you submit it
to Intuition for display as usual. Consistency and style are the only restrictions imposed on designing your own
requester. The gadgets should look like gadgets and the gadget list should correspond to your images (particularly
the gadget select-boxes, to avoid confusing the user).

You should always provide a safe way for the user to back out of a requester without taking any action that affects
the user’s work. This is very important.

A user’s action or response to a requester can be as simple as telling the requester to go away. Because the user’s
action consists of choosing a requester gadget, there must be one or more gadgets that terminate the requester.

Another Option

As an option to bringing up a requester, you can flash your screen in a complementary color (binary complement,
that is—see the *‘Intuition: Images, Line Drawing, and Text”’ chapter for an explanation). This is handy if you want
to notify the user of an event that is not serious enough to warrant a requester and to which the user does not really
need to respond. For instance, the user might be trying to choose an unavailable function from a menu or trying to
use an incorrect command-key sequence. If the event is a little more serious, you can flash all the screens
simultaneously. See the description of DisplayBeep() in the ‘‘Intuition: Other Features’’ chapter.

RENDERING REQUESTERS

There are two ways of having complex requesters rendered—you can supply Intuition with enough information to
do the rendering for you, or you can supply your own completely customized bit-map image. You fill in the
Requester structure differently according to which rendering method you have chosen.

Intuition: Requesters and Alerts 137

If you want Intuition to render the requester for you, you need to supply regular gadgets, a pen-color for filling the
requester background, and one or more text structures and border structures.

For custom bit-map requesters, you draw the gadgets yourself, so you supply a valid list of gadgets, but the text and
image information in the gadget structures can be set to NULL, because it will be ignored. Other gadget
information—select-box dimensions, highlighting, and gadget type—is still relevant. The select-box information is
especially important since the select-box must have a well-defined correspondence with the gadget imagery that you
supply. The basic idea here is to make sure that the user understands your requester imagery and gadgetry. The
fields that define borders, text, and pen color are ignored and can be set to NULL.,

REQUESTER DISPLAY POSITION

You can have Inwition display the requester in a position relative to the position of the pointer or as an offset from
the upper left corner of the window.

To display the requester relative to the current mouse pointer position, specify POINTREL in the Flag field and
initialize the RelLeft and RelTop variables, which describe the offset of the upper left corner of the requester from
the pointer position. These values can be either negative or positive. The values you supply are only advisory; the
actual position will be restricted such that the requester is entirely contained in its window, if possible. The actual
top and left positions are stored in the TopEdge and LeftEdge variables. Then install the requester as a double-
menu requester using SetDMRequest() (later use ClearDMRequest() to remove it). Positioning relative to the
mouse pointer is possible only with double-menu requesters.

To display the requester as an offset from the upper left corner of the window, initialize the TopEdge and LeftEdge
variables. These should be positive values.

System requests appear on the Workbench screen by default. They can be made to appear on custom screens by
changing the WindowPtr field of Process structure to point to a Window on a custom screen. The original value of
WindowPtr should be cached and restored before the window is closed. When a system request is posted (using
AutoRequest() or BuildSysRequest()) it will move the screen it appears on to the front, if it is not already there.
After satisfying a request, the user may have to rearrange the screens since the order of the screens is not restored to
their original state.

DOUBLE-MENU REQUESTERS

A double-menu requester is exactly like other requesters with one exception: it is displayed only when the user
double-clicks the mouse menu button. You give the user the ability to bring up a double-menu requester by calling
SetDMRequest(). After the user brings up one of these requesters, window input is blocked as if your program or
Intuition had brought up the requester. A message stating that a requester has been brought up in its . window is
entered into the input stream. If you want to stop the user from bringing up a double-menu requester (for instance, if
you want to modify it or simply throw it away), you can unlink it from the window by calling ClearDMRequest().

GADGETS IN REQUESTERS

Each requester gadget should have the REQGADGET flag set in its GadgetType variable.

Each requester must have at least one gadget that satisfies the request and allows input to begin again. For each
gadget that ends the interaction and removes the requester, you set the ENDGADGET flag in the gadget Activation

138 Intuition: Requesters and Alerts

field. Every time one of the requester gadgets is selected, Intuition examines the ENDGADGET flag; if the flag is
set, the requester is erased from the screen and unlinked from the window’s active-requester list.

Algorithmic (Intuition-rendered) and custom bit-map requesters differ in how their gadgets are rendered. In
algorithmic requesters, you supply regular gadgets just like the application gadgets in windows. In custom bit-map
requesters, the gadgets are part of the bit-map that you supply for display. Even in custom bit-map requesters,
however, you must supply a list of gadgets, because you must still define the select-box, highlighting, and gadget
type for each gadget even though the gadget image information is ignored.

IDCMP REQUESTER FEATURES

If you are using the IDCMP for input, the following IDCMP flags add refinements to the use of requesters:

REQVERIFY
With this flag set, you can make sure that your program is ready to allow a requester to appear in the
window. When the program receives a REQVERIFY message, it must reply to that message to allow the
requester to be rendered.

REQSET
With this flag set, your program will receive a message whenever a requester opens in its window.

REQCLEAR
With this flag set, your program will receive a message whenever a requester is cleared from its window.

You set these flags when you call ModifyIDCMP() or create a NewWindow structure. See the chapter entitled
““Intuition: Input and Output Methods,” for further information about these IDCMP flags.

A SIMPLE, AUTOMATIC REQUESTER

For a simple requester that prompts the user for a positive or negative response, you can use the AutoRequest()
function (see figure). You supply some explanatory text for the body of the requester, negative and positive text to
prompt the user’s response, the width and height of the requester, and some optional flags for the IDCMP. The
positive text is the text you want associated with the user’s choice of “‘Yes,” ‘“True,”” ‘‘Retry,”” and similar
responses. Likewise, the negative text is associated with the user’s choice of *‘No,”” “‘False,” ““Cancel,” and so on.
The positive text is automatically rendered in a gadget in the lower left of the requester, and the negative text is
rendered in a gadget in the lower right of the requester. The positive text pointer can be set to NULL, specifying that
there is no positive choice for the user to make. The IDCMP flags allow either positive or negative external events
to satisfy the request. For instance, the positive external event of the user putting a disk in the drive could satisfy the
request.

When you call the function, Intuition will build the requester, display it, and wait for a response from the user. If
possible, the requester is displayed in the window supplied as an argument to the routine. If not, Intuition opens a
window to display the requester.

Requests generated with AutoRequest() and BuildSysRequest() can be satisfied by the user via the keyboard. The
key strokes left-AMIGA-V and left-AMIGA-B correspond to clicking (with the mouse) on the left and right system

Intuition: Requesters and Alerts 139

request gadgets, respectively.

IMPORTANT

Use the function ModifyIDCMP() to turn off all verify messages (such as MENUVERIFY) before
calling AutoRequest()! Neglecting to do so can cause situations where Intuition is waiting for the
return of a message which the application program is unable to receive because its input is shut off
while the requester is up.

Systen Reques t T |1 |
No disk present
inunit 1

R
ey

1) dip d&f1:

Figure 6-2: A Simple Requester Made with AutoRequest()

The AutoRequest() function calls BuildSysRequest() to construct the simple requester. Your program can call
BuildSysRequest() directly if you want the program to use the simple requester and to monitor the requester itself.
All gadgets created by BuildSysRequest() have the following gadget flags set:

BOOLGADGET
It is a boolean TRUE or FALSE gadget.

RELVERIFY
The program receives a broadcast if this gadget is activated.

REQGADGET
This flag specifies that this is a requester gadget.

TOGGLESELECT
This flag specifies that this is a toggle-select type of gadget.

User Rendering

A requester appears in a Layer. You may render to this layer through its RastPort, which can be found as
Requester.ReqLayer.rp. The requester layer is of type ‘‘smart’’, so that your rendering is preserved, but if the
window is sized it may damage your work, so that you will need to refresh your rendering. If you specify
NOISYREQ (explained later) in the requester’s Flags field, your program can receive NEWSIZE messages to let
you know when to refresh the requester.

140 Intuition: Requesters and Alerts

REQUESTER STRUCTURE

To create a Requester structure, follow these steps:

1. Dynamically allocate memory for a Requester structure and initialize it with InitRequesterO. After
calling InitRequester(), you need fill in only those requester values that your program needs.

or

Statically define a Requester structure containing the values your program needs. Do not call
InitReqester() with a statically allocated Requester structure!

2. Setup a gadget list.
3. Supply a BitMap structure if this is a custom requester.

The specification for a Requester structure follows.

struct Requester
{
struct Requester *OlderRequest;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
SHORT Relleft, RelTop;
struct Gadget *ReqGadget;:
struct Border *RegBorder;
struct IntuiText *ReqText;
USHORT Flags;
UBYTE BackFill;
struct Layer *Reqlayer;
UBYTE ReqPadl[32]
struct BitMap *ImageBMap;
struct Window *RWindow;
UBYTE ReqPad2[36]
}:

Here are the meanings of the fields in the Requester structure:

NOTE

See “‘Intuition Rendering’’ and ‘‘Custom Bit-Map Rendering’’ below for information about how the
initialization of the structure differs according to how the requester is rendered.

OlderRequest
This is a link maintained by Intuition, which points to requesters that were rendered before this one.

LeﬂEdge, TopEdge
Initialize these if the requester is to appear relative to the upper left corner of the window (as contrasted to
the POINTREL method, where the requester is rendered relative to the pointer),

Width, Height
These fields describe the size of the entire requester rectangle, containing all the text and gadgets.

RelLeft, RelTop

Initialize these if the requester is to appear relative to the current position of the pointer. Also, specify
POINTREL in the requester’s Flags field.

Intuition: Requesters and Alerts 141

ReqGadget
This field is a pointer to the first in a linked list of gadget structures.

There must be at least one gadget with the ENDGADGET flag set to terminate the requester.

ReqBorder
This field is a pointer to an optional Border structure for drawing lines around and within your requester.

ReqText
This field is a pointer to an IntuiText structure containing text for the requester.

Flags
You can specify these flags:

POINTREL .
Specify POINTREL if you want the requester to appear relative to the pointer (rather than offset from
the upper left corner of your window).

PREDRAWN
Specify PREDRAWN if you are supplying a custom BitMap structure for the requester and
ImageBMap points to the structure.

NOISYREQ
Specify NOISYREQ if you do not want the presence of a requester to inhibit input to the window the
requester appears in.

Intuition uses these flags:

REQOFFWINDOW
Set by Intuition if the requester is currently active but is positioned off-window.

REQACTIVE
This flag is set or cleared by Intuition as your requesters are posted and removed. The active
requester has always been indicated by the value of Window.FirstRequest.

SYSREQUEST
This flag is set by Intuition if this is a system-generated requester.

BackFill
Pen number for filling the requester rectangle before anything is drawn into the rectangle.

ReqLayer
This contains the address of the Layer structure used in rendering the requester.

ImageBMap

This flag is a pointer to the custom bit-map for this requester. If you are not supplying a custom bit-map
for this requester, Intuition ignores this variable.

If you are supplying a custom bit-map, you must specify PREDRAWN in the requester’s Flags field.

RWindow
This is a system variable.

142 Intuition: Requesters and Alerts

ReqPadl, ReqPad2
These are reserved for system use.

The following sections describe the differences in the Requester structure between requesters rendered by Intuition
and custom-bit-map requesters.

Requesters in Low-Memory situations

In low-memory situations, system requests such as AutoRequest() will change into recoverable alerts (discussed in
““Alerts’’ below).

Requesters Rendered by Intuition

The following notes apply to requesters rendered by Intuition.

« ReqGadget is a pointer to the first in a list of regular gadgets to be rendered in the requester box. Take
care not to specify gadgets that extend beyond the Requester rectangle that you describe in the Width and
Height fields, for Intuition does no boundary checking. REQGADGET must be specified in the Gadget’s
GadgetTypes field.

» ReqBorder is a pointer to a Border structure for your requester. The lines specified in this structure can
go anywhere in the requester; they are not confined to the perimeter of the requester.

» ReqText is a pointer to an IntuiText structure. This is for general text in the requester.

» BackFill is the pen number to be used to fill the rectangle of your requester before any drawing takes
place.

For example, the following Requester structure allows Intuition to do the rendering.

struct Requester MyRequest =

{

NULL, /* OlderRequester maintained by Intuition */
20, 20, 200, 100, /* LeftEdge, TopEdge, Width, Height */
0, O, /* RelLeft, RelTop */
&BoolGadget, /* First gadget */
NULL, /* ReqBorder */
&MyText /* ReqText */
NULL, /* Flags */
2, /* BackFill */
NULL, /* ReqlLayer */
{NULL}, /* pad */
NULL, /* BitMap */
NULL, /* RWindow */
{NULL}, /* pad */
}i
Custom Bit-Map Rendering

These notes apply to custom bit-map requesters.

» ReqGadget points to a valid list of gadgets, which are real gadgets in every way except that the gadget
text and imagery information are ignored (and can be NULL). The select-box, highlighting, and gadget

Intuition: Requesters and Alerts 143

type data is still pertinent. The user may get confused unless there is a well-defined correspondence
between the gadgets’ select-boxes and the requester imagery that you supply.

NOTE

Under Amiga system software versions 1.2 and 1.3, Intuition will not render string gadget text in a
predrawn requester. '

« The ReqBorder, ReqText, and BackFill variables are ignored and can be set to NULL.
+ The ImageBMap pointer points to your own BitMap of imagery for this requester.

» You should set the flag PREDRAWN.

THE VERY EASY REQUESTER

Here are the arguments you supply to AutoRequest() for the automatic, simple boolean requester that Intuition will
build for you: '

Window
This is a pointer to the window in which the requester is to appear.

BodyText
This is a pointer to an IntuiText structure that explains the purpose of the requester.

PositiveText
This is a pointer to the IntuiText structure containing the positive response text.

This field can be NULL if there is no positive respbnse.

NegativeText
This is a pointer to the IntuiText structure containing the negative response text.

PositiveFlags
These are IDCMP flags for positive external events that will satisfy the request.

NegativeFlags
These are IDCMP flags for negative external events that will satisfy the request.

Width, Height
These specify the size of the rectangle enclosing the requester.

REQUESTER FUNCTIONS

A brief rundown of the requester functions follows.

144 Intuition: Requesters and Alerts

The Easy Yes-or-No Requester

The following function automatically builds, displays, and gets 2 negative or positive response from a requester:

AutoRequest (Window, BodyText, PositiveText, NegativeText, PositiveFlags, NegativeFlags, Width,
Height)

This function builds a requester from the arguments supplied, displays the Requester, and returns TRUE or
FALSE.

Submitting a Requester for Display

The following function submits regular requesters to Intuition for display:

Request(Requester, Window)

This function displays a requester in the specified window.

Removing a Requester from the Display

EndRequest(Requester, Window)

This function erases a requester invoked by the user or application and resets the window. It removes only the
one requester named. If a requester has one or more gadgets which will satisfy the request, and the user selects
one of them, the requester will be removed by the system. If the program needs to cancel the request early, or
cancel it only after some specific manipulation of the gadgets, EndRequest() should be used.

Double-Menu Requesters

The following functions affect double-menu requesters:

SetDMRequest(Window, Requester)
This function attaches a requester to the double click of the mouse menu button.
ClearDMRequest(Window, Requester)

This function unlinks the requester from the window and disables the ability to bring it up.

Intuition: Requesters and Alerts 145

Alerts

Alerts are for emergency messages. There are two types: system alerts and application alerts.

System and application alerts display absolutely essential messages and should be reserved for critical
communications in situations that require the user to take some immediate action; for instance, when an application
has experienced a fatal error or the system has or is about to crash. System alerts are managed entirely by Intuition
(see figure).

This is an Application Alert,
Not enough memory for desired function,
- Left button to attempt anyway Right button to abort

g 917544 122688 1848
fas 3234712 939368 4194
atal Uﬁlﬁi—lﬂfﬁb]rh. 1383000

il
fr hajlible Inlse Maxiwn Livgest

19 £iles - 15 blocks used
1) copy dfd:libs libs:
nathtrans. library, .copied
icon,library, .copied

Figure 6-3: The ““Out of Memory’’ Alert

The sudden display of an alert is a jarring experience for the user, and the system stops and holds its breath while the
alert is displayed. For these reasons, you should use alerts only when there is no recourse. If you can, use requesters
with warning messages instead.

The alert display has a black background and red border, a 640-pixel resolution, and can be as tall as needed to
display your text. The alert appears at the top of the video display. If the rest of the display is still healthy, it is
pushed down low enough to show the alert. If this is a fatal alert and the system is going down, the alert takes over
the entire display.

There are two levels of severity for alerts: RECOVERY_ALERT, and DEADEND_ALERT.

» RECOVERY_ALERT displays your text and flashes the alert’s border outline while waiting for the user to
respond. This alert is optimistic and presumes that the system can continue operations after the alert is
satisfied. It returns TRUE if the user presses the left mouse button in response to your message.
Otherwise it returns FALSE,

« DEADEND_ALERT prints your text and returns FALSE immediately.

146 Intuition: Requesters and Alerts

The boolean function DisplayAlert() creates and displays an alert message. Your message will most likely get out
to the screen regardless of the state of the machine (with the exception of catastrophic hardware failures). If the user
presses one of the mouse buttons, the display returns to its original state, if possible. DisplayAlert() also displays
the Amiga system alert messages. If a recoverable alert cannot be displayed (because memory is low),
DisplayAlert() will return FALSE, as if the user had selected CANCEL.

DisplayAlert() needs three arguments: an AlertNumber, a pointer to a string, and a number describing the required
display height.

« AlertNumber is a LONG value, specifying whether this is a
RECOVERY_ALERT or a DEADEND_ALERT. (See the intuition/intuition.h include file.)

« The String argument points to an AlertMessage string that is made up of one or more substrings. Each
substring contains the following:

« The first component is a 16-bit x-coordinate and an 8-bit y-coordinate describing where on the alert
display you want the string to appear. The units are in pixels. The y-coordinate describes the location
of the text baseline.

« The second component is the text itself. The string must be null-terminated (it ends with a zero byte).

« The last component is the continuation byte. If this byte is zero, this is the last substring in the
message. If this byte is non-zero, there is another substring in this alert message.

«. The last argument, Height, tells Intnition how many display lines are required for your alert display.

Examples

AUTOREQUEST EXAMPLE
The following program shows how to implement an AutoRequester.

/* autorequester.c */

/* This program implements an AutoRequester. */
/* Inserting a disk will make the Requester go away. */
/* The user must still click on the close gadget to end the program. */

#include <exec/types.h>

#include <intuition/intuition.h>
#include <libraries/dos.h>
$i1fdef LATTICE

#include <proto/all.h>

$include <stdlib.h>

int CXBRK(void) {return(0);}

#endif
/* Include other required vendor- or Commodore-Amiga-supplied header */
/* files here. */

/* Include user-written header files here. */
#include *"hires.h"
#include “graniteWindow.h"

struct IntuiText regtext[] = {
{ 1,2,JaM2,20,5,NULL, "An Autorequester®,NULL },
{ 0,1,JAM2,5,4,NULL, "YES",NULL },
{ 0,1,JAaM2, 6,4,NULL, "NOT YET*, NULL }

Intuition: Requesters and Alerts 147

}i

/* Use lowest rion-obsolete version that supplies the functions you need,
$define INTUITION_REV 33

extern VOID cleanExit (struct Screen *, struct Window *, int);
extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;

VOID main{VOID)

{
/* Declare variables here */
ULONG signalmask, signals;
UBYTE done = 0;
struct Screen *screenl = NULL;
struct Window *windowl = NULL;

/* Open the Intuition Library */
IntuitionBase = (struct IntuitionBase ¥)
OpenLibrary(“intuition.library", INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

/* Open the screen */
screenl = OpenScreen(&fullHires);
if (screenl == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

/* Make the assignments that were postponed above */

/* Attach the window to the open screen ... */
graniteWindow.Screen = screenl;

/* ... and open the window */
windowl = OpenWindow(&graniteWindow);
if (windowl == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

/* Set up the signals that you want to hear about ... */
signalmask = 1L << windowl->UserPort->mp_SigBit;

/* Call the functions that do the main processing */

/* Call the autorequester */

AutoRequest (windowl, &reqtext [0}, &reqtext[1], &reqtext (2],
DISKINSERTED, 0, 200,50);

/* And wait to hear from your signals */
while(!done) {
signals = Wait (signalmask);
if (signals & signalmask)
done = handleIDCMP (windowl) ;
}:

/* Exit the program */
cleanExit (screenl, windowl, RETURN_OK);
}

UBYTE handleIDCMP(struct Window *win)
{
UBYTE flag = 0;
struct IntuiMessage *message = NULL;
ULONG class;

/* Examine pending messages */
while(message = (struct IntuiMessage *)GetMsg(win->UserPort)) {

class = message->Class;

/* When we’re through with a message, reply */
ReplyMsg{ (struct Message *)message);

148 Intuition: Requesters and Alerts

*/

/* See what events occurred */
switch(class) {
case CLOSEWINDOW:
flag = 1;
break;
default:
break;

}

}
return{flag);
}

VOID cleanExit{ scrn, wind, returnValue)
struct Screen *scrn;

struct Window *wind;

int returnValue;

{

/* Close things in the reverse order of opening */

/* Close the window and the screen */
if (wind) CloseWindow(wind ‘);
if (scrn) CloseScreen(scrn };

/% Close the library, and then exit */
if (IntuitionBase) CloselLibrary(({struct Library *)IntuitionBase);

exit (returnvalue);

}

/* End of autorequester.c */

DISPLAY ALERT EXAMPLE

The next program shows a display alert. Read the explanation of positioning values for display alert strings in the
comment that precedes the AlertMessage string. The information there complements that given above.

/* displayalert.c ' */
/* This program implements a recoverable alert */

#include <exec/types.h>

#include <intuition/intuition.h>
#include <libraries/dos.h>
$ifdef LATTICE

#include <proto/all.h>

#include <stdlib.h>

int CXBRK (void) {return(0);}

#endif
/* Include other required vendor- or Commodore-Amiga-supplied header */
/* files here. *x/

/* Include user-written header files here. */
#$include "hires.h"
#$include “graniteWindow.h"

/* Each string requires its own positioning information, as explained */
/* in the manual. We use octal notation to specify the positions we */
/* want. Octal numbers start with a backslash and must be three digits */
/* long. For the first line, x = 00360 (two bytes, for 16 bits) */
/* and y = 20 (for one byte, eight bits), and the second line has */
/* x = 00240 and y = 40. */

UBYTE alertMsg([] =
{
“ 00360 200H NO, NOT AGAIN! ¥,
% 00240 40PRESS LEFT MOUSE BUTTON TO CONTINUE. 00"
}:
/* Use lowest non-obsolete version that supplies the functions you need. */

#define INTUITION REV 33
#define PAUSE(seconds) (Delay((seconds) * TICKS PER_SECOND))

Intuition: Requesters and Alerts 149

extern VOID cleanExit(struct Screen *, struct Window *, int);
extern UBYTE handleIDCMP (struct Window ¥);

struct IntuitionBase *IntuitionBase = NULL;

VOID main(VOID)
{
/* Declare variables here */
ULONG signalmask, signals;
UBYTE done = 0;
struct Screen *screenl
struct Window *windowl

NULL;
NULL;

/* Open the Intuition Library */
IntuitionBase = (struct IntuitionBase ¥) .
OpenLibrary(“"intuition.library",INTUITION_REV);

if {(IntuitionBase == NULL)
cleanExit (screenl, windowl, RETURN_WARN) ;

/* Open any other required libraries */

/* Make the assignments that were postpoﬁed above */
alertMsg[21] = NULL;
alertMsg([22] = 0x01;

/* Open the screen */
screenl = OpenScreen(&fullHires);
if (screenl == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

/* Make the window non-draggable and non-sizable. */
graniteWindow.Flags &= ~ (WINDOWDRAG | WINDOWSIZING) ;

/* Attach the window to the open screen ... */
graniteWindow.Screen = screenl;

/* ... and open the window */
windowl = OpenWindow(&graniteWindow);
if (windowl == NULL)
cleanExit (screenl, windowl, RETURN_WARN) ;

/* Set up the signals that you want to hear about ... */
signalmask = 1L << windowl->UserPort->mp_ SigBit;

/* Call the functions that do the main processing */
/* Delay a bit, so that the Alert does not seem to appear */
/* at the same time as the window */

PAUSE(3L);

/* Mount the Alert on the display */
DisplayAlert (RECOVERY_ALERT, alertMsg, 52);

/* And wait to hear from your signals */
while(!done) {
signals = Wait (signalmask):;
if (signals & signalmask)
done = handleIDCMP (windowl);
}:

/* Exit the program */

cleanExit (screenl, windowl, RETURN_OK);
}

UBYTE handleIDCMP{ struct Window *win)
{
UBYTE flag = 0;
struct IntuiMessage *message = NULL;
ULONG class;

/* Examine pending messages */

150 Intuition: Requesters and Alerts

while(message = {struct IntuiMessage *)GetMsg(win->UserPort)) {
class = message->Class;

/* When we’re through with a message, reply */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch(class) {
case CLOSEWINDOW:
flag = 1;
break;
default:
break;
}
}
. return(flag);
}
VOID cleanExit(scrn, wind, returnValue)
struct Screen *scrn;
struct Window *wind;
int returnValue;

{

/* Close things in the reverse order of opening */

/* Close the window and the screen */
if (wind) CloseWindow(wind);
if (scrn) CloseScreen(scrn);

/* Close the library, and then exit */
if (IntuitionBase) Closelibrary((struct Library *)IntuitionBase);

exit (returnvalue);

}
/* End of displayalert.c */

DOUBLE MENU REQUEST EXAMPLE

Here we show how to implement a double-menu requester that appears relative to the mouse pointer. Run the
program, and double-click on the menu button. Click on one of the gadgets in the requester that appears, and the
requester goes away. The gadgets don’t do anything else, but in your programs, you would normally act on IDCMP
events triggered by user interaction with your requester. '

/* dblmenureq.h -- The structures for the Requester and its gadgets. */
#define BACKPEN O

/* Force text to use Topaz 8 font */
struct TextAttr TOPAZ80 =
{ (STRPTR) "topaz.font", TOPAZ_EIGHTY, 0, 0};

/* Tell something about the program */
struct IntuiText WinText[] =
{)
{3,0,JAM2, 95,66, &TOPAZ80, "to activate", NULL},
{3,0,JAM2, 48,56, &TOPAZ80, "Double~Click Menu Button", &WinText [0]}
};

/* Text for the Requester and its gadgets */
struct IntuiText ReqTxt[] =

{3, BACKPEN, JAM2, 23, 3, 4§TOPAZ80, "Control Panel",NULL},

{2,0, JAM1, 22,1, 8sTOPAZ80, "Exit", NULL},
{2,0, JaM1, 22,1, sTOPAZ8O, "Fast™, NULL},
(2,0, Jaml, 21,1, &TOPAZ8O, "Slow", NULL}

}:

/* image and mask data for cool buttons */

Intuition: Requesters and Alerts 151

USHORT chip MaskData[] =
{
0x07FF, OXFFFF, 0XFFFF, OXFFFF, 0xF000, 0x3FFF, OXFFFF, OxFFFF,
OXFFFF, OXFE0Q, 0x7FFF, OXFFFF, 0XFFFF, 0xFFFF, 0xFF00, OXFFFF,
OxFFFF, OxFFFF, OXFFFF, 0xFF80, OXFFFF, OXFFFF, OXFFFF, OXFFFF,
OXFF80, OXFFFF, 0XFFFF, OxFFFF, OXFFFF, 0XFF80, 0XFFFF, OXFFFF,
0XFFFF, OxFFFF, OxFF80, Ox7FFF, OXFFFF, OXFFFF, OXFFFF, OxFF0O0,
0x3FFF, OXFFFF, OxFFFF, OXFFFF, 0XFEQO, 0X07FF, OXFFFF, O0XFFFF,
OxFFFF, 0xF000
Yi

struct Image Button =
{0,0,73,10,1,MaskData, 0x0001, 0x0000, NULL};

/* Mask information for gadgets */
struct BoolInfo ButtonMask = {BOOLMASK,MaskData,0};

/*The buttons for the requester use REQGADGET
*to indicate that they are gadgets for a
*requester. ENDGADGET indicates that the
*requester ends when this button is released.

*/

struct Gadget ReqGad[] =
{

{NULL, 35,60,73,10, GADGHCOMP | GADGIMAGE,
RELVERIFY|GADGIMMEDIATE | ENDGADGET [BOOLEXTEND,
BOOLGADGET+REQGADGET, (APTR) &Button, NULL, &ReqTxt [1], NULL,
(APTR) &ButtonMask, 100, NULL

},

{&ReqGad [0], 35,40, 73,10, GADGHCOMP | GADGIMAGE,

RELVERIFY |GADGIMMEDIATE | ENDGADGET | BOOLEXTEND,
BOOLGADGET+REQGADGET, {(APTR) &Button, NULL, sReqTxt [2], NULL,
(APTR) &ButtonMask, 101, NULL

Yo
{&ReqGad {1}, 35,20,73,10, GADGHCOMP | GADGIMAGE,
RELVERIFY|GADGIMMEDIATE | ENDGADGET | BOOLEXTEND,
BOOLGADGET+REQGADGET, (APTR) &Button,NULL, &ReqTxt [3],NULL,
(APTR) &ButtonMask, 102, NULL
}

}:

/* Draw a pretty border around the requester */
SHORT BorderVectors[] =
{
0, 0,
148, 0,
148,84,
0,84,
0, 0
}i

struct Border ReqBorder = {0,0,1,0,JAM1,5,BorderVectors, NULL};

struct Requester DMRequester =

{

NULL,
79, 14, /* LeftEdge and TopEdge */
149,85, /* Width and Height */
-75,-43,

&ReqGad (2], /* Gadgets used */

&ReqBorder, /* Border */

&ReqTxt [0), /* Text to render within requester */
POINTREL,

BACKPEN, /* Color to use as the background */
NULL,

NULL,

NULL

}i

/* End of dblmenureq.h */

152 Intuition: Requesters and Alerts

/* dblmenureq.c ~- This program illustrates a Double~Menu Requester. */

#include <exec/types.h>

#include <intuition/intuition.h>
#include <libraries/dos.h>
#ifdef LATTICE

#include <proto/all.h>

#include <stdlib.h>

int CXBRK{void) {return(0);}

$endif
/* Include other required vendor- or Commodore-Amiga-supplied header */
/* files here. */

/* Include user-written headér files here. */
#include “"graniteWindow.h"
#include "dblmenureq.h®

/* Use lowest non~obsolete version that supplies the functions you need. */
#define INTUITION_REV 33

extern VOID cleanExit(struct Window *, int);
extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;

VOID main(VOID)

{
/* Declare variables here */
ULONG signalmask, signals;
UBYTE done = 0;
struct Window *windowl = NULL;

/* Open the Intuition Library */
IntuitionBase = (struct IntuitionBase ¥%)
OpenLibrary({ “"intuition.library", INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit (windowl, RETURN_WARN) ;

/* Make the assignments that were postponed above */
graniteWindow.Type = WBENCHSCREEN;

/* Open the window */
windowl = OpenWindow(&graniteWindow);
if (windowl == NULL)

cleanExit {windowl; RETURN_WARN) ;

/* Display the information about the program */
PrintIText (windowl->RPort, &«WinText [1],56,0);

/* Attach a Double-Menu Requester to this window */
SetDMRequest (windowl, &DMRequester);

/* Set up the signals that you want to hear about ... %/
signalmask = 1L << windowl->UserPort->mp_SigBit;

/* And wait to hear from your signals */
while{ !done) {
signals = Wait (signalmask);
if (signals & signalmask)
done = handleIDCMP (windowl);
bi

/* Exit the program */
cleanExit (windowl, RETURN_OK);
}

UBYTE handleIDCMP(struct Window *win)
{
UBYTE flag = 0;
struct IntuiMessage *message = NULL;
ULONG class;

Intuition: Requesters and Alerts 153

/* Examine pending messages */
while(message = (struct IntuiMessage *)GetMsg(win->UserPort)) {
class = message->Class;

/* When we’re through with a message, reply */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch(class } {
case CLOSEWINDOW:
flag = 1;
break;
default:
DisplayBeep (NULL) ;
break;

}

}
return(flag);
}
VOID c¢leanExit(wind, returnValue)
struct Window *wind;
int returnValue;
{

/* Close things in the reverse order of opening */

/* Close the window and the screen */
if (wind) CloseWindow(wind);

/* Close the library, and then exit */
if (IntuitionBase) CloseLibrary((struct Library ¥*)IntuitionBase);

exit (returnValue);

}
/* End 6f dblmenureq.c */

154 Intuition: Requesters and Alerts

Chapter 7

Intuition: Input and Output Methods

An Overview of Input and Output

From the Intuition point of view, information flows through the system in the following steps (see the following
figure):

» Information originates from somewhere in the user’s cranial area.

» From there, it flows through biological output devices such as fingers and into electro-mechanical input devices
such as keyboards, mice, graphics tablets, and light pens. These input devices create input signals that enter the
Amiga through several different ports.

» Inside, these input signals are merged into a coherent stream of input events.

» This input stream is examined and manipulated by several entities, including Intuition. Intuition gazes deeply
into the essence of every event it sees. Sometimes it consumes events, other times it adds to the stream, and

often it sits lazily by, watching the stream flow through its fourth dimension.

» Finally, application programs receive the input stream and take action based on the data contained therein, The
result of the action often involves creating output, which is presented to the user via a video monitor.

Intuition: Input and Output Methods 155

» - The user’s eye input devices detect the information being displayed on the video output device. The eyes, and
some still-mysterious merge mechanism, translate the data into signals that are transmitted to the brain, thus
completing the cycle.

Figure 7-1: Watching the Stream

About Input and Output

The Amiga has an input device to monitor all input activity, which nominally includes keyboard and mouse activity,
but which can be extended to include many different types of input signals. Whenever the user moves the mouse,
presses one of the mouse buttons, or types on the keyboard, the input device detects it and constructs an InputEvent
(a message describing what just occurred). Other devices and programs can ask the input device to construct an
input message using their own data (for instance, AmigaDOS is able to generate an input event whenever a disk is
inserted or removed, and an application-installed music-keyboard device can add note events to the stream). All of
these events are merged into the input stream. The input device then broadcasts this input event stream through
special message ports so that any interested party can monitor the events, intercept some of the events, and even add
new ones to the stream. Intuition is one of the interested parties.

Some of the events, such as ‘“mouse-button pressed,”” may have great meaning to Intuition. If they do, Intuition
consumes them, which is to say that Intuition extracts those events from the input stream. Other events, such as the
*‘disk inserted’’ event, may be of interest to more than one user of Intuition, so Intuition translates these into a
separate message for each application. Still other events, such as most of the keyboard events, mean nothing to
Intuition, and Intuition merely passes them along,

156 Intuition: Input and Output Methods

A typical application decides what to do from moment to moment by responding to the events in the input stream.
Although many applications may be waiting for input simultaneously, in most cases, only the application that
Intition regards as active for input will receive these input stream events. Usually, as described in the “‘Intuition:
Windows,”’ chapter, the user selects which application is active for input by using the Intuition pointer to select that
application’s window. If your program is the active one, you get to see the input stream events after Intuition has
examined them. Your program receives the input stream either directly from Intuition or via another mechanism
known as the console device.

Inwition provides two paths for your program to receive messages from the input stream. One is immediate and
involves no preprocessing of the data. The other can supply you with standard terminal input functions, buffers, and
data representations. The paths are explained below:

* Intuition’s Direct Communications Message Ports system (IDCMP) makes standard Amiga Exec message
communications easily available for you and gives you input data in its most raw (untranslated) form.
This also supplies the only mechanism you have for communicating 7o Intuition.

» The console device gives you ‘‘cooked’’ input data, including key-code conversions to ASCII and
conversions to ANSI escape sequences (Intuition-generated events, such as CLOSEWINDOW, will be
translated into escape sequences).

When you want your program to present visual information to the user via your window or screen, you can choose
from three methods. The one you choose depends on your particular needs. These three methods are:

» Creating imagery by sending your output directly to the graphics, text, and animation primitives of the
Amiga ROM kernel. You can use these for rendering functions like line drawing, area fill, specialized
animation, and output of unformatted text. This is the most elementary method.

» Using the Intuition-supplied support functions for rendering text, graphical imagery, and line drawing.
These provide many of the same functions as the deeper ROM routines, but these routines do the clerical
work of saving, initializing, and restoring states. Also, the image functions provide a new method of
object-oriented rendering.

¢ Outputting text via the console device, which formats text with special text primitives such as
ClearEndOfLine() and text functions such as automatic line-wrapping and scrolling. For string output, if
you want to do anything more than the simplest text rendering, you should use the console device. This
gives you nicely formatted text with little fuss.

NOTE

The console device is mentioned both as a source for input and as a mechanism for output. It is
convenient to do both input and output via the console device only. In particular, text-only programs
can open the console and do all their I/O there without ever learning anything about windows, bit-maps,
or message ports. Use of the console device for most text-only applications is encouraged, since it
requires less work on your part and simplifies the I/O logic of your programs.

If you do not need the console device or are willing to forego its features, it may be better for you to open the
IDCMP for input and do your graphics rendering directly through the Intuition and graphics primitives. Under some
conditions (for instance, when you have a complex program doing lots of different things), you might want to open
both the console device and the IDCMP for input. There is no rule for deciding which mechanism you should use.
After you read this chapter, you’ll be able to decide for yourself.

The following description of how I/O flow works with (and around) your program is actually a super-simplified

model of how system-wide.IIO really works, but it is a true representation of I/O at the microcosmic level of your
program.

Intuition: Input and Output Methods 157

In the illustrations that follow, the input device is found at the top of the diagram. In this device mouse, keyboard,
and other input events are merged into a single stream of input events, which is then submitted to Intuition for
further processing.

fnput Device

1

Intuition

Graphics, Text
and Animation

Figure 7-2: Input from the IDCMP, Output through the Graphics Primitives

The above figure shows an example of a program after it has opened the IDCMP. This will be the typical
configuration for a CAD package, or other applications that are willing to process input data themselves. The
IDCMP allows you to receive only the events that are important to you. Your program can, for instance, learn about
gadget events and hear when the user selects the close gadget, but the program may not want to learn about other
mouse or keyboard events. If you set up the program to learn about raw keyboard events through the IDCMP, the
key codes received come straight from the keyboard to the program. These keycodes are as raw as they get,
although the IDCMP also provides the special Qualifier field to assist your translations. Alternatively, you can
receive keyboard events translated into ASCII (or some other standard). Messages sent via the IDCMP are instances
of the structure IntuiMessage. When you open the IDCMP, you must monitor the message port supplied by
Intuition.

The following figure illustrates the flow of information when the only the console is opened. This will be the typical

configuration for text-only applications and applications that want the simplest I/O possible. Refer to the console
device chapter for details on opening a console device and performing I/O through it.

158 Intuition: Input and Output Methods

A

L“:”‘J D | | Input Device
Other ! !

Console Device k‘ GoaaEl
\-

Application C: Intuition
Program

Graphics, Text
and Animation

Figure 7-3: Input and Output through the Console Device

The following figure shows a complex program that needs the features of both the console device and the IDCMP.
An example might be a program that needs ASCII input and formatted output and the IDCMP verification functions
(for example, to verify that it has finished writing to the window before the user can bring up a requester).

Intuition: Input and Output Methods 159

Input Device

Other

Console Device

Intuition

Application
Program

Graphics, Text
and Animation

Figure 7-4: Full-system Input and Output (a Busy Program)

The following figure shows an application that has opened a window with neither a console nor an IDCMP. This
window gets no input, and the application can write to the window only via the graphics primitives. You might want
to do this if your program has opened other windows that do I/O and you want special graphics-only windows (for
instance, to monitor RAM usage or watch the clock) that you will close later. If the user selects a window that has
no console or IDCMP, further input is discarded until a different window is selected.

160 Intuition: Input and Output Methods

Application
Program

Graphics, Text
and Animation \

Figure 7-5: Output Only

Using the IDCMP

The IDCMP ports allow your application and Intuition to talk directly to each other. You can use the IDCMP to
learn about mouse, keyboard, and Intuition events without going through the console device. Also, certain useful
Intuition features, most notably the verification functions (described under *“IDCMP Flags’ below), require that the
IDCMP be opened, as this is the only mechanism available for communicating to Intuition.

The IDCMP consists of a pair-of message ports, which may be allocated and initialized by Intuition at your
request: one port supplied by you and one port supplied by Intuition. These are standard Exec message ports, used
to allow interprocess communications in the Amiga multitasking environment. To open these ports automatically,
you set IDCMP flags in the NewWindow structure. To open or close them later, you call ModifyIDCMP(), which
allocates or deallocates message ports or changes which events will be broadcast to your program through the
IDCMP. Once the IDCMP is opened, you can receive many different flavors of information directly from Intuition,
based on which flags you have set. As with much of Intuition, all of the ‘‘grunt work’’ with message ports is done
for you, leaving you free to concentrate on more global issues.

If you have a message port that you have already created, you can have Intuition use that port to communicate with

Intuition: Input and Output Methods 161

you. This is described below.

CAUTION

If you attempt to close the IDCMP, either by calling ModifyIDCMP() or by closing the window,
without first having Reply()’d to all of the messages sent out by Intuition, Intuition will reclaim and
deallocate those messages without waiting for a Reply() from you. If you attempt to Reply() after the
close, you will get to watch the Amiga FIREWORKS_DISPLAY mode.

To learn more about message ports and message passing, see that chapter elsewhere in this manual.

INTUIMESSAGES

The IntuiMessage data type is an Exec Message that has been extended to include Intuition-specific information.
The ExecMessage field in the IntuiMessage is used by Exec to manage the transmission of the message. The
Intuition extensions of the IntuiMessage are used to transmit all sorts of information to your program. Here is what
the IntuiMessage looks like:

struct IntuiMessage

{

struct Message ExecMessage;

ULONG Class;

USHORT Code;

USHORT Qualifier;

APTR IAddress;

SHORT MouseX, MouseY;

ULONG Seconds, Micros;

struct Window *IDCMPWindow;
struct IntuiMessage *Speciallink;

}z
IntuiMessages contain the following components:

ExecMessage
The data in this field is maintained by Exec. It is used for linking the message into the system and
broadcasting it to a message port.

Class
This is a ULONG variable whose bits correspond directly with the IDCMP flags.

Code
This is a USHORT variable whose bits contain special values, such as menu numbers or special code
values, set by Intuition. The meaning of this field is directly tied to the Class (above) of this message.
Often, there is no special meaning for the code field, and it is merely a copy of the code of the InputEvent
initially sent to Intuition by the input device. When this message is of class RAWKEY, this field has the
raw key code generated by the keyboard device. When this message is of class VANILLAKEY, this field
has the translated character.

Qualifier
This contains a copy of the ie_Qualifier field that is transmitted to Intuition by the input device. This field
is useful if your program handles raw key codes, since the Qualifier tells the program, for instance,
whether or not the SHIFT key or CTRL key is currently pressed. This is a faithful copy of the ie_Qualifier
field. Check the inputevent.h/i file for the definitions of the qualifier bits.

162 Intuition: Input and Output Methods

MouseX and MouseY
Every IntuiMessage you receive will have the mouse coordinates in these variables. The coordinates can
be either relative to the upper left corner of your window, or expressed as deltas (amount of change since
the last reported positions).

Seconds and Micros
These ULONG values are copies of the current system clock time in seconds and microseconds.
Microseconds range from zero up to one million minus one. The 32 bits allocated to the Seconds variable
means that the Amiga clock can run for 139 years before wrapping around to zero again.

TAddress
This has the address of some Intuition object, such as a gadget or a screen, when the message concerns, for
example, a gadget selection or screen operation.

IDCMPWindow
This contains the address of the window to which this message pertains.

SpecialLink
This is for system use only.

IDCMP FLAGS

You specify the information you want Intuition to send you via the IDCMP by setting the IDCMP flags. You can
set them either in the NewWindow structure when opening a window or when calling ModifyIDCMP() to change
the IDCMP specifications. The following is a specification of the IDCMP functions and flags.

Mouse flags:

MOUSEBUTTONS
This flag causes reports about mouse-button up and down events to be sent to you, if these transitions do
not mean something to Intuition. When your program receives a MOUSEBUTTONS class of event, it can
examine the Code field to discover which button was pressed or released. The Code field will be equal to
SELECTDOWN, SELECTUP, MENUDOWN, or MENUUP.

NOTE

If the user clicks the mouse button over a gadget, Intuition deals with it and your program does not
hear about it. Also, the only way your program can learn about menu button events in this way is
by setting the RMBTRAP flag in the window. See the chapter entitled ‘‘Intuition: Windows,’* for
more information.

MOUSEMOVE
Reports about mouse movements are sent in the form of x and y coordinates. Don’t" ask for
MOUSEMOVE unless you are prepared to keep up with a large volume of IDCMP messages. If you
cannot keep up with, and ReplyMsg() to, the volume of messages, Intuition will allocate additional
message blocks for your window. Intuition cannot reuse these message blocks until you ReplyMsg() them.
Therefore, in the extreme case, not keeping up with the MOUSEMOVE messages could use up all
memory in the system. None would be left over for system housekeeping. Kablooey! The system crashes.

ReportMouse() can be used to toggle on and off the reports of MOUSEMOVE events. Also, other

Intuition: Input and Output Methods 163

IDCMP messages contain a mouse x and y position.

NOTE

This works only if the REPORTMOUSE flag is set in the NewWindow structure or if some gadget
is selected with the FOLLOWMOUSE flag set.

Your program will not be sent MOUSEMOVE messages while Intuition has the layers of your screen
locked (during menu operations and window sizing/dragging), This avoids problems of messages
accumulating while your program is blocked trying to render to a layer which Intuition has locked.

DELTAMOVE
When this flag is set, mouse movements are reported as deltas (amount of change from the last position)
rather than as absolute positions. This flag works in conjunction with the MOUSEMOVE flag.

NOTE

Delta mouse movements are reported even after the Intuition pointer has reached the limits of the
display. ‘

If you have this IDCMP flag set, your MOUSEBUTTONS messages will also have relative values, instead
of the absolute window position of the mouse.

Gadget flags:

GADGETDOWN
Your program will receive a message of this class. when the user selects a gadget that was created with
the GADGIMMEDIATE flag set.

GADGETUP
When the user releases a gadget that was created with the flag RELVERIFY set, your program will receive
amessage of this class.

CLOSEWINDOW
If the user has selected your window’s close gadget, the message telling the program about it will be of
this class.

Menu flags:

MENUPICK
This flag indicates that the user has pressed the menu button. If a menu item was selected, the menu
number of the menu item can be found in the Code field of the IntuiMessage. If no item was selected, the
Code field will be equal to MENUNULL.

MENUVERIFY
This is a special verification mode which, like the others, allows your program to confirm that it has
finished drawing to your window before Intuition allows the users to start menu operations. This is a
special kind of verification, however, in that any window in the entire screen that has this flag set will have
to respond so that menu operations may proceed. Also, the active window of the screen is allowed to
cancel the menu operation. This is unique to MENUVERIFY. Please refer to the “‘Intuition: Menus”
chapter for a complete description.

See the ‘*Verification Functions’’ section below for some things to consider when using this flag.

164 Intuition: Input and Output Methods

Requester flags:

REQSET
Set this flag to receive a message when the first requester opens in a window.

REQCLEAR
Set this flag to receive a message when the last requester is cleared from the window.

REQVERIFY
Set this flag if you want your application to make sure that other rendering to its window has ceased before
a requester is rendered in the window. This includes requiring the system to get your approval before
opening a system requester in your window. With this flag set, Intuition sends the application a message
that a requester is pending, and then Wait()s for the application to Reply() before drawing the requester in
the window.

If several requesters open in the window, Intuition asks the application to verify only the first one. After
that, Intuition assumes that all output is being held off until all the requesters are gone. You can set the
REQCLEAR flag to find out when all requesters are removed from the window. Once the application
receives a message of the type REQCLEAR, it is safe to write to the window until another REQVERIFY
is received. You can also check the INREQUEST flag of the window, although this is not as safe a
method because of the asynchronous nature of any multitasking environment.

See the *‘Verification Functions’’ section below for some things to consider when using this flag.
Window flags:

NEWSIZE
Intuition sends your program a message after the user has resized the window. After receiving this, the
program can examine the size variables in the window structure to discover the new size of the window.
The message is sent, even if the size of the window did not actually change.

REFRESHWINDOW
A message is sent to the application whenever your window needs refreshing. This flag makes sense only
with windows for which the SIMPLE_REFRESH or SMART REFRESH type of refresh has been
selected.

SIZEVERIFY
You set this flag if your program is drawing to the window in such a way that the drawing must be finished
before the user sizes the window. If the user tries to size the window, a message is sent to the application
and Intuition will Wait() until the program replies. See the ‘‘Verification Functions” section below for
some things to consider when using this flag.

ACTIVEWINDOW and INACTIVEWINDOW
Set these flags to discover when your window becomes activated or deactivated.

Other flags:

VANILLAKEY
This is the raw keycode RAWKEY event translated into the current default character keymap of the
console device. In the USA, the default keymap is ASCII characters. When you set this flag, you will get
IntuiMessages with the Code field containing a character representing the key struck on the keyboard.
An IDCMP message is sent only if the translation results in a single byte, therefore you cannot read such
keys as HELP or the function keys with VANILLAKEY.

Intuition: Input and Output Methods 165

Most programs will prefer to use the RAWKEY IDCMP class, and perform their own RawKeyConvert(). See
also, the DeadKeyConvert() example in the chapter entitled, *‘Intuition: Mouse and Keyboard.”

RAWKEY
Keycodes from the keyboard are sent in the Code field. They are raw keycodes, so you may want the
program to process them.

The Qualifier field contains the information generated by the input device about this key.

NEWPREFS
‘When the user changes the system Preferences by using the Preferences tool, or when some other routine
causes the system Preferences to change, you can make sure your program finds out about it by setting this
flag.

When your program gets a message of class NEWPREEFS, it can call the procedure GetPrefs() to get the
new Preferences.

NOTE

Everyone who sets this flag will learn about these events, not just the active window.

DISKINSERTED and DISKREMOVED
When the user inserts or ejects any disk with any drive, the program will be told about the event if either
or both of these flags are set.

NOTE

Everyone who sets these flags will learn about these events, not just the active window.

INTUITICKS
This gives you simple timer events from Intuition when your window is the active one; it may help you
avoid opening and managing the timer device. With this flag set, you will get only one queued-up
INTUITICKS message at a time. If Intuition notices that you’ve been sent an INTUITICKS message and
haven’t replied to it, another message will not be sent. In other words, the INTUITICKS messages are
paced: until you reply to one, no subsequent one will be sent to you.

Intuition receives timer events roughly ten times a second. These events are to be used as "prods”, and not
as time counters.

Verification Functions

SIZEVERIFY, REQVERIFY, and MENUVERIFY are exceptional in that Intuition sends an IntuiMessage and then
waits, by calling the Exec function Wait(), for the application to reply that it is all right to proceed. The application
replies by calling the Exec message passing function ReplyMsg(). The discussion in the ‘“Intuition; Menus”’
chapter on the MENUVERIFY IDCMP flag also applies to REQVERIFY and SIZEVERIFY.

NOTE

A bug in the input handling stream through Intuition may confuse window sizing by the user if your
program takes too much time responding to the SIZEVERIFY message. Please respond quickly.

The implication is that the user requested some operation but the operation will not happen immediately and, in fact,
will not happen at all until your application says it is safe. Because this delay can be frustrating and intimidating,
you should strive to make the delay as short as possible. Your program should always reply to a verification

166 Intuition: Input and Output Methods

message as soon as possible.

You can overcome these problems by setting up a separate task to monitor the IDCMP and respond to incoming
IntuiMessages immediately. This is recommended whenever you are planning heavy traffic through the IDCMP,
which occurs when you have set many IDCMP flags.

It is not safe to leave any of the VERIFY functions enabled, at a time when your task may not be able to respond for
a long period.

It is not safe 1o call AmigaDOS directly (with Open(), for example), or indirectly (with OpenLibrary(), for a
disk-based library, for example), when a VERIFY function is active. If AmigaDOS needs to put up a disk requester
for you, Intuition may end up waiting for you to reply to the VERIFY message, while your program waits for the
AmigaDOS call to finish. This deadlock will freeze the Amiga. Use ModifyIDCMP() to turn of all VERIFY
messages before calling AmigaDOS.

If you do set up a separate task to monitor the IDCMP, and you call AmigaDOS functions using some other task,
and if the monitor task will always be able to reply to the VERIFY message without any help from the other task,
then the above warning does not apply. :

SETTING UP YOUR OWN IDCMP MONITOR TASK AND USER PORT

IDCMP communication takes place through a pair of Exec message ports, the UserPort (your application’s input
port, where you wait for messages), and the WindowPort (Intuition’s window port).

In the simplest case, Intuition allocates (and deallocates) both of these ports when you open a window with non-
NULL IDCMP flags or call ModifyIDCMP(). If the WindowPort is not already opened when one of these
functions is called, it will be allocated and initialized. The UserPort is checked separately to see whether it is
already opened. Intuition will send messages to your program via the UserPort and will receive replies via the
WindowPort. The port variables point to a valid message port if they are opened, and are NULL if not opened.

When Intuition initializes the UserPort for you, Intuition calls AllocSignal() to get a signal bit. Since your task
called OpenWindow(), this allocation of a signal is valid for your task. The address of your task is saved into the
SigTask variable of the message port.
You can choose to supply your own port. You might do this in an environment in which your program is going to
open several windows and you want the program to monitor input from all of the windows using only one message
port. To supply your own port, do the following:

1. Create a port for your IDCMP by calling CreatePort(NULL.,0), which returns a pointer to a port.

2. Open your windows with no IDCMP flags set.

3. Set the window UserPort field to the newly created port.

4. Call ModifyIDCMP(window FlagsIReallyWant). Intuition will use the port you supplied.

Warning - When you are sharing an IDCMP among several windows, you must be very careful not to call

ModifyIDCMP(window NULL) for any windows that are using the shared port, because Intuition will free
the port and the signal bit. ’

Intuition: Input and Output Methods 167

5. When you're through with them, close windows that share an IDCMP by using CloseWindowSafely(), as
illustrated in the example below. Note - it assumes there is a UserPort.

Since at least two windows are sharing a single IDCMP, there can be messages pending for any of the
windows, when you decide to close any one of them. It is essential that messages destined for a given
window be removed and replied to, before that window is closed. CloseWindowSafely() takes care of this
for you. Also, it sets the window’s UserPort to NULL so that Intuition knows not to delete the port that
you created.

6. Delete the port that you created in step 1, by calling DeletePort().

Examples

1. This example shows how to receive Intuition events. It reports on a variety of events: a window resizing, a disk
insertion and removal, the Select button up and down, and the Menu button up and down.

/* quartzWindow.h -- This file implements a rather small window that */
/* appears in the right half of the screen. */

#include “sysgads.h"

#define QUAR_LEFTEDGE 300
$define QUAR TOPEDGE 50
#define QUAR_WIDTH 200
#define QUAR HEIGHT 175

struct NewWindow quartzWindow =
{
QUAR LEFTEDGE,
QUAR _TOPEDGE,
QUAR WIDTH,
QUAR HEIGHT,
0,1, /* Plain vanilla DetailPen and BlockPen. */
CLOSEWINDOW, /* Tell program when close gadget has been hit */
WINDOWCLOSE | SMART. REFRESH | ACTIVATE | WINDOWDRAG |
WINDOWDEPTH | WINDOWSIZING | NOCAREREFRESH,

NULL, /* Pointer to the first gadget -- */
/* may be initialized later, */

NULL, /* No checkmark. */

"quartzWindow", /* A silly title. x/

NULL, /* Attach a screen later. */

NULL, /* No bitmap. *x/

SYSGADSWIDTH, /* Minimum width. *x/

SYSGADSHEIGHT, /* Minimum height. *x/

OxFFFF, /* Maximum width. */

OxFFFF, /* Maximum height. */

CUSTOMSCREEN /* A screen of our own. */
};

/* End of quartzWindow.h */

/* IDCMPDemo.c -~ Tests the IDCMP by printing IDCMP classes */
/* to the console. x/

#include <exec/types.h>

#include <intuition/intuition.h>
#include <libraries/dos.h>
#ifdef LATTICE

#include <proto/all.h>

#include <stdlib.h>

#include <stdio.h>

168 Intuition: Input and Output Methods

int CXBRK(void) {return{(0);}
#endif

/* Include other required vendor- or Commodore-Amiga-supplied header */
/* files here. */

/* Include user-written header files here. */
#include YquartzWindow.h"

/* Use lowest non-obsolete version that supplies the functions you need. *x/
t#define INTUITION REV 33

extern VOID cleanExit (struct Window *, int);
extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;

VOID main(int argec, char *argv(])

{

/* Declare variables here */

ULONG signalmask, signals, moreFlags;
UBYTE done = 0;

struct Window *windowl = NULL;

/* Open the Intuition Library */
IntuitionBase = {struct IntuitionBase ¥*)
OpenLibrary{ "intuition.library", INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit (windowl, RETURN_WARN) ;

/* Open any other required libraries */

/* Make the assignments that were postponed above */
/* We need a couple more flags in the window *x/

quartzWindow.Flags {= REPORTMOUSE | RMBTRAP;
quartzWindow.Type = WBENCHSCREEN;

/* Open the window */
windowl = OpenWindow(&quartzWindow);
if (windowl == NULL)

cleanExit (windowl, RETURN_WARN);

/* QuartzWindow has only the CLOSEWINDOW IDCMP flag set. */
/* We could have set these flags in quartzWindow.IDCMP, */
/* but instead, we’ll set all of them in quartzWindow */
/* by using the ModifyIDCMP () function. x/
moreFlags = CLOSEWINDOW | NEWSIZE | DISKINSERTED | DISKREMOVED | MOUSEBUTTONS;

ModifyIDCMP { windowl, moreFlags);

/* Set up the signals that you want to hear about ... */
signalmask = 1L << windowl->UserPort->mp_SigBit;

/* Call the functions that do the main processing */
/* None to call in this example */

/* And wait to hear from your signals */
while(!done)

{ ,

signals = Wait(signalmask);

if (signals & signalmask)

done = handleIDCMP (windowl);

)i
/* Exit the program */
cleanExit (windowl, RETURN_OK);
}

UBYTE handleIDCMP(struct Window *win)
{

Intuition: Input and Output Methods 169

UBYTE flag = 0;

struct IntuiMessage *message = NULL;
USHORT code;

SHORT mousex, mousey;

ULONG class;

/* Examine pending messages */
while(message = (struct IntuiMessage *)GetMsg(win->UserPort))

{

}

class = message->Class;
code = message->Code;
mousex = message->MouseX;
mousey = message->MouseY;

/* Always reply to messages as soon as possible. */
/* We make copies of the interesting fields of *x/
/* the message, since we no longer have access *x/
/* to them after replying. */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch(class)
{
case CLOSEWINDOW:
flag = 1;
break;
case NEWSIZE:
printf("NEWSIZEO);
break;
case DISKINSERTED:
printf(“DISKINSERTEDO);
break;
case DISKREMOVED:
printf("DISKREMOVEDO);
break;
case MOUSEBUTTONS:
switch(code)
{
case SELECTUP:
printf(“"SELECTUP at %d,%d0,mousex,mousey);
break;
case SELECTDOWN:
printf("SELECTDOWN at %d, $d0,mousex,mousey);
break;
case MENUUP:
printf(“"MENUUPO);
break;
case MENUDOWN:
printf("MENUDOWNO);

break;
default:
printf("UNKNOWN CODEOQ):;
break;
}s /* end of switch on code */
break;
default:
printf{ "Unknown IDCMP messageQ);
break;

} /* End switch */
/* End while */

return(flag);

}

VOID cleanExit{ wind, returnValue)
struct Window *wind;
int returnvValue;

{

/¥ Close things in the reverse order of opening */

/* Close the windows */
if (wind) CloseWindow(wind);

170 Intuition: Input and Output Methods

/* Close the library, and then exit */
if (IntuitionBase) Closelibrary({ (struct Library *)IntuitionBase);

exit (returnvalue);

This is the CloseWindowSafely() example promised in the last section.

/** Close

#include
#include
#include
#include
#include

WindowSafely.c **/

<exec/types.h>
<exec/nodes.h>
<exec/lists.h>
<exec/ports.h>
<intuition/intuition.h>

/* this function closes an intuition window that shares a port with

other

intuition windows.

*
*
* Tt is careful to set the UserPort to null before closing, and to
*

free a

ny messages that might have been sent.

CloseWindowSafely (win)

struct Wi
{

ndow *win;

Forbid() ;

/* Send back any unprocessed messages for this window */

Stripl

/* Nul
win->U

/* Tel

ntuiMessages (win->UserPort, win);

1 UserPort so Intuition won't free it */
serPort = NULL;

1 Intuition to stop sending more messages */

ModifyIDCMP (win,0);

/* Tur
Permit

n tasking back on */
0O

/* And really close the window */
CloseWindow (win) ;

}

StripIntuiMessages (mp, win)

struct Ms
struct Wi

{

struct
msg =
while(

{
if(

msg

}

gPort *mp;
ndow *win;

IntuiMessage *nmsg, *succ;.
mp->mp_MsgList.lh Head;
succ = msg->ExecMessage.mn_Node.ln_Succ)

msg->IDCMPWindow == win)
{

/* Intuition is about to rudely free this message.

* Make sure that we have politely sent it back.
*/

Remove (msg) ;

ReplyMsg (msg) ;

}

= succ;

Intuition: Input and Output Methods 171

Chapter 8

Intuition: Images, Line Drawing, And Text

Intuition provides two approaches to producing graphics images, lines, and text in displays. For quick and easy
rendering, you can use Intuition’s high-level data structures and functions. You are also free to use all of the lower-
level Amiga graphics, animation, and text primitives,

This chapter shows you how to use the Intuition structures and functions, but the Amiga primitives are a large topic

in themselves and the discussion here can only point the way. You will find instructions for using the primitives in
the ‘‘Graphics Primitives’’ chapter.

Using Intuition Graphics
Images, Borders, and IntuiText are the general-purpose Intuition structures for rendering graphics and text into
your display. They are called illustration data types.

« Images are graphic objects of any size and complexity.

» Borders are connected lines of any length and number, drawn at any angle, and defining any arbitrary
shape.

Intuition: Images, Line Drawing, Text 173

* IntuiText strings can be written in the default font or in a custom font of your own design.

The illustration data types are easy to design and economical to use. They are easy to design because their
definitions are brief and flexible. Even though each structure defines a different data type, the data types share a
consistency of features and capabilities, so once you have leamed one you have pretty much learned them all. This
decreases the amount of energy spent in learning new things, and you can reuse the same structures in many places.
It also reduces the number of Intuition-internal routines, so we all win.

Each of these illustration data types is located with respect to a display element, or containing element, which can be
any of the primary Intuition components: a window, screen, menu, gadget, or requester. The starting location of an
image, border, or text string is defined as an offset relative to some particular pixel, usually the top left corner of the
element. Any of the illustration data types can be rendered in any of the display elements. In fact, you can display
the same structure in more than one of the elements at the same time.

There are two methods of rendering images, borders, and text into display elements:

* In menus, gadgets, and requesters, you use a pointer field provided in the menu, gadget, or requester
structure. Then, as Intuition handles those structures, the illustrations are drawn for you.

» In windows or screens, you draw the illustration types directly into the display element by using one of the
functions DrawImage(), DrawBorder(), or PrintIText().

In the definitions of all three of these general-purpose structures, you supply a top left location that is a relative offset
from the top left of the display element that will contain the illustration. These relative offsets allow you to use the
underlying data arrays across limitless instances of Image, Border, or IntuiText structures. For example, if you
have numerous gadgets of the same size, you can use the same Border coordinate pairs to draw a line around each
gadget.

An important fact about the illustration elements is that each can point to another of its own kind. You can link
many of them together and have them all drawn with just one procedure call.

DISPLAYING BORDERS, INTUITEXT, AND IMAGES

Requester, gadget, and menu structures contain one or more fields for rendering borders, text, and images. These
fields each contain a pointer to an instance of a Border, IntuiText, or Image structure. For drawing the illustration
types directly into screens and windows, however, you use the Intuition functions DrawBorder(), DrawImage(),
and PrintIText(). You supply a Border, Image, or IntuiText structure as an argument to the function.

These three functions have x and y offsets as arguments which are added to the offsets in the graphics structures.
Sometimes this extra level of offset can come in handy, especially when positioning as a group a linked hst of
illustration structures.

For drawing into screens and windows, you also need a pointer into the window or screen RastPort. See the
*“Using the Graphics Primitives’’ section below.

CREATING BORDERS

Although this data structure is called a Border, it is actually a general-purpose structure for drawing connected lines
at any angle and rendering any arbitrary shape made up of groups of connected lines. It is called a border because
that is how it started out.

174 Intuition: Images, Line Drawing, Text

To define a Border, you specify the following:
» Asetof x and y offsets to the beginning point of the line.
» A setof coordinate pairs for each vertex.
= A color for the lines.
» One of several drawing modes.

+ Anoptional pointer to another instance of Border.

Border Coordinates

Intuition draws lines between points that you specify as sets of x,y coordinates. The Border variables LeftEdge and
TopEdge contain the offsets of the starting origin of the border with respect to the upper left of the containing
element. The XY field contains a pointer to an array of coordinate pairs. All of these coordinates are offsets from
the starting origin of the border. Thus, you can define one line and use it in different display elements or use it many
times in the same element. The first coordinate pair describes the starting point of the first line. Every coordinate
pair after the first describes the ending point of the current line and, if there is another coordinate pair, the starting
point of the next line,

Here is an example. Consider a gadget whose select box is 140 pixels wide and 80 pixels high. The top left corner
of the gadget’s select box is located in a window at position (10,5). If the border’s (LeftEdge, TopEdge)
coordinates are (10,10), this results in an absolute base position of (10+10,5+10), or (20,15), as shown in figure 9-1.

If the first set of coordinates in the array of coordinates is (0,5), the starting point of the first line will be at
(20+0,15+5), or (20,20). If the next coordinate pair is (15,5), the end point of the first line will be at (20+15,15+5),
or (35,20). A line will be drawn from absolute position (20,20) to absolute position (35,20). If there is one last
coordinate pair, (15,0), the next point is at (20+15,15+0), or (35,15). A second line segment is drawn from (35,20)
to (35,15).

Intuition: Images, Line Drawing, Text 175

Top left corner of the gadget’s select box (10,5)
5 — q’/—

Absolute base position

10 — 1 .
(20,15) Third Coordinate (20+15,15+0)

Second Coordinate (20+15,15+5)

20 —
N le of
% . ZFirst Coordinate Example o

(2040, 15+5) Border Relative Position

30—

Figure 8-1: Example of Border Relative Position

For a border that is outside the select box of a gadget, you can specify negative offsets. For example, starting
position (-1,-1) for a gadget border is just outside the gadget select box.

Border Colors and Drawing Modes

Intuition uses the current set of colors in the color register to draw the border and, optionally, to draw its
background. As usual, the available colors depend upon the number of bit-planes used in the screen. For instance, if
the screen has five bit-planes, then you can select from the colors in color registers 0 through 31. The lines are
always drawn in the color in the FrontPen field.

Two drawing modes pertain to border lines: JAM1, and COMPLEMENT. To draw the line in your choice of color,
use JAMI. You can choose to have the line “‘invert’” the color of the pixels over which it is drawn by selecting the
COMPLEMENT drawing mode. If you use COMPLEMENT mode, for every pixel the line is drawn over, the data
bits of the pixel are changed to their binary complement. The complement is formed by reversing all the 0 bits and 1
bits in the binary representation of the color register number. In a three-bit-plane display, for example, color 6 is
110 in binary. If a pixel is color 6, it will be changed to the complement of 001 (binary), which is color 1.

Linking Borders Together

The NextBorder ficld can point to another instance of a Border structure. This allows you to link borders together
to describe complex line-drawn shapes. Having multiple borders allows you to draw multiple, distinct groups of
lines, each with its own set of line segments and its own color and draw mode. For example, you may want a double
border to make a requester stand out more from the surrounding display. You can define the inner border in a second
Border structure and link it to the first structure by using this field.

176 Intuition: Images, Line Drawing, Text

Border Structure Definition

Here is the specification for a Border structure:

struct Border

{

SHORT LeftEdge, TopEdge;

UBYTE FrontPen, BackPen, DrawMode;
BYTE Count;

SHORT *XY;

struct Border *NextBorder

}:
The meanings of the fields in the Border structure are:

LeftEdge, TopEdge ‘
This field gives the starting origin for the border as an offset from the top left of the containing element.
LeftEdge is the x coordinate and TopEdge is the y coordinate for the top left bit of the image.

LeftEdge
This field contains the number of pixels from the left edge of the containing element.

TopEdge
This field specifies the number of lines from the top line of the containing element.

FrontPen, BackPen, DrawMode
FrontPen is the color used to draw the line. The pen color fields contain color registers numbers.
BackPen is currently unused.

You set the DrawMode field to one of the following:

JAM1
This specification uses FrontPen to draw the line and makes no change in the background.

COMPLEMENT
This specification changes the background beneath the line to its binary complement.

NextBorder

This field is a pointer to another instance of a Border structure. Set this field to NULL if there is no other
Border structure or if this is the last Border structure in the linked list.

XY This field is a pointer to an array of coordinate pairs, one pair for each line. These are measured relative to
the starting origin for the border.

Count
This field specifies the number of pairs in the array of coordinate pairs.

Intuition: Images, Line Drawing, Text 177

CREATING TEXT

The IntuiText structure provides a simple way of writing text strings anywhere in your display. For example, an
array of IntuiText strings is handy in creating menus.

To define and display IntuiText, you specify the following:
» Colors for the text and, optionally, for the text’s background.
» One of three drawing modes.
» The starting location for the text.
« The default font or your own special font.

* A pointer to another instance of IntuiText (if any).

Text Colors and Drawing Modes

As with border colors, Intuition uses the current set of colors in the color register to write the text and, optionally, to
draw its background. As usual, the available colors depend upon the number of bit-planes used in the screen. For
instance, if the screen has five bit-planes, you can select from the colors in color registers 0 through 31. The text is
usually drawn in the color in the FrontPen field.

Text characters in general are made of two areas: the character image itself and the background area surrounding the
character image.

In addition to the two drawing modes for borders, JAM1 and COMPLEMENT, you also have JAM2 and and the
flag INVERSVID. These modes are described in the following paragraphs.

If you select JAM1 drawing mode, the text character images, but not the character background areas, will be drawn.
The character image is drawn in FrontPen color. Because the background of a character is not drawn, the pixels of
the destination memory around the character image are not disturbed. This is called overstrike.

If you select JAM2 drawing mode, the character image is drawn in FrontPen and the character background is drawn
in the color in the BackPen field. Using this mode, you completely cover any graphics that previously appeared
beneath the letters.

If the drawing mode is COMPLEMENT, the character is drawn in the binary complement of the colors at its
destination. The destination is the display memory where the text is drawn. FrontPen and BackPen are ignored.
To form the complement, you reverse the all the 0 bits and 1 bits in the binary representation of the color register
number. In a three-bit-plane display, for example, color 6 is 110 in binary. The complement is 001 (binary), which
is color 1.

The INVERSVID flag inverses the video for the drawing modes. Where the character image would be nothing is
drawn, but the character background is drawn in the color in the FrontPen field.

178 Intuition: Images, Line Drawing, Text

Linking Text Strings

The NextText field can point to another instance of an IntuiText structure. Using this field, you can create several
distinct groups of characters with one stroke; each group has its own color, font, location, and drawing mode.

Starting Location

The starting TopEdge for a text string is the topmost pixels of the tallest characters. Note that this is different from
the baseline of the text. The baseline is the horizontal line on which the characters and punctuation marks rest. The
system default fonts are designed to be both above and below the baseline. The descenders of letters (the part of
certain letters that is usually below the writing line, like the tail on the lower-case “‘y’’) are rendered below the base
line. Therefore, you need to allow for this in drawing text in the display. For more information about text imagery,
refer to the Text chapter in this manual.

Fonts

You can use the default font, as set by Preferences, or you can have your own custom font in a TextAttr structure
and use the TextAttr field to point to the custom font. For more information about custom fonts, see the ext
chapter in this manual.

IntuiText Structure

Here is the specification for an IntuiText structure:

struct IntuiText
{
UBYTE FrontPen, BackPen;
UBYTE DrawMode;
SHORT LeftEdge;
SHORT TopEdge;
struct TextAttr *ITextFont;
UBYTE *IText;
struct IntuiText *NextText;

}
The meanings of the fields in the IntuiText structure are as follows.

FrontPen, BackPen

FrontPen is the color used to draw the text. BackPen is the color used to draw the background for the
text, if JAM2 drawing mode is specified.

These fields contain color register numbers.

- DrawMode ‘
This field specifies one of four drawing modes:

Intuition: Images, Line Drawing, Text 179

JAM1
FrontPen is used to draw the text; background color is unchanged.

JAM2
FrontPen is used to draw the text; background color is changed to the color in BackPen.

COMPLEMENT :
The characters are drawn in the complement of the colors that were in the background.

INVERSVID
The character is untouched while the background is filled with the color of the FrontPen.

LeftEdge

This field specifies the starting position for the text as an offset, in pixels, from the left comer of the
containing element,

TopEdge

This field specifies the starting position for the text as an offset, in pixels, from the top line of the display
element.

TextAttr

This field is a pointer to a TextAttr structure containing your own font description. Set this to NULL if
you want the default font.

IText
This field is a pointer to the null-terminated text string to be displayed.

NextText
This field is a pointer to another instance of IntuiText, if this text is part of a linked list of IntuiTexts.
Set this field to NULL if this text is not part of a list or if it is the last structure in the list.

CREATING IMAGES

With an Image structure you can create graphics objects quickly and easily and display them almost anywhere.
Images have an additional attribute that makes them even more economical—with one minor change in the
structure, you can display the same image in different colors within the same display element.
To define and display an image, you specify the following:

» The location of the image within the containing element,

¢ The width and height of the image and the data to create it.

« The depth of the image that is, how many bit-planes are used to define it.

» The bit-planes in the display element that are used to display the image. This determines the colors in the
image.

180 Intuition: Images, Line Drawing, Text

Image Location

You specify a location for the image that places its top left corner as an offset from the top left corner of the element
that contains the image.

Defining Image Data

To create the data for your image, you write 1s and Os into a block of 16-bit memory words, which are located at
sequentially increasing addresses. When the image is displayed, this sequential series of memory words is organized
into a rectangular area, called a bit-plane. The bit-planes in an image are drawn together when the image is
displayed.

The color of each pixel in the image is directly related to the value in one or more memory bits, depending upon how
many bit-planes there are in the image data and in which bit-planes of the screen or window you choose to display
your image.

The color of a given pixel is determined by one or more data bits. Each bit in the pixel is taken from the same
position in each of the bit-planes used to define the image. For each pixel, the system combines all the bits in the
same position to create a binary value that corresponds to one of the system color registers. This method of
determining pixel color is called color indirection, because the actual color value is not in the display memory.
Instead, it is in color registers that are located somewhere else in memory.

If an image consists of only one bit-plane and is displayed in a one-bit-plane display, then:

* Wherever there is a 0 bit in the image data, the color in color register 0 is displayed.

* Wherever there is a 1 bit, the color in color register 1 is displayed.
In an image composed of two bit-planes, the color of each pixel is obtained from a binary number formed by the
values in two bits, one from bit-plane 0 and one from bit-plane 1. If bit-plane O contains all 1s and bit-plane 1

contains Os and 1s, the pixels derive their colors from register 1 (binary 01) and register 3 (binary 11).

Note

The actual image data (but not the Image structure itself) must be located in chip memory
(MEMF_CHIP). Refer to the *‘Setting up a Custom Pointer’’ section in the windows chapter for more
information on this.

You create your image data by giving Intuition a series of data words. Before specifying these numbers, you may

find it helpful to lay out your image on graph paper, or to use one of the Amiga art tools to assist you. The figure
below shows the layout for the system sizing gadget, which is a one-bit-plane image.

Intuition: Images, Line Drawing, Text 181

Image Data Hexidecimal Representation

MMM TN OOO M
MmMTOOOOOOO M
momMMmMOoO MM ™
MWWWWWT T

Figure 8-2: Intuition’s High-resolution Sizing Gadget Image

In hex notation, the data words of the sizing gadget image are defined as follows:

USHORT chip SizeData[] =
{
OxFFFF,
OxCOFF,
0xCCFF,
0xC003,
0xXFCF3,
OXFCF3,
0xPCF3,
OxFCO03,
OXFFFF,
}:

In the image data, you need to specify enough whole words to contain the image width. For example, an image 7
bits wide requires one word per line, whereas an image 17 bits wide requires two words per line. In the Width field
of the Image structure, you specify the actual width in pixels of the widest part of the image, not how many pixels
are contained in the words that define the image. The Height field contains the height of the image in pixels.

Here is the actual Image structure of the system-sizing gadget. The last two fields in the structure, PlanePick and
PlaneOnOfT, are explained in the next section.

182 Intuition: Images, Line Drawing, Text

struct Image SizeImage =

{

o, o, /* left top */

16, 9, 1, /* width, height, depth */
&SizeData[0], /* Address

0x1, 0x0, /* PlanePick, PlaneOnOff */

NULL, /% NextImage */
}: :

Picking Bit-Planes for Image Display

An image may actually contain fewer bit-planes than the display element it is rendered in. This gives you great
flexibility in using Image structures. You can:

» Draw an image into a screen or window of any depth (if you have designed it properly).
* Make one image and display it in different colors.

* Minimize the amount of memory needed to define a simple image that is destined for a display of multiple
bit-planes.

PlanePick *‘picks™ the bit-planes of the containing window or screen RastPort that will receive the bit-planes of
the image. PlaneOnOff specifies what to do with the window or screen bit-planes that are not picked to receive
image data. For each display element plane that is ‘‘picked’’ to receive data, the next successive plane of image data
is drawn there. For every bit-plane not picked to receive image data, you tell Intuition to fill the plane with Os or 1s.
For both variables, the binary form of the number you supply has a direct correspondence to the bit-planes of the
window or screen containing the image. The lowest bit position corresponds to the lowest-numbered bit-plane. For
example, for a window or screen with three bit-planes (consisting of Planes 0, 1, and 2), all the possible values for
PlanePick or PlaneOnOff and the planes picked are as follows.

PlanePick or
PlaneOnOff Planes Picked

000 No planes

001 Plane 0

010 Plane 1

011 Planes 0 and 1
100 Plane 2

101 Planes 0 and 2
110 Planes 1 and 2
111 Planes 0, 1, and 2

The system sizing gadget shown above has only one bit-plane of data. To display this gadget in plane 0 of a four-
bit-plane window using color 1 for the image and color 0 for its background, you set PlanePick to 0001 (binary) and
PlaneOnOff to 0000 (binary). These settings give Intuition the following instructions:

+ Display the data that describes the image in plane 0 of the destination RastPort.

Intuition: Images, Line Drawing, Text 183

+ For all of the other planes in the RastPort, set the bits in the area where the image is displayed to 0.

The following figure illustrates the discussion in the preceding paragraphs.

Bit Map Planes

Plane 3 Plane 2 Plane 1 Plane O
Planepick: 0 o 0 1
Planeonoff: 0 0 don't care

Image Data

Figure 8-3; Example of PlanePick and PlaneOnOff

If you want the sizing gadget to be drawn in color 2 and its background drawn in color 0, you need to define pixels
whose values are 0010 and 0000. To do this, simply change PlanePick to 0010,

If you want color 3 for the sizing gadget and color 1 for its background, you need to define pixels with values 0011
and 0001. Therefore, plane 1 defines the image and plane 0 has to be all 1s. You can achieve this by setting
PlanePick to 0010 and PlaneOnOff to 0001.

If you want an image that is simply a filled rectangle, you need not supply any image data at all. You specify a
Depth of zero, set Width and Height to any size you like, and set PlanePick to 0000 since there are no planes of

image data to pick. Then, set PlaneOnOff to the color you want for the rectangle. To see how a gadget like this
looks, refer to the ‘‘Requester Deluxe’” illustration in the *‘Intuition: Requesters and Alerts’” chapter.

Image Structure

Here is the specification for an Image structure:

184 Intuition: Images, Line Drawing, Text

struct Image
{
SHORT LeftEdge, TopEdge;
SHORT Width, Height, Depth;
USHORT *ImageData;
UBYTE PlanePick, PlaneOnOff;
struct Image *NextImage;
}:

The meanings of the fields in the Image structure are:

LeftEdge, TopEdge
These are offsets from the top left of the display element.

LeftEdge
This field contains the number of pixels from the left edge of the display element.

TopEdge
This field contains the number of lines from the top line of the display element.

Width
This field contains the width of the actual image in pixels.

Height, Depth
These fields specify the height of the image in pixels and the number of bit-planes needed to define the
image.

ImageData
This field is a pointer to the actual bits defining the image.

PlanePick, PlaneOnOff

PlanePick tells which planes of the containing element you pick to receive planes of image data.
PlaneOnOff tells what to do about the planes that are not picked.

These fields are a bit-wise representation of bit-plane numbers.

Image Example

A more complex example of an image is presented below. The image shown in figure 9-4 belongs to one of the
system depth-arrangement gadgets (the front gadget, which brings a window or screen to the front of the display).

Intuition: Images, Line Drawing, Text 185

The 3-Color Front Gadget

Plane 0, Works even in
One-plane Screens

Plane 1, for Highlight

Figure 8-4: Example Image — the Front Gadget

Its data structure and data definition look like this:

USHORT c¢hip UpFrontDatal] =

{

Ox3FFF, OxFF3C,
0x3000, Ox3F3C,
0x3000, 0x033c,
0x303F, O0xF33c,
0x303F, O0xF33cC,
0x303F, OxF33C,
0x303F, OxF33C,
0x3F3F, OxF33c,
0x3F00, 0x033C,
0x3FFF, OxFF3C,
/**/

0x0000, 0x0000,
0x0FFF, 0xC000,
0x0F00, 0x0000,
0x0F00, 0x0000,
0x0F00, 0x0000,
0x0F00, 0x0000,
0x0F00, 0x0000,
0x0000, 0x0000,
0x0000, 0x0000,
0x0000, 0x0000,
}:

186 Intuition: Images, Line Drawing, Text

struct Image UpFImage =
{

0, 0, /* left top %/

29, 10, 2, /* width, height, depth */
&UpFrontData[0], /* image data */

0x3, 0x0, /* PlanePick, PlaneOnOff */
NULL, /* NextImage */

}:
This gadget was designed to look good in a window or screen of any depth. PlanePick 0x3 (000011) picks planes 0
and 1 of the destination RastPort for planes 0 and 1 of the gadget. If this gadget is displayed in a window or screen
of depth 1, only plane 0 of its data is displayed. Color 0 is used for the background and color 1 for the imagery.
If this gadget is displayed in a window or screen of depth 2 or more, both planes are displayed. The resulting colors
are 0 for the background and 1 and 2 for the imagery.

Image Memory

Just as for sprite data, the image data has to be in chip memory. Refer to the *‘Setting up a Custom Pointer’’ section
of the windows chapter for more information on this.

INTUITION GRAPHICS FUNCTIONS

The following are brief descriptions of the Intuition functions that relate to the use of the Intuition illustration data
types and the Amiga graphics primitives.

Drawing Images, Lines, or Text in a Window or Screen

* Drawlmage (RPort, Image, LeftOffset, TopOffset)

This function renders the Image data into the RastPort of the screen or window.
e DrawBorder (RPort, Border, LeftOffset, TopOffset)

This function draws the vectors of the Border into the window or screen RastPort.
« PrintIText (RPort, IText, LeftOffset, TopOffset)

This function prints IntuiText into the window or screen RastPort.

Obtaining the Width of a Text String

¢ ' IntuiTextLength (IText)

This function returns the width of an IntuiText in pixels.

Intuition: Images, Line Drawing, Text 187

Obtaining the Address of a View or ViewPort

« ViewAddress()

This function returns the address of the Intuition View structure for any graphics, text, or animation primitive
that requires a pointer to a View.

+ ViewPortAddress (window)

This function returns the address of the screen ViewPort associated with the specified window for any
graphics, text, or animation primitive that requires a pointer to a ViewPort.

188 Intuition: Images, Line Drawing, Text

Chapter 9

Intuition: Mouse and Keyboard

In the Intuition system, the mouse is the normal method of making selections. This section describes how users
employ the mouse to interact with the system and your programs and how you can arrange for your program to use
the mouse in other ways. It also describes the use of the keyboard as an alternate means of input.

About the Mouse

A mouse is a small, hand-held input device connected to the Amiga by a flexible cable. By rolling the mouse around
on a smooth surface, the user can input horizontal and vertical position coordinates to the computer. The mouse also
provides a pair of input keys, called mouse buttons, for the user to input further information to the computer.

Most of the things the user does with the mouse are meaningful to Intuition. Because of this, Intuition monitors
mouse activity closely. As the user moves the mouse, Intuition follows the motion by changing the position of the
Intuition pointer. The Intuition pointer is an image (using hardware sprite 0) that can move around the entire video
display, mimicking the user’s movement of the mouse. The user can use the mouse and pointer to point at some
object and then have some action performed on that object. Typically, users specify an action by manipulating
either or both mouse buttons. Users can also position the mouse while the buttons are activated.

Intuition: Mouse and Keyboard 189

The basic mouse activities are shown in the table below.

Table 9-1: Mouse Activities

Action Explanation

Pressing a button Positioning the pointer while holding down a button.
‘ The action specified by the position of the pointer can
continue to occur until the button is released, or
alternatively may not occur at all until the button is

released.

Clicking a button Positioning the pointer and quickly pressing and
releasing one of the mouse buttons.

Double-clicking a button Positioning the pointer and pressing and releasing a
mouse button twice.

Dragging Positioning the pointer over some object, pressing a
button, moving the mouse to a new location, and
releasing the button.

The left mouse button is most often used for selection. The right mouse button is most often used for information
transfer. The terms selection and information are intentionally left open to some interpretation, as it is impossible to
imagine all the uses you will find for the mouse buttons. The selection/information paradigm can be crafted to cover
most interaction between the user and your program. You are encouraged, when designing mouse usage, to
emphasize this model. It will help the user to understand and remember the elements of everyone’s design.

When the user presses the left button, Intuition examines the state of the system and the position of the pointer.
Intuition uses this information to decide whether or not the user is trying to select some object, operation, or option.
For example, the user positions the pointer over a gadget and then presses the left button to select that gadget.
Alternatively, the user may position the pointer over a window and press the select button to activate the window. If
the user moves the mouse while holding down the select button, this sometimes means that the user wants to select
everything that the pointer moves over while the button is still pressed.

The right mouse button is used to initiate and control information-gathering processes. Intuition uses this button
most often for menu operations. Pressing the right button usually displays the active window’s menu bar over the
screen title bar. Moving the mouse while holding down the right button sometimes means that the user wishes to
browse through all available information; for example, browsing through the menus. Double-clicking the right
mouse button can bring up a special requester for extended exchange of information. This requester is called the
double-menu requester, because of the double-click of the menu button required to reveal it, and because this
requester is like a super menu through which a complex exchange of information can take place. Because the
requester is used for the transfer of information, it is appropriate that this mechanism is called up by using the right
button.

Your program can receive mouse button and mouse movement events directly. If you are planning to handle mouse
button events yourself, you should continue the selection/information model used by Intuition.

You can combine mouse button activations and mouse movement to create compound instructions. Here is an
example of how Intuition combines multiple mouse events. While the right button is pressed to reveal the menu
items of the active window, the user can press the left button several times to select more than one option from the
menus. Also, you can allow the user to move objects or select multiple objects by moving the mouse while holding

190 Intuition: Mouse and Keyboard

down the buttons. As another example, consider the Workbench tool. To move an object on the Workbench screen,
the user places the pointer within the object’s icon, presses the left button, and moves the pointer. When the icon is
in the desired location, the user releases the button.

Dragging can have different effects, depending on the object being dragged. To move a window to another area of
the screen, the user positions the pointer within the window’s drag gadget and drags the window to a new position.
To change the size of a window, the user positions the pointer within the size gadget and drags the window to some
smaller or larger size. In drag selection, the user can hold down both buttons while in menu mode and move the
pointer across the menu display, making multiple selections with one stroke.

Mouse Messages

Mouse events are broadcast to your program via the IDCMP or the console device. See the ‘“Intuition: Input and
Output Methods’’ chapter for information on how to receive communications.

Simple mouse button activity not associated with any Intuition function will be reported in IntuiMessages as the
event class MOUSEBUTTONS, with the codes SELECTDOWN, SELECTUP, MENUDOWN, and MENUUP to
specify changes in the state of the left and right buttons, respectively. Mouse button activity over your gadgets is
reported with a class of GADGETDOWN or GADGETUP, and the IAddress field (or EventAddress field of
InputEvents) has the address of the selected gadget. Menu selections appear with a class of MENUPICK, with the
menu number in the Code field.

Your program receives mouse position changes in the event class MOUSEMOVE. The MouseX and MouseY
position coordinates describe the position of the mouse relative to the upper left comer of your window. These
coordinates are always in the resolution of the screen you are using, and may represent any pixel position in your
screen, even though the hardware sprites can be positioned only on the even-numbered pixels of a high-resolution
screen and on the even-numbered rows of an interlaced screen.

To get mouse movement reported as deltas (amount of change from the last position) instead of as absolute
positions, you can use the IDCMP flag, DELTAMOVE.

About the Keyboard

A program can receive keyboard data through an IDCMP port by setting the RAWKEY or VANILLAKEY flags.
VANILLAKEY events provide for simple ASCII text and standard control keys like space, return and backspace.
RAWKEY events provide a more complex input stream, which the program must process to generate ASCII data.
RAWKEY returns all keycodes, both key-up and key-down, including function keys.

NOTE

Keystrokes do not always come in key-down/key-up pairs. For example, repeating keys appear as a
sequence of key-down messages.

Intuition: Mouse and Keyboard 191

The example at the end of this chapter uses RawKeyConvert() to convert the RAWKEY input stream into an ANSI
input stream. See the ‘‘Console Device’” chapter for more information on RawKeyConvert() and the data it
retums.

NOTE

If Intuition() responds to any iriput events, then your program will not see them. This happens for
system shortcuts (Left-AMIGA + key), and menu shortcuts (Right-AMIGA + key) if the menu shortcut
is defined for the active window.

The Amiga keyboard has several special command keys, which are listed in the following table. These keys are
used to modify the meaning of other keys. When you receive a RAWKEY or VANILLAKEY event (or, in fact, any
other event) through the IDCMP, the input message’s Qualifier field contains the status of all of the keyboard
special keys. Since all messages contain the qualifier bits, the program does not have to track the state of the special
command keys. For any message, a program can examine the Qualifier field to quickly determine the state of these
keys.

These special command keys (and their flags) are shown in the table.

Table 9-2: Special Command Keys

Key ‘Label Explanation

control CTRL The associated Qualifier flag is the CONTROL flag.

alternate ALT NOTE: that there are two separate ALT keys, one on
each side of the space bar. These can be treated
distinctly. Your program can detect which one was
pressed by examining the LALT and RALT
commands for the Left ALT and Right ALT keys
respectively

escape ESC When this key is struck, its keycode is entered into
the input stream as an actual keystroke.

function F1toF10 Shortcut methods for entering command-key
sequences starting with the ESC key.

AMIGA Fancy A There are two Amiga keys, one on each side of the
space bar. These, like the ALT keys, are distinctly
identifiable. The Left AMIGA key is recognized by
the Qualifier flag LCOMMAND, and the Right
AMIGA key by RCOMMAND.

Certain command-key sequences starting with one of the AMIGA keys have special meaning to Intuition. Most
notably, these involve shortcuts and alternatives to using the mouse, as described in the following section.

192 Intuition: Mouse and Keyboard

Using the Keyboard as an Alternate to the Mouse

All Intuition mouse activities can be emulated using the keyboard, by combining the Amiga command keys with
other keystrokes.

The pointer can be moved by pressing down either AMIGA key along with one of the four cursor keys (the ones
with the arrows). The longer these keys are held down, the faster the mouse will move. Also, you can hold down
either SHIFT key to make the pointer leap greater distances.

To emulate the left mouse button, users can press the left ALT key and the left AMIGA key simultaneously. To
emulate the right mouse button, users can press the right ALT key and the right AMIGA key simultaneously. These
key combinations permit users to make gadget selections and perform menu operations using the keyboard alone.
This will be a boon for mouse-haters.

There are a number of special shortcut functions supported by Intuition. These involve holding down the Left
AMIGA key and simultaneously pressing a another key. These functions allow the user to do such things as move
the Workbench Screen to the front using the keyboard. See the *‘Intuition Style’’ chapter for more information,

NOTE

These functions emulate left mouse button and mouse movement operations. Also note that Intuition
always consumes these two command-key sequences for its own use. That is, it always detects these
events and removes them from the input stream. Your program will no see these events.

You can pair up menu items with command-key sequences to associate certain letters with specific menu item
selections. This gives the user a shortcut method to select often-used menu operations, such as UNDO, CUT, and
PASTE. Whenever the user presses the right AMIGA key with some alphanumeric key, the menu strip of the active .
window is scanned to see if there are any command-key sequences in the list that match the sequence entered by the
user. If there is a match, Intuition translates the key combination into the appropriate menu item number and
transmits the menu number to the application program.

NOTE

It looks to the application as if the user had selected a given menu item with the mouse. Your program
will receive a menu event, not a key event. For more information on menu item selection, see the
*‘Intuition: Menus’’ chapter.

If Intuition sees a command-key sequence that means nothing to it, the key sequence is broadcast to your program as
usual. See the ‘‘Intuition: Input and Output Methods’’ section for how this works.

It is recommended that you abide by certain command-key standards to provide a consistent interface for Amiga
users. The “‘Intuition Style’’ section conta