
COMMODORE -AMIGA,
INCORPORATED

Amiga
ROM Kernel Reference Manual:

Libraries and Devices

Commodore-Amiga, Incorporated

Amiga Technical Reference Series

...
••

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Amiga ROM Kernel Reference Manual: Libraries and Devices
This manual corresponds to the Vl.3 Commodore Amiga system software release.

The text of the original version of this manual was written by Amiga engineers and writers including:
Bruce Banett, Mark Barton, Dave Berezowski, Bob "Kodiak" Bums, Susan Deyl, Sam Dicker, Andy Finkel, Larry Hildenbrand, Neil Katin,
Joe Katz, Dale Luck, Dave Lucas, Jim Mackraz, R.J. Mical, Bob Pariseau, Rob Peck, Tom Pohorsky, Carl Sassenrath, and Stan Shepard

This manual was revised and updated by Commodore Applications and Technical Support (CATS)
and Commodore-Amiga engineers including:
Dan Baker, Steve Beats, Dave Berezowski, Ray Brand, Bob Bums, Peter Chema, Eric Cotton, Ken Farinsky, Andy Finkel, Mark Green,
Randell Jesup, David Junod, Kevin Klop, Adam K. Levin, Dale Luck, Jim Mackraz, Bryce Nesbitt, Nancy Rains, Marc Rifkin, Michael Sinz,
Darius Taghavy, Ewout Walraven, Bart Whitebook, and Rob Wyesham. Special thanks to Dave Lucas for his contributions to this manual.

Project Leader: Ken Farinsky

Printed on the the NEC LC890 SilentwriterTl'laserprinter.

This manual is dedicated to the machine it was published on, our Amiga AMIXTM node "CBMCATS", and to the
individual Amigas that allowed each writer to edit, correspond, compile, test, typeset, and print concurrently.

Copyright © 1990 by Commodore-Amiga, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book and Addison-Wesley was aware of a trademark claim, the designations have been printed in initial caps. Amiga is a registered
trademark of Commodore-Amiga, Incorporated and is used herein with their permission. Amiga 500, Amiga 1000, Amiga 2000, AmigaDOS,
Amiga Workbench, Amiga Kickstart, the Boingl and rainbow Checkmark logos are trademarks of Commodore-Amiga, Inc. 68000, 68020,
68030, 68040 and Motorola are trademarks of Motorola, Inc. CBM, Commodore, the Commodore logo, and AUTOCONFIG are registered
trademarks of Commodore Electronics Limited. Alphacom is a registered trademark and Alphapro is trademark of Alphacom, Inc. Allec C and
Manx are trademarks of Manx Software Systems. Brother is a registered trademark of Brother Industries, Ltd. Canon is a registered trademark of
Canon USA Inc. CAPE and Inovatronics are trademarks of Inovatronics, Inc. Centronics is a registered trademark of Centronics Data Computer
Corp. ColorMaster is a trademark of CalComp. Diablo is a registered trademark of Xerox Corporation. Epson is registered trademark of Epson
America, Inc. Hisoft and Devpac are trademarks of HiSoft. mM is a registered trademark and Proprinter is a trademark of International Business
Machines Corp. Imagewriter and Apple II are trademarks of Apple Computer, Inc. LaserJet and PaintJet are trademarks of the Hewlett Packard
Company. Lattice is a registered trademark of Lattice, Inc. LetterPro 20 is a trademark of Qume Corporation. NEC is a registered trademark of
NEC Information Systems. Okidata is a registered trademark of Okidata, a division of Oki America, Inc. Okimate 20 is a trademark of Okidata, a
division of Oki America,lnc. Pinwriter is a registered trademark of NEC Information Systems. UNIX is a registered trademark of AT&T.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder. Printed in the United
States of America from camera-ready mechanicals supplied by the authors. Published simultaneously in Canada.

The software described in this document is fumished under a license agreement or non-disclosure agreement. The software may be used or copied
only under the terms of that agreement.

Commodore item number: 363099-01
ISBN 0-201-18187-8

BCDEFGHIJ-AL-93210
Second Printing, June 1990

WARNING: The infonnation described in this manual may contain errors or bugs, and may not function as described. An attempt has been made to warn software
developers of known bugs, however, not all bugs will be so matked. All infonnation is subject to enhancement or upgrade for any reason including to fix bugs, add
featwea or change perfonnance. As with all software upgrades, full compatibility, although a goal, cannot be guaranteed, and is in fact wilikely.

DISCLAIMER: COMMODORE-AMIGA, INC. ("COMMODORE") AND TIlE AUTIIORS MAKE NO WARRANfIES, EITHER EXPRESSED OR IMPLIED,
WITH RESPECT TO TIlE INFORMATION DESCRIBED lffiREIN, ITS QUAUTY, PERFORMANCE, MERCHANfABllITY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. SUCH INFORMATION IS PROVIDED ON AN "AS IS" BASIS. TIlE ENTIRE RISK AS TO ITS QUAUTY AND
PERFORMANCE IS WITH TIlE USER. CURRENT INFORMATION IS SUBJECf TO FUTURE CHANGE WITHOUf NOTICE. SHOUlD TIlE
INFORMATION PROVE DEFECfNE, TIlE USER (AND NOT TIlE AUTIIORS. COMMODORE, TIlEIR DISTRIBUfORS NOR TIIEIR RETAILERS)
ASSUMES TIlE ENfIRE COST OF ALL NECESSARY DAMAGES. IN NO EVE!l.T WILL COMMODORE OR TIlE AUTIIORS BE UABLE FOR DIRECf,
INDIRECf, INCIDENfAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECf IN TIlE INFORMATION EVEN IF TIlEY HAVE BEEN
ADVISED OF TIlE POSSIBIUfY OF SUCH DAMAGES. SOME LAWS DO NOT All-OW TIlE EXCLUSION OR UMITATION OF IMPLIED
WARRANTIES OR liABILITIES FOR INCIDENfAL OR CONSEQUENTIAL DAMAGES, SO TIlE ABOVE UMITATION OR EXCLUSION BY
COMMODORE MAY NOT APPLY.

Introduction

The Amiga family of computers consists of several models, each of which has been designed on the same premise -
to provide the user with a low cost computer that features high cost performance. There are three distinct models
that make up the the Amiga line: the A500, the AIOOO, the A2000. Though the models differ in price and features,
they have a common hardware nucleus, and use the same powerful proprietary operating system software.

About this book

The Amiga Technical Reference Series is the official guide to programming the Commodore-Amiga computers.
This revised edition has been updated for version 1.3 of the Amiga operating system and the new Amiga computer
systems. The series has been reorganized into three volumes. This volume, the Amiga ROM Kernel Reference
Manual: Libraries and Devices, contains tutorial-style chapters on the use of the Amiga system library functions and
device commands.

The other manuals in this series are the Amiga Hardware Reference Manual, a guide to hardware level programming
of the Amiga custom and peripheral chips, and the Amiga Rom Kernel Reference Manual: Includes and Autodocs, an
alphabetically organized reference of autodoc function summaries, listings of the Amiga system include files, and
the IFF Interchange File Format.

System Software Architecture

The Amiga kernel consists of a number of system modules, known as Libraries and Devices, some of which reside
in ROM (or in the protected kickstart memory on an AlOOO) and others that are loaded as needed from the system
disk. Each Library contains a set of functions for interacting with a particular part of the operating system. Each
Device provides commands and functions for interacting with a particular parts of the Amiga hardware.

At the top of the hierarchy are Workbench and the Command Line Interface (CLI), the user-visible portions of the
system. Workbench uses Intuition to produce its displays, and AmigaDOS to interact with the filing system.
Intuition, in tum, uses the input device to retrieve its input and the graphics and layers library routines to produce its
output.

AmigaDOS controls processes and maintains the filing system. It is in tum built upon Exec, which manages tasks,
task switching, interrupt scheduling, message-passing, I/O, and many other functions.

At the lowest level of the hierarchy is the Amiga hardware itself. Just above the hardware are the modules that
control the hardware directly. Exec controls the 68000, scheduling its time among tasks and maintaining its
interrupt vectors, among other things. The trackdisk device is the lowest-level interface to the disk hardware,
performing disk-head movement and raw disk I/O. The keyboard and gameport devices handle the keyboard and
gameport hardware, queuing up input events for the input device to process. The audio device, serial device, and
parallel device handle their respective hardware. Finally, the graphics library handles the interface to the graphics
hardware.

Introduction

The following diagram illustrates the hierarchy of the Amiga system software modules:

AmigaDOS
Processes,
File System

Exec
Tasks, Messages

Interrupts, 1/0

68000 Processor

Introduction

I ,
I
I
I

I
I

AmigaDOS CLI
and Utilities

J

Track
Disk

Device

Disk
Control

I ,
I
I
I
I

I

I

Console
Device

Input
Device

I

Keyboard
and

Gameport
Devices

Keyboard
and

Mouse

I
I
I
I
I
I

Workbench
Icons/Drawersl

Utilities

I

Intuition
Windows, Menus,
Gadgets, Events

1

Layers
Library

Graphics
Rendering, Text,

Gels

Graphics
!
I
I

I

:
Amiga Hardware

Audio
Device

Audio

I

I
I
I
I

Serial
and

Parallel
Devices

110 Ports

About the Examples

68000 assembly language examples have been assembled under the either the Metacomco assembler VI1.0, the
Inovatronics CAPE assembler V2.0, or the RiSoft Devpac assembler V1.2. No substantial changes should be
required to switch between assemblers.

C examples have been compiled under Lattice C, version 5.02 or 5.04. Except as noted, C examples were generally
compiled with the following Lattice compiler flags:

LC -bI -cfist -v -y

where:

-bl small data model .••

-cf Function prototypes ..•
i Don't multi-include include files ...
s Make all literal strings that are the same

be stored in the same place •..
t Warnings for structures used before defined ...

-v Turn off stack checking ...
-y Load the LinkerDB (a4) at start of all functions ...

The -v and -y flags are generally only needed when parts
of the program code will be called directly by the system
(for instance interrupt servers, handlers, and subtasks) .
as shown in some of the manual examples.

Note that some of these flags have been picked to make the C source
source as vanilla as possible.

Code was generally linked by either adding a -L in the LC command line
(ie. let the compiler select the startup and the linker libraries),
or by explicitly using Blink to link with startup c.o and library
LC.lib, amiga.lib. Notes on exact flags and linkage may be found
in the initial comment of many manual examples. Note that most
manual examples assume 32-bit ints. If your development environment
assumes l6-bit ints, you may need to explicitly cast or type
certain arguments as longs (for example: lL « sigbit instead of
1 « sigbit).

An effort was made to keep the C code examples as standard as possible, for easy porting to other compilers. The
examples should port fairly easily to the Manx Aztec C68K compiler. Some necessary modifications for porting to
Manx would be:

1. Replace #include <protos/all.h> with #include <functions.h>

2. Replace CXBRK line (if any) which disables Lattice CTRL-C handling with:

/* Before main(), reference abort enable */
extern int Enable Abort;
/* As first line in main() turn off CTRL-C */
Enable_Abort=O;

3. Check your compiler manual to chose compiler flags with
similar effect to those the example was compiled with.

Introduction

Amiga Development Guidelines

The environment of the Amiga computer is quite diffetent than that of many older computers. The Amiga is
multitasking, which means multiple programs must sharei1the same machine without interfering with each other. It
also means that certain guidelines must be followed durin programming.

• Always make sure you actually GET what you ask fe! . This applies to memory allocations, windows, screens,
file handles, libraries, devices, ports, etc. Where al' error value or return is possible, ensure that there is a
reasonable failure path. Many poorly writteri progra s will appear to be reliable, until some error condition
(such as memory full or a disk problem) causes thf, program to continue with an invalid or null pointer, or
branch to untested error handling code.

• Always clean up after yourself. This applies for both normal program exit and program termination due to
error conditions. Anything that was opened must be closed, anything allocated must be deallocated. It is
generally correct to do closes and deallocations in reverse order of the opens and allocations. Be sure to check
your development language manual and startup code; some items may be closed or deallocated automatically,
especially in abort conditions. If you write in the C language, make sure to provide your own CTRL-C
handling to free any Amiga-specific resources and structures.

• Remember that memory, peripheral configurations, and ROMs differ between models and between individual
systems. Do not make assumptions about memory address ranges, storage device names, or the locations of
system structures or code. Never call ROM routines directly. Beware of any example code you find which
calls routines at addresses in the $FOOOOO range. These are ROM routines and they will move with every OS
release. The only supported interface to system ROM code is through the provided library, device, and
resource calls.

• Do not assume library bases or structures will exist at any particular memory location. The only absolute in the
system is address OxOOOOOO04, which contains a pointer to the exec.library base. Do not modify or depend on
the format of private system structures. This include the poking of copper lists, memory lists, and library bases.

• Do not assume that programs can access hardware resources directly. Most hardware is controlled by system
software and resources that will not respond well to interference. Shared hardware requires programs to use the
proper sharing protocols. Using the defined interface enhances the probability that your software will continue
to operate on future Amiga computers.

• Do not access shared data structures directly without the proper mutual exclusion (locking). Remember that
other tasks may be accessing the same structures.

• Do not assume that system flags and options are limited to current possible values or choices. For example, do
not assume a display must be PAL if not NTSC, and do not assume an event must be SELECTUP if not
SELECTDOWN. Explicitly check for the values or choices you support, and provide a default case for
everything else (for example a default ReplyMsgO for uriknown IntuiMessages).

• The system does not monitor the size of a program's stack. Take care that your program does not cause stack
overflow, and provide enough leeway for the possibility that future revisions of system functions might require
additional stack space.

Introduction

If your program waits for external events like menu selection or key-strokes, do not bog down the multitasking
system by busy-waiting in a loop. Instead, let your task go to sleep by Wait()ing on its signal bits. For
example:

ULONG windowsig = lL « window->UserPort->mp SigBiti
ULONG consolesig = lL « consoleport->mp SigBIti
signals = (ULONGl Wait(windowsig I consolesigli

This turns the signal bit number for each port into a mask, then combines them as the argument for the
exec.library/WaitO function. When your task is awakened, handle all of the messages at each port where the
SigBit is set. There may be more than one message per port, or no messages at the port. Make sure that you
ReplyMsgO to all messages that are not replies themselves.

Tasks (and Processes) execute in 68000 processor user mode. Supervisor mode is reserved for interrupts, traps,
and task dispatching. Take extreme care if your code executes in supervisor mode. Exceptions while in
supervisor mode are deadly.

• Most system functions require a particular execution environment All DOS functions and any functions that
might call DOS (such as the opening of a disk-resident library, font, or device) can only be executed from a
process. A task is not sufficient. Most other ROM Kernel functions may be executed from tasks. Only a few
may be executed from interrupts.

• Do not disable interrupts or multitasking for long periods. If you use ForbidO or DisableO, be aware that use of
any system function that Waits will temporarily suspend your Forbidden or Disabled state, and allow
multitasking and interrupts to occur. Such functions include almost all forms of DOS and device 10, including
common "stdio" functions like "printf'.

Do not tie up system resources unless it is absolutely necessary. For example, if your program does not require
constant use of the printer. open the printer.device only when you need it. This will allow other tasks to use the
printer while your program is running. You must provide a reasonable error response if a resource is not
available when you need it.

Check for memory loss. Operate your program, then exit. Write down the amount of free memory. Repeat the
operation of your program and exit. The amount of free memory remaining should be exactly the same. Any
difference may signal some serious problem in your cleanup. A useful tool for memory testing is the
"LoadWB -debug" command; this will start the Workbench tool with a special invisible debug menu. The
"flushlibs" option of this menu can cause unused libraries and devices to be flushed out of memory. (The
"debug" option invokes the ROM debugger, RomWack, on the serial port at 9600 baud.)

• All data for the custom chips must reside in CHIP type memory. This includes bitplanes, sound samples,
trackdisk buffers, and images for sprites, bobs, pointers, and gadgets. (On the current generation of machines,
CHIP memory is the lowest 512K or 1 Meg of memory in the system.) The AllocMemO call takes a flag
(MEMF _CHIP) for specifying CHIP type memory. On machines with expansion (FAST) memory, programs
will by default load into FAST memory, and allocations which are not specified as MEMF _CHIP will receive
FAST memory. On machines with CHIP memory only, all program code and data, and all allocations will
automatically be in CHIP ram, and this can mask the symptoms of improper placement of custom chip data or
buffers. Most compilers have options to mark specific data structures or object modules so that they will load
into CHIP ram. Some older compilers provide the Atom utility for marking object modules. If this method is
unacceptable, use the AllocMemO call to dynamically allocate CHIP memory, and copy your data there. When
making allocations that do not require CHIP memory, do not explicitly ask for MEMF _FAST. Ask for
memory type OL or MEMF_PUBLIC as appropriate. If FAST memory is available, you will get FAST
memory.

Introduction

Do not use software delay loops! Under the multitasking operating system. the time spent in a loop can be
better used by other tasks. Even ignoring the effect of multitasking. timing loops are inaccurate and will wait
widely varying amounts of time depending on the configuration and processor of the computer. The
timer. device can provide accurate timing for use under the multitasking system. The AmigaDOS DelayO
function provides a simple interface for longer delays. The 8520 I/O chips provide timers for developers who
are bypassing the operating system (see the Amiga Hardware Reference Manual for more information).

• Obey structure conventions!

All non-byte fields must be word aligned.

All address pointers should be 32 bits (not 24 bits). The upper byte must never be used for data.

Fields that are not defined to contain particular initial values must be initialized to zero. This includes
pointer fields.

All reserved or unused fields must be initialized to zero for future compatibility.

Data structures to be accessed by the custom chips. public data structures (such as a task control block).
and structures which must be longword aligned must NOT be allocated on a program' s stack.

Dynamic allocation of structures with AllocMem provides longword aligned memory of a specified type
with optional initialization to zero. which is useful in the allocation of structures.

For 68010/68020/68030 compatibility

Special care must be taken to be compatible with the entire family of 68000 processors:

• Do not use the upper 8 bits of a pointer for storing unrelated information. The 68020 uses all 32 bits for
addressing.

• Do not use signed variables or signed math for addresses.

Do not use self-modifying code.

Do not use software delay loops. and do not make assumptions about the order in which asynchronous tasks
will finish.

The stack frame used for exceptions is different on each member of the 68000 family. The type identification
in the frame must be checked! In addition. the interrupt autovectors may reside in a different location on
processors with a VBR register.

Do not use the "MOVE SR instruction! This 68000 instruction acts differently on other members of the
68000 family. If you wish a copy of the processor condition codes. use the exec.library/GetCCO function.

• Do not use the CLR instruction on a hardware register which is triggered by access. The 68020 CLR
instruction does a single Write access. The 68000 CLR instruction does a Read access first. then a Write
access. This can cause a hardware register to be triggered twice. Use MOVE(.whatever) #0. address instead.

Introduction

Hardware Programming Guidelines

If you find it necessary to program the hardware directly, then it is your responsibility to write code which will work
properly on various various models and configurations. Be sure to properly request and gain control of the hardware
resources you are manipulating, and be especially careful in the following areas:

• All custom chip registers are READ ONLY or WRITE ONLY. Do not read Write-only registers, and do not
write to Read-only registers.

• Do not write spurious data to, or interpret undefined data from, currently unused bits or addresses in the custom
chip space. To be software-compatible with future chip revisions, all undefined bits must be set to zeros on
writes, and must be masked out on reads before interpreting the contents of the register.

• Do not write past the current end of custom chip space. Custom chips may be extended or enhanced to provide
additional registers, or to use bits which are currently undefined in existing registers.

• Do not read, write, or use any currently undefined address ranges. The current and future usage of such areas is
reserved by Commodore and is subject to change.

Additional Assembler Development Guidelines

• Do not use the "TAS" instruction on the Amiga. System DMA can conflict with this instruction's special
indivisible read-modify-write cycle.

• System functions must be called with A6 containing the library or device base. Libraries and devices assume
A6 is valid at the time of any function call. Even if a particular function does not currently require its base
register, you must provide it for compatibility with future system software releases.

• Except as noted, system library functions use registers DO, Dl, AO, and Al as scratch registers and you must
consider their former contents to be lost after a system library call. The contents of all other registers will be
preserved. System functions which provide a result will return the result in DO.

• System functions that return a result may not necessarily affect the processor condition codes. The caller must
test the returned value before acting on a condition code. This is usually done with a TST or MOVE
instruction.

Introduction

Commodore Applications and Technical Support (CATS)

Commodore currently maintains a technical support group dedicated to helping developers achieve their goals with
the Amiga. Available technical support programs are tailored both to the needs of smaller independent developers
and larger corporations. Subscription to the support publication AmigaMail is available to anyone with an interest in
the latest news, Commodore software and hardware changes, and tips for developers.

To request an application for the Commodore-Amiga Developer Programs, lists of CATS technical publications, or
information regarding electronic developer support, send a self-addressed, stamped, 9" x 12" envelope to:

CATS-Information
1200 West Wilson Drive
West Chester, PA 19380-4231

Error Reports

In a complex technical manual, errors are often found after publication. When errors in this manual are found or
reported through the proper channels, they will be filed for reference during future revisions. Important updates or
corrections may be published in the AmigaMail technical support publication.

Bug reports can be sent to Commodore electronically or by mail. Submitted reports must be clear, complete, and
concise. Reports must include a telephone number and enough information so that the bug can be quickly verified
from your report (i.e. please describe the bug and the steps that preceded it).

Amiga Software Engineering Group
ATTN: BUG REPORTS
Commodore Business Machines
1200 Wilson Drive
West Chester, PA 19380-4231
USA

BIX: afinkel USENET: bugS@commodore.COM or uunet!cbmvax!bugs
Enhancement requests may be mailed to "suggestions" instead of "bugs".

Cautions

Additional warnings and specifications on the usage of individual Amiga system software functions and commands
may be found in the Addison-Wesley Amiga ROM Kernel Reference Manual: Includes and Autodocs. Additional
warnings and specifications regarding programming of the Amiga hardware may be found in the Addison-Wesley
Amiga Hardware Reference Manual.

WARNING

Failure to regard warnings and specifications in this and other manuals can result in system failures
including, but not limited to, incorrect operation, corruption of memory, corruption of storage media,
and incompatibility with operating system revisions and hardware configurations.

Introduction

Table of Contents

Chapter 1 Intuition: Introduction .. 1
How the User Sees an Intuition Application... .2
The Right Approach to Using Intuition .. 5
Intuition Components.. 6
General Program Requirements and Information ... 6

TIlE INTUITION EVENT LOOP .. ~.. 7

Chapter 2 Intuition: Screens... 11
About Screens 11
The Workbench Screen... 13
Custom Screens... 15
Screen Characteristics ... 16

DISPLAY MODES 16
DEP11I AND COLOR... 17
TYPE STYLES .. 18
SCREEN POSITION AND DIMENSIONS .. 19
APPLICATION-MANAGED CUSTOM SCREENS ... 19
SCREEN TI1LE .. 20
CUSTOM GADGETS ... 20

Screen Data Structures .. 20
NEWSCREEN STRUCTURE ... 20
SCREEN STRUCTURE.. 23
SCREEN FUNCTIONS ... 23

Examples ... 26
LOW -RES SCREEN EXAMPLE.. 26
DUAL-PLA YFIELD SCREEN EXAMPLE ... 28

Chapter 3 Intuition: Windows .. 33
About Windows .. 33

WINDOW INPUT/OUTPUT... 35
OPENING WINDOWS ... 35
WINDOWS AND SCREENS .. 35
TIlE ACTIVE WINDOW .. 36
CLOSING WINDOWS.. 36
SPECIAL WINDOW TYPES .. 37
WINDOW GADGETS... 39
WINDOW BORDERS ... 41
PRESERVING THE WINDOW DISPLAY .. 42
REFRESHING THE WINDOW DISPLAy.. 45
WINDOW POINTER .. 46

GRAPHICS AND TEXT IN WINDOWS ... 47
WINDOW COLORS ... 47
WINDOW DI~NSIONS... 47

The NewWindow Structure... 47
WINDOW STRUCTURE.. 52
WINDOW FUNCTIONS ... 52
SETTING UP A SUPERBITMAP WINDOW.. 56
SETTING UP A CUSTOM POINTER ... 57

Examples. 59
BACKDROP WINDOW EXAMPLE.. 59
TWO WINDOW EXAMPLE .. 62
INVISIBLE POINTER EXAMPLE .. 66
SUPERBITMAP WINDOW EXAMPLE.. 66

Chapter 4 Intuition: Gadgets .. 71
About Gadgets... 71
System Gadgets... 73'

SIZING GADGET ... 74
DEPrn-ARRANGE~NT GADGETS ... 74
DRAGGING GADGET ... 74
CLOSE GADGET.. 74

Application Gadgets.. 75
RENDERING GADGETS ... 75
USER SELECTION OF GADGETS ... 77
GADGET SELECT BOX .. 77
GADGET POINTER MOVE~NTS ... 78
GADGETS IN WINDOW BORDERS .. 79
MUTUAL EXCLUDE ... 79
ALLOWABLE TYPE OF GADGETS FOR MUTUAL EXCLUSION...................................... 79
ALLOWABLE TYPES OF HIGHLIGHTING FOR MUTUAL EXCLUSION 79
HANDLING OF MUTUALLY EXCLUSIVE GADGETS .. 80
GADGET HIGHLIGHTING ... 80
GADGET ENABLING AND DISABLING.. 81
GADGET REFRESHING BY INTUITION.. 81
GADGET REFRESHING BY YOUR PROGRAM.. 82
BOOLEAN GADGET TYPE .. 82
MASKED BOOLEAN GADGETS ... 83
PROPORTIONAL GADGET TYPE... 83
SCROLLING rnROUGH GRAPHICAL OR TEXTUAL INFORMATION 85
ADmSTING A LEVEL .. 85
STRING GADGET TYPE... 87
INTEGER GADGET TYPE .. 88
COMBINING GADGET TYPES .. 89

Gadget Activation Messages ... 89
GADGET STRUCTURE ... 90
FLAGS... 92
ACTIVATION FLAGS ... 93
SPECIALINFO DATA STRUCTURES ... 94
GADGET FUNCTIONS .. 98

Example .. 100

Chapter 5 Intuition: Menus .. 109
About Menus ... 109

SUBMITTING AND REMOVING ~ STRIPS .. 111

ABOUT MENU ITEM BOXES .. 112
ACTION/AITRIDUTE ITEMS AND THE CHECKMARK ... 113
TOGGLE-SELECTION... 114
MUTUAL EXCLUSION ... 114
COMMAND-KEY SEQUENCES AND IMAGERY ... 115
ENABLING AND DISABLING MENUS AND MENU ITEMS ... 116
CHANGING MENU STRIPS ... 116
MENU NUMBERS AND MENU SELECTION MESSAGES .. 116
HOW MENU NUMBERS REALLY WORK ... 117
INTERCEPTING NORMAL MENU OPERATIONS .. 118
REQUESTERS AS MENUS ... 120
MENU STRUCTURES ... 120
MENU FUNCTIONS .. 124

Example ... :.. 125

Chapter 6 Intuition: Requesters and Alerts .. 135
About Requesters .. 135

RENDERING REQUESTERS .. 137
REQUESTER DISPLAY POSITION ... 138
DOUBLE-MENP REQUESTERS .. 138
GADGETS IN RPQUESTERS ... 138·
IDCMP REQUESTER FEATURES .. 139
A SIMPLE, AUTOMATIC REQUESTER ... 139
User Rendering... 140
REQUESTER STRUCTURE .. 141
THE VERY EASY REQUESTER .. 144
REQUESTER FUNCTIONS ... 144

Alerts ... 146
Examples ... 147

AUTOREQUEST EXAMPLE... 147
DISPLAY ALERT EXAMPLE ... 149
DOUBLE MENU REQUEST EXAMPLE.. 151

Chapter 7 Intuition: Input and Output Methods.. ISS
An Overview of Input and Output .. 155
About Input and Output 156
Using the IDCMP.. 161

INTUIMESSAGES .. 162
IDCMP FLAGS .. ;.. 163
SETTING UP YOUR OWN IDCMP MONITOR TASK AND USER PORT 167

Examples ... 168

Chapter 8 Intuition: Images, Line Drawing, And Text .. 173
Using Intuition Graphics... 173

DISPLAYING BORDERS, INTUITEXT, AND IMAGES .. 174
CREATING BORDERS .. 174
CREATING TEXT .. 178
CREATING IMAGES ... 180
INTUITION GRAPHICS FUNCTIONS ... 187

Chapter 9 Intuition: Mouse and Keyboard ... 189
About the Mouse... 189
Mouse Messages ... 191
About the Keyboard.. 191

Using the Keyboard as an Alternate to the Mouse.. 193
MOUSE AND KEYBOARD EXAMPLE... 193

Chapter 10 Intuition: Other Features .. 199
Introduction .. .
Locking IntuitionBase ... ~ .. .

199
199

Easy Memory Allocation and Deallocation .. 200
INTUITION HELPS YOU REMEMBER ... 200
HOW TO REMEMBER .. 201
THE REMEMBER STRUCTURE .. 201
AN EXAMPLE OF REMEMBERING ... 202

Preferences ... ~.. 204
PREFERENCES STRUCTURE .. 205
PREFERENCES FUNCTIONS ... 208

Remaking the ViewPorts
Current Time Values .. .
Flashing the Display
Using Sprites in Intuition Windows and Screens

209
209
210
210

Chapter 11 Intuition: Style.. 211
Menu Style .. 212

PROJECT MENUS .. 213
EDIT MENUS .. 213

Gadget Style .. 214·
Requester Style ... 215

The Sides of Good and Bad ... 215
Command Key Style ... 216

The HELP key .. 217
Cursor Key Style .. 217

Mouse Style... 218
Window and Screen Style ... 218
Miscellaneous Style Notes .. 218

Chapter 12 Intuition: Functions ... 221
Assembly Language Conventions... 223

Chapter 13 Intuition: Internal Pr()Cedures ... _... 225
SetPrefsO ... 226
AlohaWorkbenchO .. 226
IntuitionO 227

Chapter 14 Exec: Libraries ... 229
What Is a Library? 229
How To Access a Library ... 230

OPENING A LffiRARY .. 230
CALLING A LffiRARY FUNCTION... 232
USING A LIBRARY TO REFERENCE DATA ... 233
CACHING LIBRARY POINTERS ... 233
CLOSING A LffiRARY .. 234

Adding a Library. 234
RESIDENT (ROMT AG) SlRUCTURE ... 234
MINIMUM SUBSET OF LIBRARY CODE VECTORS ... 235
STRUCTURE OF A LIBRARY NODE.. 236
CHANGING THE CONTENTS OF A LIBRARy... 236

Relationship of Libraries to Devices ... 237

Chapter 15 Exec: Memory Allocation.. 239
Introduction ... 239
Using Memory Allocation Routines ... 240

MEMORY REQUIREMENTS .. 240
SAMPLE CALLS FOR ALLOCATING SYSTEM MEMORy ... 241
SAMPLE FUNCTION CALLS FOR FREEING SYSTEM MEMORy 241

Using Memory Information Routines .. ;.............................. 242
MEMORY REQUIREMENTS .. 242
SAMPLE CALLS INFORMATION ROUTINES .. 242

Using Memory Copy Routines ... 242
SAMPLE CALLS FOR COPYING SYSTEM MEMORy... 243
SUMMARY OF SYSTEM CONTROLLED MEMORY HANDLING ROUTINES................. 243

Allocating Multiple Memory Blocks .. 243
Memory Allocation and Tasks .. 246

SUMMARY OF MULTIPLE MEMORY BLOCKS ALLOCATION ROUTINES 246
Managing Memory With AllocateO And Dea1locateO ... 246
Allocating Memory at an Absolute Address ... 248

Chapter 16 Exec: Lists and Queues.. 249
Introduction 249
List Structure ... 250
List Functions.. 250

INSERTION AND REMOVAL .. 250
SPECIAL CASE INSERTION .. 251
SPECIAL CASE REMOVAL ... 251·
MINLIST IMINNODE OPERATIONS .. 251
PRIORITIZED INSERTION (QUEUES).. 251
SEARCHING BY NAME ... 252
NODE S1RUCTURE DEFINITION... 2S3
NODE INITIALIZATION ... 254
LIST HEADER S1RUCTURE DEFINITION .. 254
HEADER INITIALIZATION .. 255
MORE ON THE USE OF NAMED LISTS ... 257

List Macros for Assembly Language Programmers.. 257
Empty Lists .. ;.. 257
Scanning a List.. 258
Important Note - Shared Lists 260

Chapter 17 Exec: Tasks ... 261
Introduction ... 261
Tasks on the Amiga............................ 262

SCHEDULING .. 262
WAITING .. 263
TASK STATES .. 263
TASK QUEUES .. 264
PRIORITY ... 264
S1RUCTURE .. 264

Creation ... 265
CREATETASK.. 266
STACK ... 267

Termination 268
Signals 269

ALLOCATION .. 269
WAITIN"G FOR A SIGNAL .. 270
GENERATING A SIGNAL .. 271

Exclusion ... 271
FORBIDDIN"G ... 271
DISABLING .. 272
SEMAPHORES ... 273

Exceptions ... :... 274
Traps .. 274

HANDLERS .. 275
TRAP IN"STRUCTIONS.. 277

Chapter 18 Exec: Messages and Ports ... 279
Introduction 279
Ports .. 280

STRUCTURE .. 280
CREATION ... 281
DELETION .. 282
RENDEZVOUS ... 282

Messages. 283
PUTTING A MESSAGE ... 283
W AITIN"G FOR A MESSAGE .. 284
GETTING A MESSAGE ... 286
REPL YING .. 286

Chapter 19 Exec: Input/Output.. 289
Introduction 289
Request Structure .. 290
Interface Functions .. 291
Standard Device Commands ... 293
Performing I/O 294

PREPARATION FOR EXEC I/O .. 294.
SYNCHRONOUS REQUESTS .. 294
ASYNCHRONOUS REQUESTS.. 295
COMPLETING THE USE OF A DEVICE ... 296
QUICK I/O ... 296

Example of Device Use... 297
Standard Devices ... 298

Chapter 20 Exec: Semaphores .. 299
Introduction 299
The Signal Semaphore ... 300

Chapter 21 Exec: Interrupts ... 305
Introduction 305

SEQUENCE OF EVENTS DURIN"G AN IN"TERRUPT .. 305
IN"TERRUPT PRIORITIES ... 306
NONMASKABLE IN"TERRUPT .. 308

Servicing Interrupts 308
IN"TERRUPTDATASTRUCTURE ... 308
ENVIRONMENT .. 308
IN"TERRUPT HANDLERS ... 309
IN"TERRUPT SERVERS ... 314

Software Interrupts .. 316

Disabling Interrupts ... 319

Chapter 22_ Exec: ROM-Wack .. 321
Introduction ... 321
Getting to ROM-Wack .. 321
Keystrokes, Numbers, and Symbols :... 322
Register Frame 322
Display Frames 323
Relative Positioning 324
Absolute Positioning ... 324
Altering Memory & Stored Registers ... 324
Execution Control.............................. 325
Breakpoints ... 325
Other Commands .. 326
Returning to Multitasking After a Crash... 326

Chapter 23 Graphics: Primitives.. 327
Introduction.. 327

COMPONENTS OF A DISPLAy ... 328
INTRODUCTION TO RASTER DISPLAYS ... 328
INTERLACED AND NON-INTERLACED MODES .. 330
IDGH- AND LOW-RESOLUTION MODES ... 332
FORMING AN IMAGE .. 332
ROLE OF THE COPPER (COPROCESSOR) .. 334

Display Routines and Structures ... 335
LIMITATIONS ON THE USE OF VIEWPORTS .. 336
CHARACTERISTICS OF A VIEWPORT.. 337
VIEWPORT SIZE SPECIFICATIONS ... 337
VIEWPORT COLOR SELECTION .. 339
VIEWPORT DISPLAY MODES .. 340
VIEWPORT DISPLAY MEMORY .. 343
FORMING A BASIC DISPLAY ... 346
LOADING AND DISPLAYING THE VIEW ... 350
GRAPIDCS EXAMPLE PROGRAM ... 350

Advanced Topics... 354
CREATING A DUAL-PLA YFIELD DISPLAy... 354
CREATING A DOUBLE-BUFFERED DISPLAy... 355
EXTRA-HALF-BRITE MODE ... 356
HOLD-AND-MODIFY MODE... 357

Drawing Routines ... 358
INITIALIZING A BITMAP STRUCTURE .. 358
INITIALIZING A RASTPORT STRUCTURE... 358
USING THE GRAPIDCS DRAWING ROUTINES ... 364

User Copper Lists .. 381
Advanced Graphics Examples .. 385

DUAL-PLA YFIELDS EXAMPLE ... 385
HOLD-AND-MODIFY MODE EXAMPLE ... 388

Chapter 24 Graphics: Text.. 395
Introduction ... 395
Printing Text into a Drawing Area.. 396

CURSOR POSITION .. 396
BASELINE OF THE TEXT .. 396
SIZE OF THE FONT ... 397

PRINTING TIlE 1EXT ... 397
Selecting the Font................. 398
Selecting the Text Color, .. 400
Selecting a Drawing Mode.. 400
Effects of Specifying Font Style ... 402
Using a Disk Font ... 403

USING FONTS IN OTIlER DIRECTORIES ... 403
Finding Out Which Fonts Are Available .. 404
Contents of a Font Directory ... 408
The Disk Font. ... 410
Defining a Font. ... 410

TIlE 1EXT NODE... 410
FONT IlEIGHT ... 410
FONT STYLE .. 411
FONT FLAGS .. 411
FONT WIDTH ... 412
FONT ACCESSORS ... 412
CHARAC1ERS REPRESEN1ED BY THIS FONT... 412
TIlE CHARAC1ER DATA ... 412
A COMPLE1E SAMPLE FONT .. 414

Wrapper code .. 417

Chapter 2S Graphics: Sprites, Bobs a:r:td Animation .. 421
Introduction - Some Tenns... 422

Types Of Animation... 423
AnimCOInps ... 424
Preparing To Use Graphics Animation .. 425

Using Simple (Hardware) Sprites ... 427
Controlling Sprite DMA .. 429
Accessing A Hardware Sprite .. 429
Changing The Appearance Of A Simple Sprite ... 430
Moving A Simple Sprite .. 430
Relinquishing A Simple Sprite .. 431
Complete Sprite Example .. 431

True VSprites .. 433
VSprite Setup .. 433'

SPECIFICATION OF VSPRI1E STRUCTURE .. 433
RESERVED VSPRI1E MEMBERS ... 435
USING VSPRI1E FLAGS... 436
VSPRI1E POSITION .. 436
VSPRI1E IMAGE SIZE .. 437
VSPRI1E MEMBERS FOR COLLISION DETECTION... 437
VSPRI1E IMAGEDA T A ... 437
SPECIFYING TIlE COLORS OF A VSPRI1E .. 438
ADDING A VSPRI1E ... 439
REMOVING A VSPRI1E ... 439
CHANGING VSPRI1ES ... 440

VSPRI1E ADVANCED TOPICS .. 440
VSPRI1E MACHINE .. 440
GETTING TIlE VSPRI1E LIST IN ORDER ... 442
DISPLAYING TIlE VSPRITES ... 443

Complete VSprite Example .. 445
Using Bobs .. 448

TIlE VSPRITE STRUCTURE AND BOBS ... 448

VSPRI1E FLAGS AND BOBS , .. 448
THE BOB STRUCTURE .. 450
LINKING A BOB TO A VSPRI1E STRUCTURE .. 452
USING BOB FLAGS ... 453
SPECIFYING Tlffi SIZE OF A BOB ... 454
SPECIFYING Tlffi SHAPE OF A BOB ... 454
SPECIFYING Tlffi COLORS OF A BOB .. 455
OTHER I1EMS INFLUENCING BOB COLORS ... 456
BOB PRIORITIES ... 458
ADDING A BOB ... 459
REMOVING A BOB ... 459
GETTING Tlffi LIST OF BOBS IN ORDER... 460
DISPLAYING BOBS .. 460
CHANGING BOBS ... 460
COMPLE1E BOB EXAMPLE ... 461
DOUBLE-BUFFERING .. 464

Collisions And User Structure Extensions .. 465
DETECTING GEL COLLISIONS .. 465
SETTING UP FOR BOUNDARY COLLISIONS .. 470
ADDING USER EX1ENSIONS TO GEL DATA STRUCTURES ... 471

Animation Concepts .. 472
Animation Structures and Controls ... 472

ANIMATION TYPES ... 473
CHARACTERISTICS OF THE ANIMATION SYS1EM ... 475
SPECIFYING ANIMATION COMPONENTS .. 475
SEQUENCING COMPONENTS .. 476
Sequence List Traversal... 476
Component Ordering.. 476
ANIMATION SEQUENCING .. 478
SPECIFYING TIME FOR EACH IMAGE ... 478
ANOTlffiR LOOK AT THE ANIMOB .. 479
ADDING ANIMATION OBJECTS .. 479
YOUR OWN ANIMATION ROUTINE CALLS.. 480
MOVING THE OBJECTS ... 481
THE ANIMATEO SYS1EM CALL.. 481
THE ANIMKEY .. 481
STANDARD GEL RULES STILL APPLy.. 482-
ANIMATIONS SPECIAL NUMBERING SYSTEM ... 482

Complete Example Program ... 482

Chapter 26 Layers Library .. 505
Introduction 505

DEFINITION OF LAYERS .. 506
TYPES OF LAYERS SUPPOR1ED ... 506

Layers Library Routines.. 506
ALLOCATING AND DEALLOCATING LAyER_INFO ... 507
ALLOCATING AND DEALLOCATING LAYERS .. 508
CREATING AND DELETING LAyERS ... 508
MOVING LAyERS ... 508
SIZING LAYERS .. 508
CHANGING A VIEWPOINT ... 508
REORDERING LAYERS ... 509
DE1ERMINlNG LAYER POSITION .. 509
IN1ERTASK OPERATIONS .. 509

SUB-LAYER RECTANGLE OPERATIONS ... 510
The Layer's RastPort ... 511

SIMPLE REFRESH LAyER... 511
SMART REFRESH LAYER ... 512
SUPERBITMAP LA YER.. 512
BACKDROP LA YER.. 512

Using the Layers Library .. 512
OPENING THE LAYERS LIBRARY .. 512
OPENING THE GRAPHICS LIBRARY .. 513
CREATING A VIEWING WORKSPACE ... 513
CREATING THE LAYERS .. 513
GETTING THE POINTERS TO THE RASTPORTS ... 513
USING THE RASTPORTS FOR DISPLAy.. 514

Regions .. 514
CREATING AND DELETING REGIONS ... 515
INSTALLING REGIONS.. 515
CHANGING A REGION .. 517
CLEARING A REGION.. 518
LAYERS EXAMPLE .. 518

Chapter 27 Expansion Library .. 527
AUTOCONFIGTM .. 527
The Expansion Sequence .. 528
Expansion Board Drivers .. 529

DISK BASED DRIVERS .. 529
MakeDosNode AND AddDosNode... 530
ROM BASED AND AUTOBOOT DRIVERS.. 531
EVENTS AT DIAG TIME .. 532
EVENTS AT ROMTAG INITTIME .. 537
EVENTS AT BOOT TIME ... 538
RigidDiskBlock and Alternate Filesystems ... 538
RigidDiskBlock... 539
BadBlockBlock .. 541
PartitionBlock .. 542
FileSysHeaderBlock... 543
LoadSegBlock .. 544
filesysres.h and i ... 545

Chapter 28 Math Libraries .. ~... 547
Introduction 547
FFP Floating Point Data Format ... 548.
FFP Basic Mathematics Library ... 549
FFP Transcendental Mathematics Library .. 554
FFP Mathematics Conversion Library 560
IEEE Double-Precision Data Format .. 562
IEEE Double-Precision Basic Math Library ... 563
IEEE Double-Precision Transcendental Math Library ... 568

Chapter 29 Translator Library ... 575
OPENING THE TRANSLATOR LIBRARy... 575
USING THE TRANSLATE FUNCTION ... 576
CLOSING THE TRANSLATOR LIBRARy .. 576
ADDITIONAL NOTES ABOUT TRANSLATE .. 576

Chapter 30 Workbench .. 579
Introduction 579
The Icon Library ... 580
The Info File... 581

THE DISKOBJECT S1RUCTURE... 581
THE GADGET S1RUCTURE .. 583
ICONS WITH NO POSITION .. 584

Workbench Environment .. 584
WBSTARTUP MESSAGE .. 584

The ToolTypes Array .. 586
Example Code ... 587

PrArgs.c.. 587
RKM_Icon_Example.c... 589
PROGRAM STARTUP CODE ... 593
Standard Amiga Startup Source ... 594

Chapter 31 Audio Device.. 607
Introduction 607

DEFINITIONS ... 608
Audio Functions and Commands .. 609

COMMAND TYPES ... 609
SCOPE OF COMMANDS... 610
SYSTEM FUNCTIONS .. 610
ALLOCATION AND ARBITRATION .. 614
ALLOCATION/ARBI1RATION COMMANDS ... 615
HARDWARE CON1ROL COMMANDS .. 618
DOUBLE BUFFERED SOUND EXAMPLE ... 620

Chapter 32 Clipboard Device... 627
Introduction 627
Clipboard Commands ... 627
Clipboard Data 629
Clipboard Messages 629
Multiple Clips 630
Example Program .. 631
Support Functions Called from Example Program ... 633

Chapter 33 Console Device... 637
Introduction 637
System Functions .. 638
Console I/O 638

GENERAL CONSOLE SCREEN OUTPUT .. 638
CONSOLE KEYBOARD INPUT ... 638

Creating an I/O Request .. 640
Opening a Console Device .. 64(}

THE CONUNIT S1RUCTURE ... 641
SENDING A CHARACTER STREAM TO THE CONSOLE DEVICE.................................... 641

Control Sequences for Window Output .. 642
READING FROM THE CONSOLE ... 647

Closing a Console Device...... 648
Console Device Example Code... 648

INFORMATION ABOUT THE READ-STREAM... 653
CURSOR POSITION REPORT .. 654
WINDOW BOUNDS REPORT .. 654

SELECTIN"G RAW INPUT EVENTS... 655
Complex Input Event Reports ... 656
Using the Console Device Without a Window... 662
Keymapping .. 663

ABOUT QUALIFIERS.. 665
KEYTYPE TABLE ENTRIES .. 666'
STRIN"G-OUTPUT KEyS ... 666
CAPS ABLE BIT TABLE .. 667
REPEATABLE BIT TABLE ... 668
KEY MAP STANDARDS ... 668
DEAD-CLASS KEYS ... 669
Double-Dead Keys ... 671

Complete Keymap Source Example ... 672

Chapter 34 Gameport Device... 683
Introduction 683
Gameport Device Commands ... 684

GPD _ASKCTYPE ... 684
GPD _SETCTYPE ... 685
GPD _SETTRIGGER ... 686
GPD_ASKTRIGGER .. 688
GPD _READEVENT .. 688

Joystick Example Program... 689

Chapter 3S Input Device... 693
Introduction 693
Input Device Commands... 694

IN"D_ADDHANDLER COMMAND... 695
IN"D_REMHANDLER COMMAND... 697
IN"D_ WRITEEVENT COMMAND... 697
IN"D_SETTIIRESH COMMAND .. 699
IN"D_SETPERIOD COMMAND ... 699

Input Device and Intuition 700
Sample Program .. 700

Chapter 36 Keyboard Device ... 70S
Introduction 705
Keyboard Device Commands ... 706

KBD_READMATRIX ... 706
KBD_ADDRESETHANDLER ... 708
KBD_REMRESETHANDLER ... 709
KBD_RESETHANDLERDONE ... 709
KBD_READEVENT ... 712

Example Keyboard Read-event Program .. 713

Chapter 37 Narrator Device... 715
Introduction ... 715
The Translator Library .. 716

USIN"G THE TRANSLATE FUNCTION ... 716
The Narrator Device.. 717,

OPENIN"G THE NARRATOR DEVICE... 717
CONTENTS OF THE WRITE REQUEST BLOCK ... 717
CONTENTS OF TIIE READ REQUEST ... 719
PERFORMING A WRITE AND A READ ... 719

Example Program .. 720
How to Write Phonetically for Narrator.. 720

PHONETIC SPELLING .. 721
CHOOSING THE RIGHT VOWEL.. 721
CHOOSING THE RIGHT CONSONANT ... 722
CONTRACTIONS AND SPECIAL SYMBOLS .. 722
STRESS AND INTONATION .. 722
HOW AND WHERE TO PUT THE STRESS MARKS ... 723'
WHAT STRESS VALUE DO I USE?... 724
PUNCTUATION ... 724
HINTS FOR INTELLIGIBILITY .. 725
EXAMPLE OF ENGLISH AND PHONETIC TEXTS ... 725
CONCLUDING REMARKS ... 726

The More Technical Explanation.. 726
Table of Phonemes .. 727

Chapter 38 ParaDel Device ... 737
Introduction 737
Opening & Closing the Parallel Device .. 738
Termination of Reads .. 740
Setting Parallel Parameters 740

PARALLEL FLAGS (io_ParFlags)... 741
SETTING THE PARAMETERS ... 741

Errors from the Parallel Device... 742

Chapter 39 Printer Device.. 743
Introduction ... 743
Using the Printer Device as an AmigaDOS File ... 744

OPENING THE AMIGADOS PRINTER DEVICE.. 744
CLOSING THE AMIGADOS PRINTER DEVICE .. 745

Using the Printer Device Directly ... 745
DATA STRUCTURES USED DURING PRINTER I/O .. 745
CREATING AN I/O REQUEST ... 746
OPENING THE PRINTER DEVICE .. 746
SENDING I/O COMMANDS TO THE PRINTER DEVICE... 747
WRITING TEXT TO THE PRINTER .. 748
SENDING PRINTER COMMANDS TO THE PRINTER ... 749
PRINTER COMMAND DEFINITIONS ... 749
DUMPING A RASTPORT TO THE PRINTER ... 752
PRINTER SPECIAL FLAGS .. 753
PRINTING WITH CORRECTED ASPECT RATIO.. 753
HANDLING PRINTER ERROR CODES .. 755
STRIP PRINTING ... 759
GETTING INFORMATION ABOUT THE PRINTER .. 760
CHANGING THE PRINTER PREFERENCES SETTINGS .. 762
ADDITIONAL NOTES ABOUT GRAPHIC DUMPS ... 763

Creating a Printer Driver ... 763
WRITING A GRAPHICS PRINTER DRIVER .. 766
WRITING AN ALPHANUMERIC PRINTER DRIVER ... 772
TESTING THE PRINTER DRIVER... 776

Example Printer Driver Source Code.. 777
macros.i ... 777,
EPSONX ... 779

EPSONX: PRINTERTAG.ASM ... 779

EPSONX_REV.I .. 782
EPSONX: INIT.ASM .. 782
EPSONX: DATA.C ... 784
EPSONX: DOSPECIAL.C .. 788
EPSONX: RENDER.C .. 791
EPSONX: DENSITY.C ... 796
EPSONX: TRANSFER.ASM.. 797
EPSONX: TRANSFER.C .. 801

EPSONQ ... 804
EPSONQ: PRINTERTAG.ASM ... 804
EPSONQ: EPSONO-REV.I .. 806
EPSONQ: INIT.ASM .. 806.
EPSONQ: DAT A.C ... 809
EPSONQ: DOSPECIAL.C .. 812
EPSONQ: RENDER.C .. 815
EPSONQ: DENSITY.C ... 819
EPSONQ: TRANSFER.C .. 8i9

lIP _LASERJET .. 822
lIP _LASERJET: PRINTERTAG.ASM... 822
lIP _LASERJET: lIP _REV.I .. 825
lIP _LASERJET: INIT.ASM .. 825
lIP _LASERJET: DAT A.C... 827
lIP _LASERJET: DOSPECIAL.C.. 829
lIP _LASERJET: RENDER.C.. 833
lIP _LASERJET: DENSITY.C ... 836
lIP _LASERJET TRANSFER.C .. 836

XEROX_ 4020 ... 838
XEROX_ 4020: PRINTERTAG.ASM ... 83~
XEROX_ 4020: XEROX_ 4020_REV.I.. 840
XEROX_ 4020: INIT .ASM .. 841
XEROX_4020: DATA.C ... 843
XEROX_ 4020: DOSPECIAL.C .. 847
XEROX_ 4020: RENDER.C .. 850
XEROX_ 4020: TRANSFER.C.. 855

Chapter 40 Serial Device .. 859
Introduction 859
Opening the Serial Device 860
Closing the Serial Device.. 861
Writing to the Serial Device.. 861
Reading from the Serial Device................. 862

FIRST ALTERNATIVE MODE FOR INPUT OR OUTPUT .. 862
SECOND ALTERNATIVE MODE FOR INPUT OR OUTPUT ... 863
HIGH SPEED OPERATION ... 863
USE OF BEGINIO WITH THE SERIAL DEVICE.. 864
TERMINATION OF THE READ ... 864

Using Separate Read and Write Tasks .. 865
Setting Serial Parameters - SDCMD_SETPARAMS ... 866

SERIAL FLAGS (bit definitions for io_SerFlags) .. 868
SETTING THE PARAMETERS ... 869

Error codes from the Serial Device.............. 869
Multiple serial port support ... 869
Taking Over the Hardware.. 870

Chapter 41 Timer Device.. 871
Introduction ... 871
Timer Device Units ... 871
Opening a Timer Device ... 873
Adding a Time Request... 873
Aborting a Timer Request ... 875
Closing a Timer ... 875
Additional Timer Functions and Commands .. 875

SYSTEM TIME ... 876
USING THE TIME ARITfIMETIC ROUTINES.. 877
WHY USE TIME ARITfIMETIC? ... 878

Sample Timer Program ... 879

Chapter 42 Trackdisk Device... 883
Introduction 883
The Amiga Floppy Disk.. 884
Trackdisk Device Commands ... 884
Creating an I/O Request .. 886'
Opening a Trackdisk Device ... 887
Sending a Command to the Device ... 888
Terminating Access to the Device 888
Device-specific Commands ... 888

ETD_READ and CMD_READ ... 888
ETD_ WRITE and CMD_ WRITE.. 889
ETD_UPDATE AND CMD_UPDATE... 889
ETD_CLEAR and CMD_CLEAR... 890
ETD_MOTOR and TD_MOTOR .. 890
ETD _FORMAT and TD _FORMAT ... 891

Status Commands .. 891
TD _ CHANGENUM .. 892
TD_CHANGESTATE ... 892
TD_PROTSTATUS ... 892
TD_GETDRlVETYPE .. 892
TD_GETNUMTRACKS ... 893

Being Notified of Disk Changes ... 893
TD _ADDCHANGEINT '.. 893
TD_REMCHANGEINT .. 894

Commands for Low-Level Access.. 894
ETD_RA WREAD and TD_RA WREAD .. 894
ETD_RAWWRITE and TD_RAWWRITE ... 895

Commands for Diagnostics and Repair... 896
ETD_SEEK and TD_SEEK... 896

Trackdisk Device Errors. 897
Example Program.. 897

Chapter 43 Resources ... 903
Introduction 903
Disk Resource 904
CIA Resource.. 904
Misc Resource 905
POTGO Resource.. 907

Appendix A Troubleshooting Your Software ... 909
GENERAL DEBUGGING TECHNIQUES .. 914
A FINAL WORD ABOUT TESTING .. 914

Appendix B Linker Libraries .. 915
Introduction... 915

AMIGA.LIB... 916
DEBUG.LIB .. 916

Amiga.lib ... 917
EXEC_SUPPORT .. 917
CLIB ... 917
OTIffiR .. 918

Debug.lib... 919

Appendix C Floppy Boot Process and Physical Layout .. 921

Glossary......•....... 925

Ind!x ... 935

List of Figures

Figure 1-1 A Screen with Windows .. 3
Figure 1-2 Menu Items and Subitems ... 3
Figure 1-3 A Requester.... 4
Figure 1-4 An Alert... 5
Figure 2-1 A Screen and Windows ... 12
Figure 2-2 Screen and Windows with Menu List Displayed .. 13
Figure 2-3 The Workbench Screen and the Workbench Application ... 14
Figure 2-4 Topaz Font in 6O-column and 80-column Types .. 19
Figure 3-1 A High-resolution Screen and Windows... 34
Figure 3-2 System Gadgets for Windows ... 40
Figure 3-3 Simple Refresh .. 43
Figure 3-4 Smart Refresh .. 44
Figure 3-5 SuperBitMap Refresh :... 45
Figure 3-6 The X-Shaped Custom Pointer.. 58
Figure 4-1 System Gadgets in a Low-resolution Window.. 73
Figure 4-2 Hand-drawn Gadget - Unselected and Selected ... 75
Figure 4-3 Line-drawn Gadget - Unselected and Selected... 76
Figure 4-4 Example of Combining Gadget Types .. 89
Figure 5-1 Screen with Menu Bar Displayed .. 111
Figure 5-2 Example Item Box... 112
Figure 5-3 Example Subitem Box ... 113
Figure 5-4 Menu Items with Command Key Shortcuts .. 115
Figure 6-1 Requester Deluxe .. 136
Figure 6-2 A Simple Requester Made with AutoRequestO .. 140
Figure 6-3 The' 'Out of Memory" Alert .. 146
Figure 7-1 Watching the Stream ... 156
Figure 7-2 Input from the IDCMP, Output through the Graphics Primitives... 158
Figure 7-3 Input and Output through the Console Device.. 159
Figure 7-4 Full-system Input and Output (a Busy Program) .. 160
Figure7-5 Output Only ... 161
Figure 8-1 Example of Border Relative Position.. 176
Figure 8-2 Intuition's High-resolution Sizing Gadget Image ... 182
Figure 8-3 Example of Plane Pick and PlaneOnOff ... 184
Figure 8-4 Example Image - the Front Gadget... 186
Figure 11-1 The Dreaded Erase-Disk Requester... 214
Figure 16-1 Simplified Overview of an Exec List .. 250
Figure 16-2 Complete Sample List Showing all Interconnections ... 252
Figure 16-3 List Header Overlap .. 256
Figure 16-4 Initializing a List Header Structure ... 256
Figure 23-1 How the Video Display Picture Is Produced ... 329
Figure 23-2 Display Overscan Restricts Usable Picture Area .. 330'

Figure 23-3 Interlaced Mode - Display Fields and Data in Memory ... 331
Figure 23-4 Interlaced Mode Doubles Vertical Resolution 331
Figure 23-5 Sample Memory Words ... 332
Figure 23-6 A Rectangular "Look" at the Sample Memory Words .. 333
Figure 23-7 Bit-Plane for a Full-screen, Low-resolution Display.. 333
Figure 23-8 Bits from Each Bit-Plane Select Pixel Color .. 334
Figure 23-9 The Display Is Composed of ViewPorts ... 336
Figure 23-10 Correct and Incorrect Uses of ViewPorts .. 337
Figure 23-11 Size Definition for a ViewPort .. 338
Figure 23-12 A Single-playfield Display .. 341
Figure 23-13 A Dual-playfield Display ... 342
Figure 23-14 How HIRES Affects Width of Pixels .. 342
Figure 23-15 How LACE Affects Vertical Resolution ... 343
Figure 23-16 ViewPort Data Area Parameters.. 344
Figure 23-17 Example of Drawing Through a Stenci1.. 374
Figure 23-18 Example of Extracting from a Bit-Packed Array .. 375
Figure 23-19 Modulo .. 376
Figure 24-1 Text Baseline ... 396
Figure 24-2 Complement Mode.. 401
Figure 24-3 CharSpace .. 413
Figure 24-4 CharKern ... 414'
Figure 25-1 GEL Structure Layout ... 425
Figure 25-2 Sprite Color Registers ... 428
Figure 25-3 A Collision Mask .. 467
Figure 25-4 Ring Motion Control... 474
Figure 25-5 Linking AnimComps For a Multiple Component AnimOb .. 477
Figure 25-6 Specifying an AnimOb Position.. 479
Figure 25-7 Linking of an AnimOb .. 480
Figure 33-1 Amiga Character Set ... 639
Figure 33-2 Amiga 1000 Keyboard Showing Keycodes in Hex ... 658
Figure 33-3 Amiga 500/2000 Keyboard Showing Keycodes in Hex ... 658
Figure 36-1 Raw Key Matrix .. 707

List of Tables

Table 2-1 Screen Depth and Color .. 18
Table 4-1 System Gadget Placement in Windows and Screens.. 73
Table 4-2 Editing Keys and Their Functions .. 88
Table 9-1 Mouse Activities... 190
Table 9-2 Special Command Keys.. 192
Table 11-1 Project Menus ... 213
Table 11-2 Edit Menus .. 213
Table 11-3 Selection Shortcuts ... 216'
Table 11-4 Information (Menu) Shortcuts .. 217
Table 11-5 Cursor Keys .. 217
Table 17-1 Traps (68000 Exception Vector Numbers)... 275
Table 21-1 Interrupts by Priority ... 307
Table 23-1 Depth Values and Number of Colors in the ViewPort ... 339
Table 23-2 Single-playfield Mode (DUALPF not specified in Modes variable)...................................... 340
Table 23-3 Dual-playfield Mode (DUALPF specified in Modes variable) .. 340
Table 23-4 Bit-Plane Assignment in Dual-playfield Mode... 354
Table 23-5 Minterm Logic Equations ... 378
Table 23-6 Some Common Logic Equations for Copying ... 378
Table 24-1 Default Character Fonts .. 398
Table 30-1 Workbench Object Types ... 581
Table 31-1 Suggested Precedences for Channel Allocation ... 614
Table 31-2 Possible Channel Combinations ... 615
Table 33-1 Console Control Sequences .. 642
Table 33-2 Amiga Console-control Sequences ... 645
Table 33-3 Special Key Report Sequences ... 654
Table 33-4 Raw Input Event Types .. 655
Table 33-5 Input Event Qualifiers... 657
Table 33-6 ROM Default (USAO) and USAI Console Key Mapping.. 659
Table 33-7 High Key Map Hex Values ... 664
Table 33-8 Keymap Qualifier Bits .. 666
Table 35-1 Input Device Commands .. 694
Table 37-1 Recommended Stress Values .. 724
Table 37-2 Phonemes .. 727
Table 38-1 Parallel Parameters (lOExtPar) "... 740
Table 38-2 Parallel Flags (io_ParFlags).. 741
Table 38-3 Parallel Device Errors ... 742
Table 39-1 Printer Device Command Functions... 750
Table 40-1 Serial Parameters .. 866
Table 40-2 Serial Flags (io_SerFlags)... 868
Table 42-1 Trackdisk Device Error Codes .. 897

Chapter 1

Intuition: Introduction

Welcome to Intuition, the Amiga user interface.

What is a user interface? This sweeping phrase covers all aspects of getting input from and sending output to the
user. It includes the innermost mechanisms of the computer and rises to the height of defining a philosophy to guide
the interaction between man and machine. Intuition is, above all else, a philosophy turned into software.

Intuition's user interface philosophy is simple to describe: the interaction between the User and the computer should
be simple, enjoyable, and consistent; in a word, intuitive. Intuition supplies a bevy of tools and environments that
can be used to meet this philosophy.

Intuition was designed with two major goals in mind. The first is to give users a convenient, constant, colorful
interface with the functions and features of both the Amiga operating system and the programs that run in it. The
other goal is to give application designers all the tools they need to create this colorful interface and to free them of
the responsibility of worrying about any other programs that may be running at the same time, competing for the
same display and resources.

The Intuition software manages a many-faceted windowing and display system for input and output. This system
allows full and flexible use of the Amiga's powerful multitasking, multi-graphic, and sound synthesis capabilities.
Under the Amiga Executive operating system, many programs can reside in memory at the same time, sharing the
system's resources with one another. Intuition allows these programs to display their information in overlapping
windows without interfering with one another; in addition, it provides an orderly way for the user to decide which
program to work with at any given instant, and how to work with that program.

Intuition: Introduction 1

Intuition is implemented as a library off unctions. These functions are available to high-level language programmers
via interface libraries and to assembly-language programmers. Application programmers use these routines along
with simple data structures to generate program displays and to interface with the user.

A program can have access to all the functions and features of the machine by opening its own virtual terminal.
When a virtual terminal is opened, your program will seem to have the entire machine and display to itself. It may
then display text and graphics to its terminal, and it may ask for input from any number of sources, ignoring the fact
that any number of other programs may be performing these same operations. In fact, your program can open several
of these virtual terminals and treat each one as if it were the only program running on the machine.

The user sees each virtual terminal as a window. Many windows can appear on the same display. Each window can
be the virtual terminal of a different application program, or several windows can be created by the same program.

The Amiga also gives you powerful graphics and audio tools for your applications. There are many display modes
and combinations of modes (for instance, four display resolutions, hold-and-modify mode, dual-playfield mode,
different color palettes, double-buffering, and more) plus animation and speech and music synthesis. You can
combine sound, graphics, and animation in your Intuition windows. As you browse through the Intuition chapters,
you'll find many creative ways to turn Intuition and the other Amiga tools into your own personal kind of interface.

How the User Sees an Intuition Application

From the user's viewpoint, the Amiga environment is colorful and graphic. Application programs can use graphics
as well as text in the windows, menus, and other display features described below. You can make liberal use of
icons (small graphic objects symbolic of an option, command, or object such as a document or program) to help
make the user interface clear and attractive.

The user of an Amiga application program, or of the AmigaDOS operating system, sees the environment through
windows, each of which can represent a different task or context (see figure). Each window provides a way for the
user and the program to interact. This kind of user interface minimizes the context the user must remember. The
user manipulates the windows, screens (the background for windows), and contents of the windows with a mouse or
other controller. At his or her convenience, the user can switch back and forth between different tasks, such as
coding programs, testing programs, editing text, and getting help from the system. Intuition remembers the state of
partially completed tasks while the user is working on something else.

The user can change the shape and size of these windows, move them around on the screen, bring a window to the
foreground, and send a window to the background. By changing the arrangement of the windows, the user can select
which information is visible and which terminal will receive input While the user is shaping and moving the
windows around the display, your program can ignore the changes. As far as the application is concerned, its virtual
terminal covers the entire screen, and outside of the virtual terminal there's nothing but a user with a keyboard and a
mouse (and any other kind of input device, including joysticks, graphics tablets, light pens, and music keyboards).

Screens can be moved up or down in the display, and they can be moved in front of or behind other screens. In the
borders of screens and windows there are control devices, called gadgets, that allow the user to modify the
characteristics of screens and windows. For instance, there is a gadget for changing the size of a window and a
gadget for arranging the depth of the screens.

2 Intuition: Introduction

Workbench Screen

Figure 1-1: A Screen with Windows

Applications can use a variety of custom gadgets. For example, the program might use a gadget to request that the
user type in a string of characters. Another gadget might be used to adjust the sound volume or the color of the
screen.

At any time, only one window is active in the sense that only one window receives input from the user. Other
windows, however, can work on some task that requires no input For the active window, the screen's title bar can
be used to display a list of menus (called the menu bar) at the user's command. By moving the mouse pointer along
the menu bar, the user can view a list of menu items for each menu category on the menu bar. Each item in the list
of menus can have its own subitem list (see figure).

Figure 1-2: Menu Items and Subitems

Intuition: Introduction 3

Menus present lists of options and commands. The user can make choices from menus by using the mouse pointer
and buttons. Applications can also provide the user with key-sequence shortcuts, as an alternative to the mouse.
Intuition supplies certain key-sequence shortcuts automatically.

Windows can present the user with special requester boxes, invoked by the system or by applications (see figure).
Requesters provide extended communication between the user and the application. When a requester is displayed,
interaction with that window is halted until the user takes some action. The user, however, can make some other
window active and deal with the requester later. If you wish, you can let the user bring up a requester on demand.

PLEASE TYPE IN A PAINTING NAME
IlluMination o€ Twilight.

I CANCEL I

Figure 1-3: A Requester

The alert (see figure) is another kind of special information exchange device invoked by the system or an
application. The alert display is dramatic. It appears in red and black at the top of the display, with text and a
blinking border. Alerts are meant to be used when a serious problem has occurred or when the user must take some
action immediately. The application may also try to get the user's attention by flashing the screen or windows in a
complementary color.

4 Intuition: Introduction

Software Failure. Press left Mouse button to continue.
Guru Meditation M8188BB9.8BC83786

Figure 1-4: An Alert

The Right Approach to Using Intuition

Intuition is a very flexible program environment. with a vast number of features and defaults. The tools and devices
are well defined and easily accessible. Although many default values are provided for you to rely on, few
restrictions are placed on you. You are encouraged to let your creativity flow. Taking advantage of the many
Intuition features enables you to spend less time implementing user-interaction mechanisms of your own, since
Intuition already provides a wide range of them for you; in addition. the user of your code gets to work in. an
environment that does not change radically from one application to another.

For example, you can define the windows for your program in the standard Workbench screen provided by Intuition.
Then you can use the standard system requesters and gadgets and simple menu facilities. Alternatively, you can
design a custom screen using your own choice of modes and colors. You can use Intuition's standard imagery for
your windows and gadgets, or you can design completely custom graphics. Intuition allows you to create your own
pointer and to combine elaborate graphic images and text strings in menu items. You can also choose to mix
predefined features and custom designs. Your creative freedom is practically limitless under Intuition.

No matter how simple, complex, or fanciful your program design, it will fit within the basic Intuition framework of
windows and screens, gadgets, menus, requesters. and alerts. The users of the Amiga will come to understand these
basic Intuition elements and to trust that the building blocks remain constant. This consistency ensures that a well
designed program will be understandable to the naive user as well as to the sophisticate. This is the essence and the
beauty of the Intuition philosophy.

Intuition: Introduction 5

Intuition Components

These are Intuition's major components:

• Windows provide the means for obtaining input from the user; they are also the normal destination for the
program's output

• Screens provide the background for opening windows.

• Numerous mechanisms exist for interaction between users and applications:

Menus present users with options and give them an easy way of entering commands.

Requesters provide a menu-like exchange of information.

Gadgets are the main method of communication.

Alerts are for emergency communications.

• The mouse is the user's primary tool for making selections and entering commands.

• The keyboard is used for entering text and as an alternate shortcut method of entering commands.

Other input devices, like graphics tablets or music keyboards, provide additional means of user input

• The methods of program input and output are as follows:

• Input is received through the console device or Intuition Direct Communication Message Ports
(known as the IDCMP).

Output is transmitted through the console device or directly to the graphics, text, and animation
library functions, as well as through speech and sound.

General Program Requirements and Information

The sample Intuition shell program that follows shows all of the basic requirements for an Intuition application.
There are three important points:

• You must open the Intuition library before you can use the Intuition functions.

• Certain languages such as "C" require the pointer to the Intuition library be assigned to a variable called
"IntuitionBase" .

• Resources must be returned to the System.

6 Intuition: Introduction

THE INTUITION EVENT LOOP

The Intuition event loop that we'll use is called "main.c". It opens a window on a custom screen. then waits for you
to click on the close gadget. When you do. it closes the window. the screen. and Intuition. We will use main.c for
most of our Intuition examples. It will vary from example to example. as our needs dictate. Each different window
has its own header file. So, we'll sometimes "#include "sandstoneWindow.h"" or "agateWindow.h". instead of
the customary "graniteWindow.h". (All of the window header files are named after rocks. for consistency in
naming. The names convey nothing about the window characteristics.)

/* sysgads.h */
/* These are, respectively, the sum of the widths of the*/
/* close gadget and depth arrangement gadgets; and the */
/* sum of the heights of the sizing gadget and the */
/* depth arrangement gadgets. These values are merely *1
1* advisory, since the height depends on the font */
/* height, and the width depends on the screen width. */

#define SYSGADSWIDTH 80
#define SYSGADSHEIGHT 19

1* end of sysgads.h *1

1* hires.h -- Declare and initialize a NewScreen structure *1

struct NewScreen fullHires =
{

0, /* the LeftEdge must be zero *1
0, 1* TopEdge */
640, 1* Width (high-resolution) *1
STDSCREENHEIGHT, 1* Height (non-interlace) *1
2, 1* Depth (4 colors will be available)
-1, -1, 1* Default DetailPen and BlockPen *1
HIRES, /* the high-resolution display mode *1
CUSTOMSCREEN, /* the screen type *1
NULL, 1* no special font *1
"Our Own Screen", /* the screen title */
NULL, 1* no special screen gadgets *1
NULL /* no CustomBitMap */
} ;

1* end of hires.h *1

*/

1* graniteWindow.h This file implements a fairly ordinary window. *1

#include "sysgads.h"

#define GRAN LEFTEDGE 20
#define GRAN TOPEDGE 20
#define GRAN WIDTH 400
#define GRAN-HEIGHT 150

struct NewWindow graniteWindow
{
GRAN_LEFTEDGE,
GRAN_TOPEDGE,
GRAN_WIDTH,
GRAN HEIGHT,
0,1,
CLOSEWINDOW,
WINDOWCLOSE I
WINDOWDEPTH I
NULL,

NULL,

/* Plain vanilla DetailPen and BlockPen. *1
1* Tell program when close gadget has been hit */

SMART_REFRESH I ACTIVATE I WINDOWDRAG I
WINDOWSIZING I NOCAREREFRESH,

/* Pointer to the first gadget *1
/* may be initialized later. *1
1* No checkmark. */

Intuition: Inttoduction 7

"graniteWindow", 1* Wipdow title. *1
NULL, 1* Attach a Screen later. *1
NULL, 1* No bitmap. *1
SYSGADSWIDTH, 1* Minimum width. *1
SYSGADSHEIGHT, 1* Minimum height. *1
OxFFFF, 1* Maximum width. *1
OxFFFF, 1* Maximum height. *1
CUSTOMSCREEN 1* A screen of our own. *1
} ;

1* end of graniteWindow.h *1

1* main.c - This is the program shell we'll be using with our examples. *1
1* Compiled with Lattice C vS.02 *1
1* Compiler flags were "-bl -cfist -L -v -w" *1
1* where the file Include.q is a precompiled header file of all of the *1
1* Amiga "include" files, plus the Lattice-supplied "proto" files *1

#include <exec/types.h>
#include <intuition/intuition.h>
#include <libraries/dos.h>
Hfdef LATTICE
#include <proto/all.h>
#include <stdlib.h>
int CXBRK(void) (return(O);}
#endif
1* Include other required vendor- or Commodore-Amiga-supplied header *1
1* files here. *1

1* Include user-written header files here. For illustration, we show.*1
1* two header files which we will use frequently. *1
#include "hires.h"
#include "graniteWindow.h"

1* Use lowest non-obsolete version that supplies the functions you need. *1
#define INTUITION_REV 33

extern VOID cleanExit(struct Screen *, struct Window *, int);
extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;

VOID main(int argc, char *argv[])
{

1* Declare variables here *1
ULONG signalmask, signals;
UBYTE done = 0;
struct Screen *screenl
struct Window *windowl

NULL;
NULL;

1* Open the Intuition Library *1
IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.librarY",INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit(screenl, windowl, RETURN_WARN);

1* Open any other required libraries *1

1* Make the assignments that were postponed above *1

1* Open the screen *1
screenl = OpenScreen(&fullHires);
if (screenl == NULL)

cleanExit(screenl, windowl, RETURN_WARN);

1* Attach the window to the open screen ••. *1
graniteWindow.Screen = screenl;

1* ... and open the window *1
windowl = OpenWindow(&graniteWindow);
if (windowl == NULL)

8 Intuition: Introduction

cleanExit(screen1, window1, RETURN_WARN);

/* Set up the signals that you want to hear about ..• */
signalmask = 1L « window1->UserPort->mp_sigBit;

/* Call the functions that do the main processing */

1* And wait to hear from your signals */
while (! done)
{

) ;

signals = Wait(signalmask);
if (signals & signalmask)

done = handleIDCMP(window1);

/* Exit the program */
cleanExit(screen1, window1, RETURN_OK);

UBYTE handleIDCMP(struct Window *win)
{

UBYTE flag = 0;
struct IhtuiMessage *message
ULONG class;

1* Examine pending messages */

NULL;

while(message = (struct IntuiMessage *) GetMsg (win->UserPort))
{

class = message->Class;

/* When we're through with a message, reply */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch (class)
{

case CLOSEWINDOW:
flag = 1;
break;

default:
break;

return (flag) ;

VOID cleanExit(scrn, wind, returnValue)
struct Screen *scrn;
struct Window *wind;
int returnValue;
{

/* Close things in the reverse order of opening */

/* Close the window and the screen */
if (wind) CloseWindow(wind);
if (scrn) CloseScreen(scrn);

/* Close the library, and then exit */
if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase);

exit(returnValue);

Intuition: Introduction 9

Chapter 2

Intuition: Screens

Screens are the basis for all Intuition displays. They set up the environment for overlapping windows and they give
you easy access to all the Amiga display modes and graphics features. In this chapter you will learn how to use the
Workbench screen provided by Intuition and how to create your own custom screens.

About Screens

The screen is Intuition's basic unit of display. By using an Intuition screen, you can create a video display with any
combination of the many Amiga display modes. Certain basic parameters of the video display (such as fineness of
vertical and horizontal resolution, number of colors, and color choices) are defined by these modes. By combining
modes, you can have many different types of displays. For example, the display may show eight different colors in
low-resolution mode or 32 colors in interlaced mode (high resolution of lines). For a description of all the different
display modes, see the "Custom Screens" section below.

Every other Intuition display component is defined with respect to the screen in which it is created. Each screen's
data structure contains definitions that describe the modes for the particular screen. Windows inherit their display
parameters from the screens in which they open, so a window that opens in a given screen always has the same
display modes and colors as that screen. If your program needs to open windows that differ from one another in
their display characteristics, you can open more than one screen.

Intuition: Screens 11

Screens are always the full width of the display. This is because the Amiga hardware allows very flexible control of
the video display, but imposes certain restrictions. Sometimes it is not possible to change display modes in the
middle of a scan line. Even when it is possible, it is usually aesthetically unpleasant or visually jarring to do so. To
avoid these problems, Intuition imposes its own display restriction, allowing only one screen (one collection of
display modes) per video line. Because of this, screens can be dragged vertically but not horizontally. This allows
screens with different display modes to overlap, but prevents any changes in display mode within a video line.

Screens provide display raster memory, which is the RAM in which all imagery is first rendered and then translated
by the hardware into the actual video display. The Amiga graphics structure that describes how rendering is done
into display memory is called a RastPort. The RastPort also has pointers into the actual display memory locations.
The screen's display memory is also used by Intuition for windows and other high-level display components that
overlay the screen. Application programs that open custom screens can use the screen's display memory in any way
they choose.

Screens are rectangular in shape. When they first open they usually cover the entire surface of the video display,
although they can be shorter than the height of the display. Like windows, screens can be moved up or down and
arranged at different depths by using special control mechanisms called gadgets. Unlike windows, however, screens
cannot be made larger or smaller, and they cannot be moved left or right.

The dragging and depth-arrangement gadgets reside in the title bar at the top of all Intuition screens. In the title bar
there may also be a line of text identifying the screen and its windows.

The figure shows a screen with open windows. The depth-arrangement gadgets (front gadget and back gadget) are at
the extreme right of the screen title bar. The drag gadget (for moving the screen) occupies the entire area of the
screen title bar not occupied by other gadgets. The user changes the front-to-back order of the displayed screens by
using a controller (such as a mouse) or the keyboard cursor control keys to move the Intuition pointer within one of
the depth-arrangement gadgets. When the user clicks the left mouse button (known as the select button), the
screen's depth arrangement is changed.

2) avail
Type Available In-Use MaxiMUM
c~ip 917544 122618 1141152

JI! ... e.:;:;::;:=:;E==!=ii~=;!I~~.in=iIH=;7~iii1z2~~tll !~jj5;9~ 41~Ui
15 liles - 15 blocks used
1) copy .,I:libs libs:

Mat~trans.libfary •• copied
icon.li~arr··copied
translatOf. ibrar~ •• copied
inlo.library •• copled
Mathieeedoubbas.libfar~ •• copied
version.library •• copied
disklont.li~ary •• copied
Mathi eeedoubtrans.libfary •• copied

1>1

Figure 2-1: A Screen and Windows

LaJ',~~t
983448

1879552
1983818

The user moves the entire screen up or down on the video display by moving the pointer within the drag gadget,
holding down the left mouse button while moving the pointer, and finally releasing the button when the screen is in
the desired location.

12 Intuition: Screens

The screen's title bar is also used to display a window's menus when the user asks to see them. Typically, when the
user presses the right mouse button (the menu button), a list of menu topics called a menu list appears across the title
bar. The figure shows a screen after the user has displayed the menu list.

.... IW'mpmm'lmDmmmll"'lIJ.i~~~~~t!iiD·~~u~~"a'II "'~~I

15 liles - 15 blocks used
1) cop, dll:libs libs:

Kathtrans.librar, .• copied
icon.lib~ir~ •• copied
translat~.li~ar~ •• copied
inlo.lib~ir, •• cDpled
Klthieeedoubbu.li~ar~ •• copied
u~siDn.librar, •• cDpied
diskront.li~ir, •• cDpied
Kathieeedoubtrans.li~ar, •• copied

1>1 '.

LU'Be$t
983448

1179552
1983888

Figure 2-2: Screen and Windows with Menu List Displayed

'.

By further mouse movement and mouse button manipulation, the user can see a list of menu items and subitems for
each of the topics in the menu list. The menu list, menu items, and subitems that are displayed pertain to the
currently active window, which is the window receiving the user's input. Only one window is active at any time.
The screen containing the active window can be thought of as the active screen. Because there is only one active
window, there can be only one active menu list at a time. The menu list appears on the title bar of the active screen.
Menus are handled by the Intuition menu system. See the chapter entitled' 'Intuition: Menus," for more information
about putting menus together and attaching them to windows.

Both you and the user will find working with screens much like working with windows-for you, the data structures
and the functions for manipulating screens and windows are similar. For the user, moving and arranging screens
will require the same steps as moving and arranging windows. However, the user will be less aware of screens than
of windows, since user input and application output occur mostly through windows.

There are two kinds of screens-the standard Workbench screen supplied by Intuition and custom screens created by
you.

The Workbench Screen

Workbench is both a screen and an application. It is a high-resolution four-color screen. On An NTSC Amiga, the
nominal dimensions of the Workbench screen are 640 pixels x 200 lines (400 lines if the user has chosen an
interlaced Workbench screen using Preferences), but see the section below, "Screen Position and Dimensions" for
more details. The default colors are blue for the background, white and black for details, and orange for the text
cursor and highlighting (see figure).

Intuition: Screens 13

a ~ol\kbenclll,3=== ILl-, " I El'lt,

•
r, "

Utilities

EJ
Shell

, ", "
s,sten E)QIansion

1Eii'
PPets

bash can

11>·c~"'U'I:lli~Eii~"""""""~mI·.
til tJI tpans .Ii Val', •• cop i ed
icon.librarr··c~ied
tpansiatOP. ibJIal'V •• copied lJit inlo.library •• copled
tIIthieeedoubbas.lival'~ •• copied
u.,sion.libPaI', •• cOPied
diskfont.libral', •• cOPied
~thieeedoUbtpans.li"aI'~ •• copied

WOl'kbench1.3

1) dlspla, ad~:picslBi_2".116
1>1 ..

Figure 2-3: The Workbench Screen and the Workbench Application

The Workbench screen is used by both the Arniga Command Line Interface (CLI) and the Workbench application.
If you want to use the Workbench as a screen for the windows of your program, you just specify a window type of
WBENCHSCREEN in the data structure called NewWindow, which you initialize when opening a window.

Any application program can use the Workbench screen for opening its windows. Developers of text-oriented
applications are especially encouraged to open in the Workbench screen. This is convenient for the user because
many windows will open in the same screen, requiring less movement between screens. Using the Workbench
screen is also memory-efficient, because you will not be allocating the memory for your own custom screen.

Your application should not change the colors of the Workbench screen, because other applications may depend on
the constancy of the Workbench colors. For instance, a business package that runs on the Workbench screen may
expect the colors to be reasonable for a dither pattern in a graph. If you change the colors, that program's graphics
display may not look as intended, making the program harder to use, and defeating the purpose of the Workbench
screen.

Generally, an application which creates a custom screen is responsible for closing it, but there is a special function,
CloseWorkBenchO, which allows your program to close the Workbench screen. If your application needs more
memory than is available, it can attempt to reclaim the memory used by the Workbench screen by calling
CloseWorkBenchO. If you use this, you should call OpenWorkBenchO as your program exits.

The Workbench screen does not close even if all the windows in it are closed, and it automatically reopens when all
other screens close down.

The Workbench application program allows users to interact with the Arniga file system, using icons (small graphic
images) to represent files. Intuition treats the Workbench application as a special case, communicating with it in
extraordinary ways. For example, you can open or close the Workbench screen by calling the Intuition functions
OpenWorkBenchO and CloseWorkBenchO, even though the Workbench application may have open windows in
the screen. CloseWorkBenchO will fail, however, if the user has other windows open on the Workbench screen.

Library functions allow you to create and manipUlate the Workbench application's objects and icons. The functions
in the library allow you to create disk files that the user can handle within the context of the Workbench program.

14 Intuition: Screens

The user can change the colors of the Workbench screen via Preferences. For more information about Preferences,
see the chapter entitled "Intuition: Other Features. ' ,

Custom Screens

Typically, you create your own screen when you need a specific kind of display that is not offered by the Workbench
screen or when you want to modify the screen or its parameters directly-as in changing colors or directly
modifying the Copper list or display memory. The Copper is the display-synchronized coprocessor that handles the
actual video display by directly affecting the hardware registers. For example, you might need a display in which
you can have movable sprite objects. Alternatively, you might have your own display memory that you want to use
for the screen's display memory or you may want to allow the user to play with the colors of a display that you've
created. If you want to do these sorts of things, you'll have to create a custom screen.

If you have opened a custom screen, you must call CloseScreenO to close it, before your program exits. Otherwise,
your screen would stay around forever.

When you create a custom screen, you have a great deal of latitude in specifying screen parameters, including:

Height of the screen and starting point of the screen when it first opens.

Depth of the screen, which determines how many colors you can use for the display.

Choice of the available colors for drawing details, such as gadgets, and for doing block fills, such as the
title bar area.

• Display modes-high or low resolution, interlaced or non-interlaced, sprites, and dual playfields.

Initial display memory.

You can also use the special Intuition graphics, line, and text structures and functions within the windows in your
custom screen. See the chapter entitled "Intuition: Images, Line Drawing, and Text," for details about these.

With some care, you may also render directly into your screen's display memory using the full complement of
graphics primitives-or even directly manipulating the screen display memory using the processor-bypassing the
protocol of Intuition windows. You can do color animation, scrolling, patterned line drawing and patterned fills, and
much more. Although you can still combine such use of a screen with other Intuition features-for example,
windows, menus, and requesters-these features draw into your display. The interactions described in the next
paragraph are those that take place when you write to the custom screen while windows and menus are being
displayed and moved over the screen.

First, Intuition does not save background screen information when a window is opened, sized, or moved. Screen
areas that are subsequently revealed are restored to a blank background color, obliterating any data you might have
written into the display memory area of your screen. Second, menus are protected from data being output to the
windows behind them but not from data being output to screens. When a menu is on the screen, all underlying
windows are locked against graphical output to prevent such output from trashing the menu display. Menus cannot,
however, lock direct graphical output to the display memory of a screen. Therefore, be careful about writing to a
screen that has or can have menus displayed in it. You can easily overrun the menus and obliterate the information
contained in them.

Intuition: Screens 15

In summary, keep in mind that the user can modify the display by moving things around (by using window gadgets)
or making things appear and disappear (menus and requesters). If you want to write directly to a custom screen's
display memory, you have to design the pieces carefully so that they interact without conflict. If you want complete
control of the screen display memory and are willing to give up some windowing capabilities (such as menus and
window sizing and dragging), you can use a custom screen. If you want to control the display memory and run
windows and menus in the custom screen, you need to deal with the hazards. Always bear in mind that playing with
screen displays in this way requires detailed knowledge of how screens and windows work. You should not attempt
it lightly.

What if you want a screen with your own full-screen display, one you can manipulate any way you choose, but you
still want access to all the windowing and menu capabilities without worry? A special kind of window satisfies all
of these needs-the Backdrop window, which always stays in the background and can be fashioned to fill the entire
display area. Writing to this kind of window is almost as flexible as writing directly to display memory and requires
only a little more overhead in memory management and performance. Menus and ordinary windows can safely
reside over this window. You can also cause the screen's title bar to disappear behind a Backdrop window by
calling the ShowTitleO function, thereby filling the entire video display with your display memory. This is the
Intuition-blessed way to fill the entire display and still exist in an Intuition environment. For more information
about setting up Backdrop windows, see the "Intuition: Windows" chapter.

When you are using the graphics primitives (functions) in your custom screen, the functions sometimes require
pointers to the graphics control structures that lie beneath the Intuition display. These graphics structures are the
RastPort, ViewPort, and View. For more information and details about how to get the pointers into the display
memory, see the chapter entitled "Intuition: Images, Line Drawing, and Text."

Screen Characteristics

The following characteristics apply to both the Workbench screen and custom screens. Keep in mind, however, that
you should not change the characteristics of the Workbench screen.

DISPLAY MODES

You can use any or all of the following display modes in your custom screens. The windows that open in a screen
inherit the screen's display modes and colors.

There are two modes of horizontal display: low resolution and high resolution. In low-resolution mode, there are
nominally 320 pixels across a horizontal line. In high-resolution mode, there are 640 pixels across. A pixel is the
smallest addressable part of the display and corresponds to one bit in a bit-plane. Twice as many pixels are
displayed in high-resolution mode. However, low-resolution mode gives you twice as many potential colors, 32
ihstead of 16.

There are two choices of vertical resolution: interlaced and non-interlaced. You can have nominally 200 vertical
lines of display in non-interlaced mode (256 vertical lines in PAL), and 400 lines in interlaced mode (512 lines in
PAL). See also the section, "Screen Position and Dimensions." Twice as many display rows are displayed in
interlaced mode. Typically, applications use non-interlaced mode, which requires half as much memory and creates
a display that does not have the potential for flickering, as interlaced displays tend to do. Intuition supports
interlaced mode because some applications will want to use it; for instance, a computer-aided design package
running on a high-persistence monitor will want to use it, and it is often a requirement for video applications.

16 Intuition: Screens

In sprite mode, you can have up to eight small moving objects on the display . You define sprites with a simple data
structure and move them by specifying a series of x,y coordinates. Sprites can be up to sixteen bits wide and any
number of lines tall, can have three colors (plus transparent), and pairs of sprites can be joined to create a fifteen
color (plus transparent) sprite. They are also reusable vertically, so you can really have more than eight at one time.
The Amiga GELS system, described elsewhere in this manual, provides just such a multiplexing, or interleaving, of
sprites for you. The chapter entitled "Intuition: Windows" contains a brief description of a sprite used as a custom
pointer.

Dual-playfield mode is a special display mode that allows you to have two display memories. This gives you two
separately controllable and separately scrollable entities that you can display at the same time, one in front of the
other. With this mode, you can have some really interesting displays, because wherever the front display has a pixel
that selects color register 0, that pixel is displayed as if it were transparent. You can see through these transparent
pixels into the background display. In the background display, wherever a pixel selects color register 0, that pixel is
displayed in whatever color is in color register 0. You should not try to implement a dual playfield display by
setting the DUALPF flag in the NewScreen structure before opening your screen. We illustrate the correct method in
our examples.

Hold-and-modify mode gives you extended color selection.

Extra-haljbright mode provides one extra bitplane that defines colors with the EHB bit set as half the RGB level of
colors without that bit set. This can be used, together with the blitter, as an easy way to produce shadows, for
example.

If you want to use sprites, hold-and-modify mode, or Extra-half Bright, you should read about all of their features
elsewhere in this manual.

DEPTH AND COLOR

Screen depth refers to the number of bit-planes in the the screen display. This affects the colors you can have in
your screen and in the windows that open in that screen.

Display memory for a screen is made up of one or more of bit-planes, each of which is a contiguous series of
memory words. When they are displayed, the planes are overlapped so that each pixel in the final display is defined
by one bit from each of the bit-planes. For instance, each pixel in a three-bit-plane display is defined by three bits.
The binary number formed by these three bits specifies the color register to be used for displaying a color at that
particular pixel location. In this case, the color register would be one of the eight registers numbered ° through 7.
The thirty-two system color registers are completely independent of any particular display. You load colors into
these registers by specifying the amounts of red, green, and blue that make up the colors. To load colors into the
registers, you use the graphics primitive SetRGB40. The table shows the relationship between screen depth.
number of possible colors in a display, and the color registers used.

Intuition: Screens 17

* Extra-halfbright
+ Hold-and-modify

Depth

1
2
3
4
5
6
6

Table 2-1: Screen Depth and Color

Maximum Color Register
Number of Colors Numbers

2 0-1
4 0-3
8 0-7
16 0-15
32 0-31
64 0-31*

4096 0-15+

The maximum number of bit-planes in a screen depends upon the dual-playfields display mode, and the HIRES flag.
The first four lines in the previous table apply to all display modes. Any of the display modes can have up to four
bitplanes. Five or six bitplanes are possible only in the low resolution mode. In particular, both the extra-halfbright
and hold-and-modify modes require a lo-res display. For dual playfields, you can have from two to six bitplanes,
which are divided between the two playfields (see the dual playfields example, below). For hold-and-modify mode
you need six bit-planes.

The color register numbers are also known as "pen" colors. If you specify a depth of 5, for instance, then you also
have 32 choices (in low-resolution mode) for the DetailPen and BlockPen fields in the structure. DetailPen is used
for details such as gadgets and title bar text. BlockPen is used for block fills, such as all of the title bar area not
taken up by text and gadgets.

TYPESTYLES

When you open a custom screen, you can specify a text font for the text in the screen title bar and the title bars of all
windows that open in the screen. A font is a specification of type size and type style. The system default font is
called "Topaz." Topaz is a fixed-width font and comes in at least two sizes:

Eight display lines tall with 80 characters per line in a 640-pixel high-resolution display (40 characters in
low resolution).

Nine display lines tall with 64 characters per line in a high-resolution display (32 characterS in low
resolution).

On a television screen, you may not be able to see all 640 pixels across a horizontal line. On any reasonable
television, however, a width of 600 pixels is a safe minimum, so you should be able to fit 60 columns of the large
Topaz font.

NOTE

Font is a Preferences item and the user can choose either the 80- or 64-column (8- or 9-line) default,
whichever looks best on his or her own monitor (see figure). You can use or ignore the user's choice of
default font size. See the chapter entitled "Intuition: Other Features," for more information about
Preferences items.

18 Intuition: Screens

This is Topaz-Sixty
AaBbCcDdEeFrGgHhXiJJHkLIMM

This is Topaz-Eisht~

AaB~CcDdEeF£G~HhXiJJKkLIH"

Figure 2-4: Topaz Font in 60-column and SO-column Types

If you want the default Topaz font in the default size currently selected by the user, set the Font field in the screen
structure to NULL. If you want some other font, you specify it by creating a TextAttr structure and setting the
screen's Font field to point to the structure. See elsewhere in this manual for further information about text-support
primitives.

SCREEN POSITION AND DIMENSIONS

When you open a custom screen, you specify the initial starting location for the top line of the screen in the
TopEdge and LeftEdge fields of the screen structure. After that, the user can drag the screen up or down. You
must always set the LeftEdge field (the x coordinate) to O. (This parameter is included only for upward
compatibility with future versions of Intuition.)

APPLICATION-MANAGED CUSTOM SCREENS

You specify the dimensions of the screen in the Height and Width fields. You can set the screen height to values
less than the maximum allowed, but do not make it too small for the title bar to appear. The width may also be less
than the maximum allowed value, but, again, don't make it extraordinarily small.

The default maximum screen dimensions are 640 x 200 (640 x 400 interlaced) for NTSC, and 640 x 256 (640 x 512
interlaced) for PAL. Using the utility MoreRows (which induces the System to overscan its display,
the user can slightly increase these maximum values.

The true current maximum screen dimensions are stored in the graphics library fields GfxBase
>NormalDisplayColumns and GfxBase->NormalDisplayRows. These fields have values defined for a high
resolution interlaced display (e.g. 650 x 412) and must be scaled to provide maximum dimensions for other modes.

Intuition: Screens 19

There is a simple method to open screens to their full height on any display. You do this by specifying the value
STDSCREENHEIGHT in the NewScreen.Height field (this constant is defined in intuition/screens. h).

SCREEN TITLE

The screen title is used for two purposes: to identify the screen like an identification tab on a file folder and to
designate which window is the active one.

Although the initial screen title is set in the.NewScreen structure, it can change according to the preferences of the
windows that open in the screen. Each screen has two kinds of titles that can be displayed in the screen title bar:

A "default" title, which is specified in the NewScreen structure and is always displayed when the screen
first opens.

A "current" title, which is associated with the currently active window. When the screen is first opened,
the current title is the same as the default title. The current title depends upon the preferences of the
currently active window.

Each window can have its own title, which appears in its own title bar, and its "screen title," which appears in the
screen's title bar. When the window is the active window, its screen title will be displayed in the screen's title bar.
The function SetWindowTitlesO allows you to specify, change, or delete both the window's own title and its screen
title.

Screen title display is also affected by calls to ShowTitleO, which coordinates the display of the screen title and
windows that overlay the screen title bar. Depending upon how you call this function, the screen's title bar can be
behind or in front of any special Backdrop windows that open at the top of the screen. By default, the title bar is
displayed in front of a Backdrop window when the screen is first opened. Non-Backdrop windows always appear in
front of the screen title bar.

CUSTOM GADGETS

You cannot attach custom gadgets directly to a screen. You can, however, attach custom gadgets to a borderless
backdrop window and monitor their activity through the window's input/output channels. See the chapter on
"Intuition: Gadgets," for information about custom gadgets.

Screen Data Structures

Below, we describe the most important fields in the two data structures pertaining to screens.

NEWSCREENSTRUCTURE

Here are the specifications for the NewScreen structure:

20 Intuition: Screens

struct NewScreen
{
SHORT LeftEdge, TopEdge, Width, Height, Depth;
UBYTE DetailPen, BlockPen;
USHORT ViewModes;
USHORT Type;
struct TextAttr *Font;
UBYTE *DefaultTitle;
struct Gadget *Gadgets;
struct BitMap *CustomBitMap;
} ;

The meanings of the variables and flags in the NewScreen structure are as follows:

LeftEdge
Initial x position for the screen. This field is not currently used by Intuition; however, for upward
compatibility, always set this field to O.

TopEdge
Initial y position of the screen. Set this field to a value representing the screen offset, in scan lines, from
the top of the display. Most often, this value should be zero.

Width
Width of the screen. Values of 320 for low-resolution mode or 640 for high-resolution mode, are
~cceptable.

Height
Height of the screen in number of lines. Values of 200 for non-interlaced mode and 400 for interlaced
mode, are acceptable.

Depth
Number of bit-planes in the screen. Set this field from 1 to 6, but be careful to specify a value which is
appropriate for the screen's display mode.

DetailPen
Color register number for details such as gadgets and text in the title bar.

BlockPen
Color register number for block fills, such as the title bar area.

ViewModes
These flags select display modes. You can set any or all of them:

HIRES
Selects high-resolution mode (640 pixels across). The default is 320 pixels across.

LACE
Selects interlaced mode (400 lines). The default is 200 lines. For a PAL Amiga, the recommended
values are 512 and 256, respectively.

SPRITES
Set this flag if you want to use sprites in the display.

DUALPF
Set this flag if you want two playfields, but it is better to convert a normal screen into dual-playfield
after it is opened. See the example below.

Intuition: Screens 21

HAM
Set this flag if you want hold-and-modify mode.

EXTRA_HALFBRI1E

Type

Set this flag if you want the additional colors provided by the extra-haltbright mode. This mode is
supported by all but the earliest Amiga 1000's.

CUSTOMSCREEN
Indicates that this will be a custom screen. All screens you open will be custom screens, since the
Workbench screen is managed by Intuition and the functions OpenWorkBenchO and
Close WorkBenchO.

SCREENBEHIND
Indicates that when the screen is opened, it should be behind all other screens. Among other
uses, this method allows a program to prepare imagery in the screen, change its colors, and so on,
bringing it to the front when it becomes presentable.

SCREENQUIET
Allows fancy viewport operations in your custom screen. A screen opened with this flag will not
have a title bar nor visible gadget rendering, but dragging and depth arrangement still function. In
order to prevent Intuition from rendering into your screen, you must intercept the menu button in
each window in the screen, using MENUVERIFY or RMBTRAP.

CUSTOMBITMAP
Set this flag if you want to use your own bitmap and display memory for this screen.

Font
A pointer to the default TextAttr structure for this screen and all Intuition-managed text that appears in
the screen and its windows. Set this to NULL if you want to use the default Intuition font N01E:
Intuition will not be able to load a font from disk, so to guarantee that the font will be available, it is a
good idea to open it yourself, before calling OpenScreenO. Don't forget to close the font later, if you do
this.

DefaultTitie
A pointer to a null-terminated line of text that will be displayed in the screen's title bar; this should be set
to NULL if you want a blank title bar. Null-terminated means that the last character in the text string is
NULL, which is automatic in the C language.

Gadgets
This field is not used at this time. It should be set to NULL.

CustomBitMap
If you intend to provide your own CUSTOMBITMAP for the screen, you need to know how big the
screen will be before opening it. This is done by examining the public field GfxBase
>NormalDisplayRows (see graphics/gfxbase.h). NormalDisplayRows specifies the non-interlaced
count. which is 200 on NTSC machines. The CustomBitMap field holds a pointer to a BitMap structure.
used if you want your own display memory to be used as the display memory for this screen. You inform
Intuition that you want to supply your own display memory by setting the flag CUSTOMBITMAP in the
Type variables above. creating a BitMap structure that points to your display memory and having this
variable point to it.

22 Intuition: Screens

SCREEN STRUCTURE

You create a custom screen by passing the address of your NewScreen structure to the function OpenScreenO,
which, if successful, will return a valid pointer to a Screen structure. The following list shows the variables of the
Screen structure that may be of interest to you. This is not a complete list of the Screen variables; only the more
useful ones are described. Also, most of these variables are for use by advanced programmers, so you may choose
to ignore them at first.

TopEdge
Examine this to see where the user has positioned your screen.

MouseX, MouseY
You can look here to see where the mouse is with respect to the upper left comer of your screen~

ViewPort, RastPort, BitMap, LayerInfo
For hard-core graphics users, these are actual instances of these graphics structures (Note: not pointers to
structures). For normal use of custom screens, these structures can be ignored.

BarLayer
This is the pointer to the Layer structure for the screen's title bar.

SCREEN FUNCTIONS

Here is a quick rundown of Intuition screen functions.

Opening a Screen

This is the basic function to open an Intuition custom screen according to the parameters specified in NewScreen.
This function sets up the screen structure and substructures, does all the memory allocations, and links the screen's
ViewPort into Intuition.

• OpenScreen (NewScreen)

The argument is a pointer to an instance of a NewScreen structure. The function returns a pointer to a Screen
structure.

Showing a Screen Title Bar

This function causes the screen's title bar to be displayed or concealed, according to your specification of the
Showlt parameter and the position of the various types of windows that may be opened in the screen.

• ShowTitle (Screen, Showlt)

The screen's title bar can be behind or in front of any Backdrop windows that are opened at the top of the
screen. The title bar is always concealed by other windows, no matter how this function sets the title bar. The
parameter Screen is a pointer to a Screen structure. Set the variable Showlt to boolean TRUE or FALSE

Intuition: Screens 23

according to whether the title is to be hidden behind Backdrop windows. When Showlt is TRUE, the screen
title bar is shown in front of Backdrop windows. When Showlt is FALSE, the screen title bar is always behind
any window. The function returns nothing.

Moving a Screen

With this function, you can move the screen vertically.

• MoveScreen (Screen, DeltaX, Delta Y)

Moves the screen in a vertical direction by the number of lines specified in the Delta Y argument. (DeltaX is
here for upward compatibility only. You should pass zero for DeltaX .. Screen is a pointer to the screen
structure. The function returns nothing. Calls to MoveScreen are asynchronous; when you call the function, the
screen is not necessarily moved immediately. If the calls happen too quickly, there may be unexpected results.
One way to pace these calls is to call the function one time for each INTUITICK event. For info~ation on
INTUITICKS, see the chapter "Input and Output Methods".

Changing Screen Depth Arrangement

These functions change the screen's depth arrangement with respect to other displayed screens. Screen is a pointer
to the screen structure.

• ScreenToBack (Screen)

Sends the specified screen to the back of the display. Returns nothing.

• ScreenToFront (Screen)

llrings the specified screen to the front of the display. Returns nothing.

Closing a Screen

The following function unlinks the screen and its substructures and deallocates everything that Intuition allocated
when it opened the screen. It ignores any windows attached to the screen. All windows must be closed first.
Attempting to close a screen with open windows will crash the system. If this is the last screen displayed, Intuition
attempts to reopen the Workbench. The function returns nothing.

CloseScreen (Screen)

The variable Screen is a pointer to the screen to be closed.

Finding Out About a Screen

This function is typically used to find out about the Workbench screen.

24 Intuition: Screens

GetScreenData(Buffer ,Size,Type,Screen)

Programs opening windows on the Workbench screen may inquire to find out its size, the size of its menu bar
area, and so on, by using the function GetScreenDataO. This function will open the Workbench screen if it
happens to be closed. This is best suited for use by a program about to open a window on the Workbench
screen. Workbench screen inquiry also applies to custom screens, but the need for that will be rare.
Buffer is a CPTR (see exec/types. h), Size and Type are USHORT's, and Screen is a pointer to a screen
structure.

HandlingtheVVorkbench

These functions are for opening, closing, and modifying the Workbench screen.

Open VVorkBenchO

This routine attempts to open the Workbench screen. If not enough memory exists to open the screen, this
routine fails. Also, if the Workbench tool is active, it will attempt to reopen its windows. This function takes
no arguments, and returns a pointer to a Screen structure.

• CloseVVorkBenchO

This routine attempts to close the Workbench screen. If another application (other than the Workbench tool)
has windows opened in the Workbench screen, this routine fails, and returns FALSE. If only the Workbench
tool has opened windows in the Workbench screen, the Workbench tool will close its windows, allow the
screen to close, and return TRUE. This function takes no arguments, and returns a BOOL.

VVBenchToFrontO, VVBenchToBackO

If the Workbench screen is opened, calling these routines will cause it to be in front or in back of other screens,
depending on which command is used. If the Workbench screen is closed, these routines have no effect. These
functions take no arguments, and return BOOL.

Advanced Screen and Display Functions

These functions are for advanced users of Intuition and graphics. They are used primarily in programs that make
changes in their custom screens (for instance, in the Copper instruction list). These functions cause Intuition to
incorporate a changed screen and merge it with all the other screens in a synchronized fashion. These. functions
return nothing. For more information about these functions, see the chapter' 'Intuition: Other Features."

~akeScreen(Screen)

This function is the Intuition equivalent of the lower-level ~akeVPortO graphics library function.
~akeScreenO performs the ~akeVPort() call for you, synchronized with Intuition's own use of the screen's
ViewPort. The variable Screen is a pointer to the screen that contains the ViewPort that you want remade.

RethinkDisplayO

This procedure performs the Intuition global display reconstruction, which includes massaging some of
Intuition's internal state data, rethinking all of the Intuition screen ViewPorts and their relationship to one
another, and, finally, reconstructing the entire display by merging the new screens into the IntuitiOn View

Intuition: Screens 2S

structure. This function calls the graphics primitives MrgCopO and LoadViewO. It takes no arguments.

• RemakeDisplayO

This routine remakes the entire Intuition display. It performs a MakeVPortO (graphics primitive) on every
Intuition screen and then calls RethinkDisplayO to recreate the view. It takes no arguments.

Examples

LOW-RES SCREEN EXAMPLE

This example is called "greetings.c". It opens a window on a low-resolution screen, and prints a message in it.

/* greetings.c -- Opens a window on a low-res screen and writes a greeting. */

#include <exec/types.h>
#include <intuition/intuition.h>
#include <libraries/dos.h>
#ifdef LATTICE
#include <proto/all.h>
#include <stdlib.h>
int CXBRK(void) (return(O);}
#endif
/* Include other required vendor- or Commodore-Amiga-supplied header */
/* files here. */

/* Include user-written header files here. */
#include "hires.h"
#include "graniteWindow.h"

/* Use lowest non-obsolete version that supplies the functions you need. */
#define INTUITION REV 33
#define GRAPHICS_REV 33

extern VOID cleanExit(struct Screen *, struct Window *, int);
extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;
struct GfxBase *GfxBase = NULL;

VOID main(int argc, char *argv[)
{
/* Declare variables here */
ULONG signalmask, signals;
UBYTE done = 0;
struct Screen *screenl = NULL;
struct Window *windowl = NULL;

/* Open the Intuition Library */
IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.librarY",INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit(screenl, windowl, RETURN_WARN);

/* Open any other required libraries */
GfxBase = (struct GfxBase *)

OpenLibrary ("graphics . library" , GRAPHICS_REV) ;

if (GfxBase == NULL)
cleanExit(screenl, windowl, RETURN_WARN);

26 Intuition: Screens

/* Make the assignments that
fullHires.Width = 320;
fullHires.ViewModes = NULL;
graniteWindow.Width /= 2;

/* Open the screen */

were postponed above */
/* Make custom screen low-res */

/* Cut the window to fit */

screenl = OpenScreen(&fullHires);
if (screenl == NULL)

oleanExit(screenl, windowl, RETURN_WARN);

/* Attach the window to the open screen ••• */
graniteWindow.Screen = screenl;

/* ..• and open the window */
windowl = OpenWindow(&graniteWindow);
if (windowl == NULL)

cleanExit(screen1, window1, RETURN_WARN);

/* Set up the signals that you want to hear about ... */
signalmask = 1L « windowl->UserPort->mp_SigBit;

/* Call the fUnctions that do the main processing */

/* Write the message into the window */
Move (windowl->RPort, 20, 20);
Text (windowl->RPort, "Hello World!", 12);

/* And wait to hear from your signals */
while (! done)
(

} ;

signals = Wait(signalmask);
if (signals & signalmask)

done = handleIDCMP(window1);

/* Exit the program */
cleanExit(screen1, window1, RETURN_OK);
}

UBYTE handleIDCMP(struct Window *win)
{
UBYTE flag = 0;
struct IntuiMessage *message NULL;
ULONG class;

/* Examine pending messages */
while(message = (struct IntuiMessage *) GetMsg (win->UserPort))
{

}

class = message->Class;

/* When we're through with a message, reply */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch (class)
{

case CLOSEWINDOW:
flag = 1;
break;

default:
break;

ret urn (flag) ;
}

VOID cleanExit(scrn, wind, returnValue)
struct Screen *scrn;
struct Window *wind;
int returnValue;
{

/* Close things in the reverse order of opening */

Intuition: Screens 27

/* close the window and the screen */
if (wind) CloseWindow(wind);
if (scrn) CloseScreen(scrn);

/* Close the library, and then exit */
if (GfxBase) CloseLibrary((struct Library *)GfxBase);
if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase);

exit(returnValue);
}

DUAL·PLAYFIELD SCREEN EXAMPLE

This example shows how to create a dual-playfield display. It makes a dual-playfield out of the Workbench screen,
but we hasten to warn that this is only for illustration. You would normally make a dual-playfield display out of a
custom screen. Try it!

Setting the DUALPF flag in the NewScreen.F1ags field is not the best method of obtaining a dual playfield
viewport for your screen. It is better to open a standard screen, passing to Intuition (or letting Intuition create) only
one of your playfield bitmaps (the front one). Then you allocate and set up a second BitMap, its bit-planes, and a
RasInfo structure. Install these into new screen's viewport, change the viewport modes to include DUALPF,
MakeScreenO, and RethinkDisplay(). This method keeps Intuition rendering (gadgets, menus, windows) in a single
playfield. This is the method that we demonstrate here.

/* dualpf.c - Shows a dual-playfield.

#include <exec/types.h>
#include <intuition/intuition.h>
#include <libraries/dos.h>
#ifdef LATTICE
#include <proto/all.h>
#include <stdlib.h>
int CXBRK(void) (return(O);}
#endif

*/

/* Include other required vendor- or Commodore-Amiga-supplied header */
/* files here. */
#include <exec/memory.h>

/* Include user-written header files here. */
#include "graniteWindow.h"

/* Use lowest non-obselete version that supplies the functions you need. */
#define INTUITION REV 33
#define GRAPHICS_REV 33

extern VOID cleanExit(struct Screen *, struct Window *, struct Raslnfo *,
struct BitMap *, struct RastPort *, int, int);

extern VOID drawSomething(struct RastPort *);
extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;
struct GfxBase *GfxBase = NULL;

VOID main(int argc, char *argv[)
{
/* Declare variables here */
ULONG signalmask, signals;
UBYTE done = 0;
struct Screen *wbscreen = NULL;
struct Window *windowl = NULL;
struct RasInfo *rinfo2 NULL
struct BitMap *bmap2 NULL
struct RastPort *rport2 NULL
int it - is done 0;

28 Intuition: Screens

/* Second playfield rasinfo
/* Second playfield bitmap
/* Used to render into bmap2
/* Success flag

*/
*/
*/
*/

1* Open the Intuition Library *1
IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.library",INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit(wbscreen, windowl, rinfo2, bmap2, rport2,

it_is_done, RETURN_WARN);

1* Open any other required libraries *1
GfxBase (struct GfxBase *)

OpenLibrary ("graphics . library", GRAPHICS_REV);

if GfxBase == NULL)
cleanExit(wbscreen, windowl, rinfo2, bmap2, rport2,

it is_done, RETURN_WARN);

1* Make the assignments
graniteWindow.DetailPen
graniteWindow.BlockPen
graniteWindow.Title
graniteWindow.Type

1* Open the screen *1

that were postponed above *1
-1;
-1;
" Dual Playfield Mode ";
WBENCHSCREEN;

1* Workbench is already open *1

1* Open the window *1
window1 = OpenWindow(&graniteWindow);
if (window1 == NULL)

cleanExit(wbscreen, window1, rinfo2, bmap2, rport2,
it is_done, RETURN_WARN);

1* Set up the signals that you want to hear about ... *1
signalmask = 1L « window1->UserPort->mp_SigBit;

1* Call the functions that do the main processing *1
wbscreen = window1->WScreen; 1* Find the Workbench screen *1

1* Allocate the second playfield's rasinfo, bitmap, and bitplane *1
rinfo2 = (struct RasInfo *) AllocMem((ULONG)sizeof(struct RasInfo),

(ULONG) MEMF_PUBLIC!MEMF_CLEAR);

if (rinfo2 == NULL)
cleanExit(wbscreen, window1, rinfo2, bmap2, rport2,

it_is_done, RETURN_WARN);

bmap2 (struct BitMap *) AllocMem((ULONG)sizeof(struct BitMap),
(ULONG) MEMF_PUBLIC!MEMF_CLEAR);

if (bmap2 == NULL)
cleanExit(wbscreen, window1, rinfo2, bmap2, rport2,

it is_done, RETURN_WARN);

InitBitMap(bmap2, (BYTE) 1, (LONG)wbscreen->Width, (LONG)wbscreen->Height);

1* We'll use one bitplane *1
bmap2->Planes[O] = (PLANEPTR) AllocRaster((LONG)wbscreen->Width,

(LONG)wbscreen->Height);

if (bmap2->Planes[O] == NULL)
cleanExit(wbscreen, window1, rinfo2, bmap2, rport2, it_is_done, RETURN_WARN);

1* Get a rastport, and set it up for rendering into bmap2 *1
rport2 (struct RastPort *) AllocMem ((ULONG) sizeof (struct RastPort),

(ULONG) MEMF_PUBLIC);

if (rport2 == NULL)
cleanExit(wbscreen, window1, rinfo2, bmap2, rport2,

it is_done, RETURN_WARN);

InitRastPort(rport2);
rport2->BitMap = bmap2;
SetRast(rport2, (UBYTE)O);

Intuition: Screens 29

1* Manhandle the viewport: install second playfield and change modes *1
Forbid();
rinfo2->BitMap = bmap2; 1* Install new bitmap into new rasinfo *1

1* Install rinfo for viewport's second playfield *1
wbscreen->ViewPort.RasInfo->Next = rinfo2;

wbscreen->ViewPort.Modes 1= DUALPF;
it is done = 1;

1* Convert viewport *1

Permit ();

1* Set foreground color; color 9 is color 1 for second *1
1 1 playfield of hi-res viewport

SetRGB4(&wbscreen->ViewPort, (SHORT) 9, (UBYTE)0, (UBYTE) OxF, (UBYTE) 0) ;

1* Put viewport change into effect *1
MakeScreen(wbscreen);
RethinkDisplay();

1* Now ••• *1
drawSomething(rport2);

1* And wait to hear from your signals *1
while (! done)
(

signals = Wait (signalmask);
if (signals & signalmask)

done = handleIDCMP(windowl);
} ;

1* Exit the program *1
cleanExit(wbscreen, windowl, rinfo2, bmap2, rport2, it_is_done, RETURN_WARN);
}

VOID drawSomething(struct RastPort *rp)
{
int width, height;
int r, C;

width = rp->BitMap->BytesPerRow * 8;
height = rp->BitMap->Rows;

SetAPen (rp, lL);

for (r = 0; r < height; r += 40)
for (c = 0; c < width; c += 40)
(

Move (rp, OL, (LONG) r);
Draw (rp, (LONG) c, OL);

UBYTE handleIDCMP(struct Window *win)
{
UBYTE flag = 0;
struct IntuiMessage *message
ULONG class;

1* Examine pending messages *1

NULL;

while(message = (struct IntuiMessage *)GetMsg(win->UserPort))
{

class = message->Class;

1* When we're through with a message, reply *1
ReplyMsg((struct Message *)message);

1* See what events occurred *1
switch(class)
{

case CLOSEWINDOW:
flag = 1;
break;

30 Intuition: Screens

default :
break;

return (flag) ;
}

VOID cleanExit(scrn, wind, rasi, bitm, rasp, flag, returnValue)
struct Screen *scrn;
struct Window *wind;
struct Raslnfo *rasi;
struct BitMap *bitm;
struct RastPort *rasp;
int flag, returnValue;
(
/* clean up dual-playfield trick */
if (flag)
{

Forbid();
scrn->ViewPort.Raslnfo->Next = NULL;
scrn->ViewPort.Modes &= "DUALPF;
Permit () ;
MakeScreen(scrn);
RethinkDisplay();

/* Close things in the reverse order of opening */
if (rasp) FreeMem (rasp, (ULONG) sizeof (struct RastPort»;

if (bitm)
{

if (bitm->Planes[O])
FreeRaster(bitm->Planes[O], (LONG)scrn->Width, (LONG)scrn->Height);

FreeMem(bitm, (ULONG)sizeof(struct BitMap»;

if (rasi) FreeMem (rasi, (ULONG) sizeof (struct Raslnfo»;

/* Close the window and NOT the screen */
if (wind) CloseWindow(wind);

/* Close the libraries, and then exit */
if (GfxBase) CloseLibrary((struct Library *)GfxBase);
if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase);

exit (returnValue);
}

Intuition: Screens 31

Chapter 3

Intuition: Windows

This chapter provides a general description of windows: how to handle the I/O of the virtual terminal; how to
preserve the display when windows get overlapped; how to open windows and define their characteristics; and how
to get the system gadgets for shaping, moving, closing, and depth-arranging windows. It also explains the special
windows, and how to customize windows by adding touches like a custom pointer.

About Windows

The windows you open can be colorful, lively, and interesting places for the user to work. You can use all of the
standard Amiga graphics, text, and animation primitives (functions) in every one of your windows. You can also use
the quick and easy Intuition structures and functions for rendering images, text, and lines into your windows. The
special Intuition features that go along with windows, like the gadgets and menus, can be visually exciting as well.

Each window can open an Intuition Direct Communications Message Port (lDCMP), which offers a direct
communication channel with the underlying Intuition software, or the window can open a console device for input
and output Either of these communication methods turns the window into a visual representation of a virtual
terminal, where your program can carry on its interaction with the user as if it had the entire machine and display to
itself. Your program can open more than one window and treat each separately as a virtual terminal.

Intuition: Windows 33

Both you and the user deal with each individual window as if it were a complete terminal. The user has the added
benefit of being able to arrange the windows front to back, shrink and expand them, or overlap them.

Windows are rectangular display areas whose size and location can be adjusted in many ways. The user can shape
windows by making them wider or longer or both to reveal more of the information being output by the program.
He can also shrink windows into long, narrow strips or small boxes to reveal other windows or to make room for
other windows to open. Multiple windows can be overlapped, and the user can bring a window up front or send it to
the bottom of the stack with a click of the mouse button. While the user is doing all this shaping and rearranging
and stacking of windows, your program need not pay any attention. To the program, there is nothing out there but a
user with a keyboard and a mouse (or, in place of a mouse, there could be a joystick, a graphics tablet, or practically
any other input device).

15 liles - 15 blocks used
1) cop~ dll:libs libs:

ftlthtrans,librar~"copied
icon, I ibrar, , ,copied
translator,librar",copied
inlo, ibrar~"copled
ftlthieeedoubbas,librar~"copied
version,librar~"cOPied
disklont,librar~"cOPied
ftlthieeedoubtrans,librar~"copied

1>1 ..

Figure 3-1: A High-resolution Screen and Windows

Lferui
1179552
1983888

..

Your program can open as many of these virtual terminal windows as the memory configuration of your Amiga will
allow. Each window opens in a specific screen, and several windows may open in the same screen. Even windows
opened by different programs may coexist in the same screen.

Your program can open windows for any purpose. For example, different windows of an application can represent

Different interpretations of an object, such as the same data represented as a bar chart and a pie chart.

Related parts of a whole, such as the listing and output of a program.

Different parts of a document or separate documents being edited simultaneously.

You open a window by specifying its structure and issuing a call to a function that opens windows. After that, you
can output to the user and receive input while Intuition manages all the user's requests to move, shape, and depth
arrange the window. Intuition lets you know if the user makes a menu choice, chooses one of your own custom
gadgets, or wants to close the window. If you need to know when the user changes the window's size or moves the
pointer, Intuition will tell you about that, too.

Custom gadgets, menus, input/output, and controllers are dealt with in later chapters. The balance of this section
deals with some important concepts you'll need to know before attempting to open your own windows.

34 Intuition: Windows

WINDOW INPUT/OUTPUT

You can choose from two different paths for input and two for output. Each path satisfies particular needs. The two
paths for user input are as follows:

• Intuition Direct Communications Message Ports (IDCMPs). The message ports give you mouse (or other
controller) events, keyboard events, and Intuition messages in their most raw form; in addition, these ports
supply the way for your program to send messages to Intuition.

• Console device. The console ports give you processed input data, including keycodes translated to ASCII
characters and Intuition event messages converted to ANSI escape sequences. If you wish, you can also
get raw (untranslated) input through the console device.

There are also two paths for program output

• Text is output through the console device, which formats and supplies special text primitives and text
functions, such as automatic line wrapping and scrolling.

• Graphics are output through the general-purpose Amiga graphics primitives, which provide rendering
functions such as area fill and line-drawing and animation functions.

If you use the console device for input, output, or both, you need to open it after opening your window. If you want
the IDCMP for input, you specify one or more of the IDCMP flags in the NewWindow structure. This
automatically sets up a pair of message ports, one for Intuition and one for you. Although the IDCMP does not offer
text formatting or character positioning, it has many special features that you may want, and it requires less RAM
and less processing overhead.

For more information about I/O methods read the chapter entitled "Input and Output Methods."

OPENING WINDOWS

Before your program can open a window, you need to initialize a NewWindow structure. This structure contains all
the arguments needed to define and open a window, including initial position and size, sizing limits, color choices
for window detailing, gadgets to attach, how to preserve the display, IDCMP flags, window type if it is one of the
special windows, and the screen in which the window should open.

A window is opened and displayed by a call to the Open WindowO function, whose only argument is a pointer to
the NewWindow structure. After successfully opening a window, you receive a pointer to another structure, the
Window structure.

WINDOWS AND SCREENS

You may open your window on the Workbench screen or on your own custom screen. To use the Workbench screen,
set the Type field in your NewWindow structure to WBENCHSCREEN. If you want to use a custom screen, first
open your screen, then put a pointer to the resulting screen structure in the Screen field of your NewWindow
structure, and set the Type field to CUSTOMSCREEN.

Intuition: Windows 35

System requesters appear on the Workbench screen by default It is possible to redirect system requesters to appear
on your custom screen, instead. You must open a window on your screen in order to do this. You assign your
window pointer to the pr_ WindowPtr field of your Process structure, right after you open your window. Just before
you close your window, you restore the old value of the pr _ WindowPtr field. Examples one and two at the end of
this chapter show how to do this.

When the system wants to open a requester for your process, it looks in the pr _ WindowPtr field of the Process
structure to find out where your window is. It then tries to put the requester in the same place as your window. If the
pr _ WindowPtr field is NULL, then the system will open the requester on the default screen. If the pr _ WindowPtr
field is -1, then the system assumes that the user pressed cancel, and the requester does not open.

System requesters not associated with your process can't be redirected to your screen. One example is the system
requester that informs you that "You MUST replace volume x in unit y." This requester is associated with a
filesystem instead of your process.

THE ACTIVE WINDOW

Only one window is active in the system at a time. The active window is the one that is receiving user input through
a keyboard and mouse (or some other controller). Some areas of the active window are displayed more boldly than
those on inactive windows. In particular, the title bars of inactive windows are covered with a faint pattern of dots,
rendering them slightly less distinct This is called ghosting. When the user brings up a menu list in the screen title
bar, the active window's menu list is displayed.

Your program need not worry about whether or not one of its windows is active. The inactive windows can just wait
for the user to get back to them, or they can be doing some background task that requires no user input The job of
activating windows is mostly left up to the user, who activates a window by moving the pointer into the window and
clicking the left mouse button. There is, however, an ACTIVATE flag in the NewWindow structure. Setting this
flag causes the window to become active when it opens. If the user is doing something else when a window opens
with the ACTIVATE flag set, input is immediately redirected to the newly opened window. In general, you should
set the ACTIV ATE flag only in a window which opens as a direct response to the user's action, such as starting your
program or asking for some operation which necessitates a new window.

After your window is opened, you can discover when it is activated and when it is inactivated by setting the IDCMP
flags ACTIVEWINDOW and INACTIVEWINDOW. If you set these flags, the program will receive a message
every time the user activates your window or causes your window to become inactive by activating some other
window.

CLOSING WINDOWS

Although there is a window closing gadget, a window does not automatically close when the user selects this gadget.
Intuition sends the program a message about the user's action. The program can then do whatever clean-up is
necessary, such as replying to any outstanding Intuition messages or verifying that the user really meant to close the
window, and then call CloseWindowO.

When the active window is closed, the previously active window may become the active window. The window (call
it window A) that was active when this one was opened will become the active window. If window A is already
closed, then the window (if any) that was active when window A opened will become the active window, and so on.
However, you are not to count on this behavior. If you care whether your window becomes active, set the
ACTIVEWINDOW IDCMP flag, in order to receive messages from Intuition to that effect.

36 Intuition: Windows

SPECIAL WINDOW TYPES

Intuition's special windows give you some very useful bonus features, in addition to all the normal window features.
The Backdrop window stays anchored to the back of the display and provides a way to take over the display without
taking over the machine. The Borderless window supplies a window with no drawn border lines. Gimmezerozero
windows give you all the border features plus the freedom to ignore borders altogether when you are drawing into
the window.

NOTE

There is a good deal of overhead in using Gimmezerozero windows as they use a separate layer for the
border display. See the "Layers" chapter for information on setting up user clip regions to limit
graphics display in the window.

Finally, the SuperBitMap window not only gives you your own display memory in which to draw, but also frees you
from ever worrying about preserving the window when the user sizes it or overlaps it with another window.

Notice that these are not necessarily separate, discrete window types. You can combine them for even more special
effects. For instance, you can create a Backdrop, Borderless window that fills the entire screen and looks like a
normal computer display terminal.

Borderless Window Type

This window is distinguished from other windows by having no default borders. With normal windows, Intuition
creates a thin border around the perimeter of the window, allowing the window to be easily distinguished from other
windows and the background. When you ask for a Borderless window, you do not get this default thin border;
however, your window can still have borders. It can have borders based solely on the location of border gadgets and
whether or not you have supplied title text, or it may have no gadgets or text and thus no visible borders and no
border padding at all. You can use this window to cover the entire video display. It is especially effective combined
with a Backdrop window. This combination forms a window that you can render in almost as freely as writing
directly to the display memory of a custom screen. It has the added benefit that you can render in it without running
the risk of trashing menus or other windows in the display.

If you use a Borderless window that does not cover the entire display, be aware that its lack of borders may cause
visual confusion on the screen. Since windows and screens share the same color palette, borders are often the only
way of distinguishing a window from the background.

Set the BORDERLESS flag in the NewWindow structure to get this window type.

Gimmezerozero Window Type

The unique feature of a Gimmezerozero window is that there are actually two "planes" to the window: a larger,
outer plane in which the window title, gadgets, and border are placed; and a smaller, inner plane (also called the
inner window) in which you can draw freely without worrying about the window border and its contents. The top
left coordinates of the inner window are always (0,0), regardless of the size or contents of the outer window; thus the
name' 'Gimmezerozero."

Intuition: Windows 37

The area in which you can draw is formally defined as the area within the variables BorderLeft, BorderTop,
BorderRight, and BorderBottom. These variables are computed by Intuition when the window is opened. To
draw in normal windows with the graphics primitives (for instance to draw a line from the top left to somewhere else
in the window), you have to start the line away from the window title bar and borders. Otherwise, you risk drawing
the line over the title bar and any gadgets that may be in the borders. In a Gimmezerozero window, you can just
draw a line from (0,0) to some other point in the window without worrying about the window borders.

The Gimmezerozero window uses more RAM than other window types and degrades performance in the moving
and sizing of windows. There can be a noticeable performance lag, especially when several Gimmezerozero
windows are open at the same time.

There are some special variables in the Window structure that pertain only to Gimmezerozero windows. The
GZZMouseX and GZZMouseY variables can be examined to discover the position of the mouse relative to the
inner window. The GZZWidth and GZZHeight variables can be used to discover the width and height of the inner
window.

The console device gives you another kind of encumbrance-free window. If you are using the console device, any
formatted text you output goes into an inner window automatically; you need not worry about gadgets. Therefore,
you do not need a Gimmezerozero window just for the purpose of text output. See the chapter entitled "Input and
Output Methods," for more information about this aspect of the console device.

Requesters in a Gimmezerozero window are positioned relative to the inner window. If you are bringing up
requesters in the window, you may wish to take this into consideration when deciding where to put them. See the
chapter entitled "Requesters and Alerts," for more information about requester location.

To specify a Gimmezerozero window, set the GIMMEZEROZERO flag in the window structure's flags. All system
gadgets you attach to this type of window will go into the outer window automatically; however, if you are attaching
custom gadgets and you want the gadgets to appear in the border (not in the inner window), be sure to set the
GZZGADGET flag in your gadget structures. If you do not, Intuition will draw custom gadgets in the display of the
inner window.

Backdrop Window Type

The Backdrop window is always in back of any other kind of window. Its great advantage is that other windows can
overlap it and be depth-arranged without ever going behind the Backdrop window. Because of this characteristic,
you can use the Backdrop window as a primary display surface while opening other auxiliary windows on top of it.

The Backdrop window is like normal windows except that:

• It always opens behind all other windows (including other Backdrop windows that you might already have
opened).

• The only system gadget you can attach is the close-window gadget. (You can attach your own gadgets as
usual.)

• Normal windows in the same screen open in front of all Backdrop windows and always stay in front of
them. No amount of depth arranging will ever send a non-Backdrop window behind a Backdrop window.

You might want to use a Backdrop window, for example, in a simulation program in which the environment is
rendered in the Backdrop window while the simulation controls exist in normal windows that float above the
environment. Another example is a sophisticated graphics program where the primary work surface is on the
Backdrop window while auxiliary tools are made available in normal windows in front of the work surface.

38 Intuition: Windows

You can often use a Backdrop window instead of drawing directly into the display memory of a custom screen. If
you want to draw in your background with the graphics primitives, you may even prefer a Backdrop window to a
custom screen because you do not run the danger of writing to the window at the wrong time and trashing a menu
that is being displayed. In fact, if you also set the BORDERLESS flag and you create a window that is the full
screen width and height, you get a window that fills the entire screen and stays in the background. If you also
specify no gadgets, there will be no borders. Finally, if you add a call to ShowTitleO with an argument of FALSE,
the window will conceal the screen title. (See The Amiga ROM Kernel Reference Manual: Includes and Autodocs
for a complete list of arguments for ShowTitleO.) All of these steps result in a window that fills the entire video
display, has no borders, and stays in the background.

To use the Backdrop feature, you set the BACKDROP flag in the window structure.

SuperBitMap Window

SuperBitMap is both a window type and a way of preserving and redrawing the display. This window is like other
windows except that you supply your own bit-map instead of using the one belonging to the screen. The windowing
system displays some portion of the window's bit-map in the screen's raster according to the dimensions and limits
you specify and the user's actions. You can make the bit-map any size as long as the window sizing limits are set
accordingly.

This window is handy when you want to give the user the flexibility of scrolling around and revealing any portion of
the bit-map. You can do this because the entire bit-map is always available to be displayed.

To get this type of window, set the SUPER_BITMAP flag in the window structure and set up a BitMap structure.
You probably want to set the GIMMEZEROZERO flag also, so that the borders and gadgets will be rendered in a
separate bit-map. You need to be certain that the size-limiting variables in the window structure are properly set,
considering the size of the bit-map and how much of it you want to display.

For complete information about SuperBitMap, see "Setting Up a SuperBitMap Window" later in this chapter.

WINDOW GADGETS

The easiest way for a user to communicate with a program running under Intuition is through the use of window
gadgets. There are two basic kinds of w~ndow gadgets-system gadgets that are predefined and managed by
Intuition and your own custom application gadgets.

System Gadgets

System gadgets are supplied to allow the user to manage the following aspects of window display: size and shape of
windows, location of windows on the screen, and depth arrangement. Also, there is a system gadget for the user to
tell the application when he or she is ready to close the window. These gadgets save you a lot of work because, with
the exception of the close gadget, your program never has to pay any attention to what the user does with them. On
the other hand, if you want to be notified when the user sizes the window because of some special drawing you may
be doing in the window, Intuition will let you know. For more information, read about the IDCMP verify functions
in the chapter' 'Input and Output Methods."

In the NewWindow structure, you define the starting location and starting size of a window and a maximum and
minimum height and width for sizing the window.' When the window opens, it appears in the location and in the

Intuition: Windows 39

size you have specified. After that, however, the user nonnally has the option of shaping the window within the
limits you have set, moving it about on the screen and sending it into the background behind all the other displayed
windows or bringing it into the foreground. To give the user this freedom, plus the ability to request that the
window be closed, you can attach system gadgets to the window. The graphic representations of these gadgets are
predefined, and Intuition always displays them in the same standard locations in the window borders. In the window
structure, you can set flags to request that all, some, or none of these system gadgets be attached to your window.
The system gadgets and their locations in the window are:

• A sizing gadget in the lower right of the window. With the sizing gadget, the user can stretch or shrink the
height and width of the window. Y QU set the maximum and minimum limits for sizing. You can specify
whether this gadget is located in the right border or bottom border, or in both borders.

Two depth-arrangement gadgets in the upper right of the window. One sends the window behind all other
displayed windows (back gadget) and the other brings the window to the front of the display (front
gadget).

• A drag gadget, which occupies every part of the window title bar not taken up by other gadgets. The drag
gadget allows the user to move the window to a new location on the screen. A title in the title bar does not
interfere with drag gadget operation.

A close gadget in the upper left of the window, which allows the user to request that the window be
closed.

The figure shows how all the system window gadgets look and where they are located in the window borders.

Figure 3-2: System Gadgets for Windows

40 Intuition: Windows

Application Gadgets

Four types of application gadgets are available-proportional, boolean, string, and integer. You can use application
gadgets to request various kinds of input from the user, and that input can affect the application in any way you like.
You design gadgets as text and graphic images to go anywhere in the window. For application gadgets, you define a
data structure for each one and create a linked list of these structures. To attach your list of gadgets to a window, set
a pointer in the NewWindow structure to point to the first gadget in the list. For details about creating gadgets, see
the chapter "Gadgets."

WINDOW BORDERS

Intuition offers you several possibilities for handling window borders. You can take advantage of the fancy border
features, such as automatic double border lines around the window and automatic padding of borders to allow for
gadgets. If you'd rather, you can eliminate borders completely, or you can use the Gimmezerozero window, which
gives you all the border features and then lets you ignore them.

The actual border lines are drawn around the perimeter of the window and are mostly distinct from the border area
in which border gadgets are placed. Intuition automatically draws a double border around a window unless you ask
for something different (such as by setting the BORDERLESS flag.) This nominal border consists of an outer line
around the entire window, rendered in the BlockPen color, and within this a second line, rendered in the pen 0 color,
the background color of Workbench. The inner line is most easily seen in a program like Notepad, the Workbench
notepad utility, which uses a different background color than Workbench. BlockPen is defined, along with its mate,
DetailPen, in the NewWindow structure.

The default minimum thickness of the border areas depends upon certain parameters set in the definition of the
underlying screen, certain choices the user has made with Preferences, and the default font. If the window is not a
special Borderless window, the borders will be at least the default thickness. Intuition adjusts the size of a window's
border areas to accommodate system gadgets or your own application gadgets.

You can find the thickness of the border areas in the variables BorderLeft, BorderTop, BorderRight, and
BorderBottom. These variables are computed when the window is opened and can be found in the Window
structure. You may want to use them to position visual elements within your window, for example, if you are
drawing lines in the window with graphics primitives, which require you to specify a set of coordinates as the
beginning and ending points for the line. In a typical window, you cannot specify a line from (0,0) to (50,50)
because you may draw a line over the window title bar. Instead, you would use the border variables to specify a.line
from (O+BorderLeft, O+BorderTop) to (50+BorderLeft), 50+BorderTop). This may look clumsy, but it offers a
way of avoiding a Gimmezerozero window, whiCh-although much more convenient to use-requires extra
memory and degrades performance.

For the top border, in addition to the system gadgets and your own gadgets, you can specify a window title. The
window title bar does not appear unless you specify one of the following:

• A window title.

• Any of the system gadgets for window dragging, window depth arranging, or window closing.

Usually, borders are drawn automatically and adjusted within the dimensions you specify in the NewWindow
structure. In the special Borderless and Gimmezerozero windows, however, borders are handled differently. A
Borderless window has no drawn borders and no automatic border spacing or padding. If you have system gadgets

Intuition: Windows 41

or your own gadgets with a border flag set, borders may be visually defined by the gadgets. A Gimmezerozero
window places the borders and gadgets in their own bit-map, separate from the window's bit-map. This means you
can draw freely across the entire surface of the window without worry about scribbling over the gadgets.

You can specify whether or not your application gadgets reside in the borders, and in which border, by setting a flag
in the Gadget structure. See the chapter "Gadgets," for more information about gadgets and how to place them
where you want them.

PRESERVING THE WINDOW DISPLAY

When a window is revealed after having been overlapped, the display has to be redrawn. Intuition offers three ways
of preserving the display:

• In the Simple Refresh method, your program redraws the display.

• In the Smart Refresh method, Intuition keeps a copy of the display in RAM buffers.

• In the SuperBitMap method, you allocate an entirely separate display memory for your window.

Smart Refresh and SuperBitMap use the window's idea of its display memory space to save the parts of the window
that are not currently being displayed. Windows and other high-level display components, such as menus and
gadgets, have a "virtual" understanding of their display memory. The application can ignore other windows being
displayed and write into its own virtual memory area. The Amiga graphics software then takes these requests to
draw in virtual display memory and translates them into real operations that are placed in save buffers (for Smart
Refresh) or in areas of a private bit-map (for SuperBitMap) maintained by the application.

The three methods of preservation are explained below. You must choose one of them.

Simple Refresh

With the Simple Refresh redrawing method, Intuition does not need to remember anything about windows that are
overlapped. For the most part, the program is responsible for redrawing the window. If the user sizes the window
larger on either axis or reveals a window that was overlapped, the program must redraw the display. However, if the
user merely drags the window around, Intuition preserves it and redisplays it in the new location. Simple Refresh
tends to be slower than other methods, but it is memory-efficient, since no RAM is consumed in saving the obscured
portions ofa window. Simple Refresh uses the screen's display memory for the window's display.

Your program can be notified by Intuition when part of a window needs to be redrawn. In addition, Intuition supplies
functions that limit the redrawing to the "damaged" area, without your program having to know which part of the
window was affected. This greatly speeds up the refresh process. A Simple Refresh window is appropriate when
your application can redraw its visuals relatively rapidly.

42 Intuition: Windows

Figure 3-3: Simple Refresh

Smart Refresh

SIMPLE REFRESH

The obscured portion

is discarded.

With the Smart Refresh redrawing method, Intuition keeps all information about the window in RAM, whether the

window is currently concealed or is up front If the user reveals a window that was overlapped, Intuition recreates

the display. If the window has a sizing gadget, then when the user makes the window larger, the application is still

responsible for creating the display in the new portion of the window. Intuition will notify your application and

offers the same ability to constrain the redrawing as is done for Simple Refresh. Smart Refresh windows are

appropriate when regenerating the display would take too long. Smart Refresh uses the screen's display memory for

the window display and requires extra buffers for the off-screen portions of the window (portions not currently being

displayed). Smart Refresh uses more display memory but redraws the display faster than Simple Refresh.

Intuition: Windows 43

Figure 3-4: Smart Refresh

SuperBitMap

SMART REFRESH

The obscured portion is
preserved offscreen.

This is both a special type of window and a method of redrawing the display. When you choose this method of
redrawing, you get your own bit-map to use as display memory instead of using the screen's display memory. You
make this bit-map as large as the window can get (or larger). You never have to worry about redisplay after the
window is uncovered because the entire display is always there in RAM.

44 Intuition: Windows

1~-----

,-
I
I
I
I
I
I

SUPER BIT MAP

Portions of your offscreen
bitmap are shown onscreen.

1 _____ -'--____________ _

Figure 3-5: SuperBitMap Refresh

REFRESHING THE WINDOW DISPLAY

If you open either a Simple Refresh or a Smart Refresh window, your program may be asked to refresh part of your
display at some time. When a Simple Refresh window is moved or sized, or when other windows are moved or
sized in such a way that areas of a Simple Refresh window are revealed, the window will have to be refreshed. With
Smart Refresh windows, the window must be sized larger on either axis to generate a REFRESHWINDOW event.

The program finds out that the window needs refreshing via either source of input, the IDCMP or the console device.
A message of the class REFRESHWINDOW arrives at the IDCMP, telling the program that the window needs to be
refreshed. Every time the program learns that it should refresh a window, it must take some action, even if it is just
the acceptable minimum action described below. (See the chapter "Input and Output Methods" for further
information.)

When the program is asked to refresh a window, before actually starting to refresh it the program should call the
Intuition function BeginRefreshO. This function makes sure that refreshing is done in the most efficient way, only
redrawing those portions of the window that really need to be redrawn. The rest of the rendering commands are
discarded.

After BeginRefreshO is called, the program should redraw its display. Then, call EndRefreshO to restore the state
of the internal structures.

When using BeginlEndRefreshO restrict your operations to simple rendering. All of the rendering functions in
intuition.1ibrary and graphics.1ibrary are safe. RefreshGadgetsO is also permissible, but probably unnecessary.
Avoid calls that may lock the LayerInfo, or get complicated in Intuition, since BeginRefreshO leaves the window's
layer or layers locked. Avoid AutoRequestO, and therefore all direct or indirect disk-related DOS calls. Though
BeginRefreshO and EndRefreshO provide good results in refreshing a smart window, the refreshing of gadgets can
be more complicated. This topic is covered in the gadgets chapter.

Intuition: Windows 45

Even if you don't want the program to redraw immediately, you should make sure the program at least calls
Begin/EndRefreshO each time it is asked to refresh a window. This helps Intuition and the layer library keep things
sorted and organized.

If you are opening a window that you will never care to refresh, no matter what happens to it or around it, then you
can avoid having to call BeginRefreshO and EndRefreshO by setting the NOCAREREFRESH flag in the
NewWindow structure when you open your window.

WINDOW POINTER

The active window contains a pointer to allow the user to make selections from menus, choose gadgets, and so on.
The user moves the pointer around with a mouse controller, other kinds of controllers, or the keyboard cursor keys.

Pointer Position

If your program needs to know about pointer movements, you can either look at the position variables or arrange to
receive messages each time the pointer moves. The MouseX and MouseY fields of the Window structure always
contain the current pointer x and y coordinates, whether or not your window is the active one. If you elect to receive
messages, you get a set of x,y coordinates each time the pointer moves. These coordinates are relative to the upper
left comer of your window and are reported in the resolution of your screen, even though the pointer's visible
resolution is always in low-resolution mode (note that the pointer is actually a sprite).

If your window is a Gimmezerozero window, you can examine the variables GZZMouseX and GZZMouse Y in the
Window structure to find the position of the mouse relative to the upper left comer of the inner window.

To get messages about pointer movements, either InputEvents or message-port messages, you must set the
REPORTMOUSE flag in your window structure. Thereafter, whenever your window is active, you'll get a
broadcast every single time the pointer moves. This can be a lot of messages, so be prepared to handle them
efficiently. If you want to change whether or not you are following mouse movements, you can call
ReportMouseO.

You can also get messages about pointer movements by setting the flag FOLLOWMOUSE in your application
gadget structures. If this flag is set in a gadget, the current pointer position is reported as long as that gadget is
selected by the user. This can result in a lot of messages, too.

Custom Pointer

You can set up your window with a custom pointer to replace the default arrow pointer. Your custom pointer will be
displayed whenever your window is the active one. Good uses include a cross-hair pointer for a paint-program, or a
"busy" pointer to indicate that your program is performing some operation and is not ready to respond to new
requests from the user. To define the pointer, set up a sprite data structure (sprites are one of the general-purpose
Amiga graphics structures). To place your custom pointer in the window, call SetPointerO. To remove your
custom pointer from the window, call ClearPointerO. Both of these functions take effect immediately if yours is
the active window.

Also, you can change the colors of the Intuition pointer. The Intuition pointer is always sprite O. To change the
colors of sprite 0, call the graphics library routine SetRGB40. Refer to chapter on style for more information about
this.

46 Intuition: Windows

See the last section of this chapter for a complete example of a custom pointer.

GRAPIllCS AND TEXT IN WINDOWS

There are two ways of rendering graphics, lines, and text into windows. You can use all of the Amiga graphics,
animation, and text primitives in any window. Also, you can use the quick and easy Intuition structures and
functions to display Intuition Image, Border, or IntuiText structures in windows. See the chapter entitled
"Images, Line Drawing, and Text," for more information about Images, Borders, and IntuiText.

WINDOW COLORS

The number of colors you can use for the window display and the actual colors that will appear in the color registers
are defined by the screen in which the window opens. In the window structure, you specify two color register
numbers ("pens"), one for the border outline, text and gadgets and one for block fills (such as the title bar and menu
backgrounds). These pen colors are also a function of the screen. You can specify different colors for the pens than
those used by the screen or you can use the screen's pen colors.

WINDOW DIMENSIONS

In the NewWindow structure, you define the dimensions and the starting location of your window on the screen.
The position and dimensions of the window undergo error checking when the window is opened. The maximum
dimensions of the window, specified as NewWindow.MaxWidth and NewWindow.MaxHeight,
are unsigned and may legally be set to the maximum by using the value OxFFFF, better expressed as -0.

If you are letting the user change the size and shape of the window, you also need to specify the minimum size to
which the window can shrink and the maximum size to which it can grow. If you do not ask that the window sizing
gadget be attached to the window, then you need not initialize any of these maximum and minimum values.

In setting all these size dimensions, bear in mind the horizontal and vertical resolutions of the screen in which you
are opening the window.

If you want to change the sizing limits after you have opened the window, you can call WindowLimitsO with the
new values.

The NewWindow Structure

Here are the specifications for the NewWindow structure:

struct NewWindow
{

SHORT LeftEdge, TopEdge;
SHORT Width, Height;
UBYTE OetailPen, BlockPen;
ULONG IOCMPFlags;
ULONG Flags;
struct Gadget *FirstGadget;
struct Image *CheckMark;
UBYTE *Title;

Intuition: Windows 47

} ;

struct Screen *Screen;
struct BitMap *BitMap;
SHORT MinWidth, MinHeight;
USHORT MaxWidth, MaxHeight;
USHORT Type;

The fields in the NewWindow structure are explained below. Some of the fields contain variables to which you
need to assign a value, some contain flag bits to set or unset, and some are pointers to other structures.

LeftEdge, Top Edge, Width and Height

These fields describe where your window will first appear on the screen and how large it will be initially. These
dimensions are relative to the top left comer of the screen, which has the coordinates (0,0):

LeftEdge The initial x position, which represents the offset from the first pixel on the line, pixel O.

TopEdge The initial y position, which represents how many lines down from the top (line 0) you want the
window to begin.

Width The initial width in pixels.

Height The initial height in lines.

DetailPen and B10ckPen

These fields contain the "pen" numbers used to render details of the window. The colors associated with the pens
are a function of the screen. If you supply a value of -1 for either of these, you will get the screen's value for that
pen by default

DetailPen The pen number (or -1) for the rendering of window details like gadgets or text in the title bar

BlockPen The pen number (or -1) for window block fills (like the title bar) and the outer rim of the window
border.

Flags

System Gadget Flags

WINDOWSIZING
This flag allows the user to change the size of the window. Intuition places the window's sizing
gadget in the lower right of your window. By default, the right border is adjusted to accommodate
the sizing gadget, but you can change this with the following two flags, which work in conjunction
with WINDOWSIZING. The sizing gadget can go in either the right or bottom border (or both) of
the window.

• The SIZEBRIGHT flag, which is the default, puts the sizing gadget in the right border.

48 Intuition: Windows

• The SIZEBBOTIOM flag puts the sizing gadget in the bottom border. You might wish to set this
flag to put the sizing gadget in the bottom border if you want all possible horizontal bits-for
instance. for 8O-column text-and are willing to sacrifice vertical space.

WINDOWDEPTH
Setting this flag adds both the UPFRONT gadget to bring the window into the foreground and the
OOWNBACK gadget to send it behind other currently displayed windows.

This allows the user to change the window's depth arrangement with respect to all other currently
displayed windows. Intuition places the window depth-arrangement gadgets in the upper right of the
window.

WINDOWCLOSE
Setting this flag attaches the standard close gadget to the upper left of the window. When the user
selects this gadget. Intuition transmits a message to your application. It is up to the application to call
CloseWindowO when ready.

WINDOWDRAG
This flag turns the entire title bar of the window into a drag gadget. allowing the user to move the
window into a different position on the screen by clicking anywhere in the window title bar and
moving the mouse or other controller.

NOTE

Even if you do not specify a text string in the Text variable shown below. a title bar appears if
you use anyone of the system gadgets WINDOWDRAG, WINOOWDEPTH, or
WlNDOWCLOSE. If no text is provided, the title bar is blank.

GIMMEZEROZERO
Set this flag if you want a Gimmezerozero window.

Window Refresh Flags

The following four flags detennine how Intuition preserves the display when an overlapped window is
uncovered by the user. You must select one of the first three.

SIMPLE_REFRESH
When this flag is set, every time a portion of the window is revealed the application program must
redraw its display.

SMART_REFRESH
When this flag is set, the only time you have to redraw your display is when the window's sizing
gadget is used to make the window larger.

NOTE

If you open a SMART_REFRESH window without asking for the sizing gadget, then
Intuition never tells you to redraw this window.

SUPER_BITMAP
Setting this flag means you are allocating and maintaining your own bit-map. You must also set the
BitMap field to point to your own BitMap structure. For complete infonnation about SuperBitMap,
see "Setting Up a SuperBitMap Window" later in this chapter, and the example "dualpf.c", at the

Intuition: Windows 49

end of the chapter.

OTHER_REFRESH
Reserved.

Special Window Flags

BACKDROP
Set this flag if you want a Backdrop window.

BORDERLESS
This flag creates a window with none of the default border padding and border lines.

NOTE

Be careful when you set this flag. It may cause visual confusion on the screen. Also, there
may still be some borders if you have selected some of the system gadgets, supplied text for
the window's title bar, or specified that any of your custom gadgets go in the borders.

Message Flags

REPORTMOUSE
This flag sets the window to receive pointer movements as x,y coordinates. Also see the description
of the IDCMP flag, MOUSEMOVE, in the chapter entitled "Input and Output Methods."

ACTIVATE
When this flag is set, the window automatically becomes active when it is opened.

NOTE

Use this flag carefully. It can change where the user's input is going.

NOCAREREFRESH
Set this flag if you do not want to receive messages telling you to refresh your window.

RMBTRAP

IDCMPFlags

Set this flag if you do not want any menu operations at all for your window. Whenever the user
presses the right mouse button while this window is active, the program will receive normal
MOUSEBUTION events.

This flag may be modified on-the-fly by your program. The recommended way to set or clear this
flag is as an atomic operation. Caution: Intuition can preempt a multistep set or clear operation, i.e.
read contents of address into register, perform bit operation on register, and write register out to
address. This can cause Intuition to become confused. An atomic operation could be done in
assembler, using 68000 instructions that operate directly on memory, or it could be done by locking
out Intuition with a ForbidO/PermitO pair. Here, you would call ForbidO, do the operation on
Window.Flags, and then call PermitO.

The IDCMPFlags are listed and described in The Amiga ROM Kernel Reference Manual: Includes and
Autodocs for the Open WindowO function and in the chapter in this manual entitled "Input and Output

50 Intuition: Windows

Methods." If any of these flags are set, Intuition creates a pair of message ports and uses them selectively for
sending input to the task opening this window instead of using the console device.

FirstGadget
This is a pointer to the first in the linked list of custom Gadget structures that you want included in the
window.

CheckMark
This is a pointer to an instance of a custom image to be used when menu items selected by the user are to be
checkmarked. If you just want to use the default checkmark (..J), set this field to NULL.

Title
This is a pointer to a null-terminated text string, which becomes the window title and is displayed in the
window title bar. Intuition draws the text using the colors in the DetailPen and BlockPen fields and displays
as much as possible of the window title, depending upon the current width of the title bar. You get the screen's
default font

NOTE

The window title is not an instance of IntuiText; it is simply a string ending in a NULL.

Type
This contains the screen type for this window. The currently available types are WBENCHSCREEN and
CUSTOMSCREEN.

IMPORTANT

If you choose CUSTOMSCREEN, you must have already opened your custom screen via a call to
OpenScreenO, and you must copy that pointer into the Screen field (see next entry), before you open
your window.

Screen
If your type is WBENCHSCREEN, then this argument is ignored. If Type is CUSTOMSCREEN, point this to
your custom screen structure.

BitMap
If you specify SUPER_BITMAP as the refresh type, this flag must be a pointer to your own BitMap structure.
If you specify some other refresh type, Intuition ignores this field.

The following four variables are used to set the minimum and maximum size to which you allow the user to size the
window. If you do not set the flag WINDOWSIZING, then these variables are ignored by Intuition.

If you set any of these variables to 0, that means you want to use the initial setting for that dimension. For example,
if MinWidth is 0, Intuition gives this variable the same value as the opening Width of the window.

NOTE

To change the limits after the window is opened, call WindowLimitsO.

MinWidth
The minimum width for window sizing, in pixels.

MinHeight
The minimum height for window sizing, in lines.

Intuition: Windows 51

MaxWidth
The maximum width for window sizing, in pixels. Use CO) to allow a window as wide as the screen.

MaxHeight
The maximum height for window sizing, in lines. Use CO) to allow a window as high as the screen.

WINDOW STRUCTURE

If you have successfully opened a window by calling the OpenWindowO function, you receive a pointer to a
Window structure. This section describes some of the more useful variables of the Window structure. A complete
description of the Window structure is given in The Amiga ROM Kernel Reference Manual: Includes and Autodocs.

LertEdge, TopEdge, Width and Height
As the user moves and sizes your window, these variables will change to reflect the new parameters.

MouseX, MouseY, GZZMouseX, GZZMouseY
These variables always reflect the current position of the Intuition pointer, whether or not your window is
currently the active one. The GZZMouse variables reflect the position of the pointer relative to the inner
window of Gimmezerozero windows and the offset into normal windows after taking the borders into account.

ReqCount
You can examine this variable to discover how many requesters are currently displayed in the window.

WScreen
This variable points to the data structure for this window's screen. If you have opened this window in a custom
screen of your own making, you should already know the address of the screen. However, if you have opened
this window on the Workbench screen, this variable will point you to that screen's data structure.

RPort
This variable is a pointer to this window's RastPort. You may need the address of the RastPort when using
the graphics, text, and animation functions.

BorderLeft, BorderTop, BorderRight, BorderBottom
These variables describe the current size of the respective borders that surround the window.

BorderRPort
With Gimmezerozero windows, this variable points to the RastPort for the outer window, in which the border
gadgets are kept.

UserData
This is a memory location that is reserved for your use. You can attach your own block of data to the window
structure by setting this variable to point to your data.

WINDOW FUNCTIONS

Here's a quick rundown of Intuition functions that affect windows. For a complete description of these functions,
see The Amiga ROM KerneL Reference Manual: Includes and Autodocs.

52 Intuition: Windows

Opening the Window

Use the following function to open a window:

• Open Window (NewWindow)

NewWindow is a pointer to a NewWindow structure. If successful, a pointer to a Window structure is
returned. This pointer is required by many of the other functions listed below.

Activating a Window

Use the following function to activate windows:

• AdivateWindow(Window)

Window is a pointer to a Window structure. This function call may have its action deferred. Don't assume that
the selected window has become active just because you called this function for it. You can detect when this
window has become active by using the ACTIVEWINDOW IDCMP message. We suggest that you use this
function only in response to some user action. An example of a system program using this function on a (long,
narrow) window along with the related function ActivateGadgetO, is the Workbench Rename function.

Menus

Use the following functions to attach and remove menus:

• SetMenuStrip(Window, Menu)

This function attaches menus to a window.

• ClearMenuStrip(Window)

This function removes the menu strip from a window. After this is done, the user can no longer access menus
for this window. If you have called SetMenuStripO, you should call ClearMenuStripO before closing your
window.

See the chapter "Menus," for complete information about setting up your menus.

Changing Pointer Position Reports

Although you decide when opening the window whether or not you want messages about pointer position, you can
change this later with the following function:

• ReportMouse(Window, Boolean)

Intuition: Windows 53

• ReportMouse(Boolean, Window)

This function determines whether or not mouse movements in this window are reported. While most code will
use the first form of the call, some compilers require the second. Consult your compiler manual for the correct
calling sequence. From assembler, the interface is always the same: Boolean in DO, Window in AO. It is still
endorsed to simply set, or reset, the REPORTMOUSE flag bit in Window->Flags on your own, in an atomic
way, as explained for RMBlRAP, above.

Closing the Window

After the user selects the close gadget, the program can do whatever it needs to do to clean up and then actually
close the window with the CloseWindow (Window) function. This function closes a window.

Requesters in the Window

The following two functions allow requesters to become active:

• Request (Requester, Window)

This function activates a requester in the window.

• SetDMRequest (Window, Requester)

This function sets up a requester that the user can bring up in the window by clicking the menu button twice.

These two functions disable requesters:

• EndRequest (Requester, Window)

This function removes a requester from the window.

• ClearDMRequest (Window, Requester)

This function clears the double-click requester, so that the user can no longer access it.

Custom Pointers

The following functions apply if you have a custom pointer:

• SetPointer (Window, Pointer, Height, Width, Xoft'set, Yoft'set)

This function sets up the window with a sprite definition for a custom pointer. If the window is active, the
change takes place immediately.

• ClearPointer (Window)

This function clears the sprite definition from the window and resets to the default Intuition pointer.

54 Intuition: Windows

Changing the Size Limits

The following function changes the limits for window sizing:

• WindowLimits (Window, MinWidth, MinHeight, MaxWidth, MaxHeight)

This function changes the maximum and minimum sizing of the window from the initial dimensions in the
NewWindow structure. If you do not want to change a dimension, set the corresponding argument to O. Out
of-range numbers are ignored. If the user is currently sizing the window, new limits take effect after the user
releases the select button.

Changing the Window or Screen Title

The following function changes the window title after the window has already been displayed:

• SetWindowTitles (Window, WindowTitle, ScreenTitle)

This function changes the window title (and screen title, if this is the active window) immediately.
WindowTitle or ScreenTitie can be -1, 0, or a null-terminated string:

-1 Do not change this title.

o Leave a blank title bar

string Change to the title given in this string.

Refresh Procedures

The following functions allow you to refresh your window in an optimized way:

• BeginRefresh (Window)

This function initializes Intuition and layer library internal states for optimized refresh. After you call this
procedure, you may redraw your entire window. Only those portions that need to be refreshed will actually be
redrawn; the other drawing commands will be discarded.

• EndRefresh (Window, boolean)

After you've refreshed your window, call EndRefreshO to restore the internal states of Intuition and the layer
library. The boolean value determines whether you are completely finished with refreshing or not. If you set it
to FALSE, you may perform further refreshing between subsequent BeginRefreshO/EndRefreshO pairs. You
should set the boolean to TRUE for the last call to EndRefreshO.

• RefreshWindowFrame(Window) Refreshes the border of a window, including the title region and the
gadgets. It's provided in case your program has been trashing borders and you want to clean up.

Intuition: Windows 55

Program Control of Window Arrangement

These functions allow you to modify the arrangement of your window as if the user were activating the associated
system window gadgets. These four are among the Intuition functions that are asynchronous. The window will not
be affected by them immediately; lather, Intuition will act on it the next time Intuition receives an input event, which
happens currently at a minimum late of ten times per second, and a maximum of sixty times per second. Remember
that the actions you call for with these commands may not occur immediately. In some cases, there are IDCMP
messages you can request and wait for, which will let you know when the change has occurred (for example
NEWSIZE).

• MoveWindow (Window, DeltaX, DeltaY)

This function allows you to move the window to a new position in the screen.

• SizeWindow (Window, DeltaX, DeltaY)

You can change the size of your window with a call to this procedure.

• WindowToFront (Window)

This function causes your window to move in front of all other windows in this screen.

• WindowToBack (Window)

This function causes your window to move behind all other windows in this screen.

SETTING UP A SUPERBITMAP WINDOW

For a SuperBitMap window, you need to set up your own bit-map, since you will not be using the screen's display
memory. To set up the bit-map, you need to create a BitMap structure and allocate memory space for it.

The general-purpose graphics function InitBitMapO prepares a BitMap structure, which describes how a linear
memory area is organized as a series of one or more rectangular bit-planes. Here is the specification for this
function:

• InitBitMap (bitmap, depth, bitwidth, bitheight)

bitmap
This is a pointer to the BitMap structure to be initialized.

depth
This specifies the number of bit-planes to set up.

bitwidth
This specifies how wide each bit-plane should be, in bits. Should be a multiple of 16.

bitheight
This specifies how high each bit-plane should be, in lines.

56 Intuition: Windows

The general-purpose graphics function AllocRasterO allocates the memory space for the BitMap. Here is the
specification for this function:

• AllocRaster (width, height)

The arguments width and height are the maximum dimensions of the array in bits. An example of the use of
AllocRasterO appears in the example "dualpf.c", in the previous chapter. One of the examples below
demonstrates a SuperBitMap window.

SETTING UP A CUSTOM POINTER

Follow these procedures to replace the default pointer with your own custom pointer:

1. Create a sprite data structure. (This is explained below.)

2. Call SetPointerO. If your window is active, the new pointer will be attached to the window.

An extra requirement is imposed on sprite data (and Image data). It must be located in chip memory, which is
memory that can be accessed by the special Amiga hardware chips. Expansion memory cannot be addressed by the
custom chips.

To write a program that will survive in multiple configurations of Amiga hardware, you must ensure that your sprite
and Image data reside in this chip memory. You can make sure that your data is in chip memory by using the tools
or flags provided by your compiler for this purpose. If none are provided, see the last paragraph in the "Other
Features" chapter for another method.

To allocate chip memory, call the Exec function AlIocMemO with MEMF _CHIP as the requirements argument.
See the chapter entitled "Exec: Memory Allocation", for more information.

The Sprite Data Structure

A sprite data structure is made up of words of data. In a pointer sprite, the first two words and the last two words are
reserved for the system. These should be set to O's. All the other words represent the sprite image.

The example X-shaped custom pointer is nine lines high and two bit planes deep. So, the sprite image consists of 18
words (2 planes x 9 lines = 18 words). If we add the four words reserved for the system we get the following
definition:

'define XPTR WIDTH 9
'define XPTR=HEIGHT 9
'define XPTR XOFFSET -4
'define XPTR=YOFFSET -4

USHORT XPointerl)=
{

OxOOOO,OxOOOO, /* position and control words */

OxC180,Ox4100, /* 1st line of the sprite image */
Ox6380,OxA280, /* 2nd line of the sprite image */
Ox3700,Ox5500,
Ox1600,Qx220ci,
OxOOOO,OxOOOO,
Ox1600,Ox220Q,
Ox2300,Ox5500,

Intuition: Windows 57

Ox41BO,OxA2BO,
OxBOBO,Ox4100, 1* 9th line of the sprite image *1

OxOOOO,OxOOOO 1* Reserved for system *1
) ;

The first two words of image data, OxC180 and Ox4100, represent the top line of the sprite. To find out what colors
will appear on the top line of the sprite, take a bit from OxC180 and the corresponding bit from Ox4100. This will
give a 2-bit number from 0-3 representing the color register for the given pixel. For instance, the top left pixel of
our example pointer gets color info from color register 01.

First two lines of
sprite data in hex:

In binary:

LSB MSB

OxCl80 Ox4100

1100... 0100 ...

Color register used: 01 11 00 00

NOTE

The first word in a line gives the least significant bit of the color register and the second word gives the
most significant bit. As you can see, sprites get their color information from the color registers much
like screens do.

This example sprite creates an Intuition pointer that looks like the one shown in the figure.

Figure 3-6: The X-Shaped Custom Pointer

Attaching the Pointer to the Window

58 Intuition: Windows

You call SetPointerO with the following arguments:

Window
This is a pointer to the window that is to receive this pointer definition.

Pointer
This is a pointer to the data definition of a sprite.

Height
This specifies the height of the pointer; it can be as taIl as you like.

Width
This specifies the width of the sprite (must be less than or equal to 16).

XOtfset, YOtfset
The XOtfset and YOtfset are used to offset the top-left comer of the hardware sprite imagery from what
Intuition regards as the current position of the pointer. Another way of describing it is as the offset from
the "hot spot" of the pointer to the top-left comer of the sprite. For instance, if you specify offsets of
zero, zero, then the top-left comer of your sprite image will be placed at the pointer position. On the other
hand, if you specify an XOtfset of -7 (remember, sprites are 16 pixels wide) then your sprite will be
centered over the pointer position. If you specify an XOtfset of -IS, the right edge of the sprite will be
over the pointer position.

NOTE

For compatibility, you must tell Intuition that the "hot spot" of the pointer sprite is one pixel to
the left of the position you actually intend. Changes to the pointer done by your program must
compensate for this. The Preferences pointer editor correctly handles this situation.

Examples

BACKDROP WINDOW EXAMPLE

This program opens a borderless backdrop window, and writes a greeting to the location normally occupied by the
screen title bar. After a pause of about three seconds, it goes away.

/* agateWindow.h -- This file implements a border less backdrop */
/* window. */

#define AGAT_LEFTEDGE 0
#define AGAT_TOPEDGE 0
#define AGAT WIDTH -1 1* Width and height are supposed to be the */
#define AGAT=HEIGHT -1 /* same as the screen width and height. */

struct NewWindow agateWindow =
{

AGAT_LEFTEDGE,
AGAT TOPEDGE,
640, -
200,
0,1, /* Plain vanilla DetailPen and BlockPen. */
NULL, /* IDCMP Flags can be added later. */
SMART_REFRESH I ACTIVATE I NOCAREREFRESH I BORDERLESS

I BACKDROP,
NULL, /* Pointer to the first gadget -- */

Intuition: Windows 59

} ;

NULL,
NULL,
NULL,
NULL,
AGAT_WIDTH,
AGAT_HEIGHT,
AGAT_WIDTH,
AGAT_HEIGHT,
CUSTOMSCREEN

/* may be initialized later.
/* No checkmark. */
/* No title. *1
/* Attach a screen later. */
/* No BitMap. */
/* Minimum width. *1
/* Minimum height. *1
1* Maximum width. *1
1* Maximum height. */
1* A screen of our own. *1

/* End of agateWindow.h */

/* hellotext.h */

struct IntuiText hello
(

*1

1, /* Use color register 1 (BlockPen) for the FrontPen */
2, /* Color register 2, but not used in JAMl mode. */
JAMl, /* Use the background color */
0, /* As far to the left as possible. */
NULL, /* I want to use the font height */

1* postpone this till later. */
NULL, /* Font to use: the default. */
"Hello, World! ", 1* The text */
NULL /* No more IntuiText */

) ;
/* End of hellotext.h */

/* borderless.c - Opens a borderless backdrop window, writes a message. */

'include <exec/types.h>
'include <intuition/intuition.h>
'include <libraries/dos.h>
'ifdef LATTICE
'include <proto/all.h>
'include <stdlib.h>
int CXBRK(void) (return(O);}
'endif

/* Include user-written header files here. */
'include "hires.h"
'include "agateWindow.h"
'include "hellotext.h"

/* Use lowest non-obsolete version that supplies the functions you need. */
'define INTUITION REV 33
'define GRAPHICS_REV 33

/* TICKS PER SECOND is defined in libraries/dos.h
NEVER-call Delay() with an argument of 0 !

*/
'define PAUSE(seconds) (Delay«seconds) * TICKS_PER SECOND»

extern VOID cleanExit(struct Screen *, struct Window *, int);

struct IntuitionBase *IntuitionBase = NULL;
struct GfxBase *GfxBase = NULL;

/* The next two declarations are for redirecting system requesters. */
struct Process *myProcess = NULL;
APTR oldwindowptr = NULL;

VOID main(int argc, char *argv[])
{

/* Declare variables here */
SHORT i;
SHORT txWidth;
struct Screen *screenl NULL;

60 Intuition: Windows

struct Window *windowl NULL;

1* Open the Intuition Library *1
IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.library",INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit(screenl, windowl, RETURN_WARN);

1* Open any other required libraries *1
GfxBase (struct GfxBase *)

OpenLibrary("graphics.library",GRAPHICS_REV);

if (GfxBase == NULL)
cleanExit(screenl, windowl, RETURN_WARN);

1* Open the screen *1
screenl = OpenScreen(&fuIIHires);
if (screenl == NULL)

cleanExit(screenl, windowl, RETURN_WARN);

1* Attach the window to the open screen ... *1
agateWindow.Screen = screenl;

1* Conceal the screen title *1
showTitle (screenl, (BOOL) FALSE);

1* ••• and open the window *1
windowl = OpenWindow(&agateWindow);
if (windowl == NULL)

cleanExit(screenl, windowl, RETURN_WARN);

1* Now is the time to redirect system requesters. *1

myProcess = (struct Process *)FindTask(NULL);
oldwindowptr = myProcess->pr WindowPtr;
myProcess->pr_WindowPtr = (APTR)windowl;

1* Finds our process *1

1* Write at the top edge of the window *1
1* Get the text width to space the greeting properly. *1

txWidth = IntuiTextLength(&hello);

1* Print text five times, one pixel down from the top. *1
for (i = 0; i < 5; i++)

PrintIText(windowl->RPort, &hello, i*txWidth, 1);

PAUSE (6);

1* Set up the signals that you want to hear about ••• *1
1* No signals in this program *1

1* Exit the program *1

cleanExit(screenl, windowl, RETURN_OK);

VOID cleanExit(scrn, wind, returnValue)
struct Screen *scrn;
struct Window *wind;
int returnValue;
{

Intuition: Windows 61

1* Close things in the reverse order of opening *1

1* Restore the old window pointer to our process, *1
1* and close the window and the screen. *1

if (oldwindowptr)
myProcess->pr_WindowPtr = oldwindowptr;

if (wind) CloseWindow(wind);
if (scrn) CloseScreen(scrn);

1* Close the library, and then exit *1
if (GfxBase) CloseLibrary((struct Library *)GfxBase);
if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase);

exit(returnValue);

TWO WINDOW EXAMPLE

The following program, twowindows.c, opens two windows, and writes messages into them with IntuiText. It
shows the function of the ACTIVA1E flag, and illustrates how to get messages from two or more windows. It also
shows how to redirect system requesters, that were initiated by your program, to your custom screen.

1* hellogoodbye.h *1

struct IntuiText hello
(

1, 1* Use color register 1 (BlockPen) for the FrontPen *1
2, 1* Color register 2, but not used in JAMI mode. *1
JAMl, 1* Use the background color *1
0, 1* As far to the left as possible. *1
NULL, /* I want to use the font height *1

1* postporie this till later. *1
NULL, 1* Font to use: the default. *1
"Hello, World! ", 1* The text *1
NULL 1* No more IntuiText *1

} ;

struct IntuiText other(3) =
{

1, 3, JAM2, 0, 0, NULL, "You clicked in the",
0, 2, JAM2, 8, 0, NULL, ·other window!",
3, 2, JAM2, 40, 0, NULL, "GOODBYE!",

} ;
1* End of hellogoodbye.h */

1* twowindows.c */

iinclude <exec/types.h>
iinclude <intuition/intuition.h>
iinclude <libraries/dos.h>
Hfdef LATTICE
iinclude <proto/all.h>
iinclude <stdlib.h>
int CXBRK(void) {return(O);}
iendif

NULL
NULL
}

NULL },
},

1* Include user-written header files here. For illustration, we show *1
1* two header files which we will use frequently. *1
iinclude "hires.h"
iinclude "graniteWindow.h"
iinclude "hellogoodbye.h"

62 Intuition: Windows

1* Use lowest non-obsolete version that supplies the functions you need. *1
#define INTUITION_REV 33
#define GRAPHICS_REV 33

1* TICKS PER SECOND (defined in libraries/dos.h)
NEVER-call Delay() with an argument of 0 !

*1
#define PAUSE(seconds) (Delay«seconds) * TICKS_PER_SECOND»

extern VOID cleanExit(struct Screen *, struct Window *, struct Window *,
int returnValue);

extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;
struct GfxBase *GfxBase = NULL;
1* The following two lines are for system requester redirection. *1
APTR oldwindowptr = NULL;
struct Process *myProcess = NULL;

VOID main(int argc, char *argv[])
{

1* Declare variables here *1

ULONG aSignalmask, bSignalmask, signals;
USHORT aDone = FALSE, bDone = FALSE, i, fontHeight;
struct Screen *screen1 NULL;
struct Window *aWindow = NULL, *bWindow = NULL;

1* Open the Intuition Library *1

IntuitionBase = (struct IntuitionBase *)
OpenLibrary("intuition.library",INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit(screen1, aWindow, bWindow, RETURN_WARN);

1* Open any other required libraries *1

GfxBase (struct GfxBase *)
OpenLibrary("graphics.library", GRAPHICS_REV);

if GfxBase == NULL)
cleanExit(screen1, aWindow, bWindow, RETURN_WARN);

1* Make the assignments that were postponed above *1

graniteWindow.Width = 300;
graniteWindow.Height = 100;
graniteWindow.Title = "aWindow";

1* Open the screen *1

screen1 = OpenScreen(&fullHires);
if (screen1 == NULL)

cleanExit(screen1, aWindow, bWindow, RETURN_WARN);

1* Attach the window to the open screen '" *1

graniteWindow.Screen = screen1;

1* ... and open the window *1

aWindow = OpenWindow(&graniteWindow);
if (aWindow == NULL)

cleanExit(screen1, aWindow, bWindow, RETURN_WARN);

1* Now is the time to redirect system requesters. *1

Intuition: Windows 63

myProcess = (struct Process *)FindTask(NULL);
oldwindowptr = myProcess->pr WindowPtr;
myProcess->pr_WindowPtr = (APTR)aWindow;

1* Finds our process *1

1* Now find out how big the font is, and write the greeting *1

fontHeight = (SHORT)aWindow->RPort->Font->tf_YSize;
hello.TopEdge = fontHeight;

PrintIText(aWindow->RPort, &hello, 5, (LONG)fontHeight);

PAUSE(3L);

1* The NewWindow structure is now free to be modified for *1
1* the other window. *1

graniteWindow.LeftEdge = 330;
graniteWindow.Title = "bWindow";

bWindow = OpenWindow(&graniteWindow);
if (bWindow == NULL)

cleanExit(screenl, aWindow, bWindow, RETURN_WARN);

PrintIText(bWindow->RPort, &hello, 5, (LONG)fontHeight);

1* Now's a good time to finish initializing the IntuiText. *1

other[O].NextText
other[l].NextText

&other[l];
&other[2];

1* Fill in the IntuiText vertical offset for the message *1

for (i = 0; i < 3; i ++)
other[i].TopEdge = (i + 1) * fontHeight;

1* Set up the signals that you want to hear about ... *1

aSignalmask
bSignalmask

lL « aWindow->UserPort->mp SigBit;
lL « bWindow->UserPort->mp=SigBit;

1* Call the functions that do the main processing *1

1* And wait to hear from your signals *1

while (! aOone II !bOone) (

signals = Wait (aSignalmask I bSignalmask);
if (signals & aSignalmask)

aOone = handleIOCMP(aWindow);
if (signals & bSignalmask)

bOone = handleIOCMP(bWindow);
if (aWindow && aOone) { 1* Close bWindow! *1

}

PrintIText(bWindow->RPort, &other[O], 5L, 20L);
PAUSE (3L);
CloseWindow(bWindow);
bWindow = NULL;
bSignalmask = OL;

if (bWindow && bOone) 1* Close aWindow! *1

PrintIText(aWindow->RPort, &other[O], 5L, SOL);
PAUSE (3L);

1* We're about to close the window that our Process
* is pointing to, so we must switch our Process
* to the other window, first.

*1
myProcess->pr_WindowPtr = (APTR)bWindow;

CloseWindow(aWindow);

64 Intuition: Windows

aWindow = NULL;
aSignalmask = OL;

/* If either window has been closed,
/* close the remaining window, so we
/* go away.

if (!aWindow II !bWindow)
break;

/* Exit the program */

PAUSE(3L);

then the user
must close it

cleanExit(screenl, aWindow, bWindow, RETURN_WARN);

UBYTE handleIDCMP(struct Window *win)
{

UBYTE flag = 0;
struct IntuiMessage *message = NULL;
ULONG class;

cannot */
and */

*/

while(message = (struct IntuiMessage *)GetMsg(win->UserPort)) {

class = message->Class;
ReplyMsg((struct Message *)message);

switch (class) (

case CLOSEWINDOW:

flag = 1;
break;

default:

break;

return (flag) ;

VOID cleanExit(scrn, aWind, bWind, returnValue)
struct Screen *scrn;
struct Window *aWind, *bWind;
int returnValue;
{

/* Close things in the reverse order of opening */

/* Restore the old window pointer in our process,
/* and close the window and the screen */
if (oldwindowptr)

myProcess->pr_Windowptr oldwindowptr;

if (bWind) CloseWindow(bWind);
if (aWind) CloseWindow(aWind);

if (scrn) Close Screen (scrn);

/* Close the library, and then exit */
if (GfxBase) CloseLibrary((struct Library *)GfxBase);
if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase);

exit(returnValue);

Intuition: Windows 65

INVISIBLE POINTER EXAMPLE

The following fragment shows how to make your pointer invisible. It allocates six words, 12 bytes, corresponding to
the four leading and trailing control words, together with the two data words, which are both zero.

1* For AllocMem() to define new pointer *1
idefine PDATASZ 12
UWORD *pdata;

1* Allocate 6 words for blank pointer sprite data in chip ram *1
if(pdata = (UWORD *)AllocMem(12,MEMF_CHIPIMEMF_CLEAR»

{
SetPointer(window1,pdata,1,16,0,0);
}

1* restore the default pointer image *1
ClearPointer(window1);

1* free our data for blank pointer sprite data *1
if (pdata) FreeMem(pdata,PDATASZ);

SUPERBITMAP WINDOW EXAMPLE

This example shows how to implement a superbitmap, and uses a host of Intuition facilities. We suggest that you
look over it quick! y for now. and come back to it when you have digested all of the other Intuition material.

1*
* Lines.c -- implements a superbitmap with scroll gadgets

*
*1

iinclude <exec/types.h>
iinclude <exec/memory.h>
iinclude <intuition/intuition.h>

iinclude <proto/all.h>

ide fine
ide fine
idefine

WIDTH SUPER
HEIGHT SUPER
DEPTH SUPER

800
600
2

extern struct GfxBase *GfxBase;
extern struct IntuitionBase *IntuitionBase;

struct LayersBase *LayersBase;

1* WindowInfo helps keep track of where the line is *1
struct Window Info

{

SHORT LineX1;
SHORT LineYl;
SHORT LineX2;
SHORT LineY2;
SHORT LineXld;
SHORT LineYld;
SHORT LineX2d;
SHORT LineY2d;
SHORT pen;
} ;

idefine GetGadgetID(x) «(struct Gadget *) (msg->IAddress»->GadgetID)

66 Intuition: Windows

'define GetLayerXOffset(x) (x->RPort->Layer->Scroll_X)
'define GetLayerYOffset(x) (x->RPort->Layer->Scroll_Y)

'define UP_DOWN_GADGET 0
'define LEFT_RIGHT_GADGET 1
'define NO GADGET 2

'define MAXVAL OxFFFFL

struct Image Images[2];

1* The special data needed for the two proportional gadgets *1
struct PropInfo GadgetsSInfo[2] -

{
(FREEVERTIAUTOKNOB,O,O,-l,-l,),
{FREEHORIZIAUTOKNOB,O,O,-l,-l,}
} ;

1* The usual data needed for any gadget *1
struct Gadget Gadgets[2]
{
1* Gadgets[O] *1

{&Gadgets[1],-15,10,16,-18,
GRELRIGHTIGRELHEIGHT,
RELVERIFYIGADGIMMEDIATEIRIGHTBORDER,PROPGADGETIGZZGADGET,
(APTR}&Images[O],NULL,NULL,NULL,
(APTR)&GadgetsSlnfo[O],UP_DOWN_GADGET,NULL),

1* Gadgets[l] *1
{NULL,0,-8,-14,9,
GRELBOTTOMI GRELWIDTH,

);

RELVERIFYIGADGIMMEDIATE I BOTTOMBORDER, PROP GADGET I GZZGADGET,
(APTR) & Images [l],NULL,NULL,NULL,
(APTR)&GadgetsSlnfo[l],LEFT_RIGHT_GADGET,NULL)

static struct NewWindow NewLinesWindow =
{

150,55,
165,94,
0,1,

1* window XY origin relative to TopLeft corner of screen *1
1* window width and height *1
1* detail and block pens *1

GADGETUP GADGETDOWN I NEWSIZE I INTUITICKS I CLOSEWINDOW,I* IDCMP flags *1

WINDOWDRAG I WINDOWDEPTH I WINDOWCLOSE I WINDOWSIZING
SUPER_BITMAP GIMMEZEROZERO I NOCAREREFRESH, 1* other window flags *1

};

Gadgets,
NULL,
"Lines 2.0",
NULL,
NULL,
90,40,
WIDTH_SUPER, HEIGHT_SUPER,
WBENCHSCREEN

1* first gadget in gadget list *1
1* custom CHECKMARK imagery *1
1* window title *1
1* custom screen pointer *1
1* custom bitmap *1
1* minimum width and height *1
1* maximum width and height *1
1* destination screen type *1

ULONG Seed=Ox1437289L;
SHORT Rand(SHORT max) 1* A simple random number generator *1
{

ULONG tmp;

tmp=(Seed«8) + (Seed»8);
Seed-=tmp;
return(tmp % max);

1* Checks to see if a delta would cause a point to be outside of
* its range, and adjusts the delta accordingly.

*1
VOID CheckBounce(SHORT point, SHORT *delta,SHORT *pen,SHORT max)
{

Intuition: Windows 67

point+=*delta;
if (point < 0)
{

*delta=Rand(B) +1;
*pen=(*pen % 3) + 1;

if (point > max)
{

*delta=-(Rand(B) +1);
*pen=(*pen % 3) + 1;

/* This function does all the work of drawing the lines */
VOID Do DrawStuff(struct Window *window)
{ -
struct RastPort *rp;
struct Windowlnfo *myinfo;

rp=window->RPort;
myinfo=(struct Windowlnfo *) (window->UserData);

Move(rp,myinfo->LineX1,myinfo->LineY1);
Oraw(rp,myinfo->LineX2,myinfo->LineY2);

checkBounce(myinfo->LineX1,&myinfo->LineX1d,&myinfo->pen, WIDTH SUPER);
checkBounce(myinfo->LineY1,&myinfo->LineY1d,&myinfo->pen, HEIGHT SUPER);
checkBounce(myinfo->LineX2,&myinfo->LineX2d,&myinfo->pen, WIDTH SUPER);
checkBounce(myinfo->LineY2,&myinfo->LineY2d,&myinfo->pen,HEIGHT_SUPER);

SetAPen(rp,myinfo->pen);

myinfo->LineX1+=myinfo->LineX1d;
myinfo->LineY1+=myinfo->LineY1d;
myinfo->LineX2+=myinfo->LineX2d;
myinfo->LineY2+=myinfo->LineY2d;

/* This function provides a simple interface to ScrollLayer */
VOID Slide BitMap(struct Window *window,SHORT DX,SHORT Dy)
{ -

ScrollLayer(O,window->RPort->Layer,Ox,Dy);

VOID Do_NewSize(struct Window *window)
{
ULONG tmp;

tmp=GetLayerXOffset(window) + window->GZZWidth;
if (tmp>=WIDTH_SUPER) Slide_BitMap(window,WIDTH_SUPER-tmp,O);

NewModifyProp(&Gadgets[LEFT RIGHT GADGET],window,NULL,AUTOKNOBiFREEHORIZ,
((GetLayerXOffset(window) * MAXVAL) /

(WIDTH_SUPER - window->GZZWidth)),
NULL,
((window->GZZWidth * MAXVAL) / WIDTH SUPER),

MAXVAL,
1) ;

tmp=GetLayerYOffset(window) + window->GZZHeight;
if (tmp>=HEIGHT_SUPER) Slide_BitMap(window,O,HEIGHT_SUPER-tmp);

NewModifyProp(&Gadgets[UP DOWN GADGET],window,NULL,AUTOKNOBiFREEVERT,
NULL, --
((GetLayerYOffset(window) * MAXVAL) /

(HEIGHT_SUPER - window->GZZHeight)),
MAXVAL,
((window->GZZHeight * MAXVAL) / HEIGHT_SUPER),
1) ;

VOID Check_Gadget (struct Window *window,USHORT gadgetID)

68 Intuition: Windows

ULONG tmp;
SHORT dX=O;
SHORT dY=O;

switch (gadgetID)
(
case UP DOWN GADGET:

case LEFT RIGHT GADGET: - -

}

tmp=HEIGHT_SUPER - window->GZZHeight;
tmp=tmp*GadgetsSlnfo[UP DOWN GADGET1.VertPot;
tmp=tmp / MAXVAL; --
dY=tmp - GetLayerYOffset(window);
break;
tmp=WIDTH SUPER - window->GZZWidth;
tmp=tmp*GadgetsSlnfo[LEFT RIGHT GADGET] .HorizPot;
tmp=tmp / MAXVAL; --
dX=tmp - GetLayerXOffset(window);
break;

if (dX I I dY) Slide_BitMap(window,dX,dY);

VOID Do_MainLoop(struct Window *window)
(
struct IntuiMessage *msg;
SHORT flag=TRUE;
USHORT CurrentGadget=NO_GADGET;

SetDrMd(window->RPort,JAM1);
Do NewSize(window);
whIle (flag)
(

/* Whenever you want to wait on just one message port */
/* you can use WaitPort(). WaitPort() doesn't require */
/* the setting of a signal bit. The only argument it */
/* requires is the pointer to the window's UserPort */
WaitPort(window->UserPort);
while (msg=(struct IntuiMessage *)GetMsg(window->UserPort»
{

switch (msg->Class)
(
case CLOSEWINDOW:

case NEWSIZE:

case GADGETDOWN:

case GADGETUP:

case INTUITICKS:
}

flag=FALSE;
break;
Do NewSize(window);
break;
CurrentGadget=GetGadgetID(msg);
break;
Check Gadget(window,CurrentGadget);
CurrentGadget=NO GADGET;
break; -
Check_Gadget(window,CurrentGadget);

ReplyMsg«struct Message *)msg);

Do_DrawStuff(window);

VOID main (VOID)
{
struct BitMap *BigOne;
struct Window *window;
struct Windowlnfo MyWindowlnfo;
ULONG RasterSize;
SHORT Loop;
SHORT Flag;

if (IntuitionBase=(struct IntuitionBase *)
OpenLibrary("intuition.library",33L»

if (GfxBase=(struct GfxBase *)
OpenLibrary ("graphics .library", 33L))

Intuition: Windows 69

}

if (LayersBase=(struct LayersBase *)
OpenLibrary("layers.library",33L»

if (BigOne=AllocMem(sizeof(struct BitMap),MEMF_PUBLICIMEMF_CLEAR»
{

InitBitMap(BigOne,DEPTH SUPER, WIDTH SUPER, HEIGHT SUPER);
RasterSize=BigOne->BytesPerRow * BigOne->Rows; -
Flag=TRUE;
for (Loop=O;Loop<DEPTH SUPER;Loop++)
{ -

BigOne->Planes[Loop]=AllocMem(RasterSize,
MEMF CHIP IMEMF CLEARIMEMF PUBLIC);

if (!BigOne->Planes[Loop]) FI~g=FALSE; -

if (Flag)
{

NewLinesWindow.BitMap=BigOne;
if (window=OpenWindow(&NewLinesWindow»
{

window->RPort->Layer->Window= (APTR) window;

MyWindowInfo.LineXI=O;
MyWindowInfo.LineYl=O;
MyWindowInfo.LineXld=5;
MyWindowInfo.LineYld=2;
MyWindowInfo.LineX2=WIDTH_SUPER » 2;
MyWindowInfo.LineY2=HEIGHT SUPER » 2;
MyWindowInfo.LineX2d=2; -
MyWindowInfo.LineY2d=-5;
MyWindowInfo.pen=3;

window->UserData=(BYTE *)&MyWindowInfo;

Do_MainLoop(window);

CloseWindow(window);

for (Loop=O;Loop<DEPTH_SUPER;Loop++)
(

if (BigOne->Planes[Loop])
(

FreeMem(BigOne->Planes[Loop],RasterSize);

FreeMem(BigOne,sizeof(struct BitMap»;

CloseLibrary«struct Library *)LayersBase);

CloseLibrary«struct Library *)GfxBase);

CloseLibrary«struct Library *)IntuitionBase);

/* End of lines.c */

70 Intuition: Windows

Chapter 4

Intuition: Gadgets

This chapter describes the workhorses of Intuition-the multipurpose input devices called gadgets. Most of the
user's input to an Intuition application can take place through the gadgets in your windows and requesters. Gadgets
are also used by Intuition itself for handling screen and window movement and depth arrangement, as well as
window sizing and closing.

About Gadgets

Gadgets can make the user's interaction with your application consistent, easy, and fun. There are two kinds of
gadgets: predefined system gadgets and custom application gadgets. The system gadgets help to make the user
interface consistent. They are used for dragging and arranging the depth of screens and for dragging, sizing, closing
and arranging the depth of windows. Since they always have the same imagery and always reside in the same
location, they make it easy for the user to manipUlate the windows and screens of any application.

Application gadgets add power and fun to Intuition-based programs. These gadgets can be used in a multitUQe of
ways in your programs. You can design your own gadgets for your windows and requesters.

Intuition: Gadgets 71

There are four basic types of application gadgets:

Boolean gadgets elicit true/false or yes/no kinds of answers from the user.

Proportional gadgets are flexible devices that you use to get some kind of proportional setting from the
user or to simply display proportional information. With the proportional gadget, you can use imagery
furnished by Intuition or design any kind of image you want for the slider or knob used to pick a
proportional setting.

String gadgets are used to get text from the user. A number of editing functions are available for users of
string gadgets.

The integer gadget is a special class of string gadget that allows the user to enter integer values only.

Although system gadgets are always in the borders of windows and screens, your own gadgets can go anywhere in
windows or requesters and can be any size or shape.

Application gadgets are not supported in screens. Placing a gadget in a backdrop window allows you to receive
gadget-related messages through that window's input/output channels. See the chapter "Intuition: Input and Output
Methods," for details.

You can choose from the following ways of .highlighting gadgets to emphasize that the gadget has been selected:

Alternate image or alternate border.

A box around the gadget.

Color change (by complementing the colors).

You can elect to have your gadgets change in size as the user sizes the window. Also, window gadgets can be
located relative to one of the window's borders so that they move with the borders as the user shapes or sizes the
window. If you want the gadget in the border, as are the system gadgets, Intuition can adjust the border size
accordingly.

Typically, the user selects a gadget by moving the pointer within an area called the select box; you define the
dimensions of this area. Next, the user takes some action that varies according to the type of gadget. For a boolean
gadget, the user may simply choose an action by clicking the mouse button. For a string or integer gadget, a cursor
appears and the user enters some data from the keyboard. For a proportional gadget, the user might either move the
knob with the mouse or click the mouse button to move the knob by a set increment

Although you attach a list of predefined application gadgets when you define a window or requester structure, you
can make changes to this list later. You can enable or disable gadgets, add or remove gadgets, modify the internal
states of gadgets, and redraw some or all of the gadgets in the list.

When one of your application gadgets is selected by the user, your program learns about it from either the IDCMP or
the console device. See the chapter "Intuition: Input and Output Methods," for details about these messages.

72 Intuition: Gadgets

System Gadgets

Intuition automatically attaches system gadgets to every screen. For windows, you specify which system gadgets

you want. The system gadgets for screens are for dragging and depth arrangement. The system gadgets for

windows for are dragging, depth arrangement, sizing, and closing.

System gadgets have fixed, standard locations in screens and windows, as shown in the following table and figure.

Table 4-1: System Gadget Placement in Windows and Screens

System
Gadget Location

Sizing Lower right

Dragging Entire title bar in all areas
not used by other gadgets

Depth arrangers Top right

Close Top left

Your program need never know that the user selected a system gadget (with the exception of the close gadget); you

can let Intuition attach these gadgets to your windows and do the work of responding to the user's wishes. .

Hello World

Figure 4-1: System Gadgets in a Low-resolution Window

Intuition: Gadgets 73

SIZING GADGET

When the user selects the window-sizing gadget, Intuition is put into a special state. The user is allowed to elongate
or shrink a rectangular outline of the window until the user achieves the desired new shape of the window and
releases the select button. The window is then reestablished in the new shape, which may involve asking the
application to redraw part of its display. For more information about the application's responsibilities in sizing, see
the discussion about preserving the display in the chapter on windows.

You attach the sizing gadget to your window by setting the WINDOWSIZING flag in the Flags variable of the
NewWindow structure when you open your window. If you are using the IDCMP for input, you can elect to receive
a message when the user attempts to size the window. A special IDCMP flag, SIZEVERIFY, allows you to hold off
window sizing until you are ready for it. See the chapter "Intuition: Input and Output Methods," for more
information about SIZEVERIFY.

DEPTH-ARRANGEMENT GADGETS

The depth arrangers come in pairs-one for bringing the window or screen to the front of the display and one for
sending the window or screen to the back. Notice that the actual depth arrangement of windows and screens is
transparent to your program. The only time you might learn about it even indirectly is when Intuition notifies your
program that it needs to refresh its display.

You attach the depth arrangement gadgets to your window by setting the WINDOWDEPTH flag in the Flags
variable of the NewWindow structure when you open your window. You get screen depth arrangement gadgets
automatically with every screen you open.

DRAGGING GADGET

The dragging gadgets are also known as drag bars because they occupy the entire title bar area that is not taken up by
other gadgets. Users can slide screens up and down, much as some classroom blackboards can be moved, to reveal
more pertinent information. They can slide windows around on the surface of the screen to arrange the display any
way they want.

In dragging a window, the user actually drags a rectangular outline of the window to the new position and releases
the select button. The window is then reestablished in its new position. As in window sizing, this may involve
asking the application to redraw part of its display. If you want the window drag gadget, set the WINDOWDRAG
flag in the Flags variable of the NewWindow structure when you open your window. You get the screen drag
gadget automatically with every screen you open.

CLOSE GADGET

The close gadget is a special case among system gadgets, because Intuition notifies your program about the user's
intent but doesn't actually close the window. When the user selects the close gadget, Intuition broadcasts a message
to your program. It is then up to the program to call CloseWindowO when ready. You may want or need to take
some actions before the window closes; for instance, you may want to bring up a requester to verify that the user
really wants to close that window. To get the window close gadget, set the WINDOWCLOSE flag in the Flags
variable of the NewWindow structure when you open your window.

74 Intuition: Gadgets

Application Gadgets

Intuition gadgets imitate real-life gadgets. They are the switches, knobs, controllers, gauges, and keys of the
Intuition environment. You can create almost any kind of gadget that you can imagine, and you can have it do just
about anything you want it to do. You can create any visual imagery that you like for your gadgets, including
combining text with hand-drawn imagery or supplying coordinates for drawing lines.

You can also choose a highlighting method to change the appearance of the gadget after it is selected. All of this
flexibility gives you the freedom to create gadgets that mimic real devices, such as light switches or joysticks, as
well as the freedom to create devices that satisfy your own unique needs.

RENDERING GADGETS

You can draw your gadgets by hand, specify a series of lines for a simple line gadget, or have no imagery at all.

Hand-drawn Gadgets

Because you are allowed to supply a hand-drawn image, there is no limit to the designs you can create for your
gadgets. You can make them simple and elegant or whimsical and outrageous. You design the imagery using one
of Amiga's many art tools and then translate your design into an instance of an Image structure. The following
figure shows an example of a gadget made of hand-drawn imagery. It also shows how you can use an alternate
image when the gadget is selected.

Figure 4-2: Hand-drawn Gadget - Unselected and Selected

Intuition: Gadgets 75

You incorporate a hand-drawn image into your gadget by setting the GADGIMAGE flag in the gadget variable
Flags to indicate that this gadget should be rendered as an Image. Then you put the address of your Image structure
into the gadget variable GadgetRender. For more information about creating an Image structure, see the chapter
"Intuition: Images, Line Drawing, and Text."

Line-Drawn Gadgets

You can also create simple designs for gadgets by specifying a series of lines to be drawn as the imagery of your
gadget. These lines can go around or through the select box of your gadget, and you can specify more than one
group of lines, each with its own color and drawing mode.

The following figure shows an example of a gadget that uses line-drawn imagery. It also shows an example of the
complement-mode method of highlighting a gadget when it is selected. Furthermore, it shows additional text that
has been included in the gadget imagery .

.... ,
Good Ide.",

Figure 4-3: Line-drawn Gadget - Unselected and Selected

After deciding on the placement and color of your lines, you create an instance of a Border structure to describe
your design. You incorporate the Border structure of your line-drawn imagery into your gadget by not setting the
GADGIMAGE flag in the gadget's Flags variable, thus specifying that this is a Border, not an Image. Also, you
put the address of your Border structure into the gadget variable GadgetRender. For more information about
creating a Border structure, see the chapter "Intuition: Images, Line Drawing, and Text."

Gadgets without Imagery

You can also create gadgets that have no imagery at all. For instance, you may want to follow the user's mouse
activity without cluttering the display with unnecessary graphics. An example of such a gadget is the window and
screen dragging gadget, which displays no actual imagery. The title bar itself sufficiently implies the imagery of the
gadget. You specify no imagery by not setting the gadget's GADGIMAGE flag and by setting the GadgetRender
variable to NULL.

76 Intuition: Gadgets

USER SELECTION OF GADGETS

When the user positions the pointer over a gadget and presses the select button, that gadget becomes "selected" and
is immediately highlighted. Intuition has two different ways of notifying your program about gadget selection.

If you want the program to find out immediately when the gadget has been selected, you can set the
GADGIMMEDIATE flag in the Activation field of the Gadget structure. When the user selects that gadget, an
IDCMP event of class GADGETDOWN will be received. If you set only this flag, the program will hear nothing
more about that gadget until it is selected again.

On the other hand, if you want to be absolutely sure that the user wanted to select the gadget, you can set the
RELVERIFY flag (for "release verify"). When RELVERIFY is set and the user selects the gadget, the program
will learn that the gadget was selected only if the user still has the pointer over the select box of the gadget when the
select button is released. You may want to know this about some gadget selections whose consequences may be
serious-for instance, the window close gadget. If you set the REL VERIFY flag, the program will learn about these
events via an IDCMP message of the class GADGETUP, which you must set in the IDCMPFlags field of the
NewWindow structure. There are two main benefits to RELVERIFY: the unsure user gets one last chance to
reconsider, and using RELVERIFY helps avoid casual errors caused by the user brushing against or resting fingers
on the mouse button.

If you want the program to receive both a GADGETDOWN and GADGETUP message, set both the
GADGIMMEDIA TE and RELVERIFY flags.

GADGET SELECT BOX

To use a gadget, the user begins by moving the pointer into the gadget select box. You define the location and
dimensions of the select box in the Gadget data structure. The location is an offset from one of the comers of the
display element (window or requester) that contains the gadget. You place the left and top coordinates in the
LeftEdge and TopEdge fields of the gadget structure.

LeftEdge describes a coordinate that is either an absolute offset from the left edge of the element or a negative offset
(with an explicit minus sign) from the current right edge. The offset method is determined by the GRELRIGHT
flag. For instance:

If GRELRIGHT is cleared and LeftEdge is set to 25, the select box of the gadget starts 25 pixels from the
left edge of the display element.

If GRELRIGHT is set and LeftEdge is set to -25, the select box of the gadget starts 25 pixels left of the
(current) right edge.

In the same way, Top Edge is either an absolute offset from the top of the element or a negative offset from the
current bottom edge, according to how the flag GRELBOTTOM is set:

If GRELBOTTOM is cleared, Top Edge is an absolute offset from the top of the element.

If GRELBOTTOM is set, TopEdge is a negative offset (with an explicit minus sign) from the current
bottom edge.

Intuition: Gadgets 77

Similarly, the height and width of the gadget can be absolute or relative to the height and width of the display
element in which it resides. If you set the width of a window gadget to -28, for example, and you set the gadget's
GRELWIDTH fiag, then the gadget's select box will always be 28 pixels less than the width of the window. If
GRELWIDTH is not set and you set the width of the gadget to 28, the gadget's select box will always be 28 pixels
wide. The GRELHEIGHT fiag has the same effect on the height of the gadget select box.

Here are some examples of how you can take advantage of the special relativity modes of the select box.

• Consider the Intuition window sizing gadget. The LeftEdge and TopEdge of this gadget are both defined
relative to the right and bottom edges of the window. No matter how the window is sized, the gadget
always appears in the lower right comer.

• In the window-dragging gadget, the LeftEdge and TopEdge are always absolute in relation to the top left
comer of the window. Also, Height is always an absolute quantity. Width of the gadget, however, is
defined to be zero. When Width is combined with the effect of the GREL WIDTH fiag, the dragging
gadget is always as wide as the window.

• Assume that you are designing a program that has several requesters, and each requester has a pair of
"OK" and "CANCEL" gadgets in the lower left and lower right comers of the requester. You can
design "OK" and "CANCEL" gadgets that can be used in any of the requesters simply by virtue of their
positions relative to the lower left and lower right comers of the requester. Regardless of the size of the
requesters, these gadgets appear in the same relative positions.

The GRELRIGHT, GRELBOTTOM, GRELWIDTH, and GRELHEIGHT flags belong to the Flags field of the
Gadget structure.

GADGET POINTER MOVEMENTS

If you set the FOLLOWMOUSE flag for a gadget, you will receive mouse movement broadcasts as long as the
gadget is selected. You may want to follow the mouse, for example, in a sound-effects program in which you use
the mouse movement to change some quality of the sound.

The broadcasts received differ according to the following flag settings (remember, these examples assume you've set
FOLLOWMOUSE):

If you set the GADGIMMEDIATE and RELVERIFY flags, the program learns that the gadget was
selected, gets some mouse reports (if the mouse moves), and finds out that the mouse button was released
over the gadget.

If you set only the GADGIMMEDIATE fiag, the program learns that the gadget was selected and gets
some mouse reports. Then the mouse reports will stop (when the user releases the select button), although
the program will have no way of knowing for sure that this has happened.

• If you set only the REL VERIFY fiag, the program gets some mysterious, anonymous mouse reports
(which may be just what you want to get) followed, perhaps, by a release event for a gadget.

If you set neither the GADGIMMEDIATE nor the RELVERIFY fiag, the program gets only mouse
reports. This may be exactly what you want the program to receive.

The FOLLOWMOUSE, GADGIMMEDIA TE, and REL VERIFY flags belong to the Activation field of the Gadget
structure.

78 Intuition: Gadgets

GADGETS IN WINDOW BORDERS

You can put your own gadgets in the borders of your window. In the Gadget structure, you set one or more of the
border flags to tuck your gadget away into the window border. Setting these flags also tells Intuition to adjust the
size of the window's borders to accommodate the gadget.

NOTE

Borders are adjusted only when the window is opened. Although you can add and remove window
gadgets after the window is opened, with AddGadgetO/AddGListO and
RemoveGadgetO/RemoveGListO, Intuition does not readjust the borders.

You can put a given gadget in more than one border by setting more than one border flag. Ordinarily, it
makes sense to put a gadget only into two adjoining borders. If you set both side border flags or both
the top and bottom border flags for a particular gadget, you get a window that is all border.

The border flags are called RIGHTBORDER, LEFTBORDER, TOPBORDER, and BOTTOMBORDER; they
belong to the Activation field of the gadget structure.

MUTUAL EXCLUDE

Though mutual exclusion of boolean gadgets is not supported by Intuition, we can recommend the following flexible
method of doing it yourself: it is up to your application to handle turning off excluded gadgets in a way that is
friendly to Intuition. Intuition owns your gadgets and knows how to render them. You must proceed with caution so
as not to get yourself or your gadget imagery out of synchronization with Intuition.

ALLOWABLE TYPE OF GADGETS FOR MUTUAL EXCLUSION

When performing mutual exclusion, you must use hit-select (not TOGGLESELECT) boolean gadgets, with the
GADGIMMEDIA TE activation type (not REL VERIFY). You must execute your state changes upon receiving the
GADGETDOWN Intuition message for these gadgets.

ALLOWABLE TYPES OF IDGHLIGHTING FOR MUTUAL EXCLUSION

If you choose complement mode highlighting for these gadgets (gadget Flags of GADGHCOMP), you must supply
an Image that is at least the size of the complemented area (the gadget select area). You may use an extended
boolean gadget with a mask, to constrain the area that is highlighted.

You may use an Image and an alternate Image (gadget Flags of GADGIMAGE and GADGHIMAGE) provided
these two images have exactly the same size and position. Likewise, you may use a Border and an alternate Border
(gadget Flags of GADGHIMAGE), provided the two Borders are identical in shape, differing only in color.

You may NOT use other combinations such as a gadget with a Border that uses complement mode highlighting, or
any gadget which uses GADGHBOX (highlighting by drawing a box).

Intuition: Gadgets 79

HANDLING OF MUTUALLY EXCLUSIVE GADGETS

Use RemoveGListO to remove a boolean gadget from the window or requester it is attached to. Set or clear the
SELECfED flag to reflect the state of the gadget you desire to display to the user. Replace the gadget using
AddGListO and refresh its imagery with RefreshGListO. You may of course handle several gadgets with a single
call to each of these functions.

GADGET HIGHLIGHTING

In general, the appearance of a selected gadget changes to tell the user thai the gadget has indeed been selected. You
select a highlighting method by setting one of the highlighting bits in Flags. There are three methods of
highlighting after selection: highlighting by color complementing, by drawing a box and by an alternate image or
border.

NOTE

You must specify one of the highlighting values. If you do not want any highlighting, set the
GADGHNONE bit.

Highlighting by Color Complementing

You can highlight by complementing all of the colors in the gadget's select box. In this context, complementing
means the complement of the binary number used to select a particular color register. For example, if the color in
color register 2 is used (binary 10) in some of the pixels in the selected gadget, those pixels get changed to whatever
color is in color register 1 (biriary 01).

Only the select box of the gadget is complemented; any portion of the text, image, or border which is outside of the
select box is not disturbed. See the chapter "Intuition: Images, Line Drawing, and Text," for more information
about complementing and about color in general. .

Highlighting by Drawing a Box

To highlight by drawing a simple border around the gadget's select box, set the GADGHBOX bit in the Flags field.

Highlighting with an Alternate Image or Alternate Border

You can supply alternate Image or Border imagery as highlighting. When the gadget is selected, the alternate
Image or Border is displayed in place of the non-highlighted Image or Border, respectively. For this highlighting
method, you should set the SelectRender field of the Gadget structure to point to the Image structure or Border
structure for the alternate display.

An Image or Border structure contains a set of coordinates that specifies its location when displayed. Intuition
renders the image or border relative to the top left comer of the gadget's select box.

80 Intuition: Gadgets

In the same way as you set the GadgetRender field of the Gadget structure to point to your normal gadget imagery,
you should set the SelectRender field to point to the alternate Image or Border of your design. You must also
indicate that highlighting is to be done with alternate imagery by setting the GADGHIMAGE flag in the Flags field
of the Gadget structure. If you are using a pair of images, then set GADGIMAGE,as well.

For information about how to create an Image or Border structure, see the chapter "Intuition: Images, Line
Drawing, and Text. "

GADGET ENABLING AND DISABLING

You can disable a gadget so that it cannot be selected by the user. When a gadget is disabled, its image is ghosted,
and it cannot be selected. Ghosted means that the normal image is overlaid with a pattern of dots, thereby making
the image less distinct. Before you first submit your gadget to Intuition, you initialize whether your gadget is
disabled by setting or not setting the GADGDISABLE flag in the gadget's Flags field. If you always want the
gadget to be enabled, you can ignore this flag.

After you have submitted a gadget for Intuition to display, you can change its current enable state by calling
OnGadgetO or OfTGadgetO. If it is a requester gadget, the requester must currently be displayed. If you use
OnGadgetO to enable a previously disabled gadget, its image is returned to its normal, nonghosted state.

You may also enable or disable multiple gadgets by removing them, changing the state of the GADGDISABLED
flag, putting them back, and refreshing them.

GADGET REFRESHING BY INTUITION

Intuition refreshes gadgets whenever a layer operation has damaged the layer of the window or requester they are
attached to. In the processing of the REFRESHWINDOW message, the typical program doesn't need to call
RefreshGadgetsO, or RefreshGListO, at all.

Intuition's refreshing of the gadgets of a damaged layer is done through the layer's damage list. This means that
rendering is clipped to the layer's damage region - the part of the window's layer which needs refreshing because it
has been exposed by a layer operation.

To be precise, Intuition calls the layers. library functions BeginUpdateO and EndUpdateO. so that rendering is
restricted to the Region Layer.DamageList. Your equivalents to these library functions are BeginRefreshO and
EndRefreshO. For more information on BeginRefreshO and EndRefreshO, see the "Intuition: Windows"
chapter, and The Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Gadgets which are positioned, using GRELBOTTOM or GRELRIGHT, or sized, using GREL WIDTH, or
GRELHEIGHT, relative to the dimensions of their window, pose a problem when the window is sized, since the
images for these gadgets must change, even though they are not necessarily in the damage region.

Therefore, Intuition must add the original and new visual regions for such relative gadgets to the damage region
before it refreshes gadget rendering.

The result of this is that you should ensure that any gadgets with relative position do not have Border, Image, or
IntuiText imagery that extends beyond their respective select boxes.

Intuition: Gadgets 81

GADGET REFRESHING BY YOUR PROGRAM

If you add gadgets to your window or requester, using one of the functions AddGlistO or AddGadgetsO, you must
subsequently call RefreshGListO or RefreshGadgetsO to get the image of your gadget drawn.

New gadget refreshing functions has been added since the V 1.1 release of the system software. These new functions
are more efficient than the old set, since the old functions refreshed all the gadgets in the gadget list starting with the
specified gadget, while the new functions allow you to specify the number of gadgets to be refreshed, which could
be one or more.

The new functions are RefreshGListO, which is the alternative to RefreshGadgetsO, and NewModifyPropO, the
alternative to ModifyPropO. The last two functions of the older set, OnGadgetO and Oft'GadgetO, have no new
equivalents, since they can each be implemented by manually modifying the GADGDISABLED flag and calling
RefreshGListO, as described below.

Some programs use RefreshGadgetsO (or RefreshGListO), to update the display after they have made state
changes to the gadgets. The types of changes include: the SELECTED flag for boolean gadgets to implement
mutually exclusive gadgets, the GadgetText of some gadget to change its label, the GADGDISABLED flag, and the
contents of the Stringlnfo.Butfer of a string gadget. When performing these state changes, be sure to
RemoveGadgetO, or RemoveGList, any gadget before altering it. Boolean gadgets rendered with borders, instead
of images, or highlighted with surrounding boxes (GADGHBOX) are handled very simply by Intuition, and
complicated transitions done by your program (and in some cases the user's own actions) can get the rendering out
of phase.

BOOLEAN GADGET TYPE

Boolean gadgets are simple TRUE or FALSE gadgets. You can choose from two methods of selecting such
gadgets-hit select or toggle select:

Hit select means that when the gadget is hit (that is, when the user moves the pointer into the select box
and presses the mouse select button) the gadget becomes selected and the select highlighting method is
employed. When the mouse select button is released, the gadget is unselected and unhighlighted.

• Toggle select means that when the gadget is hit, it toggles between selected and unselected. That is, if
the user selects the gadget, it remains selected when the user releases the button. To "unselect" the
gadget, the user has to repeat the process of hitting the gadget. You can have the imagery reflect the
selected/unselected state of the gadget by supplying an alternate image as the highlighting mode of the
gadget. When the gadget is selected, the chosen highlighting method is employed.

You need to set the TOGGLES ELECT flag in the Activation field of the Gadget structure if you want
the gadget to be toggle-selected. The SELECTED flag in Gadget structure Flags determines the initial
and current on/off selected state of a toggle-selected gadget. If SELECTED is set, the gadget will be
highlighted. You can set the SELECTED flag before submitting the gadget to Intuition if you like. The
program can examine this flag at any time to determine whether the user has selected this gadget.

If a boolean gadget is selected by the user, the application will hear about it. If it is never selected, the application
will never know.

82 Intuition: Gadgets

MASKED BOOLEAN GADGETS

The simplest imagery for boolean gadgets is rectangular, but non-rectangular boolean gadgets are possible, with
some restrictions. An auxiliary bit plane called a mask may be associated with a boolean gadget. When the user
clicks within the select box of the gadget, a further test is made to see if the selection point is contained in the mask.
Only if it is, does the interaction count as a gadget-hit.

If the gadget has highlight type GADGHCOMP then the complement rendering is restricted to the mask, which
allows, for example, an oval gadget which highlights nicely, only within the oval.

However, there are some shortcomings to all non-rectangular boolean gadgets. The gadget image is not rendered
through the mask. For example, in the case of an oval mask the image is still a rectangle, and when it is displayed, it
will clobber the corner areas even though they are outside of the oval. Therefore, gadgets can't be crowded together
without care.

Likewise, the ghosting of a disabled gadget does not respect the mask, so ghosting of the corners around an oval
may be visible, depending on the colors involved.

To use a masked boolean gadget, you must fill out an instance of the Boollnfo structure. The Boollnfo structure
contains a pointer to the mask plane data. You must also set the BOOLEX1END flag in the gadget's Activation
field.

PROPORTIONAL GADGET TYPE

Proportional gadgets are enormously flexible input devices. You can use one of these to get a proportional setting
from the user or to display a proportional value to the user. Best of all, you can use the same gadget to accomplish
both of these feats.

The user can adjust the setting of a proportional gadget to specify how much of some measurable data or attribute is
desired. For instance, the user may adjust a proportional gadget to specify a location in a text file or a desired
volume setting. The current setting of a proportional gadget may also be set by the program as an indicator of how
much of some measurable data or atttibute is visible or available. For instance, the proportional gadget of a text
editor's window might show how many lines are currently being displayed out of the total lines in the text file. A
graphics program may allow the user to set the amount of red, green, and blue in a color, providing a proportional
gadget for each of the three hues. The graphics program would initialize these settings to designate how much red,
green, and blue is already contained in the color. An audio program may deal with the volume of the sound being
produced by providing a gadget that allows the user to set the volume and to see what the current volume is in
relation to the highest and lowest possible volume settings.

Proportional gadgets can do all of these things and more because they can take many shapes and sizes and get
fractional settings on either the vertical or horizontal axis or both.

A proportional gadget has several parts that work together to give the gadget its flexibility. They are the the pot
variables, the body variables, the knob, and the container.

• The HorizPot and VertPot variables contain the actual proportional values. The word pot is short for
potentiometer, which is an electrical analog device that can be used to adjust some variable value. The
proportional gadget pots enable the user or program to set how much of the total data is visible or available.
Because they represent fractional parts of a whole, the values in these variables ranges from 0 to (almost) 1.

Intuition: Gadgets 83

The data, then, ranges from none visible or available to all of it visible or available.

There are two pot variables because proportional gadgets are adjustable on the horizontal axis or the vertical
axis or both. For example, a gadget that allows the user to center the screen on the video display or to center
his gunsights on a fleeing enemy must be adjustable on both axes.

Pot values change while the user is playing with the gadget. You can initialize the pot variables to whatever
you want. In the case of the color gadgets, you might want to initialize them to some current color. The
program may read the values in the pots at any time after it has submitted the gadget to the user via Intuition.
The values will always have the current settings as adjusted by the user.

The HorizBody and VertBody variables describe the increment, or typical step value, by which the pot
variables change. For example, the proportional gadgets for color mixing might allow the user to add or
subtract a color by 1/16 of the full value each time, as there are 16 possible settings for each RGB (red, green,
blue) component of a color on the Amiga. The proportional gadget for centering the screen might allow the
user to move the screen vertically a line at a time, or you may choose to set the step increment to a large
number of lines, leaving the fine-resolution tuning to the use of the gadget's knob.

Body variables are also used in conjunction with the auto-knob (described below) to display for the user how
much of the total quantity of data is directly available. For instance, if the user is working on a text file that is
fifteen lines long, and five lines of the file are currently visible in the window, then you can graphically
represent the total size of the file by setting the body variable to one-third (OxFFFF /3 = Ox5555). In this case,
the auto-knob would fill one-third of the container (the gadget bOX), which represents the proportion of the
visible text lines to the total number of text lines. Also, the user can tell at a glance that clicking the mouse
button with the cursor in the container (not on the knob) will advance the text file by one-third in any direction,
to the next "window" of data.

You can set the two body variables to the same or different increments. When the user clicks the mouse button
in the container, your pot variables are adjusted by the amount set in the body variables.

The knob is the object actually manipulated by the user to change the pot variables by the increments specified
in the body variables. The knob is directly analogous to proportional controls, such as the volume knob on a
radio, if the Intuition knob is restricted to one axis of movement. If the knob is free to move on both axes, it is
more analogous to, say, a control-stick of an airplane. The user can move the knob by placing the pointer on it
and dragging it on the vertical or horizontal axis or by moving the pointer near it (within the select box) and
clicking the mouse button. With each click, the pot variable is increased or decreased by one increment,
defined by the settings of the body variables. The current position of the knob reflects the pot value. For
instance, in the color-selection gadget, the knob slides in a long narrow container. As the user moves the knob
to the right, more of that color is added. When the knob is halfway along the container, the value in HorizPot
is also halfway.

You can design your own imagery for the knob or use Intuition's handy auto-knob. The auto-knob is a
rectangle that can move on either axis and changes its length or height according to the current body settings.
The auto-knob is proportional to the size of the gadget. Therefore, you can place an auto-knob in a proportional
gadget that adjusts its size relative to the size of a window, and the auto-knob will always be proportionally
correct. For example, consider a proportional gadget with auto-knob being used as a scroll bar in the right
border of a window. If the VertBody variable is set to show that one-third of a text file is being displayed in
the window, the auto-knob fills one-third of the container. If the user makes the window (and therefore the
container) larger, the auto-knob gets larger, too, so that it still visually represents one-third. This is yet another
visual aid for the user, one that helps make the user interface of the Amiga as intuitive to use as possible.

The container is the area in which the knob can move. It is actually the select box of the gadget. The size of
the container,like that of any other gadget select box, can be relative to the size of the window.

84 Intuition: Gadgets

The pot variable is a 16-bit word that contains a value ranging from 0 to OxFFFF. For clarity, you may wish to use
the constant MAXPOT, which is equivalent to OxFFFF. This value range represents a fixed-point fraction that
ranges from 0 to (almost) 1. You need to convert the current setting of the pot variable to a number that you can use.

There are two general ways in which proportional gadgets are used, namely to scroll through graphical or textual
information (such as in a scrolling list or a text editor) or to adjust some level (such as a volume control or a color
palette).

The Body and Pot values of a proportional gadget are "Intuition-friendly" numbers, in that they represent concepts
convenient to Intuition, and not to your application. Fortunately, it is not too hard to convert the numbers you would
like to deal with into Body and Pot values.

The following code fragment illustrates this conversion. You must supply four variables that describe your setup,
namely "topLine", "visibleLines", "totalLines", and "Overlap". These will be defined by example:

SCROLLING THROUGH GRAPHICAL OR TEXTUAL INFORMATION

If a text-editor has a 25-line view of a 100-line document, then "visibleLines" would be 25 and "totalLines" would
be 100. If the first visible line was the 10th line of the file, the "topLine" would be 9 (since for topLine, we count
from zero). It is a good idea to arrange things so that when the user clicks in the container of a proportional gadget,
the view shifts by a bit less than one full view's size (say only 24 lines), creating an overlap between successive
views. The extra line is the overlap, hence "Overlap" should be 1.

ADJUSTING A LEVEL

If a volume control may go from 0 to 49, then choose "totalLines" of 50. If the current volume is 23, then "topLine"
is 23. For correct behavior of level controls, always set "visibleLines" to 1 and "Overlap" to zero.

1*
** Finding VertPot and VertBody based on "application-friendly"
** parameters.
*1

1* You must supply values for these four: *1
UWORD Overlap, totalLines, visibleLines, topLine;

UWORD hidden;

1* Find the number of hidden lines, those that don't fit in the
visibleLines portion. It turns out to be useful in further
calculations: *1

hidden = MAX(totalLines - visibleLines, 0);

1* If topLine is so great that the remainder of the lines won't even
fill the displayable area, reduce topLine: *1

if (topLine > hidden)
topLine = hidden;

1* Body is the relative size of the proportional gadget's body.
Its size in the container represents the fraction of the total
that is in view. If there are no lines hidden, then Body
should be full-size (MAXBODY). Otherwise, Body should be the
fraction of (the number of displayed lines - Overlap) over
(the total number of lines - Overlap). *1

if (hidden> 0)
VertBody = (UWORD) «(ULONG) (visibleLines - Overlap) * MAXBODY) 1

(totalLines - Overlap));

Intuition: Gadgets 85

else
VertBody = MAXBODY;

/* Pot is the position of the proportional gadget body, with zero
meaning that the scroll gadget is all the way up (or left),
and full (MAXPOT) meaning that the scroll gadget is all the way
down (or right). If we can see all the lines, Pot should be zero.
Otherwise, Pot is the top displayed line divided by the number of

unseen lines. */

if (hidden> 0)
VertPot (UWORD) «(ULONG) topLine * MAXPOT) / hidden);

else
VertPot = 0;

}

After the user has adjusted the proportional gadget, you will want to determine the new value of topLine. Of course,
you should only redraw your display if topLine actually changed from its previous value. You do not want to do any
rendering if the proportional gadget moved, but not far enough to actually change topLine.

/*
** Finding the new topLine after the user has adjusted a
** proportional gadget.
*/

/* Again, we need the number of hidden lines */
UWORD hidden;

hidden = MAX(totalLines - visibleLines, 0);

/* Pot can be thought of as the fraction of the hidden lines that
are before the displayed part, in other words a Pot of zero
means all hidden lines are after the displayed part
(i.e. topLine = 0), and a Pot of MAXPOT means all
the hidden lines are ahead of the displayed part
(i.e. topLine = hidden). */

topLine = «(ULONG) hidden * VertPot) + (MAXPOT/2» / MAXPOT;

You set up a proportional gadget as you do any other gadget, except for the extra Proplnfo data structure (shown
below under "Using Application Gadgets"). Carry out the following procedures to set up the Proplnfo structure:

If you want the auto-knob, set the AUTO KNOB flag in the Flags field. If you want your own knob
imagery instead, see below.

Set either or both of the FREEHORIZ and FREEVERT flags according to the direction(s) you want the
knob to move.

• Initialize either or both of the HorizPot and VertPot variables to their starting values.

• Set either or both of the HorizBody and VertBody variables to the increment you want. If there is no data
to show or the total amount displayed is less than the area in which to display it, set the body variables to
the maximum (OxFFFF, or equivalently, MAXBODY).

• The remaining variables and flags are used by Intuition.

In the Gadget structure, set the GadgetType field to PROPGADGET and set the SpecialInfo field to point to your
Proplnfo structure (i.e., the one just described).

86 Intuition: Gadgets

If you chose to use the auto-knob, set GadgetRender to point to an Image. In this case, you do not initialize the
Image structure. You simply declare, for example:

struct Image iml;
<propgadgetname>.GadgetRender = &iml

where <propgadgetname> is the name of the gadget structure.

To use your own knob imagery, set GadgetRender to point to a real, filled-out, Image or Border structure. If your
highlighting will be by an alternate knob image (GADGHIMAGE), be sure to make the alternate image the same
size as the normal knob image.

To change the flags and the pot and body variables, your program can call ModifyPropO, or the better
NewModifyPropO, after the gadget is displayed. The gadget's internal state will be recalculated and the imagery
will be redisplayed to show the new state.

If the program receives a message saying that the user has played with this gadget, the program can examine the
KNOBHIT flag in the PropInfo structure. This flag indicates whether the user hit the knob or hit in the container
but not on the knob itself. If the flag is set, the user hit the knob and moved it.

STRING GADGET TYPE

A string gadget prompts the user to enter some text. Like a proportional gadget, a string gadget can be used in many
different ways. String gadgets also require their own special structure, called the StringInfo structure.

A string gadget consists of a container and buffers to hold the strings. You supply two buffers for the string gadget.
The input buffer contains the initial string, and the other is an optional undo buffer. The string you place in the initial
buffer will be displayed, and can be edited by the user. When the user selects a string gadget with the mouse, the
gadget's cursor moves to the position of the mouse.

If a string gadget has an undo buffer, the current string is copied into the undo buffer when the user selects the
gadget. The user can revert to this initial string at any time by typing "Right-AMIGA-Q." (To type this key
sequence, the user holds down the right AMIGA key while pressing the Q-key.) Because there is only one active
gadget at a time, all string gadgets can share the same undo buffer as long as the undo buffer is as large as the largest
input buffer.

You specify the size of the container into which the user types the string. Like the container for the proportional
gadget, the container for the string gadget is its select box. As the user types text into a string gadget, the characters
appear in the gadget's container.

You can change the justification of the string as it is displayed in the container. The default is left justification. If
the flag STRINGCENTER is set, the text is center-justified; if STRINGRIGHT is set, the text is right-justified.

An important and useful feature of the string gadget is that you can supply a buffer to contain more text than will fit
in the container. This allows the program to get text strings from the user that are much longer than the visible
portion of the buffer. Intuition maintains the cursor position and scrolls the text in the container as needed.

You can initialize the input buffer to any starting value, as long as the initial string is terminated with a null. If you
want to initialize the buffer to the null string (no characters), you must put a null character in the first position of the
buffer. After the gadget is deselected by the user (either by hitting the RETURN key or by using the mouse to select
some other operation), the program can examine this buffer to discover the current string.

Intuition: Gadgets 87

String gadgets feature auto-insert. which allows the user to insert ASCII characters wherever the cursor is. The
simple editing functions shown in the following table are available to the user.

Table 4-2: Editing Keys and Their Functions

Key(s) Function

f- or -t Move the cursor around the current string.

SHIFf f- or -t Move the cursor to the beginning or end of current
string.

DEL Dele\e the character under the cursor.

BACKSPACE Delete the character to left of cursor.

RETURN Terminate input and deselect the gadget. If the
REL VERIFY activation flag is set, the program will
receive a GADGETUP event for this gadget.

Right - AMIGA - Q Undo (cancel) the last editing change to the string.

Right - AMIGA - X Clears the input buffer. The undo buffer is left
undisturbed.

You can supply any type of image for the rendering of this gadget-Image, Border, or no image at all. For this
release of Intuition, you must specify that the highlighting is of type GADGHCOMP (complementary), and you
cannot supply an alternate image for highlighting.

The string gadget inherits the input attributes and the font of the screen in which it appears. If you have not done
anything fancy, the strings will appear in the default font with simple ASCII key translations. If you are using the
console device for input, you can set up alternate key-mapping any way you like. If you do, Intuition will use your
key map. See the "Console Device" chapter for more information about the console device and key-mapping.

For a string gadget, you set the GadgetType field to S1RGADGET in the Gadget structure. Also set the
SpeciaHnfo field to point to an instance of a StringInfo structure, which you must fill in with buffer and container
information.

INTEGER GADGET TYPE

The integer gadget is really a special sort of string gadget. You initialize it as you do a string gadget, except that you
also set the flag LONGINT in the gadget's Activation field. The user interacts with an integer gadget using exactly
the same rules as for a string gadget, but Intuition filters the input and allows the user to enter only a plus or minus
sign and digits. The integer gadget returns a signed 32-bit integer in the StringInfo variable LongInt.

To initialize an integer gadget you need to preset the buffer by putting an initial integer string in it. It is not
sufficient to initialize an integer gadget by merely setting a value in the LongInt variable.

88 Intuition: Gadgets

To specify that this string gadget is an integer gadget, set the flag LONGINT in the gadget's Activation variable.
String gadgets of integer type have the LongInt value updated whenever the textual contents of the gadget changes,
and again, when the gadget is deactivated.

COMBINING GADGET TYPES

You can make some very useful gadgets by combining gadgets of several types. As an example, you can make a
horizontal or vertical scroll bar with a proportional gadget and two boolean gadgets.

PEN PAINTING------------~I
PLEASE SELECT A PAINTING NAME

t:ransfel'"
safe
:f ace
debug
libs

OR TYPE IN A NAME
face

O](~

Figure 4-4: Example of Combining Gadget Types

If the scroll bar goes in the right border of the window, you may wish to place the system sizing gadget in the right
border by setting the flag SIZEBRIGHT in the NewWindow structure. Remember that the sizing gadget has to fit in
either the right or the bottom border. If you are going to cause the right edge border to be wide enough to
accommodate a scroll bar, then you might as well put the sizing gadget there, too.

Gadget Activation Messages

The Intuition IntuiMessage structure has a field named IAddress. If the user presses the select button over the select
box of a gadget, the IAddress field of the GADGETDOWN IDCMP message will contain the Gadget structure
address of the selected gadget. If you have three gadgets in your window, all with the GADGIMMEDIATE flag set,
and with GadgetID's of 10, 11, and 12, the following code fragment shows the correct way to process a gadget
event from one of these gadgets:

Intuition: Gadgets 89

class = msg->Class;
iaddress = msg->IAddress;
ReplyMsg(msg);
switch (class)

{
case GADGETDOWN:

switch «(struct Gadget *)iaddress)->GadgetID)
{
case 10:

1* Perform gadget ten's function *1
break;

case 11:
1* Perform gadget eleven's function *1
break;

case 12:
1* Perform gadget twelve's function *1
break;

break;
case default:

1* Take default action *1
break;

GADGET STRUCTURE

Here is the general specification for a Gadget structure:

struct Gadget
{

struct Gadget *NextGadget;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
USHORT Flags;
USHORT Activation;
USHORT GadgetType;
APTR GadgetRender;
APTR SelectRender;
struct IntuiText *GadgetText;
LONG MutualExclude;
APTR Special Info;
USHORT GadgetID;
APTR UserData;

The variables and flags in the Gadget structure are explained below.

NextGadget
This is a pointer to the next gadget in the list. The last gadget in the list should have a NextGadget value of
NULL.

LeftEdge, TopEdge, Width, Height
These variables describe the location and dimensions of the select box of the gadget. Both location and
dimensions can be either absolute or relative to the edges and size of the window, or requester that contains the
gadget.

LeftEdge and Top Edge are relative to one of the comers of the display element, according to how
GRELRIGHT and GRELBOTIOM are set in the Flags variable (see below).

Width and Height can be either absolute dimensions or a negative increment to the width and height of a
requester, or alert or the current width and height of a window, according to how the GRELWIDTH and
GRELHEIGHT flags are set (see below).

90 Intuition: Gadgets

Flags
The Flags field is shared by your program and Intuition. See the section below called "Flags" for a complete
description of all the flag bits.

Activation
This field is used for information about some gadget attributes. See the "Activation Flags" section below for a
description of the various flags.

GadgetType
This field contains information about gadget type and in what sort of display element the gadget is to be
displayed. You must set one of the following flags to specify the type:

BOOLGADGET
Boolean gadget type.

STRGADGET
String gadget type.

For an integer gadget, also set the LONGINT flag. See the "Flags" section below.

PROPGADGET
Proportional gadget type.

The following flags tell Intuition if the gadget is for a requester or a Gimmezerozero window:

GZZGADGET
If this gadget is for a Gimmezerozero window, setting this flag puts the gadget in the special bit-map for
gadgets and borders (and out of your inner window). If you do not set this flag, the gadget wil,l go into
your inner window. If the destination of this gadget is not a Gimmezerozero window, do not set this bit

REQGADGET
Set this bit if this is a requester gadget; otherwise, be sure this bit is clear.

GadgetRender
This is a pointer to the Image or Border structure containing the graphics of this gadget. If this field is set to
NULL, no rendering will be done.

If the graphics of this gadget are to be implemented with an Image structure, this field must be made to point to
that structure, and the GADGIMAGE bit must be set in the Flags field. If a Border structure is to be used
instead, this field must be made to point to that Border structure, and the GADGIMAGE bit must not be used.

SelectRender
If you ·don't want alternate graphics to indicate highlighting, set this field to NULL. If you do want alternate
graphics to indicate highlighting, set the GADGHIMAGE flag in the Flags field (see below), and set the
SelectRender field to point to the Image or Border structure that implements your alternate image.

GadgetText
If you want text printed after this gadget is rendered, set this field to point to an IntuiText structure. The
offsets in the IntuiText structure are relative to the top left of the gadget's select box.

Set this field to NULL if the gadget has no associated text.

Intuition: Gadgets 91

MutualExclude
This field is currently ignored by Intuition, but is reserved. If this is a boolean gadget with BOOLEXTEND
activation, this variable must point to an instance of a BoolInfo data structure.

SpecialInfo
If this is a proportional gadget, this variable must point to an instance of a PropInfo data structure. If this is a
string or integer gadget, this variable must point to a StringInfo data structure. Otherwise, this variable is
ignored. The structure contains the special information needed by the gadget. If the gadget is not of type
proportional, string, or integer, this variable is ignored.

GadgetlD
This variable is strictly for your own use. Assign any value you would like here. This variable is ignored by
Intuition. Typical uses in C are in switch and case statements, and in assembly language, table lookup.

UserData
A pointer to any general data you would care to associate with this particular gadget. This variable is ignored
by Intuition.

FLAGS

The following are the flags you can set in the Flags variable of the Gadget structure.

GADGHIGHBITS
Combinations of these bits describe what type of highlighting you want when the user has selected this
gadget. There are four highlighting methods to choose from. You must set one of the four flags below.

GADGHCOMP
This flag selects highlighting by complementing all of the bits contained within this gadget's select
box.

GADGHBOX
This flag selects highlighting by drawing a box around this gadget's select box.

GADGHIMAGE
If you intend to indicate highlighting with alternate graphics, set this flag.

GADGHNONE
Set this flag if you want no highlighting.

GADGIMAGE
If your gadget has a graphic, and it is implemented with an Image structure, set this bit. If the graphic is
implemented with a Border structure, make sure this bit is clear. This bit is also used by SelectRender.

GRELBOTIOM
Set this flag if the gadget's TopEdge variable describes an offset relative to the bottom of the display
element (window or requester) containing it. Clear this flag if TopEdge is relative to the top.

GRELRIGHT
Set this flag if the gadget's LeftEdge variable describes an offset relative to the right edge of the display
element containing it. Clear this flag if LeftEdge is relative to the left edge.

92 Intuition: Gadgets

GRELWIDTH
Set this flag for "relative gadget width" if you want your gadget's width to change automatically
whenever the width of its window changes. When this flag is set, you set the gadget's Width field to a
negative value (including minus sign). This value is added to the width of the gadget's display element, to
determine the actual width of the gadget. Do not set this flag if Width is an absolute value.

GRELHEIGHT
Set this flag for "relative gadget height" if you want your gadget's height to change automatically
whenever the height of its window changes. When this flag is set, you set the gadget's Height field to a
negative value (including minus sign). This value is added to the height of the gadget's display element,
to determine the actual height of the gadget. Do not set this flag if Height is an absolute value.

SELEC1ED
Use this flag to preselect the on/off selected state for a toggle-selected gadget. If the flag is set, the gadget
starts off being on and is highlighted. If the flag is clear, the gadget starts off in the unselected state.

GADGDISABLED
If this flag is set, this gadget is disabled. If you want to enable or disable a gadget later on, you can change
the current state with the routines OnGadgetO and OffGadgetO, or you may remove one or more gadgets,
change the state of this flag, put them back, and refresh them.

You do not need to use this flag if you want the gadget to always remain enabled.

ACTIVATION FLAGS

Here are the flags you can set in the Activation variable of the Gadget structure:

TOGGLESELECT
This flag applies only to a boolean gadget, and tells Intuition that it is to be a toggle-select gadget, not a
hit-select one. .

You preset the selection state with the gadget Flag SELECTED (see above); the program later discovers
the selected state by examining SELECTED.

GADGIMMEDIATE
Set this bit if you want the program to know immediately, via a GADGETDOWN IDCMP message, when
the user selects this gadget.

RELVERIFY
This is short for' 'release verify." Set this bit if you want this gadget selection broadcast to your program
only if the user still has the pointer positioned over this gadget when releasing the select button.

ENDGADGET
This flag pertains only to gadgets attached to requesters. To make a requester go away, the user must
select a gadget that has this flag set.

See the chapter "Intuition: Requesters and Alerts," for more information about requester gadget
considerations.

FOLLOWMOUSE
When the user selects a gadget that has this flag set, the program will receive mouse position broadcasts
every time the mouse moves at all.

Intuition: Gadgets 93

You can use the following flags in window gadgets to adjust the size of a window's borders when you want to
tuck your own window gadgets out of the way into the window border:

RIGHTBORDER
If this flag is set, the width and position of this gadget are used in deriving the width of the window's
right border.

LEFI'BORDER
If this flag is set, the width and position of this gadget are used in deriving the width of the window's
left border.

TOPBORDER
If this flag is set, the height and position of this gadget are used in deriving the height of the
window's top border. It can also be set to tell Intuition that this gadget must be refreshed after
Intuition has rendered in the top border area of a window.

BOTIOMBORDER
If this flag is set, the height and position of this gadget are used in deriving the height of the
window's bottom border.

The following flags apply to string gadgets:

STRINGCENTER
If this flag is set, the text in a string gadget is centered when rendered.

STRINGRIGHT
If this flag is set, the text in a string gadget is right-justified when rendered.

LONGINT
If this flag is set, the user can construct a 32-bit signed integer value in a normal string gadget. You must
also preset the string gadget input buffer by putting an initial integer string in it.

ALTKEYMAP
This flag specifies that you have an alternate keymap. You also need to put a pointer to the keymap in the
StringInfo structure variable AltKeyMap.

The following flag applies to Boolean gadgets:

BOOLEXTEND
If this flag is set, then this boolean gadget has a BoolInfo structure associated with it.

SPECIALINFO DATA STRUCTURES

The following are the specifications for the !>tructure pointed to by the SpecialInfo pointer in the Gadget structure.

94 Intuition: Gadgets

BoolInfo Structure

This is the special data required for a masked boolean gadget.

struct BoolInfo
{

USHORT Flags;
UWORD *Mask;
ULONG Reserved;
} ;

The meanings for the fields in this structure are as follows:

Flags
Flags must be given the value BOOLMASK.

Mask
This is a bit mask for highlighting and selecting the gadget. Construct the mask the way you would construct a
single plane of bnage data. The image's width and height are determined by the width and height of the
gadget's select box. The mask data must be in chip memory.

Reserved
Set this field to NULL.

Proplnfo Structure

This is the special data required by the proportional gadget.

struct Proplnfo
{

} ;

USHORT Flags;
USHORT HorizPot;
USHORT VertPot;
USHORT HorizBody;
USHORT VertBody;
USHORT CWidth;
USHORT CHeight;
USHORT HPotRes, VPotRes;
USHORT LeftBorder;
USHORT TopBorder;

The meanings of the fields in this structure are as follows:

Flags
In the Flags variable, these flag bits can be specified:

AUTOKNOB
Set this if you want to use the auto-knob.

FREEHORIZ
If this is set, the knob can move horizontally.

Intuition: Gadgets 95

FREEVERT
If this is set, the knob can move vertically.

KNOBHIT
This is set by Intuition when this knob is hit by the user.

PROPBORDERLESS
Set this if you want your proportional gadget to appear without a border drawn around its container.

Initialize these variables before the gadget is added to the system; then look here for the current settings:

HorizPot
Horizontal quantity fraction.

VertPot
Vertical quantity fraction.

These variables describe what fraction of the entire body is actually shown at one time:

HorizBody
Horizontal body.

VertBody
Vertical body.

Intuition sets and maintains the following variables, which are private to Intuition:

CWidth
Container real width.

CHeight
Container real height.

HPotRes, VPotRes
Pot increments.

LeftBorder
Container real left border.

TopBorder
Container real top border.

StringInfo Structure

This is the special data required by the string gadget.

96 Intuition: Gadgets

struct Stringlnfo
{

UBYTE *Buffer;
UBYTE *UndoBuffer;
SHORT BufferPos;
SHORT MaxChars;
SHORT DispPos;
SHORT UndoPos;
SHORT NumChars;
SHORT DispCount;
SHORT CLeft, CTop;
struct Layer *LayerPtr;
LONG Longlnt;
struct KeyMap *AltKeyMap;
} ;

The meanings of the fields in this structure are given below.

You initialize the following variables and Intuition maintains them:

Buffer
This is a pointer to a buffer containing the start and final string. The string you write into this buffer must
be null-terminated.

UndoBuffer
This is an optional pointer to a buffer for undoing the current entry. If you are supplying an undo buffer,
the memory location should be as large as the buffer for the start and final string. Because only one string
gadget can be active at a time under Intuition, all of your string gadgets can share the same undo buffer.
However, the undo buffer must be large enough to hold the largest buffer for starting and final strings.

MaxChars
This must be set to the maximum number of characters that will fit in the buffer, including the terminating
NULL.

BufferPos
This specifies the initial character position of the cursor in the buffer.

DispPos
This specifies the buffer position of the first displayed character.

Intuition initializes and maintains these variables for you:

UndoPos
This specifies the character position in the undo buffer.

NumChars
This specifies the number of characters currently in the buffer.

DispCount
This specifies the number of whole characters visible in the container.

CLeft, CTop
This Intuition-private field specifies the top left offset of the container.

LayerPtr
This Intuition-private field specifies the layer containing this gadget.

Intuition: Gadgets 97

LongInt
After the user has finished entering an integer, you can examine this variable to discover the value if this is
an integer string gadget.

AltKeyMap
This variable points to your own alternate keymap; you must also set the AL TKEYMAP bit in the Activation
flags of the gadget.

GADGET FUNCTIONS

These are brief descriptions of the functions you can use to manipulate gadgets. For complete descriptions see The
Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Adding and Removing Gadgets from Windows or Screens

Use the following functions to add a gadget to or remove a gadget from the gadget list of a window.

• AddGadget(AddPtr, Gadget, Position)

This function adds one gadget to the gadget list of a window.

• RemoveGadget(RemPtr, Gadget)

This function removes one gadget from the gadget list of the specified window.

Use the following functions to add a sublist of gadgets to or remove a sublist of gadgets from the gadget list of a
window or requester. A sublist may be the entire gadget list. A sublist of gadgets is a collection of gadgets that are
linked by the Gadget.NextGadget field.

• AddGList(Window, Gadget, Position, Numgad, Requester)

This function adds up to Numgad gadgets, from a sublist beginning with the specified gadget, to a window or
requester. You also supply the position in the gadget list where these gadgets should go. Use a position of -1
(ie. (USHORT) -0) to denote the end of the gadget list.

• RemoveGList(Window, Gadget, Numgad)

This function removes up to Numgad gadgets from a window or requester, beginning with the specified one.

Disabling or Enabling a Gadget

The following functions disable or enable a gadget in a window, screen, or requester.

OnGadget(Gadget,Ptr,Requester)

This function enables the specified gadget.

98 Intuition: Gadgets

OffGadget(Gadget, Ptr, Requester)

This function disables the specified gadget.

Redraw the Gadget Display

RefreshGList(Gadgets, Window, Requester, NumGad)

Redraws no more than NumGad gadgets, starting with the specified gadget, in a window or requester. You
should refresh any gadgets after you add them. You might want to use this if you have modified the imagery of
your gadgets and want to display the new imagery. You might also use it if you think some graphic operation
has trashed the imagery of the gadgets.

RefreshGadgets(Gadgets, Ptr, Requester)

Redraws all of the gadgets in the gadget list of a window or requester, starting with the specified gadget. In a
requester, all of the gadgets are redrawn. This function is superceded by the more flexible RefreshGListO.

Modifying a Proportional Gadget

Use the following functions to modify the current parameters of a proportional gadget.

NewModifyProp(Gadget, WindOW, Requester, Flags, HorizPot, VertPot, HorizBody, VertBody,
NumGad)

This function modifies the parameters of a proportional gadget. The gadget's internal state is recalculated and
the imagery is redisplayed.

• ModifyProp(Gadget, Ptr, Requester, Flags, HorizPot, VertPot, HorizBody, VertBody)

This is the same as NewModifyPropO, except that it refreshes all the gadgets, beginning with the specified
one. You will want to use the more flexible NewModifyPropO, instead.

Activating a String Gadget via Program

ActivateGadget(Gadget, Window, Request)

This function allows your program to activate a string gadget. If successful, this function has the same, effect as
the user clicking the SELECT button when the mouse pointer is within the gadget's select box. Subsequent
keystrokes accomplish entry and editing on the gadget's string. This function will fail if the user is in the
middle of some other interaction, such as menu or proportional gadget operations.

The window or requester containing the string gadget to be activated must itself be open and active. Since some
operations in Intuition may occur after the function that initiates them completes, calling ActivateGadgetO
after Open WindowO or RequestO is no guarantee that the gadget will actually activate. Instead, you should
call ActivateGadgetO only after having received an ACTIVEWINDOW or REQSET IDCMP message for a
newly opened window or requester, respectively. Of course, you must set the window's IDCMP flags such that
you will hear those messages, too.

Intuition: Gadgets 99

NOTE: It is incorrect to simply insert a small delay between the call to OpenWindowO or RequestO and the
call to ActivateGadgetO. Such schemes fail under various conditions, including processor speed and CPU
loading.

Example

This example implements string, proportional, and boolean gadgets. The boolean gadget is masked. It also includes
examples of Image, Border, and IntuiText structures.

1* Gadgets.h -- has all of the structures needed for the gadgets *1

struct TextAttr TOPAZ80
{
(STRPTR)ltopaz.font",TOPAZ EIGHTY,O,O
}; -

UBYTE Buffer[5l2]; 1* This is for showing any messages or entries *1

struct IntuiText Messages =
{

l,O,JAM2,O,O,&TOPAZ80,&Buffer[0],NULL
} ;

struct Image BackImagel
{
0,0,
150,90,
0,
NULL,
OxOOOO,Ox0002,
NULL
} ;

struct Gadget BackDrop =
{

1* X, Y origin relative to TopLeft of Gadget *1
1* Image width and height in pixels *1
1* number of bitplanes in Image *1
1* pointer to ImageData, NULL for Rectangle *1
1* PlanePick and PlaneOnOff *1
1* next Image structure *1

1* This is just for our blank images *1

NULL,5,l, 1, 1, GADGIMAGE, NULL, BOOLGADGET, (APTR) &BackImagel,
NULL,NULL,NULL,NULL,O,NULL
} ;

USHORT chip MaskDatal[]=
{

1* No Border Button Mask Data *1

Ox07FF,OxFFFF,OxFFFF,OxFFFF,OxFOOO,Ox3FFF,OxFFFF,OxFFFF,
OxFFFF,OxFEOO,Ox7FFF,OxFFFF,OxFFFF,OxFFFF,OxFFOO,OxFFFF,
OxFFFF,OxFFFF,OxFFFF,OxFF80,OxFFFF,OxFFFF,OxFFFF,OxFFFF,
OxFF80,OxFFFF,OxFFFF,OxFFFF,OxFFFF,OxFF80,OxFFFF,OxFFFF,
OxFFFF,OxFFFF,OxFF80,Ox7FFF,OxFFFF,OxFFFF,OxFFFF,OxFFO0,
Ox3FFF,OxFFFF,OxFFFF,OxFFFF,OxFEOO,Ox07FF,OxFFFF,OxFFFF,
OxFFFF,OxFOOO
} ;

struct Image ButtonIl
{
0,0,73, 10, l,MaskDatal,Ox0001,OxOOOO,NULL
} ;

1* Text for our buttons *1
struct IntuiText ITextl = {2,O,JAM1,14,l,&TOPAZ80,ICancel",NULL};
struct IntuiText IText2 = {2,O,JAM1,20,l,&TOPAZ80,IOKAY",NULL};

1* Mask information for gadget *1
struct BoolInfo OkayMask = {BOOLMASK,MaskDatal,O};

struct Gadget ButtonGads[]
{

100 Intuition: Gadgets

&BackDrop, 100,106, 73,10, GADGHCOMPIGADGlMAGE,
RELVERlFY I GADG lMMED lATE I BOOLEXTEND, BOOLGADGET, (APTR)&Buttonl1,
NULL, &lText1, NULL, (APTR) &OkayMask, 7, NULL
),
{
&ButtonGads[O], 5,106, 73,10, GADGHCOMPIGADGlMAGE,
RELVERlFYIGADGlMMEDlATEIBOOLEXTEND, BOOLGADGET, (APTR)&Buttonl1,
NULL, &IText2, NULL, (APTR)&OkayMask, 6, NULL
)

} i

SHORT BorderVectors3[]
{
0,0,
151,0,
151,91,
0,91,
0,0
} i

struct Border Border3
{
-1, -1,
1,0,JAM1,
5,
BorderVectors3,
NULL
} i

struct Gadget EntryBox
{

1* XY origin relative to TopLeft *1
1* front pen, back pen and drawmode *1
1* number of XY vectors *1
1* pointer to XY vectors *1
1* next border in list *1

&ButtonGads[l], 1* next gadget *1
5,1, 1* origin XY of hit box relative to window TopLeft *1
150,90, 1* hit box width and height *1
GADGHBOXIGADGHlMAGE,I* gadget flags *1
RELVERlFYIGADGlMMEDlATE, 1* activation flags *1
BOOLGADGET, 1* gadget type flags *1
(APTR)&Border3, 1* gadget border or image to be rendered *1
NULL, 1* alternate imagery for selection *1
NULL, 1* first lntuiText structure *1
NULL, 1* gadget mutual-exclude long word *1
NULL, 1* Speciallnfo structure *1
1, 1* user-definable data *1
NULL 1* pointer to user-definable data *1
) i

SHORT BorderVectors4[]
{
0, 0,
169, 0,
169,10,
0,10,
0,0
} i

struct Border Border4
{
-1,-1,
1,0,JAM1,
5,
BorderVectors4,
NULL
} i

1* XY or~g~n relative to TopLeft *1
1* front pen, back pen and drawmode *1
1* number of XY vectors *1
1* pointer to XY vectors *1
1* next border in list *1

UBYTE UNDOBUFFER[255];
UBYTE NameGadSlBuff[255]i

struct Stringlnfo NameGadSlnfo
{
NameGadSlBuff,
UNDOBUFFER,
0,
25,
0,

1* buffer where text will be edited *1
1* optional undo buffer *1
1* character position in buffer *1
1* maximum number of characters to allow *1
1* first displayed character buffer position *1

Intuition: Gadgets 101

0,0,0,0,0,
0,
0,
NULL
) ;

struct Gadget NameGad
{

&EntryBox,
5,94,
16B,9,
NULL,

/* Intuition initialized and maintained variables */
/* Rastport of gadget */
/* initial value for integer gadgets */
/* alternate keymap (fill in if you set the flag) */

RELVERIFYjGADGIMMEDIATEjLONGINT, /* Make into a Integer gadget */
STRGADGET, /* String gadget */
(APTR) &Border4,
NULL,
NULL,
NULL,
(APTR)&NameGadSInfo, /* Special Info structure */
5,
NULL
) ;

USHORT chip DArrowData[) = /* Down Arrow */
(
OxFFFF,OxFBIF,OxFBIF,OxFBIF,OxFBIF,OxBOOl,OxE007,OxFBlF,OxFE7F
) ;

USHORT chip UArrowData[) = /* Up Arrow */
(
OxFE7F,OxFBIF,OxE007,OxBOOl,OxFBlF,OxFBlF,OxFBlF,OxFBlF,OxFFFF
) ;

USHORT chip RArrowData[) = /* Right Arrow */
(
OxFFFF,OxFF3F,OxFFOF,OxC003,OxCOOO,OxC003,OxFFOF,OxFF3F,OxFFFF
) ;

USHORT chip LArrowData[) = /* Left Arrow */
(
OxFFFF,OxFCFF,OxFOFF,OxC003,Ox0003,OxC003,OxFOFF,OxFCFF,OxFFFF
) ;

struct Image Arrows[) =
(
{O,O, 16, 9, 2, UArrowData, OxOOOl,OxOOOO,NULL),
(O,0,16,9,2,DArrowData,OxOOOl,OxOOOO,NULL),
(O,0,16,9,2,LArrowData,OxOOOl,OxOOOO,NULL),
(O,0,16,9,2,RArrowData,OxOOOl,OxOOOO,NULL)
) ;

struct Gadget ArrowGads[)
(

) ;

&NameGad, 15B, 73, 16,9, GADGIMAGE, RELVERIFYjGADGIMMEDIATE,
BOOLGADGET, (APTR)&Arrows[O), NULL, NULL, NULL, NULL, 4, NULL
) ,
(
&ArrowGads[O),15B, B3,16,9,GADGIMAGE, RELVERIFYjGADGIMMEDIATE,
BOOLGADGET, (APTR)&Arrows[l), NULL, NULL, NULL, NULL, 3, NULL
)

struct PropInfo VertSliderSInfo =

(
AUTOKNOBjFREEVERT, /* PropInfo flags */
-1,-1, /* horizontal and vertical pot values */
-1,-1, /* horizontal and vertical body values */
) ;

struct Image Image3 =
(O,0,7,72,0, NULL,OxOOOO,OxOOOO, NULL);

102 Intuition: Gadgets

struct Gadget VertSlider =
{

NULL, &ArrowGads[11, 158,0, 16,72,
RELVERIFYIGADGIMMEDIATE,
PROPGADGET,
(APTR) &Image3,

/* Proportional Gadget */
/* Slider Imagry */

NULL, NULL, NULL,
(APTR)&VertSliderSlnfo, /* Special Info structure */
2, NULL
) ;

struct NewWindow NewWindow
{
160,25, 178,150, 0,1,
INTUITICKSIGADGETDOWNIGADGETUPICLOSEWINDOW,
WINDOWDRAGIWINDOWDEPTHI
WINDOWCLOSEIACTIVATEINOCAREREFRESH,
NULL, NULL, "Gadgets", NULL, NULL, 0,0, -1,-1, WBENCHSCREEN
} ;

/* End of gadgets.h */

/* Gadgets.c 10/89
* Compiled with Lattice 5.04: LC -b1 -cfist -L -v -w
*/

#inc1ude <exec/types.h>
#include <intuition/intuition.h>
#include <graphics/gfxbase.h>
#include <libraries/dos.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Ufdef LATTICE
#include <proto/all.h>
#endif

#define RP window->RPort
#define TOT_DISPLAY 10
#define LINE_HEIGHT 9
#define MAX VALUE 9999

linclude "Gadgets.h"

/* function declarations */
VOID OpenAll(VOID);
VOID cleanExit(int);
USHORT HandleUGad(struct IntuiMessage *);
USHORT HandleDGad(struct IntuiMessage *);
VOID InitSlider{struct Gadget *g);
VOID GetSlider(struct Gadget *, intI;
VOID DisplayEntries(VOID);
VOID PrintText(struct RastPort *rp, UBYTE *msg,

LONG x, LONG y, USHORT f, USHORT b);

/* global declarations */
struct GfxBase *GfxBase = NULL;
struct IntuitionBase *IntuitionBase
struct Window *window = NULL;

/* for showing the list information
LONG numentries;
LONG topentry;

VOID main(int argc, char *argv [1)
{

struct IntuiMessage *msg = NULL;
ULONG class;
USHORT flagi;

OpenAll ();

NULL;

*/

Intuition: Gadgets 103

flagi=TRUE;
while (flagi)

Wait(lL « window->UserPort->mp SigBit);
while(msg=(struct IntuiMessage *)GetMsg(window->UserPort»

class=msg->Class;

}

switch (class) (

}

case INTUITICKS:
if(ArrowGads[O].Flags&SELECTED)
if (VertSlider.Flags&SELECTED)
if(ArrowGads[l].Flags&SELECTED)
break;

case GADGETDOWN:
flagi=HandleDGad(msg); break;

case GADGETUP:
flagi=HandleUGad(msg); break;

case CLOSEWINDOW:
flagi=FALSE; break;

default: break;

ReplyMsg«struct Message *)msg);

}

cleanExit(O);

GetSlider(&VertSlider,-l)
GetS1ider(&VertSlider, 0)
GetSlider(&VertSlider, 1)

1* For this example, this is just used to clear the
* message areas. You could use it to start a function
* on the down-press of a gadget
*1

USHORT Hand1eDGad(struct IntuiMessage *m)
{
struct Gadget *g;
USHORT id;
UBYTE msg [12] ;
USHORT retval;

retval=TRUE;
strcpy(msg,"
g = (struct Gadget
id = g->GadgetID;

00") ;
*)m->IAddress;

1* clear the entry number area *1
PrintText (RP, msg, 10, 139, 1, 0);

1* clear the button number area *1
sprintf(msg, "ID %-4dd", id);
PrintText(RP, msg, 104, 139, 1, 0);

1* return *1
return(retval);

USHORT Hand1eUGad(struct IntuiMessage *m)
{
struct
USHORT
UBYTE
USHORT

Gadget *g;
id;
msg[12];
retva1;

USHORT entry;

retva1=TRUE;
g = (struct Gadget *)m->IAddress;
id = g->GadgetID;
switch (id) {

case 1: 1* The ENTRY area *1
entry = topentry + «m->MouseY - g->TopEdge + 1) I LINE_HEIGHT) + 1;
if(entry > numentries) entry = 0;
sprintf(msg, "Entry %-4d", entry);
PrintText(RP, msg, 10, 139, 1, 0);

104 Intuition: Gadgets

break;
case 2: /* Clicked in the body

GetSlider(&VertSlider, 0);
break;

case 5: /* The STRING gadget */
/* Get the number of entries.

* into the String gadget and
*/

of the Vertical PROP */

Filter it out, put it back
display it.

numentries = NameGadSInfo.LongInt;
if(numentries>MAX VALUE) numentries=MAX VALUE;
sprintf(NameGadSIBuff, "%d\OOO", numentries)i
RefreshGList(&NameGad, window, NULL, 1);
InitSlider(&VertSlider);
break;

case 6: /* OKAY button */
case 7: /* CANCEL button */

retval FALSE;
break;

default:
break;

/* show the button number that we pushed */
sprintf (msg, "ID %-4du", id);
PrintText (RP, msg, 104, 139, 1, '0);

/* return */
return(retval)i

/* Initialize the proportional gadget
*/

VOID InitSlider(struct Gadget *g)
(

topentry=O;
if(numentries>TOT DISPLAY)
{ -

NewModifyProp(g,window,NULL,AUTOKNOBIFREEVERT,
NULL, «MAXBODY*topentry)/(numentries»,
MAXBODY, «MAXBODY*TOT_DISPLAY)/numentries),lL)i

else
{

NewModifyProp(g,window,NULL,AUTOKNOBIFREEVERT,
NULL,NULL,MAXBODY,MAXBODY,lL)i

/* clear the entry area */
RefreshGList(&BackDrop,window,NULL,l);

/* display the current entries */
DisplayEntries()i

/* Get the current entry, based on either the movement of the
* proportional gadget, or the pressing of the arrow keys.
*/

VOID GetSlider(struct Gadget *g, int dir)
{
USHORT potv;
struct PropInfo *p;
static USHORT update=O;

p=(struct PropInfo *)g->SpecialInfo;
if(dir!=O)
(

topentry += dir;
if(topentry>O && topentry«numentries-TOT_DISPLAY»
(

potv=«MAXBODY*topentry)/(numentries-TOT DISPLAY»;
update=O; -

Intuition: Gadgets 105

else
(

)

/* It is necessary that the check for topentry>=numentries
* is before topentry<=O to catch the instance when
* numentries < TOT DISPLAY
*/ -

if(topentry>=(numentries-TOT DISPLAY»
(-

)

potv=MAXBODYi
topentry=(numentries-TOT_DISPLAY)i
update++i

if (topentry<=O)
(

potV=Oi
topentry=O;
update++;

if(numentries>TOT_DISPLAY && update<3)
{

else
(

NewModifyProp(g,window,NULL,AUTOKNOBIFREEVERT,
NULL,potv,MAXBODY,
«MAXBODY*TOT_DISPLAY)/numentries-TOT_DISPLAY),lL);

if(numentries>TOT DISPLAY)
topentry=(p->VertPot*(numentries-TOT DISPLAY»/MAXBODY;

else -
topentry=Oi

DisplayEntries();

/* Update the display to show the current view of entries.
* This example DOESN'T show how to handle situations
* where the number of entries are less than what fits
* in the view.
*/

VOID DisplayEntries(VOID)
{
UBYTE msg[S];
register USHORT ii

/* update the display */
for(i=O; (i<TOT DISPLAY && i<numentries); i++)
(-

sprintf(msg,"%4d", i + topentry + 1);
PrintText(RP, msg,

7, (USHORT) (EntryBox.TopEdge + (i * LINE_HEIGHT)), 1, 2);

/* put the pen back the way it was */
SetBPen(RP, 0);

VOID PrintText(struct RastPort *rp, UBYTE *msg,
LONG x, LONG y, USHORT f, USHORT b)

strcpy(Buffer, msg);
Messages.FrontPen = f;
Messages.BackPen = bi
PrintIText(rp, &Messages, x, y);

VOID cleanExit(int retval)
{

106 Intuition: Gadgets

if (window)
if (GfxBase)
if (IntuitionBase)
exit(retval);

CloseWindow(window);
CloseLibrary«struct Library *)GfxBase);
CloseLibrary«struct Library *)IntuitionBase);

VOID OpenAll(VOID)
(
struct Gadget *g;

if(! (IntuitionBase=(struct IntuitionBase *)
OpenLibrary ("intuition. library" , 33)))

cleanExit(ERROR INVALID RESIDENT LIBRARY);
if(! (GfxBase=(struct GfxBase *)OpenLibrary("graphics.librarY",33)))

cleanExit(ERROR_INVALID_RESIDENT_LIBRARY);

1* center the window *1
NewWindow.TopEdge = (GfxBase->NormalDisplayRows - NewWindow.Height) I 2;
NewWindow.LeftEdge= (GfxBase->NormalDisplayColumns-NewWindow.Width) I 2;

1* open the window *1
if(! (window=OpenWindow(&NewWindow)))

cleanExit(ERROR_NO_FREE_STORE);

1* Adjust the top of the gadgets relative to the upper border.
* Usually is 11 if using Topaz80, 12 if using Topaz60
*1

g=&VertSlider;
while (g)
{

g->TopEdge += window->BorderTop;
g = g->NextGadget;

1* pre-initialize the list variables *1
numentries=100;

1* just to show how many entries we're working with *1
sprintf(NameGadSIBuff,"%d\OOO", numentries);

1* hook the gadgets to the window */
AddGList(window, &VertSlider, 0, -1, NULL);

1* update the display to show the new gadgets */
RefreshGList(&VertSlider, window, NULL, -1);

1* update the vertical proportional gadget information *1
InitSlider(&VertSlider);

Intuition: Gadgets 107

Chapter 5

Intuition: Menus

This chapter shows how to set up the menus that let the user choose from your program's commands and options.
The Intuition menu system handles all of the menu display from menu data structures that you set up. If you wish,
some or all of your menu selections can be graphic images instead of text.

About Menus

Intuition's menu system provides you with a convenient way to group together and display the functions and options
that your application presents to the user. For instance, in a word-processor environment, menus may provide the
following functions:

• Access to text files.

Editing functions.

• Search and replace facilities.

• Formatting capabilities.

Intuition: Menus 109

Multiple fonts.

• A general help facility.

In a game, menus may provide the user with choices about how to:

• Load a new game or save the current one.

Get hints.

• Bring up special information windows.

• Set the difficulty level.

• Auto-annihilate the enemy.

Menu commands are either actions or attributes. Actions are represented by verbs and attributes by adjectives. An
attribute stays in effect until canceled, while a command is executed and then forgotten. You can set up menus so
that some attribute items are mutually exclusive (selecting an attribute cancels the effects of one or more other
attributes), or you can allow a number of attributes to be in effect at the same time. For example, an adventure game
might have a menu list for things that the hero is holding in his hand. He could hold several small, lightweight
objects, but holding the heavy sword excludes holding anything else. In a database program, you might be able to
choose to send a report to a file, to the window, or to a printer. You could, for example, send it to both a window
and a printer, while the "file" option excludes the other two.

After you set up a linked list of menu structures (called a menu strip) and attach the list to a window, the menu
system handles the menu display. Using this list and any graphic images you have designed, the menu system
displays the menu bar text that appears across the screen title bar when requested by the user. It also creates the lists
of menu items and sub-menus that appear at the user's request. The application does not have to worry about menus
until Intuition sends a message with news that the user has selected a menu item. This message gives the application
the number of the selected item.

You can enable and disable menu items or whole menus, and make changes to the menus you previously attached to
a window. Disabling an item prevents the user from selecting it, and disabled items are ghosted to look different
from enabled items.

Menu items can be graphic images or text. When the user positions the pointer over an item, the item can be
highlighted through a variety of techniques. Items can also show that they have been selected by having an image
rendered next to them, usually a checkmark. Next to the menu items, you can display command-key alternatives.

To activate the menu system, the user presses the mouse menu button (or an appropriate command-key sequence) to
display the menu bar in the screen title area. The menu bar displays a list of topics (called menus) that have menu
items associated with them (see the figure).

110 Intuition: Menus

Figure 5-1: Screen with Menu Bar Displayed

When the user moves the mouse pointer to a topic in the menu bar, a list of menu items appears below the topic
name. To select an item, the user moves the mouse pointer in the list of menu items while holding down the menu
button, releasing the button when the pointer is over the desired item. If an item has a subitem list, moving the
pointer over the item reveals a list of subitems. The user moves the pointer over one of the subitems and makes. a
selection in the same way as an item is selected. If there is a command-key sequence alternative, the user can make
menu selections with the keyboard instead of the mouse. Furthermore, the user can select multiple items by:

Pressing and releasing the mouse select button without releasing the menu button. This selects that item
and keeps the user in "menu state" so that other items can be selected.

Holding down both mouse buttons and moving the pointer over several items. This is called drag
selecting.

SUBMITTING AND REMOVING MENU STRIPS

Once you have constructed a menu strip, you submit it to Intuition using the function SetMenuStripO. You must
ultimately remove every menu strip that you have submitted. When you want to remove the menu strip, you call
ClearMenuStripO. If you want to change the menu strip, you call ClearMenuStripO, change the menu, and
resubmit it with SetMenuStripO.

The flow of events for menu operations should be:

1. OpenWindowO.

2. Zero or more iterations of SetMenuStrip() and ClearMenuStripO.

Intuition: Menus 111

3. CloseWindowO.

You must clear the menu strip before c10shig the window.

ABOUT MENU ITEM BOXES

The item box is the rectangle containing your menu items or subitems. You do not have to describe the size and
location of the item or subitem boxes directly. You describe the size indirectly by how you place items and
subitems. Intuition figures out the size of the minimum box required. It then adjusts the size of the box· to make
sure your menu display conforms to certain design philosophy constraints for items and subitems. See the following
figures for examples of item and subitem box structures.

Left edge of the item box can
be no further right than this.

MENU HEADER

Example Item Box

Right edge of the item box can
be no further left than this.

The item box overlaps the
menu bar by one line.

The item box is tall enough
to hold your lowest item.

Figure 5-2: Example Item Box

The item box must start no further right than the leftmost position of the menu header's select box. It must end no
further left than the rightmost position of the menu header's select box. The top edge of the menu box must overlap
the screen's title bar by one line. The subitem box must overlap its item's select box somewhere.

NOTE

Do not leave space between the select boxes of your menu items and (especially) your subitems. When
the pointer moves off one subitem into the gap between it and the next subitem, the entire submenu is
erased and redrawn, which causes ugly flickering. Even a space of a single line will cause flickering. For
example, if the Height field of a menu item is ten, and the TopEdge field of the next menu item is 12,
flickering will occur. The TopEdge field should be II, in this case.

112 Intuition: Menus

MENU HEADER

Example Subitem Box

Figure 5-3: Example Subitem Box

ACTION/ATTRIBUTE ITEMS AND THE CHECKMARK

The subitem box must overlap
the item's select box somewhere.
(It does not matter where.)

Menu action items are selected and acted upon immediately. Action items can be selected repeatedly. Every time
the user selects an action item, the selection is transmitted to your program.

Menu attribute items may be toggle-selected or mutually exclusive. A toggle-selected item is selected or deselected
when the user accesses it. Accessing a mutually exclusive menu attribute item puts it in the selected state, where it
remains until it is mutually excluded by the selection of some other attribute item. Intuition puts a checkmark beside
any attribute item which has been selected. While the checkmark is the default symbol, you may have Intuition use a
symbol of your own design.

You specify that a particular menu item is an attribute item by setting the CHECKIT flag in the Flags variable of the
item's Menultem structure.

You can initialize the state of an attribute item by presetting the item's CHECKED flag. If this flag is set when you
submit your menu strip to Intuition, then the item is considered to be already selected and the checkmark will be
drawn.

You can use the default Intuition checkmark (...J) or you can design your own and set a pointer to it in the
NewWindow structure when you open a window. See the chapter on windows for details about supplying your own
checkmark.

If your items are going to be checkmarked, you should leave sufficient blank space at the left edge of your select box
for the checkmark imagery. If you are taking advantage of the default checkmarks, you should leave
CHECKWIDTH amount of blank pixels on high-resolution screens and LOWCHECKWIDTH amount of blank
pixels on low-resolution screens. These are defined constants describing the pixel width in high and low resolution.

Intuition: Menus 113

They define the space required by the standard checkmarks (with a bit of space for aesthetic purposes). If you would
normally place the LeftEdge of the image within the item's select box at 5. and you decide that you want a
checkmark to appear with the item. then you should start the item at 5+CHECKWIDTH instead. You should also
make your select box CHECKWIDTH wider than it would be without the checkmark.

TOGGLE-SELECTION

You can make some of your attribute items toggle-select. Each time the user accesses such an item. it changes state.
selected or unselected. to make an attribute item toggle-select. set both the CHECKIT and the MENUTOGGLE flags
for that menu item. Of course. you may rpe-set the CHECKED flag to the desired initial state.

MUTUAL EXCLUSION

You can choose to have some of your attribute items. when selected. cause other items to become unselected. This
is known as mutual exclusion. For example. if you have a list of menu items describing the available type sizes for a
particular font. the selection of any type size would mutually exclude all other type sizes. You use the
MutualExclude variable in the Menultem structure to specify other menu items to be excluded when' the user
selects an item. Exclusion also depends upon the CHECKED and CHECKIT flags of the Menultem. as explained
below.

If CHECKED is not set. then this item is available to be selected. If the user selects this item. the
CHECKED flag is set and the user cannot then reselect this item. If the item is selected. the CHECKED
flag will be set. and the checkmark will be drawn to the left of the item.

• If the item selected has bits set in the MutualExclude field. the CHECKED flag is examined in the
excluded items. If any item is currently CHECKED. its checkmark is erased. and its CHECKED flag is
cleared.

• Mutual exclusion is an active event. It pertains only to items that have the CHECKIT flag set. Attempting
to exclude items that do not have the CHECKIT flag set has no effect.

NOTE

It is up to you to track internally which excluded items have been disabled and deselected.

In the MutualExclude field. bit 0 refers to the first item in the item list. bit 1 to the second. bit 2 to the third. and so
on. In the adventure game example described earlier. in which carrying the heavy sword excludes carrying any other
items. the MutualExclude fields of the four items would look like this:

Heavy sword
Stiletto
Rope
Canteen

OxFFFE
OxOOOl
OxOOOl
OxOOOl

"Heavy Sword" is the first item on the list. You can see that it excludes all items except the first one. All of the
other items exclude only the first item. so that carrying the rope excludes carrying the sword. but not the canteen.

114 Intuition: Menus

COMMAND-KEY SEQUENCES AND IMAGERY

A command-key sequence is an event generated when the user holds down one of the AMIGA keys (the ones with
the fancy A) and presses one of the normal alphanumeric keys at the same time. You can associate a command-key
sequence with a particular menu item. Menu command-key sequences are combinations of the right AMIGA key
with any alphanumeric character. If the user presses a command-key sequence that is associated with one of your
menu items, Intuition will send the program an event that will look like the user went through the entire process of
selecting the menu item manUally. This allows you to provide shortcuts to the user, because many people find it
easy to memorize the command-key sequences for often-repeated menu selections. When accessing those of ten
repeated selections, most users would rather keep their hands on the keyboard than go to the mouse to make a menu
selection.

You associate a command-key sequence with a menu item by setting the COMMSEQ flag in the Flags variable of
the Menultem structure and by putting the ASCII character (upper or lower case) that you want associated with the
sequence into the Command variable of the Menultem structure. Intuition ignores case when checking for
command-key equivalents.

When items have alternate key sequences, the menu boxes show a special AMIGA key icon rendered about one
character span plus a few pixels from the right edge of the menu select box and the command-key used with the
AMIGA key rendered immediately to the right of the AMIGA key image, at the rightmost edge of the menu select
box (see the figure).

If you want to show a command-key sequence for an item, you should make sure that you leave blank space at the
right edge of your select box and imagery. You should leave COMMWIDTH amount of blank space on high
resolution screens, and LOWCOMMWIDTH amount of space on low-resolution screens.

P:roject S ec i al Co I 01" Shape BI"ush

Figure 5-4: Menu Items with Command Key Shortcuts

Intuition: Menus 115

ENABLING AND DISABLING MENUS AND MENU ITEMS

Disabling menu items makes them unavailable for selection by the user. Disabled menus and menu items are
displayed in a "ghosted" fashion; that is, the imagery is overlaid with a faint pattern of dots, making it less distinct
Enabling or disabling a menu or menu item is always a safe procedure, whether or not the user is currently using the
menus. A problem arises only if the program disables a menu item that the user has already selected with extended
select. The program will receive a MENUPICK message for that item, even though it thinks it has already disabled
it. The program will have to ignore items that it knows are already disabled.

You use the routines OnMenuO and OftMenuO to enable and disable individual subitems, items or whole menus.
These routines check if the user is using the menus and whether the menus need to be redrawn to reflect the new
states.

CHANGING MENU STRIPS

If you want to make changes to the menu strip you previously attached to your window, you must .first call
ClearMenuStripO. You may alter the menu strip only after it has been removed from the window.

To add a new menu strip to your window, you must call ClearMenuStripO before you call SetMenuStripO with
the new menus.

MENU NUMBERS AND MENU SELECTION MESSAGES

An input event is generated every time the user activates the menu system by pressing the mouse menu button (or
entering an appropriate command-key sequence). Your program receives a message of type MENUPICK telling
which menu item has been selected. If one of your items has a subitem list, the menu number your program receives
for that item includes some subitem selection.

Even if the user presses and releases the menu button without selecting any of the menu items, an event is generated.
If the user presses and releases the menu button without selecting one of the menu items, the program receives a
message with the menu number equal to MENUNULL. In this way, the program can always find out when the user
has simply clicked the menu button rather than making a menu selection.

The user can select multiple menu items with one of the extended selection procedures (pressing the mouse select
button without releasing the menu button or drag-selecting). Your program finds out whether or not multiple items
have been chosen by examining the field called NextSelect in the MenuItem data structure. After taking the
appropriate action for the item selected by the user, the program should check the NextSelect field. If the number
there is equal to the constant MENUNULL, there is no next selection. However, if it is not equal to MENUNULL.
the user has selected another option after this one. The program should process the next item as well, by checking
its NextSelect field, until it finds a NextSelect equal to MENUNULL.

The following code fragment shows the correct way to process a menu event:

116 Intuition: Menus

while (MenuNumber != MENUNULL)
(
Item = ItemAddress(MenuStrip, MenuNumber);
/* process this item */
MenuNumber = Item->NextSelect;
}

When the user performs multiple selection, you will receive only one message of class MENUPICK. For your
program to behave correctly, you must pay attention to the NextSelect field of the Menultem, which will lead you
to the other menu selections.

The number given in the MENUPICK message describes the ordinal position of the Menu in your linked list, the
ordinal position of the Menultem beneath that Menu, and (if applicable) the ordinal position of the subitem beneath
that MenuItem. Ordinal means the successive number of the linked items, starting from O. To discover the Menus
and Menultems that were selected, you should use the following macros:

Use MENUNUM(num) to extract the ordinal menu number from the value.
Use lTEMNUM(num) to extract the ordinal item number from the value.
Use SUBNUM(num) to extract the ordinal subitem number from the value.
MENUNULL is the constant describing' 'no menu selection made."
Likewise, NOMENU, NOITEM, and NOSUB are the null states of the parts.

For example:

if (number == MENUNULL) then no menu selection was made, else
MenuNumber = MENUNUM(number);
IternNumber = lTEMNUM(number);
SubNumber = SUBNUM(number);
if there were no subitems attached to that item, SubNumber will equal NOSUB.

The menu number received by the program describes either MENUNULL or a valid menu selection. If it is a valid
selection, it will always have at least a menu number and a menu item number. Users can never "select" the menu
text itself, but they always select at least an item within a menu. Therefore, the program always gets one menu
specifier and one menu item specifier. If a given menu item has a subitem, a subitem specifier will also be received.
Just as it is not possible to select a menu, it is not possible to select a menu item that has a list of subitems. The user
must select one of the options in the subitem list before the program ever hears about it as a valid selection.

If the user enters a command-key sequence, Intuition checks to see if the sequence is associated with a current menu
item. If so, Intuition sends the menu item number to the program with the active window just as if the user had
made the selection using the mouse buttons.

The function ltemAddressO translates a menu number into an item address.

HOW MENU NUMBERS REALLY WORK

The following is a description of how menu numbers really work. It should illuminate why there are certain numeric
restrictions on the number of menu components Intuition allows. You should not use the information given here to
access the menu number information directly. This discussion is included only for completeness. To assure upward
compatibility, always use the macros supplied. To extract the item number from the variable MenuNumber, for
example, call ITEMNUM(MenuNumber). See the previous section, "Menu Numbers and Menu Selection
Messages," for a complete description of the menu number macros.

Intuition: Menus 117

Menu numbers are 16-bit numbers with 5 bits used for the menu number, 6 bits used for the menu item number, and
5 bits used for the subitem number. Everything is specified by its ordinal position in a list of same-level pieces, as
shown below.

cccccbbbbbbaaaaa
I I I
I I > These bits are for the menu number.
I I
I > These bits are for the menu items within the menu.
I
> These bits are for the subitems within the menu items.

Thus, for each level of menu item and subitem, up to 31 pieces can be specified. There are 63 item pieces that you
can build under each menu, which is a lot, especially with 31 subitems per item. You can have 31 menu choices
across the menu bar (it would be a tight squeeze, but in 80-column mode you could do it), and each of those menus
can exercise up to 1,953 items. You should not need any mote choices than that.

The value "all bits on" means that no selection of this particular component was made. MENUNULL actually
equals "no selection of any of the components was made" so MENUNULL always equals "all bits of all
components on. "

Here's an example. Say that your program gets back the menu number (in hexadecimal) OxOCAO. In binary that
equals:

o 0 0 0 1
I
I
I
I
I

10010 1 0 0 0 0 0
I I
I > Menu number 0
I
> Menu item number Ox25 = 37

> Subitem number 1

Again, it is never safe to examine these numbers directly. Use the macros described above if you want to design
sanely and assure upward compatibility.

INTERCEPTING NORMAL MENU OPERATIONS

You have two convenient ways to intercept the normal menu operations that take place when the user presses the
right mouse button. The first, MENUVERIFY, gives your program the opportunity to react before menu operations
take place and, optionally, to cancel menu operations. The second, RMB1RAP, allows the program to trap right
mouse button events for its own use.

A Warning on the MENUSTATE Flag

The MENUST ATE flag is set by Intuition in Window.Flags when the menus of that window are in use. Beware: in
typical event-driven programming, such a state variable is not on the same timetable as your input message handling,
and should not be used to draw profound conclusions in your program. To synchronize yourself with the menu
handling, use MENUVERIFY.

118 Intuition: Menus

Menu-verify

Menu-verify is one of the Intuition verification functions. These functions allow you to make sure that your program
is prepared for some event before it takes place. Using menu-verify, Intuition allows all windows in a screen to
verify that they are prepared for menu operations before the operations begin. In general, you use this if the program
is doing something special to the display of a custom screen, and you want to make sure it has completed before
menus are rendered.

Any window can access the menu-verify feature by setting the MENUVERIFY flag in the NewWindow structure
when opening the window. When your program gets a message of class MENUVERIFY, menu operations will not
proceed until the program replies to the message.

The active window gets special menu-verify treatment. It is allowed to see the menu-verify message before any
other window and has the option of canceling menu operations altogether. You could use this, for instance, to
examine where the user has positioned the mouse when the right button was pressed. If the pointer is in the menu
bar area, then you can let normal menu operations proceed. If the pointer is below the menu bar, then you can use
the right button event for some non-menu purpose.

Your program can tell whether or not it is in the active window by examining the code field of the MENUVERIFY
message. If the code field is equal to MENUWAITING, your window is not the active one and Intuition is simply
waiting for you to verify that menu operations may continue. However, if the code field is equal toMENUHOT,
your window is the active one and it gets to decide whether or not menu operations should proceed. If the program
does not want them to proceed, it should change the code field of the message to MENUCANCEL before replying to
the message. This will cause Intuition to cancel the menu operations.

Shortcuts and MENUVERIFY

The idea behind MENUVERIFY (and to some degree SIZEVERIFY and REQVERIFY) is to synchronize your
program with Intuition's menu handling sessions. The motive was to allow your program to arbitrate access to your
screen's bitmap, so that Intuition doesn't put menus in the way of your drawing.

Some programs use MENUVERIFY to permit them to intercept the right mouse button for their own purposes.
Other's use it to suspend menu operations while they recover from Wild Phenomena before menu operations
proceed. These phenomena may be illegible colors of the screen or double buffering and related ViewPort
operations.

In any case, it is vital to know when menu operations terminate. This is typically detected by watching for the
MENUPICK IDCMP message. If you intercepted (MENUCANCEL) the menu operations, you will instead receive
a MOUSEBUTTONS message with code equal to MENUUP. Menu shortcut keystrokes, for compatibility, also
respect MENUVERIFY. They are always paired with a MENUPICK message so that your program knows the
menu operation is over.

You may call ModifyIDCMPO to turn MENUVERIFY and the other VERIFY IDCMP options off. It is important
that you do so if you ever do anything that directly or indirectly has you waiting for Intuition (since Intuition may be
waiting for you).

You cannot wait for a gadget or mouse event without checking also for any MENUVERIFY event messages that
may require your response. The most common problem area is System Requesters (AutoRequestO): Before
AutoRequestO returns control to your program, Intuition must be free to run and accept a response from the user. If
the user presses the menu button, Intuition will wait for you to MENUVERIFY and a deadlock results. Therefore, it

Intuition: Menus 119

is extremely important to use ModifyIDCMPO to tum off all verify messages before you call AutoRequestO or,
directly or indirectly, AmigaDOS, since many error conditions in the DOS require user input in the form of
Autorequests. Indirect DOS calls include OpenLibraryO, OpenDeviceO, and OpenDiskFontO.

Intuition's Use of Your RastPort

Intuition has many rendering chores: screen and window titles and borders, gadgets, menus, and so on. Intuition uses
a copy of the RastPort of the screen in which the rendering is to take place. This copy determines the bitmaps the
rendering will end up in, and often the font and similar modal information.

One thing Intuition sets each time is the mask value of the RastPort. It is set to all ones (0xFFFF). If you wish to
restrict Intuition's rendering to all bitplanes of your screen, you may change the Depth and Planes values in
Screen.RastPort.BitMap. This will only affect rendering into the screen itself, which consists of the Screen title and
gadgets, and menus. Window gadgets are not fooled, since they use the mask in the window's layer's rastport,
which you should not be changing.

No Menu Operations - Right Mouse Button Trap

By setting the RMBTRAP flag in the NewWindow structure when you open your window, you indicate that you do
not want any menu operations at all for your window. Whenever the user presses the right button while your
program's window is active, the program will receive right button events as normal MOUSEBUTTON events.

REQUESTERS AS MENUS

You may, in some cases, want to use a requester instead of a menu. A requester can function as a "super-menu"
because you can attach a requester to the double-click of the mouse menu button. This allows users to bring up the
requester on demand. With a requester, however, the user must make some response before resuming input to the
window. See the chapter entitled "Intuition: Requesters and Alerts," for more information.

MENU STRUCTURES

The specifications for the menu structures are given below. Menus are the headers that show in the menu bar, and
Menultems are the items and subitems that can be chosen by the user.

Menu Structure

Here is the specification for a Menu structure:

struct Menu
{
struct Menu *NextMenu;
SHORT LeftEdge, TopEdge, Width, Height;
USHORT Flags;
BYTE *MenuName;
struct Menultem *Firstltem;
} ;

120 Intuition: Menus

The variables in the Menu structure have the following meanings:

NextMenu
This variable points to the next Menu header in the list. The last Menu in the list should have a NextMenu
value of NULL.

LeftEdge, TopEdge, Width, Height
These fields describe the select box of the header. Currently, any values you may supply for TopEdge and
Height are ignored by Intuition, which uses instead the screen's TopBorder for the TopEdge and the height of
the screen's title bar for the Height. LeftEdge is relative to the LeftEdge of the screen plus the screen's left
border width, so if you say LeftEdge is 0, Intuition puts this header at the leftmost allowable position.

Flags
The flag space is shared by your program and Intuition. The flags are:

MENUENABLED
This flag indicates whether or not this Menu is currently enabled. You set this flag before you submit the
menu strip to Intuition. If this flag is not set, the menu header and all menu items below it will be
disabled, and the user will be able to view, but not select any of the items. After you submit the strip to
Intuition, you can change whether your menu is enabled or disabled by calling OnMenuO or OftMenuO.

MIDRAWN
This flag indicates whether or not this Menu's items are currently displayed to the user.

MenuName
This is a pointer to a null-terminated character string that is printed on the screen's title bar starting at the
LeftEdge of this Menu's select box and at the TopEdge just below the screen title bar's top border.

Firstltem
This points to the first item in the linked list of this Menu's items (Menultem structures).

Menultem Structure

Here is the specification for a Menultem structure (used for both items and subitems):

struct Menultem
{

} ;

struct Menultem *Nextltem;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
USHORT Flags;
LONG MutualExclude;
APTR ItemFill;
APTR SelectFill;
BYTE Command;
struct Menultem *Subltem;
USHORT NextSelect;

The fields have the following meanings:

Nextltem
This field is a pointer to the next item in the list. The last item in the list should have a Nextltem. value of
NULL.

Intuition: Menus 121

LeftEdge, TopEdge, Width, Height
These fields describe the select box of the Menultem. The LeftEdge is relative to the LeftEdge of the Menu.
The Top Edge is relative to the topmost position Intuition allows. TopEdge is based on the way the user has
the system configured - which font, which resolution, and so on. Use 0 for the topmost position.

Flags
The flag space is shared by your program and Intuition. See "Menultem Flags" below for a description of the
flag bits.

MutualExciude
This LONG word refers to the items that may be on the same "plane" as this one (maximum of 32 items).
You use these bits to describe which if any of the other items are mutually excluded by this one. This does not
mean that you cannot have more than 32 items in any given plane, just that only the first 32 can be mutually
excluded.

ItemFlll
This points to the data used in rendering this Menultem. It can point to either an instance of an IntuiText
structure with text for this Menultem or an instance of an Image structure with image data. Your program
tells Intuition what sort of data is pointed to by this variable by either setting or clearing the Menultem flag bit
ITEMTEXT. See "MenuItem Flags" below for more information about ITEMTEXT.

SelectFill
If you select the Menultem highlighting mode HIGHIMAGE (in the Flags variable), Intuition substitutes this
alternate image or text for the original rendering described by ltemFiIl. SelectFill can point to either an Image
or an IntuiText, and the flag ITEMTEXT describes which.

Command
This variable is storage for a single alphanumeric character. If the Flag COMMSEQ is set, the user can hold
down the right AMIGA key on the keyboard (to mimic using the right mouse menu button) and press the key
for this character as a shortcut for using the mouse to select this item. If the user does this, Intuition transmits
the menu number for this item to your program. It wi11look to your program exactly as if the user had selected
a menu item using menus and the pointer.

Subltem
If this item has a subitem list, this variable should point to the first subitem in the list.

NOTE

A subitem cannot have a subitem attached to it. If this item is not an item, this variable is ignored.

NextSelect
This field is filled in by Intuition when this item is selected by the user. If this item is selected by the user, your
program should process the request and then check the NextSelect field. If the NextSelect field is equal to
MENUNULL, no other items were selected; otherwise, there is another item to process. See "Menu Numbers
and Menu Selection Messages" above for more information about user selections.

Menultem Flags

Here are the flags that you can set in the Flags field of the Menultem structure:

CHECKIT
You set this flag to inform Intuition that this item is an attribute item and you want a checkmark to precede this
item if the flag CHECKED is set. See the section "Action/Attribute Items and the CheckMark" above for full

122 Intuition: Menus

details.

CHECKED
For an item with the CHECKIT flag set, set this bit to specify that this item has a checkmark. When you first
submit the menu strip to Intuition, it maintains this bit based on effects from other items' mutual exclusions, or
for MENUTOGGLE items, when the user accesses this item.

ITEMTEXT
You set this flag if the representation of this item (pointed to by the ItemFill field and possibly by SelectFill) is
text and points to an IntuiText; you clear it if the item is graphic and points to an Image.

COMMSEQ
If this flag is set, this item has an equivalent command-key sequence (see the Command field above).

MENUTOGGLE
Set this flag for a CHECKIT menu item or subitem, and the item can be selected to turn the checkmark off, as
well as on.

ITEMENABLED
This flag describes whether or not this item is currently enabled. If an item is not enabled, its image will be
ghosted and the user will not be able to select it. Set this flag before you submit the menu strip to Intuition.
Once you have submitted your menu strip to Intuition, you enable or disable items only by using OnMenuO or
OftMenuO. If this item has subitems, all of the subitems are disabled when you disable this item.

HIGHFLAGS
An item can be highlighted when the user positions the pointer over the item. These bits describe what type of
highlighting you want, if any. You must set one of the following bits according to the type of highlighting you
want:

HIGHCOMP
This complements all of the bits contained by this item's select box.

HIGHBOX
This draws a box outside this item's select box.

HIGHIMAGE
This displays the alternate imagery in SelectFill (textual or image). For alternate text, make sure that
ITEMTEXT is set, and that the SelectFill field points to an IntuiText structure.

HIGHNONE
This specifies no highlighting.

The following two flags are used by Intuition:

ISDRAWN
Intuition sets this flag when this item' s subitems are currently displayed to the user and clears it when they are
not.

HIGHITEM
Intuition sets this flag when this item is highlighted and clears it when the item is not highlighted.

Intuition: Menus 123

MENU FUNCTIONS

There are menu functions for attaching and clearing menu strips, for enabling and disabling menus or menu items,
and for finding a menu number.

Attaching and Removing a Menu Strip

The following functions attempt to attach a menu strip to a window or clear a menu strip from a window:

SetMenuStrip(Window, Menu)

Menu is a pointer to the first menu in the menu strip. This procedure sets the menu strip into the window.

• ClearMenuStrip(Window)

This procedure clears any menu strip from the window.

Enabling and Disabling Menus and Items

You can use the following functions to enable and disable items after a menu strip has been attached to the window.
If the item component referenced by MenuNumber equals NOI1EM, the entire menu will be disabled or enabled.
If the item component equates to an actual component number, then that item will be disabled or enabled.

You can enable or disable whole menus, just the menu items, or just single subitems.

To enable or disable a whole menu, set the item component of the menu number to NOI1EM. This will
disable all items and any subitems.

• To enable or disable a single item and all subitems attached to that item, set the item component of the
menu number to your item's ordinal number. If your item has a subitem list, set the subitem component of
the menu number to NOSUB. If your item has no subitem list, the subitem component of the menu
number is ignored.

To enable or disable a single subitem, set the item and subitem components appropriately.

OnMenu(Window, MenuNumber)

This function enables the given menu or menu item.

• OftMenu(Window, MenuNumber)

This function disables the given menu or menu item.

124 Intuition: Menus

Getting an Item Address

This function finds the address of a menu item when given the item number:

ItemAddress(MenuStrip, MenuNumber)

MenuStrip is a pointer to the first menu in the menu strip.

Example

This example shows how to implement menus. If you look at the sample program for IDCMP's in "Intuition: Input
and Output Methods", you'll see that the menu code is simply part of the processing for Intuition messages.

The example implements extended selection for menus, adaptation to fonts of different sizes, mutual exclusion, and
checkmarks.

/* Menus.h -- All the structures needed to make the menus */

'define
'define

IWIDTH 96
IHEIGHT B

/* Topaz B, just in case we can't handle the default font */
struct TextAttr TOPAZBO =

((STRPTR)"topaz.font",TOPAZ_EIGHTY,O,O);

/* Preferences Item IntuiText *1
struct IntuiText PrefText[) =

{

) ;

{2,l,JAM2,CHECKWIDTH,l, NULL, " Sound , NULL},
{2,l,JAM2,CHECKWIDTH,l, NULL, .. Auto Save", NULL},
{2,l,JAM2,CHECKWIDTH,l, NULL, " Have Your Cake", NULL},
(2,l,JAM2,CHECKWIDTH,1, NULL, .. Eat It Too", NULL)

struct MenuItem PrefItem[) =
{

} ;

/* .. Sound */
{&PrefItem[ll, 0, 0, IWIDTH, IHEIGHT,

ITEMTEXT!ITEMENABLED!HIGHCOMP, 0,
(APTR) &PrefText [0), NULL, NULL, NULL, MENUNULL

},
/* "Auto Save" (toggle-select, initially selected) */
{&PrefItem[21, 0, 10, IWIDTH, IHEIGHT,

ITEMTEXT!ITEMENABLED!HIGHCOMP!CHECKIT!MENUTOGGLE!CHECKED, 0,
(APTR) &PrefText [11, NULL, NULL, NULL, MENUNULL

),
1* "Have Your Cake" (initially selected, excludes "Eat It Too") */
{&PrefItem[31, 0, 0, IWIDTH, IHEIGHT,

ITEMTEXT!ITEMENABLED!HIGHCOMP!CHECKIT!CHECKED, B,
(APTR)&PrefText[2), NULL, NULL, NULL, MENUNULL

} ,
/* "Eat It Too" (excludes "Have Your Cake") */
{NULL , 0, 0, IWIDTH, IHEIGHT,

ITEMTEXT!ITEMENABLED!HIGHCOMP!CHECKIT, 4,
(APTR)&PrefText[3), NULL, NULL, NULL, MENUNULL

}

/* Edit Menu Item IntuiText */

Intuition: Menus 125

struct IntuiText EditText[]
{

) ;

(2,l,JAM2,2,l, NULL, "Undo", NULL),
(2,l,JAM2,2,l, NULL, "Cut", NULL),
(2,l,JAM2,2,l, NULL, "Copy", NULL),
(2,l,JAM2,2,l, NULL, "Paste", NULL),
(2,l,JAM2,2,l, NULL, "Erase All", NULL)

1* Edit Menu Items *1
struct MenuItem EditItem[]

{

) ;

1* "Undo" MenuItem (key-equivalent: 'Z') */
{&EditItem[l] , 0, 0, IWIDTH, IHEIGHT,

ITEMTEXTICOMMSEQIITEMENABLEDIHIGHCOMP, 0,
(APTR) &EditText [0], NULL, 'Z', NULL, MENUNULL

),
I * "Cut" (key-equivalent: 'X') * /
{&Editltem[2], 0, 10, IWIDTH, IHEIGHT,

ITEMTEXTICOMMSEQIITEMENABLEDIHIGHCOMP, 0,
(APTR)&EditText[l], NULL, 'X', NULL, MENUNULL

} ,
/* "Copy" (key-equivalent: 'C') */
(&EditItem[3], 0, 20, IWIDTH, IHEIGHT,

ITEMTEXT ICOMMSEQ I ITEMENABLED IHIGHCOMP, 0,
(APTR) &EditText [2], NULL, 'C', NULL, MENUNULL

},
1* "Paste" (key-equivalent: 'V') */
{&EditItem[4], 0, 30, IWIDTH, IHEIGHT,

ITEMTEXTICOMMSEQIITEMENABLEDIHIGHCOMP, 0,
(APTR) &EditText [3], NULL, 'V', NULL, MENUNULL

} ,
1* "Erase All" (disabled) *1
{NULL, 0, 40, IWIDTH, IHEIGHT,

ITEMTEXTIHIGHCOMP, 0,
(APTR) &EditText [41, NULL, NULL, NULL, MENUNULL

}

1* IntuiText for the Print sub-Items *1
struct IntuiText PrtText[]

{

} ;

{2, 1, JAM2,2,l, NULL,
(2, 1, JAM2, 2, 1, NULL,

/* Print Sub-Items */
struct MenuItem PrtItem[]

{
1* "NLQ" *1

"NLQ" ,
"Draft",

NULL),
NULL)

{&PrtItem[l], 61,-1, IWIDTH, IHEIGHT, ITEMTEXTIITEMENABLEDIHIGHCOMP, 0,

} ;

(APTR)&PrtText[Ol, NULL, NULL, NULL, MENUNULL
} ,
1* "Draft" *1
{NULL, 61, 9, IWIDTH, IHEIGHT, ITEMTEXTIITEMENABLEDIHIGHCOMP, 0,

(APTR) &PrtText [1], NULL, NULL, NULL, MENUNULL
}

1* Uses the » character to indicate a sub-menu
* 273 Octal, OxES Hex or ALT-O from the Keyboard
*1

1* Project Menu Item IntuiText *1
struct IntuiText ProjText[] =

{
{2, 1, JAM2,2,l, NULL, " New",
{2, 1, JAM2,2,l, NULL, " Open ... ",
(2, 1, JAM2, 2, 1, NULL, " Save",
{2, 1, JAM2, 2, 1, NULL, " Save As ... ",
{2, 1, JAM2,2,l, NULL, "273 Print",
(2, 1, JAM2, 2, 1, NULL, " About ••• ",

126 Intuition: Menus

NULL),
NULL},
NULL),
NULL),

NULL},
NULL},

{2, I, JAM2, 2, I, NULL, " Quit", NULL}
} ;

1* Project Menu Items *1
struct MenuItem ProjItem[]

{

1* "New" *1
{&ProjItem[l],O, 0, IWIDTH, IHEIGHT,

ITEMTEXTIITEMENABLEDIHIGHCOMP, 0,
(APTR) &ProjText [0], NULL, NULL, NULL, MENUNULL

l,
1* "Open ..• " (key-equivalent: '0') *1
{&ProjItem[2],O,10, IWIDTH, IHEIGHT,

ITEMTEXTICOMMSEQIITEMENABLEDIHIGHCOMP, 0,
(APTR)&ProjText[lJ, NULL, '0', NULL, MENUNULL

l,
1* "Save" (key-equivalent: 'S') *1
{&ProjItem[3],O,20, IWIDTH, IHEIGHT,

ITEMTEXTICOMMSEQIITEMENABLEDIHIGHCOMP, 0,
(APTR) &ProjText [2], NULL, 'S', NULL, MENUNULL

l,
1* "Save As ••• " *1
{&ProjItem[4],O,30, IWIDTH, IHEIGHT,

ITEMTEXTIITEMENABLEDIHIGHCOMP, 0,
(APTR)&ProjText[3], NULL, NULL, NULL, MENUNULL

l,
1* "Print" (has sUb-menu) *1
{&ProjItem[5],O,40, IWIDTH, IHEIGHT,

ITEMTEXTIITEMENABLEDIHIGHCOMP, 0,
(APTR)&ProjText[4], NULL, NULL, &PrtItem[O], MENUNULL

),

} ;

1* "About ..• " *1
{&ProjItem[6],O,50, IWIDTH, IHEIGHT,

ITEMTEXTIITEMENABLEDIHIGHCOMP, 0,
(APTR) &ProjText [5], NULL, NULL, NULL, MENUNULL

l,
1* "Quit" (key-equivalent: 'Q' *1
{NULL, 0,60, IWIDTH, IHEIGHT,

ITEMTEXT ICOMMSEQ I ITEMENABLED IHIGHCOMP, 0,
(APTR)&ProjText[6], NULL, 'Q', NULL, MENUNULL

}

1* Menu Titles *1
struct Menu Menus[]

{

{&Menus[l], 0, 0, 63, 0, MENUENABLED, "Project", &ProjItem[O] l,
{&Menus[2], 70, 0, 39, 0, MENUENABLED, "Edit", &EditItem[O]},
{NULL, 120, 0, 88, 0, MENUENABLED, "Preferences",&PrefItem[O] l,

l;

1* A pointer to the first menu for easy reference *1
struct Menu *FirstMenu = &Menus[O];

1* Window Text for Explanation of Program *1
struct IntuiText WinText[] =

{

l;

(3, 0, JAM2, .54, 28, &TOPAZ80, "How to do a Menu",
(3, 0, JAM2, 70, 38, &TOPAZ80, "(with Style) ",

1* NewWindow structure for our example window *1
struct NewWindow NewWindow

{

NULLl,
&WinText[O]l

202,66, 234,66, 2,1, MENUPICK I CLOSE WINDOW,
WINDOWDRAGIWINDOWDEPTHIWINDOWCLOSE I ACTIVATE I NOCAREREFRE SH,
NULL, NULL, "Menus", NULL, NULL, 0, 0, -I, -I, WBENCHSCREEN
l;

1* End of Menus.h *1

1* Menus.c *1

Intuition: Menus 127

'include <exec/types.h>
'include <intuition/intuition.h>
'include <intuition/intuitionbase.h>
'include <libraries/dos.h>
'include <stdlib.h>
'include <stdio.h>
'include <string.h>
Ufdef LATTICE
,include <proto/all.h>
int CXBRK(void) {return(O);}
'endif

'include "Menus.h"

/* Use lowest non-obsolete version that supplies the functions you need. */
'define LIB_REV 33

/* prototypes */
UBYTE handleIDCMP(struct Window *);
VOID OpenAll(VOID);
VOID cleanExit(int);

/* prototypes for functions used to determine menu sizing */
BOOL AdjustMenus(struct Menu *, struct TextAttr *);
VOID Adjustltems(struct RastPort *, struct Menultem *, struct TextAttr *,

VOID
USHORT

USHORT, USHORT, USHORT, USHORT);
AdjustText(struct IntuiText *text, struct TextAttr *attr);
MaxLength(struct RastPort *, struct Menultem *, USHORT);

/* Globals */
struct IntuitionBase *IntuitionBase = NULL;
struct GfxBase *GfxBase = NULL;
struct Window *window = NULL;

VOID main(int argc, char *argv[])
(
/* Declare variables here */
ULONG signalmask, signals;
UBYTE done = 0;

OpenAll ();

/* Set up the signals that you want to hear about .•. */
signalmask = lL « window->UserPort->mp_SigBit;

/* And wait to hear from your signals */
while (! done)

(
signals = Wait(signalmask);
if(signals & signalmask)

done = handleIDCMP(window);
} ;

/* Exit the program */
cleanExit(RETURN OK);
} -

/* Handle the IDCMP messages */
UBYTE handleIDCMP(struct Window *win)
{
UBYTE
USHORT
struct
ULONG

flag = 0;
code, selection, flags;
IntuiMessage *message = NULL;
class, menuNum, itemNum, subNum;

/* Examine pending messages */
while(message = (struct IntuiMessage *)GetMsg(win->UserPort))

{
class = message->Class;
code = message->Code;

128 Intuition: Menus

1* When we're through with a message, reply *1
ReplyMsg«struct Message *)message);

1* See what events occurred *1
switch (class)

(
case CLOSEWINDOW:

flag = 1;
break;

case MENUPICK:
selection = code;
while(selection != MENUNULL)

(
menuNum MENUNUM(selection);
itemNum
subNum
flags =

ITEMNUM(selection);
SUBNUM(selection);

«struct Menultem *)
ItemAddress(FirstMenu, (LONG)sel~ction»->Flags;

printf("Selected "I;
if (flags&CHECKED)

printf(" (Checked) "I;
switch(menuNum)

{
case 0: 1* Project Menu *1

switch (itemNum)
(
case 0:

printf("NewO) ;
break;

case 1:
printf ("OpenO) ;
break;

case 2:
printf("SaveO) ;
break;

case 3:
printf("Save AsO);
break;

case 4:
printf("Print "I;
switch (subNum)

(
case 0:

printf ("DraftO);
break;

case 1:

break;

print f ("NLQO) ;
break;

case 5:
printf("AboutO) ;
break;

case 6:
printf("QuitO) ;
flag = 1;
break;

default:
break;

} 1* end switch *1
break;

case 1: 1* Edit Menu *1
switch (itemNum)

(
case 0:

printf("UndoO) ;
break;

case 1:
printf("CutO) ;
break;

case 2:
printf("CopyO);

Intuition: Menus 129

break;
case 3:

printf("PasteO);
break;

case 4:
printf("Erase AIIO);
break;

default:
break;

} 1* end switch *1
break;

case 2: 1* Preferences Menu *1
switch (itemNum)

{

case 0:
printf("SoundO);
break;

case 1:
printf("Auto SaveO);
break;

case 2:
printf("Have Your CakeO);
break;

case 3:
printf("Eat It TooO);
break;

default :

break;
default:

break;

break;

} 1* end switch *1
selection = «struct MenuItem *)ItemAddress

(FirstMenu, (LONG)selection})->NextSelect;
1* end while *1

break; 1* case of MENUPICK *1
default:

break;
) 1* end switch *1

1* end while *1
return (flag) ;
}

1* Open the needed libraries, windows, etc. *1
VOID OpenAII(VOID)
{

1* Open the Intuition Library *1
IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.library",LIB REV};
if(IntuitionBase == NULL) -

cleanExit(RETURN_WARN);

1* Open the Graphics Library *1
GfxBase = (struct GfxBase *)

OpenLibrary(lgraphics.library", LIB_REV);
if(GfxBase == NULL)

cleanExit(RETURN_WARN);

1* Open the window *1
window = OpenWindow(&NewWindow);
if(window == NULL)

cleanExit(RETURN_WARN);

1* Give a brief explanation of the program *1
PrintIText(window->RPort,&WinText[l],O,O);

1* Adjust the menu to conform to the font (TextAttr) *1
AdjustMenus(FirstMenu, window->WScreen->Font);

1* attach the menu to the window *1

130 Intuition: Menus

SetMenuStrip(window, FirstMenu);
}

1* Free up all the resources that we where using *1
VOID cleanExit(int returnValue)
{
if (window)

{

1* If there is a menu strip, then remove it *1
if (window->MenuStrip)

ClearMenuStrip(window);

1* Close the window *1
CloseWindow(window);
}

1* Close the library, and then exit *1
if (GfxBase)

CloseLibrary«struct Library *)GfxBase);

if(IntuitionBase)
CloseLibrary«struct Library *)IntuitionBase);

exit (returnValue);
}

1* --
* The following routines adjust an entire menu system to conform to
* the specified fonts' width and height. Allows for Proportional Fonts.
* This is necessary for a clean look regardless of what the users
* preference in Fonts may be. Using these routines, you don't need to
* specify TopEdge, LeftEdge, Width or Height in the Menultem structures.

*
* This set of routines does NOT checklcorrect if the menu runs off the
* screen due to large fonts, too many items, lo-res screen.
*1

BOOL
{

AdjustMenus(struct Menu *firstmenu, struct TextAttr *attr)

RastPort textrp = {OJ;
Menu *menu;
TextFont *font;

start, width, height,

struct
struct
struct
USHORT
BOOL ret val = FALSE;

1* open the font *1
if«font = OpenFont(attr»)

{

1* Temporary RastPort

1* Font to use *1
spac~;

*1

SetFont(&textrp, font); 1* Put font into temporary RastPort *1

width = font->tf_XSize; 1* Get the Width of the Font *1

1* To prevent crowding of the Amiga key when using COMMSEQ,
* don't allow the items to be ~ess than 8 pixels high.
*1

height = (font->tf YSize < 8) ? 8 : font->tf_YSize;
height++;

start = 2; 1* Set Starting Pixel *1

1* Step thru the menu structure and adjust it *1
menu = firstmenu;
while (menu)

{

menu->LeftEdge = start;
menu->Width = space =

TextLength(&textrp, menu->MenuName,
(LONG)strlen(menu->MenuName» + width;

Adjustltems(&textrp, menu->Firstltem, attr, width, height, 0, 0);
menu = menu->NextMenu;
start += (space + (width * 2»;
}

CloseFont(font); 1* Close the Font *1

Intuition: Menus 131

ret val = TRUE;
)

return(retval);
)

/* Adjust the Menultems and Subltems */
VOID
Adjustltems(struct RastPort *txtrp, struct Menultem *fi,

struct TextAttr *atr, USHORT wdth, USHORT hght,
USHORT lvI, USHORT edge)

struct Menultem *item = fi;
register USHORT num;
USHORT strip_width, sub_edge;

if (£1==NULL)
strip width
num =-0;
while (item)

return;
MaxLength(txtrp, item, wdth);

{

item->TopEdge = (num * hght) - lvl;
item->LeftEdge = edge;
item->Width = strip width;
item->Height = hght;
sub edge = strip width - wdth;
AdjustText«struct IntuiText *)item->ItemFill, atr);
Adjustltems(txtrp, item->Subltem, atr, wdth, hght, 1, sub_edge);
item = item->Nextltem;
num++;
}

/* Steps thru each item to determine the maximum width of the strip */
USHORT MaxLength(struct RastPort *txtrp, struct Menultem *fi, USHORT width)
{

USHORT
struct
struct

maxval = 0, text len;
Menultem *item = fi;
IntuiText *itext;

while (item)
(
if (item->Flags&COMMSEQ)

(
width += (width + COMMWIDTH);
break;
}

item = item->Nextltem;
)

item = £1;
while (item)

{

itext = (struct IntuiText *)item->ItemFill;
text len itext->LeftEdge +

TextLength(txtrp, itext->IText,
(LONG)strlen(itext->IText» + width;

/* returns the greater of the two */
maxval = (textlen<maxval)?maxval:textlen;
item = item->Nextltem;
)

return{maxval);
}

/* Adjust the Menultems font attribute */
VOID AdjustText{struct IntuiText *text, struct TextAttr *attr)
{

struct IntuiText *nt;
nt = text;
while (nt)

{

132 Intuition: Menus

nt->ITextFont = attr;
nt = nt->NextText;

Intuition: ~enus 133

Chapter 6

Intuition: Requesters and Alerts

Requesters are information exchange boxes that can be displayed in windows by the system or by application
programs. There are also requesters that the user can bring up on demand. They are called requesters because the
user has to "satisfy the request" before continuing input through the window. Alerts are similar to requesters but
are reserved for emergency messages.

About Requesters

Requesters (see figure) are like menus in that both menus and requesters offer options to the user. Requesters,
however, go beyond menus. They become "super menus" because you can place them anywhere in the window,
design them to look however you want, and bring them up in the window whenever your program needs to elicit a
response from the user-and they come replete with any kind of gadget you care to use. The most fundamental
differences between requesters and menus are that requesters require a response from the user and that while the
requester is in the window, the window locks out all user input. (See the NOISYREQ flag under "Requester
Structure" for an exception.) The requirement of a user response is virtually the only restriction placed on your
program's use of requesters.

Intuition: Requesters and Alerts 135

Requester Display

.................. UlID

-I
- 1
- I COpy
RANGE

I OK I
ICANCELI

Figure 6-1: Requester Deluxe

Requesters can be brought up in a window in three different ways.

System requesters are invoked by the operating system; your program has no control over these. For
example, someone using a text editor might try to save a file to disk when there is no disk in the drive.
The system requester comes up and makes sure the user understands the situation and requests a response
from the user.

Your program can bring up regular application requesters whenever it needs input from the user.

• You can attach a requester to a double-click of the mouse menu button. Users can bring up this "double
menu request" whenever they need the particular option supplied by the requester.

Once a requester is brought up in a window, all further input to the program from that window is blocked (unless
that requester is of type NOISYREQ). This is true even if the user brought up the requester. The requester remains
in the window and input remains blocked until the user satisfies the request by choosing one of the requester
gadgets. You decide which of your gadgets meets this criterion. While the requester is in the window, the only
input the program receives from that window is made up of broadcasts when the user selects a requester gadget.
Even though the window containing the requester is locked for input. the user can work in another application or
even in a different window of your application and respond to the requester later.

A window with an unsatisfied requester is not blocked for program output. Nothing prevents your program from
writing to the window. Be aware, however, that the requester obscures part of the display. This may hinder the user.
Fortunately, there are several ways to monitor the comings and goings of requesters, which your program can use to
ensure that it can safely bring up an application requester. (See "IDCMP Requester Features" below.)

In displaying any kind of requester (except the super-simple yes-or-no kind created with AutoRequest()), you can
specify the location in one of two ways. You can select either a constant location that is an offset from the top left
corner of the window or a location relative to the current location of the pointer. Displaying the requester relative to

136 Intuition: Requesters and Alerts

the pointer can get the user's attention immediately and closely associates the requester with whatever the user was
doing just before the requester came up in the window.

You can nest several application requesters in the same window, and the system may present requesters of its own
that become nested with the application requesters. These are all satisfied in reverse sequence; the last requester to
be displayed must be satisfied first.

Application Requesters

In adding requesters to your program, you have several options. You can supply a minimum of information and let
Intuition do the work of rendering the requester or you can design a completely custom requester, drawing the
background, borders, and gadgets yourself and submitting the requester to Intuition for display.

You can select that a requester be rendered by Intuition in one of two ways. If the requester is complex and you
want to attach gadgets and have some custom features, you initialize a requester for general usage. In the requester
structure, you supply the gadget list, borders, text, and size of the rectangle that encloses the requester. Intuition will
allocate the buffers, construct a bit-map that lasts for the duration of the display, and render the requester in the
window on demand from your program or the user. Alternatively, if the requester requires only a simple yes or no
answer from the user, you can use the special AutoRequestO function that builds the requester, displays it, and
waits for the user's response.

On the other hand, you can design your own custom requester with your own hand-drawn image for the background,
gadgets, borders, and text. You get your own bit-map with a custom requester, so you can design the imagery pixel
by pixel if you wish, using any of the Amiga art creation tools. When you have completed the design, you submit it
to Intuition for display as usual. Consistency and style are the only restrictions imposed on designing your own
requester. The gadgets should look like gadgets and the gadget list should correspond to your images (particularly
the gadget select-boxes, to avoid confusing the user).

You should always provide a safe way for the user to back out of a requester without taking any action that affects
the user's work. This is very important.

A user's action or response to a requester can be as simple as telling the requester to go away. Because the user's
action consists of choosing a requester gadget, there must be one or more gadgets that terminate the requester.

Another Option

As an option to bringing up a requester, you can flash your screen in a complementary color (binary complement,
that is-see the "Intuition: Images, Line Drawing, and Text" chapter for an explanation). This is handy if you want
to notify the user of an event that is not serious enough to warrant a requester and to which the user does not really
need to respond. For instance, the user might be trying to choose an unavailable function from a menu or trying to
use an incorrect command-key sequence. If the event is a little more serious, you can flash all the screens
simultaneously. See the description of DisplayBeepO in the "Intuition: Other Features" chapter.

RENDERING REQUESTERS

There are two ways of having complex requesters rendered-you can supply Intuition with enough information to
do the rendering for you, or you can supply your own completely customized bit-map image. You fill in the
Requester structure differently according to which rendering method you have chosen.

Intuition: Requesters and Alerts 137

If you want Intuition to render the requester for you, you need to supply regular gadgets, a pen-color for filling the
requester background, and one or more text structures and border structures.

For custom bit-map requesters, you draw the gadgets yourself, so you supply a valid list of gadgets, but the text and
image information in the gadget structures can be set to NULL, because it will be ignored. Other gadget
information-select-box dimensions, highlighting, and gadget type-is still relevant. The select-box information is
especially important since the select-box must have a well-defined correspondence with the gadget imagery that you
supply. The basic idea here is to make sure that the user understands your requester imagery and gadgetry. The
fields that define borders, text, and pen color are ignored and can be set to NULL.

REQUESTER DISPLAY POSITION

You can have Intuition display the requester in a position relative to the position of the pointer or as an offset from
the upper left comer of the window.

To display the requester relative to the current mouse pointer position, specify POINmEL in the Flag field and
initialize the RelLeft and RelTop variables, which describe the offset of the upper left comer of the requester from
the pointer position. These values can be either negative or positive. The values you supply are only advisory; the
actual position will be restricted such that the requester is entirely contained in its window, if possible. The actual
top and left positions are stored in the TopEdge and LeftEdge variables. Then install the requester as a double
menu requester using SetDMRequestO (later use ClearDMRequestO to remove it). Positioning relative to the
mouse pointer is possible only with double~menu requesters.

To display the requester as an offset from the upper left comer of the window, initialize the Top Edge and LeftEdge
variables. These should be positive values.

System requests appear on the Workbench screen by default. They can be made to appear on custom screens by
changing the WindowPtr field of Process structure to point to a Window on a custom screen. The original value of
WindowPtr should be cached and restored before the window is closed. When a system request is posted (using
AutoRequestO or BuildSysRequest()) it will move the screen it appears on to the front, if it is not already there.
After satisfying a request, the user may have to rearrange the screens since the order of the screens is not restored to
their original state.

DOUBLE·MENU REQUESTERS

A double-menu requester is exactly like other requesters with one exception: it is displayed only when the user
double-clicks the mouse menu button. You give the user the ability to bring up a double-menu requester by calling
SetDMRequestO. After the user brings up one of these requesters, window input is blocked as if your program or
Intuition had brought up the requester. A message stating that a requester has been brought up in its window is
entered into the input stream. If you want to stop the user from bringing up a double-menu requester (for instance, if
you want to modify it or simply throw it away), you can unlink it from the window by calling ClearDMRequestO.

GADGETS IN REQUESTERS

Each requester gadget should have the REQGADGET flag set in its GadgetType variable.

Each requester must have at least one gadget that satisfies the request and allows input to begin again. For each
gadget that ends the interaction and removes the requester, you set the ENDGADGET flag in the gadget Activation

138 Intuition: Requesters and Alerts

field. Every time one of the requester gadgets is selected, Intuition examines the ENDGADGET flag; if the flag is
set, the requester is erased from the screen and unlinked from the window's active-requester list.

Algorithmic (Intuition-rendered) and custom bit-map requesters differ in how their gadgets are rendered. In
algorithmic requesters, you supply regular gadgets just like the application gadgets in windows. In custom bit-map
requesters, the gadgets are part of the bit-map that you supply for display. Even in custom bit-map requesters,
however, you must supply a list of gadgets, because you must still define the select-box, highlighting, and gadget
type for each gadget even though the gadget image information is ignored.

IDCMP REQUESTER FEATURES

If you are using the IDCMP for input, the following IDCMP flags add refinements to the use of requesters:

REQVERIFY
With this flag set, you can make sure that your program is ready to allow a requester to appear in the
window. When the program receives a REQVERIFY message, it must reply to that message to allow the
requester to be rendered.

REQSET
With this flag set, your program will receive a message whenever a requester opens in its window.

REQCLEAR
With this flag set, your program will receive a message whenever a requester is cleared from its window.

You set these flags when you call ModifyIDCMPO or create a NewWindow structure. See the chapter entitled
"Intuition: Input and Output Methods," for further information about these IDCMP flags.

A SIMPLE, AUTOMATIC REQUESTER

For a simple requester that prompts the user for a positive or negative response, you can use the AutoRequestO
function (see figure). You supply some explanatory text for the body of the requester, negative and positive text to
prompt the user's response, the width and height of the requester, and some optional flags for the IDCMP. The
positive text is the text you want associated with the user's choice of "Yes," "True," "Retry," and similar
responses. Likewise, the negative text is associated with the user's choice of "No," "False," "Cancel," and so on.
The positive text is automatically rendered in a gadget in the lower left of the requester, and the negative text is
rendered in a gadget in the lower right of the requester. The positive text pointer can be set to NULL, specifying that
there is no positive choice for the user to make. The IDCMP flags allow either positive or negative external events
to satisfy the request. For instance, the positive external event of the user putting a disk in the drive could satisfy the
request.

When you call the function, Intuition will build the requester, display it, and wait for a response from the user. If
possible, the requester is displayed in the window supplied as an argument to the routine. If not, Intuition opens a
window to display the requester.

Requests generated with AutoRequestO and BuildSysRequestO can be satisfied by the user via the keyboard. The
key strokes left·AMIGA·V and left·AMIGA·B correspond to clicking (with the mouse) on the left and right system

Intuition: Requesters and Alerts 139

request gadgets, respectively.

IMPORTANT

Use the function ModifyIDCMPO to turn off all verify messages (such as MENUVERIFY) before
calling AutoRequestOI Neglecting to do so can cause situations where Intuition is waiting for the
return of a message which the application program is unable to receive because its input is shut off
while the requester is up.

'.
Figure 6-2: A Simple Requester Made with AutoRequestO

The AutoRequestO function calls BuildSysRequestO to construct the simple requester. Your program can call
BuildSysRequestO directly if you want the program to use the simple requester and to monitor the requester itself.
All gadgets created by BuildSysRequestO have the following gadget flags seC

BOOLGADGET
It is a boolean TRUE or FALSE gadget.

RELVERIFY
The program receives a broadcast if this gadget is activated.

REQGADGET
This flag specifies that this is a requester gadget.

TOGGLESELECT
This flag specifies that this is a toggle-select type of gadget.

User Rendering

A requester appears in a Layer. You may render to this layer through its RastPort, which can be found as
Requester.ReqLayer.rp. The requester layer is of type "smart", so that your rendering is preserved, but if the
window is sized it may damage your work, so that you will need to refresh your rendering. If YOll specify
NOISYREQ (explained later) in the requester's Flags field, your program can receive NEWSIZE messages to let
you know when to refresh the requester.

140 Intuition: Requesters and Alerts

REQUESTER STRUCTURE

To create a Requester structure. follow these steps:

1. Dynamically allocate memory for a Requester structure and initialize it with InitRequesterO. After
calling InitRequesterO. you need fill in only those requester values that your program needs.

or

Statically define a Requester structure containing the values your program needs. Do not call
InitReqesterO with a statically allocated Requester structure!

2. Set up a gadget list.

3. Supply a BitMap structure if this is a custom requester.

The specification for a Requester structure follows.

struct Requester
{

struct Requester *OlderRequest;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
SHORT RelLeft, RelTop;
struct Gadget *ReqGadget;
struct Border *ReqBorder;
struct IntuiText *ReqText;
USHORT Flags;
UBYTE BackFill;
struct Layer *ReqLayer;
UBYTE ReqPadl[32]
struct BitMap *ImageBMap;
struct Window *RWindow;
UBYTE ReqPad2[36]
} ;

Here are the meanings of the fields in the Requester structure:

NOTE

See "Intuition Rendering" and "Custom Bit-Map Rendering" below for information about how the
initialization of the structure differs according to how the requester is rendered.

OlderRequest
This is a link maintained by Intuition, which points to requesters that were rendered before this one.

LeftEdge, TopEdge
Initialize these if the requester is to appear relative to the upper left corner of the window (as contrasted to
the POINTREL method, where the requester is rendered relative to the pointer).

Width, Height
These fields describe the size of the entire requester rectangle. containing all the text and gadgets.

RelLeft, RelTop
Initialize these if the requester is to appear relative to the current position of the pointer. Also, specify
POINTREL in the requester's Flags field.

Intuition: Requesters and Alerts 141

ReqGadget
This field is a pointer to the first in a linked list of gadget structures.

There must be at least one gadget with the ENDGADGET flag set to terminate the requester.

ReqBorder
This field is a pointer to an optional Border structure for drawing lines around and within your requester.

ReqText
This field is a pointer to an IntuiText structure containing text for the requester.

Flags
You can specify these flags:

POINTREL
Specify POINTREL if you want the requester to appear relative to the pointer (rather than offset from
the upper left corner of your window).

PREDRAWN
Specify PREDRA WN if you are supplying a custom BitMap structure for the requester and
ImageBMap points to the structure.

NOISYREQ
Specify NOISYREQ if you do not want the presence of a requester to inhibit input to the window the
requester appears in.

Intuition uses these flags:

REQOFFWINDOW
Set by Intuition if the requester is currently active but is positioned off-window.

REQACTIVE
This flag is set or cleared by Intuition as your requesters are posted and removed. The active
requester has always been indicated by the value of Window.FirstRequest.

SYSREQUEST
This flag is set by Intuition if this is a system-generated requester.

BackFill
Pen number for filling the requester rectangle before anything is drawn into the rectangle.

ReqLayer
This contains the address of the Layer structure used in rendering the requester.

ImageBMap
This flag is a pointer to the custom bit-map for this requester. If you are not supplying a custom bit-map
for this requester, Intuition ignores this variable.

If you are supplying a custom bit-map, you must specify PREDRA WN in the requester's Flags field.

RWindow
This is a system variable.

142 Intuition: Requesters and Alerts

ReqPadl, ReqPad2
These are reserved for system use.

The following sections describe the differences in the Requester structure between requesters rendered by Intuition
and custom-bit-map requesters.

Requesters in Low-Memory situations

In low-memory situations, system requests such as AutoRequestO will change into recoverable alerts (discussed in
"Alerts" below).

Requesters Rendered by Intuition

The following notes apply to requesters rendered by Intuition.

ReqGadget is a pointer to the first in a list of regular gadgets to be rendered in the requester box. Take
care not to specify gadgets that extend beyond the Requester rectangle that you describe in the Width and
Height fields, for Intuition does no boundary checking. REQGADGET must be specified in the Gadget's
GadgetTypes field.

ReqBorder is a pointer to a Border structure for your requester. The lines specified in this structure can
go anywhere in the requester; they are not confined to the perimeter of the requester.

ReqText is a pointer to an IntuiText structure. This is for general text in the requester.

• Backfill is the pen number to be used to fill the rectangle of your requester before any drawing takes
place.

For example. the following Requester structure allows Intuition to do the rendering.

struct Requester MyRequest
{
NULL,
20, 20, 200, 100,
0, 0,
&BoolGadget,
NULL,
&MyText
NULL,
2,
NULL,
{NULL},
NULL,
NULL,
{NULL} ,
} i

Custom Bit-Map Rendering

1* OlderRequester maintained by Intuition *1
1* LeftEdge, TopEdge, Width, Height *1
1* RelLeft, RelTop *1
1* First gadget *1
1* ReqBorder *1
1* ReqText *1
1* Flags *1
1* BackFill *1
1* ReqLayer *1
1* pad *1
1* BitMap *1
1* RWindow *1
1* pad *1

These notes apply to custom bit-map requesters.

ReqGadget points to a valid list of gadgets, which are real gadgets in every way except that the gadget
text and imagery information are ignored (and can be NULL). The select-box, highlighting, and gadget

Intuition: Requesters and Alerts 143

type data is still pertinent. The user may get confused unless there is a well-defined correspondence
between the gadgets' select-boxes and the requester imagery that you supply.

NOTE

Under Amiga system software versions 1.2 and 1.3, Intuition will not render string gadget text in a
predrawn requester.

The ReqBorder, ReqText, and BackFnI variables are ignored and can be set to NULL.

The ImageBMap pointer points to your own BitMap of imagery for this requester.

You should set the flag PREDRA WN.

THE VERY EASY REQUESTER

Here are the arguments you supply to AutoRequestO for the automatic, simple boolean requester that Intuition will
build for you:

Window
This is a pointer to the window in which the requester is to appear.

BodyText
This is a pointer to an IntuiText structure that explains the purpose of the requester.

PositiveText
This is a pointer to the IntuiTed structure containing the positive response text.

This field can be NULL if there is no positive response.

NegativeText
This is a pointer to the IntuiText structure containing the negative response text

PositiveFlags
These are IDCMP flags for positive external events that will satisfy the request.

NegativeFlags
These are IDCMP flags for negative external events that will satisfy the request.

Width, Height
These specify the size of the rectangle enclosing the requester.

REQUESTER FUNCTIONS

A brief rundown of the requester functions follows.

144 Intuition: Requesters and Alerts

The Easy Yes-or-No Requester

The following function automatically builds, displays, and gets a negative or positive response from a requester:

AutoRequest (Window, BodyText, PositiveText, NegativeText, PositiveFlags, NegativeFlags, Width,
Height)

This function builds a requester from the arguments supplied. displays the Requester, and returns TRUE or
FALSE.

Submitting a Requester for Display

The following function submits regular requesters to Intuition for display:

Request(Requester, Window)

This function displays a requester in the specified window.

Removing a Requester from the Display

• EndRequest(Requester, Window)

This function erases a requester invoked by the user or application and resets the window. It removes only the
one requester named. If a requester has one or more gadgets which will satisfy the request, and the user selects
one of them, the requester will be removed by the system. If the program needs to cancel the request early, or
cancel it only after some specific manipulation of the gadgets, EndRequestO should be used.

Double-Menu Requesters

The following functions affect double-menu requesters:

• SetDMRequest{Window, Requester)

This function attaches a requester to the double click of the mouse menu button.

• ClearDMRequest{Window, Requester)

This function unlinks the requester from the window and disables the ability to bring it up.

Intuition: Requesters and Alerts 145

Alerts

Alerts are for emergency messages. There are two types: system alerts and application alerts.

System and application alerts display absolutely essential messages and should be reserved for critical
communications in situations that require the user to take some immediate action; for instance, when an application
has experienced a fatal error or the system has or is about to crash. System alerts are managed entirely by Intuition
(see figure).

This is an Application Ale~t.
Not enough ~e"o~y to~ desi~ed tunction.

Lett button to atte"pt anyway Right button to abo~t

~ofkbench SCfeen 1El~1

Anig;).Shell
15 tiles - 15 blocks used
1) copy .,I:libs 1ibs:

ftath~~s.lib'afy •• copied
iCOR.l1\.afy •• copied

2) avail
Type Avail all I e
chip 917544
fast 3234712

Figure 6-3: The "Out of Memory" Alert

Lll'g~$t
993448

1179552
1983888

'.

The sudden display of an alert is a jarring experience for the user, and the system stops and holds its breath while the
alert is displayed. For these reasons, you should use alerts only when there is no recourse. If you can, use requesters
with warning messages instead.

The alert display has a black background and red border, a 640-pixel resolution, and can be as tall as needed to
display your text. The alert appears at the top of the video display. If the rest of the display is still healthy, it is
pushed down low enough to show the alert. If this is a fatal alert and the system is going down, the alert takes over
the entire display.

There are two levels of severity for alerts: RECOVERY_ALERT, and DEADEND_ALERT.

• RECOVERY_ALERT displays your text and flashes the alert's border outline while waiting for the user to
respond. This alert is optimistic and presumes that the system can continue operations after the alert is
satisfied. It returns TRUE if the user presses the left mouse button in response to your message.
Otherwise it returns FALSE.

DEADEND_ALERT prints your text and returns FALSE immediately.

146 Intuition: Requesters and Alerts

The boolean function DisplayAlertO creates and displays an alert message. Your message will most likely get out
to the screen regardless of the state of the machine (with the exception of catastrophic hardware failures). If the user
presses one of the mouse buttons, the display returns to its original state, if possible. Display AlertO also displays
the Amiga system alert messages. If a recoverable alert cannot be displayed (because memory is low),
Display AlertO will return FALSE, as if the user had selected CANCEL.

Display AlertO needs three arguments: an AlertNumber, a pointer to a string, and a number describing the required
display height.

AlertNumber is a LONG value, specifying whether this is a
RECOVERY_ALERT or a DEADEND_ALERT. (See the intuitionlintuition.h include file.)

The String argument points to an AlertMessage string that is made up of one or more substrings. Each
substring contains the following:

The first component is a 16-bit x-coordinate and an 8-bit y-coordinate describing where on the alert
display you want the string to appear. The units are in pixels. The y-coordinate describes the location
of the text baseline.

The second component is the text itself. The string must be null-terminated (it ends with a zero byte).

• The last component is the continuation byte. If this byte is zero, this is the last substring in the
message. If this byte is non-zero, there is another substring in this alert message.

The last argument, Height, tells Intuition how many display lines are required for your alert display.

Examples

AUTOREQUEST EXAMPLE

The following program shows how to implement an AutoRequester.

/* autorequester.c */
/* This program implements an AutoRequester. */
/* Inserting a disk will make the Requester go away. */
/* The user must still click on the close gadget to end the program. */

#include <exec/types.h>
#include <intuition/intuition.h>
'include <libraries/dos.h>
Ufdef LATTICE
#include <proto/all.h>
'include <stdlib.h>
int CXBRK(voidl {return(Oli}
iendif
/* Include other required vendor- or Commodore-Amiga-supplied header */
/* files here. */

/* Include user-written header files here. */
iinclude "hires.h"
'include "graniteWindow.h"

struct IntuiText reqtext[] = {

{ 1,2,JAM2,20,5,NULL,"An Autorequester",NULL },
(O,1,JAM2,5,4,NULL,"YES",NULL),
{ 0, 1,JAM2, 6, 4,NULL, "NOT YET", NULL}

Intuition: Requesters and Merts 147

} ;

1* Use lowest non-obsolete version that supplies the functions you need. *1
idefine INTUITION_REV 33

extern VOID cleanExit(struct Screen *, struct Window *, int);
extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;

VOID main (VOID)
{

1* Declare variables here *1
ULONG signalmask, signals;
UBYTE done = 0;
struct Screen *screen1 NULL;
struct Window *window1 = NULL;

1* Open the Intuition Library *1
IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition. library", INTUITION REV);

if (IntuitionBase == NULL)
cleanExit(screen1, window1, RETURN_WARN);

1* Open the screen *1
screen1 = OpenScreen(&fullHires);
if (screen1 == NULL)

cleanExit(screen1, window1, RETURN_WARN);

1* Make the assignments that were postponed above *1

1* Attach the window to the open screen ..• *1
graniteWindow.Screen = screen1;

1* ... and open the window *1
window1 = OpenWindow(&graniteWindow);
if (window1 == NULL)

cleanExit(screen1, window1, RETURN_WARN);

1* Set up the signals that you want to hear about ... *1
signa1mask = 1L « window1->UserPort->mp_SigBit;

1* Call the functions that do the main processing *1
1* Call the autorequester *1
AutoRequest(window1,&reqtext [0), &reqtext [1), &reqtext [2),

DISKINSERTED,0,200,50);

1* And wait to hear from your signals *1
while (!done) (

signals = Wait (signalmask);
if (signals & signalmask)

done = handleIDCMP(window1);
} ;

1* Exit the program *1
cleanExit(screen1, window1, RETURN_OK);

UBYTE handleIDCMP(struct Window *win)
{

UBYTE flag = 0;
struct IntuiMessage *message
ULONG class;

1* Examine pending messages *1

NULL;

while(message = (struct IntuiMessage *) GetMsg (win->UserPort)) {
class = message->Classi

1* When we're through with a message, reply *1
ReplyMsg((struct Message *)message);

148 Intuition: Requesters and Alerts

)

/* See what events occurred */
switch (class) {

case CLOSEWINDOW:
flag = 1;
break;

default:
break;

return (flag) ;

VOID cleanExit(scrn, wind, returnValue)
struct Screen *scrn;
struct Window *wind;
int returnValue;
{

/* Close things in the reverse order of opening */

/* Close the window and the screen */
if (wind) CloseWindow(wind);
if (scrn) CloseScreen(scrn);

/* Close the library, and then exit */
if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase);

exit(returnValue);
}
/* End of autorequester.c */

DISPLAY ALERT EXAMPLE

The next program shows a display alert. Read the explanation of positioning values for display alert strings in the
comment that precedes the AlertMessage string. The information there complements that given above.

/* displayalert.c */
/* This program implements a recoverable alert */

#include <exec/types.h>
#include <intuition/intuition.h>
#include <libraries/dos.h>
Ufdef LATTICE
#include <proto/all.h>
#include <stdlib.h>
int CXBRK(void) {return(O);)
#endif
/* Include other required vendor- or Commodore-Amiga-supplied header */
/* files here. */

/* Include user-written header files here. */
#include "hires.h"
#include "graniteWindow.h"

/* Each string requires its own positioning information, as explained */
/* in the manual. We use octal notation to specify the positions we */
/* want. Octal numbers start with a backs lash and must be three digits */
/* long. For the first line, x = 00360 (two bytes, for 16 bits) */
/* and y = 20 (for one byte, eight bits), and the second line has */
/* x = 00240 and y 40. */

UBYTE alertMsg[1
{

" 00360 200H NO, NOT AGAIN! ",
" 00240 40PRESS LEFT MOUSE BUTTON TO CONTINUE. 00"
} ;

/* Use lowest non-obsolete version that supplies the functions you need. */
#define INTUITION REV 33
#define PAUSE (se~onds) (Delay((seconds) * TICKS_PER_SECOND»

Intuition: Requesters and Alerts 149

extern VOID cleanExit(struct Screen *, struct Window *, int);
extern UBYTE handleIDCMP(struct Window ~);

struct IntuitionBase *IntuitionBase = NULL;

VOID main (VOID)
{

1* Declare variables here *1
ULONG signalmask, signals;
UBYTE done = 0;
struct Screen *screenl
struct Window *windowl

NULL;
NULL;

1* Open the Intuition Library *1
IntuitionBase = (struct IntuitionBase *)

OpenLibrary(lintuition.library",INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit(screenl, windowl, RETURN_WARN);

1* Open any other required libraries *1

1* Make the assignments that were postponed above *1
alertMsg[2l] NULL;
alertMsg[22] = OxOl;

1* Open the screen *1
screenl = OpenScreen(&fullHires);
if (screenl == NULL)

cleanExit(screenl, windowl, RETURN_WARN);

1* Make the window non-draggable and non-sizable. *1
graniteWindow.Flags &= -(WINDOWDRAG I WINDOWSIZING);

1* Attach the window to the open screen ... *1
graniteWindow.Screen = screenl;

1* ... and open the window *1
windowl = OpenWindow(&graniteWindow);
if (windowl == NULL)

cleanExit(screenl, windowl, RETURN_WARN);

1* Set up the signals that you want to hear about ••• *1
signalmask = lL « windowl->UserPort->mp_SigBit;

1* Call the functions that do the main processing *1
1* Delay a bit, so that the Alert does not seem to appear *1
1* at the same time as the window *1

PAUSE (3L);

1* Mount the Alert on the display *1
DisplayAlert(RECOVERY_ALERT, alertMsg, 52);

1* And wait to hear from your signals *1
while (! done) (

signals = Wait (signalmask);
if (signals & signalmask)

done = handleIDCMP(windowl);
} ;

1* Exit the program *1
cleanExit(screenl, windowl, RETURN_OK);

UBYTE handleIDCMP(struct Window *win)
{

UBYTE flag = 0;
struct IntuiMessage *message
ULONG class;

1* Examine pending messages *1

150 Intuition: Requesters and Alerts

NULL;

while(message = (struct IntuiMessage *) GetMsg (win->UserPort)) {
class = message->Class;

/* When we're through with a message, reply */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch (class) (

case CLOSEWINDOW:
flag = 1;
break;

default :
break;

return (flag);

VOID cleanExit(scrn, wind, returnValue)
struct Screen *scrn;
struct Window *wind;
int returnValue;
(

/* close things in the reverse order of opening */

/* Close the window and the screen */
if (wind) CloseWindow(wind);
if (scrn) CloseScreen(scrn);

/* Close the library, and then exit */
if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase);

exit(returnValue);
}
/* End of displayalert.c */

DOUBLE MENU REQUEST EXAMPLE

Here we show how to implement a double-menu requester that appears relative to the mouse pointer. Run the
program, and double-click on the menu button. Click on one of the gadgets in the requester that appears, and the
requester goes away. The gadgets don't do anything else, but in your programs, you would normally act on IDCMP
events triggered by user interaction with your requester.

/* dblmenureq.h The structures for the Requester and its gadgets. */

'define BACKPEN 0

/* Force text to use Topaz 8 font */
struct TextAttr TOPAZ80 =

{(STRPTR)"topaz.font",TOPAZ_EIGHTY, 0, O);

/* Tell something about the program */
struct IntuiText WinText[] =

{
(3, 0, JAM2, 95, 66, &TOPAZ80, "to activate", NULL),
{3,O,JAM2,48,56,&TOPAZ80,"Double-Click Menu Button",&WinText[O]}

} ;

/* Text for the Requester and its gadgets */
struct IntuiText ReqTxt[] =

{
{3,BACKPEN,JAM2,23,3,&TOPAZ80,"Control
{2,O, JAM1,22, 1, &TOPAZ80, "Exit",
{2,O, JAM1,22,l, &TOPAZ80, "Fast",
{2,O, JAM1,21, 1, &TOPAZ80, "Slow",

} ;

/* image and mask data for cool buttons */

Panel", NULL},
NULL},
NULL},
NULL}

Intuition: Requesters and Alerts 151

USHORT chip MaskData[] =
(
Ox07FF,OxFFFF,OxFFFF,OxFFFF,OxFOOO,Ox3FFF,OxFFFF,OxFFFF,
OxFFFF,OxFEOO,Ox7FFF,OxFFFF,OxFFFF,OxFFFF,OxFFOO,OxFFFF,
OxFFFF,OxFFFF,OxFFFF,OxFF80,OxFFFF,OxFFFF,OxFFFF,OxFFFF,
OxFF80,OxFFFF,OxFFFF,OxFFFF,OxFFFF,OxFF80,OxFFFF,OxFFFF,
OxFFFF,OxFFFF,OxFF80,Ox7FFF,OxFFFF,OxFFFF,OxFFFF,OxFFO0,
Ox3FFF,OxFFFF,OxFFFF,OxFFFF,OxFEOO,Ox07FF,OxFFFF,OxFFFF,
OxFFFF,OxFOOO
) ;

struct Image Button =
(0,0,73, 10, l,MaskData,Ox0001, OxOOOO,NULL};

1* Mask information for gadgets *1
struct Boo1Info ButtonMask = (BOOLMASK,MaskData,O);

I*The buttons for the requester use REQGADGET
*to indicate that they are gadgets for a
*requester. ENDGADGET indicates that the
*requester ends when this button is released.

*/

struct Gadget ReqGad[l =

(
(NULL, 35, 60, 73, 10,GADGHCOMP IGADGlMAGE,
RELVERIFY I GADG IMMED lATE IENDGADGET I BOOLEXTEND,
BOOLGADGET+REQGADGET, (APTR) &Button,NULL, &ReqTxt [l],NULL,
(APTR) &ButtonMask, 100,NULL

),
(&ReqGad[Ol,35, 40, 73, 10,GADGHCOMP IGADGlMAGE,
RELVERIFY I GADG IMMED lATE IENDGADGET I BOOLEXTEND,
BOOLGADGET+REQGADGET, (APTR)&Button,NULL,&ReqTxt[2],NULL,
(APTR) &ButtonMask, 101,NULL

) ,
(&ReqGad[l],35,20,73,10,GADGHCOMPIGADGlMAGE,
RELVERIFYIGADGIMMEDIATE IENDGADGET I BOOLEXTEND,
BOOLGADGET+REQGADGET, (APTR) &Button,NULL, &ReqTxt [31,NULL,
(APTR) &ButtonMask, 102,NULL

)
) ;

1* Draw a pretty border around the requester */
SHORT BorderVectors[l

(
0, 0,

148, 0,
148,84,

0,84,
0, 0

) ;

struct Border ReqBorder = (O,O,l,O,JAM1,5,BorderVectors,NULL);

struct Requester DMRequester =
(
NULL,
79,14,
149,85,
-75,-43,
&ReqGad [21,
&ReqBorder,
&ReqTxt[Ol,
POINTREL,
BACKPEN,
NULL,
NULL,
NULL
) ;

1* LeftEdge and TopEdge *1
1* Width and Height *1

1* Gadgets used *1
1* Border *1
1* Text to render within requester *1

1* Color to use as the background *1

1* End of dblmenureq.h *1

152 Intuition: Requesters and Alerts

/* dblmenureq.c -- This program illustrates a Double-Menu Requester. */

#include <exec/types.h>
#include <intuition/intuition.h>
#include <libraries/dos.h>
#ifdef LATTICE
#include <proto/all.h>
#include <stdlib.h>
int CXBRK(void) {return (O);}
#endif
/* Include other required vendor- or Commodore-Amiga-supplied header */
/* files here. */

/* Include user-written header files here. */
#include IgraniteWindow.h"
#include "dblmenureq.h"

/* Use lowest non-obsolete version that supplies the functions you need. */
#define INTUITION_REV 33

extern VOID cleanExit (struct .Window *, int);
extern UBYTE handleIDCMP(struct Window *);

struct IntuitionBase *IntuitionBase = NULL;

VOID main (VOID)
{

/* Declare variables here */
ULONG signalmask, signals;
UBYTE done = 0;
struct Window *windowl = NULL;

/* Open the Intuition Library */
IntuitionBase = (struct IntuitionBase *)

OpenLibrary(lintuition.library",INTUITION_REV);

if (IntuitionBase == NULL)
cleanExit(windowl, RETURN_WARN);

/* Make the assignments that were postponed above */
graniteWindow.Type = WBENCHSCREEN;

/* Open the window */
windowl = OpenWindow(&graniteWindow);
if (windowl == NULL)

cleanExit(windowl, RETURN_WARN);

/* Display the information about the program */
PrintIText(windowl->RPort,&WinText[ll,56,O);

/* Attach a Double-Menu Requester to this window */
SetDMRequest(windowl, &DMRequester);

/* Set up the signals that you want to hear about .•• */
signalmask = lL « windowl->UserPort->mp_SigBit;

/* And wait to hear from your signals */
while (! done) (

signals = Wait (signalmask);
if (signals & signalmask)

done = handleIDCMP(windowl);
} ;

/* Exit the program */
cleanExit(windowl, RETURN_OK);

UBYTE handleIDCMP(struct Window *win)
{

UBYTE flag = 0;
struct Intu.iMessage *message
ULONG class;

NULL;

Intuition: Requesters and Alerts 153

1* Examine pending messages *1
while (message = (struct IntuiMessage *) GetMsg (win->UserPort)) (

class = message->Classi

1* When we're through with a message, reply *1
ReplyMsg((struct Message *)message)i

1* See what events occurred *1
switch (class) (

case CLOSEWINDOW:
flag = Ii
breaki

default:
DisplayBeep(NULL)i
breaki

return (flag) i

VOID cleanExit(wind, returnValue)
struct Window *windi
int returnValuei
{

}

1* Close things in the reverse order of opening *1

1* Close the window and the screen *1
if (wind) CloseWindow(wind)i

1* Close the library, and then exit *1
if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase)i

exit (returnValue) i

1* End of dblmenureq.c *1

154 Intuition: Requesters and Alerts

Chapter 7

Intuition: Input and Output Methods

An Overview of Input and Output

From the Intuition point of view, information flows through the system in the following steps (see the following
figure):

• Information originates from somewhere in the user's cranial area.

• From there, it flows through biological output devices such as fingers and into electro-mechanical input devices
such as keyboards, mice, graphics tablets, and light pens. These input devices create input signals that enter the
Amiga through several different ports.

Inside, these input signals are merged into a coherent stream of input events.

• This input stream is examined and manipulated by several entities, including Intuition. Intuition gazes deeply
into the essence of every event it sees. Sometimes it consumes events, other times it adds to the stream, and
often it sits lazily by, watching the stream flow through its fourth dimension.

• Finally, application programs receive the input stream and take action based on the data contained therein. The
result of the action often involves creating output, which is presented to the user via a video monitor.

Intuition: Input and Output Methods 155

The user's eye input devices detect the information being displayed on the video output device. The eyes, and
some still-mysterious merge mechanism, translate the data into signals that are transmitted to the brain, thus
completing the cycle.

Figure 7-1: Watching the Stream

About Input and Output

The Amiga has an input device to monitor all input activity, which nominally includes keyboard and mouse activity,
but which can be extended to include many different types of input signals. Whenever the user moves the mouse,
presses one of the mouse buttons, or types on the keyboard, the input device detects it and constructs an InputEvent
(a message describing what just occurred). Other devices and programs can ask the input device to construct an
input message using their own data (for instance, AmigaDOS is able to generate an input event whenever a disk is
inserted or removed, and an application-installed music-keyboard device can add note events to the stream). All of
these events are merged into the input stream. The input device then broadcasts this input event stream through
special message ports so that any interested party can monitor the events, intercept some of the events, and even add
new ones to the stream. Intuition is one of the interested parties.

Some of the events, such as "mouse-button pressed," may have great meaning to Intuition. If they do, Intuition
consumes them, which is to say that Intuition extracts those events from the input stream. Other events, such as the
"disk inserted" event, may be of interest to more than one user of Intuition, so Intuition translates these into a
separate message for each application. Still other events, such as most of the keyboard events, mean nothing to
Intuition, and Intuition merely passes them along.

156 Intuition: Input and Output Methods

A typical application decides what to do from moment to moment by responding to the events in the input stream.
Although many applications may be waiting for input simultaneously, in most cases, only the application that
Intuition regards as active for input will receive these input stream events. Usually, as described in the "Intuition:
Windows," chapter, the user selects which application is active for input by using the Intuition pointer to select that
application's window. If your program is the active one, you get to see the input stream events after Intuition has
examined them. Your program receives the input stream either directly from Intuition or via another mechanism
known as the console device.

Intuition provides two paths for your program to receive messages from the input stream. One is immediate and
involves no preprocessing of the data. The other can supply you with standard terminal input functions, buffers, and
data representations. The paths are explained below:

Intuition's Direct Communications Message Ports system (IDCMP) makes standard Amiga Exec message
communications easily available for you and gives you input data in its most raw (un translated) form.
This also supplies the only mechanism you have for communicating to Intuition.

The console device gives you "cooked" input data, including key-code conversions to ASCII and
conversions to ANSI escape sequences (Intuition-generated events, such as CLOSEWINDOW, will be
translated into escape sequences).

When you want your program to present visual information to the user via your window or screen, you can choose
from three methods. The one you choose depends on your particular needs. These three methods are:

Creating imagery by sending your output directly to the graphics, text, and animation primitives of the
Amiga ROM kernel. You can use these for rendering functions like line drawing, area fill, specialized
animation, and output of unformatted text. This is the most elementary method.

• Using the Intuition-supplied support functions for rendering text, graphical imagery, and line drawing.
These provide many of the same functions as the deeper ROM routines, but these routines do the clerical
work of saving, initializing, and restoring states. Also, the image functions provide a new method of
object-oriented rendering.

Outputting text via the console device, which formats text with special text pnmluves such as
ClearEndOfLineO and text functions such as automatic line-wrapping and scrolling. For string output, if
you want to do anything more than the simplest text rendering, you should use the console device. This
gives you nicely formatted text with little fuss.

NOTE

The console device is mentioned both as a source for input and as a mechanism for output. It is
convenient to do both input and output via the console device only. In particular, text-only programs
can open the console and do all their I/O there without ever learning anything about windows, bit-maps,
or message ports. Use of the console device for most text-only applications is encouraged, since it
requires less work on your part and simplifies the I/O logic of your programs.

If you do not need the console device or are willing to forego its features, it may be better for you to open the
IDCMP for input and do your graphics rendering directly through the Intuition and graphics primitives. Under some
conditions (for instance, when you have a complex program doing lots of different things), you might want to open
both the console device and the IDCMP for input. There is no rule for deciding which mechanism you should use.
After you read this chapter, you'll be able to decide for yourself.

The following description of how I/O flow works with (and around) your program is actually a super-simplified
model of how system-wide I/O really works, but it is a true representation of I/O at the microcosmic level of your
program.

Intuition: Input and Output Methods 157

In the illustrations that follow, the input device is found at the top of the diagram. In this device mouse, keyboard,
and other input events are merged into a single stream of input events, which is then submitted to Intuition for
further processing.

Graphics, Text
and Animation

Other

Input Device

Intuition

Figure 7-2: Input from the IDCMP, Output through the Graphics Primitives

The above figure shows an example of a program after it has opened the IDCMP. This will be the typical
configuration for a CAD package, or other applications that are willing to process input data themselves. The
IDCMP allows you to receive only the events that are important to you. Your program can, for instance,learn about
gadget events and hear when the user selects the close gadget, but the program may not want to learn about other
mouse or keyboard events. If you set up the program to learn about raw keyboard events through the IDCMP, the
key codes received come straight from the keyboard to the program. These keycodes are as raw as they get,
although the IDCMP also provides the special Qualifier field to assist your translations. Alternatively, you can
receive keyboard events translated into ASCII (or some other standard). Messages sent via the IDCMP are instances
of the structure IntuiMessage. When you open the IDCMP, you must monitor the message port supplied by
Intuition.

The following figure illustrates the flow of information when the only the console is opened. This will be the typical
configuration for text-only applications and applications that want the simplest I/O possible. Refer to the console
device chapter for details on opening a console device and performing I/O through it.

158 Intuition: Input and Output Methods

bJD

Graphics, Text
and Animation

Other

I nput Device

Intuition

Figure 7-3: Input and Output through the Console Device

The following figure shows a complex program that needs the features of both the console device and the IDCMP.
An example might be a program that needs ASCII input and formatted output and the IDCMP verification functions
(for example, to verify that it has finished writing to the window before the user can bring up a requester).

Intuition: Input and Output Methods 159

c:::::J D Input Device

~~ •.....•.. ~~~~------~~

Graphics, Text
and Animation

Intuition

Figure 7-4: Full-system Input and Output (a Busy Program)

The following figure shows an application that has opened a window with neither a console nor an IDCMP. This
window gets no input, and the application can write to the window only via the graphics primitives. You might want
to do this if your program has opened other windows that do I/O and you want special graphics-only windows (for
instance, to monitor RAM usage or watch the clock) that you will close later. If the user selects a window that has
no console or IDCMP, further input is discarded until a different window is selected.

160 Intuition: Input and Output Methods

Using the IDCMP

c::::JD
~~==~ L--------r-~

Graphics, Text
and Animation

Figure 7-5: Output Only

The IDCMP ports allow your application and Intuition to talk directly to each other. You can use the IDCMP to
learn about mouse, keyboard, and Intuition events without going through the console device. Also, certain useful
Intuition features, most notably the verification functions (described under "IDCMP Flags" below), require that the
IDCMP be opened, as this is the only mechanism available for communicating to Intuition.

The IDCMP consists of a pair of message ports, which may be allocated and initialized by Intuition at your
request: one port supplied by you and one port supplied by Intuition. These are standard Exec message ports, used
to allow interprocess communications in the Amiga multitasking environment. To open these ports automatically,
you set IDCMP flags in the NewWindow structure. To open or close them later, you call ModifyIDCMPO, which
allocates or deallocates message ports or changes which events will be broadcast to your program through the
IDCMP. Once the IDCMP is opened, you can receive many different flavors of information directly from Intuition,
based on which flags you have set. As with much of Intuition, all of the "grunt work" with message ports is done
for you, leaving you free to concentrate on more global issues.

If you have a message port that you have already created, you can have Intuition use that port to communicate with

Intuition: Input and Output Methods 161

you. This is described below.

CAUTION

If you attempt to close the IDCMP, either by calling ModifyIDCMPO or by closing the window,
without first having ReplyO'd to all of the messages sent out by Intuition, Intuition will reclaim and
deallocate those messages without waiting for a ReplyO from you. If you attempt to ReplyO after the
close, you will get to watch the Amiga FIREWORKS_DISPLAY mode.

To learn more about message ports and message passing, see that chapter elsewhere in this manual.

INTUIMESSAGES

The IntuiMessage data type is an Exec Message that has been extended to include Intuition-specific information.
The ExecMessage field in the IntuiMessage is used by Exec to manage the transmission of the message. The
Intuition extensions of the IntuiMessage are used to transmit all sorts of information to your program. Here is what
the IntuiMessage looks like:

struct IntuiMessage
{
struct Message ExecMessage;
ULONG Class;
USHORT Code;
USHORT Qualifier;
APTR IAddress;
SHORT MouseX, MouseY;
ULONG Seconds, Micros;
struct Window *IDCMPWindow;
struct IntuiMessage *SpecialLink;
} ;

IntuiMessages contain the following components:

ExecMessage
The data in this field is maintained by Exec. It is used for linking the message into the system and
broadcasting it to a message port.

Class
This is a ULONG variable whose bits correspond directly with the IDCMP flags.

Code
This is a USHORT variable whose bits contain special values, such as menu numbers or special code
values, set by Intuition. The meaning of this field is directly tied to the Class (above) of this message.
Often, there is no special meaning for the code field, and it is merely a copy of the code of the InputEvent
initially sent to Intuition by the input device. When this message is of class RA WKEY, this field has the
raw key code generated by the keyboard device. When this message is of class V ANILLAKEY, this field
has the translated character.

Qualifier
This contains a copy of the ie _Qualifier field that is transmitted to Intuition by the input device. This field
is useful if your program handles raw key codes, since the Qualifier tells the program, for instance,
whether or not the SHIFT key or CTRL key is currently pressed. This is a faithful copy of the ie_Qualifier
field. Check the inputevent.h/i file for the definitions of the qualifier bits.

162 Intuition: Input and Output Methods

MouseX and MouseY
Every IntuiMessage you receive will have the mouse coordinates in these variables. The coordinates can
be either relative to the upper left comer of your window, or expressed as deltas (amount of change since
the last reported positions).

Seconds and Micros
These ULONG values are copies of the current system clock time in seconds and microseconds.
Microseconds range from zero up to one million minus one. The 32 bits allocated to the Seconds variable
means that the Arniga clock can run for 139 years before wrapping around to zero again.

IAddress
This has the address of some Intuition object, such as a gadget or a screen, when the message concerns, for
example, a gadget selection or screen operation.

IDCMPWindow
This contains the address of the window to which this message pertains.

SpecialLink
This is for system use only.

IDCMPFLAGS

You specify the information you want Intuition to send you via the IDCMP by setting the IDCMP flags. You can
set them either in the NewWindow structure when opening a window or when calling ModifyIDCMPO to change
the IDCMP specifications. The following is a specification of the IDCMP functions and flags.

Mouse flags:

MOUSEBUTTONS
This flag causes reports about mouse-button up and down events to be sent to you, if these transitions do
not mean something to Intuition. When your program receives a MOUSEBUTTONS class of event, it can
examine the Code field to discover which button was pressed or released. The Code field will be equal to
SELECTDOWN, SELECTUP, MENUDOWN, or MENUUP.

NOTE

If the user clicks the mouse button over a gadget, Intuition deals with it and your program does not
hear about it. Also, the only way your program can learn about menu button events in this way is
by setting the RMBTRAP flag in the window. See the chapter entitled "Intuition: Windows," for
more information.

MOUSEMOVE
Reports about mouse movements are sent in the form of x and y coordinates. Don't· ask for
MOUSEMOVE unless you are prepared to keep up with a large volume of IDCMP messages. If you
cannot keep up with, and ReplyMsgO to, the volume of messages, Intuition will allocate additional
message blocks for your window. Intuition cannot reuse these message blocks until you ReplyMsgO them.
Therefore, in the extreme case, not keeping up with the MOUSEMOVE messages could use up all
memory in the system. None would be left over for system housekeeping. Kablooey! The system crashes.

ReportMouseO can be used to toggle on and off the reports of MOUSEMOVE events. Also, other

Intuition: Input and Output Methods 163

IDCMP messages contain a mouse x and y position.

NOTE

This works only if the REPORTMOUSE flag is set in the NewWindow structure or if some gadget
is selected with the FOLLOWMOUSE flag set.

Your program will not be sent MOUSEMOVE messages while Intuition has the layers of your screen
locked (during menu operations and window sizing/dragging). This avoids problems of messages
accumulating while your program is blocked trying to render to a layer which Intuition has locked.

DELTAMOVE
When this flag is set, mouse movements are reported as deltas (amount of change from the last position)
rather than as absolute positions. This flag works in conjunction with the MOUSEMOVE flag.

NOTE

Delta mouse movements are reported even after the Intuition pointer has reached the limits of the
display.

If you have this IDCMP flag set, your MOUSEBUTIONS messages will also have relative values, instead
of the absolute window position of the mouse.

Gadget flags:

GADGETDOWN
Your program will receive a message of this class. when the user selects a gadget that was created with
the GADGIMMEDIATE flag set.

GADGETUP
When the user releases a gadget that was created with the flag REL VERIFY set, your program will receive
a message of this class.

CLOSEWINDOW
If the user has selected your window's close gadget, the message telling the program about it will be of
this class.

Menu flags:

MENUPICK
This flag indicates that the user has pressed the menu button. If a menu item was selected, the menu
number of the menu item can be found in the Code field of the IntuiMessage. If no item was selected, the
Code field will be equal to MENUNULL.

MENUVERIFY
This is a special verification mode which, like the others, allows your program to confirm that it has
finished drawing to your window before Intuition allows the users to start menu operations. This is a
special kind of verification, however, in that any window in the entire screen that has this flag set will have
to respond so that menu operations may proceed. Also, the active window of the screen is allowed to
cancel the menu operation. This is unique to MENUYERIFY. Please refer to the "Intuition: ,Menus"
chapter for a complete description.

See the "Verification Functions" section below for some things to consider when using this flag.

164 Intuition: Input and Output Methods

Requester flags:

REQSET
Set this flag to receive a message when the first requester opens in a window.

REQCLEAR
Set this flag to receive a message when the last requester is cleared from the window.

REQVERIFY
Set this flag if you want your application to make sure that other rendering to its window has ceased before
a requester is rendered in the window. This includes requiring the system to get your approval before
opening a system requester in your window. With this flag set, Intuition sends the application a message
that a requester is pending, and then WaitOs for the application to ReplyO before drawing the requester in
the window.

If several requesters open in the window, Intuition asks the application to verify only the first one. After
that, Intuition assumes that all output is being held off until all the requesters are gone. You can set the
REQCLEAR flag to find out when all requesters are removed from the window. Once the application
receives a message of the type REQCLEAR, it is safe to write to the window until another REQVERIFY
is received. You can also check the INREQUEST flag of the window, although this is not as safe a
method because of the asynchronous nature of any multitasking environment.

See the "Verification Functions" section below for some things to consider when using this flag.

Window flags:

NEWSIZE
Intuition sends your program a message after the user has resized the window. After receiving this, the
program can examine the size variables in the window structure to discover the new size of the window.
The message is sent, even if the size of the window did not actually change.

REFRESHWINDOW
A message is sent to the application whenever your window needs refreshing. This flag makes sense only
with windows for which the SIMPLE_REFRESH or SMART_REFRESH type of refresh has been
selected.

SIZEVERIFY
You set this flag if your program is drawing to the window in such a way that the drawing must be finished
before the user sizes the window. If the user tries to size the window, a message is sent to the application
and Intuition will WaitO until the program replies. See the "Verification Functions" section below for
some things to consider when using this flag.

ACTIVEWINDOW and INACTIVEWINDOW
Set these flags to discover when your window becomes activated or deactivated.

Other flags:

VANILLAKEY
This is the raw keycode RA WKEY event translated into the current default character keymap of the
console device. In the USA, the default keymap is ASCII characters. When you set this flag, you will get
IntuiMessages with the Code field containing a character representing the key struck on the keyboard.
An IDCMP message is sent only if the translation results in a single byte, therefore you cannot read such
keys as HELP or the function keys with V ANILLAKEY.

Intuition: Input and Output Methods 165

Most programs will prefer to use the RA WKEY IDCMP class, and perform their own RawKeyConvertO. See
also, the DeadKeyConvertO example in the chapter entitled, "Intuition: Mouse and Keyboard."

RAWKEY
Keycodes from the keyboard are sent in the Code field. They are raw keycodes, so you may want the
program to process them.

The Qualifier field contains the information generated by the input device about this key.

NEWPREFS
When the user changes the system Preferences by using the Preferences tool, or when some other routine
causes the system Preferences to change, you can make sure your program finds out about it by setting this
flag.

When your program gets a message of class NEWPREFS, it can call the procedure GetPrefsO to get the
new Preferences.

NOTE

Everyone who sets this flag will learn about these events, not just the active window.

DISKINSERTED and DISKREMOVED
When the user inserts or ejects any disk with any drive, the program will be told about the event if either
or both of these flags are set

NOTE

Everyone who sets these flags will learn about these events, not just the active window.

INTUITICKS
This gives you simple timer events from Intuition when your window is the active one; it may help you
avoid opening and managing the timer device. With this flag set, you will get only one queued-up
INTUITICKS message at a time. If Intuition notices that you've been sent an INTUITICKS message and
haven't replied to it, another message will not be sent In other words, the INTUITICKS messages are
paced: until you reply to one, no subsequent one will be sent to you.

Intuition receives timer events roughly ten times a second. These events are to be used as "prods", and not
as time counters.

Verification Functions

SIZEVERIFY, REQVERIFY, and MENUVERIFY are exceptional in that Intuition sends an IntuiMessage and then
waits, by calling the Exec function WaitO, for the application to reply that it is all right to proceed. The application
replies by calling the Exec message passing function ReplyMsgO. The discussion in the "Intuition: Menus"
chapter on the MENUVERIFY IDCMP flag also applies to REQVERIFY and SIZEVERIFY.

NOTE

A bug in the input handling stream through Intuition may confuse window sizing by the user if your
program takes too much time responding to the SIZEVERIFY message. Please respond quickly.

The implication is that the user requested some operation but the operation will not happen immediately and, in fact,
will not happen at all until your application says it is safe. Because this delay can be frustrating and intimidating,
you should strive to make the delay as short as possible. Your program should always reply to a verification

166 Intuition: Input and Output Methods

message as soon as possible.

You can overcome these problems by setting up a separate task to monitor the IDCMP and respond to incoming
IntuiMessages immediately. This is recommended whenever you are planning heavy traffic through the IDCMP,
which occurs when you have set many IDCMP flags.

It is not safe to leave any of the VERIFY functions enabled, at a time when your task may not be able to respond for
a long period.

It is not safe to call AmigaDOS directly (with OpenO, for example), or indirectly (with OpenLibraryO, for a
disk-based library, for example), when a VERIFY function is active. If AmigaDOS needs to put up a disk requester
for you, Intuition may end up waiting for you to reply to the VERIFY message, while your program waits for the
AmigaDOS call to finish. This deadlock will freeze the Amiga. Use ModifyIDCMP() to turn off all VERIFY
messages before calling AmigaDOS.

If you do set up a separate task to monitor the IDCMP, and you call AmigaDOS functions using some other task,
and if the monitor task will always be able to reply to the VERIFY message without any help from the other task,
then the above warning does not apply.

SETTING UP YOUR OWN IDCMP MONITOR TASK AND USER PORT

IDCMP communication takes place through a pair of Exec message ports, the UserPort (your application's input
port, where you wait for messages), and the WindowPort (Intuition's window port).

In the simplest case, Intuition allocates (and deallocates) both of these ports when you open a window with non
NULL IDCMP flags or call ModifyIDCMPO. If the WindowPort is not already opened when one of these
functions is called,it will be allocated and initialized. The User Port is checked separately to see whether it is
already opened. Intuition will send messages to your program via the UserPort and will receive replies via the
WindowPort. The port variables point to a valid message port if they are opened, and are NULL if not opened

When Intuition initializes the User Port for you, Intuition calls AllocSignalO to get a signal bit. Since your task
called OpenWindowO, this allocation of a signal is valid for your task. The address of your task is saved into the
SigTask variable of the message port.

You can choose to supply your own port. You might do this in an environment in which your program is going to
open several windows and you want the program to monitor input from all of the windows using only one message
port. To supply your own port, do the following:

1. Create a port for your IDCMP by calling CreatePort(NULL,O), which returns a pointer to a port.

2. Open your windows with no IDCMP flags set.

3. Set the window UserPort field to the newly created port.

4. Call ModifyIDCMP(window,FlagsIReallyWant). Intuition will use the port you supplied.

Warning - When you are sharing an IDCMP among several windows, you must be very careful not to call
ModifyIDCMP(window,NULL) for any windows that are using the shared port, because Intuition will free
the port and the signal bit.

Intuition: Input and Output Methods 167

5. When you're through with them, close windows that share an IDCMP by using CloseWindowSafelyO, as
illustrated in the example below. Note - it assumes there is a UserPort.

Since at least two windows are sharing a single IDCMP, there can be messages pending for any of the
windows, when you decide to close anyone of them. It is essential that messages destined for a given
window be removed and replied to, before that window is closed. Close WindowSafelyO takes care of this
for you. Also, it sets the window's UserPort to NULL so that Intuition knows not to delete the port that
you created.

6. Delete the port that you created in step 1, by calling DeletePortO.

Examples

1. This example shows how to receive Intuition events. It reports on a variety of events: a window resizing, a disk
insertion and removal, the Select button up and down, and the Menu button up and down.

/* quartzWindow.h -- This file implements a rather small window that */
/* appears in the right half of the screen. */

lIinclude "sysgads.h"

IIdefine OUAR_LEFTEDGE 300
IIdefine OUAR_TOPEDGE 50
IIdefine OUAR_WIDTH 200
IIdefine OUAR_HEIGHT 75

struct NewWindow quartzWindow
(
OUAR_LEFTEDGE,
OUAR_TOPEDGE,
OUAR_WIDTH,
OUAR_HEIGHT,
0,1, /* Plain vanilla DetailPen and BlockPen. */
CLOSEWINDOW, /* Tell program when close gadget has been hit */
WINDOWCLOSE I SMART_REFRESH I ACTIVATE I WINDOWDRAG
WINDOWDEPTH I WINDOWSIZING I NOCAREREFRESH,
NULL, /* Pointer to the first gadget */

/* may be initialized later. */
NULL, /* No checkmark. */
"quartzWindow", /* A silly title. */
NULL, /* Attach a screen later. */
NULL, /* No bitmap. */
SYSGADSWIDTH, /* Minimum width. */
SYSGADSHEIGHT, /* Minimum height. */
OxFFFF, /* Maximum width. */
OxFFFF, /* Maximum height. */
CUSTOMSCREEN /* A screen of our own. */
) ;

/* End of quartzWindow.h */

/* IDCMPDemo.c -- Tests the IDCMP by printing IDCMP classes */
/* to the console. */

lIinclude <exec/types.h>
lIinclude <intuition/intuition.h>
lIinclude <libraries/dos.h>
lIifdef LATTICE
lIinclude <proto/all.h>
lIinclude <stdlib.h>
lIinclude <stdio.h>

168 Intuition: Input and Output Methods

int CXBRK(void) (return(O);}
liendif

1* Include other required vendor- or Commodore-Amiga-supplied header *1
1* files here. *1

1* Include user-written header files here. *1
liinclude IquartzWindow.h"

1* Use lowest non-obsolete version that supplies the functions you need. *1
lidefine INTUITION_REV 33

extern VOID cleanExit(struct Window *, int);
extern UBYTE handleIDCMP (struct Window *);

struct IntuitionBase *IntuitionBase = NULL;

VOID main(int argc, char *argv[])
{
1* Declare variables here *1
ULONG signalmask, signals, moreFlags;
UBYTE done = 0;
struct Window *windowl = NULL;

1* Open the Intuition Library *1
IntuitionBase = (struct IntuitionBase *)

OpenLibrary(lintuition.library",INTUITION_REV)i

if (IntuitionBase == NULL)
cleanExit(windowl, RETURN_WARN);

1* Open any other required libraries *1

1* Make the assignments that were postponed above *1
1* We need a couple more flags in the window *1

quartzWindow.Flags 1= REPOR~MOUSE 1 RMBTRAP;
quartzWindow.Type = WBENCHSCREEN;

1* Open the window *1
windowl = OpenWindow(&quartzWindow);
if (windowl == NULL)

cleanExit(windowl, RETURN_WARN);

1* QuartzWindow has only the CLOSEWINDOW IDCMP flag set. *1
1* We could have set these flags in quartzWindow.IDCMP, *1
1* but instead, we'll set all of them in quartzWindow *1
1* by using the ModifyIDCMP() function. *1
moreFlags = CLOSEWINDOW 1 N~WSIZE 1 DISKINSERTED 1 DISKREMOVED 1 MOUSEBUTTONS;

ModifyIDCMP(windowl, moreFlags);

1* Set up the signals that you want to hear about ••• *1
signalmask = lL « windowl->UserPort->mp_SigBit;

1* Call the functions that do the main processing *1
1* None to call in this example *1

1* And wait to hear from your signals *1
while (! done)

(
signals = Wait(signalmask);
if (signals & signalmask)

done = handleIDCMP(windowl);
) ;

1* Exit the program *1
cleanExit(windowl, RETURN_OK);
)

UBYTE handleIDCMP(struct Window *win)
{

Intuition: Input and Output Methods 169

UBYTE flag = 0;
struct IntuiMessage *message
USHORT code;

NULL;

SHORT mousex, mousey;
ULONG class;

1* Examine pending messages *1
while(message = (struct IntuiMessage *) GetMsg (win->UserPort))
{

class = message->Class;
code = message->Code;
mousex message->MouseX;
mousey = message->MouseY;

1* Always reply to messages as soon as possible. *1
1* We make copies of the interesting fields of *1
1* the message, since we no longer have access *1
1* to them after replying. *1
ReplyMsg((struct Message *)message);

1* See what events occurred *1
switch (class)
(

case CLOSEWINDOW:
flag = 1;
break;

case NEWSIZE:
printf("NEWSIZEO);
break;

case DISKINSERTED:
printf("DISKINSERTEDO);
break;

case DISKREMOVED:
printf ("DISKREMOVEDO);
break;

case MOUSEBUTTONS:
switch (code)
{

case SELECTUP:
print f ("SELECTUP at %d, %dO, mousex, mousey);
break;

case SELECTDOWN:
print f ("SELECTDOWN at %d, %dO, mousex, mousey);
break;

case MENUUP:
printf ("MENUUPO);
break;

case MENUDOWN:
printf("MENUDOWNO);
break;

default:
printf ("UNKNOWN CODEO);
break;

}; 1* end of switch on code *1
break;

default:
printf ("Unknown IDCM? messageO);
break;

} 1* End switch *1
1* End while *1

return (flag) ;
)

VOID cleanExit(wind, returnValue)
struct Window *wind;
int returnValue;
(

1* Close things in the reverse order of opening *1

1* Close the windows *1
if (wind) CloseWindow(wind);

170 Intuition: Input and Output Methods

/* Close the library, and then exit */
if (IntuitionBase) CloseLibrary((struct Library *)IntuitionBase);

exit(returnValue);

2. This is the CloseWindowSafelyO example promised in the last section.

/** CloseWindowSafely.c **/

'include <exec/types.h>
'include <exec/nodes.h>
'include <exec/lists.h>
#include <exec/ports.h>
'include <intuition/intuition.h>

/* this function closes an intuition window that shares a port with
* other intuition windows.

*
* It is careful to set the UserPort to null before closing, and to
* free any messages that might have been sent.
*/

CloseWindowSafely(win)
struct Window *win;

(
Forbid () ;

/* Send back any unprocessed messages for this window */
StripIntuiMessages(win->UserPort,win);

/* Null UserPort so Intuition won't free it */
win->UserPort = NULL;

/* Tell Intuition to stop sending more messages */
ModifyIDCMP(win,O);

/* Turn tasking back on */
Permit () ;

/* And really close the window */
CloseWindow(win);
)

StripIntuiMessages(mp,win)
struct MsgPort *mp;
struct Window *win;

(
struct IntuiMessage *msg, *succ;

msg = mp->mp_MsgList.lh_Head;

while(succ = msg->ExecMessage.mn Node.ln SuccI
(-
if(msg->IDCMPWindow == win)

(
/* Intuition is about to rudely free this message.

* Make sure that we have politely sent it back.
*/

Remove (msg) ;
ReplyMsg(msg);
)

msg = SUCCi
}

Intuition: Input and Output Methods 171

Chapter 8

Intuition: Images, Line Drawing, And Text

Intuition provides two approaches to producing graphics images, lines, and text in displays. For quick and easy
rendering, you can use Intuition's high-level data structures and functions. You are also free to use all of the lower
level Amiga graphics, animation, and text primitives.

This chapter shows you how to use the Intuition structures and functions, but the Amiga primitives are a large topic
in themselves and the discussion here can only point the way. You will find instructions for using the primitives in
the "Graphics Primitives" chapter.

Using Intuition Graphics

Images, Borders, and IntuiText are the general-purpose Intuition structures for rendering graphics and text into
your display. They are called illustration data types.

Images are graphic objects of any size and complexity.

Borders are connected lines of any length and number, drawn at any angle, and defining any arbitrary
shape.

Intuition: Images, Line Drawing, Text 173

IntuiText strings can be written in the default font or in a custom font of your own design.

The illustration data types are easy to design and economical to use. They are easy to design because their
definitions are brief and flexible. Even though each structure defines a different data type, the data types share a
consistency of features and capabilities, so once you have learned one you have pretty much learned them all. This
decreases the amount of energy spent in learning new things, and you can reuse the same structures in many places.
It also reduces the number of Intuition-internal routines, so we all win.

Each of these illustration data types is located with respect to a display element, or containing element, which can be
any of the primary Intuition components: a window, screen, menu, gadget, or requester. The starting location of an
image, border, or text string is defined as an offset relative to some particular pixel, usually the top left corner of the
element. Any of the illustration data types can be rendered in any of the display elements. In fact, you can display
the same structure in more than one of the elements at the same time.

There are two methods of rendering images, borders, and text into display elements:

In menus, gadgets, and requesters, you use a pointer field provided in the menu, gadget, or requester
structure. Then, as Intuition handles those structures, the illustrations are drawn for you.

In windows or screens, you draw the illustration types directly into the display element by using one of the
functions DrawImageO, DrawBorderO, or PrintITextO.

In the definitions of all three of these general-purpose structures, you supply a top left location that is a relative offset
from the top left of the display element that will contain the illustration. These relative offsets allow you to use the
underlying data arrays across limitless instances of Image, Border, or IntuiText structures. For example, if you
have numerous gadgets of the same size, you can use the same Border coordinate pairs to draw a line around each
gadget.

An important fact about the illustration elements is that each can point to another of its own kind. You can link
many of them together and have them all drawn with just one procedure call.

DISPLAYING BORDERS, INTUITEXT, AND IMAGES

Requester, gadget, and menu structures contain one or more fields for rendering borders, text, and images. These
fields each contain a pointer to an instance of a Border, IntuiText, or Image structure. For drawing the illustration
types directly into screens and windows, however, you use the Intuition functions DrawBorderO, DrawImageO,
and PrintlTextO. You supply a Border, Image, or IntuiText structure as an argument to the function.

These three functions have x and y offsets as arguments which are added to the offsets in the graphics structures.
Sometimes this extra level of offset can come in handy, especially when positioning as a group a linked list of
illustration structures.

For drawing into screens and windows, you also need a pointer into the window or screen RastPort. See the
"Using the Graphics Primitives" section below.

CREATING BORDERS

Although this data structure is called a Border, it is actually a general-purpose structure for drawing connected lines
at any angle and rendering any arbitrary shape made up of groups of connected lines. It is called a border because
that is how it started out.

174 Intuition: Images, Line Drawing, Text

To define a Border, you specify the following:

A set of x and y offsets to the beginning point of the line.

A set of coordinate pairs for each vertex.

A color for the lines.

One of several drawing modes.

An optional pointer to another instance of Border.

Border Coordinates

Intuition draws lines between points that you specify as sets of x,y coordinates. The Border variables LeftEdge and
TopEdge contain the offsets of the starting origin of the border with respect to the upper left of the containing
element. The XY field contains a pointer to an array of coordinate pairs. All of these coordinates are offsets from
the starting origin of the border. Thus, you can define one line and use it in different display elements or uSy it many
times in the same element. The first coordinate pair describes the starting point of the first line. Every coordinate
pair after the first describes the ending point of the current line and, if there is another coordinate pair, the starting
point of the next line.

Here is an example. Consider a gadget whose select box is 140 pixels wide and 80 pixels high. The top left corner
of the gadget's select box is located in a window at position (10,5). If the border's (LeftEdge, Top Edge)
coordinates are (10,10), this results in an absolute base position of (10+10,5+10), or (20,15), as shown in figure 9-1.

If the first set of coordinates in the array of coordinates is (0,5), the starting point of the first line will be at
(20+0,15+5), or (20,20). If the next coordinate pair is (15,5), the end point of the first line will be at (20+ 15,15+5),
or (35,20). A line will be drawn from absolute position (20,20) to absolute position (35,20). If there is one last
coordinate pair, (15,0), the next point is at (20+15,15+0), or (35,15). A second line segment is drawn from (35,20)
to (35,15).

Intuition: Images, Line Drawing, Text 175

o 5 10

o

5

10

15

20

25

30

15 20 25 30 35 40 45 50

Top left corner of the gadget's select box (10,5)

\~bsolute base position
\0,,51

First Coordinate
(20+0,15+5)

Third Coordinate (20+15,15+0)

Second Coordinate (20+15,15+5)

Example of
Border Relative Position

Figure 8-1: Example of Border Relative Position

For a border that is outside the select box of a gadget, you can specify negative offsets. For example, starting
position (-1,-1) for a gadget border is just outside the gadget select box.

Border Colors and Drawing Modes

Intuition uses the current set of colors in the color register to draw the border and, optionally, to draw its
background. As usual, the available colors depend upon the number of bit-planes used in the screen. For instance, if
the screen has five bit-planes, then you can select from the colors in color registers 0 through 31. The lines are
always drawn in the color in the FrontPen field.

Two drawing modes pertain to border lines: JAM!, and COMPLEMENT. To draw the line in your choice of color,
use JAM!. You can choose to have the line "invert" the color of the pixels over which it is drawn by selecting the
COMPLEMENT drawing mode. If you use COMPLEMENT mode, for every pixel the line is drawn over, the data
bits of the pixel are changed to their binary complement. The complement is formed by reversing all the 0 bits and 1
bits in the binary representation of the color register number. In a three-bit-plane display, for example, color 6 is
110 in binary. If a pixel is color 6, it will be changed to the complement of 001 (binary), which is color 1.

Linking Borders Together

The NextBorder field can point to another instance of a Border structure. This allows you to link borders together
to describe complex line-drawn shapes. Having multiple borders allows you to draw multiple, distinct groups of
lines, each with its own set of line segments and its own color and draw mode. For example, you may want a double
border to make a requester stand out more from the surrounding display. You can define the inner border in a second
Border structure and link it to the first structure by using this field.

176 Intuition: Images, Line Drawing. Text

Border Structure Definition

Here is the specification for a Border structure:

struct Border
{
SHORT LeftEdge, TopEdge;
UBYTE FrontPen, BackPen, DrawMode;
BYTE Count;
SHORT *XY;
struct Border *NextBorder
} ;

The meanings of the fields in the Border structure are:

LeftEdge, TopEdge

This field gives the starting origin for the border as an offset from the top left of the containing element.
LeftEdge is the x coordinate and TopEdge is the y coordinate for the top left bit of the image.

LeftEdge
This field contains the number of pixels from the left edge of the containing element.

TopEdge
This field specifies the number of lines from the top line of the containing element

FrontPen, BackPen, DrawMode

FrontPen is the color used to draw the line. The pen color fields contain color registers numbers.
BackPen is currently unused.

You set the DrawMode field to one of the following:

JAM1
This specification uses FrontPen to draw the line and makes no change in the background.

COMPLEMENT
This specification changes the background beneath the line to its binary complement.

NextBorder

This field is a pointer to another instance of a Border structure. Set this field to NULL if there is no other
Border structure or if this is the last Border structure in the linked list.

XY This field is a pointer to an array of coordinate pairs, one pair for each line. These are measured relative to
the starting origin for the border.

Count

This field specifies the number of pairs in the array of coordinate pairs.

Intuition: Images, Line Drawing, Text 177

CREATING TEXT

The IntuiText structure provides a simple way of writing text strings anywhere in your display. For example, an
array of IntuiText strings is handy in creating menus.

To define and display IntuiT ext, you specify the following:

Colors for the text and, optionally, for the text's background.

• One of three drawing modes.

• The starting location for the text.

The default font or your own special font.

A pointer to another instance of IntuiText (if any).

Text Colors and Drawing Modes

As with border colors, Intuition uses the current set of colors in the color register to write the text and, optionally, to
draw its background. As usual, the available colors depend upon the number of bit-planes used in the screen. For
instance, if the screen has five bit-planes, you can select from the colors in color registers 0 through 31. The text is
usually drawn in the color in the FrontPen field.

Text characters in general are made of two areas: the character image itself and the background area surrounding the
character image.

In addition to the two drawing modes for borders, JAMI and COMPLEMENT, you also have JAM2 and and the
flag INVERSVID. These modes are described in the following paragraphs.

If you select JAMI drawing mode, the text character images, but not the character background areas, will be drawn.
The character image is drawn in FrontPen color. Because the background of a character is not drawn, the pixels of
the destination memory around the character image are not disturbed. This is called overstrike.

If you select JAM2 drawing mode, the character image is drawn in FrontPen and the character background is drawn
in the color in the BackPen field. Using this mode, you completely cover any graphics that previously appeared
beneath the letters.

If the drawing mode is COMPLEMENT, the character is drawn in the binary complement of the colors at its
destination. The destination is the display memory where the text is drawn. FrontPen and BackPen are ignored.
To form the complement, you reverse the all the 0 bits and I bits in the binary representation of the color register
number. In a three-bit-plane display, for example, color 6 is 110 in binary. The complement is 001 (binary), which
is color 1.

The INVERSVID flag inverses the video for the drawing modes. Where the character image would be nothing is
drawn, but the character background is drawn in the color in the FrontPen field.

178 Intuition: Images, Line Drawing, Text

Linking Text Strings

The NextText field can point to another instance of an IntuiText structure. Using this field, you can create several
distinct groups of characters with one stroke; each group has its own color, font, location, and drawing mode.

Starting Location

The starting TopEdge for a text string is the topmost pixels of the tallest characters. Note that this is different from
the baseline of the text. The baseline is the horizontal line on which the characters and punctuation marks rest. The
system default fonts are designed to be both above and below the baseline. The descenders of letters (the part of
certain letters that is usually below the writing line, like the tail on the lower-case "y") are rendered below the base
line. Therefore, you need to allow for this in drawing text in the display. For more information about text imagery,
refer to the Text chapter in this manual.

Fonts

You can use the default font, as set by Preferences, or you can have your own custom font in a TextAttr structure
and use the TextAttr field to point to the custom font. For more information about custom fonts, see the ext
chapter in this manual.

IntuiText Structure

Here is the specification for an IntuiText structure:

struct IntuiText
(

UBYTE FrontPen, BackPen;
UBYTE DrawMode;
SHORT LeftEdge;
SHORT TopEdge;
struct TextAttr *ITextFont;
UBYTE *IText;
struct IntuiText *NextText;
)

The meanings of the fields in the IntuiText structure are as follows.

FrontPen,BackPen

FrontPen is the color used to draw the text. BackPen is the color used to draw the background for the
text, if JAM2 drawing mode is specified.

These fields contain color register numbers.

DrawMode

This field specifies one of four drawing modes:

Intuition: Images, Line Drawing, Text 179

JAM 1
FrontPen is used to draw the text; background color is unchanged.

JAM2
FrontPen is used to draw the text; background color is changed to the color in BackPen.

COMPLEMENT
The characters are drawn in the complement of the colors that were in the background.

INVERSVID
The character is untouched while the background is filled with the color of the FrontPen.

LeftEdge

This field specifies the starting position for the text as an offset, in pixels, from the left comer of the
containing element.

TopEdge

This field specifies the starting position for the text as an offset, in pixels, from the top line of the display
element.

TextAttr

This field is a pointer to a TextAttr structure containing your own font description. Set this to NULL if
you want the default font.

IText

This field is a pointer to the null-terminated text string to be displayed.

NextText

This field is a pointer to another instance of IntuiText, if this text is part of a linked list of IntuiTexts.

Set this field to NULL if this text is not part of a list or if it is the last structure in the list.

CREATING IMAGES

With an Image structure you can create graphics objects quickly and easily and display them almost anywhere.
Images have an additional attribute that makes them even more economical-with one minor change in the
structure, you can display the same image in different colors within the same display element.

To define and display an image, you specify the following:

The location of the image within the containing element.

• The width and height of the image and the data to create it.

The depth of the image that is, how many bit-planes are used to define it.

The bit-planes in the display element that are used to display the image. This determines the colors in the
image.

180 Intuition: Images, Line Drawing, Text

Image Location

You specify a location for the image that places its top left corner as an offset from the top left corner of the element
that contains the image.

Defining Image Data

To create the data for your image, you write Is and Os into a block of 16-bit memory words, which are located at
sequentially increasing addresses. When the image is displayed, this sequential series of memory words is organized
into a rectangular area, called a bit-plane. The bit-planes in an image are drawn together when the image is
displayed.

The color of each pixel in the image is directly related to the value in one or more memory bits, depending upon how
many bit-planes there are in the image data and in which bit-planes of the screen or window you choose to display
your image.

The color of a given pixel is determined by one or more data bits. Each bit in the pixel is taken from the same
position in each of the bit-planes used to define the image. For each pixel, the system combines all the bits in the
same position to create a binary value that corresponds to one of the system color registers. This method of
determining pixel color is called color indirection, because the actual color value is not in the display memory.
Instead, it is in color registers that are located somewhere else in memory.

If an image consists of only one bit-plane and is displayed in a one-bit-plane display, then:

Wherever there is a 0 bit in the image data, the color in color register 0 is displayed.

Wherever there is a 1 bit, the color in color register 1 is displayed.

In an image composed of two bit-planes, the color of each pixel is obtained from a binary number formed by the
values in two bits, one from bit-plane 0 and one from bit-plane 1. If bit-plane 0 contains all Is and bit-plane 1
contains Os and Is, the pixels derive their colors from register 1 (binary 01) and register 3 (binary 11).

Note

The actual image data (but not the Image structure itself) must be located in chip memory
(MEMF_CHIP). Refer to the "Setting up a Custom Pointer" section in the windows chapter for more
information on this.

You create your image data by giving Intuition a series of data words. Before specifying these numbers, you may
find it helpful to layout your image on graph paper, or to use one of the Amiga art tools to assist you. The figure
below shows the layout for the system sizing gadget, which is a one-bit-plane image.

Intuition: Images, Line Drawing, Text 181

Image Data Hexidecimal Representation

F F F F
C 0 F F
C C F F
C 0 0 3
F C F 3
F C F 3
F C F 3
F C 0 3
F F F F

Figure 8-2: Intuition's High-resolution Sizing Gadget Image

In hex notation, the data words of the sizing gadget image are defined as follows:

USHORT chip SizeData[]
{

OxFFFF,
OxCOFF,
OxCCFF,
OxC003,
OxFCF3,
OxFCF3,
OxFCF3,
OxFC03,
OxFFFF,
} ;

In the image data, you need to specify enough whole words to contain the image width. For example, an image 7
bits wide requires one word per line, whereas an image 17 bits wide requires two words per line. In the Width field
of the Image structure, you specify the actual width in pixels of the widest part of the image, not how many pixels
are contained in the words that define the image. The Height field contains the height of the image in pixels.

Here is the actual Image structure of the system-sizing gadget The last two fields in the structure, PlanePick and
PlaneOnOff, are explained in the next section.

182 Intuition: Images, Line Drawing, Text

struct Image SizeImage =
{
0, 0,
16, 9, 1,
&SizeData[O],
Ox1, OxO,
NULL,
} ;

1* left top *1
1* width, height, depth *1
1* Address
1* PlanePick, PlaneOnOff *1
1* NextImage *1

Picking Bit·Planes for Image Display

An image may actually contain fewer bit-planes than the display element it is rendered in. This gives you great
flexibility in using Image structures. You can:

Draw an image into a screen or window of any depth (if you have designed it properly).

Make one image and display it in different colors.

Minimize the amount of memory needed to define a simple image that is destined for a display of multiple
bit-planes.

PlanePick "picks" the bit-planes of the containing window or screen RastPort that will receive the bit-planes of
the image. PlaneOnOff specifies what to do with the window or screen bit-planes that are not picked to receive
image data. For each display element plane that is "picked" to receive data, the next successive plane of image data
is drawn there. For every bit-plane not picked to receive image data, you tell Intuition to fill the plane with Os or Is.
For both variables, the binary form of the number you supply has a direct correspondence to the bit-planes of the
window or screen containing the image. The lowest bit position corresponds to the lowest-numbered bit-plane. For
example, for a window or screen with three bit-planes (consisting of Planes 0, 1, and 2), all the possible values for
PlanePick or PlaneOnOff and the planes picked are as follows.

PlanePick or
PlaneOnOff Planes Picked

000 No planes

001 Plane 0

010 Plane 1

011 Planes 0 and 1

100 Plane 2

101 Planes 0 and 2

110 Planes 1 and 2

111 Planes 0,1, and 2

The system sizing gadget shown above has only one bit-plane of data. To display this gadget in plane 0 of a four
bit-plane window using color 1 for the image and color 0 for its background, you set PlanePick to 0001 (binary) and
PlaneOnOff to 0000 (binary). These settings give Intuition the following instructions:

Display the data that describes the image in plane 0 of the destination RastPort.

Intuition: Images, Line Drawing, Text 183

For all of the other planes in the RastPort, set the bits in the area where the image is displayed to O.

The following figure illustrates the discussion in the preceding paragraphs.

Bit Map Planes
~~~~~ ~~~~ 

Image Data 

Figure 8-3: Example of PlanePick and PlaneOnOff 

If you want the sizing gadget to be drawn in color 2 and its background drawn in color 0, you need to define pixels 
whose values are 0010 and 0000. To do this, simply change PlanePick to 0010. 

If you want color 3 for the sizing gadget and color 1 for its background, you need to define pixels with values 00 11 
and 0001. Therefore, plane 1 defines the image and plane 0 has to be all Is. You can achieve this by setting 
PlanePick to 0010 and PlaneOnOff to 0001. 

If you want an image that is simply a filled rectangle, you need not supply any image data at all. You specify a 
Depth of zero, set Width and Height to any size you like, and set PlanePick to 0000 since there are no planes of 
image data to pick. Then, set Plane On Off to the color you want for the rectangle. To see how a gadget like this 
looks, refer to the "Requester Deluxe" illustration in the "Intuition: Requesters and Alerts" chapter. 

Image Structure 

Here is the specification for an Image structure: 

184 Intuition: Images, Line Drawing, Text 



struct Image 
( 
SHORT LeftEdge, TopEdge; 
SHORT Width, Height, Depth; 
USHORT *ImageData; 
UBYTE PlanePick, PlaneOnOff; 
struct Image *NextImage; 
) ; 

The meanings of the fields in the Image structure are: 

LeftEdge, TopEdge 

These are offsets from the top left of the display element. 

LeftEdge 
This field contains the number of pixels from the left edge of the display element. 

TopEdge 
This field contains the number of lines from the top line of the display element. 

Width 

This field contains the width of the actual image in pixels. 

Height, Depth 

These fields specify the height of the image in pixels and the number of bit-planes needed to define the 
image. 

ImageData 

This field is a pointer to the actual bits defining the image. 

PlanePick, PlaneOnOft' 

PlanePick tells which planes of the containing element you pick to receive planes of image data. 
PlaneOnOft' tells what to do about the planes that are not picked. 

These fields are a bit-wise representation of bit-plane numbers. 

Image Example 

A more complex example of an image is presented below. The image shown in figure 9-4 belongs to one of the 
system depth-arrangement gadgets (the front gadget, which brings a window or screen to the front of the display). 

Intuition: Images, Line Drawing, Text 185 



The 3-Color Front Gadget Plane 0, Works even in 
One-plane Screens 

Figure 8-4: Example Image - the Front Gadget 

Its data structure and data definition look like this: 

USHORT chip UpFrontData[] 
{ 
Ox3FFF, OxFF3C, 
Ox3000, Ox3F3C, 
Ox3000, Ox033C, 
Ox303F, OxF33C, 
Ox303F, OxF33C, 
Ox303F, OxF33C, 
Ox303F, OxF33C, 
Ox3F3F, OxF33C, 
Ox3FOO, Ox033C, 
Ox3FFF, OxFF3C, 
/**/ 
OxOOOO, OxOOOO, 
OxOFFF, OXCOOO, 
OxOFOO, OxOOOO, 
OxOFOO, OxOOOO, 
OxOFOO, OxOOOO, 
OxOFOO, OxOOOO, 
OxOFOO, OxOOOO, 
OxOOOO, OxOOOO, 
OxOOOO, OxOOOO, 
OxOOOO, OxOOOO, 
} ; 

186 Intuition: Images, Line Drawing, Text 

Plane 1, for Highlight 



struct Image UpFImage = 
{ 
a, a, 
29, la, 2, 
&UpFrontData[Ol, 
Ox3, OxO, 
NULL, 
} ; 

/* left top */ 
/* width, height, depth */ 
/* image data */ 
/* P1anePick, P1aneOnOff */ 
/* NextImage */ 

This gadget was designed to look good in a window or screen of any depth. PlanePick Ox3 (000011) picks planes 0 
and 1 of the destination RastPort for planes 0 and 1 of the gadget. If this gadget is displayed in a window or screen 
of depth 1, only plane 0 of its data is displayed. Color 0 is used for the background and color 1 for the imagery. 

If this gadget is displayed in a window or screen of depth 2 or more, both planes are displayed. The resulting colors 
are 0 for the background and 1 and 2 for the imagery. 

Image Memory 

Just as for sprite data, the image data has to be in chip memory. Refer to the "Setting up a Custom Pointer" section 
of the windows chapter for more information on this. 

INTUITION GRAPHICS FUNCTIONS 

The following are brief descriptions of the Intuition functions that relate to the use of the Intuition illustration data 
types and the Amiga graphics primitives. 

Drawing Images, Lines, or Text in a Window or Screen 

DrawImage (RPort, Image, LeftOffset, TopOffset) 

This function renders the Image data into the RastPort of the screen or window. 

• DrawBorder (RPort, Border, LeftOffset, TopOffset) 

This function draws the vectors of the Border into the window or screen RastPort. 

PrintIText (RPort, IText, LeftOffset, TopOffset) 

This function prints IntuiText into the window or screen RastPort. 

Obtaining the Width of a Text String 

• IntuiTextLength (IText) 

This function returns the width of an IntuiText in pixels. 

Intuition: Images, Line Drawing, Text 187 



Obtaining the Address of a View or ViewPort 

View AddressO 

This function returns the address of the Intuition View structure for any graphics, text, or animation primitive 
that requires a pointer to a View. 

• ViewPortAddress (window) 

This function returns the address of the screen ViewPort associated with the specified window for any 
graphics, text, or animation primitive that requires a pointer to a ViewPort. 

188 Intuition: Images, Line Drawing, Text 



Chapter 9 

Intuition: Mouse and Keyboard 

In the Intuition system, the mouse is the nonnal method of making selections. This section describes how users 
employ the mouse to interact with the system and your programs and how you can arrange for your program to use 
the mouse in other ways. It also describes the use of the keyboard as an alternate means of input. 

About the Mouse 

A mouse is a small, hand-held input device connected to the Amiga by a flexible cable. By rolling the mouse around 
on a smooth surface, the user can input horizontal and vertical position coordinates to the computer. The mouse also 
provides a pair of input keys, called mouse buttons, for the user to input further information to the computer. 

Most of the things the user does with the mouse are meaningful to Intuition. Because of this, Intuition monitors 
mouse activity closely. As the user moves the mouse, Intuition follows the motion by changing the position of the 
InbJition pointer. The Intuition pointer is an image (using hardware sprite 0) that can move around the entire video 
display, mimicking the user's movement of the mouse. The user can use the mouse and pointer to point at some 
object and then have some action perfonned on that object. Typically, users specify an action by manipulating 
either or both mouse buttons. Users can also position the mouse while the buttons are activated 

Intuition: Mouse and Keyboard 189 



The basic mouse activities are shown in the table below. 

Table 9-1: Mouse Activities 

Action Explanation 

Pressing a button Positioning the pointer while holding down a button. 
The action specified by the position of the pointer can 
continue to occur until the button is released, or 
alternatively may not occur at all until the button i~ 
released. 

Clicking a button Positioning the pointer and quickly pressing and 
releasing one of the mouse buttons. 

Double-clicking a button Positioning the pointer and pressing and releasing a 
mouse button twice. 

Dragging Positioning the pointer over some object, pressing a 
button, moving the mouse to a new location, and 
releasing the button. 

The left mouse button is most often used for selection. The right mouse button is most often used for information 
transfer. The terms selection and information are intentionally left open to some interpretation, as it is impossible to 
imagine all the uses you will find for the mouse buttons. The selectiOn/information paradigm can be crafted to cover 
most interaction between the user and your program. You are encouraged, when designing mouse usage, to 
emphasize this model. It will help the user to understand and remember the elements of everyone's design. 

When the user presses the left button, Intuition examines the state of the system and the position of the pointer. 
Intuition uses this information to decide whether or not the user is trying to select some object, operation, or option. 
For example, the user positions the pointer over a gadget and then presses the left button to select that gadget. 
Alternatively, the user may position the pointer over a window and press the select button to activate the window. If 
the user moves the mouse while holding down the select button, this sometimes means that the user wants to select 
everything that the pointer moves over while the button is still pressed. 

The right mouse button is used to initiate and control information-gathering processes. Intuition uses this button 
most often for menu operations. Pressing the right button usually displays the active window's menu bar over the 
screen title bar. Moving the mouse while holding down the right button sometimes means that the user wishes to 
browse through all available information; for example, browsing through the menus. Double-clicking the right 
mouse button can bring up a special requester for extended exchange of information. This requester is called the 
double-menu requester, because of the double-click of the menu button required to reveal it, and because this 
requester is like a super menu through which a complex exchange of information can take place. Because the 
requester is used for the transfer of information, it is appropriate that this mechanism is called up by using the right 
button. 

Your program can receive mouse button and mouse movement events directly. If you are planning to handle mouse 
button events yourself, you should continue the selection/information model used by Intuition. 

You can combine mouse button activations and mouse movement to create compound instructions. Here is an 
example of how Intuition combines multiple mouse events. While the right button is pressed to reveal the menu 
items of the active window, the user can press the left button several times to select more than one option from the 
menus. Also, you can allow the user to move objects or select multiple objects by moving the mouse while holding 

190 Intuition: Mouse and Keyboard 



down the buttons. As another example, consider the Workbench tool. To move an object on the Workbench screen, 
the user places the pointer within the object's icon, presses the left button, and moves the pointer. When the icon is 
in the desired location, the user releases the button. 

Dragging can have different effects, depending on the object being dragged. To move a window to another area of 
the screen, the user positions the pointer within the window's drag gadget and drags the window to a new position. 
To change the size of a window, the user positions the pointer within the size gadget and drags the window to some 
smaller or larger size. In drag selection, the user can hold down both buttons while in menu mode and move the 
pointer across the menu display, making multiple selections with one stroke. 

Mouse Messages 

Mouse events are broadcast to your program via the IDCMP or the console device. See the "Intuition: Input and 
Oulput Methods" chapter for information on how to receive communications. 

Simple mouse button activity not associated with any Intuition function will be reported in IntuiMessages as the 
event class MOUSEBUITONS, with the codes SELECTDOWN, SELECTUP, MENUDOWN, and MENUUP to 
specify changes in the state of the left and right buttons, respectively. Mouse button activity over your gadgets is 
reported with a class of GADGETDOWN or GADGETUP, and the IAddress field (or EventAddress field of 
InputEvents) has the address of the selected gadget. Menu selections appear with a class of MENUPICK, with the 
menu number in the Code field. 

Your program receives mouse position changes in the event class MOUSEMOVE. The MouseX and MouseY 
position coordinates describe the position of the mouse relative to the upper left comer of your window. These 
coordinates are always in the resolution of the screen you are using, and may represent any pixel position in your 
screen, even though the hardware sprites can be positioned only on the even-numbered pixels of a high-resolution 
screen and on the even-numbered rows of an interlaced screen. 

To get mouse movement reported as deltas (amount of change from the last position) instead of as absolute 
positions, you can use the IDCMP flag, DELTAMOVE. 

About the Keyboard 

A program can receive keyboard data through an IDCMP port by setting the RA WKEY or V ANILLAKEY flags. 
V ANILLAKEY events provide for simple ASCII text and standard control keys like space, return and backspace. 
RA WKEY events provide a more complex input stream, which the program must process to generate ASCII data. 
RA WKEY returns all keycodes, both key-up and key-down, including function keys. 

NOTE 

Keystrokes do not always come in key-down/key-up pairs. For example, repeating keys appear as a 
sequence of key-down messages. 

Intuition: Mouse and Keyboard 191 



The example at the end of this chapter uses RawKeyConvertO to convert the RA WKEY input stream into an ANSI 
input stream. See the "Console Device" chapter for more information on RawKeyConvertO and the data it 
returns. 

NOTE 

If IntuitionO responds to any input events. then your program will not see them. This happens for 
system shortcuts (Left-AMIGA + key). and menu shortcuts (Right-AMIGA + key) if the menu shortcut 
is defined for the active window. 

The Amiga keyboard has several special command keys. which are listed in the following table. These keys are 
used to modify the meaning of other keys. When you receive a RA WKEY or V ANILLAKEY event (or. in fact. any 
other event) through the IDCMP. the input message's Qualifier field contains the status of all of the keyboard 
special keys. Since all messages contain the qualifier bits. the program does not have to track the state of the special 
command keys. For any message. a program can examine the Qualifier field to quickly determine the state of these 
keys. 

These special command keys (and their flags) are shown in the table. 

Table 9-2: Special Command Keys 

Key Label Explanation 

control C1RL The associated Qualifier flag is the CONIROL flag. 

alternate AL T NOTE: that there are two separate AL T keys. one on 
each side of the space bar. These can be treated 
distinctly. Your program can detect which one was 
pressed by examining the LAL T and RAL T 
commands for the Left AL T and Right AL T keys 
respectively 

escape ESC When this key is struck. its keycode is entered into 
the input stream as an actual keystroke. 

function FI to FlO Shortcut methods for entering command-key 
sequences starting with the ESC key. 

AMIGA Fancy A There are two Amiga keys. one on each side of the 
space bar. These. like the AL T keys. are distinctly 
identifiable. The Left AMIGA key is recognized by 
the Qualifier flag LCOMMAND. and the Right 
AMIGA key by RCOMMAND. 

Certain command-key sequences starting with one of the AMIGA keys have special meaning to Intuition. Most 
notably. these involve shortcuts and alternatives to using the mouse. as described in the following section. 

192 Intuition: Mouse and Keyboard 



Using the Keyboard as an Alternate to the Mouse 

All Intuition mouse activities can be emulated using the keyboard, by combining the Amiga command keys with 
other keystrokes. 

The pointer can be moved by pressing down either AMIGA key along with one of the four cursor keys (the ones 
with the arrows). The longer these keys are held down, the faster the mouse will move. Also, you can hold down 
either SHIFf key to make the pointer leap greater distances. 

To emulate the left mouse button, users can press the left ALT key and the left AMIGA key simultaneously. To 
emulate the right mouse button, users can press the right ALT key and the right AMIGA key simultaneously. These 
key combinations permit users to make gadget selections and perform menu operations using the keyboard alone. 
This will be a boon for mouse-haters. 

There are a number of special shortcut functions supported by Intuition. These involve holding down the Left 
AMIGA key and simultaneously pressing a another key. These functions allow the user to do such things as move 
the Workbench Screen to the front using the keyboard. See the "Intuition Style" chapter for more information. 

NOTE 

These functions emulate left mouse button and mouse movement operations. Also note that Intuition 
always consumes these two command-key sequences for its own use. That is, it always detects these 
events and removes them from the input stream. Your program will no see these events. 

¥ou can pair up menu items with command-key sequences to associate certain letters with specific menu item 
selections. This gives the user a shortcut method to select often-used menu operations, such as UNDO, CUT, and 
PASTE. Whenever the user presses the right AMIGA key with some alphanumeric key, the menu strip of the active 
window is scanned to see if there are any command-key sequences in the list that match the sequence entered by the 
user. If there is a match, Intuition translates the key combination into the appropriate menu item number and 
transmits the menu number to the application program. 

NOTE 

It looks to the application as if the user had selected a given menu item with the mouse. ¥our program 
will receive a menu event, not a key event. For more information on menu item selection, see the 
"Intuition: Menus" chapter. 

If Intuition sees a command-key sequence that means nothing to it, the key sequence is broadcast to your program as 
usual. See the "Intuition: Input and Output Methods" section for how this works. 

It is recommended that you abide by certain command-key standards to provide a consistent interface for Amiga 
users. The' 'Intuition Style" section contains a complete list of the recommended standards. 

MOUSE AND KEYBOARD EXAMPLE 

The example program below shows the use of RA WKEYS, MOUSEBUTTONS, MOUSEMOVE, 
RawKeyConvertO and DoubJeClickO. 

Intuition: Mouse and Keyboard 193 



/* MouseKeys.c */ 
.include <exec/types.h> 
.include <exec/memory.h> 
.include <intuition/intuition.h> 
.include <graphics/gfxbase.h> 
.include <devices/inputevent.h> 
.include <libraries/dos.h> 
.include <stdio.h> 
.include <stdlib.h> 
.include <string.h> 

Ufdef LATTICE 
.include <proto/all.h> 
int CXBRK(void) ( return(O); } /* Disable Lattice CTRL/C handling */ 
.endif 

VOID 
VOID 
VOID 
LONG 
VOID 
VOID 

cleanExit(int); 
OpenAll (VOID) ; 
DoKeys(struct IntuiMessage *); 
DeadKeyConvert(struct IntuiMessage *, UBYTE *, LONG, struct KeyMap *); 
DoMouseMove(struct RastPort *, struct IntuiMessage *); 
DoButtons(struct IntuiMessage *); 

.define BUFSIZE 15 

.define RP window->RPort 

.define WIDTH 320 

.define HEIGHT 50 

.define SHIFTED (IEQUALIFIER_LSHIFTIIEQUALIFIER RSHIFT) 

struct 
struct 
struct 
struct 
struct 

IntuitionBase 
GfxBase 
Window 
ConsoleDevice 
IOStdReq 

*IntuitionBase=NULL; 
*GfxBase=NULL; 
*window=NULL; 
*ConsoleDevice=NULL; 
ioreq; 

struct 
{ 

NewWindow NewWindow 

0, 0, WIDTH, HEIGHT, 
-1,-1, 
CLOSEWINDOW I RAWKEY I MOUSEMOVE I MOUSEBUTTONS, 
WINDOWDRAGIWINDOWCLOSEIACTIVATEIREPORTMOUSEIRMBTRAP, 
NULL, NULL, 
"Mouse & KeyBoard", 
NULL,NULL, 
0,0,0,0, 
WBENCHSCREEN 
} ; 

/* 
The Main Loop 
*/ 

VOID main (VOID) 
{ 
USHORT 
struct 
ULONG 

keep=TRUE; 
IntuiMessage 
class; 

*msg; 
/* loop control */ 
/* for the Intuition message */ 
/* event class */ 

OpenAll (); 
printf("Monitors the Mouse AND Keyboard\n"); 
printf("Try DoubleClicking and Special Keys\n"); 
while (keep) 
{ 

Wait«l«window->UserPort->mp SigBit»; 
while(msg=(struct IntuiMessage *)GetMsg(window->UserPort» 
{ 

class=msg->Class; 
switch (class) 

/* Get the event class */ 
/* handle our events */ 

{ 

case CLOSEWINDOW: keep=FALSE; break; 
case RAWKEY: DoKeys(msg); break; 
case MOUSEMOVE: DoMouseMove(RP,msg); break; 
case MOUSEBUTTONS: DoButtons(msg); break; 

194 Intuition: Mouse and Keyboard 



} 
ReplyMsg«struct Message *)msg); 

cleanExit(RETURN_OK); 

1* 
Show what mouse buttons where pushed 
*1 

VOID DoButtons(struct IntuiMessage *msg) 
( 
static ULONG lsecs = OL, lmics = OL; 
USHORT code; 

1* For detecting DoubleClick *1 

USHORT qual; 
ULONG secs, mics; 

code 
qual 
secs 
mics 

msg->Code; 
msg->Qualifier; 
msg->Seconds; 
msg->Micros; 

1* get the current time for *1 
1* DoubleClick() *1 

1* Yes, qualifiers can apply to the mouse also. That is how 
* we get the shift select on the WorkBench. This shows how 
* to see if a specific bit is set within the qualifier 
*1 

if (qual&SHIFTED) printf("Shift "); 
switch (code) 
{ 

case SELECTDOWN: 
printf ("Left Button Down"); 
if (DoubleClick (lsecs, Imics, secs, mics)) 
( 

printf(" DoubleClick!"); 

else 
( 

lsecs 
lmics 

break; 
case SELECTUP: 

secs; 
mics; 

printf ("Left Button up"); 
break; 

case MENUDOWN: 
printf("Right Button down"); 
break; 

case MENUUP: 
printf("Right Button up"); 
break; 

printf("\n"); 

1* Show the current position 
* upper left-hand corner of 

of the mouse relative to the 
our window 

*1 
VOID DoMouseMove( 

struct RastPort *rp, 
struct IntuiMessage *msg) 

1* RastPort to write coordinates into *1 
1* IntuiMessage containing mouse coords *1 

UBYTE coords[12J; 

sprintf(coords,"X%4d Y%4d", msg->MouseX, msg->MouseY); 
Move (rp, «WIDTH-88)/2),«HEIGHT-8)/2)+10); 1* ASSUMES 8 Pixel-High Font *1 
Text(rp,&coords[OJ,ll); 

1* 
Show what keys where pressed ••• 
*1 

Intuition: Mouse and Keyboard 195 



VOID 
{ 

DoKeys(struct IntuiMessage *msg) 

register LONG i; 
LONG numchars; 
UBYTE buffer[BUFSIZE]; 1* buffer is large enough for normal keymaps *1 

strcpy(buffer," H); 1* clear the buffer area *1 

numchars=DeadKeyConvert(msg, &buffer[O], BUFSIZE, OL); 

1* numchars now contains the number of characters placed 
* within the buffer. It returns zero when it is either a 
* 'dead' key or key release. Special keys (like HELP, 
* the cursor keys, FKeys, etc) return multiple characters that 
* have to then be parsed. If there wasn't enough room in the 
* buffer (indicated by a return of -1), then you should re-call 
* the same function with a larger buffer using the SAME 
* IntuiMessage. 
*1 

if (numchars>OL) 
{ 

printf("key %d maps to %ld character(s)\n", msg->Code, numchars); 
for(i=OL; i<numchars; i++) 
{ 

printf(" %3d= %c\n", buffer!i], buffer!i]); 

1* 
Open up all the resources that we need 
*1 

VOID OpenAII(VOID) 
{ 

if(!(IntuitionBase=(struct IntuitionBase *) 
OpenLibrary ("intuition. library", 33) » 

cleanExit(ERROR INVALID RESIDENT LIBRARY); 
if (! (GfxBase= (struct GfxBas; *) OpenLIbrary ("graphics • library" , 33) ) ) 

cleanExit(ERROR_INVALID_RESIDENT_LIBRARY); 

1* must have the console.device opened to use RawKeyConvert() 
*1 

if (OpenDevice ("console.device",-1L, (struct IORequest *)&ioreq,OL» 
cleanExit(ERROR DEVICE NOT MOUNTED); 

ConsoleDevice=(struct ConsoleD;vice *)ioreq.io_Device; 

1* center the window that we are going to use to display 
* the current mouse position in. 
*1 

NewWindow.LeftEdge = (GfxBase->NormaIDisplayColumns - WIDTH) I 2; 
NewWindow.TopEdge = (GfxBase->NormaIDisplayRows - HEIGHT) I 2; 

if(! (window=(struct Window *)OpenWindow(&NewWindow») 
cleanExit(ERROR_NO_FREE_STORE); 

1* initialize the drawing variables used for rendering the 
* current mouse position 
*1 

SetAPen(RP,1); 
SetBPen(RP,O); 
SetDrMd(RP,JAM2); 

1* 
Free up all the resources that we used 
*1 

VOID cleanExit(int retval) 
{ 

if (window) CloseWindow(window); 
if (ConsoleDevice) CloseDevice«struct IORequest *)&ioreq); 

196 Intuition: Mouse and Keyboard 



if (GfxBase) 
if (IntuitionBase) 
exit(retval); 

CloseLibrary((struct Library *)GfxBase); 
CloseLibrary((struct Library *)IntuitionBase); 

/* 
Convert RAWKEYS into VANILLAKEYS, also shows 
special keys like HELP, Cursor Keys, FKeys, etc. 

See the Included and Autodocs Manual for information on 
the RawKeyConvert() function. It returns places an ANSI 
character stream into the buffer. This ANSI sequence is 
described in the Console Device Chapter. 

Returns: 
-2 if not a RAWKEY event 
-1 if not enough room in the buffer 
the number of characters placed in the buffer 

*/ 
LONG DeadKeyConvert( struct IntuiMessage 

UBYTE 
LONG 
struct KeyMap 

*msg, 
*kbuffer, 
kbsize, 

*kmap) 

static struct InputEvent ievent = {NULL, IECLASS_RAWKEY,O,O,O}; 

if(msg->Class != RAWKEY) 
return(-2); 

ievent.ie Code = msg->Code; 
ievent.ie=Qualifier = msg->Qualifier; 
ievent.ie_position.ie_addr = *((APTR*)msg->IAddress); 

return(RawKeyConvert(&ievent,kbuffer,kbsize,kmap)); 

Intuition: Mouse and Keyboard 197 



Chapter 10 

Intuition: Other Features 

Introduction 

There are several Intuition topics which, while not large enough to fill chapters of their own, nontheless deserve to 
be discussed. The subjects discussed here include locking IntuitionBase, the Intuition memory functions 
AUocRememberO and FreeRememberO, Preferences, ViewPorts, and sprites. 

Locking IntuitionBase 

It is sometimes necessary to examine the IntuitionBase structure. Items such as the address of the active screen and 
window, current mouse coordinates and more can be found there. It is never a good idea to simply "peek" at these 
fields, as they are prone to sudden change. It is necessary to inform Intuition that you are about to examine 
IntuitionBase so that it will remain static during this time. The call LockIBaseO will lock the state of 
IntuitionBase so that it may be examined. LockIBaseO is passed a ULONG indicating the Intuition lock desired. 
For all foreseeable uses of this call this value should be O. LockIBaseO returns a ULONG, which must be passed to 
UnlockIBaseO to allow IntuitionBase to change once again. UnlockIBaseO has no return value. During the time 
that you have IntuitionBase locked, all Intuition input processing is frozen. Make every effort to examine 

Intuition: Other Features 199 



IntuitionBase and release the lock as quickly as possible. 

IMPORTANT 

This function should not be called while holding any other system locks such as Layer and Layerlnfo 
locks. 

VERY IMPORTANT 

There are fields in IntuitionBase which are considered "private" . (Refer to the 
intuitionlintuitionbase.h include file.) Application programs cannot depend on (and should not use) the 
contents of these fields; their usage is subject to change in future revisions of Intuition. 

EXTREMELY IMPORTANT 

Never, ever, modify any of the fields in IntuitionBase directly. 

Easy Memory Allocation and Deallocation 

Intuition has a pair of routines that enable one to make multiple memory allocations which are easily deallocated 
with a single call. The routines are AllocRememberO and FreeRememberO; they both rely upon a linked list of 
Remember structures to keep track of allocations. 

INTUITION HELPS YOU REMEMBER 

The AUocRememberO routine actually calls the Exec AllocMemO function to do the memory allocation. It also 
allocates memory for a Remember structure and uses it as a link node to save the specifics of the allocation in a 
linked list When FreeRememberO is called it uses the information in this linked list to free all of the previous 
memory allocations. AllocRememberO returns a NULL if its allocation fails. 

AIIocRemember(&RememberKey, Size, Flags) 

&RememberKey 
is the address of a pointer to a Remember structure. 

Size is the size in bytes of the requested allocation. 

Flags 
gives the specifications for the memory aUocation. These are the same as the specifications for the Exec 
AllocMemO function, a description of which can be found in the memory allocation chapter. 

The FreeRememberO function give~ the option of freeing memory in either of two ways: freeing both the link 
nodes that AllocRememberO created and the memory blocks to which they correspond, or freeing only the link 
nodes, leaving the memory blocks for further use (and later deallocation via Exec's FreeMemO function). 

FreeRemember(&RememberKey, ReallyForget) 

200 Intuition: Other Features 



&RememberKey 
is the address of a pointer to a Remember structure. 

ReaUyForget 
indicates whether both the link nodes and the memory blocks should be freed (TRUE), or only the link 
nodes should be freed (FALSE). 

These routines have two primary uses. The most general use of these routines is to do all of a program's memory 
allocations using AUocRememberO. The advantage of this is that a linked list of all your memory allocations is 
created for you, so that when you want to free all the memory, a single call to FreeRememberO does the job. 

The other use is to do a series of memory allocations and abandon it in midstream easily, if you must. Say that 
you're doing a long series of allocations in a procedure (for example, the Intuition OpenWindowO procedure), and 
you detect some error condition, such as out-of-memory. When aborting, you must free any memory that you have 
already managed to allocate. These procedures allow you to free that memory easily, without being required to keep 
track of how many allocations you have already done, the sizes of the allocations, and where the memory was 
allocated. 

HOW TO REMEMBER 

You create the "anchor" for the linked list by declaring a variable that is a pointer to a Remember structure and 
initializing that pointer to NULL. This variable is called the RememberKey. Whenever you call 
AlIocRememberO, the routine actually does two memory allocations, one for the memory you want and the other 
for a Remember structure. The Remember structure is filled in with data describing your memory allocation, and it 
is linked into the list to which the RememberKey points. Then, to free any memory that has been allocated, all you 
have to do is call FreeRememberO with that RememberKey. 

THE REMEMBER STRUCTURE 

The Remember structure is defined in intuitionlintuition.h as follows: 

struct Remember 
{ 

} ; 

struct Remember *NextRemember; 
ULONG RememberSize; 
UBYTE *Memory; 

The contents of the Remember structure are handled by the system, but are explained here for completeness. 

NextRemember 
is the link to the next Remember node. 

RememberSize 
is the size of the memory remembered by this node. 

Memory 
is a pointer to the memory remembered by this node. 

Intuition: Other Features 201 



AN EXAMPLE OF REMEMBERING 

/* RememberTest 
Illustrates the use of AllocRemember() and FreeRemember() . 

*/ 

'include <exec/types.h> 
'include <exec/memory.h> 
'include <intuition/intuition.h> 
'include <intuition/intuitionbase.h> 

'include <proto/all.h> 
'include <stdlib.h> 

struct IntuitionBase *IntuitionBase; 

'define SIZE A IOOL 
'define SIZE B 200L 

'define FLAGS_A (MEMF_CLEAR 
'define FLAGS_B MEMF_PUBLIC 

VOID methodOne(VOID), methodTwo(VOID); 

VOID main (VOID) 
{ 
int exitVal = RETURN_OK; 

/* Open Intuition */ 
IntuitionBase = (struct Intuition *) OpenLibrary("intuition.library", 33L); 
if (IntuitionBase) 

{ 
methodOne () ; 

methodTwo(); 

CloseLibrary«struct Library *)IntuitionBase); 
} 

else 
exitVal = RETURN_FAIL; 

exit (exitVal) ; 
} 

/* MethodOne 

*/ 

Illustrates using AllocRemember() to allocate all memory and 
FreeRemember() to free it all. 

VOID methodOne(VOID) 
{ 
CPTR memBlockA = NULL, memBlockB = NULL; 
struct Remember *rememberKey = NULL; 

memBlockA = AllocRemember(&rememberKey, SIZE_A, FLAGS_A); 
if (memBlockA) 

{ 
/* The memBlockA allocation succeeded; try for memBlockB. */ 
memBlockB = AllocRemember(&rememberKey, SIZE_B, FLAGS_B); 
if (memBlockB) 

{ 
1* Both memory allocations succeeded. 

*1 
) 

The program may now use this memory. 

202 Intuition: Other Features 



1* 

*1 

It is not necessary to keep track of the status of each allocation. 
Intuition has kept track of all successful allocations by updating its 
linked list of Remember nodes. The following call to FreeRemember() will 
deallocate any and all of the memory that was successfully allocated. 
The memory blocks as well as the link nodes will be deallocated because 
the "ReallyForget" parameter is TRUE. 

FreeRemember(&rememberKey, TRUE); 

1* 
It is possible to have reached the above call to FreeRemember() 
in one of three states. Here they are, along with their results. 

1. Both memory allocations failed. 
RememberKey is still NULL. FreeRemember() will do nothing. 

2. The memBlockA allocation succeeded but the memBlockB allocation failed. 
FreeRemember() will free the memory block pointed to by memBlockA. 

3. Both memory allocations were successful. 

*1 

FreeRemember() will free the memory blocks pointed to by 
memBlockA and memBlockB. 

1* MethodTwo 

*1 

Illustrates using AllocRemember() to allocate all memory, 
FreeRemember() to free the link nodes, and FreeMem() to 
free the actual memory blocks. 

VOID methodTwo(VOID) 
( 
CPTR memBlockA = NULL, memBlockB = NULL; 
struct Remember *rememberKey = NULL; 

memBlockA = AllocRemember(&rememberKey, SIZE_A, FLAGS_A); 
if (memBlockA) 

{ 
1* The memBlockA allocation succeeded; try for memBlockB. *1 
memBlockB = AllocRemember(&rememberKey, SIZE_B, FLAGS_B); 
if (memBlockB) 

{ 

1* Both memory allocations succeeded. *1 

1* For the purpose of illustration, FreeRemember() 
is called at this point, but only to free the 
link nodes. The memory pointed to by memBlockA 
and memBlockB is retained. 

*1 
FreeRemember(&rememberKey, FALSE); 

1* Pretend that memBlockA was needed only temporarily. 

*1 

It can now be freed. The Exec FreeMem() call must 
be used, as the link nodes are no longer available. 

FreeMem«VOID *)memBlockA, SIZE_A); 

1* The memory pointed to by memBlockB is used by the program. *1 

1* All memory blocks allocated with AllocRemember() must be 
freed individually, now that the link nodes are gone. 

*1 
FreeMem«VOID *)memBlockB, SIZE_B); 

FreeRemember(&rememberKey, TRUE); 

Intuition: Other Features 203 



/* 

*/ 

It is possible to have reached the above call to FreeRemember() 
in one of three states. Here they are, along with their results. 

1. Both memory allocations failed. 
RememberKey is still NULL. FreeRemember() will do nothing. 

2. The memBlockA allocation succeeded but the memBlockB allocation failed. 
FreeRemember() will free the memory block pointed to by memBlockA. 

3. Both memory allocations were successful. 
If this is the case, the pro~ram has already freed the link nodes 
with FreeRemember() and the memory blocks with FreeMem(). 
When FreeRemember() freed the link nodes, it reset RememberKey 
to NULL. This (second) call to FreeRemember() will do nothing. 

Preferences 

Preferences is a program that lets the user see and change many system-wide parameters on the Amiga. Users can 
also edit the standard Intuition pointer image and colors. 

The user invokes Preferences to make settings and your program can call GetPrefsO to find out what settings the 
user has made. In a system in which the user does not use Preferences, you can call GetDefPrefsO to find out the 
Intuition default Preference settings. If you are using the IDCMP for input, you can set the IDCMP flag 
NEWPREFS. With this flag set, your program will receive an IntuiMessage telling it that there is a new set of 
Preferences for it to examine. To get the new settings, the program then calls GetPrefsO. 

Programs that use system printer drivers should always call GetPrefsO just before every print job, because the user 
may run Preferences to modify the printer settings or change to a different printer. 

When Intuition is initialized (when the system is reset), you can call GetDefPrefsO to find the default Preferences 
settings that Intuition uses when it is first opened. Then, under AmigaDOS, Intuition is configured according to the 
set of Preferences that are saved on the start-up disk. 

Upon invoking the Preferences tool, the user is shown a screen full of gadgets and can change settings by selecting 
and playing with the gadgets. In some cases, a requester appears after the user selects a gadget 

One of the arguments to GetPrefsO and GetDefPrefsO is the size of the buffer you are supplying to receive the 
Preferences data. If you are interested only in the first few bits of data, you do not have to allocate a buffer large 
enough to hold the entire Preferences structure. For this reason, the most commonly used data has been grouped 
near the beginning of the structure. 

Preferences allows the user to change the following: 

• Date and time of day. These are automatically saved in the battery-backed clock, if one is present 

• Key repeat speed - the speed at which a key repeats when held down. 

• Key repeat delay - the amount of delay before the key begins repeating. 

• Mouse speed - how far the pointer moves when the user moves the mouse. 

204 Intuition: Other Features 



• Double-click delay - maximum time allowed between the two clicks of a mouse double-click. For 
infonnation about how to test for double-click timeout, see the description of the DoubleCIickO function in 
The Amiga ROM Kernel Reference Manual: Includes and Autodocs. 

• Text size - size of the default font characters. The user can choose 64-column mode (64 characters on a line 
in high-resolution mode and 32 characters in low-resolution mode) or 80-column mode (80 characters on a line 
in high-resolution mode and 40 characters in low-resolution mode). The first variable in the Preferences 
structure is FontHeight, which is the height of the characters in display lines. If this is equal to the constant 
TOPAZ_EIGHTY, the user has chosen the 80-column version. If it is equal to TOPAZ_SIXTY, the user has 
chosen the 64-column version. 

• Display centering - allows the user to center the image on the video display. 

• Baud rate - the user can change the rate of data transmission to accommodate whatever device is attached to 
the serial connector. 

• Workbench colors - the user can change any of the four colors in the Workbench display by adjusting the 
amounts of red, green, and blue in each color. 

• Printer - the user can select from a number of printers supported by Amiga. The user can also indicate 
whether the printer is connected to the serial connector or the parallel connector. 

• Print characteristics - the user can select paper size, right and left margin, continuous feed or single sheets, 
draft or letter quality, pitch, and line spacing. For graphics dumps, the user can indicate how he wishes the 
dump to appear on paper by setting the density and scaling method, selecting vertical or horizontal dumps, etc. 

The Preferences settings can be written to the devs:system-configuration file, to be used for the next work session. 
See the Amiga user's manual for more information about Preferences from the user's standpoint. 

PREFERENCES STRUCTURE 

Here is the Preferences data structure: 

struct Preferences 
{ 

BYTE 
UBYTE 
USHORT 
struct 
struct 
struct 
USHORT 
BYTE 
BYTE 
USHORT 
USHORT 
USHORT 
USHORT 
USHORT 
USHORT 
USHORT 
USHORT 
BYTE 
BYTE 
WORD 
BOOL 
USHORT 
UBYTE 

FontHeight; 
PrinterPort; 
BaudRate; 
timeval KeyRptSpeed; 
timeval KeyRptDelay; 
timeval DoubleClick; 
PointerMatrix[POINTERSIZE); 
XOffset; 
YOffset; 
color17; 
color18; 
color19; 
PointerTicks; 
colorO; 
colorl; 
color2; 
color3; 
ViewXOffset; 
ViewYOffset; 
ViewInitX, ViewInitY; 
EnableCLI; 
PrinterType; 
PrinterFilename[FILENAME_SIZE); 

Intuition: Other Features 205 



}; 

USHORT 
USHORT 
USHORT 
UWORD 
UWORD 
USHORT 
USHORT 
USHORT 
WORD 
USHORT 
UWORD 
USHORT 
UBYTE 
UBYTE 
UBYTE 
UBYTE 
UBYTE 
BYTE 
BYTE 
UWORD 
UWORD 
UWORD 
UBYTE 
UBYTE 
UWORD 
UWORD 
UBYTE 
UBYTE 

PrintPitch; 
PrintQuality; 
PrintSpacing; 
PrintLeftMargin; 
PrintRightMargin; 
PrintImage; 
PrintAspect; 
PrintShade; 
PrintThreshold; 
PaperSize; 
PaperLength; 
PaperType; 
SerRWBits; 
SerStopBuf; 
SerParShk; 
LaceWB; 
WorkName[FILENAME SIZE]; 
RowSizeChange; -
ColumnSizeChange; 
PrintFlags; 
PrintMaxWidth; 
PrintMaxHeight; 
PrintDensity; 
PrintXOffset; 
wb Width; 
wb-Height; 
wb::::Depth; 
ext_size; 

The meanings of the fields in the Preferences structure are as follows: 

FontHeight 
This variable will contain one of two constants: TOPAZ_SIXTY or TOPAZ_EIGHTY. These are the 
font heights required to cause the default Topaz font to be rendered in either 64- or 80-column mode 
wherever the default font is requested. 

PrinterPort 
This is set to either PARALLEL_PRINTER or SERIAL_PRINTER to describe which type of printer is 
attached to the printer port. 

BaudRate 
This can be set to any of these default baud rates: BAUD_110, BAUD_300, BAUD_1200, BAUD_2400, 
BAUD_ 4800, BAUD_9600, BAUD_19200 or BAUD_MIDI. 

KeyRptSpeed, KeyRptDelay 
These are timeval structures, which have two components, seconds and microseconds. KeyRptDelay 
describes how long the system hesitates before the input device starts repeating the keys. KeyRptSpeed 
describes the time between repeats of the key. 

DoubleClick 
This is a timeval structure that describes the maximum time allowable between clicks of the mouse button 
for the operation to be considered a double-click operation. See the chapter "Intuition: Keyboard and 
Mouse," for details about double-clicking. 

PointerMatrix[POINTERSIZE] 
This contaios the sprite data for the Intuition pointer. 

XOft'set, YOft'set 
This describes the offsets from the upper left comer of the pointer image to the pointer's active spot 

206 Intuition: Other Features 



colorl7, colorl8, colorl9 
These are the colors of the Intuition pointer. 

PointerTicks 
This describes how many ticks are required for the mouse to move one increment. It should always be a 
power of two. The Preferences tool allows it to be set to 1,2, or 4. Setting it to greater than 4 is not 
advised. For instance, if PointerTicks is set to 32768, to move the pointer from the bottom to the top of 
the screen the user would have to move the mouse more than a mile. 

colorO, colorl, color2, color3 
These are the Workbench colors. 

ViewXOft'set, ViewYOffset 
These describe the offset of the View from its initial start-up position. This configurable offset allows the 
user to position the display on his monitor. 

ViewInitx, ViewInitY 
These have copies of the initial View values, as created by the graphics library. 

EnableCLI 
This field is obsolete, but not yet free for other uses. 

PrinterType 
These are the definitions of the available printer types. See The Amiga ROM Kernel Reference Manual: 
Includes and Autodocs for a complete list of the definitions you might find in this variable. 

PrinterFilename[FILENAME _SIZE] 
The default name for the disk-based printer configuration file is kept in this buffer. 

PrintPitch, PrintQuality, PrintSpacing 
These describe the pitch, print quality, and page spacing for printer drivers. 

PrintLeftMargin, PrintRightMargin 
The character spacing of the print margins are described by these variables. 

PrintImage, PrintAspect, PrintShade 
The values of these variables tell printer drivers about the desired type of page imagery. 

PrintThreshold 
For simple black/white printer dumps, this describes the intensity threshold required to trigger a print of a 
pixel. 

PaperSize, PaperLength, PaperType 
These describe the user's choice of printer paper. 

SerRWBits 
The upper nibble = (8 - number of read bits), and the lower nibble = (8 - number of write bits). 

SerStopBuf 
The upper nibble = (number of stop bits - I), and the lower nibble = (table value for BufSize). 

SerParShk 
The upper nibble = (value for Parity setting), and the lower nibble = (value for Handshake mode). 

Intuition: Other Features 207 



LaceWB 
If workbench is to be interlaced. 

WorkName[FILENAME _SIZE] 
Obsolete. 

RowSizeChange 
System reserved. 

ColumnSizeChange 
System reserved. 

PrintFlags 
The user preference flags, such as center, user indications of how the print is to appear on paper. 

PrintMaxWidth 
Maximum width of the printed picture in lOths of an inch. 

PrintMaxHeight 
Maximum height of the printed picture in lOths of an inch. 

PrintDensity 
The print density. 

PrintX Offset 
The offset of the printed picture in lOths of an inch. 

wb Width 
Override default Workbench width. 

wb_Height 
Override default Workbench height. 

wb_Depth 
Override default Workbench depth. 

ext size 
Reserved. 

PREFERENCES FUNCTIONS 

Your program can use the following functions to check the current Preferences settings. 

• GetPrefs«struct Preferences *)Preffiuffer, Size) 

Gets a copy of the current Preferences data. 

Preffiuffer - pointer to the memory buffer to receive the Preferences data 

Size - number of bytes to copy to the buffer. You should use sizeof(struct Preferences). 

208 Intuition: Other Features 



• GetDefPrefs(Premuft'er, Size) 

Gets a copy of the default Preferences data. 

Premuft'er - pointer to the memory buffer to receive the Preferences data 

Size - number of bytes to copy to the buffer 

Remaking the ViewPorts 

This section is for advanced programmers who are interested in controlling their custom screens directly and want to 
control the entire Intuition display. 

There are two functions that operate on the entire display-RethinkDisplayO and RemakeDisplayO. The 
MakeScreenO function works only with the Copper lists of your custom screen. 

RethinkDisplayO reworks Intuition's internal state data, rethinks the relationship of all of the screen ViewPorts to 
one another and reconstructs the entire Intuition display by calling the graphics primitives MrgCopO and 
LoadViewO. This includes all the screens in the display, not just the ones controlled by your program. It is 
especially handy if you are creating custom screens and want to make up your own lists of Copper instructions for 
handling the display. For more information about the Copper, see theAmiga Hardware Reference Manual. 

RethinkDisplayO makes calls to the graphics primitives MrgCopO and LoadViewO, which causes the display of 
Intuition's screens to be reconstructed. MrgCopO merges all the various Copper instructions for different 
ViewPorts of the display into a single instruction stream. This creates a complete set of instructions for each 
display field (complete scanning of the video beam from top to bottom of the video display). LoadViewO uses this 
merged Copper instruction list to create the display. Before calling RethinkDisplayO, you may wish to call 
MakeScreen() to create the Copper instruction list for your own custom screens., 

Note that RethinkDisplay() can take several milliseconds to run, and it locks out all other tasks while it runs. This 
can seriously degrade the performance of the multitasking Executive, so do not use this routine lightly. 

The function RemakeDisplay reconstructs the entire Intuition display. It calls MakeScreenO for every screen in 
the system and then calls RethinkDisplayO. As with RethinkDisplay(), RemakeDisplay() can take several 
milliseconds to run, and it locks out all other tasks while it runs. This can seriously degrade the performance of the 
multitasking Executive, so do not use this routine lightly. 

To remake the Copper lists of your custom screen, call MakeScreen(). The only difference between MakeScreenO 
and the graphics library routine Make VPort() is that Intuition synchronizes your call to Make VPort() with any 
calls that it needs to make. 

Current Time Values 

The function CurrentTime() gets the current time values. To use this function, you first declare the variables 
Seconds and Micros. Then, when you call the function, the current time is copied into the argument pointers. The 
synopsis of this function is: 

Intuition: Other Features 209 



ULONG Seconds, Micros; 
CurrentTime(&Seconds,&Micros); 

Flashing the Display 

Because the Amiga has no internal bell or beeper, the screen-flashing function is supplied to notify the user of some 
event that is not serious enough to require a requester. For example, Intuition uses this function when the user types 
an invalid character into an integer gadget. This function flashes the background color of the screen. If the 
argument to the function is NULL, every screen in the display is flashed. The synopsis of this function is: 

DisplayBeep(Screen); 

Screen is a pointer to your screen or NULL 

Using Sprites in Intuition Windows and Screens 

Sprite functionality has limitations under Intuition. The hardware and graphics library sprite systems manage sprites 
independently of the Intuition display. In particular: 

• Sprites cannot be attached to any particular screen. Instead, they always appear in front of every screen. 

• When a screen is moved, the sprites do not automatically move with it. The sprites move to their correct 
locations only when the appropriate function is called (either DrawGListO or MoveSpriteO). 

Hardware sprites are of limited use under the Intuition paradigm. They travel out of windows and out of screens, 
unlike all other Intuition mechanisms (except the Intuition pointer, which is meant to be global). 

Remember that sprite data must be in CHIP memory to be accessible to the custom chips. This may be done with 
your compiler's chip keyword, if available. Otherwise, chip memory can be allocated with the Exec AllocMemO 
function or the Intuition AllocRememberO function, setting the memory requirement flag to MEMF_CHIP. You 
may then copy the data to CHIP memory using a function like Exec CopyMemO. 

210 Intuition: Other Features 



Chapter 11 

Intuition: Style 

This chapter describes some important aspects of Intuition style. If you adhere to these style notes, you will help to 
ensure that Intuition applications present a consistent interface to the user. Try to exercise all of the suggestions in 
this chapter. 

Intuition: Style 211 



Menu Style 

Always make sure that you use Oft'MenuO when an item becomes meaningless or non-functional. Do not ever let 
the user select something and then have the application do nothing in response. Always take away the user's ability 
to select that item. 

You should always inform the user that a submenu is present. This prevents the user from being surprised when the 
submenu appears. For instance: 

Drop 
PickUp » 
Fumble 

This method uses the single character "»" symbol from the ECMA Latin-l character set ($BB). The» character 
may appear to the left or the right of the menu item. 

You should also inform the user which menu selections will bring up a requester. Again, the goal is to let the user 
know what's going on. For instance: 

Open ... 
Save 
Save As ... 

This method uses the three characters " ... " to inform about the requester. 

Submenus should be positioned to the right of the menu (if at all possible). Submenu choices should abut to avoid 
flashing problems. 

Your program should always support extended selection for menus. This is especially useful for selections with 
checkmarks. 

The pens you set when you open a window are used to render the menu bar and the items. If you are opening 
multiple windows, you might consider color-coding the window frames and menus. Please use subdued colors as 
they are easier on the eyes. 

212 Intuition: Style 



PROJECT MENUS 

If you are going to allow the user to select which project to work with, you should create a Project-menu. For 
consistency, it is suggested that menu strips be created with the Project menu as the leftmost menu. This menu 
should contain the items shown in the following table. If possible, the items should be in the order shown. 

EDIT MENUS 

Menu 
Item 

NEW 

OPEN ... 

SAVE 

SAVE AS ... 

PRINT 

PRINT AS ... 

ABOUT ... 

QUIT 

Table 11-1: Project Menus 

Function 

Creates a project 

Gets back a project previously saved 

Saves the current project to the disk 

Saves the current project using a different name 

Prints the entire project 

Prints part of a project or selects other than the 
default printer settings 

Displays information about the program. 

Stops the program (If the project was modified, 
ask if the user wants to save the work.) 

If your application can perform edit-like functions, it is suggested that you create an Edit-menu, which should appear 
to the right of the Project menu. It should contain the items shown in the following table. If possible, the items 
should be in the order shown in the table. 

Table 11-2: Edit Menus 

Menu 
Item Function 

UNDO Undoes the previous operation (if possible; 
if not, disable this option!) 

CUT Removes the selected portion of the project 
and puts it in the Clipboard 

COpy Puts a copy of the selected bit of the project 
in the Clipboard 

PASTE Puts a copy of the Clipboard into the project 

ERASE Removes the selected bit without putting it 
into the Clipboard 

Intuition: Style 213 



Gadget Style 

When creating a list of gadgets, in a requester or perhaps a window, be sure to design bolder, more eye-catching 
imagery for the obvious or safe choice. For example, note how the CANCEL choice is highlighted in the requester 
example in this chapter. 

Overlapping the select boxes of gadgets is in general not a good thing to do. This is especially true when it is not 
obvious to users which gadget they are selecting. Unless you are very careful, all sorts of weird things can happen 
and the gadgets will behave in unusual ways. 

As with menus, use OffGadgetO to remove a gadget when it becomes meaningless or nonfunctional. 

User feedback from proportional gadgets should be quick and snappy. You should use the FOLLOWMOUSE gadget 
activation flag and the IDCMP MOUSEMOVE flag when displaying anything that can be quickly redrawn (like a 
list of names). You can avoid unneeded redrawing by checking to see if the gadget has moved far enough to require 
changing the image. 

When you use proportional gadgets to control a list it is suggested that you base your HorizBody or VertBody value 
on one less than the number of things in the list This way, if the user scrolls through the list by clicking in the 
container of the scroll gadget, one of the old lines will still be visible in the new view, letting the user know just 
where they are. 

214 Intuition: Style 

P:. E:J.,),L:::."'R E:.. : Ih eo t' eo's 'YIO 
'-' 

tut''YI1'YI5 b.o.c.k ft'om this 
fU'YIc.tio'YI _ 

Ih I't,k .o.bo ..... t IL' 

tJAH , 
CA0CE:..L 

Figure 11-1: The Dreaded Erase-Disk Requester 



Requester Style 

This is easily the most important rule about requesters: always make sure that there is a safe way to exit from any 
requester. In the above figure, notice that the dreaded "ERASE DISK" requester can be canceled; in fact, the "run 
away" option is rendered in bolder imagery. If, for instance, the user accidentally selected the ERASE DISK option 
from a menu, the CANCEL option saves the day. This is extremely important. We cannot emphasize this point 
strongly enough. 

When you design a requester with your own BitMap imagery, make sure that the imagery works well with the select 
boxes of the gadget list that you supply. 

Take special care when you design requesters that have string gadgets. Make sure that the string gadget is active 
when the requester appears. If you make a requester with more than one string gadget, pressing RETURN should 
activate the next string gadget 

The Sides of Good and Bad 

Whenever the user is presented with a pair of choices that could be characterized as positive/negative options, the 
positive option should always appear on the left and the negative option on the right For example, if you are 
designing a requester with "OK" and "CANCEL" options, "OK" should appear on the left and "CANCEL" on 
the right. If your options are "RETRY" and "ABORT," you should render "RETRY" on the left and "ABORT" 
on the right. 

The Intuition AutoRequestO requester and DisplayAlertO alert both use this scheme. If all programs adopt this 
design, the user will come to feel secure in knowing that the right gadget can always be used to abort some dire 
sequence of events while the left gadget selects the normal, placid continuation of events. 

Do not create requesters with two identical buttons. AutoRequestO will create requesters with just a right hand 
button. (CONTINUE is a good choice for text for this button.) 

Intuition: Style 215 



Command Key Style 

Treat the AMIGA keys like SHIFI' keys. To enter a shortcut, users should be able to hold down the AMIGA key 
with the little finger of one hand, and press one of the keys they would normally press with the other hand. This will 
help touch typists as well as prevent that clumsy feeling that everyone experiences. 

The right AMIGA key combinations are for use by your programs as shortcuts. The left AMIGA key combinations 
are reserved for use by Intuition itself, except for the six selection exceptions listed in the table below. 

The table shows recommendations for standard selection shortcuts (using the left AMIGA key to emulate usage of 
the left button of the mouse): 

Table 11-3: Selection Shortcuts 

Key Pressed with 
Left AMIGA Key Function 

N Bring the Workbench to the front (this is automatically 
handled by Intuition) 

M Send the Workbench to the back (this is automatically 
handled by Intuition) 

B Give a POSITIVE response to an Intuition AUTOREQUEST 

V Give a NEGATIVE response to an Intuition AUTOREQUEST 

I "Select a small piece to the right of the cursor," 
such as the next word 

o "Select a bigger piece to the right of the cursor," 
such as the next sentence 

p •• Select an even bigger piece to the right of the cursor," 
such as the next paragraph 

J "Select a small piece to the left of the cursor," 
such as the previous word 

K •• Select a bigger piece to the left of the cursor," 
such as the previous sentence 

L •• Select an even bigger piece to the left of the cursor, " 
such as the previous paragraph 

The next table shows recommendations for standard information (menu) shortcuts (using the right AMIGA key to 
emulate usage of the right button of the mouse). Programs benefit from an extensive set of menu shortcuts. Users 
quickly learn the keyboard equivalents of common menu operations. Having a large set means that the expert user 
will feel more comfortable with your software package, while the novice user will use the menus. 

216 Intuition: Style 



Table 11-4: Information (Menu) Shortcuts 

Key Pressed with 
Right AMIGA Key Function 

X Cut 

C Copy 

V Paste 

I Change font type to italic 

B Change font type to bold 

U Change font mode to underline 

P Reset font characteristics to 
plain defaults 

Z Undo (cancel) 

o Open 

S Save 

Q Quit 

The HELP key 

Use the HELP key. If your application has built-in help, the key marked 'Help' is a good way for the user to get to 
it Stamp out that helpless feeling users have when they hit the HELP key and nothing happens. 

Cursor Key Style 

Cursor keys are a convenient way to control the movement of the cursor inside an application. Here are our 
recommendations for standard cursor key definitions: 

Table 11-5: Cursor Keys 

Press a cursor 
key with: To: 

ALT 

SHIff 

CTRL 

move one unit in the indicated direction 
(backwards a character, for instance). 

move the next largest unit in the indicated 
direction (forward a word, or down one line less 
than a full page, for instance). 

move the largest unit in the indicated direction 
(to the end of a line, or the top of the file, for instance). 

special or unassigned 

Intuition: Style 217 



Mouse Style 

Intuition uses the left mouse button for selection and the right mouse button for information transfer. To help the 
user understand and remember the elements of every application, you are encouraged to follow this model. 

When the user presses the left button, Intuition examines the state of the system and the position of the pointer. It 
uses this information to decide if the user is trying to select some object, operation, or option. For example, the user 
positions the pointer over a gadget and then presses the left button to select that gadget. If the user moves the mouse 
while holding down the select button, this sometimes means that the user wants to select everything that the pointer 
moves over while the button is still pressed. 

Intuition usually uses the right button for menu operations. Pressing the right button usually displays the active 
window's menu bar over the screen title bar. Moving the mouse while holding down the right button usually means 
that the user wishes to browse through all available information-for example, browsing through the menus. 
Double-clicking the right mouse button can bring up a special requester for extended exchange of information. 
Because this requester is used for the transfer of information, it is appropriate to use the right mouse button. 

If you are planning to handle mouse button events directly, you should follow the selection/information model 
described above. 

Window and Screen Style 

Always give the user a way to get to the screen title bar. (This can be as simple as opening your windows a single 
pixel down from the top of the screen.) Avoid opening full size windows that cannot be moved or resized Your 
program may not the the only one the user is running, so be considerate. 

Let the maximum window size you allow be as large as possible. If your program has no limit set 
MaxWidth/MaxHeight to -1. The user may have a screen larger than 640 by 200. 

Important 

Whenever you open a custom screen, we strongly suggest you redirect AmigaDOS requesters to your 
screen. (An example of this may be found in the Intuition "Windows" chapter.) Otherwise Intuition 
will bring the Workbench screen to the front when it needs to tell the user something. You must reset 
the redirection pointer before closing the window. 

218 Intuition: Style 



Miscellaneous Style Notes 

Programs should always make a call to OpenWorkBenchO when they exit, even if you did not call 
CloseWorkBenchO. Workbench should be open as much as possible. If Workbench was closed and your departure 
has freed up enough memory for Workbench to reopen, it is preferable that it be reopened. Open WorkBenchO will 
not necessarily work (if there is no memory for the display, it will not open). But if every program calls 
OpenWorkBenchO, then Workbench will open if it can. By using this mechanism, you can help give the user a 
consistent environment. Intuition always checks to see if Workbench must open whenever any screen is closed. 

As much as possible, allow the user to configure the parameters of your program. For instance, if you have opened a 
custom screen, let the user change the colors. If your program makes sound, give the user the ability to adjust the 
tone and volume. Do not make the configuration a requirement, however, and always give the user an avenue for 
restoring the defaults. 

If your program is following the mouse position (like a paint package), try to provide a safe place for the user to 
click on to activate your window. If your program has no safe place (and no window title bar) we recommend that 
your program ignore the mouse click that activates your window. This will stop the user from ruining a picture with 
an ill-placed dOL 

Here are the color assignments used for the Intuition pointer sprite data: 

• Color 0 is transparent. 

• Color 1 of the sprite (hardware color register 17) is the color with medium intensity. 

• Color 2 of the sprite (hardware color register 18) is low intensity. 

• Color 3 of the sprite (hardware color register 19) is high intensity. 

Your pointer should be framed by either color 1 or color 3. 

Since the Intuition pointer is always hardware sprite zero, you can set the colors of the pointer by calling the 
SetRGB40 function on the ViewPort of any screen. An example of this follows: 

struct Screen *MyScreen; 

SetRGB4(&MyScreen->ViewPort, 1?, Red1?, Green1?, Blue1?); 
SetRGB4(&MyScreen->ViewPort, 18, Red18, Green18, Blue18); 
SetRGB4(&MyScreen->ViewPort, 19, Red19, Green19, Blue19); 

Icons 

Icons should be designed with the light source coming from the top left comer of the screen. Your icons should be 
visible in one bitplane as well as two bit planes. We suggest edging your icons with black, so they show up, no 
matter what the background. Finally, make your icons as beautiful as you can, make them reflect your program, but 
most of all, make them as small as you can. Users are annoyed by huge icons. They take up space on the screen and 
on the disk. Try for a minimalist approach when designing the perfect icon for your program. 

Intuition: Style 219 



A Final Note on Style From -=RJ=-

"Design beautiful Gadgets, Menus, Requesters. Think simplicity and elegance. Always remember the fourth 
grader, the sophisticated user, and the poor soul who is terrified of breaking the machine." 

"Dare to be gorgeous and unique. But don't ever be cryptic or otherwise unfathomable. Make it unforgettably 
great." 

A Final Note on Style From Jim Mackraz 

"A program's user interface, ideally, would be completely unnoticed. Remember that the user is generally trying to 
get something done, and the value of your program depends only on whether he or she is successful. Don't indulge 
in user-interface cleverness, unless it directly contributes to making the user's interaction with the computer more 
understandable, efficient, or familiar." 

220 Intuition: Style 



ActivateGadget 
ActivateWindow 
AddGadget 
AddGList 
AlIocRemember 
AutoRequest 

BeginRefresh 
BuildSysRequest 

ClearDMRequest 
ClearMenuStrip 
ClearPointer 
CloseScreen 
CloseWindow 
CloseWorkBench 
CurrentTime 

Chapter 12 

Intuition: Functions 

Activates a string gadget 
Activates an Intuition Window 
Adds a Gadget to the Gadget list of a Window 
Add a linked list of gadgets to a Window or Requester 
A1locMem and create a link node to make FreeMem easy 
Automatically builds and gets response from a Requester 

Sets up a Window for optimized refreshing 
Builds and displays a system Requester 

Clears the DMRequest of the Window 
Clears the Menu strip from the Window 
Restores the default Intuition pointer in a Window 
Closes an Intuition Screen 
Closes an Intuition Window 
Attempts to close the WorkBench Screen 
Gets the current time values 

Intuition: Functions 221 



Display Alert 
DisplayBeep 
DoubleClick 
DrawBorder 
Drawlmage 

EndRefresh 
EndRequest 

FreeRemember 
FreeSysRequest 

GetDefPrefs 
GetPrefs 
GetScreenData 

InitReq uester 
IntuiTextLength 
ltemAddress 

LockIBase 

MakeScreen 
ModifyIDCMP 
ModifyProp 
MoveScreen 
MoveWindow 

NewModifyProp 

OtJ'Gadget 
OftMenu 
OnGadget 
OnMenu 
OpenScreen 
OpenWindow 
OpenWorkBench 

PrintlText 

RefreshGadgets 
RefreshGList 
Refresh WindowFrame 
RemakeDisplay 
RemoveGadget 
RemoveGList 
ReportMouse 
Request 
RethinkDisplay 

ScreenToBack 
ScreenToFront 

222 Intuition: Functions 

Creates a display of an Alert message 
"Beeps" the video display 
Tests two time values for double-click timing 
Draws the specified border into the RastPort 
Draws the specified Image into the RastPort 

Ends the optimized refresh state of the Window 
Ends the Request and resets the Window 

Frees memory allocated by calls to AllocRememberO 
Frees up memory used by a call to BuildSysRequestO 

Gets a copy of the the Intuition default Preferences 
Gets the current setting of the Intuition Preferences 
Get copy of a screen data structure 

Initializes a Requester structure 
Returns the length (pixel-width) of an IntuiText 
Returns the address of the specified MenuItem 

Get an Intuition lock in order to access IntuitionBase safely 

Does an Intuition-integrated Make VPortO of a custom screen 
Modifies the state of the Window's IDCMP 
Modifies the current parameters of a proportional Gadget 
Attempts to move the Screen by the delta amounts 
Asks Intuition to move a Window 

Same as ModifyPropO, but with selective refresh 

Disables the specified Gadget 
Disables the given menu or menu item 
Enables the specified Gadget 
Enables the given menu or menu item 
Opens an Intuition Screen 
Opens an Intuition Window 
Opens the WorkBench Screen 

Draws the specified IntuiText into the RastPort 

Refreshes (redraws) the Gadget display 
Refresh (redraw) a chosen number of gadgets 
Ask Intuition to redraw your window border 
Remakes the entire Intuition display 
Removes a Gadget from a Window 
Removes a sublist of Gadgets from a Window 
Tells Intuition whether or not to report mouse movement 
Activates a Requester 
The grand manipulator of the entire Intuition display 

Sends the specified Screen to the back of the display 
Brings the specified Screen to the front of the display 



SetDMRequest 
SetMenuStrip 
SetPointer 
SetPrefs 
SetWindowTitles 
ShowTitie 
SizeWindow 

UnlockIBase 

View Address 
ViewPortAddress 

WBenchToBack 
WBenchToFront 
WindowLimits 
WindowToBack 
WindowToFront 

Sets the DMRequest of the Window 
Attaches the Menu strip to the Window 
Sets a Window with its own Pointer 
Sets new Preferences values 
Sets the Window's titles for both Window and Screen 
Sets the Screen title bar display mode 
Asks Intuition to size a Window 

Releases the Intuition lock obtained by LockIBase 

Returns the address of the Intuition View structure 
Returns the address of a Window's ViewPort structure 

Sends the WorkBench Screen in back of all Screens 
Brings the WorkBench Screen in front of all Screens 
Sets the minimum and maximum size limits of the Window 
Asks Intuition to send this Window to the back 
Asks Intuition to bring this Window to the front 

Assembly Language Conventions 

In all Intuition routines, the arguments always follow the same order: addresses first, data second. The registers are 
allocated in ascending order from register 0 (always). Thus, you can look at any routine, start from register AO if the 
routine's arguments start with an address, and start from DO when the routine's arguments become data values. As 
an added mnemonic, even the register names are in alphabetical order-AO precedes DO. The register names for 
each function are given in the Includes and Autodocs Manual. 

Unfortunately for assembly programmers, many of you will have to use assemblers that do not give you macros to 
declare and reference structure elements. If this is the case, you should use the include file called intuition.i, in 
which every Intuition structure variable has a unique name, found in assembler format. 

Intuition: Functions 223 



Chapter 13 

Intuition: Internal Procedures 

This chapter discusses the more esoteric and internal Intuition functions. You have more leeway when using these 
functions in a machine environment in which you have taken complete control of the Amiga and do not intend to 
allow other tasks to coexist with yours. 

NOTE 

These functions are for internal system use only. They are not fully documented, and their use can lead 
to unpredictable results. 

These functions are covered in this appendix: 

SetPrefsO 
This routine allows you to set Intuition's internal state of the Preferences. 

AlobaVVorkbenchO 
This routine allows the Workbench tool to make its presence and departure known to Intuition. 

IntuitionO 
This is the main entry point into Intuition, where input events arrive and are dispatched. 

Intuition: Internal Procedures 225 



SetPrefsO 

This routine configures Intuition's internal data states according to the specified Preferences structure. Normally, 
this routine is called only by: 

• The Preferences program itself after the user has changed the Preferences. The Preferences program also 
saves the user's Preferences data into a disk file named /fidevs:system-configuration/fP. 

• AmigaDOS when the system is being booted up. AmigaDOS opens the devs:system-configuration file and 
passes the information found there to the SetPrefsO routine. This way, the user can create an environment 
and have that environment restored every time the system is booted. 

NOTE 

The intended use for the SetPrefsO call is entirely to serve the user. You should never use this routine 
to make your programming or design job easier at the cost of yanking the rug out from beneath the user. 

The synopsis of this function is: 

• SetPrefs(Preferences, Size, RealThing) 

Preferences - a pointer to a Preferences structure 

Size - the number of bytes contained in your Preferences structure. Typically, you will use "sizeof(struct 
Preferences)" for this argument 

RealThing - a Boolean 1RUE or FALSE designating whether or not this is an intermediate or final version of 
the Preferences. The difference is that final changes to Intuition's preferences causes a global broadcast of 
NEWPREFS events to every application that is listening for this event Intermediate changes may be used, for 
instance, to update the screen colors while the user is playing with the color gadgets. 

Refer to the chapter "Other Features," for information about the Preferences structure and the standard Preferences 
procedure calls. 

Aloha WorkbenchO 

In Hawaiian, "aloha" means both hello and goodbye. The AlohaWorkbenchO routine allows the Workbench 
program to inform Intuition that it has become active and that it is shutting down. 

If the Workbench program is active, Intuition is able to tell it to open and close its windows when someone uses the 
Intuition OpenWorkBenchO and CloseWorkBenchO functions to open or close the Workbench screen. If the 
Workbench program is not active, presumably it has no opened windows, so there is no need for this 
communication. 

This routine is called with one of two kinds of arguments-either a pointer to an initialized message port (which 
designates that Workbench is active and communications can take place), or NULL to designate that the Workbench 
tool is shutting down. 

226 Intuition: Internal Procedures 



When the message port is active, Intuition will send IntuiMessages to it. The messages will have the Class field set 
to WBENCHMESSAGE. The Code field will equal either WBENCHOPEN or WBENCHCLOSE, depending on 
whether the Workbench application should open or close its windows. Intuition assumes that Workbench will 
comply, so as soon as the message is replied to, Intuition proceeds with the expectation that the windows have been 
opened or closed accordingly. 

The procedure synopsis is: 

• AlohaWorkbench(WBPort) 

WBPort - a pointer to an initialized MsgPort structure in which the special communications are to take place. 

IntuitionO 

This is Intuition's main entry point. All of Intuition's I/O operations originate here. The input stream flows into 
Intuition at this portal. 

This routine accepts a single argument: a pointer to a linked list ofInputEvent structures. These events have all the 
real-time state infonnation that Intuition needs to create its art. Refer to the Amiga ROM Kernel Manual for more 
information about InputEvent structure and the operation of the input device. 

When IntuitionO exits, it returns a pointer to a linked list of InputEvent structures. This list of InputEvents has 
no dependable correspondence to the list that was initially submitted to IntuitionO. Intuition may add events to the 
list and extract events from the list. This list of events is nonnally intended for the console device. 

If you are considering feeding false input events to Intuition, please think again. If you are running in an 
environment in which you have taken over the machine, it is probably safe to fool Intuition in a controlled way. If 
you are running in a multitasking environment, however, especially one in which the input device is still feeding 
input events directly into the stream, you can easily cause more harm than good. You may not be able to anticipate 
the things that could go wrong when other programs try to exist in an environment that you are modifying. 

If you are detennined to feed false input events to Intuition, it is much safer to add an input handler to the system 
than to call IntuitionO. Add the input handler to the system at a priority higher than Intuition's; the input queue 
priority ofIntuition is 50, so a priority of 51 will suffice. This will allow your program to see all input events before 
Intuition sees them. You can filter the input events, allowing Intuition to see only those events that you want it to 
see. Also, you can add synthesized events to the input event stream. This allows you to fool Intuition in an honest, 
system-integrated way. 

For example, say that you want to position the pointer yourself but you want to let the user interact with the rest of 
the system as usual. If you see mouse movement events, you can filter them out and not let Intuition see them. At 
the same time, you can create mouse movement events of your own. On the other hand, if you see keyboard events 
you can leave them undisturbed. See the Amiga ROM Kernel Manual for details about the input-handler queue. 

NOTE 

IntuitionO is sometimes required to call the Exec WaitO function. Nonnally, IntuitionO is called from 
within the input device's task, so the input device enters the wait state when these situations arise. If 
you call IntuitionO directly, your task may have to wait. The obvious problem here is the classic 
lockout problem-your task cannot create the required response because your task has forced itself to 
wait, which will cause the system to freeze. The best way to get around this is to have a separate task 
that calls IntuitionO and does nothing more. 

Intuition: Internal Procedures 227 



The synopsis of this function is: 

• Intuition(InputEvent) 

InputEvent - a pointer to the first in a linked list of InputEvent structures. 

228 Intuition: Internal Procedures 



Chapter 14 

Exec: Libraries 

The Amiga system software comprises many separate subsystems known as libraries and devices. A library 
provides a group of related functions which may be accessed by multiple applications. Through the library interface, 
it is possible to call any of the system routines without knowing its location in the system. This chapter discusses 
how libraries are designed and used. 

What Is a Library? 

A library is a group of related functions that are accessed by system software and applications through a library base 
jump table. A library consists of reentrant function code and a library base. The library base contains a Library 
node structure, which is preceded by a table of 6-byte vectors to the library functions and followed by library
specific data structures. Some libraries reside in the system ROM, and others are loaded from disk when they are 
needed. Each library may be opened and closed individually. When a library is open, any of its functions may be 
called. When all openers of a library have closed it, the library becomes a candidate for purging from the system 
memory. The jump table and base of a library are generally built dynamically when the library is initialized. 

Exec: Libraries 229 



How To Access a Library 

You must perform two steps to access a library. First, you must use the Exec OpenLibraryO function to get the 
base address of the library you wish to access. Since a library's base is dynamically built when the library is 
initialized, the base address may be anywhere in RAM. 

The following diagram illustrates the full structure of a library base in memory: 

Lower memory addresses 

etc ... etc ... 

jump to function 6 (LVO-36) userfunc 

jump to function 5 (LVO -30) user fonc 
jump to function 4 (LVO -24) RESERVED 

jump to function 3 (LVO -18) EXPUNGE 

jump to function 2 (LVO -12) CLOSE 
jump to function 1 (LVO -6) OPEN 

Library node structure (at base address) 

Library-specific Data Segment 

Higher memory addresses 

The base address of a library is a pointer to the beginning of its Library node structure. Using the base address of a 
library, you can call the library's functions by using defined negative offsets from the base known as LVO's or 
Library Vector Offsets. As shown in the diagram, the 6-byte library function vectors precede the Library node, so 
the vector offset to the first function is at offset -6 from the library base, the next at -12, and so on. By using positive 
offsets defined in a library's base structure include file, you can also reference the base data in the library's node 
structure and data segment. This form of indirection allows you to develop code that is not dependent on the 
absolute locations of the system routines or libraries. This is important because the system routines themselves and 
the dynamically built library bases appear at different addresses on different systems, and can even appear at 
different addresses on the same system. Therefore, accessing the system routines through library calls is necessary 
to assure that your software can work on different machines. 

OPENING A LIBRARY 

You prepare a library for use by calling the routine OpenLibraryO. This call takes the form 

LibPtr = OpenLibrary(LibNarne, Version) 
DO Al DO 

where 

LibPtr 
is a non-zero pointer to the library's base (Library node) if the requested library has been located. Be sure 
to check that the returned value is non-zero before attempting to use it. If it is zero, the open failed. 

230 Exec: Libraries 



LibName 
is a pointer to a string variable (null-terminated) that contains the name of the library that you wish to 
open. 

Version 
is the version number of the library that you require. Any library version equal to or greater (more recent) 
than the your requested version will satisfy your OpenLibraryO call. However, if you specify a newer 
version than is present, the open will fail. 

You can use the value 0 if any version of the named library contains the functions you need. Libraries of the same 
name will include the functions of previous versions. If you require functions which were added to library in a 
certain release (as specified in the autodoc or function description file for that library), you should specify the lowest 
library version number that contains the functions you need. Do not specify a higher version than you need, and do 
not use the LIBRARY_VERSION constant defined in the include files (use of the constant would cause your code to 
stop working on previous versions of the opemting system if re-compiled or re-assembled with newer include files). 

The version numbers to be used with OpenLibraryO are: 

o = Any version 
30 = Kickstart V1.0 (obsolete) 
31 = Kickstart V1.1 NTSC only (obsolete) 
32 = Kickstart V1.1 PAL only (obsolete) 
33 = Kickstart V1.2 (oldest revision still in use) 
34 = Kickstart V1.3 (1.2 plus autoboot expansion. library) 

(should only be specified by autoboot device drivers) 
35 = Special RAM-loaded release for A2024 monitor 

(should not be specified unless opening an A2024 screen) 

From the above table, you can see that except for autoboot driver or A2024 code, software should currently be 
specifying 0 or 33 to OpenLibraryO. 

The function OpenLibraryO causes the system to search for a library of that name within the system library list. If 
such an entry is found, the library's open-entry function is called. If the library is not currently RAM-resident, 
AmigaDOS will search the directory currently assigned to LIBS:. If that library is present, it will be loaded, 
initialized, and added to the system library list. If the library allows you access, the library pointer will be returned 
in LibPtr. As long as you have the library open, it will not be expunged from the system and the Libptr will 
remain valid. 

Assembly language programmers may cache the returned library base pointer wherever it is convenient, since they 
will be using and passing the pointer directly in the A6 register when making a library call. C programmers, 
however, must generally store the returned base address in an externally visible (above main) long variable of a 
specific name so that their compiler and linker can find the correct variable from which to read the library base 
pointer value when interfacing C function calls to system library routines: 

The names of the libraries that are currently part of the Amiga software and associated library base pointer names are 
as follows: 

Exec: Libraries 231 



Library Name Library Base Pointer Name 
diskfont.library OiskfontBase 
dos.library OOSBaset * 
exec.library SysBaset 
expansion. library ExpansionBase 
graphics.library GfxBase 
icon.library IconBase 
intuition.library IntuitionBase 
layers.library LayersBase 
mathffp.library MathBase 
mathieeedoubbas.library MathleeeOoubBasBase 
mathieeedoubtrans.library MathIeeeOoubTransBase 
mathtrans.library MathTransBase 
ramlib.library (system private) 
rornboot.library (V1.3 system private) 
translator.library TranslatorBase 
version. library (system private) 
t Automatically opened by the standard C startup module * dos.library is documented in the AmigaDOS Manual 

CALLING A LIBRARY FUNCTION 

After successfully opening a library and storing the base pointer in the correctly named library base variable, C 
programmers can call the library's functions as though they were C functions: 

result = FunctionName(arguments); 

Your C compiler or linker library should supply the necessary interface code between your C call and the system 
function. The results and arguments for each library function are documented in the Includes and Autodocs manual. 

The following code fragment demonstrates calling a system library routine from assembler. The 
_LVO<routineName> label (for example _LVOOpenLibrary) will be resolved to the correct negative library vector 
offset for the function when you link your code with amiga.lib. Alternatively, you can look up the correct value in 
an LVO offset table (see the Includes & Autodocs manual). 

NOTE 

The save/restore of A6 is necessary only if A6 does not already contain the correct value. If you need to 
preserve DO, 01, AO, or AI, you will have to savelrestore these also since these are defined as scratch 
registers for system routines. All other registers will be preserved. 

* Register arguments for each function are defined in the autodocs. 
* (see the Addison-Wesley "Includes and Autodocs" manual) 
* You would set up the register arguments for the function, then 

move.l A6,-(SP) ;save current contents of A6 
move.l <libptr>,A6 ;move library pointer into A6 
jsr LVO<routineName> (A6) ;jsr through library vector table 
move.l (SP)+,A6 ;restore A6 to original value 

;00 contains result, if any 

232 Exec: Libraries 



The example above is the actual assembly code generated by the use of a machine language macro named LINKLffi: 

LINKLIB functionOffset,libraryBase 

where 

function Offset 
is "_LVO" followed by the name of the routine as called from C. 

IibraryBase 
is the register or variable that contains the address of the base of the library. 

For example, if you had stored the base of intuition.library in a variable called IntuitionBase (as C programmers do) 

LINKLIB _LVODisplayBeep,IntuitionBase 

will produce the same code sequence as shown above. This macro is located in the file execllibraries.i. Notice that 
it handles only the linkage to the routine. It does not save any registers or preload any registers for passing values to 
the routine. 

By convention, A6 must contain the library pointer when a library routine is called. This allows any library routine 
to locate the library and access its data or any of its other entry points. Registers AO. AI, DO, and 01 may be used 
as scratch registers by any routine. All other registers, both address and data, if used in a routine, will be saved and 
restored before exit. 

USING A LIBRARY TO REFERENCE DATA 

You can use the LibPtr to reference a data segment associated with a library by specifying a positive offset from 
LibPtr, such as: 

OR in C 

move.l <libptr>,Al 
move.l <offset>(Al),DO 

value = LibBase->offset 

Move library base 
Retrieve data located at <offset> 

where offset is a label defined in the library base include file. 

Library data is not usually accessed directly from outside of a library, but rather is accessed by the routines that are 
part of the library itself. The sample code retrieves data specifically associated with that library. 

NOTE 

Different languages have different interface requirements. This example shows only a typical assembly 
language interface. When you design your own libraries, you may decide how the associated data 
segment is to be used. The system itself places no restrictions on its use. 

CACHING LIBRARY POINTERS 

To make your library calls more efficient, you may cache various pointers. These pointers are the libPtr itself 
(because the library node, while it is open, may not be moved) and the address within the library at which a jump 
instruction is located (because offsets from the IibPtr do not change). You must not, however, cache the jump 
vector from within the library. 

Exec: Libraries 233 



CLOSING A LIBRARY 

When your task has finished using a specific library, your program should call the routine CloseLibraryO. This call 
takes the form: 

CloseLibrary(libPtr) 
Al 

where libPtr is the value returned to you by the call to OpenLibraryO. 

You close a library to tell the library manager that there is one fewer task currently using that library. If there are no 
tasks using a library, it is possible for the system, on request, to purge that library and free up the memory resources 
it is currently using. Each successful open should be matched by exactly one close. Do not attempt to use a library 
pointer after you have closed that library. 

Adding a Library 

Exec provides several methods for adding your own libraries to the system library list. It is possible to call 
LoadSegO (a dos.library function) to load your library and then use the Exec MakeLibraryO and AddLibraryO 
functions to initialize your library and add it to the system. MakeLibraryO allocates space for the code vectors and 
data area, initializes the library node, and initializes the data area according to your specifications, returning to you a 
library base pointer. The base pointer may then be passed to AddLibraryO to add your library to the system. 

However, the more common method of initializing and adding a library or device is the automatic method provided 
through the use of a Resident structure or romtag (defined in e:xec!resident.h and .J). Use of a romtag allows you to 
simply place your library or device in a directory (default LmS: for libraries) and have it automatically loaded and 
initialized when it is opened by an application. 

RESIDENT (ROMT AG) STRUCTURE 

A romtag'ed library should start with MOVEQ #-l,DO (to safely return an error if a user tries to execute the file), 
followed by a Resident structure: 

STRUCTURE RT,O 
UWORD RT MATCHWORD 
APTR RT_MATCHTAG 
APTR RT ENDSKIP 
UBYTE RT FLAGS 
UBYTE RT VERSION 
UBYTE RT TYPE 
BYTE RT PRI 
APTR RT NAME 
APTR RT IDSTRING 
APTR RT IN IT 
LABEL RT SIZE 

* romtag identifier (==$4AFC) 
* pointer to the above UWORD (RT MATCHWORD) 
* usually ptr to end of your cod; 
* usually RTF AUTOINIT 
* release version number (example: 33) 
* type of module (NT_LIBRARY) 
* initialization priority (example: 0) 
* pointer to node name (IImy.libraryll) 
* pointer to id string (llname ver.rev (date) ") 
* pointer to in it code or AUTOINIT tables 

If you wish to perform MakeLibraryO and AddLibraryO yourself, then your RT_FLAGS will not include 
RTF _AUTOINIT, and RT_INIT will be simply be a pointer to your own initialization code. To have Exec 
automatically perform these functions for you, set the RTF _AUTOINIT flag in your Resident structure, and point 

234 Exec: Libraries 



RT_INIT to a set four longwords containing the following: 

dataSize 
This is the size of your library data area, i.e., the combined size of the standard Library node structure 
plus your own library-specific data. 

vectors 
This is a pointer to a table of pointers to your library's functions, terminated with a -1. If the first word of 
the table is -1, then the table is interpreted as a table of words specifying the relative displacement of each 
function entry point from the start of the table. Otherwise it is treated as a table of longword address 
pointers to the functions. vectors must specify a valid table address. 

structure 
This parameter points to the base of an InitStructO data region. That is, it points to the first location 
within a table that the InitStructO routine can use to initialize your Library node structure, library
specific data, and other memory areas. InitStructO will typically be used to initialize the data segment of 
the library, perhaps forming data tables, task control blocks, I/O control blocks, etc. If this entry is a 0, 
then InitStructO is not called. 

initFunction 
This parameter points to a routine that is to be executed after the library node has been allocated and the 
code and data areas have been initialized. When this routine is called, the libAddr (address of this library) 
is placed into data register DO. If initFunction is zero, no init routine is called. 

Complete source code for an RT_AUTOINIT library may be found in the Addison-We·sley Includes and Autodocs 
manual. 

MINIMUM SUBSET OF LIBRARY CODE VECTORS 

The first four code vectors of a library must be the following entries: OPEN, CLOSE, EXPUNGE, and one 
reserved entry. 

OPEN 

CLOSE 

is the entry point called when you use the command OpenLibraryO. In most libraries, OPEN 
increments the library variable lib _ OpenCnt. This variable is also used by CLOSE and 
EXPUNGE. 

is the entry point called when you use the command CloseLibraryO. It decrements the library 
variable lib _ OpenCnt and may do a delayed EXPUNGE. 

EXPUNGE prepares the library for removal from the system. This often includes deallocating memory 
resources that were reserved during initialization. EXPUNGE not only frees the memory allocated 
for data structures, but also the areas reserved for the library node itself. 

RESERVED 
is a fourth function vector reserved for future use. It must always return zero. 

Exec: Libraries 235 



STRUCTURE OF A LIBRARY NODE 

A library node contains all the information that the system needs to manage a library. Here is the library structure as 
it appears in the execllibraries.h include file: 

struct Library 
{ 

} ; 

struct Node lib Node; 
UBYTE lib_Flags; 
UBYTE lib pad; 
UWORD lib-NegSize; 
UWORD lib-posSize; 
UWORD lib=Version; 
UWORD lib Revision; 
APTR lib-IdString; 
ULONG lib-Sum; 
UWORD lib=OpenCnt; 

/* meaning of the flag bits: */ 

/* a task is currently running a 
** checksum on this library 
** (system maintains this flag) 
*/ 
#define LIBF_SUMMING (1 « 0) 

/* number of bytes before library */ 
/* number of bytes after library */ 

/* the checksum itself */ 
/* number of current opens */ 

/* one or more entries have been changed 
** in the library code vectors used by 
** SumLibrary (system maintained flag) 
*/ 
#define LIBF_CHANGED (1 « 1) 

/* a checksum fault should cause 
** a system panic (library flag) 
*/ 
#define LIBF_SUMUSED (1 « 2) 

/* a user has requested expunge but 
** another user still has the library open. 
** (maintained by library) 
*/ 
#define LIBF DELEXP (1 « 3) 

CHANGING THE CONTENTS OF A LIBRARY 

After a library has been constructed and linked to the system library list, you can use the routine SetFunctionO 
either to add or to replace the contents of one of the library vectors. The format of this routine is as follows: 

SetFunction( Library, FuncOffset, FuncEntry) 
Al AO DO 

where 

Library 
is a pointer to the library in which a function entry is to be changed. 

236 Exec: Libraries 



FuncOffset 
is the offset (negative) at which the entry to be changed is located. 

FuncEntry 
is a longword value that is the absolute address of the routine that is to be inserted at the selected position 
in the library code vectors. 

When you use SetFunctionO to mOdify a function entry in a library, it automatically recalculates the checksum of 
the library. 

WARNING 

SetFunction() is for advanced users only. It is very difficult to remove a SetFunctionO because other 
tasks may be executing your code, and also because additional SetFunctionO's may have occurred on 
the same function. Also note that certain libraries (for example dos.library) and some individual library 
function vectors are of non-standard format and can not be replaced via SetFunctionO. 

Relationship of Libraries to Devices 

A device is an interface specification and an internal data structure based on the Library structure. The interface 
specification defines a means of device control. The structures of libraries and devices are so similar that the routine 
MakeLibraryO is used to construct both libraries and devices. Devices require the same basic four code vectors but 
have additional code vectors that must be located in specific positions in the code vector table. The functions that 
devices are expected to perform, at minimum, are shown in the Exec "Input/Output" chapter. Complete sample 
device source code is provided in the Includes and Autodocs manual. 

Exec: Libraries 237 



Chapter 15 

Exec: Memory Allocation 

Introduction 

Exec manages all of the random access memory (RAM) in the system. When your application needs memory space. 
it provides the size and requirements to Exec. Exec will assign a range of memory for your exclusive use. Your 
application is responsible for freeing this memory before exit. 

Areas of free memory are maintained as a special linked list of free regions. Each memory allocation function 
returns the starting address of a block of memory at least as large as the size that you requested to be allocated. The 
allocated memory is not tagged or initialized in any way unless you have specified. for example. MEMF _CLEAR. 

You must return allocated memory to the system when your task completes. As noted above. the system only keeps 
track of available system memory and has no idea which task may have allocated memory and not returned it to the 
system free list. If your program does not return allocated memory when its task exits, that memory is unavailable 
until the system is powered down or reset. 

When you ask for memory to be allocated. the system always allocates blocks of memory in even multiples of eight 
bytes. If you request more or less than eight bytes. your request is always rounded up to the nearest multiple of 
eight. In addition. the address at which the memory deallocation is made is always rounded down to the nearest 
even mUltiple of eight bytes. 

Exec: Memory Allocation 239 



WARNING 

Do not depend on this size! Future revisions of the system may require a different size to guarantee 
alignment of the requested area to a specific boundary. You can depend upon allocation being aligned 
to at least a longword boundary. 

Using Memory Allocation Routines 

MEMORY REQUIREMENTS 

You must tell the system about your memory requirements when requesting a chunk of memory. There are four 
memory requirement possibilities. Three of these tell where within the hardware address map memory is to be 
allocated. The fourth, MEMF _CLEAR, tells the allocator that this memory space is to be zeroed before the 
allocator returns the starting address of that space. 

The memory requirements that you can specify are listed below: 

MEMF CHIP 
This indicates a memory block within the address range of the Amiga custom chips. Unless this flag 
is set properly, your code will fail on machines with expanded memory. Chip memory is required for 
any data that will be accessed by custom chip DMA. This includes floppy disk buffers, screen 
memory, images that will be blitted, sprite data, copper lists, and audio data. 

MEMF FAST 
This indicates a memory block outside of the range that the special purpose chips can access. 
"FAST" means that the special-purpose chips do not have access to the memory and thus cannot 
cause processor bus contention, therefore processor access will likely be faster. Since the flag 
specifies memory that the custom chips cannot access, this flag is mutually exclusive with the 
MEMF _CHIP flag. 

MEMF PUBLIC 
This indicates that the memory requested is to be used for different tasks or interrupt code, such as 
task control blocks, messages, ports, and so on. The designation MEMF PUBLIC should be used to 
assure compatibility with future versions of the system. -

MEMF CLEAR 
This indicates that memory is to be initialized with zeros before returning. 

If no preferences are specified, MEMF _FAST is assumed first, then MEMF _CHIP. 

WARNING 

Always check the result of any memory allocate to be sure the type and amount of memory requested is 
available. Failure to do so will lead to trying to use an non-valid pointer. 

240 Exec: Memory Allocation 



SAMPLE CALLS FOR ALLOCATING SYSTEM MEMORY 

The following examples show how to allocate memory. 

APTR mypointer,anotherptr; 

mypointer = AllocMem(lOO, 0); 
if (!mypointer) 
{ 

1* COULDN'T GET MEMORY, EXIT *1 

AllocMemO returns the address of the first byte of a memory block that is at least 100 bytes in size or null if there is 
not that much free memory. Because the requirement field is specified as 0, memory will be allocated from anyone 
of the system-managed memory regions. 

anotherptr = (APTR) AllocMem(lOOO, MEMF_CHIP MEMF_CLEAR); 
if (!anotherptr) 
( 

1* COULDN'T GET MEMORY, EXIT *1 

Memory is allocated only out of chip-accessible memory; zeroes are filled into memory space before the address is 
returned. If the system free-list does not contain enough contiguous memory bytes in an area matching your 
requirements and of the size you have requested, AllocMemO returns a zero. You must check for this condition. 

NOTE 

Do not attempt to allocate or deallocate system memory from within interrupt code. The "Interrupts" 
chapter explains that an interrupt may occur at any time, even during a memory allocation process. As a 
result, system data structures may not necessarily be internally consistent. 

SAMPLE FUNCTION CALLS FOR FREEING SYSTEM MEMORY 

The following examples free the memory chunks shown in the earlier call to the system allocation routines. 

FreeMem(mypointer, 100); 

FreeMem(anotherptr, 1000); 

NOTE 

FreeMemO rounds down the size of the request to free memory in the same way as AllocMemO rounds 
up the size, thereby maintaining a consistent memory free-list. . 

The routine FreeMemO returns no status. However, if you attempt to free a memory block in the middle of a chunk 
that the system believes is already free, you will cause a system crash. 

Exec: Memory Allocation 241 



Using Memory Information Routines 

To determine the amount of memory available and the type of a particular block of memory, the memory 
information routines A vailMemO and TypeOfMemO are provided. 

MEMORY REQUIREMENTS 

For the memory information routines the same memory type flags are valid as for the allocation routines. In addition 
MEMF _LARGEST can be added to the requirement argument in the AvailMemO routine to find out what the 
largest available memory block of a particular type is. 

SAMPLE CALLS INFORMATION ROUTINES 

The following example shows how to find out how much memory of a particular type is available in the system. 

ULONG size; 

size = AvailMem(MEMF_CHIPIMEMF_LARGEST); 

AvailMemO returns the size of the largest chunk of available chip memory. 

NOTE 

Because of the effect of multitasking the returned value doesn't necessarily represent the amount of 
memory available at that moment. 

The following example shows how to determine the type of memory of a specified memory address. 

UWORD memtype; 

memtype = TypeOfMem(Ox090000); 
if «memtype & MEMF_CHIP) == MEMF_CHIP) 

{ 
/* It's chip memory */ 
} . 

TypeOfMemO returns the the attribute of the memory address. If no valid memory address is specified, a zero will 
be returned. This routine is normally used to determine if a particular chunk of memory is in chip memory. 

Using Memory Copy Routines 

For memory block copies, the CopyMemO and CopyMemQuickO functions can be used. 

242 Exec: Memory Allocation 



SAMPLE CALLS FOR COPYING SYSTEM MEMORY 

The following samples show how to use the copying routines. 

APTR source, target; 

source = AllocMem(lOOO, MEMF CLEAR); 
target = AllocMem(lOOO, MEMF=CHIP); 

CopyMem(source, target, 1000); 

CopyMemO copies the specified number of bytes from the source data region to the target data region. The pointers 
to the regions can be on arbitrary alignments. An attempt is made to optimize large copies with more efficient 
copies. Byte copies are being used for small copies, parts of larger copies, or the entire copy if the source and target 
regions are misaligned with respect to each other. Very small copies are better done with in-line code. 

CopyMemQuick(source, target, 1000); 

CopyMemQuickO performs an optimized copy of the specified number of bytes from the source data region to the 
target data region. The source and target pointers must be longword aligned and the size must be an integral number 
of longwords. 

NOTE 

Neither routine supports arbitrary overlapping copying. 

SUMMARY OF SYSTEM CONTROLLED MEMORY HANDLING ROUTINES 

AllocMemO and FreeMemO 

These are system-wide memory allocation and deallocation routines. They use a memory free-list owned 
and managed by the system. 

AvailMemO 

This routine returns the number of free bytes in a specified type of memory. 

TypeOfMemO 

This routine returns the memory attributes of a specified memory address. 

CopyMemO and CopyMemQuickO 

CopyMemO is a general purpose memory copy routine. CopyMemQuickO is an optimized version of 
CopyMemQuickO, but has restrictions on the size and alignment of the arguments. 

Allocating Multiple Memory Blocks 

Exec provides the routines AllocEntryO and FreeEntryO to allocate multiple memory blocks in a single call. 
AllocEntryO accepts a data structure called a MemList, which contains the information about the size of the 
memory blocks to be allocated and the requirements, if any, that you have regarding the allocation. The MemList 

Exec: Memory Allocation 243 



structure is found in the include file execlmemory.h and is defined as follows: 

struct MemList 
{ 
struct Node ml Node; 
UWORD ml-NUmEntries; 1* number of MemEntrys *1 
struct MemEntry ml=ME[l]; 1* where the MemEntrys begin*1 
} i 

where: 

Node 
allows you to link together multiple MemLists. However, the node is ignored by the routines 
AUocEntryO and FreeEntryO. 

ml_NumEntries 
tells the system how many MemEntry sets are contained in this MemList. Notice that a MemList is a 
variable-length structure and can contain as many sets of entries as you wish. 

The MemEntry structure looks like this: 

struct MemEntry 
{ 

union 
{ 

ULONG meu Reqs; 
APTR meu=Addr; 
} me Un; 

ULONG me_Length; 
} ; 

1* the AllocMem requirements *1 
/* address of your memory */ 

/* the size of this request *1 

Sample Code for AUocating Multiple Memory Blocks 

#include <exec/types.h> 
#include <exec/memory.h> 

#ifdef LATTICE 
#include <proto/all.h> 
#include <stdio.h> 
#include <stdlib.h> 
#endif 

#define ALLOCERROR OxBOOOOOOO 

struct MemList *mymemlist; I * pointer to a MemList * / • 

1* define a new structure because C cannot initialize unions *1 
struct MyNeeds 
{ 

struct MemList mn_head; 
struct MemEntry mn_body[3]; 

myneeds; 

VOID main (VOID); 

VOID main (VOID) 
{ 

1* one entry in the header *1 
1* additional entries follow directly as * 

* part of the same data structure *1 

myneeds.mn_head.ml_NumEntries = 4; 1* 4! Since the MemEntry starts at 1! *1 

myneeds.mn body[O].me Reqs MEMF CHIP MEMF_CLEAR; 
myneeds.mn=body[O].me=Length =100000; 

244 Exec: Memory Allocation 



myneeds.mn_body[l].me_Reqs = MEMF FAST I MEMF CLEAR; 
myneeds.mn_body[l].me_Length = 200000; -

myneeds.mn_body[2] .me_Reqs = MEMF_PUBLIC; 
myneeds.mn_body[2] .me_Length = 25000; 

/* saying 'struct MemEntry mn_body[3]' is simply a way of adding 
* extra MemEntry structures contiguously at the end of the first 
* such structure at the ned of the MemList. Thus members of the 
* MemList of type MemEntry can be referenced to in C as additional 
* members of the 'mel]' data structure. 
*/ 

mymemlist = (struct MemList *)AllocEntry«struct MemList *)&myneeds); 

if «ULONG)mymemlist & ALLOCERROR) 
{ 

printf(IIAllocEntry FAILED\n"); 
exit (200) ; 

/* 'error' bit 31 is set */ 
/* see below */ 

/* we got the memory we wanted. We can use FreeEntry() now */ 
FreeEntry(mymemlist); 

AllocEntryO returns a pointer to a new MemList of the same size as the MemList that you passed to it. For 
example, ROM code can provide a MemList containing the requirements of a task and create a RAM-resident copy 
of the list containing the addresses of the allocated entries. The pointer to the MemList is used as the argument for 
FreeEntryO to free the memory blocks. 

NOTE 

The MemList structure used by assembly programmers is slightly different; it has no MemEntry 
structure. 

Result of Allocating Multiple Memory Blocks 

The MemList created by AllocEntryO contains MemEntry entries. MemEntrys are defined by a union statement, 
which allows one memory space to be defined in more than one way. 

If AllocEntryO returns a value with bit 31 clear, then all of the meu_Addr positions in the returned MemList will 
contain valid memory addresses meeting the requirements you have provided. 

To use this memory area, you would use code similar to the following: 

struct MemList *ml; 
APTR mydata, moredata; 

if « (ml & (lL«31)) < 0) 
{ 

else 

mydata = ml->ml me[O].me Addr; 
moremydata = ml->ml=me[l] .me=Addr; 
} 

{ 

exit(200); /* error during AllocEntry */ 
) 

If AlIocEntryO has problems while trying to allocate the memory you have requested, instead of the address of a 
new MemList, it will return the memory requirements value with which it had the problem. Bit 31 of the value 
returned will be set, and no memory will be allocated. Entries in the list that were already allocated will be freed. 

Exec: Memory Allocation 245 



Memory Allocation and Tasks 

If you want to take advantage of Exec's automatic cleanup, use the MemList and AllocEntryO facility to do your 
dynamic memory allocation. 

In the task control block structure, there is a list header named tC_MemEntry. This is the list header that you 
initialize to point to the MemLists that your task has created by call(s) to AllocEntryO. Here is a short program 
segment that handles task memory list header initialization only. It assumes that you have already run AllocEntryO 
as shown in the simple AllocEntryO example above. 

struct Task *tc; 
struct MemList *ml; 

NewList(tc->tc_MemEntry); 1* Initialize the task's memory list header. * 
* Do this once only! *1 

AddTail(tc->tc_MemEntry, ml); 

Assuming that you have only used the AllocEntryO method (or AllocMemO and built your own custom MemList), 
the system now knows where to find the blocks of memory that your task has dynamically allocated. The 
RemTaskO function automatically frees all memory found on tc_MemEntry. 

NOTE 

The amiga.lib "CreateTaskO" function sets up and initializes a MemList for you. 

SUMMARY OF MULTIPLE MEMORY BLOCKS ALLOCATION ROUTINES 

AllocEntryO and FreeEntryO 

These are routines for allocating and freeing multiple memory blocks with a single call. 

InitStructO 

This routine initializes memory from data and offset values in a table. Typically only assembly language 
programs benefit from using this routine. See the ROM Kernel Manual: Includes & Autodocs for more 
details. 

Managing Memory With AllocateO And DeallocateO 

AllocateO and DeallocateO use a memory region header, called MemHeader, as part of the calling sequence. You 
can build your own local header to manage memory locally. This structure takes the form: 

246 Exec: Memory Allocation 



struct MemHeader 
{ 
struct Node 
UWORD 

mh Node; 
mh-Attributes; /* characteristics of this reqion */ 

struct MemChunk 
APTR 

*mh-First; 
mh-Lower; 
mh-Upper; 
mh=:Free; 

/* first free region */ 
/* lower memory bound */ 

APTR /* upper memory bound + 1 */ 
ULONG /* total number of free bytes */ 
} ; 

where 

mh Attributes 
- is ignored by AllocateO and DealiocateO. 

mh First 
is the pointer to the first MemChunk structure. 

mh Lower 
- is the lowest address within the memory block. This must be a multiple of eight bytes. 

mh_Upper 
is the highest address within the memory block + 1. The highest address will itself be a multiple of eight 
if the block was allocated to you by AllocMemO. 

mh Free 
is the total free space. 

This structure is included in the include files exec/memory.h and exec/memory.i. 

The following sample program fragment shows the correct initialization of a MemHeader structure. It assumes that 
you wish to allocate a block of memory from the global pool and thereafter manage it yourself using AllocateO and 
DeallocateO. 

iinclude <exec/types.h> 
iinclude <exec/memory.h> 

iifdef LATTICE 
iinclude <proto/all.h> 
iinclude <stdio.h> 
iinclude <stdlib.h> 
iendif 

idefine BLOCKSIZE 4000 
VOID main {VOID) ; 

VOID main {VOID) 
{ 

struct 
struct 
APTR 
APTR 

MemHeader 
MemChunk 
block1; 
block2; 

*mh; 
*mc; 

/* or whatever you want */ 

/* Get the MemHeader needed to keep track of our new block */ 
mh = (struct MemHeader *)AllocMem«LONG)sizeof(struct MemHeader), MEMF_CLEAR); 
if (!mb) 

exit (10) ; 

/* Get the actual block the above MemHeader will manage */ 
mc = (struct MemChunk *)AllocMem(BLOCKSIZE, 0); 
if (!mc) 

{ 

FreeMem(mh, (LONG)sizeof(struct MemHeader)); exit(10); 

Exec: Memory Allocation 247 



mh->mh Node.ln Type = NT_MEMORY; 
mh->mh-Node.ln-Name = "myname"; 
mh->mh-First =-mc; 
mh->mh-Lower = (APTR)mc; 
mh->mh-Upper = (APTR) (BLOCKSIZE + (ULONG)mc); 
mh->mh=Free = BLOCKSIZE; 

1* Set up first chunk in the freelist *1 
mc->mc Next = NULL; 
mc->mc=Bytes = BLOCKSIZE; 

blockl = (APTR)Allocate(mh,20); 
block2 = (APTR) Allocate (mh, 314); 

printf(lImh = $%lx mc=$%lxO, mh, mc); 
printf(lIblock1 = $%lx block2 = $%lxO, block1, block2); 

FreeMem(mh, (LONG)sizeof(struct MemHeader»; 
FreeMem(mc, (LONG)BLOCKSIZE); 

NOTE 

Only free memory is "tagged" using a MemChunk linked list. Once memory is allocated, the system 
has no way of determining which task now has control of that memory. 

If you allocate a large chunk from the system, use tc_MemEntry or assure that in your finalPC routine (specified 
when you perform AddTaskO) you deallocate this large chunk as your task exits. Thus, local memory allocation 
and deallocation from a single large block can perhaps save some bookkeeping-that which might have been 
required if you had extensively used AllocMemO and FreeMemO instead. This can most easily be done by 
recording the allocated block in your task's tc_MemEntry structure. 

Allocating Memory at an Absolute Address 

For special advanced applications, AllocAbsO is provided. With the AllocAbsO routine a memory block starting at 
a specified absolute memory address can be allocated. If the memory is already allocated, or if there is not enough 
memory available for the request, AllocAbsO returns a zero. Here is an example call: 

APTR absoluteptr; 

absoluteptr = (APTR) AllocAbs (10000, Ox2FOOOO); 

if (!(absoluteptr» 
{ 

1* Couldn't get memory, act accordingly *1 

1* After we're done using it, we can use FreeMem() to free the memory block *1 

FreeMem(absoluteptr); 

248 Exec: Memory Allocation 



Chapter 16 

Exec: Lists and Queues 

This chapter describes Exec lists and queues. A list is an unsorted chain of elements. A queue is a sorted list A 
basic understanding of lists and queues is important to understanding Exec itself. Be sure to read the important note 
on shared lists at the end of this chapter. 

Introduction 

The Amiga system software operates in a highly dynamic environment of data structures. An early design goal of 
Exec was to keep the system flexible and open-ended by eliminating artificial boundaries on the number of system 
structures used. Rather than using static system tables, Exec uses dynamically created structures that are attached to 
the system as needed. A list can be empty, but never full. This concept is central to the design of Exec. 

Exec uses lists to maintain its internal database of system structures. Tasks, interrupts, libraries, devices, messages, 
110 requests, and all other Exec data structures are supported and serviced through the consistent application of 
Exec's list mechanism. Lists have a common data structure, and a common set of functions is used for manipulating 
them. Because all of these structures are treated in a similar manner, only a small number of list handling functions 
need be supported by Exec. 

Exec: Lists and Queues 249 



List Structure 

A list is composed of a header and a doubly-linked chain of elements called nodes. The header contains memory 
pointers to the first and last nodes of the linked chain. The address of the header is used as the handle to the entire 
list. To manipulate a list, you must provide the address of its header. 

List Header First Node 

Head Node 

Tail Node 

Figure 16-1: Simplified Overview of an Exec List 

Nodes may be scattered anywhere in memory. Each node contains two pointers; a successor and a predecessor. As 
illustrated above, a list header contains two placeholder nodes that contain no data. In an empty list, the head and 
tail nodes point to each other. 

List Functions 

Exec provides a number of symmetric functions for handling lists. There are functions for inserting and removing 
nodes, for adding and removing head and tail nodes, for inserting nodes in a priority order, and for searching for 
nodes with a particular name. In the following section, header represents a pointer to list header, and node 
represents pointer to a node. 

INSERTION AND REMOVAL 

The InsertO function is used for inserting a new node into any position in a list It always inserts the node following 
a specified node that is already part of the list. For example, Insert(header,node,pred) inserts the node node after 
the node pred in the specified list. If the pred node points to the list header or is NULL, the new node will be 
inserted at the head of the list. Similarly, if the pred node points to the lh _Tall of the list, the new node will be 
inserted at the tail of the list. However, both of these actions can be better accomplished with the functions 
mentioned in the "Special Case Insertion" section below. 

250 Exec: Lists and Queues 



The RemoveO function is used to remove a specified node from a list. For example, Remove(node) will remove the 
specified node from whatever list it is in. Please note: to be removed, a node must actually be in a list. If you 
attempt to remove a node that is not in a list, you will cause serious system problems. 

SPECIAL CASE INSERTION 

Although the InsertO function allows new nodes to be inserted at the head and the tail of a list, the AddHeadO and 
AddTaiiO functions will do so with higher efficiency. Adding to the head or tail of a list is common practice in 
queue type operations, as in first-in-first-out (FIFO) or last-in-first-out (LIFO or stack) operations. For example, 
AddHead(beader ,node) would insert the node at the head of the specified list. 

SPECIAL CASE REMOVAL 

The two functions RemHeadO and RemTaiiO are used in combination with AddHeadO and AddTailO to create 
special list ordering. When you combine AddTailO and RemHeadO, you produce a first-in-first-out (FIFO) list. 
When you combine AddHeadO and RemHeadO a last-in-first-out (LIFO or stack) list is produced. RemTailO 
exists for symmetry. Other combinations of these functions can also be used productively. 

Both functions remove a node from the list, and return a pointer to the removed node. If the list is empty, the 
function return a NULL result. 

MINLIST I MINNODE OPERATIONS 

All of the above functions and macros will work with long or short format node structures. A MinNode structure 
contains only linkage information. A full Node structure contains linkage information, as well as type, priority and 
name fields. The smaller MinNode is used where space and memory alignment issues are important. The larger 
Node is used for queues or lists that require a name tag for each node. 

PRIORITIZED INSERTION (QUEUES) 

The list functions discussed so far do not make use of the priority field in a Node. The EnqueueO function is 
equivalent to InsertO for a priority sorted list. It performs an insert on a priority basis, keeping the higher-priority 
nodes towards the head of the queue. All nodes passed to this function must have their priority and name assigned 
prior to the call. Enqueue(beader,node) inserts the node into the prioritized list after the last node of same or 
higher priority. 

As mentioned earlier, the highest-priority node is at the head of the queue, and the lowest-priority node is at the tail 
of the queue. The RemHeadO function will remove the highest-priority node, and RemTailO will remove the 
lowest-priority node. 

NOTE 

If you add a node that has the same priority as another node in the queue, EnqueueO will use FIFO 
ordering. The new node is inserted following the last node of equal priority. 

Exec: Lists and Queues 251 



SEARCHING BY NAME 

Because many lists contain nodes with symbolic names attached (via the In_Name field), it is possible to find a node 
by its name. This naming technique is used throughout Exec for such nodes as tasks, libraries, devices, and 
resources. 

The FindNameO function searches a list for the first node with a given name. For example, FindName(header, 
"Furrbol") returns a pointer to the first node named "Furrbol." If no such node exists, a NULL is returned. The 
case of the name characters is significant; "foo" is different from "Foo." 

~ lh Head ~ In Succ ~ In Succ ~ In Succ - - -
~ lh Tail = 0 In Pred In Pred In Pred - -

lh TailPred In_Type In_Type In_Type 
1 1 1 In Pri In Pri In Pri 1 _____ 1 _____ 1 

In Name In Name In Name 
1 1 1 I 1 1 
1 1 1 1 1 1 
1 1 
INode Content 1 

1 
INode 

1 
Content 1 

1 1 
INode Content 1 

1 1 1 1 1 1 1- _________ I 1- _________ I 1- _________ I 

Figure 16-2: Complete Sample List Showing all Interconnections 

252 Exec: Lists and Queues 



NODE STRUCTURE DEFINITION 

A node structure is divided into three parts: linkage, information, and content. The linkage part contains memory 
pointers to the node's successor and predecessor nodes. The information part contains the node type, the priority, 
and a name pointer. The content part stores the actual data structure of interest. For nodes that require linkage only, 
a small MinNode structure is used: 

struct MinNode 
{ 

} ; 

struct MinNode *mln Succ; 
struct MinNode *mln=Pred; 

where 

min Succ 
points to the next node in the list (successor). 

min Pred 
points to the previous node in the list (predecessor). 

When a type, priority, or name is required, a full-featured Node structure is used: 

struct Node 
{ 

} ; 

struct Node *In_Succ; 
struct Node *In Pred; 
UBYTE In=Type; 
BYTE In Pri; 
char *In=Name; 

where the additional fields are used as follows: 

In_Type 
defines the type of the node (see execltypes.h for a list). 

In Pri 
specifies the priority of the node (+127 (highest) to -128 (lowest)). 

In_Name 
points to a printable name for the node (a NULL terminated C string). 

The node structure is usually prepended to the content part. For example, the Exec Interrupt structure is defined as 
follows: 

struct Interrupt 
{ 

struct Node is_Node; 
APTR is Data; 
VOID (*is_Code) (); 

} ; 

Here the is_Data and is_Code fields represent the useful content of the node. Since the Interrupt structure begins 
with a Node structure, it may be passed to any of the list manipulation functions. Content may be appended to either 
a MinNode or a Node structure. 

Exec: Lists and Queues 253 



NODE INITIALIZATION 

Before linking a node into a list, certain fields may need initialization. Initialization consists of setting the In_Type, 
In_Pri, and In_Name fields to their appropriate values (If you are using MinNode structures, these fields do not 
exist). The successor and predecessor fields do not require initialization. 

The In _Type field contains the data type of the node. This indicates to Exec (and other interested subsystems) the 
type, and hence the structure, of the content portion of the node. The standard system types are defined in the 
execlnodes.h include file. Some examples of standard system types are NT_TASK, NT_INTERRUPT, 
NT_DEVICE, and NT_MSGPORT. 

The In_Prj field uses a signed numerical value ranging from +127 to -128 to indicate the priority of the node 
(relative to other nodes in the same list). Higher-priority nodes have more positive values; for example, 127 is the 
highest priority, zero is nominal priority, and -128 is the lowest priority. Some Exec lists are kept sorted by priority 
order. In such lists, the highest-priority node is at the head of the list, and the lowest-priority node is at the tail of the 
list. For most Exec node types, priority is not used. In such cases it is a good practice to initialize the priority field to 
zero. 

The In_Name field is a pointer to a NULL-terminated string of characters. Node names are used for identification, 
and to bind symbolic names to actual nodes. Names are also useful for debugging purposes, so it is a good idea to 
provide every node with a name. Take care to provide a valid name pointer; Exec does not copy name strings. 

For example, a Library structure consists of a Node followed by library-specific data; the In_Name field of the Node 
contains the library name. Task names are stored in the In_Name of the task structure. Tasks in the Exec wait queue 
are sorted with EnqueueO. 

Here is a C example showing how you might initialize a node called mylnt, an instance of the interrupt structure 
defined above: 

struct Interrupt myInt; 

myInt.is Node.ln Type = NT INTERRUPT; 
myInt. is-Node. In-Pri = -10; 
myInt. is:)ode .In=:Name = II sample. interrupt "; 

LIST HEADER STRUCTURE DEFINITION 

As mentioned earlier, a list header maintains memory pointers to the first and last nodes of the linked chain of nodes. 
It also serves as a handle for referencing the entire list. The minimum list header ("mlh_") and the full-featured list 
header ("Ih_") are generally interchangeable. 

Here is the C-structure of a minimum list header: 

struct MinList 
{ 

} ; 

struct MinNode *mlh Head; 
struct MinNode *mlh-Tail; 
struct MinNode *mlh=TaiIPred; 

254 Exec: Lists and Queues 



where: 

mlh Head points to the first node in the list. 

mlh Tail is always NULL. 

mlh TailPred points to the last node in the list. 

In a few limited cases a full-featured List structure will be required: 

struct List 
{ 

} ; 

struct Node 
struct Node 
struct Node 
UBYTE 
UBYTE 

*lh Head; 
*lh-Tail; 
*lh - TailPred; 

Ih-Type; 
lh~)ad; 

where the additional fields are used as follows; 

defines the type of nodes within the list (see exec/types.h). 

is a structure alignment byte. 

One subtlety here must be explained further. The list header is constructed in a efficient, but confusing manner. 
Think of the header as a structure containing the head and tail nodes for the list. The head and tail nodes are 
placeholders, and never carry data. The head and tail portions of the header actually overlap in memory. Ih Head 
and Ih_Taii form the head node. Ih_Taii and Ih_TailPred form the tail node. This makes it very easy to find the 
start or end of the list, and eliminates any special cases for insertion or removal. 

The Ih_Head and Ih_Taii fields of the list header act like the In_Suee and Ih_Pred fields of a node. The Ih_Tail 
field is set permanently to NULL, indicating that the head node is indeed the first on the list - that is, it has no 
predecessors. See figure 3 below. 

Likewise, the Ih_Taii and Ih_TailPred fields of the list header act like the In_Suee and Ih_Pred fields of a node. 
Here the NULL Ih _Tail indicates that the tail node is indeed the last on the list - that is, it has no successors. See 
figure 3 below. 

HEADER INITIALIZATION 

List headers must be properly initialized before use. It is not adequate to initialize the entire header to zero. The 
head and tail entries must have specific values. The header must be initialized as follows: 

1. Set the Ih _Head field to the address of Ih_ Tail. 

2. Clear the Ih Tail field. 

3. Set the Ih TailPred field to the address of Ih Head. - -
4. Set Ih _Type to the same data type as the nodes to be kept the list. (Unless you are using a MinList). 

Exec: Lists and Queues 255 



"Head Node" "Tail Node" Merged Header 

in Succ ih Head - -

• ih Tail = 0 -in Pred = 0 in Succ = 0 
-

in Pred ih TaiiPred - -

Figure 16-3: List Header Overlap 

/* C example - equivalent to NewList () */ 
struct List list; 

list.lh Head = (struct Node *)&list.lh_Tail; lh Head ~ - --list.lh Tail = 0; lh Tail = 0 -
list.lh TailPred = (struct Node *)&list.lh_Head; - lh TailPred 
/* Now set lh_Type, if needed */ 

I I I 
I I I -----------

;Assembly example - equivalent to NEWLIST 
MOVE.L AO, LH_HEAD (AO) ;AO points to the list header 
ADDQ.L #4,LH_HEAD(AO) ; Bump LH _HEAD (AO) to address of LH TAIL -
CLR.L LH_TAIL(AO) 
MOVE.L AO, LH_TAILPRED (AO) 

;Now set LH _TYPE, if needed. 

Figure 16-4: Initializing a List Header Structure 

256 Exec: Lists and Queues 



The sequence of assembly instructions in figure 4 is equivalent to the macro NEWLlST, contained in the include 
file execllists.i. Since the MinList structure is the same as the List structure except for the type and pad fields, this 
sequence of assembly language code will work for both structures. The sequence perfonns its function without 
destroying the pointer to the list header in AO (which is why ADDQ.L is used). This function may also be accessed 
from C as a call to NewList(header}, where header is the address of a list header. 

MORE ON THE USE OF NAMED LISTS 

To find multiple occurrences of nodes with identical names, the FindNameO function is called multiple times. For 
example, if you want to find all the nodes with the name pointed to by name: 

VOID DisplayName(struct List *list,UBYTE *name) 
{ 
struct Node *node; 

if (node = FindName(list,name)) 
while (node) 
{ 

printf("Found %s at location %lx\n",node->ln_Name,node); 
node = FindName«struct List *)node,name); 

else printf("No node with name %s found.\n",name); 

Notice that the second search uses the node found by the first search. The FindNameO function never compares the 
specified name with that of the starting node. It always begins the search with the successor of the starting point. 

List Macros for Assembly Language Programmers 

Assembly language programmers may want to optimize their code by using assembly code list macros. Because 
these macros actually embed the specified list operation into the code, they result in slightly faster operations. The 
file exec!lists.i contains the recommended set of macros. For example, the following instructions implement the 
REMOVE macro: 

MOVE.L LN_SUCC(Al),AO 
MOVE.L LN PRED(Al),Al 
MOVE.L AO~LN_SUCC(Al) 
MOVE.L Al,LN_PRED(AO) 

Empty Lists 

get successor 
get predecessor 
fix up predecessor's succ pointer 
fix up successor's pred pointer 

It is often important to determine if a list is empty. This can be done in many ways, but only two are worth 
mentioning. If either the Ih _ TailPred field is pointing to the list header or the In _ Suee field of the Ih _Head is 
NULL, then the list is empty. 

Exec: Lists and Queues 257 



In C, for example, these methods would be written as follows: 

if (list->lh TailPred == (struct Node *)list) 
printf ("list is empty\n"); 

or 

if (NULL == list->lh Head->ln SuccI 
printf("list is ;mpty\n"); 

In assembly code, if AO points to the list header, these methods would be written as follows: 

CMP.L LH_TAILPRED(AO),AO 
BEQ list _is_empty 

or 

MOVE.L LH HEAD (AD), Al 
TST.L LN::::SUCC (Al) 
BEQ list _is_empty 

Because LH_HEAD and LN_SUCC are both zero offsets, the second case may be simplified or optimized by your 
assembler. 

Scanning a List 

Occasionally a program may need to scan a list to locate a particular node, find a node that has a field with a 
particular value, or just print the list. Because lists are linked in both the forward and backward directions, the list 
can be scanned from either the head or tail. 

Here is a code fragment that uses a for loop to print the names of all nodes in a list: 

struct List *list; 
struct Node *node; 

for (node = list->lh Head ; node->ln Succ ; node node->ln_Succ) 
printf("%lx -> %;\n",node,node->ln_Name); 

A common mistake is to process the head· or tail nodes. Valid data nodes have non-NULL successor and 
predecessor pointers. The above loop exits when node->ln_Succ is NULL. Another common mistake is to free a 
node from within a loop. then reference the free memory to obtain the next node pointer. An extra temporary pointer 
solves this second problem. 

In assembly code, it is more efficient to use a look-ahead cache pointer when scanning a list. In this example the list 
is scanned until the first zero-priority node is reached: 

scan: 
MOVE.L 
MOVE.L 
MOVE.L 
BEQ.S 
TST.B 
BNE.S 

not found: 

(Al),Dl 
Dl,Al 
(Al) ,Dl 
not_found 
LN_PRI (Al) 
scan 

258 Exec: Lists and Queues 

first node 

lookahead to next 
end of list ... 

found one 



Full Example 

/* Lists Example - Creates a list, adds some nodes, then displays them. 
* Compile with Lattice C 5.04: LC -Lt -catsfq 
*/ 

#include <exec/types.h> 
#include <exec/lists.h> 
#include <exec/nodes.h> 
#include <exec/memory.h> 
#ifdef LATTICE 
#include <proto/exec.h> 
#include <string.h> 
#include <stdio.h> 
int CXBRK(VOID) ( return(O); 
void main(void); 
#endif 

struct MyNodes ( 
struct Node My Node; 
UBYTE data[62]; 

) ; 

#define NAME NODE ID 100 

/* System Node structure */ 
/* Node-specific data */ 

/* The type of our .. MyNodes ..... */ 

/* Allocate a MyNode structure, copy the given name into the strucure, 
* then add it the specified list. This example does not provide an 
* error return for the out of memory condition. */ 

void AddName(struct List *list,UBYTE *name) 
{ 
struct MyNodes *name_node; 

if (! ( name node = AllocMem(sizeof(struct MyNodes),MEMF_CLEAR) » 
printf("Out of memory\n"); 

else 

strcpy(name node->data,name); 
name node->My Node.ln Name name node->data; 
name-node->My-Node.ln-Type = NAME-NODE ID; 
name-node->My-Node.ln-Pri = 0; - -
AddH~ad( (struct List-*) list, (struct Node *)name_node ); 

/* 
* Free entire list, including the header. The header is not updated 
* as the list is freed. This function demonstrates how to avoid 
* referencing freed memory when deallocating nodes. */ 

void FreeMyList(struct List *list) 
{ 

struct MyNodes *work node; 
struct MyNodes *next=node; 

/* 

work node = (struct MyNodes *) (list->lh Head); /* First node */ 
whil~ (next node = (struct MyNodes *) (work node->My Node.ln Succ» 
(- - - -

FreeMem(work node,sizeof(struct MyNodes»; 
work_node = ~ext_node; 

FreeMem(list,sizeof(struct List»; /* Free list header */ 

* Print the names of each node in a list. *1 
void DisplayList(struct List *list) 
( 
struct Node *node; 

if (list->lh_TailPred == (struct Node *)list) 
printf("List is empty.\n"); 

Exec: Lists and Queues 259 



else 
( 

/* 

for (node = list->lh Head ; node->ln Succ ; node node->ln_Succ) 
printf (1I%lx -> %s\n", node, node->ln_Name) ; 

* Print the location of all nodes with a specified name. */ 
void DisplayName(struct List *list,UBYTE *name) 
( 
struct Node *node; 

if (node = FindName(list,name» 
while (node) 
( 

printf("Found %s at location %lx\n",node->ln Name,node); 
node = FindName«struct List *)node,name); -

else printf("No node with name %5 found.\n",name); 

void mainO 
( 
struct List *MyList; /* Note that a MinList would also work */ 

if (! ( MyList = AllocMem(sizeof(struct List),MEMF_CLEAR» 
printf(1I0ut of memory\n"); 

else 
( 

NewList(MyList); 

AddName(MyList,IName7"); 
AddName(MyList,INameS"); 
AddName(MyList,IName2"); 

AddName(MyList,"Name7"); 
AddName(MyList,"Name3"); 

/* Important: prepare header for use */ 

AddName(MyList,IName6"); 
AddName(MyList,IName4"); 
AddName(MyList,"NameO"); 

AddName(MyList,"NameS"); 
AddName(MyList,"Namel"); 

DisplayName(MyList,"NameS"); 
DisplayList(MyList); 

FreeMyList(MyList); 

Important Note - Shared Lists 

It is possible to collide with other tasks when manipulating a list that is shared by more than one task. None of the 
standard Exec list functions arbitrate for access to the list. For example, if some other task happens to be modifying 
a list while your task scans it, an inconsistent view of the list may be formed. This can result in a corrupted system. 

Generally it is not permissible to read or write a shared list without first locking out access from other tasks. All 
users of a list must use the same arbitration method. Several arbitration techniques are used on the Amiga. Some 
lists may only be accessed only during ForbidO or DisabJeO (see the "Tasks" chapter for more information). 
Other lists are protected by a semaphore. The ObtainSemaphoreO call grants ownership of the list (see the 
"Semaphores" chapter for more information). Some special lists require special arbitration. For example, you must 
use the Intuition LockIBase(O) call before accessing any Intuition lists. 

Failure to lock a shared list before use will result in unreliable operation. 

260 Exec: Lists and Queues 



Chapter 17 

Exec: Tasks 

One of the most powerful features of the Amiga operating system is its ability to run and manage multiple 
independent program tasks, providing each task with processor time based on their priority and activity. These tasks 
include system device drivers, background utilities, and user interface environments, as well as normal application 
programs. This multitasking capability is provided by the Exec library's management of task creation, termination, 
scheduling, event signals, traps, exceptions, and mutual exclusion. 

Introduction 

The Amiga Exec library provides a real-time message-based multitasking operating environment 

Real-time 
means that the ROM routines can respond to events as they happen. It also means that the system optimizes 
routines for fast response. 

Multitasking 
means that many tasks can be operating simultaneously in the Amiga, with no task forced to be aware that 
another is present. 

Exec: Tasks 261 



Message-based 
means that the entire system has been designed to operate on the basis of messages passed back and forth 
between tasks. 

The system manages all Amiga programs as tasks that run along with other tasks on the system. As the system first 
powers up, there are several tasks operating simply waiting for activity or commands. Devices such as the keyboard 
(keyboard.device), the mouse (gameport.device), the timer (timer.device), and the disks (trackdisk.device) are each 
managed by tasks whose job is to sit and wait for instructions from other system and application tasks. While one 
task, such as trackdisk, may be moving the disk head to read a specific sector for one application, another task can 
perform part of its functions, using the time that might have been wasted while the head was being moved. One task 
may be reading the trackdisk, while others may be drawing screen graphics, printing documents, playing music, or 
telecommunicating. 

Tasks on the Amiga 

Exec manages the sharing of the Amiga's 68000 family processor among all tasks running in the system, providing 
each with its own stack, its own exception handling, and full access to all processor registers. System tasks and 
user-started applications (which are generally higher level tasks known as processes) are all multitasked and 
managed by Exec in the same manner. Processes are extended tasks created by dos.library which are able to perform 
DOS interactions such as file 10, stdio, and opening of disk resident libraries, devices, and fonts. User programs 
started by Workbench or CLI are processes. 

SCHEDULING 

Exec accomplishes multitasking by multiplexing the 68000 processor among a number of task contexts. Every task 
has an assigned priority, and tasks are scheduled to use the processor on a priority basis. The highest-priority ready 
task receives processor time until one of the following events occurs: 

a higher-priority task becomes active. 

the running task needs to wait for an external event. 

the running task exceeds a preset time period (a quantum) and there is another equal-priority task ready to 
run. 

Task scheduling is normally preemptive in nature. The running task may lose the processor at nearly any moment 
by being displaced by another more urgent task. Later, when the preempted task regains the processor, it continues 
from where it left off. 

It is also possible to run a task in a non-preemptive manner. This mode of execution is generally reserved for system 
data structure access. It is discussed in the "Exclusion" section toward the end of this chapter. 

In addition to the prioritized scheduling of tasks, time-slicing also occurs for tasks with the same priority. In this 
scheme a task is allowed to execute for a quantum (a preset time period). If the task exceeds this period, the system 
will preempt it and give other tasks of the same priority a chance to run. This will result in a time-sequenced round 
robin scheduling of all equal-priority tasks. 

262 Exec: Tasks 



WAITING 

Because of the prioritized nature of task scheduling, tasks must avoid performing the busy wait technique of polling. 
In this technique, a piece of code loops endlessly waiting for a change in state of some external condition. Tasks 
that use the busy wait technique waste all of the spare power of the processor. In most cases this prevents lower
priority tasks from receiving any processor time, and can waste as much as half of the processor time that would 
have been available for equal-priority tasks. Certain devices, such as the keyboard and the disk, depend on their 
associated tasks. Hence, using a busy wait at a high priority may defer important system services. Busy waiting can 
even cause system deadlocks. As an alternative to polling, Exec provides a number of functions which allow tasks 
to wait for external events without using processor time. The most basic and most flexible of these is the WaitO 
function which allows a task to wait for activity or input from one or more sources. 

When there are no ready tasks, the processor is halted and only interrupts will be serviced. Because task 
multiplexing often occurs as a result of events triggered by system interrupts, this is not a problem. Halting the 
processor often helps improve the performance of other system bus devices. 

TASK STATES 

For every task, Exec maintains state information to indicate its status. A normally operating task will exist in one of 
three states: 

running 

ready 

waiting 

A task that is running is one that currently owns the processor. This usually means that the task is 
actually executing, but it is also possible that it has been temporarily displaced by a system 
interrupt. 

A task that is ready is one that is not currently executing but that is scheduled for the processor. 
The task will receive processor time based on its priority relative to the priorities of other running 
and ready tasks. 

A task that is waiting is in a paused state waiting for an external event to occur. Such a task is not 
scheduled to use the processor. The task will be made ready only when one of its external events 
occurs (see the "Signals" section below). 

A task may also exist in a few transient states: 

added A task in the added state has just been added to Exec and has not yet been scheduled for 
processing. 

removed A task in the removed state is being removed. Tasks in this state are effectively terminated and 
are usually undergoing clean-up operations. 

exception A task in the exception state is scheduled for special exception processing. 

Exec: Tasks 263 



TASK QUEUES 

Tasks that are not in the running state are linked into one of two system queues. Tasks that are marked as ready to 
run but are awaiting an opportunity to do so are kept in the ready queue. This queue is always kept in a priority 
sorted order with the highest priority task at the head of the queue. A waiting queue accounts for tasks that are 
awaiting external events. Unlike the ready queue, the waiting queue is not kept sorted by priority. New entries are 
appended to the tail of the queue. A task will remain in the waiting queue until it is awakened by an event (at which 
time it is placed into the ready queue). 

PRIORITY 

~ 

A task's priority indicates its importance relative to other tasks. Higher-priority tasks receive the processor before 
lower-priority tasks do. Task priority is stored as a signed number ranging from -128 to + 127. Higher priorities are 
represented by more positive values; zero is considered the neutral priority. Normally, system tasks execute 
somewhere in the range of +20 to -20, and most application tasks execute at priority O. 

It is not wise to needlessly raise a task's priority. Sometimes it may be necessary to carefully select a priority so that 
the task can properly interact with various system tasks. The SetTaskPriO Exec function is provided for this 
purpose. 

STRUCTURE 

Exec maintains task context and state information in a task-control data structure. Like most Exec structures, Task 
structures are dynanlically linked onto various task queues through the use of an embedded Exec list Node structure 
(see the Lists chapter). Any task can find its own task structure by calling FindTask(NULL). The C-language form 
of this structure is defined in the exec/tasks.h include file as follows: 

struct Task 
{ 

struct Node tc Node; 
UBYTE tc=Flags; 
UBYTE tc_State; 
BYTE tc IDNestCnt; 1* intr disabled nesting *1 
BYTE tc TDNestCnt; 1* task disabled nesting *1 
ULONG tc-SigAlloc; 1* sigs allocated *1 
ULONG tc=SigWait; 1* sigs we are waiting for *1 
ULONG tc SigRecvd; 1* sigs we have received *1 
ULONG tc=SigExcept; 1* sigs we will take excepts for *1 
UWORD tc TrapAlloc; 1* traps allocated *1 
UWORD tc=TrapAble; 1* traps enabled *1 
APTR tc_ExceptData; 1* points to except data *1 
APTR tc_ExceptCode; 1* points to except code *1 
APTR tc_TrapData; 1* points to trap code *1 
APTR tc_TrapCode; 1* points to trap data *1 
APTR tc_SPReg; 1* stack pointer *1 
APTR tc SPLower; 1* stack lower bound *1 
APTR tc::::SPUpper; 1* stack upper bound + 2*1 
VOID (*tc Switch) (); 1* task losing CPU *1 
VOID (*tc=Launch) (); 1* task getting CPU *1 
struct List tC_MemEntry; 1* allocated memory *1 
APTR tc_UserData; 1* per task data *1 
} ; 

264 Exec: Tasks 



A similar assembly code structure is available in the execltasks.i include file. 

Most of these fields are not relevant for simple tasks; they are used by Exec for state and administrative purposes. A 
few fields, however, are provided for the advanced programs that support higher level environments (as in the case 
of processes) or require precise control (as in devices). The following sections explain these fields in more detail. 

Creation 

To create a new task you must allocate a task structure, initialize its various fields, and then link it into Exec with a 
call to AddTaskO. The task structure may be allocated by calling the AllocMemO function with the 
MEMF _CLEAR and MEMF _PUBLIC allocation attributes. These attributes indicate that the data structure is to 
be pre-initialized to zero and that the structure is shared. 

The Task fields that require initialization depend on how you intend to use the task. For the simplest of tasks, only a 
few fields must be initialized: 

tc_Node The task list node structure. This includes the task's priority, its type, and its name (refer to the 
"Lists and Queues" chapter). 

tc SPLower 
The lower memory bound of the task's stack. 

tc_SPUpper 
The upper memory bound of the task's stack. 

tc_SPReg 
The initial stack pointer. Because task stacks grow downward in memory, this field is usually set to 
the same value as tc_SPUpper. 

Zeroing all other unused fields will cause Exec to supply the appropriate system default values. Allocating the 
structure with the MEMF _CLEAR attribute is an easy way to be sure that this happens. 

Once the structure has been initialized, it must be linked to Exec. This is done with a call to AddTaskO in which 
the following parameters are specified: 

task 

initialPC 

finalPC 

A pointer to an initialized task structure. 

The entry point of your task code. This is the address of the first instruction the new task will 
execute. 

The finalization code for your task. This is a code fragment that will receive control if the 
initialPC routine ever performs a return (RTS). This exists to prevent your task from being 
launched into random memory upon an accidental return. The finalPC routine should usually 
perform various program-related clean-up duties and should then remove the task. If a zero is 
supplied as this parameter, Exec will use its default finalization code (which simply calls the 
RemTaskO function). 

Exec: Tasks 265 



CREATETASK 

A simpler method of creating a task is provided by the amiga.lib Exec support function CreateTaskO, which can be 
accessed if your code is linked with the amiga.lib. 

CreateTask(name,priority ,initiaIPC,stacksize) 

A task created with CreateTaskO may be removed with the amiga.lib DeleteTaskO function, or it may simply 
return when it is finished. CreateTaskO adds a MemList to the tc_MemEntry of the task it creates, describing all 
memory it has allocated for the task, including the task stack and the Task structure itself. This memory will be 
deallocated by Exec when the task is either explicitly removed (RemTaskO or DeleteTaskO) or when it exits to 
Exec's default task removal code (RemTaskO). 

If your development language is not linkable with amiga.lib, it may provide an equivalent built-in function, or you 
can create your own based on the CreateTaskO source code in the Includes and Autodocs manual. 

Depending on the priority of a new task and the priorities of other tasks in the system, the newly added task may 
immediately begin execution. 

Here is an example of simple manual task creation. In this example there is no coordination or communication 
between the main process and the simple task it has created. A more complex example might use named ports and 
messages to coordinate the activities and shutdown of two tasks. Because our task is very simple and never calls any 
system functions which could cause it to be signalled or awakened, we can safely remove the task at any time. 

NOTE 

Because we are not using CreateTaskO, the main process must clean up the memory it allocated for the 
task after the task is removed. 

/* SimpleTask.c 09/89 
* Compiled with Lattice 5.02: LC -b1 -cfist -v -y 
* Linkage: c.o,simpletask.o library LC.lib,amiga.lib 
*/ 

#include <exec/types.h> 
#include <exec/memory.h> 
#include <exec/tasks.h> 
#include <libraries/dos.h> 
#ifdef LATTICE 
#include <proto/all.h> 
#include <stdlib.h> 
#include <stdio.h> 
int CXBRK(void) ( return(O); 
#endif 

#define STACK_SIZE 1000L 

/* Disable Lattice CTRL/C handling */ 

/* Task name, pointers for allocated task struct and stack */ 
APTR stack = NULL; 
struct Task *tc = NULL; 
char *simpletaskname = "MySimpleTask"; 

ULONG sharedvar; 

void simpletask(void); 
void cleanup(void); 
void cleanexit(UBYTE *,LONG); 

void main(argc,argv) 
int argc; 

266 Exec: Tasks 



char **argv; 
( 
if{(stack = AllocMem(STACK SIZE, MEMF CLEAR» == NULL) 

cleanexit(UNot enough memory for task stack\nU,RETURN_FAIL); 

if «tc = (struct Task *) 
AllocMem(sizeof(struct Task),MEMF CLEAR I MEMF PUBLIC» == NULL) 

cleanexit(UNot enough memory for task structure\nU,RETURN_FAIL); 

1* Initialize necessary fields, others were cleared by MEMF CLEAR *1 
tc->tc Node.ln Type = NT TASK; 
tc->tc-Node.ln-Name = simpletaskname; 
tc->tc-SPLower- (APTR) stack; 
tc->tc=SPUpper (APTR) (STACK_SIZE + (ULONG)stack); 
tc->tc_SPReg tc->tc_SPUpper; 

sharedvar = OL; 
AddTask(tc, simpletask, OL); 

printf(UThis program initialized a variable to zero, then started a\n"); 
printf(Useparate task which is incrementing that variable right now,\n"); 
printf(Uwhile this program waits for you to press RETURN.\n"); 
printf(UPress RETURN now: "); 
getchar(); 

printf(UThe shared variable now equals %ld\n",sharedvar); 
1* We can simply remove the task we added because our simpletask 

* does not make any system calls which could cause it to be awakened 
* or signalled later. 
*1 

RemTask (tc) ; 

cleanup (); 
exit (RETURN_OK); 
} 

void simpletask() 
( 
while(sharedvar < Ox8000000) sharedvar++; 
1* Wait forever because main() is going to RemTask() us *1 
Wait(OL); 
} 

void cleanexit(s,e) 
UBYTE *s; 
LONG e; 

( 
if(*s) printf(s); 
cleanup(); 
exit(e); 
} 

void cleanup () 
( 
if(tc) FreeMem(tc,sizeof(struct Task»; 
if(stack) FreeMem(stack,STACK_SIZE); 
} 

STACK 

Every task requires a stack. All task stacks are user mode stacks (in the language of the 68000) and are addressed 
through the A 7 CPU register. All normal code execution occurs on this task stack. Special modes of execution 
(processor traps and system interrupts for example) execute on a single supervisor mode stack and do not directly 
affect task stacks. 

Exec: Tasks 267 



Task stacks are normally used to store local variables, subroutine return addresses, and saved register values. 
Additionally, when a task loses the processor, all of its current registers are preserved on this stack (with the 
exception of the stack pointer itself, which must be saved in the task structure). 

The amount of stack used by a task can vary widely. The theoretical minimum stack size is 72 bytes, which is the 
number required to save 17 CPU registers and a single return address. Of course, a stack of this size would not give 
you adequate space to perform any subroutine calls (because the return address occupies stack space). On the other 
hand, a stack size of lK would suffice to call most system functions but would not allow much in the way of local 
variable storage. Processes that call dos.library functions need an additional 1500 bytes of stack. 

Because stack-bounds checking is not provided as a service of Exec, it is important to provide enough space for your 
task stack. Stack overflows are always difficult to debug and may result not only in the erratic failure of your task 
but also in the mysterious malfunction of other Amiga subsystems. Some compilers provide a stack-checking 
option. 

NOTE 

Such stack-checking options generally can not be used if part of your code will be running on the 
system stack (interrupts, exceptions, handlers, servers), or on a different task's stack (libraries, devices, 
created tasks). 

When choosing your stack size, do not cut it too close. Remember that any recursive routines in your code may use 
varying amounts of stack, and that future versions of system routines may use additional stack variables. By 
dynamically allocating buffers and arrays, most application programs can be designed to function comfortably 
within the default process stack size of 4000 bytes. 

Termination 

Task termination may occur as the result of a number of situations: 

1. A program returning from its initialPC routine and dropping into its finalPC routine or the system default 
finalizer. 

2. A task trap that is too serious for a recovery action. This includes traps like processor bus error, odd 
address access errors, etc. 

3. A trap that is not handled by the task. For example, the task might be terminated if your code happened to 
encounter a processor TRAP instruction and you did not provide a trap handling routine. 

4. An explicit call to the Exec RemTaskO function. 

Task termination involves the deal location of system resources and the removal of the task structure from Exec. The 
most important part of task termination is the deallocation of system resources. A task must return all memory that 
it allocated for its private use, it must terminate any outstanding I/O commands, and it must close access to any 
system libraries or devices that it has opened. 

It is wise to adopt a strategy for task clean-up responsibility. You should decide whether resource allocation and 
deallocation is the duty of the creator task or the newly created task. Sometimes it is easier and safer for the creator 
to handle the necessary resource allocation and deallocation on behalf of its offspring. In such cases it is important 
to make sure that a child task is in a safe state before it is removed and is not using the allocated resources or waiting 

268 Exec: Tasks 



for any condition or signal that might still occur. 

NOTE 

Certain resources, such as signals and created ports, must be allocated and deallocated by the same task 
that will wait on them. Also note that if your subtask code is part of your loaded program, you must not 
allow your program to exit before its subtasks have cleaned up their allocations, and have been either 
deleted or placed in a safe state such as Wait(OL). 

Signals 

Tasks often need to coordinate with other concurrent system activities (other tasks and interrupts). Such 
coordination is achieved through the synchronized exchange of specific event indicators called signals. This is the 
primary mechanism responsible for all intertask communication and synchronization on the Amiga. 

The signal mechanism operates at a low level and is designed for high performance. Signals often remain hidden 
from the user program. The message system, for instance, may use signals to indicate the arrival of a new message. 
The message system is described in more detail in the "Messages and Ports" chapter. 

The signal system is designed to support independent simultaneous events. Signals may be thought of as occurring 
in parallel. Each task has up to 32 independent signals. These signals are stored as single bits in the task control 
structure. One or more signals can occur at the same time. 

All of these signals are considered task relative: a task may assign its own significance to a particular signal. Signals 
are not broadcast to all tasks; they are directed only to individual tasks. A signal has meaning to the task that 
defined it and to those tasks that have been informed of its meaning. For example, signal bit 12 may indicate a 
timeout event to one task, but to another task it may indicate a message arrival event. 

ALLOCATION 

As mentioned above, a task assigns its own meaning to a particular signal. Because certain system libraries may 
occasionally require the use of a signal, there is a convention for signal allocation. It is unwise ever to make 
assumptions about which signals are actually in use. 

Before a signal can be used, it must be allocated with the AlIocSignalO function. This marks the signal as being in 
use and prevents the accidental use of the same signal for more than one event. You may ask for either a specific 
signal number or the next free signal. The state of the newly allocated signal is cleared (ready for use). Generally it 
is best to let the system assign you the next free signal. Of the 32 available signals, the lower 16 are usually reserved 
for system use. This leaves the upper 16 signals free for the user. Other subsystems that you may call depend on 
AlIocSignalO. 

The following C example asks for the next free signal to be allocated for its use: 

if (-1 == (signal = AllocSignal(-l») 
( 

else 

printf("no signal bits available\n"); 
) 

( 

printf("allocated signal number %ld\n", signal); 
) 

Exec: Tasks 269 



NOTE 

The value returned by AllocSignalO is a signal bit number. This value cannot be used directly in calls 
to signal-related functions without first being converted to a mask: 

mask = lL « signal; 

When a signal is no longer needed, it should be freed for reuse with FreeSignal(signal). 

It is important to realize that signal bit allocation is relevant only to the running task. You cannot allocate a signal 
from another task. 

WAITING FOR A SIGNAL 

Signals are most often used to wake up a task upon the occurrence of some external event This happens when a 
task is in its wait state and another task (or a system interrupt) causes a signal. The WaitO function specifies the set 
of signals that will wake up the task and then puts the task to sleep (into the waiting state). Anyone signal or any 
combination of signals from this set are sufficient to awake the task. WaitO returns a mask indicating which signals 
from this set satisfied the wait. The WaitO function implicitly clears those signals that satisfied the wait. This 
effectively resets those signals for reuse. 

Because tasks (and interrupts) normally execute asynchronously, it is often possible to receive a particular signal 
before a task actually waits for it. In such cases the WaitO will be immediately satisfied, and the task will not be put 
to sleep. 

A task may wait for a combination of signal bits and be awakened when any of the signals occur. When the task 
returns from the wait, a signal mask is returned specifying which signal or signals were received. Usually the 
program must check the returned mask for each signal it was waiting on, and take the appropriate action for each 
that occurred. The order in which these bits are checked is often important. Here is a hypothetical example of a 
process that is using the console and timer devices, and is waiting for a message from either device: 

consoleSig = lL « myConsolePort->mp_SigBit; 
timerSig = lL « myTimerPort->mp_sigBit; 

signals = Wait (consoleSig I timerSig); 

if (signals & consoleSig) 
{ 

printf ("new character\n"); 
timeout = 10; 

if (signals & timeOutSig) 
( 
timeout--; 
if (timeout==OL) printf (Utimeout\n"); 
} 

This will put the task to sleep, waiting for a new character, or the expiration of a time period. Notice that this code 
checks for an incoming character signal before checking for a timeout. Although a program can check for the 
occurrence of a particular event by checking whether its signal has occurred, this may lead to busy wait polling. 
Such polling is wasteful of the processor and is usually detrimental to the proper function of the system. However, 
if a program needs to do constant processing and also check signals (a compiler for example) SetSignal(O,O) may be 
used to get a copy of your task's current signals. 

270 Exec: Tasks 



GENERATING A SIGNAL 

Signals may be generated from both tasks and system interrupts with the SignalO function. For example 
Signal(tc,mask) would signal the task with the mask signals. More than one signal can be specified in the mask. 

Exclusion 

From time to time the advanced system program may find it necessary to access global system data structures. 
Because these structures are shared by the system and by other tasks that execute asynchronously to your task, it is 
wise for you to exclude simultaneous access to these structures. This can be accomplished by forbidding or 
disabling, or with the use of semaphores. A section of code that requires the use of any of these mechanisms to lock 
out access by others is termed a critical section. Use of these functions is discouraged. For arbitrating between your 
tasks, semaphores are a superior solution. (See the Exec "Semaphores" chapter) 

FORBIDDING 

Forbidding is used when a task is accessing shared structures that might also be accessed at the same time from 
another task. It effectively eliminates the possibility of simultaneous access by imposing nonpreemptive task 
scheduling. This has the net effect of disabling multitasking for as long as your task remains in its running state. 
While forbidden, your task will continue running until it performs a call to WaitO or exits from the forbidden state. 
Interrupts will occur normally, but no new tasks will be dispatched, regardless of their priorities. 

When a task running in the forbidden state calls the Wait() function, directly or indirectly, it implies a temporary 
exit from its forbidden state. Since almost all stdio, device 10, and file 10 functions must WaitO for 10 completion, 
performing such calls will cause your task to WaitO, temporarily breaking the forbid. While the task is waiting, the 
system will perform normally. When the task receives one of the signals it is waiting for, it will again reenter the 
forbidden state. To become forbidden, a task calls the ForbidO function. To escape, the PermitO function is used. 
The use of these functions may be nested with the expected affects; you will not exit the forbidden mode until you 
call the outermost Permit(). 

As an example, Exec library and device lists should be accessed only when forbidden. To access these lists without 
forbidding jeopardizes the integrity of the entire system. Therefore, all printing of information about the memory 
list must be performed after the scan of the list is completed. 

/* LibList.c 09/89 
* Compiled with Lattice 5.02: LC -bl -cfist -v -y 
* Linkage: c.o,liblist.o library LC.lib,amiga.lib 
*/ 

#include <exec/types.h> 
#include <exec/execbase.h> 
#include <exec/libraries.h> 
#ifdef LATTICE 
#include <proto/all.h> 
#include <stdlib.h> 
#include <stdio.h> 
int CXBRK(void) ( return(O);} /* Disable Lattice CTRL/C handling */ 
#endif 

#define ARRAYSIZE 64L 
extern struct ExecBase *SysBase; 

Exec: Tasks 271 



void main(argc,argv) 
int argc; 
char **argv; 

( 
struct Library *lib; 
ULONG count = OL, k; 
char *names[ARRAYSIZE); 

Forbid () ; 
1* Note - printing within Forbid() would break the forbidden state *1 
for { lib = {struct Library *)SysBase->LibList.lh Head; 

NULL != lib->lib Node.ln SUCCi -
lib = (struct Library *)Iib->lib_Node.ln_Succ) 

if (count < ARRAYS IZE) names [count++) = lib->lib_Node.ln_Name; 
} 

Permit () ; 

printf("Libraries currently in system:\n"); 
for (k=O; k<count; k++) printf(" %s\n",names[k); 
if (count == ARRAYS IZE) printf("Error: array overflow\n"); 
} 

As this program traverses down the library list, it remains forbidden to prevent the list from changing as it is being 
accessed. There is still a possibility that a library could be expunged before we print its name, invalidating our 
pointer to its name string. Copying the name strings, rather than their pointers, would prevent this. 

DISABLING 

Disabling is similar to forbidding, but it also prevents interrupts from occurring during a critical section. Disabling 
is required when a task accesses structures that are shared by interrupt code. It eliminates the possibility of an 
interrupt accessing shared structures by preventing interrupts from occurring. Use of disabling is strongly 
discouraged. 

To disable interrupts you can call the DisableO function. To enable interrupts again, use the EnableO function. 
Although assembler DISABLE and ENABLE macros are provided, assembler programmers should use the system 
functions rather than the macros for upwards compatibility, ease of debugging, and smaller code size. 

Like forbidden sections, disabled sections can be nested. To restore normal interrupt processing, an EnableO call 
must be made for every DisableO. Also like forbidden sections, any direct or indirect call to the WaitO function 
will enable interrupts until the task regains the processor. 

WARNING: It is important to realize that there is a danger in using disabled sections. Because the software on the 
Amiga depends heavily on its interrupts occurring in nearly real time, you cannot disable for more than a very brief 
instant Disabling interrupts for more than 250 microseconds can impede the normal operation of vital system 
functions, especially serial 10. 

WARNING: Masking interrupts by changing the 68000 processor interrupt priority levels with the MOVE SR 
instruction can also be dangerous and is very strongly discouraged. The disable- and enable-related functions 
control interrupts through the 4703 custom chip and not through the 68000 priority level. In addition, the processor 
priority level can be altered only from supervisor mode (which means this process is much less efficient). 

It is never necessary to both disable and forbid. Because disable prevents interrupts, it also prevents preemptive task 
scheduling. When disable is used within an interrupt, it will have the effect of locking out all higher level interrupts 
(lower level interrupts are automatically disabled by the CPU). Many Exec lists can only be accessed while 
disabled. Suppose you want to print the names of all system tasks. You would need to access both the TaskReady 
and TaskWait lists from within a single disabled section. In addition, you must avoid calling system functions that 
would break a disable by waiting (printfO for example). In this example, the names are gathered into a name array 

272 Exec: Tasks 



while interrupts are disabled. Then interrupts are enabled and the names are printed. 

/* TaskList.c 09/89 
* Compiled with Lattice 5.02: LC -bl -cfist -v -y 
* Linkage: c.o,tasklist.o library LC.lib,amiga.lib 
*/ 

#include "exec/types.h" 
#include "exec/execbase.h" 
#include "exec/tasks.h" 
Hfdef LATTICE 
#include <proto/all.h> 
#include <stdlib.h> 
#include <stdio.h> 
int CXBRK (void) ( return (0) ; 
lIendif 

IIdefine ARRAYSIZE 128L 
extern struct ExecBase *SysBase; 

void main (argc, argv) 
int argc; 
char **argv; 

( 
struct Task *task; 
LONG count=O, i=O, readi=O; 
char *names[ARRAYSIZE); 

Disable () ; 

/* Disable Lattice CTRL/C handling */ 

for ( task = (struct Task *)SysBase->TaskWait.lh Head; 
(NULL != task->tc Node.ln Succ) && (count < ARRAYSIZE); 
task = (struct Ta;k *)task->tc_Node.ln_Succ) 

names[count++) = task->tc_Node.ln_Name; 
) 

readi=count; 
for ( task = (struct Task *)SysBase->TaskReady.lh_Head; 

(NULL != task->tc Node.ln SuccI && (count < ARRAYSIZE); 
task = (struct Ta;k *)task->tc_Node.ln_Succ) 

names [count++) 
) 

Enable(); 

if (count == ARRAYSIZE) names [count-1)="error: array overflow"; 

printf("WAITING Tasks:\n"); 
for (i = 0; i < count; i++) 

( 
if (i==readi) printf("READY tasks:\n"); 
printf(" %s\n", names[i)); 
) 

printf("THIS Task:\n %s\n",SysBase->ThisTask->tc_Node.ln_Name); 
) 

Of course, the code in this example will have problems if a task is removed before its name is printed. If this were 
to happen, the name-string pointer would no longer be valid. To avoid such problems it is a good programming 
practice to copy the entire name string into a temporary buffer. 

SEMAPHORES 

Semaphores can be used for the purposes of mutual exclusion. With this method of locking, all tasks agree on a 
locking convention before accessing shared data structures. Tasks that do not require access are not affected and will 
run normally, so this type of exclusion is considered preferable to forbidding and disabling. This form of exclusion 
is explained in more detail in the Exec "Semaphores" chapter. 

Exec: Tasks 273 



Exceptions 

NOTE 

This is a topic for advanced programmers. Exceptions are difficult to use safely. A task exception can 
interrupt a task that is executing a critical section of code within a system function, or one that has 
locked some system resource such as a disk unit or the blitter (note that even simple text output uses the 
blitter.) This possibility makes it extremely dangerous to use most system functions within an 
exception unless you are certain that your interrupted task was performing only local non-critical 
operations. 

Tasks can specify that certain asynchronous events cause exceptions, which are task-private interrupts that redirect a 
task's flow of control without affecting other tasks or interrupts in the system. The task essentially suspends what it 
is doing and enters a special routine to process its exceptional event. 

Exceptions are driven by the task signal mechanism described earlier in this chapter. Instead of waiting for a signal 
to occur, you indicate that it is an exception signal with the SetExceptO function. When the signal occurs, the task 
will be "interrupted" from its normal execution and placed in a special exception handler. 

The tc ExceptCode and tc ExceptData task fields are used to establish the exception handler. The field 
tc _ ExceptCode points to the-routine that will handle the initial processing of all exceptions. If this field is zero, 
Exec will ignore all exceptions. The tc _ ExceptData field can be used to provide a pointer to related data structure. 

On entry to the exception code, the system passes certain parameters in the processor registers. DO contains a signal 
mask indicating which exception has just occurred, and Al points to the related exception data (from 
tc_ExceptData). In addition, the previous task context is pushed onto the task's stack. This includes the previous 
PC, SR, 00-07, and AO-A6 registers. You can think of an exception as a subtask outside of your normal task. 
Because task exception code executes in user mode, however, the task stack must be large enough to supply the 
extra space consumed during an exception. 

While processing a given exception, Exec prevents that exception from occurring recursively. At exit from your 
exception-processing code, you should return the same value in DO to re-enable that exception signal. When the task 
executes the RTS at the end of the handler, the system restores the previous contents of all of the task registers and 
resumes the task at the point where it was interrupted by the exception signal. When two or more exception codes 
occur simultaneously, the exception-processing code determines the order in which they are handled by the order in 
which the signal bits are examined. 

Traps 

Task traps are synchronous exceptions to the normal flow of program control. They are always generated as a direct 
result of an operation performed by your program's code. Whether they are accidental or purposely generated, they 
will result in your program being forced into a special condition in which it must immediately handle the trap. 
Address error, privilege violation, zero divide, and trap instructions all result in task traps. They may be generated 
directly by the 68000 processor (Motorola calls them "exceptions") or simulated by software. 

A task that incurs a trap has no choice but to respond immediately. The task must have a module of code to properly 
handle the trap. Your task may· be aborted if a trap occurs and no means of handling it has been provided. Default 
trap handling code (tc_TrapCode) is provided by the operating system. 

274 Exec: Tasks 



You may instead choose to do your own processing of traps. The tc _ TrapCode field is the address of the handler 
that you have designed to process the trap. The tc _ TrapData field is the address of the data area for use by the trap 
handler. 

The 68000 traps of particular interest are: 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
32-47 

Table 17-1: Traps (68000 Exception Vector Numbers) 

Bus error 
Address error 
Illegal instruction 
Zero divide 
CHI{ instruction 
TRAPV instruction 
Privilege violation 
Trace 
Line 1010 emulator 
Line 1111 emulator 
Trap instructions 

access of nonexistent memory 
long/word access of odd address (68000) 
illegal opcode (other than Axxx or Fxxx) 
processor division by zero 
register bounds error trap by CHK 
overflow error trap by TRAPV 
user execution of supervisor opcode 
status register TRACE bit trap 
execution of opcode beginning with $A 
execution of opcode beginning with $F 
TRAP N instruction where N = 0 to 15 

The actual stack frames generated for these traps are processor-dependent. The 68010,68020, and 68030 processors 
will generate a different type of stack frame than the 68000. If you plan on having your program handle its own 
traps, you should not make assumptions about the format of the supervisor stack frame. Check the flags in the 
AttnFlags field of the ExecBase structure for the type of processor in use and process the stack frame accordingly. 

HANDLERS 

For compatibility with the 68000, Exec performs trap handling in supervisor mode. This means that all task 
switching is disabled during trap handling. At entry to the task's trap handler, the system stack contains a 
processor-dependent trap frame as defined in the 68000/10/20/30 manuals. A longword exception number is added 
to this frame. That is, when a handler gains control, the top of stack contains the exception number and the trap 
frame immediately follows. 

To return from trap processing, remove the exception number from the stack (note that this is the supervisor stack, 
not the user stack) and then perform a return from exception (RTE). 

Because trap processing takes place in supervisor mode, with task dispatching disabled, it is strongly urged that you 
keep trap processing as short as possible or switch back to user mode from within your trap handler. If a trap 
handler already exists when you add your own trap handler, it is smart to propagate any traps that you do not handle 
down to the previous handler. This can be done by saving the previous address from tc_TrapCode and having your 
handler pass control to that address if the trap which occurred is not one you wish to handle. 

The following example installs a simple trap handler which intercepts processor divide-by-zero traps, and passes on 
all other traps to the previous default trap code. The example has two code modules which are linked together. The 
trap handler code is in assembler. The C module installs the handler, demonstrates its effectiveness, then restores the 
previous tc_ TrapCode. 

Exec: Tasks 275 



/* Trap c.c 
* Compiled 
* Linkage: 
*/ 

09/89 - C module of sample integer divide-by-zero trap 
with Lattice 5.02: LC -bI -cfist -v -y 
c.o,trap_c.o,trap_a.o library LC.lib,amiga.lib 

#include <exec/types.h> 
#include <exec/tasks.h> 
#ifdef LATTICE 
#include <proto/all.h> 
#include <stdlib.h> 
#include <stdio.h> 
int CXBRK(void) (return(O); 
#endif 

/* Disable Lattice CTRL/C handling */ 

/* assembler trap code in trap_a.asm */ 
extern ULONG trapa(); 

APTR oldTrapCode; 
ULONG countdivO; 

void main(argc,argv) 
int argc; 
char **argv; 

{ 

struct Task *thistask; 
ULONG k,j; 

thistask = FindTask(NULL); 

/* Save our task's current trap code pointer */ 
oldTrapCode thistask->tc_TrapCode; 

* 

/* Point task to our assembler trap handler code 
* Ours will just count divide-by-zero traps, and 
* pass other traps on to the normal TrapCode 
*/ 

thistask->tc_TrapCode = (APTR)trapa; 

countdivO = OL; 
/* Let's divide by zero a few times */ 
for(k=O; k<4; k++) 

{ 

printf("divlding %ld by zero ... ",k); 
j = k/OL; 
printf("did it\n"); 
} 

printf("\nDivide by zero happened %ld times\n",countdivO); 

/* Restore old trap code */ 
thistask->tc TrapCode = oldTrapCode; 
} -

* trap_a.asm - Example trap handling code (leaves DO intact) 
* 
* Entered in supervisor mode with the following on the supervisor stack: 
* O(sp).l = trap# 
* 4(sp) Processor dependent exception frame 

INCLUDE "exec/types.i" 
INCLUDE "libraries/dos.i" 

_trapa: 

XDEF _trapa 

XREF countdivO 
XREF =oldTrapCode 

CODE 

276 Exec: Tasks 

our trap handler entry 



endtrap: 

notdivO: 

CMPI.L #5, (SP) 
BNE.S notdivO 
ADD.L #l,_countdivO 

ADDQ #4,SP 
RTE 

TST.L oldTrapCode 
BEQ.S ;ndtrap 
MOVE.L _oldTrapCode,-(SP) 
RTS 

END 

TRAP INSTRUCTIONS 

is this a divide by zero ? 
no 
yes, increment our divO count 

remove exception number from SSP 
return from exception 

is there another trap handler ? 
no, so we'll exit 
yes, go on to old TrapCode 
jumps to old TrapCode 

The TRAP instructions in the 68000 generate traps 32-47. Because many independent pieces of system code may 
desire to use these traps, the AlIocTrapO and FreeTrapO functions are provided. These work in a fashion similar 
to that used by AllocSignalO and FreeSignalO, mentioned above. 

Allocating traps is simply a bookkeeping job within a task. It does not affect how the system calls the trap handler; 
it helps coordinate who owns what traps. Exec does nothing to determine whether or not the task is prepared to 
handle this particular trap. It simply calls your code. It is up to your program to handle the trap. 

To allocate any trap, you can use the following code: 

if (-1 == (trap = AllocTrap(-l))) 
( 

printf("all trap instructions are in use\n"); 
} 

or you can select a specific trap using this code: 

if (-1 == (trap = AllocTrap(3))) 
( 

printf("trap #3 is in use\n"); 
} 

To free a trap you use FreeTrapO. 

Exec: Tasks 277 



Chapter 18 

Exec: Messages and Ports 

Introduction 

For intersystem communication, Exec provides a consistent, high-performance mechanism of messages and ports. 
This mechanism is used to pass message structures of arbitrary sizes from task to task, interrupt to task, or task to 
software interrupt. In addition, messages are often used to coordinate operations between cooperating tasks. 

A message data structure has two parts: system linkage and message body. The system linkage is used by Exec to 
attach a given message to its destination. The message body contains the actual data of interest. The message body 
is any arbitrary data block less than 64K bytes in size. 

Messages are always sent to a predetermined destination port. At a port, incoming messages are queued in a first
in-first-out (FIFO) order. There are no system restrictions on the number of ports or the number of messages that 
may be queued to a port (other than the amount of available system memory). 

Messages are always queued by reference. For performance reasons message copying is not performed. In essence, 
a message between two tasks is a temporary license for the receiving task to use a portion of the memory space of 
the sending task-that portion being the message itself. This means that if task A sends a message to task B, the 
message is still part of the task A context. Task A, however, should not access the message until it has been replied 
-that is, until task B has sent the message back, using the ReplyMsgO function. This technique of message 
exchange imposes important restrictions on message access. 

Exec: Messages and Ports 279 



Ports 

Ports are rendezvous points at which messages are collected. A port may contain any number of outstanding 
messages from many different originators. When a message arrives at a port, the message is appended to the end of 
the iist of messages for that port, and a prespecified arrival action is invoked. This action may do nothing, or it may 
cause a predefined task signal or software interrupt (see the "Interrupts" chapter). 

Like many Exec structures, ports may be given a symbolic name. Such names are particularly useful for tasks that 
must rendezvous with dynamically created ports. They are also useful for debugging purposes. 

STRUCTURE 

A message port consists of a MsgPort structure as defined in the execlports.h and execlports.i include files. The C 
structure for a port is as follows: 

struct MsgPort 
( 
struct Node 
UBYTE 
UBYTE 
struct Task 
struct List 
) ; 

where 

mp_Node 

mp_Node; 
mp Flags; 
mp-SigBit; 

*mp-SigTask; 
mp:::MsgList; 

is a standard Node structure. This is useful for tasks that might want to rendezvous with a particular 
message port by name. 

mp_Flags 
are used to indicate message arrival actions. See the explanation below. 

mp_SigBit 
is the signal bit number when a port is used with the task signal arrival action. 

mp_SigTask 
is a pointer to the task to be signaled. If a software interrupt arrival action is specified, this is a 
pointer to the interrupt structure. 

mp_MsgList 
is the list header for all messages queued to this port. (See the "Lists and Queues" chapter). 

The mp_Flags field contains a subfield indicated by the PF_ACTION mask. This sub-field specifies the message 
arrival action that occurs when a port receives a new message. The possibilities are as follows: 

PA_SIGNAL 
This subfield tells the program to signal the specified task on the arrival of a new message. Every 
time a message is put to the port another signal will occur regardless of how many messages have 
been queued to the port 

280 Exec: Messages and Ports 



PA SOFTINT 
This sub field causes the specified software interrupt. Like PA SIGNAL, PA SOFTINT will cause 
the software interrupt to be posted every time a message is received. 

PA IGNORE 
- This subfield tells the program to perform no opemtion other than queuing the message. This action 

is often used to stop signaling or software interrupts without disturbing the contents of the 
mp_SigTask field. 

It is important to realize that a port's arrival action will occur for each new message queued, and that there is not a 
one-to-one correspondence between messages and signals. Task signals are only single-bit flags so there is no 
record of how many times a particular signal occurred. There may be many messages queued and only a single task 
signal; sometimes however there may be a signal, but no messages. All of this has certain implications when 
designing code that deals with these actions. Your code should not depend on receiving a signal for every message 
at your port. All of this is also true for software interrupts. 

CREATION 

To create a new message port, you must allocate and initialize a MsgPort structure. If you want to make the port 
public, you will also need to call the AddPortO function. Port structure initialization involves setting up a Node 
structure, establishing the message arrival action with its pammeters, and initializing the list header. The following 
example of port creation is equivalent to the CreatePortO function as supplied in amiga./ib: 

struct MsgPort *CreatePort(name, pri) 
UBYTE *name; 
LONG pri; 
{ 
int sigBit; 
struct MsgPort *mp; 

if «sigBit = AllocSignal (-lL» -1) 
return(NULL); 

mp = (struct MsgPort *) 
AllocMem«ULONG)sizeof(struct MsgPort), (ULONG)MEMF_CLEAR MEMF_PUBLIC); 

if (!mp) 
( 
FreeSignal(sigBit); 
return(NULL); 
) 

mp->mp Node.ln Name = name; 
mp->mp-Node.ln-Pri = pri; 
mp->mp=Node.ln=Type = NT_MSGPORT; 

mp->mp_Flags = PA SIGNAL; 
mp->mp SigBit sigBit; 
mp->mp=SigTask = (struct Task *)FindTask(OL); 1* find THIS task *1 

if (name) 
AddPort (mp) ; 

else 
NewList(&(mp->mp_MsgList»; 1* in it message list *1 

return (mp) ; 

Exec: Messages and Ports 281 



DELETION 

Before a message port is deleted, all outstanding messages from other tasks must be returned. This is done by 
replying to each message until the message queue is empty. Of course, there is no need to reply to messages owned 
by the current task (the .task performing the port deletion). Public ports attached to the system with AddPortO must 
be removed from the system with RemPortO before deallocation. The following example of port deletion is 
equivalent to the DeletePortO function as supplied in amiga.lib: 

void DeletePort(mp) 
struct MsgPort *mp; 
{ 

if ( mp->mp_Node.ln_Name ) /* if it was public ••. */ 
RemPort (mp) ; 

/* Make it difficult to re-use the port */ 
mp->mp SigTask = (struct Task *) -1; 
mp->mp=MsgList.lh_Head = (struct Node *) -1; 

FreeSignal( mp->mp_SigBit ); 

FreeMem( mp, (ULONG)sizeof{struct MsgPort) ); 

RENDEZVOUS 

The FindPortO function provides a means of finding the address of a public port given its symbolic name. For 
example, FindPort("Spyder") will return either the address of the message port or a zero indicating that no such 
public port exists. Since no arbitration is done, the usage of FindPortO must be protected with FordbidO/PermitO. 
Names should be unique to prevent collisions among multiple applications. It is a good idea to use your application 
name as a prefix for your port name. FindPortO does not arbitrate for access to the port list. The owner of a port 
might remove it at any time. For these reasons a ForBidO/PermitO pair is required for the use of FindPortO. The 
port address can no longer be regarded as being valid after PermitO. 

'The following is an example of how to safely put a message to a specific port: 

'include <exec/types.h> 
'include <exec/ports.h> 

BOOL MsgPort SafePutToPort(message, portname) 
struct Message *message; 
STRPTR portname; 
( 

struct MsgPort *port; 

Forbid(); 
port = FindPort(portname); 
if (port) 

PutMsg(port,message); 
Permit () ; 
return«BOOL)port); /* If zero, the port has gone away */ 

/* Once we've done a Permit(), the port might go away and leave us with 
* an invalid port address. So we return just a BOOL to indicate whether 
* the message has been sent or not. 
*/ 

282 Exec: Messages and Ports 



Messages 

As mentioned earlier, a message contains both system header information and the actual message content The 
system header is of the Message form defined in execlports.h and execlports.i. In C this structure is as follows: 

struct Message 
{ 
struct Node mn Node; 
struct MsgPort *mn-ReplyPort; 
UWORD mn=Length; 
} ; 

where 

mn_Node 
is a standard Node structure used for port linkage. 

mn _ ReplyPort 
is used to indicate a port to which this message will be returned when a reply is necessary. 

mn_Length 
indicates the total length of the message, including the Message structure itself. 

This structure is always attached to the head of all messages. For example, if you want a message structure that 
contains the x and y coordinates of a point on the screen, you could define it as follows: 

struct XYMessage 
{ 
struct Message xy_Msg; 
UWORD xy_X; 
UWORD xy_Y; 
} 

For this structure, the mn_Length field should be set to sizeof(struct XYMessage). 

PUTTING A MESSAGE 

A message is delivered to a given destination port with the PutMsgO function. The message is queued to the port, 
and that port's arrival action is invoked. If the action specifies a task signal or a software interrupt, the originating 
task may temporarily lose the processor while the destination processes the message. If a reply to the message is 
required, the mn _ ReplyPort field must be set up prior to the call to PutMsgO. 

Here is a simple program for putting a message to a public port The complete program is printed at the end of the 
chapter. 

Exec: Messages and Ports 283 



#include <exec/types.h> 
#include <exec/memory.h> 
#include <exec/ports.h> 
#include <libraries/dos.h> 

VOID main (VOID) ; 
BOOL SafePutToPort(struct Message *, STRPTR); 

struct XYMessage 
{ 

struct Message xy_Msg; 
UWORD xy_X; 
UWORD xy_Y; 

}; 

VOID main (VOID) 
{ 

struct MsgPort *xymp, *xyreplymp; 
struct XYMessage *xymsg, *msg; 
BOOL foundport; 

xymsg = (struct XYMessage *)AllocMem(sizeof(struct XYMessage), MEMF_PUBLIC); 
if (xymsg == 0) 
( 

printf("Not enough memory for message structure\n"); 
exit(30); 

/* The replyport we'll use to get response */ 

xyreplymp = CreatePort("xyreplyport", O}; 
if (xyreplymp == 0) 
( 

printf("Couldn't create xyreplyport\n"); 
DeletePort«struct MsgPort *)xymp); 
FreeMem(xymsg, sizeof(struct XYMessage»; 
exit(31); 

xymsg->xy Msg.mn Node.ln Type = NT MESSAGE; 
xymsg->xy-Msg.mn-Length ~ sizeof(struct XYMessage); 
xymsg->xy-Msg.mn-ReplyPort = xyreplymp; 
xymsg->xy-X 10; 
xymsg->xy=Y = 20; 

foundport = SafePutToPort«struct Message *)xymsg, "xyport"); 
if (foundport == 0) 
( /* couldn't find port */ 

DeletePort«struct MsgPort *)xyreplymp); 
FreeMem(xymsg, sizeof(struct XYMessage»; 
exit(32); 

/* Now lets wait 'till someone responds ..• */ 

DeletePort«struct MsgPort *)xymp); 
FreeMem(xymsg, sizeof(struct XYMessage}); 

WAITING FOR A MESSAGE 

, A task may go to sleep waiting for a message to arrive at one or more ports. This technique is widely used on the 
Amiga as a general form of event notification. For example, it is used extensively by tasks for I/O request 
completion. 

284 Exec: Messages and Ports 



The mp _ SigTask field contains the address of the task to be signaled and mp _ SigBit contains a preallocated signal 
number (as described in the "Tasks" chapter). 

You can call the WaitPortO function to wait for a message to arrive at a port. This function will return the first 
message (it may not be the only) queued to a port. If the port is empty, your task will go to sleep waiting for the first 
message. If the port is not empty, your task will not go to sleep. It is possible to receive a signal for a port without a 
message being present yet. The code processing the messages should be able to handle this. The following code 
illustrates this. 

struct XYMessage *xy_msg; 
struct MsgPort *xymp; 

xymp = CreatePort("xyport", 0); 
if (xymp == 0) 
{ 

printf("Couldn't create xyport\n"); 
exit (31) ; 

xy_msg = WaitPort(xymp); 1* go to sleep until message arrives *1 

A more general form of waiting for a message involves the use of the WaitO function (see the "Tasks" chapter). 
This function waits for task event signals directly. If the signal assigned to the message port occurs, the task will 
awaken. Using the WaitO function is more general because you can wait for more than one signal. By combining 
the signal bits from each port into one mask for to the WaitO function, a loop can be set up to process all messages 
at all ports. 

Here's an example using WaitO: 

struct XYMessage *xy_msg; 
struct MsgPort *xymp; 

ULONG usersig, portsig; 
BOOL ABORT = FALSE; 

xymp = CreatePort("xyport", 0); 
if (xymp == 0) 
{ 

printf("Couldn't create xyport\n"); 
exit(31); 

portsig = 1 « xymp->mp_SigBit; 

1* User can break with CTRL-F *1 
1* we could wait for more signals *1 

FOREVER 
{ 

signal = Wait (portsig I usersig); 1* sleep 'till someone signals *1 

if (signal & portsig) 
{ /* got a signal at the msgport *1 

/* Someone send a message *1 
) 

if (signal & usersig) 
{ 1* got a signal from the user *1 

1* Time to clean up *1 
ABORT = TRUE; 

if (ABORT) 
{ 

DeletePort«struct MsgPort *)xymp); 
exit (0) ; 

Exec: Messages and Ports 285 



NOTE 

WaitPortO only returns a pointer to the first message in a port. It does not actually remove the message 
from the port queue. 

GETTING A MESSAGE 

Messages are usually removed from ports with the GetMsgO function. This function removes the next message at 
the head of the port queue and returns a pointer to it. If there are no messages in a port, this function returns a zero. 

The example below illustrates the use of GetMsgO to print the contents of all messages in a port: 

while (msg = GetMsg(mp)) 
{ 
printf("x=%ld y=%ld\n", msg->xy_X, msg->xy_Y); 
} 

Certain messages may be more important than others. Because ports impose FIFO ordering, these important 
messages may get queued behind other messages regardless of their priority. If it is necessary to recognize more 
important messages, it is easiest to create another port for these special messages. 

REPLYING 

When the operations associated with receiving a new message are finished, it is usually necessary to send the 
message back to the originator. The receiver replies the message by returning it to the originator using the 
ReplyMsgO function. This is important because it notifies the originator that the message can be reused or 
deallocated. The ReplyMsgO function serves this pwpose. It returns the message to the port specified in the 
mn _ ReplyPort field of the message. If this field is zero, no reply is returned. 

The previous example can be enhanced to reply to each of its messages: 

while (msg = GetMsg(mp)) 
{ 

printf("x=%ld y=%ld\n", msg->xy_X, msg->xy_Y); 
ReplyMsg(msg); 
} 

Notice that the reply does not occur until after the message values have been used. 

Often the operations associated with receiving a message involve returning results to the originator. Typically this is 
done within the message itself. The receiver places the results in fields defined (or perhaps reused) within the 
message body before replying the message back to the originator. Receipt of the replied message at the originator's 
reply port indicates it is once again safe for the originator to use or change the values found within the message. 

Here is a complete example of waiting for and replying to messages: 

/* port.c 10/89 
* Compiled with Lattice C 5.04: LC -bl -cfist -v -y 
* LINK c.o+port.o library lib:lc.lib+lib:amiga.lib 

*/ 

'include <exec/types.h> 
'include <exec/memory.h> 
'include <exec/ports.h> 
'include <libraries/dos.h> 

286 Exec: Messages and Ports 



ilifdef LATTICE 
ilinclude <stdio.h> 
ilinclude <stdlib.h> 
#include <proto/all.h> 
int CXBRK(void) { return(O); 
ilendif 

VOID main (VOID) ; 

/* Disable Lattice CTRL/C handling */ 

BOOL SafePutToPort(struct Message *, STRPTR); 

struct XYMessage 
{ 

struct Message xy_Msg; 
UWORD xy_X; 
UWORD xy_Y; 

}; 

VOID main (VOID) 
{ 

struct MsgPort *xymp, *xyreplymp; 
struct XYMessage *xymsg, *msg; 
ULONG portsig, usersig, signal; 
BOOL foundport, ABORT = FALSE; 

xymsg = (struct XYMessage *)AllocMem(sizeof(struct XYMessage), MEMF_PUBLIC); 
if (xymsg == 0) 
{ 

printf(nNot enough memory for message structure\nn); 
exit(30); 

/* In this example we set up the public XY port ourselves */ 

xymp = CreatePort(nxyportn, 0); 
if (xymp == 0) 

{ 
printf(nCouldn't create xyport\nn); /* so much for the example */ 
FreeMem(xymsg, sizeof(struct XYMessage»; 
exit(30); 

/* The replyport we'll use to get response */ 

xyreplymp = CreatePort(nxyreplyport n, 0); 
if (xyreplymp == 0) 
{ 

printf("Couldn't create xyreplyport\nn); 
DeletePort«struct MsgPort *)xymp); 
FreeMem(xymsg, sizeof(struct XYMessage»; 
exit(31); 

xymsg->xy Msg.mn Node.ln Type = NT MESSAGE; 
xymsg->xy-Msg.mn-Length ~ sizeof(struct XYMessage); 
xymsg->xy-Msg.mn-ReplyPort = xyreplymp; 
xymsg->xy=X 10; 
xymsg->xy_Y = 20; 

foundport = SafePutToPort«struct Message *)xymsg, nxyport n); 
if (! foundport) 
{ /* couldn't find port */ 

DeletePort«struct MsgPort *)xyreplymp); 
DeletePort«struct MsgPort *)xymp); 
FreeMem(xymsg, sizeof(struct XYMessage»; 
exit(32); 

/* we just found the port we created ourselves and put a message to it! WOW*/ 
/* let's pretend we're the other guy now */ 

printf(nExit with CTRL-F\nn); /* User can abort with CTRL-F */ 

Exec: Messages and Ports 287 



msg (struct XYMessage *)WaitPort((struct MsgPort *)xymp); 
/* doesn't wait since there HAS to be a message */ 

while (msg = (struct XYMessage *)GetMsg((struct MsgPort *)xymp» 
( 

printf("x = %d Y = %d\n", msg->xy_X, msg->xy_Y); 
msg->xy_X += 50; 
msg->xy_Y += 50; 
ReplyMsg((struct Message *)msg); /* reply to the sender */ 

/* We put on the other hat again , wait for the reply to our message sent */ 
/* We'll use Wait() for this one */ 

portsig 
usersig 

FOREVER 
( 

1 « xyreplymp->mp SigBit; 
SIGBREAKF_CTRL_F; - /* User can break with CTRL-F */ 

signal = Wait (portsig I usersig); /* sleep 'till someone signals */ 

if (signal , portsig) 
{ /* got a signal at the msgport */ 

while (msg = (struct XYMessage *)GetMsg((struct MsgPort *)xyreplymp» 
( 

printf("X = %d Y = %d\n", msg->xy X, msg->xy Y); 
/* no need to reply. WE have sent-the messag; */ 

if (signal 
( 

while 
ABORT 

if (ABORT) 
( 

& usersig) 
/* user abort */ 

(msg = (struct XYMessage *)GetMsg((struct MsgPort *)xyreplymp»; 
= TRUE; 

/* this about sums it up. let's clean up */ 
DeletePort(struct MsgPort *)xyreplymp); 
DeletePort«struct MsgPort *)xymp); /* the 'other guy's' port */ 
FreeMem(xymsg, sizeof(struct XYMessage»; 
exit(O); 

BOOL SafePutToPort(message, portname) 
struct Message *message; 
STRPTR portname; 
( 
struct MsgPort *port; 

Forbid() ; 
port = FindPort(portname); 
if (port) 

PutMsg(port,message); 
Permit (); 
return{(BOOL)port); /* If zero, the port has gone away */ 

/* Once we've done a Permit(), the port might go away and leave us with 
* an invalid port address. So we return just a BOOL to indicate whether 
* the message has been sent or not. 
*/ 

288 Exec: Messages and Ports 

/* just in case */ 



Chapter 19 

Exec: Input/Output 

Introduction 

One of the primary purposes of Exec is to provide a standard fonn for all device input/output QlO). This consists of 
the definition of a standard device interface, the fonnat for I/O requests, and the establishment of rules for devices 
and tasks to interact. In addition, the guidelines for nonstandard device I/O are also defined. In the design of the 
Amiga I/O system, great care has been taken to avoid dictating the fonn of implementation or the internal 
operational characteristics of a device. 

In its purest sense, a device is an abstraction that represents a set of well-defined interactions with some fonn of 
physical media. This abstraction is supported by a standard Exec data structure and an independent system code 
module. The data structure provides the external interface and maintains the current device state. The code module 
supplies the operations necessary to make the device functional. (In many operating systems, this code module is 
referred to as a device driver. See Amiga ROM Kernel Reference Manual: Includes and Autodocs for the source 
assembly language code for a disk-resident device driver with its own task for handling I/O requests. To see how a 
device is used, refer to any of the examples located within the specific device chapters themselves.) 

A device unit is an instance of a device. It shares the same device data structure and code module with all other 
units of the same device; however, it operates in an independent fashion. Often units correspond to separate physical 
subsystems of the same general device class. For example, each Amiga floppy disk drive is an independent unit of 
the same device. There is only one device data structure and one code module to support all these units. 

Exec: Input/Output 289 



Exec I/O is performed using the message system described in the Exec "Messages and Ports" chapter. Most 
aspects of message passing are concealed within the Exec I/O support routines. However, it is important to realize 
that I/O request blocks, once issued, must not be modified or reused until they are returned to the control of your 
program by Exec. 

Request Structure 

An I/O request is always directed to a device unit. This request is organized as a control block and contains a 
command to be performed on a specified unit. It is passed through a standard device interface function, where it is 
processed and executed by the code module of the device. All request parameters are included in the request control 
block, and I/O request results are returned in the same control block. 

Every device unit responds to a standard set of commands, and may optionally provide a nonstandard set of 
commands as well. The standard commands are explained later in this chapter. Nonstandard commands are 
discussed in the documentation pertaining to the particular device involved. The nonstandard commands vary from 
device to device. Similar devices may have similar nonstandard commands for similar operations, but this is by no 
means a hard and fast rule. 

An I/O request always includes at least an IORequest data structure. This is a standard header used for all I/O 
requests. It is defined in the execlio.h include files as follows: 

struct IORequest 
{ 
struct Message 
struct Device 
struct Unit 
UWORD 
UBYTE 
BYTE 
} ; 

where 

*io_Message; 
*io Device; 
*io::::Unit; 
io Command; 
io::::Flags; 
io_Error; 

io_Message is a message header (see the "Messages and Ports" chapter). This header is used by the device 
to return I/O requests upon completion. It is also used by devices internally for I/O request 
queuing. This header must be properly initialized for I/O to work correctly. 

io Device is a pointer to the device data structure node. This field is automatically set up by an Exec 
function when the device is opened, and must not be modified directly by your program. 

io_Unit Unit pointer. This is a device private field and must not be accessed by your program. The 
format of this field is device dependent and is set up by the device during the open sequence. 

io Command is the command requested. This may be either one of the system standard commands or a 
device-specific command. 

io Error 

is used to indicate special request options and state. This field is divided into two subfields of 
four bits each. The lower four bits are for use by Exec and the upper four bits are available to 
the device for device dependent options. 

is an error or warning value valid on request completion. A non zero value indicates an error. 

290 Exec: Input/Output 



Most devices use an expanded form of the standard IORequest structure: 

struct IOStdReq 
{ 

struct Message 
struct Device 
struct Unit 
UWORD 
UBYTE 
BYTE 
ULONG 
ULONG 
APTR 
ULONG 
} ; 

io Message; 
*io:::Device; 
*io Unit; 

io:::Command; 
io Flags; 
io-Error; 
io-Actual; 
io-Length; 
io-Data; 
io:::Offset; 

where the additional fields are used as follows: 

io Actual 

1* device private *1 
1* device private *1 

indicates the actual number of bytes transferred. This field is valid only upon completion. 

io_Length 
is the requested number of bytes to transfer. This field must be set up prior to the request. Some devices 
allow variable length data transfers. This is indicated by a special value in io_Length. See the 
documentation on the specific device for additional information. 

io Data 
is a pointer to the transfer data buffer. 

io Offset 
indicates a byte offset (for structured devices). For block-structured devices (such as a floppy disk device) 
this number must be a multiple of the block size. 

The io _Device and io _Unit fields are private to the device and should be left unchanged by your program between 
I/O calls. The io_Command field of the I/O request and the ReplyPort (which the device will use to communicate 
with your program) are not changed by the servicing of the request, which permits repeated I/O using the same 
request. 

The values contained in the io _Data, io _Length, and io _Offset fields may be modified by the device. This is device 
dependent. Some devices may guarantee to leave additional fields in the I/O request unchanged. See the 
documentation on the specific device for additional information. 

Devices with nonstandard commands may add their own special fields to the I/O request structure as needed. Such 
extensions are device specific. 

Interface Functions 

Five Exec functions are responsible for interfacing I/O requests to actual device drivers. These functions opemte 
independently of the particular device command requested. They deal with the request block as a whole, ignoring its 
command and its command parameters. 

Exec: Input/Output 291 



DolOO 
is the most commonly used I/O function. It initiates an I/O request and waits for its completion. This is a 
synchronous form of device I/O; control is not returned to the caller until completion. If the I/O request 
never completes, this call never returns. DolOO automatically handles all the details, including 
QUICKIO, waiting, and removing the reply message. 

SendlOO 
is used to initiate an I/O request without waiting for completion. This is an asynchronous form of device 
I/O; control is returned even if the request has not yet completed. 

WaitIOO 
is used to wait for the completion of a previously initiated asynchronous I/O request. This function will 
not return control until the request has completed (successfully or unsuccessfully). WaitIOO 
automatically removes the message from the message port, and clears the signal bit. Your program should 
not WaitIOO on an I/O request that has not actually been sent 

CheckIOO 
is used to see if an asynchronous I/O request has completed. Your program should not CheckIOO on an 
I/O request that has not actually been sent. 

AbortIOO 
attempts to cancel a previous I/O request made to an Exec device. This function is accessed as an 
assembly code macro ABORTIO or through the C library Exec function AbortIOO. Either results in a 
call to the ABORTIO vector of the device with the I/O request to be aborted. 

The AbortIOO command may fail; if it succeeds, the device will stop processing the 10Request, and reply to it 
earlier than it may have otherwise done. AbortIOO does not remove the 10Request from your replyport, and 
does not wait for it to complete. Your program must wait for the reply message before actually reusing the 
10Request. If a request is already completed when AbortIOO is called, no action is taken. Your program must 
never attempt to AbortIOO a request that has not actually been sent, or fireworks may result. 

The following is the usual way to use AbortIOO. 

AbortIO(ior); 
WaitIO(ior) ; 

In addition to the above Exec functions, there is an I/O related function that is actually a direct entry into the device 
driver itself. This function is part of the actual device driver interface to the system and should be used with care. It 
incurs slightly less overhead but requires more knowledge of the I/O system internals (you must know how QUICK 
I/O works, for instance): 

BeginlOO 
initiates an 10 request The request will be synchronous or asynchronous depending on the command and 
on the device driver. 

NOTE 

SendlOO and BeginlOO are actually equivalent, except that SendIOO clears the io_Flags field of 
the I/O request. BeginlOO is defined in /fIamiga.lib/tp as a direct call to the BEGINIO entry point 
ofadevice. 

292 Exec: Input/Output 



Standard Device Commands 

There are eight standard commands to which all devices are expected to respond. If the device is not capable of 
performing one of these commands, it will at least return an error indication that the command is not supported. The 
command is send in the io _Command field of the I/O Request These commands are defined in the exeC/io.h include 
files. 

CMD RESET 
This command resets the device unit It completely initializes the device unit, returning it to its default 
configuration, aborting all of its pending I/O, cleaning up any internal data structures, and resetting any 
related hardware. 

CMD READ 
This command reads a specified number of bytes from a device unit into the data buffer. The number of 
bytes to be read is specified in the io _Length field. The number of bytes actually read is returned in the 
io _Actual field. 

CMD WRITE 
This command writes a specified number of bytes to a device unit from a data buffer. The number of bytes 
to be written is specified in the io_Length field. The number of bytes actually written is returned in the 
io _Actual field. 

CMD UPDATE 
This command forces out all internal buffers, causing device internal memory buffers to be written out to 
the physical device unit. A device will transparently perform this operation when necessary, but this 
command allows you to request explicitly that such an action take place. It is useful for devices that 
maintain internal caches, such as the floppy disk device. 

CMD CLEAR 
This command clears all internal read buffers. It deletes the entire contents of a device unit's internal read 
buffers. No update is performed; all data is lost. 

CMD_STOP 
This command stops the device unit immediately (at the first opportunity). All I/O requests continue to 
queue, but the device unit stops servicing them. This command is useful for devices that may require user 
intervention (printers, plotters, data networks, etc.). 

CMD START 
This command causes the device unit to continue after a previous CMD _STOP command. The device 
resumes from where it was stopped. 

CMD FLUSH 
This command aborts all I/O requests in both the read and write request queues of the device. All pending 
I/O requests are returned with an error message. CMD _FLUSH does not effect active requests. 

CMD_NONSTD 
Any nonstandard commands begin here. Non standard commands are designated as CMD_NONSTD+O, 
CMD_NONSTD+l, and so on. 

Exec: Input/Output 293 



CMD INVALID 
This is a command to which the device replies with an error 10ERR_NOCMD as defined in exec/errors.h 
indicating the command is not supported. 

Performing 1/0 

Exec I/O is always performed using I/O request blocks. Before a device is sent an I/O request block. that block must 
be properly initialized by both the system and the user. Once this has been done. normal I/O may commence. 

PREPARATION FOR EXEC I/O 

Devices are identified within the system by name (a null-terminated character string). Device units are usually 
identified by number. Before a device can be used, your program must make an OpenDeviceO call with the I/O 
request to be used. The I/O request must already contain a pointer to the initialized message port that the device will 
use to communicate with your program. The io_Message field is set up in the same manner as a message. This is 
described in the "Messages and Ports" chapter. The OpenDeviceO function maps the device name to an actual 
device and then calls the device to perform its initialization. The device will map the unit number into an internal 
form for later use. Both Exec and the device driver will initialize fields the I/O request passed to OpenDeviceO. 

For example, OpenDevice("trackdisk.device",l,ior,O) will attempt to open unit one of the floppy disk device, 
mapping its symbolic name ("trackdisk.device") into the address of a device data structure. It also sets up the private 
fields of the request, such as io _Unit for example. OpenDeviceO will return a zero if it was successful and a 
nonzero error number if it was not. 

SYNCHRONOUS REQUESTS 

Synchronous I/O requests are initiated with the DolOO function mentioned earlier. DolOO will not return control 
until the request has completed. Because the device may respond to a request immediately or queue it for later 
action, an undetermined amount of time may pass before control is returned. With this type of I/O, only one request 
is serviced at a time. 

To perform synchronous I/O, the I/O request block must be prepared as described in the previous section. In 
addition, the io _Command (as well as other fields depending on the command and the device) must be initialized. 

The io _Command field is set to the desired command. For example, to perform an update command use: 

ior->io_Comrnand = CMD_UPDATE; 
DoIO (ior); 

More involved commands require other fields to be initialized. For example, the commands to read a sector from a 
disk might look something like the following: 

294 Exec: Input/Output 



ior->io Command = CMD READ; 
ior->io-Length = TD SECTOR; 
ior->io-Offset = 20-* TD SECTOR; 
ior->io=Data = buffer;-
DoIO(ior); 

When the request has completed, the request block is returned with the command results. If an error occurred, 
DoIOO will return the error number. The error number is also indicated in the io _Error field of the request 

ASYNCHRONOUS REQUESTS 

More efficient programs can take advantage of the multitasking characteristics of the I/O system by using 
asynchronous I/O, which allows many requests to be performed at the same time. This type of I/O is supported by 
the SendIOO, WaiUOO, CheckIOO, and AbortIOO functions. Asynchronous I/O requests will return almost 
immediately to your program regardless of whether the request has actually completed. This lets the user maintain 
control while the I/O is being performed. Multiple I/O requests can be posted in this fashion. 

In the disk read example above, asynchronous I/O could be performed by changing the DoIOO call to a SendIOO: 

ior->io_Command = CMD_READ; 
ior->io Length = TD SECTOR; 
ior->io-Offset = 20-* TD SECTOR; 
ior->io-Data = buffer;-
SendIO(Ior); 

From the time the I/O has been initiated to the time it completes, the request block must never be directly accessed 
by your program. The device can be said to "own" the request block, as well as any data buffers pointed to by the 
request block. Only after the request has completed or successfully aborted should your program access the request 
block or the data butTers. 

When the I/O completes, the device will return the I/O request block to the reply port specified in its io_Message 
field. After this has happened, you know that the device has finished the I/O. The reply port used to receive the 
returned request can be set up to cause a task signal when the reply arrives. This technique lets a task sleep until the 
the request is complete. The WaitlOO function can be called to wait for the completion of a previously initiated 
request. 

WaitIOO will handle all of the interaction with the message reply port automatically. If you are using just the 
WaitO function, do not forget to remove the I/O request from your reply port with GetMsgO. Once this is done, the 
request may be reused. 

The CheckIOO function is handy to determine if a particular I/O request has been satisfied. This function deals 
with some of the subtleties of I/O in the proper manner. 

If you wish to queue several I/O requests to a device, you must issue multiple SendIOO requests, each with its own 
separately-opened request structure. This type of I/O is supported by most devices. A task can also request I/O from 
a number of devices and then check later for their completion. 

Exec also allows for certain types of optimization in device communication. One form of optimization, in which 
you call the device driver directly, is called quick I/O. This concept is discussed later in this chapter. 

Exec: Input/Output 295 



COMPLETING THE USE OF A DEVICE 

When a program has completed all its I/O, access to the device should be concluded with CloseDeviceO. This 
function will inform the device that no further I/O is to be performed with this request. For every OpenDeviceO 
there must be one corresponding CloseDeviceO. 

QUICK 110 

For some types of I/O, the normal internal mechanisms of I/O may present a large amount of overhead compared to 
the amount of data transferred. This is often true for character-oriented I/O, in which each character might be 
transferred with a separate I/O request. The overhead for such requests could significantly overload the I/O system, 
resulting in an efficiency loss for the entire system. 

To allow devices to optimize their I/O handling, a mechanism called quick I/O was created. In the IORequest data 
structure, one of the ioJlags is reserved for quick I/O. When set prior to an I/O request, this flag indicates that the 
device is allowed to handle the I/O in a special manner. This enables some devices to take certain "short-cuts" 
when it comes to performing and completing the request. 

The quick I/O bit (lOB_QUICK) allows the device to avoid returning the I/O request to the user via the message 
system (for example, via ReplyMsgO) if it can complete the request immediately. If the lOB_QUICK bit is still set 
at the end of the BeginIOO call, the request has already completed and your program will not find the I/O request on 
the reply port (so should not look). 

The DoIOO function nonnally requests the quick I/O option, whereas the SendiOO function does not. Complete 
control over the mode for quick I/O is possible by calling a device's BeginIOO entry directly. 

It is up to the device to determine whether it can handle a request marked as quick I/O. If the quick I/O flag is still 
set when the request has completed, the I/O was performed quickly. This means that no message reply occurred, so 
the message was not queued to the reply port. 

ior->io Flags= IOF QUICK; 1* request QUICK 10 *1 
BeginIO(ior); -

1* asynchronous program activity goes here *1 

if(ior->io_Flags & IOF_QUICK) 
{ 

else 

1* the command finished QUICK, no need to wait *1 
} 

( 
1* wait for 1/0 completion in the normal manner, *1 
1* or possibly do more asynchronous program activity. *1 
1* for the purposes of this code fragment, a simple *1 
1* WaitIO() is used. In general, you will just add the *1 
1* signal bit from this ior to the list of signals you *1 
1* are already planning to Wait(). *1 
WaitIO(ior); 1* WaitIO will remove the message from the *1 
1* reply port if QUICK 10 was not possible *1 
} 

296 Exec: Input/Output 



Example of Device Use 

The following simple example demonstrates the use of an Exec device (specifically, the trackdisk) and shows 
opening the device, sending device commands, and closing the device. 

/* A complete example of using the trackdisk.device. Requires use of 
* ANSI function prototypes. 
* Compile with Lattice C 5.04: LC -L -cq 
*/ 

#include <exec/types.h> 
#include <devices/trackdisk.h> 
#include <libraries/dos.h> 

#ifdef LATTICE 
#include <proto/exec.h> 
int CXBRK(void) ( return(O); 
#endif 

/* Disable Lattice CTRL-C handling */ 

struct IOExtTD *trackIO; /* global pointer to trackdisk IORequest */ 
short openerror; /* global flag */ 

void cleanExit(returncode) 
int returncode; 
( 
if(!openerror)CloseDevice(trackIO); 

if (trackIO) 
( 

/* extract Port address from I/O Request */ 
DeletePort(trackIO->iotd Req.io Message.mn ReplyPort); 
DeleteExtIO(trackIO); - - -
} 

exit(returncode); 
} 

void main () 
( 
/* CreatePort() and pass the result to CreatreExtIO in one step */ 
trackIO=(struct IOExtTD *) 

CreateExtIO( CreatePort(O,O),sizeof(struct IOExtTD) ); 
if(ltrackIO)cleanExit(RETURN_FAIL+l); 

if (openerror=OpenDevice ("trackdisk.device", OL,trackIO, OL» 
cleanExit(RETURN_FAIL+2); 

trackIO->iotd Req.io Offset =OL; 
DoIO(trackIO)7 printI("l\n"); 

/* command */ 

/* out */ 

trackIO->iotd Req.io Offset =79*11*2*512L; /* in */ 
DoIO(trackIO)7 printI("2\n"); 

trackIO->iotd Req.io Offset =OL; 
DoIO(trackIO)7 printI("3\n"); 

/* out */ 

trackIO->iotd Req.io Offset =79*11*2*512L; /* in */ 
DoIO(trackIO)7 printI("4\n"); 

cleanExit(RETURN OK); 
} -

Exec: Input/Output 297 



Standard Devices 

The following standard system devices are normally available when the Amiga starts up (either in Kickstart or 
located on the Workbench disk). 

Audio 
The audio device is provided to control the use of the audio channels. 

Clipboard 
The clipboard device provides a means of "cutting" data from and "pasting" data into applications. 

Console 
The console device receives its input from the input device. The input portion of the console device is simply a 
handler for input events filtered by Intuition. It provides what might be called the "traditional" video display 
terminal user interface. 

Gameport 
Gameport handles raw information from the mouse or a joystick device. Gameport events are queued so that 
no movements will be missed. You can tell the system what type of device is connected and how often to 
check and report the current status of the device. 

Input 
The input device combines requests from both the keyboard and the gameport device. Input events from both 
are merged into a single input event stream on a first-in-first-out basis. 

Keyboard 
The keyboard device handles raw information from the keyboard and converts it into input events that can be 
retrieved and interpreted. Keyboard input events are queued so that no keystrokes will be missed. 

Narrator 
The narrator device is loaded from disk and uses the audio device to produce humanlike synthesized speech. 

Parallel 
The parallel device is loaded from disk and initialized on being loaded. It controls parallel communications. 
and is most often used by the printer device. 

Printer 
The printer device driver is loaded from disk. It converts escape codes from the standard set of Amiga printer 
escape sequences to the code sequences understood by the individual printers. 

Serial 
The serial device is loaded from disk and initialized on being loaded. It controls serial communications 
buffering of the input/output, baud rate, and so on. 

Timer 
Provides a flexible way of causing task signals or interrupts at second and microsecond intervals. 

Trackdisk 
Trackdisk provides direct access to the 3 1/2-inch and 5 1/4-inch floppy disk drives. Among the functions 
provided are format, seek, read, and write. Normally, trackdisk is used only by AmigaDOS. 

298 Exec: Input/Output 



Chapter 20 

Exec: Semaphores 

Semaphores are a feature of Exec which provide a general method for tasks to arbitrate for the use of memory or 
other system resources they may be sharing. This chapter describes the structure of Exec semaphores and the 
various support functions provided for their use. Since the semaphore system uses Exec lists and signals, some 
familiarity with these concepts is helpful for understanding semaphores. 

Introduction 

In any multi-tasking or multi-processing system there is a need to share data among independently executing tasks. 
If the data is static (that is, it never changes), then there is no problem. However, if the data is variable, then there 
must be some way for a task that is about to make a change to keep other tasks from looking at the data. 

For example, to add a node to a linked list of data, a task would normally just add the node. However, if the list is 
shared with other tasks, this could be dangerous. Another task could be walking down the list while the change is 
being made and pick up an incorrect pointer. The problem is worse if two tasks attempt to add an item to the list at 
the same time. Exec semaphores provide a way to prevent such problems. 

A semaphore is much like getting a key to a locked data item. When you have the key (semaphore), you can access 
the data item without worrying about other tasks causing problems. Any other tasks that try to obtain the semaphore 
will be put to sleep until the semaphore becomes available. When you have completed your work with the data, you 
return the semaphore. 

Exec: Semaphores 299 



For semaphores to work correctly, there are two restrictions that must be observed at all times: 

1) All tasks using shared data that is protected by a semaphore must always askfor the semaphore first before 
accessing the data. If some task accesses the data directly without first going through the semaphore, the data 
may be corrupted. No task will have safe access to the data. 

2) A deadlock will occur if a task that owns a semaphore on some data inadvertently calls another task which 
needs to get a semaphore on that same data. Deadlocks and other such issues are beyond the scope of this 
manual. For more details on deadlocks and other problems of shared data in a multi-tasking system and the 
methods used to prevent them, refer to a textbook in computer science such as Operating Systems by 
Tannenbaum (Prentice-Hall). 

The Signal Semaphore 

Exec semaphores are signal based. Using signal semaphores is the easiest way to protect shared, single-access 
resources in the Amiga. Your task will sleep until the semaphore is available for use. The SignalSemaphore 
structure is as follows: 

struct SignalSemaphore 
{ 

} ; 

struct Node ss_Link; 
SHORT ss NestCount; 
struct MinList ss WaitQueue; 
struct SemaphoreRequest ss_MultipleLink; 
struct Task *ss_Owner; 
SHORT ss_QueueCount; 

ss Link 
is the node structure used to link semaphores together. The In_Pri and In_Name fields are used to set the 
priority of the semaphore in a list and to name the semaphore for public access. If a semaphore is not 
public the In_Name and In_Pri fields may be left NULL. 

ss _ NestCount 
is the count of number of locks the current owner has on the Semaphore. 

ss_ WaitQueue 
is the List Header for the list of other tasks waiting for this semaphore. 

ss _ MultipleLink 
is the SemaphoreRequest used by ObtainSemaphoreListO. 

ss_Owner 
is the pointer to the current owning task. 

ss _ QueueCount 
is the number of other tasks waiting for the semaphore. 

A practical application of a SignaiSemaphore would be to use it as the base of a shared data structure. For example: 

300 Exec: Semaphores 



struct MySharedList 
{ 

struct SignalSemaphore MY Semaphore; 
struct MinList MY=List; 

}; 

Initializing a SignalSemaphore Structure 

To initialize a SignalSemaphore structure use the InitSemaphoreO function. This function initializes the list 
structure and the nesting and queue counters. It does not change the semaphore's name or priority fields . 

. 
To create and initialize a semaphore for a data item such as the example MySharedList structure above, you would 
use the following: 

struct MySharedList *MyList; 

if (MyList=AllocMem(sizeof(struct MySharedList),MEMF_PUBLICIMEMF_CLEAR» 
( 

} 

NewList(&MyList->MY List); /* Get my MinList Header set up •.• */ 
InitSemaphore«struct SignalSemaphore *)MyList); 

/* If the memory did not get allocated, we must abort •.• */ 

Making a SignalSemaphore Available to the Public 

A semaphore should be used internally in your program if your program has more than one task operating on shared 
data structures. There may also be cases when you wish to make a data item public to other applications but still 
need to restrict its access via semaphores. In that case, you would give your semaphore a unique name and add it to 
the public SignalSemaphore list maintained by Exec. The AddSemaphoreO function does this for you. This works 
in a manner similar to AddPortO for message ports. 

To create and initialize a public semaphore for a data item and add it to the public semaphore list maintained by 
Exec, the following function should be used. (This will prevent the semaphore from being added or removed more 
than once by separate programs that use the semaphore). 

struct SignalSemaphore *AddPublicSemaphore(char *Name) 
{ 

struct SignalSemaphore *sema=NULL; 

Forbid(}; 
if (!FindSemaphore(Name» 
{ 

if (sema=AllocMem(sizeof(struct SignalSemaphore),MEMF_PUBLICIMEMF_CLEAR}) 
( 

} 

sema->ss Link.ln Pri=O; 
sema->ss-Link.ln-Name=Name; 
/* - -

* Note that we did not make a copy of Name .•. If a copy 
* is needed, do that here ... 
*/ 

/* AddSemaphore() Fix ••• */ 
InitSemaphore(sema); 
Forbid(); 
Enqueue(&SysBase->SemaphoreList,sema); 
Permit () ; 

Permit () ; 
return(sema}; 

Exec: Semaphores 301 



The AddPublicSemaphoreO function shown above returns the semaphore if it was created, or NULL if it was not A 
return value of NULL means that the semaphore already exists or that there was not enough free memory to create it 
Two other functions you need to manage public semaphores, RemovePublicSemaphoreO and 
ObtainPublicSemaphoreO are shown below. 

struct SignalSemaphore *RemovePublicSemaphore(char *Name) 
{ 
struct SignalSemaphore *semi; 

Forbid(); 
if (semi=FindSemaphore(Name)) 
{ 

RemSemaphore(semi); 
ObtainSemaphore(semi); 
ReleaseSemaphore(semi); 

Permit (); 
return (semi) ; 

/* So no one else can find it ••• */ 
/* Wait for us to be last user ..• */ 
/* Ready for cleanup... */ 

This function returns the semaphore if it was successfully removed or NULL if it did not exist It is up to the 
program to free the resources that were protected by the semaphore. 

Obtaining a Signal Semaphore 

Before using the data item or other resource which is protected by a semaphore, you must first obtain the semaphore. 
The ObtainSemaphoreO function does this for you. If another task currently has the semaphore, your task will be 
put to sleep until the semaphore is released. 

NOTE 

SignalSemaphores have nesting. That is, if your task already owns the semaphore, it will get a second 
ownership of that semaphore. This simplifies the writing of routines that must own the semaphore but 
do not know if the caller has obtained it yet. 

To obtain a semaphore use: 

struct SignalSemaphore *sema; 
ObtainSemaphore(sema); 

To obtain a public semaphore, the following code should be used: 

struct SignalSemaphore *ObtainPublicSemaphore(char *Name) 
{ 

struct SignalSemaphore *sema; 

Forbid () ; 
if (sema=FindSemaphore(Name)) 
{ 

ObtainSemaphore(sema); 

Permit () ; 
return (serna) ; 

This returns the semaphore if it was obtained successfully. It returns NULL if the semaphore does not exist. This is 
only needed if the semaphore has a chance of going away at any time (i.e. the semaphore is public and might be 
removed by some other program). If there is a guarantee that the semaphore will not disappear, the semaphore 
address could be cached, and all that would be needed is a call to the ObtainSemaphoreO function. 

302 Exec: Semaphores 



Releasing a SignalSemaphore 

Once you have obtained the semaphore and completed any operations on the semaphore protected object, you should 
release the semaphore. The ReleaseSemaphoreO function does this. For each ObtainSemaphoreO call you make, 
you must have a matching ReleaseSemaphoreO call. 

Checking a SignalSemaphore 

When you attempt to obtain a semaphore with ObtainSemaphoreO. your task will be put to sleep if the semaphore 
is not currently available. If you do not want to wait. you can call AttemptSemaphoreO instead. If the semaphore 
is available, AttemptSemaphoreO obtains it for you and returns TRUE. If it is not available, the function returns 
FALSE immediately instead of waiting for the semaphore to be released. 

Multiple Semaphores 

The semaphore system has the ability to ask for ownership of a complete list of semaphores. This can help prevent 
deadlocks when there are two or more tasks trying to get the same set of semaphores. If task A gets semaphore 1 
and tries to obtain semaphore 2 after task B has obtained semaphore 2 but before it tries to obtain semaphore 1 then 
both tasks will hang. Exec provides ObtainSemaphoreListO and ReleaseSemaphoreListO to prevent this 
problem. 

A semaphore list is a list header to a list that contains SignalSemaphore structures. The semaphore list must not 
contain any public semaphores. This is because the semaphore list functions use the standard node structures in the 
semaphore. 

NOTE 

Since the obtain semaphore list feature uses the standard node structures in the semaphore. the 
semaphores in a semaphore list must not be on the public semaphore list 

One way to implement a semaphore list is to make a public semaphore that can be found via FindSemaphoreO and 
to have its structure contain the list header for the semaphore list This also gives you a locking semaphore for 
protecting the ObtainSemaphoreListO call. Once you have gotten access to the list with ObtainSemaphoreO, you 
may obtain all the semaphores on the list via ObtainSemaphoreListO (or get individual semaphores with 
ObtainSemaphoreO). When you are finished with the protected objects, release the semaphores on the list with 
ReleaseSemaphoreListO. and then release the list semaphore via ReleaseSemaphoreO. 

For example: 

ObtainSemaphore«struct SignalSemaphore *)MySemaphoreList); 
ObtainSemaphoreList(MySemaphoreList->MY_List); 
1* Your processing of protected objects goes here */ 
ReleaseSemaphoreList(MySemaphoreList->MY List); 
ReleaseSemaphore«struct signalSemaphore-*)MySemaphoreList); 

See the MySharedList structure above for an example of a semaphore structure with a list header. 

Exec: Semaphores 303 



Example 

A simple lido nothing II example of Exec signal semaphore use is shown below. When the semaphore is owned by a 
task, attempted access by other tasks will block. A nesting count is maintained, so the current task can safely call 
ObtainSemaphoreO on the same semaphore. 

#include <exec/types.h> 
iinclude <exec/semaphores.h> 

#include <proto/exec.h> 

#include <stdio.h> 

/* This prevents Lattice ctrl-C processing .•. */ 
int CXBRK(VOID) { return(O); } 

struct SignalSemaphore LockSemaphore; 

VOID main (int argc,char *argv[]) 
{ 

InitSemaphore(&LockSemaphore); 

ObtainSemaphore(&LockSemaphore); 
if (argc) /* Check if CLI */ 
{ 

printf("This task now owns the semaphore.\n"); 

ReleaseSemaphore(&LockSemaphore); 
if (argc) /* Check if CLI */ 
{ 

printf(IIThis task released the semaphore.\n"); 

304 Exec: Semaphores 



Chapter 21 

Exec: Interrupts 

Introduction 

Exec manages the decoding. dispatching. and sharing of all system interrupts. This includes control of hardware 
interrupts. software interrupts. task-relative interrupts (see Exceptions in the "Tasks" chapter). and interrupt 
disabling/enabling. In addition. Exec supports a more extended prioritization of interrupts than that provided in the 
68000. 

The proper operation of multitasking depends heavily on the consistent management of the interrupt system. Task 
activities are often driven by intersystem communication that is originated by various interrupts. 

SEQUENCE OF EVENTS DURING AN INTERRUPT 

Before useful interrupt handling code can be executed. a considerable amount of hardware and software activity 
must occur. Each interrupt must propagate through several hardware and software interfaces before application code 
is finally dispatched: 

Exec: Interrupts 305 



1. A hardware device decides to cause an interrupt and sends a signal to the interrupt control portions of the 
4703 (paula) custom chip. 

2. The 4703 interrupt control logic notices this new signal and performs two primary operations. First, it 
records that the interrupt has been requested by setting a flag bit in the INTREQ register. Second, it 
examines the INTENA register to determine whether the corresponding interrupt and the interrupt master 
are enabled. If both are enabled, the 4703 generates an interrupt request by placing the priority level of the 
request onto the three 68000 interrupt control input lines (IPLO,IPLl,IPL2). 

3. These three signals correspond to seven interrupt priority levels in the 68000. If the priority of the new 
interrupt is greater than the current processor priority, an interrupt sequence is initiated. The priority level 
of the new interrupt is used to index into the top seven words of the processor address space. The odd byte 
(a vector number) of the indexed word is fetched and then shifted left by two to create an offset into the 
processor's auto-vector interrupt table. The vector offsets used are in the range of $064 to $07C. These 
are labeled as interrupt autovectors in the 68000 manual. The auto-vector table appears in low memory on 
a 68000 system, but its location for other 68000 family processors is determined by the processor's CPU 
Vector Base Register (VBR). VBR can be accessed from supervisor mode with the MOYBC instruction. 

4. The processor then switches into supervisor mode (if it is not already in that mode), and saves copies of 
the status register and program counter (PC) onto the top of the system stack (additional information may 
be saved by processors other than the 68000). The processor priority is then raised to the level of the 
active interrupt. 

5. From the low memory vector address (calculated in step three above), a 32-bit autovector address is 
fetched and loaded into the program counter. This is an entry point into Exec's interrupt dispatcher. 

6. Exec must now further decode the interrupt by examining the INTREQ and INTENA 4703 chip registers. 
Once the active interrupt has been determined, Exec indexes into an ExecBase array to fetch the 
interrupt's handler entry point and handler data pointer addresses. 

7. Exec now turns control over to the interrupt handler by calling it as if it were a subroutine. This handler 
may deal with the interrupt directly or may propagate control further by invoking interrupt server chain 
processing. 

You can see from the above discussion that the interrupt autovectors should never be altered by the user. If you 
wish to provide your own system interrupt handler, you must use the Exec SetIntVectorO function. You should not 
change the contents of any autovector location. 

Task multiplexing usually occurs as the result of an interrupt. When an interrupt has finished and the processor is 
about to return to user mode, Exec determines whether task-scheduling attention is required. If a task was signaled 
during interrupt processing, the task scheduler will be invoked. Because Exec uses preemptive task scheduling, it 
can be said that the interrupt subsystem is the heart of task multiplexing. If, for some reason, interrupts do not occur, 
a task might execute forever because it cannot be forced to relinquish the CPU. 

INTERRUPT PRIORITIES 

Interrupts are prioritized in hardware and software. The 68000 CPU priority at which an interrupt executes is 
determined strictly by hardware. In addition to this, the software imposes a finer level of pseudo-priorities on 
interrupts with the same CPU priority. These pseudo-priorities determine the order in which simultaneous interrupts 
of the same CPU priority are processed. Multiple interrupts with the same CPU priority but a different pseudo
priority will not interrupt one another. Interrupts are serviced by either an exclusive handler or by server chains to 
which many servers may be attached, as shown in the Type field of the next table. 

306 Exec: Interrupts 



The following table summarizes all interrupts by priority. 

Table 21-1: Interrupts by Priority 

H 
H 
S 
S 
S 
H 
H 

AUDO H 
H 
H 

RBF H 
H 
S 

S 

The 8520s (also called CIAs) are Amiga peripheral interface adapter. chips that generate the INTI and INT6 
interrupts. For more information about them, see Amiga Hardware Reference Manual. 

As described in the Motorola 68000 programmer's manual, interrupts may nest only in the direction of higher 
priority. Because of the time-critical nature of many interrupts on the Amiga, the CPU priority level must never be 
changed by user or system code. When the system is running in user mode (multitasking), the CPU priority level 
must remain set at zero. When an interrupt occurs, the CPU priority is raised to the level appropriate for that 
interrupt. Lowering the CPU priority would permit unlimited interrupt recursion on the system stack and would 
"short-circuit" the interrupt-priority scheme. 

Because it is dangerous on the Amiga to hold off interrupts for any period of time, higher-level interrupt code must 
perform its business and exit promptly. If it is necessary to perform a time-consuming operation as the result of a 
high-priority interrupt, the operation should be deferred either by posting a software interrupt or by signalling a task. 
In this way, interrupt response time is kept to a minimum. Software interrupts are described in a later section. 

Exec: Interrupts 307 



NONMASKABLEINTERRUPT 

The 68000 provides a nonmaskable interrupt (NMI) of CPU priority 7. Although this interrupt cannot be generated 
by the Amiga hardware itself, it can be generated on the expansion bus by external hardware. Because this interrupt 
does not pass through the 4703 interrupt controller circuitry, it is capable of violating system code critical sections. 
In particular, it short-circuits the DISABLE mutual-exclusion mechanism. Code that uses NMI must not assume 
that it can access system data structures. 

Servicing Interrupts 

Interrupts are serviced on the Amiga through the use of interrupt handlers and servers. An interrupt handler is a 
system routine that exclusively handles all processing related to a particular 4703 interrupt. An interrupt server is 
one of possibly many system routines that are invoked as the result of a single 4703 interrupt. Interrupt servers 
provide a means of interrupt sharing. This concept is useful for general-purpose interrupts such as vertical blanking. 

At system start, Exec designates certain interrupts as handlers and others as server chains. The PORTS, COPER, 
VERTB, EXTER, and NMI interrupts are initialized as server chains. Therefore, each of these may execute multiple 
interrupt routines per each interrupt. All other interrupts are designated as handlers and are always used exclusively. 

INTERRUPT DATA STRUCTURE 

Interrupt handlers and servers are defined by the Exec Interrupt structure. This structure specifies an interrupt 
routine entry point and data pointer. The C definition of this structure is as follows: 

struct Interrupt 
( 
struct Node is Node; 
APTR is-Data; 
VOID (*is::::Code) (); 
) ; 

Once this structure has been properly initialized, it can be used for either a handler or a server. 

ENVIRONMENT 

Interrupts execute in an environment different from that of tasks. All interrupts execute in supervisor mode and 
utilize the single system stack. This stack is large enough to handle extreme cases of nested interrupts (of higher 
priorities). Interrupt processing has no effect on task stack usage. 

All interrupt processing code, both handlers and servers, is invoked as assembly code subroutines. Normal assembly 
code register conventions dictate that the DO, DI, AO, and Al registers be free for scratch use. In the case of an 
interrupt handler, some of these registers also contain data that may be useful to the handler code. See the section on 
handlers below. 

308 Exec: Interrupts 



NOTE: Because interrupt processing executes outside the context of most system activities, certain data structures 
will not be self-consistent and must be considered off limits for all practical purposes. This happens because certain 
system operations are not atomic in nature and may be interrupted only after executing part of an important 
instruction sequence. For example, memory allocation and deallocation routines do not disable interrupts. This 
results in the finite possibility of interrupting a memory-related routine. In such a case, a memory linked liSt may be 
inconsistent when examined from the interrupt code itself. Therefore, interrupt routines must not use any memory 
allocation or deallocation functions. 

In addition, interrupts may not call any system function which might allocate memory, wait, manipulate unprotected 
lists, or modify ExecBase->ThisTask data (example Forbid and Permit). In practice, this means that very few 
system calls may be used within interrupt code. The following functions may generally be used safely within 
interrupts: 

AlertO, DisableO, EnableO, SignalO, CauseO, PutMsgO, ReplyMsgO, FindPortO, FindTaskO 

and if you are manipulating your own List structures while in an interrupt: 

AddHeadO, AddTailO, RemHeadO, RemTailO, FindNameO 

In addition, certain devices (notably the timer.device) specifically allow limited use of SendIOO and BeginIOO 
within interrupts. 

INTERRUPT HANDLERS 

As described above, an interrupt handler is a system routine that exclusively handles all processing related to a 
particular 4703 interrupt. There can only be one handler per 4703 interrupt. Every interrupt handler consists of an 
Interrupt structure (as defined above) and a single assembly code routine. Optionally, a data structure pointer may 
also be provided. This is particularly useful for ROM-resident interrupt code. 

An interrupt handler is passed control as if it were a subroutine of Exec. Once the handler has finished its business, 
it must return to Exec by executing an RTS (return from subroutine) instruction rather than an RTE (return from 
exception) instruction. Interrupt handlers should be kept very short to minimize service-time overhead and thus 
minimize the possibilities of interrupt overruns. As described above, an interrupt handler has the normal scratch 
registers at its disposal. In addition, AS and A6 are free for use. These registers are saved by Exec as part of the 
interrupt initiation cycle. 

For the sake of efficiency, Exec passes certain register parameters to the handler (see the list below). These register 
values may be utilized to trim a few microseconds off the execution time of a handler. All of the following registers 
(DO/Dl/AO/A1/AS/A6) may be used as scratch registers by an interrupt handler, and need not be restored prior to 
returning. 

NOTE 

Interrupt servers have different register usage rules (see the Interrupt Servers section). 

Interrupt Handler Register Usage 

DO contains no valid information. 

D1 contains the 4703 INTENAR and INTREQR registers values ANDed together. This results in an 
indication of which interrupts are enabled and active. 

Exec: Interrupts 309 



AO points to the base address of the Amiga custom chips. This information is useful for performing indexed 
instruction access to the chip registers. 

Al points to the data area specified by the is_Data field of the Interrupt structure. Because this pointer is 
always fetched (regardless of whether you use it), it is to your advantage to make some use of it. 

AS is used as a vector to your interrupt code. 

A6 points to the Exec library base (SysBas). You may use this register to call Exec functions or set it up as a 
base register to access your own library or device. 

Interrupt handlers are established by passing the Exec function SetlntVectorO, your initialized Interrupt structure, 
and the 4703 interrupt bit number of interest. The parameters for this function are as follows: 

SetlntVector(ULONG intNumber, struct Interrupt *interrupt) 

The first argument is the bit number for which this interrupt server is to respond (example INTB_ VERTB). 
The possible bits for interrupts are defined in hardwarelintbits.h. The second argument is the address of an 
interrupt server node as described earlier in this chapter. 

Keep in mind that certain interrupts are established as server chains and should not be accessed as handlers. 

The following example demonstrates initialization and installation of an assembler interrupt handler. See the 
Resources chapter for more information on allocating resources, and the "Serial Device" chapter for the more 
common method of serial communications. 

/* RBFHandler_c.c - C module of interrupt handler example 

* 
* Compiled with Lattice 5.02: LC -bl -cfist -v -y 
* Linkage: c.o,RBFHandler_c.o,RBFHandler_a.o library LC.lib,amiga.lib 
* * See also Serial Device chapter (most applications use the serial.device) 

* 
* To receive characters, this example requires ascii serial input 
* at your Amiga's current serial hardware baud rate (ie. 9600 after 
* reboot, else last baud rate used) 
*/ 

iinclude <exec/types.h> 
iinclude <exec/memory.h> 
iinclude <exec/execbase.h> 
iinclude <exec/interrupts.h> 
iinclude <resources/misc.h> 
iinclude <hardware/custom.h> 
iinclude <hardware/intbits.h> 
iinclude <libraries/dos.h> 
Ufdef LATTICE 
iinclude <proto/all.h> 
iinclude <stdlib.h> 
iinclude <stdio.h> 
iinclude <string.h> 
int CXBRK(void) ( return(O); /* Disable Lattice CTRL-C handling */ 
extern struct Custom far custom; /* defined in amiga.lib */ 
UBYTE *GetMiscResource(long,UBYTE *); 
void FreeMiscResource(long); 
ipragma libcall MiscBase GetMiscResource 6 9002 
ipragma libcall MiscBase FreeMiscResource cOOl 
ielse 
extern struct Custom custom; 
/* Without pragmas, you must provide C bindings for misc.resource calls. 
* See the Resources chapter. 
*/ 

iendif 

310 Exec: Interrupts 



1* Our assembler interrupt handler code entry *1 
extern void RBFHandler(); 

1* Our C subroutines *1 
void tryRemSer(void); 
void cleanup(void); 
void cleanexit(UBYTE *,LONG); 

#define BUFLEN 256 
struct OurData { 

struct Task *maintask; 
ULONG mainsig; 
UWORD bufi; 
UBYTE chbuf[BUFLEN+2]; 
UBYTE flbuf[BUFLEN+2]; 
UBYTE ourname[32]; 
} ; 

struct OurData *ourdata = NULL; 
struct Interrupt *RBFInterrupt = NULL; 
struct Interrupt *PriorInterrupt = NULL; 
struct MiscResource *MiscBase = NULL; 
BOOL PriorEnable = FALSE; 
BOOL Installed = FALSE; 
BOOL GotPort = FALSE, GotBits FALSE; 
BYTE mainsignum = -1; 
UBYTE *MyName = "RBF-Example"; 
extern struct ExecBase *SysBase; 

void main (argc,argv) 
int argc; 
char **argv; 

{ 
struct Device *dev; 
ULONG signals; 
UBYTE *user; 

1* Try to get the serial hardware resources *1 
if (NULL == (MiscBase=(struct MiscResource *}OpenResource(lmisc.resource"}» 

cleanexit("Can't open misc.resource\n",RETURN_FAIL); 

GotPort = «user = GetMiscResource(MR_SERIALPORT,MyName» 
if (user) 

{ 

NULL) ; 

printf(IISerial hardware currently allocated by %s\n",user); 
if (! (strcmp (user, "serial.device"») 

{ 
printf("Will try to remove serial device\n"); 
Forbid(); 
dev=(struct Device *)FindName(&SysBase->DeviceList,lserial.device"); 
if (dev) RemDevice(dev); 
Permit () ; 
GotPort = "( (GetMiscResource (MR SERIALPORT,MyName» NULL); 
} -

GotBits = «GetMiscResource(MR SERIALBITS,MyName» == NULL); 
if (GotPort && GotBits) print{["Allocated the serial hardware\n"); 
else cleanexit("Can't allocate the serial hardware\n",RETURN_FAIL); 

1* Allocate a signal so interrupts oan signal main *1 
if (-1 == (mainsignum = AllocSignal(-1») 

cleanexit("Can't allocate signal\n",RETURN_FAIL); 

1* Allocate an Interrupt node structure: *1 
if (NULL == (RBFInterrupt = (struct Interrupt *) 

AllocMem«LONG)sizeof(struct Interrupt), MEMF PUBLICIMEMF CLEAR») 
cleanexit ("Can' t allocate interrupt structure\n", RETURN~)AIL) ; 

1* Allocate our data structure which includes our input buffers *1 
if (NULL == (ourdata = (struct OurData *) 

AllocMem«LONG)sizeof(struct OurData), MEMF_PUBLICIMEMF_CLEAR») 

Exec: Interrupts 311 



cleanexit("Can't allocate data structure\n",RETURN_FAIL); 

1* Initialize ourdata structure *1 
ourdata->maintask = FindTask(NULL); 
ourdata->mainsig = lL « mainsignum; 

1* Initialize the Interrupt node *1 
RBFInterrupt->is Node.ln Type = NT INTERRUPT; 
RBFInterrupt->is-Node.ln-Pri = 0;
strcpy(ourdata->ourname,MyName); 
RBFInterrupt->is_Node.ln_Name = ourdata->ourname; 

RBFInterrupt->is Data (APTR)ourdata; 
RBFInterrupt->is=Code = RBFHandler; 

1* Save state of RBF interrupt and disable it *1 
PriorEnable = custom.intenar & INTF_RBF ? TRUE: FALSE; 
custom.intena = INTF_RBF; 

1* Install the new interrupt handler *1 
PriorInterrupt = SetIntVector(INTB_RBF, RBFInterrupt); 
Installed = TRUE; 

if (PriorInterrupt) printf(IIReplaced the %s RBF interrupt handler\n", 
PriorInterrupt->is_Node.ln_Name); 

printf (IIEnabling RBF interrupt ... \n"); 
custom.intena = INTF_SETCLR I INTF_RBF; 

printf("Waiting for our handler to fill character buffer. CTRL-C to exit\n"); 
signals = Wait(ourdata->mainsig I SIGBREAKF_CTRL_C); 

if (signals & SIGBREAKF CTRL C) printf (IIBreak ••• \n"); 
printf (IICharacter buffer co~tains: \n") ; 
puts(ourdata->chbuf); 

printf("\nRestoring previous handler and exiting ••• \n"); 
cleanup(); 
exit (RETURN_OK); 
) 

void cleanexit(s,e) 
UBYTE *s; 
LONG e; 

( 
if(*s) printf(s); 
cleanup () ; 
exit(e); 
) 

void cleanup () 
{ 

if (Installed) 
{ 
1* Disable serial int, restore prior handler and prior state *1 
custom.intena = INTF RBF; 
SetIntVector(INTB RBF, PriorInterrupt); 
if (PriorEnable) custom.intena = INTF SETCLRIINTF RBF; 
) --

if (ourdata) FreeMem(ourdata, (LONG)s1zeof(struct OurData»; 
if (RBFInterrupt) FreeMem(RBFInterrupt, (LONG)sizeof(struct Interrupt»; 
1f(mainsignum != -1) FreeSignal(mainsignum); 
if(GotBits) FreeMiscResource(MR SERIALBITS); 
if(GotPort) FreeMiscResource(MR-SERIALPORT); 
) -

The assembler interrupt handler code, RBFHandler, reads the complete word of serial input data from the serial 
hardware and then separates the character and flag bytes into separate buffers. When the buffers are full, the handler 

312 Exec: Interrupts 



signals the main process causing main to print the character buffer contents, remove the handler, and exit. 

NOTE 

The data structure containing the main signal, main task pointer, and buffers is allocated and initialized 
by main, and passed to the handler (shown below) via the is_Data pointer of the Interrupt structure. 

* * RBFHandler_a.asm - Example interrupt handler code 

* 
INCLUDE "exec/types.i" 
INCLUDE "hardware/custom.i" 
INCLUDE "hardware/intbits.i" 

XDEF _RBFHandler 

JSRLIB MACRO 

BUFLEN 

XREF LVO\l 
JSR =:LVO\l (A6) 
ENDM 

EQU 256 

STRUCTURE OURDATA,O 
APTR od maintask 
ULONG od-mainsig 
UWORD od-buH 
STRUCT od=chbuf,BUFLENt2 
STRUCT od flbuf,BUFLENt2 
STRUCT od=ourname,32 
LABEL OURDATA_SIZEOF 

CODE 

* Entered with: 
* DO scratch 
* Dl INTENAT & INTREQR (scratch) 
* AD custom chips (scratch) 
* Al is Data which is OURDATA structure (scratch) 
* AS vector to our code (scratch) 
* A6 pointer to ExecBase (scratch) 
* * Note - This simple handler just receives one buffer full of serial 
* input data, signals main, then ignores all subsequent serial data. 

* 
RBFHandler: 

MOVE.W 

MOVE.W 
CMPLW 
BEQ.S 
LEA.L 
MOVE.B 
LEA.L 
LSR.W 
MOVE.B 

ADDQ.W 
MOVE.W 
CMPLW 
BNE.S 
MOVE.L 
MOVE.L 
MOVE.L 
JSRLIB 
MOVE.L 

serdatr(AO),Dl 

od bufi(Al),DO 
IIBUFLEN,DO 
ExitHandler 
od_chbuf(Al),AS 
Dl,O(AS,DO.W) 
od _ flbuf (Al) , AS 
118,dl 
Dl, 0 (AS, DO. W) 

Ill, DO 
DO,od bufi (Al) 
IIBUFLEN,DO 
ExitHandler 
AO,-(SP) 
od mainsig(Al),DO 
od-maintask(Al),Al 
Signal 
(SP)t,AO 

;entry to our interrupt handler 

;get the input word (flags and char) 

;get our buffer index 
;no more room in our buffer ? 
;yes - just exit (ignore new char) 
;else get our character buffer address 
;store character in our chbuf 
;get our flag buffer address 
;shift flags down 
;store flags in our flbuf 

;increment our buffer index 
and replace it 

;did our buffer just become full ? 
;no - we can exit 
;yes - save custom 
;get signal allocated by main 
;and pointer to main task 
;tell main we are full 
; restore custom 
;Note: system call trashed DO-Dl/AO-Al 

Exec: Interrupts 313 



ExitHandler: 
MOVE.W #INTF_RBF,intreq(AO) 
RTS 

END 

INTERRUPT SERVERS 

;clear the interrupt 
;return to exec 

As mentioned above, an interrupt server is one of possibly many system interrupt routines that are invoked as the 
result of a single 4703 interrupt. Interrupt servers provide an essential mechanism for interrupt sharing. 

Interrupt servers must be used for PORTS. COPER, VERTB, mITER, or NMI interrupts. For these interrupts, all 
servers are linked together in a chain. Every server in the chain will be called in turn as long as the previous server 
returned with the processor's Z (zero) flag set. If you determine that an interrupt was specifically for your server, 
you should return with the processor's Z flag cleared (non-zero condition) so that the remaining servers on the chain 
will be skipped. 

NOTE 

VERTB (vertical blank) servers should always return with the Z (zero) flag set. The processor Z flag is 
used rather than the normal function convention of returning a result in DO because it may be tested 
more quickly by Exec upon the server's return. 

The easiest way to set the condition code register is to do an immediate move to the DO register as follows: 

SetZflag Calls Next: 
MOVEQ - #0, DO 
RTS 

ClrZflag Ends Chain: 
MOVEQ- #l,DO 
RTS 

The same Exec Interrupt structure used for handlers is also used for servers. Also, like interrupt handlers, servers 
must terminate their code with an RTS instruction. 

Interrupt servers are called in priority order. The priority of a server is specified in its is_Node.ln_Pri field. 
Higher-priority servers are called earlier than lower-priority servers. Adding and removing interrupt servers from a 
particular chain is accomplished with the Exec AddIntServerO and RemIntServerO functions. These functions 
require you to specify both the 4703 interrupt number and a properly initialized Interrupt structure. 

Servers have different register values passed than handlers do. A server cannot count on the ~O, 01, AO, or A6 
registers containing any useful information. However, the highest priority system vertical blank server currently 
expects to receive a pointer to the custom chips AO. Therefore, if you install a vertical blank server at priority 10 or 
greater, you must place custom ($OFFOOO) in AO before exiting. Other than that, a server is free to use DO-Ol and 
AO-Al/AS-A6 as scratch. 

Interrupt Server Register Usage 

DO scratch 

01 scratch 

314 Exec: Interrupts 



AO scratch except in certain cases (see note above) 

Al points to the data area specified by the is_Data field of the Interrupt structure. Because this pointer is 
always fetched (regardless of whether you use it), it is to your advantage to make some use of it. (scratch) 

AS points to your interrupt code (scratch) 

A6 scratch 

In a server chain, the interrupt is cleared automatically by the system. Having a server clear its interrupt is not 
recommended and not necessary (clearing could cause the loss of an interrupt on PORTS or EXTER). 

Here is an example of a program to install and remove a low-priority vertical blank interrupt server: 

/* Vertb c.c - C module of interrupt server example 
* Compiled with Lattice 5.02: LC -bl -cfist -v -y 
* Linkage: c.o,vertb c.o,vertb a.o library LC.lib,amiga.lib 
*/ --

iinclude <exec/types.h> 
iinclude <exec/memory.h> 
iinclude <exec/interrupts.h> 
iinclude <hardware/custom.h> 
iinclude <hardware/intbits.h> 
Ufdef LATTICE 
iinclude <proto/all.h> 
iinclude <stdlib.h> 
iinclude <stdio.h> 
int CXBRK(void) ( return(O); 
iendif 

extern void VertBServer(); 

struct Interrupt *VBlnterrupt; 
ULONG counter; 

void main(argc,argv) 
int argc; 
char **argv; 

{ 
ULONG finalcount; 

/* Disable Lattice CTRL-C handling */ 

/* our assembler interrupt server */ 

/* Allocate an Interrupt node structure: */ 
if (NULL == (VBlnterrupt = (struct Interrupt *) 

AllocMem«LONG)sizeof(struct Interrupt), MEMF_PUBLICIMEMF_CLEAR») 

printf("Can't allocate interrupt structure\n"); 
exit (RETURN FAIL); 
} -

/* Initialize the Interrupt node: */ 
VBlnterrupt->is Node.ln Type = NT INTERRUPT; 
VBlnterrupt->is-Node.ln-Pri = -60; 
VBlnterrupt->is=Node.ln=Name = "VertB-example"; 
VBlnterrupt->is_Data (APTR)&counter; 
VBlnterrupt->is_Code = VertBServer; 

/* put the new interrupt server into action: */ 
AddlntServer(INTB_VERTB, VBlnterrupt); 
printf("VBlank server will increment a counter every frame.\n"); 
printf("Counter now zero - wait a few seconds then press CTRL-C\n"); 
counter = OL; 

Wait (SIGBREAKF_CTRL C); 

finalcount = counter; 
printf("\n%ld vertical blanks occurred.\n",finalcount); 

Exec: Interrupts 315 



RemIntServer(INTB VERTB, VBInterrupt); 
FreeMem(VBInterrupt, sizeof(struct Interrupt»; 
) 

This is the assembler VertBServer installed by the C example: 

* * Vertb a.asm - assembler vertical blank server 
* Passed is_Data pointer in Al (pointer to counter in C code above) 

* 
XDEF _VertBServer 
CODE 

VertBServer: 
ADDI.L ~l, (Al) ;increment the counter is Data points to 
MOVEQ.L ~O,DO ;set Z flag to continue to process other vb-servers 
RTS 
END 

Software Interrupts 

Exec provides a means of generating software interrupts. This type of interrupt is useful for creating special
purpose asynchronous system contexts. Software interrupts execute at a priority higher than that of tasks but lower 
than that of hardware interrupts, so they are often used to defer hardware interrupt processing to a lower' priority. 
Software interrupts use the same Interrupt data structure as hardware interrupts. As described above, this structure 
contains pointers to both interrupt code and data, and should be initialized as node type NT_INTERRUPT (not 
NT_SOFTINT which is an internal Exec flag). 

A software interrupt is usually activated with the CauseO function. If this function is called from a task, the task 
will be interrupted and the software interrupt will occur. If it is called from a hardware interrupt, the software 
interrupt will not be processed until the system exits from its last hardware interrupt. If a software interrupt occurs 
from within another software interrupt, it is not processed until the current one is completed. 

NOTE 

Software interrupts execute in an environment almost identical to that of hardware interrupts, and the 
same restrictions on allowable system function calls (as described earlier) apply to both. 

Software interrupts are prioritized. Unlike interrupt servers, software interrupts have only five allowable priority 
levels: -32, -16, 0, +16, and +32. The priority should be put into the In_Pri field prior to calling CauseO. 

Software interrupts can also be generated by message arrival at a PA_SOFTINT message port. The applications of 
this technique are limited since it is not permissible, with most devices, to send 10 requests from within interrupt 
code. However, the timer.device does allow such interactions, so a self-perpetuating PA_SOFTINT timer port can 
provide an application with quite consistent timing under varying multitasking loads. The following example 
demonstrates initialization of a software interrupt, and use of a PA_SOFTINT port. See the Exec "Messages and 
Ports" chapter for more information about messages and ports. 

/* 
* TimerSoftInt.c - PA SOFTINT MsgPort example 
* Compiled with Lattice-S.02: LC -bl -cfist -v -y 
* Linkage: c.o,timersoftint.o library LC.lib,amiga.lib 
*/ 

~include <exec/types.h> 
~include <exec/interrupts.h> 
~include <exec/memory.h> 
~include <devices/timer.h> 

316 Exec: Interrupts 



#include <libraries/dos.h> 
#ifdef LATTICE 
#include <proto/all.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
int CXBRK(void) ( return(O); 
#endif 

#define MIC_DELAY 1000 

/* our functions */ 

/* Disable Lattice CTRL-C handling */ 

void *tsoftcode(void); /* our timer softint code */ 
void cleanexit(UBYTE *, LONG); 
void cleanup(void); 
void begintr(struct timerequest *); 

/* Opens and allocations we must clean up. 
* Note - casts of timerequest pointers to (struct IOStdReq *) 
* in this example are to eliminate compiler warnings. 
* A timerequest starts with but is larger than an IOStdReq. 
*/ 

struct Interrupt 
struct timerequest 
struct MsgPort 
BOOL OpenedTimer = 

*tint = NULL; 
*treq = NULL; 
*tport = NULL; 

FALSE; 

/* Global variables shared with the softint code 
* If our tsoftcode was in assembler, we could use is Data 
* pointer instead to tell softint code where shared data is 
*/ 

#define OFF 0 
#define ON 1 
#define STOPPED 2 
BOOL SFlag=OFF; 
ULONG counter; 

char tportname[] = IRKM_timersoftint"; 

void main(argc, argv) 
int argc; 
char **argv; 

( 
ULONG endcount; 

if (! argc) exit (RETURN_FAIL) ; f.* CLI only example .•. Uses printf * / 

/* Allocate our MsgPort and Interrupt structures 
* Since we can't use CreatePort, we'll build the port ourselves. 
* Create Port creates a PA_SIGNAL and allocs a signal. 
* We want a PA SOFTINT port; 
*/ -

if(! (tport = (struct MsgPort *) 
AllocMem(sizeof(struct MsgPort),MEMF PUBLICIMEMF CLEAR») 

cleanexit("Can't allocmem msgport\nll,RETURN_FAIL); 

if(! (tint = (struct Interrupt *) 
AllocMem(sizeof(struct Interrupt),MEMF PUBLICIMEMF CLEAR») 

cleanexit ("Can' t allocmem interrupt\n", RETURN_FAIL) ; 

/* Set up the (software) interrupt structure. 
* Note that we are priority o. Software interrupts may only be 
* priority -32, -16, 0, +16, or +32. Also note that the 
* correct node type for a software interrupt is NT INTERRUPT. 
* (NT SOFTINT is an internal flag of Exec's) 
* This is the same setup as that for a software interrupt 
* which you Cause(). If our interrupt code was in assembler, 
* you could initialize is Data here to contain a pointer 
* to shared data structures. An assembler software interrupt 
* routine would receive the is~Data pointer in A1. 

Exec: Interrupts 317 



*1 
tint->is Code = (VOID (*) ()) tsoftcode; 1* Our softint routine *1 
tint->is-Node.ln Type = NT INTERRUPT; 
tint->is=Node.ln=Pri = 0; -

1* Set up the PA_SOFTINT msgport *1 
tport->mp Node.ln Type = NT_MSGPORT; 
tport->mp=Node.ln=Name = (char *)tportname; 
tport->mp_Flags = PA_SOFTINT; 
tport->mp_sigTask = (struct Task *)tint; 1* Ptr to interrupt struct *1 

1* Not using CreatePort, so we must add the port ourselves *1 
AddPort(tport); 

1* Now Create the IO request *1 
if(! (treq=(struct timerequest *) 

CreateExtIO(tport,sizeof(struct timerequest)))) 
cleanexit("Can't create ioreq\n", RETURN_FAIL); 

1* Open the timer device - Note 0 return means success *1 
if(OpenDevice( .. timer.device",UNIT MICROHZ, (struct IOStdReq *)treq,O)) 

cleanexit ("Can't open timer device\n", RETURN_FAIL) ; 

OpenedTimer = TRUE; 1* Flag for closing in cleanup *1 

1* Now, let's do something with it *1 
counter = OL; 
SFlag = ON: 
begintr (treq) : 1* Prime the pump with first timer request *1 

printf("Timer softint is counting milliseconds. Press CTRL-C to exit ..... ); 
Wait(SIGBREAKF_CTRL_C); 

endcount = counter; 
printf("\n\nSoftint counted %ld milliseconds\n",endcount): 
printf("Stopping timer and exiting\n"): 

SFlag = OFF: 
while(SFlag != STOPPED) Delay(lO); 

cleanup(); 
exit (RETURN OK); 
) -

1* Routine called as software interrupt *1 
VOID *tsoftcode() 

{ 
struct timerequest *tr: 

1* Remove our message from our port *1 
tr = (struct timerequest *)GetMsg(tport): 

1* If main hasn't flagged us to stop, keep the ball rolling *1 
if((tr)&&(SFlag==ON)) 

{ 

1* Increment the counter and send the timer request out again. 
* 
* IMPORTANT: This self-perpetuating technique of calling 
* BeginIO during a software interrupt may only be used with 
* the audio and timer device. 
*1 

counter++; 
begintr(tr); 
) 

1* Else flag main we have indeed stopped *1 
else(SFlag=STOPPED); 
return(O); 
) 

318 Exec: Interrupts 



/* begintr (tr) 
* Sets up and sends off timer request. 
* IMPORTANT: Do not BeginIO to any device other than timer or audio 
* from within a software or hardware interrupt. The BeginIO code 
* of other devices may allocate memory, wait, or perform other 
* functions which are illegal or dangerous during interrupts. 
*/ 

void begintr(struct timerequest *tr) 
( 
/* Set up the timer command */ 
tr->tr node.io Command = TR ADDREQUEST; 
tr->tr-time.tv-micro = MIC DELAY; 
BeginIO«struct IOStdReq *)tr); 
} 

/* Prints message if any, cleans up, and exits */ 
void cleanexit(UBYTE *s, LONG n) 

{ 

if(*s) printf(s); 
cleanup () ; 
exit(n); 
} 

/* Close/deallocate everything opened/allocated */ 
void cleanup () 

{ 

if {OpenedTimer) CloseDevice({struct IOStdReq *)treq); 
if{treq) DeleteExtIO«struct IOStdReq *)treq); 
H(tport) 

{ 

RemPort(tport); 
FreeMem(tport,sizeof(struct timerequest)); 
} 

if(tint) FreeMem(tint, sizeof(struct Interrupt)); 
} 

Disabling Interrupts 

As mentioned in the "Tasks" chapter, it is sometimes necessary to disable interrupts when examining or modifying 
certain shared system data structures. However, for proper system operation, interrupts should never be disabled 
unless absolutely necessary, and never for more than 250 microseconds. Interrupt disabling is controlled with the 
DisableO and EnableO functions. Although assembler DISABLE and ENABLE macros are provided, we strongly 
suggest that you use the system functions rather than the macros for upwards compatibility and smaller code size. 

In some system code, there are nested disabled sections. Such code requires that interrupts be disabled with the first 
DisableO and not re-enabled until the last EnableO. The system Enable and Disable functions are designed to 
permit this sort of nesting. 

DisableO increments a counter to track how many levels of disable have been issued. Only 126 levels of nesting are 
permitted. EnableO decrements the counter, and reenables interrupts when the last disable level has been exited. 

Exec: Interrupts 319 



Chapter 22 

Exec: ROM-Wack 

Introduction 

Wack is a keystroke-intemctive, run-time debugger used with Amiga hardware and software. ROM-Wack is a small, 
Kickstart resident version primarily useful for examining data structures after a system crash. ROM-Wack is a 
functional subset of Wack. 

Getting to ROM-Wack 

ROM-Wack is invoked by Exec automatically upon a fatal system error, or it can be explicitly invoked through the 
Exec Debug(O) function. Once invoked, communication is performed through the built-in serial port ROM-Wack 
requires the use of an external terminal or another Amiga set to 9600 baud, 8 bits, no parity, and one stop bit 

When a fatal system error occurs, ROM-Wack can be used to examine memory in an attempt to locate the source of 
the failure. The machine will be frozen at the point in which the error occurred. ROM-Wack will not disturb the 
state of the system beyond using a small amount of supervisor stack, memory between $200 and $400, and the serial 
data port. 

Exec: ROM-Wack 321 



ROM-Wack may be . invoked from the secret Workbench menu. To get to the secret Workbench menu, use 
"LoadWB -debug" instead of "LoadWB" from the CLI or startup-sequence. The secret menu will be to the right of 
the normal menus. A program may explicitly invoke ROM-Wack by calling the Exec Debug(O) function. This is 
useful during the debug phase of development for establishing program breakpoints. DebugO may be called from 
any context, including interrupts, supervisor mode or during ForbidO or DisabJeO. For future compatibility, 
DebugO should be called with a single, null parameter. RAM loaded debuggers may also hook into the DebugO 
vector. 

NOTE: When ROM-Wack is called from a program, system interrupts continue to process, but multi-tasking is 
disabled. Generally this is not harmful to the system. Your graphics will still display, keys may be typed, and so on. 
However, many interrupts deposit raw data into bounded or circular buffers. These interrupts often signal related 
device tasks to further process these buffers. If too many interrupts occur, device buffers may begin to overflow or 
wrap around. You should limit the number of interrupt actions (such as typing keys on the Amiga keyboard) you 
perform while executing in ROM-Wack. 

Finally, certain system failures are so serious that the system is forced to reboot. Before the reboot, the power LED 
will flash slowly. By typing a DEL ($7F) character on the remote terminal, the system will drop into ROM-Wack. 

Keystrokes, Numbers, and Symbols 

ROM-Wack performs a function for every keyboard keystroke. In ROM-Wack, these functions are permanently 
bound to certain keys. For example, typing ">" will immediately result in the execution of the next-word function. 
This type of operation gives a keystroke-interactive feel to most of the common ROM-Wack commands. The Wack 
feature of arbitrary key binding is not available in ROM-Wack. 

Most punctuation marks are bound to simple actions, such as displaying a memory frame, moving the frame pointer, 
or altering a single word. These actions are always performed immediately. In contrast, the keys A-Z, a-z, and 0-9 
are bound to a function that collects the keys as a string. When such a string is terminated with <RETURN>, the 
keys are interpreted as a single symbol or number. During the "collection" of a symbol or number string, typing a 
backspace deletes the previous character. Typing <CTRL-X> deletes the entire line. 

If a string of keys forms a number, that number is treated as a hexadecimal value. If a string of keys is neither a 
number nor a known symbol, the message' 'unknown symbol" is presented. 

Register Frame 

When ROM-Wack is invoked for any reason, a register frame is displayed: 

ROM-Wack 
PC: 00FOOAB4 SR: 0000 uSP: 00126B SSP: 07FFEB XCPT: 0000 TASK: OOOBBB 
DR: 00000001 00000004 OOOOOOOC 00000AB4 00000001 0000001C 00000914 00000914 
AR: 00000AB4 00FOD34B 00011ABO 00000B9C 00F20770 00F203BO 00000604 
SF: 0000 OOFO OAB4 0014 OOFO OAB4 0014 OOFO OAB4 0004 OOFO OAB4 0000 0004 0000 

This frame displays the current processor state and system context from which you entered ROM-Wack. If you are 
familiar with the 68000 processors, most of this frame should be obvious: PC for program counter, SR for status 
register, USP for user stack pointer, SSP for system stack pointer, etc. 

322 Exec: ROM-Wack 



The XCPT field indicates the 68000 exception vector number that forced enrty into ROM-Wack. 

Standard 68000 exception vector (XCPT) names & numbers 
o Normal entry. 
2 Bus error and/or access to non-existent memory. 
3 Address error. Instructions or data accessed at an odd address. 

The 68020 only takes address errors for instruction access. 
4 Illegal instruction (other than $AXXX or $FXXX). 
5 Zero divide. 
6 CHK instruction. Bounds check failed. 
7 TRAPV instruction. Trap on overflow. 
8 Privilege violation. Supervisor instruction by user code. 
9 Trace (single step). 
A Line 1010 emulator (instruction starting with $A). 
B Line 1111 emulator (instruction starting with $F). 
2X TRAP instruction number X ($2F for breakpoint). 

NOTE 

Exec also uses the term exception for asynchronous task events driven by the signal system. See the 
"Tasks" chapter for details. 

The TASK field indicates from which task the system entered ROM-Wack. If this field is zero, the system entered 
from supervisor mode. 

The SF line provides a back trace of the current stack frame. This is often useful for determining the current 
execution context (last function called, for example). The user stack is displayed for entry from a task; the system 
stack for entry from supervisor mode. 

Display Frames 

ROM-Wack displays memory in fixed size/rames. A frame may vary in size from 0 to 64K bytes. Frames normally 
show addresses, word size hex data, and ASCII equivalent characters. By default, ROM-Wack will pack as much 
memory content as it can onto a single line. Sometimes it is preferable to see more or less than this default frame 
size. The frame size may be modified with :n. Here "n" represents the number of bytes (rounded to the next unit 
size) that will be displayed. 

:4 
FOOOC4 6578 6563 e x e c 
:20 
FOOOC4 6578 6563 2E6C 6962 7261 7279 0000 4AFC e x e c 1 i bra r y ... 
FOOOD4 OOFO 00D2 OOFO 2918 0019 0978 OOFO 00C4 ............ ) "X •• "Y"I ••••• 

A ":0" frame size is required for altering the write-only custom chip registers. Custom chip registers are either 
read-only or write-only. 

Exec: ROM-Wack 323 



Relative Positioning 

> 
< 
+n 
-n 
<RETURN> 
<SPACE> 
<BKSP> 
:XX 

Absolute Positioning 

forward a frame 
backward a frame 
forward a word 
backward a word 
forward n bytes 
backward n bytes 
redisplay current frame 
forward a word 
backward a word 
Set frame size to XX. Zero is allowed 

There are a few commands that perform absolute positioning. Typing a hex number sets the current address. 
ROM-Wack also maintains an indirection stack to help you walk down linked lists of absolute pointers: 

4 
000004 0000 11ec OOfO Oa8e OOfO Oa90 OOfO Oa92 •••.• Q •.••.•• J •••...• J ...•. 
[ (use current longword as the next address) 
0011ec 0000 18f6 0000 1332 0900 OOfO 086a 0000 .... ·X ..•••. ·S 2·I ...•.•••• 
1 (return to the previous "indirected" address) 
000004 0000 11ec OOfO Oa8e OOfO Oa90 OOfO Oa92 ..•.• Q •.•••.• J .....•• J ••••• 

Altering Memory & Stored Registers 

The = command lets you modify your current memory word. ROM-Wack will prompt for the new value. 

20134 
020134 0000 0000 0000 •...•.....•• 
020134 0000 =767 
020134 0767 0000 0000 'G g ......•. 

If the frame size is zero, the contents of the word will not be displayed prior to the modification: 

:0 
dffl80 
DFF180 xxxx =OffO 

If you decide not to modify the contents after typing < = >, press <RETURN> without typing a number. If you have 
already typed a number, type <CTRL-X>. 

The alter command performs a repeated < = > which is handy for setting up tables. While in this mode, the less
than and greater-than keys (angle backets) will move you forward or backward one word. To exit from this mode, 
type a <RETURN> with no preceding number. 

324 Exec: ROM-Wack 



alter 
001400 0280 =222 
001402 OOCS =< 
001400 0222 =333 
001402 00c8 =444 
001404 0000 =0 
001406 3700 => 
001408 0000 =666 
00140A 0000 =<RETURN> 

You can modify registers when single-stepping or breakpointing. Typing < I > followed by the register name (DO
D7, AO-A6, etc.) lets you make modifications. SR and SSP cannot be modified. 

The fill command fills memory with a given pattern from the current location to an upper bound. The limit 
command determines the upper bound of the fill. The size of the fill pattern determines the number of bytes the 
pattern occupies in memory. For example, typing "45" fiUs bytes with $45. Typing "045" fills words with $0045, 
and "0000045" fiUs longs with $00000045. 

The find command searches from the current position to the upper bound. The pattern may be from one to four 
bytes in length. The pattern is not affected by the alignment of memory; that is, byte alignment is used for all 
searches regardless of the pattern size. 

CAUTION 

Using the fill or find commands without properly setting the limit can destroy data in memory. To set 
the upper bound, go to an address, then type limit or press the carat-key. 

Execution Control 

go execute from current memory address 
resume resume at current address from the PC (exit wack) 
~D same as resume 
~ I (tab) single instruction step 
boot reboot system (cold.reset) 

Breakpoints 

ROM-Wack has the ability to perform limited RAM-based program breakpoints. Up to 16 breakpoints may be set. 
The breakpoint commands are as follows: 

set set breakpoint at current address 
show show all breakpoint addresses 
clear clear breakpoint at current address 
reset clear all breakpoints 

To set a breakpoint, position the address pointer to the break address and type set. Resume program execution with 
go or resume. When your breakpoint has been reached, ROM-Wack will display a register frame. The breakpoint 
is automatically cleared once the breakpoint is reached. 

Exec: ROM-Wack 325 



Other Commands 

alter 
find 
fill 
limit 
list 
regs 
user 
? 
[ 
] 

~x 

Like =, but allows modification of multiple locations 
Search for pattern 
Fill memory with bytes, words or longs up to the limit 
Set limit for use with commands like fill 
Display the contents of an Exec list structure 
List the current register set 
Try to restart multitasking 
Print help 
Indirect from current address 
Exdirect 
Bound to limit 
Set register (type register number) 
Change memory 
Cancel gathering keys 

Returning to Multitasking After a Crash 

The user command forces the machine back into multitasking mode after a crash that invoked ROM-Wack. This 
gives your system a chance to flush disk buffers before you reset, thus securing your disk's super-structures. 

Once you type user, you cannot exit from ROM-Wack, so you should use this command only when you want to 
reboot after debugging. Give your disk a few seconds to write out its buffers. If your machine is in serious trouble, 
the user command may not work. 

326 Exec: ROM-Wack 



Chapter 23 

Graphics: Primitives 

This chapter describes the basic graphics tools. It covers the graphics support structures, display routines, and 
drawing routines. Many of the operations described in this section are also performed by the Intuition software. See 
the "Intuition" chapter for more information. 

Introduction 

The Amiga has two basic types of graphics support routines: display routines and drawing routines. These routines 
are very versatile and allow you to define any combination of drawing and display areas you may wish to use. 

The first section of this chapter defines the display routines. These routines show you how to form and manipulate a 
display, including the following aspects of display use: 

How to identify the memory area that you wish to have displayed 

How to position the display area window to show only a certain portion of a larger drawing area 

How to split the screen into as many vertically stacked slices as you wish 

Graphics: Primitives 327 



Whether to use the high-resolution or low-resolution display mode for a particular screen segment, and 
whether to use interlaced or non-interlaced mode 

How to determine the correct number of pixels across and lines down for a particular section of the display 

How to specify how many color choices per pixel are to be available in a specific section of the display 

The next section of the chapter explains all of the available modes of drawing supported by the system software, 
including how to do the following: 

Reserve memory space for use by the drawing routines 

Define the colors that can be drawn into a drawing area 

• Define the colors of the drawing pens (foreground pen, background pen for patterns, and outline pen for 
area-fill outlines) 

Define the pen position in the drawing area 

Drawing primitives; lines, rectangles, circles and ellipses 

Define vertex points for area-filling, and specify the area-fill color and pattern 

Define a pattern for patterned line drawing 

Change drawing modes 

Read or write individual pixels in a drawing area 

Copy rectangular blocks of drawing area data from one drawing area to another 

Use a template (predefined shape) to draw an object into a drawing area 

COMPONENTS OF A DISPLAY 

In producing a display, you are concerned with two primary components: sprites and the playfield. Sprites are the 
easily movable parts of the display. The playfield is the static part of the display and forms a backdrop against 
which the sprites C&n move and with which the sprites can interact. 

This chapter covers the creation of the background. Sprites are described in the "Animation" chapter. 

INTRODUCTION TO RASTER DISPLAYS 

There are three television standards in common use around the world: NTSC, PAL, and SECAM. NTSC is used 
primarily in the United States; PAL and SECAM are primarily used in Europe. The Amiga currently supports both 
NTSC and PAL. The major differences between the two systems are refresh frequency and the number of scan lines 
produced. Where necessary, the differences will be described and any special considerations will be mentioned. 

328 Graphics: Primitives 



The Amiga produces its video displays on standard television or video monitors by using raster display techniques. 
The picture you see on the video display screen is made up of a series of horizontal video lines stacked one on top of 
another, as illustrated in the following figure. Each line represents one sweep of an electronic video beam, which 
"paints" the picture as it moves along. The beam sweeps from left to right, producing the full screen one line at a 
time. After producing the full screen, the beam returns to the top of the display screen. 

Figure 23-1: How the Video Display Picture Is Produced 

The diagonal lines in the figure show how the video beam returns to the start of each horizontal line. 

Effect of Display Overscan on the Viewing Area 

To assure that the picture entirely fills the viewable region of the screen, the manufacturer of the video display 
usually creates a deliberate overscan. That is, the video beam is swept across a larger section than the front face of 
the screen can actually display. The video beam actually covers 262 vertical lines (312 for PAL). The user, 
however, sees only the portion of the picture that is within the center region of the display, which is about 200 rows 
on a NTSC machine, as illustrated in the following figure. The graphics system software allows you to specify, for a 
NTSC display, up to 241 lines (482 interlace). For a PAL display; up to 283 lines for a non-interlaced screen, 566 
for an interlaced screen. 

Overscan also restricts the amount of video data that can appear on each display line. The system software allows 
you to specify a display width of up to 362 pixels (or 724 in high-resolution mode) per horizontal line. Generally, 
however, you should use the standard values of 320 (or 640 in high-resolution mode) for most applications. 

Graphics: Primitives 329 



Vertical 
Blanking 
Interval 

Video Display 

~ __ Overscan region. You cannot 
see it on the video screen. 

~--Viewable region. Contains 
approximately 200 video lines 
and 320 pixels across. 

Figure 23-2: Display Overscan Restricts Usable Picture Area 

The time during which the video beam is in the region below the bottom line of the viewable area and above the top 
line of the next display field is called the vertical blanking interval. A practical minimum to allow for this interval is 
21 lines for NTSC, 29 lines for PAL. 

Color Information for the Video Lines 

The hardware reads the system display memory to obtain the color information for each line. As the video display 
beam sweeps across the screen producing the display line, it changes color, producing the images you have defined. 

INTERLACED AND NON·INTERLACED MODES 

In producing the complete display (262 video lines), the video display device produces the top line, then the next 
lower line, then the next, until it reaches the bottom of the screen. When it reaches the bottom, it returns to the top 
to start a new scan of the screen. Each complete set of 262 lines is called a display field. It takes about l/60th (for 
NTSC; PAL takes I/50th) of a second to produce a complete display field. 

The Amiga has two vertical display modes: interlaced and non-interlaced. In non-interlaced mode, the video 
display produces the same picture for each successive display field. A non~interlaced NTSC display normally has 
about 200 lines in the viewable area (for a full-screen size display), while a PAL display will show 256 lines. 

Interlaced mode allows you to double the viewable area. On a NTSC display this amounts to 400 lines, while on a 
PAL display it amounts to 512 lines. 

For interlaced mode, the video beam scans the screen at the same rate (l/60th of a second per complete NTSC video 
display field); however, it takes two display fields to form a complete video display picture. During the first of each 
pair of display fields, the system hardware shows the odd-numbered lines of an interlaced display (I, 3, 5, and so 
on). During the second display field, it shows the even-numbered lines (2, 4, 6 and so on). During the display, the 
hardware moves the second display field's lines downward slightly from the position of the first, so that the lines in 
the second field are "interlaced" with those of the first field, giving the higher vertical resolution of this mode. For 
an interlaced display, the data in memory defines twice as many lines as for a non-interlaced display, as shown in the 
following figure. 

330 Graphics: Primitives 



DATA AS 
DISPLAYED 

Odd field Line 1 
Even field Line 1 
Odd field Line 2 
Even field Line 2 

Odd field Last line 
Even field - Last line 

DATA 
IN MEMORY 

Line 1 
Line 2 
Line 3 
Line 4 

Line 399 
Line 400 

Figure 23-3: Interlaced Mode - Display Fields and Data in Memory 

The following figure shows a display formed as display lines 1, 2, 3, 4, ... 400. The 400-line interlaced display uses 
the same physical display area as a 200-line non-interlaced display. 

Line 1 

1\ Field 1 

Line 1 

/ Line 2 
Video Display 

Line 1 (400 lines) 

Field 2 

Figure 23-4: Interlaced Mode Doubles Vertical Resolution 

During an interlaced display, it appears that both display fields are present on the screen at the same time and form 
one complete picture. This phenomenon is called video persistence. Interlaced displays will appear to flicker if 
adjacent (odd and even) scan lines have contrasting brightness. This phenomenon can be reduced by using a long
persistence monitor, or alleviated completely with a hardware "screen de-interlacer". 

Graphics: Primitives 331 



HIGH- AND LOW-RESOLUTION MODES 

The Amiga also has two horizontal display modes: high-resolution and low-resolution. High-resolution mode 
provides (nominally) 640 distinct pixels (picture elements) across a horizontal line. Low-resolution provides 
(nominally) 320 pixels across each line. Out of a total of 4,096 colors, low-resolution mode allows up to 32 colors 
and high-resolution mode allows up to 16 colors on-screen at one time. 

Two other low-resolution display modes also affect the number of colors you can display at one time: Extra-Hal/
Brite and Hold-And-Modify. 

Extra-Half-Brite allows for 64 colors on-screen at once; 32 colors plus 32 additional colors that are half the intensity 
of the first 32. For example, if color 1 is defined as Oxfff (white), then color 33 is Ox777 (grey). 

Hold-And-Modify (HAM) allows you to display the entire palette of 4,096 colors on-screen at once with certain 
restrictions, explained later. 

FORMING AN IMAGE 

To create an image, you write data (that is, you "draw") into a memory area in the computer. From this memory 
area, the system can retrieve the image for display. You tell the system exactly how the memory area is organized, 
so that the display is correctly produced. You use a block of memory words at sequentially increasing addresses to 
represent a rectangular region of data bits. The following figure shows the contents of three example memory 
words: 0 bits are shown as blank rectangles, and 1 bits as filled-in rectangles. 

Contents of three memory words, all adjacent to each other. Note that N is expressed as a byte-address. 

I I I I I I I 1:::1:::1 I I I I II I I I I I l:tl:l::U:tq I I I I I I I I I I I r,:1 I I I I I I 

Mem. Location N Mem. Loc. N+2 Mem. Loc. N+4 

Figure 23-5: Sample Memory Words 

The system software lets you define linear memory as rectangular regions, called bit-planes. The following figure 
shows how the system views the same three words as a bit-plane, wherein the data bits form an x-y plane. 

332 Graphics: Primitives 



Three memory words, organized as a bit-plane. 

Mem. Location N 

Mem. Location N+2 

Mem. Location N+4 

Figure 23-6: A Rectangular "Look" at the Sample Memory Words 

The following figure shows how 4,000 words (8,000 bytes) of memory can be organized to provide enough bits to 
define a single bit-plane ofa full-screen, low-resolution video display (320 x 200). 

111111111--:-------..-�11111111 
Mem. Location N Mem. Location N+38 

II II II III--------------------------~-Il IIIII II 
Mem. Location N+40 Mem. Location N+78 

I 
111111111 ________ ----.:...' _____ 111111111 
Mem, Location N+7960 Mem. Location N+7998 

Figure 23-7: Bit-Plane for a Full-screen, Low-resolution Display 

Each memory data word contains 16 data bits. The color of each pixel on a video display line is directly related to 
the value of one or more data bits in memory, as follows: 

If you create a display in which each pixel is related to only one data bit, you can select from only two 
possible colors, because each bit can have a value of only 0 or 1. 

If you use two bits per pixel, there is a choice of four different colors because there are four possible 
combinations of the values of 0 and 1 from each of the two bits. 

If you specify three, four, or five bits per pixel, you will have eight, sixteen, or thirty-two possible choices 
of a color for a pixel. 

Graphics: Primitives 333 



If you use six bits per pixel, then depending on the video mode (EX1RA_HALFBRI1E or HAM), you 
will have sixty-four or 4,096 possible choices for a pixel. 

To create multicolored images, you must tell the system how many bits are to be used per pixel. The number of bits 
per pixel is the same as the number of bit-planes used to define the image. 

As the video beam sweeps across the screen, the system retrieves one data bit from each bit-plane. Each of the data 
bits is taken from a different bit-plane, and one or more bit-planes are used to fully define the video display screen. 
For each pixel, data-bits in the same x,y position in each bit-plane are combined by the system hardware to create a 
binary value. This value determines the color that appears on the video display for that pixel. 

Color 
Selection 

II 0 Circuitry 

I [] ~ 0, 

~on'Ofth' 
iii • 

pixel positions Video display 
made from the 

f-- combined bit-planes. 
f--

.. 
Bit-Planes defining a low-res display 

Figure 23-8: Bits from Each Bit-Plane Select Pixel Color 

You will find more information showing how the data bits actually select the color of the displayed pixel in the 
section called "View Port Color Selection." 

ROLE OF THE COPPER (COPROCESSOR) 

The Amiga has a special-purpose coprocessor, called the Copper, that can control nearly the entire graphics system. 
The Copper can control register updates, reposition sprites, change the color palette, and update the blitter. The 
graphics and animation routines use the Copper to set up lists of instructions for handling displays, and advanced 
users can create their own "user Copper lists. " 

334 Graphics: Primitives 



Display Routines and Structures 

CAUTION 

This section describes the lowest-level graphics interface to the system hardware. If you use any of the 
routines and the data structures described in these sections, your program will essentially take over the 
entire display. It will not, therefore, be compatible with the multiwindow operating environment, 
known as Intuition, which is used by AmigaDOS. 

The descriptions of the display routines, as well as those of the drawing routines, occasionally use the same 
terminology as that in the "Intuition" chapter. These routines and data structures are the same ones that Intuition 
software uses to produce its displays. 

The computer produces a display from a set of instructions you define. You organize the instructions as a set of 
parameters known as the View structure. The following figure shows how the system interprets the contents of a 
View structure. This drawing shows a complete display composed of two different component parts, which could 
(for example) be a low-resolution, multicolored part and a high-resolution, two-colored part. 

A complete display consists of one or more ViewPorts, whose display sections are separated from each other by at 
least one blank scan line. (If the system must make many changes to the display during the transition from one 
ViewPort to the next, there may be two or more blanlc scanlines between the ViewPorts.) The viewable area 
defined by each ViewPort is a rectangular portion from the same size (or larger) raster. You are essentially defining 
a display consisting of a number of vertically stacked display areas in which separate sections of graphics rasters can 
be shown. 

Graphics: Primitives 335 



A complete display is composed of 
one (or more) "ViewPorts" 

Background color shows here 

ViewPort #1 

Video Display 

;::::::=================:"::~-----ViewPorts 
must be 

ViewPort #2 

Figure 23-9: The Display Is Composed of ViewPorts 

LIMITATIONS ON THE USE OF VIEWPORTS 

separated 
by at least 

one blank line 
(may need more 

than one blank line) 

The system software for defining ViewPorts allows only vertically stacked fields to be defined. The following 
figure shows acceptable and unacceptable display configurations. If you want to create overlapping windows, define 
a single ViewPort and manage the windows yourself within that ViewPort. 

336 Graphics: Primitives 



I I 
I I 

I I 
Incorrect 

Acceptable (Does not use at least one 
blank line between 

ViewPorts) 

DD L J 
I 1 
Incorrect for ViewPorts Incorrect for ViewPorts 
(Overlapping vertical (Cannot create multiple 

windows) horizontal windows) 

Figure 23-10: Correct and Incorrect Uses of ViewPorts 

A ViewPort is related to the custom screen option of Intuition. In a custom screen, you can split the screen into 
slices as shown in the "correct" illustration of the above figure. Each custom screen can have its own set of colors, 
use its own resolution, and show its own display area. 

CHARACTERISTICS OF A VIEWPORT 

To describe a ViewPort fully, you need to set the following parameters: height, width, and display mode. 

In addition to these parameters, you must tell the system the location in memory from which the data for the 
ViewPort display should be retrieved, and how to position the final ViewPort display on the screen. 

VIEWPORT SIZE SPECIFICATIONS 

The following figure illustrates that the variables DHeight, and DWidth specify the size of a ViewPort. 

Graphics: Primitives 337 



Display Bit-Planes 

DWidth = how many pixels wide 
• 

DHeight = how 
many lines tall 

Figure 23-11: Size Definition for a ViewPort 

ViewPort Height 

The variable DHeight determines how many video lines will be reserved to show the height of this display segment. 
The size of the actual segment depends' on whether you define a non-interlaced or an interlaced display. An 
interlaced ViewPort displays twice as many lines as does a non-interlaced ViewPort in the same physical vertical 
height 

For example, a View consisting of two ViewPorts might be defined as follows: 

ViewPort #1 is 150 lines, high-resolution mode (uses the top three-quarters of the display). 

ViewPort #2 is 49 lines of low-resolution mode (uses the bottom quarter of the display and allows the 
space for the required blank line between ViewPorts). 

To set your ViewPort to the maximum intuition-supported height, use the following code fragment (double the value 
for an interlace screen): 

viewPort_DHeight = GfxBase->NormalDisplayRows; 

ViewPort Width 

The DWidth variable determines how wide, in pixels, the display segment will be. To determine the maximum 
intuition-supported high-resolution width, use the following fragment: 

viewPort.DWidth = GfxBase->NormalDisplayColumns; 

To compute the maximum low-resolution width, divide the NormalDisplayColumns by two. You may specify a 
smaller value of pixels per line to produce a narrower display segment 

Although the system software allows you define low-resolution displays as wide as 362 pixels and high-resolution 
displays as wide as 724 pixels, you should not exceed the normal values of 320 or 640, respectively. Because of 
display overscan, many video displays will not be able to show all of a wider display, and sprite display may be 
affected. If you are using hardware sprites or VSprites with your display, and you specify ViewPort widths 

338 Graphics: Primitives 



exceeding 320 or 640 pixels (for low- or high-resolution, respectively), it is likely that some hardware sprites will 
not be properly rendered on the screen. These sprites may not be rendered because playfield DMA (direct memory 
access) takes precedence over sprite DMA when an extra-wide display is produced. 

VIEWPORT COLOR SELECTION 

The maximum number of colors that a ViewPort can display is determined by the depth of the BitMap that the 
ViewPort displays. The depth is specified when the BitMap is initialized. See the section below called "Preparing 
the BitMap Structure." 

Depth determines the number of bit-planes used to define the colors of the rectangular image you are trying to build 
(the raster image) and the number of different colors that can be displayed at the same time within a ViewPort. For 
any single pixel, the system can display anyone of 4,096 possible colors. 

The following table shows depth values and the corresponding number of possible colors for each value. 

Table 23-1: Depth Values and Number of Colors in the ViewPort 

Colors Depth Value 

2 1 
4 2 
8 3 

16 4 (Note 1) 
32 5 (Notes 1,2) 
16 6 (Note 3) 
64 6 (Note 4) 

4,096 6 (Notes 1,2,5) 

Notes: 

1. Single-play field mode only - DUALPF not specified in ViewPort Modes. 

2. Low-resolution mode only - HIRES not specified in ViewPort Modes. 

3. Dual Playfield mode - DUALPF specified in ViewPort Modes. Up to eight colors (in three planes) for 
each playfield. 

4. Extra-Half-Brite mode - EXTRA_HALFBRlTE specified in ViewPort Modes. 

5. Hold-And-Modify mode only - HAM specified in ViewPort Modes. 

The color palette used by a ViewPort is specified in a ColorMap. See the section called "Preparing the 
ColorMap" for more information. 

Depending on whether single- or dual-playfield mode is used, the system will use different color register groupings 
for interpreting the on-screen colors. The table below details how the depth and the Modes variable in the ViewPort 
structure affect the registers the system uses. 

Graphics: Primitives 339 



Table 23-2: Single-playfield Mode (DUALPF not specified in Modes variable) 

Color 
Depth Registers Used 

1 
2 
3 
4 
5 
6 
6 

0,1 
0-3 
0-7 
0-15 
0-31 
0-31 
0-16 

(if EXTRA_HALFBRITE is specified in Modes) 
(if HAM is specified in Modes) 

The following table shows the five possible combinations when DUALPF is specified in the Modes variable. 

Table 23-3: Dual-playfield Mode (DUALPF specified in Modes variable) 

Color Color 
Depth (PF·l) Registers Depth (PF.2) Registers 

1 0,1 1 8,9 
2 0-3 1 8,9 
2 0-3 2 8-11 
3 0-7 2 8-11 
3 0-7 3 8-15 

VIEWPORT DISPLAY MODES 

The system has eight different display modes that you can specify for each ViewPort. The eight constants that 
control the modes are DUALPF, PFBA, IllRES, LACE, HAM, SPRITES, VP _IllDE and EXTRA_HALFBRITE. 
A mode becomes active if you specify the corresponding constant in the Modes variable of the ViewPort structure. 
After you initialize the ViewPort, you can combine the constants for the modes you want (binary-or them) and place 
the result in the Modes variable. (See the section called "Preparing the ViewPort Structure" for more information 
about initializing a ViewPort.) 

Modes DUALPF and PFBA are related. DUALPF tells the system to treat the raster specified by this ViewPort as 
the first of two independent and separately controllable playfields. It also modifies the manner in which the pixel 
colors are selected for this raster. 

When PFBA is specified, it indicates that the second playfield has video priority over the first one. Playfield relative 
priorities can be controlled when the playfield is split into two overlapping regions. Single-playfield and dual
playfield modes are discussed in "Advanced Topics" below. 

IllRES tells the system that the raster specified by this ViewPort is to be displayed with 640 horizontal pixels rather 
than 320 horizontal pixels. 

340 Graphics: Primitives 



LACE tells the system that the raster specified by this ViewPort is to be displayed in interlaced mode. If the 
ViewPort is non-interlaced and the View is interlaced, the ViewPort will be displayed at its specified height and 
will look only slightly different than it would look when displayed in a non-interlaced View. See "Interlaced Mode 
versus Non-interlaced Mode" below for more information. 

HAM tells the system to use "hold-and-modify" mode, a special mode that lets you display up to 4,096 colors on 
screen at the same time. It is described in the "Advanced Topics" section. 

SPRITES tells the system that you are using sprites in this display (either VSprites or Simple Sprites). The system 
will load color registers for the sprites. See the •• Animation" chapter for more information about sprites. 

VP _HIDE tells the system that this ViewPort is obscured by other ViewPorts. When a View is constructed, no 
display instructions are generated for this ViewPort. 

EXTRA_HALFBRlTE tells the system to use the Extra-Half-Brite mode, a special mode that allows you display 64 
colors on screen at the same time. It is described in the "Advanced Topics" section. 

Single-playfield Mode versus Dual-playfield Mode 

When you specify single-playfield mode you are asking that the system treat all bit-planes as part of the definition of 
a single playfield image. Each of the bit-planes defined as part of this ViewPort contributes data bits that determine 
the color of the pixels in a single playfield. 

Display Screen 

Background color shows here 

Everything on the 
display is part of 
the same playfield. 

If you use dual-playfield mode (DUALPF specified in ViewPort.Modes), you can define two independent, 
separately controllable play field areas. 

Graphics: Primitives 341 



Display Screen 

.:.:.' . 

Control Panel (Playfield 2) 

Background color shows here 

Two independently 
controllable displays. 
One has video priority 
over the other. 

Figure 23-13: A Dual-playfield Display 

In the previous figure, PFBA was included in the display mode. If PFBA had not been included, the relative 
priorities would have been reversed; playfield 2 would have appeared to be behind playfield 1. 

Low-resolution Mode versus High-resolution Mode 

In low-resolution mode, horizontal lines of 320 pixels fill most of the ordinary viewing area. The system software 
lets you define a screen segment width up to 362 pixels in this mode, or you can define a screen segment as narrow 
as you desire (minimum of 16 pixels). In high-resolution mode (also called "normal" resolution), 640 pixels fill a 
horizontal line. In this mode you can specify any width from 16 to 724 pixels. Overscan normally limits you to 
showing only 16 to 320 pixels per line in low-resolution mode or 16 to 640 pixels per line in high-resolution mode. 
Intuition assumes the nominal 320-pixel or 640-pixel width. 

320 Pixels Across 
(width of 352 is possible) 

ViewPort. Modes = 0 

640 Pixels Across 
(width of 704 is possible) ViewPort. Modes = HIRES 

Figure 23-14: How HIRES Affects Width of Pixels 

342 Graphics: Primitives 



Interlaced Mode versus Non-interlaced Mode 

In interlaced mode, there are twice as many lines available as in non-interlaced mode, providing better vertical 
resolution in the same display area. 

200 lines define View. Modes = 0 
a full screen 

400 lines define View. Modes = LACE 
a full screen 

Figure 23-15: How LACE Affects Vertical Resolution 

If the View structure does not specify LACE, and the ViewPort specifies LACE, you may see only every other line 
of the ViewPort data. If the View structure specifies LACE and the ViewPort is non-interlaced, the same ViewPort 
data will be repeated in both fields. The height of the ViewPort display is the height specified in the ViewPort 
structure. If both the View and the ViewPort are interlaced, the ViewPort will be built with double the normal 
vertical resolution. That means it will need twice as much data space in memory as a non-interlaced picture for this 
display. 

VIEWPORT DISPLAY MEMORY 

The picture you create in memory can be larger than the screen image that can be displayed within your ViewPort. 
This big picture (called a raster and represented by the BitMap structure) can have a maximum size of 1,024 by 
1,024 pixels. Because a picture this large cannot fit fully on the display, you specify which piece of it to display. 
Once you have selected the piece to be shown, you can specify where it is to appear on the screen. 

The example in the following figure introduces terms that tell the system how to find the display data and how to 
display it in the ViewPort. These terms are RHeight, RWidth, RyOft'set, RxOft'set, DHeight, DWidth, DyOft'set 
and DxOft'set. 

Graphics: Primitives 343 



(0,0) RxOffset Large picture 1024 by 800 (called a "Raster") 

RyOffset 
RHeight = 800 

RWidth = 1024 

(0,0) 

Background Color 

Figure 23-16: ViewPort Data Area Parameters 

The terms RHeight and RWidth do not appear in actual system data structures. They refer to the dimensions of the 
raster and are used here to relate the size of the raster to the size of the display area. RHeight is the number of rows 
in the raster, and RWidth is the number of bytes per row times 8. The raster shown in the figure is too big to fit 
entirely in the display area, so you tell the system which pixel of the raster should appear in the upper left comer of 
the display segment specified by your ViewPort. The variables that control that placement are RyOtfset and 
RxOfTset. 

To compute RyOfTset and RxOfTset, you need RHeight, RWidth, DHeight, and DWidth. The DHeight and 
DWidth variables define the height and width in pixels of the portion of the display that you want to appear in the 
ViewPort. The example shows a full-screen, low-resolution mode (320-pixel), non-interlaced (200-line) display 
formed from the larger overall picture. 

Normal values for RyOfTset and RxOfTset are defined by the formulas: 

0< = RyOffset < = (RHeight - DHeight) 
o < = RxOffset < = (RWidth - DWidth) 

344 Graphics: Primitives 



Once you have defined the size of the raster and the section of that raster that you wish to display, you need only 
specify where to put this ViewPort on the screen. This is controlled by the variables DyOffset and DxOffset. A 
value of 0 for each of these offsets places a normal-sized picture in a centered position at the top, bottom, left and 
right on the display screen. Possible NTSC values for DyOffset range from -23 to +217 (-46 to +434 if 
View.Modes includes LACE), PAL values range from -15 to +267 (-30 to +534 for LACE). Possible values for 
DxOffset range from -18 to +362 (-36 to +724 if ViewPort.Modes includes lllRES), when the View is in its 
default, initialized position. 

The parameters shown in the figure above are distributed in the following data structures: 

RasInfo (information about the raster) contains the variables RxOffset and RyOffset. It also contains a 
pointer to the BitMap structure. 

View (information about the whole display) includes the variables that you use to position the whole 
display on the screen. The View structure contains a Modes variable used to determine if the whole 
display is to be interlaced or non-interlaced. It also contains pointers to its list of ViewPorts and pointers 
to the Copper instructions produced by the system to create the display you have defined. 

ViewPort (information about this piece of the display) includes the values DxOffset and DyOffset that are 
used to position this portion relative to the overall View. The ViewPort also contains the variables 
DHeight and DWidth, which define the size of this portion; a Modes variable; and a pointer to the local 
ColorMap. Each ViewPort also contains a pointer to the next ViewPort. You create a linked list of 
ViewPorts to define the complete display. 

BitMap (information about memory usage) tells the system where to find the display and drawing area 
memory and shows how this memory space is organized. 

You must allocate enough memory for the display you define. The memory you use for the display may be shared 
with the area control structures used for drawing. This allows you to draw into the same areas that you are currently 
displaying on the screen. 

As an alternative, you can define two BitMaps. One of them can be the active structure (that being displayed) and 
the other can be the inactive structure. If you draw into one BitMap while displaying another, the user cannot see 
the drawing taking place. This is called double-buffering of the display. See "Advanced Topics" below for an 
explanation of the steps required for double-buffering. Double-buffering takes twice as much memory as single
buffering because two full displays are produced. 

To determine the amount of required memory for each ViewPort for single-buffering, you can use the following 
formula. 

bytes_per_ViewPort = Depth * RASSIZE(Width, Height); 

RASSIZE is a system macro attuned to the current design of the system memory allocation for display rasters. See 
the graphics/ gfx.h include file for the formula with which RASSIZE is calculated. 

For example, a 32-color ViewPort (depth = 5), 320 pixels wide by 200 lines high uses 40,000 bytes (as of this 
writing). A 16-color ViewPort (depth = 4), 640 pixels wide by 400 lines high uses 128,000 bytes (as of this 
writing). 

Graphics: Primitives 345 



FORMING A BASIC DISPLAY 

This section offers an example that shows how to create a single ViewPort with a size of 200 lines, in which the area 
displayed is the same size as the big picture (raster) stored in memory. The example also shows how this ViewPort 
becomes the single display segment of a View structure. Following the description of the individual operations, the 
"Graphics Example Program" section pulls all of the pieces into a complete executable program. Instead of linking 
these routines to drawing routines, the example allocates memory specifically and only for the display (instead of 
sharing the memory with the drawing routines) and writes data directly to this memory. This keeps the display and 
the drawing routines separate for purposes of discussion. 

Here are the data structures that you need to define to create a basic display: 

struct View view; 
struct ViewPort viewPort; 
struct BitMap bitMap; 
struct RasInfo rasInfo; 

Opening the Graphics Library 

Most of the system routines used here are located in the graphics library. When you compile your programs, you 
must provide a way to tell the compiler to link your calling sequences into the graphics library. You accomplish this 
by declaring the variable called GfxBase. Then, by opening the graphics library, you provide the value (address of 
the library) that the system needs for linking with your program. See the "Libraries" chapter for more information. 

Here is a typical sequence: 

struct GfxBase *GfxBase = NULL; 

GfxBase = (struct GfxBase *)QpenLibrary(lIgraphics.libraryll, 33L); 
if (GfxBase == NULL) 

cleanExit(RETURN_FAIL); 

Preparing the View Structure 

The following code section prepares the View structure for further use: 

InitView(&view); 1* Initialize the View. *1 

Preparing the ViewPort Structure 

The following code section prepares the ViewPort structure for further use: 

346 Graphics: Primitives 



InitVPort(&viewPort)i /* Initialize the ViewPort. */ 
viewPort.RasInfo = &rasInfoi 
viewPort.DWidth = WIDTHi 
viewPort.DHeight = HEIGHTi 

/* Init ColorMap. */ 
/* 2 planes deep, so 4 entries (2 raised to the #_planes power). */ 
viewPort.ColorMap = GetColorMap(4L)i 
if (viewPort.ColorMap == NULL) 

cleanExit(RETURN_WARN)i 

The InitVPortO routine presets certain default values. The defaults include: 

Modes variable set to zero-this means you select a low-resolution display. 

Next variable set to zero-no other ViewPort is linked to this one. If you want to have multiple 
ViewPorts in a single View, you must create the link yourself. The last ViewPort in the chain must have 
a Next value of O. 

If you have defined two ViewPorts, such as 

struct ViewPort viewPortAi 
struct ViewPort viewPortBi 

and you want them to both be part of the same display, you must create a link between them, and a NULL link at the 
end of the chain of ViewPorts: 

viewPortA.Next = &viewPortBi /* Tell first one the address of the second. */ 
viewPortB.Next = NULLi /* There are no others after this one. */ 

Preparing the BitMap Structure 

The BitMap structure tells the system where to find the display and drawing memory and how this memory space is 
organized. The following code section prepares a BitMap structure, including allocation of memory for the bit-map. 
This is done with two functions: InitBitMapO and AlIocRasterO. InitBitMapO takes four arguments: a pointer to 
a BitMap and the depth, width, and height of the desired bit-map. Once the bit-map is initialized, memory for its 
bit-planes must be allocated. AlIocRasterO takes two arguments: width and height Here is a fragment of code: 

/* Init BitMap for RasInfo. */ 
InitBitMap(&bitMap, DEPTH, WIDTH, HEIGHT)i 

/* 

*/ 

Set the plane pointers to NULL so the cleanup 
routine will know if they were used. 

for(depth=Oi depth<DEPTHi depth++) 
bitMap.Planes[depth] = NULLi 

/* Allocate space for BitMap. */ 
for(depth=Oi depth<DEPTHi depth++) 

{ 

bitMap.Planes[depth] = (PLANEPTR) AllocRaster (WIDTH, HEIGHT)i 
if (bitMap.Planes[depth] == NULL) 

cleanExit (RETURN_WARN) i 

This code allocates enough memory to handle the display area for as many bit-planes as the depth you have defined. 

Graphics: Primitives 347 



Preparing the Raslnfo Structure 

The Raslnfo structure provides information to the system about the location of the BitMap as well as the 
positioning of the display area as a window against a larger drawing area. Use the following steps to prepare the 
Raslnfo structure: 

1* Initialize the RasInfos. *1 
rasInfo.BitMap = &bitMap; 1* Attach the corresponding BitMap. *1 
rasInfo.RxOffset = 0; 1* Align upper left corners of display *1 
rasInfo.RyOffset = 0; 1* with upper left corner of drawing area. *1 
rasInfo.Next = NULL; 1* for a single playfield display, there 

* is only one RasInfo structure present *1 

The system may be made to reinterpret the RxOft'set and RyOft'set values in a ViewPort's Raslnfo structure by 
calling ScrollVPortO with the address of the ViewPort. Changing one or both offsets and calling ScrollVPortO 
has the effect of scrolling the ViewPort. 

Preparing the ColorMap Structure 

When the View is created, Copper instructions are generated to change the current contents of each color register 
just before the topmost line of a ViewPort so that this ViewPort's color registers will be used for interpreting its 
display. 

Here are the steps normally used for initializing a ColorMap: 

1* RGB values for the four colors used. *1 
idefine BLACK OxOOO 
idefine RED OxfOO 
idefine GREEN OxOfO 
ide fine BLUE OxOOf 

1* Define some colors in an array of UWORDS. *1 
static UWORD colortable[] = { BLACK, RED, GREEN, BLUE }; 

1* Init ColorMap. *1 
1* 2 planes deep, so 4 entries (2 raised to the i_planes power). *1 
viewPort.ColorMap = GetColorMap(4L); 
if (viewPort.ColorMap == NULL) 

cleanExit(RETURN_WARN); 

1* Change colors to those in colortable. *1 
LoadRGB4(&viewPort, colortable, 4); 

NOTE 

The "4" in the name LoadRGB40 refers to the fact that each of the red, green, and blue values in a 
color table entry consists of four bits. It has nothing to do with the fact that this particular color table 
contains four entries, which is a result of the choice of DEPTH = 2 for this example. The call 
GetRGB40 returns the RGB value of a single entry of a ColorMap. SetRGB4CMO allows individual 
control of the entries in the ColorMap before or after linking it into the ViewPort. 

The LoadRGB40 call above could be replaced with the following: 

348 Graphics: Primitives 



register USHORT entry; 

/* Operate on the same four ColorMap entries as above. */ 
for (entry = 0; entry < 4; entry++) 

{ 
/* Call SetRGB4CM() with the address of the ColorMap, the entry to be 

changed, and the Red, Green, and Blue values to be stored there. 
*/ 
setRGB4CM(viewPort.ColorMap, entry, 
/* Extract the three color values from the one colortable entry. */ 

«colortable[entry] & OxOfOO) » 8), 
«colortable[entry] & OxOOfO) » 4), 

(colortable[entry] & OxOOOf)); 

NOTE 

Notice above how the four bits for each color are masked out and shifted right to become values from 0 
to 15. 

It is important that the standard system ColorMap-related calls are used to access the ColorMap entries. These 
calls will remain compatible with possible future enhancements of the ColorMap structure. 

From the section called "ViewPort Color Selection," notice that you might need to specify more colors in the color 
map than you think. If you use a dual-playfield display (covered later in this chapter) with a depth of 1 for each of 
the two playfields, this means a total of four colors (two for each playfield). However, because playfield 2 uses color 
registers starting from number 8 on up when in dual-playfield mode, the color map must be initialized to contain at 
least 10 entries. That is, it must contain entries for colors 0 and 1 (for playfield 1) and color numbers 8 and 9 (for 
playfield 2). Space for sprite colors must be allocated as well. For Amiga system software version 1.3 and earlier, 
when in doubt, allocate a ColorMap with 32 entries, just in case. 

Creating the Display Instructions 

Now that you have initialized the system data structures, you can request that the system prepare a set of display 
instructions for the Copper using these structures as input data. During the one or more blank vertical lines that 
precede each ViewPort, the Copper is busy changing the characteristics of the display hardware to match the 
characteristics you expect for this ViewPort. This may include a change in display resolution, a change in the colors 
to be used, or other user-defined modifications to system registers. 

Here is the code that creates the display instructions: 

/* Construct preliminary Copper instruction list. */ 
MakeVPort( &view, &viewPort ); 

In this line of code, &view is the address of the View structure and &viewPort is the address of the first ViewPort 
structure. Using these structures, the system has enough information to build the instruction stream that defines your 
display. 

MakeVPortO creates a special set of instructions that controls the appearance of the display. If you are using 
animation, the graphics animation routines create a special set of instructions to control the hardware sprites and the 
system color registers. In addition, the advanced user can create special instructions (called user Copper 
instructions) to change system operations based on the position of the video beam on the screen. 

All of these special instructions must be merged together before the system can use them to produce the display you 
have designed. This is done by the system routine MrgCopO (which stands for "Merge Coprocessor 
Instructions"). Here is a typical call: 

Graphics: Primitives 349 



/* Merge preliminary lists into a real Copper list in the view structure. */ 
MrgCop ( &view ); 

LOADING AND DISPLAYING THE VIEW 

To display the View, you need to load it using LoadViewO and turn on the direct memory access (DMA). A typical 
call is shown below. 

LoadView(&view); 

where &view is the address of the View structure defined in the example above. 

Two macros control display DMA: ON_DISPLAY and OFF_DISPLAY (defined in graphicslgfxmacros.h). They 
simply turn the display DMA control bit in the DMA control register on or off. After you have loaded a new View, 
you use ON _ DISPLAY to allow the system DMA to display it on the screen. 

If you are drawing to the display area and do not want the user to see intermediate steps in the drawing, you can turn 
off the display. Because OFF_DISPLAY shuts down the display DMA and possibly speeds up other system 
operations, it can be used to provide additional memory cycles to the blitter or the 68000. The distribution of system 
DMA, however, allows four-channel sound, disk read/write, and a sixteen-color, low-resolution display (or four
color, high-resolution display) to operate at the same time with no slowdown (7.1 megahertz effective rate) in the 
operation of the 68000. Using OFF_DISPLAY in a multitasking environment may, however, bean unfriendly 
thing to do to the other running processes. Use OFF _ DISPLAY with discretion. 

GRAPHICS EXAMPLE PROGRAM 

The program below creates and displays a single-playfield display that is 320 pixels wide, 200 lines high, and two 
bit-planes deep. 

/* RGBBoxes 
A self-contained example of a single playfield display. 
For Lattice, compile and link with: LC -bl -cfist -L -v -y RGBBoxes.c 

*/ 

#include <exec/types.h> 
#include <graphics/gfx.h> 
#include <graphics/gfxbase.h> 
#include <graphics/gfxmacros.h> 
#include <graphics/copper.h> 
#include <graphics/view.h> 
#include <libraries/dos.h> 

#include <proto/all.h> 
#include <stdlib.h> 

#define DEPTH 2 /* The number of bitplanes. */ 
#define WIDTH 320 
#define HEIGHT 200 

struct GfxBase *GfxBase = NULL; 

/* Construct a simple display. */ 
struct View view; 
struct ViewPort viewPort; 
struct BitMap bitMap; 

/* Pointer for writing to BitMap memory. */ 
UBYTE *displaymem = NULL; 

350 Graphics: Primitives 



/* Pointer to old View so it can be restored. */ 
struct View *oldview = NULL; 

/* RGB values for the four colors used. */ 
#define BLACK OxOOO 
#define RED OxfOO 
#define GREEN OxOfO 
#define BLUE OxOOf 

/* 
Draw a WIDTH/2 by HEIGHT/2 box of color "fillcolor" into the given plane. 

*/ 
VOID drawFilledBox(WORD fillcolor, WORD plane) 
( 
UBYTE value; 
WORD boxHeight, boxWidth, width; 

/* 

*/ 

Divide (WIDTH/2) by eight because each UBYTE that 
is written stuffs eight bits into the BitMap. 

boxWidth = (WIDTH/2)/8; 
boxHeight = HEIGHT/2; 

value = «fillcolor & (1 « plane» != 0) ? Oxff 

forI ; boxHeight; boxHeight--) 
( 

/* 

for(width=O ; width < boxWidth; width++) 
*displaymem++ = value; 

displaymem += (bitMap.BytesPerRow - boxWidth); 
} 

OxOO; 

Return user- and system-allocated memory to system memory manager. 
*/ 
VOID freeMemory(VOID) 
( 

WORD depth; 

/* Free the drawing area. */ 
for(depth=O; depth<DEPTH; depth++) 

( 
if (bitMap.Planes[depth]) 

FreeRaster(bitMap.Planes[depth], WIDTH, HEIGHT); 

/* Free the color map created by GetColorMap(). */ 
if (viewPort.ColorMap) 

FreeColorMap(viewPort.ColorMap); 

/* Free all intermediate Copper lists from ViewPort. */ 
FreeVPortCopLists(&viewPort); 

/* Deallocate the hardware Copper list. */ 
if (view.LOFCprList) 

FreeCprList(view.LOFCprList); 

/* 
Clean up and exit. 

*/ 
VOID cleanExit(int exitStatus) 
( 
if (oldview) 

( 
LoadView(oldview); /* Put back the old View. */ 

Graphics: Primitives 351 



1* Wait until the the view is being rendered to free our memory. *1 
WaitTOF () ; 
} 

freeMemory(); 1* Give back what was borrowed. *1 

if (GfxBase) 
CloseLibrary«struct Library *)GfxBase); 

exit(exitStatus); 
} 

VOID main (VOID) 
( 
WORD depth, box; 
1* Offsets in BitMap where 
static SHORT boxoffsets[) 
static UWORD colortable[) 
struct RasInfo rasInfo; 

boxes will be drawn. *1 
{ 802, 2010, 3218 }; 
{ BLACK, RED, GREEN, BLUE }; 

GfxBase = (struct GfxBase *)OpenLibrary("graphics.library", 33L); 
if (GfxBase == NULL) 

cleanExit(RETURN_FAIL); 

1* Example steals screen from Intuition if Intuition is around. *1 
oldview = GfxBase->ActiView; 1* Save current View to restore later. *1 

InitView(&view); 
InitVPort(&viewPort); 
view. ViewPort = &viewPort; 

1* Initialize the View. *1 
1* Initialize the ViewPort. *1 
1* Link the ViewPort into the View. *1 

1* Init BitMap for RasInfo. *1 
InitBitMap(&bitMap, DEPTH, WIDTH, HEIGHT); 

1* 

*1 

Set the plane pointers to NULL so the cleanup 
routine will know if they were used. 

for(depth=O; depth<DEPTH; depth++) 
bitMap.Planes[depth) = NULL; 

1* Init RasInfo. *1 
rasInfo.BitMap = &bitMap; 
rasInfo.RxOffset = 0; 
rasInfo.RyOffset = 0; 
rasInfo.Next = NULL: 

viewPort.RasInfo = &rasInfo: 
viewPort.DWidth = WIDTH; 
viewPort.DHeight = HEIGHT: 

1* Init ColorMap. *1 
1* 2 planes deep, so 4 entries (2 raised to the i_planes power). *1 
viewPort.ColorMap = GetColorMap(4L); 
if (viewPort.ColorMap == NULL) 

cleanExit(RETURN_WARN); 

1* Change colors to those in colortable. *1 
LoadRGB4(&viewPort, colortable, 4); 

1* Allocate space for BitMap. *1 
for (depth=O; depth<DEPTH; depth++) 

( 
bitMap.Planes[depth) = (PLANEPTR) AllocRaster (WIDTH, HEIGHT); 
if (bitMap.Planes[depth) == NULL) 

cleanExit(RETURN_WARN); 

1* Construct preliminary Copper instruction list. *1 
MakeVPort( &view, &viewPort ); 

352 Graphics: Primitives 



/* Merge preliminary lists into a real Copper list in the view structure. */ 
MrgCop( &view ); 

for(depth=O; depth<DEPTH; depth++) 
{ 
displaymem = (UBYTE *)bitMap.Planes[depth]; 
BltClear(displaymem, RASSIZE(WIDTH, HEIGHT), 0); 
) 

LoadView (&view) ; 

/* 

*/ 

Now fill some boxes so that user can see something. 
Always draw into both planes to assure true colors. 

for (box=l; box<=3; box++) /* Three boxes; red, green, and blue. */ 
{ 
for (depth=O; depth<DEPTH; depth++) /* Two planes. */ 

( 
displaymem = bitMap.Planes[depth] + boxoffsets[box-1]; 
drawFilledBox(box, depth); 
} 

Delay(10L * TICKS_PER_SECOND); /* Pause for 10 seconds, */ 

cleanExit(RETURN_OK); /* then exit. */ 

/* End of main(). */ 

Exiting Gracefully 

The sample program above provides a way of exiting gracefully, returning to the memory manager all dynamically
allocated memory chunks. Notice the calls to FreeRasterO and FreeColorMapO. These calls correspond directly 
to the allocation calls AllocRasterO and GetColorMapO located in the body of the program. Now look at the calls 
within freeMemoryO to FreeVPortCopListsO and FreeCprListO. When you call MakeVPortO, the graphics 
system dynamically allocates some space to hold intermediate instructions from which a final Copper instruction list 
is created. When you call MrgCopO, these intermediate Copper lists are merged together into the final Copper list, 
which is then given to the hardware for interpretation. It is this list that provides the stable display on the screen, 
split into separate ViewPorts with their own colors and resolutions and so on. 

When your program completes, you must see that it returns all of the memory resources that it used so that those 
memory areas are again available to the system for reassignment to other projects. Therefore, if you use the routines 
Make VPortO or MrgCopO, you must also arrange to use FreeCprListO (pointing to each of those lists in the View 
structure) and FreeVPortCopListsO (pointing to the ViewPort that is about to be deallocated). If your view is 
interlaced, you will also have to call FreeCprList(&view.SHFCprList) because an interlaced view has a separate 
Copper list for each of the two fields displayed. Do not confuse Free VPortCopListsO with FreeCopListO. The 
former works on intermediate Copper lists for a specific ViewPort, the latter directly on an intermediate Copper list 

As a final caveat, notice that when you do free everything, the memory manager or other programs may immediately 
change the contents of the freed memory. Therefore, if the Copper is still executing an instruction stream (as a result 
of a previous LoadViewO) when you free that memory, the display will malfunction. Once another View has been 
installed via LoadViewO, do a WaitTOFO for the new View to begin displaying, and then you can begin freeing up 
your resources. WaitTOFO waits for the vertical blanking period to begin and all vertical blank interrupts to 
complete before returning to the caller. The routine WaitBOVPO "WaitBottomOtViewPort" waits until the 
vertical beam reaches the bottom of the specified ViewPort before returning to the caller. 

Gmphics: Primitives 353 



Advanced Topics 

CREATING A DUAL-PLAYFIELD DISPLAY 

In dual-playfield mode, you have two separately controllable playfields. In this mode, you always define two 
Raslnfo data structures. Each of these structures defines one of the playfields. There are seven different ways you 
can configure a dual-playfield display, because there are five different distributions of the bit-planes which the 
system hardware allows. The following table shows these distributions. 

Table 23-4: Bit-Plane Assignment in Dual-playfield Mode 

Number of 
Bit-planes 

o 
1 
2 
3 
4 
5 
6 

Playfield 1 
Depth 

o 
1 
1 
2 
2 
3 
3 

Playfield 2 
Depth 

o 
o 
1 
1 
2 
2 
3 

Recall that if PFBA is included in the ViewPort Modes variable, you can swap playfield priority and display 
playfield 2 in front of playfield 1. In this way, you can get more bit-planes in the background playfield than you 
have in the foreground playfield. If you create a display with multiple ViewPorts, only for this ViewPort will the 
playfield priority be changed. 

Play field 1 is defined by the first of the two Raslnfo structures. Playfield 2 is defined by the second of the two 
Raslnfo structures. 

When you call MakeVPortO, you use parameters as follows: 

MakeVPort( &view, &viewPort ); 

The ViewPort Modes variable must include the DUALPF bit. This tells the graphics system that there are two 
Raslnfo structures to be used. 

In summary, to create a dual-playfield display you must do the foliowing things: 

Allocate one View structure 

Allocate two BitMap structures 

Allocate two RasInfo structures (linked together), each pointing to different BitMaps 

354 Graphics: Primitives 



Allocate one ViewPort structure 

Set up a pointer in the ViewPort structure to the playfield 1 Raslnfo 

Initialize each BitMap structure to describe one playfield, using one of the permissible bit-plane 
distributions shown in the above table and allocate memory for the bit-planes themselves. 

NOTE 

BitMap 1 and BitMap 2 need not be the same width and height. 

Initialize the ViewPort structure 

Set the DUALPF (and possibly the PFBA) bit in the ViewPort Modes variable 

Call Make VPortO 

Call MrgCopO 

Call LoadViewO to display the newly created ViewPort. 

For display purposes, each of the two BitMaps is assigned to a separate playfield display. 

To draw separately into the BitMaps, you must also assign these BitMaps to two separate RastPorts. The section 
called "Initializing the RastPort" shows you how to use a Rastport data structure to control your drawing routines. 

CREATING A DOUBLE-BUFFERED DISPLAY 

To produce smooth animation or other such effects, it is occasionally necessary to double-buffer your display. To 
prevent the user from seeing your graphics rendering while it is in progress, you will want to draw into one memory 
area while actually displaying a different area. 

Here are two methods of creating and displaying a double-buffered display. The first is more complicated, but uses 
less memory than the second. 

Method 1: 

This method consists of creating two separate display areas and two sets of pointers to those areas for a single View. 

• Allocate two BitMap structures 

Allocate one Raslnfo structure 

Allocate one ViewPort structure 

Allocate one View structure 

Initialize each BitMap structure to describe one drawing area and allocate memory for the bit-planes 
themselves 

Graphics: Primitives 355 



Create a pointer for each BitMap 

Create a pointer for the View long-frame Copper 'st (LOFCprList) and short-frame Copper list 
(SHFCprList) for each of two alternate display fields. e SHFCprList is for interlaced displays only. 

Initialize the Raslnfo structure, setting the BitMap po nter to point to one of the two BitMaps you have 
created 

Call Make VPortO 

Call MrgCopO 

Call LoadViewO 

When you call MrgCopO, the system uses all of the infonnation au have provided in the various data structures to 
create a list of instructions for the Copper to execute. This list lIs the Copper how to split the display and how to 
specify colors for the various portions of the display. When the s eps shown above have been completed, the system 
will have allocated memory for a long-frame (LOF) Copper lis (and for interlaced displays a short-frame (SHF) 
Copper list) and will have set the pointer(s) called LOFCprLi t (and SHFCprList) in the View structure. The 
long-frame Copper list is nonnally used for all non-interlaced di lays, and the short-frame Copper list is used only 
when interlaced mode is turned on. The pointers point to the two ets of Copper instructions. 

The LOFCprList and SHFCprList pointers are initialized w en MrgCopO is called. The instruction stream 
referenced by these pointers includes references to the first BitMa 

You must now do the following: 

Save the current values in back-up pointers and set e values of LOFCprList and SHFCpriist in the 
View structure to zero. When you next perfonn Mrg opO, the system automatically allocates another 
memory area to hold a new list of instructions for the C pper. 

Install the pointer to the other BitMap structure in the aslnfo structure before your call to MakeVPortO, 
and then call MakeVPortO and MrgCopO. 

Now you have created two sets of instruction streams for the opper, one of which you have saved in a pair of 
pointer variables. The other has been newly created and is in t e View structure. You can save this new set of 
pointers as well, swapping in the set that you want to use for dis lay, while drawing into the BitMap that is not on 
the display. Remember that you will have to call FreeCprL' to on both sets of Copper lists when you have 
finished. 

Method 2: 

A simpler, but more memory-hungry, method is to create two c mplete Views and switch back and forth between 
them with LoadViewO and WaitTOFO. 

EXTRA-HALF-BRITE MODE 

In the Extra-Half-Brite mode you can create a single playfield dis lay in which 64 colors can be displayed at a time. 
This requires that your ViewPort be defined using six bit-planes d that you specify EXTRA_HALFBRITE in the 
ViewPort Modes variable. 

356 Graphics: Primitives 



If you draw using color numbers 0 through 31, the pixel you draw will be the color specified in that particular 
system color register. If you draw from a color number from 32 to 63, the color displayed is half the intensity of 
corresponding color numbers from 0 to 31. For example, ifcolor register 0 is set to OxFFF (white), then color 
number 32 would be Ox777 (grey). 

When setting up the color palette for the Extra-Half-Brite display, you can only specify values for registers 0 to 31. 

The Extra-Half-Brite mode uses all six bit-planes. The color register (0 through 31) is obtained from the bit 
combinations from planes 5 to 1, in that order of significance. Plane 6 is used to determine whether the full intensity 
(bit value 0) color or half-intensity (bit value 1) color is to be displayed. 

HOLD-AND-MODIFY MODE 

In hold-and-modify mode you can create a single-playfield display in which 4,096 different colors can be displayed 
simultaneously. This requires that your ViewPort be defined using six bit-planes and that you specify HAM in the 
ViewPort Modes variable. 

When you draw into the BitMap associated with this ViewPort, you can choose one of four different ways of 
drawing into the BitMap. (Drawing into a BitMap is shown in the next section, "Drawing Routines.") If you 
draw using color numbers 0 to 15, the pixel you draw will appear in the color specified in that particular system 
color register. If you draw with any other color value from 16 to 63, the color displayed depends on the color of the 
pixel that is to the immediate left of this pixel on the screen. For example, hold constant the contents of the red and 
the green parts of the previously produced color, and take the rest of the bits of this new pixel's color register 
number as the new contents for the blue part of the color. Hold-and-modify means hold part and modify part of the 
preceding defined pixel's color. 

NOTE 

A particular hold-and-modify pixel can only change one of the three color values at a time. Thus, the 
effect has a limited control. 

In hold-and-modify mode, you use all six bit-planes. Planes 5 and 6 are used to modify the way bits from planes 1 
through 4 are treated, as follows: 

If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal color selection procedure 
is followed. Thus, the bit combinations from planes 4 to 1, in that order of significance, are used to choose 
one of 16 color registers (registers 0 through 15). 

If only five bit-planes are used, the data from the sixth plane is automatically supplied with the value 
as O. 

If the 6-5 bit combination is 01, the color of the pixel immediately to the left of this pixel is duplicated and 
then modified. The bit combinations from planes 4 through 1 are used to replace the four "blue" bits in 
the pixel color without changing the value in any color register. 

If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this pixel is duplicated and 
then modified. The bit combinations from planes 4 through 1 are used to replace the four "red" bits. 

If the 6-5 bit combination is 11, the color of the pixel immediately to the left of this pixel is duplicated and 
then modified. The bit combinations from planes 4 through 1 are used to replace the four "green" bits. 

Graphics: Primitives 357 



At the leftmost edge of each line, hold-and-modify begins with the background color. The color choice 
does not carryover from the preceding line. 

Drawing Routines 

Most of the graphics drawing routines require information about how the drawing is to take place. For this reason, 
the graphics support routines provide a data structure called a RastPort, which contains information essential to the 
graphics drawing functions. In using most of the drawing functions, you must pass them a pointer to your RastPort 
structure. Associated with the RastPort is another data structure called a BitMap, which contains a description of 
the organization of the data in the drawing area. 

INITIALIZING A BITMAP STRUCTURE 

The RastPort contains information for controlling the drawing. In order to use the graphics, you also need to tell 
the system the memory area location where the drawing will occur. You do this by initializing a BitMap structure, 
defining the characteristics of the drawing area, as shown in the following example. This was already shown in the 
section called "Forming a Basic Display," but it is repeated here because it relates to drawing as well as to display 
routines. You need not necessarily use the same BitMap for both the drawing and the display. 

IIdefine DEPTH 2 
IIdefine WIDTH 320 
IIdefine HEIGHT 200 

/* Two planes deep. */ 

struct BitMap bitMap; 

/* Width in pixels. */ 
/* Height in lines. */ 

/* Initialize the BitMap. *1 
InitBitMap(&bitMap, DEPTH, WIDTH, HEIGHT); 

INITIALIZING A RASTPORT STRUCTURE 

Before you can use a RastPort for drawing, you must initialize it. Here is a sample initialization sequence: 

struct BitMap bitMap; 
struct RastPort rastPort; 

/* Initialize the RastPorts and link the BitMaps to them. */ 
InitRastPort(&rastPort); 
rastPort.BitMap = &bitMap; 

NOTE 

You cannot link the bit-map in until after the RastPort has been initialized. 

The RastPort data structure can be found in the include files graphicslrastport.h and graphicslrastport.i. It contains 
the following information: 

Area-filling information 

Graphics elements information for animation 

358 Graphics: Primitives 



A write mask 

Drawing pens 

Drawing modes 

Patterns 

Text attributes and font information 

Current pen position 

Some graphics private data 

A pointer for user extensions 

The following sections explain each of the items in the RastPort structure. 

Area-fill Information 

Two structures in the RastPort-AreaInfo and TmpRas-define certain information for area filling operations. 
The AreaInfo pointer is initialized by a call to the routine InitAreaO. 

#define AREA_SIZE 200 

register USHORT i; 
WORD areaBuffer[AREA_SIZE); 
struct AreaInfo areaInfo; 

1* Clear areaBuffer before calling InitArea(). *1 
for (i=O; i<AREA SIZE; i++) 

areaBuffer[i] = 0; 

InitArea (&areaInfo, areaBuffer, (AREA_SIZE*2) 15); 

The area buffer must start on a word boundary. That is why the sample declaration shows areaBuffer as composed 
of unsigned words (200), rather than unsigned bytes (400). It still reserves the same amount of space, but aligns the 
data space correctly. 

To use area fill, you must first provide a work space in memory for the system to store the list of points that define 
your area. You must allow a storage space of 5 bytes per vertex. To create the areas in the work space, you use the 
functions AreaMoveO. AreaDrawO, and AreaEndO. 

Typically, you prepare the RastPort for area-filling by following the steps in the code fragment above and then 
linking your AreaInfo into the rastPort, as so: 

rastPort->AreaInfo = &arealnfo; 

In addition to the AreaInfo structure in the RastPort, you must also provide the system with some work space to 
build the object whose vertices you are going to define. This requires that you initialize a TmpRas structure, then 
point to that structure for your RastPort to use. 

Here is a code fragment that builds and initializes a TmpRas. First the TmpRas structure is initialized (via 

Graphics: Primitives 359 



InitTmpRasO) then it is linked into the RastPort structure. 

NOTE 

The area to which TmpRas.RasPtr points must be at least as large as the area (width times height) of 
the largest rectangular region you plan to fill. Typically, you allocate a space as large as a single bit
plane (usually 320 by 200 bits for low-resolution mode, 640 by 200 bits for high-resolution mode). 

UWORD height, width: 
PLANEPTR planePtr = NULL: 
struct RastPort *rastPort = window->RPort; 
struct TmpRas tmpRas; 

height = GfxBase->NormalDisplayRows; 
width = GfxBase->NormalDisplayColumns; 

planePtr = AllocRaster(width, height); 
if (planePtr) 

( 
InitTmpRas(&tmpRas, planePtr, RASSIZE(width, height»; 
rastPort->TmpRas = &tmpRas; 
1* The TmpRas can be used now. *1 
FreeRaster(planePtr, width, height); 
) 

1* Free raster when done. *1 

When you use functions that dynamically allocate memory from the system, you must remember to return these 
memory blocks to the system before your program exits. See the description of FreeRasterO in The Amiga ROM 
Kernel Manual: Includes and Autodocs. 

Graphics Element Pointer 

The graphics element pointer in the RastPort structure is called Gelslnfo. If you are doing graphics animation 
using the GELS system, this pointer must refer to a properly initialized GelsInfo structure. See the chapter on 
"Animation" for more information. 

Write Mask 

The write mask is a RastPort variable that determines which of the bit-planes are currently writable. For most 
applications, this variable contains aliI's (hex FF). This means that all bit-planes defined in the BitMap are 
affected by a graphics writing operation. You can selectively disable one or more bit-planes by simply specifying a 
o bit in that specific position in the control byte. For example: 

#include <graphics/gfxmacros.h> 

SetWrMsk(&rastPort, OxFB); 1* disable bit-plane 2 *1 

A useful application for the Mask is to set or clear plane 6 while in the Extra-Half-Brite display mode to create 
shadow effects. For example: 

SetWrMsk(&rastPort, OxEO); 1* Disable planes 1 through 5. *1 
SetAPen(&rastPort, 0) ; 1* Clear the Extra-Half-Brite bit *1 
RectFill(&rastPort, 20, 20, 40, 30) ; 1* in the old rectangle. *1 
SetAPen(&rastPort, 32) ; 1* Set the Extra-Half-Brite bit *1 
RectFill(&rastPort, 30, 25, 50, 35) ; 1* in the new rectangle. *1 
SetWrMsk(&rastPort, OxFF); 1* Re-enable all planes. *1 

360 Graphics: Primitives 



Drawing Pens 

The Amiga has three different drawing "pens" associated with the graphics drawing routines. These are: 

• FgPen-the foreground or primary drawing pen. For historical reasons, it is also called the A-Pen. 

• BgPen-the background or secondary drawing pen. For historical reasons, it is also called the B-Pen. 

• AOIPen-the area outline pen. For historical reasons, it is also called the O-Pen. 

A drawing pen variable in the RastPort contains the current value (range 0-255) for a particular color choice. This 
value represents a color register number whose contents are to be used in rendering a particular type of image. The 
effect of the pen value is dependent upon the drawing mode and can be influenced by the pattern variables and the 
write mask as described below. Always use the system calls (e.g. SetAPenO) to set the different pens, never store 
values directly into the pen fields of the RastPort. 

NOTE 

The Amiga 500/1000/2000 contains only 32 color registers. Any range beyond that repeats the colors in 
0-31. For example, pen numbers 32-63 refer to the colors in registers 0-31 (except when you are using 
Extra-Half-Brite mode). 

The drawing routines support BitMaps up to eight planes deep, allowing for future expansion of the hardware. 

The color in FgPen is used as the primary drawing color for rendering lines and areas. This pen is used when the 
drawing mode is JAMI (see the next section for drawing modes). JAMI specifies that only one color is to be 
"jammed" into the drawing area. 

You establish the color for FgPen using the statement: 

SetAPen(&rastPort, newcolor); 

The color in BgPen is used as the secondary drawing color for rendering lines and areas. If you specify that the 
drawing mode is JAM2 Gamming two colors) and a pattern is being drawn, the primary drawing color (FgPen) is 
used where there are Is in the pattern. The secondary drawing color (BgPen) is used where there are Os in the 
pattern. 

You establish the drawing color for BgPen using the statement: 

SetBPen(&rastPort, newcolor); 

The area outline pen AOIPen is used in two applications: area fill and flood fill. (See "Area Fill Operations" 
below.) In area fill, you can specify that an area, once filled, can be outlined in this AOIPen color. In flood fill (in 
one of its operating modes) you can fill until the flood-filler hits a pixel of the color specified in this pen variable. 

Graphics: Primitives 361 



You establish the drawing color for AOIPen using the statement: 

SetOPen(&rastPort. newcolor); 

Drawing Modes 

Four drawing modes may be specified: 

JAMI 

JAM2 

Whenever you execute a graphics drawing command, one color is jammed into the target drawing 
area. You use only the primary drawing pen color, and for each pixel drawn, you replace the color 
at that location with the FgPen color. 

Whenever you execute a graphics drawing command, two colors are jammed into the target 
drawing area. This mode tells the system that the pattern variables (both line pattern and area 
pattern-see the next section) are to be used for the drawing. Wherever there is a 1 bit in the 
pattern variable, the FgPen color replaces the color of the pixel at the drawing position. Wherever 
there is a 0 bit in the pattern variable, the BgPen color is used. 

COMPLEMENT 
For each 1 bit in the the pattern, the corresponding bit in the target area is complemented-that is, 
its state is reversed. As with all other drawing modes, the write mask can be used to protect 
specific bit-planes from being modified. Complement mode is often used for drawing and then 
erasing lines. 

INVERSVID 
This is the drawing mode used primarily for text If the drawing mode is (JAMll INVERSVID), 
the text appears as a transparent letter surrounded by the FgPen color. If the drawing mode is 
(JAM2IINVERSVID), the text appears as in (JAMIIINVERSVID) except that the BgPen color is 
used to draw the text character itself. In this mode, the roles of FgPen and BgPen are effectively 
reversed. 

You set the drawing modes using the statement: 

SetDrMd(&rastPort. newmode); 

Patterns 

The RastPort data structure provides two different pattern variables that it uses during the various drawing 
functions: a line pattern and an area pattern. The line pattern is 16 bits wide and is applied to all lines. When you 
initialize a RastPort, this line pattern value is set to all Is (hex FFFF), so that solid lines are drawn. You can also 
set this pattern to other values to draw dotted lines if you wish. For example, you can establish a dotted line pattern 
with the statement: 

SetDrPt(&rastPort. OxCCCC); 

where OxCCCC is a bit-pattern, 1100110011001100, to be applied to all lines drawn. If you draw multiple, 
connected lines, the pattern cleanly connects all the points. 

The area pattern is 16 bits wide and its height is some power of two. This means that you can define patterns in 
heights of 1, 2, 4,8, 16, and so on. To tell the system how large a pattern you are providing, include this statement: 

362 Graphics: Primitives 



SetAfPt(&rastPort, &areaPattern, power_of_two); 

where &areaPattern is the address of the first word of the area pattern and power_of_two specifies how many 
words are in the pattern. For example: 

USHORT ditherData[] 
{ 

Ox5555, OxAAAA 
} ; 

SetAfPt(&rastPort, ditherData, 1); 

This example produces a small cross-hatch pattern, useful for shading. Because power_of_two is set to 1, the 
pattern is 2 to the 1st, or 2, rows high. 

To clear the fill pattern, use: 

SetAfPt(&rastPort, NULL, 0); 

Pattern Positioning 

The pattern is always positioned with respect to the upper left comer of the RastPort drawing area (the 0,0 
coordinate). If you draw two rectangles whose edges are adjacent, the pattern will be continuous across the 
rectangle boundaries. 

Multicolored Patterns 

The last example above produces a two-color pattern with one color where there are Is and the other color where 
there are Os in the pattern. A special mode allows you to develop a pattern having up to 256 colors. To create this 
effect, specify power_of _two as a negative value instead of a positive value. 

The following initialization establishes an 8-color checkerboard pattern where each square in the checkerboard has a 
different color. The checkerboard is 2 squares wide by 4 squares high. 

USHORT areaPattern(3) (8) 
{ 

1* plane 0 pattern *1 
{ 

OxOOOO, OxOOOO, Oxffff, Oxffff, 
OxOOOO, OxOOOO, Oxffff, Oxffff 

}, 
1* plane 1 pattern *1 

{ 

OxOOOO, OxOOOO, OxOOOO, OxOOOO, 
Oxffff, Oxffff, Oxffff, Oxffff 

}, 
1* plane 2 pattern *1 

{ 

OxffOO, OxffOO, OxffOO, OxffOO, 
OxffOO, OxffOO, OxffOO, OxffOO 

} ; 

SetAfPt(&rastPort, &areaPattern, -3); 

1* when doing this, it is best to set three other parameters as follows: *1 
SetAPen(&rastPort, 255); 
SetBPen(&rastPort, 0); 
SetDrMd(&rastPort, JAM2); 

Graphics: Primitives 363 



If you use this multicolored pattern mode, you must provide as many planes of pattern data as there are planes in 
your BitMap. 

Current Pen Position 

The graphics drawing routines keep the current position of the drawing pen in the variables cp_x and cPJ, for the 
horizontal and vertical positions, respectively. The coordinate location 0,0 is in the upper left comer of the drawing 
area. The x value increases proceeding to the right; the y value increases proceeding toward the bottom of the 
drawing area. 

Pen Size 

The variables Pen Width and PenH eight are not currently implemented. 

Text Attributes 

Text attributes and font information are set by calls to the font routines. These are covered separately in the chapter 
on "Text." 

USING THE GRAPHICS DRAWING ROUTINES 

This section shows you how to use the Amiga drawing routines. All of these routines work either on their own or 
with the windowing system and layer library. For details about using the layer library and windows, see the chapters 
on "layers" (clipping) and "Intuition" (windows). 

NOTE 

The graphics.library rendering and data movement routines generally wait to get access to the bUtter, 
start their bUt, and then exit. Therefore, you must WaitBlitO after a graphics rendering or data 
movement call if you intend to immediately deallocate, examine, or perform order-dependent processor 
operations on the memory used in the call. 

As you read this section, keep in mind that to use the drawing routines, you need to pass them a pointer to a 
RastPort. You can define the Rastport directly, as shown in the sample program segments in preceding sections, 
or you can get a RastPort from your Window structure using code like the following: 

struct Window *window; 
struct RastPort *rastPort; 

window = OpenWindow(&newWindow); 
if (window) 

rastPort = window->RPort; 

You can also get the RastPort from the layer structure, if you are not using Intuition. 

364 Graphics: Primitives 



Drawing Individual Pixels 

You can set a specific pixel to a desired color by using a statement like this: 

LONG result; 
result = WritePixel(&rastPort, x, y); 

WritePixelO uses the primary drawing pen and changes the pixel at that x,y position to the desired color if the x,y 
coordinate falls within the boundaries of the RastPort. A value of 0 is returned if the write was successful; a value 
of -1 is returned if x,y was outside the range of the RastPort. WritePixelO waits for the bUtter to complete its 
operation between each of the blits. 

Reading Individual Pixels 

You can determine the color of a specific pixel with a statement like this: 

LONG result; 
result = ReadPixel(&rastPort, x, y); 

ReadPixelO returns the value of the pixel color selector (from 0 to 255) at the specified x,y location. If the 
coordinates you specify are outside the range of your RastPort, this function returns a value of -1. 

Drawing Ellipses 

Two functions are associated with drawing ellipses: DrawCircleO and DrawEllipseO. DrawCircleO (a macro 
that calls DrawEllipseO) will draw a circle from the specified center point using the specified radius. This function 
is executed by the statement: 

DrawCircle(&rastPort, center_x, center_y, radius); 

DrawEllipseO draws an ellipse with the specified radii from the specified center point The function call is: 

DrawEllipse (&rastPort, cent,er_x, center_y, horiz_r, vert_r); 

Neither function performs clipping on a non-layered RastPort. 

Drawing Lines 

Two functions are associated with line drawing: MoveO and DrawO. MoveO simply moves the cursor to a new 
position. It is like picking up a drawing pen and placing it at a new location. This function is executed by the 
statement: 

Graphics: Primitives 365 



Move (&rastPort, x, y); 

DrawO draws a line from the current x,y position to a new x,y position specified in the statement itself. The 
drawing pen is left at the new position. This is done by the statement: 

Draw(&rastPort, x, y); 

DrawO uses the pen color specified for FgPen. Here is a sample sequence that draws a line from location (0,0) to 
(100.50). 

SetAPen(&rastPort, COLOR1); /* Set A pen color. */ 
Move (&rastPort, 0, 0); /* Move to this location. */ 
Draw(&rastPort, 100,50); /* Draw to a this location. */ 

CAUTION 

If you attempt to draw a line outside the bounds of the BitMap, using the basic initialized RastPort, 
you may crash the system. You must either do your own software clipping to assure that the line is in 
range. or use the layer library. Software clipping means that you need to determine if the line will fall 
outside your BitMap before you draw it, and render only the part which falls inside the BitMap. 

Drawing Patterned Lines 

To turn the example above into a patterned line draw. simply set a drawing pattern, such as: 

SetDrPt(&rastPort, OxAAAA); 

Now all lines drawn appear as dotted lines (OxAAAA = 1010101010101010 in binary). To resume drawing solid 
lines. execute the statement: 

SetDrPt(&rastPort, -0); 

Because -Ois defined as 1111111111111111 in binary. 

Drawing Multiple Lines with a Single Command 

You can use multiple DrawO statements to draw connected line figures. If the shapes are all definable as 
interconnected. continuous lines, you can use a simpler function. called PolyDrawO. PolyDrawO takes a set of line 
endpoints and draws a shape using these points. You call PolyDrawO with the statement: 

PolyDraw(&rastPort, count, arraypointer); 

PolyDrawO reads the array of points and draws a line from the first pair of coordinates to the second. then a 
connecting line to each succeeding pair in the array until count points have been connected. This function uses the 
current drawing mode. pens. line pattern, and write mask specified in the target RastPort; for example: 

SHORT linearray[] 
{ 

3, 3, 
15, 3, 
15,15, 
3,15, 
3, 3 

} ; 

366 Graphics: Primitives 



PolyDraw(&rastPort, 5, &linearray[O)); 

draws a rectangle, using the five defined pairs of x,y coordinates. 

Area-fill Operations 

Assuming that you have properly initialized your RastPort structure to include a properly initialized AreaInfo, you 
can perform area fill by using the functions described in this section. 

AreaMoveO tells the system to begin a new polygon, closing off any other polygon that may already be in process 
by connecting the end-point of the previous polygon to its starting point. AreaMoveO is executed with the 
statement: 

LONG result; 
result = AreaMove(&rastPort, x, y); 

AreaMoveO returns 0 if successful, -1 if there was no more space left in the vector list. AreaDrawO tells the 
system to add a new vertex to a list that it is building. No drawing takes place until AreaEndO is executed. 
AreaDraw is exccuted with the statement: 

LONG result; 
result = AreaDraw(&rastPort, x, y); 

AreaDrawO returns 0 if successful, -1 if there was no more space left in the vector list. AreaEndO tells the system 
to draw all of the defined shapes and fill them. When this function is executed, it obeys the drawing mode and uses 
the line pattern and area pattern specified in your RastPort to render the objects you have defined. 

NOTE 

To fill an area, you do not have to AreaDrawO back to the first point before calling AreaEndO. 
AreaEndO automatically closes the polygon. AreaEndO is executed with the following statement: 

LONG result; 
result = AreaEnd(&rastPort); 

AreaEndO returns 0 if successful, -1 if there was an error. 

Here is an example routine that demonstrates Arealnfo initialization. It draws a pair of disconnected triangles, using 
the currently defined FgPen, BgPen, AOIPen, DrawMode, LinePtrn, and AreaPtrn: 

/* AreaInfoExample 
Insert this routine into the "wrapper" code at the end of the TEXT chapter. 

*/ 

#define AREA_SIZE 200 

BOOL example (struct Window *window) 
{ 
register USHORT i; 
WORD areabuffer[AREA SIZE); 
UWORD height, width;
PLANEPTR planeptr = NULL; 
struct RastPort *rastPort window->RPort; 
struct TmpRas tmpRas; 
struct AreaInfo areaInfo; 

height = GfxBase->NormalDisplayRows; 
width = GfxBase->NormalDisplayColumns; 

Graphics: Primitives 367 



planePtr = AllocRaster(width, height); 
if (planePtr) 

{ 

for (i=O; i<AREA SIZE; i++) 
areabuffer[il = 0; 

InitArea (&areaInfo, areabuffer, (AREA_SIZE*2) 15); 
rastPort->AreaInfo = &areaInfo; 

InitTmpRas(&tmpRas, planePtr, RASSIZE(width, height»; 
rastPort->TmpRas = &tmpRas; 

1* Area routines need a temporary .raster buffer at least as large as the 
* largest object to be drawn. If a single task uses multiple RastPorts, 
* it is sometimes possible to share the same TmpRas structure among 
* multiple RastPorts. Multiple tasks, however, cannot share a TmpRas, 
* as each task won't know when another task has a drawing partially 
* completed. 

*1 

AreaMove(rastPort, 0, 0); 
AreaDraw(rastPort, 0, 100); 
AreaDraw(rastPort, 100, 100); 

AreaMove(rastPort, 50, 10); 
AreaDraw(rastPort, 50, 50); 
AreaDraw(rastPort, 100, 50); 

AreaEnd (rastPort); 

FreeRaster(planePtr, width, height); 
} 

return(WAIT_FOR_CLOSE); 

If you had executed the statement "SetOPen( &rastPort, 3)" in the area-fill example, then the areas that you had 
defined would have been outlined in pen color 3. To tum off the outline function, you have to set the RastPort 
Flags variable back to 0 by: 

IHnclude "graphics/gfxmacros. h" 

struct RastPort *rastPort; 

BNDRYOFF(rastPort); 

Otherwise, every subsequent area-fill or rectangle-fill operation will outline their rendering with the outline pen. 

Two functions are associated with drawing filled ellipses: AreaCircleO and AreaEllipseO. AreaCircleO (a 
macro that calls AreaEllipseO) will draw a circle from the specified center point using the specified radius. This 
function is executed by the statement: 

AreaCircle(&rastPort, center_x, center_y, radius); 

AreaEUipseO draws a filled ellipse with the specified radii from the specified center point. The function call is: 

Outlining with SetOPenO is not currently supported by the AreaCircleO and AreaEllipseO routines. 

CAUTION 

If you attempt to fill an area outside the bounds of the BitMap, using the basic initialized RastPort, it 
may crash the system. You must either do your own software clipping to assure that the area is in 
range, or use the layer library. 

368 Graphics: Primitives 



Flood·fill Operations 

Flood fill is a technique for filling an arbitrary shape with a color. The Amiga flood-fill routines can use a plain 
color or do the fill using a combination of the drawing mode, FgPen, BgPen, and the area pattern. 

Flood-fill requires a TmpRas at least as large as the RastPort in which the flood-fill is being done. This is to ensure 
that even if the flood-filling "leaks", it will not flow outside the TmpRas and corrupt another task's memory. 

There are two different modes for flood fill: 

In outline mode you specify an x,y coordinate, and from that point the system searches outward in all 
directions for a pixel whose color is the same as that specified in the area outline pen. All horizontally or 
vertically adjacent pixels not of that color are filled with a colored pattern or plain color. The fill stops at 
the outline color. Outline mode is selected when the mode variable is a O. 

In color mode you specify an x,y coordinate, and whatever pixel color is found at that position defines the 
area to be filled. The system searches for all horizontally or vertically adjacent pixels whose color is the 
same as this one and replaces them with the colored pattern or plain color. Color mode is selected when 
the mode variable is a 1. 

You use the FloodO routine for flood fill. The syntax for this routine follows. 

Flood(&rastPort, mode, x, y); 

where 

&rastPort 
is a pointer to the RastPort 

mode tells how to do the fill 

x,y is the starting coordinate in the BitMap 

The following sample program fragment creates and then flood-fills a triangular region. The overall effect is exactly 
the same as shown in the preceding area-fill example above, except that flood-fill is slightly slower than area-fill. 
Mode 0 (fill to a pixel that has the color of the outline pen) is used in the example. 

SHORT oldAPen; 
struct RastPort *rastPort = Window->RPort; 

oldAPen = rastPort->FgPen: 
SetAPen(rastPort, rastPort->A01Pen); 
/* using mode 0 */ 
/* triangular shape */ 
Move (rastPort, 0, 0); 
Draw (rastPort, 0, 100): 
Draw(rastPort, 100, 100); 
Draw (rastPort, 0, 0): /* close it */ 

SetAPen(rastPort, oldAPen); 
Flood(rastPort, 0, 10, 50); /* Start Flood() inside triangle. */ 

This example saves the current FgPen value and draws the shape in the same color as AOIPen. Then FgPen is 
restored to its original color so that FgPen, BgPen, DrawMode, and AreaPtrn can be used to define the fill within 
the outline. 

Gmphics: Primitives 369 



Rectangle-fill Operations 

The final fill function, RectFiIIO, is for filling rectangular areas. The form of this function follows: 

RectFill(&rastPort, xmin, ymin, xmax, ymax); 

where 

&rastPort 
points to the RastPort that receives the filled rectangle 

xmin and ymin 
represent the upper left comer of the rectangle 

xmax and ymax 
represent the lower right comer of the rectangle. 

NOTE 

The variable xmax must be equal to or greater than xmin, and ymax must be equal to or greater 
than ymin. 

Rectangle-fill uses FgPen, BgPen, AOlPen, DrawMode and AreaPtrn to fill the area you specify. Remember that 
the fill can be multicolored as well as single- or two-colored. When the DrawMode is COMPLEMENT, it 
complements all bit planes, rather than only those planes in which the foreground is non-zero. 

The three sets of statements in the following example routine create exactly the same drawing. 

/* BoxFill 
Three methods of rendering a filled rectangle. 
Insert this routine into the "wrapper" code at the end of the TEXT chapter. 

*/ 

#include <graphics/gfxmacros.h> 

#define AREA SIZE 200 

#define COLORO 0 
#define COLORl 1 
#define COLOR3 3 

BOOL example(struct Window *window) 
( 
register USHORT i; 
SHORT xLow, xHigh, yLow, yHigh; 
WORD areabuffer[AREA SIZE]; 
UWORD height, width;-
PLANEPTR planePtr = NULL; 
struct RastPort *rastPort window->RPort; 
struct TmpRas tmpRas; 
struct AreaInfo area Info; 

xLow = window->BorderLeft; 
xHigh = window->GZZWidth - window->BorderRight; 
yLow = window->BorderTop; 
yHigh = window->GZZHeight - window->BorderBottom; 

height GfxBase->NormalDisplayRows; 
width = GfxBase->NormalDisplayColumns; 

370 Graphics: Primitives 



1* The AreaInfo and TmpRas are only needed by the Area ••• () calls. *1 
planePtr = AllocRaster(width, height); 
if (planePtr) 

{ 
for (i=O; i<AREA SIZE; i++) 

areabuffer[i] = 0; 

InitArea (&areaInfo, areabuffer, (AREA_SIZE*2) 15); 
rastPort->AreaInfo = &areaInfo; 

InitTmpRas(&tmpRas, planePtr, RASSIZE(width, height»; 
rastPort->TmpRas = &tmpRas; 

SetRast(rastPort, COLORO); 

1* Area-fill a rectangular area. *1 
TITLE (window, "AreaMove (), AreaDraw (), AreaEnd () ") ; 
Delay(2L * TICKS_PER_SECOND); 
SetAPen(rastPort, COLORl); 
SetOPen(rastPort, COLOR3); 
AreaMove(rastPort, xLow, yLow); 
AreaDraw(rastPort, xLow, yHigh); 
AreaDraw(rastPort, xHigh, yHigh); 
AreaDraw(rastPort, xHigh, yLow); 
1* AreaEnd() will complete the rectangle automatically. *1 
AreaEnd(rastPort); 

Delay(5L * TICKS PER SECOND); 
SetRast(rastPort; COLORO); 

1* Flood-fill a rectangular area. *1 
TITLE (window, "Move (), Draw (), Flood () ") ; 
Delay(2L * TICKS PER SECOND); 
SetAPen(rastPort; COLOR3); 
BNDRYOFF(rastPort); 
Move (rastPort, xLow, yLow); 
Draw(rastPort, xLow, yHigh); 
Draw(rastPort, xHigh, yHigh); 
Draw(rastPort, xHigh, yLow); 
1* Must complete the rectangle or flood will leak. *1 
Draw(rastPort, xLow, yLow); 
SetAPen(rastPort, COLOR1); 
1* Start Flood() in the middle of the rectangle, 

and replace all pixels of the same color as x,y). 
*1 
Flood (rastPort, 1L, (xHigh-xLow) 12, (yHigh-yLow) 12) ; 

Delay(5L * TICKS PER SECOND); 
SetRast(rastPort; COLORO); 

1* Rectangle-fill a rectangular area. *1 
TITLE (window, "RectFill () "); 
Delay(2L * TICKS PER SECOND); 
SetAPen(rastPort; COLOR1); 
SetOPen(rastPort, COLOR3); 
RectFill(rastPort, xLow, yLow, xHigh, yHigh); 

FreeRaster(planePtr, width, height); 
} 

return (WAIT_FOR CLOSE); 

Not only is the RectFilIO routine the shortest, it is also the fastest to execute. 

Graphics: Primitives 371 



Data Move Operations 

NOTE 

The graphics.library rendering and data movement routines generally wait to get access to the blitter, 
start their blit, and then exit. Therefore, you must WaitBlitO after a graphics rendering or data 
movement call if you intend to immediately deallocate, examine, or perform order-dependent processor 
operations on the memory used in the call. 

The graphics support functions include several routines for simplifying the handling of the rectangularly organized 
data that you would encounter when doing raster-based graphics. These routines do the following: 

Clear an entire segment of memory 

Set a raster to a specific color 

Scroll a subrectangle of a raster 

Draw a pattern "through a stencil" 

Extract a pattern from a bit-packed array and draw it into a raster 

Copy rectangular regions from one bit-map to another 

Control and utilize the hardware-based data mover, the blitter 

The following sections cover these routines in detail. 

Clearing a Memory Area 

For memory that is accessible to the blitter (that is, internal ClllP memory), the most efficient way to clear a range 
of memory is to use the blitter. You use the blitter to clear a block of memory with the statement: 

BltClear(memblock, bytecount, flags)~ 

where memblock is a pointer to the location of the first byte to be cleared, and bytecount is the number of bytes to 
set to zero. For the usage of the flags variable, refer to The Amiga ROM Kernel Manual: Includes and Autodocs. 

This command accepts the starting location and count and clears that block to zeros. 

Setting a Whole Raster to a Color 

You can preset a whole raster to a single color by using the function SetRastO. A call to this function takes the 
following form: 

372 Graphics: Primitives 



SetRast(&rastPort, pen); 

where 

&rastPort 
is a pointer to the RastPort you wish to use 

pen is the pen value to fill the RastPort with. 

Scrolling a Sub-rectangle of a Raster 

You can scroll a sub-rectangle of a raster in any direction-up, down, left, right, or diagonally. To perfonn a scroll, 
you use the ScrollRasterO routine and specify a dx and dy (delta-x, delta-y) by which the rectangle image should be 
moved towards the (0,0) location. 

As a result of this operation, the data within the rectangle will become physically smaller by the size of delta-x and 
delta-y, and the area vacated by the data when it has been cropped and moved is filled with the background color 
(color in BgPen). ScrollRasterO is affected by the Mask setting. 

Here is the syntax of the ScrollRasterO function: 

ScrollRaster(&rastPort, dx, dy, xmin, ymin, xmax, ymax); 

where 

&rastPort 
is a pointer to a RastPort 

dX,dy 
are the distances (positive, 0, or negative) to move the rectangle 

xmin, xmax, ymin, ymax 
specify the outer bounds of the sub-rectangle 

Here are some examples that scroll a sub-rectangle: 

1* scroll up 2 *1 
ScrollRaster(&rastPort, 0, 2, 10, 10, 50, 50); 

1* scroll right 1 *1 
ScrollRaster (&rastPort, -1, 0, 10, 10, 50, 50); 

When scrolling left or right while using a Super-BitMap Window ScrollRasterO requires a properly initialized 
TmpRas. Refer to the Windows section of the "Intuition" chapter for information on Super-BitMap windows. The 
TmpRas must be initialized to the size of one bit-plane with a width and height the same as the Super-BitMap, 
using the technique described in the "Area-Fill Infonnation" section. When scrolling a Simple-Refresh Window 
(or other layered RastPort), ScrollRasterO scrolls the appropriate existing damage region. Refer to the "Layers" 
chapter for an explanation of damage regions. If. you are using a Super-BitMap Layer, it is possible that the 
infonnation in the BitMap is not fully reflected in the layer and vice-versa. Two graphics calls: CopySBitMapO 
and SyncSBitMapO remedy these situations. Refer to The Amiga ROM Kernel Manual: Includes and Autodocs for 
more information. 

Graphics: Primitives 373 



Drawing through a Stencil 

The routine BItPattern() allows you to change only a very selective portion of a drawing area. Basically, this 
routine lets you define the rectangular region to be affected by this drawing operation and a mask of the same size 
that defines how that area will be affected. 

The following figure shows an example of what you can do with BItPattern(). The 0 bits are represented by blank 
rectangles; the 1 bits by filled-in rectangles. 

Mask contains: Result of BitPattern(): Drawing area contains: 

Figure 23-17: Example of Drawing Through a Stencil 

In the "Result" drawing, the lighter squares show where the target drawing area has been affected. Exactly what 
goes into the drawing area where the mask has 1 's is determined by your FgPen, BgPen, DrawMode, and 
AreaPtrn. 

The variables that control this function are: 

&rastport a pointer to the drawing area 

mask a pointer to the mask (mask layout explained below). May be NULL, in which case a rectangular 
region is modified. 

xl, maxx upper left comer x, and lower right comer x 

yl, maxy upper left comer y, and lower right comer y 

374 Graphics: Primitives 



bytecnt number of bytes per row for the mask (must be an even number of bytes) 

You call BItPatternO with: 

BltPattern(&rastport, mask, xl, yl, maxx, maxy, bytecnt) 

The mask parameter is a rectangularly organized, contiguously stored pattern. This means that the pattern is stored 
in linearly increasing memory locations stored as (maxy - yl + 1) rows of bytecnt bytes per row. 

NOTE 

These patterns must obey the same rules as BitMaps. This means that they must consist of an even 
number of bytes per row. For example, a mask such as: 

0100001000000000 
0010010000000000 
0001100000000000 
0010010000000000 

is stored in memory beginning at a legal word address. 

Extracting from a Bit-packed Array 

You use the routine BItTemplateO to extract a rectangular area from a source area and place it into a destination 
area. The following figure shows an example. 

Array start: 
line end+l 

....................................... 

Character starts n-bits in from starting point 
on the left edge of the array. 

Line end (first line) 

Figure 23-18: Example of Extracting from a Bit-Packed Array 

If the rectangular bit array is to be represented as a rectangle within a larger, rectangularly organized bit array, the 
system must know how the larger array is organized. This allows the system to extract each line of the object 
properly. For this extraction to occur properly, you need to tell the system the modulo for the array. The modulo is 
the value that must be added to the address pointer so that it points to the correct word in the next line in this 
rectangularly organized array. 

Graphics: Primitives 375 



The following figure represents a single bit-plane and the smaller rectangle to be extracted. The modulo in this 
instance is 4, because at the end of each line, you must add 4 to the address pointer to make it point to the first word 
in the smaller rectangle. 

20 21 22 23 24 25 26 ... 
27 28 29 30 31 32 33 

34 35 36 37 38 39 40 

41 42 43 44 45 46 47 

48 49 50 51 52 53 54 

55 56 57 58 59 60 61 

Figure 23-19: Modulo 

NOTE 

The modulo value must be an even number of bytes. 

BItTemplateO takes the following arguments: 

Larger source 
bit-plane image 

Smaller rectangle 
to be extracted. 

BltTemplate(source, srcX, srcMod, &destRastPort, destX, destY, sizeX, sizeY); 

source the source pointer for the array 

srcX source X (bit position) in the array at which the rectangle begins 

srcMod source modulo so it can find the next part of the source rectangle 

destRastPort a pointer to the destination RastPort 

destX, destY destination x and y, showing where to put the rectangle 

sizeX, size Y size x and y, indicating how much data to move 

BItTemplateO uses FgPen, BgPen, DrawMode and Mask to place the template into the destination area. This 
routine differs from B1tPatternO in that only a solid color is deposited in the destination drawing area, with or 
without a second solid color as the background (as in the case of text). Also, the template can be arbitrarily bit
aligned and sized in x. 

Copying Rectangular Areas 

Four routines copy rectangular areas from one section of a BitMap to another: B1tBitMapO. 
B1tBitMapRastPortO, B1tMaskBitMapRastPortO. and CIipBIitO. BltBitMapO is the basic routine. taking 
BitMaps as part of its arguments. It allows you to define a rectangle in a source region and copy it to a destination 
area of the same size in another (or even the same) BitMap. This routine is used in graphics rendering. 

376 Graphics: Primitives 



B1tBitMapO returns the number of planes actually involved in the blit. The syntax for the function is: 

ULONG planes; 

planes = BltBitMap(&srcBM, srcX, srcY, &dstBM, dstX, dstY, 
sizeX, sizeY, minterm, mask, tempA); 

B1tBitMapRastPort takes most of the same arguments, but its destination is a RastPort, instead of a BitMap. The 
syntax for the function is: 

VOID BltBitMapRastPort(&srcBM, srcX, srcY, &dstRP, dstX, dstY, 
sizeX, sizeY, minterm); 

B1tMaskBitMapRastPortO works like BltBitMapRastPortO, except that a single bit-plane mask also controls the 
blit. The syntax for the function is: 

VOID BltMaskBitMapRastPort(&srcBM, srcX, srcY, &dstRP, dstX, dstY, 
sizeX, sizeY, minterm, bltmask); 

NOTE 

The data area bltmask must be in ClllP memory. 

ClipBlitO takes most of the same arguments as B1tBitMapO, but it works with the RastPorts and layers. Before 
ClipBlitO moves data, it looks at the area from which and to which the data is being copied (RastPorts, not 
BitMaps) and determines if there are overlapping areas involved. It then splits up the overall operation into a 
number of bit maps to move the data in the way you request. To execute ClipBlitO: 

VOID elipBlit(&srcRP, srcX, srcY, &dstRP, dstX, dstY, XSize, YSize, minterm); 

The following code fragments show how to save and restore an undo buffer. 

1* Save work rastport to an undo rastport *1 
elipBlit(&drawRP, 0, 0, &undoRP, 0, 0, areaWidth, areaHeight, OxeO); 

1* restore undo rastport to work rastport *1 
elipBlit(&undoRP, 0, 0, &drawRP, 0, 0, areaWidth, areaHeight, OxeO); 

The minterm variable is an unsigned byte value which represents the action to be performed during the move. This 
routine uses the blitter to move the data and can therefore logically combine or change the data as the move is made. 
The most common operation is a direct copy from source area to destination, which is the hex value CO. 

You can determine how to set the minterm variable by using the logic equations shown in the following table. 

Graphics: Primitives 377 



Table 23-5: Minterm Logic Equations 

Logic Term 
in Leftmost 4 Bits 

8 

4 

2 

1 

Logic Term Included 
in Final Output 

BC 

BC 

Source B contains the data from the source rectangle, and source C contains the data from the destination area. If 
you choose bits 8 and 4 from the logic terms (CO), in the final destination area you will have data that occurs in 
source B only. Thus, CO means a direct copy. The logic equation for this is: 

- -
BC + BC = B(C + C ) = B 

Logic equations may be used to decide on a'number of different ways of moving the data. For your convenience, a 
few of the most common ones are listed in the following table. 

Table 23-6: Some Common Logic Equations for Copying 

Hex 
Value Mode 

30 Replace destination area with inverted source B. 

50 Replace destination area with inverted version 
of original of destination. 

60 Put B where C is not, put C where B is not (cookie cut). 

80 Only put bits into destination where there is 
a bit in the same position for both source 
and destination (sieve operation). 

CO Plain vanilla copy from source to destination. 

Refer to the listing for BltBitMapO in The Amiga ROM Kernel Manual: Includes and Autodocs. 

Accessing the BUtter in a Multitasking Environment 

To use the blitter, you must first be familiar with how its registers control its operation. This topic is covered 
thoroughly in the The Amiga Hardware Reference Manual and is not repeated here. 

Five routines may be used to access the blitter: 

378 Graphics: Primitives 



WaitBiitO returns as soon as the blitter is idle. It is used to ensure that the blitter has completed its current 
operation before being given another operation. It should normally only be used when dealing with the 
blitter in a synchronous manner, such as when using OwnBlitterO and DisownBlitterO. WaitBlitO does 
not wait for all blits queued up using QBlitO or QBSBlitO. You should call WaitBlitO if you are just 
about to free some memory that you have used with the blitter. 

NOTE 

Many graphic calls start up the blitter and return to the caller. The CPU does not need to wait for 
the blitter to finish before returning. When examining bits with the CPU immediately after a blit, 
or when freeing temporary memory used by the blitter, a WaitBlitO may be required. 

OwnBlitterO allows your task to obtain exclusive use of the blitter. 

NOTE 

The system uses the blitter extensively for disk and display operation. While your task is using the 
blitter, many other system processes will be locked out. Therefore, use it only for brief periods and 
relinquish it as quickly as possible, using DisownBlitterO. 

DisownBlitterO returns the device. to shared operation. 

QBlitO and QBSBlitO let your task queue up requests for the use of the blitter on a non-exclusive basis. 
You share the blitter with system tasks. 

To use QBlitO and QBSBlitO, you provide a data structure called a bltnode (blitter node). The system can use this 
structure to link blitter usage requests into a first-in, first-out (FIFO) queue. When your turn comes, your own bUtter 
routine can be repeatedly called until your routine says it is finished using the bUtter. 

Two separate queues are formed. One queue is for the QBlitO routine. You use QBlitO when you simply want 
something done and you do not necessarily care when it happens. This may be the case when you are moving data 
in a memory area that is not currently being displayed. 

The second queue is maintained for QBSBlitO. QBS stands for "queue-bearn-synchronized". QBSBlitO forms a 
beam-synchronized FIFO. When the video bearn gets to a predetermined position, your routine is called. Beam 
synchronization takes precedence over the simple FIFO. This means that if the bearn sync matches, the beam
synchronous blit will be done before the non-synchronous bUt in the first position in the queue. You might use 
QBSBlitO to draw into an area of memory that is currently being displayed to modify memory that has already been 
"passed-over" by the video beam. This avoids display flicker as an area is being updated. 

The input to each routine is a pointer to a bltnode data structure. The required items of the data structure are: 

A pointer to a bltnode 

A pointer to a function to perform 

A beamsync value (used if this is a beamsync blit) 

A status flag indicating whether the blitter control should perform a "clean-up" routine when the last blit 
is finished 

The address of the clean-up routine 

Graphics: Primitives 379 



The bltnode data structure is contained in the include file hardware/bUt.h. Here is a copy of that data structure, 
followed by details about the items you must initialize: 

struct bltnode 
{ 

struct bltnode *n; 
int (*function) ( ) ; 
char stat; 
short blitsize; 
short beamsync; 
int (*cleanup) ( ) ; 

} ; 

The contents of bltnode are as follows: 

struet bltnode *n; 

This is a pointer to the next bltnode, which, for most applications will be zero. You should not link 
bltnodes together. This is to be performed by the system by way of a separate call to QBlitO or 
QBSBlitO. 

int (*funetion)( ); 

This position is occupied by the address of a function that the blitter queuer will call when your turn 
comes up. Your routine must be formed as a subroutine, with an RTS at the end. Using the C-Ianguage 
convention, the returned value will be in DO (C returns its value by the return(value) statement). 

If you return a nonzero value, the system will call your routine the next time the blitter is done until you 
finally return O. This is to allow you to maintain control over the blitter; for example, it allows you to 
handle all five bit-planes if you are blitting an object that spans that number of planes. For display 
purposes, if you are blitting multiple objects and then saving and restoring the background, you must be 
sure that all planes of the object are positioned before another object is overlaid. This is the reason for the 
lockup in the blitter queue; it allows all work per object to be completed before going on to the next one. 

Assembly language programmers take note: 

Actually, the system tests the status codes for a condition of EQUAL or NOTEQUAL. When the C 
language returns the value of 0, it sets the status codes to EQUAL. When it returns a value of -I, it sets 
the status codes to NOTEQUAL, so they would be compatible. Functions (*function)O) that are written 
for QBlitO and QBSBlitO are not normally written in C. They are usually written in assembly language, 
as they then can take advantage of the ability of the queue routines to pass them parameters in the system 
registers. The register passing conventions for these routines are as follows: 

Register AO receives a pointer to the system hardware registers so that all hardware registers can be 
referenced as an offset from that address. 

Register Al contains a pointer to the current bltnode. You may have queued up multiple blits, each 
of which perhaps uses the same blitter routine. You can access the data for this particular operation 
as an offset from the value in AI. A typical user of these routines will precalculate the hardware 
register values that are stuffed into the registers and, during the routine, simply stuff them. For 
example, you can create a new structure such as the following: 

INCLUDE "exec/types.i" 
INCLUDE "hardware/blit.i" 

STRUCTURE mybltnode,O 
; Make this new structure compatible with a bltnode 
; by making the first element a bltnode structure. 

STRUCTURE bltnode,bn SIZEOF 
UWORD bltconl ; Blitter control register 1. 
UWORD fwmask ; First and last word masks. 

380 Graphics: Primitives 



UWORD lwmask 
UWORD bltmda 
UWORD bltmdb 
UWORD bltmdc 

Modulos for sources a, b,and c. 

UWORD any more data add anything else you want 
LABEL mhn SIZEOF - -

Other forms of data structures are certainly possible, but this should give you the general idea. 

char stat; 

Tells the system whether or not to execute the clean-up routine at the end. This byte should be set to 
CLEANUP (Ox40) if cleanup is to be performed. If not, then the bltnode cleanup variable can be zero. 

short beamsync; 

The value that should be in the VBEAM counter for use during a beam-synchronous blit before the 
functionO is called. 

The system cooperates with you in planning when to start a blit in the routine QBSBlltO by not calling 
your routine until, for example, the video beam has already passed by the area on the screen into which 
you are writing. This is especially useful during single buffering of your displays. There may be time 
enough to write the object between scans of the video display. You will not be visibly writing while the 
beam is trying to scan the object. This avoids flicker (part of an old view of an object along with part of a 
new view of the object). 

int (*cleanup)O; 

The address of a routine that is to be called after your last return from the QBlitO routine. When you 
finally return a zero, the queuer will call this subroutine (ends in RTS or returnO) as the clean-up. Your 
first entry to the function may have dynamically allocated some memory or may have done something that 
must be undone to make for a clean exit. This routine must be specified. 

User Copper Lists 

The Copper coprocessor allows you to produce mid-screen changes in certain hardware registers in addition to 
changes that the system software already provides. For example, it is the Copper that allows the Amiga to split the 
viewing area into multiple draggable screens, each with its own independent set of colors. 

To create your own mid-screen (or mid-Intuition-Screen) effects on the system hardware registers, you provide 
"user Copper lists" that can be merged into the system Copper lists. 

In the ViewPort data structure there is a pointer named UCoplns. If this pointer value is non-NULL, it points to a 
user Copper list that you have dynamically allocated and initialized to contain your own special hardware-stufImg 
instructions. 

You allocate a user Copper list by an instruction sequence such as the following: 

struct UCopList *uCopList = NULL; 

1* Allocate memory for the Copper list *1 
1* Make certain that the initial memory is cleared. *1 
uCopList = (struct UCopList *) 

AllocMem(sizeof(struct UCopList), MEMF_PUBLICIMEMF_CLEAR); 
if (uCopList == NULL) 

return(FALSE); 

Graphics: Primitives 381 



NOTE 

User Copper lists do not have to be in ClllP RAM. 

Once this pointer to a user Copper list is available. you can use it with system macros (graphics/gfxmacros.h) to 
instruct the system what to add to its own list of things for the Copper to do within a specific ViewPort. 

The file graphicslgfxmacros.h provides the following four macro functions that implement user Copper instructions. 

CINIT initializes the Copper list buffer. It is used to specify how many instructions are going to be placed in the 
Copper list. 

CINIT(uCopList, num_entries); 

CW AIT waits for the video beam to reach a particular horizontal and vertical position. Its format is: 

CWAIT(uCopList, v, h) 

where 

uCopList 
is the pointer to the Copper list 

v is the vertical position for which to wait. specified relative to the top of the ViewPort. The legal range of 
values (for both NTSC and PAL) is from 0 to 255. 

h is the horizontal position for which to wait. The legal range of values (for both NTSC and PAL) is from 0 
to 226. 

CMOVE installs a particular value into a specified system register. Its format is: 

CMOVE(uCopList, reg, value) 

where 

uCopList is the pointer to the Copper list 

reg is the register to be affected. specified in this form: "custom.register" (see hardware/custom. h) 

value is the value to place in the register 

CBump increments the user Copper list pointer to the next position in the list. It is usually invoked for the 
programmer as part of the macro definitions CW AIT or CMOVE. Its format is: 

CBump (uCopList) 

where uCopList is the pointer to the user Copper list. 

CEND terminates the user Copper list. Its format is: 

382 Graphics: Primitives 



CEND(uCopList) 

where uCopList is the pointer to the user Copper list. 

Executing any of the user Copper list macros causes the system to dynamically allocate special data structures called 
intermediate Copper lists that are linked into your user Copper list (the list to which uCopList points) describing the 
operation. When you call the function MakeVPort(&view, &viewport) as shown in the section called "Forming A 
Basic Display," the system uses all of its intermediate Copper lists to sort and merge together the real Copper lists 
for the system (LOFCprList and SHFCprList). 

When your program exits, you must return to the system all of the memory that you allocated or caused to be 
allocated. This means that you must return the intermediate Copper lists, as well as the user Copper list data 
structure. Here are two different methods for returning this memory to the system. 

/* Returning memory to the system if you have NOT 
* obtained the viewport from Intuition. */ 

FreeVPortCopLists(viewPort); 
FreeVPortCopLists(&viewport); 

/* Returning memory to the system if you HAVE 
* obtained the viewport from Intuition. */ 

CloseScreen(&screen); /* Intuition only */ 

The example program below shows the use of user Copper lists under Intuition. 

/* UserCopperExample 
User Copper List Example 
For Lattice, compile and link with: LC -bl -cfist -L -v -y uCopperExample.c 

*/ 

#include <exec/types.h> 
#include <exec/memory.h> 
#include <graphics/gfxbase.h> 
#include <graphics/gfxmacros.h> 
#include <graphics/copper.h> 
#include <intuition/intuition.h> 
#include <hardware/custom.h> 
#include <libraries/dos.h> 

#include <proto/all.h> 
#include <stdlib.h> 

/* Use this structure to gain access to the custom registers. */ 
extern struct Custom far custom; 

VOID openAll(VOID) , cleanExit(int); 
BOOL loadCopper(VOID); 

struct IntuitionBase *IntuitionBase 
struct GfxBase *GfxBase = NULL; 
struct Window *window = NULL; 
struct IntuiMessage *intuiMessage; 
struct ViewPort *viewPort NULL; 
struct UCopList *uCopList = NULL; 

struct NewWindow newWindow = 
{ 

NULL; 

40,0, /* Upper Left Corner */ 
175,10, /* Width and Height */ 
-1,-1, /* Use screen default pens */ 
CLOSEWINDOW, /* IDCMP flags */ 
WINDOWDRAG IWINDOWDEPTHIWINDOWCLOSE I NOCAREREFRESH, /* Flags */ 
NULL, /* no gadgets */ 
NULL, /* use default checkmark image */ 

Graphics: Primitives 383 



"Copper!", /* Title */ 
NULL, /* using WorkBench screen */ 
NULL, /* no super-bitmap */ 
0,0,0,0, /* no sizing */ 
WBENCHSCREEN 1* it goes on the WorkBench screen *1 

} ; 

#define NUMCOLORS 
#define NUMLINES EACH 

UWORD colors [1 = 
{ 

Ox0604, Ox0605, 
Ox0629, Ox072a, 
Ox077e, Ox088f, 
Ox03f3, Ox07f2, 
OxOe60, OxOd40, 

} ; 

VOID main (VOID) 
( 

32 
8 

Ox0606, Ox0607, Ox0617, Ox0618, 
Ox073b, Ox074b, Ox074c, Ox075d, 
Ox07af, Ox06cf, Ox05ff, Ox04fb, 
OxObfl, OxOffO, OxOfcO, OxOeaO, 
OxOd20, OxOdOO 

openAll(); /* Open the libraries and a window. */ 

Ox0619, 
Ox076e, 
Ox04f7, 
OxOe80, 

if (loadCopper(» /* Do the Copper specific stuff. */ 
( 
/* Wait until the user clicks in the close gadget */ 
(VOID) Wait (l«window->UserPort->mp SigBit); 
while (intuiMessage = (struct IntuiMessage *)GetMsg(window->UserPort» 

ReplyMsg«struct Message *)intuiMessage); 

cleanExit(RETURN_OK); 

VOID openAll(VOID) 
( 
IntuitionBase=(struct IntuitionBase *)OpenLibrary("intuition.library", 33L); 
if (IntuitionBase == NULL) 

cleanExit{ERROR INVALID RESIDENT LIBRARY); 
GfxBase = (struct GfxBase *)OpenLibrary("graphics.library", 33L); 
if (GfxBase == NULL) 

cleanExit(ERROR INVALID RESIDENT LIBRARY); 
if (! (window = OpenWindow(&newWindow») 1* Open a Window. */ 

cleanExit(ERROR NO FREE STORE); 
viewPort = ViewPortAddress(window); /* Get a pointer to the ViewPort. */ 

VOID cleanExit(int retval) 
{ 
if (uCopList) 

( 
1* Free the memory allocated for the Copper. */ 

FreeVPortCopLists(viewPort); 
RemakeDisplay () ; 
} 

if (window) 
CloseWindow(window); 

if (IntuitionBase) 
CloseLibrary«struct Library *)IntuitionBase); 

if (GfxBase) 
CloseLibrary«struct Library *)GfxBase); 

exit(retval)i 
} 

BOOL loadCopper(VOID) 
{ 

register USHORT i; 

/* Allocate memory for the Copper list */ 
/* Make certain that the initial memory is cleared. */ 

384 Graphics: Primitives 



uCopList = (struct UCopList *) 
AllocMem(sizeof(struct UCopList), MEMF_PUBLICIMEMF_CLEAR); 

if (uCopList == NULL) 
return (FALSE) ; 

CINIT(uCopList, NUMCOLORS); /* Initialize the Copper list buffer. */ 
for (i=O; i<NUMCOLORS; i++) /* Load in each color. */ 

{ 
CWAIT (uCopList, (i*NUMLINES EACH), 0); 
CMOVE(uCopList, custom.color[O), colors[i): 
} 

CEND(uCopList): /* End the Copper list */ 
/* Forbid task switching while changing the Copper list. */ 
Forbid(); 
viewPort->UCopIns=uCopList; 
Permit(): /* Permit task switching again. */ 
RethinkDisplay(): /* Display the new Copper list. */ 
return(TRUE); 
} 

Advanced Graphics Examples 

DUAL-PLAYFIELDS EXAMPLE 

This example is almost identical to the single-playfield demonstration program earlier in this chapter. It has been 
adapted to show a dual-playfield display with objects drawn in both playfields. The single playfield example wrote 
directly into the screen's memory. This example adds a RastPort so that rectangle-fill routines can be used. 

/* DualPF 
Dual-PlayFields Example 
For Lattice, compile and link with: LC -bI -cfist -L -v -y DUalPF.c 

*/ 

#include <exec/types.h> 
#include <graphics/gfx.h> 
#include <graphics/gfxbase.h> 
#include <graphics/gfxmacros.h> 
#include <graphics/rastport.h> 
#include <graphics/view.h> 
#include <hardware/dmabits.h> 
#include <hardware/custom.h> 
#include <libraries/dos.h> 

#include <proto/all.h> 
#include <stdlib.h> 

#define DEPTH 2 
#define WIDTH 320 
#define HEIGHT 200 

struct GfxBase *GfxBase = NULL; 

/* Add a second BitMap for dual playfield. */ 
struct BitMap bitMap, bitMap2; 
struct View view, *oldview; 

#define BLACK OxOOO 
#define BLUE OxOOf 
#define GREEN OxOfO 
#define RED OxfOO 
#define VIOLET OxfOf 
#define ORANGE Oxf80 
#define WHITE Oxfff 

Graphics: Primitives 385 



IIdefine COLORa a 
IIdefine COLOR1 1 
IIdefine COLOR2 2 
IIdefine COLOR3 3 

VOID cleanExit(int exitStatus); 

VOID main (VOID) 
{ 
SHORT i, stripe; 
LONG color; 

1* In dual playfield mode, colors 0-7 are dedicated to playfield one 
* and colors 8-15 to playfield two. Since (in this example) 
* there are only 2 planes in each playfield, colors 4-7 and 12-15 
* won't even get used. Colors 4-7 are included below to keep the 
* values of colors 8-11 in their proper locations for LoadRGB4(). 
*1 

static UWORD colortable!] 
{ 

ORANGE, RED, BLACK, WHITE, 
a, a, a, a, 
1* The second 
BLACK, GREEN, 

1* The values for colors 4-7 are placeholders. *1 
playfield's BLACK will be transparent. *1 
VIOLET, BLUE 

} ; 

1* Add a second Raslnfo for dual playfield. *1 
struct Raslnfo raslnfo, raslnfo2; 
struct RastPort rastPort, rastPort2; 1* RastPorts for both BitMaps. *1 
struct ViewPort viewPort; 

GfxBase = (struct GfxBase *)OpenLibrary(lgraphics.library", 33L); 
if (GfxBase == NULL) 

cleanExit(ERROR_INVALID_RESIDENT_LIBRARY); 

1* Initialize the BitMaps. *1 
InitBitMap(&bitMap, DEPTH, WIDTH, HEIGHT); 
InitBitMap(&bitMap2, DEPTH, WIDTH, HEIGHT); 

1* Clear the plane pointers. *1 
for (i=O; i<DEPTH; i++) 

bitMap.Planes!i] = bitMap2.Planes!i] 

1* Allocate space for their Planes. *1 
for (i=O; i<DEPTH; i++) 

{ 

NULL; 

bitMap.Planes!i] = (PLANEPTR) AllocRaster (WIDTH, HEIGHT); 
if (bitMap.Planes!i] == NULL) 

cleanExit(ERROR_NO_FREE_STORE); 

bitMap2.Planes!i] = (PLANEPTR) AllocRaster (WIDTH, HEIGHT); 
if (bitMap2.Planes!i] == NULL) 

cleanExit(ERROR_NO_FREE_STORE); 

1* Initialize the RastPorts and link the BitMaps to them. *1 
InitRastPort(&rastPort); 
InitRastPort(&rastPort2); 
rastPort.BitMap = &bitMap; 
rastPort2.BitMap = &bitMap2; 

1* Simple form of setting drawing area to color COLORa. *1 
SetRast(&rastPort, COLORa); 
SetRast(&rastPort2, COLORa); 

1* Initialize the Raslnfos. 
raslnfo.BitMap = &bitMap; 
raslnfo.RxOffset = 0; 1* 
raslnfo.RyOffset = 0; 1* 
raslnfo.Next = &raslnfo2; 

*1 
1* Attach the corresponding BitMap. *1 

Align upper left corners of display *1 
with upper left corner of drawing area. *1 

1* Link second Raslnfo structure to the first. *1 

1* Initialize second Raslnfo for Dual Playfield. *1 

386 Graphics: Primitives 



rasInfo2.BitMap = &bitMap2; 
rasInfo2.RxOffset = 0; 
rasInfo2.RyOffset = 0; 
rasInfo2.Next = NULL; 

InitVPort(&viewPort); 1* Initialize the ViewPort. *1 

1* Specify ViewPort characteristics. *1 
viewPort.DWidth = WIDTH; 
viewPort.DHeight = HEIGHT; 
viewPort.RasInfo = &rasInfo; 
viewPort.Modes = DUALPF; 1* dual-playfield mode *1 

1* Initialize the ViewPort's ColorMap. *1 
viewPort.ColorMap = GetColorMap(12L); 
if (viewPort.ColorMap == NULL) 

cleanExit(ERROR NO FREE STORE); 
LoadRGB4(&viewPort,-colortable, 12); 

InitView(&view); 1* Initialize the View. *1 
view. ViewPort = &viewPort; 1* Attach the ViewPort to the View. *1 

1* Construct (preliminary) Copper instruction list. *1 
MakeVPort( &view, &viewPort ); 

1* Merge preliminary lists together into a real 
* Copper list in the View structure. 
*1 

MrgCop( &view ); 

1* Save current view to restore later. Example steals 
* the screen from the active view, but restores it when done. 
*1 

oldview = GfxBase->ActiView; 

1* Load the newly created View. *1 
LoadView( &view ); 

1* Stripes of color will be drawn in the playfields. 
* Wherever color 0 is used in playfield number 1, 
* the colors of playfield number 2 will show through. 
*1 

1* Playfield number 1. Vertical stripes. *1 
stripe = WIDTH/32; 
for (color=OL, i=WIDTH-stripe; i>=O; i-=stripe) 

( 
SetAPen(&rastPort, color++ % 4L); 1* Cycle through the four colors. *1 

1* Create a rectangle. The coordinates are inset by one on all 
* four edges to allow for the outline created by RectFill. 
*1 

RectFill(&rastPort, i+l, 1, i+stripe-2, HEIGHT-I); 

1* Delay for 1/4 second between stripes. 
* The +lL prevents the possibility of a Delay(O) which 
* would cause problems due to a bug in the timer.device. 
*1 

Delay{TICKS PER SECOND 1 4L + lL); 
} --

1* Pause for one second. *1 

1* Playfield number 2. Horizontal stripes. *1 
stripe = HEIGHT/20; 
for (color=OL, i=HEIGHT-stripe; i>=O; i-=stripe) 

( 
SetAPen(&rastPort2, color++ % 4L); 
RectFill(&rastPort2, 1, i+l, WIDTH-I, i+stripe-2); 
Delay{TICKS PER SECOND 1 4L + lL); 
} --

Graphics: Primitives 387 



Delay(lOL * TICKS PER SECOND); 
cleanExit(RETURN_OK);-

/* end of main() */ 

VOID cleanExit(int exitStatus) 
{ 

SHORT i; 

if (oldview) 
{ 

LoadView(oldview); /* Put the original View back again. */ 
WaitTOF(); /* Wait for that View to return. */ 
} 

/* Free the drawing area. */ 
for(i=O; i<DEPTH; i++) 

{ 

if (bitMap.Planes[i) 
FreeRaster(bitMap.Planes[i), WIDTH, HEIGHT); 

if (bitMap2.Planes[i) 
FreeRaster(bitMap2.Planes[i), WIDTH, HEIGHT); 

/* Free the color map created by GetColorMap(). */ 
if (view.ViewPort->ColorMap) 

FreeColorMap(view.ViewPort->ColorMap); 

/* Free dynamically created structures. */ 
if (view.ViewPort) 

FreeVPortCopLists(view.ViewPort); 
if (view.LOFCprList) 

FreeCprList(view.LOFCprList); 

if (GfxBase) 
CloseLibrary «struct Library *) GfxBase); 

exit(exitStatus); 
} 

HOLD·AND·MODIFY MODE EXAMPLE 

This example demonstrates the Amiga's hold-and-modify mode, showing at all times a different subset of 256 of the 
4,096 colors available on the Amiga. Atany moment, no two squares are the same color. 

/* 
Hold-And-Modify Example 
For Lattice, compile and link with: LC -b1 -cfist -L -v -y HAMExample.c 

*/ 

#include <exec/types.h> 
#include <intuition/intuitionbase.h> 
#include <graphics/gfxbase.h> 
#include <libraries/dos.h> 

#include <proto/all.h> 
#include <stdlib.h> 
#include <string.h> 
#include <stdio.h> 

#define XSIZE 11 
IIdefine YSIZE 6 

/* Color box sizes. */ 

struct IntuitionBase *IntuitionBase = NULL; 
struct GfxBase *GfxBase = NULL; 

388 Graphics: Primitives 



struct TextAttr textAttr = 
{ 

"topaz.font", 
8, 

1* Standard system font. *1 

0, 
o 

} ; 

struct Window *window 
struct Screen *screen 

NULL; 
NULL; 

struct NewScreen newScreen = 
{ 

0, 0, 
320, 200, 6, 
0, 1, 
HAM, 
CUSTOMSCREEN, 
&textAttr, 
{UBYTE *}" 256 different colors out of", 
NULL, 
NULL 

} ; 

struct NewWindow newWindow 
{ 

0, 11, 
320, 186, 

1* LeftEdge, TopEdge, *1 
1* Width, Height, *1 

-1, -1, 
MOUSEBUTTONSICLOSEWINDOW, 
ACTIVATEIWINDOWCLOSE, 
NULL, 

1* DetailPen, BlockPen, (-1 
1* IDCMPFlags, *1 

"use Screen's") *1 

NULL, 
(UBYTE *)"4,096 at any 
NULL, 
NULL, 
0, 0, 
320, 186, 
CUSTOMSCREEN 

} ; 

'define BLACK OxOOO 
'define RED OxfOO 
'define GREEN OxOfO 
'define BLUE OxOOf 
'define WHITE Oxfff 

'define COLORO 0 
'define COLOR1 1 
'define COLOR2 2 
#define COLOR3 3 

1* 'Flags, *1 
1* FirstGadget, *1 
1* CheckMark, *1 

given moment.", 1* Title, *1 
1* Screen, *1 
1* BitMap, *1 
1* MinWidth, MinHeight, *1 
1* MaxWidth, MaxHeight, *1 
1* Type *1 

VOID cleanExit(LONG exitStatus); 
VOID hamBox(struct RastPort *rastPort, LONG color, LONG x, LONG y); 
VOID prompt (struct RastPort *rastPort); 
VOID 

colorWheel(struct RastPort *rastPort, SHORT xpos[), SHORT ypos[), BOOL textneeded); 
VOID 

colorFull(struct RastPort *rastPort, SHORT xpos[), SHORT ypos[), BOOL textneeded); 
extern ULONG RangeRand(ULONG); 

VOID main (VOID) 
( 
BOOL wheelmode = TRUE, text needed TRUE; 
SHORT xpos[16), ypos[16); 
USHORT code, i; 
static UWORD colors[] = {BLACK, RED, GREEN, BLUE, WHITE}; 
ULONG class; 
struct RastPort *rastPort; 1* Graphics structures. *1 
struct ViewPort *viewPort; 
struct IntuiMessage *intuiMessage; 

Graphics: Primitives 389 



for(i=O; i<16; i++) 1* Establish color square positions. *1 
( 
xpos[iJ 
ypos[iJ 
) 

(XSIZE + 4) * i + 20; 
(YSIZE + 3) * i + 21; 

IntuitionBase = (struct IntuitionBase *)OpenLibrary("intuition.library", 33L); 
if (IntuitionBase == NULL) 

cleanExit(ERROR_INVALID_RESIDENT_LIBRARY); 

GfxBase = (struct GfxBase *)OpenLibrary("graphics.library", 33L); 
if (GfxBase == NULL) 

cleanExit(ERROR_INVALID_RESIDENT_LIBRARY); 

screen = OpenScreen(&newScreen); 
if (screen == NULL) 

cleanExit(ERROR_NO_FREE_STORE); 

newWindow.Screen = screen; 1* Open window in our new screen. *1 
window = OpenWindow(&newWindow); 
if (window == NULL) 

cleanExit(ERROR_NO_FREE_STORE); 

viewPort 
rastPort 

& (screen->ViewPort); 1* Set colors in screen's ViewPort. *1 
window->RPort; 1* Render into the window's RastPort. *1 

1* Set the color registers: Black, Red, Green, Blue, White. *1 
LoadRGB4(viewPort, colors, SL); 

SetBPen(rastPort, COLORa); 1* Insure clean text. *1 

1* Process any and all messages in the queue, then update the display 
* colors once, then come back here to look at the queue again. If you 
* see a left-mouse-button-down event, then switch display modes. If you 
* see a Close-Window-gadget event, then clean up and exit the program. 
* NOTE: This is a BUSY LOOP so the colors will cycle as quickly as possible. 
*1 

while (1) 
( 

1* 

*1 

while(intuiMessage=(struct IntuiMessage *)GetMsg(window->UserPort» 
( 
1* Can't reply until done using it! *1 
class = intuiMessage->Class; 
code = intuiMessage->Code; 
ReplyMsg({struct Message *)intuiMessage); 

if (class == CLOSEWINDOW) 1* Exit the program. *1 
cleanExit(RETURN_OK); 

if (class == MOUSEBUTTONS && code 
( 
wheelmode = NOT wheelmode; 

SELECTDOWN) 1* Swap modes. *1 

SetAPen(rastPort, COLORa); 1* Clear the drawing area. *1 

} 

SetDrMd(rastPort, JAM1); 
RectFill (rastPort, 3, 12, 318, 183); 
text needed = TRUE; 
} 

if (wheelmode) 
colorWheel(rastPort, xpos, ypos, textneeded); 

else 
colorFul I (rastPort, xpos, ypos, textneeded); 

textneeded = FALSE; 
} 

Display a randomized set of colors. 

390 Graphics: Primitives 



VOID 
colorFull(struct RastPort *rastPort, SHORT xpos[], SHORT ypos[], BOOL textneeded) 

SHORT usesquare; 
ULONG sChoice, eCho ice; 
LONG usecolor; 
static SHORT sStop, eStop; 
static SHORT squares[16 * 16]; 
static LONG squareco1or[16 * 16], freecolors[4096-(16*16)]; 

if (textneeded) 1* First call since mode change? *1 
( 
prompt(rastPort); 
sStop 255; 1* Top of list of squares yet to change. */ 
eStop = 4095 - 256; 1* Top of list of colors still needing use. */ 

for(usecolor=O; usecolor<256; usecolor++) 1* Initialize colors. *1 
( 
usesquare = usecolor; 
squares[usesquare] = usesquare; 
squareco1or[usesquare] = usecolor; 
hamBox(rastPort, usecolor, xpos[usesquare % 16], ypos[usesquare 1 16]); 
} 

for(usecolor=256; usecolor<4095; usecolor++) 1* Ones not yet used. *1 
freecolors[usecolor - 256] = usecolor; 

1***************************************************** ********************** 
* Randomly choose next square to change such that all squares change color 
* at least once before any square changes twice. squares [0] through squares 
* [sStop] are the square numbers that have not yet changed in this pass. 
* RangeRand(r) is an integer function provided in "amiga.lib" that produces 
* a random result in the range 0 to (r-1) given an integer r in the range 1 to 65535. 
**************************************************************************/ 

sChoice = RangeRand(sStop + 1); /* Pick a remaining square. */ 

usesquare = squares[sChoice]; /* Extract square number. *1 
squares [sChoice] = squares[sStop]; 1* Swap it with sStop slot. */ 
squares [sStop] = usesquare; 

if (NOT sStop--) 
sStop = 255; 1* Only one change per pass. *1 

1*************************************************************************** 
* Randomly choose new color for selected square such that all colors are 
* used once before any color is used again, and such that no two squares 
* simultaneously have the same color. freecolors[O] through freec01ors[cStop] 
* are the colors that have not yet been chosen in this pass. Note that 
* the 256 colors in use at the end of the previous pass are not available 
* for choice in this pass. 
***************************************************************************/ 

cChoice = RangeRand(cStop + 1); 

usecolor = freecolors[cChoice]; 
freecolors[cChoice] = freecolors[cStop]; 
freecolors[cStop] = squarecolor[usesquare]; 
squarecolor[usesquare] = useeolor; 

if (NOT cStop--) 
eStop = 4095 - 256; 

hamBox(rastPort, usecolor, xpos[usesquare % 16], ypos[usesquare 1 16]); 
} 

1* 
Display an ordered set of colors. 

*1 

Graphics: Primitives 391 



VOID 
colorWheel(struct RastPort *rastPort, SHORT xpos[), SHORT ypos[), BOOL text needed) 

SHORT i, j; 
static SHORT sequence; 
static UBYTE *number[) 
{ 

"O","1","21',"31',"4","5","611,"7","8","9","A",''B 11 ,"C","D",IIEI1
,IIF" 

} ; 
static UBYTE red[) = "Red", bluet) = "Blue", green[) = "Green"; 
if (text needed) 

( 
prompt(rastPort); 

SetAPen(rastPort, COLOR2); 1* Green pen for green color numbers. *1 
Move (rastPort, 260, ypos[15)+17); 
Text (rastPort, green, strlen(green»; 
for(i=O; i<16; i++) 

( 
Move(rastPort, xpos[i)+3, ypos[15]+17); 
Text (rastPort, number[i], str1en{number[i]»; 
} 

SetAPen(rastPort, COLOR3); 1* Blue pen for blue color numbers. *1 
Move (rastPort, 4, 18); 
Text(rastPort, blue, strlen(blue»; 
for(i=O; i<16; i++) 

( 
Move (rastPort, 7, ypos[i]+6); 
Text(rastPort, number[i], strlen(number[i]»; 
} 

SetAPen(rastPort, COLOR1); 1* Red pen for red color numbers. *1 
Move (rastPort, 271, 100); 
Text (rastPort, red, strlen(red»; 

sequence = 0; 
} 

SetAPen(rastPort, COLOR1); 1* Identify the red color in use. *1 
SetDrMd(rastPort, JAM2); 
Move (rastPort, 280, 115); 
Text (rastPort, number[sequence), strlen(number[sequence]»; 

for{j=O; j<16; j++) 
( 

1* Update all of the squares. *1 

for(i=O; i<16; i++) 
hamBox (rastPort, (sequence«8 I i«4 I j), xpos [i], ypos [j]) ; 

if (++sequence 16) 
sequence = 0; 

1* Display mode changing prompt. *1 
VOID prompt(struct RastPort *rastPort) 
( 
static UBYTE text[] = "[left mouse button 

SetDrMd(rastPort, JAM2); 
SetAPen(rastPort, 4); 
Move (rastPort, 23, 183); 
Text (rastPort, text, strlen(text»; 
} 

new mode]"; 

/********************************************************************** 
* hamBox() -- routine to draw a colored box in Hold and Modify mode. Draws a 
* box of size XSIZE by YSIZE with an upper left corner at (x,y). The 
* de~ired color is achieved in 3 steps on each horizontal line of the box. 

392 Graphic~: Primitives 



* First we set the red component, then the green, then the blue. We 
* achieve this by drawing a vertical line of Modify-Red, followed by a 
* vertical line of Modify-Green, followed by a rectangle of Modify-Blue. 
* Note that the resulting color for the first two vertical lines depends 
* upon the color(s) of the pixels immediately to the left of that 
* line. By the time we reach the rectangle we are assured of getting 
* (and maintaining) the desired color because we have set all 3 
* components (R, G, and B) straight from the bit map. 
***********************************************************************1 

VOID hamBox(struct RastPort *rastPort, LONG color, LONG x, LONG y) 
{ 
SHORT c; 

SetDrMd(rastPort, JAM1); 1* Establish Drawing Mode in RastPort. *1 

1* Extract desired Red color component. *1 c = (color & OxfOO) » 8; 
SetAPen(rastPort, c + Ox20); 
Move (rastPort, x, y); 
Draw(rastPort, x, y+YSIZE); 

1* Hold G, B from previous pixel. Set R=n. *1 

x++; 
c = (color & OxfO) »4; 1* Extract desired Green color component. *1 
SetAPen(rastPort, c + Ox30); 1* Hold R, B from previous pixel. Set G=n. *1 
Move (rastPort, x, y); 
Draw(rastPort, x, y+YSIZE); 

x++; 
c = (color & Oxf); 1* Extract desired Blue color component.*1 
SetAPen(rastPort, c + OxlO); 1* Hold R, G from previous pixel. Set B=n. *1 
RectFill(rastPort, x, y, x+XSIZE-2, y+YSIZE); 
} 

1* 
Clean up and exit. 

*1 
VOID cleanExit(LONG exitStatus) 
{ 

struct IntuiMessage *intuiMessage; 

if (window) 
( 
1* Reply to any pending IntuiMessages. *1 
while(intuiMessage=(struct IntuiMessage *)GetMsg(window->UserPort» 

ReplyMsg«struct Message *)intuiMessage); 
CloseWindow(window); 
} 

if (screen) 
CloseScreen(screen); 

if (GfxBase) 
CloseLibrary«struct Library *)GfxBase); 

if (IntuitionBase) 
CloseLibrary«struct Library *)IntuitionBase); 

exit(exitStatus); 
} 

Gmphics: Primitives 393 



Chapter 24 

Graphics: Text 

Introduction 

Text on the Amiga is simply another graphics primitive. Because of this, you can easily intermix text and graphics 
on the same screen. Typically, a 320-by-200 graphics screen can contain 40-column, 2S-line text using a text font 
defined in an 8-by-8 matrix. The same type of font can be used to display 80-column text if the screen resolution is 
extended to 640 by 200. Window borders and other graphics embellishments may reduce the actual available area. 

The text support routines use the RastPort structure to hold the variables that control the text rendering process. 
Therefore, any changes you make to RastPort variables affect both the drawing routines and the text routines. 

In addition to the basic fonts provided in the ROMs, you can link your own font into the system, and ask that it be 
used along with the other system fonts. 

This chapter shows you how to: 

Print text into a drawing area 

Specify the character color 

Graphics: Text 395 



Specify which font to use 

• Access disk-based fonts 

Define a new font 

• Define a disk-based font 

Printing Text into a Drawing Area 

The placement of text in the drawing area depends on several variables. Among these are the current position for 
drawing operations, the font width and height. and the placement of the font baseline within that height. 

CURSOR POSITION 

Text position and drawing position use the same variables in the RastPort structure-cp _" and cp _y. the current 
horizontal and vertical pen position. The text character begins at this point. You use the graphics call 
Move(rastPort, x, y) to establish the cp_" and cp_y position. 

BASELINE OF THE TEXT 

The cp _y position of the drawing pen specifies the position of the baseline of the text. In other words, all text 
printed into a RastPort using a single "write string" command is positioned relative to this cp J as the text 
baseline. The following figure shows some sample text that includes a character that has 1 dot below the baseline 
and a maximum of 7 dots above and including the baseline. 

For clarity, blank squares and shaded squares, rather than Os and Is, are used for the figure. 

_~"-_Baselineforthe 
character set 

Figure 24-1: Text Baseline 

The figure shows that for this font, the baseline value is 6. The baseline value is the number of lines from the top of 
the character to the baseline. 

When the text routines output a character to a RastPort, the leftmost edge of the character position is specified by 
the cp_x (current horizontal position) variable. 

396 Graphics: Text 



After all characters have been written to the RastPort, the variable cPJ is unchanged. The value of cp_x will be 
changed by the number of horizontal positions that were needed to write all characters of the specified text. Both 
fixed-width and proportionally spaced character sets are accommodated. 

The default fonts in the system are all designed to be above and below the baseline, where the baseline position in 
this example is at line 6 of the character font. This means that you must specify a CPJ value of at least 6 when you 
request that text be printed to a RastPort in order to assure that you stay within the memory bounds of the RastPort 
itself. 

You should exercise caution when requesting that the text routines write beyond the outer bounds of the RastPort 
memory, either horizontally or vertically. Text written outside the RastPort bounds may be clipped if the RastPort 
supports clipping (most do). Clipping means that the system will actually render only that portion of the text that is 
written within the boundaries of the RastPort. If it is not clipped, the contents of memory may be corrupted. 

SIZE OF THE FONT 

Font design is covered later in this chapter. For now, simply note that the width and height of the font affect how 
many characters you may print on a line. The position of the baseline affects where the text is rendered. 

PRINTING THE TEXT 

Text is rendered into a RastPort with the TextO routine. A typical call to this routine is: 

Text (rastPort, string, courit); 

where 

rastPort is a pointer to the RastPort structure where the text is to be rendered 

string is the address of the string to be rendered 

count is the string length 

1* ShowDefaultFont 
An example that prints the name and size of the default font. 
Insert this routine into the "wrapper" code at the end of the chapter. 

*1 

BOOL example(struct Window *window) 
( 

UBYTE textNum[6]; 1* A temporary buffer. *1 
struct TextAttr textAttr; 
struct RastPort *rastPort = window->RPort; 
SHORT indentLeft = window->BorderLeft, indent Top = window->BorderTop; 

TITLE (window, "This Window's default font"); 
SetAPen(rastPort, COLORl); 1* Set the pen color. *1 

1* AskFont() will fill textAttr with the default font's attributes. *1 
AskFont(rastPort, &textAttr); 

1* Move the pen's current position such that the characters 
will be rendered below the Window's top border. 

*1 
Move (rastPort, indentLeft, indentTop + rastPort->TxBaseline); 

Graphics: Text 397 



1* Render this string (which is 20 characters long). *1 
Text (rastPort, "The default font is ", 20); 

1* The pen's cp y has been updated to where the last rendering finished. 
If we don't Move() it, the next string will continue from there. 

*1 
Text (rastPort, textAttr.ta_Name, strlen(textAttr.ta_Name»; 

1* Use sprintf() to copy the numeric value to a string buffer. *1 
sprintf(textNum, ", %d", textAttr.ta_YSize); 
Text (rastPort, textNum, strlen(textNum»; 

Text (rastPort, " pixels high.", 13); 

1* Wait for the user to click in the close gadget before returning. *1 
return(WAIT FOR CLOSE); 
} - -

Selecting the Font 

Two default character fonts are provided in the ROMs. One font produces either 40- or 80-column text (depending 
on the use of a 320 or 640 horizontal resolution, respectively). The other font produces either 32- or 64-column text. 
Each font has a name associated with it. The names and specifications of these default fonts are shown in the 
following table. 

Table 24-1: Default Character Fonts 

Name Height No. of Columns 

topaz.font 8 40/80 

topaz.font 9 32/64 

Although both fonts have the same name, they are of different size, allowing the system to differentiate between 
them. 

To specify which font the system should use, you call the system routine OpenFontO or OpenDiskFontO, followed 
by SetFontO. Typical calls to OpenFontO and SetFontO can be found in the example routine "ShowOpenFont", a 
fragment of which follows. 

struct TextFont *textFont; 

1* Request this font from the system. *1 
textFont = OpenFont(&textAttr); 
if (textFont) 

( 
1* Make this font the RastPort's default font. *1 
SetFont(rastPort, textFont); 
} 

where 

398 Graphics: Text 



textFont 
is a pointer to a TextFont data structure, returned by either OpenFontO or OpenDiskFontO. TextFont is 
defined in the include file graphics/text.h. 

textAttr 
is a TextAttr structure (it is defined in the include file graphics/text. h). It contains a pointer to a null
terminated string that specifies the name of the font, the font height, font style bits, and font fiag bits. 

rastPort 
is a pointer to the RastPort that is being told to use the font described by textFont as its default font. 

The call to OpenFontO or OpenDiskFontO says "give me a font with these characteristics". The system attempts 
to fulfill your request by providing the font whose characteristics best match your request. If OpenFontO cannot be 
satisfied, it returns a O. 

NOTE 

In the "Graphics Primitives" chapter, you saw that the routine InitRastPortO initializes certain 
variables to default values. The InitRastPortO routine automatically sets the default font to topaz.font 
in the size set by the user from the "Preferences" program. 

1* ShowOpenFont 
An example illustrating how to request a font from OpenFont(). 
Insert this routine into the "wrapper" code at the end of the chapter. 

*1 

BOOL example(struct Window *window) 
{ 

SHORT indentLeft = window->BorderLeft, indent Top window->BorderTop; 
struct RastPort *rastPort = window->RPort; 
struct TextAttr textAttr; 
struct TextFont *textFont, *oldTextFopti 

TITLE (window, "Using OpenFont () to request fonts"); 

SetAPen(rastPort, COLOR!); 

1* Save the address of the RastPort's current font for replacement later. 
It cannot "disappear" during this time as it still has at least 
one "accessor". 

*1 
oldTextFont = rastPort->Fonti 

1* Fill the TextAttr structure with the desired characteristics. *1 
1* These just happen to be the attributes of the standard topaz 80 font. *1 
textAttr.ta Name = "topaz. font"; 
textAttr.ta=YSize = 8; 
textAttr.ta Style = FSNORMAL; 
textAttr.ta=Flags = FPF_DESIGNED I FPF_ROMFONTi 

1* Request this font from the system. *1 
textFont = OpenFont(&textAttr); 
if (textFont) 

( 

1* Make this font the RastPort's default font. *1 
SetFont(rastPort, textFont); 

1* Move the pen's current position such that the characters 
will be rendered below the Window's top border. 

*1 
indent Top += rastPort->TxBaseline; 
Move (rastPort, indentLeft, indentTop); 

Graphics: Text 399 



Text (rastPort, "topaz.font, 8 dots high", 23 ); 

/* Set this RastPort's font back to its original font. */ 
SetFont(rastPort, oldTextFont); 

/* Close the font when completely done with it. */ 
CloseFont(textFont); 
} 

textAttr.ta YSize = 9; /* Change the textAttr structure, */ 
textFont = OpenFont(&textAttr); /* and request this new font. */ 
if (textFont) 

( 
setFont(rastPort,textFont); 
/* Move down to avoid overlapping with the previous line. 

Use the new font's YSize plus one pixel. 
*/ 
indent Top t= textFont->tf YSize t 1; 
Move (rastPort, indentLeft~ indentTop); 
Text (rastPort, "topaz.font, 9 dots high", 23); 
Set Font (rastPort, oldTextFont); 
CloseFont(textFont); 
} 

return(WAIT_FOR_CLOSE); 
} 

Selecting the Text Color 

" You can select which color to use for the text you print by using the graphics calls SetAPenO and SetBPenO and by 
selecting the drawing mode in your RastPort structure. The combination of those values determines exactly how 
the text will be printed. 

Selecting a Drawing Mode 

The DrawMode variable of a RastPort determines how the text will be combined with the graphics in the 
destination area. 

NOTE 

With the exception of INVERSVID, the DrawMode selections are mutually exclusive. You can select 
from anyone of the following drawing modes. 

If DrawMode is JAMl, it means that the text will be drawn in the color of FgPen (the foreground, or primary, 
drawing pen). Wherever there is a I-bit in the character's image definition, the FgPen color will overwrite the data 
present at the text position in the RastPort. This is called overstrike mode. 

If DrawMode is JAM2, it means that the FgPen color will be used for the text, and the BgPen color (the 
background or secondaty drawing color pen) will be used as the background color for the text The rectangle of data 
bits that defines the text-character completely overlays the destination area in your RastPort. Where there is a 1 bit 
in the character's image definition, the FgPen color is used. Where there is a 0 bit in the image, the BgPen color is 
used. This mode draws text with a colored background. 

If DrawMode is COMPLEMENT, it means that wherever the text character is drawn, a position occupied by a 1 bit 
causes bits in the destination RastPort to be changed as follows (see also the figure which follows); 

400 Graphics: Text 



If a text-character 1 bit is to be written over a destination area 0 bit. it changes the destination area to a 1 
bit. 

If a text-character 1 bit is to be written over a destination area 1 bit, the result of combining the source and 
destination is a 0 bit. In other words, whatever the current state of a destination area bit, a 1 bit in the 
source changes it to the opposite state. 

Zero bits in the text character definition have no effect on the destination area . 

• 
'~ .. ~"" 

!:' ':-. ':~ ~.: 
::~: .:::: 

;:::.:::; 
::'; •• ,:! 

~:: :::~ 

'.': ...,:. 
;:; .:!: .. ;. :::: ::~ ::~: ::::: 

Text Character Memory Area Result of printing it in complement 
mode with left edges al igned as shown. 

Figure 24-2: Complement Mode 

If you combine any of the draw modes with the INVERSVID flag, it will change alll bits to 0 bits and vice versa in 
a text or other RastPort writing operation before writing them into the destination area. 

/* ShowDrawModes 
Example to illustrate the different DrawModes. 
Insert this routine into the "wrapper" code at the end of the chapter. 

*/ 

BOOL example (struct Window *window) 
{ 

struct RastPort *rastPort = window->RPort: 
/* x and y will be used to position the text. d (the amount to move 

down to keep subsequent lines of text from overlapping) is 1 more 
than the height of the default font for this RastPort. 

*/ 
SHORT x window->BorderLeft; 
SHORT y = window->BorderTop + rastPort->TxBaseline; 
SHORT d = rastPort->TxHeight + I: 
static UBYTE mode, modes[] 

{ 

JAMl, JAM2, COMPLEMENT. 
) : 

static UBYTE *modeText[] = 
{ 
II This 
II This 
II This 
) : 

is 
is 
is 

JAMI DrawMode ", 
JAM2 DrawMode ", 
COMPLEMENT DrawMode II 

TITLE (window, "The various DrawModes"): 

/* Set the A pen color to one which will stand out from both the 
standard foreground and background Workbench colors. 

*/ 
SetAPen(rastPort, COLOR3): 
/* The B pen color will be the standard background color. */ 
SetBPen(rastPort, COLORO): 

Graphics: Text 401 



1* Fill the RastPort with a color other than the standard background color. *1 
SetRast(rastPort, COLOR1); 

1* Run through the three modes. y is incremented by d pixels for each line. *1 
for (mode=O; mode < 3; mode++, y+=d) 

( 
Move (rastPort, x, y); 1* Set the starting position. *1 
SetDrMd(rastPort, modeslmodeJ); 1* Set the draw mode. *1 
Text (rastPort, modeTextlmodeJ, strlen(modeTextlmodeJ)); 
1* cp x (current position for x) has increased by the length of the 

string (in pixels), cp y is unchanged. The text that is about to 
be rendered will begin-at this position. 

*1 
SetDrMd(rastPort, modeslmodeJ I INVERSVID); 1* "or" in INVERSVID. *1 
Text (rastPort, " and this is it in inverse. ", 28); 
) 

return(WAIT FOR CLOSE); 
) --

Effects of Specifying Font Style 

When you call OpenFontO, specifying certain style characteristics, the system searches the loaded fonts to find the 
closest match to the font you requested. If the remainder of the characteristics match what you have requested, but 
the style does not match, the text routines AskSoftStyleO and SetSoftStyleO create a font styled as you have 
requested by modifying the existing font (that is, modifying a normal font to italic or bold by modifying its 
characters). Because many fonts do not lend themselves to such modifications, it is always preferred that the font of 
the specific style be loaded for use. The system always tries to find the exact specified font before attempting to 
modify another to fit your request. 

If there is a font present in the system that matches your OpenFontO request both in name and size, but not in style, 
(as determined by looking at the font style field), you may use SetSoftStyleO to generate the selected style 
algorithmically as follows: 

NORMAL 

The font is used exactly as defined. 

NOTE 

A font that is designed to be italic, bold, etc. cannot have those attributes removed by 
SetSoftStyleO. 

UNDERLINED. 

An underline is generated one pixel below the baseline position. 

BOLD 

The character is binary or-ed with a copy of itself, shifted right by the bold shift attribute (tf BoldSmear) 
of the font (usually 1). -

ITALIC 

The character is given a slant to the right, starting from the bottom line, and shifting subsequent upward 
line positions to the right one bit position for every second count up from the bottom of the character. 

402 Graphics: Text 



EXTENDED 

This attribute cannot be set with SetSoftStyleO. See "Font Style" below. 

If you use a font that has the various style characteristics built in, rather than generated, the internal spacing and 
kerning tables tell the system how to leave the proper amount of space between characters if you are simply printing 
them one at a time. 

If you ask TextO to output the characters individually, TextO calculates character width and positioning based on 
the width and inter-character spacing that it finds in the font descriptor. After printing one or more characters, it 
automatically positions the drawing pen (cp_x) at the position it believes to be correct for the next output character. 
In some fonts, this may cause adjacent characters to overlap when printed individually. Moreover, overlap may 
occur when italic or bold is generated via SetSoftStyleO. 

There is a solution to this problem. You can build your output string of characters before calling TextO to output it 
TextO can handle character strings, correctly generating the desired style with correct inter-character spacing. 

To increase inter-character spacing, you can set a field called rp_TxSpacing in the RastPort. The spacing is 
specified in pixels. 

Using a Disk Font 

To use an existing disk font, you must open the diskfont library and then open a disk font. Refer to the "wrapper" 
program at the end of this chapter for an example of opening the diskfont library. . 

The code to open and use a font that is on disk is remarkably similar to that of a font already in memory. The reader 
is encouraged to try modifying the "ShowOpenFont" routine to make it use OpenDiskFontO to load the "sapphire" 
font (found on the Workbench disk) in sizes 14 and 19. This is as simple as replacing the information saved in the 
TextAttr structure and changing the OpenFontO calls to OpenDiskFontO calls. The "diskfont" library must be 
opened before calls to OpenDiskFontO can be made. The "wrapper" code used for the examples in this chapter 
does this for you. CloseFontO is used to close fonts opened with either OpenFontO or OpenDiskFontO. 

NOTE 

There is an important difference between disk-based and memory-resident font usage. A "process" can 
call either OpenFontO or OpenDiskFontO, while a "task" is limited to calling OpenFontO. Refer to 
the "task" section of the Exec chapter for more information on tasks and processes. 

USING FONTS IN OTHER DIRECTORIES 

OpenDiskFontO has a feature which makes it easy to access fonts in directories other than FONTS:. If the name in 
the TextAttr structure (which gets passed to OpenDiskFontO) is a full pathname, (e.g. 
Work:speciallaccounting!ont ot djO:PhunnyIPhontslquack!ont) then OpenDiskFontO will use that full pathname 
to access the font contents file. 

Graphics: Text 403 



Finding Out Which Fonts Are Available 

The function A vail FontsO fills in a memory area designated by you with a list of all of the fonts available to the 
system. A vailFontsO searches the AmigaDOS directory path currently assigned to FONTS: and locates all available 
fonts. If you haven't issued a DOS Assign command to change the FONTS: directory path. it defaults to the 
sys.fonts direCtory. 

The example code "FontParade" provides a list of the fonts you can use and shows how to find the appropriate 
items to put into the text attribute data structure for the call to OpenDiskFontO. 

1* FontParade 
Example to display all fonts available to the system. 
Insert these routines into the "wrapper" code at the end of the chapter. 

*1 

1* The buffer for concatenating text strings will be this big. *1 
#define FONTSTRINGSIZE (MAXFONTNAME + 40L) 
1* The buffer for the first attempt at AvaiIFonts() will be this big. *1 
#define AFH SIZE DEFAULT 400L 

1* Pointer to buffer for AvaiIFonts() information. *1 
struct AvailFontsHeader *afHeader = NULL; 
LONG afhSize = AFH SIZE DEFAULT; 
UBYTE *fontName = NULL,-*fontString = NULL; 1* String pointers. *1 

1* 

*1 

Allocate a buffer to hold information returned by AvaiIFonts(). 
Call AvaiIFonts(). If the buffer wasn't large enough, deallocate it, 
allocate a larger buffer and try again. Allocate memory for text strings. 
Return TRUE if completely successful, FALSE otherwise. 

BOOL getMem(VOID) 
( 
LONG needMore; 

1* AvaiIFonts() returns a value indicating the amount of memory it 
would need (above what you have given it) to successfully fulfill 
the request. If this value .is greater than zero, it is necessary 
to reallocate a larger chunk of memory and try again. 

*1 
do 

needMore = OL; 
afHeader = (struct AvailFontsHeader *)AllocMem(afhSize, MEMF_PUBLIC); 
if (afHeader) 

( 
needMore = 

AvailFonts«UBYTE *)afHeader, afhSize, AFF MEMORY AFF_DISK); 
if (needMore) 

( 

FreeMem(afHeader, afhSize); 
afhSize += needMore; 
} 

while (needMore); 

if (afHeader) 
{ 
fontString = (UBYTE *)AllocMem(FONTSTRINGSIZE, MEMF_PUBLIC); 
if (fontString) 

{ 

fontName = (UBYTE *)AllocMem(MAXFONTNAME, MEMF_PUBLIC); 

404 Graphics: Text 



if (fontName) 
return(TRUE); 

return(FALSE); 
} 

/* 
Free any memory allocated in getMem(). 

*/ 
VOID returnMem(VOID) 
( 
if (fontName) 

FreeMem(fontName, MAXFONTNAME); 
if (fontString) 

FreeMem(fontString, FONTSTRINGSIZE); 
if (afHeader) 

/* 

*/ 

FreeMem(afHeader, afhSize); 

Walk through the linked-list of AvailFont structures filled in by 
AvaiIFonts(). For each font, use SetSoftStyle() to set it to 
each of eight styles (normal, underlined, italic, bold and all 
logical permutations) in turn. Create a text string which is 
composed of the font name, size, and style and render it into 
the window in that particular size and style. 

BOOL example(struct Window *window) 
{ 
BOOL success, done = FALSE; 
SHORT right, left, bottom, xPos; 
SHORT style; 
UBYTE sizeString(5]; 
UWORD entry; 
struct RastPort *rPort; 
struct AvailFonts *aFonts; 
struct TextFont *tFont, *oldTextFont; 
struct TextAttr tAttr; 
struct IntuiMessage *intuiMessage; 

/* The eight different styles, in 'define form (from graphics/text.h). */ 
static ULONG styles( ] = 

{ 

FS NORMAL, FSF UNDERLINED, FSF ITALIC, FSF ITALIC I FSF UNDERLINED, 
FSF_BOLD, FSF_BOLD I FSF_UNDERLINED, FSF_BOLD I FSF_ITALIC, 
FSF_BOLD I FSF_ITALIC I FSF_UNDERLINED 
} ; 

/* The eight different styles, in descriptive text form. */ 
static UBYTE *descriptions( ] = 

{ 

"Normal", "Normal Underlined", "Italic", "Italic Underlined", 
"Bold", "Bold Underlined", "Bold Italic", "Bold Italic Underlinedn 

} ; 

/* Set window title to indicate activity. */ 
TITLE (window, "Scanning Fonts:"); 
if (success = getMem(» 

( 
TITLE (window, "FontParade"); 

rPort = window->RPort; /* Get the window's rastport. */ 
/* Save the original TextFont pointer. */ 
oldTextFont = rPort->Font; 
SetAPen(rPort, COLORl); /* Set the A pen color. */ 
SetDrMd(rPort, JAMl); /* Set the drawing mode. */ 

/* 
Calculate the amount of space to indent from the 

Graphics: Text 405 



*/ 

sides of the window, to keep the text from being hidden 
behind the borders. If this were not a GimmeZeroZero 
window, window->Width and window->Height would be used 
instead of window->GZZWidth and window->GZZHeight. 
Reverse-path fonts are rendered from right to left, 
and so must begin on the right side of the window. 

left = window->BorderLeft; 
right = window->GZZWidth - (SHORT)window->BorderRight; 
bottom = window->GZZHeight - (SHORT)window->BorderBottom; 

/* Skip over the header to the first of the AvailFont structures. */ 
aFonts = (struct AvailFonts *)&afHeader[l]; 

for (entry 
{ 

afHeader->afh_NumEntries; entry && !done; entry--, aFonts++) 

/* 

*/ 

It is possible that AvailFonts() will find two entries for a 
single font, one of ."af Type I" saying that the font is memory
resident, and the other-of lOaf Type 2" saying the font is disk-based. 
This happens because another process has previously called 
OpenDiskFont() requesting that font. 

The second part of the if-statement lets you tell the two apart if 
you are scanning the list for unique elements; it says "if it's in 
memory and it's also from disk, then don't list it because you'll find 
another entry in the table that says it is not in memory, but is on 
disk". 

if ( ! «aFonts->af Attr.ta Flags & FPF REMOVED) I I 
(aFonts->af Type & AFF MEMORY) && -

(aFonts=>af_Attr.ta_Flags & FPF_DISKFONT») 
{ 

/* 

*/ 

Copy the contents of the AvailFonts' TextAttr structure 
to tAttr. Modify this copy to allow for both ROMPONT and 
DISKFONT fonts (because both types are wanted). Then use 
tAttr to request a font with these attributes from 
OpenDiskFont(). An exact match will be found since all 
the attributes came from an existing font. 

strcpy(fontName, aFonts->af Attr.ta Name); 
tAttr.ta Name = fontName; - -
tAttr.ta-YSize aFonts->af Attr.ta YSize; 
tAttr.ta-Style = aFonts->af-Attr.ta-Style; 
tAttr.ta=Flags = aFonts->af=Attr.ta=Flags I 

(FPF_ROMPONT I FPF_DISKFONT); 

tFont = (struct TextFont *)OpenDiskFont(&tAttr); 

if (tFont) 
{ 

/* Make this font the RastPort's font. */ 
SetFont(rPort, tFont); 
/* Step through the eight styles, one at a time. */ 
for (style=O; style<8; style++) 

/* 

*/ 

{ 

The user may want to exit before the program has finished. 
The following code is a simple method of checking for a 
single class of message without putting the program to 
sleep with the Wait() call. It is not as multitasking
friendly as Wait(). Note that this routine does not check 
what class of message has arrived since only one class of 
message was asked for in the window's IDCMP field 
(CLOSEWINDOW). See the Intuition chapter for information 
on fully utilizing Intuition's IDCMP. 

/* If a message has arrived ••• */ 
intuiMessage = 

(struct IntuiMessage *)GetMsg(window->UserPort); 

406 Graphics: Text 



else 

if (intuiMessage) 
( 

/* reply to it, */ 
ReplyMsg«struct Message *)intuiMessage): 
done = TRUE: /* set the "done" flag and */ 
break: /* break out of the "for" loop. */ 

/* If a font already has certain attributes '(bold, 
italic, etc.) don't bother re-displaying it with 
those styles. Those attributes were evident 
when the font was displayed in its "normal" style. 

*/ 
if (styles[style] & tFont->tf_Style) 

continue: 

/* Create a string from the font's name, size and style. */ 
strcpy(fontString, " "): 

. strcat(fontString, tFont->tf Message.mn Node.ln Name): 
sprintf(sizeString, " %ld", tFont->tf YSize); -
strcat(fontString, sizeString); -
strcat(fontString, " point, ")i 
strcat(fontString, descriptions[style]); 
strcat(fontString, " "): 

/* Set the style. */ 
(VOID)SetSoftStyle(rPort, styles[style], -OL)i 

/* Set starting point for rendering. If font is 
reverse-path, start on the right side. 

*/ 
xPos = (tFont->tf Flags & FPF_REVPATH) ? right : left; 
Move (rPort, xPos,-

/* 

*/ 

bottom-(tFont->tf_YSize-tFont->tf_Baseline»; 

Erase any previous text by clearing the window's 
rastport to the background color. 

SetRast(rPort, COLORO); 

/* Render the text string. */ 
Text (rPort, fontString, (ULONG) strlen (fontString) ) ; 

/* Pause. */ 
Delay(lL * TICKS_PER SECOND): 
) 

/* Reset the RastPort's original font. */ 
SetFont(rPort, oldTextFont); 
CloseFont(tFont); 
) 

/* Alert the user to the low-memory condition. */ 
TITLE (window, "Not enough free memory."); 

/* Return any memory that was successfully allocated. */ 
returnMem() ; 

if (success) 
/* Close immediately if there was no error. */ 
return(DONT WAIT): 

else -
/* Wait for the user to read the error message. */ 
return(WAIT_FOR_CLOSE); 

Graphics: Text 407 



The text in "FontParade" was rendered without regard to its size. If the text being rendered happened to go beyond 
the edge of the window, it disappeared from view as it was clipped by the layers system. It is possible to determine 
the character advance width (in pixels) of a string rendered by TextO without actually rendering the text. This is 
useful in determining the largest font that can be used to render text into a space of known size. The call is 
TextLengthO; it takes the same arguments as the TextO call: a pointer to a RastPort, a pointer to a string, and the 
length of the string. It returns a SHORT which represents the change in ep_x that would take place if the text were 
to be rendered in the given RastPort in its default font. 

Some fonts have characters that intrinsically render outside of the "character box" for their font. With certain fonts, 
even algorithmically styled italic and bold characters may render outside the font's character box. In these cases, 
TextLengthO is insufficient for determining whether a text string can be rendered wholly within a given area. 

Contents of a Font Directory 

In a font directory, you will usually find two names for each font type. A typical pair of entries in the fonts directory 
might be: 

sapphire.font 
sapphire (dir) 

The file named sapphire/ont does not contain the actual font. It contains the description of the contents of that font 
family. The contents are described by a FontContentsHeader and one or more FontContents data structure 
entries. The FontContentsHeader structure is defined in librariesldis/ifont.h as: 

struct FontContentsHeader 
{ 

UWORD fch FileID; 1* FCH ID *1 
UWORD fch-NUmEntries; 1* the number of FontContents elements *1 
1* struct FontContents fch_FC[]; *1 
} ; 

where 

feh FileID 
is a numeric identifier for this file type. It is defined as OxOfOO. 

feh_NumEntries 
indicates how many entries of type FontContents follow this header. 

408 Graphics: Text 



The FontContents structure is defined as follows: 

struet FontContents 
{ 

} ; 

ehar fe FileName[MAXFONTPATH]; 
UWORD fe-YSize; 
UBYTE fe-Style; 
UBYTE fe=:Flags; 

where 

fc FileName 
- is the pathname that AmigaDOS must follow to find the actual diskfont descriptive header, along with the 

TextFont data structure of which this font is composed. In Amiga system software version 1.2 and 
earlier, this path is relative to FONTS:. In version 1.3 and later, it is relative to the directory containing the 
font contents (e.g. "ruby/om") file. 

fc_YSize, fc_Style, and fc_Flags 
correspond to their equivalents in the TextAttr data structure (ta_YSize, ta_Style, and ta_Flags). 

As an example, a typical entry in sapphire. font is: 

"sapphire/14" , 

14, 
00, 
60 (hex) 

a null-tenninated string, padded out with 
zeros for a length of MAXFONTPATH bytes, 
the value for fc_ YSize, 
the value for fc_Style, 
the value for fc_Flags. 

This entry indicates that the actual DiskFontHeader for the font to be loaded is in sappbire/14. This means that 
there must be a file named 14 in the directory sapphire which is a subdirectory of the directory containing 
sapphire/onts. 

Beginning with Amiga system software version 1.3, the infonnation in a FontContentsHeader structure can be 
easily generated programmatically with the NewFontContentsO function call. 

NewFontContentsO is called with two parameters: an AmigaDOS Lock on the directory where a font contents file 
and associated font directory are located, and a pointer to the name of a font contents file in that "Locked" 
directory. If successful, NewFontContentsO returns a pointer to a FontContentsHeader structure. If the font 
contents file could not be opened, or memory could not be allocated for the FontContentsHeader, 
NewFontContentsO returns a O. 

At some time after a successful call to NewFontContentsO, a call to DisposeFontContentsO must be made to 
return the resources which NewFontContentsO allocated from the system. 

DisposeFontContentsO is called with one parameter: a pointer to a FontContentsHeader structure. 

Both NewFontContentsO and DisposeFontContentsO are part of the diskfont library, which must be successfully 
opened with version number 34 before they can be called. 

Graphics: Text 409 



The Disk Font 

A disk font is constructed as a loadable, executable module. In this manner, AmigaDOS can be used to perform 
LoadSegmentO and UnloadSegmentO on it. AmigaOOS can therefore allocate memory for the font, and return the 
memory when the font is unloaded. The contents of the DiskFontHeader structure are described in the include-file 
libraries/disk/ont.h. The most significant item in this structure, the embedded TextFont structure, is described 
below in the topic "Defining a Font". 

Defining a Font 

The characteristics of a font are contained in a TextFont structure. The TextFont structure is specified in the 
include file named graphics/text.h. The following topics show the meaning of the items in a TextFont structure. 
Following the structure description is an example showing a four-character font, which is defined using this structure 
and can be linked into the system using AddFontO. Once a font has been added to the system font list with 
AddFontO it is available to any task that calls OpenFontO with a TextAttr request which is satisfied by the font's 
attributes. AddFontO is passed one argument, a pointer to a TextFont structure. The TextFont structure passed 
must be in public memory (specify MEMF _PUBLIC to AllocMemO). AddFontO has no return value. RemFontO 
will remove a font previously added with AddFontO, ensuring that access to it is restricted to those tasks that 
already have an active pointer to it; i.e. no new SetFontO requests for this font will be satisfied. RemFont takes one 
argument, a pointer to a TextFont structure. It has no return value. The memory used for the TextFont structure 
cannot be reclaimed until the font's tf_Accessors count has dropped to zero, indicating that there are no more users 
of this font. 

THE TEXT NODE 

The first item in the TextFont structure is a Node structure with which the system can link this font into the system 
TextFonts list. The name of the font is referenced using the In_Name pointer in the Node structure. 

FONT HEIGHT 

You specify the height in the tf _ YSize variable. All characters of the font must be defined using this number of 
lines of data even if they do not require that many lines to contain all font data. Variable-height fonts are not 
supported. 

410 Graphics: Text 



FONT STYLE 

You specify the style of the font by specifying certain constants in the TextFont tf_Style variable. The value of 
tf_Style is determined by the binary or-ing of the style constants, defined as: 

UNDERLINED 
BOLD 
ITALIC 
EXTENDED 

The font is underlined. 
The font is bold. 
The font is italic. 
The font is stretched out (width). 

In the font structure, these bits indicate style attributes as an intrinsic part of the font; that is, the font already has 
them and one can never take them away. A font that has none of these characteristics is considered "NORMAL". 

FONT FLAGS 

This variable provides additional information that tells the font routines how to create or access the characters. The 
tf _Flags variable is composed of the binary or-ing of the flag constants, defined as follows: 

FPF _ROMPONT 

The font is located in ROM. Do not not use this flag unless you are burning new system ROMs yourself. 

FPF _DISKFONT 

The font must be loaded from disk. 

FPF_REVPATH 

The font is designed to be rendered primarily from right to left (for example, Hebrew). 

NOTE 

The actual rendering direction is determined by the kern and space tables. 

FPF _PROPORTIONAL 

The characters in the font are not guaranteed to be tf_XSize wide (see "Font Width" below). 

FPF _DESIGNED 

This font was specifically designed to have the size and attributes it has. Choosing this font for its 
characteristics will generally yield better results than allowing the system to algorithmically modify 
another font to have those characteristics. 

FPF _REMOVED 

This font has been removed from the system, making it unavailable to other tasks. 

Graphics: Text 411 



FONT WIDTH 

The tf _ XSize variable specifies the nominal width of the font. 

FONT ACCESSORS 

Due to the Amiga's multitasking abilities, it is possible that more than one task will be accessing a character font. A 
variable in the font structure keeps track of how many accessors this font currently has. Whenever a call to 
OpenFontO or OpenDiskFontO is made, this variable is incremented for the font and later is decremented by 
CloseFontO. The font accessor value should never be reduced below zero. This accessor count should be initialized 
to zero before you first link a new font into the system, but it is managed by the system after the link is performed. 

See the description of the RemFontO call for information on purging a font from the system. 

CHARACTERS REPRESENTED BY TffiS FONT 

It is possible to create a font consisting of from 0 to 256 characters. Some fonts can be exceedingly large because of 
their design and the size of the characters. For this reason, the text system allows the design and loading of fonts 
that may consist of only a few of the characters. The variables tf _ LoChar and tf _ HiChar specify the ASCII 
numerical values for the characters represented in this font. 

In the example that is being built for this chapter, a font consisting of four playing card suits is being constructed. 
This font consists of only four items, one for each of the suits. Here is a fragment from the "suitsS" assembler code 
which appears in full later in this chapter: 

DC.B 
DC.B 

97 
100 

tf LoChar 
tCHiChar 

The range of 97 to 100 indicates that there are 4 characters represented in this font (tf_HiChar - tCLoChar + 1). 
As part of the character data, in addition to defining the included character numbers, you must also define a character 
representation to be used as the image of a character Dumber requested but not defined in this font. This character is 
placed at the end of the font definition. 

For this example, any character number outside the range of 97 to 100 (inclusive) would print this "not in this font" 
character. 

THE CHARACTER DATA 

The font structure includes a pointer to the character set data along with descriptions of how the data is packed into 
an array. The variables used are defined in graphicsltext.h; their usage is as follows: 

tf _ CharData 

This is a pointer to the memory location at which the font data begins. This is the bit-packed array of 
character information. 

412 Graphics: Text 



tf Modulo 

This is the row modulo for the font. It must be an even number of bytes. The font is organized with the 
bits for the top line of the first character directly adjacent to the bits for the top line of the second character 
and so on. 

For example. if the bit-packed character set needs 10 words of 16 bits each to hold the top line of all of the 
characters in the set, then the value of the modulo will be 20 (bytes). Twenty is the number which must be 
added to the pointer into the character matrix to go from the first line to the second line of a specific 
character. 

tf CharLoc 

This is a pointer to an array of paired values. The values are the bit offset into the bit-packed character 
array for this character, and the size of the charac~r in bits. Expressed in C language, this array of values 
can be expressed with a structure as: 

struct charDef 
{ 

WORD charOffset; 
WORD charBitWidth; 
} ; 

In the program definition, the array to which tf _ CharLoc points can be expressed as: 

/* Define an array of bit-packed placement and width information 
for four characters and one "not a character". 

*/ 
struct charDef suitDef[S); 

For all fonts, there must be one set of descriptors for each character defined in the character set. 

tf _ CharS pace 

This is a pointer to an array of words of proportional spacing information. It represents the advance for the 
character position from the starting position (after kerning, if applicable). 

For example. a narrow character may still be stored within a wide space (see the following figure). 

m·:·:··::· 
:.: . 
. ;/. 
::." 
:.:;: 

.:~ ·i': ,::' 

~ ....... ~ (Value = 5 for this example) Kern = 2 

Figure 24-3: CharSpace 

If this pointer is null. the nominal width for each character (tt XSize) is used. 

tf _ CharKern 
This is a pointer to an array of words of character kerning data. Kerning is the offset from the starting 
character position to the start of the bit data (see the following figure). If this pointer is null, kerning is 
zero. 

Graphics: Text 413 



•

x.:::.:: 

'. 

~ . 
. ,-

..... ;::'-::: 
· ..... .. (Value = 2 for this example) 

Figure 24-4: CharKern 

A COMPLETE SAMPLE FONT 

The sample font below pulls together all of the pieces from the above sections. It defines a font whose contents are 
the four suits from a set of playing cards: hearts, spades, diamonds, and clubs. 

The suits are defined as proportionally spaced to provide a complete example, even though each suit could as easily 
have been defined in a 14-wide-by-8-high matrix. There is an open-centered-square character, which is used if you 
ask for a character not defined in this font. 

* 
* A sparse (but complete) sample font. To use this font, do the following: 

* 
* 1. 
* 
* 
* 
* 
* 
* 
* 
* 
* 2. 
* 
* 
* 3. 

* 
* a. 

* 

Assemble this file (assumed to have been saved as "suitsS.asm"). 
For example, if you have the CAPE 680xO assembler, and you have 
assigned "include:" to the directory containing your include files, 
use: 

CAsm -a "suitsS.asm" -0 "suitsS.o" -i "include:" 

Link "suitsS.o". For example, if you have Lattice, use: 
BLink from "suitsS.o" to "suitsS" 

Create the sUbdirectory "Fonts:suits". 
Copy the file "suitsS" (created in step 1.) to "Fonts:suits/S". 

Create a font contents file for the font. You can do this 
by three methods: 

Run the program "Workbench1.3:System/FixFonts" which 
will create the file "Fonts:suits.font" automatically. 

* b. Use the NewFontContents() call in the diskfont library to 
* create a FontContentsHeader structure, which can be saved 
* in the Fonts: directory as "suits. font". This is essentially 
* what FixFonts does. 
* c. Create the file manually by following these directions: 
* 
* Create a file in the Fonts: directory named "suits.font" the 
* contents of which are as follows: 
* 
* The first word (two bytes) must contain the font header identifier, FCH 1D 
* FCH 10 is defined in "libraries/diskfont.i" and is currently OxOfOO. -
* 
* The next word contains the number of FontContents entries. There will 
* be only one font descriptor file in this sample font's directory, so the 
* value Ox0001 should be used. 
* 
* Follow this information with the hex values for the string "suits/S"; 
* the path AmigaOOS should follow to reach this font size. The path is 
* relative to "Fonts:"; "suits" is the directory in which AmigaDOS will find 
* this font's font descriptor files and "S" is a font descriptor file. 
* This' should be followed by enough null characters (OxOO) to pad the 

414 Graphics: Text 



* pathname to MAXFONTPATH bytes in length. MAXFONTPATH is defined in 
* "libraries/diskfont.i" and is currently 256 bytes. The string in this 
* example is 7 bytes long, therefore 249 bytes of padding are needed. 
* Note that the font pathname must have at least one null character after 
* it, making the maximum pathname length MAXFONTPATH-1. 
* * The next word contains the font YSize; in this case, Ox0008. 

* * The next byte contains the font Flags, in this case OxOO. 

* 
* The last byte contains the font characteristics, in this case Ox60. 
* This says it is a disk-based font (bit 1 set) and the font has been 
* removed (bit 7 set), saying that the ~ont is not currently resident. 
* 
* Summary of suits.font file: 
* 
* Name: fch FileID fch NumEntries fc FileName 
* Size: word word MAXFONTPATH bytes 
* Hex: Of 00 0001 73756974732F3800 
* ASCII: s u its / 8 \0 

* 

fc YSize fc_Flags fc_Style 
word byte byte 
0008 00 60 

* The correct length of a font file may be calculated with this formula: 
* length := «number of font contents entries) * (MAXFONTPATH+4» + 4. 
* In this case (one entry), this becomes (MAXFONTPATH + 8) or 264. 

* * To tryout this example font, do the following. 
* Start up the Notepad program or any other program which allows the 
* user to select fonts. Choose the "suits" font in size 8 and type "abcd". 
* This example font defines ASCII characters 'a' 'b' 'c' and 'd' only. 
* All other characters map to a rectangle, meaning "character unknown". 

INCLUDE 
INCLUDE 
INCLUDE 

"exec/types.i" 
"exec/nodes.i" 
"libraries/diskfont.i" 

* Provide an easy exit in case this file is "Run" instead of merely loaded. 

MOVEQ 
RTS 

1I-1,DO 

* The following five entries comprise a Node structure, used by the system 
* to link disk fonts into a list. See the definition of the "DiskFontHeader" 
* structure in the "libraries/diskfont.i" include file for more information. 

DC.L 0 In Succ 
DC.L 0 In:) red 
DC.B NT_FONT In_Type 
DC.B 0 In_Pri 
DC.L fontName In_Name 

DC.W DFH ID FileID 
DC.W 1 Revision 
DC.L 0 Segment 

* The next MAXFONTNAME bytes are a placeholder. The name of the 
* font contents file (e.g. "suits. font") will be copied here after this 
* font descriptor is LoadSeg-ed into memory. The Name field could have 
* been left blank, but inserting the font name and size (or style) allows 
* one to tell something about the font by using "Type OPT H" on the file. 

fontName: 
DC.B "suits8" Name 

* If your assembler needs an absolute value in place of the "length" 
* variable, simply count the number of characters in Name and use that. 

length EQU 
DCB.B 

*-fontName ; Assembler calculates Name's length. 
MAXFONTNAME-length,O ; Padding of null characters. 

* The rest of the information is a TextFont structure. 
* See the "graphics/text.i" include file for more inform~tion. 

Graphics: Text 415 



font: 
DC.L 
DC.L 
DC.B 
DC.B 
DC.L 
DC.L 
DC.W 
DC.W 
DC.B 
DC.B 
DC.W 
DC.W 

o 
o 
NT]ONT 
o 
fontName 
o 
o 
8 

In Succ 
In-Pred 
1 n::)ype 
In Pri 
In:::Name 
mn ReplyPort 
(Reserved for 1.4 system use.) 
tf YSize 

o tf:::Style 
FPF_DESIGNED!FPF_PROPORTIONAL!FPF_DISKFONT 
14 
6 

tf XSize 
tf Baseline 

* tf Baseline must be no greater than tf YSize-l, otherwise algorithmically
* generated styles (italic in particular) can corrupt system memory. 

DC.W 
DC.W 
DC.B 
DC.B 
DC.L 
DC.W 

DC.L 

DC.L 
DC.L 

1 
o 
97 
100 
fontData 
8 

fontLoc 

fontSpace 
fontKern 

tf BoldSmear 
tf Accessors 
tf-LoChar 
tf-HiChar 
tf-CharData 
tf-Modulo, no. of bytes to add to the 
data pointer to go from one row of 
a character to the next row of it. 
tf CharLoc, bit position in the font 
data at which the character begins. 
tf CharSpace 
tf:::CharKern 

* The four characters of this font define the four playing-card suit symbols. 
* The heart, club, diamond, and spade map to the lower-case ASCII characters 
* 'a', 'b', 'c', and 'd' respectively. The fifth entry in the table is the 
* character to be output when there is no entry defined in the character set 
* for the requested ASCII value. 

* 
* 
* 97 (a) 98 (b) 99 (c) 100 (d) 255 

* < X X X X 

* • @@@ ... @@@. ••... @ •••.. ••• @ ••• •••• @@@ .••• @@@@@@@@@@@@ 

* @@@@@.@@@@@ ••. @@@@@ ••• ..@@@ •• ••• @@@@@ ••• @@ •••••••• @@ 

* • @@@@@@@@@. .@@@@@@@@@ • .@@@@@. .@@ .. @ .• @@. @@ •••.•••• @@ 

* .. @@@@@@@ .. @@@@@@@@@@@ @@@@@@@ @@@@@@@@@@@ @@ ••••..•• @@ 
* .•. @@@@@ ..• .@@@.@.@@@. .@@@@@. .@@ •. @ .. @@. @@ •••••... @@ 

* ••.. @@@ .•.. •.... @ •••.. ..@@@ •• •..•• @ ..... @@ •••.••.• @@ 
* • • .. . @ ..... . •. @@@@@ ••• •.• @ .•• •.. @@@@@ ..• @@@@@@@@@@@@ 
* 

* Font da~a is bit-packed edge to edge to save space. 

fontData: 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

$07lCO,$08040,$070FF,$OFOOO 
$OFBE3,$OEOEO,$OF8CO,$03000 
$07FCF,$OF9F3,$026CO,$03000 
$03F9F,$OFFFF,$OFFCO,$03000 
$01FOE,$OB9F3,$026CO,$03000 
$00EOO,$080EO,$020CO,$03000 
$00403,$OE040,$OF8FF,$OFOOO 
$00000,$00000,$00000,$00000 
$00000,$00000,$00000,$00000 

* The fontLoc information is used to "unpack" the fontData. 

> 

* Each pair of words specifies how the characters are bit-packed. For 
* example, the first character starts at bit position OxOOOO, and is OxOOOB 
* (11) bits wide. The second character starts at bit position OxOOOB and 
* is OxOOOB bits wide, and so on. This tells the font handler how to unpack 
* the bits from the array. 

fontLoc: 
DC.L $00000000B,$0000BOOOB,$000160007,$0001DOOOB,$00028000C 

* fontSpace array: Use a space this wide to contain this character when it 

416 Graphics: Text 



* is printed. For reverse-path fonts these values would be small or negative. 

fontSpace: 
DC.W 000012,000012,000008,000012,000013 

* fontKern array: place a space this wide after the corresponding character 
* to separate it from the following character. For reverse-path fonts these 
* values would be large negative numbers, approximately the width of the 
* characters. 

fontKern: 
DC.W 000001,000001,000001,000001,000001 

fontEnd: 
END 

Wrapper code 

The following code is meant to be used with the 'C' programming examples in this chapter. It contains routines 
needed by many of the examples, but is printed only once to save space. Insert a section of example code into the 
space indicated in the wrapper program, compile, link and run it 

/* Wrapper 

*/ 

Support routines needed by Text chapter examples. 
Insert routine(s) where indicated below, then compile, link, and run. 
For Lattice, compile and link with: LC -b1 -cfist -L -v -y wrapper.c 

#include <exec/types.h> 
#include <exec/memory.h> 
#include <exec/ports.h> 
#include <exec/nodes.h> 
#include <graphics/text.h> 
#include <graphics/rastport.h> 
#include <graphics/gfxbase.h> 
#include <intuition/intuitionbase.h> 
#include <libraries/dos.h> 
#include <libraries/diskfont.h> 
#include <proto/all.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 

/* Library pointers. 
Pointers are initialized to NULL so that the Close ••• () 
and Free ... () routines can tell whether the pointers were used. 

*/ 

struct GfxBase *GfxBase = NULL; 
struct IntuitionBase *IntuitionBase NULL; 
struct Library *DiskfontBase = NULL; 

/* The Workbench pen color registers. */ 
IIdefine COLORO 0 
#define COLOR1 1 
#define COLOR2 2 
#define COLOR3 3 

/* do/don't wait for the user to click the close gadget before exiting. */ 
#define WAIT_FOR_CLOSE FALSE 
#define DONT_WAIT TRUE 

/* 

Graphics: Text 417 



Set the titlebar of the specified Window (w) to the specified string (s). 
*/ 
#define TITLE (w, s) (SetWindowTitles «w), (UBYTE *) (s), (UBYTE *) -0) ) 

/* 

*/ 

/* 

*/ 

/* 

*/ 

INSERT EXAMPLE CODE AFTER HERE 

INSERT EXAMPLE CODE BEFORE HERE 

Open the graphics, intuition, and diskfont libraries. 
Return TRUE if completely successful, FALSE otherwise. 

BOOL openLibs(VOID) 
{ 

GfxBase = (struct GfxBase *)OpenLibrary("graphics.library", 33L); 
if (GfxBase) 

{ 

IntuitionBase 
(struct IntuitionBase ". JpenLibrary("intuition.library", 33L); 

if (IntuitionBase) 
{ 

DiskfontBase = OpenLibrary("diskfont.library", 33L); 
if (DiskfontBase) 

return(TRUE); 

return(FALSE); 
} 

/* 

*/ 

Open a half-height, full-width window on the Workbench screen. 
Return a Window pointer if successful, NULL otherwise. 

struct Window *doWindow(VOID) 
{ 

static struct NewWindow nw = 
{ 

0, 0, 0, 0, -1, -1, CLOSEWINDOW, 
WINDOWCLOSE IWINDOWDEPTH I WINDOWDRAG I SMART_REFRESH I ACTIVAT EIGIMMEZEROZERO, 
NULL, NULL, NULL, NULL, NULL, -0, -0, -0, -0, WBENCHSCREEN 
} ; 

struct Window *window; 

nw.Height = GfxBase->NormalDisplayRows / 2; 
nw.Width = GfxBase->NormalDisplayColumns; 
window = OpenWindow(&nw); 
return (window) ; 
} 

/* 

*/ 

If requested, wait for the user to click on the Window's close gadget. 
Reply to any messages which may have accumulated, and close the Window. 

VOID undoWindow(struct Window *window, BOOL immediate) 
{ 

struct IntuiMessage *intuiMessage; 
if (window) 

{ 

418 Graphics: Text 



/* 

*/ 

if (! immediate) 
(VOID) Wait (l«window->UserPort->mp SigBit); 

while (intuiMessage = (struct IntuiMessage *)GetMsg(window->UserPort» 
ReplyMsg «struct Message *) intuiMessage) ; 

CloseWindow(window); 
} 

Close any libraries opened in openLibs(). 

VOID closeLibs(VOID) 
( 
if (DiskfontBase) 

CloseLibrary(DiskfontBase); 
if (IntuitionBase) 

CloseLibrary«struct Library *)IntuitionBase); 
if (GfxBase) 

/* 

*/ 

CloseLibrary«struct Library *)GfxBase); 

Open the libraries, open a window, and call the example routine. 
Returns one of several values to the calling environment: 
RETURN OK if successful, RETURN ERROR if unable to open a window, 
and RETURN_FAIL if unable to open the needed libraries. 

VOID main(int argc, char *argv[l) 
{ 

int exitVal = RETURN OK; 
BOOL immediate = TRUE; 
struct Window *window = NULL; 

if (openLibs () ) 
{ 

else 

if (window = doWindow(» 
immediate = example(window); 

else 
exitVal = RETURN ERROR; 

undoWindow(window, immediate); 
} 

exitVal = RETURN FAIL; 
closeLibs(); -
exit(exitVal); 
} 

Graphics: Text 419 



Chapter 25 

Graphics: Sprites, Bobs and Animation 

This chapter describes how to use the functions provided by the graphics library to manipulate the various Graphic 
Elements. It is divided into six sections: 

An overview of the animation system, including fundamental terms and structures 

• Explanation of Simple (hardware) Sprites and an example showing their usage 

• Explanation of VSprites and an example showing their usage 

• Explanation of Bobs and an example showing their usage 

• Discussion of topics that apply to all Graphic Elements (GELs) such as collision detection and user structure 
extension. 

• Discussion of animation, using AnimComps and AnimObs and an example showing their usage 

Graphics: Sprites, Bobs and Animation 421 



Introduction - Some Terms 

Before going into details, a quick glossary: PlayField is a tenn that encompasses the View, ViewPort, and 
RastPort structures. It refers to the background area that Sprites appear over, and Bobs appear in. PlayFields can 
be created and controlled at several levels. Please see the "Graphics Primitives" and "Layers" chapters for details 
on lower level PlayField control. The "Intuition" section should be examined for details on screens and windows, 
which give higher level access to PlayFields. The graphics animation functions provide several levels of control 
over the manipulation of Graphic Elements, or GELs. GELs are objects that can be moved easily around the 
display. The GELs system is compatible with all PlayField modes, including Dual-PlayField. GELs are defined by 
structures found in graphics/gels.h. 

The GEL types are (in order of increasing complexity): 

VSprites for Virtual Sprites 

Bobs for Blitter Objects 

AnimComps for Animation Components 

not really GELs, but described here: 

AnimObs for Animation Objects, are used to group AnimComps. 

Simple Sprites 

Simple Sprites (also known as Hardware Sprites) are not part of the animation system (they are not GELs). If 
Simple Sprites and GELs are used in the same display, the GELs system must be told specifically which Simple 
Sprites to avoid. Simple Sprites are described in this chapter because they are the basis of YSprites. 

The Amiga hardware has the ability to handle up to eight Sprite objects. Each Sprite is produced by one of the eight 
hardware Sprite DMA channels. They are 16-bits wide and arbitrarily tall. The Amiga software offers a Choice of 
how to use these hardware elements. After a Sprite DMA channel has displayed the last line of a Sprite, the system 
can reuse the channel for a different Sprite lower on the screen. This is how YSprites are implemented. 

VSprites 

The Virtual Sprite is the most elemental structure in the GEL system. It contains just a bit more infonnation than is 
needed to define a Simple Sprite. If the VSprite structure turns out to be a true YSprite, the system temporarily 
assigns each VSprite to a Simple Sprite, as needed. This makes it appear to application code that it has a virtually 
unlimited supply of YSprites. Another function of the VSprite structure is to serve as the root of the more complex 
GEL types. 

When the system is deciding what a given root VSprite structure really is, it does some simple tests: 

422 Graphics: Sprites, Bobs and Animation 



If the base VSprite structure has the VSPRITE flag set in its Flags field, the system knows this GEL is a 
true VSprite, and will convert it to a Simple Sprite to display it. If, however, the VSPRITE flag is not set, 
the system knows that this is not a Sprite based GEL, it is a Blitter based GEL. 

It then looks at the VSprite's VSBob pointer to find the Bob part of this GEL. If the Bob does not have 
the BOBISCOMP flag set, the system knows that this GEL is just a basic Bob, and uses the Blitter to 
display it. 

If the BOBISCOMP flag is set, the system knows to look at the Bob's BobComp pointer to find the 
AnimComp and AnimOb structures, which contain the variables needed for sequenced animation. 

Types Of Animation 

Using the Amiga system tools, two fundamental kinds of image animation can be performed: Sprite animation and 
PlayField animation. 

Sprite Animation - VSprites 

True VSprites are implemented by the system as Simple Sprites. So, rules that apply to Simple Sprites apply to 
true VSprites too. Sprites are not rendered into the underlying BitMap, and so do not affect any bits in the BitMap 
they appear to be over. Because they are hardware based, they are positioned in the display absolutely, and are not 
affected by the movement of screens. The starting position of a Sprite must not occur before line -20, because of 
certain hardware DMA time constraints. Sprites are also quick. 

PlayField Animation - Bobs and AnimComps 

The BUtter is special Amiga hardware that is used to move data quickly and efficiently, optionally performing 
logical operations as it does. Bobs (and, therefore, AnimComps) are rendered using this device. II). PlayField 
animation, the underlying PlayField (the RastPort's BitMap, actually) is modified. The background BitMap where 
the GEL was may need to be restored, the BitMap where it's going may need to be saved, and the GEL must be 
rendered into the BitMap. Doing this repeatedly, perhaps while changing the image or the entire Bob, creates an 
animation effect. The system uses pointers to link the VSprite and Bob structures, "extending" the VSprite 
structure to include Bobs. 

VSprites vs. Bobs 

If you are going to manage the movement and sequencing of GELS yourself, you need to decide if VSprites or Bobs 
best suit your needs. If you've got simple requirements or lots of coding time, you may even opt to use only Simple 
Sprites, and control them yourself. If you elect to have the system manage your animations, AnimComps must be 
used, and they are Bobs at heart. 

Some fundamental differences between Sprites and Bobs: 

• Sprite images and coordinates are low resolution sized pixels, even on a high resolution display. Bob 
images and coordinates are the same resolution as the PlayField that they're rendered into. 

Graphics: Sprites, Bobs and Animation 423 



Sprites have a maximum width of 16 (low resolution) pixels. Attached Sprites have a maximum width of 
32 pixels. Sprites may be displayed any width up to these maximums. Bobs can be any width. Display 
time creates a practical limit for Bob sizes. Large Bobs can have a strong impact on performance, due to 
the number of Blits required to move a Bob. 

The height of either Sprites or Bobs can be as tall as the display. 

Sprites have a maximum of three colors, or fifteen if they're attached. Because the system uses the Copper 
to control Sprite colors on the fly, the colors are not necessarily the same as those in the background 
PlayField. Bobs can use any or all of the colors in the background playfield. Limiting factors include 
playfield resolution and display time. Bobs with more colors take longer to display. 

Sprites are positioned using absolute display coordinates, and don't move with screens. Bobs follow 
screen movement. 

In general: Sprites offer speed, Bobs offer flexibility. 

AnimComps 

The AnimComp (for Animation Component) is a structure that has all the variables needed to implement simple 
sequenced animation. The system uses pointers to link the Bob and AnimComp structures, "extending" the Bob 
structure to include AnimComps. Part of the AnimComp structure includes pointers to other AnimComps. When 
many AnimComps are built, these pointers must be arranged so that the AnimComps form a list. Once so set up, the 
system will cycle through this list to achieve unattended animation, displaying each AnimComp in turn. 

AnimObs 

The AnimOb (for Animation Object) is a structure that is used to provide an offset for one AnimComp or many 
AnimComps. For example; our AnimOb consists of two AnimComps, one that looks like a planet and another 
containing a sequence of AnimComps that describe orbiting moons. As the AnimOb moves the planet across our 
display, the moons travel along with it, orbiting the planet the entire time. If the x, y pair in the AnimOb is 
modified, the system automatically manages the movement of all the associated AnimComps. If they are to be 
moved separately, the planet AnimComp and the moon sequence must each have their own AnimOb. 

The GELs System 

All GELs have a VSprite structure at their core. The system keeps track of all the GELs that it will display (the 
active GELs) by using a standard list structure to link their core VSprites. This list is accessed via GelsInfo, which 
is associated with the RastPort. The Gelslnfo structure is defined in the file graphics/rastport.h. 

When AddGel( ) is called to introduce a new GEL to the system, the GEL is linked into the GelsInfo list. The new 
GEL is added immediately ahead of the first existing GEL whose y, x value is greater than or equal to that of the 
new GEL, always trying to keep the list sorted. 

As GELs are moved about the screen, their y, x values are constantly changing. SortGList() re-sorts this list by the 
y, x values. 

Although this is a list of VSprite structures, bear in mind that some or all may really be Bobs or AnimComps. 

424 Graphics: Sprites, Bobs and Animation 



The basic set up of the GelsInfo structure requires three important fields: sprRsrvd, geIHead and gelTail. 

sprRsrvd tells the system which Hardware Sprites not to use when managing true VSprites. 

geIHead and gelTaii are VSprite structures that are used to manage the list of gels. They are never displayed. 
To activate or deactivate a GEL, a system call is made to add it to or delete it from this list. 

Other fields must be set up to provide for collision detection, color optimization, and other features. A complete 
example for setting up the GelsInfo structure is given below. 

The following figure is a visualization of the various GEL configurations. 

VSprite Bob AnimComp 

BobComp 

Anl.mComp 

Figure 25-1: GEL Structure Layout 

Preparing To Use Graphics Animation 

Because the animation functions have been designed to interact with a PlayField, one must be provided. This means 
that the system requires that access be provided to View, ViewPort, and RastPort structures. These structures may 
be allocated and initialized in one of several ways. For the bulk of the examples provided, the Intuition library is 
used for this purpose. 

Initializing the GEL System 

To initialize the animation system, call the system function InitGels(). It takes the form: 

Graphics: Sprites, Bobs and Animation 425 



struct VSprite *vsHead; 
struct VSprite *vsTail; 
struct GelsInfo *gInfo; 

InitGels(vsHead, vsTail, gInfo); 

where 

vsHead is a pointer to the VSprite structure to be used as the GEL list head. 

vsTaii is a pointer to the VSprite structure to be used as the GEL list tail. 

gInfo is a pointer to the GelsInfo structure to be initialized. 

InitGels( ) forms these structures into a linked list of GELs that is empty except for these two dummy elements. It 
gives the head VSprite the maximum negative y and x positions and the tail VSprite the maximum positive y and x 
positions. This is to aid the system in keeping the list sorted by y. x values. so GELs that are closer to the top and 
left of the display are nearer the head of the list. The memory space that the VSprites and Gelsinfo structures take 
up must already have been allocated. This can be done either by declaring them statically or explicitly allocating 
memory for them. 

Here is a sample function that sets up the GelsInfo structure through explicit allocation. This is a fragment of a 
larger file called "animtools.c". See the complete animation example at the end of this chapter for a complete 
listing of this file: 

1*-------------------------------------------------------------
** set up the gels system. After this call is made you can use 
** vsprites, bobs, anim comps, and anim obs. 
** 
** note that this links the GelsInfo structure into the rast port, 
** and calls InitGels( ). 
** 
** all resources are properly freed on failure. 
** 
** It uses information in your RastPort structure to establish 
** boundary collision defaults at the outer edges of the raster. 
** 
** This function sets up for everything - collision detection and all. 
** 
** You must already have run LoadView before setupGelSys is called. 
*1 
struct GelsInfo *setupGelSys(struct RastPort *rPort, BYTE reserved) 
{ 
struct GelsInfo *gInfo; 
struct VSprite *vsHead; 
struct VSprite *vsTail; 

if (NULL != (gInfo = 
(struct GelsInfo *)AllocMem«LONG)sizeof(struct GelsInfo), MEMF_CLEAR))) 
{ 
if (NULL != (gInfo->nextLine = 

(WORD *)AllocMem«LONG)sizeof(WORD) * 8, MEMF_CLEAR))) 
{ 

if (NULL 1- (gInfo->lastColor = 
(WORD **)AllocMem«LONG)sizeof(LONG) * 8, MEMF_CLEAR))) 
{ 

if (NULL != (gInfo->collHandler = 
(struct collTable *)AllocMem«LONG)sizeof(struct collTable), 

MEMF_CLEAR)) ) 
{ 

if (NULL != (vsHead = (struct VSprite *)AllocMem( 
(LONG)sizeof(struct VSprite), MEMF CLEAR))) 
{ -
if (NULL != (vsTail = (struct VSprite *)AllocMem( 

(LONG)sizeof(struct VSprite), MEMF_CLEAR))) 

426 Graphics: Sprites. Bobs and Animation 



gInfo->sprRsrvd = reserved; 
gInfo->leftmost = 0; 
gInfo->rightmost 

(rPort->BitMap->BytesPerRow « 3) - 1; 
gInfo->topmost = 0; 
gInfo->bottommost = rPort->BitMap->Rows - 1; 

rPort->Gelslnfo = gInfo; 

InitGels(vsHead, vsTail, gInfo); 

return(gInfo); 
) 

FreeMem(vsHead, (LONG)sizeof(*vsHead)); 
) 

FreeMem(gInfo->collHandler, (LONG)sizeof(struct collTable)); 
) 

FreeMem (gInfo-> lastColor, (LONG) sizeof (LONG) * 8); 
) 

FreeMem(gInfo->nextLine, (LONG)sizeof(WORD) * 8); 
) 

FreeMem(gInfo, (LONG) sizeof (*gInfo)); 
) 

return(NULL); 
) 

Once the Gelslnfo structure has been allocated and initialized, Gels can be added to the system. To remove and free 
the GelsInfo structure, use code like the following. This is a fragment of a larger file called "animtools.c". See the 
complete animation example at the end of this chapter for a complete listing of this file: 

/*-----------------_.-------------------------------------------
** free all of the stuff allocated by setupGelSys( ). 
** only call this function if setupGelSys( ) returned successfully. 
** the Gelslnfo structure is the one returned by setupGelSys( ). 
** 
** It also unlinks the Gelslnfo from the RastPort. 
*/ 
VOID cleanupGelSys(struct Gelslnfo *gInfo, struct RastPort *rPort) 
( 
rPort->Gelslnfo = NULL; 

FreeMem(gInfo->collHandler, (LONG)sizeof(struct collTable)); 
FreeMem(gInfo->lastColor, (LONG) sizeof (LONG) * 8); 
FreeMem(gInfo->nextLine, (LONG)sizeof(WORD) * 8); 
FreeMem(gInfo->gelHead, (LONG)sizeof(struct VSprite)); 
FreeMem(gInfo->gelTail, (LONG)sizeof(struct VSprite)); 
FreeMem(gInfo, (LONG) sizeof (*gInfo)); 
) 

Using Simple (Hardware) Sprites 

First the structure is described, then the system functions that manipulate and display Simple Sprites will be 
discussed. 

NOTE 

See the Amiga Hardware Reference Manual for a more complete description of Simple Sprites, 
including information on attached Sprites. 

Graphics: Sprites, Bobs and Animation 427 



This SimpleSprite structure is found in graphics/sprite.h. It has fields that indicate the height and position of the 
Sprite and a number that indicates its associated hardware Sprite. 

Simple Sprites are always 16 bits wide, which is why there is no width member in the Sprite structure. As 
mentioned in the introduction, Sprites always appear as low resolution pixels, and their position is specified in the 
same way. If the Sprite is being moved across a high-resolution display in single pixel increments, it will appear to 
move two pixels for each increment. In low-resolution mode, single pixel movement will be seen. Similarly, in an 
interlaced display, the y direction motions are in two line increments. The same image of the Sprite is placed into 
both even and odd fields of the interlaced display, so the Sprite will appear to be the same size in any display mode. 

The upper left comer of the ViewPort area has coordinates (0,0). The motion of the Sprite is relative to this 
position. 

The Sprite pairs 0/1, 2/3, 4/5, and 6n share color registers. Please see VSprite Advanced Topics. later in this 
chapter, for precautions to take if Simple Sprites and VSprites are used at the same time. 

The following figure shows which color registers are used by Sprites. 

0 E3 1 

• 
• • 

16 
17 Color 1 
18 Color 2 Sprites 0 and 1 
19 Color 3 
20 
21 Color 1 
22 Color 2 Sprites 2 and 3 
23 Color 3 
24 
25 Color 1 
26 Color 2 Sprites 4 and 5 
27 Color 3 
28 
29 Color 1 
30 Color 2 Sprites 6 and 7 
31 Color 3 

Figure 25-2: Sprite Color Registers 

Sprites do not have exclusive use of the color registers. If the ViewPort is 5 bit-planes deep, all 32 of the system 
color registers will still be used by the PlayField display hardware. 

NOTE 

Color zero for all Sprites is always a "transparent" color, and the colors in registers 16,20,24, and 28 
are not used by Sprites. These colors will be seen only if they are rendered into a PlayField. For further 
information, see the Amiga Hardware Reference Manual. 

If there are two ViewPorts with different color sets on the same display, a Sprite will switch colors when it is moved 
across their boundary. For example, Sprite 0 and 1 will appear in colors 17-19 of whatever ViewPort they happen to 
be over. This is because the system jams all the ViewPort's colors into the display hardware at the top of each 
ViewPort. 

428 Graphics: Sprites, Bobs and Animation 



To use Simple Sprites, fill in their data structures and use the following functions: 

GetSprite( ) attempts to allocate a Sprite for exclusive use 

CbangeSprite( ) 
modifies the Sprite's appearance 

MoveSprite() changes the Sprite's position 

FreeSpriteO returns the Sprite to the virtual Sprite machine 

These functions are described in detail in the following paragraphs. 

To use these Simple Sprite functions or the VSprite functions, the SPRITE flag must have been set in the 
NewScreen structure for OpenScreen(). If Intuition is not being used, this flag must be specified in the View and 
ViewPort data structures before MakeViewPort() is called. 

Controlling Sprite DMA 

The graphics macros ON_SPRITE and OFF_SPRITE can be used to control Sprite DMA. OFF_SPRITE 
prevents the system from displaying any hardware Sprites, whether Simple Sprites or VSprites. ON_SPRITE 
restores the Sprite display. 

NOTE 

The Intuition pointer is a Sprite. Thus, if OFF_SPRITE is used, Intuition's pointer will disappear too. 
Use care when calling OFF_SPRITE. The macro turns off sprite DMA, so that no new sprite data is 
fetched. Whatever sprite data was being displayed at this point is displayed for EVERY line on the 
screen. This may lead to a vertical color bar if a Sprite is being displayed when OFF_SPRITE is called. 

Accessing A Hardware Sprite 

GetSprite( ) is used to gain access to a new hardware Sprite. GetSprite() allocates a hardware Sprite for exclusive 
use. The VSprite allocator can no longer assign this Sprite. Please see the Includes & Autodocs Manual for details 
on parameters and error returns. The call is made like this: 

struct SimpleSprite *sprite; 
SHORT number, sprite_num; 

if (-1 == (sprite_num = GetSprite(sprite, number))) 
return_code = RETURN_WARN; 1* did not get the sprite *1 

The inputs to the GetSprite( ) function are: 

Sprite A pointer containing the address of a SimpleSprite structure. 

number The number (0-7) of the hardware Sprite to be accessed. If number is -I, the system gets the first 
available Sprite. If number is -I, a returned value of -1 means that all Sprites are allocated. 

A value of 0-7 is returned if the request was granted, specifying which Sprite was allocated. A returned value of -1 
means that this Sprite is already allocated. 

Graphics: Sprites, Bobs and Animation 429 



Changing The Appearance Of A Simple Sprite 

The ChangeSprite( ) function can completely alter the appearance of a Simple Sprite. ChangeSprite() substitutes 
a new data content for that currently used to display a Simple Sprite. It is called by the following sequence: 

struct ViewPort *vp; 
struct SimpleSprite *sprite; 
APTR newdata; 

ChangeSprite(vp, sprite, newdata); 

The inputs to this function are: 

vp A pointer to the ViewPort for this Sprite or 0 if this Sprite is relative only to the current View. 

sprite A pointer to a SimpleSprite structure. 

newdata A pointer to a data structure containing the new data to be used. The data must reside in chip 
QdEMF_CfUP) memory. 

The structure for the new data is shown below, and can be found in the Includes & Autodocs Manual. 

struct sprite image 
{ 
1* position and control information for this Sprite *1 
UWORD posctl(2); 
1* two words per line of Sprite height, first of the two words contains 

* MSB for color selection, second word contains LSB (colors 0,1,2,3 
* from allowable color register selection set). Color '0' for any 
* Sprite pixel makes it transparent. 

*1 
UWORD data [height) (2); 1* actual Sprite image *1 

1* reserved, initialize to 0, 0 *1 
UWORD reserved(2); 
}; 

Moving A Simple Sprite 

MoveSprite( ) repositions a Simple Sprite. After this function is called, the Simple Sprite is moved to a new 
position relative to the upper left corner of the ViewPort. It is called as follows: 

struct ViewPort *vp; 
struct SimpleSprite *sprite; 
SHORT x, y; 

MoveSprite(vp, sprite, x, y); 

The inputs to MoveSprite( ) are as follows: 

vp A pointer to the ViewPort with which this Sprite interacts or 0 if this Sprite's position is 
relative only to the current View. 

430 Graphics: Sprites, Bobs and Animation 



sprite A pointer to a SimpleSprite structure 

x,y Pixel position to which a Sprite is to be moved. 

Relinquishing A Simple Sprite 

The FreeSprite( ) function returns an allocated Sprite to the Virtual Sprite machine. The virtual Sprite machine can 
now reuse this Sprite to allocate Virtual Sprites. The syntax of this function is 

SHORT sprite_number; 

FreeSprite(sprite_number); 

where sprite_number is the number (0-7) of the Sprite to be returned to the system. 

NOTE 

Sprites must be freed if allocated using GetSprite(). If they are not freed when the task ends, the 
system will have no way of reallocating those Sprites until the system is rebooted. 

Complete Sprite Example 

The following example demonstrates how to move a Simple Sprite. 

/* ssprite.c 190ct89 
** 
** lattice c 5.04 
** lc -bl -cfist -v -y ssprite.c 
** blink FROM LIB:c.o ssprite.o LIB LIB:lc.lib LIB:amiga.lib TO ssprite 
*/ 
iinclude <exec/types.h> 
iinclude <graphics/gfx.h> 
iinclude <graphics/gfxbase.h> 
iinclude <graphics/gfxmacros.h> 
iinclude <graphics/sprite.h> 
'include <hardware/custom.h> 
iinclude <hardware/dmabits.h> 
iinclude <libraries/dos.h> 

'include <stdlib.h> 
iinclude <proto/all.h> 

struct GfxBase *GfxBase = NULL; 
extern struct Custom far custom 

/* real boring sprite data */ 
UWORD chip sprite datal 1 = 

{ -
0, 0, /* position control */ 
Oxffff, OxOOOO, /* image data line I, color I */ 
Oxffff, OxOOOO, /* image data line 2, color 1 */ 
OxOOOO, Oxffff, /* image data line 3, color 2 */ 
OxOOOO, Oxffff, /* image data line 4, color 2 */ 
OxOOOO, OxOOOO, /* image data line 5, transparent 
OxOOOO, Oxffff, /* image data line 6, color 2 */ 
OxOOOO, Oxffff, /* image data line 7, color 2 */ 
Oxffff, Oxffff, /* image data line 8, color 3 */ 
Oxffff, Oxffff, /* image data line 9, color 3 */ 
0, 0 /* reserved, must init to 0 o */ 
} ; 

*/ 

Graphics: Sprites, Bobs and Animation 431 



VOID main(int argc, char **argv) 
{ 
struct SimpleSprite 
struct ViewPort 

sprite; 
*viewport; 

SHORT sprite num; 
SHORT delta move; 
SHORT ktr1;
SHORT ktr2; 
SHORT color_reg; 

int return_code; 

if (NULL == (GfxBase = (struct GfxBase *) OpenLibrary ("graphics • library" , 33L))) 
return code RETURN_FAIL; 

else -
{ 
1* opened library, need a viewport to do a sprite 
** in real life you use the viewport of the screen that you open 
** for your application. 
*1 
viewport = GfxBase->ActiView->ViewPort 

if (-1 == (sprite_num = GetSprite(&sprite, 2))) 
return_code RETURN_WARN; 

else 
{ 

1* got a sprite. 
** calculate the correct base color register number and 
** set up the color registers. 
*1 
color_reg = 16 + «sprite_num & Ox06) « 1); 
SetRGB4(viewport, (long)color reg + 1, 12, 3, 8); 
SetRGB4 (viewport, (long) color-reg + 2, 13, 13, 13); 
SetRGB4 (viewport, (long) color=reg + 3, 4, 4, 15); 

sprite.x = 0; 
sprite.y = 0; 
sprite.height = 9; 

1* initialize position and size info *1 
1* to match that shown in sprite_data *1 
1* so system knows layout of data later *1 

1* install sprite data and move sprite to start position. *1 
ChangeSprite(NULL, &sprite, sprite data); 
MoveSprite(NULL, &sprite, 30, 0); -

1* move the sprite to and fro *1 
for ( ktr1 = 0, delta move = 1; 

ktr1 < 6; -
ktr1++, delta_move -delta_move) 

for ( ktr2 = 0; ktr2 < 185; ktr2++) 
{ 

MoveSprite (NULL, &sprite, (LONG) (sprite.x + delta_move), 
(LONG) (sprite.y + delta_move)); 

WaitTOF(); 1* one move per video frame *1 
if (ktr2 == 80) 

OFF SPRITE; 
if (ktr2 == 100) 

ON_SPRITE 

1* NOTE: if you turn off the sprite at the wrong time 
** (when it is being displayed), the sprite will appear as 
** a vertical bar on the screen. To really get rid of the 
** sprite, you must OFF_SPRITE while it is not displayed. 
** this is hard in a multi-tasking system (the solution is 
** not addressed in this program) • 
*1 
ON_SPRITE ; 1* just to be sure *1 
FreeSprite«LONG)sprite num); 
} -

432 Graphics: Sprites, Bobs and Animation 



CloseLibrary«struct Library *)GfxBase); 
} 

exit(return_code); 
} 

True VSprites 

The following paragraphs describe how to set up the VSprite structure so that it represents a true VSprite. True 
VSprites are managed by the system, which converts them to Simple Sprites and displays them. The restrictions 
imposed by hardware Sprites on VSprites are overcome by Bobs. Later sections describe how a VSprite structure 
must be set up for Bobs and AnimComps. 

VSprite Setup 

Before the system is told of the VSprite's existence, space for the structure must be allocated and set up to correctly 
represent something the system recognizes as a VSprite. The importance of giving correct and complete structures 
to the system cannot be overstressed; because speed is of the essence, no structure cohesiveness or validity checking 
is done. The result of handing the system a bogus structure is usually a fireworks display, followed by a system 
failure. 

The system software provides a way to detect collisions between VSprites and other on-screen objects. There is also 
a method of extending the VSprite structure so that it incorporates user defined variables. These subjects are 
applicable to all GELs, and are explained in the "Common GEL Topics" sub-section below. 

SPECIFICATION OF VSPRITE STRUCTURE 

Assuming that the "c" programming language is being used, there are two primary ways to allocate and fill in 
space for VSprites. They can be statically declared, or a memory allocation function can be called, and they can be 
filled in programmatically. The method used is entirely up to you, as long as they're complete when the system sees 
them. 

The declaration to statically set up a VSprite structure is listed below. The VSprite structure definition was taken 
from the Includes & Autodocs Manual; please see that book for a fully commented definition: 

1* VSprite structure definition */ 
struct VSprite 

{ 

struct VSprite 
struct VSprite 
struct VSprite 
struct VSprite 
WORD 
WORD 
WORD 
WORD 
WORD 
WORD 
WORD 
WORD 
WORD 
WORD 
WORD 

*NextVSprite; 
*PrevVSprite; 
*DrawPath; 
*ClearPath; 
OldY, OldX; 
Flags; 
Y, X; 
Height; 
Width; 
Depth; 
MeMask; 
HitMask; 

*ImageData; 
*BorderLine; 
*CollMask; 

Graphics: Sprites, Bobs and Animation 433 



WORD 
struct Bob 
BYTE 
BYTE 
VUserStuff 
} ; 

*SprColors; 
*VSBob; 
PlanePick; 
PlaneOnOfi; 
VUserExt; 

1* VSprite static data definition. 
** must set the following for TRUE VSprites: 
** VSPRITE flag. 
** Width to 1. 
** Depth to 2. 
** VSBob to NULL. 
*1 
struct VSprite myVSprite 

{ 

NULL, NULL, NULL, NULL, 0, 0, VSPRITE, 0, 0, 5, 1, 2, 0, 0, 
&myImage, 0, 0, &mySpriteColors, NULL, Ox3, 0, 0 
} ; 

This static allocation gives the required VSprite structure, but does not allocate or set up collision masks for the 
VSprite. 

Here is a function to dynamically allocate and initialize a VSprite structure. This is a fragment of a larger file called 
"animtools.c". See the complete animation example at the end of this chapter for a complete listing of this file: 

1* define a new structure for makeVSprite( ). 
** This can be initialized and passed to makeVSprite( ) to create 
** a new VSprite. 
** 
** data structure to hold information for a new vsprite. 
** note that: 
** NEWVSPRITE myNVS; 
** is equivalent to: 
** struct newVSprite myNVS; 
*1 
typedef struct newVSprite 

{ 
WORD 
WORD 
SHORT 
SHORT 
SHORT 
SHORT 
SHORT 
SHORT 
} NEWVSPRITE; 

*nvs_Image; 
*nvs ColorSet; 

nvs:=WordWidth; 
nvs_LineHeight; 
nvs_ImageDepth; 
nvs_X; 
nvs Y; 
nvs:=Flags; 

1* 
1* 
1* 
1* 
1* 
1* 
/* 
1* 

image data for the vsprite 
color array for the vsprite 
width in words 
height in lines 
depth of the image 
initial x position 
initial y position 
vsprite flags 

/*-------~-----------------------------------------------------
** create a VSprite from the information given in nVSprite. 
** use freeVSprite( ) to free this gel. 
*1 
struct VSprite *makeVSprite(NEWVSPRITE *nVSprite) 
{ 
struct VSprite *vsprite; 
LONG line size; 
LONG plane_size; 

line size = (LONG)sizeof(WORD) * nVSprite->nvs WordWidth; 
plane_size = line_size * nVSprite->nvs_LineHeight; 

if (NULL != (vsprite = 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*/ 

(struct VSprite *)AllocMem«LONG)sizeof(struct VSprite), MEMF_CLEAR))) 
( 
if (NULL != (vsprite->BorderLine = 

(WORD *)AllocMem(line size, MEMF CHIP))) 
{ --
if (NULL != (vsprite->CollMask = 

(WORD *)AllocMem(plane_size, MEMF_CHIP))) 

434 Graphics: Sprites, Bobs and Animation 



vsprite->Y 
vsprite->X 
vsprite->Flags 
vsprite->Width 
vsprite->Depth 
vsprite->Height 
vsprite->MeMask 
vsprite->HitMask 
vsprite->ImageData 
vsprite->SprColors 
vsprite->PlanePick 
vsprite->PlaneOnOff 

InitMasks(vsprite); 
return(vsprite); 
} 

nVSprite->nvs_Y; 
nVSprite->nvs X; 
nVSprite->nvs-Flags; 
nVSprite->nvs=WordWidth; 
nVSprite->nvs ImageDepth; 
nVSprite->nvs=LineHeight; 
1; 
1; 
nVSprite->nvs Image; 
nVSprite->nvs-ColorSet; 
OxOO; -
OxOO; 

FreeMem(vsprite->BorderLine, line_size); 
} 

FreeMem (vsprite, (LONG) sizeof (*vsprite) ) ; 
} 

return(NULL); 
} 

To free a YSprite that has been allocated with the above function, use the function below. This is a fragment of a 
larger file called "animtools.c". See the complete animation example at the end of this chapter for a complete 
listing of this file: 

/*-------------------------------------------------------------
** free the data created by makeVSprite( ) 
** 
** assumes images deallocated elsewhere. 
*/ 
VOID freeVSprite(struct VSprite *vsprite) 
( 
LONG line size; 
LONG plane_size; 

line size = (LONG)sizeof(WORD) * vsprite->Width; 
plane_size = line_size * vsprite->Height; 

FreeMem(vsprite->BorderLine, line size); 
FreeMem(vsprite->CollMask, plane_size); 

FreeMem(vsprite, (LONG)sizeof(*vsprite»; 
} 

The following paragraphs fill in and discuss each member in turn. 

NOTE 

The VSprite structure does not need to reside in CHIP memory. Also the use of MEMF_cLEAR lets 
one rely on the structure members being pre-set to NULL or 0, saving set-up code, though the examples 
given here will be explicit. . 

RESERVED VSPRITE MEMBERS 

These VSprite structure members are reserved for system use: 

NextVSprite and PrevVSprite These are used as links in the GelsInfo list. 

Graphics: Sprites, Bobs and Animation 435 



DrawPath and ClearPath 

OldY and OldX 

The values can be set like this: 

myVSprite.NextVSprite = NULL; 
myVSprite.PrevVSprite = NULL; 
myVSprite.DrawPath = NULL; 
myVSprite.ClearPath = NULL; 
myVSprite.OldY = 0; 
myVSprite.OldX = 0; 

USING VSPRITE FLAGS 

These are used for Bobs, not true YSprites. 

Previous position holder, the system uses these for double buffered Bobs, 
but application programs can read them too. 

The Flags member of the VSprite structure is both read and written by the system. Some bits are used by the 
application to inform the system; others are used by the system to indicate things to the application. The only bits 
that are used by true YSprites are: 

YSPRITE This may be set to indicate to the system that it should treat the structure as a true YSprite, 
not part of a Bob. This affects the interpretation of the data layout and the use of various 
system variables. 

YSOVERFLOW The system sets this bit in the true YSprites that it is unable to display. This happens 
when there are too many in the same scan line, and the system has run out of Simple 
Sprites to assign. It indicates that this YSprite has not been displayed. If no Sprites are 
reserved, this means that more than eight Sprites touch one scan line. This bit will not be 
set for Bobs, and should not be changed by the application. 

GELGONE If the system has set GELGONE bit in the Flags member, then the GEL associated with 
this YSprite is not on the display at all, it is entirely outside the GEL boundaries. This 
area is defined by the Gelslnfo members - topmost, bottommost, leftmost, and 
rightmost, defined in graphicslrastport.h. 

On the basis of that information, the application may decide that the object need no longer 
be part of the GEL list and may decide to remove it to speed up the consideration of other 
objects. Use RemVSprite() (or RemBob(), if it's a Bob) to do this. This bit should not 
be changed by the application. 

The value may be set like this: 

myVSprite.Flags = VSPRITE; 

VSPRITE POSITION 

To control the position of a YSprite, the y and x variables in the VSprite structure are used. These specify where the 
upper left comer of the YSprite will be, relative to the upper left comer of the drawing area it appears over. So if 
YSprites are used under Intuition and within a screen, they will be positioned relative to the upper left-hand comer 
of the screen. In a 320 by 200 screen, a y value of 0 puts the Sprite at the top of that display, a y value of (200 -
Sprite height) puts the Sprite at the bottom. And an x value of 0 puts the Sprite at the left of that display, an x value 
of (320 - Sprite width) puts the Sprite at the right. Values of less than (0,0) or greater than (200, 320) may be used 

436 Graphics: Sprites, Bobs and Animation 



to move the VSprite partially or entirely off the screen, if desired. See the "Graphics Primitives" chapter for more 
information on display coordinates and "Normal" display size. See the Hardware Reference Manual for more 
information on hardware sprites. 

NOTE 

It is important that the starting position of true VSprites is not less than -20 in the y direction, which is 
the start of the active display area for Sprites. Also, if they are moved too far to the left, true VSprites 
may not have enough DMA time to be displayed. 

The values may be set like this to put it in the upper-left: 

myVSprite. Y = 0; 
myVSprite.X = 0; 

VSPRITE IMAGE SIZE 

A true VSprite is always one word (16 pixels) wide and may be any number of lines high. It can be made to appear 
thinner by making some pixels transparent. Like Simple Sprites, VSprite pixels are always the size of a pixel in 
low-resolution mode (320x200); regardless of the resolution the display is set to. To specify how many lines make 
up the VSprite image, the VSprite structure member, Height, is used. VSprites always have a Depth of two, 
allowing for three colors. The values may be set like this: 

myVSprite.Width = 1; 
myVSprite.Height = 5; 
myVSprite.Depth = 2; 

/* ALWAYS 1 for true VSprites. */ 
/* The example height. */ 
/* ALWAYS 2 for true VSprites. */ 

VSPRITE MEMBERS FOR COLLISION DETECTION 

The following members are all used for collision detection. To set up for no collision detection, zero them: 

myVSprite.HitMask = 0; 
myVSprite.MeMask = 0; 
myVSprite.BorderLine = 0; 
myVSprite.CollMask = 0; 

The VUserExt member is for user extension of the VSprite structure. To ignore it for now, set it to zero too: 

myVSprite.VUserExt = 0; 

These are all explained in the "Common GEL Topics" sub-section below. 

The VSBob member is not used for true VSprites. It is used for the more complex GELs, and is explained in the 
next sub-section. For use with VSprites: 

myVSprite.VSBob = NULL; 

VSPRITE IMAGEDATA 

The ImageData pointer must be initialized with the address of the first word of the image data array. The image 
data array must be in chip memory. It takes two sequential 16-bit words to define each line of a true VSprite. This 
means that the data area containing the VSprite image is always Height x 2 (= 10 in the example case) words long. 

Graphics: Sprites, Bobs and Animation 437 



A VSprite image is defined just like a real hardware Sprite. 

The combination of bits in corresponding locations in the two data words that define each line select the color for 
that pixel. The first of the pair of words supplies the low-order bit of the color selector for that pixel; the second 
word supplies the high-order bit. 

These binary values select colors as follows: 

00 - selects "transparent" 
01 - selects the first of three VSprite colors 
10 - selects the second VSprite color 
11 - selects the third VSprite color 

In those areas where the combination of bits yields a value of 0, the VSprite is transparent. The background, all 
Bobs and AnimComps, and any VSprite whose priority is lower than this VSprite will show through in transparent 
sections. For example: 

(& VSprite-> ImageData) 
(&VSprite->ImageData+ 1) 

1010 0000 0000 0000 
0110 0000 0000 0000 

Reading from left to right, the combinations of these two sequential data words form the binary values of 01, 10, 11, 
and then all OOs. This VSprite's first pixel will be color 1, the next color 2, the third color 3. The rest will be 
tmnsparent, making this VSprite appear to be three pixels wide. Thus, a three-color image, with some transparent 
areas, can be formed from a data set like the following sample: 

VSprite Data 

mem 1111111111111111 Defines top line - colors selected 
mem+l 1111111111111111 3333 3333 3333 3333 

mem+2 0011110000111100 
mem+3 00 11 0000 0000 1100 0033110000113300 

mem+4 0000 1100 0011 0000 
mem+5 0000 1111 1111 0000 0000 3322 2233 0000 

mem+6 0000 0010 0100 0000 
mem+7 0000 0011 11 00 0000 0000 0032 2300 0000 

mem+8 0000 0001 1000 0000 Defines last line -
mem+9 0000 0001 1000 0000 0000 0003 3000 0000 

The VSprite Height for this sample image is 5. 

SPECIFYING THE COLORS OF A VSPRITE 

The system software provides a great deal of versatility in the choice of colors for Virtual Sprites. Each VSprite has 
its own set of three colors, pointed to by SprCoiors, which the system jams into the display's copper list as needed. 

438 Graphics: Sprites, Bobs and Animation 



SprColors points to the first of three 16-bit values. The first value represents the color used for the VSprite bits that 
select color 1, the second value is color 2, and the third value is color 3. When the system assigns a hardware Sprite 
to carry the VSprite's image, it jams these color values into the Copper list (the intermediate Copper list, NOT the 
color table), so that the View's colors will be correct for this Sprite at the time the Sprite is displayed. It doesn't jam 
the original palette's colors back after the VSprite is done. If there is another VSprite later, that VSprite's colors 
will get jammed; if there is not another VSprite, the colors will remain the same until the next ViewPort's colors get 
loaded. 

If the SprColors pointer is set to NULL, that VSprite does not generate a color-change instruction stream for the 
Copper. Instead, the VSprite appears drawn in whatever color set that hardware Sprite happens to have in it already. 

Since the registers are initially loaded with the colors from the ViewPort's ColorMap, if all VSprites have NULL 
SprColors, they will appear in the ViewPort's colors. 

To continue our example, a set of colors can be declared with the statement: 

WORD mySpriteColors[] = { OxOOOO, OxOOfO, OxOfOO }i 

and set the VSprite colors with the statement: 

myVSprite.SprColors = mySpriteColorSi 

Please see "Advanced Topics" below, for a much more detailed description. 

ADDING A VSPRITE 

Once a true VSprite has been initialized, the obvious next step is to give it to the system by adding it to the GEL list 
A typical system call for this purpose follows: 

struct VSprite myVSpritei 
struct RastPort myRastPorti 

AddVSprite(&myVSprite, &myRastPort)i 

where myVSprite is the fully initialized VSprite structure and myRastPort is the RastPort with which it is to be 
associated. Please see the Includes & Autodocs Manual for much more detailed description of this, and all the 
following functions. 

REMOVING A VSPRITE 

To remove a VSprite from the list of controlled objects, use the system function Rem VSprite(). This function takes 
the following form: 

struct VSprite myVSpritei 

RemVSprite(&myVSprite)i 

where &myVSprite is a pointer to the VSprite to be removed from the GEL list. Don't try to RemVSprite() a 
VSprite that has not been added to the system with AddVSprite( ). 

Graphics: Sprites, Bobs and Animation 439 



CHANGING VSPRITES 

Once the VSprite has been added to the GEL list and is in the display, some of its characteristics can be changed 
dynamically by: 

• Changing y, x to a new VSprite position 

Changing ImageOata to point to a new VSprite image 

Changing SprColors to point to a new VSprite color set 

Study the next two sections to find out how to reserve hardware Sprites for use outside the VSprite system and how 
to assign the VSprites. 

VSPRITE ADVANCED TOPICS 

VSPRITE.MACHINE 

This section describes advanced topics pertaining to VSprites. It contains details about reserving hardware Sprites 
for use outside of the VSprite system, information about hOw VSprites are assigned, and more information about 
VSprite colors. 

Reserving Hardware Sprites 

To prevent the VSprite system from using specific hardware Sprites, set the sprRsrvd member of the GelsInfo 
structure. The pointer to the GelsInfo structure is contained in the RastPort structure. If the contents of this 8-bit 
value are zero, then all of the hardware Sprites may be used by the VSprite system. If any of the bits is a 1, the 
Sprite corresponding to that bit will not be utilized by VSprites. 

NOTE 

Reserving sprites increases the likelihood of the system not being able to display a VSprite 
(VSOVERFLOW). 

See the next section, "How VSprites are Assigned," for further details on this topic. 

To reserve Sprite zero only, set sprRsrvd to OxOl; 
to reserve Sprite one only, set sprRsrvd to Ox02; 
Etc. 

440 Graphics: Sprites, Bobs and Animation 



An application program would typically include the following kinds of statements: 

struct RastPort myRastPort; /* the View structure is defined */ 

myRastPort.Gelslnfo->sprRsrvd = Ox03; /* reserve 0 and 1 */ 

If a hardware Sprite is reserved, the system will not consider that hardware Sprite when it makes YSprite 
assignments. Remember, hardware Sprite pairs share color register sets. If a hardware Sprite is reserved, its mate 
should probably be reserved too, otherwise the reserved Sprite's colors will change as the unreserved mate is 
assigned different YSprites. . 

For example, it is common practice to reserve Sprites 0 and I, so that the Intuition pointer (Sprite 0) is left alone. 

The GfxBase structure may be examined to find which Sprites are already in use. This may, at your option, impact 
what Sprites you reserve. If Intuition is running, Sprite 0 will already be in use as its pointer. 

The reserved Sprite status is accessible as 

current reserved = GfxBase->SpriteReserved; 

The next section presents a few trouble-shooting techniques for YSprite assignment. 

How VSprites Are Assigned 

Although YSprites are Sprites managed for you, some underlying limitations are still felt, and the system may run 
out of Sprites. 

Here are some reasons that the YSprite system can appear to have problems, and some suggestions on how to avoid 
them. There are 8 real Sprite DMA channels. 

As the system goes through the GEL list during DrawGList( ), whenever it finds a true YSprite, it goes through the 
following procedure. If there is a Simple Sprite available (after the reserved Sprites and preceeding YSprites are 
accounted for), copper instructions are added that will load the Sprite hardware with this YSprite's data at the right 
point on the screen. It may need to add a Copper instruction sequence to load the display's colors associated with 
the Sprite as well. 

The system will run out of hardware Sprites if it is asked to display more than eight YSprites on one scan line. This 
limit goes down to four when the YSprites have different SprColor pointers. During the time that there is a conflict, 
the YSprites that could not be put into Simple Sprites will disappear. They will reappear when (as the YSprites are 
moved about the screen) circumstances permit. 

One can alleviate these problems by taking some precautions: 

Minimize the number of YSprites to appear on a single horizontal line. 

If colors for some Virtual Sprites are the same, make sure that the pointer for each of the YSprite 
structures for these Virtual Sprites points to the same memory location, rather than to a duplicate set of 
colors elsewhere in memory. The system will know to map these into Sprite pairs. 

If a YSprite's SprColors are set to NULL, the YSprite will appear in the ViewPort's ColorMap colors. If SprColors 
points to a color set, the system will jam SprColors into the display hardware (via the Copper list), effectively 
overriding those ColorMap registers. The values in the ColorMap are not overwritten, but anything in the 
background display that used to appear in the ColorMap colors will appear in SprColors colors. 

Graphics: Sprites, Bobs and Animation 441 



The system will display a VSprite in anyone of a set of four different possible color groupings as indicated in the 
Simple Sprite sub-section above, if SprColors is NULL. 

How VSprite and PlayField Colors Interact 

At the start of each display, the system loads the colors from the ViewPort's ColorTable into the display"s hardware 
registers, so whatever is rendered into the BitMap is displayed correctly. But if the VSprite system is used, and the 
colors are specified (via SprColors) for each VSprite, the SprColors will be loaded by the system into the display 
hardware, as needed. The system does this by generating Copper instructions that will jam the colors into the 
hardware at specific moments in the display cycle. Any BitMap rendering, including Bobs which share colors with 
VSprites, may change colors constantly as the video display beam progresses down the screen. 

This color changing can be avoided by taking one of the following precautions: 

Use a four bit plane play field, which only allows the lower 16 colors to be rendered into the BitMap (and 
allows hi-res). 

If a 32-color playfield display is being used, avoid rendering in colors 17-19,21-23,25-27, and 29-32, 
which are colors affected by the VSprite system. 

• Specify the VSprite SprColors pointer as a value of NULL to avoid changing the contents of any of the 
hardware Sprite color registers. This may cause the VSprites to change colors depending on their 
positions relative to each other, as described in the previous section. 

GETTING THE VSPRITE LIST IN ORDER 

When the system has displayed the last line of a VSprite, it is able to reassign the hardware Sprite to another VSprite 
located at a lower position on the screen. The system allocates hardware Sprites in the order in which it encounters 
the VSprites in the list. Therefore, the list of VSprites must be sorted before the system can assign the use of the 
hardware Sprites correctly. 

The function SortGList( ) must be used to get the GELs in the correct order before the system is asked to display 
them. This sorting step is essential! It should be done before calling DrawGList( ), whenever a GEL has changed 
position. This function is called as follows: 

struct RastPort myRastPorti 

SortGList(&myRastPort)i 

where &myRastPort is a pointer to the RastPort structure containing the GelsInfo. 

NOTE 

There may be a GEL list in more than one RastPort. All of them must be initialized, sorted and 
displayed. Since there may be many RastPorts in any display, care must be taken to use only a single 
RastPort for any given gel. 

442 Graphics: Sprites, Bobs and Animation 



DISPLAYING THE VSPRITES 

The next few sections explain how to display the VSprites. The following system functions are used: 

DrawGList( ) to draw the elements into the current RastPort 

MrgCop( ) to install the VSprites into the display 

LoadView( ) to ask the system to display the new View 

WaitTOF() to synchronize the functions with the display 

Turning on the Display 

Before a display can be viewed on the screen, the system direct memory access must be enabled for both the 
hardware Sprites and the PlayField display. To enable the display of both PlayField and VSprites, use the system 
macro calls: 

ON_DISPLAY; 
ON_SPRITE; 

These do not need to be used if you are using the Intuition library to manage your display. 

Drawing the Graphics Elements 

The system function called DrawGList( ) looks through the list of controlled GELS. It prepares necessary 
instructions and memory areas to display the data according to requirements. This function is called as follows: 

struct RastPort myRastPort; 
struct ViewPort myViewPort; 

DrawGList(&myRastPort, &myViewPort); 

where 

&myRastPort is a pointer to the RastPort 

&myViewPort is a pointer to the ViewPort 

Because the system links VSprites to a View, the use of a RastPort is not significant for them. However, 
DrawGList( ) is used for Bobs as well as VSprites, so it is required that the pointer to the RastPort be passed to the 
function. DrawGList() actually draws Bobs into that RastPort. 

Once DrawGList( ) has prepared the necessary instructions and memory areas to display the data, the VSprites are 
installed into the display with MrgCop( ). 

Graphics: Sprites, Bobs and Animation 443 



Merging VSprite Instructions 

Remember that the call to DrawGList( ) did not actually draw the VSprites. It simply provided a new set of 
instructions that the system uses to assign the VSprite images to real hardware Sprites, based on their positions. The 
View structure already has a set of instructions that specifies how to construct the display area. It includes pointers 
to the set of VSprite instructions that was made by the call to DrawGList(). To install the current VSprites into the 
display area, the function MrgCop( ) is called to merge together all of the display-type instructions in the View 
structure. This function is called as follows: 

struct View *viewi 

MrgCop(view)i 

where view is a pointer to the View structure whose Copper instructions are to be merged 

Loading the New View 

Now that the display instructions include the definition of the VSprites, the system may be used to display this 
newly configured View. This is done with the following system function: 

struct View *viewi 

LoadView(view)i 

where view is a pointer to the View that contains the pointer to the Copper instruction list 

The Copper instruction lists are double-buffered, so this instruction does not actually take effect until the next 
display field occurs. This avoids the possibility of some function trying to update the Copper instruction list while 
the Copper is trying to use it to create the display. 

Synchronizing with the Display 

To synchronize application functions with the display, call the system function WaitTOF(). Although the 
application functions may be capable of generating more than 60 complete display fields per second, the system 
itself is limited to 60 displays per second. Therefore, after generating a complete display, a wait may be used until 
the next display is ready to be shown on the screen. WaitTOF() holds your task until the vertical-blanking interval 
(blank area at the top of the screen) has begun. At that time, the system has retrieved the current Copper instruction 
list and is ready to allow generation of a new list. 

The call to the vertical-blanking synchronization function takes the following form: 

WaitTOF ( ) i 

444 Graphics: Sprites, Bobs and Animation 



Complete VSprite Example 

This function requires animtools.c, animtools.h, and animtools_proto.h. These files are defined at the end of this 
chapter in the complete animation example. 

/* vsprite.c 190ctS9 
** 
** lattice c 5.04 
** lc -b1 -cfist -v -y vsprite.c 
** blink FROM LIB:c.o vsprite.o /animtools/animtools.o LIB LIB:lc.lib TO vsprite 
*/ 
.include <exec/types.h> 
.include <intuition/intuition.h> 
.include <graphics/gels.h> 
.include <graphics/collide.h> 
.include <exec/memory.h> 
.include <libraries/dos.h> 

.include <proto/all.h> 

.include <stdlib.h> 

.include "/animtools/animtools.h" 

.include "/animtools/animtools_proto.h" 

VOID borderCheck(struct VSprite *hitVSprite, LONG borderflags); 
VOID process window(struct Window *win, struct VSprite *MyVSprite); 
VOID do VSprite(struct Window *win); 
VOID vspriteDrawGList(struct Window *win); 

struct GfxBase *GfxBase; /* pointer to Graphics library */ 
struct IntuitionBase *IntuitionBase; /* pointer to Intuition library */ 

int return_code; 

/* number of lines in the vsprite */ 
.define GEL_SIZE 4 

/* vsprite data - there are two sets that are alternated between. 
** note that this data is always displayed as low resolution. 
*/ 
WORD chip vsprite datal[2 * GEL SIZE] 

( Ox7ffe, OxSijff, Ox7c3e, ois03f, Ox7c3e, OxS03f, Ox7ffe, Ox80ff, I; 

WORD chip vsprite data2[2 * GEL SIZE] 
( Ox7ffe, Oxff01, Ox7c3e, Oifc01, Ox7c3e, OxfcOl, Ox7ffe, OxffOl, I; 

WORD mySpriteAltColors[] = 
( OxOOOf, OxOfOO, OxOffO I; 

WORD mySpriteColors[] 
( OxOOOO, OxOOfO, OxOfOO I; 

/* information for the new vsprite */ 
NEWVSPRITE myNewVSprite = 

( 
vsprite_data2, /* image data 
mySpriteColors, /* sprite color array 
I, /* word width (must be 1 
GEL_SIZE, /* line height 
2, /* image depth (must be 2 
160, 100, /* x, y position 
VSPRITE, /* flags (VSPRITE == true 
) ; 

/* information for the new window */ 

*/ 
*/ 

for true vsprite) */ 
*/ 

for true vsprite) */ 
*/ 

vsprite) */ 

Graphics: Sprites, Bobs and Animation 445 



struct NewWindow myNewWindow = 
( 
80, 20, 400, 150, -1, -1, CLOSEWINDOW 1 INTUITICKS, 
ACTIVATE 1 WINDOWCLOSE 1 WINDOWDEPTH 1 RMBTRAP, 
NULL, NULL, "VSprite", NULL, NULL, 0, 0, 0, 0, WBENCHSCREEN 

) ; 

1*-------------------------------------------------------------
** 
*1 
VOID vspriteDrawGList(struct Window *win} 
( 
SortGList(win->RPort); 
DrawGList(win->RPort, ViewPortAddress(win»; 
1* These calls are not Intuition compatible ... 
** MrgCop(view); 
** LoadView(view); 
** use RethinkDisplay( ) in Intuition environment. 
*1 
RethinkDisplay( }; 
1* WaitTOF( }; done by RethinkDisplay *1 
} 

1*-------------------------------------------------------------
** collision function for vsprite hitting border. 
** note that when the collision is vsprite to vsprite (or bob 
** to bob, bob to AnimOb, etc), then the parameters are both 
** pointers to a vsprite: 
** 
** VOID collCheck(struct VSprite *vsp1,struct VSprite *vsp2) 
*1 
VOID 
( 

borderCheck(struct VSprite *hitVSprite, LONG borderflags} 

if (borderflags & RIGHTHIT) 
( 
hitVSprite->SprColors 
hitVSprite->VUserExt 
) 

if (border flags & LEFTHIT) 
( 
hitVSprite->SprColors 
hitVSprite->VUserExt 
) 

mySpriteAltColors; 
-40; 

mySpriteColors; 
20; 

1*-------------------------------------------------------------
** process window and dynamically change vsprite: 
** - get messages. 
** - go away on CLOSEWINDOW. 
** - update and redisplay vsprite on INTUITICKS. 
** - wait for more messages. 
*1 
VOID process_window(struct Window *win, struct VSprite *myVSprite} 
( 
struct IntuiMessage *msg; 

FOREVER 
( 
Wait(lL « win->UserPort->mp_SigBit); 

while (NULL 1= (msg = (struct IntuiMessage *)GetMsg(win->UserPort)}} 
( 
1* only CLOSEWINDOW and INTUITICKS are active *1 
if (msg->Class == CLOSEWINDOW) 

( 
ReplyMsg«struct Message *)msg); 
return; 
} 

1* must be an INTUITICKS: change x and y values on the fly. 
** note offset by window left and top edge--sprite relative 

** to the screen, not window. 

446 Graphics: Sprites. Bobs and Animation 



*1 
myVSprite->X = win->LeftEdge + msg->MouseX + myVSprite->VUserExt; 
myVSprite->Y = win->TopEdge + msg->MouseY + 1; 
ReplyMsg«struct Message *)msg); 
) 

1* got a message, change image data on the fly *1 
myVSprite->ImageData = (myVSprite->ImageData == vsprite datal) ? 

vsprite_data2 : vsprite_data1; -

SortGList(win->RPort); 
DoCollision(win->RPort); 
vspriteDrawGList(win); 
) 

1*-------------------------------------------------------------
** working with the vsprite: 
** - set up the gel system, and get a new vsprite (makeVSprite( ». 
** - add the vsprite to the system and display. 
** - use the vsprite. 
** - when done, remove vsprite and update the display without the vsprite. 
** - cleanup everything. 
*1 
VOID do_VSprite(struct Window *win) 
{ 

struct VSprite 
struct Gelslnfo 

*myVSprite; 
*my_ginfo; 

if (NULL == (my_ginfo = setupGelSys(win->RPort, Oxfc») 
return code RETURN WARN; 

else - -
{ 

if (NULL == (myVSprite = makeVSprite(&myNewVSprite») 
return code RETURN WARN; 

else - -
( 
AddVSprite(myVSprite, win->RPort); 
vspriteDrawGList(win); 

myVSprite->VUserExt = 20; 
myVSprite->HitMask = 1L « BORDERHIT; 
SetCollision(BORDERHIT, borderCheck, win->RPort->Gelslnfo); 

process_window (win, myVSprite); 

RemVSprite(myVSprite); 
freeVSprite(myVSprite); 
} 

vspriteDrawGList(win); 
cleanupGelSys(my ginfo,win->RPort); 
} -

1*-------------------------------------------------------------
** example vsprite program: 
** - first open up the libraries and a window. 
*1 
VOID main(int argc, char **argv) 
{ 

struct Window *win; 

return code RETURN_OK; 

if (NULL == (GfxBase = (struct GfxBase *)OpenLibrary(lgraphics.library",33L») 
return_code RETURN_FAIL; 

else 
{ 

if (NULL (IntuitionBase 
(struct IntuitionBase *)OpenLibrary(lintuition.library",33L») 

return code RETURN_FAIL; 
else -

Graphics: Sprites, Bobs and Animation 447 



{ 
if {NULL == (win = OpenWindow{&myNewWindow») 

return code = RETURN WARN; 
else - -

( 
do_VSprite{win); 

CloseWindow{win); 
) 

CloseLibrary(IntuitionBase); 
} 

CloseLibrary(GfxBase); 
} 

exit(return code); 
} -

Using Bobs 

The following section describes how to define a Bob. 

The components common to all GELs - height, collision-handling information, position in the drawing area, and 
pointers to the image definition - are part of the VSprite structure. The added features - such as drawing 
sequence, data about saving and restoring the background, and other features not applicable to VSprites - are part 
of the Bob structure instead. 

THE VSPRITE STRUCTURE AND BOBS 

The root VSprite structure is set up as described for true VSprites, with the following exceptions, the more complex 
of which will be described in detail soon: 

Y, X Bob position is always in pixels that are the same resolution as the display. 

Flags SA VEBACK and/or OVERLAY may be used. Don't set VSPRlTE for Bobs. 

Height, Width Bob pixels are the size of the background pixels. The Width of Bobs may be greater than 
one word. 

Depth The Depth of a Bob may be up to as deep as the playfield, provided that enough image data 
is provided. 

ImageData This pointer still is set to point to the image, but the data there is organized differently. 

SprColors This pointer should be set to NULL for Bobs. 

VSBob This pointer is set up as described below. 

VSPRITE FLAGS AND BOBS 

The bits in the VSprite Flags member that are used for Bobs follow. 

448 Graphics: Sprites, Bobs and Animation 



VSPRITE Flag 

When using the VSprite structure to describe a Bob, set VSPRITE to zero. 

SA VEBACK Flag 

To have the GEL routines save the background before the Bob is drawn and restore the background after the Bob is 
removed, specify the SAVEBACK (for "save the background") flag in the VSprite structure Flags field. 

If this flag is set, the SaveButfer must have been allocated, which is where the system puts this saved background 
area. The buffer must be large enough to save all the background bitplanes, regardless of how many planes the Bob 
has. 

size = Bob.Width * Bob.Height * RastPort.BitMap.Depth; 

To allocate this space, the graphics function AllocRaster( ) may be used. AllocRaster() takes the width in bits, so 
it is a convenient way to allocate the space needed. The makeBob( ) routine below shows another way to correctly 
allocate this buffer. 

NOTE 

The SaveBuffer must be allocated from CHIP memory. The AllocRaster() function does this for you. 

For example: 

1* space for 16 bits times 5 lines times 5 bit-planes *1 
myBob.SaveBuffer = AllocRaster(16,5 * 5); 

NOTE 

The AllocRaster( ) function rounds the width value up to the next integer multiple of 16 bits which is 
greater than or equal to the current value. 

OVERLAY Flag 

If the system should use the Bob shadow mask when it draws the Bob into the background, specify the OVERLAY 
flag in the VSprite structure Flags field. If this flag is set, it means that the background's original pixels show 
through in any area where there are 0 bits in the Sprite shadow mask. 

If this flag is set, the space for the ImageShadow shadow mask must have been allocated and initialized. The 
ImageSbadow mask must be allocated from CHIP memory. 

If the OVERLAY bit is cleared, the system uses the entire rectangle of words that define the Bob image to replace 
the playfield area at the specified y,x coordinates. See the paragraphs below called "ImageShadow." 

Graphics: Sprites, Bobs and Animation 449 



THE BOB STRUCTURE 

The following structure is taken from the Includes & Autodocs manual. Please see that manual for a fully 
commented structure definition. The Bob structure is: 

struct Bob 
( 
WORD 
WORD 
WORD 

Flags; /* general purpose flags */ 
*SaveBuffer;/* buffer for background save */ 
*ImageShadow; /* shadow mask of image */ 

struct Bob *Sefore; /* draw this Bob before Bobs on this list */ 
struct Bob *After; /* draw this Bob after Bobs on this list */ 
struct VSprite 
struct AnimComp 
struct DBufPacket 
BUserStuff 

*BobVSprite;/* this Bob's VSprite definition */ 
*BobComp; /* pointer to this Bob's AnimComp def */ 
*DBuffer; /* pointer to this Bob's dBuf packet */ 
BUserExt; /* Bob user extension */ 

) ; 

The (global) static declaration of a Bob structure: 

struct Bob myBob = 
( 
0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 0 
) 

Since most of the Bob structure members are pointers. it is much more common to allocate and set the Bob up 
dynamically. Here is a sample routine to allocate Bobs (this is a fragment of a larger file called animtools.c. See the 
complete animation example at the end of this chapter for the complete file): 

/* from: 
** animtools.c 190ctB9 
** original code by Dave Lucas. 
** rework by CATS 
** lattice c 5.04 
** lc -bI -cfist -v -y animtools.c 
*/ 

'include <exec/types.h> 
'include <exec/memory.h> 
'include <graphics/gfx.h> 
'include <graphics/gels.h> 
'include <graphics/clip.h> 
'include <graphics/rastport.h> 
'include <graphics/view.h> 
'include <graphics/gfxbase.h> 

/* data structure to hold information for a new vsprite. 
*/ 
typedef struct newVSprite 

( 
WORD 
WORD 
SHORT 
SHORT 
SHORT 
SHORT 
SHORT 
SHORT 
) NEWVSPRITE; 

*nvs _Image; 
*nvs ColorSet; 

nvs-WordWidth; 
nvs=:LineHeight; 
nvs_ImageDepth; 
nvs_X; 
nvs_Y; 
nvs_Flags; 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

image data for the 
color array for the 
width in words 
height in lines 
depth of the image 
initial x position 
initial y position 
vsprite flags 

/* data structure to hold information for a new Bob. 
** note that: 

450 Graphics: Sprites. Bobs and Animation 

vsprite */ 
vsprite */ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 



** NEWBOB myNBob; 
** is equivalent to: 
** struct newBob myNBob; 
*1 
typedef struct newBob 

{ 

WORD *nb_Image; /* image data for the Bob 
SHORT nb WordWidth; /* width in words 
SHORT nb=:LineHeight; /* height in lines 
SHORT nb_ImageDepth; 1* depth of the image 
SHORT nb PlanePick; 1* planes that get image 
SHORT nb-PlaneOnOff; /* unused planes to turn 
SHORT nb=:BFlags; /* Bob flags 
SHORT nb DBuf; /* l=double buf, O=not 
SHORT nb=:RasDepth; /* depth of the raster 
SHORT nb X; 1* initial x position 
SHORT nb=:Y; 1* initial y position 
} NEWBOB 

'include <proto/all.h> 

1* defined above *1 
struct VSprite *makeVSprite(NEWVSPRITE *nVSprite) 
VOID freeVSprite(struct VSprite *vsprite) 

*/ 
*/ 
*/ 
*1 

data *1 
on *1 

*1 
*1 
*1 
*/ 
*/ 

1*-------------------------------------------------------------
** create a Bob from the information given in nBob. 
** use freeBob( ) to free this gel. 
** 
** A VSprite is created for this Bob. 
** This routine properly allocates all double buffered information 
** if it is required. 
*1 
struct Bob *makeBob(NEWBOB *nBob) 
{ 

struct Bob 
struct VSprite 
NEWVSPRITE 
LONG 

*bob; 
*vsprite; 
nVSprite 
rassize; 

rassize (LONG)sizeof(UWORD) * 
nBob->nb WordWidth * nBob->nb_LineHeight * nBob->nb_RasDepth; 

if (NULL != (bob = 
(struct Bob *)AllocMem«LONG)sizeof(struct Bob), MEMF_CLEAR») 
{ 

if (NULL != (bob->SaveBuffer = (WORD *)AllocMem(rassize, MEMF_CHIP») 
{ 

nVSprite.nvs WordWidth 
nVSprite.nvs=:LineHeight 
nVSprite.nvs ImageDepth 
nVSprite.nvs-Image 
nVSprite.nvs-X 
nVSprite.nvs-Y 
nVSprite.nvs-ColorSet 
nVSprite.nvs=:Flags 

nBob->nb WordWidth; 
nBob->nb=:LineHeight; 
nBob->nb ImageDepth; 
nBob->nb-Image; 
nBob->nb-X; 
nBob->nb=:Y; 
NULL; 
nBob->nb_BFlags; 

if «vsprite = makeVSprite(&nVSprite» != NULL) 
{ 

vsprite->PlanePick = nBob->nb PlanePick; 
vsprite->PlaneOnOff = nBob->nb_PlaneOnOff; 

vsprite->VSBob 
bob->BobVSprite 
bob->ImageShadow 
bob->Flags 
bob->Before 
bob->After 
bob->BobComp 

if (nBob->nh_DBuf) 

bob; 
vsprite; 
vsprite->CollMask; 
0; 
NULL; 
NULL; 
NULL; 

Graphics: Sprites, Bobs and Animation 451 



else 

if (NULL != (bob->DBuffer = (struct DBufPacket *)AllocMem( 
(LONG)sizeof(struct DBufPacket), MEMF CLEAR») 

( 

{ -

if (NULL != (bob->DBuffer->BufBuffer = 
(WORD *)AllocMem(rassize, MEMF CHIP») 
( -
return(bob); 
} 

FreeMem(bob->DBuffer, (LONG)sizeof(struct DBufPacket»; 
} 

bob->DBuffer NULL; 
return(bob); 
) 

freeVSprite(vsprite); 
) 

FreeMem(bob-'>SaveBuffer, rassize); 
) 

FreeMem (bob, (LONG) sizeof (*bob) ) ; 
) 

return(NULL); 
) 

Here is a sample routine to free Bobs that were allocated using makeBob(). This is a fragment of a larger file called 
animtools.c. See the complete animation exrunple at the end of this chapter for a complete listing of this file. 

I*----------------------------------~--------------------------
** free the data created by makeBob( ) 
** 
** it's important that rasdepth match the depth you 
** passed to makeBob( ) when this gel was made. 
** assumes images deallocated elsewhere. 
*1 
VOID freeBob(struct Bob *bob, LONG rasdepth) 
{ 
LONG rassize; 

rassize (LONG)sizeof(UWORD) * 
bob->BobVSprite->Width * bob->BobVSprite->Height * rasdepth; 

if (bob->DBuffer != NULL) 
( 
FreeMem(bob->DBuffer->BufBuffer, rassize); 
FreeMem(bob->DBuffer, (LONG)sizeof(struct DBufPacket»; 
} 

FreeMem(bob->SaveBuffer, rassize); 
freeVSprite(bob->BobVSprite); 
FreeMem (bob, (LONG) sizeof (*bob) ) ; 
} 

The Bob structure does not need to be in CHIP memory. 

LINKING A BOB TO A VSPRITE STRUCTURE 

The VSprite and Bob structures must point to one another, so that the system can find the entire GEL. The 
structures are linked with statements like: 

452 Graphics: Sprites, Bobs and Animation 



myBob.BobVSprite = &myVSpritei 
myVSprite.VSBob = &myBobi 

Now the system (and the application program) can go back and forth between the two structures to obtain the 
various Bob variables. 

USING BOB FLAGS 

The following paragraphs describe the Bob Flags. 

SA VEBOB Flag 

To tell the system not to erase the old image of the Bob when the Bob is moved, specify the SA VEBOB flag in the 
Bob structure Flags field. This makes the Bob behave like a paintbrush. It has the opposite effect of SA VEBACK. 

NOTE 

It takes longer to preserve and restore the roster image than simply to draw a new Bob image wherever 
required. 

BOBISCOMP Flag 

If this Bob is part of an AnimComp, set the BOBISCOMP flag in the Bob structure to 1. If the flag is a 1, the 
pointer named BobComp must have been initialized. Otherwise, the system ignores the pointer, and it may be left 
alone (though it's good practice to initialize it to NULL). See "Animation Structures and Controls" for a 
discussion of AnimComps. 

BWAITING Flag 

This flag is used solely by the system, and should be left alone. When a Bob is waiting to be drawn, the system sets 
the BW AITING flag in the Bob structure to 1. This occurs only if the system has found a Before pointer in this 
Bob's structure that points to another Bob. Thus, the system flag BW AITING provides current draw-status to the 
system. Currently, the system clears this flag on return from each call to DrawGList(). 

BDRAWNFlag 

The BDRA WN system status flag in the Bob structure tells the system that this Bob has already been drawn. 
Therefore, in the process of examining the various Before and After flags, the drawing routines may determine the 
drawing sequence. The system clears this flag on return from each call to DrawGList( ). 

BOBSA W AY Flag 

Grophics: Sprites, Bobs and Animation 453 



To initiate the removal of a Bob during the next call to DrawGList( ), set BOBSA WAY to 1. Either the application 
or the system may set this Bob structure system flag. The system restores the background where it has last drawn 
the Bob. The system will unlink the Bob from the system GEL list the next time DrawGList( ) is called, unless the 
application is using double-buffering. In that case, the Bob will not be unlinked and completely removed until two 
calls to DrawGList( ) have occurred and the Bob has been removed from both buffers. The RemBob( ) macro sets 
the BOB SAW A Y flag. 

BOBNIX Flag 

When a Bob has been completely removed, the system sets the BOBNIX flag to 1 on return from DrawGList(). In 
other words, when the background area has been fully restored and the Bob has been removed from the GEL list, 
this flag in is set to a 1. BOBNIX is especially significant when double-buffering, because once the application asks 
that a Bob be removed, the system must remove it from the active drawing buffer and from the display buffer. Once 
BOBNIX has been set for a double-buffered Bob, it has been removed from both buffers and the application is free 
to reuse or deallocate it. 

SA VEPRESERVE Flag 

The SAVEPRESERVE flag is a double-buffer version of the SA VEBACK flag. If using double-buffering and 
wishing to save and restore the background, set SA VEBACK to 1. SA VEPRESERVE is used by the system to 
indicate whether the Bob in the "other" buffer has been restored; it is for system use only. 

SPECIFYING THE SIZE OF A BOB 

Bobs do not have the 16 pixel width limit that applies to VSprites. To specify the overall size of a Bob, use the 
Height and Width members of the root VSprite structure. Specify the Width as the number of 16-bit words it 
takes to fully contain the object. 

The number of lines is still specified with the Height member in the VSprite data structure. 

As an example, suppose the Bob is 24 pixels wide and 20 lines tall. Use statements like the following to specify the 
size: 

myVSprite.Height = 20; 1* 20 lines tall. *1 
myVSprite.Width = 2; 1* 24 bits fit into two words. *1 

Because Bobs are drawn into the background playfield, the pixels of the Bob are the same size as the background 
pixels, and share the color palette of the ViewPort. 

SPECIFYING THE SHAPE OF A BOB 

The layout of the data of a Bob's image is different from that of a VSprite because of the way the system retrieves 
data to draw Bobs. VSprite images are organized in a way convenient to the Sprite hardware; Bob images are set up 
for easy blitter manipulation. The ImageData pointer is still initialized to point to the first word of the image 

454 Graphics: Sprites, Bobs and Animation 



definition. 

NOTE 

As with all image data, a Bob's ImageData must be in CHIP memory for access by the blitter. 

The sample image below shows the same image defined as a VSprite in the "Using VSprites" sub-section above. 
The data here, however, is laid out for a Bob. The shape is 2 planes deep and is triangular: 

mem 
mem+ 1 
mem+2 
mem+3 
mem+4 

mem+S 
mem+6 
mem+7 
mem+8 
mem+9 

<first bit-plane data> 

1111111111111111 
0011110000111100 
0000 1100 0011 0000 
0000 0010 0100 0000 
0000 0001 1000 0000 

<second bit-plane data> 

1111111111111111 
0011 0000 0000 1100 
0000 1111 1111 0000 
0000 0011 1100 0000 
0000 0001 1000 0000 

«more bit-planes of data if Bob is deeper> 

SPECIFYING THE COLORS OF A BOB 

Typically a five-bit-plane, low-resolution mode display allows playfield pixels (and therefore, Bob pixels) to be 
selected from any of 32 active colors out of a system palette of 4,096 different color choices. Bob colors are limited 
to the colors used in the background playfield. 

The system ignores the sprColors member of the VSprite structure when the VSprite structure is the root of a Bob. 
Instead, the Bob's colors are determined by the combination of the Depth of the Bob image and its PlanePick, 
PlaneOnOff and ImageShadow members. 

Use the Depth member in the VSprite structure to indicate how many planes of image data is provided to define the 
Bob. This also defines how many colors the Bob will have. The combination of bits in corresponding Y,X positions 
in each bit-plane determines the color of the pixel at that position. 

For example, if a Depth of one plane is specified, then the bits of that image allow only two colors to be selected: 
one color for each bit that is a 0, a second color for each bit that is a 1. Likewise, if there are 5 planes of image data, 
all 32 colors can be used in the Bob. The Bob Depth must not exceed the background depth. 

Specify Depth using a statement such as the following: 

Graphics: Sprites, Bobs and Animation 455 



myVSprite.Depth = 5; 1* Allow a 32 color, 5-bit-plane image. *1 

OTHER ITEMS INFLUENCING BOB COLORS 

The three other members in the VSprite structure that affect the color of Bob pixels are ImageShadow, PlanePick, 
and Plane On Off. 

ImageShadow 

The ImageShadow member is a pointer to the shadow mask of a Bob. A shadow mask is the logical or of all 
bitplanes of a Bob image. The system uses the shadow mask in conjunction with PlaneOnOff, discussed below, for 
color selection. It also uses the shadow mask to "cookie cut" the bits that will be overwritten by this Bob, to save 
and later restore the background. 

The following figure shows the shadow mask of the image described above. 

mem + 0 1111111111111111 
mem + 1 0011 11000011 1100 
mem + 2 0000 1111 1111 0000 
mem + 3 0000 0011 1100 0000 
mem + 4 0000 0001 1000 0000 

Space for the ImageShadow must be provided and this pointer initialized to point to it. The amount of memory 
needed is equivalent to one plane of the image: 

shadow_size = myBob->BobVSprite->Height * myBob->BobVSprite->Width; 

The example image is 5 high and 1 word wide, so, 5 words must be made available. 

NOTE 

The image shadow memory must be allocated from CHIP memory (MEMF _CHIP). 

PlanePick 

Because the Depth of the Bob can be less than the background, the PlanePick member is provided so that the 
application can indicate which background bit planes are to have image data put into them. 

The system starts with the least significant plane of the Bob, and scans PlanePick starting at the least significant bit, 
looking for a plane of the RastPort to put it in. 

For example, if PlanePick has a binary value of: 

o 0 0 0 0 0 1 1 (Ox03) 

then the system draws the first plane of the Bob's image into background plane 0 and the second plane into 
background plane 1. 

456 Graphics: Sprites, Bobs and Animation 



Alternatively, a PlanePick value of: 

000 1 00 1 0 (OxI2) 

directs the system to put the first Bob plane into plane I, and the second Bob plane into plane 4. 

PlaneOnOtf 

What happens to the background planes that aren't picked? The shadow mask is used to either set or clear the bits in 
those planes in the exact shape of the Bob if OVERLAY is set, otherwise the entire rectangle containing the Bob is 
used. The PlaneOnOtf member tells the system whether to put down the shadow mask as zeros or ones for each 
plane. The relationship between bit positions in PlaneOnOff and background plane numbers is identical to 
PlanePick: the least significant bit position indicates the lowest-numbered bit-plane. A zero bit clears the shadow 
mask shape in the corresponding plane, while a one bit sets the shadow mask shape. The planes Picked by 
Plane Pick have image data - not shadow mask - blitted in. 

This provides a great deal of color versatility. One image definition can be used for many Bobs. By having different 
PlanePick I PlaneOnOff combinations, each Bob can use a different subset of the background color set. . 

There is a member in the VSprite structure called CollMask (the collision mask, covered under "Detecting GEL 
collisions") for which the application may also reserve some memory space. The ImageSbadow and CollMask 
pointers usually, but not necessarily, point to the same data, which must be located in CHIP memory. If they point 
to the same location, obviously, the memory only need be allocated once. 

An example of the kinds of statements that accomplish these actions (see the make VSprite( ) and makeBob( ) 
examples for more details): 

#define BOBW 1 
ide fine BOBH 5 
#define BOBD 2 

/* Data definition from example layout */ 
WORD chip BobData[]= 

{ 

OxFFFF, Ox300C, OxOFFO, Ox03CO, Ox01S0, 
OxFFFF, Ox3E7C, OxOC30, Ox03CO, Ox01S0 
} ; 

/* Reserve space for the collision mask for this Bob */ 
WORD chip BobCollision[BOBW * BOBH * BOBD]; 

myVSprite.Width = BOBW; 
myVSprite.Height = BOBH; 
myVSprite.Depth = BOBD; 

/* Image is 16 pixels wide (1 word) */ 
/* 5 lines for each plane of the Bob */ 
/* 2 Planes are in ImageData */ 

1* Show the system where it can find the data image of the Bob *1 
myVSprite.ImageData = BobData; 

/* binary 0101, render image data into bit-planes 0 and 2 */ 
myVSprite.PlanePick = Ox05; 

/* binary 0000, means colors 1, 4, and 5 will be used. 
* binary 0010 would mean colors 3, 6, and 7. 
* " 1000 " 9, C, and D. 
* 1010 B, E, and F. 
*/ 
myVSprite.PlaneOnOff = OxOO; 

/* Where to put collision mask */ 
myVSprite.CollMask = BobCollision; 

Gmphics: Sprites, Bobs and Animation 457 



1* Tell the system where it can assemble a GEL shadow *1 
1* Point to same area as CollMask */ 
myBob.lmageShadow = Bobcollision; 

1* Create the Sprite collision mask in the VSprite structure *1 
InitMasks(&myVSprite); 

BOB PRIORITIES 

This sub-section describes the choices for inter-Bob priorities. The inter-Bob priorities tell the system what order to 
render the Bobs. Bobs rendered earlier will appear to be behind later Bobs. A Bob drawn earlier is said to have the 
lower priority, and a Bob drawn later is said to have the higher priority. Thus, the highest priority Bob will be 
drawn last, and will never be obstructed by another Bob. 

Letting the System Decide Priorities 

The priority issue can be ignored and the system will render the Bobs as it finds them in the GelsInfo list To do 
this, set the Bob's Before and After pointers to NULL. Since the GelsInfo list is sorted by GEL y,x values, Bobs 
that are higher on the display will appear behind the lower ones, and Bobs that are more to the left on the display 
will appear behind Bobs on the right. 

As Bobs are moved about the display, their priorities will change. 

Specifying the Drawing Order 

To specify the priorities of the Bobs, use the Before and After pointers. Before points to the Bob that this Bob 
should be drawn before, and After points to the Bob that this Bob should be drawn after. By following these 
pointers, from Bob to Bob, the system can determine the order in which the Bobs should be drawn. 

NOTE 

This terminology is often confusing, but, due to historical reasons, cannot be changed. The system does 
NOT draw the Bobs on the Before list first, it draws the Bobs on the After list first Next, it draws the 
current Bob, and, finally, the Bobs on the Before list 

For example, to assure that myBobl always appears in front of myBob2, The Before and After pointers must be 
initialized so that the system will always draw myBobl after myBob2. 

myBob2.Before = &myBobl; 
myBob2.After = NULL; 
myBobl.After = &myBob2; 
myBobl.Before = NULL; 

1* draw Bob2 before drawing Bobl *1 
1* draw Bob2 after no other Bob *1 
1* draw Bobl after drawing Bob2 *1 
1* draw Bobl before no other Bob *1 

As the system goes through the GelsInfo list, it checks the Bob's After pointer. If this is not NULL, it follows the 
After pointer until it hits a NULL. Then it starts rendering the Bobs, going back up the Before pointers until it hits 
a NULL. then it continues through the Gelslnfo list. So, it is important that all Before and After pointers of a 

458 Graphics: Sprites, Bobs and Animation 



group properly point to each other. 

NOTE 

In a screen with a number of complex GELs, you may want to specify the Before and After order for 
Bobs that are not in the same AnimOb. This will keep large objects together. If you do not do this, you 
may have an object drawn with half of its Bobs in front of another objectl Also, in sequences you only 
set the Before and After pointers for the active AnimComp in the sequence. 

ADDING A BOB 

To add a Bob to the system GEL list, use the AddBob( ) routine. The Bob and VSprite structures must be correct 
and cohesive when this call is made. See the makeBob( ) and makeVSprite( ) examples for a detailed example of 
setting up Bobs and VSprites. See the setupGelSys( ) example for a more complete initialization of the GELs 
system. 

For example: 

struct Gelslnfo myGelslnfo; 
struct VSprite dummySpriteA, dummySpriteB; 
struct Bob myBob; 
struct RastPort rastport; 

1* done ONCE, for this Gelslnfo 
** see setupGelSys( ) above for a more complete initialization of 
** the Gel system 
*/ 
InitGels(&dummySpriteA, &dummySpriteB, &myGelslnfo); 

1* initialize the Bob members here, then AddBob( ) */ 
AddBob(&myBob, &rastport); 

REMOVING A BOB 

Two methods may be used to remove a Bob. These paragraphs describe the two system calls. 

The first method uses the RemBob( ) macro. It is called as follows: 

struct Bob myBob; 

RemBob (&myBob) ; 

RemBob( ) is a macro which causes the system to remove the Bob during the next call to DrawGList( ) (or two 
calls to DrawGList( ) if the system is double-buffered). RemBob() asks the system to remove the Bob "at its next 
convenience." See the description of the BOBSA WAY and BOBNIX flags above. 

The second method uses the RemIBob( ) routine. 

For example: 

Graphics: Sprites, Bobs and Animation 459 



struct Bob myBob; 
struct RastPort rastport; 
struct ViewPort viewport; 

RemIBob(&myBob, &rastport, &viewport); 

RemIBob( ) tells the system "remove this Bob immediately." It causes the system to erase the Bob from the 
drawing area and causes the immediate erasure of any other Bob that had been drawn subsequent to (and on top of) 
this one. The system then unlinks the Bob from the system GEL list. To redraw the Bobs that were drawn on top of 
the one just removed, another call to DrawGList( ) must be made. 

GETTING THE LIST OF BOBS IN ORDER 

As described for VSprites, SortGList( ) re-orders the GelsInfo list. For Bobs, the system uses the position 
information to decide inter-Bob priorities, if not explicitly set by using the Before and After pointers. 

This function is called as follows: 

struct RastPort myRastPort; 

SortGList(&myRastPort); 

DISPLAYING BOBS 

This sub-section provides the typical sequence of operations for drawing the Bobs on the screen. 

When DrawGList( ) is called the system actually draws the Bobs in the GelsInfo list. 

For example: 

struct RastPort myRastPort; 
struct ViewPort myViewPort; 

DrawGList(&myRastPort, &myViewPort); 1* draw the elements *1 

NOTE 

If you are only using Bobs, and not using ANY true VSprites, you do not need to call MrgCop( ) and 
LoadView(). DrawGList() will properly draw the Bobs/AnimComps into the RastPort. You still 
need to call WaitTOF(). 

CHANGING BOBS 

The following characteristics of Bobs can be changed dynamically between calls to DrawGList( ): 

• To change the location in the drawing area, change the y, x values in the associated VSprite structure. 

To change their appearance, the pointer to the ImageData in the associated VSprite structure may be 

460 Graphics: Sprites, Bobs and Animation 



changed. 

NOTE 

A change in the ImageData also requires a change or recalculation of the ImageShadow, using 
InitMasks( ). 

To change their colors, change a Bob's PlanePick and/or PlaneOnOff values; the Depth parameters may 
also be changed. 

• To change the object priorities, alter the Before and After pointers in the Bob structures. 

To change the Bob into a paintbrush, specify the SA VEBOB flag in the Bob structure. 

NOTE 

Neither these nor other changes are evident until SortGList( ) and then DrawGList( ) are called. 

COMPLETE BOB EXAMPLE 

This routine requires animtools.c, animtools.h, and animtoolsyroto.h. These files are defined at the end of this 
chapter in the complete animation example. 

/* bob.c 190ct89 
** 
** lattice c 5.04 
** lc -bl -cfist -v -y bob.c 
** blink FROM LIB:c.o bob.o /animtools/animtools.o LIB LIB:lc.lib TO bob 
*/ 
#include <exec/types.h> 
#include <intuition/intuition.h> 
#include <graphics/gels.h> 
#include <exec/memory.h> 
#include <libraries/dos.h> 

#include <proto/all.h> 
#include <stdlib.h> 

/* these define the structures like NEWBOB, and the 
** prototypes for the animtools routines. 
*/ 
#include "/animtools/animtools.h" 
#include "/animtools/animtoolsyroto.h" 

/* routines used for the bob example */ 
VOID bobDrawGList(struct RastPort *rport, struct ViewPort *vport); 
VOID process window(struct Window *win, struct Bob *myBob); 
VOID do_Bob(struct Window *win); 

struct GfxBase *GfxBase; /* pointer to Graphics library */ 
struct IntuitionBase *IntuitionBase; /* pointer to Intuition library */ 

int return_code; 

/* number of lines in the bob */ 
#define GEL_SIZE 4 

/* bob data - there are two sets that are alternated between. 
** note that this data is at the resolution of the screen. 
*/ 
WORD chip bob datal[2 * 2 * GEL SIZE) = 

{ /* data-is 2 planes by 2 words by GEL_SIZE lines */ 
/* plane 1 */ 

Graphics: Sprites, Bobs and Animation 461 



Oxffff, Ox0003, OxfffO, Ox0003, OxfffO, Ox0003, Oxffff, Ox0003, 
1* plane 2 *1 
Ox3fff, Oxfffc, Ox3ffO, OxOffc, Ox3ffO, OxOffc, Ox3fff, Oxfffc, 
} ; 

WORD chip bob data2[2 * 2 * GEL SIZE] = 
{ 1* data-is 2 planes by 2 words by GEL_SIZE lines *1 
1* plane 1 *1 
OxcOOO, Oxffff, OxcOOO, OxOfff, OxcOOO, OxOfff, OxcOOO, Oxffff, 
1* plane 2 *1 
Ox3fff, Oxfffc, Ox3ffO, OxOffc, Ox3ffO, OxOffc, Ox3fff, Oxfffc, 
} ; 

1* information for the new bob 
** structure defined in animtools.h 
*1 
NEWBOB myNewBob 

{ 

bob data2, 
2, -
GEL SIZE, 
2, -
3, 0, 
SAVEBACK I OVERLAY, 
0, 
2, 

160, 100, 
} ; 

1* initial image *1 
1* WORD width *1 
1* line height *1 
1* image depth *1 
1* plane pick, plane on off *1 
1* vsprite flags *1 
1* dbuf (0 == false) *1 
1* raster depth *1 

1* x,y position *1 

1* information for the new window *1 
struct NewWindow myNewWindow = 

{ 
80, 20, 400, 150, -1, -1, CLOSEWINDOW I INTUITICKS, 
ACTIVATE I WINDOWCLOSE I WINDOWDEPTH I RMBTRAP, 
NULL, NULL, "Bob", NULL, NULL, 0, 0, 0, 0, WBENCHSCREEN 
} ; 

I*-----------------------------------------------~-------------
** draw the bobs into the rast port. 
*1 
VOID bobDrawGList(struct RastPort *rport, struct ViewPort *vport) 
( 
1* only need to MrgCop( ) LoadView( ) if using TRUE VSprites *1 
SortGList(rport); 
DrawGList(rport, vport); 
WaitTOF ( ) ; 
} 

1*-------------------------------------------------------------
** process window and dynamically change bob: 
** - get messages. 
** - go away on CLOSEWINDOW. 
** - update and redisplay bob on INTUITICKS. 
** - wait for more messages. 
*1 
VOID process_window(struct Window *win, struct Bob *myBob) 
{ 
struct IntuiMessage *msg; 

FOREVER 
( 
Wait(lL « win->UserPort->mp_SigBit); 

while (NULL != (msg = (struct IntuiMessage *)GetMsg(win->UserPort») 
{ 
1* only CLOSEWINDOW and INTUITICKS are active *1 
if (msg->Class == CLOSEWINDOW) 

( 
ReplyMsg«struct Message *)msg); 
return; 
} 

462 Graphics: Sprites, Bobs and Animation 



1* must be INTUITICKS: change x and y values on the fly 
** note: do not have to add window offset, bob is relative 
** to the window (sprite relative to screen). 
*1 
myBob->BobVSprite->X = msg->MouseX + 20; 
myBob->BobVSprite->Y = msg->MouseY + 1; 
ReplyMsg«struct Message *)msg); 
} 

1* after getting a message, change image data on the fly *1 
myBob->BobVSprite->ImageData = 

(myBob->BobVSprite->ImageData == bob_datal) ? bob data2 : bob_datal; 

InitMasks(myBob->BobVSprite); I*'set up masks for new image *1 
bobDrawGList(win->RPort, ViewPortAddress(win»; 
} 

1*-------------------------------------------------------------
** working with the bob: 
** - setup the gel system, and get a new bob (makeBob( ». 
** - add the bob to the system and display. 
** - use the bob. 
** - when done, remove the bob and update the display without the bob. 
** - cleanup everything. 
*1 
VOID do_Bob(struct Window *win) 
( 
struct Bob *myBob; 
struct GelsInfo *my_ginfo; 

if (NULL == (my_ginfo = setupGelSys(win->RPort, Oxfc») 
return code RETURN WARN; 

else - -
{ 

if (NULL == (myBob = makeBob(&myNewBob») 
return code RETURN_WARN; 

else -
( 
AddBob(myBob, win->RPort); 
bobDrawGList(win->RPort, ViewPortAddress(win»; 

process_window (win, myBob); 

RemBob(myBob); 
bobDrawGList{win->RPort, ViewPortAddress(win»; 

freeBob(myBob, myNewBob.nb RasDepth); 
} - .. 

cleanupGelSys(my_ginfo,win->RPort); 
} 

1*-------------------------------------------------------------
** example bob program: 
** - first open up the libraries and a window. 
*1 
VOID main(int argc, char **argv) 
{ 
struct Window *win; 

return code RETURN_OK; 

if (NULL == (GfxBase = (struct GfxBase *) OpenLibrary ("graphics • library" , 33L» ) 
return code RETURN FAIL; 

else - . -
{ 
if (NULL (IntuitionBase = 

else 

(struct IntuitionBase *)OpenLibrary("intuition.library",33L») 
return_code RETURN_FAIL; 

{ 

Graphics: Sprites, Bobs and Animation 463 



if (NULL == (win = OpenWindow(&myNewWindow))) 
return_code = RETURN_FAIL: 

else 
{ 

do_Bob(win); 

CloseWindow(win); 
} 

CloseLibrary(IntuitionBase); 
} 

CloseLibrary(GfxBase); 
} 

exit(return_code); 
} 

DOUBLE·BUFFERING 

Double-buffering is the technique of supplying two different memory areas in which the drawing routines may create 
images. The system displays one memory space while drawing into the other area. This eliminates the "tearing" 
that is visible when the a single display is being rendered into at the same time that it is being displayed. 

NOTE 

If any of the Bobs are double-buffered, then all of them must be double-buffered. The complete 
animation example at the end of this chapter allows double-buffering to be turned on or off with a 
command line argument. 

To find whether a Bob is to be double-buffered, the system examines the pointer named DBuffer in the Bob 
structure. If this pointer has a value of NULL, the system does not use double-buffering for this Bob. 

For example: 

myBob.DBuffer = NULL; 1* do this if this Bob is NOT double-buffered *1 

DBufPacket and Double-Buffering 

For double-buffering, a place must be provided for the system to store the extra information it needs. The system 
maintains these data, and does not expect the application to change them. The DBufPacket structure consists of the 
following members: 

Buty, BufX 

BufPath 

Buffiuffer 

lets the system keep track of where the object was located "last screen" (as compared to the 
Bob structure members called oldY and oldX that tell where the object was two screens ago). 
Buty and BufX provide for correct restoration of the background within the currently active 
drawing buffer. 

assures that the system restores the backgrounds in the correct sequence; it relates to the 
VSprite members DrawPath and Clear Path. 

This field must be set to point to a buffer the same size as the Bob's SaveBuffer. This buffer 
is used to store the background for later restoration when the system moves the object. This 
buffer must be allocated from CHIP memory. 

The next sub-section shows how to pull all these members together to make a double-buffered Bob. 

464 Graphics: Sprites, Bobs and Animation 



Creating a Double-Buffered Bob 

To create a double-buffered Bob, execute a code sequence similar to the following: 

struct Bob myBob; 
struct DBufPacket myDBufPacket; 

1* allocate a DBufPacket for myBob 
** same size as previous example 
*1 
if (NULL != (myDBufPacket.BufBuffer = AllocRaster(48, 20 * 5») 

{ 
1* tell Bob about its double buff status *1 
myBob.DBuffer = myDBufPacket; 
} 

NOTE 

The above example routines makeBob( ) and freeBob( ) correctly handle double buffering. 

Collisions And User Structure Extensions 

DETECTING GEL COLLISIONS 

All GELs, including VSprites, can participate in the software collision detection. Simple Sprites must use hardware 
collision detection. See the Amiga Hardware Reference Manual for information about hardware collision. detection. 

Two kinds of collisions are handled by the system routines: GEL-to-boundary hits and GEL-to-GEL hits. You can 
set up as many as 16 different routines to handle different collision combinations; one routine to handle the boundary 
hits, and up to fifteen mQre to handle different inter-GEL hits. You supply the actual collision handling routines, and 
provide their addresses to the system so that it can call them as needed (when the hits are detected). These addresses 
are kept in the collision handler table, a GelsInfo member. Which routine is called depends on the 16 bit MeMask 
and HitMask members of the VSprite structures involved in the collision. When you call DoCollision( ), the 
system goes through the GelsInfo list, which, is constantly kept sorted by y, x position. If a GEL intersects the 
boundaries, and the GELs HitMask indicates it appropriate, the boundary collision routine is called. When 
DoCollision( ) finds that two GELs overlap, it compares the MeMask of one with the HitMask of the other. If 
corresponding bits are set in both, it calls the appropriate inter-GEL collision routine at the table position 
corresponding to the bits in the HitMask and MeMask, as outlined below. 

Preparing for Collision Detection 

Before you can use the system to detect collisions between GELS, you must allocate and initialize a table of 
collision-detection routines, the Gelsinfo's CollHandler. This table is an array of pointers to the actual routines that 
you have provided for your collision types. You must also prepare some members of the VSprite structure: 
CollMask, BorderLine, HitMask, and MeMask. 

Graphics: Sprites, Bobs and Animation 465 



Building a Table of Collision Routines 

The Collision Table is a structure, ColITable, defined in graphics/gels.h. It is accessed as the ColIHandler member 
of the GelsInfo structure. The table only needs to be as large as the number of bits for which you wish to provide 
collision processing. It is safest, though, to allocate space for all 16 entries, considering the small amount of space 
required. When the View structure is first initialized, the system sets all of the values of the collision routine 
pointers to NULL. The application must then initialize those table entries that correspond to the HitMask and 
MeMask bits that you plan to use. 

The application does not set the vectors by directly changing the array; it gives the address to SetCollision( ) 
routine, and it manipulates the array for the application. The parameters for this routine are as follows: 

ULONG num; 
VOID (*routine)( ); 
struct Gelslnfo *Glnfo; 

SetCollision(num, routine, Glnfo) 

where 

num is the collision vector number 

routine is a pointer to the user collision routine 

GInfo is a pointer to a GelsInfo structure 

For example: 

struct Gelslnfo myGelslnfo; 

VOID myCollisionRoutine(GELA, GELB) 
struct VSprite *GELA; 
struct VSprite *GELB; 
{ 

/* sample collision routine */ 

/* process gels here - GELA and GELB point to the base VSprites of 
** the gels, you can use the user extensions to identify what hit 
** (if you need the info). 
*/ 
} 

/* myGelslnfo must be allocated and initialized */ 
SetCollision(15, myCollisionRoutine, &myGelslnfo); 

VSprite Collision Mask 

The ColIMask member of the VSprite is a pointer to a memory area that you have allocated for holding the 
collision mask of that GEL. This area must be in CHIP memory. This area's size is the equivalent of one bit-plane 
of the GELs image. The collision mask is usually the same as the shadow mask of the GEL, formed from a logical
or combination of all planes of the image. The following figure shows an example collision mask. 

466 Graphics: Sprites, Bobs and Animation 



If this is the image in: 

Plane 1 

1111111111111 
1 1 

1 1 
1 1 

1 1 
1 1 

1 

Plane 2 

1 1 1 
1 

Then its ColiMask is: 

1 1 1 1 1 1 1 1 1 1 111 
1 1 
11111 

1 1 1 
1 1 

1 1 
1 

Figure 25-3: A Collision Mask 

For example, here are typical program statements to reserve an area for the sprite shadow, initialize the pointer 
correctly, and then specify that the system uses the same mask for collisions (this example assumes a one-word
wide, five-line-high image): 

1* reserve 5 16-bit locations for sprite shadow. *1 
WORD chip myShadowData[S]; 

myVSprite.ImageShadow = myShadowData; 1* and point to it *1 
myVSprite.CollMask = myShadowData; 1* collision mask is same as shadow *1 

Alternatively, you may have a collision mask that is not derived from the image. In this case, the actual image isn't 
relevant. The system will not register collisions unless the other objects touch the collision mask. If the collision 
mask is smaller than the image, other objects will pass through the edges without a collision. 

VSprite BorderLine 

For faster collision detection, the system uses the BorderLine member of the VSprite structure. BorderLine 
specifies the location of the horizontal logical-or combination of all of the bits of the object. It may be compared to 
taking the whole objects' shadow/collision mask and squishing it down into a single horizontal line. You provide 
the system with a place to store this line. The size of the data area you allocate must be at least as large as the image 
width. 

In other words, if it takes three 16-bit words to hold one line of a GEL, then you must reserve three words for the 
BorderLine. In the VSprite examples, the routine make VSprite( ) correctly allocates and initializes the collision 
mask and borderline. 

For example: 

1* reserve space for BorderLine for this Bob *1 
WORD myBorderLineData[3]: 

1* tell the system where it is *1 
myVSprite.BorderLine = myBorderLineData; 

Here is a sample of an object and its BorderLine image: 

Graphics: Sprites, Bobs and Animation 467 



OBJECT 

011000001100 
0011 000 11000 
001100011000 
000110110000 
000010100000 

BORDERLINE IMAGE 

011110111100 

Using this squished image, the system can quickly determine if the image is touching the left or rightmost boundary 
of the drawing area. 

To establish a default BorderLine and CollMask data, make a system call to InitMasks( ). 

VSprite HitMask and MeMask 

Software collision detection is independently enabled and disabled for each GEL. Further, you can specify which of 
16 possible collision routines you wish to have automatically executed. 

DoColiision( ), in addition to sensing an overlap between objects, uses these masks to determine which routine(s) (if 
any) the system will call when a collision occurs. 

When the system determines a collision, it ands the HitMask of the upper-leftmost object in the colliding pair with 
the MeMask of the lower-rightmost object of the pair. The bits that are Is after the and operation choose which of 
the 16 possible collision routines to perform. 

• If the collision is with the boundary, bit 0 is a 1 and the system calls the collision handling routine number 
O. You assign bit 0 to the condition called "boundary hit." The system uses the flag called BORDERHIT 
to indicate that an object has landed on or moved beyond the outermost bounds of the drawing area (the 
edge of the clipping region). The complete VSprite example in this chapter uses collision detection to 
check for border hits. 

If you set anyone of the other bits (1 to 15), then the system calls the collision handling routine 
corresponding to the bit set. 

If more than one bit is set in both masks, the system calls the vector corresponding to the rightmost (the least 
significant) bit only. 

Using HitMask and MeMask 

This section illustrates the use of the HitMask and MeMask to define one type of collision. 

Suppose there are two classes of objects that you wish to control on the screen: ENEMYT ANK and MYMISSILE. 
Objects of class ENEMYTANK should be able to pass across one another without registering any collisions. 
Objects of class MYMISSll...E should also be able to pass across one another without collisions. However, when 

468 Graphics: Sprites, Bobs and Animation 



MYMISSILE and ENEMYT ANK collide, the system should generate a call to a collision routine. 

Choose a pair of collision detect bits not yet assigned within MeMask, one to represent ENEMYTANK, the other to 
represent MYMISSILE. You will use the same two bits in the corresponding HitMask 

MeMask HitMask 

Bit # 2 1 2 1 

GEL #1 o 1 1 0 ENEMYTANK 

GEL #2 o 1 1 0 ENEMYTANK 

GEL #3 1 0 o 1 MYMISSILE 

In the example, bit 1 represents ENEMYTANK objects. In the MeMask, bit 1 is a 1 for GEL #1 and says "I am an 
ENEMYT ANK." Bit 2 is a zero says this object is not a MYMISSILE object. 

In bit 1 of the HitMask of GEL #1, the 0 bit there says, "I will not register collisions with other ENEMYTANK 
objects." However, the 1 bit in bit 2 says, "I will register collisions with MYMISSILE objects." 

Thus when a call to DoCollision( ) occurs, for any objects that appear to be colliding, the system ands the MeMask 
of one object with the HitMask of the other object. If there are non-zero bits present. the system will call one of 
your collision routines. 

In this example, suppose that the system senses a collision between ENEMYTANK #1 and ENEMYTANK #2. 
Suppose also that ENEMYT ANK # 1 is the top!leftmost object of the pair. Here is the way that the collision testing 
routine performs the test to see if the system will call any collision-handling routines: 

Bit# ~ 1 

ENEMYTANK #1 MeMask 0 1 

ENEMYTANK #2 HitMask 1 0 

Result of and 0 0 

Therefore, the system does not call a collision routine. 

Suppose that DoCollision( ) finds an overlap between ENEMYTANK #1 and MYMISSILE, and MYMISSILE is 
the top!leftmost of the pair: 

Bit# ~ 1 

MYMISSILE #1 MeMask 1 0 

ENEMYT ANK #2 HitMask 1 0 

Result of and 1 0 

Graphics: Sprites, Bobs and Animation 469 



Therefore, the system calls the collision routine at position 2 in the table of collision-handling routines. 

SETTING UP FOR BOUNDARY COLLISIONS 

To specify the region in the PlayField that the system will use to define the outermost limits of the GEL boundaries, 
you use these GelsInfo members: topmost, bottommost, leftmost, and rightmost. The DoCollision( ) routine 
tests these boundaries when determining boundary collisions within this RastPort. They have nothing whatsoever to 
db with graphical clipping. Graphical clipping makes use of the RastPorts clipping rectangle. 

Here is a typical program segment that assigns the members correctly (for boundaries 50, 100, 80, 240). It, assumes 
that you already have a RastPort structure pointer named myRastPort. 

myRastPort->GelsInfo->topmost = 50; 
myRastPort->GelsInfo->bottommost = 100; 
myRastPort->GelsInfo->leftmost = 80; 
myRastPort->GelsInfo->rightmost = 240; 

Parameters Passed To Your Routines 

When DoColIision( ) calls one of your collision routines, it passes parameters which are described in the next 
paragraphs. 

Parameters To Your Boundary Routines 

During the operation of the DoCollision( ) routine, if you have enabled boundary collisions for a GEL (by setting 
the least significant bit of its HitMask) and it has crossed a boundary, the system calls the boundary routine you 
have defined. 

NOTE 

The system will call the routine once for every GEL that has hit, or gone outside of the boundary. 

The system will call your routine with the following two arguments: 

A pointer to the VSprite structure of the GEL that hit the boundary 

A flag word containing one to four bits set, representing top, bottom, left and right boundaries, telling you 
which of the boundeIies it has hit or exceeded. To test these bits, compare to the constants TOPIllT, 
BOTTOMHIT, LEFTHIT, and RIGHTHIT. 

See the' 'Complete VSprite Example" above for sample code using boundary collision. 

Parameters To Your Inter-GEL Routines 

If, instead of a GEL-to-boundary collision, DoCollision( ) senses a GEL-to-GEL collision, the system calls your 
collision routine with the following two arguments: 

470 Graphics: Sprites, Bobs and Animation 



Address of the VSprite that is the uppermost (or leftmost if y coordinates are identical) GEL of a colliding 
pair. 

Address of the VSprite that is the lowermost (or rightmost if y coordinates are identical) GEL of the pair. 

Handling Multiple Collisions 

When multiple elements collide within the same display field, the following set of sequential calls to the collision 
routines occurs: 

The system issues each call in a sorted order for GELs starting at the upper left-hand comer of the screen 
and proceeding to the right and down the screen. 

• For any colliding GEL pair, the system issues only one call, to the collision routine for the object that is 
the topmost and leftmost of the pair. 

ADDING USER EXTENSIONS TO GEL DATA STRUCTURES 

This section describes how to expand the size and scope of the VSprite, Bob and AnimOb data structures. In the 
definition for these structures, there is an item called UserExt at the end of each. If you want to expand these 
structures (to hold your own special data), you define the UserExt member before the graphics/gels.h file is 
included. If this member has already been defined when the graphics/gels.h file is parsed, the compiler 
preprocessor will extend the structure definition automatically. If these members have not been defined, the system 
will make them SHORTs, and you may still consider these as being reserved for your private use. 

To show the kind of use you can make of this feature, the example below adds speed and acceleration figures to each 
GEL by extending the VSprite structure. When your collision routine is called, it could use these values to transfer 
energy between the two colliding objects (say, billiard balls). You would have to set up additional routines, 
executed between calls to DoCollision( ), that would add the values to the GELs position appropriately. 

You could define a structure that you want to have associated with each of the GELS, similar to the following: 

struct mylnfo 
{ 

short xvelocity; 
short yvelocity; 
short xaccel; 
short yaccel; 
} ; 

These members are for example only. You may use any definition for your user extensions. 

You would also provide the following line, to extend the VSprites structure: 

#define VUserStuff struct myInfo 

To extend the Bobs structure: 

Graphics: Sprites, Bobs and Animation 471 



#define BUserStuff struct mylnfo 

To extend the AnimObs structure: 

#define AUserStuff struct mylnfo 

When the system is compiling the graphics/geZs.h file with your program, the compiler preprocessor substitutes 
"struct mylnfo" everywhere that UserExt is used in the header. The structure is thereby customized to include the 
items you wish to associate with it. 

NOTE 

You cannot use the "C" construct "typedef" for the above statements. If you want to substitute your 
own data type for one of the UserStutT variables, you must use a "#define". 

Animation Concepts 

To perform animation, an artist must first produce a series of drawings. Each drawing differs from the preceding one 
so that when each frame in a stack is viewed sequentially, the images appear to flow naturally. 

The creation of an animation using just one stack is analogous to a child's flip-book, which were the earliest form of 
animation. Later, with the advent of film, classic animation became a refined art; watch any older Warner Brothers 
Cartoon to appreciate this. 

The background for each scene was painted only once. Then, all characters, moving things, and objects that things 
go behind were painted on transparent sheets of celluloid. Each sheet had just one view of one part on it, and was 
called a cell. These celluloid stills were placed over the background, so that the objects that were to appear closest 
to the viewer were on the last cells to be put down. The final step was to capture the effect on a frame of film. 
Then, for the next photo, anything that moved had the next cell from its stack put down, taking care that it was at the 
right depth, so it still appeared in front of and behind the correct things. Then another photo, ad infinitum. 

The animation crews realized that they could further break down each object, or character, into its component parts. 
If the character's arm was the only thing to move, then that was all they had to redraw. By having all the character's 
components share a common registration mark, it could easily be moved about the display, and the arm would 
always appear in the right place. 

If you were animating a walking human, for example, you might have five stacks of celluloids: one stack for each 
limb, along with one for the trunk and head. You would first put down the cells of the far arm and leg, then the 
trunk/head, then the near arm and leg. Then, if you got the registration marks lined up correctly, it would appear to 
be a complete body, and you would photograph the result. Then you would exchange new cells (only those that 
changed), and repeat the procedure, maybe moving the registration mark to make the whole object move. 

Animation Structures and Controls 

There are two structures involved in Amiga animation: AnimComp and AnimOb. 

The AnimComp (for Animation Component), is an extension of the Bob structure; all the graphic fields of the 
underlying Bobs are set up as described in the preceding chapters. Its main use is to provide linkages so a stack of 
AnimComps may be sequenced automatically, and so multiple sequences can be grouped to reference a 'common 

472 Graphics: Sprites. Bobs and Animation 



registration point. Each AnimComp represents just one version of an object such as a rotating ball, or an arm. 

The second structure is the AnimOb, which provides the variables needed for overall control of a set of 
AnimComps. The AnimOb itself contains no imagery; it provides the common registration point, and specifies how 
the system should automatically move that point. 

AnimComp and AnimOb work by emulating the real-word animation methodology. Every AnimComp is analogous 
to one sheet of celluloid, representing one (perhaps the only) image of an object, or part of an object. AnimComps 
have pointers, PrevSeq and NextSeq, that let you group these cells into stacks. AnimComps also have PrevComp 
and NextComp pointers, that let you group stacks into more complex objects. 

A single stack representing a rotating ball, viewed sequentially, could be a complete Boing Ball animation. A 
sequence of arms would appear to swing back and forth at the shoulder. The system displays the initial AnimComp 
(the "top of the stack"); then switches to the AnimComp's NextSeq (which is also an AnimComp), then its 
NextSeq, etc. When it reaches the end of the sequence, you can have it start over automatically by having the last 
AnimComp's NextSeq point to the first AnimComp in the stack (a circular list). So to do a Boing Ball, or a simple 
inchworm, you could have only one stack that was repeated endlessly. 

But to do the multi-component walking human as described previously, you \lIQuId need to have five stacks, which 
on the Amiga means five circular lists of AnimComps. To group these stacks into one cohesive unit, you link the 
stacks via the PrevComp and NextComp pointers, (say, the Arms, Legs, and Trunk sequences) into one larger object 
(the human figure). All the stacks would share a common AnimOb, so that it can be controlled conveniently. 

ANIMATION TYPES 

The GELs system provides several ways of setting up automatic animation, loosely based on some categories of 
movement in real life. Some things (like balls, arrows, 16 ton weights) can move independently of the background, 
and look even more realistic if they tumble or rotate as they move; other things (like worms, wheels, and people) 
must be anchored to the background, or they will appear to slide unnaturally. 

The system software allows these types of animation through simple motion control, motion control with sequenced 
drawing, and sequenced drawing using Ring Motion Control. 

Simple Motion Control 

To produce motion of a simple object, like a smooth ball, the artist simply moves that cell relative to the overall 
display, a little at a time. This is simple motion control, and can be accomplished with one AnimComp and one 
AnimOb, by simply changing the AnimOb's position every N frames. The apparent speed of the object is a 
combination of how often it is moved (every frame, every other frame, etc.) and how far it is moved (how much the 
AnimOb's AnX and AnY are changed). 

Sequenced Drawing 

To make the ball appear to rotate is a little more complex. To produce apparent movement within the image, 
sequencing is used. This is done by having a stack of cells that are laid down one after the other, a frame at a time. 
The stack can be made to repeat automatically, for endless movement. So, when you combine sequenced drawing 
with simple motion control, you can do things like having a rotating ball bounce around. This can be accomplished 
with several AnimComps (one for each view of the ball) and one AnimOb, with the system automatically 

Graphics: Sprites, Bobs and Animation 473 



sequencing the AnimComps, and changing the AnimOb's position every N frames. 

Ring Motion Control 

Making a wonn appear to crawl is similar to the rotating ball. There is still a stack of frames that are sequenced 
automatically, and one controlling AnimOb. But each cell is drawn to appear to move relative to the common 
reference point, which remains stationary through the stack. And, rather than the AnimOb's reference point moving 
each frame, you tell the system how far to move it at the end of each sequence. 

In other words, as the object moves relative to the registration point as the stack is viewed, when the stack is 
restarted, the registration point must be relocated to maintain fluid apparent motion. Ring motion control looks like: 

Drawl, Draw2, Draw3, Move, Drawl, Draw2, Draw3, Move, Drawl... 

The following figures show some sequences that illustrate these techniques. 

Animator's Registration Marks 

Shows only 4 views from a full walk sequence 

The figure moves 
as each of the 
sequenced 
drawings is 
produced in 
place of the 
previous one 
in the sequence. 

Figure 25-4: Ring Motion Control 

474 Graphics: Sprites, Bobs and Animation 

When the sequenced 
drawing reaches the end 
and restarts with drawing 1 
again, the registration mark 
is moved so that a smooth 
transition is formed. 



CHARACTERISTICS OF THE ANIMATION SYSTEM 

For each Object, you initially specify: 

The starting position of this object 

• Its velocity and acceleration (optional). 

A pointer to the first of its animation components. 

A pointer to a special animation routine related to this object (optional). 

Your own extensions to this structure (optional). 

For each Object's Components, you initially specify: 

A pointer to the Component's controlling Object 

Initial and alternate views, their timing and order. 

• The initial inter-component drawing priorities. 

A pointer to a special animation routine related to this component (optional). 

Your own extensions to this structure (optional). 

The animation system automatically: 

Sequences through the alternate views. 

Moves linked objects as a group. 

Maintains inter-object prioritizati~n. 

Calls your routines, if specified. 

SPECIFYING ANIMATION COMPONENTS 

When the Components of a complex animation object are built, the PrevComp and NextComp pointers must be 
initialized for the initial view of each animation sequence only. In the previous figure, the pointers shown 
connecting the five sequences of the 'human' AnimOb illustrate this point. The components that are not active 
should have their PrevComp and NextComp pointers set to NULL. 

NOTE 

You cannot store data in the empty PrevComp and NextComp fields. As the system cycles through the 
AnimComps, the next AnimComp becomes the head of the sequence. When this happens, the 
NextComp and PrevComp field for the old head are set to NULL, and the new head AnimComp is 
linked in, in place of the old one. 

Graphics: Sprites, Bobs and Animation 475 



Whenever the animation system senses that one of the animation components has "timed out", the next AnimComp 
in that sequence becomes active. The lists are automatically adjusted so that only the new HeadComp has its 
PrevComp and NextComp pointers set. The complete animation object is retained. 

To find the active animation component at run time, you must look an the AnimOb's HeadComp field. To find the 
active AnimComp from any AnimComp, use the HeadOb field to find the AnimOb first. 

SEQUENCING COMPONENTS 

To specify the sequencing of any of the individual parts, the pointers called PrevSeq and NextSeq are used to build 
a doubly-linked list. The sequence can be made circular (and usually is) by linking the first and last components. 

The system is designed so that only one of the Components in any given sequence is "active" (being displayed) at a 
given point in time. It is the only one in the sequence that is (or is about to be) linked into the GelsInfo list. The 
Timer determines how long each Component in the sequence remains active, as described above. 

Sequence List Traversal 

Within each AnimOb is a number of sequences. HeadComp of the AnimOb points to the first AnimComp in the list 
of sequences. 

Each sequence is identified by its "active" AnimComp. There can only be one active AnimComp in each sequence. 
The sequences are linked together by their active AnimComps; for each of these the NextComp and PrevComp fields 
link the sequences together to create a list. The first sequence in the list (HeadComp of the AnimOb), has its 
PrevComp set to NULL. The last sequence in the list has its NextComp set to NULL. None of the inactive 
AnimComps should have NextComp or PrevComp set. 

Within each sequence, the AnimComps are linked together with the NextSeq and PrevSeq fields. The list formed by 
these links mayor may not be a loop. For the list to be a loop, the NextSeq of the last AnimComp must point back 
to the first AnimComp, and the PrevSeq of the first AnimComp must point to the last AnimComp. If the list is a 
loop, then the system will continue to cycle through the list until it is stopped. If the list is not a loop, then the 
program must act to restart the sequence after the last item is displayed. The AnimCRoutine of the last AnimComp 
may be used to do this. 

Component Ordering 

The PrevSeq, NextSeq, PrevComp and NextComp linkages have no bearing on the order in which Components in 
any given frame are drawn. To specify the inter-Component and inter-Object priorities (so that further things appear 
behind nearer things), the Before and After pointers in the initially active AnimComp's underlying Bob structure 
are linked in to the rest of the system, as described previously in the Bob. 

This set-up also needs to be done once,for the initially active components of the Animation Object only. 

The animation system adjusts the Before and After pointers of the Bob structures to constantly maintain the inter
Component drawing sequence, even though different Components are being made active as sequencing occurs. 

These pointers also assure that one complete object always has priority over another object. The Bob Before and 
After pointers are used to link together the last AnimComp's Bob of one AnimOb to the first AnimComp's Bob of 

476 Graphics: Sprites, Bobs and Animation 



the next AnimOb. 

Position of an AnimComp 

To specify the placement of each component relative to the registration point (the AnimOb), you set the 
AnimComp members XTrans and YTrans. These values can be positive or negative. 

You can have the system call custom routine(s) (that you provide) by specifying an AnimORoutine or 
AnimCRoutine. See the section called "Your Own Animation Routine Calls" for details. 

The human figure Animation is built of several components (the arms, legs, trunk), all of which are sequenced. The 
AnimOb points to the head component. The "head" component may be any of the components of the object. 
Notice that, once the system has a pointer to one of the active components, it can find the other active components 
by following PrevComp and NextComp. Astute readers will notice that, in this particular example, (because all the 
sequences have the same number of components, and all the sequences are switched simultaneously) the walking 
human could be implemented as one sequence, with the entire figure in each pose. 

~ I ~ J 

~ ~ 
AnimComp AnimComp AnimComp AnimComp AnimComp 

AnimOb 

Figure 25-5: Linking AnimComps For a Multiple Component AnimOb 

Graphics: Sprites, Bobs and Animation 477 



ANIMATION SEQUENCING 

SPECIFYING TIME FOR EACH IMAGE 

The AnimComp members Timer and TimeSet are used to specify how long the system should keep each sequential 
image on the screen. 

When the system makes an animation component active, it copies the value you have put in the TimeSet member 
into the Timer member. On each subsequent call to Animate( ), the system decrements Timer; as long as it is 
greater than zero, that AnimComp remains active. When the Timer value reaches zero, Animate( ) makes the next 
AnimComp in the sequence active, and the process repeats. If you initialize the value in TimeSet to zero,the system 
will not sequence this component (and Timer will remain zero). The above figures illustrate how to initialize the 
"next sequential image" pointers to have the system step from one image to the next. 

Setting Up Simple Motion Control 

In this form of animation, you can specify objects that have independently controllable velocities and accelerations 
in the X and Y directions. Components can still sequence. 

The variables that control this motion are located in the AnimOb structure and are called: 

YVel, XVel-the velocities in the y and x directions. These values are added to the position values on 
each call to Animate( ). 

YAccel, XAccel-the accelerations in the y and x directions. These values are added to the velocity 
values on each call to Animate(). The velocity values are updated before the position values. 

Setting Up Ring Motion Control 

To make a given component trigger a move of the AnimOb (move the registration mark to a new location), you set 
the RINGTRIGGER bit of that component's Flags. When the system software encounters this flag, it adds the 
values of RingXTrans and RingYTrans found in the Head AnimOb structure to its AnX and AnY. The next time 
you execute DrawGList(), the drawing sequence will use the new registration point. 

You usually set RING1RIGGER in only one of the animation components in a sequence (the last one); however, 
you can use this flag and the translation variables any way you wish. 

Using Sequenced Drawing and Motion Control 

If you are using Ring Motion Control, you will probably set the velocity and acceleration variables to zero. 

Again, consider the example of a person walking. With Ring Motion Control, as each foot falls it is positioned on 
the ground exactly where originally drawn. If you included a velocity value, the person's foot would not be 
stationary with respect to the ground, and the person would appear to "skate" rather than walk. If you set the 

478 Graphics: Sprites, Bobs and Animation 



velocity and acceleration variables at zero, you avoid this problem. 

When the system activates a new sequence component, it checks that component's Flags to see if the 
RINGTRIGGER bit is set If so, the system adds RingYTrans and RingXTrans to AnY and AnX respectively. 
See the section called "Animation Types" for details. 

ANOTHER LOOK AT THE ANIMOB 

The AnimOb is the structure that gives overall control. All AnimComps associated with an AnimOb use the 
AnimObs Y,X position as a reference point into the display. This way, by changing one variable, you can control 
the (possibly many) Component pieces, and the entire object will always appear on the display as a cohesive group. 

Position of an AnimOb 

To specify where the common registration point is located, use the AnimOb structure members AnX and AnY. The 
following figure illustrates that each component has its own offset from the object's registration point 

AnY 

AnX 
RastPort Drawing Area 

Registration point 
(reference) for all 
parts of an AnimOb. 

X increases from left to right 

Figure 25-6: Specifying an AnimOb Position 

Y increases from 
top to bottom of 
drawing area 

When you change the animation object's AnX and AnY, all of the component parts will be redrawn relative to it the 
next time DrawGList( ) is called. 

ADDING ANIMATION OBJECTS 

Use the routine AddAnimOb( ) To add animation objects to the controlled object list. This routine will link the 
PrevOb and NextOb pointers to chain all the AnimObs that the system is controlling. 

Graphics: Sprites, Bobs and Animation 479 



Next AnimOb 

Previous AnimOb 

Original (first view) 
of an AnimOb, 

designed by the user. 

Next AnimComp 

NON-CURRENT 
additional views of 
each component, 

waiting to be used. 

Next AnimComp 

Previous AnimComp 

+---... 

Next AnimComp 

Previous AnimComp 

+---... 

Next AnimComp 

Previous AnimComp 

~--+Sequence Linkage +---.. · 

Figure 25-7: Linking of an AnimOb 

YOUR OWN ANIMATION ROUTINE CALLS 

The AnimOb and AnimComp structures include pointers to your own routines that you want the system to call. If 
you want a routine to be called, you put the address of the routine in this member. If no routine is to be called, you 
must set this variable to NULL. These routines are passed one parameter, a pointer to the AnimOb or AnimComp 
it was related to. You can use user structure extensions to hold the variables you need for your own routines. 

For example, if you provide a routine: 

VOID MyOCode(anOb) 
struct AnimOb *anOb; 
{ 

1* whatever needs to be done *1 
} 

Then, if you put the address of the routine in an AnimObs structure: 

480 Graphics: Sprites, Bobs and Animation 



myAnimOb.AnimORoutine = MyOCode; 

It will be called when Animate( ) processes this AnimOb, and it will be passed the address of this AnimOb. 

The AnimORoutines and AnimCRoutines are called as follows: 

For every AnimOb in the list: 
• Update its location and velocities. 
• Call the AnimOb's special routine if one is supplied. 
• For each component of the AnimOb: 

• If this sequence times out, switch to the new one. 
• Call this component's special routine if one is supplied. 
• Set the sequence's VSprite's y,x coordinates based 

on whatever these routines have caused. 

MOVING THE OBJECTS 

When you have defined all of the structures and have established all of the links, you can call the Animate( ) routine 
to move the objects. 

THE ANIMATE() SYSTEM CALL 

Animate( ) adjusts the positions of the objects as described above, and calls the various subroutines 
(AnimCRoutines and AnimORoutines) that you have specified. 

After the system has completed the Animate( ) routine, as some GELs may have been moved, the GelsInfo list order 
may possibly be incorrect. Therefore, the list must be re-sorted, as always, before passing it to a system routine. 

If you are using collision detection, you then perform DoColiision(). Your collision routines may also have an 
effect on the relative position of the GELs. Therefore, you should again call SortGList( ) to assure that the system 
correctly orders the objects before you call DrawGList(). When you call DrawGList(), the system renders all the 
GELs it finds in the Gelslnfo list, and the changes caused by the Animate( ) can be seen. 

This is illustrated in the following typical call sequence: 

/* ... setup of graphics elements and objects */ 

Animate (myAnimKey, rp); 
SortGList(rp); 
DoCollision(rp); 
SortGList (rp) ; 
DrawGList(vp, rp); 

THEANIMKEY 

/* "move" objects per instructions */ 
/* put them in order */ 
/* software collision detect/action */ 
/* put them back into right order */ 
/* draw into current RastPort */ 

The system uses one pointer, known as the AnimKey, to keep track of all the AnimObs via the PrevOb and NextOb 
pointer linkage. The AnimKey points to the AnimOb that is first in the PrevOb/NextOb linkage. As each new 
Object is added (via AddAnimOb( », it is linked in at the beginning of the list, so AnimKey will always point to 
the object most recently added to the list. 

Graphics: Sprites, Bobs and Animation 481 



To search forward through the list, start with the AnimKey and move forward on the NextOB link. Continue to 
move forward until the NextOb is null, indicating the end of the list. The PrevOb link will allow you to move back 
to a previous object. 

NOTE 

It is important that the NextOb link of the last object is NULL, and that the PrevOb of the first object is 
NULL. In fact, the system expects the animation object lists to be EXACTLY the way that they are 
described above. If they are not, the system will have unexpected results. 

STANDARD GEL RULES STILL APPLY 

Before you use the animation system, you must have called the routine InitGels( ). 

The section called' 'Getting the List of Bobs in Order" described how the system maintains the list of GELs to draw 
on the screen according to their various data fields. The animation system selectively adds GELs to and removes 
GELs from this list of screen objects during the Animate( ) routine. On the next call to DrawGList( ), the system 
will draw the GELs in the list into the selected RastPort. 

ANIMATIONS SPECIAL NUMBERING SYSTEM 

Velocities and accelerations can be either positive or negative. The system treats the velocity, acceleration and Ring 
values as fixed-point binary fractions, with the decimal point at position 6 in the word. That is: 

vvvvvvvvvv.ffffff 

where v stands for actual values that you add to the x or y (AnX, AnY) positions of the object for each call to 
Animate(). and f stands for the fractional part. By using a fractional part, you can specify the speed of an object in 
increments as precise as l/64th of an interval. . 

If you set the value of XVel at OxOO01, it will take 64 calls to the Animate() routine before the system will modify 
the object's x coordinate position by a step of one. The system constant ANFRACSIZE can be used to shift values 
correctly. So if you set the value to (1 « ANFRACSIZE), it will be set to Ox0040, the value required to move the 
object orie step per call to Animate(). The system constant ANIMHALF can be used if you want the object to 
move every other call to Animate( ). 

Each call you make to Animate() simply adds the value of XAccel to the current value of XVel, and YAccel to the 
current value of YVel, modifying these values accordingly. 

Complete Example Program 

The following program produces a display with a single animation object. The animation object consists of four 
sequences: a boing ball which appears to rotate on its axis, and three orbiting satellites. The display is single
buffered, with a command line option to make it double buffered. 

Here is the file animtools.h, which contains the typedefs required for this example program. 

482 Graphics: Sprites, Bobs and Animation 



#ifndef GELTOOLS_H 
#define GELTOOLS_H 

1* these data structures are used by the functions in animtools.c to 
** allow for an easier interface to the animation system. 
*1 

1* data structure to hold information for a new vsprite. 
** note that: 
** NEWVSPRITE myNVS; 
** is equivalent to: 
** struct newVSprite myNVS; 
*1 
typedef struct newVSprite 

*nvs _Image; 1* image data for the vsprite 
{ 

WORD 
WORD 
SHORT 
SHORT 
SHORT 
SHORT 
SHORT 
SHORT 

*nvs ColorSet; 1* color array for the vsprite 
nvs~::WordWidth; 1* width in words 
nvs_LineHeight; 1* height in lines 
nvs_ImageDepth; 1* depth of the image 
nvs - X; 1* initial x position 
nvs Y; 1* initial y position 
nvs:=Flags; 1* vsprite flags 

} NEWVSPRITE; 

1* data structure to hold information for a new bob. 
** note that: 
** NEWBOB myNBob; 
** is equivalent to: 
** struct newBob myNBob; 
*1 
typedef struct newBob 

{ 

WORD *nb_Image; 1* image data for the bob 
SHORT nb WordWidth; 1* width in words 
SHORT nb:=LineHeight; 1* height in lines 
SHORT nb_ImageDepth; 1* depth of the image 
SHORT nb PlanePick; 1* planes that get image 
SHORT nb-PlaneOnOff; 1* unused planes to turn 
SHORT nb:=BFlags; 1* bob flags 
SHORT nb DBuf; 1* l=double buf, O=not 
SHORT nb:=RasDepth; 1* depth of the raster 
SHORT nb X; 1* initial x position 
SHORT nb:=Y; 1* initial y position 
} NEWBOB 

*1 
*1 
*1 
*1 

data *1 
on *1 

*1 
*1 
*1 
*1 
*1 

1* data structure to hold information for a new animation component. 
** note that: 
** NEWANIMCOMP myNAC; 
** is equivalent to: 
** struct newAnimComp myNAC; 
*1 
typedef struct newAnimComp 

( 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

WORD (*nac_Routine) (); 1* routine called when Comp is displayed. *1 
SHORT nac_Xt; 1* initial delta offset position. *1 
SHORT nac Yt; 1* initial delta offset position. *1 
SHORT nac:=Time; 1* Initial Timer value. *1 
SHORT nac_CFlags; 1* Flags for the Component. *1 
) NEWANIMCOMP; 

1* data structure to hold information for a new animation sequence. 
** note that: 
** NEWANIMSEQ myNAS; 
** is equivalent to: 
** struct newAnimSeq myNAS; 
*1 
typedef struct newAnimSeq 

{ 

struct AnimOb *nas_HeadOb; 1* common Head of Object. 
WORD *nas_Images; 1* array of Comp image data 
SHORT *nas_Xt; 1* arrays of initial offsets. 

*1 
*1 
*1 

Graphics: Sprites, Bobs and Animation 483 



SHORT *nas yt; 
SHORT *nas-Times; 
WORD (**nas-Routines) (); 
SHORT nas=CFlags; 
SHORT nas Count; 
SHORT nas-HitMask; 
SHORT nas-MeMask; 
SHORT nas=SingleImage; 
} NEWANIMSEQ; 

Ifendif 

/* arrays of initial offsets. */ 
/* array of Initial Timer value. */ 
/* Array of fns called when comp drawn */ 
/* Flags for the Component. */ 
/* ~Ium Comps in seq (= arrays size) */ 
/* Hit mask. */ 
/* Me mask. */ 
/* one (or count) images. */ 

Here is the file animtoolsyroto.h, which contains prototypes for the file animtools.c. 

struct GelsInfo *setupGelSys(struct RastPort *rPort, BYTE reserved); 
VOID cleanupGelSys(struct GelsInfo *gInfo, struct RastPort *rPort); 

struct VSprite *makeVSprite(NEWVSPRITE *nVSprite); 
struct Bob *makeBob(NEWBOB *nBob); 
struct AnimComp *makeComp(NEWBOB *nBob, NEWANIMCOMP *nAnimComp); 
struct AnimComp *makeSeq(NEWBOB *nBob, NEWANIMSEQ *nAnimSeq); 

VOID freeVSprite(struct VSprite *vsprite); 
VOID freeBob(struct Bob *bob, LONG rasdepth); 
VOID freeComp(struct AnimComp *myComp, LONG rasdepth); 
VOID freeSeq(struct AnimComp *headComp, LONG rasdepth); 
VOID freeOb(struct AnimOb *headOb, LONG rasdepth); 

Here is the file animtools.c, which contains tools for the animation system. 

/* animtools.c 190ct89 
** original code by Dave Lucas. 
** rework by CATS 
** 
** This file is a collection of tools which are used with the VSprite, Bob 
** and Animation system software. It is intended as a useful EXAMPLE, and 
** while it shows what must be done, it is not the only way to do it. 
** If Not Enough Memory, or error return, each cleans up after itself 
** before returning. 
** 
** NOTE: these routines assume a very specific structure to the 
** gel lists. make sure that you use the correct pairs together 
** (Le. makeOb()/freeOb(), etc.) 
** 
** lattice c 5.04 
** lc -bl -cfist -v -y animtools.c 
*/ 

Ifinclude <exec/types.h> 
Ifinclude <exec/memory.h> 
Ifinclude <graphics/gfx.h> 
Ifinclude <graphics/gels.h> 
Ifinclude <graphics/clip.h> 
Ifinclude <graphics/rastport.h> 
Ifinclude <graphics/view.h> 
#include <graphics/gfxbase.h> 

#include "/animtools/animtools.h" 
#include "/animtools/animtools_proto.h" 

#include <proto/all.h> 

/*-------------------------------------------------------------
** setup the gels system. After this call is made you can use 
** vsprites, bobs, anim comps, and anim obs. 
** 
** note that this links the GelsInfo structure into the rast port, 
** and calls InitGels(). 

** 
** all resources are properly freed on failure. 

484 Graphics: Sprites, Bobs and Animation 



** 
** It uses information in your RastPort structure to establish 
** boundary collision defaults at the outer edges of the raster. 
** 
** This routine sets up for everything - collision detection and all. 
** 
** You must already have run LoadView before ReadyGelSys is called. 
*1 
struct Gelslnfo *setupGeISys(struct RastPort *rPort, BYTE reserved) 
( 
struct Gelslnfo *gInfo; 
struct VSprite *vsHead; 
struct VSprite *vsTail; 

if (NULL != (gInfo = 
(struct Gelslnfo *)AllocMem«LONG)sizeof(struct Gelslnfo), MEMF_CLEAR))) 
( 
if (NULL != (gInfo->nextLine = 

(WORD *)AllocMem«LONG)sizeof(WORD) * 8, MEMF_CLEAR))) 
( 
if (NULL != (gInfo->lastColor = 

(WORD **)AllocMem«LONG)sizeof(LONG) * 8, MEMF_CLEAR))) 
{ 
if (NULL != (gInfo->coIIHandler = 

(struct collTable *)AllocMem«LONG)sizeof(struct coIITable), 
MEMF_CLEAR)) ) 

{ 

if (NULL != (vsHead = (struct VSprite *)AllocMem( 
(LONG) sizeof (struct VSprite), MEMF CLEAR))) 

( -
if (NULL != (vsTail = (struct VSprite *)AllocMem( 

(LONG)sizeof(struct VSprite), MEMF CLEAR))) 
{ -
gInfo->sprRsrvd 
gInfo->leftmost 
gInfo->rightmost 

reserved; 
0; 

(rPort->BitMap->BytesPerRow « 3) - 1; 
gInfo->topmost 0; 
gInfo->bottommost = rPort->BitMap->Rows - 1; 

rPort->Gelslnfo = gInfo; 

InitGels(vsHead, vsTail, gInfo); 

return(gInfo); 
} 

FreeMem(vsHead, (LONG)sizeof(*vsHead)); 
} 

FreeMem(gInfo->coIIHandler, (LONG)sizeof(struct coIITable)); 
} 

FreeMem(gInfo->lastColor, (LONG) sizeof (LONG) * 8); 
} 

FreeMem(gInfo->nextLine, (LONG)sizeof(WORD) * 8); 
} 

FreeMem(gInfo, (LONG)sizeof(*gInfo)); 
} 

return (NULL) ; 
} 

1*-------------------------------------------------------------
** free all of the stuff allocated by setupGeISys(). 
** only call this routine if setupGeISys() returned successfully. 
** the Gelslnfo structure is the one returned by setupGeISys(). 
** 
** It also unlinks the Gelslnfo from the RastPort. 
*1 
VOID c1eanupGelSys(struct Gelslnfo *gInfo, struct RastPort *rPort) 
{ 

rPort->Gelslnfo = NULL; 

FreeMem(gInfo->coIIHandler, (LONG)sizeof(struct coIITable)); 
FreeMem(gInfo->lastColor, (LONG) sizeof (LONG) * 8); 

Graphics: Sprites, Bobs and Animation 485 



FreeMem(gInfo->nextLine, (LONG) sizeof(WORD) * 8); 
FreeMem(gInfo->gelHead, (LONG)sizeof(struct VSprite»; 
FreeMem (gInfo->gelTail, (LONG) sizeof (struct VSprite»; 
FreeMem(gInfo, (LONG) sizeof (*gInfo»; 
} 

/*-------------------------------------------------------------
** create a VSprite from the information given in nVSprite. 
** use freeVSprite() to free this gel. 
*/ 
struct VSprite *makeVSprite(NEWVSPRITE *nVSprite) 
( 
struct VSprite *vsprite; 
LONG line_size; 
LONG plane_size; 

line size = (LONG)sizeof(WORD) * nVSprite->nvs WordWidth; 
plane_size = line_size * nVSprite->nvs_LineHeight; 

if (NULL != (vsprite = 
(struct VSprite *)AllocMem((LONG)sizeof(struct 
( 

if (NULL 
(WORD 
( 

!= (vsprite->BorderLine = 
*)AllocMem(line_size, MEMF_CHIP») 

if (NULL != (vsprite->CollMask = 

VSprite), MEMF_CLEAR») 

(WORD *)Al1ocMem(plane_size, MEMF_CHIP») 
( 
vsprite->Y 
vsprite->X 
vsprite->Flags 
vsprite->Width 
vsprite->Depth 
vsprite->Height 
vsprite->MeMask 
vsprite->HitMask 
vsprite->ImageData 
vsprite->SprColors 
vsprite->PlanePick 
vsprite->PlaneOnOff 

InitMasks(vsprite); 
return(vsprite); 
} 

nVSprite->nvs Y; 
nVSprite->nvs-X; 
nVSprite->nvs-Flags; 
nVSprite->nvs=WordWidth; 
nVSprite->nvs ImageDepth; 
nVSprite->nvs=LineHeight; 
1; 
1; 
nVSprite->nvs Image; 
nVSprite->nvs=ColorSet; 
OxOO; 
OxOO; 

FreeMem(vsprite->BorderLine, line_size); 
} 

FreeMem(vsprite, (LONG) sizeof(*vsprite»; 
} 

return (NULL) ; 
} 

/*-------------------------------------------------------------
** create a Bob from the information given in nBob. 
** use freeBob() to free this gel. 
** 
** A VSprite is created for this bob. 
** This routine properly allocates all double buffered information 
** if it is required. 
*/ 
struct Bob *makeBob(NEWBOB *nBob) 
( 
struct Bob 
struct VSprite 
NEWVSPRITE 
LONG 

*bob; 
*vsprite; 
nVSprite 
rassize; 

rassize (LONG)sizeof(UWORD) * 
nBob->nb WordWidth * nBob->nb_LineHeight * nBob->nb_RasDepth; 

if (NULL != (bob = 
(struct Bob *)AllocMem((LONG)sizeof(struct Bob), MEMF_CLEAR») 
( 

486 Graphics: Sprites, Bobs and Animation 



if (NULL != (bob->SaveBuffer = (WORD *)AllocMem(rassize, MEMF_CHIP») 
{ 
nVSprite.nvs WordWidth nBob->nb WordWidth; 
nVsprite.nvs=LineHeight nBob->nb-LineHeight; 
nVSprite.nvs ImageDepth nBob->nb-ImageDepth; 
nVSprite.nvs=Image nBob->nb-Image; 
nVSprite.nvs X nBob->nb-X; 
nVSprite.nvs-Y nBob->nb=Y; 
nVSprite.nvs-ColorSet NULL; 
nVSprite.nvs=Flags nBob->nb_BFlags; 

if ((vsprite = makeVSprite(&nVSprite» != NULL) 
{ 
vsprite->PlanePick = nBob->nb_PlanePick; 
vsprite->PlaneOnOff = nBob->nb_PlaneOnOff; 

vsprite->VSBob 
bob->BobVSprite 
bob->ImageShadow 
bob->Flags 
bob->Before 
bob->After 
bob->BobComp 

if (nBob->nb_DBuf) 
{ 

= bob; 
vsprite; 
vsprite->ColIMask; 
0; 
NULL; 
NULL; 
NULL; 

if (NULL != (bob->DBuffer = (struct DBufPacket *)AllocMem( 
(LONG)sizeof(struct DBufPacket), MEMF_CLEAR») 

else 

{ 
if (NULL != (bob->DBuffer->BufBuffer = 

(WORD *)AllocMem(rassize, MEMF CHIP») 
( -
return (bob) ; 
) 

FreeMem(bob->DBuffer, (LONG)sizeof(struct DBufPacket»; 
) 

( 
bob->DBuffer 
return (bob) ; 
) 

NULL; 

freeVSprite(vsprite); 
) 

FreeMem(bob->SaveBuffer, rassize); 
) 

FreeMem(bob, (LONG)sizeof(*bob»; 
) 

return(NULL); 
) 

1*-------------------------------------------------------------
** create a Animation Component from the information given in nAnimComp 
** and nBob. 
** use freeComp() to free this gel. 
** 
** makeComp calls makeBob(), and links the bob into a AnimComp. 
*1 
struct AnimComp *makeComp(NEWBOB *nBob, NEWANIMCOMP *nAnimComp) 
{ 

struct Bob *compBob; 
struct AnimComp *aComp; 

if ((aComp = AllocMem((LONG)sizeof(struct AnimComp),MEMF_CLEAR» != NULL) 
{ 

if ((compBob = makeBob(nBob» != NULL) 
{ 

compBob->After 
compBob->Before 
compBob->BobComp 

NULL; 1* Caller can deal with these later. *1 
NULL; 
aComp; 1* Link 'em up. *1 

Graphics: Sprites, Bobs and Animation 487 



aComp->AnimBob 
aComp->TimeSet 
aComp->YTrans 
aComp->XTrans 
aComp->AnimCRoutine 
aComp->Flags 
aComp->Timer 
aComp->NextSeq 
aComp->PrevSeq 
aComp->NextComp 

aComp->PrevComp 
aComp->HeadOb 

return(aComp); 
} 

compBob; 
nAnimComp->nac Time; 1* Num ticks active. *1 
nAnimComp->nac-Yt; 1* Offset rel to HeadOb *1 
nAnimComp->nac=Xt; 
nAnimComp->nac Routine; 
nAnimComp->nac=CFlags; 
0; 
NULL; 
NULL; 
NULL; 

= NULL; 
= NULL; 

FreeMem(aComp, (LONG)sizeof(struct AnimComp)); 
} 

return(NULL); 
} 

1*-------------------------------------------------------------
** create an Animation Sequence from the information given in nAnimSeq 
** and nBob. 
** use freeSeq() to free this gel. 
** 
** this routine creates a linked list of animation components which 
** make up the animation sequence. 
** 
** It links them all up, making a circular list of the PrevSeq 
** and NextSeq pointers. That is to say, the first component of the 
** sequences' PrevSeq points to the last component; the last component of 
** the sequences' NextSeq points back to the first component. 
** 
** If dbuf is on, the underlying Bobs'll be set up for double buffering. 
** If singleImage is non-zero, the pImages pointer is assumed to point to 
** an array of only one image, instead of an array of 'count' images, and 
** all Bobs will use the same image. 
*1 
struct AnimComp *makeSeq(NEWBOB *nBob, NEWANIMSEQ *nAnimSeq) 
( 
int seq; 
struct AnimComp *firstCompInSeq = NULL; 
struct AnimComp *seqComp = NULL; 
struct AnimComp *lastCompMade = NULL; 
LONG image size; 
NEWANIMCOMP nAnimComp; 

1* get the initial image. this is the only image that is used 
** if nAnimSeq->nas_SingleImage is non-zero. 
*1 
nBob->nb Image = nAnimSeq->nas Images; 
image_size = nBob->nb_LineHeight * nBob->nb_ImageDepth * nBob->nb_WordWidth; 

1* for each comp in the sequence *1 
for (seq = 0; seq < nAnimSeq->nas_count; seq++) 

{ 

nAnimComp.nac_Xt 
nAnimComp.nac Yt 
nAnimComp.nac-Time 
nAnimComp.nac-Routine 
nAnimComp.nac=CFlags 

*(nAnimSeq->nas_Xt + seq); 
*(nAnimSeq->nas Yt + seq); 
*(nAnimSeq->nas Times + seq); 
nAnimSeq->nas Routines[seq); 
nAnimSeq->nas=CFlags; 

if «seqComp = makeComp(nBob, &nAnimComp)) == NULL) 
{ 

if (firstCompInSeq != NULL) 
freeSeq(firstCompInSeq, (LONG)nBob->nb_RasDepth); 

return(NULL); 
} 

seqComp->AnimBob->BobVSprite->HitMask = nAnimSeq->nas HitMask; 
seqComp->AnimBob->BobVSprite->MeMask = nAnimSeq->nas MeMask; 
seqComp->HeadOb = nAnimSeq->nas_HeadOb; -

488 Graphics: Sprites, Bobs and Animation 



/* Make a note of where the first component is. */ 
if (firstComplnSeq == NULL) 

firstComplnSeq = seqComp; 

/* link the component into the list */ 
if (lastCompMade != NULL) 

lastCompMade->NextSeq = seqComp; 

seqComp->NextSeq = NULL; 
seqComp->PrevSeq = lastCompMade; 
lastCompMade = seqComp; 

/* If nAnimSeq->nas_Singlelmage is zero, 
** the image array has nAnimSeq->nas_Count images. 
*/ 
if (!nAnimSeq->nas_Singlelmage) 

nBob->nb_Image += image_size; 

/* On The last component in the sequence, set Next/Prev to make 
** the linked list a loop of components. 
*/ 
lastCompMade->NextSeq = firstComplnSeq; 
firstComplnSeq->PrevSeq = lastCompMade; 

return(firstComplnSeq); 
} 

/*-------------------------------------------------------------
** free the data created by makeVSprite() 
** 
** assumes images deallocated elsewhere. 
*/ 
VOID freeVSprite(struct VSprite *vsprite) 
( 
LONG 
LONG 

line size; 
plane_size; 

line size = (LONG)sizeof(WORD) * vsprite->Width; 
plane_size = line_size * vsprite->Height; 

FreeMem(vsprite->BorderLine, line size); 
FreeMem(vsprite->CollMask, plane_size); 

FreeMem (vsprite, (LONG) sizeof (*vsprite) ) ; 
} 

/*-------------------------------------------------------------
** free the data created by makeBob() 
** 
** it's important that rasdepth match the depth you 
** passed to makeBob() when this gel was made. 
** assumes images deallocated elsewhere. 
*/ 
VOID freeBob(struct Bob *bob, LONG rasdepth) 
( 
LONG rassize; 

rassize (LONG) sizeof (UWORD) * 
bob->BobVSprite->Width * bob->BobVSprite->Height * rasdepth; 

if (bob->DBuffer != NULL) 
( 
FreeMem(bob->DBuffer->BufBuffer, rassize); 
FreeMem(bob->DBuffer, (LONG)sizeof(struct DBufPacket»; 
} 

FreeMem(bob->SaveBuffer, rassize); 
freeVSprite(bob->BobVSprite); 
FreeMem(bob, (LONG}sizeof(*bob»; 
} 

/*-------------------------------------------------------------
** free the data created by makeComp() 

Graphics: Sprites, Bobs and Animation 489 



** 
** it's important that rasdepth match the depth you 
** passed to makeComp() when this gel was made. 
** assumes images deallocated elsewhere. 
*/ 
VOID freeComp(struct AnimComp *myComp, LONG rasdepth) 
( 
freeBob(myComp->AnimBob, rasdepth); 
FreeMem(myComp, (LONG)sizeof(struct AnimComp»; 
} 

/*-------------------------------------------------------------
** free the data created by makeSeq() 
** 
** Complimentary to makeSeq(), this routine goes through the NextSeq 
** pointers and frees the Components 
** 
** This routine only goes forward through the list, and so 
** it must be passed the first component in the sequence, or the sequence 
** must be circular (which is guaranteed if you use makeSeq(». 

** 
** it's important that rasdepth match the depth you 
** passed to makeSeq() when this gel was made. 
** assumes images deallocated elsewhere. 
*/ 
VOID freeSeq(struct AnimComp *headComp, LONG rasdepth) 
{ 
struct AnimComp *curComp; 
struct AnimComp *nextComp; 

/* this is freeing a loop of AnimComps, hooked together by the 
** NextSeq and PrevSeq pointers. 
*/ 

/* break the NextSeq loop, so we get a NULL at the end of the list. */ 
headComp->PrevSeq->NextSeq = NULL; 

curComp = headComp; 
while (curComp != NULL) 

( 

/* get the start of the list */ 

nextComp = curComp->NextSeq; 
freeComp(curComp, rasdepth); 
curComp = nextComp; 
} 

/*-------------------------------------------------------------
** free an animation object (list of sequences). 
** 
** freeOb() goes through the NextComp pointers, starting at the AnimObs' 
** HeadComp, and frees every sequence. 
** it only goes forward. It then frees the Object itself. 
** assumes images deallocated elsewhere. 
*/ 
VOID freeOb(struct AnimOb *headOb, LONG rasdepth) 
{ 

struct AnimComp *curSeq; 
struct AnimComp *nextSeq; 

curSeq = headOb->HeadComp; 
while (curSeq != NULL) 

( 
next Seq = curSeq->NextComp; 

freeSeq(curSeq, rasdepth); 
curSeq = next Seq; 
} 

/* get the start of the list */ 

FreeMem(headOb, (LONG)sizeof(struct AnimOb»; 
} 

490 Graphics: Sprites, Bobs and Animation 



Here is the file image _ boing .h, which gives the gel data. 

1* This include file has the needed constants for a three plane 
** boing(tm) ball and a two plane satellite. 
*1 

SHORT boing3Times [BNG3COUNT) = ( 1, 1, 1, 1, 1, 1 }; 
SHORT boing3YTranses[BNG3COUNT) = ( 0, 0, 0, 0, 0, 0 }; 
SHORT boing3XTranses[BNG3COUNT) = { 0, 0, 0, 0, 0, 0 }; 

1* APTR boing3CRoutines[BNG3COUNT) *1 
WORD (*boing3CRoutines[BNG3COUNT)) (struct AnimComp *) 

{ NULL, NULL, NULL, NULL, NULL, NULL }; 

1* NOTE the chip keyword causes this data to load into chip memory 
** under lattice. Be sure that this initalized data resides in 
** chip memory when the program executes. 
*1 
UWORD chip boing3Image[BNG3COUNT) [BNG3WWIDTH * BNG3HEIGHT * BNG3DEPTH) 

{ 

1*----- bitmap Boing-A w = 32, h = 25 ------ *1 
( 

1*------ plane # 
Ox0023, OxOOOO, 
Ox0787, Ox8780, 
Ox63EO, OxFB90, 
Ox383D, OxF070, 
Ox467C, Ox1E10, 
OxOFOF, Ox8700, 
Ox0027, Ox2000, 
}, 

0: --------*1 
Ox004E, Ox3000, 
Ox108F, Ox8700, 
Ox43EO, OxF848, 
Ox387E, Ox1070, 
Ox479C, Ox1E30, 
Ox048F, OxOEOO, 

OxOOE3, 
Ox31F7, 
Ox3BCO, 
Ox387C, 
Ox6787, 
Ox0277, 

Ox3AOO, 
Ox8790, 
OxF870, 
OxOEEO, 
Ox3E20, 
Ox1COO, 

1*----- bitmap Boing-B w = 32, h = 25 ------ *1 
{ 

1*------ plane # 
Ox0031, Ox8000, 
Ox13C1, OxE340, 
Ox70F8, Ox3DCO, 
Ox9E1C, Ox7C30, 
Ox623F, Ox0798, 
OxOBC3, OxC380, 
Ox0033, Ox8000, 
}, 

0: --------*/ 
Ox0107, Ox1800, 
Ox1803, OxE380, 
OxE1FO, Ox3E08, 
Ox1C1F, Ox9C30, 
Ox63DE, OxOF10, 
Ox0647, OxC700, 

OxOOFO, 
Ox387B, 
Ox9DFO, 
Ox1C1F, 
Ox23C1, 
Ox023F, 

Ox1900, 
OxC390, 
Ox7C30, 
Ox0630, 
OxOF20, 
Ox8EOO, 

1*----- bitmap Boing-C w = 32, h = 25 ------ *1 
{ 

1*------ plane # 
Ox0019, OxCOOO, 
OxllFO, OxF140, 
Ox387E, OxOCEO, 
Ox8F06, Ox1E18, 
Ox300F, Ox83C8, 
OxllE1, OxF1CO, 
Ox0031, Ox8000, 
} , 

1*----- bitmap : w 
{ 

0: --------*1 
Ox0103, Ox8800, 
OxOE60, OxF1EO, 
OxF87C, Ox1F28, 
Ox8F07, OxDE18, 
Ox31EF, Ox8390, 
OxOB61, OxE300, 

Ox0278, 
Ox1C39, 
Ox8C7C, 
Ox8F07, 
Ox31FO, 
Ox07lB, 

32, h = 25 ------ *1 

1*------ plane Boing-D 0: --------*1 

Ox8DOO, 
OxFOCO, 
Ox1F18, 
OxC018, 
Ox8780, 
OxC600, 

Ox001C, OxEOOO, Ox01B1, OxCCOO, Ox031C, OxC500, 
Ox1878, Ox7840, Ox2F70, Ox78EO, OxOE08, Ox7860, 
Dx1C1F, OxD46D, OxBC1F, Ox07BO, OxC43F, DxD788, 
DxC7CO, DxDF88, OxC781, OxEF88, OxC783, OxF1l8, 
Dx3983, DxE1ED, Dx3863, OxE1CD, Dx1878, DxC1CO, 
Dx1DFD, Ox78CD, OxOB70, DxF18D, DxD588, DxE2DO, 
DxDD18, DxCDOD, 
}, 

1*----- bitmap : w 32, h = 25 ------ *1 
{ 

1*------ plane Boing-E 0: --------*1 
DxDDDE, Ox600D, DxDOF8, DxE4DD, Dx030F, OxE600, 
DxDC3E, Ox1C80, Ox27FC, Dx1C60, Dx0784, Ox3C60, 
Dx8FD7, DxC230, Ox1EOF, DxC1FO, Dx62DF, Ox83C8, 
Ox61E1, Ox83C8, Ox63EO, Ox63C8, Dx63ED, DxF9C8, 

Ox03C3, 
Dx61FO, 
Ox3801, 
OxD87C, 
Ox0787, 
Ox0161, 

DxD9E1, 
Dx3DF8, 
Dx9E3D, 
Ox7C1F, 
Dx33C3, 
DxD13D, 

OxDCFD, 
Dx1C3E, 
Dx8F3C, 
Ox6EOF, 
DxllED, 
OxD138, 

DxC9DD, 
Ox479D, 
DxF87D, 
Dx1F10, 
OxCC60, 
OxD800, 

OxEC80, 
OxDlDO, 
Ox7C30, 
Ox0780, 
OxEE20, 
OxF800, 

DxFE80, 
Dx3DCD, 
DxlF18, 
OxC1CO, 
DXF72D, 
Ox6COO, 

OxOC3C, Dx3680, 
Ox1EOF, DxB860, 
OxC7FE, Ox0788, 
Ox2783, DxEDE8, 
Ox3878, Dx338D, 
OxOD9E, Dx24DD, 

Ox061E, Dx13DD, 
Ox4FD7, DxFE20, 
Ox61CF, Dx83C8, 
Ox03ED, DXF878, 

Graphics: Sprites, Bobs and Animation 491 



/* 

Ox1DCO, OxF860, 
Ox143C, Ox3C40, 
OxOOOC, Ox6000, 
}, 

Ox1C21, OxFOEO, 
Ox09B8, Ox3880, 

Ox5C3E, OxFOCO, 
Ox05CO, Ox7000, 

/*----- bitmap : w 
{ 

32, h = 25 ------ */ 

} ; 

/*------ plane Boing-F 0: --------*/ 
Ox0026, Ox2000, OxOOFC, Ox7400, Ox0187, Ox7200, 
OxOEOF, OxOE80, Ox319F, OxOEOO, Ox23C6, OxOF30, 
Ox4781, OxF310, Ox0783, OxEODO, Ox7383, OxEOEO, 
Ox70F9, OxE1EO, Ox70F8, Ox21EO, Ox70F8, Ox3FEO, 
Ox4FFO, Ox7C30, Ox4E10, Ox7C60, Ox4EOF, Ox78 60, 
OxOE1E, OxOEOO, Ox049E, Ox1C80, OxOOE4, Ox3800, 
OxOOOE, Ox6000, 
} 

OxOC3C, Ox11CO, 
OxOOCF, Ox0400, 

Ox030F, Ox0100, 
Ox63C1, OxCF30, 
Ox70C3, OxEOEO, 
Ox91FO, Ox3E38, 
Ox2E1F, Ox08CO, 
OxOOC7, Ox9000, 

** Orbit goes from far top -> mid 1 -> near bot -> mid right 
*/ 

/*-----------------------------------------------------------------*/ 
SHORT satTim~s[SATCOUNT] = 

{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; 

/* APTR satACRoutines[SATCOUNT] */ 
WORD {*satACRoutines[SATCOUNT]} (struct AnimComp *) = 

{ 

NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL 
} ; 

SHORT satAYTranses[SATCOUNT] = 
{ 

( 18«BNFS) + «BNG3HEIGHT/2) «ANFS), ( 17«BNFS) + «BNG3HEIGHT/2) «ANFS), 
( 15«BNFS)+«BNG3HEIGHT/2)«ANFS), ( 11«BNFS)+«BNG3HEIGHT/2)«ANFS), 
( O«BNFS) + «BNG3HEIGHT/2) «ANFS), (-ll«BNFS) + «BNG3HEIGHT/2) «ANFS), 
(-15«BNFS) + «BNG3HEIGHT/2) «ANFS), (-17«BNFS) + «BNG3HEIGHT/2) «ANFS), 
(-18«BNFS) + «BNG3HEIGHT/2) «ANFS), (-17«BNFS) + «BNG3HEIGHT/2) «ANFS), 
(-15«BNFS) + «BNG3HEIGHT/2) «ANFS), (-ll«BNFS) + «BNG3HEIGHT/2) «ANFS), 
( 0«BNFS)+«BNG3HEIGHT/2)«ANFS), ( 11«BNFS)+«BNG3HEIGHT/2)«ANFS), 
( 15«BNFS)+«BNG3HEIGHT/2)«ANFS), ( 17«BNFS)+{(BNG3HEIGHT/2)«ANFS) 
} ; 

SHORT satAXTranses[SATCOUNT] 
{ 

( O«BNFS) + «BNG3WIDTH/2) «ANFS) , ( 22«BNFS) + ( (BNG3WIDTH/2) «ANFS) , 
( 45«BNFS)+«BNG3WIDTH/2)«ANFS), ( 66«BNFS)+«BNG3WIDTH/2)«ANFS), 
( 80«BNFS)+«BNG3WIDTH/2)«ANFS), ( 66«BNFS)+«BNG3WIDTH/2)«ANFS), 
( 45«BNFS)+«BNG3WIDTH/2)«ANFS), ( 22«BNFS)+«BNG3WIDTH/2)«ANFS), 
( 0«BNFS)+«BNG3WIDTH/2)«ANFS), (-22«BNFS)+«BNG3WIDTH/2)«ANFS), 
(-45«BNFS)+«BNG3WIDTH/2)«ANFS), (-66«BNFS)+«BNG3WIDTH/2)«ANFS), 
(-80«BNFS) + «BNG3WIDTH/2) «ANFS), (-66«BNFS) + «BNG3WIDTH/2) «ANFS), 
(-45«BNFS) + ( (BNG3WIDTH/2) «ANFS) , (-22«BNFS) + ( (BNG3WIDTH/2) «ANFS) 
} ; 

/* APTR satBCRoutines[SATCOUNT] */ 
WORD (*satBCRoutines[SATCOUNT]) (struct AnimComp *) = 

{ 
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL 
} ; 

/*----- bitmap : w = 5, h = 5 ------ */ 
SHORT satBYTranses[SATCOUNT] = 

( 
(-57«BNFS)+«BNG3HEIGHT/2)«ANFS), (-40«BNFS)+«BNG3HEIGHT/2)«ANFS), 
(-23«BNFS) + «BNG3HEIGHT/2) «ANFS), ( -6«BNFS) + «BNG3HEIGHT/2) «ANFS), 
( 13«BNFS)+«BNG3HEIGHT/2)«ANFS), ( 27«BNFS)+«BNG3HEIGHT/2)«ANFS), 
( 41«BNFS)+«BNG3HEIGHT/2)«ANFS), ( 53«BNFS)+«BNG3HEIGHT/2)«ANFS), 
( 57«BNFS)+«BNG3HEIGHT/2)«ANFS), ( 40«BNFS)+«BNG3HEIGHT/2)«ANFS), 
( 22«BNFS) + «BNG3HEIGHT/2) «ANFS), ( 4«BNFS) + «BNG3HEIGHT/2) «ANFS), 

492 Graphics: Sprites, Bobs and Animation 



(-13«BNFS) + «BNG3HEIGHT/2) «ANFS), (-2B«BNFS) + «BNG3HEIGHT/2) «ANFS), 
(-43«BNFS) + «BNG3HEIGHT/2) «ANFS), (-55«BNFS) +( (BNG3HEIGHT/2) «ANFS) 
) ; 

SHORT satBXTranses[SATCOUNT] = 
( 
(-57«BNFS) + «BNG3WIDTH/2) «ANFS), (-53«BNFS) + «BNG3WIDTH/2) «ANFS), 
(-41«BNFS) + «BNG3WIDTH/2) «ANFS), (-27«BNFS) + «BNG3WIDTH/2) «ANFS), 
(-13«BNFS) + «BNG3WIDTH/2) «ANFS), ( 6«BNFS) + «BNG3WIDTH/2) «ANFS), 
( 23«BNFS)+«BNG3WIDTH/2)«ANFS), ( 40«BNFS)+«BNG3WIDTH/2)«ANFS), 
( 57«BNFS) + «BNG3WIDTH/2) «ANFS), ( 55«BNFS) + «BNG3WIDTH/2) «ANFS), 
( 43«BNFS) + «BNG3WIDTH/2) «ANFS), ( 2B«BNFS) + «BNG3WIDTH/2) «ANFS), 
( 13«BNFS)+«BNG3WIDTH/2)«ANFS), ( -4«BNFS)+«BNG3WIDTH/2)«ANFS), 
(-22«BNFS)+«BNG3WIDTH/2)«ANFS), (-40«BNFS)+«BNG3WIDTH/2)«ANFS) 
} ; 

/* APTR satCCRoutines[SATCOUNT] */ 
WORD (*satCCRoutines[SATCOUNT]) (struct AnimComp *) = 

( 
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL 
) ; 

/*----- bitmap : w = 5, h = 5 */ 
SHORT satCYTranses[SATCOUNT] = 

{ 
(-13«BNFS)+«BNG3HEIGHT/2)«ANFS), ( 4«BNFS)+«BNG3HEIGHT/2)«ANFS), 
( 22«BNFS) + «BNG3HEIGHT/2) «ANFS), ( 40«BNFS) + «BNG3HEIGHT/2) «ANFS), 
( 57«BNFS)+«BNG3HEIGHT/2)«ANFS), ( 53«BNFS)+«BNG3HEIGHT/2)«ANFS), 
( 41«BNFS) + «BNG3HEIGHT/2) «ANFS), ( 27«BNFS) + «BNG3HEIGHT/2) «ANFS), 
( 13«BNFS) + «BNG3HEIGHT/2) «ANFS), ( -6«BNFS) + «BNG3HEIGHT/2) «ANFS), 
(-23«BNFS)+«BNG3HEIGHT/2)«ANFS), (-40«BNFS)+«BNG3HEIGHT/2)«ANFS), 
(-57«BNFS) + «BNG3HEIGHT/2) «ANFS), (-55«BNFS) + ((BNG3HEIGHT/2) «ANFS), 
(-43«BNFS) + «BNG3HEIGHT/2) «ANFS), (-2B«BNFS) + «BNG3HEIGHT/2) «ANFS) 
} ; 

SHORT satCXTranses[SATCOUNT] = 
{ 

(-13«BNFS)+«BNG3WIDTH/2)«ANFS), (-2B«BNFS)+«BNG3WIDTH/2)«ANFS), 
(-43«BNFS)+«BNG3WIDTH/2)«ANFS), (-55«BNFS)+«BNG3WIDTH/2)«ANFS), 
(-57«BNFS)+«BNG3WIDTH/2)«ANFS), (-40«BNFS)+«BNG3WIDTH/2)«ANFS), 
(-23«BNFS) + ( (BNG3WIDTH/2) «ANFS) , ( -6«BNFS) + ( (BNG3WIDTH/2) «ANFS) , 
( 13«BNFS)+«BNG3WIDTH/2)«ANFS), ( 27«BNFS)+«BNG3WIDTH/2)«ANFS), 
( 41«BNFS)+«BNG3WIDTH/2)«ANFS), ( 53«BNFS)+«BNG3WIDTH/2)«ANFS), 
( 57«BNFS) + ( (BNG3WIDTH/2) «ANFS) , ( 40«BNFS) + ( (BNG3WIDTH/2) «ANFS) , 
( 22«BNFS) + ( (BNG3WIDTH/2) «ANFS) , ( 4«BNFS) + ( (BNG3WIDTH/2) «ANFS) 
} ; 

/*-----------------------------------------------------------------*/ 
/*----- bitmap : w = 5, h = 5 ------ */ 
/* NOTE the chip keyword causes this data to load into chip memory 
** under lattice. Be sure that this initalized data resides in 
** chip memory when the program executes. 
*/ 
UWORD chip sat Image [1] [SATWWIDTH * SATHEIGHT * SATDEPTH] 

{ 

} ; 

( 

Ox5000, 
Ox6000, 
), 

OxEBOO, 
OxFOOO, 

Ox4BOO, 
OxFOOO, 

Here is the actual animation example. 

Ox9BOO, 
Ox6000, 

Ox7000, 
OxOOOO 

Graphics: Sprites. Bobs and Animation 493 



1* anim ex.c 190ctB9 
** origInal code by Dave Lucas. 
** rework by CATS 
** 
** lattice c 5.04 
** lc -b1 -cfist -v -y anim_ex.c 
** blink FROM LIB:c.o anim_ex.o lanimtools/animtools.o LIB LIB:lc.lib TO anim 
*1 
#include <exec/types.h> 
#include <intuition/intuition.h> 
#include <graphics/gels.h> 
#include <exec/memory.h> 
#include <libraries/dos.h> 

#include "/animtools/animtools.h" 
#include "/animtools/animtools_proto.h" 

#include <stdlib.h> 
#include <stdio.h> 
#include <proto/all.h> 
int CXBRK(void) ( return(O); } 1* disable lattice CTRL-C handling *1 
1*--------------------------------------------------------------*1 1* prototypes for the functions in this file. *1 
1*--------------------------------------------------------------*1 
struct AnimOb *setupBoing(SHORT dbufing); 

WORD bounceORoutine(struct AnimOb *anOb); 
WORD goInFrontOfHead(struct AnimComp *aComp); 
WORD goBehindHead(struct AnimComp *aComp); 

VOID runAnimation(struct Window *win, SHORT dbufing, 
struct AnimOb **animKey, struct BitMap **myBitMaps}; 

LONG setupPlanes(struct BitMap *bitMap, LONG depth, LONG width, LONG height); 
struct BitMap **setupBitMaps(LONG depth, LONG width, LONG height); 
VOID freePlanes(struct BitMap *bitMap, LONG depth, LONG width, LONG height); 
VOID freeBitMaps(struct BitMap **myBitMaps, 

LONG depth, LONG width, LONG height); 
struct GelsInfo *setupDisplay(struct Window **win, SHORT dbufing, 

struct BitMap **myBitMaps); 

VOID DrawGels(struct Window *win, struct AnimOb **animKey, 
SHORT dbufing, WORD *toggleFrame, struct BitMap **myBitMaps); 

1*--------------------------------------------------------------*1 1* animation and screen constants. *1 
1*--------------------------------------------------------------*1 
#define ANFS ANFRACSIZE 
#define BNFS (ANFRACSIZE-2) 
#define CNFS (ANFRACSIZE-2) 

1* These are used for MeMask (1 « ID_xxx) *1 
#define ID_BORDER 0 
#define ID_BNG 4 

#define SBMWIDTH 320 1* My screen size constants. 
#define SBMHEIGHT 200 
#define SBMDEPTH 4 

*1 

#define SCRNMODE NULL 1* (HIRES I LACE) for NewScreen, ends up in view.*1 

#define RBMWIDTH 320 1* My raster size constants. (These CAN differ) 
#define RBMHEIGHT 200 
#define RBMDEPTH 4 

1*--------------------------------------------------------------*1 1* global data for libraries and display. *1 
1*--------------------------------------------------------------*1 
struct NewScreen ns 

{ 

0, 0, SBMWIDTH, SBMHEIGHT, SBMDEPTH, 0, 0, SCRNMODE, 
CUSTOMSCREEN I SCREENQUIET, NULL, NULL, NULL, NULL 

494 Graphics: Sprites, Bobs and Animation 

*1 



} ; 

1* this is a little window that will let us get a CLOSEWINDOW message *1 
struct NewWindow nw 

{ 
0, 0, 25, 12, 0, 0, CLOSEWINDOW, 
WINDOWCLOSE I BORDERLESS I RMBTRAP, NULL, NULL, NULL, NULL, 
NULL, 0, 0, SBMWIDTH, SBMHEIGHT-l, CUSTOMSCREEN 
} ; 

struct IntuitionBase *IntuitionBase 
struct GfxBase *GfxBase 

int return_code; 

NULL; 
NULL; 

1*--------------------------------------------------------------*1 
1* constants for the baing ball and satellites. *1 
1*--------------------------------------------------------------*1 
#define BNG3RINGY 0 
#define BNG3RINGX 0 
#define BNG3COUNT 6 
#define BNG3HEIGHT 25 
#define BNG3WIDTH 32 
#define BNG3DEPTH 1 
#define BNG3WWIDTH «BNG3WIDTH + 15) I 16) 

#define SATCOUNT 
#define SATHEIGHT 
#define SATWIDTH 
#define SATDEPTH 
#define SATWWIDTH 

#include "image_boing.h" 

NEWBOB newBoingBob = 
{ 

16 
5 
5 
2 
«SATWIDTH + 15) I 16) 

NULL, BNG3WWIDTH, BNG3HEIGHT, BNG3DEPTH, Ox2, OXC, 
SAVEBACK I OVERLAY, 0, RBMDEPTH, 0,0, 
} ; 

NEWANIMSEQ newBoingSeq = 
{ 

NULL, (WORD *)boing3Image, boing3XTranses, boing3YTranses, 
boing3Times, boing3CRoutines, 0, BNG3COUNT, 
(lL«ID BORDER), (lL«ID BNG), 0 
}; - -

NEWBOB newSatABob = 
{ 

NULL, SATWWIDTH, SATHEIGHT, SATDEPTH, OXC, OxO, 
SAVEBACK I OVERLAY, 0, RBMDEPTH, 0,0, 
} ; 

NEWANIMSEQ newSatASeq = 
{ 

NULL, (WORD *)satlmage, satAXTranses, satAYTranses, 
satTimes, satACRoutines, 0, SATCOUNT, 
(lL«ID BORDER), (lL«ID BNG), 1 
}; - -

NEWBOB newSatBBob = 
{ 
NULL, SATWWIDTH, SATHEIGHT, SATDEPTH, OXC, Ox3, 
SAVEBACK I OVERLAY, 0, RBMDEPTH, 0,0, 
} ; 

NEWANIMSEQ newSatBSeq = 
{ 

NULL, (WORD *)satlmage, satBXTranses, satBYTranses, 
satTimes, satBCRoutines, 0, SATCOUNT, 
(lL«ID BORDER), (lL«ID BNG), 1 
}; - -

NEWBOB newSatCBob = 
{ 

NULL, SATWWIDTH, SATHEIGHT, SATDEPTH, Ox3, OxO, 
SAVEBACK I OVERLAY, 0, RBMDEPTH, 0,0, 

Graphics: Sprites. Bobs and Animation 495 



} ; 
NEWANIMSEQ newSatCSeq = 

{ 
NULL, (WORD *) sat Image, satCXTranses, satCYTranses, 
satTimes, satCCRoutines, 0, SATCOUNT, 
(lL«ID_BORDER), (lL«ID_BNG), 1 
} ; 

1*--------------------------------------------------------------*/ 
/*--------------------------------------------------------------*/ 
/* PROCEDURES */ 
1*--------------------------------------------------------------*/ 
/*--------------------------------------------------------------*/ 

/*--------------------------------------------------------------
** setupBoing() - allocate and initialize an object that will 
** display as a boing ball with orbiting satellites. 
** 
** this is an animation object with four animation sequences. 
** (boing and three satellites.) 
** (note that the satellites all share the same single image data.) 
** 
** return NULL on failure. 
*/ 
struct AnimOb *setupBoing(SHORT dbufing) 
{ 

struct AnimOb *bngOb; 
struct AnimComp *bngComp; 
struct AnimComp *satAComp; 
struct AnimComp *satBComp; 
struct AnimComp *satCComp; 

if (NULL != (bngOb AllocMem«LONG)sizeof(struct AnimOb), MEMF_CLEAR») 
( 
bngOb->NextOb 
bngOb->PrevOb 
bngOb->Clock 
bngOb->AnY 
bngOb->AnX 
bngOb->AnOldY 
bngOb->AnOldX 
bngOb->YVel 
bngOb->XVel 
bngOb->YAccel 
bngOb->XAccel 
bngOb->RingYTrans 
bngOb->RingXTrans 
bngOb->AnimORoutine 
bngOb->AUserExt 

newBoingBob.nb DBuf 
newBoingSeq.nas_HeadOb 

NULL; 
NULL; 
0; 
50; 
50; 
bngOb->AnY; 
bngOb->AnX; 
3 « ANFRACSIZE; 
3 « ANFRACSIZE; 
0; 
0; 
BNG3RINGY « ANFRACSIZE; 
BNG3RINGX « ANFRACSIZE; 
bounceORoutine; 
0; 

dbufing; 
bngOb; 

1* these routines are called when a specific comp in a sequence is 
** drawn. satellite A will go in front when the 5th (counting from 
** zero) comp is drawn. 

*1 
satACRoutines[4] 
satACRoutines[12] 
satBCRoutines[8] 
satBCRoutines[O] 
satCCRoutines[4] 
satCCRoutines[12] 

goInFrontOfHead; 
goBehindHead; 
goInFrontOfHead; 
goBehindHead; 
goInFrontOfHead; 
goBehindHead; 

/* set up the double buf flag and pointer to the Head Object. 
** these are not known until run time. 
*/ 
newSatABob.nb DBuf 
newSatBBob.nb-DBuf 
newSatCBob.nb-DBuf 
newSatASeq.nas Headob 
newSatBSeq.nas=HeadOb 

dbufing; 
dbufing; 
dbufing; 
bngOb; 
bngOb; 

496 Graphics: Sprites, Bobs and Animation 



newSatCSeq.nas_HeadOb = bngOb; 

if (NULL != (bngComp = makeSeq(&newBoingBob, &newBoingSeq») 
{ 
1* set RINGTRIGGER for the first comp in the sequence. 
** this will cause RingYTrans and RingXTrans to be added to 
** the object position when this comp is drawn. 
** (Here they are zero, so this could be taken out.) 
*1 
bngComp->Flags 1= RINGTRIGGER; 
bngOb->HeadComp = bngComp; 

if (NULL != (satAComp = makeSeq(&newSatABob, &newSatASeq») 
{ 

) 

1* set up the drawing precedence for the bobs *1 
bngComp->AnimBob->Before satAComp->AnimBob; 
satAComp->AnimBob->After = bngComp->AnimBob; 

if (NULL != (satBComp = makeSeq(&newSatBBob, &newSatBSeq») 
{ 

satAComp->AnimBob->Before = satBComp->AnimBob; 
satBComp->AnimBob->After = satAComp->AnimBob; 

if (NULL != (satCComp = makeSeq(&newSatCBob, &newSatCSeq») 
{ 

satBComp->AnimBob->Before = satCComp->AnimBob; 
satCComp->AnimBob->After = satBComp->AnimBob; 

1* connect all of the head comps (one for each sequence) 
** together to form a single animation object. 
*1 
bngComp->NextComp 
bngComp->PrevComp 

satAComp->NextComp 
satAComp->PrevComp 

satBComp->NextComp 
satBComp->PrevComp 

satCComp->NextComp 
satCComp->PrevComp 

return(bngOb); 
) 

satAComp; 
NULL; 

satBComp; 
bngComp; 

satCComp; 
satAComp; 

NULL; 
satBComp; 

1* if something failed, close everything *1 
freeSeq(satBComp,RBMDEPTH); 
) 

freeSeq(satAComp,RBMDEPTH); 
) 

freeSeq(bngComp,RBMDEPTH); 

FreeMem(bngOb, (LONG)sizeof(struct AnimOb»; 
} 

return code = RETURN_WARN; 
return (NULL) ; 
} 

1*--------------------------------------------------------------
** This ORoutine makes the Object Bounce off Borders. 
*1 
WORD bounceORoutine(struct AnimOb *anOb) 
{ 

SHORT Y; 
SHORT Xi 

Y anOb->AnY» ANFRACSIZE; 
X anOb->AnX» ANFRACSIZE; 

if «Y<O && anOb->YVel < 0) II 
«Y+anOb->HeadComp->AnimBob->BobVSprite->Height > RBMHEIGHT) && 

(anOb->YVel> 0») 

Gmphics: SpriteS. Bobs and Animation 497 



{ 
anOb->YVel 
} 

-(anOb->YVel); 

if « (X < 0) && (anOb->XVel < 0» I I 
«X + (anOb->HeadComp->AnimBob->BobVSprite->Width « 4) > RBMWIDTH) && 

(anOb->XVel > 0») 
{ 

anOb->XVel 
} 

return (0) 
} 

-(anOb->XVel); 

1*--------------------------------------------------------------
** This CRoutine rearranges Bob Before and After pointers in a 
** way that makes the Component passed look like it is in front 
** of its' head component. 
** 
** Used for Boing satellites. 
** 
** So that they go in front of AND behind the boing ball. 
*1 
WORD goInFrontOfHead(struct AnimComp *aComp) 
{ 

1* remove bob and close up hole *1 
if (aComp->AnimBob->Before != NULL) 

aComp->AnimBob->Before->After = aComp->AnimBob->After; 
if (aComp->AnimBob->After != NULL) 

aComp->AnimBob->After->Before = aComp->AnimBob->Before; 

1* reinsert bob in front of HeadOb (it will be drawn after Head) *1 
aComp->AnimBob->Before = aComp->HeadOb->HeadComp->AnimBob->Before; 
aComp->AnimBob->After = aComp->HeadOb->HeadComp->AnimBob; 
if (aComp->AnimBob->Before != NULL) 

aComp->AnimBob->Before->After = aComp->AnimBob; 
aComp->HeadOb->HeadComp->AnimBob->Before = aComp->AnimBob; 

return(O) 
} 

1*--------------------------------------------------------------
** This CRoutine rearranges Bob Before and After pointers in a 
** way that makes the Component passed look like it is behind 
** its' head component. 
*1 
WORD goBehindHead(struct AnimComp *aComp) 
{ 

1* remove bob and close up hole *1 
if (aComp->AnimBob->Before != NULL) 

aComp->AnimBob->Before->After = aComp->AnimBob->After; 
if (aComp->AnimBob->After != NULL) 

aComp->AnimBob->After->Before = aComp->AnimBob->Before; 

1* reinsert bob in behind of HeadOb (it will be drawn before Head) *1 
aComp->AnimBob->After = aComp->HeadOb->HeadComp->AnimBob->After; 
aComp->AnimBob->Before = aComp->HeadOb->HeadComp->AnimBob; 
if (aComp->AnimBob->After != NULL) 

aComp->AnimBob->After->Before = aComp->AnimBob; 
aComp->HeadOb->HeadComp->AnimBob->After = aComp->AnimBob; 

return(O) 
} 

1*--------------------------------------------------------------
** 
*1 
VOID runAnimation(struct Window *win, 

SHORT dbufing, 
struct AnimOb **animKey, 
struct BitMap **myBitMaps) 

struct IntuiMessage *intuiMsg; 

498 Graphics: Sprites, Bobs and Animation 



WORD toggleFrame; 

toggleFrame = 0; 

/* everything opened, and allocated, and initialized. 
** hang out, move the gels, tell the system to redraw them, 
** and let the collision and anim routines bounce them about. 
** 
** check after each draw for CLOSEWINDOW events. 
** go away when we get one. 
*/ 
for (;;) 

( 
/* All the work done here */ 
DrawGels(win, animKey, dbufing, &toggleFrame, myBitMaps); 

/* you MUST be sure to call: 
** WaitTOF () 
** after you call DrawGList(). Here the DrawGels() routine 
** does it for you. 
*/ 

while (intuiMsg = (struct IntuiMessage *)GetMsg(win->UserPort» 
{ 
if (intuiMsg->Class == CLOSEWINDOW) 

( 
ReplyMsg«struct Message *)intuiMsg); 
return; 
} 

ReplyMsg«struct Message *)intuiMsg); 
} 

/*---------------------------------------------------------
** allocate the bit planes for a screen bit map. 
*/ 
LONG setupPlanes(struct BitMap *bitMap, 

LONG depth, LONG width, LONG height) 

SHORT plane_num 

for (plane num = 0; plane_num < depth; plane_num++) 
( -
if (NULL != (bitMap->Planes[plane num] = 

(PLANEPTR) AllocRaster (width, height») 
BltClear (bitMap->Planes [plane num], (width / 8) * height, 1); 

else -
( 
freePlanes(bitMap, depth, width, height); 
return code = RETURN_WARN; 
return (NULL) ; 
} 

return (TRUE) ; 
) 

/*---------------------------------------------------------
** allocate the bit maps for a double buffered screen. 
*/ 
struct BitMap **setupBitMaps(LONG depth, LONG width, LONG height) 
{ 

/* this must be static -- it cannot go away when the routine exits. */ 
static struct BitMap *myBitMaps[2]; 

if (NULL != (myBitMaps[O] = 
(struct BitMap *)AllocMem«LONG)sizeof(struct BitMap), MEMF_CLEAR») 

if (NULL != (myBitMaps[1] = 
(struct BitMap *)AllocMem«LONG)sizeof(struct BitMap), MEMF_CLEAR») 
( 
InitBitMap(myBitMaps[O], depth, width, height); 

Graphics: Sprites, Bobs and Animation 499 



InitBitMap(myBitMaps[l) , depth, width, height); 

if (NULL != setupPlanes(myBitMaps[O), depth, width, height» 
{ 

if (NULL != setupPlanes(myBitMaps[l), depth, width, height» 
return(myBitMaps); 

freePlanes(myBitMaps[O), depth, width, height); 
) 

FreeMem(myBitMaps[l), (LONG)sizeof(struct BitMap»; 
} 

FreeMem (myBitMaps [0), (LONG) sizeof (struct BitMap»; 
} 

return code = RETURN_WARN; 
return (NULL) ; 
} 

/*--------------------------------------------------------------
** free up the memory allocated by setupPlanes(). 
*/ 
VOID freePlanes(struct BitMap *bitMap, 

LONG depth, LONG width, LONG height) 

SHORT plane_num ; 

for (plane_num = 0; plane_num < depth; plane_num++) 
{ 

if (NULL != bitMap->Planes[plane num) 
FreeRaster(bitMap->Planes[plane_num), width, height); 

/*--------------------------------------------------------------
** free up the memory allocated by setupBitMaps(). 
*/ 
VOID freeBitMaps(struct BitMap **myBitMaps, 

LONG depth, LONG width, LONG height) 

freePlanes(myBitMaps[O), depth, width, height); 
freeP!anes (myBitMaps [l), depth, width, height); 

FreeMem(myBitMaps[O) , (LONG)sizeof(struct BitMap»; 
FreeMem(myBitMaps[l) , (LONG)sizeof(struct BitMap»; 
} 

/*--------------------------------------------------------------
** setup the screen and window for the animation. 
*/ 
struct GelsInfo *setupDisplay(struct Window **win, 

SHORT dbufing, 

struct GelsInfo 
struct Screen 
struct ViewPort 
struct RastPort 

if (dbufing) 
( 

*gInfo; 
*screen; 
*vport; 
*rport; 

struct BitMap **myBitMaps) 

/* Screen type. We alloc two BitMaps. See DBLBUF comments. */ 
ns.Type 1= CUSTOMBITMAP; 
ns.CustomBitMap = myBitMaps[O); 
} 

if «screen = (struct Screen *)OpenScreen(&ns» != NULL) 
( 
vport 
rport 

&screen->ViewPort; 
&screen->RastPort; 

SetRGB4(vport, OxO, OxO, OxO, OxO) 
SetRGB4(vport, Oxl, OxO, Ox6, OxO) 
SetRGB4(vport, Ox2, OxO, Ox9, OxO) 

500 Graphics: Sprites, Bobs and Animation 

/* Black 
/* dk green 
/* med green 

*/ 
*/ 
*/ 



SetRGB4(vport, Ox3, OxO, Oxc, OxO) ; 1* It green 
SetRGB4(vport, Ox4, Oxl, Oxl, Ox7) ; 1* dk blue 
SetRGB4(vport, Ox5, Ox7, OxO, OxB); 1* dk violet 
SetRGB4(vport, Ox6, Ox6, Ox6, Ox6); 1* dk grey 
SetRGB4(vport, Ox7, Ox7, Oxl, OxO); 1* dk red 
SetRGB4(vport, OxB, Ox3, Ox3, OxB) ; 1* med blue 
SetRGB4(vport, Ox9, OxB, OxO, OxC) ; 1* med violet 
SetRGB4(vport, OxA, Ox9, Ox9, Ox9) ; 1* med grey 
SetRGB4(vport, OxB, OxB, OxO, OxO) ; 1* med red 
SetRGB4(vport, OxC, Ox5, Ox5, OxF); 1* It blue 
SetRGB4(vport, OxD, OxE, OxO, OxF) ; 1* It violet 
SetRGB4(vport, OxE, OxF, OxF, OxF) ; 1* It grey (white) 
SetRGB4(vport, OxF, OxF, OxO, OxO) ; 1* It red 

1* put some stuff in the background, so we can 
** see that it does not get destroyed. 
*1 
SetAPen(rport, OxA); 
SetDrMd(rport, JAM1) ; 
Move (rport, 70, 105) ; 
Text (rport, "Animation Example ... " , 20) ; 

nw.Screen screen; 
if «*win (struct Window *)OpenWindow(&nw» != NULL) 

{ 
if (dbufing) 

{ 
(*win)->WScreen->RastPort.Flags = DBUFFER; 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

1* copy the rast port data into the alternate rast port *1 
(*win)->WScreen->RastPort.BitMap = myBitMaps[l]; 
BltBitMapRastPort(myBitMaps[O], 0,0, & (*win)->WScreen->RastPort, 

0,0, RBMWIDTH, RBMHEIGHT, OxCO); 
(*win)->WScreen->RastPort.BitMap = myBitMaps[O); 
} 

1* set up the gels system. 
** OxFC says: when you allocate sprites for me, don't ever use 
** sprites zero or one. This guarantees that sprite zero, the 
** intuition pointer, stays intact. Remember sprite one shares 
** colors with sprite zero. 
*1 
if (NULL != (gInfo = setupGelSys(&(*win)->WScreen->RastPort, OxFC») 

return(gInfo); 

CloseWindow(*win); 
} 

CloseScreen(screen); 
} 

return code = RETURN_WARN; 
return(NULL); 
} 

1*--------------------------------------------------------------
** draw all of those animation objects. 
*1 
VOID DrawGels(struct Window *win, 

struct AnimOb **animKey, 
SHORT dbufing, 
WORD *toggleFrame, 
struct BitMap **myBitMaps) 

Animate (animKey, &win->WScreen->RastPort); 

SortGList(&win->WScreen->RastPort); 1* Put the list in order. *1 
DoCollision(&win->WScreen->RastPort); 1* Collision routines may called now *1 
SortGList(&win->WScreen->RastPort); 1* Put the list in order. *1 

if (dbufing) 
win->WScreen->ViewPort.RasInfo->BitMap 

1* Draw 'em. *1 

myBitMaps[*toggleFrame]; 

Graphics: Sprites, Bobs and Animation 501 



DrawGList(&win->WScreen->RastPort, &win->WScreen->ViewPort); 

1* if single buffered and using TRUE VSprites, you have to do a 
** MrgCop() & LoadView(). Under Intuition use RethinkDisplay(). 
** if this is not done, then the vsprites will not be updated. 
** 
** Here, we are not using any TRUE VSprites, so we only do a 
** WaitTOF(). Note that RethinkDisplay() does a WaitTOF() 
** for you. 
*1 
if (dbufing) 

else 

( 
MakeScreen{win->WScreen); 
RethinkDisplay(); 

*toggleFrame "= 1; 

1* Tell intuition to do it's stuff. *1 
1* Intuition compatible MrgCop & LoadView *1 
1* also does a WaitTOF() *1 

1* Flip to the next BitMap. *1 
win->WScreen->RastPort.BitMap myBitMaps[*toggleFrame); 
} 

WaitTOF () ; 

1*--------------------------------------------------------------
** main routine. setup and run the animation. 
** clean up all resources when done or on any error. 
*1 
VOID main{int argc, char **argv) 
( 
struct BitMap **myBitMaps; 
struct AnimOb *boingOb; 
struct Window *win; 
struct Screen *screen; 
struct Gelslnfo *gInfo; 
struct AnimOb *animKey; 
SHORT dbufing; 

return code = RETURN_OK; 1* a global variable, yech! *1 

printf("Program will run double buffered if there are\n"); 
orintf("any command line arguments.\n"); 

if (argc > 1) 
dbufing 1; 1* run double buffered when arguments *1 

else 
dbufing 0; 1* not double buff *1 

if (NULL == {IntuitionBase = (struct IntuitionBase *) 
OpenLibrary("intuition.library", 33L») 

return code RETURN FAIL; 
else - -

{ 
if (NULL == (GfxBase = (struct GfxBase *) 

OpenLibrary ("graphics . library" , 33L») 
return code RETURN FAIL; 

else - -
{ 

if {(! dbufing) I I 
(NULL ! = (myBitMaps=setupBitMaps (RBMDEPTH, RBMWIDTH, RBMHEIGHT) ) ) ) 
{ 
if (NULL != (gInfo = setupDisplay(&win,dbufing,myBitMaps») 

( 
InitAnimate(&animKey); 
1* Simple sequenced animation. (Boing ball) 
** smaller components animated using XTrans and YTrans. 
** (tiny orbiting satellites) 
*1 
if (NULL != (boingOb = setupBoing(dbufing») 

( 
AddAnimOb(boingOb, &animKey, &win->WScreen->RastPort); 

502 Graphics: Sprites, Bobs and Animation 



runAnimation(win, dbufing, &animKey, myBitMaps); 
freeOb(boingOb, RBMDEPTH); 
) 

cleanupGelSys(gInfo, &win->WScreen->RastPort); 
screen = win->WScreen; 
CloseWindow(win); 
CloseScreen(screen); 
) 

if (dbufing) 
freeBitMaps(myBitMaps, RBMDEPTH, RBMWIDTH, RBMHEIGHT); 

CloseLibrary«struct Library *)GfxBase); 
) 

CloseLibrary«struct Library *)IntuitionBase); 
) 

exit(return_code); 
) 

Graphics: Sprites, Bobs and Animation 503 



Chapter 26 

Layers Library 

This chapter describes the Layers Library, which provides routines that are used to manage overlapping rectangular 
drawing areas that share a common display. It also describes routines in the Graphics Library that manipulate 
Regions, which are used to mask off areas where drawing can take place. An example is provided that shows how 
to use the majority of the routines described. 

Introduction 

The Layers Library contains routines that: 

• Allow an application to share a displays' BitMap among various tasks by creating "layers" in the 
BitMap. 

• Maintain each layer as a separate entity, which may optionally have its own BitMap. 

• Manage the remapping of coordinates, so the programmer needn't track the offsets into layers. 

• Move, size or depth-arrange the layers, which may obscure portions of some layers, or bring previously 
obscured portions into view. 

Layers Library 50S 



• Automatically update newly visible portions (optionally). 

When multiple tasks are outputting graphics to layers, a locking mechanism is provided to coordinate display 
updating. 

The windowing environment provided by the Intuition library is largely based on Layers. 

The Layers Library takes care of the mundane things, the low level, repetitive tasks that are needed to keep track of 
where to put which bits. 

DEFINITION OF LAYERS 

The internal definition of the layers is essentially a set of clipping rectangles. 

The Layers Library manages interactions between the various layers by using a data structure called Layer_Info. 
Each common drawing area (shared by multiple layers) requires one Layer _Info data structure. 

TYPES OF LAYERS SUPPORTED 

The Layers Library supports three types of layers: 

• Simple Refresh 

All graphics rendering routines are "clipped", so that only exposed sections of the layer are drawn into. 
No back-up of obscured areas is provided. When an obscured section of the layer is exposed to view, the 
routine using this layer may determine that a "refresh" of that section is in order. 

• Smart Refresh 

The system provides dynamic backup of obscured sections, into which the graphics routines will 
automatically draw. The backup sections will be used to automatically update the screen when the 
obscured sections later become exposed. 

• SuperBitMap 

The application provides a single back-up area to store what is not exposed to view in the layer. The 
back-up area may be as large or larger than the layer. Whenever an obscured area is made visible, the 
corresponding part of the backup area is copied to the screen automatically. 

Any type of layer may also be a backdrop layer, which will always appear behind all other layers. They may not be 
moved, sized, or depth-arranged. 

Layers Library Routines 

The Layers Library contains these routines: 

506 Layers Library 



Purpose Routine 

Allocating a Layer_Info NewLayerInfo( ) 
structure 

Dea1locating a Layer_Info DisposeLayerInfo( ) 
structure 

Creating and deleting layers CreateBehindLayer( ), 
CreateUpfrontLayer( ), 
DeleteLayer( ) 

Moving layers MoveLayer( ) 

Sizing layers SizeLayer( ) 

Changing a viewpoint ScrollLayer( ) 

Reordering layers BehindLayer, UpfrontLayer(), 
MoveLayerInFrontOf( ) 

Determining layer position WhichLayer( ) 

Suh-Iayer rectangle operations SwapBitsRastPortClipRect( ) 

Intertask operations LockLayer( ), UnlockLayer( ), 
LockLayers( ), UnlockLayers( ), 
LockLayerInfo( ), UnlockLayerInfo( ) 

Synchronization operations BeginUpdate( ), EndUpdate( ) 

The following routines from graphics.library also allow access to layers functions: 

Purpose Routine 

Intertask operations LockLayerRom(), UnlockLayerRom(), 
AttemptLockLayerRom( ) 

These functions are similar to the layers LockLayer( ) and UnlockLayer( ) functions. but do not require the 
layers. library to be open. See the Includes and Autodocs Manual for more details. 

ALLOCATING AND DEALLOCATING LAYER_INFO 

The function NewLayerInfo( ) allocates and initializes a Layer _Info structure and some associated sub-structures. 
It must be called before attempting to use the other Layers functions described below. 

Layers Library 507 



The function DisposeLayerInfo( ) deallocates a Layer_Info and associated structures (as allocated by 
NewLayerInfo( ». 

ALLOCATING AND DEALLOCATING LAYERS 

Layers are created using the routines CreateUpfrontLayer( ) and CreateBehindLayer( ). 

CREATING AND DELETING LAYERS 

CreateUpfrontLayer( ) creates a layer that will appear in front of any existing layers. 

CreateBehindLayer( ) creates a layer that appears behind existing layers, but in front of backdrop layers. 

Both of these routines return a pointer to a Layer data structure (as defined in the include file graphicsllayers.h), or 
NULL if the operation was unsuccessful. 

NOTE 

When a layer is created, the routine automatically creates a RastPort to go along with it. If this layer's 
RastPort is passed to the drawing routines, drawing is restricted to the layer. See also the topic called 
"The Layer's RastPort" below. 

DeleteLayer( ) is used to remove a layer from the layer list and free the memory allocated by the layer creation calls 
listed above. 

MOVING LAYERS 

MoveLayer( ) moves a layer toa new location. 

SIZING LAYERS 

The SizeLayer( ) command changes the size of a layer by modifying the coordinates of the lower right corner of the 
layer. 

CHANGING A VIEWPOINT 

ScrolILayer( ) is most useful with SuperBitMap layers. This command changes the portion of a SuperBitMap that 
is shown by a layer. It simulates this effect on the other layer types by adding the scroll offset to all future rendering. 

508 Layers Library 



REORDERING LAYERS 

BehindLayer() and UpfrontLayer() are used, respectively, to move a layer behind all other layers or in front of all 
other layers. BehindLayer() also considers any backdrop layers, moving a current layer behind all others except 
backdrop layers. 

MoveLayerInFrontOf( ) is used to place a layer at a specific depth, just in front of a given layer. 

DETERMINING LAYER POSITION 

If the viewing area has been separated into several layers, the application may need to find out which layer is 
topmost at a particular x,y coordinate. 

To be sure that no task adds, deletes, or changes the sequence of layers before your task can use this information, 
call LockLayerInfo( ) before calling WhichLayer( ), and call UnlockLayerInfo( ) when your operation is 
complete. In this way, you can be sure that you are acting on valid information. 

INTERTASK OPERATIONS 

This section shows the use of the routines LockLayerInfo( ), UnlockLayerInfo( ), LockLayer( ), UnlockLayer( ), 
LockLayers( ), and UnlockLayers( ). 

LockLayerInfo( ) and UnlockLayerInfo( ) 

If multiple tasks are manipulating layers on the same screen they will be sharing a LayecInfo structure, and their 
use of it and its related data structures need to coordinated. To ensure that a structure remains cohesive, it should be 
operated on by only one task at a time. The Layer_Info encompasses all the layers existing on a single screen. 
LockLayerInfo( ) needs to be called whenever the visible portions of layers may be affected, or when the 
Layer_Info structure is changed. 

The lock should be obtained whenever the CreateUpfrontLayer( ), CreateBehindLayer( ) and DeleteLayer( ) 
functions are called. And when a layer is moved, the list of layers that is being managed by the Layer_Info data 
structure is affected. 

It is not necessary to lock the Layer_Info data structure while rendering, or when calling routines like ScroULayer( 
), because layer sizes and on-screen positions are not being affected. 

LockLayerInfo( ) grants the calling task exclusive access to the LayecInfo structure. If some other task already 
has the Layer _Info locked, this call will block until the other task calls UnlockLayerInfo( ). 

LockLayer( ) and UnlockLayer( ) 

Layers Library 509 



If a task makes changes to a layer, other tasks should be prevented from rendering graphics into the layer. 
LockLayer( ) is used to block graphics output to this layer. If a graphics function is in process, the lock will return 
when the function is completed. Other tasks are blocked only if they attempt to draw graphics into this layer, or try 
to obtain a lock on this layer. The MoveLayer( ), SizeLayer( ) and ScrollLayer( ) functions automatically lock and 
unlock the layer they operate on. 

UnlockLayer( ) frees the locked layer for other operations. 

If more than one layer must be locked, then the LockLayer( ) calls should be surrounded by LockLayerInfo( ) and 
UnlockLayerInfo( ) calls, to prevent deadlock situations. 

LockLayers( ) and UnlockLayers( ) 

LockLayers( ) is used to lock all layers in a single command. UnlockLayers() releases the layers. The system 
calls these routines during the BehindLayer( ), UpfrontLayer( ) and MoveLayerlnFrontOf( ) operations. 

As areas of Simple-Refresh layers become exposed, due to layer movement or sizing, for example, the newly 
exposed areas have not been drawn into, and need refreshing. The system keeps track of these areas by using a 
DamageList. To update only those areas that need it, BeginUpdate( ) is called. BeginUpdate() saves the pointer 
to the current clipping rectangles and installs a pointer to a set of ClipRects generated from the DamageList in the 
layer structure. To repair the layer, use the graphics rendering routines as if to redraw the entire layer, and the 
routines will automatically use the new clipping rectangle list. So, only the damaged areas are actually rendered 
into, saving time. 

NOTE 

The program should never access the DamageList. The system generates and maintains the 
DamageList region. All user clipping is done through ClipRects (user clipping rectangles), and all 
access to this should be done through the function InstallClipRegion( ). 

To complete the update process call EndUpdate( ), which will restore the original ClipRect list. 

SUB-LAYER RECTANGLE OPERATIONS 

The SwapBitsRastPortClipRect( ) routine is for users who do not want to worry about clipping rectangles. If you 
wish to produce a menu, there are two ways to do it: 

• Create an up-front layer with CreateUpfrontLayer( ), then render the menu in it. This could use lots of 
memory and require a lot of (very temporary) "slice-and-dice" operations to create all of the clipping 
rectangles for the existing windows and so on. 

• Use SwapBitsRastPortClipRect( ), directly on the screen drawing area: 

• 

• 

• 

Render the menu in a back-up area off the screen, then lock all of the on-screen layers so that no task 
can use graphics routines to draw over your menu area on the screen. 

Next, swap the on-screen bits with the off-screen bits, making the men\! appear. 

When you finish with the menu, swap again and unlock the layers. 

510 Layers Library 



The second method is faster and leaves the clipping rectangles and most of the rest of the window data structures 
untouched. 

NOTE 

All of the layers must be locked while the menu is visible. Any task that is using any of the layers for 
graphics output will be halted while the menu operations are taking place. If, on the other hand, the 
menu is rendered as a layer, no task need be halted while the menu is up because the lower layers need 
not be locked. 

The Layer's RastPort 

NOTE 

When a layer is created, the routine automatically creates a RastPort to go along with it. The pointer to 
the RastPort is contained in the layer data structure. 

Using this RastPort, the application can draw anywhere into the layer's bounds rectangle. If the application tries to 
draw outside of this rectangle, the graphics routines will clip the graphics. 

The type of layer specified by the Flags variable determines the other facilities the layer provides. The following 
paragraphs describe the layer types -simple refresh, smart refresh and SuperBitMap-and the Layer Flags that 
need to be set for each. 

NOTE 

The three layer-type Flags are mutually exclusive. That is, only one layer-type flag (LA YERSIMPLE, 
LAYERS MART, LAYERSUPER), should be specified. 

SIMPLE REFRESH LAYER 

When an application draws into the layer, any portion of the layer that is visible (not obscured) will be rendered into 
the common BitMap of the viewing area. 

If another layer operation is performed that causes part of a simple refresh layer to be obscured and then exposed, the 
application must restore the damaged part of the layer. 

Simple refresh has two basic advantages: 

• It does not require back-up area to save drawing sections that cannot be seen, saving memory. 

• When an application restores the layer by performing a full-layer redraw, only the damaged areas are 
redrawn, making the operation time efficient. 

The disadvantage is that the application needs to monitor to see if its layer needs refreshing. This is typically 
performed with statements like: 

Layers Library 511 



if (layer->Flags & LAYERREFRESH) 
refresh(layer); 

SMART REFRESH LAYER 

If any portion of the layer is hidden by another layer, the bits for the obscured portions are rendered into back-up 
areas, which is provided automatically by the system. With smart refresh layers, the system handles all of the 
refresh requirements except when the layer is made larger. Its disadvantage is the additional memory needed to 
handle this automatic refresh. 

SUPERBITMAP LAYER 

A SuperBitMap layer is similar to a smart refresh layer. It too has a back-up area into which drawings are rendered 
for currently obscured parts of the display. However, it differs from smart refresh in that: 

• The back-up BitMap is user-supplied, rather than being allocated dynamically by the system. 

• The back-up BitMap may be larger than the area of the BitMap that is shown in the current size of this 
layer. 

To see a larger portion of a SuperBitMap on-screen, use SizeLayer( ). ,To see a different portion of the 
SuperBitMap in the layer, use ScroULayer( ). 

When the graphics routines perform drawing commands, part of the drawing appears in the common BitMap (the 
on-screen portion). Any drawing outside the layer itself is rendered into the SuperBitMap. When it is time to scroll 
or size the layer, the layer contents are copied into the SuperBitMap, the scroll or size positioning is modified, and 
the appropriate portions are then copied back into the layer. 

BACKDROP LAYER 

A layer of any type may be designated a backdrop layer. The backdrop flag may be turned off to temporarily allow a 
layer to be depth-arranged. Then the backdrop flag can be restored to again inhibit depth-arrangement operations. 

Using the Layers Library 

The following is a step-by-step example showing how the Layers Library can be used in your programs. 

OPENING THE LAYERS LIBRARY 

Like all library routines, the Layers Library must be opened before it can be used. This is typically done by the 
following code: 

512 Layers Library _ 



struct LayersBase *LayersBase; 

LayersBase = (struct LayersBase *)OpenLibrary("layers.library",O); 
if(LayersBase == NULL) 
( 

OPENING THE GRAPIDCS LIBRARY 

Because the application probably uses various graphics library functions, it must also open the graphics library, as 
described elsewhere in this manual. 

CREATING A VIEWING WORKSPACE 

You can create a viewing workspace by using the primitives InitVPort(), InitView( ), MakeVPort(), MrgCop(), 
and LoadView{). Please reference the "Graphics Primitives" chapter. 

To allocate and initialize a Layer_Info data structure with which the system can keep track of layers that are 
created, use statements like: 

struct Layer_Info *li; 
Ii = NewLayerInfo( ); 
if (li == NULL) 
( 

clean_exit(NEWLAYERINFO_FAILED); 

CREATING THE LAYERS 

You can create layers in the common bit map by calling CreateUpfrontLayer() (or CreateBehindLayer(», with 
a sequence such as the following. This sequence requests construction of a smart refresh layer. 

struct RastPort *rp; 
struct Layer *layer; 

/* allocate a RastPort pointer for each layer */ 
/* allocate a layer pointer for each layer */ 

/* Layer Info, common BitMap, xl,yl,x2,y2, 
** flags-= 0 (smart refresh), null pointer to SuperBitMap 
*/ 
layer = CreateUpfrontLayer(li,&b,20,20,lOO,80,LAYERSMART,NULL); 

/* if not enough memory, can't continue the example */ 
if (layer==NULL) 

clean_exit(CANT_CREATE_LAYER); 

GETTING THE POINTERS TO THE RASTPORTS 

Each layer pointer data structure contains a pointer to the RastPort that it uses. Here is the assignment from the 
layer structure to a local pointer: 

Layers Library 513 



rp = layer->rp; 

USING THE RASTPORTS FOR DISPLAY 

Here are the rectangle-fill operations that create the display: 

SetAPen(rp,l); 
SetDrMd(rp,JAM1); 
RectFill(rp,O,O,80,50); 

Regions 

A clipping rectangle is a rectangular area into which the graphics routines will draw. All drawing that would fall 
outside of that rectangular area is clipped (not rendered). User clipping regions are linked lists of clipping rectangles 
created by an application program. Use InstallClipRegion( ) to make a user clipping region active. The 
graphics. library contains support routines for regions. 

NOTE 

All of the following functions but InstallClipRegion( ) are in graphics.library. InstaIlClipRegion() is 
in layers.library. 

Among these are routines for the following operations: 

Operation 

Creating and deleting regions 

Installing a region 

Changing a region 

Clearing a region 

Routine 

NewRegion( ), DisposeRegion( ) 

InstallClipRegion( ) 

AndRectR~gion( ), OrRectRegion(), 
XorRectRegion( ), ClearRectRegion( ), 
AndRegionRegion( ), OrRegionRegion( ), 
XorRegionRegion( ) 

ClearRegion( ) 

The region commands are used to construct a user clipping region, which can be used with the graphics rendering 
routines. With this list, the application can selectively update a custom-shaped part of a layer without disturbing any 
of the other layers that might be present 

NOTE 

Never access the DamageList directly. Use the routine InstallClipRegion( ) to add clipping to the 
layer. After a region has been added with InstallClipRegion( ), you may not modify it unless it has 
been removed with another call to InstallClipRegion( ). 

514 Layers Library 



CREATING AND DELETING REGIONS 

NewRegion( ) allocates and initializes a new data structure that has no drawable areas defined in it. 

If this new region is to be used as a user clipping region, and the application tries to draw something through it, 
nothing would be drawn, as there is nothing in the region. 

Because regions are dynamically created using NewRegion( ), the procedure DisposeRegion( ) is provided to return 
the memory to the system when the application has finished with it. 

NOTE 

The region structure and all rectangles that have been linked to it are deallocated. All of the functions 
that add rectangles to the region make copies of the rectangles. If the program allocates a rectangle, 
then adds it to a region, it still must deallocate the rectangle. The call to DisposeRegion( ) will not 
deallocate the rectangle. 

INSTALLING REGIONS 

Use the function InstallClipRegion( ) to install your region. This installs a transparent clipping region in the layer. 
All subsequent graphics calls will be clipped to this region. You must remove the region with a second call to 
InstallClipRegion( ) before you remove the Layer. 

For example: 

register struct Region 
register struct Region 

*new region 
*old:=region 

old_region = InstaIIClipRegion(win->WLayer, new_region); 

/* draw into the layer or window */ 

if (NULL != (old region = InstaIIClipRegion(win->WLayer, old_region») 
DisposeRegion(new_region) 

NOTE 

You must be very careful not to call InstallClipRegion( ) inside of a BeginRefreshlEndRefresh( ) or 
BeginUpdatelEndUpdate( ) pair. The following code segment shows how you may modify the user 
clipping region with these calls. 

register struct Region 
register struct Region 

*new_region 
*old_region 

/* you have to have already setup the new_region and old_region */ 

BeginRefresh(window); 
/* draw through the damage list */ 
/* into the layer or window */ 
EndRefresh(window, FALSE); /* keep the damage list */ 

old_region = InstaIIClipRegion(win->WLayer, new_region); 

BeginRefresh(window); 
/* draw through the damage list and the new_region */ 
/* into the layer or window */ 

Layers Library 515 



EndRefresh(window, FALSE); 1* keep the damage list *1 

1* put back the old region *1 
new_region = InstaIIClipRegion(win->WLayer, old_region); 

BeginRefresh(window); 
EndRefresh(window, TRUE); 1* remove the damage list *1 

old_region = InstaIIClipRegion(win->WLayer, new_region); 

BeginRefresh(window); 
1* draw through the new_region only into the layer or window *1 
EndRefresh(window, FALSE); 

1* finally get rid of the new region, old region still installed *1 
if (NULL != (new_region = InstaIIClipRegion(win->WLayer, old_region») 

DisposeRegion(new_region) ; 

Here is some sample code for clipping windows: 

1*-----------------------------------------------------------------
** UnclipWindow( ) 
** 
** routine to remove a clipping region installed by ClipWindow( ) or 
** ClipWindowToBorders( ), disposing of the installed region and 
** reinstalling the region removed. 
*1 
void UnclipWindow(struct Window *win, struct Region *prev_region) 
{ 
register struct Region *old_region 

1* remove any old region by installing a NULL, 
** then dispose of the old region if one was there. 
*1 
if (NULL != (old_region = InstaIIClipRegion(win->WLayer, prev_region») 

DisposeRegion(old_region) 

1*-----------------------------------------------------------------
** ClipWindow( ) 
** clip a window to a specified rectangle (given by upper left and 
** lower right corner. the removed region is returned so that it 
** can be re-installed later. 
*1 
struct Region *ClipWindow(struct Window *win, 

LONG minX, LONG minY, LONG maxX, LONG maxY) 

register struct Region 
register struct Region 

*new region 
*old::::region 

struct Rectangle my_rectangle ; 

1* set up the limits for the clip *1 
my rectangle.MinX minX 
my-rectangle.MinY minY 
my-rectangle.MaxX maxX 
my::::rectangle.MaxY maxY 

1* get a new region and OR in the limits. *1 
new region = NewRegion( ) ; 
OrRectRegion(new_region, &my_rectangle) ; 

1* install the new region, and dispose of any existing region *1 
return (InstallClipRegion (win->WLayer, new region»; 
} -

1*-----------------------------------------------------------------
** ClipWindowToBorders( ) 
** clip a window to its borders. 
** the removed region is returned so that it can be re-installed later. 
*1 

516 Layers Library 



struct Region *ClipWindowToBorders(struct Window *win) 
( 
register struct Region 
register struct Region 

struct Rectangle 

*new region ; 
*old:::region ; 

1* set up the limits for the clip *1 
my rectangle.MinX = win->BorderLeft - 1 ; 
my-rectangle.MinY = win->BorderTop - 1 ; 
my-rectangle.MaxX = win->Width - win->BorderRight ; 
my:::rectangle.MaxY = win->Height - win->BorderBottom 

1* get a new region and OR in the limits. *1 
new region = NewRegion( ) ; 
OrRectRegion(new_region, &my_rectangle) ; 

1* install the new region, and dispose of any existing region *1 
return (InstallClipRegion (win->WLayer, new_region»; 
} 

CHANGING A REGION 

Regions may be modified by perfonning logical operations with rectangles, or with other regions. 

RECTANGLES AND REGIONS 

NOTE 

In all of the RectRegion routines the clipping rectangle is copied into the region. This means that a 
single clipping rectangle (struct Rectangle) can be used many times by simply changing the x and y 
values. 

For instance: 

LONG ktr; 
struct Rectangle recti 
struct Region *RowRegion = NULL; 

for (ktr=l; ktr<6; ktr++) 
{ 
rect.MinX = 50; 
rect.MaxX = 315; 
rect.MinY = (ktr*10)-5; 
rect.MaxY = (ktr*10); 

if (!OrRectRegion(RowRegion, &rect» 
clean_exit(RETURN_WARN); 

OrRectRegion( ) modifies a region structure by or'ing a clipping rectangle into the region. If the application now 
tries to draw through this region (assuming that the region was originally empty), only the pixels within the clipping 
rectangle will be affected. If the region already has drawable areas, they will still exist, this rectangle is just added to 
the drawable area. 

AndRectRegion() modifies the region structure by and'ing a clipping rectangle into the region. Only those pixels 
that were already drawable and within the rectangle will remain drawable, any that are outside of it will be clipped in 
future. 

Layers Library 517 



XorRectRegion( ) applies the rectangle to the region in an exclusive-or mode. Within the given rectangle, any areas 
that were drawable become clipped, any areas that were clipped become drawable. Areas outside of the rectangle 
are not affected. 

ClearRectRegion( ) clears the rectangle from the region. Within the given rectangle, any areas that were drawable 
become clipped. Areas outside of the rectangle are not affected. 

REGIONS AND REGIONS 

AndRegionRegion( ) performs a logical and operation on the two regions, leaving the result in the second region. 
The operation leaves drawable areas wherever the regions drawable areas overlap. That is, where there are drawable 
areas in both region 1 and region 2, there will be drawable areas left in the result region. 

OrRegionRegion() performs a logical or operation on the two regions, leaving the result in the second region. The 
operation leaves drawable areas wherever there are drawable areas in either region. That is, where there are 
drawable areas in either region 1 or region 2, there will be drawable areas left in the result region. 

XorRegionRegion( ) performs a logical exclusive-or operation on the two regions, leaving the result in the second 
region. The operation leaves drawable areas wherever there are drawable areas in either region but not both. That 
is, where there are drawable areas in either region 1 or region 2, there will be drawable areas left in the result region. 
But where there are drawable areas in both region 1 and region 2, there will not be drawable areas left in the result 
region. 

CLEARING A REGION 

ClearRegion( ) puts the region back to the same state it was in when the region was created with NewRegion( ), that 
is. no areas are drawable. 

LAYERS EXAMPLE 

Here is the example code. Layers functions are exercised first. then regions functions are used. To see a window 
explaining the calls as they happen, leave MESSAGES defined. To slow the action down. increase the size of the 
S_DELA Y define. 

NOTE 

For the sake of brevity, the example is a single task. So, no Layer locking is done. Also note that the 
routine myLabelLayer is AL WAYS used to redraw a given Layer. It is called only when a Layer needs 
refreshing or to show the affect of region manipulation. 

/* Layers.c 
* Compiled with Lattice 5.04: LC -bl -cfist -L -v -y 
*/ 

'include <exec/types.h> 
'include <graphics/gfxbase.h> 
'include <graphics/layers.h> 
'include <proto/all.h> 
'include <stdlib.h> 
'include <string.h> 

VOID clean_exit(LONG rete); 

518 Layers Library 



VOID cleanUp(VOID); 
VOID myOrCols(struct Region *region); 
VOID pMessage(UBYTE *string); 
VOID myLabelRegion( struct Region *region, struct Layer *layer, 

LONG color, UBYTE *string); 
VOID myLabelAIIRegions(LONG color); 
VOID myLabelLayer( struct Layer *layer, LONG color, UBYTE *string); 
VOID myResetRegions(VOID); 

ide fine L DELAY 100 
idefine S DELAY 50 

ide fine DUMMY OL 

idefine CLR RED 1 
ide fine CLR GRN 2 
idefine CLR BLU 3 

ide fine SCREEN 0 2 
ide fine SCREEN W 320 
ide fine SCREEN H 200 

1* the starting size of example layers, offsets are used for placement *1 
ide fine W H 50 
idefine W T 5 
ide fine W B (W_T+W_H)-l 
ide fine WW 80 
ide fine W L (SCREEN W/2) - (W_W/2) 

(W_L+W_W)-l ide fine W R 

1* size of the superbitmap *1 
ide fine SUPER H SCREEN H 
idefine SUPER W SCREEN W 

1* starting size of the message layer *1 
ide fine M_H 10 
idefine M T SCREEN H-M H 
idefine M B (M_T+M=H)-I 
idefine M W SCREEN W 
idefine M L 0 -
idefine M_R (M_L+M_W)-l 

1* This example shows how to use the layers.library. 
** This code may be freely utilized to develop programs for the Amiga. 
*1 
struct GfxBase *GfxBase; 
struct Library *LayersBase; 

1* global for FreeMem( ) *1 
struct View *oldview = NULL; 
struct View theView; 
struct ViewPort theViewPort; 

1* save old view so can go back to sys *1 

1* pointer to colormap struct, dynamic alloc *1 
struct ColorMap *theColorMap = NULL; 
struct BitMap theBitMap, theSuperBitMap; 
struct Layer *theLayers[3] = (NULL, NULL, NULL, ); 
struct Layer *msgLayer = NULL; 
LONG theLayerFlags[3] = { LAYERSUPER, LAYERSMART, LAYERSIMPLE }; 
struct Layer_Info *theLayerlnfo = NULL; 

USHORT colortable[] = { OxOOO, OxfOO, OxOfO, OxOOf }; 
struct Region *ColRegion = NULL; 
struct Region *RowRegion = NULL; 
struct Region *theRegions[3] = { NULL, NULL, NULL }; 

VOID main(int argc, char **argv) 
{ 
struct Raslnfo theRaslnfo; 
short iii, jjj; 
UWORD *colorpalette; 
struct Rectangle rect; 1* some rectangle structures *1 

Layers Ubrary 519 



if «GfxBase = (struct GfxBase *)OpenLibrary("graphics.library",33L)) 
clean_exit(RETURN_WARN); 

if «LayersBase = OpenLibrary ("layers . library" , 33L)) 
clean_exit(RETURN_WARN); 

/* example steals screen from Intuition, 

NULL) 

** this is just an example. In real life, open your own. 
*/ 
oldview = GfxBase->ActiView; /* save current view, go back later */ 

/* get a LayerInfo structure */ 
if«theLayerInfo = NewLayerInfo( )) 

clean_exit(RETURN_WARN); 

InitView(&theView); 
theView.ViewPort = &theViewPort; 
InitVPort(&theViewPort); 

theViewPort.DWidth 
theViewPort.DHeight 
theViewPort.RasInfo 

SCREEN_W; 
SCREEN H; 
&theRa;-Info; 

NULL) 

InitBitMap(&theBitMap,SCREEN_D,SCREEN_W,SCREEN H); 

theRasInfo.BitMap 
theRasInfo.RxOffset 
theRasInfo.RyOffset 
theRasInfo.Next 

&theBitMap; 
0; 
0; 
NULL; 

theColorMap = GetColorMap(4); 

colorpalette = (UWORD *)theColorMap->ColorTable; 
for(iii=O; iii<4; iii++) 

*colorpalette++ = colortable[iii]; 
theViewPort.ColorMap = theColorMap; /* link it with the viewport */ 

for(iii=O; iii<SCREEN_D; iii++) 
{ 
if«theBitMap.Planes[iii] = 

(PLANEPTR)AllocRaster(SCREEN W,SCREEN H)) == NULL) 
clean exit (RETURN WARN); -

BltClear(theBitMap.Planes[iii], RASSIZE(SCREEN_W, SCREEN_H), 1); 
} 

MakeVPort( &theView, 
MrgCop( &theView ); 
LoadView(&theView); 
WaitTOF( ); 

&theViewPort ); /* construct copper (prelim) list */ 
/* merge copper lists in the view structure. */ 

if «msgLayer = CreateUpfrontLayer( theLayerInfo, &theBitMap, 
M L, M T, M R, M_B, LAYERSMART, NULL)) == NULL) 

clean exit (RETURN WARN); -
pMessage("Setting up Layers"); 

/* Layers stuff starts here ********************************************/ 
InitBitMap(&theSuperBitMap,SCREEN D,SUPER W,SUPER H); 
for(iii=O; iii<SCREEN D; iii++) - - -

{ -
if«theSuperBitMap.Planes[iii] = 

(PLANEPTR)AllocRaster(SUPER W,SUPER H)) == NULL) 
clean exit (RETURN WARN); -

BltClear(thesuperBitMap.Planes[iii], RASSIZE(SUPER_W, SUPER_H), 1); 
} 

for(iii=O; iii<3; iii++) 
( 
pMessage("Create BehindLayer"); 
if (iii == 0) 

{ 

NULL) 

if«theLayers[iiij = CreateBehindLayer( theLayerInfo, &theBitMap, 
W_L+(iii*30), W_T+(iii*30), W_R+(iii*30), W_B+(iii*30), 

520 Layers Library 



else 
{ 

theLayerFlags[iii], &theSuperBitMap» NULL) 
clean_exit(RETURN_WARN); 

if«theLayers[iii] = CreateBehindLayer( theLayerlnfo, &theBitMap, 
W L+(iii*30), W T+(iii*30), W R+(iii*30), W_B+(iii*30), 
theLayerFlags[iIi], NULL» ==-NULL) 

clean_exit (RETURN_WARN); 

pMessage("RectFill the RastPort .. ); 
SetAPen(theLayers[iii]~>rp,iii+1); 
SetDrMd(theLayers[iii]->rp,JAM1); 
if (iii == 0) RectFill(theLayers[iii]->rp,O,O,SUPER W-1,SUPER H-1); 
if (iii == 1) RectFill(theLayers[iii]->rp,O,O,W W-1~W H-1); -
if (iii == 2) RectFill(theLayers[iii]->rp,0,0,W-W-1,W-H-1); 
SetAPen(theLayers[iii]->rp,O); - -
Move(theLayers[iii]->rp,5,7); 
} 

pMessage("Label all Layers"); 
Text (theLayers[0]->rp,"Super",5); 
Text(theLayers[1]->rp,"Smart",5); 
Text(theLayers[2]->rp,"Simple",6); 

pMessage("MoveLayer 1 InFrontOf 0"); 
if (!MoveLayerlnFrontOf( theLayers[1], theLayers[O]» 

clean_exit (RETURN_WARN); 

pMessage("MoveLayer 2 InFrontOf 1"); 
if (!MoveLayerlnFrontOf( theLayers[2], theLayers[1]» 

clean exit (RETURN WARN); 
myLabeILayer(theLayers[2], CLR_BLU, "Simple"); 

pMessage("Incrementally MoveLayers .•• "); 
for(iii=O; iii<30; iii++) 

{ 
if (!MoveLayer(DUMMY, theLayers[1], -1, 0» 

clean exit (RETURN WARN); 
if (!MoveLayer(DUMMY,-theLayers[2], -2, 0» 

clean exit (RETURN WARN); 
myLabeILayer(theLayers[2], CLR BLU, "Simple"); 
} -

pMessage("make Layer 0 the UpfrontLayer"); 
if (!UpfrontLayer(DUMMY, theLayers[O]» 

clean_exit(RETURN_WARN); 

pMessage("make Layer 2 the BehindLayer"); 
if (!BehindLayer(DUMMY, theLayers[2]» 

clean_exit (RETURN_WARN); 

pMessage("Incrementally MoveLayers again ..... ); 
for(iii=O; iii<30; iii++) 

{ 

if (!MoveLayer(DUMMY, theLayers[1], 0, 1» 
clean exit(RETURN WARN); 

if (!MoveLayer(DUMMY,-theLayers[2], 0, 2» 
clean exit (RETURN WARN); 

myLabeILayer(theLayers[2], CLR BLU, "Simple"); 
} -

pMessage("Big MoveLayer"); 
for(iii=O; iii<3; iii++) 

{ 

if (!MoveLayer(DUMMY, theLayers[iii], -theLayers[iii]->bounds.MinX, 0» 
clean_exit(RETURN_WARN); 

pMessage("Incrementally increase size"); 
for(iii=O; iii<5; iii++) 

Layers Library 521 



( 
for(jjj=O; jjj<3; jjj++) 

( 
if (!SizeLayer(DUMMY, theLayers[jjj), 1, 1» 

clean exit(RETURN_WARN); 

myLabelLayer(theLayers[I), CLR GRN, "Smart .. ); 
myLabelLayer (theLayers [2), CLR~)LU, "Simple"); 
} 

pMessage("Big SizeLayer"); 
for(iii=O; iii<3; iii++) 

{ 
if (!SizeLayer(DUMMY,theLayers[iii),SCREEN W-(theLayers[iii)->bounds.MaxX)-I,O» 

clean_exit(RETURN_WARN); -

myLabelLayer(theLayers[I), CLR GRN, "Smart .. ); 
myLabelLayer (theLayers [2), CL()LU, "Simple"); 

pMessage("ScrollLayer down"); 
for(iii=O; iii<30; iii++) 

( 
for(jjj=O; jjj<3; jjj++) 

( 
ScrollLayer(DUMMY, theLayers[jjj), 0, -1); 
) 

myLabelLayer(theLayers[I), CLR:,..GRN, "Smart"); 
myLabelLayer(theLayers[2), CLR_BLU, "Simple"); 
} 

pMessage("ScrollLayer up"); 
for(iii=O; iii<30; iii++) 

( 
for(jjj=O; jjj<3; jjj++) 

( 
ScrollLayer(DUMMY, theLayers[jjj), 0, 1); 
} 

myLabelLayer(theLayers[l), CLR GRN, "Smart .. ); 
myLabelLayer(theLayers[2), CLR:::BLU, "Simple"); 
} 

1* Regions stuff starts here *******************************************1 
pMessage ("Create Regions"); 
if «RowRegion = NewRegion(» NULL) 

clean exit (RETURN WARN); 
if «ColRegion = NewRegion(» NULL) 

clean exit (RETURN WARN); 
for(iii=O; iii<3; iii++) 

if «theRegions[iii) = NewRegion(» NULL) 1* for each layer *1 
clean_exit(RETURN_WARN); 

pMessage ("Build two tmp regions"); 
myOrCols(ColRegion); 1* made into subroutine, used often *1 
for (iii=l; iii<6; iii++) 

{ 
rect .MinX 50; 
rect.MaxX 315; 
rect.MinY (iii*10)-5; 
rect.MaxY (iii*10); 
if (!OrRectRegion(RowRegion, 'rectI) 

clean_exit(RETURN_WARN); 

rect • MinX 5 ; 
rect.MaxX 315; 
rect.MinY 25; 
rect.MaxY 30; 

myResetRegions( ); 
pMessage("OrRectRegion one row ..... ); 
for (iii=O; iii<3; iii++) 

if (!OrRectRegion(theRegions[iii), &rect» 
clean_exit(RETURN_WARN); 

522 Layers Library 



pMessage("OrRectRegion result (blue)"); 
myLabelAllRegions(CLR_BLU); 
Delay(L_DELAY); 

myResetRegions( ); 
'pMessage("XorRectRegion one row ... "); 
for (iii=O; iii<3; iii++) 

if (!XorRectRegion(theRegions[iii), &rect» 
clean_exit(RETURN_WARN); 

pMessage("XorRectRegion result (blue)"); 
myLabelAllRegions(CLR_BLU); 
Delay(L_DELAY); 

myResetRegions( ); 
pMessage("AndRectRegion one row .•• "); 
for (iii=O; iii<3; iii++) 

AndRectRegion(theRegions[iii), &rect); 

pMessage("AndRectRegion result (blue)"); 
myLabelAllRegions(CLR_BLU); 
Delay(L_DELAY); 

myResetRegions( ); 
pMessage("ClearRectRegion one row ... "); 
for (iii=O; iii<3; iii++) 

if (!ClearRectRegion(theRegions[iii), &rect» 
clean_exit(RETURN_WARN); 

pMessage("ClearRectRegion result (blue)"); 
myLabelAllRegions(CLR BLU); 
Delay(L_DELAY); -

myResetRegions( ); 
pMessage("OrRegionRegion Rows ..... ); 
for (iii=O; iii<3; iii++) 

if (!OrRegionRegion(RowRegion, theRegions[iii)) 
clean_exit (RETURN_WARN); 

pMessage("OrRegionRegion result (blue)"); 
myLabelAllRegions(CLR BLU); 
Delay(L_DELAY); -

myResetRegions( ); 
pMessage("XorRegionRegion Rows ..... ); 
for (iii=O; iii<3; iii++) 

if (!XorRegionRegion(RowRegion, theRegions[iii)) 
clean_exit(RETURN_WARN); 

pMessage("XorRegionRegion result (blue)"); 
myLabelAllRegions(CLR BLU); 
Delay(L_DELAY); -

myResetRegions( ); 
pMessage("AndRegionRegion Rows ..... ); 
for (iii=O; iii<3; iii++) 

if (!AndRegionRegion(RowRegion, theRegions[iii)) 
clean_exit (RETURN_WARN); 

pMessage("AndRegionRegion result (blue)"); 
myLabelAllRegions(CLR BLU); 
Delay(L_DELAY); -

cleanUp ( ); 
) 1* end of main( ) *1 

VOID clean_exit(LONG retc) 
( 
cleanUp ( ); 
exit(retc); 
) 

Layers Library 523 



VOID cleanUp(VOID) 
{ 
short iii; 

if (oldview) 
( 
LoadView(oldview); 
WaitTOF( ); 
} 

if (msgLayer != NULL) 

/* put back the old view */ 

if (!DeleteLayer(DUMMY, msgLayer» 
exit (RETURN_FAIL); 

if (ColRegion != NULL) 
DisposeRegion(ColRegion); 

if (RowRegion != NULL) 
DisposeRegion(RowRegion); 

for(iii=O; iii<3; iii++) 
{ 

if (theRegions[iii] != NULL) 
DisposeRegion(theRegions[iii]); 

if (theLayers[iii] != NULL) 
if (!DeleteLayer(DUMMY,theLayers[iii]» 

exit(RETURN_FAIL); 

/* !!! free superbitmap */ 
for (iii=O; iii<SCREEN D; iii++) 

{ /* free the drawing area */ 
if (theSuperBitMap.Planes[iii] != NULL) 

FreeRaster(theSuperBitMap.Planes[iii], SUPER_W, SUPER_H); 

if (theLayerlnfo != NULL) 
DisposeLayerlnfo(theLayerlnfo); 

if (theColorMap != NULL) 
FreeColorMap(theColorMap); /* free the color map */ 

for (iii=O; iii<SCREEN D; iii++) 
{ /* free the drawing area */ 
if (theBitMap.Planes[iii] != NULL) 

FreeRaster(theBitMap.Planes[iii], SCREEN_W, SCREEN_H); 

/* free dynamically created structures */ 
FreeVPortCopLists(&theViewPort); 
FreeCprList(theView.LOFCprList); 

if (LayersBase != NULL) 
CloseLibrary«struct Library *)LayersBase); 

if (GfxBase != NULL) 
CloseLibrary«struct Library *)GfxBase); 

VOID myOrCols(struct Region *region) 
{ 
short iii; 
struct Rectangle rect; 
for (iii=5; iii<lO; iii++) 

{ 

rect.MinX 
rect.MaxX 

(iii*lO) ; 
(iii*lO) +5; 

rect .MinY 5; 
rect .MaxY 50; 
if (!OrRectRegion(region, &rect» 

clean_exit(RETURN_WARN); 

VOID pMessage(UBYTE *string) 
( 
Delay(S_DELAY); 

S24 Layers Library 



myLabelLayer(msgLayer, CLR_GRN, string); 
) 

VOID myLabelRegion( struct Region *region, struct Layer *layer, 
LONG color, UBYTE *string) 

struct Region *old_region; 

/* blow away the damage list. */ 
if (BeginUpdate(layer» 

EndUpdate(layer, TRUE); 

/* install a user clipping region. 
** draw into the layer 
** then put back the old clipping region 
*/ 
old region = InstallClipRegion(layer,region); 
myLabelLayer(layer, color, string); 
region = InstallClipRegion(layer,old_region); 
} 

VOID myLabelAllRegions(LONG color) 
{ 
myLabelRegion(theRegions[O], theLayers[O], color, "Super"); 
myLabelRegion (theRegions [1], theLayers[l], color, "Smart"); 
myLabelRegion(theRegions[2], theLayers[2], color, "Simple"); 
} 

VOID myLabelLayer( struct Layer *layer, LONG color, UBYTE *string) 
{ 

SetAPen(layer->rp, color); 
SetDrMd(layer->rp,JAM1); 
RectFill(layer->rp, 0, 0, layer->bounds.MaxX - layer->bounds.MinX, 

layer->bounds.MaxY - layer->bounds.MinY); 
SetAPen(layer->rp,O); 
Move(layer->rp,5,7); 
Text (layer->rp, string, stilen(string»; 
} 

VOID myResetRegions(VOID) 
{ 
short iii; 

pMessage("Clear all Regions"); 
myLabelLayer(theLayers[O], CLR_RED, "Super"); 
myLabelLayer(theLayers[l], CLR_RED, "Smart"); 
myLabelLayer(theLayers[2], CLR_RED, "Simple"); 
for (iii=O; iii<3; iii++) 

ClearRegion(theRegions[iii]); 

/* put the col region into each layer */ 
pMessage("OrRegionRect Columns .•• "); 
for (iii=O; iii<3; iii++) 

myOrCols(theRegions[iii]); 

pMessage("ORed in Column Rects - in green"); 
myLabelAllRegions(CLR GRN); 
} -

Layers Library 525 



Chapter 27 

Expansion Library 

Amiga RAM expansions and other expansion bus peripherals are designed to reside at dynamically assigned address 
spaces within the system. The configuration and initialization of these expansion peripherals is performed by the 
expansion.library. 

AUTOCONFIGTM 

The Amiga AUTOCONFIG protocol is designed to allow the dynamic assignment of available address slots to 
expansion boards, eliminating the need for user configuration via jumpers. Upon reset, each board appears in turn at 
$E80000, with readable identification information, most of which is in one's complement format, appearing in the 
high nibbles of the first $40 words ($80 bytes) of the board This identification information includes the size of the 
board, its address space preferences, type of board (memory or other), and a unique Hardware Manufacturer Number 
assigned by Commodore Applications and Technical Support (CATS), West Chester, Pennsylvania. 

NOTE 

This unique number is not the same as a Developer number. All commercial expansion slot boards for 
the Amiga must implement the AUTOCONFIG protocol. More in-depth machine-specific information 
on the design and implementation of AUTOCONFIG boards is available from Commodore 
Applications and Technical Support. 

Expansion Library 527 



The Expansion Sequence 

During system initialization, expansion.library configures each expansion peripheral in turn by examining its 
identification information and assigning it an appropriate address space. If the board is a RAM board, it is added to 
the system memory list, and the RAM becomes available for allocation by system tasks. Descriptions of all 
configured boards are kept in a private ExpansionBase list of ConfigDev structures. Applications can examine this 
list with the expansion. library function FindConfigDevO. 

The ConfigDev structure (libraries/configvars.h and .i) follows: 

struct ConfigDev 
{ 

struct Node cd_Node; 
UBYTE cd_Flags; 
UBYTE cd_Pad; 
struct ExpansionRom cd_Rom; 
lIPTR cd_BoardAddr; 
lIPTR cd BoardSize; 
UWORD cd-SlotAddr; 
UWORD cd-SlotSize; 
lIPTR cd-Driver; 
struct ConfigDev * cdNextCD; 
ULONG cd:Unused[41; 

}; 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

image of expansion rom area */ 
where in memory the board is */ 
size in bytes */ 
which slot number */ 
number of slots the board takes */ 
pointer to node of driver */ 
linked list of drivers to con fig */ 
for whatever the driver whats */ 

/* cd Flags */ 
#define CDB_SHUTUP 
#define COB CONFIGME 

o 
1 

/* this board has been shut up */ 
/* this board needs a driver to claim it */ 

#define CDF_SHUTUP OxOl 
#define CDF_CONFIGME Ox02 

As shown above, the ConfigDev structure contains an ExpansionRom structure. The ExpansionRom structure, 
defined in libraries/configregs.h and .i, contains the board identification information which was read from the 
board's PAL or EPROM at expansion time. This information includes the board's unique Manufacturer and Product 
10. The following example uses FindConfigDevO to print out information about your system's configured 
expansion peripherals. 

/* 
* FindBoards.c - Examine all AUTOCONFIG(tm) boards in the system 
* Compiled with Lattice 5.02: LC -bl -cfist -v -y 
* Linkage: c.o,findboards.o library LC.lib,amiga.lib 
*/ 

#include <exec/types.h> 
#include <libraries/configvars.h> 
Hfdef LATTICE 
#include <proto/all.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
int CXBRK(void) {return{O); /* Disable Lattice CTRL/C handling */ 
#endif 

struct Library *ExpansionBase NULL; 

void main(int argc, char **argv) 
{ 

struct ConfigDev *myCD; 
UWORD m,p; 

if ( (ExpansionBase=OpenLibrary ("expansion • library" , OL) ) ==NULL) 

528 Expansion Library 



exit(RETURN_FA1L); 

1*--------------------------------------------------*1 
1* FindConfigDev(oldConfigDev,manufacturer,product) *1 
1* oldConfigDev = NULL for the top of the list *1 
1* manufacturer = -1 for any manufacturer *1 
1* product = -1 for any product *1 
1*--------------------------------------------------*1 

myCD = NULL; 
while(myCD=FindConfigDev(myCD,-lL,-lL» 1* search for all ConfigDevs *1 

( 
printf("\n---ConfigDev structure found at location $%lx---\n",myCD); 

1* These values were read directly from the board at expansion time *1 
printf("Board 1D (ExpansionRom) information:\n"); 

m = myCD->cd_Rom.er_Manufacturer; 
printf ("er_Manufacturer =%d=$%x= (- $%4x) \n", m, m, -m) ; 

p = myCD->cd_Rom.er_Product; 
printf("er Product =%d=$%x=(-$%4x)\n",p,p,-p); 

printf(ner Type =$%x",myCD->cd_Rom.er_Type); 
if(myCD->cd_Rom.er_Type & ERTF_MEML1ST) 

printf(" (Adds memory to free list)\n"); 
else printf("\n"); 

printf("er Flags ="); 
printf("$%x\n",myCD->cd_Rom.er_Flags); 

printf("er 1nitDiagVec ="); 
printf("$%x\nn,myCD->cd_Rom.er_1nitDiagVec); 

1* These values are generated when the AUTOCONF1G software 
* relocates the board 
*1 

printf("Configuration (ConfigDev) information:\n"); 
printf("cd_BoardAddr =$%lx\n",myCD->cd_BoardAddr); 
printf("cd BoardSize =$%lx (%ldK)\n", 

mycD->cd_BoardSize, «ULONG)myCD->cd_BoardSize)/1024); 

printf("cd_Flags =$%x",myCD->cd_Flags); 
if(myCD->cd Flags & CDF CONF1GME) 

printf(~\n"); -
else printf(" (driver clears CONF1GME bit)\n"); 
} 

CloseLibrary(ExpansionBase); 
} 

Expansion Board Drivers 

The Amiga operating system contains support for matching up disk-based drivers with AUTOCONFIG boards. 
Though such drivers are commonly Exec Devices, this is not required. The driver may, for instance, be an Exec 
Library or Task. The 1.3 system software also supports the initialization of onboard ROM driver software. 

DISK BASED DRIVERS 

Disk-based expansion board drivers and their icons are generally placed in the SYS:Expansion drawer of the user's 
SYS: disk or partition. The icon ToolTypes field (which may be viewed and edited using the Workbench Info 
selection) must contain the unique Hardware Manufacturer number, and the Product number of the expansion 
board(s) the driver is written for. 

Expansion Library 529 



The BindDrivers command issued during the disk startup-sequence attempts to match disk-based drivers with their 
expansion boards. To do this, Bind Drivers looks in the ToolTypes field of all icon files in SYS:Expansion. If the 
TooIType "PRODUCT" is found in the icon, then this is an icon file for a driver. Binddrivers will then attempt to 
match the the Manufacturer and Product number in this PRODUCT ToolType with those of a board that was 
configured at expansion time. 

For example, suppose you are manufacturer #1019. You have two products, #1 and #2 which both use the same 
driver. The icon for your driver for these two products would have a Tool Type set to 
"PRODUCT=1019/111019/2". This means: I am an icon for a driver that works with product number 1 or 2 from 
manufacturer 1019, now bind me. Spaces are not legal. Here are two other examples: 

PRODUCT=1208/11 

PRODUCT=1017 

is the Tool Type for a driver for product 
11 from manufacturer number 1208. 

is the Tool Type for a driver for any 
product from manufacturer number 1017. 

If a matching board is found for the disk-based driver, the driver code is loaded and then initialized with the Exec 
InitResidentO function. From within its initialization code, the driver can get information about the board it is 
bound to by calling the expansion.library function GetCurrentBindingO. This function will provide the driver with 
a copy of a CurrentBinding structure, including a pointer to a ConfigDev structure (possibly linked to additional 
ConfigDevs via the cd_NextCD field) of the expansion board(s) which matched the Manufacturer and Product IDs. 

/* this structure is used by GetCurrentBinding() and SetCurrentBinding() */ 
struct CurrentBinding 
( 

struct ConfigDev * cb ConfigDev; 
UBYTE * cb=FileName; 
UBYTE * cb ProductString; 
UBYTE ** cb=ToolTypes; 

}; 

/* first configdev in chain */ 
/* file name of driver */ 
/* product ~ string */ 
/* tooltypes from disk object */ 

GetCurrentBindingO allows the driver to find out the the base address and other information about its board(s). 
The driver must unset the CONFIGME bit in the ConfigDev cd_Flags field of each board it intends to drive, and 
record the driver's Exec node pointer in the cd_Driver structure. This node should contain the LN_NAME and 
LN_TYPE (ie.NT_DEVICE,NT_TASK, etc.) of the driver. 

NOTE 

The GetCurrentBindingO function, and driver binding in general, must be bracketed by an 
ObtainConfigBindingO and ReleaseConfigBindingO semaphore. The BindDrivers command obtains 
the semaphore and performs a SetCurrentBinding before calling InitResidentO, allowing the driver to 
simply do ,a GetCurrentBindingO. 

Full source code for a disk-based Expansion or DEVS: device driver, and autodocs for expansion. library functions 
can be found in the Addison-Wesley Includes and Autodocs Manual. 

MakeDosNode AND AddDosNode 

Two other expansion.library functions used by expansion board drivers are MakeDosNodeO and AddDosNodeO. 
These functions allow a driver to create and add a DOS device node (for example DHO:) to the system. 

MakeDosNodeO requires an initialized structure of environment information for creating a DOS device node. The 
format of the command is: 

530 Expansion Library 



struct DeviceNode *deviceNode = MakeDosNode{parameterPkt); 

where parameterPkt is a pointer (passed in AO from assembler) to an initialized structure of the following form: 

------------------------------------------------------------------------, 
, 
; Layout of parameter packet for MakeDosNode 

------------------------------------------------------------------------, 

* The packet for MakeDosNode starts with the following four 
* longwords, directly followed by a DosEnvec strcuture. 

Points to a DOS device name (ex. 'RAMi',O) APTR dosName 
APTR execName 
ULONG unit 
ULONG flags 

Points to device driver name (ex. 'ram.device' ,0) 
Unit number 
OpenDevice flags 

* The DosEnvec disk "environment" is a longword array that describes the 
* disk geometry. It is variable sized, with the length at the beginning. 
* Here are the constants for a standard geometry. 
* See libraries/filehandler.i for additional notes. 

STRUCTURE DosEnvec,O 
ULONG de TableSize 
ULONG de-SizeBlock 
ULONG de SecOrg 
ULONG de-Surfaces 
ULONG de SectorPerBlock 
ULONG de-BlocksPerTrack 
ULONG de-Reserved 
ULONG de-PreAlloc 
ULONG de Interleave 
ULONG de::::LowCyl 
ULONG de HighCyl 
ULONG de-NumBuffers 
ULONG de_BufMemType 
ULONG de MaxTransfer 
ULONG de Mask 
LONG de-BootPri 
ULONG de_DosType 

LABEL DosEnvec SIZEOF 

Size of Environment vector 
in longwords: standard value is 128 
not used; must be ° 
# of heads (surfaces). drive specific 
not used; must be 1 
blocks per track. drive specific 
DOS reserved blocks at start of partition. 
DOS reserved blocks at end of partition 
usually ° 
starting cylinder. typically ° 
max cylinder. drive specific 
Initial # DOS of buffers. 
type of mem to allocate for buffers 
Max number of bytes to transfer at a time 
Address Mask to block out certain memory 
Boot priority for autoboot 
ASCII (HEX) string showing filesystem type; 
OX444F5300 is old filesystem, 
OX444F530i is fast file system 

After making a DOS device node, drivers (except for autoboot drivers) use AddDosNode(deviceNode) to add their 
node to the system. Autoboot drivers will instead use the Exec EnqueueO function to add a BootNode to the 1.3 
ExpansionBase eb_MountList 

ROM BASED AND AUTOBOOT DRIVERS 

The 1.3 system software supports the initialization of ROM drivers residing on expansion peripherals, including the 
ability for drivers to provide a DOS node which the system can boot from. This feature is known as Autoboot. 

Automatic boot from a ROM-equipped expansion board is accomplished before DOS is initialized. This facility 
makes it possible to automatically boot from a hard disk without any floppy disks inserted. Likewise, it is possible 
to automatically boot from any device which supports the ROM protocol, even allowing the initialization of a disk 
operating system other than the Amiga's dos.library. ROM-based drivers contain several special entry points which 
are called at different stages of system initialization. 

Expansion Library 531 



EVENTS AT DIAG TIME 

When your AUTOCONFIG hardware board is configured by the expansion initialization routine, its ExpansionRom 
structure is copied into the ExpansionRom subfield of a ConfigDev structure. This ConfigDev structure will be 
linked to the expansion.library as part of the eb_BoardList. 

After the board is configured, the er_Type field of its ExpansionRom structure is checked. The DIAGVALID bit set 
declares that there is a valid DiagArea (a rom/diagnostic area) on this board. If there is a valid DiagArea, expansion 
next tests the ecInitDiagYec vector in its copy of the ExpansionRom structure. This offset is added to the base 
address of the configured board; the resulting address points to the start of this board's DiagArea. 

struct ExpansionRom 
{ 

UBYTE er Type; 1* <-- if ERTB DIAGVALID set *1 
UBYTE er-Product; 
UBYTE er:::Flags; 
UBYTE er_Reserved03; 
UWORD er Manufacturer; 
ULONG er:::SeriaINumber; 
UWORD er InitDiagVec; 
UBYTE er-ReservedOc; 

1* <-- then er InitDiagVec *1 
1* is added to cd BoardAddr *1 

UBYTE er-ReservedOd; 1* and points to DiagArea *1 
UBYTE er-ReservedOe; 1* ( see figure 3 ) *1 
UBYTE er:::ReservedOf; 

} ; 

Now expansion knows that there is a DiagArea, and knows where it is. 

struct DiagArea 
{ 

} ; 

UBYTE da Config; 
UBYTE da-Flags; 
UWORD da-size; 
UWORD da-DiagPoint; 
UWORD da-BootPoint; 
UWORD da:::Name; 
UWORD da Reserved01; 
UWORD da:::Reserved02; 

1* <-- if DAC CONFIGTlME is set *1 

1* <-- then da Size bytes will */ 
1* be copied into RAM *1 

1* da Config definitions */ 
idefine DAC_BUSWIDTH OxCO 
idefine DAC NIBBLEWIDE OxOO 

1* two bits for bus width *1 

idefine DAC BYTEWIDE Ox40 1* invalid for 1.3 - see note below *1 
idefine DAC WORDWIDE Ox80 

ide fine DAC_BOOTTlME Ox30 1* two bits for when to boot *1 
idefine DAC NEVER OxOO 1* obvious *1 
idefine DAC CONFIGTlME Ox10 1* call da BootPoint when first 

configging the device *1 
ide fine DAC_BINDTlME Ox20 1* run when binding drivers to boards *1 

Next, expansion tests the first byte of the DiagArea structure to determine if the CONFIGTIME bit is set. If this bit 
is set, it checks the da_BootPoint offset vector to make sure that a valid bootstrap routine exists. If so, expansion 
copies da_Size bytes into RAM memory, starting at beginning of the DiagArea structure. 

The copy will include the DiagArea structure itself, and typically will also include the da_DiagPoint rom/diagnostic 
routine, a Resident structure (romtag), a device driver (or at least the device initialization tables or structures which 
need patching), and the da_BootPoint routine. In addition, the BootNode and parameter packet for MakeDosNode 
may be included in the copy area for Diag-time patching. Strings such as dos and exec device names, library names, 

532 Expansion Library 



and the romtag id string may also be included in the copy area so that both position-independent ROM code and 
position-independent routines in the copy area may reference them PC relative. 

The copy will be made either nibblewise. or wordwise. according to the BUSWIDTH subfield of da_Config. 

NOTE 

The da BootPoint offset MUST BE NON-NULL, OR ELSE NO COpy WILL OCCUR. (under 1.3, 
DAC_BYlEWIDE is not supported. Byte wide roms must use DAC_NIBBLEWIDE and drivers must 
supply additional code to re-copy their DiagArea) 

The following diagram illustrates an example Diag copy area. 

+-> CCFF 
I SIZE 
S DIAG 
I BOOT 
Z NAME 
E 0000 

0000 

rrrr 

ssss 

BBBB 

DDDD 

dddd 
bbbb 
pppp 

ssss 

-> last 

Example DiagArea Copy in RAM 

da_Config, da_Flags 
da Size 
da::::DiagPoint 

<-----+ <-----+ <-----+ 
I I I 
N B D 

da BootPoint 
da-Name 
da-ReservedOl 
da-Reserved02 

Romtag 
(patch MatchTag, 
EndSkip, Name, ID, 
and Init vector) 

A 
M 
E 
I 
I 
I 
I 
I 
I 
I 

DiagArea + da Name <+-----+ 
(the exec name string) 

o 
o 
T 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

DiagArea + da_BootPoint <---------+ 
(the Boot-time code) 

I 
A 
G 

DiagArea + da DiagPoint <-----------------+ 
(the Diag-time code) 

Device in it structs/tables (patch names, vectors) 
BootNode (patch ln Name and bn DeviceNode) 
MakeDosNode packet-(patch dos and exec names) 

other name, 'ID, and library name strings 

DiagArea + da_Size 

Now the ROM "image" exists in RAM memory. Expansion stores the ULONG address of that "image" in the 
UBYlES ecReservedOc, Od, Oe and Of. The address is stored with the most significant byte in ecReservedOc, the 
next to most significant byte in ecReservedOd, the next to least significant byte in ecReservedOe, and the least 
significant byte in ecReservedOf - i.e. it is stored as a longword at the address ecReservedOc. 

Expansion finally checks the da_DiagPoint offset vector, and if valid executes the rom/diagnostic routine contained 
as part of the ROM "image". This diagnostic routine is responsible for "patching" the ROM image so that 
required absolute addresses are relocated to reflect the actual location of code and strings, as well as performing any 
diagnostic functions essential to the operation of its associated auto-config board. The structures which require 
patching are located within the copy area so that they can be patched at this time. Patching is required because many 
of the structures involved require absolute pointers to such things as name strings and code, but the absolute 
locations of the board and the RAM copy area are not known when code the structures. 

The patching may be accomplished by coding pointers which require absolute addresses instead as relative offsets 
from either the start of the DiagArea structure, or the start of the board's ROM (depending on whether the final 
absolute pointer will point to a RAM or ROM location). The Diag routine is passed both the actual base address of 

Expansion Library 533 



the board, and the address of the Diag copy area in RAM. The routine can then patch the structures in the Diag copy 
area by adding the appropriate address to resolve each pointer. 

Example DiagArea and Diag patching routine: 

** 
** Sample autoboot code fragment 
** 
** These are the calling conventions for Diag or Boot area 
** 
** A7 
** A6 
** AS 
** A3 
** A2 
** AO 
** 

points to at least 2K of stack 
ExecBase 
ExpansionBase 
your board's ConfigDev structure 
Base of diag/init area that was copied 
Base of your board 

** Your Diag routine should return a non-zero value in DO for success. 
** If this value is NULL, then the diag/init area that was copied 
** will be returned to the free memory pool. 
** 

VERSION 
REVISION 

ROMOFFS 

INCLUDE "exec/types.i" 
INCLUDE "exec/nodes.i" 
INCLUDE "exec/resident.i" 
INCLUDE "libraries/configvars.i" 

; LVO's resolved by linking with library amiga.lib 
XREF LVOFindResident 

EQU 
EQU 

EQU 

1 
4 

$2000 

* ROMOFFS is the offset from your board base where your ROMs appear. 
* Your ROMs might appear at offset 0 and contain your autoconfig ID 
* information in the high nibble of the first $40 words ($BO bytes). 
* Or, your autoconfig ID information may be in a PAL, with your 
* ROMs possibly being addressed at some offset (for example $2000) 
* from your board base. This ROMOFFS constant will be used as an 
* additional offset from your configured board address when patching 
* structures which require absolute pointers to ROM code or data. 

CODE 

******* RomStart *************************************************** 
********************************************************************** 
RomStart: 

* This is the start of your ROM. 
* If your ROMOFFS is 0 and you have $40 words of autoconfig ID 
* information here, it will look something like the this: 

* 
* MANUF ID 
* PRODUCT ID 

* 
* SIZE FLAG 

* 
* 
* 
* 
* 

EQU 
EQU 

2011 
1 

CBM assigned (2011 for hackers only) 
Manufacturer picks product ID 

EQU 3 Autoconfig 3-bit flag for BOARDSIZE 
O=$BOOOOO(Bmeg) 4=$BOOOO(S12K) 
1=$10000(64K) S=$lOOOOO(lmeg) 
2=$20000 (12BK) 6=$200000 (2meg) 
3=$40000(2S6K) 7=$400000 (4meg) 

* Start of $40 words of autoconfig ID information: 
* 
* 
* 
* 
* 
* 

; High nibbles of first two words ($00,$02) are er_Type (not inverted) 
DC.W $DOOO Ilxx normal type 

xxOx not a memory board 
xxxI we have a ROM driver 

534 Expansion Library 



* 
* 
* 

DC.W (SIZE_FLAG«l2) &$7000 Oxxx 
xNNN 

not chained req 
size flag above 

* High nibbles of next two words are er Product 
* These are inverted (-), as are all other words except $40 and $42 
* DC.W (-(PRODUCT ID«8»&$fOOO 
* DC.W (-(PRODUCT=ID«12»&$fOOO 

* * etc. ($40 words at even addresses $00 through $7E) 
* See the Addison-Wesley Amiga Hardware Manual for more info. 

******* DiagStart ************************************************** 
DiagStart: This is the DiagArea structure whose relative offset from 

your board base appears as the Init Diag vector in your 
autoconfig ID information. This structure is designed 
to use all relative pointers (no patching needed). 

dc.b DAC WORDWIDE+DAC CONFIGTIME da Con fig 
dc.b a - da-Flags 
dc.w EndCopy-DiagStart da-Size 
dc.w DiagEntry-DiagStart da_DiagPoint 
dc.w BootEntry-DiagStart da_BootPoint 
dc.w DevName-DiagStart da Name 
dc.w a da-ReservedOl 
dc.w a da Reserved02 

******* Resident Structure ***************************************** 
Romtag: 

rt_Match: 
rt_End: 

rt Name: 
rt Id: 
rt-Init: 

DevName: 
IdString 

DosName: 

DosDevName: 

dc.w 
dc.l 
dc.l 
dc.b 
dc.b 
dc.b 
dc.b 
dc.l 
dc.l 
dc.l 

dc.b 
dc.b 

dc.b 

dc.b 

ds.w 

RTC MATCHWORD UWORD RT MATCHWORD 
Romtag-DiagStart APTR RT MATCHTAG 
EndCopy-DiagStart APTR RT ENDSKIP 
RTW COLDS TART UBYTE RT FLAGS 
VERSION UBYTE RT VERSION 
NT DEVICE UBYTE RT TYPE 
20 BYTE RT PRI 
DevName-DiagStart APTR RT NAME 
IdString-DiagStart APTR RT IDSTRING 
Init-RomStart APTR RT-INIT 

'abc.device',O Name string 
'abc ',48+VERSION,' .',4B+REVISION Id string 

'dos.library',O DOS library name 

'ABC',O dos device name for MakeDosNode() 
(dos device will be ABC:) 

a word align 

,******* DiagEntry ************************************************** 
********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

success 
dO 

DiagEntry (BoardBase, DiagCopy, configDev) 
aO a2 a3 

Called by expansion architecture to relocate any pointers 
in the copied diagnostic area. We will patch the romtag. 
If you have pre-coded your MakeDosNode packet, BootNode, 
or device initialization structures, they would also need 
to be within this copy area, and patched by this routine. 

********************************************************************** 

DiagEntry: 
lea 
adda.l 

patchTable-RomStart(aO),al 
IIROMOFFS,al 

find patch table 
adjusting for ROMOFFS 

* Patch relative pointers to labels within DiagCopy area 
* by adding Diag RAM copy address. These pointers were coded as 
* long relative offsets from base of the DiagArea structure. 

* 

Expansion Library 535 



dpatches: 

dloop: 
move.l 

move.w 
bmi.s 
add.l 
bra.s 

a2,dl 

(al)+,dO 
bpatches 
dl,O(a2,dO.w) 
dloop 

;dl=base of ram Diag copy 

;dO=word offs. into Diag needing patch 
;-1 is end of word patch offset table 
;add DiagCopy addr to coded reI. offset 

* Patches relative pointers to labels within the ROM by adding 
* the board base address + ROMOFFS. These pointers were coded as 
* long relative offsets from RomStart. 
bpatches: 

rloop: 

endpatches: 

move. 1 
add.l 

move.w 
bmi.s 
add.l 
bra.s 

aO,dl 
IIROMOFFS,dl 

(al)+,dO 
endpatches 
dl,O(a2,dO.w) 
rloop 

moveq.l 1I1,dO 
rts 

;dl = board base address 
;add offset to where your ROMs are 

;dO=word offs. into Diag needing patch 
;-1 is end of patch offset table 
;add ROM address to coded relative offset 

indicate "success" 

******* BootEntry ************************************************** 
********************************************************************** 

BootEntry: 

* 

lea 
jsr 
move.l 
move.l 
jsr 
rts 

DosName(PC),al 
_LVOFindResident(a6) 
dO,aO 
RT_INIT(AO),aO 
(aO) 

'dos.library',O 
find the DOS resident tag 
in order to bootstrap 
set vector to DOS INIT 
and initialize DOS 

* End of the Diag copy area which is copied to RAM 
* 
EndCopy: 
************************************************************************* 

************************************************************************* 

* * Beginning of rom driver code and data that is accessed only in 
* the rom space. This must all be position-independent. 
* 
patchTable: 
* Word offsets into Diag area where pointers need Diag copy address added 

dc.w rt_Match-DiagStart 
dc.w rt End-DiagStart 
dc.w rt=Name-DiagStart 
dc.w rt Id-DiagStart 
dc.w -1-

* Word offsets into Diag area where pointers need boardbase+ROMOFFS added 
dc.w rt Init-DiagStart 
dc.w -1-

******* Romtag InitEntry ********************************************** 
************************************************************************* 

Init: After Diag patching, our romtag will point to this 
routine in ROM so that it can be called at Resident 
initialization time. 
This routine will be similar to a normal expansion device 
initialization routine, but will MakeDosNode then set up a 
BootNode, and Enqueue() on eb MountList. 

rts 

; Rest of your position-independent device code goes here. 

536 Expansion Library 



END 

Your da_DiagPoint rom/diagnostic routine should return a non-zero value to indicate success; otherwise the ROM 
"image" will be unloaded from memory, and its address will be replaced with NULL bytes in locations 
ecReservedOc, Od, De and Of. 

Now that the ROM "image" has been copied into RAM, validated, and linked to board's ConfigDev structure, the 
expansion module is free to configure all other boards on the eb_BoardList 

EVENTS AT ROMTAG INIT TIME 

Next, most resident system modules (for example graphics) are initialized. As part of the system initialization 
procedure a search is made of the eb_BoardList (which contains a ConfigDev structure for each of the auto-config 
hardware boards). If the cd_Flags specify CONFIGME and the er_Type specifies DIAGV ALID, the system 
initialization will do three things: 

First, it will bind the address of the current ConfigDev to the eb_CurrentBinding structure (see 
expansion.library/SetCurrentBinding). Second, it will check the DiagArea's da_Config flag to make sure that the 
CONFIGTIME bit is set Third, it will search the ROM "image" associated with this hardware board for a valid 
Resident structure (exec/resident.h); and, if one is located, will call InitResidentO on it, passing a NULL segment list 
pointer as part of the call. 

Next, the board's device driver is initialized. The Resident structure associated with this board's device driver 
(which has now been "patched" by the rom/diagnostic routine) should follow standard system conventions in 
initializing the device driver provided in the bootroms. This driver should obtain the address of its associated 
ConfigDev structure via GetCurrentBindingO. 

Once the driver is initialized, it is responsible for some further steps. It must clear the CONFIGME bit in the 
cd_Flags of its ConfigDev structure, so that the system knows not to configure this device again if binddrivers is run 
after bootstrap. Also, though it is not currently mandatory, the driver should place a pointer to its Exec node in the 
cd_Driver field of the ConfigDev structure. This will generally be a device (NT_DEVICE) node. And for this 
device to be bootable, the driver must create a BootNode structure, and link this BootNode onto the expansion 
eb_MountList 

The BootNode structure (see libraries/romboocbase.h) contains a Node of the "new" type NT_BOOTNODE (see 
exec/nodes. h). The driver MUST initialize the bn_DeviceNode field to point to the ConfigDev structure which it has 
obtained via the GetCurrentBindingO call. The bn_Flags subfield is currently unused and should be initialized to 
NULL. 

When the DOS is initialized later, it will attempt to boot from the first BootNode on the eb_MountList. The 
eb_MountList is a priority sorted List, with nodes of the highest priority a the head of the List. For this reason, the 
device driver must EnqueueO a BootNode onto the List using the exec.library!Enqueue. 

In the case of an autoboot of AmigaDOS, the BootNode must be linked to a DeviceNode of the AmigaDOS type 
(see libraries/filehandler.h), which the driver can create via the expansion.library/MakeDosNode call. When the 
DOS "wakes up", it will attempt to boot from this DeviceNode. 

Expansion Library 537 



EVENTS AT BOOT TIME 

If there is no boot disk in the internal floppy drive, the system strap module will call a routine to perform autoboot. 
It will examine the eb_MountList; find the highest priority BootNode structure at the head of the List; validate the 
BootNode; determine which ConfigDev on the eb_BootList is associated with this BootNode; find its DiagArea; and 
call its da_BootPoint function in the ROM "image" to bootstrap the appropriate DOS. Generally, the BootPoint 
code of a ROM driver will perform the same function as the boot code installed on a floppy disk, ie. it will 
FindResidentO the dos.library, and jump to its RT_INIT vector. The da_BootPoint call, if successful, should not 
return. 

If a boot disk IS in the internal floppy drive, the strap will EnqueueO a BootNode on the eb_MountList for DFO: at 
the "suggested" priority (see autodoc for expansion.library/AddDosNode). Strap will then open AmigaOOs, 
overriding the autoboot. AmigaOOS will boot from the highest priority node on the eb_MountList which should, in 
this case, be DFO:. Thus, games and other "bootable" floppy disks will still be able to obtain the system for their 
own use. 

In the event that there is no boot disk in the internal floppy drive AND there are no ROM bootable devices on the 
auto-configuration chain, the system does the normal thing, asking the user to insert a WorkBench disk, and waiting 
until its request is satisfied before proceeding. 

RigidDiskBlock and Alternate Filesystems 

Through the use of RigidDiskBlock information and the FileSysResource, it is possible for an autoboot driver to 
have access to enough information to mount all of its device partitions and even load alternate filesystems for use 
with these partitions. 

The RigidDiskBlock specification (also known as "hardblocks") defines blocks of data that exist on a hard disk to 
describe that disk. These blocks are created or modified with an installation (or "prep") utility provided by the disk 
controller manufacturer, and they are read and used by the device driver rom (or expansion) code. They are not 
generally accessable to the user as they do not appear on any DOS device. The blocks are tagged with a unique 
identifier, checksummed, and linked together. 

The five block types currently defined are RigidDiskBlock, BadBlockBlock, PartitionBlock, 
FileSysHeaderBlock, and LoadSegBlock. 

The root of these blocks is the RigidDiskBlock. The RigidDiskBlock must exist on the disk within the first 
RDB_LOCATlON_LIMIT blocks. This inhibits the use of the first cylinder(s) in an AmigaDOS partition: although 
it is strictly possible to store the RigidDiskBlock data in the reserved area of a partition, this practice is discouraged 
since the reserved blocks of a partition are overwritten by Format, Install, DiskCopy, etc. The recommended disk 
layout, then, is to use the first cylinder(s) to store all the drive data specified by these blocks: i.e. partition 
descriptions, file system load images, drive bad block maps, spare blocks, etc. This allocation range is described in 
the RigidDiskBlock. 

The RigidDiskBlock contains basic information about the configuration of the drive: number and size of blocks, 
tracks, and cylinders, as well as other relevant information. The RigidDiskBlock points to bad block, partition, file 
system and drive initialization description blocks. 

538 Expansion Library 



The bad block list contains a series of bad-block/good-block pairs. Each block contains as many as will fit in a 
physical sector on the drive. These mappings are to be handled by the driver on read and write requests. 

The drive initialization description blocks are LoadSegBlock blocks that are loaded at boot time to perform drive
specific initialization. They are called with both "c" style parameters on the stack, and assembler parameters in 
registers as follows: 

dO = DriveInit(lun, rdb, ior)(dO/aO/al) 

where lun is the SCSI logical unit number (needed to construct SCSI commands), rdb is a pointer to a memory copy 
of the RigidDiskBlock (which should not be altered), and ior is a standard 10 request block that can be used to 
access the drive with synchronous 00100 calls. The result of DriveInit is either -I, 0, or 1. A -1 signifies that an 
error occurred and drive initialization cannot continue. A 0 (zero) result reports success. In cases -1 and 0, the code 
is unloaded. A result of 1 reports success, and causes the code to be kept loaded. Furthermore, this resident code 
will be called whenever a reset is detected on the SCSI bus. 

The FileSysHeaderBlock entries contain code for alternate file handlers to be used by partitions. There are several 
strategies that can be used to determine which of them to load. The most robust would scan all drives for those that 
are both required by partitions and have the highest fhb_ Version, and load those. Whatever method is used, the 
loaded file handlers are added to the exec resource FileSystem.resource, where they are used as needed to mount 
disk partitions. 

The PartitionBlock entries contains most of the data necessary to add each partition to the system. They replace the 
Mount and DEVS:MountList mechanism for adding these partitions. The only items required by the 
expansion.library MakeDosNode function which are not in this partition block are the exec device name and unit, 
which is expected to be known by driver reading this information. The file system to be used is specified in the 
pb_Environment. If it is not the default file system (i.e. specified in a FileSystem.resource's FileSysEntry before 
adding it to the dos list. 

Though only 512 byte blocks are currently supported by the file system, this proposal tries to be forward-looking by 
making the block size explicit, and by using only the first 256 bytes for all blocks but the LoadSeg and BadBlock 
data. This would allow using drives formatted with sectors 256 bytes or larger. LoadSeg and BadBlock data use 
whatever space is available in a sector. 

RigidDiskBlock 

This is the current specification for the RigidDiskBlock: 

rdb ID 
rdb::::SummedLongs 
rdb ChkSum 

rdb HostID 

rdb_BlockBytes 

== 'RDSK' 
== 64 
block checksum (longword sum to zero) 

SCSI Target ID of host 
This is the initiator ID of the creator of this 
RigidDiskBlock. It is intended that 
modification of the RigidDiskBlock, or of any 
of the blocks pointed to by it, by another 
initiator (other than the one specified here) 
be allowed only after a suitable warning. The 
user is then expected to perform an audio 
lock out ("Hey, is anyone else setting up SCSI 
stuff on this bus?"). The rdb HostID may 
become something other than the-initiator ID 
when connected to a real network: that is an 
area for future standardization. 

size of disk blocks 

Expansion Library 539 



RDBF. LAST 

RDBF._LASTLUN 

RDBF._LASTTID 

RDBF._NORESELECT 

RDBF. DISKID 

RDBF. CTRLRID 

RDBF._SYNCH 

currently this must be 512 for a disk with any 
AmigaDOS partitions on it. 

longword of flags: 

no disks exist to be configured after this 
one on this controller (SCSI bus) . 

no LUNs exist to be configured greater 
than this one at this SCSI Target ID 

no Target IDs exist to be configured 
greater than this one on this SCSI bus 

don't bother trying to perform reselection 
when talking to this drive 

rdb Disk ••• identification variables below 
contain valid data. 

rdb Controller ••• identification variables 
below contain valid data. 

drive supports scsi synchronous mode 
CAN BE DANGEROUS TO USE IF IT DOESN'T! 

These fields point to other blocks on the ~sk which are not a part of any filesystem. All block pointers referred to 
are block nwnbers on the drive. 

rdb BadBlockList 

rdb PartitionList 

rdb_FileSysHeaderList 

rdb Drivelnit 

rdb Reservedl 

optional bad block list 
A singly linked list of blocks of type 
PartitionBlock 

optional first partition block 
A singly linked list of blocks of type 
PartitionBlock 

optional file system header block 
A singly linked list of blocks of type 
FileSysHeaderBlock 

optional drive-specific init code 
A singly linked list of blocks of type 
LoadSegBlock containing initialization code. 
Called as Drivelnit (lun, rdb, ior) (dO/aO/al) • 

set to $ffffffffs 
These are reserved for future block lists. 
Since NULL for block lists is $ffffffff, these 
reserved entries must be set to $ffffffff. 

These fields describe the physical layout of the drive. 

rdb Cylinders 
rdb-Sectors 
rdb-Heads 

rdb Interleave 

rdb Park 
rdb-Reserved2 

540 Expansion Library 

number of drive cylinders 
sectors per track 
number of drive heads 

interleave 
This drive interleave is independent from, and 
unknown to, the DOS's understanding of 
interleave as set in the partition's 
environment vector. 

landing zone cylinder 
set to zeros 



These fields are intended for ST506 disks. They are generally unused for SCSI devices and set to zero. 

rdb WritePreComp 
rdb-ReducedWrite 
rdb StepRate 
rdb-Reserved3 

starting cylinder: write precompensation 
starting cylinder: reduced write current 
drive step rate 
set to zeros 

These fields are used while partitions are set up to constrain the partitionable area and help describe the relationship 
between the drive's logical and physicallayouL 

rdb_RDBlocksLo 

rdb RDBlocksHi 
rdb:::LoCylinder 

rdb_HiCylinder 

rdb AutoParkSeconds 

rdb_HighRDSKBlock 

rdb_Reserved4 

low block of the range allocated for 
blocks described here. Replacement blocks 
for bad blocks may also live in this range. 

high block of this range (inclusive) 
low cylinder of partitionable disk area 
Blocks described by this include file will 
generally be found in cylinders below this one. 

high cylinder of partitionable data area 
Usually rdb_Cylinders-l. 

number of blocks available per cylinder 
This may be rdb Sectors*rdb Heads, but a SCSI 
disk that, for ;xample, res;rves one block per 
cylinder for bad block mapping would use 
rdb Sectors*rdb Heads-l. 

number of seconds to wait before parking 
drive heads automatically. If zero, this 
feature is not desired. 

highest block used by these drive definitions 
Must be less than or equal to rdb_RDBBlocksHi. 
All replacements for bad blocks should be 
between rdb_HighRDSKBlock+l and rdb_RDBBlocksHi 
(inclusive) • 

set to zeros 

These fields are of the fonn available from a SCSI Identify command. Their purpose is to help the user identify the 
disk during setup. Entries exist for both controller and disk for non-embedded SCSI disks. 

rdb DiskVendor 
rdb DiskProduct 
rdb-DiskRevision 
rdb-ControllerVendor 
rdb-ControllerProduct 
rdb ControllerRevision 
rdb-Reserved5 

BadBlockBlock 

vendor name of the disk 
product name of the disk 
revision code of the disk 
vendor name of the disk controller 
product name of the disk controller 
revision code of the disk controller 
set to zeros 

This is the current specification for the BadBlockBlock. The end of data occurs when bbb_Next is null ($ffffffft), 
and the summed data is exhausted. Note that null for RigidDiskBlocks is equal to $ffffffff. 

Expansio~ Library 541 



bbb ID 
bbb:=SummedLongs 

bbb ChkSum 
bbb-HostID 

bbb Next 
bbb-Reserved 
bbb-BlockPairs 

PartitionBlock 

== 'BADB' 
size of this checksummed structure 
Note that this is not 64 like most of the other 
structures. This is the number of valid longs 
in this image, and can be from 6 to 
rdb BlockBytes/4. The latter is the best size 
for-all blocks other than the last one. 

block checksum (longword sum to zero) 
SCSI Target ID of host 
This describes the initiator ID for the creator 
of these blocks. (see rdb_HostID discussion) 

block number of the next BadBlockBlock 
set to zeros 
pairs of block remapping information 
The data starts here and continues as long as 
indicated by bbb_SummedLongs-6: e.g. if 
bbb SummedLongs is 128 (512 bytes), 61 pairs 
are-described here. 

This is the current specification for the PartitionBlock. 

NOTE 

While reading these blocks you may encounter partitions that are not to be mounted because the 
pb_HostlD does not match, or because the pb_DriveName is in use and no fallback strategy exists, or 
because PBF._NOMOUNT is set, or because the proper filesystem cannot be found. Some partitions 
may be mounted but not be bootable because PBF._BOOTABLE is not set 

pb ID 
pb:=summedLongs 
pb_ChkSum 

PBF. BOOTABLE 

PBF. NOMOUNT 

pb DevFlags 
pb:=DriveName 

== 'PART' 
== 64 
block checksum (longword sum to zero) 

SCSI Target ID of host 
This describes the initiator ID for the owner 
of this partition. (see rdb HostID discussion) 

block number of the next PartitionBlock 

see below for defines 

this partition is intended to be boot able 
(e.g. expected directories and files exist) 

this partition description is to reserve 
space on the disk without mounting it. 
It may be manually mounted later. 
set to zeros 

preferred flags for OpenDevice 
preferred DOS device name: BSTR form 
This name is not to be used if it is already 
in use. 

NOTE 

pb_Reserved2 will always be at least 4 longwords so that the ram image of this record may be converted 
to the parameter packet to the expansion. library function MakeDosNode 

542 Expansion Library 



filler to 32 longwords 

The specification of the location of the partition is one of the components of the environment, below. If possible, 
describe the partition in a manner that tells the DOS about the physical layout of the partition: specifically, where the 
cylinder boundaries are. This allows the filesystem' s smart block allocation strategy to work. 

pb Environment 

de TableSize 
de-SizeBlock 
de::::SecOrg 
de Surfaces 
de-SectorPerBlock 
de::::BlocksPerTrack 

de Reserved 

de Interleave 

de Lowcyl 
de-HighCyl 
de-NumBuffers 

de_BufMemType 

de_MaxTransfer 

de Mask 

de BootPri 

pb ERe served 

FileSysHeaderBlock 

environment vector for this partition 

size of Environment vector 
== 128 (for 512 bytes/logical block) 
== 0 
number of heads (see layout discussion) 
== 1 
blocks per track (see layout discussion) 

DOS reserved blocks at start of partition. 
Must be >= 1. 2 is recommended. 

DOS reserved blocks at end of partition 
Valid only for filesystem type DOS"A (the 
fast file system). Zero otherwise. 

DOS interleave 
Valid only for filesystem type DOS"@ (the 
old file system). Zero otherwise. 

starting cylinder 
max cylinder 
initial # DOS of buffers. 

type of mem to allocate for buffers 
The second argument to AllocMem() • 

max number of bytes to transfer at a time. 
Drivers should be written to handle requests 
of any length. 

address mask to block out certain memory 
Normally $OOffffff for DMA devices. 

Boot priority for autoboot 
Suggested value: zero. Keep less than 
five, so it won't override a boot floppy. 

ASCII string showing filesystem type; 
DOS"@ ($444F5300) is old filesystem, 
DOS"A ($444F5301) is fast file system. 
UNI<anything> is a Unix partition. 

reserved for future environment vector 

The current specification for the FileSysHeaderBlock follows. 

fhb_ID 
fhb SummedLongs 
fhb::::ChkSum 

fhb_HostID 

fhb Next 
fhb::::F1ags 

== 'FSHD' 
== 64 
block checksum (longword sum to zero) 

SCSI Target ID of host 
This describes the initiator ID for the 
creator of this block. (see rdb HostID 
discussion) 

block number of next FileSysHeaderBlock 
see below for defines 

Expansion Library 543 



fhb Reservedl set to zero 

The following infonnation is used to construct a FileSysEntry node in the FileSystem.resource. 

fhb_PatchFlags 

fhb Type 
fhb-Task 
fhb-Lock 
fhb-Handler 
fhb StackSize 
fhb::::Priority 
fhb_Startup 

fhb_SegListBlocks 

fhb GlobalVec 

fhb Reserved2 

fhb Reserved3 

LoadSegBlock 

file system description 
This is matched with a partition environment's 
de_OosType entry. 

release version of this load image 
Usually MSW is version, LSW is revision. 

patch flags 
These are bits set for those of the following 
that need to be substituted into a standard 
device node for this file system, lsb first: 
e.g. OxlBO to substitute SegList & GlobalVec 

device node type: zero 
standard dos "task" field: zero 
not used for devices: zero 
filename to loadseg: zero placeholder 
stacksize to use when starting task 
task priority when starting task 
startup msg: zero placeholder 

first of linked list of LoadSegBlocks: 
Note that if the fhb PatchFlags bit for this 
entry is set (bit 7)~ the blocks pointed to by 
this entry must be LoadSeg'd and the resulting 
BPTR put in the FileSysEntry node. 

BCPL global vector when starting task 
Zero or -1. 

(those reserved by PatchFlags) 

set to zero 

This is the current specification of the LoadSegBlock. The end of data occurs when Isb_Next is null ($ffffffft), and 
the summed data is exhausted. Note that null for RigidDiskBlocks is equal to $ffffffff. 

lsb ID 

Isb_SummedLongs 

lsb ChkSum 

lsb Next 

Isb LoadOata 

544 Expansion Library 

== 'LSEG' 

size of this checksummed structure 
Note that this is not 64 like most of the other 
structures. This is the number of valid longs 
in this image, like bbb_SummedLongs. 

block checksum (longword sum to zero) 

SCSI Target 10 of host 
This describes the initiator 10 for the creator 
of these blocks. (see rdb_HostIO discussion) 

block number of the next LoadSegBlock 

data for "loadseg" 
The data starts here and continues as long as 
indicated by Isb SummedLongs-5: e.g. if 
lsb SummedLongs Is l2B (512 bytes), 123 longs 
of data are valid here. 



filesysres.b and i 

The FileSysResource is created by the first code that needs to use it It is added to the resource list for others to use. 
(Checking and creation should be performed while ForbidO). 

FileSysResource 

fsr Node 
fsr-Creator 
fsr=FileSysEntries 

FileSysEntry 

fse Node 

fse DosType 
fse-Version 

fse_PatchFlags 

fse Type 
fse-Task 
fse-Lock 
fse-Handler 
fse-StackSize 
fse=Priority 
fse Startup 
fse-SegList 
fse-GlobalVec 

on resource list with the name FileSystem.resource 
name of creator of this resource 
list of FileSysEntry structs 

on fsr FileSysEntries list 
ln Name is of creator of this entry 
DosType of this FileSys 
release version of this FileSys 
Usually MSW is version, LSW is revision. 

bits set for those of the following that 
need to be substituted into a standard 
.device node for this file system: e.g. 
$180 for substitute SegList & GlobalVec 

device node type: zero 
standard dos "task" field 
not used for devices: zero 
filename to loadseg (if SegList is null) 
stacksize to use when starting task 
task priority when starting task 
startup msg: FileSysStartupMsg for disks 
segment of code to run to start new task 
BCPL global vector when starting task 

No more entries need exist than. those implied by fse_PatchFlags, so 
entries do not have a fixed size. 

NOTE 

Also see the following include files (.h and .i) for additional notes and related structures: 
deviceslhardblocks, resourceslfilesysres, and librarieslfilehandler. 

Expansion Library 545 



Chapter 28 

Math Libraries 

This chapter describes the structure and calling sequences required to access the Motorola Fast Floating Point and 
IEEE Double-Precision math libraries via the Amiga-supplied interfaces. 

Introduction 

In its present state, the FFP library consists of three separate entities: the basic math library, the transcendental math 
library, and C and assembly-language interfaces to the basic math library plus FFP conversion functions. The IEEE 
Double-Precision library presently consists of two entities: the basic math library and the transcendental math 
library. 

NOTE 

Each Task using the an IEEE math library must open the library itself. Library base pointers to these 
libraries may not be shared, as the libraries are context sensitive and use the Task structure to keep track 
of the current context. This is for any of the IEEE math libraries. 

Math Libraries 547 



FFP Floating Point Data Format 

FFP floating-point variables are defined within C by the float or FLOAT directive. In assembly language they are 
simply defined by a DC.L/DSL statement All FFP floating-point variables are defined as 32-bit entities 
(longwords) with the following format: 

I MMMMMMMM MMMMMMMM MMMMMMMM SEEEEEEE I 
31 23 15 7 

where 

M = 24-bit mantissa 

S = Sign of FFP number 

E = Exponent in excess-64 notation 

The mantissa is considered to be a binary fixed-point fraction; except for 0, it is always normalized (has a 1 bit in its 
highest position). Thus, it represents a value of less than 1 but greater than or equal to 1(2. 

The sign bit is reset (0) for a positive value and set (1) for a negative value. 

The exponent is the power of two needed to correctly position the mantissa to reflect the number's true arithmetic 
value. It is held in excess-64 notation, which means that the two's-complement values are adjusted upward by 64, 
thus changing $40 (-64) through $3F (+63) to $00 through $7F. This facilitates comparisons among floating-point 
values. 

The value of 0 is defined as all 32 bits being O's. The sign, exponent, and mantissa are entirely cleared. Thus,O's 
are always treated as positive. 

The range allowed by this format is as follows: 

DECIMAL: 

9.22337177 * 1018 > +VALUE > 5.42101070 * 10-20 

-9.22337177 * 1018 < -VALUE < -2.71050535 * 10-20 

BINARY (HEXADECIMAL): 

.FFFFFF * 263 > +VALUE > .800000 * 2~3 
-.FFFFFF * 263 < -VALUE < -.800000 * 2-64 

Remember that you cannot perform any arithmetic on these variables without using the fast floating-point libraries. 
The formats of the variables are incompatible with the arithmetic format of C-generated code; hence, all floating
point operations are performed through function calls. 

548 Math Libraries 



FFP Basic Mathematics Library 

The FFP basic math library resides in ROM and is opened by making a call to the OpenLibraryO function with 
mathft'p.Ubrary as the argument. In C, this might be implemented as shown below: 

'include <exec/types.h> 
'include <libraries/mathffp.h> 

struct Library *MathBase; 

VOID main() 
{ 

iff (MathBase = OpenLibrary("mathffp.library", 0» == 0) 
( 

printf("Can't open mathffp.library\n"); 
exit(20); 

CloseLibrary(MathBase); 

The global variable MathBase is used internally for all future library references. 

This library contains entries for the basic mathematics functions such as add, subtract, and so on. The C-called entry 
points are accessed via code generated by the C compiler when standard numerical operators are given within the 
source code, not by user calls. Note that to use either the C or assembly language interfaces to the basic math library 
all user code must be linked with the library amiga.lib. The C entry points defined for the basic math functions are 
as follows: 

SPFix (ffIxi) 
Convert FFP variable to integer 

Usage: il = SPFix(fl); (il = (LONG)fl;) 

SPFlt (ffiti) Convert integer variable to FFP 

Usage: fl = SPFlt(il); (fl = (FLOAni1;) 

SPCmp (fcmpi) 
Compare two FFP variables 

Usage: if (SPCmp(fl, 12» {}; (if (fl <> 12) (};) 

SPTst (ftsti) 
Test an FFP variable against zero 

Usage: if(!(SPTst(fl))) {}; (if (!fl) (};) 

SP Abs (fabsi) 
Take absolute value of FFP variable 

Usage: fl = SPAbs(12); (fl = abs(12);) 

Math Libraries 549 



SPNeg (fnegi) 
Take two's complement of FFP variable 

Usage: fl = SPNeg(f2); (fl = -f2;) 

SPAdd (faddi) 
Add two FFP variables 

Usage: fl = SPAdd(f2, £3); (fl = f2 + f3;) 

SPSub (fsubi) 
Subtract two FFP variables 

Usage: fl = SPSub(f2, £3); (fl = f2 - £3;) 

SPMul (fmuli) 
Multiply two FFP variables 

Usage: fl = SPMul(f2, £3); (fl = f2 * f3;) 

SPDiv (fdivi) 
Divide two FFP variables 

Usage: fl = SPDiv(f2, £3); (fl = f2 / £3;) 

SPCeil Compute least integer greater than or equal to variable. 

Usage: fl = SPCeil(f2); 

SPFloor Computer largest integer less than or equal to variable. 

Usage: fl = SPFloor(f2); 

Be sure to include proper data type definitions as shown in the example below. 

#include <exec/types.h> 
#include <libraries/mathffp.h> 

struct Library *MathBase; 

VOID main () 
{ 

FLOAT fl, f2, f3; 
LONG 11; 

if «MathBase = OpenLibrary("mathffp.library", 0) 0) 
( 

il 
fl 

if 
if 

fl 
fl 
fl 
fl 
fl 
fl 
fl 
fl 

printf("Can't open mathffp.library\n"); 
exit(20); 

= SPFix(fl); /* call SPFix entry */ 
= SPFlt (il); /* Call SPFlt entry */ 

(SPCmp (fl, f2) ) { } ; /* Call SPCmp entry */ 
(! (SPTst (fl)) ) { } ; /* Call SPTst entry */ 

SPAbs(f2); /* Call SPAbs entry */ 
SPNeg(f2) ; /* Call SPNeg entry */ 
SPAdd (f2, f3) ; /* Call SPAdd entry */ 
SPSub (f2, f3) ; /* Call SPSub entry */ 
SPMul (f2, f3) ; /* Call SPMul entry */ 
SPDiv(f2, f3) ; /* Call SPDiv entry */ 
SPCeil (f2); /* Call SPCeil entry */ 
SPFloor(f2): /* Call SPFloor entry */ 

550 Math Libraries 



C!oseLibrary(MathBase); 

The Amiga assembly language interface to the Motorola Fast Floating Point basic math routines is shown below, 
including some details about how the system flags are affected by each operation. This interface resides in amiga.lib 
and must be linked with the user code. Note that the access mechanism from assembly language is as follows: 

MOVEA.L MathBase,A6 
JSR _LVOSPFix(A6) 

_LVOSPFix-

_LVOSPFlt-

_LVOSPCmp-

_LVOSPTst-

Convert FFP to integer 

Inputs: 
Outputs: 
Condition codes: 

Convert integer to FFP 

Inputs: 
Outputs: 
Condition codes: 

Compare 

Inputs: 

Outputs: 

Condition codes: 

Test 

Inputs: 

DO = FFP argument 
DO = Integer (two's complement) result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if overflow occurred 
C = undefined 
X = undefined 

DO = Integer (two's complement) argument 
DO = FFP result 
N = 1 if result is negative 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

D I = FFP argument 1 
DO = FFP argument 2 
DO = +1 ifargI < arg2 
DO = -1 if argI > arg2 
DO = 0 if argI = arg2 
N=O 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 
GT = arg2 > argI 
GE = arg2 >= argI 
EQ = arg2 = argI 
NE = arg2 != argI 
LT = arg2 < argI 
LE = arg2 <= argl 

DI = FFP argument 

Math Libraries 551 



_LVOSPAbs-

_LVOSPNeg-

_LVOSPAdd-

_LVOSPSub-

552 Math Libraries 

Outputs: 

Condition codes: 

Note: This routine trashes the 
argument in D 1. 

Absolute value 

Inputs: 
Outputs: 
Condition codes: 

Negate 

Inputs: 
Outputs: 
Condition codes: 

Addition 

Inputs: 

Outputs: 
Condition codes: 

Subtraction 

Inputs: 

DO = + 1 if arg > 0.0 
DO = -1 if arg < 0.0 
DO = 0 if arg = 0.0 
N = 1 if result is negative 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 
EQ=arg=O.O 
NE = arg <> 0.0 
PL = arg >= 0.0 
MI=arg<O.O 

DO = FFP argument 
DO = FFP absolute value result 
N=O 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

DO = FFP argument 
DO = FFP negated result 
N = 1 if result is negative 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

D 1 = FFP argument 1 
DO = FFP argument 2 
DO = FFP addition of argl +arg2 result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 

D 1 = FFP argument 1 
DO = FFP argument 2 



Outputs: DO = FFP subtraction of arg2-argl result 
Condition codes: N = 1 if result is negative 

Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 

_LVOSPMul- Multiply 

Inputs: DO = FFP argument 1 
D 1 = FFP argument 2 

Outputs: DO = FFP multiplication of argl *arg2 result 
Condition codes: N = 1 if result is negative 

Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 

_LVOSPDiv- Divide 

Inputs: D 1 = FFP argument 1 
DO = FFP argument 2 

Outputs: DO = FFP division of arg2/argl result 
Condition codes: N = 1 if result is negative 

Z = 1 if result is zero 
V = 1 if result overflowed 
C = undefined 
Z = undefined 

_LVOSPCeil Ceil 
Inputs: DO = FFP argument 
Outputs: DO = least integer >= argument 
Condition codes: N = 1 if result is negative 

Z = 1 if result is zero 
V = undefined 
C = undefined 
Z = undefined 

_LVOSPFloor Floor 
Inputs: DO = FFP argument 
Outputs: DO = largest integer <= argument 
Condition codes: N = 1 if result is negative 

Z = 1 if result is zero 
V = undefined 
C = undefined .. Z = undefined 

Math Libraries 553 



FFP Transcendental Mathematics Library 

The FFP transcendental math library resides on disk and must be accessed in the same way as the basic math library 
after it is loaded into system RAM. The name to be included in the OpenLibraryO funcion is mathtrans.library. 
In C, this might be implemented as follows: 

'include <exec/types.h> 
'include <libraries/mathffp.h> 

struct Library *MathBase; 
struct Library *MathTransBase; 

VOID main() 
{ 

if( (MathBase = OpenLibrary(nmathffp.libraryn, 0)) == 0) 
{ 

printf(nCan't open mathffp.library\n); 
exit(20); 

if«MathTransBase = OpenLibrary(nmathtrans.libraryn,O)) == 0) 
{ 

printf(nCan't open mathtrans.library\nn); 
CloseLibrary(MathBase); 
exit(2l); 

CloseLibrary(MathTransBase); 
CloseLibrary(MathBase); 

The global variable MathTransBase is used internally for all future library references. Note that the transcendental 
math library is dependent upon the basic math library, which it will open if it is not open already. If you want to use 
the basic math functions in conjunction with the transcendental math functions however, you have to specifically 
open the basic math library yourself. 

This library contains entries for the transcendental math functions sine, cosine, and so on. The C-called entry points 
are accessed via code generated by the C compiler when the actual function names are given within the source code. 
The C entry points defined for the transcendental math functions are as follows: 

SPAsin 

SPAcos 

SPAtan 

SPSin 

Return arcsine of FFP variable. 

Usage: f1 = SPAsin(f2); 

Return arccosine of FFP variable. 

Usage: f1 = SPAcos(f2); 

Return arctangent of FFP variable. 

Usage: f1 = SPAtan(f2); 

Return sine of FFP variable. This function accepts an FFP radian argument and returns the 
trigonometric sine value. For extremely large arguments where little or no precision would result, 
the computation is aborted and the "V" condition code is set. A direct return to the caller is made. 

Usage: f1 = SPSin(f2); 

554 Math Libraries 



SPCos Return cosine of FFP variable. This function accepts an FFP radian argument and returns the 
trigonometric cosine value. For extremely large arguments where little or no precision would 
result, the computation is aborted and the "Y" condition code is set. A direct return to the caller is 
made. 

Usage: fl = SPCos(f2); 

SPTan Return tangent of FFP variable. This function accepts an FFP radian argument and returns the 
trigonometric tangent value. For extremely large arguments where little or no precision would 
result, the computation is aborted and the "Y" condition code is set. A direct return to the caller is 
made. 

Usage: fl = SPTan(f2); 

SPSincos Return sine and cosine of FFP variable. This function accepts an FFP radian argument and returns 
both the trigonometric sine and cosine values. If both the sine and cosine are required for a single 
radian value of interest, this function will result in almost twice the execution speed of calling the 
sin and cos functions independently. For extremely large arguments where little or no precision 
would result, the computation is aborted and the "Y" condition code is set. A direct return to the 
caller is made. 

Usage: fl = SPSincos(&f3, f2); 

SPSinh Return hyperbolic sine of FFP variable. 

Usage: fl = SPSinh(f2); 

SPCosh Return hyperbolic cosine of FFP variable. 

Usage: fl = SPCosh(f2); 

SPTanh Return hyperbolic tangent of FFP variable. 

Usage: fl = SPTanh(f2); 

SPExp Return e to the FFP variable power. This function accepts an FFP argument and returns the result 
representing the value of e (2.71828 ... ) mised to that power. 

Usage: fl = SPExp(f2); 

SPLog Return natural log (base e) ofFFP variable. 

Usage: fl = SPLog(f2); 

SPLogIO Return naparian log (base 10) ofFFP variable. 

Usage: fl = SPLoglO(f2); 

SPPow Return FFP arg2 to FFP argI. 

Usage: fl = SPPow(f3, f2); 

SPSqrt Return square root of FFP variable. 

Usage: fl = SPSqrt(f2); 

SPTieee Convert FFP variable to IEEE format 

Usage: il = SPTieee(fl); 

Math Libraries 555 



SPFieee Convert IEEE variable to FFP format 

Usage: f1 = SPFieee(il); 

Be sure to include proper data type definitions, as shown in the example below. 

'include <exec/types.h> 
'include <libraries/mathffp.h> 

struct Library *MathBase; 
struct Library *MathTransBase; 

VOID main () 
{ 

FLOAT fl, f2, f3; 
FLOAT il; 

if «MathBase = OpenLibrary ("mathffp.library", 0» 0) 
( 

printf("Can't open mathffp.library\n); 
exit(20); 

if «MathTransBase = OpenLibrary ("mathtrans .library", 0) ) 0) 
( 

printf("Can't open mathtrans.library\n); 
CloseLibrary(MathBase); 
exit(2l); 

f1 SPAsin(f2); /* Call 
f1 SPAcos(f2); /* Call 
f1 SPAtan(f2); /* Call 

f1 SPSin (f2) ; /* Call 
f1 SPCos(f2); /* Call 
f1 SPTan (f2) ; /* Call 
f1 SPSincos (&f3, f2); /* Call 

f1 SPSinh(f2); /* Call 
f1 SPCosh(f2); /* Call 
f1 SPTanh(f2); /* Call 

f1 SPExp (f2); /* Call 
f1 SPLog(f2); /* Call 
f1 SPLoglO(f2); /* Call 
f1 SPPow (f2); /* Call 
f1 = SPSqrt(f2); /* Call 

il SPTieee (f2) ; /* Call 
f1 SPFieee (il) ; /* Call 

CloseLibrary(MathTransBase); 
CloseLibrary(MathBase); 

SPAsin entry */ 
SPAcos entry */ 
SPAtan entry */ 

SPSin entry */ 
SPCos entry */ 
SPTan entry */ 
SPSincos entry */ 

SPSinh entry */ 
SPCosh entry */ 
SPTanh entry */ 

SPExp entry */ 
SPLog entry */ 
SPLoglO entry */ 
SPPow entry */ 
SPSqrt entry */ 

SPTieee entry */ 
SPFieee entry */ 

The section below describes the Amiga assembly language interface to the Motorola Fast Floating Point 
transcendental math routines and includes some details about how the system flags are affected by the operation. 
Again, this interface resides in the library file amigo. lib and must be linked with the user code. Note that the access 
mechanism from assembly language is as shown below: 

556 Math Libraries 



MOVEA.L MathTransBase,A6 
JSR =LVOSPAsin(A6) 

_LVOSPAsin -

_LVOSPAcos -

_LVOSPAtan -

Arcsine 

Inputs: 
Outputs: 
Condition codes: 

Arccosine 

Inputs: 
Outputs: 
Condition codes: 

Arctangent 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPSin - Sine 

Inputs: 
Outputs: 
Condition codes: 

_LVOSPCos- Cosine 

Inputs: 
Outputs: 
Condition codes: 

DO = FFP argument 
DO = FFP arctangent radian result 
N=O 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

DO = FFP argument 
DO = FFP arctangent radian result 
N=O 
Z = 1 if result is zero 
V = 1 if overflow occured 
C = undefined 
X = undefined 

DO = FFP argument 
DO = FFP arctangent radian result 
N=O 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 

DO = FFP argument in radians 
DO = FFP sine result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result is meaningless 
(that is, input magnitude too large) 
C = undefined 
X = undefined 

DO = FFP argument in radian 
DO = FFP cosine result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result is meaningless 

Math Libraries 557 



(that is, input magnitude too large) 
C = undefined 
X = undefined 

_LVOSPTan- Tangent 

Inputs: DO = FFP argument in radians 
Outputs: DO = FFP tangent result 
Condition codes: N = 1 if result is negative 

Z = 1 if result is zero 
V = 1 if result is meaningless 
(that is, input magnitude too large) 
C = undefined 
X = undefined 

_LVOSPSincos - Sine and cosine 

Inputs: DO = FFP argument in radians 
D 1 = Address to store cosine result 

Outputs: DO = FFP sine result 
(D 1) = FFP cosine result 

Condition codes: N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if result is meaningless 
(that is, input magnitude too large) 
C = undefined 
X = undefined 

_LVOSPSinh - Hyperbolic sine 

Inputs: DO = FFP argument in radians 
Outputs: DO = FFP hyperbolic sine result 
Condition codes: N = 1 if result is negative 

Z = 1 if result is zero 
V = 1 if overflow occurred 
C = undefined 
X = undefined 

_LVOSPCosh - Hyperbolic cosine 

Inputs: DO = FFP argument in radians 
Outputs: DO = FFP hyperbolic cosine result 
Condition codes: N = 1 if result is negative 

Z = 1 if result is zero 
V = 1 if overflow occurred 
C = undefined 
X = undefined 

_LVOSPTanh - Hyperbolic tangent 

Inputs: DO = FFP argument in radians 

558 Math Libraries 



_LVOSPExp-

_LVOSPLog-

_LVOSPLoglO -

_LVOSPPow-

_LVOSPSqrt -

Outputs: 
Condition codes: 

Exponential 

Inputs: 
Outputs: 
Condition codes: 

Natural logarithm 

Inputs: 
Outputs: 
Condition codes: 

Naparian (base 10) logarithm 

Inputs: 
Outputs: 
Condition codes: 

Power 

Inputs: 

Outputs: 
Condition codes: 

Square root 

Inputs: 

DO = FFP hyperbolic tangent result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if overflow occurred 
C = undefined 
X = undefined 

DO = FFP argument 
DO = FFP exponential result 
N=O 
Z = 1 if result is zero 
V = 1 if overflow occurred 
C = undefined 
Z = undefined 

DO = FFP argument 
DO = FFP natural logarithm result 
N = 1 'if result is negative 
Z = 1 if result is zero 
V = 1 if argument negative or zero 
C = undefined 
Z = undefined 

DO = FFP argument 
DO = FFP natural logarithm result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = 1 if argument negative or zero 
C = undefined 
Z = undefined 

D 1 = FFP argument value 
DO = FFP exponent value 
DO = FFP result of arg taken to exp power 
N=O 
Z = 1 if result is zero 
V = 1 if result overflowed or arg < 0 
C = undefined 
Z = undefined 

DO = FFP argument 

Math Libraries 559 



Outputs: 
Condition codes: 

_LVOSPTieee - Convert to IEEE format 

Inputs: 
Outputs: 
Condition codes: 

_L VOSPFieee - Convert from IEEE format 

Inputs: 
Outputs: 
Condition codes: 

DO = FFP square root result 
N=O 
Z = 1 if result is zero 
V = 1 if argument was negative 
C = undefined 
Z = undefined 

DO = FFP format argument 
DO = IEEE floating-point format result 
N = 1 if result is negative 
Z = 1 if result is zero 
V = undefined 
C = undefined 
Z = undefined 

DO = IEEE floating-point format argument 
DO = FFP format result 
N = undefined 
Z = 1 if result is zero 
V = 1 if result overflowed FFP format 
C = undefined 
Z = undefined 

FFP Mathematics Conversion Library 

The FFP mathematics conversion library is accessed by linking code into the executable file being created. The 
name of the file to include in the library description of the link command line is amiga.lib. When this is included, 
direct calls are made to the conversion functions. Only a C interface exists for the conversion functions; there is no 
assembly language interface. The basic math library is required in order to access these functions and might be 
opened as shown below. 

'include <exec/types.h> 
'include <libraries/mathffp.h> 

struct Library *MathBase; 

VOID main() 
{ 

if( (MathBase = OpenLibrary(Umathffp.libraryU, 0)) == 0) 
( 

printf(UCan't open mathffp.library\nU); 
exit (20) i 

CloseLibrary(MathBase); 

560 Math Libraries 



The C-called entry points are accessed via code generated by the C compiler when the actual function names are 
given within the source code. The C entry points defined for the math conversion functions are as follows: 

afp 

fpa 

arnd 

dbf 

fpbcd 

Convert ASCII string into FFP equivalent 

Usage: fnum == afp(&string[O]); 

Convert FFP variable into ASCII equivalent. 

Usage: exp = fpa(fnum, &string[O]); 

Round ASCII representation of FFP number. 

Usage:arnd(place, exp, &string[O]); 

Convert FFP dual-binary number to FFP equivalent 

Usage: fnum = dbf(exp, mant); 

Convert FFP variable to BCD equivalent. 

Usage: fpbcd(fnum, &string[O]); 

WARNING 

The fpbcdO function does not work correctly in the amiga.lib supplied for V1.3 and earlier versions. 
Avoid using this function at this time. 

Be sure to include proper data type definitions, as shown in the example below.' Print statements have been included 
to help clarify the format of the math conversion function calls. 

'include <exec/types.h> 
'include <libraries/mathffp.h> 

struct Library *MathBase; 

UBYTE st1[80] = "3.1415926535897"; 
UBYTE st2[80] = "2.718281828459045"; 
UBYTE st3[80], st4[80]; 

VOID main() 
{ 

FLOAT num1, num2; 
FLOAT n1, n2, n3, n4; 
LONG exp1, exp2, exp3, exp4; 
LONG mant1, mant2, mant3, mant4; 
LONG place1, place2; 

if «MathBase = OpenLibrary (llmathffp . library" , 0» 0) 
( 

printf("Can't open mathffp.library\n"); 
exit(20); 

n1 = afp(st1); 
n2 = afp(st2); 
printf(U\n\nASCII 

/* Call afp entry */ 
/* Call afp entry */ 

%s converts to floating point %fU, 
st1, n1); 

printf("\nASCII %s converts 
st2, n2); 

num1 3.1415926535897; 
num2 = 2.718281828459045; 

to floating point %f", 

Math Libraries 561 



expl = fpa(numl, st3); 1* Call fpa entry *1 
exp2 = fpa(num2, st4); 1* Call fpa entry *1 
printf("\n\nfloating point %f converts to ASCII %s", numl, st3); 
printf("\nfloating point %f converts to ASCII %s", 

num2, st4); 

placel = -2; 
place2 = -1; 
arnd(placel, expl, st3); 
arnd(place2, exp2, st4); 
printf ("\nASCII round of 

numl, placel, st3); 
printf("\nASCII round of 

num2, place2, st4); 

1* Call arnd entry */ 
1* Call arnd entry *1 

%f to %d places yields %s", 

%f to %d places yields %s", 

expl -3; exp2 3; exp3 = -3; exp4 = 3; 
mant3 = -12345; mant4 mantI = 12345; mant2 = -54321; 

nl dbf(expl, mantI); 1* Call dbf entry *1 
n2 dbf(exp2, mant2); 1* Call dbf entry *1 
n3 dbf(exp3, mant3); 1* Call dbf entry */ 
n4 dbf(exp4, mant4); 1* Call dbf entry *1 

54321; 

printf("\n\ndbf of exp = %d and mant = %d yields FFP number of %f", 
expI, mantI, nl); 

printf("\ndbf of exp = %d and mant %d yields FFP number of %f", 
exp2, mant2, n2); 

printf("\ndbf of exp = %d and mant %d yields FFP number of %f", 
exp3, mant3, n3); 

printf("\ndbf of exp = %d and mant %d yields FFP number of %f", 
exp4, mant4, n4); 

CloseLibrary(MathBase); 

IEEE Double-Precision Data Format 

The IEEE double-precision variables are defined as 64-bit entities with the following format: 

I SEEEEEEE EEEEMMMM MMMMMMMM MMMMMMMMI 
~ ~ ~ ~ 

where 

S = Sign of IEEE number 

M = 52-bit{+1) mantissa 

E = ll-bit exponent 

562 Math Libraries 



NOTE 

There is a "hidden" bit in the mantissa part of the IEEE numbers. Since all numbers are normalized, 
the leading 1 is dropped off. The IEEE double-precision range is 2.2E-308 (4.9E-324 de-normalized) to 
1.8E+307. 

IEEE Double-Precision Basic Math Library 

The IEEE double-precision basic math library resides on disk and is opened by making a call to the OpenLibraryO 
function with mathieeedoubbas.library as the argument. Do not share the library base pointer between tasks - see 
note at beginning of chapter for details. In C, this might be implemented as shown below. 

iinclude <exec/types.h> 
iinclude <libraries/mathieeedp.h> 

struct Library *MathIeeeDoubBasBase; 

VOID main () 
{ 

/* do not share base pointer between tasks. */ 
if {(MathIeeeDoubBasBase = 

OpenLibrary(nmathieeedoubbas.libraryn, 0)) == 0) 

printf(nCan't open mathieeedoubbas.library\nn); 
exit (20) ; 

CloseLibrary(MathIeeeDoubBasBase); 

The global variable MathIeeeDoubBasBase is used internally for all future library references. 

This library contains entries for the basic IEEE mathematics functions, such as add, subtract, and so on. 

If an 68020/68881 processor combination is available, it will be used by the IEEE basic library instead of the 
software emulation. Also, if an auto-configured math resource is available, that will be used. Typically this is a 
68881 designed as a 16 bit I/O port, but it could be another device as well. 

The IEEE double-precision basic math library is accessed by linking code into the executable file being created. The 
name of the file to include in the library description of the link command is mathieeedoubbas _lib.lib. The C entry 
points defined for the IEEE double-precision basic math functions are listed below: 

IEEEDPFix 
Convert IEEE double-precision variable to integer 

Usage: i1 = IEEEDPFix(dl); 

IEEEDPFlt Convert integer variable to IEEE double-precision 

Usage: dl = IEEEDPFlt(il); 

IEEEDPCmp 
Compare two IEEE double-precision variables 

Usage: switch (IEEEDPCmp(dl, d2)) {}; 

Math Libraries 563 



IEEEDPTst Test an IEEE double-precision variable against zero 

Usage: switch (IEEEDPTst(dl» {}; 

IEEEDPAbs 
Take absolute value of IEEE double-precision variable 

Usage: dl = IEEEDPAbs(d2); 

IEEEDPNeg 
Take two's complement of IEEE double-precision variable 

Usage: dl = IEEEDPNeg(d2); 

IEEEDPAdd 
Add two IEEE double-precision variables 

Usage: dl = IEEEDPAdd(d2, d3); 

IEEEDPSub 
Subtract two IEEEDPSub variables 

Usage: dl = IEEEDPSub(d2, d3); 

IEEEDPMul 
Multiply two IEEE double-precision variables 

Usage: dl = IEEEDPMul(d2, d3); 

IEEEDPDiv 
Divide two IEEE double-precision variables 

Usage: dl = IEEEDPDiv(d2, d3); 

IEEEDPCeil 
Compute least integer greater than or equal to variable 

Usage: dl == IEEEDPCeil(d2); 

IEEEDPFloor 
Compute largest integer less than or equal to variable 

Usage: dl = IEEEDPFloor(d2); 

Be sure to include proper data type definitions, as shown in the example below. 

'include <exec/types.h> 
'include <libraries/mathieeedp.h> 

struct Library *MathleeeDoubBasBase; 

VOID main () 
{ 

DOUBLE d1, d2, d3; 
LONG i1; 

if«MathleeeDoubBasBase = 
OpenLibrary(flmathieeedoubbas.libraryfl,O)) == 0) 

printf(flCan't open mathieeedoubbas.libraryO); 
exit (20) ; 

11 = IEEEDPFix(d1); /* Call IEEEDPFix entry */ 

564 Math Libraries 



fi = IEEEDPFlt(il); 
switch (IEEEDPCmp(dl, d2» I); 
switch (IEEEDPTst(dl» (); 
dl = IEEEDPAbs(d2); 
dl IEEEDPNeg(d2); 
dl IEEEDPAdd(d2, d3); 
dl IEEEDPSub(d2, d3); 
dl IEEEDPMul(d2, d3); 
dl IEEEDPDiv(d2, d3); 
dl IEEEDPCeil(d2); 
dl = IEEEDPFloor(d2); 

CloseLibrary(MathleeeDoubBasBase); 

1* Call IEEEDPFlt entry *1 
1* Call IEEEDPCmp entry *1 
1* Call IEEEDPTst entry *1 
1* Call IEEEDPAbs entry *1 
1* Call IEEEDPNeg entry *1 
1* Call IEEEDPAdd entry *1 
1* Call IEEEDPSub entry *1 
1* Call IEEEDPMul entry *1 
1* Call IEEEDPDiv entry *1 
1* Call IEEEDPCeil entry *1 
1* Call IEEEDPFloor entry *1 

The Amiga assembly language interface to the IEEE double-precision floating-point basic math routines is shown 
below, including some details about how the system flags are affected by each operation. Note that the access 
mechanism from assembly language is as shown below: 

MOVEA.L MathleeeDoubBasBase,A6 
JSR =LVOIEEEDPFix(A6) 

_LVOIEEEOPFix - Convert IEEE double-precision to integer 

Inputs: 
Outputs: 
Condition codes: 

DO/Ol = IEEE double-precision argument 
DO = Integer (two's complement) result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

_LVOIEEEOPFlt - Convert integer to IEEE double-precision 

Inputs: 
Outputs: 
Condition codes: 

DO = Integer (two's complement) argument 
DO/O 1 = IEEE double-precision result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

_LVOIEEEOPCmp - Compare two IEEE double-precision values 

Inputs: 

Outputs: 

Condition codes: 

DO/O 1 = IEEE double-precision argument 1 
02/03 = IEEE double-precision argument 2 
00=+1 ifargl <arg2 
DO = -1 if argl > arg2 
00 = 0 if argl = arg2 
N = 1 if result is negative 
Z = 1 if result is zero 
V=O 
C = undefined 
X = undefined 
GT = arg2 > argl 

Math Libraries 565 



GE = arg2 >= argl 
EQ = arg2 = argl 
NE = arg2 <> argl 
LT = arg2 < argl 
LE = arg2 <= argl 

_LVOIEEEDPTst - Test an IEEE double-precision value against zero 

Inputs: 
Outputs: 

Condition codes: 

_LVOIEEEDPAbs - Absolute value 

Inputs: 
Outputs: 

Condition codes: 

_LVOIEEEDPNeg - Negate 

Inputs: 
Outputs: 
Condition codes: 

_LVOIEEEDPAdd - Addition 

Inputs: 

Outputs: 

Condition codes: 

S66 Math Libraries 

DOlO 1 = IEEE double-precision argument 
DO = + 1 if arg > 0.0 
DO = -1 ifarg < 0.0 
DO = 0 if arg = 0.0 
N = 1 if result is negative 
Z = 1 if result is zero 
v=o 
C = undefined 
X = undefined 
EQ = arg= 0.0 
NE = arg <> 0.0 
PL = arg >= 0.0 
MI = arg< 0.0 

DOlO 1 = IEEE double-precision argument 
DOIOI = IEEE double-precision absolute 

value result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DOlO 1 = IEEE double-precision argument 
DOlO 1 = IEEE double-precision negated result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DOlO 1 = IEEE double-precision argument 1 
02103 = IEEE double-precision argument 2 
DOlO 1 = IEEE double-precision addition of 

arg 1 +arg2 result 
N = undefined 



_LVOIEEEDPSub - Subtraction 

Inputs: 

Outputs: 

Condition codes: 

_LVOIEEEDPMul - Multiply 

Inputs: 

Outputs: 

Condition codes: 

_LVOIEEEDPDiv - Divide 

Inputs: 

Outputs: 

Condition codes: 

_LVOIEEEDPCeil - Ceil 

Inputs: 
Outputs: 
Condition codes: 

Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/O 1 = IEEE double-precision argument 1 
D2/03 = IEEE double-precision argument 2 
DO/O 1 = IEEE double-precision subtraction 

of arg l-arg2 result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/O 1 = IEEE double-precision argument 1 
D2/03 = IEEE double-precision argument 2 
DO/O 1 = IEEE double-precision multiplication 

of argl *arg2 result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/O 1 = IEEE double-precision argument 1 
D2/03 = IEEE double-precision argument 2 
DO/O 1 = IEEE double-precision division 

of argl/arg2 result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/O 1 = IEEE double-precision variable 
DO/O 1 = least integer >= variable 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

Math Libraries 567 



_LVOIEEEDPFloor - Floor 

Inputs: 
Outputs: 
Condition codes: 

DOlO 1 = IEEE double-precision variable 
DOlO 1 = largest integer <= argument 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

IEEE Double-Precision Transcendental Math Library 

The IEEE double-precision transcendental math library resides on disk and is opened by making a call to the 
OpenLibraryO function with matbieeedoubtrans.library as the argument. Do not share the library base pointer 
between tasks - see note at beginning of chapter for details. In C, this might be implemented as shown below. 

'include <exec/types.h> 
.include <libraries/mathieeedp.h> 

struct Library *MathleeeDoubBasBase; 
struct Library *MathleeeDoubTransBase; 

VOID main () 
{ 

if«MathleeeDoubBasBase = 
OpenLibrary("mathieeedoubbas.library",O» == 0) 

printf("Can't open mathieeedoubbas.libraryO); 
exit (20) ; 

if«MathleeeDoubTransBase = 
OpenLibrary("mathieeedoubtrans.library",O» == 0) 

printf("Can't open mathieeedoubtrans.library\n"); 
CloseLibrary(MathleeeDoubBasBase); 
exit(21); 

CloseLibrary(MathleeeDoubTransBase); 

The global variable MathleeeDoubTransBase is used internally for all future library references. 

NOTE 

The IEEE transcendental math library is dependent upon the IEEE basic math library, which it will open 
if it is not open already. If you want to use the IEEE basic math functions in conjunction with the 
transcendental math functions however, you have to specifically open the basic math library yourself. 

This library contains entries for the transcendental math functions sine, cosine, and so on. Just as the IEEE basic 
math library, the IEEE transcendental math library will take advantage of a 68020/68881 combination or another 
math resource, if present. 

568 Math Libraries 



The ffiEE double-precision transcendental math library is accessed by linking code into the executable file being 
created. The name of the file to include in the library description of the link command is mathieeedoubtrans Jib.lib. 
The C entry points defined for the ffiEE double-precision basic math functions are listed below: 

ffiEEDPASin 
Return arcsine of ffiEE variable. 

Usage: dl = ffiEEDPASin(d2); 

ffiEEDPACos 
Return arccosine of ffiEE variable. 

Usage: dl = ffiEEDPACos(d2); 

ffiEEDPAtan 
Return arctangent of ffiEE variable. 

Usage: dl = ffiEEDPAtan(d2); 

ffiEEDPSin 
Return sine of ffiEE variable. This function accepts an ffiEE radian argument and returns the 
trigonometric sine value. 

Usage: dl = ffiEEDPSin(d2); 

ffiEEDPCos 
Return cosine of ffiEE variable. This function accepts an ffiEE radian argument and returns the 
trigonometric cosine value. 

Usage: dl = ffiEEDPCos(d2); 

ffiEEDPTan 
Return tangent of ffiEE variable. This function accepts an ffiEE radian argument and returns the 
trigonometric tangent value. 

Usage: dl = ffiEEDPTan(d2); 

ffiEEDPSincos 
Return sine and cosine of ffiEE variable. This function accepts an ffiEE radian argument and 
returns both the trigonometric sine and cosine values. 

Usage: dl = ffiEEDPSincos(&d3. d2); 

ffiEEDPSinh 
Return hyperbolic sine of ffiEE variable. 

Usage: dl = ffiEEDPSinh(d2); 

ffiEEDPCosh 
Return hyperbolic cosine of ffiEE variable. 

Usage: dl = ffiEEDPCosh(d2); 

ffiEEDPTanh 
Return hyperbolic tangent of ffiEE variable. 

Usage: dl = ffiEEDPTanh(d2); 

Math Libraries 569 



IEEEDPExp 
Return e to the IEEE variable power. This function accept an IEEE argument and returns the result 
representing the value of e (2.712828 ... ) raised to that power. 

Usage: dl = IEEEDPExp(d2); 

IEEEDPLog 
Return natural log (base e of IEEE variable. 

Usage: dl = IEEEDPLog(d2); 

IEEEDPLoglO 
Return naparian log (base 10) of IEEE variable. 

Usage: dl = IEEEDPLogIO(d2); 

IEEEDPPow 
Return IEEE arg2 to IEEE argl. 

Usage: dl = IEEEDPPow(d2); 

IEEEDPSqrt 
Return square root of IEEE variable. 

Usage: dl = IEEEDPSqrt(d2); 

IEEEDPTieee 
Convert IEEE double-precision number to IEEE single-precision number. 

Usage: sl = IEEEDPTieee(d2); 

Be sure to include proper data type definitions as shown below. 

'include <exec/types.h> 
'include <libraries/mathieeedp.h> 

struct Library *MathleeeDoubBasBase; 
struct Library *MathleeeDoubTransBase; 

VOID main () 
( 

DOUBLE d1, d2, d3; 
FLOAT fl; 

if«MathleeeDoubBasBase 
OpenLibrary("mathieeedoubbas.library",O» == 0) 

printf("Can't open mathieeedoubbas.library\n"); 
exit (20) ; 

if«MathleeeDoubTransBase 
OpenLibrary("mathieeedoubtrans.library",O» == 0) 

d1 
d1 
d1 
d1 
d1 
d1 

printf("Can't open mathieeedoubtrans.library\n"); 
CloseLibrary(MathleeeDoubBasBase); 
exit (21) ; 

IEEEDPAsin(d2) /* Call IEEEDPAsin entry */ 
IEEEDPAcos(d2) /* Call IEEEDPAcos entry */ 
IEEEDPAtan(d2) /* call IEEEDPAtan entry */ 
IEEEDPSin(d2); /* Call IEEEDPSin entry */ 
IEEEDPCos(d2); /* Call IEEEDPCos entry */ 
IEEEDPTan(d2); /* Call IEEEDPTan entry */ 

570 Math Libraries 



dl 
dl 
dl 
dl 
dl 
dl 
dl 
dl 
dl 
fl 
dl 

IEEEDPSincos(&d3, d2); 
IEEEDPSinh(d2); 
IEEEDPCosh(d2); 
IEEEDPTanh(d2); 
IEEEDPExp(d2); 
IEEEDPLog(d2); 
IEEEDPLoglO(d2); 
IEEEDPPow(d2, d3); 
IEEEDPSqrt(d2); 
IEEEDPTieee(d2); 
IEEEDPFieee(fl); 

/* Call IEEEDPSincos entry */ 
/* Call IEEEDPSinh entry */ 
/* Call IEEEDPCosh entry */ 
/* Call IEEEDPTanh entry */ 
/* Call IEEEDPExp entry */ 
/* Call IEEEDPLog entry */ 
/* Call IEEEDPLoglO entry */ 
/* Call IEEEDPPow entry */ 
/* Call IEEEDPSqrt entry */ 
/* Call IEEEDPTieee entry */ 
/* Call IEEEDPFieee entry */ 

CloseLibrary(MathleeeDoubTransBase); 
CloseLibrary(MathleeeDoubBasBase); 

The section below describes the Amiga assembly interface to the IEEE double-precision transcendental math 
library. Again this interface resides in the library file mathieeedoubtrans_Lib.lib and must be linked with the 
user code. The access mechanism from assembly language is as show below: 

MOVEA.L _MathleeeDoubTransBase,A6 
JSR _LVOSPAsin(A6) 

_LVOIEEEDPAsin - Arcsine 

Inputs: 
Outputs: 
Condition codes: 

_LVOIEEEDPAcos - Arccosine 

Inputs: 
Outputs: 
Condition codes: 

_LVOIEEEDPAtan - Arctangent 

Inputs: 
Outputs: 
Condition codes: 

DO/D 1 = IEEE argument 
DO/D 1 = IEEE arctangent radian result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/D 1 = IEEE argument 
DO/D 1 = IEEE arctangent radian result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/D 1 = IEEE argument 
DO/D 1 = IEEE arctangent radian result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

Math Libraries 571 



_L VOIEEEDPSin - Sine 

Inputs: 
Outputs: 
Condition codes: 

_L VOIEEEDPCos - Cosine 

Inputs: 
Outputs: 
Condition codes: 

_L VOIEEEDPTan - Tangent 

Inputs: 
Outputs: 
Condition codes: 

_L VOIEEEDPSincos -

Inputs: AO = Address to store cosine result 

Outputs: 

Condition codes: 

_LVOIEEEDPSinh - Hyperbolic sine 

Inputs: 
Outputs: 
Condition codes: 

572 Math Libraries 

DOlO 1 = IEEE argument in radians 
DOlO 1 = IEEE sine result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/Dl = IEEE argument in radian 
DOlO 1 = IEEE cosine result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DOlO 1 = IEEE argument in radians 
DOlO 1 = IEEE tangent result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

Sine and cosine 

DOlO 1 = IEEE argument in radians 

DOlO 1 = IEEE sine result 
(AO) = IEEE cosine result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DOlO 1 = IEEE argument in radians 
DOlO 1 = IEEE hyperbolic sine result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 



_L VOIEEEDPCosh - Hyperbolic cosine 

Inputs: 
Outputs: 
Condition codes: 

_L VOIEEEDPTanh - Hyperbolic tangent 

Inputs: 
Outputs: 
Condition codes: 

_L VOIEEEDPExp - Exponential 

Inputs: 
Outputs: 
Condition codes: 

_L VOIEEEDPLog - Naturallogarithm 

Inputs: 
Outputs: 
Condition codes: 

_LVOIEEEDPLog10 -

Inputs: 
Outputs: 
Condition codes: 

x = undefined 

DO/D 1 = IEEE argument in radians 
DO/D 1 = IEEE hyperbolic cosine result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/D 1 = IEEE argument in radians 
DO/D 1 = IEEE hyperbolic tangent result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/D 1 = IEEE argument 
DO/D 1 = IEEE exponential result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/D 1 = IEEE argument 
DO/D 1 = IEEE natural logarithm result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

Naparian (base 10) logarithm 

DO/D 1 = IEEE argument 
DO/D 1 = IEEE natural logarithm result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

Math Libraries 573 



_LVOIEEEDPPow - Power 

Inputs: 

Outputs: 
Condition codes: 

_L VOIEEEDPSqrt - Square root 

Inputs: 
Outputs: 
Condition codes: 

DO/D 1 = IEEE exponent value 
D2/D3 = IEEE argument value 
DO/D 1 = IEEE result of arg taken to exp power 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

DO/D 1 = IEEE argument 
DO/D 1 = IEEE square root result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 

_L VOIEEEDPTieee - Convert to single-precision IEEE format 

Inputs: 
Outputs: 
Condition codes: 

574 Math Libraries 

DO/D 1 = IEEE format argument 
DO = single-precision IEEE floating-point format result 
N = undefined 
Z = undefined 
V = undefined 
C = undefined 
X = undefined 



Chapter 29 

Translator Library 

This chapter describes the translator library which, together with the narrator device, provides the Amiga's text-to
speech capability. To fully understand how speech is produced on the Amiga, you should also read the "Narrator 
Device" chapter. The translator library provides a single function, TranslateO, that converts an English language 
string into a phonetic string. You may then pass this phonetic string to the narrator device which will say the string 
using the Amiga's audio hardware. The two subsystems may also be used individually. You don't have to use the 
narrator to say the phonetic strings; you could use them instead for phonetic analysis or some other special purpose. 

OPENING THE TRANSLATOR LIBRARY 

To use the TranslateO function, you must first open the translator library. Setting a global variable, 
TranslatorBase, to the value returned from the call to OpenLibraryO enables the Amiga linker to correctly locate 
the translator library: 

struct Library *TranslatorBase; 

TranslatorBase = OpenLibrary("translator.library",REVISION); 
if(TranslatorBase 1= NULL) 

( 
1* use translator here -- library open *1 
) 

Translator Library 575 



NOTE 

Since translator is a disk-based library, the call to OpenLibraryO will work only if the LIBS: directory 
contains translator. library. 

USING THE TRANSLATE FUNCTION 

Once the library is open, you can call the translate function: 

'define BUFLEN 500 

APTR EnglStr; 
LONG EnglLen; 
UBYTE PhonBuffer[BUFLEN]; 
LONG rtnCode; 

1* pointer to sample input string *1 
1* input length *1 
1* place to put the transiation *1 
1* return code from function *1 

EnglStr = "This is Amiga speaking."; 1* a test string *1 
EnglLen = strlen(EnglStr); 
rtnCode = Translate(EnglStr, EnglLen, (APTR)&PhonBuffer[O], BUFLEN); 

The input string will be translated into its phonetic equivalent and can be used to feed the narrator device. If you 
receive a non-zero return code, you haven't provided enough output buffer space to hold t'fie entire translation. In 
this case, the TransiateO function breaks the translation at the end of a word in the input stream and returns the 
position in the input stream at which the translation ended. You can use the output buffer, then call the TranslateO 
function again, starting at this original ending position, to continue the translation where you left off. This method 
will sound smoothest if the ending position ends on sentence boundaries. 

NOTE 

The value returned is negative. Therefore, you must use -(rtnCode) as the starting point for a new 
translation. 

CLOSING THE TRANSLATOR LIBRARY 

As with all other libraries of functions, if you have successfully opened the translator library for use, be sure to close 
it before your program exits. If the system needs memory resources, it can then expunge closed libraries to gain 
additional memory space: 

struct Library *TranslatorBase; 

if (TranslatorBase) CloseLibrary(TranslatorBase); 

ADDITIONAL NOTES ABOUT TRANSLATE 

The English language has many words that do not sound the same as they are spelled. The translator library has 
exception rules that it consults as the translation progresses. It also provides for common abbreviations such as Dr., 
Prof., LB., etc. Words that are not in the exception table are translated literally. This translation allows unrestricted 
English text as input, and uses over four hundred and fifty context sensitive rules. It automatically accents content 
words, and leaves function words (e.g. of, by, the, and at) unaccented. It is possible, however, that certain words 
will not translate well. You can improve the quality of the translation by handling those words on your own. 

576 Translator Library 



The phoneme table that the narrator uses is listed in the "Narrator Device" chapter. You will also find other 
important information on the Amiga's speech capability in the narrator chapter including a working example which 
shows how to use the translator library together with the narrator device. 

Translator Library 577 



Chapter 30 

Workbench 

Workbench provides the iconic user interface on the Amiga. This chapter shows how to use the Workbench and 
icon.library in your applications. 

Introduction 

Workbench is both an application program and a screen in which other applications can run. Workbench allows 
users to interact with the Amiga file system by using graphic file representations known as icons. The icon.6brary 
gives the programmer access to a body of library functions for manipulating these icons. 

Here are definitions of some terms that may be unfamiliar or used in unfamiliar ways in this chapter. 

Workbench object 

icon 

A Workbench object contains all the information that Workbench needs to display and use a project, tool, 
drawer, etc. Workbench objects are used at the program level as DiskObjects, allowing an application 
program to read, update, or create icons. 

Icon is a shorthand name for a Workbench object. Icons allow for the graphical representation of a file, 
directory or disk. On disk, the information for the icon is currently stored in a ".info" file. An icon may 
be on disk or in memory or both. 

Workbench 579 



".info" file 
The current disk representation of an icon. The fonnat of an icon on disk is slightly different from an icon 
in memory, i.e. from a DiskObject, but one is obtainable from the other through icon.library functions. 

strings 
A null-tenninated sequence of bytes which are interpreted as ASCII text. 

activating 

tool 

The act of starting a tool, or opening a drawer or disk. Tools may be activated either by directly accessing 
the tool, or by accessing projects associated with the tool (see default tool mechanism.) 

An application program or system utility as used from the Workbench. The tool is the executable program 
and its associated" .info" file. Examples of tools would be a word ptocessor or a paint program. The data 
file used by the tool is a project. 

project 
A data file and its associated ".info" file, produced by an executable program (a tool), and associated with 
a specific tool. The default tool does not have to be the tool which created the project. Example of 
projects would be a text file or a drawing. 

drawer 
A file system directory and its associated ".info" file. A drawer may be on disk, RAM, or over a network, 
etc. 

default tool mechanism 
Method of starting a tool by activating a project. When a project is activated, the tool given in the 
"default tool" field is activated and the project is sent to the tool as an argument. 

extend select mechanism 
Method of starting a tool and passing one or more projects as arguments. Currently perfonned by holding 
the shift key to enable selection of one or more icons to be passed to the tool as Workbench arguments. 

The Icon Library 

The icon library, icon. library, has the following routines, which allow high-level access to icons. 

LONG 
VOID 

LONG 

UBYTE 
LONG 

AddFreeList(struct FreeList *free, UBYTE *mem, LONG len); 
FreeFreeList(struct FreeList *free); 

BumpRevision(UBYTE *newbuf, UBYTE *oldname); 

*FindToolType(UBYTE **toolTypeArray, UBYTE *typeName): 
MatchToolValue(UBYTE *typeString, UBYTE *value); 

LONG PutDiskObject(UBYTE *name, struct DiskObject *diskObj); 
struct DiskObject *GetDiskObject(UBYTE *name): 
VOID FreeDiskObject(struct DiskObject *diskobj); 

See the Includes & Autodocs Manual for the reference pages for this library. 

580 Workbench 



The Info File 

The u.info" file is the center of interaction between applications and Workbench. This file stores all the necessary 
information to display an icon and to start up an application. The" .info" file can describe one of several different 
types of icons, as shown in the next table. 

Table 30-1: Workbench Object Types 

Icon Type 

WBDISK 
WBDRAWER 
WBTOOL 
WBPROJECT 
WBGARBAGE 
WBKICK 

Object 

The root of a disk 
A directory on the disk 
A directly runnable program 
A data file of some sort 
The Trashcan directory 
A A Kickstart disk 

Icons are associated with a particular file or drawer by being in the same directory and having the same name with 
the added extension ... info". For example, an icon file with the name "myprogram.info" is the icon for the file 
named "myprogram" in the same directory. 

The actual data present in the ••. info" file depends on the icon type. 

NOTE 

Any graphical image can be used for any icon type in the •• .info" file. In fact, the graphical image need 
not be unique for each type of icon. 

The icon.library functions do all the work needed to read and write ".info" files. The GetDiskObject( ), 
PutDiskObject( ), and FreeDiskObject( ) routines are especially helpful. The "RKM_Icon_Example.c" code at 
the end of this chapter demonstrates the use of these routines in reading and creating icons. 

THE DISK OBJECT STRUCTURE 

A DiskObject structure, and its associated strings and images, are stored in a .. .info" file. The icon.library routines 
GetDiskObject( ), FreeDiskObject( ), and PutDiskObject( ) are used to respectively to read, close after reading, 
and create new icon files. When writing an icon, the PutDiskObject( ) function will automatically take along the 
images, strings, and arrays pointed to by a DiskObject structure, and store them in a relative format which can later 
be retrieved by GetDiskObject(). The DiskObject structure is defined in workbenchlworkbench.h and contains the 
following elements: 

Workbench 581 



struct OrawerOata 
{ 

struct NewWindow dd NewWindow; 1* structure to open window *1 
1* current x coordinate of origin *1 
1* current y coordinate of origin *1 

LONG dd-CurrentX; 
LONG dd=CurrentY; 
} ; 

struct OiskObject 
{ 
UWORO do Magic; 

do-Version; 
do:=Gadget; 
do Type; 

1* magic number at start of file *1 
UWORO 1* so we can change structure *1 
struct Gadget 
UBYTE 

1* a copy of in core gadget *1 

char 
char 
LONG 
LONG 

*do=OefaultTool; 
**do ToolTypes; 

do:=CurrentX; 

struct OrawerOata 
do CurrentY; 

*do=Oraweroata; 
*do ToolWindow; 
do=StackSize; 

char 
LONG 
}; 

1* only applies to tools *1 
1* only applies to tools *1 

do_Magic 
A magic number that the icon library looks for to make sure that the file it is reading really contains an 
icon. It should be the manifest constant WB_DISKMAGIC. PutDiskObject() will put this value in the 
structure, and GetDiskObject will not believe that a file is really an icon unless this value is correct. 

do Version 
This provides a way to enhance the ".info" file in an upwardly-compatible way. It should be 
WB_DISKVERSION. The icon library will set this value for you and will not believe weird values. 

do_Gadget 
This contains all the imagery for the icon. See the "Gadget Structure" section for more details. 

do_Type 
The type of the icon (WBTOOL, WBPROJECT, and so on). See the table of Workbench Object Types. 

do _ DefaultTool 
Default tools are used for project and disk icons. For projects (data files), the default tool is the program 
invoked when the project is activated. This tool may be absolute as in "DISK:file" or "DISK:dir/file", 
relative to the root of this disk as in ":file" or ":dir/file", or relative to the project as in "file" or 
"dir/file". These path examples are only examples. Any valid path may be entered for the tool, including 
the use of assigns such as "T:", or "SYS:". 

If the icon is of type WBDISK, the default tool is the diskcopy program ("SYS:System/DiskCopy") that 
will be used when this disk is the source of a copy. 

NOTE 

If the tool is run via the default tool mechanism (for example, a project was activated, not a tool), 
all the information in the project's" .info" file is used, and the tool's" .info" file is ignored. This 
is especially important for variables like StackSize. 

do_ToolTypes 
This is an array of free-format strings. Workbench does not enforce any rules on these strings, but they are 
useful for passing environment information. See the "TooITypes" section for more information. 

582 Workbench 



do CurrentX, do CurrentY 
- Drawers have a virtual coordinate system. The user can scroll around in this system using the scroll 

gadgets on the "drawers" window. Each icon in the drawer has a position in the coordinate system. 
CurrentX and CurrentY contain the icon's current position in the drawer. The constant 
NO_ICON_POSITION indicates that the icon should be placed wherever there is room. 

do DrawerData 
- If the icon is capable of being opened as a drawer (WBDISK, WBDRA WER, WBGARBAGE), it needs a 

DrawerData structure to go with it. This structure contains an Intuition NewWindow structure. See the 
section on Intuition for more information about windows. Workbench uses this to hold the current 
window position and size of the window so it will reopen in the same place. The CurrentX and 
CurrentY of the origin of the window is also stored. 

do_ ToolWindow 
This field is reserved for future use. 

do StackSize 
- This is the size of the stack (in bytes) used for running the tool. If this is null, then Workbench will use a 

reasonable default stack size (currently 4K bytes). 

THE GADGET STRUCTURE 

To hold the icon's image, Workbench uses an Intuition Gadget structure, defined in intuition/intuition.h. 
Workbench restricts some of the values of the gadget. All unused fields should be set to 0 or NULL. 

NOTE 

The assembly version of the Gadget structure has leading "&&-" for each variable name. 

The Intuition gadget structure members that Workbench uses are listed below: 

Width 
This is the width (in pixels) of the icon's active region. Any mouse button press within this range will be 
interpreted as having selected this icon. 

Height 
This is the height (in pixels) of the icon's active region. Any mouse button press within this range will be 
interpreted as having selected this icon. 

Flags 
The gadget must be of type GADGIMAGE. Three highlight modes are supported: GADGHCOMP, 
GADGHIMAGE, and GADGBACKFILL. GADGHCOMP complements everything within the area 
defined by CurrentX, CurrentY, Width, Height. GADGHIMAGE uses an alternate selection image. 
GADGBACKFILL is similar to GADGHCOMP, but ensures that there is no "ring" around the selected 
image. It does this by ... first complementing the image, and then flooding all color 3 pixels that are on the 
border of the image to color O. All other flag bits should be O. 

Activation 
The activation should have only RELVERIFY and GADGIMMEDIA'IE set. 

Type 
The gadget type should be BOOLGADGET. 

Workbench 583 



GadgetRender 
Set this to an appropriate Image structure. 

SelectRender 
Set this to an appropriate alternate Image structure if and only if the highlight mode is GADGHIMAGE. 

The Image structure is typically the same size as the gadget, except that Height is often one pixel less than the 
gadget height. This allows a blank line between the icon image and the icon name. The image depth must be 2; 
PlanePick must be 3; and PlaneOnOff should be O. The NextImage field should be null. 

ICONS WITH NO POSITION 

Picking a position for a newly created icon can be tricky. NO_ICON_POSITION is a magic value for 
do_CurrentX and do_CurrentY that instructs Workbench to pick a reasonable place for the icon. Workbench will 
place the icon in an unused region of the drawer. If there is no space in the drawers window, the icon will be placed 
just to the right of the visible region. 

Workbench Environment 

When a user activates a tool or project, Workbench runs a program. This program is a separate process and runs 
asynchronously to Workbench. This allows the user to take advantage of the multi-tasking features of the Amiga. 

The environment for a tool under the Workbench is quite different from the environment when a tool is run from the 
CLI. The CLI does not create a new process for a program; it jumps to the program's code and the program shares 
the process with the CLI. Programs run under the CLI have access to all the CLI's environment, including the 
ability to modify that environment Programs run under the CLI should be careful to restore all values that existed 
on startup. Workbench starts a tool as a new DOS process, explicitly passing the environment to the tool. 

By default, a Workbench program does not have a window to which its output will go. Therefore, stdin and stdout 
do not point to legal file handles. Note: If your program attempts to read from stdin or write to stdout (including 
calls such as printf( », without first setting them up it may crash the system. Some compilers have options or 
defaults to provide a stdio window for programs started from Workbench. The 1.3 Amiga startup.asm code can also 
provide a stdio window for Workbench programs, for use with the amiga.lib stdio functions. As always, remember 
to close or deallocate any resources that are opened by your program. 

WBSTARTUP MESSAGE 

Right after Workbench loads and starts a tool, Workbench sends the tool a WBStartup message which is posted to 
the message port in the tool's process structure. 

NOTE 

This is the only valid external use of a process's message port. 

The process message port is for the exclusive use of DOS, and this message must be removed from the port by the 
tool's startup code prior to opening dos.1ibrary. The WBStartup message contains the environment and the 
Workbench arguments for the tool. 

584 Workbench 



Workbench arguments are passed as the sm _ ArgList array of pointers to WBArg structures. The first WBArg in the 
list is always the tool itself. If multiple icons have been selected when a tool is activated, the selected icons are 
passed to the tool as additional WBArgs. If the tool was derived from a default tool, the project will be the second 
WBArg. Arguments other than the tool are passed in order of selection; the first icon selected will be first (after the 
tool), and so on. 

Applications that are started from Workbench (as signified by a null peeL! pointer in their Process structure) must 
remove (GetMsg( » the WBStartup message from their Process message port before opening dos.library. This 
action is generally performed by the startup code which is linked as the first module of an application. Generally, 
your compiler will provide suitable startup code (for example Lattice c.o). 

Startup code for C code generally passes the WBStartup message pointer in argv, and 0 (zero) in argc, when the 
program has been started from Workbench. Startup code usually calls your application code as a function. When 
your application returns or exits to the startup code, the startup module will Forbid( ), and ReplyMsg( ) the 
WBStartup message, notifying Workbench that the application process may be terminated, and its code unloaded 
from memory. 

NOTE 

The DOS Exit( ) function will NOT return you to the startup code. If you wish to exit your application, 
use the exit function provided by your startup code (usually lower-case exit, or _exit for assembler), 
passing it a valid dos return code (libraries/dos.h). 

The WBStartup message, whose structure is outlined in workbench/startup.h, has the following structure elements: 

struct WBStartup 
{ 

) ; 

struct Message 
struct MsgPort * 
BPTR 
LONG 
char * 
struct WBArg * 

sm_Message; 
sm_Process; 
sm_Segment; 
sm_NumArgs; 
sm_ToolWindow; 
sm_ArgList; 

1* a standard message structure *1 
1* the process descriptor for you *1 
1* a descriptor for your code *1 
1* the number of elements in ArgList *1 
1* reserved for future use *1 
1* the arguments themselves *1 

struct WBArg 
{ 

) ; 

BPTR 
BYTE * 

sm_Message 

wa_Lock; 
wa_Name; 

1* a lock descriptor *1 
1* a string relative to that lock *1 

A standard Exec message. The reply port is set to the Workbench. 

sm_Process 
The process descriptor for the tool (as returned by CreateProcess( » 

sm_Segment 
The loaded code for the tool (returned by LoadSeg( » 

sm_NumArgs 
The number of arguments in sm _ ArgList 

sm _ ToolWindow 
Reserved (not currently passed in startup message) 

Workbench 585 



sm ArgList 
- This is the argument list itself. It is a pointer to an array of WBArg structures with sm_NumArgs 

elements. 

Each argument is a struct WBArg and has two parts: wa_Name and wa_Lock. 

The wa Name element is the name of the argument. If this is not a directory object (drawer, disk, or Trashcan) or a 
default tool, the wa_Name will be the same as the string displayed under the icon. A default tool will instead have 
the text of the do_DefaultTool pointer; a directory object will have a null name passed. The default tool argument 
will only appear as the first argument, and only when the project was activated (not the tool). 

The wa_Lock is always a lock on a directory, or is NULL if that object type does not support locks. 

NOTE - You must never UnLock a wa_Lock. These locks belong to Workbench, and Workbench will UnLock 
them when the WBStartup message is replied. You also must never UnLock your program's initial current directory 
lock (ie. the lock returned by an initial CurrentDir( ) call). The classic symptom caused by unlocking Workbench 
locks is a system hang after your Workbench program exits, even though the same program exits with no problems 
when started from CLI. You should save the lock returned from an initial CurrentDir( ), and CurrentDir( ) back to 
it before exiting. In the Workbench environment, depending on your startup module, the current directory will 
generally be set to one of the wa _Locks. By using CurrentDir(wa_ Lock) and then referencing wa _Name, you can 
find, read, and modify the files which have been passed as WBArgs. The example code "PrArgs.c" at the end of 
this chapter demonstrates the handling of Workbench and CLI arguments. 

The ToolTypes Array 

This section shows how the ToolTypes array should be formatted, and describes the standard entries in the 
ToolTypes array. In brief, ToolTypes is an array of pointers to strings. These strings can be used to encode 
information about the icon that will be available to all who wish to use it. The formats are user-definable and user
extensible. 

Workbench does not place many restrictions on the ToolTypes array, but some conventions are strongly 
encouraged. A string may be up to 128 bytes long. The alphabet is 8-bit ANSI (for example, normal ASCII with 
foreign-language extensions). This means that users may enter ToolType strings containing international characters. 
Avoid special or nonprinting characters. The case of the characters is currently significant, so "Window" is not 
equal to "WINDOW". 

The general format is 

<name>=<value>[\<value> 1 

where <name> is the field name and <value> is the text to associate with that name. If the ID has multiple values, 
the values may separated by a vertical bar. The values may be the type of the file, programs that can access the data, 
parameters to be passed to an application, etc. For example, a paint program might set 

FILETYPE=PaintProgram.fileIILBM 

This notifies the world that this file is acceptable to either a program that is expecting a generic ILBM IFF file, or to 
a program that understands the format of PaintProgram files. 

586 Workbench 



Two routines are provided to help you deal with the Tooltype array. FindTooIType() returns the value of a 
Tooltype element. Using the above example, if you are looking for FILETYPE, the string 
··PaintProgram.fileIILBM" will be returned. 

MatchToolValue( ) returns nonzero if the specified string is in the reference value string. This routine knows how 
to parse vertical bars. For example, using the reference value string of "PaintProgram.fileIILBM" , 
MatchToolValue( ) will return TRUE for "ILBM" and "PaintProgram.file" and FALSE for everything else. 

Example Code 

PrArgs.c 

The following example will display all WBArgs if started from Workbench, and all CLI arguments if started from 
CLI. 

/* PrArgs.c - This program prints its Workbench or CLI arguments. 
** Compiled with lattice c 5.04. Works under workbench and CLI. 
** 'tinymain' statement turns off default stdin/stdout handling. 
** 
** lc -bI -cfist -v -y prargs.c 
** blink FROM LIB:c.o prargs.o 
** 
** 
** 
** 

LIB LIB:lc.lib LIB:amiga.lib 
TO prargs 
DEFINE __ main= __ tinymain 

** NOTE: main and tinymain are prepended with two underscores. 
*/ 
#include <workbench/startup.h> 
#include <proto/all.h> 
#include <stdlib.h> 
#include <stdio.h> 
/*------------------------------------------------------------
** disable lattice CTRL-C handling 
*/ 
int CXBRK (VOID) 
( 
return(O); 
} 

/*------------------------------------------------------------
** program to print arguements, 
** works if run from the CLI or WORKBENCH. 
*/ 
void main(int argc, char **argv) 
{ 
struct WBStartup *argmsg; 
struct WBArg *wb arg; 
LONG ktr; -
BPTR olddir; 
FILE *outFile; 

/* argc is zero when run from the Workbench, 
** positive when run from the CLI. 
*/ 
if (argc == 0) 

{ 

Workbench 587 



else 

if (NULL != (outFile = fopen("CON:010/640/200/Print Args","rt"») 
( 

{ 

1* in lattice, argv is a pointer to the WBStartup message 
** when argc is zero. (run under the Workbench.) 
*1 
argmsg 
wb_arg 

(struct WBStartup *)argv 
argmsg->sm_ArgList ; 1* head of the arg list *1 

fprintf(outFile, "Run from the workbench, %ld args.\n", 
argmsg->sm_NumArgs); 

for (ktr = 0; ktr < argmsg->sm_NumArgs; ktr++, wb_arg++) 
{ 
if (NULL != wb_arg->wa_Lock) 

( 

else 

1* locks supported, change to the proper directory *1 
olddir = CurrentDir(wb_arg->wa_Lock) 

1* process the file. 
** if you have done the CurrentDir( ) above, 
** then you can access the file by its name. 
** otherwise, you have to look at the lock to get 
** a complete path to the file. 
*1 
fprintf(outFile, "\tArg %2.2ld (wi lock): '%s' .\n", 

ktr, wb_arg->wa_Name); 

1* change back to the original directory when done. 
** be sure to change back before you exit. 
*1 
CurrentDir(olddir) 
} 

{ 

1* something that does not support locks *1 
fprintf(outFile, "\tArg %2.2Id (no lock): '%s'.\n", 

ktr, wb_arg->wa_Name); 

1* wait before closing down *1 
Delay(500L); 
fclose(outFile); 
} 

1* using 'tinymain' from lattice c. 
** define a place to send the output (originating CLI window = "*") 
** Note - if you open "*" and your program'is RUN, the user will not 
** be able to close the CLI window until you close the "*" file. 
*1 
if (NULL != (outFile = fopen("*","r+"») 

( 
fprintf(outFile, "Run from the CLI, %d args.\n", argc); 

for ( ktr = 0; ktr < argc; ktr++) 
( 
1* print an arg, and its number *1 
fprintf(outFile, "\tArg %2.2Id: '%s' .\n", ktr, argv[ktr); 
} 

fclose(outFile); 
} 

588 Workbench 



The following example demonstrates icon creation, icon reading and ToolType parsing, and the Workbench 
environment. When called from CLI, the example creates a small data file in RAM: and creates or updates a Project 
icon for the data file. The created Project icon points to this example as its default tool. When the new Project icon 
is double-clicked, Workbench will invoke the default tool (this example) as a Workbench process, and pass it a 
description of the Project data file as a Workbench argument (WBArg) in the WBStartup message. 

1* RKM_Icon_Example.c - Workbench icon startup, creation, and parsing example 
* * Compiled with Lattice 5.02: LC -bl -cfist -v -y 
* Linkage: c.o,RKM_Icon_Example.o library LC.lib,amiga.lib 
*1 

#include <exec/types.h> 
#include <libraries/dos.h> 
#include <workbench/workbench.h> 
iinclude <workbench/startup.h> 
iifdef LATTICE 
iinclude <proto/all.h> 
iinclude <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
int CXBRK(void) (return(O); /* Disable Lattice CTRL/C handling */ 
#endif 

/* our functions */ 
void cleanexit(UBYTE *,LONG); 
void cleanup(void); 
void message (UBYTE *); 
BOOL makeIcon(UBYTE *, char **, char *); 
BOOL showToolTypes(struct WBArg *); 

UBYTE *projname = "RAM:Example Project"; 
UBYTE *conwinname = "CON:lO/l07620/l80/RKM_Icon_Example"; 

char deftoolname[) = "RKM_Icon_Example"; 

USHORT IconImageDatal[) = 
{ 

1* Plane 0 */ 
OxOOOO,OxOOOO,OxOOOO,Ox3fff,Oxffcc,OxOOOO,Ox3fff,Oxffcf, 
OxOOOO,Ox3fff,Oxffcf,OxcOOO,Ox3803,Oxffcf,OxfOOO,Ox3fff, 
OxffcO,OxOOOO,Ox3803,Oxffff,OxfcOO,Ox3fff,Oxffff,OxfcO0, 
Ox3fff,Oxffff,OxfcOO,Ox3f84,OxOOcO,Ox7cOO,Ox3fff,Oxffff, 
OxfcOO,Ox3900,Ox8000,Ox7cOO,Ox3fff,Oxffff,OxfcOO,Ox3800, 
Ox0040,Ox7cOO,Ox3fff, Oxffff, OxfcOO, Ox3fff,Oxffff, OxfcO 0, 
Ox3fff,OxfeOO,Ox7cOO, Ox3fff, Oxffff,OxfcOO, Ox3fff, Oxfff f, 
OxfcOO,OxOOOO,OxOOOO,OxOOOO, 

/* Plane 1 */ 
Oxffff,Oxfffc,OxOOOO,OxcOOO,Ox0033,OxOOOO,OxcOOO,Ox0030, 
OxcOOO,OxcOOO,Ox0030,Ox3000,Oxc7fc,Ox0030,OxOcOO,OxcOO0, 
Ox003f,OxffOO,Oxc7fc,OxOOOO,Ox0300,OxcOOO,OxOOOO,Ox0300, 
OxcOOO,OxOOOO,Ox0300,Oxc07b,Oxff3f,Ox8300,OxcOOO,OxOOO0, 
Ox0300,Oxc6ff,Ox7fff,Ox8300,OxcOOO,OxOOOO,Ox0300,Oxc7ff, 
Oxffbf,Ox8300,OxcOOO,OxOOOO,Ox0300,OxcOOO,OxOOOO,Ox0300, 
OxcOOO,OxOlff,Ox8300,OxcOOO,OxOOOO,Ox0300,OxcOOO,OxOOO0, 
Ox0300,Oxffff,Oxffff,OxffOO, 
} ; 

struct Image iconImagel 
( 
0, 0, 
40, 20, 2, 

/* Top Corner */ 
/* Width, Height, Depth */ 

Workbench 589 



&IconlmageData1[O), 
Ox003, OxOOO, 

/* Image Data */ 

NULL 
/* P1anePick,PlaneOnOff */ 
/* Next Image */ 

} ; 

UBYTE *toolTypes[] 
{ 
"FILETYPE=text ", 
"FLAGS=BOLDI ITALICS", 
NULL 
} ; 

struct DiskObject projlcon 
{ 

WB_DISKMAGIC, 
WB DISKVERSION, 

- { 
NULL, 
97,12,40,21, 
GADGlMAGEIGADGHBOX, 
GADGIMMEDIATEIRELVERIFY, 
BOOLGADGET, 
{APTR)&iconlmage1, 
NULL, 
NULL, 
NULL, 
NULL, 
0, 
NULL 
}, 

WBPROJECT, 
deftoolname, 
toolTypes, 
NO_ICON_POSITION, 
NO_ICON_POSITION, 
NULL, 
NULL, 
4000 
} ; 

/* Magic Number */ 
/* Version */ 
/* Embedded Gadget Structure */ 
/* Next Gadget Pointer */ 
/* Left,Top,Width,Height */ 
/* Flags */ 
/* Activation Flags */ 
/* Gadget Type */ 
/* Render Image */ 
/* Select Image */ 
/* Gadget Text */ 
/* Mutual Exclude */ 
/* Special Info */ 
/* Gadget ID */ 
/* User Data */ 

/* Icon Type */ 
/* Default Tool */ 
/* Tool Type Array */ 
/* Current X */ 
/* Current Y */ 
/* Drawer Structure */ 
/* Tool Window */ 
/* Stack Size */ 

/* Opens and allocations we must clean up */ 
struct Library *IconBase = NULL; 
FILE *conwin = NULL; 
LONG olddir = -1; 

BOOL FromWb; 

void main {argc, argv) 
int argc; 
char **argv; 

{ 

struct WBStartup *WBenchMsg; 
struct WBArg *wbarg; 
FILE *file; 
LONG wLen; 
SHORT i; 

FromWb = (argc==O) ? TRUE 

/* Open icon.library */ 

FALSE; 

if{! (IconBase = OpenLibrary(lIicon.libraryll,33») 
cleanexit("Can't open icon.library\n",RETURN_FAIL); 

/* If started from cli, this example will create 
* a small text file RAM:Example Project, and 
* create an icon for the file which points 
* to this program as its default tool. 
*/ 

if (!FromWb) 
{ 

/* Make a sample project (data) file */ 

590 Workbench 



wLen = -1; 
if (file=fopen (projname, "W")) 

( 
wLen = fprintf(file,"Have a nice day\n"); 
fclose (file) ; 
} 

if(wLen < 0) cleanexit(IIError writing data file\n",RETURN_FAIL); 

/* Now save/update icon for this data file */ 
if (make Icon (projname, toolTypes, deftoolname)) 

( 
printf(lI%s data file and icon saved.\n",projname); 
printf(IIUse Workbench Info to examine the icon.\n"): 
printf("Then copy this example (RKM_Icon_Example) to RAM:\n"); 
printf(lIand double-click the %s project icon\n",projname); 
} 

else cleanexit(IIError writing icon\n",RETURN_FAIL); 
} 

else /* Else we are FromWb - ie. we were either 
* started by a tool icon, or as in this case, 
* by being the default tool of a project icon. 
*/ 

if(! (conwin = fopen(conwinname,"r+"))) 
cleanexit("Can't open output window\n",RETURN_FAIL): 

WBenchMsg = (struct WBStartup *)argv; 

/* Note wbarg++ at end of FOR statement steps through wbargs. 
* First arg is our executable (tool). Any additional args 
* are projects/icons passed to us via either extend select 
* or default tool method. 
*/ 

for(i=O, wbarg=WBenchMsg->sm ArgList; 
i < WBenchMsg->sm NumArgs; 
i++, wbarg++) -
( 
/* if there's a directory lock for this wbarg, CD there */ 
olddir = -1: 
if«wbarg->wa Lock)&&(*wbarg->wa Name)) 

olddir = CurrentDir(wbarg->wa_Lock); 

showTooITypes(wbarg); 

if«i>O)&&(*wbarg->wa_Name)) 
fprintf(conwin,"In Main. We could open the %s file here\n", 

wbarg->wa Name); 
if(olddir != -1) currentDir(olddir); /* CD back where we were */ 
} 

Delay(500); 
} 

cleanup () ; 
exit(RETURN_OK); 
} 

BOOL makeIcon(UBYTE *name, char **newtooltypes, char *newdeftool) 
( 
struct DiskObject *dobj; 
char *olddeftool; 
char **oldtooltypes; 
BOOL success = FALSE; 

if (dobj=GetDiskObject (name}) 
{ 

/* If file already has an icon, we will save off any fields we 
* need to update, update those fields, put the object, restore 
* the old field pointers and then free the object. This will 
* preserve any custom imagery the user has, and the user's 
* current placement of the icon. If your application does 
* not know where the user currently keeps your application, 
* you should not update his dobj->do_DefaultTool. 

Workbench 591 



*1 
oldtooltypes = dobj->do ToolTypes; 
olddeftool = dobj->do_DefaultTool; 

dobj->do ToolTypes = newtooltypes; 
dobj->do=DefaultTool = newdeftool; 

success = PutDiskObject(name,dobj); 

1* we must restore the original pointers before freeing *1 
dobj->do ToolTypes = oldtooltypes; 
dobj->do-DefaultTool = olddeftool; 
FreeDiskObject(dobj); 
) 

1* Else, put our default icon *1 
if(!success) success = PutDiskObject(name,&projIcon); 
return(success); 
) 

BOOL showToolTypes(struct WBArg *wbarg) 
{ 
struct DiskObject *dobj; 
char **toolarray; 
char *s; 
BOOL success = FALSE; 

fprintf(conwin,"\nWBArg Lock=Ox%lx, Name=%s\n", 
wbarg->wa_Lock,wbarg->wa_Name); 

if«*wbarg->wa Name) && (dobj=GetDiskObject(wbarg->wa_Name))) 
( -
fprintf(conwin," We have read the DiskObject (icon) for this arg\n"); 
toolarray = (char **)dobj->do_ToolTypes; 

if(s=(char *)FindToolType(toolarray,"FILETYPE")) 
{ 

fprintf(conwin," 
) 

Found tooltype FILETYPE with value %s\n",s); 

if(s=(char *)FindTooIType(toolarray,IFLAGS")) 
{ 

fprintf(conwin," Found tooltype FLAGS with value %s\n",s); 
if(MatchToolValue(s,IBOLD") 

fprintf(conwin," BOLD flag requested\n"); 
if(MatchToolValue(s,IITALICS")) 

fprintf (conwin, II ITALICS flag requested\n"); 

1* Free the diskobject we got *1 
FreeDiskObject(dobj); 
success = TRUE; 
} 

else if(! (*wbarg->wa Name)) 
fprintf(conwin,"- Must be a disk or drawer icon\n"); 

else 
fprintf(conwin," Can't find DiskObject (icon) for this WBArg\n"); 

return(success); 
) 

1* Workbench-started programs with no output window 
* will want to display messages in a different manner 
* (requester, window title, etc) if FromWb is TRUE. 
*1 

void message (UBYTE *s) 
( 
if(FromWb && conwin) fprintf(conwin,s,strlen(s)); 
else if (!FromWb) printf(s); 
) 

void cleanexit(UBYTE *s, LONG n) 
( 
if(*s) message(s); 
cleanup(); 

592 Workbench 



exit (n); 
} 

void cleanup () 
{ 
if (conwin) fclose(conwin); 
if (IconBase) CloseLibrary(IconBase); 
} 

PROGRAM STARTUP CODE 

Standard start-up code handles the detail work of interfacing with the arguments and environment of CLI and 
Workbench. When a program is started from CLI (or a script), standard startups will parse the command line 
arguments (received in AO, with length in DO) to properly split the line into an array of pointers to individual 
command line arguments (argv), and an argc argument count. Argc will equal at least one if a program is started 
from CLI because the first argv element will be a pointer to the typed command name. For example, if the command 
line was: 

dfO:myprogram "my file!" file2 ;this is a comment 

then argc will be 3, argv[O] will be "dfO:myprogram", argv[l] will be "my filel", and argv[2] will be "file2". Correct 
startup code will strip spaces between arguments and trailing spaces from the last argument (file2), and will also 
properly deal with quoted arguments and embedded spaces. Standard CLI startup will usually also set up SysBase, 
DOS Base, and stdio file handles Lstdin, _stdout, etc.) for the application. Argv, then argc, will be pushed on the 
stack and the application will be called via a JSR. When the application returns or exits back to the startup code, the 
startup closes or frees all opens and allocations it has made for the application, and then returns to the system with 
the program exit(n) value. 

When a program is started from Workbench, a standard startup will wait for, and get the WBStartup message. The 
startup code will usually set up SysBase and DOSBase for the application, and some special startups may open a 
stdio window for the application, or NIL: input and output streams. A pointer 'to the WBStartup message (argv) and 
art argc of 0 are pushed onto the stack, and the application is called via a JSR. When the application returns or exits 
back to the startup code from Workbench, the startup closes or frees all opens and allocations it has made for the 
application, calls Forbid( ), replies to the WBStartup message, and returns to the system with the program exit(n) 
value. Workbench then terminates the application process and unloads its code. 

It is strongly suggested that all programmers use standard tested startup code of some type. Even assembler 
programs can use a startup such as the standard Amiga startup, receiving argc and argv on their stack as described 
above, and exiting through the startup's _exit label with their error code on the stack. Startup code can provide your 
programs with correct consistent handling of CLI and Workbench arguments, and will perform some initializations 
and cleanups which would otherwise need to be handled by your own code. Very small startups can be used for 
programs that require no command line arguments. 

A few words of warning for those of you who do not use standard startup code: 

You must GetMsg() the WBStartup message before opening dos.library. 

You must turn off task switching (with Forbid( » before replying the message to Workbench. This will prevent 
Workbench from unloading your code before you can tell the DOS that you want to exit. 

If you do your own command line parsing, you must provide the user with consistent and correct handling of 
command line arguments. 

Workbench 593 



Standard Amiga Startup Source 

The following code is the standard 1.3 Amiga startup code module. By using the appropriate .i file (printed at end of 
the module) this startup.asm can be assembled into a variety of startups including reentrant versions, and versions 
which can provide an application-defined amiga.lib stdio window when started from Workbench. 

NOTE 

This startup is Amiga-specific and uses direct AmigaDOS file handles for stdio (amiga.lib printf, 
getchar, etc.). It is designed for use with assemblers and compilers when linking with amiga.lib as the 
first linker lib, and using only amiga.lib direct AmigaDOS stdio and fileio. 

*------ startup.asm v 34.12 Copyright 1988 Commodore-Amiga, Inc. 
*------
*------ Conditional assembly flags 
*------ ASTART: l=Standard Globals Defined 
*------ WINDOW: l=AppWindow for WE startup 
*------ XNIL: l=Remove startup NIL: in it 
*------ NARGS: l=Argv[O] only 
*------ DEBUG: l=Set up old statics for Wack 
*------ QARG: l=No argv 

O=Reentrant Only 
O=No AppWindow code 
O=Default Nil: WE Output 
O=Normal cmd line arg parse 
O=No extra statics 
O=Passes argc,argv 

* Include the appropriate .i file to set the flags 

INCLUDE "astartup.i" 

* Flags for [A] start AWstart Rstart RWstart RXstart QStart 
* AS TART 1 1 0 0 0 0 
* WINDOW 0 1 0 1 0 0 
* XNIL 0 0 0 0 1 1 
* NARGS 0 0 0 0 0 0 
* DEBUG 0 0 0 0 0 0 
* QARG 0 0 0 0 0 1 

;------ Flag WE output initialization 
WEOUT SET (ASTART!WINDOW! (l-XNIL)) 

************************************************************************ 
* * startup.asm --- Reentrant C Program Startup/Exit (CLI and WE) 
* v34.12 07/25/88 

* * Copyright (c) 1988 Commodore-Amiga, Inc. 
* * Title to this software and all copies thereof remain vested in the 
* authors indicated in the above copyright notice. The object version 
* of this code may be used in software for Commodore Amiga computers. 
* All other rights are reserved. 

* 
* 
* 
* 
* 
* 
* 
* 

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE 
ACCURACY, RELIABILITY, PERFORMANCE OR OPERATION OF THIS SOFTWARE, 
AND ALL SUCH USE IS AT YOUR OWN RISK. NEITHER COMMODORE NOR THE 
AUTHORS ASSUME ANY RESPONSIBILITY OR LIABILITY WHATSOEVER WITH 
RESPECT TO YOUR USE OF THIS SOFTWARE. 

* RSTARTUP.ASM 
* 
* 
* 
* 
* 
* 
* 
* 

This startup dynamically allocates a structure which includes 
the argv buffers. If you use this startup, your code must return 
to this startup when it exits. Use exit(n) or final curly brace 
(rts) to return here. Do not use AmigaDOS Exit( ) function. 
Due to this dynamic allocation and some code consolidation, this 
startup can make executables several hundred bytes smaller. 

594 Workbench 



* Because a static initialSP variable can not be used, this 
* code depends on the fact that AmigaDOS places the address of 
* the top of our stack in SP and proc->pr_ReturnAddr right before 
* JSR'ing to us. This code uses pr_ReturnAddr when restoring SP. 

* 
* Most versions of startup will initialize a Workbench process's 
* input and output streams (and stdio globals if present) to NIL: 
* if no other form of Workbench output (like WINDOW) is provided. 
* This should help prevent crashes if a user puts an icon on a CLI 
* program, and will also protect against careless stdio debugging 
* or error messages left in a Workbench program. The code for 
* initializing Workbench IO streams only be removed by assembling 
* startup with AS TART and WINDOW set to 0, and XNIL set to 1. 

* 
* 
x Some startups which can be conditionally assembled: 

* 
* 1. Standard Astartup for non-reentrant code 
* 2. Reentrant Rstartup (no unshareable globals) 
* 3. Smaller reentrant-only RXstartup (no NIL: WE in it code) 
x 4. Standard AWstartup (WE output window) for non-reentrant code 
x 5. Reentrant RWstartup (WE output window, no unshareable globals) 
x 6. Smallest Qstartup (No argv - argv is ptr to NULL string) 

* 
* 
x Explanation of conditional assembly flags: 

* 
* ASTART (ASTART SET 1) startups will set up and XDEF the 
* global variables stdin, stdout, stderr, errno and _WEenchMsg. 
* These startups can be used as smaller replacements for startups 
* like (A)startup.obj and TWstartup.obj. Startups with ASTART 
x would generally be used for non-reentrant programs, although the 
* startup code itself is still reentrant if the globals are not 
* referenced. 
* Reentrant (ASTART SET 0) startups will NOT set up or 
* XDEF the stdio and WEenchMsg globals. This not only makes the 
* startup slightly smaller, but also lets you know if your code 
* is referencing these non-reentrant globals (you will get an 
* unresolved external reference when you link). Programs 
* get their input and output handles from Input ( ) and Output ( ), 
x and the WEenchMsg is passed in argv on Workbench startup. 

* 
* 
* 
* 
* 
* x 
x 
x 

* 
* x 
x 
x 
x 

* 
* 
* 
* x 
x 

* 
* 
* 
* 
* x 

* x 

* 
X 

WINDOW (WINDOW SET 1) startups use an XREF'd CON: string 
named AppWindow, defined in your application, to open a stdio 
console window when your application is started from Workbench. 
For non-reentrant programs, this window can be used for normal 
stdio (printf, getchar, etc). For reentrant programs the window 
is Input ( ) and Output ( ). WINDOW is useful when adding Workbench 
capability to a stdio application, and also for debugging other 
Workbench applications. To insure that applications requiring 
a window startup are linked with a window startup, the label 
_NeedWStartup can be externed and referenced in the application 
so that a linker error will occur if linked with a standard 
startup. 

example: 1* Optional safety reference to NeedWStartup xl 
extern UBYTE NeedWStartup; 
UBYTE *HaveWStartup = &NeedWStartup; 

1* Required window specification *1 
char AppWindow[] = "CON:30/30/200/150/MyProgram"; 
(OR char AppWindow[] = "\0"; for no window) 

XNIL (XNIL SET 1) allows the creation of a smaller startup 
by removing the code that initializes a Workbench process's 
output streams to NIL:. This flag can only remove the code 
if it is not required for AS TART or WINDOW. 

NARGS (NARGS SET 1) removes the code used to parse command line 
arguments. The command name is still passed to _main as argv[O]. 
This option can take about 120 bytes off the size of any program that 
does not use command line args. 

Workbench 595 



* * DEBUG (DEBUG SET 1) will cause the old startup.asm statics 
* initialSP, dosCmdLen and dosCmdBuf to be defined and initialized 
* by the startup code, for use as debugging symbols when using Wack. 

* * QARG (QARG SET TO 1) will bypass all argument parsing. A CLI 
* startup is passed argc == 1, and a Workbench startup is passed 
* argc == O. Argv[O) will be a pointer to a NULL string rather than 
* a pointer to the command name. This option creates a very small 
* startup with no sVar structure allocation, and therefore must be used 
* with XNIL (it is incompatible with default or AWindow output options). 

* 
* * RULES FOR REENTRANT CODE 

* 
* 
* 
* 

- Make no direct or indirect (printf, etc) references to the 
globals _stdin, _stdout, _stderr, _errno, or _WBenchMsg. 

* - For stdio use either special versions of printf and get char 
* that use Input( ) and Output ( ) rather than stdin and stdout, 
* or use fprintf and fgetc with Input( ) and Output ( ) file handles. 

* * - Workbench applications must get the pointer to the WBenchMsg 
* from argv rather than from a global extern WBenchMsg. 

* * - Use no global or static variables within your code. Instead, 
* put all former globals in a dynamically allocated structure, and 
* pass around a pointer to that structure. The only acceptable 
* globals are constants (message strings, etc) and global copies 
* of Library Bases to resolv.e Amiga.lib references. Your code 
* must return all OpenLibrary's into non-global variables, 
* copy the result to the global library base only if successful, 
* and use the non-globals when deciding whether to Close any 
* opened libraries. 

* 
************************************************************************ 

******* Included Files ************************************************* 

INCLUDE "exec/types.i" 
INCLUDE "exec/alerts.i" 
INCLUDE "exec/memory.i" 
INCLUDE "libraries/dos.i" 
INCLUDE "libraries/dosextens.i" 
INCLUDE "workbench/startup.i" 

******* Macros ********************************************************* 

xlib macro 
xref LVO\1 -
endm 

callsys macro 
CALLLIB _LVO\1 
endm 

******* Imported ******************************************************* 

ABSEXECBASE 

xref 

IFGT 
xref 
xdef 
EN DC 

xlib 
xlib 
xlib 

596 Workbench 

EQU 4 

main 

WINDOW 
AppWindow 

::::NeedWStartup 
WINDOW 

Alert 
AllocMem 
FindTask 

C code entry point 

CON: spec in application for WB stdio window 
May be externed and referenced in application 



xlib Forbid 
xlib FreeMem 
xlib GetMsg 
xlib OpenLibrary 
xlib CloseLibrary 
xlib ReplyMsg 
xlib Wait 
xlib WaitPort 

xlib CurrentDir 
xlib Open 
xlib Close 
xlib Input 
xlib Output 

******* Exported ******************************************************* 

*----- These globals are set up for standard startup code only 
IFGT ASTART 
xdef stdin 
xdef 
xdef 
xdef 
xdef 
ENDC 

-stdout 
-stderr 

errno 
:::WBenchMsg 
AS TART 

*----- These globals available to normal and reentrant code 

xdef 
xdef 
xdef 

_SysBase 
DOSBase 
exit standard C exit function 

***** Startup Variables structure ********************************** 

IFEQ 
ARGVSLOTS 

QARG 
EQU 

STRUCTURE SVar,O 
LONG sv WbOutput 

32 

STRUCT sv-argvArray,ARGVSLOTS*4 
STRUCT sv:::argvBuffer,256 
LABEL SV SIZEOF 

ENDC - QARG 

************************************************************************ 
* Standard Program Entry Point 
************************************************************************ 

* 
* Entered with 
* dO dosCmdLen 
* aO dosCmdBuf 
* Any registers (except sp) are allowed to be modified 

* 
* Calls 
* main (argc, argyl 
* int argc; 
* char *argv[]; 

* 
* 
* 

For Workbench startup, argc=O, argv=WBenchMsg 

************************************************************************ 
startup: 

IFGT DEBUG 
move.l sp, initialSP 
move.l dO,dosCmdLen 
move.l aO,dosCmdBuf 

EN DC DEBUG 

IFEQ QARG 
move.l dO,d2 
move.l aO,a2 

Workbench 597 



ENDC QARG 

;------ get Exec library base pointer 
movea.l ABSEXECBASE,a6 
move.l a6,_SysBase 

;------ get the 
suba.l 
callsys 
move.l 

address of our task 
al,al 
FindTask 
dO,a4 

clear al 

keep task address in a4 

;------ get DOS 
moveq 
lea 
callsys 

library base pointer 
1I0,dO 
DOSName(pc),Al ; dos.library 
OpenLibrary 

tst.l dO 
beq alertDOS 
move.l dO,_DOSBase 

fail on null with alert 
Else set the global 

IFEQ QARG 
;------ alloc the argument structure 

move.l IISV SIZEOF,dO 
move.l II(MEMF PUBLIC!MEMF CLEAR),dl 
callsys AllocMem -
tst.l dO 
beq alertMem fail on null with alert 
move.l dO,-(sp) save sVar ptr on stack 
move.l dO,aS sVar ptr to as 

ENDC QARG 
IFGT QARG 

clr.l - (sp) 
ENDC QARG 

clr.l - (sp) ; reserve space for WBenchMsg if any 

;------ branch to Workbench startup code if not a CLI process 
move.l pr CLI(A4),dO 
beq fromWorkbench 

;======================================================================= 
;====== CLI Startup Code =============================================== 
i======================================================================= 

dO process CLI BPTR (passed in), then temporary 
d2 dos command length (passed in) 
d3 argument count 
aO temporary 
al argv buffer 
a2 dos command buffer (passed in) 
a3 argv array 
a4 Task (passed in) 
as SVar structure if not QARG (passed in) 
a6 AbsExecBase (passed in) 
sp WBenchMsg (still 0), sVar or 0, then RetAddr (passed in) 
sp argc, argv, WBenchMsg, sVar or O,RetAddr (at bra domain) 

IFEQ QARG 
;------ find command name 

598 Workbench 

lsl.l 112,dO ; pr_CLI bcpl pointer conversion 
move.l dO,aO 
move.l cli CommandName(aO),dO 
lsl.l 112,dO ; bcpl pointer conversion 

, 
lea 
lea 

start argv array 
svargvBuffer(aS),al 
sv=argvArray(aS),a3 

;-- copy command name 
move.l dO,aO 
moveq.l 1I0,dO 
move.b (aO)+,dO size of command name 



clr.b O(aO,dO.I) 
move.l aO,(a3)+ 
moveq In,d3 

IFEQ NARGS 

terminate the command name 

start counting arguments 

i------ null terminate the arguments, eat trailing control characters 
lea O(a2,d2.1),aO 

stripjunk: 

newarg: 

cmp.b 
dbhi 

clr.b 

II' ',- (aD) 
d2,stripjunk 

1 (aD) 

i------ start gathering arguments into buffer 

i-- skip spaces 
move.b (a2)+,dl 
beq. s parmExit 
cmp.b II" , dl 
beq. s newarg 
cmp.b H,dl 
beq.s newarg 

tab 

i-- check for argument count overflow 
cmp.w IIARGVSLOTS-l,d3 
beq.s parmExit 

i-- push address of the next parameter 
move.l al,(a3)+ 
addq.w lIl,d3 

i-- process quotes 
cmp.b 11"" , dl 
beq.s d~quote 

i-- copy the parameter in 
move.b dl, (al)+ 

nextchar: 

endarg: 

doquote: 

;------
move.b 
beq.s 
cmp.b 
beq.s 

move.b 
bra.s 

clr.b 
bra.s 

i------ process 
move.b 
beq.s 
cmp.b 
beq.s 

;-- , *, 
cmp.b 
bne.s 

move.b 
move.b 
and.b 

cmp.b 
bne.s 

:--
moveq 

null termination 
(a2)+,dl 
parmExit 
II' ',dl 
endarg 

dl, (al) + 
next char 

(al) + 
newarg 

quoted strings 
(a2) +, dl 
parmExit 
11"11 , dl 
endarg 

check 

is the BCPL escape character 
1I'*',dl 
addquotechar 

(a2) +, dl 
dl,d2 
lI$df,d2 id2 is temp toupper'd dl 

II'N',d2 icheck for dos newline char 
checkEscape 

got a *N turn into a newline 
IIlO,dl 

Workbench 599 



checkEscape: 

bra.s 

cmp.b 
bne.s 

addquotechar 

II'E' ,d2 
addquotechar 

;--
moveq 

got a *E -- turn into a escape 
1127,dl 

addquotechar: 

parmExit: 

move.b 
bra.s 

dl, (al) + 
doquote 

;------ all done -- null terminate the arguments 
clr.b (al) 
clr.l (a3) 

EN DC NARGS 

ENDC 

pea 
move.l 
QARG 

IFGT QARG 

ENDC 

pea 
pea 

IFGT ASTART 

sv argvArray(a5) 
d3:--(sp) 

nullArgV (pc) 
1 

movea.l DOSBase,a6 
;------ get standard input handle: 

callsys Input 
move.l dO, stdin 

argv 
argc 

pointer to pointer to null string 
only one pointer 

;------ get standard output handle: 
callsys Output 
move.l dO, stdout 
move.l dO,-stderr 
movea.l ABSEXECBASE,a6 

ENDC AS TART 

bra domain 

;======================================================================= 

;====== Workbench Startup Code ========================================= 
;======================================================================= 

a2 WBenchMsg 
a4 Task (passed in) 
a5 SVar structure if not QARG (passed in) 
a6 AbsExecBase (passed in) 
sp WBenchMsg (still 0), sVar or 0, then RetAddr (passed in) 
sp argc=O,argv=WBenchMsg,WBenchMsg,sVar or O,RetAddr (at domain) 

fromWorkbench: 
;------ get the startup message that workbench will send to us. 

must get this message before doing any DOS calls 
bsr.s getWbMsg 

;------ save the message so we can return it later 
move.l dO, (sp) 

IFGT AS TART 

ENDC 
move.l dO,_WBenchMsg 
AS TART 

;------ push the message on the stack for wbmain (as argv) 
move.l dO,-(sp) 
clr.l -(sp) ; indicate run from Workbench (argc=O) 

IFNE (l-QARG)+WBOUT 
;------ put DOSBase in a6 for next few calls 

move.l _DOSBase,a6 

600 Workbench 



doCons: 

doOpen: 

gotOpen: 

ENDC 

IFEQ 
._-----, 

(l-QARG)+WBOUT 

QARG 
get the 
move.l 
move.l 
beq.s 

first argument 
dO,a2 
sm_ArgList(a2),dO 
doCons 

i------ and set 
move.l 
move.l 
; should 
callsys 

the current directory to the same directory 
dO,aO 

ENDC QARG 

IFGT WBOUT 

wa Lock(aO),d1 
be-a beq.s doCons here 
CurrentDir 

;------ Open NIL: or AppWindow for WB Input()/Output() handle 
Also for possible initialization of stdio globals 
Stdio used to be initialized to -1 

IFGT WINDOW 
;------ Get AppWindow defined in application 

lea _AppWindow,aO 
cmp.b #0, (aO) 
bne.s doOpen Open if not null string 

ENDC WINDOW 

;------ Open NIL: if no window provided 
lea NilName(PC),aO 

;------ Open up the file whose name is in aO 
DOSBase still in a6 
move.l aO,d1 
move.l #MODE_OLDFILE,d2 
callsys Open 

;------ dO now contains handle for Workbench Output 
;------ save handle for closing on exit 

move.l dO, sv_WbOutput (a5) 
bne.s gotOpen 
moveq.l #RETURN_FAIL,d2 
bra exit2 

IFGT ASTART 
;------ set the 

move.l 
move.l 
move.l 

C input and 
dO, stdin 
dO,-stdout 
dO,:::stderr 

output descriptors 

ENDC ASTART 

;------ set the console task (so Open( 
task pointer still in A4 
move.l dO,pr_CIS(A4) 
move.l dO,pr COS (A4) 
Is1.1 #2,dO-
move.l dO,aO 
move.l fh Type(aO),dO 
beq.s noConTask 
move.l dO,pr_ConsoleTask(A4) 

"*" , mode ) will work 

noConTask: 
ENDC WBOUT 

;------ Fall though to common WB/CLI code 

**************************************************** 
** This code now used by both CLI and WB startup ** 
**************************************************** 

Workbench 601 



domain: 
jsr main 

;------ main didn't use exit(n) so provide success return code 
moveq.l #RETURN_OK,d2 
bra.s exit2 

**************************************************** 
** subroutines here to allow short branches ** 
**************************************************** 

getWbMsg: 
;------ a6 = ExecBase 

lea pr MsgPort(A4),aO 
callsys WaltPort 

our process base 

lea pr_MsgPort(A4),aO our process base 
callsys GetMsg 
rts 

**************************************************** 

alertDOS: 
;------ do recoverable alert for no DOS and exit 

ALERT (AG_OpenLib!AO_DOSLib) 

;------ do recoverable alert for no memory and exit 
;------ If we got this far, DOS is open, so close it 
IFEQ QARG 

bra.s failExit 
alertMem: 

movea.l _DOSBase,al 
callsys CloseLibrary 
ALERT AG_NoMemory 

EN DC QARG 
failExit: 

tst.l pr_CLI (a4) 
bne.s fail2 
bsr.s getWbMsg 
movea.l dO,a2 
bsr.s repWbMsg 

fail2: 
moveq.l #RETURN_FAIL,dO 
rts 

**************************************************** 

repWbMsg: 
;------ return the startup message to our parent 

a6 = ExecBase (passed) 
a2 = WBenchMsg (passed) 
we forbid so workbench can't UnLoadSeg() us before we are done 
callsys Forbid 
move.l a2,al 
callsys ReplyMsg 
rts 

******************************************************* 
** C Program exit() Function, return code on stack ** 
** ** 
** pr ReturnAddr points to our RTS addr on stack ** 
** and we use this to calculate our stack ptr: ** 
** 
** 
** 
** 

SP -> WBenchMsg or 0 (CLI) 
sVar ptr or 0 (QARG) 
Address for RTS to DOS 

** 
** 
** 
** 

******************************************************* 

move.l 4(sp),d2 ; exit(n) return code to d2 

exit2: ;exit code in d2 

602 Workbench 



noWbOut: 

checkWB: 

i------ restore initial stack ptr 
i-- FindTask 

IFGT 

movea.l ABSEXECBASE,a6 
suba.l al,al 
callsys FindTask 
i-- get SP as it was prior to DOS's jsr to us 
move.l dO,a4 
move.l pr_ReturnAddr(a4),aS 
i-- subtract 4 for return address, 4 for SVar, 4 for WBenchMsgeJ 

suba.w /ll2,aS 

i-- restore sp 
move.l as,sp 

i-- recover WBenchMsg 
move.l (sp)+,a2 
i-- recover SVar 
move.l (sp) +, as 

WBOUT 
i------ Close any WbOutput file before closing dos.library 

move.l sv WbOutput(aS),dl 
beq.s noWbOut 
move.l DOSBase,a6 
callsys Close 

i------ Restore a6 = ExecBase 
movea.l ABSEXECBASE,a6 

ENDC WBOUT 

i------ Close DOS library, if we got here it was opened 
SysBase still in a6 
movea.l DOSBase,al 
callsys CloseLibrary 

i------ if we ran from CLI, skip workbench reply 

move.l 
beq.s 

bsr.s 

a2,dO 
deallocSV 

repWbMsg 

deallocSV: 
IFEQ 
;------

ENDC 

-------, 

QARG 
deallocate the SVar structure 
move.l as,al 
move.l /lSV_SIZEOF,dO 
callsys FreeMem 
QARG 

this rts sends us back to DOS: 
move. 1 d2,dO 
rts 

********************************************************************** 

i----- PC relative data 

DOSName 
NilName 

nullArgV 
nullArg 

IFGT 

EN DC 

DOSNAME 
dc.b 
QARG 
dc.l 
dc.l 

'NIL:',O 

nullArg 
o .... & the null entry after nullArgV 

********************************************************************** 
DATA 

********************************************************************** 

_SysBase dc.l o 

Workbench 603 



DOSBase dc.l 0 

IFGT AS TART 
_WBenchMsg dc.l 0 
stdin dc.l 0 - stdout dc.l 0 
stderr dc.l 0 - errno dc.l 0 

ENDC AS TART 

IFGT DEBUG 
initialSP dc.l 0 
dosCmdLen dc.l 0 
dosCmdBuf dc.l 0 

ENDC DEBUG 

VerRev dc.w 34,12 
IFGT AS TART 

dc.h 'A' 
ENDC ASTART 
IFEQ AS TART 

dc.h 'R' 
ENDC ASTART 
IFGT WINDOW 

_NeedWStartup: 
dc.h 'w' 

ENDC WINDOW 
IFEQ WBOUT 

dc.h 'X' 
ENDC WBOUT 
IFGT NARGS 

dc.h 'N' 
ENDC NARGS 
IFGT DEBUG 

dc.h 'D' 
ENDC DEBUG 
IFGT QARG 

dc.h 'Q' 
ENDC QARG 

END 

;==== The .i flag files for assembling the various versions of startup1.3 

*------
ASTART 
WINDOW 
XNIL 
NARGS 
DEBUG 
QARG 

*------
AS TART 
WINDOW 
XNIL 
NARGS 
DEBUG 
QARG 

*------
AS TART 
WINDOW 
XNIL 
NARGS 
DEBUG 
QARG 

*------
ASTART 
WINDOW 
XNIL 

astartup.i 
SET 1 
SET 0 
SET 0 
SET 0 
SET 0 
SET 0 

awstartup.i 
SET 1 
SET 1 
SET 0 
SET 0 
SET 0 
SET 0 

qstartup.i 
SET 0 
SET 0 
SET 1 
SET 0 
SET 0 
SET 1 

rstartup.i 
SET 0 
SET 0 
SET 0 

604 Workbench 



NARGS SET 0 
DEBUG SET 0 
QARG SET 0 

*------ rwstartup.i 
AS TART SET 0 
WINDOW SET 1 
XNIL SET 0 
NARGS SET 0 
DEBUG SET 0 
QARG SET 0 

*------ rxstartup.i 

AS TART SET 0 
WINDOW SET 0 
XNIL SET 1 
NARGS SET 0 
DEBUG SET 0 
QARG SET 0 

Workbench 605 





Chapter 31 

Audio Device 

Introduction 

The Arniga has four hardware audio channels-two of the channels produce audio output from the left audio 
connector, and two from the right. These channels can be used in many ways. You can combine a right and a left 
channel for stereo sound, use a single channel, or playa different sound through each of the channels to create four
part harmony. 

The audio software is implemented as a standard Arniga input/output device with commands that allocate audio 
channels and control the sound output. To make sounds, you open the audio device, send 10 requests to it, and then 
close it. 

The audio device commands help isolate the programmer from the idiosyncrasies of the custom chip hardware and 
make it easier to use. But you can also produce sound on the Arniga by directly accessing the hardware registers if 
you temporarily lock out other users first. For certain types of sound synthesis, this is more CPU-efficient. 

Some commands enable your program to co-reside with other programs using the audio device at the same time. 
Programs can co-reside because the audio device handles allocation of audio channels and arbitrates among 
programs competing for the same resources. When properly used, this allows many programs to use the audio 
device simultaneously. 

Audio Device 607 



Most personal computers that produce sound have hardware designed for one specific synthesis technique. The 
Amiga uses a very general method of digital sound synthesis that is quite similar to the method used in digital hi-fi 
components and state-of-the-art keyboard and drum synthesizers. 

For programs that can afford the memory, playing sampled sounds gives you a simple and very CPU-efficient 
method of sound synthesis. A sampled sound is a table of numbers which represents a sound digitally. When the 
sound is played back by the Amiga, the table is fed by a DMA channel into one of the four digital-to-analog 
converters in the custom chips. The digital-to-analog converter converts the samples into voltages that can be 
played through amplifiers and loudspeakers, reproducing the sound. 

On the Amiga you can create sound data in many other ways. For instance, you can use trigonometric functions in 
your programs to create the more traditional sounds-sine waves, square waves, or triangle waves-by using tables 
that describe their shapes. Then you can combine these waves for richer sound effects by adding the tables together. 
Once the data is entered, you can modify it with techniques described in "Audio Functions and Commands" below. 
For information about the limitations of the audio hardware and suggestions for improving system efficiency and 
sound quality, refer to the Amiga Hardware Reference Manual. 

DEFINITIONS 

Terms used in the following discussions may be unfamiliar. Some of the more important terms are defined below. 

Amplitude 
The height of a waveform, which corresponds to the amount of voltage or current in the electronic circuit. 

Amplitude modulation 
A means of producing special audio effects by using one channel to alter the amplitude of another. 

Channel 
One "unit" of the audio device. 

Cycle 
One repetition of a waveform. 

Frequency 
The number of times per second a cycle repeats. 

Frequency modulation 
A means of producing special audio effects by using one channel to affect the period of the waveform 
produced by another channel. 

Period 
The time elapsed between the output of successive sound samples, in units of system clock ticks. 

Precedence 
Priority of the user of a sound channel. 

Sample 
Byte of audio data, one of the fixed-interval points on the waveform. 

Waveform 
Graph that shows a model of how the amplitude of a sound varies over time-usually over one cycle. 

608 Audio Device 



Audio Functions and Commands 

The audio device is similar to the other Amiga 10 devices. To make sound, you first open the audio device, then 
send 10 requests to it, and then close it when finished. 

Audio device commands use an extended 10 block named IOAudio to send commands to the audio device. This is 
the standard IORequest block with some extra fields added at the end. 

struct IOAudio 
{ 

} i 

struct IORequest ioa Request; 
WORD ioa AllocKey; -
UBYTE *ioa_Data; 
ULONG ioa Length; 
UWORD ioa-Period; 
UWORD ioa-Volume; 
UWORD ioa-Cycles; 
struct Message ioa_WriteMsg; 

/* 10 request block. See exec/io.h. */ 
/* Alloc. key filled in by audio device */ 
/* Pointer to a sample or allocation mask */ 
/* Length of sample or allocation mask. */ 
/* Sample playback speed */ 
/* Volume of sound */ 
/* # of times to play sample. O=forever. */ 
/* Filled in by device - usually not used */ 

By filling in the appropriate fields with command data and sending the 10Audio block to the audio device, you can 
generate sound. For more details, you should see the comand and reference section and the header files 
deviceslaudio.h and deviceslaudio.i in the Amiga ROM Kernel Manual: Includes and Autodocs. For general 
information on how 10 devices work on the Amiga, refer to the Exec chapter. 

COMMAND TYPES 

Commands and functions for audio use can be divided into three categories: system functions, allocation/arbitration 
commands, and hardware control commands. The system functions are: 

OpenDevice(laudio.device" ,OL,struct IORequest * ,OL) 

CloseDevice(struct IORequest *) 

BeginIO(struct IORequest *) 

Wait(LONG) and WaitPort(struct MsgPort *) 

AbortIO(struct IORequest *) 

There are four allocation/arbitration commands. These do not actually produce any sound. Instead they manage and 
arbitrate the audio resources for the many tasks that may be using audio in the Amiga's multi-tasking environment 

ADCMD _ALLOCATE - Reserves an audio channel for your program to use. 

• ADCMD _FREE - Frees an audio channel. 

ADCMD_SETPREC - Changes the precedence of a sound in progress. 

Audio Device 609 



ADCMD_LOCK - Tells you if a channel has been stolen from you. 

The hardware control commands are used to set up, start, and stop sounds on the audio device: 

CMD _WRITE - The main command. Starts a sound playing. 

ADCMD_FINISH - Aborts a sound in progress. 

• ADCMD]ERYOL - Changes the period (speed) and volume of a sound in progress. 

• CMD _FLUSH - Clears the audio channels. 

CMD _RESET - Resets and initializes the audio device. 

ADCMD _ W AlTCYCLE - Signals you when a cycle finishes. 

CMD_STOP - Temporarily stops a channel from playing. 

CMD_START - Restarts an audio channel that was stopped. 

CMD_READ - Returns a pointer to the current IOAudio request. 

SCOPE OF COMMANDS 

Most audio commands can operate on multiple channels. The exceptions are CMD _WRITE, 
ADCMD_WAlTCYCLE, and CMD_READ, which can only operate on one channel at a a time. You specify the 
channel that you want to use by setting the appropriate bits in the ioa_Request.io_Unit field of the IOAudio block. 
If you send a command for a channel that you do not own, your command will be ignored. For more details, see the 
section on "Allocation and Arbitration" below. 

SYSTEM FUNCTIONS 

OpenDeviceO 

Before you can use the audio device, you must first open it with a call to OpenDeviceO. One nice feature of this 
function is that you can also automatically allocate channels for your program to use when you call OpenDeviceO. 
To do this, you use a non-zero ioa_Request.ioa_Length field. The audio device will attempt to allocate channels 
just as if you had sent the ADCMD _ALLOCATE command. If the allocation fails, the OpenDeviceO call will 
return immediately. 

If you want to allocate channels at some later time, then set the ioa _ Request.ioa _Length field of the IOAudio block 
to zero when you call OpenDeviceO. For more on channel allocation and the ADCMD_ALLOCATE command, see 
the section on "Allocation and Arbitration" below. 

610 Audio Device 



CloseDeviceO 

When you have finished with the audio device, you must close it with a call to the CloseDeviceO function. 
CloseDeviceO performs an ADCMD_FREE command on any channels selected by the ioa_Request.io_Unit field 
of the 10Audio request. This means that if you close the device with the same 10Audio block that you used to 
allocate your channels (or a copy of it), the channels will be automatically freed. 

If you allocated channels with multiple allocation commands, you cannot use this function to close all of them at 
once. Instead, you will have to issue one ADCMD_FREE command for each allocation that you made. After issuing 
the ADCMD_FREE commands for each of the allocations, you can call CloseDeviceO. 

BeginIOO 

All the commands that you can give to the audio device should be sent by calling the BeginIOO function. This 
differs from other Amiga devices which generally use SendlOO or DoIOO: You should not use SendiOO or 
DolOO with the audio device because these functions clear some special flags used by the audio device; this might 
cause audio to work incorrectly under certain circumstances. To be safe, you should always use BeginIOO with the 
audio device. 

WaitO and WaitPortO 

These functions can be used to put your task to sleep while a sound plays. WaitO takes a wake-up mask as its 
argument. The wake-up mask is usually the mp_SigBit of a MsgPort that you have set up to get replies back from 
the audio device. You can also use WaitPortO to put your task to sleep while a sound plays. The argument to 
WaitPortO is a pointer to a MsgPort that you have set up to get replies back from the audio device. You must 
always use WaitO or WaitPortO to wait for 10 to finish with the audio device. WaitiOO does not work correctly 
under all circumstances. Avoid using WaitIOO with V1.3 and earlier versions of the Amiga system software. 

AbortiOO 

This function can be used to cancel requests for ADCMD_ALLOCATE, ADCMD_LOCK, CMD_WRITE, or 
ADCMD_ W AITCYCLE. When used with the audio device, AbortIOO always succeeds. 

A Simple Audio Example 

The Amiga's audio software has a complex allocation and arbitration system which is described in detail in the 
sections below. At this point, though, it may be helpful to look at a simple audio example: 

Audio Device 611 



/* Lattice use lc -b1 -cfist 
iinclude <exec/types.h> 
iinclude <exec/memory.h> 
iinclude <devices/audio.h> 
#include <graphics/gfxbase.h> 
#include <proto/all.h> 
#include <stdlib.h> 

-v -yo Link with lc.lib and amiga.lib */ 
/* Some header files for system calls */ 

#include <stdio.h> 

iifdef LATTICE 
int CXBRK(void) (return(O);} /* Disable Lattice Ctrl-C handling */ 
#endif 

struct GfxBase *GfxBase; 
/*-----------------------------------------------------------*/ 
/* The whichannel array is used when we allocate a channel. */ 
/* It tells the audio device which channel we want. The code */ 
/* is 1 =channelO, 2 =channel1, 4 =channe12, 8 =channe13. */ 
/* If you want more than one channel, add the codes up. */ 
/* This array says "Gi ve me channel O. If it's not available * / 
/* then try channell; then try channel 2 and then channel 3 */ 
/*-----------------------------------------------------------*/ 
UBYTE whichannel[] = { 1,2,4,8 }; 

void main (int argc, char **argv) 
( 
struct IOAudio *AIOptr; /* Pointer to the 10 block for 10 commands 
struct MsgPort *port; /* Pointer to a port so the device can reply 
struct Message *msg; /* Pointer for the reply message 
ULONG device; 

*/ 
*/ 
*/ 

BYTE *waveptr; /* Pointer to the sample bytes */ 
LONG frequency=440; /* Frequency of the tone desired */ 
LONG duration =3; /* Duration in seconds */ 
LONG clock =3579545; /* Clock constant, 3546895 for PAL */ 
LONG samples =2; /* Number of sample bytes */ 
LONG samcyc =1; /* Number of cycles in the sample */ 
/*-------------------------------------------------------------------------*/ 
/* Ask the system if we are PAL or NTSC and set clock constant accordingly */ 
/*-------------------------------------------------------------------------*/ 
GfxBase=(struct GfxBase *)OpenLibrary("graphics.library",OL); 
if (GfxBase==OL) 

goto killaudio; 
if(GfxBase->DisplayFlags & PAL) clock=3546895; 
else clock=3579545; 

if (GfxBase) 
CloseLibrary{(struct Library *) GfxBase); 

/* PAL clock */ 
/* NTSC clock */ 

/*--------------------------------------------------------------------------*/ 
/* Create an audio I/O block so we can send commands to the audio device */ 
/*--------------------------------------------------------------------------*/ 
AIOptr=(struct IOAudio *) 

AllocMem( sizeof(struct IOAudio),MEMF_PUBLIC MEMF_CLEAR); 
if (AIOptr==O) 

goto killaudio; 
printf (1110 block created ... \n"); 
/*-------------------------------------------------------------------*/ 
/* Create a reply port so the audio device can reply to our commands */ 
/*-------------------------------------------------------------------*/ 
port=CreatePort(O,O); 
if (port==O) 

goto killaudio; 
printf("Port created ... \n"); 
/*----------------------------------------------------------------------*/ 
/* Set up the audio I/O block for channel allocation: */ 
/* ioa_Request.io_Message.mn_ReplyPort is the address of a reply port. */ 
/* ioa_Request.io_Message.mn_Node.ln_Pri sets the precedence (priority) */ 
/* of our use of the audio device. Any tasks asking to use the audio */ 
/* device that have a higher precedence will steal the channel from us.*/ 
/* ioa Request.io Command is the command field for 10. */ 
/* ioa=Request.io=Flags is used for the 10 flags. */ 
/* ioa_AllocKey will be filled in by the audio device if the allocation */ 
/* succeeds. We must use the key it gives for all other commands sent.*/ 

612 Audio Device 



/* ioa_Data is a pointer to the array listing the channels we want. */ 
/* ioa Length tells how long our list of channels is. */ 
/*----=-----------------------------------------------------------------*/ 
AIOptr->ioa_Request.io_Message.mn_ReplyPort port; 
AIOptr->ioa_Request.io_Message.mn_Node.ln_Pri= 0; 
AIOptr->ioa Request. io .Command ADCMD _ALLOCATE; 
AIOptr->ioa=Request.io=Flags ADIOF_NOWAIT; 
AIOptr->ioa_AllocKey 0; 
AIOptr->ioa Data whichannel; 
AIOptr->ioa-Length sizeof(whichannel); 
printf ("10 block initialized for channel allocation .•• \n"); 
/*-----------------------------------------------*/ 
/* Open the audio device and allocate a channel */ 
/*-----------------------------------------------*/ 
device=OpenDevice ("audio.device", OL, (struct IORequest *) AIOptr ,OL); 
if (device! =0) 

goto killaudio; 
printf("Audio device opened, channel allocated .•• \n"); 
/*----------------------------------------------*/ 
/* Create a very simple audio sample in memory. */ 
/*----------------------------------------------*/ 
waveptr=(BYTE *)AllocMem( samples, MEMF_CHIPIMEMF_PUBLIC); 
if (waveptr==O) 

goto killaudio; 
waveptr[O]= 127; 
waveptr[l]= -127; 
printf("Wave data ready ... \n"); 

/*------------------------------------------------------------*/ 
/* Set up audio I/O block to playa sample using CMD WRITE. */ 
/* The io Flags are set to ADIOF PERVOL so we can set the */ 
/* perIod (speed) and volume with the our sample; */ 
/* ioa Data pOints to the sample; ioa Length gives the length */ 
/* ioa-Cycles tells how many times to-repeat the sample */ 
/* If you want to play the sample at a given sampling rate, */ 
/* set ioa Period = clock/(given sampling rate) */ 
/*--------=---------------------------------------------------*/ 
AIOptr->ioa Request.io Message.mn ReplyPort=port; 
AIOptr->ioa-Request.io-Command - =CMD WRITE; 
AIOptr->ioa=Request.io=Flags =ADIOF_PERVOL; 
AIOptr->ioa Data =(BYTE *)waveptr; 
AIOptr->ioa-Length =samples; 
AIOptr->ioa-Period =clock*samcyc/(samples*frequency); 
AIOptr->ioa-Volume =64; 
AIOptr->ioa-Cycles =frequency*duration/samcyc; 
printf("IO block initialized to play tone ... \n"); 

/*---------------------------------------------------*/ 
/* Send the command to start a sound using BeginIO() */ 
/* Go to sleep and wait for the sound to finish with */ 
/* Wait(). When we wake-up we have to get the reply */ 
/*---------------------------------------------------*/ 
printf (IIStarting tone now ••• \n"); 
BeginIO((struct IORequest *) AIOptr ); 
Wait(lL « port->mp SigBit); 
msg=GetMsg(port); -

printf(IISound finished ••• \n"); 

killaudio: 

printf (IIKilling audio device ..• \n") ; 
if (waveptr!=O) 

FreeMem(waveptr, 2); 
if (port! =0) 

DeletePort(port); 
if (device==O) 

CloseDevice( (struct IORequest *) AIOptr ); 
if (AIOpt r ! =0) 

FreeMem( AIOptr,sizeof(struct IOAudio) ); 

Audio Device 613 



ALLOCATION AND ARBITRATION 

The first command you send to the audio device should always be ADCMD_ALLOCATE. You can do this when 
you open the device, or at a later time. You specify the channels you want in the ioa_Data field of the IOAudio 
block. If the allocation succeeds, the audio device will return the channels that you now own in the lower four bits 
of the ioa_Request.io_Unit field of your IOAudio block. For instance, if the io_Unit field equals 5 (binary 0101) 
then you own channels 2 and O. If the io_ Unit field equals 15 (binary 1111) then you own all the channels. 

When you send the ADCMD _ALLOCATE command, the audio device will also return a unique allocation key in 
the ioa_AUocKey of the IOAudio block. You must use this allocation key for all subsequent commands that you 
send to the audio device. The audio device uses this unique key to identify which task issued the command. If you 
do not use the right allocation key assigned to you by the audio device when you send a command, your command 
will be ignored. 

When you request a channel with ADCMD_ALLOCATE, you specify a precedence number from -128 to 127 in the 
ioa_Request.io_Message.mn_Node.ln_Pri field of the IOAudiog block. If a channel you want is being used and 
you have specified a higher precedence than the current user, ADCMD_ALLOCATE will "steal" the channel from 
the other user. Later on, if your precedence is lower than that of another user who is performing an allocation, the 
channel may be stolen from you. 

If you set the precedence to 127 when you open the device or raise the precedence to 127 with the 
ADCMD _SETPREC command, then no other tasks can steal a channel from you. When you have finished with a 
channel, you must relinquish it with the ADCMD_FREE command to make it available for other users. Table 5-1 
shows suggested precedence values. 

Predecence 

127 

90 - 100 

80 - 90 

75 

50 - 70 

-50 - 50 

-70 - -50 

-100 - -80 

-128 

614 Audio Device 

Table 31-1: Suggested Precedences for Channel Allocation 

Type of Sound 

Unstoppable. Sounds first allocated at lower precedence, then set to this highest 
level. 

Emergencies. Alert, urgent situation that requires immediate action. 

Annunciators. Attention, bell (CTRL-G). 

Speech. Synthesized or recorded speech (narrator.device). 

Sonic cues. Sounds that provide information that is not provided by graphics. 
Only the beginning of each sound (enough to recognize it) should be at this 
level; the rest should be set to sound effects level. 

Music program. Musical notes in music-oriented program. The higher levels 
should be used for the attack portions of each note. 

Sound effects. Sounds used in conjunction with graphics. More important 
sounds should use higher levels. 

Background. Theme music and restartable background sounds. 

Silence. Lowest level (freeing the channel completely is preferred). 



If you attempt to perform a command on a channel that has been stolen from you by a higher priority task, an 
AUDIO_NOALLOCATION error is returned and the bit in the ioa_Request.io_Unit field corresponding to the 
stolen channel is cleared so you know which channel was stolen. 

If you want to be warned before a channel is stolen so that you have a chance to stop your sound gracefully, then you 
should use the ADCMD _LOCK command after you open the device. This command is also useful for programs 
which write directly to the audio hardware. For more on ADCMD_LOCK, see the section below. 

ALLOCATION/ARBITRATION COMMANDS 

These commands allow the audio channels to be shared among different tasks and programs. None of these 
commands can be called from interrupt code. 

ADCMD _ALLOCATE 

This command gives your program a channel to use and should be the first command you send to the audio device. 
You specify the channels you want by giving a pointer to an array in the ioa_Data field of the IOAudio structure. 
This array uses a value of 1 to allocate channel 0, 2 for channell, 4 for channel 2, and 8 for channel 3. For multiple 
channels, add the values together. For example, if you want to allocate all channels, use a value of 15. 

If you want a pair of stereo channels and you have no preference about which of the left and right channels the 
system will choose for the allocation, you can pass a pointer to an array containing 3, 5, 10, and 12. Channels 0 and 
3 produce sound on the left side, and channels 1 and 2 on the right side. The table below shows how this array 
corresponds to all the possible combinations of a right and a left channel. 

Table 31-2: Possible Channel Combinations 

Decimal 
Channel 3 Channel 2 Channell Channel 0 Value of 

left right right left Allocation Mask 

0 0 1 1 3 
0 1 0 1 5 
1 0 1 0 10 
1 1 0 0 12 

How ADCMD_ALLOCATE Operates. The ADCMD_ALLOCATE command tries the first combination, 3, to 
see if channels 0 and 1 are not being used. If they are available, the 3 is copied into the io _Unit field and you get an 
allocation key for these channels in the ioa_AllocKey field. You copy the key into other 10 blocks for any other 
commands you may want to perform on these channels. 

If channels 0 and 1 are being used, ADCMD _ALLOCATE tries the other combinations in turn. If all the 
combinations are in use, ADCMD_ALLOCATE checks the precedence number of the users of the channels and 
finds the combination that requires it to steal the channel or channels of the lowest precedence. If all the 
combinations require stealing a channel or channels of equal or higher precedence, the 10 request 
ADCMD_ALLOCATE fails. Precedence is in the In_Pri field of the io_Message in the IORequest block you pass 
to ADCMD_ALLOCATE; it has a value from -128 to 127. 

Audio Device 615 



The ADIOF _NOWAIT Flag. If you need to produce a sound right now and otherwise you don't want to allocate, 
set the ADIOF _NOWAIT flag to 1. This will cause the command to return an IOERR_ALLOCFAILED error if it 
cannot allocate any of the channels. If you are producing a non-urgent sound and you can wait, set the 
ADIOF _NOW AIT flag to O. Then, the IORequest block returns only when you gets the allocation. If 
ADIOF _NOW AIT is set to 0, the audio device will continue to retry the allocation request whenever channels are 
freed until it is successful. If the program decides to cancel the request, AbortlOO can be used. 

ADCMD _ALLOCATE Examples. The following are some more examples of how to tell ADCMD_ALLOCATE 
your channel preferences. If you want any channel, but want to try to get a left channel first, use an array containing 
1,8,2, and 4: 

0001 
1000 
0010 
0100 

If you want only a left channel, use 1 and 8 (channels 0 and 3): 

0001 
1000 

For a right channel, use 2 and 4 (channels 1 and 2): 

0010 
0100 

If you want to allocate a channel and keep it for a sound that can be interrupted and restarted, allocate it at a certain 
precedence. If it is stolen, allocate it again with the ADIOF _NOW AIT flag set to O. When the channel is 
relinquished, you will get it again. 

The Allocation Key. If you want to perform multi-channel commands, all the channels must have the same key 
since the IORequest block has only one allocation key field. The channels must all have that same key even when 
they were not allocated simultaneously. If you want to use a key you already have, you can pass that key in the 
ioa_AllocKey field and ADCMD_ALLOCATE can allocate other channels with that existing key. The 
ADCMD_ALLOCATE command returns a new and unique key only if you pass it a zero in the allocation key field. 

ADCMD_FREE 

ADCMD_FREE is the opposite of ADCMD_ALLOCATE. When you perform ADCMD_FREE on a channel, it 
does a CMD_RESET command on the hardware and "unlocks" the channel. It also checks to see if there are other 
pending allocation requests. You do not need to perform ADCMD _FREE on channels stolen from you. If you want 
channels back after they have been stolen, you must reallocate them with the same allocation key. 

ADCMD SETPREC 

This command changes the precedence of an allocated channel. As an example of the use of ADCMD _SETPREC, 
assume that you are making sound of a chime that takes a long time to decay. It is important that user hears the 
chime but not so important that he hears it decay all the way. You could lower precedence after the initial attack 
portion of the sound to let another program steal the channel. You can also set the precedence to maximum (127) if 
you do not want the channel(s) stolen from you. 

616 Audio Device 



ADCMD_LOCK 

The ADCMD_LOCK command performs the "steal verify" function. When another application is attempting to 
steal a channel or channels, ADCMD_LOCK gives you a chance to clean up before the channel is stolen. You 
perform a ADCMD_LOCK com'ffiand right after the ADCMD_ALLOCATE command. ADCMD_LOCK does not 
return until a higher-priority user attempts to steal the channel(s) or you perform an ADCMD_FREE command. If 
someone is attempting to steal, you must finish up and ADCMD _FREE the channel as quickly as possible. 

You must use ADCMD_LOCK if you want to write directly to the hardware registers instead of using the device 
commands. If your channel is stolen, you are not notified unless the ADCMD _LOCK command is present. This 
could cause problems for the task that has stolen the channel and is now using it at the same time as your task. 
ADCMD _LOCK sets a switch that is not cleared until you perform an ADCMD _FREE command on the channel. 
Canceling an ADCMD_LOCK request with AborUOO will not free the channel. 

The following outline describes how ADCMD _LOCK works when a channel is stolen and when it is not stolen. 

1. User A allocates a channel. 

2. User A locks the channel. 

If User B allocates the channel with a higher precedence: 

3. User B's ADCMD_ALLOCATE command is suspended (regardless of the setting of the 
ADIOF _NOW AIT flag). 

4. User A's lock command is replied to with an error (ADIOERR_CHANNELSTOLEN). 

5. User A does whatever is needed to finish up when a channel is stolen. 

6. User A frees the channel with ADCMD_FREE. 

7. User B's ADCMD_ALLOCATE command is replied to. Now user B has the channel. 

If the channel is not allocated by another user: 

3. User A finishes the sound. 

4. . User A performs the ADCMD _FREE command. 

5. User A's ADCMD_LOCK command is replied to. 

Never make the freeing of a channel (if the channel is stolen) dependent on allocating another channel. This may 
cause a deadlock. If you want channels back after they have been stolen, you must reallocate them with the same 
allocation key. To keep a channel and never let it be stolen, set precedence to maximum (127). Do not use a lock 
for this purpose. 

Audio Device 617 



HARDWARE CONTROL COMMANDS 

The following commands change hardware registers and affect the actual sound output. 

CMD WRITE 

This is a single-channel command and is the main command for making sounds. You pass the following to 
CMD_WRITE: 

A pointer to the waveform to be played (must start on a word boundary and must be in memory accessible 
by the custom chips, MEMF _CHIP) 

The length of the waveform in bytes (must be an even number) 

A count of how many times you want to play the waveform 

If the count is 0, CMD_ WRITE will play the waveform from beginning to end, then repeat the waveform 
continuously until something aborts it. 

If you want period and volume to be set at the start of the sound, you set the WRITE command's ADIOF _PERVOL 
flag. If you do not do this, the previous volume and period for that channel will be used. This is one of the flags that 
is cleared by DoIOO and SendIOO. The ioa_ WriteMsg field in the IORequest block is an extra message field that 
can be replied to at the start of the CMD_WRITE. This second message is used only to tell you when the 
CMD_ WRITE command starts processing, and it is used only when the ADIOF _ WRITEMESSAGE flag is set to 1. 

If a CMD_STOP has been performed, the CMD_WRITE requests are queued up. The CMD_WRITE command 
does not make its own copy of the waveform, so any modification of the waveform before the CMD_ WRITE 
command is finished may affect the sound. This is sometimes desirable for special effects. To splice together two 
waveforms without clicks or pops, you must send a separate, second CMD_WRITE command while the first is still 
in progress. This technique is used in double-buffering, which is described below. 

Double-buffering. By using two waveform buffers and two CMD_ WRITE requests you can compute a waveform 
continuously. This is called double-buffering. The following describes how you use double-buffering. 

1. Compute a waveform in memory buffer A. 
2. Issue CMD _WRITE A with io _Data pointing to buffer A. 
3. Continue the waveform in memory buffer B. 
4. Issue CMD_WRITE B with io_Data pointing to Buffer B. 
5. Wait for CMD_ WRITE A to finish. 
6. Continue the waveform in memory buffer A. 
7. Issue CMD_WRITE A with io_Data pointing to Buffer A. 
8. Wait for CMD_ WRITE B to finish. 
9. Loop back to step 3 until the waveform is finished. 
10. At the end, remember to wait until both CMD_ WRITE A and B are finished. 

618 Audio Device 



ADCMD _FINISH 

The ADCMD_FINISH command aborts (calls AbortIOO) the current write request on a channel or channels. This 
is useful if you have something playing, such as a long buffer or some repetitions of a buffer, and you want to stop it 

ADCMD_FINISH has a flag you can set (ADIOF _SYNCCYCLE) that allows the waveform to finish the current 
cycle before aborting it. This is useful for splicing together sounds at zero crossings or some other place in the 
waveform where the amplitude at the end of one waveform matches the amplitude at the beginning of the next. Zero 
crossings are positions within the waveform at which the amplitude is zero. Splicing at zero crossings gives you 
fewer clicks and pops when the audio channel is turned off or the volume is changed. 

ADCMD_PERVOL lets you change the volume and period of a CMD _WRITE that is in progress. The change can 
take place immediately or you can set the ADIOF _SYNCCYCLE flag to have the change occur at the end of the 
cycle. This is useful to produce vibratos, glissandos, tremolos, and volume envelopes in music or to change the 
volume of a sound. 

CMD FLUSH 

CMD_FLUSH aborts (calls AbortIOO) all CMD_WRlTEs and all ADCMD_WAITCYCLEs that are queued up for 
the channel or channels. It does not abort ADCMD_LOCKs (only ADCMD_FREE clears locks). 

CMD RESET 

CMD _RESET restores all the audio hardware registers. It clears the attach bits, restores the audio interrupt vectors 
if the programmer has changed them, and performs the CMD_FLUSH command to cancel all requests to the 
channels. CMD _RESET also unstops channels that have had a CMD _STOP performed on them. CMD _RESET 
does not unlock channels that have been locked by ADCMD _LOCK. 

ADCMD _ WAITCYCLE 

This is a single-channel command. ADCMD_ W AITCYCLE is replied to when the current cycle has completed, that 
is, after the current CMD _WRITE command has reached the end of the current waveform it is playing. If there is no 
CMD_ WRITE in progress, it returns immediately. 

CMD STOP 

This command stops the current write cycle immediately. If there are no CMD _WRITEs in progress, it sets a flag so 
any future CMD_ WRITEs are queued up and do not begin processing (playing). 

Audio Device 619 



CMD_START undoes the CMD_STOP command. Any cycles that were stopped by the CMD_STOP command are 
actually lost because of the impossibility of determining exactly where the DMA ceased. If the CMD _WRITE 
command was playing two cycles and the first one was playing when CMD _STOP was issued, the first one is lost 
and the second one will be played. 

This command is also useful when you are playing the same wave form with the same period out of . multiple 
channels. If the channels are stopped, when the CMD_WRITE commands are issued, CMD_START exactly 
synchronizes them, avoiding cancellation and distortion. When channels are allocated, they are effectively started by 
the CMD_ST ART command. 

CMD_READ 

CMD_READ is a single-channel command. Its only function is to return a pointer to the current CMD_WRITE 
command. It enables you to determine which request is being proceSsed. 

DOUBLE BUFFERED SOUND EXAMPLE 

The program listed below demonstrates double buffering with the audio device. Run the program from the CLI. It 
takes one parameter - the name of an IFF 8SVX sample file to play on the Amiga's audio device. The maximum 
size for a sample on the Amiga is 128K. However, by using double-buffering and queueing up requests to the audio 
device, you can play longer samples smoothly and without breaks. 

/* Lattice use lc -bl -cfist -v -yo Link with lc.lib and amiga.lib */ 
/*----------------*/ 
/* INCLUDES */ 
/*----------------*/ 
#include <exec/types.h> 
'include <exec/memory.h> 
#include <devices/audio.h> 
#include <libraries/dos.h> 
'include <libraries/dosextens.h> 
'include <graphics/gfxbase.h> 
'include <iff/iff.h> 
'include <iff/8svx.h> 
'include <proto/all.h> 
#include <stdlib.h> 
'include <stdio.h> 

#define VHDR MakeID('V','H' ,'0' ,'R') 
'define BODY MakeID('B','O' ,'0' ,'Y') 
'define MY85 MakeID('8' ,'5' ,'V','X') 

Ufdef LATTICE 
int CXBRK(void) (return(O);} 
'endif 

void 
void 

kil18svx(char *); 
kill8 (void) ; 

/*--------------------*/ 
/* G LOB A L 5 */ 
/*--------------------*/ 
struct IOAudio *AIOptrl, 

620 Audio Device 

/* Lattice Ctrl-C Handling */ 

/* These globals are needed */ 
/* by the clean up routines */ 

/* Pointers to Audio lOBs */ 



*AIOptr2, 
*Aptr: 

struct Message *msg: 1* Msg, port and device for *1 
struct MsgPort *port; 1* driving audio *1 

ULONG device; 
UBYTE *sbase,*fbase; 1* For sample memory allocation *1 
ULONG fsize,ssize; 1* and freeing *1 

struct FileHandle *v8handle; 
UBYTE chanl[) 1 } ; 1* Audio channel allocation arrays 
UBYTE chan2 [) 2 } ; 
UBYTE chan3[) 4 } ; 
UBYTE chan4[) 8 } ; 
UBYTE *chans[) = {chanl,chan2,chan3,chan4}; 

1*-----------*1 
1* M A I N *1 
1*-----------*1 
void main(int argc,char **argv} 
( 
1*-------------*1 
1* L 0 CAL S *1 
1*-------------*1 

char 
UBYTE 
ULONG 
ULONG 
BYTE 

Chunk 
Voice8Header 
ULONG 
ULONG 
BYTE 
struct Task 

/*-------------*/ 
/* COD E *1 
/*-------------*/ 

*fname; 
*p8data; 
clock; 
length[2); 
iobuffer [8), 

*psample[2); 
*p8Chunk; 
*pVoice8Header; 
y,rd8count,speed; 
wakebit; 
oldpri,c; 

*mt; 

/*------------------------------*/ 
/* Check Arguments, Initialize */ 
/*------------------------------*/ 
fbase=OL; 
sbase=OL; 
AIOptrl=OL; 
AIOptr2=OL; 
port=OL; 
v8handle=OL; 
device=lL; 

if (argc < 2) 
( 

kil18svx(IINo file name given.O); 
exit(lL); 
} 

fname=argv[l); 

/*---------------------------*/ 
/* Initialize Clock Constant */ 
/*---------------------------*/ 

1* File name and data pointer*1 
1* for file read. *1 
1* Clock constant *1 
1* Sample lengths *1 
1* Buffer for 8SVX header */ 
/* Sample pointers */ 
/* Pointers for 8SVX parsing */ 

1* Counters, sampling speed *1 
1* A wakeup mask *1 
1* Stuff for bumping priority *1 

GfxBase=(struct GfxBase *)OpenLibrary{lgraphics.library",OL); 
if (GfxBase==OL) 

( 
puts("Can't open graphics libraryO); 
exit(lL}; 
} 

if(GfxBase->DisplayFlags & PAL) clock=3546895L; 
else clock=3579545L; 

if (GfxBase) 
CloseLibrary( (struct Library *) GfxBase); 

1* PAL clock */ 
/* NTSC clock *1 

*1 

Audio Device 621 



/*---------------*/ 
/* Open the File */ 
/*---------------*/ 
v8handle= (struct FileHandle *) Open(fname,MODE_OLDFILE): 
if (v8handle==0) 

{ 

kil18svx("Can't open 8sVX file.O): 
exit(lL): 
) 

/*-------------------------------------------*/ 
/* Read the 1st 8 Bytes of the File for Size */ 
/*-------------------------------------------*/ 
rd8count=Read«BPTR)v8handle,iobuffer,8L): 
if (rd8count==-1) 

{ 

kil18svx ("Read error.O): 
exit (lL) : 
} 

if (rd8count<8) 
{ 

kil18svx ("Not an IFF 8SVX file, too shortO): 
exit (lL) : 
) 

/*-----------------*/ 
/* Evaluate Header */ 
/*-----------------*/ 
p8Chunk=(Chunk *)iobuffer: 
if( p8Chunk->ckID != FORM ) 

{ 
kil18svx("Not an IFF FORM.O): 
exit (lL): 
} 

/*--------------------------------------------*/ 
/* Allocate Memory for File and Read it in. */ 
/*--------------------------------------------*/ 
fbase= (UBYTE *)AllocMem(fsize=p8Chunk->ckSize , MEMF_PUBLICIMEMF_CLEAR): 
if (fbase==O) 

{ 
kil18svx("No memory for read. 0): 
exit(lL): 
) 

p8data=fbase: 

rd8count=Read«BPTR)v8handle,p8data,p8Chunk->ckSize); 
if(rd8count==-1) 

{ 

kil18svx ("Read error.O); 
exit(lL); 
} 

if (rd8count<p8Chunk->ckSize) 
{ 

kil18svx ("Malformed IFF, too short. 0) ; 
exit (lL) ; 
} 

/*-------------------*/ 
/* Evaluate IFF Type */ 
/*-------------------*/ 
if (MakeID( *p8data, * (p8data+l) , * (p8data+2) , * (p8data+3) ) != MY8s ) 

{ 

ki1l8svx("Not an IFF 8SVX file.O); 
exit (lL) ; 
} 

/*----------------------*/ 
/* Evaluate 8SVX Chunks */ 
/*----------------------*/ 

p8data=p8data+4; 

622 Audio Device 



while( p8data < fbase+fsize 
{ 
p8Chunk=(Chunk *)p8data; 

switch (p8Chunk->ckID) 
{ 

case VHDR: 
/*------------------------------------------------*/ 
/* Get a pointer to the 8sVX header for later use */ 
/*------------------------------------------------*/ 
pVoice8Header=(Voice8Header *) (p8data+8L); 
break; 

case BODY: 

/*-------------------------------------------------*/ 
/* Create pointers to l-shot and continuous parts */ 
/* for the top octave and get length. Store them. */ 
/*-------------------------------------------------*/ 

psample [0] = (BYTE *) (p8data + 8L); 
psample[1] = psample[O] + pVoice8Header->oneShotHiSamples; 
length[O] (ULONG)pVoice8Header->oneShotHiSamples; 
length [1] = (ULONG)pVoice8Header->repeatHiSamples; 
break; 

default: 
break; 

/* end switch */ 

p8data = p8data + 8L + p8Chunk->ckSize; 

if(p8Chunk->ckSize&1L == 1) 
p8data++; 

/* Play either the one-shot or continuous, not both */ 
if (length[O]==O) 

y=1; 
else 

y=O; 

/*---------------------------------------*/ 
/* Allocate chip memory for samples and */ 
/* copy from read buffer to chip memory. */ 
/*---------------------------------------*/ 
if(length[y]<=102400)ssize=length[y]; 
else ssize=102400; 

sbase=(UBYTE *)AllocMem( ssize , MEMF_CHIP 
if (sbase==O) 

{ 
kill8svx("No chip memory.O); 
exit (1L) ; 
} 

CopyMem(psample[y],sbase,ssize); 
psample[y]+=ssize; 

/*----------------------------------*/ 
/* Calculate playback sampling rate */ 
/*----------------------------------*/ 
speed = clock / pVoice8Header->samplesPerSec; 

/*-------------------*/ 
/* Bump our priority */ 
/*-------------------*/ 
mt=FindTask(NULL); 
oldpri=SetTaskPri(mt,21); 

/*---------------------------------------------*/ 
/* Allocate audio I/O blocks and make a port */ 
/*---------------------------------------------*/ 

Audio Device 623 



AIOptrl=(struct IOAudio *) 
AllocMem( sizeof(struct IOAudio),MEMF_CHIPIMEMF_PUBLICIMEMF_CLEAR); 

if (AIOptrl==O) 
( 
kil18svx(IINo IO memoryO); 
exit (lL) ; 
) 

AIOptr2=(struct IOAudio *) 
AllocMem( sizeof(struct IOAudio),MEMF_CHIPIMEMF_PUBLICIMEMF_CLEAR); 

if (AIOptr2==0) 
( 
kil18svx(IINo IO memoryO); 
exit(lL); 
) 

port=CreatePort(O,O); 
if (port==O) 

c=O; 

( 
kil18svx(IINo portO); 
exit (lL); 
) 

while (device!=O) 
{ 

/*---------------------------------------*/ 
/* Set up audio I/O block for channel */ 
/* allocation and Open the audio device */ 
/*---------------------------------------*/ 
AIOptrl->ioa Request.io Message.mn ReplyPort 
AIOptr1->ioa-Request.io-Message.mn-Node.ln Pri 
AIOptrl->ioa-AllocKey - - -
AIOptrl->ioa-Data 
AIOptrl->ioa=Length 

port; 
128; /* No stealing! */ 
0; 
chans[cJ; 
1; 

device=OpenDevice (llaudio.device", OL, (struct IORequest *)AIOptrl,OL); 
c++; 
) 

if(device!=O) 
( 
kil18svx(IINo channelO); 
exit(lL); 
) 

/*-------------------------------------------*/ 
/* Set Up Audio IO Blocks for Sample Playing */ 
/*-------------------------------------------*/ 
AIOptrl->ioa Request.io Command =CMD_WRITE; 
AIOptrl->ioa=Request.io=Flags =ADIOF_PERVOL; 

/*--------*/ 
/* Volume */ 
/*--------*/ 
AIOptrl->ioa Volume=60; 
/*----------=----*/ 
/* Period/Cycles */ 
/*---------------*/ 
AIOptrl->ioa Period = (UWORD) speed; 
AIOptrl->ioa=Cycles =1; 
*AIOptr2 = *AIOptrl; /* Make sure we have the same allocation keys, */ 

/*--------*/ 
/* Data */ 
/*--------*/ 
AIOptrl->ioa_Data 
AIOptr2->ioa_Data 

Aptr=AIOptr2; 
/*-----------------*/ 
/* Run the sample */ 

624 Audio Device 

/* same channels selected and same flags */ 

=(UBYTE *)sbase; 
=(UBYTE *)sbase + 51200; 



1*-----------------*1 
if (length [y] <=102400) 

( 
AIOptrl->ioa Length=length[y]; 
BeginIO«str~ct IORequest *)AIOptrl); 
wakebit=OL; 
wakebit=Wait(l « port->mp_SigBit); 
msg=GetMsg(port); 
} 

else 
( 
length[y]-=102400; 
AIOptrl->ioa Length=51200L; 
AIOptr2->ioa-Length=51200L; 
BeginIO«str~ct IORequest *)AIOptrl); 
BeginIO«struct IORequest *)AIOptr2): 
while(length[y]>O) 

( 
wakebit=Wait(l « port->mp_SigBit); 
msg=GetMsg(port); 

if (Aptr==AIOptrl)Aptr=AIOptr2; 
else Aptr=AIOptrl; 

1* No double buffering needed *1 
1* Begin the sample, wait for *1 
1* it to finish, then quit. *1 

1* It's a real long sample so *1 
1* double buffering is needed *1 

1* Queue up two samples and Wait 
1* for the first to finish. 
1* Reuse the Audio lOB, queue it 
1* up again and wait for the 2nd 
1* Audio lOB to finish. Reuse 
1* the 2nd, queue it up, repeat. 

if(length[y]<=51200) 
else 

Aptr->ioa Length=length[y]; 
Aptr->ioa=Length=51200L; 

CopyMem(psample[y],Aptr->ioa_Data,Aptr->ioa_Length); 

length [y]-=Aptr->ioa_Length; 
psample[y]+=51200; 
BeginIO«struct IORequest *)Aptr); 
} 

*1 
*1 
*1 
*1 
*1 
*1 

wakebit=Wait(l «port->mp_SigBit); 1* Finish off the last two requests *1 
msg=GetMsg(port); 
wakebit=Wait(l « port->mp_SigBit); 
msg=GetMsg(port); 
} 

kill8 () ; 
exit(OL); 
} 

1*----------------*1 
1* Abort the Read *1 
1*----------------*1 
void 
kil18svx~kil18svxstring) 

char *kil18svxstring: 
{ 
puts (kil18svxstring); 
kill8 0: 
} 

1*-------------------------*1 
1* Return system resources *1 
1*-------------------------*1 
void 
kill8 () 
( 
if (v8handle!=O) 
if(fbase !=O) 
if(sbase !=O) 

if (device ==0) 
if (port =0) 
if (AIOptrl =0) 
if (AIOptr2 =0) 
} 

Close«BPTR)v8handle); 
FreeMem(fbase,fsize); 
FreeMem (sbase, ssize); 

CloseDevice«struct IORequest *)AIOptrl); 
DeletePort(port); 
FreeMem( AIOptrl,sizeof(struct IOAudio) ); 
FreeMem( AIOptr2,sizeof(struct IOAudio) ); 

Audio Device 625 



Chapter 32 

Clipboard Device 

Introduction 

The clipboard device allows the exchange of data dynamically between one application and another. It is responsible 
for caching data that has been "cut" and providing data to "paste" in an application. The clipboard will cache the 
data in ram and will automatically spool the data to disk if necessary. A special "post" mode allows application to 
inform the clipboard.device that the application has data available. The clipboard device will request this data only 
if the data is actually needed. The clipboard device is implemented as an Exec-style device, and supports random 
access reads and writes on data within the clipboard. 

Clipboard Commands 

The clipboard responds to the following Exec functions: 

OpenDeviceO Open the clipboard device. 

Clipboard Device 627 



CloseDeviceO 
SendlOO 
DoIOO 

Close the clipboard device. 
Initiate a command and return immediately. 
Initiate a command and wait for it to complete. 

The I/O commands and their implementations are as follows: 

CMD_STOP 

CMD_START 

CMD_FLUSH 

CBD_POST 

628 Clipboard Device 

Read data from the clipboard for a paste. io _Offset and 
io _CUpID must be set to zero for the first read of a paste 
sequence. An io _Actual that is less than the io _Length 
indicates that all the data has been read. After all the data 
has been read, a subsequent read must be performed (one whose 
iO_Actual returns zero) to indicate to the clipboard device 
that all the data has been read. 
This allows random access of the clip while reading. 
Providing only valid reads are performed, your program can 
seek/read anywhere within the clip by setting the io _Offset 
field of the 10 request appropriately. 

Write data to the clipboard as a cut. io _Offset and 
io _CUpID must be set to zero for the first write of a cut 
sequence. An update command indicates that all the data has 
been written. 

Indicate that the data provided with a write command is 
complete and available for subsequent read/pastes. 

Clear any cut from this unit. Subsequent read/pastes will have 
no data available. 

Service no commands except invalid, start, flush. 

Resume command servicing. 

Abort all pending commands. 

Post the availability of clip data. io _CUpID must be set to 
zero. A subsequent write of this data does not have io _CUpID 
set to zero as described above, but preservesthe value in 
io _CUpID set by this call. . 
This command allows the application to inform the clipboard 
that data is available, and request that it be notified by 
the clipboard if and when the data is needed. 

Return the io _CUpID of the current clip to read. 
This is used to determine if a clip posting is still the lastest cut. 

Return the io _CUpID of the latest clip written. 
This is used to determine if the clip posting data will never be requested by others. 

Always an invalid command. 



Clipboard Data 

Data on the clipboard resides in one of three places. When an application posts a cut, the data resides in that private 
memory space of that application. When an application writes to the clipboard, either of its own volition or in 
response to a message from the clipboard requesting that it satisfy a post, the data is copied to the clipboard, either to 
memory or to a special disk file. When the clipboard is not open, the data resides in the special disk file located in 
the directory specified by the CLIPS: logical AmigaDOS assign. 

Data on the clipboard is self-identifying. It must be a correct IFF (Interchange File Format) file; the rest of this this 
section refers to IFF concepts. See the Includes and Autodocs Manual for a complete description of IFF. If the top
level chunk is of type CAT with an identifier of CLIP, that indicates that the contained chunks are different 
representations of the same data, in decreasing order of preference on the part of the producer of the clip. Any other 
data is as defined elsewhere (probably a single representation of the cut data produced by an application). 

A clipboard tool, which is an application that allows a Workbench user to view a clip, should understands the text 
(FIX1) and graphics (ILBM) form types. Applications using the clipboard to export data should include at least one 
of these types in a CLIP CAT so that their data can be represented on the clipboard in some form for user feedback. 

The clipboard device nonstandard I/O request is called an IOClipReq and looks like a standard request except for 
the addition of the io _ ClipID field, which is assigned by the device to identify clips. It must be set to zero by the 
application for a post or an initial write or read, but preserved for subsequent writes or reads, as the clipboard.device 
uses this field internally for bookkeeping purposes. 

The io _Offset field should also be set to zero by the application for an initial read or write. 

struct IOClipReq 
{ 

struct 
struct 
struct 
UWORD 
UBYTE 
BYTE 
ULONG 
ULONG 
SPTR 
ULONG 
LONG 

Message io Message; 
Device *io Device; 
Unit *io-Unit; 
io Command;
io-Flags; 
io-Error; 
io-Actual; 
io-Length; 
io-Data; 
io-Offset; 
io:=ClipID; 

/* device node pointer */ 
/* unit (driver private)*/ 
/* device command *1 
/* including QUICK and SATISFY */ 
/* error or warning num *1 
1* number of bytes transferred */ 
1* number of bytes requested *1 
/* either clip stream or post port *1 
/* offset in clip stream *1 
/* ordinal clip identifier *1 

This structure is defined in the include file devices/clipboard.h and devices/clipboard.i. 

Clipboard Messages 

When an application performs a post, it must specify a message port for the clipboard to send a message to if it 
needs the application to satisfy the post with a write called the SatisfyMsg. 

Clipboard Device 629 



struct SatisfyMsg 
{ 

struct 
UWORD 
LONG 

Message sm Message; 1* the length will be 6 *1 
sm Unit; - 1* 0 for the primary clip unit *1 
sm=ClipID; 1* the clip identifier of the post *1 

This structure is defined in the include file devices/clipboard.h and devices/clipboard.i. 

If the application wishes to determine if a post it has recently performed is still the current clip, it should check the 
io _CUpID found in the post request upon return with that returned by the CBD _ CURRENTREADID command. 

If an application has a pending post and wishes to determine if it should satisfy it (for example, before it exits), it 
should check the io _ ClipID of the post I/O request with that of the CBD _ CURRENTWRITEID command. If the 
application receives a satisfy message from the clipboard device (format described below), it must immediately 
perform the write with the io _ ClipID of the post The satisfy message from the clipboard may be removed from the 
application message port by the clipboard device at any time (because it is re-used by the clipboard device). It is not 
dangerous to spuriously satisfy a post, however, because it is identified by the io _ ClipID. 

The cut data is provided to the clipboard device via either a write or a post of the cut data. The write command 
accepts the data immediately and copies it onto the clipboard. The post command allows an application to inform 
the clipboard of a cut, but defers the write until the data is actually required for a paste. In the preceding discussion, 
references to the read and write commands of the clipboard device actually refer to a sequence of read or write 
commands, where the clip data is acquired and provided in pieces instead of all at once. The clipboard has an end
of-clip concept that is somewhat analogous to end-of-file for both read and write. The read end-of-file must be 
triggered by the user of the clipboard in order for the clipboard to move on to service other users' requests, and 
consists of reading data past the end of file. The write end-of-file is indicated by use of the update command, which 
indicates to the clipboard that the previous write commands are completed See the description of the commands 
above for more information. 

Multiple Clips 

The clipboard also supports multiple clips. This is not to be confused with the multiple IFF CLIP chunks in a clip, 
which allow for different representation of the same data. Multiple clips store different data. Applications 
performing cut and paste operations generally specify the primary clip. The alternate clips are provided to aid 
applications in the maintenance of a set of clips (like a scrapbook). The multiple clips are implemented as different 
units in the clipboard device, and are thus accessed at open time: 

OpenDevice{"clipboard.device", unit, &IOClipReq, 0); 

The primary clip unit used by applications to share data is unit 0; use of alternate clip units is by private convention. 

630 Clipboard Device 



Example Program 

:/* 
lc -d -j73 -0 -oclip.o -i/include -v -cfirstq -y -v clip 
blink LIB:c.o+clip.o+cbio.o to clip LIB LIB:lc.lib LIB:amiga.lib sc sd nd 
quit 
*/ 

/*******************************************************************/ 
/* Program name: clip 
/* Purpose: Demonstrate the use of the clipboard 
/* This program can be run by itself, or two or more 
/* copies can be run, demonstrating how one program 
/* can send data to another. If the POST option is used, 
/* two programs must be used together. 
/*******************************************************************/ 

tinclude <exec/types.h> 
tinclude <libraries/dos.h> 
tinclude <devices/clipboard.h> 

Hfdef LATTICE 
tinclude <proto/all.h> 
tinclude <lattice/stdlib.h> 
tinclude <lattice/stdio.h> 
tinclude <lattice/string.h> 
int CXBRK(void) { return(O): 
tendif 

extern long CBOpen (long) ; 
extern void CBClose(void); 
extern void writeLong(long *); 
extern void CBCutS(UBYTE *); 
extern long CBPasteS(UBYTE *): 
extern long CBPost (void) ; 
extern long CBCurrentReadID(void); 
extern long CBCurrentWriteID(void); 
extern BOOL CBCheckSatisfy(long *): 
extern void CBSatisfyPost(UBYTE *); 
extern void CBCut(UBYTE 

void main(int,char **); 
void cleanExit(long); 
void readS(UBYTE *); 

*,long); 

void print (UBYTE *,long); 

LONG con: 

void main(argc,argv) 
int argc; 
char **argv; 
{ 

UBYTE c; 
ULONG postID; 
UBYTE cbuf [80] ; 
UBYTE buffer[80]: 

con Open("RAW:25/25/300/120/clipboard.device test",MODE OLDFILE); 
if( !con I I CBOpen(PRIMARY_CLIP»cleanExit(10); 

print(cbuf,sprintf(cbuf,"\033[20hclipboard.device is open.\n"»: 

c = 0; 
postID 0; 
while (c != '\34') 

Clipboard Device 631 



1* while not EOF *1 

while «postID) && (!WaitForChar (con, 1000000») 

if (CBCheckSatisfy(&postID» 
( 
if (postID) 
{ 

print("Please satisfy request for post:\n",O); 
readS(buffer); 
print (cbuf, 
(sprintf(cbuf,"\nsatisfying with \"%s\"\n", buffer»); 
CBSatisfyPost(buffer); 
postID = 0; 

Read (con, &c, 1); 
switch « int) c) 
{ 

case 'w': 
print ("Enter cut data\n",O); 
readS (buffer) ; 
CBCutS(buffer); 
print (cbuf, 

(sprintf(cbuf,"\n\"%s\" sent to c1ipboard\n",buffer»); 
break; 
case' r' : 
CBPasteS(buffer); 
print (cbuf, (sprintf(cbuf, "paste is \"%s\"\n",buffer»); 

break; 
case 'p': 1* This function will wait for another program *1 

1* to request data from the clipboard. *1 
1* Running two copies of this program is the *1 
1* easiest way to do this. *1 
print ("Posting, waiting for data request\n",O); 

postID = CBPost(); 
break; 
default:; 

print("Exiting ..• \n",O); 
cleanExit(O); 

void c1eanExit(error) 
long error; 
{ 

CBClose () ; 
Close(con); 
exit(error); 

void readS (buf) 
UBYTE *buf; 
{ 

UBYTE c; 
long count=O; 

while (Read (con, &c, 1), «c!;" '\34') && (c!= '\r'») 
{ 

*buf++ = c; 
Write(con,&c,l); 
if(++count > 79)return; 
} 

*buf = '\0'; 

void print (string, length) 
UBYTE *string; 
long length; 
{ 

632 Clipboard Device 



if(!length)length=strlen(string); 
Write(con,string,length); 
} 

Support Functions Called from Example Program 

;/* 
lc -d -j73 -0 -ocbio.o -i/include -v -cfirstq -y -v cbio 
blink LIB:c.o+clip.o+cbio.o to clip LIB LIB:lc.lib LIB:amiga.lib sc sd nd 
quit 
*/ 

/*******************************************************************/ 
/* Program name: cbio 
/* Purpose: Provide standard clipboard device interface routines 
/* such as Open, Post, Read, Write, etc. 
/***************************************************** **************1 

'include <exec/types.h> 
'include <exec/ports.h> 
'include <exec/io.h> 
'include <devices/clipboard.h> 

Hfdef LATTICE 
'include <proto/all.h> 
'include <lattice/stdlib.h> 
'include <lattice/stdio.h> 
'include <lattice/string.h> 
'endif 

struct IOClipReq *clipboardIO = 0; 
struct MsgPort *clipboardMsgPort= 0; 
struct MsgPort *satisfyMsgPort = 0; 

long CBOpen(long); 
void CBClose(void); 
void writeLong(long *); 
void CBCutS(UBYTE *); 
long CBPasteS(UBYTE *); 
long CBPost(void); 
long CBCurrentReadID(void); 
long CBCurrentWriteID(void); 
BOOL CBCheckSatisfy(long *); 
void CBSatisfyPost(UBYTE *); 
void CBCut(UBYTE *,long); 

long CBOpen(unit) 
long unit; 
{ 

long error; 

/* open the clipboard device */ 
clipboardMsgPort = CreatePort(OL,OL); 
satisfyMsgPort = CreatePort(OL,OL); 

clipboardIO=(struct IOClipReq *) 
CreateExtIO(clipboardMsgPort,sizeof(struct IOClipReq»; 

if «error = OpenDevice ("clipboard .device", unit, clipboardIO, 0») 
return (error) ; 
return(O); 

void CBClose () 
{ 

CloseDevice(clipboardIO); 
DeletePort(satisfyMsgPort); 

Clipboard Device 633 



DeletePort(clipboardMsgPort); 
DeleteExtIO(clipboardIO); 

void CBCut(stream, length) 
UBYTE *stream; 
long length; 
( 

clipboardIO->io_Command = CMD_WRITE; 
clipboardIO->io_Data = stream; 
clipboardIO->io Length length; 
clipboardIO->io=Offset 0; 
clipboardIO->io ClipID 0; 
DoIO(clipboardIO); 
clipboardIO->io Command CMD_UPDATE; 
DoIO(clipboardIO); 

void CBCutS(string) 
UBYTE *string; 
( 

clipboardIO->io ClipID 0; 
CBSatisfyPost(string); 

void writeLong(ldata) 
long *ldata; 
{ 

clipboardIO->io_Command = CMD WRITE; 
clipboardIO->io Data = (char *)ldata; 
clipboardIO->io=Length = 4; 
DoIO(clipboardIO); 

void CBSatisfyPost(string) 
UBYTE *string; 
( 

long length,slen=strlen(string); 
BOOL odd = (slen & 1); /* pad byte flag */ 

length= (odd) ? slen+l 
clipboardIO->io_Offset 

slen; 
0; 

wr i teLong «(long *) "FORM") ; 
length += 12; 
writeLong(&length); 
writeLong«long *)"FTXT"); 
writeLong«long *)"CHRS"); 
writeLong(&slen); 

/* "FORM" */ 

/* /I */ 
/* "FTXT" for example */ 
/* "CHRS" for example */ 

/* /I (length of string) */ 

clipboardIO->io_Command = CMD_WRITE; 
clipboardIO->io Data = (char *)string; 
clipboardIO->io=Length = slen; /* length of string */ 
DoIO(clipboardIO); /* text string */ 

if (odd) 
( 

clipboardIO->io Command = CMD_WRITE; 
clipboardIO->io-Data = ""; 
clipboardIO->io-Length 
DoIO(clipboardIO); 

clipboardIO->io_Command 
DoIO(clipboardIO); 

= 1; 
/* pad byte */ 

long CBPasteS(string) 
UBYTE *string; 
{ 

long length,slen; 

634 Clipboard Device 



long len[S]; 

clipboardIO->io Command = CMD READ; 1* assume FORM # FTXTCHRS # *1 
clipboardIO->io=ClipID = 0; -
clipboardIO->io Offset = 0; 1* offset must be 0 on initial read *1 
clipboardIO->io-Data = (char *)len; 
clipboardIO->io-Length = 20; 
DoIO(clipboardIO); 

length=len[1]; 
slen=len[4]; 

1* the length of the cut *1 
1* the length of string *1 

clipboardIO->io Data = (char *)string; 1* read the string *1 
clipboardIO->io=Length = slen; 
DoIO(clipboardIO); 

clipboardIO->io Offset 
clipboardla->io=Length 
clipboardIO->io Data 
DoIO(clipboardIO); 

string[slen] = '\0'; 
return(slen); 

+= length; 1* read past end of current clip to *1 
= 1; 1* close clip for reading *1 
0; 

1* NULL terminate the string *1 

long CBPost () 
{ 

clipboardIO->io_Command = CBD_POST; 
clipboardIO->io Data = (char *)satisfyMsgPort; 
clipboardIO->io=ClipID = 0; 
DoIO(clipboardIO); 
return(clipboardIO->io_ClipID); 

long CBCurrentReadID() 
{ 

clipboardIO->io Command = CBD_CURRENTREADID; 
DoIO(clipboardIO); 
return(clipboardIO->io_ClipID); 

long CBCurrentWriteID() 
{ 

clipboardIO->io_Command = CBD_CURRENTWRITEID; 
DoIO(clipboardIO); 
return(clipboardIO->io_ClipID); 

BaaL CBCheckSatisfy(idVar) 
long *idVar; 
{ 

struct SatisfyMsg *sm; 

if (*idVar == 0) 
return (TRUE) ; 
if (*idVar < CBCurrentWriteID(» 
{ 

*idVar = 0; 
return(TRUE); 
) 

if (sm = (struct SatisfyMsg *)GetMsg(satisfyMsgPort» 
{ 
if (*idVar == sm->sm ClipID) 

return(TRUE); -

return(FALSE); 

Clipboard Device 635 



Chapter 33 

Console Device 

This chapter describes how to do console keyboard input and console (window) output in Amiga Intuition windows. 
The console device acts like an enhanced ASCII terminal. It obeys many of the standard ANSI sequences as well as 
additional special sequences unique to the Amiga. 

Introduction 

Console I/O is closely associated with the Amiga Intuition interface; a console must be tied to a window that is 
already opened. From the Window data structure, the console device determines how many characters it can display 
on a line and how many lines of text it can display in a window without clipping at any edge. 

You can open the console device many times, if you wish. The result of each open call is a new console unit. 
AmigaDOS and Intuition see to it that only one window is currently active and its console, if any, is the only one 
(with a few exceptions) that receives notification of input events, such as keystrokes. Later in this chapter you will 
see that other Intuition events can be sensed by the console device as well. 

NOTE 

For this entire chapter the characters "<CSI>" represent the control sequence introducer. For output 
you may use either the two-character sequence "<Esc>[" (OxlB OxSB) or the one-byte value $9B 
(hex). For input you will receive $9B' s unless the sequence has been typed by the user. 

Console Device 637 



System Functions 

The various system device functions such as DoIOO, SendIOO, AbortlOO and CheckIOO operate normally. The 
only caveat is that CMD_ WRITE may cause the caller to wait internally, even with SendIOO. And a task using 
CMD_READ waiting on a response from a console is at the user's whim. If a user never reselects that window, and 
the console response provides the only wake-up call, that task may well sleep indefinitely. 

Console I/O 

The console device may be thought of as a kind of terminal. You send character streams to the console device; you 
also receive them from the console device. These streams may be characters or special sequences. 

GENERAL CONSOLE SCREEN OUTPUT 

Console character screen output (as compared to console command sequence transmission) outputs all standard 
printable characters (character values hex 20 through 7F and AO through FF) normally. 

Many control characters such as BACKSPACE and RETURN are translated into their exact ANSI equivalent 
actions. The line-feed character is a bit different, in that it can be translated into a new-line character. The net effect 
is that the cursor moves to the first column of the next line whenever a <LF> is displayed. This option is set via the 
mode control sequences discussed under' 'Control Sequences for Window Output" 

CONSOLE KEYBOARD INPUT 

If you read from the console device, the keyboard inputs are preprocessed for you and you will get ASCII characters, 
such as "B." Most normal text-gathering programs will read from the console device in this manner. Some 
programs may also ask to receive raw events in their console stream. Keypresses are converted to ASCII characters 
or CSI sequences via the key map associated with the unit. 

The sections below deal with the following topics: 

• Setting up for console I/O (creating an I/O request structur~ 

• Writing to the console to control its behavior 

• Reading from the console 

• Closing down a console device 

The Amiga uses the ECMA-94 LatinI InternationalS-bit character set. 

638 Console Device 



Ib.b.lb.b. 

~ DOD 0 ~ 0 0 ~ 1 1 1· 1 1 1 1 1 
boa 00 a 1 t -1100001111 
b. 0 0 , 1 0 0 1 1 0 0 1 1 0 0 1 1 
~ 0 1 0 1 010 101 0 1 010 1 

00 01 02 03 04 05 06 07 0·8 09 1 0 11 12 13 14 1.5 

o 0 0 0 0 a .j:.::.:.i.t.i .. ~:.:.j .. : .. ~:,: .i.i:.:.i:.:.j:.:.i..~.j .. :.i. s p o@p'piIfflJ1iNBspoA.f)ao =. ~.:. ~.:.' 0° ••••••••••••• 

o 0 0 1 0 1 im~~ift }I~m:! 1 A Q a q ~t~~~mj~ 'j{~j!~lj~ i ± A N a fi 
o 0 1 0 0 2 iJ~!!!{ j~j!jtm:" 2 8 R b r ~[i~i!j!j!t jj~jj!}[~ ¢ 2 A 

as ............ ......... . ......................... v 0 

o 1 0 1 !iifIij fitf" 5 E U e u rtt fift -r J.L 1-\ 

, 
E 

1 E 
..... 

2 E 

Figure 33-1: Amiga Character Set 

Console Device 639 



Creating an 1/0 Request 

This section shows you how to set up for console I/O. Console I/O, like that used with other devices, requires that 
you create an I/O request message that you pass to the console device for processing. The message contains the 
command as well as a data area. In the data area, for a write, there will be a pointer to the stream of information you 
wish to write to the console. For a read, this data pointer shows where the console is to copy the data it has for you. 
There is also a length field that says how many characters (maximum) are to be copied either from or to the console 
device. 

Here are program fragments that can be used to create the message blocks and ports that you need for console 
communications. 

For writing to the console: 

struct IOStdReq *writeReq = NULL; /* I/O request block pointer */ 
struct MsgPort *writePort = NULL; /* a port to receive replies */ 

/* Create reply port and io block for writing to console */ 
iff! (writePort = CreatePort("RKM.console.write",O») 

cleanexit("Can't create write port\n",RETURN_FAIL); 

iff! (writeReq = CreateExtIO(writePort, (LONG)sizeof(struct IOStdReq»» 
cleanexit("Can't create write request\n",RETURN_FAIL); 

For reading from the console: 

struct IOStdReq *readReq = NULL; /* I/O request block pointer */ 
struct MsgPort *readPort = NULL; /* a port to receive replies */ 

/* Create reply port and io block for reading from console */ 
iff! (readPort = CreatePort("RKM.console.read",O») 

cleanexit("Can't create read port\n",RETURN_FAIL); 

if(!(readReq = CreateExtIO(readPort, (LONG)sizeof(struct IOStdReq»» 
cleanexit("Can't create read request\n",RETURN_FAIL); 

These fragments show two messages and two ports being set up. You would use this set-up if you want to have a 
read command continuously queued up while using a separate message with its associated port to send control 
command sequences to the console. In addition, if you want to queue up multiple commands to the console, you 
may wish to create multiple messages (but probably just one port for receiving replied messages from the device). 

Opening a Console Device 

To attach a console device to an open Intuition window, you must place your window pointer in the io_Data field of 
your 10 request block, then use the request to OpenDeviceO console. device unit O. Here is a function that can be 
used to attach a console device to an existing window. It assumes that intuition.library is already open, an Intuition 
window has been opened, and this new console is to be attached to the open window. 

640 Console Device 



1* Attach console device to an open Intuition window. 
* This function returns a value of 0 if the console 
* device opened correctly and a nonzero value (the error 
* returned from OpenDevice) if there was an error. 
*1 

BYTE OpenConsole(writereq, readreq, window) 
struct IOStdReq *writereq; 
struct IOStdReq *readreq; 
struct Window *window; 

{ 
BYTE error; 

writereq->io Data = (APTR) window; 
writereq->io-Length = sizeof(struct Window); 
error = OpenDevice(nconsole.device n, 0; writereq, 0); 
readreq->io Device = writereq->io Device; 1* clone required parts *1 
readreq->io-Unit = writereq->io-Unit; 
return(error); -
} 

Notice that this routine opens the console using one I/O request (write), then copies the write request values into the 
read request. This assures that both input and output go to the same console device. 

THE CONUNIT STRUCTURE 

When you successfully attach a console to an Intuition window via OpenDevice (as shown in the OpenConsoleO 
fragment above), the io_Unit field of your 10 request block will be initilaized with a pointer to the ConUnit 
structure of your console. Some fields in the ConUnit structure can provide useful information when performing 
console 10. The cu _ XCP and cu _ YCP fields contain the current column and line position of your cursor converted 
to an origin of (0,0) from the origin of (1,1) that the console sequences use. The cu_XMax and cu_YMax fields 
contain the current maximum positions which are 1 less than the number of columns and lines which can be printed 
in your window. This information is usefui when moving the cursor or reformatting your output. The ConlJnit 
structure is defined in deviceslconunit.h and .i. 

SENDING A CHARACTER STREAM TO THE CONSOLE DEVICE 

To perform console I/O, you fill in fields of the console I/O standard request and pass this blOCk to the console 
device using one of the normal I/O functions. When the console device has completed the action, the devic.e returns 
the message block to the port you have designated within the message itself. The function CreateExtIOO initializes 
the message to contain the address of the ReplyPort. 

To write characters to the console you use the CMD _WRITE command. The io _Data field must point to the 
character(s) you wish to output. The io_Length field may specify the number of characters to output, or -1 may be 
used if the character string is null terminated. For high-speed console output, print large numbers of characters with 
each CMD _WRITE. Turning off the cursor (ESC[O p) will enhance output speed even further. 

NOTE 

If your console is attached to a 1.2/1.3 SuperBitmap window, you will not see a cursor rendered. For 
output speed and compatibility with future OS versions which may visibly render the cursor, you should 
send the cursor-off sequence (ESC[O p) whenever you open or reset (ESCc) a SuperBitmap window's 
console. 

Console Device 641 



The following console output function uses the IOStdReq created above to output a null terminated string. 

NOTE 

The OpenDeviceO call in OpenConsoleO initialized the io request block with a pointer to the console 
which was opened. Thus, a single function such as this one can be used to communicate with multiple 
consoles. 

1* Output a NULL-terminated string of characters to a console 
*1 

void ConPuts(struct IOStdReq *writereq,UBYTE *string) 
{ 

writereq->io Command = CMD WRITE; 
writereq->io-Data = (APTR) string; 
writereq->io-Length = -1; 1* means print till terminating null *1 
DolO (writereq); 
) 

Control Sequences for Window Output 

The following table lists functions that the console device supports, along with the character stream that you must 
send to the console to produce the effect. For more information on the control sequences, consult the Amiga ROM 
Kernel Reference Manual: Includes and Autodocs. Where the function table indicates multiple characters, it is more 
efficient to use the ConWriteO function rather than ConPutCharO because it avoids the overhead of transferring 
the message block multiple times. The table uses the second form of <CSI>, that is, the hex value 9B, to minimize 
the number of characters to be transmitted to produce a function. 

In the table, if an item is enclosed in square brackets, it is optional and may be omitted. For example, for INSERT 
[N] CHARACTERS the value for N or M is shown as optional. The console device responds to such optional items 
by treating the value of N as if it is not specified. The value of Nor M is always a decimal number, having one or 
more ASCII digits to express its value. 

Table 33-1: Console Control Sequences 

Command 

BACKSPACE (move left one column) 
LINE FEED (move down one text line as 

specified by the mode function below) 
VERTICAL TAB (move up one text line) 
FORM FEED (clear the console's window) 
CARRIAGE RETURN (move to first column) 
SHIFT IN (undo SHIFT Om) 
SHIFT OUT (set MSB of each character 

before displaying) 
ESC (escape; can be part of tJie control 

sequence introducer) 
CSI (control sequence introducer) 

642 Console Device 

Sequence of Characters 
(in Hexadecimal Form) 

08 
OA 

OB 
OC 
00 
OE 
OF 

1B 

9B 



RESET TO INITIAL STATE 

INSERT [N] CHARACTERS 
(Inserts one or more spaces, shifting the 
remainder of the line to the right.) 

CURSOR UP [N] CHARACTER POSITIONS 
(default= 1) 

CURSOR DOWN [N] CHARACTER 
POSITIONS 
(default = 1) 

CURSOR FORWARD [N] CHARACTER 
POSITIONS (default = 1) 

CURSOR BACKWARD [N] CHARACTER 
POSITIONS (default = 1) 

CURSOR NEXT LINE [N] (to column 1) 
CURSOR PRECEDING LINE [N] 

(to column 1) 
MOVE CURSOR TO ROW; COLUMN 

where N is row, M is column, and 
semicolon (hex 3B) must be present 
as a separator, or if row is left 
out, so the console device can tell 
that the number after the semicolon 
actually represents the column number. 

ERASE TO END OF DISPLAY 

ERASE TO END OF LINE 

INSERT LINE (above the line containing 
the cursor) 

DELETE LINE (remove current line, move 
all lines up one position to fill 
gap, blank bottom line) 

DELETE CHARACTER [N] (that cursor is 
sitting on and to the right if 
[N] is specified) 

SCROLL UP [N] LINES (Remove line(s) from 
top of window, move all other lines 
up, blanks [N] bottom lines) 

SCROLL DOWN [N] LINES (Remove line(s) 
from bottom of window, move all 
other lines down, blanks [N] top lines) 

SET LINEFEED MODE (cause LINEFEED to respond as 
RETURN-LINEFEED) 

RESET NEWLINE MODE (cause LINEFEED to respond 
only as LINEFEED) 

DEVICE STATUS REPORT, (cause console to 
insert into your read-stream a CURSOR 
POSITION REPORT; see "Reading from 
the Console" for more information) 

SELECT GRAPHIC RENDITION 
<style>;<fg>;<bg>6D 
(select text style foreground 
color, background color) 

1B 63 

9B [N] 40 

9B [N] 41 

9B [N] 42 

9B [N] 43 

9B [N] 44 

9B [N] 45 
9B [N] 46 

9B [N] [3B N] 48 

9B4A 

9B4B 

9B4C 

9B4D 

9B [N] 50 

9B [N] 53 

9B [N] 54 

9B 323068 

9B 32306C 

9B 366E 

See note below. 

Console Device 643 



NOTE 

For SELECT GRAPHIC RENDITION, any number of parameters, in any order, are valid. They are 
separated by semicolons. 

The parameters follow: 

<style> = 
o Plain text 
1 Bold-face 
3 Italic 
4 Underscore 
7 Inverse-video 

<fg>= 
30 - 37 Selecting system colors 0-7 for foreground. 

Transmitted as two ASCII characters. 

<bg> = 
40 - 47 selecting system colors 0-7 for background. 

Transmitted as two ASCII characters. 

For example, to select bold face, with color 3 as foreground and color 0 as background, send the 
sequence: 

9B 31 3B 33 33 3B 34 30 6D 

representing the ASCII sequence: 

<CSI> 1 ;33;40m 

where <CSI> is the control sequence introducer, here used as the single-character value 9B hex. 

The sequences in the next table are not ANSI standard sequences; they are private Amiga sequences. In 
these command descriptions, length, width, and offset are comprised of one or more ASCII digits, 
defining a decimal value. 

644 Console Device 



Table 33-2: Amiga Console-control Sequences 

Command 

ENABLE SCROLL (this is the default) 
DISABLE SCROLL 
AUTOWRAP ON (the default) 
AUTOWRAP OFF 

SET PAGE LENGTH (in character raster lines, 
causes console to recalculate, 
using current font, how many text 
lines will fit on the page.) 

SET LINE LENGTH (in character positions, 
using current font, how many characters 
should be placed on each line). 

SET LEFf OFFSET (in raster columns, how far 
from the left of the window 
should the text begin). 

SET TOP OFFSET (in raster lines, how far 
from the top of the window's 
RastPort should the topmost 
line of the character begin). 

SET RAW EVENTS-see the separate 
topic' 'Selecting Raw Input Events" 
below for more details. 

RESET RAW EVENTS-see 
"Selecting Raw Input Events" below. 

SET CURSOR RENDITION - make the 
cursor visible or invisible: 
(Note - turning off the cursor 
increases text output speed) 

Invisible: 
Visible: 

WINDOW STATUS REQUEST - ask the 
console device to ten you the 
current bounds of the window, 
in upper and lower row and 
column character positions. 
(User may have resized or 
repositioned it.) See 
"Window Bounds Report" below. 

Sequence of Characters 
(in Hexadecimal Form) 

9B 3E3168 
9B 3E 316C 
9B 3F37 68 
9B 3F37 6C 

9B <length> 74 

9B <width> 75 

9B <offset> 78 

9B <offset> 79 

9B 302070 
9B2070 

9B 302071 

Console Device 645 



NOTE 

The console device nonnally handles the SET PAGE LENGTH, SET LINE LENGTH, SET LEFT 
OFFSET, and SET TOP OFFSET functions automatically. To allow it to do so again after setting your 
own values, you can send the function without a parameter. 

Move cursor right by 1: 

Character string equivalents: 
<CSI>C or 
<CSI>IC 

Numeric (hex) equivalents: 
9B43 
9B 3143 

Move cursor right by 20: 

Character string equivalent: <CSI>2OC 
Numeric (hex) equivalent: 9B 32 3043 

Move cursor to upper-left comer (home): 

Character string equivalents: 
<CSI>H or 
<CSI>I;IH or 
<CSI>;IHor 
<CSI>I;H 

Numeric (hex) equivalents: 
9B48 
9B 313B 3148 
9B 3B 3148 
9B313B48 

Examples 

Move cursor to the fourth column of the first line of the window: 

Character string equivalents: 
<CSI>I;4H or 
<CSI>;4H 

Numeric (hex) equivalents: 
9B 313B 3448 
9B 3B 3448 

646 Console Device 



Clear the window: 

Character string equivalents: 
<FF> or CTRL-L {clear window) or 
<CSI>H<CSI>J {home and clear to end of window) or 

Numeric (hex) equivalents: 
OC 
9B489B4A 

READING FROM THE CONSOLE 

Reading input from the console device returns an ANSI 3.64 standard byte stream. This stream may contain normal 
characters and/or RAW input event information. You may also request other RAW input events using the SET 
RAW EVENTS and RESET RAW EVENTS control sequences discussed below. See "Selection of Raw Input 
Events." 

Generally, console reads are performed asynchronously so that your program can respond to other events and other 
user input (such as menu selections) when the user is not typing on the keyboard. To perform asynchronous 10, a 
CMD_READ request is sent to the console using the SendIOO function (rather than a synchronous DoIOO which 
would wait until the read request returned with a character). 

NOTE 

A request for more than one character can be satisfied by only one. This example function requests one 
character at a time. If you request more than one character, you will have to examine the iO_Actual 
field of the request when it returns to determine how many characters you have actually received. 

/* Send a read request to the console, passing it a pointer 
* to a buffer into which it can read the character(s) 
*/ 

void QueueRead(struct IOStdReq *readreq, UBYTE *whereto) 
{ 
readreq->io Command = CMD READ; 
readreq->io-Data = (APTR);hereto; 
readreq->io=Length = 1; 
SendIO(readreq); 
) 

After sending the read request, your program can wait on a combination of signal bits including that of the reply port 
you passed to CreateExtlOO when creating the read request block. The following fragment demonstrates waiting 
on both a queued console read request, and Window IDCMP messages: 

conreadsig = 1 « readPort->mp SigBit; 
windowsig = 1 « win->UserPort=>mp_sigBit; 

/* A character, or an IDCMP msg, or both will wake us up *1 
signals = Wait(conreadsiglwindowsig); 

if (signals & conreadsig) 1* Then check for a character *1 }; 
if (signals & windowsig) {/* Then check window messages */ }; 

Console Device 647 



The following function will get a character if the read request has returned, and then queue the next read request: 

1* Check if a character has been received. 
* If none, return -1 
*1 

LONG ConMayGetChar(struct MsgPort *msgport, UBYTE *whereto) 
{ 

register temp; 
struct IOStdReq *readreq; 

if (! (readreq = (struct IOStdReq *)GetMsg(msgport») return(-l); 
temp = *whereto; 1* get the character *1 
QueueRead(readreq,whereto); 1* t~en re-use the request block *1 
return(temp); 
} 

Closing a Console Device 

When you have finished using a console, it must be closed so that the memory areas it utilized can be returned to the 
system memory manager. You should abort and wait for any pending requests, and then close the device. Here is a 
sequence that you could use to close a console device opened for read and write, with a pending queued read request: 

1* If console read request is still out, abort it *1 
if(! (CheckIO(readReq») AbortIO(readReq); 
WaitIO(readReq); 1* clear it from our replyport *1 
CloseDevice(writeReq); 

NOTE 

You also need to delete the messages and ports associated with this console after the console has been 
closed: 

if (readReq) 
if(readPort) 
if (writeReq) 
if (writePort) 

DeleteExtIO(readReq); 
DeletePort(readPort); 
DeleteExtIO(writeReq); 
DeletePort(writePort); 

If you l1ave finished with the window used fOr the console device, you can now close it. 

Console Device Example Code 

The following is a console device demonstration program with supporting routines: 

1* Console.c - console.device example 
* Compiled with Lattice 5.02: LC -bl -cfist -v -y 
* Linkage: c.o,console.o library LC.lib,amiga.lib 
*1 

'include <exec/types.h> 
'include <exec/io.h> 
'include <exec/memory.h> 
'include <intuition/intuition.h> 
'include <libraries/dos.h> 
'include <~evices/console.h> 
H£def LATTICE 
'include <proto/all.h> 
'include <stdlib.h> 

648 Console Device 



'include <stdio.h> 
'include <string.h> 
int CXBRK(void) ( return(D); 
'endif 

1* Disable Lattice CTRL/C handling *1 

1* Note - using two character <CSI> ESC[. Hex 9B could be used instead *1 
'define RESETCON "\D33c" 
'define CURSOFF "\D33[D p" 
'define CURSON "\D33[ p" 
'define DELCHAR "\D33[P" 

1* SGR (set graphic rendition) *1 
'define COLORD2 "\D33[32m" 
'define COtORD3 "\D33[33m" 
'defirie ITALICS "\D33[3m" 
'define BOLD "\D33[lm" 
'define UNDERLINE "\D33 [4m" 
'define NORMAL "\D33[Dm" 

1* our functions *1 
void cleanexit(UBYTE *,LONG); 
void cleanup(void); 
BYTE OpenConsole(struct IOStdReq *,struct IOStdReq *, struct Window *); 
void CloseConsole(struct IOStdReq *); 
void QueueRead(struct IOStdReq *, UBYTE *); 
UBYTE ConGetChar(struct MsgPort *, UBYTE *); 
LONG ConMayGetChar(struct MsgPort *, UBYTE *); 
void ConPuts(struct IOStdReq *, UBYTE *i; 
void ConWrite(struct IOStdReq *, UBYTE *, LONG); 
void ConPutChar(struct IOStdReq *, UBYTE); 

struct NewWindow nw = 
{ 

10, 1D, 1* starting position (left, top) 
62D,18D, 
-1, -1, 
CLOSEWINDOW, 
WINDOWDEPTHIWINDOWSIZINGI 
WINDOWDRAGIWINDOWCLOSEI 
SMART_REFRESH I ACTIVATE, 
NULL, 
NULL, 
"Console Test", 
NULL, 
NULL, 
1DD,45, 
64D,2DO, 
WBENCHSCREEN 
} ; 

1* 
1* 
1* 

1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 

1* Opens/allocations we'll need to clean 
struct Library *IntuitionBase = NULL; 
struct Window *win = NULL; 

width, height *1 
detailpen, blockpen *1 
flags for idcmp *1 

window flags *1 
no user gadgets *1 
no user Checkmark *1 
title *1 
pointer to window screen *1 
pointer to super bitmap *1 
min width, height *1 
max width, height *1 
open on workbench screen *1 

up *1 

struct IOStdReq *writeReq = NULL; 
struct MsgPort *writePort = NULL; 
struct IOStdReq *readReq = NULL; 
struct MsgPort *readPort = NULL; 

1* 1/0 request block pointer *1 
1* replyport for writes *1 
1* 1/0 request block pointer *1 
1* replyport for reads *1 

BOOL OpenedConsole = FALSE; 

BOOL FromWb; 

void main(argc, argv) 
int argc; 
char **argv; 

{ 

struct IntuiMessage *winmsg; 
ULONG signals, conreadsig, windowsig; 
LONG lch; 
SHORT InControl = 0; 
BOOL Done = FALSE; 
UBYTE ch, ibuf; 

*1 

Console Device 649 



UBYTE obuf[200); 
BYTE error; 

FromWb = (argc==OL) ? TRUE : FALSE; 

if (! (IntuitionBase=OpenLibrary ("intuition • library" , 0) ) ) 
cleanexit ("Can't open intuition\n", RETURN_FAIL) ; 

/* Create reply port and io block for writing to console */ 
if(! (writePort = CreatePort("RKM.console.write",O») 

cleanexit("Can't create write port\n",RETURN_FAIL); 

if(! (writeReq = CreateExtIO(writePort, (LONG)sizeof(struct IOStdReq»» 
cleanexit("Can't create write request\n",RETURN_FAIL); 

/* Create reply port and io block for reading from console */ 
if(! (readPort = CreatePort("RKM.console.read",O») 

cleanexit("Can't create read port\n",RETURN_FAIL); 

if(! (readReq = CreateExtIO(readPort, (LONG)sizeof(struct IOStdReq»» 
cleanexit("Can't create read request\n",RETURN_FAIL); 

/* Open a window */ 
if (! (win = OpenWindow (&nw») 

cleanexit("Can't open window\n",RETURN_FAIL); 

/* Now, attach a console to the window */ 
if (error = OpenConsole(writeReq,readReq,win» 

cleanexit("Can't open console.device\n",RETURN_FAIL); 
else OpenedConsole = TRUE; 

/* Demonstrate some console escape sequences */ 
ConPuts(writeReq,"Here's some normal text\n"); 
sprintf(obuf,"%s%sHere's text in color 3 and italics\n",COLOR03,ITALICS); 
ConPuts(writeReq,obuf); 
ConPuts(writeReq,NORMAL); 
Delay(50); /* Delay for dramatic demo effect */ 
ConPuts(writeReq,"We will now delete this asterisk =*="); 
Delay(50); 
ConPuts(writeReq,"\b\b"); /* backspace twice */ 
Delay(50); 
ConPuts (writeReq, DELCHAR); /* del.ete the character * / 
Delay(50); 

QueueRead(readReq,&ibuf); /* send the first console read request */ 

ConPuts(writeReq,"\n\nNow reading console\n"); 
ConPuts(writeReq,"Type some keys. Close window when done.\n\n"); 

conreadsig = 1 « readPort->mp SigBit; 
windowsig = 1 « win->UserPort=>mp_SigBit; 

while (!Done) 
( 
/* A character, or an IDCMP msg, or both could wake us up */ 
signals = Wait(conreadsiglwindowsig); 

/* If a console signal was received, get the character */ 
if (signals & conreadsig) 

{ 

if «(lch ConMayGetChar (readPort, &ibuf» != -1) 
{ 

ch = lch; 
/* Show hex and ascii (if printable) for char we got. 

* If you want to parse received control sequences, such as 
* function or Help keys, you would buffer control sequences 
* as you receive them, starting to buffer whenever you 
* receive Ox9B (or Ox1B[ for user-typed sequences) and 
* ending when you receive a valid terminating character 
* for the type of control sequence you are receiving. 
* For CSI sequences, valid terminating characters 
* are generally Ox40 through Ox7E. 

650 Console Device 



* In our example, InControl has the following values: 
* 0 = no, 1 = have Ox1B, 2 = have Ox9B OR Ox1B and [, 
* 3 = now inside control sequence, -1 = normal end esc, 
* -2 = non-CSI(no [) Ox1B end esc 
* NOTE- a more complex parser is required to recognize 
* other types of control sequences. 
*/ 

/* Ox1B ESC not followed by , [', is not CSI seq */ 
if (InControl==l) 

{ 
if (ch==' [') InControl 2; 
else InControl = -2; 
} 

if «ch==Ox9B) I I (ch==Ox1B» /* Control seq starting */ 
( 
InControl = (ch==Ox1B) ? 1 : 2; 
ConPuts(writeReq,"=== Control Seq ===\n"); 
} 

/* We'll show value of this char we received */ 
if « (ch >= Ox1F) && (ch <= Ox7E» II (ch >= OxAO» 

sprintf(obuf,"Received: hex %02x = %c\n",ch,ch); 
else sprintf(obuf,"Received: hex %02x\n",ch); 
ConPuts(writeReq,obuf); 

/* Valid ESC sequence terminator ends an ESC seq */ 
if «InControl==3)&&«ch >= Ox40) && (ch <= Ox7E») 

{ 

InContro1 = -1; 
} 

if (InControl==2) InControl = 3; 
/* ESC sequence finished (-1 if OK, -2 if bogus) */ 
if (InControl < 0) 

( 

InControl 0; 
ConPuts(writeReq,"=== End Control ===\n"); 
} 

/* If IDCMP messages received, handle them */ 
if (signals & windowsig) 

{ 

/* We have to ReplyMsg these when done with them */ 
while (winmsg = (struct IntuiMessage *)GetMsg(win->UserPort» 

( 
switch (winmsg->Class) 

{ 

case CLOSEWINDOW: 
Done = TRUE; 
break; 

default: 
break; 

} 

ReplyMsg{(struct Message *)winmsg); 
} 

/* We always have an outstanding queued read request 
* so we must abort it if it hasn't completed, 
* and we must remove it. 
*/ 

if(! (CheckIO(readReq») AbortIO(readReq); 
WaitIO(readReq); /* clear it from our replyport */ 

cleanup (); 
exit(RETURN OK); 
} -

Console Device 651 



void cleanexit(UBYTE *s,LONG n) 
( 
if(*s' (!FromWb» printf(s); 
cleanup(); 
exit(n); 
} 

void cleanup () 
( 
if (OpenedConsole) 
if (readReq) 
if (readPort) 
if (writeReq) 
if (writePort) 
if(win) 
if{IntuitionBase) 
} 

CloseConsole(writeReq); 
DeleteExtIO(readReq); 
DeletePort{readPort); 
DeleteExtIO(writeReq); 
DeletePort(writePort); 
CloseWindow(win); 
CloseLibrary(IntuitionBase); 

/* Attach console device to an open Intuition window. 
* This function returns a value of 0 if the console 
* device opened correctly and a nonzero value (the error 
* returned from OpenDevice) if there was an error. 
*/ 

BYTE OpenConsole(writereq, readreq, window) 
struct IOStdReq *writereq; 
struct IOStdReq *readreq; 
struct Window *window; 

( 
BYTE error; 

writereq->io Data = (APTR) window; 
writereq->io-Length = sizeof(struct Window); 
error = OpenDevice("console.device", 0, writereq, 0); 
readreq->io Device writereq->io Device; 1* clone required parts *1 
readreq->io-Unit writereq->io-Unit; 
return(erro~); -
} 

void CloseConsole(struct IOStdReq *writereq) 
( 
CloseDevice(writereq); 
} 

1* Output a single character to a specified console 
*1 

void ConPutChar(struct IOStdReq *writereq, UBYTE character) 
{ 
writereq->io Command = CMD WRITE; 
writereq->io-Data = (APTR)&character; 
writereq->io-Length = 1; 
DolO (writereq) ; 
1* command works because DolO blocks until command is done 

* (otherwise ptr to the character could become invalid) 
*/ 

} 

/* Output a stream of known length to a console 
*/ 

void Conwrite(struct IOStdReq *writereq, UBYTE *string, LONG length) 
{ 
writereq->io Command = CMD WRITE; 
writereq->io=Data = (APTR)string; 
writereq->io_Length = length; 
DoIO(writereq) ; 
1* command works because DolO blocks until command is done 

} 

* (otherwise ptr to string could become invalid in the meantime) 
*1 

652 Console Device 



/* Output a NULL-terminated string of characters to a console 
*/ 

void ConPuts(struct IOStdReq *writereq,UBYTE *string) 
{ 
writereq->io Command = CMD WRITE; 
writereq->io-Data = (APTR) string; 
writereq->io-Length = -1; /* means print till terminating null */ 
DoIO(writereq); 
) 

/* Queue up a read request to console, passing it pointer 
* to a buffer into which it can read the character 
*/ 

void QueueRead(struct IOStdReq *readreq, UBYTE *whereto) 
{ 
readreq->io Command = CMD READ; 
readreq->io-Data = (APTR) whereto; 
readreq->io-Length = 1; 
SendIO{read;eq); 
} 

/* Check if a character has been received. 
* If none, return -1 
*/ 

LONG ConMayGetChar{struct MsgPort *msgport, UBYTE *whereto) 
{ 
register temp; 
struct IOStdReq *readreq; 

if {!(readreq = (struct IOStdReq *)GetMsg(msgport))) return(-l); 
temp = *whereto; /* get the character */ 
QueueRead(readreq,whereto); /* then re-use the request block */ 
return (temp) ; 
} 

/* Wait for a character 
*/ 

UBYTE ConGetChar(struct MsgPort *msgport, UBYTE *whereto) 
( 
register temp; 
struct IOStdReq *readreq; 

WaitPort(msgport); 
readreq = (struct IOStdReq 
temp = *whereto; 
QueueRead(readreq,whereto); 
return«UBYTE)temp); 
} 

*)GetMsg(msgport); 
/* get the character */ 
/* then re-use the request block*/ 

INFORMA nON ABOUT THE READ·STREAM 

For the most part. keys whose keycaps are labeled with ANSI-standard characters will ordinarily be translated into 
their ASCII-equivalent character by the console device through the use of its keymap. A separate section in this 
chapter has been dedicated to the method used to establish a keymap and the internal organization of the keymap. 

For keys other than those with normal ASCII equivalents. an escape sequence is generated and inserted into your 
input stream. For example. in the default state (no raw input events selected) the function and arrow keys will cause 
the sequences shown in the next table to be inserted in the input stream. 

Console Device 653 



Table 33-3: Special Key Report Sequences 

Key Unshifted Sends Shifted Sends 

Fl <CSl>o- <CSI>lo-
F2 <CSI> 1- <CSI>lr 
F3 <CSI>2- <CSI> 12-
F4 <CSI>3- <CSI>13-
F5 <CSI>4- <CSI>14-
F6 <CSI>5- <CSI>15-
F7 <CSI>6- <CSI>16-
F8 <CSI>T <CSI>IT 
F9 <CSI>8- <CSI>18-
FlO <CSI>9- <CSI>19-
HELP <CSI>?- <CSI>?- (same) 

Arrow keys: 

Up <CSI>A <CSI>T 
Down <CSI>B <CSI>S 
Left <CSI>D <CSI> A (notice the space 
Right <CSI>C <CSI> @ after <CSI» 

CURSOR POSITION REPORT 

If you have sent the DEVICE STATUS REPORT command sequence, the console device returns a cursor position 
report into your input stream. It takes the form: 

<CSI><row>;<column>R 

For example, if the cursor is at column 40 and row 12, here are the ASCII values you receive in a stream: 

9B 34 30 3B 31 3252 

WINDOW BOUNDS REPORT 

A user may have either moved or resized the window to which your console is bound. By issuing a WINDOW 
STATUS REPORT to the console, you can read the current position and size in the input stream. This window 
bounds report takes the following form: 

<CSI> 1; 1 ;<bottom margin>;<right margin>r 

The bottom and right margins give you the window row and column dimensions as well. For a window that holds 
20 lines with 60 characters per line, you will receive the following in the input stream: 

9B 31 3B 31 3B 32 30 3B 36 30 20 72 

654 Console Device 



SELECTING RAW INPUT EVENTS 

If the keyboard infonnation-including "cooked" keystrokes-does not give you enough infonnation about input 
events. you can request additional infonnation from the console driver .. 

The command to SET RAW EVENTS is fonnatted as: 

<CSI>[event-types-separated-by-semicolons] { 

If. for example. you need to know when each key is pressed and released. you would request "RAW keyboard 
input" This is done by writing "<CSI>1 {" to the console. In a single SET RAW EVENTS request. you can ask 
the console to set up for multiple event types at one time. You must send multiple numeric parameters. separating 
them by semicolons (;). For example. to ask for gadget pressed. gadget released. and close gadget events. write 
"<CSI>7;8;11 {" (all as ASCII characters. without the quotes). 

You can reset, that is. delete from reporting. one or more of the raw input event types by using the RESET RAW 
EVENTS command. in the same manner as the SET RAW EVENTS was used to establish them in the first place. 
This command stream is fonnatted as: 

<CSI> [event-types-separated-by-semicolons] } 

So. for example. you could reset all of the events set in the above example by transmitting the command sequence: 
"<CSI> 7;8; 11 } .•• The following table lists the valid raw input event types. 

Table 33-4: Raw Input Event Types 

Request 
Number Description 

o 
1 

2 
3 

No-op 
RAW keyboard input 

RAW mouse input 
Event 

4 Pointer position 
5 (unused) 
6 Timer 
7 Gadget pressed 
8 Gadget rel~sed 
9 Requester activity 
10 Menu numbers 
11 Close Gadget 
12 Window resized 
13 Window refreshed 
14 Preferences changed 
15 Disk removed 
16 Disk inserted 

Used internally 
Intuition swallows all except 

the select button 

Sent whenever your 
window is made active 

Console Device 655 



Complex Input Event Reports 

If you select any of these events you will start to get information about the events in the following form: 

<CSI><class>;<subclass>;<keycode>;<quaIifiers>;<x>;<y>;<seconds>;<microseconds>1 

<CSI> 
is a one-byte field. It is the "control sequence introducer," 9B in hex. 

<class> 
is the RAW input event type, from the above table. 

<subclass> 
is usually O. If the mouse is moved to the right controller, this would be 1. 

<keycode> 
indicates which raw key number was pressed. This field can also be used for mouse information. 

NOTE 

National keyboards often have different keyboard arrangements. This means that a particular raw key 
number may represent different characters on different national keyboards. The normal console read 
stream (as opposed to raw events) will contain the proper ASCII character for the keypress as translated 
according to the user's keymap. 

<qualifiers> 
indicates the state of the keyboard and system. The qualifiers are defined as follows: 

656 Console Device 



Table 33-5: Input Event Qualifiers 

Bit Mask Key 

0 0001 Left shift 
1 0002 Right shift 
2 0004 Caps Lock Associated keycode is special; see below. 
3 0008 Ctrl 
4 0010 LeftAlt 
5 0020 RightAlt 
6 0040 Left Amiga key pressed 
7 0080 Right Amiga key pressed 
8 0100 Numeric pad 
9 0200 Repeat 
10 0400 Interrupt Not currently used. 
n 0800 Multi-broadcast This window (active one) or all windows. 
12 1000 Left mouse button 
13 2000 Right mouse button 
14 4000 Middle mouse button (Not available on standard mouse) 
15 8000 Relative mouse Indicates mouse coordinates 

are relative, not absolute. 

The Caps Lock key is handled in a special manner. It generates a keycode only when it is pressed, not when it is 
released. However, the up/down bit (80 hex) is still used and reported. If pressing the Caps Lock key causes the 
LED to light, keycode 62 (Caps Lock pressed) is sent. If pressing the Caps Lock key extinguishes the LED, keycode 
190 (Caps Lock released) is sent. In effect, the keyboard reports this key as held down until it is struck again. 

The <x> and <y> fields are filled by some classes with an Intuition address: x«16+y. 

The <seconds> and <microseconds> fields contain the system time stamp taken at the time the event occurred. 
These values are stored as long-words by the system. 

With RAW keyboard input selected, keys will no longer return a simple one-character "a" to "z" but will instead 
return raw keycode reports of the form: 

<CSI> 1 ;0;<keycode>;<qualifiers>;<prevl>;<prev2>;<seconds>;<microseconds>1 

For example, if the user pressed and released the 'B' key with the left Shift and right Amiga keys also pressed, you 
might receive the following data: 

<CSI> 1 ;0;35; 129;0;0;23987;991 
<CSI>I;0;163;129;0;0;24oo3;181 

The <keycode> field is an ASCII decimal value representing the key pressed or released. Adding 128 to the pressed 
key code will result in the released keycode. 

The <prev!> and <prev2> fields are relevant for the interpretation of keys which are modifiable by dead-keys (see 
"Dead-Class Keys" section). The <prev1> field shows the previous key pressed. The lower byte shows the 
qualifier, the upper byte shows the key code. The <prev2> field shows the key pressed before the previous key. The 

Console Device 657 



lower byte shows the qualifier, the upper byte shows the key code. 

NOTE 

The Amiga, Alt, Shift, CfRL and CAPS Lock keys are excluded from previous key reporting. 

The keys with keycodes $2B and $30 in the following keyboard diagrams are keys which are present on some 
national Amiga keyboards. 

ESC Fl 

45 46 

00 
TAB 

CTRL 

63 
SHIFT 

~ 
~ 

A 
66 

HELP 

.I, ALT 

40 67 

Figure 33-2: Amiga 1000 Keyboard Showing Keycodes in Hex 

Figure 33-3: Amiga 500/2000 Keyboard Showing Keycodes in Hex 

( 

5A 
7 

3D 
4 

20 
1 

10 
0 

OF 

7 8 9 

3D 3E 3F 
4 5 6 

20 2E 2F 
1 2 3 

10 lE 1 F 
0 

OF 3C 
ENTER 

4A 43 

) I 

58 5C 50 
8 9 

3E 3F 4A 
5 6 + 

2E 2F 5E 
2 3 ENTER 

1E 1F 43 

3C 

The default values given correspond to the values the console device will return when these keys are pressed with 
the keycaps as shipped with the standard American keyboard. 

658 Console Device 



Table 33-6: ROM Default (USAO) and USAI Console Key Mapping 

Raw Unsbifted Sbifted 
Key Keycap Default Default 
Number Legend Value Value 

00 ' - , (Accent grave) - (tilde) 
01 1! 1 I 
02 2@ 2 @ 
03 3# 3 # 
04 4$ 4 $ 
05 5% 5 % 
06 6 A 6 
07 7& 7 & 
08 8* 8 * 
09 9( 9 ( 
OA 0) 0 ) 
OB - (Hyphen) _ (Underscore) 
OC =+ = + 
OD \I \ I 
OE (undefined) 
OF 0 0 o (Numeric pad) 

10 Q q Q 
11 W w W 
12 E e E 
13 R r R 
14 T t T 
15 Y Y Y 
16 U u U 
17 I i I 
18 0 0 0 
19 P P P 
IA [ { [ ( 
IB ]) ] } 
lC (undefined) 
ID 1 1 1 (Numeric pad) 
IE 2 2 2 (Numeric pad) 
IF 3 3 3 (Numeric pad) 

20 A a A 
21 S s S 
22 D d D 
23 F f F 
24 G g G 
25 H h H 
26 J j J 
27 K k K 
28 L I L 
29 ; 
2A • (single quote) It 

2B (not on US keyboards) 
2C (undefined) 

Console Device 659 



Raw Unshifted Shifted 
Key Keycap Default Default 
Number Legend Value Value 

2D 4 4 4 (Numeric pad) 
2E 5 5 5 (Numeric pad) 
2F 6 6 6 (Numeric pad) 

30 (not on US keyboards) 
31 Z z Z 
32 X x X 
33 C c C 
34 V v V 
35 B b B 
36 N n N 
37 M m M 
38 ,< ,(comma) < 
39 .> . (period) > 
3A /? / ? 
3B (undefined) 
3C . (Numeric pad) 
3D 7 7 7 (Numeric pad) 
3E 8 8 8 (Numeric pad) 
3F 9 9 9 (Numeric pad) 

40 (Space bar) 20 20 
41 BackSpace 08 08 
42 Tab 09 09 
43 Enter OD OD (Numeric pad) 
44 Return OD OD 
45 Esc IB IB 
46 Del 7F 7F 
47 (undefined) 
48 (undefined) 
49 (undefined) 
4A - (Numeric Pad) 
4B (undefined) 
4C Uparrow <CSI>A <CSI>T 
4D Down arrow <CSI>B <CSI>S 
4E Forward arrow <CSI>C <CSI> A 

(note blank space 
after <CSI» 

4F Backward arrow <CSI>D <CSI> @ 
(note blank space 
after <CSI» 

50 Fl <CSI>O" <CSI>10" 
51 F2 <CSI>1- <CSI>lr 
52 F3 <CSI>r <CSI> 12-
53 F4 <CSI>3- <CSI>13-
54 F5 <CSI>4- <CSI> 14-
55 F6 <CSI>5- <CSI>15-
56 F7 <CSI>6- <CSI> 16-
57 F8 <CSI>T <CSI>IT 

660 Console Device 



Raw Unshifted Shifted 
Key Keycap Default Default 
Number Legend Value Value 

58 F9 <CSI>S- <CSI> 18-
59 FlO <CSI>g- <CSI>Ig-
SA ( ( ( (usal Numeric pad) 
5B ) ) ) (usal Numeric pad) 
5C I I I (usal Numeric pad) 
50 * * * (usal Numeric pad) 
5E + + + (usal Numeric pad) 
SF HELP <CSI>! <CSI>! 

Raw Function or 
Key Keycap 
Number Legend 

60 Shift (left of space bar) 

61 Shift (right of space bar) 

62 Capsl.ock 

63 Ctrl 

64 (Left) Alt 
65 (Right) Alt 

66 Amiga (left of space bar) Left Amiga 
67 Amiga (right of space bar) Right Amiga 

68 Left mouse button Inputs are only for the 
(not converted) mouse connected to Intuition, 

69 Right mouse button currently "gameport" one. 
(not converted) 

6A Middle mouse button 
(not converted) 

6B (undefined) 
6C (undefined) 
60 (undefined) 
6E (undefined) 
6F (undefined) 

Console Device 661 



Raw 
Key 
Number 

Function or 
Keycap 
Legend 

70-7F 

80-F8 

(undefined) 

Up transition (release or unpress key of one 
of the above keys) (80 for 00, F8 for 7F) 

F9 

FA 

FB 

FC 

FD 

FE 

FF 

FF 

Last keycode was bad 
(was sent in order to resynchronize) 

Keyboard buffer overflow 

(undefined, reserved for 
keyboard processor catastrophe) 

Keyboard self test failed 

Power-up key stream start. 
Keys pressed or stuck at power-up 
will be sent between FD and FE. 

Power-up key stream end 

(undefined, reserved) 

Mouse event, movement only, 
no button change (not converted) 

Notes about the preceding table: 

1) "(undefined)" indicates that the current keyboard design should not generate this number. If you are 
using SetKeyMapO to change the key map, the entries for these numbers must still be included. 

2) "(not converted)" refers to mouse button events. You must use the sequence "<CSI>2{" to inform the 
console driver that you wish to receive mouse events; otherwise these will not be transmitted. 

3) "(RESERVED)" indicates that these keycodes have been reserved for national keyboards. The "2B" 
code key will be between the double-quote(") and Return keys. The "30" code key will be between the 
Shift and "Z" keys. 

Using the Console Device Without a Window 

Although most console device commands require a window, there are some special commands and functions which 
may be used without a window, by opening console.device unit -1. The CD_ASKDEFAULTKEYMAP and 
CD_SETDEFAULTKEYMAP commands, and the console.device functions CDInputHandlerO and 
RawKeyConvertO may be used this way. To use the console device functions, you can OpenDeviceO console unit 
-1, then use the io_Device field as the library base for the calls. C programmers would do this by copying io_Device 
to an externally visible variable named Console Device. See the Intuition chapters for an example of 
RawKeyConvertO. 

662 Console Device 



Keymapping 

The Amiga has the capability of mapping the physical keyboard keys to any ECMA-94 Latin 1 character or string. 
The Amiga computers are sold in many countries with different national keyboards. The national keyboards differ in 
the positions of (and therefore raw key values of) many alphanumeric and special characters. For example, the "Y" 
on the German and Italian keyboards is positioned where U.S. keyboards have a "Z". A startup command 
(SetMap) uses the console device commands CD_SETKEYMAP and CD_SETDEFAULTKEYMAP to set both the 
initial window and console device default to the correct national keymap. The console.device translates mw key 
events into the correct ASCII chamcters based on the installed keymap. Since V1.2 this includes the translation of 
special "deadkey" sequential key combinations to produce accented international characters. Programs which 
perform keyboard input using the console.device, CON:, RAW:, or Intuition VANILLAKEY, will receive the 
correct ASCII value for a user's keypress, regardless of where the key is positioned on that user's keyboard. 

A particular console's current keymap can be examined or replaced using the console device CD_ASKKEYMAP 
and CD_SETKEYMAP commands. The default console device keymap can be similarly examined or replaced 
using the CD_ASKDEFAULTKEYMAP and CD_SETDEFAULTKEYMAP commands. These commands each 
deal with a set of eight longword pointers, known as the KeyMap data structure. The KeyMap data structure is 
shown below. 

struct KeyMap 
{ 
UBYTE *km LoKeyMapTypes; 
ULONG *km-LoKeyMap; 
UBYTE *km-LoCapsable; 
UBYTE *km-LoRepeatable; 
UBYTE *km-HiKeyMapTypes; 
ULONG *km-HiKeyMap; 
UBYTE *km-HiCapsable; 
UBYTE *km=HiRepeatable; 
} ; 

The function AskKeyMap() shown below does not return a pointer to a table of pointers to currently assigned key 
mapping. Instead, it copies the current set of pointers to a user-designated area of memory. AskKeyMap() returns a 
1RUE/FALSE value that says whether or not the function succeeded. 

The function SetKeyMapO, also shown below, copies the designated key map data structure to the console device. 
Thus this routine is complementary to AskKeymapO in that it can restore an original key mapping as well as 
establish a new one. 

1* These functions require that you have set up a port and 
* io request, and have opened the console device as shown 
* earlier in the chapter. 
* They also require this additional include file. 
*1 

include <devices/keymap.h> 

BOOL AskKeyMap(struct IOStdReq *request, struct KeyMap *keymap} 
{ 

request->io_Command = CD_ASKKEYMAP; 
request->io_Length = sizeof(struct KeyMap); 
request->io_Data = (APTR)keymap; 1* where to put it *1 
DoIO(request); 
if(request->io Error) return(FALSE}; 
else return(TRUE}; 1* if no error, it worked. *1 
} 

Console Device 663 



BOOL SetKeyMap(struct IOStdReq *request,struct KeyMap *keymap) 
( 
request->io_Command = CD_SETKEYMAP; 
request->io_Length = sizeof(struct KeyMap); 
request->io_Data = (APTR)keymap; 1* where to get it *1 
DoIO(request); 
if (request->io_Error) return(FALSE); 
else return(TRUE); 1* if no error, it worked. *1 
} 

As a prelude to the following material, note that the Amiga keyboard transmits raw key information to the computer 
in the form of a key position and a transition. When the key is released, its raw key value, plus hexadecimal 80, is 
transmitted to the computer. The key mapping described herein refers to the translation from this raw key 
transmission into console device output to the user. 

The low key map provides translation of the key values from hex 00-3F; the high key map provides translation of 
key values from hex 40-67. Raw output from the keyboard for the low key map does not include the space bar, Tab, 
All, Ctrl, arrow keys, and several other keys. 

Table 33-7: High Key Map Hex Values 

Key Number 

40 
41 
42 
43 
44 
45 
46 
4A 
4C 
40 
4E 
4F 
50-59 
5A-5E 
5F 
60 
61 
62 
63 
64 
65 
66 
67 

Function or 
Keycap Legend 

Space 
Backspace 
Tab 
Enter 
Return 
Escape 
Delete 
Numeric Pad - character 
Cursor Up 
Cursor Down 
Cursor Forward 
Cursor Backward 
Function keys FI-FIO 
Numeric Pad characters (except Al000) 
Help 
Left Shift 
Right Shift 
Caps Lock 
Control 
LeftAlt 
Right Alt 
Left Amiga 
Right Amiga 

The keymap table for the low and high keymaps consists of 4-byte entries, one per hex keycode. These entries are 
interpreted in one of two possible ways: 

• As four separate bytes, specifying how the key is to be interpreted when pressed alone, with one qualifier, 
with another qualifier, or with both qualifiers (where a qualifier is one of three possible keys: Ctrl, All, or 
Shift). 

664 Console Device 



• As a longword containing the address of a string descriptor, where a string of hex digits is to be output 
when this key is pressed. If a string is to be output, any combination of qualifiers can affect the string that 
may be transmitted. 

• As a longword containing the address of a dead-key descriptor, where additional data describe the 
character to be output when this key is pressed alone or with another dead key. 

NOTE 

The keymap table must begin aligned on a word boundary. Each entry is four bytes long, thereby 
maintaining word alignment throughout the table. This is necessary because some of the entries may be 
longword addresses and must be aligned properly for the 68000. 

ABOUT QUALIFIERS 

As you may have noticed, there are three possible qualifiers, but only a 4-byte space in the table for each key. This 
does not allow space to describe what the computer should output for all possible combinations of qualifiers. A 
solution exists, however, for "vanilla" keys, such as the alphabetic keys. Here is how that works. 

Keys of type KC_ VANILLA use the 4 bytes to represent the data output for the key alone, Shifted key, Alt'ed key, 
and Shifted-and-Alt' ed key. Then for the Ctrl-key-plus-vanilla-key, use the code for the key alone with bits 6 and 5 
set to O. 

For other keys, such as the Return key or Esc key, the qualifiers specified in the keytypes table (up to two) are the 
qualifiers used to establish the response to the key. This is done as follows. In the keytypes table, the values listed 
for the key types are those listed for the qualifiers in devices/keymap.h and devices/keymap.i. Specifically, these 
qualifier equates are: 

KC_NOQUAL OxOO 
KCF_SHIFT OxOl 
KCF _ALT Ox02 
KCF _CONTROL Ox04 
KC_ VANILLA Ox07 
KCF _OOWNUP Ox08 
KCF _STRING Ox40 

As shoWQ above, the qualifiers for the various types of keys occupy specific bit positions in the key types control 
byte. 

NOTE 

The qualifier KC_ VANILLA is equivalent to KCF _SHIFf +KCF _AL T +KCF _CONTROL. 

In assembly code, a keymap table entry looks like this: 

SOME KEY: 
DC.B 

This table shows how to interpret the keymap for various combinations of the qualifier bits: 

Console Device 665 



* 

Table 33-8: Keymap Qualifier Bits 

If Keytype is: 

KC_NOQUAL 
KCF_SHIFf 
KCF_ALT 
KCF _CONTROL 
KCF_ALT+KCF_SHIFf 
KCF_CONTROL+KCF_ALT 
KCF _CONTROL+KCF _SHIFT 
KC_VANILLA 

Then value in this position in the 
key table is output when the key is 
pressed along with: 

alone 
Shift alone 
Alt alone 
Ctrl alone 

Shift+Alt Alt Shift alone 
Ctrl+Alt Ctrl Alt alone 
Ctrl+Shift Ctrl Shift alone 
Shift+Alt Alt Shift alone* 

Special case-Ctrl key, when pressed with one of the alphabet keys and certain others, is to output key
alone value with the bits 6 and 5 set to zero. 

KEYTYPE TABLE ENTRIES 

The vectors named km_LoKeyTypes and km_HiKeyTypes contain one byte per raw key code. This byte defines 
the entry type that is made in the key table by a set of bit positions. 

Possible key types are: 

• Any of the qualifier groupings noted above 

• KCF _S1RING + any combination of KCF _SHIFf, KCF _ALT, KCF _CONTROL (or KC_NOQUAL) if 
the result of pressing the key is to be a stream of bytes (and key-with-one-or-more-qualifiers is to be one or 
more alternate streams of bytes). 

Any key can be made to output up to eight unique byte streams if KCF _S1RING is set in its key type. The 
only limitation is that the total length of all of the strings assigned to a key must be within the "jump 
range" of a single byte increment See the "S tring -Output Keys" section below for more information. 

• KCF _DEAD + any combination of KCF _SHIFT, KCF _ALT, KCF _CONTROL (or KC_NOQUAL) if the 
key is a dead-class key and can thus modify or be modified by another dead-class key. See the "Dead
Class Keys" section below for more information. 

The low keytype table covers the raw keycodes from hex 00-3F and contains one byte per keycode. Therefore this 
table contains 64 (decimal) bytes. The high key type table covers the raw keycodes from hex 40-67 and contains 38 
(decimal) bytes. 

STRING·OUTPUT KEYS 

When a key is to output a string, the keymap table contains the address of a string descriptor in place of a 4-byte 
mapping of a key as shown above. Here is a partial table for a new high keymap table that contains only three 
entries thus far. The first two are for the space bar and the backspace key; the third is for the tab key, which is to 

666 Console Device 



output a string that says "[TAB]." An alternate string, "[SHIFTED-TAB]," is also to be output when a shifted 
TAB key is pressed. 

newHiMapTypes: 
DC.B KCF_ALT,KC_NOQUAL, ;key 41 

;key 42 DC.B KCF_STRING+KCF_SHIFT, 

newHiMap: 
DC.B 
DC.B 
DC.L 

newkey42: 
DC.B 
DC.B 

DC.B 
DC.B 

new42us: 
DC.B 

new42ue: 
new42ss: 

DC.B 

new42se: 

; (more) 

0,0,$AO,$20 
0,0,0,$08 
newkey42 

;key 40: space bar, and Alt-space bar 
;key 41: Back Space key only 
;key 42: new definition for string to output for Tab key 

; (more) 

new42ue - new42us 
new42us - newkey42 

new42se - new42ss 
new42ss - newkey42 

, [TAB]' 

, [SHIFTED-TAB]' 

;length of the unshifted string 
;number of bytes from start of 
;string descriptor to start of this string 
;length of the shifted string 
;number of bytes from start of 
;string descriptor to start of this string 

The new high map table points to the string descriptor at address newkey42. The new high map types table says that 
there is one qualifier, which means that there are two strings in the key string descriptor. 

Each string in the descriptor takes two bytes in this part of the table: the first byte is the length of the string, and the 
second byte is the distance from the start of the descriptor to the start of the string. Therefore, a single string 
(KCF _SlRING + KC_NOQUAL) takes 2 bytes of string descriptor. If there is one qualifier, 4 bytes of descriptor 
are used. If there are two qualifiers, 8 bytes of descriptor are used. If there are 3 qualifiers, 16 bytes of descriptor 
are used. All strings start immediately following the string descriptor in that' they are accessed as single-byte offsets 
from the start of the descriptor itself. Therefore, the distance from the start of the descriptor to the last string in the 
set (the one that uses the entire set of specified qualifiers) must start within 255 bytes of the descriptor address. 

Because the length of the string is contained in a single byte, the length of any single string must be 255 bytes or less 
while also meeting the "reach" requirement However, the console input buffer size limits the string output from 
any individual key to 32 bytes maximum. 

The length of a keymap containing string descriptors and strings is variable and depends on the number and size of 
the strings that you provide. 

CAPSABLE BIT TABLE 

The vectors called km _ LoCapsable and km _ HiCapsable point to the first byte in an 8-byte table that contains 
more information about the key table entries. Specifically, if the Caps Lock key has been pressed (the Caps Lock 
LED is on) and if there is a bit on in that position in the capsable map, then this key will be treated as though the 
Shift key is now currently pressed. For example, in the default key mapping, the alphabetic keys are "capsable" but 
the punctuation keys are not. This allows you to set the Caps Lock key, just as on a normal typewriter, and get all 
capital letters. However, unlike a normal typewriter, you need not go out of Caps Lock to correctly type the 
punctuation symbols or numeric keys. 

Console Device 667 



In the table, the bits that control this feature are numbered from the lowest bit in the byte, and from the lowest 
memory byte address to the highest. For example, the bit representing capsable status for the key that transmits raw 
code ()() is bit 0 in byte 0; for the key that transmits raw code 08 it is bit 0 in byte 1, and so on. 

There are 64 bits (8-bytes) in each of the two capsable tables. 

REPEATABLE BIT TABLE 

For both the low and high key maps there is an 8-byte table that provides one bit per possible raw key code. This bit 
indicates whether or not the specified key should repeat at the rate set by the Preferences program. The bit positions 
correspond to those specified in the capsable bit table. 

If there is a 1 in a specific position, the key can repeat. The vectors that point to these tables are called 
km _ LoRepeatable and km _ HiRepeatable. 

KEY MAP STANDARDS 

Users and programs depend on certain predictable behaviors from all keyboards and keymaps. With the exception 
of dead-class keys (see "Dead-Class Keys" section), mapping of keys in the low key map should follow these 
general rules: 

• When pressed alone, keys should transmit the ASCII equivalent of the unshifted letter or lower symbol on 
thekeycap. 

• When Shifted, keys should transmit the ASCII equivalent of the shifted letter or upper symbol printed on 
thekeycap. 

• When Alt'ed, keys should generally transmit the same character (or act as the same deadkey) as the Alt'ed 
key in the usal keymap. 

• When pressed with CfRL alone, alphabetic keys should generally transmit their unshifted value but with 
bits 5 and 6 cleared. This allows keyboard typing of "control characters." For example, the 'c' key 
(normally value $63) should transmit value $03 (CTRL-C) when CTRL and 'c' are pressed. 

The keys in the high key map (keys with raw key values $40 and higher) are generally non-alphanumeric keys such 
as those used for editing (backspace, delete, cursor keys, etc.), and special Amiga keys such as the function and help 
keys. Keymaps should translate these keys as to the same values or strings as those shown in the ROM default 
keymapping table. 

In addition to their normal unshifted and shifted values, the following translations are standard for particular 
qualified high keymap keys: 

668 Console Device 



Key Generates Value: If Used with Qualifier, 
Generates Value: 

$AO with qualifier ALT SPACE 
RETURN 
ESC 

$20 
$OD 
$lB 

$OA with qualifier CONTROL 
$9B with qualifier AL T 

DEAD-CLASS KEYS 

All of the national keymaps, including USA, contain dead-class keys. This teno refers to keys that either modify or 
can themselves be modified by other dead-class keys. There are two types of dead-class keys: dead and deadable. 
A dead key is one which can modify certain keys pressed immediately following. For example, on the Genoan 
keyboard there is a dead key marked with the accent " • ". The dead key produces no console output, but when 
followed by (for instance) the 'A' key, the combination will produce the character " a " (National Character Code 
$EO). On the U.S. keyboard, ALT/G is the deadkey used to add the same accent (" • ") to the next appropriate 
character typed. A deadable key is one that can be prefixed by a dead key. The' A' key in the previous example is a 
deadable key. Thus, a dead key can only affect the output of a deadable key. 

For any key that is to have a dead-class function, whether dead or deadable, the qualifier KCF _DEAD flag must be 
included in the entry for the key in the KeyMapTypes table. The KCF _DEAD type may also be used in conjunction 
with the other qualifiers. Furthenoore, the key's KeyMap table entry must contain the longword address of the key's 
dead-key descriptor data area in place of the usual 4 ASCII character mapping. 

Below is an excerpt from the AMIGA 1000 Genoan key map. It will be referenced in the following discussion. 

KMLowMapType: 
DC.B KCF DEAD+KC VANILLA aA (Key 20) 

(more ••. ) 
hH (Key 20) 
(more .•. ) 

KMLowMap: 
DC.L key20 

DC.L key2S 

a, A, ae, AE 
(more ••• ) 
h, H, dead -
(more ... ) 

;------ possible dead keys 
key2S: 

DC.B 
DC.B 
DC.B 

0, 'h', 0, 'H' 
DPF DEAD,3,DPF DEAD,3 
0,$08,0,$08,0,$88,0,$88 

h, H 
dead " dead -
control translation 
(more ... ) 

;------ deadable keys (modified by dead keys) 
key20: ; a, A, ae, AE 

key20u: 

DC.B DPF_MOD,key20u-key20 deadable flag, number of 
bytes from start of key20 
descriptor to start of un
shifted data 

DC.B DPF_MOD,key20s-key20 deadable flag, number of 
bytes from start of key20 
descriptor to start of shift
ed data 

DC.B 0,$E6,0,$C6 null flags followed by rest 
DC.B 0,$01,0,$01,0,$81,0,$81 of values (ALT, CTRL ••. ) 

Console Device 669 



DC.S 'a',$El,$EO,$E2,$E3,$E4 ' a' alone and characters to 
output when key alone is 
prefixed by a dead key 

DC.S $El,$El,$E2,$El,$El,$El most recent is 
, 

DC.S $EO,$E2,$EO,$EO,$EO,$EO most recent is • 
key20s: 

DC.S 'A',$Cl,$CO,$C2,$C3,$C4 SHIFTed 'a' and characters to 
output when SHIFTed key is 
prefixed by a dead key 

DC.S $Cl,$Cl,$C2,$Cl,$Cl,$Cl most recent is 
DC.S $CO,$C2,$CO,$CO,$CO,$CO most recent is • 

In the example, key 25 (the 'H' key) is a dead key and key 20 (the' A' key) is a deadable key. Both keys use the 
addresses of their descriptor data areas as entries in the LoKeyMap table. The LoKeyMapTypes table says that there 
are four qualifiers for both: the requisite KCF_DEAD, as well as KCF_SHIFT, KCF_ALT, and KCF_CONTROL. 
The number of qualifiers determine length and arrangement of the descriptor data areas for each key. The next table 
shows how to interpret the KeyMapTypes for various combinations of the qualifier bits. For each possible position a 
pair of bytes is needed. The first byte in each pair tells how to interpret the second byte (more about this below). 

If type is: 

NOQUAL 
A 
C 
S 
A+C 
A+S 
C+S 
S+A+C (VANILLA) 

Dead Key Qualifier Bits 

Then the pair of bytes in this position in the dead-class key 
descriptor data is output when the key is pressed along with: 
alone 
alone A 
alone C 
alone S 
alone A C A+C 
alone S A A+S 
alone S C C+S 
alone S A S+A C C+S C+A C+S+A 

NOTE 

The abbreviations A, C, S stand for ALT, control, and SHIFT, respectively. Also note that the ordering 
is reversed from that in the normal KeyMap table. 

Because keys 20 and 25 each use three qualifier bits (not including KCF _DEAD), according to the table there must 
be 8 pairs of data, arranged as shown. Had only KCF _AL T been set, for instance, (not including KCF _DEAD), just 
two pairs would have been needed. 

As mentioned earlier, the first byte of each data pair in the descriptor data area specifies how to interpret the second 
byte. There are three possible values: 0, DPF _DEAD and DPF _MOD. In Example 4-2 DPF _DEAD appears in the 
data for key 25, while DPF _MOD is used for key 20. It is the use of these flags which determines whether a dead
class key has dead or deadable function. A value of zero causes the unrestricted output of the following byte. 

If the flag byte is DPF _DEAD, then that particular key combination (determined by the placement of the pair of 
bytes in the data table) is dead and will modify the output of the next key pressed (if deadable). How it modifies is 
controlled by the second byte of the pair which is used as an index into part(s) of the data area for ALL the deadable 
(DPF _MOD set) keys. 

Before going further, an understanding of the structure of a descriptor data area wherein DPF _MOD is set for one 
(or more) of its members is necessary. Referring to the example, we see that DPF _MOD is set for the first and 
second pairs of bytes. According to its LoKeyMapTypes entry, and using the Dead-Key Qualifier Bits table as a 
guide, these pairs represent the alone and SHIFTed values for the key. When DPF _MOD is set, the byte 
immediately following the flag must be the offset from the start of the key's descriptor data area to the start of a table 

670 Console Device 



of bytes describing the characters to output when this key combination is preceded by any dead keys. This is where 
the index mentioned above comes in. The value of the index from a prefixing dead key is used to determine which 
of the bytes from the deadable keys special table to output. The byte in the index+ 1 position is sent out. (The very 
first byte is the value to output if the key was not prefixed by a dead key.) Thus, if AL T' ed 'H' is pressed (dead) and 
then SHIFTed 'A', an "a" with a circumflex n accent will be output. This is because: 

• The byte pair for the ALT position of the 'H' key (key 25) is DPF _DEAD,3 so the index is 3. 

• The byte pair for the SHIFT position of the 'A' key (key 20) is DPF _MOD,key20s-key20, so we refer to 
the table-of-bytes at key20s. 

• The third+1 byte of the table-of-bytes is $C2, an "a" character. 

NOTE 

The number of bytes in the table-of-bytes for all deadable keys must be equal to the highest index value 
of all dead keys plus 1. 

Double-Dead Keys 

Double-dead keys are an extension of the dead-class keys explained above. Unlike normal dead keys wherein one 
dead key of type DPF _DEAD can modify a second of type DPF _MOD, double-dead keys employ two consecutive 
keys of type DPF _DEAD to together modify a third of type DPF _MOD. 

For example, the key on the German keyboard labeled" .. " is a double-dead key. When this key is pressed alone 
and then pressed again shifted, there is no output. But when followed by an appropriate third key, for example 'A', 
the three keypresses combine to produce an "a" with a circumflex n accent (character code $E2). Thus the 
double-dead pair qualify the output of the 'A' key. 

The system always keeps the last two down keycodes for possible further translation. If they are both of type 
DPF _DEAD and the key immediately following is DPF _MOD then the two are used to form an index into the 
(third) key's translation table as follows: 

In addition to the index found after the DPF _DEAD qualifier in a normal dead key, a second factor is included in the 
high nibble of double-dead keys (it is shifted into place with DP _2DFACSHIFI). Its value equals the total number 
of dead key types + 1 in the keymap. This second index also serves as an identifying flag to the system that two 
dead keys can be significant. 

When a key of type DPF _MOD is pressed, the system checks the two keycodes which preceded the current one. If 
they were both DPF _DEAD then the most recent of the two is checked for the double-dead index/flag. If it is found 
then a new index is formed by multiplying the value in lower nibble with that in the upper. Then, the lower nibble 
of the least recent DPF _DEAD key is added in to form the final offset. 

Finally, this last value is used as an index 'into the translation table of the current, DPF _MOD, key. 

The translation table of all deadable (DPF _MOD) keys has <number of dead key types + 1> times <number of 
double dead key types + 1> entries, arranged in <number of double dead key types + I> rows of <number of dead 
key types + 1> entries. This is because as indices are assigned for dead keys in the keymap, those that are double 
dead keys are assigned the lower numbers. 

Console Device 671 



Following is a code fragment from the German (d) keymap source: 

keyOC: 

key20: 

key20u: 

key20s: 

DC.B 
DC.B 
DC.B 

DPF DEAD,1+(6«DP 2DFACSHIFT) 
DPF=DEAD,2+(6«DP=2DFACSHIFT) 
0, '=',0,' +' 

; a, A, ae, AE 

dead ' 
dead ' 
=, + 

DC.B 
DC.B 
DC.B 

DPF MOD,key20u-key20,DPF MOD,key20s-key20 
0,$E6,0,$C6 -
0,$01,0,$01,0,$81,0,$81 control translation 

DC.B 'a',$E1,$EO,$E2,$E3,$E4 
DC.B $E1,$E1,$E2,$E1,$E1,$E1 most recent is 
DC.B $EO,$E2,$EO,$EO,$EO,$EO most recent is 

DC.B 'A',$C1,$CO,$C2,$C3,$C4 
DC.B $C1,$C1,$C2,$C1,$C1,$C1 most recent is 
DC.B $CO,$C2,$CO,$CO,$CO,$CO most recent is 

Raw keyOC is a double dead key. Pressing this key alone, then again while the shift key is down will produce no 
output but will form a double-dead qualifier. The output of key20 (,A'), a deadable key, will consequently be 
modified. The" , " and the " • " of the double-dead combination produce an "a" with a circumflex n accent. The 
mechanics are as follows: 

When keyOC is pressed alone the DPF _DEAD of the first byte pair in the key's table flags the key as dead. The 
second byte is then held by the system. 

Next, when keyOC is pressed again, this time with the shift key down, the DPF _DEAD of the second byte pair 
(recall that the second pair is used because of the shift qualifier) again flags the key as dead. The second byte of this 
pair is also held by the system. 

Finally, when the 'A' key is pressed the system recalls the latter of the two bytes it has saved. The upper nibble, 
Ox06, is multiplied by the lower nibble, Ox02. The result, OxOC, is then added to the lower nibble of the earlier of 
the two saved bytes, OxOl. This new value, OxOD, is used as an index into the (unshifted) translation table ofkey20. 
The character at position OxOD is character $E2, an "a" with a circumflex n accent. 

NOTE 

If only one double-dead key is pressed before a deadable key then the output is the same as if the 
double-dead were a normal dead key. If shifted keyOC were pressed on the German keyboard and then 
immediately followed by key20, the output produced would be character $EO, ' a '. As before, the 
upper nibble is multiplied with the lower, resulting in OxOC. But because there was no second dead
key, this product is used as the final index. 

Complete Keymap Source Example 

The following example is the complete Amiga assembler source for the d (German) keymap. Comments in the 
source code illustrate the key layout of the German keyboard, and the standard U.S. keyboard layout for comparison. 

672 Console Device 



********************************************************************** 

* * d (GERMAN) A2000 key map 
* Assemble and then link without startup code or linker libs 

* * Copyright (c) 1988 Commodore-Amiga, Inc. All Rights Reserved 

* 
********************************************************************** 

*------ Included Files -----------------------------------------------

INCLUDE 
INCLUDE 

"exec/types.i" 
"devices/keymap.i" 

*---------------------------------------------------------------------
DC.L 0,0 In_Succ, In Pred 
DC.B 0,0 In_Type, In Pri 
DC.L KMName In Name 
DC.L KMLowMapType 
DC.L KMLowMap 
DC.L KMLCapsable 
DC.L KMLRepeatable 
DC.L KMHighMapType 
DC.L KMHighMap 
DC.L KMHCapsable 
DC.L KMHRepeatable 

*------ Key Translation Table ---------------------------------------
* Raw key codes 
* 
* 45 50 51 52 53 54 55 56 57 58 59 
* 00 01 02 03 04 05 06 07 08 09 OA OB OC OD 41 46 SF SA 5B 5c 
* 42 10 11 12 13 14 15 16 17 18 19 1A 1B 44 3D 3E 3F 
* 63 62 20 21 22 23'24 25 26 27 28 29 2A 2B 4C 2D 2E 2F 
* 60 30 31 32 33 34 35 36 37 38 39 3A 61 4F 4D 4E ID IE IF 
* 64 66 40 67 65 OF 3C 
* 
*-----------------~---------------------------------------------------
* German (D) mapping 
* 
* ESC F1 F2 F3 F4 F5 F6 F7 F8 F9 FlO 

* , - 1 ! 2" 3S 4$ 5% 6& 7/ 8( 9) 0= B1 ' , BS DEL HELP [ { ] } / 
* TAB qQ wW eE rR tT zZ uU iI 00 pP uU +* RET 7 8 9 
* CT CL aA sS dD fF gG hH jJ kK lL 00 aA II" UC 4 5 6 
* SH <> yY xX cC vV bB nN mM , ; .: - SH LC DC RC 1 2 3 
* ALT AM SPACE AM ALT 0 
* 
*---------------------------------------------------------------------
* For comparison, here's the USAI mapping 
* 
* ESC F1 F2 F3 F4 F5 F6 F7 F8 F9 FlO 

* ,- I! 2@ 311 4$ 5% 6" 7& 8* 9 ( 0) - =+ BS DEL HELP « » // 
* TAB qQ wW eE rR tT yY uU iI 00 pP [( ] ) RET 77 88 99 
* CT CL aA sS dD fF gG hH jJ kK lL ;: ,,, [2B] UC 44 55 66 
* SH [30] zZ xX cC vV bB nN mM ,< .> /1 SH LC DC RC 11 22 33 
* ALT AM SPACE AM ALT 00 
* 

5D 
4A 
5E 
43 

* 

+ 
ENT 

** 

++ 
ENT 

*--------------------------------------------------------------------------
* 
* 40 Space 
* 41 Backspace 
* 42 Tab 
* 43 Enter 
* 44 Return 
* 45 Escape 
* 46 Delete 
* 4A Numeric Pad -
* 4C Cursor Up 
* 4D Cursor Down 
* 4E Cursor Forward 

Console Device 673 



* 4F Cursor Backward 
* 
* 50-59 Function keys F1-F10 
* SA Numeric Pad [{ (A2000) 
* 5B Numeric Pad II (A2000) 
* 5C Numeric Pad / (A2000) 
* 5D Numeric Pad * (A2000) 
* 5E Numeric Pad + (A2000) 
* SF Help 
* 
* 60 Left Shift 
* 61 Right Shift 
* 62 Caps Lock 
* 63 Control 
* 64 Left Alt 
* 65 Right Alt 
* 66 Left AIIIiga 
* 67 Right AIIIiga 
* 
* 68 Left Mouse Button (not converted) 
* 69 Right Mouse Button (not converted) 
* 6A Middle Mouse Button (not converted) 
* 
*---------------------------------------------------------------------

KMLCapsable: NL means NULL (undefined) and RE means RESERVED 
DC.B %00000000 7 6& 5% 4$ 3s 2" 1! [] 07 - 00 
DC.B %00000000 ON NL ' \ Bt 0= 9) 8 ( OF - 08 
DC.B %11111111 iI tiu zZ tT rR eE wW qQ 17 - 10 
DC.B %00000111 3N 2N 1N NL +* UU pP 00 1F - 18 
DC.B %11111111 kK jJ hH gG fF dD 55 aA 27 - 20 
DC.B %00000111 6N 5N 4N NL 1/' M 00 lL 2F - 28 
DC.B %11111110 111M nN bB vV cC xX yY <> 37 - 30 
DC.B %00000000 9N 8N 7N .N NL - .. , , 3F - 38 

KMHCapsable: 
DC.B %00000000 47 - 40 
DC.B %00000000 4F - 48 
DC.B %00000000 57 - 50 
DC.B %00000000 SF - 58 
DC.B %00000000 67 - 60 
DC.B %00000000 6F - 68 
DC.B %00000000 77 - 70 

KMLRepeatable: 
DC.B %11111111 7 6& 5% 4$ 35 2" 1! I] 07 - 00 
DC.B %10111111 ON NL ' \ Bt 0= 9) 8 ( OF - 08 
DC.B %11111111 iI uU zZ tT rR eE wW qQ 17 - 10 
DC.B %11101111 3N 2N 1N NL +* UU pP 00 1F - 18 
DC.B %11111111 kK jJ hH gG fF dD 55 aA 27 - 20 
DC.B %11101111 6N 5N 4N NL 1/' M 00 lL 2F - 28 
DC.B %11111111 111M nN bB vV cC xX yY <> 37 - 30 
DC.B %11110111 9N 8N 7N .N NL - .. 

" 3F - 38 

KMHRepeatable: 
DC.B %01000111 47 - 40 
DC.B %11110100 4F - 48 
DC.B %11111111 57 - 50 
DC.B %01111111 SF - 58 
DC.B %00000000 67 - 60 
DC.B %00000000 6F - 68 
DC.B %00000000 77 - 70 

KMLowMapType: 
DC.B KC VANILLA [] $00 
DC.B KCF_SHIFT+KCF ALT 1 ! 
DC.B KCF SHIFT+KCF ALT 2" 
DC.B KCF=SHIFT+KCF=ALT 35 

674 Console Device 



DC.B KCF SHIFT+KCF ALT 4$ 
DC.B KCF=SHIFT+KCF=ALT 5% 
DC.B KC VANILLA 6& 
DC.B KCF_SHIFT+KCF_ALT 7/ 

DC.B KCF_SHIFT+KCF_ALT 8 ( $08 
DC.B KCF_SHIFT+KCF_ALT 9) 
DC.B KCF_SHIFT+KCF_ALT 0= 
DC.B KC VANILLA B? 
DC.B KCF DEAD+KCF SHIFT+KCF_ALT ; 1\ 

DC.B KC VANILLA 
DC.B KCF NOP ;NL 
DC.B KC_NOQUAL ON 

DC.B KC VANILLA qQ $10 
DC.B KC VANILLA wW 
DC.B KCF DEAD+KC_VANILLA eE 
DC.B KC VANILLA rR 
DC.B KC VANILLA tT 
DC.B KC VANILLA zZ 
DC.B KCF DEAD+KC VANILLA uU -
DC.B KCF DEAD+KC VANILLA iI 

DC.B KCF_DEAD+KC_VANILLA 00 $18 
DC.B KC VANILLA pP 
DC.B KC VANILLA omlatuU 
DC.B KC VANILLA +* 
DC.B KCF NOP NL 
DC.B KC_NOQUAL IN 
DC.B KC_NOQUAL 2N 
DC.B KC_NOQUAL 3N 

DC.B KCF DEAD+KC VANILLA aA $20 
DC.B KC VANILLA 5S 
DC.B KC VANILLA dD 
DC.B KCF DEAD+KC VANILLA fF - -
DC.B KCF DEAD+KC VANILLA gG 
DC.B KCF DEAD+KC VANILLA hH 
DC.B KCF DEAD+KC VANILLA - - jJ 
DC.B KCF DEAD+KC VANILLA kK - -

DC.B KC VANILLA lL $28 
DC.B KCF SHIFT+KCF ALT umlotoO - -
DC.B KCF SHIFT+KCF ALT umlotaA - -
DC.B KC VANILLA II' 
DC.B KCF NOP NL 
DC.B KC_NOQUAL 4N 
DC.B KC_NOQUAL 5N 
DC.B KC_NOQUAL 6N 

DC.B KCF SHIFT <> $30 
DC.B KCF DEAD+KC VANILLA - yY 
DC.B KC VANILLA xX 
DC.B KC VANILLA cC 
DC.B KC VANILLA vV 
DC.B KC VANILLA bB 
DC.B KCF DEAD+KC VANILLA nN 
DC.B KC VANILLA mM 

DC.B KCF SHIFT+KCF ALT I ; $38 
DC.B KCF SHIFT+KCF ALT .. 
DC.B KC VANILLA 
DC.B KCF NOP NL 
DC.B KC_NOQUAL .N 
DC.B KC_NOQUAL 7N 
DC.B KC_NOQUAL 8N 
DC.B KC_NOQUAL 9N 

KMHighMapType: 
DC.B KCF DEAD+KCF ALT SPACE $40 

- -
DC.B KC_NOQUAL BACKSPACE 

Console Device 675 



DC.B KCF STRING+KCF SHIFT TAB - -
DC.B KC_NOQUAL ENTER 
DC.B KCF CONTROL RETURN 
DC.B KCF ALT ESCAPE 
DC.B KC_NOQUAL DELETE 
DC.B KCF NOP 

DC.B KCF NOP $48 
DC.B KCF NOP 
DC.B KC_NOQUAL -N 
DC.B KCF NOP 
DC.B KCF_STRING+KCF_SHIFT CURSOR UP 
DC.B KCF STRING+KCF SHIFT CURSOR DOWN - -DC.B KCF_STRING+KCF_SHIFT CURSOR FORWARD 
DC.B KCF_STRING+KCF_SHIFT CURSOR BACKWARD 

DC.B KCF STRING+KCF SHIFT FKEY 1 $50 
DC.B KCF=STRING+KCF=SHIFT FKEY 2 
DC.B KCF STRING+KCF SHIFT FKEY 3 
DC.B KCF_STRING+KCF_SHIFT FKEY 4 
DC.B KCF_STRING+KCF_SHIFT FKEY 5 
DC.B KCF STRING+KCF SHIFT FKEY 6 
DC.B KCF STRING+KCF SHIFT FKEY 7 - -DC.B KCF_STRING+KCF_SHIFT FKEY 8 

DC.B KCF STRING+KCF SHIFT FKEY 9 $58 - -
DC.B KCF STRING+KCF SHIFT FKEY 10 - -
DC.B KCF SHIFT+KCF CONTROL Numeric Pad [{ 

- -
DC.B KCF SHIFT+KCF CONTROL Numeric Pad ]} - -
DC.B KC_NOQUAL Numeric Pad / 
DC.B KC_NOQUAL Numeric Pad * 
DC.B KC_NOQUAL Numeric Pad + 
DC.B KCF STRING Help 

DC.B KCF NOP Left Shift $60 
DC.B KCF NOP Right Shift 
DC.B KCF NOP Caps Lock 
DC.B KCF NOP Control 
DC.B KCF NOP Left Alt 
DC.B KCF NOP Right Alt 
DC.B KCF NOP Left Amiga 
DC.B KCF NOP Right Amiga 

DC.B KCF NOP Left Mouse Button $68 
DC.B KCF NOP Right Mouse Button 
DC.B KCF NOP Middle Mouse Button 
DC.B KCF NOP 
DC.B KCF NOP 
DC.B KCF NOP 
DC.B KCF NOP 
DC.B KCF NOP 

DC.B KCF NOP $70 
DC.B KCF NOP 
DC.B KCF NOP 
DC.B KCF NOP 
DC.B KCF NOP 
DC.B KCF NOP 
DC.B KCF NOP 
DC.B KCF NOP 

KMLowMap: 
DC.B ' ., , " , ., , " , , $00 , , , , , 
DC.B ' ! I I $B9, I !' , , l' 1, I super 1, ! ., 
DC.B $B2, ' @' , ' If' , ' 2' 2, If , @, super 2 
DC.B 'it',$B3,$A7,'3' 3, section, super 3, it 
DC.B $A2,$BO,'$','4' 4, $, degree, cents 
DC.B '%',$BC,'%','5' 5, %, 1/4, % 
DC.B ' -, ,$BD,'&','6' 6, &, 1/2, -
DC.B '&',$BE,'/','7' 7, /, 3/4, & 

676 Console Device 



DC.B 
DC.B 
DC.B 
DC.B 
DC.L 
DC.B 
DC.L 
DC.B 

DC.B 
DC.B 
DC.L 
DC.B 
DC.B 
DC.B 
DC.L 
DC.L 

DC.L 
DC.B 
DC.B 
DC.B 
DC.L 
DC.B 
DC.B 
DC.B 

DC.L 
DC.B 
DC.B 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

DC.B 
DC.B 
DC.B 
DC.B 
DC.L 
DC.B 
DC.B 
DC.B 

DC.B 
DC.L 
DC.B 
DC.B 
DC.B 
DC.B 
DC.L 
DC.B 

DC.B 
DC.B 
DC.B 
DC.L 
DC.B 
DC.B 
DC.B 
DC.B 

KMHighMap: 
DC.L 
DC.B 
DC.L 
DC.B 
DC.B 
DC.B 
DC.B 

'*',$B7,' (','8' 
, (' , $AB,') , ,'9' 
, ) , , $BB, , =' , , 0' 
, ','-','?',$DF 
keyOC 
, I' , I ' , I I' , , , , , 
a 
0, 0, 0,' 0' 

8, (, bullet, * 
9, ), «, ( 
0, =, », ) 
sharp s, 1, -
dead' dead " 
I, , 
NOP 
numeric pad a (ON) 

q, Q, dot a, dot A 
w, W, dot, dot 

+ 

$CS, $ES, 'Q', 'q' 
$BO,$BO,'W','w' 
key12 ; e, E, 
$AE, $AE, 'R',' r' 
$DE,$FE,'T','t' 
$AS,$A4,'Z','z' 
key16 

(c), (c) 

key17 

key18 
$B6,$B6,'P','P' 
, {' " [' , $DC, $FC 
, }' , , ] , , , *, ,'+' 
a 
0, 0, 0,' l' 
0, 0, 0,' 2' 
0,0,0,'3' 

key20 
$A7,$DF,'S','s' 
$DO,$FO,'D','d' 
key23 
key24 
key2S 
key26 
key27 

$A3,$A3,'L','1' 
, :' , , ;' , $D6, $F6 
, '" , $27, $C4, $E4 
'''','fl',''''','f' 
a 
0, 0, 0,' 4' 
0, 0, 0,' S' 
0, 0, 0,' 6' 

0, 0,' >',' <' 
key31 
$F7, $07, , X' , , x, 
$C7,$E7,'C','c' 
$AA, $AA, , V' , , v, 
$BA,$BA,'B','b' 
key36 
$BF, $B8, , M' , , m' 

'<' " " I';',' " 
, >' , , .' , , :' , I • I 

t 7' " I' " _' ,'-' 
a 
0, 0, 0,' .' 
0, 0, 0,' 7' 
0, 0, 0,' B' 
0, 0, 0,' 9' 

key40 
O,O,O,$OB 
key42 
0,0,0,$00 
O,O,$OA,$OD 
0,0,$9B,$1B 
0,0,0,$7F 

r, R, (r), (r) 
t, T, thorn, THORN 
z, Z, IMS, Yen 
u, U, micro, micro 
i, I, inverted !, broken 

0, 0, slash 0, slash 0 
p, P, paragraph, paragraph 
umlaut u, umlaut U, [, ( 
+, *, ], ) 
NOP 
numeric pad 1 (1N) 
numeric pad 2 (2N) 
numeric pad 3 (3N) 

a, A, ae, AE 
s, S, sharp s, section 
d, 0, bar d, bar D 
f, F, dead' 
g, G, dead ' 
h, H, dead • 
j, J, dead -
k, K, dead .. 

1, L, pound, pound 
umlaut 0, umlaut 0, ;, 
umlaut a, umlaut A, , 
/I, ., /I, • 
NOP 
numeric pad 4 (4N) 
numeric pad S (SN) 
numeric pad 6 (6N) 

<, > 
y, Y, +/-, not 
x, X, times, divide 
c, C, c cedilla, C cedilla 
v, V, female ordinal 
b, B, male ordinal 
n, N, SHY, overbar 
m, M, cedilla, inverted 1 

" " " < 
-, -, > 
-' /, ? 

NOP 
numeric pad 
numeric pad 7 
numeric pad B 
numeric pad 9 

(.N) 
(7N) 
(BN) 
(9N) 

$08 

$10 

$1B 

$20 

$28 

$30 

$38 

$40 

Console Device 677 



DC.L 0 

DC.L 0 
DC.L 0 
DC.B 0,0,0, '-' 
DC.L 0 
DC.L key4C 
DC.L key4D 
DC.L key4E 
DC.L key4F 

DC.L keySO 
DC.L keySl 
DC.L keyS2 
DC.L keyS3 
DC.L keyS4 
DC.L keySS 
DC.L keyS6 
DC.L keyS7 

DC.L keySB 
DC.L keyS9 
DC.B $lB,$lB,'{','[' numeric pad [, 
DC.B $lD,$lD,'}','J' numeric pad J, 
DC.B 0,0,0,' I' numeric pad I 
DC.B 0,0,0, , *, numeric pad * 
DC.B 0,0,0,' +' numeric pad + 
DC.L keySF 

DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 

DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 

DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 
DC.L 0 

;------ possible dead keys 

keyOC: 
DC.B DPF DEAD,1+(6«DP 2DFACSHIFT} 
DC.B DPF=DEAD,2+ (6«DP=2DFACSHIFT) 
DC.B 0, '=', 0,' +' 

key23: 
DC.B 0,' f', 0, 'F' 
DC.B DPF_DEAD,1+(6«DP_2DFACSHIFT) 
DC.B DPF DEAD,1+(6«DP 2DFACSHIFT) 
DC.B 0,$06,0,$06,0,$B6~0,$B6 

key24: 
DC.B 0, 'g' ,0, 'G' 
DC.B DPF DEAD,2+(6«DP 2DFACSHIFT) 
DC.B DPF=DEAD,2+(6«DP=2DFACSHIFT) 

678 Console Device 

dead ' 
dead ' 

+ 

f, F 
dead ' 
dead ' 
control translation 

g, G 
dead \ 
dead ' 

$4B 

$SO 

$SB 

$60 

$6B 

$70 



key25: 

key26: 

key27: 

;------

key12: 

key12u: 

key12s: 

key16: 

key16u: 

key16s: 

key17: 

key17u: 

key17s: 

key1B: 

key1Bu: 

key1Bs: 

key20: 

DC.B 0,$07,0,$07,0,$B7,0,$B7 control translation 

DC.B 0, 'h', 0, 'H' h, H 
DC.B DPF_DEAD,3, DPF_DEAD,3 dead • dead . , 
DC.B O,$OB,O,$OB,O,$BB,O,$BB control translation 

DC.B 0,' j', 0,' J' j, J 
DC.B DPF DEAD,4,DPF DEAD,4 dead - , dead -
DC.B O,$OA,O,$OA,O,$BA,O,$BA control translation 

DC.B O,'k',O,'K' k, K 
DC.B DPF DEAD,5,DPF DEAD,5 dead " , dead " 
DC.B O,$OB,O,$OB,O,$BB,O,$BB control translation 

deadable keys (modified by dead keys) 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 

; e, E, (c), (c) 
DPF MOD,key12u-key12,DPF MOD,key12s-key12 
0,$A9,0,$A9 -
0,$05,0,$05,0,$B5,0,$B5 ; control translation 

'e',$E9,$EB,$EA,'e',$EB 
$E9,$E9,$EA,$E9,$E9,$E9 
$EB,$EA,$EB,$EB,$EB,$EB 

'E',$C9,$CB,$CA,'E',$CB 
$C9,$C9,$CA,$C9,$C9,$C9 
$CB,$CA,$C8,$CB,$C8,$C8 

; u, U, micro, micro 
DPF MOD,key16u-key16,DPF MOD,key16s-key16 
0,$B5,0,$B5 -
0,$15,0,$15,0,$95,0,$95 ; control translation 

'u',$FA,$F9,$FB,'u',$FC 
$FA,$FA,$FB,$FA,$FA,$FA 
$F9,$FB,$F9,$F9,$Fg,$F9 

'U',$DA,$D9,$DB,'U',$DC 
$DA,$DA,$DB,$DA,$DA,$DA 
$D9,$DB,$D9,$D9,$D9,$D9 

; i, I, inverted !, broken I 
DPF MOD,key17u-key17,DPF MOD,key17s-key17 
0,$A1,0,$A6 -
0,$09,0,$09,0,$B9,0,$B9 ; control translation 

'i',$ED,$EC,$EE,'i',$EF 
$ED,$ED,$EE,$ED,$ED,$ED 
$EC,$EE,$EC,$EC,$EC,$EC 

'I',$CD,$CC,$CE,'I',$CF 
$CD,$CD,$CE,$CD,$CD,$CD 
$CC,$CE,$CC,$CC,$CC,$CC 

; 0, 0, bar 0, bar 0 
DPF MOD,key1Bu-keylB,DPF MOD,key1Bs-key1B 
O,$FB,O,$DB -
O,$OF,O,$OF,O,$BF,O,$BF ; control translation 

'0',$F3,$F2,$F4,$F5,$F6 
$F3,$F3,$F4,$F3,$F3,$F3 
$F2,$F4,$F2,$F2,$F2,$F2 

'0',$D3,$D2,$D4,$D5,$D6 
$D3,$D3,$D4,$D3,$D3,$D3 
$D2,$D4,$D2,$D2,$D2,$D2 

; a, A, ae, AE 
DPF MOD,key20u-key20,DPF MOD,key20s-key20 
0,$E6,0,$C6 -

Console Device 679 



key20u: 

key20s: 

key36: 

key36u: 

key36s: 

key31: 

key31u: 

key31s: 

key40: 

key40d: 

DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 

DC.B 

DC.B 
DC.B 
DC.B 

0,$01,0,$01,0,$81,0,$81 

'a',$E1,$EO,$E2,$E3,$E4 
$E1,$El,$E2,$El,$E1,$E1 
$EO,$E2,$EO,$EO,$EO,$EO 

'A',$Cl,$CO,$C2,$C3,$C4 
$C1,$Cl,$C2,$C1,$C1,$C1 
$CO,$C2,$CO,$CO,$CO,$CO 

control translation 

most recent is ' 
most recent is 

most recent is 
most recent is ' 

; n, N, SHY, overbar 
DPF MOD,key36u-key36,DPF MOD,key36s-key36 
O,$AD,O,$AF -
0,$OE,0,$OE,0,$8E,0,$8E ; control translation 

'n', 'n', 'n', 'n' ,$Fl, 'n' 
, n' I ' n' , In' ,'n' ,'n' , In' 
'n','n' ,'n' ,'n' ,'n' ,'n' 

'N','N','N','~',$Dl,'N' 
'N','N','N','N','N','N' 
'N', 'N', 'N', 'N', 'N' ,'N' 

; y, Y, +/-, not 
DPF MOD,key31u-key31,DPF MOD,key31s-key31 
0,$B1,0,$AC -
0,$19,0,$19,0,$99,0,$99 ; control translation 

'y',$FD,'y','y','y',$FF 
$FD,$FD,$FD,$FD,$FD,$FD 
I y' , , y' , , y' , , y' , , y' , , y' 

, Y' , $DD, 'Y' , ' Y' , ' 'f.' , ' Y' 
$DD,$DD,$DD,$DD,$DD,$DD 
, y' , , y' , I Y' , , y' , , Y' I ' Y' 

; space"NBSP, and accents 
DPF_MOD,key40d-key40,0,$AO 

, " $B4, ' " , ' ., , , -, , $A8 
$B4,"',$B4,$B4,$B4,$B4 , .. , , .. , , A., , .. , , .. , , .. , , , , , , 

;------ string keys 

key42: 
DC.B 
DC.B 

key42us: 
DC.B 

key42ue: 
key42ss: 

DC.B 
key42se: 

key4C: 
DC.B 
DC.B 

key4Cus: 
DC.B 

key4Cue: 
key4Css: 

DC.B 
key4Cse: 

key4D: 
DC.B 
DC.B 

key4Dus: 
DC.B 

key4Due: 

key42ue-key42us,key42us-key42 
key42se-key42ss,key42ss-key42 

$09 

$9B,' Z' 

key4Cue-key4Cus,key4Cus-key4C 
key4Cse-key4Css,key4Css-key4C 

$9B,' A' 

$9B,'T' 

key4Due-key4Dus,key4Dus-key4D 
key4Dse-key4Dss,key4Dss-key4D 

$9B, 'B' 

680 Console Device 



key4Dss: 

key4Dse: 

key4E: 

key4Eus: 

key4Eue: 
key4Ess: 

key4Ese: 

key4F: 

DC.B 

DC.B 
DC.B 

DC.B 

DC.B 

DC.B 
DC.B 

key4Fus: 

key4Fue: 
key4Fss: 

key4Fse: 

keySO: 

key50us: 

keySOue: 
keySOss: 

keySOse: 

keyS1: 

keyS1us: 

keyS1ue: 
key51ss: 

keyS1se: 

keyS2: 

keyS2us: 

key52ue: 
keyS2ss: 

keyS2se: 

keyS3: 

keyS3us: 

keyS3ue: 
keyS3ss: 

keyS3se: 

keyS4: 

DC.B 

DC.B 

DC.B 
DC.B 

DC.B 

DC.B 

DC.B 
DC.B 

DC.B 

DC.B 

DC.B 
DC.B 

DC.B 

DC.B 

DC.B 
DC.B 

DC.B 

DC.B 

OC.B 
DC.B 

keyS4us: 

keyS4ue: 
key54ss: 

OC.B 

OC.B 

$9B,' S' 

key4Eue-key4Eus,key4Eus-key4E 
key4Ese-key4Ess,key4Ess-key4E 

$9B, 'c' 

$9B,' ','@' 

key4Fue-key4Fus,key4Fus-key4F 
key4Fse-key4Fss,key4Fss-key4F 

$9B, '0' 

$9B,' ','A' 

key50ue-keySOus,keySOus-keySO 
key50se-keySOss,keySOss-keySO 

$9B,' 0-' 

$9B,'10-' 

key51ue-key51us,keyS1us-keyS1 
keyS1se-keyS1ss,keyS1ss-keyS1 

$9B,'1-' 

$9B, , 11 -, 

keyS2ue-keyS2us,keyS2us-keyS2 
key52se-keyS2ss,keyS2ss-keyS2 

$9B,'2-' 

$9B,'12-' 

keyS3ue-keyS3us,keyS3us-keyS3 
key53se-keyS3ss,keyS3ss-keyS3 

$9B,'3-' 

$9B,'13-' 

keyS4ue-key54us,keyS4us-key54 
keyS4se-keyS4ss,keyS4ss-keyS4 

$9B,'4-' 

$9B,'14-' 

Console Device 681 



keyS4se: 

keySS: 
DC.B 
DC.B 

keySSus: 
DC.B 

keySSue: 
keySSss: 

DC.B 
keySSse: 

keyS6: 
DC.B 
DC.B 

keyS6us: 
DC.B 

keyS6ue: 
keyS6ss: 

DC.B 
keyS6se: 

keyS7: 
DC.B 
DC.B 

keyS7us: 
DC.B 

keyS7ue: 
keyS7ss: 

DC.B 
keyS7se: 

keyS8: 
DC.B 
DC.B 

keyS8us: 

keyS8ue: 
keyS8ss: 

DC.B 

DC.B 
keyS8se: 

keyS9: 
DC.B 
DC.B 

keyS9us: 
DC.B 

keyS9ue: 
keyS9ss: 

DC.B 
keyS9se: 

keySF: 

keySSue-keySSus,keySSus-keySS 
keySSse-keySSss,keySSss-keySS 

$9B,'S-' 

$9B,'lS-' 

keyS6ue-keyS6us,keyS6us-keyS6 
keyS6se-keyS6ss,keyS6ss-keyS6 

$9B,'6-' 

$9B,'16-' 

keyS7ue-keyS7us,keyS7us-keyS7 
keyS7se-keyS7ss,keyS7ss-keyS7 

$9B,' 1 r' 

keyS8ue-keyS8us,keyS8us-keyS8 
keyS8se-keyS8ss,keyS8ss-keyS8 

$9B,'18-' 

keyS9ue-keyS9us,keyS9us-keyS9 
keyS9se-keyS9ss,keyS9ss-keyS9 

$9B,'9-' 

$9B,' 19-' 

DC.B keySFe-keySFs,keySFs-keySF 
keySFs: 

DC.B $9B,'"r' 
keySFe: 

KMName: 
DC.B 'd', 0 

kmEnd 

END 

682 Console Device 



Chapter 34 

Gameport Device 

Introduction 

The gameport device manages access to the Amiga gameport connectors for the operating system. There are two 
units in the gameport device, unit 0 and unit 1. On the Amiga 2000, unit 0 controls the left gameport connector 
(connector I), and unit 1 controls the right gameport connector (connector 2). Unit 0 is labelled "joy I" on an 
ASOO and "I" on an Al000. Unit 1 is labelled "joy 2" on an A500 and "2" on an Al000. 

To use the gameport device, you must define the type of device connected to the gameport and define how the device 
is to respond. The gameport device can be set up to return the controller status immediately or only when certain 
conditions have been met 

When the input device is operating, unit 0 is usually dedicated to gathering mouse events. Therefore, the example 
listed at the end of this chapter employs unit I, which is usually not used by the system. (For applications that take 
over the machine without starting up the input device, unit 0 can perform the same functions as unit 1.) 

When a gameport device unit reponds to a request for input, it creates an input event. The contents of the input 
event will vary based on the type of device and the trigger conditions you have declared. 

Gameport Device 683 



Gameport Device Commands 

The gameport device supports the following system functions: 

Command Operation 

OpenDeviceO 
CloseDeviceO 
DolOO 
SendIOO 
AbortIOO 

Obtain shared use of one unit of the gameport device. 
Relinquish use of the gameport device. 
Initiate a command and wait for it to complete (synchronous access). 
Initiate a command and return immediately (asynchronous access). 
Abort a command already in the queue. 

The gameport device also responds to the following commands: 

110 Command 

CMD_CLEAR 
GPD_ASKCTYPE 
GPD _SETCTYPE 
GPD_SETTRIGGER 
GPD _ASKTRIGGER 
GPD_READEVENT 

GPD_ASKCTYPE 

Controller Type 

GPCT_MOUSE 

Operation 

Clear gameport device's input buffer. 
Inquire the type of the controller being monitored. 
Set the type of the controller to be monitored. 
Preset the conditions that will trigger a gameport event. 
Inquire the conditions that have been preset for triggering. 
Read one or more gameport events from an initialized unit. 

You use this command to find out what kind of controller has 
been specified for a particular unit. As of this writing, there are 
five different legal controller types defined in the include file 
devices/gameport.h. 

Description 

GPCT _ABSJOYSTICK 
GPCT _RELJOYSTICK 
GPCT _ALLOCATED 
GPCT_NOCONTROLLER 

Mouse controller. 
Absolute (digital) joystick. 
Relative (digital) joystick. 
Custom controller. 
"No controller" flag to indicate unit is free to use. 

• A mouse controller can report input events for one, two, or three buttons and for positive or negative (x,y) 
movements. A trackball controller or car-driving controller is generally of the same type and can be declared as 
a mouse controller. 

• An absolute joystick reports one single event for each change of its current location. If, for example, the 
joystick is centered and a user pushes the stick forward and holds it in that position, only one single forward
switch event will be generated. 

• A relative joystick, on the other hand, is comparable to an absolute joystick with "autorepeat" installed As long 
as the user holds the stick in a position other than centered, the gameport device continues to generate position 
reports. 

684 Gameport Device 



• There is currently no system software support for proportional joysticks or proportional controllers (e.g .• 
paddles). If you write custom code to read proportional controllers or other controllers (e.g .• light pen) please 
make sure that you issue GPO_SETCTYPE (explained below) with controller type GPCT_ALLOCATEO to 
insure that other applications know the connector is being used. 

GPO _ ASKCTYPE puts the controller type into the data area that you specify with the command. Here is a sample 
call: 

struct IOStdReq *game_io_msg = NULL; 

BYTE GetControllerType() 
{ 
BYTE controller_type = 0; 

game io msg->io Command = GPO ASKCTYPE; 1* get type of controller *1 
game-io-msg->io-Oata = (APTR)&controller type; 1* place data here *1 
game-io-msg->io-Length = 1; -
OoIO(garne io msg); 
return (controller_type); 
} 

The BY1E value returned corresponds to one of the five controller types noted above. 

GPO SETCTYPE 

This command establishes the type of controller that is to be connected to the specific unit of the gameport device. 
You must have already successfully opened that unit before issuing the command. 

The gameport device is a shared device; many tasks may have it open at any given time. Hence. a high level 
protocol has been established to prevent multiple tasks from reading the same unit at the same time. 

Step 1: 
Call GPO ASKCTYPE and check for a GPCT NOCONTROLLER return. Never issue GPO SETCTYPE 
without ch~king whether the desired gameport unit is in use. -

Step 2: 
If GPCT_NOCONTROLLER is returned. you have access to the gameport. Set the allocation flag to 
GPCT_MOUSE. GPCT_ABSJOYSTICK or GPCT_REWOYSTICK if you use a system supported 
controller. or GPCT _ALLOCA TEO if you read directly from the hardware registers. 

The following function demonstrates how to do this correctly: 

struct IOStdReq *game_io_msg = NULL; 

BOOL set controller type(type} 
BYTE type; -

{ 
BOOL success = FALSE; 
BYTE controller_type = 0; 

Forbid(}; I*critical section start *1 
game io msg->io Command = GPO ASKCTYPE; 1* inquire current status *1 
game-io-msg->io-Length = 1; -
game-io-msg->io-Flags = IOF QUICK; 
game=io=msg->io=Oata = (APTR)&controller_type; 1* put answer in here *1 
OoIO(game_io_msg); 

1* No one is using this device unit, let's claim it *1 
if (controller_type == GPCT_NOCONTROLLER) 

Gameport Device 685 



{ 
game_io_msg->io_Command = GPD_SETCTYPE; 
game io msg->io Flags = IOF QUICK; 
game-io-msg->io-Length = 1;
game-io-msg->io-Data = (APTR)&type; 
DolO! game_io_msg); 
success = TRUE; 
UnitOpened = TRUE; 
) 

Permit(); 1* critical section end *1 

1* success can be TRUE or FALSE, see above *1 
return(success); 
} 

Step 3: 
The program must set the controller type back to GPCT _ NOCONTROLLER upon exiting your program: 

struct IOStdReq *game_io_msg = NULL; 

void free gp unit() 
{ --
BYTE type = GPCT_NOCONTROLLER; 
game io msg->io Command = GPD SETCTYPE; 
game-io-msg->io-Flags = IOF QUICK; 
game-io-msg->io-Length = 1;
game-io-msg->io-Data = (APTR)&type; 
DolO! game_io_msg); 
) 

This three step protocol allows applications to share the gameport device in a system compatible way. 

Once you have correctly allocated a unit of the gameport as explained above, use this command to specify the 
conditions that can trigger a gameport event The device won't reply to your read request until the trigger conditions 
have been satisfied. 

The information needed for gameport trigger setting is placed into a GamePortTrigger data structure which is 
defined in the include file devices/gameport.h: 

struct GamePortTrigger 
{ 
UWORD 
UWORD 
UWORD 
UWORD 
} ; 

gpt_Keys; 
gpt Timeout; 
gpt-XDelta; 
gp<)Delta; 

1* key transition triggers *1 
1* time trigger (vertical blank units) *1 
1* X distance trigger *1 
1* Y distance trigger *1 

• Setting GPTF _ UPKEYS enables the reporting of upward transitions. Setting GPTF _ DOWNKEYS enables 
the reporting of downward transitions. These flags may both be specified. 

• The field gpt_Timeout specifies the time interval (in vertical blank units) between reports in the absence of 
another trigger <:ondition. In other words, an event is generated every gpt _Timeout ticks. Vertical blank units 
may differ from country to country (e.g 60 Hz NTSC, 50 Hz PAL.) 

686 Gameport Device 



To find out the exact frequency use this code fragment: 

iinclude <exec/execbase.h> 
extern struct ExecBase *SysBase; 

UBYTE get_frequency(void) 
{ 
UBYTE hertz; 
hertz = SysBase->VBlankFrequency; 
return (hertz) 
} 

• The gpt _ XDeita and gpt _ YDeita fields specify the x and y distances which, if exceeded, trigger a report. 

For a mouse controller, you can trigger on a certain minimum-sized move in either the x or y direction, on up or 
down transitions of the mouse buttons, on a timed basis, or any combination of these conditions. 

For example, suppose you normally signal mouse events if the mouse moves at least 10 counts in either the x or y 
directions. If you are moving the cursor to keep up with mouse m()vements and the user moves the mouse less than 
10 counts, after a period of time you will want to update the position of the cursor to exactly match the mouse 
position. Thus the timed report of current mouse counts would be preferred. The following structure would be used: 

ide fine XMOVE 10 
idefine YMOVE 10 

struct GamePortTrigger gpt = 
{ 
GPTF UP KEYS + GPTF_DOWNKEYS, 1* trigger on all key transitions *1 
1800~ 1* and every 36(PAL) or 30 (NTSC) seconds *1 
XMOVE, 1* for any 10 in an x or y direction *1 
YMOVE 
}; 

For a joystick controller, you can select timed reports as well as button-up and button-down report trigger 
conditions. For an absolute joystick specify a value of one (1) for the gpt _ XDeita and gpt _ YDeita fields or you will 
not get any direction events. You set the trigger conditions by using the following code or its equivalent: 

struct IOStdReq *game_io_msg = NULL; 

void set trigger conditions(struct GamePortTrigger *gpt) 
{- -

game io msg->io Command = GPO SETTRIGGER; 1* set trigger conditions *1 
game-io-msg->io-Oata = (APTR)gpt; 1* put trigger condition info here *1 
game=io=msg->io=Length = sizeof(struct GamePortTrigger); 
OoIO(game io msg); 
} - -

NOTE 

If a task sets trigger conditions and does not ask for the position reports the gameport device will queue 
them up anyway. If the trigger conditions occur again and the gameport device buffer is filled, the 
additional triggers will be ignored until the buffer is read by a device read request 
(GPD _READEVENT) or a system CMD _CLEAR command flushes the buffer. 

Gameport Device 687 



GPD _ASKTRIGGER 

This command retrieves the conditions that must be met by a gameport unit before a pending read request will be 
satisfied. These conditions are set by the command GPD _SETTRIGGER discussed above. 

GPD_READEVENT 

This command reads the internal buffer of the unit of the gameport device opened with OpenDeviceO. It then puts 
the event information into the buffer pointed to by the 10 _Data field of the IOStdRequest structure. 

struct InputEvent game event; /* defined in <devices/inputevent.h> */ 
struct IOStdRequest *g~me_io_msg = NULL; 

void send read request() 
{ - -

game io msg->io Command = GPO REAOEVENT; 
game-io-msg->io-Length = sizeof (struct InputEvent); 
game-io-msg->io-Oata = (APTR) & game event; 
SendIO(game io ;sg); /* Asynchronous */ 
} - -

The game _ event.ie _code field will contain the event recorded by the gameport device. Check the include file 
deviceslinputevent.h for legal event types. 

The following example accurately demonstrates all previously discussed information. It is highly recommended that 
you incorporate the seCcontroller_typeO function into your program, allowing multiple applications to access the 
gameport 

688 Gameport Device 



Joystick Example Program 

/* joy.c - gameport.device joystick example 

*/ 

compiled with LATTICE 5.02: 
linked with Blink 5.04: 

'include <exec/types.h> 
'include <exec/execbase.h> 
'include <exec/devices.h> 
'include <devices/gameport.h> 
'include <devices/inputevent.h> 
'include <libraries/dos.h> 
lifdef LATTICE 
'include <proto/all.h> 
'include <stdlib.h> 
'include <stdio.h> 

LC -bl -cfist -v -y joy.c 
Blink FROM LIB:c.o,joy.o TO joy 

LIBRARY LIB:LC.lib,LIB:Amiga.lib 

int CXBRK(void) ( return(O); /* Disable Lattice CTRL/C handling */ 
'endif 

'define XMOVE 1 
'define YMOVE 1 

/* our functions */ 
BOOL set controller type(BYTE); 
void set-trigger conditions(struct GamePortTrigger *); 
void send read request(void); 
void check move(void); 
void flush-buffer(void); 
void free gp unit(void); 
void cleanup(void); 
void cleanexit(UBYTE *,LONG); 

extern struct ExecBase *SysBase; 

struct InputEvent game event; /* where input event will be stored */ 
struct IOStdReq *game_io_msg = NULL; 
struct MsgPort *game_msg-port = NULL; 

/* trigger on all joystick key transitions */ 
struct GamePortTrigger joy trigger 

{ 
GPTF_UPKEYS+GPTF_DOWNKEYS, 
0, 
XMOVE, 
YMOVE 
} ; 

UBYTE 
SHORT 
SHORT 
BOOL 

hertz; /* vertical blank frequency */ 
codeval,error; 
button count, timeouts = 0; 
UnitOpened, DeviceOpened = FALSE; 

void main(int argc,char **argv) 
{ 

/* Create port for gameport device communications */ 
if(! (game msg port = CreatePort("RKM game port",O») 

cleanexit(1I Error: Can't create port\n",RETURN_FAIL); 

/* Create message block for device 10 */ 
if(! (game io msg = CreateStdIO(game msg port») 

cleanexit(1I Error: Can't create-IO request\n",RETURN_FAIL); 

/* Open the right/back (unit 1, number 2) gameport.device unit */ 

Gameport Device 689 



if(error=OpenDevice("gameport.device",l,game io msg,O» 
cleanexit(" Error: Can't open gameport.devIce\n",RETURN FAIL); 

else DeviceOpened=TRUE; -

/* Set controller type to joystick */ 
if (! (set controller type (GPCT ABSJOYSTICK») 

cleanexit (" Error: Gameport unit in use\n",RETURN_FAIL); 

/* Specify the trigger conditions */ 
set_trigger_conditions(&joytrigger); 

printf("\n »> gameport.device joystick Demo «<\n\n"); 
if (hertz == 60) printf(" We are running on a US system (%u Hz).\n",hertz); 
if (hertz == SO) printf(" We are running on a PAL system (%u Hz) .\n",hertz); 
printf(" Attach joystick to right port (A2000) or rear port (AlOOO) .\nU); 
printf(" Then move joystick and click its button(s) .\n\n"); 
printf(" To exit program press and release fire button 3 times. \n"); 
printf(" The program also exists if no activity occurs for 1 minute.\n\n"); 

/* Clear device buffer. There might still be events left */ 
flush_buffer(); /* To start from a known state */ 

/* From now on, just read input events into the event buffer, 
* one at a time. READEVENT waits for the preset conditions. */ 

send_read_request(); /* Send the initial gameport read request */ 

while(timeouts < 3) 
( 
Wait(lL « game msg port->mp SigBit); /* Wait for joystick action *1 
GetMsg(game_msg=port); /* Remove message from message port */ 

codeval = game event.ie Code; 
switch (codeval) -

{ 
case IECODE LBUTTON: 

printf (" FIRE BUTTON PRESSED \n"); 
break; 

case (IECODE LBUTTON I IECODE UP PREFIX): 
printf("-FIRE BUTTON RELEASED \n"); 
button count++; 
if (button count == 3)cleanexit{1I Terminated \n",RETURN_OK); 
break; -

case IECODE NOBUTTON: 
timeouts++; /* Program will timeout after 1 minute */ 
button_count = 0; 
break; 

default: 
break; 

/* Check for change in position */ 

/* We can now re-use our game_event ••• Send the next read request */ 
send read request(); 
} - -

printf(U\n Terminating program (one minute with no activity sensed). \nU); 
cleanexit(1I Timeout \n",RETURN OK); 
} -
/* end of main */ 

/* function definitions */ 

BOOL set_controller_type(type) 
BYTE type; 
{ 
BOOL success = FALSE; 
BYTE controller_type = 0; 

690 Gameport Device 



Forbid(); I*critical section start *1 
game io msg->io Command = GPO ASKCTYPE; 1* inquire current status *1 
game-io-msg->io-Length = 1; -
game-io-msg->io-Flags = IOF QUICK; 
game-io-msg->io-Data = (APTR)&Controller type; 1* put answer in here *1 
DoIO(game_io_msg); -

1* No one is using this device unit, let's claim it *1 
if (controller type == GPCT NOCONTROLLER) 

{ - -

game io msg->io Command = GPO SETCTYPE; 
game-io-msg->io-Flags = IOF QUICK; 
game-io-msg->io-Length = 1;
game-io-msg->io-Data = (APTR)&type; 
DoIO( game_io_msg); 
success = TRUE; 
UnitOpened = TRUE; 
} 

Permit(); 1* critical section end *1 
return(success); 
} 

void set_trigger_conditions(struct GamePortTrigger *gpt) 
{ 

1* get vertical blank frequency 
* US 60 Hz, PAL = 50 Hz *1 

hertz = SysBase->VBlankFrequency; 

1* trigger every 20 seconds *1 
joytrigger.gpt_Timeout = (UWORD)hertz * 20; 

game io msg->io Command = GPO SETTRIGGER; 
game-io-msg->io-Length = (LONG)sizeof(struct GamePortTrigger); 
game-io-msg->io-Data = (APTR)gpt; 
DoIO(game io msg); 
} - -

void check_move() 
( 
WORD xmove, ymove; 
xmove game event.ie X; 
ymove = game=event.ie=Y; 

if(xmove != 0 I I ymove != 0) 
( 
printf(" x = %2ld , Y %2ld -->!',xmove, ymove); 

if (xmove 
if (xmove 

1 && ymove == 0) printf(" RIGHT \n"); 
-1 && ymove == 0) printf(" LEFT \n"); 

if (xmove o && ymove 1) printf(" DOWN \n"); 
if (xmove o && ymove -1) printf(" UP \n"); 

if 
if 
if 
if 

(xmove 
(xmove 
(xmove 
(xmove 

1 && ymove 1) printf(" RIGHT DOWN \n"); 
-1 && ymove == 1) printf(" LEFT DOWN \n"); 
1 && ymove == -1) printf(" RIGHT UP \n"); 
-1 && ymove == -1) printf(" LEFT UP \n"); 

timeouts = 0; 
) 

void flush_buffer() 
( 
game io msg->io Command 
game-io-msg->io-Flags 
DoIO(game io msg); 
} - -

void send_read_request() 
( 

= CMD_CLEAR; 
IOF_QUICK; 

game io msg->io Command = GPO REAOEVENT; 
game=io=msg->io=Length = sizeof(struct InputEvent); 

Gameport Device 691 



game io msg->io Data = (APTR)&game event; 
SendIO(game_io_msg); 1* Asynchronous - message will return later *1 
} 

void free_gp_unit() 
{ 
BYTE type = GPCT NOCONTROLLER; 
game io msg->io Command = GPD SETCTYPE; 
game-io-msg->io-Flags = IOF QUICK; 
game-io-msg->io-Length = 1;
game-io-msg->io-Data = (APTR)&type; 
DoIO( game io m;g); 
} - -

void cleanexit(UBYTE *s, LONG n) 
( 
if(*s) printf(s); 
1* Free gameport unit so other applications can use it *1 
if (UnitOpened) free gp unit(); 
cleanup(); - -
exit(n); 
} 

void cleanup () 
( 
if (DeviceOpened) 
if (game io msg) 
if (game=msg-port) 
} 
1* eof joy.c *1 

CloseDevice( game io msg); 
DeleteStdIO(game 10 msg); 
DeletePort(game_msg~ort); 

692 Gamepon Device 



Chapter 35 

Input Device 

This chapter describes the Amiga input device which is the central collection point for input events disseminated 
throughout the system. The best way to describe the input device is a manager of a stream with feeders. The input 
device itself and other modules such as the file system add events to the stream; so do input device "users"
programs or other devices that use parts of the stream or change it in some way. Feeders of the input device include 
the keyboard device, timer device, gameport device. There may be other feeders depending on the system and 
software configuration. The keyboard, gameport, and timer devices are special cases in that the input device opens 
them and asks them for input Other feeders are "active"- they send the input to the input device. Users of the 
input device include Intuition and the console device. 

Introduction 

The input device is automatically opened by the console device when the system boots. When the input device is 
opened, a task named "input.device" is started. The input device task communicates directly with the keyboard 
device to obtain raw key events. It also communicates with the gameport device to obtain mouse button and mouse 
movement events and with the timer device to obtain time events. In addition to these events, you can add your own 
input events to the input device, to be fed to the handler chain (see below). 

The keyboard device is accessible directly (see the "Keyboard Device" chapter). However, once the input.device 
task has started, you should not read events from the keyboard device directly, since doing so will deprive the input 
device of the events and confuse key repeating. 

Input Device 693 



The gameport device has two units. As you view the Amiga, looking at the gameport connectors, connector' '1" is 
assigned as the primary mouse input for Intuition and contributes gameport input events to the input event stream. 
Connector "2" is handled by the other gameport unit and is currently unassigned. While the input device task is 
running, that task expects to read the input from connector 1. Direct use of the gameport device is covered in a 
separate chapter of this manual. 

The timer device is used to generate time events for the input device. It is also used to control key repeat rate and 
key repeat threshold. The timer device is a shared-access device and is described in its own separate chapter. 

Input Device Commands 

The input device allows the following system functions: 

Command Operation 

OpenDevice( ) 
CloseDevice( ) 
DoIO( ) 
SendIO( ) 
AbortIO( ) 

Obtain shared use of the input device. 
Relinquish use of the input device. 
Initiate a command, and wait for it to complete. 
Initiate a command, and return immediately. 
Abort a command already in the queue. 

Only the Start, Stop, Invalid, and Flush commands have been implemented for this device. All other standard 
commands are no-operations. 

The input device also supports the device-specific commands shown in the table below. 

I/O Command 

IND _ WRITEEVENT 
IND ADDHANDLER 
IND REMHANDLER 
IND _SETTHRESH 
IND _SETPERIOD 
IND _SETMPORT 
IND _SETMTRIG 

IND SETMTYPE 

Table 35-1: Input Device Commands 

Operation 

Propagate an input event stream to all devices. 
Add an input-stream handler into the handler chain. 
Remove an input-stream handler from the handler chain. 
Set the repeating key hold-down time before repeat starts. 
Set the period at which a repeating key repeats. 
Set the gameport port to which the mouse is connected. 
Set conditions that must be met by a mouse before 

a pending read request will be satisfied. 
Set the type of device at the mouse port. 

The device-specific commands are described below. First though, it may be helpful to consider the types of input 
events that the input device deals with. An input event is a data structure that describes the following: 

• The class of the event-often describes the device that generated the event. 

694 Input Device 



• The subclass of the event-space for more information if needed .. 

• The code-keycode if keyboard, button information if mouse, others. 

• A qualifier such as "Alt key also down," "key repeat active". 

• A position field that contains a data address or a mouse position count. 

• A time stamp, to determine the sequence in which the events occurred. 

• A link-field by which input events are linked together. 

The various types of input events are listed in the include file deviceslinputevent.h. That information is not repeated 
here. You can find more information about input events in the chapters titled "Gameport Device" and "Console 
Device." 

There is a difference between simply receiving an input event from a device and actually becoming a handler of an 
input event stream. A handler is a routine that is passed an input event list. It is up to the handler to decide if it can 
process the input events. If the handler does not recognize an event, it leaves it undisturbed in the event list. 

NOTE 

Handlers can themselves generate new linked lists of events which can be passed down to lower priority 
handlers. 

IND_ADDHANDLER COMMAND 

You add a handler to the chain using the command IND_ADDHANDLER. Here is a typical C-language call to the 
IND_ADDHANDLER function. This assumes that you have a properly initialized IOStdReq and have already 
called OpenDevice( ). 

struct Interrupt *inputHandleri 
struct IOStdReq *inputReqBlki 

inputHandler->is Code=ButtonSwapi 
inputHandler->is=Data=NULLi 
inputHandler->is Node.ln Pri=lOO; 
inputHandler->is=Node.ln=Name=NameString; 

inputReqBlk->io Data=(APTR)inputHandleri 
inputReqBlk->io-Command=IND ADDHANDLERi 
DoIO«struct IORequest *)inputReqBlk); 

/* Address of code */ 
/* User Value passed in Al */ 
/* Priority in food chain */ 
/* Name of handler */ 

/* Point to the structure */ 
/* Set command .•• */ 
/* DoIO( ) the command */ 

Intuition is one of the input device handlers and normally distributes most of the input events. Intuition inserts itself 
at priority position 50. The console.device sits at priority position O. You can choose the position in the chain at 
which your handler will be inserted by setting the priority field in the list-node part of the interrupt data structure you 
pass to this routine. 

Input Device 695 



NOTE 

Any processing time expended by a handler subtracts from the time available before the next event 
happens. Therefore, handlers for the input stream must be fast. For this reason it is recommended that 
the handlers be written in assembly. 

Rules for Input Device Handlers 

The following rules should be followed when you are designing an input handler: 

• If an input handler is capable of processing a specific kind of an input event and that event has no links 
(ie _ NextEvent = 0), the handler can end the handler chain by returning a NULL (0) value. 

• If there are multiple events linked together, the handler is free to delink an event from the input event 
chain, thereby passing a shorter list of events to subsequent handlers. The starting address of the modified 
list is the return value. 

• If a handler wishes to add new events to the chain that it passes to a lower-priority handler, it may 
initialize memory to contain the new event or event chain. The handler, when it again gets control on the 
next round of event handling, should assume nothing about the current contents of the memory blocks 
attached to the event chain. Lower priority handlers may have modified the memory as they handled their 
part of the event. The handler that allocates the memory for this purpose should keep track of the starting 
address and the size of this memory chunk so that the memory can be returned to the free memory list 
when it is no longer needed. 

Your assembly language handler routine should be structured similar to the following pseudo-language statement: 

newEventChain = yourHandlerCode(oldEventChain, yourHandlerData); 
dO aO al 

where 

• yourHandlerCode is the entry point to your routine 

• oldEventChain is the starting address for the current chain of input events 

• yourHandlerData is a user-definable value, usually a pointer to some data structure your handler requires. 

• newEventChain is the starting address of an event chain which you are passing to the next handler, if any 

When your handler code is called, the event chain is passed in AO and the handler data is passed in AI. (You may 
choose not to use AI) When your code returns, it should return the pointer to the event chain in DO. If all of the 
events were removed by the routine, return NULL. A NULL (0) value terminates the handling thus freeing more 
CPU resources. 

Memory that you use to describe a new input event that you have added to the event chain is available for reuse or 
deallocation when the handler is called again or after the IND _REMHANDLER command for the handler is 
complete. There is no guarantee that any field in the event is unchanged since a handler may change any field of an 
event that comes through the food chain. 

696 Input Device 



NOTE 

Altering a repeat key report will confuse the input device when it tries to stop the repeating after the key 
is raised. 

Because IND_ADDHANDLER installs a handler in any position in the handler chain, it can, for example, ignore 
specific types of input events as well as act upon and modify existing streams of input It can even create new input 
events for Intuition or other programs to interpret. 

IND REMHANDLER COMMAND 

You remove a handler from the handler chain with the command IND_REMHANDLER. Assuming that you have a 
properly initialized IOStdReq block as a result of a call to OpenDevice( ) (for the input device) and you have 
already added the handler using IND_ADDHANDLER, (see example above) here is a typical C-language call to the 
IND_REMHANDLER function: 

struct Interrupt *inputHandler; 
struct IOStdReq *inputReqBlk; 

inputReqBlk->io Data=(APTR)inputHandler; 1* Which handler to REM *1 
inputReqBlk->io-Command=IND REMHANDLER; 1* The REM command *1 
DoIO«struct IORequest *)inputReqBlk); 1* Send the command *1 

IND WRITEEVENT COMMAND 

Typically, input events are internally generated by the timer device, keyboard device, and gameport device. A user 
can also generate an input event and send it to the input device. It will then be treated as any other event and passed 
through to the input handler chain. You can create your own stream of events and then send them to the input device 
using the IND_ WRITEEVENT command. 

This example sends in a few phony mouse-movement events. 

1* 
* InputDevice example 
* 
* This example adds a few mouse movements to the input chain ••. 
*1 

'include <exec/types.h> 
'include <exec/memory.h> 
'include <devices/input.h> 
'include <devices/inputevent.h> 

'include <proto/all.h> 

VOID main (VOID) 
{ 
struct IOStdReq 
struct MsgPort 
struct InputEvent 

short 
short 
short 

*inputReqBlk; 
*inputPort; 
*FakeEvent; 
loop; 
num; 
numloop; 

if (inputPort=CreatePort(NULL,NULL» 
{ 

if (FakeEvent=AllocMem(sizeof(struct InputEvent),MEMF_PUBLIC» 
{ 

Input Device 697 



if (inputReqBlk=(struct IOStdReq *)CreateExtIO(inputPort, 
sizeof(struct IOStdReq») 

if (!OpenDevice("input.device",NULL, 
(struct IORequest *)inputReqBlk,NULL» 

for (numloop=O;numloop<4;numloop++) 
for (loop=O;loop<8;loop++) 

} 

for (num=O;num<20;num++) 

FakeEvent->ie NextEvent=NULL; 
FakeEvent->ie-Class=IECLASS RAWMOUSE; 
FakeEvent->ie-Code=IECODE NOBUTTON; 
FakeEvent->ie-Qualifier=IEQUALIFIER RELATIVEMOUSE; 
FakeEvent->ie-X=O; -
FakeEvent->ie=Y=O; 

switch (loop) 
( 
case 0: FakeEvent->ie X=l; -
case 1: FakeEvent->ie Y=1; break; -
case 2: FakeEvent->ie Y=1; 
case 3: FakeEvent->ie X=-1; break; -
case 4 : FakeEvent->ie X=-1; -
case 5: FakeEvent->ie Y=-1; break; -
case 6: FakeEvent->ie Y=-1; -
case 7: FakeEvent->ie X=1; break; -

inputReqBlk->io Data=(APTR)FakeEvent; 
inputReqBlk->io-Command=IND WRITEEVENT; 
inputReqBlk->io-Flags=O; -
inputReqBlk->io-Length=sizeof(struct InputEvent); 
DoIO«struct IORequest *)inputReqBlk); 

CloseDevice«struct IORequest *)inputReqBlk); 
} 
DeleteExtIO«struct IORequest *)inputReqBlk); 

} 
FreeMem(FakeEvent,sizeof(struct InputEvent»; 

DeletePort(inputPort); 

NOTE 

This command propagates the input event thru the handler chain. The handlers may link other events 
onto the end of this event, or modify the contents of the data structure you constructed in any way it 
wishes. This means do not rely on any of the data being the same from event to event. 

IECLASS POINTERPOS 

One event of special note is IECLASS_POINTERPOS. This event, when sent to the input device, is 
fed into Intuition to specify a position for the mouse pointer RELATIVE TO THE INTUITION 
VIEW ORIGIN IN 640 by 400 COORDINATES. (This will cause strange results on screens with 
higher resolutions.) The coordinates are provided in the pseudo-fields ie_X and ie_Yo Internally, 
Intuition will convert this event into the proper RAWMOUSE event, replacing ie_XlY with a suitable 
relative mouse motion. The presence of the qualifier IEQUALIFIER_RELATIVEMOUSE has the 
same effect as using IECLASS _ RA WMOUSE. 

698 Input Device 



IND _SETTHRESH COMMAND 

This command sets the timing in seconds and microseconds for the input device to indicate how long a user must 
hold down a key before it begins to repeaL This command is normally performed by the Preferences tool or by 
Intuition when it notices that the Preferences have been changed. If you wish. you can call this function. 

This command takes a timerequest 10 request Gust like the timer device). 

IND SETPERIOD COMMAND 

This command sets the time period between key repeat events once the initial period threshold has elapsed. 

This command also takes a timerequest 10 request Again. it is a command normally issued by Intuition and preset 
by the Preferences tool. A typical calling sequence is shown below; change the timing period values to suit your 
application. 

/* 
* InputDevice example 

* 
* This example changes the threshold and period of the key repeat ••• 
*/ 

'include <exec/types.h> 
'include <exec/memory.h> 
'include <devices/input.h> 
'include <devices/timer.h> 
'include <proto/all.h> 

VOID main (VOID) 
{ 
struct timerequest *inputReqBlk; 
struct MsgPort *inputPort; 

if (inputPort=CreatePort(NULL,NULL)) 
{ 

if (inputReqBlk=(struct timerequest *)CreateExtIO(inputPort, 
sizeof(struct timerequest))) 

if (!OpenDevice(linput.device",NULL, 
(struct IORequest *)inputReqBlk,NULL)) 

inputReqBlk->tr node.io Command=IND SETTHRESH; 
inputReqBlk->tr-time.tv-secs=l; -
inputReqBlk->tr=time.tv=micro=500000; /* 1.5 seconds *1 

DoIO«struct IORequest *)inputReqB1k); 

inputReqBlk->tr node.io Command=IND SETPERIOD; 
inputReqBlk->tr-time.tv-secs=O; -
inputReqBlk->tr=time.tv=micro=12000; /* .012 seconds */ 

DoIO«struct IORequest *)inputReqBlk); 

CloseDevice«struct IORequest *)inputReqBlk); 

DeleteExtIO«struct IORequest *)inputReqBlk); 

DeletePort(inputPort); 

Input Device 699 



Input Device and Intuition 

There are several ways to receive information from the various devices that are part of the input device. The first 
way is to communicate directly with the device. This method is not recommended while the input device task is 
running -- which is most of the time. The second way is to become a handler for the stream of events which the 
input device produces. That method is shown above. 

The third method of getting input from the input device is to retrieve the data from the console device or from the 
IDCMP (Intuition Direct Communications Message Port). See the Intuition chapter for more information on IDCMP 
messages. See the console chapter for more information on console device I/O. 

Sample Program 

-------- InputSwap.a --------
/* 

* InputDevice example 

* 
* This example swaps the function of the left and right mouse buttons 
* The C code is just the wrapper that installs and removes the 
* input.device handler that does the work. 

* 
* The handler is written in assembly code since it is important that 
* handlers be as fast as possible while processing the input events. 

* 
* Compile and link as follows: 

* 
* LC -b1 -cfist -v -w InputSwap.c 
* 
* Cape assemble: 
* 
* Casm -a InputHandler.a -i INCLUDE: -0 InputHandler.o 

* 
* BLink: 
* 
* BLink from LIB:c.o+lnputSwap.o+inputhandler.o LIB LIB:lcs.lib LIB:amiga.lib TO InputSwap 

* 
*/ 

iinclude <exec/types.h> 
iinclude <exec/memory.h> 
iinclude <devices/input.h> 
iinclude <intuition/intuition.h> 

iinclude <proto/all.h> 

UBYTE NameString[]="Button Swap"; 

struct NewWindow mywin= 
{ 

0,0, 124, 10,0, 1,CLOSEWINDOW, 
WINDOWDRAGIWINDOWCLOSEISIMPLE REFRESHINOCAREREFRESH, 
NULL, NULL, NameString, NULL, NULL, 0, 0, 0, O,WBENCHSCREEN 
} ; 

extern VOID ButtonSwap(); 

extern struct IntuitionBase *IntuitionBase; 

700 Input Device 



/* 
* This routine opens a window and. waits for the one event that 
* can happen (CLOSEWINDOW) This is just to let the user play with 
* the swapped buttons and then close the program ... 
*/ 

VOID WaitForUser(VOID) 
{ 

struct Window *win; 

if (IntuitionBase=(struct IntuitionBase *) 
OpenLibrary("intuition.library",OL» 

if (win=OpenWindow{&mywin» 
( 

WaitPort(win->UserPort); 
ReplyMsg(GetMsg(win->UserPort»; 

CloseWindow(win); 

CloseLibrary«struct Library *)IntuitionBase); 

VOID main (VOID) 
{ 
struct IOStdReq *inputReqBlk; 
struct MsgPort *inputPort; 
struct Interrupt *inputHandler; 

if (inputPort=CreatePort(NULL,NULL» 
{ 

if (inputHandler=AllocMem(sizeof(struct Interrupt), 
MEMF_PUBLICIMEMF_CLEAR» 

if (inputReqBlk={struct IOStdReq *)CreateExtIO(inputPort, 
sizeof(struct IOStdReq») 

if (!OpenDevice ("input .device", NULL, 
(struct IORequest *)inputReqBlk,NULL» 

inputHandler->is Code=ButtonSwap; 
inputHandler->is-Data=NULL; 
inputHandler->is-Node.ln Pri=100; 
inputHandler->is-Node.ln-Name=NameString; 
inputReqBlk->io Data=(APTR)inputHandler; 
inputReqBlk->io-Command=IND ADDHANDLER; 
DoIO«struct IORequest *)inputReqBlk); 

WaitForUser () ; 

inputReqBlk->io Data=(APTR)inputHandler; 
inputReqBlk->io-Command=IND REMHANDLER; 
DoIO«struct IORequest *)inputReqBlk); 

CloseDevice«struct IORequest *)inputReqBlk); 

DeleteExtIO({struct IORequest *)inputReqBlk); 

FreeMem(inputHandler,sizeof(struct Interrupt»; 

DeletePort(inputPort); 

-------- InputHandler.a --------
* 
* InputHandler that does a Left/Right mouse button swap ••. 

* 
************************************************************************ 

* 
* Required includes •.• 

* 

Input Device 701 



INCLUDE "exec/types.i" 
INCLUDE "exec/io.i" 
INCLUDE "devices/inputevent.i" 

* 
************************************************************************ 

* * Make the entry point external ••• 

* 
xdef _ButtonSwap 

* 
************************************************************************ 

* * This is the input handler that will swap the 
* mouse buttons for left handed use. 

* * The event list gets passed to you in aD. 
* The is Data field is passed to you in al. 
* This example does not use the is_Data field •.. 
* * On exit you must return the event list in dO. In this way 
* you could add or remove items from the event list. 

* 
************************************************************************ 

* * The handler gets called here ••• 

* 
_ButtonSwap: 

* 
move.l aO,-(sp) ; Save the event list 

* Since the event list could be a linked list, we start a loop 
* here to handle all of the events passed to us. 

* 
CheckLoop: 

* 

move.w ie .Qualifier(aO),dl 
move.w dl~dO 

Get qualifiers ••• 
Two places ••• 

* Since we are changing left and right mouse buttons, we need to make 
* sure that we change the qualifiers on all of the messages. The 
* left and right mouse buttons are tracked in the message qualifiers 
* for use in such things as dragging. To make sure that we continue 
* to drag correctly, we change the qualifiers. 
* 
CheckRight: btst #IEQUALrFIERB_RBUTTON,dl Check for right 

beq.s NoRight 
bset #IEQUALIFIERB_LEFTBUTTON,dO Set the left ... 
beq.s CheckLeft 

NoRight: bclr #IEQUALIFIERB_LEFTBUTTON,dO Clear the left ••• 
* 
CheckLeft: btst #IEQUALIFIERB_LEFTBUTTON,dl Check for left 

beq.s NoLeft 
bset #IEQUALIFIERB_RBUTTON,dO Set the right ... 
beq.s CheckLeft 

NOLeft: bclr #IEQUALIFIERB_RBUTTON,dO Clear the right ••• 
* 

move.w dO,ie_Qualifier(aO) Save back ..• 
* * The actual button up/down events are transmitted as the 
* code field in RAWMOUSE events. The code field must the be 
* checked and modified when needed on RAWMOUSE events. If the 
* event is not a RAWMOUSE, we are done with it. 
* 

* 

* 
SwapThem: 

702 Input Device 

cmp.b 
bne.s 

move.w 
move.w 
and.w 
cmp.w 
beq.s 
cmp.w 
bne.s 

#IECLASS_RAWMOUSE,ie_Class(aO) 
NextEvent 

ie Code(aO),dO 
dO~dl 
#$7F,dO 
#IECODE_LBUTTON,dO 
SwapThem 
#IECODE_RBUTTON,dO 
NextEvent 

eor.w #l,dl 
move.w dl,ie_Code(aO) 

Check for mouse 
If not, next •.. 

Get code ..• 
Save ••• 
Mask UP PREFIX 
Check for Left ••• 
If so, swap ••• 
Check for Right ••• 
If not, next ••• 

Flip bottom bit 
Save it ..• 



* * The event list is linked via a pointer to the next event 
* in the first element of the structure. That is why it is not 
* necessary to use: move.l ie_NextEvent(aO),dO 

* * The reason I move to dO first is that this also checks for zero. 
* The last event in the list will have a NULL ie NextEvent field. 
* This is NOT as standard EXEC list where the node after the last 
* node is NULL. Input events are single-linked for performance. 

* 
NextEvent: move.l 

move.l 
bne.s 

* * All done, just return 
* 

move.l 
rts 

(aO),dO 
dO,aO 
Check Loop 

the event 

{sp)+,dO 

list ••• (in dO) 

Get next event 
into aO ••• 
Do some more. 

Get event list back ••• 
return from handler ••• 

Input Device 703 



Chapter 36 

Keyboard Device 

Introduction 

The keyboard device gives system access to the Amiga keyboard. When you send this device the command to read 
one or more keystrokes from the keyboard, for each keystroke (whether key-up or key-down) the keyboard device 
creates a data structure called an input event to describe what happened. A keyboard input event includes the key 
code (including up or down transition status), information about the current state of the left and right 
Shift/Alt/Amiga keys, the state of the Control and CapsLock key, and whether the key came from the numeric 
keypad area. 

Thus, the keyboard device provides more information than simply the "raw" key input that might be obtained by 
directly reading the hardware registers. In addition, the keyboard device can buffer keystrokes for you. If your task 
takes more time to process prior keystrokes, the keyboard device senses additional keystrokes and saves several 
keystrokes as a type-ahead feature. If your task takes an exceptionally long time to read this information from the 
keyboard, any keystrokes queued up beyond the number the system can handle will be ignored. Normally, the input 
device task requests for and processes keyboard events, turning them into input device events so that no keystrokes 
are lost. You can find more information about keyboard event-queuing in the "Input Device" chapter and in the 
Intuition chapter' 'Input and Output Methods." 

Keyboard Device 705 



Keyboard Device Commands 

The following system functions are used to send commands to the keyboard device. 

Command 

OpenDeviceO 
CloseDeviceO 
DoIOO 
SendIOO 
AbortIOO 

Operation 

Obtain shared use of the keyboard device 
Relinquish use of the keyboard device 
Initiate a command, and wait for it to complete 
Initiate a command, and return immediately 
Abort a command already in the queue 

The keyboard device also responds to the following commands: 

I!OCommand 

KBD_ADDRESETHANDLER 
KBD_REMRESETHANDLER 
KBD_RESETHANDLERDONE 

KBD READMATRIX 

Operation 

Add a reset handler to the device 
Remove a reset handler from the device 
Indicate that a handler has completed 
its job and reset could possibly occur now 
Read the state' of every key in the keyboard 
Read one (or more) key event from the 
keyboard device 

This command lets you discover the current state of every key in the key matrix (UP = 0, DOWN = 1). You provide 
a data area that is at least large enough to hold one bit per key, approximately 16 bytes. The keyboard layout is 
shown in the figure below, indicating the raw numeric value that each key transmits when it is pressed. This value is 
the numeric position that the key occupies in the key matrix. 

706 Keyboard Device 



~ 
~ 

Figure 36-1: Raw Key Matrix 

( 

5A 
7 

30 
4 

20 
1 

10 
0 

OF 

) 

58 
8 

3E 
5 

2E 
2 

1E 

I 

5C 50 
9 

3F 4A 
6 + 

2F 5E 
3 ENTER 

1F 43 

3C 

The following example will read the matrix and display the up-down state of all of the elements in the matrix in a 
table. If you read the column header and then the row number as a hex number, it would correspond to the raw key 
code. 

/* 
* Keyboard device matrix example ... 
*/ 

#include <exec/types.h> 
#include <exec/io.h> 
#include <exec/ports.h> 
#include <exec/memory.h> 
#include <devices/keyboard.h> 

#include <proto/exec.h> 

#include <stdio.h> 

int CXBRK(VOID) ( return(O); 

/* 
* There are keycodes from OxOO to Ox77, (with Ox78 to Ox7F reserved) 
* so the matrix needs to be of Ox80 bits in size, or Ox80/8 which 
* is Ox10 or 16 bytes .•. 
*/ 

#define MATRIX SIZE 16L 

/* 
* This assembles the matrix for display that translates directly 
* to the RAW key value of the key that is up or down 
*/ 

VOID Display Matrix(UBYTE *keyMatrix) 
( -
SHORT bitcount; 
SHORT bytecount; 
SHORT mask; 
USHORT twobyte; 

printf("\n 0 1 2 3 4 5 6 7"); 
printf("\n +-----------------"); 
for (bitcount=O;bitcount<16;bitcount++) 
( 

printf("\n%x I",bitcount); 

Keyboard Device 707 



mask=l « bitcount; 
for (bytecount=O;bytecount<16;bytecount+=2) 
{ 

twobyte=keyMatrix[bytecount] I (keyMatrix[bytecount+1] « 8); 
if (twobyte & mask) printf(" *"); 
else printf(" _A); 

printf("\n\n"); 

VOID main(int argc, char *argv[]) 
{ 
struct IOStdReq *keyRequest; 
struct MsgPort *keyPort; 

UBYTE *keyMatrix; 

if (keyPort=CreatePort(NULL,NULL» 
{ 

if (keyRequest=(struct IOStdReq *)CreateExtIO(keyPort, 
sizeof(struct IOStdReq») 

if (!OpenDevice ("keyboard.device", NULL, 
(struct IORequest *)keyRequest,NULL» 

if (keyMatrix=AllocMem(MATRIX_SIZE,MEMF_PUBLICIMEMF_CLEAR» 
( 

keyRequest->io Command=KBD READMATRIX; 
keyRequest->io-Data=(APTR)keyMatrix; 
keyRequest->io=Length=13; /* MUST for 1.2/1.3 */ 
DoIO«struct IORequest *)keyRequest); 

/* Check for CLI startup ... */ 
if (argc) Display_Matrix(keyMatrix); 

FreeMem(keyMatrix,MATRIX_SIZE); 

CloseDevice«struct IORequest *)keyRequest); 
} 
DeleteExtIO«struct IORequest *)keyRequest); 

} 
DeletePort(keyPort); 

NOTE 

Although the io _Length field is described as being the size of the matrix you will accept, you must set 
this field to 13 for V34 and earlier versions of Kickstart. 

To find the status of a particular key - for example, to find out if the F2 key is down - you find the bit that 
specifies the current state by dividing the key matrix value by 8. Since hex 51 = 81, this indicates that the bit is in 
byte number 10 of the matrix. Then take the same number (decimal 81) and use modulo 8 to determine which bit 
position within that byte represents the state of the key. This yields a value of 1. So, by reading bit position 1 of byte 
number 10, you determine the status of the function key F2. 

KBD_ADDRESETHANDLER 

This command adds a routine to a chain of reset-handlers. When a user presses the key sequence Ctrl-Ieft Amiga
right Amiga (the reset sequence), the keyboard device senses this and calls a prioritized chain of reset-handlers. 
These might be thought of as clean-up routines that "must" be performed before reset is allowed to occur. For 
example, if a disk write is in progress, the system should finish that before resetting the hardware so as not to corrupt 
the contents of the disk. 

708 Keyboard Device 



NOTE 

If you add your own handler to this chain, you must ensure that your handler allows the rest of reset 
processing to occur. Reset must continue to function. Also, if you don't execute your reset code fast 
enough, the system will still reboot (about 10 seconds). 

It is also important to note that not all Amigas handle rest processing in the same way. On the A500, 
the reset key sequence sends a hardware reset signal and never goes through the reset handlers. Also 
some of the early A2000s (i.e., German keyboards with the function keys the same size as the ESC-key) 
do not handle the reset via the reset handlers. It is thus recommended that your application not rely on 
the reset handler abilities of the keyboard device. 

Reset handlers are just like any other handler and are added to the handler list with an Interrupt structure. The 
priority field in the list node of the interrupt structure establishes the sequence in which reset handlers are processed 
by the system. Keyboard reset handlers are currently limited to the priority values of a software interrupt, that is, 
values of -32, -16, 0,16, and 32) 

Only the is_Data field is passed to a reset handler. Any return value from it is ignored. All keyboard reset handlers 
are activated if time permits. Normally, a reset handler will just signal the requisite task and return. The task would 
then do whatever it needed and signal the reset handler that it is done. 

KBD REMRESETHANDLER 

This command is used to remove a keyboard reset handler from the system. You need to supply the same Interrupt 
structure to this command that you used with the KBD_ADDRESETHANDLER command. 

KBD RESETHANDLERDONE 

This command tells the system that your reset handling code has completed. If you are the last outstanding reset 
handler, the system will reset after this call. 

NOTE 

After 10 seconds, the system will still reboot, regardless of outstanding reset handlers. 

Here is an example program that installs a reset handler and either waits for the reboot or for the user to close the 
window. If there was a reboot, the window will close and, if executed from the CLI, it will display a few messages. 
If the user closes the window, the handler is removed and the program exits cleanly. 

; Compile, assemble, and link as follows: 
; Cape assembler .•• 
, 
LC -cfist -bI -v -w keyreset.c 
CAsm -a keyhandler.a -i INCLUDE: -0 keyhandler.o 
BLink FROM c.o+keyreset.o+keyhandler.o LIB LIB:lc.lib+LIB:amiga.lib TO keyreset 

------- keyreset.c --------
1* 
* Keyboard device reset handler example ... 
*1 

#include <exec/types.h> 
#include <exec/io.h> 
#include <exec/ports.h> 
#include <exec/memory.h> 

Keyboard Device 709 



#include <devices/keyboard.h> 
#include <intuition/intuition.h> 

#include <proto/all.h> 

#include <stdio.h> 

int CXBRK(VOID) { return(O); 

extern VOID ResetHandler(); 

UBYTE NameString[]="Reset Handler Test"; 

struct NewWindow mywin= 
{ 
0,0,17B,10,0,1,CLOSEWINDOW, 
WINDOWDRAGIWINDOWCLOSEISIMPLE REFRESHINOCAREREFRESH, 
NULL,NULL,Namestring,NULL,NULL,O, 0, O,O,WBENCHSCREEN 
) ; 

extern struct IntuitionBase *IntuitionBase; 

struct MyData 
{ 

/* 

struct Task *MyTask; 
ULONG MySignal; 

} ; 

* This routine opens a window and waits for the one event that 
* can happen (CLOSEWINDOW) or the signal from the reset handler. 
*/ 

short WaitForUser(ULONG MySignal) 
{ 

struct Window *win; 
short ret=O; 

if (IntuitionBase=(struct IntuitionBase *) 
OpenLibrary("intuition.library",OL») 

if (win=OpenWindow(&mywin) 
{ 

ret=(MySignal==Wait(MySignal I (lL« win->UserPort->mp_SigBit»); 
CloseWindow(win); 

CloseLibrary«struct Library *)IntuitionBase); 

return(ret); 

VOID main(int argc, char *argv[]) 
{ 
struct IOStdReq 
struct MsgPort 
struct Interrupt 
struct MyData 

ULONG 

*keyReqBlk; 
*keyPort; 
*keyHandler; 
MyDataStuff; 
MySignal; 

if «MySignal=Al1ocSignal(-lL) !=-1) 
{ 

MyDataStuff.MyTask=FindTask(NULL); 
MyDataStuff.MySignal=lL « MySignal; 
if (keyPort=CreatePort(NULL,NULL) 
{ 

if (keyHandler=AllocMem(sizeof(struct Interrupt), 
MEMF_PUBLICIMEMF_CLEAR» 

if (keyReqBlk=(struct IOStdReq *)CreateExtIO(keyPort, 
sizeof(struct IOStdReq»)) 

if (!OpenDevice ("keyboard.device", NULL, 
(struct IORequest *)keyReqBlk,NULL) 

710 Keyboard Device 



keyHandler->is Code=ResetHandler; 
keyHandler->is=Data=(APTR)&MyDataStuff; 

/* 
* Note that only software interrupt priorities 
* can be used for the .In Pri on the reset 
* handler... -
*/ 

keyHandler->is_Node.ln_Pri=16; 

keyHandler->is Node.ln Name=NameString; 
keyReqBlk->io Data=(APTR)keyHandler; 
keyReqBlk->io-Command=KBD ADDRESETHANDLER; 
DoIO((struct IORequest *)keyReqBlk); 

if (WaitForUser(MyDataStuff.MySignal» 
( 

if (argc) /* Check for CLI */ 
( 

printf("System going down\n"); 
printf("Cleaning up .•• \n"); 
/* Show a delay, like cleanup .•. */ 
Delay(20); 
printf(I*Poof*\n"); 

/* We are done with our cleanup */ 
keyReqBlk->io Data=(APTR)keyHandler; 
keyReqBlk->io-Command=KBD RESETHANDLERDONE; 
DoIO((struct IORequest *)keyReqBlk); 
/* 

* Note that since the above call 
* tells the system it is safe to reboot 
* and will cause the reboot if this 
* task was the last to say so, the call 
* never really returns ••• The system 
* just reboots ••. 
*/ 

keyReqBlk->io Data=(APTR)keyHandler; 
keyReqBlk->io-Command=KBD REMRESETHANDLER; 
DoIO((struct IORequest *)keyReqBlk); 

CloseDevice((struct IORequest *)keyReqBlk); 
} 
DeleteExtIO((struct IORequest *)keyReqBlk); 

} 
FreeMem(keyHandler,sizeof(struct Interrupt»; 

DeletePort(keyPort); 
} 
FreeSignal(MySignal); 

-------- keyhandler.a --------
* Keyboard reset handler that signals the task in the structure •.. 

* 
************************************************************************ 
* Required includes .•• 

* 

* 

* 

INCLUDE "exec/types.i" 
INCLUDE "exec/io.i" 
INCLUDE "devices/keyboard.i" 

xref 
xref 

AbsExecBase 
=LVOSignal 

We get this from outside ••• 
We get this from outside ••. 

************************************************************************ 
* Make the entry point external ••. 

Keyboard Device 711 



* 
xdef ResetHandler 

* 
************************************************************************ 
* This is the structure that is passed in Al in this example ... 

* 

* 

STRUCTURE 
APTR 
ULONG 

MyData,O 
MyTask 
MySignal 

************************************************************************ 
* This is the input handler 
* The is Data field is passed to you in al. 

* * The handler gets called here •.. 

* 
ResetHandler: move.l MySignal(al),dO Get signal to send 

move.l MyTask(al),al ; Get task 

* * Now signal the task ••• 

* 
move.l a6,-(sp) 
move.l AbsExecBase,a6 
jsr =LVOSignal(a6) 
move.l (sp)+,a6 

* * Return to let other handlers execute. 

* 
rts 

* 

Save the stack ... 
Get ExecBase 
Send the signal 
Restore A6 

; return from handler ... 

************************************************************************ 

KBD READEVENT 

Reading keyboard events is normally not done through direct access to the keyboard device. See the chapter "Input 
Device," for the intimate linkage between that device and the keyboard device. This section is provided primarily to 
show you the component parts of a keyboard input event 

The keyboard matrix figure shown at the beginning of this chapter gives the code value that each key places into the 
ie_Code field of the input event for a key-down event. For a key-up event, a value of hexadecimal 80 is or' ed with 
the value shown above. Additionally, if either shift key is down, or if the key is one of those in the numeric keypad, 
the qualifier field of the keyboard input event will be filled in accordingly. In V34 and earlier versions of Kickstart, 
the keyboard device does not set the numeric qualifier for the keypad keys ,(" 'r, 'j', '*' and '+'. 

When you ask to read events from the keyboard, the call will not be satisfied until at least one keyboard event is 
available to be returned. The io _Length field must contain the number of bytes available in io _Data to insert events 
into. Thus, you should use a multiple of the number of bytes in an InputEvent (see example below). 

NOTE 

The keyboard device can queue up several keystrokes without a task requesting a report of keyboard 
events. However, when the keyboard event buffer has been filled with no task interaction, additional 
keystrokes will be discarded. 

712 Keyboard Device 



Example Keyboard Read-event Program 

Shown below is an example keyboard.device read-event program: 

/* The following example does not work very well in a system where 
* input.device is active since input.device also actively calls for 
* keyboard events via this call. For that reason, you will not get all of 
* the keyboard events. Neither will the input device; no one will be happy. 

* 
* Keyboard device read event example •.. 
*/ 

#include <exec/types.h> 
#include <exec/io.h> 
#include <exec/ports.h> 
#include <exec/memory.h> 
#include <devices/inputevent.h> 
#include <devices/keyboard.h> 

#include <proto/exec.h> 

#include <stdio.h> 

int CXBRK (VOID) ( return (0) ; 

VOID Display Event (struct InputEvent *keyEvent) 
( -

printf("Got key event: KeyCode: %2x Qualifiers: %4x\n", 
keyEvent->ie_Code, 
keyEvent->ie_Qualifier); 

VOID main(int argc, char *argv[]) 
{ 
struct IOStdReq 
struct MsgPort 
struct InputEvent 

SHORT 

*keYRequest; 
*keYPort; 
*keYEvent; 
loop; 

if (keyPort=CreatePort(NULL,NULL» 
{ 

if (keyRequest=(struct IOStdReq *)CreateExtIO(keyPort, 
sizeof(struct IOStdReq») 

if (!OpenDevice ("keyboard.device", NULL, 
(struct IORequest *)keyRequest,NULL» 

if (keyEvent=AllocMem(sizeof(struct InputEvent),MEMF_PUBLIC» 
( 

for (100p=0;100p<4;100p++) 
( 

keyRequest->io command=KBD READEVENT; 
keyRequest->io:::Data=(APTR)keyEvent; 

/* 
* We want 1 event, so we just set the 
* length field to the size, in bytes 
* of the event. For multiple events, 
* set this to a multiple of that size. 
* The keyboard device NEVER fills partial 
* events ... 
*/ 

keyRequest->io_Length=sizeof(struct InputEvent); 
DoIO«struct IORequest *)keyRequest); 

Keyboard Device 713 



/* Cheek for CLI startup .•• */ 
if (arge) Display_Event(keyEvent); 

} 
FreeMem(keyEvent,sizeof(struet InputEvent)); 

CloseDeviee((struet IORequest *)keyRequest); 

DeleteExtIO((struet IORequest *)keyRequest); 
} 
DeletePort(keyPort); 

714 Keyboard Device 



Chapter 37 

Narrator Device 

This chapter describes the narrator device which, together with the translator library, provides all the Amiga' s text
to-speech functions. It provides an example that can be used to evaluate how parameters passed to the device can 
affect the OutpUL This chapter also contains a non-technical explanation of how to effectively utilize the speech 
device. In addition, a more technical explanation is provided for those who are interested in how the speech is 
actually produced. 

Introduction 

The speech system on the Amiga is divided into two subsystems: 

• The translator library, which contains a function that translates English strings into phonetic strings. 

• The narrator device, which, given a phonetic string, communicates with the audio device to actually 
produce human-like speech. 

The subsystems may be used individually; you can pretranslate the English, and just use the narrator device to speak 
phonetic strings at run-time. Please see the Exec documentation for general information on how to use libraries and 
devices. 

Narrator Device 715 



The Translator Library 

The translator library provides a single function, TranslateO, that converts an English language string into a 
phonetic string. To use this function, you must first open the library. Setting a global variable, TranslatorBase, to 
the value returned from the call to OpenLibraryO enables the Amiga linker to correctly locate the translator library: 

struct Library *TranslatorBase; 

TranslatorBase = OpenLibrary("translator.library",REVISION); 
if(TranslatorBase != NULL) 

( 
/* use translator here -- library open */ 
} 

NOTE 

Since translator is a disk-based library, the call to OpenLibraryO will work only if the UBS: directory 
contains translator. library. 

USING THE TRANSLATE FUNCTION 

Once the library is open, you can call the translate function: 

'define BUFLEN 500 

APTR EnglStr; 
LONG EnglLen; 
UBYTE PhonBuffer[BUFLEN); 
LONG rtnCode; 

/* pointer to sample input string */ 
/* input length */ 
/* place to put the translation */ 
/* return code from function */ 

EnglStr = "This is Amiga speaking."; /* a test string */ 
EnglLen = strlen(EnglStr); 
rtnCode = Translate (EnglStr, EnglLen, (APTR) &PhonBuffer (0), BUFLEN); 

The input string will be translated into its phonetic equivalent and can be used to feed the narrator device. If you 
receive a non-zero return code, you haven't provided enough output buffer space to hold the entire translation. In 
this case, the TranslateO function breaks the translation at the end of a word in the input stream and returns the 
position in the input stream at which the translation ended. You can use the output buffer, then call the TranslateO 
function again, starting at this original ending position, to continue the translation where you left off. This method 
will sound smoothest if the ending position ends on sentence boundaries. 

NOTE 

The value returned is negative. Therefore, you must use -(rtnCode) as the starting point for a new 
translation. 

As with all other libraries of functions, if you have successfully opened the translator library for use, be sure to close 
it before your program exits by calling CloseLibraryO. If the system needs memory resources, it can then expunge 
the closed libraries to gain additional space. For more information on the translator, refer to the "Translator 
Library" chapter. 

716 Narrator Device 



The Narrator Device 

The narrator device on the Arniga provides two basic functions: 

• You can write to the device and ask it to speak a phonetically-encoded string in a specific manner-pitch, 
male/female, various speaking rates, and so on. 

• You can read from the device. As it speaks, the device can generate mouth data for you and you can use 
this data to perform a graphics rendering of a face and mouth. 

OPENING THE NARRATOR DEVICE 

To use the narrator device, you must first open the device. The narrator device is disk-resident For the 
OpenDeviceO call to succeed, the narrator device must be present in the directory currently assigned by ArnigaDOS 
to the DEVS: directory. 

To communicate with the narrator device, like any other device, you must pass an IORequest block to 
OpenDeviceO. The request used by the narrator device for a write is a special format called a narrator Jb. The 
request used for a read is also a special format, called a mouth Jb. Both requests are described in the sections that 
follow. A sample OpenDeviceO sequence for the narrator device follows. Notice that two request blocks are 
created, one for writing to the device and one for reading from it. For brevity, the error checking is left out of this 
code segment. It is, however, utilized in the sample program later on. 

struct MsgPort write port; 
struct narrator_rb v~ice_io; 

struct MsgPort read port; 
struct mouth_rb mouth_io; 

OpenDevice("narrator.device", 0, &voice_io, 0); 

write~ort.mp_SigBit 

write port.mp Node.ln Name 
write~ort.mp=Node.ln=Type 
write port.mp Flags 
write=port.mp=SigTask 

= AllocSignal(-I); 
= "speech_write"; 
= NT_MSGPORT; 
= PA SIGNAL; 
= FindTask(NULL); 

NewList(&write_port.mp_MsgList); 

CONTENTS OF THE WRITE REQUEST BLOCK 

The standard I/O part of the request is set up much as with any other device, the beauty of Exec showing again. 

voice io.message.io Command = CMD WRITE; 
voice=io.message.io=Offset = 0; -
voice io.message.io Data = PhonBuffer; 
voice=io.message.io=Length = strlen(PhonBuffer); 

voice io.message.io Message.mn Node.ln Type = NT MESSAGE; 
voice-io.message.io-Message.mn-Length - siieof(voice io); 
voice=io.message.io=Message.mn=Replyport &write_port;-

Narrator Device 717 



You can control several characteristics of the speech, as indicated in the narrator request block structure shown 
below. 

struct narrator rb 
{ 
struct roStdReq 
UWORD 
UWORD 
UWORD 
UWORD 
UBYTE 
UWORD 
UWORD 
UWORD 
UBYTE 
UBYTE 
UBYTE 
UBYTE 
} ; 

where 

message.io _Data 

message; 
rate; 
pitch; 
mode; 
sex; 

*ch_masks; 
nm masks; 
volume; 
sampfreq; 
mouths; 
chanmask; 
numchan; 
pad; 

1* Standard IORB *1 
1* Speaking rate (words/minute) *1 
1* Baseline pitch in Hertz *1 
1* pitch mode *1 
1* Sex of voice *1 
1* Pointer to allocation mask *1 
1* Number of masks *1 
1* volume. 0 (off) thru 64 *1 
1* Audio sampling freq *1 
1* If non-zero, generate mouths *1 
1* Which ch mask used (internal) *1 
1* Num ch masks used (internal) *1 
1* For alignment, system use only *1 

points to the phonetic input string, which must be terminated with a Q#U. 

message.io _Length 
is the length of the string (including the Q#U and the terminating NULL). The narrator will parse the 
input string until a Q#U or NULL is encountered or io _Length is reached, whichever comes first. 

rate is the speed in words per minute that you wish it to speak (range: 40 - 400). 

pitch 
is the baseline pitch. If you are using an expressive voice rather than a monotone, the pitch will vary 
above and below this baseline pitch (range: 65 - 320). 

mode 
determines whether you have a monotonic (0) or expressive (1) voice. 

sex determines if the voice is male (0) or female (1). 

volume and sampfreq 
are passed on to the audio device; sampfreq affects both pitch and rate proportionally. Raising it above 
the default also causes the narrator to use proportionally more CPU time while speaking. 

mouths 
is set to nonzero before starting a write if you want to read mouths using the read command while the 
system is speaking. 

chanmask, numchan, pad 
are used by narrator for audio allocation keys and structure alignment. 

Here is a code fragment which fiUs in the speech control fields of the narrator Jb structure: 

718 Narrator Device 



struct narrator rb voice io; 
BYTE audio_chanT] = (3, 5, 10, 12); 

voice io.ch masks = audio chan; 
voice-io.nm-masks = sizeof(audio chan); 
voice=io.mouths = 1; -

/* These are THE parameters affecting speech. */ 
voice io.rate = DEFRATE; 
voice=io.pitch = DEFPITCH; 
voice_io.mode = DEFMODE; 
voice io.sex = DEFSEX; 
voice-io.volume = DEFVOL; 
voice=io.sampfreq = DEFFREQ; 

The system default values are shown in the files devices/narrator.h and devices/narrator.i. When you call 
OpenDeviceO, the system initializes the request block to the default values. If you want other than the 
defaults, you must change them after the device is open. 

CONTENTS OF THE READ REQUEST 

Read requests are only needed if the programmer wants to get mouth widths and heights as the narrator is 
speaking. 

The mouth Jb data structure follows. Notice that it is an extended form of the narrator Jb structure. 

struct mouth rb 
{ 

struct narrator rb voice; 
UBYTE - width; 
UBYTE height; 
UBYTE shape; 
UBYTE pad; 
} ; 

/* Speech IORB */ 
/* Width (returned value) */ 
/* Height (returned value) */ 
/* Internal use, do not modify */ 
/* For alignment */ 

The fields width and height will, on completion of a read-request, contain an integer value proportional to the 
mouth width and height that are appropriate to the phoneme currently being spoken. When you send a read 
request, the system does not return a response until one of two things happens. Either a different mouth size is 
available (this prevents you from drawing and redrawing the same shape or having to check whether or not it is 
the same) or the speaking has completed. You must check the error return field when the read request block is 
returned to determine if the request block contains a new mouth shape or simply is returning status of 
ND _ NoWrite (no write in progress, all speech ended for this request). 

PERFORMING A WRITE AND A READ 

You normally perform a write command by using the functions BeginlOO or SendIOO to transmit the request 
block to the narrator device. This allows the narrator's task to begin the I/O, while your task is free to do 
something else. The something else may be issuing a series of read commands to the device to determine 
mouth shapes and drawing them on-screen. The following sample set of fu~ction calls implements both the 
write and read commands in a single loop. Again, error checking is deferred to the sample program. 

NOTE 

This code segment handles the write with a SendlOO, then uses a loop on DolOO to handle the 
reads. The sample program uses SendlOO for both the write and read, allowing the use of only 
one WaitO, a useful technique when handling messages from multiple sources. 

Narrator Device 719 



The processing loop is as follows: 

struct narrator rb *writeNarrator; 
struct mouth_rb-*readNarrator; 

1* tell it how many characters the translate function returned *1 
writeNarrator->message.io_Length = strlen(outputstring); 

1* tell it where to find the string to speak *1 
writeNarrator->message.io_Data = output string; 

1* return immediately, run tasks concurrently *1 
SendIO(writeNarrator); 

readNarrator->voice.message.io Error = 0; 
while(readNarrator->vcice.message.io_Error != ND_NoWrite) 

{ 
DoIO(readNarrator); 
1* Put task to sleep waiting for return of the 

* message block. It will have either a different 
* mouth shape or the the error field will show 
* that no write is in progress. 
*1 

DrawMouth(readNarrator->width,readNarrator->height); 
1* An example DrawMouth is part of the sample program, below. *1 
} 

WaitIO(writeNarrator); 1* remove the write message from the 
* write_port so that it can be reused *1 

The loop continues to send read requests to the narrator device until the speech output has ended. DolOO 
automatically removes the read request block from the read-POrt for reuse. SendIOO is used to transmit the 
write request. When it completes, the write request will be appended to the write-POrt, and must be removed 
before it can be reused. 

As with all other devices, if you have successfully opened the narrator device for use, be sure to close it before 
your program exits. 

Example Program 

The example program listed at the end of this chapter shows how to use the translator and narrator, with or 
without the reading of mouth sizes. Run the program from the CLI. It takes a quoted string as its argument, 
translates it into phonemes and says them using the narrator. Use the -h flag to get a list of options the program 
supports. 

Try experimenting with the narrator device by using values other than the defaults in the narrator I/O request 
block, changing them before the write command is sent to the device. 

How to Write Phonetically for Narrator 

This section describes in detail the procedure used to specify phonetic strings to the narrator speech 
synthesizer. No previous experience with phonetics is required. The only thing you may need is a good 
pronouncing dictionary for those times when you doubt your own ears. You do not have to learn a foreign 
language or computer language. You are just going to learn how to write down the English that comes out of 
your own mouth. In writing phonetically you do not have to know how a word is spelled, just how it is said. 

720 Narrator Device 



Narrator works on utterances at the sentence level. Even if you want to say only one word, narrator will treat it 
as a complete sentence. Therefore, narrator wants one of two punctuation marks to appear at the end of every 
sentence-a period (.) or a question mark (?). The period is used for almost all utterances and will cause a final 
fall in pitch to occur at the end of a sentence. The question mark is used at the end of yes/no questions only, 
and results in a final rise in pitch. For example, the question, Do you enjoy using your Amiga? would take a 
question mark at the end because the answer to the question is either yes or no. The question, What is your 
favorite color? would not take a question mark and should be followed by a period. If no punctuation appears 
at the end of a string, narrator will append a dash to it which will cause a short pause. Narrator recognizes other 
punctuation marks as well, but these are left for later discussion. 

PHONETIC SPELLING 

Utterances are usually written phonetically using an alphabet of symbols known as·I.P.A. (for "International 
Phonetic Alphabet"). This alphabet is found at the front of most good dictionaries. The symbols can be hard 
to learn and are not available on computer keyboards, so the Advanced Research Projects Agency (ARPA) 
came up with Arpabet, a way of representing each symbol using one or two upper-case letters. Narrator uses an 
expanded version of Arpabet to specify phonetic sounds. 

A phonetic sound, or phoneme, is a basic speech sound, almost a speech atom. Working backwards, sentences 
can be broken into words, words into syllables, and syllables into phonemes. The word cat has three letters and 
(coincidentally) three phonemes. Looking at the table of phonemes we find the three sounds that make up the 
word cat. They are the phonemes K, AB, and T, written as KAET. The word cent translates as S, EH, Nand T, 
or SEHNT. Notice that both words begin with a letter c but because the c says k in cat we use the phoneme K. 
In cent the letter c says s so we use the phoneme S. You may also have noticed that there is no C phoneme. 
These examples show that a word rarely sounds like it looks in English and introduces you to a very important 
concept of phonetic spelling: spell it like it sounds, not like it looks. 

CHOOSING THE RIGHT VOWEL 

Phonemes, like letters, are divided into the two categories of vowels and consonants. Loosely defined, a vowel 
is a continuous sound made with the vocal cords vibrating and air exiting the mouth (as opposed to the nose). 
All vowels use a two-letter code. A consonant is any other sound, such as those made by rushing air (like S or 
TH), or by interruptions in air flow by the lips or tongue (B or n. Consonants use a one or two-letter code. 

In English we write with only five vowels: a, e, i, 0 and u. It would be easy if we only said five vowels. 
Unfortunately, we say more than 15 vowels. Narrator provides for most of them. You choose the proper vowel 
by listening. Say the word aloud, perhaps extending the vowel sound you want to hear. Compare the sound 
you are making to the sounds made by the vowels in the example of the phoneme list. For example, the a in 
apple sounds the same as the a in cat, not like the a in Amiga, talk, or made. Notice also that some of the 
example words in the list do not even use any of the same letters contained in the phoneme code; for example, 
AA as in bottle. 

Vowels are divided into two groups: those that maintain the same sound throughout their durations and those 
that change their sound. The ones that change are called diphthongs. Some of us were taught the terms long 
and short to describe vowel sounds. Diphthongs fall into the long category, but these two terms are inadequate 
to fully differentiate between vowels and should be avoided. The diphthongs are the last six vowels listed in 
the table. Say the word made out loud very slowly. Notice how the a starts out like the e in bet but ends up 
like the e in beet. The a therefore is a diphthong in this word and we would use EY to represent it. Some 
speech synthesis systems require you to specify the changing sounds in diphthongs as separate elements, but 
narrator takes care of the assembly of diphthongal sounds for you. 

Narrator Device 721 



CHOOSING THE RIGHT CONSONANT 

Consonants are divided into many categories by phoneticians, but we need not concern ourselves with most of 
them. Picking the correct consonant is very easy if you pay attention to just two categories: voiced and 
unvoiced. A voiced consonant is made with the vocal cords vibrating, and an unvoiced one is made when the 
vocal cords are silent. Sometimes English uses the same letter combinations to represent both. Compare the th 
in thin and in then. Notice that the first is made with air rushing between the tongue and upper teeth. In the 
second, the vocal cords are vibrating also. The voiced th phoneme is DH, the unvoiced is TH. Therefore, thin 
is spelled with the phonemes TH, IH, N or THIHN, and then is spelled DH, EH, N or DHEHN. A sound that is 
particularly subject to mistakes is voiced and unvoiced s spelled Z or S. To put it clearly, bats ends in S, suds 
ends in Z. What kind of s does closet have? How about close? Say all of these words aloud to find out 
Actually close changes its meaning when the s is voiced or unvoiced: I love to be close to you. versus What 
time do you close? 

Another sound that causes some confusion is the r sound. There are two different r-like phonemes in the 
narrator alphabet: R under the consonants and ER under the vowels. Which one do you use? Use ER if the r 
sound is the vowel sound in the syllable. Words that take ER are absurd, computer and flirt. Use R if the r 
sound precedes or follows another vowel sound in that syllable, such as in car, write, or craft. The word 
rooster uses both kinds of r. Can you tell which is which? 

CONTRACTIONS AND SPECIAL SYMBOLS 

There are several phoneme combinations that appear very often in English words. Some of these are caused by 
our laziness in pronunciation. Take the word connector for example. The 0 in the first syllable is almost 
swallowed out of existence. You would not use the AA phoneme; you would use the AX instead. It is because 
of this relaxation of vowels that we find ourselves using AX and IX very often. Since this relaxation frequently 
occurs before I, m and n, narrator has a shortcut for typing these combinations. Instead cof personal being 
spelled PERSIXNAXL, we can spell it PERSINUL, making it a little more readable. Anomaly goes from 
AXNAAMAXLIY to UNAAMULIY, and KAAMBIXNEYSHIXN becomes KAAMBINEYSHIN for 
combination. It may be hard to decide whether to use the AX or IX brand of relaxed vowel. The only way to 
find out is to try both and see which sounds best 

Other special symbols are used internally by narrator. Sometimes they are inserted into or substituted for part 
of your input sentence. You can type them in directly if you wish. The most useful is probably the Q or glottal 
stop; an interruption of air flow in the glottis. The word Atlantic has one between the t and the I. Narrator 
knows there should be a glottal stop there and saves you the trouble of typing it But narrator is only close to 
perfect, so sometimes a word or word pair might slip by that would have sounded better with a Q stuck in 
someplace. 

STRESS AND INTONATION 

It is not enough to tell narrator what you want said. For the best results you must also tell narrator how you 
want it said. In this way you can alter a sentence's meaning, stress important words, and specify the proper 
accents in polysyllabic words. These things improve the naturalness and thus the intelligibility of narrator's 
spoken output 

722 Narrator Device 



Stress and intonation are specified by the single digits 1-9 following a vowel phoneme code. Stress and 
intonation are two different things but are specified by a single number. Stress is, among other things, the 
elongation of a syllable. A syllable is either stressed or not, so the presence of a number after the vowel in a 
syllable indicates stress on that syllable. The value of the number indicates the intonation. These numbers are 
referred to here as stress marks but keep in mind that they also affect intonation. Intonation here means the 
pitch pattern or contour of an utterance. The higher the stress mark, the higher the potential for an accent in 
pitch (a rise and fall). A sentence's basic contour is comprised of a quickly rising pitch gesture up to the first 
stressed syllable in the sentence, followed by a slowly declining tone throughout the sentence, and finally a 
quick fall to a low pitch on the last syllable. The presence of additional stressed syllables causes the pitch to 
break its slow, declining pattern with rises and falls around each stressed syllable. Narrator uses a very 
sophisticated procedure to generate natural pitch contours based on how you mark the stressed syllables. 

HOW AND WHERE TO PUT THE STRESS MARKS 

The stress marks go immediately to the right of vowel phoneme codes. The word cat has its stress marked after 
the AE so we get KAE5T or KAE9T. You generally have no choice about the location of a number; there is 
definitely a right and wrong location. Either a number should go after a vowel or it should not. Narrator will 
not flag an error if you forget to put a stress mark in or if you place one on the wrong vowel. It will only tell 
you if a stress mark is in the wrong place, such as after a consonant. 

The rules for placing stress marks are as follows: 

• Always place a stress mark in a content word. A content word is one that contains some meaning. 
Nouns, verbs, and adjectives are all content words. Boat, huge, tonsils and hypertensive are all 
content words; they tell the listener what you are talking about Words like but, the, if and is are not 
content words. They do not convey any real-world meaning at all but are required to make the 
sentence function. Thus, they are given the name/unction words. 

• Always place a stress mark on the accented syUable(s) of polysyllabic words, whether they are 
content or function words. A polysyllabic word is any word of more than one syllable. Commodore 
has its stress (or accent as it is often called) on the first syllable and would be spelled 
KAA5MAXDOHR. Computer is stressed on the second syllable, producing KUMPYUW51ER. 

If you are in doubt about which syllable gets the stress, look the word up in a dictionary and you will 
find an accent mark over the stressed syllable. If more than one syllable in a word receives stress, 
they usually are not of equal value. These are referred to as primary and secondary stresses. The 
word understand has its first and last syllables stressed, with stand getting primary stress and un 
secondary, which produces AHINDERSTAE4ND. Syllables with secondary stress should be marked 
with a value of only 1 or 2. 

Compound words (words with more than one root) such as base/ball, soft/ware, lunch/wagon, and 
house/boat can be written as one word but should be thought of as separate words when marking 
stress. Thus, lunchwagon would be spelled LAH5NCHW AE2GIN. Notice that lunch got a higher 
stress mark than wagon. This is common in compound words; the first word usually receives the 
primary stress. 

Narrator Device 723 



WHAT STRESS VALUE DO I USE? 

If you get the spelling and stress mark positions correct. you are 95 percent of the way to a good sounding 
sentence. The next thing to do is decide on the stress mark values. They can be roughly related to parts of 
speech. and you can use table shown below as a guide to assigning values. 

Table 37-1: Recommended Stress Values 

Part of Speech 

Exclamations 
Adverbs 
Quantifiers 
Nouns 
Adjectives 
Verbs 
Pronouns 
Secondary stress 
Articles 
Prepositions 
Conjunctions 

Stress Value 

9 
7 
7 
5 
5 
4 
3 
1 
o 
o 
o 

(sometimes 2) 
(no stress) 

The above values merely suggest a range. If you want attention directed to a certain word. mise its value. If 
you want to downplay a word. lower it. Sometimes even a function word can be the focus of a sentence. It is 
quite conceivable that the word to in the sentence Please deliver this to Mr. Smith. could receive a stress mark 
of9. This would add focus to the word to indicating that the item should be delivered to Mr. Smith in person. 

PUNCTUATION 

In addition to the period or question mark that is required at the end of a sentence. narrator recognizes seveml 
other punctuation marks: dashes. commas, and parentheses. The comma goes where you would normally put a 
comma in an English sentence. It causes narrator to pause with a slightly rising pitch, indicating that there is 
more to come. The use of additional commas-that is, more than would be required for written English-is 
often helpful. They serve to set clauses off from one another. There is a tendency for a listener to lose track of 
the meaning of a sentence if the words run together. Read your sentence aloud while pretending to be a 
newscaster. The locations for additional commas should leap out at you. 

The dash serves almost the same purpose as the comma, except that the dash does not cause the pitch to rise so 
severely. A rule of thumb is: Use dashes to divide phrases. commas to divide clauses. For a definition of these 
terms, consult a high school English textbook. 

Parentheses provide additional information to narrator's intonation function. They should be put around noun 
phrases of two or more content words. This means that the noun phmse, a giant yacht should be surrounded 
with parentheses because it contains two content words. giant and yacht. The phrase my friend should not have 
parentheses around it because it contains only one content word. Noun phrases can get pretty big, like the 
silliest guy I ever saw or a big basket of fruit and nuts. The parentheses really are most effective around these 

724 Narrator Device 



large phrases; the smaller ones can sometimes go without. The effect of parentheses is subtle, and in some 
sentences you might not even notice their presence. In sentences of great length, however, they help provide 
for a very natural contour. 

HINTS FOR INTELLIGIBILITY 

There are a few tricks you can use to improve the intelligibility of a sentence. Often, a polysyllabic word is 
more recognizable than a monosyllabic word. For instance, instead of saying huge, say enormous. The longer 
version contains information in every syllable, thus giving the listener three times the chance to hear it 
correctly. This can be taken to extremes, so try not to say things like "This program has a plethora of insects in 
iL" 

Another good practice is to keep sentences to an optimal length. Writing for reading and writing for speaking 
are two different things. Try not to write a sentence that cannot be easily spoken in one breath. Such a sentence 
tends to give the impression that the speaker has an infinite lung capacity. Try to keep sentences confined to 
one main idea. A run-on sentence tends to lose its meaning after a while. 

New terms should be highly stressed the first time they are heard. If you are doing a tutorial or something 
similar, stress a new term at its first occurrence. All subsequent occurrences of that term need not be stressed 
as highly because it is now "old news." 

The above techniques are but a few ways to enhance the performance of narrator. You will probably find some 
of your own. Have fun. 

EXAMPLE OF ENGLISH AND PHONETIC TEXTS 

Cardiomyopathy. I had never heard of it before, but there it was listed as the form of heart disease that felled 
not one or two but all three of the artificial heart recipients. A little research produced some interesting results. 
According to an article in the Nov. 8, 1984, New England Journal of Medicine, cigarette smoking causes this 
lethal disease that weakens the heart's pumping power. While the exact mechanism is not clear, Dr. Arthur J. 
Hartz speculated that nicotine or carbon monoxide in the smoke somehow poisons the heart and leads to heart 
failure. 

KAAIRDIYOWMAYAA5PAXTHIY. AY /HAED NEHlVER HER4D AXV IHT BIXFOHSR, BAHT 
DHEH5R IHT WAHZ - LIH4STIXD AEZ (DHAX FOH5RM AXV /HAASRT DIHZIY5Z) DHAET FEH4LD 
(NAAT W AHSN OHR TUW5) - BAHT (A07L THRIY5 AXV DHAX AA5RTAXFIHSHUL /HAA5RT 
RIXSIH5PIYINTS). (AH LIH5TUL RIXSER5CH) PROHDUW5ST (SAHM IHSNTRIHSTIHNX 
RIXZAH5LTS). AHKOH5RDIHNX TUW (AEN AA5RTIHKUL IHN DHAX NOWVEH5MBER EY2TH 
NA Y5NTIYNEYTIYFOHIR NUW IY5NXGLIND JER5NUL AXV MEH5DIXSIN), (SIH5GEREHT 
SMOW5KIHNX) KA04ZIHZ (DHIHS LIY5THUL DIHZIY5Z) DHAET WIY4KINZ (DHAX /HAASRTS 
PAH4MPIHNX PAW2ER). WAYL (DHIY IHGZAE5KT MEH5KINIXZUM) 1HZ NAAT KLIY5R, 
DAA5KTER AA5RTHER JEY2 /HAA5RTS SPEH5KYULEYTIHD DHAET NIH5KAXTIYN, OHR 
KAASRBIN MUNAA5KSAYD IHN DHAX SMOW5K - SAH5M/HAWl POY4ZINZ DHAX /HAASRT, 
AEND LIY 4DZ TUW (/HAASRT FEY5L YER). 

Narrator Device 725 



CONCLUDING REMARKS 

This guide should get you off to a good start in phonetic writing for narrator. The only way to get really 
proficient is to practice. Many people become good at it in as little as one day. Others make continual mistakes 
because they find it hard to let go of the rules of English spelling, so trust your ears. 

The More Technical Explanation 

The narrator speech synthesis system is a computer model of the human speech production process. It attempts 
to produce accurately spoken utterances of any English sentence, given only a phonetic representation as input 
Another program in the system, translator, derives the required phonetic spelling from English text. Timing 
and pitch contour are produced automatically by the synthesizer software. 

In humans, the physical act of producing speech sounds begins in the lungs. To create a voiced sound, the 
lungs force air through the vocal folds (sometimes called the vocal cords), which are held under tension and 
which periodically interrupt the flow of air, thus creating a buzz-like sound. This buzz, which has a spectrum 
rich in harmonics, then passes through the vocal tract and out the lips, which alters its spectrum drastically. 
This is because the vocal tract acts as a frequency filter, selectively reinforcing some harmonics and 
suppressing others. 

It is this filtering that gives a speech sound its identity. The amplitude versus frequency graph of the filtering 
action is called the vocal tract transfer function. Changing the shape of the throat, tongue,and mouth retunes 
the filter system to accentuate different frequencies. 

The sound travels as a pressure wave through the air, and it causes the listener's eardrum to vibrate. The ear 
and brain of the listener decode the incoming frequency pattern. From this the listener can subconsciously 
make a judgment about what physical actions were performed by the speaker to make the sound. Thus the 
speech chain is completed, the speaker having encoded his physical actions on a buzz via selective filtering and 
the listener having turned the sound into guesses about physical actions by frequency decoding. 

Now that we know how humans do it, how does the Amiga do it? It turns out that the vocal tract transfer 
function is not random, but tends to accentuate energy in narrow regions called formants. The formant 
positions move fairly smoothly as we speak, and it is the formant frequencies to which our ears are sensitive. 
So, luckily, we do not have to model throat, tongue, teeth and lips with our computer, we can imitate formant 
action. 

A good representation of speech requires up to five formants, but only the lowest three are required for 
intelligibility. We begin with an oscillator that produces a waveform similar to that which is produced by the 
vocal folds, and we pass it through a series of resonators, each tuned to a different formant frequency. By 
controlling the volume and pitch of the oscillator and the frequencies of the resonators, we can produce highly 
intelligible and natural-sounding speech. Of course the better the model, the better the speech; but more 
importantly, experience has shown that the better the control of the model's parameters, the better the speech. 

Oscillators, volume controls and resonators can all be simulated mathematically in software, and it is by this 
method that the narrator system operates. The input phonetic string is converted into a series of target values 
for the various parameters illustrated. A system of rules then operates on the string to determine things such as 
the duration of each phoneme and the pitch contour. Transitions between target values are created and 
smoothed to produce natural continuous changes from one sound to the next. 

726 Narrator Device 



New values are computed for each parameter for every 8 milliseconds of speech, which produces about 120 
acoustic changes per second. These values drive a mathematical model of the speech synthesizer. The 
accuracy of this simulation is quite good. Human speech has more formants than the narrator model, but they 
are low in energy content. 

The human speech production mechanism is a complex and wonderful thing. The more we learn about it, the 
better we can make our computer simulations. Meanwhile, we can use synthetic speech as yet another 
computer output device to enhance the man/machine dialogue. 

Table of Phonemes 

Table 12-2 lists all the available phonemes. 

Table 37-2: Phonemes 

Vowels 

Phoneme Example Phoneme Example 

IY beet, eat IH bit, in 
EH bet, end AE bat, ad 
AA bottle, on AH but, up 
AO ball, awl UH book, soot 
ER bird, early OH border 
AX· about, calirate IX· solid, infinite 

• AX and IX should never be used in stressed syllables. 

Diphthongs 

Phoneme Example Phoneme Example 

EY bay, aid AY bide, I 
OY boy, oil AW bound, owl 
OW boat, own UW brew, boolean 

Narrator Device 727 



728 Narrator Device 

Phoneme 

R 
W 
M 
NX 
S 
F 
Z 
V 
CH 
IH 
B 
D 
K 

Consonants 

Example Phoneme 

red L 
wag Y 
men N 
sing SH 
soon TH 
red ZH 
has, zoo DH 
very WH 
cbeck J 
hole Ie 
but P 
dog T 
Commodore G 

Special Symbols 

Phoneme Example 

Example 

long 
yellow, beauty 
no 
shy 
thin 
pleasure 
then 
wben 
judge 
locb 
put 
toy 
guest 

DX pity (tongue flap) 

Q kitt-en (glottal stop) 

QX pause (silent vowel) 

Contractions 

(see text) 

UL = AXL 
IL = IXL 
UM = AXM 
1M = IXM 
UN = AXN 
IN = IXN 

Digits and Punctuation 

Digits 1-9 Syllabic stress, ranging from secondary through emphatic 

Period-sentence final character 
? Question mark -sentence final character 

Dash-phrase delimiter 
Comma-clause delimiter 

( ) Parentheses-noun phrase delimiters (see text) 



1* A Simple program to show speech on the amiga. 
* If you do not define the flag FACE_ON, 
* ALL code involved with reading mouth shapes is excluded. 
* If you do not define the flag PARSE, ALL code involved 
* with parsing the command line is excluded, and defaults 
* are used. Code by Dave Lucas. 

* 
* Lattice use lc -b1 -cfist -v -yo Link with lc.lib and amiga.lib. 

* 
* FACE ON PARSE -Lines' 0' Source -Executeable size 
* 
* 0 0 
* 0 1 
* 1 0 
* 1 1 
*1 

IIdefine FACE ON 
IIdefine PARSE 

lIinclude <exec/types.h> 
lIinclude <exec/io.h> 

185 
360 
355 
540 

lIihclude <intuition/intuition.h> 
lIinclude <devices/narrator.h> 
lIinclude <libraries/translator.h> 
lIinclude <libraries/dos.h> . 

'include <proto/all.h> 
'include <stdio.h> 
lIincluqe <stdlib.h> 
lIinclude <string.h> 

8.8K 
10.7K 
10.4K 
12.3K 

1* The length of the English and phonetic buffers. *1 
'define ENGLISH_TEXT_LEN 25 1* Just long enough for default *1 
1* Input line is restricted to nnn chars (AmigaDOS), but *1 
IIdefine PHONEME TEXT LEN 512 1* Phonemes are longer than english. *1 

void DrawFace(void); 
void DrawMouth(USHORT half_w,USHORT half_h); 
extern LONG ParseArgs (int argc, char **argv, UBYTE *show face, UWORD *sex, 

UWORD *inflect, UWORD *samp, UWORD *pitch, UWORD *speed, 
UWORD *vol, char **text); 

extern void BadOpt(char *option); 
void CleanUp(void); 

1* Which audio channels to use. *1 
BYTE audio_chant) = (3, 5, 10, 12}; 

1* Pointer to translator library vectors. *1 
struct Library *TranslatorBase NULL; 

struct MsgPort write port; 
struct narrator_rb vOice_io; 

1* Indicative of the Open() return. *1 
UBYTE NarratorOpenError = -1; 
1* Indicative of a Translations suqcess. *1 
UBYTE TranslatorError = 0; 

UBYTE EngIBuffer[ENGL1SH TEXT LEN) 
UBYTE PhonBuffer[PHONEME=TEXT=LEN) 

"This is amiga speaking."; 
"DH1HS 1HZ AHMIY3GAH SPIY4KIHNX."; 

struct IntuitionBase *1ntuitionBase = NULL; 
struct GfxBase *GfxBase = NULL; 

lIifdef FACE ON 
1* Pen numbers to draw gadget borders/images/text with. *1 
IIdefine REDP 3 1* color in register 3 once was red. 
IIdefine BLKP 2 1* Color in register 2 was black. *1 
IIdefine WHTP 1 1* Color in register 1 was white. *1 
IIdefine BLUP 0 1* Color in register 0 was blue. *1 

*1 

Narrator Device 729 



/* These are used for face rendering. */ 
IIdefine FACE ET 12 /* top of eyes */ 
IIdefine FACE EB 22 /* bottom of eyes */ 
IIdefine FACE LIP T 23 1* top of mouth clear area *1 
IIdefine FACE MID H 42 1* the middle of the mouth, heightwise *1 
IIdefine FACE H 80 1* overall window height *1 
IIdefine FACE ELL 24 /* left eye left side */ 
II de fine FACE ELR 40 /* left eye right side */ 
IIdefine FACE INIT W - 32 /* left point for initial mouth line */ 
IIdefine FACE MID W 56 /* the middle of the mouth, widthwise */ 
IIdefine FACE ERL 72 1* right eye left side */ 
IIdefine FACE ERR 88 1* right eye right side */ 
IIdefine FACE W 120 /* overall window width */ 

struct NewWindow NewFaceWindow = 
{ 

} ; 

0, 11, 
FACE W, FACE_H, 
-1, =1, 

1* Start LeftEdge, TopEdge. *1 
/* Width, Height. */ 
/* DetailPen, BlockPen. */ 
/* IDCMP FLAGS. */ 0, 

WINDOWDRAG 
NULL, 
NULL, 
NULL, 
NULL, 
NULL, 

WINDOWDEPTH I GIMMEZEROZERO, 1* Flags. *1 
1* No pointer to FirstGadget. *1 

FACE_W, FACE_H, 
FACE_W, FACE H, 
WBENCHSCREEN 

/* No pointer to first CheckMark. */ 
1* No Title. *1 
1* No pointer to Screen. */ 
/* No pointer to BitMap. *1 
1* Minimum sizeable to (NA-not sizeable). */ 
1* Maximum sizeable to (NA-not sizeable). */ 
1* Type of screen window appears in. */ 

struct Window *FaceWindow = NULL; 
struct IntuiMessage *MylntuiMessage; 

struct MsgPort read port; 
struct mouth rb mouth io; 
lIendif /* FACE_ON defined */ 

/** Start of code ***************************/ 
VOID main(int argc,char **argv) 
( 

ULONG Signals; /* Waitt) tells me which to look at. */ 
UBYTE *pp string; 
UWORD rate, pitch, mode, sex, volume, sampfreq; 
UBYTE show face = 0; 
/* Let CleanUp() know these signals not allocated yet. */ 
write-port.mp_SigBit = -1; 

lIifdef FACE ON 
read port.mp SigBit = -1; 

lIendif /* FACE_ON defined */ 

pp_string = &EnglBuffer[O); 

rate = DEFRATE; 
pitch = DEFPITCH; 
mode = DEFMODE; 
sex = DEFSEX; 
volume = DEFVOL; 
sampfreq = DEFFREQ; 

llifdef PARSE 
ParseArgs(argc, argv, &show_face, &sex, &mode, &sampfreq, &pitch, &rate, 

&volume, (APTR) &pp string); 
lIendif /* PARSE defined-*/ 

/* Open those libraries that the program uses directly. */ 
if «IntuitionBase = (struct IntuitionBase *) 
OpenLibrary("intuition.library", 33» == NULL) 

( 
fprintf(stderr, "Can't open the intuition libraryO); 
CleanUp () ; 
exit(RETURN_WARN); 

730 Narrator Device 



if «GfxBase = (struct GfxBase *) 

{ 
OpenLibrary ("graphics. library", 33» == NULL) 

fprintf(stderr, "Can't open the graphics libraryO); 
CleanUp () ; 
exit (RETURN_WARN); 

if «TranslatorBase = (struct Library *) 
OpenLibrary("translator.library", OL» == NULL) 

{ 
fprintf(stderr, "Can't open the translator libraryO); 
CleanUp () ; 
exit(RETURN_WARN); 

if «TranslatorError = Translate«UBYTE *)pp string, 
strlen(pp string), (UBYTE *)PhonBuffer, PHONEME TEXT LEN» != 0) 

{ - - -
fprintf(stderr, "Translator won't. (%lx)O,TranslatorError); 

if «NarratorOpenError = 
OpenDevice ("narrator.device", 0, (struct IORequest *) &voice_io, 0» !=O) 

{ 
fprintf(stderr, "Can't open the narrator deviceO); 
CleanUp () ; 
exit(RETURN_WARN); 

1* Set up the write port, allocate the signal *1 
1* and the message. *1 
if «write_port.mp_SigBit = AllocSignal(-l» == -1) 
{ 

fprintf(stderr, "Couldn't Allocate write Signal bitO); 
CleanUp () ; 
exit (RETURN_WARN); 

write_port.mp_Node.ln_Name = "speech write"; 
write port.mp Node.ln Type = NT MSGPORT; 
write-port.mp-Flags =-PA SIGNAL; 
write=port.mp=SigTask = Istruct Task *)FindTask(NULL); 

NewList(&write_port.mp_MsgList); 

1* Set up the write channel information. *1 
voice io.message.io Command = CMD WRITE; 
voice-io.message.io-Offset = 0; -
voice-io.message.io-Data = (APTR)PhonBuffer; 
voice=io.message.io=Length = strlen(PhonBuffer); 

voice io.message.io Message.mn Node.ln Type = NT MSGPORT; 
voice-io.message.io-Message.mn-Length : sizeof(v~ice io); 
vOice-io.message.io-Message.mn-ReplyPort &write port; 
voice=io.message.io=Unit = 0; - -

voice io.ch masks = (UBYTE *)audio chan; 
vOice-io.nm-masks = sizeof(audio chan); 
voice io.mouths = show face; -
voice=io.rate = rate; -
voice io.pitch = pitch; 
vOice-io.mode = mode; 
voice-io.sex = sex; 
voice-io.volume = volume; 
voice=io.sampfreq = sampfreq; 

Ufdef FACE ON 
if (show_face) 
{ 

1* Set up the read port, allocate the signal *1 

Narrator Device 731 



) 

1* and the message. *1 
read port.mp Node.ln Type = NT MSGPORT; 
read-port.mp-Flags =-PA SIGNAL; 
if «read_port.mp_SigBit = AllocSignal(-l)) == -1) 
{ 

fprintf(stderr, "Couldn't Allocate read Signal bitO); 
CleanUp () ; 
exit (RETURN_WARN); 

re.ad port .mp SigTask = (struct Task *) FindTask (NULL) ; 
NewLIst(&read_port.mp_MsgList); 

1* Set up the read channel information. *1 
mouth io.voice = voice io; 
mouth-io.width = 0; -
mouth-io.height = 0; 
mouth-io.voice.message.io Message.mn ReplyPort 
mouth-io.voice.message.io-Command = CMD READ; 
mouth=io.voice.message.io=Error = 0; -

if «FaceWindow = OpenWindow(&NewFaceWindow)) 
NULL) 

fprintf(stderr, "Couldn't open the face window.O); 
CleanUp () ; 
exit(RETURN_WARN); 

DrawFace () ; 

iendif 1* FACE_ON defined *1 

SendIO«struct IORequest *) &voice io ); 

iifdef FACE ON 
if (sho;_face) 
{ 

SendIO«struct IORequest *) &mouth io ); 

iendif 1* FACE_ON defined *1 

1* Wait() lets the rest of the system run while *1 
1* this program sleeps. *1 
for (;;) 
{ 

iifdef FACE ON 
if (show face) 

Signals = Wait ( 
(lL « voice io.message.io Message.mn ReplyPort->mp SigBit) 
(lL « mouth-io.voice.message.io Message.mn ReplyPort->mp SigBit)); 

else - - - -
iendif 1* FACE ON defined *1 

Signals = Wait( 
(lL « voice_io.message.io_Message.mn_ReplyPort->mp_SigBit)); 

1* A voice SendIO () (Write) has completed. *1 
if (Signals & (lL « 
voice io.message.io Message.mn ReplyPort->mp SigBit)) 
{- - - -

1* Was it Sucessful? filter out the abort error. *1 
if (voice io.message.io Error == -2) 

voice-io.message.io-Error = 0; 
if (voice=io.message.io=Error != 0) 
{ 

) 

fprintf(stderr, "Narrator won't. (%ld)O, 
voice io.message.io Error); 

voice_Io.message.io_Error = 0; 

CleanUp () ; 
exit(RETURN_OK); 

iifdef FACE ON 

732 Narrator Device 



/* A mouth SendIO() (Read) has completed. */ 
if (Signals & (IL « 
mouth io.voice.message.io Message.mn ReplyPort->mp SigBit)) 

( - - - -

USHORT LipWidth, LipHeight; 

LipWidth = mouth io.width « 2; 
LipHeight = mouth_io.height; 

DrawMouth(LipWidth, LipHeight); 

/* On occasion, the first request for a mouth shape is 
* handled before the narrator realizes it's speaking. 
* That's why this error is ignored. 
*/ 

if (mouth io.voice.message.io Error ND_NoWrite) 
mouth=io.voice.message.io=Error = 0; 

if (mouth_io.voice.message.io_Error 0) 
SendIO«struct IORequest *) &mouth_io ); 

else 

fprintf (stderr, "Narrator won't mouth. (%ld) 0, 
mouth io.voice.message.io Error); 

CleanUp(); -
exit (RETURN_WARN); 

'endif /* FACE_ON defined */ 
/* The for will never exit through here, no CleanUp() needed. */ 

/* main */ 

/* handle abort like this I!!! */ 
/* AbortIO(&voice io); 

*/ 

voice io.message.io Error = 0; 
mouth=io.voice.mess~ge.io_Error 0; 

Ufdef FACE ON 
void DrawFace(void) 
( 

/* Set pen to White, fill whole window. */ 
SetAPen(FaceWindow->RPort, WHTP); 
RectFill(FaceWindow->RPort, 0, 0, FACE_W, FACE_H); 

/* Set pen to Blue, do eyes. */ 
SetAPen(FaceWindow->RPort, BLUP); 
RectFill(FaceWindow->RPort, FACE ELL, FACE_ET, FACE_ELR, FACE EB); 
RectFill(FaceWindow->RPort, FACE=ERL, FACE_ET, FACE_ERR, FACE=EB); 

/* Do gob. */ 
DrawMouth(FACE_INIT_W, 1); 

void DrawMouth(USHORT half w,USHORT half_h) 
( -

} 

WaitBOVP(&FaceWindow->WScreen->ViewPort); 

/* Clear the entire mouth area. */ 
SetAPen(FaceWindow->RPort, WHTP); 
RectFill(FaceWindow->RPort, 0, FACE_LIP_T, FACE_W, FACE_H); 

/* Draw a new mouth. */ 
SetAPen(FaceWindow->RPort, REDP); 

Move (FaceWindow->RPort, 
Draw (FaceWindow->RPort, 
Draw (FaceWindow->RPort, 
Draw (FaceWindow->RPort, 
Draw (FaceWindow->RPort, 

FACE MID W - half_w, 
FACE_MID_W, 
FACE MID W + half_w, 
FACE MID W, 
FACE-MID-W - half_w, 

FACE_MID_H) ; 
FACE MID H - half_h); 
FACE_MID_H) ; 
FACE MID H + half_h); 
FACE=MID=H) ; 

'endif /* FACE ON defined */ 

Narrator Device 733 



lIifdef PARSE 
1** ************************************************************************/ 
LONG 
ParseArgs (int argc, 

char **argv, 
UBYTE *show_face, 
UWORD *sex, 
UWORD *inflect, 
UWORD *samp, 
UWORD *pitch, 
UWORD *speed, 
UWORD *vol, 
char **text) 

int len; 

argc--; 
argv++; 

while (argc > 0 && argv[O] [0] , -') 
( 
len = strlen(*argv); 
switch (argv[O] [1]) 
{ 

case'm': 1* -Male *1 
if «!strncmp(*argv, "-m", len» II 

(!strncmp(*argv, "-male", len») 

else 

*sex = FEMALE; 

BadOpt(*argv); 
return (1) ; 

break; 

case 'f': 1* -face -Female *1 
if «! strncmp (*argv, lI_fll, len» I I 

(!strncmp(*argv, "-female", len») 

*sex = FEMALE; 
) 

lIifdef FACE ON 
-else if (!strncmp(*argv, "-face", len» 

( 

*show face = 1; 

lIendif 1* FACE ON defined *1 
else 

BadOpt(*argv); 
return (1) ; 

break; 

case'r': 1* -Robotic *1 
if «!strncmp(*argv, "-r", len» II 

(!strncmp(*argv, "-robotic", len») 

else 
( 

*inflect = ROBOTICFO; 

BadOpt(*argv); 
return (1); 

break; 

case 'n': 1* -Natural *1 
if «!strncmp(*argv, "-n", len» II 

(!strncmp(*argv, "-natural", len») 

734 Narrator Device 



else 
{ 

*inflect 

BadOpt(*argv); 
return(l); 

break; 

NATURALFO; 

case's': 1* -Speed <frequency> *1 
if «!strncmp(*argv, If_SIt, len» II 

(!strncmp(*argv, "-speed", len») 

else 
{ 

arge--; argv++; 
*speed = atoi(*argv); 

BadOpt(*argv); 
return (1) ; 

break; 

case 'p': 1* -pitch <frequency> *1 
if «!strncmp(*argv, If_pIt, len» II 

(!strncmp(*argv, "-pitch", len») 

else 
{ 

argc--; argv++; 
*pitch = atoi(*argv); 

BadOpt(*argv); 
return (1) ; 

break; 

case'v': 1* -vol <level> *1 
if «!strncmp(*argv, "-v", len» II 

(!strncmp(*argv, "-vol", len» II 
(!strncmp(*argv, "-volume", len») 

else 
( 

arge--; argv++; 
*vol = atoi(*argv); 

BadOpt{*argv); 
return(I); 

break; 

default: 
BadOpt(*argv); 
return{I); 
break; 

argc--; argv++; 

1* The last arg is the english string to speak. *1 
if (arge > 0) 
{ 

*text = *argv; 

if (argc > 1) 
( 

fprintf{stderr, "Arguments after text ignored.O); 

Narrator Device 735 



/* Narrator has it's limits, be sure to abide by them. */ 
if (*speed > MAXRATE) 

*speed MAXRATE; 
if (*speed < MINRATE) 

*speed MINRATE; 

MAXPITCH) 
MAXPITCH; 

< MINPITCH) 

if (*pitch > 
*pitch 

if (*pitch 
*pitch MINPITCH; 

if (*samp 
*samp 

if (*samp 
*samp 

> MAXFREQ) 
MAXFREQ; 

< MINFREQ) 
MINFREQ; 

if (*vol > MAXVOL) 
*vol MAXVOL; 

if (*vol < MINVOL) 
*vol MINVOL; 

void BadOpt(char *option) 
( 

char *whoami; 
whoami = "sayit"; 

fprintf(stderr, "%s: option 
fprintf(stderr, "Usage: %sO, whoami); 
fprintf(stderr, " -m or -male -f or -femaleO); 
fprintf(stderr, " -n or -naturaIO); -r or -robot 
fprintf(stderr, " <WPM 40-400>0); -s or -speed 
fprintf(stderr, " <65-320>0); -p or -pitch 
fprintf(stderr, " <0-64>0); -v or -volume 

lIifdef FACE_ON 
fprintf (stderr, " -faceO); 

lIendif /* FACE_ON defined */ 
fprintf(stderr," [ 

CleanUp () ; 
) 
lIendif /* PARSE defined */ 

/* Deallocate any memory, and close all of the 
* windows/screens/devices/libraries in reverse order to 
* make things work smoothly. And be sure to check 
* that the open/allocation was successful before 
* closing/deallocating. 
*/ 

void CleanUp(void) 
{ 

if (write port.mp SigBit != -1) 
FreeSignal(write port.mp SigBit); 

lIifdef FACE ON - -
if (read-port.mp SigBit != -1) 

FreeSignal(read port.mp SigBit); 
if (FaceWindow != NULL) -

CloseWindow(FaceWindow); 
lIendif /* FACE ON defined */ 

if (Narrato~OpenError == 0) 
CloseDevice«struct IORequest *) &voice_io); 

if (TranslatorBase != NULL) 
CloseLibrary(TranslatorBase); 

if (GfxBase != NULL) 
CloseLibrary(GfxBase); 

if (IntuitionBase != NULL) 
CloseLibrary(IntuitionBase); 

return; 

736 Narrator Device 



Chapter 38 

Parallel Device 

This chapter describes software access to the Centronics-compatible parallel port. The parallel port is primarily 
intended for output to printers. The Amiga parallel port includes extensions for bi-directional 10. The 
parallel.device is based on the foundation of Exec device 10, with extensions for parameter setting and control. 

Introduction 

The parallel device may be opened in either the exclusive or shared access modes. Device-specific parameters may 
be specified using the PDCMD _ SETPARAMS command. 

The parallel.device is very similar to the serial.device. See the "Serial Device" chapter to learn more about 
advanced use of the device 10 system. Also see the include file devices/parallel.h and the AutoDocs for for the 
parallel.device (AutoDocs may be found in the Addison-Wesley ROM Kernel Manual: Includes & Autodocs). 

Parallel Device 737 



Opening & Closing the Parallel Device 

The following is a complete example of writing to the parallel.device. During the open the paralell device pays 
attention to just one flag; PARF _SHARED. For consistency, the other flag bits should also be properly set. Full 
descriptions of all flags will be given later. When the parallel device is opened, it fills the latest default parameter 
settings into the IOExtPar block. 

/* parallel.c - Simple, abortable example of parallel.device usage 
* Compile with Lattice 5.04: LC -L -catsfq 
*/ 

.include <exec/types.h> 
'include <devices/parallel.h> 
'include <libraries/dos.h> 
Ufdef LATTICE 
'include <proto/exec.h> 
'include <stdio.h> 
int CXBRK(void) { return(O); 
void main(void); 

/* Disable Lattice CTRL-C handling */ 

'endif 

'define DEVICE NAME! "parallel.device" 
'define UNIT NUMBER ° 
void main () 
{ 
struct MsgPort *ParalleIMP; 
struct IOExtPar *ParalleIIO; 

/* Define storage for one pointer */ 
/* Define storage for one pointer */ 

ULONG WaitMask; /* Collect all signals here */ 
ULONG Temp; /* Hey, we all need pockets :-) */ 

if( ParallelMP=CreatePort(O,O) 
{ 
if( ParalleIIO={struct IOExtPar *) 

CreateExtIO(ParalleIMP,sizeof(struct IOExtPar)) ) 
{ 
ParallelIO->io_ParFlags=O; /* Example of setting flags */ 

if ( OpenDevice (DEVICE NAME, UNIT NUMBER, ParallelIO,O) 
printf("Parallel.device did not open\n"); 

else 
{ 
/* Precalculate a wait mask for the CTRL-C, CTRL-F and message 
* port signals. When one o~ more signals are received, 
* Wait() will return. Press CTRL-C to exit the example. 
* Press CTRL-F to wake up the example without doing anything. 
* NOTE: A signal may show up without an associated message! 
*/ 

WaitMask SIGBREAKF_CTRL_CI 
SIGBREAKF CTRL FI 
1L « ParalleIMP->mp_SigBit; 

ParallelIO->IOPar.io Command 
ParallelIO->IOPar.io-Length 
ParalleIIO->IOPar.io-Data 
SendIO(ParalleIIO); -

CMD_WRITE; 
-1; 
(APTR) "Hey, Jude! \015\012"; 
/* execute write */ 

printf("Sleeping until CTRL-C, CTRL-F, or write finish\n"); 
while (1) 

{ 

Temp = Wait(WaitMask); 
printf(IIJust woke up (YAWN!)\n"); 

if( SIGBREAKF CTRL C & Temp) 
break; 

738 Parallel Device 



if( CheckIO(ParallelIO) ) 1* If request is complete ... *1 
( 
WaitIO(ParallelIO); 1* clean up and remove reply *1 
printf("%ld bytes sent\n",ParallelIO->IOPar.io_Actual); 
break; 
) 

AbortIO(ParallelIO); 1* Ask device to abort request, if pending *1 
WaitIO(ParallelIO); 1* Wait for abort, then clean up *1 

CloseDevice(ParallelIO); 
) 

DeleteExtIO(ParallelIO); 
) 

DeletePort(ParallelMP); 
) 

The functions CreatePortO and CreateExtIOO are part of amiga.lib. See the "Linker Libraries" appendix and the 
•• Serial Device" chapter for more information. 

Each OpenDeviceO must eventually be matched by a call to CloseDeviceO. When the last close is performed, the 
device will deallocate all resources and buffers. The latest parameter settings will be saved for the next open. All 10 
Requests must be complete before CloseDeviceO. If any requests are still pending, abort them with AbortIOO: 

AbortIO(ParallelIO); 1* Ask device to abort request, if pending *1 
WaitIO(ParallelIO); 1* Wait for abort, then clean up *1 

CloseDevice(ParallelIO); 

About The First Example 

The above example code may seem needlessly complex. The DolOO function is considerably easier to 
use. However, DolOO is not always appropriate for executing CMD_READ or CMD_WRITE 
commands. DolOO will not return until the 10 request has finished. If a printer is disconnected or off
line, the write request may never finish. Read requests will not finish until characters arrive at the port. 
See the "Serial Device" chapter for more solutions and information about the SendlOO and AbortIOO 
functions. 

Parallel Device 739 



Termination of Reads 

Reading from the parallel device can terminate early if an error occurs, or if end of file is sensed. You can specify a 
set of possible end-of-file characters that the parallel device is to look for in the input stream. These are contained in 
an io_TermArray that you provide with the PDCMD_SETPARAMS command. Note: io_TermArray is used 
only when EOF mode is selected. 

IfEOF mode is selected, each input data character that is read into the user's data block is compared against those in 
io_ TermArray. If a match is found, the IORequest is terminated as complete, and the count of characters read 
(including the TermChar) is stored in io _Actual. To keep this search overhead as efficient as possible, the parallel 
device requires that the array of characters be in descending order (an example is shown in the 
PDCMD _SETPARAMS summary in the parallel.device AutoDocs. The array has eight bytes and all must be valid 
(that is, do not pad with zeros unless zero is a valid EOF character). Fill to the end of the array with the least-value 
TermChar. When making an arbitrary choice of EOF character(s), it is advisable to use the lowest value(s) 
available. 

Setting Parallel Parameters 

You can control the parallel parameters shown in the following table. The parameter name within the parallel 
IOExtPar data structure is shown below. All of the fields described in this section are filled with defaults when you 
call OpenDeviceO. Thus, you need not worry about any parameter that you do not need to change. 

Parameter Name 

io _ PExtFlags 

io _ PfermArray 

740 Parallel Device 

Table 38-1: Parallel Parameters (lOExtPar) 

Characteristic It Controls 

Reserved for future use. 

A byte-array of eight termination characters, must be in descending 
order. If EOFMODE is set in the parallel flags, this array specifies 
eight possible choices of character to use as an end-of-file mark. See 
the PDCMD _SETPARAMS summary page in the "Device 
Summaries" appendix and the section above titled "Termination of the 
Read" for more information. 

Printer status bits returned by the PDCMD _QUERY command. See 
the devices/parallel.h file for bit definitions. Bit 0 reflects the state of 
the printer busy line. Bit 1 is for paper out. Bit 2 is the printer selected 
line. Other bits are reserved. Note that the printer selected line is also 
connected to Ring Indicator on the A500 and A2000 machines. 

Explained below; see "PARALLEL FLAGS." 



PARALLEL FLAGS (io_ParFlags) 

The flags shown in the following table can be set to affect the operation of the parallel device. Note that the default 
state of all of these flags is zero. 

Table 38-2: Parallel Flags (io_ParFlags) 

Flag Name Effect on Device Operation 

PARF EOFMODE Set this bit if you want the parallel device to check I/O characters 
against io _ TermArray and terminate the IORequest immediately 
if an end-of-file character has been encountered. Note: This bit can 
be set and reset directly in the user's IOExtPar block without a call 
to PDCMD _SETPARAMS. 

PARF SHARED 

SETTING THE PARAMETERS 

Set this bit if you want to allow other tasks to simultaneously access 
the parallel port. The default is exclusive access. If someone 
already has the port, whether for exclusive or shared access, and 
you ask for exclusive access, your OpenDeviceO call will fail (must 
be modified before OpenDeviceO). 

You change parallel parameters by setting the flags and parameters as you desire, and then transmitting a 
PDCMD _SETPARAMS command to the device. Here is an example: 

ParallelIO->IOPar.io Command = PDCMD SETPARAMS; 
ParallelIO->io ParFlags &= -PARF EOFMODE; 
DoIO(ParallelIO); -

printf("Error setting parameters!\n"); 

The above code fragment modifies one bit in iO_ParFlags, then sends the command. 

NOTE 

A parameter change should not be performed while an 10 request is actually being processed, because it 
might invalidate already active request handling. Therefore you should use PDCMD_SETPARAMS 
only when you have no parallel 10 requests pending. 

Parallel Device 741 



Errors from the Parallel Device 

The possible error returns from the parallel device are listed in table 14-3. 

Table 38-3: Parallel Device Errors 

#define ParErr_DevBusy 1 -Device busy 
#define ParErr_BuIToBig 2 -Out of memory 
#define ParErr_InvParam 3 -Invalid parameter 
#define ParErr_LineErr 4 
#define ParErr_NotOpen 5 -Unused 
#define ParErr_PortReset 6 
#define ParErr_InitErr 7 

742 Parallel Device 



Chapter 39 

Printer Device 

Introduction 

The printer device offers a way of doing configuration-independent output to a printer attached to the Amiga. It can 
be thought of as a filter: it takes standard commands as input and translates them into commands understood by the 
printer. The commands sent to the printer are defined in a specific printer driver program. For each type of printer in 
use, a driver (or the driver of a compatable printer) should be present in the devs:printers directory. 

The printer device is totally transparent to an application. It uses information set up by the Workbench Preferences 
tool to identify the type of printer, whether it is serial or parallel, etc. It also offers the flexibility to send raw 
information to the printer for special non-standard or unsupported features. Raw data transfer is not recommended 
for conventional text and graphics since it will result in applications that will only work with certain printers. By 
using the standard printer. device interface, an application can perform device independent output to a printer. 

There are two ways of doing output to the printer.device: 

• PRT:-the AmigaOOS printer device 

PRT: may be opened just like any other AmigaDOS file. You may send standard escape sequences to PRT: 
to specify the options you want as shown in the command table below. The escape sequences are interpreted 
by the printer driver, translated into printer-specific escape sequences and forwarded to the printer. When 

Printer Device 743 



using PRT: the escape sequences and data must be sent as a character stream. Using PRT: is by far the 
easiest way of doing text output to a printer. 

• printer.device-to direcdy access the printer device itself 

By opening the printer device direcdy, you have full control over the printer. You can either send standard 
escape sequences as shown in the command table below or send raw characters direcdy to the printer with no 
processing at all. Doing this would be similar to sending raw characters to SER: or PAR: from AmigaDOS. 
(Since this interferes with device-independence it is strongly discouraged). Direct access to the printer 
device also allows you to transmit device I/O commands, such as reset, flush or a raster dump on a graphics
capable printer. 

NOTE 

All "raw escape sequences" to the printer transmitted through the printer device must take the fonn of 
a character stream. 

Using the Printer Device as an AmigaDOS File 

OPENING THE AMIGADOS PRINTER DEVICE 

You can open the printer device just as though it were a nonnal AmigaDOS output file. Here is an example program 
segment that accomplishes this: 

struct FileHandle *file; 

file = Open ( "PRT:", MODE NEWFILE ); 
if (file == 0) exit(PRINTER_WONT_OPEN); 

Then, to print use code like this: 

actual_length = Write (file, dataLocation, length); 

where 

file is a file handle. 

dataLocation 
is a pointer to the first character in the output stream you wish to write. This stream can contain the 
standard escape sequences as shown in the command table below. The printer command aRA W can be 
used in the stream if character translation is not desired. 

length 
is the length of the output stream. 

actual_length 
is the actual length of the write. For the printer device, if there are no errors, this will be the same as the 
length of write requested. The only exception is if you specify a value of -1 for length. In this case, -1 for 
length means that a null (0) tenninated stream is being written to the printer device. The device returns the 
count of characters written prior to encountering the null. If it returns a value of -1 in actual_length, there 
bas been an error. 

744 Printer Device 



CLOSING THE AMIGADOS PRINTER DEVICE 

When the printer I/O is complete, you should close the device. Don't keep the device open when you are not using 
it The user may have changed the printer settings by using the Workbench Preferences tool. There's also the 
possibility the printer has been turned off and on again causing the printer to switch to its own default settings. 
Every time the printer device is opened, it reads the current Preferences settings. Hence, by always opening the 
printer device just before printing and always closing it afterwards, you ensure that your application is using the 
current Preferences settings. Here is a sample function call that you could use: 

Close(file); 

NOTE 

Printer I/O through the OOS versions of the printer device must be done by a process, not by a task. 
OOS utilizes information in the process control block and would become confused if a simple task 
attempted to perform these activities. Printer I/O using the printer device directly, however, can be 
performed by a task. 

Using the Printer Device Directly 

In order to send commands and data to the printer device directly, data structures need to be set up. These structures 
enable us to use the standard functions provided by Exec, like DoIOO and SendIOO, to send I/O requests to the 
device. (See the Exec chapter "Input/Output" in this manual for detailed information about I/O requests.) 

DATA STRUCTURES USED DURING PRINTER I/O 

There are three distinct kinds of data· structures required by the printer I/O routines. Some of the printer device I/O 
commands, such as CMD_START and CMD_WRITE require only an IOStdReq data structure. Others, such as 
PRD_PRTCOMMAND or PRO_DUMP _RPORT, require a larger data structure called IOPrtCmdReq (for 
"Printer Command Request") or IODRPReq (for "Dump a RastPort Request") structure. These two structures are 
defined in the include file devices/printer.h. For convenience, the printer device has defined a single data structure, 
called printerIO, that can be used to represent any of the three different kinds of printer communications request 
blocks. 

The data structure type printerIO used in the following examples is a C-language union defined as: 

union printerIO 
{ 

struct IOStdReq ios; 
struct IODRPReq iodrp; 
struct IOPrtCmdReq iopc; 
} ; 

This means that one memory area can be used to represent three distinct forms of memory layout for the three 
different types of data structures that must be used to pass commands to the printer device. If you use the function 
CreateExtlOO, you can automatically allocate enough memory to hold the largest structure in the union statement 

Printer Device 745 



CREATING AN I/O REQUEST 

Printer I/O, like the I/O of other devices, requires that you create an I/O request message that you pass to the printer 
device for processing. The message contains the command as well as a data area. For a write, there will be a pointer 
in the data area to the stream of information you wish to write to the printer. 

The following example functions can be used to create and delete the message block that you use for printer 
communications. 

/* Create printer device I/O message block. 
* message port is in request->ios.io_Message.mn_ReplyPort 
*/ 

union printerIO *CreatePrtReq() 
{ 

struct MsgPort *prtport; 
union printerIO *request; 

if (! (prtport = CreatePort(NULL, 0») 
return(O); 

if(! (request = (union printerIO *)CreateExtIO(prtport, 
sizeof(union printerIO»» 

DeletePort(prtport); 
return(O); 

return(request); 

/* Delete printer device I/O message block. */ 

void DeletePrtReq(request) 
union printerIO *request; 
( 

struct MsgPort *prtport; 

prtport = request->ios.io_Message.mn_ReplyPort; 
DeleteExtIO«struct IORequest *)request); 
DeletePort(prtport); 

Error handling is not shown here. It is deferred to the full example later in this chapter. 

The routines CreatePortO and CreateExdOO, which are part of amiga.lib, are described in the Exec chapters 
"Messages and Ports" and "Input/Output". 

OPENING THE PRINTER DEVICE 

Once you've created the I/O request message, you can open the printer device itself, using code like the following: 

/* Open the printer device */ 

int OpenPrinter(request) 
union printerIO *request; 
( 

return(OpenDevice("printer.device",O,request,O»; 

746 Printer Device 



This routine returns a value of zero if the printer device was opened successfully and a value other than zero if it did 
not open. 

SENDING I/O COMMANDS TO THE PRINTER DEVICE 

Once the printer device is opened succesfully, device I/O commands can be send to it by setting up the I/O request 
and calling the appropriate I/O routine. The following commands are recognized by the printer device and can be 
used in an I/O request: 

CMD_FLUSH 
Abort all stopped I/O at the unit. 

CMD INVALID 
Is an invalid command and sets the device error appropriately. 

CMD_RESET 
Reset the printer device without destroying handles. 

CMD START 
Restart the unit after a stop command. 

CMD_STOP 
Pause current and queued I/O requests immediately. 

CMD_WRITE 
Send output to printer. 

PRD DUMPRPORT 
Dump a rast port to a printer with graphic capabilities. 

PRD PRTCOMMAND 
Send a command to the printer. 

PRD_QUERY 
Query printer port/line status. 

PRD RA WWRITE 
Send output to printer without processing it. 

To use these device I/O commands, you set up the appropriate I/O request block with the I/O command and other 
specific information, then call DolOO or SendlOO to issue the commands to the printer device. To transmit the 
standard device I/O commands (flush, invalid, reset, start, stop) to the printer device all that is needed is the 
command itself and a pointer to the I/O request block (which contains the device and unit information). A small 
function like the following could be used to do this. 

/* send 'standard' I/O device Command to printer device */ 

int PrintDevCommand(request, devcommand) 
union printerIO *request; 
UWORD devcommand; 
{ 

request->ios.io Command = devcommand; 
return(DoIO((struct IORequest *)request)); 

Printer Device 747 



The other device I/O commands need more information to function properly and are discussed separately below. 

WRITING TEXT TO THE PRINTER 

To output text to the printer the device I/O commands CMD _WRITE and PRD _RA WWRITE can be used. 
CMD_ WRllE lets the printer device process the character stream to the printer. Possibly embedded escape 
sequences will be "translated" into appropriate escape sequences for the printer. PRD_RAWWRllE, on the other 
hand, passes the data directly along to the printer without any processing. Hence to use PRD _RA WWRI1E the 
caller has to "know" what the printer will accept as a command. Moreover, PRD_RA WWRllE will, unlike 
CMD_ WRllE, ignore the printer Preferences settings (like Pitch, Spacing, etc.) Unless the printer has already been 
initialized by another command, the printer's own default settings will be used when printing raw, not the user's 
Preferences settings. 

The following two routines might be used to send text and raw text to the printer. 

NOTE 

For the device I/O commands CMD_WRllE and PRD_RAWWRITE the IOStdReq structure of the 
union printerIO must be used. 

1* send a NULL-terminated string to the printer *1 

1* Assumes printer device is open and printerMsg is correctly initialized. 
* Watches for embedded "escape-sequences" and handles them as defined. 
*1 

int PrihtString(request,string) 
union printerIO *request; 
UBYTE *string; 
{ 

request->ios.io Command = CMO WRITE; 
request->ios.io-Oata = (APTR)-string; 
request->ios.io-Length = -1L; 
1* if -1, the printer assumes it has been given 

* a null-terminated string. 
*1 
return(OoIO«struct IORequest *)request»; 

1* Send RAW character stream to the printer directly, 
* avoid "escape-sequence" parsing by the device. 
*1 

int 
PrintRawString (request, buffer, 
union printerIO *request; 
UBYTE *buffer; 

count) 
1* a properly initialized request block *1 
1* where is the output stream of characters *1 
1* how many characters to output *1 ULONG count; 

{ 

1* queue a printer raw write *1 
request->ios.io Command = PRO RAWWRITE; 
request->ios.io-Oata = (APTR)-buffer; 
request->ios.io=Length = count; 
return(OoIO«struct IORequest *)request»; 

748 Printer Device 



SENDING PRINTER COMMANDS TO THE PRINTER 

As mentioned before, it is possible to embed printer commands (escape sequences) into the character stream and 
send them to the printer using the CMD_ WRITE device I/O command. It is also possible to use the printer 
command names using the device I/O command PRD_PRTCOMMAND with the IOPrtCmdReq data structure. 
This gives you a mnemonic way of setting the printer to your program needs. The following routine is an example of 
how to do this: 

int PrintPrtCommand(request,command, pO, pl, p2, p3) 
union printerIO *request; 
UWORO command; 1* the printer command *1 
UBYTE pO, pl, p2, p3; 1* and its parameters *1 
( 

1* queue a printer command *1 
request->iopc.io Command = PRO PRTCOMMANO; 
request->iopc.io=PrtCommand = command; 
request->iopc.io ParmO = pO; 
request->iopc.io=Parml = pl; 
request->iopc.io Parm2 = p2; 
request->iopc.io=Parm3 = p3; 
return(OoIO«struct IORequest *)request»; 

As an example, suppose you wanted to set the left and right margins on your printer to columns 1 and 79, 
respectively. Here is a sample call to the above PrintPrtCommandO function for this purpose: 

PrintPrtCommand(aSLRM, 1, 79, 0, 0); 

Consult the command function table listed below for other printer commands. 

PRINTER COMMAND DEFINITIONS 

The following table describes the supported printer functions. 

NOTE 

Not all printers support every command. Unsupported commands will either be ignored or simulated 
using available functions. 

To transmit a command to the printer device, you can either formulate a character stream containing the material 
shown in the "Escape Sequence" column of the table below or send an PRD_PRTCOMMAND device I/O 
command to the printer device with the "Name" of the function you wish to perform. 

Again, recall that SER: and PAR: and the PRD _RA WWRITE device I/O command will ignore all of these and pass 
them directly on to the attached device. 

Printer Device 749 



Table 39-1: Printer Device Command Functions 

Cmd Escape Defined 
Name No. Sequence Function by: 

aRIS 0 ESCc Reset ISO 
aRIN 1 ESC#1 Initialize +++ 
aIND 2 ESCD Lf ISO 
aNEL 3 ESCE Return,lf ISO 
aRI 4 ESCM Reverse If ISO 

aSGRO 5 ESC[Om Normal char set ISO 
aSGR3 6 ESC[3m Italics on ISO 
aSGR23 7 ESC[23m Italics off ISO 
aSGR4 8 ESC[4m Underline on ISO 
aSGR24 9 ESC[24m Underline off ISO 
aSGRI 10 ESC[lm Boldface on ISO 
aSGR22 11 ESC[22m Boldface off ISO 
aSFC 12 ESC[nm Set foreground color ISO 

where n stands for a pair 
of ASCII digits, 3 followed 
by any number 0-9 (See ISO 
Color Table) 

aSBC 13 ESC[nm Set background color ISO 
Where n stands for 
a pair of ASCII digits, 4 
followed by any number 0-9 
(See ISO Color Table) 

aSHORPO 14 ESC[Ow Normal pitch DEC 
aSHORP2 15 ESC[2w Elite on DEC 
aSHORPI 16 ESC[lw Elite off DEC 
aSHORP4 17 ESC[4w Condensed fine on DEC 
aSHORP3 18 ESC[3w Condensed off DEC 
aSHORP6 19 ESC[6w Enlarged on DEC 
aSHORP5 20 ESC[5w Enlarged off DEC 

aDEN6 21 ESC[6"z Shadow print on DEC (sort ot) 
aDEN5 22 ESC[5"z Shadow print off DEC 
aDEN4 23 ESC[4"z Doublestrike on DEC 
aDEN3 24 ESC[3"z Doublestrike off DEC 
aDEN2 25 ESC[2"z NLQon DEC 
aDENl 26 ESC[l"z NLQoff DEC 

aSUS2 27 ESC[2v Superscript on +++ 
aSUSl 28 ESC[lv Superscript off +++ 
aSUS4 29 ESC[4v Subscript on +++ 
aSUS3 30 ESC[3v Subscript off +++ 
aSUSO 31 ESC[Ov Normalize the line +++ 
aPLU 32 ESCL Partial line up ISO 
aPLD 33 ESCK Partial line down ISO 

aFNTO 34 ESC(B US char set DEC 
aFNTl 35 ESC(R French char set DEC 

750 Printer Device 



aFNT2 36 ESC(K German char set DEC 
aFNT3 37 ESC(A UK char set DEC 
aFNT4 38 ESC(E Danish I char set DEC 
aFNT5 39 ESC(H Swedish char set DEC 
aFNT6 40 ESC(Y Italian char set DEC 
aFNT7 41 ESC(Z Spanish char set DEC 
aFNT8 42 ESC(J Japanese char set +++ 
aFNT9 43 ESC(6 Norwegian char set DEC 
aFNTlO 44 ESC(C Danish II char set +++ 

aPROP2 45 ESC[2p Proportional on +++ 
aPROPl 46 ESC[lp Proportional off +++ 
aPROPO 47 ESC[Op Proportional clear +++ 
aTSS 48 ESC[n~ Set proportional offset ISO 
aJFY5 49 ESC[5f Auto left justifY ISO 
aJFY7 50 ESC[7F Auto right justify ISO 
aJFY6 51 ESC[6F Auto full justify ISO 
aJFYO 52 ESC[OF Auto justify off ISO 
aJFY3 53 ESC[3F Letter space Gustify) ISO (special) 
aJFYl 54 ESC[1 F Word fill(auto center) ISO (special) 

aVERPO 55 ESC[Oz 1/8" line spacing +++ 
aVERPl 56 ESC[1z 1/6" line spacing +++ 
aSLPP 57 ESC[nt Set form length n DEC 
aPERF 58 ESC[nq Perf skip n (n>O) +++ 
aPERFO 59 ESC[Oq Perf skip off +++ 

aLMS 60 ESC#9 Left margin set +++ 
aRMS 61 ESC#O Right margin set +++ 
aTMS 62 ESC#8 Top m&rgin set +++ 
aBMS 63 ESC#2 Bottom margin set +++ 
aSTBM 64 ESC[n;nr T&B margins DEC 
aSLRM 65 ESC[n;ns L&Rmargin DEC 
aCAM 66 ESC#3" Clear margins +++ 

aRTS 67 ESCH Set horiz tab ISO 
aVTS 68 ESCJ Set vertical tabs ISO 
aTBCO 69 ESC[Og Clr horiz tab ISO 
aTBC3 70 ESC[3g Clear all h tab ISO 
aTBCl 71 ESC[1g Clr vertical tabs ISO 
aTBC4 72 ESC[4g Clr all v tabs ISO 
aTBCALL 73 ESC#4 Clr all h & v tabs +++ 
aTBSALL 74 ESC#5 Set default tabs +++ 
aEXTEND 75 ESC[n"x Extended commands +++ 

aRAW 76 ESC[n"r Next n chars are raw +++ 

Legend: 

ISO indicates that the sequence has been defined by the International Standards Organization. This is 
also very similar to ANSI x3.64. 

DEC indicates a control sequence defined by Digital Equipment Corporation. 

Printer Device 751 



+++ indicates a sequence unique to Amiga. 

n stands for a decimal number expressed as a set of ASCII digits. For example, in the aRA W 
string ESC[5"rHELLO, n is substituted by 5, the number of RAW characters you send to the 
printer. 

ISO Color Table 

0 Black 

1 Red 

2 Green 

3 Yellow 

4 Blue 

5 Magenta 

6 Cyan 

7 White 

8 NC 

9 Default 

DUMPING A RASTPORT TO THE PRINTER 

You can dump a RastPort (drawing area) to a graphics capable printer by sending the device I/O command 
PRD_DUMPRPORT the printer, along with several parameters that define how the dump is to be accomplished. 

For using PRD_DUMPRPORT, the data structure IODRPReq is needed. Here is an overview of the possible 
arguments for the RastPort dump. 

io Command 
io RastPort 

io ColorMap 
io-Modes 
io SrcX 
io-SrcY 
io-SrcWidth 
io:::SrcHeight 
io OestCols 
io OestRows 
io_Special 

PRO OUMPRPORT 
A pointer to a RastPort. The RastPort's BitMap could be 
in FASTMEM. 
A pointer to a ColorMap. This could be a custom one. 
The view modes from a ViewPort structure. 
X offset in the RastPort to start printing from. 
Y offset in the RastPort to start printing from. 
Width of the RastPort to print from io SrcX. 
Height of the RastPort to print from io SrcY. 
Width of the dump in printer pixels. -
Height of the dump in printer pixels. 
Flag bits (described below) . 

Looking at these arguments you can see the enormous flexibility the printer device offers for dumping a RastPort. 
The RastPort pointed to could be totally custom defined This flexibility means it is possible to build a BitMap with 
the resolution of the printer. This would result in having one pixel of our BitMap correspond to one pixel of the 
printer. In other words only the resolution of the output device would limit our final result. With 12 bit planes and a 
custom ColorMap, you could dump 4096 colors-without the HAM limitation- to a suitable printer. The offset, 

752 Printer Device 



width and height parameters allow dumps of any desired part of the picture. Finally the ViewPort mode, 
io _ DestCols, io _ DestRows parameters, together with the io _Special flags define how the dump will appear on paper 
and aid in getting the correct aspect ratio. 

PRINTER SPECIAL FLAGS 

Following a description of the valid flag bits for io_Special which can be used for a RastPort dump. 

SPECIAL_ASPECT 

SPECIAL CENTER 

SPECIAL NOFORMFEED 

SPECIAL NOPRINT 

SPECIAL TRUSTME 

SPECIAL DENSITYl-7 

SPECIAL FULLCOLS 

SPECIAL FULLROWS 

SPECIAL_FRACCOLS 

SPECIAL FRACROWS 

SPECIAL MILCOLS 

SPECIAL MILROWS 

Allows one of the dimensions to be reduced/expanded to 
preserve the correct aspect ratio of the printout. 
Centers the image between the left and right edge of 
the paper. 
Prevents the page from being ejected after a graphics dump. 
Usually used to mix graphics and text or mUltiple 
graphics dump on a page oriented printer 
(normally a laser printer) . 
The print size will be computed, and set in io DestCols 
and io DestRows, but won't print. This way the-application 
can see what the actual printsize in printerpixels would be. 
Instructs the printer not to send a reset before and 
after the dump. This flag is obsolete for Vl.3 (and higher) drivers. 
This flag bit is set by the user in Preferences. 
Refer to "CHANGING THE PRINTER PREFERENCES 
SETTINGS" if you want to change to density of the printout. 
(Or any other setting for that matter.) 

The width is set to the maximum possible, as determined 
by the printer or the configuration limits. 
The height is set to the maximum possible, as determined 
by the printer or the configuration limits. 
Informs the printer device that the value in io DestCols 
is to be taken as a longword binary fraction of-the maximum 
for the dimension. For example if iO_DestCols would be OxBOOO, 
the width would be 1/2 (OxBOOO / Oxffff) of the width of the 
paper. 
Informs the printer device that the value in io DestRows 
is to be taken as a longword binary fraction for the 
dimension. 
Informs the printer device that the value in io DestCols 
is specified in thousands of an inch. For example if 
io DestCols would be BOOO, the width of the printout would 
be-B.OOO inch. 
Informs the printer device that the value in io DestRows 
is specified in thousands of an inch. 

PRINTING WITH CORRECTED ASPECT RATIO 

Using the special flags it is fairly easy to ensure a graphic dump will have the correct aspect ratio on paper. There are 
some considerations though when printing a non-displayed RastPort. One way to get a corrected aspect ratio dump 
is to calculate the printer's ratio from XDotsInch and YDotsInch (taking into account that the printer may not have 
square pixels) and then adjust the width and height parameters accordingly. You then ask for a non-aspect-ratio
corrected dump since you already corrected it yourself. 

Another possibility is having the printer device do it for you. To get a correct calculation you could build your 
RastPort dimensions in two ways: 

Printer Device 753 



1) Using an integer multiple of one of the standard (NTSC) display resolutions and setting the io_Modes 
argument accordingly. For example if your RastPort dimensions were 1280 x 800 (an even multiple of 640 x 
400) you would set io _Modes to LACE I HIRES. Setting the SPECIAL_ASPECT flag would enable the printer 
device to calculate the aspect ratio of the image properly. 

2) Using an arbitrary sized RastPort and setting GfxBase->NormaIDPMX and GfxBase->NormalDPMY to its 
dimensions. Again, setting the SPECIAL_ASPECT flag would enable the printer device to calculate the aspect 
ratio of the image, based on the information you provided. This method could also be used for PAL-sized 
RastPorts. 

NOTE 

After the graphics dump you should restore GfxBase->NormaIDPMX and GfxBase->NormaIDPMY 
to their original values. 

The actual code to dump the RastPort could be like the following example routine: 

void DumpRPort(request,rastPort, colorMap, modes, sx,sy, sw,sh, dc,dr, s) 
union printerIO *request; 
struct RastPort *rastPort; 
struct ColorMap *colorMap; 
ULONG modes; 
UWORD sx, sy, sw, sh; 
LONG dc, dr; 
UWORD s; 
( 

request->iodrp.io_Command = PRD_DUMPRPORT; 
request->iodrp.io RastPort = rastPort; 
request->iodrp.io=ColorMap = colorMap; 
request->iodrp.io Modes = modes; 
request->iodrp.io=SrcX = sx; 
request->iodrp.io SrcY = sy; 
request->iodrp.io-SrcWidth = sw; 
request->iodrp.io-SrcHeight = sh; 
request->iodrp.io-DestCols = dc; 
request->iodrp.io-DestRows = dr; 
request->iodrp.io=Special = s; 
SendIO«struct IORequest *)request); 

The asynchronous SendIOO routine is used in this example instead of the synchronous DoIOO. A call to DoIOO 
does not return until the 1/0 request is finished. A call to SendIOO returns immediately. This allows your task to do 
other processing such as checking if the user wants to abort the 1/0 request. When writing a lot of text, or raw data to 
the printer, this should be seriously considered for CMD_ WRITE and PRD_RAWWRlTE too. The following code 
is an simplified example of using SendlOO to issue an I/O request while giving the user a way to abort it: 

union printerIO *prtrequest; 
struct Window *wn; 
struct MsgPort *prtport; 
struct IntuiMessage *msg; 

ULONG signal, usersig, printersig; 
BOOL EINDE = FALSE; 

/* Assuming the I/O request message has been created and the printer 
* device is opened. 
*/ 

usersig = 1 « wn->UserPort->mp SigBit; 
printersig = 1 « prtport->mp_SIgBit; 

SendIO(prtrequest); 
signal = Wait (usersig I printersig) /* wait until either user or printer 

signals */ 

754 Printer Device 



if (signal & usersig) 
( 

/* User expressed need to abort */ 
while (msg = (struct IntuiMessage *)GetMsg(wn->UserPort» 

ReplyMsg(msg); 
EINDE = TRUE; 

} 
if (signal & printersig) 
{ 

/* Printer is either ready or has an error to report */ 
/* Error is in printerIO->iodrp.io_Error, show user if problem */ 
while (msg = GetMsg(prtport»; 

if (EINDE) 
( 

} 

AbortIO(prtreq); 
WaitIO (prtreq) ; /* wait for reply */ 

/* 'prtreq' can be used again */ 

NOTE 

It is possible that the printer has been instructed to receive a certain amount a data and is still in an 
"expecting" state if an 1/0 request has been aborted by the user. This means the printer would try to 
finish the job with the data the next I/O request might send. Currently the best way to overcome this 
problem is to reset the printer. 

HANDLING PRINTER ERROR CODES 

It is good practice to inform the user about any errors that may have come back from an I/O request instead of 
simply not printing. The currently defined errors are: 

PDERR NOERR 
PDERR CANCEL 
PDERR NOTGRAPHICS 
PDERR INVERTHAM 
PDERR BADDlMENSION 
PDERR DlMENSIONOVERFLOW 
PDERR INTERNALMEMORY 
PDERR_BUFFERMEMORY 
PDERR TOOKCONTROL 

Clean exit. No errors. 
User canceled job. 
Printer cannot output graphics. 
OBSOLETE 
Print dimensions are illegal. 
OBSOLETE 
No memory available for internal variables. 
No memory available for print buffer. 
The printer driver does the graphic dump 
entirely on it's own. 
The printer device can assume the dump 
has been done. The calling application will not be 
informed of this internal error. 

The following example will dump the RastPort of a window to the printer, wait for either the printer to finish or the 
user to cancel the dump and act accordingly. 

/* WindowDump.c 10/89 
* Compiled with Lattice C 5.04: LC -bl -cfist -v -y 
* Linkage: c.o+WindowDump.o Library lib:amiga.lib+lib:lc.lib 
*/ 

#include <exec/types.h> 
#include <devices/printer.h> 
#include <exec/io.h> 
#include <graphics/display.h> 
#include <graphics/gfxbase.h> 
#include <graphics/rastport.h> 
#include <graphics/view.h> 
#include <intuition/intuition.h> 

Printer Device 755 



'include <libraries/dos.h> 
'include <libraries/dosextens.h> 

Ufdef LATTICE 
'include <proto/all.h> 
'include <stdio.h> 
'include <stdlib.h> 
'endif 

void main(void); 
union printerIO *CreatePrtReq(void); 
void DeletePrtReq(union printerIO *); 
int OpenPrinter (union printerIO *); 
void ClosePrinter(union printerIO *); 
void DumpRPort(union printerIO *, struct RastPort *, struct ColorMap *, 

ULONG, UWORD, UWORD, UWORD, UWORD, LONG, LONG, UWORD); 
void openLibraries(void); 
struct Window *doWindow(SHORT, SHORT); 
void cleanexit(UBYTE *); 

union printerIO 
{ 

struct IOStdReq ios; 
struct IODRPReq iodrp; 
struct IOPrtCmdReq iopc; 

}; 

static UBYTE *prtErrorText[] 
{ 

EVERYTHING'S FINE", 
USER CANCELED DUMP II , 
NOT A GRAPHICS PRINTER ", 
SHOULDN'T GET THIS ONE", 
ILLEGAL DIMENSIONS", 
SHOULDN'T GET THIS ONEil, 
NO MEMORY FOR VARIABLES", 
NO MEMORY FOR BUFFER" 

struct IntuitionBase *IntuitionBase 
struct GfxBase *GfxBase = NULL; 
struct Window *window; 
union printerIO *printerReq; 
BaaL PDOPEN = FALSE; 

void main () 
( 

struct IntuiMessage *msg; 
struct MsgPort *port; 
struct RastPort *rp; 
struct ViewPort *vp; 

ULONG usersig, printersig, signal; 
BaaL P ABORT FALSE; 
BaaL U ABORT = FALSE; 

openLibraries(); 
window = doWindow(320, 100); 

NULL; 

if (! (printerReq = CreatePrtReq(») 
cleanexit("Can't create printer request"); 

if (OpenPrinter(printerReq» 
cleanexit("Can't open printer device\n"); 

PDOPEN = TRUE; 

port = printerReq->ios.io_Message.mn_ReplyPort; 

usersig = 1 « window->UserPort->mp_SigBit; 
printersig = 1 « port->mp_SigBit; 

756 Printer Device 



rp window->RPort; 
vp &window->WScreen->ViewPort; 

DumpRPort(printerReq, rp, vp->ColorMap, vp->Modes, 
(UWORD)window->BorderLeft, (UWORD)window->BorderTop, 

FOREVER 
{ 

(UWORD) (window->Width - window->BorderRight - window->BorderLeft), 
(UWORD) (window->Height - window->BorderBottom - window->BorderTop), 
OL, OL, 
SPECIAL_ASPECTISPECIAL_FULLROWS); 

signal = Wait (usersig I printersig); 
if (signal & usersig) 
{ 

while(msg = (struct IntuiMessage *)GetMsg(window->UserPort» 
{ 

if(msg->Class == CLOSEWINDOW) U ABORT = TRUE; 
ReplyMsg«struct Message *)msg); 

if (signal & printersig) 
( 

if (printerReq->iodrp.io_Error != 0) 
( 

SetWindowTitles(window, 
prtErrorText[printerReq->iodrp.io_Error), NULL); 

} 

Delay(150); 

P ABORT = TRUE; 
while«struct MsgPort *)GetMsg(port»; 

AbortIO«struct IORequest *)printerReq); 
WaitIO«struct IORequest *)printerReq); 

if (P_ABORT I U_ABORT) 
cleanexit(""); 

1* open and fill a window on the Workbench screen *1 

struct Window *doWindow(width, height) 
SHORT width, height; 
{ 

struct NewWindow nw = 
( 

0, 0, 0, 0, 0, 1,CLOSEWINDOW,ACTIVATEIWINDOWCLOSEIWINDOWDEP TH I SMART REFRESH I 
WINDOWDRAGIRMBTRAP,NULL,NULL,"<- Close To Abort Dump", -
NULL,NULL,-l,-l,-l,-l,WBENCHSCREEN 

} ; 

struct RastPort *rp; 
struct Window *wn; 
register COUNT n; 
register SHORT mc, mr; 

nw.Height 
nw.Width 

height; 
width; 

if(! (wn = (struct Window *)OpenWindow(&nw») 
cleanexit("Can't open window\n"); 

rp wn->RPort; 
mc = wn->Width - (wn->BorderRight+l); 
mr wn->Height - (wn->BorderBottom+l); 

SetDrMd(rp,O); 
SetAPen(rp, 1); 

Printer Device 757 



RectFill(rp, wn->BorderLeft, wn->BorderTop, mc, mr); 

for (n = wn->BorderLeft; n < mc; n+=4) 
{ 

Move (rp, (mc I 2) + wn->BorderLeft + 1, (mr I 2) + wn->BorderBottom + 1); 
SetAPen(rp, 0); 
Draw(rp, n, wn->BorderTop); 
Move (rp, (mc I 2) + wn->BorderLeft + 1, (mr I 2) + wn->BorderBottom + 1); 
SetAPen(rp, 3); 
Draw(rp, n, mr); 

for (n = wn->BorderTop; n < mr; n+=4) 
{ 

Move (rp, (mc I 2) + wn->BorderLeft + 1, (mr I 2) + wn->BorderBottom + 1); 
SetAPen(rp, 2); 
Draw (rp, wn->BorderLeft, n); 
Move (rp, (mc I 2) + wn->BorderLeft + 1, (mr I 2) + wn->BorderBottom + 1); 
Draw(rp, mc, n); 

return(wn); 

void openLibraries() 
{ 

if ( ! (GfxBase = (struct GfxBase *) OpenLibrary (ngraphics .libraryn, 33) ) ) 
cleanexit(nCan't open graphics.lib\nn); 

if(! (IntuitionBase = (struct IntuitionBase *)OpenLibrary(nintuition.libraryn, 33») 
cleanexit(nCan't open intuition.lib\nn); 

void cleanexit(s) 
UBYTE *s; 
{ 

struct IntuiMessage *msg; 
SHORT c; 

if (PDOPEN) 
CloseDevice«struct IORequest *)printerReq); 

if (printerReq) 
DeletePrtReq(printerReq); 

if (window) 
{ 

while(msg = (struct IntuiMessage *)GetMsg(window->UserPort» 
ReplyMsg«struct Message *)msg); 

CloseWindow(window); 

if(GfxBase) CloseLibrary«struct Library *)GfxBase); 
if (IntuitionBase) CloseLibrary«struct Library *)IntuitionBase); 

if (*s) 
{ 

printf(n%s\nn, s); 
printf (n«< Hit Return 
c = getchar(); 
exit(RETURN_FAIL); 

exit(RETURN_OK); 

to continue »>\nn); 1* just in case we're *1 
1* run from Workbench *1 

1* the printer i/o routines we use *1 

union printerIO *CreatePrtReq() 
{ 

struct MsgPort *prtport; 
union printerIO *request; 

if (!(prtport = CreatePort(NULL,O») 

758 Printer Device 



return(O); 
if (! (request = (union printerIO *)CreateExtIO(prtport, 

sizeof(union printerIO»» 

DeletePort(prtport); 
return(O); 

return(request); 

void DeletePrtReq(request) 
union printerIO *request; 
( 

int 

struct MsgPort *prtport; 

prtport = request->ios.io_Message.mn_ReplyPort; 
DeleteExtIO«struct IORequest *)request); 
DeletePort(prtport); 

OpenPrinter(request) 
union printerIO *request; 
{ 

return (OpenDevice ("printer.device", 0, (struct IORequest *)request,O»; 

void 
DumpRPort(request,rastPort, colorMap, modes, sx,sy, sw,sh, dc,dr, s) 
union printerIO *request; 
struct RastPort *rastPort; 
struct ColorMap *colorMap; 
ULONG modes; 
UWORD sx, sy, sw, sh; 
LONG dc, dr; 
UWORD s; 
( 

request->iodrp.io_Command = PRD_DUMPRPORT; 
request->iodrp.io RastPort = rastPort; 
request->iodrp.io=ColorMap = colorMap; 
request->iodrp.io Modes = modes; 
request->iodrp.io=SrcX = sx; 
request->iodrp.io SrcY = sy; 
request->iodrp.io=srcWidth = sw; 
request->iodrp.io_SrcHeight = sh; 
request->iodrp.io_DestCols = dc; 
request->iodrp.io DestRows = dr; 
request->iodrp.io=special = s; 
SendIO«struct IORequest *)request); 

STRIP PRINTING 

Strip printing is a method which allows you to print a picture that normally requires a large print buffer when there is 
not much memory available. This would allow, for example, a RastPort to be printed at a higher resolution than it 
was drawn in. Strip printing is done by creating a temporary RastPort as wide as the source RastPort, but not as 
high. The source RastPort is then rendered, a strip at a time, into the temporary RastPort which is dumped to the 
printer. 

The height of the strip to dump must be an integer multiple of the printer's NumRows if a non-aspect-ratio
corrected image is to be printed. 

For an aspect-ratio-corrected image, the SPECIAL_NOPRINT flag will have to be used to find an io_DestRows that 
is an integer multiple of NumRows. This can be done by varying the source height and asking for a 
SPECIAL_NOPRINT dump until io _ DestRows holds a number that is an integer multiple of the printer's 

Printer Device 759 



NumRows. 

If SMOOTHING is to work with strip printing, a raster line above and below the actual area should be added. The 
line above should be the last line from the previous strip, the line below should be the first line of the next strip. Of 
course, the first strip should not have a line added above and the last strip should not have a line added below. 

The following is a strip printing scenario for a RastPort which is 200 lines high. 

First strip 

copy source line 0 through 50 (51 lines) to strip RastPort lines 0 
through 50 (51 lines). 
io_SrcY = 0, io_Height = 50. 
the printer device can see there is no line above the first line to 
dump (since Src Y = 0) and that there is a line below the last line 
to dump (since there is a 51 line RastPort and only 50 lines are dumped). 

Second strip 

copy source line 49 through 100 (52 lines) to strip Rastport lines 0 
through 51 (52 lines). 
io_SrcY = 1, io_Height = 50. 
the printer device can see there is a line above the first line to 
dump (since SrcY = 1) and that there is a line below the last line 
to dump (since there is a 52 line RastPort and only 50 lines are dumped). 

Third strip 

copy source line 99 through 150 (52 lines) to strip RastPort lines 0 
through 51 (52 lines). ' 
io_SrcY = 1, io_Height = 50. 
the printer device can see there is a line above the first line to 
dump (since SrcY = 1) and that there is a line below the last line 
to dump (since there is a 52 line RastPort and only 50 lines are dumped). 

Fourth strip 

copy source line 149 through 199 (51 lines) to strip RastPort lines 0 
through 50 (51 lines). 
io_SrcY = 1, io_Height = 50. 
the printer device can see there is a line above the first line to 
dump (since SrcY = 1) and that there is no line below the last line 
to dump (since there is a 51 line RastPort and only 50 lines are dumped). 

GETTING INFORMATION ABOUT THE PRINTER 

The device I/O command PRD_QUERY can be used to get the status of the printer port and registers. The result is 
returned in two UBYTES. The status is returned in the io_Data field. The printer type, either serial or parallel, is 
returned in the io Actual field. 

760 Printer Device 



1o_Data BIT ACfIVE FUNCfION (SERIAL DEVICE) 

LSB 0 low reserved 
1 low reserved 
2 low reserved 
3 low Data Set Ready 
4 low Clear To Send 
5 low Carrier Detect 
6 low Ready To Send 
7 low Data Terminal Ready 

MSB 8 high read buffer overflow 
9 high break sent (most recent output) 

10 high break received (as latest input) 
11 high transmit x-OFFed 
12 high receive x-OFFed 

13-15 high reserved 

1o_Data BIT ACfIVE FUNCfION (PARALLEL DEVICE) 

0 high printer busy (offline) 
1 high paper out 
2 high printer selected 

3-7 reserved 

lo_Adual 1-parallel, 2-serial 

A function like the following could be used to query the port status: 

struct PStat 
( 

) ; 

UBYTE LSB; 
UBYTE MSB; 

struct PStat *GetPrintStat(request) 
union printerIO *request; 
{ 

struct PStat *status = NULL; 

request->ios.io Command = PRD QUERY; 
request->ios.io=Data = (APTR)status; 
DoIO«struct IORequest *)request); 

/* request->ios.io_Actual contains type of connection */ 
return(status); 

For more information about the printer in use, the PrinterData and PrinterExtededData data structures can be 
read. These data structures are defined in devices/prtbase.h. The following example shows how to read them: 

#include <exec/types.h> 
#include <devices/printer.h> 
#include <devices/prtbase.h> 
#ifdef LATTICE 
#include <stdio.h> 
#include <proto/all.h> 
#endif 

union printerIO 
( 

struct IOStdReq ios; 
struct IODRPReq iodrp; 
struct IOPrtCmdReq iopc; 

) ; 

union printerIO *printerReq; 
struct PrinterData *PD; 
struct PrinterExtendedData *PED; 

Printer Device 761 



void main(void); 
extern int OpenPrinter(union printerIO *); 

void main () 
{ 

1* open the printer device if it opened ... *1 
if(! (OpenPrinter(printerReq») 
{ 

else 

1* get pointer to printer data *1 
PD = (struct PrinterData *)printerReq->iodrp.io_Device; 

1* get pointer to printer exteded data *1 
PED = &PD->pd_SegmentData->ps_PED; 

1* let's see what's there *1 
printf("PrinterName = '%5', Version=%u, Revision=%u\n", 

PED->ped PrinterName, PD->pd SegmentData->ps Version, 
PD->pd_SegmentData->ps_Revislon); -

printf("PrinterClass=%u, ColorClass=%u\n", 
PED->ped_PrinterClass, PED->ped_ColorClass); 

printf("MaxColumns=%u, NumCharSets=%u, NumRows=%u\n", 
PED->ped_MaxColumns, PED->ped_NumCharSets, 
PED->ped_NumRows); 

printf("MaxXDots=%lu, MaxYDots=%lu, XDotslnch=%u, YDotslnch=%u\n", 
PED->ped MaxXDots, PED->ped MaxYDots, 
PED->ped=XDotslnch, PED->ped_YDotslnch); 

CloseDevice((struct IORequest *)printerReq); 1* close the printer device *1 

printf("Can't open printer.device\n"); 

CHANGING THE PRINTER PREFERENCES SETTINGS 

The user preferences can be changed without running the Workbench Preferences tool. This can be done by referring 
to PD->pd_Preferences, which contains the latest preferences. See intuition/prejerences.h for a description of this 
structure. 

The application program is responsible for range checking if the user is able to change the preferences from within 
the application. Listed below are the printer preferences items and their valid ranges. 

Text Preferences 

Graphic Preferences 

762 Printer Device 

PrintPitch 
PrintQuality 
PrintSpacing 
PrintLeftMargin 
PrintRightMargin 
PaperLength 

PICA, ELITE, FINE 
DRAFT, LETTER 
SIX LPI, EIGHT LPI 
1 to PrintRightMargin 
PrintLeftMargin to 999 
1 to 999 



Print Image 
printAspect 
PrintShade 
Print Threshold 
PrintFlags 

PrintMaxWidth 
PrintMaxHeight 
PrintDensity 
PrintXOffset 

IMAGE POSITIVE, IMAGE NEGATIVE 
ASPECT_HORIZ, ASPECT_VERT 
SHADE BW, SHADE GREYSCALE, SHADE COLOR 
1 to 15 - -
CORRECT RED, CORRECT GREEN, CORRECT BLUE, 
CENTER_I~GE, IGNORE=DIMENSIONS, -
BOUNDED DIMENSIONS, ABSOLUTE DIMENSIONS, 
PIXEL_DIMENSIONS, MULTIPLY_DIMENSIONS, 
INTEGER SCALING, ORDERED DITHERING, 
HALFTONE DITHERING, FLOYD DITHERING, 
ANTI ALIAS, GREY SCALE2 -
o to-65535 -
o to 65535 
1 to 7 
o to 255 

ADDITIONAL NOTES ABOUT GRAPHIC DUMPS 

1. When dumping a 1 bitplane image select the B&W mode in preferences. This is much faster than a grey
scale or color dump. 

2. Horizontal dumps are much faster than vertical dumps because they use the blitter to read the pixel data. 

3. Smoothing doubles the print time. Use it for final copy only. 

4. F-S dithering doubles the print time. Ordered and half-tone dithering incur no extra overhead. 

5. The lower the density, the faster the printout. 

6. Friction-fed paper tends to be much more accurate than tractor-fed paper in terms of vertical dot placement 
(i.e., less horizontal strips or white lines). 

7. Densities which use more than one pass tend to produce muddy grey-scale or color printouts. It is 
recommended not to choose these densities when doing a grey-scale or color dump. 

Creating a Printer Driver 

Creating the printer-dependent modules for the printer device involves writing the data structures and code, 
compiling and assembling them, and linking to produce an Amiga binary object file. Each driver contains at least six 
modules: printertag.asm, init.asm, transfer.c, data.c, dospeciaZ.c and render.c. Depending on the special capabilities 
of the printer driver, additional modules may be needed. For example, some standard Workbench drivers use the 
modules prtready.c and density.c. This section will describe the function of all the printer driver modules. At the 
end of this chapter source code is listed for four of the Workbench printer drivers for you to use as an example. 

The first piece of the printer driver is the PrinterSegment structure described in deviceslprtbase.h (this is pointed to 
by the BPTR returned by the LoadSegO of the object file). The PrinterSegment contains the 
PrinterExtendedData (PED) structures (also described in deviceslprtbase.h) at the beginning of the object. The 
PED structure contains data describing the capabilities of the printer, as well as pointers to code and other data. Here 
is the assembly code for a sample PrinterSegment, which would be linked to the beginning of the sequence of files 
as printertag .asm. 

Printer Device 763 



********************************************************************** 

* * printer device dependent code tag 
* 
********************************************************************** 

; named sections are easier to exactly place in the linked file 
SECTION printer 

*------ Included Files -----------------------------------------------

INCLUDE "exec/types.i" 
INCLUDE "exec/nodes.i" 

INCLUDE "revision.i" contains VERSION & REVISION 

INCLUDE "devices/prtbase.i" 

*------ Imported Names -----------------------------------------------

XREF Init 
XREF _Expunge 
XREF _Open 
XREF Close 
XREF -CommandTable 
XREF ':::Dospecial 
XREF Render 
XREF ExtendedCharTable 

*------ Exported Names ----.-------------------------------------------

XDEF PEDData 

********************************************************************** 

; in case anyone tries to execute this 
MOVEQ 110,00 
RTS 

DC.W 
DC.W 

PEDData: 
- DC.L 

DC.L 
DC.L 
DC.L 
DC.L 
DC.B 
DC.B 
DC.B 
DC.B 
DC.W 
DC.L 
DC.L 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.L 

VERSION 
REVISION 

printerName 
Init 

_Expunge 
Open 

-Close 
PPC COLORGFX 
PCC YMCB 
136 
10 
8 
1632 
o 
120 
72 
CommandTable 
DoSpecial 

-Render 
30 

must be 35 (for V1.3) 
your own revision number 

pointer to the printer name 
pointer to the initialization code 
pointer to the expunge code 
pointer to the open code 
pointer to the close code 
PrinterClass 
ColorClass 
MaxColumns 
NumCharSets 
NumRows 
MaxXDots 
MaxYDots 
XDotsInch 
YDotsInch 
pointer to Command Strings 
pointer to Command Code function 
pointer to Graphics Render function 
Timeout 

DC.L _ExtendedCharTable ; pointer to 8BitChar table 

DS.L 
DC.L 

printerName: 
DC.B 
DC.B 
END 

1 
o 

'EpsonX' 
o 

764 Printer Device 

Flag for PrintMode (reserve space) 
pointer to ConvFunc (char conversion function), 
usually null 



The printer name should be the brand name of the printer that is available for use by programs wishing to be specific 
about the printer name in any diagnostic or instruction messages. The four functions at the top of the structure are 
used to initialize this printer-dependent code: 

(*(PED->ped_Init»(PD); 
This is called when the printer-<iependent code is loaded and provides a pointer to the printer device for 
use by the printer-dependent code. It can also be used to open up any libraries or devices needed by the 
printer-dependent code. 

(*(PED->ped _ Expunge»O; 
This is called immediately before the printer-dependent code is unloaded, to allow it to close any resources 
obtained at initialization time. 

(*(PED->ped _ Open»(ior); 
This is called in the process of an OpenDeviceO call, after the Preferences are read and the correct 
primitive I/O device (parallel or serial) is opened. It must return zero if the open is successful, or non-zero 
to terminate the open and return an error to the user. 

(*(PED->ped _ Close»(ior); 
This is called in the process of a CloseDeviceO call to allow the printer-dependent code to close any 
resources obtained at open time. 

The pd _ variable provided as a parameter to the initialization call is a pointer to the Printer Data structure described 
in deviceslprtbase.h and deviceslprtbase.i. This is also the same as the io_Device entry in printer I/O requests. 

pd _ SegmentData 
This points back to the PrinterSegment, which contains the PED. 

pd_PrintBuf 
This is available for use by the printer-dependent code-it is not otherwise used by the printer device. 

(*pd_PWrite)(data, length); 
This is the interface routine to the primitive I/O device. This routine uses two I/O requests to the primitive 
device, so writes are double-buffered. The data parameter points to the byte data to send, and the length is 
the number of bytes. 

(*pd _ PBothReady)O; 
This waits for both primitive I/O requests to complete. This is useful if your code does not want to use 
double buffering. If you want to use the same data buffer for successive pd_PWrites, you must separate 
them with a call to this routine. 

pd Preferences 
This is the copy of Preferences in use by the printer device, obtained when the printer was opened. 

The timeout field is the number of seconds that an I/O request from the printer device will remain posted and 
unsatisfied to the primitive I/O device (parallel or serial) before the timeout requester is presented to the user. This 
value should be large enough to avoid the requester during normal printing. 

The PrintMode field is a flag which indicates whether text has been printed or not (1 means printed, 0 means not 
printed). This flag is used in drivers for page oriented printers to indicate that there is no alphanumeric data waiting 
for a formfeed. 

Printer Device 765 



WRITING A GRAPHICS PRINTER DRIVER 

Designing the graphics portion of a custom printer driver consists of two steps: writing the printer-specific 
RenderO, TransferO and SetDensityO functions, and replacing the printer-specific values in printertag.asm. 
RenderO, TransferO and SetDensityO comprise render.c, transfer.c, and density.c modules, respectively . 
.IX RenderO 

A printer that does not support graphics has a very simple form of RenderO; it returns an error. Here is sample code 
for RenderO for a non-graphics printer (such as an Alphacom or Diablo 630): 

ilinclude "exec/types.h" 
ilinclude "devices/printer.h" 
int Render () 
{ 

return(PDERR_NOTGRAPHICS)i 

The following section describes the contents of a typical driver for a printer that does support graphics. 

RENDERO 

This function is the main printer-specific code module and consists of seven parts referred to here as cases: 

• Pre-Master initialization 

• Master initialization 

• Putting the pixels in a buffer 

• Dumping a pixel buffer to the printer 

• Clearing and initializing the pixel buffer 

• Closing down 

• Switching to the next color 

For each case, RenderO receives four long variables as parameters: ct, x, y and status. These parameters are 
described below for each of the seven cases that RenderO must handle. 

Pre-Master initialization (Case 5) 

Parameters: 

ct - 0 or pointer to the IODRPReq structure passed to PCDumpRPort 
x - io_Special flag from the IODRPReq structure 
y-O 

When the printer device is first opened, RenderO is called with ct set to 0, to give the driver a chance to set up the 
density values before the actual graphic dump is called. 

766 Printer Device 



The parameter passed in x will be the io _Special flag which contains the density and other SPECIAL flags. The only 
flags used at this point are the DENSITY flags, all others should be ignored. Never call PWrite during this case. 
When you are finished handling this case, return PDERR_NOERR. 

Master initialization (Case 0). 

Parameters: 

ct - pointer to a IODRPReq structure 
x - width (in pixels) of printed picture 
y - height (in pixels) of printed picture 

NOTE 

At this point the printer device has already checked that the values are within range for the printer. This 
is done by checking values listed in printertag .asm. 

The x and y value should be used to allocate enough memory for a command and data buffer for the printer. If the 
allocation fails, PDERR_BUFFERMEMORY should be returned. In general, the buffer needs to be large enough for 
the commands and data required for one pass of the print head. These typically take the following form: 

<start gfx cmd> <data> <end gfx cmd> 

The <start gfx cmd> should contain any special, one-time initializations that the printer might require such as: 

a) Carriage Return - some printers start printing graphics without returning the printhead. Sending a CR assures 
that printing will start from the left edge. 

b) Uni-Directional- some printer which have a bi-directional mode produce non-matching vertical lines during a 
graphics dump, giving a wavy result To fix this, your driver could set the printer to uni-directinal mode. 

c) Clear margins - some printers force graphic dumps to be done within the text margins, thus they should be 
cleared. 

d) Other commands - enter the graphics mode, set density, etc. 

In addition to the memory for commands and data, a multi-pass color printer must allocate enough buffer space for 
each of the different color passes. 

The printer should never be reset during the master initialization case. This will cause problems during multiple 
dumps. Also, the pointer to the IODRPReq structure in ct should not be used except for those rare printers which 
require it to do the dump themselves. Return the PDERR_TOOKCONTROL error in that case so that the printer 
device can exit gracefully. 

The example render.c functions listed at the end of this chapter use double buffering to reduce the dump time which 
is why the AllocMemO calls are for BUFSIZE times two, where BUFSIZE represents the amount of memory for one 
entire print cycle. However, contrary to the example source code, allocating the two buffers independently of each 
other is recommended. A request for one large block of contiguous memory might be refused. Two smaller requests 
are more likely to be granted. 

Printer Device 767 



Putting the pixels in a buffer (Case 1). 

Parameters: 

ct - pointer to a PrtInfo structure. 
x - PCM color code (if the printer is PCC_MUL TI] ASS). 
y - printer row # (the range is 0 to pixel height - 1). 

In this case, you are passed an entire row of YMCB intensity values (Yellow, Magenta, Cyan, Black). To handle 
this case, you call the TransferO function in the transfer.c module. You should return PDERR_NOERR after 
handling this case. The PCM-definesfor the x parameter from the file deviceslprtgfx.h are PCMYELLOW, 
PCMMAGENTA, PCMCY AN and PCMBLACK. 

Dumping a pixel buffer to the printer (Case 2). 

Parameters: 

ct- 0 
x-O 
y - # of rows sent (the range is 1 to NumRows). 

At this point the data can be Run Length Encoded (RLE) if your printer supports it. If the printer doesn't support 
RLE, the data should be white-space stripped. This involves scanning the buffer from back to front for the first 
occurrence of a non-zero value. Only the data up to the first non-zero value should be sent to the printer. This will 
significantly reduce print times. 

The value of y can be used to advance the paper the appropriate number of pixel lines, if your printer supports that 
feature. This helps prevent white lines from appearing between graphic dumps. 

You can also do post-processing on the buffer at this point. For example, if your printer uses the hexadecimal 
number $03 as a command and requires the sequence $03 $03 to send $03 as data, you would probably want to scan 
the buffer and expand any $03's to $03 $03 during this case. Of course, you'll need to allocate space somewhere in 
order to expand the buffer. 

The error from PWrite should be returned after this call. 

Clearing and initializing the pixel buffet (Case 3) 

Parameters: 

ct- 0 
x-O 
y-O 

The printer driver does not send blank pixels so you must initialize the buffer to the value your printer uses for blank 
pixels (usually 0). Clearing the buffer should be the same for all printers. Initializing the buffer is printer specific, 
and it includes placing the printer-specific control codes in the buffer ahead of and behind where the data will go. 

This call is made before each case 2 call. Clear your active print buffer- remember you are double buffering-and 
initialize it if necessary. After this call PDERR_NOERR should be returned. 

768 Printer Device 



Closing Down (Case 4). 

Parameters: 

ct - error code 
x - io_Special flag from the IODRPReq structure 
y-O 

This call is made at the end of the graphic dump, or if the graphic dump was cancelled for some reason. At this point 
you should free the printer's buffer memory. Determine if memory was allocated by checking if PD->pd_PrintBuf 
is not NULL. If memory was allocated then you must wait for the print buffers to clear (by calling PBothReady) 
and then de-allocate the memory. If the printer-usually a page oriented printer- requires a page eject command, it 
can be given here. Before you do, though, you should check the SPECIAL_NOFORMFEED bit in x. Don't issue 
the command if it is set. 

If the error condition in ct is PDERR_CANCEL then you should not PWrite. This error indicates that the user is 
trying to cancel the dump for whatever reason. Each additional PWrite will generate another printer trouble 
requester. Obviously, this is not desirable. 

During this render case PWrite could be used to: 

a) reset the line spacing. If the printer doesn't have an advance 'n' dots command, then you'll probably 
advance the paper by changing the line spacing. If you do, then you should set it back to either 6 or 8 lpi 
(depending on Preferences). 

b) set bi-directional mode if you selected urn-directional mode in render case O. 

c) set black text; some printers print the text in the last color used, even if it was in graphics mode. 

d) restore the margins if you cancelled the margins in render case O. 

e) any other command needed to exit the graphics mode, eject the page, etc. 

Either PDERR_NOERR or the error from PWrite should be returned after this call. 

Switching to the next color (Case 6) 

This call provides support for printers which require that colors be sent in separate passes. When this call is made, 
you should instruct the printer to advance its color panel. This case is only needed for printers of the type 
PCC_MULTCPASS, such as the CalComp ColorMaster. 

TRANSFERO 

TransferO dithers and renders an entire row of pixels passed to it by the RenderO function. When TransferO gets 
called, it is passed 5 parameters; a pointer to a Prtlnfo structure in PInfo, the row number in y, a pointer to the 
buffer in ptr, a pointer to the color buffers in colors and the buffer offset in BufOffset for interleaved printing. 

The dithering process of TransferO might entail thresholding, grey-scale dithering, or color-dithering each 
destination pixel. If PInfo->pUbreshold is non-zero, then the dither value is PInfo->pi_thresholdA 15. If PInfo
>pi_threshold is zero, then the dither value is computed by: 

Printer Device 769 



* (PInfo->pi_dmatrix + «y & 3) * 2) + (x & 3» 

where x is initialized to Plnfo->pi_ xpos and is incremented for each of the destination pixels. Since the printer 
device uses a 4x4 dither matrix, you must calculate the dither value exactly as given above. Otherwise, your driver 
will be non-standard and the results will be unpredictable. 

The TransferO function renders by putting a pixel in the print buffer based on the dither value. If the intensity value 
for the pixel is greater than the dither value as computed above, then the pixel should be put in the print buffer. If it 
is less than, or equal to the dither value, it should be skipped to process the next pixel. 

Printer 
ColorClass 

Type of 
Dithering Rendering logic 

Thresholding Test the black value against the threshold value to see 
if you should render a black pixel. 

Grey Scale Test the black value against the dither value to see if 
you should render a black pixel. 

Color NA (See HP _LaserJet transfer.c file) 

Thresholding Test the black value against the threshold value to see 
if you should render a black pixel. Print yellow, magenta 
and cyan pixel to make black. 

Grey Scale Test the black value against the dither value to see if 
you should render a black pixel. Print yellow, magenta 
and cyan pixel to make black. 

Color Test the yellow value against the dither value to see if you should 
render a yellow pixel. Repeat this process for magenta and cyan. 

Thresholding Test the black value against the threshold value to see if 
you should render a black pixel. 

Grey Scale Test the black value against the dither value to see if 
you should render a black pixel. 

Color Test the black value against the dither value to see if you should 
render a black pixel. If black is not rendered, then test the 
yellow value against the dither value to see if you should render 
a yellow pixel. Repeat this process for magenta and cyan. 
(See EpsonQ, EpsonX or Xerox_ 4020 transfer.c file) 

Thresholding Test the black value against the threshold value to see if 
you should render a black pixel. 

Grey Scale Test the black value against the dither value to see if 
you should render a black pixel. 

Color Test the yellow value against the dither value to see if you should 
render a yellow pixel. Repeat this process for magenta and cyan. 

In general, if black is rendered for a specific printer dot, then the YMC values should be ignored, since the 
combination of YMC is black. It is recommended that the printer buffer be constructed so that the order of colors 
printed is yellow, magenta, cyan and black, to prevent smudging and minimize color contamination on ribbon color 
printers. 

The example transfer.c files are provided in C for demonstration only. Writing this module in assembler can cut the 
time needed for a graphic dump in half. The EpsonX transfer.asm file is an example of this. 

770 Printer Device 



SETDENSITYO 

SetDensityO is a short function which implements multiple densities. SetDensityO is called in the Pre-master 
initialization case of the RenderO function. It is passed the density code in density-code. This is used to select the 
desired density or, if the user asked for a higher density than is supported, the maximum density available. 
SetDensityO should also handle narrow and wide tractor paper sizes. 

Densities below 80 dpi should not be supported in SetDensityO, so a minimum of 640 dots across for a standard 
8.Sx II-inch paper is guaranteed. This results in a 1-1 correspondence of dots on the printer to dots on the screen in 
standard screen sizes. The density.c example for the HP LaserJet is an exception to this rule. Its minimum density is 
75 dpi, since the original HP LaserJet has too little memory to output a full page at a higher density. 

PRINTERT AG.ASM 

For a graphic printer the printer-specific values that need to be filled in in printertag.asm are as follows: 

MaxXDots 
the maximum number of dots the printer can print across the page. 

MaxYDots 
the maximum number of dots the printer can print down the page. Generally, if the printer supports roll or 
form feed paper, this value should be 0 indicating that there is no limit If the printer has a definite y dots 
maximum (as a laser printer does), this number should be entered here. 

XDotslnch 
the dot density in x (supplied by SetDensityO, if it exists). 

YDotslnch 
the dot density in y (supplied by SetDensityO, if it exists). 

PrinterClass 
the printer class of the printer. Current choices are: 

PPC BW ALPHA - black&white alphanumeric, no graphics. 
PPC_BWGFX - black&white (only) graphics. 
PPC _ COLORALPHA - color alphanumeric, no graphics. 
PPC_COLORGFX - color (and maybe black&white) graphics. 

ColorClass 
the color class the printer falls into. Current choices are: 

Printer Device 771 



PCC BW - Black&White only 
PCC YMC - Yellow Magenta Cyan only. 
PCC _ YMC _ BW - Yellow Magenta Cyan or Black& White, but not both 
PCC _ YMCB - Yellow Magenta Cyan Black 
PCC _ WB - White&Black only, 0 is BLACK 
PCC BGR - Blue Green Red 
PCC _ BGR_ WB- Blue Green Red or Black& White 
PCC_BGRW - Blue Green Red White 

NumRows 
the number of pixel rows printed by one pass of the print head. This number is used by the non-printer
specific code to determine when to make a render case 2 call to you. You have to keep this number in 
mind when determining how big a buffer you'll need to store one print cycle's worth of data. 

WRITING AN ALPHANUMERIC PRINTER DRIVER 

The alphanumeric portion of the printer driver is designed to convert ANSI x3.64 style commands into the specific 
escape codes required by each individual printer. For example, the ANSI code for underline-on is ESC[4m. The 
Commodore MPS-1250 printer would like a ESC[ -I to set underline-on. The HP LaserJet accepts ESC[&dD as a 
start underline command. By using the printer driver all printers may be handled in a similar manner. 

There are two parts to the alphanumeric portion of the printer driver: the Command Table data table and the 
DoSpecialO routine. 

Command Table 

The CommandTable is used to convert all escape codes that can be handled by simple substitution. It has one entry 
per ANSI command supported by the printer driver. When you are creating a custom CommandTable, you must 
maintain the order of the commands in the same sequence as that shown in printer.h and printed. By placing the 
specific codes for your printer in the proper position, the conversion takes place automatically. 

NOTE 

If the code for your printer requires a decimal 0 (an ASCII NULL character), you enter this NULL into 
the CommandTable as octal 376 (decimal 254). 

Placing an octal value of 377 (255 decimal) in a position in the command table indicates to the printer device that no 
simple conversion is available on this printer for this ANSI command. For example, if a daisy-wheel printer does 
not have a foreign character set, 377 octal (255 decimal) is placed in that position in the command table. However, 
377 in a position can also mean that the ANSI command is to be handled by code located in the DoSpecialO 
function. For future compatiblity all Y1.3 printer commands should be present in the command table, and those not 
supported by the printer filled with the dummy entry \377. 

DoSpecialO 

The DoSpecialO function is meant to implement all the ANSI functions that cannot be done by simple substitution, 
but can be handled by a more complex sequence of control characters sent to the printer. These are functions that 
need parameter conversion, read values from Preferences, and so on. Complete routines can also be placed in 

772 Printer Device 



dospeciai.c. For instance, in a driver for a page oriented-printer such as the lIP LaserJet, the dummy CloseO routine 
from the init.asm file would be replaced by a real CloseO routine in dospeciai.c. This close routine would handle 
ejecting the paper after text has been sent to the printer and the printer has been closed. 

The DoSpeciaIO function is set up as follows: 

flinclude "exec/types.h" 
flinclude "devices/printer.h" 
flinclude "devices/prtbase.h" 

extern struct PrinterData *PD; 

DoSpecial(command,outputBuffer,vline,currentVMI,crlfFlag,Parms) 
UBYTE outputBuffer[]; 
UWORD *command; 
BYTE *vline; 
BYTE *currentVMI; 
BYTE *crlfFlag; 
UBYTE Parms[]; 
{ /* code begins here ••• */ 

where 

command 
points to the command number. The devices/printer.h file contains the definitions for the routines to use 
(aRIN is initialize, and so on). 

vline 
points to the value for the current line position. 

currentVMI 
points to the value for the current line spacing. 

crlfFlag 
points to the setting of the "add line feed after carriage return" flag. 

Parms 
contain whatever parameters were given with the ANSI command. 

outputButfer 
points to the memory buffer into which the converted command is returned. 

Almost every printer will require an aRIN (initialize) command in DoSpeciaIO. This command reads the printer 
settings from Preferences and creates the proper control sequence for the specific printer. It also returns the 
character set to normal (not italicized, not bold, and so on). Other functions depend on the printer. 

Certain functions are implemented both in the CommandTable and in the DoSpecialO routine. These are functions 
such as superscript, subscript, PLU (partial line up), and PLD (partial line down), which can often be handled by a 
simple conversion. However, certain of these functions must also adjust the printer device's line-position variable. 

NOTE 

Some printers lose data when sent their own reset command. For this reason it is recommended that if 
the printer's own reset command is used, PD->pd_PWaitEnabled should be defined to be a character 
that the printer will not print. This character should be put in the reset string before and after the reset 
character(s) in the command table. 

Printer Device 773 



In the EpsonX[CBM_MPS-1250] DoSpecialO function you'll see 

if (*command == aRIS) 
( /* reset command */ 

PD->pd_PWaitEnabled = 253; /* identical to \375 */ 

while in the command table the string for reset is defined as ''\375\033@\375''. This means that when the printer 
device outputs the reset string '''i>33@'', it will first see the ''\375'', wait a second and output the reset string. While 
the printer is resetting, the printer device gets the second ''\375'' and waits another second. This ensures that no data 
will be lost if a reset command is embedded in a string. 

Printertag.asm 

For an alphanumeric printer the printer-specific values that need to be filled in in printertag.asm are as follows: 

MaxColumns 
the maximum number of columns the printer can print across the page. 

NumCharSets 
the number of character sets which can be selected. 

8BitChars 
a pointer to an extended character table. If the field is null, the default table will be used. 

ConvFunc 
a pointer to a character conversion routine. If the field is null, no conversion routine will be used. 

Extended Character table 

The 8BitChars field could contain a pointer to a table of characters for the ASCII codes $aO to $ff. The symbols for 
these codes are shown in the "IFF" chapter of the ROM Kernel Reference Manual: Includes & Autodocs. If this 
field contains a NULL, it means no specific table is provided for the driver, and the default table is to be used 
instead. 

Care should be taking when generating this table, because of the way the table is parsed by the printer device. Valid 
expressions in the table include ~)11 where 011 is an octal number, \'000 for null and \\0 where n is a 1-3 digit 
decimal number. To enter an actual backslash in the table requires the somewhat awkward \\\\ As an example, here 
is a list of the first entries of the EpsonxX[CBM_MPS-1250] table: 

char *ExtendedCharTable[) 
{ 

" II , 
"\033R\007[\033R\\O", 
"c\OlOI", 
"\033R\003#\033R\\O", 
"\033R\005$\033R\\O", 
"\033R\OlO\\\\033R\\O", 
"I", 
"\033R\002@\033R\\O", 
"\033R\OOl-\033R\\O", 
lie", 
"\033S\\Oa\OlO_\033T", 

774 Printer Device 

/* NBSP*/ 
/* i */ 
/* cl */ 
/* L- */ 
/* 0 */ 
/* y- */ 
/* I */ 
/* SS */ 
/* • */ 
/* copyright */ 
/* a */ 
/* « */ 
/* - */ 



"-", /* SHY */ 
urn, /* registered trademark */ 
"-", /* - */ 
/* more entries go here */ 

} ; 

Character Conversion Routine 

The ConvFunc field contains a pointer to a character conversion function that allows you to selectively translate any 
character to a combination of other characters. If no translation conversion is necessary (for most printers it isn't) the 
field should contain a null. 

ConvFuncO arguments are a pointer to a buffer, the character currently processed, and a CR/LF flag. The 
ConvFuncO function should return a -1 if no conversion has been done. If the character is not to be added to the 
buffer, a 0 can be returned. If any translation is done, the number of characters added to the buffer must be returned. 

Besides simple character translation, the ConvFuncO function can be used to add features like underlining to a 
printer which doesn't support them automatically. A global flag could be introduced that could be set or cleared by 
the DoSpecialO function. Depending on the status of the flag the ConvFuncO routine could, for example, put the 
character, a backspace and an underline character in the buffer and return 3, the number of characters added to the 
buffer. 

The ConvFuncO function for this could look like the following example: 

'define DO_UNDERLINE OxOl 
'define DO BOLD Ox02 
/* etc */ -

external short myflags; 

int 
ConvFunc(buffer, c, crlf flag) 
char *buffer, c; 
int crlf flag 
{ -

int nr of chars_added = 0; 

/* for this example we only do this for chars in the Ox20-0x7e range */ 
/* Conversion of ESC (Oxlb) and CSI (Ox9b) is NOT recommended */ 

if (c > Oxlf && c < Ox7f) 
{ /* within space range ? */ 

if (myflags & DO_UNDERLINE) 
{ 

*buffer++ c; /* the character itself */ 
*buffer++ = OxOS; /* a backspace */ 
*buffer++ = , '; /* an underline char */ 
nr_of_chars_added = 3; /* added three chars to buffer */ 

if (myflags , DO_BOLD) 
{ 

if (nr of chars added) 
added something */ { -/*-already have 

*buffer++ = Ox08; 
++nr_of_chars_added; 
} 

*buffer++ = c; 
*buffer++ = Ox08; 
*buffer++ = c; 
++nr of chars added; 
if (myflags '-DO_UNDERLINE) 
{ /* did we do underline too? 

*buffer++ = Ox08; 

/* so we start with backspace */ 
/* and increment the counter */ 

*/ 
/* then backspace again*/ 

Printer Device 775 



*buffer++ = , , ; 1* (printer goes crazy by now) 
nr - of chars _added += 2; 1* two more chars *1 

if (nr of chars added) - - -
return (nr_of_chars - added) ; 1* total nr of chars we added 

else 
return(-l); 1* we didn't do anything *1 

In DoSpecialO the flagbits could be set or cleared, with code like the following; 

if (*command == aRIS) 
myflags = 0; 

if (*command == aRIN) 
myflags = 0; 

if (*command == aSGRO) 
myflags = 0; 

if (*command == aSGR4) 
myflags 1= DO_UNDERLINE; 

if (*command == aSGR24) 
myflags &= -DO_UNDERLINE; 

if (*command == aSGR1) 
myflags 1= DO_BOLD; 

if (*command == aSGR22) 
myflags &= -DO_BOLD; 

1* reset command *1 
1* clear all flags *1 

1* initialize command *1 

1* 'PLAIN' command *1 

1* underline on *1 
1* set underline bit *1 

1* underline off *1 
1* clear underline bit *1 

1* bold on *1 
1* set bold bit *1 

1* bold off *1 
1* clear bold bit *1 

*1 

*1 

Try to keep the expansions to a minimum, so the throughput will not be slowed down too much, and to reduce the 
possibility of data overrunning the printer device buffer. 

TESTING THE PRINTER DRIVER 

Before releasing a printer driver it should be thoroughly tested. Though labor intensive, the alphanumeric part of a 
driver can be easily tested. The graphics part is more difficult. Following are some recommendations on how to test 
this part. 

Start with a black and white (threshold 8), grey scale and color dump of the same picture. The color dump should be 
in color of course. The grey scale dump should be like the color dump, except it will consist of patterns of black 
dots. The black and white dump will have solid black and solid white areas. 

Next do a dump with the DestX and DestY dots set to an even multiple of the XDotsIncb and YDotsIncb for the 
printer. For example, if the printer has a resolution of 120 x 144 dpi, a 480 x 432 dump could be done. This should 
produce a printed picture which covers 4 x 3 inches on paper. If the width of the picture is off, then the wrong value 
for XDotsIncb has been put in printertag.asm. If the height of the picture is off, the wrong value for YDotsIncb is 
in printertag.asm. 

Do a color dump as wide as the printer can handle with the density set to 7. 

Make sure that the printer doesn't force graphic dumps to be done within the text margins. This can easily be tested 
by setting the text margins to 30 and 50, the pitch to 10 cpi and then doing a graphic dump wider than 2 inches. The 
dump should be left justified and as wide as you instructed. If the dump starts at character position 30 and is cut off 
at position 50, the driver will have to be changed. These changes involve clearing the margins before the dump 
(Case 0) and restoring the margins after the dump (Case 4). An example of this is present in every RenderO source 

776 Printer Device 



example listed at the end of this chapter. 

NOTE 

Before the graphic dump, some text must be sent to the printer to have the printer device initialize the 
printer. The "text" sent does not have to contain any printable characters (i.e., you can send a carriage 
return or other control characters). 

As a final test, construct an image with a white background that has objects in it surrounded by white space. Dump 
this as black&white, grey scale and color printout. This will test the white-space stripping or RLE and the ability of 
the driver to handle null lines. The white data areas should be separated by at least as many lines of white space as 
the NumRows value in the printertag.asm file. 

Example Printer Driver Source Code 

As an aid in writing printer drivers, source code for four different classes of printers is supplied. All drivers have 
been successfully generated with Lattice C 5.04 and Lattice Assembler 5.04. The example drivers are: 

macros.i 

EpsonX 
EpsonQ 
HP _Laser jet 
Xerox_4020 

A YMCB, 8 pin, multi-density interleaved printer. 
A YMCB, 24 pin, multi-density printer. 
A black&white, multi-density, page-oriented printer. 
A YMCB, color inkjet printer with RLE. 

All printer drivers use the following include file macros.i for initasm. 

********************************************************************** 

* * * Copyright 1985, Cornmodore-Amiga Inc. All rights reserved. * 
* No part of this program may be reproduced, transmitted, * 
* transcribed, stored in retrieval system, or translated into * 
* any language or computer language, in any form or by any * 
* means, electronic, mechanical, magnetic, optical, chemical, * 
* manual or otherwise, without the prior written permission of * 
* Cornmodore-Amiga Incorporated, 1200 Wilson Drive, West Chester, * 
* Pennsylvania, 19380 * 
* * 
********************************************************************** 

* 
* printer device macro definitions 

* 
********************************************************************** 

*------ external definition macros -----------------------------------

XREF EXE MACRO 
XREF LVO\1 -

ENDM 

XREF DOS MACRO 
XREF LVO\l -

ENDM 

Printer Device 777 



XREF GFX MACRO 
XREF 

ENDM 

XREF ITU MACRO 
- XREF 

ENDM 

*------ library dispatch macros --------------------------------------

CALLEXE MACRO 
CALLLIB LVO\l -
ENDM 

LINKEXE MACRO 
LINKLIB _LVO\l,_SysBase 
ENDM 

LINKDOS MACRO 
LINKLIB _LVO\l,_DOSBase 
ENDM 

LINKGFX MACRO 
LINKLIB LVO\l, GfxBase -
ENDM 

LINKITU MACRO 
LINKLIB _LVO\l,_IntuitionBase 
ENDM 

778 Printer Device 



EPSONX 

For the EpsonX driver, both the assembly and C version of TransferO are supplied. In the Makefile the (faster) 
assembly version is used to generate the driver. 

The EpsonX driver can be generated with the following Makefile. 

LC = lc:lc 
ASM = lc:asm 
CFLAGS = -iINCLUDE: -bO -dO -v 
ASMFLAGS = -iINCLUDE: 
LINK = lc:blink 
LIB = lib:amiga.lib+lib:lc.lib 
OBJ = printertag.o+init.o+data.o+dospecial.o+render.o+transfer.o+density.o 
TARGET = EpsonX 

@$(LC) $ (CFLAGS) $* 

$ (TARGET) : printertag.o init.o data.o dospecial.o render.o density.o transfer.o 
@$(LINK) <WITH < 
FROM $ (OBJ) 
TO $ (TARGET) 
LIBRARY $(LIB) 
NODEBUG SC SD VERBOSE MAP $ (TARGET) .map H 
< 

init.o: init.asm 
@$(ASM) $ (ASMFLAGS) init.asm 

printertag.o: printertag.asm epsonx_rev.i 
@$(ASM) $ (ASMFLAGS) printertag.asm 

transfer.o: transfer.asm 
@$(ASM) $ (ASMFLAGS) transfer.asm 

dospecial.o: dospecial.c 

data.o: data.c 

density.o: density.c 

render.o: render.c 

install: 
@copy $ (TARGET) to devs:printers 

EPSONX: PRINTERTAG.ASM 

TTL '$Header: printer.2,v 1.3 89/11/07 14:36:56 carolyn Exp $' 
********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Copyright 1985, Commodore-Amiga Inc. All rights reserved. 
No part of this program may be reproduced, transmitted, 
transcribed, stored in retrieval system, or translated into 
any language or computer language, in any form or by any 
means, electronic, mechanical, magnetic, optical, chemical, 
manual or otherwise, without the prior written permission of 
Commodore-Amiga Incorporated, 1200 Wilson Drive, West Chester, 
Pennsylvania, 19380 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************** 

Printer Device 779 



* * printer device dependent code tag 

* 
* 
* 
* 
* 

Source Control 

$Header: printer.2,v 1.3 89/11/07 14:36:56 carolyn Exp $ 

* $Locker: mks $ 

* 
* 
* 
* 
* 

$Log: printer.2,v $ 
Revision 1.3 89/11/07 14:36:56 carolyn 
changed Loas Gatos address to WC 

* Revision 1.2 89/11/03 05:28:05 dan 
* Added corrections from QA 
* Corrected grammar, etc. 
* Dan B. 

* 
* Revision 1.1 89/10/31 16:05:17 ken 
* Initial revision 

* * Revision 1.2 88/04/14 12:03:35 daveb 
* V1.3 Gamma 11 release 

* 
* Revision 1.1 87/10/27 15:30:30 daveb 
* V1.3 gamma 1 check-in 

* * Revision 1.0 87/08/20 14:10:02 daveb 
* added to rcs 

* * Revision 1.0 87/08/20 13:27:35 daveb 
* added to rcs 

* * Revision 1.3 87/08/03 11:05:54 daveb 
* added null ptr to char conversion function at end of table 

* * Revision 1.2 87/07/30 10:35:12 daveb 
* added 'DS.L l' at end to reserve space for PrintMode 

* * Revision 1.1 87/07/21 11:37:42 daveb 
* added 'PPC VERSION 2' to PrinterClass - -
* 
* Revision 1.0 87/07/21 11:37:10 daveb 
* added to rcs 

* * Revision 32.6 86/06/30 21:07:52 andy 
* *** empty log message *** 
* 
* Revision 32.5 86/06/30 20:54:48 andy 
* enabled 8 bit characters 

* * Revision 32.4 86/06/11 16:16:44 andy 
* *** empty log message *** 
* * Revision 32.3 86/06/10 12:57:11 andy 
* Corrected printer name 

* 
* Revision 32.2 86/02/12 18:16:13 kodiak 
* YDotsInch -> 72 

* * Revision 32.1 86/02/10 14:32:51 kodiak 
* add null 8BitChars field 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Revision 32.0 86/02/10 14:22:56 kodiak 
added to rcs for updating 

Revision 1.1 85/10/09 23:57:45 kodiak 
replace reference to pdata w/ prtbase 

Revision 1.0 85/10/09 23:57:39 kodiak 
added to rcs for updating in version 1 

780 Printer Device 



* Revision 25.1 85/06/16 01:02:15 kodiak 

* *** empty log message *** 
* 
* Revision 25.0 85/06/15 06:40:00 kodiak 

* added to rcs 

* 
* Revision 25.0 85/06/13 18:53:36 kodiak 

* added to rcs 

* 
* 
********************************************************************** 

SECTION printer 

*------ Included Files -----------------------------------------------

INCLUDE 
INCLUDE 
INCLUDE 

INCLUDE 

INCLUDE 

"exec/types.i" 
"exec/nodes.i" 
"exec/strings.i" 

"epsonX_rev.i" 

"devices/prtbase.i" 

*------ Imported Names -----------------------------------------------

XREF Init 
XREF _Expunge 
XREF _Open 
XREF Close 
XREF -CommandTable 
XREF PrinterSegmentData 
XREF =:DoSpecial 
XREF Render 
XREF -ExtendedCharTable 

*------ Exported Names -----------------------------------------------

XDEF PEDData 

********************************************************************** 

PEDData: 

printerName: 

MOVEQ 
RTS 
DC.W 
DC.W 

DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.B 
DC.B 
DC.B 
DC.B 
DC.W 
DC.L 
DC.L 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DS.L 
DC.L 

DC.B 
DC.B 

1I0,DO 

VERSION 
REVISION 

printerName 
_Init 
_Expunge 

Open 
-Close 
PPC COLORGFX 
PCC YMCB 
136-
10 
8 
1632 
o 
120 
72 

CommandTable 
=:DoSpecial 

Render 

; show error for OpenLibrary() 

;PrinterClass 
ColorClass 
MaxColumns 
NumCharSets 
NumRows 
MaxXDots 
MaxYDots 
XDotsInch 
YDotsInch 
Commands 

30 ; Timeout 
ExtendedCharTable 8BitChars 

PrintMode (reserve space) "1 
o ; ptr to char conversion function 

"EwoutTest" 
o 

Printer Device 781 



END 

EPSONX REV.I 

VERSION 
REVISION 

EQU 35 
EQU 0 

EPSONX: INIT.ASM 

TTL '$Header: printer.2,v 1.3 89/11/07 14:36:56 carolyn Exp $' 
********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Copyright 1985, Commodore-Amiga Inc. All rights reserved. 
No part of this program may be reproduced, transmitted, 
transcribed, stored in retrieval system, or translated into 
any language or computer language, in any form or by any 
means, electronic, mechanical, magnetic, optical, chemical, 
manual or otherwise, without the prior written permission of 
Commodore-Amiga Incorporated, 1200 Wilson Drive, West Chester, 
Pennsylvania, 19380 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************** 

* 
printer device functions 

Source Control 

* 
* 
* 
* 
* 
* 

$Header: printer.2,v 1.3 89/11/07 14:36:56 carolyn Exp $ 

* $Locker: mks $ 

* * $Log: printer.2,v $ 
* Revision 1.3 89/11/07 14:36:56 carolyn 
* changed Loas Gatos address to WC 

* * Revision 1.2 89/11/03 05:28:05 dan 
* Added corrections from QA 
* Corrected grammar, etc. 
* Dan B. 
* 
* Revision 1.1 89/10/31 16:05:17 ken 
* Initial revision 

* 
Revision 1.1 88/04/14 12:03:14 daveb 
Vl.3 Gamma 11 release 

Revision 1.0 87/08/20 14:10:17 daveb 
added to rcs 

Revision 1.1 85/10/09 19:27:20 kodiak 
remove stdout variable -

Revision 1.0 85/10/09 19:23:23 kodiak 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

added to rcs for updating in version 1 

Revision 25.0 85/06/16 01:01:22 kodiak 
added to rcs 

* 
********************************************************************** 

SECTION printer 

*------ Included Files -----------------------------------------------

782 Printer Device 



INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 

INCLUDE 

"exec/types.i" 
"exec/nodes.:r" 
"exec/lists.i" 
"exec/memory. i" 
"exec/ports.i" 
"exec/libraries.i" 

"macros.i" 

*------ Imported Functions -------------------------------------------

XREF EXE 
XREF_EXE 
XREF 

XREF 

CloseLibrary 
OpenLibrary 

AbsExecBase 

PEDData 

*------ Exported Globals 

XDEF Init 
XDEF _Expunge 
XDEF _Open 
XDEF Close 
XDEF PD 
XDEF PED 
XDEF _SysBase 
XDEF DOSBase 
XDEF -GfxBase 
XDEF IntuitionBase 

********************************************************************** 
SECTION printer, DATA 

PD DC.L 0 
PED DC.L 0 

:::SysBase DC.L 0 
DOSBase DC.L 0 

-GfxBase DC.L 0 
IntuitionBase DC.L 0 -

********************************************************************** 

Init: 

* 

* 

* 

SECTION 

MOVE.L 
LEA 
MOVE.L 
MOVE.L 
MOVE.L 
MOVE.L 

printer, CODE 

4(A7), PD 
_PEDData(PC),AO 
AO, PED 
A6,:: (A7) 

AbsExecBase,A6 
A6,_SysBase 

;------ open the dos library 
LEA DLName(PC),Al 
MOVEQ IIO,DO 
CALLEXE OpenLibrary 
MOVE.L DO, DOSBase 
BEQ initDLErr 

;------ open the graphics 
LEA GLName(PC),Al 
MOVEQ IIO,DO 
CALLEXE OpenLibrary 
MOVE.L DO, GfxBij,se 
BEQ initGLErr 

library 

;------ open the intuition library 
LEA ILName(PC),Al 
MOVEQ IIO,DO 
CALLEXE OpenLibrary 

Printer Device 783 



MOVE.L DO, IntuitionBase 
BEQ initILErr 

MOVEQ 1I0,DO 
pdiRts: 

MOVE.L (A7)+,A6 
RTS 

initPAErr: 
MOVE.L IntuitionBase,A1 
LINKEXE CloseLibrary 

initILErr: 
MOVE.L _GfxBase,A1 
LINKEXE CloseLibrary 

initGLErr: 
MOVE.L DOSBase,A1 
LINKEXE CloseLibrary 

initDLErr: 
MOVEQ 1I-1,DO 
BRA.S pdiRts 

ILName: 
DC.B , intuition. library' 
DC.B 0 

DLName: 
DC.B 'dds.library' 
DC.B 0 

GLName: 
DC.B , graphics. library' 
DC.B 0 
DS.W 0 

*---------------------------------------------------------------------
_Expunge: 

MOVE.L IntuitionBase,A1 
LINKEXE Close Library 

MOVE.L _GfxBase,A1 
LINKEXE CloseLibrary 

MOVE.L DOSBase,A1 
LINKEXE CloseLibrary 

*---------------------------------------------------------------------
_Open: 

MOVEQ 
RTS 

1I0,DO 

*---------------------------------------------------------------------
_Close: 

MOVEQ 
RTS 

END 

EPSONX: DAT A.C 

784 Printer Device 

1I0,DO 



1* 

*1 

Data.c table for EpsonX driver. 
David Berezowski - March/BB. 

char *CommandTablelJ = 
{ 
"\375\033@\375",I* 00 aRIS reset 
"\377", 1* 01 aRIN initialize 
"\012", 1* 02 aIND linefeed 
"\015\012", 1* 03 aNEL CRLF 
"\377", 1*04 aRI reverse LF 

1* 05 aSGRO normal char set 
"\0335\033-\376\033F", 
"\0334", 1* 06 aSGR3 italics on 
"\0335", 1* 07 aSGR23 italics off 
"\033-\001", 1* 08 aSGR4 underline on 
"\033-\376", 1* 09 aSGR24 underline off 
"\033E", 1* 10 aSGR1 boldface on 
"\033F", 1* 11 aSGR22 boldface off 
"\377", 1* 12 aSFC set foreground color 
"\377", 1* 13 aSBC set background color 

1* 14 aSHORPO normal pitch 
"\033P\022\033W\376", 

1* 15 aSHORP2 elite on 
"\033M\022\033W\376", 
"\033P", 1* 16 aSHORP1 elite off 

1* 17 aSHORP4 condensed fine on 
"\017\033P\033W\376", 
"\022", 1* 1B aSHORP3 condensed fine off 
"\033W\001", 1* 19 aSHORP6 enlarge on 
"\033W\376", 1* 20 aSHORP5 enlarge off 

"\377" , 
"\377", 
"\033G", 
"\033H", 
"\033x\001", 
"\033x\376", 

"\033S\376", 
"\033T", 
"\033S\001", 
"\033T", 
"\033T", 
"\377", 
"\377", 

"\033R\376", 
"\033R\001", 
"\033R\002", 
"\033R\003", 
"\033R\004", 
"\033R\005", 
"\033R\006", 
"\033R\007", 
"\033R\010", 
"\033R\01l", 
"\033R\012", 

"\033p1", 
"\033pO", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377" , 
"\377", 
"\377", 

1* 21 aDEN6 shadow print on 
1* 22 aDEN5 shadow print off 
1* 23 aDEN4 double strike on 
1* 24 aDEN3 double strike off 
1* 25 aDEN2 NLQ on 
1* 26 aDEN1 NLQ off 

1* 27 aSUS2 superscript on 
1* 2B aSUS1 superscript off 
1* 29 aSUS4 subscript on 
1* 30 aSUS3 subscript off 
1* 31 aSUSO normalize the line 
1* 32 aPLU partial line up 
1* 33 aPLD partial line down 

1* 34 aFNTO Typeface 0 
1* 35 aFNT1 Typeface 1 
1* 36 aFNT2 Typeface 2 
1* 37 aFNT3 Typeface 3 
1* 3B aFNT4 Typeface 4 
1* 39 aFNT5 Typeface 5 
1* 40 aFNT6 Typeface 6 
1* 41 aFNT7 Typeface 7 
1* 42 aFNTB Typeface B 
1* 43 aFNT9 Typeface 9 
1* 44 aFNT10 Typeface 10 

1* 45 aPROP2 proportional on 
1* 46 aPROP1 proportional off 
1* 47 aPROPO proportional clear 
1* 48 aTSS set proportional offset 
1* 49 aJFY5 auto left justify 
1* 50 aJFY7 auto right justify 
1* 51 aJFY6 auto full justify 
1* 52 aJFYO auto justify off 
1* 53 aJFY3 letter space 
1* 54 aJFY1 word fill 

*1 
*1 
*1 
*1 
*1 

*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 

*1 

*1 
*1 

*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

Printer Device 785 



}; 

1* 

*1 

"\0330", 
"\0332", 
"\033C", 
"\033N", 
"\0330", 

"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 

"\377", 
"\377", 
"\377", 
"\033D\376", 
"\377", 
"\033B\376", 

1* 55 aVERPO 1/8" line spacing 
1* 56 aVERP1 1/6" line spacing 
1* 57 aSLPP set form length 
1* 58 aPERF perf skip n (n > 0) 
1* 59 aPERFO perf skip off 

1* 60 aLMS set left margin 
1* 61 aRMS set right margin 
1* 62 aTMS set top margin 
1* 63 aBMS set bottom margin 
1* 64 aSTBM set T&B margins 
1* 65 aSLRM set L&R margins 
1* 66 aCAM clear margins 

1* 67 
1* 68 
1* 69 
1* 70 
1* 71 
1* 72 
1* 73 

aHTS set horiz tab 
aVTS set vert tab 
aTBCO clear horiz tab 
aTBC3 clear all horiz tabs 
aTBC1 clear vert tab 
aTBC4 clear all vert tabs 
aTBCALL clear all h & v tabs 

"\033D\376\033B\376", 

*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 

1* 74 aTBSALL set default tabs *1 
"\033D\010\020\030\040\050\060\070\100\110\120\130\376", 

"\377", 
"\377" 

1* 75 aEXTEND extended commands 
1* 76 aRAW next 'n' chars are raw 

*1 
*1 

For each character from character 160 to character 255, there is 
an entry in this table, which is used to print (or simulate printing of) 
the full Amiga character set. (see AmigaDos Developer's Manual, pp A-3) 
This table is used only if there is a valid pointer to this table 
in the PEDData table in the printertag.asm file, and the VERSION is 
33 or greater. Otherwise, a default table is used instead. 
To place non-printable characters in this table, you can either enter 
them as in C strings (ie \011, where 011 is an octal number, or as 
\\000 where 000 is any decimal number, from 1 to 3 digits. This is 
usually used to enter a NUL into the array (C has problems with it 
otherwise.), or if you forgot your octal calculator. On retrospect, 
was a poor choice for this function, as you must say \\\\ to enter a 
backslash as a backslash. Live and learn ... 

char *ExtendedCharTable[J 
{ 
11 ", 

"\033R\007[\033R\\0", 
"c\0101", 
"'033R\003#\033R\\0", 
"\033R\005$\033R\\0", 
"\033R\010\\\\\033R\\0", 

"\033R\002@\033R\\O", 

"\033R\001-\033R\\0", 
"c", 
"\033S\\Oa\010_\033T", 
"<", ....... , 
"_" , 
Ur", 
II_II , 

"\033R\001[\033R\\0", 
"+\010 ", 
"\033S\\0002\033T", 
"\033S\\0003\033T", .. , .. , 
flU", 

lip", 
"\033S\\000.\033T", 

786 Printer Device 

1* NBSP*I 
1* i *1 
1* cl *1 
1* L- *1 
1* o *1 
1* y- *1 
1* I *1 
1* ss *1 

1* " *1 
1* copyright 
1* a *1 
1* « *1 
1* - *1 
1* SHY *1 
1* registered 
1* - *1 

1* degrees *1 
1* + *1 
1* 2-*1 
1* 3 *1 
1* , *1 
1* u *1 

*1 

trademark *1 

1* reverse P *1 
1* . *1 



" " , /* , */ , 
"\033S\\0001\033T·, /* 1 */ 
"\033R\001[\033R\\0\010-·, /* 0 */ 
n>I1, /* » */ 
"\033S\\0001\033T\010-\010\033S\0014\033T", /* 1/4 */ 
"\033S\\0001\033T\010-\010\033S\0012\033T", /* 1/2 */ 
"\033S\\0003\033T\010-\010\033S\0014\033T", /* 3/4 */ 
"\033R\007j\033R\\0·, /* upside down ? */ 

"A\010'·, /* 'A */ 
"A\010'·, /* 'A */ 
"A\010-", /* -A */ 
"A\010-", /* -A */ 
"\033R\002[\033R\\0", /* "A */ 
"\033R\004j\033R\\0·, /* oA */ 
"\033R\004[\033R\\0·, /* AE */ 
"C\010,", /* C, */ 

"E\010''', /* 'E */ 
·\033R\011@\033R\\0", /* 'E */ 
"E\010-", /* -E */ 
"E\010\033R\001-\033R\\0·, /* "E */ 
"1\010'·, /* 'I */ 
"1\010'·, /* , I */ 
"1\010-·, /* -I */ 
"I\010\033R\001-\033R\\0·, /* "I */ 

"D\010-", /* -D */ 
·\033R\007\\\\\033R\\0", /* -N */ 
"0\010 "', /* '0 */ 
"0\010'·, /* '0 */ 
"0\010-", /* -0 */ 
"0\010-", /* -0 */ 
·\033R\002\\\\\033R\\0", /* "0 */ 
"XU, /* x */ 

"\033R\004\\\\\033R\\0", /* 0 */ 
"U\010 "', /* 'U */ 
"U\010'·, /* 'u */ 
"U\010-·, /* -U */ 
"\033R\002j\033R\\0·, /* IOU */ 
"Y\010'·, /* 'Y */ 
liT", /* Thorn */ 
"\033R\OO2-\033R\\0·, /* B */ 

"\033R\001@\033R\\0", /* 'a */ 
"a\010'·, /* , a */ 
"a\010-", /* -a */ 
·a\010-", /* -a */ 
"\033R\OO2{\033R\\0·, /* "a */ 
"\033R\004)\033R\\0·, /* oa */ 
"\033R\004{\033R\\0·, /* ae */ 
"\033R\001\\\\\033R\\0·, /* c, */ 

"\033R\001)\033R\\O·, /* 'e */ 
·\033R\001{\033R\\0·, /* 'e */ 
·e\010-", /* -e */ 
·e\010\033R\OO1-\033R\\0", /* Ole */ 
·\033R\006-\033R\\O", /* 'i */ 
"i\010''', /* , i */ 
"i\010-", /* -i */ 
"i\010\033R\001-\033R\\0·, /* "i */ 

"d", /* d */ 
·\033R\0071\033R\\0·, /* -n */ 
"\033R\0061\033R\\O", /* '0 */ 
·0\010''', /* '0 */ 
"0\010-", /* -0 */ 
"0\010-·, /* -0 */ 
"\033R\0021\033R\\0·, /* "0 */ 
·:\010-" /* */ 

Printer Device 787 



) ; 

"\033R\0041\033R\\0", 
"\033R\00ll\033R\\0·, 
"u\OlO'", 
"u\OlO"", 
"\033R\002)\033R\\0", 
"y\OlO'", 
"t" , 
"y\OlO\033R\00l-\033R\\0" 

EPSONX: DOSPECIAL.C 

/* 
DoSpecial for EpsonX driver. 
David Berezowski - March/BB. 

*/ 

'include <exec/types.h> 
'include <devices/printer.h> 
'include <devices/prtbase.h> 

'define LMARG 3 
'define RMARG 6 
'define MARGLEN B 

'define CONDENSED 
'define PITCH 
'define QUALITY 
'define LPI 
'define INITLEN 

7 
9 
17 
24 
26 

1* 
1* 
/* 
1* 
1* 
/* 
1* 
/* 

01 */ 
'u */ 
'u *1 
"u *1 
"u· */ 
'y *1 
thorn 
"y *1 

*/ 

DoSpecial(command, outputBuffer, vline, currentVMI, crlfFlag, Parms) 
char outputBuffer[]; 
UWORD *command; 
BYTE *vline; 
BYTE *currentVMI; 
BYTE *crlfFlag; 
UBYTE Parms[]; 
{ 

extern struct PrinterData *PD; 

int x = 0, y = 0; 
1* 

wait 00-00 
01-03 
04-06 
07-07 

\375 
\0331L 
\033Qq 
\375 

set left margin 
set right margin 
wait 

*1 
static char initMarg[MARGLEN] 
1* 

*1 

00-01 
02-04 
05-06 
07-07 
OB-09 
10-12 
13-14 
15-17 
1B-19 
20-22 
23-24 
25-25 

\0335 
\033-\000 
\033F 
\022 
\033P 
\033W\000 
\033H 
\033x\000 
\033T 
\033pO 
\0332 
\015 

{Oxfd,Ox1b,'1','L',Ox1b,'Q','q',Oxfd); 

italics off 
underline off 
boldface off 
cancel condensed mode 
select pica (10 cpi) 
enlarge off 
doublestrike off 
draft 
super/sub script off 
proportional off 
6 lpi 
carriage return 

static char initThisPrinter[INITLEN] = 

{Ox1b,Ox05,Oxlb,'-' ,OxO,Ox1b,'F' ,Ox12,Oxlb,'P' ,0xlb,'W',OxO,Oxlb,'H', 
Ox1b,'x',OxO,Oxlb,'T',Ox1b,'p',OxO,Ox1b,Ox02,OxOd); 

static BYTE ISOcolorTable[10] = {O, 5, 6, 4, 3, 1, 2, 0); 

788 Printer Device 



if (*command == aRIN) 
( 

while (x < INITLEN) 
( 

outputBuffer[x) 
x++; 

initThisPrinter[x); 

if (PD->pd_Preferences.PrintQuality 
( 

outputBuffer[QUALITY) = 1; 

LETTER) 

*currentVMI = 36; 1* assume 1/6 line spacing (36/216 => 1/6) *1 
if (PD->pd_Preferences.PrintSpacing EIGHT_LPI) 
( 

outputBuffer[LPI) = '0'; 
*currentVMI = 27; 1* 27/216 => 118 *1 

if (PD->pd_Preferences.PrintPitch == ELITE) 
( 

outputBuffer[PITCH) = 'M'; 

else if (PD->pd_Preferences.PrintPitch 
( 

FINE) 

outputBuffer[CONDENSED) = '\017'; 1* condensed *1 
outputBuffer[PITCH) = 'P'; 1* pica condensed *1 

Parms[O) 
Parms[l) 
* command 

PD->pd Preferences.PrintLeftMargin; 
PD->pd=Preferences.PrintRightMargin; 
aSLRM; 

if (*command == aCAM) 
{ 1* cancel margins *1 

y = PD->pd Preferences.PaperSize == W TRACTOR? 136 80; 
if (PD->pd=Preferences.PrintPitch == PICA) 
( 

Parms[l) = (10 * y) I 10; 

else if (PD->pd_Preferences.PrintPitch 
( 

Parms [1) = (12 * y) I 10; 

else 
( 1* fine *1 

Parms[l) (17 * y) I 10; 

Parms[O) 
y = 0; 
* command 

1; 

aSLRM; 

if (*command == aSLRM) 
( 1* set left and right margins *1 

PD->pd PWaitEnabled = 253; 
if (Parms[O) == 0) 
( 

else 
( 

initMarg[LMARG) = 0; 

initMarg[LMARG) = Parms[O) - 1; 

initMarg[RMARG) = Parms[l); 
while (y < MARGLEN) 
( 

outputBuffer[x++) 

return{x); 

initMarg[y++); 

ELITE) 

Printer Device 789 



if (*command == aPLU) 
{ 

if (*v1ine == 0) 
( 

*v1ine = 1; 
*command aSUS2; 
return(O); 

if (*vline < 0) 
( 

*v1ine = 0; 
*command aSUS3; 
return(O); 

return(-l); 

if (*command == aPLD) 
{ 

if (*v1ine == 0) 
( 

*v1ine = -1; 
* command aSUS4; 
return(O); 

if (*vline > 0) 
( 

*v1ine = 0; 
*command aSUS1; 
return(O); 

return(-l); 

if (*command == aSUSO) 
{ 

*v1ine = 0; 
} 

if (*command == aSUS1) 
{ 

*v1ine = 0; 
} 

if (*command == aSUS2) 
{ 

*v1ine = 1; 
} 
if ( * command == aSUS3) 
{ 

*v1ine = 0; 
} 
if (*command == aSUS4) 
{ 

*v1ine = -1; 

if (*command == aVERPO) 
( 

*currentVMI = 27; 

if (*command == aVERPl) 
{ 

*currentVMI = 36; 

if (*command == aIND) 
{ 1* If *1 

outputBuffer[x++] 
outputBuffer[x++] 
outputBuffer[x++] 

790 Printer Device 

, \033' ; 
= , J'; 

*currentVMI; 



return(x); 

if (*command == aRI) 
( /* reverse If */ 

outputBuffer[x++] 
outputBuffer[x++] 
outputBuffer[x++] 
return(x); 

if (*command == aSFC) 
{ 

if (Parms[O] == 39) 
{ 

, \033'; 
, j' ; 
*currentVMI; 

Parms[O] = 30; /* set defaults */ 

if (Parms[O] > 37) 
( 

return(O); /* ni or background color change */ 

outputBuffer[x++] 
outputBuffer[x++] 
outputBuffer[x++] 
/* 

, \033' ; 
, r' : 
ISOcolorTable [Parms [0] - 30]; 

Kludge to get this to work on a CBM MPS-1250 which interprets 
'ESCr' as go into reverse print mode. The 'ESCt' tells it to 
get out of reverse print mode. The 'NULL' is ignored by the 
CBM MPS-1250 and required by all Epson printers as the 
terminator for the , ESCtNULL' command which means select 
normal char set (which has no effect). 
*/ 
outputBuffer[x++] 
outputBuffer[x++] 
outputBuffer[x++] 
return(x); 

if (*command == aRIS) 
( 

, \033' ; 
, t' ; 
0; 

PD->pd_PWaitEnabled 253; 

return(O); 

EPSONX: RENDER.C 

/* 
EpsonX (EX/FX/JX/LX/MX/RX) driver. 
David Berezowski - October/87. 

*/ 

#include <exec/types.h> 
#include <exec/nodes.h> 
#include <exec/lists.h> 
#include <exec/memory.h> 

#include <devices/printer.h> 
#include <devices/prtbase.h> 

#define NUMSTARTCMD 7 
#define NUMENDCMD 1 

/* # of cmd bytes 
/* II of cmd bytes 

IIdefine NUMTOTALCMD (NUMSTARTCMD + NUMENDCMD) 
IIdefine NUMLFCMD 4 /* II of cmd bytes 
IIdefine MAXCOLORBUFS 4 /* max II of color 

#define STARTLEN 19 

before binary data */ 
after binary data */ 

/* total of above */ 
for line feed * / 
buffers */ 

Printer Device 791 



IIdefine PITCH 1 
IIdefine CONDENSED 2 
IIdefine LMARG 8 
IIdefine RMARG 11 
IIdefine DIREC 15 

static ULONG TwoBufSize; 
static UWORD RowSize, ColorSize, NumColorBufs, dpi_code, spacing; 
static UWORD colorcodes[MAXCOLORBUFS]; 

void ClearAndInit(UBYTE *); 
UBYTE *CompactBuf(UBYTE *, UBYTE *, LONG, intI; 

int 
Render (ct, x, y, status) 
long ct, x, y, status; 
( 

extern void *AllocMem(), FreeMem(); 

extern struct PrinterData *PD; 
extern struct PrinterExtendedData *PED; 

UBYTE *CompactBuf(); 
static ULONG BufSize, TotaIBufSize,dataoffset; 
static UWORD spacing, colors[MAXCOLORBUFS]; 
/* 

*/ 

00-01 \003P set pitch (10 or 12 cpi) 
02-02 \022 set condensed fine (on or off) 
03-05 \033W\000 enlarge off 
06-08 \0331n set left margin to n 
09-11 \033Qn set right margin to n 
12-12 \015 carriage return 
13-15 \033Ul set uni-directional mode 
16-18 \033t\000 see kludge note below 
Kludge to get this to work on a CBM MPS-1250 which interprets 
'ESCr' as go into reverse print mode. The 'ESCt' tells it to 
get out of reverse print mode. The 'NULL' is ignored by the 
CBM_MPS-1250 and required by all Epson printers as the 
terminator for the 'ESCtNULL' command which means select 
normal char set (which has no effect) • 

static UBYTE StartBuf[STARTLEN] = 
{Oxlb,'P',Ox12,Oxlb,'W',OxO,Oxlb,'I','n',Oxlb,'Q','n',OxOd,Oxlb,'U',OxOl, 
Oxlb,'t',OxO}; 

/* "\033P\022\033W\000\033In\033Qn\015\033Ul\033t\000"; */ 

UBYTE *ptr, *ptrstart; 
int err; 

switch (status) 
{ 

case 0 : /* Master Initialization */ 
/* 

792 Printer Device 

ct - pointer to IODRPReq structure. 
x - width of printed picture in pixels. 
y - height of printed picture in pixels. 

*/ 
RowSize x; 
ColorSize = RowSize + NUMTOTALCMD; 
if (PD->pd_Preferences.PrintShade == SHADE_COLOR) 
{ 

else 

NumColorBufs = MAXCOLORBUFS; 
colors[O] ColorSize * 3; /* Black */ 
colors[l] ColorSize * 0; /* Yellow */ 
colors[2] ColorSize * 1; /* Magenta */ 
colors[3] ColorSize * 2; /* Cyan */ 
colorcodes[O] 4; /* Yellow */ 
colorcodes[l] 1; /* Magenta */ 
colorcodes[2] 2; /* Cyan */ 
colorcodes[3] 0; /* Black */ 



{ 1* grey-scale or black&white *1 
NumColorBufs = 1; 
co10rs[Oj = Co10rSize * 0; 1* Black *1 
colorcodes[Oj = 0; 1* Black *1 

BufSize = ColorSize * NumColorBufs + NUMLFCMD; 
if (PED->ped_YDotsInch == 216) 
{ 

TwoBufSize = BufSize * 3; 
TotalBufSize = BufSize * 6; 

else if (PED->ped_YDotsInch == 144) 

else 

} 

TwoBufSize = BufSize * 2; 
TotalBufSize = BufSize * 4; 

TwoBufSize = BufSize * 1; 
TotalBufSize = BufSize * 2; 

PD->pd_PrintBuf = AllocMem(TotalBufSize, MEMF_PUBLIC); 
if (PD->pd PrintBuf == NULL) 
{ -

else 
{ 

break; 

err = PDERR_BUFFERMEMORY; 

dataoffset = NUMSTARTCMD; 
1* 

*1 

This printer prints graphics within its 
text margins. This code makes sure the 
printer is in 10 cpi and then sets the 
left and right margins to their minimum 
and maximum values (respectively). A 
carriage return is sent so that the 
print head is at the leftmost position 
as this printer starts printing from 
the print head's position. The printer 
is put into unidirectional mode to 
reduce wav¥ vertical lines. 

StartBuf[PITCHj = 'P'; 1* 10 cpi *1 
StartBuf[CONDENSEDj = '\022'; 1* off *1 
1* left margin of 1 *1 
StartBuf[LMARGj = 0; 
1* right margin of 80 or 136 *1 
StartBuf[RMARGj = PD->pd_Preferences. 

PaperSize == W TRACTOR ? 136 : 80; 
1* uni-directional mode *1 
StartBuf[DIRECj = '1'; 
err = (* (PD->pd_PWrite) ) (StartBuf, STARTLEN); 

case 1 : 1* Scale, Dither and Render *1 
1* 

ct - pointer to PrtInfo structure. 
x - O. 
Y - row # (0 to Height - 1) . 

*1 
Transfer (ct, y, &PD->pd_PrintBuf[dataoffsetj, colors, 

BufSize) ; 
err = PDERR NOERR; 1* all ok *1 
break; -

case 2 : 1* Dump Buffer to Printer *1 
1* 

ct - O. 
x - O. 
Y - # of rows sent (1 to NumRows) • 

Printer Device 793 



*1 
1* white-space strip *1 
ptrstart = &PD->pd_PrintBuf[dataoffset - NUMSTARTCMD]; 
if (PED->ped_YDotsInch 72) 
( 

1* y range : 1 to 8 *1 
y = y * 3 - spacing; 
ptr = CompactBuf(ptrstart + NUMSTARTCMD, 

ptrstart, y, 1); 

else if (PED->ped_YDotsInch == 144) 
( 

1* yrange : 1 to 16 *1 
ptr = CompactBuf(ptrstart + NUMSTARTCMD, 

ptrstart, 2, 1); 
if (y > 1) 

ptr CompactBuf(&PD->pd PrintBuf[ 
dataoffset + BufSize], 
ptr, y * 3 I 2 - 2, 0); 

else if (PED->ped_YDotsInch == 216) 
( 

1* y range : 1 to 24 *1 
ptr = CompactBuf(ptrstart + NUMSTARTCMD, 

ptrstart, I, 1); 
if (y > 1) 
( 

ptr 

} 

if (y > 2) 
( 

ptr 

CompactBuf(&PD->pd PrintBuf[ 
dataoffset + BufSize], 
ptr, I, 0); 

CompactBuf(&PD->pd PrintBuf[ 
dataoffset + BufSize * 2], 
ptr, y - 2, 0); 

err (*(PD->pd PWrite» (ptrstart, ptr - ptrstart); 
if (err == PDERR_NOERR) 
{ 

dataoffset = (dataoffset == NUMSTARTCMD ? 
TwoBufSize : 0) + NUMSTARTCMD; 

break; 

case 3 : 1* Clear and Init Buffer *1 
1* 

ct - O. 
x - O. 
Y - O. 

*1 
ClearAndInit(&PD->pd_PrintBuf[dataoffset]); 
err = PDERR_NOERR; 
break; 

case 4 : 1* Close Down *1 
1* 

794 Printer Device 

ct - error code. 
x - io_Special flag from IODRPReq. 
y - O. 

*1 
err PDERR NOERR; 1* assume all ok *1 
1* if user did not cancel print *1 
if (ct != PDERR_CANCEL) 
{ 

1* restore preferences pitch and margins *1 
if (PD->pd_Preferences.PrintPitch ELITE) 
{ 

StartBuf[PITCH] = 'M'; 1* 12 cpi *1 



} 

else if (PD->pd_Preferences.PrintPitch == FINE) 

StartBuf[CONDENSEDj = '\017'; /* on */ 
} 
StartBuf[LMARGj = 

PD->pd_Preferences.PrintLeftMargin - 1; 
StartBuf[RMARGj = 

PD->pd Preferences.PrintRightMargin; 
StartBuf[DIREC] = '0'; /* bi-directional */ 
err = (*(PD->pd_PWrite» (StartBuf, STARTLEN); 

(*(PD->pd PBothReady» (); 
if (PD->pd_PrintBuf != NULL) 
{ 

FreeMem(PD->pd_PrintBuf, TotalBufSize); 

break; 

case 5 /* Pre-Master Initialization */ 

return(err); 

/* 

*/ 

ct 
x 
y 

- 0 or pointer to IODRPReq structure. 
- io Special flag from IODRPReq. 
- 0.-

/* kludge for sloppy tractor mechanism */ 
spacing = PD->pd Preferences.PaperType SINGLE? 

1 : 0; -
dpi_code = SetDensity(x & SPECIAL_DENSITYMASK); 
err = PDERR NOERR; 
break; -

UBYTE *CompactBuf(ptrstart, ptr2start, y, flag) 
UBYTE *ptrstart, *ptr2start; 
long y; 
int flag; /* 0 - not first pass, ! 0 - first pass * / 
{ 

static int x; 
UBYTE *ptr, *ptr2; 
UBYTE **dummy; 

long ct; 
int i; 

ptr2 = ptr2start; /* where to put the compacted data */ 
if (flag) 
{ 

x = 0; /* flag no transfer required yet */ 

for (ct=O; ct<NumColorBufs; ct++, ptrstart += ColorSize) 
{ 

i = RowSize; 
ptr = ptrstart + i-I; 
while (i > 0 && *ptr 0) 
{ 

i--; 
ptr--; 

if (i != 0) 
{ /* if data */ 

* (++ptr) = 13; 
ptr = ptrstart - NUMSTARTCMD; 
*ptr++ 27; 
*ptr++ ' r' ; 
*ptr++ colorcodes[ctj; 
*ptr++ 27; 
*ptr++ dpi code; 
*ptr++ i &-Oxff; 

/* <cr> */ 

/* color */ 

/* density */ 

Printer Device 795 



*ptr++ = i » 8; /* size */ 
i += NUMTOTALCMD; 
if (x != 0) 
{ /* if must transfer data */ 

/* get src start */ 

else 

ptr = ptrstart - NUMSTARTCMD; 
dummy = &ptr; /* otherwise Lattice looses 

track of the pointer •••.• */ 
do 
{ /* transfer and 

*ptr2++ 
while (--i); 

update dest ptr */ 
*ptr++; 

{ /* no transfer required */ 
ptr2 += i; /* update dest ptr */ 

if (i != RowSize + NUMTOTALCMD) 
/* if compacted or 0 */ 

x = 1; /* flag that we need to transfer next time */ 

*ptr2++ 13; /* cr */ 
*ptr2++ 27; 
*ptr2++ 'J'; 
*ptr2++ y; /* y/2l6 If */ 
return(ptr2); 

void ClearAndlnit(ptr) 
UBYTE *ptr; 
{ 

ULONG *lptr, i, j; 

/* 

*/ 

Note : Since 'NUMTOTALCMD + NUMLFCMD' is > 3 bytes it is safe 
to do the following to speed things up. 

i = TwoBufSize - NUMTOTALCMD - NUMLFCMD; 
j = (ULONG)ptr; 
if (!(j & 1» 
{ /* if on a word boundary, clear by longs */ 

i = (i + 3) / 4; 

else 

lptr = (ULONG *)ptr; 
do 
{ 

*lptr++ 0; 
while (--i); 

{ /* clear by bytes */ 
do 
{ 

*ptr++ 0; 
while (--i); 

EPSONX: DENSITY.C 

796 Printer Device 



/* 

*/ 

Density module for EpsonX driver. 
David Berezowski - October/87. 

'include <exec/types.h> 
'include <devices/printer.h> 
'include <devices/prtbase.h> 

char 
SetDensity(density code) 
ULONG density_code; 
{ 

extern struct PrinterData *PD; 
extern struct PrinterExtendedData *PED; 

/* SPECIAL DENSITY 
static int-XDPI[8] 
static int YDPI[8] 
static char codes[8] 

PED->ped_MaxColumns = 

o 1 2 3 4 5 6 7 */ 
{120, 120, 120, 240, 120, 240, 240, 240}; 
{72, 72, 144, 72, 216, 144, 216, 216}; 

{'L', 'L', 'L', 'Z', 'L', 'Z', 'Z', 'Z'}; 

PD->pd Preferences.PaperSize == W TRACTOR? 136 : 80; 
density code /~ SPECIAL DENSITY1; 
/* defa~lt is 80 chars (8.0 in.), W TRACTOR is 136 chars (13.6 in.) */ 
PED->ped MaxXDots = -

(XDPI[density code] * PED->ped MaxColumns) / 10; 
PED->ped_XDotsInch = XDPI[density_codel; 
PED->ped YDotsInch = YDPI[density code]; 
if «PED=>ped_YDotsInch = YDPI[density_code]) 216) 
{ 

PED->ped_NumRows = 24; 

else if (PED->ped_YDotsInch == 144) 
( 

PED->ped_NumRows = 16; 

else 

PED->ped_NumRows = 8; 

return(codes[density_code]); 

EPSONX: TRANSFER.ASM 

********************************************************************** 

* 
* Transfer routine for EpsonX 

* 
* David Berezowski - April/88 

* 
********************************************************************** 

INCLUDE "exec/types.i" 

INCLUDE "intuition/intuition.i" 
INCLUDE "devices/printer.i" 
INCLUDE "devices/prtbase.i" 
INCLUDE "devices/prtgfx.i" 

XREF PD 
XREF PED 
XREF _LVODebug 
XREF AbsExecBase 

XDEF Transfer -

Printer Device 797 



SECTION CODE 

Transfer: 
Transfer (PInfo, y, ptr, 
struct PrtInfo *PInfo 
UWORD y; 

colors, BufOffset) 
4-7 
8-11 

UBYTE *ptr; 12-15 
UWORD *colors; 16-l9 
ULONG BufOffset 20-23 

movem.l d2-d6/a2-a4,-(sp) 

movea.l 36(sp),aO 
move.l 40(sp),dO 
movea.l 44(sp),a1 
movea.l 48(sp),a2 
move.l S2(sp),d1 

move.l dO,d3 
moveq.l 1I3,d2 
and.w dO,d2 
lsl.w 1I2,d2 
movea.l pi_dmatrix(aO),a3 
adda.l d2,a3 

movea.l PED,a4 
cmpi.w #216,ped_YDotslnch(a4) 
bne.s 10$ 
divu.w 1I3,dO 
swap.w dO 
mulu.w dO,d1 
swap.w dO 
bra.s 30$ 

10$: cmpi.w 1I144,ped_YDotsInch(a4) 
bne.s 20$ 
asr.w #l,dO 

;save regs used 

;aO PInfo 
;dO y 
;a1 ptr 
;a2 colors 
;d1 BufOffset 

isave y 

;d2 y & 3 
;d2 (y & 3) « 2 
;a3 dmatrix 
;a3 dmatrix + ( (y & 

;a4 ptr to PED 
;triple interleaving? 
ino 
;y /= 3 
;dO = y % 3 
;BufOffset *= y % 3 
;dO = y / 3 

;double interleaving? 
;no, clear BufOffset 
;y /= 2 

3) « 2) 

btst.b 1I0,d3 ;odd pass? (Lattice doesn't like 
; the ' .b' 

btst 1I0,d3 ;odd pass? 
bne.s 30$ ;no, dont clear BufOffset 

20$: moveq.l 

30$: move.w 
not.b 
adda.l 

1I0,d1 

dO,d6 
d6 
d1,a1 

;BufOffset = 0 

;d6 = bit to set 
;ptr += BufOffset 

movea.l 
cmpi.w 
bne 

PD,a4 ;a4 = ptr to PD 
#SHADE COLOR,pd Preferences+pf PrintShade(a4) 
not color - ;no-

color: 
aO - PInfo 
a1 - ptr (ptr + BufOffset) 
a2 - colors 
a3 - dmatrix ptr 
dO - y 
d1 - BufOffset 
d6 - bit to set 

movem.l d7/aS-a6,-(sp) 

movea.l 
movea.l 
movea.l 
adda.w 
adda.w 
adda.w 
adda.w 

a1,a4 
a1,aS 
a1,a6 
(a2) +, a1 
(a2)+,a4 
(a2) +, as 
(a2) +, a6 

movea.l pi_ColorInt(aO),a2 

798 Printer Device 

;save regs used 

;a1 ptr + colors[O] 
;a4 ptr + colors[l] 
;as ptr + colors[2] 
;a6 ptr + colors[3] 

;a2 ColorInt ptr 

;color dump? 

(bptr) 
(yptr) 
(mptr) 
(cptr) 



move.w 
move.w 
movea.l 
move.b 

aO - sxptr 
al - bptr 
a2 - Colorlnt 
a3 - dmatrix 
a4 - yptr 
as - mptr 
a6 - cptr 
dl - Black 
d2 - x 

pi width(aO),width 
pi-xpos(aO),d2 
pi-ScaleX(aO),aO 
d6~d7 

ptr 
ptr 

d3 - dvalue (dmatrix[x & 3] ) 
d4 - Yellow 
dS - Magenta 
d6 - Cyan 
d7 - bit to 

cwidth loop: 
- move.b 

move.b 
move.b 
move.b 
addq.l 

move.w 

csx_loop: 

set 

PCMBLACK(a2),dl 
PCMYELLOW(a2),d4 
PCMMAGENTA(a2),dS 
PCMCYAN(a2),d6 
IIce_SIZEOF,a2 

(aO) +, sx 

moveq.l 113,d3 
and.w d2,d3 
move.b O(a3,d3.w),d3 

black: 

yellow: 

magenta: 

cyan: 

csx end 

cmp.b 
ble.s 
bset.b 
bra.s 

cmp.b 
ble.s 
bset.b 

cmp.b 
ble.s 
bset.b 

cmp.b 
ble.s 
bset.b 

addq.w 
subq.w 
bne.s 
subq.w 
bne.s 

d3,dl 
yellow 
d7,O(al,d2.w) 
csx end 

d3,d4 
magenta 
d7,O(a4,d2.w) 

d3,dS 
cyan 
d7,O(aS,d2.w) 

d3,d6 
csx end 
d7,O(a6,d2.w) 

Ill, d2 
III,sx 
csx loop 
III,width 
cwidth_loop 

movem.l (sp)+,d7/aS-a6 
bra exit 

not_color: 
aO - PInfo 
al - ptr 
a2 - colors 
a3 - dmatrix ptr 
dO - Y 
d6 - bit to set 

;11 of pixels to do 
;d2 x 
;aO scaleX (sxptr) 
;d7 bit to set 

;dl Black 
;d4 Yellow 
;dS Magenta 
;d6 Cyan 
;advance to next entry 

;11 of times to use this pixel 

;d3 
;d3 

x & 3 
dmatrix[x & 3] 

;render black? 
;no, try ymc 
;set black pixel 

;render yellow pixel? 
inc. 
;set yellow pixel 

;render magenta pixel? 
ina. 
;set magenta pixel 

;render cyan pixel? 
;no, skip to next pixel. 
;clear cyan pixel 

;x++ 
;sx--

;width--

;restore regs used 

Printer Device 799 



adda.w 
move.w 
subq.w 

move.w 
beq.s 

threshold: 
aD - PInfo 
al - ptr 

(a2), al 
pi width(aD),dl 
111-;-dl 

pi threshold(aD),d3 
grey_scale 

a3 - dmatrix ptr 
dl - width-l 
d3 - threshold 
d6 - bit to set 

aD -

eori .b 
movea.l 
move.w 
movea.l 
adda.w 

sxptr 
al - ptr 

IIlS,d3 
pi ColorInt(aD),a2 
pi-xpos(aD),d2 
pi=ScaleX(aD) ,aD 
d2,al 

a2 - ColorInt ptr 
a3 - dmatrix 
dl - width 
d3 - dvalue 
d4 - Black 
d5 - sx 
d6 - bit to 

twidth loop: 
- move.b 

addq.l 

move.w 

cmp.b 
ble.s 
subq.w 

tsx render: 
bset.b 

adda.w 
dbra 
dbra 
bra.s 

tsx end: 
adda.w 
dbra 
bra.s 

grey_scale: 
aD - PInfo 
al - ptr 

ptr (NOT USED) 

set 

PCMBLACK(a2),d4 
IIce_SIZEOF,a2 

(aD)+,dS 

d3,d4 
tsx end 
Ill, CIS 

d6, (al) 

IIl,al 
dS,tsx render 
dl,twiClth_Ioop 
exit 

dS,al 
dl,twidth loop 
exit -

a3 - dmatrix ptr 
dD - y 
dl - width-l 
d6 - bit to set 

aD 
al 
a2 
a3 
dl 

movea.l pi_ColorInt(aD),a2 
move.w pi_xpos(aD),d2 
movea.l pi_ScaleX(aD) ,aD 

- sxptr 
- ptr 
- ColorInt ptr 
- dmatrix ptr 
- width 

800 Printer Device 

;al = ptr + colors[D] 
;dl = width 
;adjust for dbra 

;d3 = threshold, thresholding? 
;no, grey-scaling 

;d3 dvalue 
;a2 ColorInt ptr 
;d2 x 
;aD ScaleX (sxptr) 
;ptr += x 

;d4 = Black 
;advance to next entry 

;dS = II of times to use this pixel 

;render this pixel? 
;no, skip to next pixel. 
;adjust for dbra 

;yes, render this pixel sx times 
;*(ptr) 1= bit; 

;ptr++ 
iSX-
;width-
;all done 

;ptr += sx 
;width--

;a2 
;d2 
;aD 

ColorInt ptr 
x 
ScaleX (sxptr) 



d2 - x 
d3 - dvalue (dmatrix[x & 3]) 
d4 - Black 
dS - sx 
d6 - bit to set 

gwidth_loop: 
move.b PCMBLACK(a2),d4 
addq.l IIce_SIZEOF,a2 

move.w (aO)+,dS 
subq.w Ill, dS 

gsx_loop: 
moveq.l 113,d3 
and.w d2,d3 
move.b O(a3,d3.w),d3 

cmp.b d3,d4 
ble.s gsx_end 

bset.b d6,O(al,d2.w) 

gsx_end 
addq.w 111, d2 
dbra dS,gsx_Ioop 
dbra d1,gwidth_Ioop 

exit: 
movem.l (sp)+,d2-d6/a2-a4 
moveq.l 1I0,dO 
rts 

sx dc.w 0 
width dc.w 0 

END 

EPSONX; TRANSFER.C 

/* 

id4 = Black 
;advance to next entry 

idS = II of times to use this pixel 
iadjust for dbra 

id3 x & 3 
id3 dmatrix[x & 3] 

irender this pixel? 
ino, skip to next pixel. 

;* (ptr + x) 1= bit 

iX++ 
;sx-
;width--

irestore regs used 
i flag all ok 
; goodbye 

Transfer routine for EpsonX driver. 
David Berezowski - October/87. 

*/ 

lIinclude <exec/types.h> 
lIinclude <devices/printer.h> 
lIinclude <devices/prtbase.h> 
lIinclude <devices/prtgfx.h> 

Transfer (PInfo, y, ptr, 
struct PrtInfo *PInfoi 
UWORD Yi 

colors, BufOffset) 

/*row II */ 
UBYTE *ptri /* ptr to buffer */ 
UWORD *colors; /* indexes'to color buffers */ 
ULONG BufOffseti /* used for interleaved printing */ 
( 

extern struct PrinterData *PD; 
extern struct PrinterExtendedData *PEDi 

static UWORD bit_table[8] = (128, 64, 32, 16, 8, 4, 2, 1}i 
union colorEntry *ColorInt; 
UBYTE *bptr, *yptr, *mptr, *cptr, Black, Yellow, Magenta, Cyani 
UBYTE *dmatrix, dvalue, thresholdi 
UWORD x, width, sx, *sxptr, color, bit, x3i 

/* printer non-specific, MUST PO FOR EVERY PRINTER */ 
x = Plnfo->pi_xpOSi 

Printer Device 801 



Colorlnt = Plnfo->pi Colorlnt; 
sxptr Plnfo->pi ScaleX; 
width = Plnfo->pi=width; 

1* printer specific *1 
if (PED->ped_YDotslnch == 216) 
( 

BufOffset *= y , 3; 
y 1= 3; 

else if (PED->ped_YDotslnch 144) 
{ 

else 
{ 

} 

BufOffset *= y & 1; 
y 1= 2; 

BufOffset 0; 

bit bit table[y & 7]; 
bptr ptr + colors[O] + BufOffset; 
yptr ptr + colors[l] + BufOffset; 
mptr ptr + colors[2] + BufOffset; 
cptr ptr + colors[3] + BufOffset; 

1* pre-compute threshold; are we thresholding? *1 
if (threshold = Plnfo->pi threshold) 
{ 1* thresholding *1 -

else 

dvalue = threshold • 15; 
bptr += x; 
do ( 1* for all source pixels *1 

1* pre-compute intensity values for Black component *1 
Black = Colorlnt->colorByte[PCMBLACK]; 
Colorlnt++; 

sx *sxptr++; 

do 1* use this pixel 'sx' times *1 
if (Black > dvalue) 
{ 

*bptr 1= bit; 

bptr++; 1* done 1 more printer pixel *1 
} while (--sx); 

} while (--width); 

{ 1* not thresholding, pre-compute ptr to dither matrix *1 
dmatrix = Plnfo->pi dmatrix + «y & 3) «2); 
if (PD->pd~Preferences.PrintShade == SHADE_GREYSCALE) 
{ 

else 

do ( 1* for all source pixels *1 
1* pre-compute intensity values for Black *1 
Black = Colorlnt->colorByte[PCMBLACK]; 
Colorlnt++; 

sx *sxptr++; 

do 1* use this pixel 'sx' times *1 
if (Black> dmatrix[x & 3]) 
{ 

* (bptr + x) 1= bit; 

x++; 1* done 1 more printer pixel *1 
} while (--sx); 

} while (--width); 

{ 1* color *1 

802 Printer Device 

do { 1* for all source pixels *1 
1* compute intensity values for each color *1 
Black = Colorlnt->colorByte[PCMBLACK]; 



Yellow = ColorInt->colorByte[PCMYELLOW]; 
Magenta = ColorInt->colorByte[PCMMAGENTA]; 
Cyan = ColorInt->colorByte[PCMCYAN]; 
ColorInt++; 

sx *sxptr++; 

do /* use this pixel 'sx' times */ 
x3 = x » 3; 
dvalue = dmatrix[x & 3]; 
if (Black > dvalue) 
{ 

*(bptr + x) 1= bit; 

else 
{ /* black not rendered */ 

if (Yellow > dvalue) 
{ 

* (yptr + x) 1= bit; 
} 

if (Magenta > dvalue) 
{ 

* (mptr + x) 1= bit; 
} 

if (Cyan > dvalue) 
{ 

* (cptr + x) 1= bit; 

++x; /* done 1 more printer pixel */ 
} while (--sx); 

} while (--width); 

Printer Device 803 



EPSONQ 

The EpsonQ driver can be generated with the following Makefile. 

LC = lc:lc 
ASM = lc:asm 
CFLAGS - -iINCLUDE: -bO -dO -v 
ASMFLAGS = -iINCLUDE: 
LINK = lc:blink 
LIB - lib:amiga.lib+lib:lc.lib 
OBJ = printertag.o+init.o+data.o+dospecial.o+render.o+transfer.o+density.o 
TARGET = EpsonQ 

@$(LC) $ (CFLAGS) $* 

$ (TARGET) : printertag.o init.o data.o dospecial.o render.o density.o transfer.o 
@$(LINK) <WITH < 
FROM $ (OBJ) 
TO $(TARGET) 
LIBRARY $ (LIB) 
NODEBUG SC SD VERBOSE MAP $(TARGET).map H 
< 

init.o: init.asm 
@$(ASM) $ (ASMFLAGS) init.asm 

printertag.o: printertag.asm EpsonQ rev.i 
@$(ASM) $ (ASMFLAGS) printertag.asm 

transfer.o: transfer.c 

dospecial.o: dospecial.c 

data.o: data.c 

density.o: density.c 

render.o: render.c 

install : 
@copy $ (TARGET) to devs:printers 

EPSONQ: PRINTERT AG.ASM 

TTL '$Header: printer.3,v 1.1 89/10/31 16:05:49 ken Exp $' 
********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Copyright 1985, Commodore-Amiga Inc. All rights reserved. 
No part of this program may be reproduced, transmitted, 
transcribed, stored in retrieval system, or translated into 
any language or computer language, in any form or by any 
means, electronic, mechanical, magnetic, optical, chemical, 
manual or otherwise, without the prior written permission of 
Commodore-Amiga Incorporated, 1200 Wilson Drive, West Chester, 
Pennsylvania, 19380 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************** 

* 
* 
* 
* 
* 

'printer device dependent code tag 

Source Control 

804 Printer Device 



* $Header: printer.3,v 1.1 89/10/31 16:05:49 ken Exp $ 
* 
* $Locker: $ 
* * $Log: printer.3,v $ 
* Revision 1.1 89/10/31 16:05:49 ken 
* Initial revision 
* * Revision 1.5 88/04/19 17:12:34 daveb 
* V1.3 Gamma 13 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Revision 1. 4 88/04/15 
fixed docs for devcon 
VI. 3 Gamma 13 

Revision 1.3 87/10/27 
v1.3 gamma 1 check-in. 

Revision 1.2 87/10/01 
changed NumRows to 16 
V1.3 beta 4 check-in 

Revision 1.1 87/08/21 

16:42:12 daveb 

15:26:31 daveb 

09:17:56 daveb 
to support 'weak' 

10:01:13 daveb 

24-pin printers 

* 
* 
* 
* 
* 
* 
* 
* 
* 

set XDotsInch and MaxXDots to default (60 dpi) values 

Revision 1.0 87/08/20 14:08:42 daveb 
added to rcs 

Revision 1.0 87/08/20 13:27:02 daveb 
added to rcs 

* Revision 1.3 87/08/03 11:03:52 daveb 
* added null ptr to char conversion function at end of table 
* * Revision 1.2 87/07/30 10:34:12 daveb 
* added 'DS.L l' at end to reserve space for PrintMode 

* 
* 
* 
* 

Revision 1.1 87/07/21 11:36:30 daveb 
added 'PPC_VERSION_2' to PrinterClass 

* Revision 1.0 87/07/21 11:35:43 daveb 
* added to rcs 
* 
* 
********************************************************************** 

SECTION printer 

*------ Included Files -----------------------------------------------
INCLUDE "exec/types. in 
INCLUDE "exec/nodes.i" 
INCLUDE "exec/strings.i" 

INCLUDE "epsonQ_ rev.il1 

INCLUDE "devices/prtbase.i" 

*------ Imported Names -----------------------------------------------
XREF Init 
XREF _Expunge 
XREF _Open 
XREF Close 
XREF -CommandTab1e 
XREF PrinterSegmentData 
XREF ::::DoSpecial 
XREF Render 
XREF -ExtendedCharTab1e -

*------ Exported Names -----------------------------------------------

Printer Device 805 



XDEF PEDData 

********************************************************************** 

MOVEQ 1I0,DO ; show error for OpenLibrary() 
RTS 
DC.W VERSION 
OC.W REVISION 

PEOData: 
OC.L printerName 
DC.L Init 
DC.L _Expunge 
OC.L _Open 
DC.L Close 
OC.B PPC_COLORGFX PrinterClass 
OC.B PCC YMCB ColorClass 
OC.B 136 MaxColumns 
OC.B 10 NumCharSets 
OC.W 24 NumRows 
OC.L 1088 MaxXOots 
OC.L 0 MaxYOots 
OC.W 80 XDotsInch 
OC.W 180 YOotsInch 
OC.L CommandTable Commands 
OC.L ~::OoSpecial 
OC.L Render 
DC.L 30 ; Timeout 
OC.L ExtendedCharTable 8BitChars 
OS.L I PrintMode (reserve space) 
OC.L 0 ; ptr to char conversion function 

printerName: 
OC.B 
OC.B 
END 

"EpsonQ" 
o 

EPSONQ:EPSONQ_REVJ 

VERSION 
REVISION 

EQU 35 
EQU 0 

EPSONQ: INIT.ASM 

TTL '$Header: printer.3,v 1.1 89/10/31 16:05:49 ken Exp $' 
********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Copyright 1985, Commodore-Amiga Inc. All rights reserved. 
No part of this program may be reproduced, transmitted, 
transcribed, stored in retrieval system, or translated into 
any language or computer language, in any form or by any 
means, electronic, mechanical, magnetic, optical, chemical, 
manual or otherwise, without the prior written permission of 
Commodore-Amiga Incorporated, 1200 Wilson Drive, West Chester, 
Pennsylvania, 19380 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 

printer device functions 

Source Control 

$Header: printer.3,v 1.1 89/10/31 16:05:49 ken Exp $ 

$Locker: carolyn $ 

806 Printer Device 



* 
* $Log: printer.3,v $ 

* Revision 1.1 89/10/31 16:05:49 ken 

* Initial revision 

* 
* Revision 1.1 88/04/14 12:03:14 daveb 

* VI. 3 Gamma 11 release 

* 
* Revision 1.0 87/08/20 14:10:17 daveb 

* added to rcs 

* 
* Revision 1.1 85/10/09 19:27:20 kodiak 

* remove stdout variable 
* 
* Revision 1.0 85/10/09 19:23:23 kodiak 

* added to rcs for updating in version 1 

* 
* Revision 25.0 85/06/16 01:01:22 kodiak 

* added to rcs 
* 
* 
********************************************************************** 

SECTION printer 

*------ Included Files -----------------------------------------------

INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 

INCLUDE 

"exec/types.i" 
"exec/nodes.i" 
"exec/lists.i" 
"exec/memory. i" 
"exec/ports.i" 
"exec/libraries.i" 

"macros.i" 

*------ Imported Functions -------------------------------------------

XREF_EXE 
XREF_EXE 
XREF 

XREF 

CloseLibrary 
OpenLibrary 

AbsExecBase 

PEDData 

*------ Exported Globals ---------------------------------------------

XDEF Init 
XDEF _Expunge 
XDEF _Open 
XDEF Close 
XDEF PD -XDEF PED 
XDEF _SysBase 
XDEF DOSBase 
XDEF -GfxBase 
XDEF IntuitionBase -

********************************************************************** 

PD 
PED 
SysBase 

-DOSBase 
-GfxBase 

SECTION 

-IntuitionBase 

DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

printer, DATA 
o 
o 
o 
o 
o 
o 

********************************************************************** 
SECTION printer, CODE 

Printer Device 807 



Init: 

* 

* 

* 

pdiRts: 

initPAErr: 

initILErr: 

initGLErr: 

initDLErr: 

ILName: 

DLName: 

GLName: 

MOVE.L 
LEA 
MOVE.L 
MOVE.L 
MOVE.L 
MOVE.L 

4(A7), PD 
PEDData(PC),AO 

AO, PED 
A6,=(A7) 
_AbsExecBase,A6 
A6,_SysBase 

;------ open the dos library 
LEA DLName(PC),A1 
MOVEQ IIO,DO 
CALLEXE OpenLibrary 
MOVE.L DO, DOSBase 
BEQ initDLErr 

;------ open the graphics library 
LEA GLName(PC),A1 
MOVEQ IIO,DO 
CALLEXE OpenLibrary 
MOVE.L DO, GfxBase 
BEQ initGLErr 

;------ open the intuition library 
LEA 
MOVEQ 
CALLEXE 

ILName(PC),A1 
IIO,DO 
OpenLibrary 

MOVE.L DO, IntuitionBase 
BEQ initILErr 

MOVEQ IIO,DO 

MOVE.L (A7)+,A6 
RTS 

MOVE.L IntuitionBase,A1 
LINKEXE CloseLibrary 

MOVE.L GfxBase,A1 
LINKEXE CloseLibrary 

MOVE.L DOSBase,A1 
LINKEXE CloseLibrary 

MOVEQ 
BRA.S 

#-1,DO 
pdiRts 

DC.B , intuition. library' 
DC.B 0 

DC.B 'dos.library' 
DC.B 0 

DC.B 'graphics.library' 
DC.B 0 
DS.W 0 

*---------------------------------------------------------------------
_Expunge: 

MOVE.L IntuitionBase,A1 
LINKEXE CloseLibrary 

MOVE.L GfxBase,A1 
LINKEXE CloseLibrary 

MOVE.L _DOSBase,A1 

808 Printer Device 



LINKEXE CloseLibrary 

*---------------------------------------------------------------------
MOVEQ 
RTS 

#O,DO 

*---------------------------------------------------------------------
Close: 

MOVEQ 
RTS 

END 

#O,DO 

EPSONQ: DATA.C 

/* 

*/ 

Data.c table for EpsonQ driver. 
David Berezowski - March/BB. 

/* Copyright (c) 19BB Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or re'sponsibility is assumed. 

*/ 

char *CommandTable[) ={ 
"\37S\033@\37S",/* 00 aRIS reset */ 
"\377", /* 01 aRIN initialize */ 
"\377" , /* 02 aIND linefeed */ 
"\012\01S", /* 03 aNEL CRLF */ 
"\377", /* 04 aRI reverse LF */ 

/* OS aSGRO normal char set */ 
"\033S\033-\376\033F", 
"\0334", /* 06 aSGR3 italics on */ 
"\033S", /* 07 aSGR23 italics off */ 
"\033-\001", /* DB aSGR4 underline on */ 
"\033-\376", /* 09 aSGR24 underline off */ 
"\033E", /* 10 aSGR1 boldface on */ 
"\033F", /* 11 aSGR22 boldface off */ 
"\377", /* 12 aSFC set foreground color */ 
"\377", /* 13 aSBC set background color */ 

/* 14 aSHORPO normal pitch */ 
"\033P\022\033W\376", 

/* lS aSHORP2 elite on */ 
"\033M\022\033W\376", 
"\033P", /* 16 aSHORP1 elite off */ 

/* 17 aSHORP4 condensed fine on */ 
"\017\033P\033W\376", 
"\022", /* 1B aSHORP3 condensed fine off */ 
"\033W\001", /* 19 aSHORP6 enlarge on */ 
"\033W\376", /* 20 aSHORPS enlarge off */ 

"\377", 1* 21 aDEN6 shadow print on */ 
"\377", /* 22 aDENS shadow print off */ 
"\033G", /* 23 aDEN4 double strike on */ 
"\033H", /* 24 aDEN3 double strike off */ 
"\033x\001", /* 2S aDEN2 NLQ on */ 
"\033x\376", /* 26 aDEN1 NLQ off */ 

Printer Device 809 



"\033S\376", 
"\033T", 
"\0335\001", 
"\033T", 
"\033T", 
"\377", 
"\377", 

"\033R\376", 
"\033R\001", 
"\033R\002", 
"\033R\003", 
"\033R\004", 
"\033R\005", 
"\033R\006", 
"\033R\007", 
"\033R\010", 
"\033R\011", 
"\033R\012", 

"\033p1", 
"\033pO", 
"\377", 
"\377", 

1* 27 aSUS2 superscript on 
1* 28 aSUS1 superscript off 
1* 29 aSUS4 subscript on 
1* 30 aSUS3 subscript off 
1* 31 aSUSO normalize the line 
1* 32 aPLU partial line up 
1* 33 aPLO partial line down *1 

1* 34 aFNTO Typeface 0 
1* 35 aFNT1 Typeface 1 
1* 36 aFNT2 Typeface 2 
1* 37 aFNT3 Typeface 3 
1* 38 aFNT4 Typeface 4 
1* 39 aFNT5 Typeface 5 
1* 40 aFNT6 Typeface 6 
1* 41 aFNT7 Typeface 7 
1* 42 aFNT8 Typeface 8 
1* 43 aFNT9 Typeface 9 
1* 44 aFNT10 Typeface 10 

1* 45 
1* 46 
1* 47 
1* 48 
1* 49 

aPROP2 proportional on 
aPROP1 proportional off 
aPROPO proportional clear 
aTSS set proportional offset 
aJFY5 auto left justify 

"\033x\001\033a\376", 
1* 50 

"\033x\001\033a\002", 
aJFY7 auto right justify 

1* 51 
"\033x\001\033a\003~, 

aJFY6 auto full jusitfy 

"\033a\376", 1* 52 aJFYO auto jusity off 
aJFY3 letter space 
aJFY1 word fill 

"\377", 1*53 
1* 54 

"\033x\001\033a\001", 

"\0330", 
"\0332", 
"\377", 
"\377", 
"\0330", 

"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377" , 

1* 55 aVERPO 1/8" line spacing 
1* 56 aVERP1 1/6" line spacing 
1* 57 aSLPP set form length 
1* 58 aPERF perf skip n (n > 0) 
1* 59 aPERFO perf skip off 

1* 60 aLMS set left margin 
1* 61 aRMS set right margin 
1* 62 aTMS set top margin 
1* 63 aBMS set bottom margin 
1* 64 aSTBM set T&B margins 
1* 65 aSLRM set L&R margins 
1* 66 aCAM clear margins 

*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 

*1 

*1 

*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 

"\377", 
"\377", 
"\377", 
"\0330\376", 

1* 67 aHTS set horiz tab *1 

"\377", 
"\377", 
"\0330\376", 

1* 68 aVTS set vert tab *1 
1* 69 aTBCO clear horiz tab *1 
1* 70 aTBC3 clear all horiz tabs *1 
1* 71 aTBC1 clear vert tab *1 
1* 72 aTBC4 clear all vert tabs *1 
1* 73 aTBCALL clear all h & v tabs *1 
1* 74 aTBSALL set default tabs *1 

"\0330\010\020\030\040\050\060\070\100\110\120\130\140\150\160\170\200\376", 

}; 

char 

"\377", 
"\377", 

1* 75 aEXTENO extended commands 
1* 76 aRAW next 'n' chars are raw 

*ExtendedCharTable[J = { 

" II , 1* NBSP*I 
"\033R\007[\033R\\0", 1* i *1 
"c\OlOI", 1* cl *1 
"\033R\003#\033R\\0", 1* L- *1 
"\033R\005$\033R\\0", 1* o *1 
"\033R\010\\\\\033R\\0", 1* Y- *1 
"I", 1* I *1 
"\033R\002@\033R\\0", 1* SS *1 

810 Printer Device 

*1 
*1 



"\033R\001-\033R\\0", /* " */ 
ne", /* copyright */ 
"\0335\\Oa\010 \033T", 1* a */ 
"<II, /* « */ 
II-II , /* - *1 
"_II , 1* SHY */ 
"r", /* registered trademark *1 
II_" , /* - */ 

"\033R\001[\033R\\0", /* degrees */ 
"+\010 " , 1* + */ 
"\033S~\0002\033T", /* 2 

-
*/ 

"\0335\\0003\033T", /* 3 */ .. , .. 1* , */ , 
"Ull, /* u *1 
.. p", /* reverse p */ 
"\033S\\000.\033T", /* */ 

" , " , /* , */ 
"\033S\\0001\033T", /* 1 */ 
-\033R\001[\033R\\0\010-", /* 0 - */ 
">11, /* » */ 
"\0335\\0001\033T\010-\010\033S\0014\033T", /* 1/4 */ 
"\033S\\0001\033T\010-\010\033S\0012\033T", /* 1/2 */ 
"\033S\\0003\033T\010-\010\033S\0014\033T", /* 3/4 */ 
"\033R\007]\033R\\0", 1* upside down ? */ 

"A\010 "', /* 'A */ 
"A\010'", /* 'A */ 
"A\010"", /* "A */ 
"A\010-", /* -A *1 
"\033R\002[\033R\\0", /* "A *1 
"\033R\004]\033R\\0", /* oA */ 
"\033R\004[\033R\\0", /* AE */ 
"C\010,", /* C, */ 

"E\010'", 1* 'E */ 
"\033R\011@\033R\\0", /* 'E */ 
"E\010"", /* "E */ 
"E\010\033R\001-\033R\\0·, /* "E */ 
"I\010'", /* 'I */ 
"I\010'", /* , I */ 
"I\010"", /* "I */ 
"I\010\033R\001-\033R\\0", /* "I */ 

"D\010-", /* -D */ 
"\033R\007\\\\\033R\\0", /* -N */ 
"0\010'", 1* '0 */ 
"0\010'", 1* '0 */ 
"0\010"", /* "0 */ 
"0\010--, /* -0 */ 
"\033R\002\\\\\033R\\0", /* "0 */ 
"XII, /* x */ 

"\033R\004\\\\\033R\\0", /* 0 */ 
"U\010'", /* 'U */ 
"U\010'", /* 'u */ 
"U\010"", /* "U */ 
"\033R\002]\033R\\0", /* "U */ 
"Y\010''', /* , Y *1 
"T", /* Thorn */ 
"\033R\002-\033R\\0", /* B */ 

"\033R\001@\033R\\0", /* 'a */ 
"a\010'", /* 'a */ 
"a\OlO"", 1* "a */ 
"a\010-", /* -a *1 
"\033R\002{\033R\\0", /* "a */ 
"\033R\004}\033R\\0", /* oa */ 
"\033R\004{\033R\\0", /* ae */ 
"\033R\001\\\\\033R\\0", /* c, */ 

Printer Device 811 



"\033R\001}\033R\\0", 
"\033R\001{\033R\\0", 
"e\010"", 
"e\010\033R\001-\033R\\0", 
"\033R\006-\033R\\0", 
"i\010"', 
"i\010"", 
"i\010\033R\001-\033R\\0", 

lid", 
"\033R\0071\033R\\0", 
"\033R\0061\033R\\0", 
"0\010'", 
"0\010"", 
"0\010-", 
"\033R\0021\033R\\0", 
":\010-" 

"\033R\0041\033R\\0", 
"\033R\0011\033R\\0", 
"u\010'", 
"u\010"", 
"\033R\002}\033R\\0", 
"y\010'" , 
"t", 
"y\010\033R\001-\033R\\0" 

} ; 

EPSONQ: DOSPECIAL.C 

1* 

*1 

DoSpecial for EpsonQ driver. 
David Berezowski - March/88. 

1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 

1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 

1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 

'e *1 
'e *1 
"e *1 
"e *1 
'i *1 
, i *1 
"i *1 
"i *1 

d *1 -n *1 
'0 *1 
'0 *1 
"0 *1 -o *1 
"0 *1 
:- *1 

01 *1 
'u *1 
'u *1 
"u *1 
"u *1 
'y *1 
thorn *1 
"y *1 

1* Copyright (c) 1988 Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*1 

'include <exec/types.h> 
'include <devices/printer.h> 
'include <devices/prtbase.h> 

DoSpecial(command, outputBuffer, vline, currentVMI, crlfFlag, Parms) 
char outputBuffer[]; 
UWORD *command; 
BYTE *vline; 
BYTE *currentVMI; 
BYTE *crlfFlag; 
UBYTE Parms[]; 
{ 

extern struct PrinterData *PD; 

int x = 0, y = 0; 
1* 

00-01 
02-04 
05-06 
07-08 
09-09 
10-12 
13-14 

812 Printer Device 

\0335 
\033-\000 
\033F 
\033P 
\022 
\033W\000 
\033H 

italics off 
underline off 
boldface off 
elite off 
condensed fine off 
enlarge off 
double strike off 



*1 

15-17 
18-19 
20-22 
23-25 
26-27 
28-28 

\033x\000 
\033T 
\033R\000 
\033pO 
\0332 
\015 

NLQ off 
normalize the line 
US char set 
proportional off 
6 lpi 
carriage-return 

static char initThisPrinter[29) 
{Ox1b,'5',Ox1b,'-',Oxfe,Ox1b,'F',Ox1b,'P' ,Ox12,Ox1b,'W',Oxfe,Ox1b,'H', 
Ox1b,'x',Oxfe,Ox1b,'T',Ox1b,'R',Oxfe,Ox1b,'p' ,'0',Ox1b,'2',OxOd}; 

static char initMarg[) = {Oxfd,Ox1b,'1','L',Ox1b,'Q','R',Oxfd}; 

static BYTE ISOcolorTable[) = {a, 5, 6, 4, 3, 1, 2, O}; 

if (*command == aRIN) { 1* initialize *1 
while (x < 29) { 

if «outputBuffer[x) = initThisPrinter[x) == -2) { 
outputBuffer[x) = 0; 

x++; 

if (PD->pd Preferences.PrintQuality 
outputBuffer[17) = 1; 

LETTER) { 

*currentVMI = 30; 1* assume 1/6 line 
if (PD->pd Preferences.PrintSpacing 

outputBuffer[27) = '0'; 
*currentVMI = 22; 

spacing *1 
EIGHT_LPI) 

if (PD->pd_Preferences.PrintPitch 
outputBuffer[8) = 'M'; 

ELITE) { 

else if (PD->pd Preferences.PrintPitch 
outputBuffer[9) = 15; 

FINE) { 

Parms[O) = PD->pd Preferences.PrintLeftMargin; 
Parms[l) = PD->pd=Preferences.PrintRightMargin; 
*command=aSLRM; 

if (*command == aCAM) { 1* cancel margins *1 
y = PD->pd Preferences.PaperSize == W TRACTOR? 136 80; 
if (PD->pd=Preferences.PrintPitch == PICA) { 

Parms[l) = (10 * y) I 10; 

else if (PD->pd Preferences.PrintPitch 
Parms[l] = (12 * y) I 10; 

else 1* fine *1 

Parms[O) 
y = 0; 
*command 

Parms[l) (17 * y) I 10; 

1; 

aSLRM; 

ELITE) { 

if (*command == aSLRM) { 1* set left&right margins *1 
PD->pd PWaitEnabled = 253; 1* wait after this character *1 
if (Parms[O) == 0) { 

initMarg[3) = 0; 

else 
initMarg[3) = Parms[O) - 1; 

} 
initMarg[6) = Parms[l); 
while (y < 8) { 

outputBuffer[x++) initMarg[y++); 

Printer Device 813 



return(x); 

if (*command == aPLU) { /* partial line up */ 
if (*vline == 0) ( 

} 

*vline = 1; 
*command = aSUS2; 
return(O); 

if (*vline < 0) ( 
*vline = 0; 
*command = aSUS3; 
return(O); 

return(-1); 

if (*command == aPLD) { /* partial line down */ 
if (*vline == 0) ( 

} 

*vline = -1; 
*command = aSUS4; 
return(O); 

if (*vline > 0) ( 
*vline = 0; 
*command = aSUS1; 
return(O); 

return(-1); 

if (*command == aSUSO) { /* normalize the line */ 
*vline = 0; 

if (*command == aSUS1) { /* superscript off */ 
*vline = 0; 

if (*command == aSUS2) { /* superscript on */ 
*vline = 1; 

if (*command == aSUS3) { /* subscript off */ 
*vline = 0; 

if (*command == aSUS4) { /* subscript on */ 
*vline = -1; 

if (*command == aVERPO) { /* 8 LPI */ 
*currentVMI = 22; 

if (*command == aVERP1) { /* 6 LPI */ 
*currentVMI = 30; 

if (*command == aSFC) ( /* set foreground/background color */ 
if (Parms[O) == 39) ( 

Parms[O) = 30; /* set default (black) */ 

if (Parms[O] > 37) ( 
return(O); /* ni or background color change */ 

outputBuffer[x++] 
outputBuffer[x++) 
outputBuffer[x++] 
return(x); 

814 Printer Device 

27; 
, r' ; 
ISOcolorTable[Parms[O] - 30]; 



if (*command == aSLPP) ( /* 
outputBuffer[x++] 
outputBuffer[x++] 
outputBuffer[x++j 
return(x); 

if (*command == aPERF) ( /* 
outputBuffer[x++] 
outputBuffer[x++] 
outputBuffer[x++] 
return(x); 

set form length */ 
27; 
, C' ; 
Parms[O]; 

perf skip n */ 
27; 
'N' ; 
Parms[O]; 

if (*command == aRIS) ( /* reset */ 
PD->pd_PWaitEnabled = 253; 

return(O); 

EPSONQ: RENDER.C 

/* 
EpsonQ (LQ-800/LQ-850/LQ-IOOO/LQ-I050/LQ-1500/LQ-2500) driver. 
(tested on a Star NB24-15 (bw) and an Epson LQ-2500 (color) printer). 
David Be~ezowski - October/87. 

*/ 

/* Copyright (c) 1988 Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*/ 

'include <exec/types.h> 
'include <exec/nodes.h> 
'include <exec/lists.h> 
'include <exec/memory.h> 
'include <devices/printer.h> 
'include <devices/prtbase.h> 
'include <devices/prtgfx.h> 

8 /* 
1 /* 

'define 
'define 
'define 
'define 
idefine 

NUMSTARTCMD 
NUMENDCMD 
NUMTOTALCMD 
NUMLFCMD 
MAXCOLORBUFS 

(NUMSTARTCMD + 

'define STARTLEN 
'define PITCH 
'define CONDENSED 
'define LMARG 
'define RMARG 
'define DIREC 

Render (ct, x, y, status) 
long ct, x, y, status; 
( 

4 /* 
4 /* 

16 
1 
2 
8 
11 
15 

• of cmd bytes before binary data */ 
• of cmd bytes after binary data */ 
NUMENDCMD) /* total of above */ 
• of cmd bytes for linefeed */ 
max • of color buffers */ 

extern void *AllocMem(), FreeMem(); 

extern struct Printeroata *PD; 
extern struct PrinterExtendedData *PED; 

static UWORD RowSize, ColorSize, BufSize, TotalBufSize; 

Printer Device 815 



static UWORD dataoffset, dpi code; 
static UWORD colors[MAXCOLORBUFS]; 1* color ptrs *1 
static UWORD colorcodes[MAXCOLORBUFS]; 1* printer color codes *1 
static UWORD NumColorBufs; 1* actually number of color buffers req. *1 
1* 

*1 

00-01 
02-02 
03-05 
06-08 
09-11 
12-12 
13-15 

\003P 
\022 
\033W\000 
\033ln 
\033Qn 
\015 
\033Ul 

set pitch (10 or 12 cpi) 
set condensed fine (on or off) 
enlarge off 
set left margin to n 
set right margin to n 
carriage return 
set uni-directional mode 

static UBYTE StartBuf[STARTLEN] 
{Oxlb,'P',Ox12,Oxlb,'W',OxO,Oxlb,'1','n',Ox1b,'Q','n',OxOd,Oxlb,'U','l'}; 

UBYTE *ptr, *ptrstart, *ptr2, *ptr2start, **dummy; 

int i, err; 

switch (status) { 
case 0: 1* Master Initialization *1 

1* 

816 Printer Device 

ct - pointer to IODRPReq structure. 
x - width of printed picture in pixels. 
y - height of printed picture in pixels. 

*1 
RowSize x * 3; 
ColorSize = RowSize + NUMTOTALCMD; 
if (PD->pd Preferences.PrintShade == SHADE_COLOR) 

NumColorBufs = MAXCOLORBUFS; 

else 

colors[O] ColorSize * 3; 1* Black *1 
colors[l] ColorSize * 0; 1* Yellow *1 
colors[2] ColorSize * 1; 1* Magenta *1 
colors[3] ColorSize * 2; 1* Cyan *1 
colorcodes[O] 4; 1* Yellow *1 
colorcodes[l] 1; 1* Magenta *1 
colorcodes[2] 2; 1* Cyan *1 
colorcodes[3] 0; 1* Black *1 

1* grey-scale or black&white *1 
NumColorBufs = 1; 
colors[O] = ColorSize * 0; 1* Black *1 
colorcodes[O] = 0; 1* Black *1 

Bu~Size = ColorSize * NumColorBufs + NUMLFCMD; 
TotalBufSize = BufSize * 2; 
PD->pd PrintBuf = AllocMem(TotaIBufSize, MEMF PUBLIC); 
if (PD=>pd_PrintBuf == NULL) { -

else 

err = PDERR_BUFFERMEMORY; 1* no mem *1 

dataoffset = NUMSTARTCMD; 
1* 

*1 

This printer prints graphics within its 
text margins. This code makes sure the 
printer is in 10 cpi and then sets the 
left and right margins to their minimum 
and maximum values (respectively). A 
carriage return is sent so that the 
print head is at the leftmost position 
as this printer starts printing from 
the print head's position. The printer 
is put into unidirectional mode to 
reduce wavy vertical lines. 

StartBuf[PITCH] = 'P'; 1* 10 cpi *1 
StartBuf[CONDENSED] = '\022'; 1* off *1 
1* left margin of 1 *1 
StartBuf[LMARG] = 0; 
1* right margin of 80 or 136 *1 
StartBuf[RMARG] PD->pd_Preferences. 



break; 

PaperSize == W TRACTOR? 136 80; 
1* uni-directional mode *1 
StartBuf[DIREC) = '1'; 
err = (*(PD->pd_PWrite» (StartBuf, STARTLEN); 

case 1: /* Scale, Dither and Render */ 
/* 

case 2: /* 

ct - pointer to Prtlnfo structure. 
x - O. 
Y - row 1/ (0 to Height - 1). 

*/ 
Transfer(ct, y, 'PD->pd PrintBuf[dataoffset), colors); 
err = PDERR NOERR; /* all ok */ 
break; -

Dump Buffer to Printer */ 
/* 

ct - o. 
x - O. 
Y - II of rows sent (1 to NumRows) • 

*/ 
/* white-space strip */ 
ptrstart = 'PD->pd PrintBuf[dataoffset); 
ptr2start = ptr2 =-ptrstart - NUMSTARTCMD; 
x = 0; /* flag no transfer required yet */ 
for (ct=O; ct<NumColorBufs; 

ct++, ptrstart += ColorSize) 
i = RowSize; 
ptr = ptrstart + i - 1; 
while (i > 0 && *ptr 0) { 

i--; 
ptr--; 

if (i != 0) { /* if data */ 

} 

/* convert to 1/ of pixels */ 
i = (i + 2) / 3; 
ptr = ptrstart - NUMSTARTCMD; 
*ptr++ 27; 
*ptr++ 'r'; 
*ptr++ colorcodes[ct); /* color */ 
*ptr++ 27; 
*ptr++ '*'; 
*ptr++ dpi code; /* density */ 
*ptr++ i '-Oxff; 
*ptr++ i» 8; /* size */ 
i *= 3; /* back to 1/ of bytes used */ 
*(ptrstart + i) = 13; /* cr */ 
i += NUMTOTALCMD; 
/* if must transfer data */ 
if (x != 0) { 

else 

/* get src start */ 
ptr = ptrstart - NUMSTARTCMD; 
/* otherwise Lattice looses 

track of the pointer .... */ 
dummy = &ptr; . 
/* xfer and update dest ptr */ 
do { 

*ptr2++ = *ptr++; 
while (--i); 

/* no transfer required */ 
/* update dest ptr */ 
ptr2 += i; 

/* if compacted or 0 */ 
if (i != RowSize + NUMTOTALCMD) 

/* we need to transfer next time */ 
x = 1; 

Printer Device 817 



*ptr2++ - 13; 1* cr *1 
*ptr2++ - 27; 
*ptr2++ 'J'; 
*ptr2++ y; 1* y/1BO If *1 
err = (* (PD->pd_PWrite» (ptr2start, ptr2 - ptr2start); 
if (err == PDERR NOERR) { 

dataoffset = (dataoffset == NUMSTARTCMD ? 
BufSize : 0) + NUMSTARTCMD; 

break; 

case 3: 1* Clear and Init Buffer *1 
1* 

ct - O. 
x - O. 
Y - O. 

*1 
ptr &PD->pd PrintBuf[dataoffset]; 
i = BufSize --NUMTOTALCMD - NUMLFCMD; 
do ( 

*ptr++ = 0; 
) while (--i); 
err = PDERR_NOERR; 1* all ok *1 
break; 

case 4: 1* Close Down *1 
1* 

ct - error code. 
x - io Special flag from IODRPReq. 
y - 0.-

*1 
err PDERR NOERR; 1* assume all ok *1 
1* if user did not cancel print *1 
if (ct != PDERR CANCEL) { 

1* restore preferences pitch and margins *1 
if (PD->pd Preferences.PrintPitch == ELITE) 

StartBuf[PITCH] = 'M'; 1* 12 cpi *1 

else if (PD->pd Preferences.PrintPitch == FINE) 
StartBuf[CONDENSED] = '\017'; 1* on *1 

} 

StartBuf[LMARG] = 
PD->pd Preferences.PrintLeftMargin - 1; 

StartBuf[RMARG] = 
PD->pd Preferences.PrintRightMargin; 

StartBuf[DIREC] = '0'; 1* bi-directional *1 
err = (* (PD->pd_PWrite» (StartBuf, STARTLEN); 

1* wait for both buffers to empty *1 
(*(PD->pd PBothReady» (); 
if (PD->pd PrintBuf != NULL) 

FreeMem(PD->pd_PrintBuf, TotalBufSize); 

break; 

case 5: 1* Pre-Master Initialization *1 
1* 

818 Printer Device 

*1 
1* 

*1 

ct - 0 or pointer to IODRPReq structure. 
x - io Special flag from IODRPReq. 
y - 0.-

Kludge for weak power supplies. 
FANFOLD - use all 24 pins (default). 
SINGLE - use only 16 pins. 

PED->ped_NumRows = PD->pd_Preferences.PaperType 
SINGLE ? 16 : 24; 

dpi code = SetDensity(x & SPECIAL DENSITYMASK); 
err-= PDERR NOERR; 1* all ok *1. -
break; -



return(err); 

EPSONQ: DENSITY.C 

/* 
Density module for EpsonQ driver. 
David Berezowski - October/B? 

*/ 

/* Copyright (c) 19BB Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*/ 

'include <exec/types.h> 
'include <devices/printer.h> 
'include <devices/prtbase.h> 

char SetDensity(ULONG); 

char SetDensity(density_code) 
ULONG density code; 
{ -

extern struct PrinterData *PD; 
extern struct PrinterExtendedData *PED; 

/* SPECIAL DENSITY 
static int-XDPI[B] 
static char codes[B] 

PED->ped MaxColumns = 

o 1 2 3 4 56? */ 
{90, 90, 120, lBO, 360, 360, 360, 360}; 

{3B, 3B, 33, 39, 40, 40, 40, 40}; 

PD->pd Preferences.PaperSize == W_TRACTOR ? 136 : BO; 
density code /~ SPECIAL DENSITY1; 
/* default is BO chars (B.O in.), W TRACTOR is 136 chars (13.6 in.) */ 
PED->ped MaxXDots = (XDPI[density code] * PED->ped MaxColumns) / 10; 
PED->ped-XDotsInch = XDPI[density-code]; -
return(codes[density_code]); -

EPSONQ: TRANSFER.C 

/* 

*/ 

Transfer routine for EpsonQ driver. 
David Berezowski - October/B? 

/* Copyright (c) 19BB Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*/ 

'include <exec/types.h> 
'include <devices/printer.h> 
'include <devices/prtbase.h> 
'include <devices/prtgfx.h> 

Printer Device 819 



Transfer (PInfo, y, ptr, colors) 
struct PrtInfo *PInfo; 
UWORD y; 1* row * *1 
UBYTE *ptr; 1* ptr to buffer *1 
UWORD *colors; 1* indexes to color buffers *1 
{ 

extern struct PrinterData *PD; 
extern struct PrinterExtendedData *PED; 

static UWORD bit_table[B] = {l2B, 64, 32, 16, B, 4, 2, 1}; 
union colorEntry *ColorInt; 
UBYTE *bptr, *yptr, *mptr, *cptr, Black, Yellow, Magenta, Cyan; 
UBYTE *dmatrix, dvalue, threshold; 
UWORD x, width, sx, *sxptr, bit, x3, ymod; 

1* pre-compute *1 
1* printer non-specific, MUST DO FOR EVERY PRINTER *1 
x = PInfo->pi xpos; 
ColorInt = PI~fo->pi ColorInt; 
sxptr = PInfo->pi ScaleX; 
width = PInfo->pi-width; 
1* printer specifIc *1 
x3 = x * 3; 
ymod = y % PED->ped_NumRows; 
bit = bit table[ymod & 7]; 
ptr += ymod » 3; 
bptr = ptr + colors[O]; 
yptr ptr + colors[l]; 
mptr ptr + colors[2]; 
cptr ptr + colors[3]; 

1* pre-compute, threshold; are we thresholding? *1 
if (threshold = PInfo->pi threshold) ( 1* thresholding *1 

dvalue = threshold • 15; 

else 

bptr += x3; 
do ( 1* for all source pixels *1 

1* pre-compute intensity values for each component *1 
Black = ColorInt->colorByte[PCMBLACK]; 
ColorInt++; 

sx *sxptr++; 

do 1* use this pixel 'sx' times *1 
if (Black > dvalue) { 

*bptr 1= bit; 
} 

bptr += 3; 
} while (--sx); 

while (--width); 

1* not thresholding, pre-compute ptr to dither matrix *1 
dmatrix = PInfo->pi dmatrix + «y & 3) « 2); 
if (PD->pd Preferences.PrintShade == SHADE GREYSCALE) 

else 

bptr += x3; -
do { 1* for all source pixels *1 

1* compute intensity val for each component *1 
Black = ColorInt->colorByte[PCMBLACK]; 
ColorInt++; 

sx *sxptr++; 

do 1* use this pixel 'sx' times *1 
if (Black> dmatrix[x & 3]) { 

*bptr 1= bit; 

x++; 1* done 1 more printer pixel *1 
bptr += 3; 

} while (--sx); 
while (--width); 

1* color *1 
do { 1* for all source pixels *1 

820 Printer Device 



1* compute intensity val for each component *1 
Black = Colorlnt->colorByte[PCMBLACK); 
Yellow = Colorlnt->colorByte[PCMYELLOW); 
Magenta = Colorlnt->colorByte[PCMMAGENTA); 
Cyan = Colorlnt->colorByte[PCMCYAN); 
Colorlnt++; 

sx *sxptr++; 

do 1* use this pixel 'sx' times *1 
dvalue = dmatrix[x & 3): 
if (Black > dvalue) { 

*(bptr + x3) 1= bit; 

else 1* black not rendered *1 
if (Yellow > dvalue) { 

*(yptr + x3) 1= bit; 
} 
if (Magenta > dvalue) { 

*(mptr + x3) 1= bit; 
} 

if (Cyan > dvalue) { 
*(cptr + x3) 1= bit; 

x++; 1* done 1 more printer pixel *1 
x3 += 3; 

} while (--sx); 
} while (--width); 

Printer Device 821 



The driver for the HP _LaserJet can be generated with the following Makefile. 

LC = lc:lc 
ASM = lc:asm 
CFLAGS = -iINCLUDE: -bO -dO -v 
ASMFLAGS = -iINCLUDE: 
LINK = lc:blink 
LIB = lib:amiga.lib+lib:lc.lib 
OBJ = printertag.o+init.o+data.o+dospecial.o+render.o+transfer.o+density.o 
TARGET = HP_LaserJet 

@$(LC) $ (CFLAGS) $* 

$ (TARGET) : printertag.o init.o data.o dospecial.o render.o density.o transfer.o 
@$(LINK) <WITH < 
FROM $ (OBJ) 
TO $ (TARGET) 
LIBRARY $ (LIB) 
NODEBUG SC SD VERBOSE MAP $(TARGET).map H 
< 

init.o: init.asm 
@$(ASM) $ (ASMFLAGS) init.asm 

printertag.o: printertag.asm hp rev.i 
@$(ASM) $ (ASMFLAGS) printert~g.asm 

transfer.o: transfer.c 

dospecial.o: dospecial.c 

data.o: data.c 

density.o: density.c 

render.o: render.c 

install : 
@copy $(TARGET) to devs:printers 

HP_LASERJET: PRINTERTAG.ASM 

TTL '$Header: printer.4,v 1.2 89/11/05 23:56:38 ken Exp $' 
********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Copyright 1985, Commodore-Amiga Inc. All rights reserved. 
No part of this program may be reproduced, transmitted, 
transcribed, stored in retrieval system, or translated into 
any language or computer language, in any form or by any 
means, electronic, mechanical, magnetic, optical, chemical, 
manual or otherwise, without the prior written permission of 
Commodore-Amiga Incorporated, 1200 Wilson Drive, West Chester, 
Pennsylvania, 19380 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************** 

* 
* 
* 
* 
* 

printer device dependent code tag 

Source Control 

822 Printer Device 



* $Header: printer.4,v 1.2 89/11/05 23:56:38 ken Exp $ 

* 
* $Locker: $ 

* 
* $Log: printer.4,v $ 
* Revision 1.2 89/11/05 23:56:38 ken 
* added blank page to the end 

* * Revision 1.1 89/10/31 16:06:08 ken 
* Initial revision 

* * Revision 1.3 88/06/05 18:15:28 daveb 
* V1.3 Gamma 15 

* * Revision 1.2 88/04/15 16:58:35 daveb 
* fixed docs for devcon 
* V1.3 Gamma 13 

* 
* Revision 1.1 87/10/27 15:33:12 daveb 
* V1.3 gamma 1 check-in 

* * Revision 1.0 87/08/20 14:12:28 daveb 
* added to rcs 

* * Revision 1.0 87/08/20 13:28:44 daveb 
* added to rcs 

* 
* 
* 
* 
* 
* 
* 

Revision 1.3 87/08/03 11:09:33 daveb 
added null ptr to char conversion function at end of table 

Revision 1.2 87/07/30 10:37:11 daveb 
added 'DS.L l' at end to reserve space for PrintMode 

* Revision 1.1 87/07/21 11:42:04 daveb 
* added 'PPC VERSION 2' to PrinterClass - -
* 
* Revision 1.0 87/07/21 11:41:36 daveb 
* added to rcs 

* 
* 
* 
* 

Revision 32.4 86/06/30 21:09:33 andy 
*** empty log message *** 

* Revision 32.3 86/06/30 20:55:47 andy 
* enabled 8 bit characters 

* 
* 
* 
* 

Revision 32.2 86/06/10 12:58:00 andy 
Corrected printer name 

* Revision 32.1 86/02/10 14:33:17 kodiak 
* add null 8BitChars field 

* 
* 
* 
* 

Revision 32.0 86/02/10 14:23:56 kodiak 
added to rcs for updating 

* Revision 1.2 85/10/09 23:58:23 kodiak 

* 
* 
* 
* 
* 

replace reference to pdata w/ prtbase 

Revision 1.1 85/10/09 16:11:31 kodiak 
daveb density changes 

* Revision 25.1 85/06/16 01:02:15 kodiak 

* 
* 

*** empty log message *** 

* Revision 25.0 85/06/15 06:40:00 kodiak 
* added to rcs 

* 
* Revision 25.0 85/06/13 18:53:36 kodiak 
* added to rcs 

* 
* 
********************************************************************** 

Printer Device 823 



SECTION printer 

*------ Included Files -----------------------------------------------

INCLUDE 
INCLUDE 
INCLUDE 

INCLUDE 

INCLUDE 

*------ Imported Names 

XREF 
XREF 
XREF 
XREF 
XREF 
XREF 
XREF 
XREF 
XREF 
XREF 

"exec/types.i" 
"exec/nodes.i" 
"exec/strings.i" 

"hp_rev.i" 

"devices/prtbase.i" 

Init 
_Expunge 
_Open 

Close -CommandTable 
PrinterSegmentData 

~::OoSpecial 
Render -ExtendedCharTable -CohvFunc -

*------ Exported Names -----------------------------------------------

XDEF PEDData 

********************************************************************** 

PEDData: 

printerName: 

MOVEQ 
RTS 
DC.W 
DC.W 

DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.B 
DC.B 
DC.B 
DC.B 
DC.W 
DC.L 
DC.L 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DS.L 
DC.L 

DC.B 
DC.B 
END 

824 Printer Device 

to,DO 

VERSION 
REVISION 

printerName 
Init 

_Expunge 
Open 

-Close 
PPC BWGFX 
PCC BW 
a 
a 
1 
600 
795 
75 
75 

CommandTable 
=DoSpecial 

Render 

; show error for OpenLibrary() 

PrinterClass 
ColorClass 
MaxColumns 
NumCharSets 
NumRows 
MaxXDots 
MaxYDots 
XDotsInch 
YDotsInch 
Commands 

30 ; Timeout 
ExtendedCharTable BBitChars 

1 
ConvFunc 

"HP LaserJet" 
a -

PrintMode (reserve space) 
; ptr to char conversion function 



VERSION EQU 35 
REVISION EQU 0 

UP _ LASERJET: INIT .ASM 

TTL '$Header: printer.4,v 1.2 89/11/05 23:56:38 ken Exp $' 
********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Copyright 1985, Commodore-Amiga Inc. All rights reserved. 
No part of this program may be reproduced, transmitted, 
transcribed, stored in retrieval system, or translated into 
any language or computer language, in any form or by any 
means, electronic, mechanical, magnetic, optical, chemical, 
manual or otherwise, without the prior written permission of 
Commodore-Amiga Incorporated, 1200 Wilson Drive, West Chester, 
Pennsylvania, 19380 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************** 

* * printer device functions 

* 
* 
* 
* 
* 

Source Control 

$Header: printer.4,v 1.2 89/11/05 23:56:38 ken Exp $ 

* $Locker: carolyn $ 

* 
* $Log: printer.4,v $ 
* Revision 1.2 89/11/05 23:56:38 ken 
* added blank page to the end 

* 
* Revision 1.1 89/10/31 16:06:08 ken 
* Initial revision 

* 
* Revision 1.0 87/08/20 14:12:39 daveb 
* added to rcs 

* * Revision 1.0 87/08/20 13:30:11 daveb 
* added to rcs 

* * Revision 1.1 85/10/09 19:27:38 kodiak 
* remove stdout variable 

* 
* Revision 1.0 85/10/09 19:23:53 kodiak 
* added to rcs for updating in version 1 

* 
* Revision 29.1 85/08/02 16:58:43 kodiak 

* remove dummy Close routine -- it's used to finish print of last page. 

* Revision 29.0 85/08/02 16:58:17 kodiak 
* added to rcs for updating in version 29 

* * Revision 25.0 85/06/16 01:01:22 kodiak 
* added to rcs 

* 
* 
********************************************************************** 

SECTION printer 

*------ Included Files -----------------------------------------------

Printer Device 825 



INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 

INCLUDE 

"exec/types.i" 
"exec/nodes.i" 
"exec/lists.i" 
"exec/memory.i" 
"exec/ports.i" 
"exec/libraries.i" 

"macros.i n 

*------ Imported Functions -------------------------------------------

XREF EXE 
XREF EXE 
XREF 

XREF 

CloseLibrary 
OpenLibrary 

AbsExecBase 

PEDData 

*------ Exported Globals ---------------------------------------------

XDEF Init 
XDEF _Expunge 
XDEF _Open 
XDEF PD 
XDEF PED -
XDEF _SysBase 
XDEF DOSBase 
XDEF -GfxBase 
XDEF IntuitionBase -

********************************************************************** 
SECTION 

_SysBase 
_DOSBase 

GfxBase 
=:IntuitionBase 

DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

printer, DATA 
o 
o 
o 
o 
o 
o 

********************************************************************** 

* 

* 

* 

SECTION printer, CODE 

MOVE.L 4(A7),_PD 
LEA PEDData(PC),AO 
MOVE.L AO, PED 
MOVE.L A6,=(A7) 
MOVE.L AbsExecBase,A6 
MOVE.L A6,_sysBase 

;------ open the dos library 
LEA DLName(PC),Al 
MOVEQ IIO,DO 
CALLEXE OpenLibrary 
MOVE.L DO, DOSBase 
BEQ initDLErr 

;------ open the graphics library 
LEA GLName(PC),Al 
MOVEQ IIO,DO 
CALLEXE OpenLibrary 
MOVE.L DO, GfxBase 
BEQ initGLErr 

;------ open the intuition library 
ILName(PC),Al LEA 

MOVEQ 
CALLEXE 
MOVE.L 

IIO,DO 
OpenLibrary 
DO, IntuitionBase 

826 Printer Device 



BEQ initILErr 

MOVEQ 1I0,DO 
pdiRts: 

MOVE.L (A7)+,A6 
RTS 

initPAErr: 
MOVE.L IntuitionBase,A1 
LINKEXE CloseLibrary 

initILErr: 
MOVE.L GfxBase,A1 
LINKEXE CloseLibrary 

initGLErr: 
MOVE.L DOSBase,A1 
LINKEXE CloseLibrary 

initDLErr: 
MOVEQ 1I-1,DO 
BRA.S pdiRts 

ILName: 
DC.B , intuition. library' 
DC.B 0 

DLName: 
DC.B 'dos.library' 
DC.B 0 

GLName: 
DC.B 'graphics. library' 
DC.B 0 
DS.1i 0 

*---------------------------------------------------------------------
_Expunge: 

MOVE.L IntuitionBase,A1 
LINKEXE CloseLibrary 

MOVE.L GfxBase,A1 
LINKEXE CloseLibrary 

MOVE.L _DOSBase,A1 
LINKEXE CloseLibrary 

*---------------------------------------------------------------------
MOVEQ 
RTS 

END 

BO,DO 

HP_LASERJET: DATA.C 

/* 

*/ 

Data.c table for HP LaserJet (Plus and II compatible) driver. 
David Berezowski - March/88. 

/* Copyright (c) 1988 Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

Printer Device 827 



*1 

char *CommandTable[] = { 
"\375\033E\375",I* 00 aRIS reset 
"\377", 1* 01 aRIN initialize 
"\012", 1* 02 aIND line feed 
"\015\012", 1* 03 aNEL CRLF 
"\033&a-1R", 1* 04 aRI reverse LF 

1* 05 aSGRO normal char set 
"\033&d@\033(sbS", 
"\033(s1S", 1* 06 aSGR3 italics on 
"\033(sS", 1* 07 aSGR23 italics off 
"\033&dD", 1* OB aSGR4 underline on 
"\033&d@", 1* 09 aSGR24 underline off 
"\033 (s5B", 1* 10 aSGR1 boldface on 
"\033(sB", 1* 11 aSGR22 boldface off 
"\377", 1* 12 aSFC set foreground color 
"\377", 1* 13 aSBC set background color 

"\033(s10h1T", 
"\033 (s12h2T", 
"\033(s10h1T", 
"\033(s15H", 
"\033(s10H", 
"\377", 
"\377" , 

"\033(s7B", 
"\033 (sB", 
"\033(s3B", 
"\033(sB", 
"\377", 
"\377", 

"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\033&a-.5R", 
"\033=", 

"\033(s3T", 
"\033(sOT", 
"\033(slT", 
"\033 (s2T", 
"\033(s4T", 
"\033(s5T", 
"\033(s6T", 
"\033(s7T", 
"\033 (sBT", 
"\033(s9T", 
"\033(s10T", 

"\033(slP", 
"\033(sP", 
"\033(sP", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377" , 
"\377", 
"\377", 

"\033& IBD", 
"\033&16D", 
"\377", 
"\033&11L", 
"\033&lL", 

828 Printer Device 

1* 14 aSHORPO normal pitch 
1* 15 aSHORP2 elite on 
1* 16 aSHORP1 elite off 
1* 17 aSHORP4 condensed fine on 
1* 1B aSHORP3 condensed fine off 
1* 19 aSHORP6 enlarge on 
1* 20 aSHORP5 enlarge off 

1* 21 aDEN6 shadow print on 
1* 22 aDEN5 shadow print off 
1* 23 aDEN4 double strike on 
1* 24 aDEN3 double strike off 
1* 25 aDEN2 NLO on 
1* .26 aDEN1 NLO off 

1* 27 asus2 superscript on 
1* 2B aSUS1 superscript off 
1* 29 aSUS4 subscript on 
1* 30 aSUS3 subscript off 
1* 31 aSUSO normalize the line 
1* 32 aPLU partial line up 
1* 33 aPLD partial line down 

1* 34 aFNTO Typeface 0 
1* 35 aFNT1 Typeface 1 
1* 36 aFNT2 Typeface 2 
1* 37 aFNT3 Typeface 3 
1* 3B aFNT4 Typeface 4 
1* 39 aFNT5 Typeface 5 
1* 40 aFNT6 Typeface 6 
1* 41 aFNT7 Typeface 7 
1* 42 aFNTB Typeface B 
1* 43 aFNT9 Typeface 9 
1* 44 aFNT10 Typeface 10 

1* 45 aPROP2 proportional on 
1* 46 aPRoP1 proportional off 
1* 47 aPROPO proportional clear 
1* 4B aTSS set proportional offset 
1* 49 aJFY5 auto left justify 
1* 50 aJFY7 auto right justify 
1* 51 aJFY6 auto full jusitfy 
1* 52 aJFYO auto jusity off 
1* 53 aJFY3 letter space 
1* 54 aJFY1 word fill 

1* 55 aVERPO lIB" line spacing 
1* 56 aVERP1 1/6" line spacing 
1* 57 aSLPP set form length 
1* 5B aPERF perf skip n (n > 0) 
1* 59 aPERFO perf skip off 

*1 
*1 
*1 
*1 
*1 

*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 



}; 

"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\0339\015", 

"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 

"\377", 
"\377" 

1* 60 aLMS set left margin 
1* 61 aRMS set right margin 
1* 62 aTMS set top margin 
1* 63 aBMS set bottom margin 
1* 64 aSTBM set T&B margins 
1* 65 aSLRM set L&R margins 
1* 66 aCAM clear margins 

1* 67 aHTS set horiz tab 
1* 68 aVTS set vert tab 
1* 69 aTBCO clear horiz tab 
1* 70 aTBC3 clear all horiz tabs 
1* 71 aTBC1 clear vert tab 
1* 72 aTBC4 clear all vert tabs 
1* 73 aTBCALL clear all h & V tabs 
1* 74 aTBSALL set default tabs 

1*75 aEXTEND extended commands 
1* 76 aRAW next 'n' chars are raw 

*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 

char *ExtendedCharTable[) = { 

1* 

*1 

}; 

II .. , II 'If, nc tt , "L", "0", ny .. , "I", "S", 

.. , .... , IIC", "alf, "<", 11-", II_II, "r", "_", 

"*1' , 

" " , , 

"A", 

"EII, 

"0", 

"a", 

"e", 

Ad", 

"0", 

u+" , "211 , 

"1", "0", 

"Aft, "A", 

"E", "E", 

"N", 

lIa", "all, 

"e" , 

"0", 

"un, "u", 

113", 

">" , 

"A", 

"Ell , 

"0", 

"all, 

"e" , 

110", 

"u", 

.. , .. , 
"In, 

"A", 

"I" , 

"0", 

Ita", 

.. i", 

"0", 

"U", "P", 

II,,,, 

itA", "A", 

III", 11111 , 

"0", 

ny .. , "P", 

"a", "a", 

II i" t 

"0", 

"y", "p", 

.. II , 

It?" . , 

"C", 

lilli, 

"x", 

"B" , 

"c", 

"i", 

"/n, 

"yU 

" ", "\270", "\277", "\273", "\272", "\274", "I", "\275", 
"\253", "c", "\371", "\373", "-", "\366", "r", "\260", 
"\263", "\376", "2", "3", "\250", "\363", "\364", "\362", 
",", "1", "\372", "\375", "\367", "\370", "\365", "\271", 
"\241", "\340", "\242", "\341", "\330", "\320", "\323", "\264", 
"\243", "\334", "\244", "\245", "\346", "\345", "\246", "\247", 
"\343", "\266", "\350", "\347", "\337", "\351", "\332", "x", 
"\322", "\255", "\355", "\256", "\333", "\261", "\360", "\336", 
"\310", "\304", "\300", "\342", "\314", "\324", "\327", "\265", 
"\311", "\305", "\301", "\315", "\331", "\325", "\321", "\335", 
"\344", "\267", "\312", "\306", "\302", "\352", "\316", "-\010:", 
"\326", "\313", "\307", "\303", "\317", "\262", "\361", "\357" 

UP _LASERJET: DOSPECIAL.C 

Printer Device 829 



/* 

*/ 

DOSpecial for HP LaserJet driver. 
David Berezowski-- March/88. 

/* Copyright (c) 1988 Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*/ 

'include <exec/types.h> 
'include <devices/printer.h> 
'include <devices/prtbase.h> 

'define LPI 7 
'define CPI 15 
'define QUALITY 17 
'define INIT LEN 30 
'define LPP 7 
'define FORM LEN 11 
'define LEFT MARG 3 
IIdefine RIGHT MARG 7 
IIdefine MARG LEN 12 

DoSpecial(command, outputBuffer, vline, currentVMI, crlfFlag, Parms) 
char outputBuffer[); 
UWORD *command; 
BYTE *vline; 
BYTE *currentVMI; 
BYTE *crlfFlag; 
UBYTE Parrns[); 
( 

extern struct PrinterData *PD; 
extern struct PrinterExtendedData *PED; 

UWORD text length, toprnargin; 
int x, y, j; 
static char initThisPrinter[INIT LEN) = 

(Ox1b,' &', 'd','@',Ox1b,'&',' 1', '6',' D', Ox1b,' {',' s',' 0', 'b', 
, l' , , 0' , 'h' , , l' , , q' , , 0' I I p' , I 0' , , S' , , 3' , , t',' 0' , , u' , , l' I ' 2' , , V' }; 

static char initForm[FORM LEN) = 
(Ox1b, , &' , , l' , , 0' , , 0' , , 2' -;, e' , , 0' , , 0' , , 0' , , F' ) ; 

static char initMarg[MARG_LEN) = 
(Ox1b,'&' ,'a' ,'0' ,'0' ,'0' ,'1' ,'0' ,'0' ,'0' ,'M' ,0xOd); 

static char initTMarg[) = 
(Ox1b,'&' ,'1' ,'0' ,'0' ,'0' ,'e' ,'0' ,'0' ,'0' ,'F'); 
x = y = j = 0; 

if (*command == aRIN) ( 
while(x < IN IT LEN) ( 

outputBuffer [x) 
x++; 

initThisPrinter[x); 

outputBuffer[x++) = '\015'; 

if (PD->pd Preferences.PrintSpacing EIGHT_LPI) 
outputBuffer[LPI) = '8'; 

if (PD->pd Preferences.PrintPitch ELITE) ( 
outputBuffer[CPI) = '2'; 

else if (PD->pd Preferences.PrintPitch 
outputBuffer[CPI) = '5'; 

830 Printer Device 

FINE) { 



if (PD->pd Preferences.PrintQuality == LETTER} ( 
outputBuffer[QUALITY) = '2'; 

j = x; /* set the formlength = text length, top margin 2 */ 
text length = PD->pd Preferences.PaperLength; 
topmargin = 2; -

while (y < FORM LEN) ( 
outputBuffer[x++) = initForm[y++); 

numberString(textlength, j + LPP, outputBuffer); 

Parms[D) 
Parms[1) 
*command 

PD->pd Preferences.PrintLeftMargin; 
PD->pd=preferences.PrintRightMargin; 
aSLRM; 

if (*command == 
j = x; 
y = D; 
while(y 

aSLRM) ( 

< MARG LEN) ( 
outputBuffer[x++) = initMarg[y++); 

numberString(Parms[D) - 1, j + LEFT MARG, outputBuffer); 
numberString(Parms[1) - 1, j + RIGHT_MARG, outputBuffer); 
return(x); 

if «*command == aSUS2) && (*vline 
*command = aPLU; 
*vline = 1; 
return(D); 

D» { 

if «*command == aSUS2) " (*vline < D» ( 
*command = aRI; 
*vline = 1; 
return(D); 

if «*command == aSUS1) " (*vline> D» { 
*command = aPLD; 
*vline = D; 
return (D) ; 

if «*command == aSUS4) " (*vline 
*command = aPLD; 
*vline = -1; 
return(D); 

D» { 

if «*command == aSUS4) " (*vline > D» ( 
*command = aIND; 
*vline = -1; 
return(D); 

if «*command == aSUS3) " (*vline < D» ( 
*command = aPLU; 
*vline = D; 
return(D); 

if(*command == aSUSD) { 
if (*vline > D) 

*command = aPLD; 
) 
if (*vline < D) { 

*command = aPLU; 

Printer Device 831 



*vline = 0; 
return(O); 

if (*command == aPLU) 
(*vline) ++; 
return(O); 

if (*command == aPLD) { 
(*vline) --; 
return(O); 

if (*command == aSTBM) { 
if (Parms[O] == 0) 

Parms[O] = topmargin; 

else 
topmargin --Parms[O]; 

if (Parms[l] == 0) 
Parms[l] = text length; 

else 
textlength=Parms[l]; 

while (x < 11) ( 
outputBuffer[x] 
x++; 

initTMarg [x]; 

numberString(Parms[O], 3, outputBuffer); 
numberString(Parms[l] - Parms[O], 7, outputBuffer); 
return(x); 

if (*command == aSLPP) { 
while (x < 11) ( 

outputBuffer[x] 
x++; 

initForm[x]; 

/*restore text length, margin*/ 
numberString(topmargin, 3, outputBuffer); 
numberString(textlength, 7, outputBuffer); 
return(x); 

if (*command == aRIS) ( 
PD->pd_PWaitEnabled 253; 

return(O); 

numberString(Param, x, outputBuffer) 
UBYTE Param; 
int x; 
char outputBuffer[]; 
{ 

if (Param > 199) 
outputBuffer[x++] '2'; 
Param -= 200; 

else if (Param > 99) { 
outputBuffer[x++] '1'; 
Param -= 100; 

else 
outputBuffer[x++] '0'; /* always return 3 digits */ 

832 Printer Device 



if (Param > 9) ( 
outputBuffer[x++) Param I 10 + '0'; 

else 
outputBuffer [x++) '0' ; 

outputBuffer[x++) 

ConvFunc(buf, c, flag) 
char *buf, c; 

Param % 10 + '0'; 

int flag; 1* expand If into lf/cr flag (O-yes, else no ) *1 
{ 

if (c == '\014') { 1* if formfeed (page eject) *1 
PED->ped_PrintMode ~ 0; 1* no data to print *1 

return(-1); 1* pass all chars back to the printer device *1 

Close (ior) 
struct printerIO *ior; 

if (PED->ped PrintMode) { 1* if data has been printed *1 
(* (PD->pd PWrite» ("\014",1); 1* eject page *1 
(*(PD->pd-PBothReady» (); 1* wait for it to finish *1 
PED->ped_PrintMode = 0; 1* no data to print *1 

return(O); 

UP _LASERJET: RENDER.C 

1* 
HP LaserJet driver. 
David Berezowski - May/87. 

*1 

1* Copyright (c) 1988 Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*1 

'include <exec/types.h> 
'include <exec/nodes.h> 
'include <exec/lists.h> 
'include <exec/memory.h> 
'include <devices/prtbase.h> 
'include <devices/printer.h> 

'define NUMSTARTCMD 7 1* i of cmd bytes before binary data *1 
'define NUMENDCMD 0 1* • of cmd bytes after binary data *1 
'define NUMTOTALCMD (NUMSTARTCMD + NUMENDCMD) 1* total of above *1 

extern SetDensity(); 
1* 

*1 

00-04 
05-11 
12-16 

\033&10L 
\033*t075R 
\033*rOA 

perf skip mode off 
set raster graphics resolution (dpi) 
start raster graphics 

char StartCmd[17) = (Oxlb, '&',' 1', '0', 'L', Oxlb,' *', 't',' 0', '7',' 5', 'R', 
Oxlb, , *, ,'r' ,'0' ,'A' ); 

Render (ct, x, y, status) 

Printer Device 833 



long ct, x, y, status; 
( 

extern void *AllocMem(), FreeMem(); 

extern struct PrinterData *PD; 
extern struct PrinterExtendedData *PED; 

static UWORD RowSize, BufSize, TotalBufSize, dataoffset; 
static UWORD huns, tens, ones; 1* used to program buffer size *1 
UBYTE *ptr, *ptrstart; 
int i, err; 

switch (status) 
case 0 1* Master Initialization *1 

1* 
ct - pointer to IODRPReq structure. 
x - width of printed picture in pixels. 
y - height of printed picture in pixels. 

*1 
RowSize (x + 7) I 8; 
BufSize RowSize + NUMTOTALCMD; 
TotalBufSize = BufSize * 2; 
PD->pd PrintBuf = AllocMem(TotaIBufSize, MEMF_PUBLIC); 
if (PD=>pd_PrintBuf == NULL) { 

err = PDERR_BUFFERMEMORY; 1* no mem *1 

else 
ptr = PD->pd_PrintBuf; 
*ptr++ 27; 
*ptr++ '*' ; 
*ptr++ 'b / ; 1* transfer raster graphics 
*ptr++ huns ' 0' ; 
*ptr++ tens ' 0' ; 
*ptr++ ones '0' ; 1* printout width *1 
*ptr = 'W' ; 1* terminator *1 
ptr = &PD->pd_PrintBuf[BufSize]; 
*ptr++ 27; 
*ptr++ ' *, ; 
*ptr++ 'b' ; 1* transfer raster graphics 
*ptr++ huns ' 0' ; 
*ptr++ tens ' 0' ; 
*ptr++ ones ' 0' ; 1* printout width 
*ptr = 'W' : 1* terminator *1 
dataoffset = NUMSTARTCMD; 

1* perf skip mode off, set dpi, start raster gfx 
err = (*(PD->pd_PWrite» (StartCmd, 

break; 

case 1 : 1* Scale, Dither and Render *1 
1* 

17) ; 

ct - pointer to Prtlnfo structure. 
x - o. 
y - row • (0 to Height - 1). 

*1 
Transfer (ct, y, &PD->pd PrintBuf[dataoffset]); 
err = PDERR NOERR; 1* all ok *1 
break; -

case 2 : 1* Dump Buffer to Printer *1 
1* 

ct - O. 
x - O. 
Y - # of rows sent (1 to NumRows) • 

White-space strip. 
*1 
i = RowSize; 

*1 

*1 

*1 

*1 

ptrstart = &PD->pd PrintBuf[dataoffset - NUMSTARTCMD]; 
ptr = ptrstart + NUMSTARTCMD + i - 1; 
while (i > 0 && *ptr == 0) { 

i--: 

834 Printer Device 



ptr--; 

ptr ptrstart + 3; 1* get ptr to density info *1 
*ptr++ (huns = i 1 100) I '0'; 
*ptr++ = (i - 'huns * 100) 1 10 I ' 0' ; 
*ptr = i % 10 I '0'; 1* set printout width *1 
err = (*(PD->pd_PWrite)) (ptrstart, i + NUMTOTALCMD); 
if (err == PDERR_NOERR) ( 

dataoffset = (dataoffset == NUMSTARTCMD ? 
BufSize : 0) + NUMSTARTCMD; 

break; 

case 3 : 1* Clear and Init Buffer *1 
1* 

case 4 : 

ct - O. 
x - O. 
Y - O. 

*1 
ptr &PD->pd_PrintBuf[dataoffset]; 
i = RowSize; 
do ( 

*ptr++ 0; 
) while (--i); 
break; 

1* Close Down *1 
1* 

ct - error code. 
x - io_Special flag from IODRPReq struct 
y - O. 

*1 
err PDERR NOERR; 1* assume all ok *1 
1* if user did not cancel the print *1 
if (ct != PDERR CANCEL) { 

1* 

*1 

1* end raster graphics, perf skip mode on *1 
if «err = (*(PD->pd PWrite)) 

("\033*rB\033&llL", 9)) == PDERR NOERR) 
1* if want to unload paper *1 -
if (! (x & SPECIAL NOFORMFEED)) { 

1* eject paper *1 
err = (*(PD->pd PWrite)) 

("\014"~ 1); 

flag that there is no alpha data waiting that 
needs a formfeed (since we just did one) 

PED->ped PrintMode = 0; 
1* wait-for both buffers to empty *1 

(*(PD->pd PBothReady)) (); 
if (PD->pd PrintBuf != NULL) 

FreeMem(PD->pd_PrintBuf, TotaIBufSize); 

break; 

case 5 : 1* Pre-Master Initialization *1 
1* 

return(err); 

ct - 0 or pointer to IODRPReq structure. 
x - io_Special flag from IODRPReq struct 
y - o. 

*1 
1* select density *1 
SetDensity(x & SPECIAL_DENSITYMASK); 
break; 

Printer Device 835 



UP _LASERJET: DENSITY.C 

/* 

*/ 

Density module for HP LaserJet 
David Berezowski - May/87 

/* Copyright (c) 1988 Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*/ 

'include <exec/types.h> 
'include <devices/printer.h> 
'include <devices/prtbase.h> 

SetDensity(density code) 
ULONG density code; 
{ -

extern struct PrinterExtendedData *PED; 
extern char StartCmd[]; 

/* SPECIAL DENSITY 0 1 2 3 4 5 6 7 */ 
static int-XDPI[8] {75, 75, 100, 150, 300, 300, 300, 300}; 
static char codes [8] [3] = { 
{'0','7','5'},{'0','7','5'},{'1','0','0'},{'1','5','0'}, 
('3' ,'0' ,'O'}, ('3' ,'0' ,'O'}, ('3' ,'0' ,'O'}, ('3' ,'0' ,'0' }}; 

density code /= SPECIAL DENSITYl; 
PED->ped MaxXDots = XDPI[density code] * 8; /* 8 inches */ 
PED->ped-MaxYDots = XDPI[density-code) * 10; /* 10 inches */ 
PED->ped-XDotsInch = PED->ped YDotsInch = XDPI[density_code]; 
StartCmd[8] = codes[density code) (0); 
StartCmd[9] = codes [density-code) [I); 
StartCmd[lO] = codes [density_code] (2); 

UP _LASERJET TRANSFER.C 

/* 

*/ 

Transfer routine for HP LaserJet driver. 
David Berezowski - October/87. 

/* Copyright (c) 1988 Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*/ 

'include <exec/types.h> 
'include <devices/prtgfx.h> 

Transfer (PInfo, y, ptr) 
struct PrtInfo *PInfo; 
UWORD y; /* row * */ 
UBYTE *ptr; /* ptr to buffer */ 

836 Printer Device 



static UBYTE bit table[) = {128, 64, 32, 16, 8, 4, 2, 1}; 
UBYTE *dmatrix, Black, dvalue, threshold; 
union colorEntry *ColorInt; 
UWORD x, width, sx, *sxptr, bit; 

1* pre-compute *1 
1* printer non-specific, MUST DO FOR EVERY PRINTER *1 
x = PInfo->pi xpos; 1* get starting x position *1 
ColorInt = PInfo->pi ColorInt; 1* get ptr to color intensities *1 
sxptr = PInfo->pi Sc~leX; 
width - PInfo->pi=width; 1* get • of source pixels *1 

1* pre-compute threshold; are we thresholding? *1 
if (threshold = PInfo->pi threshold) { 1* thresholding *1 

dvalue = threshold - 15; 1* yes, so pre-compute dither value *1 
do { 1* for all source pixels *1 

1* pre-compute intensity value for Black *1 
Black = ColorInt->colorByte[PCMBLACK); 
ColorInt++; 1* bump ptr for next time *1 

sx = *sxptr++; 

1* dither and render pixel *1 
do { 1* use this pixel 'sx' times *1 

1* if we should render Black *1 
if (Black > dvalue) { 

1* set bit *1 
*(ptr + (x »3» 1= bit_tab1e[x & 7); 

++x; 1* done 1 more printer pixel *1 
} while (--sx); 

while (--width); 

else 1* not thresholding, pre-compute ptr to dither matrix *1 
dmatrix = PInfo->pi_dmatrix + «y & 3) « 2); 
do { 1* for all source pixels *1 

1* pre-compute intensity value for Black *1 
Black = ColorInt->colorByte[PCMBLACK); 
ColorInt++; 1* bump ptr for next time *1 

sx = *sxptr++; 

1* dither and render pixel *1 
do { 1* use this pixel 'sx' times *1 

1* if we should render Black *1 
if (Black> dmatrix[x & 3) { 

1* set bit *1 
*(ptr + (x» 3)) 1= bit_table[x & 7); 

++x; 1* done 1 more printer pixel *1 
} while (--sx); 

} while (--width); 

Printer Device 837 



XEROX 4020 

The Xerox_ 4020 driver can be generated with the following Makefile. 

LC = lc:lc 
ASM = lc:asm 
FLAGS = -iINCLUDE: -bO -dO -v 
ASMFLAGS = -iINCLUDE: 
LINK = lc:blink 
LIB = lib:amiga.lib+lib:lc.lib 
OBJ = printertag.o+init.o+data.o+dospecial.o+render.o+transfer.o 
TARGET = Xerox 4020 

@$(LC) $ (FLAGS) $* 

$ (TARGET) : printertag.o init.o data.o dospecial.o render.o transfer.o 
@$(LINK) <WITH < 
FROM $ (OBJ) 
TO $(TARGET) 
LIBRARY $(LIB) 
NODEBUG SC SD VERBOSE MAP $ (TARGET) .map H 
< 

init.o: init.asm 
@$(ASM) $ (ASMFLAGS) init.asm 

printertag.o: printertag.asm xerox 4020 rev.i 
@$(ASM) $ (ASMFLAGS) printertag.ism -

transfer.o: transfer.c 

dospecial.o: dospecial.c 

data.o: data.c 

render.o: render.c 

install: 
@copy $ (TARGET) to devs:printers 

XEROX_4020: PRINTERTAG.ASM 

TTL '$Header: printer.4,v 1.2 89/11/05 23:56:38 ken Exp $' 
********************************************************************** 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Copyright 1985, Commodore-Amiga Inc. All rights reserved. 
No part of this program may be reproduced, transmitted, 
transcribed, stored in retrieval system, or translated into 
any language or computer language, in any form or by any 
means, electronic, mechanical, magnetic, optical, chemical, 
manual or otherwise, without the prior written permission of 
Commodore-Amiga Incorporated, 1200 Wilson Drive, West Chester, 
Pennsylvania, 19380 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************** 

* 
* 
* 
* 
* 
* 
* 

printer device dependent code tag 

Source Control 

$Header: printer.4,v 1.2 89/11/05 23:56:38 ken Exp $ 

838 Printer Device 



* $Locker: $ 

* * $Log: printer.4,v $ 
* Revision 1.2 89/11/05 23:56:38 ken 
* added blank page to the end 

* * Revision 1.1 89/10/31 16:06:08 ken 
* Initial revision 

* * Revision 1.2 88/04/15 17:25:53 daveb 
* fixed docs for devcon 
* V1.3 Gamma 13 

* * Revision 1.1 88/01/15 15:52:05 daveb 
* changed XDotsInch from 120 to 121. 
* changed MaxXDots from 1088 to 1080 
* V1.3 Gamma 6 release 

* 
* Revision 1.0 87/08/20 13:53:15 daveb 
* added to rcs 

* * Revision 1.4 87/07/30 10:43:13 daveb 
* added 'DS.L l' at end to reserve space for PrintMode 

* 
* 
* 
* 

Revision 1.3 87/07/21 11:48:04 daveb 
added 'PPC_VERSION_2' to PrinterClass 

* Revision 1.2 87/04/30 11:27:14 daveb 
* changed MaxColumns from 80 to 90 (Programmer's Guide, pg 1-2) 
* changed MaxXDots from 1024 to 1088 (same) 
* changed YDotsInch from 240 to 120 (Programmer's Guide, pg 1-6) 

* * Revision 1.1 87/04/29 18:14:32 andy 
* Initial revision 

* 
Revision 32.4 86/06/30 21:05:59 
*** empty log message *** 

Revision 32.3 86/06/30 20:51:12 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

enabled 8 bit char support 

Revision 32.2 86/06/10 12:55:43 
Corrected printer name 

Revision 32.1 86/02/10 14 :32:06 
add null 8BitChars field 

andy 

andy 

andy 

kodiak 

* Revision 32.0 86/02/10 14:21:40 kodiak 
* added to rcs for updating 

* * Revision 1.1 85/10/09 23:56:42 kodiak 
* replace reference to pdata w/ prtbase 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Revision 1.0 
added to rcs 

Revision 25.1 
*** empty log 

Revision 25.0 
added to rcs 

Revision 25.0 
added to rcs 

85/10/09 23:56:36 kodiak 
for updating in version 1 

85/06/16 01:02:15 kodiak 
message *** 

85/06/15 06:40:00 kodiak 

85/06/13 18:53:36 kodiak 

* 
********************************************************************** 

SECTION printer 

*------ Included Files -----------------------------------------------

Printer Device 839 



INCLUDE 
INCLUDE 
INCLUDE 

INCLUDE 

INCLUDE 

"exec/types.i" 
"exec/nodes.i" 
"exec/strings.i" 

"xerox 4020 rev.i" 

"devices/prtbase.i" 

*------ Imported Names -----------------------------------------------

XREF Init 
XREF _Expunge 
XREF _Open 
XREF Close -
XREF CommandTable -
XREF _PrinterSegmentData 
XREF _DoSpecial 
XREF Render -XREF ExtendedCharTable -XREF ConvFunc -

*------ Exported Names -----------------------------------------------

XDEF PEDData 

********************************************************************** 

MOVEQ 
RTS 
DC.W 
DC.W 

_PEDData: 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.B 
DC.B 
DC.B 
DC.B 
DC.W 
DC.L 
DC.L 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DS.L 
DC.L 

printerName: 
DC.B 
DC.B 
END 

1I0,DO 

VERSION 
REVISION 

printerName 
Init 

_Expunge 
_Open 

Close 
PPC COLORGFX 
PCC YMCB 
90 
1 
4 
1080 
o 
121 
120 

; show error for OpenLibrary() 

PrinterClass 
ColorClass 
Maxcolumns 
NumCharSets 
NumRows 
MaxXDots 
MaxYDots 
XDotsInch 
YDotsInch 

CommandTable Commands 
-DoSpecial 
-Render 
30 ; Timeout 

ExtendedCharTable ; 8BitChars 
I PrintMode (reserve space) 
o ; ptr to char conversion function 

"xerox 4020" 
o -

840 Printer Device 



VERSION 
REVISION 

EQU 35 
EQU 0 

XEROX 4020: INIT .ASM 

TTL '$Header: printer.4,v 1.2 89/11/05 23:56:38 ken Exp $' 
********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Copyright 1985, Commodore-Amiga Inc. All rights reserved. 
No part of this program may be reproduced, transmitted, 
transcribed, stored in retrieval system, or translated into 
any language or computer language, in any form or by any 
means, electronic, mechanical, magnetic, optical, chemical, 
manual or otherwise, without the prior written permission of 
Commodore-Amiga Incorporated, 1200 Wilson Drive, West Chester, 
Pennsylvania, 19380 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************** 

* 
* printer device functions 

* 
* 
* 
* 
* 

Source Control 

$Header: printer.4,v 1.2 89/11/05 23:56:38 ken Exp $ 

* $Locker: carolyn $ 
* 
* $Log: printer.4,v $ 
* Revision 1.2 89/11/05 23:56:38 ken 
* added blank page to the end 

* 
* Revision 1.1 89/10/31 16:06:08 ken 
* Initial revision 

* 
* Revision 1.1 88/04/14 12:03:14 daveb 
* V1.3 Gamma 11 release 

* * Revision 1.0 87/08/20 14:10:17 daveb 
* added to rcs 

* 
Revision 1.1 85/10/09 19:27:20 kodiak * 

* 
* 
* 
* 
* 
* 
* 
* 

remove stdout variable -
Revision 1.0 85/10/09 19:23:23 kodiak 
added to rcs for updating in version 1 

Revision 25.0 85/06/16 01:01:22 kodiak 
added to rcs 

* 
********************************************************************** 

SECTION printer 

*------ Included Files -----------------------------------------------

*------

INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 

INCLUDE 

"exec/types.i" 
"exec/nodes.i" 
"exec/lists. i" 
"exec/memory. i" 
"exec/ports.i" 
"exec/libraries. i" 

"macros. i" 

Imported Functions -------------------------------------------

XREF EXE CloseLibrary 

Printer Device 841 



XREF 

OpenLibrary 
AbsExecBase 

PEDData 

*------ Exported Globals 

XDEF 
XDEF 
XDEF 
XDEF 
XDEF 
XDEF 
XDEF 
XDEF 
XDEF 
XDEF 

Init 
_Expunge 
_Open 

Close 
PD 
PED 

::::SysBase 
DOSBase 

-GfxBase 
-IntuitionBase 

********************************************************************** 

PD 
PED 

::::SysBase 
DOSBase 

-GfxBase 

SECTION printer, DATA 
o 
o 
o 
o 
o 

-IntuitionBase 

DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L o 

********************************************************************** 
SECTION printer, CODE 

Init: 

* 

* 

* 

pdiRts: 

initPAErr: 

MOVE.L 
LEA 
MOVE.L 
MOVE.L 
MOVE.L 
MOVE.L 

4(A7), PD 
_PEDData (PC) ,AO 
AO, PED 
A6,=(A7) 

AbsExecBase,A6 
A6,_SysBase 

;------ open the dos library 
LEA DLName(PC),Al 
MOVEQ 'O,DO 
CALLEXE OpenLibrary 
MOVE.L DO,_DOSBase 
BEQ initDLErr 

;------ open the graphics library 
LEA GLName(PC),Al 
MOVEQ iO,DO 
CALLEXE OpenLibrary 
MOVE.L DO, GfxBase 
BEQ initGLErr 

;------ open the intuition library 
LEA 
MOVEQ 
CALLEXE 

ILName(PC),Al 
'0,00 
OpenLibrary 

MOVE.L DO, IntuitionBase 
BEQ initILErr 

MOVEQ 1I0,DO 

MOVE.L (A7)+,A6 
RTS 

MOVE.L IntuitionBase,Al 
LINKEXE CloseLibrary 

842 Printer Device 



initILErr: 
MOVE.L _GfxBase,A1 
LINKEXE CloseLibrary 

initGLErr: 
MOVE.L DOSBase,A1 
LINKEXE CloseLibrary 

initDLErr: 
MOVEQ 11-1,00 
BRA.S pdiRts 

ILName: 
DC.B , intuition. library' 
DC.B 0 

DLName: 
DC.B 'dos.library' 
DC.B 0 

GLName: 
DC.B , graphics. library' 
DC.B 0 
DS.W 0 

*---------------------------------------------------------------------
_Expunge: 

MOVE.L IntuitionBase,A1 
LINKEXE CloseLibrary 

MOVE.L _GfxBase,A1 
LINKEXE CloseLibrary 

MOVE.L DOSBase,A1 
LINKEXE CloseLibrary 

*---------------------------------------------------------------------
MOVEQ 
RTS 

1I0,DO 

*---------------------------------------------------------------------
Close: 

MOVEQ 
RTS 

END 

1I0,DO 

XEROX 4020: DAT A.C 

/* 

*/ 

Data.c table for Xerox 4020 driver. 
David Berezowski - March/BB. 

/* Copyright (c) 19BB Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*/ 

char *CommandTable[)=( 
/* 00 aRIS reset */ 

Printer Device 843 



"\375\033\015P\375", 
"\377", 1* 01 aRIN initialize 
"\012", 1* 02 aIND linefeed 
"\015\012", 1* 03 aNEL CRLF 
"\377", 1* 04 aRI reverse LF 

"\033R" , 
"\377", 
"\377", 
"\033E" , 
"\033R", 
"\377", 
"\377", 
"\377", 
"\377", 

"\033FO\033''', 
"\033F2", 
"\033FO", 
"\033F4", 
"\033FO", 
"\033W20", 
"\033,,,, 

"\377", 
"\377", 
"\377", 
"\377", 
"\033wa", 
"\033wb", 

"\033t", 
"\033s", 
"\033u", 
"\033s", 
"\033s" , 
"\377", 
"\377", 

"\377", 
"\377", 
"\377", 
"\377" , 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 

"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377", 
"\377" , 
"\377", 
"\377", 
"\377", 

"\377", 
"\377", 
"\033\014", 
"\377", 
"\377" , 

"\0339", 
"\0330", 
"\377", 
"\377", 

844 Printer Device 

1* 05 aSGRO normal char set 
1* 06 aSGR3 italics on 
1* 07 aSGR23 italics off 
1* 08 aSGR4 underline on 
1* 09 aSGR24 underline off 
1* 10 aSGRl boldface on 
1* 11 aSGR22 boldface off 
1* 12 aSFC set foreground color 
1* 13 aSBC set background color 

1* 14 aSHORPO normal pitch 
1* 15 aSHORP2 elite on 
1* 16 aSHORPl elite off 
1* 17 aSHORP4 condensed fine on 
1* 18 aSHORP3 condensed fine off 
1* 19 aSHORP6 enlarge on 
1* 20 aSHORP5 enlarge off 

1* 21 aDEN6 shadow print on 
1* 22 aDEN5 shadow print off 
1* 23 aDEN4 double strike on 
1* 24 aDEN3 double strike off 
1* 25 aDEN2 NLO on 
1* 26 aDENl NLO off 

1* 27 aSUS2 superscript on 
1* 28 aSUS1 superscript off 
1* 29 aSUS4 subscript on 
1* 30 aSUS3 subscript off 
1* 31 aSUSO normalize the line 
1* 32 aPLU partial line up 
1* 33 aPLD partial line down 

1* 34 aFNTO Typeface 0 
1* 35 aFNT1 Typeface 1 
1* 36 aFNT2 Typeface 2 
1* 37 aFNT3 Typeface 3 
1* 38 aFNT4 Typeface 4 
1* 39 aFNT5 Typeface 5 
1* 40 aFNT6 Typeface 6 
1* 41 aFNT7 Typeface 7 
1* 42 aFNT8 Typeface 8 
1* 43 aFNT9 Typeface 9 
1* 44 aFNT10 Typeface 10 

1* 45 aPROP2 proportional on 
1* 46 aPROPl proportional off 
1* 47 aPROPO proportional clear 
1* 48 aTSS set proportional offset 
1* 49 aJFY5 auto left justify 
1* 50 aJFY7 auto right justify 
1* 51 aJFY6 auto full jusitfy 
1* 52 aJFYO auto jusity off 
1* 53 aJFY3 letter space 
1* 54 aJFY1 word fill 

1* 55 aVERPO 1/8" line spacing 
1* 56 aVERP1 1/6" line spacing 
1* 57 aSLPP set form length 
1* 58 aPERF perf skip n (n > 0) 
1* 59.aPERFO perf skip off 

1* 60 aLMS set left margin 
1* 61 aRMS set right margin 
1* 62 aTMS set top margin 
1* 63 aBMS set bottom margin 

*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 



"\377", /* 64 aSTBM set T&B margins */ 
"\377", /* 65 aSLRM set L&R margins */ 
"\377", /* 66 aCAM clear margins */ 

"\0331", 1* 67 aHTS set horiz tab */ 
"\377", 1* 68 aVTS set vert tab */ 
"\0338", 1* 69 aTBCO clear horiz tab *1 
"\0332", 1* 70 aTBC3 clear all horiz tabs *1 
"\377", 1* 71 aTBCl clear vert tab */ 
"\377", 1* 72 aTBC4 clear all vert tabs */ 
"\0332", 1* 73 aTBCALL clear all h & v tabs *1 

/* 74 aTBSALL set default tabs */ 
"\033i9,17,25,33,4l,49,57,65,73,8l,89,97,105,113,12l,129", 

} ; 

"\377", 
"\377" 

1* 75 aEXTEND extended commands 
1* 76 aRAW next 'n' chars are raw 

char *ExtendedCharTablelJ = { 
/* 

II ", II In, "c", ilL", "0", .. yn, "I", "S", 

"''''', "c", "a", .. , .. , .1 - II , "_" , "r", "_" , 
"*,, n+" , "2", "3 11

, 11'" , "un, I'p", " . " , , 
" .. "1 11

, "0", ", .. 11/", "'", "''', "?" , , , . , 
"A", "A", "A", "All, "A", "A", "A", .. c .. , 
"E" , liE", "E", "E", III", "I", "I", "I", 
"0", "N" , "0", "0", "0", "0", "0", "x", 
no .. , nu", "un, .. u .. , .. U .. , "Y", "T", "3", 
"an, "an, "a", "all, "a", "a", "a", "c", 
"e", "e", "e" , "e", II i II, "i" , "i", "i", 
"d" , "n", "0", "0", "0", "0", "0", "/" , 
"0", "u", "u", "un, "un, "yilt "t" , "y" 

} ; 

*/ .. .. , 1* ok *1 .. , .. , /* ok */ 
"\174\010c", /* " ok */ 
"\323", 1* i ok *1 
"\324", 1* $ ok */ 
"-\010Y", /* % ok */ 
"III, 1* & ok *1 
"\335\010S", /* , ok */ 

"\310 " /* { ok */ , 
"e", /* ) ok *1 
"\314a", /* * ok */ 

"'" , /* + ok */ 
"\305 .. , /* ok *1 
"_II , /* ok *1 
"r", /* ok *1 
"\305 .. , /* 1 ok *1 

"\312 " , /* 0 ok *1 
"\314+", /* 1 ok */ 
"2", 1* 2 ok *1 
"3 11

, /* 3 ok */ 
"\302 .. , /* 4 ok *1 
"\330", /* '5 ok */ 
"P", /* 6 ok */ 
"\335", 1* 7 ok */ 

.. , .. , /* 8 ok */ 
"1", /* 9 ok */ 
"\3140", 1* ok *1 .. , .. , 1* ok */ 

"''', 1* < ok *1 
"I", 1* ok */ 
",If, 1* > ok */ 
"\334", /* ? ok *1 

*1 
*/ 

Printer Device 845 



"\301A", /* @ ok */ 
"\302A", /* A ok */ 
"\303A", /* B ok */ 
"\304A", /* C ok */ 
"\310A", /* D ok */ 
"\312A", /* E ok */ 
"\322", /* F ok */ 
"\313C", /* G ok */ 

"\301E", /* H ok */ 
"\302E", /* I ok */ 
"\303E", /* J ok */ 
"\310E", /* K ok */ 
"\301I", /* L ok */ 
"\302I", /* M ok */ 
"\303I", /* N ok */ 
"\310I", /* 0 ok */ 

"-\010D", /* P ok */ 
"\304N", /* Q ok */ 
"\3010" , /* R ok */ 
"\3020", /* S ok */ 
"\3030", /* T ok */ 
"\3040", /* U ok */ 
"\3100", /* V ok */ 
"x", /* w ok */ 

"0", /* X ok */ 
"\301U", /* Y ok */ 
"\302U", /* Z ok */ 
"\303U", /* [ ok */ 
"\310U", /* \ ok */ 
"\302Y", /* 1 ok */ 
"T", /* . ok */ 
"\333", /* ok */ 

"\301a", /* , ok */ 
"\302a", /* a ok */ 
"\303a", /* b ok */ 
"\304a", /* c ok */ 
"\310a", /* d ok */ 
"\312a", /* e ok */ 
"\321", /* f ok */ 
"\313c", /* g ok */ 

"\301e", /* h ok */ 
"\302e", /* i ok */ 
"\303e", /* j ok */ 
"\310e", /* k ok */ 
"\301i", /* 1 ok */ 
"\302i", /* m ok */ 
"\303i", /* n ok */ 
"\310i" , /* 0 ok */ 

"d", /* p ok */ 
"\304n" , /* ~ ok */ 
"\3010" , /* r ok */ 
"\3020", /* s ok */ 
"\3030", /* t ok */ 
"\3040", /* u ok */ 
"\3100", /* v ok */ 
II I", /* w ok */ 

"\3110", /* x ok */ 
"\301u", /* y ok */ 
"\302u", /* z ok */ 
"\303u", /* ok */ 
"\310u", /* ok */ 
"\302y", /* ok */ 
"t", /* - ok */ 
"\310y" /* ok */ 

} ; 

846 Printer Device 



XEROX_ 4020: DOSPECIAL.C 

/* 

*/ 

DoSpecial for Xerox 4020 driver. 
David Berezowski - March/88. 

/* Copyright (c) 1988 Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*/ 

iinclude <exec/types.h> 
iinclude <devices/printer.h> 
iinclude <devices/prtbase.h> 

ide fine PITCH 4 
idefine QUALITY 9 
idefine INITLEN 16 

idefine TABLEN 34 

idefine PITCHMARG 2 
idefine LMARG 5 
idefine RMARG 11 
idefine MARGLEN 15 
/* 

00-02 \033FO 
03-08 \0331000\015 
09-14 \033rOOO\015 

*/ 

- assure correct pitch PMARG 
- set left margin to '000' LMARG 
- set right margin to '000' RMARG 

UBYTE MargBuf[MARGLEN] = 
{Oxlb,'F','O',Oxlb,'l','O','O','O',OxOd,Oxlb,'r','O','0','0' ,0xOd}; 

UBYTE pitch; 

DoSpecial(command, outputBuffer, vline, currentVMI, crlfFlag, Parms) 
char outputBuffer[]; 
UWORD *command; 
BYTE *vline; 
UBYTE *currentVMI; /* used for color on this printer */ 
BYTE *crlfFlag; 
UBYTE Parms[]; 
{ 

extern struct PrinterData *PD; 

int x = 0, y= 0; 
static BYTE ISOcolorTable[10] 

{49, 51, 53, 52, 55, 50, 
/* K R G Y B M 

54, 48, 49, 49}; 
C W K K */ 

/* 
00-01 \033R - underline off 
02-04 \033FO - 10 cpi 
05-06 \033& - enlarge off 
07-09 \033wb - nlq off 
10-11 \033s - super/sub script off 
12-14 \033we - standard graphics mode 
15-15 \015 - c~rriage return 

*/ 

PITCH 

QUALITY 

static char initThisPrinter[INITLEN] = 

{Oxlb,'R',Oxlb,'F','O',Oxlb,'&',Oxlb,'w','b',Oxlb,'s',Oxlb,'w','e',OxOd}; 

static unsigned char initTabs[TABLEN] = 

Printer Device 847 



{Ox1b,'i','9',' ','1','7',' ','2','5',' ','3','3',' ','4','1',' ','4','9', 
, ','5','7','6','5',' ','7','3',' ','8','1',' ','B','9',OxOd}; 

if (*command == aRIN) ( 
while(x < INITLEN) 

outputBuffer[x) initThisPrinter[x); 
x++; 

} 
while (y < TABLEN) 

outputBuffer[x++) 

y = 0; 

initTabs [y++); 

*currentVMI = Ox70; /* white background, black text */ 

if (PD->pd Preferences.PrintQuality == LETTER) 
outputBuffer[QUALITY) = 'a'; 

if (PD->pd Preferences.PrintPitch == PICA) { 
pitch = 10; 
outputBuffer[PITCH) = '0'; 

else if (PD->pd Preferences.PrintPitch 
pitch =-12; 
outputBuffer[PITCH) = '2'; 

else /* FINE */ 
pitch = 17; 
outputBuffer[PITCH) , 4' ; 

ELITE) { 

Parms[O) 
Parms[l) 
*command 

PD->pd Preferences.PrintLeftMargin; 
PD->pd=Preferences.PrintRightMargin; 
aSLRM; 

if (*command == aCAM) { 
Parms [0) 1; 
Parms[l) (95 * 17 + 5) / 10; /* max is 9.S inches @ 17 cpi */ 
*command aSLRM; 

if (*command == aSLRM) ( 
CalcMarg(Parms[O), Parms[l); 
while (y < MARGLEN) { 

outputBuffer[x++) = MargBuf[y++); 

return(x); 

/* normal pitch, or elite off, or condensed off, or normal char set */ 
if (*command == aSHORPO I I *command == aSHORP1 I I *command == aSHORP3 

I I *command == aSGRO) { 
pitch = 10; 

else if (*command == aSHORP2) { /* elite on */ 
pitch = 12; 

else if (*command == aSHORP4) { /* fine on */ 
pitch = 17; 

if (*command == aSFC) { /* set foreground/background color */ 
if (Parms[O) == 39) { 

Parms[O) = 30; /* set defaults */ 

if (Parms [0) == 49) { 
Parms[O) = 47; 

} 

if (Parms[O) < 40) 

848 Printer Device 



else 

*currentVMI 

*currentVMI 
16; 

outputBuffer[x++] 
outputBuffer[x++] 
outputBuffer[x++] 
outputBuffer[x++] 
return(x); 

(*currentVMI & 240) + (Parms[O] - 30); 

(*currentVMI & 15) + (Parms[O] - 40) * 

'\033'; 
, @' ; 

ISOcolorTable[*currentVMI & 15]; 
ISOcolorTable[(*currentVMI & 240) I 16]; 

if (*command == aPLU) { 
if (*vline == 0) 

) 

*vline = 1; 
*command aSUS2; 
return(O); 

if (*vline < 0) ( 
*vline = 0; 
*command = aSUS3; 
return(O); 

return(-l); 

if (*command == aPLD) { 

if 

} 
if 

) 
if 

) 
if 

) 
if 

if 

if (*vline == 0) 

} 

*vline = -1; 
*command aSUS4; 
return(O); 

if (*vline > 0) ( 
*vline = 0; 
*command = aSUS1; 
return(O); 

return(-l); 

(*command == aSUSO) 
*vline = 0; 

( * command == aSUS1) 
*vline = 0; 

(*command == aSUS2) 
*vline = 1; 

(*command == aSUS3) 
*vline = 0; 

(*command == aSUS4) 
*vline = -1; 

(*command == aRIS) ( 

PD->pd_PWaitEnabled 253; 
pitch = 10; 

return(O); 

CalcMarg(left, right) 
int left, right; 
{ 

int i, offset, max; 

1* 
The minimum left margin on the Xerox 4020 is .5 inches. Thus 

Printer Device 849 



*1 

a left margin of 1 (ie. no left margin) is '" 
SIlO => .5, 6/12 => .5, 8.5/17 => .5 
The maximum print width is 9.5 inches. 

if (pitch == 10) { 1* PICA *1 
MargBuf[PITCHMARG] = '0'; 
offset = 40; 
max = (95 * 10 + 5) I 10; 

else if (pitch == 12) { 1* ELITE *1 
MargBuf[PITCHMARG] = '2'; 
offset = 50; 
max = (95 * 12 + 5) I 10; 

else 1* FINE *1 
MargBuf[PITCHMARG] = '4'; 
offset = 75; 
max = (95 * 17 + 5) I 10; 

) 
if «i = (left * 10 + offset + 5) I 10) > max) ( 

i = max; 
) 
MargBuf[LMARG] = «i % 1000) I 100) + '0'; 
MargBuf[LMARG + 1] = «i % 100) I 10) + '0'; 
MargBuf[LMARG + 2] = (i % 10) + '0'; 
if «i = (right * 10 + offset + 15) I 10) > max) 

i = max; 
) 
MargBuf[RMARG] = «i 
MargBuf[RMARG + 1] 
MargBuf[RMARG + 2] 
return(MARGLEN); 

% 1000) I 100) + ' 0' ; 
«i % 100) I 10) + '0'; 
(i % 10) + ' 0' ; 

XEROX_ 4020: RENDER.C 

1* 
Xerox-4020 driver. 
David Berezowski - October/87. 

*1 

1* Copyright (c) 1988 Commodore-Arniga, Inc. 

Executables based on this information may be used in software for 
Commodore Arniga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*1 

iinclude <exec/types.h> 
iinc1ude <exec/nodes.h> 
iinc1ude <exec/lists.h> 
iinc1ude <exec/memory.h> 
iinc1ude <devices/printer.h> 
iinclude <devices/prtbase.h> 

ide fine NUMSTARTCMD 7 
ide fine NUMENDCMD 0 

1* i of cmd bytes before binary data *1 
1* • of cmd bytes after binary data *1 

ide fine NUMTOTALCMD (NUMSTARTCMD + NUMENDCMD) 1* total of above 
'define NUMLFCMD 9 1* • of cmd bytes for linefeed *1 
ide fine MAXCOLORBUFS 16 1* max • of color buffers *1 

idefine RLEMAX 136 
IIdefine RLENUMSTARTCMD 3 1* • of cmd bytes before binary data *1 
ide fine RLENUMENDCMD 1 1* II of cmd bytes after binary data *1 
idefine RLENUMTOTALCMD (RLENUMSTARTCMD + RLENUMENDCMD) 1* total of above 
ide fine RLESAFETY 10 1* extra room for overwrites *1 

850 Printer Device 

*1 

*1 



idefine PMODE 
idefine STARTLEN 

15 
16 

/* index into StartBuf for print mode */ 
/* length of start buffer */ 

extern UBYTE MargBuf[); 

Render (ct, x, y, status) 
long ct, x, y, status; 
( 

extern void *AllocMem(), FreeMem(); 
extern struct PrinterData *PD; 
extern struct PrinterExtendedData *PED; 

static UWORD RowSize, ColorSize, BufSize, TotalBufSize, dataoffset; 
static UWORD colors[MAXCOLORBUFS); /* color indexes */ 
static UWORD color order[) = 

to, 1, 2, 3, B, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15}; 
static UWORD huns, tens, ones; /* used to program buffer size */ 
static UWORD NumColorBufs; /* actually # of color buffers */ 
/* 

*/ 

00-02 
03-07 
09-12 
13-15 

\033FO 
\033l05\r 
\033r95\r 
\033we 

set 10 cpi 
set left margin to .5 inches 
set right margin to 9.5 inches 
select standard (e) or 
enhanced (f) graphics mode. 

static UBYTE stdmode, StartBuf[STARTLEN) 
(Ox1b,'F','0',Ox1b,'l','0' ,'5',OxOd,Ox1b,'r','9' ,'5',OxOd,Ox1b,'w','e'}; 

UBYTE *ptr, *ptrstart; 
int i, err; 

static UWORD RLEBufSize, rledataoffset; 
static UBYTE *RLEBuf; 
UBYTE *rleptrstart, *rleptr, *rleptrmark, rledata; 
int rlecount, j; 

switch (status) 
case 0 /* Master Initialization */ 

/* 
ct - pointer to IODRPReq structure. 
x - width of printed picture in pixels. 
y - height of printed picture in pixels. 

*/ 
/* calc i of bytes of row data */ 
RowSize (x + 7) / B; 
/* size of each color buf */ 
ColorSize = RowSize + NUMTOTALCMD; 
huns RowSize / 100; 
tens = (RowSize - huns * 100) / 10; 
ones = RowSize % 10; 
if (PD->pd Preferences.PrintShade == SHADE_COLOR) 

NumColorBufs = MAXCOLORBUFS; 

else 
NumColorBufs = 4; 

BufSize = ColorSize * NumColorBufs + NUMLFCMD; 
TotalBufSize = BufSize * 2; 
RLEBufSize = BufSize + RLESAFETY; 
TotalBufSize += RLEBufSize * 2; 
/* 

My color order: B, Y, M, C 
Xerox's color order: B, M, Y, C 

*/ 
for (i=O; i<NumColorBufs; i++) 

colors[color_order[i)) ColorSize * i; 
} 
PD->pd_PrintBuf = AllocMem(TotalBufSize, MEMF PUBLIC); 
if (PD->pd_PrintBuf == NULL) { -

err = PDERR_BUFFERMEMORY; /* no mem */ 

else 

Printer Device 851 



break; 

dataoffset = NUMSTARTCMD; 
err = (*(PD->pd PWrite» (StartBuf, STARTLEN); 
RLEBuf = &PD->pd PrintBuf[BufSize * 2]; 
rledataoffset = RLENUMSTARTCMD; 

case 1 : /* Scale, Dither and Render */ 
/* 

case 2 : 

852 Printer Device 

ct - pointer to Prtlnfo structure. 
x - o. 
y - row # (0 to Height - 1). 

*/ 
Transfer (ct, y, &PD->pd PrintBuf[dataoffset], colors); 
err = PDERR NOERR; /* all ok */ 
break; -

/* Dump Buffer to Printer */ 
/* 

ct - o. 
x - o. 
y - # of rows sent (1 to NumRows) • 

*/ 
/* Run-Length Encode (rle) the data */ 
rleptrstart = rleptr = 

&RLEBuf[rledataoffset - RLENUMSTARTCMD]; 
/* ptr to data */ 
ptrstart = &PD->pd_PrintBuf[dataoffset]; 
for (ct=O; ct<NumColorBufs; 

ct++, ptrstart += ColorSize) { 
/* save start posn for this color */ 
rleptrmark = rleptr; 
*rleptr++ 27; /* rle start cmd */ 
*rleptr++ = 'h'; 
*rleptr++ = ct I '0'; /* color code */ 
ptr = ptrstart; /* get ptr to bytes to rle */ 
j = RowSize - 1; 1* # of bytes left to rle */ 
do { 

/* first do repeating bytes */ 
/* get goal (repeating) byte */ 
rledata = *ptr++; 
/* this many repetitions left to go*/ 
i = RLEMAX - 1; 
/* while repeating and not too many 

and more to do */ 
while (*ptr == rledata && i > 0 && 

j > 0) { 

) 

i--; /* one more rle byte */ 
/* advance ptr to next byte */ 
ptr++; 
/* one less byte to look at */ 
j--; 

/* calc repeating byte count */ 
if «rlecount = RLEMAX - i) == 1) 

else 

} 

/* if only 1 then no repeat */ 
rlecount = 0; 

/* dont forget the goal byte */ 
j--; 

/* if there was repeat data */ 
if (rlecount != 0) { 

} 

/* save repeat count */ 
*rleptr++ = rlecount; 
/* save repeat byte */ 
*rleptr++ = rledata; 
/* get non-repeat goal byte */ 
rledata = *ptr++; 

/* now do non-repeating data */ 



/* no non-repeating bytes yet */ 
rlecount = 0; 
if (*ptr != rledata && j >= 0) ( 

} 

/* non-repeat data follows */ 
*rleptr++ = OxOO; 

/* while non-repeating and more to do */ 
while (*ptr != rledata && j >= 0) ( 

} 

/* save byte */ 
*rleptr++ = rledata; 
/* if byte same as terminator */ 
if (rledata == Oxfe) { 

} 

/* save byte (again) */ 
*rleptr++ = rledata; 

/* one more non-repeat byte */ 
rlecount++; 
/* get goal byte */ 
rledata = *ptr++; 
/* one less byte to look at */ 
j--; 

if (rlecount != 0) { 

} 

/* end of non-repeating bytes */ 
*rleptr++ = Oxfe; 

if (j > 0) { /* if more data to do */ 
/* set ptr back to start 

of repeat bytes */ 
ptr--; 

} 

if (rleptr - rleptrstart > BufSize) { 
/* abort: too many rle bytes */ 
break; 

} 

} while (j > 0); /* while more bytes to rle */ 

/* if didnt abort && no non-repeating data */ 
if (j < 1 && rlecount == O} { 

/* check for trailing white space */ 
/* line ends in trailing 0 */ 
if (*(rleptr - 1) == OxOO) { 

/* ptr back to repeat count */ 
rleptr -= 2; 

/* if line is just the cmd bytes */ 
/* line null * / 
if (rleptr - rleptrmark == RLENUMSTARTCMD} 

/* reset ptr to start */ 
rleptr = rleptrmark; 

else 
*rleptr++ Oxff; /* end of rle line */ 

i rleptr - rleptrstart; /* calc size of rlebuf */ 
/* if rle data is more send non-rle data */ 
if (i > BufSize) { 

ptrstart = &PD->pd_PrintBuf[dataoffset -
NUMSTARTCMD]; 

ptr = ptrstart + BufSize - NUMLFCMD; 
/* if standard print mode and any black 

in this micro-line */ 
if (stdmode && *(ptrstart + 2) < '4') { 

*ptr++ 27; 
*ptr++ 'k'; 
*ptr++ '0'; /* cr */ 
*ptr++ 27; 
*ptr++ 'w'; 
*ptr++ 'B'; /* repeat black */ 

Printer Device 853 



else 

*ptr++ 27; 
*ptr++ 'k' ; 
*ptr++ - '1'; 1* cr/lf *1 
err - (*(PD->pd PWrite» 

(ptrstart, ptr - ptrstart); 

1* send rle data *1 
1* if any black in this micro-line *1 
if (rleptr - rleptrstart > 0 && 

* (rleptrstart + 2) < '4') { 
*rleptr++ 27; 
*rleptr++ 'k'; 
*rleptr++ '0'; 1* cr *1 
*rleptr++ 27; 
*rleptr++ 'w'; 
*rleptr++ 'B'; 1* repeat black *1 

*rleptr++ 27; 
*rleptr++ 'k' ; 
*rleptr++ '1'; 1* cr/lf *1 
i = rleptr - rleptrstart; 1* size of rlebuf *1 
err = (* (PD->pd_PWrite» (rleptrstart, i); 

if (err == PDERR NOERR) { 

break; 

dataoffs;t = (dataoffset == NUMSTARTCMD ? 
BufSize : 0) + NUMSTARTCMD; 

rledataoffset = (rledataoffset == 
RLENUMSTARTCMD ? RLEBufSize 0) + 
RLENUMSTARTCMD; 

case 3 : 1* Clear and Init Buffer *1 
1* 

ct - O. 
x - O. 
Y - O. 

*1 
ptr &PD->pd PrintBuf[dataoffset); 
i = BufSize --NUMTOTALCMD - NUMLFCMD; 
do { 

*ptr++ = 0; 
} while (--i); 
for (ct=O; ct<NumColorBufs; ct++) { 

ptr = &PD->pd PrintBuf[dataoffset -
NUMSTARTCMD + ct * ColorSize); 

*ptr++ 27; 
*ptr++ 'g' ; 
*ptr++ ct + ' 0' ; 
*ptr++ huns I ' 0' ; 
*ptr++ tens I ' 0' ; 
*ptr++ ones I ' 0' ; 
*ptr = , , , ; 

err = PDERR NOERR; 1* all ok *1 
break; -

1* color *1 

1* printout width *1 
1* terminator *1 

case 4 : 1* Close Down *1 
1* 

854 Printer Device 

ct - error code. 
x - io Special flag from IODRPReq. 
y - 0.-

*1 
1* if user did not cancel print *1 
if (ct != PDERR CANCEL) { 

) 

1* restore preferences pitch and margins *1 
i = CalcMarg(PD->pd_Preferences.PrintLeftMargin 

, PD->pd_Preferences.PrintRightMargin); 
err = (*(PD->pd_PWrite» (MargBuf, i); 

1* wait for both buffers to empty *1 
{*(PD->pd_PBothReady» I); 



if (PD->pd PrintBuf != NULL) ( 
FreeMem(PD->pd_PrintBuf, TotalBufSize); 

err PDERR_NOERR; /* all ok */ 
break; 

case 5 : /* Pre-Master Initialization */ 
/* 

return(err); 

ct - a or pointer to IODRPReq structure. 
x - io_Special flag from IODRPReq. 
y - O. 

*/ 
StartBuf[PMODE - 1] = 'w'; 
if «x & SPECIAL_DENSITYMASK) < SPECIAL DENSITY2) 

/* standard graphics mode */ -
StartBuf[PMODE] = 'e'; 

else 

stdmode = 1; 

1* enhanced graphics mode *1 
StartBuf[PMODE] = 'f'; 
stdmode = 0; 

PED->ped MaxColumns = PD->pd Preferences.PaperSize 
W TRACTOR? 90 : 80;-

1* def is-80 chars (8.0 in.), 
W TRACTOR is 90 chars (9.0 in.) */ 

PED->ped MaxXDots = (PED->ped XDotsInch * 
PED->ped_MaxColumns) / 10; 

1* 
The manual says that the printer has 1088 dots BUT I 
could never get more than 1080 out of it. This kludge 
is here as ;121 * 90 / 10 = 1089' which is > 1080. 
*/ 
if (PED->ped MaxXDots > 1080) ( 

PED->ped_MaxXDots = 1080; 

err PDERR_NOERR; 1* all ok */ 
break; 

XEROX_ 4020: TRANSFER.C 

1* 

*1 

Transfer routine for Xerox 4020 driver. 
David Berezowski - October/8? 

/* Copyright (c) 1988 Commodore-Amiga, Inc. 

Executables based on this information may be used in software for 
Commodore Amiga computers. All other rights reserved. 

This information is provided "as is"; no warranties are made. All use 
is at your own risk, and no liability or responsibility is assumed. 

*1 

'include <exec/types.h> 
'include <devices/printer.h> 
'include <devices/prtbase.h> 
'include <devices/prtgfx.h> 

void Transfer(struct PrtInfo *, UWORD, UBYTE *, UWORD *); 

void Transfer(PInfo, y, ptr, colors) 
struct PrtInfo *PInfo; 

Printer Device 855 



UWORD y; 1* row # *1 
UBYTE *ptr; 1* ptr to buffer *1 
UWORD *colors; 1* indexes to color buffers *1 
{ 

extern struct PrinterData *PD; 

static UWORD bit_table[8] = (l28, 64, 32, 16, 8, 4, 2, 1); 
UBYTE *dmatrix, *bptr, *yptr, *mptr, *cptr; 
UBYTE dvalue, Black, Yellow, Magenta, Cyan, threshold; 
UBYTE bit, y3; 
union colorEntry *ColorInt; 
UWORD x, x3, width, sx, *sxptr; 

1* pre-compute *1 
1* printer specific *1 
y3 y & 3; 
bptr ptr + colors[y3]; 
yptr ptr + colors[4 + y3]; 
mptr ptr + colors[8 + y3]; 
cptr ptr + colors[12 + y3]; 
1* printer non-specific, MUST DO FOR EVERY PRINTER *1 
x = PInfo->pi xpos; 1* get starting x position *1 
Colorlnt = PInfo->pi ColorInt; 1* get ptr to color intensities *1 
sxptr PInfo->pi_ScaleX; 
width = PInfo->pi_width; 1* get # of source pixels *1 

1* pre-compute threshold; are we thresholding? *1 
if (threshold = PInfo->pi threshold) ( 1* thresholding *1 

else 

dvalue = threshold' 15; 1* yes, so pre-compute dither value *1 
do ( 1* for all source pixels *1 

1* pre-compute intensity values for Black component *1 
Black = ColorInt->colorByte[PCMBLACK]; 
ColorInt++; 1* bump ptr for next time *1 

sx *sxptr++; 

do 1* use this pixel 'sx' times *1 
1* if should render black *1 
if (Black > dvalue) ( 

1* set bit in black buffer *1 
* (bptr + (x » 3)) 1= bit_table [x & 7]; 

++x; 1* done 1 more printer pixel *1 
) while (--sx); 

while (--width); 

1* not thresholding, pre-compute ptr to dither matrix *1 
dmatrix = PInfo->pi_dmatrix + (y3 « 2); 
if (PD->pd Preferences.PrintShade == SHADE GREYSCALE) ( 

do-{ 1* for all source pixels *1 -

else 

1* pre-compute intensity values for Black *1 
Black = ColorInt->colorByte[PCMBLACK]; 
ColorInt++; 1* bump ptr for next time *1 

sx *sxptr++; 

do 1* use this pixel 'sx' times *1 
1* if should render black *1 
if (Black> dmatrix [x & 3]) ( 

1* set bit in black buffer *1 
*(bptr + (x» 3)) 1= 

bit_table[x & 7]; 

++x; 1* done 1 more printer pixel *1 
) while (--sx); 

while (--width); 

1* color *1 
do ( 1* for all source pixels *1 

1* pre-compute intensity vals for each color *1 
Black = ColorInt->colorByte[PCMBLACK]; 
Yellow = ColorInt->colorByte[PCMYELLOW]; 

856 Printer Device 



Magenta = Colorlnt->colorByte[PCMMAGENTA); 
Cyan = Colorlnt->colorByte[PCMCYAN); 
Colorlnt++; 1* bump ptr for next time *1 

sx *sxptr++; 

do 1* use this pixel 'sx' times *1 
1* pre-compute 'byte to set' value *1 
x3 = x » 3; 
1* pre-compute 'bit to set' val *1 
bit = bit table[x & 7); 
1* pre-compute dither value *1 
dvalue = dmatrix[x & 3); 
1* if should render black *1 
if (Black > dvalue) ( 

} 

1* set bit in black buffer *1 
* (bptr + x3) 1= bit; 

1* black not rendered, check color *1 
else { 

1* if should render yellow *1 
if (Yellow > dvalue) { 

} 

1* set bit in Y buf *1 
*(yptr + x3) 1= bit; 

1* if should render magenta *1 
if (Magenta > dvalue) { 

1* set bit in M buf *1 
*(mptr + x3) 1= bit; 

1* if should render cyan *1 
if (Cyan > dvalue) { 

1* set bit in C buf *1 
* (cptr + x3) 1= bit; 

++x; 1* done 1 more printer pixel *1 
} while (--sx); 

} while (--width); 

Printer Device 857 





Chapter 40 

Serial Device 

The serial.device provides a hardware-independent interface to the Amiga's built-in RS-232C compatible serial port. 
Serial ports have a wide range of uses, including communication with modems, printers, MIDI instruments, assorted 
equipment and other computers. The same device interface is used for additional "byte stream oriented devices", 
usually more serial ports. The serial.device is based on the foundation of Exec device 10, with extensions for 
parameter setting and control. 

Introduction 

The serial device may be opened in either the exclusive or shared access modes. The device may be set to transmit 
and receive at many different baud rates (send and receive baud rates must be identical). Both seven and three-wire 
interconnections are supported .. Handshaking and access mode must be specified before the serial device is opened, 
other parameters may be specified using the SDCMD _ SETPARAMS command. 

See the Exec "Device Input/Output" chapter for general information on device usage. You should become familiar 
with the fields contained in an IOStdReq. 

Serial Device 859 



Opening the Serial Device 

Three primary steps are required to open the serial. device: 

• Create a message port. Reply messages from the device must be directed to a message port. Often these ports 
will be shared for several purposes. Message ports are allocated by the CreatePortO function; see the "Linker 
Libraries" appendix for more information. 

• Create an extended 10 request structure of type IOExtSer. Your code will fill in the io _Command field of this 
request, then pass it to the device. See the include file deviceslserial.h for the complete structure definition. 
See the "Linker Libraries" appendix, for more information on the CreateExtlOO function. 

• Call OpenDeviceO, passing the 10 request and associated message port. 

/* serial.c - Simple no tricks example of serial.device usage 
* Compile with Lattice 5.04: LC -L -catsfq. Use from CLI only. 
*/ 

#include <exec/types.h> 
#include <devices/serial.h> 
Ufdef LATTICE 
#include <proto/exec.h> 
#include <stdio.h> 
int CXBRK(void) { return(O); /* Disable Lattice CTRL-C handling */ 
void main(void); 
#endif 

#define DEVICE_NAME "seria1.device" 
#define UNIT_NUMBER 0 

void main () 
{ 
struct MsgPort *SerialMP; 
struct IOExtSer *SerialIO; 

/* Define storage for one pointer */ 
/* Define storage for one pointer */ 

if( SerialMP=CreatePort(O,O) 
{ 
if( SerialIO=(struct IOExtSer *) 

CreateExtIO(SerialMP,sizeof(struct IOExtSer» ) 
{ 
SerialIO->io_SerFlags=SERF_SHARED; /* Turn on SHARED mode */ 

if ( OpenDevice(DEVICE NAME, UNIT NUMBER,SerialIO,O) 
printf("Seria1.devIce did not open\n"); 

else 
{ 
SerialIO->IOSer.io Command 
SerialIO->IOSer.io-Length 
SerialIO->IOSer.io-Data 
DoIO(SerialIO); -

/* Add more commands here *1 
CloseDevice(SerialIO); 
) 

DeleteExtIO(SerialIO); 
} 

DeletePort(SerialMP); 
} 

860 Serial Device 

6; 
(APTR) "Amiga "; 

1* execute write */ 



The serial.device automatically fills in reasonable default settings for all parameters. For the default unit, the settings 
will come from Preferences. You may need to change certain parameters, such as the baud rate, to match your 
requirements. 

During the open the serial device pays attention to a subset of the flags in the io_SerFlags field. SERF_SHARED, 
SERF _ XDISABLED and SERF _7WlRE must be set before open. For consistency, the other flag bits should also 
be properly set Full descriptions of all flags will be given later. 

Once the serial device is opened, all characters received will be buffered, even if there is no current request for them. 
These characters may be retrieved with the command CMD _READ. Characters may be sent with CMD _WRITE. 
Parameters are changed with the SDCMD _ SETPARAMS command. Each of these commands will be described in 
the following section. Other more obscure commands are mentioned in the Au~Docs for the serial.device (See the 
"ROM Kernel Manual: Includes & Autodocs"). 

About The First Example 

The above example code contains some simplifications. The DoIOO function in the example is not 
always appropriate for executing the CMD_READ or CMD_WRITE commands. DoIOO will not 
return until the 10 request has finished. With serial handshaking enabled, a write request may never 
finish. Read request will not finish until characters arrive at the serial port. The following sections will 
demonstrate a solution using the SendIOO and AbortlOO functions. 

Closing the Serial Device 

Each OpenDeviceO must eventually be matched by a call to CloseDeviceO. When the last close is performed, the 
device will deallocate all resources and buffers. The latest parameter settings will be saved for the next open. 

All 10 Requests must be complete before CloseDeviceO. If any requests are still pending, abort them with 
AbortIOO: 

AbortIO(SerialIO); /* Ask device to abort request, if pending */ 
WaitIO(SerialIO); /* Wait for abort, then clean up */ 

CloseDevice(SerialIO); 

Writing to the Serial Device 

Writing to the serial device requires filling out just three fields. The command must be set to CMD _WRITE, the 
length must be set, and the data pointer must point to your data buffer. To write a NULL-terminated string, set the 
length to -1; the device will output from your buffer until it encounters and transmits a value of zero (OxOO). 

SerialIO->IOSer.io Command 
SerialIO->IOSer.io-Length 
SerialIO->IOSer.io-Data 
DolO (SerialIO) ; 

= CMD_WRITE; 
= -1; 
= (APTR)"Life is but a dream. "i 
/* execute write */ 

Serial Device 861 



Reading from the Serial Device 

You read from the serial device by your IOExtSer to the device with a read command. You specify how many 
bytes are to be transferred and where the data is to be placed. 

Here is a sample read fragment that could be added to the first example: 

'define READ BUFFER SIZE 256 
char SerialR;adBuff;r[READ_BUFFER_SIZE]; 1* Reserve SIZE bytes of storage *1 

SerialIO->IOSer.io Command 
SerialIO->IOSer.io=Length 
SerialIO->IOSer.io Data 
DoIO(SerialIO); -

= CMD_READ; 
= READ BUFFER SIZE; 
= (APTR)&SerialReadBuffer[O]; 

The command is "CMD_READ". The length of the request is "READ_BUFFER_SIZE". The location where the 
data will go is the 256 byte array "SerialReadBuffer". If you use this example, your task will be put to sleep 
waiting until the serial device reads 256 bytes (or terminates early). Early termination can be caused by error 
conditions such as break. The number of characters actually received will be recorded in the io _Actual of the. 10 
request 

For most applications this technique would be unacceptable. If no external terminal was connected, the program 
would never return. If no characters arrived at the serial port, the program could never exit. 

FIRST ALTERNATIVE MODE FOR INPUT OR OUTPUT 

As an alternative to DolOO you can use SendIOO to transmit the command. Your task can continue to execute 
while the device processes the command. You can occasionally do a CheckIO(SerialIO) to see if the 10 has 
completed. The write request in this example will be processed while the example continues to run: 

SerialIO->IOSer.io Command 
SerialIO->IOSer.io-Length 
SerialIO->IOSer.io-Oata 
SendIO(SerialIO); -

= CMD WRITE; 
= -1;-
= (APTR) " Save the whales! "; 

printf("CheckIO %lx\n",CheckIO(SerialIO)); 
printf("The device will process the request in the background\n"); 
printf("CheckIO %lx\n",CheckIO(SerialIO)); 
WaitIO(SerialIO); 1* Remove message and clean up *1 

NOTE 

The WaitlOO function is used above, even if the request is already known to be complete. WaitlOO 
on a complete request simply removes the reply and cleans up. The RemoveO function is not 
acceptable for clearing the reply port; other messages may arrive while the function is executing. 

862 Serial Device 



SECOND ALTERNATIVE MODE FOR INPUT OR OUTPUT 

Most applications will want to wait on multiple signals. A typical application will wait for menu messages from 
Intuition at the same time as replies from the serial. device. The following fragment demonstrates waiting for one of 
three signals. The WaitO will wake up if the read request ever finishes, or if the user presses CfRL-C or CTRL-F 
from the CLI. This fragment may be inserted into the above complete example. 

/* Precalculate a wait mask for the CTRL-C, CTRL-F and message 
* port signals. When ,one or more signals are received, 
* Wait() will return. Press CTRL-C to exit the example. 
* Press CTRL-F to wake up the example without doing anything. 
* NOTE: A signal may show up without an associated message! 
*/ 

WaitMask = SIGBREAKF CTRL CI 
SIGBREAKF-CTRL-FI 
lL « SerlalMP=>mp_sigBit; 

SerialIO->IOSer.io Command 
SerialIO->IOSer.io=Length 
SerialIO->IOSer.io Data 
SendIO(SerialIO); -

= CMD_READ; 
= READ_BUFFER_SIZE; 
= (APTR)&SerialReadBuffer[O); 

printf("Sleeping until CTRL-C, CTRL-F, or serial input\n"); 
while (1) 

( 
Temp = Wait(WaitMask); 
printf("Just woke up (YAWN!)\n"): 

if( SIGBREAKF CTRL C & Temp) 
break: - -

if( CheckIO(SerialIO) ) /* If request is complete ..• */ 
( 

WaitIO(SerialIO): 
printf("%ld bytes 
break: 
} 

/* clean up and remove reply */ 
received\n",SerialIO->IOSer.io_Actual); 

AbortIO(SerialIO); /*Ask device to abort request, if pending */ 
WaitIO(SerialIO); /* Wait for abort, then clean up */ 

IUGB SPEED OPERATION 

The more characters that are processed in each 10 request, the higher the total throughput of the device. The 
following technique will minimize device overhead for reads: 

• Use the SDCMD _QUERY command to get the number of characters currently in the buffer (see the 
serial.device AutoDocs for information on SDCMD_QUERY). 

• Use DoIOO to read all available characters (or the maximum size of your buffer). In this case, DoIOO is 
guaranteed to return without waiting. 

• If zero characters are in the buffer, post an asynchronous request for 1 character. When at least one is ready, the 
device will return it Now go back to the first step. 

• If the user decides to quit the program, AbortlOO any pending requests. 

Serial Device 863 



USE OF BEGINIO WITH THE SERIAL DEVICE 

Instead of transmitting the read command with either DoIOO or SendIOO, you might elect to use the low level 
BeginIOO interface to a device. 

BeginIOO works much like SendIOO. except it gives you control over the "Quick 10" bit in the io Flags field. 
Quick 10 saves the overhead of a reply message, and perhaps the overhead of a task switch. If a Quick 10 request is 
actually completed quickly, the entire command will execute in the context of the caller. 

The device will determine if a Quick 10 request will be handled quickly. Most non-IO commands will execute 
quick. Read and write commands mayor may not finish quickly. 

BeginIO(SeriaIIO); 
if( SeriaIIO->IOSer.io_Flags & IOF_QUICK ) 

{ 

else 

1* If flag is still set, 10 was synchronous and is now finished. 
* The 10 request was NOT appended a reply port. There is no 
* need to remove or WaitIO() for the message. 
*1 

printf("Quick IO\n"); 
} 

{ 
1* The device cleared the Quick 10 bit. 
* Quick 10 could not happen for some reason; the device processed 
* the command normally. In this case BeginIO() acted exactly 
* like SendIO () . 
*/ 

printf("Regular IO\n"); 
) 

WaitIO(SeriaIIO); 

The way you read from the device depends on your need for processing speed. Generally the BeginIOO route 
provides the lowest system overhead when Quick 10 is possible. However, if Quick 10 did not work, the same reply 
message overhead still exists. 

TERMINATION OF THE READ 

Reads from the serial device may terminate early if an error occurs or if an end-of-file is sensed. For example, if a 
break is detected on the line, any current read request will be returned with error SerErr_DetectedBreak. The 
count of characters read so far will be in the io _Actual field of the request. 

You can specify a set of possible end-of-file characters that the serial device is to look for in the input stream. These 
are contained in an io _ TermArray that you provide. io _ TermArray is used only when the SERF _EOFMODE 
flag is selected (see SERIAL FLAGS below). 

If BOF mode is selected, each input data character read into the user's data block is compared against those in 
iO_TermArray. If a match is found, the IORequest is terminated as complete, and the count of characters read 
(including the TermChar) is stored in io_Actual. To keep this search overhead as efficient as possible, the serial 
device requires that the array of characters be in descending order (an example is shown in the AutoDocs for the 
serial.device). The array has eight bytes and all must be valid (that is, do not pad with zeros unless zero is a valid 
BOF character). Fill to the end of the array with the lowest value TermChar. When making an arbitrary choice of 
BOF character(s), you will get the quickest response from the lowest value(s) available. 

864 Serial Device 



Using Separate Read and Write Tasks 

In some cases there are advantages to creating a separate IOExtSer for reading and writing. This allows 
simultaneous operation of both reading and writing. Some users of the device have separate tasks for read and write 
operations. The sample code below creates a separate reply port and request for writing to the serial device. 

NOTE 

This code assumes that the OpenDeviceO function has already been performed. The initialized read 
request block is copied onto the new write request block. 

struct IOExtSer *SerialWriteIO 0; 
struct MsgPort *SerialWriteMP 0; 

1* 
* If two tasks will use the same device at the same time, it is preferred 
* use two OpenDevice() calls and SHARED mode. If exclusive access mode 
* is required, then you will need to copy an existing 10 request. 

* 
* Remember that two separate tasks will require two message ports. 
*1 

SerialWriteMP CreatePort(O,O); 
SerialWriteIO (struct IOExtSer *) 

CreateExtIO( SeriaIWriteMP,sizeof(struct IOExtSer) ); 
if( SerialWriteMP && SerialWriteIO ) 

( 
1* Copy over the entire old 10 request, then stuff the 
* new Message port pointer. 
*1 

CopyMem( SerialIO, SerialWriteIO, sizeof(struct IOExtSer) ); 
SeriaIWriteIO->IOSer.io_Message.mn_ReplyPort = SerialWriteMP; 

SeriaIWriteIO->IOSer.io Command 
SeriaIWriteIO->IOSer.io=Length 
SeriaIWriteIO->IOSer.io Data 
DoIO(SeriaIWriteIO); 
) 

CMD_WRITE; 
-1; 
(APTR)"A poet's food is love and fame"; 

if (SeriaIWriteMP) 
if (SeriaIWriteIO) 

DeletePort(SeriaIWriteMP); 
DeleteExtIO(SeriaIWriteIO); 

Serial Device 865 



Setting Serial Parameters· SDCMD _ SETP ARAMS 

You can control the following serial parameters. The parameter name from the IOExtSer data structure is shown in 
the table. All of the fields described in this section are preset to reasonable defaults when you call OpenDeviceO. 
Thus, you need not worry about any parameter you do not need to change. 

If the parameters you request are unacceptable or out of range, the SDCMD _SETPARAMS command will fail. 
You are responsible for checking the error code, and informing the user. 

Parameter Name 

io CtlChar 

io RBufLen 

io Baud 

866 Serial Device 

Table 40-1: Serial Parameters 

Characteristic It Controls 

Control characters to use for xON, xOFF, INQ, ACK respectively. 
Positioned within an unsigned longword in the sequence from low address to 
high as listed. INQ and ACK handshaking is not currently supported. 

Recommended size of the buffer that the serial device should allocate for 
incoming data. For some hardware the buffer size will not be adjustable. 
Changing the value may cause the device to allocate a new buffer, which 
might fail due to lack of memory. In this case the old buffer will continue to 
be used. 

For the built-in unit, the minimum size is 64 bytes. Out-of-range numbers 
will be truncated by the device. When you do an SDCMD _SETPARAMS 
command, the driver senses the difference between its current value and the 
value of buffer size you request All characters that may already be in the 
old buffer will be discarded. Thus it is wise to make sure that you do not 
attempt buffer size changes (or any change to the serial device, for that 
matter) while any 10 is actually taking place. 

An unsigned long that contains the flags SEXTF _ MSPON and 
SEXTF _MARK. SEXTF _ MSPON enables either mark or space parity. 
SEXTF _MARK selects mark parity (instead of space parity). Unused bits 
are reserved. 

The real baud rate you request. This is an unsigned long value in the range 
of 1 to 4,294,967,295. The device will reject your baud request if the 
hardware is unable to support it. 

For the built-in driver, any baud rate in the range of 110 to about 1 megabaud 
is acceptable. The built-in driver may round 110 baud requests to 112 baud. 
Although baud rates above 19,200 are supported by the hardware, software 
overhead will limit your ability to "catch" every single character that should 
be received. Output data rate, however, is not software-dependent. 

If you issue a break command, this variable specifies how long, in 



io ReadLen 

io_SerFlags 

io_Status 

microseconds, the break condition lasts. This value controls the break time 
for all future break commands until modified by another 
SDCMD _SETPARAMS. 

A byte-array of eight termination characters, must be in descending order. If 
the EOFMODE bit is set in the serial flags, this array specifies eight possible 
choices of character to use as an end of file mark. See the section above 
titled "Termination of the Read" and the SDCMD _SETPARAMS 
summary page in the AutoDocs. 

How many bits per read character; typically a value of 7 or 8. Generally 
must be the same as io_ WriteLen. 

How many bits per write character; typically a value of 7 or 8. Generally 
must be the same as io_ReadLen. 

How many stop bits are to be expected when reading a character and to be 
produced when writing a character; typically 1 or 2. 

The built-in driver does not allow values above 1 if io _ WriteLen is larger 
than 7. 

See "SERIAL FLAGS" below. 

Contains status information. io_Status is filled in by the SDCMD_QUERY 
command. Break status is cleared by the execution of SDCMD _QUERY. 
The following table describes the bits: 

Bit Active Symbol Function 

o 
1 
2 high 

3 low 
4 low 
5 low 
6 low 
7 low 
8 high 
9 high 

10 high 
11 high 
12 high 

13-15 

Reserved 
Reserved 

(RI) parallel "select" on the Al000. On the 
A500 & A2000, "select" is also connected to 
to the serial port's "Ring Indicator". 

(DSR) 
(CfS) 
(CD) 
(RTS) 
(DTR) 

Be cautious when making cables. 
Data set ready 
Clear to send 
Carrier detect 
Ready to send 
Data terminal ready 
Read overrun 
Break sent 
Break received 
Transmit x-OFFed 
Receive x-OFFed 
(reserved) 

Serial Device 867 



SERIAL FLAGS (bit definitions for io_SerFlags) 

The following table shows the flags that can be set in the io _ SerFlags field. The default state of all of these flags is 
zero. SERF_SHARED, SERF _XDISABLED and SERF _7WIRE must always be set before OpenDeviceO. 

Flag Name 

SERF XDISABLED 

SERF SHARED 

SERF _ QUEUEDBRK 

SERF PARTY ODD - -

868 Serial Device 

Table 40-2: Serial Flags (io_SerFlags) 

Effect on Device Operation 

Disable the XON/XOFF feature. XON/XOFF must be disabled during 
XModem transfers. 

Set this bit if you want the serial device to check input characters against 
io TermArray and to terminate the read immediately if an end-of-file 
cti8racter has been encountered. Note: This bit may be set and reset 
directly in the user's IOExtSer without a call to 
SDCMD _SETPARAMS. 

Set this bit if you want to allow other tasks to simultaneously access the 
serial port. The default is exclusive-access. Any number of tasks may 
have shared access. Only one task may have exclusive access. If 
someone already has the port for exclusive access, your OpenDeviceO 
call will fail. This flag must be set before OpenDeviceO. 

If set, this bit activates high-speed mode. Certain peripheral devices 
(MIDI, for example) require high serial throughput. Setting this bit high 
causes the serial device to skip certain of its internal checking code to 
speed throughput. Use RAD_BOOGIE only when you have: 

- Disabled parity checking 
- Disabled XON/XOFF handling 
- Use 8-bit character length 
- Do not wish a test for a break signal 

Note that the Amiga is a multitasking system and has immediate 
processing of software interrupts. If there are other tasks running, it is 
possible that the serial driver may be unable to keep up with high data 
transfer rates, even with this bit set. 

If set, every break command that you transmit will be enqueued. This 
means that all commands will be executed on a FIFO (first in, first out) 
basis. 

If this bit is cleared (the default), a break command takes immediate 
precedence over any serial output already enqueued. When the break 
command has finished, the interrupted request will continue (if not 
aborted by the user). 

If set at OpenDeviceO time, the serial device will use seven-wire 
handshaking for RS-232-C communications. Default is three-wire (pins 
2,3, and 7). 

If set, selects odd parity. If clear, selects even parity. 



If set, parity usage and checking is enabled. Also see the 
SERF _ MSPON bit described under io _ ExtFlags above. 

SETTING THE PARAMETERS 

You change serial parameters by setting the flags and parameters as you desire, and then transmitting a 
SDCMD _ SETPARAMS command to the device. Here is an example: 

SerialIO->IOSer.io Command = SDCMD SETPARAMS; 
SerialIO->io SerFlags &= -SERF-PARTY ON; 1* off *1 
SerialIO->io-serFlags 1= SERF XDISABLED; 1* on *1 
SerialIO->io=Baud = 9600; 
if (DoIO(SerialIO» 

printf(nError setting parameters!\nn); 

The above fragment modifies two bits in io _ SerFlags and changes the baud rate. 

NOTE 

A parameter change should not be performed while an 10 request is actually being processed, because it 
might invalidate request handling already in progress. Therefore you should use 
SDCMD _ SETPARAMS only when you have no serial 10 requests pending. 

Error codes from the Serial Device 

#define SerErcDevBusy 1 - device in use 
#define SerErclnvBaud 3 - invalid baud rate 
#define SerErcButErr 4 - out of memory 
#define SerErr_InvParam 5 - bad parameter 
#define SerErr_LineErr 6 - hardware data overrun 
#define SerErr_ParityErr 9 
#define SerErr_ TimerErr 11 
#define SerErr_ButOverflow 12 
#define SerErr_NoDSR 13 - No Data Set Ready 
#define SerErr_NoCTS 14 - No Clear To Send 
#define SerErr_DetectedBreak 15 

Multiple serial port support 

Applications that use the serial port should provide the user with a means to select the name and unit number 
of the driver. The defaults will be "serial.device" and unit number O. Typically unit 0 refers to the user
selected default. Unit 1 refers to the built-in serial port. Numbers above 1 are for extended units. The 
physically lowest connector on a board will always have the lowest unit number. 

Careful attention to error handling is required to survive in a multiple port environment. Differing serial 
hardware will have different capabilities. The device will refuse to open non-existent unit numbers (symbolic 

Serial Device 869 



name mapping of unit numbers i.s not provided at the device level). The SDCMD _SETPARAMS command 
will fail if the underlying hardware cannot support your parameters. Some devices may use Quick I/O for 
read or write requests, others will not. Watch out for partially completed read requests; iO_Actual may not 
match your requested read length. 

If the tooltypes mechanism is used for selecting the device and unit, the defaults of "DEVICE=serial.device" 
and "UNIT=O" should be provided. The user should be able to permanently set the device and unit in a 
configuration file. 

Taking Over the Hardware 

For some applications use of the device driver interface is not possible. By following the established rules, 
applications may take over the serial interface at the hardware level. This extreme step is not, however, 
encouraged. Taking over means losing the ability to work with additional serial ports, and will limit future 
compatibility. 

Access to the hardware registers is controlled by the misc.resource. See the "Resources" chapter, and 
execlmisc.i for details. The MR _ SERIALBITS and MR _ SERIALPORT units control the serial registers. 

One additional complication exists. The current serial.device will not release the misc.resource bits until after 
expunge. This code provides a work around: 

1* 
* A safe way to expunge ONLY a certain device. 
* This code attempts to flush ONLY the named device out of memory and 
* nothing else. If it fails, no status is returned (the information 
* would have no valid use after the Permit(). 
*1 

#include <exec/types.h> 
#include <exec/execbase.h> 

void FlushDevice(char *); 

extern struct ExecBase *SysBase; 

void FlushDevice(name) 
char *name; 
{ 
struct Device *devpoint; 

Forbid(); 1* ugly *1 
if( devpoint = (struct Device *)FindName(&SysBase->DeviceList,name) ) 

RemDevice(devpoint); 
Permit () ; 

870 Serial Device 



Chapter 41 

Timer Device 

Introduction 

The Amiga timer device provides a general time-delay capability. It can signal you when at least a certain amount 
of time has passed. The timer device is very accurate under normal system loads. But because the Amiga is a 
multitasking system, the timer device cannot guarantee that exactly the specified amount of time has elapsed -
processing overhead increases as more tasks are run. High-performance applications (such as MIDI time-stamping) 
should take over the 16-bit counters of the CIA B timer resource instead of using the timer device. 

The timer device works the same as other Amiga 10 devices. To use it, you must first open it. You send commands 
to it by filling in an 10 request block with the amount of time you want and calling the Exec SendIOO or DoIOO 
functions. At the end of that time, the device returns a message to you stating that the time has elapsed. 

Timer Device Units 

There are two different units in the timer device. One uses the vertical blank interrupt for its "tick" and is called 
UNIT_ VBLANK. The other uses a programmable timer in the 8520 CIA chip and is called UNIT_MICROHZ. 

Timer Device 871 



The VBLANK timer unit is very stable and has a precision comparable to the vertical blanking time, that is, ± 16.67 
milliseconds. When you make a timing request, such as "signal me in 21 seconds," the reply will come in 21 ± .017 
seconds. This timer has very low overhead and should be used for all long-duration requests. 

The MICROHZ timer unit uses the built-in precision hardware timers to create the timing interval you request. It 
accepts the same type of command-"signal me in so many seconds and microseconds." The microhertz timer has 
the advantage of greater resolution than the vertical blank timer, but it has less accuracy over long periods of time. 
The microhertz timer also has much more system overhead, which means accuracy is reduced as the system load 
increases. It is primarily useful for short-burst timing for which critical accuracy is not required. 

The primary means of specifying a requested time is via a timerequest structure. A timerequest consists of an 
IORequest structure followed by a timeval structure, as shown below. 

struct timerequest 
{ 

}; 

struct IORequest tr_node; 
struct timeval tr_time; 

NOTE 

The timer driver does not use a standard extension IORequest block. It only uses the base IORequest 
structure with a timeval structure added on the end. The time data (seconds and microseconds) are 
stored in the timeval structure: 

struct timeval 
{ 

} ; 

ULONG tv_secs; 
ULONG tv_micro; 

The time specified is measured from the time the request is posted. This means you must post a timer request for 30 
minutes, rather than for a specific time such as 10:30 p.m. The micro field is the number of microseconds in the 
request. Seconds and microseconds are concatenated by the driver. The number of microseconds must be 
"normalized;" it should be a value less than one million. You must also take care to avoid posting a timerequest of 
less than 2 microseconds with the UNIT_MICROHZ timer device. In Vl.3 and earlier versions of the Amiga system 
software, sending a timerequest for 0 or 1 microseconds can cause a system crash. Make sure all your timer 
requests are for 2 microseconds or more when you use the UNIT_MICROHZ timer. 

When the specified amount of time has elapsed, the driver will send the IORequest back via ReplyMsgO (the same 
as all other drivers). This means that you must fill in the ReplyPort pointer of the IORequest structure if you wish 
to be signaled. 

NOTE 

You must not reuse an IORequest until the timer device has replied to it. When you submit a timer 
request, the driver destroys the values you have provided in the timeval structure. This means that you 
must reinitialize the time specification before reposting an IORequest. 

Multiple requests may be posted to the timer driver. For example, you can make three timer requests in a row: 

Signal me in 20 seconds (request 1) 
Signal me in 30 seconds (request 2) 
Signal me in 10 seconds (request 3) 

872 Timer Device 



As the timer queues these requests, it changes the time values and sorts the timer requests to service each request at 
the desired interval, resulting effectively in the following order: 

(request 3) in now+IO seconds 
(request I) 10 seconds after request 3 is satisfied 
(request 2) 10 seconds after request 1 is satisfied 

A sample timer program is given at the end of this chapter. 

Opening a Timer Device 

To gain access to a timer unit, you must first open that unit. This is done by using the system function 
OpenDevice(). A typical C-language call is shown below: 

struct timereq *timer request block 
error = OpenDevice(TlMERNAME,unit_number,timer_request_block,O); 
if(error) cleanup(); 

The parameters shown above are as follows: 

TIMERNAME 
This is a #define for the null-terminated string, currently' 'timer. device. " 

unit_number 
This indicates which timer unit you wish to use, either UNIT_ VBLANK or UNIT_MICROHZ. These are 
defined in the devicesltimer.h and .i header files in the ROM Kernel Manual:lncludes and Autodocs 

timer Jequest _block 
This is the address of an IORequest data structure that will be used later to communicate with the device. 
The OpenDevice() command will fill in the unit and device fields of this data structure. 

Adding a Time Request 

You add a timer request to the device by passing a correctly initialized 10 request to the timer. The code fragment 
below demonstrates a sample request: 

struct timerequest *timermsg; 
struct MsgPort *treplyport; 
set timer(seconds,microseconds) 
ULONG seconds, microseconds; 
( 

/* Can't ask for 0 or 1 microseconds */ 
if(seconds==O && microseconds < 2) return; 

timermsg->tr node.io Command TR ADDREQUEST; 
timermsg->tr-node.io-Message.mn ReplyPort = tr;plyport; 
timermsg->tr-time.tv-secs = seconds; 
timermsg->tr-time.tv-micro = microseconds; 
DoIO(timermsg); -

Timer Device 873 



NOTE 

Using DoIOO here puts your task to sleep until the timer request has been satisfied (see the sample 
program at the end of the chapter). 

If you wish to send out multiple timer requests, you have to create multiple request blocks (referenced here as 
"timermsgs"). You can do this by allocating memory for each timerequest you need and filling in the appropriate 
fields with command data. Some fields are initialized by the call to the OpenDeviceO function. So, for 
convenience, you may allocate memory for the timerequests you need, call OpenDeviceO with one of them, and 
then copy the initialized fields into all the other time requests. 

It is also permissible to open the timer device multiple times. In some cases this may be easier than opening it once 
and using multiple requests. When multiple requests are given, SendIOO should be used to transmit each one to the 
timer. The code fragment below illustrates this point: 

1*------------------------------------------------*1 
1* A code fragment showing mUltiple timer requests *1 
1*------------------------------------------------*1 
struct timerequest *timermsg[3]; 
struct MsgPort *treplyport; 
struct Message *msg; 

ULONG x,seconds[3], microseconds[3]; 
{ 
1* Timer is already opened with timermsg[O] ! 
timermsg[O]->tr node.io Command 
timermsg[O]->tr=node.io=Message.mn_ReplyPort 

*1 
= TR_ADDREQUEST; 
= treplyport; 

1* Copy fields from the request used to Open the Timer *1 
*timermsg[l] = *timermsg[O]; 
*timermsg[2] = *timermsg[O]; 

1* Initialize other fields *1 
for{x==O;x++;x<31 

{ 
timermsg[x]->tr time.tv secs 
timermsg[x]->tr=time.tv=micro 
} 

1* Send multiple requests asynchronously *1 
1* Do not got to sleep yet... *1 
SendIO(timermsg[O]li 
SendIO(timermsg[l]li 
SendIO(timermsg[2])i 

1* There might be other processing done here *1 

seconds[x]; 
microseconds[x]i 

1* Now go to sleep with WaitPort() waiting for the requests *1 
WaitPort(treplyportli 

1* Get the reply message *1 
msg=GetMsg(treplyportli 
for(x==OiX<3iX++) 

{ 

if (msg==timermsg[x] I 
printf(nRequest %ld finished first\nn,x)i 
} 

1* Be sure to clear the replies for the other 2 requests with GetMsg *1 
} 

874 Timer Device 



Aborting a Timer Request 

You call the AbortlOO function when you want to cancel a timerequest which you have already sent to the timer 
device: 

x = AbortIO(timermsg); 
WaitIO(timermsg); 

NOTE 

You must call Waitl 00 after you abort the request in order to get the reply message back. 

Closing a Timer 

After you have finished using a timer device, you should close it. Be sure to call the CloseDeviceO function once 
for each call you have made to OpenDeviceO: 

CloseDevice(timermsg); 

Additional Timer Functions and Commands 

There are two additional timer commands (accessed as standard device commands, using an IORequest block as 
shown above) and three additional functions (accessed as if they were library functions). 

The additional timer commands are as follows: 

• lR_GETSYSTIME - get the system time 

• lR_SETSYSTIME - set the system time 

The additional timer library-like functions are: 

• SubTime( Dest, Source) - subtract the value of one timer request from another 

AddTime( Dest, Source) - add the value of one timer request to another 

• result = CmpTime( Dest, Source) - compare the time in two time requests 

Timer Device 875 



SYSTEM TIME 

The "system time" is provided for the convenience of the developer and is also utilized by Intuition. It is not 
guaranteed to be the same as DOS time as it appears in the DOS DateStamp command since DOS time and system 
time are maintained separately by the Amiga. However, under normal conditions they are the same. The 
timer.device provides two commands to use with the system time. 

The command TR_SETSYSTIME sets the system's idea of what time it is. The system starts out at time "zero" so 
it is safe to set it forward to the "real" time. However, care should be taken when setting the time backwards. 
System time is specified as being monotonically increasing. 

The command TR_GETSYSTIME is used to get the system time. The timer device does not interpret system time 
to any physical value. By convention, it tells how many seconds have passed since midnight, 1 January 1978. Your 
program must calculate the time from this value. 

The system time is incremented by a special power supply signal that occurs at the external line frequency. This 
signal is very stable over time, but it can vary by several percent over short periods of time. Hence, system time is 
stable to within a few seconds a day. 

System time is also changed every time someone asks what time it is using TR_GETSYSTIME. The system does 
this by incrementing the microsecond counter. This way the return value of the system time is unique and 
unrepeating so it can be used by applications as a unique identifier. 

NOTE 

The timer device sets system time to zero at boot time. AmigaDOS will then reset the system time to 
the value specified on the boot disk. If the DOS SetClock command is given, this also resets system 
time. 

Here is a program that can be used to determine the system time. Instead of using the Exec support function 
CreateStdIOO for the request block, the block is initialized "correctly" for use as a timeval request block. The 
command is executed by the timer device and, on return, the caller can find the data in his request block. 

/* getsystime.c - get system time */ 
/* Lattice use -bI - cfist -v -y */ 
/* Link with lc.lib, amiga.lib */ 
#include <exec/types.h> 
#include <devices/timer.h> 
#include <proto/all.h> 
#include <stdlib.h> 
#include <stdio.h> 

struct timerequest tr; 
struct MsgPort *tport; 
struct Message *msg; 

void main(int argc,char **argv) 
( 

LONG error; 
ULONG days,hrs,secs,mins,mics; 

/* Open the MICROHZ timer device */ 
error = OpenDevice(TIMERNAME,UNIT_MICROHZ, (struct IORequest *) &tr,O); 
if (error) return;/* If the timer will not open then just return */ 

tport=CreatePort(O,O); 
/* If we can't get a reply port then just quit */ 
if(!tport) 

876 Timer Device 



CloseDevice((struct IORequest *) &tr ); 
return; 
} 

/* Fill in the 10 block with command data */ 
tr.tr node.io Message.mn Node.ln Type NT MESSAGE; 
tr.tr-node.io-Message.mn-Node.ln-Pri 0;-
tr.tr-node.io-Message.mn-Node.ln-Name NULL; 
tr.tr-node.io-Message.mn-ReplyPort tport; 
tr.tr=node.io=Command - TR_GETSYSTIME; 

/* Issue the command and wait for it to finish, then get the reply */ 
DoIO((struct IORequest *) &tr); 

/* Get the results and close the timer device */ 
mics=tr.tr time.tv micro; 
secs=tr.tr=time.tv=secs; 
DeletePort(tport); 
CloseDevice((struct IORequest *) &tr); 

/* Compute days, hours, etc. */ 
mins=secs/60; 
hrs=mins/60; 
days=hrs/24; 
secs=secs%60; 
mins=mins%60; 
hrs=hrs%24; 

/* Display the time */ 
printf("\nSystem Time (measured from Jan.l,l978)\n"); 
printf(" Days Hours Minutes Seconds Microseconds\n"); 
printf("%6Id %61d %61d %6ld %lOld\n",days,hrs,mins,secs,mics); 

/* end of main *1 

USING THE TIME ARITHMETIC ROUTINES 

As indicated above, the time arithmetic routines are accessed in the timer device structure as if they were a routine 
library. To use them, you create an IORequest block and open the timer. In the IORequest block is a pointer to the 
device's base address. This address is needed to access each routine as an offset-for example, _LVOAddTime, 
_LVOSubTime, _ L VOCmpTime-from that base address. 

There are C-language interface routines in amiga.lib that perform this interface task for you. They are accessed 
through a variable called TimerBase. You prepare this variable by the following method: 

/* Lattice use -bl - cfist -v -y */ 
/* Link with lc.lib, amiga.lib */ 
#include <exec/types.h> 
#include <exec/memory.h> 
#include <devices/timer.h> 
#include <proto/all.h> 
#include <stdio.h> 
# ifdef LATTICE 
int CXBRK(void) {return(O); } /* Disable Lattice CTRL-C */ 
#endif 
struct Library *TimerBase; /* setup the interface variable (must be global) */ 

void main(int argc,char **argv) 
{ 
struct timeval *timel, *time2, *time3; 
struct timerequest *tr; 
LONG error,result; 
/*------------------------------------*/ 
/* Get some memory for our structures */ 
/*------------------------------------*/ 

Timer Device 877 



time1=(struct timeval *)AllocMem(sizeof(struct timeval), 
MEMF PUBLIC I MEMF CLEAR); 

time2=(struct timeval *)AllocMem(sizeof(struct timeval), 
MEMF PUBLIC I MEMF CLEAR); 

time3=(struct timeval *)AllocMem(sizeof(struct timeval), 
MEMF_PUBLIC I MEMF_CLEAR); 

tr=(struct timerequest *)AllocMem(sizeof(struct timerequest), 
MEMF_PUBLIC I MEMF_CLEAR); 

/* Make sure we got the memory */ 
if(!time1 I !time2 I !time3 I !tr) goto cleanexit; 
/*----------------------------------------------------*/ 
/* Set up some values to test time arithmetic with */ 
/* In a real application these values might be filled */ 
/* in via the GET SYSTlME command of the timer device */ 

/*---------------=------------------------------------*/ 
time1->tv secs 3; time1->tv micro 0; /* 3.0 seconds */ 
time2->tv-secs 2; time2->tv-micro 500000; /* 2.5 seconds */ 
time3->tv-secs 1; time3->tv-micro 900000; /* 1.9 seconds */ 

printf("Time1 is %ld.%ld\nn , time1->tv secs,time1->tv micro); 
printf(nTime2 is %ld.%ld\n" , time2->tv-secs,time2->tv-micro); 
printf("Time3 is %ld.%ld\n\n",time3->tv-secs,time3->tv-micro); 
/*-------------------------------*/ - -
/* Open the MICROHZ timer device */ 
/*-------------------------------*/ 
error = OpenDevice(TlMERNAME,UNIT_MICROHZ, (struct IORequest *) tr, OL); 
if(error) goto cleanexit; 

/* Set up to use the special time arithmetic functions */ 
TimerBase = (struct Library *)tr->tr_node.io_Device; 
/*---------------------------------------------------------*/ 
/* Now that TimerBase is initialized, it is permissible */ 
/* to call the time-comparison or time-arithmetic routines */ 
/* Result of this example is -1 which means the first */ 
/* parameter has greater time value than second parameter */ 
/* +1 means the second parameter is bigger; 0 means equal. */ 
/*---------------------------------------------------------*/ 
result = CmpTime( time1, time2 ); 
printf("Timel and 2 compare = %ld\n",result); 

/* Add to timel the values in time2 */ 
AddTime( timel, time2); 
printf("Timel+time2 result = %ld.%ld\n",time1->tv_secs,time1->tv_micro); 

/* Subtract values in time3 from the value */ 
/* currently in time1. Results in time1. */ 
SubTime( time2, time3); 
printf("Time2-time3 result = %ld.%ld\n",time2->tv secs,time2->tv micro); 
/*------------------------------------*/ - -
/* Free system resources that we used */ 
/*------------------------------------*/ 
c1eanexit: 

if (time1) FreeMem(timel,sizeof(struct timeval»; 
if (time2) FreeMem(time2,sizeof(struct timeval»; 
if (time3) FreeMem(time3,sizeof(struct timeval»; 
if (tr) FreeMem(tr, sizeof(struct timerequest»; 
if (!error)CloseDevice«struct IORequest *) tr); 

WHY USE TIME ARITHMETIC? 

As mentioned earlier in this section, because of the multitasking capability of the Amiga, the timer device can 
provide timings that are at least as long as the specified amount of time. If you need more precision than this, using 
the system timer along with the time arithmetic routines can at least, in the long run, let you synchronize your 
software with this precision timer after a selected period of time. 

878 Timer Device 



Say, for example, that you select timer intervals so that you get 161 signals within each 3-minute span. Therefore, 
the timeval you would have selected would be 180/161, which comes out to 1 second and 118,012 microseconds per 
interval. Considering the time it takes to set up a call to set_timer and delays due to task-switching (especially if the 
system is very busy), it is possible that after 161 timing intervals, you may be somewhat beyond the 3-minute time. 
Here is a method you can use to keep in sync with system time: 

1. Begin. 

2. Read system time; save it 

3. Perform your loop however many times in your selected interval. 

4. Read system time again, and compare it to the old value you saved. (For this example, it will be more or 
less than 3 minutes as a total time elapsed.) 

5. Calculate a new value for the time interval (timeval); that is, one that (if precise) would put you exactly in 
sync with system time the next time around. Timeval will be a lower value if the loops took too long, and 
a higher value if the loops didn't take long enough. 

6. Repeat the cycle. 

Over the long run, then, your average number of operations within a specified period of time can become precisely 
what you have designed. 

Sample Timer Program 

Here is an example program showing how to use a timer device. 

/* Simple Timer Example Program: 

* 
* Includes dynamic allocation of data structures needed to communicate 
* with the timer device as well as the actual device 10 
* Lattice use lc -bI -cfist -v -y Link with lc.lib, amiga.lib 
*/ 

iinclude <exec/types.h> 
iinclude <exec/memory.h> 
iinclude <devices/timer.h> 
iinclude <proto/all.h> 
iinclude <stdio.h> 

/* Our timer sub-routines */ 

/* Some system header files we need *1 

void delete_timer (struct timerequest *); 
LONG get_sys_time (struct timeval *); 
LONG set new_time (LONG); 
void wait_for_timer(struct timerequest *, struct timeval *); 
LONG time delay (struct timeval *, LONG ); 
struct timerequest *create_timer( ULONG ); 
void show time (ULONG); 

i ifdef LATTICE 
int CXBRK(void) (return(O); 
iendif 

struct Library *TimerBase; 

/* Disable Lattice CTRL-C handling */ 

/* to get at the time comparison functions */ 

/* manifest constants -- "never will change" */ 

Timer Device 879 



IIdefine 
IIdefine 
IIdefine 

SECSPERMIN (60) 
SECSPERHOUR (60*60) 
SECSPERDAY (60*60*24) 

void main (int argc,char **argv) 
( 

LONG seconds; 
struct timerequest *tr; 
struct timeval oldtimeval; 
struct timeval mytimeval; 
struct timeval currentval; 

printf("Timer test\n"); 

/* sleep for two seconds */ 
currentval.tv secs = 2; 
currentval.tv-micro = 0; 

/* 10 block for timer commands */ 
/* timevals to store times */ 

time delay( &currentval, UNIT VBLANK I; 
printf ( "After 2 seconds delay\n" ); 

/* sleep for four seconds */ 
currentval.tv_secs = 4; 
currentval.tv micro = 0; 
time delay( &currentval, UNIT VBLANK ); 
printf( "After 4 seconds delay\nll ); 

/* sleep for 500,000 micro-seconds 1/2 second */ 
currentval.tv_secs = 0; 
currentval.tv micro = 500000; 
time delay( &currentval, UNIT MICROHZ ); 
printf ( "After 1/2 second delay\n" ); 

printf( "DOS Date command shows: II ); 

(void) Execute ( "date", 0, 0 ); 

/* save what system thinks is the time ...• we'll advance it temporarily */ 
get sys time( &oldtimeval ); 
printf("Original system time is:\n"); 
show_time(oldtimeval.tv_secs ); 

printf("Setting a new system time\n"); 

seconds = 1000 * SECSPERDAY + oldtimeval.tv_secs; 

set new time( seconds ); 
/* (if user executes the AmigaDOS DATE command now, he will*/ 
/* see that the time has advanced something over 1000 days *1 

printf( "DOS Date command now shows: II ); 

(void) Execute ( "date", 0, 0 ); 

get sys time( &mytimeval ); 
printf(-"Current system time is:\n"); 
show_time(mytimeval.tv_secs); 

/* Added the microseconds part to show that time keeps */ 
/* increasing even though you ask many times in a row */ 
get sys time( &mytimeval ); 
printf("TimeA %ld.%ld\n",mytimeval.tv secs, 

mytimeval.tv-micro); 
get sys time( &mytimeval ); -
printf("TimeB %ld.%ld\n",mytimeval.tv secs, 

mytimeval.tv-micro); 
get sys time( &mytimeval ); -
printf ("TimeC %ld.%ld\n",mytimeval.tv secs, 

mytimeval.tv=micro); 

printf( "\nResetting to former time\n" I; 
set_new_time( oldtimeval.tv_secs ); 

get sys time( &mytimeval ); 
printf(-"Current system time is:\n"); 

880 Timer Device 



show_time(mytimeval.tv_secs); 

1* just shows how to set up for using the timer functions, does not *1 
1* demonstrate the functions themselves. (TimerBase must have a *1 
1* legal value before AddTime, SubTime or CmpTime are performed. *1 
tr = create_timer ( UNIT_MICROHZ ); 
TimerBase = (struct Library *)tr->tr_node.io_Device; 

1* and how to clean up afterwards *1 
TimerBase = (struct Library *) (-1) ; 
delete_timer ( tr ); 

struct timerequest *create_timer(,ULONG unit) 
( 

1* return a pointer to a timer request. If any problem, return NULL *1 
LONG error; 
struct MsgPort *timerport; 
struct timerequest *timermsg; 

timerport = CreatePort( 0, 0 ); 
if( timerport == NULL) 
{ 

return ( NULL ); 

timermsg = (struct timerequest *) 
CreateExtIO( timerport, sizeof( struct timerequest ) ); 

if( timermsg == NULL) 
( 

return { NULL ); 

error = OpenDevice( TIMERNAME, unit, (struct IORequest *) timermsg, OL ); 
if( error != 0 ) 
( 

delete timer( timermsg ); 
return (" NULL ); 

return( timermsg ); 

1* more precise timer than AmigaDOS Delay() *1 
LONG time delay( struct timeval *tv, LONG unit 
( -

struct timerequest *tr; 
1* get a pointer to an initialized timer request block *1 
tr = create_timer ( unit ); 

1* any nonzero return says timedelay routine didn't work. *1 
if( tr == NULL) return ( -lL ); 

1* deallocate temporary structures *1 
delete_timer ( tr ); 
return ( OL ); 

void wait_for_timer(struct timerequest *tr, struct timeval *tv ) 

1*--------------------------------------------*1 
1* With the UNIT_MICROHZ timer, it is illegal *1 
1* to wait for 0 or 1 microseconds! *1 
1*--------------------------------------------*1 
if(tv->tv_secs==OL && tv->tv_micro < 2L) return; 

tr->tr_node.io_Command = TR_ADDREQUEST; 1* add a new timer request *1 

1* structure assignment *1 
tr->tr_time = *tv; 

1* post request to the timer will go to sleep till done *1 
DoIO«struct IORequest *) tr ); 

Timer Device 881 



LONG set_new_time!LONG secs) 
( 

struct timerequest *tr; 
tr = create_timer! UNIT_MICROHZ ); 

/* non zero return says error */ 
if! tr == 0 ) return! -1 ); 

tr->tr node.io Command = TR_SETSYSTlME; 
tr->tr-time.tv-secs = secs; 
tr->tr-time.tv-micro = 0; 
DoIO!!struct IORequest *) tr ); 

delete timer!tr); 
return(O); 

LONG get_sys_time!struct timeval *tv) 
( 

struct timerequest *tr; 
tr = create_timer! UNIT_MICROHZ ); 

/* non zero return says error */ 
if! tr == 0 ) return! -1 ); 

tr->tr_node.io_Command TR_GETSYSTlME; 
DoIO«struct IORequest *) tr ); 

/* structure assignment */ 
*tv = tr->tr_time; 

delete_timer ( tr ); 
return ( 0 ); 

void delete_timer(struct timerequest *tr ) 
{ 

struct MsgPort *tp; 
if ( tr ! = 0 ) 
( 

tp = tr->tr node.io Message.mn R~plyPort; 
if!tp != 0)- - -
{ 

DeletePort (tp) ; 

CloseDevice( (struct IORequest *) tr ); 
DeleteExtIO( (struct IORequest *) tr ); 

void show_time(ULONG secs) 
{ 

ULONG days,hrs,mins; 

/* Compute days, hours, etc. */ 
mins=secs/60; 
hrs=mins/60; 
days=hrs/24; 
secs=secs%60; 
mins=mins%60; 
hrs=hrs%24; 

/* Display the time */ 
printf("* Hour Minute 
printf!"*%51d:%51d:%5ld 

1* end of main */ 

882 Timer Device 

Second (Days since Jan.1,197B)\n"); 
(%6ld )\n\n",hrs,mins,secs,days); 



Chapter 42 

Trackdisk Device 

Introduction 

The Amiga trackdisk device directly drives the disk, controls the disk motors, reads raw data from the tracks, and 
writes raw data to the tracks. Normally, you use the AmigaDOS functions to write or read data from the disk. The 
trackdisk device is the lowest-level software access to the disk data and is used by AmigaDOS to access the disks. 
The trackdisk device supports the usual commands such as CMD_ WRI1E and CMD_READ. In addition, it supports 
an extended form of these commands to allow additional control over the trackdisk.device. 

The trackdisk device can queue up command sequences so that your task can do something else while it is waiting 
for a particular disk activity to occur. If several sequenced write commands are queued to a disk, a task assumes that 
all such writes are going to the same disk. The trackdisk device itself can stop a command sequence if it senses that 
the disk has been changed, returning all subsequent IORequest blocks to the caller with an error ("disk changed"). 

Trackdisk Device 883 



The Amiga Floppy Disk 

The standard 3.5 inch Amiga floppy disk consists of a number of tracks that are NUMSECS (11) sectors of 
TO_SECTOR (512) usable data bytes plus TD_LABELSIZE (16) bytes of label area. There are usually 2 tracks per 
cylinder (2 heads) and 80 cylinders per disk. (The number of tracks can be found via a request to the trackdisk 
device. 

NOTE 

The result is given in tracks and not cylinders.) On a standard 3.5" drive, this gives useful space of 880K 
bytes plus 28K bytes of label area per floppy disk. 

Although the disk is logically divided up into sectors, aU I/O to the disk is done a track at a time. This allows access 
to the drive with no interleaving and increases the useful storage capacity by about 20 percent Normally, a read of a 
sector will only have to copy the data from the track buffer. If the track buffer contains another track's data, then the 
buffer will first be written back to the disk (if it is "dirty") and the new track will be read in. All track boundaries 
are transparent to the programmer (except for FORMAT, SEEK, and RAWREAD/RAWWRI'IE) because you give 
the device an offset into the disk in the number of bytes from the start of the disk. The device ensures that the correct 
track is brought into memory. 

The perforrnance of the disk is greatly enhanced if you make effective use of the track buffer. The performance of 
sequential reads will be up to an order of magnitude greater than reads scattered across the disk. 

The trackdisk device uses the blitter to encode and decode the data to and from the track buffer. Because the blitter 
can access only chip memory (memory that is accessible to the special-purpose chips is known as MEMF _ClllP to 
the memory allocator AllocMem()), all buffers sent to the trackdisk must be in chip memory. In addition, only full
sector writes on sector boundaries are supported. 

NOTE 

The user's buffer must be word-aligned. 

The trackdisk device is based upon a standard device structure. It has the following restrictions: 

• All reads and writes must use an io_Length that is an integer multiple of TO_SECTOR bytes (the sector 
size in bytes). 

• The offset field must be an integer multiple of TO_SECTOR. 

• The data buffer must be word-aligned and in MEMF _ClllP memory. 

Trackdisk Device Commands 

The trackdisk device allows the following system interface functions and commands. In addition to the usual device 
commands, the trackdisk device has a set of extended commands. 

884 Trackdisk Device 



The system interface functions are: 

OpenDeviceO 
CloseDeviceO 
ExpungeO 
BeginIOO 
AbortlOO 

Obtain exclusive use of a particular disk unit 
Release the unit to another task 
Remove the device from the device list 
Dispatch a device command; queue commands 
Abort a device command 

The device-specific commands are: 

CMD_READ 
CMD_WRlTE 
CMD_UPDATE 
CMD_CLEAR 
TD_MOTOR 
TD_SEEK 
TD_FORMAT 
TD_CHANGENUM 
TD_CHANGESTATE 
TD_PROTSTATUS 
TD_RAWREAD 
TD_RA WWRlTE 
TD _GETDRlVETYPE 
TD_GElNUMTRACKS 
TD_ADDCHANGEINT 
TD_REMCHANGEINT 

Read one or more sectors 
Write one or more sectors 
Write out track buffer if dirty 
Mark track buffer as invalid 
Tum the motor on or off 
Move the head to a specific track 
Initialize one or more tracks 
Discover the current disk-change number 
See if there is a disk present in a drive 
See if a disk is write-protected 
Read RAW sector data from disk (unencoded MFM) 
Write RAW sector data to disk 
Discover the type of disk drive in use by the unit 
Discover the number of tracks usable with the unit 
Add a diskchange handler 
Remove a diskchange handler 

In addition to the device-specific commands listed above, the trackdisk device has a number of enhanced commands. 
These commands are similar to their normal counterparts but have additional features: they allow you to control 
whether a command will be executed if the disk has been changed and they allow you to read or write to the sector 
label portion of a sector. 

Enhanced commands take a slightly larger I/O request block, which contains information that is needed only by the 
enhanced command and that is ignored by the standard form of that command. The extra information takes the form 
of two extra longwords at the end of the data structure. These commands are performed only if the change count is 
less than or equal to the one in the iotd_Count field of the command's I/O request block. The enhanced commands 
are listed below: 

ETD_WRITE 
ETD_READ 
ETD_MOTOR 
ETD_SEEK 
ETD_FORMAT 
ETD_UPDATE 
ETD_CLEAR 
ETD_RA WREAD 
ETD_RA WWRITE 

Write one or more sectors (plus sector labels) 
Read one or more sectors (plus sector labels) 
Tum the motor on or off 
Move the head to a specific track 
Initialize one or more tracks (plus sector labels) 
Write out track buffer if dirty 
Mark track buffer as invalid 
Read RAW sector data from disk (unencoded MFM) 
Write RAW sector data to disk 

Trackdisk Device 885 



Creating an 1/0 Request 

The ttackdisk device, like other devices, requires that you create an I/O request message that you pass to the device 
for processing. The message contains the command and several other items of control information. 

Here is a program fragment that can be used to create the message block that you use for ttackdisk communications. 
In the fragment, the routine CreateExtiOO is called to return a pointer to a message block. This is acceptable for the 
standard form of the commands since the enhanced structure contains two additional fields at the end of the standard 
structure. CreateExtiOO is in amiga.lib and is listed in the appendices of the Amiga ROM Kernel Reference 
Manual: Includes & AutoDocs. 

struct IOExtTD *diskReq; 1* IORequest block pointer for enhanced commands *1 
struct MsgPort *diskPort; 1* a port at which to receive replies *1 

if (diskPort=CreatePort(NULL,NULL» 
( 

if (diskreq=(struct IOExtTD *)CreateExtIO(diskPort, 

1* do your stuff here ••• *1 

DeleteExtIO«struct IORequest *)diskreq); 
} 
else printf(nOut of memory\n"); 
DeletePort(diskPort); 

sizeof(struct IOExtTD») 

else printf(nCould not create diskReq port\nn); 

The routine Create PortO is part of amiga.lib. It returns a pointer to a MsgPort structure that can be used to receive 
replies from the trackdisk device. 

The routine CreateExtiOO is part of amiga.lib. It returns a pointer to an IORequest structure of the size requested. 
To create a standard IORequest structure, you would call this function with sizeof(struct IOStdReq). 

The data structure IOExtTD takes the form: 

struct IOExtTD 
( 

) ; 

struct 
ULONG 
ULONG 

IOStdReq iotd_Req; 
iotd Count; 
iotd::::SecLabel; 

where 

IOStdReq 
is a standard IORequest block that contains fields used to transmit the standard commands (explained 
below). 

iotd Count 
helps keep old I/O requests from being performed when the diskette has been changed. Any I/O request 
found with an iotd _ Count less than the current change counter value will be returned with a characteristic 
error (TDERR_DiskChange) in the io_Error field of the I/O request block. This allows stale I/O requests 
to be returned to the user after a disk has been changed. The current disk-change counter value can be 
obtained by TD_CHANGENUM. 

886 Trackdisk Device 



If the user wants enhanced disk I/O but does not care about disk removal, then iotd _Count may be set to 
the maximum unsigned long integer value (OxFFFFFFFF). 

iotd Sec Label 
-allows access to the sector identification section of the sector header. 

Each sector has 16 bytes of descriptive data space available to it; the trackdisk device does not interpret 
this data. If iotd _ SecLabel is null, then this descriptive data is ignored. If it is not null, then 
iotd SecLabel should point to a series of contiguous l6-byte chunks (one for each sector that is to be read 
or ~ritten). These chunks will be written out to the sector's label region on a write or filled with the 
sector's label area on a read. If a CMD_ WRITE (the standard write call) is done, then the sector label area 
is left unchanged. 

When the trackdisk device is requested to provide status information for commands such as TD_REMOVE or 
TD_CHANGENUM, the value is returned in the iO_Actual field of the IORequest. 

Opening a Trackdisk Device 

To gain access to a disk unit, you must first open the unit by using the system command OpenDeviceO. A typical 
C-language call is shown below: 

error = OpenDevice(TD_NAME,unit_number,disk_request_block,flags); 

where: 

TD NAME 
is a define for a null-terminated string, in this case "trackdisk.device." 

unit_number 
is the disk unit you wish to use (defined below). 

diskJequest_block 
is the address of an IORequest data structure that will later be used to communicate with the device. The 
OpenDeviceO function will fill in the unit and device fields of this data structure. 

Bags 
tell how the I/O device is to be opened. Currently, there are only two values for this flag: 0 to open the 
device with only standard 3.5" units as valid; and TDF_ALLOW_NON_3_5 which will currently allow 
you to also open the 5.25" drive units. 

error 
o signifies success, otherwise it is the error code. 

The unit_number can be any value from 0 to 3. Unit 0 is the built-in 3 l/2-inch disk drive. Units 1 through 3 
represent additional disk drives that may be connected to an Amiga system. 

The following are some common errors that may be returned from an OpenDeviceO call. 

TDERR DrivelnUse 
Some other task has already been granted exclusive use of this device. 

Trackdisk Device 887 



TDERR BadUnitNum 
Eith~r you have specified a unit number outside the range of 0-3 or a unit is not connected in the specified 
position. 

TDERR BadDriveType 
You-may be trying to use a device that is not compatible with the trackdisk device. This error will occur 
when you try opening a device that is a 5.25 inch device without specifying the TBF _ALLOW _NON_3_5 
flag in the OpenDeviceO call. 

See devicesltrackdisk.hli for other trackdisk error codes. 

Sending a Command to the Device 

You send a command to this device by initializing the appropriate fields of your IOStdReq or IOExtTD and then 
using SendlOO, DolOO, or BeginIOO to transmit the command to the device. Here is an example: 

1* 
* This turns the motor on 
*1 

VOID Motor On(struct IOExtTD *diskReq) 
{ -

diskReq->iotd Req.io Length=l; 
diskReq->iotd-Req.io-Command=TD MOTOR; 
DoIO«struct IOReque~t *)diskReq); 1* task will sleep till done *1 

Terminating Access to the Device 

As with all devices, you must close the trackdisk device when you have finished using it. To release the device, a 
CloseDeviceO call is executed with the same IORequest used when the device was opened. This only closes the 
device and makes it available to the rest of the system. It does not de-allocate the IORequest structure. 

Device-specific Commands 

The device-specific commands supported by the trackdisk.device are explained below. All commands of the 
ETD _xxx variety have the ability to check for diskchange and will return an error if the disk was changed. Some of 
the ETD _xxx commands also give access to the sector label area on the disk. Commands that do this are marked 
accordingly. 

ETD _READ and CMD _READ obey all of the trackdisk device restrictions noted above. They transfer data from the 
track buffer to the user's buffer. If the desired sector is already in the track buffer, no disk activity is initiated. If the 
desired sector is not in the buffer, the track containing that sector is automatically read in. If the data in the current 
track buffer has been modified, it is written out to the disk before a new track is read. ETD _READ will read the 
sector label area if the iotd _ SecLabel is non-NULL. 

888 Trackdisk Device 



diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Length 

diskReq->iotd_Req.io_Data 
diskReq->iotd_Req .io_ Offset 

For the enhanced version of the request: 

diskReq->iotd_Count 
diskReq->iotd_SecLabel 

Result: 

ETD _WRITE and CMD _WRITE 

ETD_READ or CMD_READ 
number of bytes to READ 
(Must be a multiple of TO_SECTOR) 
pointer to buffer (of io_Length bytes) 
byte offset from start of disk 
(Must be a multiple of TO_SECTOR) 

Change count number 
NULL or sector label buffer pointer 
(Size must be a multiple of TD _LABELSIZE) 

Error return (see error table below) 

ETD _WRITE and CMD _WRITE obey all of the trackdisk device restrictions noted above. They transfer data from 
the user's buffer to track buffer. If the track that contains this sector is already in the track buffer, no disk activity is 
initiated. If the desired sector is not in the buffer, the track containing that sector is automatically read in. If the data 
in the current track buffer has been modified, it is written out to the disk before a new track is read in for 
modification. ETO _WRITE will write the sector label area if iotd _ SecLabel is non-NULL. 

diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Length 

diskReq->iotd_Req.io_Data 
diskReq->iotd_Req.io_Offset 

For the enhanced version of the request: 

diskReq->iotd_ Count 
diskReq->iotd_SecLabel 

Result: 

diskReq->iotd_Req.io_Error 

ETD_ WRITE or CMD_ WRITE 
number of bytes to WRITE 
(Must be a multiple of TO_SECTOR) 
pointer to buffer (of io_Length bytes) 
byte offset from start of disk 
(Must be a multiple ofTD_SECTOR) 

Change count number 
NULL or sector label buffer pointer 
(Size must be a multiple ofTD_LABELSIZE) 

Error return (see error table below) 

Trackdisk Device 889 



ETD UPDATE AND CMD UPDATE - -

The Amiga trackdisk device does not write data sectors unless it is necessary (you request that a different track be 
used) or until the user requests that an update be perfonned. This improves system speed by caching disk operations. 
The update commands ensure that any buffered data is flushed out to the disk. If the track buffer has not been 
changed since the track was read in, the update commands do nothing. As usual, the ETD_UPDA1E command 
checks for diskchange . 

. For the enhanced version of the request 

diskReq->iotd_ Count Change count number 

Result 

Error return (see error table below) 

ETD _CLEAR and CMD _CLEAR 

ETD_ CLEAR and CMD _CLEAR mark the track buffer as invalid, forcing a reread of the disk on the next operation. 
ETD_UPDATE or CMD_UPDA1E would be used to force data out to the disk before turning the motor off. 
ETD_CLEAR or CMD_CLEAR is usually used after having locked out the trackdisk.device via the use of the disk 
resource, when you wish to prevent the track from being updated, or when you wish to force the track to be re-read 
ETD_CLEAR or CMD_CLEAR will not do an update, nor will an update command do a clear. 

For the enhanced version of the request 

diskReq->iotd_ Count Change count number 

Result 

Error return (see table below) 

ETD_MOTOR and TD_MOTOR give you control of the motor. The io_Length field contains the requested state of 
the motor. A 1 will tum the motor on; a 0 will turn it off. The old state of the motor is returned in io_Actual. If 
iO_Actual is zero, then the motor was off. Any other value implies that the motor was on. If the motor is just being 
turned on, the device will delay the proper amount of time to allow the drive to come up to speed. Nonnally, turning 
the drive on is not necessary-the device does this automatically if it receives a request when the motor is off. 
However, turning the motor off is the programmer's responsibility. In addition, the standard instructions to the user 
are that it is safe to remove a diskette if and only if the motor is off (that is, if the disk light is ofl). 

890 Trackdisk Device 



diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Length 

For the enhanced version of the request: 

diskReq->iotd_ Count 

Result: 

diskReq->iotd_Req.io_Actual 
diskReq->iotd_Req.io_Error 

ETD FORMAT and TD FORMAT - -

ETD_MOTOR or TO_MOTOR 
l=motor on, O=motor off. 

Change count number 

Boolean - previous motor state 
Error return (see error table below) 

ETO_FORMAT and TD_FORMAT are used to write data to a track that either has not yet been formated or has had 
a hard error on a standard write command. TO_FORMAT completely ignores all data currently on a track and does 
not check for disk change before performing the command. The io _Data field must point to at least one track worth 
of data. The io _Offset field must be track aligned, and the io _Length field must be in units of track length (that is, 
NUMSECS*TO_SECfOR). The device will format the requested tracks, filling each sector with the contents of the 
buffer pointed to by io _Data field. You should do a read pass to verify the data. 

If you have a hard write error during a normal write, you may find it possible to use the TO_FORMAT command to 
reformat the track as part of your error recovery process. ETD _FORMAT will write the sector label area if the 
iotd_SecLabel is non-NULL. 

diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Length 

diskReq->iotd_Req.io_Data 
diskReq->iotd_Req.io_ Offset 

For the enhanced version of the request: 

diskReq->iotd_ Count 
diskReq->iotd_SecLabel 

Result: 

diskReq->iotd_Req.io_Error 

Status Commands 

ETO_FORMATorTO_FORMAT 
number of bytes to format 
(Must be a multiple of TO_SECTOR * NUMSEC) 
pointer to buffer (of io_Length bytes) 
byte offset from start of disk 
(Must be a multiple of TO_SECTOR * NUMSEC) 

Change count number 
NULL or sector label buffer pointer 
(Size must be a multiple ofTD_LABELSIZE * NUMSEC) 

Error return (see error table below) 

The commands that return status on the current disk in the unit are TD_CHANGENUM, TD_CHANGESTATE, 
TO]ROTSTATUS, TD_GETDRIVETYPE, and TD_GE1NUMTRACKS. These calls may be done with QuickIO 
and thus may be called within interrupt handlers (such as the trackdisk disk change handler). 

Trackdisk Device 891 



TD CHANGENUM 

TO_CHANGENUM returns the current value of the disk-change counter (as used by the enhanced commands-see 
below). The disk change counter is incremented each time the disk is inserted or removed. 

diskReq->iotd_Req.io_ Command 
diskReq->iotd_Req.io_Flags 

Result 

TD CHANGESTATE 

TO_CHANGENUM 
IOF _QUICK (Not required) 

Disk change number 

TO _CHANGEST ATE returns zero if a disk is currently in the drive, and nonzero if the drive has no disk. 

diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Flags 

Result 

TD PROTSTATUS 

TO_CHANGESTATE 
IOF _QUICK (Not required) 

State: O=Disk IN drive. 

TO _PROTST A TUS returns nonzero if the current diskette is write-protected. 

diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Flags 

Result 

TD _ GETDRIVETYPE 

TO_PROSTATUS 
IOF _QUICK (Not required) 

Protection state: O=non-protected 

TO_GETORlVETYPE returns the drive type for the unit that was opened. The unit can be opened only if the device 
understands the drive type it is connected to. 

892 Trackdisk Device 



diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Flags 

Result: 

TD GETNUMTRACKS 

TD_GETDRlVETYPE 
10F _QUICK (Not required) 

Drive type: See trackdisk.h/i 

TD_GETNUMTRACKS returns the number tracks on that device. This is the number of tracks of TD_SECTOR * 
NUMSECS size. It is not the number of cylinders. With two heads, the number of cylinders is half of the number of 
tracks. The number of cylinders is equal to the number of tracks divided by the number of heads (surfaces). The 
standard 3.5" Amiga drive has two heads. 

diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Flags 

Result: 

TD_GETNUMTRACKS 
10F _QUICK (Not required) 

Number of tracks on the disk 

Being Notified of Disk Changes 

Many programs will wish to be notified if the user has changed the disk in the active drive. While this can be done 
via the Intuition DISKREMOVED and DISKINSERTED messages, sometimes more tightly controlled testing is 
required. 

TD ADDCHANGEINT 

TD_ADDCHANGEINT lets you add a software interrupt handler to the disk device that will be CauseO'ed when a 
disk insert or remove occurs. The structure for the handler is identical to other handlers. See the software interrupt 
chapter for more information on the handler. Within the handler, you may only call the status commands that can use 
IOF_QUICK. 

To set up the handler, an Interrupt structure must be initialized. This structure is supplied as the io_Data to the 
TD _ADDCHANGEINT command. The handler will be linked into the handler chain and will execute whenever a 
disk change happens. You must remove the handler before you exit. 

WARNING 

This command does not return when executed. It holds onto the 10 request until the 
TD_REMCHANGEINT command is executed with that same 10 request. Hence, you must use 
SendIOO with this command. 

Trackdisk Device 893 



diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Length 
diskReq->iotd_Req:io_Data 

TD_REMCHANGEINT 

TD_ADDCHANGEINT 
sizeof(struct Interrupt) 
pointer to Interrupt structure 

TD_REMCHANGEINT removes the interrupt handler from the device's interrupt handler list. You must pass it the 
same Interrupt structure used to add the handler. 

WARNING 

Under Vl.3 and earlier versions of the Amiga system software, TD_REMCHANGEINT does not work 
and should not be used. 

diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Length 
diskReq->iotd_Req.io_Data 
diskReq->iotd_Req.io_Flags 

TD_REMCHANGEINT 
sizeof(struct Interrupt) 
pointer to Interrupt structure 
IOF _QUICK (Required) 

Commands for Low-Level Access 

The following commands may be used to read the raw flux changes on the disk. The data returned from the 
TD_RAWREAD or sent to TD_RAWWRITE should be encoded into some form of legal flux patterns. See the 
Amiga Hardware Manual and books on magnetic media recording and reading. 

WARNING 

In V1.3 Kickstart and earlier these functions are unreliable even though under certain configurations the 
commands may appear to work. 

ETD RAWREAD and TD RAWREAD - -

ETD_RAWREAD and TD_RAWREAD perform a raw read from a track on the disk. They seek to the specified 
track and read it into the user's buffer. 

No processing of the track is done. It will appear exactly as the bits come off the disk -- typically in some legal flux 
format (such as MFM, PM, GCR, etc; if you don't know what these are, you shouldn't be using this call). Caveat 
Programmer. 

This interface is intended for sophisticated programming only. You must fully understand digital magnetic recording 
to be able to utilize this call. It is also important that you understand that the MFM encoding scheme used by the 
higher level trackdisk routines may change without notice. Thus, this routine is only really useful for reading and 
decoding other disks such as MS-DOS formatted disks. 

894 Trackdisk Device 



LIMITATIONS for sync'ed reads and writes: There is a delay between the index pulse and the start of bits coming 
in from the drive (e.g. dma started). It is in the range of 135-200 microseconds. This delay breaks down as follows: 
55 microseconds for software interrupt overhead (this is the time from interrupt to the write of the DSKLEN 
register); 66 microsecs for one horizontal line delay (remember that disk I/O is synchronized with Agnus' display 
fetches). The last variable (0-65 microseconds) is an additional scan line since DSKLEN is poked anywhere in the 
horizontal line. This leaves 15 microseconds unaccounted for. In short, You will 'almost never get bits within the first 
135 microseconds of the index pulse, and may not get it until 200 microseconds. At 4 microsecs/bit, this works out 
to be between 4 and 7 bytes of user data delay. 

WARNING 

Commodore-Amiga may make enhancements to the disk fonnat in the future. Commodore-Amiga 
intends to provide compatibility within the trackdisk device. Anyone who uses this routine is bypassing 
this upward-compatibility and does so at their own risk. 

diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Length 

diskReq->iotd_Req.io_Data 
diskReq->iotd_Req.io_Offset 
diskReq->iotd_Req.io_Flags 

For the enhanced version of the request: 

diskReq->iotd_ Count 

Result: 

ETD_RA WREAD or TD_RA WREAD 
number of bytes to read 
(maximum size of 32K) 
pointer to buffer (of io_Length bytes) 
Track number (starting at 0) 
Set IOTDB_INDEX for index sync, 

Change count number 

Error return (see error table below) 

ETD_RAWWRITE and TD_RAWWRITE perfonn a raw write to a track on the disk. They seek to the specified 
track and write it from the user's buffer. 

No processing of the track is done. It will be written exactly as the bits come out of the buffer -- typically in some 
legal flux fonnat (such as MFM, FM, GCR; if you don't know what these are, you shouldn't be using this call). 
Caveat Programmer. 

This interface is intended for sophisticated programming only. You must fully understand digital magnetic recording 
to be able to utilize this call. It is also important that you understand that the MFM encoding scheme used by the 
higher level trackdisk routines may change without notice. Thus, this routine is only really useful for encoding and 
writing other disk fonnats such as MS-DOS disks. 

LIMITATIONS for sync'ed reads and writes: See TD_RA WREAD. 

Trackdisk Device 895 



WARNING 

Commodore-Amiga may make enhancements to the disk format in the future. Commodore-Amiga 
intends to provide compatibility within the trackdisk device. Anyone who uses this routine is bypassing 
this upward-compatibility and does so at their own risk. 

diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_Length 

diskReq->iotd_Req.io_Data 
diskReq->iotd_Req.io_Offset 
diskReq->iotd_Req.io_Flags 

For the enhanced version of the request 

diskReq->iotd_ Count 

Result 

ETD_RA WWRlTE or TD_RA WWRITE 
number of bytes to write 
(maximum size of 32K) 
pointer to buffer (of iO_Length bytes) 
Track number (starting at 0) 
Set IOTDB_INDEX for index sync 

Change count number 

Error return (see error table below) 

Commands for Diagnostics and Repair 

Currently TD _SEEK and ETD _SEEK are provided for internal diagnostics, disk repair, and head cleaning only. 

ETD SEEK and TD SEEK - -
TD _SEEK and ETD _SEEK will move the drive heads to the track specified The io _Offset field should be set to the 
(byte) offset to which the seek is to occur. TD_SEEK and ETD_SEEK do not verify their position until the next 
read. That is, they only move the heads; they do not actually read any data. 

diskReq->iotd_Req.io_Command 
diskReq->iotd_Req.io_ Offset 

For the enhanced version of the request 

diskReq->iotd_ Count 

Result 

896 Trackdisk Device 

ETD_SEEK or TD_SEEK 
byte offset from start of disk 
(Must be a multiple of TD _SECTOR * NUMSECS) 

Change count number 

Error return (see error table below) 



Trackdisk Device Errors 

Table 7-1 is a list of error codes that can be returned by the trackdisk device. When an error occurs, these error 
numbers will be returned in the io _Error field of your IORequest block. 

Table 42-1: Trackdisk Device Error Codes 

Error 
Error Name Number Meaning 

TDERR_NotSpecified 20 Error could not be determined 
TDE~_NoSecHdr 21 Could not find sector header 
TDERR_BadSecPreamble 22 Error in sector preamble 
TDERR_BadSecID 23 Error in sector identifier 
TDERR_BadHdrSum 24 Header field has bad checksum 
TDERR_BadSecSum 25 Sector data field has bad checksum 
TDERR_TooFewSecs 26 Incorrect number of sectors on track 
TDERR_BadSecHdr 27 Unable to read sector header 
TDERR_ WriteProt 28 Disk is write-protected 
TDERR_DiskChanged 29 Disk has been changed 

or is not currently present 
TDERR_SeekError 30 While verifying seek position, 

found seek error 
TDERR_NoMem 31 Not enough memory to do this operation 
TDERR_BadUnitNum 32 Bad unit number 

(unit # not attached) 
TDERR_BadDriveType 33 Bad drive type 

(not an Amiga 3 1/2 inch disk) 
TDERR_DriveInUse 34 Drive already in use 

(only one task exclusive) 
TDERR_PostReset 35 User hit reset; awaiting doom 

Example Program 

The following sample program makes a track-by-track copy of unit 0 onto unit 1. 

1* 
* TrackOisk example code ... 
* 
* This program does a track by track copy from OFO: to OF1: 

* * This program will only run from the CLI. If started from 
* the workbench, it will just exit ••• 
*/ 

#include <exec/types.h> 
#include <exec/memory.h> 
#include <devices/trackdisk.h> 
#include <libraries/dosextens.h> 

Trackdisk Device 897 



iinclude <proto/all.h> 

iinclude <stdio.h> 

/* This prevents Lattice ctrl-C processing ..• */ 
int CXBRK(VOID) ( return(O); } 

idefine TRACK SIZE «LONG) (NUMSECS * TD_SECTOR» 

/* 
* Turn the BUSY flag off/on for the drive 
* If onflag is TRUE, the disk will be marked as busy ••• 

* 
* This is to stop the validator from executing while 
* we are playing with the disks. 
*/ 

VOID disk busy(UBYTE *drive,LONG onflag) 
( -
struct StandardPacket *pk; 
struct Process *tsk; 

tsk=(struct Process *)FindTask(NULL); 
if (pk=AllocMem(sizeof(struct StandardPacket),MEMF_PUBLICIMEMF_CLEAR» 
( 

pk->sp Pkt.dp Link=&(pk->sp Msg); 
pk->sp-Pkt.dp-Port=&(tsk->pr MsgPort); 
pk->sp-Pkt.dp-Type=ACTION INHIBIT; 
pk->sp=Pkt.dp=Argl=(onflag? -lL : OL); 

PutMsg(DeviceProc(drive), (struct Message *)pk); 
WaitPort(&(tsk->pr MsgPort»; 
GetMsg(&(tsk->pr_MsgPort»; 
FreeMem(pk, (long)sizeof(*pk»; 

/* 
* This turns the motor off 
*/ 

VOID Motor_Off(struct IOExtTD *disk) 
( 

disk->iotd Req.io Length=O; 
disk->iotd-Req.io-Command=TD MOTOR; 
DoIO«struct IORequest *)disk); 

/* 
* This turns the motor on 
*/ 

VOID Motor_On(struct IOExtTD *disk) 
( 

disk->iotd Req.io Length=l; 
disk->iotd-Req.io-Command=TD MOTOR; 
DoIO«struct IORequest *)disk); 

/* 
* This reads a track, reporting any errors ... 
*/ 

SHORT Read_Track(struct IOExtTD *disk,UBYTE *buffer,SHORT track) 
( 
SHORT AII_OK=TRUE; 

disk->iotd Req.io Length=TRACK SIZE; 
disk->iotd-Req.io-Data= (APTR) buffer; 
disk->iotd-Req.io-Command=CMD READ; 
disk->iotd-Req.io-Offset=(ULONG) (TRACK SIZE * track); 
DoIO«struct IORequest *)disk); -
if (disk->iotd Req.io Error) 
{ --

898 Trackdisk Device 



All_ OK=FALSE; 
printf(nError %u when reading track %dn,disk->iotd_Req.io_Error,track); 

1* 
* This writes a track, reporting any errors ... 
*1 

SHORT Write_Track(struct IOExtTD *disk,UBYTE *buffer,SHORT track) 
{ 
SHORT All_OK=TRUE; 

disk->iotd Req.io Length=TRACK SIZE; 
disk->iotd-Req.io-Data=(APTR)buffer; 
disk->iotd-Req.io-Command=TD FORMAT; 
disk->iotd-Req.io-Offset=(ULONG) (TRACK SIZE * track); 
DoIO((struct IORequest *)disk); -
if (disk->iotd Req.io Error) 
{ --

printf(nError %d when writing track %dn,disk->iotd_Req.io_Error,track); 

return (All_OK); 

1* 
* This function finds the number of TRACKS on the device. 
* NOTE That this is TRACKS and not cylinders. On a Two-Head 
* drive (such as the standard 3.5 n drives) the number of tracks 
* is 160, 80 cylinders, 2-heads. 
*1 

SHORT FindNumTracks(struct IOExtTD *disk) 
{ 

1* 

disk->iotd Req.io Command=TD GETNUMTRACKS; 
DoIO((struct IORequest *)disk); 
return((SHORT)disk->iotd_Req.io_Actual); 

* This routine allocates the memory for one track and does 
* the copy loop. 
*1 

VOID Do_Copy(struct IOExtTD *diskreqO,struct IOExtTD *diskreq1) 
{ 

UBYTE *buffer; 
SHORT track; 
SHORT All_OK; 
SHORT NumTracks; 

if (buffer=AllocMem(TRACK_SIZE,MEMF CHIPiMEMF PUBLIC» 
{ 

printf(n Starting Motors\r n); 
Motor_On(diskreqO); 
Motor On(diskreq1); 
All_OK=TRUE; 

NumTracks=FindNumTracks(diskreqO); 

for (track=O; (track<NumTracks) && All_OK;track++) 
{ 

printf(n Reading track %d\rn,track); 

if (All_OK=Read_Track(diskreqO,buffer,track» 
{ 

printf(n Writing track %d\rn,track); 

All_OK=Write_Track{diskreq1,buffer,track); 

if (All OK) printf(n * Copy complete *n); 
printf(ii\nn) ; 

Trackdisk Device 899 



/* 

Motor Off(diskreqO); 
Motor=Off(diskreql); 

else printf ("No memory for track buffer •.. \n") ; 

* Prompts the user to remove one of the disks. 
* Since this program makes an EXACT copy of the disks 
* AmigaDOS would get confused by them so one must be removed 
* before the validator is let loose. Also, note that the 
* disks may NEVER be in drives on the SAME computer at the 
* SAME time unless one of the disks is renamed. This is due 
* to a bug in the system. It would normally be prevented 
* by a diskcopy program that knew the disk format and modified 
* the creation date by one clock-tick such that the disks would 
* be different. 
*/ 

VOID Remove Disks(VOID) 
( -

/* 

printf("\nYou *MUST* remove at least one of the disks now.\n"); 
printf("\nPress RETURN when ready\n"); 
while (getchar () ! =' \n'); 

* Prompts the user to insert the disks. 
*/ 

VOID Insert Oisks(VOID) 
( -

printf("\nPlease insert source disk in DFO:"); 
printf("\n and destination in DFl:\n"); 
printf ("\nPress RETURN when ready\n"); 
while (getchar () !=' \n'); 

/* 
* Open the devices and mark them as busy 
*/ 

VOID Do OpenDevice(struct IOExtTO *diskreqO,struct IOExtTO *diskreql) 
{ -

if (!OpenDevice (TD_NAME, OL, (struct IORequest *)diskreqO,OL» 
{ 

disk_busy ("DFO:", TRUE); 

if (!OpenDevice(TD_NAME,lL, (struct IORequest *)diskreql,OL» 
( 

disk_busy("DFl:",TRUE); 

Insert Disks () ; 
Do Copy(diskreqO,diskreql); 
Remove_Disks () ; 

disk_busy("DFl:",FALSE); 
CloseDevice«struct IORequest *)diskreql); 

else printf("Could not open OFl:\n"); 

disk busy("OFO:",FALSE); 
CloseDevice«struct IORequest *)diskreqO); 

else printf("Could not open OFO:\n"); 

VOID main(int argc,char *argv[]) 
{ 
struct IOExtTD *diskreqO; 
struct IOExtTD *diskreql; 
struct MsgPort *diskPort; 

if (argc) 
{ 

900 Trackdisk Device 

/* Check if started from the CLI ... */ 



if (diskPort=CreatePort(NULL,NULL)) 
( 

} 

if (diskreqO=(struct IOExtTD *) CreateExtIO (diskPort, 
sizeof(struct IOExtTD))) 

if (diskreql=(struct IOExtTD *)CreateExtIO(diskPort, 
sizeof(struct IOExtTD))) 

Do OpenDevice(diskreqO,diskreql); 
DeleteExtIO((struct IORequest *)diskreql); 

else printf("Out of memory\n"); 
DeleteExtIO((struct IORequest *)diskreqO); 

else printf("Out of memory\n"); 
DeletePort(diskPort); 

else printf("Could not create diskReq port\n"); 

NOTE 

Since this example program makes an exact track-for-track duplicate, AmigaDOS will get confused if 
both disks are in drives on the system at the same time. While the disks are inhibited, this does not cause 
a problem, but during normal operation, this will cause a system hang. To prevent this, you can relabel 
one of the disks. A commercial diskcopy program would have to understand the disk format and either 
relabel the disk or modify the volume creation date/time by a bit in order to make the disks look 
different to the system. 

Trackdisk Device 901 





Chapter 43 

Resources 

Introduction 

This section contains a description of the system resource routines. "Resources" refers to the Amiga's low-level 
hardware control functions. Most applications will never need to use Amiga hardware at the resource level - the 
Amiga's device interface is much more convenient and provides for multi-tasking. However, some high 
performance applications, such as MIDI time stamping, require direct access to Amiga hardware registers. 

In order to get direct access to the hardware in a way that is compatible with multi-tasking, you use the system 
resource functions. These routines let you temporarily bar other tasks from using the resource. You may then use 
the associated hardware directly for your special purposes. Return the resource back to the system for other tasks to 
use when you are finished with it 

There are currently four standard resources in the Amiga system; disk.resource, cia.resource, misc.resource and 
potgo.resource: 

disk.resource 
grants temporary exclusive access to the disk hardware. 

Resources 903 



cia.resource 
grants access to the interrupts and timer bits of the 8520 CIA (Complex Interface Adapter) chips. 

mise.resource 
grants exclusive access to functional blocks of chip registers. At present, definitions have been made for 
the serial and parallel hardware only. 

potgo.resource 
manages the bits of the POTGO and POTINP registers. 

See the Amiga Hardware Reference Manual for detailed information on the actual hardware involved. This section 
covers how to properly arbitrate for the hardware. 

WARNING 

Resources are just one step above direct hardware manipulation. You are advised to try the higher level 
device and library approach before resorting to the hardware. 

Disk Resource 

Whenever using floppy disk hardware, it must be acquired from the disk resource. There are up to four possible 
disk/MFM units available. The disk resource provides both a gross and a fine unit allocation scheme. AllocUnitO 
and FreeUnitO are used to claim a unit for long term use, and GetUnitO and GiveUnitO are used to claim a unit for 
shorter periods. 

The trackdisk.device uses and abides by both allocation schemes. Because a trackdisk unit is never closed for 
Amiga 3.5" drives (the file system keeps them open) the associated resource units will always be allocated for these 
drives. GetUnitO and GiveUnitO can still be used, however, by other applications that have not succeeded with 
AllocUnitO. 

It is therefore possible to prevent the trackdisk device from using units that have not yet been mounted by 
successfully performing an AllocUnitO for that unit. It is also possible to starve trackdisk usage by performing a 
GetUnitO. The appropriate companion routine (FreeUnitO or GiveUnitO) should be called to restore the resource at 
the end of its use. 

CIA Resource 

For high performance timing applications such as MIDI time stamping or SMP1E time coding, the CIA resource 
should be used. The CIA-B timers are available to be allocated and are associated with interrupt 6. The timer is 
therefore allocated by successfully adding a vector for interrupt 6 with AddICRVectorO. Ownership of the interrupt 
bit means you own the related timer or chip function. SetICRO and AbleICRO are used to read and write to the 
interrupt hardware registers. RemICRVectorO is used to remove your vector when your program is finished. 

NOTE 

You should not use the CIA-A timers. These are reserved for the system. The table below summarizes 
system use of the CIA timers: 

904 Resources 



Amiga CIA Timer Allocation 

CIAA (int2) 
timerA Used for keyboard handshake 
timerB Used for uSee timer. device 
TOO Used for 60Hz timer.device 

CIAB (int6) 
timerA Not used 
timerB Not used 
TOO Used for ~phics.library beam counter 

Your program should first try to allocate CIA-B, timer B. If it is not available then try to allocate CIA-B, timer A. 
If neither timer can be allocated, inform the user and abort the operation. The cia.resource provides the name of the 
interrupt owner in that case. 

Mise Resource 

Before using serial or parallel port hardware, it first must be acquired from the misc.resource. The misc.resource 
oversees usage of the serial data port, the serial communication bits, the parallel data and handshake port, and the 
parallel communication bits. The parallel communication bits double as the Commodore serial bus interface bits for 
those who want to connect a 1541 to the Amiga. 

The mise.resource consists of two routines, MR_GETMISCRESOURCE and MR_FREEMISCRESOURCE. Since 
these two routines do not have a library base pointer name, they can only be called from an assembly language 
program. See the include file resources/misc.i for a description of what ownership rights each unit grants. Here's a 
working example that gets one of the two miscellaneous resources: 

* OPT L+ 

* * Assembly language fragment that grabs the two parts of the serial 
* resource (Using misc.resource). If it gets the resource, it will 
* wait for CTRL-C to be pressed before releasing. 

* * When a task has successfully obtained the serial resource, it "owns" 
* the hardware registers that control li,e serial port. No other tasks 
* are allowed to interfere. 

* 
* This example must be linked with "amiga.lib" 

* 
* Wednesday 07-Dec-88 19:35:13 

* 
* INCDIR "inc:" 

INCLUDE "exec/types.i" 
INCLUDE "resources/misc.i" 
INCLUDE "libraries/dos.i" 

AbsExecBase EQU 4 

JSRLIB MACRO ;Macro for easy use of system functions 
XREF LVO\1 
JSR ::::LVO\1 lAG) 
ENDM 

Open Exec and the misc.resource, check for success 

move.l _AbsExecBase,a6 ;Prepare to use exec 

Resources 905 



resource ok 

lea.l 
JSRLIB 
move.l 
bne.s 
moveq 
rts 

exg.l 

MiscName(pc),al 
OpenResource 
dO,d7 
resource ok 
IIRETURNj?AIL,dO 

d7,a6 

;Open "misc. resource" 
;Stash resource base 

;Put resource base in A6 

We now have a pointer to a resource. 
Call one of the resource's library-like vectors. 

move.l IIMR SERIALBITS,dO ;We want these bits 
lea.l MyName(pc),al ;This is our name 
jsr MR_ALLOCMISCRESOURCE(a6) 
tst.l dO 
bne.s no bits ; Someone else has it .•• 
move.l IIMR SERIALPORT,dO 
lea.l MyName(pc),al 
jsr MR_ALLOCMISCRESOURCE(a6) 
tst.l dO 
bne.s no_port ; Someone else has it .•• 

We just stole the serial port registers; wait. 
Nobody else can use the serial port, including the serial.device! 

Free 'em up 

no_port 

no bits 

Text area 

MiscName 
MyName 

exg.l 
move.l 
JSRLIB 
exg.l 

move.l 
jsr 

move.l 
jsr 

moveq 
rts 

dc.b 
dc.b 
dc.w 
END 

d7,a6 ;use exec again 
IISIGBREAKF_CTRL_C,dO 
Wait 
d7,a6 

IIMR SERIALPORT,dO 

;Wait for CTRL-C 
;Get resource base back 

MR_FREEMISCRESOURCE(a6) 

#MR SERIALBITS,dO 
MR_FREEMISCRESOURCE(a6) 

IIRETURN_FAIL,dO 

'misc.resource',O 
'Serial Port hog',O 
o 

NOTE 

There are two serial.device resources to take over, MR_SERIALBITS and MR_SERIALPORT. You 
should get both resources when you take over the serial port to prevent other tasks from using them. 
The parallel.device also has two resources to take over. See the resourceslmisc.h include file for the 
relevant C definitions and structures. 

Under V1.3 and earlier versions of the Amiga system software J;he MR_GETMISCRESOURCE routine will always 
fail if the serial.device has been used at all by another task - even if that task has finished using the resource. In 
other words, once a printer driver or communication package has been activated, it will keep the associated resource 
locked up preventing your task from using it. Under these conditions, you must get the resource back from the 
system yourself. 

906 Resources 



You do this by calling the function FlushDeviceO: 

/* 
* A safe way to expunge ONLY a certain device. The serial.device holds 
* on to the misc serial resource until a general expunge occurs. 
* This code attempts to flush ONLY the named device out of memory and 
* nothing else. If it fails, no status is returned since it would have 
* no valid use after the Permit(). 
*/ 
'include <exec/types.h> 
'include <exec/execbase.h> 
'include <proto/all.h> 

void FlushDevice(char *); 

extern struct ExecBase *SysBase; 

void FlushDevice(char *name) 
{ 
struct Device *devpoint; 

Forbid(); 
if( devpoint=(struct Device *)FindName(&SysBase->DeviceList,name) ) 
RemDevice(devpoint); 
Permit () ; 

POTGO Resource 

The POTGO resource is used to get control of the hardware POTGO register connected to the proportional 10 pins 
on the game controller ports. There are two registers, POTGO (write-only) and POTINP (read-only). These pins 
could also be used for digital 10. Intuition uses POTGOI for reading the right and (optional) middle mouse 
buttons. 

The resource consists of 3 functions AllocPotBitsO, FreePotBitsO and WritePotgoO. The example program shown 
below demonstrates how to use the POTGO resource to track mouse button presses on port 1. 

/* An example of using the potgo.resource to read pins 9 and 5 of 
* port 1 (the non-mouse port). This bypasses the gameport.device. 
* When the right button on a mouse plugged into port 1 is pressed, 
* the read value will change. 

* 
* Use of port 0 (mouse) is unaffected. 
* 
* Lattice use lc -bl -cfist -v -yo Link with amiga.lib and lc.lib. 
*/ 

'include <exec/types.h> 
'include <libraries/dos.h> 
'include <proto/all.h> 
'include <stdio.h> 

Ufdef LATTICE 
int CXBRK(void) {return(O);} /* Disable Lattice Ctrl-C checking *1 
#endif 

struct PotgoBase *PotgoBase; 
ULONG potbits; 
UWORD value; 

'define UNLESS (x) if (! (x) ) 
'define UNTIL (x) while ( ! (x) ) 

'define OUTRY lL«l5 

Resources 907 



'define DATRY lL«14 
'define OUTRX lL«13 
'define DATRX lL«12 

void main(int argc,char **argv) 
( 

UNLESS(PotgoBase=(struct PotgoJ;lase *)OpenResource(npotgo.resource n)) 
return; 

printf(nPotgoBase is at $%lx\nn,PotgoBase); 

potbits=AllocPotBits(OUTRYIDATRYIOUTRXIDATRX); 
1* Get the bits for the right and middle mouse buttons 

on the alternate mouse port. *1 

if(potbits != (OUTRYIDATRYIOUTRXIDATRX)) 
( 
printf(nPot bits are already allocated! %lx\nn,potbits); 
FreePotBits(potbits); 
return; 
} 

WritePotgo(OxFFFFFFFFL,potbits); 
1* Set all ones in the register (masked by potbits) *1 

UNTIL(SIGBREAKF CTRL C & SetSignal(OL,OL)) 
1* until CTRL-C is pressed *1 
( 
value=*(UWORD *)OxOODFF016; 
1* Read word at $DFF016 *1 
printf(nPOTINP - $%lx\nn,value & potbits); 
1* Show what was read (restricted to our allocated bits) *1 
} 

FreePotBits(potbits); 

908 Resources 



Appendix A 

Troubleshooting Your Software 

Many Amiga programming errors have classic symptoms. This guide will help you to eliminate or avoid these 
problems in your software. 

Audio - Corrupted Samples 
The bit data for audio samples MUST be in CHIP RAM. Check your compiler manual for directives or flags 
which will place your audio sample data in CHIP RAM. Or dynamically allocate CHIP RAM and copy or load 
the audio sample there. 

Character Input/Output Problems 
RA WKEY users must be aware that RA WKEY codes can be different letters or symbols on national keyboards. 
If you need to use RA WKEY, run the codes through RawKeyConvert (see "Intuition" manual chapters) to get 
proper translation to correct ASCII codes. Improper display or processing of high-ASCII international 
characters can be caused by incorrect tolowerO/toupperO, or by sign extension of character values when 
switched on or assigned into larger size variables. Use unsigned variables such as UBY1E (not char) for 
strings and characters whenever possible. 

CLI Error Messages 
This is caused by calling exit(n) with an invalid or missing return value n. Assembler programmers using 
startup code should jump to the startup code's _exit with a valid return value on the stack. Programs without 
startup code should return with a valid value in DO. Valid return values are defined in libraries/dos.h and i. 
Other values (-1 for instance) can cause CLI error messages such as "not an object module". Useful hint - if 
your program is called from a script, your valid return value can be conditionally branched on in the script (ie. 

Troubleshooting Guide 909 



call program, then perfonn actions based on IF WARN or IF NOT WARN). RETURN_FAIT.. will cause the 
script to stop if a nonnal F AIT..A T value is being used in script 

CLI Won't Close on RUN 
A CLI can't close if a program has a Lock on the CLI input or output stream ("*"). If your program is RUN 
>NIT..: from a CLI, that CLI should be able to close unless your code or your compiler's startup code explicitly 
opens "*". 

Crashes and Memory Corruption 
Memory corruption, address errors, and illegal instruction errors are generally caused by use of an uninitialized, 
incorrectly initialized, or already freed/closed pointer or memory. You may be using the pointer directly, or it 
may be one that you placed (or forgot to place) in a structure passed to system calls. Or you may be 
overwriting one of your arrays, or accidently modifying or incrementing a pointer later used in a free/close. Be 
sure to test the return of all open/allocation type functions before using the result, and only close/free things that 
you successfully opened/allocated. Use watchdog/torture utilities such as MemWatch and MemMung to catch 
use of uninitialized pointers or freed memory. (MemMung sets freed memory areas and location $0 to an odd 
value). You may also be overflowing your stack - your compiler's stack checking option may be able to catch 
this. Cut stack usage by dynamically allocating large structures, buffers, and arrays which are currently defined 
inside your functions. 

Corruption or crashes can also be caused by passing wrong or missing arguments to a system call (for example 
SetAPen(3) or SetAPen(win,3), instead of SetAPen(rp,3». If using short integers be sure to explicitly type long 
constants as long (eg. 42L). (For example, with short ints, 1 « 17 may become zero). If corruption is 
occurring during exit, use printf (or kprintf, etc.) with Delay(n) to slow down your cleanup and broadcast each 
step. See exec/alerts.h for Amiga-specific alert numbers. Also see "Crashes - After Exit". 

Crashes - After Exit 
If this only happens when you start your program from Workbench, then you are probably UnLocking one of 
the WBStartup message wa_Locks, or UnLocking the Lock returned from an initial CurrentDirO call. If you 
CurrentDirO, save the lock returned initially, and CurrentDirQ back to it before you exit 

If you are crashing from both Workbench and CLI, and you are only crashing AFIER exit, then you are 
probably either freeing/closing something twice, or freeing/closing something your did not actually 
allocate/open, OR you are leaving an outstanding device 10 request or other wakeup request. You must abort 
and WaitlO any outstanding 10 requests before you free things and exit (see the autodocs for your device, and 
for Exec AbortIO and WaitlO). Similar problems can be caused by deleting a subtask that might be in a 
WaitTOFO. Only delete subtasks when you are sure they are in a safe state such as Wait(OL); 

Crashes - Subtasks, Interrupts 
If part of your code runs on a different stack or the system stack, you must turn off compiler stack-checking 
options. If part of your code is called directly by the system or by other tasks, you must use long code/long 
data OR use special compiler flags or options to assure that the correct base registers are set up for your subtask 
or interrupt code. 

Crashes - Window Related 
Be careful not to CloseWindowO a window during a while(msg=GetMsg( ... » loop on that window's port (next 
GetMsg would be on freed pointer). Also, use ModifyIDCMP(NULL) with care, especially if using one port 
with multiple windows. Be sure to ClearMenuStripO any menus before closing a window, and do not free 
items such as dynamically allocated gadgets and menus while they are attached to a window. 

Crashes - Workbench Only 
If your program crashes during execution or during your exit procedure only when started from WB, and your 
startup opens no stdio window or NIT..: file handles for WB programs, then make sure you are not writing 
anything to stdout (ie. printf, etc.) when started from WB (argc=O). See also • 'Crashes - After Exit". 

910 Troubleshooting Guide 



Disk Icon Won't Go Away 
This occurs when a program has a Lock or leaves a Lock on one or more of a disk's files. A memory loss of 
exactly 24 bytes is usually Lock which has not been UnLocked. 

Fails only on 68020/30 
The following programming practices can be the cause of this problem: using upper byte of addresses as flags; 
doing signed math on addresses; self-modifying code; using the MOVE SR assembler instruction (use Exec 
GetCCO instead); software delay loops; assumptions about the order in which asynchronous tasks will finish. 
The following differences in 68020/30 can cause problems: invalid cache entry due to DMA or other non
processor modification of the data's actual location; different exception stack frame; interrupt autovectors may 
be moved by VBR; 68020/30 CLR instruction does a single write access as opposed to 68000 CLR 
instruction's read then write access (use MOVE instead). 

Fails only on 68000 
The following programming practices can be the cause of this problem: software delay loops; word or 
longword access of an odd address (illegal on the 68000); use of the assembler CLR instruction on a hardware 
register which is triggered by any access. 68000 CLR instruction performs two accesses (read and write) while 
68020/30 CLR does a single write access. Use MOVE instead; assumptions about the order in which 
asynchronous tasks will finish; use of compiler flags which have generated inline 68881/68882 math 
coprocessor instructions or 68020/30 specific code. 

Fails only on Older ROMs or Newer WB 
This can be caused by asking for a library version higher than you need (DO NOT use the #define 
LIBRARY_VERSION!!!). Can also be caused by calling functions or using structures which do not exist in 
the older version of the operating system. Ask for the lowest version which provides the functions you need 
(usually 33), and exit gracefully and informatively if an OpenLibrary fails. 

Fails only on Newer ROMs or Newer WB 
This should not happen with proper programming. Possible causes: running too close to your stack limits or 
the memory limits of a base machine (newer versions of the operating system may use slightly more stack in 
system calls, and usually use more free memory); using system functions improperly; not testing function 
return values; using improperly initialized pointers; trashing memory; assuming something (such as a flag) is B 
if it is not A; failing to initialize formerly reserved structure fields to zero; violating Amiga programming 
guidelines (for example: depending on or poking private system structures, jumping into ROM, depending on 
undocumented or unsupported behaviors); failure to read the function autodocs. 

Fails only on CIDP-RAM-Only Machines 
Caused by specifically asking for or requiring MEMF _FAST memory. If you don't need CIllP RAM, ask for 
memory type OL, or MEMF_CLEAR, or MEMF_PUBLICIMEMF_CLEAR as applicable. If there is FAST 
memory available, you will be given FAST memory. If not, you will get CIllP RAM. 

Fails only on machines with FAST RAM 
Data and buffers which will be accessed directly by the custom chips MUST be in CIllP RAM. This includes 
bitplanes (use OpenScreenO or AllocRasterO), audio samples, trackdisk buffers, and the graphic image data for 
sprites, pointers, bobs, images, gadgets, etc. Use compiler or linker flags to force CIllP RAM loading of any 
initialized data needing to be in CIllP RAM, or dynamically allocate CIllP RAM and copy any initialization 
data there. 

Fails only with Enhanced Chips 
Usually caused by writing or reading addresses past the end of older custom chips, or writing something other 
than 0 (zero) to bits which are undefined in older chip registers, or failing to mask out undefined bits when 
interpreting the value read from a chip register. See also "Fails only on CIllP-RAM-Ooly Machines". 

Troubleshooting Guide 911 



Fireworks 
A dazzling pyrotechnic video display is caused by trashing or freeing a copper list which is in use, or trashing 
the pointers to the copper list. If you aren't messing with copper lists, see "Crashes and Memory Corruption". 

Graphics. Corrupted Images 
The bit data for graphic images such as sprites, pointers, bobs, and gadgets MUST be in CHIP RAM. Check 
your compiler manual for directives or flags which will place your graphic image data in CHIP RAM. Or 
dynamically allocate CHIP RAM and copy them there. 

Hang· One Program Only 
Program hangs are generally caused by Waiting on the wrong signal bits, wrong port, wrong message, or by 
never having actually asked for what you are waiting for. They can also be caused by Verify deadlocks. Be 
sure to turn off all Intuition VERIFY messages (such as MENU VERIFY) before calling AutoRequestO or 
doing disk access. 

Hang. Whole System 
This is generally caused by a DisableO without a corresponding EnableO. It can also be caused by memory 
corruption, especially corruption of low memory. See' 'Crashes and Memory Corruption". 

Memory Loss 
First determine that your program is actually causing a memory loss. Boot with a normal Workbench disk 
whose s:startup-sequence LoadWB line has been changed to "LoadWB -debug". It is important to boot with a 
standard Workbench because a number of third party items such as some background utilities, shells, and 
network handlers dynamically allocate and free pieces of memory. Arrange all necessary shell or other 
windows so that part of the backdrop window is accessible, and so that no window rearrangement will be 
needed to run your program. 

Select "flushlibs" from the rightmost Workbench menu. This will flush all non-open disk-loaded fonts, devices, 
etc. from memory. Wait a few seconds, then click on the Workbench backdrop and write down the amount of 
free memory. Now without rearranging any windows, start your program and use all of your program features. 
Exit your program, wait a few seconds, then click on the Workbench backdrop and write down the Free value. 
Now select "flushlibs", wait a few seconds, then write down this final Free amount. If this matches the first 
value you wrote down, then your program is fine, and is not causing a memory loss. 

If memory was actually lost, and your program can be run from CLI or Workbench, then try the above 
procedure with both methods of starting your program. See "Memory Loss - CLI Only" and "Memory Loss -
WB Only" if appropriate. If you lose memory from both WB and CLI, then check all of the 
open/alloc/get/create/lock type calls in your code. and make sure that there is a matching 
close/free/delete/unlock type call for each of them (note - there are a few system calls that have or require no 
corresponding free - check the autodocs). Generally, the close/free/delete/unlock calls should be in opposite 
order of the allocations. 

If you are losing a fixed small amount of memory, look for a structure of that size in the Structure Offsets 
listing in the "Includes and Autodocs" manual. For example, a loss of exactly 24 bytes is probably a Lock 
which has not been UnLocked. If you are using ScrollRasterO. be aware that ScrollRasterO left or right in a 
Superbitmap window with no TmpRas will currently lose memory (workaround - attach a TmpRas). If you 
lose much more memory when started from Workbench, make sure your program is not usillg Exit(n). This 
would bypass startup code cleanups and prevent a Workbench-loaded program from being unloaded. Use 
exit(n) instead. 

Memory Loss· CLI Only 
Make sure you are testing in a standard environment. Some third-party shells dynamically allocate history 
buffers, or cause other memory fluctuations. Also, if your program executes different code when started from 
CLI, check that code and its cleanup. And check your startup.asm if you wrote your own. 

912 Troubleshooting Guide 



Memory Loss· CTRL-C Exit Only 
You have Amiga-specific resources opened or allocated and you have not disabled your compiler's automatic 
CTRL-C handling (causing all of YOUR program cleanups to be skipped). Disable compiler CTRL-C handling 
and handle CTRL-C (SIGBREAKF _CTRL_C) yourself. 

Memory Loss - During Execution 
A continuing memory loss during execution can be caused by failure to keep up with voluminous IDCMP 
messages such as MOUSEMOVE messages. Intuition can not re-use IDCMP message blocks until you 
ReplyMsgO them. If your window's allotted message blocks are all in use, new sets will be allocated and not 
freed till the window is closed. Continuing memory losses can also be caused by a program loop containing an 
allocation-type call without a corresponding free. 

Memory Loss - Workbench Only 
Commonly, this is caused by a failure of your code to unload after you exit Make sure that your code is being 
linked with a standard correct startup module, and do NOT use the Exit(n) function to exit your program. This 
function will bypass your startup code's cleanup, including its ReplyMsgO of the WBStartup message (which 
would signal Workbench to unload your program from memory). You should exit via either exit(n) where n is 
a valid OOS error code such as RETURN_OK (dos/libraries.h), or via final It} It or return. Assembler 
programmers using startup code can IMP to _exit with a long return value on stack, or RTS. 

Menu Problems 
Flashing while browsing is caused by leaving a pixel or more space between menu subitems when designing 
your menu. Crashing after browsing a menu (looking at menu without selecting any items) is caused by not 
properly handling MENUNULL select messages. Multiple selection not working is caused by not handling 
NextSelect properly. See the Intuition "Menus" chapter. 

Out-of-Sync Response to Input 
Caused by failing to handle all received signals, or all possible messages on a wakeup. More than one event or 
message may have caused your program to awakened. Check the signals returned by Wait and act on every one 
that is set. At ports which may have more than one message (for instance, a window's IDCMP port), you must 
handle the messages in a while(msg=GetMsg( ... » loop. 

Performance Loss in Other Processes 
This is often caused by a one program doing one or more of the following: busy waiting or polling; running at 
a higher priority; doing lengthy Forbids or Disables. 

Trackdisk Data not Transferred 
Make sure your trackdisk buffers are in CHIP RAM. 

Windows - Borders Flicker after Resize 
Set the NOCAREREFESH flag. Even SMART_REFRESH windows may generate refresh events if there is a 
sizing gadget. If you don't have specific code to handle this, you must set the NOCAREREFRESH flag. If you 
do have refresh code, be sure to use the Begin/EndRefreshO calls. Failure to do one or the other will leave 
Intuition in an intermediate state, and slow down operation for all windows on the screen. 

Troubleshooting Guide 913 



GENERAL DEBUGGING TECHNIQUES 

Narrow the search 
Use methodical testing procedures, and debugging messages if necessary, to locate the problem area. Low 
level code can be debugged using kprintf serial (or dprintf parallel) messages (see Linker Library 
documentation). Check the initial values, allocation, use, and freeing of all pointers and structures used in the 
problem area. Check that all of your system and internal function calls pass correct initialized arguments, and 
that all possible error returns are checked for and handled. 

Isolate the problem 
If errors can not be found, simplify your code to the smallest possible example that demonstrates the problem. 
Often you will find that this smallest example will not have the problem. If so, add back the other features of 
your code until the problem reappears, then debug that section. 

Use debugging tools 
A variety of debugging tools are available to help locate faulty code. Some of these are source level and other 
debuggers, crash interceptors, vital memory watchdogs like MemWatch and WatchMem, and free memory 
invalidation tools such as MemMung. 

A FINAL WORD ABOUT TESTING 

Test your program with memory watchdog and invalidation tools on a wide variety of systems and configurations. 
Programs with coding errors may appear to work properly on one or more configurations, but may fail or cause fatal 
problems on another. Make sure that your code is tested on both a 68000 and a 68020/30, on machines with and 
without FAST RAM, and on machines with and without enhanced chips. Test all of your program functions on 
every machine. 

Test all error and abort code. A program with missing error checks or unsafe cleanup might work fine when all of 
the items it opens or allocates are available, but may fail fatally when an error or problem is encountered. Try your 
code with missing files, filenames with spaces, incorrect filenames, cancelled requesters, C1RL-C, missing libraries 
or devices, low memory, missing hardware, etc. 

Test all of your text input functions with high-ASCII characters (such as the character produced by pressing ALT-F 
then "A' '). Note that RA WKEY codes can be different keyboard characters on national keyboards (higher levels of 
keyboard input are automatically translated to the proper characters). If your program will be dinributed 
internationally, support and take advantage of the additional screen lines available on a PAL system. Enhanced 
Agnus chip A2000's may be switched to PAL via motherboard jumper n02. Note that a base PAL machine will 
have less memory free due to the larger display size. 

Write good code. Test it. Then make it great 

914 Troubleshooting Guide 



Appendix B 

Linker Libraries 

Introduction 

This section describes the amiga.lib and debug.lib libraries. Unlike the libraries described in the other chapters of the 
manual, these are not shared run-time libraries. Code from the Linker Libraries is inserted by the linker into your 
final program. These libraries are typically supplied by your language or compiler vendor. Only the functions you 
use are pulled into your code. 

Linker Libraries 915 



The libraries described here are: 

AMIGA.LIB 

This is the main Amiga scanned linker library, generally linked with most programs for the Amiga. The major 
components of amiga.lib are: 

stubs 

offsets 

cUb 

other 

DEBUG.LIB 

Individual interface stubs for each Amiga ROM routine that enable stack-based C compilers 
to call register-based Amiga ROM routines. Some compilers have a feature that bypasses the 
stubs for smaller code size. 

The negative offset from the library base for each Amiga function. These are called Library 
Vector Offsets LLVO). Some assemblers provide a faster way to obtain the same offsets. 

C functions which simplify many exec procedures such as the creation and deletion of tasks, 
ports, and 10 request structures. 

C support functions including pseudo-random number generation and a limited set of file and 
stdio functions designed to work directly with AmigaDOS file handles. 

Miscellaneous handy functions, callable from any language. 

Contains standard I/O (stdio) style functions for communicating with a serial terminal connected to the Amiga 
via its built-in serial port. Typically this terminal will be a 9600-baud, 8 data-bits, one stop-bit connection to an 
external terminal or an Amiga running a terminal package. The debug. lib functions allow you to output 
messages and prompt for input, even from within low level task or interrupt code, without disturbing the 
Amiga's display and or current state (other than the state of the serial hardware itself). No matter how badly 
the system may have crashed, these functions can usually get a message out. A similar debugging library 
(currently called ddebug.lib is available for sending debugging output to the parallel port. This is useful for 
debugging serial applications. Ddebug.lib is not documented here. It contains functions similar to debug.lib but 
with names starting with 'D' instead of 'K'. 

Please refer to the ROM Kernel Reference Manual: Includes and Autodocs for a detailed description of the functions. 

916 Linker Libraries 



Amiga.lib 

Amiga.lib has the following functions: 

AddTOFO and RemTOFO 

AddTOFO adds a task to the vertical-blanking interval interrupt server chain. This frees C programmers from 
the burden of having to write an assembly language stub to perform this function. The task can be removed 
with RemTOFO. 

BeginIOO 

This function takes an IORequest and passes it directly to the BEGINIO vector of the proper device. This 
works exactly like SendIOO, but does not clear the io_Flags field first. This function does not wait for the I/O 
to complete. 

CreateExtlOO and DeleteExtIOO 

CreateExtlOO allocates memory for and initializes a new 10 request block of a user-specified number of 
bytes. The number of bytes must be the size of a legal IORequest (or extended request) or very nasty things 
will happen. DeleteExtIOO frees up an 10 request as allocated by CreateExtIOO. The mn_Length field 
determines how much memory to deallocate. 

CreatePortO and DeletePortO 

CreatePortO allocates and initializes a new message port. The message list of the new port will be prepared for 
use via NewListO. The port will be set to signal your task when a message arrives (pA_SIGNAL). 
DeletePortO deletes the port created by CreatePortO. All messages that may have been attached to that port 
must already have been replied to. 

CreateTaskO and DeleteTaskO 

These functions simplify creation and deletion of subtasks by dynamically allocating and initializing the 
required structures and stack space. They also add the task to Exec's task list with the given name and priority. 
A tc _ MemEntry list is provided so that all stack and structure memory allocated by CreateTaskO is 
automatically deallocated when the task is removed. Before deleting a task with DeleteTaskO, you must first 
make sure that the task is not currently executing any system code which might try to signal the task after it is 
gone. 

NewListO 
Prepares a List structure for use; the list will be empty and ready to use. 

CLIB 

FastRandO 

Generates a pseudo-random number. The seed value is taken from stack, shifted left one position, exclusive
or'ed with hex value $ID872B41 and returned. 

Linker Libraries 917 



RangeRandO 

RangeRandO accepts a value from 1 to 65535, and returns a value within that range (a 16-bit integer). Note 
that this function is implemented in C. 

fcioseO 

Closes a file. 

fgeteO 

Gets a character from a file. 

fprintfO 

Prints a formatted output line to a file. 

fputeO 

Puts character to file. 

fputsO 

Writes a string to file. 

geteharO 

Gets a character from stdin. 

printfO 

Puts fonnat data to stdout 

puteharO 

Puts character to stdout. 

BfputsO 

Puts a string to stdout, followed by newline. 

sprintfO 

Fonnats data into a string (see exec.library/RawDoFmt). 

OTHER 

afpO 

Converts ASCII string variable into fa~t floating-point. 

arndO 
ASCII round-off of the provided floating-point string. 

dbfO 

Accepts a dual-binary format floating-point number and converts it to an FFP fonnat floating-point number. 

918 Linker Libraries 



fpa() 

Accepts an FFP number and the address of the ASCn string where its converted output is to be stored. The 
number is converted to a NULL terminated ASCII string and stored at the address provided. Additionally, the 
base ten (10) exponent in binary form is returned. 

fpbcd() 

Accepts a floating-point number and the address where the converted BCD data is to be stored. The FFP 
number is converted and stored at the specified address in an ASCII form. 

Debug.lib 

Debug.lib has the following functions: 

KCmpStr() 

Compare two null-terminated strings. 

KGetCharO 

Get a character from the console. 

KGetNum() 
Get a number from the console. 

KMayGetChar() 

Return a character if present, but don't wait. 

KPrintFO 

Print formatted data to the console. 

KPutChar() 

Put a character to the console. 

KPutStr() 

Put a string to the console. 

Linker Libraries 919 





Appendix C 

Floppy Boot Process and Physical Layout 

The Floppy Disk Boot Process 

The first two sectors on each floppy disk contain special boot information. These sectors are read into the 
system at an arbitrary position; therefore, the code must be position independent. The first three longwords 
come from the include file deviceslbootblock.h. The type must be BBID_OOS; the checksum must be correct 
(an additive carry wraparound sum ofOxfffffffl). Execution starts at location 12 of the first sector read in. 

The code is called with an open trackdisk.device 10 request pointer in Al (see the "Trackdisk" chapter for 
more information). The boot code is free to use the 10 request as it wishes (the code may trash AI, but must 
not trash the 10 request itself). 

The boot code must return values in two registers: DO and AO. DO is a failure code -- if it is non-zero then a 
system alert will be called, and the system will reboot. 

If DO is zero then AO must contain the start address to jump to. The strap module will free the boot sector 
memory, free the boot picture memory, close the trackdisk.device 10 request, do any other cleanup that is 
required, then jump to the location pointed to by AO. 

Boot code may allocate memory, use trackdisk.device to load relocatable information into the memory, then 
return with 00=0 and AO pointing to code. The system will clean up, then call the code. 

Floppy Boot Process 921 



Commodore·Amiga Disk Format 

The following are details about how the bits on the Commodore-Amiga disk are actually written. 

Gross Data Organization: 

3 1/2 inch (90mm) disk 
double-sided 
80 cylinders/160 tracks 

Per-track Organization: 

Nulls written as a gap, then 11 sectors of data. 
No gaps written between sectors. 

Per-sector Organization: 

All data is MFM encoded. This is the pre-encoded contents 
of each sector: 

two bytes of 00 data 
two bytes of A1* 

(MFM = $AAAA each) 
("standard sync byte" -- MFM 
encoded A1 without a clock pulse) 

(MFM = $4489 each) 
one byte of format byte (Amiga 1.0 format = $FF) 
one byte of track number 
one byte of sector number 
one byte of sectors until end of write (NOTE 1) 

[above 4 bytes treated as one longword 
for purposes of MFM encoding] 

16 bytes of OS recovery info (NOTE 2) 
[treated as a block of 16 bytes for encoding] 

four bytes of header checksum 
[treated as a longword for encoding] 

four bytes of data-area checksum 
[treated as a longword for encoding] 

512 bytes of data 
[treated as a block of 512 bytes for encoding] 

NOTE! 

The track number and sector number are constant for each particular sector. However, the sector offset 
byte changes each time we rewrite the track. 

The Amiga does a full track read starting at a random position on the track and going for slightly more 
than a full track read to assure that all data gets into the buffer. The data buffer is examined to determine 
where the first sector of data begins as compared to the start of the buffer. The track data is block moved 
to the beginning of the buffer so as to align some sector with the first location in the buffer. 

Because we start reading at a random spot, the read data may be divided into three chunks: a series of 
sectors, the track gap, and another series of sectors. The sector offset value tells the disk software how 
many more sectors remain before the gap. From this the software can figure out the buffer memory 
location of the last byte of legal data in the buffer. It can then search past the gap for the next sync byte 
and, having found it, can block move the rest of the disk data so that all 11 sectors of data are 
contiguous. 

922 Floppy Boot Process 



Example: 

The first-ever write of the track from a buffer looks like this: 

<GAP> I sectorOI sectorlI sector2I •..••• Isector101 

sector offset values: 

11 10 9 1 

(If I find this one at the start of my read buffer, then I know 
there are this many more sectors with no intervening gaps before 
I hit a gap). Here is a sample read of this track: 

<junk>lsector9Isector101<gap>lsectorOI .•• Isector81<junk> 

value of 'sectors till end of write': 

2 1 11 3 

result of track re-aligning: 

<GAP>lsector9Isector10IsectorOI ... lsector81 

new sectors till end of write: 

11 10 9 1 

so that when the track is rewritten, the sector offsets 
are adjusted to match the way the data was written. 

NOTE 2 - Sector Label Area 

This is operating system dependent data and relates to how AmigaDOS assigns sectors to files. 
Reserved for future use. 

MFM Track Encoding 

When data is MFM encoded, the encoding is performed on the basis of a data block-size. In the sector encoding 
described above, there are bytes individually encoded; three segments of 4 bytes of data each, treated as 
longwords; one segment of 16 bytes treated as a block; two segments of longwords for the header and data 
checksums; and the data area of 512 bytes treated as a block. 

When the data is encoded, the odd bits ar\.: encoded first, then the even bits of the block. 

The procedure is: Make a block of bytes formed from all odd bits of the block, encode as MFM. Make a block 
of bytes formed from all even bits of the block, encode as MFM. Even bits are shifted left one bit position 
before being encoded. 

The raw MFM data that must be presented to the disk controller will be twice as large as the unencoded data. 
The following table shows the relationship: 

1~01 

o ~ 10 ;if following a 0 
o ~ 00 ;if following a 1 

With clever manipulation, the blitter can be used to encode and decode the MFM. 

Floppy Boot Process 923 



Active screen 

Active window 

Agnus 

Alert 

Alternate 

Amiga™ keys 

amiga.lib 

AmigaDOS™ 

Application gadget 

AUTOCONFIGTM 

Autodocs™ 

Auto-knob 

Backdrop window 

GLOSSARY 

The screen containing the active window. 

The window receiving user input. Only one window is active at a time. 

One of the Amiga custom chips. Contains the blitter, copper, controls RAM 
addressing, DMA and other timing. The A500 contains a square version of this 
chip called Fat Angus. Regular and Fat Agnus can address S12K of chip 
memory. Newer versions of Agnus are able to address 1 megabyte of memory. 
The name stands for" Address Generator". 

A large flashing box displayed when there is a serious application or system 
problem. 

An image or border used in gadget highlighting. When the gadget is selected, 
the alternate image or border is substituted for the original image or border. 

Two command keys on the keyboard to the left and right of the space bar. 

A collection of functions and code stubs collected into a linker-format library. 
See the "Linker Libraries" appendix for more information. 

Amiga Disk Operating System. Controls file & CLI operations. 

A custom gadget created by a developer. 

The Amiga feature that automatically assigns memory addresses to expansion 
boards without the use of the switches or jumpers seen on other computers. See 
the "Expansion" chapter. 

Programmer's documentation that lists each Amiga function and command on a 
separate page. The documents have been automatically extracted from the 
system source code, thus the name AutoDocs. Available in the Addison-Wesley 
ROM Kernel Manual,Includes & Autodocs (ISBN 0-201-18177-0). 

The special automatic knob for proportional gadgets; changes its shape 
according to the current proportional settings. 

A window that stays anchored to the back of the display. 

G-l 



Bitmap 

Bitplane 

Blitter 

Bob 

Body variables 

Boolean gadget 

Border area 

Borderline 

Borderless window 

CHIP memory 

Checkmark 

CLI 

Click 

Clipboard 

Clipping 

Close gadget 

Color indirection 

Color palette 

Color register 

G-2 

The complete definition of a display in memory, consisting of one or more bit
planes and information about how to organize the rectangular display. 

A contiguous series of memory words, treated as if it were a rectangular shape. 

A graphics engine that is part of the custom chips. It can do BLITs (Block 
Image Transfers) in hardware. Sometimes called a BIMMER (Bitmap Image 
Manipulator) because Amiga blitter can do logic operations during the transfer, 
line draws, hardware fills, and more. 

Blitter Object Block. A graphic image prepared for processing by the blitter. 

Proportional gadget variables that contain the increment by which the pot vari
ables may change. 

A simple yes-or-no gadget. 

The window perimeter, inside the border line. This area may contain border 
gadgets. 

The default double-line drawn around the perimeter of all windows, except 
Borderless windows. 

A window with no drawn border lines. 

Memory accessible by the Amiga custom chips. 

A small image that appears next to a menu item showing that the user has 
selected that item. By default, the checkmark is ..J , but a custom image can be 
substituted. 

See Command Line Interface. 

To quickly press and release a mouse button. 

A device and convention used to store the last data cut or copied from a project. 

Causing a graphical rendering to appear only in some bounded area, such as only 
within the non-concealed areas of a window. 

Gadget in the upper left comer of a window that may be selected to request that a 
window be closed. 

The method used by Amiga for coloring individual pixels, in which the binary 
number formed from all the bits that define a given pixel refers to one of the 32 
color registers. Each of the 32 color registers can be set equal to any of 4,096 
colors. 

The set of colors available in a screen. 

One of 32 hardware registers containing colors that you can define. 



Column 

Command keys 

Command Line Interface 

Complement 

Console device 

Container 

Control sequence 

Controller 

Coordinates 

Copper 

DAC 

Dead Key 

Denise 

Depth 

Depth gadgets 

Device 

Disable 

A set of adjoining pixels that forms a vertical line on the video display. 

Keys that combine with alphanumeric keys to create command key sequences, 
which substitute for making selections with the mouse buttons. 

The conventional console-style interface to system commands, files and 
programs. Also called the CLI. 

The binary complement of a color, used as a method of gadget highlighting and 
in flashing the screen. To complement a binary number means to change all the 
Is to Os and all the Os to Is. 

A communication path for both user input and program output. Especially 
recommended for input/output of text-only applications. 

Part of a proportional gadget; the area within which the knob or slider can move; 
the select box of the gadget. 

A sequence of characters used to communicate with the console device. 
Sequences start with the Control Sequence Introducer or <CSI>. <CSI> may be 
$9B or $IB $5B ( <ESC>[ ). 

A hardware device, such as a mouse or a light pen, used to move the pointer or 
furnish some other input. 

A pair of numbers shown in the form (x,y), where x is an offset from the left side 
of the display or display component and y is an offset from the top. 

Display synchronized coprocessor that handles the Amiga video display. 

Digital-to-analog converter. Converts a binary number to an analog voltage. 
Used in the audio output. 

A key that produces no output when pressed, but modifies the next keystroke. 
For example, on a USA keyboard pressing ALT-K, then the letter a, produces 
umlaut-a. 

One of the Amiga custom chips. Contains the video output signals, mouse input, 
etc. Name stands for "Display Enable". 

Number ofbitplanes in a display. 

Gadgets in the title bar of a screen or window used to send the screen or window 
to the back of the display or bring it up front. 

Exec devices control input and output to hardware. Example: serial.device. 
Disk-based devices are stored in either the DEVS:, or SYS:Expansion direc
tories. 

In Intuition, to make something unavailable to the user. In Exec, to lock out all 
interrupts. 

G-3 



Display 

Display field 

Display memory 

Display modes 

DMA 

Double-click 

Double-menu requester 

Drag 

Drag gadget 

Dual-playfield mode 

Enable 

Exec 

Extended selection 

Extra Half-Bright 

FAST memory 

Fill 

Flag 

Font 

Gadget 

G-4 

To put up a screen, window, requester, alert, or any other graphics object on the 
video display. 

One complete scanning of the video beam from top to bottom of the video 
display screen. 

The RAM that contains the information for the display imagery; the hardware 
translates the contents of the display memory into video signals. Also called 
CHIP memory. 

Common modes supported by the hardware are: high or low horizontal resolu
tion, interlaced or non-interlaced vertical resolution, sprite mode, dual-playfield 
mode, Hold-And-Modify (HAM), and Extra Half-Bright (EHB). 

Direct Memory Access. The transfer of data to memory by hardware, without 
intervention of the processor. 

To quickly press and release a mouse button twice. 

A requester that the user can open by double-clicking the mouse menu button. 

To move an icon, gadget, window, or screen by placing the pointer over the 
object to be moved and holding down the select button while moving the mouse. 

The portion of a window or screen title bar used for moving the window or 
screen around on the video display. 

A display mode that allows you to manage two separate display memories, giv
ing you two separately controllable displays at the same time. 

In Intuition, to make something available to the user; a menu item or gadget that 
is enabled can be selected by the user. In Exec, to restart interrupts after a Dis
able. 

Core of the Amiga multitasking operating system. 

A technique for selecting more than one menu item at a time. 

A video mode with an extra bitplane. Where bits are set, the color intensity is 
halved. 

Memory not accessible by the Amiga custom chips. 

To put a color or pattern within an enclosed area. 

A mechanism for selecting an option or detecting a state; a name representing a 
bit to be set or cleared. 

A set of letters, numbers, and symbols that share the same basic design. 

Any of the control devices provided within a window, screen, or requester; 
employed by users to change what is being displayed or to communicate with an 
application or with Intuition. 



Gel 

Ghost 

Ghost shape 

Gimmezerozero window 

Handler 

Header file 

High-resolution mode 

Highlight 

Hit select 

Hold-and-modify mode 

Hue 

Icon 

IDCMP 

Include files 

Initialize 

Input event 

Interlaced mode 

IntuiMessage 

Graphics Element. A generic term for graphics structures supported by the 
graphics library. 

Display less distinctly (overlay an area with a faint pattern of dots) to indicate 
that something, such as a gadget or a window, is not available or not active. 

The new outline of a window that shows briefly when the user is dragging or siz
ing a window. 

A window with a separate bitmap for the window border. 

An AmigaDOS construct. Handlers are in the DOS namespace, but do not sup
port files. Examples: SER: & PAR:. Disk-based handlers are stored in the 1: 
directory. 

A file that is included at the beginning of a C program and contains definitions of 
data types and structures, constants, and macros. See Include file and Autodocs. 

A horizontal display mode in which 640 pixels are displayed across a horizontal 
line. 

To modify the display of a selected menu item or gadget in a way that distin
guishes it from its non-selected state. 

A method of gadget selection in which the gadget is unselected as soon as the 
select button is released. 

A display mode that gives you extended color selection - up to 4,096 colors on 
the screen at one time. Also called HAM mode. 

The characteristic of a color that is determined by the color's position in the 
color spectrum. 

A visual representation of an object in the Workbench, such as a program, file, or 
disk. 

"Intuition Direct Communications Message Port"; the primary communication 
path for user input to an application. Gives mouse and keyboard events and 
Intuition events in raw form. Provides a path for communicating to Intuition. 

Files providing system structure definitions and constants. Generally supplied 
by compiler and language vendors. See Header file and Autodocs. 

To set up a structure with certain default parameters. 

The message created by the input device whenever a signal is detected at one of 
the Amiga input ports. 

A vertical display mode in which twice the number of lines are displayed from 
top to bottom of the video display. 

The input message created by Intuition for application programs; the message is 
the medium in this case. 

G-5 



Intuition ™ 

KeyMap 

Kickstart™ 

Knob 

Library 

Linked list 

Lock 

Low-resolution mode 

Menu bar 

Menu button 

Menu item 

Menu list 

Menu shortcut 

Message ports 

Microsecond (us) 

MIDI 

Millisecond (ms) 

MMU 

G-6 

The Amiga user interface. Intuition is implemented as a library. 

Translation table used by the console device to translate keycodes into normal 
characters. 

The Amiga Operating System ROM. Kickstart is also provided on a floppy disk 
for Al000 systems. 

Part of a proportional gadget; the user manipulates the knob to set a proportional 
value. 

A collection of predefined functions that can be used by any program. Exec 
libraries are found at run time. Disk based Exec libraries are stored in LIBS: or 
SYS:Expansion. Linker libraries are combined directly into the code of applica
tions. 

A chain of objects linked together with pointers. See the Exec "Lists" chapter 
for information on Exec doubly-linked lists. 

An AmigaDOS structure that arbitrates access to shared files. 

A horizontal display mode in which 320 pixels are displayed across a horizontal 
line. 

A strip in the screen title bar that shows the menu list when the user holds down 
the menu button. 

The right-hand button on the mouse. 

One of the choices in a menu; the options presented to the user. 

List of menus displayed in the screen title bar when the user holds down the 
menu button. 

An alternate way of choosing a menu item by pressing a key on the keyboard 
while holding down the right AMIGA key. 

A software mechanism managed by the Amiga Exec that allows intertask com
munications. 

One millionth of a second (1/1,000,000). 

Musical Instruments Digital Interface. A standard serial interface used by many 
musical instruments and music keyboards. 

One thousandth of a second (1/1,000). 

A device for arbitrating and protecting against a task damaging the memory of 
another task, and/or for extending memory capacity with "virtual" swap 
memory on disk. Also has lots of other uses that are well beyond the scope of 
this discussion. Some newer Amiga models have MMU chips. 



Mouse 

Multitasking 

Mutual exclusion 

Nanosecond (ns) 

Non-interlaced mode 

NTSC 

Null-terminated 

Nuke 

Offset 

Overscan 

Packet, AmigaDOS 

PAL 

Parallel port 

Paula 

Pen 

Pixel 

16-inch rotary debugger 

A controller device used to move the pointer and make selections. 

A system in which many tasks can be operating at the same time, with no task 
forced to be aware of any other task. 

The principle that says that selecting a menu item (or gadget) can cause other 
menu items (or gadgets) to become deselected. 

One billionth of a second (111,000,000,000). 

A display mode in which 200 lines are displayed from top to bottom of the video 
display (256 lines in PAL). 

National Television Systems Committee. The North American specification for 
television. The base Amiga crystal frequency for NTSC is 28.63635 Mhz. 

A string that ends with a byte of zero; text strings must be null-terminated. 

To destroy, demolish, obliterate, wipe out, mung, hash into little bits, waste, 
screw up, or make FUBAR, by means of atomic weapons, or with a computer. 

A position in the display that is relative to some other position. 

The portion of the video display beyond the normal image display area. 
Differing amounts of overscan will be visible on different monitors. Overscan 
capability is important for video applications that must fill the entire screen. 

An AmigaDOS specific message. All DOS activity is actually carried out with a 
packet sent to the proper DOS handler process. Packets are available to open 
files, read sections of a file, seek to a new file position, etc. 

Two definitions. Phase Alternate Line, a European television transmission stan
dard. The Amiga crystal frequency for PAL is 28.37516 Mhz. Also Programm
able Array Logic, an easily customizable logic chip. 

A Centronics-compatible connector on the back of the Amiga used to attach 
printers and other add-ons. 

One of the Amiga custom chips. Includes the audio DAC, interrupt chip, custom 
serial chip, disk controller, analog counters, etc. The name stands for "Ports, 
Audio, Uart, Logic Array". 

A variable containing a color register number used for drawing lines or filling 
background. 

Short for "picture element." The smallest addressable element in the video 
display. Each pixel is one dot of color. 

A highly effective tool for locating problems in computer software. Available 
for delivery in most major metropolitan areas. Anchovies contribute to poor 
coding style. 

0-7 



Playfield 

Pointer 

Pot variables 

Preferences 

Preserve 

Primitives 

Process 

Project 

Project menu 

Proportional gadget 

RAM 

Raster 

RastPort 

Refresh 

Render 

Requester 

Resolution 

ROM 

Screen 

Scroll 

Scroll bar 

G-8 

One of the basic elements in Amiga graphics; the background for all the other 
display elements. 

A small object, usually an arrow, that moves on the display when the user moves 
the mouse (or the cursor keys). It is used to choose menu items, open windows, 
and drag and select other objects. 

Proportional gadget variables that contain the actual proportional values. 

A program that allows the user to change various global parameter settings. 

To keep overlapped portions of the display in hidden memory buffers. 

Amiga low-level library functions. 

An extension to a task. Created by AmigaDOS. Only processes may call DOS 
library functions. 

A Workbench term for the output of a tool. A data file. 

A menu for opening and saving project files. 

A gadget used to display a proportional value or get a proportional setting from 
the user. Consists of a knob or slider and a container. 

Random access (volatile) memory. 

The area in memory where the bitmap is located. 

The data structure that defines the general parameters of display memory. 

To recreate a display that was hidden and is now revealed. 

To draw or write into display memory. 

A rectangular information exchange region in a window. When a requester 
appears, the user must select a gadget in the requester to close the requester 
before doing anything else in the window. 

On a video display, the number of pixels that can be displayed in the horizontal 
and vertical directions. 

Read-Only (non-volatile) Memory. Used to store unchanging system data. The 
ASoo and A2000 have Kickstart in ROM. 

A full-width area of the display with a set color palette, resolution, and other 
display modes. Windows open in screens. 

To move the contents of display memory within a window. 

A proportional gadget with which the user can display different parts of the 
display memory. 



Select 

Select box 

Select button 

Semaphore 

Serial port 

Shortcut 

Simple Refresh 

Sizing gadget 

Slider 

:-) 

Smart Refresh 

Sprite 

Sprite mode 

String gadget 

Structwe 

Submenu 

SuperBitMap Refresh 

SuperBitMap window 

System gadgets 

Task 

To pick a gadget or menu item. 

The sensitive area of a gadget or menu item. When the user clicks the pointer 
within a gadget's select box, the gadget becomes selected. 

The left-hand button on a mouse. 

A structure provided by Exec. An efficient method for arbitrating access to an 
item in a multitasking environment. 

The RS-232C compatible connector on the back of the Amiga. Used to attach 
modems, other computers, and serial add-ons. 

A quick way, from the keyboard, to choose a menu item or select a gadget. 

A method of refreshing window display in which concealed areas are redrawn by 
the program when they are revealed 

A gadget for the user to change the size of a window. 

Part of a proportional gadget; used to pick a value within a range by dragging the 
slider or by moving the slider by increments with clicks of a mouse button. 

A standard smiley. Used to indicate satire or humor. 

A method of refreshing window display in which the system keeps information 
about concealed areas in off-display buffers and refreshes the display from this 
information. If the window is sized, the program may have to recreate the 
display. 

A small, easily movable gmphic object. You can have multiple sprites in a win
dow at the same time. 

A display mode that allows you to have sprites in your windows. 

A gadget that prompts the user to enter a text string or an integer. 

A specific layout of fields in memory. Structures are defined in include files. 
Each me,mber of a structure has a positive offset from the structure base. 

An additional menu that appears when some menu items are chosen by the user. 

A method of window refresh where the display is recreated from a sepamte bit
map area. 

A window with a bitmap which may be larger than the screen's bitmap. 

Predefined gadgets for windows and screens; for screens, dragging and depth 
armnging; for windows, dragging, depth arranging, sizing, and closing. 

The basic unit of multitasking. Each task appears to have full control over its 
own virtual 68000 machine. 

G-9 



Text cursor 

Title bar 

Toggle select 

Tool 

TOOLTYPES 

Topaz 

Transparent 

Type style 

Typeface 

Undo 

UserPort 

Vector 

Video display 

View 

ViewPort 

Window 

WindowPort 

Workbench™ 

Workbench disk 

Workbench screen 

G-IO 

In programs containing text and in string gadgets, a marker that indicates your 
position in the text. 

A strip at the top of a screen or window that contains gadgets and an optional 
name for the screen or window. 

A method of gadget selection in which the gadget remains selected when the 
user releases the select button and does not become deselected until the user 
picks it again. 

An application program. 

An array of parameters passed to Workbench tools. TOOLTYPES are stored in 
icons; use the Workbench Info menu to view or change them. 

The default system font. It is a fixed-width font in two sizes: 60 columns wide 
and 8 lines tall; 80 columns wide and 9 lines tall. 

A special color register definition that allows a background color to show 
through. Used in dual-playfield mpde. 

A variation of a typeface, such as italic or bold. 

See Font 

An option that reverses the previous editing action. Very popular with users. 

The message port created for you by Intuition when you request an IDCMP. 
Your program receives messages from Intuition via this port. 

A line segment. 

Everything that appears on the screen of a video monitor or television. 

The graphics library data structure used to create the Intuition display. 

The graphics library data structure used to create and manage the Intuition 
screen. 

Rectangular display in a screen that accepts input from the user and displays out
put from the application. 

The message port created for you when you request an IDCMP. You respond to 
messages from Intuition via this port. 

The graphical user interface to file and programs. 

The bootable disk inserted at the hand prompt. Contains all of your system files, 
libraries, devices, etc. A hard disk drive will usually have a Workbench parti
tion. 

The primary Intuition screen. 



4703,306 
68020,911 
68881,563 
AbortIOO, 292,295,609,611,616-617,619,638 
ABORTIO macro, 292 
ActivateGadgetO, 99 
ActivateWindowO, 53 
Active screen, 13 
Active window, 36 
active window, 36 
AddAnimObO,479 
AddBobO, 459 
AddDosNodeO, 530-531 
AddFontO,41O 
AddGadgetO,79 
AddGadgetsO, 82 
AddGlistO, 82 
AddGListO, 98 
AddHeadO,251 
AddIntServerO,314 
AddLibraryO, 234 
AddPortO,281 
Address error, 275 
AddTailO,251 
AddTaskO, 265 
AddTimeO,875 
AddTOFO,917 
AddVSpriteO,439 
afpO,918 
After pointer 

changing Bob priority, 461 
in animation precedence, 476 
in Bob priority, 458 

agateWindow.h,59 
Alerts, 146 

Application, 146 
creating, 147 
display, 146 
severity of, 146 
System, 146 

AllocateO, 246 
Allocating memory, 239 

INDEX 

AllocEntryO, 243, 246 
AllocMemO, 200, 210, 241, 265 
AllocRasterO, 57, 347 

allocating memory, 353 
AllocRememberO, 200, 210 

example code, 201 
AllocSignalO, 167,269,277 
AllocTrapO, 277 
ALT,192 
AltKey,695 
Alternate (ALT) keys, 192 
Alternate Filesystems, 538 
AMIGA keys, 657 

as command keys, 192 
in command-key sequences, 115 
Workbench shortcuts, 193 

AmigaDOS, 538 
AmigaDOS Partition, 538 
Amiga.lib,916 
Amplitude, 608 
AndRectRegionO,517 
AndRegionRegionO, 518 
ANFRACSIZE,482 
AnimateO, 478, 481 
animation 

acceleration, 478 
AnimCRoutine, 477 
AnimORoutine,477 
introduction, 421 
motion control, 478 
Ring Motion Control, 478 
sequenced drawing, 473 
types, 423 
velocity, 478 

AnimComp 
BobComp, 453 
BOBISCOMP flag, 453 
position, 477 
TimeSet member, 478 

AnimCRoutine 
in creating animation, 481 
with AnimateO, 481 



ANIMHALF.482 
AnimOb 

definition. 479 
position. 479 

AnimORoutine 
in creating animation. 481 
with AnimateO. 481 

AnX AnimOb member 
specifying registration point. 479 

AnX variable 
in ring processing. 479 
in velocity and acceleration. 482 
moving registration point. 478 

AnY AnimOb member 
specifying registration point, 479 

AnY variable 
in ring processing. 479 
in velocity and acceleration. 482 
moving registration point. 478 

AOlPen variable 
in filling. 361 
in RastPort. 361 

A-Pen 
see FgPen. 361 

Application gadgets 
(also see gadgets). 41 

area buffer. 359 
area pattern. 362 
AreaDrawO 

adding a vertex. 367 
in area fill. 359 

AreaEndO 
drawing and filling shapes. 367 
in area fill. 359 

Arealnfo pointer. 359 
AreaMoveO 

beginning a polygon. 367 
in area fill. 359 

arndO.918 
AskFontO. 397 
AskKeyMapO.663 
AskSoftStyleO. 402 
Assembly language. 223 
AUDO-AUD3 interrupts. 307 
Audio. 607 

A Simple Audio Example. 611 
AbortIOO.611 
allocation key. 616 
allocation/arbitration commands. 615 
BeginIOO. 611 
CloseDeviceO.611 
double-buffering. 618 
Free. 609 
hardware control commands. 618 

IORequest block. 609 
Lock. 609. 615 
multi-channel. 616 
OpenDeviceO.61O 
playing the sound. 618 
Precedence. 609 
Reserve. 609 
scope of commands. 610 
starting the sound. 620 
steal channel. 615 
stopping the sound. 619 
WaitO.611 
WaitPortO. 611 

Audio Channels. 607 
allocation. 614-615 
changing the precedence. 616 
freeing. 616-617 

Audio Device. 607 
audio device 

precedence of users. 614 
Audio Hardware. 615 
Autoboot. 531. 538 
AUTOCONFIG. 527. 529. 532 

hardware manufacturer number. 527 
AutoRequestO.139.144 
autorequester.c. 147 
autovector address. 306 
AvailFontsO.404 
AvaiIMemO.243 
Backdrop window. 38 
backdrop window. 59 
background pen. 361 
background playfield. 354 
BadBlock. 539 
BadBlockBlock. 538. 541 
BDRA WN flag. 453 
beam synchronization. 379 
Beeping. 210 
Before pointer 

changing Bob priority. 461 
in animation precedence. 476 
in Bob priority. 458 

BeginIOO. 292. 295. 609. 611. 917 
BeginRefreshO. 45. 55 
BeginUpdateO.51O 
BehindLayerO. 509 
BgPen.400 
BindDrivers. 530 
BitMap 

address. 348 
in SuperBitMap layers. 512 
software clipping. 368 
with write mask. 360 

BitMap structure 



in dual-playfield display, 355 
preparing, 347 

bit-planes 
extracting a rectangle from, 376 
in dual-playfield display, 354 

Bit-planes 
in image display, 183 
in screens, 17 

blank pointer, 59 
BUT interrupts, 307 
Blitter 

in Bob animation, 423 
blitter 

in copying data, 378 
Blitter 

in trackdisk device, 884 
blitter 

VBEAM counter, 381 
BltBitMapO, 376 
BltBitMapRastPortO,376 
BltClearO, 372 
BltMaskBitMapRastPortO, 376 
bltnode structure 

creating, 380 
linking blitter requests, 379 

BltPattemO, 374 
BltTemplateO, 375 
BNDRYOFFO macro, 368 
Bob 

colors, 455 
BobComp pointer, 453 
BOBISCOMP flag, 453 
BOBNIX flag, 454 
Bobs 

adding new features, 471 
as a paintbrush, 453 
as part of AnimComp, 453 
Before, After pointers, 476 
bit-planes, 456-457 
changing, 460 
colors, 456-457 
defining, 448 
displaying, 460 
double-buffering, 454, 464 
drawing order, 458 
introduction, 421 
list,458 
priorities, 458 
removing, 454 
shadow mask, 449, 456 
shape, 454 
simple definition, 423 
size, 454 
sorting the list, 460 

structure, 450 
transparency, 449 

BOBSA WAY flag, 454 
Boolean Gadget, 100 
BoolInfo Structure, 94 
Boot, 531 
Boot Disk, 538 
BootNode, 533 
Border Structure, 100 
Border structure, 177 
Border variables, 38 
BORDERIDT flag, 468 
Borderless window, 37 
borderless window, 59 
borderless.c, 59 
BorderLine pointer, 467 
Borders 

in Borderless windows, 37 
in Gimmezerozero windows, 38 
window, 41 
window variables, 41 

BOTTOMHIT flag, 470 
bottommost member 

Gelslnfo structure, 436 
in BobNSprite collisions, 470 

B-Pen 
see BgPen, 361 

Buffiuffer DBufPacket member, 464 
BufPath DBufPacket member, 464 
BufY, BufX DBufPacket members, 464 
BuildSysRequestO, 140 
Bus error, 275 
BUS WIDTH, 533 
Busy wait, 263 
BW AITING flag, 453 
bytecnt variable, 375 
bytecount pointer, 372 
Caps Lock key, 657 
CAPS LOCK key, 667 
CAT,629 
CATS, 527 
CauseO,316 
Cause, 893 
CD_ASKDEFAULTKEYMAP,662 
CD_SETDEFAUL YKEYMAP, 662 
ChangeSpriteO, 430 
Channel,608 

steal,615 
Channels, 607 
CHECKED and CHECKIT 

checkmark,113 
mutual exclusion, 114 

CheckIOO, 292, 295, 638 
CHECKIT, 114 



Chip memory, 57 
CHIP memory, 210 
Chip memory, 240 
CHI{ instruction, 275 
CIA Resource, 904 
cia.resource, 904 
cleanup variable, 381 
ClearDMRequestO, 54 
ClearMenuStripO, 53, Ill, 116, 124 
ClearMenuStrip, 125 
ClearPointerO, 46, 54, 59 
CiearRectRegionO,518 
CiearRegionO,518 
CLIP, 629 
Clip 

Identification, 629 
ClipBlitO, 376 
Clipboard, 627 

clear, 628 
data, 629 
disk file, 629 
flush, 628 
IFF, 629 
invalid, 628 
Multiple Clips, 630 
post, 628, 630 
read, 628 
readID,628 
start, 628 
stop, 628 
unit number, 630 
update, 628 
write, 628, 630 
write ID, 628 

Clipboard Tool, 629 
clipboard. device, 630 
ClipID,630 
clipping 

in area fill, 368 
in line drawing, 366 

clipping rectangles 
in layer operations, 510 
in layers, 506, 514 
modifying regions, 517 

clipping region 
in VSprites with GELGONE, 436 

ClipRect structure, 514 
ClipReq, 629 
CLIPS:, 629 
CioseO,745 
Close Gadget, 74 
CloseDeviceO, 296, 609, 611, 628, 648 
CloseFontO, 403 
CloseLibraryO, 234 

CloseScreenO, 15, 24 
CloseWindowO, 36,49, 74, 168 
CloseWorkBenchO, 14,25,218 
CMD_CLEAR Command, 890 
CMD_CLEAR commands, 293 
CMD_FLUSH commands, 293 
CMD_READ Command, 888 
CMD_READ commands, 293 
CMD_RESET commands, 293 
CMD_START commands, 293 
CMD_STOP commands, 293 
CMD_UPDATE Command, 889 
CMD_UPDATE commands, 293 
CMD_ WRITE Command, 889 
CMD_ WRITE commands, 293 
CmpTimeO, 875 
collisions 

between GEL objects, 465 
boundary,468 
boundary hits, 470 
collision mask, 466 
detection in hardware, 465 
fast detection, 467 
GEL-to-GEL,470 
in animation, 465 
multiple, 471 
sensitive areas, 467 
user routines, 468 

CollMask Member 
in Bobs, 457 

CollMask member 
of VSprite structure, 466 

Color, 17 
color 

affect of display mode on, 332 
ColorMap structure, 348 
flickering, 442 

Color 
in Borders, 176 

color 
in dual playfield mode, 340 
in flood fill, 369 
in hold-and-modify mode, 357 

Color 
in Images, 181, 183 
in IntuiText, 178 
in windows, 47 

color 
mode In flood fill, 369 
of Bobs, 455 
of individual pixel, 365 
PlayField and VSprites, 442 
relationship to bit-planes, 334 
relationship to depth of BitMap, 339 



Simple Sprites, 428 
single-color raster, 372 
sprites, 341 
transparency, 438 
VSprite, 438 

ColorMap structure, 348 
Command key style, 216 
Command-key sequence events, 192 
Command-key sequences, 115 
compatibility 

international,914 
compatibility problems, 911 
COMPLEMENT,400 
complement mode, 362 
ConfigDev, 528 
ConfigDev Structure, 532 
CONFIGME, 530, 537 
CONFIGTIME, 532 
ConMayGetCharO,647 
ConPutCharO,642 
console 

alternate key maps, 667 
capsable keys, 667 
character output, 638 
closing, 648 
control sequence introducer, 656 
control sequences, 642 
high key map, 664 
input event qualifiers, 656 
input stream, 653 
key map standards, 668 
keyboard input, 638 
keymapping, 659, 663 
keymapping qualifiers, 664-665 
keytypes, 666 
low key map, 664 
mouse button events, 662 
raw events, 655 
raw input types, 655 
reads, 647 
repeatable keys, 668 
string output keys, 666 
window bounds, 654 

Console Device, 695 
Control (CTRL) key, 192 
ConWriteO,642 
cookie cut, 378 
COPER interrupts, 307, 314 
Copper 

changing colors, 348 
display instructions, 349 
in custom screens, 15 
in drawing VSprites, 442 
in interlaced displays, 356 

long-frame list, 356 
Make VPortO, 353 
MrgCopO, 349, 356 
short-frame list, 356 

copying 
data, 378 
rectangles, 376 

CopyMemO, 210, 243 
CopyMemQuickO,243 
count variable, 366 
CPU priority level, 307 
cp_x variable 

in drawing, 364 
cp_y variable 

in drawing, 364 
crashes, 910 
crashing 

with drawing routines, 366 
with fill routines, 368 

CreateBehindLayerO, 508 
CreateExtIOO, 641, 647, 745,886,917 
CreatePortO, 281, 746, 886, 917 
CreateTaskO, 266, 917 
CreateUpfrontLayerO,508 
Critical section, 271 
CTRL,192 
Current Clip, 630 
CurrentBinding Structure, 530 
CurrentTimeO, 209 
Custom gadgets 

in screens, 20 
in windows, 34 

Custom pointer, 57 
Custom screens 

closing, 15 
managed by applications, 15 
rendering in, 15 

Cut, 627 
Cycle, 608 
DamageList structure 

in layers, 510 
dbfO,918 
DBuffer pointer, 464 
DBufPacket structure, 464 
DeallocateO, 246 
deallocation 

Copper list, 353 
Deallocation 

memory,239 
deallocation 

memory, 353, 360 
Debug(O), 322 
Debugger, 321 
debugging, 914 



Debug.lib, 916 
DeleteExtIOO, 648, 917 
DeleteLayerO,508 
DeletePortO, 282, 917 
DeleteTaskO, 266, 917 
depth,339 
Depth 

in Images, 184 
screen, 17 

Depth member, 455 
Depth variable 

in VSprite structure, 437 
Depth-Arrangement Gadgets, 74 
destRastPort variable, 376 
destX variable, 376 
destY variable, 376 
Device 

romtag, 234 
Device Partitions, 538 
Devices 

definition, 289 
driver, 289 
input/output, 289 

devices 
standard, 298 

Devices 
task structure fields for, 265 
unit, 289 

devices/audio.h, 609 
devices/clipboard.h, 629-630 
devices/hardblocks.h, 545 
DEVS:Mountlist, 539 
DFO:,538 
DHeight variable 

in ViewPort, 345 
in ViewPort display memory, 343 

DiagArea Structure, 532 
DIAGV ALID t 537 
Digital-To-Analog, 608 
DisableO, 272 
DISABLE, 319 
DisableO,319 
DISABLE macro, 272 
Disabling 

interrupts, 272 
disabling 

interrupts, 309 
Disabling 

maximum disable period, 272 
disabling interrupts, 319 
Disk Resource, 904 
diskfont.h, 408, 410 
DiskFontHeader structure, 410 
DISKINSER1ED,893 

DISKREMOVED, 893 
disk.resource, 904 
DisownBlitterO, 379 
Display Element, 174 
display fields, 330 
Display memory 

RastPort, 12 
screen, 12 

display modes, 340 
Display modes 

in custom screens, 16 
set by screen, 11 

display width 
affect of overscan on, 329 
effect of resolution on, 342 

DisplayAIertO, 147 
displayalert.c, 147 
DisplayBeepO,21O 
DisposeFontContentsO, 409 
DisposeRegionO,515 
DMA 

displaying the View, 350 
playfield, 339 

DoCollisionO 
purpose, 465 
with collision masks, 469 

DoIOO, 291,294,539,611,618,628,638 
DoI0,647 
DOS Device Node, 530 
DOS Node, 531 
dotted lines, 362 
double-buffering 

allocations for, 355 
Copper in, 356 
Copper lists, 444 
with Bobs, 464 

DoubleClickO, 205 
doublemenreq.c, 147 
doublemenreq.h,147 
Dragging gadget, 12 
Dragging Gadget, 74 
DrawO 

in line drawing, 365 
multiple line drawing, 366 

DrawBorderO,174 
DrawerData structure, 583 
DrawGListO,210 

and BDRA WN flag, 453 
and BOBNIX flag, 454 
and BOBSA WAY flag, 454 
and BW AITING flag, 453 
animation, 481 
changing Bobs, 461 
displaying Bobs, 460 



moving registration point, 478 
preparing the GELS list, 443 
removing Bobs, 460 
with DoCollisionO, 481 

DrawImageO,174 
drawing 

changing part of drawing area, 374 
clearing memory, 372 
colors, 361 
complement mode, 362 
lines, 365 
memory for, 358 
modes, 362 
moving source to destination, 375 
pens, 361 
pixels,365 
shapes, 369 
turning off outline, 368 

drawing pens 
color, 361 
current position, 364 

DrawMode variable, 400 
in area drawing and filling, 367 
in flood fill, 369 
in stencil drawing, 374 
with BltTemplate, 376 

Drive Initialization, 539 
DriveInitO, 539 
DSKBLK interrupts, 307 
DSKSYNC interrupts, 307 
dual playfields 

bit-planes, 354 
color map, 349 
colors, 340 
priority, 354 

DUALPFflag 
in dual playfield display, 354 
in ViewPort, 340 

Dual-playfield mode, 17 
DumpRPortO, 752 
DWidth variable 

in ViewPort, 337, 345 
in ViewPort display memory, 343 

DxOffset variable 
effect on display window, 345 
in ViewPort display memory, 343 

DyOffset variable 
effect on display window, 345 
in ViewPort display memory, 343 

EnableO, 272 
ENABLE,319 
EnableO, 319 
ENABLE macro, 272 
End-of-Clip, 630 

End-of-File, 630 
EndRefreshO, 45, 55 
EndRequestO, 54 
EndUpdateO,51O 
EnqueueO,251,531 
EPROM,528 
EpsonQ 

Example source files, 804 
EQUAL status code, 380 
errors, 909 
ESC,192 
Escape (ESC) key, 192 
ETD_CLEAR Command, 890 
ETD_FORMAT Command, 891 
ETD_MOTOR Command, 890 
ETD_RA WREAD Command, 894 
ETD_RA WWRI1E Command, 895 
ETD_READ Command, 888 
ETD_SEEK Command, 896 
ETD_UPDA1E Command, 889 
ETD_ WRI1E Command, 889 
Events, 269 
example 

text 
FontParade,404 
ShowDefaultFont, 397 
ShowDrawModes, 401 
ShowOpenFont, 399 
suits8,414 
Wrapper, 417 

Exception signal, 274 
Exceptions 

synchronous, 274 
Exceptions (TRAPS), 323 
Exclusion, 271 
Exec Devices, 529 
Exec Lists, 249 
exec/libraries.h, 236 
expansion 

device drivers, 529 
Expansion Board Drivers 

disk,529 
ROM, 529, 531 

Expansion Peripherals, 528 
ExpansionBase, 531 
expansion.library, 527, 530 
ExpansionRom, 528, 532 
ExpansionRom Structure, 532 
extended selection, 116, 125 
EXTER interrupts, 307, 314 
Extra-haltbright mode, 17 
Extra-Half-Brite 

Clearing Plane 6, 360 
Setting Plane 6, 360 



EX1RA_HALFBRITE flag, 340-341 
Extra-Half-Brite mode, 356 
fast floating-point library, 547 
Fast memory, 240 
FastRandO,917 
Fatal system error, 321 
CommandTable, 772 
DISABLE mutual-exclusion mechanism, 308 
DoSpecialO, 772-773 
InitRequesterO, 141 
io_TermArray,740 
LockIBaseO, 199 
PDCMD_SETPARAMS,740 
Troubleshooting Guide, 909 
UnlockIBaseO,199 
fcloseO, 918 
fgetcO,918 
FgPen,400 
FgPen variable 

in area drawing and filling, 367 
in complement mode, 362 
in flood fill, 369 
in JAMI mode, 361 
in line drawing, 366 
in RastPort, 361 
in rectangle fill, 370 
with BltTemplate, 376 

inputevent.h, 695 
FileSysEntry, 539, 544 
FileSysHeaderBlock, 538-539, 543 
filesysres.h, 545 
FileSysResource, 538, 545 
FileSystem.resource, 544 
mathieeedoubbas_lib.lib, 565 
FinalPC, 248 
FindBoards.c, 528 
FindConfigDevO, 528 
FindNameO, 252 
FindPortO, 282 
FindToolTypeO, 587 
First-In-First-Out (FIFO), 251, 279 
Flags variable, 478 

in layers, 511 
with BNDRYOFFO macro, 368 

Flashing the display, 210 
flicker, 112,379,381 
FloodO,369 
Floppy Boot Process, 921 
Floppy Disk, 884 
Floppy Drive, 538 
Floppy Format, 921 
Floppy Physical Layout, 921 
Floppy Technical, 921 
font accessors, 412 

font flags 
FPF _DESIGNED, 411 
FPF_DISKFONT,411 
FPF _PROPORTIONAL, 411 
FPF _REMOVED, 411 
FPF _REVPATH, 411 
FPF _ROMPONT, 411 

font height, 410 
font style 

BOLD, 411 
EXTENDED, 411 
ITALIC, 411 
NORMAL, 411 

font width, 411 
FontContents structure, 408 
FontContentsHeader structure, 408 
Fonts, 100 
fonts, 395 
Fonts 

custom, 19 
default, 19 
in creating text, 179 
Topaz, 19 

ForbidO, 271, 593 
Forbidding, 271 
foreground pen, 361 
FOREVER loop, 353 
fpaO,919 
fprintfO, 918 
fputcO,918 
fputsO,918 
Free memory, 248 
FreeColorMapO, 353 
FreeCopListO, 353 
FreeCprListO,353 
FreeDiskObjectO,581 
FreeEntryO, 243, 246 
FreeMemO,241 
FreeRasterO, 353 
FreeRememberO, 200 

example code, 201 
FreeSignalO, 270, 277 
FreeSpriteO,431 
FreeTrapO, 277 
Free VPortCopListsO, 353 
Frequency, 608 
Frequency modulation, 608 
FTXT,629 
Function keys, 192 
Gadget Structure, 90 
Gadget structure, 583 
Gadget style, 214 
Gadgets 

boolean type 



BoolInfo structure, 94 
hit select, 82 
toggle select, 82 

combining types, 89 
enabling and disabling, 81 
gadget structure, 90 
hand-drawn, 75 
highlighting, 80 
in window borders, 79 
integer type, 88 
line-drawn, 76 
proportional, 83 

Proplnfo structure, 95 
refreshing, 81 
select box, 77 
selection of, 77 
string 

description, 87 
Stringlnfo structure, 96 

without imagery, 76 
gadgets.c, 100 
gadgets.h,100 
Gameport Connectors, 694 
Gameport Device 

connectors, 683 
system functions, 684 
triggering events, 686 
units, 683, 694 

GameTrigger structure, 686 
GELGONE Flag 

in VSprite structure, 436 
GELS 

introduction, 421 
types,422 

Gelslnfo pointer, 360 
Gelslnfo structure, 440 
getcharO, 918 
GetColorMapO, 353 
GetCurrentBindingO, 530 
GetDeiPrefsO, 204, 209 
GetDiskObjectO, 581 
GetMsgO, 286, 295 
GetPrefsO, 166, 204, 208 
GetRGB40, 348 
GetScreenDataO, 24 
GetSpriteO, 429 
GfxBase variable, 346 
Gimmezerozero window 

gadgets in, 38 
requesters in, 38 

Gimmezerozero window type, 37 
GPD_ASKCTYPE command, 684 
GPD_ASKTRIGGER command, 688 
GPD_READEVENT command, 688 

GPD_SETCTYPE command, 685 
GPD_SETTRIGGER command, 686 
graniteWindow.h,7 
Graphics 

Amiga primitives, 187 
special Intuition functions, 187 

graphics library, 346 
graphics/text.h, 399 
HAM flag, 340-341,357 
Hard Disk, 538 
HardBlocks, 538 
hardware interrupts, 305 
Hardware Manufacturer Number, 527 
hardware sprites 

in animation, 349 
hardware Sprites 

reserving, 440 
hardware/intbits.h,310 
Harmony,607 
Height variable 

in ViewPort, 337 
in VSprite structure, 437 

Height VSprite member 
and Bobs, 454 

hellogoodbye.h, 59 
hellotext.h, 59 
High-resolution mode, 16 
HIRES flag, 340 
hires.h,7 
HitMask member, 468 
Hold-and-modify mode, 17 
hold-and-modify mode, 357 
HP _LaserJet 

Example source files, 822 
icon library, 580 
IDCMP,700 

closing, 162 
flags, 163 
IntuiMessages, 162 
message ports, 161 
monitor task, 167 
opening, 161 
Requester features, 139 
UserPort, 167 
verification functions, 166 
WindowPort, 167 

IDCMPFlags, 125 
IDNestCnt counter, 319 
IECLAS S_POINTERPOS , 698 
IFF,629 
ILBM,629 
Illegal instruction, 275 
Illustration Data Types, 173 
Image Structure, 100 



Image structure, 584 
ImageData pointer 

changing Bobs, 460 
changing VSprites, 440 
in Bobs, 455 
in VSprite structure, 437 

Images 
data, 181 
defining, 180 
displaying, 174, 183 
example, 185 
Image structure, 184 
location, 181 

ImageShadow member 
in Bobs, 456 
with OVERLAY flag, 449 

IND_ADDHANDLER Command, 695 
IND_REMHANDLER Command, 697 
IND_SETPERIOD Command, 699 
IND_SETIHRESH Command, 699 
IND_ WRlTEEVENT Command, 697 
.. .info" file, 581 
InitAreaO, 359 
InitBitMapO, 56, 347 
InitialPC, 265 
InitMasksO 

changing Bob image shadow, 461 
defining collision mask, 467 
with Borderline, 468 

InitRastPortO,358 
InitResidentO, 530 
InitStructO,246 
Inner window 

in Gimmezerozero windows, 37 
with the console device, 38 

Input device, 156 
Input Device 

adding a handler, 695 
commands, 694 
designing an input handler, 696 
event handler, 696 
IOStdReq block, 695 
generating input events, 697 
key repeat events, 699 
memory deallocation, 697 
opening, 693 
removing a handler, 697 
setting key repeat interval, 699 
setting key repeat timing, 699 

Input event, 156 
Input Event Chain, 696 
Input Event Structure, 694 
Input Events 

generators of, 697 

Intuition handling of, 695 
Input handler, 227 
Input Request Block, 697 
Input stream, 156,227 
InputHandlerO,662 
Input/output 

IDCMP,161 
Input device, 156 
input stream, 156 
paths, 157 

InsertO, 250 
INTEN interrupts, 307 
INTENA register, 306 
Interchange File Format, 629 
Interlaced mode, 16 
international compatibility, 914 
Interrupt, 893 
Interrupt structure, 308 
interrupts 

68000 interrupt request signals, 306 
68000 priority levels, 306 
autovectors, 306 
deferred, 307 
disable, 309 
disabling, 319 
handlers, 308-309 
hardware registers, 306 
non-maskable (NMI), 307 
priorities, 306 
server return value, 314 
servers, 308,314 
software, 316 

Inter-system communication, 279 
INTREQ register, 306 
IntuiMessage, 89 
IntuiMessage structure, 162 
IntuiMessages, 162 
IntuiText, 59 
IntuiText Structure, 100 
IntuiText structure, 179 
Intuition, 429 

as input device handler, 695 
mouse input, 694 

IntuitionBase, 199 
and other System locks, 199 
private fields of, 199 

INVERSVID,401 
INVERSVID mode 

in drawing, 362 
invisible pointer, 59 
I/O 

asynchronous, 292,295 
performing, 294 
quick I/O, 296 



synchronous,291,294 
I/O commands 

abort all I/O requests, 293 
clear internal buffers, 293 
continue after a stop, 293 

I/O Commands 
definition of, 290 

I/O commands 
force out internal buffers, 293 
non-standard,291 
read from a device unit, 293 
reset the device unit, 293 
standard, 293 
stop device unit, 293 
when errors occur, 295 
write to a device unit, 293 

10 Request Block, 539 
I/O requests 

completion, 295 
I/O Requests 

definition of, 290 
I/O requests 

multiple, 295 
10Audio, 609 
10ClipReq, 629 
10DRPReq structure, 745 
10ExtSer Structure, 860 
10ExtTD Structure, 886 
10PrtCmdReq structure, 745 
10Request structures, 290 
10StdReq structure, 291, 641 
io_TermArray,864 
ltemAddressO, 117, 125 
JAMl,400 
JAMI mode 

in drawing, 361 
with INVERSVID, 362 

JAM2,400 
JAM2mode 

in drawing, 361 
joystick controller, 685 
KBD_ADDRESETHANDLER command, 708 
KBD_READEVENT command, 712 
KBD_READMATRIX command, 706 
KBD_REMRESETHANDLER command, 709 
KBD_RESETHANDLERDONE command, 709 
KCmpStrO,919 
Keyboard 

as alternate to mouse, 193 
command keys, 192 

keyboard device 
keyboard events, 705 
system functions, 706 

Keyboard Layout, 658 

keymap 
dead-class keys, 669 

KeyMap structure, 663 
keymap.h, 665 
keymap.i, 665 
KGetCharO,919 
KGetNumO,919 
KMayGetCharO,919 
KPrintFO,919 
KPutCharO,919 
KPutStrO,919 
LACE flag 

in View and ViewPort, 343 
in ViewPort, 340 

Last-In-First-Out (LIFO), 251 
layer refresh 

simple refresh, 511 
smart refresh, 512 
SuperBitMap, 512 

LAYERBACKDROP flag, 512 
Layeclnfo structure, 507, 513 
layers 

accessing, 509-510 
backdrop,512 
blocking output, 510 
clipping rectangle list, 514 
creating, 508, 513 
creating the workspace, 513 
deleting, 508 
moving, 508 
order, 509 
redrawing, 510 
scrolling, 508 
sizing, 508 
sub-layer operations, 510 
updating, 510 

Layers Library 
introduction, 505 
opening, 512 

LA YERSIMPLE flag, 511 
LAYERS MART flag, 511 
LA YERSUPER flag, 511 
LEFTHIT flag, 470 
leftmost member 

Gelslnfo structure, 436 
in BobNSprite collisions, 470 

libraries 
adding, 234 
caching a pointer, 233 
calling a library function, 232 
CLOSE vector, 235 
definition of, 229 
EXPUNGE vector, 235 
OPEN vector, 235 



relation to devices, 237 
RESERVED vector, 235 

libraries/configvars.h, 528 
libraries/filehandler.h, 545 
Library 

romtag,234 
library 

version, 231 
Library structure, 236 
Line 1010 emulator, 275 
Line 1111 emulator, 275 
line drawing, 365 
line pattern, 362 
LinePtrn variable, 367 
Lines 

Border structure, 177 
colors, 176 
coordinates, 175 
defining, 175 
displaying, 174 
drawing modes, 176 
linking, 176 

lines 
multiple, 366 
patterned, 366 

List structure, 255 
List Structures, 249 
Lists 

empty lists, 257 
prioritized insertion, 251 
scanning a list, 258 
searching by name, 252 
shared lists, 260 

LoadRGB40, 348 
LoadSeg.539 
LoadSegBlock,538-539,544 
LoadSegmentO.41O 
LoadViewO, 209 

effect of freeing memory, 353 
in display ViewPorts, 350 

Locking, 273 
LockLayerO, 510 
LockLayerInfoO, 509 
LockLayersO, 510 
LOFCprList variable, 356 
logic equations, 377 
long-frame Copper list, 356 
Low-resolution mode,16 
main.c, 7 
~eDo~odeO,530,533,539 

parameter packet, 531 
~LibraryO, 234 
~ScreenO, 25, 209 
~ViewPortO 

and Simple Sprites, 429 
~eVPortO, 209, 349 

allocating memory, 353 
in double-buffering, 356 
in dual playfield display, 354 

Manufacturer 10,528 
Mask variable, 360, 376 
Masked Boolean Gadget, 100 
Masking interrupts, 272 
MatchToolValueO, 587 
math library, 547 
mathffp.library, 549 
mathieeedoubbas_lib.lib, 563 
mathieeedoubbas.library, 563 
MathleeeDoubTransBase, 568 
mathieeedoubtrans_lib.lib, 569 
mathieeedoubtrans.library, 568 
mathtrans.library, 554 
maxx variable, 374 
maxy variable, 374 
MeMask member, 468 
memblock pointer, 372 
MemChunk structure, 248 
MemEntry structure, 244-245 
MEMF _CHIP, 240 
MEMF _CLEAR, 240 
MEMF _FAST, 240 
MEMF_PlT.BLIC, 240 
MemHeader structure, 247 
MemList structure, 243, 245 
memory 

allocation, 200 
allocation for BitMap, 347 

Memory 
allocation within interrupt code, 241 
clearing, 240 

memory 
clearing, 372 

Memory 
custom chips, 57 

memory 
deallocation, 200 
deallocation of, 360 

Memory 
deallocation within interrupt code, 241 
fast, 240 

memory 
for area fill, 359 

Memory 
free, 239, 248 

memory 
freeing, 353 

Memory 
location of, 240 



memory 
loss, 912 
problems, 910 

Memory 
public, 240 

memory 
Remember structure, 201 
RememberKey, 201 

Memory 
size 

allocation,239 
deallocation,239 

special-purpose chip, 240 
memory.h, 243, 247 
memory.i, 247 
Menu boxes 

item, 112 
subitems, 112 

Menu checlcmark, 113 
Menu commands 

actions, 110, 113 
attributes, 110, 113 

Menu Items 
command key shortcuts, 193 

Menu items 
enabling and disabling, 116 

Menu numbers 
how they work, 117 
how to get them, 116 

Menu selection 
by user, 111 

Menu strips 
changing, 116 
removing, 111 
submitting, 111 

Menu structure, 120 
Menu style 

edit menus, 213 
project menus, 213 

Menu system 
activating, 110 

MenuItem structure, 121 
Menus 

command-key sequences, 115 
enabling and disabling, 116 
intercepting operations 

MenuVerify,119 
RMBTRAP, 120 

menu numbers, 116 
Menu structure, 120 
MenuItem structure, 121 
mutual exclusion, 113 
requesters, 120 

menus.c, 125 

menus.h, 125 
MENUTOGGLE,114 
Message, 279 
Message arrival action, 280 
Message ports 

creation, 281 
deletion, 282 
public, 281 

Messages 
getting, 286 
IDCMP,162 
menu selection, 116 
mouse, 191 
putting, 283 
replying, 286 
waiting for, 284 

MICROHZ Timer Unit, 872 
MinList structure, 254 
MinNode structure, 253 
minterm variable, 377 
Misc Resource, 905 
misc.resource, 905 
Modes variable 

in View structure, 345 
in ViewPort,-339-340 

ModifyIDCMPO, 139, 161, 163, 167-168 
ModifyPropO,82,87 
modulo, 375 
Mount, 538-539 
Mouse 

basic activities, 190 
combining buttons and movement, 190 
dragging, 191 
keyboard as alternate, 193 
left (select) button, 190 
messages, 191 
right (information transfer) button, 190 
style, 218 

Mouse Button, 695 
mouse button events, 662 
Mouse Button Events, 693 
Mouse Button Philosophy, 190 
mouse controller, 684 
Mouse Movement Events, 693 
mouth structure, 719 
MoveO, 365, 396 
MoveLayerO, 508 
MoveLayerInFrontOfO, 509 
MoveScreenO, 24 
MoveSpriteO, 210,430 
MoveWindowO, 56 
MrgCopO, 209, 356 

in graphics display, 349 
installing VSprites, 443 



merging Copper lists, 353 
MsgPort, 611 
MsgPort structure, 2S0 
Multiple Clips, 630 
Multitasking, 261 
Mutual exclusion, 273 
mutual exclusion, 309 
Mutual Exclusion 

in gadgets, 79 
Mutual exclusion 

in menus, 113 
narrator device 

Arpabet,721 
consonants, 722 
content words, 723 
contractions, 722 
controlling speech characteristics, 718 
function words, 723 
improving intelligibility, 725 
introduction, 715 
mouth shape, 719 
opening, 717 
phonemes, 721 
phonetic spelling, 721 
punctuating phonetic strings, 721 
punctuation, 724 
reading and writing, 719 
recommended stress values, 724 
special symbols, 722 
speech synthesis system, 726 
stress and intonation, 723 
stress marks, 723 
translator library, 716 
vowels, 721 

narrator.h,719 
narrator.i,719 
narratocrb structure, 718 
nested disabled sections, 319 
NewFontContentsO, 409 
NewLayerInfoO,507 
NewListO, 256, 917 
NewModifyPropO, 82, 87,99 
NewRegionO,515 
NewScreen 

SPRITE flag, 429 
NewScreen structure, 20 
NewWindow structure, 47,583 
Next variable, 347 
NextComp pointer 

in sequenced drawing, 475 
NextSeq pointer 

in sequenced drawing, 476 
NMI interrupts, 307,314 
Node structure, 253 

Nodes 
initialization, 254 
inserting, 250 
priority, 254 
removing, 250 
successor and predecessor, 253 
text names, 254 
type, 254 

NO_ICON_POSITION, 584 
Non-interlaced mode, 16 
NOTEQUAL status code, 380 
ObtainConfigBindingO, 530 
OffGadgetO, 81-82, 93, 214 
OtIMenuO, 116, 121, 123-124,212 
ON_DISPLAY macro, 443 
OnGadgetO, SI-82, 93 
OnMenuO, 116, 121, 123-124 
ON_SPRITE macro, 443 
OpenO,744 
O-Pen 

see AOlPen, 361 
OpenConsoleO, 640-642 
OpenDeviceO, 294, 296, 609-610, 628,640, 642, 662 
OpenDiskFontO, 398, 403,412 
OpenFontO, 398, 412 
OpenLibraryO, 230, 234 
OpenScreenO, 23, 35 
OpenWindowO, 35,167 
OpenWorkBenchO, 14,25,218 
OrRectRegionO,517 
OrRegionRegionO,518 
outline mode, 369 
outline pen, 361 
OVERLAY flag 

in VSprite structure, 449 
Overscan 

Effect on the Viewing Area, 329 
OwnBlitterO, 379 
PAL,528 
parallel device 

errors, 742 
PDCMD_SE1PARAMS, 740 
flags, 741 
opening, 738 
termination of reads, 740 

PartitionBlock,538-539,542 
Partitions, 538 
Paste, 627 
Paula, 306 
Pending Post, 630 
Period,60S 
PermitO,271 
PFBA flag 

in dual playfield mode, 342 



in ViewPort, 340 
Philosophy, 1,5 
Pixel, 16 
pixel width, 342 
PlaneOnOff member 

changing Bob color, 461 
in Bobs, 457 

PlanePick member 
changing Bob color, 461 
in Bobs, 456 

PLANEPTR, 347 
PlayField Animation 

introduction, 423 
Pointer 

custom, 57 
messages, 46 
position in gadgets, 78 
position in Gimmezerozero windows, 38 
position in windows, 46 
variables, 46 

Polling, 263 
PolyDrawO, 366 
polygons, 367 
Port, 279 
PORTS interrupts, 307, 314 
ports.h, 280, 283 
ports.i, 280, 283 
Post, 627, 629-630 
POTGO Resource, 907 
potgo.resource, 907 
powecoCtwo variable, 363 
PRD_DUMPRPORT,752 
Precedence, 608 
preemptive task scheduling, 306 
Preferences 

getting user settings, 204 
structure, 205 

Prep, 538 
Preserving the display 

Simple Refresh, 42 
Smart Refresh, 43 
SuperBitMap,44 

PrevComp pointer 
in sequenced drawing, 475 

PrevSeq pointer 
in sequenced drawing, 476 

PrintCommandO, 749 
PrintDevCommandO, 747 
printer device 

alphanumeric drivers, 772 
buffer deallocation, 769 
changing printer preferences, 762 
closing DOS printer device, 745 
command definitions, 749 

CommandTable, 772 
creating an I/O request, 746 
creating drivers, 763 
data structures, 745 
direct use, 744 
double buffering, 767 
dumping a RastPort, 752 
dumping buffer, 768 
Exec printer 1/0,745 
getting status, 760 
graphics printer drivers, 766 
handling printer error codes, 755 
opening, 746 
opening ArnigaDOS printer device, 744 
Preferences, 765,773 
printing with corrected aspect ration, 753 
processes and tasks, 745 
PRT:,749 
sending I/O commands, 747 
sending printer commands, 749 
strip printing, 759 
timeout, 765 
using directly, 745 
writing text, 748 

printer driver, 743 
character conversion routine, 775 
DoSpecialO, 772 
example source code, 777 
extended character table, 774 
printertag.asm, 771 
RenderO,766 
SetDensityO, 771 
testing, 776 
TransferO,769 

printer special flags, 753 
PrinterData structure, 765 
printerIO structure, 745 
printfO,918 
PrintITextO, 174 
Privilege violation, 275 
Process, 262 
Processes, 265 
Processor 

halting, 263 
interrupt priority levels, 272 

ProductID,528 
Proplnfo Structure, 95 
Proportional Gadget, 100 
Public memory, 240 
putcharO,918 
PutDiskObjectO, 581 
PutMsgO, 283 
QBlitO 

linking bltnodes, 380 



waiting for the blitter. 379 
QBSBlitO 

avoiding flicker. 379 
linking bltnodes. 380 
waiting for the blitter. 379 

Quantum. 262 
quartzWindow.h 

IDCMPDemo.c.168 
QueueReadO.647 
Queues. 251 
RangeRandO.918 
Raslnfo structure. 345 
RASSIZE macro. 345 
raster 

depth. 339 
dimensions. 344 
in dual-playfield mode. 340 
memory allocation. 345 
one color. 372 
Raslnfo structure. 345 
scrolling. 373 

RastPort 
in layers. 511 
pointer to. 364 

rastport variable. 374 
rastporth. 358 
rastporti. 358 
RawKeyConvertO.662 
RBF interrupts. 307 
ReadPixe10.365 
rectangle fill. 370 
rectangle scrolling. 373 
RectFillO. 370 
RefreshGadgetsO. 82 
RefreshGadgets. 99 
RefreshGListO. 82. 99 
RefreshWindowFrameO.55 
regions 

changing. 517 
clearing. 518 
creating. 515 
removing. 515 

register parameters. 309 
registration point. 478 
ReleaseConfigBindingO.530 
RemakeDisplayO. 26. 209 
RemBobO.459 
Remember structure. 201 
Remembering. 200 
RemFontO.41O 
RemHeadO.251 
RemIBobO. 459 
RemlntServerO.314 
RemoveO.251 

REMOVE macro. 257 
RemoveGadgetO. 79 
RemoveGListO.98 
RemPort(). 282 
RemTailO.251 
RemTaskO. 268 
RemTOFO.917 
Rem VSpriteO. 439 
Rendezvous. 282 
ReplyO. 162. 165 
Replying. 279. 286 
ReplyMsgO. 166.286 
ReplyPort.641 
ReportMouseO.46.54 
Request(). 54 
Requester structure. 141 
Requesters. 135 

an alternative to. 137 
as menus. 120 
as Super Menus. 135 
displaying. 136. 138 
Double-Menu. 138 
gadgets in. 13~ 
IDCMP features. 139 
keyboard equivalents in. 139 
low-memory situations. 143 
nesting. 137 
on custom screens. 138 
positioning. 136 

POINTREL.138 
rendering. 137 
simple. 139. 144 
structure. 141 
"verify" dead-lock. 139 

Resident 
structure. 234 

resources/filesysres.h. 545 
RethinkDisplayO. 25. 209 
RHeight. 344 
RIGHTHIT flag. 470 
rightmost member 

Gelslnfo structure. 436 
in BobNSprite collisions. 470 

RigidDiskBlock.538 
RINGTRIGGER flag 

in AnimComps. 478 
in linking AnimComps. 479 
moving registration point. 478 

RingXTrans variable 
in ring processing. 479 
moving registration point. 478 

RingYTrans variable 
in ring processing. 479 
moving registration point. 478 



ROM Diagnostic Routine, 533 
ROM Image, 533 
ROM Protocol, 531 
romtag,234 
ROMTAG Init Time, 537 
ROM-Wack, 321 
R113instruction,309 
RTS instruction. 265, 274, 309, 314 
RWidth,344 
RxOffset variable 

effect on display, 344 
in Raslnfo structure, 345 
in ViewPort display memory, 343 

RyOffset variable 
effect on display, 344 
in RasInfo structure, 345 
in ViewPort display memory, 343 

Sample, 608 
SatisfyMsg,629 
SA VEBACK flag 

in VSprite structure, 449 
SA VEBOB flag 

changing Bobs. 461 
in Bobs, 453 

SaveBuffer member 
in saving background, 449 
with SA VEBACK,449 

SA VEPRESERVE flag, 454 
Scheduling, 262 
screen display memory. 15 
Screen structure, 23 
Screens 

active, 13 
color, 17 
custom, 15 
depth, 17 
display modes, 16 
gadgets 

custom, 20 
system. 12 

height and width, 19 
position 

dimensions, 19 
Screen structure, 23 
title 

current, 20 
default, 20 
effect of Backdrop window on, 20 

Workbench,13 
ScreenToBackO, 24 
ScreenToFrontO, 24 
scrolling. 373 
ScrollLayerO. 508, 512 
ScrollRasterO. 373 

ScrollVPortO,348 
SCSI, 539 
SCSI Identify Command, 541 
SDCMD_SETPARAMS, 866 
Semaphore, 530 
Semaphores, 273, 300 
SendIOO,292, 295, 611,618, 628,638 
SendlO,647 
Serial Device 

break conditions, 864 
buffers, 861 
closing, 861 
EOF mode, 864 
error codes, 869 
flags on open, 860 
introduction, 859 
10 request structures, 860 
io_TermArray,864 
multiple ports, 869 
parameter changes, 866 
Quick 10, 863 
reading, 862 
SDCMD_SETPARAMS, 866 
separate tasks, 865 
serial flags, 868 
terminating the read, 864 
writing, 861 

SetAPenO, 400 
SetBPenO. 400 
SetCollisionO, 466 
SetCurrentBindingO. 530 
SetDMRequestO, 54 
SetDrPtO, 366 
SetFontO, 398 
SetFunctionO,236 
SetIntVectorO. 306, 310 
SetKeyMapO,662-663 
SetMenuStripO,53, 111.116, 124-125 
SetFointerO, 46, 54, 57, 59 
SetRastO, 372 
SetRGB40, 17,46,219 
SetRGB4CMO, 348 
SetSignalO, 270 
SetSoftStyleO, 402 
SetTaskPriO, 264 
SetWindowTitlesO, 20, 55 
SHFCprlist variable, 356 
Shortcuts 

menu, 217 
selection, 216 

short-frame Copper list, 356 
ShowTitleO, 16.20,23,39 
SigExceptO, 274 
SignalO, 271 



Signal bit number, 280 
Signal Semaphore, 300 
Signals 

allocation, 269 
coordination, 269 
exception, 274 
on arrival of messages, 280 
waiting for, 270 

Simple Refresh, 42 
Simple Sprite 

allocation,429 
colors,428 

Simple Sprite colors 
and 

ViewPorts", 428 
Simple Sprites 

functions, 429 
GfxBase, 441 
in Intuition, 429 
position, 428 
simple definition, 422 

SimpleSprite structure, 428 
single-buffering, 345 
SizeLayerO. 508, 512 
SizeWindowO,56 
Sizing Gadget, 74 
Smart Refresh, 43 
SOFI'INT interrupts, 307 
software clipping 

in filling. 368 
in line drawing. 366 

Software interrupts, 280-281 
software interrupts, 305, 307,316 
SortGListO 

changing Bobs, 461 
ordering GEL list, 442 
with DoCollisionO, 481 

Sound,flJ7 
Sound Synthesis, 608 
source variable, 376 
SpecialInfo Structures, 94 
speech 

see narrator device, 716 
speech output 

introduction, 715 
SprColors pointer 

changing VSprites, 440 
in VSprite structure, 438 
in VSprite troubleshooting, 441 

sprintfO,918 
Sprite 

pairs, 428 
Sprite Animation 

introduction, 423 

sprite data, 210 
Sprite DMA, 441 
Sprite mode, 17 
Sprite pointer 

colors, 219 
sprites, 210 
Sprites 

as pointer, 46 
sprites 

color, 341 
Sprites 

data memory location, 57 
sprites 

display, 338 
Sprites 

in Intuition windows & screens, 210 
reserving, 440 

sprRsrvd GelsInfo member 
in reserving Sprites, 440 

srcMod variable, 376 
srcX variable, 376 
stack 

overflow, 910 
Stack overflows, 268 
stencil drawing, 374 
Stereo, 615 
String Gadget, 100 
StringInfo Structure, 96 
Structure 

CurrentBinding, 530 
DiagArea,532 
ExpansionRom, 532 
IOAudio, 609 
IOClipReq, 629 
Keymap,663 
SatisfyMsg, 629 

Structures 
access to global system structures, 271 
BoolInfo, 94 
Border, 177 
Gadget, 90 
Image, 184 
IntuiMessage, 162 
IntuiText, 179 
Menu, 120 
MenuItem, 121 
NewScreen, 20 
NewWindow,47 
Preferences, 205 
PropInfo, 95 
Requester, 141 
Screen, 23 
shared, 271 
SpecialInfo, 94 



StringInfo,96 
Window, 52 

Submenu, 212 
SubTimeO, 875 
SuperBitMap refresh, 44 
SuperBitMap window 

description, 39 
setting up the BitMap, 56 

Supervisor modes, 275 
supervisor modes, 306, 308 
SwapBitsRastPortClipRectO, 510 
SYS:Expansion, 529 
sysgads.h, 7 
System Gadgets 

placement, 73 
System gadgets 

screens, 12 
windows, 39 

System Initialization, 528 
System stack, 275 
system stack, 308 
System Time, 876 
Task,261 
Task signal, 280 
Task structure, 264 
Task-private interrupts, 274 
task-relative interrupts, 305 
Tasks 

cleanup, 268 
communication, 269 
coordination, 269 
creation 

initialPC, 265 
stack,265 

deallocation of system resources, 268 
finalPC, 268 
forbidding, 271 
initialPC, 268 
non-preemptive, 271 
priority, 264 
queues 

ready queue, 264 
waiting queue, 264 

scheduling 
non-preemptive, 262 
preemptive, 262 

stack 
minimum size, 268 
overflows, 268 
supervisor mode, 267 
user mode, 267 

states 
added,263 
exception, 263 

removed, 263 
running, 263 
waiting, 263 

termination, 268 
tasks.h, 264 
tasks.i,264 
TBE interrupts, 307 
tc_MemEntry,246 
TD_ADDCHANGEINT Command, 893 
TDB_ALLOW _NON_3_5,887-888 
TD _CHANGENUM Command, 892 
TD_CHANGESTA TE Command, 892 
TDF _ALLOW _NON_3_5, 887-888 
TD_FORMAT Command, 891 
TD _GETDRIVETYPE Command, 892 
TD _GE1NUMTRACKS Command, 893 
TD _MOTOR Command, 890 
TD _PROTSTA TUS Command, 892 
TD_RA WREAD Command, 894 
TD_RA WWRITE Command, 895 
TD _REMCHANGEINT Command, 894 
TD_SEEK Command, 896 
testing, 914 
Text, 395 
TextO, 397, 403 
text 

baseline, 396 
BOLD,402 
changing font style, 402 
character data, 412 
character kern, 413 
character location, 413 
character space, 413 
color, 400 

Text 

text 
colors, 178 

cp_x variable in, 396 
cp_y variable in, 396 
cursor position, 396 
default fonts, 398 

Text 
defining, 178 

text 
defining fonts, 410 
disk fonts, 410 

Text 
displaying, 174, 179 
drawing modes, 178 

text 
DrawMode 

COMPLEMENT,400 
INVERSVID,401 
JAMI mode, 400 



JAM2 mode, 400 
example 

FontParade,404 
ShowDefaultFont, 397 
ShowDrawModes, 401 
ShowOpenFont, 399 
suits8,414 
Wrapper, 417 

EXTENDED,402 
Text 

fonts, 179 
text 

InitRastPortO in, 399 
inter-character spacing, 403 

Text 
IntuiText structure, 179 

text 
ITALIC, 402 

Text 

text 
linking, 179 

modulo, 412 
NORMAL,402 
printing,397 
range of characters, 412 
RastPort structure in, 395 
relative font path, 403 
selecting a font, 398 

text to speech 
introduction, 715 

TextAttr structure, 19,399 
TextFont structure, 410 

Node structure in, 410 
Texd..engthO, 408 
Time 

getting current values, 209 
Time Events, 693 
Timer Device 

arithmetic routines, 877 
OpenDeviceO, 873 
units, 871 

Timer variable, 478 
TimerBase Variable, 877 
timerequest Structure, 872 
TimeSet member 

of AnimComp structure, 478 
Time-slicing, 262 
timeval Structure, 872 
Title 

screen, 20 
window, 37,41 

Title bar . 
screen, 12 
window, 41 

toggle selection, 113 
toggle-select, 114 
ToolType 

expansion, 530 
PRODUCT, 530 

ToolTypes array, 586 
Topaz font, 18 
TOPHIT flag, 470 
topmost member 

Gelslnfo structure, 436 
in BobNSprite collisions, 470 

Trace, 275 
Trackdisk Device 

status commands, 891 
trackdisk.device 

diagnostic commands, 896 
diskchange, 893 
diskcopy code, 897 
error codes, 897 
low-level access, 894 
OpenDeviceO, 887 

TranslateO, 575, 716 
output buffer, 576 

translator library, 575 
exception rules, 576 

TRAP 
address error, 275 
bus error, 275 
CfUK instruction, 275 
illegal instruction, 275 
line 1010 emulator, 275 
line 1111 emulator, 275 
privilege violation, 275 
trace, 275 
trap instructions, 275 
TRAPV instruction, 275 
zero divide, 275 

TRAP instruction, 268 
Traps,274 

instructions, 277 
supervisor mode, 275 
trap handler, 275 

TRAPS (68000 exceptions), 323 
TRAPV instruction, 275 
TR_GETSYSTIME, 876 
TR_GETSYSTIME Command, 875 
TR_SETSYSTIME Command, 875-876 
twowindows.c, 59 
Type styles, 18-19 
TypeOfMemO,243 
Unit Number, 630 
UnloadSegmentO,41O 
UnlockLayerO,510 
UnlockLayersO,51O 



UpfrontLayerO, 509 
User settings 

Preferences, 204 
UserExt member, 471 
VBEAM counter, 381 
VBLANK Timer Unit, 872 
Verification functions 

IDCMP,166 
VERTB interrupts, 307, 314 
Vertical Blank Frequency 

find current VB frequency, 687 
video priority 

in dual-playfield mode, 340 
View 

remaking, 209 
View structure 

Copper lists in, 356 
function, 335 
preparing, 346 

ViewAddressO,188 
ViewPort 

colors, 339, 348 
display instructions, 349 
display memory, 343 
displaying, 336 
function, 335 
height, 338 
interlaced, 343 
low-resolution, 347 
modes, 339-340 
multiple, 347 
parameters, 337 
remaking, 209 
width,338 
width of and sprite display, 339 

ViewPort structure, 346 
ViewPortAddressO, 188 
ViewPorts 

and Simple Sprite colors, 428 
Virtual display memory, 42 
Virtual terminal, 2, 33 
Virtual terminal windows, 34 
Vp _HIDE flag, 341 
VSOVERFLOW Flag 

in VSprite structure, 436 
VSOVERFLOW flag 

reserving Sprites, 440 
VSPRITE flag 

in VSprite structure, 449 
VSprite Flags 

and True VSprites, 436 
VSprites 

adding new features, 471 
building the Copper list, 443 

changing, 440 
color,438 
hardware Sprite assignment, 441-442 
merging instructions, 444 
PlayField colors, 442 
position, 436 
shape, 437 
simple definition, 422 
size, 437 
sorting the GEL list, 442 
troubleshooting, 441 
turning on the display, 443 

Wack, 321 
WaitO, 165-166,263,270-272,285,295,609,611 
WaitBlitO, 364, 372, 379 
WaitBOVPO, 353 
WaitIOO, 292, 295 
WaitPort(), 285, 609,611 
WaitTOFO, 353,444 
Waveform, 608 
WBENCHSCREEN, 125 
WBenchToBackO,25 
WBenchToFront(), 25 
WhichLayerO, 509 
Width variable 

in VSprite structure, 437 
Width VSprite member 

and Bobs, 454 
Window structure, 52, 637 
WindowLimitsO, 47, 51,55 
Windows 

activating, 36 
application gadgets in, 41 
Backdrop, 38 
Borderless, 37 
closing, 36 
colors, 47 
dimensions 

limits, 47 
starting dimensions, 47 

Gimmezerozero, 37 
graphics and text in, 47 
input/output, 35 
NewWindow structure, 47 
opening, 35 
pens,47 
pointer, 46 
preserving the display, 42 
refreshing the display 

NOCAREREFRESH,46 
Simple Refresh, 42 
Smart Refresh, 43 
SuperBitMap,44 

screen title, 20 



special types, 37 
SuperBitMap, 39 
system gadgets in, 39 
Window structure, 52 

WindowToBackO,56 
WindowToFrontO, 56 
Workbench 

application program, 14 
" .info" file, 581 
library, 14 
sample startup code, 594 
screen, 13 
shortcut key functions, 193 
start-up code, 593 
start-up message, 585, 593 
ToolTypes, 586 

Workbench object, 579 
WritePixelO, 365 
XAccel variable, 482 
Xerox_4020 

Example source files, 838 
xl variable, 374 
xmax variable, 370 
xmin variable, 370 
XorRectRegionO, 518 
XorRegionRegionO,518 
XTrans AnimComp member, 477 
XVel variable, 482 
Y Accel variable, 482 
yl variable, 374 
ymax variable, 370 
ymin variable, 370 
YTrans AnimComp member, 477 
YVel variable, 482 
Zero divide, 275 



Amiga Programming > $34.95 FPT USA 

.', 

Amiga® Technical Reference Series 

AM'G~ ROM KERNEL 
REFERENCE MANUAL: 

LIBRARIES & DEVICES 
REVISED & UPDATED 

The Amiga computers are exciting high-performance microcomputers with superb graph
ics, sound, multiwindow and multitasking capabilities. Their technologically advanced 
hardware is designed around the Motorola 68000 microprocessor family and sophisti
cated custom chips that control graphics, audio, peripherals, and input/output to other 
equipment. The Amiga's unique operating system software provides programmers with 
unparalleled power. flexibility, and convenience in designing and creating programs. 

Written by the technical experts who design the Amiga hardware and system software, 
AMIGA ROM KERNEL REFERENCE MANUAL: LIBRARIES AND DEVICES 
is now revised and updated for system software versions 1.2 and 1.3. It is the essential 
reference tool for all Amiga programmers. It gives an in-depth and thorough explanation 
of the powerful graphics, animation, text, math, and audio routines that make up the 
AmigasROM. 

This volume includes: 

a tutorial and comprehensive reference to the Amigas libraries and devices, 
now including both the multitasking Exec, and Intuition, the Amigas graphical 
user interface 
numerous working example programs illustrating the use of the Amigas 
ROM routines 
all new coverage of the system routines added in the VI.2 and VIJ revisions of the 
Amigas operating system 
new material on Exec semaphores, CIA resources, the Amigas expansion library, ROM 
tags, support libraries, PAL-NTSC compatibility, and a user interface style guide. 

For the serious programmer working in assembly language or C who wants to take 
full advantage of the Amigas impressive capabilities, AMIGA ROM KERNEL 
REFERENCE MANUAL: LIBRARIES AND DEVICES is the definitive source 
of information on the internal design and workings of the Amigas powerful 
system software. 

The revised Amiga Technical Reference Series includes two other volumes of vital infor
mation for Amiga programmers and developers: Amiga ROM Kernel Reference Manual: 
Includes and Autodocs contains the Autodocs for Library, Device, and Resource calls and 
the C and assembly language Amiga Include Files. Amiga Hardware Reference Manual 
is an in-depth description of the Amigas hardware and how it works. 

Cover design by Mike Fender 

• ~T 

Addison-Wesley Publishing Company, Inc. 9 780201 181876 

53495 

T s: R N n - ;:J nl. - 1. A 1. A ? - A 


