

Amiga
ROM Kernel Reference Manual:

Includes and Autodocs

Amiga
ROM Kernel Reference Manual:

Includes and Autodocs

Commodore-Amiga, Incorporated

Amiga Technical Reference Series

A
\A4

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

This manual corresponds to the V1.3 system software release.

Material written by:
Steve Beats, David Berezowski, Robert Burns, Eric Cotton, Sam Dicker, Andy Finkel, Larry Hilden-
brand, Randell Jesup, Neil Katin, Dale Luck, Jim Mackraz, R.J. Mical, Bryce Nesbitt, Bob Pariseau,
Rob Peck, Tom Pohorsky, Carl Sassenrath, Carolyn Scheppner, Stan Shepard, and Bart Whitebrook

Manual compiled by:
Bryce Nesbitt, Robert Burns, Carolyn Scheppner, and Nancy Rains. C cross-reference created by
John Toebes using Lattice C Version 5.0 by Lattice, Inc.

This book is dedicated to all those “busy guys’’ who made Amiga and who are Amiga.

Copyright © 1989 by Commodore-Amiga, Incorporated

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book and Addison-Wesley was aware of a trademark claim, the designations have been printed ir initial caps. Amiga is a registered trademark
of Commodore-Amiga, Incorporated and is used herein with their permission. Amiga 500, Amiga 1000, Amiga 2000, AmigaDOS, Amiga Workbench,
Amiga Kickstart, AUTOCONFIG, the Boing! and rainbow Checkmark logos are trademarks of Commodore-Amiga, Inc. 68000, 88020, 68030, 68040
and Motorola are trademarks of Motorola, Inc. CBM, Commodore, the Commodore logo, and Amiga are registered trademarks. Alphacom is a
registered trademark and Alphapro is trademark of Alphacom, Inc. Aztec C and Manx are trademarks of Manx Software Systems. Brother is a
registered trademark of Brother Industries, Ltd. Canon is a registered trademark of Canon USA Inc. CAPE and Inovatronics are trademarks of Inova-
tronics, Inc. Centronics is a registered trademark of Centronics Data Computer Corp. ColorMaster is a trademark of CalComp. Diablo is a registered
trademark of Xerox Corporation. Reading legal mush can turn your brain to guacamole! Epson is registered trademark of Epson America, Inc. Hisoft
and Devpac Amiga are trademarks of HiSoft. IBM is a registered trademark and Proprinter is a trademark of International Business Machines Corp.
Imagewriter and Apple II are trademarks of Apple Computer, Inc. LaserJet and PaintJet are trademarks of the Hewlett Packard Company. Lattice is
a registered trademark of Lattice, Inc. LetterPro 20 is a trademark of Qume Corporation. NEC is a registered trademark of NEC Information Sys-
tems. Okidata is a registered trademark of Okidata, a division of Oki America, Inc. Okimate 20 is a trademark of Okidata, a division of Oki America,
Inc. Pinwriter is a registered trademark of NEC Information Systems. UNIX is a registered trademark of AT&T.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder. Printed in the United States of
America from camera-ready mechanicals supplied by the authors. Published simultaneously in Canada.

Commodore item number: 327271-06

ISBN 0-201-18177-0
ABCDEFG-AL-909
First printing, January 1989

WARNING: The information described in this manual may contain errors or bugs, and may not function as described. An attempt has been made to
warn software developers via the use of the BUGS field of such documents, however, not all bugs will be so marked. All information is subject to
enhancement or upgrade for any reason including to fix bugs, add features or change performance. As with all software upgrades, full compatibility,
although a goal, cannot be guaranteed, and is in fact unlikely.

DISCLAIMER: COMMODORE-AMIGA, INC., (“*COMMODORE") MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED, WITH
RESPECT TO THE INFORMATION DESCRIBED HEREIN, IT'S QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. SUCH INFORMATION IS PROVIDED ON AN “AS IS” BASIS. THE ENTIRE RISK AS TO THEIR QUALITY AND
PERFORMANCE IS WITH THE USER. SHOULD THE INFORMATION PROVE DEFECTIVE, THE USER (AND NOT THE CREATOR, COM-
MODORE, THEIR DISTRIBUTORS NOR THEIR RETAILERS) ASSUMES THE ENTIRE COST OF ALL NECESSARY DAMAGES. IN NO EVENT
WILL COMMODORE BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT IN THE INFORMATION EVEN IF IT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

TABLE OF CONTENTS

Introduction

Library SUummariesccccceeevveeenerniennns
Device SUMMATIES ccivvieiriiieieneneenennnnnn.
Resource Summariescocvevevvninenenenen.
C Include Files - ‘“.h”” Files
Assembly Include Files - ““.i” Files
Linker Libraries ..ocooivvviiiiiiiiiiiiiinenns
Sample Device, Sample Library
Reference Charts oo,
IFF - Interchange File Format
Function Index .ooovvinr v,

Error Reports

In a complex technical manual, errors are often found after publication. When er-
rors in this manual are found, they will be corrected in the following printing. Up-
dates will be published in the AmigaMail technical support publication.

Bug reports can be sent to Commodore electronically or by mail. Submitted reports
must be clear, complete, and concise. Reports must include a telephone number and
enough information so that the bug can be quickly verified from your report. (lLe.
please describe the bug and the steps that preceded it.)

Amiga Software Engineering Group
ATTN: BUG REPORTS
Commodore Business Machines
1200 Wilson Drive

West Chester, PA 19380

USA

BIX: afinkel
USENET: bugs@commodore.COM or uunet!cbmvax!bugs

About this book

The Amiga Technical Reference Series is the official guide to programming the
Commodore-Amiga computers. This revised edition has been updated for version 1.3 of
the Amiga operating system and the new Amiga computer systems. The series has been
reorganized into three volumes. This volume, the Amiga ROM Kernel Reference
Manual: Includes and Autodocs, contains alphabetically organized autodoc function sum-
maries, listings of the Amiga system include files, and the IFF Interchange File Format
specifications and listings. This is the essential quick reference for all Amiga program-
mers.

The other manuals in this series are the Amiga ROM Kernel Reference Manual:
Libraries and Devices, with tutorial-style chapters on the use of each Amiga system
library and device, and the Amiga Hardware Reference Manual, a guide to hardware
level programming of the Amiga custom and peripheral chips.

This manual contains:

e Summaries for system library functions

e Summaries for system device commands

e Summaries for system resource calls

e C Language Include Files

e Assembly Language Include Files

e Documentation on ‘“‘Amiga.lib’’ and reference source code

e Updated sample library and device

e Handy Charts designed to ease debugging and exploring

e Documentation on the Interchange File Format standard (IFF)

The manual is a perfect companion for programming the Amiga.

About the examples

Except as noted, 68000 assembly language examples have been assembled under the
Metacomco assembler V11.0, the Inovatronics CAPE assembler V2.0, and the HiSoft
Devpac assembler V1.2. No substantial changes should be required to switch between
assemblers.

C examples have been compiled under Lattice C, version 4.01 and Manx Aztec C68K,
version 3.6a. Default compiler options are used in both cases. All the C examples
assume that the automatic CTRL-C feature of the compiler has been disabled. With the
exception of those examples in Section A, this code must be added to each example to
complete it:

Introduction-1

For Aztec C
Compile with: cc <filename>.c

In <filename.o> -lc

/* Add this near the top */

#include ”functions.h”

/* Add this before main() */

extern int Enable_Abort; /* reference abort enable */

/* Add this after main(), as the first active line in the program */

Enable_Abort=0; /* turn off CTRL-C */

For Lattice C revisions 4.0 and greater

Compile with: le -L <filename>.c

/* Add this function before main(). This overrides the default
* Lattice CTRL-C trap. If this function returns zero, then the
* CTRL-C event will be ignored */
int CXBRK()

{
}

return(0);

General Amiga Development Guidelines

The environment of the Amiga computer is quite different than that of many older
computers. The Amiga is multitasking, which means multiple programs must
share the same machine without interfering with each other. It also means that
certain guidelines must be followed during programming.

Always make sure you actually GET what you ask for. This applies to
memory allocations, windows, screens, file handles, libraries, devices, ports, etc.
Where an error value or return is possible, ensure that there is a reasonable
failure path. Many poorly written programs will appear to be reliable, until
some error condition (such as memory full or a disk problem) causes the pro-
gram to continue with an invalid or null pointer, or branch to untested error
handling code.

Always clean up after yourself. This applies for both normal program exit and
program termination due to error conditions. Anything that was opened must
be closed, anything allocated must be deallocated. It is generally correct to do
closes and deallocations in reverse order of the opens and allocations. Be sure
to check your development language manual and startup code; some items
may be closed or deallocated automatically, especially in abort conditions. If

Introduction-2

you write in the C language, make sure that when CTRL-C is pressed, your
program gracefully closes down and exits.

Remember that memory, peripheral configurations, and ROMs differ between
models and between individual systems. Do not make assumptions about
memory address ranges, storage device names, or the locations of system struc-
tures or code. Do not jump into the ROM directly. Do not assume library
bases or structures will exist at any particular memory location. The only
absolute in the system is address 0x00000004, which contains a pointer to the
exec.library base.

Do not assume that programs can access hardware resources directly. Most
hardware is controlled by system software and resources that will not respond
well to interference. Shared hardware requires programs to use the proper
sharing protocols. Using the defined interface enhances the probability that
your software will continue to operate on future Amiga computers.

Do not access shared data structures directly without the proper mutual exclu-
sion (locking). Remember that other tasks may be accessing the same struc-
tures.

The system does not monitor the size of a program’s stack. Take care that
your program does not cause stack overflow, and provide enough leeway for
the possibility that future revisions of system functions might require addi-
tional stack space.

If your program waits for external events like menu selection or key-strokes,
do not bog down the multitasking system by busy-waiting in a loop. Instead,
let your task go to sleep by Wait()ing on its signal bits. For example:

signals = (ULONG)Wait((1 < <windowPtr->UserPort->mp_SigBit) |
(1< <consoleMsgPortPtr->mp_SigBit));

This turns the signal bit number for each port into a mask, then combines
them as the argument for the exec.library/Wait() function. When your task is
awakened, handle all of the messages at each port where the SigBit is set.
There may be more than one message per port, or no messages at the port.
Make sure that you ReplyMsg() to all messages that are not replies themselves.

Tasks (and Processes) execute in 68000 processor user mode. Supervisor mode
is reserved for interrupts, traps, and task dispatching. Take extreme care if
your code executes in supervisor mode. Exceptions while in supervisor mode
are deadly.

Most system functions require a particular execution environment. All DOS

functions and any functions that might call DOS (such as the opening of a
disk-resident library, font, or device) can only be executed from a process. A

Introduction-3

task is not sufficient. Most other ROM Kernel functions may be executed
from tasks. Only a few may be executed from interrupts.

Do not disable interrupts or multitasking for long periods. If you use Forbid()
or Disable(), you should be aware that execution of any system function that
WAITS will temporarily suspend the Forbidden or Disabled state, and allow
multitasking and interrupts to occur. Such functions include almost all forms
of DOS and device 10, including common “‘stdio” functions like “printf”’.

Do not tie up system resources unless it is absolutely necessary. For example,
if your program does not require constant use of the printer, open the
printer.device only when you need it. This will allow other tasks to use the
printer while your program is running. You must provide a reasonable error
response if a resource is not available when you need it.

Check for memory loss. Operate your program, then exit. Write down the
amount of free memory. Repeat the operation of your program and exit. The
amount of free memory remaining should be ezactly the same. Any difference
may signal some serious problem in your cleanup. A useful tool for memory
testing is the “Load WB -debug’ command; this will start the Workbench tool
with a special invisible debug menu. The “flushlibs’ option of this menu can
cause unused libraries and devices to be flushed out of memory. (The “debug”
option invokes the ROM debugger, RomWack, on the serial port at 9600
baud.)

All data for the custom chips must reside in CHIP type memory. This
includes bitplanes, sound samples, trackdisk buffers, and images for sprites,
bobs, pointers, and gadgets. The AllocMem() call takes a flag for specifying
CHIP type memory.

On machines with expansion (FAST) memory, the default location for memory
allocations is FAST memory. A developer with only CHIP memory may fail to
notice the memory was incorrectly specified. (On the current generation of
machines, CHIP memory is the lowest 512K of memory in the system.)

Most compilers have options to mark specific data structures or object
modules so that they will load into CHIP ram. Some older compilers provide
the Atom utility for marking object modules. If this method is unacceptable,
use the AllocMem() call to dynamically allocate CHIP memory, and copy your
data there.

Do not use software delay loops! Under the multitasking operating system,
the time spent in a loop can be better used by other tasks. Even ignoring the
effect of multitasking, timing loops are inaccurate and will wait varying
amounts of time depending on the specific model of computer. The
timer.device provides precision timing for use under the multitasking system.
The AmigaDOS Delay() function provides a simple interface for longer delays.

Introduction-4

The 8520 1/O chips provide timers for developers who are bypassing the
operating system (see the Amiga Hardware Reference Manual for more infor-
mation).

Obey structure conventions!
- All non-byte fields must be word aligned.

- All address pointers should be 32 bits (not 24 bits). The upper byte must
never be used for data.

- Fields that are not defined to contain particular initial values must be initial-
ized to zero. This includes pointer fields.

- All reserved or unused fields must be initialized to zero for future compatibil-
ity.
- Data structures to be accessed by the custom chips, public data structures

(such as a task control block), and structures which must be longword
aligned must NOT be allocated on a program’s stack.

- Dynamic allocation of structures with AllocMem provides longword aligned
memory of a specified type with optional initialization to zero, which is use-
ful in the allocation of structures.

Additional Assembler Development Guidelines

Do not use the “TAS” instruction on the Amiga. System DMA can conflict with
this instruction’s special indivisible read-modify-write cycle .

System functions must be called with A6 containing the library or device base.
Libraries and devices assume A6 is valid at the time of any function call. Even if
a particular function does not currently require its base register, you must pro-
vide it for compatibility with future system software releases.

Except as noted, system library functions use registers DO, D1, AO, and Al as
scratch registers and you must consider their former contents to be lost after a
system library call. The contents of all other registers will be preserved. System
functions which provide a result will return the result in DO.

System functions that return a result may not necessarily affect the processor
condition codes. The caller must test the returned value before acting on a con-

dition code. This is usually done with a TST or MOVE instruction.

For 68010/68020/68030/68040 compatibility:

Introduction-5

Do not use the “MOVE SR,...” instruction! This 68000 instruction acts
differently on other members of the 68000 family. If you wish a copy of the
processor condition codes, use the exec.library /GetCC() function.

Do not use the upper 8 bits of a pointer for storing unrelated information.
The 68020 uses all 32 bits for addressing.

Do not use signed variables or signed math for addresses.
Do not execute code on your stack.

The stack frame used for exceptions is different on each member of the 68000
family. The type identification in the frame must be checked!

Do not use self modifying code.

Commodore-Amiga Technical Support (CATS)

Commodore maintains a technical support group dedicated to helping developers
achieve their goals with the Amiga. Available technical support programs are
tailored both to the needs of smaller independent developers and larger corpora-
tions. Subscription to the support publication AmigaMail is available to anyone
with an interest in the latest news, Commodore software and hardware changes,
and tips for developers.

To request an application for the Commodore-Amiga Developer Programs, lists
of CATS technical publications, or information regarding electronic developer
support, send a self-addressed, stamped, 9” x 12” envelope to:

CATS-Information
1200 West Wilson Drive
West, Chester, PA 19380-4231

Introduction-6

Section A

Library Summaries

This section contains summaries for the shared library routines that are built into the
Amiga operating system software. These documents have been automatically extracted
from the original source code and are often called autodocs.

Most of the Amiga operating system is divided into functional groups called libraries.
Libraries may exist in the Kickstart ROM or on disk. Each library may be individually
opened and closed. When a library is open, any of its functions may be called. When all
openers of a library have closed, the library becomes a candidate for purging from the
system memory.

These documentation files are organized alphabetically by library, one document per
function call. Tutorial information for each of the libraries and a description of the
library mechanism is available in the Amiga ROM Kernel Manual: Libraries and Devices.
Only a brief introduction will be given here.

The “‘exec.library’ is the system’s master library and is always open. This library con-
trols the lowest levels of the multitasking operating system. One of exec’s functions,
OpenLibrary(), is used to open the other libraries. Usage is as follows:

struct LibBase *LibBase;
LibBase = OpenLibrary(”library.name” version);

library.name
1s a string that describes the name of the library you wish to open.

version

should be set to the earliest acceptable library version. A value of 0 matches any
version. A value of 33, for example, means you require version 33 of the library
or a later version if 33 is not available. For the system libraries, the following
table applies:

0 = Any version

30 = Kickstart V1.0 (obsolete)

31 == Kickstart V1.1 (NTSC only - obsolete)

32 = Kickstart V1.1 (PAL only - obsolete)

33 = Kickstart V1.2 (the oldest revision still in use)

34 = Kickstart V1.3 (adds autoboot to Kickstart V1.2)

If you specify a higher version number than is installed in the system, the open
will fail. Except as noted, all functions documented in this manual will work
with Kickstart V33 and greater. Since V34 Kickstart is nearly identical to V33,
it is generally NOT wise to require it.

If the library is disk-resident, it is loaded and initialized. The OpenLibrary() function
returns the address of the library base, which you must assign to a specific variable.
(Case is important.) This base is used to access the functions of the library. Zero is
returned if something goes wrong with the open.

Library bases represent a midpoint in the library. Below the base are the function vec-
tors, above the base is a data area:

Lower address — Function n
Function 2
Function 1 . .
+— Library Base Pointer
Higher address — Data area

The names of the libraries that are currently part of the Amiga software and associated
library base pointer names are as follows:

Library Name Library Base Pointer Name
diskfont.library DiskfontBase

dos.library DOSBaset 1

exec.library SysBaset
graphics.library GfxBase

icon.library IconBase

intuition. library IntuitionBase
layers.library LayersBase
mathffp.library MathBase
mathtrans.library MathTransBase
mathieeedoubbas.library MathleeeDoubBasBase
mathieeedoubtrans.library MathleeeDoubTransBase
romboot.library (V1.3 system private)
translator.library TranslatorBase
version.library (system private)
TAutomatically opened by the standard C startup module
} dos library is documented in the AmigaDOS Manual

All Amiga libraries accept parameters in registers, and return the result in data register
DO. All routines return a full 32 bit longword, even if fewer bits are significant. This
allows programs and functions that are written in assembler to communicate quickly. It
also eliminates the dependence on the stack frame conventions of any particular
language. Some C language compilers for the Amiga can generate parameters directly
into registers, others translate any Amiga library call into a stub routine that moves
parameters from the stack to registers. See the “amiga.lib” appendix for more details.

Complete examples follow:

A complete ready-to-compile example of library use.
The library is opened, checked, used and closed.

See the intuition.library document for a description
of what the DisplayBeep() function does.

* o % o H %

*
struct Library *OpenLibrary(); /* declare return type */

struct IntuitionBase *IntuitionBase; /* get storage for base */
void main()
IntuitionBase=(struct IntuitionBase *)
OpenLibrary("intuition.library",33L);
if(!IntuitionBase) /* check if it actually opened */
exit(20);
DisplayBeep(OL); /* use the library function */

CloselLibrary(IntuitionBase);

'k***********-************************'k**************‘k********‘k*********

*
* A complete ready-to-assemble example of library use. The intuition
* library is opened, checked, used, and closed. " See the intuition
* document for a description of what the DisplayBeep() function does.
*
* When calling an Amiga library, the base pointer *must* be in
* A6... the library is free to depend on this. Registers DO0,D1,A0
* and Al may be destroyed by the library, all others will be preserved.
*
* Normally the constants _AbsExecBase, _LVOOpenLibrary,
* _LVOCloseLibrary, and _TLVODisplayBeep would be resolved by the linker
* from the file "amiga.lIb". For this minimal example we define them
* explicitly.
*
_AbsExecBase EQU 4 iWhere exec's library base is
_LVOOpenLibrary EQU -552 iOffset from base for OpenLibrary
_LVOCloseLibrary EQU —-414 P
_LVODisplayBeep EQU -96 ;"
move.l _AbsExecBase, a6 ;Move exec.library base to a6
lea.l IntuiName(pc),al ;Pointer to "intultion.library"
moveq #33,d0 ;Version
jsr LVOOpenLibrary(a6) ;Call exec's OpenLibrary()
tst.1 4o
bne.s open_ ok
moveq #20,d0 ;Set failure code
rts ;Failed exit
open_ok move.l dO0,a6 ;/Put IntuitionBase in a6.
suba.l a0,a0 ;Load zero into a0
jsr _LVODisplayBeep(a6) ;Call intuition's DisplayBeep()
move.l a6,al ;Put IntuitionBase into al
move.l _ AbsExecBase, a6
jsr _LVOCloseLibrary(a6) ;Call exec's CloseLibrary()
moveq #0,d0 ;Set return code
rts
IntuiName: dc.b 'intuition.library',0

END

TABLE OF CONTENTS

diskfont.doc
exec.doc
expansion.doc
graphics.doc
icon.doc
intuition.doc
layers.doc
mathffp.doc
mathieeedoubbas.doc
mathieeedoubtrans.doc
mathtrans.doc
translator.doc

A-1
A—4
A-52
A—64
A-119
A-124
A-166
A-197
A—-196
A-193
A-202
A-211

TABLE OF

diskfont
diskfont
diskfont
diskfont

CONTENTS

.library/AvailFonts
.library/DisposeFontContents
. library/NewFontContents
.library/OpenDiskFont

diskfont.library/AvailFonts diskfont.library/AvailFonts
NAME
AvailFonts — build an array of all fonts in memory / on disk

SYNOPSIS
error = AvailFonts{buffer, bufBytes, types);
A0 D D1

FUNCTION
AvailFonts fills a user supplied buffer with the structure,
described below, that contains information about all the
fonts available in memory and/or on disk. Those fonts
available on disk need to be loaded into memory and opened
via OpenDiskFont, those already in memory are accessed via
OpenFont. - The TextAttr structure required by the open calls
is part of the information AvailFonts supplies.

when AvailFonts fails, it returns the number of extra bytes
it needed to complete the command. Add this number to your
current buffer size, allocate a new buffer, and try again.
If the second AvailFonts call fails, abort the operation.

INPUTS

buffer — memory to be filled with struct AvailFontsHeader
followed by an array of AvailFonts elements, which
contains entries for the available fonts and their
names .

bufBytes - the number of bytes in the buffer

types — AFF _MEMORY is set to search memory for fonts to fill
the structure, AFF DISK is set to search the disk for
fonts to fill the structure. Both can be specified.

RESULTS
buffer — filled with struct AvailFontsHeader followed by the
AvailFonts elements, There will be duplicate entries
for fonts found both in memory and on disk, differing
only by type. The existance of a disk font in the
buffer indicates that it exists as an entry in a font

contents file —— the underlying font file has not been
checked for validity, thus an OpenDiskFont of it may
fail.

error — if non—zero, this indicates the number of bytes needed
for AvailFonts in addition to those supplied. Thus
structure elements were not returned because of
insufficient bufBytes.

diskfont. library/DisposeFontContents

NAME
DisposeFontContents — free the result from NewFontContents
SYNOPSIS
DisposeFontContents(fontContentsHeader)
Al
FUNCTION
This function frees the array of FontContents entries
returned by NewFontContents.
INPUTS
fontContentsHeader — a struct FontContentsHeader pointer
returned by NewFontContents.
EXCEPTIONS
This command was first made available as of version 34.
A fontContentsHeader other than one acquired by a call
NewFontContents will crash.
SEE ALSO

NewFontContents to get structure freed here.

diskfont.library/NewFontContents

NAME!
NewFontContents — create a FontContents structs for a font
SYNOPSIS
fontContentsHeader = NewFontContents(fontsLock, fontName)
DO a0 Al
FUNCTION

This function creates a new array of FontContents entries
that describe all the fonts associated with the fontName,
specifically, all those in the font directory whose name
is that of the font sans the ".font" suffix.

INPUTS
fontsLock — a DOS lock on the FONTS: directory (or other
directory where the font contents file and associated
font directory resides).
fontName — the font name, with the ".font" suffix, which
is also the name of the font contents file.

RESULT
fontContentsHeader — a struct FontContentsHeader pointer.

EXCEPTIONS
This command was first made available as of version 34.

DO is zero if the fontName is does not have a ".font" suffix,
or a DOS error occurred, or memory could not be allocated for
the fontContentsHeader.

SEE ALSO
DisposeFontContents to free the structure acquired here.

diskfont.library/NewFontContents diskfont.library/OpenbiskFont

NAME

OpenDiskFont — load and get a pointer to a disk font.
SYNOPSIS

font = OpenDiskFont (textAttr)

DO Al
FUNCTION

This function finds the font with. the specified textAttr on
disk, loads it into memory, and returns a pointer to the font
that can be used in subsequent SetFont and CloseFont calls.
It is important to match this call with a corresponding
CloseFont call for effective management of font memory.

1f the font is already in memory, the copy in memory is used.
The disk copy is not reloaded.

INPUTS
textAttr — a TextAttr structure that describes the text font
attributes desired.

RESULTS
DO is zero if the desired font cannot be found.

BUGS ‘

This routine will not work well with font names whose file
name components are longer than. the maximum allowed
(30 characters).

diskfont.library/OpenDiskFont

TABLE OF CONTENTS

exec. library/abort10
exec.library/AddDevice
exec. library/AddHead
exec.library/AddIntServer
exec. library/addLibrary
exec. library/AddMemList
exec. library/AddPort

exec. library/addresource
exec. library/AddSemaphore
exec.library/AddTail

exec. library/AddTask
exec.library/Alert

exec. library/AllochAbs
exec.library/allocate
exec.library/AllocEntry
exec. library/AllocMem
exec.library/AllocSignal
exec. library/AllocTrap
exec. library/AttemptSemaphore
exec. library/AvailMem
exec.library/Cause

exec. library/CheckIO

exec. library/CloseDevice
exec.library/Closelibrary
exec. library/CopyMem

exec. library/CopyMemQuick
exec. library/Deallocate
exec. library/Debug

exec. library/Disable

exec. library/Dolo

exec. library/Enable

exec. library/Enqueue

exec. library/FindName
exec.library/FindPort
exec.library/FindResident
exec. library/FindSemaphore
exec. library/FindTask
exec. library/Forbid
exec.library/FreeEntry
exec. library/FreeMem
exec.library/FreeSignal
exec.library/FreeTrap
exec. library/GetCC
exec.library/GetMsg

exec. library/InitCode
exec.library/InitResident
exec. library/InitSemaphore
exec.library/InitStruct
exec. library/Insert
exec.library/MakeFunctions
exec. library/MakeLibrary
exec. library/ObtainSemaphore
exec. library/ObtainSemaphoreList
exec.library/0ldOpenLibrary
exec.library/OpenDevice
exec. library/OpenLibrary
exec. library/OpenResource
exec.library/Permit

exec. library/Procure

exec. library/PutMsg
exec.library/RawDoFmt
exec.library/ReleaseSemaphore
exec.library/ReleaseSemaphoreList
exec.library/RemDevice
exec. library/RemHead

exec. library/RemIntServer
exec. library/RemLibrary
exec. library/Remove
exec.library/RemPort
exec.library/RemResource

exec

exec

exec

exec

. library/RemSemaphore
exec.
exec.
exec.
.library/SendI0
exec.
exec.
exec.
exec.
exec.
.library/SetTaskPri
exec.
exec.
exec.
exec.
. library/TypeOfMem
exec.
exec.
exec.
exec.
exec.

library/RemTail
library/RemTask
library/ReplyMsg

library/SetExcept
library/SetFunction
library/SetIntVector
library/SetSignal
library/SetSR

library/Signal
library/SumKickData
library/SumLibrary
library/SuperState

library/UserState
library/Vacate
library/Wait
library,/WaitIO
library/WaitPort

exec. library/AbortIO

exec.library/RbortIO

NAME

AbortIO - attempt to abort an in-progress 1/0 request
SYNOPSIS

error = AbortIO(iORequest)

DO Al

BYTE AbortIO(struct IORequest *);

FUNCTION
Ask a device to abort a previously started IORequest. This is done
by calling the device's ABORTIO vector, with your given IORequest.

AbortIO is a request that device that may or may not grant. If
successful, the device will stop processing the IORequest, and
reply to it earlier than it would otherwise have done.

NOTE
AbortIO() does NOT remove the IORequest from your ReplyPort, OR
wait for it to complete. After an AbortIO() you must wait normally
for the reply message before actually reusing the request [see
WaitIo{()].)

If a request has already completed when AbortIO() is called, no
action is taken.

EXAMPLE

AbortIO(timer request);

WaitIO (timer_request);

/* Message is free to be reused */
RESULTS

error — Depending on the device and the state of the request, it
may not be possible to abort a given I/0 request. If for
some reason the device cannot abort the request, it should
return an error code in DO.

INPUTS
iORequest — pointer to an I/0 request block.

RESULTS
error - zero if successful, else an error is returned

SEE ALSO
WaitIO, DoIO, SendlO, CheckIO

exec. library/AddDevice

exec.library/AddDevice

NAME
AddDevice -— add a device to the system
SYNOPSIS
AddDevice(device)
Al
void AddDevice(struct Device *);
FUNCTION
This function adds a new device to the system device list, making
it available to other programs. The device must be ready to be
opened at this time.
INPUTS
device - pointer to a properly initialized device node
SEE ALSO

RemDevice, OpenDevice, CloseDevice, MakeLibrary

i

exec. library/AddHead

NAME
AddHead -- insert node at the head of a list
SYNOPSIS
AddHead (list, node)
A0 Al
void AddHead{struct List *, struct Node *)
FUNCTION
Add a node to the head of a doubly linked list. Assembly
programmers may prefer to use the ADDHEAD macro from
"exec/lists.i".
WARNING
This function does not arbitrate for access to the list.
calling task must be the owner of the involved list.
INPUTS
list - a pointer to the target list header
node — the node to insert at head
SEE ALSO

AddTail, Enqueue, Insert, Remove, RemHead, RemTail

exec. library/AddHead

The

exec. library/AddIntServer exec.library/AddIntServer

NAME
AddIntServer -— add an interrupt server to the system
SYNOPSIS
AddIntServer(intNum, interrupt)
D0-0:4 Al
void AddIntServer(ULONG, struct Interrupt *);
FUNCTION
This function adds a new interrupt server to a given server chain.
The node is located on the chain in a priority dependent position.
If this is the first server on a particular chain, interrupts will
be enabled for that chain.
Each link in the chain will be called in priority order until the
chain ends or one of the servers returns with the 68000's 2
condition code clear (indicating non—zero). Servers on the chain
should return with the 7z flag clear if the interrupt was
specifically for that server, and no one else. VERTB servers
should always return Z set. (Take care with High Level
Language servers, the language may not have a mechanism for
reliably setting the 2z flag on exit).
Servers are called with the following register conventions:
DO — scratch
D1 - scratch
A0 - scratch
Al - server is_Data pointer (scratch)
A5 — jump vector register (scratch)
A6 — scratch
all other registers — must be preserved
INPUTS
intNum — the Portia interrupt bit number (0 through 14). Processor
level seven interrupts (NMI) are encoded as intNum 15.
The PORTS, VERTB, COPER and EXTER and NMI interrupts are
set up as server chains.
interrupt — pointer to an interrupt server node
BUGS
The graphics library's VBLANK server incorrectly assumes that
address register A0 will contain a pointer to the custom chips. If
you add a server at a priority of 10 or greater, you must
compensate for this by providing the expected value ($DFF000).
SEE ALSO

RemIntServer, SetIntVector, hardware/intbits.h

exec.library/AddLibrary exec.library/AddLibrary

NAME !
AddLibrary -— add a library to the system
SYNOPSIS
AddLibrary(library)
Al

void AddLibrary(struct Library *);

FUNCTION
This function adds a new library to the system, making it available
to other programs. The library should be ready to be opened at
this time. It will be added to the system library name list, and
the checksum on the library entries will be calculated.

INPUTS
library - pointer to a properly initialized library structure

SEE ALSO
RemLibrary, CloseLibrary, OpenLibrary, MakeLibrary

exec.library/AddMemList

exec. library/AddMemlist

NAME
AddMemList - add memory to the system free pool
SYNOPSIS
AddMemList(size, attributes, pri, base, name)
DO D2 A0 Al

void AddMemList (ULONG, ULONG, LONG, APTR, char *);

FUNCTION
Add a new region of memory to the system free pool. The first few
bytes will be used to hold the MemHeader structure. The remainder
will be made available to the rest of the world.

INPUTS

size - the size (in bytes) of the memory area

attributes — the attributes word that the memory pool will have

pri - the priority for this memory. CHIP memory has a pri of -10,
16 bit expansion memory has a priority of 0. The higher the
priority, the closer to the head of the memory list it will
be placed.

base -~ the base of the new memory area

name — the name that will be used in the memory header, or NULL
if no name is to be provided. This name is not copied, so it
must remain valid for.as long as the memory header is in the
system.

SEE ALSO
AllocMem, exec/memory.h

I

/

exec. library/AddPort exec. library/AddPort
NAME
AddPort —- add a public message port to the system

SYNOPSIS
AddPort(port)
Al

void AddPort(struct MsgPort *);

FUNCTION
This function attaches a message port structure to the system's
public message port list, where it can be found by the FindPort()
function. The name and priority fields of the port structure must
be initialized prior to calling this function. If the user does
not require the priority field, it should be initialized to zero.

Only ports that will be searched for with FindPort() need to

be added to the system list.. In addition, adding ports is often
useful during debugging. If the port will be searched for,

the priority field should be at least 1 (to avoid the large number
of inactive ports at priority zero). . If the port will be searched
for often, set the proritiry in the 50-100 range (so it will be
before other less used ports).

Once a port has been added to the naming list, you must be careful
to remove the port from the list (via RemPort) before deallocating
its memory.

NOTE
A point of confusion is that clearing a MsgPort structure to all
zeros is not enough to prepare it for use. As mentioned in the
txec chapter of the ROM Kernel Manual, the List for the MsgPort
nmust be initialized. This is automatically handled by AddPort(),
and amiga.lib/CreatePort. This initialization can be done manually
with amiga.lib/NewList or the assembly NEWLIST macro.

INPUTS
port — pointer to a message port

SEE ALSO
RemPort, FindPort, amiga.lib/CreatePort, amiga.lib/NewList

exec.library/addResource exec. library/AddResource

NAME

AddResource —— add a resource to the system
SYNOPSIS

AddResource(resource)

Al
void AddResource(APTR);

FUNCTION
This function adds a new resource to the system and makes it
available to other users. The resource must be ready to be called
at this time.

Resources currently have no system—imposed structure, other than
starting with a standard Exec node or Library structure.

INPUTS o :
resource — pointer an initialized resource node

SEE ALSO
RemResource, OpenResource

exec. library/addSemaphore exec. library/AddSemaphore
NAME
Addsemaphore —— add a signal semaphore to the system

SYNOPSIS
AddSemaphore (signalSemaphore)
Al

void AddSemaphore(struct SignalSemaphore *);

FUNCTION
This function attaches a signal semaphore structure to the system's
public signal semaphore list. The name and priority fields of the
semaphore structure must be initialized prior to calling this
function. If you do not want to let others rendezvous with this
semaphore, use InitSemaphore() instead.

If a semaphore has been added to the naming list, you must be
careful to remove the semaphore from the list (via RemSemaphore)
before deallocating its memory.

Semaphores that are linked together in an allocation list (which
ObtainSemaphoreList() would@ use) may not be added to the system
naming list, because the facilities use the link field of the
signal semaphore in incompatible ways

INPUTS
signalSemaphore —— an signal semaphore structure

BUGS
Does not work in Kickstart V33/34. 1Instead use this code:

#include “exec/execbase.h"

void AddSemaphore(s)
struct SignalSemaphore *s;
{
InitSemaphore(s);
Forbid();
Enqueue (&SysBase—->SemaphoreList,s);
Permit(});

SEE ALSO
RemSemaphore, FindSemaphore, InitSemaphore

exec.library/AddTail exec.library/addTail

NAME .
AddTail —— append node to tail of a list
SYNOPSIS
AddTail(list, node)
a0 Al
void AddTail(struct List *, struct Node *);
FUNCTION . .
Add a node to the tail of a doubly linked list. Assembly
programmers may prefer to use the ADDTAIL macro from
"exec/lists.i".
WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.
INPUTS .
list - a pointer to the target list header
node - a pointer to the node to insert at tail of the list
SEE ALSO

AddHead, Enqueue, Insert, Remove, RemHead, RemTail

i

0T - ¥

exec.library/AddTask exec.library/aAddTask
NAME
AddTask —— add a task to the system

SYNOPSIS
AddTask (task, initialPC, f{inalPC)
Al A2 A3
void AddTask(struct Task *, APTR, APTR);

FUNCTION
Add a task to the system. A reschedule will be run; the task with
the highest priority in the system will start to execute (this may
or may not be the new task).

Certain fields of the task control block must be initialized and a
stack allocated prior to calling this function. The absolute
smallest stack that is allowable is something in the range of 100
bytes, but in general the stack size is dependent on what
subsystems are called. In general 256 bytes is sufficient if only
Exec is called, and 4K will do if anything in the system is called.
DO NOT UNDERESTIMATE. If you use a stack sniffing utility,

leave a healthy pad above the minimum value.

This function will temporarily use space from the new task's stack
for the task's initial set of registers. This space is allocated
starting at the SPREG location specified in the task control block
(not from SPUPPER). This means that a task's stack may contain
static data put there prior to its execution. This is useful for
providing initialized global variables or some tasks may want to
use this space for passing the task its initial arguments.

A task's initial registers are set to zero (except the PC).

The TC_MEMENTRY field of the task structure may be extended by

" the user to hold additional MemLists (as returned by AllocEntry()).
These will be automatically be deallocated at RemTask() time.
If the code you have used to start the task has already added
something to the MEMENTRY list, simply use AddHead to add your
new MembLists in. If no initialization has been done, a NewList will
need to be performed.

NOTE
AddTask clears out TC_FLAGS.

INPUTS
task — pointer to the task control block (TCB)
initialPC - the initial entry point's address
finalPC - the finalization code entry point's address. If zero,
the system will use a general finalizer. This pointer is
placed on the stack as if it were the outermost return
address.

WARNING
Tasks are a low—level building block, and are unable to call
dos.library, or any system routine that might call dos.library.
See the AmigaDOS CreateProc() for information on Processes.

SEE ALSO
RemTask, FindTask, amiga.lib/CreateTask, dos/CreateProc,
amiga.lib/NewList

exec.library/Alert exec.library/Alert

NAME
Alert —— alert the user of an error
SYNOPSIS
Alert(alertNum, parameters)
C D7 AS

void Alert(ULONG, APTR);

FUNCTION
Alerts the user of a serious system problem. This function will
bring the system to a grinding halt, and do whatever is necessary
to present the user with a message stating what happened.
Interrupts are disabled, and an attempt to post the alert is made.
If that fails, the system is reset. When the system comes up
again, Exec notices the cause of the failure and tries again to
post the alert.

If the Alert is a recoverable type, this call MAY return.
This call may be made at any time, including interfupts.

INPUT
alertNum — a number indicating the particular alert
parameters — currently points to the number that forms the
second part of a "Guru meditation" message. Typically
this is a pointer to the task that was active at the
time of the problem.

NOTE
Much more needs to be said about this function and its implications.

SEE ALSO
exec/alerts.h

1T - ¥

exec.library/AllocaAbs exec.library/Allocabs

NAME
AllocAbs -- allocate at a given location
SYNOPSIS
memoryBlock = AllocAbs(byteSize, location)
DO DO Al

void *AllocAbs(ULONG, APTR);

FUNCTION
This function attempts to allocate memory at a given absolute
memory location. Often this is used by boot-surviving entities
such as recoverable ram-disks. If the memory is already being
used, or if there is not enough memory to satisfy the request,
AllocAbs will return NULL.

This block may not be exactly the same as the requested block
because of rounding, but if the return value is non-zero, the block
is guaranteed to contain the requested range.

INPUTS
byteSize - the size of the desired block in bytes
This number is rounded up to the next larger
block size for the actual allocation.
location - the address where the memory MUST be.

RESULT
memoryBlock - a pointer to the newly allocated memory block, or
NULL if failed.

NOTE
If the free list is corrupt, the system will panic with alert
AN MemCorrupt, $81000005.

SEE ALSO
AllocMem, FreeMem

exec.library/Allocate exec. library/Allocate

NAME

Allocate - allocate a block of memory
SYNOPSIS

memoryBlock=Allocate(MemHeader, byteSize)

DO a0 DO

void *Allocate(struct MemHeader *, ULONG);
FUNCTION

This function is used to allocate blocks of memory from a given
private free memory pool (as specified by a MemHeader and its
memory chunk list). Allocate will return the first free block that
is greater than or equal to the requested size.

All blocks, whether free or allocated, will be block aligned;
hence, all allocation sizes are rounded up to the next block even
value {(e.g. the minimum allocation resolution is currently 8
bytes).

This function can be used to manage an application's internal data

memory. Note that no arbitration of the MemHeader and associated
free chunk list is done. You must be the owner before calling
Allocate.

INPUTS

freeList — points to the memory list header
byteSize - the size of the desired block in bytes

RESULT
memoryBlock - a pointer to the just allocated free block.
If there are no free regions large enough to satisfy the
request, return zero.

EXAMPLE
© #include "exec/types.h"
#tinclude "exec/memory.h"
void *AllocMem();
#define BLOCKSIZE 4000L /* Or whatever you want */

void main()

struct MemHeader *mh;
struct MemChunk *mc;
APTR blockl;
APTR block2;

/* Get the MemHeader needed to keep track of our new block */
mh = (struct MemHeader *))

AllocMem((long)sizeof (struct MemHeader), MEMF CLEAR);
if('mh)

exit(10);

/* Get the actual block the above MemHeader will manage */
mc = (struect MemChunk *)AllocMem(BLOCKSIZE, OL);
if(tme)

FreeMem(mh, (long)sizeof(struct MemHeader)); exit(10);
mh—->mh_Node.1ln Type T _MEMORY ;

mh->mh_Node.ln_Name = "myname";
mh->mh_First = mc;

mh—>mh_Lower = (APTR) mc;
mh—>mh_Upper = (APTR) (BLOCKSIZE + (ULONG) mc);
mh—>mh_Free = BLOCKSIZE;

/* Set up first chunk in the freelist */
me->me_Next NULL;
mc—>me_Bytes BLOCKSIZE;

(]

I

ZT - ¥

§

blockl = (APTR) Allocate(mh, 20L);

block2 = (APTR) Allocate(mh, 314L);
printf("mh=$%1x me=$%1x\n", mh,mc);
printf("Blockl=$%1x, Block2=$%1x\n", blockl,block2; ;

FreeMem(mh, (long)sizeof(struct MemHeader));
FreeMem(mc, BLOCKSIZE);

NOTE
If the free list is corrupt, the system will panic with alert
AN MemCorrupt, $81000005.

SEE ALSO

Deallocate

exec.library/AllocEntry

exec.library/AllocEntry

NAME

AllocEntry —— allocate many regions of memory
SYNOPSIS

memList = AllocEntry(memlList)

DO A0

struct MemList *AllocEntry(struct MemList *);

FUNCTION
This routine takes a memList structure and allocates enough memory
to hold the required memory as well as a MembList structure to keep
track of it.

These MemList structures may be linked together in a task control
block to keep track of the total memory usage of this task. (See
the description of TC_MEMENTRY under RemTask).

INPUTS
memList — A MemList structure filled in with MemEntry structures.

RESULTS
memList —— A different MemList filled in with the actual memory
allocated in the me Addr field, and their sizes in me_Length.
If enough memory cannot be obtained, then the requirements of
the allocation that failed is returned and bit 31 is set.

EXAMPLES
The user wants five regions of 2, 4, 8, 16, and 32 bytes in size
with requirements of MEMF_CLEAR, MEMF_PUBLIC, MEMF_CHIP!MEMF_CLEAR,
MEMF_FAST!MEMF CLEAR, and MEMF_PUBLIC!MEMF_CLEAR respectively. The
following code fragment would do that:

MemListDecl:
DS.B LN_SIZE * reserve space for list node
DC.W 5 * number of entries
DpC.L MEMF CLEAR * entry #0
DC.L 2
DC.L MEMF_PUBLIC * entry #1
DC.L 4
DC. L MEMF CHIP!MEMF CLEAR * entry #2
DC.L 8
DC.L MEMF_FAST!MEMF_CLEAR * entry #3
DC.L 16
DC.L MEMF_PUBLIC!MEMF CLEAR * entry #4
DC.L 32

start:
LEA.L MemListDecl(PC),AO
JSR LVOAllocEntry(ab6)

BCLR.L #31,D0
BEQ.S success

——————— Type of memory that we failed on is in DO

BUGS
1f any one of the allocations fails, this function fails to back
out fully. This is fixed by the "SetPatch" program on V1.3
Workbench disks.

SEE ALSO
exec/memory.h

€T - ¥

exec.library/allocMem exec.library/aAllocMem

NAME

AllocMem —- allocate memory given certain requirements
SYNOPSIS ‘

memoryBlock = AllocMem(byteSize, attributes)

DO DO Dl

void *AllocMem(ULONG, ULONG) ;

FUNCTION
This is the memory allocator to be used by system code and
applications. It provides a means of specifying that the allocation
should be made in a memory area accessible to the chips, or
accessible to shared system code.

Memory is allocated based on requirements and options. An
"requirement" must be met by a memory allocation, any "option" will
be applied to the block regardless. AllocMem will try all memory
spaces until one is found with the proper requirements and room for
the memory request.

INPUTS
byteSize — the size of the desired block in bytes. This number is
rounded up to the next larger memory chunk size for the
actual allocation. The chunk size is guaranteed to be

at least B.
attributes -
requirements

MEMF_CHIP: Only certain parts of memory are reachable
by the special chip sets' DMA circuitry.
Anything that will use on—chip DMA *MUST*
be in memory with this attribute. DMA
includes screen memory, things that are
blitted, audio blocks, sprites and
trackdisk.device buffers.

MEMF_FAST: This is non-chip memory. It is possible

for the processor to get. locked out of chip
memory under certain conditions. If one
cannot accept these delays, then one should
use FAST memory (by default the system will
allocate from FAST memory first anyway).

This is rarely specified, since it would
cause incompatibility with non—expanded
machines.
MEMF_PUBLIC: Memory must not be mapped, swapped,
or otherwise made non-addressable. ALL
MEMORY THAT IS REFERENCED VIA INTERRUPTS
AND/OR BY OTHER TASKS MUST BE EITHER PUBLIC
OR LOCKED INTO MEMORY! This includes both
code and data.

options
MEMF_CLEAR:

The memory will be initialized to all
Zeros.

RESULT
memoryBlock - a pointer to the newly allocated block. If there are
no free regions large enough to satisfy the request (or if
the amount of requested memory is invalid), return zero.

WARNING
The result of any memory allocate MUST be checked, and a viable
error handling path taken. ANY allocation may fail if memory has

been filled.

EXAMPLES
AllocMem(321,MEMF_CHIP) - private chip memory
AllocMem(25,MEMF_PUBLIC}MEMF_CLEAR) - a cleared “public" system
structure that does not require chip memory.

NOTE
If the free list is corrupt, the system will panic with alert
AN MemCorrupt, $81000005.
This function may not be called from interrupts.

SEE ALSO

FreeMem

I

T - ¥

exec.library/AllocSignal exec.library/AllocSignal

NAME
AllocSignal —— allocate a signal bit
SYNOPSIS
signalNum = AllocSignal(signalNum)
DO DO
BYTE AllocSignal(LONG);
FUNCTION .
Allocate a signal bit from the current tasks' pool. Either a
particular bit, or the next free bit may be allogated. The signal
associated with the bit will be properly initialized (cleared). At
least 16 user signals are available per task. Signals should be
deallocated before the task exits.
If the signal is already in use (or no free signals are available)
a -1 is returned.
This function can only be used by the currently running task.
WARNING .
Signals may not be allocated or freed from exception handling code.
INPUTS
signalNum — the desired signal number {of 0..31} or -1 for no
preference.
RESULTS .
signalNum ~ the signal bit number allocated {0..31}. If no signals
are available, this function returns -1.
SEE ALSO

FreeSignal

exec.library/AllocTrap exec.library/AllocTrap
NAME
AllocTrap — allocate a processor trap vector

SYNOPSIS
trapNum = AllocTrap(trapNum)
DO Do

LONG AllocTrap(LONG) ;

FUNCTION
Allocate a trap number from the current task's pool. These trap
numbers are those associated with the 68000 TRAP type instructions.
Either a particular number, or the next free number may be
allocated.

1f the trap is already in use (or no free traps are available) a -1
is returned.

This function only affects the currently running task.

Traps are sent to the trap handler pointed at by te TrapCode.
Unless changed by user code, this points to a standard trap
handler. The stack frame of the exception handler will be:

0(SP) = Exception vector number. This will be in the
range of 32 to 47 (corresponding to the
Trap #1...Trap #15 instructions).

4(SP) = 68000/68010/68020/68030, etc. exception frame

tc_TrapData is not used.

WARNING
Traps may not be allocated or freed from exception handling code.
You are not allowed to write to the exception table yourself. In
fact, on some machines you will have trouble finding it — the VBR
register may be used to remap its location.

INPUTS
trapNum — the desired trap number {of 0..15} or -1
for no preference.

RESULTS
trapNum - the trap number allocated {of 0..15}. If no traps are
available, this function returns -1. Instructions of the
form "Trap #trapNum" will be sent to the task's trap
handler.

SEE ALSO
FreeTrap

ST - ¥

exec.library/AttemptSemaphore exec. library/AttemptSemaphore

NAME

AttemptSemaphore —- try to obtain without blocking
SYNOPSIS

success = AttemptSemaphore(signalSemaphore)

DO AQ

LONG AttemptSemaphore(struct SignalSemaphore *);

FUNCTION
This call is similar to ObtainSemaphore(), except that it will not
block if the semaphore could not be locked.

INPUT
signalSemaphore — an initialized signal semaphore structure
RESULT
success -— TRUE if the semaphore was locked, false if some
other task already possessed the semaphore.
SEE ALSO

ObtainSemaphore(), ReleaseSemaphore(), exec/semaphores.h

exec.library/AvailMem exec.library/AvailMem

NAME

AvailMem —— memory available given certain requirements
SYNOPSIS

size = AvailMem(attributes)

DO D1

ULONG AvailMem(ULONG) ;
FUNCTION

This function returns the amount of free memory given certain

attributes.

To find out what the largest block of a particular type is, add
MEMF_LARGEST into the requirements argument.

WARNING
Due to the effect of multitasking, the value returned may hot
actually be the amount of free memory available at that instant.

INPUTS
requirements - a requirements mask as specified in AllocMem. Any
of the AllocMem bits are valid, as is MEMF_LARGEST
which returns the size of the largest block matching
the requirements.

RESULT
size - total free space remaining (or the largest free block).

EXAMPLE
AvailMem(MEMF_CHIP |MEMF_LARGEST) ;
/* return size of largest available chip memory chunk */

SEE ALSO
exec/memory.h

97 —- ¥

L

exec.library/Cause exec.library/Cause

NAME
Cause —— cause a software interrupt
SYNOPSIS
Cause{interrupt)
AL

void Cause(struct Interrupt *);

FUNCTION
This function causes a software interrupt to occur. If it is
called from user mode (and processor level 0), the software
interrupt will preempt the current task. This call is often used
by high-level hardware interrupts to defer medium—length processing
down to a lower interrupt level. Note that a software interrupt is
still a real interrupt, and must obey the same restrictions on what
system routines it may call.

Currently only 5 software interrupt priorities are implemented:
=32, -16, 0, +16, and +32. Priorities in between are truncated,
values outside the —32/432 range are not allowed.

NOTE
When setting up the Interrupt. structure, set the node type to
NT_INTERRUPT.
IMPLEMENTATION
1> Checks if the node type is NT_SOFTINT. If so does nothing since
the softint is already pending. No nest count is maintained.
2> Sets the node type to NT_SOFTINT.
3> Links into one of the 5 priority queues.
4> Pokes the hardware interrupt bit used for softints.
The node type returns to NT_INTERRUPT after removal from the list.
INPUTS

interrupt -~ pointer to a properly initialized interrupt node

exec.library/CheckIO exec.library/CheckIO

NAME

Checkl0 —— get the status of an IORequest
SYNOPSIS .

result = CheckIO(iORequest)

DO Al

BOOL CheckIO(struct IORequest *);

FUNCTION
This function detemmines the current state of an I/0 request and
returns FALSE if the I/0 has not yet completed. This function
effectively hides the internals of the I/O completion mechanism.

CheckIO will NOT remove the returned IORequest from the reply port.
This is best performed with WaitIO(). If the request has already
completed, WaitIO() will return quickly. Use of the Remove()
function is dangerous, since other tasks may still be adding things
to your message port; a Disable() would be required.

This function should NOT be used to busy loop (looping until IO is
complete). WaitIO() is provided for that purpose.

INPUTS
iORequest — pointer to an I/0 request block

RESULTS) .
result — null if I/0 is still in progress.
DO points to the IORequest block.

Otherwise

SEE "'ALSO .
DolO, SendIO, WaitIO, AbortIO

exec.library/CloseDevice exec.library/Closebevice

NAME
CloseDevice —- conclude access to a device

SYNOPSIS
CloseDevice(iORequest)
Al

void CloseDevice(struct IORequest *);

FUNCTION
This function informs the device that access to a device/unit
previously opened has been concluded. The device may perform
certain house—cleaning operations.

The user must ensure that all outstanding IORequests have been

returned before closing the device. The AbortIO function can kill
any stragglers.

After a close, the I/0 request structure is free to be reused.

INPUTS
iORequest. — pointer to an I1/0 request structure

SEE ALSO
OpenDevice

LT - ¥

exec.library/Closelibrary

exec.library/CloseLibrary

NAME
CloselLibrary —— conclude access to a library

SYNOPSIS
CloseLibrary(library)
al

void CloseLibrary(struct Library *);

FUNCTION
This function informs the system that access to the given library
has been concluded. The user must not reference the library or any
routine in the library after this close.

INPUTS

library - pointer to a library node
SEE ALSO

OpenLibrary

I

8T ~ ¥

exec. library/CopyMem exec. library/CopyMem
NAME
CopyMem — general purpose memory copy routine

SYNOPSIS
CopyMem(source, dest, size)
A0 Al DO
void CopyMem(APTR,APTR,ULONG) ;

FUNCTION
CopyMem is a general purpose, fast memory copy routine. It can
deal with arbitrary lengths, with its pointers on arbitrary
alignments. It attempts to optimize larger copies with more
efficient copies, it uses byte copies for small moves, parts of
larger copies, or the entire copy if the source and destination are
misaligned with respect to each other.

Arbitrary overlapping copies are not supported.

The internal implementation of this routine will change from
system to system, and may be implemented via hardware DMA.

INPUTS
source - a pointer to the source data region
dest - a pointer to the destination data region
size — the size (in bytes) of the memory area

SEE ALSO
CopyMemQuick

exec.library/CopyMemQuick exec.library/CopyMemQuick
NAME
CopyMemQuick - optimized memory copy routine

SYNOPSIS
CopyMemQuick(source, dest, size)
- A0 Al DO
void CopyMem(ULONG *,ULONG *,ULONG);

FUNCTION :
CopyMemQuick is a highly optimized memory copy routine, with
restrictions on the size and alignment of its arguments. Both the
source and destination pointers must be longword aligned. 1In
addition, the size must be an integral number of longwords (e.g.
the size must be evenly divisible by four).

Arbitrary overlapping copies are not supported.

The internal implementation of this routine will change from system
to system, and may be implemented via hardware DMA.

INPUTS
source — a pointer to the source data region, long aligned
dest — a pointer to the destination data region, long aligned
size - the size (in bytes) of the memory area

SEE ALSO
CopyMem

61 — ¥

exec.library/Deallocate exec. library/Deallocate
NAME
Deallocate —— deallocate a block of memory

SYNOPSIS
Deallocate(MemHeader, memoryBlock, byteSize)
A0 Al DO

void Deallocate(struct MemHeader *,APTR,ULONG);

FUNCTION
This function deallocates memory by returning it to the appropriate
private free memory pool. This function can be used to free an
entire block allocated with the above function, or it can be used
to free a sub-block of a previously allocated block. Sub-blocks
must be an even multiple of the memory chunk size (currently 8
bytes).

This function can even be used to add a new free region to an
existing MemHeader, however the extent pointers in the MemHeader
will no longer be valid.

If memoryBlock is not on a block boundary (MEM _BLOCKSIZE) then it
will be rounded down in a manner compatible with Allocate(). Note
that this will work correctly with all the memory allocation
routines, but may cause surprises if one is freeing only part of a
region. The size of the block will be rounded up, so the freed
block will fill to an even memory block boundary.

INPUTS
freeList — points to the free list
memoryBlock — memory block to return
byteSize - the size of the desired block in bytes. If NULL, nothing
happens.

SEE ALSO
Allocate

exec. library/Debug exec. library/bDebug

NAME
Debug — run the system debugger

SYNOPSIS
void Debug(OL);

DO

FUNCTION
This function calls the system debugger. By default this debugger
is "ROM-WACK". Other debuggers are encouraged to take over this
entry point (via SetFunction{()) so that when an application calls
Debug(), the alternative debugger will get control. Currently a
zero is passed to allow future expansion.

NOTE
The Debug() call may be made when the system is in a questionable
state; if you have a SetFunction() patch, make few assumptions, be
prepared for Supervisor mode, and be aware of differences in the
Motorola stack frames on the 68000,'10,'20, and '30.

SEE ALSO

SetFunction
your favorite debugger's manual
the ROM-WACK chapter of the ROM Kernel Manual

0¢ - ¥

exec. library/Disable

NAME
Disable — disable interrupt processing.

SYNOPSIS
Disable();

void Disable(void);

FUNCTION
Prevents interrupts from being handled by the system, until a
matching Enable() is executed. Disable() implies Forbid().

RESULTS

All interrupt processing is deferred until the task executing makes

a call to Enable() or is placed in a wait state. Normal task

rescheduling does not occur while interrupts are disabled. In order
to restore normal interrupt processing, the programmer must execute

exactly one call to Enable() for every call to Disable().
IMPORTANT REMINDER:

It is important to remember that there is a danger in using
disabled sections. Disabling interrupts for more than ~250

microseconds will prevent vital system functions (especially serial

I/0) from operating in a normal fashion.

Think twice before using Disable(), then think once more.
After all that, think again. With enough thought, the need
for a Disable() can often be eliminated.

Do not use a macro for Disable(), insist on the real thing.

This call may be made from interrupts, it will have the effect
of locking out all higher—level interrupts (lower—level interrupts
are automatically disabled by the CPU).

WARNING
In the event of a task entering a Wait after disabling interrupts,

the system "breaks" the forbidden state and runs normally until the

task which called Forbid() is rescheduled.

I1f caution is not taken, this can cause subtle bugs, since any
device or DOS call will (in effect) cause your task to wait.

SEE ALSO
Forbid, Permit, Enable

exec. library/Disable exec. library/Dol0O

exec.library,/Dol0

NAME .

DoIO —— perform an I/0 command and wait for completion
SYNOPSIS

error = DoIO(iORequest)

DO Al

BYTE DolO(struct IORequest *);

FUNCTION
This function requests a device driver to perform the 1/0 command
specified in the I/0 request. This function will always wait until
the I/0 request is fully complete.

IMPLEMENTATION
This function first tries to complete the IO via the "Quick I/0"
mechanism. The io_Flags field is always set to IOF_QUICK (0xO0l)
before the internal device call.

INPUTS
iORequest - pointer to an IORequest initialized by OpenDevice()

RESULTS
error — a sign—extended copy of the io Error field of the
IORequest. Most device commands require that the error
return be checked.

SEE ALSO
SendI0, CheckIO, WaitIO, AbortIO, amiga.lib/BeginlO

¢ ~ ¥

exec.library/Enable

exec.library/Enable

NAME
Enable —— permit system interrupts to resume.

SYNOPSIS
Enable();

void Enable(void);

FUNCTION
allow system interrupts to again occur normally, after a matching
Disable() has been executed.

RESULTS
Interrupt processing is restored to normal operation. The
programmer must execute exactly one call to Enable() for every call
to Disable().

SEE ALSO
Forbid, Permit, Disable

exec.library/Enqueue

exec. library/Enqueue

NAME
Enqueue —— insert or append node to a system queue

SYNOPSIS
Enqueue(list, node)

A0 Al

void Enqueue(struct List *, struct Node *);

FUNCTION
Insert or append a node into a system queue. The insert is
performed based on the node priority —— it will keep the list
properly sorted. New nodes will be inserted in front of the first
node with a lower priority. Hence a FIFO queue for nodes of equal
priority)

WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS
list - a pointer to the system queue header
node — the node to enqueue

SEE ALSO

AddHead, AddTail, Insert, Remove, RemHead, RemTail

|

2z - ¥

exec.library/FindName exec. library/FindName

NAME

FindName —— find a system list node with a given name
SYNOPSIS

node = FindName(start, name)

DO AOD Al

struct Node *FindName(struct List *,char *);
FUNCTION

Traverse a system list until a node with the given name is found.
To find multiple occurrences of a string, this function may be
called with a node starting point.

No arbitration is done for access to the list! If multiple tasks
access the same list, an arbitration mechanism such as
SignalSemaphores must be used.

INPUTS
start - a list header or a list node to start the search
(if node, this one is skipped)
name — a pointer to a name string terminated with null

RESULTS
node — a pointer to the node with the same name else
zero to indicate that the string was not found.

exec.library/FindPort exec.library/FindpPort

NAME

FindPort —— find a given system message port
SYNOPSIS

port = FindPort(name)

DO Al

struct MsgPort *FindPort(char *);

FUNCTION
This function will search the system message port list for a port
with the given name. The first port matching this name will be
returned. No arbitration of the port list is done. This function
MUST be protected with A Forbid()/Permit() pair!

EXAMPLE
#include "exec/types.h"
struct MsgPort *FindPort();

UIONG SafePutToPort(message, portname)
struct Message *message;
char *portname;

{
struct MsgPort *port;

Forbid();
port = FindPort(portname);
if (port)
PutMsg (port ,message) ;
Permit();
return{ (ULONG)port); /* If zero, the port has gone away */

INPUT
name - name of the port to find

RETURN
port — a pointer to the message port, or zero if
not found.

il

€T - ¥

exec.library/FindResident

NAME .

FindResident - find a resident module by name
SYNOPSIS

resident = FindResident (name)

Al
struct Resident *FindResident(char *);

FUNCTION
Find the resident tag with the given name. If found return a
pointer to the resident tag structure, else return zero.

Resident modules are used by the system to pull all its parts
together at startup. Resident tags are also found in disk based
devices and libraries.

INPUTS
name - pointer to name string

RESULT
resident - pointer to the resident tag structure or
zero if none found.

SEE ALSO
exec/resident.h

exec.library/FindResident exec. library/FindSemaphore

exec.library/FindSemaphore

NAME
FindSemaphore —— find a given system signal semaphore

SYNOPSIS
signalSemaphore = FindSemaphore(name)
0 Al

struct SignalSemaphore *FindSemaphore(char *);

FUNCTION
This function will search the system signal semaphore list for a
semaphore with the given name. The first semaphore matching this
name will be returned.

INPUT
name — name of the semaphore to find
RESULT
semaphore — a pointer to the signal semaphore, or zero if not
found.
BUGS

This routine does not arbitrate for access to the semaphore list,
surround the call with a Forbid()/Permit() pair.

M

ve —- ¥

exec.library/FindTask exec.library/FindTask
NAME
FindTask —— find a task with the given name or find oneself
SYNOPSIS .
task = FindTask(name)
DO Al

struct Task *FindTask(char *);

FUNCTION
This function will check all task queues for a task with the given
name, and return a pointer to its task control block. 1If a NULL
name pointer is given a pointer to the current task will be
returned.

Finding oneself with a NULL for the name is very quick. Finding a
task by name is very system expensive, and will disable interrupts
for a long time.

INPUT
name — pointer to a name string

RESULT
task — pointer to the task (or Process)

exec. library/Forbid

exec.library/Forbid

NAME
Forbid —— forbid task rescheduling.

SYNOPSIS
Forbid()

void Forbid(void) ;

FUNCTION
Prevents other tasks from being scheduled to run by the dispatcher,
until a matching Permit() is executed, or this task is scheduled to
Wait. Interrupts are NOT disabled.

RESULTS
The current task will not be rescheduled as long as it is ready to
run. In the event that the current task enters a wait state, other

tasks may be scheduled. Upon return from the wait state, the original

task will continue to run without disturbing the Forbid().

calls to Forbid() nest. In order to restore normal task rescheduling,
the programmer must execute exactly one call to Permit() for every
call to Forbid().

WARNING
In the event of a task entering a Wait after a Forbid(), the system
"breaks" the forbidden state and runs normally until the task which
called Forbid() is rescheduled.
If caution is not taken, this can cause subtle bugs, since any
device or DOS call will (in effect) cause your task to wait.

Forbid({) is not useful or safe from within an interrupt routine
(Since interrupts are always higher priority than tasks, and
since interrupts are allowed interrupt a Forbid()).

SEE ALSO
Permit, Disable

SZ - ¥

exec.library/FreeEntry exec. library/FreefEntry

NAME
FreeEntry -- free many regions of memory
SYNOPSIS
FreeEntry(memlist)
-]
void FreeEntry(struct MemList *);
FUNCTION
This routine takes a memList structure (as returned by AllocEntry)
and frees all the entries.
INPUTS
memList —— pointer to structure filled in with MemEntry
structures
SEE ALSO
AllocEntry

exec.library/FreeMem exec. library/FreeMem
NAME
FreeMem —— deallocate with knowledge
SYNOPSIS

FreeMem(memoryBlock, byteSize)
Al DO
void FreeMem(void *,ULONG);

FUNCTION
Free a region of memory, returning it to the system pool from which
it came. Freeing partial blocks back into the system pool is
unwise.

NOTE
If a block of memory is freed twice, the system will GURU. The
Alert is AN FreeTwice ($81000009). Future versions may add more
sanity checks to the memory lists.

INPUTS
memoryBlock — memory block to free
If the memoryBlock previously returned by an allocation
routine.
byteSize ~ the size of the block in bytes

SEE ALSO
AllocMem

i

9z - ¥

exec.library/FreeSignal

exec.library/FreeSignal

NAME
FreeSignal -— free a signal bit

SYNOPSIS
FreeSignal {signalNum)
: DO

FreeSignal (ULONG) ;

FUNCTION
This function frees a previously allocated signal bit for reuse.
This call must be performed while running in the same task in which
the signal was allocated.

WARNING
Signals may not be allocated or freed from exception handling code.

INPUTS
signalNum — the signal number to free {0..31}

exec.library/FreeTrap

exec.library/FreeTrap

NAME
FreeTrap —— free a processor trap

SYNOPSIS
FreeTrap(trapNum)
DO

void FreeTrap(ULONG);

FUNCTION
This function frees a previously allocated trap number for reuse.
This call must be performed while running in the same task in which
the trap was allocated.

WARNING)
Traps may not be allocated or freed from exception handling code.

INPUTS
trapNum — the trap number to free {of 0..15}

Lz - ¥

exec.library/GetCC exec.library/GetCC
NAME
GetCC —— get condition codes in a 68010 compatible way.
SYNOPSIS
conditions = GetCC()
DO

UWORD = GetCC(void);

FUNCTION
The 68000 processor has a "MOVE SR,<ea>" instruction which gets a
copy of the processor condition codes.

On the_68010,20 and 30 CPUs, "MOVE SR,<ea>" is privileged. User
code will trap if it is attempted. These processors need to use
the "MOVE CCR,<ea>" instruction instead.

This function provides a means of obtaining the CPU condition codes
in a manner that will make upgrades transparent. This function is
very short and quick.

RESULTS
conditions -~ the 680XX condition codes

exec.library/GetMsg exec.library/GetMsg

NAME
GetMsg —— get next message from a message port

SYNOPSIS
message = GetMsg(port)
DO A0
struct Message *GetMsg(struct MsgPort *);

FUNCTION
This function receives a message from a given message port. It
provides a fast, non-copying message receiving mechanism. The
received message is removed from the message port.
This function will not wait. If a message is not present this
function will return zero. If a program must wait for a message,
it can Wait() on the signal specified for the port or use the
WaitPort() function. There can only be one task waiting for any
given port.
Getting a message does not imply to the sender that the message is
free to be reused by the sender. When the receiver is finished
with the message, it may ReplyMsg() it back to the sender.
Getting a signal does NOT always imply a message is ready. More
than one message may arrive per signal, and signals may show up
without messages. Typically you must loop to GetMsg() until it
returns zero, then Wait() or WaitPort().

INPUT
port — a pointer to the receiver message port

RESULT
message — a pointer to the first message available. If

there are no messages, returh zero.
callers must be prepared for zero at any time.
SEE ALSO

PutMsg, ReplyMsg, WaitPort, Wait, exec/ports.h

I

8¢ - ¥

il

exec. library/InitCode exec.library/InitCode

NAME
InitCode — initialize resident code modules

SYNOPSIS
InitCode(startClass, version)
DO D1
void InitCode(ULONG,ULONG) ;

FUNCTION
Initialize all resident modules with the given startClass and with
versions equal or greater than that specified. Modules are
initialized in a prioritized order.

Resident modules are used by the system to pull all its parts
together at startup. Resident tags are also found in disk based
devices and libraries.

INPUTS
startClass — the class of code to be initialized: coldstart,
coolstart, warmstart,
version ~ a major version number

SEE ALSO
exec/resident . h

exec.library/InitResident exec.library/InitResident
NAME
InitResident ~ initialize resident module
SYNOPSIS
InitResident (resident, segList)

Al DL
void InitResident(struct Resident *,BPTR);

FUNCTION
Initialize a module (these are also called "ROM—tags"). This includes
interpreting the fields of the ROM-tag, and calling the initialization
hooks.

An automatic method of library/device base and vector table
initialization is also provided through the use of a such a ROM-tag
(Resident) structure. In this case, the initial code hunk of the
library or device should contain “MOVEQ #-1,d0; RTS;". Following
that must be an initialized Resident structure including RTF_AUTOINIT
in rt_Flags, and an rt_Init pointer which points to four longwords as
follows:

- Size of your library/device base structure including initial
Library or Device structure.

—~ Pointer to a longword table of standard, then library
specific function offsets, terminated with —1L.

- Pointer to data table in exec/InitStruct format for
initialization of Library or Device structure.

- Pointer to library initialization routine, which will receive
library/device base in d0, segment in a0, and must return
non-zero to link the library/device into the device/library
list.

SEE ALSO
exec/resident.h

6C - ¥

exec.library/InitSemaphore exec.library/InitSemaphore
NAME
InitSemaphore —— initialize a signal semaphore

SYNOPSIS
InitSemaphore (signalSemaphore)
A0

void InitSemaphore(struct SignalSemaphore *);

FUNCTION
This function initializes a signal semaphore and prepares it for
use. It does not allocate anything, but does initialize list
pointers and the semaphore counters.

Semaphores are often used to protect critical data structures
or hardware that can only be accessed by one task at a time.
After initialization, the address of the SignalSemaphore may be
made available to any number of tasks. Typically a task will
try to ObtainSemaphore(), passing this address in. If no other
task owns the semaphore, then the call will lock and return
quickly. If more tasks try to ObtainSemaphore(), they will

be put to sleep. When the owner of the semaphore releases

it, the next waiter in turn will be woken up.

Semaphores are often preferable to the old-style Forbid()/Permit()
type arbitration. With Forbid()/Permit() *all* other tasks are
prevented from running. With semaphores, only those tasks that
need access to whatever the semaphore protects are subject

to waiting.

INPUT
signalSemaphore —— a signal semaphore structure (with all fields
set to zero before the call)

SEE ALSO
ObtainSemaphore(), AttemptSemaphore(), ReleaseSemaphore()
exec/semaphores.h

exec.library/InitsStruct exec.library/InitStruct

NAME
InitStruct - initialize memory from a table
SYNOPSIS
InitStruct(initTable, memory, size);
Al A2 DO
void InitStruct(struct InitStruct *, APTR, ULONG);
FUNCTION
Clear a memory area except those words whose data and offset values
are provided in the initialization table. Typically only assembly
programs take advantage of this, and only with the macros defined
in "exec/initializers.i!.
The initialization table has byte commands to
1a 1 byte givenl byte\ once
load jcount||word{ into |next rptr| offset, |repetitively
long
Not all combinations are supported. The offset, when specified, is
relative to the memory pointer provided (Memory), and is initially
zero. The initialization data (InitTable) contains byte commands
whose 8 bits are interpreted as follows:
ddssnnnn
dd the destination type (and size):
00 next destination, nnnn is count
01 next destination, nnnn is repeat
10 destination offset is next byte, nnnn is count
11 destination offset is next rptr, nnnn is count
ss the size and location of the source:
00 long, from the next two aligned words
01 word, from the next aligned word
10 byte, from the next byte
11 ERROR - will cause an ALERT (see below)
nnnn the count or repeat:
count the (number+l) of source items to copy
repeat - the source is copied (number+l) times.
initTable commands are always read from the next even byte. Given
destination offsets are always relative to memory (A2).
The command 00000000 ends the InitTable stream: use 00010001 if you
really want to copy one longword.
24 bit APTR not supported for 68020 compatibility -— use long.
INPUTS
initTable — the beginning of the commands and data to init
Memory with. Must be on an even boundary unless only
byte initialization is done.
memory — the beginning of the memory to initialize. Must be
on an even boundary if size is specified.
size - the size of memory, which is used to clear it before
initializing it via the initTable. If Size is zero,
memory is not cleared before initializing.
We recommend an EVEN number for size; odd byte sizes
may be truncated.
SEE ALSO

exec/initializers.i

[

exec.library/Insert exec.library/Insert

NAME
Insert — insert a node into a list

SYNOPSIS
Insert({list, node, listNode)
AQ Al A2
void Insert(struct List *, struct Node *, struct Node *);

FUNCTION
Insert a node into a doubly linked list AFTER a given node
position. Insertion at the head of a list is possible by passing a
zero value for listNode, though the AddHead function is slightly
faster for that special case.

WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS -
list - a pointer to the target list header
node - the node to insert
listNode — the node after which to insert

SEE ALSO
AddHead, AddTail, Enqueue, RemHead, Remove, RemTail

exec. library/MakeFunctions exec.library/MakeFunctions
NAME
MakeFunctions — construct a function jump table

SYNOPSIS
tableSize = MakeFunctions(target, functionaArray, funcDispBase)
DO AQ Al A2
ULONG MakeFunctions{APTR,APTR,APTR);

FUNCTION
This function constructs a function jump table of the type used by
resources, libraries, and devices. It allows the table to be built
anywhere in memory, and can be used both for initialization and
replacement. This function also supports function pointer
compression by expanding relative displacements into absolute
pointers.

INPUT
destination — the target address for the high memory end of the
function jump table. Typically this will be the library
base pointer.

functionArray — pointer to an array of function pointers or
function displacements. If funcDispBase is zero, the array
is assumed to contain absolute pointers to functions. If
funcDispBase is not zero, then the array is assumed to
contain word displacements to functions. In both cases,
the array is terminated by a -1 (of the same size as the
actual entry.

funchispBase - pointer to the base about which all function
displacements are relative. If zero, then the function
array contains absolute pointers.

RESULT
tableSize - size of the new table in bytes.

SEE ALSO
exec/MakeLibrary

1€ - ¥

exec.library/MakeLibrary exec.library/MakeLibrary

NAME
MakeLibrary —-— construct a library

SYNOPSIS .
library = MakeLibrary(vectors, structure, init, dSize, segList)
DO A0 Al A2 DO D1

struct Library *MakeLibrary
(APTR, struct InitStruct *,APTR,ULONG,BPTR) ;

FUNCTION
This function is used for constructing a library vector and data
area. The same call is used to make devices. Space for the library
is allocated from the system's free memory pool. The size fields of
the library are filled. The data portion of the library is
initialized. init may point to a library specific entry point,
or NULL if no call is to be made.

INPUTS
vectors - pointer to an array of function pointers or function
displacements. If the first word of the array is -1, then
the array contains relative word displacements (based off
of vectors); otherwise, the array contains absolute
function pointers. The vector list is terminated by a -1
(of the same size as the pointers).
structure - points to an "InitStruct" data region. If NULL,
then it will not be used.

init — an entry point that will be called before adding the
library to the system. If null, it will not be called. When
it is called, it will be called with the libAddr in DO and
the segList parameter in AO. The result of the init function
will be the result returned by MakeLibrary.
A Forbid()/Permit() pair surrounds this call.

dSize - the size of the library data area, including the
standard library node data.

segList — p01nter to an AmigaDOS Seglist (segment list).
This is passed to a library's init code, and is used later
for removing the library from memory.

RESULT
library - the reference address of the library. This is tie
address used in references to the library, not the
beginning of the memory area allocated. 1If the library
vector table require more system memory than is
available, this function will return NULL.

SEE ALSO
InitStruct, InitResident, exec/initializers.i

exec.library/ObtainSemaphore exec. library/ObtainSemaphore
NAME
ObtainSemaphore —— gain exclusive access to a semaphore

SYNOPSIS
ObtainSemaphore(signalSemaphore)
A0

void ObtainSemaphore(struct SignalSemaphore *);

FUNCTION
Signal semaphores are used to gain exclusive access to an object.
ObtainSemaphore is the call used to gain this access. If another
user currently has the semaphore locked the call will block until
the object is available.

If the current task already has locked the semaphore and attempts to
lock it again the call will still succeed. A "nesting count" is
incremented each time the current owning task of the semaphore calls
ObtainSemaphore(). This counter is decremented each time
ReleaseSemaphore() is called. Wwhen the counter returns to zero the
semaphore is actually released, and the next waiting task is called.

A queue of waiting tasks is maintained on the stacks of the waiting
tasks. Each will be called in turn as soon as the current task
releases the semaphore.

Signal Semaphores are different than Procure()/Vacate() semaphores.
The former requires less CPU time, especially if the semaphore is
not currently locked. They require very little set up and user
thought. The latter flavor of semaphore make no assumptions about
how they are used —— they are completely general. Unfortunately
they are not as efficient as signal semaphores, and require the
locker to have done some setup before doing the call.

INPUT
signalSemaphore —— an initialized signal semaphore structure

SEE ALSO
InitSemaphore(), ReleaseSemaphore()
AttemptSemaphore(), ObtainSemaphoreList()

e - ¥

Ll

exec. library/ObtainSemaphorelbist exec.library/ObtainSemaphoreList
NAME
ObtainSemaphorelist —-— get a list of semaphores.

SYNOPSIS
ObtainSemaphorelist(list)
A0

void ObtainSemaphorelList(struct List *);

FUNCTION
Signal semaphores may be linked together into a list. This routine
takes a list of these semaphores and attempts to lock all of them at
once. This call is preferable to applying ObtainSemaphore() to each
element in the list because it attempts to lock all the elements
simultaneously, and won't deadlock if someone is attempting to lock
in some other order.

This routine assumes that only one task at a time will attempt to
lock. the entire list of semaphores. In other words, there needs to
be a higher level lock (perhaps another signal semaphore...) that is
used before someone attempts to lock the semaphore list via
ObtainSemaphoreList().

Note that deadlocks may result if this call is used AND someone
attempts to use ObtainSemaphore() to lock more than one semaphore on
the list. If you wish to lock more than semaphore (but not all of
them) then you should obtain the higher level lock (see above)

INPUT
list -— a list of signal semaphores

SEE ALSO
ObtainSemaphore(), ReleaseSemaphore(), ReleaseSemaphoreList()

exec. library/0OldOpenLibrary exec. library/OldOpenLibrary
NAME
0ldopenLibrary —- obsolete OpenLibrary

SYNOPSIS
library = OldOpenLibrary(libName)
DO Al

struct Library *OldOpenLibrary(APTR);

FUNCTION
The 1.0 release of the Amiga system had an incorrect version of
OpenlLibrary that did not check the version number during the
library open. This obsolete function is provided so that object
code compiled using a 1.0 system will still run.

This exactly the same as "OpenLibrary(libName,OL);"

INPUTS

libName - the name of the library to open
RESULTS

library - a library pointer for a successful open, else zero
SEE. ALSO

CloseLibrary

€€ - ¥

exec.library/OpenDevice

NAME

exec.library/OpenDevice

OpenDevice —— gain access to a device

SYNOPSIS

error = OpenDevice(devName, unitNumber, iORequest, flags)
DO DO Al D1
BYTE OpenDevice(char *,ULONG,struct IORequest *,ULONG);

FUNCTION

NOTE

This function opens the named device/unit and initializes the given
1/0 request block. Specific documentation on opening procedures
may come with certain devices.

The device may exist in memory, or on disk; this is transparent to
the OpenDevice caller.

A full path name for the device name is legitimate. For example
"test:devs/fred.device". This allows the use of custom devices
without requiring the user to copy the device into the system's
DEVS: directory.

all calls to OpenDevice should have matching calls to CloseDevice!

INPUTS

devName — requested device name

unitNumber — the unit number to open on that device. The format of
the unit number is device specific. If the device does
not have separate units, send a zero.

iORequest — the I/0 request block to be returned with
appropriate fields initialized.

flags — additional driver specific information. This is sometimes
used to request opening a device with exclusive access.

RESULTS

BUGS

error - Returns a sign-extended copy of the io Error field
of the IORequest. Zero if successful, else an error code
is returned.

AmigaDOS file names are not case sensitive, but Exec lists are. If
the library name is specified in a different case than it exists on
disk, unexpected results may occur.

Tasks should not be allowed to make OpenDevice calls that will
cause the device to be loaded from disk (since tasks are not
allowed to make dos.library calls).

SEE ALSO

CloseDevice, DoIO, SendIO, CheckIO, AbortIO, WaitIO

exec.library/OpenLibrary exec.library/OpenLibrary

NAME
OpenLibrary —— gain access to a library
SYNOPSIS
library = OpenLibrary(libName, version)
DO Al DO

struct Library *OpenLibrary(char *,ULONG);

FUNCTION
This function returns a pointer to a library that was previously
installed into the system. If the requested library is exists, and
if the library version is greater than or equal to the requested
version, then the open will succeed.

The device may exist in memory, or on disk; this is transparent to
the OpenDevice caller. Only Processes are allowed to call
OpenLibrary (since OpenLibrary may in turn call dos.library).

A full path name for the library name is legitimate. For example
“wp:libs/wp.library". This allows the use of custom libraries
without requiring the user to copy the library into the system's
LIBS: directory.

NOTE
All calls to OpenLibrary should have matching calls to CloseLibrary!

INPUTS
libName - the name of the library to open

version — the version of the library required.

RESULTS
library — a library pointer for a successful open, else zero

BUGS
AmigapOs file names are not case sensitive, but Exec lists are. If
the library name is specified in a different case than it exists on
disk, unexpected results may occur.

Tasks should not be allowed to make OpenLibrary calls that will
cause the library to be loaded from disk (since tasks are not
allowed to make dos.library requests).

SEE ALSO
CloseLibrary

i

¥

Ve

il

exec. library/OpenResource exec. library/OpenResource

NAME
OpenResource —— gain access to a resource

SYNOPSIS
resource = OpenResource(resName)

DO Al
APTR OpenResource(char *);

FUNCTION)
This function returns a pointer to a resource that was previously
installed into the system.

There is no CloseResource() function.

INPUTS

resName — the name of the resource requested.

RESULTS
resource - 1f successful , a resource pointer, else NULL

exec. library/Permit exec.library/Permit

NAME
Permit —— permit task rescheduling.

SYNOPSIS
Permit()

void Permit{void);

FUNCTION
Allow other tasks to be scheduled to run by the dispatcher, after a
matching Forbid() has been executed.

RESULTS
Other tasks will be rescheduled as they are ready to run. In order
to restore normal task rescheduling, the programmer must execute
exactly one call to Permit() for every call to Forbid().

SEE ALSO
Forbid, Disable, Enable

g - ¥

exec.library/Procure exec.library/Procure

NAME
Procure — bid for a message lock (semaphore)

SYNOPSIS
result = Procure(semaphore, bidMessage)
DO AQ Al
BYTE Procure(struct Semaphore *, struct Message *);

FUNCTION
This function is used to obtain a message based semaphore lock. If
the lock is immediate, Procure() returns a true result, and the
bidMessage is not used. If the semaphore is already locked,
Procure() returns false, and the task must wait for the bidMessage
to arrive at its reply port.
Straight "Semaphores" use the message system. They are therefore
queueable, and users may wait on several of them at the same time.
This makes them more powerful than "Signal Semaphores"

INPUT
semaphore — a semaphore message port. This port is used to queue
all pending lockers. This port should be initialized with the
PA_IGNORE option, as the MP_SigTask field is used for a pointer to
the current locker message (not a task). New semaphore ports must
also have the SM BIDS word initialized to -1. If the semaphore is
public, it should be named, its priority set, and the added with
AddPort. Message port priority is often used for anti-deadlock
locking conventions.

RESULT

result — true when the semaphore is free. 1In such cases no waiting
needs to be done. 1f false, then the task should wait at its
bidMessage reply port.

BUGS

Procure() and Vacate() do not have proven reliability.
SEE ALSO

Vacate()

exec.library/PutMsg exec. library/PutMsg

NAME
PutMsg -~ put a message to a message port
SYNOPSIS
PutMsg(port, message)
AC Al
void PutMsg(struct MsgPort *, struct Message *);
FUNCTION)
This function attaches a message to a given message port. It
provides a fast, non—copying message sending mechanism.
Messages can be attached to only one port at a time. The message
body can be of any size or form. Because messages are not copiled,
cooperating tasks share the same message memory. The sender task
should not recycle the message until it has been replied by the
receiver. Of course this depends on the message handling conventions
setup by the involved tasks. If the ReplyPort field is non-zero,
when the message is replied by the receiver, it will be sent back to
that port.
Any one of the following actions can be set to occur when a message
is put:
1. no special action
2. signal a given task (specified by MP_SIGTASK)
3. cause a software interrupt (specified by MP_SIGTASK)
The action is selected depending on the value found in the MP_FLAGS
of the destination port.
IMPLEMENTATION
1. Sets the LN_TYPE field to ”NTﬁMESSAGE".
2. Attaches the message to the destination port. .
3. Performs the specified arrival action at the destination.
INPUT
port — pointer to a message port
message — pointer to a message
SEE ALSO

GetMsg, ReplyMsg, exec/ports.h

Il

9¢ - ¥

il

exec.library/RawDoFmt exec.library/RawDoFmt

NAME
RawDoFmt —— format data into a character stream.
SYNOPSIS
RawDoFmt (FormatString, DataStream, PutChProc, PutChbata);
A0 Al A2 A3
void(char *,APTR,void (*){),APTR);
FUNCTION
perform "C"-language-like formatting of a data stream, outputting
the result a character at a time. Where % formatting commands are
found in the FormatString, they will be replaced with the
corresponding element in the DataStream. %% must be used in the
string if a % is desired in the output.
INPUTS
PormatString - a "C"-language—like null terminated format string,
with the following supported % options:
%[flags] [width.limit] [length]type
flags — only one allowed. '—' specifies left justification.
width - field width. TIf the first character is a '0', the
field will be padded with leading 0's.
. - must follow the field width, if specified
limit - maximum number of characters to output from a string.
(only valid for %s).
length - size of input data defaults to WORD, 'l' changes this
to long.
type - supported types are:
d - decimal
x -~ hexadecimal
s - string
c — character
DataStream - a stream of data that is interpreted according to
the format string. Often this is a pointer into
the task's stack.
PutChProc - the procedure to call with each character to be
output, called as:
PutChProc(Char, PutChbata);
DO-0:8 A3
the procedure is called with a null Char at the end of
the format string.

PutChData - a value that is passed through to the PutChProc
procedure. This is untouched by RawDoFmt, and may be
modified by the PutChProc.

EXAMPLE

Simple version of the C "sprintf" function. Assumes C-style

stack—-based function conventions.
long eyecount;
eyecount=2;
sprintf(string,"%s have %1d eyes.","Fish", eyecount);

would produce "Fish have 2 eyes." in the string buffer.

XDEF _sprintf
_sprintf: ; { string, format, {values})
movem.1l a2/a3/at,—(sp)

move.l 5*4(sp),al3 ;Get the output string pointer
move.l 6*4(sp),al ;Get the FommatString pointer
lea.l 7*4{sp),al ;Get the pointer to the DataStream
lea.l stuffChar(pc),a2

move.l _AbsExecBase,ab
jsr ~ LVORawhDoFmt (a6)

movem.l (sp)+,a2/a3/at
rts

jo—— PutChProc function used by RawDoFmt ———=—=—==————
stuffcChar: move.b do0,(a3)+ ;Put data to output string-
rts

WARNING
This is the only Amiga ROM function that accepts word inputs. If
your compiler defaults to longs, you will need to add a "1" to your
% specification. This can get strange for characters, which must
look like "$lc".

SEE ALSO
Documentation on the C language "printf" call in any C language
reference book.

LE - ¥

exec.library/ReleaseSemaphore exec. library/ReleaseSemaphore

NAME
ReleaseSemaphore —— make signal semaphore available to others

SYNOPSIS
ReleaseSemaphore(signalSemaphore)
AQ

void ReleaseSemaphore(struct SignalSemaphore *);

FUNCTION
ReleaseSemaphore() is the inverse of ObtainSemaphore(). It makes
the semaphore lockable to other users. If tasks are waiting for
the semaphore and this this task is done with the semaphore then
the next waiting task is signalled.

Each ObtainSemaphore() call must be balanced by exactly one
ReleaseSemaphore() call. This is because there is a nesting count
maintained in the semaphore of the number of times that the current
task has locked the semaphore. The semaphore is not released to
other tasks until the number of releases matches the number of
obtains.

Needless to say, havoc breaks out if the task releases more times
than it has obtained.

INPUT
signalSemaphore — an initialized signal semaphore structure

SEE ALSO
ObtainSemaphore(), AttemptSemaphore()

exec. library/ReleaseSemaphorelist exec.library/ReleaseSemaphorelist

NAME)
ReleaseSemaphoreList —— make a list of semaphores available

SYNOPSIS .
ReleaseSemaphoreList (list)
A0

void ReleaseSemaphorelList(struct List *);

FUNCTION . .)
ReleaseSemaphoreList() is the inverse of ObtainSemaphoreList(). It
releases each element in the semaphore list.

Needless to say, havoc breaks out if the task releases more times
than it has obtained.

INPUT .
list —— a list of signal semaphores

SEE ALSO .)
ObtainSemaphore(), ReleaseSemaphore(), ObtainSemaphoreList()

AttemptSemaphore()

i

8¢ - ¥

exec. library/RemDevice exec.library/RembDevice

NAME
RemDevice —— remove a device from the system

SYNOPSIS
void RemDevice(device)
Al

void RemDevice(struct Device *);

FUNCTION
This function calls the device's EXPUNGE vector, which requests
that a device delete itself. The device may refuse to do this if

it is busy or currently open. This is not typically called by user
code.

There are certain, limited circumstances where it may be
appropriate to attempt to specifically flush a certain device.
Example:

/* Attempts to flush the named device out of memory. */
#include "exec/types.h"
#include "“exec/execbase.h'

void FlushDevice(name)
char *name;

struct Device *result;

Forbid();

if (result=(struct Device *)FindName(&SysBase->DeviceList,name))
RemDevice(result); ’

Permit();

]

INPUTS
device ~ pointer to a device node

SEE ALSO
AddLibrary

exec.library/RemHead exec. library/RemHead

NAME .
RemHead —— remove the head node from a list
SYNOPSIS
node = RemHead(list)
DO AO

struct Node *RemHead(struct List *);

FUNCTION
Get a pointer to the head node and remove it from the list.
Assembly programmers may prefer to use the REMHEAD macro from
"exec/lists.i".

WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS
list — a pointer to the target list header

RESULT .
node — the node removed or zero when empty list

SEE ALSO
AddHead, AddTail, Enqueue, Insert, Remove, RemTail

68 - ¥

exec.library/RemIntServer exec.library/RemintServer

NAME
RemIntServer —— remove an interrupt server

SYNOPSIS
RemIntServer(intNum, interrupt)
DO Al
void RemIntServer(ULONG,struct Interrupt *);

FUNCTION
This function removes an interrupt server node from the given
server chain.

If this server was the last one on this chain, interrupts for this
chain are disabled.

INPUTS
intNum — the Portia interrupt bit (0..14)
interrupt — pointer to an interrupt server node

BUGS
Under V33/34 Kickstart, the feature that disables the interrupt
does not function. For most server chains this does not
cause a problem.

SEE ALSO

AddIntServer, hardware/intbits.h

exec.library/RemLibrary exec.library/RemLibrary
NAME
RemLibrary —— remove a library from the system

SYNOPSIS
void RemLibrary(library)
Al

void RemLibrary(struct Library *);

FUNCTION
This function calls the library's EXPUNGE vector, which requests
that a library delete itself. The library may refuse to do this if
it is busy or currently open. This is not typically called by user
code.

There are certain, limited circumstances where it may be
appropriate to attempt to specifically flush a certain Library.
Example:

/* Attempts to flush the named library out of memory. */
#include "exec/types.h"
tinclude "exec/execbase.h"

void FlushLibrary(name)
char *name;
{

struct Library *result;

Forbid();

if(result=(struct Library *)FindName(&SysBase—>LibList, name))
RembLibrary(result);

Permit();

INPUTS
library — pointer to a library node structure

i

oy - ¥

1

exec. library/Remove

exec. library/Remove

NAME
Ramove -~ remove a node from a list
SYNOPSIS
Remove(node)
Al
void Remove(struct Node *);
FUNCTION
Remove a node from whatever list it is in. Nodes that are not part
of a list must not be Ramoved! Assembly programmners may prefer to
use the REMOVE macro from "exec/lists.i".
WARNING
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.
INPUTS
node — the node to remove
SEE ALSO

AddHead, AddTail, Enqueue, Insert, RemHead, RemTail

exec. library/RemPort

exec.library/RemPort

NAME
RemPort — remove a message port from the system
SYNOPSIS
RemPort (port)
Al

void RemPort(struct MsgPort *);

FUNCTION
This function removes a message port structure from the system's

message port list. Subsequent attempts to rendezvous by name with
this port will fail.

INPUTS
port — pointer to a message port

SEE ALSO
AddPort, FindPort

exec.library/RemResource exec. library/RemResource

NAME
RemResource —— remove a resource from the system

SYNOPSIS
RemResource{resource)

void RemResource(APTR) ;

FUNCTION
This function removes an existing resource from the system resource
list.

INPUTS
resource — pointer to a resource node

SEE ALSO
AddResource

v - ¥

exec. library/RemSemaphore

exec. library/RemSemaphore

NAME

RemSemaphore —— remove a signal semaphore from the system
SYNOPSIS

RemSemaphore (signalSemaphore)

Al

void RemSemaphore(struct SignalSemaphore *);
FUNCTION

This function removes a signal semaphore structure from the

system's signal semaphore list. Subsequent attempts to

rendezvous by name with this semaphore will fail.
INPUTS

signalSemaphore —— an initialized signal semaphore structure
SEE ALSO

AddSemaphore, FindSemaphore

2y - ¥

Ll

exec.library/RemTail ‘exec.library/RemTail

NAME
RemTail —— remove the tail pode from a list

SYNOPSIS
node = RemTail(list)
DO AO
struct Node *RemTail(struct List *);

FUNCTION
Remove the last node from a list, and return a pointer to it. If
the list is empty, return zero. Assembly. programmers may prefer to
use the REMTAIL macro from “"exec/lists.i".

WARNING .
This function does not arbitrate for access to the list. The
calling task must be the owner of the involved list.

INPUTS
list - a pointer to the target list header

RESULT .
node — the node removed or zero when empty list

SEE ALSO
AddHead, AddTail, Enqueue, Insert, Remove, RemHead, RemTail

exec.library/RemTask

NAME

RemTask —— remove a task from the system
SYNOPSIS

RemTask (task)

Al
void RemTask(struct Task *);

FUNCTION
This function removes a task from the system. Deallocation of
resources should have been performed prior to calling this
function. Removing some other task is very dangerous. Generally

is is best to arrange for tasks to call RemTask(OL) on themselves.

RemTask will automagically free any memory lists attached to the
task's TC_MEMENTRY list.

INPUTS
task - pointer to the task node representing the task to be
removed. A zero value indicates self removal, and will
cause the next ready task to begin execution.

SEE ALSO
AddTask, exec/AllocEntry, amiga.lib/DeleteTask

exec. library/RemTask

€y - ¥

exec. library/ReplyMsg

exec. library/ReplyMsg

NAME
ReplyMsg —— put a message to its reply port

SYNOPSIS
ReplyMsg(message)
Al

void ReplyMsg(struct Message *);

FUNCTION
This function sends a message to its reply port. This is usually
done when the receiver of a message has finished and wants to
return it to the sender (so that it can be re-used or deallocated,
whatever) .

This call may be made from interrupts.

INPUT
message — a pointer to the message

IMPLEMENTATION
1> Places "NT_REPLYMSG" into LN TYPE.
2> Puts the message to the port specified by MN_REPLYPORT
If there is no replyport, sets LN _TYPE to "NT FREEMSG".

SEE ALSO

GetMsg, PutMsg, exec/ports.h

exec.library/SendIo

exec.library/Send10

NAME
SendIO —— initiate an I/0 command

SYNOPSIS
SendIO(iORequest)
Al

void SendIO(struct IORequest *);

FUNCTION
This function requests the device driver start processing the given
I/0 request. The device will return control without waiting for
the I1/0 to complete.

The io_Flags field of the IORequest will be set to zero before the
request is sent.

INPUTS
iORequest - pointer to an I/0 request, or a device specific
extended IORequest.

SEE ALSO
DoIO, ChecklO, WaitlIO, AbortIO

Yy - ¥

exec.library/SetExcept exec. library/SetExcept

NAME

SetExcept —— define certain signals to cause exceptions
SYNOPSIS

oldSignals = SetExcept(newSignals, signalMask)

DO DO Dl

ULONG SetExcept (ULONG, ULONG) ;

FUNCTION
This function defines which of the task's signals will cause a
private task exception. When any of the signals occurs the task's
exception handler will be dispatched. If the signal occurred prior
to calling SetExcept, the exception will happen immediately.

The user function pointed to by the task's tc _ExceptCode gets
called as:

newBxcptSet = (exceptCode>(signals, exceptData),SysBase
DO Do Al AG

signals — The set of signals that caused this exception. These
Signals have been disabled from the current set of signals
that can cause an exception.

exceptData — A copy of the task structure tc_Exceptbata field.

newixcptSet — The set of signals in NewExceptSet will be re—
enabled for exception generation. Usually this will be the
same as the Signals that caused the exception.

All registers are preserved by the system before the call.

INPUTS
newSignals — the new values for the signals specified in
signalMask.
signalMask - the set of signals to be effected

RESULTS :
oldsignals — the prior exception signals

EXAMPLE
Get the current state of all exception signals:
SetExcept(0,0)
Change a few exception signals:
SetExcept($1374,$1074)

SEE ALSO
Signal, SetSignal

exec.library/SetFunction exec. library/SetFunction

NAME
SetFunction —— change a function vector in a library
SYNOPSIS
oldFunc = SetFunction(library, funcOffset, funcEntry)
DO A AO0.W DO
APTR SetFunction(struct Library *,LONG,APTR);
FUNCTION
SetFunction is a functional way of changing where vectors in a
library point. They are changed in such a way that the
checksumming process will never falsely declare a library to be
invalid.
NOTE
SetPunction cannot be used on non-standard libraries like
dos.library. Here you must manually Forbid(), preserve all 6
original bytes, set the new vector, SumlLibrary(), then Permit().
INPUTS
library - a pointer to the library to be changed
funcOffset — the offset of the function to be replaced
funcEntry - pointer to new function
RESULTS
oldFunc - pointer to the old function that was just replaced

il

Sv - ¥

exec.library/SetIntVector exec. library/SetIntVector

NAME
SetIntVector —— set a system interrupt vector

SYNOPSIS
oldInterrupt = SetIntVector(intNumber, interrupt)
DO DO-0:4 Al
struct Interrupt *SetIntVector(ULONG, struct Interrupt *);

FUNCTION
This function provides a mechanism for setting the system interrupt
vectors. These are non-sharable, setting something here
disconnects the old handler.

Both the code and data pointers of the vector are set to the new
values. A pointer to the old interrupt structure is returned. When
the system calls the specified interrupt code the registers are
setup as follows:

DO ~ scratch
Dl - scratch (on entry: active portia
interrupts -> equals INTENA & INTREQ)

A0 ~ scratch (on entry: pointer to base of custom chips
for fast indexing)
Al ~ scratch (on entry: interrupt's is_Data pointer)

A5 - jump vector register (scratch on call)
A6 —~ Exec library base pointer (scratch on call)

all other registers - must be preserved

INPUTS
intNum —~ the Portia interrupt bit number (0..14)
interrupt - a pointer to an Interrupt structure containing
the handler's entry point and data segment pointer. It is a
good idea to give the node a name so that other users may
identify who currently has control of the interrupt.

RESULT
A pointer to the prior interrupt node which had control
of this interrupt.

SEE ALSO
AddIntServer, exec/interrupts.h, exec/hardware.h

exec.library/SetSignal exec.library/setSignal

NAME .
SetSignal —— define the state of this task's signals

SYNOPSIS
oldSignals = SetSignal(newSignals, signalMask)
DO jol¢] Dl

ULONG SetSignal(ULONG,ULONG) ;

FUNCTION
This function defines the states of the task's signals.
Setting the state of signals is considered dangerous.
Reading the state of signals is safe.

INPUTS
newSignals - the new values for the signals specified in
signalSet.
signalMask — the set of signals to be affected

RESULTS
oldSignals - the prior values for all signals

EXAMPLES
Get the current state of all signals:
SetSignal(0,0);
Clear all signals:
SetSignal (0, OXFFFFFFFFL) ;
Clear the CTRL-C signal:
SetSignal(0,SIGBREAKF _CTRIL, C);

Check if the CTRL-C signal was pressed:

#include "libraries/dos.h"

if(SetSignal(0L,0L) & SIGBREAKF_CTRI, C)
printf("CTRL-C pressed!\n");

SEE ALSO
Signal, Wait

i

9% - ¥

il

exec. library/SetSR exec. library/SetSR

NAME

SetSR —— get and/or set processor status register
SYNOPSIS

0ldSR = SetSR({newSR, mask)

DO DO Dl

ULONG SetSR(UIONG, ULONG);

FUNCTION
This function provides a means of modifying the CPU status register
in a "safe" way (well, how safe can a function like this be
anyway?). This function will only affect the status register bits
specified in the mask parameter. The prior content of the entire
status register is returned.

INPUTS
newSR - new values for bits specified in the mask.
aAll other bits are not effected.
mask ~ bits to be changed

RESULTS
0ldSR — the entire status register before new bits

EXAMPLES
To get the current SR:
currentSR = SetSR(0,0);
To change the processor interrupt level to 3:
0ldSR = SetSR({$0300,%$0700);
Set processor interrupts back to prior level:
SetSR(01ldSR,$0700);

exec;library/SetTaskPri exec.library/SetTaskPri
NAME
SetTaskPri —- get and set the priority of a task
SYNOPSIS
oldPriority = SetTaskPri(task, priority)
D0-0:8 Al DO-0:8
BYTE SetTaskPri(struct Task *,LONG);
FUNCTION
This function changes the priority of a task regardless of its
state. The old priority of the task is returned. A reschedule is
performed, and a context switch may result.
To change the priority of the currently running task, pass the
result of FindTask(0); as the task pointer.
INPUTS
task - task to be affected
priority — the new priority for the task
RESULT

oldPriority — the tasks previous priority

Ly - ¥

exec. library/Signal exec.library/Signal

NAME
Signal —- signal a task
SYNOPSIS
Signal(task, signals)
Al DO

void Signal(struct Task *,ULONG);

FUNCTION
This function signals a task with the given signals. If the task
is currently waiting for one or more of these signals, it will be
made ready and a reschedule will occur. If the task is not waiting
for any of these signals, the signals will be posted to the task
for possible later use. A signal may be sent to a task regardless
of whether its running, ready, or waiting.

This function is considered "low level". Its main purpose is to
support multiple higher level functions like PutMsg.

This function is safe to call from interrupts.

INPUT
task — the task to be signalled
signals - the signals to be sent

SEE ALSO
Wait, SetSignal

exec.library/SumKickData exec.library/SunKickData
NAME
SumKickData -— compute the checksum for the Kickstart delta list

SYNOPSIS
void SumKickData(void)

FUNCTION
The Amiga system has some ROM (or Kickstart) resident code that
provides the basic functions for the machine. This code is
unchangeable by the system software. This routine is part of a
support system to modify parts of the ROM.

The ROM code is linked together at run time via ROM-tags (also known
as Resident structures, defined in exec/resident.h). These tags tell
Exec's low level boot code what subsystems exist in which regions of
memory. The current list of ROM-tags is contained in the ResModules
field of ExecBase. By default this list contains any ROM-tags found
in the address ranges $FCO000-SFFFFFF and $F00000-SF7FFFF.

There is also a facility to selectively add or replace modules to the
ROM-tag list. These modules can exist in RAM, and the memory they
occupy will be deleted from the memory free list during the boot
process. SumKickData() plays an important role in this run—time
modification of the ROM-tag array.

Three variables in ExecBase are used in changing the ROM-tag array:
KickMemPtr, KickTagPtr, and KickCheckSum. KickMemPtr points to a
linked list of MemEntry structures. The memory that these MemEntry
structures reference will be allocated (via AllocAbs) at boot time.
The MemEntry structure itself must also be in the list.

KickTagPtr points to a long~word array of the same format as the
ResModules array. The array has a series of pointers to ROM-tag
structures. The array is either null terminated, or will have an
entry with the most significant bit (bit 31) set. The most
significant bit being set says that this is a link to another
long—word array of ROM-tag entries. This new array's address can be
found by clearing bit 31.

KickCheckSum has the result of SumKickData(). It is the checksum of
both the KickMemPtr structure and the KickTagPtr arrays. If the
checksum does not compute correctly then both KickMemPtr and
KickTagPtr will be ignored.

If all the memory referenced by KickMemPtr can't be allocated then
KickTagPtr will be ignored.

There is one more important caveat about adding ROM—tags. All this
ROM-tag magic is run very early on in the system —— before expansion
memory is added to the system. Therefore any memory in this
additional ROM-tag area must be addressable at this time. This means
that your ROM-tag code, MemEntry structures, and resident arrays
cannot be in expansion memory. There are two regions of memory that
are acceptable: one is chip memory, and the other is "Ranger" memory
(memory in the range between $C00000-$D80000) .

Remember that changing an existing ROM-tag entry falls into the
"heavy magic" category -— be very careful when doing it. The odd are
that you will blow yourself out of the water.

NOTE
SumKickbData was introduced in the 1.2 release

SEE ALSO
InitResident, FindResident

8y - ¥

exec.library/sunlLibrary

exec.library/SumLibrary

NAME
Sumlibrary —— compute and check the checksum on a library
SYNOPSIS
SumLibrary(library)
. al
void SumLibrary(struct Library *);
FUNCTION
SumLibrary computes a new checksum on a library. It can also be
used to check an old checksum. If an old checksum does not match,
and the library has not been marked as changed, then the system
will call Alert().
This call could also be periodically made by some future
system—checking task.
INPUTS .
library — a pointer to the library to be changed
NOTE
An alert will occur if the checksum fails.
SEE ALSO

SetFunction

exec. library/SuperState

exec.library/SuperState

NAME
SuperState —— enter supervisor state with user stack
SYNOPSIS
oldSysStack = SuperState()
DO
APTR SuperState(void);
FUNCTION
Enter supervisor mode while running on the user's stack. The user
still has access to user stack variables. Be careful though, the
user stack must be large enough to accommodate space for all
interrupt data —- this includes all possible nesting of interrupts.
This function does nothing when called from supervisor state.
RESULTS
oldsysStack - system stack pointer; save this. It will come in
handy when you return to user state. If the system
is already in supervisor mode, oldSysStack is zero.
SEE ALSO

UsersState

6% - ¥

exec. library/TypeOfMem exec. library/TypeOfMem

NAME

TypeOfMem -~ determine attributes of a given memory address
SYNOPSIS

attributes = TypeOfMem{address)

DO Al

ULONG TypeOfMem(void *);
FUNCTION

Given a RAM memory address, search the system memory lists and
return its memory attributes. The memory attributes are similar to
those specified when the memory was first allocated: (eg. MEMF CHIP
and MEMF_FAST).

This function is usually used to detemmine if a particular block of
memory is within CHIP space.

If the address is not in known—space, a zero will be returned.
(Anything that is not RAM, like the ROM or expansion area, will
return zero. Also the flrst few bytes of a memory area are used up
by the MemHeader.)

INPUT
address — a memory address

RESULT
attributes — a long word of memory attribute flags.
If the address is not in known RAM, zero is returned.

SEE ALSO
AllocMem()

exec. library/UserState

exec.library/UserState

NAME
UserState —— return to user state with user stack
SYNOPSIS
UserState(sysStack)
DO
void 'UserState(APTR) ;
FUNCTION
Return to user state with user stack, from supervisor state with
user stack. This function is normally used in conjunction with the
SuperState function above.
This function must not be called from the user state.
INPUT
sysStack — supervisor stack pointer
BUGS . _
This function is broken in V33/34 Kickstart.
SEE ALSO

SuperState

Ll

exec. library/vVacate exec.library/Vacate

NAME
vVacate —— release a message lock (semaphore)

SYNOPSIS
Vacate(semaphore)
AO

void Vacate(struct Semaphore *);

FUNCTION
This function releases a previously locked semaphore (see
the Procure() function).
If another task is waiting for the semaphore, its bidMessage
will be sent to its reply port.

INPUT
semaphore — the semaport message port representing the
semaphore to be freed.

BUGS
Procure() and Vacate() do not have proven reliability.

SEE ALSO
Procure

0 -~ ¢

exec.library/wait exec.library/Wait

NAME
Wait — wait for one or more signals

SYNOPSIS
signals = Wait(signalSet)
DO DO

ULONG Wait(ULONG);

FUNCTION
This function will cause the current task to suspend waiting for
one or more signals. When one or more of the specified signals
occurs, the task will return to the ready state, and those signals
will be cleared.

If a signal occurred prior to calling Wait, the wait condition will
be immediately satisfied, and the task will continue to run without
delay.

CAUTION
This function cannot be called while in supervisor mode or
interrupts! This function will break the action of a Forbid() or
Disable() call.

INPUT
signalSet — The set of signals for which to wait.
Each bit represents a particular signal.

RESULTS
signals - the set of signals that were active

6 -~ ¥

exec.library/WaitTo exec.library/WaitIo

NAME
WaitIO — wait for completion of an I/0 request
SYNOPSIS
error = WaitIO(iORequest)
DO Al
BYTE WaitIO(struct IORequest *);
FUNCTION
This function waits for the specified I/0 request to complete, then
removes it from the replyport. If the I/0 has already completed,
this function will return immediately.
This function should be used with care, as it does not return until
the I/0 request completes; if the I/0 never completes, this
function will never return, and your task will hang. If this
situation is a possibility, it is safer to use the Wait() function.
Wait() will return return when any of a specified set of signal is
received. This is how I/0 timeouts can be properly handled.
WARNING

If this IORequest was "Quick" or otherwise finished BEFORE this
call, this function drops though immediately, with no call to
Wait(). A side effect is that the signal bit related the port may
remain set. Expect this.

INPUTS
iORequest — pointer to an I/0O request block

RESULTS
error ~ zero if successful, else an error is returned
(a sign extended copy of io_Error).

SEE ALSO
DoI10, SendIO, CheckIO, AbortIO

exec.library/WaitPort exec.library/WaitPort
NAME .
WaitPort —— wait for a given port to be non-empty

SYNOPSIS
message = WaitPort(port)
DO A0
struct Message *WaitPort(struct MsgPort *);

FUNCTION
This function waits for the given port to become non—empty. If
necessary, the Wait function will be called to wait for the port
signal. If a message is already present at the port, this function
will return immediately. The return value is always a pointer to
the first message queued (but it is not removed from the queue).

CAUTION
More than one message may be at the port when this returns. It is
proper to call the GetMsg() function in a loop until all messages
have been handled, then wait for more to arrive.

To wait for more than one port, combine the signal bits from each
port into one call to the Wait() function, then use a GetMsg() loop
to collect any and all messages. It is possible to get a signal
for a port WITHOUT a message showing up. Plan for this.

INPUT
port — a pointer to the message port

RETURN . .
message — a pointer to the first available message

SEE ALSO
GetMsg

s - ¥

i

TABLE OF CONTENTS

expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.
expansion.

library/AddDosNode
library/MakeDosNode
library/addConfigbev
library/AllocBoardMem
library/AllocConfigbev
library/AllocExpansionMem
library/ConfigBoard
library/ConfigChain
library/FindConfigbev
library/FreeBoardMem
library/FreeConfigDev
library/FreeExpansionMem
library/GetCurrentBinding
library/obtainConfigBinding
library/ReadExpansionByte
library/Readkxpansionkom
library/ReleaseConfigBinding
library/RemConfigbev
library/SetCurrentBinding
library/WriteExpansionByte

expansion.library/AddDosNode

NAME
addDosNode — mount a disk to the system
SYNOPSIS
ok = AddDosNode(bootPri, flags, deviceNode)
DO DO D1 AQ
FUNCTION

This routine makes sure that your disk device (or a device
that wants to be treated as if it was a disk...) will be
entered into the system. If the dos is already up and
running, then it will be entered immediately. If the dos
has not yet been run then the data will be recorded, and the
dos will get it later.

We hope to eventually try and boot off a disk device. We will
try and boot off of each device in turn, based on priority,
iff there is no boot floppy in the floppy disk drive. As of
this writing that facility does not yet exist.

There is only one additional piece of magic done by AddDosNode.
If there is no executable code specified in the deviceNode
structure (e.g. dn-SeglList, dn_Handler, and dn_Task are all
null) then the standard dos file handler is used for your
device.

Documentation note: a "task" as used here is a dos—task, not
an exec-task. A dos—task, in the strictest sense, is the
address of an exec—style message port. In general, it is

a pointer to a process's pr_MsgPort field (e.g. a constant
number of bytes after an exec port).

INPUTS
bootPri —— a BYTE quantity with the boot priority for this disk.
This priority is only for which disks should be looked at:
the actual disk booted from will be the first disk with
a valid boot block. If no disk is found then the “bootme"
hand will come up and the bootstrap code will wait for
a floppy to be inserted. Recommend priority assignments are:

+5 — unit zero for the floppy disk. The floppy should
always be highest priority to allow the user to
abort out of a hard disk boot.
0 —— the run of the mill hard disk
-5 ~— a "network" disk (local disks should take priority).
-128 — don't even bother to boot from this device.

flags — additional flag bits for the call:

ADN_STARTPROC (bit 0) —— start a handler process immediately.
Normally the process is started only when the device node
is first referenced. This bit is meaningless if you
have already specified a handler process (non—null dn_Task).

deviceNode —— a legal DOS device node, properly initialized.
Typically this will be the result of a MakeDosNode()
call, but feel free to manufacture your own if you need
to. If deviceNode is null then AddDosNode does nothing.

RESULTS
ok — non—-zero everything went ok, zero if we ran out of memory
or some other weirdness happened.

EXAMPLES

/* enter a bootable disk into the system. start a file handler
** process immediately.

*

addDosNode(0, ADNF_STARTPROC, MakeDosNode(paramPacket));

expansion. library/AddDosNode

€5 - ¥

BUGS
The flexible boot strategy is only that — strategy.
needs to be reflected in code somewhere.

SEE ALSO
MakeDosNode

BUGS

It still

expansion.library/MakeDosNode

expansion.library/MakeDosNode

NAME

MakeDosNode —— construct dos data structures that a disk needs
SYNOPSIS

deviceNode = MakeDosNode(parameterPkt)

DO AQ
FUNCTION

This routine manufactures the data structures needed to enter

a dos disk device into the system. This consists of a DeviceNode,

a FileSysStartupMsg, a disk environment vector, and up to two

bepl strings. See the libraries/dosextens and libraries/filehandler
include files for more information.

MakeDosNode will allocate all the memory it needs, and then
1link the various structure together. It will make sure all
the structures are long-word aligned (as required by the DOS).
1t then returns the information to the user so he can

change anything else that needs changing. Typically he will
then call AddDosNode() to enter the new device into the dos
tables.

INPUTS
parameterPkt — a longword array containing all the information
needed to initijalize the data structures. Normally T
would have provided a structure for this, but the variable
length of the packet caused problems. The two strings are
null terminated strings, like all other exec strings.

longword description

Q string with dos handler name

1 string with exec device name

2 unit number (for OpenbDevice)

3 flags (for Openbevice)

4 t of longwords in rest of enviroment

5-n file handler environment (see libraries/filehandler.h)

RESULTS
deviceNode — pointer to initialize device node structure, or
null if there was not enough memory.

EXAMPLES
/* set up a 3.5" amiga format floppy drive for unit 1 */
char execName|[] = "trackdisk.device";
char dosName[] = "dfl'";

ULONG parmPkt[] = {
(ULONG) dosName,
(ULONG) execNawe,

1, /* unit number */

0, /* OpenDevice flags */

/* here is the environment block */

11, /* table upper bound */

512>>2, /* ¥ longwords in a block */

0, /* sector origin —— unused */

2, /* number of surfaces */

1, /* secs per logical block —— unused */
11, /* secs per track */

2, /* reserved blocks — 2 boot blocks */
0, /% ?? — unused */

0, /* interleave */

g, /* lower cylinder */

79, /* upper cylinder */

S, /* nunber of buffers */

I

struct Device Node *node, *MakeDosNode();

i

s - ¥

node = MakeDosNode(parmPkt);
BUGS

SEE ALSO
AddDosNode

expansion.library/AddConfigDev

NAME
AddconfigDev — add a new ConfigDev structure to the system

SYNOPSIS
Addconfigbev(configDev)
A0

FUNCTION
This routine adds the specified ConfigDev structure to the
list of Configuration Devices in the system.

INPUTS
configbev — a valid Configbhev structure.

RESULTS
EXCEPTIONS

SEE ALSO
RemConfigDev

BUGS

¢S - ¥

expansion.library/AllocBoard¥em

NAME

AllocBoardMem — allocate standard device expansion memory
SYNOPSIS

startSlot = AllocBoardMem(slotSpec)

DO Do
FUNCTION

This function allocates numslots of expansion space (each slot
is E_SLOTSIZE bytes). It returns the slot number of the
start of the expansion memory. The EC_MEMADDR macro may be
used to convert this to a memory address.

AllocBoardMem() knows about the intracacies of expansion
board hardware and will allocate the proper expansion
memory for each board type.

INPUTS
slotSpec — the memory size field of the Type byte of
an expansion board

RESULTS
startSlot — the slot number that was allocated, or —1 for error.
EXAMPLES
struct ExpansionRom *er;
slot = AllocBoardMem(er—>er Type & ERT MEMMASK)
EXCEPTIONS

Not typically called by user code.

SEE ALSO .
AllocExpansionMem, FreeExpansionMem, FreeBoardMem

BUGS

expansion. library/allocConfigbev

NAME

AllocConfigbDev — allocate a ConfigDhev structure
SYNOPSIS

configbDev = AllocConfigDev()

DO
FUNCTION

This routine returns the address of a ConfigDev structure.
It is provided so new fields can be added to the structure
without breaking old, existing code. The structure is cleared
when it is returned to the user.

INPUTS

RESULTS
confighev — either a valid ConfigDev structure or NULL.

EXCEPTIONS

SEE ALSO
FreeConfigDhev

BUGS

i

96 - ¥

i

expansion. library/AllocExpansionMemn

NAME
AllocExpansionMem — allocate expansion memory
SYNOPSIS
startSlot = AllocExpansionMem(numSlots, slotOffset)
DO DL
FUNCTION

This function allocates numslots of expansion space (each slot
is E_SIOTSIZE bytes). It returns the slot number of the

start of the expansion memory. The EC MEMADDR macro may be
used to convert this to a memory address.

Boards that fit the expansion architecture have alignment
rules. Normally a board must be on a binary boundary of its
size. Four and Eight megabyte boards have special rules.
User defined boards might have other special rules.

The routine AllocBoardMem() knows about all the allocation
rules for standard boards. Most users will want to use
that routine if they want memory for a standard expansion
device.

If AllocExpansionMem() succeeds, the startSlot will satisfy
the following equation:

(startSlot - slotOffset) MOD slotAlign = 0
INPUTS
numSlots — the number of slots required.

slotOffset — an offset from that boundary for startSlot.

RESULTS
startSlot — the slot number that was allocated, or -1 for error.

EXAMPLES
AllocExpansionMem(2, 0)
Tries to allocate 2 slots on a two slot boundary.
AllocExpansionMem(64, 32)

This is the allocation rule for 4 meg boards. It allocates
4 megabytes (64 slots) on an odd 2 meg boundary.

EXCEPTIONS
Not typically called by user code.

SEE ALSO
FreeBxpansionMem, AllocBoardMem, FreeBoardMem

BUGS

expansion.library/ConfigBoard

NAME
configBoard — configure a board

SYNOPSIS
error = ConfigBoard(board, configbhev)
DO A0 Al

FUNCTION
This routine configures an expansion board. The board
will generally live at E EXPANSIONBASE, but the base is
passed as a parameter to allow future compatibility.
The configbDev parameter must be a valid configDev that
has already had ReadExpansionRom({) called on it.

ConfigBoard will allocate expansion memory and place
the board at its new address. It will update confighDev
accordingly. If there is not enough expansion memory
for this board then an error will be returned.

INPUTS
board — the current address that the expansion board is
responding.
confighev — an initialized Configbev structure.

RESULTS
error — non-zero if there was a problem configuring this board

EXCEPTIONS
Not normally called by user code

SEE ALSO
FreeConfigDev

BUGS

LG — ¥

expansion.library/ConfigChain

NAME

ConfigChain — confiqgure the whole damn system
SYNOPSIS

error = ConfigChain{ baseAddr)

DO A0
FUNCTION

This is the big one! This routine will take a base address
(generally E _EXPANSIONBASE) and configure all the devices that
live there. This routine will call all the other routines
that might need to be called. All boards that are found will
be linked into the configuration list.

INPUTS
baseAddr — the base address to start looking for boards.

RESULTS
error - non-zero i1f something went wrong.

EXCEPTIONS
Not normally called by user code

SEE ALSO
FreeConfigbhev

BUGS

expansion. library/FindConfigDev

NAME)
FindConfighev — find a matching ConfigDev entry

SYNOPSIS
configbev = FindConfigDev(oldConfigDev, manufacturer, product)
DO A0 DO Dl

FUNCTION
This routine searches the list of existing ConfigDev
structures in the system and looks for one that has
the specified manufacturer and product codes.

If the oldConfigDev is NULL the the search is from the
start of the list of configuration devices. If it is
not null then it searches from the first conflguratlon
device entry AFTER oldConfigDev.

A code of -1 is treated as a wildcard — e.g. it matches
any manufacturer (or product)

INPUTS
oldconfigbev — a valid Confighev structure, or NULL to start
from the start of the list.
manufacturer — the manufacturer code being searched for, or
-1 to ignore manufacturer numbers.
product - the product code being searched for, or -1 to
ignore product numbers.

RESULTS
configDev — the next ConfigDev entry that matches the
manufacturer and product codes, or NULL if there
are no more matches.
EXCEPTIONS
EXAMPLES
/* to find all configdevs of the proper type */
struct ConfigDev *cd = NULL;
while({ c¢d = FindConfigDev(cd, MANUFACTURER, PRODUCT)) {
/* do something with the returned Configbev */
]
SEE ALSO

BUGS

i

86 ~ ¥

Il

expansion.library/FreeBoardMem

NAME
FreeBoardMem - allocate standard device expansion memory
SYNOPSIS
FreeBoardMem(startSlot, slotSpec)
DO D1
FUNCTION

This function frees numslots of expansion space (each slot
is E_SIOTSIZE bytes). It is the inverse function of
AllocBoardMem() .

INPUTS
startSlot — a slot number in expansion space.
slotSpec — the memory size field of the Type byte of
an expansion board

RESULTS

EXAMPLES
struct ExpansionRom *er;
int startsSlot;

int slotSpec;

slotSpec = er—>er Type & ERT _MEMMASK;
startSlot = AllocBoardMem({ er—>er Type & ERT MEMMAK);

if(startSlot !'= -1) {
FreeBoardMem(startSlot, slotSpec);
]

EXCEPTIONS
If the caller tries to free a slot that is already in the
free list, FreeBoardMem will Alert() (e.g. crash the
system).

Not normally called by user code

SEE ALSO
AllocExpansionMem, FreeExpansionMem, AllocBoardMem

BUGS

expansion. library/FreeConfigDev

NAME
FreeConfigDev — allocate a ConfigDev structure

SYNOPSIS
FreeConfighev(confighev)
a0

FUNCTION
This routine frees a ConfigDev structure as returned by
AllocConfigbev.

INPUTS
configbhev —~ a valid ConfigDev structure.

RESULTS
EXCEPTIONS

SEE ALSO
AllocConfigbev

BUGS

65

expansion. library/FreeExpansionMem

NAME
FreeExpansionMem — allocate standard device expansion memory
SYNOPSIS
FreeExpansionMem(startSlot, numSlots)
DO D1
FUNCTION
This function allocates numslots of expansion space (each slot
is E_SLOTSIZE bytes). It is the inverse function of
AllocExpansionMem() .
INPUTS
startSlot — the slot number that was allocated, or -1 for error.
nunSlots = the number of slots to be freed.
RESULTS
EXAMPLES
EXCEPTIONS

If the caller tries to free a slot that is already in the
free list, FreeExpansionMem will Alert() (e.g. crash the
system) .

Not normally called by user code

SEE ALSO
AllocExpansionMem, AllocBoardMem, FreeBoardMem

BUGS

expansion. library/GetCurrentBinding

NAME
GetCurrentBinding — sets static board configuration area

SYNOPSIS
actual = GetCurrentBinding(currentBinding, size)
A0 DO:16

FUNCTION
This function writes the contents of the "currentBinding"
structure out of a private place. It may be set via
SetCurrentBinding(). This 1is really a kludge, but it is
the only way to pass extra arguments to a newly configured
device.

A CurrentBinding structure has the name of the currently
loaded file, the product string that was associated with
this driver, and a pointer to the head of a singly linked
list of ConfigDev structures (linked through the cd_NextCD
field).

Many devices may not need this information; they have hard
coded into themselves their manufacture number. It is
recommended that you at least check that you can deal with
the product code in the linked Configbev structures.

INPUTS
currentBinding — a pointer to a CurrentBinding structure

size — the size of the user's binddriver structure. No
more than this much data will be copied. If size is
larger than the libraries idea a CurrentBinding size,
then the structure will be null padded.

RESULTS

actual - the true size of a CurrentBinding structure is returned.

EXAMPLES
EXCEPTIONS

SEE ALSO
GetCurrentBinding

BUGS

il

09 - ¥

il

expansion.library/ObtainConfigBinding

NAME
ObtainConfigBinding — try to get permission to bind drivers

SYNOPSIS
ObtainConfigBinding()

FUNCTION ’
ObtainConfigBinding gives permission to bind drivers to
ConfigDev structures. It exists so two drivers at once
do not try and own the same ConfigDev structure. This
call will block until it is safe proceed.

Individual drivers to not need to call this routine. - It
is intended for BindDriver program, and others like it.

If your drivers won't be loaded via the standard method,
you may need to lock out others.

It is crucially important that people lock out others
before loading new drivers. Much of the data that is used
to configure things is statically kept, and others need

to be kept from using it.

This call is build directly on Exec SignalSemaphore code
(e.g. ObtainSemaphore).

INPUTS

RESULTS

EXCEPTIONS

SEE ALSO
ReleaseConfigBinding

BUGS

expansion.library/ReadExpansionByte

NAME

ReadExpansionByte — read a byte nybble by nybble.
SYNOPSIS

byte = ReadExpansionByte(board, offset)

DO AO DO
FUNCTION

ReadExpansionByte reads a byte from a new-style expansion
board. These boards have their readable data organized
as a series of nybbles in memory. This routine reads

two nybbles and returns the byte value.

In general, this routine will only be called by ReadExpansionRom.

The offset is a byte offset into a ExpansionRom structure.
The actual memory address read will be four times larger.
The macros EROFFSET and ECOFFSET are provided to help get
these offsets from C.

INPUTS
board — a pointer to the base of a new style expansion board.
offset — a logical offset from the board base

RESULTS
byte — a byte of data from the expansion board, or -1 if there
was an error reading from the board.

EXAMPLES

byte = ReadExpansionByte(cd->BoardAddr, EROFFSET(er_Type));

ints = ReadExpansionByte(cd->BoardAddr, ECOFFSET(ec_Interrupt));
EXCEPTIONS

Not typically called by user code.

SEE ALSO
WriteExpansionByte, ReadExpansionRom

BUGS

T9 - ¥

expansion.library/ReadExpansionRom

NAME
ReadExpansionRom — read a boards configuration rom space
SYNOPSIS
error = ReadExpansionRom(board, configbev)
DO AO Al
FUNCTION
ReadExpansionRom reads a the rom portion of an expansion
device in to cd_Rom portion of a Configbev structure.
This routine knows how to detect whether or not there is
actually a board there,
In addition, the Rom portion of a new style expansion board
is encoded in ones—complement format (except for the first
two nybbles —— the er Type field). ReadExpansionRom knows
about this and un—complements the appropriate fields.
INPUTS
board — a pointer to the base of a new style expansion board.
confighDev — the ConfigDev structure that will be read in.
offset — a logical offset from the configdev base
RESULTS
error — If the board address does not contain a valid new style
expansion board, then erxror will be non-zero.
EXAMPLES
configbev = AllocConfighev();
if(! configDev) panic();
error = ReadExpansionBoard(board, configbev);
if(! error) {
configbev->cd_BoardAddr = board;
ConfigBoard(configbev);
}
EXCEPTIONS
Not typically called by user code.
SEE ALSO

ReadExpansionByte, WriteExpansionByte

BUGS

expansion,library/ReleaseConfigBinding

NAME
ReleaseConfigBinding - allow others to bind to drivers

SYNOPSIS
ReleaseConfigBinding()

FUNCTION .))
This call should be used when you are done binding drivers.
to Configbev entries. It releases the SignalSemaphore; this
allows others to bind their drivers to ConfigDev structures.

INPUTS

RESULTS

EXAMPLES

EXCEPTIONS

SEE ALSO
ObtainConfigBinding

BUGS

|llHﬂllll

29 - ¥

il

expansion.library/RemConfigbev

NAME
RemConfigDev - remove a ConfigDev structure from the system

SYNOPSIS
RemConfigDev(confighev)
Al

FUNCTION
This routine removes the specified ConfigDev structure from the
list of Configuration Devices in the system.

INPUTS
configbev — a valid Confighev structure.

RESULTS
EXCEPTIONS

SEE ALSO
AddConfighev

BUGS

expansion. library/SetCurrentBinding

NAME
SetCurrentBinding — sets static board configuration area

SYNOPSIS
SetCurrentBinding(currentBinding, size)
AQ DO:16

FUNCTION
This function records the contents of the "currentBinding"
structure in a private place. It may be read via
GetCurrentBinding(). This is really a kludge, but it is
the only way to pass extra arguments to a newly configured
device.

A CurrentBinding structure has the name of the currently
loaded file, the product string that was associated with
this driver, and a pointer to the head of a singly linked
list of ConfigDev structures (linked through the cd_NextCD
field).

Many devices may not need this information; they have hard
coded into themselves their manufacture number. It is
recommended that you at least check that you can deal with
the product. code in the linked ConfigDev structures.

INPUTS
currentBinding — a pointer to a CurrentBinding structure

size — the size of the user's binddriver structure. No
more than this much data will be copied. 1If size is
larger than the libraries idea a CurrentBinding size,
then the structure will be null padded.
RESULTS
EXAMPLES
EXCEPTIONS

SEE ALSO
GetCurrentBinding

BUGS

expansion.library/WriteExpansionByte

NAME

WriteExpansionByte — write a byte nybble by nybble.
SYNOPSIS

error = WriteExpansionByte(board, offset, byte)

DO AQ DO DL
FUNCTION

WriteExpansionByte write a byte to a new-style expansion
board. These boards have their writeable data organized
as a series of nybbles in memory. This routine writes
two nybbles in a very carefull manner to work with all
types of new expansion boards.

To make certain types of board less expensive, an expansion
board's write registers may be organized as either a
byte-wide or nybble-wide register. If it is nybble—wide
then it must latch the less significant nybble until the
more significant nybble is written. This allows the
following algorithm to work with either type of board:

write the low order nybble to bits D15-D12 of
byte (offset*4)+2

write the entire byte to bits D15-D8 of
byte (offset*4)

The offset is a byte offset into a ExpansionRom structure.
The actual memory address read will be four times larger.
The macros EROFFSET and ECOFFSET are provided to help get
these offsets from C.

INPUTS
board — a pointer to the base of a new style expansion board.
offset — a logical offset from the configdev base
byte — the byte of data to be written to the expansion board.

£9 ~ ¥

RESULTS
error — the routine will return a zero on success, non—zero if
there was a problem.

Not typically called by user code.

SEE ALSO
ReadExpansionByte, ReadExpansionRom

BUGS

EXAMPLES
err = WriteBxpansionByte(cd->BoardAddr, ECOFFSET(ec_Shutup), 0);
err = WriteExpansionByte(cd->BoardAddr, ECOFFSET(ec Interrupt), 1);
EXCEPTIONS

i

¥9 - ¥

TABLE OF CONTENTS graphics. library/OpenFont
graphics.library/OrRectRegloq

graphics. library/aAddAnimOb graphics. library/OrRegionRegion

graphics.library/AddBob graphics. library/OwnBlitter

graphics. library/addFont graphics.library/PolyDraw

graphics. library/Addvsprite graphics. library/QBlit

graphics.library/AllocRaster graphics.library/OBSBlit

graphics.library/AndRectRegion graphics. library/ReadPixel

graphics.library/AndRegionRegion graphics. library/RectFill

graphics.library/Animate graphics. library/RemBob

graphics.library/AreaCircle graphics.library/Renf'ont

graphics.library/AreaDraw graphics.library/RemlBob

graphics.library/AreaEllipse graphics. library/RenvVSprite

graphics.library/Areaknd graphics.library/scrollRaster

graphics.library/AreaMove graphics.library/Scrollvport

graphics. library/AskFont graphics. library/SetAPen

graphics. library/AskSoftStyle graphics.library/SetBPen

graphics. library/AttemptLockLayerRom graphics.library/SetCollision

graphics. library/BltBitMap graphics. library/SetDrMd

graphics.library/BltBitMapRastPort graphics. library/SetFont

graphics.library/BltClear graphics.library/SetOpPen

graphics. library/BltMaskBitMapRastPort graphics.library/SetRast

graphics. library/BltPattern graphics.library/SetRGB4

graphics.library/BltTemplate graphics. library/SetRGB4CM

graphics. library/CBump graphics. library/SetSoftstyle

graphics.library/CEND graphics.library/SortGList

graphics. library/ChangeSprite graphics. library/SyncsBitMap

graphics.library/CINIT graphics.library/Text

graphics.library/ClearEOL graphics.library/TextLength

graphics. library/ClearRectRegion graph%cs.l}brary/Unloc%LayerRom

graphics.library/ClearRegion graphics.library/VBeamPos

graphics. library/ClearScreen graphics.library/WaitBlit

graphics.library/ClipBlit graphics.library/WaitBOVp

graphies. library/CloseFont graphics.library/WaitTOF

graphics.library/CMOVE graphics. library/WritePixel

graphics. library/CopySBitMap graphics. library/XorRectRegion

graphics.library/CWAIT graphics.library/XorRegionRegion

graphics.library/DisownBlitter

graphics.library/DisposeRegion

graphics.library/DoCollision

graphics.library/Draw

graphics.library/DrawEllipse

graphics.library/DrawGList

graphics.library/Flood

graphics.library/FreeColorMap

graphics.library/FreeCopList

graphics.library/FreeCprList

graphics.library/FreeGBuffers

graphics.library/FreeRaster

graphics.library/FreeSprite

graphics.library/FreevPortCopLists

graphics.library/GetColorMap

graphics.library/GetGRuffers

graphics.library/GetRGB4

graphics.library/GetSprite

graphics.library/InitArea

graphics.library/InitBitMap

graphics.library/InitGels

graphics.library/InitGMasks

graphics.library/InitMasks

graphics.library/InitRastPort

graphics.library/InitTmpRas

graphics.library/InitView

graphics.library/InitVvPort

graphics.library/LoadRGB4

graphics.library/Loadview

graphics.library/LockLayerRom

graphics. library/MakevPort

graphics.library/Move

graphics. library/MoveSprite

graphics.library/MrgCop

graphics.library/NewRegion

|

g9 - ¥

graphics.library/AddAnimOb

NAME

AddAnimOb ~—— Add an AnimoOb to the linked list of AnimObs.
SYNOPSIS

AddAnimOb(anOb, anKey, rp)

a0 al a2

struct AnimOb *anOb, **anKey;
struct RastPort *rp;

FUNCTION
Links this AnimOb into the current list pointed to by animKey.
Tnitializes all the Timers of the AnimOb's components.
calls AddBob with each component's Bob.
rp~>GelsInfo must point to an initialized GelsInfo structure.

INPUTS
anOb = pointer to the AnimOb structure to be added to the list
anKey = address of a pointer to the first AnimOb in the list
(anKey = NULL if there are no AnimObs in the list so far)
rp = pointer to a valid RastPort

BUGS

SEE ALSO
Animate graphics/rastport.h graphics/gels.h

graphics.library/AddAnimOb

graphics.library/AddBob graphics. library/AddBob

NAME
AddBob —— Adds a Bob to current gel list.
SYNOPSIS
BAddBob(Bob, rp)
a0 al

struct Bob *Bob;
struct RastPort *xp;

FUNCTION
Sets up the system Bob flags, then links this gel into the list
via Bddvsprite.

INPUTS
Bob = pointer to the Bob structure to be added to the gel list
rp = pointer to a RastPort structure

BUGS

SEE ALSO
InitGels AddvSprite graphics/gels.h graphics/rastport.h

i

99 - ¥

I

graphics.library/AddFont graphics.library/AddFont

NAME
AddFont -— add a font to the system list
SYNOPSIS
AddFont (textFont)
al
struct TextFont *textFont;
FUNCTION
This function adds the text font to the system, making it
available for use by any application. The font added must be
in public memory, and remain until successfully removed.
INPUTS
textFont - a TextFont structure in public ram.
BUGS
SEE ALSO

SetFont RemFont graphics/text.h

graphics.library/AddvSprite

graphics.library/AddvSprite

NAME
AddVSprite —— Add a VSprite to the current gel list.

SYNOPSIS
AddvSprite(vs, rp)
a0 al

struct VSprite *vs;
struct RastPort *rp;

FUNCTION
Sets up the system VSprite flags
Links this VSprite into the current gel list using its ¥,X

INPUTS

vs = pointer to the VSprite structure to be added to the gel list
rp = pointer to a RastPort structure

BUGS

SEE ALSO
InitGels graphics/rastport.h graphics/gels.h

L9 - ¥

graphics.library/AllocRaster graphics.library/AllocRaster

NAME
AllocRaster —— Allocate space for a bitplane.

SYNOPSIS
planeptr = AllocRaster(width, height)
do d0:16 dl:16

PLANEPTR planeptr;
USHORT width, height;

FUNCTION
This function calls the memory allocation routines
to allocate memory space for a bitplane width bits
wide and height bits high.

INPUTS
width — number of bits wide for bitplane
height — number of rows in bitplane

RESULT
planeptr - pointer to first word in bitplane
If unable to allocate space then planeptr will be NULL.

BUGS

SEE ALSO
FreeRaster graphics/gfx.h

graphics.library/AndRectRegion

NAME
AndRectRegion —— Perform 2d AND operation of rectangle
with region, leaving result in region.
SYNOPSIS
AndRectRegion(region, rectangle)
a0 al

struct Region *region;
struct Rectangle *rectangle;

FUNCTION))
Clip away any portion of the region that exists outside
of the rectangle. Leave the result in region.

INPUTS
region - pointer to Region structure
rectangle — pointer to Rectangle structure
BUGS

SEE ALSO . .
AndRegionRegion OrRectRegion graphics/regions.h

graphics. library/AndRectRegion

i

89 - ¥

.

graphics. library/AndRegionRegion

NAME

AndRegionRegion — Perform 2d AND operation of one region

with second region, leaving result in second region.

SYNOPSIS

status = AndRegionRegion(regionl,region2)

dg a0 al

BOOL status;

struct Region *regionl, *region2;
FUNCTION

Remove any portion of region2 that is not in regionl.

INPUTS
regionl - pointer to Region structure
region2 — pointer to Region structure to use and for result

RESULTS
status - return TRUE if successful operation
return FALSE if ran out of memory
BUGS

SEE. ALSO
OrRegionRegion AndRectRegion graphics/regions.h

graphics.library/AndRegionRegion

graphics.library/Animate

NAME
Animate —— Processes every AnimOb in the current animation list.

SYNOPSIS
Animate(anKey, rp)
a0 al

struct AnimOb **anKey;
struct RastPort *rp;

FUNCTION
For every AnimOb in the list

— update its location and velocities

— call the AnimOb's special routine if one is supplied

— for each component of the AnimOb
- if this sequence times out, switch to the new one
- call this component's special routine if one is supplied
~ set the sequence's VSprite's y,x coordinates based

on whatever these routines cause

INPUTS
key = address of the variable that points to the head AnimOb
rp = pointer to the RastPort structure

BUGS

SEE ALSO

AddAnimOb graphics/gels.h graphics/rastport.h

graphics.library/Animate

69 - ¥

graphics.library/AreaCircle graphics.library/AreaCircle
NAME
AreaCircle —— add a circle to areainfo list for areafill.
SYNOPSIS
error = (int) AreaCircle(rp, o¢x, cy, radius)
DO Al DO Dl D2
LONG error;

struct RastPort *rp;
SHORT ¢x, cy;
SHORT radius;

FUNCTION
Add circle to the vector buffer.

INPUTS
rp — pointer to a RastPort structure

(cx, cy) — are coordinates of a "centerpoint" in the raster
radius 1s the radius of the circle to draw around the centerpoint

This function is a macro which calls
Areakllipse(rp,cx,cy,radius,radius).

RESULTS
0 if no error
-1 if no space left in vector list

SEE ALSO
AreaMove, AreaDraw, AreaCircle, InitArea, AreaEnd, graphics/rastport.h
graphics/gfxmacros.h

graphics.library/Areabraw graphics.library/Areabraw

NAME
AreaDraw — Add a point to a list of end points for areafill.
SYNOPSIS
error = AreaDraw(rp, X, Y)
do Al DO:16 D1:16
LONG error;
struct RastPort *rp;
SHORT X, Y7
FUNCTION

Add point to the vector buffer.

INPUTS

rp — points to a RastPort structure

X,y — are coordinates of a point in the raster
RETURNS

0 if no error
-1 if no space left in vector list

BUGS

SEE ALSO .
AreaMove InitArea AreaEnd graphics/rastport.h

I

¥

(<3

graphics. library/AreaEllipse graphics.library/AreaEllipse

NAME

AreaEllipse —— add a ellipse to areainfo list for areafill.
SYNOPSIS

error = AreaEllipse(rp, ox, cy, a, b)

do al d0:16 dl:16 d2:16 d3:16

LONG error;

struct RastPort *rp;
SHORT ¢x, cy;
SHORT a, b;

FUNCTION
Add ellipse to the vector buffer.

INPUTS
rp — pointer to a RastPort structure
cx — X coordinate of the centerpoint relative to the rastport.
cy — y coordinate of the centerpoint relative to the rastport.
a — the horizontal radius of the ellipse (note: a must be > 0)
b - the vertical radius of the ellipse (note: b must be > 0)

RESULTS
0 if no error
-1 if no space left in vector list

SEE ALSO
AreaMove, AreaDraw, AreaCircle, InitArea, AreaEnd, graphics/rastport.h

graphics.library/AreaEnd graphics.library/Areaknd

NAME
AreaEnd —— Process table of vectors and produce areafill.
SYNOPSIS
error = AreaEnd{rp)
do Al
LONG error;
struct RastPort *rp;
FUNCTION
Trigger the filling operation.
Process the vector buffer and generate required
fill into the raster planes. After the fill is
complete reinitialize for the next AreaMove. Use
the raster set up by InitTmpRas when generating an
areafill mask.
RESULT
Fill the area enclosed by the definitions in the vector table.
Returns -1 if an error occured anywhere.
Returns 0 if no error.
INPUTS
rp points to a RastPort structure
BUGS
SEE ALSO

InitArea AreaMove AreaDraw AreaEllipse graphics/rastport.h

TL - ¥

graphics.library/AreaMove

NAME
AreaMove —— Define a new starting point for a new
shape in the vector list.
SYNOPSIS
erroxr = AreaMove(rp, X, V)
do al @0:16 dl:16
LONG error;
struct RastPort *rp;
SHORT X,¥Y;
FUNCTION
Close the last polygon and start another polygon
at (x,y). Enter necessary polints 1in vector

buffer. Cosing a polygon may result in the generation

of another AreaDraw() to close previous polygon.

Remember to have an initialized Arealnfo structure attached
to the RastPort.

INPUTS
rp — points to a RastPort structure
X,y — positions in the raster

RETURNS
0 if no error
-1 if no space left in vector list

BUGS

SEE ALSO
InitArea AreaDraw Areakllipse Areaknd graphics/rastport.h

graphics. library/AreaMove graphics.library/AskFont

NAME
AskFont —— get the text attributes of the current font

SYNOPSIS
AskFont (rp, textAttr)
al a0
struct RastPort *rp;
struct TextAttr *textAttr;
FUNCTION .
This function fills the text attributes structure with the

attributes of the current font in the RastPort.

INPUTS

rp — the RastPort from which the text attributes are extracted

textAttr — the TextAttr structure to be filled
BUGS

SEE ALSO
graphics/text.h

graphics.library/AskFont

N

2L - ¥

graphics.library/AskSoftStyle graphics.library/AskSoftstyle

NAME
AskSoftStyle —— Get the soft style bits of the current font.
SYNOPSIS
enable = AskSoftStyle(rp)
do al

ULONG enable;
struct RastPort *rp;

FUNCTION
This function returns those style bits of the current font
that are not intrinsic in the font itself, but
algorithmically generated. These are the bits that are
valid to set in the enable mask for SetSoftStyle

INPUTS
rp — the RastPort from which the font and style are extracted.

RESULTS
enable - those bits in the style algorithmically generated
Style bits that are not defined are also set.

BUGS

SEE ALSO

SetSoftStyle graphics/text.h

graphics.library/AttemptLockLayerRom
*

NAME
AttemptLockLayerRom —— Attempt to Lock Layer structure
by rom(gfx 1lib) code
SYNOPSIS
gotit = AttemptLockLayerRom(layer)
do ad
BOOLEAN gotit;
struct Layer *layer;
FUNCTION
Query the current state of the lock on this Layer. If it is
already locked then return FALSE, could not lock. If the
Layer was not locked then lock it and return TRUE.
This call does not destroy any registers.
This call nests so that callers in this chain will not lock
themselves out.
INPUTS
layer — pointer to Layer structure
RESULT
returns TRUE or FALSE depending on whether the Layer is now
locked by the caller.
SEE ALSO

LockLayerRom UnlockLayerRom

ll

€L - ¥

planecnt = BltBitMap(SrcBitMap, SrcX, SrcY, DstBitMap,
DO A0 D0:16 D1:16 Al
DstX, DstY, SizeX, SizeY, Minterm, Mask [, TempA])
D2:16 D3:16 D4:16 D5:16 D6:8 D7:8 [A2]

ULONG planecnt;

struct BitMap *SrcBitMap,*DstBitMap;
SHORT SrcX,SrcY;

SHORT DstX,DstY;

SHORT SizeX,SizeY;

UBYTE MinTerm,Mask;

CPTR TempAa; /*optional */

FUNCTION
perform non—destructive blits to move a rectangle from one
area in a BitMap to another area, which can be on a different
BitMap.
This blit is assumed to be friendly: no error conditions (e.g.
a rectangle outside the BitMap bounds) are tested or reported.

INPUTS
SrcBitMap, DstBitMap — the BitMap(s) containing the
rectangles

~ the planes copied from the source to the destination are
only those whose plane numbers are identical and less
than the minimum Depth of either BitMap and whose Mask
bit for that plane is non—zero.

— SrcBitMap and DstBitMap can be identical

SrcX, SrcY — the x and y coordinates of the upper left corner
of the source rectangle. Valid range is positive
signed integer such that the raster word's offset
0..(32767-51ize)

DstX, DstY — the x and y coordinates of the upper left
corner of the destination for the rectangle. Valid
range is as for Src.

SizeX, SizeY — the size of the rectangle to be moved. Valid
range is (X: 1..976; Y: 1..1023 such that final raster
word's offset is 0..32767)

Minterm — the logic function to apply to the rectangle when
A is non-zero (i.e. within the rectangle). B is the
source rectangle and C, D'is the destination for the
rectangle.

- $0C0 is a vanilla copy

— $030 inverts the source before the copy

- $050 ignores the source and inverts the destination

— see the hardware reference manual for other combinations

Mask — the write mask to apply to this operation. Bits set
indicate the corresponding planes (if not greater than
the minimum plane count) are to participate in the
operation. Typically this is set to Oxff.

TempA — If the copy overlaps exactly to the left or right
(i.e. the scan line addresses overlap), and TempA is
non-zero, it points to enough chip accessable memory
(MAXBYTESPERROW) to hold a line of A source for the blit.
BitBitMap will allocate the needed TempA if none is
provided and one is needed. If the blit does not overlap;
SrcBitMap !'= DstBitMap then TempA need not be supplied.

RESULTS
planecnt ~ the number of planes actually involved in the blit.

BUGS
This routine uses over 300 bytes of stack when it really does
not need to. It calculates all blits ahead of time and then
sits in a loop doing the blits when it should overlap blits

with calculations.

graphics.library/BltBitMap graphics.library/BltBitMap SEE ALSO
ClipBlit graphics/gfx.h hardware/blit.h
NAME
BltBitMap —— Move a rectangular region of bits in a BitMap.
SYNOPSIS

N

i

graphics.library/BltBitMapRastPort graphics.library/BltBitMapRastPort

NAME
BltBitMapRastPort —— Blit from source bitmap to destination rastport.
SYNOPSIS
BltBitMapRastPort \
{srcbm, srex, srey, destrp, destX, destY, sizeX, sizeY, minterm)
a0 ag di al d2 d3 d4 ds a6

struct BitMap *srcbm;
SHORT srcx,srcy;

struct RastPort *destrp;
SHORT destX,destY;
SHORT sizeX,sizeY;
UBYTE minterm;

FUNCTION o
Blits from source bitmap to position specified in destination rastport

using minterm.

INPUTS
srcbm ~ a pointer to the source bitmap
srex — x offset into source bitmap
srey - y offset into source bitmap
destrp - a pointer to the destination rastport
destX - x offset into dest rastport
destY - y offset into dest rastport
sizeX — width of blit in pixels
sizeY ~ height of blit in rows
minterm — minterm to use for this blit

RETURNS
TRUE

BUGS

SEE ALSO

BltMaskBitMapRastPort graphics/gfx.h graphics/rastport.h

graphics.library/BltClear graphics.library/BltClear

NAME

BltClear — Clear a block of memory words to zero.

SYNOPSIS
BltClear(memBlock, bytecount, flags)
al do dl
APTR memBlock;
ULONG bytecount;
ULONG flags;
FUNCTION

For memory that is local and blitter accessable

the most efficient way to clear a range of memory locations is
to use the system's most efficient data mover, the blitter.
This command accepts the starting location and count and clears
that block to zeros.

INPUTS
memBloc - pointer to local memory to be cleared
memBlock is assumed to be even.

flags set bit 0 to force function to wait until blit
is done.
set bitl to use row/bytesperrow

bytecount if (flags & 2) == 0 then

even number of bytes to clear.
else
low 16 bits is taken as number of bytes
per row and upper 16 bits taken as
nunber of rows.
This function is somewhat hardware dependant. In the
rows/bytesperrow mode, rows must be <=1024.
In bytecount mode multiple runs of the blitter
may be used to clear all the memory.
may be used to clear all the memory.
RESULT
The block of memory is set to zeros.

BUGS

SEE ALSO

SL ~ ¥

graphics.library/BltMaskBitMapRastPort

NAME
BltMaskBitMapRastPort —— blit from source bitmap to destination rastport
with masking of source image.
SYNOPSIS
BltMaskBitMapRastPort
{srcbm, srex, srey,destrp,destX,destY, sizeX, sizeY minterm,bltmask)
a0 do 4l al d2 a3 d4 ds dé a2
struct BitMap *srcbm;
SHORT srcx,srcy;
struct RastPort *destrp;
SHORT destX,destY;
SHORT sizeX,sizeY;
UBYTE minterm;
APTR bltmask; * chip memory *
FUNCTION
Blits from source bitmap to position specified in destination rastport
using bltmask to determine where source overlays destination, and
minterm to determine whether to copy the source image "as is" or
to "invert" the sense of the source image when copying. In either
case, blit only occurs where the mask is non—zero.
INPUTS
srcbm — a pointer to the source bitmap
srex — x offset into source bitmap
srcy — y offset into source bitmap
destrp — a pointer to the destination rastport
destX — x offset into dest rastport
destY -y offset into dest rastport
sizeX — width of blit in pixels
sizeY — height of blit in rows
minterm — either (ABC|ABNC|ANBC) if copy source and blit thru mask
or (BNBC) if invert source and blit thru mask
bltmask — pointer to the single bit-plane mask, which must be the
same size and dimensions as the planes of the
source bitmap.
RETURNS
BUGS
SEE ALSO

BltBitMapRastPort graphics/gfx.h graphics/rastport.h

graphics.library/BltPattern graphics.library/BltPattern

NAME
BltPattern —— Using standard drawing rules for areafill,
blit through a mask.
SYNOPSIS
BltPattern(rp, mask, x1, yl, maxx, maxy, bytecnt)

al, a0 do 41 dz2 d3 d4
struct RastPort *rp;

APTR mask ;

SHORT x1,yl,maxx,maxy ;

SHORT bytecnt;

FUNCTION
Blit using drawmede,areafill pattern, and mask
at position rectangle (x1,yl) (maxx,maxy).

INPUTS
rp - points to RastPort
mask — points to 2 dimensional mask if needed

if mask == NULL then use a rectangle.
x1,yl — upper left of rectangular region in RastPort
maxx,maxy — points to lower right of rectangular region in RastPort
bytecnt — BytesPerRow for mask

RETURNS

SEE ALSO
AreaEnd

L

¥

9L

il

graphics.library/BltTemplate graphics.library/BltTemplate

NAME
BltTemplate ——- Cookie cut a shape in a rectangle to the RastPort.
SYNOPSIS
BltTemplate(SrcTemplate, SrcX, SrcMod, rp,
a0 d0:16 dl:16 al
DstX, DstY, SizeX, SizeY)
d2:16 d3:16 d4:16 d5:16

CPTR SrcTemplate;

SHORT SrcX;

SHORT SrcMod ;

struct RastPort *rp;

SHORT DstX,DstY;

SHORT SizeX,SizeY;

FUNCTION

This function draws the image in the template into the

RastPort in the current color and drawing mode at the

specified position. The template is assumed not to overlap

the destination.

If the template falls outside the RastPort boundary, it is

truncated to that boundary.

Note: the SrcTemplate pointer should point to the "nearest" word
(rounded down) of the template mask. Fine alignment of the mask
is acheived by setting the SrcX bit offseet within the range
of 0 to 15 decimal.

INPUTS

SrcTemplate — pointer to the first (nearest) word of the template mask.

SrcX — x bit offset into the template mask (range 0..15).

SrcMod — number of bytes per row in template mask.

rp — pointer to destination RastPort.

DstX, DstY — x and y coordinates of the upper left

corner of the destination for the blit.
SizeX, SizeY - size of the rectangle to be used as the
template.
BUGS
The destination rastport (rp) must have an associated
Layer structure or srcX will be ignored.
SEE ALSO

BltPattern graphics/rastport.h

graphics. library/CBump graphics. library/CBump

NAME

CBump — increment user copper list pointer (bump to next position in list).
SYNOPSIS

CBump(¢)

al

struct UCopList *c;
FUNCTION .

Increment pointer to space for next instruction in user copper list.
INPUTS

¢ - pointer to UCopList structure
RESULTS

User copper list pointer is incremented to next position.

Pointer is repositioned to next user copperlist instruction block

if the current block is full.

Note: CBump is usually invoked for the programmer as part of the
macro definitions CWAIT or CMOVE.

BUGS
SEE ALSO

CINIT CWAIT CMOVE CEND graphics/copper.h

¥

LL

graphics.library/CEND

NAME
CEND —— Terminate user copper list.
SYNOPSIS
CEND{ ¢)
struct UCopList *c;
FUNCTION
Add instruction to terminate user copper list.
INPUTS
c — pointer to UCopList structure
RESULTS
This is actual}y a macro that calls the macro CWAIT(c,10000,255).
10000 is a magical number that the graphics library uses.
I hope display technology doesn't catch up too fast!
BUGS
SEE ALSO

CINIT CWAIT CMOVE graphics/copper.h

graphics.library/CEND

graphic

NAME

SYNO!

FUNC'

s.library/ChangeSprite graphics.library/ChangeSprite
ChangeSprite —— Change the sprite image pointer.

PSIS

ChangeSprite(vp, s, newdata)

a0 al a2

struct ViewPort *vp;
struct SimpleSprite *s;
BPTR newdata; /* chip memory */

TION

The sprite image is changed to use the data starting at newdata

INPUTS

vp — pointer to ViewPort structure that this sprite is
relative to.
or 0 if relative only top of View
s ~ pointer to SimpleSprite structure
newdata — pointer to data structure of the following form.
struct spriteimage

UWORD posctl[2]; /* used by simple sprite machine*/
UWORD data[height] [2]); /* actual sprite image */
UWORD reserved (2] ; /* initialized to */

/* 0x0,0x0 *x/
I

Programuer must initialize reserved[2]. Spriteimage must he
in CHIP memory. The height subfield of the SimpleSprite structure
must be set to reflect the height of the new spriteimage BEFORE
calling ChangeSprite. The programmer may allocate two sprites to
handle a single attached sprite. After GetSprite, ChangeSprite,
the programmer can set the SPRITE_ATTACHED bit in posctl{l] of the
odd numbered sprite.
If you need more than 8 sprites look up VSprites in the
graphics documentation.

RESULTS

BUGS

SEE

ALSO
FreeSprite ChangeSprite MoveSprite AddVSprite graphics/sprite.h

I

8L - ¥

Il

graphics.library/CINIT graphics.library/CINIT

NAME
CINIT — Initialize user copperlist to accept intermediate
user copper instructions.
SYNOPSIS
ucl = CINIT{ ¢ , n)
UCopperListInit{ ¢ , n)
a0 do
struct UCopList *ucl;
struct UCopList *c;
short n;
FUNCTION
Allocates and/or initialize copperlist structures/buffers.
This is a macro that calls UCopListLinit. CINIT will
allocate a new UCopList if ¢==0. If (c != 0) it will
initialize the data structures to begin new copperlist
without allocating more memory and it ignores n.
INPUTS
¢ - pointer to UCopList structure
n - number of instructions buffer must hold
RESULTS
An initialize list to accept intermediate copper instructions.
BUGS
CINIT will not actually allocate a new copperlist if c==0.
Instead you must allocate a 12 byte MEMF_PUBLIC[MEMF"CLEAR block,
and pass it to this function. The system's FreeVPortCoplists
function will take care of deallocating it.
SEE ALSO

graphics.library/ClearEOL graphics.library/ClearEOL

NAME
ClearEOL — Clear from current position to end of line.
SYNOPSIS
ClearEOL(xp)
al
struct RastPort *rp;
FUNCTION o
Clear a rectangular swath from the current position to the
right edge of the rastPort. The height of the swath is taken
from that of the current text font, and the vertical
positioning of the swath is adjusted by the text baseline,
such that text output at this position would lie wholly on
this newly cleared area.
Clearing consists of setting the color of the swath to zero,
or, if the DrawMode is 2, to the BgPen.
INPUTS
rp — pointer to RastPort structure
BUGS
SEE ALSO

Text ClearScreen SetRast graphics/text.h graphics/rastport.h

6L — ¥

graphics.library/ClearRectRegion graphics.library/ClearRectRegion

NAME
ClearRectRegion —— Perform 2d CLEAR operation of rectangle
with region, leaving result in region.
SYNOPSIS
status = ClearRectRegion(region,rectangle)
a0 al
BOOL error;

struct Region *region;
struct Rectangle *rectangle;

FUNCTION
Clip away any portion of the region that exists inside
of the rectangle. Leave the result in region.

INPUTS
region — pointer to Region structure
rectangle — pointer to Rectangle structure

RESULTS
status — return TRUE if successful operation
return FALSE if ran out of memory
BUGS

SEE ALSO
AndRectRegion graphics/regions.h

graphics.library/ClearRegion

NAME
ClearRegion —— Remove all rectangles from region.

SYNOPSIS
ClearRegion(region)
a0

struct Region *region;

FUNCTION .) .
Clip away all rectangles in the region leaving nothing.
INPUTS
region — pointer to Region structure
BUGS
SEE ALSO

NewRegion graphics/regions.h

graphics. library/ClearRegion

I

08 — ¥

|

graphics.library/ClearScreen graphics.library/ClearScreen
NAME
ClearScreen — Clear from current position to end of RastPort.
SYNOPSIS
ClearScreen(rp)
al

struct RastPort *rp;

FUNCTION
Clear a rectangular swath from the current position to the
right edge of the rastPort with ClearEOL, then clear the rest
of the screen from just beneath the swath to the bottom of
the rastPort.
Clearing consists of setting the color of the swath to zero,
or, if the DrawMode is 2, to the BgPen.

INPUTS
rp - pointer to RastPort structure

BUGS

SEE ALSO
ClearEOL Text SetRast graphics/text.h graphics/rastport.h

graphics.library/ClipBlit graphics.library/ClipBlit
NAME

ClipBlit —— Calls BltBitMap() after accounting for windows

SYNOPSIS

ClipBlit(Src, SrcX, SrcY, Dest, DestX, DestY, XSize, YSize, Minterm });
a0 do dl al a2 das a4 das dé

FUNCTION . '
performs the same function as BltBitMap(), except that it
takes into account the Layers and ClipRects of the layer library,
all of which are (and should be) transparent to you. So, whereas
BltBitMap() requires pointers to BitMaps, ClipBlit requires pointers to
the RastPorts that contain the Bitmaps, Layers, et cetera.

1f you are going to blit blocks of data around via the RastPort of your
Intuition Window, you must call this routine (rather than BltBitMap()).

Either the Src RastPort, the Dest RastPort, both, or neither, can have
Layers. This routine takes care of all cases.

See BltBitMap() for a thorough explanation.
INPUTS
Src = pointer to the RastPort of the source for your blit
SrcX, SrcY = the topleft offset into Src for your data
Dest = pointer to the RastPort to receive the blitted data
DestX, DestY = the topleft offset into the destination RastPort
XSize = the width of the blit
YSize = the height of the blit
Minterm = the boolean blitter function, where SRCB is associated with the
Src RastPort and SRCC goes to the Dest RastPort
RESULT
None
BUGS
None

SEE ALSO

BltBitMap();

I8 — ¥

graphics.library/CloseFont graphics.library/CloseFont

NAME
CloseFont —— Release a pointer to a system font.
SYNOPSIS
CloseFont { font)
al
struct TextFont *font;
FUNCTION
This function indicates that the font specified is no longer
in use. It is used to close a font opened by OpenFont, so
that fonts that are no longer in use do not consume system
resources.
INPUTS
font - a font pointer as returned by OpenFont or OpenDiskFont
BUGS
SEE ALSO

OpenFont diskfont.library/OpenDiskFont graphics/text.h

graphics.library/CMOVE graphics.library/CMOVE

NAME
CMOVE —— append copper move instruction to user copper list.
SYNOPSIS
CMOVE(¢ , a , V)
CMove(¢ , a , v)
al do a1
CBump(c)
al
struct UCopList *c;
APTR a;
SHORT v;
FUNCTION

Add instruction to move value v to hardware register a.

INPUTS
¢ — pointer to UCoplist structure
a — hardware register
v - 16 bit value to be written

RESULTS
This is actually a macro that calls CMove(c,&a,V)
and then calls CBump(c) to bump the local pointer
to the next instruction. Watch out for macro side affects.

BUGS

SEE ALSO
CINIT CMOVE CWAIT graphics/copper.h

i

28 — ¥

i

graphics.library/CopySBitMap

graphics.library/CopySBitMap

NAME
CopySBitMap ~— Syncronize Layer window with contents of
Super BitMap
SYNOPSIS
CopySBitMap(layer)

a0
struct Layer *layer;

FUNCTION
This is the inverse of SyncSBitMap.
Copy all bits from SuperBitMap to Layer bounds.
This is used for those functions that do not
want to deal with the ClipRect structures but do want
to be able to work with a SuperBitMap Layer.

INPUTS

layer — pointer to a SuperBitMap Layer
The Layer must already be locked by the caller.

BUGS

SEE ALSC
LockLayerRom SyncSBitMap

graphics.library/CWAIT

graphics.library/CWAIT

NAME

CWAIT —-— Append copper wait instruction to user copper list.
SYNOPSIS

CWAIT(¢ , v , h)

CWait{ ¢ , v , h)

al do dil
CBump(<)
al

struct UCoplist *c;

short v, h;
FUNCTION

Add instruction to wait for vertical beam position v and

horizontal position h to this intermediate copper list.
INPUTS

¢ — pointer to UCopList structure

v — vertical beam position (relative to top of viewport)

h - horizontal beam position
RESULTS

this is actually a macro that calls CWait(c,v,h)

and then calls CBump(c) to bump the local pointer

to the next instruction.
BUGS

User waiting for horizontal values of greater than 222 decimal is illegal.
SEE ALSO

CINIT CMOVE CEND graphics/copper.h

4

£8

graphics.library/DisownBlitter graphics.library/DisownBlitter

NAME

DisownBlitter — return blitter to free state.
SYNOPSIS

DisownBlitter()
FUNCTION

Free blitter up for use by other blitter users.

INPUTS
RETURNS
SEE ALSO

OwnBlitter

graphics.library/DisposeRegion graphics.library/DisposeRegion

NAME

DisposeRegion —— Return all space for this region to free

memory pool.

SYNOPSIS

DisposeRegion{region)

a0
struct Region *region;

FUNCTION

Free all RegionRectangles for this Region then
free the Region itself.

INPUTS
region — pointer to Region structure

BUGS

SEE ALSO
NewRegion graphics/regions.h

i

¥8 - ¥

il

graphics.library/DoCollision

NAME
DoCollision —— Test every gel in gel list for collisions.

SYNOPSIS
DoCollision(rp)
al

struct RastPort *rp;

FUNCTION
Tests each gel in gel list for boundary and gel-to-gel collisions.
on detecting one of these collisions, the appropriate collision-
handling routine is called. See the documentation for a thorough
description of which collision routine is called. This routine
expects to find the gel list correctly sorted in Y,X order.
The system routine SortGList performs this function for the user

INPUTS
rp = pointer to a RastPort

BUGS

SEE ALSO
InitGels SortGList graphics/gels.h graphics/gels.h

graphics. library/boCollision graphics. library/Draw

NAME
Draw —— Draw a line between the current pen position
and the new X,y position.
SYNOPSIS
Draw(rp,

X, Y)
al d0:16 dl:16

struct RastPort *rp;
SHORT X,y;

FUNCTION
Draw a line from the current pen position to (X,y).

INPUTS

rp — pointer to a RastPort
X,y — point in the RastPort to end the line.

BUGS

SEE ALSO
Move graphics/rastport.h

graphics.library/Draw

8 - ¥

graphics.library/DrawEllipse

graphics.library/Drawkllipse

NAME
DrawEllipse —— Draw an ellipse centered at cx,cy with vertical
and horizontal radii of a,b respectively.
SYNOPSIS

DrawEllipse(rp, ¢x, cy, a, b)
al d0 dl d2 a3

struct RastPort *xp;
SHORT ¢x, c¢y;
SHORT a, b;

FUNCTION
Create an elliptical outine within the rectangular region
specified by the parameters, using the current foreground pen color.

INPUTS
rp — pointer to the RastPort into which the ellipse will be drawn.
cx — x coordinate of the centerpoint relative to the rastport.
cy — y coordinate of the centerpoint relative to the rastport.
a — the horizontal radius of the ellipse (note: a must be > 0)
b - the vertical radius of the ellipse (note: b must be > 0)

Note: this routine does not clip the ellipse to a non-layered rastport.

BUGS

SEE ALSO
DrawCircle, graphics/rastport.h

graphics.library/DrawGList

graphics.library/DrawGList

NAME
DrawGList —— Process the gel list, queueing VSprites, drawing Bobs.

SYNOPSIS
DrawGList(rp, vp)
al a0

struct RastPort *rp;
struct ViewPort *vp;

FUNCTION
Performs one pass of the current gel list.
— If nextlLine and lastColor are defined, these are
initialized for each gel.
- If it's a VSprite build it into the copper list.
- If it's a Bob, draw it into the current raster.
-~ Copy the save values into the "old" variables,
double-buffering if required.

INPUTS
rp = pointer to the RastPort where Bobs will be drawn
vp = pointer to the ViewPort for which VSprites will be created

BUGS
MUSTDRAW isn't implemented yet.

SEE ALSO
InitGels graphics/gels.h graphics/rastport.h graphics/view.h

|

98 — ¥

graphics.library/Flood graphics. library/Flood

NAME

Flood —- Flood rastport like areafill.
SYNOPSIS

error = Flood({ rp, mode, X, y)

do al d2 do dl

BOOLEAN error;
struct RastPort rp;
ULONG mode;

SHORT X,y;

FUNCTION
Search the BitMap starting at (x,y). Fill all adjacent pixels
if they are:
a: arenot the same as AOLPen Mode 0O
b: same as the one at (X,y) Mode 1
when actually doing the fill use the modes that apply to
standard areafill routine such as drawmodes and patterns.

INPUTS
rp — pointer to RastPort
{x,y) — coordinate in BitMap
mode — 0 fill all adjacent pixels searching for border
1 fill all adjacent pixels that have same pen number
as (X,Y)

Note: in order to use Flood, the destination RastPort must
have a valid TmpRas raster whose size is as large as
that of the RastPort.

SEE ALSO
AreabEnd graphics/rastport.h

graphics.library/FreeColorMap graphics.library/FreeColorMap

NAME
FreeColorMap —— Free the ColorMap structure and return memory
to free memory pool.
SYNOPSIS
FreeColorMap{ colormap)
a0
struct ColorMap *colormap;
FUNCTION
Return the memory to the free memory pool that was allocated
with GetColorMap.
INPUTS .
colormap — pointer to ColorMap allocated with GetColorMap
RESULT
The space is made available for others to use.
BUGS
SEE ALSO

SetRGB4 GetColorMap graphics/view.h

L8 ~ ¥

graphics.library/FreeCopList

NAME

FreeCoplist —— deallocate intermediate copper list
SYNOPSIS

FreeCopList(coplist)

a0

struct CoplList *coplist;
FUNCTION

Deallocate all memory associated with this copper list.
INPUTS

coplist — pointer to structure CopList
RESULTS

memory returned to memory manager
BUGS
SEE ALSO

graphics/copper.h

graphics.library/FreeCopList

graphics.library/FreeCprList

NAME
FreeCprList —— deallocate hardware copper list

SYNOPSIS
FreeCprlList(cprlist)
a0
struct cprlist *cprlist;

FUNCTION
return cprlist to free memory pool

INPUTS
cprlist — pointer to cprlist structure

RESULTS
memory returned and made available to other tasks

BUGS

SEE ALSO
graphics/copper.h

graphics.library/FreeCprlList

I

88 — ¥

graphics.library/FreeGBuffers graphics.library/FreeGBuffers

NAME

FreeGBuffers — Deallocate memory obtained by GetGBufers.
SYNOPSIS

FreeGBuffers(anOb, rp, db)

a0 al do

struct AnimOb *anOb;
struct RastPort *rp;
BOOL db;

FUNCTION
For each sequence of each component of the AnimOb,
deallocate memory for:
SaveBuffer
BorderLine
CollMask and ImageShadow (point to same buffer)
if db is set (user had used double-buffering) deallocate:
DBufPacket
BufBuffer

INPUTS
anOb = pointer to the AnimOb structure
rp = pointer to the current RastPort

db = double-buffer indicator (set TRUE for double-buffering)
BUGS
SEE ALSO

GetGBuffers graphics/gels.h graphics/rastport.h

graphics.library/FreeRaster graphics.library/FreeRaster

NAME
FreeRaster —— Release an allocated area to the system free memory pool.
SYNOPSIS
FreeRaster(p, width, height)
a0l do:16 dl:16
PLANEPTR p;
USHORT width, height;
FUNCTION
Return the memory associated with this PLANEPTR of size
width and height to the MEMF CHIP memory pool.
INPUTS
p = a pointer to a memory space returned as a
result of a call to AllocRaster.
width — the width in bits of the bitplane.
height - number of rows in bitplane.
the same values of width and height with which you
called AllocRaster in the first place, when the
pointer p returned. This defines the size of the
memory space which is to be returned to the {free
memory pool.
BUGS
SEE ALSO

AllocRaster graphics/gfx.h

68 - ¥

graphics.library/FreeSprite

NAME
FreeSprite —— Return sprite for use by others and virtual
sprite machine.

SYNOPSIS
FreeSprite(pick)
do

SHORT pick;

FUNCTION
Mark sprite as available for others to use.

These sprite routines are provided to ease sharing of sprite
hardware and to handle simple cases of sprite usage and
movement. It is assumed the programs that use these routines
do want to be good citizens in their hearts. ie: they will
not FreeSprite unless they actually own the sprite.
virtual Sprite machine may ignore simple sprite machine.

INPUTS
pick ~ number in range of 0-7

RESULTS
sprite made available for subsequent callers of GetSprite
as well as use by Virtual Sprite Machine

BUGS

SEE ALSO
GetSprite ChangeSprite Movesprite graphics/sprite.h

graphics.library/FreeSprite graphics.library/FreeVPortCopLists

graphics.library/FreeVPortCopLists

NAME
FreevPortCopLists —— deallocate all intermediate copper lists and
their headers from a viewport

SYNOPSIS
FreevVPortCopLists(vp)
a0

struct ViewPort *vp;

FUNCTION
Ssearch display, color, sprite, and user copper
lists and call FreeMem() to deallocate them from memory

INPUTS
vp — pointer to ViewPort structure

RESULTS
vp—>DspIns = NULL; vp—>SprIns = NULL; vp—>ClrIns = NULL;
vp—>UCopIns = NULL;

BUGS
none known

SEE ALSO
graphics/view.h

i

06 — ¥

|

graphics.library/GetColorMap graphics.library/GetColorMap

NAME

GetColorMap ~— allocate and initialize Colormap
SYNOPSIS

cm = GetColorMap{ entries)

do do

struct ColorMap *cm;

LONG entries;
FUNCTION

Allocates, initializes and returns a pointer to a ColorMap
data structure, later enabling calls to SetRGB4

and LoadRGB4 to load colors for a view port. The ColorTable
pointer in the ColorMap structure points to a hardware
specific colormap data structure. You should not count on
it being anything you can understand. Use GetRGB4() to
query it or SetRGB4CM to set it directly.

INPUTS
entries — number of entries for this colormap

RESULT
The pointer value returned by this routine, if nonzero,
may be stored into the ViewPort.ColorMap pointer.
If a value of 0 is returned, the system was unable
to allocate enough memory space for the required
data structures.

BUGS

SEE ALSO
SetRGB4 FreeColorMap

graphics.library/GetGBuffers graphics.library/GetGBuffers

NAME
GetGBuffers -— Attempt to allocate ALL buffers of an entire AnimOb.
SYNOPSIS
status = GetGBuffers(anOb, rp, db)
do a0 al do

BOOL status;

struct AnimOb *anOb;
struct RastPort *rp;
BOOL db;

FUNCTION
For each sequence of each component of the AnimOb, allocate memory for:

SaveBuffer

BorderLine

CollMask and ImageShadow (point to same buffer)

if db is set TRUE (user wants double-buffering) allocate:
DBufPacket
BufBuffer

INPUTS
anOb = pointer to the AnimOb structure

rp pointer to the current RastPort
db = double-buffer indicator (set TRUE for double-buffering)
RESULT

status = TRUE if the memory allocations were all successful, else FALSE

BUGS
If any of the memory allocations fail it does not free the partial
allocations that did succeed.

SEE ALSO
FreeGBuffers graphics/gels.h

16 — ¥

graphics.library/GetRGB4

NAME

GetRGB4 —— Inquire value of entry in ColorMap.
SYNOPSIS

value = GetRGB4(colormap, entry)

ao a0 dao

ULONG value;

struct ColorMap *colormap;

IONG entry;
FUNCTION

Read and format a value from the ColorMap.
INPUTS

colormap — pointer to ColorMap structure

entry — index into colormap
RESULT

returns -1 if no valid entry

return UWORD RGB value 4 bits per gun right justified
BUGS
SEE ALSO

SetRGB4 LoadRGB4 GetColorMap FreeColorMap graphics/view.h

graphics.library/GetRGB4

graphics.library/GetSprite

NAME

GetSprite — Attempt to get a sprite for the simple sprite
manager.

SYNOPSIS

Sprite Number = GetSprite(sprite, pick)
do a0 ao

SHORT Sprite Number;
struct SimpleSprite *sprite;
SHORT pick;

FUNCTION
Attempt to allocate one of the eight sprites for private use
with the simple sprite manager. This must be done before using
further calls to simple sprite machine. If the programmer
wants to use 15 color sprites you must allocate both sprites
and set the 'SPRITE ATTACHED' bit in the odd sprite's posctldata
array.

INPUTS
sprite — ptr to programmers SimpleSprite structure.
pick — number in the range of 0-7 or

-1 if programmer just wants the next one.

RESULTS
1f pick is 0-7 attempt to allocate the sprite. If the sprite
is already allocated then return —1.
1f pick -1 allocate the next sprite starting search at 0.
If no sprites are available return -1 and fill -1 in num entry
of SimpleSprite structure.
1f the sprite is available for allocation, mark it allocated
and fill in the 'num' entry of the SimpleSprite structure.
I1f successful return the sprite number.

BUGS

SEE ALSO

FreeSprite ChangeSprite MoveSprite GetSprite graphics/sprite.h

graphics.library/GetSprite

I

¢6 — ¥

il

graphics.library/InitArea graphics.library/InitArea

NAME
InitArea — Initialize vector collection matrix

SYNOPSIS
InitArea(areainfo, buffer, maxvectors)

a0 al do

struct Arealnfo *areainfo;
APTR buffer;
SHORT maxvectors;

FUNCTION
This function provides initialization for the vector collection matrix
such that it has a size of (max vectors). The size of the region
pointed to by buffer (short pointer) should be five (5) times as large
as maxvectors. This size is in bytes. BAreafills done by using AreaMove,
AreaDraw, and AreaEnd must have enough space allocated in this table to
store all the points of the largest fill. AreaEllipse takes up two
vectors for every call. If AreaMove/Draw/Ellipse detect too many
vectors going into the buffer they will return —1.

INPUTS
areainfo - pointer to Arealnfo structure
puffer = pointer to chunk of memory to collect vertices
maxvectors — max number of vectors this buffer can hold

RESULT
Pointers are set up to begin storage of vectors done by
AreaMove, Areabraw, and AreaEllipse.

BUGS

SEE ALSO

AreaEnd AreaMove AreaDraw AreaEllipse graphics/rastport.h

graphics.library/InitBitMap graphics. library/InitBitMap

NAME

InitBitMap —— Initialize bit map structure with input values.
SYNOPSIS

InitBitMap(bm, depth, width, height)

a0 do d1 dz

struct BitMap *bm;

BYTE depth;

SHORT width, height;
FUNCTION

Initialize various elements in the BitMap structure to
correctly reflect depth, width, and height.

Must be used before use of BitMap in other graphics calls.
The Planes[8] are not initialized and need to be set up
by the caller. The Planes table was put at the end of the
structure so that it may be truncated to conserve space,
as well as extended. All routines that use BitMap should
only depend on existence of depth number of bitplanes.

INPUTS
bm - pointer to a BitMap structure (gfx.h)
depth — number of bitplanes that this bitmap will have
width — number of bits (columns) wide for this BitMap
height— number of bits (rows) tall for this BitMap

BUGS

SEE ALSO
graphics/gfx.h

€6 — ¥

graphics.library/InitGels graphics.library/InitGels

NAME
InitGels —— initialize a gel list; must be called before using gels.

SYNOPSIS
InitGels(head, tail, GInfo)
a0 al a2

struct VSprite *head, *tail;
struct GelsInfo *GInfo;

FUNCTION
Assigns the VSprites as the head and tail of the gel list in GixBase.
Links these two gels together as the keystones of the list.
If the collHandler vector points to some memory array, sets
the BORDERHIT vector to NULL.

INPUTS
head = pointer to the VSprite structure to be used as the gel list head

i

tail = pointer to the VSprite structure to be used as the gel list tail
GInfo = pointer to the GelsInfo structure to be initialized
BUGS

SEE ALSO

graphics/gels.h graphics/rastport.h

graphics.library/InitGMasks graphics.library/InitGMasks

NAME
InitGMasks —— Initialize all of the masks of an AnimOb.
SYNOPSIS
InitGMasks(anOb)
a0

struct AnimOb *anOb;

FUNCTION
For every sequence of every component call InitMasks.
INPUTS
anCb = pointer to the AnimOb
BUGS
SEE ALSO

InitMasks graphics/gels.h

I

Ve - ¥

l

graphics.library/InitMasks graphics.library/InitMasks

NAME
InitMasks —— Initialize the BorderLine and CollMask masks of a VSprite.

SYNOPSIS
InitMasks(vs)
a0

struct VSprite *vs;

FUNCTION
Creates the appropriate BorderLine and CollMask masks of the VSprite.
Correctly detects if the VSprite is actually a Bob definition, handles
the image data accordingly.

INPUTS

vs = pointer to the VSprite structure
BUGS
SEE ALSO

InitGels graphics/gels.h

graphics.library/InitRastPort graphics.library/InitRastPort

NAME
InitRastPort —— Initialize raster port structure
SYNOPSIS
InitRastPort(rp)
al
struct RastPort *rp;
FUNCTION
Initialize a RastPort structure to standard values.
The struct Rastport describes a control structure
for a write—able raster. The RastPort structure

describes how a complete single playfield display
will be written into. A RastPort structure is

referenced whenever any drawing or filling
operations are to be performed on a section of
memory .

The section of memory which is being used in this
way may or may not be presently a part of the
current actual onscreen display memory. The name
of the actual memory section which is 1linked to
the RastPort is referred to here as a "raster" or
as a bitmap.

NOTE : Calling the routine InitRastPort only
establishes various defaults. It does NOT
establish where, in memory, the rasters are

located. To do-graphics with this RastPort the user
must set up the BitMap pointer in the RastPort.

INPUTS
rp = pointer to a RastPort structure.

RESULT
all entries in RastPort get zeroed out.
exceptions:
The following get -1:
Mask,FgPen, AOLPen, LinePtrn
DrawMode = JAM2
The font is set to the standard system font

BUGS

SEE ALSO
graphics/rastport.h

graphics.library/InitTmpRas ‘ graphics.library/InitTmpRas graphics.library/InitView graphics.library/InitView

NAME NAME
InitTmpRas —— Initialize area of local memory for usage by Initview — Initialize View structure.
areafill, floodfill, text.
SYNOPSIS
SYNOPSIS Initview(view)
InitTnpRas(tmpras, buffer, size) al
a0 a

struct View *view;
struct TmpRas *tmpras;

APTR buffer; FUNCTION

LONG size; Initialize View structure to default values.
FUNCTION INPUTS_ .

The area of memory pointed to by buffer is set up to be used view — pointer to a View structure

by RastPort routines that may need to get some memory for

intermediate operations in preparation to putting the graphics RESULT

into the final BitMap. ‘ View structure set to all 0's. (1.0,1.1.1.2))

Tmpras is used to control the usage of buffer. Then values are put in DxOffset,DyOffset to properly pOS%thn

default display about .5 inches from top and left on monitor.

INPUTS InitView pays no attention to previous contents of view.

tmpras — pointer to a TmpRas structure to be linked into

a RastPort BUGS
buffer — pointer to a contquous piece of chip memory.
size — size in bytes of buffer SEE ALSO

MakeVPort graphics/view.h
RESULT

makes buffer available for users of RastPort

BUGS
Would be nice if RastPorts could share one TmpRas.

SEE ALSO
AreaEnd Flood Text graphics/rastport.h

S6 — ¥

i

96 — ¥

i

graphics. library/InitvPort graphics.library/InitvPort

NAME
InitVPort - Initialize ViewPort structure.

SYNOPSIS
InitvPort(vp)
a0
struct ViewPort *vp;

FUNCTION
Initialize ViewPort structure to default values.

INPUTS
vp — pointer to a ViewPort structure

RESULT
BUGS

SEE ALSO
MakeVPort graphics/view.h

graphics.library/LoadRGB4 graphics. library/LoadRGB4
NAME

LoadRGB4 —— Load RGB color values from table.
SYNOPSIS

LoadRGB4{ vp, colors , count)

a0 al do:16
struct ViewPort *vp;
UWORD colors|(];
SHORT count;

FUNCTION

load the count words of the colormapper from table starting at

entry O.

INPUTS
vp — pointer to ViewPort, whos colors you want to change
colors — pointer to table of RGB values set up as an array
of USHORTS

background— O0xORGB

colorl —— OxORGB

color2 —— OxORGB

etc. UWORD per value.

The colors are interpreted as 15 = maximum intensity.

0 = minimum intensity.
count = number of UWORDs in the table to load into the
colormap starting at color O(background) and proceeding
to the next higher color number

RESULTS

The ViewPort should have a pointer to a valid ColorMap to store

the colors in.
Update the hardware copperlist to reflect the new colors.
Update the intermediate copperlist with the new colors.

BUGS

SEE ALSO
SetRGB4 GetRGB4 GetColorMap graphics/view.h

- ¥

L6

graphics.library/LoadvView graphics.library/LoadvView

NAME

LoadvView —— Use a (possibly freshly created) coprocessor instruction

list to create the current display.

SYNOPSIS

LoadvView(View)

AL

struct View *View;

FUNCTION

Install a new view to be displayed during the next display
refresh pass.
Coprocessor instruction list has been created by

InitvPort, Makeview, and MrgCop.

INPUTS
View — a pointer to the View structure which contains the
pointer to the constructed coprocessor instructions list.

RESULT
The new View is displayed, according to your ‘instructions.
The vertical blank routine will pick this pointer up and
direct the copper to start displaying this View.

BUGS

SEE ALSO
InitVPort MakevpPort MrgCop intuition/RethinkDisplay graphics/view.h

graphics.library/LockLayerRom
*

graphics. library/LockLayerRom

NAME

LockLayerRom — Lock Layer structure by rom(gfx lib) code.
SYNOPSIS
LockLayerRom(layer)
ab
struct Layer *layer;
FUNCTION
Return when the layer is locked and no other task may
alter. the ClipRect structure in the Layer structure.
This call does not destroy any registers.
This call nests so that callers in this chain will not lock
themselves out.
Do not have the Layer locked during a call to intuition.
There is a potential deadlock problem here, if intuition
needs to get other locks as well.
Having the layer locked prevents other tasks from using the
layer library functions, most notably intuition itself. So
be brief.
layer.library's LockLayer is identical to LockLayerRom.
INPUTS
layer — pointer to Layer structure
RESULTS
The layer is locked and the task can render assuming the
ClipRects will not change out from underneath it until
an UnlockLayerRom is called.
SEE ALSO

UnlockLayerRom graphics/clip.h

i

86 — ¥

graphics.library/MakeVPort graphics. library/MakevPort

NAME
MakeVPort —— generate display copper list.
SYNOPSIS
MakeVPort(view, viewport)
a al

struct View *view;
struct ViewPort *viewport;

FUNCTION
Use information in the View, ViewPort, ViewPort->RasInfo;
construct intermediate copper list for this ViewPort.

INPUTS
view — pointer to View structure
viewport — pointer to ViewPort structure
The viewport must have valid pointer to a RasInfo.

RESULTS
constructs intermediate copper list and puts pointers in
viewport.DspIns
If the ColorMap ptr in ViewPort is NULL then it uses colors
from the default color table.
If DUALPF in Modes then there must be a second RasInfo pointed
to by the first RasInfo

BUGS
SEE ALSO

InitVPort MrgCop graphics/view.h
Intuition's MakeScreen RemakeDisplay and RethinkDisplay

graphics.library/Move graphics.library/Move

NAME
Move — Move graphics pen position.
SYNOPSIS
Move(rp, X, v)
al do0:16 dl:16
struct RastPort *rp;
SHORT X,Vy;
FUNCTION
Move graphics pen position to (x,y) relative to upper left (0,0)
of RastPort.
Note: Text uses the same position.
INPUTS
rp = pointer to a RastPort structure
x,y — point in the RastPort
RESULTS
BUGS
SEE ALSO

Draw graphics/rastport.h

graphics.library/MoveSprite graphics.library/MoveSprite

NAME
MoveSprite —— Move sprite to a point relative to top of viewport.
SYNOPSIS
MoveSprite(vp, sprite, x, y)
a al do di
struct ViewPort *vp;
struct SimpleSprite *sprite;
SHORT - X,¥;
FUNCTION
Move sprite image to new place on display.
INPUTS
vp — pointer to ViewPort structure
if vp = 0, sprite is positioned relative to View.
sprite — pointer to SimpleSprite structure
(x,y) — new position relative to top of viewport or view.
RESULTS
calculate the hardware information for the sprite and
place it in the posctldata array. During next video display
the sprite will appear in new position.
BUGS

Sprites really appear one pixel to the left of the position you specify.
This bug affects the apparent display position of the sprite on the screen,
but does not affect the numeric position relative to the viewport or view.

SEE ALSO
FreeSprite ChangeSprite GetSprite graphies/sprite.h

graphics.library/MrgCop

NAME
MrgCop —— Merge together coprocessor instructions.

SYNOPSIS
MrgCop(View)
Al

struct View *View;

FUNCTION
Merge together the display, color, sprite and user coprocessor
instructions into a single coprocessor instruction stream. This
essentially creates a per—display—frame program for the coprocessor.
This function MrgCop is used, for example, by the graphics animation
routines which effectively add information into an essentially
static background display. This changes some of the user
or sprite instructions, but not those which have formed the
pbasic display in the first place. When all forms of coprocessor
instructions are merged together, you will have a complete per—
frame instruction list for the coprocessor.

Each of the coprocessor instruction lists MUST be
The merge routines

Restrictions:
internally sorted in min to max Y-X order.
depend on this!
Each list must be terminated using CEND(copperlist)
INPUTS
View — a pointer to the view structure whose coprocessor
instructions are to be merged.

RESULT

The view structure will now contain a complete, sorted/merged
list of instructions for the coprocessor, ready to be used by
the display processor. The display processor is told to use
this new instruction stream through the instruction LoadView().

BUGS
SEE ALSO

InitVPort MakeVPort LoadView graphics/view.h
Intuition's RethinkDisplay

graphics. library/MrgCop

I

00T - ¥

I

graphics.library/NewRegion graphics. library/NewRegion

NAME
NewRegion —— Get a clear region.

SYNOPSIS
region = NewRegion()
do

struct Region *region;

FUNCTION
Create a Region structure, initialize it to empty and return
a pointer it.

RESULTS
region — pointer to initialized region. If it could not allocate
required memory region = NULL.

INPUTS
none

BUGS

SEE ALS0O
graphics/regions.h

graphics. library/OpenFont graphics.library/OpenFont

NAME
OpenFont — Get a pointer to a system font.

SYNOPSIS
font = OpenFont (textAttr)
do a0
struct TextFont *font;
struct TextAttr *textAttr;

FUNCTION
This function searches the system font space for the graphics
text font that best matches the attributes specified. The
pointer to the font returned can be used in subsequent
SetFont and CloseFont calls. It is important to match this
call with a corresponding CloseFont call for effective
management of ram fonts.

INPUTS
textAttr — a TextAttr structure that describes the text font

attributes desired

RESULTS
font is zero if the desired font cannot be found. If the named
font is found, but the size and style specified are not
available, a font with the nearest attributes is returned.

BUGS

SEE ALSO

CloseFont SetFont diskfont.library/OpenDiskFont graphics/text.h

T0T - ¥

graphics.library/OrRectRegion graphics.library/OrRectRegion

NAME
OrRectRegion —— Perform 2d OR operation of rectangle
with region, leaving result in region.
SYNOPSIS
status = OrRectRegilon(region,rectangle)
do a0 al
BOOL status
struct Region *region;
struct Rectangle *rectangle;
FUNCTION

If any portion of rectangle is not in the region then add
that portion to the region.

INPUTS
region — pointer to Region structure
rectangle — pointer to Rectangle structure

RESULTS
status — return TRUE if successful operation
return FALSE if ran out of memory
BUGS

SEE ALSO
AndRectRegion OrRegionRegion graphics/regions.h

graphics.library/OrRegionRegion

NAME
OrRegionRegion -- Perform 2d OR operation of one region
with second region, leaving result in second region
SYNOPSIS
status = OrRegionRegion(regionl,region2)
do a0 al
BOOL status;
struct Region *regionl, *region2;
FUNCTION

If any portion of regionl 1is not in the region then add

that portion to the region2

INPUTS
regionl — pointer to Region structure
region2 - pointer to Region structure

RESULTS
status — return TRUE if successful operation
return FALSE if ran out of memory
BUGS

SEE ALSO
OrRectRegion graphics/regions.h

graphics.library/OrRegionRegion

20T — ¥

I

graphics. library/OwnBlitter graphics.library/OwnBlitter
NAME
OwnBlitter —— get the blitter for private usage

SYNOPSIS
ownBlitter()

FUNCTION
If blitter is available return immediately with the blitter
locked for your exclusive use. If the blitter is not available
put task to sleep. It will be awakened as soon as the blitter
is available. when the task first owns the blitter the blitter
may still be finishing up a blit for the previous owner. You
must do a WaitBlit before actually using the blitter registers.

Calls to OwnBlitter() not nest. If a task that owns the
blitter calls OwnBlitter() again, a lockup will result.
(Same situation if the task calls a system function
that tries to own the blitter).

INPUTS
NONE

RETURNS

SEE ALSO
DisownBlitter

graphics. library/PolyDraw

NAME
PolyDraw —— Draw lines from table of (x,y) values.
SYNOPSIS
PolyDraw(rp, count , array)
al do a0
struct RastPort *rp;
SHORT count;
SHORT arrayl[];
FUNCTION
starting with the first pair draw connected lines to
it and every succeeding pair.
INPUTS
rp — pointer to RastPort structure
count -~ number of points in array (x,y) pairs
array — pointer to first (x,y) pair
BUGS
SEE ALSO

Draw Move graphics/rastport.h

graphics.library/PolyDraw
*

€0T - ¥

graphics.library/0Blit graphics.library/QBlit

NAME
OBlit —— Queue up a request for blitter usage

SYNOPSIS
QBlit(bp)
al

struct bltnode *bp;

FUNCTION
Link a request for the use of the blitter to the end of the
current blitter queue. The pointer bp points to a blit structure
containing, among other things, the link information, and the
address of your routine which is to be called when the blitter
queue finally gets around to this specific request. When your
routine is called, you are in control of the blitter ... it is
not busy with anyone else's requests. This means that you can
directly specify the register contents and start the blitter.
See the description of the blit structure and the uses of QBlit
in the section titled Graphics Support in the OS Kernel Manual.
Your code must be written to run either in supervisor or user
mode on the 68000.

INPUTS
bp - pointer to a blit structure

RESULT
Your routine is called when the blitter is ready for you.
In general requests for blitter usage through this channel are
put in front of those who use the blitter via OwnBlitter and
DisownBlitter. However for small blits there is more overhead
using the queuer than Own/Disown Blitter.

BUGS

SEE ALSO
0BSBlit hardware/blit.h

graphics.library/OBSBlit graphics.library/QBSBlit

NAME
QBSBlit —— Synchronize the blitter request with the video beam.
SYNOPSIS
QBSBlit(bsp)
al
struct bltnode *bsp;
FUNCTION

call a user routine for use of the blitter, enqueued separately from
the QBlit queue. Calls the user routine contained in the blit
structure when the video beam is located at a specified position
onscreen. Useful when you are trying to blit into a visible part

of the screen and wish to perform the data move while the beam is

not trying to display that same area. (prevents showning part of

an old display and part of a new display simultaneously). Blitter
requests on the QBSBlit queue take precedence over those on the
regular blitter queue. The beamposition is specified the blitnode.

INPUTS
bsp — pointer to a blit structure. See description in the
Graphics Support section of the manual for more info.

RESULT
User routine is called when the QBSBlit queue reaches this
request AND the video beam is in the specified position.
1f there are lots of blits going on and the video beam
has wrapped around back to the top it will call all the
remaining bltnodes as fast as it can to try and catch np.

BUGS
Not very smart when getting blits from different tasks.
They all get put in same queue so there are unfortunately
some interdependencies with the beam syncing.

SEE ALSO

OBlit hardware/blit.h

[l

¥O0T — ¥

1

graphics.library/ReadPixel graphics.library/ReadPixel

NAME

ReadPixel —— read the pen number value of the pixel at a

specified x,y location within a certain RastPort.

SYNOPSIS

penno = ReadPixel(rp, X, v)

a0 al d0:16 dl:16

LONG penno;

struct RastPort *rp;

SHORT X,¥;
FUNCTION

Combine the bits from each of the bit-planes used to describe

a particular RastPort into. the pen number selector which that
bit combination normally forms for the system hardware selection
of pixel color.

INPUTS
rp - pointer to a RastPort structure
(x,y) a point in the RastPort
RESULT
Pen — (0..255) number at that position is returned.
-1 is returned if cannot read that pixel
BUGS
SEE ALSO
WritePixel graphics/rastport.h

graphics.library/RectFill graphics.library/RectFill

NAME
RectFill — Fill a defined rectangular area with
the current drawing pen color, outline color,
secondary color, and pattern.
SYNOPSIS
RectFill(rp, xmin, ymin, xmax, ymax)
al d0:16 d1:16 d2:16 d3:16
struct RastPort *rp;
SHORT xmin,ymin;
SHORT xmax ,ymax;
FUNCTION
Fill the rectangular region specified by the
parameters with the chosen pen colors, areafill
pattern, and drawing mode. If no areafill pattern is
specified, fill the rectangular region with the FgPen
color, taking into account the drawing mode.
INPUTS

rp - pointer to a RastPort structure

(xmin,ymin) (xmax,ymax) are the coordinates of the upper

left corner and the lower right corner, respectively, of the
rectangle.

The following relation MUST be true:

(xmax >= xmin) and (ymax >= ymin)

BUGS
complement mode with FgPen complements all bitplanes.

SEE ALSO
AreaBnd graphics/rastport.h

S0T - ¥

graphics.library/RemBob graphics.library/RemBob

NAME

RemBob —~ Remove a Bob from the gel list.
SYNOPSIS

RemBob (bob)

struct Bob *bob;

FUNCTION
Marks a Bob as no—longer—required. The gels internal code then
removes the Bob from the list of active gels the next time
DrawGList is executed. This is implemented as a macro.
If the user is double-buffering the Bob, it could take two
calls to DrawGList before the Bob actually disappears from
the RastPort.

INPUTS
Bob = pointer to the Bob to be removed

BUGS

SEE ALSO
RemIBob DrawGList graphics/gels.h graphics/gfxmacros.h

graphics.library/Remfont

graphics. library/RemFont

NAME
RemFont —— Remove a font from the system list.
SYNOPSIS
RemFont (textFont)
al
struct TextFont *textFont;
FUNCTION .
This function removes a font from the system, ensuring that
access to it is restricted to those applications that
currently have an active pointer to it: i.e. no new SetFont
requests to this font are satisfied.
INPUTS
textFont — the TextFont structure to remove.
BUGS
SEE ALSO

SetFont AddFont graphics/text.h

I

90T - ¥

i

graphics.library/RemIBob graphics.library/RemIBob

NAME
RemIBob —— Immediately remove a Bob from the gel list and the RastPort.

SYNOPSIS
RemIBob(bob, rp,. vp)
a0 al a2

struct Bob *bob;
struct RastPort *rp;
struct ViewPort *vp;

FUNCTION
Removes a Bob immediately by uncoupling it from the gel list and
erases it from the RastPort.

INPUTS
bob = pointer to the Bob to be removed
rp = pointer to the RastPort if the Bob is to be erased
vp = pointer to the ViewPort for beam-synchronizing

W

BUGS

SEE ALSO
InitGels RemvVSprite graphics/gels.h

graphics.library/RemvSprite graphics.library/RemVSprite

NAME
RemVSprite —— Remove a VSprite from the current gel list.

SYNOPSIS
RemvVSprite(vs)
al

struct VSprite *vs;

FUNCTION .
Unlinks the Vsprite from the current gel list.
INPUTS)
vs = pointer to the Vsprite structure to be removed from the gel list
BUGS
SEE ALSO
InitGels RemIBob graphics/gels.h

LOT — ¥

graphics.library/ScrollRaster graphics.library/ScrollRaster

NAME
ScrollRaster —— Push bits in rectangle in raster around by
dx,dy towards 0,0 inside rectangle.
SYNOPSIS
ScrollRaster(rp, dx, dy, xmin, ymin, xmax, ymax)
al 40 di d2 [eK] d4 a5
struct RastPort *rp;
SHORT dx,dy;
SHORT xmin,ymin;
SHORT xmax,ymax;
FUNCTION
Move the bits in the raster by (dx,dy) towards (0,0)
The space vacated is RectFilled with BGPen.
Limit the scroll operation to the rectangle defined
by (xmin,ymin) (xmax,ymax). Bits outside will not be
affected. If xmax,ymax is outside the rastport then use
the lower right corner of the rastport.
If you are dealing with a SimpleRefresh layered RastPort you
should check rp->Layer—>Flags & LAYER REFRESH to see if
there is any damage in the damage list. If there is you should
call the appropriate BeginRefresh(Intuition) or BeginUpdate(graphics)
routine sequence.
INPUTS

rp — pointer to a RastPort structure

dx,dy are integers that may be postive, zero, or negative
xmin,ymin - upper left of bounding rectangle

xmax ,ymax — lower right of bounding rectangle

EXAMPLE
ScrollRaster(xrp,0,1)
ScrollRaster(rp,-1,-1)

/* shift raster up by one row */
/* shift raster down and to the right by 1 pixel

BUGS
In 1.2/V1.3 if you ScrollRaster a SUPERBITMAP exactly left or right,
and there is no TmpRas attached to the RastPort, the system will
allocate one for you, but will never free it or record its location.
The only workaround is to attach a valid TmpRas of size at least
MAXBYTESPERROW to the RastPort before the call.
ScrollRaster does not add the shifted areas into the damage list.
This can cause difficulties for SIMPLE REFRESH windows.

SEE ALSO

graphics/rastport.h

graphics.library/ScrollvpPort

* NAME
ScrollvPort —— Reinterpret RasInfo information in ViewPort.
SYNOPSIS
ScrollVPort(vp)
a0
struct ViewPort *vp;
FUNCTION
After the programmer has adjusted the Offset values in
the RasInfo structures of ViewPort, change the
the copper lists to reflect the the Scroll positions.
Changing the BitMap ptr in RasInfo and not changing the
the Offsets will effect a double buffering affect.
INPUTS

graphics.library/ScrollvPort

vp — pointer to a ViewPort structure
that is currently be displayed.
RESULTS
modifies hardware and intermediate copperlists to reflect
new RasInfo

BUGS
pokes not fast enough to avoid some visible hashing of display

SEE ALSO
MakeVPort MrgCop LoadView graphics/view.h

i

80T — ¥

L

graphics. library/SetAPen graphics.library/SetAPen

NAME
SetAPen —— Set primary pen
SYNOPSIS
SetAPen(rp, pen)
al do
struct RastPort *rp;
UBYTE pen;
FUNCTION
Set the primary drawing pen for lines, fills, and text.
INPUTS
rp — pointer to RastPort structure.
pen — (0-255)
RESULT
Changes the minterms in the RastPort to reflect new primary pen.
Set line drawer to restart pattern.
BUGS
SEE ALSO

SetBPen graphics/rastport.h

graphics.library/SetBPen graphics.library/SetBPen

NAME
SetBPen —— Set secondary pen
SYNOPSIS
SetBPen(rp, pen)
al do
struct RastPort *rp;
UBYTE pen;
FUNCTION
Set the secondary drawing pen for lines, fills, and text.
INPUTS
rp — pointer to RastPort structure.
pen — (0-255)
RESULT
Changes the minterms in the RastPort to reflect new secondary pen.
Set line drawer to restart pattern.
BUGS
SEE ALSO

SetAPen graphics/rastport.h

60T — ¥

graphics.library/SetCollision

NAME
SetCollision —— Set a pointer to a user collision routine.
SYNOPSIS
SetCollision(num, routine, GInfo)
do0 a0 al
ULONG num;

VOID (*routine)();
struct GelsInfo *GInfo;

FUNCTION
Sets a specified entry (num) in the user's collision vectors table
equal to the address of the specified collision routine.

INPUTS
num = collision vector number
routine = pointer to the user's collision routine
GInfo = pointer to a GelsInfo structure

BUGS

SEE ALSO
InitGels graphics/gels.h graphics/rastport.h

graphics.library/SetCollision

graphics.library/SetDrMd graphics. library/SetDrMd
NAME
SetDrMd —— Set drawing mode
SYNOPSIS
SetDrMd(rp, mode)
al do:8
struct RastPort *rp;
UBYTE mode;
FUNCTION

Set the drawing mode for lines, fills and text.
Get the bit definitions from rastport.h

INPUTS
rp — pointer to RastPort structure.

mode — 0-255, some combinations may not make much sense.

RESULT
The mode set is dependant on the bits selected.
Change minterms to reflect new drawing mode.
Set line drawer to restart pattern.

BUGS

SEE ALSO
SetAPen graphics/rastport.h

01T - ¥

i

graphics.library/SetFont

graphics.library/SetFont

NAME
SetFont —— Set the text font and attributes in a RastPort.
SYNOPSIS
SetFont(rp, font)
al a0
struct RastPort *rp;
struct TextFont *font;
FUNCTION
This function sets the font in the RastPort to that described
by font, and updates the text attributes to reflect that
change. If font is zero, this call leaves the RastPort
with no font. This function clears the effect of any previous
soft styles.
INPUTS
rp — the RastPort in which the text attributes are to be changed
font — pointer to a TextFont structure returned from OpenFont
or OpenDiskFont
BUGS
SEE ALSO

OpenFont diskfont.library/OpenDiskFont graphics/text.h

graphics.library/SetOpPen

NAME
SetOPen —— Change the Area OutLine pen and turn on Outline
mode for areafills.
SYNOPSIS
SetOPen(rp, pen)
struct RastPort *rp;
UBYTE pen;
FUNCTION
This is implemented as a c—macro.
Pen is the pen number that will be used to draw a border
around an areafill during AreaEnd().
INPUTS
rp = pointer to RastPort structure
pen = number between 0-255
BUGS
SEE ALSO

AreaFfnd() graphics/gfxmacros.h graphics/rastport.h

graphics.library/SetOPen

TiT - ¥

graphics.library/SetRast graphics.library/SetRast

NAME
SetRast — Set an entire drawing area to a specified color.

SYNOPSIS
SetRast(rp, pen)
al a0

struct RastPort *rp;
UBYTE pen;

FUNCTION
Set the entire contents of the specified RastPort to the
specified pen.
INPUTS
rp — pointer to RastPort structure
pen — the pen number (0-255) to jam into bitmap

RESULT
The drawing area becomes the selected pen number.

BUGS

SEE ALSO
RectFill graphics/rastport.h

graphics.library/SetRGB4

NAME
SetRGB4 —— Set one color register for this viewport.

SYNOPSIS
SetRGB4(vp, n, r, g, b)
a0 d0 dl:4 d2:4 d3:4

struct ViewPort *vp;
SHORT n; -
UBYTE r,q,b;

FUNCTION
Change the color look up table so that this viewport displays
the color (r,g,b) for pen number n.

INPUTS
vp — pointer to viewport structure

n the color number (range from 0 to 31)
r — red level
g - green level
b - blue level
RESULT

If there is a ColorMap for this viewport store the value in
in the structure ColorMap.

The selected color register is changed to match your specs.
1f the color value is unused then nothing will happen.

BUGS

SEE ALSO
LoadRGB4 GetRGB4 graphics/view.h

graphics.library/SetRGB4

i

ZIT - ¥

|

graphics.library/SetRGB4CM graphics.library/SetRGBACM

NAME
SetRGB4CM — Set one color register for this ColorMap.

SYNOPSIS
SetRGB4CM(cm, n, r, g, b)
a0 40 dl:4 d2:4 d3:4

struct ColorMap *cm;

SHORT n;
UBYTE r,q,b;
INPUTS
cm = colormap
n = the color number (range from 0 to 31)
r = red level
g = green level
b = blue level
RESULT

Store the (r,qg,b) triplet at index n of the ColorMap structure.
This function can be used to set up a ColorMap before before
linking it into a viewport.

BUGS

SEE ALSO
GetColorMap GetRGB4 SetRGB4 graphics/view.h

graphics.library/SetSoftStyle

graphics.library/SetSoftstyle

NAME
SetSoftStyle — Set the soft style of the current font.

SYNOPSIS
newStyle = SetSoftStyle(rp, style, enable)
do al do dlL

ULONG newStyle;
struct RastPort #*rp;
ULONG style;

ULONG enable;

FUNCTION
This function alters the soft style of the current font. Only
those bits that are also set in enable are affected. The
resulting style is returned, since some style request changes
will not be honored when the implicit style of the font
precludes changing them.

INPUTS
rp — the RastPort from which the font and style are extracted.
style — the new font style to set, subject to enable.
enable - those bits in style to be changed. BAny set bits here
that would not be set as a result of AskSoftStyle will
be ignored, and the newStyle result will not be as
expected.

RESULTS
newStyle — the resulting style, both as a result of previous
soft style selection, the effect of this function, and
the style inherent in the set font.

BUGS

SEE ALSO
AskSoftStyle graphics/text.h

€1T - ¥

graphics.library/SortGList graphics.library/sortGList

NAME
SortGList — Sort the current gel list, ordering its y,x coordinates.

SYNOPSIS
SortGList{rp)
al

FUNCTION
Sorts the current gel list according to the gels' y,x coordinates.
This sorting is essential before calls to DrawGList or DoCollision.

INPUTS
rp = pointer to the RastPort structure containing the GelsInfo

BUGS

SEE ALSO
InitGels DoCollision DrawGList graphics/rastport.h

graphics.library/SyncSBitMap graphics.library/SyncSBitMap
NAME
SyncSBitMap —— Syncronize Super BitMap with whatever is

in the standard Layer bounds.

SYNOPSIS
SyncSBitMap(layer)
a0

struct Layer *layer;

FUNCTION
Copy all bits from ClipRects in Layer into Super BitMap
BitMap. This is used for those functions that do not
want to deal with the ClipRect structures but do want
to be able to work with a SuperBitMap Layer.

INPUTS
layer — pointer to a Layer that has a SuperBitMap
The Layer should already be locked by the caller.

RESULT
A bitmap that the programmer can now diddle with the bits.
After diddling the programmer should call CopySBitMap to
copy the bits back into the onscreen layer.

BUGS

SEE ALSO
CopySBitMap graphics/clip.h

YIT - ¥

graphics.library/Text graphics.library/Text

NAME
Text - Write text characters (no formatting).
SYNOPSIS
Text(rp, string, count)
al a0 do-0:16
struct RastPort *rp;
STRPTR string;
SHORT count;
FUNCTION
This graphics function writes printable text characters to the
specified RastPort at the current position. No control meaning
is applied to any of the characters, and only text on the
current line is output.
If the characters displayed run past the RastPort boundary,
the current position is truncated to the boundary, and
thus does not represent the true position.
INPUTS
rp — a pointer to the RastPort which describes where the
text is to be output
count — the string length. If zero, there are no characters
to be output.
string - the address of string to output
BUGS

The maximum string length (in pixels) is limited to (1024 - 16 = 1008)
pixels wide.

Text is clipped to the width of the rastport even if the Text() write
was made starting to the left of the rastport.

SEE ALSO
Move TextLength graphics/text.h graphics/rastport.h

graphics. library/TextLength

graphics.library/TextLength

NAME

TextLength — Determine raster length of text data.
SYNOPSIS

length = Textlength(rp, string, count)

a0:16 al a do:16

SHORT length;

struct RastPort *rp;
STRPTR string;

SHORT count;

FUNCTION
This graphics function determines the length that text data
would occupy if output to the specified RastPort with the
current attributes. The length is specified as the number of
raster dots: to determine what the current position would be
after a Write using this string, add the length to cp_x
(cp_y is unchanged by Write).

INPUTS
rp - a pointer to the RastPort which describes where the
text attributes reside.
string — the address of string to determine the length of
count — the string length. If zero, there are no characters
in the string.

RESULTS
length — the number of pixels in X this text would occupy, not
including any negative kerning that may take place at
the beginning of the text string, nor taking into
account the effects of any clipping that may take
place.

BUGS
A length that would overflow single word arithmatic is not
calculated correctly.

SEE ALSO
Text graphics/text.h graphics/rastport.h

S1T - ¥

graphics. library/UnlockLayerRom graphics.library/UnlockLayerRom
*

NAME
UnlockLayerRom —— Unlock Layer structure by rom(gfx lib) code.

SYNOPSIS
UnlockLayerRom(layer)
a5

FUNCTION
Release the lock on this layer. If the same task has called
LockLayerRom more than once than the same number of calls to
UnlockLayerRom must happen before the layer is actually freed
so that other tasks may use it.
This call does destroy scratch registers.
This call is identical to UnlockLayer (layers.library).

INPUTS
layer - pointer to Layer structure

BUGS

SEE ALSO
LockLayerRom graphics/clip.h
*

raphics.library/VBeamPos graphics.library/VBeamPos
grap.

NAME
VBeamPos -~ Get vertical beam position at. this instant.

SYNOPSIS
pos = VBeamPos()
40

LONG pos;

FUNCTION
Get the vertical beam position from the hardware.

INPUTS
none

RESULT
interrogates hardware for beam position and returns value.
valid results in the range of 0-511
Because¢ of multitasking, the actual value returned may have
no use. If you are the highest priority task then the value
returned should be close, within 1 line.

BUGS

SEE ALSO

91T - ¥

graphics.library/WaitBlit graphics.library/WaitBlit
NAME
WaitBlit —— Wait for the blitter to be finished before proceeding
with anything else.

SYNOPSIS
WaitBlit()

FUNCTION
WaitBlit returns when the blitter is idle. This function should
normally only be used when dealing with the blitter in a
synchronous manner, such as when using OwnBlitter and DisownBlitter.
WaitBlit does not wait for all blits queued up using QBlit or
OBSBlit. You should call WaitBlit if you are just about to free
some memory that you have used with the blitter.

Note that many graphics calls fire up the blitter, and let it run.

when examining bits with the CPU right after a blit, or when freeeing
temorary memory used by the blitter, a WaitBlit() may be required.

INPUTS
none

RESULT
Your program waits until the blitter is finished. Unlike most Amiga rom
routines, the CPU registers DO/Dl/A0 and Al are preserved by this call.

BUGS
There is a bug in the older revisions of the Agnus chip that can
cause the BUSY bit to indicate the blit has finished when the blitter
has, in fact, not started the blit yet (even though BltSize has been
written). This most often occurs in a heavily loaded systen with
extended memory, HIRES, and 4 bitplanes. ‘WaitBlit currently tries to
avoid the Agnus problem by testing the BUSY bit multiple times to make
sure the blitter has started, there is no need for further action on the
part of the WaitBlit user. Also this pig busy waits. (sigh)

The hardware bug was fixed as of the first "Fat Agnus" chip, as used
in all A500 and A2000 computers.

SEE ALSO
ownBlitter DisownBlitter hardware/blit.h

The CPU does not need to wait for the blitter to finish before returning.

graphics.library/WaitBOvVP graphics.library/WaitBOVP
*

NAME
WaitBOVP —— Wait till vertical beam reached bottom of
this viewport.
SYNOPSIS
WaitBOVP{ vp)
a0
FUNCTION
Returns when vertical beam reaches bottom of this viewport
INPUTS
vp - pointer to ViewPort structure
RESULT
This function will return sometime after the beam gets beyond
the bottom of the viewport. Depending on the multitasking load
of the system, the actual beam position may be different than
what would be expected in a lightly loaded system.
BUGS
Horrors! This function currently busy waits waiting for the
beam to get to the right place. It should use the copper
interrupt to trigger and send signals like WaltTOF does.
SEE ALSO

WaltTOF VBeamPos

LTT - ¥

graphics.library/WaitTOF graphics.library/WaitTOF

NAME
WaitTOF — Wait for the top of the next video frame.

SYNOPSIS
WaitTOF()

FUNCTION
Wait for vertical blank to occur and all vertical blank
interrupt routines to complete before returning to caller.

INPUTS
none

RESULT
Place this task on the TOF wait queue. When vertical blank
interupt comes around the interrupt service routine fires off
signals to all the tasks doing WaitTOF. The highest priority task
ready gets to run then.

BUGS

SEE ALSO
exec/Wait exec/Signal

graphics.library/WritePixel graphics.library/WritePixel

NAME
" WritePixel —— Change the pen num of one specific pixel in a
specified RasterPort.

SYNOPSIS

error = WritePixel(rp, X, Y)

do al DO D1

LONG error;

struct RastPort *rp;

SHORT X,V¥;
FUNCTION

Changes the pen number of the selected pixel in the specified
RastPort to that currently specified by PenA, the primary
drawing pen. Obey minterms in RastPort.

INPUTS
rp — a pointer to the RastPort structure
(x,y) — point within the RastPort at which the selected
pixel is located.

RESULT
error = 0 if pixel succesfully changed
= -1 if (x,y) is outside the RastPort
BUGS

SEE ALSO
ReadPixel graphics/rastport.h

81T ~ ¥

graphics. library/XorRectRegion graphics. library/XorRectRegion

NAME
XorRectRegion —— Perform 2d XOR operation of rectangle
with region, leaving result in region
SYNOPSIS
status = XorRectRegion(region,rectangle)
ao a0 al
BOOL status;
struct Region *region;
struct Rectangle *rectangle;
FUNCTION
Add portions of rectangle to region if they are not in
the region.
Remove portions of rectangle from region if they are
in the region.
INPUTS

region — pointer to Region structure
rectangle — pointer to Rectangle structure

RESULTS
status — return TRUE if successful operation
return FALSE if ran out of memory
BUGS

SEE ALSO
OrRegionRegion AndRegionRegion graphics/regions.h

graphics.library/XorRegionRegion graphics.library/XorRegionRegion
NAME .
XorRegionRegion —— Perform 2d XOR operation of one region
with second region, leaving result in second region

SYNOPSIS
status = XorRegionRegion(regionl,region2)
do a0 a

BOOL status;
struct Region *regionl, *region2;

FUNCTION R
Join the regions together. If any part of regionl overlaps
region2 then remove that from the new region.

INPUTS
regionl
region2

pointer to Region structure
pointer to Region structure

o

RESULTS
status — return TRUE if successful operation
return FALSE if ran out of memory

BUGS

6TT — ¥

TABLE OF CONTENTS

icon.
icon.
icon.
icon.
icon.
icon.
icon.
icon.

library/AddFreeList
library/BumpRevision
library/FindToolType

library/FreeDiskObject

library/FreeFreeList
library/GetDiskObject
library/MatchToolvValue
library/pPutDiskObject

icon.library/AddFreeList

icon.library/AddFreeList

NAME

AddFreelist — add memory to the free list
SYNOPSIS

status = AddFreelist(free, mem, len)

DO A0 Al A2
FUNCTION

This routine adds the specified memory to the free list.
The free list will be extended (if required). If there
is not enough memory to complete the call, a null is returned.

Note that AddFreeList does NOT allocate the requested memory.
It only records the memory in the free list.

INPUTS
free —— a pointer to a Freelist structure
mem —— the base of the memory to be recorded

len —— the length of the memory to be recorded

RESULTS
status — nonzero if the call succeeded.

EXCEPTIONS

SEE ALSO
AllocEntry, FreeEntry, FreeFreeList

BUGS

i

02T -~ ¥

ll

icon.library/BumpRevision icon.library/BumpRevision

NAME

BumpRevision - reformat a name for a second copy
SYNOPSIS

result = BumpRevision(newbuf, oldname)

DO A0 Al
FUNCTION

BumpRevision takes a name an turns it into a “copy of name".
It knows how to deal with copies of copies. The routine
will truncate the new name to the maximum dos name size
(currently 30 characters).

INPUTS
newbuf - the new buffer that will receive the name (it must
be at least 31 characters long).
oldname - the original name

RESULTS
result — a pointer to newbuf

EXCEPTIONS

EXAMPLE
oldname
"foo" "copy of foo"
"copy of foo"
"copy 2 of foo'
"copy 199 of foo"

"copy 3 of foo”
"copy 200 of foo"

"copy foo" "copy of copy foo"
"copy 0 of foo" “copy 1 of foo"
"012345678901234567890123456789" "copy of 0123456789012345678901"
SEE ALSO
BUGS

icon.library/FindToolType

icon.library/FindToolType

NAME

FindToolType — find the value of a ToolType variable
SYNOPSIS

value = FindToolType(toolTypeArray, typeName)

DO AQ Al
FUNCTION

This function searches a tool type array for a given entry,
and returns a pointer to that entry. This is useful for
finding standard tool type variables. The returned
value is not a new copy of the string but is only
a pointer to the part of the string after typeName.

INPUTS
toolTypeArray — an array of strings
typeName — the name of the tooltype entry

RESULTS
value — a pointer to a string that is the value bound to
typeName, or NULL if typeName is not in
the toolTypeArray.

EXCEPTIONS

EXAMPLE
Assume the tool type array has two strings in it:
"FILETYPE=text"
"TEMPDIR=:t"

FindToolType(toolTypeArray, "FILETYPE") returns "text"
FindToolType(toolTypeArray, "TEMPDIR") returns ":t"
FindToolType(toolTypeArray, "MAXSIZE") returns NULL

SEE ALSO
MatchToolValue

BUGS

TZT - ¥

icon.library/FreeDiskObject icon.library/FreeDiskObject

NAME
FreeDiskObject — free all memory in a Workbench disk object

SYNOPSIS
FreeDiskObject(diskobj)
A0

FUNCTION
This routine frees all memory in a Workbench disk object, and the
object itself. It is implemented via FreeFreeList()
GetDiskObject() takes care of all the initialization required
to set up the objects free list. This procedure may ONLY
be called on DiskObject allocated via GetDiskObject().

INPUTS
diskobj — a pointer to a DiskObject structure

RESULTS
EXCEPTIONS

SEE ALSO
GetDiskObject, FreeFreeList

BUGS

icon.library/FreeFreeList icon.library/FreeFreeList
NAME
FreeFreelList — free all memory in a free list

SYNOPSIS
FreeFreeList(free)
A0

FUNCTION
This routine frees all memory in a free list, and the
free list itself. It is useful for easily getting
rid of all memory in a series of structures. There is
a free list in a Workbench object, and this contains
all the memory associated with that object.

A FreeList is a list of MemList structures. See the
MemList and MemEntry documentation for more information.

If the FreeList itself is in the free list, it must be
in the first MemList in the FreeList.

INPUTS
free —— a pointer to a Freelist structure

RESULTS
EXCEPTIONS

SEE ALSO
AllocEntry, FreeEntry, AddFreeList

BUGS

ZCT — ¥

lll

icon.library/GetDiskObject icon.library/GetDiskObject

NAME

GetDiskObject — read in a Workbench disk object
SYNOPSIS

diskob] = GetDiskObject(name)

DO A0
FUNCTION

This routine reads in a Workbench disk object in from disk. The
name parameter will have a ".info" postpended to it, and the
info file of that name will be read. If the call fails,
it will return zero. The reason for the failure may be obtained
via IOErr().

Using this routine protects you from any future changes to
the way icons are stored within the system.

A FreeList structure is allocated just after the DiskObject
structure; FreeDiskObject makes use of this to get rid of the
memory that was allocated.

INPUTS
name —— name of the object

RESULTS
diskobj —— the Workbench disk object in question

EXCEPTIONS

SEE ALSO
FreeDiskObject

BUGS

icon.library/MatchToolvalue

icon.library/MatchToolValue

NAME

MatchToolvalue — check a tool type variable for a particular value
SYNOPSIS

result = MatchToolValue(typeString, value)

DO A0 Al
FUNCTION

MatchToolvalue is useful for parsing a tool type value for
a known value. It knows how to parse the syntax for a tool
type value (in particular, it knows that '|' separates
alternate values).

INPUTS
typeString — a ToolType value (as returned by FindToolType)
value — you are interested if value appears in typeString

RESULTS
result — a one if the value was in typeString
EXCEPTIONS
EXAMPLE
Assume there are two type strings:
typel = "text"
type2 = "a|b|c®

MatchToolvalue(typel, 'text'") returns 1
MatchToolValue(typel, "data") returns 0
MatchToolValue(type2, "a'") returns 1
MatchToolvalue(type2, "b") returns 1
MatchToolValue(type2, "d") returns 0
MatchToolValue(type2, "a[b") returns 0

SEE ALSO
FindToolType

BUGS

€¢T — ¥

icon.library/PutDiskObject icon.library/PutDiskObject

NAME

PutDiskObject — write out a DiskObject to disk
SYNOPSIS

status = PutDiskObject(name, diskobij)

DO A0 Al
FUNCTION

This routine writes out a DiskObject structure, and its
associated information. The file name of the info

file will be the name parameter with a

".info" postpended to it. If the call fails, a zero will
be returned. The reason for the failure may be obtained
via IoErr().

Using this routine protects you from any future changes to
the way icons are stored within the system.

INPUTS
name — name of the object
diskobj —— a pointer to a DiskObject

RESULTS ‘
status —— non-zero if the call succeeded

EXCEPTIONS

SEE ALSO
GetDiskObject, FreeDiskObject

BUGS

i

YeT - ¥

1l

TABLE OF CONTENTS

intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.
intuition.

library/ActivateGadget
library/ActivateWindow
library/addGadget
library/AddGlist
library/AllocRemember
library/AutoRequest
library/BeginRefresh
library/BuildSysRequest
library/ClearDMRequest
library/ClearMenuStrip
library/ClearPointer
library/CloseScreen
library/CloseWindow
library/CloseWorkBench
library/CurrentTime
library/DisplayAlert
library/DisplayBeep
library/DoubleClick
library/DrawBorder
library/DrawImage
library/EndRefresh
library/EndRequest
library/FreeRemember
library/FreeSysRequest
library/GetDefPrefs
library/GetPrefs
library/GetScreenData
library/InitRequester
library/IntuiTextLength
library/ItemAddress
library/LockIBase
library/MakeScreen
library/ModifyIDCMP
library/ModifyProp
library/MoveScreen
library/MoveWindow
library/NewModifyProp
library/0Of fGadget
library/Of fMenu
library/OnGadget
library/OnMenu
library/OpenScreen
library/Openwindow
library/OpenWorkBench
library/PrintIText
library/RefreshGadgets
library/RefreshGList
library/RefreshWindowFrame
library/RemakeDisplay
library/RemoveGadget
library/RemoveGList
library/ReportMouse
library/Request
library/RethinkDisplay
library/ScreenToBack
library/ScreenToFront
library/SetDMRequest
library/SetMenuStrip
library/SetPointer
library/SetPrefs
library/SetWindowTitles
library/ShowTitle

.library/SizeWindow

library/UnlocklBase
library/ViewAddress
library/ViewPortAddress
library/WBenchToBack
library/WBenchToFront
library/WindowLimits
library/WindowToBack

intuition.library/WindowToFront

6T ~- ¥

intuition.library/ActivateGadget intuition.library/ActivateGadget

NAME
ActivateGadget —— Activate a (String) Gadget.
SYNOPSIS
Success = ActivateGadget(Gadget, Window, Request)
DO J:\¢] Al A2

BOOL Success;

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Request;

FUNCTION
Activates a String Gadget. If successful, this means that the user
does not need to click in the gadget before typing.

The Window parameter must point to the window which contains the Gadget.

If the gadget is actually in a Requester, the Window must contain
the Requester, and a pointer to the Requester must also be

passed. The Requester parameter must only be valid if the Gadget
has the REQGADGET flag set, a requirement for all Requester Gadgets.

The success of this function depends on a rather complex set
of conditions. The intent is that the user is never interrupted from
what interactions he may have underway.

The current set of conditions includes:

— The Window must be active. (Use the ACTIVEWINDOW IDCMP).

- No other gadgets may be in use. This includes system gadgets,
such as those for window sizing, dragging, etc.

- If the gadget is in' a Requester, that Requester must
be active. (Use the REQSET and REQCLEAR IDCMP).

- The right mouse button cannot be held down (e.g. menus

INPUTS
Gadget = pointer to the Gadget that you want activated.
window = pointer to a Window structure containing the Gadget.
Requester = pointer to a Requester (may by NULL if this isn't
a Requester Gadget (i.e. REQGADGET is not set)).

RESULT
If the conditions above are met, and the Gadget is in fact a String
Gadget, then this function will return TRUE, else FALSE.

BUGS

SEE ALSO

intuition.library/ActivateWindow

intuition.library/ActivateWindow

NAME

ActivateWindow —— Activate an Intuition Window.
SYNOPSIS

ActivateWindow(Window)

A0
struct Window *Window;

FUNCTION
Activates an Intuition Window.

Note that this call may have its action deferred: you cannot assume

that when this call is made the selected window has become active.

This action will be postponed while the user plays with gadgets and menus,
or sizes and drags windows. You may detect when the window actually

has become active by the ACTIVEWINDOW IDCMP Message.

This call is intended to provide flexibility but not to confuse the
user. Please call this function synchronously with some action
by the user.

INPUTS
Window = a pointer to a Window structure

RESULT
None

BUGS
calling this function in a tight loop can blow out Intuition‘’s deferred

action queue.

SEE ALSO
OpenWindow(), and the ACTIVATE Window Flag

9¢T - ¥

intuition.library/AddGadget

‘ intuition.library/aAddGadget

NAME

AddGadget -— Add a Gadget to the Gadget list of the Window or Screen.
SYNOPSIS

RealPosition = AddGadget(Window, Gadget, Position)

DO A0 Al DO

USHORT RealPosition;
struct Window *Window;
struct Gadget *Gadget;
USHORT Position;

FUNCTION
Adds the specified Gadget to the Gadget list of the given Window,
linked in at the position in the list specified by the Position
argument (that is, if Pos == 0, the Gadget will be inserted at the
head of the list, and if Position == 1 then the Gadget will be inserted
after the first Gadget and before the second). If the Position
you specify is greater than the number of Gadgets in the list,
your Gadget will be added to the end of the list.

Calling AddGadget() does not cause your gadget do be redisplayed.
The benefit of this is that you may add several gadgets without having
the gadget list be redrawn every time.

This procedure returns the position at which your Gadget was added.

NOTE: A relatively safe way to add the Gadget to the end of the

list is to specify a Position of -1 (i.e., (USHORT) "0). That way,
only the 65536th (and multiples of it) will be inserted at the wrong
position. The return value of the procedure will tell you where it was
actually inserted.

NOTE: The System Window Gadgets are initially added to the

front of the Gadget List. The reason for this is: If you position your
own Gadgets in some way that interferes with the graphical representation
of the system Gadgets, the system's ones will be "hit"

first by User. If you then start adding Gadgets to the front of the list,
you will disturb this plan, so beware. On the other hand, if you don't
violate the design rule of never overlapping your Gadgets, there's no
problem.

NOTE: You may not add your own gadgets to a Screen. Gadgets may
be added to backdrop windows, however, which can be visually similar,
but also provide an IDCMP channel for gadget input messages.

INPUTS
Window = pointer to the Window to get your Gadget
Gadget = pointer to the new Gadget
Position = integer position in the list for the new Gadget (starting from
zero as the first position in the list)

RESULT
Returns the position of where the Gadget was actually added.

BUGS

SEE ALSO
AddGList (), RemoveGadget()

intuition.library/AddGList

intuition.library/AddGList

AddGList —— add a linked list of gadgets to a Window or Requester
SYNOPSIS

RealPosition = AddGList(Window, Gadget, Position, Numgad, Requester);

DO A0 Al DO Dl A2

USHORT RealPosition;

struct Window *Window;
struct Gadget *Gadget;
USHORT Position;

USHORT Numgad ;

struct Requester *Requester;

FUNCTION
Adds the list of Gadgets to the Gadget list of the given Window
or Requester linked in at the position in the list specified by
the Position argument.

See AddGadget() for more information about gadget list position.

The Requester parameter will be ignored unless the REQGADGET bit
is set in the GadgetType field of the first Gadget in the list.

In that case, the gadget list is added to the Requester gadgets.
NOTE: be sure that REQGADGET is either set of cleared consistently
for all gadgets in the list. NOTE ALSO: The Window parameter
should point to the Window that the Requester (will) appear in.

Will add 'Numgad' gadgets from gadget list linked by the field
NextGadget, or until some NextGadget field is found to be NULL. Does
not assume that the Numgad'th gadget has NextGadget equal to NULL.

NOTE WELL: In order to link your gadget list in, the NextGadget

field of the Numgad'th (or last) gadget will be modified. Thus, if
you are adding the first 3 gadgets from a linked list of five gadgets,
this call will sever the connection between your third and fourth
gadgets.

INPUTS

Window = pointer to the Window to get your Gadget

Gadget = pointer to the first Gadget to be added

Position = integer position in the list for the new Gadget
(starting from zero as the first position in the list)

Numgad = the number of gadgets from the linked list to be added
if Numgad equals -1, the entire null-terminated list of
gadgets will be added

Requester = the requester the gadgets will be added to if the
REQGADGET GadgetType flag is set for the first gadget in the list

RESULT
Returns the position of where the first Gadget in the list was actually
added.

BUGS

SEE ALSO
AddGadget (), RemoveGadget()

LET - ¥

intuition.library/AllocRemember intuition.library/AllocRemember

NAME

AllocRemenber -— AllocMem and create a link node to make FreeMem easy.
SYNOPSIS

MemBlock = AllocRemember (RememberKey, Size, Flags)

DO A0 Do Dl

CPTR MemBlock;

struct Remember **RememberKey;
ULONG Size;

ULONG Flags;

FUNCTION
This routine calls the EXEC AllocMem() function for you, but also links
the parameters of the allocation into a master list, so that
you can simply call the Intuition routine FreeRemember() at a later
time to deallocate all allocated memory without being required to
remember the details of the memory you've allocated.

This routine will have two primary uses:

- Let's say that you're doing a long series of allocations in a
procedure (such as the Intuition OpenWindow() procedure).
If any one of the allocations fails for lack of memory, you
need to abort the procedure. BAbandoning ship correctly involves
freeing up what memory you've already allocated. This procedure
allows you to free up that memory easily, without being required
to keep track of how many allocations you've already done, what the
sizes of the allocations were, or where the memory was allocated.

- Also, in the more general case, you may do all of the allocations
in your entire program using this routine. Then, when your
program is exiting, you can free it all up at once with a
simple call to FreeRemember().

You create the "anchor" for the allocation master list by creating
a variable that's a pointer to struct Remember, and initializing
that pointer to NULL. This is called the RememberKey. Whenever
you call AllocRemember(), the routine actually does two memory
allocations, one for the memory you want and the other for a copy
of a Remember structure. The Remember structure is filled in

with data describing your memory allocation, and it's linked

into the master list pointed to by your RememberKey. Then, to
free up any memory that's been allocated, all you have to do is
call FreeRemember() with your RememberKey.

Please read the FreeRemember() function description, too. As you will
see, you can select either to free just the link nodes and keep all the
allocated memory for yourself, or to free both the nodes and your memory
buffers.

INPUTS
RememberKey = the address of a pointer to struct Remember. Before the
very first call to AllocRemember, initialize this pointer to NULL.
Size = the size in bytes of the memory allocation. Please refer to the
exec.library/AllocMem function for details.
Flags = the specifications for the memory allocation.
the exec.library/AllocMem function for details.

Please refer to

EXAMPLE
struct Remember *RememberkKey ;
Rememberkey = NULL;
AllocRemember { sRememberKey, BUFSIZE, MEMF_CHIP);
FrecRemember (SRememberKey, TRUE);

RESULT
1f the memory allocation is successful, this routine returns the byte
address of your requested memory block. Also, the node to your block
will be linked into the list pointed to by your RememberKey variable.

1f the allocation fails, this routine returns NULL and the list pointed
to by RememberKey, if any, will be undisturbed.

BUGS

SEE ALSO
FreeRemenmber(), exec.library/AllocMem()

8¢T — ¥

intuition. library/AutoRequest intuition.library/AutoRequest

NAME
AutoRequest —— Automatically build and get response from a Requester.
SYNOPSIS
Response = AutoRequest(Window, BodyText, PositiveText, NegativeText,
DO A0 Al A2 A3
PositiveFlags, NegativeFlags, Width, Height)
DO D1 D2 D3

BOOL Response;

struct Window *Window;

struct IntuiText *BodyText, *PositiveText, *NegativeText;
ULONG PositiveFlags, NegativeFlags;

SHORT Width, Height;

FUNCTION
This procedure automatically builds a Requester for you and then
waits for a response from the user, or for the system to satisfy your
request. If the response is positive, this procedure returns TRUE.
If the response is negative, this procedure returns FALSE.

An IDCMPFlag specification is creates by bitwise "or'ing" your
PositiveFlags, NegativeFlags, and the IDCMP classes GADGETUP and
RAWKEY. You may specify zero flags for either the PositiveFlags
or NegativeFlags arguments.

The IntuiText arguments, and the Width and Height values, are
passed directly to the BuildSysRequest() procedure along with
your Window pointer and the IDCMP flags. Please refer to
BuildSysRequest () for a description of the IntuiText that you are
expected to supply when calling this routine. It's an important
but long-winded description that need not be duplicated here.

If the BuildSysRequest() procedure does not return a pointer
to a Window, it will return TRUE or FALSE (not valid structure
pointers) instead, and these BOOL values will be returned to
you immediately.

On the other hand, if a valid Window pointer is returned, that
Window will have had its IDCMP Ports and flags initialized according
to your specifications. AutoRequest() then waits for IDCMP messages
on the UserPort, which satisfies one of four requirements:
- either the message is of a class that matches
one of your PositiveFlags arguments (if you've supplied
any), in which case this routine returns TRUE. Or
- the message class matches one of your NegativeFlags
arguments (if you've supplied any), in which case
this routine returns FALSE. Or
- the IDCMP message is of class GADGETUP, which means that one of
the two Gadgets, as provided with the PositiveText and NegativeText
arguments, was selected by the user. If the TRUE Gadget
was selected, TRUE is returned. If the FALSE Gadget was
selected, FALSE is returned.
- Lastly, two RAWKEY messages may satisfy the request: those
for the V and B keys with the left Amiga key depressed.
These keys, satisfy the gadgets on the left or right side of
the Requester——TRUE or FALSE-—, respectively.

when the dust has settled, this routine calls FreeSysRequest() if
necessary to clean up the Requester and any other allocated memory.

INPUTS
Window = pointer to a Window structure
BodyText = pointer to an IntuiText structure
PositiveText = pointer to an IntuiText structure, may be NULL.
NegativeText = pointer to an IntuiText structure, MUST be valid!
PositiveFlags = flags for the IDCMP
NegativeFlags = flags for the IDCMP
width, Height = the sizes to be used for the rendering of the Requester

RESULT
The return value is either TRUE or FALSE. See the text above for a
complete description of the chain of events that might lead to either
of these values being returned.

BUGS

SEE ALSO
BuildsSysRequest ()

62T - ¥

intuition.library/BeginRefresh intuition.library/BeginRefresh
NAME
BeginRefresh -- Sets up a Window for optimized refreshing.
SYNOPSIS
BeginRefresh(Window)
A0

struct Window *Window;

FUNCTION
This routine sets up your Window for optimized refreshing.

It's role is to provide Intuition integrated access to the Layers
library function BeginUpdate(). Its additional contribution is
to be sure that locking protocols for layers are followed, by
locking both layers of a GIMMEZEROZERO window only after the
parent Layer_Info has been locked. Also, the WINDOWREFRESH

flag is set in your window, for your information.

The purpose of BeginUpdate(), and hence BeginRefresh(), is to
restrict rendering in a Window (Layer) to the region in

that needs refreshing after an operation such as window sizing or
uncovering. This restriction to the "Damage Region" persists until
you call EndRefresh().

For instance, if you have a SIMPLE_REFRESH Window which is partially
concealed and the user brings it to the front, you may receive a
message asking you to refresh your display. If you call BeginRefresh()
before doing any of the rendering, then the layer that underlies your
Window will be arranged such that the only rendering that will actually
take place will be that which goes to the newly-revealed areas. This
is very performance-efficient, and visually attractive.

After you have performed your refresh of the display, you should call
EndRefresh() to reset the state of the layer and the Window. Then you
may proceed with rendering to the Window as usual.

You learn that your Window needs refreshing by receiving either a
message of class REFRESHWINDOW through the IDCMP, or an input event

of class IECLASS REFRESHWINDOW through the Console Device. Whenever
you are told that your window needs refreshing, you should call
BeginRefresh() and EndRefresh() to clear the refresh—needed state,

even if you don't plan on doing any rendering. You may relieve yourself
of even this burden by setting the NOCAREREFRESH Flag when opening

your window.

INPUTS
Window = pointer to the Window structure which needs refreshing

RESULT
None

BUGS
SEE ALSO

EndRefresh(), layers.library/BeginUpdate(), OpenWindow()
The "Windows" chapter of the Intuition Reference Manual

intuition.library/BuildSysRequest intuition.library/BuildSysRequest

NAME
BuildSysRequest -— Build and display a system Requester.

SYNOPSIS
RegWindow = BuildSysRequest(Window, BodyText, PositiveText, NegativeText,
DO A0 Al A2 A3

IDCMPFlags, Width, Height)
DO D2 D3

struct Window *RegWindow;
struct Window *Window;

struct IntuiText *BodyText;
struct IntuiText *PositiveText;
struct IntuiText *NegativeText;
ULONG IDCMPFlags;

SHORT Width, Height;

FUNCTION
This procedure builds a Requester based on the supplied information.
If all goes well and the Requester is constructed, this procedure
returns a pointer to the Window in which the Requester appears.
That Window will have the IDCMP UserPort and WindowPort initialized
to reflect the flags found in the IDCMPFlags argument. You may then
Wait() on those ports to detect the user's response to your Requester,
which response may include either selecting one of the Gadgets or
causing some other event to be noticed by Intuition (like DISKINSERTED,
for instance). BAfter the Requester is satisfied, you should call the
FreeSysRequest() procedure to remove the Requester and free up any
allocated memory.

The requester used by this function has the NOISYREQ flag bit set,
which means that the set of IDCMPFlags that may be used here
include RAWKEY, MOUSEBUTTONS, and others.

If it isn't possible to construct the Requester for any reason, this
procedure will instead use the text arguments to construct a text
string for a call to the DisplayAlert() procedure, and then will return
either a TRUE or FALSE depending on whether DisplayAlert() returned

a FALSE or TRUE respectively.

If the Window argument you supply is equal to NULL, a new Window will

be created for you in the Workbench Screen. I1f you want the Requester
created by this routine to be bound to a particular Window, you should
not supply a Window argument of NULL.

The text arguments are used to conmstruct the display. Each is a
pointer to an instance of the structure IntuiText.

The BodyText argument should be used to describe the nature of

the Requester. As usual with IntuiText data, you may link several
lines of text together, and the text may be placed in various
locations in the Requester. This IntuiText pointer will be stored
in the ReqgText variable of the new Requester. :

The PositiveText argument describes the text that you want associated
with the user choice of "Yes, TRUE, Retry, Good." If the Requester
is successfully opened, this text will be rendered in a Gadget in

the lower—left of the Requester, which Gadget will have the

GadgetID field set to TRUE. If the Requester cannot be opened and

the DisplayAlert() mechanism is used, this text will be rendered in
the lower—left corner of the Alert display with additional text
specifying that the left mouse button will select this choice. This
pointer can be set to NULL, which specifies that there is no TRUE
choice that can be made.

The NegativeText argument describes the text that you want associated
with the user choice of "No, FALSE, Cancel, Bad." If the Requester
is successfully opened, this text will be rendered in a Gadget in

the lower-right of the Requester, which Gadget will have the

GadgetID field set to FALSE. If the Requester cannot be opened and

i

0€T - ¥

the DisplayBAlert() mechanism is used, this text will be rendered in
the lower-right corner of the Alert display with additional text
specifying that the right mouse button will select this choice. This
pointer cannot be set to NULL. There must always be a way for the
user to cancel this Requester.

The Positive and Negative Gadgets created by this routine have
the following features:

- BOOLGADGET

— RELVERIFY

— REQGADGET

— TOGGLESELECT

When defining the text for your Gadgets, you may find it convenient

to use the special constants used by Intuition for the construction

of the Gadgets. These include defines like AUTODRAWMODE, AUTOLEFTEDGE,
AUTOTOPEDGE and AUTOFRONTPEN. You can find these in your local
intuition.h (or intuition.i) file.

The Width and Height values describe the size of the Requester. All
of your BodyText must fit within the Width and Height of your
Requester. The Gadgets will be created to conform to your sizes.

VERY IMPORTANT NOTE: for this release of this procedure, a new Window
is opened in the same Screen as the one containing your Window. i
Future alternatives will be provided as a function distinct from this
one.

INPUTS

Window = pointer to a Window structure

BodyText = pointer to an IntuiText structure

PositiveText = pointer to an IntuiText structure

NegativeText = pointer to an IntuiText structure

IDCMPFlags = the IDCMP flags you want used for the initialization of the
IDCMP of the Window containing this Requester

Width, Height = the size required to render your Requester

RESULT

If the Requester was successfully rendered in a Window, the value
returned by this procedure is a pointer to the Window in which the
Requester was rendered. If, however, the Requester cannot be rendered
in the Window, this routine will have called DisplayAlert() before
returning and will pass back TRUE if the user pressed the left mouse
button and FALSE if the user pressed the right mouse button.

BUGS

SEE

This procedure currently opens a Window as wide as the Screen in
which it was rendered, and then opens the Requester within that
Window. Also, if DisplayAlert() is called, the PositiveText and
NegativeText are not rendered in the lower corners of the Alert.

ALSO .
FreeSysRequest(), DisplayAlert(), ModifyIDCMP(), exec.library/Wait(),
Request (), AutoRequest()

intuition.library/ClearDMRequest intuition.library/ClearDMRequest

NAME

ClearDMRequest — clears (detaches) the DMRequest of the Window.
SYNOPSIS

Response = ClearDMRequest (Window)

DO AO

BOOL Response;
struct Window *Window;

FUNCTION
Attempts to clear the DMRequester from the specified window,
that is detaches the special Requester that you attach to
the double-click of the menu button which the user can then
bring up on demand. This routine WILL NOT clear the DMRequester
if it's active (in use by the user). The IDCMP message class REQCLEAR
can be used to detect that the requester is not in use,
but that message is sent only when the last of perhaps several
requesters in use in a window is terminated.

INPUTS

RESULT
If the DMRequest was not currently in use, zeroes out the DMRequest
pointer in the Window and returns TRUE.
pointer in the Window and returns TRUE.
1f the DMRequest was currently in use, doesn't change the pointer
and returns FALSE.

BUGS

SEE ALSO
SetDMRequest (), Request()

I

Window = pointer to the window from which the DMRequest is to be cleared.

T€T - ¥

intuition.library/ClearMenuStrip intuition.library/ClearMenuStrip

NAME

ClearMenustrip -— Clears (detaches) the Menu strip from the window

SYNOPSIS
ClearMenustrip(Window)
A0
struct Window *Window;
FUNCTION
Detaches the current menu strip from the Window; menu strips

are attached to windows using the SetMenuStrip() function.

If the menu is in use (for that matter if any menu is in use)
this function will block (Wait()) until the user has finished.

call this function before you make any changes to the data
in a Menu or MenuItem structure which is part of a menu
strip linked into a window.

INPUTS
Wwindow = pointer to a Window structure

RESULT
None

BUGS

SEE ALSO
SetMenuStrip()

intuition.library/ClearPointer intuition.library/ClearPointer
NAME
ClearPointer —— clears the Mouse Pointer definition from a Window.
SYNOPSIS
ClearPointer (Window)
AQ

struct Window *Window;

FUNCTION
Clears the Window of its own definition of the Intuition mouse pointer.
After calling ClearPointer(), every time this Window is the active
one the default Intuition pointer will be the pointer displayed
to the user. If your Window is the active one when this routine
is called, the change will take place immediately.

Custom definitions of the mouse pointer which this function clears
are installed by a call to SetPointer().

INPUTS
Window = pointer to the Window to be cleared of its Pointer definition

RESULT
None

BUGS

SEE ALSO
SetPointer()

i

ZET —- ¥

intuition.library/CloseScreen intuition.library/CloseScreen

NAME

CloseScreen -—- Closes an Intuition Screen.
SYNOPSIS

CloseScreen(Screen)

A0
struct Screen *Screen;

FUNCTION
Unlinks the Screen, unlinks the ViewPort, deallocates everything that
Intuition allocated when the screen was opened (using OpenScreen()).
Doesn't care whether or not there are still any Windows attached to the
Screen. Doesn't try to close any attached Windows; in fact, ignores them
altogether. 1If this is the last Screen to go, attempts to reopen
Workbench.

INPUTS
Screen = pointer to the Screen to be closed.

RESULT
None

BUGS

SEE ALSO
OpenScreen()

intuition.library/CloseWindow intuition.library/CloseWindow

NAME

CloseWindow —— Closes an Intuition Window.
SYNOPSIS

CloseWindow(Window)

A0
struct Window *Window;

FUNCTION
Closes an Intuition Window. Unlinks it from the system, unallocates
its memory, and if its Screen is a system one that would be empty
without the Window, closes the system Screen too.

when this function is called, all IDCMP messages which have been sent

to your window are deallocated. If the window had shared a Message Port
with other windows, you must be sure that there are no unreplied messages
for this window in the message queue. Otherwise, your program will

try to make use of a linked list (the queue) which contains free

memory (the old messages). This will give you big problems.

memory (the old messages). This will give you big problems.

NOTE: If you have added a Menu strip to this Window (via

a call to SetMenuStrip()) you must be sure to remove that Menu strip

(via a call to ClearMenuStrip()) before closing your Window.

NOTE: This function may block until it is safe to delink and free
your window. Your program may thus be suspended while the user
plays with gadgets, menus, or window sizes and position.

INPUTS

Window = a pointer to a Window structure

RESULT
None

BUGS

SEE ALSO
OpenWindow(), CloseScreen()

€e€T - ¥

intuition.library/CloseWorkBench intuition.library/CloseWorkBench

NAME

CloseWorkBench —— Closes the Workbench Screen.
SYNOPSIS

Success = CloseWorkBench()

DO

BOOI: Success;

FUNCTION

This routine attempts to close the Workbench. The actions taken are:

- Test whether or not any applications have opened Windows on the
wWorkbench, and return FALSE if so. Otherwise

- Clean up all special buffers

- Close the Workbench Screen

- Make the Workbench program mostly inactive (it will still
monitor disk activity)

- Return TRUE

INPUTS
None

RESULT
TRUE if the Workbench Screen closed successfully
FALSE if the Workbench was not open, or if it has windows
open which are not Workbench drawers.

BUGS

SEE ALSO
OpenWindow()

intuition.library/CurrentTime

intuition.library/CurrentTime

NAME
CurrentTime -~ Get the current time values.
SYNOPSIS
CcurrentTime(Seconds, Micros)
A0 Al

ULONG *Seconds, *Micros;

FUNCTION
puts copies of the current time into the supplied argument pointers.

This time value is not extremely accurate, nor is it of a very fine
resolution. This time will be updated no more than sixty times a
a second, and will typically be updated far fewer times a second.

INPUTS
Seconds = pointer to a LONG variable to receive the current seconds value
Micros = pointer to a LONG variable for the current microseconds value

RESULT
puts the time values into the memory locations specified by the arguments
Return value is not defined.

BUGS

SEE ALSO
timer.device/TR_GETSYSTIME

YET - ¥

intuition.library/DisplayAlert intuition.library/DisplayAlert

NAME

DisplayaAlert -— Create the display of an Alert message.
SYNOPSIS

Response = DisplayAlert(AlertNumber, String, Height)

DO DO A0 DL

BOOL Response;
ULONG AlexrtNumber;
UBYTE *String;
SHORT Height;

FUNCTION
Creates an Alert display with the specified message.

If the system can recover from this Alert, its a RECOVERY_ALERT and
this routine waits until the user presses one of the mouse buttons,
after which the display is restored to its original state and a
BOOL value is returned by this routine to specify whether or not
the User pressed the LEFT mouse button.

If the system cannot recover from this Alert, it's a DEADEND ALERT
and this routine returns immediately upon creating the Alert display.
The return value is FALSE.

NOTE THIS: Starting with Version 1.2, if Intuition can't get enough
memory to display a RECOVERY ALERT, the value FALSE will be returned.

The AlertNumber is a LONG value, historically related to the value
sent to the Alert() routine. But the only bits that are pertinent to
this routine are the ALERT TYPE bit(s). These bits must be set to
either RECOVERY ALERT for Alerts from which the system may safely
recover, or DEADEND ALERT for those fatal Alerts. These states are
described in the paragraph above.

The String argument points to an AlertMessage string. The AlertMessage
string is comprised of one or more substrings, each of which is
comprised of the following components:

- first, a 16-bit x—coordinate and an 8-bit y-coordinate,
describing where on the Alert display you want this string
to appear. The y—coordinate describes the offset to the
baseline of the text.

- then, the bytes of the string itself, which must be
null-terminated (end with a byte of zero)

- lastly, the continuation byte, which specifies whether or
not there's another substring following this one. If the
continuation byte is non—zero, there IS another substring
to be processed in this Alert Message. If the continuation
byte is zero, this is the last substring in the message.

The last argument, Height, describes how many video lines tall you
want the Alert display to be.

INPUTS
AlertNumber = the number of this Alert Message. The only pertinent bits
of this number are the ALERT TYPE bit(s). The rest of the
number is ignored by this routine
String = pointer to the Alert message string, as described above
Height = minimum display lines required for your message

RESULT
A BOOL value of TRUE or FALSE. If this is a DEADEND_ALERT, FALSE
is always the return value. If this is a RECOVERY_ALERT. The return
value will be TRUE if the User presses the left mouse button in
response to your message, and FALSE if the User presses the right hand
button is response to your text, or if the alert could not
be posted.

BUGS
If the system is worse off than you think, the level of your Alert

may become DEADEND ALERT without you ever knowing about it.

SEE ALSO

GET - ¥

intuition.library/DisplayBeep intuition.library/DisplayBeep

NAME
DisplayBeep —— flashes the video display.
SYNOPSIS
DisplayBeep(Screen)
AO

struct Screen *Screen;

FUNCTION
“"Beeps" the video display by flashing the background color of the
specified Screen. If the Screen argument is NULL, every Screen
in the display will be beeped. Flashing everyone's Screen is not
a polite thing to do, so this should be reserved for dire
circumstances.

The reason such a routine is supported is because the Amiga has

no internal bell or speaker. When the user needs to know of

an event that is not serious enough to require the use of a Requester,
the DisplayBeep() function may be called.

INPUTS
Screen = pointer to a Screen.
will be flashed

If NULL, every Screen in the display
RESULT

None
BUGS

SEE ALSO

intuition.library/DoubleClick

NAME
DoubleClick —-- Test two time values for double-click timing.

SYNOPSIS
IsDouble = DoubleClick(StartSecs, StartMicros, CurrentSecs, CurrentMicros)
A0 DO D1 D2 D3

BOOL IsDouble;
IONG StartSecs, StartMicros;
LONG CurrentSecs, CurrentMicros;

FUNCTION
Compares the difference in the time values with the double~click
timeout range that the user has set (using the "Preferences'" tool) or
some other program has configured into the system. If the
difference between the specified time values is within the current
double—click time range, this function returns TRUE, else it
returns FALSE.

These time values can be found in InputEvents and IDCMP Messages.
The time values are not perfect; however, they are precise enough for
nearly all applications.

INPUTS
StartSeconds, StartMicros = the timestamp value describing the start of
the double—click time period you are considering
CurrentSeconds, CurrentMicros = the timestamp value describing
the end of the double—click time period you are considering

RESULT
1f the difference between the supplied timestamp values is within the

double—click time range in the current set of Preferences, this
function returns TRUE, else it returns FALSE

BUGS

SEE ALSO
CurrentTime()

intuition.library/DoubleClick

N

9¢T — ¥

intuition.library/DrawBorder intuition.library/DrawBorder

NAME

DrawBorder -— draws the specified Border into the RastPort.
SYNOPSIS

DrawBorder (RastPort, Border, LeftOffset,

TopOffset)
A0 Al DO D1

struct RastPort *RastPort;
struct Border *Border;
SHORT LeftOffset, TopOffset;

FUNCTION
First, sets up the DrawMode and Pens in the RastPort according to the
arguments of the Border structure. Then, draws the vectors of

the Border argument into the RastPort, offset by the Left and Top Offsets.

As with all graphics rendering routines, the border will be clipped to
to the boundaries of the RastPort's layer, if it exists. This is
the case with Window RastPorts.

If the NextBorder field of the Border argument is non—zero,
the next Border is rendered as well, and so on until some NextBorder
field is found to be NULL.

INPUTS
RastPort = pointer to the RastPort to receive the border rendering
Border = pointer to a Border structure
leftOffset = the offset which will be added to each vector's x coordinate
TopOffset = the offset which will be added to each vector's y coordinate

RESULT
None

BUGS

SEE ALSO

intuition. library/Drawlmage intuition.library/Drawlmage

NAME

Drawimage —— draws the specified Image into the RastPort.
SYNOPSIS

DrawImage (RastPort, Image, LeftOffset, TopOffset)

AQ Al DO DL

struct RastPort *RastPort;
struct Image *Image;
SHORT TLeftOoffset, TopOffset;

FUNCTION
First, sets up the DrawMode and Pens in the RastPort according to the
arquments of the Image structure. Then, moves the image data of
the Image argument into the RastPort, offset by the Left and Top Offsets.
This routine does window layer clipping as appropriate —— if you
draw an image outside of your Window, your imagery will be
clipped at the Window's edge.

If the NextImage field of the Image argument is non-zero,
the next Image is rendered as well, and so on until some
NextImage field is found to be NULL.

INPUTS
RastPort = pointer to the RastPort to receive image rendering
Image = pointer to an Image structure
Leftoffset = the offset which will be added to the Image's x coordinate
TopOffset = the offset which will be added to the Image's y coordinate

RESULT
None

BUGS

SEE ALSO

LET — ¥

intuition.library/EndRefresh

NAME
EndRefresh ——
SYNOPSIS
EndRefresh(Window, Complete)
A0 DO

struct Window *Window;
BOOL Complete;

FUNCTION
This function gets you out of the
Window. It is called following a
routine puts you into the special
is in the refresh state, the only

intuition.library/EndRefresh

Ends the optimized refresh state of the Window.

special refresh state of your
call to BeginRefresh(), which
refresh state. while your Window
rendering that will be wrought in

your Window will be to those areas which were recently revealed and
need to be refreshed.

After you've done all the refreshing you want to do for this Window,
you should call this routine to restore the Window to its
non-refreshing state. Then all rendering will go to the entire
Window, as usual.

The Complete argument is a boolean TRUE or FALSE value used to
describe whether or not the refreshing you've done was all the
refreshing that needs to be done at this time. Most often, this
argument will be TRUE. But if, for instance, you have multiple
tasks or multiple procedure calls which must run to completely
refresh the Window, then each can call its own Begin/EndRefresh()
pair with a Complete argument of FALSE, and only the last calls
with a Complete argument of TRUE.

For your information, this routine calls the Layers library function
EndUpdate(), unlocks your layers (calls UnlockLayerRom()), clears

the LAYERREFRESH bit in your Layer Flags, and clears the WINDOWREFRESH
bit in your window flags.

INPUTS
Window = pointer to the Window currently in optimized-refresh mode
Complete = Boolean TRUE or FALSE describing whether or not this
Window is completely refreshed

RESULT
None

BUGS

SEE ALSO
BeginRefresh(), layers.library/EndUpdate(), layers.library/UnlockLayerRom()

intuition.library/EndRequest intuition.library/EndRequest
NAME
EndRequest

Ends the Request and resets the Window.

SYNOPSIS
EndRequest (Requester, Window);
A0 Al

FUNCTION
Ends the Request by erasing the Requester and resetting the Window.
Note that this doesn't necessarily clear all Requesters from the Window,
only the specified one. If the Window labors under other Requesters,
they will remain in the Window.

INPUTS
Requester = pointer to the Requester to be removed
Window = pointer to the Window structure with which this Requester
is associated

RESULT
None

BUGS

SEE ALSO
Request ()

i

8E€T — ¥

intuition. library/FreeRemember intuition.library/FreeRemember

NAME

FreeRemember —— Free memory allocated by calls to AllocRemember().

SYNOPSIS
FreeRemember (RememberKey, ReallyForget)
a0 DO
struct Remember **RememberKey ;
BOOL ReallyForget;

FUNCTION

This function frees up memory allocated by the AllocRemember() function.

It will either free up just the Remember structures, which supply the
link nodes that tie your allocations together, or it will deallocate
both the link nodes AND your memory buffers too.

If you want to deallocatejust the Remember structure link nodes,
you should set the ReallyForget argument to FALSE. However, if you
want FreeRemember to really deallocate all the memory, including
both the Remember structure link nodes and the buffers you requested
via earlier calls to AllocRemember(), then you should set the
ReallyForget argument to TRUE.

INPUTS

RememberKey = the address of a pointer to struct Remember. This
pointer should either be NULL or set to some value (possibly
NULL) by a call to AllocRemember().

ReallyForget = a BOOL FALSE or TRUE describing, respectively,
whether you want to free up only the Remember nodes or
if you want this procedure to really forget about all of
the memory, including both the nodes and the memory buffers
referenced by the nodes.

EXAMPLE
struct Remember *RememberKey;
RememberKey = NULL;
AllocRemember (&RememberKey, BUFSIZE, MEMF_CHIP);
FreeRemember (&RememberKey, TRUE);

RESULT
None

BUGS

SEE ALSO
AllocRemember(), exec.library/FreeMenm()

intuition.library/FreeSysRequest intuition.library/FreeSysRequest
NAME
FreeSysRequest —— Frees resources used by a call to BuildSysRequest().

SYNOPSIS
FreeSysRequest (Window)
A0

struct Window *Window;

FUNCTION
This routine frees up all memory allocated by a successful call to
the BuildSysRequest() procedure. If BuildSysRequest() returned a
pointer to a Window, then you are able to Wait() on the message port
of that Window to detect an event which satisfies the Requester.
when you want to remove the Requester, you call this procedure. It
ends the Requester and deallocates any memory used in the creation
of the Requester. It also closes the special window that was opened
for your System Requester.

NOTE: if BuildSysRequest() did not return a pointer to a Window,
you should not call FreeSysRequest()!

INPUTS
wWindow = value of the Window pointer returned by a successful call to
the BuildSysRequest() procedure

RESULT
None

BUGS

SEE ALSO
BuildSysRequest(), AutoRequest(), CloseWindow(), exec.library/Wait()

6ET — ¥

intuition.library/GetDefPrefs intuition.library/GetDefPrefs
NAME
GetDefPrefs -— Get a copy of the the Intuition default Preferences.
SYNOPSIS
Prefs = GetDefPrefs(PrefBuffer, Size)
DO A0 DO

struct Preferences *Prefs;
struct Preferences *PrefBuffer;
SHORT Size;

FUNCTION
Gets a copy of the Intuition default preferences data. Writes the
data into the buffer you specify. The number of bytes you want
copied is specified by the Size argument.

The default Preferences are those that Intuition uses when it
is first opened. If no preferences file is found, these are
the preferences that are used. These would also be the startup
Preferences in an AmigaDOS—less environment.

It is legal to take a partial copy of the Preferences structure.
The more pertinent Preferences variables have been grouped near
the top of the structure to facilitate the memory conservation
that can be had by taking a copy of only some of the Preferences
structure.

INPUTS
PrefBuffer = pointer to the memory buffer to receive your copy of the
Intuition Preferences
Size = the number of bytes in your PrefBuffer, the number of bytes
you want copied from the system's internal Preference settings

RESULT
Returns your parameter PrefBuffer.

BUGS

SEE ALSO
GetPrefs()

intuition.library/GetPrefs intuition.library/GetPrefs

NAME

GetPrefs —-— Get the current setting of the Intuition Preferences.
SYNOPSIS

Prefs = GetPrefs(PrefBuffer, Size)

DO AO DO

struct Preferences *Prefs;
struct Preferences *PrefBuffer;

FUNCTION
Gets a copy of the current Intuition Preferences data. Writes the
data into the buffer you specify. The number of bytes you want
copied is specified by the Size argument.

It is legal to take a partial copy of the Preferences structure.
The more pertinent Preferences variables have been grouped near
the top of the structure to facilitate the memory conservation
that can be had by taking a copy of only some of the Preferences
structure.

INPUTS
prefBuffer = pointer to the memory buffer to receive your copy of the
Intuition Preferences
Size = the number of bytes in your PrefBuffer, the number of bytes
you want copied from the system's internal Preference settings

RESULT
Returns your parameter PrefBuffer.

BUGS

SEE ALSO
GetDefPrefs(), SetPrefs()

0vT - ¥

|

intuition. library/GetScreenData

intuition.library/GetScreenData

NAME
GetScreenData — Get copy of a screen data structure.
SYNOPSIS
Success = GetScreenData{Buffer, Size, Type, Screen)
DO A0 DO Dl Al
BOOL Success;
CPTR Buffer;

USHORT Size;
USHORT Type;
struct Screen *Screen;

FUNCTION
This function copies into the caller's buffer data from a Screen structure
Typically, this call will be used to find the size, title bar height, and
other values for a standard screen, such as the Workbench screen.

To get the data for the Workbench screen, one would call:
GetScreenData(buff, sizeof(struct Screen), WBENCHSCREEN, NULL)

NOTE: if the requested standard screen is not open, this function
will have the effect of opening it.

INPUTS
Buffer = pointer to a buffer into which data can be copied
Size = the size of the buffer provided, in bytes
Type = the screen type, as specified in OpenWindow (WBENCHSCREEN,

CUSTOMSCREEN, ...) .
Screen = ignored, unless type is CUSTOMSCREEN, which results only in
copying ‘'size' bytes from 'screen' to ‘buffer’

RESULT

TRUE if successful

FALSE if standard screen of Type 'type' could not be opened.
BUGS

SEE ALSO
OpenWindow()

intuition.library/InitRequester intuition.library/InitRequester

NAME

InitRequester —-— initializes a Requester structure.

SYNOPSIS
InitRequester(Requester)
AQ
struct Requester *Requester;
FUNCTION
Initializes a requester for general use. After calling InitRequester,
you need fill in only those Requester values that fit your needs.

The other values are set to NULL——or zero——states.

INPUTS
Requester = a pointer to a Requester structure

RESULT
None

BUGS

SEE ALSO

9T - ¥

intuition.library/IntuiTextLength intuition.library/IntuiTextLength

NAME .
IntuiTextLength -- Returns the length (pixel-width) of an IntuiText.

SYNOPSIS
IntuiTextLength(IText)
DO

struct IntuiText *IText;

FUNCTION
This routine accepts a pointer to an instance of an IntuiText structure,
ahd returns the length (the pixel-width) of the string which that
instance of the structure represents.

NOTE: if the Font pointer of your IntuiText structure is set to NULL,
you'll get the pixel-width of your text in terms of the current system
default font. You may wish to be sure that the field IText->ITextFont
for 'default font' text is equal to the Font field of the screen it is
being measured for.

INPUTS
IText = pointer to an instance of an IntuiText structure

RESULT
Returns the pixel-width of the text specified by the IntuiText data

BUGS
Would do better to take a RastPort as argument, so that a NULL in
the Font pointer would lead automatically to the font for the
intended target RastPort.

SEE ALSO
OpenScreen()

intuition.library/ItemAddress intuition.library/ItemAddress

NAME

ItemAddress —— Returns the address of the specified Menultem.
SYNOPSIS

Item = ItemAddress(MenuStrip, MenuNumber)

DO A0 DO

struct Menultem *ItemAddress;
struct Menu *MenuStrip;
USHORT MenuNumber ;

FUNCTION
This routine feels through the specified MenuStrip and returns the
address of the Item specified by the MenuNumber. Typically,
you will use this routine to get the address of a Menultem from
a MenuNumber sent to you by Intuition after User has played with
a Window's Menus.

This routine requires that the arguments are well-defined.
MenuNumber may be equal to MENUNULL, in which case this routine returns
NULL. If MenuNumber doesn't equal MENUNULL, it's presumed to be a
valid Item number selector for your MenuStrip, which includes:

- a valid Menu number

~ a valid Item Number

— if the Item specified by the above two components has a

Subltem, the MenuNumber may have a Subltem component too

Note that there must be BOTH a Menu number and an Item number.
Because a SubItem specifier is optional, the address returned by
this routine may point to either an Item or a Subltem.

INPUTS
MenuStrip = a pointer to the first Menu in your MenuStrip
MenuNumber = the value which contains the packed data that selects
the Menu and Item (and Subltem). See the Intuition Reference
Manual for information on Menu Numbers.

RESULT
If MenuNumber == MENUNULL, this routine returns NULL,
else this routine returns the address of the Menultem specified
by MenuNumber.

BUGS
SEE ALSO

The "Menus" chapter of the Intuition Reference Manual,
for more information about '"Menu Numbers."

|

ZvT - ¥

il

intuition.library/LockIBase intuition.library/LockIBase

NAME

LockIBase —— Intuition user's access to Intuition Locking
SYNOPSIS

Lock = LockIBase(LockNumber)

DO DO

ULONG Lock;

ULONG LockNumber ;
FUNCTION

Grabs Intuition internal semaphore so that caller may examine
IntuitionBase safely.

The idea here is that you can get the locks Intuition needs before
such IntuitionBase fields as ActiveWindow and FirstScreen are
changed, or linked lists of windows and screens, are changed.

Do Not Get Tricky with this entry point, and do not hold these locks
for long, as all Intuition input processing will wait for you to
surrender the lock by a call to UnlockIBase().

NOTE WELL: A call to this function MUST be paired with a subsequent
call to UnlockIBase(), and soon, please.

INPUTS

A long unsigned integer, LockNumber, specifies which of Intuition's internal
locks you want to get. This parameter should be zero for all forseeable
uses of this function, which will let you examine Active fields and linked
lists of screens and windows with safety.

RESULT

Returns another ULONG which should be passed to UnlockIBase() to surrender
the lock gotten by this call.

BUGS
This function should not be called while holding any other system locks
such as Layer or LayerInfo locks.

SEE ALSO
UnlockIBase(), layers.library/LockLayerInfo, exec. library/ObtainSemaphore

intuition.library/MakeScreen intuition.library/MakeScreen
NAME
MakeScreen

Do an Intuition-integrated MakeVPort() of a custom screen

SYNOPSIS
MakeScreen(Screen)
AQ

struct Screen *Screen;

FUNCTION
This procedure allows you to do a MakeVPort() for the ViewpPort of your
Custom Screen in an Intuition-integrated way. This allows you to
do your own Screen manipulations without worrying about interference
with Intuition's usage of the same ViewPort.
The operation of this function is as follows:
Block until the Intuition View is not in use.
~ Set the View Modes correctly to reflect if there is a (visible)
interlaced screen.
- call MakeVPort, passing the Intuition View and your Screen's
ViewPort.
— Unlocks the Intuition View.

After calling this routine, you can call RethinkDisplay() to
incorporate the new ViewPort of your custom screen into the
Intuition display.

INPUTS

Screen = address of the Custom Screen structure

RESULT
None

BUGS

SEE ALSO
RethinkDisplay(), RemakeDisplay(), graphics.library/MakeVPort()

€YT -~ ¥

intuition.library/ModifyIDCMP intuition.library/ModifyIDCMP

NAME

ModifyIDCMP —- Modify the state of the Window's IDCMPFlags.
SYNOPSIS

ModifyIDCMP(Window, IDCMPFlags)

AQ DO

struct Window *Window;

ULONG IDCMPFlags;
FUNCTION

This routine modifies the state of your Window's IDCMP (Intuition Direct
Communication Message Port). The state is modified to reflect your
desires as described by the flag bits in the value IDCMPFlags.

The four actions that might be taken are:

- if there is currently no IDCMP in the given Window, and IDCMPFlags
is NULL, nothing happens

- if there is currently no IDCMP in the given Window, and any of the
IDCMPFlags is selected (set), then the IDCMP of the Window is
created, including allocating and initializing the message ports
and allocating a Signal bit for your Port. See the "Input and
Output Methods" chapter of the Intuition Reference Manual for full
details

— if the IDCMP for the given Window exists, and the
IDCMPFlags argument is NULL, this says that you want
Intuition to close the Ports, free the buffers and free
your Signal bit. You MUST be the same Task that was active
when this Signal bit was allocated

- if the IDCMP for the given Window is opened, and the IDCMPFlags
argument is not NULL, this means that you want to change the
state of which events will be broadcast to you through the IDCMP

NOTE: You can set up the Window—>UserPort to any Port of your own
before you call ModifyIDCMP(). If IDCMPFlags is non-null but
your UserPort is already initialized, Intuition will assume that
it's a valid Port with Task and Signal data preset and Intuition
won't disturb your set—up at all, Intuition will just allocate

the Intuition Message Port half of it. The converse is true

as well: 1if UserPort is NULL when you call here with

IDCMPFlags == NULL, Intuition will deallocate only the Intuition
side of the Port.

This allows you to use a Port that you already have allocated:
— OpenWindow() with IDCMPFlags equal to NULL (open no ports)
- set the UserPort variable of your Window to any valid Port of your
own choosing
— call ModifyIDCMP with IDCMPFlags set to what you want
- then, to clean up later, set UserPort equal to NULL before calling
CloseWindow() (leave. IDCMPFlags alone) BUT FIRST: you must make
sure that no messages sent your window are queued at the port,
since they will be returned to the memory free pool.

INPUTS
wWindow = pointer to the Window structure containing the IDCMP Ports
IDCMPFlags = the flag bits describing the new desired state of the IDCMP

RESULT
None

BUGS
Method for closing a window with a shared port needs to be better
documented somewhere, or provided as an Intuition call, or both.
At the present, the technique is available through developer support
newsletters as a function called CloseWindowsafely(). See, for
example, Amiga Mail, vol.2.

SEE ALSO

OpenWindow(), CloseWindow()

intuition.library/ModifyProp

NAME
ModifyProp —— Modify the current parameters of a Proportional Gadget.
SYNOPSIS
ModifyProp(Gadget, Window, Requester,
AO Al A2
Flags, HorizPot, VertPot, HorizBody, VertBody)
DO D1 D2 D3 D4
struct Gadget *Gadget;
struct Window *Window;
struct Requester *Requester;
USHORT Flags;
USHORT HorizPot, VertPot;
USHORT HorizBody, VertBody;
FUNCTION

Modifies the parameters of the specified Proportional Gadget. The
Gadget's internal state is then recalculated and the imagery

is redisplayed in the Window or Requester that contains the gadget.

The Requester variable can point to a Requester structure. If the
Gadget has the REQGADGET flag set, the Gadget is in a Requester

and the Window pointer must point to the window of the Requester.

If this is not the Gadget of a Requester, the Requester argument may
be NULL.

NOTE: this function causes all gadgets from the proportional
gadget to the end of the gadget list to be refreshed, for
reasons of compatibility.

For more refinded display updataing, use NewlModifyProp

INPUTS

propGadget = pointer to a Proportional Gadget

Window = pointer to the window containing the gadget or the Window
containing the Requester containing the Gadget.

Requester = pointer to a Requester (may be NULL if this isn't
a Requester Gadget)

Flags = value to be stored in the Flags variable of the PropInfo

HorizPot = value to be stored in the HorizPot variable of the PropInfo

VertPot = value to be stored in the VertPot variable of the PropInfo

intuition.library/ModifyProp

HorizBody = value to be stored in the HorizBody variable of the PropInfo

VertBody = value to be stored in the VertBody variable of the PropInfo
RESULT
None

BUGS

SEE ALSO
NewModifyProp()
The Intuition Reference Manual contains more information on
Proportional Gadgets.

I

YT - ¥

intuition.library/MoveScreen

NAME

MoveScreen -— attempts to move the Screen by increments provided.
SYNOPSIS

MoveScreen(Screen, DeltaX, DeltaY);

AQ DO D1

struct Screen *Screen;
SHORT DeltaX, Delta¥;

FUNCTION
Moves the screen the specified increment.

Currently, only the DeltaY coordinate is significant; you should
pass zero for DeltaX.

Screens are constrained now only by the top and bottom of the
Intuition View, which is not guaranteed to be the same in all
versions of the software.

If the DeltaX and DeltaY variables you specify would move the Screen
in a way that violates any restrictions, the Screen will be moved
as far as possible. You may examine the LeftEdge and TopEdge fields
of the Screen Structure to see where the screen really ended up.

In operation, this function determines what the actual increments
that are actually to be used, sets these values up, and calls

RethinkDisplay().
INPUTS
Screen pointer to a Screen structure

DeltaX amount to move the screen on the x—axis
Note that DeltaX should be set to zero.

DeltaY = amount to move the screen on the y—axis

RESULT
None

BUGS

SEE ALSO
RethinkDisplay()

intuition.library/MoveScreen

intuition.library/MoveWindow

NAME .
MoveWindow —— Ask Intuition to move a Window.
SYNOPSIS
MoveWindow(Window, DeltaX, DeltaY)

AQ DO Dl

struct Window *Window;
SHORT DeltaX, Deltay;

FUNCTION
This routine sends a request to Intuition asking to move the Window
the specified distance. The delta arguments describe how far to
move the Window along the respective axes.

Note that the Window will not be moved immediately, but rather
will be moved the next time Intuition receives an input event,
which happens currently at a minimum rate of ten times per second,
and a maximum of sixty times a second.

This routine does no error—checking. If your delta values specify
some far corner of the Universe, Intuition will attempt to move
your Window to the far corners of the Universe. Because of the
distortions in the space-time continuum that can result from this,
as predicted by special relativity, the result is generally not

a pretty sight.

You are thus advised to consider the dimensions of your Window's screen

and the current position of your window before calling this function.

INPUTS
Window = pointer to the structure of the Window to be moved
DeltaX
Deltay

RESULT
None

BUGS

SEE ALSO
SizeWindow(), WindowToFront(), WindowToBack()

intuition.library/MoveWindow

signed value describing how far to move the Window on the x-axis
signed value describing how far to move the Window on the y-axis

SYT - ¥

intuition. library/NewModifyProp intuition.library/NewModifyProp

NAME
NewModifyProp —— ModifyProp, but with Selective Update
SYNOPSIS
NewModifyProp(Gadget, Window, Requester, Flags
a0 Al A2 Do
HorizPot, VertPot, HorizBody, VertBody, NumGad)
D1 D2 D3 D4 D5

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Requester;
USHORT Flags;

USHORT HorisPot, VertPot;
USHORT HorizBody, VertBody;
int NumGad ;

FUNCTION
Performs the function of ModifyProp(), but can update a
subset of the entire gadget list. The starting position
and gadget count are specified as parameters. If NumGad = -1,
updates are made until the end of the list is reached.

NOTE
Under V33/34, NewModifyProp() has the side effect of redrawing
the entire gadget. 1In the future this function may only update
that parts that changed. To cause a full draw operation, use
RefreshGList().

INPUTS
PropGadget = pointer to a Proportional Gadget
Window = pointer to the window containing the gadget or the Window
containing the Requester containing the Gadget.
Requester = pointer to a Requester (may be NULL if this isn't
a Requester Gadget)
Flags = value to be stored in the Flags variable of the PropInfo
HorizPot = value to be stored in the HorizPot variable of the ProplInfo
VertPot = value to be stored in the VertPot variable of the PropInfo
HorizBody = value to be stored in the HorizBody variable of the Proplnfo
VertBody = value to be stored in the VertBody variable of the PropInfo
NumGad = number of gadgets to be refreshed after propgadget internals
have been adjusted. -1 means "to end of list."

RESULT
None

BUGS

SEE ALSO
ModifyProp()
The Intuition Reference Manual contains more information on Proportional
Gadgets.

intuition.library/OffGadget intuition.library/OffGadget

NAME
OffGadget —- disables the specified Gadget.
SYNOPSIS
OffGadget (Gadget, Window, Requester)
A0 Al A2

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Requester;

FUNCTION
This command disables the specified Gadget.
disabled, these things happen:
- its imagery is displayed ghosted
— the GADGDISABLED flag is set
~ the Gadget cannot be selected by User

wWhen a Gadget is

The Window parameter must point to the window which contains the Gadget,
or which contains the Requester that contains the Gadget

The Requester parameter must only be valid if the Gadget has the
REQGADGET flag set, a requirement for all Requester Gadgets.
NOTE: it's never safe to tinker with the Gadget list yourself. Don't
supply some Gadget that Intuition hasn't already processed in

the usual way.

NOTE: for compatibility reasons, this function will refresh all
gadgets in a requester, and all gadgets from Gadget to the
end of the gadget list if Gadget is in a window.

INPUTS
Gadget = pointer to the Gadget that you want disabled
Window = pointer to a Window structure containing the Gadget or
containing the Requester which contains the Gadget
Requester = pointer to a Requester (may by NULL if this isn't
a Requester Gadget (i.e. REQGADGET is not set)).

RESULT
None

BUGS

SEE ALSO
AddGadget (), RefreshGadgets()

9%1T - ¥

I

intuition.library/0ffMenu intuition.library/OffMenu

NAME

OffMenu -- disables the given menu or menu item.
SYNOPSIS

Of fMenu(Window, MenuNumber)

AQ DO

struct Window *Window;
USHORT MenuNumber ;

FUNCTION
This command disables a sub—item, an item, or a whole menu.
This depends on the contents of the data packed into MenuNumber,
which is described in the Intuition Reference Manual.

INPUTS
Window = pointer to the window
MenuNumber = the menu piece to be disabled

RESULT
None

BUGS

SEE ALSO

intuition.library/OnGadget intuition.library/OnGadget

NAME
onGadget —— enables the specified Gadget.
SYNOPSIS
OnGadget (Gadget, Window, Requester)
a0 Al A2

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Requester;

FUNCTION
This command enables the specified Gadget.
enabled, these things happen:
- its imagery is displayed normally (not ghosted)
— the GADGDISABLED flag is cleared
— the Gadget can thereafter be selected by the user

wWhen a Gadget is

The Window parameter must point to the window which contains the Gadget,
or which contains the Requester that contains the Gadget

The Requester parameter must only be valid if the Gadget has the
REQGADGET flag set, a requirement for all Requester Gadgets.
NOTE: it's never safe to tinker with the Gadget list yourself. Don't
supply some Gadget that Intuition hasn't already processed in

the usual way.

NOTE: for compatibility reasons, this function will refresh all
gadgets in a requester, and all gadgets from Gadget to the
end of the gadget list if Gadget is in a window.

INPUTS
Gadget = pointer to the Gadget that you want disabled
Window = pointer to a Window structure containing the Gadget or
containing the Requester which contains the Gadget
Requester = pointer to a Requester (may by NULL if this isn't
a Requester Gadget (i.e. REQGADGET is not set)).

RESULT
None

BUGS

SEE ALSO

LyYT - ¥

intuition.library/OnMenu intuition.library/OnMenu

NAME
onMenu —— enable the given menu or menu item.
SYNOPSIS
oOnMenu(Window, MenuNumber)
A0 DO

struct Window *Window;
USHORT MenuNumber ;

FUNCTION
This command enables a sub—item, an item, or a whole menu.
This depends on the contents of the data packed into MenuNumber,
which is described in the Intuition Reference Manual.

INPUTS
Window = pointer to the window
MenuNumber = the menu piece to be enables

RESULT
None

BUGS

SEE ALSO

intuition. library/OpenScreen intuition.library/OpenScreen

NAME

OpenScreen —— Open an Intuition Screen.
SYNOPSIS

Screen = OpenScreen(NewScreen)

DO A0

struct Screen *Screen;
struct NewScreen *NewScreen;

FUNCTION
Opens an Intuition Screen according to the specified parameters
found in the NewScreen structure.

Does all the allocations, sets up the Screen structure and all
substructures completely, and links this Screen's ViewPort into
Intuition's View structure.

Before you call OpenScreen(), you must initialize an instance of
a NewScreen structure. NewScreen is a structure that contains
all of the arguments needed to open a Screen. The NewScreen
structure may be discarded immediately after OpenScreen() returns.

The SHOWTITLE flag is set to TRUE by default when a Screen is opened.
To change this, you must call the routine ShowTitle().

INPUTS
NewScreen = pointer to an instance of a NewScreen structure.
That structure is initialized with the following information:

Left = initial x—position of your Screen (should be zero currently)

Top = initial y-position of the opening Screen

Width = the width for this Screen's RastPort.

Height = the height for his Screen's RastPort, or the constant
STDSCREENHEIGHT to get current local maximum (at this time
guaranteed to be at least 200). The actual height the screen
opended to can be found in the returned Screen structure.

The "normal" width and height for a particular system is stored by

the graphics.library in GfxBase—>NormalDisplayRows and

GfxBase—>NormalDisplayColumns. These values will be different

depending on factors such as PAL video and overscan.

Depth = number of BitPlanes

DetailPen = pen number for details (like gadgets or text in title bar)
BlockPen = pen number for block fills (like title bar)

Type = Screen type

Set these flag bits as desired from the set:

CUSTOMSCREEN —— this is your own Screen, not a System screen.

CUSTOMBITMAP ~— this custom screen has bit maps supplied
in the BitMap field of the NewScreen structure. Intuition is
not to allocate any Raster BitMaps.

SCREENBEHIND —— your screen will be created behind all other open
screens. This allows a program to prepare imagery in the
screen, change it's colors, and so on, bringing it to the front
when it is presentable.

SCREENQUIET — Intuition will not render system screen gadgets or
screen title. In concert with the RMBTRAP flag on all your
screen's windows, this flag will prevent Intuition from rendering
into your screen's bitplanes. Without RMBTRAP (or using MENUVERIFY
IDCMP facility to cancel menu operations), this flag will
prevent Intuition from clearing your menu bar, which is probably
unacceptable. The title bar layer may still overwrite your
bitmap on open.

viewModes = the appropriate argument for the data type ViewPort.Modes.
these might include:
HIRES for this screen to be HIRES width.
INTERLACE for the display to switch to interlace.
SPRITES for this Screen to use sprites (pointer comes anyway).
DUALPF for dual-playfield mode (not supported yet)
Font = pointer to the default TextAttr structure for text in this Screen

8v1T - ¥

lll

and all Windows that open in this Screen. Text that uses this TextAttr
includes title bars of both Screen and Windows, String Gadgets, and
Menu titles. Of course, IntuiText that specifies a NULL TextaAttr field
will use the Screen/Window default Fonts.
DefaultTitle = pointer to a line of text that will be displayed along the
Screen's Title Bar. Null terminated, or just a NULL pointer
to get no text
Gadgets = This field should be set to NULL, since no user Gadgets may
be attached to a Screen.
CustomBitMap = if you're not supplying a custom BitMap, this value is
ignored. However, if you have your own display memory that you
want used for this Screen, the CustomBitMap argument should
point to the BitMap that describes your display memory. See the
“Screens" chapter and the "Amiga ROM Kernel Manual" for more
information about BitMaps.

RESULT
If all is well, returns the pointer to your new Screen
If anything goes wrong, returns NULL

NOTE
By default AmigaDOS requesters related to your Process are put on
the workbench screen (these are messages like "Disk Full"). If
you wish them to show up on custom screens, DOS must be told.
This fragment shows the procedure. More information is availble
in the AmigaDOS books. Sample code fragment:

——————————— cut here —————————
#include "libraries/dosextens.h"

struct Process *process;
struct Window *window;
APTR temp;

process=(struct Process *)FindTask(O0L);
temp=process—>pr_WindowPtr; /* save old value */
process—>pr_WindowPtr=(APTR)window;

/* set a pointer to any open window on your screen */

yéﬁr code goes here
procééé~>pr_windothr=temp;
/* restore value _before CloseWindow */
CloseWindow(window) ;
——————— cut here ————~
BUGS

SEE ALSO
OpenWindow(), PrintIText(), CloseScreen(), The Intuition Reference Manual

intuition.library/OpenWindow intuition.library/OpenWindow
NAME
OpenWindow -—— Opens an Intuition Window
SYNOPSIS
OpenWindow (NewWindow) ;
where the NewWindow structure is initialized with:
Left, Top, Width, Height, DetailPen, BlockPen, Flags,
IDCMPFlags, Gadgets, CheckMark, Text, Type, Screen, BitMap,
MinWidth, MinHeight, MaxWidth, MaxHeight

FUNCTION
Opens an Intuition window of the given height, width and depth, including
the specified system Gadgets as well as any of your own. Allocates
everything you need to get going.

Before you call OpenWindow(), you must initialize an instance of
a NewWindow structure. NewWindow is a structure that contains
all of the arguments needed to open a Window. The NewWindow
structure may be discarded immediately after it is used to open
the Window.

1f Type == CUSTOMSCREEN, you must have opened your own Screen
already via a call to OpenScreen(). Then Intuition uses your screen
argument for the pertinent information needed to get your Window
going. On the other hand, if type == one of the Intuition's standard
Screens, your screen argument is ignored. Instead,

Intuition will check to see whether or not that Screen

already exists: 1if it doesn't, it will be opened first before
Intuition opens your window in the Standard Screen.

If the flag SUPER BITMAP is set, the bitmap variable must point to
your own BitMap.

The DetailPen and the BlockPen are used for system rendering; for
instance, the Title bar is first filled using the BlockPen, and then
the Gadgets and text are rendered using DetailPen. You can either
choose to supply special pens for your Window, or, by setting either
of these arguments to —1, the Screen's Pens will be used instead.

INPUTS
NewWindow = pointer to an instance of a NewWindow structure.
structure is initialized with the following data:

That

Left = the initial x—position for your window
Top = the initial y-position for your window
Width = the initial width of this window
Height = the initial height of this window
DetailPen = pen number (or —1) for the rendering of Window details
(like gadgets or text in title bar)
BlockPen = pen number (or ~1) for Window block fills (like Title Bar)
Flags = specifiers for your requirements of this window, including:
— which system Gadgets you want attached to your window:
— WINDOWDRAG allows this Window to be dragged
— WINDOWDEPTH lets the user depth—arrange this Window
- WINDOWCLOSE attaches the standard Close Gadget
— WINDOWSIZING allows this Window to be sized. If you ask
the WINDOWSIZING Gadget, you must specify one or both
of the flags SIZEBRIGHT and SIZEBBOTTOM below; if you
don't, the default is SIZEBRIGHT. See the
following items SIZEBRIGHT and SIZEBBOTTOM for extra
information.
~ SIZEBRIGHT is a special system Gadget flag that
you set to specify whether or not you want the
RIGHT Border adjusted to account for the physical size
of the Sizing Gadget. The Sizing Gadget must, after
all, take up room in either the right or bottom border
(or both, if you like) of the Window. Setting either
this or the SIZEBBOTTOM flag selects which edge
will take up the slack. This will be particularly
useful to applications that want to use the extra space
for other Gadgets (like a Proportional Gadget and two
Booleans done up to look like scroll bars) or, for

6%T — ¥

IDCMPFlags =
Message

for instance, applications that want every possible
horizontal bit and are willing to lose lines vertically.
NOTE: if you select WINDOWSIZING, you must select
either SIZEBRIGHT or SIZEBBOTTOM or both. If you select
neither, the default is SIZEBRIGHT.
- SIZEBBOTTOM is a special system Gadget flag that
you set to specify whether or not you want the
BOTTOM Border adjusted to account for the physical size
of the Sizing Gadget. For details, refer to
SIZEBRIGHT above.
NOTE: if you select WINDOWSIZING, you must select
either SIZEBRIGHT or SIZEBBOTTOM or both. If you select
neither, the default is SIZEBRIGHT.
GIMMEZEROZERO for easy but expensive output
what type of window raster you want, either:
— SIMPLE_REFRESH
— SMART REFRESH
— SUPER_BITMAP
If the type is SMART REFRESH, and you do not handle
REFRESHWINDOW type messages, also set the NOCAREREFRESH
flag.
BACKDROP for whether or not you want this window to be one
of Intuition's special backdrop windows. See BORDERLESS
as well.
REPORTMOUSE for whether or not you want to "listen" to
mouse movement events whenever your Window is the active
one. After you've opened your Window, if you want to change
you can later change the status of this via a call to
ReportMouse(). Whether or not your Window is listening to
Mouse is affected by Gadgets too, since they can cause
you to start getting reports too if you like.
The mouse move reports (either InputEvents or messages on
the IDCMP) that you get will have the x/y coordinates of the
current mouse position, relative to the upper-left corner
of your Window (GIMMEZEROZERO notwithstanding).
This flag can work in conjunction with the IDCMP Flag
called MOUSEMOVE, which allows you to listen via the
IDCMP . :
BORDERLESS should be set if you want a Window with no
Border padding. Your Window may have the Border variables
set anyway, depending on what Gadgetry you've requested for
the Window, but you won't get the standard border lines and
spacing that comes with typical Windows.
This iS a good way to take over the entire Screen, since you
can have a Window cover the entire width of the Screen using
this flag. This will work particularly well in
conjunction with the BACKDROP flag (see above), since it
allows you to open a Window that fills the ENTIRE Screen.
NOTE: this is not a flag that you want to set casually,
since it may cause visual confusion on the Screen. The
Window borders are the only dependable visual division
between various Windows and the background Screen. Taking
away that Border takes away that visual cue, so make sure
that your design doesn't need it at all before you
proceed.
ACTIVATE is the flag you set if you want this
Window to automatically become the active Window.
The active Window is the one that receives input from
the keyboard and mouse. It's usually a good idea to
to have the Window you open when your application
first starts up be an ACTIVATED one, but all others
opened later not be ACTIVATED (if the user is off
doing something with another Screen, for instance, your
new Window will change where the input is going, which
would have the effect of yanking the input rug from
under the user). Please use this flag thoughtfully and
carefully.
RMBTRAP, when set, causes the right mouse button events
to be trapped and broadcast as events. You can receive
these events through either the IDCMP or the Console.

IDCMP is the acronym for Intuition Direct Communications

port. It's Intuition's sole acronym, given in honor of

all hack-heads who love to mangle our brains with maniacal names,
and fashioned especially cryptic and unpronounceable to make them

squirm with sardonic delight. Here's to you, my chums. Meanwhile,

I still opt (and argue) for simplicity and elegance.

1f any of the IDCMP Flags is selected, Intuition will create
a pair of messageports and use them for direct communications with
the Task opening this Window (as compared with broadcasting
information via the Console Device). See the "Input and Output
Methods" chapter of the intuition manual for complete details.

You request an IDCMP by setting any of these flags. Except
for the special VERIFY flags, every other flag you set
tells me that if a given event occurs which your
program wants to know about, I'm to broadcast the details

of that event through the IDCMP rather than via the Console device.

device. This allows a program to interface with Intuition
directly, rather than going through the Console device.

Remember, if you are going to open both an IDCMP and
a Console, it will be far better to get most of the event
messages via the Console. Reserve your usage of the IDCMP
for special performance cases; that is, when you aren't going
to open a Console for your Window and you do want to learn
about a certain set of events (for instance, CLOSEWINDOW); another
example would be SIZEVERIFY, which is a function that you get
ONLY through the use of the IDCMP (because the Console doesn't
give you any way to talk to Intuition directly).

on the other hand, if the IDCMPFlags argument is equal to
zero, no IDCMP is created and the only way you can learn about any
wWindow event for this Window is via a Console opened for
this Window. &And you have no way to SIZEVERIFY.

If you want to change the state of the IDCMP some time after
you've opened the Window (including opening or closing the IDCMP)
you call the routine ModifyIDCMP().

The flags you can set are:

— REQVERIFY is the flag which, like SIZEVERIFY and(see
MENUVERIFY (see immediately below), specifies that you
want to make sure that your graphical state is quiescent
before something extraordinary happens. 1In this
case, the extraordinary event is that a rectangle of
graphical data is about to be blasted into your Window.
If you're drawing into that Window, you probably will
wish to make sure that you've ceased drawing before
the user is allowed to bring up the DMRequest you've set
up, and the same for when system has a request for the
user. Set this flag to ask for that verification step.

- REQCLEAR is the flag you set to hear about it when the
last Requester is cleared from your Window and

it's safe for you to start output again (presuming you're

using REQVERIFY)

— REQSET is a flag that you set to receive a broadcast
when the first Requester is opened in. your Window.
Compare this with REQCLEAR above. This function is

distinct from REQVERIFY. This functions merely tells you

that a Requester has opened, whereas REQVERIFY requires
you to respond before the Requester is opened.

- MENUVERIFY is the flag you set to have Intuition stop
and wait for you to finish all graphical output to your
Window before rendering the menus. Menus are currently
rendered in the most memory—efficient way, which
involves interrupting output to all Windows in the
Screen before the Menus are drawn. If you need to
finish your graphical output before this happens,
you can set this flag to make sure that you do.

— SIZEVERIFY means that you will be doing output to your
Window which depends on a knowledge of the current size
of the Window. If the user wants to resize the
Window, vyou may want to make sure that any queued
output completes before the sizing takes place
(critical Text, for instance). 1If this is the case,
set this flag. Then, when the user wants to size,
Intuition will send you the SIZEVERIFY message and
Wait() until you reply that it's OK to proceed with
the sizing. NOTE: when I say that Intuition will

i

OGT - ¥

il

Wait() until you reply, what I'm really saying is

that User will WAIT until you reply, which suffers the
great negative potential of User-Unfriendliness. So
remember: use this flag sparingly, and, as always
with any IDCMP Message you receive, Reply to it
promptly! Then, after User has sized the Window, you
can find out about it using NEWSIZE:

With all of the "VERIFY" functions, it is not safe
to leve them enabled at any time when you task may
not be able to respond for a long period.

It is NEVER safe to call AmigaDOS, directly or
indirectly, when a "VERIFY" function is active.

If AmigaDOS needs to put up a disk requester for you,
your task might end up waiting for the requester

to be satisfied, at the same time as Intuition is
waiting for your response. The result is a complete
machine lockup. USE ModifyIDCMP TO TURN OFF ANY VERIFY
MESSAGES BEFORE CALLING AmigaDOS!!i!

NEWSIZE is the flag that tells Intuition to send an IDCMP
Message to you after the user has resized your Window.

At this point, you could examine the size variables

in your Window structure to discover the new size

of the Window

REFRESHWINDOW when set will cause a Message to be sent
whenever your Window needs refreshing. This flag makes
sense only with SIMPLE REFRESH and SMART REFRESH Windows.
MOUSEBUTTONS will get reports about Mouse-button

Up/Down events broadcast to you (Note: only the

ones that don't mean something to Intuition. If

the user clicks the Select button over a Gadget,
Intuition deals with it and you don't find out

about it through here).

MOUSEMOVE will work only if you've set the flag
REPORTMOUSE above, or if one of your Gadgets has the

flag FOLLOWMOUSE set. Then all mouse movements will be
reported here.

GADGETDOWN means that when the User "selects' a Gadget
you've created with the GADGIMMEDIATE flag set, the fact
will be broadcast through the IDCMP.

GADGETUP means that when the User "releases'" a Gadget that
you've created with the RELVERIFY flag set, the fact

will be broadcast through the IDCMP.

MENUPICK selects that MenuNumber data will come this way
CLOSEWINDOW means broadcast the CLOSEWINDOW event through
the IDCMP rather than the Console

RAWKEY selects that all RAWKEY events are transmitted via
the IDCMP. Note that these are absolutely RAW keycodes,
which you will have to massage before using. Setting this
and the MOUSE flags effectively eliminates the need to
open a Console Device to get input from the keyboard and
mouse. Of course, in exchange you lose all of the Console
features, most notably the "cooking" of input data and
the systematic output of text to your Window.

VANILLAKEY is for developers who don't want the hassle

of RAWKEYS. This flag will return all the keycodes

after translation via the current country—dependant keymap.
when you set this flag, you will get IntuiMessages where the
Code field has a decoded ASCII character representing the key
struck on the keyboard. Only codes that map to one character
are returned, you can't read such keys as HELP or the Function
keys with VANILLAKEY.

INTUITICKS gives you simple timer events from Intuition when
your window is the active one; it may help you avoid opening
and managing the timer device. With this flag set, you will
get only one queued—up INTUITICKS message at a time. If

Intuition notices that you've been sent an INTUITICKS message
and haven't replied to it, another message will not be sent.
Intuition receives timer events ten times a second
(approximately).

— DELTAMOVE gives raw (unscaled) input event delta X/Y values.
This is so you can detect mouse motion regardless of
screen/window/display boundaries. Note that MOUSEBUTTONS
messages will also be affected.

— NEWPREFS indicates you wish to be notified when the system—
wide preferences changes.

— Set ACTIVEWINDOW and INACTIVEWINDOW to get messages when those
events happen to your window. Take care not to confuse this
Y"ACTIVEWINDOW" with the remarkably familiar sounding, but
totally different "WINDOWACTIVE" flag.

Gadgets = the pointer to the first of a linked list of the your own
Gadgets which you want attached to this Window. Can be NULL
if you have no Gadgets of your own

CheckMark = a pointer to an instance of the struct Image where can
be found the imagery you want used when any of your
MenuItems is to be checkmarked. If you don't want to
supply your own imagery and you want to just use
Intuition's own checkmark, set this argument to NULL

Text = a null-terminated line of text to appear on the title bar of
your window (may be null if you want no text)

Type = the Screen type for this window. If this equal CUSTOMSCREEN,
you must have already opened a CUSTOMSCREEN (see text above).
Types available include:

— WBENCHSCREEN
— CUSTOMSCREEN

Screen = if your type is one of Intuition's Standard Screens, then
this argument is ignored. However, if Type == CUSTOMSCREEN,
this must point to the structure of your own Screen

BitMap = if you have specified SUPER_BITMAP as the type of refreshing you

want for this Window, then this value points to a instance of
the struct BitMap. However, if the refresh type is NOT
SUPER_BITMAP, this pointer is ignored

MinWidth, MinHeight, MaxWidth, MaxHeight = the size limits for this
that the minimums cannot be greater than the current size,
nor can the maximums be smaller than the current size.

The maximums may be LARGER than the current size, or even larger
than the current screen. The maximums should be set to

the highest value your application can handle. This allows
users with larger display devices to take full advantage

of your software. If there is no good reason to limit the size,
then don't. -1 or "0 indicates the maximum available.

Any one of these can be initialized to zero, which means that
limit will be set to the current dimension of that axis.

The limits can be changed after the Window is opened by calling
the WindowLimits() routine.

RESULT
If all is well, returns the pointer to your new Window
If anything goes wrong, returns NULL

BUGS

SEE ALSO
OpenScreen()
ModifyIDCMP ()
WindowTitles()

6T - ¥

intuition.library/OpenWorkBench intuition.library/OpenwWorkBench

NAME

OpenWorkBench —— Opens the WorkBench Screen
SYNOPSIS

WBScreen = OpenWorkBench()

DO

struct Screen *WBScreen;

FUNCTION
This routine attempts to reopen the WorkBench. The actions taken are:
- general good stuff and nice things, and then return a non-null
pointer to the Workbench Screen.
— find that something has gone wrong, and return NULL

The return value, if not NULL, is indeed the address of the Workbench
Screen, although you should not use it as such. This is because the
Workbench may be closed by other programs, which can invalidate

the address at any time. We suggest that you regard the return

value as a BOOL indication that the routine has succeeded, if

you pay any attention to it at all.

INPUTS
None

RESULT
non-FALSE if WorkBench Screen opened successfully, or was already opened
FALSE if anything went wrong and the WorkBench Screen isn't out there
BUGS

SEE ALSO

intuition.library/PrintIText intuition.library/PrintIText
NAME
PrintIText —- prints the text according to the IntuiText argument
SYNOPSIS
PrintIText(RastPort, IText, LeftOffset, TopOffset)
A0 Al DO D1

struct RastPort *RastPort;
struct IntuiText *IText;
SHORT LeftOffset, TopOffset;

FUNCTION
Prints the IntuiText into the specified RastPort. Sets up the RastPort
as specified by the IntuiText values, then prints the text into the
RastPort at the IntuiText x/y coordinates offset by the left/top
arguments. Note, though, that the IntuitText structure itself
may contain further text position coordinates: those coordinates
and the Left/TopOffsets are added to obtain the true position of
the text to be rendered.

This routine does window layer clipping as appropriate —— if you
print text outside of your Window, your characters will be
clipped at the Window's edge.

If the NextText field of the IntuiText argument is non-NULL,
the next IntuiText is rendered as well, and so on until some
NextText field is NULL.

IntuiText with the ITextAttr field NULL are displayed in the
font of the RastPort. If the RastPort font is also NULL, the
system default font, as set via the Preferences tool, will be used.

INPUTS
RastPort = the RastPort destination of the text
IText = pointer to an instance of the structure IntuiText
Leftoffset = left offset of the IntuiText into the RastPort
Topoffset = top offset of the IntuiText into the RastPort

RESULT
None

BUGS

SEE ALSO

¢ST - ¥

Ll

intuition.library/RefreshGadgets intuition.library/RefreshGadgets

NAME
RefreshGadgets -— Refresh (redraw) the Gadget display
SYNOPSIS
RefreshGadgets(Gadgets, Window, Requester)
A0 AL a2
FUNCTION

Refreshes (redraws) all of the Gadgets in the Gadget List starting
from the specified Gadget.

The Window parameter must point to the window which contains the Gadget,
or which contains the Requester that contains the Gadget

The Requester parameter must only be valid if the Gadget has the
REQGADGET flag set, a requirement for all Requester Gadgets.

The Pointer argument points a Window structure.

The two main reasons why you might want to use this routine are:
first, that you've modified the imagery of the Gadgets in your
display and you want the new imagery to be displayed; secondly,
if you think that some graphic operation you just performed
trashed the Gadgetry of your display, this routine will refresh
the imagery for you.

Note that to modify the imagery of a gadget, you must first remove
that gadget from the Window's Gadget 1list, using RemoveGadget() (or
RemoveGList()). After changing the Image, Border, Text (including
Text for a String Gadget), the gadget is replaced in the Gadget List
(using AddGadget() or AddGList()). Adding gadgets does not cause
them to be displayed (refreshed), so this function, or RefreshGList()
is typically called.

A common technique is to set or reset the SELECTED flag of a
Boolean Gadget and then call RefreshGadgets() to see them displayed
highlighted if and only if SELECTED is set. If you wish to do this
and be completely proper, you must RemoveGadget(), change SELECTED
flag, AddGadget(), and RefreshGadgets(), or the equivalent.

The Gadgets argument can be a copy of the FirstGadget variable in
either the Screen or Window structure that you want refreshed:

the effect of this will be that all Gadgets will be redrawn.
However, you can selectively refresh just some of the Gadgets

by starting the refresh part-way into the list: for instance,
redrawing your Window non-GIMMEZEROZERO Gadgets only, which you've
conveniently grouped at the end of your Gadget list.

Even more control is available using the RefreshGList routine which
enables you to refresh a single gadget, or number of your choice.

NOTE: It's never safe to tinker with the Gadget list yourself. Don't
supply some Gadget list that Intuition hasn't already processed in
the usual way.

INPUTS
Gadgets = pointer to the first in the list of Gadgets wanting refreshment
Window = pointer to the Window containing the Gadget or its Requester
Requester = pointer to a Requester (ignored if Gadget is not attached to

a Requester).

RESULT
None

BUGS

SEE ALSO
RefreshGList (), RemoveGadget(), RemoveGList(), AddGadget(), AddGList()

intuition.library/RefreshGList intuition.library/RefreshGList

NAME
RefreshGlList. —— Refresh (redraw) a chosen number of gadgets.
SYNOPSIS
RefreshGList (Gadgets, Window, Requester, NumGad)
A0 al A2 DO

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Requester;
SHORT NumGad;

FUNCTION
Refreshes (redraws) Gadgets in the Gadget List starting
from the specified Gadget. At most NumGad gadgets are redrawn.
If NumGad is -1, all gadgets until a terminating NULL value
in the NextGadget field is found will be refreshed, making this
routine a superset of RefreshGadgets().

The Requester variable can point to a Requester structure. If
the first Gadget in the list has the REQGADGET flag set, the
Gadget list refers to Gadgets in a Requester and the Pointer
must necessarily point to a Window. If these are not the Gadgets
of a Requester, the Requester argument may be NULL.

Be sure to see the RefreshGadgets() function description, as this
function i1s simple an extension of that.

INPUTS
Gadgets = pointer to the first in the list of Gadgets wanting refreshment
Window = pointer to the Window containing the Gadget or its Requester
Requester = pointer to a Requester (ignored if Gadget is not attached to
a Requester).
NumGad = maximum number of gadgets to be refreshed. A value of -1
will cause all gadgets to be refreshed from Gadget to the
end of the list. A value of -2 will also do this, but if Gadget
is a Requester Gadget (REQGADGET) ALL gadgets in the requester
will be refreshed (this is a mode compatible with vl.1
RefreshGadgets().

RESULT
None

BUGS

SEE ALSO
RefreshGadgets()

£€6T ~ ¥

intuition.library/RefreshwindowFrame

NAME

RefreshWindowFrame — Ask Intuition to redraw your window border/gadgets
SYNOPSIS

RefreshWindowFrame (Window)

A0
struct Window *Window;
FUNCTION
Refreshes the border of a window, including title region and all
of the window's gadgets.

You may use this call if you wish to update the display of your borders.
The expected use of this is to correct unavoidable corruption.

INPUTS
Window = a pointer to a Window structure

RESULT
None

BUGS

SEE ALSO

intuition.library/RemakeDisplay intuition.library/RemakeDisplay
NAME o .
RemakeDisplay —— Remake the entire Intuition display
SYNOPSIS

RemakeDisplay{)

FUNCTION
This is the big one.

This procedure remakes the entire Intuition display. It does
the equivalent of MakeScreen() for every Screen in the system,
and then it calls RethinkDisplay()-.

WARNING: This routine can take several milliseconds to run, so

do not use it lightly. RethinkDisplay() (called by this routine)
does a Forbid() on entry and a Permit() on exit, which can seriously
degrade the performance of the multi-tasking Eexecutive.

INPUTS
None

RESULT
None

BUGS

SEE ALSO
MakeScreen(), RethinkDisplay(), graphics.library/MakeVPort

i

¥ST - ¥

il

intuition.library/RemoveGadget

intuition.library/RemoveGadget

NAME

RemoveGadget —- removes a Gadget from a Window
SYNOPSIS

Position = RemoveGadget(Window, Gadget)

DO A0 Al

USHORT Position;
struct Window *Window;
struct Gadget *Gadget;

FUNCTION
Removes the given Gadget from the Gadget list of the specified
Window. Returns the ordinal position of the removed Gadget.

If the Gadget is in a Requester attached the the window, this
routine will look for it and remove it if it is found.

If the Gadget pointer points to a Gadget that isn't in the
appropriate list, ~1 is returned. If there aren't any Gadgets in the
list, -1 is returned. If you remove the 65535th Gadget from the list
-1 is returned.

INPUTS
Window = pointer to the Window containing the Gadget or the Requester
containing the Gadget to be removed.
Gadget = pointer to the Gadget to be removed. The Gadget itself describes
whether this is a Gadget that should be removed from the Window
or some Requester.

RESULT
Returns the ordinal position of the removed Gadget.. If the Gadget
wasn't found in the appropriate list, or if there are no Gadgets in
the list, returns -1.

BUGS

SEE ‘ALSO
AddGadget (), RemoveGList()

intuition.library/RenoveGList intuition.library/RemoveGList

NAME

RemoveGList —-— removes a sublist of Gadgets from a Window.
SYNOPSIS

Position = RemoveGList(Window, Gadget, Numgad)

DO A0 Al DO

struct Window *Window;
struct Gadget *Gadget;
SHORT Numgad;

FUNCTION
Removes 'Numgad' Gadgets from the Gadget list of the specified
Window. Will remove Gadgets from a Requester if the first
Gadget's GadgetType flag REQGADGET is set.

Otherwise identical to RemoveGadget()

NOTE
" The last gadget in the list does NOT have it's link zeroed.

INPUTS
wWindow = pointer to the Window containing the Gadget or the Requester
containing the Gadget to be removed.
Gadget = pointer to the Gadget to be removed. The Gadget itself
describes whether this is a Gadget that should be removed
from the Window or some Requester.
Numgad = number of gadgets to be removed. 1If -1, remove all gadgets
to end of Window Gadget List
RESULT
Returns the ordinal position of the removed Gadget. If the Gadget
wasn't found in the appropriate list, or if there are no Gadgets in
the list, returns -1.

BUGS

SEE ALSO
RemoveGadget (), AddGadget()

66T - ¥

intuition.library/ReportMouse intuition.library/ReportMouse

NAME
ReportMouse -— tells Intuition whether to report mouse movement.
SYNOPSIS
ReportMouse(Boolean, Window)
DO a0 <{-note

BOOL Boolean;
struct Window *Window;

SPECIAL NOTE
Some compilers and link files switch the arguments to this function about
in unpredictable ways. The call will take one of two forms:

ReportMouse(Window, (ULONG)Boolean);
—or—
ReportMouse(Boolean, Window);

The Manx Aztec compiler prefers the second form. From assembler the
interface is always the same: Boolean in DO, Window in AQ

Also, it is still endorsed to simply set the REPORTMOUSE flag bit
in Window—>Flags, or reset it, on your own. Make the operation
an atomic assembly instruction (e.g.: OR.W #REPORTMOUSE , wd_Flags+2(A0)
where A0 contains your window pointer). Most compilers will produce
an atomic -operation when faced with:

Window—>Flags |= REPORTMOUSE;

Window->Flags &="REPORTMOUSE;
or else bracket the operation between Forbid/Permit().

FUNCTION
Tells Intuition whether or not to broadcast mouse-movement events to
your Window when it's the active one. The Boolean value specifies
whether to start or stop broadcasting position information of
mouse-movement. If the Window is the active one, mouse-movement reports
start coming immediately afterwards. This same routine will change
the current state of the FOLLOWMOUSE function of a
currently-selected Gadget too.

Note that calling ReportMouse() when a Gadget is selected will only
temporarily change whether or not mouse movements are reported while
that Gadget remains selected; the next time the Gadget is selected, its
FOLLOWMOUSE flag is examined anew.

Note also that calling ReportMouse() when no Gadget is currently
selected will change the state of the Window's REPORTMOUSE flag, but
will have no effect on any Gadget that may be subsequently selected.

The ReportMouse() function is first performed when OpenWindow()

is first called; if the flag REPORTMOUSE is included among

the options, then all mouse-movement events are reported

to the opening task and will continue to be reported

until ReportMouse() is called with a Boolean value of FALSE.

If REPORTMOUSE is not set, then no mouse-movement reports will

be broadcast until ReportMouse() is called with a Boolean of TRUE.

Note that the REPORTMOUSE flag, as managed by this routine, determines
IF mouse messages are to be broadcast. Determining HOW they are to
be broadcast is determined by the MOUSEMOVE IDCMPFlag.

INPUTS
Window = pointer to a Window structure associated with this request
Boolean = TRUE or FALSE value specifying whether to turn this
function on or off

RESULT
None

BUGS
See above

SEE ALSO
The Input and Output section of the Intuition Reference Manual

96T — ¥

il

intuition.library/Request intuition. library/Request

NAME
Request — Activates a Requester.
SYNOPSIS
Success = Request(Requester, Window);
DO a0 Al

BOOL Success;
struct Requester *Requester;
struct Window *Window;

FUNCTION
Links in and displays a Requester into the specified Window.

This routine ignores the Window's REQVERIFY flag.

INPUTS
Requester = pointer to the Requester to be displayed
Window = pointer to the Window into which this Requester goes

RESULT
1f the Requester is successfully opened, TRUE is returned.
if the Requester could not be opened, FALSE is returned.

Otherwise,

BUGS
POINTREL requesters not currently supported, by THIS call, but
are now supported for Double-Menu Requesters.

SEE ALSO
The Requesters section of the Intuition Reference Manual

intuition.library/RethinkDisplay intuition.library/RethinkDisplay
NAME

RethinkDisplay —-— the grand manipulator of the entire Intuition display
SYNOPSIS

RethinkDisplay()

FUNCTION
This function performs the Intuition global display reconstruction. This
includes rethinking about all of the ViewPorts and their relationship to
another and reconstructing the entire display based on the results of this
rethinking.

Specifically, and omitting some internal details, the operation consists
of this:

Determine which ViewPorts are invisible and set their VP_HIDE
ViewPort Mode flag.

If a change to a viewport height or changing interlace needs
require, MakevVPort() is called for specific ViewPorts. After
this phase, the Copper lists for each Screen's ViewPort are
correctly set up.

MrgCop() and LoadView() are then called to get these copper lists
in action, thus establishing the new state of the Intuition
display.

You may perform a MakeScreen() on your Custom Screen before calling this
routine. The results will be incorporated in the new display, but
changing the INTERLACE ViewPort mode for one screens must be reflected
in the Intuition View, which is best left to Intuition.

WARNING: This routine can take several milliseconds to rum, so

do not use it lightly. RethinkDisplay() does a Forbid() on entry
and a Permit() on exit, which can seriously degrade the performance
of the multi-tasking Eexecutive.

INPUTS
None

RESULT
None

BUGS
SEE ALSO

RemakeDisplay(), graphics.library/MakevPort(), graphics.library/MrgCop(),
graphics.library/LoadView(), MakeScreen({)

LGT - ¥

intuition.library/ScreenToBack intuition.library/ScreenToBack

NAME
ScreenToBack —— send the specified Screen to the back of the display.

SYNOPSIS
ScreenToBack(Screen)
A0
struct Screen *Screen;

FUNCTION
Sends the specified Screen to the back of the display.

INPUTS
Screen = pointer to a Screen structure

RESULT
None

BUGS

SEE ALSO

intuition.library/ScreenToFront

intuition.library/ScreenToFront

NAME
ScreenToFront —— brings the specified Screen to the front of the display

SYNOPSIS
ScreenToFront (Screen)
AO
FUNCTION
Brings the specified Screen to the front of the display.

INPUTS
Screen = a pointer to a Screen structure

RESULT
None

BUGS

SEE ALSO

86T - ¥

intuition.library/SetDMRequest intuition.library/SetDMRequest

NAME -

SetDMRequest —— sets the DMRequest of the Window.
SYNOPSIS

SetDMRequest (Window, DMRequester)

A0 Al

struct Window *Window;
struct Requester *DMRequester;

FUNCTION
Attempts to set the DMRequester into the specified window.
The DMRequester is the special Requester that you attach to
the double-click of the menu button which the user can then
bring up on demand. This routine WILL NOT set the DMRequester
if it's already set and is currently active (in use by the user).
After having called SetDMRequest(), if you want to change the
DMRequester, the correct way to start is by calling ClearDMRequest()
until it returns a value of TRUE; then you can call SetDMRequest()
with the new DMRequester.

If the POINTREL flag is set, the DMR will open as close to the
pointer as possible. The Relleft/Top fields are for fine—tuning
the position.

INPUTS
Window = pointer to the window from which the DMRequest is to be set
DMRequester = a pointer to a Requester

RESULT
If the current DMRequest was not in use, sets the DMRequest
pointer into the Window and returns TRUE.
If the DMRequest was currently in use, doesn't change the pointer
and returns FALSE

BUGS

SEE ALSO
ClearDMRequest(), Request()

intuition.library/SetMenuStrip intuition.library/SetMenuStrip

NAME

SetMenuStrip -- Attaches the Menu strip to the Window.
SYNOPSIS

Success = SetMenuStrip(Window, Menu)

DO A0 Al

BOOL success;

struct Window *Window;
struct Menu *Menu;

FUNCTION
Attaches the Menu strip to the Window. ' After calling this routine,
if the user presses the menu button, this specified menu strip
will be displayed and accessible by the user.

Menus with zero Menultems are not allowed.

NOTE: You should always design your Menu strip changes to be a
two-way operation, where for every Menu strip you add to your
window you should always plan to clear that strip sometime. Even
in the simplest case, where you will have just one Menu strip for
the lifetime of your Window, you should always clear the Menu strip
before closing the Window. If you already have a Menu strip attached
to this Window, the correct procedure for changing to a new Menu
strip involves calling ClearMenuStrip() to clear the old first.
The sequence of events should be:

— OpenWindow()

— zero or more iterations of:

- SetMenuStrip()

~ ClearMenuStrip(}

— CloseWindow()

INPUTS
Window = pointer to a Window structure
Menu = pointer to the first Menu in the Menu strip

RESULT
TRUE if there were no problems. TRUE always, since this routine
will Wait until it is OK to proceed.

BUGS

SEE ALSO
ClearMenuStrip()

65T — ¥

intuition.library/SetPointer

intuition.library/SetPointer

NAME
SetPointer — sets a Window with its own Pointer
SYNOPSIS
SetPointer(Window, Pointer, Height, Width, XOffset, YOffset)

AQ Al DO Dl D2 D3

struct Window *Window;
USHORT *Pointer;

SHORT Height, Width;
SHORT XOffset, YOffset;

FUNCTION
Sets up the Window with the sprite definition for the Pointer.
Then whenever the Window is the active one, the Pointer
image will change to its version of the Pointer. If the
Window is the active one when this routine is called, the
change takes place immediately.

The XOffset and YOffset are used to offset the top-left corner
of the hardware sprite imagery from what Intuition regards as
the current position of the Pointer. BAnother way of describing
it is as the offset from the "hot spot" of the Pointer to the
top—left corner of the sprite. For instance, if you specify
offsets of zero, zero, then the top-left corner of your sprite
image will be placed at the Pointer position. On the other hand,
if you specify an XOffset of -7 (remember, sprites are 16 pixels
wide) then your sprite will be centered over the Pointer position.
If you specify an XOffset of —-15, the right-edge of the sprite
will be over the Pointer position.

INPUTS
Window = pointer to the Window to receive this Pointer definition
Pointer = pointer to the data definition of a Sprite
Height = the height of the Pointer

Width = the Width of the sprite (must be less than or equal to sixteen)
Xoffset = the offset for your sprite from the Pointer position
Yoffset = the offset for your sprite from the Pointer position
RESULT
None
BUGS
SEE ALSO

ClearPointer()

intuition.library/SetPrefs

intuition.library/SetPrefs

NAME
SetPrefs — Set Intuition Preferences.
SYNOPSIS .
prefs = SetPrefs(PrefBuffer, Size, Inform)
DO a0 DO D1

struct Preferences *Prefs;
struct Preferences *PrefBuffer;
int Size;

BOOL Inform;

FUNCTION
Sets new Preferences values. Copies the first 'Size' bytes
from your Preferences buffer to the system Preferences table,
and puts them into effect.

The 'Inform' parameter, if TRUE, indicates that a NEWPREFS
nessage is to be sent to all Windows that have the NEWPREFS
IDCMPFlag set.

It is legal to set a partial copy of the Preferences structure.
The most frequently changed values are grouped at the beginning
of the Preferences structure.

INPUTS
prefBuffer = pointer to the memory buffer which contains your
desired settings for Intuition Preferences
Size = the number of bytes in your PrefBuffer, the number of bytes
you want copied to the system's internal Preference settings
Inform = whether you want the information of a new Preferences
setting propogated to all windows.

RESULT
Returns your parameter PrefBuffer.

BUGS

SEE ALSO
GetDefPrefs(), GetPrefs()

09T ~ ¥

intuition.library/SetWindowTitles intuition.library/SetWindowTitles
NAME
SetWindowTitles —— Sets the Window's titles for both Window and Screen
SYNOPSIS
SetWindowTitles(Window, WindowTitle, ScreenTitle)
A0 Al A2

struct Window *Window;
UBYTE *WindowTitle, *ScreenTitle;

FUNCTION
Allows you to set the text which appears in the Window and/or Screen
title bars.

The Window Title appears at all times along the Window Title Bar.
The Window's Screen Title appears at the Screen Title Bar whenever
this Window is the active one.

when this routine is called, your Window Title will be changed
immediately. If your Window is the active one when this routine is
called, the Screen Title will be changed immediately.

You can specify a value of -1 (i.e. (struct Window *) "0) for either of
the title pointers. This designates that you want to Intuition to leave
the current setting of that particular title alone, and modify

only the other one. Of course, you could set both to -1.

quthermore, you can set a value of 0 (zero) for either of the
title pointers. Doing-so specifies that you want no title to
appear (the title bar will be blank).

Both of the titles are rendered in the default font of the Window's
Screen, as set using OpenScreen().

In setting the Window's title, Intuition may do some other rendering

in the top border of your window. If your own rendering sometimes appears
in your window border areas, you may want to restore the entire

window border frame. The function SetWindowTitles() does not do this

in the newer versions. The function RefreshWindowFrame() is provided

to do this kind of thing for you.

INPUTS
Window = pointer to your Window structure
WindowTitle = pointer to a null-terminated text string, or set to
either the value of -1 (negative one) or 0 (zero)
ScreenTitle = pointer to a null-terminated text string, or set to
either the value of -1 (negative one) or 0 (zero)

RESULT
None

BUGS

SEE ALSO
OpenWindow(), RefreshWindowFrame(), OpenScreen()

intuition.library/ShowTitle intuition.library/ShowTitle

NAME

ShowTitle —- Set the Screen title bar display mode
SYNOPSIS

ShowTitle(Screen, Showlt)

AO DO

struct Screen *Screen;
BOOL Showlt;

FUNCTION
This routine sets the SHOWTITLE flag of the specified Screen, and
then coordinates the redisplay of the Screen and its Windows.

The Screen title bar can appear either in front of or behind BACKDROP
Windows. This is contrasted with the fact that non—BACKDROP Windows
always appear in front of the Screen Title Bar. You specify whether
you want the Screen Title Bar to be in front of or behind the
Screen's BACKDROP Windows by calling this routine.

The ShowIt argument should be set to either TRUE or FALSE. If TRUE,
the Screen's Title Bar will be shown in front of BACKDROP Windows.
1f FALSE, the Title Bar will be rendered behind all Windows.

when a Screen is first opened, the default setting of the SHOWTITLE
flag is TRUE.

INPUTS
Screen = pointer to a Screen structure
showIt = Boolean TRUE or FALSE describing whether to show or hide the
Screen Title Bar

RESULT
None

BUGS

SEE ALSO

19T - ¥

intuitidn.library/sizewindow intuition.library/SizeWindow

NAME

SizeWindow -— Ask Intuition to size a Window.
SYNOPSIS

sizeWindow(Window, DeltaX, DeltaY)

AQ DO Dl

struct Window *Window;
SHORT DeltaX, DeltaY;

FUNCTION
This routine sends a request to Intuition asking to size the Window
the specified amounts. The delta arguments describe how much to
size the Window along the respective axes.

Note that the Window will not be sized immediately, but rather

will be sized the next time Intuition receives an input event,

which happens currently at a minimum rate of ten times per second,

and a maximum of sixty times a second. You can discover when

you Window has finally been sized by setting the NEWSIZE flag

of the IDCMP of your Window. See the "Input and Output Methods"
chapter of The Intuition Reference Manual for description of the IDCMP.

This routine does no error—checking. If your delta values specify
some far corner of the Universe, Intuition will attempt to size
your Window to the far corners of the Universe. Because of the
distortions in the space—time continuum that can result from this,
as predicted by special relativity, the result is generally not

a pretty sight.

INPUTS
wWindow
DeltaX
Delta¥Y

pointer to the structure of the Window to be sized
signed value describing how much to size the Window on the x—axis
signed value describing how much to size the Window on the y-axis

(I

RESULT
None

BUGS

SEE ALSO
MoveWindow(), WindowToFront(), WindowToBack()

intuition.library/UnlockIBase

intuition.library/UnlockIBase

NAME
UnlockIBase — surrender an Intuition lock gotten by LockIBase()
SYNOPSIS
UnlockIBase (Lock)
a0
ULONG Lock;
FUNCTION

surrenders lock gotten by LockIBase().

Calling this function when you do not own the specified lock will
immediately crash the system.

INPUTS
The value returned by LockIBase() should be passed to this function,
to specify which internal lock is to be freed.
Note that the parameter is passed in A0, not DO, for historical reasons.

RESULT
None

BUGS

SEE ALSO
LockIBase()

o

¢9T - ¥

intuition.library/ViewaAddress intuition.library/vViewAddress

NAME
ViewAddress —— Returns the address of the Intuition View structure.

SYNOPSIS
ViewAddress()

FUNCTION
Returns the address of the Intuition View structure. If you
want to use any of the graphics, text, or animation primitives
in your Window and that primitive requires a pointer to a View,
this routine will return the address of the View for you.

INPUTS
None

RESULT
Returns the address of the Intuition View structure

BUGS

SEE ALSO
graphics.library

intuition. library/ViewPortAddress

intuition.library/ViewPortAddress

NAME
ViewPortAddress —— Returns the address of a Window's ViewPort structure.

SYNOPSIS
ViewPortAddress(Window)
a0

struct Window *Window;

FUNCTION
Returns the address of the ViewPort associated with the specified
Window. The ViewPort is actually the ViewPort of the Screen within which
the Window is displayed. If you want to use any of the graphics, text,
or animation primitives in your Window and that primitive requires a
pointer to a ViewPort, you can use this call.

INPU%?ndow = pointer to the Window for which you want the ViewPort address
RESULT
Returns the address of the Intuition View structure
BUGS
SEE ALSO

graphics.library

€97 - ¥

intuition. library/WBenchToBack intuition.library/WBenchToBack

NAME

WBenchToBack —— Sends the WorkBench Screen in back of all Screens.
SYNOPSIS

Success = WBenchToBack()

DO

BOOL Success;

FUNCTION
Causes the WorkBench Screen, if it's currently opened, to go to
the background. This does not ‘move' the Screen up or down, instead
only affects the depth-arrangement of the Screen.

If the WorkBench Screen was opened, this function returns TRUE, otherwise
it returns FALSE.

INPUTS
None

RESULT
Tf the WorkBench Screen was opened, this function returns TRUE, otherwise
it returns FALSE.

BUGS

SEE ALSO
WBenchToFront{), ScreenToFront()

intuition.library/WBenchToFront

intuition.library/WBenchToFront

NAME

WBenchToFront -— Brings the WorkBench Screen in front of all Screens.
SYNOPSIS

Success = WBenchToFront()

DO

BOOL Success;

FUNCTION
Causes the WorkBench Screen, if it's currently opened, to come to
the foreground. This does not 'move' the Screen up or down, instead
only affects the depth-arrangement of the Screen.

If the WorkBench Screen was opened, this function returns TRUE, otherwise
it returns FALSE.

INPUTS
None

RESULT
If the WorkBench Screen was opened, this function returns TRUE, otherwise
it returns FALSE.

BUGS

SEE ALSO
WBenchToBack (), ScreenToBack()

Y9T - ¥

|

intuition.library/WindowLimits

intuition.library/WindowLimits

NAME
WindowLimits -- Set the minimum and maximum limits of the Window.
SYNOPSIS
Success = WindowLimits(Window, MinWidth, MinHeight, MaxWidth, MaxHeight)
DO AD DO Dl D2 D3

BOOL Success;

struct Window *Window;
SHORT MinWidth, MinHeight;
USHORT MaxWidth, MaxHeight;

FUNCTION
Sets the minimum and maximum limits of the Window's size. Until this
routine is called, the Window's size limits are equal to the Window's
initial size, which means that the user won't be able to size it at all.
After the call to this routine, the Window will be able to be sized
to any dimensions within the specified limits.

If you don't want to change any one of the dimensions, set the limit
argument for that dimension to zero. If any of the limit arguments
is equal to zero, that argument is ignored and the initial setting
of that parameter remains undisturbed.

If any of the arguments is out of range (minimums greater than the
current size, maximums less than the current size), that limit
will be ignored, though the others will still take effect if they
are in range. If any are out of range, the return value from this
procedure will be FALSE. If all arguments are valid, the return
value will be TRUE.

If you want your window to be able to become "as large as possible"
you may put -1 (i.e. "0) in either or both Max arguments. But

please note: screen sizes may vary for several reasons, and you

must be able to handle any possible size of window you might end

up with if you use this method. Note that you can use the function
GetScreenData() to find out how big the screen your window appears in
is. That function is particularly useful if your window is in

the Workbench Screen.

If the user is currently sizing this Window, the new limits will
not take effect until after the sizing is completed.

INPUTS
Window = pointer to a Window structure
MinWidth, MinHeight, MaxWidth, MaxHeight = the new limits for the size
of this wWindow. If any of these is set to zero, it will
be ignored and that setting will be unchanged.

RESULT
Returns TRUE if everything was in order. If any of the parameters was
out of range (minimums greater than current size, maximums less than
current size), FALSE is returned and the errant limit request is
not fulfilled (though the valid ones will be).

BUGS

SEE ALSO
GetScreenData()

intuition.library/WindowToBack

intuition.library/WindowToBack

NAME
WindowToBack —— Ask Intuition to send this Window to the back
SYNOPSIS
windowToBack (Window)
A0
FUNCTION

This routine sends a request to Intuition asking to send the Window
in back of all other Windows in the Screen.

Note that the Window will not be depth—arranged immediately, but rather
will be arranged the next time Intuition receives an input event,

which happens currently at a minimum rate of ten times per second,

and a maximum of sixty times a second.

Remember that BACKDROP Windows cannot be depth-arranged.

INPUTS
Window = pointer to the structure of the Window to be sent to the back

RESULT
None

BUGS

SEE ALSO
MoveWindow(), SizeWindow(), WindowToFront()

69T - ¥

intuition.library/WindowToFront intuition.library/WindowToFront

NAME
WindowToFront —— Ask Intuition to bring this Window to the front.

SYNOPSIS
WindowToFront (Window)

FUNCTION
This routine sends a request to Intuition asking to bring the Window
in front of all other Windows in the Screen.

Note that the Window will not be depth—arranged immediately, but rather
will be arranged the next time Intuition receives an input event,

which happens currently at a minimum rate of ten times per second,

and a maximum of sixty times a second.

Remember that BACKDROP Windows cannot be depth-arranged.

INPUTS
window = pointer to the structure of the Window to be brought to front

RESULT
None

BUGS

SEE ALSO
MoveWindow(), SizeWindow(), WindowToBack()

h

99T - ¥

|

TABLE OF CONTENTS

layers. library/BeginUpdate
layers.library/BehindLayer
layers.library/CreateBehindLayer
layers.library/CreateUpfrontLayer
layers.library/Deletelayer
layers. library/DisposelayerInfo
layers.library/EndUpdate
layers.library/FattenlLayerinfo
layers. library/InitLayers

layers. library/InstallClipRegion
layers.library/LockLayer

layers. library/LockLayerInfo
layers.library/lLockLayers

layers. library/MoveLayer

layers. library/MoveLayerInFrontOf
layers. library/NewLayerInfo
layers.library/ScrollLayer
layers.library/sizelayer

layers. library/swapBitsRastPortClipRect
layers.library/ThinLayerInfo
layers.library/UnlockLayer
layers.library/UnlockLayerInfo
layers.library/UnlockLayers
layers.library/UpfrontLayer
layers. library/whichLayer

layers.library/BeginUpdate layers. library/BeginUpdate

NAME

BeginUpdate —— Prepare to repair damaged layer.
SYNOPSIS

result = BeginUpdate(1)

ao a0

BOOLEAN result;
struct Layer *1;

FUNCTION
Convert damage list to ClipRect list and swap in for
programmer to redraw through. This routine simulates
the ROM library environment. The idea is to only render in the
"damaged" areas, saving time over redrawing all of the layer.
The layer is locked against changes made by the layer library.

INPUTS
1 - pointer to a layer

RESULTS
result — TRUE if damage list converted to ClipRect list sucessfully.
FALSE if list conversion aborted. (probably out of memory)

BUGS
If BeginUpdate returns FALSE, programmer must abort the attempt to
refresh this layer and instead call EndUpdate(1, FALSE) to restore
original ClipRect and damage list.

SEE ALSO
EndUpdate, graphics/layers.h, graphics/clip.h

L9T - ¥

layers.library/BehindLayer layers.library/BehindLayer

NAME

BehindLayer —— Put layer behind other layers.
SYNOPSIS

result = BehindLayer(dummy, 1)

do a0 al

BOOLEAN result;
LONG dummy ;
struct Layer *1;

FUNCTION
Move this layer to the most behind position swapping bits
in and out of the display with other layers.
If other layers are REFRESH then collect their damage lists and
set the LAYERREFRESH bit in the Flags fields of those layers that
may be revealed. If this layer is a backdrop layer then
put this layer behind all other backdrop layers.
If this layer is NOT a backdrop layer then put in front of the
top backdrop layer and behind all other layers.

Note: this operation may generate refresh events in other layers
associated with this layer's Layer_Info structure.

INPUTS
dummy — unused
1 - pointer to a layer

RESULTS
result — TRUE if operation successful
FALSE if operation unsuccessful (probably out of memory)
BUGS
SEE ALSO

graphics/layers.h, graphics/clip.h

layers.library/CreateBehindlLayer layers. library/CreateBehindLayer

NAME

CreateBehindLayer —— Create a new layer behind all existing layers.
SYNOPSIS

result = CreateBehindLayer(1i,bm,x0,y0,x1,yl,flags [,bm2])

do a0 al d0 dl 42 d3 d4 [a2 |

struct Layer *result;
struct Layer_ Info *1i;
struct BitMap *bm;
LONG x0,y0,x1,vy1;

LONG flags;

struct BitMap *bm2;

FUNCTION
Create a new Layer of position and size (x0,y0)->(xl,yl)
Make this layer of type found in flags.
If SuperBitMap, use bm2 as pointer to real SuperBitMap,
and copy contents of Superbitmap into display layer.
If this layer is a backdrop layer then place it behind all
other layers including other backdrop layers. If this is
not a backdrop layer then place it behind all nonbackdrop
layers.

Note: when using SUPERBITMAP, you should also set LAYERSMART flag.

INPUTS

1i - pointer to LayerInfo structure

bm — pointer to common BitMap used by all Layers

x0,y0 — upper left hand corner of layer

x1,yl - lower right hand corner of layer

flags — various types of layers supported as bit sets.
(for bit definitions, see graphics/layers.h)

bm2 ~ pointer to opticnal Super BitMap

RESULTS
result — pointer to Layer structure if successful
NULL if not successful
BUGS

SEE ALSO
Deletelayer, graphics/layers.h, graphics/clip.h, graphics/gfx.h

n

89T — ¥

layers.library/CreateUpfrontLayer

NAME

CreateUpfrontLayer —— Create a new layer on top of existing layers.
SYNOPSIS

result = CreateUpfrontLayer({li,bm,x0,y0,x1,yl,flags [,bm2])

do a0 al 40 41 42 d3 dd [a2]

struct Layer *result;
struct Layer Info *1i;
struct BitMap *bm;
LONG x0,y0,x1,y1l;
LONG flags;

struct BitMap *bm2;

FUNCTION
Create a new Layer of position and size (x0,y0)->(x1,yl)
and place it on top of all other layers.
Make this layer of type found in flags
if SuperBitMap, use bm2 as pointer to real SuperBitMap.
and copy contents of Superbitmap into display layer.

Note: when using SUPERBITMAP, you should also set LAYERSMART flag.

INPUTS
1i - pointer to LayerInfo structure
bm — pointer to common BitMap used by all Layers
x0,y0 — upper left hand corner of layer
x1,yl - lower right hand corner of layer
flags — various types of layers supported as bit sets.
bm2 — pointer to optional Super BitMap

RESULTS
result — pointer to Layer structure if successful
NULL if not successful
BUGS

SEE ALSO
Deletelayer, graphics/layers.h, graphics/clip.h, graphics/gfx.h

layers.library/CreateUpfrontLayer layers.library/DeleteLayer

NAME

Deletelayer —— delete layer from layer list.
SYNOPSIS

result = DeleteLayer(dummy, 1)

dao ao, al

BOOLEAN result;
LONG dummy ;
struct Layer *1;

FUNCTION
Remove this layer from the list of layers. Release memory
associated with it. Restore other layers that may have been
obscured by it. Trigger refresh in those that may need it.
If this is a superbitmap layer make sure SuperBitMap is current.
The SuperBitMap is not removed from the system but is available
for program use even though the rest of the layer information has
been deallocated.

INPUTS
dummy — unused
1 - pointer to a layer

RESULTS
result — TRUE if this layer successfully deleted from the system
FALSE if layer not deleted. (probably out of memory)

BUGS

SEE ALSO
graphics/layers.h, graphics/clip.h

layers.library/DeleteLayer

69T — ¥

layers.library/DisposeLayerinfo

layers.library/DisposeLayerInfo

NAME
DisposeLayerInfo — Return all memory for LayerInfo to memory pool

SYNOPSIS
DisposelayerInfo(li)
a0
struct Layer Info *1i;
FUNCTION
return LayerInfo and any other memory attached to this LayerInfo
to memory allocator.
Note: if you wish to delete the layers associated with this Layer_Info
structure, remember to call Deletelayer() for each of the layers
before calling DisposeLayerInfo().

INPUTS
1i - pointer to LayerInfo structure

EXAMPLE
~- delete the layers associated this Layer_ Info structure —-—

Deletelayer(li,simple layer);
Deletelayer(li,smart layer);

~— see documentation on DeletelLayer about deleting SuperBitMap layers ——
my_super_bitmap ptr = super_ layer—>SuperBitMap;
Deletelayer(li,super layer);

-— now dispose of the Layer_ Info structure itself ——
DisposeLayerInfo(li);

BUGS

SEE ALSO
Deleteliayer, graphics/layers.h

layers.library/EndUpdate

NAME
EndUpdate — remove damage list and restore state of layer to normal.
SYNOPSIS
EndUpdate(1, flag)
a0 do

struct Layer *1;
USHORT flag;

FUNCTION
After the programmer has redrawn his picture he calls this
routine to restore the ClipRects to point to his standard
layer tiling. The layer is then unlocked for access by the
layer library.

Note: use flag = FALSE if you are only making a partial update.
You may use the other region functions (graphics functions such as
OrRectRegion, AndRectRegion, and XorRectRegion) to clip adjust
the Damagelist to reflect a partial update.

INPUTS
1 - pointer to a layer
flag — use TRUE if update was completed. The damage list is cleared.
use FALSE if update not complete. The damage list is retained.
EXAMPLE

—— begin update for first part of two-part refresh ——
BeginUpdate(my_layer);

— do some refresh, but not all -
my partial_refresh routine(my_layer);

—-- end update, false (not completely done refreshing yet) —
EndUpdate(my_layer, FALSE);

—~— begin update for last part of refresh ——
BeginUpdate(my_layer) ;

— do rest of refresh —
my complete_refresh routine(my_layer);

~— end update, true (completely done refreshing now) ——
EndUpdate{my_layer, TRURE);

BUGS

SEE ALSO
BeginUpdate, graphics/layers.h, graphics/clip.h

layers.library/EndUpdate

HH

Il

layers.library/FattenLayerinfo layers.library/FattenLayerInfo layers. library/InitLayers layers.library/InitlLayers

0LT — ¥

NAME
FattenLayerInfo —— convert 1.0 LayerInfo to 1.1 LayerInfo
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

SYNOPSIS
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE
FattenLayerinfo(li)
a0

struct Layer Info *1i;
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

FUNCTION
V1.1l software and any later releases need to have more info in the

Layer Info structure. To do this in a 1.0 supportable manner requires

allocation and deallocation of the memory whenever most

layer library functions are called. To prevent unnecessary
allocation/deallocation FattenLayerInfo will preallocate the
necessary data structures and fake out the layer library into
thinking it has a LayerInfo gotten from NewLayerInfo.
NewLayerInfo is the approved method for getting this structure.
when a program needs to give up the LayerInfo structure it

must call ThinLayerInfo before freeing the memory. ThinLayerInfo
is not necessary if New/DisposeLayerInfo are used however.

INPUTS
1i - pointer to LayerInfo structure

BUGS
SEE ALSO

NewLayerInfo, ThinLayerInfo, DisposeLayerInfo, graphics/layers.h

NAME
InitLayers —— Initialize Layer Info structure
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

SYNOPSIS
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE
InitLayers(1li)
a0

struct Layer Info *1i;
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

FUNCTION

Initialize Layer Info structure in preparation to use

other layer operations on this list of layers.
Make the Layers unlocked (open), available to

INPUTS
1i — pointer to LayerInfo structure

BUGS

SEE ALSO

layer operations.

NewLayerIinfo, DisposeLayerInfo, graphics/layers.h

TLT - ¥

layers.library/InstallClipRegion layers.library/InstallClipRegion

NAME
InstallClipRegion —— Install clip region in layer
SYNOPSIS
oldclipregion = InstallClipRegion(1, region)
do a0 al

struct Region *oldclipregion;
struct Layer *1;
struct Region *region;

FUNCTION
Installs a transparent Clip region in the layer. All
subsequent graphics calls will be clipped to this region.
You MUST remember to call InstallClipRegion(l,NULL) before
calling DeleteLayer(l) or the Intuition function CloseWindow()
if you have installed a non—-NULL ClipRegion in 1.

INPUTS
1 — pointer to a layer
region - pointer to a region

RESULTS
oldclipregion - The pointer to the previous ClipRegion that
was installed. Returns NULL if no previous ClipRegion installed.

Note: If the system runs out of memory while computing the
resulting ClipRects the LAYERS_CLIPRECTS_LOST bit will
be set in 1->Flags.

BUGS
If the system runs out of memory during normal layer operations,
the ClipRect list may get swept away and not restored.
As soon as there is enough memory and the layer library
gets called again the ClipRect list will be rebuilt.

SEE .ALSO
BeginUpdate EndUpdate,
graphics/layers.h, graphics/clip.h, graphics/regions.h

layers.library/LockLayer

NAME
LockLayer — Lock layer to make changes to ClipRects.

SYNOPSIS
LockLayer(dummy, 1)
a0 al

LONG dummy ;
struct Layer *1;

FUNCTION
Make this layer unavailable for other tasks to use.
If another task is already using this layer then wait for
it to complete and then reserve the layer for your own use.
(this function does the same thing as graphics.library/LockLayerRom)

Note: if you wish to lock MORE THAN ONE layer at a time, you
must call LockLayerInfo() before locking those layers and
then call UnlocklLayerInfo() when you have finished. This
is to prevent system “deadlocks".

Further Note: while you hold the lock on a layer, Intuition will block
on operations such as windowsizing, dragging, menus, and depth
arranging windows in this layer's screen. It is recommended that

YOU do not make Intuition function calls while the layer is locked.

INPUTS
dummy — unused
1 - pointer to a layer

BUGS
SEE ALSO

UnlockLayer, LockLayerlInfo, UnlockLayerInfo,
graphics.library/LockLayerRom, graphics/layers.h, graphics/clip.h

layers.library/LockLayer

N

C¢LT - ¥

layers.library/LockLayerInfo layers.library/LockLayerinto

NAME
LockLayerInfo — Lock the LayerInfo structure.

SYNOPSIS
LockLayerInfo(1i)
a0

struct Layer Info *1i;

FUNCTION
Before doing an operation that requires the LayerInfo
structure, make sure that no other task is also using the
LayerInfo structure. LockLayerIinfo() returns when the
LayerInfo belongs to this task. There should be
an UnlocklLayerInfo for every LockLayerinfo.

Note: All layer routines presently LocklLayerInfo{) when they
start up and UnlocklLayerInfo() as they exit. Programmers
will need to use these Lock/Unlock routines if they wish

to do something with the LayerStructure that is not
supported by the layer library.

INPUTS
1i — pointer to layer_Info structure

BUGS

SEE ALSO
UnilockLayerInfo, graphics/layers.h

layers.library/LockLayers layers.library/LockLayers

NAME
LockLayers —— lock all layers from graphics output.

SYNOPSIS
LockLayers(1i)
a0
struct Layer Info *1i;
FUNCTION
First calls LockLayerInfo()
Make all layers in this layer list locked.

INPUTS
1i ~ pointer to Layer_ Info structure

BUGS

SEE ALSO)
LocklLayer, LockLayerInfo, graphics/layers.h

ELT — ¥

layers. library/MoveLayer layers.library/MovelLayer

NAME

MoveLayer —— Move layer to new position in BitMap.
SYNOPSIS

result = MoveLayer(dummy, 1, dx, dy)

do a0 al do dl

BOOLEAN result;

LONG dunmmmy ;

struct Layer *1;

IONG dx,dy;
FUNCTION

Move this layer to new position in shared BitMap.
If any refresh layers become revealed, collect damage and
set REFRESH bit in layer Flags.

INPUTS
dummy — unused
1 - pointer to a nonbackdrop layer
dx — delta to add to current x position
dy - delta to add to current y position

RETURNS
result — TRUE if operation successful
FALSE if failed (out of memory)

BUGS
May not handle (dx,dy) which attempts to move the layer ouside the
layer's RastPort->BitMap bounds .

SEE ALSO
graphics/layers.h, graphics/clip.h

layers.library/MoveLayerInFrontOf layers.library/MoveLayerInFrontOf

NAME
MoveLayerInFrontOf—-— Put layer in front of another layer.

SYNOPSIS
result = MoveLayerInFrontOf(layertomove, targetlayer)
a0 al
BOOLEAN result;
struct Layer *layertomove;
struct Layer *targetlayer;

FUNCTION
Move this layer in front of target layer, swapping bits
in and out of the display with other layers.
If this is a refresh layer then collect damage list and
set the LAYERREFRESH bit in layer—>Flags if redraw required.

Note: this operation may generate refresh events in other layers
associated with this layer's Layer Info structure.

INPUTS
layertomove — pointer to layer which should be moved
targetlayer — pointer to target layer in front of which to move layer

RESULTS
result = TRUE if operation successful
FALSE if operation unsuccessful (probably out of memory)
BUGS
SEE ALSO

graphics/layers.h

i

VLT - ¥

layers.library/NewLayerInfo layers.library/NewLayerInfo

NAME

NewLayerinfo —— Allocate and Initialize full Layer_ Info structure.
SYNOPSIS

result = NewLayerInfo()

do

struct Layer Info *result;

FUNCTION
Allocate memory required for full Layer Info. structure.
Initialize Layer Info structure in preparation to use
other layer operations on this list of layers.
Make the Layer Info unlocked (open).

INPUTS
None

RESULT
result— pointer to Layer Info structure if successful
NULL if not enough memory
BUGS

SEE ALSO
graphics/layers.h

layers.library/ScrollLayer layers.library/ScrolllLayer

NAME
ScrollLayer — Scroll around in a superbitmap, translate coordinates
in non—superbitmap layer.
SYNOPSIS
Scrolllayer{ dummy, 1, dx, dy)
a0 al do dl
LONG dummy ;
struct Layer *1;
LONG dx,dy;
FUNCTION

For a SuperBitMap Layer:

Update the SuperBitMap from the layer display, then copy bits
between Layer and SuperBitMap to reposition layer over different
portion of SuperBitMap.

For nonSuperBitMap layers, all (x,y) pairs are adjusted by

the scroll(x,y) value in the layer. To cause (0,0) to actually
be drawn at (3,10) use ScrollLayer(—3,-10). This can be useful
along with InstallClipRegion to simulate Intuition GZzZWindows
without the overhead of an extra layer.

INPUTS
dummy — unused
1 - pointer to a layer
dx — delta to add to current x scroll value
dy — delta to add to current y scroll value

BUGS
May not handle (dx,dy) which attempts to move the layer ouside the
layer's SuperBitMap bounds.

SEE ALSO
graphics/layers.h

SLT - ¥

layers.library/SizelLayer layers.library/SizeLayer

NAME

SizelLayer —— Change the size of this nonbackdrop layer.
SYNOPSIS

‘result = Sizelayer(dummy, 1, dx, dy)

do a0 al d0 dl

BOOLEAN result;

LONG dummy ;

struct Layer *1;

LONG dx, dy;
FUNCTION

Change the size of this layer by (dx,dy). The lower right hand
corner is extended to make room for the larger layer.

If there is SuperBitMap for this layer then copy pixels into

or out of the layer depending on whether the layer increases or
decreases in size. Collect damage list for those layers that may
need to be refreshed if damage occurred.

INPUTS
dummy — unused
1 - pointer to a nonbackdrop layer
dx - delta to add to current X size
dy — delta to add to current y size

RESULTS
result — TRUE if operation successful
FALSE if failed (out of memory)
BUGS

SEE ALSO
graphics/layers.h, graphics/clip.h

layers.library/SwapBitsRastPortClipRect

NAME
SwapBitsRastPortClipRect —— Swap bits between common bitmap
and obscured ClipRect
SYNOPSIS
SwapBitsRastPortClipRect(rp, cr)
a0 al

struct RastPort *rp;
struct ClipRect *cr;

FUNCTION
Support routine useful for those that need to do some
operations not done by the layer library. Allows programmer
to swap the contents of a small BitMap with a subsection of
the display. This is accomplished without using extra memory.
The bits in the display RastPort are exchanged with the
bits in the ClipRect's BitMap.

Note: the ClipRect structures which the layer library allocates are
actually a little bigger than those described in the graphics/clip.h
include file. So be warned that it is not a good idea to have
instances of cliprects in your code.

INPUTS

rp — pointer to rastport

cr - pointer to cliprect to swap bits with
BUGS

SEE ALSO
graphics/clip.h, graphics/rastport.h, graphics/clip.h

9LT - ¥

il

layers.library/ThinLayerInfo

NAME
ThinLayerInfo — convert 1.1 LayerInfo to 1.0 LayerInfo.
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

SYNOPSIS
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE
ThinLayerInfo(1li)
a0

struct Layer_Info *1i;
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

FUNCTION
return the extra memory needed that was allocated with
FattenLayerInfo. This is must be done prior to freeing
the Layer Info structure itself. V1.l software should be
using DisposelayerInfo.

INPUTS
1i - pointer to LayerInfo structure

BUGS

SEE ALSO
Disposelayerinfo, FattenlayerInfo, graphics/layers.h

layers.library/ThinLayerInfo

layers.library/UnlockLayer layers.library/UnlockLayer
NAME
UnlockLayer —— Unlock layer and allow graphics routines to use it.
SYNOPSIS

UnlockLayer{ 1)
a0

struct Layer *1;

FUNCTION
when finished changing the ClipRects or whatever you were
doing with this layer you must call UnlockLayer() to allow
other tasks to proceed with graphic output to the layer.

INPUTS
1 — pointer to a layer

BUGS

SEE ALSO
graphics/layers.h, graphics/clip.h

LLT — ¥

layers.library/UnlockLayerInfo layers.library/UnlockLayerInfo

NAME

UnlockLayerInfo — Unlock the LayerInfo structure.
SYNOPSIS

UnlockLayerInfo(1i)

a0
struct Layer_ Info *1i;

FUNCTION
After the operation is complete that required a LockLayerlInfo,
unlock the LayerInfo structure so that other tasks may
affect the layers.

INPUTS
1i — pointer to the Layer_ Info structure

BUGS

SEE ALSO
LockLayerInfo, graphics/layers.h

layers.library/UnlockLayers layers.library/UnlockLayers

NAME
UnlockLayers —= Unlock all layers from graphics output.
Restart graphics output to layers that have been waiting

SYNOPSIS
UnlockLayers(1i)
a0

struct Layer Info *1i;

FUNCTION
Make all layers in this layer list unlocked.
Then call UnlockLayerInfo

INPUTS
1i — pointer to the Layer Info structure

BUGS

SEE ALSO
LockLayers, UnlockLayer, graphics/layers.h

8LT — ¥

Il

layers.library/UpfrontLayer layers.library/UpfrontLayer

NAME

UpfrontLayer —— Put layer in front of all other layers.
SYNOPSIS

result = UpfrontLayer(dummy, 1)

do a0 al

BOOLEAN result;
LONG dummy ;
struct Layer *1;

FUNCTION
Move this layer to the most upfront position swapping bits
in and out of the display with other layers.
If this is a refresh layer then collect damage list and
set the LAYERREFRESH bit in layer—>Flags if redraw required.
By clearing the BACKDROP bit in the layers Flags you may
bring a Backdrop layer up to the front of all other layers.

Note: this operation may generate refresh events in other layers
associated with this layer's Layer_ Info structure.

INPUTS
dummy — unused
1 ~ pointer to a nonbackdrop layer

RESULTS
result - TRUE if operation successful
FALSE if operation unsuccessful (probably out of memory)
BUGS
SEE ALSO

graphics/layers.h

layers.library/whichLayer layers.library/whichLayer

NAME

WhichLayer — Wwhich Layer is this point in?
SYNOPSIS

layer = WhichlLayer(1li, x, v)

do a0 do di
FUNCTION

Starting at the topmost layer check to see if this point (x,y)
occurs in this layer. If it does return the pointer to this
layer. Return NULL if there is no layer at this point.

INPUTS
1i = pointer to LayerInfo structure
(X,7) = coordinate in the BitMap
RESULTS

layer — pointer to the topmost layer that this point is in
NULL if this point is not in a layer

SEE ALSO
graphics/layers.h

6LT — ¥

mathffp.
mathffp.
mathffp.
mathffp.
mathffp.
mathffp.
mathffp.
mathffp.
mathffp.
mathffp.
mathffp.
mathffp.

TABLE OF CONTENTS

library/SPAbs
library/spadd
library/SpCeil
library/SPCmp
library/SPDiv
library/SPFix
library/SPFloor
library/SPFlt
library/spMul
library/SPNeg
library/sPsub
library/SPTst

mathffp.library/sPAbs mathffp.library/SPAbs

NAME
SPAbs — obtain the absolute value of the fast floating point number
C USAGE
fnum2 = SPAbs{fnuml) ;
do
FUNCTION
Accepts a floating point number and returns the absolute value of
said number.
INPUTS
fnuml — floating point number
RESULT
fnum2 — floating point absolute value of fnuml
BUGS
None
SEE ALSO

_LVOSPAbs, abs

08T - ¥

mathffp.library/SPadd mathffp.library/SPAdd

NAME
SPAdd — add two floating point numbers
C USAGE
fnum3 = SPAdd(fnuml, fnum2);
dal 4ao
FUNCTION
Accepts two floating point numbers and returns the arithmetic
sum of said numbers.
INPUTS
fnuml — floating point number
fnum2 - floating point number
RESULT
fnum3 ~ floating point number
BUGS
None
SEE ALSO

_LVOSPAdd, faddi

mathffp.library/SpPCeil mathffp.library/SPCeil

NAME

SPCeil — compute Ceil function of a number
SYNOPSIS

X = SPCeil{ y);

do do

float X,¥i
FUNCTION

Calculate the least integer greater than or equal to x and return it.

This identity is true. Ceil(x) = —Floor(-x).
INPUTS

y —— Motorola Fast Floating Point Format Number
RESULT

x —— Motorola Fast Floating Point Format Number
BUGS
SEE ALSO

SPFloor

8T — ¥

mathffp.library/sPCmp mathffp.library/SPCmp

NAME
SPCmp — compares two floating point numbers and sets
appropriate condition codes
C USAGE
if (SPCmp(fnuml, fnum2)) {...]}
dl do
FUNCTION
Accepts two floating point numbers and returns the condition
codes set to indicate the result of said comparison. Additionally,
the integer functional result is returned to indicate the result
of said comparison.
INPUTS
fnuml - floating point number
fnum2 ~ floating point number
RESULT
Condition codes set to reflect the following branches:
GT —~ fnum2 > fnuml
GE - fnum2 >= fnuml
EQ — fnum2 = fnuml
NE — fnum2 != fnuml
LT - fnum2 < fnuml
LE - fnum2 <= fnuml
Integer functional result as:
+1 => fnuml > fnum2
-1 => fnpuml < fnum2
0 => fnuml = fnum2
BUGS
None
SEE ALSO
_LVOSPCmp, fempi

mathffp.library/SpPDiv mathffp.library/SPDiv
NAME
SPDiv — divide two floating point numbers
C USAGE
fnum3 = SPDiv(fnuml, fnum2);
dl 4ao
FUNCTION
Accepts two floating point numbers and returns the arithmetic
division of said numbers.
INPUTS
fnuml - floating point number
fnum2 — floating point number
RESULT
fnum3 — floating point number
BUGS
None
SEE ALSO

_LvospDiv, fdivi

[

Z8T ~ ¥

I

mathffp.library/SPFix mathffp.library/SPFix

NAME
SPFix — convert fast floating point number to integer
C USAGE
inum = SPFix(fnum) ;
do
FUNCTION
Accepts a floating point number and returns the truncated
integer portion of said number.
INPUTS
fnum — floating point number
RESULT
inum — signed integer number
BUGS
None
SEE ALSO

_LVOSPFix, ffixi

mathffp.library/SPFloor

mathffp.library/SPFloor

NAME
SPFloor — compute Floor function of a number
SYNOPSIS
X = SPFloor(y);
do do
float X,¥;:
FUNCTION
calculate the largest integer less than or equal to x and return it.
INPUTS)
y — Motorola Fast Floating Point number
RESULT
x — Motorola Fast Floating Point number
BUGS
SEE ALSO
SPCeil

€8T —- ¥

mathffp.library/SPFlt mathffp.library/SPFlt

NAME
SPFlt - convert integer number to fast floating point
C USAGE
fnum = SPFlt(inum);
ao
FUNCTION
Accepts an integer and returns the converted
floating point result of said number.
INPUTS
inum — signed integer number
RESULT
fnum — floating point number
BUGS
None
SEE ALSO

_LVOSPF1t, fflti

mathffp.library/SPMul mathffp.library/SPMul

NAME
SpMul — multiply two floating point numbers
C USAGE
fnum3 = SPMul (fnuml, fnum2);
dl do
FUNCTION
Accepts two floating point numbers and returns the arithmetic
multiplication of said numbers.
INPUTS
fnuml — floating point number
fnum2 - floating point number
RESULT
fnum3 — floating point number
BUGS
None
SEE ALSO

_LVOSPMul, fmuli

¥81T - ¥

mathffp.library/SPNeg

mathffp.library/SPNeg

NAME
SPNeg — negate the supplied floating point number
C USAGE
fnum2 = SPNeg(fnuml);
do
FUNCTION
Accepts a floating point number and returns the value
of said number after having been subtracted from 0.0
INPUTS
fnuml —~ floating point number
RESULT
frnum2 - floating point negation of fnuml
BUGS
None
SEE ALSO

_LVOSPNeg, fnegi

mathffp.library/SPSub mathffp.library/sSPSub

NAME
SPSub - subtract two floating point numbers
C USAGE
fnum3 = SPSub(fnuml, fnum2);
dl do
FUNCTION
Accepts two floating point numbers and returns the arithmetic
subtraction of said numbers.
INPUTS
fnuml —~ floating point number
fnum2 - floating point number
RESULT
fnum3 - floating point number
BUGS
None
SEE ALSO

_LyOSPSub, fsubi

G8T — ¥

mathffp.library/SPTst mathffp.library/SPTst

NAME
SPTst ~ compares a fast floating point number against the
value zero (0.0) and sets the appropriate
condition codes
C USAGE
if (1(SPTst(fnum))) [...}
dl
FUNCTION
Accepts a floating point number and returns the condition
codes set to indicate the result of a comparison against
the value of zero (0.0). Additionally, the integer functional
result is returned.
INPUTS
fnum — floating point number
RESULT
Condition codes set to reflect the following branches:
EQ — fnum = 0.0
NE — fnum != 0.0
PL — fnum >= 0.0
MI — fnum < 0.0
Integer functional result as:
+1 => fnum > 0.0
~1 => fnum < 0.0
0 => fnum = 0.0
BUGS
None
SEE ALSO

_LVOSPTst, ftsti

i

98T — ¥

TABLE OF CONTENTS

mathieeedoubbas.
mathieeedoubbas.
mathieeedoubbas.
mathieeedoubbas.
mathieeedoubbas.
mathieeedoubbas.
mathieeedoubbas.
mathieeedoubbas.
mathieeedoubbas.
mathieeedoubbas.
mathieeedoubbas.
mathieeedoubbas.

library/IEEEDPAbS
library/IEEEDPAdd
library/IEEEDPCeil
library/IEEEDPCmp
library/IEEEDPDiv
library/IEEEDPFix
library/IEEEDPFloor
library/IEEEDPF1t
library/IEEEDPMul
library/IEEEDPNeq
library/IEEEDPSub
library/IEEEDPTst

mathieeedoubbas. library/IEEEDPAbs mathieeedoubbas.library/IEEEDPAbs

NAME

IEEEDPAbs ~— compute absolute value of IEEE double precision argument
SYNOPSIS

X = IEEEDPAbs(vy);

d0/d1 do/dal

double x,y;
FUNCTION

Take the absolute value of argument y and return it to caller.
INPUTS

y - IEEE double precision floating point value
RESULT

X —— IEEE double precision floating point value
BUGS
SEE ALSO

L8T - ¥

mathieeedoubbas. library/IEEEDPAdd

mathieeedoubbas. library/IEEEDPAdA

NAME

IEEEDPAdd — add one double precision IEEE number to another
SYNOPSIS

X = IEEEDPAdd(y , 2z)

do/dl d0/dl d2/d3

double x,y,z;
FUNCTION

Compute X = y + z in IEEE double precision.
INPUTS

y — IEEE double precision floating point value

z —— IEEE double precision floating point value
RESULT

x —— IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPSub

mathieeedoubbas.library/IEEEDPCeil

mathieeedoubbas.library/IEEEDPCeil

NAME
IEEEDPCeil — compute Ceil function of IEEE double precision number
SYNOPSIS
x = IEEEDPCeil(y);
do/dl dosdl
double x,y;
FUNCTION
calculate the least integer greater than or equal to x and return it.
This value may have more than 32 bits of significance.
This identity is true. Ceil(x) = ~Floor(-x).
INPUTS
y — IEEE double precision floating point value
RESULT
x —— IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPFloor

88T — ¥

mathieeedoubbas. library/IEEEDPCmp

mathieeedoubbas.library/IEEEDPCmp

NAME
IEEEDPCmp —— compare two double precision floating point numbers
SYNOPSIS
¢ = IEEEDPCp(y , Z);
d0 dos/dl dz2/d3
double vy,z;
long c;
FUNCTION

Compare y with z. Set the condition codes for less, greater, or
equal. Set return value ¢ to -1 if y<z, or +1 if y>z, or 0 if

y = z.
INPUTS

y —— IEEE double precision floating point value

z — IEEE double precision floating point value
RESULT

c=1 cc =gt for (y > z)

c=20 ce = eq for (y == 2z)

c=-1 cc =1t for (y € z)
BUGS
SEE ALSO

mathieeedoubbas. library/IEEEDPDiv

NAME

IEEEDPDiv —— divide one double precision IEEE by another
SYNOPSIS

X = IEEEDPDiV(v , 2);

do/dl d0/d1 d2/d3

double x,y,%Z;
FUNCTION

Compute x =y / 2z in IEEE double precision.
INPUTS

y - IEEE double precision floating point value

7z — IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPMul

mathieeedoubbas. library/IEEEDPDiv

68T - ¥

mathieeedoubbas.library/IEEEDPFix

NAME

IEEEDPFix —— convert IEEE double float to integer
SYNOPSIS

x = IEEEDPFix(y);

do dao/d1

long X;

double vy;
FUNCTION

Convert IEEE double precision argument to a 32 bit signed integer
and return result.

INPUTS
y — IEEE double precision floating point value

RESULT
if no overflow occured then return
x — 32 bit signed integer
if overflow return largest +- integer
For round to zero

BUGS

SEE ALSO
IEEEDPF1t

mathieeedoubbas.library/IEEEDPFix

mathieeedoubbas . library/IEEEDPFloor

NAME
1EEEDPFloor — compute Floor function of IEEE double precision number
SYNOPSIS
X = IEEEDPFloor(y);
do/dl do/dl
double Xx,y;
FUNCTION

Ccalculate the largest integer less than or equal to x and return it.
This value may have more than 32 bits of significance.

INPUTS
y —— IEEE double precision floating point value

RESULT

x —— IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPCeil

I

06T - ¥

mathieeedoubbas. library/IEEEDPF1t

mathieeedoubbas. library/IEEEDPF1t

NAME
IEEEDPFlt -— convert integer to IEEE double precision number
SYNOPSIS
X = IEEEDPFIt(vy);
d0/dl do
double x;
long yi
FUNCTION
Convert a signed 32 bit value to a double precision IEEE value
and return it in d0/d1. No exceptions can occur with this
function.
INPUTS
y — 32 bit integer in dO
RESULT
X is a 64 bit double precision IEEE value
BUGS
SEE ALSO

IEEEDPFix

mathieeedoubbas. library/IEEEDPMul

NAME

IEEEDPMul —— multiply one double precision IEEE number by another
SYNOPSIS

x = IEEEDPMul(v , 2)

do/d1 do/dl d2/43

double x,y,z;
FUNCTION

Compute x = y * z in IEEE double precision.
INPUTS

y — IEEE double precision floating point value

7z —— IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPDiv

mathieeedoubbas. library/IEEEDPMul

16T - ¥

mathieeedoubbas. library/IEEEDPNeqg mathieeedoubbas. library/IEEEDPNeg

NAME

IEEEDPNeg — compute negative value of IEEE double precision number
SYNOPSIS

X = IEEEDPNeg(y),

do/dl do/dl

double Xx,¥;
FUNCTION

Invert the sign of argument y and return it to caller.
INPUTS

y — IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

mathieeedoubbas.library/IEEEDPSub

mathieeedoubbas.library/IEEEDPSub

NAME
1EEEDPSub —— subtract one double precision IEEE number from another
SYNOPSIS
x = IEEEDPSub({ vy , 2z)i
d0/dl do/dl d2/d3

double x,Y,%z;

FUNCTION

Compute x = y — 2z in IEEE double precision.
INPUTS

y —— IEEE double precision floating point value

2 — IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPAdd

i

26T — ¥

mathieeedoubbas. library/IEEEDPTst

NAME
IEEEDPTst —— compare IEEE double precision value to 0.0
SYNOPSIS
c = IEEEDPTst(y);
do do/dl
double vy;
long c;
FUNCTION
Compare y to 0.0, set the condition codes for less than, greater
than, or equal to 0.0. Set the return value ¢ to -1 if less than,
to +1 if greater than, or 0 if equal to 0.0.
INPUTS
y — IEEE double precision floating point value
RESULT
c =1 cc = gt for (y > 0.0)
c=20 cc = eq for (y == 0.0)
¢ =-1 cc =1t for (y < 0.0)
BUGS
SEE ALSO

mathieeedoubbas.library/IEEEDPTst

Ll

€6T — ¥

TABLE OF CONTENTS

mathieeedoubtrans

mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
.library/IEEEDPSinh
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.
mathieeedoubtrans.

library/IEEEDPAcosS
library/IEEEDPAsin
library/IEEEDPAtan
library/IEEEDPCOS
library/IEEEDPCosh
library/I1EEEDPEXp
library/IEEEDPFieee
library/IEEEDPLOg
library/IEEEDPLogl0
library/IEEEDPPOW
library/IEEEDPSin
library/IEEEDPSincos

library/IEEEDPSqrt
library/IEEEDPTan
library/IEEEDPTanh
library/IEEEDPTieee

mathieeedoubtrans.library/IEEEDPAcCOS

NAME

IEEEDPAcOs — compute the arc cosine of a number
SYNOPSIS

x = IEEEDPAcos{ Y);

do/dl d0/dl

double X,y;
FUNCTION

Compute arc cosine of y in IEEE double precision
INPUTS

y — IEEE double precision floating point value
RESULT

x — TEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPCos{), IEEEDPAtan(), IEEEDPAsin()

vel — ¥

I

mathieeedoubtrans.library/IEEEDPAsin

NAME

IEEEDPAsin — compute the arcsine of a number
SYNOPSIS

X = IEEEDPAsin{ vy);

d40/d1 . doy/dl

double x,y;
FUNCTION

Compute the arc sine of y in IEEE double precision
INPUTS

y — IEEE double precision floating point value
RESULT

x -~ IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPSin(), IEEEDPAtan(), IEEEDPAcos()

mathieeedoubtrans.library/IEEEDPAtan

NAME

IEEEDPAtan —— compute the arctangent of a floating point number
SYNOPSIS

X = IEEEDPAtan(y);

do/d1 do/dl

double x,y;
FUNCTION

Compute arctangent of y in IEEE double precision
INPUTS

y — IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPTan(), IEEEDPAsin(), IEEEDPACOS()

G6T - ¥

mathieeedoubtrans.library/IEEEDPCOsS

NAME

IEEEDPCos —— compute the cosine of a floating point number
SYNOPSIS

X = IEEEDPCos{ vy);

4ao/dl doydl

double x,y;
FUNCTION

Compute cosine of y in IEEE double precision
INPUTS

y - IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPAcos(), IEEEDPSin(), IEEEDPTan()

mathieeedoubtrans.library/IEEEDPCosh

NAME

IEEEDPCosh —— compute the hyperbolic cosine of a floating point number
SYNOPSIS

x = IEEEDPCosh{ y);

aoy/dl do/dl

double X,y;
FUNCTION

Compute hyperbolic cosine of y in IEEE double precision
INPUTS

y — IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPSinh(), IEEEDPTanh()

96T — ¥

mathieeedoubtrans.library/IEEEDPExp

NAME

IEEEDPExp — compute the exponential of e
SYNOPSIS

x = IEEEDPExp(Yy);

do/dl do/dl

double x,y;
FUNCTION R

Compute e"y in IEEE double precision
INPUTS

y — IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPLog()

mathieeedoubtrans.library/IEEEDPFiecee

NAME
IEEEDPFieee —— convert IEEE single to IEEE double

SYNOPSIS
%X = IEEEDPFieee(vy);
d0/d1 a0

float v
double x;

FUNCTION i
Convert IEEE single precision number to IEEE double precision.

INPUTS
y — IEEE single precision floating point value

RESULT
x — IBEE double precision floating point value

BUGS

SEE ALSO
IEEEDPTieee()

L6T — ¥

mathieeedoubtrans. library/IEEEDPLOG

NAME

IEEEDPLog —— compute the natural logarithm of a floating point number
SYNOPSIS

x = IEEEDPLog(Y)i

dosdl do/dal

double x,y;
FUNCTION

Compute 1ln(y) in IEEE double precision
INPUTS

y — IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPEXpP()

mathieeedoubtrans. library/IEEEDPLogl0

NAME

IEEEDPLOgl0 — compute logarithm base 10 of a number
SYNOPSIS

x = IEEEDPLoglO{ y)i

ao/di doyal

double Xx,Y;
FUNCTION

Compute the logarithm base 10 of y in IEEE double precision
INPUTS

y — IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPLog()

il

86T — ¥

mathieeedoubtrans.library/IEEEDPPowW

NAME
IEEEDPPow —— raise a number to another number power
SYNOPSIS
Z = IEEEDPPow(X , Y)i
do0/dl d2/d3 d0/dl

double x,y,z;

FUNCTION R
Compute y x in IEEE double precision

INPUTS
x — IEEE double precision floating point value
y — IEEE double precision floating point value

RESULT
z — IEEE double precision floating point value

BUGS

SEE ALSO

mathieeedoubtrans.library/IEEEDPSin

IEEEDPSin ~—— compute the sine of a floating point number

NAME
SYNOPSIS
x = IEEEDPSin(y):
do/dl do/dl
double x,y;
FUNCTION
Compute sine of y in IEEE
INPUTS
y — IEEE double precision
RESULT
x — IEEE double precision
BUGS
SEE ALSO

double precision

floating point value

floating point value

IEEEDPAsin(), IEEEDPTan(), IEEEDPCos()

66T — ¥

mathieeedoubtrans.library/IEEEDPSincos

NAME
TEEEDPSincos — compute the arc tangent of a floating point number
SYNOPSIS
x = IEEEDPSincos(z , Y)i
do/dl a0 dosdal
double x,vy,*z;
FUNCTION
Compute sin and cosine of y in IEEE double precision.
store the cosine in *z. Return the sine of y.
INPUTS
y — 1EEE double precision floating point value
z — pointer to IEEE double precision floating point number
RESULT
x — IEEE double precision floating point value
BUGS
SEE ALSO

TEEEDPSin(), IEEEDPCOS()

mathieeedoubtrans.library/IEEEDPSinh

NAME

IEEEDPSinh —— compute the hyperbolic sine of a floating point number
SYNOPSIS

x = IEEEDPSinh(y);

d0/d1 doyal

double Xx,y;
FUNCTION

Compute hyperbolic sine of y in IEEE double precision
INPUTS

y — IEEE double precision floating point value
RESULT

x - IEEE double precision floating point value
BUGS
SEE ALSO

I1EEEDPCosh, IEEEDPTanh

00Z - ¥

Ll

mathieeedoubtrans.library/IEEEDPSqrt

NAME

IEEEDPSgrt —— compute the square root of a number
SYNOPSIS

X = IEEEDPSqQrt(y);

do/dl doszdl

double x,y;
FUNCTION

Compute square root of y in IEEE double precision
INPUTS

y — IEEE double precision floating point value
RESULT

X — IEEE double precision floating point value
BUGS
SEE ALSO

mathieeedoubtrans.library/IEEEDPTan

NAME

IEEEDPTan —— compute the tangent of a floating point number
SYNOPSIS

X = IEEEDPTan{ vy);

do/dl do/d

double Xx,y;
FUNCTION

Compute tangent of y in IEEE double precision
INPUTS

v — IEEE double precision floating point value
RESULT

x - IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPAtan(), IEEEDPSin(), IEEEDPCos()

T0Z - ¥

mathieeedoubtrans.library/IEEEDPTanh

NAME

TEEEDPTanh —— compute the hyperbolic tangent of a floating point number
SYNOPSIS

X = IEEEDPTanh{ y);

do/d1 do/dl

double Xx,y;
FUNCTION

Compute hyperbolic tangent of y in IEEE double precision
INPUTS

y - IEEE double precision floating point value
RESULT

x — IEEE double precision floating point value
BUGS
SEE ALSO

IEEEDPSinh(), IEEEDPCosh()

mathieeedoubtrans.library/IEEEDPTieee

NAME

IEEEDPTieee —— convert IEEE double to IEEE single
SYNOPSIS

X = IEEEDPTieee(y .);

dao dozdal

double vy;

float X;
FUNCTION

Convert IEEE double precision number to IEEE single precision.
INPUTS

v — IEEE double precision floating point value
RESULT

x — IEEE single precision floating point value
BUGS
SEE ALSO

IEEEDPFieee()

z0C ~- ¥

TABLE OF CONTENTS

mathtrans. library/SPAcos
mathtrans.library/SPAsin
mathtrans.library/SPAtan
mathtrans.library/SPCos
mathtrans.library/SPCosh
mathtrans.library/SPExp
mathtrans.library/SPFieee
mathtrans. library/SPLog
mathtrans.library/SPLogl0
mathtrans. library/SPPow
mathtrans. library/SPSin
mathtrans. library/SPSincos
mathtrans. library/SPSinh
mathtrans.library/SPSqrt
mathtrans. library/SPTan
mathtrans.library/SPTanh
mathtrans.library/SPTieee

mathtrans.library/SPAcos mathtrans.library/SPAcos

NAME
SPAcos — obtain the arccosine of the floating point number
SYNOPSIS
fnum2 = SPAcos(fnuml);
do.1
float fnum2;
float fnuml;
FUNCTION
Accepts a floating point number representing the cosine
of an angle and returns the value of said angle in
radians
INPUTS
fnuml — Motorola fast floating point number
RESULT
fnum2 — Motorola fast floating point number
BUGS
None
SEE ALSO
5PSin

€0 — ¥

mathtrans. library/SPAsin mathtrans.library/SPAsin

NAME
SPAsin - obtain the arcsine of the floating point number
SYNOPSIS
fnum2 = SPAsin(fnuml);
do.l
float fnum2;
float fnuml;
FUNCTION
Accepts a floating point number representing the sine
of an angle and returns the value of said angle in
radians
INPUTS
fnuml — Motorola fast floating point number -
RESULT
fnum2 —~ Motorola fast floating point number
BUGS
None
SEE ALSO
SPCos

mathtrans.library/SPAtan

NAME
SPAtan — obtain the arctangent of the floating point number
SYNOPSIS
fnum2 = SPAtan(fnuml) ;
do.1l
float fnum2;
float fnuml;
FUNCTION
Accepts a floating point number representing the tangent
of an angle and returns the value of said angle in
radians
INPUTS
fnuml - Motorola fast floating point number
RESULT
fnum2 — Motorola fast floating point number
BUGS
None
SEE ALSO
SPTan

mathtrans. library/SPatan

i

yoec - ¥

mathtrans.library/sSPCos mathtrans.library/SPCos

NAME
SPCos — obtain the cosine of the floating point number
SYNOPSIS
fnum2 = SPCos(fnuml) ;
do.1
float fnum2;
float fnuml;
FUNCTION
Accepts a floating point number representing an angle
in radians and returns the cosine of said angle.
INPUTS
fnuml — Motorola fast floating point number
RESULT
fnum2 — Motorola fast floating point number
BUGS
None
SEE ALSO
SPAcos

mathtrans. library/SPCosh mathtrans.library/SPCosh

NAME

SPCosh — obtain the hyperbolic cosine of the floating point number
SYNOPSIS

fnum2 = SPCosh(fnuml);

do.1

float fnum?2;

float fnuml;
FUNCTION

Accepts a floating point number representing an angle

in radians and returns the hyperbolic cosine of said angle.
INPUTS

fnuml - Motorola fasf floating point number
RESULT

fnum2 — Motorola fast floating point number
BUGS

None
SEE ALSO

SPSinh

ll

G0C - ¥

mathtrans.library/SPExp mathtrans.library/SPExp

NAME
SPExp — obtain the exponential (e**X) of the floating point number
SYNOPSIS
fnum2 = SPExp(fnuml);
do.1
float fnum2;
float fnuml;
FUNCTION
Accepts a floating point number and returns the value
of e raised to the fnuml power
INPUTS
fnuml - Motorola fast floating point number
RESULT
fnum2 — Motorola fast floating point number
BUGS
None
SEE ALSO
SPLog

mathtrans.library/SPFieee mathtrans.library/SPFieee

NAME

SPFieee — convert single precision ieee to FFP number
SYNOPSIS

fnum = SPFieee(ieeenum);

do.1

float fnum;

float ieeenum;
FUNCTION

Accepts a standard single precision format

returns the same number, converted to Motorola

fast floating point number
INPUTS

ieeenum - IEEE Single Precision Floating Point
RESULT

fnum — Motorola fast floating point number
BUGS

None
SEE ALSO

SPTieee

902 - ¥

mathtrans.library/sPlog mathtrans.library/SPLog

NAME
SPLog — obtain the natural logarithm of the floating point number
SYNOPSIS
fnum2 = SPLog(fnuml);
do.1
float fnum2;
float fnuml;
FUNCTION
Accepts a floating point number and returns the natural
logarithem (base e) of said number
INPUTS
fnuml — Motorola fast floating point number
RESULT
fnum2 — Motorola fast floating point number
BUGS
None
SEE ALSO
SPEXp

mathtrans.library/SPLogl0 mathtrans.library/SPLogl(0

NAME
SPLogl0 — obtain the naperian logarithm(base 10) of the
floating point number
SYNOPSIS
fnum2 = SPLoglO(fnuml);
d0.1
float fnum?2;
float fnuml;
FUNCTION
Accepts a floating point number and returns the naperian
logarithm (base 10) of said number
INPUTS
fnuml — Motorola fast floating point number
RESULT
fnum2 — Motorola fast floating point number
BUGS
None
SEE ALSO

SPExp, SpLog

L0 — ¥

mathtrans.library/SPPow mathtrans.library/SPPow

NAME

SPPow — raise a number to a power
SYNOPSIS

result = SPPow(fnuml, fnum2);

di.l do.1

float fnuml, fnum2;

float result;
FUNCTION

Accepts two floating point numbers and returns the

result of fnum2 raised to the fnuml power
INPUTS

fnuml - Motorola fast floating point number

fnum2 — Motorola fast floating point number
RESULT

result — Motorola fast floating point number
BUGS

None
SEE ALSO

SPExp, SPLog

mathtrans.library/SPSin mathtrans.library/SPSin
NAME
SPSin — obtain the sine of the floating point number
SYNOPSIS
fnum2 = SPSin(fnuml);
do.1

float fnum2;
float fnuml;

FUNCTION

Accepts a floating point number representing an angle
in radians and returns the sine of said angle.

INPUTS

fnuml — Motorola fast floating point number
RESULT

fnum2 ~ Motorola fast floating point number
BUGS

None
SEE ALSO

SPAsin

i

80 ~ ¥

mathtrans.library/sPSincos mathtrans.library/SPSincos

NAME
SPSincos — obtain the sine and cosine of a number
SYNOPSIS
fnum3 = SPSincos{pfnum?, fnuml);
1, do.l
float *pfnum?2;
float fnuml;
float fnum3;
FUNCTION
Accepts a floating point number (fnuml) representing
an angle in radians and a pointer to another floating
point number (pfnum2). It computes the cosine and rlaces it in
*pfpnum2. It computes the sine and returns it as a result.
INPUTS
fnuml — Motorola fast floating point number
pfnum2 — pointer to Motorola fast floating point number
RESULT
*pfnum2 — Motorola fast floating point number (cosine)
fnum3 — Motorola fast floating point number (sine)
BUGS
None
SEE ALSO

SPSin, SPCos

mathtrans.library/SPSinh mathtrans. library/SPSinh

NAME

spSinh — obtain the hyperbolic sine of the floating point. number
SYNOPSIS

fnum2 = SPSinh(fnuml});

do.1

float fnum?2;

float fnuml;
FUNCTION

Accepts a floating point number representing an angle

in radians and returns the hyperbolic sine of said angle.
INPUTS

fnuml — Motorola fast floating point number
RESULT

fnum2 — Motorola fast floating point number
BUGS

None
SEE ALSO

SPCosh

60¢ — ¥

mathtrans.library/SPsqrt mathtrans. library/sPsqrt

NAME
SPSqrt — obtain the square root of the floating point number
SYNOPSIS
fnum2 = SPSqrt(fnuml);
do.1
float fnum2;
float fnuml;
FUNCTION
Accepts a floating point number and returns the square toot
of said number
INPUTS
fnuml — Motorola fast floating point number
RESULT
fnum2 — Motorola fast floating point number
BUGS
None
SEE ALSO

SPPow, SPMul

mathtrans.library/SPTan

NAME
SPTan — obtain the tangent of the floating point number
SYNOPSIS
fnum2 = SPTan(fnuml);
do.lI
float fnum2;
float fnuml;
FUNCTION
Accepts a floating point number representing an angle
in radians and returns the tangent of said angle.
INPUTS
fnuml — Motorola fast floating point number
RESULT
fnum2 — Motorola fast floating point number
BUGS
None
SEE ALSO
SPAtan

mathtrans.library/SPTan

I

0TZ - ¥

mathtrans.library/sPTanh mathtrans.library/SPTanh

NAME

SPTanh — obtain the hyperbolic tangent of the floating point number
SYNOPSIS

fnum2 = SPTanh(fnuml);

do.1

float fnum2;

float fnuml;
FUNCTION

Accepts a floating point number representing an angle

in radians and returns the hyperbolic tangent of said angle.
INPUTS

fnuml — Motorola fast floating point number
RESULT

fnum2 - Motorola fast floating point number
BUGS

None
SEE ALSO

SPSinh, SPCosh

mathtrans.library/sPTieee mathtrans.library/SPTieee

NAME
SPTieee — convert FFP number to single precision ieee
SYNOPSIS
ieeenum = SPTieee(fnum);
do.1
float ieeenum;
float fnum;
FUNCTION
Accepts a Motorola fast floating point number and
returns the same number, converted into IEEE
standard single precision format
INPUTS
fnum - Motorola fast floating point number
RESULT ‘
ieeenum — IEEE Single Precision Floating Point
BUGS
None
SEE ALSO
SPFieee

Ttz - ¥

TABLE OF CONTENTS

translator.library/Translate

translator.library/Translate

NAME
Translate — Converts an English string into phonemes
SYNOPSIS
rtnCode = Translate(instring, inlen, outbuf, outlen)
DO AOD DO Al D1

LONG Translate(APTR,LONG,APTR,LONG) ;

FUNCTION
The translate function converts an English string into
a string of phonetic codes suitable as input to the
narrator device.

INPUTS
instring - pointer to English string
inlen — length of English string
outbuf - a char array which will hold the phonetic codes
outlen - the length of the output array
RESULTS
rtnCode —

Translate will return a zero if no error has occured.

The only error that can occur is overflowing the output

buffer. If Translate determines that an overflow will
occur, it will stop the translation at a word boundary

before the overflow happens. If this occurs, Translate

will return a negative number whose absolute value
indicates where in the INPUT string Translate stopped.
The user can then use the offset -rtnCode from the
beginning of the buffer in a subsequent Translate call
to continue the translation where s/he left off.

BUGS

SEE ALSO

translator.library/Translate

Section B

Device Summaries

This section contains summaries for the device calls that are built into the Amiga
operating system software. These documents have been automatically extracted from the
original source code and are often called autodocs.

Devices are based on the library concept mentioned in Section A. Librarles generally
provide a set of usable functions. Devices usually are hardware independent mechanisms
for talking to some sort of physical media (such as a disk drive or serial port). Devices
often have their own independent tasks, and can perform asynchronous operations even
when the task that called them is busy.

Devices are described fully in the Amiga ROM Kernel Manual: Libraries and Devices.
Only a brief introduction will be given here.

The following is a partial list of the devices that are currently part of the Amiga
software:

Device Names

audio.device
clipboard.device
console.device
gameport.device
input.device
keyboard.device

narrator.device
parallel.device
printer.device
serial.device
timer.device
trackdisk.device

Devices are more complex to use than libraries. Opening a device requires:

o A message port (MsgPort). This structure is used for inter-task communication.
Ports may be created with the amiga.lib/CreatePort() function (see Section F).

o An I/O Request (IORequest). This special structure, plus any extensions, is your
sole source of communication with the device. Commands and data (or data
pointers) are placed in this structure and sent off to the device. The exact format of
this structure is defined in the “‘exec/io.h” include file in Section D. An TORequest
is typically created with the amiga.lib/CreateExtIO() function (see Section F).

o The name of the device for the exec OpenDevice() call. The actual device may
exist in ROM or on disk. This is transparent to the application programmer.

Opening the device prepares the IORequest for use. The request will be tied to the one
and only device that initialized it. Commands may be placed in the io_Command
field, then the request may be sent to the device. There are two primary options for
starting 1/O:

o DolIO() - An exec call that does the I/O, and returns after it has finished (this is
“synchronous I/0”), and is the easiest option to use.

o SendIO() - An exec call that starts the [/O, but returns immediately (“‘asynchro-
nous I/O”). The device will complete its job while the calling task continues to run.
Before reusing the [/O Request, you must wait for the I/O to finish (multiple pend-
ing requests are possible with multiple IORequest structures).

When you have finished using a device, a call to CloseDevice() completes the transac-
tion. For those programs using asynchronous I/O, any outstanding requests must have
already been completed. This can be done by a WaitlO(), or by forcing termination
with an AbortIO()/WaitIO() pair. ‘

*

* A complete example of using the trackdisk.device.

* This moves the heads from track 0 to 79 and back.
*

*

#include "exec/types.h"
#include "devices/trackdisk.h"
#include "libraries/dos.h"

/* #include "proto/exec.h" */
/* #include "functions.h'" */

struct MsgPort *CreatePort();
struct IORequest *CreateExtIO();
void DeletePort();

void DeleteExtIO();

/* Declare return types */

struct MsgPort *trackport; /* Storage for pointers */
struct IOQOEXtTD *trackIO;
short openerror; /* flag */

volid cleanexit(returncode)
int returncode;
{
printf("openerror =%d\n" ,openerror);
printf("trackIO =$%1x\n",trackIO);
printf("trackport =$%1x\n",trackport);
printf("io Error =%d\n" ,trackIO->iotd_Req.io Error);

if(!openerror) CloseDevice(trackIO);
if(tracklIO) DeleteExtIO(trackIO, (long)sizeof(struct IOEXtTD));
if(trackport) DeletePort(trackport);

exit(returncode);

void main()

trackport=CreatePort (0OL,0L);
if(!trackport)
cleanexit(RETURN FAIL);
trackIO=(struct IQExtTD *)
CreateExtIO(trackport, (long)sizeof(struct IOEXtTD));
if(!trackIO)
cleanexit(RETURN FAIL+1);
if (openerror=OpenDevice("trackdisk.device",0L,trackIO,OL))
cleanexit (RETURN_FAIL+2);

trackIO—>iotd Req.io_Command=TD_ SEEK; /* command */

trackIO—->iotd _Req.io Offset =0L; /* out */
printf("1\n");
DoIO(trackIO);
trackIO—>iotd _Req.io Offset =79*11*2*512L; /* in *x/
printf("2\n");
DoIO(trackIO);
trackIO—->iotd Req.io Offset =0L; /* out */
printf("3\n");
DoIO(trackIO);
trackIO->iotd Req.io Offset =79%11*2*512L; /* in */
printf("4\n");
DoIO(trackIO);

cleanexit (RETURN CK);

TABLE OF CONTENTS

audio.doc
clipboard.doc
console.doc
gameport .doc
input.doc
keyboard.doc
Inarrator.doc
parallel.doc
printer.doc
serial.doc
timer.doc
trackdisk.doc

B-1

B-11
B-15
B-22
B-26
B~32
B-36
B-41
B-47
B-58
B-66
B-70

TABLE

audio.
audio.
audio.
audio.
audio.
audio.
audio.
audio.
audio.
audio.
audio.
audio.
audio.
audio.
audio.
audio.
audio.

OF CONTENTS

device/CloseDevice
device/ADCMD_ALLOCATE
device/ADCMD_FINISH
device/ADCMD_FREE
device/ADCMD_LOCK
device/ADCMD_PERVOL
device/ADCMD_SETPREC
device/ADCMD_WAITCYCLE
device/CMD_CLEAR
device/CMD_FLUSH
device/CMD READ
device/CMD_RESET
device/CMD_START
device/CMD_STOP
device/CMD_UPDATE
device/CMD_WRITE
device/OpenDevice

audio.device/CloseDevice

NAME
CloseDevice — terminate access to the audio device

SYNOPSIS
CloseDevice(iORequest) ;
Al

FUNCTION
The CloseDevice routine notifies the audio device that it will no
longer be used. It takes an I/0 audio request block (IOAudio) and
clears the device pointer (io Device). If there are any channels
allocated with the same allocation key (ioa_AllocKey), ClosebDevice
frees (ADCMD FREE) them. CloseDevice decrements the open count, if the

count falls to zero, and the system needs memory, the device is expunged.

INPUTS
iORequest — pointer to audio request block (struct IOAudio)
io Device — pointer to device node, must be set by (or
copied from I/O block set by) open (OpenDevice)
io Unit - bit map of channels to free (ADCMD FREE) (bits 0
thru 3 correspond to channels 0 thru 3)
ioa_AllocKey— allocation key, used to free channels
OUTPUTS
iORequest — pointer to audio request block (struct IOAudio)
io Device - set to -1
io_Unit - set to zero

audio.device/ADCMD_ALLOCATE

NAME
ADCMD ALLOCATE — allocate a set of audio channels

FUNCTION ‘
ADCMD_ALLOCATE is a command that allocates multiple audio channels.
ADCMD ALLOCATE takes an array of possible channel combinations
(ioa_Data) and an allocation precedence (ln _Pri) and tries to allocate
one of the combinations of channels.

If the channel combination array is zero length (ioa_Length), the
allocation succeeds; otherwise, ADCMD ALLOCATE checks each
combination, one at a time, in the specified order, to find one
combination that does not require ADCMD ALLOCATE to steal allocated
channels.

If it must steal allocated channels, it uses the channel combination
that steals the lowest precedence channels.

ADCMD ALLOCATE cannot steal a channel of equal or greater precedence
than the allocation precedence (ln_Pri).

1f it fails to allocate any channel combination and the no-wait flag
(ADIOF NOWAIT) is set ADCMD_ALLOCATE returns a zero in the unit field
of the I/0 request (io_Unit) and an error (IOERR_ALLOCFAILED). If the
no-wait flag is clear, it places the I/O request in a list that tries
to allocate again whenever ADCMD FREE frees channels or ADCMD_SETPREC
lowers the channels' precedences.

I1f the allocation is successful, ADCMD ALLOCATE checks if any channels
are locked (ADCMD LOCK) and if so, replies (ReplyMsg) the lock I/O
request with an error (ADIOERR_CHANNELSTOLEN). Then it places the
allocation I/O request in a list waiting for the locked channels to be
freed. When all the allocated channels are un—locked, ADCMD_ALLOCATE:

. resets (CMD_RESET) the allocated channels,

. generates a new allocation key (ioa_AllocKey), if it is zero,

. copies the allocation key into each of the allocated channels

. copies the allocation precedence into each of the allocated

channels, and
. copies the channel bit map into the unit field of the I/0 request.

1f channels are allocated with a non-zero allocation key,
ADCMD ALLOCATE allocates with that same key; otherwise, it generates a
new and unique key.

ADCMD_ALLOCATE is synchronous:
if the allocation succeeds and there are no locked channels to be
stolen, or
if the allocation fails and the no-wait flag is set.
. if the allocation fails and the no—wait flag is set.
In either case, ADCMD ALLOCATE only replies (mn_ReplyPort) if the
quick flag (IOF _QUICK) is clear; otherwise, the allocation is
asynchronous, so it clears the quick flag and replies the I/O request
after the allocation is finished. If channels are stolen, all audio
device commands return an error (IOERR_NOALLOCATION) when the former
user tries to use them again. Do not use ADCMD ALLOCATE in interrupt
code.

1f you decide to store directly to the audio hardware registers, you
must either lock the channels you've allocated, or set the precedence
to maximum (ADALLOC MAXPREC) to prevent the channels from being
stolen.

uUnder all circumstances, unless channels are stolen, you must free
(ADCMD_FREE) all allocated channels when you are finished using them.

INPUTS
In Pri — allocation precedence (—-128 thru 127)
mn_ReplyPort— pointer to message port that receives I/0 request after
the allocation completes is asynchronous or quick flag
(ADIOF_QUICK) is set

io_Device -

io_Command —
io_Flags -

joa_AllocKey-

ioa_Data -

joa_Length -
OUTPUTS

io_Unit -

io_Flags -

io_Error -

ioa_Allockey—

pointer to device node, must be set by (or copied from
1/0 block set by) OpenDevice function
command number for ADCMD ALLOCATE
flags, must be cleared if not used:
IOF _QUICK — (CLEAR) reply I/O request
(SET) only reply I/0 request only if
asynchronous (see above text)
ADIOF_NOWAIT- (CLEAR) if allocation fails, wait till is
succeeds
(SET) if allocation fails, return error
(ADIOERR_ALLOCFAILED)
allocation key, zero to generate new key; otherwise,
it must be set by (or copied from I/O block set by)
OpenDevice function or previous ADCMD_ALLOCATE command
pointer to channel combination options (byte array, bits
0 thru 3 correspond to channels 0 thru 3)
length of the channel combination option array
(0 thru 16, 0 always succeeds)

bit map of successfully allocated channels (bits 0 thru
3 correspond to channels 0 thru 3)

IOF_QUICK flag cleared if asynchronous (see above text)
error number:
0 ~ no error

ADIOERR_ALLOCFAILED - allocation failed

allocation key, set to a unique number if passed a zero
and command succeeds

audio.device/ADCMD_FINISH audio.device/command/ADCMD FINISH

NAME
ADCMD_FINISH —— abort writes in progress to audio channels

FUNCTION
ADCMD FINISH is a command for multiple audio channels. For each
selected channel (io Unit), if the allocation key (ioa_AllocKey) is
correct and there is a write (CMD WRITE)in progress, ADCMD_FINISH
aborts the current write immediately or at the end of the current
cycle depending on the sync flag (ADIOF_SYNCCYCLE). If the allocation
key is incorrect ADCMD FINISH returns an error (ADIOERR_NOALLOCATION) .
ADCMD_FINISH is synchronous and only replies (mn_ReplyPort) if the
quick flag (IOF_QUICK) is clear. Do not use ADCMD FINISH in interrupt
code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort— pointer to message port that receives I/0 request
if the quick flag (IOF_QUICK) is clear

io_Device - pointer to device node, must be set by {(or copied from
1/0 block set by) OpenbDevice function
io Unit - bit map of channels to finish (bits 0 thru 3 correspond

to channels 0 thru 3)
io Command ~ command number for ADCMD_FINISH
io_Flags - flags, must be cleared if not used:
IOF_QUICK — (CLEAR) reply I/0 request
ADIOF_SYNCCYCLE- (CLEAR) finish immediately
(SET) finish at the end of current
cycle

ioca_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully finished (bits 0 thru 3
correspond to channels 0 thru 3)
io_Error — error number:
0 ~ no error

ADIOERR_NOALLOCATION - allocation key (ioca_AllocKey)
does not match key for channel

NAME

FUNCTION
ADCMD FREE is

: makes the

checks if

ADCMD FREE is
INPUTS
mn_ReplyPort—
io Device -
io Unit -

io_Command -—
io_Flags -

ioa_AllocKey—
OUTPUTS
io_Unit -

io Error -

audio.device/ADCMD FREE

flag (IOF_QUICK) is clear.

audio.device/command/ADCMD_FREE

ADCMD _FREE -— free audio channels for allocation

a command for multiple audio channels. For each

selected channel (io Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD FREE does the following:

restores the channel to a known state (CMD_RESET),

changes the channels allocation key, and

channel available for re—allocation.

If the channel is locked (ADCMD _LOCK) ADCMD FREE unlocks it and
clears the bit for the channel (io Unit) in the lock I/0 request.
If the lock I/O request has no channel bits set ADCMD_FREE replies
the lock 1/0 request, and

there are allocation requests (ADCMD_ALLOCATE) waiting

for the channel.

Otherwise, ADCMD FREE returns an error (ADIOERR_NOALLOCATION).

synchronous and only replies (mn_ReplyPort) if the quick
Do not use ADCMD_FREE in interrupt code.

pointer to message port that receives I/0 request

if the quick flag (IOF_QUICK) is clear

pointer to device node, must be set by (or copied from
1/0 block set by) OpenDevice function

bit map of channels to free (bits 0 thru 3 correspond to
channels 0 thru 3)

command number for ADCMD FREE

flags, must be cleared if not used:

IOF QUICK - (CLEAR) reply I/0 request

allocation key, must be set by (or copied from I/0 block
set by) OpenDevice function or ADCMD_ALLOCATE command

bit map of channels successfully freed (bits 0 thru 3

correspond to channels 0 thru 3)

error number:

0 — no error

ADIOERR _NOALLOCATION - allocation key (ioa_AllocKey)
does not match key for channel

audio.device/ADCMD_IOCK

NAME

audio.device/command/ADCMD_LOCK

ADCMD LOCK —— prevent audio channels from being stolen

FUNCTION

ADCMD_IOCK is a command for multiple audio channels. For each
selected channel (io Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD_LOCK locks the channel, preventing subsequent
allocatlons (ADCMD_ALLOCATE or OpenDevice) from stealing the channel.
Otherwise, ADCMD LOCK returns an error (ADIOERR_NOALLOCATION) and will
not lock any channels.

Unlike setting the precedence (ADCMD_SETPREC, ADCMD ALLOCATE or
OpenDevice) to maximum (ADALLOC_MAXPREC) whlch would cause all
subsequent allocations to fail, ADCMD LOCK causes all higher
precedence allocations, even no*walt (ADIOF_NOWAIT) allocations, to
wait until the channels are un—locked.

Locked channels can only be unlocked by freeing them (ADCMD_FREE),
which clears the channel select bits (io_Unit). ADCMD LOCK does not
reply the I/0 request (mn_ReplyPort) until all the channels it locks
are freed, unless a higher precedence allocation attempts to steal one
the locked channels. If a steal occurs, ADCMD_LOCK replies and returns
an error (ADIOERR_CHANNELSTOLEN). If the lock is replied
(mn_ReplyPort) with this error, the channels should be freed as soon
as possible. To aveid a possible deadlock, never make the freeing of
stolen channels dependent on another allocatlons completion.

ADCMD_LOCK is only asynchronous if the allocation key is correct, in

which case it clears the quick flag (IOF QUICK); otherwise, it is

synchronous and only replles if the quick flag (IOF_QUICK) is clear.
Do not use ADCMD_LOCK. in interrupt code.

INPUTS

OUTP

mn_ReplyPort— pointer to message port that receives 1/0 request
if the quick flag (IOF_QUICK) is clear

io Device - pointer to device node, must be set by (or copied from
I/0 block set by) OpenDevice function
io_Unit — bit map of channels to lock (bits 0 thru 3 correspond to

channels 0 thru 3)

io Command - ¢ommand number for ADCMD_LOCK

io Flags — flags, must be cleared

ioca_Allockey— allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD ALLOCATE command

UTS

io Unit — bit map of successfully locked channels {(bits 0 thru 3
correspond to channels 0 thru 3) not freed (ADCMD_FREE)

io_Flags — IOF_QUICK flag cleared if the allocation key is correct
(no ADIOERR_NOALLOCATION error)

io_Error — error number:
0 - no error

ADIOERR_NOALIOCATION - allocation key (ioa_AllocKey)
does not match key for channel

ADIOERR_CHANNELSTOLEN- allocation attempting to steal
locked channel

audio.device/ADCMD_PERVOL audio.device/conmand/ADCMD PERVOL
NAME
ADCMD_PERVOL — change the period and volume for writes in progress to
audio channels

FUNCTION
ADCMD PERVOL is a command for multiple audio channels. For each
selected channel (io Unit), if the allocation key (ioa_AllocKey) is
correct and there is a write (CMD _WRITE) in progress, ADCMD PERVOL
loads a new volume and period immediately or at the end of the current
cycle depending on the sync flag (ADIOF_SYNCCYCLE). If the allocation
key in incorrect, ADCMD_PERVOL returns an error
(ADIOERR_NOALLOCATION). ADCMD_PERVOL is synchronous and only replies
(mn_ReplyPort) if the quick flag (IOF_QUICK) is clear. Do not use
ADCHMD PERVOL in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort— pointer to message port that receives 1/0 request
if the quick flag (IOF QUICK) is clear

io Device — pointer to device node, must be set by (or copied from
I/0 block set by) OpenDevice function
io Unit ~ bit map of channels to load period and volume (bits 0

thru 3 correspond to channels 0 thru 3)
io Command - command number for ADCMD_PERVOL
io Flags - flags, must be cleared if not used:
IOF_QUICK — (CLEAR) reply I/O request
ADIOF_SYNCCYCLE— (CLEAR) load period and volume
immediately
(SET) load period and volume at the end
of the current cycle
ioa_AllocKey— allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command
joa_Period - new sample period in 279.365 ns increments (124 thru
65536, anti—aliasing filter works below 300 to 500
depending on waveform)

joa_Volume — new volume (0 thru 64, linear)
OUTPUTS
io Unit - bit map of channels that successfully loaded period and
volume (bits 0 thru 3 correspond to channels 0 thru 3)
io Error — error number:
0 - no error

ADIOERR_NOALLOCATION — allocation key (ioa_AllocKey)
does not match key for channel

audio.device/ADCMD_SETPREC audio.device/command/ADCMD _SETPREC
NAME
ADCMD_SETPREC —— set the allocation precedence for audio channels

FUNCTION
ADCMD_SETPREC is a command for multiple audio channels. For each
selected channel (io Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD SETPREC sets the allocation precedence to a new value
(1n_Pri) and checks if there are allocation requests (ADCMD ALIOCATE)
waiting for the channel which now have higher precedence; otherwise,
ADCMD_SETPREC returns an error (ADIOERR_NOALLOCATION) . ADCMD_SETPREC
is synchronous and only replies (mn_ReplyPort) if the quick flag
(IOF_QUICK) is clear. Do not use ADCMD SETPREC in interrupt code.

INPUTS
1n_Pri -~ new allocation precedence (—128 thru 127)
mn_ReplyPort— pointer to message port that receives 1/0 request
if the quick flag (IOF_QUICK) is clear

io_Device - pointer to device node, must be set by (or copied from
1/0 block set by) OpenDevice function
io Unit - bit map of channels to set precedence (bits 0 thru 3

correspond to channels 0 thru 3)

io Command - command number for ADCMD SETPREC

io_Flags - flags, must be cleared if not used:
IOF QUICK — (CLEAR) reply I/O request

ioa_AllocKey— allocation key, must be set by (or copied from I/0 block
set by) OpenDevice function or ADCMD ALLOCATE command

OUTPUTS
io_Unit - bit map of channels that successfully set precedence
(bits O thru 3 correspond to channels 0 thru 3)
io Error

— error number:
0 - no erroxr
ADIOERR NOALLOCATION — allocation key (ioa_AllocKey)
does not match key for channel

il

audio.device/ADCMD WAITCYCLE

NAME
ADCMD WAITCYCLE —— wait for an audio channel to complete the current
cycle of a write

FUNCTION
ADCMD WAITCYCLE is a command for a single audio channel (io_Unit).
If the allocation key (ioa_AllocKey) is correct and there is a write
(CMD_WRITE) in progress on selected channel, ADCMD WAITCYCLE does not
reply (mn_ReplyPort) until the end of the current cycle. If there is
no write is progress, ADCMD WAITCYCLE replies immediately. If the
allocation key is incorrect, ADCMD WAITCYCLE returns an error
(ADICERR_NOALLOCATION). ADCMD _WAITCYCLE returns an error
(IOERR_ABORTED) if it is canceled (AbortlIO) or the channel is stolen
(ADCMD ALIOCATE). ADCMD WAITCYCLE is only asynchronous if it is
waiting for a cycle to complete, in which case it clears the quick
flag (IOF _QUICK); otherwise, it is synchronous and only replies if the
quick flag (IOF QUICK) is clear. Do not use ADCMD_WAITCYCLE in
interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort— pointer to message port that receives I/0 request, if
the quick flag (IOF_QUICK) is clear, or if a write is in
progress on- the selected channel and a cycle has

completed

io Device ~ pointer to device node, must be set by (or copied from
1/0 block set by) OpenDevice function

io_Unit - bit map of channel to wait for cycle (bits 0 thru 3

correspond to channels 0-thru 3), if more then one bit
is set lowest bit number channel is used
io Command - command number for CMD WAITCYCLE
io Flags - flags, must be cleared if not used:
IOF_QUICK - (CLEAR) reply I/O request
(SET) only reply I/O request if a write is
in progress on the selected channel
and a cycle has completed
ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD ALLOCATE command

OUTPUTS

ioc_Unit - bit map of channel that successfully waited for cycle
(bits 0 thru 3 correspond to channels 0 thru 3)

io_Flags - IOF_QUICK flag cleared if a write is in progress on the
selected channel

io_Error - error number:
0 - nO error
TOERR _ABORTED ~ canceled (AbortIO) or channel

stolen

ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)
does not match key for channel

audio.device/CMD CLEAR audio.device/command,/CMD_CLEAR

NAME
CMD_CLEAR — throw away internal caches

FUNCTION
CMD_CLEAR is a standard command for multiple audio channels. For each
selected channel (io Unit), if the allocation key (ioa_AllocKey) is
correct, CMD CLEAR does nothing; otherwise, CMD CLEAR returns an error
(ADIOERR_NOALLOCATION). CMD_CLEAR is synchronous and only replies
(mn_ReplyPort) if the quick flag (IOF_QUICK) is clear.

INPUTS
mn_ReplyPort— pointer to message port that receives I/0 request after
if the quick flag (IOF QUICK) is clear

io Device - pointer to device node, must be set by (or copied from
1/0 block set by) OpenDevice function
io Unit — bit map of channels to clear (bits 0 thru 3 correspond

to channels 0 thru 3)

io_Command — command number for CMD CLEAR

io_Flags - flags, must be cleared if not used:
IOF QUICK — (CLEAR) reply I/0 request

ioa AllocKey— allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD ALLOCATE command

OUTPUTS
io Unit — bit map of channels successfully cleared (bits 0 thru 3
correspond to channels 0 thru 3)
io Error - error number:
- 0 - no error

ADIOERR_NOALIOCATION — allocation key (ioa AllocKey)
does not match key for channel

audio.device/CMD_FLUSH

audio.device/command/CMD_FLUSH

CMD_FLUSH —— cancel all pending I/0

FUNCTION

CMD_FLUSH is a standard command for multiple audio channels. For each
selected channel (io Unit), if the allocation key (ioa_AllocKey) is
correct, CMD FLUSH aborts all writes (CMD_WRITE) in progress or queued
and any 1/0 requests waiting to synchronize with the end of the cycle
(ADCMD _WAITCYCLE); otherwise, CMD FLUSH returns an error

audio.device/CMD_READ

audio.device/command/CMD_READ

NAME

CMD_READ —— normal I/O entry point

FUNCTION

CMD READ is a standard command for a single audio channel (io Unit).
If the allocation key (ioa AllocKey) is correct, CMD_READ returns a
pointer (io_Data) to the I/O block currently writing (CMD WRITE) on
the selected channel; otherwise, CMD _READ returns an error

(ADIOERR_NOALLOCATION). If there is no write in progress, CMD_READ

(ADIOERR NOALLOCATION) .)]
(mn_ReplyPort) if the quick flag (IOF_QUICK) is clear.

CMD_FLUSH is synchronous and only replies
Do not use

CMD_FLUSH in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort—

io_Device -
io_Unit -

io_Command -
io_Flags -

ioa_AllocKey—
OUTPUTS
io Unit -

io Error -

pointer to message port that receives I/0 request

if the quick flag (IOF_QUICK) is clear

pointer to device node, must be set by (or copied from
1/0 block set by) OpenDevice function

bit map of channels to flush (bits 0 thru 3 correspond
to channels 0 thru 3)

command number for CMD FLUSH

flags, must be cleared if not used:

IOF_QUICK —~ {(CLEAR) reply I/0 request

allocation key, must be set by (or copied from I/0 block
set by) OpenDevice function or ADCMD ALLOCATE command

bit map of channels successfully flushed (bits 0 thru 3
correspond to channels 0 thru 3)

error number:
0 — no error ‘
ADIOERR_NOALLOCATION — allocation key (ioa_AllocKey)

does not match key for channel

returns zero.)]
if the quick bit (IOF_QUICK) is clear.

INPUTS

mn_ReplyPort-—

CMD READ is synchronous and only replies (mn_ReplyPort)

pointer to message port that receives I/0 request after
if the quick flag (IOF_QUICK) is clear

io Device — pointer to device node, must be set by (or copied from
- 1/0 block set by) OpenDevice function
io Unit - bit map of channel to read (bit 0 thru 3 corresponds to

io_Command
io_Flags

ica_AllocKey—

channel 0 thru 3), if more then one bit is set lowest
bit number channel read

command number for CMD_READ

flags, must be cleared if not used:

IOF_QUICK — (CLEAR) reply I/0 request

allocation key, must be set by (or copied from I/0 block
set by) OpenDevice function or ADCMD ALLOCATE command

OUTPUTS
io_Unit ~ bit map of channel successfully read (bit 0 thru 3
- corresponds to channel 0 thru 3)
io_Error — error number:
0 ~ noO error
ADIOERR NOALLOCATION — allocation key (ioa_AllocKey)
- does not match key for channel
ioca_Data - pointer to I/O block for current write, zero if none is

progress

I

audio.device/CMD RESET audio.device/command/CMD_RESET
NAME
CMD_RESET —— restore device to a known state

FUNCTION
CMD_RESET is a standard command for multiple audio channels. For each
selected channel (io _Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_RESET:
clears the hardware audio registers and attach bits,

. sets the audio interrupt vector,

. cancels all pending I/0 {CMD_FLUSH), and

. un-stops the channel if it is stopped (CMD_STOP),

Otherwise, CMD RESET returns an error (ADIOERR_NOALLOCATION).
CMD_RESET is synchronous and only replies (mn_ReplyPort) if the quick
flag (IOF QUICK) is clear. Do not use CMD_RESET in interrupt code at
interrupt level 5 or higher.

INPUTS
mn_ReplyPort— pointer to message port that receives I/0 request
if the quick flag (IOF_QUICK) is clear

io_Device = pointer to device node, must be set by (or copied from
I1/0 block set by) OpenDevice function
io_Unit —~ bit map.of channels to reset (bits 0 thru 3 correspond

to channels 0 thru 3)

io_Command - command number for CMD RESET

io_Flags — flags, must be cleared if not used:
IOF_QUICK - (CLEAR) reply I/O request

ioa_AllocKey— allocation key, must be set by (or copied from I/0 block
set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit — bit map of channels to successfully reset (bits 0 thru 3
correspond to channels 0 thru 3)
io_Error ~ error number:
~ no error

ADIOERR_NOALLOCATION — allocation key (ioa_AllocKey) -
does not match key for channel

audio.device/CMD_START audio.device/command/CMD_START
NAME .
CMD_START —— start device processing (like Q)

FUNCTION
CMD_START is a standard command. for multiple audio channels. For each
selected channel (io Unit), if the allocation key (ioa_AllocKey) is
correct and the channel was previously stopped (CMD_STOP), CMP_START
immediately starts all writes (CMD_WRITE) to the channel. If the
allocation key is incorrect, CMD_START returns an error
(ADIOERR_NOALLOCATION). CMD_. START starts multiple channels
simultaneously to minimize distortion if the channels are playing the
same waveform and their outputs are mixed. CMD_START is synchronous and

only replies (mn ReplyPort) if the quick flag (IOF_QUICK) is clear. Do
not use CMD_START in interrupt code at interrupt level 5 or higher.
INPUTS

mn_ReplyPort- pointer to message port that receives I/0 request after
if the quick flag (IOF _QUICK) is clear

io_Device — pointer to device node, must be set by (or copied from
I/0 block set by) OpenDevice function
io_Unit - bit map of channels to start (bits 0 thru 3 correspond

to channels 0 thru 3)

io_Command - command number for CMD_START

ic_Flags — flags, must be cleared if not used:
IOF_QUICK — (CLEAR) reply I/O request

ioa_AllocKey— allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io Unit - bit map of channels successfully started (bits 0 thru 3
correspond to channels 0 thru 3)
io_Error ~ error number:
0 - Nno error

ADIOERR NOALLOCATION - allocation key (ioa_AllocKey)
does not match key for channel

audio.device/CMD_STOP audio.device/command /CMD_STOP
NAME R
CMD_STOP —— stop device processing (like °S)

FUNCTION -
CMD_STOP is a standard command for multiple audio channels. For each
selected channel (io Unit), if the allocation key (ioa_AllocKey) is
correct, CMD STOP immediately stops any writes (CMD_WRITE) in
progress; otherwise, CMD_STOP returns an error (ADIOERR_NOALLOCATION).
CMD_WRITE queues up writes to a stopped channel until CMD_START starts
the channel or CMD RESET resets the channel. CMD_STOP is synchronous
and only replies (mn_ReplyPort) if the quick flag (IOF_QUICK) is
clear. Do not use CMD STOP in interrupt code at interrupt level 5 or
higher.

INPUTS
mn_ReplyPort— pointer to message port that receives 1/0 request after
if the quick flag (IOF QUICK) is clear

jio_Device - pointer to device node, must be set by (or copied from
I/0 block set by) OpenDevice function
io_ Unit - bit map of channels to stop (bits 0 thru 3 correspond to

channels 0 thru 3)

io_Command - command number for CMD_STOP

io_Flags - flags, must be cleared if not used:
IOF QUICK — (CLEAR) reply I/0 request

ioa_AllocKey— allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
ic Unit - bit map of channels successfully stopped (bits 0 thru 3
correspond to channels 0 thru 3)
io_Error - error number:
0 — no error

ADTIOERR _NOALLOCATION — allocation key (ioca_AllocKey)
does not match key for channel

audio.device/CMD UPDATE audio.device/command/CMD_UPDATE
NAME
CMD_UPDATE — force dirty buffers out

FUNCTION
CMD UPDATE is a standard command for multiple audio channels. For
each selected channel (io Unit), if the allocation key (ioa AllocKey)
is correct, CMD_UPDATE does nothing; otherwise, CMD UPDATE returns an
error (ADIOERR_NOALLOCATION). CMD UPDATE is synchronous and only

replies (mn_ReplyPort) if the quick flag (IOF _QUICK) is clear.

INPUTS
mn_ReplyPort— pointer to message port that receives I/O request after
- if the quick flag (IOF_QUICK) is clear

io Device — pointer to device node, must be set by (or copied from
1/0 block set by) openDevice function
io_Unit ~ bit map of channels to update (bits 0 thru 3 correspond

to channels 0 thru 3)
io Command - command number for CMD_UPDATE
io Flags - flags, must be cleared if not used:
10F QUICK — (CLEAR) reply I/0 request
ioa AllocKey— allocation key, must be set by (or copied from I/0 block
N set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit — bit map of channels successfully updated (bits 0 thru 3
- correspond to channels 0 thru 3)
io_Error — error number:

0 ~ no error
ADIOERR _NOALLOCATION - allocation key (ioa_AllocKey)
does not match key for channel

0T - 49

audio.device/CMD_WRITE audio.device/command/CMD_WRITE
NAME
CMD_WRITE —— normal I/O entry point

FUNCTION
CMD_WRITE is a standard command for a single audio channel (io_Unit).
1f the allocation key (ioa_AllocKey) is correct, CMD_WRITE plays a
sound using the selected channel; otherwise, it returns an error
(ADIOERR NOALLOCATION). CMD WRITE queues up requests if there is
another write in progress or if the channel is stopped (CMD_STOP).
When the write actually starts; if the ADIOF_PERVOL flag is set,
CMD_WRITE loads volume (ica_Volume) and period (ioa_Period), and if
the ADIOF WRITEMESSAGE flag is set, CMD WRITE replies the write
message (ioa WriteMsg). CMD WRITE returns an error (IOERR_ABORTED) if
it is canceled (AbortIO) or the channel is stolen (ADCMD_ALLOCATE).
CMD WRITE is only asynchronous if there is no error, in which case it
clears the quick flag (IOF_QUICK) and replies the I/0 request
(mn_ReplyPort) after it finishes writting; otherwise, it is synchronous

and only replies if the quick flag (IOF_QUICK) is clear. Do not use
CMD WRITE in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort— pointer to message port that receives I/0 request after
the write completes

io Device - pointer to device node, must be set by (or copied from
1/0 block set by) OpenDevice function
io_Unit - bit map of channel to write (bit 0 thru 3 corresponds to

channel 0 thru 3), if more then one bit is set lowest
bit number channel is written
io_Command - command number for CMD_WRITE
io_Flags - flags, must be cleared if not used:
ADIOF_PERVOL — (SET) load volume and period
ADIOF WRITEMESSAGE — (SET) reply message at write start
ioa_AllocKey— allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command
ioa_Data - pointer to waveform array (signed bytes (—128 thru 127)
in custom chip addressable ram and word aligned)
ioa_Length - length of the wave array in bytes (2 thru 131072, must
be even number
ioca_Period - sample period in 279.365 ns increments (124 thru 65536,
anti-aliasing filter works below 300 to 500 depending on
waveform), if enabled by ADIOF PERVOL
ioca_Volume - volume (0 thru 64, linear), if enabled by ADIOF PERVOL
ioa_Cycles - number of times to repeat array (0 thru 65535, 0 for
infinite)
ioa_WriteMsg- message replied at start of write,
ADIOF_WRITEMESSAGE

if enabled by

OUTPUTS
io Unit - bit map of channel successfully written (bit 0 thru 3
corresponds to channel 0 thru 3)
io_Flags - IOF_QUICK flag cleared if there is no error
io_Error -~ error number:
] - no error
IOERR_ABORTED — canceled (AbortIO) or channel
stolen
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)
does not match key for channel
BUGS

1f CMD_WRITE starts the write immediately after stopping a previous
write, you must set the ADIOF PERVOL flag or else the new data pointer
(ioa_Data) and length (ioa_Length) may not be loaded.

audio.device/OpenDevice audio.device/OpenDevice
NAME
OpenDevice — open the audio device

SYNOPSIS
error = OpeunDevice('"audio.device", unitNumber, iORequest, flags);

FUNCTION
The OpenDevice routine grants access to the audio device. It takes an
I/0 audio request block (iORequest) and if it can successfully open
the audio device, it loads the device pointer (io Device) and the
allocation key (ioa_AllocKey); otherwise, it returns an error
(IOERR_OPENFAIL). OpenDevice increments the open count keeping the
device from being expunged (Expunge). If the length (ioa Length) is
non—-zero, OpenDevice tries to ‘allocate (ADCMD ALLOCATE) audio channels
from a array of channel combination options (ica_Data). If the
allocation succeeds, the allocated channel combination is loaded into
the unit field (ioa_Unit); otherwise, OpenDevice returns an error
(ADIOERR_ALIOCFAILED). OpenDevice does not wait for allocation to
succeed and closes (CloseDevice) the audio device if it fails. To
allocate channels, OpenDevice also requires a properly initialized
reply port (mn_ReplyPort) with an allocated signal bit.

INPUTS
unitNumber—- not used
iORequest — pointer to audio request block (struct IOAudio)
In_Pri - allocation precedence (—128 thru 127), only
necessary for allocation (non-zero length)
mn_ReplyPort— pointer to message port for allocation, only
necessary for allocation (non-zero length)
ioa_AllocKey— allocation key; zero to generate new key.
Otherwise, it must be set by (or copied from I/O
block that is set by) previous OpenDevice
function or ADCMD ALLOCATE command (non—zero
length)
ioa_Data ~ pointer to channel combination options (byte
array, bits 0 thru 3 correspond to channels 0
thru 3), only necessary for allocation (non—zero

length)
ioa_Length — length of the channel combination option array
. (0 thru 16), zero for no allocation
flags - not used
OUTPUTS

iORequest — pointer to audio request block (struct IOAudio)

io_Device - pointer to device node if OpenDevice succeeds,
otherwise -1

io_Unit - bit map of successfully allocated channels (bits
0 thru 3 correspond to channels 0 thru 3)

io_Error

— error number:
0 — no error
IOERR_OPENFAIL ~ open failed
ADIOERR ALLOCFAILED - allocation failed, no open
ioa_AllocKey~ allocation key, set to a unique number if passed
a zero and OpenDevice succeeds

error - copy of io_Error

1T -~ €

TABLE OF CONTENTS

clipboard.
clipboard.
clipboard.
clipboard.

clipboard

device/CBD_POST
device/CBD_CLIPREADID
device/CBD_CLIPWRITEID
device/CMD_READ

.device/CMD_RESET
clipboard.
clipboard.

device/CMD_UPDATE
device/CMD WRITE

clipboard.device/CBD_POST

clipboard.device/CBD_POST

NAME

CBD_POST - post clip to clipboard

FUNCTION

Indicate to the clipboard device that data is available for
use by accessors of the clipboard. This is intended to be
used when a cut is large, in a private data format, and/or
changing frequently, and it thus makes sense to avoid
converting it to an IFF form and writing it to the clipboard
unless another application wants it. The post provides a
message port to which the clipboard device will send a satisfy
nmessage if the data is required.

If the satisfy message is received, the write associated with
the post must be performed. The act of writing the clip
indicates that the message has been received: it may then be
re—used by the clipboard device, and so must actually be
removed from the satisfy message port so that the port is not
corrupted.

1f the application wishes to determine if a post it has
performed is still the current clip, it should check the
post's io_ClipID with that returned by the CBD_CLIPREADID
command. If ClipID is greater, the clip is not still
current.

1f an application has a pending post and wishes to determine
if it should satisfy it (e.g. before it exits), it should
check the post's io_ClipID with that returned by the
CBD_CLIPWRITEID command. If CurrentWritelD is greater, there
is no need to satisfy the post.

IO REQUEST

io_Message mn_ReplyPort set up

io_Device preset by OpenDevice

1o _Unit preset by OpenDevice

1o _Command CBD_POST

io Data pointer to satisfy message port
io_ClipID Zero

RESULTS

io_Error non—zero if an error occurred
io ClipID the clip ID assigned to this post, to be used
in the write command if this is satisfied

[

q

¢T

clipboard.device/CBD CLIPREADID clipboard.device/CBD CLIPREADID

NAME
CBD_CLIPREADID - determine the current read identifier.

FUNCTION .
CBD_CLIPREADID fills the io ClipID with a clip identifier that
can be compared with that of a post command: if greater than
the post identifier then the post data held privately by an
application is not valid for its own pasting.

IO REQUEST
io_Message mn_ReplyPort set up
io_Device preset by OpenDevice
io Unit preset by OpenDevice

io_Command CBD_CLIPREADID

io ClipID the ClipID of the current write is set

clipboard.device/CBD CLIPWRITEID clipboard.device/CBD_CLIPWRITEID

NAME
CBD_CLIPWRITEID — determine the current write identifier.

FUNCTION
CBD_CLIPWRITEID fills the io ClipID with a clip identifier that
can be compared with that of a post command: if greater than
the post identifier then the post is obsolete and need never
be satisfied.

JO REQUEST
io_Message mn_ReplyPort set up
io_Device preset by OpenDevice
io_Unit preset by OpenDevice

io_Command CBD_CLIPWRITEID

io_ClipID the ClipID of the current write is set

€T — 9

clipboard.device/CMD_READ clipboard.device/CMD_READ

NAME
CMD_READ - read clip from clipboard
FUNCTION
The read function serves two purposes.
when io Offset is within the clip, this acts as a normal read
request, and io_Data is filled with data from the clipboard.
The first read request should have a zero io_ClipID, which
will be filled with the ID assigned for this read. Normal
sequential access from the beginning of the clip is achieved
by setting io_Offset to zero for the first read, then leaving
it untouched for subsequent reads. If io_Data is null, then
io Offset is incremented by io_ Actual as if io_length bytes
had been read: this is useful to skip to the end of file
by using a huge io_Length.
When io Offset is beyond the end of the clip, this acts as a
signal to the clipboard device that the application is
through reading this clip. Realize that while an application
is in the middle of reading a clip, any attempts to write new
data to the clipboard are held off. This read past the end
of file indicates that those operations may now be initiated.
IO REQUEST
io_Message mn_ReplyPort set up
io _Device preset by OpenDevice
io_Unit preset by OpenDevice
io_Command CMD_READ
io_Length number of bytes to put in data buffer
io Data pointer to buffer of data to fill, or null to
skip over data
ic Offset byte offset of data to read
io_ClipID zero if this is the initial read
RESULTS
io_Error non-zero if an error occurred
io_Actual filled with the actual number of bytes read
io_Data (the buffer now has io_Actual bytes of data)
1o _Offset updated to next read position, which is
beyond EOF if io_Actual != io_Length
io_ClipID the clip ID assigned to this read: do not

alter for subsequent reads

clipboard.device/CMD_RESET

NAME

CMD_RESET ~ reset the clipboard

FUNCTION

CMD RESET resets th

to the open device.

IO REQUEST
io_Message
io Device
io_Command
io_Flags

mn_ReplyPort set up

preset by OpenDevice

CMD_RESET

I0B_QUICK set if quick I/0 is possible

clipboard.device/CMD_RESET

e clipboard device without destroying handles

i

Y1 - 4

clipboard.device/CMD_UPDATE clipboard.device/CMD_UPDATE

NAME
CMD_UPDATE - terminate the writing of a cut to the clipboard

FUNCTION
Indicate to the clipboard that the previous write commands are
complete and can be used for any pending pastes (reads). This
command cannot be issued while any of the write commands are

pending.
IO REQUEST

ic_Message mn_ReplyPort set up

io_Device preset by OpenDevice

io Unit preset by OpenDevice

io_Command CMD_UPDATE

io_ClipID the ClipID of the write
RESULTS

io Error non-zero if an error occurred

clipboard.device/CMD_WRITE clipboard.device/CMD_WRITE

NAME
CMD_WRITE — write clip to clipboard

FUNCTION
This command writes data to the clipboard. This data can be
provided sequentially by clearing io Offset for the initial
write, and using the incremented value unaltered for
subsequent writes. If io_Offset is ever beyond the current
clip size, the clip is padded with zeros.

If this write is in response to a SatisfyMsg for a pending
post, then the io_ClipID returned by the Post command must
be used. Otherwise, a new ID is obtained by clearing the

io_CliplD for the first write. Subsequent writes must not
alter the io_ClipID.

IO REQUEST

io_Message mn_ReplyPort set up

io_Device preset by OpenDevice

io_Unit preset by OpenDevice

io_Command CMD_WRITE

io_Length number of bytes from io_Data to write

io Data pointer to block of data to write

io Offset usually zero 1f this is the initial write

io ClipID zero if this is the initial write, ClipID of

the Post if this is to satisfy a post

RESULTS

io Error non-zero if an error occurred

ioc_Actual filled with the actual number of bytes written

io_Offset updated to next write position

io_ClipID the clip ID assigned to this write: do not

alter for subsequent writes

ST - d

TABLE OF CONTENTS

console.
console
console
console.
console.
console.
console.
console
console.
console.
console.

device/CD_ASKDEFAULTKEYMAP

.device/CD_ASKKEYMAP
.device/CD_SETDEFAULTKEYMAP

device/CD_SETKEYMAP
device/CDInputHandler
device/CMD CLEAR
device/CMD_READ

.device/CMD WRITE

device/CloseDevice
device/OpenDevice
device/RawKeyConvert

console.device/CD_ASKDEFAULTKEYMAP

NAME
CD_ASKDEFAULTKEYMAP — get the current default keymap

FUNCTION
Fill the io Data buffer with the curremt console device
default keymap, which is used to initialize console unit
keymaps when opened, and by RawKeyConvert with a null
keyMap parameter.

IO REQUEST
io Message mn_ReplyPort set if quick I/0 is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CD_ASKDEFAULTKEYMAP
io Flags IOF_QUICK if quick I/0 possible, else zero
io_Length sizeof (*keyMap)
io_Data struct KeyMap *keyMap
pointer to a structure that describes
the raw keycode to byte stream conversion.
RESULTS

This function sets the io Error field in the IOStdReqg, and fills
the structure pointed to by io Data with the current device
default key map.

BUGS

SEE ALSO
exec/io.h, devices/keymap.h, devices/console.h

i

9T — d

console.device/CD ASKKEYMAP console. device/command /CD_ASKKEYMAP

NAME
CD_ASKKEYMAP - get the current key map structure for this console

FUNCTION

Fill the io_Data buffer with the current KeyMap structure in
use by this console unit.

IO REQUEST
io Message mn_ReplyPort set if quick I/0 is not possible
io_Device preset by the call to Openbevice
io Unit preset by the call to Openbevice
io_Command CD_ASKKEYMAP
io Flags IOF_QUICK if quick I/0 possible, else zero
io_Length sizeof (*keyMap)
io Data struct KeyMap *keyMap
pointer to a structure that describes
the raw keycode to byte stream conversion.
RESULTS

This function sets the io Error field in the IOStdReq, and fills
the structure the structure pointed to by io Data with the current
key map.

BUGS

SEE ALSO
exec/io.h, devices/keymap.h, devices/console.h

console.device/CD_SETDEFAULTKEYMAP

NAME
CD_SETDEFAULTKEYMAP - set the current default keymap

FUNCTION
This console command copies the keyMap structure pointed to
by io _Data to the console device default keymap, which is used
to initialize console units when opened, and by RawKeyConvert
with a null keyMap parameter.

IO REQUEST
io Message mn_ReplyPort set if quick I/0 is not possible
1o Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CD_SETDEFAULTKEYMAP
io_Flags IOF _QUICK if quick I/O possible, else zero
io_Length sizeof{*keyMap)
io Data struct KeyMap *keyMap
pointer to a structure that describes
the raw keycode to byte stream conversion.
RESULTS

This function sets the io_Error field in the I0StdReq, and fills
the current device default key map from the structure pointed to
by io Data.

BUGS

SEE ALSO
exec/i0.h, devices/keymap.h, devices/console.h

LT - 4d

console.device/CD_SETKEYMAP console.device/command/CD_SETKEYMAP

NAME
CD_SETKEYMAP — set the current key map structure for this console

FUNCTION
Set the current KeyMap structure used by this console unit to
the structure pointed to by io_Data.

TI0 REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenbDevice
io_Unit preset by the call to OpenDevice
io_Command CD_SETKEYMAP
io_Flags IOF_QUICK if quick I/O possible, else zero
io_Length sizeof (*keyMap)
io_Data struct KeyMap *keyMap
pointer to a structure that describes
the raw keycode to byte stream conversion.
RESULTS

This function sets the io Error field in the IOStdReq, and fills
the current key map from the structure pointed to by io_ Data.

BUGS

SEE ALSO
exec/io.h, devices/keymap.h, devices/console.h

console.device/CDInputHandler

NAME
CDInputHandler — handle an input event for the console device
SYNOPSIS
events = CDInputHandler(events, consoleDevice)
A0 Al
FUNCTION

Accept input events from the producer, which is usually the
rom input.task.

INPUTS
events — a pointer to a list of input events.
consoleDevice — a pointer to the library base address of the
console device. This has the same value as ConsoleDevice
described. below.

RESULTS
events — a pointer to a list of input events not used by this
handler.
NOTES

This function is available for historical reasons. It is
preferred that input events be fed to the system via the
WriteEvent command of the input.device.

This function is different from standard device commands in
that it is a function in the console device library vectors.
In order to obtain a valid library base pointer for the
console device (a.k.a. ConsoleDevice) call
OpenDevice("console.device", -1, IOStdReq, 0y,

and then grab the ic_Device pointer field out of the IOStdReq
and use as ConsoleDevice.

BUGS

SEE ALSO
input.device

8T — d

.

console.device/CMD_CLEAR console.device/command /CMD_CLEAR

NAME
CMD_CLEAR - clear console input buffer

FUNCTION

Remove from the input buffer any reports waiting to satisfy
read requests.

IO REQUEST .
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CMD_CLEAR
io_Flags IOB_QUICK set if quick I/0 is possible, else 0

BUGS

SEE ALSO

exec/io.h, devices/console.h

console.device/CMD_READ console.device/command,/CMD_READ
NAME
CMD_READ - return the next input from the keyboard

FUNCTION
Read the next input, generally from the keyboard. The form of
this input is as an ANSI byte stream: i.e. either ASCII text
or control sequences. Raw input events received by the
console device can be selectively filtered via the aSRE and aRRE
control sequences (see the write command). Keys are converted
via the keymap associated with the unit, which is modified
with CD AKSKEYMAP and CD_SETKEYMAP

1f, for example, raw keycodes had been enabled by writing
<CSI>1{ to the console (where <CSI> is $9B or Esc[), keys
would return raw keycode reports with the information from
the input event itself, in the form:
<CSI>1;0;<keycoded;<qualifiers>;0;0;<seconds>;<microseconds>q

If there is no pending input, this command will not be
satisfied, but if there is some input, but not as much as can
fill io_Length, the request will be satisfied with the input
currently available.

IO REQUEST
io_Message mn_ReplyPort set if quick I/0 is not possible
ic Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CMD_READ
io_Flags IOF_QUICK if quick I/0 possible, else zero
io_Length sizeof (*buffer)

io_Data char buffer{]

a pointer to the destination for the characters to read
from the keyboard.

RESULTS
This function sets the error field in the I0StdReq, and fills

in the io Data area with the next input, and io_Actual with
the number of bytes read.

BUGS

SEE ALSO
exec/1o0.h, devices/console.h

61 — d

console.device/CMD_WRITE console.device/command/CMD_WRITE

NAME
CMD_WRITE - write text to the display

FUNCTION
Write a text record to the display. Note that the RPort of
the console window is in use while this write command is

pending.

IO REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CMD_WRITE
io_Flags IOF QUICK if quick I/O possible, else zero
io_Length sizeof (*buffer), or -1 if null terminated
io_Data char buffer(]

a pointer to a buffer containing the ANSI text
to write to the console device.

ANSI CODES SUPPORTED

Independent Control Functions (no introducer) ——

Code Name Definition

00/ 7 BEL BELL (actually a DisplayBeep)

00/ 8 BS BACKSPACE

00/ 9 HT HORIZONTAL TAB

00/10 LF LINE FEED

00/11 VT VERTICAL TAB

00/12 FF FORM FEED

00/13 CR CARRIAGE RETURN

00/14 SO SHIFT OUT

00/15 SI SHIFT IN

0l/11 ESC ESCAPE

Code or Esc Name Definition

08/ 4 D IND INDEX: move the active position down one line
08/ 5 E NEL NEXT LINE:

08/ 8 H HTS HORIZONTAL TABULATION SET

08/13 M RI REVERSE INDEX:

09/11 { CSI CONTROL SEQUENCE INTRODUCER: see next list

1SO Compatable Escape Sequences (introduced by Esc) ——
Esc Name Definition

[} RIS RESET TO INITIAL STATE

Control Sequences, with the number of indicated parameters.
i.e. <CSIY<{parameters><control sequence letter(s)>. .Note the
last entries consist of a space and a letter. CSI is either
9B or Esc[. A minus after the number of parameters (#p)
indicates less is valid. Parameters are seperated by
semicolins, e.g. Esc[l4;80H sets the cursor position to row
14, column 80.

CSI #p Name Definition

1- ICH INSERT CHARACTER

1- CUU CURSOR UP

1- CUD CURSOR DOWN

1- CUF CURSOR FORWARD

1- CUB CURSOR BACKWARD

1- CNL CURSOR NEXT LINE

1- CPL CURSOR PRECEEDING LINE

2- CUP CURSOR POSITION

1- CHT CURSOR HORIZONTAL TABULATION

1- ED ERASE IN DISPLAY (only to end of display)
1- EL ERASE IN LINE (only to end of line)

1- IL INSERT LINE

1- DL DELETE LINE

RHEROGHIHETD QT PR

1-

1-
1-

1-
2—
1-

1~
1-
l._
1-

i K 2 D B P QHANESNTT
=

»OHRFD OB

R.QT

DCH
CPR
SuU
SD
CTC
CBT
HVP
TBC
SM
RM
SGR
DSR

DELETE CHARACTER

CURSOR POSITION REPORT (in Read stream only)
SCROLL UP

SCROLL DOWN

CURSOR TABULATION CONTROL

CURSOR BACKWARD TABULATION
HORIZONTAL AND VERTICAL POSITION
TABULATION CLEAR

SET MODE

RESET MODE

SELECT GRAPHIC RENDITION

DEVICE STATUS REPORT

aSLPP SET PAGE LENGTH (private Amiga sequence)

aSLL
asLo
asTo
aSRE
alER
aRRE
aSKR
asCRr
aWSR
aWwBR

SET LINE LENGTH (private Amiga sequence)

SET LEFT OFFSET (private Amiga sequence)

SET TOP OFFSET (private Amiga sequence)

SET RAW EVENTS (private Amiga sequence)

INPUT EVENT REPORT (private Amiga Read sequence)
RESET RAW EVENTS (private Amiga sequence)

SPECIAL KEY REPORT (private Amiga Read sequence)
SET CURSOR RENDITION (private Amiga sequence)
WINDOW STATUS REQUEST (private Amiga sequence)
WINDOW BOUNDS REPORT (private Amiga Read sequence)

Modes, set with <CSI><mode-list>h, and cleared with
<CSIY<mode—1ist>]l, where the mode—list is one or more of the
following parameters, seperated by semicolins ——

Mode

BUGS

Name

Definition

LINEFEED NEWLINE MODE: if a linefeed is a newline
AUTO SCROLL MODE: if scroll at bottom of window
AUTO WRAP MODE: if wrap at right edge of window

Does not display cursor in SuperBitMap layers.

SEE ALSO

ROM Kernal Manual: libraries and devices, exec/io.h

[

oz — 9

console.device/CloseDevice

NAME

Close — close the console device
SYNOPSIS

CloseDevice(I0StdReq)
FUNCTTION

This function closes software access to the console device,

and informs the system that access to this device/unit which was
previously opened has been concluded. The device may perform
certain house-cleaning operations. The I/0 request structure
is now free to be recycled.

INPUTS
I0StdReq —~ pointer to an IOStdReq structure, set by OpenDevice

BUGS

SEE ALSO
console.device/OpenDevice, exec/io.h

console.device/OpenDevice

console.device/function/OpenDevice

NAME

OpenDevice — a request to open a Console device
SYNOPSIS

error = OpenDevice("console.device!, unit, I0StdReq, 0)

DO AQ DO Al D1
FUNCTION

The open routine grants access to a device. There are two
fields in the IOStdReq block that will be filled in: the
io Device field and possibly the io_Unit field.

This open command differs from most other device open commands
in that it requires some information to be supplied in the

io Data field of the I0StdReq block. This initialization
information supplies the window that is used by the console
device for output.

The unit number that is a standard parameter for an open call
is used specially by this device. A unit of -1 indicates that
no actual console is to be opened, and is used to get a pointer
to the device library vector (which will be returned in the
io_Device field of the I0StdReq block). A unit of zero binds
the supplied window to a unique console. Sharing a console
must be done at a level higher than the device. There are no
other valid unit numbers.

I0 REQUEST
io Data struct Window *window
This is the window that will be used for this
console. It must be supplied if the unit in
the OpenDevice call is 0 (see above). The
RPort of this window is potentially in use by
the console whenever there is an outstanding
write command.
INPUTS
"console.device" — a pointer to the name of the device to be opened.

unit — the unit number to open on that device (0, or -1).
I0StdReq — a pointer to a standard request block
0 — a flag field of zero

RESULTS
error — zero if successful, else an error is returned.

BUGS
If a console.device is attached to a SUPERBITMAP window, the cursor
will not be displayed. In this case you are required to TURN OFF the
console's cursor (with the standard escape sequence), and synthisize
your own. Memory loss and compatiblity problems are possible if the
cursor is not turned off.

SEE ALSO
console.device/CloseDevice, exec/io.h, intuition/intuition.h

¢ — €

console. device/RawKeyConvert

NAME
RawKeyConvert — decode raw input classes

SYNOPSIS
actual = RawKeyConvert(event, buffer, length, keyMap)
DO AO Al D1 A2

ConsoleDevice in A6 if called from Assembly Language.

FUNCTION
This console function converts input events of type
IECLASS_RAWKEY to ANSI bytes, based on the keyMap, and
places the result into the buffer.

INPUTS
event — an InputEvent structure pointer.
buffer — a byte buffer large enough to hold all anticipated
characters generated by this conversion.
length — maximum anticipation, i.e. the buffer size in bytes.
keyMap - a KeyMap structure pointer, or null if the default
console device key map is to be used.

RESULTS
actual - the number of characters in the buffer, or -1 if
a buffer overflow was about to occur.

ERRORS
if actual is -1, a buffer overflow condition was detected.
Not all of the characters in the buffer are valid.

NOTES
This function is different from standard device commands in
that it is a function in the console device library vectors.
In order to obtain a valid library base pointer for the
console device (a:k.a. ConsoleDevice) call
OpenDevice('console.device", ~1, I0StdReq, 0),
and then grab the io Device pointer field out of the IOStdReq
and use as ConsoleDevice.

BUGS
SEE ALSO

console.device/OpenDevice, exec/io.h,
devices/inputevent.h, devices/keymap.h

i

ce - 9

TABLE OF

gameport.
gameport.
gameport.
gameport.
gameport.
gameport.

CONTENTS

device/CMD_CLEAR
device/GPD_ASKCTYPE
device/GPD_ASKTRIGGER
device/GPD_READEVENT
device/GPD_SETCTYPE
device/GPD_SETTRIGGER

gameport.device/CMD_CLEAR gameport.device/CMD_CLEAR

NAME
CMD CLEAR - clear gameport input buffer

FUNCTION
Remove from the input buffer any gameport reports waiting to
satisfy read requests.

IO REQUEST
io_Message mn_ReplyPort set if quick I/0 is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io. Command CMD_CLEAR
io_Flags IOB_QUICK set if quick I/O is possible

€z — 94

gameport.device/GPD_ASKCTYPE gameport .device/GPD_ASKCTYPE

NAME
GPD_ASKCTYPE — inquire the current game port controller type
FUNCTION
This command identifies the type of controller at the game
port, so that the signals at the port may be properly
interpreted. The controller type has been set by a previous
GPD_SETCTYPE.
This command always executes immediately.
IO REQUEST
io Message mn_ReplyPort set if quick I/0 is not possible
io_Device preset by the call to OpenDevice

io Unit preset by the call to OpenDevice
io_Command GPD_ASKCTYPE

io_Flags IOB_QUICK set if quick I/O is possible

io_Length at least 1

io_Data the address of the byte variable for the
result

gameport.device/GPD_ASKTRIGGER gameport .device/GPD_ASKTRIGGER
NAME
GPD_ASKTRIGGER - inquire the conditions for a game port report

FUNCTION
This command inquires what conditions must be met by a game
port unit before a pending Read request will be satisfied.
These conditions, called triggers, are independent —- that
any one occurs is sufficient to queue a game port report to
the Read queue. These conditions are set by GPD_SETTRIGGER.

This command always executes immediately.

10 REQUEST
io Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice

io_Unit preset by the call to OpenDevice
io_Command GPD_ASKTRIGGER
io Flags IOB QUICK set if quick I/O is possible
io_Length sizeof (gameportTrigger)
io_Data a structure of type GameportTrigger, which
has the following elements
gpt_Xeys -
GPTB_DOWNKEYS set if button down transitions
trigger a report, and GPTB_UPKEYS set if button up
transitions trigger a report
gpt_Timeout -
a time which, if exceeded, triggers a report;
measured in vertical blank units (60/sec)
gpt_XDelta - R
a distance in x which, if exceeded, triggers a
report
gpt_YDelta -
a distance in x which, if exceeded, triggers a
report

vZ - €

NAME

FUNCTION
Read game port

JO REQUEST
io Message
io Device
io Unit
io_Command
io_Flags
io_Length
io_Data
le NextEven
ie Class
ie_SubClass

ie_Code

ie Qualifie

ie X, ie Y

ie TimeStam

RESULTS

events).

SEE ALSO

gameport.device/GPD_READEVENT

data area of the iORequest.

GPD_READEVENT —~ return the next game port event.

events from the game port and put them in the

mn_ReplyPort set if quick I/0 is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
GPD_READEVENT
I0B_QUICK set if quick I/0 is possible
the size of the io Data area in bytes: there
are sizeof (inputEvent) bytes per input event.
a buffer area to fill with input events. The
fields of the input event are:
t
links the events returned

is IECLASS_RAWMOUSE
is 0 for the left, 1 for the right game port

contains any gameport button reports. No
report is indicated by the value Oxff.
T

only the relative and button bits are set

the x and y values for this report, in either
relative or absolute device dependent units.
P

the delta time since the last report, given
not as a standard timestamp, but as the frame
count in the TV_SECS field.

This function sets the error field in the iORequest, and fills
the iORequest with the next game port events (but not partial

gameport .device/GPD_SETCTYPE, gameport.device/GPD_SETTRIGGER

gameport.device/GPD_READEVENT

If there are no pending game port
events, this command will not be satisfied, but if there are
some events, but not as many as can fill IO_LENGTH, the
request will be satisfied with those currently available.

gameport . device/GPD_SETCTYPE gameport .device/GPD_SETCTYPE

NAME

GPD_SETCTYPE - set the current game port controller type
FUNCTION

This command sets the type of device at the game port, so that

the signals at the port may be properly interpreted. The port
can also be turned off, so that no reports are generated.

This command always executes immediately.

IO REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
io Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command GPD_SETCTYPE
io_Flags IOB_QUICK set if quick I/0 is possible
io Length 1
io_Data the address of the byte variable describing

the controller type, as per the equates in
the gameport include file

s¢ - 9

gameport .device/GPD_SETTRIGGER gameport.device/GPD_SETTRIGGER

NAME
GPD_SETTRIGGER — set the conditions for a game port report
FUNCTION
This command sets what conditions must be met by a game
port unit before a pending Read request will be satisfied.
These conditions, called triggers, are independent — that
any one occurs is sufficient to queue a game port report to
the Read queue. These conditions are inquired with
GPD_ASKTRIGGER.
This command always executes immediately.
IO REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command GPD_SETTRIGGER
io_Flags IOB_QUICK set if quick I/0 is possible
io_Length sizeof (gameportTrigger)
io Data a structure of type GameportTrigger, which

has the following elements
gpt_Keys -
GPTB_DOWNKEYS set if button down transitions
trigger a report, and GPTB_UPKEYS set if button up
transitions trigger a report
gpt_Timeout —
a time which, if exceeded, triggers a report;
measured in vertical blank units (60/sec)
gpt_XDelta -
a distance in x which, if exceeded, triggers a
report
gpt_YDelta -
a distance in x which, if exceeded, triggers a
report

i

9¢ - 4

TABLE

input.
input.
input.
input.
input.
input.
input.
input.
input.
input.

OF CONTENTS

device/AddHandler
device/RemHandler
device/Reset
device/SetMPort
device/SetMTrig
device/SetMType
device/SetPeriod
device/SetThresh
device/Start
device/WriteEvent

input.device/AddHandler input.device/AddHandler

NAME
AddHandler - add an input handler to the device

FUNCTION
Add a function to the 1list of functions called to handle
input events generated by this device. The function is called

as
newInputEvents = Handler(inputEvents, handlerData);
DO a0 Al
IO REQUEST
io_Message mn_ReplyPort set
io_Device preset by OpenDevice
io Unit preset by OpenDevice
io_Command IND_ ADDHANDLER
io_Data a pointer to an interrupt structure.
is_Data the handlerData pointer described above
is_Code the Handler function address
NOTES

The interrupt structure is kept by the input device until a
RemHandler command is satisfied for it.

L2 - d

input.device/Remtandler

NAME

input.device/RemHandler

RemHandler — remove an input handler from the device

FUNCTION

Remove a function previously added to the list of handler

functions.

IO REQUEST
io_Message
io_Device
io Unit
io_Command
io_Data

NOTES

mn_ReplyPort set

preset by OpenDevice

preset by OpenDevice

IND_REMHANDLER

a pointer to the interrupt structure.

This command is not immediate

input.device/Reset

NAME

input.device/Reset

Reset — reset the input device

FUNCTION

Reset resets the input device without destroying handles
to the open device.

IO REQUEST
io_Message
io_Device
io_Unit
io_Command
io_Flags

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice

preset by the call to OpenDevice

CMD_RESET

I0B_QUICK set if quick I/O is possible

8¢ — 4

Il

input.device/SetMPort input.device/SetMPort

NAME
SetMPort — set the current mouse port

FUNCTION
This command sets the gameport port at which the mouse is
connected.

IO REQUEST
io Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io Unit preset by the call to OpenDevice
io_Command IND_SETMPORT
io_Flags IOB_QUICK set if quick I/O is possible
io_Length 1
io_Data a pointer to a byte that is either 0 or 1,

indicating that mouse input should be obtained
from either the left or right controller port,
respectively.

input.device/SetMTrig input.device/SetMTrig

NAME
SetMTrig — set the conditions for a mouse port report
FUNCTION
This command sets what conditions must be met by a mouse
before a pending Read request will be satisfied. The trigger
specification is that used by the gameport device.
IO REQUEST
io_Message mn_ReplyPort set if quick I/0 is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command IND_SETMTRIG
io- Flags IOB_QUICK set if quick I/O is possible
io_Length sizeof (gameportTrigger)
io_Data a structure of type GameportTrigger, which
has the following elements
gpt_Keys -

GPTB_DOWNKEYS set if button down transitions
trigger a report, and GPTB_UPKEYS set if button up
transitions trigger a report
gpt_Timeout -
a time which, if exceeded, triggers a report;
measured in vertical blank units (60/sec)
gpt_XDelta -
a distance in x which, if exceeded, triggers a
report ’
gpt_YDelta -
a distance in x which, if exceeded, triggers a
report

6 - d

input.device/SetMType input.device/SetMType

NAME
SetMType — set the current mouse port controller type

FUNCTION
This command sets the type of device at the mouse port, so
the signals at the port may be properly interpreted.

IO REQUEST
io_Message mn_ReplyPort set if quick I/0 is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command IND_SETMTYPE
io_Flags IOB QUICK set if quick I/0 is possible
io_Length 1
io Data the address of the byte variable describing

the controller type, as per the equates in
the gameport include file

input .device/SetPeriod input.device/SetPeriod

NAME
SetPeriod — set the key repeat period

FUNCTION _)
This command sets the period at which a repeating key repeats.

This command always executes immediately.

IO REQUEST - a timerequest i
io_Message mn_ReplyPort set if quick I/0 is not possible

io_Device preset by the call to OpenDevice

io Unit preset by the call to OpenDevice
io_Command IND_SETPERIOD

io_Flags IOB_QUICK set if quick I/0 is possible

the repeat period seconds
the repeat period microseconds

io_tv_Secs
io_tv Micro

0g - €

input.device/SetThresh input.device/SetThresh input.device/Start input.device/Start

NAME NAME
SetThresh — set the key repeat threshold Start — restart after stop
FUNCTION FUNCTION
This command sets the time that a key must be held down before start restarts the unit after a stop command.
it can repeat. The repeatability of a key may be restricted
(as, for example, are the shift keys). I0 REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
This command always executes immediately. io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
IO REQUEST — a timerequest io_Command CMD_START
io_Message mn_ReplyPort set if quick I/O is not possible io_Flags I0B_QUICK set if quick I/O is possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command IND_SETTHRESH
io Flags I0B_QUICK set if quick I/0 is possible
io_tv_Secs the threshold seconds
io tv_Micro the threshold microseconds

¢ - €

input.device/WriteEvent input.device/WriteEvent

NAME
WriteEvent — propagate input event(s) to all handlers
FUNCTION
IO REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command IND WRITEEVENT .
io_Flags IOB_QUICK set if quick I/0 is possible
io_Length the size of the io_Data area in bytes: there
are sizeof (inputEvent) bytes per input event.
io_Data a buffer area with input events(s). The
fields of the input event are:
ie NextEvent
links the events together, the last event
has a zero ie NextEvent.
ie_Class
ie SubClass
ie Code
ie Qualifier
ie X, ie Y
ie_ TimeStamp
as desired
NOTES

The contents of the input event(s) are destroyed.

[

ce —- 4

TABLE OF

keyboard.
keyboard.
keyboard.
keyboard.
keyboard.
keyboard.
keyboard.

CONTENTS

device/CMD_CLEAR
device/CMD_RESET
device/KBD_ADDRESETHANDER
device/KBD_READEVENT
device/KBD_READMATRIX
device/KBD_REMRESETHANDLER
device/KBD_ RESETHANDLERDONE

keyboard.device/CMD_CLEAR

NAME

keyboard.device/CMD_CLEAR

CMD _CLEAR - clear keyboard input buffer

FUNCTION

Remove from the input buffer any keys transitions waiting to
satisfy read requests.

IO REQUEST
io_Message
io_Device
io_Command
io Flags

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice

CMD_CLEAR

IOB_QUICK set if quick I/0 is possible

€ - d

keyboard.device/CMD_RESET keyboard.device/CMD_RESET

NAME
CMD_RESET — reset the keyboard
FUNCTION
CMD_RESET resets the keyboard device without destroying handles
to the open device.
IO REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
jio_Device preset by the call to OpenDevice
io_Command CMD_RESET
io_Flags IOB_QUICK set if quick I/O is possible

keyboard.device/KBD_ADDRESETHANDER

NAME
KBD_ADDRESETHANDER — add a reset handler to the device

FUNCTION
Add a function to the list of functions called to clean up
before a hard reset:
Handler{handlerData);
Al

Note that the AS500 does not support this. CTRL-Amiga-Amiga
on an A500 does an immediate hard processor reset.

IO REQUEST
io_Message mn_ReplyPort set
io_Device preset by OpenDevice
io Unit preset by OpenDevice
io_Command KBD_ADDRESETHANDLER
io Data a pointer to an interrupt structure.
is_Data the handlerData pointer described above
is Code the Handler function address
NOTES

The interrupt structure is kept by the keyboard device until a

KBD_REMRESETHANDLER command is satisfied for it.

¥e — 9

keyboard.device/KBD_READEVENT keyboard.device/KBD_READEVENT

NAME
KBD_READEVENT — return the next keyboard event.

FUNCTION
Read raw keyboard events from the keyboard and put them in the
data area of the iORequest. If there are no pending keyboard
events, this command will not be satisfied, but if there are
some events, but not as many as can fill IO _LENGTH, the
request will be satisfied with those current