

ROM Kernel Reference Manual
Devices

Third Edition

Commodore-Amiga, Inc.

AMIGATECHNICAL REFERENCE SERIES

•
Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Contributors:
Dan Baker, Bruce Barrett, Mark Barton, Steve Beats, Dave Berezowski, Ray Brand, Bob Burns, Peter Cherna, Eric Cotton, Susan Dey!,
Sam Dicker, Ken Farinsky, Stuart Ferguson, Andy Finkel, Darren Greenwald, Paul Higginbottom, Larry Hildenbrand. Randell Jesup,
David Junod, Neil Kalin, Joe Katz, Kevin Klop, Adam Levin, Dave Lucas, Dale Luck, Jim Mackraz, R.J. Mica!, Bryce Nesbitt,
John Orr, Bob Pariseau, Rob Peck, Tom Pohorsky, Carl Sassenrath, Stan Shepard. Michael Sinz, Nancy Rains, Chris Raymond,
Tom Rokicki, Jez San, Carolyn Scheppner, Leo Schwab, Darius Taghavy, Ewout Walraven, Bart Whitebook and Rob Wyesham.

Third edition by:
Mark Ricci

Cover designer:
Hannus Design Associates

Copyright © 1991 by Commodore Electronics Limited.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where thooe designations appear in this book and

Addison-Wesley was aware of a trademark claim, the designations have been printed in initial caps. Amlga is a registered trademark of Commodo,.Amlga, Inc. Amiga 500,
Amiga 1000, Amiga 2000, Amiga 3000, Amiga[X)S, Amlga \-\brkbench, and Amlga Klc:kstart are trademarks of Commodo.....Amlga. Inc:. AUI"OCONFIG is a trademark of Com­
modore Electronics Limited. Commodore and the Commodore logo are registered trademarks of Commodore Eiectronks Limited. Motorola is a registered trademark and
68000, 68010, 68020, 68030, and 68040 are trademarks of Motorola, Inc. CAPE and Inovatronks are trademarks of Inovatronics, Inc. Centronics is a registered trademark of Cen­
tronics Data Computer Corp. Epson is a registered trademark of Epson America, Inc. Hewlett-Packard is a trademark and HP LaserJet is a registered trademark of Hewlett­
Packard, Co. Hisoft and Devpac Amlga are trademarks of HlSoft. IBM is a registered trademark of International Businet~~ Machines Corp. Macintosh is a registered trademark
of Apple Computer, Inc. UNIX is a registered trademark of AT&T.

All rights reserved. No pari of this publication may be reproduced, stored in a retrieval system, or transmltied, in any form or by any means, electronic, mechanical, photocopy­
ing. recording. or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Commodore item number: 363099-02

123456789-AL-9594939291
First printing, September 1991
ISBN 0...201-56775-X

WARNING: The information described in this manual may contain errors or bugs. and may not function as described. All information is subject to enhancement or upgrade for
any reason including to fix bugs. add features, or change performance. As with all software upgrades, full compatibility. although a goaL cannot be guaranteed, and is in fact
unlikely.

DISCLAIMER: COMMODORE-AMIGA, INC., C'COMMODORE') MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED, OR REPFSENTATIONS WI1H RFSPECf
TO TiiE INFORMATION DESCRIBED HEREIN. SUCH INFORMATION IS PROVIDED ON AN "AS IS'' BASIS AND IS EXPRESSLY SUBJECT TO OiANGE WI'IHOUT
NOTICE. IN NO EVENT WILL COMMODORE BE LIABLE FOR ANY DIRECT, INDIRECT, INGDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
CLAIM ARISING OUT OF TiiE INFORMATION PRESENTED HEREIN, EVEN IF IT HAS BEEN ADVISED OF TiiE POSSIBII1TY OF SUCH DAMAGES. SOME STATES DO
NOT ALWW TiiE EXCLUSION OR UMITATION OF IMPUED WARRANTIFS OR LIABILffiES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO TiiE ABOVE
UMITATION OR EXCLUSION MAY NOT APPLY.

------ ------·~------------

CONTENTS

Chapter 1 INTRODUCTION TO AMIGA SYSTEM DEVICES 1
What is a Device? .. 2
Accessing a Device ... 2
Using a Device ... 4
Synchronous vs. Asynchronous Requests ... 5
1/0 Request Completion .. 6
Ending Device Access .. 7
Devices With Functions ... 8
Example Device Programs .. 9

Chapter 2 AUDIO DEVICE ... 13
About Amiga Audio ... 13
Audio Device Commands and Functions ... 15
Device Interface ... 16
A Simple Audio Example .. 19
Audio Allocation and Arbitration .. 21
Allocation and Arbitration Commands ... 22
Hardware Control Commands ... 25
Double Buffered Sound Example .. 28
Additional Information on the Audio Device ... 34

Chapter 3 CLIPBOARD DEVICE 35
Clipboard Device Commands and Functions ... 36
Device Interface ... 37
Monitoring Clipboard Changes .. 42
Example Clipboard Programs .. 43
Support Functions Called from Example Programs ... 50
Include File for the Example Programs ... 58
Additional Information on the Clipboard Device ... 59

Chapter 4 CONSOLE DEVICE .. 61
Console Device Commands and Functions ... 62
Device Interface ... 63
About Console 1/0 .. 66
Writing to the Console Device ... 67
Reading from the Console Device .. 74
Copy and Paste Support ... 76
Selecting Raw Input Events .. 77
Input Event Reports ... 78
Using the Console Device Without a Window .. 79

Where Is All the Keymap Information? .. 81
Console Device Caveats ... 81
Console Device Example Code .. 81
Additional Information on the Console Device ... 86

Chapter 5 GAMEPORT DEVICE .. 87
Gameport Device Commands and Functions ... 88
Device Interface ... 89
Gameport Events .. 91
Setting and Reading the Controller Type ... 94
Joystick Example Program ... 95
Additional Information on the Gameport Device .. 100

Chapter 6 INPUT DEVICE 1 01
Input Device Commands and Functions ... 102
Device Interface .. 103
Using the Mouse Port With the Input Device .. 107
Adding an Input Handler ... 108
Writing Events to the Input Device Stream .. 109
Setting the Key Repeat Threshold .. 112
Setting the Key Repeat Interval ... 113
Determining the Current Qualifiers ... 113
Input Device and Intuition .. 114
Example Input Device Program ... 115
Additional Information on the Input Device ... 118

Chapter 7 KEYBOARD DEVICE ... 119
Keyboard Device Commands and Functions .. 120
Device Interface .. 121
Reading the Keyboard Matrix .. 122
Amiga Reset Handling ... 124
Reading Keyboard Events .. 128
Additional Information on the Keyboard Device .. 130

Chapter 8 NARRATOR DEVICE ... 131
Narrator Device Commands and Functions ... 132
Device Interface .. 133
Writing to the Narrator Device .. 136
Reading from the Narrator Device .. 141
How to Write Phonetically for Narrator ... 143
A More Technical Explanation ... 149
Example Speech and Mouth Movement Program .. 151
Additional Information on the Narrator Device .. 158

Chapter 9 PARALLEL DEVICE .. 159
Parallel Device Commands and Functions .. 160
Device Interface .. 161
Ending A Read or Write with Termination Characters 163

11

Setting Parallel Parameters ... 165
Querying the Parallel Device ... 166
Additional Infom1ation on the Parallel Device .. 169

Chapter 10 PRINTER DEVICE ... 171
Printer Device Commands and Functions ... 172
Printer Device Access .. 173
Device Interface .. 175
Sending Printer Commands to a Printer ... 178
Obtaining Printer Specific Data ... 181
Reading and Changing the Printer Preferences Settings 182
Querying the Printer Device .. 186
Error Codes from the Printer Device .. 187
Dumping a Rastport to a Printer .. 187
Creating a Printer Driver ... 196
Example Printer Driver Source Code ... 210
Additional Information on the Printer Device ... 246

Chapter 11 SCSI DEVICE 247
SCSI Device Commands and Functions ... 248
Device Interface .. 249
SCSI-Direct .. 250
RigidDiskBlock- Fields and Implementation ... 253
Amiga BootStrap ... 257
SCSI-Direct Example .. 260
Additional Information on the SCSI Device ... 263

Chapter 12 SERIAL DEVICE ... 265
Serial Device Commands and Functions .. 266
Device Interface .. 267
A Simple Serial Port Example .. 269
Alternative Modes for Serial Input or Output .. 270
Setting Serial Parameters (SDCMD_SETPARAMS) 275
Querying the Serial Device ... 278
Sending the Break Command ... 279
Error Codes from the Serial Device ... 279
Multiple Serial Port Support .. 280
Taking Over the Hardware .. 280
Advanced Example of Serial Device Usage ... 281
Additional Information on the Serial Device .. 284

Chapter 13 TIMER DEVICE .. 285
Timer Device Commands and Functions .. 286
Device Interface .. 287
System Time ... 290
Adding a Time Request .. 292
Using the Time Arithmetic Functions ... 295
E-Oock Time and Its Relationship to Actual Time .. 298

Ill

Example Timer Program ... 299
Additional Information on the Timer Device .. 302

Chapter 14 TRACKDISK DEVICE ... 303
Trackdisk Device Commands and Functions .. 304
Device Interface .. 305
Advanced Commands .. 309
Disk Status Commands ... 312
Commands for Diagnostics and Repair ... 314
Notification of Disk Changes ... 314
Commands for Low-Level Access .. 315
Trackdisk Device Errors .. 317
Example Trackdisk Program .. 318
Additional Information on the Trackdisk Device .. 322

Chapter 15 RESOURCES .. 323
The Amiga Resources .. 324
Resource Interface ... 324
BattClock Resource .. 325
BattMem Resource ... 327
CIA Resource .. 328
Disk Resource ... 336
FileSystem Resource ... 337
Mise Resource ... 339
Potgo Resource .. 343

Appendix A IFF: INTERCHANGE FILE FORMAT 347
A Quick Introduction to IFF .. 349
"EA IFF 85" Standard for Interchange Format Files 355
"ILBM" IFF Interleaved Bitmap .. 381
"FTXT" IFF Formatted Text .. 393
"SMUS" IFF Simple Musical Score .. .401
"8SVX" IFF 8-Bit Sampled Voice .. 419
IFF FORM and Chunk Registry .. 429
IFF Source Code ... 489

Appendix B EXAMPLE DEVICE . .. 557

Appendix C AMIGA FLOPPY BOOT PROCESS AND PHYSICAL LAYOUT 571

~---~~-~-------~-----------

Preface

The Amiga® Technical Reference Series is the official guide to programming Commodore's Amiga

computers. This revised edition of the Amiga ROM Kernel Reference Manual: Devices provides

detailed information about the Amiga's I/0 subsystems. It has been updated for Release 2 (Kickstart
V36 and up) of the Amiga operating system, however, most of the material and example programs
are also compatible with version 1.3.

This book is intended for the following audiences:

• Novice Amiga programmers who want to try out features of the Amiga devices without writing
full-blown applications.

• Experienced programmers new to the Amiga.

• Amiga programmers and developers who want to use the devices in an application.

It is assumed that the reader can program in Cor at least understand it.

Here is a brief overview of the contents:

Chapter 1, Introduction to Amiga System Devices. An introduction to the concept of an
Amiga system device, the device interface, and how to perform 1/0 using the devices.

Chapter 2, Audio Device. The Amiga audio device allows you to play music and make
sounds. Two example programs arc included.

Chapter 3, Clipboard Device. The clipboard device is a central facility for sharing in­
formation between applications. The chapter covers the types of clipboard data and the
proper ways to use the clipboard. Two example programs arc included plus an extensively
commented module of support functions for the programs.

Chapter 4, Console Device. The console device is the text-oriented interface for Amiga
windows. The chapter lists the escape sequences used for console windows and the types
of console windows. An example program is included.

Chapter 5, Gameport Device. The gamcport device manages the various pointing devices
you plug into the mouse/joystick connectors. The chapter discusses the types of pointing

devices, the protocol for using the device and includes an example program.

Chapter 6, Input Device. The input device collects input event information and passes this
on to the operating system. The chapter covers this interaction between the various input

sources of the system, tells how to create your own input events and includes two example

programs.

v

Chapter 7, Keyboard Device. The keyboard device is the Amiga keyboard manager. The
chapter covers how to read the keyboard at a low level and also how to program system
reset (Ctrl-Amiga-Amiga) handlers. Three example programs are included.

Chapter 8, Narrator Device. The narrator device is the voice of the Amiga. This chapter
explains how to use the narrator device and the translator library, how to write phonetic
strings for the device, and discusses the technical aspects of computer generated speech in
thorough, but understandable terms. Two example programs are included.

Chapter 9, Parallel Device. The parallel device manages the Amiga parallel port. Two
example programs are included.

Chapter 10, Printer Device. The printer device translates character streams into printer
specific sequences. The chapter covers how to use the printer device and how to write your
own printer driver. It contains two example programs and two complete printer drivers.

Chapter 11, SCSI Device. The SCSI device provides the Small Computer System Interface
for the Amiga. The chapter covers how to send Amiga specific and SCSI speci fie commands
to SCSI devices. An example program is included.

Chapter 12, Serial Device. The serial device manages the Amiga serial port. Three
example programs are included.

Chapter 13, Timer Device. The timer device an interface to the Amiga's internal clocks.
The chapter explains the types of clocks and clock units. Four example programs are
included.

Chapter 14, Trackdisk Device. The trackdisk device controls the Amiga disk drives. The
chapter covers how to use the drives at a high-level (formatted reads and writes) and
low-level (raw reads and writes). An example program is included.

Chapter 15, Resources. The Amiga resources are a collection of low-level interfaces to
special Amiga hardware. The chapter covers the general resource interface and how to use
all seven resources. Example code is included for all but one of the resources.

Appendix A, IFF, Interchange File Format. IFF is the standardized file format of the
Amiga. This appendix introduces IFF, covers five of the IFF types, lists the official FORM
and Chunk names that are reserved and in use and how to register new ones. IFF include
files, link modules, example programs and utilities are included.

Appendix B, Example Device. This appendix contains the assembly code for an Amiga
device for all those who want to create their own custom software I/0 device.

Appendix C, Amiga Floppy Boot Process and Physical Layout. This appendix lists the
method used to read the boot block of a floppy and how the data is arranged in the boot
block.

The other manuals in this series are the Amiga User Interface Style Guide, an application design
specification and reference work for Amiga programmers, theAmiga ROM Kernel Reference Manual:
Includes and Autodocs, an alphabetically organized reference of ROM function summaries and
Amiga system include files, theAmiga ROM Kernel Reference Manual: Libraries, a work consisting
of tutorial-style chapters on the use of each Amiga system library, and thcAmigaH ardware Reference
Manual, a detailed description of the Amiga's hardware components.

VI

chapter one
INTRODUCTION TO AMIGA
SYSTEM DEVICES

The Amiga system devices are software engines that provide access to the Amiga hardware. Through
these devices, a programmer can operate a modem, spin a disk drive motor, time an event, speak to
a user and blast a trumpet sound in beautiful, living stereo. Yet, for all that variety, the programmer
uses each device in the same basic manner.

Amiga System Devices

Audio Controls the use of the audio hardware

Clipboard Manages the cutting and pasting of common data blocks
Console Provides the text-oriented user interface.
Gameport Controls the two mouse/joystick ports.
Input Processes input from the gameport and keyboard devices.
Keyboard Controls the keyboard.
Narrator Produces the Amiga synthesized speech.
Parallel Controls the parallel port.

Printer Converts a standard set of printer control codes to printer specific codes.
SCSI Controls the Small Computer Standard Interface hardware.
Serial Controls the serial port.
Timer Provides timing functions to measure time intervals and send interrupts.
Track disk Controls the Amiga floppy disk drives.

Introduction to Amiga System Devices 1

What is a Device?

An Amiga device is a software module that accepts commands and data and perfonns 1/0 operations
based on the commands it receives. In most cases, a device interacts with either internal or external
hardware. Generally, an Amiga device runs as a separate task which is capable of processing your
commands while your application attends to other things.

Device 1/0 is based on the EXEC messaging system. The philosophy behind the devices is that
1/0 operations should be consistent and unifonn. You print a file in the same manner as you play
an audio sample, i.e., you send the device in question a WRITE command and the address of the
buffer holding the data you wish to write.

The result is that the interface presented to the programmer is essentially device independent and
accessible from any computer language. This greatly expands the power the Amiga computer brings
to the programmer and, ultimately, to the user.

Devices support two types of commands: Exec standard commands like READ and WRITE, and
device specific commands like the trackdisk device MOTOR command which controls the floppy
drive motor. The Exec standard commands are supported by most Amiga devices. You should keep
in mind, however, that supporting standard commands does not mean that all devices execute them
in exactly the same manner.

This manual contains a chapter about each of the Amiga devices. The chapters cover how you use
a device and the commands it supports. In addition, the Amiga ROM Kernel Reference Manual:
Includes and Autodocs contains expanded explanations of the commands and the include files for
each device, and the Amiga ROM Kernel Reference Manual: Libraries contains chapters on Exec.
The command explanations list the data, flags, and other infonnation required by a device to execute
a command. The Exec chapters provide detailed discussions of its operation. Both are very useful
manuals to have on your desk when you are programming the devices.

Accessing a Device

Accessing a device requires obtaining a message port, allocating memory for a specialized message
packet called an 1/0 request, setting a pointer to the message port in the 1/0 request, and finally,
establishing the link to the device itself by opening it. An example of how to do this will be provided
later in this chapter.

The message port is used by the device to return messages to you. A message port is obtained by
calling the CreateMsgPort() or CreatePort() function. You must delete the message port when
you are finished by calling the DeleteMsgPort() or DeletePort() function.

For pre-V36 versions of the operating system (before Release 2.0), use the amiga.lib functions
CreatePort() and DeletePort(); for V36 and higher, use the Exec functions CreateMsgPort() and
DeleteMsgPort(). CreatePort() and DeletePort() are upward compatible, you can use them with
V36N37; CreateMsgPort() and DeleteMsgPort() are not backward compatible, however.

The 1/0 request is used to send commands and data from your application to the device. The 110
request consists of fields used to hold the command you wish to execute and any parameters it
requires. You set up the fields with the appropriate infonnation and send it to the device by using
Exec l/0 functions.

2 Amiga ROM Kernel Reference Manual: Devices

At least four methods exist for creating an 1/0 request:

• Declaring it as a structure. The memory required will be allocated at compile time.

• Declaring it as a pointer and calling the AllocMem() function. You will have to call the
FreeMem() function to release the memory when you are done.

• Declaring it as a pointer and calling the CreateExtiO() function. This function not only
allocates the memory for the request, it also puts the message port in the 1/0 request. You will
have to call the DeleteExtiO() function to delete the 1/0 request when you are done. This is
the pre-V36 method (used in 1.3 and earlier versions of the operating system), but is upward
compatible.

• Declaring it as a pointer and calling the CreateiORequest() function. This function not only
allocates the memory for the request, it also puts the message port in the 1/0 request. You will
have to call the DeleteiORequest() function to delete the 1/0 request when you are done. This
is the V36N37 method; it is not backwards compatible.

The message port pointer in the 1/0 request tells the device where to respond with messages for
your application. You must set a pointer to the message port in the 1/0 request if you declare it as a
structure or allocate memory for it using AllocMem().

The device is opened by calling the OpenDevice() function. In addition to establishing the link to
the device, OpenDevice() also initializes fields in the 1/0 request. OpenDevice() has this fonnat:

return= OpenDevice(device_name,unit_number, (struct IORequest *)IORequest,flags)

where:

• device_name is one of the following NULL-tenninatcd strings for system devices:

audio.device keyboard.device serial.device
clipboard.device narrator.device timer.device
console.device parallel.device trackdisk.device
gameport.device printer.device
input.device scsi.device

• uniLnumber refers to one of the logical units of the device. Devices with one unit always use
unit 0. Multiple unit devices like the trackdisk device and the timer device use the different
units for specific purposes. The device chapters discuss the units in detail.

• IORequest is the structure discussed above. Some of the devices have their own 1/0 requests
defined in their include files and others use standard 1/0 requests, (IOStdReq). The device
chapters list the 1/0 request that each device requires.

• flags are bits set to indicate options for some of the devices. This field is set to zero for devices
which don't accept options when they are opened. The device chapters and autodocs list the
flags values and uses.

• return is an indication of whether the OpenDevice() was successful with zero indicating
success. Never assume that a device will successfully open. Check the return value and act
accordingly.

Zero Equals Success for OpenDevice{). Unlike most Amiga system functions,
OpenDevice() returns zero for success and a device-specific error value for failure.

Introduction to Amiga System Devices 3

Using a Device

Once a device has been opened, you use it by passing the 1/0 request to it. When the device
processes the 1/0 request, it acts on the infonnation the 1/0 request contains and returns a reply
message, i.e., the 1/0 request, to the reply port specified in the 1/0 request when it is finished. The
1/0 request is passed to a device using one of three functions, DolO(), SendiO() and BeginiO().
They take only one argument: the 1/0 request you wish to pass to the device.

• DolO() is a synchronous function. It will not return until the device has responded to the 1/0
request.

• SendiO() is an asynchronous function. It can return immediately, but the 1/0 operation it
initiates may take a short or long time. Using SendiO() requires you to monitor the message
port for a return message from the device. In addition, some devices do not actually respond
asynchronously even though you called SendiO(); they will return when the 1/0 operation is
finished.

• BeginiO() is commonly used to control the quick 1/0 bit when sending an 1/0 request to a
device. When the quick 1/0 flag (I OF _QUICK) is set in the l/0 request, a device is allowed
to take certain shortcuts in perfonning and completing a request. If the request can complete
immediately, the device will not return a reply message and the quick 1/0 flag will remain set.
If the request cannot be completed immediately, the QUICK_IO flag will be clear. DolO()
nonnally requests quick 1/0; SendiO() does not.

DolO() and SendiO() are most commonly used.

An 1/0 request typically has three fields set for every command sent to a device. You set the
command itself in the io_Command field, a pointer to the data for the command in the io_Data
field, and the length of the data in the io_Length field.

SerialiO->IOSer.io Length = sizeof(ReadBuffer);
SerialiO->IOSer.io-Data = ReadBuffer;
SerialiO->IOSer.io-Command = CMD READ;
SendiO((struct IORequest *)SerlaliO);

Commands consist of two parts-a prefix and the command word separated by an underscore, all
in upper case. The prefix indicates whether the command is an Exec or device specific command.
All Exec commands have CMD as the prefix. They are defined in the include file execlio.h.

Amlga Exec Commands

CMD_CLEAR
CMD_FLUSH
CMD_INVALID

CMD_READ
CMD_RESET
CMD_START

CMD_STOP
CMD_WRITE
CMD_UPDATE

You should not assume that a device supports all Exec commands. Always check the documentation
before attempting to use one of them.

Device specific command prefixes vary with the device.

4 Amiga ROM Kernel Reference Manual: Devices

Amlga System Device Command Prefixes and Examples

Device Prefix Example

Audio ADCMD ADCMD_ALLOCATE
Oipboard CBD CBD_p()ST
Console CD CD_ASKKEYMAP
Gameport GPD GPD_SETCTYPE
Input IND IND_sETMPORT
Keyboard KBD KBD_READMATRIX
Narrator no device specific commands
Parallel PDCMD PDCMD_QUERY
Printer PRD PRD_pRTCOMMAND
SCSI HD HD_SCSICMD
Serial SDCMD SDCMD_BREAK
Timer TR TR_ADDREQUEST
Track disk TDandETD TD~OTORffiTD~OTOR

Each device maintains its own 1/0 request queue. When a device receives an 1/0 request, it either
processes the request immediately or puts it in the queue because one is already being processed.
After an 1/0 request is completely processed, the device checks its queue and if it finds another 1/0
request, begins to process that request.

Synchronous vs. Asynchronous Requests

As stated above, you can send 1/0 requests to a device synchronously or asynchronously. The
choice of which to use is largely a function of your application.

Synchronous requests use the DolO() function. DolO() will not return control to your application
until the 1/0 request has been satisfied by the device. The advantage of this is that you don't have
to monitor the message port for the device reply because DolO() takes care of all the message
handling. The disadvantage is that your application will be tied up while the 1/0 request is being
processed, and should the request not complete for some reason, DolO() will not return and your
application will hang.

Asynchronous requests use the SendiO() and BeginiO() functions. Both return to your application
almost immediately after you call them. This allows you to do other operations, including sending
more 1/0 requests to the device.

Do Not Touch! When you use SendiO() or BeginiO(), the 1/0 request you pass to the
device and any associated data buffers should be considered read-only. Once you send it
to the device, you must not modify it in any way until you receive the reply message from
the device or abort the request (though you must still wait for a reply). Any exceptions to
this rule are documented in the autodoc for the device.

Sending multiple asynchronous 1/0 requests to a device can be tricky because devices require them
to be unique and initialized. This means you can't use an 1/0 request that's still in the queue, but
you need the fields which were initialized in it when you opened the device. The solution is to copy
the initialized 1/0 request to another 1/0 request(s) before sending anything to the device.

Introduction to Amiga System Devices 5

Regardless of what you do while you are waiting for an asynchronous 1/0 request to return, you
need to have some mechanism for knowing when the request has been done. There are two basic
methods for doing this.

The first involves putting your application into a wait state until the device returns the 1/0 request
to the message port of your application. You can use the WaitiO(), Wait() or WaitPort() function
to wait for the return of the 1/0 request.

WaitiO() not only waits for the return of the 1/0 request, it also takes care of all the message
handling functions. This is very convenient, but you can pay for this convenience: your application
will hang in the unlikely event that the 1/0 request does not return.

Wait() waits for a signal to be sent to the message port. It will awaken your task when the signal
arrives, but you are responsible for all of the message handling.

WaitPort() waits for the message port to be non-empty. It returns a pointer to the message in the
port, but you are responsible for all of the message handling.

The second method to detect when the request is complete involves using the CheckiO() function.
CheckiO() takes an 1/0 request as its argument and returns an indication of whether or not it has
been completed. When CheckiO() returns the completed indication, you will still have to remove
the 1/0 request from the message port.

1/0 Request Completion

A device will set the io_Error field of the 1/0 request to indicate the success or failure of an
operation. The indication will be either zero for success or a non-zero error code for failure. There
are two types of error codes: Exec 1/0 and device specific. Exec 1/0 errors are defined in the include
file exec/errors.h; device specific errors are defined in the include file for each device. You should
always check that the operation you requested was successful.

The exact method for checking io_Error can depend on whether you use DolO() or SendiO(). In
both cases, io_Error will be set when the 1/0 request is returned, but in the case of DolO(), the
DolO() function itself returns the same value as io_Error.

This gives you the option of checking the function return value:

SerialiO->IOSer.io Length = sizeof(ReadBuffer);
Serialro->roser. io-Data = ReadBuffer;
SerialiO->IOSer.io-Command = CMD READ;
if (DoiO((struct IORequest *)Seria1IO);

printf("Read failed. Error: %ld\n",SerialiO->IOSer.io_Error);

Or you can check io_Error directly:

SerialiO->IOSer.io Length = sizeof(ReadBuffer);
SerialiO->IOSer.io-Data = ReadBuffer;
SerialiO->IOSer. io -Command = CMD READ;
DoiO((struct IORequest *)Serialio);

if (Serialio->roser. io Error)
print f ("Read failed'""; Error: %ld\n", SerialiO->roser. i o _Error);

Keep in mind that checking io_Error is the only way that 1/0 requests sent by SendiO() can be
checked.

6 Amiga ROM Kernel Reference Manual: Devices

Testing for a failed 1/0 request is a minimum step, what you do beyond that depends on your
application. In some instances, you may decide to resend the 1/0 request, and in others, you may
decide to stop your application. One thing you'll almost always want to do is to inform the user
that an error has occurred.

Exiting The Correct Way. If you decide that you must prematurely end your application,
you should deallocate, release, give back and let go of everything you took to run the
application. In other words, you should exit gracefully.

Ending Device Access

You end device access by reversing the steps you took to access it. This means you close the device,
deallocate the 1/0 request memory and delete the message port. In that order!

Oosing a device is how you tell Exec that you are finished using a device and any associated
resources. This can result in housecleaning being performed by the device. However, before you
close a device, you might have to do some housecleaning of your own.

A device is closed by calling the CloseDevice() function. The CloseDevice() function does not
return a value. It has this format:

CloseDevice(IORequest)

where IORequest is the 1/0 request used to open the device.

You should not close a device while there are outstanding 1/0 requests, otherwise you can cause
major and minor problems. Let's begin with the minor problem: memory. If an 1/0 request is
outstanding at the time you close a device, you won't be able to reclaim the memory you allocated
for it.

The major problem: the device will try to respond to the 1/0 request. If the device tries to respond
to an 1/0 request, and you've deleted the message port (which is covered below), you will probably
crash the system.

One solution would be to wait until alll/0 requests you sent to the device return. This is not always
practical if you've sent a few requests and the user wants to exit the application immediately.

In that case, the only solution is to abort and remove any outstanding 1/0 requests. You do this with
the functions AbortiO() and WaitiO(). They must be used together for cleaning up. AbortiO()
will abort an l/0 request, but will not prevent a reply message from being sent to the application
requesting the abort. WaitiO() will wait for an 1/0 request to complete and remove it from the
message port. This is why they must be used together.

Be Careful With Abort/0(). Do not AbortiO() an 1/0 request which has not been sent
to a device. If you do, you may crash the system.

After the device is closed, you must deallocate the 1/0 request memory. The exact method you
use depends on how you allocated the memory in the first place. For AllocMem() you call
FreeMem(), for CreateExtiO() you call DeleteExtiO(), and for CreateiORequest() you call
DeleteiORequest(). If you allocated the 1/0 request memory at compile time, you naturally have
nothing to free.

Introduction to Amiga System Devices 7

Finally, you must delete the message port you created. You delete the message port by calling
DeleteMsgPort() if you used CreateMsgPort(), or DeletePort() if you used CreatePort().

Here is the checklist for gracefully exiting:

1. Abort any outstanding 1/0 requests with AbortiO()

2. Wait for the completion of any outstanding or aborted 1/0 requests with WaitiO().

3. Oose the device with CloseDevice().

4. Release the 1/0 request memory with either DeleteiORequest{), DeleteExtiO() or FreeMem()
(as appropriate).

5. Delete the message port with DeleteMsgPort() or DeletePort().

Devices With Functions

Some devices, in addition to their commands, provide functions which can be directly called by
applications. These functions are documented in the device specific FD files and Autodocs of the
Amiga ROM Kernel Reference Manual: Includes and Autodocs and the device chapters of this
manual.

Devices with functions behave much like Amiga libraries, i.e., you set up a base address pointer
and call the functions as offsets from the pointer. (See the "Exec: Libraries" chapter of the Amiga
ROM Kernel Reference Manual: Libraries.)

The procedure for accessing a device's functions is as follows:

• Declare the device base address variable in the global data area. The name of the base address
can be found in the device's FD file.

• Create a message port using one of the previously discussed methods if you haven't already
done so.

• Create an I/0 request using one of the previously discussed methods if you haven't already
done so. Remember to set the message port pointer in the 1/0 request if necessary.

• Call OpenDevice(), passing the 1/0 request if you haven't already done so. When you do
this, the device returns a pointer to its base address in the io_Device field of the 1/0 request
structure. Consult the include file for the structure you are using to determine the full name of
the io_Device field. The base address is only valid while the device is open.

• Set the device base address variable to the pointer returned in the io_Device field.

We will use the timer device to illustrate the above method. The name of the timer device base
address is listed in its FD file as "TimcrBase."

#include <devices/timer.h>

struct Library *TimerBase; /* device base address pointer */

struct MsgPort *TimerMP; /* message port pointer */
struct timerequest *TimeriO; /* I/0 request pointer */

/* Create the message port */
if (TimerMP=CreatePort(NULL,NULL))

(

8 Amiga ROM Kernel Reference Manual: Devices

/* Create the I/O request */
if (TimeriO = (struct timerequest *)

{ CreateExtiO(TimerMP,sizeof(struct timerequest)))
/* Open the timer device */

if (! (OpenDevice (TIMERNAME, UNIT MICROHZ, TimeriO, 0)))
{ -
/* Set up pointer for timer functions */
TimerBase = (struct Library *) Timerio->tr_nodc. io Device;

... use functions •..

I* Close the timer device */
CloseDevice(TimeriO);
)

/* Delete the I/O request */
DeleteExtiO(TimeriO);
)

/* Delete the message port */
DeletePort(TimerMP);
)

Example Device Programs

The following short programs are examples of how to use a device. Both send the serial device
command SDCMD_QUERY to the serial device to determine the status of the serial device lines
and registers. The first program is for pre-V36 versions of the operating system (before Release 2)
and the second is for V36 and higher. You may use the pre-V36 version with V36 and higher, but
you may not use the V36 version with older systems.

The programs differ in the way they create the message port and 1/0 request. The pre-V36 version
uses the amiga.lib functions CreatePort() to create the message port and CreateExtiO() to create
the 1/0 request; the V36 version uses the Exec functions CreateMsgPort() to create the message
port and CreateiORequest() to create the I/0 request. Those are the only differences.

DEVICE USAGE EXAMPLE {PRE-V36)

I*
* Pre V36 Device Use.c
*
* This is an example of using the serial device.
*First, we will attempt to create a message port with CreatePort()
*Next, we will attempt to create the I/O request with CreateExtiO()
* Then, we will attempt to open the serial device with OpenDevice()
* If successful, we will send the SDCMD QUERY command to it
* and reverse our steps. -
* If we encounter an error at any time, we will gracefully exit.
*
* Compile with SAS C 5.10 lc -cfistq -v -y -L
* * Run from CLI only
*I

#include <exec/types.h>
#include <exec/memory. h>
#include <exec/io.h>
#include <devices/serial.h>

#include <clib/exec protos. h>
#include <clib/alib:::protos.h>

#include <stdio. h>

Introduction to Amiga System Devices 9

#ifdef LATTICE
int CX!3RK(void) { return(O);)
int chkabort (void) { return (0);
#endif

/* Disable SAS CTRL/C handling */
/* really *I

void main(void)
{
struct MsgPort *SerialMP;
struct IOExtSer *ScrialiO;

/* pointer to our message port */
/* pointer to our I/0 request */

/* Create the message port */
if (SerialMP=CreatePort(NULL,NULL))

{

else

/* Create the I/0 request */
if (SerialiO = (struct IOExtSer *)CreateExtiO(SerialMP,sizeof(struct IOExtSer)))

{

else

/* Open the serial device */
if (OpenDevice (SERIALNAME, 0, (struct IORequest *) SerialiO, OL))

else

/* Inform user that it could not be opened */
printf("Error: %s did not open\n",SERIALNAME);

{
/* device opened, send query command to it */
Serialro->roser.io Command = SDCMD QUERY;
if (DolO ((strucl IORequest *)Sed al IO))

/* Inform user thal query failed */
printf("Query failed. Error- %d\n",SerialiO->IOSer.io Error);

else
/* Print serial device status - see include file for meaning */
printf("\n\tSerial device status: %x\n\n",SerialiO->io_Status);

/* Close the serial device */
CloseDevice((struct IORequest *)SerialiO);
)

/* Delete the T/0 request */
DeleteExtiO(SerialiO);
)

/* Inform user that the I/O request could be created */
printf("Error: Could create I/O request\n");

/* Delete the message port */
DeletePort(SerialMP);
)

/* Inform user that the message port could not be created */
printf("Error: Could not create message port\n");

DEVICE USAGE EXAMPLE (KICKSTART V36 AND UP}

/*
* V36 Device Use.c
*
* This is an example of using the serial device.
*First, we will attempt to create a message port with CreateMsgPort()
*Next, we will attempt to create the I/0 request with CreateiORequest()
* Then, we will attempt Lo open the serial device with OpenDevice()
* If successful, we will send the SDCMD QUERY command to it
* and reverse our steps.
* If we encounter an error at any time, we will gracefully exit.
*
* Compile with SAS C 5.10 lc -cfistq -v -y -L
*
* Requires Kickstart V36 or greater.
*
* Run from CLI only
*I

10 Amiga ROM Kernel Reference Manual: Devices

#include <exec/types.h>
#include <exec/memory.h>
#include <exec/io.h>
#include <devices/ serial. h>

#include <clib/exec protos. h>
#include <clib/alib::::protos.h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK(void) { return(O); }
int chkabort(void) { return(O);
#endif

/* Disable SAS CTRL/C handling */
/* really */

void main(void)
{
struct MsgPort *SerialMP;
struct IOExtSer *SerialiO;

I* pointer to our message port */
/* pointer to our I/O request */

/* Create the message port */
if (SerialMP=CreateMsgPort())

else

{
/* Create the I/0 request */

if (SerialiO = CreateiORequest(SerialMP,sizeof(struct IOExtSer)))
{

else

/* Open the serial device */
if (OpenDevice(SERIALNAME,O, (struct IORequest *)SerialiO,OL))

else

/* Inform user that it could not be opened */
printf("Error: %s did not open\n",SERIALNAME);

{
/* device opened, send query command to it */
SerialiO->IOSer.io Command = SDCMD QUERY;
if (DoiO((struct IORequest *)SerialiO))

/* Inform user that query failed */
printf("Query failed. Error- %d\n",SerialiO->IOSer.io Error);

else ~

/* Print serial device status - see include file for meaning */
printf("\n\tSerial device status: %x\n\n",SerialiO->io Status);

/* Close the serial device */
CloseDevice((struct IORequest *)SerialiO);
}

/* Delete the I/0 request */
DeleteiORequest(SerialiO);
)

/* Inform user that the I/O request could be created */
printf("Error: Could create I/0 request\n");

/* Delete the message port */
DeleteMsgPort(SerialMP);
)

/* Inform user that the message port could not be created */
printf("Error: Could not create message port\n");

Introduction to Amiga System Devices 11

chapter two
AUDIO DEVICE

---------- -----------------------

The Amiga has four hardware audio channels-two of the channels produce audio output from the
left audio connector, and two from the right. These channels can be used in many ways. You can
combine a right and a left channel for stereo sound, usc a single channel, or play a different sound
through each of the channels to create four-part harmony.

About Amiga Audio

Most personal computers that produce sound have hardware designed for one specific synthesis
technique. The Amiga computer uses a very general method of digital sound synthesis that is
quite similar to the method used in digital hi-fi components and state-of-the-art keyboard and drum
synthesizers.

For programs that can afford the memory, playing sampled sounds gives you a simple and very
CPU-efficient method of sound synthesis. A sampled sound is a table of numbers which represents
a sound digitally. When the sound is played back by the Amiga, the table is fed by a DMA
channel into one of the four digital-to-analog converters in the custom chips. The digital-to-analog
converter converts the samples into voltages that can be played through amplifiers and loudspeakers,
reproducing the sound.

On the Am iga you can create sound data in many other ways. For instance, you can use trigonometric
functions in your programs to create the more traditional sounds-sine waves, square waves, or
triangle waves-by using tables that describe their shapes. Then you can combine these waves
for richer sound effects by adding the tables together. Once the data are entered, you can modify
them with techniques described below. For information about the limitations of the audio hardware
and suggestions for improving system efficiency and sound quality, refer to the Amiga Hardware
Reference Manual.

Audio Device 13

Some commands enable your program to co-reside with other programs using the audio device
at the same time. Programs can co-reside because the audio device handles allocation of audio
channels and arbitrates among programs competing for the same resources. When properly used,
this allows many programs to use the audio device simultaneously.

The audio device commands help isolate the programmer from the idiosyncrasies of the custom
chip hardware and make it easier to use. But you can also produce sound on the Amiga by directly
accessing the hardware registers if you temporarily lock out other users first. For certain types of
sound synthesis, this is more CPU-efficient.

DEFINITIONS

Tenns used in the following discussions may be unfamiliar. Some of the more important ones are
defined below.

Amplitude
The height of a wavefonn, which corresponds to the amount of voltage or current in the
electronic circuit.

Amplitude modulation
A means of producing special audio effects by using one channel to alter the amplitude of
another.

Channel
One "unit" of the audio device.

Cycle
One repetition of a wavefonn.

Frequency
The number of times per second a cycle repeats.

Frequency modulation
A means of producing special audio effects by using one channel to affect the period of the
wavefonn produced by another channel.

Period
The time elapsed between the output of successive sound samples, in units of system clock
ticks.

Precedence
Priority of the user of a sound channel.

Sample
Byte of audio data, one of the fixed-interval points on the wavefonn.

Waveform
Graph that shows a model of how the amplitude of a sound varies over time-usually over one
cycle.

14 Amiga ROM Kernel Reference Manual: Devices

Audio Device Commands and Functions

Command

ADCMD_ALLOCATE
ADCMD_FINISH

ADCMD_FREE
ADCMD_LOCK
ADCMD_pERVOL

ADCMD_SETPREC
ADCMD_ WAITCYCLE

CMD_FLUSH

CMD_READ

CMD_RESET

CMD_START
CMD_STOP
CMD_WRITE

Operation

Allocate one or more of the four audio channels.
Abort the current write request on one or more of the channels.
Can be done immediately or at the end of the current cycle.
Free one or more audio channels.
Lock one or more audio channels.
Change the period and volume for writes in progress. Can be done
immediately or at the end of the cycle.
Set the allocation precedence of one or more channels.
Wait for the current write cycle to complete on a single channel.
Returns at the end of the cycle or immediately if no cycle is active
on the channel.
Purge all write cycles and waitcycles (in-progress and queued) for
one or more channels.
Return a pointer to the I/0 block currently writing on a single
channel.
Reset one or more channels their initialized state. All active and
queued requests will be aborted.
Resume writes to one or more channels that were stopped.
Stop any write cycle in progress on one or more channels.
Start a write cycle on a single channel.

Exec Functions as Used in This Chapter

AbortiO()

BeginiO()
CheckiO()
CloseDevice()
OpenDevice()
Wait()
WaitPort()

Abort a command to the audio device. If in progress, it is stopped
immediately, otherwise it is removed from the queue.
Initiate a command and return immediately (asynchronous request).
Determine the current state of an 1/0 request.
Relinquish use of the audio device.
Obtain usc of the audio device.
Wait for a signal from the audio device.
Wait for the audio message port to receive a message.

Exec Support Functions as Used in This Chapter

AllocMem()
CreatePort()

DeletePort()
FreeMem()

Allocate a block of memory.
Create a signal message port for reply messages from the audio
device. Exec will signal a task when a message arrives at the reply
port.
Delete the message port created by CreatePort().
Free a block of previously allocated memory.

Audio Device 15

Device Interface

The audio device operates like the other Amiga VO devices. To make sound, you first open the
audio device, then send VO requests to it, and then close it when finished. See the "Introduction to
Amiga System Devices" chapter for general information on device usage.

Audio device commands use an extended VO request block named IOAudio to send commands to
the audio device. This is the standard IORequest block with some extra fields added at the end.

struct IOAudio
{

} ;

struct
WORD
UBYTE
ULONG
UWORD
UWORD
UWORD
struct

IORequest ioa_Request;
ioa AllocKey;
*ioa Data;
ioa Length;
ioa-Period;
ioa-Volume;
ioa-Cycles;
Message ioa_WriteMsg;

!* I/O request block. See exec/io.h. */
/* Alloc. key filled in by audio device */
!* Pointer to a sample or allocation mask */
!* Length of sample or allocation mask. */
/* Sample playback speed */
/* Volume of sound */
/* # of times to play sample. O~forever. */
I* Filled in by device - usually not used */

See the include file devices/audio.h for the complete structure definition.

OPENING THE AUDIO DEVICE

Before you can use the audio device, you must first open it with a call to OpenDevice(). Four
primary steps are required to open the audio device:

• Create a message port using CreatePort. Reply messages from the device must be directed to
a message port.

• Allocate memory for an extended VO request structure of type IOAudio using AllocMem().

• Fill in io-.Message.mn_ReplyPort with the message port created by CreatePort.

• Open the audio device. Call OpenDevice(), passing IOAudio.

struct MsgPort *AudioMP;
struct IOAudio *AudioiO;

if (AudioMP = CreatePort(O,O))
{
AudioiO = (struct IOAudio *)

/* Define storage for port pointer */
/* Define storage for IORequest pointer */

AllocMem(sizeof(struct IOAudio), MEMF_PUBLIC I MEMF_CLEAR);
if (AudioiO)

{
AudioiO->ioa Request.io Message.mn ReplyPort AudioMP;
AudioiO- >ioa -AllocKey - - 0;
} -

if (OpenDevice (AUDIONAME, OL, (struct IORequest *)AudioiO, OL)
printf("%s did not open\n",AUDIONAME);

A special feature of the OpenDevice() function with the audio device allows you to automatically
allocate channels for your program to use when the device is opened. This is convenient since you
must allocate one or more channels before you can produce sound.

This is done by setting ioa_AIIocKey to zero, setting iolLRequest.io_Message.mn__Node.In_Pri
to the appropriate precedence, setting io_Data to the address of a channel combination array, and
setting ioa_Request.ioa__Length to a non-zero value (the length of the channel combination array).

16 Amiga ROM Kernel Reference Manual: Devices

-----------~---------

The audio device will attempt to allocate channels just as if you had sent the ADCMD_ALLOCATE
command (see below). If the allocation fails, the OpenDevice() call will return immediately.

If you want to allocate channels at some later time, set the ioa_Request.ioa_Length field of the
IOAudio block to zero when you call OpenDevice(). For more on channel allocation and the
ADCMD-ALLOCATE command, see the section on "Allocation and Arbitration" below.

UBYTE chans[] = (1,2,4,8}; /*get any of the four channels*/

if (AudioiO)
(
AudioiO->ioa Request.io Message.mn ReplyPort = AudioMP;
AudioiO->ioa-AllocKey - - = 0;
AudioiO->ioa-Request.io Message.mn Node.ln Pri= 120;
AudioiO->ioa-Data - - - = chans;
AudioiO->ioa -Length = sizeof (chans);
I -

if (OpenDevice(AUDIONAME,OL, (struct IORequest *)AudioiO,OL))
printf("%s did not open\n",AUDIONAME);

AUDIO DEVICE COMMAND TYPES

Commands for audio use can be divided into two categories: allocation/arbitration commands and
hardware control commands.

There are four allocation/arbitration commands. These do not actually produce any sound. Instead
they manage and arbitrate the audio resources for the many tasks that may be using audio in the
Amiga's multitasking environment.

ADCMD-.ALLOCATE - Reserves an audio channel for your program to use.
ADCMD__FREE - Frees an audio channel.
ADCMD_SETPREC - Changes the precedence of a sound in progress.
ADCMD__LOCK - Tells if a channel has been stolen from you.

The hardware control commands are used to set up, start, and stop sounds on the audio device:

CMD_ WRITE - The main command. Starts a sound playing.
ADCMD__FINISH - Aborts a sound in progress.
ADCMD_FERVOL - Changes the period (speed) and volume of a sound in progress.
CMD_FLUSH - Oears the audio channels.
CMD__RESET - Resets and initializes the audio device.
ADCMD_ WAITCYCLE - Signals you when a cycle finishes.
CMD_STOP - Temporarily stops a channel from playing.
CMD_STARf - Restarts an audio channel that was stopped.
CMD__READ - Returns a pointer to the current IOAudio request.

SCOPE OF AUDIO COMMANDS

Most audio commands can operate on multiple channels. The exceptions are
ADCMD_ WAITCYCLE, CMD_ WRITE and CMD__READ, which can only operate on one channel
at a time. You specify the channel(s) that you want to use by setting the appropriate bits in the
ioa_Request.io_Unit field of the IOAudio block. If you send a command for a channel that you
do not own, your command will be ignored. For more details, see the section on "Allocation and
Arbitration" below.

Audio Device 17

AUDIO AND SYSTEM 1/0 FUNCTIONS

Begin/0()

All the commands that you can give to the audio device should be sent by calling the BeginiO()
function. This differs from other Amiga devices which generally use SendiO() or DolO(). You
should not use SendiO() or DolO() with the audio device because these functions clear some
special flags used by the audio device; this might cause audio to work incorrectly under certain
circumstances. To be safe, you should always use BeginiO() with the audio device.

Wait() and WaitPort()

These functions can be used to put your task to sleep while a sound plays. Wait() takes a wake-up
mask as its argument. The wake-up mask is usually the mp_sigBit of a MsgPort that you have set
up to get replies back from the audio device.

WaitPort() will put your task to sleep while a sound plays. The argument to WaitPort() is a pointer
to a MsgPort that you have set up to get replies back from the audio device.

Wait() and WaitPort() will not remove the message from the reply port. You must use GetMsg()
to remove it.

You must always use Wait() or WaitPort() to wait for 1/0 to finish with the audio device.

Abort/0()

This function can be used to cancel requests for ADCMD_ALLOCATE, ADCMD__LOCK,
CMD_ WRITE, or ADCMD_ WAITCYCLE. When used with the audio device, AbortiO() always
succeeds.

CLOSING THE AUDIO DEVICE

An OpenDevice() must eventually be matched by a call to CloseDevice().

All 1/0 requests must be complete before CloseDevice(). If any requests are still pending, abort
them with AbortiO():

AbortiO((struct IORequest *)AudioiO); /*Abort any pending requests*/
WaitPort(AudioMP); /*Wait for abort message*/
GetMsg(AudioMP); /*Get abort message*/
CloseDevice((struct IORequest *)AudioiO);

CloseDevice() performs an ADCMD_FREE command on any channels selected by the
ioa_Request.io_Unit field of the IOAudio request. This means that if you close the device
with the same IOAudio block that you used to allocate your channels (or a copy of it), the channels
will be automatically freed.

If you allocated channels with multiple allocation commands, you cannot use this function to
close all of them at once. Instead, you will have to issue one ADCMD_FREE command for each
allocation that you made. After issuing the ADCMD_FREE commands for each of the allocations,
you can call CloseDevice().

18 Amiga ROM Kernel Reference Manual: Devices

A Simple Audio Example

The Amiga 's audio software has a complex allocation and arbitration system which is described
in detail in the sections below. At this point, though, it may be helpful to look at a simple audio
example:

I*
* Audio.c

*
* Audio example

*
* Compile with SAS C 5.10 lc -bl -cfistq -v -y -L

*
* Run from CLI only
*I

Unclude <exec/types.h>
Unclude <exec/memory.h>
#include <devices/ audio. h>
#include <dosldos.h>
II include <dosldosextens. h>
II include <graphics/gfxbase. h>

#include <clib/exec protos.h>
#include <cliblalib-protos.h>
#include <clib/dos protos.h>
II include <clib/graphics_protos. h>

#include <stdlib.h>
#include <stdio.h>

llifdef LATTICE
int CXBRK (void) { return (0); }
int chkabort(void) { return(O);
llendif

/* Disable SAS CTRL/C handling */
/* really */

struct GfxBase *GfxBase;

1*---*l
/* The whichannel array is used when we allocate a channel. *I
/* It tells the audio device which channel we want. The code */
/* is 1 ;channelO, 2 ;channell, 4 ;channel2, 9 ;channel3. */
I* If you want more than one channel, add the codes up. */
I* This array says "Give me channel 0. If it's not available*/
/* then try channel 1; then try channel 2 and then channel 3 */
1*---*l
UBYTE whichannel[] ; { 1,2,4,9 };

void main(int argc, char **argv)
{
struct IOAudio *AudioiO; /* Pointer to the IIO block for IIO commands
struct MsgPort *AudioMP; /* Pointer to a port so the device can reply
struct Message *AudioMSG; I* Pointer for the reply message
ULONG device;
BYTE *waveptr; I* Pointer to the sample bytes
LONG frequency 440; I* Frequency of the tone desired
LONG duration 3; I* Duration in seconds
LONG clock 3579545; /* Clock constant, 3546995 for PAL
LONG samples 2; I* Number of sample bytes
LONG samcyc 1; I* Number of cycles in the sample

*I
*I

*I
*I
*I
*I
*I
*I

1*---*l
/* Ask the system if we are PAL or NTSC and set clock constant accordingly */
l*---*1
GfxBase; (struct GfxBase *)OpenLibrary("graphics.library",OL);
if (GfxBase ;; OL)

goto killaudio;
if (GfxBase->DisplayFlags & PAL)

clock 3546995; I* PAL clock */
else

clock ; 3579545; /* NTSC clock */

if (GfxBase)
CloseLibrary((struct Library*) GfxBase);

*I

Audio Device 19

/*--*/
/* Create an audio I/0 block so we can send commands to the audio device */
/*--*/
AudioiO = (struct IOAudlo *)

AllocMem(sizeof(struct IOAudio),MEMF_PUBLIC MEMF_CLEAR);
if (AudioiO == 0)

goto killaudio;
printf("IO block created ... \n");

/*---*/
/* Create a reply port so the audio device can reply to our commands */
l*---*1
AudioMP = CreatePort(O,O);
if (AudioMP == 0)

goto killaudio;
printf("Port created ... \n");

1*--*/
/* Set up the audio I/0 block for channel allocation: */
/* ioa Request.io Message.mn ReplyPort is the address of a reply port. */
/* ioa-Request.io-Message.mn-Node.ln Pri sets the precedence (priority) */
/* of our use of the audio-device.-Any tasks asking to use the audio */
I* device that have a higher precedence will steal the channel from us.*/
/* ioa Request.io Command is the command field for I/0. */
/* ioa-Request.io-Flags is used for the I/O flags. */
/* ioa-AllocKey will be filled in by the audio device if the allocation */
/* succeeds. We must use the key it gives for all other commands sent.*/
/* ioa Data is a pointer to the array listing the channels we want. */
/* ioa-Length tells how long our list of channels is. */
1*----=---*/
AudioiO->ioa Request.io Message.mn ReplyPort AudioMP;
AudioiO->ioa-Request.io-Message.mn-Node.ln Pri 0;
AudioiO->ioa-Request.io-Command - - ADCMD ALLOCATE;
AudioiO->ioa -Request. io -Flags ADIOF-NOWAIT;
AudioiO->ioa-AllocKey - 0; -
AudioiO->ioa-Data whichannel;
AudioiO->ioa-Length sizeof(whichannel);
printf ("I/O block initialized for channel allocation ... \n");

/*---*/
/* Open the audio device and allocate a channel */
1*---*/
device= OpenDevice(AUDIONAME,OL, (struct IORequest *) AudioiO ,OL);
if (device != 0)

goto killaudio;
printf("%s opened, channel allocated ... \n",AUDIONAME);

/*--*/
/* Create a very simple audio sample in memory. */
/* The sample must be CHIP RAM */
l*--*1
waveptr = (BYTE *)AllocMem(samples , MEMF CHIPIMEMF_PUBLIC);
if (waveptr == 0)

goto killaudio;
waveptr[O] = 127;
waveptr[l] = -127;
printf("Wave data ready ... \n");

/*--*/
/* Set up audio I/0 block to play a sample using CMD WRITE. */
/* The io Flags are set to ADIOF PERVOL so we can set the */
!* period (speed) and volume with the our sample; */
/* ioa_Data points to the sample; ioa Length gives the length */
I* ioa_Cycles tells how many times to repeat the sample */
/* If you want to play the sample at a given sampling rate, */
/*set ioa Period= clock/(given sampling rate) */
1*--------=---*/
AudioiO- > ioa Request. io Message. mn ReplyPort =AudioMP;
AudioiO->ioa Request.io-Command - =CMD WRITE;
AudioiO->ioa -Request. io -Flags =AD IOF PERVOL;
AudioiO->ioa_Data - =(BYTE-*) waveptr;
AudioiO->ioa Length =samples;
AudioiO->ioa=Period =clock*samcyc/(samples*frequency);
AudioiO- > ioa Volume =64;
AudioiO->ioa=Cycles =frequency*duration/samcyc;
printf("I/0 block initialized to play tone ... \n");

20 Amiga ROM Kernel Reference Manual: Devices

1*---*!
/* Send the command to start a sound using BeginiO () *I
/* Go to sleep and wait for the sound to finish with */
/* WaitPort(). When we wake-up we have to get the reply*/
1*---*/
printf("Starting tone now ... \n");
BeginiO((struct IORequest *) AudioiO);
WaitPort(AudioMP);
AudioMSG ~ GetMsg(AudioMP);

printf("Sound finished ... \n");

killaudio:

printf("Killing audio device ... \n");
if (waveptr !~ 0)

FreeMem(waveptr, 2);
if (device ~~ 0)

CloseDevice((struct IORequest *) AudioiO);
if (AudioMP !~ 0)

DeletePort(AudioMP);
if (AudioiO !~ 0)

FreeMem(AudioiO,sizeof(struct IOAudio));

Audio Allocation And Arbitration

The first command you send to the audio device should always be ADCMD_ALLOCATE. You
can do this when you open the device, or at a later time. You specify the channels you want in
the ioa_Data field of the IOAudio block. If the allocation succeeds, the audio device will return
the channels that you now own in the lower four bits of the ioa_Request.io_Unit field of your
IOAudio block. For instance, if the io_Unit field equals 5 (binary 0101) then you own channels 2
and 0. If the io_Unit field equals 15 (binary 1111) then you own all the channels.

When you send the ADCMD_ALLOCATE command, the audio device will also return a unique
allocation key in the ioa_AIIocKey of the IOAudio block. You must use this allocation key for all
subsequent commands that you send to the audio device. The audio device uses this unique key to
identify which task issued the command. If you do not use the correct allocation key assigned to
you by the audio device when you send a command, your command will be ignored.

When you request a channel with ADCMD_ALLOCATE, you specify a precedence number from
-128 to 127 in the ioa_Request.io_Message.mn_Node.In_Pri field of the IOAudio block. If a
channel you want is being used and you have specified a higher precedence than the current user,
ADCMD_ALLOCATE will "steal" the channel from the other user. Later on, if your precedence
is lower than that of another user who is performing an allocation, the channel may be stolen from
you.

If you set the precedence to 127 when you open the device or raise the precedence to 127 with
the ADCMD_SETPREC command, no other tasks can steal a channel from you. When you have
finished with a channel, you must relinquish it with the ADCMD_FREE command to make it
available for other users.

Audio Device 21

The following table shows suggested precedence values.

Suggested Precedences for Channel Allocation

Predecence

127

90-100
80-90

75

50-70

-50-50

-70--50

-100--80

-128

Type of Sound

Unstoppable. Sounds first allocated at lower precedence, then set
to this highest level.
Emergencies. Alert, urgent situation that requires immediate action.

Annunciators. Attention, bell (CI'RL-G).

Speech. Synthesized or recorded speech (narrator.device).

Sonic cues. Sounds that provide information that is not provided
by graphics. Only the beginning of each sound (enough to rec­
ognize it) should be at this level; the rest should be set to sound
effects level.

Music program. Musical notes in music-oriented program. The
higher levels should be used for the attack portions of each note.

Sound effects. Sounds used in conjunction with graphics. More
important sounds should use higher levels.

Background. Theme music and restartable background sounds.

Silence. Lowest level (freeing the channel completely is preferred).

If you attempt to perform a command on a channel that has been stolen from you by a higher priority
task, an AUDIO..NOALLOCATION error is returned and the bit in the ioa_Request.io_Unit field
corresponding to the stolen channel is cleared so you know which channel was stolen.

If you want to be warned before a channel is stolen so that you have a chance to stop your sound
gracefully, then you should use the ADCMD_LOCK command after you open the device. This
command is also useful for programs which write directly to the audio hardware. For more on
ADCMD_LOCK, see the section below.

Allocation and Arbitration Commands

These commands allow the audio channels to be shared among different tasks and programs. None
of these commands can be called from interrupt code.

ADCMD_ALLOCATE

This command gives your program a channel to use and should be the first command you send to
the audio device. You specify the channels you want by setting a pointer to an array in the ioa_Data
field of the IOAudio structure. This array uses a value of 1 to allocate channel 0, 2 for channel 1, 4
for channel 2, and 8 for channel 3. For multiple channels, add the values together. For example, if
you want to allocate all channels, use a value of 15.

If you want a pair of stereo channels and you have no preference about which of the left and right
channels the system will choose for the allocation, you can pass a pointer to an array containing 3,
5, 10, and 12. Channels 1 and 2 produce sound on the left side and channels 0 and 3 on the right

22 Amiga ROM Kernel Reference Manual: Devices

side. The table below shows how this array corresponds to all the possible combinations of a right
and a left channel.

Possible Channel Combinations
Decimal

Channel3 Channel2 Channell Channel 0 Value of
right left left right Allocation Mask

0 0 1 1 3
0 1 0 1 5
1 0 1 0 10
1 1 0 0 12

How ADCMD_ALLOCATE Operates

The ADCMD_ALLOCATE command tries the first combination, 3, to see if channels 0 and 1 are
not being used. If they are available, the 3 is copied into the io_Unit field and you get an allocation
key for these channels in the imLAllocKey field. You copy the key into other VO blocks for any
other commands you may want to perform on these channels.

If channels 0 and 1 are being used, ADCMD_ALLOCATE tries the other combinations in tum.
If all the combinations are in use, ADCMD_ALLOCATE checks the precedence number of the
users of the channels and finds the combination that requires it to steal the channel or channels of
the lowest precedence. If all the combinations require stealing a channel or channels of equal or
higher precedence, the ADCMD_ALLOCATE request fails. Precedence is in the liLPri field of
the io__Message in the IOAudio block you pass to ADCMD_ALLOCATE; it has a value from -128
to 127.

The ADIOF_NOWAIT Flag

If you need to produce a sound right now and otherwise don't want to allocate, set the
ADIOF_NOWAIT flag to 1. This will cause the command to return an IOERR_ALLOCFAILED
error if it cannot allocate any of the channels. If you are producing a non-urgent sound and you can
wait, set the AD IOF _NO WAIT flag to 0. Then, the IOAudio block returns only when you get the
allocation. If AD IOF _NO WAIT is set to 0, the audio device will continue to retry the allocation
request whenever channels are freed until it is successful. If the program decides to cancel the
request, AbortiO() can be used.

ADCMD_ALLOCATE Examples

The following are more examples of how to tell ADCMD_ALLOCATE your channel preferences.
If you want any channel, but want a right channel first, use an array containing 1, 8, 2, and 4:

0001
1000
0010
0100

Audio Device 23

If you only want a right channel, use 1 and 8 (channels 0 and 3):
0001
1000

If you want only a left channel, use 2 and 4 (channels 1 and 2):
0010
0100

If you want to allocate a channel and keep it for a sound that can be interrupted and restarted,
allocate it at a certain precedence. If it is stolen, allocate it again with the AD IOF _NO WAIT flag
set to 0. When the channel is relinquished, you will get it again.

The Allocation Key

If you want to perform multi-channel commands, all the channels must have the same key since
the IOAudio block has only one allocation key field. The channels must all have that same key
even when they were not allocated simultaneously. If you want to use a key you already have, you
can pass that key in the io~llocKey field and ADCMD_ALLOCATE can allocate other channels
with that existing key. The ADCMD_ALLOCATE command returns a new and unique key only if
you pass it a zero in the allocation key field.

ADCMD_FREE

ADCMD_FREE is the opposite of ADCMD_ALLOCATE. When you perform ADCMD_FREE
on a channel, it does a CMD_RESET command on the hardware and "unlocks" the channel. It
also checks to see if there are other pending allocation requests. You do not need to perform
ADCMD_FREE on channels stolen from you. If you want channels back after they have been
stolen, you must reallocate them with the same allocation key.

ADCMD_SETPREC

This command changes the precedence of an allocated channel. As an example of the use of
ADCMD_SETPREC, assume that you are making the sound of a chime that takes a long time to
decay. It is important that user hears the chime but not so important that he hears it decay all the way.
You could lower precedence after the initial attack portion of the sound to let another program steal
the channel. You can also set the precedence to maximum (127) if you do not want the channel(s)
stolen from you.

ADCMD_LOCK

The ADCMD_LOCK command performs the "steal verify" function. When another application is
attempting to steal a channel or channels, ADCMD_LOCK gives you a chance to clean up before the
channel is stolen. You perform a ADCMD_LOCK command right after the ADCMD_ALLOCATE
command. ADCMD_LOCK does not return until a higher-priority user attempts to steal the
channel(s) or you perform an ADCMD_FREE command. If someone is attempting to steal, you
must finish up and ADCMD_FREE the channel as quickly as possible.

24 Amiga ROM Kernel Reference Manual: Devices

You must use ADCMD_LOCK if you want to write directly to the hardware registers instead of using
the device commands. If your channel is stolen, you are not notified unless the ADCMD_LOCK
command is present. This could cause problems for the task that has stolen the channel and is now
using it at the same time as your task. ADCMD_LOCK sets a switch that is not cleared until you
perform an ADCMD_FREE command on the channel. Canceling an ADCMD_LOCK request with
AbortiO() will not free the channel.

The following outline describes how ADCMD_LOCK works when a channel is stolen and when it
is not stolen.

1. User A allocates a channel.

2. User A locks the channel.

If User B allocates the channel with a higher precedence:

3. User B 's ADCMD_ALLOCATE command is suspended (regardless of the setting of the
ADIOF _NOWAIT flag).

4. User A's lock command is replied to with an error (ADIOERILCHANNELSTOLEN).

5. User A does whatever is needed to finish up when a channel is stolen.

6. User A frees the channel with ADCMD_FREE.

7. User B 's ADCMD_ALLOCATE command is replied to. Now user B has the channel.

If the channel is not allocated by another user:

3. User A finishes the sound.

4. User A performs the ADCMD_FREE command.

5. User A's ADCMD_LOCK command is replied to.

Never make the freeing of a channel (if the channel is stolen) dependent on allocating another
channel. This may cause a deadlock. If you want channels back after they have been stolen, you
must reallocate them with the same allocation key. To keep a channel and never let it be stolen, set
precedence to maximum (127). Do not use a lock for this purpose.

Hardware Control Commands

The following commands change hardware registers and affect the actual sound output.

CMD_WRITE

This is a single-channel command and is the main command for making sounds. You pass the
following to CMD_ WRITE:

• A pointer to the waveform to be played (must start on a word boundary and must be in memory
accessible by the custom chips, MEMF _CHIP)

• The length of the waveform in bytes (must be an even number)

• A count of how many times you want to play the waveform

Audio Device 25

If the count is 0, CMD_ WRITE will play the wavefonn from beginning to end, then repeat the
wavefonn continuously until something aborts it.

If you want period and volume to be set at the start of the sound, set the WRITE command's
AD IOF _pERVOL flag. If you do not do this, the previous volume and period for that channel will
be used. This is one of the flags that is cleared by DolO() and SendiO(). The ioa_ WriteMsg field in
the IOAudio block is an extra message field that can be replied to at the start of the CMD_ WRITE.
This second message is used only to tell you when the CMD_ WRITE command starts processing,
and it is used only when the ADIOF _ WRITEMESSAGE flag is set to 1.

If a CMD_STOP has been perfonned, the CMD_ WRITE requests are queued up. The
CMD_ WRITE command does not make its own copy of the wavefonn, so any modification of
the wavefonn before the CMD_ WRITE command is finished may affect the sound. This is some­
times desirable for special effects. To splice together two wavefonns without clicks or pops, you
must send a separate, second CMD_ WRITE command while the first is still in progress. This
technique is used in double-buffering, which is described below.

By using two wavefonn buffers and two CMD_ WRITE requests you can compute a wavefonn
continuously. This is called double-buffering. The following describes how you use double­
buffering.

1. Compute a wavefonn in memory buffer A.

2. Issue CMD_ WRITE A with io_Data pointing to buffer A.

3. Continue the wavefonn in memory buffer B.

4. Issue CMD_ WRITE B with io_Data pointing to Buffer B.

5. Wait forCMD_WRITE A to finish.

6. Continue the wavefonn in memory buffer A.

7. Issue CMD_ WRITE A with io_Data pointing to Buffer A.

8. Wait for CMD_ WRITE B to finish.

9. Loop back to step 3 until the wavefonn is finished.

10. At the end, remember to wait until both CMD_ WRITE A and B are finished.

ADCMD_FINISH

The ADCMD_FINISH command aborts (calls AbortiO()) the current write request on a channel
or channels. This is useful if you have something playing, such as a long buffer or some repetitions
of a buffer, and you want to stop it.

ADCMD_FINISH has a flag you can set (AD IOF _SYNCCYCLE) that allows the wavefonn to finish
the current cycle before aborting it. This is useful for splicing together sounds at zero crossings or
some other place in the wavefonn where the amplitude at the end of one wavefonn matches the
amplitude at the beginning of the next. Zero crossings are positions within the wavefonn at which
the amplitude is zero. Splicing at zero crossings gives you fewer clicks and pops when the audio
channel is turned off or the volume is changed.

26 Amiga ROM Kernel Reference Manual: Devices

ADCMD_PERVOL

ADCMD_pERVOL lets you change the volume and period of a CMD_ WRITE that is in progress.
The change can take place immediately or you can set the AD IOF _SYNCCYCLE flag to have the
change occur at the end of the cycle. This is useful to produce vibratos, glissandos, tremolos, and
volume envelopes in music or to change the volume of a sound.

CMD_FLUSH

CMD__FLUSH aborts (calls AbortiO()) all CMD_ WRITEs and all ADCMD_ WAITCYCLEs
that are queued up for the channel or channels. It does not abort ADCMD__LOCKs (only
ADCMD__FREE clears locks).

CMD_RESET

CMD_RESET restores all the audio hardware registers. It clears the attach bits, restores the
audio interrupt vectors if the programmer has changed them, and performs the CMD__FLUSH
command to cancel all requests to the channels. CMD_RESET also unstops channels that have had
a CMD_STOP performed on them. CMD_RESET does not unlock channels that have been locked
by ADCMD__LOCK.

ADCMD_ WAITCYCLE

This is a single-channel command. ADCMD_ WAITCYCLE is replied to when the current cycle
has completed, If there is no ,CMD_ WRITE in progress, it returns immediately.

CMD_STOP

This command stops the current write cycle immediately. If there are no CMD_ WRITEs in progress,
it sets a flag so any future CMD_ WRITEs are queued up and do not begin processing (playing).

CMD_START

CMD_START undoes the CMD_STOP command. Any cycles that were stopped by the
CMD_STOP command are actually lost because of the impossibility of determining exactly where
the DMA ceased. If the CMD_ WRITE command was playing two cycles and the first one was
playing when CMD_STOP was issued, the first one is lost and the second one will be played.

This command is also useful when you are playing the same wave form with the same period out
of multiple channels. If the channels are stopped when the CMD_ WRITE commands are issued,
CMD_START exactly synchronizes them, avoiding cancellation and distortion. When channels are
allocated, they are effectively started by the CMD_START command.

CMD_READ

CMD_READ is a single-channel command. Its only function is to return a pointer to the current
CMD_ WRITE command. It enables you to determine which request is being processed.

Audio Device 27

Double Buffered Sound Example

The program listed below demonstrates double buffering with the audio device. Run the program
from the CLI. It takes one parameter-the name of an IFF 8SVX sample file to play on the Amiga's
audio device. The maximum size for a sample on the Amiga is 128K. However, by using double­
buffering and queueing up requests to the audio device, you can play longer samples smoothly and
without breaks.

I*
* Audio 8SVX.c
*
* 8SVX example - double buffers >128K samples
* * Compile with SAS C 5.10 lc -b1 -cfistq -v -y -L
*
* Run from CLI only
*I

#include <exec/types.h>
#include <exec/memory. h>
#include <devices/ audio. h>
#include <dos/dos.h>
#include <dos/dosextens. h>
#include <graphics/gfxbase.h>
#include <iff!iff.h>
#include <iff!Bsvx.h>

#include <clib/exec protos.h>
#include <clib/ a lib-prot as. h>
#include <clib/dos protos.h>
#include <clib/graphics _prates. h>

#include <stdlib.h>
#include <stdio. h>

#i fdef LATTICE
int CXBRK(void) { return(O); }
int chkabort (void) { return (0);
#end if

/* Disable SAS CTRL/C handling */
I* really *I

#define VHDR MakeiD('V' ,'H' ,'D' ,'R')
#define BODY MakeiD('B' ,'0' ,'D' ,'Y')
#define MYSS MakeiD('8','S','V','X')

void
void

killBsvx(char *);
killS (void);

/*--------------------*/
/* G L 0 B A L S */
!*--------------------*!
struct IOAudio *AIOptrl,

struct Message
struct MsgPort

struct

ULONG
UBYTE
ULONG

FileHandle
UBYTE
UBYTE
UBYTE
UBYTE

*AI0ptr2,
*Aptr;
*msg;
*port,
*port1,*port2;
device;

*sbase,*fbase;
fsize, ssize;

*vBhandle;
chanl []
chan2 []
chan3 []
chan4 []

1
2
4
8

} ;
} ;
} ;
} ;

!* These globals are needed */
/* by the clean up routines */

I* Pointers to Audio IOBs */

/* Msg, port and device for */
/* driving audio */

!* For sample memory allocation */
/* and freeing */

I* Audio channel allocation arrays

UBYTE *chans [] {chan1,chan2,chan3,chan4};

BYTE oldpri,c; I* Stuff for bumping priority */

struct Task *mt~OL;

struct GfxBase *GfxBase ~ NULL;

28 Amiga ROM Kernel Reference Manual: Devices

*I

/*-----------*/
/* M A I N */
/*-----------*/

void main(int argc,char **argv)
{

/*-------------*/
/* L 0 C A L S */
/*-------------*/

char
UBYTE
ULONG
ULONG
BYTE

*fname;
*pBdata;
clock;
length[2);
iobuffer[B),

I* File name and data pointer*/
I* for file read.
/* Clock constant
I* Sample lengths
/* Buffer for BSVX header
I* Sample pointers

Chunk
VoiceBHeader
ULONG

*psample[2);
*pBChunk;
*pVoiceBHeader;

I* Pointers for BSVX parsing

ULONG

/*-------------*/
/* c o D E *I
/*-------------*/

y,rdBcount,speed;
wakebit;

/*------------------------------*/
/* Check Arguments, Initialize */
/*------------------------------*/

fbase=OL;
sbase=OL;
AIOptrl=OL;
AIOptr2=0L;
port=OL;
portl=OL;
port2=0L;
vBhandle=OL;
device=lL;

if (argc < 2)
{
killBsvx("No file name given.\n");
exit(lL);
)

fname=argv[l);

/*---------------------------*/
/* Initialize Clock Constant */
/*---------------------------*/

I* Counters, sampling
I* A wakeup mask

GfxBase=(struct GfxBase *)OpenLibrary("graphics.library",OL);
if (GfxBase==OL)

{
puts("Can't open graphics library\n");
exit (lL);
)

if (GfxBase->DisplayFlags & PAL)
clock=3546895L; /* PAL clock */

else
clock=3579545L; /* NTSC clock */

if (GfxBase)
CloseLibrary((struct Library*) GfxBase);

/*---------------*/
/* Open the File */
/*---------------*/

vBhandle= (struct FileHandle *) Open(fname,MODE_OLDFILE);
if (vBhandle==O)

{
killBsvx("Can't open BSVX file.\n");
exit(lL);
)

speed

*I
*I
*I
*I
*I
*I

*I
*I

Audio Device 29

l*---*1
I* Read the 1st 8 Bytes of the File for Size *I
1*---*l
rd8count=Read((BPTR)v8handle,iobuffer,8L);
if (rdScount==-1)

(
kill8svx ("Read error.\n");
exit (lL);
)

if (rd8count<Sl
(
kill8svx ("Not an IFF 8SVX file, too short\n");
exit (lL);
I

1*-----------------*1
I* Evaluate Header *I
1*-----------------*1
p8Chunk=(Chunk *)iobuffer;
if (p8Chunk- >ckiD ! = FORM

(
ki118svx ("Not an IFF FORM. \n");
exit(lL);
)

1*--*l
I* Allocate Memory for File and Read it in. *I
l*--*1
fbase= (UBYTE *)AllocMem(fsize=p8Chunk->ckSize, MEMF_PUBLICIMEMF_CLEAR);
if (fbase==O)

(
kill8svx ("No memory for read. \n");
exit (lL);
I

p8data=fbase;

rd8count=Read((BPTR)v8handle,p8data,p8Chunk->ckSize);
if (rdScount==-1)

(
kill8svx ("Read error.\n");
exit (lL);
}

if (rd8count<p8Chunk->ckSize)
(
kill8svx ("Malformed IFF, too short.\n");
exit(lL);
I

1*-------------------*1
I* Evaluate IFF Type *I
1*-------------------*1
if (MakeiD(*p8data, *(p8data+l) , *(p8data+2) , *(p8data+3)) != MYSS)

{
kill8svx("Not an IFF 8SVX file.\n");
exit(lL);
I

1*----------------------*1
I* Evaluate 8SVX Chunks *I
1*----------------------*1
p8data=p8data+4;

while (p8data < fbase+fsize
{
p8Chunk=(Chunk *)p8data;

switch (p8Chunk- >ckiD)
(
case VHDR:

1*--*l
I* Get a pointer to the 8SVX header for later use *I
1*--*l
pVoice8Header= (Voice8Header *) (p8data+8L);
break;

30 Amiga ROM Kernel Reference Manual: Devices

case BODY:
1*---*l
I* Create pointers to 1-shot and continuous parts *I
I* for the top octave and get length. Store them. *I
1*---*l

psamp1e [0] = (BYTE *) (p8data + 8L);
psample[1] = psample[O] + pVoice8Header->oneShotHiSamples;
length[O] (ULONG)pVoiceBHeader->oneShotHiSamples;
length[1] = (ULONG)pVoiceBHeader->repeatHiSamples;
break;

default:
break;

l
I* end switch *I

pBdata = pBdata + SL + pBChunk->ckSize;

if (p8Chunk->ckSize&1L == 1)
pBdata++;

I* Play either the one-shot or continuous, not both *I
if (length[O]==O)

y=1;
else

y=O;

1*---------------------------------------*1
I* Allocate chip memory for samples and *I
I* copy from read buffer to chip memory. *I
1*---------------------------------------*1
if (length[y] <=102400)

ssize=length[y];
else

ssize=102400;

sbase=(UBYTE *)AllocMem(ssize , MEMF_CHIP
if (sbase==O)

{
killBsvx("No chip memory.\n");
exit (lL);
l

CopyMem(psample[y],sbase,ssize);
psample[y]+=ssize;

1*----------------------------------*1
I* Calculate playback sampling rate *I
1*----------------------------------*1

MEMF CLEAR);

speed = clock I pVoiceBHeader->samplesPerSec;

1*-------------------*1
/* Bump our priority */
/*-------------------*/
mt=FindTask(NULL);
oldpri=SetTaskPri(mt,21);

1*--------------------------------*1
I* Allocate two audio IIO blocks */
1*--------------------------------*1
AIOptr1=(struct IOAudio *)

AllocMem(sizeof(struct IOAudio),MEMF_PUBLICIMEMF_CLEAR);
if (AIOptr1==0)

{
ki1l8svx("No IO memory\n");
exit(1L);
l

AI0ptr2=(struct IOAudio *)
AllocMem(sizeof(struct IOAudio),MEMF_PUBLICIMEMF CLEAR);

if (AIOptr2==0)
{
killBsvx("No IO memory\n");
exit (1L);
l

Audio Device 31

!*----------------------*/
/* Make two reply ports */
!*----------------------*!

portl=CreatePort(O,O);
if (portl==O)

{
kill8svx("No port\n");
exit (lL);
)

port2=CreatePort(0,0);
if (port2==0)

c=O;

{
kill8svx("No port\n");
exit (lL);
)

while(device!=O && c<4)
{

!*---------------------------------------*/
I* Set up audio I/0 block for channel */
/* allocation and Open the audio device */
!*---------------------------------------*!
AIOptrl->ioa Request.io Message.mn ReplyPort
AIOptrl->ioa-Request.io-Message.mn-Node.ln Pri
AIOptrl->ioa-AllocKey - - -
AIOptr1- >ioa -Data
AIOptr1->ioa:::Length

port1;
127; /* No stealing! */
0.
chans[c);
1;

device=OpenDevice(AUDIONAME,OL, (struct IORequest *)AIOptrl,OL);
c++;
l

if (device!=O)
{
kill8svx("No channel\n");
exit(lL);
l

!*---*!
/* Set Up Audio IO Blocks for Sample Playing */
!*---*1

AIOptrl->ioa Request.io Command
AIOptrl->ioa:::Request.io:::Flags

=CMD WRITE;
=ADIOF PERVOL;

!*--------*/
/* Volume */
!*--------*!

AIOptrl- >i oa _Vol ume=60;

!*---------------*/
I* Period/Cycles */
/*---------------*!

AIOptrl->ioa Period =(UWORD)speed;
AIOptrl->ioa:::cycles =1;

*AI0ptr2 = *AIOptrl; /* Make sure we have the same allocation keys, */
I* same channels selected and same flags */
I* (but different ports ...) *I

AIOptr1->ioa Request.io Message.mn ReplyPort
AIOptr2->ioa:::Request.io:::Message.mn:::ReplyPort

port1;
= port2;

/*--------*!
/* Data */
!*--------*/

AI0ptr1->ioa Data
AIOptr2->ioa:::Data

=(UBYTE *)sbase;
=(UBYTE *)sbase + 51200;

32 Amiga ROM Kernel Reference Manual: Devices

/*-----------------*!
/* Run the sample *I
!*-----------------*!

if (length[y] <=102400)
{

else

AIOptrl->ioa Length=length[y];
BeginiO((struct IORequest *)AI0ptr1);
wakebit=OL;

/* No double buffering needed */
/* Begin the sample, wait for */
/* it to finish, then quit. *I

wakebit=Wait (1 << portl->mp SigBit);
while((msg=GetMsg(port1))==0)(};
}

{
length[y]-=102400;
AIOptrl->ioa Length=51200L;
AIOptr2- >ioa -Length=51200L;
BeginiO((struct IORequest *)AIOptr1);
BeginiO((struct IORequest *)AIOptr2);
Aptr=AIOptr1;
port=port1;

while (length [y] >Ol

!*It's a real long sample so */
/* double buffering is needed */

/*Start up the first 2 blocks ... *I

I* Set the switch ... */

{ /*We Wait() for one IO to finish, */
wakebit=Wait(l << port->mp SigBit); I* then reuse the IO block & queue*/
while((msg=GetMsg(port))==O)(); /*it up again while the 2nd IO *I

!* block plays. Switch and repeat. */
!* Set length of next IO block *I
if (length[y] <=51200)

Aptr->ioa Length=length[y];
else -

Aptr->ioa Length=51200L;

/* Copy sample fragment from read buffer to chip memory */
CopyMem (psample [y], Aptr->ioa_Data,Aptr->ioa_Length);

I* Adjust size and pointer of read buffer*/
length[y]-=Aptr->ioa Length;
psample[y]+=51200;

BeginiO((struct IORequest *)Aptr);

if (Aptr==AIOptr1)
{
Aptr=AIOptr2;
port=port2;

else
)

{
Aptr=AIOptrl;
port=portl;
}

I* This logic handles switching */
I* between the 2 IO blocks and */
/* the 2 ports we are using. */

1*---*l
/* OK we are at the end of the sample so just wait *I
I* for the last two parts of the sample to finish *I
l*---*1
wakebit=Wait (1 << port->mp SigBit);
while((msg=GetMsg(port))==O){};
if (Aptr==AIOptr1)

else

{
Aptr=AIOptr2; /* This logic handles switching */
port=port2; I* between the 2 IO blocks and *I
) /* the 2 ports we are using. *I

{
Aptr=AIOptrl;
port=portl;
}

wakebit=Wait (1 << port->mp SigBit);
while ((msg=GetMsg (port)) ==0)(};
)

killS();
exit(OL);
}

Audio Device 33

/*----------------*!
/* Abort the Read */
!*----------------*/
void
killSsvx(killSsvxstring)
char *killSsvxstring;
{
puts(kill8svxstring);
killS();
}

!*-------------------------*/
/* Return system resources */
/*-------------------------*/
void
killS()
{
if (device ==0)

CloseDevice((struct IORequest *)AIOptrl);
if (portl !=0)

DeletePort(portl);
if (port2 ! =0)

DeletePort(port2);
if (AIOptrl!=O)

FreeMem(AIOptrl,sizeof(struct IOAudio));
if (AIOptr2!=0)

FreeMem(AI0ptr2,sizeof(struct IOAudio));

if (mt! =0)
SetTaskPri(mt,oldpri);

if (sbase !=0)
FreeMem (sbase, ssize);

if (fbase !=0)
FreeMem(fbase,fsize);

if (vShandle!=O)
Close((BPTR)vShandle);

Additional Information on the Audio Device

Additional programming information on the audio device can be found in the include files and the
Autodocs for the audio device. Both are contained in the Amiga ROM Kernel Reference Manual:
Includes and Autodocs. Information can also be found in the Amiga Hardware Reference Manual.

Audio Device Information

INCLUDES

AUTO DOCS

devices/audio.h
devices/audio.i

audio.doc

34 Amiga ROM Kernel Reference Manual: Devices

chapter three
CLIPBOARD DEVICE

The clipboard device allows the exchange of data dynamically between one application and another.
It is responsible for caching data that has been "cut" and providing data to "paste" in an application.
A special "post" mode allows an application to inform the clipboard device that the application has
data available. The clipboard device will request this data only if the data is actually needed. The
clipboard will cache the data in RAM and will automatically spool the data to disk if necessary.

The clipboard device is implemented as an Exec-style device, and supports random access reads
and writes on data within the clipboard. All data in the clipboard must be in IFF format. A new
library, iffparse.library, has been added to the Amiga libraries. The routines in iffparse.library can
and should be used for reading and writing data to the clipboard. This chapter contains a brief
discussion of IFF as it relates to the clipboard (for more details see Appendix A).

New Clipboard Features for Version 2.0

Feature Description

CBD_CHANGEHOOK Device Command

Compatibility Warning: The new features for the 2.0 clipboard device are not backwards
compatible.

Clipboard Device 35

Clipboard Device Commands and Functions

Command

CBD_CHANGEHOOK

CBD_CURRENTREADID

CBD_CURRENTWRITEID

csn_posT
CMD_READ

CMD_UPDATE

CMD_WRITE

Command Operation

Specify a hook to be called when the data on the clipboard has
changed (V36).
Return the Oip ID of the current clip to read. This is used to
detennine if a clip posting is still the latest cut.
Return the Oip ID of the latest clip written. This is used to
detennine if the clip posting data is obsolete.
Post the availability of clip data.
Read data from the clipboard for a paste. Data can be read from
anywhere in the clipboard by specifying an offset >0 in the 1/0
request.
Indicate that the data provided with a write command is complete
and available for subsequent read/pastes.
Write data to the clipboard as a cut.

Exec Functions as Used in This Chapter

CloseDevice()

DolO()
GetMsg()
OpenDevice()
SendiO()

Relinquish use of the clipboard device. All requests must be
complete before closing.
Initiate a command and wait for completion (synchronous request).
Get next message from a message port.
Obtain use of the clipboard device.
Initiate a command and return immediately (asynchronous
request).

Exec Support Functions as Used In This Chapter

CreateExtiO()

CreatePort()

DeleteExtiO()
DeletePort()

Create an 1/0 request structure of type IOCiipReq. This structure
will be used to communicate commands to the clipboard device.
Create a signal message port for reply messages from the clipboard
device. Exec will signal a task when a message arrives at the port.
Delete an 1/0 request structure created by CreateExtiO().
Delete the message port created by CreatePort().

36 Amiga ROM Kernel Reference Manual: Devices

Device Interface

The clipboard device operates like the other Amiga devices. To use it, you must first open the
clipboard device, then send 1/0 requests to it, and then close it when finished. See the "Introduction
to Amiga System Devices" chapter for general information on device usage.

struct IOClipReq
{

Message io Message;
Device *io Device;
Unit *io-Unit;
io Command;-

/* device node pointer */
/* unit (driver private)* I
/* device command */
/* including QUICK and SATISFY */
I* error or warning num */
I* number of bytes transferred */
/* number of bytes requested */

struct
struct
struct
UWORD
UBYTE
BYTE
ULONG
ULONG
STRPTR
ULONG
LONG

io -Flags;
io-Error;
io-Actual;
io-Length;
io-Data;
io-Offset;
io=ClipiD;

I* either clip stream or post port *I
/* offset in clip stream */
I* ordinal clip identifier */

) ;

See the include file devices!clipboard.h for the complete structure definition.

The clipboard device 1/0 request, IOCiipReq, looks like a standard IORequest structure except
for the addition of the io_CiipiD field, which is used by the device to identify clips. It must be set
to zero by the application for a post or an initial write or read, but preserved for subsequent writes
or reads, as the clipboard device uses this field internally for bookkeeping purposes.

OPENING THE CLIPBOARD DEVICE

Three primary steps are required to open the clipboard device:

• Create a message port using CreatePort(). Reply messages from the device must be directed
to a message port.

• Create an extended 1/0 request structure of type IOCiipReq using CreateExtiO().

• Open the clipboard device. Call OpenDevice(), passing the IOCiipReq.

struct MsgPort *ClipMP;
struct IOClipReq *ClipiO;

/* pointer to message port*/
I* pointer to IORequest *I

if (ClipMP=CreatePort(OL,OL)
{

else

if (ClipiO=(struct IOClipReq *)
CreateExtiO(ClipMP,sizeof(struct IOClipReq)))

{
if (OpenDevice("clipboard.device",OL,ClipiO,O))

printf("clipboard.device did not open\n");
else

{
do device processing

{
else

printf("Error: Could not create IORequest\n");
)

printf("Error: Could not create message port\n");

Clipboard Device 37

CLIPBOARD DATA

Data on the clipboard resides in one of three places. When an application posts a cut, the data resides
in the private memory space of that application. When an application writes to the clipboard, either
of its own volition or in response to a message from the clipboard requesting that it satisfy a post,
the data is copied to the clipboard which is either memory or a special disk file. When the clipboard
is not open, the data resides in the special disk file located in the directory specified by the CLIPS:
logical AmigaDOS assign.

Data on the clipboard is self-identifying. It must be a correct IFF (Interchange File Format) file;
the rest of this section refers to IFF concepts. See the Appendix A in this manual for a complete
description of IFF. If the top-level chunk is of type CAT with an identifier of CLIP, that indicates
that the contained chunks are different representations of the same data, in decreasing order of
preference on the part of the producer of the clip. Any other data is as defined elsewhere (probably
a single representation of the cut data produced by an application).

The iffparse.library also contains functions which simplify reading and writing of IFF data to the
clipboard device. See the "IFF Parse Library" chapteroftheAmiga ROM Kernel Reference Manual:
Libraries for more information.

A clipboard tool, which is an application that allows a Workbench user to view a clip, should
understand the text (FfXT) and graphics (ILBM) form types. Applications using the clipboard
to export data should include at least one of these types in a CAT CLIP so that their data can be
represented on the clipboard in some form for user feedback.

You should not, in any way, rely on the specifics of how files in CLIPS: are handled or named. The
only proper way to read or write clipboard data is via the clipboard device.

Play Nice! Keep in mind that while your task is reading from or writing to a clipboard
unit, other tasks cannot. Therefore, it is important to be fast. If possible, make a copy of
the clipboard data in RAM instead of processing it while the read or write is in progress.

MULTIPLE CUPS

The clipboard supports multiple clips, i.e., the clipboard device can contain more than one distinct
piece of data. This is not to be confused with the IFF CAT CLIP, which allows for different
representation of the same data.

The multiple clips are implemented as different units in the clipboard device. The unit is specified
at OpenDevice() time.

struct IOClipReq *ClipiO;
LONG unit;

OpenDevice("clipboard.device", unit, ClipiO, 0);

By default, applications should use clipboard unit 0. However, it is recommended that each
application provide a mechanism for selecting the unit number which will be used when the
clipboard is opened. This will allow the user to create a convention for storing different types of
data in the clipboard. Applications should never write to clipboard unit 0 unless the user requests
it (e.g., selecting COPY or CUT within an application).

38 Amiga ROM Kernel Reference Manual: Devices

Clipboard units 1-255 can be used by the more advanced user for:

• Sharing data between applications within an ARexx Script.

• Customizing applications to store different kinds of data in different clipboard units.

• Customizing an application to usc multiple cut/copy/paste buffers.

• Specialized utilities which might display and/or automatically modify the contents of a clipboard
unit.

All applications which provide CUT, COPY and PASTE capabilities, should, at a minimum, provide
support for clipboard unit 0.

WRITING TO THE CLIPBOARD DEVICE

You write to the clipboard device by passing an IOClipReq to the device with CMD_ WRITE set
in io_Command, the number of bytes to be written set in io_Length and the address of the write
buffer set in io_Data.

ClipiO->io Data ~ (char *) data;
ClipiO->io -Length ~ 4L;
ClipiO->io:::Command ~ CMD_WRITE;

An initial write should set io_Offset to zero. Each time a write is done, the device will increment
io_Offset by the length of the write.

As previously stated, the data you write to the clipboard must be in IFF format. This requires a
certain amount of preparation prior to actually writing the data if it is not already in IFF format. A
brief explanation of the IFF format will be helpful in this regard.

For our purposes, we will limit our discussion to a simple formatted text (FTXT) IFF file. An FTXT
file looks like:

FORM
length of succeeding bytes
FTXT
CHRS
length of succeeding bytes
data bytes
pad byte of zero if the preceding chunk has odd length

Based on the above figure, a hex dump of an IFF FTXT file containing the string Enterprise would
look like:

()()()()

0004
0008
oooc
0010
0014
0018
OOIC

464F524D
00000016
46545854
43485253
OOOOOOOA
456E7465
72707269
7365

FORM
(length of FTXT, CHRS, Ox A and data)
FTXT
CHRS
(length of Enterprise)
Ente
rpri
se

Clipboard Device 39

A code fragment for doing this:

LONG slen ~ strlen ("Enterprise");
BOOL odd~ (slen & 1); /*pad byte flag*/

/* set length depending on whether string is odd or even length */
LONG length ~ (odd) ? slen + 1 : slen;

/* Reset the clip id */
ClipiO->io ClipiD ~ 0;
ClipiO->io=Offset = 0;

error= writeLong ((LONG*) "FORM");/* "FORM"*/

length += 12; /* add 12 bytes for FTXT, CHRS & length byte to string length */
error= writeLong (&length);
error= writeLong ((LONG*) "FTXT");/* "FTXT" for example*/
error = wri teLong ((LONG *) "CHRS"); /* "CHRS" for example *I
error~ writeLong (&slen); /* ~ (length of string) */

ClipiO->io Command ~ CMD WRITE;
ClipiO->io-Data = (char *l string;
ClipiO->io-Length = slen; /* length of string */
error= (LONG) DoiO (clipiO); /*text string*/

LONG writeLong (LONG * ldata)
{

ClipiO->io Command = CMD WRITE;
ClipiO->io-Data = (char *l ldata;
ClipiO->io-Length = 4L;
return ((LONG) DoiO (clipiO)) ;

The fragment above does no error checking because it's a fragment. You should always error check.
See the example programs at the end of this chapter for the proper method of error checking.

lffparse That Data! Keep in mind that the functions in the iffparse.library can be used to
write data to the clipboard. See the "IFF Parse Library" chapter of the Amiga ROM Kernel
Reference Manual: Libraries for more information.

UPDATING THE CLIPBOARD DEVICE

When the final write is done, an update command must be sent to the device to indicate that the
writing is complete and the data is available. You update the clipboard device by passing an
IOCiipReq to the device with CMD_UPDATE set in io_Command.

ClipiO->io Command CMD_UPDATE;
DoiO (ClipiO);

CLIPBOARD MESSAGES

When an application performs a post, it must specify a message port for the clipboard to send a
message to if it needs the application to satisfy the post with a write called the SatisfyMsg.

struct SatisfyMsg
{
struct
UWORD
LONG
}

Message sm Message; /* the length will be 6 */
sm Unit; - /* 0 for the primary clip unit */
sm=ClipiD; /* the clip identifier of the post */

40 Amiga ROM Kernel Reference Manual: Devices

This structure is defined in the include file devices/ clipboard.h.

If the application wishes to determine if a post it has recently performed is still the current clip,
it should compare the io_ClipiD found in the post request upon return with that returned by the
CBD_CURRENTREADID command.

If an application has a pending post and wishes to determine if it should satisfy it (for exam­
ple, before it exits), it should compare the io_CiipiD of the post I/0 request with that of the
CBD_CURRENTWRITEID command. If the application receives a satisfy message from the clip­
board device (format described below), it must immediately perform the write with the io_CiipiD
of the post. The satisfy message from the clipboard may be removed from the application message
port by the clipboard device at any time (because it is re-used by the clipboard device). It is not
dangerous to spuriously satisfy a post, however, because it is identified by the io_CiipiD.

The cut data is provided to the clipboard device via either a write or a post of the cut data. The
write command accepts the data immediately and copies it onto the clipboard. The post command
allows an application to inform the clipboard of a cut, but defers the write until the data is actually
required for a paste.

In the preceding discussion, references to the read and write commands of the clipboard device
actually refer to a sequence of read or write commands, where the clip data is acquired and provided
in pieces instead of all at once.

The clipboard has an end-of-clip concept that is analogous to end-of-file for both read and write.
The read end-of-file must be triggered by the user of the clipboard in order for the clipboard to
move on to service another application's requests, and consists of reading data past the end of file.
The write end-of-file is indicated by use of the update command, which indicates to the clipboard
that the previous write commands are completed.

READING FROM THE CLIPBOARD DEVICE

You read from the clipboard device by passing an IOClipReq to the device with CMD__READ set
in io_Command, the numberofbytes to be read set in io_Length and the address of the read buffer
set in io_Data.

ClipiO->io Command = CMD READ;
ClipiO->io-Data = (char *l read data;
ClipiO->io=Length = 20L; -

io_Offset must be set to zero for the first read of a paste sequence. An io_A.ctual that is less than the
io_Length indicates that all the data has been read. After all the data has been read, a subsequent
read must be performed (one whose io_A.ctual returns zero) to indicate to the clipboard device that
all the data has been read. This allows random access of the clip while reading. Providing only valid
reads are performed, your program can seck/read anywhere within the clip by setting the io_Offset
field of the I/0 request appropriately.

Tell The Clipboard You Are Finished Reading. Your application must perform an
extra read (one whose io_A.ctual returns zero) to indicate to the clipboard device that all
data has been read, (fio_A.ctual is not already zero.

The data you read from the clipboard will be in IFF format. Conversion from IFF may be necessary
depending on your application.

Clipboard Device 41

lffparse That Datal Keep in mind that the functions in the iffparse.library can be used
to read data from the clipboard. See the "IFF Parse Library" chapter of the Amiga ROM
Kernel Reference Manual: Libraries for more information.

CLOSING THE CLIPBOARD DEVICE

Each OpenDevice() must eventually be matched by a call to CloseDevice().

CloseDevice(ClipiO);

When the last task closes a clipboard unit with CloseDevice(), the contents of the unit may be
copied to a disk file in CLIPS: so that the clipboard device can be expunged.

Monitoring Clipboard Changes

Some applications require notification of changes to data on the clipboard. Typically, these appli­
cations will need to do some processing when this occurs. You can set up such an environment
through the CBD_CHANGEHOOK command. CBD_CHANGEHOOK allows you to specify a
hook to be called when the data on the clipboard changes.

For example, a show clipboard utility would need to know when the data on the clipboard is changed
so that it can display the new data. The hook it would specify would read the new clipboard data
and display it for the user.

You specify a hook for the clipboard device by initializing a Hook structure and then passing an
IOCiipReq to the device with CBD_CHANGEHOOK set in io_Command, 1 set in io_Length,
and the address of the Hook structure set in io_Data.

ULONG HookEntry ();
struct IOClipReq *ClipiO;
struct Hook *ClipHook;

I* Prepare the hook *I
ClipHook->h Entry ~ HookEntry;
ClipHook->h-SubEntry ~ HookFunc;
ClipHook->h=Data ~ FindTask(NULL);

I* Declare the hook assembly function *I
I* Declare the IOClipReq *I
I* Declare the Hook *I

I* C interface in assembly routine HookEntry *I
I* Function to call when Hook is activated *I
I* Set pointer to current task *I

ClipiO->io Data = (char *) ClipHook;
ClipiO->io-Length = 1;
ClipiO->io-Command CBD CHANGEHOOK;

I* Point to hook struct *I
I* Add hook to clipboard *I

DoiO (clipiO); -

The above code fragment assumes that an assembly language routine HookEntry() has been coded:

; entry interface for C code
HookEn try:

- move.l
move.l
move.l
move.l
jsr
lea
rts

al,-(sp)
a2,-(sp)
aO,-(sp)
h SubEntry(aO),aO
Cao)
12(sp),sp

push message packet pointer
push object pointer
push hook pointer
fetch C entry point

and call it
fix stack

42 Amiga ROM Kernel Reference Manual: Devices

It also assumes that the function HookFunc() has been coded. One of the example programs at the
end of this chapter has hook processing in it. See the include file utilitylhooks.h and The Amiga
ROM Kernel Reference Manual: Libraries for further information on hooks.

You remove a hook by passing an IOCiipReq to the device with the address of the Hook structure
set in io_Data, 0 set in io_Length and CBD_CHANGEHOOK set in io_Command.

I* point to hook struct */ ClipiO->io Data = (char *) ClipHook;
ClipiO->io-Length = 0;
ClipiO->io-Command = CBO CHANGEHOOK;

I* Remove hook from clipboard */

(DolO (clipiO)) -

You must remove the hook or it will continue indefinitely.

CAVEATS FOR CBD_CHANGEHOOK

• CBD_CHANGEHOOK should only be used by a special application, such as a clipboard
viewing program. Most applications can check the contents of the clipboard when, and if, the
user requests a paste.

• Do not add system overhead by blindly reading and parsing the clipboard everytime a user
copies data to it. If all applications did this, the system could become intolerably slow whenever
an application wrote to the clipboard. Only read and parse when it is necessary.

Example Clipboard Programs

I*
* Clipdemo.c
* * Demonstrate use of clipboard I/0. Uses general functions
* provided in cbio.c
*
* Compile with SAS C 5.10: LC -bl -cfistq -v -y -L+cbio.o
* * Run from CLI only
*I

#include <exec/types. h>
#include <exec/ports.h>
#include <exec/io.h>
#include <exec/memory. h>
#include <devices/clipboard. h>
#include <libraries/dosextens. h>
#include <libraries/dos.h>

#include "cb.h"

#include <clib/exec protos.h>
#include <clib/alib:::protos.h>

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#ifdef LATTICE
int CXBRK(void) { return(O); } /*Disable SAS CTRL/C handling*/
int chkabort(void) { return(O);) /*really*/
#endif

#define FORGETIT 0
#define READIT 1
#define WRITEIT 2

Clipboard Device 43

--

#define POSTIT 3

I* prototypes *I

int ReadClip(void);
int WriteClip(char*);
int PostClip(char*);

I* Demonstrate reading clipboard data *I
I* Demonstrate write to clipboard *I
I* Demonstrate posting data to clipboard *I

void main(OSHORT, char**);

char message[] = "\
\nPossible switches are:\n\n\
-r Read, and output contents of clipboard.\n\
-w [string] Write string to clipboard.\n\n\
-p [string] Write string to clipboard using the clipboard POST mechanism.\n\n\

The Post can be satisfied by reading data from\n\
the clipboard. Note that the message may never\n\
be received if some other application posts, or\n\
performs an immediate write to the clipboard.\n\n\
To run this test you must run two copies of this example.\n\
Use the -p switch with one to post data, and the -r switch\n\
with another to read the data.\n\n\
The process can be stopped by using the BREAK command,\n\
in which case this example checks the CLIP write ID\n\
to determine if it should write to the clipboard before\n\
exiting.\n\n";

void main(argc,argv)
OSHORT argc;
char **argv;
{

int todo;
char *string;

todo = FORGETIT;

if (argc)
{

I* from CLI ? *I

I* Very simple code to parse for arguments - will suffice for
* the sake of this example
*I

if (argc > 1)
{
if(! (strcmp(argv[ll."-r")))

todo = READIT;
if (1 (strcmp(argv[ll."-w")))

todo = WRITEIT;
if (! (strcmp(argv[l]."-p")))

todo = POSTIT;

string = NULL;

if (argc > 2)
string=argv[2];

switch (todo)
{

case READIT:

ReadClip();
break;

case POSTIT:

PostClip(string);
break;

case WRITEIT:

WriteClip(string);

44 Amiga ROM Kernel Reference Manual: Devices

/*

break;

default:

printf("%s",message);
break;

* Read, and output FTXT in the clipboard.

*
*I

ReadClip ()
(
struct IOClipReq *ior;
struct cbbuf *buf;

/* Open clipboard.device unit 0 */

if (ior=CBOpen(OL))
(

else

/* Look for FTXT in clipboard */

if (CBQueryFTXT(ior))
(

else

/* Obtain a copy of the contents of each CHRS chunk */

while (buf=CBReadCHRS(ior))
(
/* Process data */

printf("%s\n",buf->mem);

/* Free buffer allocate~ by CBReadCHRS() */

CBFreeBuf (buf);
}

/* The next call is not really needed if you are sure */
/* you read to the end of the clip. */

CBReadDone(ior);
}

(
puts("No FTXT in clipboard");
}

CBClose{ior);
}

(
puts("Error opening clipboard unit 0");
}

return (OL);
}

!*
* Write a string to the clipboard

*
*I

WriteClip(string)
char *string;
(

Clipboard Device 45

struct IOClipReq *ior;

if (string == NULL)
{
puts("No string argument given");
return (OL);
)

/* Open clipboard.device unit 0 */

if (ior = CBOpen(OL))
{

else

if(! (CBWriteFTXT(ior,string)))
{
printf("Error writing to clipboard: io Error
I

CBClose(ior);
)

{
puts("Error opening clipboard.device");
}

return(O);
)

/*

%ld\n",ior->io_Error);

* Write a string to the clipboard using the POST mechanism
*
* The POST mechanism can be used by applications which want to
* defer writing text to the clipboard until another application
* needs it (by attempting to read it via CMD READ). However
* note that you still need to keep a copy of-the data until you
* receive a SatisfyMsg from the clipboard.device, or your program
* exits.
*
* In most cases it is easier to write the data immediately.
*
* If your program receives the SatisfyMsg from the clipboard.device,
* you MUST write some data. This is also how you reply to the message.
*
* If your program wants to exit before it has received the SatisfyMsg,
* you must check the io ClipiD field at the time of the post against
* the current post ID which is obtained by sending the CBD CURRENTWRITEID
* command. -
*
* If the value in io ClipiD (returned by CBD CURRENTWRITEID) is greater
* than your post ID,-it means that some other application has performed
*a post, or immediate write after your post, and that you're application
* will never receive the SatisfyMsg.
*
* If the value in io ClipiD (returned by CBD CURRENTWRITEID) is equal
* to your post ID, then you must write your data, and send CMD_UPDATE
* before exiting.
*
*I

PostClip(string)
char *string;
{

struct MsgPort *satisfy;
struct SatisfyMsg *sm;
struct IOClipReq *ior;
int mustwrite;
ULONG postiD;

if (string == NULL)
{
puts("No string argument given");
return (OL);
)

if (satisfy
{

CreatePort(OL,OL))

46 Amiga ROM Kernel Reference Manual: Devices

else

I* Open clipboard.device unit 0 *I

if (ior = CBOpen(OL))
{
mustwrite = FALSE;

I* Notify clipboard we have data *I

ior->io Data = (STRPTR) satisfy;
ior->io::::clipiD = OL;
ior->io Command = CBD POST;
DoiO ((struct IORequest *) ior);

postiD = ior->io_ClipiD;

printf("\nClipiD = %ld\n",postiD);

I* Wait for CTRL-C break, or message from clipboard *I
Wait (SIGBREAKF_CTRL_CI (lL << satisfy->mp_SigBit));

I* see if we got a message, or a break *I
puts ("Woke up");

if (sm = (struct SatisfyMsg *)GetMsg(satisfy))
{

else

puts("Got a message from the clipboard\n");

I* We got a message - we MUST write some data *I
mustwrite TRUE;
}

{
I* Determine if we must write before exiting by
* checking to see if our POST is still valid
*I

ior->io Command = CBD CURRENTWRITEID;
DoiO((struct IORequest *) ior);

print f ("CURRENTWRITEID = %ld\n", ior- >io _ ClipiD);

if (postiD >= ior->io ClipiD)
mustwrite = TRUE;

I* Write the string of text *I

if (mustwrite)
{

else

if(! (CBWriteFTXT(ior,string)))
puts("Error writing to clipboard");

{
puts("No need to write to clipboard");
}

CBClose(ior);
}

else
{
puts("Error opening clipboard.device");
}

DeletePort(satisfy);
}

{
puts("Error creating message port");
}

return(O);
}

Clipboard Device 47

/*
* Changehook Test.c
*
* Demonstrate the use of CBD CHANGEHOOK command.
* The program will set a hook and wait for the clipboard data to change.
* You must put something in the clipboard in order for it to return.
*
* Compile with SAS C 5.10: LC -cfist -v -y -L+Hookface.o+cbio.o
*
* Requires Kickstart 36 or greater.
*
* Run from CLI only
*I

#include <exec/types.h>
#include <exec/memory.h>
#include <exec/ports. h>
#include <exec/tasks. h>
#include <exec/io.h>
#include <devices/clipboard. h>
#include <dos/dos.h>
#include <utility/hooks.h>
#include "cb.h"

#include <clib/macros. h>
#include <clib/ a lib protos. h>
#include <clib/exec=protos.h>

#include <stdio. h>
#include <string. h>

LONG version = 1L;

extern ULONG SysBase, DOSBase;

/* Data to pass around with the clipHook */
struct CHData
{

l;

struct Task *ch Task;
LONG ch_ClipiD;-

struct MsgPort *clip port;
struct Hook hook; -
struct CHData ch;

ULONG clipHook (struct Hook * h, VOID * o, struct ClipHookMsg * msg)
{
struct CHData *ch = (struct CHData *) h->h_Data;

if (ch)
{
/* Remember the ID of clip */
ch->ch_ClipiD = msg->chm_ClipiD;

I* Signal the task that started the hook */
Signal (ch->ch Task, SIGBREAKF CTRL E);
l - - -

return (0);
l

struct IOClipReq *OpenCB (LONG unit)
{
struct IOClipReq *clipiO;

/* Open clipboard unit 0 */

if (clipiO = CBOpen(OL))
{
ULONG hookEntry ();

I* Fill out the IORequest */
clipiO->io Data = (char *) &hook;
clipiO->io_Length = 1;

48 Amiga ROM Kernel Reference Manual: Devices

clipiO->io_Command = CBD_CHANGEHOOK;

I* Set up the hook data *I
ch.ch_Task = FindTask (NULL);

I* Prepare the hook *I
hook.h Entry = hookEntry;
hook.h-SubEntry = clipHook;
hook.h=Data = &ch;

I* Start the hook *I
if (DoiO (clipiO))

printf ("unable to set hook\n");
else

printf ("hook set\n");

I* Return success *I
return (clipiO);
}

I* return failure *I
return (NULL);
}

void CloseCB (struct IOClipReq *clipiO)
{

I* Fill out the IO request *I
clipiO->io Data = (char *) &hook;
clipiO->io-Length = 0;
clipiO->io=Command = CBD_CHANGEHOOK;

I* Stop the hook *I
if (DoiO (clipiO))

printf ("unable to stop hook\n");
else

I* Indicate success *I
printf ("hook is stopped\n");

CBClose(clipiO);
}

main (int argc, char **argv)
{
struct IOClipReq *clipiO;

ULONG sig_rcvd;

printf ("Test v%ld\n", version);

if (clipiO=OpenCB (OL))
{
sig_rcvd =Wait ((SIGBREAKF_CTRL C

if (sig rcvd & SIGBREAKF CTRL C)
printf (""C received\n");-

if (sig rcvd & SIGBREAKF CTRL E)

SIGBREAKF_CTRL_E));

printf ("clipboard change-;- current ID is %ld\n", ch.ch_ClipiD);

CloseCB(clipiO);
}

Clipboard Device 49

Support Functions Called from Example Programs

/* Cbio.c
*
* Provide standard clipboard device interface routines
* such as Open, Close, Post, Read, Write, etc.

*
* Compile with SAS C 5.10: LC -b1 -cfistq -v -y
*
*
*
*
*
*I

NOTE - These functions are useful for writing, and reading simple
FTXT. Writing, and reading complex FTXT, ILBM, etc.,
requires more work - under 2.0 it is highly recommended that
you use iffparse.library.

#include <exec/types. h>
#include <exec/ports.h>
#include <exec/io.h>
#include <exec/memory.h>
#include <devices/clipboard.h>

#define CBIO 1

#include "cb.h"

#include <clib/exec protos.h>
#include <clib/ a lib ::::protos. h>

#include <stdlib.h>
#include <stdio.h>
#include <string. h>

/****** cbio/CBOpen ***
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

NAME
CBOpen() --Open the clipboard.device

SYNOPSIS
ior = CBOpen(unit)

struct IOClipReq *CBOpen(ULONG)

FUNCTION
Opens the clipboard.device. A clipboard unit number
must be passed in as an argument. By default, the unit
number should be 0 (currently valid unit numbers are
0-255) .

RESULTS
A pointer to an initialized IOClipReq structure, or
a NULL pointer if the function fails.

***/

struct IOClipReq *CBOpen(unit)
ULONG unit;
{

struct MsgPort *mp;
struct IOStdReq *ior;

if (mp = CreatePort(OL,OL))
{
if (ior=CreateExtiO(mp,sizeof(struct IOClipReq)))

{
if (! (OpenDevice ("clipboard. device", unit, ior, OL)))

{
return((struct IOClipReq *)ior);
}

DeleteExtiO(ior);
}

DeletePort (mp);
}

return(NULL);

50 Amiga ROM Kernel Reference Manual: Devices

/****** cbio/CBClose **
*
* NAME
* CBClose() --Close the clipboard.device
*
* SYNOPSIS
* CBClose()
*
*
*

void CBClose ()

* FUNCTION
* Close the clipboard.device unit which was opened via
* CBOpen().
*
***/

void CBClose(ior)
struct IOClipReq *ior;
{
struct MsgPort *mp;

mp = ior->io_Message.mn_ReplyPort;

CloseDevice((struct IOStdReq *)ior);
DeleteExtiO((struct IOStdReq *)ior);
DeletePort (mp);

I****** cbioiCBWriteFTXT ***
*
* NAME
* CBWriteFTXT() --Write a string of text to the clipboard.device
*
* SYNOPSIS
* success = CBWriteFTXT(ior, string)
*
*
*

int CBWriteFTXT(struct IOClipReq *, char*)

* FUNCTION
* Write a NULL terminated string of text to the clipboard.
* The string will be written in simple FTXT format.

*
*
*
*

Note that this function pads odd length strings automatically
to conform to the IFF standard.

* RESULTS
* TRUE if the write succeeded, else FALSE.

*
***/

int CBWriteFTXT(ior,string)
struct IOClipReq *ior;
char *string;
{

ULONG length, slen;
BOOL odd;
int success;

slen = strlen(string);
odd= (slen & 1);

length = (odd) ? slen+l : slen;

I* pad byte flag *I

I* initial set-up for Offset, Error, and ClipiD *I

ior->io Offset 0;
ior->io -Error 0;
ior->io::::clipiD 0;

I* Create the IFF header information *I

WriteLong(ior, (long*) "FORM");
length+=12L;

I* "FORM" *I
I* + "[size]FTXTCHRS" *I

Clipboard Device 51

WriteLong(ior,
WriteLong(ior,
WriteLong(ior,
WriteLong(ior,

&length);
(long *) "FTXT");
(long *) "CHRS");
&slen);

I* Write string *I
ior->io Data (STRPTR) string;
ior->io-Length slen;
ior->io-Command = CMD WRITE;
DolO((struct IORequest *) ior);

I* Pad if needed *I
if (odd)

{
ior->io Data = (STRPTR) "";
ior->io-Length = lL;
DolO((struct IORequest *) ior);
}

I* total length
I* "FTXT"
I* "CHRS"
I* string length

I* Tell the clipboard we are done writing *I

ior->io Command=CMD UPDATE;
DolO ((struct IORequest *) ior);

*I
*I
*I
*I

/* Check if io Error was set by any of the preceding IO requests *I
success = ior-~io Error ? FALSE : TRUE;

return(success);
}

WriteLong(ior, ldata)
struct IOClipReq *ior;
long *ldata;
{

ior->io Data (STRPTR) ldata;
ior->io =Length 4L;
ior->io Command CMD WRITE;
DolO((struct IORequest *) ior);

if (ior->io Actual == 4)
{ -
return (ior->io_Error ? FALSE
}

return(FALSE);

TRUE);

/****** cbio/CBQueryFTXT **
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

NAME
CBQueryFTXT() --Check to see if clipboard contains FTXT

SYNOPSIS
result = CBQueryFTXT(ior)

int CBQueryFTXT(struct IOClipReq *)

FUNCTION
Check to see if the clipboard contains FTXT. If so,
call CBReadCHRS() one or more times until all CHRS
chunks have been read.

RESULTS
TRUE if the clipboard contains an FTXT chunk, else FALSE.

NOTES
If this function returns TRUE, you must either call
CBReadCHRS() until CBReadCHRS() returns FALSE, or
call CBReadDone() to tell the clipboard.device that
you are done reading.

*
***/

52 Amiga ROM Kernel Reference Manual: Devices

int CBQueryFTXT(ior)
struct IOClipReq *ior;
{
ULONG cbuff[4];

I* initial set-up for Offset, Error, and ClipiD *I

ior->io Offset 0;
ior->io-Error 0;
ior->io-ClipiD 0;

/* Look for "FORM[size]FTXT" */

ior->io Command
ior->io-Data
ior- >io =Length

CMD READ;
(STRPTR) cbuff;
12;

DoiO((struct IORequest *) ior);

I* Check to see if we have at least 12 bytes *I

if (ior->io Actual == 12L)
{ -

I* Check to see if it starts with "FORM" *I
if (cbuff[O] ID_FORM)

{
I* Check to see if its "FTXT" *I
if (cbuff[2] == ID FTXT)

return(TRUE); -

I* It's not "FORM[size]FTXT", so tell clipboard we are done *I
}

CBReadDone(ior);

return(FALSE);
}

I****** cbioiCBReadCHRS **
*
*
*
*

NAME
CBReadCHRS () Reads the next CHRS chunk from clipboard

* SYNOPSIS
* cbbuf = CBReadCHRS(ior)

*
*
*
*
*
*
*

struct cbbuf *CBReadCHRS(struct IOClipReq *)

FUNCTION
Reads and returns the text in the next CHRS chunk
(if any) from the clipboard.

* Allocates memory to hold data in next CHRS chunk.
*
*
*
*
*
*
*
*
*
*

RESULTS
Pointer to a cbbuf struct (see cb.h), or a NULL indicating
a failure (e.g., not enough memory, or no more CHRS chunks).

Important

The caller must free the returned buffer when done with the
data by calling CBFreeBuf().

* NOTES
* This function strips NULL bytes, however, a full reader may
* wish to perform more complete checking to verify that the
* text conforms to the IFF standard (stripping data as required).
*
* Under 2.0, the AllocVec() function could be used instead of
* AllocMem() in which case the cbbuf structure may not be
* needed.
*
***!

Clipboard Device 53

struct cbbuf *CBReadCHRS(ior)
struct IOClipReq *ior;
{
ULONG chunk,size;
struct cbbuf *buf;
int looking;

I* Find next CHRS chunk *I

looking = TRUE;
buf = NULL;

while (looking)
{
looking = FALSE;

if (ReadLong(ior,&chunk))
{
I* Is CHRS chunk ? *I
if (chunk == ID CHRS)

{ -
I* Get size of chunk, and copy data *I
if (ReadLong(ior,&size))

{
if (size)

buf=FillCBData(ior,size);

I* If not, skip to next chunk *I
else

{
if (ReadLong(ior,&size))

{
looking = TRUE;
if (size & 1)

size++; I* if odd size, add pad byte *I

ior->io Offset += size;

if (buf == NULL)
CBReadDone(ior); I* tell clipboard we are done *I

return(buf);
}

ReadLong(ior, ldata)
struct IOClipReq *ior;
ULONG *ldata;
{
ior->io Command
ior->io -Data
ior->io =Length

CMD READ;
(STRPTR)ldata;
4L;

DoiO((struct IORequest *) ior);

if (ior->io Actual == 4)
{ -
return (ior->io Error ? FALSE
} -

return(FALSE);
}

TRUE);

54 Amiga ROM Kernel Reference Manual: Devices

struct cbbuf *FillCBData(ior,size)
struct IOClipReq *ior;
ULONG size;
{
register UBYTE *to,*from;
register ULONG x,count;

ULONG length;
struct cbbuf *buf,*success;

success

if (buf
{

NULL;

AllocMem(sizeof(struct cbbuf),MEMF PUBLIC))

length size;
if (size & 1)

length++; /* if odd size, read 1 more */

if (buf->mem AllocMem(length+lL,MEMF PUBLIC))
{
buf->size = length+lL;

ior->io Command
ior->io-Data
ior->io -Length

CMD READ;
(STRPTR) buf->mem;
length;

to = buf->mem;
count = OL;

if (!(DolO ((struct IOStdReq *) ior)))
{
if (ior->io Actual length)

{ -

success = buf; /* everything succeeded */

/* strip NULL bytes */
for (x=O, from=buf->mem ;x<size;x++)

{
if (*from)

{
*to = *from;
to++;
count++;
)

from++;
)

*to=OxO;
buf->count
)

/* Null terminate buffer */
count; /* cache count of chars in buf */

if (!(success))
FreeMem(buf->mem,buf->size);

)
if (!(success))

FreeMem(buf,sizeof(struct cbbuf));

return(success);
)

Clipboard Device 55

/****** cbio/CBReadDone **
*
* NAME
* CBReadDone() --Tell clipboard we are done reading
*
* SYNOPSIS
* CBReadDone(ior
*

void CBReadDone(struct IOClipReq *)

FUNCTION

*
*
*
*
*
*

Reads past end of clipboard file until io Actual is equal to 0.
This is tells the clipboard that we are done reading.

***/

void CBReadDone(ior)
struct IOClipReq *ior;
{
char buffer[256];

ior->io Command
ior->io -Data
ior- >io :::Length

CMD READ;
(STRPTR) buffer;
254;

/* falls through immediately if io Actual

while (ior->io Actual)
{ -
if (DolO((struct IORequest *) ior))

break;

0 *!

/****** cbio/CBFreeBuf **
*
*
*
*

NAME
CBFreeBuf() --Free buffer allocated by CBReadCHRS()

* SYNOPSIS
* CBFreeBuf(buf)

*
*
*
*
*
*

void CBFreeBuf(struct cbbuf *)

FUNCTION
Frees a buffer allocated by CBReadCHRS().

***/

void CBFreeBuf(buf)
struct cbbuf *buf;
{
FreeMem(buf->mem, buf->size);
FreeMem(buf, sizeof(struct cbbuf));
}

56 Amiga ROM Kernel Reference Manual: Devices

**
* Hookface.asm

assembly routines for Chtest

Assemble with Adapt hx68 hookface.a to hookface.o

*
*
*
*
*

Link with Changehook_Test.o as shown in Changehook_Test.c header

**
INCDIR
INCLUDE
INCLUDE
xdef
xdef
xdef
xdef

'include:'
'exec/types.i'
'utility/hooks.i'
call Hook

-callHookPkt
-hookEn try
-stubReturn

* new hook standard
* use struct Hook (with minnode at the top)

*
* ***
*
*
*
*

register calling convention: ***
AO - pointer to hook itself
Al - pointer to parameter packed ("message")
A2- Hook specific address data ("object," e.g,

* *** C conventions: ***

gadget)

* Note that parameters are in unusual register order: aO, a2, al.
* This is to provide a performance boost for assembly language
* programming (the object in a2 is most frequently untouched) .
* It is also no problem in "register direct" C function parameters.

*
* calling through a hook
* callHook(hook, object, msgid, pl, p2, ...);
* callHookPkt(hook, object, msgpkt);
*
*using a C function: CFunction(hook, object, message);
* hook.h Entry = hookEntry;
* hook.h-SubEntry = CFunction;
**
* C calling hook interface for prepared message packet
callHookPkt:

movem.l a2/a6,-(sp) protect
move.l 12(sp),a0 hook
move.l 16(sp),a2 object
move.l 20(sp),al message
; ------ now have registers ready, invoke function
pea.l hreturn(pc)
move.l h_Entry(aO),-(sp) ; old rts-jump trick

hreturn:
rts

movem.l (sp)+,a2/a6
rts

* C calling hook interface for "varargs message packet"
callHook:

- movem.l a2/a6,-(sp) protect
move.l 12(sp),a0 hook
move.l 16(sp),a2 object
lea.l 20(sp),al message
; ------ now have registers ready, invoke function
pea.l hpreturn(pc)
move.l h_Entry(aO),-(sp) ; old rts-jump trick
rts

hpreturn:
movem.l (sp)+,a2/a6
rts

* entry interface
hookEntry:

for C code (large-code, stack parameters)

- move.l
move.l
move.l
move.l
jsr
lea

stubReturn:
rts

al,-(sp)
a2,-(sp)
aO,-(sp)
h SubEntry(aO),aO
(ao>
12(sp),sp

c entry point

Clipboard Device 57

Include File for the Example Programs

/***
*
* cb.h -- Include file used by clipdemo.c, changehook_test.c and cbio.c
*
***/

struct cbbuf {

ULONG size;
ULONG count;
UBYTE *mem;

I* size of memory allocation *I
I* number of characters after stripping *I
I* pointer to memory containing data *I

} ;

#define MAKE_ID (a, b, c, d) ((a<<24L) (b<<16L)

#define ID FORM MAKE ID('F' ,'O','R' ,'M')
#define ID-FTXT MAKE-ID('F','T' ,'X','T')
#define ID-CHRS MAKE=ID('C','H','R' ,'S')

#ifdef CBIO

I* prototypes *I

struct IOClipReq *CBOpen
void CBClose
int CBWriteFTXT
int CBQueryFTXT
struct cbbuf *CBReadCHRS
void CBReadDone
void CBFreeBuf

(ULONG
(struct
(struct
(struct
(struct
(struct
(struct

(c<<BL) I d)

) ;
IOClipReq *);
IOClipReq *

'
char

IOClipReq *);
IOClipReq *);
IOClipReq *);
cbbuf *);

*);

I* routines which are meant to be used internally by routines in cbio *I

int
int
struct cbbuf

#else

I* prototypes *I

extern struct IOClipReq
extern void
extern int
extern int
extern struct cbbuf
extern void
extern void

#end if

WriteLong
ReadLong
*FillCBData

*CBOpen
CBClose
CBWriteFTXT
CBQueryFTXT
*CBReadCHRS
CBReadDone
CBFreeBuf

(struct IOClipReq *, long*);
(struct IOClipReq *, ULONG *);
(struct IOClipReq *, ULONG);

(ULONG) ;
(struct IOClipReq *);
(struct IOClipReq * ' char *);
(struct IOClipReq *)
(struct IOClipReq *)
(struct IOClipReq *)
(struct cbbuf *);

58 Amiga ROM Kernel Reference Manual: Devices

Additional Information on the Clipboard Device

Additional programming information on the clipboard device can be found in the include files for
the clipboard device, iffparse library and utility library, and the Autodocs for all three. They are
contained in the Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Clipboard Device Information

INCLUDES

AUTO DOCS

devices/clipboard.h
devices/clipboard.i
libraries/iffparse.h
libraries/iffparse.h
utility/hooks.h
utility/hooks.i

clipboard.doc
iffparse.doc
utility.doc

Clipboard Device 59

chapter four
CONSOLE DEVICE

The console device provides the text-oriented interface for Intuition windows. It acts like an
enhanced ASCII terminal obeying many of the standard ANSI sequences as well as special sequences
unique to the Amiga. The console device also provides a copy-and-paste facility and an internal
character map to redraw a window when it is resized.

New Console Features for Version 2.0

Feature Description

CONU_LIBRARY New #define
CONU_sTANDARD New #define
CONU_CHARMAP Console Unit
CONU_sNIPMAP Console Unit
CONFLAG_j)EFAULT Console Rag
CONFLAG_NODRAW _QN_NEWSIZE Console Rag

Compatibility Warning: The new features for the 2.0 console device are not backwards
compatible.

Console Device 61

Console Device Commands and Functions

Command Operation

CD_ASKDEFAULTKEYMAP
CD_ASKKEYMAP
CD_SETDEFAULTKEYMAP
CD_SETKEYMAP
CMD_CLEAR

Get the current default keymap.
Get the current key map structure for this console.
Set the current default keymap.
Set the current key map structure for this console.
Remove any reports waiting to satisfy read requests from the
console input buffer.

CMD_READ

CMD_WRITE

Read the next input, generally from the keyboard. The form of
this input is as an ANSI byte stream.
Write a text record to the display interpreting any ANSI control
characters in the record.

Console Device Function

CDinputHandler()
RawKeyConvert()

Handle an input event for the console device.
Decode raw input classes and convert input events of type
IECLASS_RAWKEY to ANSI bytes based on the keymap in use.

Exec Functions as Used in This Chapter

AbortiO()
CheckiO()
CloseDevice()

DolO()
GetMsg()
OpenDevice()

OpenLibrary()
Open Window()
SendiO()
Wait()
WaitiO()
WaitPort()

Abort an 1/0 request to the console device.
Return the status of an 1/0 request.
Relinquish use of the console device. All requests must be complete
before closing.
Initiate a command and wait for completion (synchronous request).
Get the next message from the reply port.
Obtain use of the console device. You specify the type of unit and its
characteristics in the call to OpenDevice().
Gain access to a library.
Open an intuition window.
Initiate a command and return immediately (asynchronous request).
Wait for one or more signals.
Wait for completion of an 1/0 request and remove it from the reply port.
Wait for the reply port to be non-empty. Does not remove the message
from port.

Exec Support Functions as Used in This Chapter

CreateExtiO

CreatePort()

DeleteExtiO()
DeletePort()

Create an extended 1/0 request structure for use in communicating with
the console device.
Create a message port for reply messages from the console device. Exec
will signal a task when a message arrives at the port.
Delete the extended 1/0 request structure created by CreateExtiO().
Delete the message port created by CreatePort().

62 Amiga ROM Kernel Reference Manual: Devices

Device Interface

The console device operates like the other Amiga devices. To use it, you must first open the console
device, then send VO requests to it, and then close it when finished. See the "Introduction to Amiga
System Devices" chapter for general information on device usage.

The VO request used by the console device is called IOStdReq.

struct IOStdReq
{

) ;

struct
struct
struct
UWORD
UBYTE
BYTE
ULONG
ULONG
APTR
ULONG

Message io Message;
Device *io Device;
Unit *io-Unit;
io Command;-
io -Flags;
io-Error;
io-Actual;
io-Length;
io-Data;
io::::offset;

/* device node pointer */
/* unit (driver private)*/
/* device command */

/* error or warning num */
/* actual number of bytes transferred */
/* requested number bytes transferred*/
/* points to data area */
I* offset for block structured devices */

See the include file execlio.h for the complete structure definition.

CONSOLE DEVICE UNITS

The console device provides four units, three that require a console window and one that does not.
The unit type is specified when you open the device. See the "Opening the Console Device" section
below for more details.

The CONU_STANDARD unit (0) is generally used with a SMARLREFRESH window. This unit
has the least amount of overhead (e.g., memory usage and rendering time), and is highly compatible
with all versions of the operating system.

As of V36, a character mapped console device was introduced. There are two variations of character
mapped console units. Both must be used with SIMPLE_REFRESH windows and both have the
ability to automatically redraw a console window when resized or revealed.

A character mapped console can be opened which allows the user to drag-select text with the mouse
and COPY the highlighted area. The copied text can then be PASTEd into other console windows
or other windows which support reading data from the clipboard device.

Character mapped console units have more overhead than standard consoles (e.g., rendering times
and memory usage).

The CONU_LIBRARY unit (-1) does not require a console window. It is designed to be primarily
used with the console device functions and also with the console device commands that do not
require a console window.

The Amiga uses the ECMA-94 Latin 1 International 8-bit character set. See Appendix A (page 397)
for a table of character codes.

Console Device 63

OPENING THE CONSOLE DEVICE

Four primary steps are required to open the console device:

• Create a message port using CreatePort(). Reply messages from the device must be directed
to a message port.

• Create an VO request structure of type IOStdReq. The IOStdReq structure is created by the
CreateExtiO() function. CreateExtiO will initialize your VO request to point to your reply
port.

• Open an Intuition window and set a pointer to it in the io_Data field of the IOStdReq and the
size of the window in the io_Length field. This is the window to which the console will be
attached. The window must be SIMPLE_REFRESH for use with the CONU_CHARMAP and
CONU_SNIPMAP units.

• Open the console device. Call OpenDevice() passing it the VO request and the type of console
unit set in the unit and flags fields. Console unit types and flag values are listed below.

Console device units:

• CONU_LIBRARY -Return the device library vector pointer used for calling console device
functions. No console is opened.

• CONU_STANDARD -Open a standard console.

• CONU_CHARMAP - Open a console with a character map.

• CONU_SNIPMAP - Open a console with a character map and copy-and-paste support.

See the include file devices/conunit.h for the unit definitions and the Amiga ROM Kernel Reference
Manual: Includes and Autodocs for an explanation of each unit.

No Changes Required CONU_STANDARD has a numeric value of zero to insure
compatibility with pre-V36 applications. CONU_LIBRARY has a numeric value of
negative one and is also compatible with pre-V36 applications.

Console device flags:

• CONFLAG_DEFAULT- The console device will redraw the window when it is resized.

• CONFLAG_NODRA W _ON_NEWSIZE - The console device will not redraw the window
when it is resized

The character map units, CONU_CHARMAP and CONU_SNIPMAP, are the only units which use
the flags parameter to set how the character map is used. CONU_STANDARD units ignore the
flags parameter.

See the include file deviceslconunit.h for the flag definitions and the Amiga ROM Kernel Reference
Manual: Includes and Autodocs for an explanation of the flags.

64 Amiga ROM Kernel Reference Manual: Devices

struct MsgPort *ConsoleMP; I* Message port pointer *I
struct IOStdReq *ConsiO; I* IIO structure pointer *I
struct Window *win = NULL; I* Window pointer *I

struct NewWindow nw =
{

} ;

10, 10,
620,180,
-1,-1,
CLOSEWINDOW,
WINDOWDEPTHIWINDOWSIZINGI
WINDOWDRAGIWINDOWCLOSEI
SIMPLE REFRESHIACTIVATE,
NULL, -
NULL,
"Console Test",
NULL,
NULL,
100,45,
640,200,
WBENCHSCREEN

I* starting position (left,top) *I
I* width, height *I
I* detailpen, blockpen *I
I* flags for idcmp *I

I* window flags *I
I* no user gadgets *I
I* no user checkmark *I
I* title *I
I* pointer to window screen *I
I* pointer to super bitmap *I
I* min width, height *I
I* max width, height *I
I* open on workbench screen *I

I* Create reply port console *I
if (! (ConsoleMP = CreatePort ("RKM. Console", 0)))

cleanexit("Can't create write port\n",RETURN_FAIL);

I* Create message block for device IIO *I
if(! (ConsiO = CreateExtiO(ConsoleMP,sizeof(struct IOStdReq))))

cleanexit("Can't create IORequest\n",RETURN_FAIL);

I* Open a window--- we assume intuition.library is already open *I
if (! (win = OpenWindow (&nw}))

cleanexit("Can't open window\n",RETURN_FAIL);

I* Set window pointer and size in IIO request *I
ConsiO->io Data = (APTR) win;
ConsiO->io-Length = sizeof(struct Window);

I* Open the console device *I
if (error= OpenDevice("console.device",CONU CHARMAP,ConsiO,CONFLAG DEFAULT))

cleanexit("Can't open console.device\n",RETURN_FAIL); -

CLOSING THE CONSOLE DEVICE

Each OpenDevice() must eventually be matched by a call to CloseDevice().

All I/O requests must be complete before CloseDevice(). If any requests are still pending, abort
them with AbortiO().

if (! (CheckiO (ConsiO)))
AbortiO (ConsiO);

WaitiO(ConsiO);
CloseDevice(ConsiO);

/* Ask device to abort any pending requests */

/* Wait for abort, then clean up *I
I* Close console device */

Console Device 65

About Console 1/0

The console device may be thought of as a kind of terminal. You send character streams to the
console device; you also receive them from the console device. These streams may be characters,
control sequences or a combination of the two.

Console 1/0 is closely associated with the Amiga Intuition interface; a console must be tied to a
window that is already opened. From the Window data structure, the console device determines
how many characters it can display on a line and how many lines of text it can display in a window
without clipping at any edge.

You can open the console device many times, if you wish. The result of each open call is a new
console unit. AmigaDOS and Intuition see to it that only one window is currently active and its
console, if any, is the only one (with a few exceptions) that receives notification of input events,
such as keystrokes. Later in this chapter you will see that other Intuition events can be sensed by
the console device as well.

Introducing... For this entire chapter the characters "<CSI>" represent the control se­
quence introducer. For output you may use either the two-character sequence <Esc>[
(OxlB Ox5B) or the one-byte value Ox9B. For input you will receive Ox9B unless the
sequence has been typed by the user.

EXEC FUNCTIONS AND THE CONSOLE DEVICE

The various Exec functions such as DolO(), SendiO(), AbortiO() and ChecklO() operate normally.
The only caveats are that CMD_ WRITE may cause your application to wait internally, even with
SendlO(), and a task using CMD_READ to wait on a response from a console is at the user's
mercy. If the user never reselects that window, and the console response provides the only wake-up
call, that task will sleep forever.

GENERAL CONSOLE SCREEN OUTPUT

Console character screen output (as compared to console command sequence transmission) outputs
all standard printable characters (character values hex 20 through 7E and AO through FF) normally.

Many control characters such as BACKSPACE (Ox8) and RETURN (Ox13) are translated into their
exact ANSI equivalent actions. The LINEFEED character (OxA) is a bit different in that it can be
translated into a RETURN/LINEFEED action. The net effect is that the cursor moves to the first
column of the next line whenever an <LF> is displayed. This option is set via the mode control
sequences discussed under "Control Sequences for Window Output."

CONSOLE KEYBOARD INPUT

If you read from the console device, the keyboard inputs are preprocessed for you and you will get
ASCII characters, such as "B." Most normal text-gathering programs will read from the console
device in this manner. Some programs may also ask to receive raw events in their console stream.
Keypresses are converted to ASCII characters or CSI sequences via the keymap associated with the
unit.

66 Amiga ROM Kernel Reference Manual: Devices

Writing to the Console Device

You write to the console device by passing an 1/0 request to the device with a pointer to the write
buffer set in io_Data, the number of bytes in the buffer set in ioJ..ength and CMD_ WRITE set in
io_Command.

UBYTE *outstring= "Make it so.•;

ConsiO->io Data = outstring;
ConsiO->io-Length = strlen(outstring);
ConsiO->io-Command = CMD WRITE;
DolO (ConsiO); -

You may also send NULL-terminated strings to the console device in the same manner except that
ioJ..ength must be set to -1.

ConsiO- >io Data = "\ 033 [3mOh boy.";
ConsiO- >io -Length = -1;
ConsiO->io-Command = CMD WRITE;
DoiO (ConsiO); -

The fragment above will output the string "Oh boy." in italics. Keep in mind that setting the text
rendition to italics will remain in effect until you specifically instruct the console device to change
it to another text style.

HINTS FOR WRITING TEXT

256 Is A Nice Round Number
You must keep in mind that the console device locks all layers while writing text. To avoid,
problems with this, it is best to send smaller rather larger numbers of character to be written.
We recommend no more than 256 bytes per write as the optimum size

Thrn Off The Cursor
If your console is attached to a Vl.2/1.3 SuperBitmap window, you will not see a cursor
rendered. For output speed and compatibility with future OS versions which may visibly
render the cursor, you should send the cursor-off sequence (ESC[O p) whenever you open or
reset (ESCc) a SuperBitmap window's console.

CONTROL SEQUENCES FOR WINDOW OUTPUT

The following table lists functions that the console device supports, along with the character stream
that you must send to the console to produce the effect. For more information on the control
sequences, consult the console.doc of the Amiga ROM Kernel Reference Manual: Includes and
Autodocs. The table uses the second form of <CSI>, that is, the hex value Ox9B, to minimize the
number of characters to be transmitted to produce a function.

A couple of notes about the table. If an item is enclosed in square brackets, it is optional and may be
omitted. For example, for INSERI' [N] CHARACTERS the value for N is shown as optional. The
console device responds to such optional items by treating the value of N as 1 if it is not specified.
The value of N or M is always a decimal number, having one or more ASCII digits to express its
value.

Console Device 67

ANSI Console Control Sequences
Console Command

BELL
(Flash the display-do an Intuition Display Beep())
BACKSPACE
(move left one column)
HORIZONTAL TAB
(move right one tab stop)
LINEFEED
(move down one text line as specified by the mode function)
VERfiCAL TAB
(move up one text line)
FORMFEED
(clear the console's window)
CARRIAGE RETURN
(move to first column)
SHIFT IN
(undo SHIFT OUT)
SHIFT OUT
(set MSB of each character before displaying)
ESC
(escape; can be part of the control sequence introducer)
INDEX
(move the active position down one line)
NEXT LINE
(go to the beginning of the next line)
HORIZONTAL TABULATION SET
(Set a tab at the active cursor position)
REVERSE INDEX
(move the active position up one line)
CSI
(control sequence introducer)
RESET TO INITIAL STATE

INSERf[N]CHARACTERS
(insert one or more spaces, shifting the remainder of the
line to the right)
CURSOR UP [N] CHARACTER POSITIONS
(default= 1)
CURSOR DOWN [N] CHARACTER POSITIONS
(default= 1)
CURSOR FORWARD [N] CHARACTER POSITIONS
(default = 1)
CURSORBACKWARD[N]CHARACTER
(default= 1)

68 Amiga ROM Kernel Reference Manual: Devices

Sequence of Characters
(in Hexadecimal Form)
07

08

09

OA

OB

oc

OD

OE

OF

1B

84

85

88

8D

9B

1B 63

9B [N] 40

9B [N] 41

9B [N] 42

9B [N] 43

9B [N] 44

CURSOR NEXT LINE [N]
(to column 1)
CURSOR PRECEDING LINE [N]
(to column 1)
CURSOR POSITION
(where N is row, M is column, and semicolon (hex 3B)
must be present as a separator, or if row is left out, so the
console device can tell that the number after the semicolon
actually represents the column number)
CURSOR HORIZONTAL TABULATION
(move cursor forward to Nth tab position)
ERASE IN DISPLAY
(only to end of display)
ERASE IN LINE
(only to end ofline)
INSERI'LINE
(above the line containing the cursor)
DELETE LINE
(remove current line, move all lines up one position to fill
gap, blank bottom line)
DELETE CHARACTER [N]
(that cursor is sitting on and to the right if [N] is specified)
SCROLL UP [N] LINES
(Remove line(s) from top of window, move all other lines
up, blanks [N] bottom lines)
SCROLL DOWN [N] LINES
(Remove line(s) from bottom of window, move all other
lines down, blanks [N] top lines)
CURSOR TABULATION CONTROL
(where N = 0 set tab, 2 =clear tab, 5 =clear all tabs.)
CURSOR BACKWARD TABULATION
(move cursor backward to Nth tab position.)
SET LINEFEED MODE
(cause LINEFEED to respond as RETURN-LINEFEED)
RESET NEWLINE MODE
(cause LINEFEED to respond only as LINEFEED)
DEVICE STATUS REPORI'
(cause console device to insert a CURSOR POSITION
REPORI' into your read stream ; see "Reading from the
Console Device" for more information)

SELECT GRAPHIC RENDITION
(select text style, character color, character cell color,
background color)

9B [N] 45

9B [N] 46

9B [N] [3B M] 48

9B [N] 49

9B4A

9B4B

9B4C

9B4D

9B [N] 50

9B [N] 53

9B [N] 54

9B [N] 57

9B [N] 5A

9B 32 30 68

9B 32 30 6C

9B 36 6E

9B N 3B 3N 3B 4N 3B >N 6D
See note below.

Console Device 69

For SELECf GRAPHIC RENDITION, any number of parameters, in any order, are valid. They
are separated by semicolons.

The parameters follow:

<text style> =
0
1
2
3
4
7

Plain text
Boldface
faint (secondary color)
Italic
Underscore
Reversed character/cell colors

<character color> =
30-37 System colors 0-7 for character color.
39 Reset to default character color
Transmitted as two ASCII characters.

<character cell color> =

8
22
23
24
27
28

40-47 System colors 0-7 for character cell color.
39 Reset to default character color
Transmitted as two ASCII characters.

<background color> =

Concealed mode
Normal color, not bold (V36)
Italic off (V36)
Underscore off (V36)
Reversed off (V36)
Concealed off (V36)

>0-7 System colors 0-7 for background color. (V36)
You must specify the">" in order for this to be recognized
and it must be the last parameter.

For example, to select bold face, with color 3 as the character color, and color 0 as the character cell
color and the background color, send the hex sequence:

9B 31 3B 33 33 3B 34 30 3B 3E 30 60

representing the ASCII sequence:

<CSI>1;33;40;>0m

where <CSI> is the control sequence introducer, here used as the single character value Ox9B.

Go Easy On The Eyes. In most cases, the character cell color and the background color
should be the same.

Set Graphic Rendition Implementation Notes

Previous versions of the operating system did not support the global background color sequence as
is listed above. Instead, the background color was set by setting the character cell color and then
clearing the screen (e.g., a FORMFEED).

In fact, vacated areas of windows (vacated because of an ERASE or SCROLL) were filled in with
the character cell color. This is no longer the case. Now, when an area is vacated, it is filled in with
the global background color.

70 Amiga ROM Kernel Reference Manual: Devices

SMART _REFRESH windows are a special case:

Under V33-V34:
The cell color had to be set and a FORMFEED (clear window) needed to be sent on resize or
immediately to clear the window and set the background color.

For example, if you took a CLI window and sent the sequence to set the cell color to something
other than the default, the background color would not be changed immediately (contrary to
what was expected).

If you then sent a FORMFEED, the background color would change, but if you resized the
window larger, you would note that the newly revealed areas were filled in with PEN 0.

Under V36-V37 (non-character mapped):
You need to set the global background color and do a FormFeed. The background color will
then be used to fill the window, but like V33-V34, if you make the window larger, the vacated
areas will be filled in with PEN 0.

Under V36-V37 (character mapped):
You need to set the global background color, the window is redrawn immediately (because we
have the character map) and will be correctly redrawn with the global background color on
subsequent resizes.

The sequences in the next table are not ANSI standard sequences, they are private Amiga sequences.
In these command descriptions, length, width, and offset are comprised of one or more ASCII digits,
defining a decimal value.

Amiga Console Control Sequences
Console Command

ENABLE SCROLL
(this is the default)

DISABLE SCROLL

AUTOWRAPON
(the default)

AUTOWRAP OFF

SET PAGE LENGTH
(in character raster lines, causes console to recalculate,
using current font, how many text lines will fit on the
page)
SET LINE LENGTH
(in character positions, using current font, how many char­
acters should be placed on each line)

SET LEFf OFFSET
(in raster columns, how far from the left of the window
should the text begin)

Sequence of Characters
(in Hexadecimal Form)

9B 3E 31 68

9B 3E 31 6C

9B 3F 37 68

9B 3F 37 6C

9B <length> 74

9B <width> 75

9B <offset> 78

Console Device 71

SET TOP OFFSET
(in raster lines, how far from the top of the window's
RastPort should the topmost line of the character begin)
SET RAW EVENTS
(set the raw input events that will trigger an INPUT
EVENT REPOIIT. see the "Selecting Raw Input Events"
section below for more details.)
INPUT EVENT REPOIIT
(returned by the console device in response to a raw event
set by the SET RAW EVENT sequence. see the "Input
Event Reports" section below for more details.)

RESET RAW EVENTS
(reset the raw events set by the SET RAW EVENT se­
quence. see the "Selecting Raw Input Events" section
below.)

SPECIAL KEY REPOIIT
(returned by the console device whenever HELP, or one
of the function keys or arrow keys is pressed. Some se­
quences do not end with 7E)
SET CURSOR RENDITION
(make the cursor visible or invisible: Note-turning off
the cursor increases text output speed)

Invisible:
Visible:

WINDOW STATUS REQUEST
(ask the console device to tell you the current bounds of
the window, in upper and lower row and column character
positions. User may have resized or repositioned it. See
"Window Bounds Report" below.)
WINDOW BOUNDS REPORT
(returned by the console device in response to a WINDOW
STATUS REQUEST sequence)
RIGHT AMIGA V PRESS
(returned by the console device when the user presses
RIGHT-AMIGA-V. See the "Copy and Paste Support"
section below for more details.)

9B <offset> 79

9B <events> 7B

9B <parameters> 7C

9B <events> 7D

9B <keyvalue> 7E

9B N 2070

9B 3020 70
9B 20 70

9B 30 20 71

9B 31 3B 31 3B <bot margin>
3B <right margin> 72

9B 3020 76

Give Back What You Take. The console device normally handles the SET PAGE
LENGTH, SET LINE LENGTH, SET LEFf OFFSET, and SET TOP OFFSET functions
automatically. To allow it to do so again after setting your own values, send the functions
without a parameter.

72 Amiga ROM Kernel Reference Manual: Devices

EXAMPLE CONSOLE CONTROL SEQUENCES

Move cursor right by 1:

Character string equivalents:
<CSI>Cor
<CSI>1C

Numeric (hex) equivalents:
9B43
9B 3143

Move cursor right by 20:

Character string equivalent:
<CSI>20C

Numeric (hex) equivalent:
9B 32 3043

Move cursor to upper-left corner (home):

Character string equivalents:
<CSI>H or
<CSI>1;1H or
<CSI>;1H or
<CSI>1;H

Numeric (hex) equivalents:
9B48
9B 31 3B 3148
9B 3B 3148
9B 31 3B 48

Move cursor to the fourth column of the first line of the window:

Character string equivalents:
<CSI>1;4H or
<CSI>;4H

Numeric (hex) equivalents:
9B 313B 3448
9B 3B 3448

Clear the window:

Character string equivalents:
<FF> or CI'RL-L (clear window) or
<CSI>H<CSI>J (home and clear to end of window)

Numeric (hex) equivalents:
oc
9B 48 9B4A

Console Device 73

Reading from the Console Device

Reading input from the console device returns an ANSI 3.64 standard byte stream. This stream
may contain normal characters and/or RAW input event information. You may also request other
RAW input events using the SET RAW EVENTS and RESET RAW EVENTS control sequences
discussed below. See "Selection of Raw Input Events."

Generally, console reads are performed asynchronously so that your program can respond to other
events and other user input (such as menu selections) when the user is not typing on the keyboard. To
perform asynchronous 1/0, an 1/0 request is sent to the console using the SendiO() function (rather
than a synchronous DolO() which would wait until the read request returned with a character).

You read from the console device by passing an 1/0 request to the device with a pointer to the read
buffer set in io_Data, the number of bytes in the buffer set in io_Length and CMD__READ set in
io_Command.

#define READ BUFFER SIZE 25
char ConsoleReadBuffer[READ_BUFFER_SIZE];

ConsiO- >io Data = (APTR) ConsoleReadBuffer;
ConsiO->io-Length = READ BUFFER SIZE;
ConsiO->io-Command = CMD-READ; -
SendiO(ConsiO); -

You May Get Less Than You Bargained For. A request for more than one character
may be satisfied by the receipt of only one character. If you request more than one character,
you will have to examine the io_Actual field of the request when it returns to determine
how many characters you have actually received.

After sending the read request, your program can wait on a combination of signal bits including
that of the reply port you created. The following fragment demonstrates waiting on both a queued
console read request, and Window IDCMP messages:

ULONG conreadsig = 1 << ConsoleMP->mp SigBit;
ULONG windowsig = 1 << win->UserPort-">mp_SigBit;

/* A character, or an IDCMP msg, or both will wake us up */
ULONG signals= Wait(conreadsig I windowsig);

if (signals & conreadsig)
I
/* Then check for a character */
) ;

if (signals & windowsig)
{

/* Then check window messages */
} ;

INFORMATION ABOUT THE INPUT STREAM

For the most part, keys whose keycaps are labeled with ANSI-standard characters will ordinarily
be translated into their ASCII-equivalent character by the console device through the use of its
keymap. Keymap information can be found in the "Keymap Library" chapter of the Amiga ROM
Kernel Reference Manual: Libraries.

74 Amiga ROM Kernel Reference Manual: Devices

For keys other than those with nonnal ASCII equivalents, an escape sequence is generated and

inserted into your input stream. For example, in the default state (no raw input events selected) the

function, arrow and special keys (reserved for 101 key keyboards) will cause the sequences shown
in the next table to be inserted in the input stream.

Special Key Report Sequences

Key Unshifted Sends Shifted Sends

F1 <CSI>(J <CSI>1(J
F2 <CSI>1- <CSI>1r
F3 <CSI>2- <CSI>1z-
F4 <CSI>3- <CSI>l3-
FS <CSI>4- <CSI>14-
F6 <CSI>S- <CSI>15-
F7 <CSI>6- <CSI>16-
F8 <CSI>T <CSI>1T
F9 <CSI>8- <CSI>18-
FlO <CSI>9- <CSI>19-
Fll <CSI>2(J <CSI>3(J (101 key keyboard)
F12 <CSI>21- <CSI>31- (101 key keyboard)

HELP <CSI>! <CSI>! (same sequence for both)
Insert <CSI>4(J <CSI>S(J (101 key keyboard)

Page Up <CSI>4r <CSI>Sr (101 key keyboard)

Page Down <CSI>4z- <CSI>Sz- (101 key keyboard)

Pause/Break <CSI>43- <CSI>53- (101 key keyboard)

Home <CSI>44- <CSI>54- (101 key keyboard)
End <CSI>45- <CSI>ss- (101 key keyboard)

Arrow keys:
Up <CSI>A <CSI>T
Down <CSI>B <CSI>S
Left <CSI>D <CSI> A (notice the space
Right <CSI>C <CSI>@ after <CSI>)

CURSOR POSITION REPORT

If you have sent the DEVICE STATUS REPORT command sequence, the console device returns a

cursor position report into your input stream. It takes the fonn:

<CSI><row>;<column>R

For example, if the cursor is at column 40 and row 12, here are the ASCII values (in hex) you

receive in a stream:

9B 34 30 3B 31 32 52

Console Device 75

WINDOW BOUNDS REPORT

A user may have either moved or resized the window to which your console is bound. By issuing
a WINDOW STATUS REPORT to the console, you can read the current position and size in the
input stream. This window bounds report takes the following form:

<CSI>1;1;<bottom margin>;<rightmargin> r

The bottom and right margins give you the window row and column dimensions as well. For a
window that holds 20 lines with 60 characters per line, you will receive the following in the input
stream:

9B 31 3B 31 3B 32 30 3B 36 3020 72

Copy and Paste Support

As noted above, opening the console device with a unit of CONU_SNIPMAP allows the user to
drag-select text with the mouse and copy the selection with Right-Amiga-C.

Internally, the snip is copied to a private buffer managed by the console device where it can be
copied to other console device windows by pressing Right-Amiga-V.

However, your application should assume that the user is running the "Conclip" utility which is
part of the standard Workbench 2.0 environment. Conclip copies snips from the console device to
the clipboard device where they can be used by other applications which support reading from the
clipboard.

When Conclip is running and the user presses Right-Amiga-V, the console device puts an escape
sequence in your read stream-<CSI>O v (Hex 9B 30 20 76)-which tells you that the user wants
to paste text from the clipboard.

Upon receipt of this sequence, your application should read the contents of the clipboard device,
make a copy of any text found there and then release the clipboard so that it can be used by other
applications. See the "Clipboard Device" chapter for more information on reading data from it.

You paste what you read from the clipboard by using successive writes to the console. In order to
avoid problems with excessively long data in the clipboard, you should limit the size of writes to
something reasonable. (We define reasonable as no more than 1K per write with the ideal amount
being 256 bytes.) You should also continue to monitor the console read stream for additional use
input, paster requests and, possibly, RAW INPUT EVENTS while you are doing this.

You should not open a character mapped console unit with COPY capability if you are unable to
support PASTE from the clipboard device. The user will reasonably expect to be able to PASTE
into windows from which a COPY can be done.

Keep in mind that users do make mistakes, so an UNDO mechanism for aborting a PASTE is highly
desirable-particularly if the user has just accidentally pasted text into an application like a terminal
program which is sending data at a slow rate.

Use CON:, You'll Be Glad You Did. It is highly recommended that you consider
using the console-handler (CON:) if you want a console window with COPY and PASTE
capablilities. CON: provides you with free PASTE support and is considerably easier to
open and use than using the console device directly.

76 Amiga ROM Kernel Reference Manual: Devices

Selecting Raw Input Events

If the keyboard information-including "cooked" keystrokes-does not give you enough information
about input events, you can request additional information from the console driver.

The command to SET RAW EVENTS is formatted as:

<CSI>[event-types-separated-by-semicolons]{

If, for example, you need to know when each key is pressed and released, you would request
"RAW keyboard input." This is done by writing "<CSI> 1 {" to the console. In a single SET RAW
EVENTS request, you can ask the console to set up for multiple event types at one time. You
must send multiple numeric parameters, separating them by semicolons(;). For example, to ask for
gadget pressed, gadget released, and close gadget events, write:

<CSI> 7;8; 11 {

You can reset, that is, delete from reporting, one or more of the raw input event types by using the
RESET RAW EVENTS command, in the same manner as the SET RAW EVENTS was used to
establish them in the first place. This command stream is formatted as:

<CSI>[event-types-separated-by-semicolons]}

So, for example, you could reset all of the events set in the above example by transmitting the
command sequence:

<CSI> 7;8; 11}

The Read Stream May Not Be Dry. There could still be pending RAW INPUT EVENTS
in your read stream after turning off one or more RAW INPUT EVENTS.

The following table lists the valid raw input event types.

Request
Number

0
1

2
3
4
5
6
7
8
9
10

Raw Input Event Types

Description

No-op (used internally)
RAW keyboard input
Intuition swallows all
except the select button)
RAW mouse input
Private Console Event
Pointer position
(unused)
Timer
Gadget pressed
Gadget released
Requester activity
Menu numbers

Number

11
12
13
14
15
16
17
18
19
20
21

Request
Description

Close Gadget
Window resized
Window refreshed
Preferences changed
Disk removed
Disk inserted
Active window
Inactive window
New pointer position (V36)
Menu help (V36)
Window changed (V36)
(zoom, move)

The event types-requester, window refreshed, active window, inactive window, window resized
and window changed-are dispatched to the console unit which owns the window from which the
events are generated, even if it is not the active (selected) window at the time the event is generated.
This ensures that the proper console unit is notified of those events. All other events are dispatched
to the active console unit (if it has requested those events).

Console Device 77

Input Event Reports

If you select any of these events you will start to get information about the events in the following
form:

<CSI><class>;<subclass>;<keycode>;<qualifiers>;<x>;<y>;<seconds>;<microseconds>l

<CSI>
is a one-byte field. It is the "control sequence introducer," Ox9B in hex.

<class>
is the RAW input event type, from the above table.

<subclass>
is usually 0. If the mouse is moved to the right controller, this would be 1.

<keycode>
indicates which raw key number was pressed. This field can also be used for mouse information.

The Raw Key Might Be The Wrong Key. National keyboards often have different
keyboard arrangements. This means that a particular raw key number may represent
different characters on different national keyboards. The normal console read stream
(as opposed to raw events) will contain the proper ASCII character for the keypress as
translated according to the. user's keymap.

<qualifiers>
indicates the state of the keyboard and system.

The qualifiers are defined as follows:

Input Event Qualifiers
Bit Mask

0 0001
1 0002
2 0004
3 0008
4 0010
5 0020
6 0040
7 0080
8 0100
9 0200
10 0400
11 0800
12 1000
13 2000
14 4000
15 8000

Key

Left shift
Right shift
Caps Lock
Ctrl
Left Alt
Right Alt
Left Amiga key pressed
Right Amiga key pressed
Numeric pad
Repeat
Interrupt
Multi broadcast
Middle mouse button
Right mouse button
Left mouse button
Relative mouse

Associated keycode is special; see below.

Not currently used.
This window (active one) or all windows.
(Not available on standard mouse)

Mouse coordinates are relative, not absolute.

The Caps Lock key is handled in a special manner. It generates a keycode only when it is pressed,
not when it is released. However, the up/down bit (80 hex) is still used and reported. If pressing

78 Amiga ROM Kernel Reference Manual: Devices

the Caps Lock key causes the LED to light, keycode 62 (Caps Lock pressed) is sent. If pressing
the Caps Lock key extinguishes the LED, keycode 190 (Caps Lock released) is sent. In effect, the
keyboard reports this key as held down until it is struck again.

The <x> and <y> fields are filled by some classes with an Intuition address: x<<16+y.

The <seconds> and <microseconds> fields contain the system time stamp taken at the time the
event occurred. These values are stored as longwords by the system.

With RAW keyboard input selected, keys will no longer return a simple one-character "A" to "Z"
but will instead return raw key code reports of the form:

<CSI>1;0;<keycode>;<qualifiers>;<prevl>;<prev2>;<seconds>;<microseconds>l

For example, if the user pressed and released the A key with the left Shift and right Amiga keys
also pressed, you might receive the following data:

<CSI> 1 ;0;32;32769; 14593;5889;421939940;3166731

<CSI> 1;0; 160;32769;0;0;421939991;8166831

The <keycode> field is an ASCII decimal value representing the key pressed or released. Adding
128 to the pressed key code will result in the released keycode.

The <prev 1 > and <prev2> fields are relevant for the interpretation of keys which are modifiable
by dead-keys (see "Dead-Class Keys" section). The <prev 1 > field shows the previous key pressed.
The lower byte shows the qualifier, the upper byte shows the key code. The <prev2> field shows
the key pressed before the previous key. The lower byte shows the qualifier, the upper byte shows
the key code.

Using the Console Device Without a Window

Most console device processing involves a window, but there are functions and special commands
that may be used without a window. To use the console device without a window, you call
OpenDevice() with the console unit CONU_LIBRARY.

The console device functions are CDinputHandler() and RawKeyConvert(); they may only be
used with the CONU_LIBRARY console unit. The console device commands which do not require
a window are CD_ASKDEFAULTKEYMAP and CD_SETDEFAULTKEYMAP; they be used with
any console unit. The advantage of using the commands with the CONU_LIBRARY unit is the
lack of overhead required for CONU_LIBRARY because it doesn't require a window.

To use the functions requires the following steps:

• Declare the console device base address variable ConsoleDevice in the global data area.

• Declare storage for an 1/0 request of type IOStdReq.

• Open the console device with CONU_LIBRARY set as the console unit.

• Set the console device base address variable to point to the device library vector which is
returned in io_Device.

• Call the console device function(s).

• Close the console device when you are finished.

Console Device 79

hnclude <deviceslconunit. h>
struct ConsoleDevice *ConsoleDevice; I* declare device base address *I

struct IOStdReq ConsiO= {0}; I* IIO request *I

main()

I* Open the device with CONU LIBRARY for function use *I
if (0 == OpenDevice ("console.device",CONU LIBRARY, (struct IORequest *) &ConsiO, 0))

{ -

I* Set the base address variable to the device library vector */
ConsoleDevice (struct ConsoleDevice *)ConsiO.io Device;

(console device functions would be called here)

CloseDevice(ConsiO);
}

The code fragment shows only the steps outlined above, it is not complete in any sense of the word.
For a complete example of using a console device function, see the rawkey.c code example in the
"Intuition: Mouse and Keyboard" chapteroftheAmiga ROM Kernel Reference Manual: Libraries.
The example uses the RawKeyConvert() function.

To use the commands with the CONU_LIBRARY console unit, you follow the same steps that were
outlined in the "Opening the Console Device" section of this chapter.

struct MsgPort *ConsoleMP;
struct IOStdReq *ConsoleiO;
struct KeyMap *keymap;

I* pointer to our message port *I
I* pointer to our IIO request */
I* pointer to keymap *I

I* Create the message port *I
if {ConsoleMP=CreateMsgPort())

{
I* Create the IIO request *I

if (ConsoleiO = CreateiORequest(ConsoleMP,sizeof(struct IOStdReq)))
{

I* Open the Console device *I
if (OpenDevice ("console.device",CONU_LIBRARY, (struct IORequest *)ConsoleiO, OL))

I* Inform user that it could not be opened *I
printf("Error: console.device did not open\n");

else
{

I* Allocate memory for the keymap *I
if (keymap = (struct KeyMap *)

{
AllocMem(sizeof(struct KeyMap),MEMF_PUBLIC I MEMF_CLEAR))

I* device opened, send CD ASKKEYMAP command to it *I
ConsoleiO->io Length = sizeof (struct KeyMap);
ConsoleiO->io-Data = (APTR)keymap; /* where to put it *I
ConsoleiO->io-Command = CD ASKKEYMAP;
DoiO((struct IORequest *)ConsoleiO))
}

CloseDevice(ConsiO);
}

Again, as in the previous code fragment, this is not complete (that's why it's a fragment!) and you
should only use it as a guide.

80 Amiga ROM Kernel Reference Manual: Devices

Where Is All the Keymap Information?

Unlike previous editions of this chapter, this one has a very small amount of keymap information.
Keyrnap information is now contained, appropriately enough, in the "Keymap Library" chapter of
theAmiga ROM Kernel Reference Manual: Libraries.

Console Device Caveats

• Only one console unit can be attached per window. Sharing a console window must be done at
a level higher than the device.

• Do not mix graphics.library calls with console rendering in the same areas of a window. It
is permissible to send console sequences to adjust the area in which console renders, and use
graphics .library calls to render outside of the area console is using.

For example, do not render text with console sequences and scroll using the graphics.library
ScroiiRaster() function.

• The character map feature is private and cannot be accessed by the programmer. Implementation
details and behaviors of the character map my change in the future.

• Do not use an IDCMP with character mapped consoles. All Intuition messages should be
obtained via RAW INPUT EVENTS from the console device.

Console Device Example Code

The following is a console device demonstration program with supporting routines:

I*
* Console.c

* * Example of opening a window and using the console device
* to send text and control sequences to it. The example can be
* easily modified to do additional control sequences.

*
* Compile with SAS C 5.10: LC -bl -cfistq -v -y -L

* * Run from CLI only.
*I

#include <exec/types.h>
#include <exec/io.h>
#include <exec/memory.h>
#include <intuition/intuition. h>
!!include <libraries/dos.h>
#include <devices/ console. h>

#include <clib/exec prot as. h>
#include <clib/ a lib-protos. h>
#include <clib/dos protos.h>
#include <clib/intuition_protos. h>

#include <stdio.h>

#i fdef LATTICE
int CXBRK(void) (return(O); }
int chkabort (void) { return (0);
#endif

/* Disable Lattice CTRL/C handling */
/* really *I

Console Device 81

/* Note - using two character <csi> ESC[. Hex 9B could be used instead*/
#define RESETCON "\033c"
#define CURSOFF "\033[0 p"
#define CURSON "\033[p"
#define DELCHAR "\033 [P"

* SGR (set graphic rendition) */
#define COLOR02 "\033(32m"
#define COLOR03 "\033[33m"
#define ITALICS "\033[3m"
#define BOLD "\033[lm"
#define UNDERLINE "\033[4m"
#define NORMAL "\033[0m"

/* our functions *I
void cleanexit(UBYTE *,LONG);
void cleanup(void);
BYTE OpenConsole(struct IOStdReq *,struct IOStdReq *,
void CloseConsole(struct IOStdReq *);

struct Window*);

void QueueRead(struct IOStdReq *, UBYTE *);
UBYTE ConGetChar(struct MsgPort *, UBYTE *);
LONG ConMayGetChar(struct MsgPort *, UBYTE *);
void ConPuts(struct IOStdReq *, UBYTE *);
void ConWrite(struct IOStdReq *, UBYTE *, LONG);
void ConPutChar(struct IOStdReq *, UBYTE);
void main(int argc, char **argv);
struct NewWindow nw ;

{
10, 10,
620,180,
-1,-1,

/* starting position (left,top) */
/* width, height */

CLOSEWINDOW,
WINDOWDEPTHIWINDOWSIZINGI
WINDOWDRAGIWINDOWCLOSEI
SMART REFRESHIACTIVATE,
NULL,-
NULL,

I* detailpen, blockpen */
/* flags for idcmp */

I* window flags */
I* no user gadgets */
I* no user checkmark */
I* title */ "Console Test",

NULL,
NULL,
100,45,
640,200,
WBENCHSCREEN

/* pointer to window screen */
/* pointer to super bitmap */
/* min width, height */
/* max width, height */

} ;
I* open on workbench screen */

/* Opens/allocations we'll need to clean up *I
struct Library *IntuitionBase ; NULL;
struct Window *win ; NULL;
struct IOStdReq *writeReq ; NULL;
struct MsgPort *writePort ; NULL;
struct IOStdReq *readReq ; NULL;
struct MsgPort *readPort ; NULL;
BOOL OpenedConsole ; FALSE;

BOOL FromWb;

void main(argc, argv)
int argc;
char **argv;

{

struct IntuiMessage *winmsg;

I* IORequest
I* replyport
I* IORequest
I* replyport

ULONG signals, conreadsig, windowsig;
LONG lch;
SHORT InControl ; 0;
BOOL Done ; FALSE;
UBYTE ch, ibuf;
UBYTE obuf[200];
BYTE error;

FromWb ; (argc;;OL) ? TRUE : FALSE;

block pointer
for writes
block pointer
for reads

if (! (Intui tionBase;OpenLibrary ("intuition .library", 0)))
cleanexit("Can't open intuition\n",RETURN_FAIL);

/* Create reply port and io block for writing to console *I

82 Amiga ROM Kernel Reference Manual: Devices

*I
*I

*I
*I

if (! (writePort = CreatePort ("RKM.console.write", 0)))
cleanexit("Can't create write port\n",RETURN FAIL);

if(! (writeReq = (struct IOStdReq *)
CreateExtiO(writePort, (LONG)sizeof(struct IOStdReq))))

cleanexit("Can't create write request\n",RETURN_FAIL);

/* Create reply port and io block for reading from console */
if(! (readPort = CreatePort("RKM.console.read",O)))

cleanexit("Can't create read port\n",RETURN FAIL);

if(!(readReq = (struct IOStdReq *)
CreateExtiO (readPort, (LONG) sizeof (struct IOStdReq))))

cleanexit("Can't create read request\n",RETURN_FAIL);

/* Open a window */
if(! (win= OpenWindow(&nw)))

cleanexit("Can't open window\n",RETURN_FAIL);

/* Now, attach a console to the window */
if(error = OpenConsole(writeReq,readReq,win))

cleanexit("Can't open console.device\n",RETURN FAIL);
else OpenedConsole = TRUE;

/* Demonstrate some console escape sequences */
ConPuts(writeReq,"Here's same normal text\n");
sprintf(obuf,"%s%sHere's text in color 3 and italics\n",COLOR03,ITALICS);
ConPuts(writeReq,obuf);
ConPuts(writeReq,NORMAL);
Delay(SO); /*Delay for dramatic demo effect */
ConPuts(writeReq,"We will now delete this asterisk=*=");
Delay(SO);
ConPuts(writeReq,"\b\b"); /*backspace twice*/
Delay(SO);
ConPuts(writeReq,DELCHAR); /*delete the character*/
Delay(SO);

QueueRead(readReq,&ibuf); /*send the first console read request*/

ConPuts(writeReq,"\n\nNow reading console\n");
ConPuts(writeReq,"Type some keys. Close window when done.\n\n");

conreadsig = 1 << readPort->mp SigBit;
windowsig = 1 << win->UserPort=->mp_SigBit;

while (!Done)
{
I* A character, or an IDCMP msg, or both could wake us up *I
signals= Wait(conreadsiglwindowsig);

I* If a console signal was received, get the character *I
if (signals & conreadsig)

{
if((lch ConMayGetChar(readPort,&ibuf)) != -1)

1
ch = lch;
/* Show hex and asc11 (if printable) for char we got.

* If you want to parse received control sequences, such as
* function or Help keys, you would buffer control sequences
* as you receive them, starting to buffer whenever you
* receive Ox9B (or OxlB[for user-typed sequences) and
* ending when you receive a valid terminating character
* for the type of control sequence you are receiving.
* For CSI sequences, valid terminating characters
* are generally Ox40 through Ox7E.
* In our example, InControl has the following values:
* 0 = no, 1 = have OxlB, 2 = have Ox9B OR Ox1B and [,
* 3 = now inside control sequence, -1 = normal end esc,
* -2 = non-CSI(no [) OxlB end esc
* NOTE - a more complex parser is required to recognize
* other types of control sequences.
*I

/* OxlB ESC not fall owed by ' [', is not CSI seq *I
if (InControl==1)

(
if(ch==' [') InControl 2;

Console Device 83

else InControl ~ -2;
l

if ((ch~~Ox9B) I I (ch~~OxlB)) /* Control seq starting *I
{

InControl ~ (ch~~OxlB) ? 1 : 2;
ConPuts(writeReq,"=== Control Seq ~~~\n");
l

/*We'll show value of this char we received*/
if (((ch >~ Ox1F} && (ch <~ Ox7E)) II (ch >= OxAO))

sprintf(obuf,"Received: hex %02x ~ %c\n",ch,ch);
else sprintf(obuf,"Received: hex %02x\n",ch);
ConPuts(writeReq,obuf);

/* Valid ESC sequence terminator ends an ESC seq */
if ((InControl==3) && ((ch >~ Ox40) && (ch <~ Ox7E)))

{
InControl = -1;
l

if (InControl==2) InControl = 3;
/* ESC sequence finished (-1 if OK, -2 if bogus) */
if (InControl < 0)

{
InControl = 0;
ConPuts(writeReq,"~== End Control ===\n");
l

/* If IDCMP messages received, handle them */
if (signals & windowsig)

{
/* We have to ReplyMsg these when done with them */
while (winmsg ~ (struct IntuiMessage *)GetMsg(win->UserPort))

{
switch (winmsg->Class)

{
case CLOSEWINDOW:

Done = TRUE;
break;

default:
break;

l
ReplyMsg((struct Message *)winmsg);
l

/* We always have an outstanding queued read request
so we must abort it if it hasn't completed,

* and we must remove it.
*I

if (! (CheckiO (readReq))) Abort IO (readReq);
WaitiO(readReq); /*clear it from our replyport */

cleanup ();
exit(RETURN OK);
l

void cleanexit(UBYTE *s,LONG n)
{
if(*s & (!FromWb)) printf(s);
cleanup();
exit (n);
l

void cleanup ()
{
if(OpenedConsole)
if(readReq)
if(readPort)
if (writeReq)
if(writePort)
if (win)
if(IntuitionBase)
}

CloseConsole(writeReq);
DeleteExtiO(readReq);
DeletePort(readPort);
DeleteExtiO(writeReq);
DeletePort(writePort};
CloseWindow(win);
CloseLibrary(IntuitionBase);

84 Amiga ROM Kernel Reference Manual: Devices

I* Attach console device to an open Intuition window.
* This function returns a value of 0 if the console
* device opened correctly and a nonzero value (the error
* returned from OpenDevice) if there was an error.
*I

BYTE OpenConsole(writereq, readreq, window)
struct IOStdReq *writereq;
struct IOStdReq *readreq;
struct Window *window;

{
BYTE error;

writereq->io Data = (APTR) window;
writereq->io Length= sizeof(struct Window);
error = OpenDevice ("console. device", 0, wri tereq, 0);
readreq->io Device writereq->io Device; I* clone required parts *I
readreq->io -Unit writereq- >io -Unit;
return (error); -
)

void CloseConsole(struct IOStdReq *writereq)
{
CloseDevice(writereq);
}

I* Output a single character to a specified console
*I

void ConPutChar(struct IOStdReq *writereq, UBYTE character)
{
writereq->io Command = CMD WRITE;
writereq->io-Data = (APTR)~character;
writereq->io-Length = 1;
DoiO (writereq);
I* command works because DoiO blocks until command is done

* (otherwise ptr to the character could become invalid)
*I

}

I* Output a stream of known length to a console
*I

void ConWrite(struct IOStdReq *writereq, UBYTE *string, LONG length)
{
writereq->io Command = CMD WRITE;
wri tereq- >io -Data = (APTR) string;
writereq->io-Length = length;
DoiO (wri tereq);
I* command works because DoiO blocks until command is done

}

* (otherwise ptr to string could become invalid in the meantime)
*I

I* Output a NULL-terminated string of characters to a console
*I

void ConPuts(struct IOStdReq *writereq,UBYTE *string)
{
writereq->io Command = CMD WRITE;
writereq->io-Data = (APTR)string;
writereq->io-Length = -1; I* means print till terminating null *I
DoiO(writereq);
}

I* Queue up a read request to console, passing it pointer
* to a buffer into which it can read the character
*I

void QueueRead(struct IOStdReq *readreq, UBYTE *whereto)
{
readreq->io Command = CMD READ;
readreq- >io -Data = (APTR) whereto;
readreq->io-Length = l;
SendiO(readreq);
}

Console Device 85

/* Check if a character has been received.
* If none, return -1
*I

LONG ConMayGetChar(struct MsgPort *msgport, UBYTE *whereto)
(
register temp;
struct IOStdReq *readreq;

if(! (readreq = (struct IOStdReq *)GetMsg(msgport))) return(-1);
temp = *whereto; /* get the character */
QueueRead(readreq,whereto); /*then re-use the request block*/
return (temp);
l

/* Wait for a character
*I

UBYTE ConGetChar(struct MsgPort *msgport, UBYTE *whereto)
{
register temp;
struct IOStdReq *readreq;

WaitPort(msgport);
readreq = (struct IOStdReq
temp = *whereto;
QueueRead(readreq,whereto);
return ((UBYTE) temp);
l

*)GetMsg(msgport};
/* get the character */
/* then re-use the request block*/

Additional Information on the Console Device

Additional programming infonnation on the console device can be found in the include files and the
Autodocs for the console device. Both are contained in the Amiga ROM Kernel Reference Manual:
Includes and Autodocs.

Console Device Information

INCLUDES

AUTO DOCS

devices/console.h
devices/console.i
devices/conunit.h
devices/conuni t.i

console.doc

86 Amiga ROM Kernel Reference Manual: Devices

chapter five
GAMEPORT DEVICE

The gameport device manages access to the Amiga gameport connectors for the operating system.
It enables the Amiga to interface with various external pointing devices like mice (two and three
button), joysticks, trackballs and light pens. There are two units in the gameport device, unit 0 and
unit 1.

Amiga Gameport Connectors

Unit 0 Unit 1

A3000 Front Connector Back Connector

A2000 Left Connector Right Connector

AlOOO 1 2

ASOO 1 JOYSTICK 2 JOYSTICK

Gameport Device 87

Gameport Device Commands and Functions

Command

CMD_CLEAR
GPD_ASKCTYPE
GPD_ASKTRIGGER
GPD_READEVENT
GPD_8ETCTYPE
GPD_8ETTRIGGER

Operation

Oear the gameport input buffer.
Return the type of gameport controller being used.
Return the conditions that have been preset for triggering.
Read one or more gameport events.
Set the type of the controller to be used.
Preset the conditions that will trigger a gameport event.

Exec Functions as Used In This Chapter

AbortiO()
CheckiO()
CloseDevice()

DolO()
OpenDevice()

SendiO()
WaitiO()

Abort a command to the gameport device.
Return the status of an 1/0 request.
Relinquish use of the gameport device. All requests must be complete
before closing.
Initiate a command and wait for completion (synchronous request).
Obtain shared use of one unit of the gameport device. The unit number
specified is placed in the 1/0 request structure for use by gameport
commands.
Initiate a command and return immediately (asynchronous request).
Wait for the completion of an asynchronous request. When the request
is complete the message will be removed from reply port.

Exec Support Functions as Used in This Chapter

CreateExtiO()

CreatePort()

DeleteExtiO()
DeletePort()

Create an extended 1/0 request structure of type IOStdReq. This
structure will be used to communicate commands to the gameport
device.
Create a signal message port for reply messages from the gameport
device. Exec will signal a task when a message arrives at the port.
Delete an 1/0 request structure created by CreateExtiO().
Delete the message port created by CreatePort().

Who Runs The Mouse? When the input device orlntutionis operating, unitO is usually
dedicated to gathering mouse events. The input device uses the gameport device to read
the mouse events. (For applications that take over the machine without starting up the
input device or Intuition, unit 0 can perform the same functions as unit 1.) See the "Input
Device" chapter for more information on the input device.

88 Amiga ROM Kernel Reference Manual: Devices

Device Interface

The gameport device operates like the other Amiga devices. To use it, you must first open the
gameport device, then send 1/0 requests to it, and then close it when finished. See the "Introduction
to Amiga System Devices" chapter for general information on device usage.

The 1/0 request used by the gameport device is called IOStdReq.

struct IOStdReq
{

Message io Message;
Device *io Device;
Unit *io-Unit;
io Command;-

I* device node pointer */
I* unit (driver private)*/
/* device command */

/* error or warning num */

struct
struct
struct
UWORD
UBYTE
BYTE
ULONG
ULONG
APTR
ULONG

io -Flags;
io-Error;
io-Actual;
io-Length;
io -Data;
io=Offset;

I* actual number of bytes transferred *I
/* requested number bytes transferred*/
/* points to data area */
I* offset for block structured devices */

) ;

See the include file execlio.h for the complete structure definition.

OPENING THE GAMEPORT DEVICE

Three primary steps are required to open the gameport device:

• Create a message port using CreatePort(). Reply messages from the device must be directed
to a message port.

• Create an 1/0 request structure of type IOStdReq. The IOStdReq structure is created by the
CreateExtiO() function. CreateExtiO() will initialize the 1/0 request with your reply port.

• Open the gameport device. Call OpenDevice(), passing the 1/0 request and and indicating the
unit you wish to use.

struct MsgPort *GameMP; /* Message port pointer */
struct IOStdReq *GameiO; /* I/O request pointer*/

/* Create port for gameport device communications */
if (! (GameMP ~ CreatePort ("RKM game port", 0)))

cleanexit(" Error: Can't create-port\n",RETURN_FAIL);

/* Create message block for device I/0 */
if (! (GameiO ~ CreateExt TO (GameMP, si zeof (struct IOStdReq))))

cleanexit(" Error: Can't create I/O request\n",RETURN_FAIL);

/* Open the right/back (unit 1, number 2) gameport.device unit */
if (error~OpenDevice("gameport.device",l,GameiO,O))

cleanexit(" Error: Can't open gameport.device\n",RETURN_FAIL);

The gameport commands are unit specific. The unit number specified in the call to OpenDevice()
determines which unit is acted upon.

Gameport Device 89

GAMEPORT DEVICE CONTROLLERS

The Amiga has five gameport device controller types.

Gameport Device Controllers

Controller Type Description

GPCT_MOUSE Mouse controller
GPCT_ABSJOYSTICK Absolute (digital) joystick
GPCT_RELJOYSTICK Relative (digital) joystick
GPCT_ALLOCATED Custom controller
GPCT_NOCONTROLLER No controller

To use the gameport device, you must define the type of device connected to the gameport and
define how the device is to respond. The gameport device can be set up to return the controller
status immediately or only when certain conditions have been met.

When a gameport device unit reponds to a request for input, it creates an input event. The contents
of the input event will vary based on the type of device and the trigger conditions you have declared.

• A mouse controller can report input events for one, two, or three buttons and for positive or
negative (x,y) movements. A trackball controller or car-driving controller is generally of the
same type and can be declared as a mouse controller.

• An absolute joystick reports one single event for each change of its current location. If, for
example, the joystick is centered and the user pushes the stick forward and holds it in that
position, only one single forward-switch event will be generated.

• A relative joystick, on the other hand, is comparable to an absolute joystick with "autorepeat"
installed. As long as the user holds the stick in a position other than centered, the gameport
device continues to generate position reports.

• There is currently no system software support for proportional joysticks or proportional con­
trollers (e.g., paddles). If you write custom code to read proportional controllers or other
controllers (e.g., light pen) make certain that you issue GPD_SETCfYPE (explained below)
with controller type GPCf _ALLOCATED to insure that other applications know the connector
is being used.

GPCT_NOCONTROLLER. The controller type GPCf_NOCONTROLLER is not a
controller at all, but a flag to indicate that the unit is not being used at the present time.

CLOSING THE GAMEPORT DEVICE

Each OpenDevice() must eventually be matched by a call to CloseDevice().

All 1/0 requests must be complete before CloseDevice(). If any requests are still pending, abort
them with AbortiO() and remove them with WaitiO().

if (! (CheckiO(GameiO)))
(
AbortiO(GameiO); /*Ask device to abort request, if pending*/
)

WaitiO((GameiO); /*Wait for abort, then clean up*/
CloseDevice(GameiO);

90 Amiga ROM Kernel Reference Manual: Devices

Gameport Events

A gameport event is an lnputEvent structure which describes the following:

• The class of the event- always set to IECLASS_RAWMOUSE for the gameport device.

• The subclass of the event - 0 for the left port; 1 for the right port.

• The code - which button and its state. (No report = OxFF)

• The qualifier- only button and relative mouse bits are set.

• The position- either a data address or mouse position count.

• The time stamp- delta time since last report, returned as frame count in tv_secs field.

• The next event - pointer to next event.

struct InputEvent GameEV
{

struct
UBYTE
UBYTE
UWORD
UWORD

InputEvent *ie_NextEvent;
ie Class;
ie-SubClass;
ie-Code;
ie::::Qualifier;

union
{

struct
{

WORD ie x;
WORD ie::::y;

l ie xy;
APTR Ie addr;

l ie position;
struct timeval ie_TimeStamp;

/* next event */
/* input event class */
/* subclass of the class */
/* input event code */
/* event qualifiers in effect */

/* x position for the event */
/* y position for the event */

I* delta time since last report

See the include file deviceslinputevent.h for the complete structure definition and listing of input
event fields. 'endverbatim

READING GAMEPORT EVENTS

You read gameport events by passing an 1/0 request to the device with GPD_READEVENT set in
io_Command, the address of the InputEvent structure to store events set in io_Data and the size
of the structure set in io_Length.

struct InputEvent GameEV;
struct IOStdRequest *GameiO; /* Must be initialized prior to using */

void send read request()
{ - -
GameiO->io Command = GPD READEVENT; /* Read events */
GameiO->io-Length = sizeof (struct InputEvent);
GameiO->io-Data = (APTR)&GameEV; /*put events in GameEV*/
SendiO(GameiO); /*Asynchronous*/
l

Gameport Device 91

SETTING GAMEPORT EVENT TRIGGER CONDITIONS

You set the conditions that can trigger a gameport event by passing an 1/0 request to the device with
GPD_SETTRIGGER set in io_Command and the address of a GamePortTrigger structure set in
io_])ata.

The information needed for gameport trigger setting is placed into a GamePortTrigger data struc­
ture which is defined in the include file devices! gameport.h.

struct GamePortTrigger
(

UWORD
UWORD
UWORD
UWORD

gpt Keys;
gpt-Timeout;
gpt-XDelta;
gpt:::YDelta;

I* key transition triggers *I
I* time trigger (vertical blank units) *I
I* X distance trigger *I
I* Y distance trigger *I

A few points to keep in mind with the GPD_SEITRIGGER command are:

• Setting GPTF_UPKEYS enables the reporting of upward transitions. Setting
GPTF_])QWNKEYS enables the reporting of downward transitions. These flags may both
be specified.

• The field gpLTimeout specifies the time interval (in vertical blank units) between reports in the
absence of another trigger condition. In other words, an event is generated every gpLTimeout
ticks. Vertical blank units may differ from country to country (e.g 60Hz NTSC, 50 Hz PAL.)
To find out the exact frequency use this code fragment:

#include <execlexecbase.h>
extern struct ExecBase *SysBase;

UBYTE get frequency(void)
{ -

return((UBYTE)SysBase->VBlankFrequency);
l

• The gpLXDelta and gpL YDelta fields specify the x and y distances which, if exceeded,
trigger a report.

For a mouse controller, you can trigger on a certain minimum-sized move in either the x or y
direction, on up or down transitions of the mouse buttons, on a timed basis, or any combination of
these conditions.

For example, suppose you normally signal mouse events if the mouse moves at least 10 counts in
either the x or y directions. If you are moving the cursor to keep up with mouse movements and
the user moves the mouse less than 10 counts, after a period of time you will want to update the
position of the cursor to exactly match the mouse position. Thus the timed report of current mouse
counts would be preferred. The following structure would be used:

#define XMOVE 10
#define YMOVE 10

struct GamePortTrigger GameTR =
{

) ;

GPTF UPKEYS GPTF_DOWNKEYS,
1800~
XMOVE,
YMOVE

I* trigger on all key transitions *I
I* and every 36(PAL) or 30(NTSC) seconds *I
I* for any 10 in an x or y direction *I

92 Amiga ROM Kernel Reference Manual: Devices

For a joystick controller, you can select timed reports as well as button-up and button-down report
trigger conditions. For an absolute joystick specify a value of one (1) for the GameTLXDelta
and Game TIL YDelta fields or you will not get any direction events. You set the trigger conditions
by using the following code or its equivalent:

struct lOStdReq *GamelO;

void set trigger conditions(struct GamePortTrigger *GameTR)
{ - -
GamelO->io Command = GPD SETTRlGGER; /* set trigger conditions */
GamelO->io-Data = (APTR)GameTR; /* from GameTR */
GamelO->io-Length = sizeof(struct GamePortTrigger);
DolO (GamelO);
)

Triggers and Reads. If a task sets trigger conditions and does not ask for the position
reports the gameport device will queue them up anyway. If the trigger conditions occur
again and the gameport device buffer is filled, the additional triggers will be ignored until the
buffer is read by a device read request (GPD_READEVENT) or a system CMD_CLEAR
command flushes the buffer.

DETERMINING THE TRIGGER CONDITIONS

You determine the conditions required for triggering gameport events by passing an 1/0 request to
the device with GPD_ASKTRIGGER set in io_Command, the length of the GamePortTrigger
structure set in io__Length and the address of the structure set in io.J>ata. The gameport device
will respond with the event trigger conditions currently set.

struct lOStdReq *GamelO; /* Must be initialized prior to using */

struct GamePortTrigger GameTR;

void get trigger conditions(struct GamePortTrigger *GameTR)
{ - -
GamelO->io Command = GPD ASKTRlGGER; /* get type of triggers */
GamelO->io-Data = (APTR)GameTR; /* place data here */
GamelO- >io -Length= si zeof (GameTR);
DolO (GamelO);
}

Gameport Device 93

Setting and Reading the Controller Type

DETERMINING THE CONTROLLER TYPE

You determine the type of controller being used by passing an 1/0 request to the device with
GPD_ASKCfYPE set in io_Command, 1 set in io__Length and the number of the unit set in
io_Unit. The gameport device will respond with the type of controller being used.

struct IOStdReq *GameiO; /* Must be initialized prior to using */

BYTE GetControllerType()
{
BYTE controller_type = 0;

GameiO->io Command = GPD ASKCTYPE; /* get type of controller */
GameiO->io-Data = (APTR)&controller type; /* place data here */
GameiO->io-Length = 1;
DoiO (GameiO);
return (controller_type);
}

The BYTE value returned corresponds to one of the five controller types noted above.

SETTING THE CONTROLLER TYPE

You set the type of gameport controller by passing an 1/0 request to the device with
GPD_SETCfYPE set in io_Command, 1 set in io__Length and the address of the byte variable
describing the controller type set in io_Data.

The gameport device is a shared device; many tasks may have it open at any given time. Hence, a
high level protocol has been established to prevent multiple tasks from reading the same unit at the
same time.

Three Step Protocol for Using the Gameport Device

Step 1:
Send GPD_ASKCfYPE to the device and check for a GPCf_NQCONTROLLER return.
Never issue GPD_SETCfYPE without checking whether the desired gameport unit is in use.

Step 2:
If GPCf_NOCONTROLLER is returned, you have access to the gameport. Set the alloca­
tion flag to GPCf_MOUSE, GPCf_ABSJOYSTICK or GPCf_RELJOYSTICK if you use a
system supported controller, or GPCf _ALLOCATED if you use a custom controller.

struct IOStdReq *GameiO; /* Must be initialized prior to using */

BOOL set controller type(type)
BYTE type; -
{

BOOL success = FALSE;
BYTE controller_type = 0;

Forbid(); /*critical section start*/
GameiO->io Command = GPD ASKCTYPE; /* inquire current status */
GameiO->io-Length = 1; -
GameiO->io-Flags = IOF QUICK;
GameiO->io=Data = (APTR)&controller_type; /*put answer in here*/

94 Amiga ROM Kernel Reference Manual: Devices

DolO (GamelO);

/*No one is using this device unit, let's claim it*/
if (controller type == GPCT NOCONTROLLER)

{ - -
GamelO->io Command= GPD SETCTYPE;/* set controller type */
GamelO->io-Length = 1; -
GamelO->io-Data = (APTR)&type; /* set to input param */
DolO (GamelO);
success = TRUE;
UnitOpened = TRUE;
)

Permit(); /* critical section end*/

/* success can be TRUE or FALSE, see above */
return(success);
)

Step 3:
The program must set the controller type back to GPCf _NOCONTROLLER upon exiting your
program:

struct lOStdReq *GamelO; /* Must be initialized prior to using */

void free gp unit()
{ - -
BYTE type = GPCT NOCONTROLLER;
GamelO->io Command= GPD SETCTYPE; /* set controller type */
GamelO- >io -Length = 1;
GamelO->io-Data = (APTR)&type; /*set to unused*/
DolO (GamelO);
)

This three step protocol allows applications to share the gameport device in a system compatible
way.

A Word About The Functions. The functions shown above are designed to be included
in any application using the gameport device. The first function, seLcontroller_typeO,
would be the first thing done after opening the gameport device. The second function,
free_gp_unitO, would be the last thing done before closing the device.

Joystick Example Program

I*
* Absolute Joystick.c
*
* Gameport device absolute joystick example
*
* Compile with SAS 5.10 lc -b1 -cfistq -v -y -L
*
* Run from CLl only
*I

#include <exec/types. h>
#include <exec/io.h>
#include <exec/memory.h>
#include <intuition/intuition.h>
#include <exec/exec. h>
!!include <dos/dos.h>
#include <devices/gameport. h>
#include <devices/inputevent.h>

il nclude <cl b/exec protos.h>
il nclude <cl b/alib -protos.h>
il nclude <cl b/dos protos.h>
il nclude <cl b/intuition_protos.h>

Gameport Device 95

#include <stdio.h>

#ifdef LATTICE
int CXBRK (void) { return (0); I
int chkabort (void) { return (0);
#endif

#define JOY X DELTA (1)
#define JOY-Y-DELTA (1)
#define TIMEOUT SECONDS (10)

extern struct ExecBase *SysBase;

/* Disable SAS CTRL/C handling */
/* really *I

1*---
** Routine to print out some information for the user.
*I
VOID printinstructions(VOID)
{
printf("\n >>> gameport.device Absolute Joystick Demo <<<\n\n");

if (SysBase->VBlankFrequency==60)
printf(" Running on NTSC system (60Hz) .\n");

else if (SysBase->VBlankFrequency==50)
printf(" Running on PAL system (50 Hz) .\n");

printf("Attach joystick to rear connector (A3000) and (A1000) .\n"
"Attach joystick to right connector (A2000) .\n"
" Attach joystick to left connector (A500) .\n"
" Then move joystick and click its button(s) .\n\n"
" To exit program press and release fire button 3 consecutive times. \n"
"The program also exits if no activity occurs for 1 minute.\n\n");

!*---
** print out information on the event received.
*I
BOOL check move(struct InputEvent *game event)
{

WORD xmove, ymove;
BOOL timeout=FALSE;

xmove = game even~->ie X;
ymove = game:::event->ie:_);

if (xmove == 1)
{
if (ymove == 1) printf("RIGHT DOWN\n");
else if (ymove == 0) printf("RIGHT\n");
else if (ymove ==-1) printf("RIGHT UP\n");
else printf ("UNKNOWN Y\n");
}

else if (xmove ==-1)
{
if (ymove == 1) printf ("LEFT DOWN\n");
else if (ymove == 0) printf("LEFT\n");
else if (ymove ==-1) printf("LEFT UP\n");
else printf ("UNKNOWN Y\n");
}

else if (xmove == 0)
{
if (ymove == 1) printf("DOWN\n");
I* note that 0,0 can be a timeout, or a direction release. *I
else if (ymove == 0)

{
if (game event->ie TimeStamp. tv sees >=

- (UWORD) (SysBase-->VBlankFrequency) * TIMEOUT SECONDS)

printf("TIMEOUT\n");
timeout=TRUE;
}

else printf("RELEASE\n");
}

else if (ymove ==-1) printf("UP\n");
else printf("UNKNOWN Y\n");
}

96 Amiga ROM Kernel Reference Manual: Devices

else
{
printf("UNKNOWN X");
if (ymove == 1) printf("unknown action\n");
else if (ymove == 0) printf("unknown action\n");
else if (ymove ==-1) printf("unknown action\n");
else printf("UNKNOWN Y\n");
}

return(timeout);

1*---
** send a request to the gameport to read an event.
*I
VOID send read request(struct InputEvent *game event,

- - struct IOStdReq *game_io_msg)
{
game io msg->io Command
game -io-msg->io -Flags
game -io-msg- >io -Data
game io-msg->io-Length
SendlO(game io msg); I*
} -

GPO READEVENT;
0; -
(APTR)game event;
sizeof(struct InputEvent);

Asynchronous - message will return later *I

1*---
** simple loop to process gameport events.
*I
VOID processEvents(struct IOStdReq *game io msg,

struct MsgPort *game=msg_port)
{
BOOL timeout;
SHORT timeouts;
SHORT button count;
BOOL not finished;
struct InputEvent game event; I* where input event will be stored *I

I* From now on, just read input events into the event buffer,
** one at a time. READEVENT waits for the preset conditions.
*I
timeouts = 0;
button count
not finished =

0;
TRUE;

while ((timeouts < 6) && (not finished))
{
I* Send the read request *I
send read request(&game_event,game io msg);

I* Wait for joystick action *I
Wait (11 << game msg port->mp SigBit);
while (NULL != GetMsg(game_msg=port))

{
timeout=FALSE;
switch(game event.ie Code)

{
case IECODE LBUTTON:

printf(" FIRE BUTTON PRESSED \n");
break;

case (IECODE LBUTTON I IECODE UP PREFIX) :
printf (,-FIRE BUTTON RELEASED \n");
if (3 == ++button count)

not finished ~ FALSE;
break":

case IECODE RBUTTON:
printf(" ALT BUTTON PRESSED \n");
button count = 0;
break;

case (IECODE RBUTTON I IECODE UP PREFIX) :
printf ("-ALT BUTTON RELEASED-\n");
button count = 0;
break;

Gameport Device 97

case IECODE NOBUTTON:
I* Check for change in position *I
timeout = check move(&game event);
button count = 0; -
break;

default:
break;

if (timeout)
timeouts++;

else
timeouts=O;

1*---
** allocate the controller if it is available.
** you allocate the controller by setting its type to something
** other than GPCT NOCONTROLLER. Before you allocate the thing
** you need to check if anyone else is using it (it is free if
**it is set to GPCT_NOCONTROLLER).
*I
BOOL set controller_type(BYTE type, struct IOStdReq *game_io_msg)
{
BOOL success = FALSE;
BYTE controller_type = 0;

I* begin critical section
** we need to be sure that between the time we check that the controller
** is available and the time we allocate it, no one else steals it.
*I
Forbid();

game io msg->io Command
game -io-msg->io -Flags
game -io-msg->io -Data
game -io-msg->io -Length
DoiO(game_io_msg);

GPD ASKCTYPE; I* inquire current status *I
IOF-QUICK;
(APTR)&controller type; I* put answer in here *I
1; -

I* No one is using this device unit, let's claim it *I
if (controller type == GPCT NOCONTROLLER)

{ - -

game io msg->io Command GPD SETCTYPE;
game-io-msg->io-Flags IOF-QUICK;
game -io-msg- >io -Data (APTR) &type;
game-io-msg->io-Length 1;
DoiO(game io msg);
success = TRUE;
}

Permit(); I* critical section end *I
return(success);
}

1*---
** tell the gameport when to trigger.
*I
VOID set trigger conditions(struct GamePortTrigger *gpt,

- struct IOStdReq *game io_msg)
{
I* trigger on all joystick key transitions *I
gpt->gpt Keys = GPTF UPKEYS I GPTF DOWNKEYS;
gpt- >gpt -XDelta = JOY X DELTA; -
gpt->gpt -YDel ta = JOY-Y-DELTA;
I* timeout trigger every-TIMEOUT SECONDS second(s) *I
gpt->gpt_Timeout = (UWORD) (SysBase->VBlankFrequency) * TIMEOUT SECONDS;

game io msg->io Command
game -io-msg->io -Flags
game-io-msg->io -Data
game -io-msg->io -Length
DoiO(game io msg);
} -

GPD SETTRIGGER;
I OF-QUICK;
(APTR) gpt;
(LONG)sizeof(struct GamePortTrigger);

98 Amiga ROM Kernel Reference Manual: Devices

/*---
** clear the buffer. do this before you begin to be sure you
** start in a known state.
*I
VOID flush buffer(struct IOStdReq *game_io_msg)
{ -
game io msg->io Command
game -io-msg- >io -Flags
game-io-msg->io Data
game io-msg->io-Length
DoiO(game io msg);
) -

CMD CLEAR;
I OF-QUICK;
NULL;
0;

/*---
** free the unit by setting its type back to GPCT NOCONTROLLER.
*/ -
VOID free_gp_unit(struct IOStdReq *game_io_msg)
{
BYTE type = GPCT_NOCONTROLLER;

game io msg->io Command
game io-msg->io-Flags
game -io-msg- >io -Data
game -io-msg- >io -Length
DoiO(game io msg);
} - -

GPD SETCTYPE;
I OF-QUICK;
(APTR) &type;
1;

/*---
** allocate everything and go. On failure, free any resources that
** have been allocated. this program fails quietly--no error messages.
*I
VOID main(int argc,char **argv)
{
struct GamePortTrigger
struct IOStdReq

joytrigger;
*game io msg;
*game:::msg_port; struct MsgPort

/* Create port for gameport device communications */
if (game msg port = CreatePort ("RKM game port", 0))

{ -
/* Create message block for device IO */
if (game_io msg = (struct IOStdReq *)

CreateExtiO(game_msg_port,sizeof(*game_io_msg)))
{
game_io msg->io_Message.mn_Node.ln_Type = NT_UNKNOWN;

/* Open the right/back (unit 1, number 2) gameport.device unit */
if (!OpenDevice("gameport.device",l,game 10 msg,O))

{ -

/* Set controller type to joystick */
if (set controller type(GPCT ABSJOYSTICK,game io_msg))

{ - -

I* Specify the trigger conditions */
set trigger_conditions(&joytrigger,game_io_msg);

printinstructions();

/* Clear device buffer to start from a known state.
** There might still be events left
*I
flush buffer(game io msg);

processEvents(game 10 msg,game_msg port);

/* Free gameport unit so other applications can use it 1 *I
free gp unit(game io msg);
) -

CloseDevice(game io msg);
} -

DeleteExtiO(game io msg);
} -

DeletePort(game msg port);
} - -

Gameport Device 99

Additional Information on the Gameport Device

Additional programming information on the gameport device can be found in the include files and
the Autodocs for the gameport and input devices. Both are contained in the Amiga ROM Kernel
Reference Manual: Includes andAutodocs.

Gameport Device Information

INCLUDES

AUTO DOCS

devices/gameport.h
devices/gameport.i
devices/inputevent.h
devices/inputevent.i

gameport.doc

1 00 Amiga ROM Kernel Reference Manual: Devices

chapter six
INPUT DEVICE

The input device is the central collection point for input events disseminated throughout the system.
The best way to describe the input device is a manager of a stream with feeders. The input device
itself and other modules such as the file system add events to the stream; so do input device
"users"-prograrns or other devices that use parts of the stream or change it in some way. Feeders
of the input device include the keyboard, timer and garneport devices. The keyboard, gameport,
and timer devices are special cases in that the input device opens them and asks them for input.
Users of the input device include Intuition and the console device.

New Features for Version 2.0

Feature Description

IECLASS_NEWPOINTERPOS Input Event Oass
IECLASS_MENUHELP Input Event Oass
IECLASS_CHANGEWINDOW Input Event Oass
IESUBCLASS_COMPATIBLE Input Event SubOass
IESUBCLASS_PIXEL Input Event SubOass
IESUBCLASS_TABLET Input Event SubOass
Peek Qualifier() Function

Compatibility Warning: The new features for the 2.0 input device are not backwards
compatible.

Input Device 101

Input Device Commands and Functions

Command

CMD_FLUSH
CMD_RESET

CMD_8TART

CMD_8TOP

IND_ADDHANDLER
IND_REMHANDLER
IND_8ETMPORT
IND_8ETMTRIG

IND_8ETMTYPE
IND_8ETPERIOD
IND_8ETTHRESH
IND_ WRITEEVENT

Input Device Function

PeekQualifier()

Operation

Purge all active and queued requests for the input device.
Reset the input port to its initialized state. All active and queued 1/0
requests will be aborted. Restarts the device if it has been stopped.
Restart the currently active input (if any) and resume queued 1/0
requests.
Stop any currently active input and prevent queued 1/0 requests from
starting.
Add an input-stream handler into the handler chain.
Remove an input-stream handler from the handler chain.
Set the controller port to which the mouse is connected.
Set conditions that must be met by a mouse before a pending read
request will be satisfied.
Set the type of device at the mouse port.
Set the period at which a repeating key repeats.
Set the repeating key hold-down time before repeat starts.
Propagate an input event stream to all devices.

Return the input device's current qualifiers. (V36)

Exec Functions as Used In This Chapter

AbortiO()
CheckiO()
CloseDevice()
DolO()
OpenDevice()
SendiO()

Abort a command to the input device.
Return the status of an 1/0 request.
Relinquish use of the input device.
Initiate a command and wait for completion (synchronous request).
Obtain shared use of the input device.
Initiate a command and return immediately (asynchronous request).

Exec Support Functions as Used In This Chapter

CreateExtiO()

CreatePort()

DeleteExtiO()
DeletePort()

Create an extended 1/0 request structure of type IOStdReq. This
structure will be used to communicate commands to the input device.
Create a signal message port for reply messages from the input device.
Exec will signal a task when a message arrives at the reply port.
Delete an 1/0 request structure created by CreateExtiO().
Delete the message port created by CreatePort().

1 02 Amiga ROM Kernel Reference Manual: Devices

Device Interface

The input device operates like the other Amiga devices. To use it, you must first open the input
device, then send 1/0 requests to it, and then close it when finished. See the "Introduction to Amiga
System Devices" chapter for general information on device usage.

A number of structures arc used by the input device to do its processing. Some are used to pass
commands and data to the device, some are used to describe input events like mouse movements
and key depressions, and one structure is used to describe the environment for input event handlers.

The 1/0 request used by the input device for most commands is IOStdReq.

struct IOStdReq
{

} ;

struct Message io Message;
struct Device *i~ Device;
strucl Unit *io-Unit;
UWORD io Command;­
UBYTE io -Flags;
BYTE io-Error;
ULONG io-Length;
APTR io:=oata;

/* message reply port */
/* device node pointer */
/* unit */
/* input device command */
/* input device flags */
/* error code */
/* number of bytes to transfer */
/* pointer to data area */

See the include file execlio.h for the complete structure definition.

Two of the input device commands-IND-.SETTHRESH and IND_SETPERIOD-require a time
specification and must use a timerequest structure instead of an IOStdReq.

struct timerequest
{

} ;

struct IORequest trnode;
struct timeval tr time;

As you can see, the timerequest structure includes an IORequest structure. The io_Command
field oftheiORequest indicates the command to the input device and the timeval structure sets the
time values. See the include file devices!timer.h for the complete structure definition.

In Case You Feel Like Reinventing the Wheel... You could define a "supcr­
IORequcst" structure for the input device which would combine the IOStdReq fields
with the timeval structure of the timerequest structure.

OPENING THE INPUT DEVICE

Three primary steps arc required to open the input device:

• Create a message port using CreatcPort(). Reply messages from the device must be directed
to a message port.

• Create an I/0 request structure of type IOStdReq or timerequest. The 1/0 request created by
the CreateExtiO() function will be used to pass commands and data to the input device.

• Open the Input device. Call OpenDevice(), passing the I/0 request.

Input Device 103

struct MsgPort *InputMP;
struct IOStdReq *InputiO;

if (InputMP=CreatePort(O,O)

/* Message port pointer */
/* I/0 request pointer */

if (InputiO=(struct IOStdReq *)
CreateExtiO(InputMP,sizeof(struct IOStdReq)))

if (OpenDevice ("input .device", OL, (struct IORequest *) InputiO, 0)
printf("input.device did not open\n");

The above code will work for all the input device commands except for the ones which require a
time specification. For those, the code would look like this:

#include <devices/timer.h>

struct MsgPort *InputMP;
struct timerequest *InputiO;

if (InputMP=CreatePort(O,O))

!* Message port pointer */
/* I/O request pointer */

if (InputiO=(struct timerequest *)
CreateExtiO(InputMP,sizeof(struct timerequest)))

if (OpenDevice("input.device",OL, (struct IORequest *)InputiO,O)
printf("input.device did not open\n");

INPUT DEVICE EVENT TYPES

The input device is automatically opened by the console device when the system boots. When the
input device is opened, a task named "input.device" is started. The input device task communicates
directly with the keyboard device to obtain raw key events. It also communicates with the gameport
device to obtain mouse button and mouse movement events and with the timer device to obtain time
events. In addition to these events, you can add your own input events to the input device, to be fed
to the handler chain (sec below).

The keyboard device is accessible directly (see the "Keyboard Device" chapter). However, once the
input.device task has started, you should not read events from the keyboard device directly, since
doing so will deprive the input device of the events and confuse key repeating.

The gameport device has two units. As you view the Amiga, looking at the gameport connectors,
the left connector is assigned as the primary mouse input for Intuition and contributes gameport
input events to the input event stream.

The right connector is handled by the other gameport unit and is currently unassigned. While the
input device task is running, that task expects to read the input from the left connector. Direct usc
of the gameport device is covered in the "Gameport Device" chapter of this manual.

The timer device is used to generate time events for the input device. It is also used to control key
repeat rate and key repeat threshold. The timer device is a shared-access device and is described in
"Timer Device" chapter of this manual.

The device-specific commands are described below. First though, it may be helpful to consider
the types of input events that the input device deals with. An input event is a data structure that
describes the following:

• The class of the event- often describes the device that generated the event.

• The subclass of the event- space for more information if needed.

• The code- keycode if keyboard, button information if mouse, others.

• A qualifier such as "Alt key also down,"or "key repeat active".

1 04 Amiga ROM Kernel Reference Manual: Devices

• A position field that contains a data address or a mouse position count.

• A time stamp, to determine the sequence in which the events occurred.

• A link-field by which input events are linked together.

• The class, subclass, code and qualifier of the previous down key.

The full definitions for each field can be found in the include file deviceslinputevent.h. You can find
more information about input events in the "Gameport Device" and "Console Device" chapters of
this manual.

The various types of input events are listed below.

Input Device Event Types

A NOP input event IECLASS_NULL
IECLASS_RA WKEY
IECLASS_RA WMOUSE
IECLASS__EVENT
IECLASS_pQINTERPOS
IECLASS_ TIMER
IECLASS_GADGETDOWN

IECLASS_GADGETUP

IECLASS_REQUESTER
IECLASS_MENULIST

IECLASS_CLOSEWINDOW
IECLASS_SIZEWINDOW
IECLASS_REFRESHWINDOW

IECLASS_NEWPREFS
IECLASS_DISKREMOVED
IECLASS_DISKINSERfED
IECLASS_ACTIVEWINDOW
IECLASS_INACTIVEWINDOW
IECLASS_NEWPOINTERPOS
IECLASS_MENUHELP
IECLASS_CHANGEWINDOW

A raw keycode from the keyboard device
The raw mouse report from the gameport device
A private console event
A pointer position report
A timer event
Select button pressed down over a gadget (address in
ie_EventAddress)
Select button released over the same gadget (address
in ie--..EventAddress)
Some requester activity has taken place.
This is a menu number transmission (menu number is
in ie__Code)
User has selected the active window's Oose Gadget
This window has a new size
The window pointed to by ie--..EventAddress needs to
be refreshed
New preferences are available
The disk has been removed
The disk has been inserted
The window is about to be been made active
The window is about to be made inactive
Extended-function pointer position report (V36)
Help key report during Menu session (V36)
The Window has been modified with move, size, zoom,
or change (V36)

There is a difference between simply receiving an input event from a device and actually becoming
a handler of an input event stream. A handler is a routine that is passed an input event list. It is
up to the handler to decide if it can process the input events. If the handler does not recognize an
event, it leaves it undisturbed in the event list.

It All Flows Downhill. Handlers can themselves generate new linked lists of events
which can be passed down to lower priority handlers.

Input Device 105

The InputEvent structure is used by the input device to describe an input event such as a keypress
or a mouse movement.

struct InputEvent
{

} ;

struct
UBYTE
UBYTE
UWORD
UWORD
union
{

InputEvent *ie_NextEvent;
ie Class;
ie-SubClass;
ie-Code;
ie ::::ouali fier;

struct
{

WORD ie_x;
WORD ie_y;

} ie xy;
APTR- ie_addr;
struct
{

UBYTE
UBYTE
UBYTE
UBYTE

ie dead;
} ie position;

ie prev1DownCode;
ie-prev1DownQual;
ie-prev2DownCode;
ie::::prev2DownQual;

struct timeval ie_TimeStamp;

I* the chronologically next event */
/* the input event class */
/* optional subclass of the class */
I* the input event code */
I* qualifiers in effect for the event*/

I* the pointer position for the event*/

/* the event address */

/* previous down keys for dead */
/* key translation: the ie Code */
/* & low byte of ie Qualifier for */
/* last & second last down keys */

/* the system tick at the event */

The IEPointerPixel and IEPointerTablet structures are used to set the mouse position with the
IECLASS_NEWPOINTERPOS input event class.

struct IEPointerPixel
{

struct Screen
struct
{

WORD X;
WORD Y;

iepp_Position;
} ;
struct IEPointerTablet
{

struct
{

UWORD X;
UWORD Y;

iept Range;
struct-
{

UWORD X;
UWORD Y;

iept_Value;

iepp_Screen; I pointer to an open screen */

I* pixel coordinates in iepp_Screen */

/* 0 is min, these are max *I

I* between 0 and iept_Range *I

WORD iept_Pressure; /* -128 to 127 {unused, set to 0) */
} ;

See the include file deviceslinputevent.h for the complete structure definitions.

For input device handler installation, the Interrupt structure is used.

struct Interrupt
{

} ;

struct Node is Node;
APTR is DataT
VOID (*Is_Code) ();

I* server data segment */
/* server code entry */

See the include file execlinterrupts.h for the complete structure definition.

1 06 Amiga ROM Kernel Reference Manual: Devices

CLOSING THE INPUT DEVICE

Each OpenDevice() must eventually be matched by a call to CloseDevice(). All 1/0 requests must
be complete before CloseDevice(). If any requests are still pending, abort them with AbortiO():

if (! (CheckiO (InputiO)))
(
AbortiO(InputiO); I* Ask device to abort request, if pending *I
}

WaitiO(InputiO); I* Wait for abort, then clean up *I
CloseDevice((struct IORequest *)InputiO);

Using the Mouse Port With the Input Device

To get mouse port infonnation you must first set the current mouse port by passing an IOStdReq
to the device with IND_SETMPOJIT set in io_Command and a pointer to a byte set in io__Data. If
the byte is set to 0 the left controller port will be used as the current mouse port; if it is set to 1, the
right controller port will be used.

BYTE port = 1; I* set mouse port to right controller *I

InputiO->io Data = &port;
InputiO->io -Flags = IOF QUICK;
InputiO->io-Length = 1;-
InputiO->io -Command = IND SETMPORT;
BeginiO ((struct IORequest *> InputiO);
if (Inputro->io Error)

printf ("\nSETMPORT failed %d\n", InputiO->io_Error);

Put That Back! The default mouse port is the left controller. Don't forget to set the
mouse port back to the left controller before exiting if you change it to the right controller
during your application.

SETTING THE CONDITIONS FOR A MOUSE PORT REPORT

You set the conditions for a mouse port report by passing an IOStdReq to the device with
IND_SETMTRIG set in io_Command, the address of a GamePortTrigger structure set in io__Data
and the length of the structure set in ioJ..ength.

struct GamePortTrigger InputTR;

InputiO->io Data= (APTR)InputTR; I* set trigger conditions *I
InputiO->io-Command = IND SETMTRIG; I* from InputTR *I
InputiO->io-Length = sizeof(struct GamePortTrigger);
DoiO (InputiO);

The infonnation needed for mouse port report setting is contained in a GamePortTrigger data
structure which is defined in the include file devices/ gameport.h.

struct GamePortTrigger
(

} ;

UWORD
UWORD
UWORD
UWORD

gpt Keys;
gpt-Timeout;
gpt-XDelta;
gpt=YDelta;

I* key transition triggers *I
I* time trigger (vertical blank units) *I
I* X distance trigger *I
I* Y distance trigger *I

See the "Gameport Device" chapter of this manual for a full description of setting mouse port trigger
conditions.

Input Device 107

Adding an Input Handler

You add an input-stream handler to the input chain by passing an IOStdReq to the device with
IND_A.DDHANDLER set in io_Command and a pointer to an Interrupt structure set in io_Data.

struct Interrupt *InputHandler;
struct IOStdReq *InputiO

InputHandler->is Code=ButtonSwap; I* Address of code *I
InputHandler->is-Data=NULL; I* User Value passed in Al *I
InputHandler->is=Node.ln_Pri=lOO; I* Priority in food chain *I
InputHandler->is_Node.ln_Name=NameString; I* Name of handler *I

InputiO->io Data=(APTR)inputHandler;
InputiO->io-Command=IND ADDHANDLER;
DoiO ((struct- IORequest *) InputiO);

I* Point to the structure *I
I* Set command ... *I

I* DoiO() the command *I

Intuition is one of the input device handlers and normally distributes most of the input events.

Intuition inserts itself at priority position 50. The console device sits at priority position 0. You can
choose the position in the chain at which your handler will be inserted by setting the priority field
in the list-node part of the interrupt data structure you pass to this routine.

Speed Saves. Any processing time expended by a handler subtracts from the time
available before the next event happens. Therefore, handlers for the input stream must be
fast. For this reason it is recommended that the handlers be written in assembly.

RULES FOR INPUT DEVICE HANDLERS

The following rules should be followed when you are designing an input handler:

• If an input handler is capable of processing a specific kind of an input event and that event has
no links (ie_NextEvent = 0), the handler can end the handler chain by returning a NULL (0)
value.

• If there are multiple events linked together, the handler is free to unlink an event from the
input event chain, thereby passing a shorter list of events to subsequent handlers. The starting
address of the modified list is the return value.

• If a handler wishes to add new events to the chain that it passes to a lower-priority handler, it
may initialize memory to contain the new event or event chain. The handler, when it again gets
control on the next round of event handling, should assume nothing about the current contents
of the memory blocks attached to the event chain. Lower priority handlers may have modified
the memory as they handled their part of the event. The handler that allocates the memory for
this purpose should keep track of the starting address and the size of this memory chunk so that
the memory can be returned to the free memory list when it is no longer needed.

Your assembly language handler routine should be structured similar to the following pseudo­
language statement:

newEventChain = yourHandlerCode(oldEventChain, yourHandlerData);
dO aO al

1 08 Amiga ROM Kernel Reference Manual: Devices

where:

• yourHandlerCode is the entry point to your routine.

• oldEventChain is the starting address for the current chain of input events.

• yourHandlerData is a user-definable value, usually a pointer to some data structure your
handler requires.

• newEventChain is the starting address of an event chain which you are passing to the next
handler, if any.

When your handler code is called, the event chain is passed in AO and the handler data is passed
in Al. (You may choose not to use Al.) When your code returns, it should return the pointer to
the event chain in DO. If all of the events were removed by the routine, return NULL. A NULL (0)
value terminates the handling thus freeing more CPU resources.

Memory that you use to describe a new input event that you have added to the event chain is available
for reuse or deallocation when the handler is called again or after the IND__REMHANDLER
command for the handler is complete. There is no guarantee that any field in the event is unchanged
since a handler may change any field of an event that comes through the food chain.

Do Not Confuse the Device. Altering a repeat key report will confuse the input device
when it tries to stop the repeating after the key is raised under pre-V36 Kicks tart.

Because IND_ADDHANDLER installs a handler in any position in the handler chain, it can, for
example, ignore specific types of input events as well as act upon and modify existing streams of
input. It can even create new input events for Intuition or other programs to interpret.

REMOVING AN INPUT HANDLER

You remove a handler from the handler chain by passing an IOStdReq to the device
IND__REMHANDLER set in io_Command and a pointer to the Interrupt structure used to add
the handler.

struct Interrupt *InputHandler;
struct IOStdReq *InputiO;

InputiO->io Data=(APTR)InputHandler;
InputiO->io-Command=IND REMHANDLER;
DolO ((struct- IORequest *) InputiO);

!* Which handler to REM */
!* The REM command */

/* Send the command */

Writing Events to the Input Device Stream

Typically, input events are internally generated by the timer device, keyboard device, and input
device.

An application can also generate an input event by setting the appropriate fields for the event in
an lnputEvent structure and sending it to the input device. It will then be treated as any other
event and passed through to the input handler chain. However, 1/0 requests for IND_ WRITE VENT
cannot be made from interrupt code.

You generate an input event by passing an IOStdReq to the device with IND_ WRITEEVENT set
in io_Command, a pointer to an InputEvent structure set in io___Data and the length of the structure
set in io_Length.

Input Device 109

struct InputEvent *FakeEvent;
struct IOStdReq *InputiO;

Inputro->io Data=(APTR)FakeEvent;
InputiO->io-Length=sizeof(struct InputEvent);
InputiO->io-Command=IND WRITEEVENT;
DoiO ((struct- IORequest *) InputiO);

You Know What Happens When You Assume. This command propagates the input
event through the handler chain. The handlers may link other events onto the end of this
event or modify the contents of the data structure you constructed in any way they wish.
Therefore, do not assume any of the data will be the same from event to event.

SETTING THE POSITION OF THE MOUSE

One use of writing input events to the input device is to set the position of the mouse pointer.
The mouse pointer can be positioned by using the input classes IECLASS_p()INTERPOS and
IECLASS_NEWPOINTERPOS.

There are two ways to set the position of the mouse pointer using the pre-V36 Kickstart input class
IECLASS_p()INTERPOS:

• At an absolute position on the current screen.

• At a position relative to the current mouse pointer position on the current screen.

In both cases, you set the Class field of the lnputEvent structure to IECLASS_pOJNTERPOS,
ie_x with the new x-coordinate and ie_ Y with the new y-coordinate. Absolute positioning is
done by setting ie_Qualifier to NULL and relative positioning is done by setting ie_Qualifier to
RELATIVE_MOUSE.

Once the proper values are set, pass an IOStdReq to the input device with a pointer to the
InputEvent structure set in io-»ata and io_Command set to IND_ WRITEEVENT.

There are three ways to set the mouse pointer position using IECLASS_NEWPOINTERPOS:

• At an absolute x-y coordinate on a screen-you specify the exact location of the pointer and
which screen.

• At an relative x-y coordinate-you specify where it will go in relation to the current pointer
position and which screen.

• At a normalized position on a tablet device-you specify the maximum x-value andy-value of
the tablet and an x-y coordinate between them and the input device will normalize it to fit.

The basic steps required are the same for all three methods.

• Get a pointer to the screen where you want to position the pointer. This is not necessary for the
tablet device.

• Set up a structure to indicate the new position of the pointer.

11 0 Amiga ROM Kernel Reference Manual: Devices

For absolute and relative positioning, you set up an IEPointerPixel structure with iepp_position.X
set to the new x -coordinate, iepp_Position. Y set to the new y-coordinate and iepp_screen set to the
screen pointer. You set up an InputEvent structure with ie_.SubCiass set to IESUBCLASS_PIXEL,
a pointer to the IEPointerPixel structure set in ie_EventAddress, IECLASS_NEWPOINTERPOS
set in Class, and ie_Qualifier set to either IEQUALIFIEILRELATIVEMOUSE for relative posi­
tioning or NULL for absolute positioning.

For tablet positioning, you set up an IEPointerTablet structure with iepLRange.X set to the
maximum x-coordinate and iepLRange.Y set to the maximum y-coordinate, and iepLValue.X set
to the new x-coordinate and iepLValue.Y set to the new y-coordinate. You set up an InputEvent
structure with a pointer to the IEPointerTablet structure set in ie_EventAddress, ie_.SubCiass to
IESUBCLASS_ TABLET and Class set to IECLASS_NEWPOINTERPOS.

Finally, for all three methods, pass an IOStdReq to the device with a pointer to the lnputEvent
structure set in io_Data and io_Command set to IND_ WRITEEVENT.

The following example sets the mouse pointer at an absolute position on a public screen using
IECLASS_NEWPOINTERPOS. Notice that it uses V36 functions wherever possible.

!*
* Set Mouse.c
*
* This example sets the mouse at x=lOO and y=200

*
* Compile with SAS C 5.10: LC -bl -cfistq -v -y -L
*
* Requires Kickstart 36 or greater.

*
* Run from CLI only
*I

#include <exec/types. h>
#include <exec/memory. h>
#include <devices/input. h>
#include <devices/inputevent. h>
#include <intuition/screens. h>

#include <clib/exec protos. h>
#include <clib/intuTtion_protos. h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK(void) { return(O);) /*Disable SAS CTRL/C handling*/
int chkabort (void) { return (0);) !* really *I
#endif

struct IntuitionBase *IntuitionBase;

void main(void)
{
struct IOStdReq
struct MsgPort
struct InputEvent

*InputiO;
*InputMP;
*FakeEvent;

struct IEPointerPixel *NewPixel;
struct Screen *PubScreen;

if (InputMP = CreateMsgPort())
{

I*
!*
/*
/*
!*

I/O request block *I
Message port *I
InputEvent pointer *I
New mouse position pointer
Screen pointer *I

*I

if ((FakeEvent = AllocMem(sizeof(struct InputEvent),MEMF PUBLIC)) &&
(NewPixel = AllocMem(sizeof(struct IEPointerPixel),MEMF_PUBLIC))
{
if (InputiO = CreateiORequest(InputMP,sizeof(struct IOStdReq)))

{
if (!OpenDevice("input.device",NULL, (struct IORequest *)InputiO,NULL))

{
/* Open Intuition library */

if (IntuitionBase = (struct IntuitionBase *)
OpenLibrary("intuition.library",36L))

Input Device 111

else

else

else

else

else

{
/* Get pointer to screen and lock screen */
if (PubScreen = (struct Screen *)LockPubScreen(NULL))

{
/* Set up IEPointerPixel fields */
NewPixel->iepp Screen= (struct Screen *)PubScreen;
NewPixel->iepp-Position.X = 100; /* put pointer at
NewPixel->iepp=Position.Y = 200; /*put pointer at

/* Set up InputEvent fields */

/* WB screen */
X = 100 */
y = 200 */

FakeEvent->ie EventAddress = (APTR)NewPixel; /* IEPointerPixel */
FakeEvent->ie-NextEvent = NULL;

else

FakeEvent->ie-Class = IECLASS NEWPOINTERPOS; /* new mouse pos */
FakeEvent->ie-SubClass = IESUBCLASS PIXEL; /* on pixel */
FakeEvent->ie-Code = IECODE NOBUTTON;
FakeEvent->ie=Qualifier = NULL; /* absolute positioning */

InputiO->io Data = (APTR)FakeEvent; /* InputEvent */
InputiO->io-Length = sizeof(struct InputEvent);
InputiO->io-Command = IND WRITEEVENT;
DoiO ((struct- IORequest *) InputiO);

/* Unlock screen */
UnlockPubScreen(NULL,PubScreen);
}

printf("Could not get pointer to screen\n");

/* Close intuition library */
CloseLibrary(IntuitionBase);
}

printf("Error: Could not open V36 or higher intuition.library\n");

CloseDevice((struct IORequest *)InputiO);
}

printf("Error: Could not open input.device\n");

DeleteiORequest(InputiO);
}

printf("Error: Could not create I/0 request\n");

FreeMem(FakeEvent,sizeof(struct InputEvent));
FreeMem(NewPixel,sizeof(struct IEPointerPixel));
}

printf("Error: Could not allocate memory for structures\n");

DeleteMsgPort(InputMP);
)

printf("Error: Could not create message port\n");

Setting the Key Repeat Threshold

The key repeat threshold is the number of seconds and microseconds a user must hold down a key
before it begins to repeat. This delay is normally set by the Preferences tool or by Intuition when
it notices that the Preferences have been changed, but you can also do it directly through the input
device.

You set the key repeat threshold by passing a timerequest with IND_SETTHRESH set in
io_Command and the number of seconds to delay set in tv_secs and the number of microsec­
onds to delay set in tv_micro.

112 Amiga ROM Kernel Reference Manual: Devices

#include <devices/timer. h>

struct timerequest *InputTime; /* Initialize with CreateExtiO() before using*/

InputTime->tr time.tv secs=l; /* 1 second */
InputTime->tr-time.tv-micro=SOOOOO; /* 500000 microseconds */
InputTime->tr-node.io-Command=IND SETTHRESH;
DoiO((struct IORequest-*)InputTime);

The code above will set the key repeat threshold to 1.5 seconds.

Setting the Key Repeat Interval

The key repeat interval is the time period, in seconds and microseconds, between key repeat events
once the initial key repeat threshold has elapsed. (See "Setting the Key Repeat Threshold" above.)
Like the key repeat threshold, this is normally issued by Intuition and preset by the Preferences tool.

You set the key repeat interval by passing a timerequest with IND_SETPERIOD set in
io_Command and the number of seconds set in tv_secs and the number of microseconds set
in tv_micro.

struct timerequest *InputTime; /* Initialize with CreateExtiO() before using*/

InputTime->tr time.tv secs=O;
InputTime->tr-time.tv-micro=12000; /* .012 seconds */
InputTime->tr-node.io-Command=IND SETPERIOD;
DoiO ((struct IORequest-*) Input Time);

The code above sets the key repeat interval to .012 seconds.

The Right Tool For The Right Job. As previously stated, you must use a timerequest
structure with IND_SETTHRESH and IND_SETPERIOD.

Determining the Current Qualifiers

Some applications need to know whether the user is holding down a qualifier key or a mouse
button during an operation. To determine the current qualifiers, you call the input device function
PeekQualifier().

PeekQualifier() returns what the input device considers to be the current qualifiers at the time
PeekQualifier() is called (e.g., keyboard qualifiers and mouse buttons). This does not include any
qualifiers which have been added, removed or otherwise modified by input handlers.

In order to call the function, you must set a pointer to the input device base address. The pointer
must be declared in the global data area of your program. Once you set the pointer, you can call the
function. You must open the device in order to access the device base address.

PeekQualifier() returns an unsigned word with bits set according to the qualifiers in effect at the
time the function is called. It takes no parameters.

Input Device 113

struct Library *InputBase; /* Input device base address pointer */

VOID main(VOID)
{
struct IOStdReq *InputiO;
UWORD Quals;

I* I/O request block *I
I* qualifiers *I

if (!OpenDevice("input.device",NULL, (struct IORequest *)InputiO,NULL))
{
I* Set input device base address in InputBase */
InputBase = (struct Library *)InputiO->io_Device;

I* Call the function */
Quals = PeekQualifier();

CloseDevice(InputiO);
}

The qualifiers returned are listed in the table below.

Bit

0
1
2
3
4
5
6
7
12
13
14

Qualifier
IEQUALIFIEILLSHIFT
IEQUALIFIER._RSHIFT
IEQUALIFIEILCAPSLOCK
IEQUALIFIEILCONTROL
IEQUALIFIEILLALT
IEQUALIFIER._RALT
IEQUALIFIEILLCOMMAND
IEQUALIFIER._RCOMMAND
IEQUALIFIEILMIDBUTTON
IEQUALIFIER._RBUTTON
IEQUALIFIEILLEFfBUTTON

Input Device and Intuition

Key or Button
Left Shift
Right Shift
Caps Lock
Control
Left Alt
Right Alt
Left-Amiga
Right-Amiga
Middle Mouse
Right Mouse
Left Mouse

There are several ways to receive information from the various devices that are part of the input
device. The first way is to communicate directly with the device. This method is not recommended
while the input device task is running - which is most of the time. The second way is to become a
handler for the stream of events which the input device produces. That method is shown above.

The third method of getting input from the input device is to retrieve the data from the console
device or from the IDCMP (Intuition Direct Communications Message Port). These are the preferred
methods for applications in a multitasking environment because each application can receive juts its
own input (i.e., only the input which occurs when one of its window is active). See the "Intuition"
chapter of Amiga ROM Kernel Reference Manual: Libraries for more information on IDCMP
messages. See the "Console Device" chapter of this manual for more information on console device
1/0.

114 Amiga ROM Kernel Reference Manual: Devices

Example Input Device Program

I*
* Swap_Buttons.c
*
* This example swaps the function of the left and right mouse buttons
* The C code is just the wrapper that installs and removes the
* input.device handler that does the work.
*
* The handler is written in assembly code since it is important that
* handlers be as fast as possible while processing the input events.
*
* Compile and link as follows:
*
* SAS C 5.10:
* LC -bl -cfirst -v -w Swap_Buttons.c
*
* Adapt assemble:
* HX68 InputHandler.a to InputHandler.o
*
* BLink:
* BLink from LIB:c.o+Swap_Buttons.o+InputHandler.o LIB LIB:lc.lib LIB:amiga.lib TO Swap_Buttons

*
*I

Unclude <exec/types. h>
if include <exec/memory. h>
Unclude <exec/interrupts. h>
if include <devices/input. h>
Unclude <intuition/intuition.h>

Unclude <clib/exec protos.h>
Unclude <clib/ a lib-prates. h>
Unclude <clib/intuition_protos. h>

Unclude <stdio.h>

Ufdef LATTICE
int CXBRK (void) { return (0);)
int chkabort(void) { return(O);
ifendif

UBYTE NameString[]="Swap Buttons";

/* Disable SAS CTRL/C handling */
I* really */

struct NewWindow mywin={50,40,124,18,0,1,CLOSEWINDOW,
WINDOWDRAGIWINDOWCLOSEISIMPLE REFRESHINOCAREREFRESH,
NULL,NULL,NameString,NULL,NULL,O,O,O,O,WBENCHSCREEN);

extern VOID ButtonSwap();

extern struct IntuitionBase *IntuitionBase;

/*
* This routine opens a window and waits for the one event that
* can happen (CLOSEWINDOW) This is just to let the user play with
*the swapped buttons and then close the program .•.
*I

VOID WaitForUser(VOID)
{
struct Window *win;

if (IntuitionBase=(struct IntuitionBase *)

{
if (win=OpenWindow(&mywin))

{

Open Library ("intuition .library", 33L))

WaitPort (win->UserPort);
ReplyMsg(GetMsg(win->UserPort));

CloseWindow(win);
)

CloseLibrary((struct Library *)IntuitionBase);
)

Input Device 115

VOID main(VOID)
{
struct IOStdReq *inputReqBlk;
struct MsgPort *inputPort;
struct Interrupt *inputHand1ec;

if (inputPort=CreatePort(NULL,NULL))
{

else

if (inputHandler=AllocMem(sizeof(struct Interrupt),
MEMF_PUBLICIMEMF CLEAR))

{

else

if (inputReqBlk=(struct IOStdReq *)CreateExtiO(inputPort,
sizeof(struct IOStdReq)))

else

(
if (!OpenDevice("input.device",NULL,

else

(struct IORequest *)inputReqBlk,NULL))
(
inputHandler->is Code=ButtonSwap;
input Handler- >is -Data=NULL;
inputHandler->is-Node.ln Pri=lOO;
inputHandler->is-Node.ln-Name=NameString;
inputReqBlk->io Data=(APTR)inputHandler;
inputReqBlk->io Command=IND ADDHANDLER;
DolO ((struct I ORe quest *) i nputReqBl k) ;

WaitForUser();

inputReqBlk->lo Data=(APTR)inputHandler;
inputReqBlk->io Command=IND REMHANDLER;
DoiO((struct IORequest *)inputReqBlk);

CloseDevice((struct IORequest *)inputReqBlk);
}

printf("Error: Could not open input.device\n");

DeleteExtiO((struct IORequest *)inputReqBlk);
}

printf("Error: Could not create I/O request\n");

FreeMem(inputHandler,sizeof(struct Interrupt));
}

printf("Error: Could not allocate interrupt struct memory\n");

DeletePort(inputPort);
}

printf("Error: Could not create message port\n");

*******************************x**

*
*

InputHandler.a

* InputHandler that does a Left/Right mouse button swap ...
*
*See Swap_Buttons.c for details on how to compile/assemble/link ...
*
**
*
*Required includes ...
*

*

INCDIR "include:"
INCLUDE "exec/types.i"
INCLUDE "exec/io.i"
INCLUDE "devices/inputevent.i"

**
*
*Make the entry point external ...
*

xdef ButtonSwap
*
**
*

116 Amiga ROM Kernel Reference Manual: Devices

* This is the input handler that will swap the
* mouse buttons for left handed use.
*
* The event list gets passed to you in aD.
* The is Data field is passed to you in al.
*This eiample does not use the is_Data field ...
*
* On exit you must return the event list in dO. In this way
* you could add or remove items from the event list.
*
*The handler gets called here ...
*
*
ButtonSwap:

*
move.l aO,-(sp) ; Save the event list

* Since the event list could be a linked list, we start a loop
* here to handle all of the events passed to us.
*
CheckLoop: move.w ie Qualifier(aO),dl

move.w dl-;do
Get qualifiers ...
Two places ...

*
* Since we are changing left and right mouse buttons, we need to make
* sure that we change the qualifiers on all of the messages. The
* left and right mouse buttons are tracked in the message qualifiers
* for use in such things as dragging. To make sure that we continue
* to drag correctly, we change the qualifiers.
*
CheckRight: btst #IEQUALIFIERB_RBUTTON,dl Check for

beq. s NoRight
right

bset #IEQUALIFIERB LEFTBUTTON,dO Set the left ...
beq.s CheckLeft

NoRight: bclr #IEQUALIFIERB LEFTBUTTON,dO Clear the left. ..
*
CheckLeft: btst #IEQUALIFIERB_LEFTBUTTON,dl Check for left

beq.s NoLeft
bset #IEQUALIFIERB_RBUTTON,dO Set the right ...
beq.s SaveQual

No Left: bclr #IEQUALIFIERB RBUTTON,dO Clear the right ...
*
SaveQual: move~w dO,ie Qualifier(aO) Save back ...

-
*
* The actual button up/down events are transmitted as the
* code field in RAWMOUSE events. The code field must the be
* checked and modified when needed on RAWMOUSE events. If the
* event is not a RAWMOUSE, we are done with it.

*

*

cmp.b
bne.s

#IECLASS RAWMOUSE,ie Class(aO)
Next Event

ie Code(aO),dO
do-;dl

Check for mouse
If not, next ...

Get code ...
Save ...

move.w
move.w
and.w
cmp.w
beq.s
cmp.w
bne.s

#$7F,d0
#IECODE LBUTTON,dO
swapThem
#IECODE RBUTTON,dO
Next Event

Mask UP PREFIX
Check for Left ...
If so, swap ...
Check for Right ...
If not, next ...

*
SwapThem:

*

eor.w #l,dl
move.w dl,ie Code(aO)

Flip bottom bit
Save it ...

* The event list is linked via a pointer to the next event
* in the first element of the structure. That is why it is not
* nessesary to use: move.l ie NextEvent(aO),dO

*
* The reason I move to dO first is that this also checks for zero.
* The last event in the list will have a NULL ie NextEvent field.
* This is NOT as standard EXEC list where the node after the last
* node is NULL. Input events are single-linked for performance.
*
NextEvent: move.l

move.l
bne.s

*
* All done, just return
*

move.l
rts

(aO), dO
dO, aO
CheckLoop

the event

(sp)+,dO

list ... (in dO)

Get next event
into aO ...
Do some more.

Get event list back .. .
return from handler .. .

Input Device 117

Additional Information on the Input Device

Additional programming information on the input device can be found in the include files and the
autodocs for the input device. Both are contained in the Amiga ROM Kernel Reference Manual:
Includes and Autodocs.

Input Device Information

INCLUDES

AUTO DOCS

devices/input.h
devices/input.i
devices/inputevent.h
devices/inputevent.i

input. doc

118 Amiga ROM Kernel Reference Manual: Devices

chapter seven
KEYBOARD DEVICE

The keyboard device gives low-level access to the Amiga keyboard. When you send this device the
command to read one or more keystrokes from the keyboard, for each keystroke (whether key-up
or key-down) the keyboard device creates a data structure called an input event to describe what
happened. The keyboard device also provides the ability to do operations within the system reset
processing (Qrl-Amiga-Amiga).

Keyboard Device 119

Keyboard Device Commands and Functions

Command Operation

CMD_CLEAR Ocar the keyboard input buffer. Removes any key transitions
from the input buffer.

KBD_ADDRESETHANDLER Add a reset handler function to the list of functions called by
the keyboard device to clean up before a hard reset.

KBD_REMRESETHANDLER Remove a previously added reset handler from the list of
functions called by the keyboard device to clean up before a
hard reset.

KBD_RESETHANDLERDONE Indicate that a handler has completed its job and reset could
possibly occur now.

KBD_READMATRIX Read the state of every key in the keyboard. Tells the up/down
state of every key.

KBD_READEVENT Read one (or more) raw key event from the keyboard device.

Exec Functions as Used in This Chapter

AbortiO()
AllocMem()
CheckiO()
CloseDevice()
DolO()
FreeMem()
OpenDevice()
SendiO()
WaitiO()

Abort a command to the keyboard device.
Allocate a block of memory.
Return the status of an 1/0 request.
Relinquish usc of the keyboard device.
Initiate a command and wait for it to complete (synchronous request).
Free a block of previously allocated memory.
Obtain use of the keyboard device.
Initiate a command and return immediately (asynchronous request).
Wait for the completion of an asynchronous request. When the request is
complete the message will be removed from reply port.

Exec Support Functions as Used in This Chapter

CreateExtiO()

CreatePort()

DeleteExtiO()
DeletePort()

Create an extended I/0 request structure. This structure will be used to
communicate commands to the keyboard device.
Create a signal message port for reply messages from the keyboard device.
Exec will signal a task when a message arrives at the port.
Delete an extended 1/0 request structure created by CreateExtiO().
Delete the message port created by CreatePort().

120 Amiga ROM Kernel Reference Manual: Devices

Device Interface

The keyboard device operates like the other Amiga devices. To use it, you must first open the
keyboard device, then send 1/0 requests to it, and then close it when finished. See the "Introduction
to Amiga System Devices" chapter for general information on device usage.

The 1/0 request used by the keyboard device is called IOStdReq.

struct IOStdReq
{

Message io Message;
Device *io Device;
Unit *io-Unit;
io Comrnand;-
io -Flags;

/* device node pointer */
/*unit (driver private)*/
/* device command */

/* error or warning num */

struct
struct
struct
UWORD
UBYTE
BYTE
ULONG
ULONG
APTR
ULONG

io -Error;
io-Actual;
io-Length;
io-Data;
io=Offset;

/* actual number of bytes transferred */
/* requested number bytes transferred*/
/* points to data area */
/* offset for block structured devices */

} ;

See the include file execlio.h for the complete structure definition.

OPENING THE KEYBOARD DEVICE

Three primary steps are required to open the keyboard device:

• Create a message port using the CreatePort() function.

• Create an extended 1/0 request structure using the CreateExtiO() function. CreateExtiO()
will initialize the 1/0 request with your reply port.

• Open the keyboard device. Call OpenDevice(), passing the 1/0 request.

struct MsgPort *KeyMP;
struct IOStdReq *KeyiO;

if (KeyMP=CreatePort(NULL,NULL))

/* Pointer for Message Port */
/* Pointer for I/O request */

if (KeyiO=(struct IOStdReq *)
CreateExtiO(KeyMP,sizeof(struct IOStdReq)))

if (OpenDevice("keyboard.device",NULL, (struct IORequest *)KeyiO,NULL))
printf("keyboard.device did not open\n");

CLOSING THE KEYBOARD DEVICE

An OpenDevice() must eventually be matched by a call to CloseDevice().

All I/O requests must be complete before CloseDevice(). If any requests are still pending, abort
them with AbortiO() and remove them with WaitiO().

if (! (CheckiO(KeyiO)))
{
AbortiO(KeyiO); /*Ask device to abort request, if pending*/
}
WaitiO(KeyiO); /*Wait for abort, then clean up*/

CloseDevice(KeyiO);

Keyboard Device 121

Reading the Keyboard Matrix

The K.BD_READMATRIX command returns the current state of every key in the key matrix (up
= 0, down = 1). You provide a data area that is at least large enough to hold one bit per key,
approximately 16 bytes. The keyboard layout for the A500, A2000 and A3000 is shown in the
figure below, indicating the raw numeric value that each key transmits when it is pressed. This
value is the numeric position that the key occupies in the key matrix.

I :6 I ";~ 5C 50
•
3F 4A
•

T
4C

""' •
4F 40 4E

OF 3C

The following example will read the key matrix and display the up-down state of all of the elements
in the matrix in a table. Reading the column header and then the row number as a hex number gives
you the raw key code.

!*
* Read Keyboard_Matrix.c
*
* Compile with SAS C 5.10 lc -b1 -cfistq -v -y -L
*
* Run from CLI only
*I

#include <exec/types.h>
#include <exec/memory. h>
#include <exec/1 ibraries. h>
#include <dos/dos. h>
#include <devices/keyboard. h>

#include <clib/exec protos.h>
#include <clib/alib:::protos.h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK (void) { return (0); }
int chkabort (void) { return (0);
#endif

I*

/* Disable SAS CTRL/C handling */
I* really *I

* There are keycodes from OxOO to Ox7F, so the matrix needs to be
*of Ox80 bits in size, or Ox80/8 which is Ox10 or 16 bytes ...
*I

#define MATRIX SIZE 16L

I*
* This assembles the matrix for display that translates directly
* to the RAW key value of the key that is up or down
*I

VOID
(
SHORT
SHORT
SHORT

Display_Matrix(UBYTE *keyMatrix)

bitcount;
bytecount;

mask;

122 Amiga ROM Kernel Reference Manual: Devices

USHORT twobyte;

printf("\n 0 1 2 3 4 5 6 7");
printf("\n +-----------------");
for (bitcount=O;bitcount<16;bitcount++)

{
printf("\n%x l",bitcount);
mask=1 << bitcount;
for (bytecount=O;bytecount<16;bytecount+=2)

{
twobyte=keyMatrix [bytecount) I (keyMatrix [bytecount+ 1) < < B);
if (twobyte & mask)

printf (" *");
else

printf(" -");

)
printf("\n\n");
)

void main(int argc, char *argv[))
{
extern struct Library *SysBase;
struct IOStdReq *KeyiO;
struct MsgPort *KeyMP;
UBYTE *keyMatrix;

if (KeyMP=CreatePort(NULL,NULL))
{
if (KeyiO=(struct IOStdReq *)CreateExtiO(KeyMP,sizeof(struct IOStdReq)))

{

else

else

if (!OpenDevice("keyboard.device",NULL, (struct IORequest *)KeyiO,NULL))
{

else

if (keyMatrix=AllocMem(MATRIX SIZE,MEMF PUBLICIMEMF CLEAR))

else

{ - - -

Keyio->io Command=KBD READMATRIX;
KeyiO- >io -Data= (APTR) keyMatrix;
KeyiO->io-Length= SysBase->lib Version >= 36 ? MATRIX SIZE 13;
DoiO((struct IORequest *)KeyiO);

/*Check for CLI startup ... */
if (argc)

Display_Matrix(keyMatrix);

FreeMem(keyMatrix,MATRIX SIZE);
) -

printf("Error: Could not allocate keymatrix memory\");

CloseDevice((struct IORequest *)KeyiO);
)

printf("Error: Could not open keyboard.device\n");

DeleteExtiO((struct IORequest *)KeyiO);
)

printf("Error: Could not create I/O request\n");

DeletePort(KeyMP);
)

printf("Error: Could not create message port\n");

In addition to the matrix data returned in io_Data, io_Actual returns the number of bytes filled in
io_Data with key matrix data, i.e., the minimum of the supplied length and the internal key matrix
size.

Value of io_Length. A value of 13 in the io_Length field will be sufficient for most
keyboards; extended keyboards will require a larger number. However, you must always
set this field to 13 for V34 and earlier versions of Kickstart.

Keyboard Device 123

To find the status of a particular key-for example, to find out if the F2 key is down-you find the
bit that specifies the current state by dividing the key matrix value by 8. Since hex 51 = 81, this
indicates that the bit is in byte number 10 of the matrix. Then take the same number (decimal 81)
and use modulo 8 to determine which bit position within that byte represents the state of the key.
This yields a value of 1. So, by reading bit position 1 of byte number 10, you determine the status
of the function key F2.

Amiga Reset Handling

When a user presses the Ctrl key and both left- and right-Amiga keys simulataneously (the reset
sequence), the keyboard device senses this and calls a prioritized chain of reset-handlers. These
might be thought of as clean-up routines that "must" be performed before reset is allowed to occur.
For example, if a disk write is in progress, the system should finish that before resetting the hardware
so as not to corrupt the contents of the disk.

It is important to note that not all Ami gas handle reset processing in the same way. On the A500, the
reset key sequence sends a hardware reset signal and never goes through the reset handlers. Also
some of the early A2000s (i.e., German keyboards with the function keys the same size as the Esc
key) do not handle the reset via the reset handlers. It is thus recommended that your application not
rely on the reset handler abilities ofthe keyboard device.

ADDING A RESET HANDLER (KBD_ADDRESETHANDLER)

The KBD_ADDRESETHANDLER command adds a custom routine to the chain of reset-handlers.
Reset handlers are just like any other handler and are added to the handler list with an Interrupt
structure. The priority field in the list node of the Interrupt structure establishes the sequence in
which reset handlers arc processed by the system. Keyboard reset handlers are currently limited to
the priority values of a software interrupt, that is, values of -32, -16, 0, 16, and 32.

The io_Data field of the I/0 request is filled in with a pointer to the Interrupt structure and the
io_Command field is set to KBD_ADDRESETHANDLER. These are the only two fields you need
to initialize to add a reset handler. Any return value from the command is ignored. All keyboard
reset handlers are activated if time permits. Normally, a reset handler will just signal the requisite
task and return. The task then does whatever processing it needs to do and notifies the system that
it is done by using the KBD_RESETHANDLERDONE command described below.

Non-interference and speed are the keys to success. If you add your own handler
to the chain, you must ensure that your handler allows the rest of reset processing to occur.
Reset must continue to function. Also, if you don't execute your reset code fast enough,
the system will still reboot (about 10 seconds).

REMOVING A RESET HANDLER (KBD_REMRESETHANDLER)

This command is used to remove a keyboard reset handler from the system. You need to supply the
same Interrupt structure to this command that you used with the KBD_ADDRESETHANDLER
command.

124 Amiga ROM Kernel Reference Manual: Devices

ENDING A RESET TASK (KBD_RESETHANDLERDONE)

This command tells the system that your reset handling code has completed. If you are the last
outstanding reset handler, the system will reset after this call.

Can't Stop, Got No Brakes. After 10 seconds, the system will reboot, regardless of
outstanding reset handlers.

Here is an example program that installs a reset handler and either waits for the reboot or for the
user to close the window. If there was a reboot, the window will close and, if executed from the
shell, it will display a few messages. If the user closes the window, the handler is removed and the
program exits cleanly.

/*
* Key_Reset.c
*
*This is in two parts ...

*
* Compile this C code with SAS C 5.10:
* lc -bl -cfistq -v -y Key_Reset

*
* Assemble the ASM code with Adapt
* HX68 KeyHandler.a to KeyHandler.o
*
* Link with:
* Blink FROM LIB:c.o+Key_Reset.o+KeyHandler.o TO Key_Reset LIB LIB:lc.lib LIB:amiga.lib
*I

/*
*Keyboard device reset handler example ...
*I

#include <exec/types.h>
#include <exec/io.h>
!lincl ude <exec/ports. h>
#include <exec/memory.h>
#include <devices/keyboard. h>
#include <intuition/intuition. h>
#include <exec/interrupts. h>

#include <clib/exec protos.h>
#include <clib/alib-protos.h>
#include <clib/intuition protos. h>
#include <clib/dos_protos.h>

#include <stdio.h>

llifdef LATTICE
int CXBRK(void) { return(O); }
int chkabort(void) { return(O);
void main();
llendif

extern VOID ResetHandler();

/* Disable SAS CTRL/C handling */
/* really */

UBYTE NameString[]="Reset Handler Test";

struct NewWindow mywin={0,0,178,10,0,l,CLOSEWINDOW,
WINDOWDRAGIWINDOWCLOSEISIMPLE REFRESHINOCAREREFRESH,
NULL,NULL,NameString,NULL,NULL,O,O,O,O,WBENCHSCREEN};

extern struct IntuitionBase *IntuitionBase;

struct MyData
{

I*

struct Task *MyTask;
ULONG MySignal;

} ;

* This routine opens a window and waits for the one event that
* can happen (CLOSEWINDOW)

Keyboard Device 125

*I
short WaitForUser(ULONG MySignal)
{
struct Window *win;

short ret=O;

if (IntuitionBase=(struct IntuitionBase *)OpenLibrary("intuition.library",OL))
{

else

if (win=(struct Window *)OpenWindow(&mywin))
{

else

ret= (MySignal==Wait (MySignal I (lL << win->UserPort->mp_SigBit)));
CloseWindow(win);
}

printf("Error: Could not open window\n");
CloseLibrary((struct Library *)IntuitionBase);
}

printf("Error: Could not open intution.library\n");
return(ret);
}

VOID main(int argc, char *argv[])
{
struct IOStdReq
struct MsgPort
struct Interrupt
struct MyData

ULONG

*KeyiO;
*KeyMP;
*keyHandler;
MyDataStuff;
MySignal;

if ((MySignal=AllocSignal(-lL)) !=-1)
{
MyDataStuff.MyTask=FindTask(NULL);
MyDataStuff. MySignal=lL < < MySignal;

if (KeyMP=CreatePort(NULL,NULL))
{
if (keyHandler=AllocMem(sizeof(struct Interrupt),MEMF_PUBLICIMEMF_CLEAR))

{
if (KeyiO=(struct IOStdReq *)CreateExtiO(KeyMP,sizeof(struct IOStdReq)))

{
if (! OpenDevice ("keyboard.device", NULL, (struct IORequest *) KeyiO, NULL))

{
keyHandler->is Code=ResetHandler;
keyHandler->is=Data=(APTR)&MyDataStuff;

I*
* Note that only software interrupt priorities
* can be used for the .ln Pri on the reset
*handler... -
*I

keyHandler->is_Node.ln_Pri=16;

keyHandler->is Node.ln Name=NameString;
KeyiO->io Data~(APTR)keyHandler;
KeyiO->io-Command=KBD ADDRESETHANDLER;
DoiO((struct IORequest-*)KeyiO);

if (WaitForUser(MyDataStuff.MySignal))
{
if (argc) I* Check for CLI *I

{
printf("System going down\n");
printf("Cleaning up ... \n");
I* Show a delay, like cleanup ... *I
Delay(20);
printf("*Poof*\n");
}

I* We are done with our cleanup *I

KeyiO->io Data= (APTR) keyHandler;
KeyiO->io-Command=KBD RESETHANDLERDONE;
DoiO((struct IORequest-*)KeyiO);
/*

* Note that since the above call
* tells the system it is safe to reboot
* and will cause the reboot if this

126 Amiga ROM Kernel Reference Manual: Devices

else

else

else

)

* task was the last to say
*never really returns ...
*just reboots ...
*I

so, the call
The system

KeyiO->io Data=(APTR)keyHandler;
KeyiO->io-Command=KBD REMRESETHANDLER;
DoiO((struct IORequest-*)KeyiO);

CloseDevice((struct IORequest *)KeyiO);
)

printf("Error: Could not open keyboard.device\n");

DeleteExtiO((struct IORequest *)KeyiO);
I

printf("Error: Could not create I/0 request\n");

FreeMem(keyHandler,sizeof(struct Interrupt));
)

printf ("Error: Could not allocate memory for interrupt \n");

else

else

DeletePort(KeyMP);
)

printf("Error: Could not create message port\n");

FreeSignal(MySignal);
)

printf("Error: Could not allocate signal\n");

**
*
*

KeyHandler.a

*Keyboard reset handler that signals the task in the structure ...
*
*See Key_Reset.c for details on how to compile/assemble/link ...

*
**
*Required includes ...
*

*

*

INCDIR
INCLUDE
INCLUDE
INCLUDE

xref
xref

"include: ..
"exec/types.i"
"exec/io.i"
"devices/keyboard.i"

AbsExecBase
-LVOSignal

We get this from outside .. .
We get this from outside .. .

**
*Make the entry point external ...
*

xdef Reset Handler

* **
*
* This is the input handler
* The is Data field is passed to you in al.
*
*This is the structure that is passed in Al in this example ...

*

*

STRUCTURE
APTR
ULONG

MyData,O
MyTask
My Signal

**
*The handler gets called here ...

*
ResetHandler:

*

move.l
move.l

*Now signal the task ...

MySignal(al),dO
MyTask(al),al

Get signal to send
; Get task

Keyboard Device 127

*

*

move.l
move.l
jsr
move.l

a6,-(sp)
AbsExecBase,a6

-LVOSignal (a6)
(sp)+,a6

Save the stack ...
Get ExecBase
Send the signal
Restore A6

* Return to let other handlers execute.
*

rts ; return from handler ...
*

END
**

Reading Keyboard Events

Reading keyboard events is nonnally not done through direct access to the keyboard device. (Higher
level devices such as the input device and console device are available for this. See the chapter "Input
Device," for more infonnation on the intimate linkage between the input device and the keyboard
device.) This section is provided primarily to show you the component parts of a keyboard input
event.

The keyboard matrix figure shown at the beginning of this chapter gives the code value that each
key places into the ie_Code field of the input event for a key-down event. For a key-up event, a
value of hexadecimal 80 is or'ed with the value shown above. Additionally, if either shift key is
down, or if the key is one of those in the numeric keypad, the qualifier field of the keyboard input
event will be filled in accordingly. In V34 and earlier versions of Kickstart, the keyboard device
does not set the numeric qualifier for the keypad keys '(', ')', '/', '*' and '+ '.

When you ask to read events from the keyboard, the call will not be satisfied until at least one
keyboard event is available to be returned. The io--.Length field must contain the number of bytes
available in io__Data to insert events into. Thus, you should use a multiple of the number of bytes
in an InputEvent (see example below).

Type-Ahead Processing. The keyboard device can queue up several keystrokes without
a task requesting a report of keyboard events. However, when the keyboard event buffer
has been filled with no task interaction, additional keystrokes will be discarded.

EXAMPLE READ KEYBOARD EVENT PROGRAM

Shown below is an example keyboard.device read-event program:

I*
* Keyboard_Events.c
*
* This example does not work very well in a system where
* input.device is active since input.device also actively calls for
* keyboard events via this call. For that reason, you will not get all of
* the keyboard events. Neither will the input device; no one will be happy.
*
* Compile with SAS 5.10 lc -bl -cfistq -v -y -L
* * Run from CLI only
*I

II include <exec/types. h>
#include <exec/io.h>
II include <exec/ports. h>
#include <exec/memory.h>
II include <devices/inputevent. h>

128 Amiga ROM Kernel Reference Manual: Devices

#include <devices/keyboard.h>

#include <clib/exec protos.h>
#include <clib/alib::::protos.h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK (void) { return (0);)
int chkabort (void) { return (0);
#endif

I* Disable SAS CTRLIC handling *I
I* really *I

VOID Display Event(struct InputEvent *keyEvent)
{ -
printf("Got key event: KeyCode: %2x Quailifiers: %4x\n",

keyEvent->ie Code,
keyEvent->ie::::Qualifier);

VOID main(int argc, char *argv[])
{
struct IOStdReq
struct MsgPort
struct InputEvent

SHORT

*keyRequest;
*keyPort;
*keyEvent;
loop;

if (keyPort=CreatePort(NULL,NULL))
{
if (keyRequest=(struct IOStdReq *)CreateExtiO(keyPort,sizeof(struct IOStdReq)))

{

else

else

if (!OpenDevice("keyboard.device",NULL, (struct IORequest *)keyRequest,NULL))
{

else

if (keyEvent=AllocMem(sizeof(struct InputEvent) ,MEMF_PUBLIC))
{

else

for (loop=O; loop<4; loop++)
{
keyRequest->io Command=KBD READEVENT;
keyRequest->io::::Data=(APTR)keyEvent;

I*
* We want 1 event, so we just set the
* length field to the size, in bytes
* of the event. For multiple events,
* set this to a multiple of that size.
* The keyboard device NEVER fills partial
* events ...
*I

keyRequest->io Length=sizeof(struct InputEvent);
DoiO((struct IORequest *)keyRequest);

/*Check for CLI startup ... */
if (argc)

Display_Event(keyEvent);

FreeMem(keyEvent,sizeof(struct InputEvent));
}

printf("Error: Could not allocate memory for InputEvent\n");

CloseDevice((struct IORequest *)keyRequest);
)

printf("Error: Could not open keyboard.device\n");

DeleteExtiO((struct IORequest *)keyRequest);
}

printf("Error: Could not create I/0 request\n");

DeletePort(keyPort);
)

printf("Error: Could not create message port\n");

Keyboard Device 129

Additional Information on the Keyboard Device

Additional programming information on the keyboard device can be found in the include files for
the keyboard and input devices and the Autodocs for the keyboard device. All are contained in the
Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Keyboard Device Information

INCLUDES

AUTO DOCS

devices/keyboard.h
devices/keyboard.i
devices/inputevent.h
devices/inputevent.i

keyboard.doc

130 Amiga ROM Kernel Reference Manual: Devices

chapter eight
NARRATOR DEVICE

This chapter describes the narrator device which, together with the translator library, provides
all of the Amiga's text-to-speech functions. The narrator device is used to produce high-quality
human-like speech in real time.

New Narrator Features for Version 2.0

Feature Description Function

NDB_NEWIORB F1ag Use V37 features
NDB_ WORDSYNC F1ag Synchronize speech/mouth on words
NDB_SYLSYNC F1ag Synchronize speech/mouth on syllables
FOenthusiasm narrator __rb field FO excursion factor
FOperturb narrator __rb field Amount of FO perturbation
Fladj narrator __rb field Fl adjustment in ±5% steps
F2adj narrator __rb field F2 adjustment in ±5% steps
F3adj narrator __rb field F3 adjustment in ±5% steps
Aladj narrator __rb field Al adjustment in decibels
A2adj narrator __rb field A2 adjustment in decibels
A3adj narrator __rb field A3 adjustment in decibels
articulate narrator __rb field Transition time multiplier
centralize narrator __rb field Degree of vowel centralization
centphon narrator __rb field Pointer to central ASCII phon
AVbias narrator __rb field Amplitude of voicing bias
AFbias narrator __rb field Amplitude of frication bias
priority narrator __rb field Priority while speaking

Compatibility Warning: The new features for the 2.0 narrator device are not backwards
compatible.

Narrator Device 131

Narrator Device Commands and Functions

Command

CMD_FLUSH
CMD_READ

CMD_RESET

CMD_8TART
CMD_STOP

CMD_WRITE

Operation

Purge all active and queued requests for the narrator device.
Read mouth shapes associated with an active write from the narrator
device.
Reset the narrator port to its initialized state. All active and queued 1/0
requests will be aborted. Restarts the device if it has been stopped.
Restart the currently active speech (if any) and resume queued 1/0 requests.
Stop any currently active speech and prevent queued I/0 requests from
starting.
Write a stream of characters to the narrator device and generate mouth
movement data for reads.

Exec Functions as Used in This Chapter

AbortiO()

BeginiO()

CloseDevice()
CheckiO()
CloseLibrary()
DolO()

OpenDevice()
OpenLibrary()
SendiO()
WaitiO()

Abort a command to the narrator device. If the command is in progress,
it is stopped immediately. If it is queued, it is removed from the queue.
Initiate a command and return immediately (asynchronous request). This
is used to minimize the amount of system overhead.
Relinquish use of the narrator device. All requests must be complete.
Return the status of an 1/0 request.
Relinquish use of a previously opened library.
Initiate a command and wait for completion (synchronous request).
Should be used with care because it will not return control if the request
does not complete.
Obtain use of the narrator device.
Obtain use of a library.
Initiate a command and return immediately (asynchronous request).
Wait for the completion of an asynchronous request. When the request is
complete the message will be removed from reply port.

Exec Support Functions as Used In This Chapter

CreateExtiO()

CreatePort()

DeleteExtiO()
DeletePort()

Create an extended I/0 request structure of type narrator _rb. This
structure will be used to communicate commands to the narrator device.
Create a signal message port for reply messages from the narrator device.
Exec will signal a task when a message arrives at the port.
Delete an extended I/0 request structure created by CreateExtiO().
Delete the message port created by CreatePort().

132 Amiga ROM Kernel Reference Manual: Devices

Device Interface

The narrator device operates like all other Amiga devices. To use the narrator device, you must first
open it. This initializes certain global areas, opens the audio device, allocates audio channels, and
performs other housekeeping functions. Once open, the device is ready to receive 1/0 commands
(most typically CMD_ WRITE and CMD_READ). Finally, when finished, the user should close the
device. This will free some buffers and allow the entire device to be expunged should the system
require memory. See the "Introduction to Amiga System Devices" chapter for general information
on device usage.

The narrator device uses two extended 1/0 request structures: narrator_rb for write commands
(to produce speech output) and mouth_rb for read commands (to receive mouth shape changes
and word/syllable synchronization events). Both 1/0 request structures have been expanded (in a
backwards compatible fashion) for the V37 narrator device with several new fields defined.

struct narrator rb
{ -

} ;

struct
UWORD
UWORD
UWORD
UWORD
UBYTE
UWORD
UWORD
UWORD
UBYTE
UBYTE
UBYTE
UBYTE
UBYTE
UBYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
UBYTE
UBYTE
char
BYTE
BYTE
BYTE
BYTE

IOStdReq message;
rate;
pitch;
mode;
sex;
*ch masks;
nm ffiasks;
volume;
sampfreq;
mouths;
chanmask;
numchan;
flags;
FOenthusiasm;
FOperturb;
Fladj;
F2adj;
F3adj;
Al adj;
l\2adj;
1\Jadj;
articulate;
centralize;
*centphon;
AVbias;
AFbias;
priority;
padl;

struct mouth rb
{ -

} ;

struct
UBYTE
UBYTE
UBYTE
UBYTE

narrator rb voice;
width;
height;
shape;
sync;

/* Standard IORequest Block */
/* Speaking rate (words/minute) */
/* Baseline pitch in Hertz */
I* Pitch mode */
/* Sex of voice */
/* Pointer to audio allocation maps */
/* Number of audio allocation maps */
/* Volume. 0 (off) thru 64 *;
/* Audio sampling frequency */
/* If non-zero, generate mouths */
/*Which ch mask used (internal- do not modify)*/
/* Num ch masks used (internal- do not modify) */
I* New feature flags */
/* FO excursion factor */
/* Amount of FO perturbation */
/* Fl adjustment in +- 5% steps */
/* F2 adjustment in +- 5% steps */
/* F3 adjustment in +- 5% steps */
I* Al adjustment in decibels */
/* A2 adjustment in decibels */
/* A3 adjustment in decibels */
/* Transition time multiplier */
/* Degree of vowel centralization */
/* Pointer to central ASCII phon */
/* Amplitude of voicing bias */
/* Amplitude of frication bias */
/* Priority while speaking */
/* For alignment */

/* Speech IORequest Block */
I* Mouth width (returned value) *I
/*Mouth height (returned value)*/
/* Internal use, do not modify */
/* Returned sync events */

Details on the meaning of the various fields of the two 1/0 request blocks can be found in the
"Writing to the Narrator Device" and "Reading from the Narrator Device" sections later in this
chapter. See the include file devices!narrator.h for the complete structure definitions.

Narrator Device 133

THE AMIGA SPEECH SYSTEM

The speech system on the Amiga is divided into two subsystems:

• The translator library, consisting of a single function: Translate(), which converts an English
string into its phonetic representation, and

• The narrator device, which uses the phonetic representation (generated either manually or by
the translator library) as input to generate human-like speech and play it out via the audio
device.

The two subsystems can be used either together or individually. Generally, hand coding phonetic text
will produce better quality speech than using the translator library, but this requires the programmer
to "hard code" the phonetic text in the program or otherwise restrict the input to phonetic text only.
If the program must handle arbitrary English input, the translator library should be used.

Below is an example of how you would use the translator library to translate a string for the narrator
device.

#define BUFLEN 500

APTR EnglStr;
LONG EnglLen;
UBYTE PhonBuffer[BUFLEN];
LONG rtnCode;

struct narrator rb *VoiceiO;
struct mouth_rb-*MouthiO;

/* pointer to sample input string */
/* input length */
/* place to put the translation */
I* return code from function */

I* speaking I/O request block */
I* mouth movement I/O request block */

EnglStr "This is Amiga speaking."; /* a test string*/
EnglLen = strlen(EnglStr);
rtnCode = Translate (EnglStr, EnglLen, (APTR) &PhonBuffer [0], BUFLEN);

voice io->message.io Command= CMD WRITE;
voice-io->message.io-Offset = 0; -
voice-io->message.io-Data = PhonBuffer;
voice -io- >message. io -Length = strlen (PhonBuffer);
DoiO((struct IORequest *)VoiceiO)

This chapter discusses only the narrator device; refer to the "Translator Library" chapter of the
Amiga ROM Kernel Reference Manual: Libraries for more information on the translator library.

While the narrator device on the Amiga supports all of the major device commands (see the Narrator
Device Commands and Functions section), two of these commands do most of the work in the device.
They are:

• CMD_ WRITE-This command is used to send a phonetic string to the device to be spoken.
The narrator _rb 1/0 request block also contains several parameters which can be set to control
various aspects of the speech, such as pitch, speaking rate, male/female voice, and so on. Some
of the options arc rather arcane. See the "Writing to the Narrator Device" section for a complete
list of options and their descriptions.

• CMD_READ-The narrator device can be told to generate various synchronization events
which the user can query. These events are: mouth shape changes, word sync, and/or syllable
sync. The events can be generated singly or in any combination, as requested by the user.
Word and syllable synchronization events are new to system 2.0 and later (V37 and later of the
narrator device). See the "Reading from the Narrator Device" section for more details.

134 Amiga ROM Kernel Reference Manual: Devices

OPENING THE NARRATOR DEVICE

Three primary steps are required to open the narrator device:

• Create a message port using CreatePort(). Reply messages from the device must be directed
to a message port.

• Create an extended 1/0 request structure of type narrator _rb. The narrator _rb structure is
created by the CreateExtiO() function.

• Open the narrator device. Call OpenDevice() passing the 1/0 request.

struct MsgPort *VoiceMP;
struct narrator_rb *VoiceiO;

if (VoiceMP = CreatePort("speech write", OJ)
if (VoiceiO = (struct narrator rb *)

CreateExtiO(VoiceMP,sizeof(struct narrator rb));
if (OpenDevice("narrator.device", 0, VoiceiO, 0))

printf("narrator.device did not open\n");

When the narrator device is first opened, it initializes certain fields in the user's narrator _rb 1/0
request structure. In order to maintain backwards compatibility with older versions of the narrator
device, a mechanism was needed for the device to ascertain whether it was being opened with a
V37 or pre-V37 style 1/0 request structure. The pad field in the pre-V37 narrator _rb 1/0 request
structure (which no one should have ever touched!) has been replaced by the flags field in the
V37 narrator _rb structure, and is our path to upward compatibility. The device checks to see
if a bit is set in this flags field. This bit must be set before opening the device if V37 or later
features of the narrator device are to be used. There are two defined constants in the include file,
NDB_NEWIORB and NDF _NEWIORB. NDB_NEWIORB specifics the bit which must be set in
the flags field, NDF _NEWIORB is the field definition of the bit (1 < < NDB_NEWIORB).

Once the device is opened, the moutiLrb (read) 1/0 request structure can be set up. Each
CMD_READ request must be matched with an associated CMD_ WRITE request. This is nec­
essary for the device to match the various sync events with a particular utterance. The read 1/0
request structure is easily set up as follows:

• Create a read message port using the CreatePort() function.

• Allocate memory for the moutiLrb extended 1/0 request structure using AllocMem().

• Copy the narrator _rb 1/0 request structure used to open the device into the voice field of the
mouth_rb 1/0 request structure. This will set the fields necessary for the device to make the
correct correspondence between read and write requests.

• Copy the pointer to the read message port returned from CreatePort() into the
voice.message.io_Message.mn_Reply Port field of the moutiLrb structure.

Narrator Device 135

The following code fragment, in conjunction with the OpenDevice() code fragment above, shows
how to set up the moutiLrb structure:

struct MsgPort *MouthMP;
struct mouth_rb *MouthiO;

if (MouthMP = CreatePort("narrator read", 0))
if (! (MouthiO = (struct mouth rb *)

else

AllocMem(sizeof(struct mouth_rb),MEMF_PUBLICIMEMF_CLEAR)))
{
MouthiO->voice = *VoiceiO; /* Copy I/0 request used in OpenDevice */
MouthiO->voice.message.io Message.mn ReplyPort = MouthMP; /* Set port */
) - -

printf("AllocMem failed\n");
else

printf("CreatePort failed\n");

CLOSING THE NARRATOR DEVICE

Each OpenDevice() must be eventually matched by a call to CloseDevice(). This is necessary to
allow the system to expunge the device in low memory conditions. As long as any task has the
device open, or has forgotten to close it before terminating, the narrator device will not be expunged.

All I/O requests must have completed before the task can close the device. If any requests are still
pending, the user must abort them before closing the device.

if (! (CheckiO (VoiceiO)
{
AbortiO(VoiceiO); /*Abort queued or in progress request*/
)

WaitiO((struct IORequest *)VoiceiO); /*Wait for abort to do its job*/
CloseDevice(VoiceiO); /* Close the device*/

Writing to the Narrator Device

You write to the narrator device by passing a narrator_rb 1/0 request to the device with
CMD_ WRITE set in io_Command, the number of bytes to be written set in io__Length and
the address of the write buffer set in io_Data.

VoiceiO->message.io Command= CMD WRITE;
VoiceiO->message. io -Offset = 0; -
VoiceiO- >message. io-Data = PhonBuffer;
VoiceiO->message.io-Length = strlen(PhonBuffer);
DoiO((struct IORequest *)VoiceiO);

You can control several characteristics of the speech, as indicated in the narrator _rb struct
shown in the "Device Interface" section.

Generally, the narrator device attempts to speak in a non-regional dialect of American English. With
pre-V37 versions of the device, the user could change only a few of the more basic aspects of the
speaking voice such as pitch, male/female, speaking rate, etc. With the V37 and later versions of the
narrator device, the user can now change many more aspects of the speaking voice. In addition, in
the pre-V37 device, only mouth shape changes could be queried by the user. With the V37 device,
the user can also receive start of word and start of syllable synchronization events. These events
can be generated independently, giving the user much greater flexibility in synchronizing voice to
animation or other effects.

136 Amiga ROM Kernel Reference Manual: Devices

The following describes the fields of the narrator_rb structure:

message.io_Data
Points to a NULL-tenninated ASCII phonetic input string. For backwards compatibility issues,
the string may also be tenninated with a'#' symbol. See the "How to Write Phonetically for
Narrator" section of this chapter for details.

message.io_Length

rate

Length of the input string. The narrator device will parse the input string until either a NULL
or a '#' is encountered, or until io_Length characters have been processed.

The speaking rate in words/minute. Range is from 40 to 400 wpm.

pitch
The baseline pitch of the speaking voice. Range is 65 to 320 Hertz.

mode

sex

The FO (pitch) mode. ROBOTICFO produces a monotone pitch, NATURALFO produces a
nonnal pitch contour, and MANUALFO (new for V37 and later) gives the user more explicit
control over the pitch contour by creative use of accent numbers. In MANUALFO mode, a
given accent number will have the same effect on the pitch regardless of its position in the
sentence and its relation to other accented syllables. In NATURALFO mode, accent numbers
have a reduced effect towards the end of sentences (especially long ones). In addition, the
proximity of other accented syllables, the number of syllables in the word, and the number of
phrases and words in the sentence all affect the pitch contour. In MANUALFO mode these
things are ignored and it's up to the user to do the controlling. This has the advantage of being
able to have the pitch be more expressive. The FOenthusiasm field will scale the effect.

Controls the sex of the speaking voice (MALE or FEMALE). In actuality, only the fonnant
targets are changed. The user must still change the pitch and speaking rate of the voice to get
the correct sounding sex. See the include files for default pitch and rate settings.

ciLmasks
Pointer to a set of audio allocation maps. See the "Audio Device" chapter for details.

nm_masks
Number of audio allocation maps. See the "Audio Device" chapter for details.

volume
Sets the volume of the speaking voice. Range 0 - 64.

sampfreq
The synthesizer is "tuned" to a sampling frequency of 22,200 Hz. Changing sampfreq affects
pitch and fonnant tunings and can be used to create unusual vocal effects. For V37 and later,
it is recommended that Fl, F2, and F3adj be used instead to achieve this effect.

mouths
If set to a non-zero value will direct the narrator device to generate mouth shape changes and
send this data to the user in response to read requests. See the "Reading from the Narrator
Device" section for more details.

chan mask
Used internally by the narrator device. The user should not modify this field.

Narrator Device 137

numchan
Used internally by the narrator device. The user should not modify this field.

flags (V37)
Used to specify V37 features of the device. Possible bit settings are:
NDB_NEWIORB -1/0 request block uses V37 features.
NDB_ WORDSYNC - Device should generate start of word sync events.
NDB_SYLSYNC - Device should generate start of syllable sync events.
These bit definitions and their corresponding field definitions (NDF _NEWIORB,
NDF _ WORDSYNC, and NDF _SYLSYNC) can be found in the include files.

FOenthusiasm (V37)
The value of this field controls the scaling of pitch (FO) excursions used on accented syllables
and has the effect of making the narrator device sound more or less "enthusiastic" about what it
is saying. It is calibrated in l/32s with unity (32) being the default value. Higher values cause
more FO variation, lesser values cause less. This feature is most useful in manual FO mode.

FOperturb (V37)
Non-zero values in this field cause varying amounts of random low-frequency modulation of
the pitch (FO). In other words, the pitch shakes in much the same way as an elderly person's
voice does. Range is 0 to 255.

Fladj, F2adj, F3adj (V37)
Changes the tuning of the formant frequencies. A formant is a major vocal tract resonance,
and the frequencies of these formants move continuously as we speak. Traditionally, they
have been given the abbreviations of F1, F2, F3 ... with F1 being the one lowest in frequency.
Moving these formants away from their normal positions causes drastic changes in the sound
of the voice and is a very powerful tool in the creation of character voices. This adjustment
is in ±5% steps. Positive values raise the formant frequencies and vice versa. The default is
zero. Use these adjustments instead of changing sampfreq.

Aladj, A2adj, A3adj (V37)
In a parallel formant synthesizer, the amplitudes of the formants need to be specified along
with their frequencies. These fields bias the amplitudes computed by the narrator device. This
is useful for creating different tonal balances (bass or treble), and listening to formants in
isolation for educational purposes. The adjustments are calibrated directly in ±1db (decibel)
steps. Using negative values will cause no problems; use of positive numbers can cause
clipping. If you want to raise an amplitude, try cutting the others the same relative amount,
then bring them all up equally until clipping is heard, then back them off. This should produce
an optimum setting. This field has a +31 to -32 db range and the value -32db is equivalent to
-infinity, shutting that formant off completely.

articulate (V37)
According to the popular theories of speech production, we move our articulators (jaw, tongue,
lips, etc.) smoothly from one "target" position to the next. These articulatory targets correspond
to acoustic targets specified by the narrator device for each phoneme. The device calculates
the time it should take to get from one target to the next and this field allows you to intervene
in that process. Values larger than the default will cause the transitions to be proportionately
longer and vice versa. This field is calibrated in percent with 100 being the default. For
example, a value of 50 will cause the transitions to take half the normal time, with the result
being "sharper", more deliberate sounding speech (not necessarily more natural). A value of

138 Amiga ROM Kernel Reference Manual: Devices

200 will cause the transitions to be twice as long, slurring the speech. Zero is a special value in
the narrator device will take special measures to create no transitions at all and each phoneme
will simply be abutted to the next.

centralize (V37)
This field together with centphon can be used to create regional accent effects by modifying
vowel sounds. centralize specifies the degree (in percent) to which vowel targets are "pulled"
towards the targets of the vowel specified by centphon. The default value of 0% indicates that
each vowel in the utterance retains its own target values. The maximum value of 100% indicates
that each vowel's targets are replaced by the targets of the specified vowel. Intermediate values
control the degree of interpolation between the utterance vowel's targets and the targets of the
vowel specified by centphon.

centphon (V37)
Pointer to an ASCII string specifying the vowel whose targets are used in the interpolation
specified by centralize. The vowels which can be specified are: IY, IH, EH, AE, AA, AH, AO,
OW, UH, ER, UW. Specifying other than these will result in an error code being returned.

AVbias, AFbias (V37)
Controls the relative amplitudes of the voiced and unvoiced speech sounds. Voiced sounds
are those made with the vocal cords vibrating, such as vowels and some consonants like y, r,
w, and m. Unvoiced sounds are made without the vocal cords vibrating and use the sound of
turbulent air, such as s, t, sh, and f. Some sounds are combinations of both such as z and v.
AVbias and AFbias change the default amplitude of the voiced and unvoiced components of
the sounds respectively. (AV stands for Amplitude of Voicing and AF stands for Amplitude
of Frication). These fields are calibrated in ±ldb steps and have the same range as the other
amplitude biases, namely +31 to -32 db. Again, positive values may cause clipping. Negative
values are the most useful.

priority (V37)
Task priority while speaking. When the narrator device begins to synthesize a sentence, the
task priority remains unchanged while it is calculating acoustic parameters. However, when
speech begins at the end of this process, the priority is bumped to 100 (the default value). If
you wish, you may change this to anything you want. Higher values will tend to lock out most
anything while speech is going on, and lower values may cause audible breaks in the speech
output. The following example shows how to issue a write request to the narrator device. The
first write is done with the default parameter settings. The second write is done after modifying
the first and third formant loudness and using the centralization feature.

The following example shows how to issue a write request to the narrator device. The first write
is done with the default parameter settings. The second write is done after modifying the first and
third formant loudness and using the centralization feature.

/*
* Speak_Narrator.c

* * This example program sends a string of phonetic text to the narrator
* device twice, changing some of the characteristics the second time.

* * Compile with SAS C 5.10 lc -bl -cfistq -v -y -L

* * Requires Kickstart V37 or greater.
*I

#include <exec/types.h>

Narrator Device 139

#include <exec/exec.h>
#include <dos/dos.h>
#include <devices/narrator. h>

#include <clib/exec protos.h>
#include <clib/ a lib-protos. h>
#include <clib/dos_protos.h>

#include <string.h>
#include <stdio.h>

#ifdef LATTICE
int CXBRK(void) { return(O); }
int chkabort(void) { return(O);
#endif

/* Disable SAS CTRL/C handling */
/* really */

void main(void)
{
struct
struct
UBYTE
BYTE

MsgPort *VoiceMP;
narrator rb *VoiceiO;
*Phoneti~Text = "DHIHS IHZ AHMIYSGAH SPIYSKIHNX.";
audio chan[4] {3, 5, 10, 12};

/* Create the message port */
if (VoiceMP=CreateMsgPort())

else

{
/* Create the I/0 request */

if (VoiceiO = CreateiORequest(VoiceMP,sizeof(struct narrator rb)))
{

else

/* Set the NEWIORB bit in the flags field to use the new fields */
VoiceiO->flags = NDF NEWIORB;

/* Open the narrator device */
if (OpenDevice ("narrator.device", 0, (struct IORequest *)VoiceiO, OL))

else

/* Inform user that it could not be opened */
printf("Error: narrator.device did not open\n");

{
/* Speak the string using the default parameters */
VoiceiO->ch masks= &audio chan[O];
VoiceiO->nm-masks = sizeof(audio chan);
VoiceiO->message.io Command = CMD WRITE;
VoiceiO->message.io-Data = PhoneticText;
VoiceiO->message.io-Length = strlen(PhonetlcText);
DoiO(VoiceiO);

/* Now change some of the characteristics:
* Raise the first formant, lower the third formant,
* and move 50% of the way towards AO.
* and speak it again.
*I

VoiceiO->A1adj = -32;
VoiceiO->A3adj 11;
VoiceiO->centralize 50;
VoiceiO- >cent phon = "AO";
DolO (VoiceiO);

/* Shut off first formant */
I* Raise the third formant */

/* Move 50% of the way */
/* towards AO */

!* Close the narrator device */
CloseDevice((struct IORequest *)VoiceiO);
}

/* Delete the IORequest */
DeleteiORequest(VoiceiO);
}

/* Inform user that the I/0 request could be created */
printf("Error: Could not create I/0 request\n");

I* Delete the message port */
DeleteMsgPort(VoiceMP);
}

/* Inform user that the message port could not be created */
printf("Error: Could not create message port\n");

140 Amiga ROM Kernel Reference Manual: Devices

Reading from the Narrator Device

All read requests to the narrator device must be matched to an associated write request. This is
done by copying the narrator_rb structure used in the OpenDevice() call into the voice field of the
moutiLrb 1/0 request structure. You must do this after the call to OpenDevice(). Matching the
read and write requests allows the narrator device to coordinate 1/0 requests across multiple uses
of the device.

In pre-V37 versions of the narrator device, only mouth shape changes can be queried from the
device. This is done by setting the mouths field of the narrator_rb 1/0 request structure (the write
request) to a non-zero value. The write request is then sent asynchronously to the device and while
it is in progress, synchronous read requests are sent to the device using the moutlLrb 1/0 request
structure. When the mouth shape has changed, the device will return the read request to the user
with bit 0 set in the sync field of the moutiLrb. The fields width and height of the moutlLrb
structure will contain byte values which are proportional to the actual width and height of the mouth
for the phoneme currently being spoken. Read requests sent to the narrator device are not returned
to the user until one of two things happen: either the mouth shape has changed (this prevents the
user from having to constantly redraw the same mouth shape), or the speech has completed. The
user can check io_Error to determine if the mouth shape has changed (a return code of 0) or if the
speech has completed (return code ofNO_NoWrite).

In addition to returning mouth shapes, reads to the V37 narrator device can also perform two new
functions: word and syllable sync. To generate word and/or syllable sync events, the user must
specify several bits in the flags field of the write request (narrator _rb structure). The bits are
NOB_ WORDSYNC and NOB_SYLSYNC, for start of word and start of syllable synchronization
events, respectively, and, of course, NOB_NEWIORB, to indicate that the V37 1/0 request is
required.

NOB_ WOROSYNC and NOB_SYLSYNC tell the device to expect read requests and to generate the
appropriate event(s). As with mouth shape change events, the write request is sent asynchronously
to the device and, while it is in progress, synchronous read requests are sent to the device. The sync
field of the moutiLrb structure will contain flags indicating which events (mouth shape changes,
word sync, and/or syllable sync) have occurred.

The returned sync field flags are:
bit 0 (OxOl) =:::}mouth shape change event
bit 1 (Ox02) ==>start-of-word synchronization event
bit 2 (Ox04) ==>start-of-syllable synchronization event

and 1 or more flags may be set for any particular read.

As with mouth shape changes, read requests will not return until the requested event(s) have
occurred, and the user must test the io_Error field of the moutlLrb structure to tell when the
speech has completed (an error return ofNO_NoWrite).

Several read events can be compressed into a single event. This can occur in two ways: first when
two dissimilar events occur between two successive read requests. For example, a single read may
return both a mouth change and a syllable sync event. This should not present a problem if the
user checks for all events. The second is when multiple events of the same type occur between
successive read requests. This is of no great concern in dealing with mouth shape changes because,
presumably, mouth events are used to drive animation, and the animation procedure will simply
draw the current mouth shape.

Narrator Device 141

Watch Those Sync Events. When word or syllable sync is desired, the narrator device
may compress multiple sync events into a single sync event. Missing a word or syllable
sync may cause word highlighting (for example) to lose sync with the speech output. A
future version of the device will include an extension to the moutiLrb 1/0 request structure
which will contain word and syllable counts and, possibly, other synchronization methods.

The following code fragment shows the basics of how to perform reads from the narrator device.
For a more complete example, see the sample program at the end of this chapter. For this fragment,
take the code of the previous write example as a starting point. Then the following code would
need to be added:

struct mouth rb *MouthiO;
struct MsgPort *MouthMP;

I* Pointer to read IORequest block *I
I* Pointer to read message port *I

I*
* (l) Create a message port for the read request.
*I

if (! (MouthMP = CreatePort ("narrator read", 01)))
BellyUp ("Read CreatePort failed");

I*
*
*I

(2) Create an extended IORequest of type mouth_rb.

if (! (MouthiO = (struct mouth rb *)CreateExtiO(MouthMP, sizeof(struct mouth_rb))))
BellyUp("Read CreateExtiO-failed");

I*
* (3) Set up the read IORequest. Must be done after the call to OpenDevice().
* We assume that the write IORequest and the OpenDevice have been done
*I

MouthiO- >voice *SpeakiO;
MouthiO->voice.message.io Message.mn ReplyPort = ReadMsgPort;
MouthiO->voice.message.io=Command = CMD_READ;

I*
* (4) Set the flags field of the narrator rb write request to return the desired
* sync events. If mouth shape changes are required, then the mouths field
* of the IORequest should be set to a non-zero value.
*I

SpeakiO->mouths = 1;
SpeakiO->flags = NDF NEWIORB

NDF WORDSYNC
NDF=SYLSYNC;

I* Generate mouth shape changes *I
I* Indicates V37 style IORequest *I

I* Request start-of-word sync events *I
/* Request start-of-syllable sync events */

I*
*
*

(5) Issue asynchronous write request. The driver initiates the write request
and returns immediately.

*I

SendiO(SpeakiO);

I*
*
*
*
*
*
*I

(6) Issue synchronous read requests. For each request we check the sync field
to see which events have occurred. Since any combination of events can
be returned in a single read, we must check all possibilities. We
continue looping until the read request returns an error of ND NoWrite,
which indicates that the write request has completed. -

for (DoiO(MouthiO);MouthiO->voice.message.io Error!= ND_NoWrite;DoiO(MouthiO))
(-

I*
*
*I

if (MouthiO->sync & OxOl) DoMouthShape();
if (MouthiO->sync & Ox02) DoWordSync();
if (MouthiO->sync & Ox04) DoSyllableSync();
}

(7) Finally, we must perform a WaitiO() on the original write request.

WaitiO(SpeakiO);

142 Amiga ROM Kernel Reference Manual: Devices

How to Write Phonetically for Narrator

This section describes in detail the procedure used to specify phonetic strings to the narrator speech

synthesizer. No previous experience with phonetics is required. The only thing you may need is a

good pronunciation dictionary for those times when you doubt your own ears. You do not have to

learn a foreign language or computer language. You are just going to learn how to write down the

English that comes out of your own mouth. In writing phonetically you do not have to know how a

word is spelled, just how it is said.

Table of Phonemes

Vowels

Phoneme Example Phoneme Example

IY beet, eat IH bit, in
EH bet, end AE bat, ad
AA bottle, on AH but, up
AO ball, awl UH book, soot
ER bird, early OH border
AX* about, calibrate IX* solid, infinite

* AX and IX should never be used in stressed syllables.

Diphthongs

Phoneme Example Phoneme Example

EY bay,aid AY bide,I
OY boy,oil AW bound,owl

ow boat, own uw brew,boolean

Consonants

Phoneme Example Phoneme Example

R red L long
w wag y yellow,comp(Y)uter

M men N no
NX sing SH shy
s soon TH thin
F fed ZH pleasure
z has,zoo DH then

v very WH when

CH check J judge

/H hole /C loch
B but p put
D dog T toy

K keg,copy G guest

Narrator Device 143

Digits 1-9

?

()

Special Symbols

Phoneme

DX
Q
QX

Example

pity
kitt(Q)en

Explanation

tongue flap
glottal stop
silent vowel

Contractions (see text)

UL=AXL
lL = IXL
UM=AXM
IM=IXM
UN=AXN
IN= IXN

Digits and Punctuation

Syllabic stress, ranging from secondary through emphatic
Period - sentence final character.
Question mark - sentence final character
Dash- phrase delimiter
Comma - clause delimiter
Parentheses - noun phrase delimiters (see text)

The narrator device works on utterances at the sentence level. Even if you want to say only one
word, it will treat it as a complete sentence. Therefore, narrator wants one of two punctuation marks
to appear at the end of every sentence - a period or a question mark. The period is used for almost
all utterances and will cause a final fall in pitch to occur at the end of a sentence. The question mark
is used at the end of yes/no questions only, and results in a final rise in pitch.

For example, the question, Do you enjoy using your Amiga? would take a question mark at the end,
while the question, What is your favorite color? should be followed (in the phonetic transcription)
with a period. If no punctuation appears at the end of a string, narrator will append a dash to it,
which will result in a short pause. Narrator recognizes other punctuation marks as well, but these
are left for later discussion.

PHONETIC SPELLING

Utterances are usually written phonetically using an alphabet of symbols known as IPA (International
Phonetic Alphabet). This alphabet is found at the front of most good dictionaries. The symbols can
be hard to learn and were not readily available on computer keyboards, so the Advanced Research
Projects Agency (ARPA) came up with the ARPABET, a way of representing each symbol using one
or two upper case letters. Narrator uses an expanded version of the ARPABET to specify phonetic
sounds.

A phonetic sound, or phoneme, is a basic speech sound, a speech atom. Working backwards:
sentences can be broken into words, words into syllables, and syllables into phonemes. The word

144 Amiga ROM Kernel Reference Manual: Devices

cat has three letters and (coincidentally) three phonemes. Looking at the table of phonemes we
find the three sounds that make up the word cat. They are the phonemes K, AE, and T, written
as KAET. The word cent translates as SEHNT. Notice that both words begin with the letter c, but
because they are pronounced differently they have different phonetic spellings. These examples
introduce a very important concept of phonetic spelling: spell it like it sounds, not like it looks.

Choosing the Right Vowel

Phonemes, like letters, are divided into two categories: vowels and consonants. Loosely defined,
a vowel is a continuous sound made with the vocal cords vibrating and air exiting the mouth (as
opposed to the nose). A consonant is any other sound, such as those made by rushing air (likeS or
TH), or by interruptions in the air flow by the lips or tongue (B or T). All vowels use a two letter
ASCII phonetic code while consonants use a one or two letter code.

In English we write with only five vowels: a, e, i, o, and u. It would be easy if we only said five
vowels. However, we say more than 15 vowels. Narrator provides for most of them. Choose the
proper vowel by listening: Say the word aloud, perhaps extending the vowel sound you want to
hear and then compare the sound you are making to the sounds made by the vowels in the examples
on the phoneme list. For example, the a in apple sounds the same as the a in cat, not like the a in
Amiga, talk, or made. Notice also that some of the example words in the list do not even use any of
the same letters contained in the phoneme code; for example AA as in bottle.

Vowels are divided into two groups: those that maintain the same sound throughout their durations
and those that change their sound. The ones that change are called diphthongs. Some of us were
taught the terms long and short to describe vowel sounds. Diphthongs fall into the long category,
but these two terms are inadequate to fully differentiate between vowels and should be avoided.
The diphthongs are the last six vowels listed in the table. Say the word made out loud very slowly.
Notice how the a starts out like the e in bet but ends up like the e in beet. The a, therefore, is a
diphthong in this word and we would use EY to represent it. Some speech synthesis systems require
you to specify the changing sounds in diphthongs as separate elements, but narrator takes care of
the assembly of diphthongal sounds for you.

Choosing the Right Consonant

Consonants are divided into many categories by phoneticians, but we need not concern ourselves
with most of them. Picking the correct consonant is very easy if you pay attention to just two
categories: voiced and unvoiced. A voiced consonant is made with the vocal cords vibrating, and
an unvoiced one is made when the vocal cords are silent. Sometimes English uses the same letter
combinations to represent both. Compare the th in thin with the th in then. Notice that the first
is made with air rushing between the tongue and upper teeth. In the second, the vocal cords are
vibrating also. The voiced th phoneme is DH and the unvoiced one is TH. Therefore, thin is
phonetically spelled as THIHN while the word then is spelled DHEHN.

A sound that is particularly subject to mistakes is voiced and unvoiced s, phonemes Z and S,
respectively. Oearly the word bats ends with an S and the word has ends with a Z. But, how do
you spell close? If you say "What time do you close?", you spell it with a Z, and if you are saying
"I love to be close to you." you use an S."

Another sound that causes some confusion is the r sound. There are two different r-like phonemes
in the Narrator alphabet: R under the consonants and ER under the vowels. Use ER if the r sound
is the vowel sound in the syllable like in bird, absurd, and flirt. Use the R if the r sound precedes
or follows another vowel sound in that syllable as in car, write, and craft.

Narrator Device 145

Contractions and Special Symbols

There are several phoneme combinations that appear very often in English words. Some of these
are caused by our laziness in pronunciation. Take the word connector for example. The o in the
first syllable is almost swallowed out of existence. You would not use the AA phoneme; you would
use the AX phoneme instead. It is because of this relaxation of vowels that we find ourselves using
AX and IX very often. Since this relaxation frequently occurs before I, m, and n, narrator has a
shortcut for typing these combinations. Instead of personal being spelled PERSIXNAXL, we can
spell it PERSINUL, making it a little more readable. Anomaly goes from AXNAAMAXLIY to
UNAAMULIY, and KAAMBIXNEYSHIXN becomes KAAMBINEYSHIN for combination. It
may be hard to decide whether to use the AX or IX brand of relaxed vowel. The only way to find
out is to use both and see which sounds best.

Other special symbols are used internally by narrator. Sometimes they are inserted into or substituted
for part of your input sentence. You can type them in directly if you wish. The most useful is
probably the Q or glottal stop, an interruption of air flow in the glottis. The word Atlantic has one
between the t and the/. Narrator knows there should be a glottal stop there and saves you the trouble
of typing it. But narrator is only close to perfect, so sometimes a word or word pair might slip by
that would have sounded better with a Q stuck in someplace.

STRESS AND INTONATION

It is not enough to tell narrator what you want said. For the best results you must also tell narrator
how you want it said. In this way you can alter a sentence's meaning, stress important words, and
specify the proper accents in polysyllabic words. These things improve the naturalness and thus the
intelligibility of the spoken output.

Stress and intonation are specified by the single digits 1-9 following a vowel phoneme code. Stress
and intonation are two different things, but are specified by a single number.

Stress is, among other things, the elongation of a syllable. A syllable is either stressed or not, so
the presence of a number after the vowel in a syllable indicates stress on that syllable. The value of
the number indicates the intonation. These numbers are referred to here as stress marks but keep in
mind that they also affect intonation.

Intonation here means the pitch pattern or contour of an utterance. The higher the stress mark, the
higher the potential for an accent in pitch. A sentence's basic contour is comprised of a quickly
rising pitch gesture up to the first stressed syllable in the sentence, followed by a slowly declining
tone throughout the sentence, and finally, a quick fall to a low pitch on the last syllable. The presence
of additional stressed syllables causes the pitch to break its slow, declining pattern with rises and
falls around each stressed syllable. Narrator uses a very sophisticated procedure to generate natural
pitch contours based on how you mark the stressed syllables.

How and Where to Put the Stress Marks

The stress marks go immediately to the right of vowel phoneme codes. The word cat has its stress
marked after the AE, e.g., KAEST. You generally have no choice about the location of a number;
there is definitely a right and wrong location. A number should either go after a vowel or it should
not. Narrator will not flag an error if you forget to put a stress mark in or if you place it on the

146 Amiga ROM Kernel Reference Manual: Devices

wrong vowel. It will only tell you if a stress mark has been put after a non-vowel, i.e., consonant
or punctuation.

The rules for placing stress marks are as follows:

• Always place a stress mark in a content word. A content word is one that contains some
meaning. Nouns, verbs, and adjectives are all content words, they tell the listener what you
are talking about. Words like but, if, and the are not content words. They do not convey any
real world meaning, but are required to make the sentence function, so they are given the name
function words.

• Always place a stress mark on the accented syllable(s) of polysyllabic words, whether they
are content or function words. A polysyllabic word is any word of more than one syllable.
Commodore has its stress (often called accent) on the first syllable and would be spelled
KAASMAXDOHR, while computer is stressed on the second syllable: KUMPYUWSTER.

If you are in doubt about which syllable gets the stress, look up the word in a dictionary and you will
find an accent mark over the stressed syllable. If more than one syllable in a word receives stress,
they usually are not of equal value. These are referred to as primary and secondary stresses. The
word understand has its first and last syllables stressed, with the syllable stand getting the primary
stress and the syllable un getting the secondary stress. This produces the phonetic representation
AH1NDERSTAE4ND. Syllables with secondary stress should be marked with a value of only 1 or
2.

Compound words (words with more than one root) such as baseball, software, and lunchwagon can
be written as one word, but should be thought of as separate words when marking stress. Thus,
lunchwagon would be spelled LAHSNCHWAE2GIN. Notice that the lunch got a higher stress
mark than the wagon. This is common in compound words, the first word usually receives the
primary stress.

Which Stress Value Do I Use?

If you get the spelling and stress mark positions correct, you are 95 percent of the way to a good
sounding sentence. The next thing to do is decide on the stress mark values. They can be roughly
related to parts of speech, and you can use the table shown below as a guide to assigning values.

Recommended Stress Values

Part of Speech

Exclamations
Adverbs
Quantifiers
Nouns
Adjectives
Verbs
Pronouns
Secondary stress
Everything else

Stress Value

9
7
7
5
5
4
3
lor2
None

Narrator Device 14 7

The above values merely suggest a range. If you want attention directed to a certain word, raise
its value. If you want to downplay a word, lower it. Sometimes even a function word can be the
focus of a sentence. It is quite conceivable that the word to in the sentence Please deliver this to
Mr. Smith. could receive a stress mark of 9. This would add focus to the word, indicating that the
item should be delivered to Mr. Smith in person.

PUNCTUATION

In addition to the period or question mark that is required at the end of a sentence, Narrator also
recognizes dashes, commas, and parentheses.

The comma goes where you would normally put a comma in an English sentence. It causes narrator
to pause with a slightly rising pitch, indicating that there is more to come. The usc of additional
commas-that is, more than would be required for written English-is often helpful. They serve to
set clauses off from one another. There is a tendency for a listener to lose track of the meaning of a
sentence if the words run together. Read your sentence aloud while pretending to be a newscaster.
The locations for additional commas should leap out at you.

The dash serves almost the same purpose as the comma, except that the dash does not cause the
pitch to rise so severely. A rule of thumb is: Use dashes to divide phrases and commas to divide
clauses.

Parentheses provide additional information to narrator's intonation function. They should be put
around noun phrases of two or more content words. This means that the noun phrase, a giant yacht
should be surrounded with parentheses because it contains two content words, giant and yacht. The
phrase my friend should not have parentheses around it because it contains only one content word.
Noun phrases can get fairly large, like the best time/' ve ever had or a big basket of fruit and nuts.
The parentheses are most effective around these large phrases; the smaller ones can sometimes
go without. The effect of parentheses is subtle, and in some sentences you might not notice their
presence. In sentences of great length, however, they help provide for a very natural contour.

HINTS FOR INTELLIGIBILITY

There are a few tricks you can use to improve the intelligibility of a sentence. Often, a polysyllabic
word is more recognizable than a monosyllabic word. For instance, instead of saying huge, say
enormous. The longer version contains information in every syllable, thus giving the listener a
greater chance to hear it correctly.

Another good practice is to keep sentences to an optimal length. Writing for reading and writing for
speaking are two different things. Try not to write a sentence that cannot be easily spoken in one
breath. Such a sentence tends to give the impression that the speaker has an infinite lung capacity
and sounds unnatural. Try to keep sentences confined to one main idea; run-on sentences tend to
lose their meaning.

New terms should be highly stressed the first time they arc heard. This gives the listener something
to cue on, and can aid in comprehension.

The insertion of the glottal stop phoneme Q at the end of a word can sometimes help prevent
slurring of one word into another. When we speak, we do not pause at the end of each word, but

148 Amiga ROM Kernel Reference Manual: Devices

---------------- --------

instead transition smoothly between words. This can sometimes reduce intelligibility by eliminating
word boundary cues. Placing a Q, (not the silent vowel QX) at the end of a word results in some
phonological effects taking place which can restore the word boundary cues.

EXAMPLE OF ENGLISH AND PHONETIC TEXTS

Cardiomyopathy. I had never heard of it before, but there it was listed as the form of heart disease
that felled not one or two but all three of the artificial heart recipients. A little research produced
some interesting results. According to an article in the Nov. 8, 1984, New England Journal of
Medicine, cigarette smoking causes this lethal disease that weakens the heart's pumping power.
While the exact mechanism is not clear, Dr. Arthur J. Hartz speculated that nicotine or carbon
monoxide in the smoke somehow poisons the heart and leads to heart failure.

KAA1RDIYOWMAYAA5PAXTHIY. AY /HAED NEHlVER /HER4D AXV IHT BIXFOH5R,
BAHT DHEH5R IHT WAHZ - LIH4STIXD AEZ (DHAX FOH5RM AXV /HAA5Rf DI­
HZIY5Z) DHAET FEH4LD (NAAT WAH5N OHR TUW5) - BAHT (A07L THRIY5 AXV
DHAX AA5RTAXFIHSHUL /HAASRTQ RIXSIH5PIYINTS). (AH LIHSTUL RIXSERSCH)
PROHDUW5ST (SAHM IH5NTRIHSTIHNX RIXZAH5LTS). AHKOH5RDIHNX TUW
(AEN AA5RTIHKUL IHN DHAX NOWVEH5MBER EY2TH NAY5NTIYNEYTIYFOH1R
NUW IYSNXGLIND JER5NUL AXV MEH5DIXS1N), (SIH5GEREHT SMOW5KIHNX)
KA04ZIHZ (DHIHS LIY5THUL DIHZIY5Z) DHAET WIY 4KINZ (DHAX /HAA5RTS
PAH4MPIHNX PAW2ER). WAYL (DHIY IHGZAESKT MEHSKINIXZUM) 1HZ NAAT KLIY5R,
DAA5KTER AASRTHER JEY2 /HAARTS SPEH5KYULEYTIHD DHAET NIH5KAXTIYN,
OHR KAA5RBIN MUNAA5KSAYD IHN DHAX SMOWSK- SAH5M/HAW1 POY4ZINZ
DHAX /HAA5Rf, AEND LIY4DZTUW (/HAA5Rf FEY5LYER).

CONCLUDING REMARKS

This guide should get you off to a good start in phonetic writing for Narrator. The only way to get
really proficient is to practice. Many people become good at it in as little as one day. Others make
continual mistakes because they find it hard to let go of the rules of English spelling, so trust your
ears.

A More Technical Explanation

The narrator speech synthesizer is a computer model of the human speech production process. It
attempts to produce accurately spoken utterances of any English sentence, given only a phonetic
representation as input. Another program in the Amiga speech system, the translator device,
derives the required phonetic spelling from English text. Timing and pitch contours are produced
automatically by the synthesizer software.

In humans, the physical act of producing speech sounds begins in the lungs. To create a voiced
sound, the lungs force air through the vocal folds (commonly called the vocal cords), which are held
under tension and which periodically interrupt the flow of air, thus creating a buzz-like sound. This
buzz, which has a spectrum rich in harmonics, then passes through the vocal tract and out the lips
and nose, which alters its spectrum drastically. This is because the vocal tract acts as a frequency

Narrator Device 149

filter, selectively reinforcing some harmonics and suppressing others. It is this filtering that gives a
speech sound its identity. The amplitude versus frequency graph of the filtering action is called the
vocal tract transfer function. Changing the shape of the throat, tongue, and mouth retunes the filter
system to accentuate different frequencies.

The sound travels as a pressure wave through the air, and it causes the listener's eardrum to vibrate.
The ear and brain of the listener decode the incoming frequency pattern. From this the listener
can subconsciously make a judgement about what physical actions were performed by the speaker
to make the sound. Thus the speech chain is completed, the speaker having encoded his physical
actions on a buzz via selective filtering and the listener having turned the sound into guesses about
physical actions by frequency decoding.

Now that we know how humans produce speech, how does the Amiga do it? It turns out that
the vocal tract transfer function is not random, but tends to accentuate energy in narrow bands
called formants. The formant positions move fairly smoothly as we speak, and it is the formant
frequencies to which our ears are sensitive. So, luckily, we do not have to model throat, tongue,
teeth and lips with our computer, we can imitate formant actions instead.

A good representation of speech requires up to five formants, but only the lowest three are required
for intelligibility. The pre-V37 Narrator had only three formants, while the V37 Narrator has five
formants for a more natural sounding voice. We begin with an oscillator that produces a waveform
similar to that which is produced by the vocal folds, and we pass it through a series of resonators,
each tuned to a different formant frequency. By controlling the volume and pitch of the oscillator
and the frequencies of the resonators, we can produce highly intelligible and natural-sounding
speech. Of course the better the model the better the speech; but more importantly, experience has
shown that the better the control of the model's parameters, the better the speech.

Oscillators, volume controls, and resonators can all be simulated mathematically in software, and
it is by this method that the narrator system operates. The input phonetic string is converted into a
series of target values for the various parameters. A system of rules then operates on the string to
determine things such as the duration of each phoneme and the pitch contour. Transitions between
target values are created and smoothed to produce natural, continuous changes from one sound to
the next.

New values are computed for each parameter for every 8 milliseconds of speech, which produces
about 120 acoustic changes per second. These values drive a mathematical model of the speech
synthesizer. The accuracy of this simulation is quite good. Human speech has more formants that
the narrator model, but they are high in frequency and low in energy content.

The human speech production mechanism is a complex and wonderful thing. The more we learn
about it, the better we can make our computer simulations. Meanwhile, we can use synthetic speech
as yet another computer output device to enhance the man/machine dialogue.

150 Amiga ROM Kernel Reference Manual: Devices

Example Speech and Mouth Movement Program

/*
* Full Narrator.c

*
* This example program sends a string of phonetic text to the narrator
* device and, while it is speaking, highlights, word-by-word, a
* corresponding English string. In addition, mouth movements are drawn
* in a separate window.

*
* Compile with SAS C 5.10 lc -b1 -cfistq -v -y -L

* * Requires Kickstart V37 or greater.
*I

#include <exec/types. h>
#include <exec/memory.h>
#include <dos/dos.h>
#include <intuition/ intuition. h>
#include <ctype.h>
#include <exec/exec.h>
#include <fcntl.h>
#include <devices/narrator. h>

#include <clib/exec protos.h>
#include <clib/alib-protos.h>
#include <clib/intuition protos.h>
#include <clib/graphics protos.h>
#include <clib/dos protos.h>

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#ifdef LATTICE
int CXBRK (void) { ret urn { 0); }
int chkabort (void) { return (0);
#endif

/* Disable SAS CTRL/C handling */
/* really */

I*
* Due to an omission, the sync field defines were not included in older
* versions of the narrator device include files. So, if they haven't
* already been defined, do so now.
*I

#ifndef NDF READMOUTH
#define NDF-READMOUTH
#define NDF-READWORD
#define NDF-READSYL
#endif

#define PEN3
#define PEN2
#define PEN1
#define PENO

3
2
1
0

BOOL FromCLI ~ TRUE;

Ox01
Ox02
Ox04

BYTE chans[4] ~ {3, 5, 10, 12};

LONG EyesLeft;
LONG EyesTop;
LONG EyesBottom;
LONG YMouthCenter;
LONG XMouthCenter;
LONG LipWidth, LipHeight;

/* Already defined ? *!
/* No, define here */

/* Drawing pens */

/* Left edge of left eye */
/* Top of eyes box */
/* Bottom of eyes box */
/* Pixels from top edge */
/* Pixels from left edge */
/* Width and height of mouth */

struct TextAttr MyFont ~ {"topaz.font", TOPAZ SIXTY, FS_NORMAL, FPF ROMFONT, };

struct IntuitionBase
struct GfxBase

*IntuitionBase ~ NULL;
*GfxBase ~ NULL;

Narrator Device 151

struct MsgPort *VoicePort
struct MsgPort *MouthPart

struct narrator rb *VoiceiO
struct mouth rb *MouthiO --

struct IntuiText HighLight;
struct NewWindow NewWindow;
struct Window *TextWindow;
struct Window *FaceWindow;
struct RastPort *FaceRast;

void main(int argc, char **argv)
{
LONG
LONG
LONG
LONG
LONG
LONG
LONG
UBYTE
UBYTE
UBYTE
UBYTE

UBYTE
LONG
UBYTE
LONG

UBYTE
LONG
UBYTE
LONG

UBYTE
LONG
LONG

i;
sentence;
Offset;
CharsLeft;
ScreenPos;
WordLength;
LineNum;
*Tempptr;
*English;
*OldEnglish;
c;

*PhonPtr;
PhonSize;
*PhonStart[lOO];
NumPhonStarts;

*EngPtr;
EngSize;
*EngStart[lOO];
NumEngStarts;

*EngLine[24];
EngBytes[24];
NumEngLines;

I*
I*
I*
I*

I*
I*
I*
I*

I*
I*
I*

NULL;
NULL;

NULL;
NULL;

Pointer to phonetic text *I
Size of phonetic text *I
Start of phonetic sentences *I
Number of phonetic sentences *I

Pointer to English text *I
Size of English text *I
Start of English sentences *I
Number of English sentences *I

Start of line on screen *I
Bytes per line on screen *I
Number of lines on screen *I

extern void
extern void
extern void
extern void

Cleanup(UBYTE *errmsg);
ClearWindow(struct Window *TextWindow);
DrawFace(void);
UpdateFace(void);

I*
* (0)
*
*I

Note whether the program was started from the CLI or from
Workbench.

if (argc 0)
FromCLI FALSE;

I*
* (1)

*
*
*
*I

PhonPtr

Setup the phonetic text to be spoken. If there are any non­
alphabetic characters in the text (such as NEWLINES or TABS)
replace them with spaces. Then break up the text into sentences,
storing the start of each sentence in PhonStart array elements.

"KAAlRDIYOWMAYAASPAXTHIY. AY IHAED NEHlVER IHER4D AXV IHT "
"BIXFOHSR, BAHT DHEHSR IHT WAHZ - LIH4STIXD AEZ (DHAX FOHSRM "
"AXV IHAASRT DIHZIYSZ) DHAET FEH4LD (NAAT WAHSN OHR TUWS) - "
"BAHT (A07L THRIYS AXV DHAX AASRTAXFIHSHUL IHAA5RTQ "
"RIXSIHSPIYINTS). (AH LIHSTUL RIXSERSCH) PROHDUWSST (SAHM "
"IHSNTRIHSTIHNX RIXZAHSLTS). AHKOHSRDIHNX TUW (AEN AASRTIHKUL "
"IHN DHAX NOWVEHSMBER EY2THQX NAY5NTIYNEYTIYFOH1R NUW IYSNXGLIND "
"JERSNUL AXV MEHSDIXSIN), (SIHSGEREHT SMOWSKIHNX) KA04ZIHZ "
"(DHIHS LIYSTHUL DIHZIYSZ) DHAET WIY4KINZ (DHAX IHAASRTS"
"PAH4MPIHNX PAW2ER). WAYL (DHIY IHGZAESKT MEHSKINIXZUM) IHZ "
"NAAT KLIYSR, DAASKTER AA5RTHER JEY2 IHAARTS SPEHSKYULEYTIHD "
"DHAET NIH4KAXTIY2N- OHR KAASRBIN MUNAASKSAYD IHN DHAX SMOWSK- "
"SAHSM/HAWl POY4ZINZ DHAX /HAASRT, AEND LIY4DZ TUW (!HAASRT "
"FEYSLYER) .";

152 Amiga ROM Kernel Reference Manual: Devices

PhonSize ~ strlen(PhonPtr);
NumPhonStarts ~ 0;
PhonStart[NumPhonStarts++)
for (i ~ 0; i < PhonSize;

PhonPtr;
++i)

{
if (isspace ((int) (c = *PhonPtr++)))

* (PhonPtr-1) = ' ';

I*

if ((c == '.') II (c ~= '?'))
{
*PhonPtr = '\0';
PhonStart[NumPhonStarts++)
}

++PhonPtr;

* (2) Create the English text corresponding to the phonetic text above.
*
*
*
*I

As before, insure that there are no TABS or NEWLINES in the text.
Break the text up into sentences and store the start of each
sentence in EngStart array elements.

EngPtr "Cardiomyopathy. I had never heard of it before, but there it was "
"listed as the form of heart disease that felled not one or two but "
"all three of the artificial heart recipients. A little research "
"produced some interesting results. According to an article in the "
"November 8, 1984, New England Journal of Medicine, cigarette smoking "
"causes this lethal disease that weakens the heart's pumping power.
"While the exact mechanism is not clear, Doctor Arthur J Hartz "
"speculated that nicotine or carbon monoxide in the smoke somehow "
"poisons the heart and leads to heart failure.";

EngSize = strlen(EngPtr);
NumEngStarts ~ 0;
EngStart[NumEngStarts++) =
for (i = 0; i < EngSize;

EngPtr;
++i)

{
if (isspace ((int) (c = *EngPtr++)))

*(EngPtr-1) =' ';

I*
*
*I

if ((c == '.') II (c =~ '?'))
{
*EngPtr = '\0';
EngStart[NumEngStarts++)
}

++EngPtr;

(3) Open Intuition and Graphics libraries.

if (! (IntuitionBase=(struct IntuitionBase *)OpenLibrary("intuition.library",O)))
Cleanup("can't open intuition");

if ((GfxBase=(struct GfxBase *)OpenLibrary("graphics.library", 0))
Cleanup("can't open graphics");

I*
* (4)

*
Setup the NewWindow structure for the text display and
open the text window.

2 0;
10 0;
600;
8 0;
0.
1;
'' Narrator Demo '';

NULL)

*I
NewWindow.LeftEdge
NewWindow.TopEdge
NewWindow.Width
NewWindow.Height
NewWindow.DetailPen
NewWindow.BlockPen
NewWindow.Title
NewWindow.Flags
NewWindow.IDCMPFlags
NewWindow.Type
NewWindow.FirstGadget
NewWindow.CheckMark
NewWindow.Screen
NewWindow.BitMap
NewWindow.MinWidth
NewWindow.MinHeight
NewWindow.MaxWidth
NewWindow.MaxHeight

SMART REFRESH ACTIVATE I WINDOWDEPTH I WINDOWDRAG;
NULL;-
WBENCHSCREEN;
NULL;
NULL;
NULL;
NULL;
600;
80;
600;
80;

Narrator Device 153

if ((TextWindow ~ (struct Window *)OpenWindow(&NewWindow))
Cleanup("Text window could not be opened");

I*

NULL)

* (4)

*
Setup the NewWindow structure for the face display, open the
window, cache the RastPort pointer, and draw the initial face.

*I

20;
12;
120;
80;
0;
1·
n Face 11 i

NewWindow.LeftEdge
NewWindow.TopEdge
NewWindow.Width
NewWindow.Height
NewWindow.DetailPen
NewWindow.BlockPen
NewWindow.Title
NewWindow.Flags
NewWindow.IDCMPFlags
NewWindow.Type
NewWindow.FirstGadget
NewWindow.CheckMark
Newwindow.Screen
Newwindow.BitMap
Newwindow.Minwidth
NewWindow.MinHeight
NewWindow.MaxWidth
NewWindow.MaxHeight

SMART REFRESH I WINDOWDEPTH I WINDOWDRAG;
NULL;
WBENCHSCREEN;
NULL;
NULL;
NULL;
NULL;
120;
80;
120;
80;

if ((FaceWindow ~ (struct Window *)OpenWindow(&NewWindow))
Cleanup("Face window could not be opened");

FaceRast ~ FaceWindow->RPort;

DrawFace ();

I*
* (5) Create read and write msg ports.
*I

if ((MouthPart CreatePort(NULL,O))
Cleanup("Can't get read port");

if ((VoicePort ~ CreatePort(NULL,O))
Cleanup("Can't get write port");

I*

NULL)

NULL)

* (6) Create read and write IIO request blocks.
*I

NULL)

if (! (MouthiO ~ (struct mouth rb *)
CreateExtiO(MouthPort,sizeof(struct mouth rb))))

Cleanup("Can't get read IORB");

if (! (VoiceiO ~ (struct narrator rb *)
CreateExtiO(VoicePort,sizeof(struct narrator rb))))

Cleanup("Can't get write IORB");

I*
* (7) Set up the write I/O request block and open the device.
*I

VoiceiO->ch masks
VoiceiO- >nm-masks
VoiceiO- >message. io Command
VoiceiO->flags -

~ &chans[O];
~ sizeof(chans);

~ CMD WRITE;
~ NDF_NEWIORB;

if (OpenDevice ("narrator.device", 0, VoiceiO, 0) ! ~ NULL)
Cleanup("OpenDevice failed");

I*
* (8) Set up the read IIO request block.
*I

MouthiO->voice.message.io Device= VoiceiO->message.io Device;
MouthiO- >voice. message. io Unit = VoiceiO- >message. io -Unit;
MouthiO->voice.message.io-Message.mn ReplyPort ~ MouthPart;
MouthiO->voice.message.io=Command CMD_READ;

154 Amiga ROM Kernel Reference Manual: Devices

I*
* (9) Initialize highlighting IntuiText structure.
*I

HighLight.FrontPen
HighLight.BackPen
HighLight.DrawMode
HighLight.ITextFont
HighLight.NextText

1;
0;
JAM1;
&MyFont;
NULL;

I*
* (10)

*
*
*I

For each sentence, put up the English text in BLACK. As
Narrator says each word, highlight that word in BLUE. Also
continuously draw mouth shapes as Narrator speaks.

for (sentence = 0; sentence < NumPhonStarts; ++sentence)
(
I*
*
*
*
*I

(11) Begin by breaking the English sentence up into lines of
text in the window. EngLine is an array containing a
pointer to the start of each English text line.

English= EngStart[sentence] + strspn((UBYTE *)EngStart[sentence], "");
NumEngLines = 0;
EngLine[NumEngLines++] =English;
CharsLeft = strlen(English);
while (CharsLeft > 51)

(
for (Offset= 51; *(English+Offset) != ' '; --Offset)
EngBytes[NumEngLines-1] = Offset;
English += Offset + 1;
*(English-1) '\0';
EngLine[NumEngLines++] English;
CharsLeft Offset + 1;
}

EngBytes[NumEngLines-1] CharsLeft;

I*
* (12) Clear the window and draw in the unhighlighted English text.
*I

ClearWindow(TextWindow);

HighLight.FrontPen 1;
HighLight.LeftEdge = 10;
HighLight.TopEdge = 20;

for (i = 0; i < NumEngLines; ++i)
(
HighLight.IText = EngLine[i];
PrintiText(TextWindow->RPort, &HighLight, 0, 0);
HighLight.TopEdge += 10;
}

HighLight.TopEdge
HighLight.FrontPen
HighLight.IText

I*

20;
3;
EngLine[O];

* (13)

*
*

Set up the write request with the address and length of
the phonetic text to be spoken. Also tell device to
generate mouth shape changes and word sync events.

*I

VoiceiO->message.io Data
VoiceiO- >message. io-Length
VoiceiO->flags -
VoiceiO->mouths

I*

PhonStart[sentence];
strlen (VoiceiO- >message. io Data);
NDF NEWIORB I NDF_WORDSYNC;-
1;

* (14)

*
Send the write request to the device. This is an
asynchronous write, the device will return immediately.

*I

SendiO(VoiceiO);

Narrator Device 155

!*

/*
* (15)
*I

Initialize some variables.

ScreenPos 0;
LineNum 0·
English EngLine[LineNum];
OldEnglish English;
MouthiO->voice.message.io Error 0;

!*
* (16) Issue synchronous read requests. For each request we

check the sync field to see if the read returned a mouth
shape change, a start of word sync event, or both. We
continue issuing read requests until we get a return code
of NO NoWrite, which indicates that the write has finished.

*
*
*
*
*I

for (DoiO(MouthiO);Mouthio->voice.message.io Error!= ND NoWrite;DoiO(MouthiO))
(

!*

!*
*
*
*
*I

(1 7) If bit 1 of the sync field is on, this is a start
of word sync event. In that case we highlight the
next word.

if (MouthiO->sync & NDF_READWORD)
(

/*
*
*
*I

if ((Tempptr=strchr(English,' '))!=NULL)
(
English = Tempptr + 1;
* (English-1) = '\0';
}

PrintiText(TextWindow->RPort, &HighLight, 0, 0);
WordLength strlen(OldEnglish) + 1;
HighLight.IText =English;
OldEnglish English;
ScreenPos += WordLength;

if (ScreenPos >= EngBytes[LineNum])
(

else

(18)

HighLight.LeftEdge 10;
HighLight.TopEdge += 10;
ScreenPos 0;
English= OldEnglish EngLine[++LineNum];
HighLight.IText English;
}

HighLight.LeftEdge += 10*WordLength;

If bit 0 of the sync field is on, this is a mouth
shape change event. In that case we update the face.

if (MouthiO->sync & NDF READMOUTH)
UpdateFace();

* (19) The write has finished (return code from last read equals
ND_NoWrite). We must wait on the write I/O request to
remove it from the message port.

*
*
*I

WaitiO(VoiceiO);

156 Amiga ROM Kernel Reference Manual: Devices

* (20) Program completed, cleanup and return.
*I

Cleanup("Normal completion");

void Cleanup(UBYTE *errmsg)
{

I*
* (1) Cleanup and go away. This routine does not return but EXITs.

Everything it does is pretty self explanatory. *
*I

if (FromCLI)
printf("%s\n\r", errmsg);

if (TextWindow)
CloseWindow(TextWindow);

if (FaceWindow)
CloseWindow(FaceWindow);

if (VoiceiO && VoiceiO->message.io Device)
CloseDevice(VoiceiO);

if (VoiceiO)
DeleteExtiO(VoiceiO);

if (VoicePort)
DeletePort(VoicePort);

if (MouthiO)
DeleteExtiO(MouthiO);

if (MouthPart)
DeletePort(MouthPort);

if (GfxBase)
CloseLibrary(GfxBase);

if (IntuitionBase)
CloseLibrary(IntuitionBase);

exit (RETURN OK);
} -

void ClearWindow(struct Window *TextWindow)
{
LONG OldPen;

I*
* (1) Clears a window.
*I

OldPen = (LONG) Text Window- >RPort- >FgPen;
SetAPen (TextWindow->RPort, 0);
SetDrMd (Text Window- >RPort, JAMl);
RectF i 11 (Text Window- >RPort, 3, 12, TextWindow- >Width-3, Text Window- >Height-2) ;
SetAPen(TextWindow->RPort, OldPen);
}

void DrawFace()
I

I*
* (1)
*

Draws the initial face. The variables defined here are used in
UpdateFace() to redraw the mouth shape.

*I

EyesLeft = 15;
EyesTop = 20;
EyesBottom = 35;

XMouthCenter
YMouthCenter

FaceWindow->Width >> 1;
FaceWindow->Height - 25;

SetAPen(FaceWindow->RPort, PEN1);
RectFill(FaceWindow->RPort, 3, 10, FaceWindow->Width-3, FaceWindow->Height-2);

SetAPen(FaceWindow->RPort, PEND);

Narrator Device 157

RectFill(FaceWindow->RPort, EyesLeft, EyesTop, EyesLeft+25, EyesTop+l5);
RectFill(FaceWindow->RPort, EyesLeft+65, EyesTop, EyesLeft+90, EyesTop+l5);

SetAPen (FaceWindow->RPort, PEN3);
11ove (FaceWindow->RPort, XMouthCenter- (FaceWindow->Width >> 3), YMouthCenter);
Draw (F aceWindow- >RPort, XMouthCenter+ (FaceWindow- >Width > > 3) , YMouthCenter) ;
}

void UpdateFace()

I*
* (1)

*
Redraws mouth shape in response to a mouth shape change message
from the device. Its all pretty self explanatory.

*I

WaitBOVP (&FaceWindow->wscreen->ViewPort);
SetAPen(FaceRast, PENl);
RectFill (FaceRast, 3, EyesBottom, FaceWindow->Wi·~· h-3, FaceWindow->Height-2);

LipWidth = MouthiO->width*3;
LipHeight = MouthiO->height*2/3;

SetAPen(FaceRast, PEN3);
Move(FaceRast, XMouthCenter- LipWidth, YMouthCenter);
Draw(FaceRast, XMouthCenter , YMouthCenter- LipHeight);
Draw(FaceRast, XMouthCenter + LipWidth, YMouthCenter);
Draw(FaceRast, XMouthCenter, YMouthCenter + LipHeight);
Draw(FaceRast, XMouthCenter- LipWidth, YMouthCenter);
)

Additional Information on the Narrator Device

Additional programming information on the narrator device can be found in the include files and
the Autodocs for the narrator device and the Autodocs for the translator library. All are contained
in theAmiga ROM Kernel Reference Manual: Includes andAutodocs.

Narrator Device Information

INCLUDES

AUTO DOCS

devices/narrator.h
dcvices/narrator.i

narrator. doc
translator. doc

158 Amiga ROM Kernel Reference Manual: Devices

chapter nine
PARALLEL DEVICE

The parallel device provides a hardware-independent interface to the Amiga's Centronics­
compatible parallel port. The primary use of the Amiga parallel port is for output to printers,
but with its extensions for bi-directionall/0, it can also be used for communication with digitizers
and high-speed links with other computers. The parallel device is based on the conventions of Exec
device 1/0, with extensions for parameter setting and control.

Parallel Device 159

Parallel Device Commands and Functions

Command

CMD_FLUSH

CMD_READ

CMD_RESET

CMD_START

CMD_STOP

CMD_WRITE

PDCMD_QUERY
PDCMD_sETPARAMS

Operation

Purge all queued requests for the parallel device. Does not affect active
requests.
Read a stream of characters from the parallel port. The number of
characters can be specified or a termination character(s) can be used.
Reset the parallel port to its initialized state. All active and queued 1/0
requests will be aborted.
Restart all paused 1/0 over the parallel port. Reactivates the handshak­
ing sequence.
Pause all active l/0 over the parallel port. Deactivates the handshaking
sequence.
Write out a stream of characters to the parallel port. The number of
characters can be specified or a NULL-terminated string can be sent.
Return the status of the parallel port lines and registers.
Set the parameters of the parallel port.

Exec Functions as Used In This Chapter

AbortiO()

BeginiO()

CheckiO()
CloseDevice()
DolO()
Open Device()
SendiO()
WaitiO()

Abort a command to the parallel device. If the command is in progress,
it is stopped immediately. If it is queued, it is removed from the queue.
Initiate a command and return immediately (asynchronous request).
This is used to minimize the amount of system overhead.
Determine the current state of an 1/0 request.
Relinquish use of the parallel device. All requests must be complete.
Initiate a command and wait for completion (synchronous request).
Obtain use of the parallel device.
Initiate a command and return immediately (asynchronous request).
Wait for the completion of an asynchronous request. When the request
is complete the message will be removed from your reply port.

Exec Support Functions as Used In This Chapter

CreateExtiO()

CreatePort()

DeleteExtiO()
DeletePort()

Create an extended 1/0 request structure of type IOExtPar. This
structure will be used to communicate commands to the parallel device.
Create a signal message port for reply messages from the parallel
device. Exec will signal a task when a message arrives at the port.
Delete an extended l/0 request structure created by CreateExtiO().
Delete the message port created by CreatePort().

160 Amiga ROM Kernel Reference Manual: Devices

Device Interface

The parallel device operates like the other Amiga devices. To use it, you must first open the parallel
device, then send 1/0 requests to it, and then close it when finished. See the "Introduction to Amiga
System Devices" chapter for general infonnation on device usage.

The 1/0 request used by the parallel device is called IOExtPar.

struct IOExtPar
{

I* additional parallel flags *I
struct
ULONG
UBYTE
UBYTE
struct
} ;

IOStdReq IOPar;
io PExtFlags;
io-Status;
io-ParFlags;

I* status of parallel port and registers *I
I* parallel device flags *I

IOPArray io_PTermArray; I* termination character array *I

See the include file devices/parallel.h for the complete structure definition.

OPENING THE PARALLEL DEVICE

Three primary steps are required to open the parallel device:

• Create a message port using CreatePort(). Reply messages from the device must be directed
to a message port.

• Create an extended 1/0 request structure of type IOExtPar using CreateExtiO().
CreateExtiO() will initialize the 1/0 request to point to your reply port.

• Open the parallel device. Call OpenDevice(), passing the 1/0 request.

struct MsgPort *ParallelMP;
struct IOExtPar *ParalleliO;

if (ParallelMP=CreatePort(O,O))

I* Pointer to reply port *I
I* Pointer to IIO request *I

if (ParalleliO=(struct IOExtPar *)
CreateExtiO(ParallelMP,sizeof(struct IOExtPar)))

if (OpenDevice (PARALLELNAME, OL, (struct IORequest *) ParalleliO, 0)
printf("%s did not open\n",PARALLELNAME);

During the open, the parallel device pays attention to just one flag; PARF__5HARED. For consis­
tency, the other flag bits should also be properly set. Full descriptions of all flags will be given later.
When the parallel device is opened, it fills the latest default parameter settings into the IOExtPar
block.

Parallel Device 161

READING FROM THE PARALLEL DEVICE

You read from the parallel device by passing an IOExtPar to the device with CMD_READ set in
io_Command, the number of bytes to be read set in io_Length and the address of the read buffer
set in io_Data.

#define READ BUFFER SIZE 256
char ParalleiReadBuffer[READ_BUFFER_SIZE]; /*Reserve SIZE bytes of storage*/

ParallelJO->IOPar.io Length = READ BUFFER SIZE;
ParalleliO->IOPar.io-Data = (APTR)&ParailelReadBuffer[O];
ParalleliO->IOPar.io-Command = CMD READ;
DoiO ((struct IORequest *) Paralleliof;

If you use this example, your task will be put to sleep waiting until the parallel device reads 256
bytes (or tenninates early). Early tennination can be caused by error conditions.

WRITING TO THE PARALLEL DEVICE

You write to the parallel device by passing an IOExtPar to the device with CMD_ WRITE set in
io_Command, the number of bytes to be written set in io_Length and the address of the write
buffer set in io_Data.

To write a NULL-tenninated string, set the length to -1; the device will output from your buffer
until it encounters and transmits a value of zero (OxOO).

ParalleliO->IOPar.io Length = -1;
ParalleliO->IOPar. io -Data = (APTR) "Parallel lines cross 7 times.. . n;
ParalleliO->IOPar.io-Command = CMD WRITE;
DoiO((struct IORequest *)ParalleliO); /*execute write*/

The length of the request is -1, meaning we are writing a NULL-tenninated string. The number of
characters sent can be found in io_Actual.

CLOSING THE PARALLEL DEVICE

Each OpenDevice() must eventually be matched by a call to CloseDevice(). When the last close is
perfonned, the device will deallocate all resources and buffers. The latest parameter settings will
be saved for the next open.

All I/O requests must be complete before CloseDevice(). If any requests are still pending, abort
them with AbortiO():

if (! (CheckiO(ParalleliO)))
I
AbortiO(ParalleliO); /*Ask device to abort request, if pending*/
)

WaitiO(ParalleliO); /*Wait for abort, then clean up*/
CloseDevice((struct IORequest *)ParalleliO);

162 Amiga ROM Kernel Reference Manual: Devices

Ending A Read or Write with Termination Characters

Reads and writes from the parallel device may terminate early if an error occurs or if an end-of-file
is sensed. For example, if a break is detected on the line, any current read request will be returned
with the error ParErr_DetectedBreak. The count of characters read to that point will be in the
io_Actual field of the request.

You can specify a set of possible end-of-file characters that the parallel device is to look for in the
input or output stream using the PDCMD_SETPARAMS command. These are contained in an
io_FTermArray that you provide. io_FTermArray is used only when the PARF _EOFMODE flag
is selected (see "Parallel Flags" below).

If EOF mode is selected, each input data character read into or written from the user's data block
is compared against those in io_pTermArray. If a match is found, the IOExtPar is terminated as
complete, and the count of characters transferred (including the termination character) is stored in
io_Actual.

To keep this search overhead as efficient as possible, the parallel device requires that the array of
characters be in descending order. The array has eight bytes and all must be valid (that is, do not
pad with zeros unless zero is a valid EOF character). Fill to the end of the array with the lowest
value termination character. When making an arbitrary choice ofEOF charactcr(s), you will get the
quickest response from the lowest value(s) available.

I*
* Terminate Parallel.c
*
* This is an example of using a termination array for writes from the parallel
* device. A termination array is set up for the characters Q, E, A and %. The
* EOFMODE flag is set in io ParFlags to indicate that we want to use a
* termination array by sending the PDCMD SETPARAMS command to the device.
* Then, a CMD_WRITE command is sent to the device with io_Length set to -1.

*
* The write will terminate when one of the four characters in the
* termination array is sent or when the end of the write buffer has been reached.
*
* Compile with SAS C 5.10 lc -b1 -cfistq -v -y -L
*
* Run from CLI only
*I

#include <execltypes.h>
#include <execlmemory.h>
#include <execlio.h>
#include <devices/parallel.h>

#include <cliblexec protos.h>
#include <cliblalib=protos.h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK(void) { return(O);) I* Disable SAS CTRLIC handling *I
int chkabort(void) { return(O); } I* really *I
#endif

void main(void}
{
struct MsgPort *ParallelMP;
struct IOExtPar *ParalleliO;

I* Define storage for one pointer *I
I* Define storage for one pointer *I

struct IOPArray Terminators =
{
Ox51454125, I* Q E A A *I
Ox25252525 I* fill to end with lowest value, must be in descending order *I
} ;

Parallel Device 163

--

UBYTE *WriteBuffer ="abcdefghijklmEopqrstuvwxyze";
UWORD ctr;

if (ParallelMP=CreatePort(O,O))
{

else

if (ParalleliO=(struct IOExtPar *)
CreateExtiO(ParallelMP,sizeof(struct IOExtPar)))

{
if (OpenDevice(PARALLELNAME,OL, (struct IORequest *)ParalleliO,O)

printf("%s did not open\n",PARALLELNAME);
else

else

{
I* Tell user what we are doing *I
printf("\fLooking for Q, E, A or% in output\n");

I* Set EOF mode flag
* Set the termination array
* Send PDCMD SETPARAMS to the parallel device
*I

ParalleliO->io ParFlags I= PARF EOFMODE;
ParalleliO->io -PTermArray = Terminators;
ParalleliO->IOPar.io Command = PDCMD SETPARAMS;
if (DoiO((struct IORequest *)ParalleliO))

else
printf("Set Params failed"); I* Inform user of error *I

{
I* Send buffer *I
ParalleliO->IOPar.io Length = -1;
ParalleliO->IOPar.io-Data = WriteBuffer;
ParalleliO->IOPar.io-Command = CMD WRITE;
if (DoiO((struct IORequest *)ParalleliO))

printf("Error: Write failed\n");
else

{

)

I* Display all characters sent *I
printf("\nThese characters were sent:\n\t\t\tASCII\tHEX\n");
for (ctr=O; ctr<ParalleliO- >IOPar. io Actual; ctr++)

print f ("\t \t \t%c\ t%x\n", *Wri teBuffer, *Wri teBuffer++);
printf("\nThe actual number of characters sent: %d\n",

ParalleliO->IOPar.io_Actual);

CloseDevice((struct IORequest *)ParalleliO);
}

DeleteExtiO((struct IORequest *)ParalleliO);
}

printf("Error: Could not create IIO request\n");

DeletePort(ParallelMP);
I

printf("Error: Could not create message port\n");

The read will terminate before the io__Length number of characters is read if a 'Q', 'E', or 'A' is
detected.

It's Usually For Output. Most applications for the parallel device use the device for
output, hence the termination feature is usually done on the output stream.

164 Amiga ROM Kernel Reference Manual: Devices

Setting Parallel Parameters

You can control the parallel parameters shown in the following table. The parameter name within
the parallel IOExtPar data structure is shown below. All of the fields described in this section are
filled with defaults when you call OpenDevice(). Thus, you need not worry about any parameter
that you do not need to change. The parameters are defined in the include file devices!parallel.h.

IOExtPar
Field Name

io_PExtFlags

io_PTermArray

io_Status

io_FarFiags

Parallel Parameters (IOExtPar)

Parallel Device Parameter It Controls

Reserved for future use.

A byte-array of eight tennination characters, must be in descending
order. If EOFMODE is set in the parallel flags, this array specifies
eight possible choices of characters to use as an end-of-file mark.
See the section above titled "Ending A Read Or Write with Tenni­
nation Characters" and the PDCMD_SETPARAMS summary page
in the Autodocs.

Contains status infonnation. It is filled in by the PDCMD_QUERY
command.

See "Parallel flags" below.

You set the parallel parameters by passing an IOExtPar to the device with PDCMD_SETPARAMS
set in io_Command and with the flags and parameters set to the values you want.

ParalleliO->io ParFlags &; -PARF EOFMODE; /* Set EOF mode */
ParalleliO->IOPar.io Command ; PDCMD SETPARAMS; /* Set params command */
if (DoiO(ParalleliO)~ -

printf("Error setting parameters!\n");

The above code fragment modifies one bit in io_ParFiags, then sends the command.

Proper Time for Parameter Changes. A parameter change should not be perfonned
while an 1/0 request is actually being processed, because it might invalidate already active
request handling. Therefore you should use PDCMD_SETPARAMS only when you have
no parallel I/O requests pending.

Parallel Device 165

PARALLEL FLAGS (bit definitions for lo_ParFiags)

The flags shown in the following table can be set to affect the operation of the parallel device.
Note that the default state of all of these flags is zero. The flags are defined in the include file
devices/parallel.h.

Flag Name

PARF_EOFMODE

PARF__ACKMODE

PARFJ'ASTMODE

PARF_8LOWMODE

PARF_8HARED

Parallel Flags (lo_ParFiags)

Effect on Device Operation

Set this bit if you want the parallel device to check I/0 characters
against io_ TermArray and tenninate the I/0 request immediately
if an end-of-file character has been encountered. Note: This bit can
be set and reset directly in the user's IOExtPar block without a call
to PDCMD_8ETPARAMS.

Set this bit if you want to use ACK handshaking.

Set this bit if you want to use high-speed mode for transfers to
high-speed printers. This mode will send out data as long as the
BUSY signal is low. The printer must be able to raise the BUSY
signal within three microseconds or data will be lost. Should only
be used when the device has been opened for exclusive-access.

Set this bit if you want to use slow-speed mode for transfers to very
slow printers. Should not be used with high-speed printers.

Set this bit if you want to allow other tasks to simultaneously access
the parallel port. The default is exclusive access. If someone
already has the port, whether for exclusive or shared access, and
you ask for exclusive access, your OpenDevice() call will fail (must
be modified before OpenDevice()).

Querying the Parallel Device

You query the parallel device by passing an IOExtPar to the device with PDCMD_QUERY set
in io_Command. The parallel device will respond with the status of the parallel port lines and
registers.

UWORD Parallel_Status;

ParalleliO->IOPar.io Command = PDCMD QUERY; /* indicate query */
DoiO ((struct IORequest *) ParalleliO); -

Parallel_Status = ParalleliO->io_Status; /* store returned status */

The 8 status bits of the parallel device are returned in io_8tatus.

166 Amiga ROM Kernel Reference Manual: Devices

Bit

0
1

Active

high
high

Parallel Device Status Bits

Function

Printer busy toggle (offline)
Paper out

2 high Printer Select on the A 1000. On the A500 and A2000, select
is also connected to to the parallel port's Ring Indicator. Be
cautious when making cables.

3 read=O; write= 1
4-7 (reserved)

The parallel device also returns error codes whenever an operation is attempted.

struct IOPArray Terminators =
{
Ox51454141, /* Q E A A */
Ox41414141 /* fill to end with lowest value, must be in descending order */
) ;

ParallelliO->io ParFlags != PARF EOFMODE;
ParalleliO->io PTermArray = Terminators;
ParallelliO->IOPar.io Command = PDCMD SETPARAMS;
if (DoiO((struct IORequest *)ParalleliO))

/* Set EOF mode flag */
I* Set termination characters */
I* Set parameters */

printf("Set Params failed. Error: %d ",ParalleliO->IOPar.io_Error);

The error is returned in the io_Error field of the IOExtPar structure.

Parallel Device Error Codes

Error Value

ParErr_Dev Busy 1
ParErr_BuffoBig 2
ParErr_InvParam 3
ParErr_LineErr 4
ParErr_NotOpen 5
ParErr_portReset 6
ParErr_InitErr 7

I*
* Parallel.c
*
* Parallel device example
*
* Compile with SAS C 5.10: LC -bl -cfistq -v -y -L
*
* Run from CLI only
*I

nclude <exec/types. h>
nclude <exec/io.h>
nclude <exec/memory.h>
nclude <dos/dos.h>
nclude <devices/parallel. h>

Explanation

Device in use
Out of memory
Invalid parameter
Parallel line error
Device not open
Port Reset
Initialization Error

Parallel Device 167

#include <cliblexec protos.h>
#include <clibl alib=protos. h>

#include <stdio.h>

#i fdef LATTICE
int CXBRK(void) { return(O); I
int chkabort (void) { return (0);
#endif

I* Disable Lattice CTRLIC handling *I
I* really *I

void main(void)
{
struct MsgPort
struct IOExtPar
ULONG

*ParallelMP;
*ParalleliO;
WaitMask;
Temp;

I* Define storage for one pointer *I
I* Define storage for one pointer *I

I* Collect all signals here *I
ULONG I* Hey, we all need pockets :-) *I

if (ParallelMP=CreatePort(O,O)
{
if (ParalleliO=(struct IOExtPar *)

CreateExtiO(ParallelMP,sizeof(struct IOExtPar)))
{
if (OpenDevice (PARALLELNAME, 01, (struct IORequest *) ParalleliO, 0)

printf("%s did not open\n",PARALLELNAME);
else

{
I* Precalculate a wait mask for the CTRL-C, CTRL-F and message port
*signals. When one or more signals are received, Wait() will
* return. Press CTRL-C to exit the example. Press CTRL-F to
* wake up the example without doing anything. NOTE: A signal
* may show up without an associated message!
*I

WaitMask = SIGBREAKF CTRL C I SIGBREAKF CTRL F
11 << ParallelMP->mp_SigBit; -

ParalleliO->IOPar.io Command
ParalleliO->IOPar. io -Length
ParalleliO->IOPar. io -Data
SendiO(ParalleliO); -

= CMD_WRITE;
= -1;
= (APTR)"Hey, Jude!\\r\n";

I* execute write *I

printf("Sleeping until CTRL-C, CTRL-F, or write finish\n");
while (1)

{
Temp= Wait(WaitMask);
printf("Just woke up (YAWN!)\n");

if (SIGBREAKF CTRL C & Temp)
break; - -

if (CheckiO(ParalleliO)) I* If request is complete ... *I
{
WaitiO(ParalleliO); I* clean up and remove reply *I
printf("%ld bytes sent\n",ParalleliO->IOPar.io Actual);
break; -
}

AbortiO(ParalleliO);
WaitiO(ParalleliO);

I* Ask device to abort request, if pending *I
I* Wait for abort, then clean up *I

CloseDevice((struct IORequest *)ParalleliO);
}

DeleteExtiO(ParalleliO);
)

DeletePort(ParallelMP);
}

168 Amiga ROM Kernel Reference Manual: Devices

Additional Information on the Parallel Device

Additional programming information on the parallel device can be found in the include files and the
Autodocs for the parallel device. Both are contained in the Amiga ROM Kernel Reference Manual:
Includes andAutodocs.

Parallel Device Information

INCLUDES

AUTO DOCS

devices/parallel.h
devices/parallel.i

parallel.doc

Parallel Device 169

chapter ten
PRINTER DEVICE

The printer device offers a way of sending configuration-independent output to a printer attached to
the Amiga. It can be thought of as a filter: it takes standard commands as input and translates them
into commands understood by the printer. The commands sent to the printer are defined in a specific
printer driver program. For each type of printer in use, a driver (or the driver of a compatible
printer) should be present in the devs :printers directory.

EpsonX
HP _Laser Jet

Printer Driver Source Code In This Chapter

A YMCB, 8 pin, multi-density interleaved printer.
A black and white, multi-density, page-oriented printer.

Printer Device 171

Printer Device Commands and Functions

Command

CMD_FLUSH

CMD_RESET

CMD_START
CMD_STOP
CMD_WRITE

PRD_DUMPRPORT
PRD_pRTCOMMAND
PRD_QUERY
PRD_RAWWRITE

Operation

Remove all queued requests for the printer device. Does not affect
active requests.
Reset the printer device to its initialized state. All active and
queued l/0 requests will be aborted.
Restart all paused 1/0 requests
Pause all active and queued 1/0 requests.
Write out a stream of characters to the printer device. The number
of characters can be specified or a NULL-terminated string can
be sent.
Dump the specified RastPort to a graphics printer.
Send a command to the printer.
Return the status of the printer port's lines and registers.
Send unprocessed output to the the printer.

Exec Functions as Used In This Chapter

AbortiO()
CloseDevice()

DolO()
OpenDevice()
SendiO()
WaitiO()

Abort a command to the printer device.
Relinquish use of the printer device. All requests must be com­
plete before closing.
Start a command and wait for completion (synchronous request).
Obtain use of the printer device.
Start a command and return immediately (asynchronous request).
Wait for the completion of an asynchronous request. When the
request is complete, the message will be removed from the printer
message port.

Exec Support Functions as Used In This Chapter

CreatePort()

CreateExtiO()

DeletePort()
DeleteExtiO()

Create a signal message port for reply messages from the audio
device. Exec will signal a task when a message arrives at the
reply port.
Create an 1/0 request structure of type printeriO. This structure
will be used to send commands to the printer device.
Delete the message port created by CreatePort().
Delete an 1/0 request structure created by CreateExtiO().

172 Amiga ROM Kernel Reference Manual: Devices

Printer Device Access

The printer device is totally transparent to an application. It uses information set up by the
Workbench Preferences Printer and PrinterGfx tools to identify the type of printer connection
(serial or parallel), type of dithering, etc. It also offers the flexibility to send raw information to
the printer for special non-standard or unsupported features. Raw data transfer is not recommended
for conventional text and graphics since it will result in applications that will only work with
certain printers. By using the standard printer device interface, an application can perform device
independent output to a printer.

Don't Hog The Device. The printer device is currently an exclusive access device. Do
not tie it up needlessly.

There are two ways of doing output to the printer device:

• PRT:-the AmigaDOS printer device
PRT: may be opened just like any other AmigaDOS file. You may send standard escape
sequences to PRT: to specify the options you want as shown in the command table below. The
escape sequences are interpreted by the printer driver, translated into printer-specific escape
sequences and forwarded to the printer. When using PRT: the escape sequences and data must
be sent as a character stream. Using PRT: is by far the easiest way of doing text output to a
printer.

• printer.device-to directly access the printer device itself
By opening the printer device directly, you have full control over the printer. You can either
send standard escape sequences as shown in the command table below or send raw characters
directly to the printer with no processing at all. Doing this would be similar to sending raw
characters to SER: or PAR: from AmigaDOS. (Since this interferes with device-independence
it is strongly discouraged). Direct access to the printer device also allows you to transmit device
I/0 commands, such as reset and flush, and do a raster dump on a graphics-capable printer.

Use A Stream to Escape. All"raw escape sequences" transmitted to the printer through
the printer device must take the form of a character stream.

OPENING PRT:

When using the printer device as PRT:, you can open it just as though it were a normal AmigaDOS
output file.

struct FileHandle *file;

file= Open("PRT:", MODE NEWFILE);
if (file == 0) ~

I* Open PRT: */
/* if the open was unsuccessful */

exit(PRINTER~WONT_OPEN);

Printer Device 173

WRITING TO PRT:

Once you've opened it, you can print by calling the AmigaDOS Write() standard 1/0 routine.

actual_length = Write(file, dataLocation, length);

where

file
is a file handle.

dataLocation
is a pointer to the first character in the output stream you wish to write. This stream can contain
the standard escape sequences as shown in the command table below. The printer command
aRAW (see the Printer Device Command Functions table below) can be used in the stream if
character translation is not desired.

length
is the length of the output stream.

actuaLiength
is the actual length of the write. For the printer device, if there are no errors, this will be the
same as the length of write requested. The only exception is if you specify a value of -1 for
length. In this case, -1 for length means that a null (0) terminated stream is being written to
the printer device. The device returns the count of characters written prior to encountering the
null. If it returns a value of -1 in actuaLiength, there has been an error.

-1 = STOP! If a -1 is returned by Write(), do not do any additional printing.

CLOSING PRT:

When the printer 1/0 is complete, you should close PRT:. Don't keep the device open when you are
not using it. The user may have changed the printer settings by using the Workbench Preferences
tool. There's also the possibility the printer has been turned off and on again causing the printer
to switch to its own default settings. Every time the printer device is opened, it reads the current
Preferences settings. Hence, by always opening the printer device just before printing and always
closing it afterwards, you ensure that your application is using the current Preferences settings.

Close (file);

In DOS, You Must Be A Process. Printer 1/0 through the DOS must be done by a
process, not by a task. DOS utilizes information in the process control block and would
become confused if a simple task attempted to perform these activities. Printer 1/0 using
the printer device directly, however, can be performed by a task.

The remainder of this chapter will deal with using the printer device directly.

174 Amiga ROM Kernel Reference Manual: Qevices

Device Interface

The printer device operates like the other Amiga devices. To use it, you must first open the printer
device, then send 1/0 requests to it, and then close it when finished. See the "Introduction to Amiga
Devices" chapter for general information on device usage.

There are three distinct kinds of data structures required by the printer 1/0 routines. Some of the
printer device 1/0 commands, such as CMD_START and CMD_ WRITE require only an IOStdReq
data structure. Others, such as PRD_DUMPRPORT and PRD_pRTCOMMAND, require an ex­
tended data structure called IODRPReq (for "Dump a RastPort Request") or IOPrtCmdReq (for
"Printer Command Request").

For convenience, it is strongly recommended that you define a single data structure called printer 10,
that can be used to represent any of the three pre-defined printer communications request blocks.

union printeriO
(

struct IOStdReq ios;
struct IODRPReq iodrp;
struct IOPrtCmdReq iopc;

} ;

struct IODRPReq
(

} ;

struct
struct
struct
UWORD
UBYTE
BYTE
struct
struct
ULONG
UWORD
UWORD
UWORD
UWORD
LONG
LONG
UWORD

Message io Message;
Device *io Device;
Unit *io-Unit;
io Command;-
io -Flags;
io-Error;
RastPort *io RastPort;
ColorMap *io-ColorMap;
io Modes; -
io-SrcX;
io-SrcY;
io-SrcWidth;
io-SrcHeight;
io-DestCols;
io -DestRows;
io::::special;

struct IOPrtCmdReq
(

struct Message io Message;
struct Device *iO Device; -
struct Unit *io Unit; -
UWORD io Command; -
UBYTE io Flags; -BYTE io Error;
UWORD io -PrtCommand;
UBYTE io -ParmO; -UBYTE io Parml; -
UBYTE io Parm2; -UBYTE io Parm3; -

} ;

/* device node pointer */
I* unit (driver private)*/
I* device command */

/* error or warning num */
/* raster port */
/* color map */
/* graphics viewport modes */
/* source x origin */
/* source y origin */
/* source x width */
/* source x height */
/* destination x width */
/* destination y height */
/* option flags */

I* device node pointer *I
/* unit (driver private)*/
I* device command *I

/* error or warning num *I
/* printer command *I
I* first command parameter
/* second command parameter
/* third command parameter
/* fourth command parameter

*I
*I

*I
*I

See the include file execlio.h form ore information on IOStdReq and the include file deviceslprinter.h
for more information on IODRPReq and IOPrtCmdReq.

Printer Device 175

OPENING THE PRINTER DEVICE

Three primary steps are required to open the printer device:

• Create a message port using CreatePort(). Reply messages from the device must be directed
to a message port.

• Create an extended 1/0 request structure of type printeriO with the CreateExtiO() function.
This means that one memory area can be used to represent three distinct forms of memory
layout for the three different types of data structures that must be used to pass commands to the
printer device. By using CreateExtiO(), you automatically allocate enough memory to hold
the largest structure in the union statement.

• Open the printer device. Call OpenDevice(), passing the 1/0 request.

union printeriO
{

struct IOStdReq ios;
struct IODRPReq iodrp;
struct IOPrtCmdReq iopc;

} ;

struct MsgPort *PrintMP;
union printeriO *PrintiO;

/* Message port pointer */
/* I/O request pointer */

if (PrintMP:CreateMsgPort()
if (PrintiO:(union printeriO *)

CreateExtiO(PrintMP,sizeof(union printeriO)))
if (OpenDevice ("printer.device", OL, (struct IORequest *)PrintiO, 0)

printf("printer.device did not open\n");

The printer device automatically fills in default settings for all printer device parameters from
Preferences. In addition, information about the printer itself is placed into the appropriate fields of
printeriO. (See the "Obtaining Printer Specific Data" section below.)

Pre-V36 Tasks and Open Device(}. Tasks in pre-V36 versions of the operating system
are not able to safely OpenDevice() the printer device because it may be necessary to
load it in from disk, something only a process could do under pre-V36. V36 and higher
versions of the operating system do not have such a limitation.

WRITING TEXT TO THE PRINTER DEVICE

Text written to a printer can be either processed text or unprocessed text.

Processed text is written to the device using the CMD_ WRITE command. The printer device
accepts a character stream, translates any embedded escape sequences into the proper sequences
for the printer being used and then sends it to the printer. The escape sequence translation is based
on the printer driver selected either through Preferences or through your application. You may also
send a NULL-terminated string as processed text.

Unprocessed text is written to the device using the PRD__RA WWRITE command. The printer
device accepts a character stream and sends it unchanged to the printer. This implies that you
know the exact escape sequences required by the printer you are using. You may not send a
NULL-terminated string as unprocessed text.

176 Amiga ROM Kernel Reference Manual: Devices

One additional point to keep in mind when using PRD_RA WWRITE is that Preference settings for
the printer are ignored. Unless the printer has already been initialized by another command, the
printer's own default settings will be used when printing raw, not the user's Preferences settings.

You write processed text to the printer device by passing an IOStdReq to the device with
CMD_ WRITE set in io_Command, the number of bytes to be written set in io__Length and
the address of the write buffer set in io_Data.

To write a NULL-terminated string, set the length to -1; the device will output from your buffer
until it encounters a value of zero (OxOO).

PrintiO->ios.io Length = -1;
PrintiO->ios. io -Data = (APTR) "I went to a fight and a hockey game broke out."
PrintiO->ios.io-Command = CMD WRITE;
DoiO((struct IORequest *)PrintiO);

The length of the request is -1, meaning we are writing a NULL-terminated string. The number of
characters sent will be found in io__Actual after the write request has completed.

You write unprocessed text to the printer device by passing an IOStdReq to the device with
PRD_RAWWRITE set in io_Command, the number of bytes to be written set in io_Length and
the address of the write buffer set in io_Data.

UBYTE *outbuffer;

PrintiO->ios.io Length = strlen(outbuffer);
PrintiO->ios.io=Data = (APTR)outbuffer;
PrintiO->ios.io Command = PRO RAWWRITE;
DoiO((struct IORequest *)PrintiO);

IOStdReq Only. 1/0 requests with CMD_ WRITE and PRD_RA WWRITE must use the
IOStdReq structure of the union printeriO.

IMPORTANT POINTS ABOUT PRINT REQUESTS

• Perform printer I/0 from a separate task or process
It is quite reasonable for a user to expect that printing will be performed as a background
operation. You should try to accommodate this expectation as much as possible.

• Give the user a chance to stop
Your application should always allow the user to stop a print request before it is finished.

• Don't confuse aborting a print request with cancelling a page
Some applications seem to offer the user the ability to abort a multi-page print request when
in fact the abort is only for the current page being printed. This results in the next page being
printed instead of the request being stopped. Do not do this! It only confuses the user and
takes away from your application. There is nothing wrong with allowing the user to cancel a
page and continue to the next page, but it should be explicit that this is the case. If you abort a
print request, the entire request should be aborted.

Printer Device 177

CLOSING THE PRINTER DEVICE

Each OpenDevice() must eventually be matched by a call to CloseDevice().

All 1/0 requests must be complete before CloseDevice(). If any requests are still pending, abort
them with AbortiO().

AbortiO(PrintiO); /*Ask device to abort request, if pending*/
WaitiO(PrintiO); /*Wait for abort, then clean up*/

CloseDevice((struct IORequest *)PrintiO);

Use Abort/0()/Wait/0() Intelligently. Only call AbortiO()/WaitiO() for requests which
have already been sent to the printer device. Using the AbortiO()/WaitiO() sequence on
requests which have not been sent results in a hung condition.

Sending Printer Commands to a Printer

As mentioned before, it is possible to include printer commands (escape sequences) in the character
stream and send them to the printer using the CMD_ WRITE device 1/0 command. It is also
possible to use the printer command names using the device 1/0 command PRD_pRfCOMMAND
with the IOPrtCmdReq data structure. This gives you a mnemonic way of setting the printer to
your program needs.

You send printer commands to the device by passing an IOPrtCmdReq to the device with
PRD_pRTCOMMAND set in io_Command, the printer command set in io_FrtCommand and up
to four parameters set in ParmO through Parm3.

#include <devices/printer. h>

PrintiO->iopc. io PrtCommand ~ aSLRM; /* Set left & right margins *I
PrintiO->iopc.io-ParmO ~ 1; /* Set left margin~ 1 */
PrintiO->iopc.io-Parm1 ~ 79; /* Set right margin ~ 79 */
PrintiO->iopc.io-Parm2 ~ 0;
PrintiO->iopc.io-Parm3 ~ 0;
PrintiO->iopc.io-Command ~ PFD PRTCOMMAND;
DoiO((struct IORequest *)PrintiO);

Consult the command function table listed below for other printer commands.

PRINTER COMMAND DEFINITIONS

The following table describes the supported printer functions.

Just Because We Have It Doesn't Mean You Do. Not all printers support every
command. Unsupported commands will either be ignored or simulated using available
functions.

To transmit a command to the printer device, you can either formulate a character stream con­
taining the material shown in the "Escape Sequence" column of the table below or send an
PRD_pRTCOMMAND device 1/0 command to the printer device with the "Name" of the function
you wish to perform.

178 Amiga ROM Kernel Reference Manual: Devices

Printer Device Command Functions

Cmd Escape Defined
Name No. Sequence Function by:

aRIS 0 ESCc Reset ISO
aRIN 1 ESC#1 Initialize +++
aiND 2 ESCD Line feed ISO
aNEL 3 ESCE Retum,linefeed ISO
aRI 4 ESCM Reverse linefeed ISO

aSGRO 5 ESC[Om Nonnal char set ISO
aSGR3 6 ESC[3m Italics on ISO
aSGR23 7 ESC[23m Italics off ISO
aSGR4 8 ESC[4m Underline on ISO
aSGR24 9 ESC[24m Underline off ISO
aSGR1 10 ESC[1m Boldface on ISO
aSGR22 11 ESC[22m Boldface off ISO
aSFC 12 ESC[nm Set foreground color where n ISO

stands for a pair of ASCII digits,
3 followed by any number0-9
(See ISOColor Table)

aSBC 13 ESC[nm Set background color where n ISO
stands for a pair of ASCII digits,
4 followed by any number 0-9
(See ISO Color Table)

aSHORPO 14 ESC[Ow Nonnal pitch DEC
aSHORP2 15 ESC[2w Elite on DEC
aSHORP1 16 ESC[lw Elite off DEC
aSHORP4 17 ESC[4w Condensed fine on DEC
aSHORP3 18 ESC[3w Condensed off DEC
aSHORP6 19 ESC[6w Enlarged on DEC
aSHORP5 20 ESC[5w Enlarged off DEC
aDEN6 21 ESC[6"z Shadow print on DEC (sort ot)
aDEN5 22 ESC[5"z Shadow print off DEC
aDEN4 23 ESC[4"z Doublestrike on DEC
aDEN3 24 ESC[3"z Doublestrike off DEC
aDEN2 25 ESC[2"z NLQon DEC
aDEN1 26 ESC[1"z NLQoff DEC

aSUS2 27 ESC[2v Superscript on +++
aSUS1 28 ESC[1v Superscript off +++
aSUS4 29 ESC[4v Subscript on +++
aSUS3 30 ESC[3v Subscript off +++
aSUSO 31 ESC[Ov Nonnalize the line +++
aPLU 32 ESCL Partial line up ISO
aPLD 33 ESCK Partial line down ISO

aFNTO 34 ESC(B US char set or Typeface 0 DEC
aFNT1 35 ESC(R French char set or Typeface 1 DEC

Printer Device 179

aFNT2 36 ESC(K German char set or Typeface 2 DEC
aFNT3 37 ESC(A UK char set or Typeface 3 DEC
aFNT4 38 ESC(E Danish I char set or Typeface 4 DEC
aFNT5 39 ESC(H Swedish char set or Typeface 5 DEC
aFNT6 40 ESC(Y Italian char set or Typeface 6 DEC
aFNT7 41 ESC(Z Spanish char set or Typeface 7 DEC
aFNT8 42 ESC(J Japanese char set or Typeface 8 +++
aFNT9 43 ESC(6 Norwegian char set or Typeface 9 DEC
aFNTlO 44 ESC(C Danish II char set or Typeface 10 +++

(See Suggested Typefaces Table)

aPROP2 45 ESC[2p Proportional on +++
aPROPl 46 ESC[lp Proportional off +++
aPROPO 47 ESC[Op Proportional clear +++
aTSS 48 ESC[nE Set proportional offset ISO
aJFY5 49 ESC[5 F Auto left justify ISO
aJFY7 50 ESC[? F Auto right justify ISO
aJFY6 51 ESC[6 F Auto full justify ISO
aJFYO 52 ESC[OF Auto justify off ISO
aJFY3 53 ESC[3 F Letter space (justify) ISO (special)
aJFYl 54 ESC[l F Word fill(auto center) ISO (special)

aVERPO 55 ESC[Oz l/8" line spacing +++
aVERPl 56 ESC[lz l/6" line spacing +++
aSLPP 57 ESC[nt Set form length n DEC
aPERF 58 ESC[nq Perf skip n (n>O) +++
aPERFO 59 ESC[Oq Perf skip off +++

aLMS 60 ESC#9 Left margin set +++
aRMS 61 ESC#O Right margin set +++
aTMS 62 ESC#8 Top margin set +++
aBMS 63 ESC#2 Bottom margin set +++
aSTBM 64 ESC[n;nr Top and bottom margins DEC
aSLRM 65 ESC[n;ns Left and right margins DEC
a CAM 66 ESC#3 Oear margins +++

aHTS 67 ESCH Set horizontal tab ISO
aVTS 68 ESCJ Set vertical tabs ISO
aTBCO 69 ESC[Og Oear horizontal tab ISO
aTBC3 70 ESC[3g Oear all h. tabs ISO
aTBCl 71 ESC[lg Oear vertical tab ISO
aTBC4 72 ESC[4g Oear all v. tabs ISO
aTBCALL 73 ESC#4 Oear all h. & v. tabs +++
aTBSALL 74 ESC#5 Set default tabs +++
aEXTEND 75 ESC[n"x Extended commands +++

aRAW 76 ESC[n"r Next n chars are raw +++

180 Amiga ROM Kernel Reference Manual: Devices

Legend:

ISO indicates that the sequence has been defined by the International
Standards Organization. This is also very similar to ANSI x3.64.

DEC indicates a control sequence defined by Digital Equipment Corporation.

+++ indicates a sequence unique to Amiga.

n stands for a decimal number expressed as a set of ASCII digits.
In the aRAW string ESC[5"rHELLO, n is substituted by 5, the
number of RAW characters you send to the printer.

ISO Color Table Suggested Typefaces

0 Black 0 Default typeface
1 Red 1 Line Printer or equivalent
2 Green 2 Pica or equivalent
3 Yellow 3 Elite or equivalent
4 Blue 4 Helvetica or equivalent
5 Magenta 5 Times Roman or equivalent
6 Cyan 6 Gothic or equivalent
7 White 7 Script or equivalent
8 NC 8 Prestige or equivalent
9 Default 9 Caslon or equivalent

10 Orator or equivalent

Obtaining Printer Specific Data

Information about the printer in use can be obtained by reading the PrinterData and
PrinterExtendedData structures. The values found in these structures are determined by the
printer driver selected through Preferences. The data structures are defined in devices!prtbase.h.

Printer specific data is returned in printeriO when the printer device is opened. To read the
structures, you must first set the Printer Data structure to point to iodrp.io_Device of the printeriO
used to open the device and then set PrinterExtendedData to point to the extended data portion of
Printer Data.

I*
* Printer Data.c

*
* Example getting driver specifics.

*
* Compiled with SAS C S.lOa. lc -cfist -v -L Printer Data

*
* Run from CLI only
*I

nclude <exec/types. h>
nclude <exec/ports. h>
nclude <devices/printer.h>
nclude <devices/prtbase.h>

nclude <cl b/exec protos. h>
nclude <cl b/alib-protos.h>
nclude <cl b/alib::::stdio_protos.h>

Printer Device 181

union printeriO
(

struct IOStdReq os;
struct IODRPReq odrp;
struct IOPrtCmdReq ope;

) ;

VOID main(VOID);

VOID main(VOID)
(
struct MsgPort *PrinterMP;
union printeriO *PIO;
struct PrinterData *PD;
struct PrinterExtendedData *PED;

I* Create non-public messageport. Could use CreateMsgPort() for this, that's
* V37 specific however.
*I

if (PrinterMP = (struct MsgPort *)CreatePort(O,O))
(

else

I* Allocate printeriO union *I
if (PIO = (union printeriO *)CreateExtiO(PrinterMP, sizeof(union printeriO)))

(

else

I* Open the printer.device *I
if (! (OpenDevice("printer.device",O, (struct IORequest *)PIO,O)))

(

I* Now that we've got the device opened, let's see what we've got.
* First, get a pointer to the printer data.
*I

PD = (struct PrinterData *)PIO->iodrp.io Device;
I* And a pointer to the extended data *I -
PED = (struct PrinterExtendedData *) &PD->pd_SegmentData->ps_PED;

I* See the <deviceslprtbase.h> include file for more details on
* the PrinterData and PrinterExtendedData structures.
*I

printf("Printername: '%s', Version: %ld, Revision: %ld\n",
PED->ped PrinterName, PD->pd SegmentData->ps Version,
PD->pd_SegmentData->ps_Revision); -

printf("PrinterClass: Ox%lx, ColorClass: Ox%lx\n",
PED->ped_PrinterClass, PED->ped_ColorClass);

printf("MaxColumns: %ld, NumCharSets: %ld, NumRows: %ld\n",
PED- >ped_MaxColumns, PED- >ped_NumCharSets, PED- >ped_ NumRows);

printf("MaxXDots: %ld, MaxYDots: %ld, XDotsinch: %ld, YDotsinch: %ld\n",
PED- >ped _ MaxXDots, PED- >ped _ MaxYDots, PED- >ped _ XDot sinch, PED- >ped_ YDot sinch) ;

CloseDevice((struct IORequest *)PIO);
)

else
printf("Can't open printer.device\n");

DeleteExtiO((struct IORequest *)PIO);
)

printf("Can't CreateExtiO\n");
DeletePort((struct MsgPort *)PrinterMP);
)

printf("Can't CreatePort\n");

Reading and Changing the Printer Preferences Settings

The user preferences can be read and changed without running the Workbench Preferences tool.
Reading printer preferences can be done by referring to PD->pd_Preferences. Listed on the next
page are the printer Preferences fields and their valid ranges.

182 Amiga ROM Kernel Reference Manual: Devices

Text Preferences

PrintPitch
PrintQuality
PrintS pacing
PrintLeftMargin
PrintRightMargin
Paper Length
PaperSize

Paper Type

Graphic Preferences

Printlmage
PrintAspect
PrintShade
PrintThreshold
PrintFiags

PrintMaxWidth
PrintMaxHeight
PrintDensity
PrintXOffset

PICA, ELITE, FlNE
DRAFf, LETTER
SIXJ.PI, EIGHT _LPI
1 to PrintRightMargin
PrintLeftMargin to 999
1 to 999
US_LETTER, US_LEGAL, N_TRACfOR, W _ TRACfOR,
CUSTOM
FANFOLD, SINGLE

IMAGILPOSITIVE, IMAGE__NEGATIVE
ASPECf_HORIZ,ASPECf_VERT
SHADE_BW,SHADE_GREYSCALE,SHADE_COLOR
1 to 15
CORRECf_RED, CORRECf_GREEN,
CORRECf_BLUE, CENTER._IMAGE,
IGNORE_DIMENSIONS, BOUNDED_DIMENSIONS,
ABSOLUTE_DIMENSIONS, PIXEL_DIMENSIONS,
MULTIPLY _DIMENSIONS, INTEGER._SCALING,
ORDERED_DITHERING, HALFTONE_DITHERING,
FLOYD_DITHERING, ANTLALIAS,
GREY _SCALE2
0 to 65535
0 to 65535
1 to 7
0 to 255

This example program changes various settings in the printer device's copy of preferences.

/*
* Set Prefs.c
*
*This example changes the printer device's COPY of preferences (as obtained
*when the printer device was opened by a task via OpenDevice()). Note that
* it only changes the printer device's copy of preferences, not the preferences
* as set by the user via the preference editor(s).
*
* Compile with SAS C 5.10: LC -bl -cfistq -v -y -L

*
* Run from CLI only
*I

nclude <exec/types. h>
nclude <devices/printer. h>
il ncl ude <devi ces/prtbase. h>
nclude <intuition/intuition.h>
il nclude <intuition/screens.h>
ncl ude <intuition/preferences. h>

nclude <clib/exec protos.h>
il nclude <clib/alib-protos.h>
nclude <clib/alib-stdio protos.h>
nclude <clib/graphics protos.h>
nclude <clib/intuition_protos.h>

Printer Device 183

struct Library *IntuitionBase;
struct Library *GfxBase;

union printeriO
{

struct IOStdReq ios;
struct IODRPReq iodrp;
struct IOPrtCmdReq iopc;

} ;

struct MsgPort *PrintMP;
union printeriO *pio;

char message[] = "\
This is a test message to see how this looks when printed\n\
using various printer settings.\n\n";

VOID main(VOID);
VOID DoPrinter(VOID);
int DoTest(VOID);

VOID main(VOID)
{

if (IntuitionBase = OpenLibrary("intuition.library",OL))
{
if (GfxBase = OpenLibrary("graphics.library",OL))

{
DoPrinter ();
CloseLibrary(GfxBase);
l

CloseLibrary(IntuitionBase);
l

VOID DoPrinter(VOID)
{

if (PrintMP CreatePort(OL,OL))
{
if (pio (union printeriO *)CreateExtiO(PrintMP,sizeof(union printeriO)))

{
if (! (OpenDevice ("printer.device", OL, (struct IORequest *)pia, OL)))

{

DeTest();
CloseDevice((struct IORequest *)pio);
}

DeleteExtiO((struct IORequest *)pia);
}

DeletePort(PrintMP);
}

DoTest(VOID)
{
struct PrinterData *PD;
struct Preferences *prefs;
UWORD newpitch;
UWORD newspacing;

/* Send INIT sequence - make sure printer is inited- some */
/* printers may eject the current page if necessary when inited */

pio->ios.io Command= CMD WRITE;
pio->ios. io-Data = "\033#l";
pio->ios. io=:Length = -lL;

if (DoiO((struct IORequest *)pio))
return(FALSE);

/* Print some text using the default settings from Preferences */

pio->ios.io Command= CMD WRITE;
pio->ios.lo-Data =message;
pio->ios.lo Length = -lL;

184 Amiga ROM Kernel Reference Manual: Devices

if(DoiO((struct IORequest *)pic))
return(FALSE);

I* Now try changing some settings
* Note that we could just as well send the printer.device escape
* sequences to change these settings, but this is an example program.
*I

I* Get pointer to printer data *I
PD = (struct PrinterData *) pio->ios.io_Device;

I* Get pointer to printer's copy of preferences
* Note that the printer.device makes a copy of preferences when
*the printer.device is successfully opened via OpenDevice(),
* so we are only going to change the COPY of preferences
*I

prefs = &PD->pd_Preferences;

I* Change a couple of settings

if (prefs->PrintSpacing == SIX_LPI)
newspacing = EIGHT LPI;

if (prefs- >P rintSpacing == EIGHT LPI)
newspacing = SIX_LPI;

if (prefs->PrintPitch
newpitch = ELITE;

if (prefs->PrintPitch
newpitch = FINE;

if (prefs->PrintPitch
newpitch = PICA;

PICA)

ELITE)

FINE)

I* And let's change the margins too for this example*/

prefs->PrintLeftMargin = 20;
prefs->PrintRightMargin = 40;

prefs->PrintPitch = newpitch;
prefs->PrintSpacing = newspacing;

I* Send INIT sequence so that these settings are used *I

pio->ios.io Command = CMD WRITE;
pio->ios.io-Data = "\033#l";
pio->ios.io=Length = -lL;

if(DoiO((struct IORequest *)pic))
return(FALSE);

pio->ios.io Command = CMD WRITE;
pio->ios.io-Data = message;
pio->ios.io=Length = -lL;

if(DoiO((struct IORequest *)pic))
return(FALSE);

I* Send FormFeed so page is ejected */

pio->ios.io Command= CMD WRITE;
pio->ios.io-Data = "\014'';
pio->ios. io=Length = -lL;

if(DoiO((struct IORequest *)pic))
return(FALSE);

return(TRUE);
}

*I

Do Your Duty. The application program is responsible for range checking if the user is
able to change the preferences from within the application.

Printer Device 185

Querying the Printer Device

The status of the printer port and registers can be determined by querying the printer device. The
information returned will vary depending on the type of printer-parallel or serial-selected by the
user. If parallel, the data returned will reflect the current state of the parallel port; if serial, the data
returned will reflect the cunent state of the serial port.

You query the printer device by passing an IOStdReq to the device with PRD_QUERY set in
io_Command and a pointer to a structure to hold the status set in io_Data.

struct PStat
{

UBYTE LSB;
UBYTE MSB;

!* least significant byte of status */
/* most significant byte of status */

} ;

union printeriO ~PrintlO;

struct PStat status;

PrinliO->ios.io Data = &status; /* point to status structure */
PrintiO->ios.io-Command = PRD QUc'.RV;
DolO ((struct IORequest *)request i;

The status is returned in the two UBYTES set in the io__Data field. The printer type, either serial or
parallel, is returned in the io_Actual field.

io_Data Bit Active Function (Serial Device)

LSB 0 low reserved
1 low reserved
2 low reserved
3 low Data Set Ready
4 low OearTo Send
5 low Carrier Detect
6 low Ready To Send
7 low Data Terminal Ready

MSB 8 high read buffer overflow
9 high break sent (most recent output)
10 high break received (as latest input)
11 high transmit x-OFFed
12 high receive x-OFFed
13-15 high reserved

io_Data Bit Active Function (Parallel Device)

LSB 0 high printer busy (offline)
1 high paper out
2 high printer selected
3 read=O; write= 1
4-7 reserved

MSB 8-15 reserved

io_Actual 1-parallel, 2-serial

186 Amiga ROM Kernel Reference Manual: Devices

Error Codes from the Printer Device

The printer device returns error codes whenever an operation is attempted. There are two types of

error codes that can be returned. Printer device error codes have positive values; Exec 1/0 error

codes have negative values. Therefore, an application should check for a non-zero return code as

evidence of an error, not simply a value greater than zero.

PrintiO->ios.io Length = strlen(outbuffer);
PrintiO->ios.io-Data = (APTR)outbuffer;
PrintiO->ios.io-Comrnand =PRO RAWWRITE;
if (DolO((struct-IORequest *)PrintiO))

printf ("RAW Write failed. Error: %d ", PrintiO->ios. io _Error);

The error is found in io_Error.

Printer Device Error Codes

Error
PDERILNOERR
PDERILCANCEL
PDERILNOTGRAPHICS
PDERILINVERTHAM
PDERILBADDIMENSION
PDERILDIMENSIONOVERFLOW
PDERILINTERNALMEMORY

PDERILBUFFERMEMORY

Value
0
1
2
3
4
5
6

7

Explanation
Operation successful
User canceled request
Printer cannot output graphics
OBSOLETE
Print dimensions are illegal
OBSOLETE
No memory available for internal
variables
No memory available for print buffer

Exec Error Codes

Error
IOERILOPENFAIL
IOERILABORTED
IOERILNOCMD
IOERILBADLENGTH

Value
-1
-2
-3
-4

Explanation
Device failed to open
Request terminated early (after AbortiO())
Command not supported by device
Not a valid length

Dumping a Rastport to a Printer

You dump a RastPort (drawing area) to a graphics capable printer by passing an IODRPReq to the

device with PRD_DUMPRPORT set in io_Command along with several parameters that define

how the dump is to be rendered.

union printeriO *PrintiO
struct RastPort *rastPort;
struct ColorMap *colorMap;
ULONG modeid;
UWORD sx, sy, sw, sh;
LONG de, dr;
UWORD s;

PrintiO-> odrp. o RastPort = rastPort;
PrintiO-> odrp. o-ColorMap = colorMap;
PrintiO-> odrp. o-Modes = modeid;
PrintiO-> odrp. o-SrcX = sx;
PrintiO-> odrp. o-SrcY = sy;

I* pointer to RastPort *I
I* pointer to color map *I
I* ModeiD of ViewPort *I
I* RastPort X offset *I
I* RastPort Y offset *I

Printer Device 187

PrintiO->iodrp. io SrcWidth ~ sw;
PrintiO->lodrp.io-SrcHeight ~ sh;
PrintiO->lodrp.io-DestCols ~de;
PrintiO->iodrp.io-DestRows ~ dr;
PrintiO->iodrp.io-Special ~ s;
PrintiO->iodrp.io-Command ~ PRO DUMPRPORT;
ScndiO((struct IORequest *)request);

/* print width from X offset */
/* print height from Y offset */
/* pixel width */
/* pixel height */
/* flags *I

The asynchronous SendiO() routine is used in this example instead of the synchronous DolO()
. A call to DolO() does not return until the 1/0 request is finished. A call to SendiO() returns
immediately. This allows your task to do other processing such as checking if the user wants to abort
the 1/0 request. It should also be used when writing a lot of text or raw data with CMD_ WRITE
and PRD_RA.WWRITE.

Here is an overview of the possible arguments for the RastPort dump.

io_RastPort
io_ColorMap
io_Modes
io_SrcX
io_SrcY
io_SrcWidth
io_SrcHeight
io_DestCols
io_DestRows
io_8pecial

A pointer to a RastPort. The RastPort's bitmap could be in Fast memory.
A pointer to a Color Map. This could be a custom one.
The viewmode flags or the ModeiD returned from GetVPModeiD() (V36).
X offset in the RastPort to start printing from.
Y offset in the RastPort to start printing from.
Width of the RastPort to print from io_8rcX.
Height of the RastPort to print from io_8rcY.
Width of the dump in printer pixels.
Height of the dump in printer pixels.
Flag bits (described below).

Looking at these arguments you can see the enormous flexibility the printer device offers for
dumping a RastPort. The RastPort pointed to could be totally custom defined. This flexibility
means it is possible to build a BitMap with the resolution of the printer. This would result in having
one pixel of the BitMap correspond to one pixel of the printer. In other words, only the resolution
of the output device would limit the final result. With 12 bit planes and a custom Color Map, you
could dump 4096 colors-without the HAM limitation-to a suitable printer. The offset, width
and height parameters allow dumps of any desired part of the picture. Finally the ViewPort mode,
io_DestCols, io_DestRows parameters, together with the io_Special flags define how the dump
will appear on paper and aid in getting the correct aspect ratio.

PRINTER SPECIAL FLAGS

The printer special flags (io_Fiags) of the IODRPReq provide a high degree of control over the
printing of a RastPort.

SPECIAL_ASPECf

SPECIAL_ CENTER

SPECIAL_NOFORMFEED

Allows one of the dimensions to be reduced/expanded to
preserve the correct aspect ratio of the printout.

Centers the image between the left and right edge of the
paper.

Prevents the page from being ejected after a graphics dump.
Usually used to mix graphics and text or multiple graphics
dump on a page oriented printer (normally a laser printer).

188 Amiga ROM Kernel Reference Manual: Devices

SPECIAL_NOPRINT

SPECIAL_ TRUSTME

SPECIAL_DENSITY1-7

SPECIAL_FULLCOLS

SPECIAL_FULLROWS

SPECIAL_FRACCOLS

SPECIAL_FRACROWS

SPECIAL_MILCOLS

The print size will be computed, and set in io_DestCols and
io_DestRows, but won't print. This way the application
can see what the actual printsize in printerpixels would be.

Instructs the printer not to send a reset before and after the
dump. This flag is obsolete for V1.3 (and higher) drivers.

This flag bit is set by the user in Preferences. Refer to
"Reading and Changing the Printer Preferences Settings"
if you want to change to density of the printout. (Or any
other setting for that matter.)

The width is set to the maximum possible, as determined
by the printer or the configuration limits.

The height is set to the maximum possible, as determined
by the printer or the configuration limits.

Informs the printer device that the value in io_DestCols is
to be taken as a longword binary fraction of the maximum
for the dimension. For example, if io_DestCols is Ox8000,
the width would be 1/2 (Ox8000 I Oxffft) of the width of the
paper.

Informs the printer device that the value in io_DestRows is
to be taken as a longword binary fraction for the dimension.

Informs the printer device that the value in io_DestCols
is specified in thousandths of an inch. For example, if
io_DestCols is 8000, the width of the printout would be
8.000 inches.

SPECIAL_MILROWS Informs the printer device that the value in io_DestRows
is specified in thousandths of an inch.

The flags are defined in the include file devices!printer.h.

PRINTING WITH CORRECTED ASPECT RATIO

Using the special flags it is fairly easy to ensure a graphic dump will have the correct aspect ratio
on paper. There arc some considerations though when printing a non-displayed RastPort. One
way to get a corrected aspect ratio dump is to calculate the printer's ratio from XDotslnch and
YDotslnch (taking into account that the printer may not have square pixels) and then adjust the
width and height parameters accordingly. You then ask for a non-aspect-ratio-corrected dump since
you already corrected it yourself.

Another possibility is having the printer device do it for you. To get a correct calculation you could
build your RastPort dimensions in two ways:

1. Using an integer multiple of one of the standard (NTSC) display resolutions and setting the
io_Modes argument accordingly. For example if your RastPort dimensions were 1280 x
800 (an even multiple of 640 x 400) you would set io_Modes to LACE I HIRES. Setting the
SPECIAL_ASPECT flag would enable the printer device to properly calculate the aspect ratio
of the image.

Printer Device 189

2. When using an arbitrary sized RastPort, you can supply the ModeiD of a display mode which
has the aspect ratio you would like for your RastPort. The aspect ratio of the various display
modes are defined as ticks-per-pixel in the Resolution field of the Display Info structure. You
can obtain this value from the graphics database. For example, the resolution of Productivity
Mode is 22:22, in other words, 1:1, perfect for a RastPort sized to the limits of the output
device. See the "Graphics Library" chapter of the Amiga ROM Kernel Reference Manual:
Libraries for general information on the graphics system.

The following example will dump a RastPort to the printer and wait for either the printer to finish
or the user to cancel the dump and act accordingly.

I* Demo_Dump.c
*
* Simple example of dumping a rastport to the printer, changing
* printer preferences programmatically and handling error codes.
*
* Compile with SAS C 5.10a. lc -cfist -v -L Demo_Dump
*
* Requires Kickstart V37
* Run from CLI only
*I

#include <exec/types.h>
#include <exec/memory. h>
#include <exec/ports.h>
#include <devices/printer. h>
#include <devices/prtbase.h>
#include <dos/dos.h>
#include <intuition/intuition. h>
#include <intuition/ screens. h>
#include <graphics/displayinfo.h>

#include <clib/exec protos.h>
#include <clib/alib -protos.h>
#include <clib/alib-stdio protos.h>
#include <clib/graphics protos. h>
#include <clib/intuition_protos .h>

struct IntuitionBase *IntuitionBase;
struct GfxBase *GfxBase;

union printeriO
{

struct IOStdReq ios;
struct IODRPReq iodrp;
struct IOPrtCmdReq iopc;

} ;

struct EasyStruct reqES =
{

sizeof(struct EasyStruct}, 0, "DemoDump",
n%s",
NULL,

} ;

/* Possible printer.device and I/0 errors */
static UBYTE *ErrorText[]
{

} ;

"PDERR NOERR"
"PDERR-CANCEL;',
"PDERR-NOTGRAPHICS",
"INVERTHAM", /* OBSOLETE */
"BADDIMENSION",
"DIMENSIONOVFLOW", /* OBSOLETE */
"INTERNALMEMORY",
"BUFFERMEMORY",
/* IO ERRs */
"IOERR OPENFAIL",
"IOERR-ABORTED",
"IOERR-NOCMD"
"IOERR-BADLENGTH"

190 Amiga ROM Kernel Reference Manual: Devices

I* Requester Action text *I
static UBYTE *ActionText[]
{

) ;

"OK I CANCEL",
"Continue",
"Abort",

#define OKCANCELTEXT 0
#define CONTINUETEXT 1
#define ABORTTEXT 2

VOID main(VOID);

VOID main(VOID)
{
struct MsgPort *PrinterMP;
union printeriO *PIO;
struct PrinterData *PD;
struct PrinterExtendedData *PED;
struct Screen *pubscreen;
struct ViewPort *vp;
STRPTR textbuffer;
LONG modeiD, i,j;
ULONG dcol[S], drow[S];
ULONG signal;

I* Fails silently if not V37 or greater. Nice thing to do would be to put up
* a V33 requester of course.
*I

I* Set up once *I
reqES.es_GadgetFormat = ActionText[CONTINUETEXT];

if (IntuitionBase = (struct IntuitionBase *)OpenLibrary("intuition.library", 37))
{
I* Using graphics.library to get the displaymodeiD of the public screen,
*which we'll pass to the printer.device.
*I

if (GfxBase = (struct GfxBase *)OpenLibrary("graphics.library", 37))
{
if (textbuffer = (STRPTR)AllocMem(256, MEMF CLEAR))

{ -

I* Create non-public messageport. Since we depend on V37 already, we'll
* use the new Exec function.
*I

if (PrinterMP = CreateMsgPort())
{
I* Allocate printeriO union *I
if (PIO = (union printeriO *)CreateExtiO(PrinterMP, sizeof(union printeriO)))

{
I* Open the printer.device *I
if (! (OpenDevice("printer.device",O, (struct IORequest *)PIO,O)))

{
I* Yahoo, we've got it.
*We'll use the PrinterData structure to get to the the printer
* preferences later on. The PrinterExtendedData structure will
* reflect the changes we'll make to the preferences.
*I

PD = (struct PrinterData *)PIO->iodrp.io Device;
PED = (struct PrinterExtendedData *)&PD-5pd_SegmentData->ps PED;

I* We're all set. We'll grab the default public screen (normally
* Workbench) and see what happens when we dump it with different
* densities.
*Next we'll put up a nice requester for the user and ask if
* (s)he wants to actually do the dump.
*I

if (pubscreen = LockPubScreen(NULL))
{
vp = &(pubscreen->ViewPort);
I* Use graphics.libraryiGetVPModeiD() to get the ModeiD of the screen. *I
if ((modeiD = GetVPModeiD(vp)) !=INVALID ID)

{

Printer Device 191

/*Seems we got a valid ModeiD for the default public screen (surprise).
* Do some fake screen dumps with densities 1, 3, 5 and 7. Depending on
* the driver, one or more may be the same.
*I

/* Fill in those parts of the IODRPRequest which won't change */
PIO->iodrp.io Command = PRD DUMPRPORT;
PIO->iodrp. io -RastPort = & (pubscreen->RastPort);
PIO->iodrp.io-ColorMap = vp->ColorMap;
PIO- >iodrp. io -Modes = modeiD;
PIO->iodrp. io -SrcX = pubscreen->LeftEdge;
PIO->iodrp.io-SrcY = pubscreen->TopEdge;
PIO- >iodrp. io -SrcWidth = pubscreen- >Width;
PIO- >iodrp. io ::::srcHeight = pubscreen- >Height;

for (i = 1, j=O; i < 8; i+=2, j++)
{
/* On return these will contain the actual dump dimension */
PIO->iodrp.io DestCols = 0;
PIO->iodrp.io-DestRows = 0;
I* We'll simply change our local copy of the

* Preferences structure. Likewise we could change
* all printer-related preferences.
*I

PD->pd Preferences.PrintDensity = i;
PIO->iodrp.io_Special = SPECIAL_NOPRINTISPECIAL_ASPECT;

/* No need to do asynchronous I/0 here */
DoiO((struct IORequest *)PIO);

if (PIO->iodrp.io Error == 0)
{ -
dcol[j] PIO->iodrp.io DestCols;
draw [j] PIO- >iodrp. io ::::DestRows;
)

else

)

{
j = PIO->iodrp.io Error;
if (j < 0) -

j = j * -1 + 7;

sprintf(textbuffer, "Error: %s\n", ErrorText[j]);
reqES.es GadgetFormat = ActionText[CONTINUETEXT];
EasyRequest(NULL, &reqES, NULL, textbuffer);
break;
)

/* Simple, lazy way to check if we encountered any problems */
if (i == 9)

{
/*Build an 'intelligent' requester*/
sprintf(textbuffer,

"%s: %5ld x %5ld\n%s: %5ld x %5ld\n%s: %5ld x%5ld\n%s: %5ld x %5ld\n\n%s",
"Density 1", dcol[O], drow[O],
"Density 3", dcol[1], drow[1],
"Density 5", dcol[2], drow[2],
"Density 7", dcol[3], drow[3],
"Print screen at highest density?");

reqES.es_GadgetFormat = ActionText[OKCANCELTEXT];

I* Obviously the choice presented to the user here is a very
* simple one. To print or not to print. In a real life
* application, a requester could be presented, inviting
* the user to select density, aspect, dithering etc.
* The fun part is, of course, that the user can, to a certain
* degree, be informed about the effects of her/his selections.
*I

if (EasyRequest(NULL, &reqES, NULL, textbuffer))
{
I* We've still got the density preference set to the highest

* density, so no need to change that.
* All we do here is re-initialize io DestCols/Rows and remove
* the SPECIAL NOPRINT flag from io Special.
*I - -

PIO->iodrp.io DestCols = 0;
PIO->iodrp.io-DestRows = 0;
PIO->iodrp.io::::special &= "SPECIAL_NOPRINT;

192 Amiga ROM Kernel Reference Manual: Devices

else

/* Always give the user a change to abort.
*So we'll use SendiO(), instead of DolO(), to be asynch and
* catch a possible user request to abort printing. Normally,
* the user would be presented with a nice, fat, ABORT requester.
* However, since this example doesn't even open a window, and is
*basically a 'GraphicDumpDefaultPubscreen' equivalent, we'll use
* CTRL-C as the user-abort. Besides that, got to keep it short.
*I

SendiO((struct IORequest *)PIO);

I* Now
* the
*I

signal

Wait() for either a user signal (CTRL-C) or a signal from
printer.device

= Wait (1 << PrinterMP->mp_SigBit

if (signal & SIGBREAKF CTRL C)
{ - -
/* User wants to abort */
AbortiO((struct IORequest *)PIO);
WaitiO((struct IORequest *)PIO);
I

if (signal & (1 << PrinterMP->mp_SigBit))
{

SIGBREAKF_CTRL_C);

/* printer is either ready or an error has occurred */
/* Remove any messages */
while(GetMsg(PrinterMP));
I

/* Check for errors (in this case we count user-abort as an error) */
if (PIO->iodrp.io Error!= 0)

{ -
j = PIO->iodrp.io Error;
if (j < 0) -

j = j * -1 + 7;
sprintf(textbuffer, "Error: %s\n", ErrorText[j]);
reqES.es GadgetFormat = ActionText[CONTINUETEXT];
EasyRequest(NULL, &reqES, NULL, textbuffer);
I

/* else user doesn't want to print */

/* Say what? */
EasyRequest(NULL, &reqES, NULL, "Invalid ModeiD\n");

UnlockPubScreen(NULL, pubscreen);
I

else
EasyRequest(NULL, &reqES, NULL, "Can't lock Public Screen\n");

CloseDevice((struct IORequest *)PIO);
I

else
EasyRequest(NULL, &reqES, NULL, "Can't open printer.device\n");

DeleteExtiO((struct IORequest *)PIO);
I

else
EasyRequest(NULL, &reqES, NULL, "Can't create Extented I/O Request\n");

DeleteMsgPort(PrinterMP);
I

else
EasyRequest(NULL, &reqES, NULL, "Can't create Message port\n");

/* else Out of memory? 256 BYTES? */
FreeMem(textbuffer,256);
I

CloseLibrary(GfxBase);
I /* else MAJOR confusion */

CloseLibrary(IntuitionBase);
I

Printer Device 193

STRIP PRINTING

Strip printing is a method which allows you to print a picture that normally requires a large print
buffer when there is not much memory available. This would allow, for example, a RastPort to be
printed at a higher resolution than it was drawn in. Strip printing is done by creating a temporary
RastPort as wide as the source RastPort, but not as high. The source RastPort is then rendered,
a strip at a time, into the temporary RastPort which is dumped to the printer.

The height of the strip to dump must be an integer multiple of the printer's NumRows if a non­
aspect-ratio-corrected image is to be printed.

For an aspect-ratio-corrected image, the SPECIAL_NOPRINT flag will have to be used to find an
io_DestRows that is an integer multiple of NumRows. This can be done by varying the source
height and asking for a SPECIAL_NOPRINT dump until io_DestRows holds a number that is an
integer multiple of the printer's NumRows.

If smoothing is to work with strip printing, a raster line above and below the actual area should be
added. The line above should be the last line from the previous strip, the line below should be the
first line of the next strip. Of course, the first strip should not have a line added above and the last
strip should not have a line added below.

The following is a strip printing procedure for a RastPort which is 200 lines high.

First strip
• copy source line 0 through 50 (51 lines) to strip RastPort lines 0 through 50 (51 lines).
• io_SrcY = 0, io_Height =50.
• the printer device can see there is no line above the first line to dump (since SrcY = 0)

and that there is a line below the last line to dump (since there is a 51 line RastPort and
only 50 lines are dumped).

Second strip
• copy source line 49 through 100 (52 lines) to strip RastPort lines 0

through 51 (52 lines).
• io_SrcY = 1, io_Height =50.
• the printer device can see there is a line above the first line to dump (since SrcY = 1)

and that there is a line below the last line to dump (since there is a 52 line RastPort and
only 50 lines are dumped).

Third strip
• copy source line 99 through 150 (52 lines) to strip RastPort lines 0 through 51 (52 lines).
• io_SrcY = 1, io_Height =50.
• the printer device can see there is a line above the first line to dump (since SrcY = 1)

and that there is a line below the last line to dump (since there is a 52 line RastPort and
only 50 lines are dumped).

Fourth strip
• copy source line 149 through 199 (51 lines) to strip RastPort lines 0 through 50 (51 lines).
• io_SrcY = 1, io_Height =50.
• the printer device can see there is a line above the first line to dump (since SrcY = 1)

and that there is no line below the last line to dump (since there is a 51 line RastPort
and only 50 lines are dumped).

194 Amiga ROM Kernel Reference Manual: Devices

ADDITIONAL NOTES ABOUT GRAPHIC DUMPS

1. When dumping a 1 bitplane image select the black and white mode in Preferences. This is
much faster than a grey-scale or color dump.

2. Horizontal dumps are much faster than vertical dumps.

3. Smoothing doubles the print time. Use it for final copy only.

4. F-S dithering doubles the print time. Ordered and half-tone dithering incur no extra overhead.

5. The lower the density, the faster the printout.

6. Friction-fed paper tends to be much more accurate than tractor-fed paper in terms of vertical
dot placement (i.e., less horizontal strips or white lines).

7. Densities which use more than one pass tend to produce muddy grey-scale or color printouts.
It is recommended not to choose these densities when doing a grey-scale or color dump.

Keep This in Mind. It is possible that the printer has been instructed to receive a certain
amount of data and is still in an "expecting" state if an 1/0 request has been aborted by the
user. This means the printer would try to finish the job with the data the next 1/0 request
might send. Currently the best way to overcome this problem is for the printer to be reset.

Printer Device 195

Creating a Printer Driver

Creating the printer-dependent modules for the printer device involves writing the data structures
and code, compiling and assembling them, and linking to produce an Amiga binary object file.
The modules a driver contains varies depending on whether the printer is non-graphics or graphics
capable.

All drivers contain these modules:

macros.i
printertag .asm
init.asm

data.c

dospecial.c

include file for init.asm, contains printer device macro definitions
printer specific capabilities such as density, character sets and color
opens the various libraries required by the printer driver. This will
be the same for all printers
contains printer device RAW commands and the extended charac­
ter set supported by the printer
printer specific special processing required for printer device com­
mands like aSLRM and aSFC

Graphic printer drivers require these additional modules:

render.c

transfer.c

density.c

printer specific processing to do graphics output and fill the output
buffer
printer specific processing called by render.c to output the buffer
to the printer. Code it in assembly if speed is important
printer specific processing to construct the proper print density
commands

The first piece of the printer driver is the PrinterSegment structure described in deviceslprtbase.h
(this is pointed to by the BPfR returned by the LoadSeg() of the object file). The PrinterSegment
contains the PrinterExtendedData (PED) structures (also described in devices/prtbase.h) at the
beginning of the object. The PED structure contains data describing the capabilities of the printer,
as well as pointers to code and other data. Here is the assembly code for a sample PrinterSegment,
which would be linked to the beginning of the sequence of files as printertag.asm.

***********************~**

*
*
*
*

printer device dependent code tag

*
~*********************

SECTION

*------ Included Files

*------

INCLUDE
INCLUDE
INCLUDE

INCLUDE

INCLUDE

Imported Names

XREF
XREF
XREF
XREF

printer

"exec/types.i 11

"exec/nodes.i"
11 exec/strings .. i"

"epsonX rev.i" contains VERSION & REVISION

''devices/prtbase.i''

Ini t
Expunge
Open
Close

196 Amiga ROM Kernel Reference Manual: Devices

XREF
XREF
XREF
XREF
XREF

Command Table
PrinterSegmentData

-DoSpecial
-Render
-ExtendedCharTable

*------ Exported Names ---

XDEF PEDData

**
; in case anyone tries to execute this
MOVEQ #0,00
RTS

DC.W
DC.W

PEDData:
DC.L
DC.L
DC.L
DC.L
DC.L
DC.B
DC.B
DC.B
DC.B
DC.W
DC.L
DC.L
DC.W
DC.W
DC.L
DC.L
DC.L
DC.L

VERSION
REVISION

printerName
I nit
Expunge
Open
Close

PPC COLORGFX
PCC-YMCB
136
10
8
1632
0
120
72

CornmandTable
-DoSpecial

Render
30

must be at least 35 (V1.3 and up)
your own revision number

pointer to the printer name
pointer to the initialization code
pointer to the expunge code
pointer to the open code
pointer to the close code
PrinterClass
ColorClass
MaxColumns
NumCharSets
NumRows
MaxXDots
MaxYDots
XDotsinch
YDotsinch
pointer to Command strings
pointer to Command Code function
pointer to Graphics Render function
Timeout

DC.L ExtendedCharTable ; pointer to 8BitChar table

; Flag for PrintMode (reserve space) DS.L
DC.L

1
0 ; pointer to ConvFunc (char conversion function)

printerName:
DC.B
DC.B
END

'EpsonX'
0

The printer name should be the brand name of the printer that is available for usc by programs
wishing to be specific about the printer name in any diagnostic or instruction messages. The four
functions at the top of the structure are used to initialize this printer-dependent code:

(*(PED->ped_lnit))(PD) ;
This is called when the printer-dependent code is loaded and provides a pointer to the printer
device for usc by the printer-dependent code. It can also be used to open up any libraries or
devices needed by the printer-dependent code.

(*(PED-> ped_Expunge))() ;
This is called immediately before the printer-dependent code is unloaded, to allow it to close
any resources obtained at initialization time.

(*(PED->ped_Open))(ior) ;
This is called in the process of an OpenDevice() call, after the Preferences are read and the
correct primitive 1/0 device (parallel or serial) is opened. It must return zero if the open is
successful, or non-zero to terminate the open and return an error to the user.

(*(PED->ped_Close))(ior) ;
This is called in the process of a CloseDevice() call to allow the printer-dependent code to
close any resources obtained at open time.

Printer Device 197

The pd_ variable provided as a parameter to the initialization call is a pointer to the Printer Data
structure described in devices/prtbase.h. This is also the same as the io_Device entry in printer 1/0
requests.

pd_SegmentData
This points back to the PrinterSegment, which contains the PED.

pd_PrintBuf
This is available for use by the printer-dependent code-it is not otherwise used by the printer
device.

(*pcLPWrite)(data, length);
This is the interface routine to the primitive 1/0 device. This routine uses two I/0 requests to
the primitive device, so writes are double-buffered. The data parameter points to the byte data
to send, and the length is the numberofbytes.

(*pd_PBothReady)();
This waits for both primitive 1/0 requests to complete. This is useful if your code does not want
to use double buffering. If you want to use the same data buffer for successive pd_PWrites,
you must separate them with a call to this routine.

pd_Preferences
This is the copy of Preferences in use by the printer device, obtained when the printer was
opened.

The timeout field is the number of seconds that an 1/0 request from the printer device to the
primitive 1/0 device (parallel or serial) will remain posted and unsatisfied before the timeout
requester is presented to the user. The timeout value should be long enough to avoid the requester
during nonnal printing.

The PrintMode field is a flag which indicates whether text has been printed or not (1 means printed,
0 means not printed). This flag is used in drivers for page oriented printers to indicate that there is
no alphanumeric data waiting for a fonnfeed.

WRITING AN ALPHANUMERIC PRINTER DRIVER

The alphanumeric portion of the printer driver is designed to convert ANSI x3.64 style commands
into the specific escape codes required by each individual printer. For example, the ANSI code for
underline-on is ESC[4m. The Commodore MPS-1250 printer would like a ESC[-1 to set underline­
on. The HP Laser Jet accepts ESC[&dD as a start underline command. By using the printer driver,
all printers may be handled in a similar manner.

There are two parts to the alphanumeric portion of the printer driver: the CommandTable data
table and the DoSpecial() routine.

198 Amiga ROM Kernel Reference Manual: Devices

Command Table

The CommandTable is used to convert all escape codes that can be handled by simple substitution.
It has one entry per ANSI command supported by the printer driver. When you are creating a
custom Command Table, you must maintain the order of the commands in the same sequence as
that shown in deviceslprinter.h. By placing the specific codes for your printer in the proper positions,
the conversion takes place automatically.

Octal knows NULL. If the code for your printer requires a decimal 0 (an ASCII NULL
character), you enter this NULL into the CommandTable as octal 376 (decimal254).

Placing an octal value of377 (255 decimal) in a position in the command table indicates to the printer
device that no simple conversion is available on this printer for this ANSI command. For example,
if a daisy-wheel printer does not have a foreign character set, 377 octal (255 decimal) is placed
in that position in the command table. However, 377 in a position can also mean that the ANSI
command is to be handled by code located in the DoSpecial() function. For future compatibility all
printer commands should be present in the command table, and those not supported by the printer
filled with the dummy entry 377 octal.

DoSpeclal()

The DoSpecial{) function is meant to implement all the ANSI functions that cannot be done by
simple substitution, but can be handled by a more complex sequence of control characters sent to
the printer. These are functions that need parameter conversion, read values from Preferences, and
so on. Complete routines can also be placed in dospecial.c. For instance, in a driver for a page
oriented-printer such as the HP LaserJet, the dummy Close() routine from the init.asm file would
be replaced by a real Close() routine in dospecial.c. This close routine would handle ejecting the
paper after text has been sent to the printer and the printer has been closed.

The DoSpecial() function is set up as follows:

#include "exec/types.h"
#include "devices/printer.h"
#include "devices/prtbase.h"

extern struct PrinterData *PO;

DoSpecial(command,outputBuffer,vline,currentVMI,crlfFlag,Parms)
UBYTE outputBuffer[];
UWORD *command;
BYTE *vline;
BYTE *currentVMI;
BYTE *crlfFlag;
UBYTE Farms[];
{ /*code begins here ... */

where

command
points to the command number. The devices!printer.h file contains the definitions for the
routines to use (aRIN is initialize, and so on).

vline
points to the value for the current line position.

currentVMI
points to the value for the current line spacing.

Printer Device 199

crltFlag
points to the setting of the "add line feed after carriage return" flag.

Parms
contain whatever parameters were given with the ANSI command.

outputBuffer
points to the memory buffer into which the converted command is returned.

Almost every printer will require an aRIN (initialize) command in DoSpecial(). This command

reads the printer settings from Preferences and creates the proper control sequence for the specific

printer. It also returns the character set to normal (not italicized, not bold, and so on). Other

functions depend on the printer.

Certain functions are implemented both in the CommandTable and in the DoSpecial() routine.
These are functions such as superscript, subscript, PLU (partial line up), and PLD (partial line

down), which can often be handled by a simple conversion. However, some of these functions must

also adjust the printer device's line-position variable.

Save the Data! Some printers lose data when sent their own reset command. For this

reason, it is recommended that if the printer's own reset command is going to be used,
PD->pd_PWaitEnabled should be defined to be a character that the printer will not print.

This character should be put in the reset string before and after the reset character(s) in the
command table.

In the EpsonX[CBM_MPS-1250] DoSpecial() function you'll see

if (*command == aRIS)
(/* reset command */
PD->pd_PWaitEnabled = \375; /* preserve that data! */

while in the command table the string for reset is defined as "\375\033@\375". This means that

when the printer device outputs the reset string "\033@", it will first see the "\375", wait a second

and output the reset string. While the printer is resetting, the printer device gets the second "\375"
and waits another second. This ensures that no data will be lost if a reset command is embedded in
a string.

Printertag.asm

For an alphanumeric printer the printer-specific values that need to be filled in printertag.asm are
as follows:

MaxColumns
the maximum number of columns the printer can print across the page.

NumCharSets
the number of character sets which can be selected.

8BitChars
a pointer to an extended character table. If the field is null, the default table will be used.

ConvFunc
a pointer to a character conversion routine. If the field is null, no conversion routine will be
used.

200 Amiga ROM Kernel Reference Manual: Devices

Extended Character Table

The 8BitChars field could contain a pointer to a table of characters for the ASCII codes $AO to
$FF. The symbols for these codes are shown in the "IFF Appendix" of this manual. If this field
contains a NULL, it means no specific table is provided for the driver, and the default table is to be
used instead.

Care should be taken when generating this table because of the way the table is parsed by the
printer device. Valid expressions in the table include \011 where 011 is an octal number, \\000
for null and \ \n where n is a 1 to 3 digit decimal number. To enter an actual backslash in the
table requires the somewhat awkward \\\\. As an example, here is a list of the first entries of the
EpsonxX[CBM_MPS-1250] table:

char *ExtendedCharTable[] =
{

} ;

.. ",
"\033R\007[\033R\\0",
"c\0101",
"\033R\003#\033R\\0",
"\033R\005$\033R\\0",
"\033R\010\\\\\033R\\0",
.. I II I
"\033R\002@\033R\\0",
"\033R\001-\033R\\0",
"c",
"\033S\\0a\010_\033T",
"<", .. -.. , .. _ .. ,
"r", .. _ .. .
I* more entries go here *I

I* NBSP *I
I* i *I
I* c I *I
I* L- *I
I* o *I
I* Y- *I
I* I *I
I* ss *I
I* " *I
I* copyright *I
I* a *I
I* << *I

I* - *I
I* SHY *I
I* registered trademark *I
I* - *I

Character Conversion Routine

The ConvFunc field contains a pointer to a character conversion function that allows you to
selectively translate any character to a combination of other characters. If no translation conversion
is necessary (for most printers it isn't), the field should contain a null.

ConvFunc() arguments are a pointer to a buffer, the character currently processed, and a CR/LF
flag. The ConvFunc() function should return a -1 if no conversion has been done. If the character
is not to be added to the buffer, a 0 can be returned. If any translation is done, the number of
characters added to the buffer must be returned.

Besides simple character translation, the ConvFunc() function can be used to add features like
underlining to a printer which doesn't support them automatically. A global flag could be introduced
that could be set or cleared by the DoSpecial() function. Depending on the status of the flag the
ConvFunc() routine could, for example, put the character, a backspace and an underline character
in the buffer and return 3, the number of characters added to the buffer.

The ConvFunc() function for this could look like the following example:

#define DO UNDERLINE OxOl
#define DO-BOLD Ox02
I* etc *I -

external short myflags;

int ConvFunc(buffer, c, crlf_flag)
char *buffer, c;
int crlf_flag

Printer Device 201

{
int nr_of_chars added = 0;

I* for this example we only do this for chars in the Ox20-0x7e range *I
I* Conversion of ESC (Oxlb) and CSI (0x9b) is NOT recommended *I

if (c > Oxlf && c < Ox7f)
{ I* within space - - range ? *I
if (myflags & DO_UNDERLINE)

{
*buffer++ c;
*buffer++ = Ox08;
*buffer++ = ' ';
nr of chars added
)

3;

I* the character itself *I
I* a backspace *I
I* an underline char *I
I* added three chars to buffer *I

if (myflags & DO BOLD)

)

{ -
if (nr of chars added)

{ - - I* already have
*buffer++ = Ox08;
++nr of chars added;
) - - -

*buffer++ = c;
*buffer++ = Ox08;
*buffer++ = c;
++nr of chars added;
if (myflags &-DO UNDERLINE)

added something *I
I* so we start with backspace *I
I* and increment the counter *I

{ I* did we do underline too? *I
buffer++ = Ox08; I then backspace again *I
buffer++=' '; I (printer goes crazy by now) *I
nr of chars added+= 2; I* two more chars *I
I

if (nr of chars added)
return(nr of chars_added);

else - -
I* total nr of chars we added *I

return(-1); I* we didn't do anything *I

In DoSpecial() the flagbits could be set or cleared, with code like the following:

if (*command == aRIS) I* reset command *I
my flags = 0; I* clear all flags *I

if (*command == aRIN) I* initialize command *I
my flags = 0;

if (*command == aSGRO) I* 'PLAIN' command *I
my flags = 0;

if (*command == aSGR4) I* underline on *I
my flags I= DO UNDERLINE; I* set underline bit *I -

if (*command == aSGR24) I* underline off *I
my flags &= -Do - UNDERLINE; I* clear underline bit *I

if (*command == aSGRl) I* bold on *I
my flags I= DO_BOLD; I* set bold bit *I

if (*command == aSGR22) I* bold off *I
my flags &= -Do_BOLD; I* clear bold bit *I

Try to keep the expansions to a minimum so that the throughput will not be slowed down too much,
and to reduce the possibility of data overrunning the printer device buffer.

202 Amiga ROM Kernel Reference Manual: Devices

WRITING A GRAPHICS PRINTER DRIVER

Designing the graphics portion of a custom printer driver consists of two steps: writing the printer­
specific Render(), Transfer() and SetDensity() functions, and replacing the printer-specific values
inprintertag.asm. Render(), Transfer() and SetDensity() comprise render.c, transfer.c, and den­
sity.c modules, respectively.

A printer that does not support graphics has a very simple form of Render(); it returns an error.
Here is sample code for Render() for a non-graphics printer (such as an Alphacom or Diablo 630):

#include "exec/types.h"
#include "devices/printer.h"
int Render ()
{

return(PDERR_NOTGRAPHICS);

The following section describes the contents of a typical driver for a printer that does support
graphics.

Render()

This function is the main printer-specific code module and consists of seven parts referred to here
as cases:

• Pre-Master initialization (Case 5)

• Master initialization (Case 0)

• Putting the pixels in a buffer (Case 1)

• Dumping a pixel buffer to the printer (Case 2)

• Closing down (Case 4)

• Clearing and initializing the pixel buffer (Case 3)

• Switching to the next color(Case 6) (special case for multi-color printers)

State Your Case. The numbering of the cases reflects the value of each step as a case in
a C-language switch statement. It does not denote the order that the functions are executed;
the order in which they are listed above denotes that.

For each case, Render() receives four long variables as parameters: ct, x, y and status. These
parameters are described below for each of the seven cases that Render() must handle.

Pre-Master initialization (Case 5)

Parameters:
ct- 0 or pointer to the IODRPReq structure passed to PCDumpRPort
x- io_Special flag from the IODRPReq structure
y-0

When the printer device is first opened, Render() is called with ct set to 0, to give the driver a
chance to set up the density values before the actual graphic dump is called.

The parameter passed in x will be the io..Special flag which contains the density and other SPECIAL
flags. The only flags used at this point are the DENSITY flags, all others should be ignored. Never
call PWrite() during this case. When you are finished handling this case, return PDERR__NOERR.

Printer Device 203

Master initialization (Case 0).

Parameters:
ct- pointer to a IODRPReq structure
x- width (in pixels) of printed picture
y- height (in pixels) of printed picture

Everything is A-OK. At this point the printer device has already checked that the values
are within range for the printer. This is done by checking values listed in printertag .asm.

The x and y value should be used to allocate enough memory for a command and data buffer for
the printer. If the allocation fails, PDERILBUFFERMEMORY should be returned. In general, the
buffer needs to be large enough for the commands and data required for one pass of the print head.
These typically take the following form:

<start gfx cmd> <data> <end gfx cmd>

The <start gfx cmd> should contain any special, one-time initializations that the printer might
require such as:

• Carriage Return-some printers start printing graphics without returning the printhead. Sending
a CR assures that printing will start from the left edge.

• Unidirectional-some printers which have a bidirectional mode produce non-matching vertical
lines during a graphics dump, giving a wavy result. To prevent this, your driver should set the
printer to unidirectional mode.

• Oear margins-some printers force graphic dumps to be done within the text margins, thus
they should be cleared.

• Other commands-enter the graphics mode, set density, etc.

Multi-Pass? Don't Forget the Memory. In addition to the memory for commands and
data, a multi-pass color printer must allocate enough buffer space for each of the different
color passes.

The printer should never be reset during the master initialization case This will cause prob­
lems during multiple dumps. Also, the pointer to the IODRPReq structure in ct should not
be used except for those rare printers which require it to do the dump themselves. Return the
PDERILTOOKCONTROL error in that case so that the printer device can exit gracefully.

PDERR_ TOOKCONTROL, An Error in Name Only. The printer device error code,
PDERIL TOOKCONTROL, is not an error at all, but an internal indicator that the printer
driver is doing the graphic dump entirely on its own. The printer device can assume the
dump has been done. The calling application will not be informed of this, but will receive
PDERILNOERR instead.

The example render.c functions listed at the end of this chapter use double buffering to reduce the
dump time which is why the AllocMem() calls are for BUFSIZE times two, where BUFSIZE
represents the amount of memory for one entire print cycle. However, contrary to the example
source code, allocating the two buffers independently of each other is recommended. A request for
one large block of contiguous memory might be refused. Two smaller requests are more likely to
be granted.

204 Amiga ROM Kernel Reference Manual: Devices

Putting the pixels in a buffer (Case 1).

Parameters:
ct - pointer to a Prtlnfo structure.
x- PCM color code (if the printer is PCC_MULTLPASS).
y- printer row# (the range is 0 to pixel height- 1).

In this case, you are passed an entire row of YMCB intensity values (Yellow, Magenta, Cyan,
Black). To handle this case, you call the Transfer() function in the transfer.c module. You should
return PDERR._NOERR after handling this case. The PCM-defines for the x parameter from the
file devices/prtgfx.h are PCMYELLOW, PCMMAGENTA, PCMCYAN and PCMBLACK.

Dumping a pixel buffer to the printer (Case 2).

Parameters:
ct-0
x-0
y - # of rows sent (the range is 1 to NumRows).

At this point the data can be Run Length Encoded (RLE) if your printer supports it. If the printer
doesn't support RLE, the data should be white-space stripped. This involves scanning the buffer
from end to beginning for the position of the first occurrence of a non-zero value. Only the data
from the beginning of the buffer to this position should be sent to the printer. This will significantly
reduce print times.

The value of y can be used to advance the paper the appropriate number of pixel lines if your printer
supports that feature. This helps prevent white lines from appearing between graphic dumps.

You can also do post-processing on the buffer at this point. For example, if your printer uses the
hexadecimal number $03 as a command and requires the sequence $03 $03 to send $03 as data,
you would probably want to scan the buffer and expand any $03s to $03 $03 during this case. Of
course, you '11 need to allocate space somewhere in order to expand the buffer.

The error from PWrite() should be returned after this call.

Clearing and initializing the pixel buffer (Case 3)

Parameters:
ct-0
x-0
y-0

The printer driver does not send blank pixels so you must initialize the buffer to the value your
printer uses for blank pixels (usually 0). Oearing the buffer should be the same for all printers.
Initializing the buffer is printer specific, and it includes placing the printer-specific control codes in
the buffer before and after the data.

This call is made before each Case 2 call. Oear your active print buffer- remember you are double
buffering-and initialize it if necessary. After this call, PDERR._NOERR should be returned.

Printer Device 205

Closing Down (Case 4).

Parameters: ct - error code
x- io_8pecial flag from the IODRPReq structure
y-0

This call is made at the end of the graphic dump or if the graphic dump was cancelled for some
reason. At this point you should free the printer buffer memory. You can determine if memory
was allocated by checking that the value of PD->pLPrintBuf is not NULL. If memory was
allocated, you must wait for the print buffers to clear (by calling PBothReady) and then deallocate
the memory. If the printer-usually a page oriented printer-requires a page eject command, it can
be given here. Before you do, though, you should check the SPECIAL_NOFORMFEED bit in x.
Don't issue the command if it is set.

If the error condition in ct is PDERILCANCEL, you should not PWrite(). This error indicates that
the user is trying to cancel the dump for whatever reason. Each additional PWrite() will generate
another printer trouble requester. Obviously, this is not desirable.

During this render case PWrite() could be used to:

• reset the line spacing. If the printer doesn't have an advance 'n' dots command, then you'll
probably advance the paper by changing the line spacing. If you do, set it back to either 6 or 8
lpi (depending on Preferences) when you are finished printing.

• set bidirectional mode if you selected unidirectional mode in render Case 0.

• set black text; some printers print the text in the last color used, even if it was in graphics mode.

• restore the margins if you cancelled the margins in render Case 0.

• any other command needed to exit the graphics mode, eject the page, etc.

Either PDERILNOERR or the error from PWrite() should be returned after this call.

Switching to the next color (Case 6)

This call provides support for printers which require that colors be sent in separate passes. When
this call is made, you should instruct the printer to advance its color panel. This case is only needed
for printers of the type PCC_MULTLPASS, such as the CalComp ColorMaster.

Transfer()

Transfer() dithers and renders an entire row of pixels passed to it by the Render() function. When
Transfer() gets called, it is passed 5 parameters

Parameters: Plnfo - a pointer to a Prtlnfo structure
y- the row number
ptr- a pointer to the buffer
colors - a pointer to the color buffers
BufOffset - the buffer offset for interleaved printing.

The dithering process of Transfer() might entail thresholding, grey-scale dithering, or color­
dithering each destination pixel.

If Plnfo->pLthreshold is non-zero, then the dither value is:

Pinfo->pi_threshold '15.

206 Amiga ROM Kernel Reference Manual: Devices

If Plnfo-> pLthreshold is zero, then the dither value is computed by:

* (Pinfo->pi_dmatrix + ((y & 3) * 2) + (x & 3))

where x is initialized to Plnfo->pLxpos and is incremented for each of the destination pixels.
Since the printer device uses a 4x4 dither matrix, you must calculate the dither value exactly as
given above. Otherwise, your driver will be non-standard and the results will be unpredictable.

The TransferO function renders by putting a pixel in the print buffer based on the dither value. If
the intensity value for the pixel is greater than the dither value as computed above, then the pixel
should be put in the print buffer. If it is less than, or equal to the dither value, it should be skipped
to process the next pixel.

Printer
ColorCiass

PCC_BW

PCC_YMC

PCC_YMCB

PCC_YMC_BW

Type of
Dithering

Thresholding

Grey Scale

Color

Thresholding

Grey Scale

Color

Thresholding

Grey Scale

Color

Thresholding

Grey Scale

Color

Rendering logic

Test the black value against the threshold value to see
if you should render a black pixel.
Test the black value against the dither value to see if
you should render a black pixel.
NA

Test the black value against the threshold value to
see if you should render a black pixel. Print yellow,
magenta and cyan pixel to make black.
Test the black value against the dither value to see if
you should render a black pixel. Print yellow, magenta
and cyan pixel to make black.
Test the yellow value against the dither value to see if
you should render a yellow pixel. Repeat this process
for magenta and cyan.

Test the black value against the threshold value to see
if you should render a black pixel.
Test the black value against the dither value to see if
you should render a black pixel.
Test the black value against the dither value to see
if you should render a black pixel. If black is not
rendered, then test the yellow value against the dither
value to see if you should render a yellow pixel. Re­
peat this process for magenta and cyan. (See the
EpsonX transfer.c file)

Test the black value against the threshold value to see
if you should render a black pixel.
Test the black value against the dither value to see if
you should render a black pixel.
Test the yellow value against the dither value to see if
you should render a yellow pixel. Repeat this process
for magenta and cyan.

Printer Device 207

In general, if black is rendered for a specific printer dot, then the YMC values should be ignored,
since the combination of YMC is black. It is recommended that the printer buffer be constructed
so that the order of colors printed is yellow, magenta, cyan and black, to prevent smudging and
minimize color contamination on ribbon color printers.

The example transjer.c files are provided in C for demonstration only. Writing this module in
assembler can cut the time needed for a graphic dump in half. The EpsonX transjer.asm file is an
example of this.

SetDensity()

SetDensity() is a short function which implements multiple densities. It is called in the Pre-master
initialization case of the Render() function. It is passed the density code in density_code. This
is used to select the desired density or, if the user asked for a higher density than is supported, the
maximum density available. SetDensity() should also handle narrow and wide tractor paper sizes.

Densities below 80 dpi should not be supported in SetDensity(), so that a minimum of 640 dots
across for a standard 8.5x 11-inch paper is guaranteed. This results in a 1:1 correspondence of dots
on the printer to dots on the screen in standard screen sizes. The HP LaserJet is an exception to
this rule. Its minimum density is 75 dpi because the original HP Laser Jet had too little memory to
output a full page at a higher density.

Prlntertag.asm

For a graphic printer the printer-specific values that need to be filled in in printertag.asm are as
follows:

MaxXDots
The maximum number of dots the printer can print across the page.

MaxYDots
The maximum number of dots the printer can print down the page. Generally, if the printer
supports roll or form feed paper, this value should be 0 indicating that there is no limit. If the
printer has a definite y dots maximum (as a laser printer does), this number should be entered
here.

XDotslnch
The dot density in x (supplied by SetDensity(), if it exists).

YDotslnch
The dot density in y (supplied by SetDensity(), if it exists).

PrinterCiass
The printer class of the printer.

PPC_BWALPHA
ppc_swGFX
PPC_COLORALPHA
PPC_COLORGFX

ColorCiass

black& white alphanumeric, no graphics.
black&white (only) graphics.
color alphanumeric, no graphics.
color (and maybe black& white) graphics.

The color class the printer falls into.
PCC_BW Black& White only
PCC_ YMC Yellow Magenta Cyan only.

208 Amiga ROM Kernel Reference Manual: Devices

PCC_YMC_BW
PCC_YMCB
PCC_WB
PCC_BGR
PCC_BGILWB
PCC_BGRW

NumRows

Yellow Magenta Cyan or Black& White, but not both
Yellow Magenta Cyan Black
White&Black only, 0 is BLACK
Blue Green Red
Blue Green Red orBlack&White
Blue Green Red White

The number of pixel rows printed by one pass of the print head. This number is used by the
non-printer-specific code to determine when to make a render Case 2 call to you. You have
to keep this number in mind when determining how big a buffer you'll need to store one print
cycle's worth of data.

TESTING THE PRINTER DRIVER

A printer driver should be thoroughly tested before it is released. Though labor intensive, the
alphanumeric part of a driver can be easily tested. The graphics part is more difficult. Following
are some recommendations on how to test this part.

Start with a black and white (threshold 8), grey scale and color dump of the same picture. The color
dump should be in color, of course. The grey scale dump should be like the color dump, except it
will consist of patterns of black dots. The black and white dump will have solid black and solid
white areas.

Next, do a dump with the DestX and DestY dots set to an even multiple of the XDotslnch and
YDotslnch for the printer. For example, if the printer has a resolution of 120 x 144 dpi, a 480 x 432
dump could be done. This should produce a printed picture which covers 4 x 3 inches on paper. If
the width of the picture is off, then the wrong value for XDotslnch has been put inprintertag.asm.
If the height of the picture is off, the wrong value for YDotslnch is in printertag.asm.

Do a color dump as wide as the printer can handle with the density set to 7.

Make sure that the printer doesn't force graphic dumps to be done within the text margins. This
can easily be tested by setting the text margins to 30 and 50, the pitch to 10 cpi and then doing a
graphic dump wider than 2 inches. The dump should be left justified and as wide as you instructed.
If the dump starts at character position 30 and is cut off at position 50, the driver will have to be
changed. These changes involve clearing the margins before the dump (Case 0) and restoring the
margins after the dump (Case 4). An example of this is present in render.c source example listed at
the end of this chapter.

The Invisible Setup. Before the graphic dump, some text must be sent to the printer to
have the printer device initialize the printer. The "text" sent does not have to contain any
printable characters (i.e., you can send a carriage return or other control characters).

As a final test, construct an image with a white background that has objects in it surrounded by
white space. Dump this as black and white, grey scale and color. This will test the white-space
stripping or RLE, and the ability of the driver to handle null lines. The white data areas should be
separated by at least as many lines of white space as the NumRows value in the printertag.asm file.

Printer Device 209

Example Printer Driver Source Code

As an aid in writing printer drivers, source code for two different classes of printers is supplied.
Both drivers have been successfully generated with Lattice C 5.10 and Lattice Assembler 5.10. The
example drivers are:

EpsonX A YMCB, 8 pin, multi-density interleaved printer.
HP _Laserjet A black&white, multi-density, page-oriented printer.

All printer drivers use the following include file macros.i for init.asm.

**
* * printer device macro definitions

*
**

*------ external definition macros -----------------------------------

XREF EXE MACRO
XREF LV0\1 -ENDM

XREF DOS MACRO
XREF LV0\1 -

ENDM

XREF GFX MACRO
XREF LV0\1 -ENDM

XREF ITU MACRO
XREF LV0\1 -ENDM

*------ library dispatch macros --------------------------------------

CALLEXE MACRO
CALLLIB LV0\1 -ENDM

LINKEXE MACRO
LINKLIB _LV0\1,_SysBase
ENDM

LINKDOS MACRO
LINKLIB _LV0\1,_DOSBase
ENDM

LINKGFX MACRO
LINKLIB LV0\1, GfxBase - -ENDM

LINKITU MACRO
LINKLIB LV0\1, IntuitionBase - -
ENDM

EPSONX

For the EpsonX driver, both the assembly and C version of Transfer() are supplied. In the Makefile
the (faster) assembly version is used to generate the driver.

The EpsonX driver can be generated with the following Make file.

LC = lc:lc
ASM = lc:asm
CFLAGS = -iiNCLUDE: -bO -dO -v
ASMFLAGS = -iiNCLUDE:

21 0 Amiga ROM Kernel Reference Manual: Devices

LINK = lc:blink
LIB = lib:lc.lib+lib:amiga.lib
OBJ = printertag.o+init.o+data.o+dospecial.o+render.o+transfer.o+density.o
TARGET = EpsonX

@$(LC) $(CFLAGS) $*

$(TARGET): printertag.o init.o data.o dospecial.o render.o density.o transfer.o
@$(LINK) <WITH <
FROM $ (OBJ)
TO $(TARGET)
LIBRARY $(LIB)
NODEBUG SC SD VERBOSE MAP $(TARGET) .map H
<

init.o: init.asm
@$(ASM) $(ASMFLAGS) init.asm

printertag.o: printertag.asm epsonX rev.i
@$(ASM) $(ASMFLAGS) printertag.asm

transfer.o: transfer.asm
@$(ASM) $(ASMFLAGS) transfer.asm

dospecial.o: dospecial.c

data.o: data.c

density.o: density.c

render.o: render.c

Epsonx: macros./

**
*
* printer device macro definitions

*
**

*------ external definition macros -----------------------------------

XREF EXE MACRO
XREF LV0\1 -

ENDM

XREF DOS MACRO
XREF LV0\1 -ENDM

XREF GFX MACRO
XREF LV0\1 -

ENDM

XREF ITU MACRO
XREF LV0\1 -ENDM

*------ library dispatch macros --------------------------------------

CALLEXE MACRO
CALLLIB LV0\1 -ENDM

LINKEXE MACRO
LINKLIB - LV0\1, _SysBase
ENDM

LINKDOS MACRO
LINKLIB LV0\1, DOSBase - -
ENDM

LINKGFX MACRO
LINKLIB LV0\1, GfxBase - -ENDM

Printer Device 211

LINKITU MACRO
LINKLIB LV0\1, IntuitionBase
ENDM

Epsonx: prlntertag.asm

**
* * printer device dependent code tag

*
**

SECTION printer

*------ Included Files ---

INCLUDE
INCLUDE
INCLUDE

INCLUDE

INCLUDE

"exec/types.i"
"exec/nodes.i"
"exec/strings.i"

"epsonX_rev.i"

"devices/prtbase.i"

*------ Imported Names ---

XREF
XREF
XREF
XREF
XREF
XREF
XREF
XREF
XREF

Init
-Expunge
-Open
-Close

CommandTable
-PrinterSegmentData
-DoSpecial
-Render
-ExtendedCharTable

*------ Exported Names ---

XDEF PEDData

**

PEDData:

printerName:

MOVEQ
RTS
DC.W
DC.W

DC.L
DC.L
DC.L
DC.L
DC.L
DC.B
DC.B
DC.B
DC.B
DC.W
DC.L
DC.L
DC.W
DC.W
DC.L
DC.L
DC.L
DC.L
DC.L
DS.L
DC.L

dc.b

END

IIO,DO

VERSION
REVISION

printerName
I nit

-Expunge
-Open
-Close
PPC COLORGFX
PCC-YMCB
136-
10
8
1632
0
120
72

; show error for OpenLibrary()

;PrinterClass
ColorClass
MaxColumns
NumCharSets
NumRows
MaxXDots
MaxYDots
XDotsinch
YDotsinch

CommandTable Commands
DoSpecial

-Render
30 ; Timeout

ExtendedCharTable 8BitChars
I ; PrintMode (reserve space)
0 ; ptr to char conversion function

'EpsonX',O

212 Amiga ROM Kernel Reference Manual: Devices

Epsonx:epsonx_rev.l

VERSION
REVISION

EQU
EQU

35
1

Epsonx: lnlt.asm

**
*
* printer device functions

*
**

SECTION printer

*------ Included Files ---

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

INCLUDE

"exec/types.i"
"exec/nodes.i"
"exec/lists.i"
"exec/memory.i"
"exec/ports.i"
"exec/libraries.i"

"macros.i 11

*------ Imported Functions ---

XREF EXE
XREF-EXE
XREF-

XREF

CloseLibrary
OpenLibrary

AbsExecBase

PEDData

*------ Exported Globals ---

XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF

I nit
Expunge

-Open
-Close
-PD
-PED

SysBase
-DOSBase
-GfxBase

IntuitionBase

**

PD
-PED

SysBase
DOSBase

-GfxBase

SECTION

-IntuitionBase

DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

printer,DATA
0
0
0
0
0
0

**

Init:

*

SECTION

MOVE.L
LEA
MOVE.L
MOVE.L
MOVE.L
MOVE.L

printer,CODE

4(A7), PD
PEDData(PC),AO

AD, PED
A6,=(A7)

AbsExecBase,A6
A6,_SysBase

;------ open the des library
LEA DLName(PC),Al
MOVEQ #O,DO
CALLEXE OpenLibrary
MOVE.L DO, DOSBase
BEQ initDLErr

Printer Device 213

*

*

pdiRts:

initPAErr:

initiLErr:

initGLErr:

initDLErr:

ILName:

DLName:

GLName:

;------ open the graphics library
LEA GLName(PC),Al
MOVEQ #0,00
CALLEXE OpenLibrary
MOVE.L DO, GfxBase
BEQ initGLErr

;------ open the intuition library
LEA ILName(PC),Al
MOVEQ #0,00
CALLEXE OpenLibrary
MOVE.L DO, IntuitionBase
BEQ initiLErr

MOVEQ #O,DO

MOVE.L (A7)+,A6
RTS

MOVE.L IntuitionBase,Al
LINKEXE CloseLibrary

MOVE.L GfxBase,Al
LINKEXE CloseLibrary

MOVE.L DOSBase,Al
LINKEXE CloseLibrary

MOVEQ
BRA.S

DC.B
DC.B

DC.B
DC.B

DC.B
DC.B
DS.W

#-l,DO
pdiRts

'intuition. library'
0

'dos.library'
0

'graphics.library'
0
0

*---
_Expunge:

MOVE.L IntuitionBase,Al
LINKEXE CloseLibrary

MOVE.L GfxBase,Al
LINKEXE CloseLibrary

MOVE.L DOSBase,Al
LINKEXE CloseLibrary

*---
_Open:

MOVEQ
RTS

#O,DO

*---
Close:

MOVEQ
RTS

END

#O,DO

214 Amiga ROM Kernel Reference Manual: Devices

Epsonx: data.c

I*
Data.c table for EpsonX driver.

*I

char *CommandTable[] ={
"\375\033@\375",1* DO aRI5 reset
"\377", I* 01 aRIN initialize
"\012", I* 02 aiND linefeed
"\015\012", I* 03 aNEL CRLF
"\377", I* 04 aRI reverse LF

I* 05 a5GRO normal char set
"\0335\033-\376\033F",
"\0334", I* 06 a5GR3 italics on
"\0335", I* 07 a5GR23 italics off
"\033-\001", I* 08 a5GR4 underline on
"\033-\376", I* 09 a5GR24 underline off
"\033E", I* 10 a5GR1 boldface on
"\033F", I* 11 a5GR22 boldface off
"\377", I* 12 a5FC set foreground color
"\377", I* 13 a5BC set background color

I* 14 a5HORPD normal pitch
"\033P\022\033W\376",

I* 15 a5HORP2 elite on
"\033M\022\033W\376",
"\033P", I* 16 a5HORP1 elite off

I* 17 a5HORP4 condensed fine on
"\017\033P\033W\376",
"\022", I* 18 a5HORP3 condensed fine off
"\033W\001", I* 19 a5HORP6 enlarge on
"\033W\376", I* 20 a5HORP5 enlarge off

"\377",
"\377",
"\033G",
"\033H",
"\033x\001",
"\033x\376",

"\0335\376",
"\033T",
"\0335\001",
"\033T",
"\033T",
"\377",
"\377",

"\033R\376",
"\033R\001",
"\033R\002",
"\033R\003",
"\033R\004",
"\033R\005",
"\033R\006",
"\033R\007",
"\033R\010",
"\033R\011",
"\033R\012",

"\033pl",
"\033p0".
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",

"\0330",
"\0332",
"\033C",
"\033N",

I* 21 aDEN6 shadow print on
I* 22 aDEN5 shadow print off
I* 23 aDEN4 double strike on
I* 24 aDEN3 double strike off
I* 25 aDEN2 NLQ on
I* 26 aDENl NLQ off

I* 27 a5U52 superscript on
I* 28 a5U51 superscript off
I* 29 a5U54 subscript on
I* 30 a5U53 subscript off
I* 31 a5U50 normalize the line
I* 32 aPLU partial line up
I* 33 aPLD partial line down

I* 34 aFNTO Typeface 0
I* 35 aFNTl Typeface 1
I* 36 aFNT2 Typeface 2
I* 37 aFNT3 Typeface 3
I* 38 aFNT4 Typeface 4
I* 39 aFNT5 Typeface 5
I* 40 aFNT6 Typeface 6
I* 41 aFNT7 Typeface 7
I* 42 aFNTB Typeface 8
I* 43 aFNT9 Typeface 9
I* 44 aFNTlO Typeface 10

I* 45 aPROP2 proportional on
I* 46 aPROPl proportional off
I* 47 aPROPO proportional clear
I* 48 aT55 set proportional offset
I* 49 aJFY5 auto left justify
I* 50 aJFY7 auto right justify
I* 51 aJFY6 auto full jusitfy
I* 52 aJFYO auto jusity off
I* 53 aJFY3 letter space
I* 54 aJFYl word fill

I* 55 aVERPD 118" line spacing
I* 56 aVERPl 116" line spacing
I* 57 a5LPP set form length
I* 58 aPERF perf skip n (n > 0)

*I
*I
*I
*I
*I

*I

*I
*I
*I
*I
*I
*I
*I
*I

*I

*I

*I
*I

*I
*I
*I

*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I

Printer Device 215

} ;

I*

*I

"\0330",

"\377",
"\377"'
"\377",
"\377",
"\377",
"\377",
"\377",

"\377",
"\377",
"\377",
"\0330\376",
"\377",
"\0338\376",

I* 59

I* 60
I* 61
I* 62
I* 63
I* 64
I* 65
I* 66

I* 67
I* 68
I* 69
I* 70
I* 71
I* 72
I* 73

"\0330\376\0338\376",

aPERFO perf skip off

aLMS set left margin
aRMS set right margin
aTMS set top margin
aBMS set bottom margin
aSTBM set T&B margins
aSLRM set L&R margins
aCAM clear margins

aHTS set horiz tab
aVTS set vert tab
aTBCO clear horiz tab
aTBC3 clear all horiz tabs
aTBC1 clear vert tab
aTBC4 clear all vert tabs
aTBCALL clear all h & v tabs

*I

*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I

I* 74 aTBSALL set defcult tabs *I
"\033D\010\020\030\040\050\060\070\100\110\120\130\376",

"\377",
"\377"

I* 75 aEXTEND extended commands
I* 76 aRAW next 'n' chars are raw

*I
*I

For each character from character 160 to character 255, there is
an entry in this table, which is used to print (or simulate printing of)
the full Amiga character set. (see AmigaDos Developer's Manual, pp A-3)
This table is used only if there is a valid pointer to this table
in the PEDData table in the printertag.asm file, and the VERSION is
33 or greater. Otherwise, a default table is used instead.
To place non-printable characters in this table, you can either enter
them as in C strings (ie \011, where 011 is an octal number, or as
\\000 where 000 is any decimal number, from 1 to 3 digits. This is
usually used to enter a NUL into the array (C has problems with it
otherwise.), or if you forgot your octal calculator. On retrospect,
was a poor choice for this function, as you must say \\\\to enter a
backslash as a backslash. Live and learn ...

char *ExtendedCharTable[] = {
II II

' "\033R\007[\033R\\0",
"c\0101",
"\033R\003#\033R\\0",
"\033R\005$\033R\\0",
"\033R\010\\\\\033R\\0",
"I",
"\033R\002@\033R\\0",

"\033R\001"\033R\\0",

I* NBSP*I
I* i *I
I* cl *I
I* L- *I
I* o *I
I* Y- *I
I* I *I
!* ss */

I* n *I
"c",
"\033S\\Oa\010 \033T",

I* copyright */
I* a *I

"<",
n-u

I* << *I
I* - *I
I* SHY *I "-",

"r",
n_n

I* registered trademark *I
I* - *I

"\033R\001[\033R\\0",
"+\010 ",
"\033S~\0002\033T",
"\033S\\0003\033T",

' "u",
np n,
"\033S\\000.\033T",

I*
I*
I*
I*
I*
I*
I*
I*

degrees
+ *I
2 *I
3 *I
' *I
u *I
reverse

*I

.. , .. , !*,*I
"\033S\\0001\033T", /* l */
"\033R\00l[\033R\\0\010-", /* o *I
">", I* >> *I

*I

p *I

"\033S\\000l\033T\010-\010\033S\0014\033T", I* 114 */
"\033S\\0001\033T\010-\010\033S\0012\033T", /* 112 *I
"\033S\\0003\033T\010-\010\033S\0014\033T", I* 314 *I
"\033R\007]\033R\\0", I* upside down? *I

216 Amiga ROM Kernel Reference Manual: Devices

"A\010;- I* A *I
"A\010' ", I* 'A *I
"A\010'", I* 'A *I
"A\010-", I* -A *I
"\033R\002[\033R\\0", I* "A *I
"\033R\004]\033R\\0", I* oA *I
"\033R\004[\033R\\0", I* AE *I
"C\010,", I* c, *I

"E\010;- I* :E *I
"\033R\011@\033R\\0", I* 'E *I
"E\010' ", I* 'E *I
"E\010\033R\001-\033R\\0", I* "E *I
"I\010;- I* t *I
"I\010;- I* 'I *I
"I\010'", I* 'I *I
"I\010\033R\001-\033R\\0", I* "I *I

"D\010-", I* -D *I
"\033R\007\\\\\033R\\0", I* -N *I
"0\010;- I* 6 *I
"0\010'", I* '0 *I
"0\010-", I* ·o *I
"0\010-", I* -o *I
"\033R\002\\\\\033R\\0", I* "0 *I
"xn, I* X *I

"\033R\004\\\\\033R\\0", I* 0 *I
"U\010,. I* 0 *I
"U\010' ", I* 'U *I
"U\010'", I* ·u *I
"\033R\002]\033R\\0", I* "U *I
"Y\010'", I* 'Y *I
"Tn' I* Thorn *I
"\033R\002-\033R\\0", I* B *I

"\033R\001@\033R\\0", I* a. *I
"a\010' ", I* 'a *I
"a\010'", I* A a *I
"a\010-", I* - a *I
"\033R\002{\033R\\0", I* "a *I
"\033R\004}\033R\\0", I* oa *I
"\033R\004{\033R\\0", I* ae *I
"\033R\001\\\\\033R\\0", I* c, *I

"\033R\001}\033R\\0", I* e *I
"\033R\001{\033R\\0", I* 'e *I
"e\010'", I* 'e *I
"e\010\033R\001-\033R\\0", I* "e *I
"\033R\006-\033R\\0", I* i *I
"i\010'", I* 'i *I
"i\010'", I* A i *I
"i\010\033R\001-\033R\\0", I* IIi *I

"dn' I* d *I
"\033R\0071\033R\\0", I* ·n *I
"\033R\0061\033R\\0", I* 0 *I
11 0\010' n, I* 'o *I
"o\010' ", I* A

0 *I
"o\010 , I* - 0 *I
"\033R\0021\033R\\0", I* "o *I
":\010-" I* *I

"\033R\0041\033R\\0", I* ol *I
"\033R\0011\033R\\0", I* u *I
"u\010' 11 , I* 'u *I
"u\010'", I* A u *I
"\033R\002}\033R\\0", I* "u */
"y\010'", I* 'y *I
"t", I* thorn *I
"y\010\033R\D01-\033R\\0" I* "y *I

} ;

Printer Device 217

Epsonx: dospecial.c

!*
DoSpecial for EpsonX driver.

*I

#include "exec/types.h"
#include "devices/printer.h"
#include "devices/prtbase.h"

#define LMARG 3
#define RMARG 6
#define MARGLEN 8

#define CONDENSED 7
#define PITCH 9
#define QUALITY 17
#define LPI 24
#define INITLEN 26

DoSpecial(command, outputBuffer, vline, currentVMI, crlfFlag, Parms)
char outputBuffer[];
UWORD *command;
BYTE *vline;
BYTE *currentVMI;
BYTE *crlfFlag;
UBYTE Parms [];
{

extern struct PrinterData *PO;

int X ; 0, y ; 0.
/*

00-00 \375 wait
01-03 \0331L set left margin
04-06 \033Qq set right margin
07-07 \375 wait

*I

static char initMarg[MARGLEN+1] ; "\375\0331L\033Qq\375";
/*

*I

00-01
02-04
05-06
07-07
08-09
10-12
13-14
15-17
18-19
20-22
23-24
25-25

\0335
\033-\000
\033F
\022
\033P
\033W\OOO
\033H
\033x\000
\033T
\033p0
\0332
\015

italics off
underline off
boldface off
cancel condensed mode
select pica (10 cpi)
enlarge off
doublestrike off
draft
super/sub script off
proportional off
6 lpi
carriage return

static char initThisPrinter[INITLEN+1] ;
"\0335\033-\000\033F\022\033P\033W\000\033H\033x\000\033T\033p0\0332\015";

static BYTE ISOcolorTable[10] ; {0, 5, 6, 4, 3, 1, 2, 0};

if (*command ;; aRIN) {
while (x < INITLEN) {

outputBuffer[x]
x++;

initThisPrinter[x];

if (PD->pd Preferences.PrintQuality
outputBuffer[QUALITY] ; 1;

LETTER) {

currentVMI ; 36; / assume 1/6 line spacing (36/216 ;> 1/6) */
if (PD- >pd Preferences. P rintSpacing ;; EIGHT LPI) {

outputBuffer[LPI] ; '0';
currentVMI ; 27; / 27/216 ;> 1/8 */

if (PD- >pd Preferences. P rintP itch ~; ELITE) {
outputBuffer[PITCH] ; 'M';

218 Amiga ROM Kernel Reference Manual: Devices

else if (PD->pd Preferences.PrintPitch == FINE) {
outputBuffer[CONDENSED] = '\017'; I* condensed *I
outputBuffer[PITCH] = 'P'; I* pica condensed *I

Parms[O]
Parms[1]
*command

PD->pd Preferences. PrintLeftMargin;
PD- >pd-P references. P rintRightMargin;
aSLRM; -

if (*command == aCAM) { I* cancel margins *I
y = PD->pd Preferences.PaperSize == W TRACTOR ? 136 80;
if (PD->pd-Preferences.PrintPitch == PICA) {

Parms[1J = (10 * y) I 10;
)
else if (PD->pd Preferences.PrintPitch == ELITE)

Parms [1]- = (12 * y) I 10;
)
else { I* fine *I

Parms [1] (17 * y) I 10;
)
Parms[O]
y = 0;
*command

1;

aSLRM;

if (*command == aSLRM) { I* set left and right margins *I
PD->pd PWaitEnabled = 253;
if (Parms[OJ == 0) {

initMarg[LMARG) 0;
)
else {

initMarg[LMARG] = Parms[O) - 1;
)
initMarg[RMARG) = Parms[1);
while (y < MARGLEN) {

outputBuffer[x++) initMarg[y++];
)
return(x);

if (*command == aPLU)
if (*vline == 0)

)

*vline = 1;
*command aSUS2;
return(O);

if (*vline < 0) {
*vline = 0;
*command = aSUS3;
return(O);

)
return(-1);

if (*command == aPLD)
if (*vline == 0)

)

*vline = -1;
*command aSUS4;
return(O);

if (*vline > 0) {
*vline = 0;
*command = aSUS1;
return(O);

)
return(-1);

if (*command == aSUSO)
*vline = 0;

if (*command == aSUSl)
*vline = 0;

Printer Device 219

if (*command ~~ aSUS2)
*vline ~ 1;

if (*command == aSUS3)
*vline = 0;

if (*command == aSUS4)
*vline = -1;

if (*command == aVERPO) {
*currentVMI = 27;

if (*command == aVERP1) {
*currentVMI = 36;

if (*command == aiND) { I*
outputBuffer[x++]
outputBuffer[x++]
outputBuffer[x++]
return(x);

if (*command == aRI) { I*
outputBuffer[x++]
outputBuffer[x++]
outputBuffer[x++]
return(x);

if (*command == aSFC) {

lf *I
'\033';
, J';
*currentVMI;

reverse l f *I
, \033';
f j I ;

*currentVMI;

if (Parms[O] == 39) {
Parms[O] = 30; I* set defaults */

}
if (Parms [0] > 37)

return(O); /* ni or background color change*/
}
outputBuffer[x++] '\033';
outputBuffer[x++] ~ 'r';
outputBuffer[x++] = ISOcolorTable[Parms[O] - 30];
I*
Kludge to get this to work on a CBM MPS-1250 which interprets
'ESCr' as go into reverse print mode. The 'ESCt' tells it to
get out of reverse print mode. The 'NULL' is ignored by the
CBM MPS-1250 and required by all Epson printers as the
terminator for the 'ESCtNULL' command which means select
normal char set (which has no effect).
*I
outputBuffer[x++] '\033';
outputBuffer [x++] 't';
outputBuffer[x++] 0;
return (x);

if (*command ~= aRIS) {
PD->pd PWaitEnabled 253;

return(O);

220 Amiga ROM Kernel Reference Manual: Devices

Epsonx: render.c

I*
EpsonX (EX/FX/JX/LX/MX/RX) driver.

*I

#include <exec/types.h>
#include <exec/nodes. h>
#include <exec/lists.h>
#include <exec/memory.h>
#include "devices/printer.h"
#include "devices/prtbase.h"

7 /* # of cmd bytes
1 /* # of cmd bytes

before binary data */
after binary data */

#define NUMSTARTCMD
#define NUMENDCMD
#define NUMTOTALCMD
#define NUMLFCMD
#define MAXCOLORBUFS

(NUMSTARTCMD + NUMENDCMD)
4 /* # of cmd bytes

/* total of above */
for linefeed */

4 /* max # of color buffers */

#define STARTLEN
#define PITCH
#define CONDENSED
#define LMARG
#define RMARG
#define DIREC

19
1
2
8
11
15

static ULONG TwoBufSize;
static UWORD RowSize, ColorSize, NumColorBufs, dpi code, spacing;
static UWORD colorcodes[MAXCOLORBUFS];

Render(ct, x, y, status)
long ct, x, y, status;
{

extern void *AllocMem(), FreeMem();

extern struct PrinterData *PD;
extern struct PrinterExtendedData *PED;

UBYTE *CompactBuf();
static ULONG BufSize, TotalBufSize, dataoffset;
static UWORD spacing, colors[MAXCOLORBUFS];
I*

00-01 \003P set pitch (10 or 12 cpi)
02-02 \022 set condensed fine (on or off)
03-05 \033W\OOO enlarge off
06-08 \033ln set left margin to n
09-11 \033Qn set right margin to n
12-12 \015 carriage return
13-15 \033Ul set uni-directional mode
16-18 \033t\000 see kludge note below
Kludge to get this to work on a CBM MPS-1250 which interprets
'ESCr' as go into reverse print mode. The 'ESCt' tells it to
get out of reverse print mode. The 'NULL' is ignored by the
CBM MPS-1250 and required by all Epson printers as the
terminator for the 'ESCtNULL' command which means select
normal char set (which has no effect).

*I

static UBYTE StartBuf[STARTLEN+l] =
"\033P\022\033W\000\033ln\033Qn\015\033Ul\033t\000";

UBYTE *ptr, *ptrstart;
int err;

switch (status)
case 0 !* Master Initialization */

/*
ct - pointer to IODRPReq structure.
x - width of printed picture in pixels.
y - height of printed picture in pixels.

*I
RowSize x;
ColorSize = RowSize + NUMTOTALCMD;
if (PD->pd Preferences.PrintShade SHADE COLOR)

NumColorBufs = MAXCOLORBUFS;
colors[O] ColorSize * 3; /* Black */
colors[l] = ColorSize * 0; /*Yellow */

Printer Device 221

)
else

)

colors[2] = ColorSize * 1; I* Magenta *I
colors[3] = ColorSize * 2; I* Cyan *I
colorcodes[O] 4; I* Yellow *I
colorcodes[l] 1; I* Magenta *I
colorcodes[2] 2; /* Cyan *I
colorcodes[3] 0; !* Black *I

I* grey-scale or black&white *I
NumColorBufs = 1;
colors[O] = ColorSize * 0; I* Black *I
colorcodes[O] = 0; /* Black *I

BufSize = ColorSize * NumColorBufs + NUMLFCMD;
if (PED->ped YDotslnch == 216) {

TwoBufSize = BufSize * 3;
TotalBufSize = BufSize * 6;

)
else if (PED->ped YDotsinch == 144)

TwoBufSize-= BufSize * 2;
TotalBufSize = BufSize * 4;

)
else

)

TwoBufSize = BufSize * 1;
TotalBufSize = BufSize * 2;

PD->pd PrintBuf = AllocMem(TotalBufSize, MEMF_PUBLIC);
if {PD->pd PrintBuf == NULL) {

)
else {

)
break;

err- = P DERR _ BUFFERMEMORY;

dataoffset = NUMSTARTCMD;
I*

*I

This printer prints graphics within its
text marglns. This code makes sure the
printer is in 10 cpi and then sets the
left and right margins to their minimum
and maximum values (respectively). A
carriage return is sent so that the
print head is at the leftmost position
as this printer starts printing from
the print head's position. The printer
is put into unidirectional mode to
reduce wavy vertical lines.

StartBuf[PITCH] = 'P'; I* 10 cpi *I
StartBuf[CONDENSED] = '\022'; /*off *I
I* left margin of 1 *I
StartBuf[LMARG] = 0;
I* right margin of 80 or 136 */
StartBuf[RMARG] = PD->pd Preferences.

PaperSize == W TRACTOR ? 136 : 80;
/* uni-directional mode */
StartBuf[DIREC] = '1';
err = (* (PD->pd_PWrite)) (StartBuf, STARTLEN);

case 1 : I* Scale, Dither and Render *I
I*

ct - pointer to Prtinfo structure.
X - 0.
y -row# (0 to Height- 1).

*I
Transfer(ct, y, &PD->pd PrintBuf[dataoffset], colors,

BufSize);
err = PDERR NOERR; I* all ok *I
break; -

case 2 : I* Dump Buffer to Printer */
I*

ct - 0.
X - 0.
y - # of rows sent (1 to NumRows) .

*I
I* white-space strip *I
ptrstart = &PD->pd_PrintBuf[dataoffset - NUMSTARTCMD];

222 Amiga ROM Kernel Reference Manual: Devices

if (PED->ped YDotslnch == 72) {
I* y range : 1 to 8 *I
y = y * 3 - spacing;

)
else if

)
else if

ptr = CompactBuf(ptrstart + NUMSTARTCMD,
ptrstart, y, 1);

(PED->ped YDotslnch == 144) {
I* y range-: 1 to 16 *I
ptr = CompactBuf(ptrstart + NUMSTARTCMD,

ptrstart, 2, 1);
if (y > 1) {

ptr = CompactBuf (&PD- >pd PrintBuf [
dataoffset + BufSize],
pt r, y * 3 I 2 - 2, 0) ;

(PED->ped YDotslnch == 216) {
I* y range-: 1 to 24 *I
ptr = CompactBuf(ptrstart + NUMSTARTCMD,

ptrstart, 1, 1);
if (y > 1) {

ptr =

)
if (y > 2) {

CompactBuf (&PD->pd PrintBuf [
dataoffset + Bufsize],
ptr, 1, 0);

ptr = CompactBuf(&PD->pd PrintBuf[
dataoffset + Bufsize * 2],
pt r, y - 2, 0) ;

err (* (PD->pd PWrite)) (ptrstart, ptr - ptrstart);
if (err == PDERRNOERR) {

dataoffset = (dataoffset == NUMSTARTCMD ?

)
break;

TwoBufSize : 0) + NUMSTARTCMD;

case 3 : I* Clear and !nit Buffer *I
I*

ct - 0.
X - 0.
y - 0.

*I
ClearAndlnit(&PD->pd PrintBuf[dataoffset]);
err = PDERR NOERR; -
break; -

case 4 : I* Close Down *I
I*

ct - error code.
x - io Special flag from IODRPReq.
y - 0.-

*I
err PDERR NOERR; I* assume all ok *I
I* if user did not cancel print */
if (ct != PDERR CANCEL) {

I* restore preferences pitch and margins *I
if (PD->pd Preferences.PrintPitch == ELITE)

StartBuf[PITCH] = 'M'; /* 12 cpi *I
)

I

else if (PD->pd Preferences.PrintPitch == FINE)
StartBuf[CONDENSED] = '\017'; I* on *I

)
StartBuf[LMARG] =

PD->pd Preferences.PrintLeftMargin - 1;
StartBuf[RMARG]- =

PD->pd Preferences.PrintRightMargin;
StartBuf[DIREC]- = '0'; I* bi-directional *I
err= (*(PD->pd_PWrite)) (StartBuf, STARTLEN);

(* (PD->pd PBothReady)) ();
if (PD->pd PrintBuf != NULL) {

FreeMem(PD->pd_PrintBuf, TotalBufSize);
I
break;

Printer Device 223

case 5 I* Pre-Master Initialization *I

return (err);

I*
ct - 0 or pointer to IODRPReq structure.
x - io Special flag from IODRPReq.
y - 0.-

*I
I* kludge for sloppy tractor mechanism *I
spacing = PD->pd Preferences.PaperType == SINGLE ?

1 : 0; -
dpi code = SetDensity(x & SPECIAL_DENSITYMASK);
err-= PDERR NOERR;
break; -

UBYTE *CompactBuf(ptrstart, ptr2start, y, flag)
UBYTE *ptrstart, *ptr2start;
long y;
int flag; I* 0 - not first pass, ! 0 - first pass *I
{

static int x;
UBYTE *ptr, *ptr2;
long ct;
int i;

ptr2 = ptr2start; I* where to put the compacted data *I
if (flag) {

x = 0; I* flag no transfer required yet *I

for (ct=O; ct<NumColorBufs; ct++, ptrstart += ColorSize)
i = RowSize;
ptr = ptrstart + i - 1;
while (i > 0 && *ptr == 0) {

i--;
ptr--;

if (i != 0) { I* if data *I
* (++ptr) = 13; I* <cr> *I
ptr = ptrstart - NUMSTARTCMD;
*ptr++ 27;
*ptr++ 'r';
ptr++ colorcodes[ct]; I color *I
*ptr++ 27;
ptr++ dpi code; I density *I
*ptr++ i &-Oxff;
ptr++ i >> 8; I size *I
i += NUMTOTALCMD;
if (x != 0) { I* if must transfer data *I

I* get src start *I

else

ptr = ptrstart - NUMSTARTCMD;
do { I* transfer and update dest ptr *I

*ptr2++ = *ptr++;
while (--i);

I* no transfer required *I
ptr2 += i; I* update dest ptr *I

if (i != RowSize + NUMTOTALCMD) { I* if compacted or 0 *I
x = 1; I* flag that we need to transfer next time *I

ptr2++ 13; I cr *I
*ptr2++ 27;
*ptr2++ 'J';
ptr2++ y; I yl216 lf *I
return(ptr2);

224 Amiga ROM Kernel Reference Manual: Devices

ClearAndinit(ptr)
UBYTE *ptr;
{

ULONG *lptr, i, j;

I*
Note : Since 'NUMTOTALCMD + NUMLFCMD' is > 3 bytes if is safe
to do the following to speed things up.

*I
i = TwoBufSize - NUMTOTALCMD - NUMLFCMD;
j = (ULONG)ptr;
if (! (j & 1)) { I* if on a word boundary, clear by longs *I

i = (i + 3) I 4;

)
else

)

lptr = (ULONG *)ptr;
do {

*lptr++ = 0;
while (--i);

I* clear by bytes *I
do {

*ptr++ 0;
) while (--i);

return (0);

Epsonx:uansfer.asm
**
*
* Transfer routine for EpsonX
* **

INCLUDE "execltypes.i"

INCLUDE
INCLUDE
INCLUDE
INCLUDE

XREF
XREF
XREF
XREF

XDEF

SECTION
Transfer:

"intuitionlintuition.i"
"deviceslprinter.i"
"deviceslprtbase.i"
"deviceslprtgfx.i"

PD
-PED
-LVODebug
-AbsExecBase

Transfer

printer,CODE

Transfer(Pinfo, y, ptr,
struct Prtinfo *Pinfo
UWORD y;

colors, BufOffset)
4-7
8-11

UBYTE *ptr; 12-15
UWORD *colors; 16-19
ULONG BufOffset 20-23

movem.l d2-d6la2-a4,-(sp) ;save

movea.l 36(sp),a0 ;aO
move.l 40(sp),d0 ;dO
movea.l 44 (sp), al ; al
movea.l 48(sp),a2 ; a2
move.l 52(sp),dl ;dl

move.l dO,d3 ;save
moveq.l #3,d2
and.w dO,d2 ;d2
lsl.w 112,d2 ;d2
movea.l pi_ dmatrix(a0),a3 ; a3
adda.l d2,a3 ;a3

movea.l PED,a4 ;a4

regs used

Pinfo
y
ptr
colors
BufOffset

y

y & 3
(y & 3) << 2
dmatrix
dmatrix + ((y &

ptr to PED
cmpi.w #216,ped_YDotsinch(a4) ;triple interleaving?
bne.s 10$; no

3) << 2)

Printer Device 225

divu.w #3,d0 y I= 3
swap.w dO dO = y % 3
mulu.w dO,dl BufOffset *= y % 3
swap.w dO dO = y I 3
bra.s 30$

10$: cmpi.w #144,ped_YDotsinch(a4) ;double interleaving?
bne.s 20$;no, clear BufOffset
asr.w #l,dO ;y I= 2
btst #O,d3 ;odd pass?
bne.s 30$; no, dont clear BufOffset

20$:

30$:

moveq.l #O,dl

move.w dO,d6
not.b d6
adda.l dl,al

; BufOffset = 0

;d6 = bit to set
;ptr += BufOffset

movea.l
cmpi.w
bne

PD,a4 ;a4 = ptr to PD
#SHADE COLOR,pd_Preferences+pf_PrintShade(a4)
not color ; no

color:

aO - Pinfo
al - ptr (ptr + BufOffset)
a2 - colors
a3 - dmatrix ptr
dO - y
dl - BufOffset
d6 - bit to set

aO
al
a2
a3
a4
aS
a6
dl
d2
d3
d4
dS
d6
d7

movem.l d71aS-a6,-(sp)

-

movea.l
movea.l
movea.l
adda.w
adda.w
adda.w
adda.w

move.l
move.l
jsr
move.l

movea.l
move.w
move.w
movea.l
move.b

sxptr
- bptr
- Colorint
- dmatrix
- yptr
- mptr
- cptr
- Black
- X

al,a4
al,aS
al,a6
(a2)+,al
(a2)+,a4
(a2)+,aS
(a2)+,a6

a6,-(sp)
AbsExecBase,a6

-LVODebug (a6)
(sp)+,a6

pi Colorint(a0),a2
pi-width(aO),width
pi-xpos(a0),d2
pi-ScaleX(aO),aO
d6-;-d7

ptr
ptr

- dvalue (dmatrix[x & 3))
- Yellow
- Magenta
- Cyan
-bit to set

cwidth loop:
- move.b

move.b
move.b
move.b
addq.l

PCMBLACK(a2),dl
PCMYELLOW(a2),d4
PCMMAGENTA(a2),dS
PCMCYAN(a2),d6
#ce SIZEOF,a2

;save regs used

; al
;a4
;aS
;a6

ptr + colors[O]
ptr + colors[l)
ptr + colors[2)
ptr + colors [3)

a2 = Colorint ptr
of pixels to do
d2 X
aO ScaleX (sxptr)
d7 = bit to set

;dl Black
;d4 Yellow
;dS Magenta
;d6 Cyan
;advance to next entry

;color dump?

(bptr)
(yptr)
(mptr)
(cptr)

move.w (aO)+,sx ;# of times to use this pixel

226 Amiga ROM Kernel Reference Manual: Devices

csx loop:
- moveq.l

black:

yellow:

magenta:

cyan:

and.w
move.b

cmp.b
ble.s
bset.b
bra.s

cmp.b
ble.s
bset.b

cmp.b
ble.s
bset.b

cmp.b
ble.s
bset.b

csx end:
addq.w
subq.w
bne.s
subq.w
bne.s

movem.l
bra

not color:
aO - Pinfo
al - ptr
a2 - colors

113,d3
d2,d3
0(a3,d3.w),d3

d3,dl
yellow
d7,0(al,d2.w)
csx end

d3,d4
magenta
d7,0(a4,d2.w)

d3,d5
cyan
d7,0(a5,d2.w)

d3,d6
csx end
d 7, 0 (a 6, d2 . w)

Ill, d2
#l,sx
csx loop
111, width
cwidth loop

(sp)+,d7/a5-a6
exit

a3 - dmatrix ptr
dO - y
d6 - bit to set

adda.w
move.w
subq.w

move.w
beq.s

threshold:
aO - Pinfo
al - ptr

(a2), al
pi width(aO),dl
Ill-;-dl

pi threshold(a0),d3
grey scale

a3 - dmatrix ptr
dl - width-1
d3 - threshold
d6 - bit to set

eori.b #15, d3
movea.l pi Colorint(aO),a2 -
move.w pi xpos(a0),d2 -movea.l pi ScaleX(aO),aO
adda.w d2~al

aO - sxptr
al - ptr
a2 - Colorint ptr
a3 - dmatrix ptr (NOT USED)
dl - width
d3 - dvalue
d4 - Black
dS - sx
d6 - bit to set

twidth loop:
move.b PCMBLACK(a2),d4

; d3
;d3

X & 3
dmatrix[x & 3]

; render black?
; no, try ymc
;set black pixel

;render yellow pixel?
;no.
;set yellow pixel

;render magenta pixel?
;no.
;set magenta pixel

;render cyan pixel?
;no, skip to next pixel.
;clear cyan pixel

;x++
;sx--

;width--

;restore regs used

;al = ptr + colors[O]
;dl = width
;adjust for dbra

;d3 = threshold, thresholding?
;no, grey-scaling

; d3 dvalue
; a2 Colorint ptr
;d2 X

;aD ScaleX (sxptr)
;ptr += X

;d4 Black

Printer Device 227

addq.l

move.w

cmp.b
ble.s
subq.w

tsx render:
bset.b

adda.w
dbra
dbra
bra.s

tsx end:
adda.w
dbra
bra.s

grey scale:
aO-- Pinfo
al - ptr

#ce SIZEOF,a2 -

(a0)+,d5

d3,d4
tsx end
#l,dS

d6, (al)

#l,a1
dS,tsx render
dl,twidth _loop
exit

dS,al
dl,twidth loop
exit -

a3 - dmatrix ptr
dO - y
dl - width-1
d6 - bit to set

movea.l pi Colorint(a0),a2
move.w pi-xpos(a0),d2
movea.l pi=ScaleX(aO),aO

aO - sxptr
al - ptr
a2 - Colorint ptr
a3 - dmatrix ptr
dl - width
d2 - X
d3- dvalue (dmatrix[x & 3])
d4 - Black
d5 - sx
d6 - bit to set

gwidth_loop:
move.b
addq.l

move.w
subq.w

gsx_loop:
moveq.l
and.w
move.b

cmp.b
ble.s

PCMBLACK(a2),d4
#ce_SIZEOF,a2

(aO) +,dS
#1, dS

#3,d3
d2,d3
O(a3,d3.w),d3

d3,d4
gsx_end

bset.b d6,0(al,d2.w)

gsx_end

exit:

sx
width

addq.w
dbra
dbra

#l,d2
dS,gsx loop
dl,gwidth loop

movem.l (sp)+,d2-d6/a2-a4
moveq.l #O,dO
rts

dc.w
dc.w

END

0
0

;advance to next entry

;dS = # of times to use this pixel

;render this pixel?
;no, skip to next pixel.
;adjust for dbra

;yes, render this pixel sx times
;*(ptr) l=bit;

;ptr++
; sx-­
;width-­
;all done

;ptr += sx
;width--

;a2
;d2
;aD

Colorint ptr
X

ScaleX (sxptr)

;d4 = Black
;advance to next entry

;dS = # of times to use this pixel
;adjust for dbra

;d3 = X & 3
;d3 = dmatrix[x & 3]

;render this pixel?
;no, skip to next pixel.

;*(ptr + x) I= bit

;x++
;sx-­
;width--

;restore regs used
; flag all ok
;goodbye

228 Amiga ROM Kernel Reference Manual: Devices

Epsonx: transfer.c

I*
C-language Transfer routine for EpsonX driver.

*I

#include <execltypes.h>
#include <deviceslprinter.h>
#include <deviceslprtbase. h>
#include <devices/prtgfx.h>

Transfer(Pinfo, y, ptr,
struct Prtinfo *Pinfo;
UWORD y;

colors, BufOffset)

I* row # *I
UBYTE *ptr; I* ptr to buffer *I
UWORD *colors; I* indexes to color buffers *I
ULONG BufOffset; I* used for interleaved printing *I
{

extern struct PrinterData *PD;
extern struct PrinterExtendedData *PED;

static UWORD bit table[8] = {128, 64, 32, 16, 8, 4, 2, 1};
union colorEntry-*Colorint;
UBYTE *bptr, *yptr, *mptr, *cptr, Black, Yellow, Magenta, Cyan;
UBYTE *dmatrix, dvalue, threshold;
UWORD x, width, sx, *sxptr, color, bit, x3;

I* printer non-specific, MUST DO FOR EVERY PRINTER *I
x = Pinfo->pi xpos;
Colorint = Pinfo->pi Colorint;
sxptr Pinfo->pi ScaleX;
width = Pinfo- >pi :::width;

I* printer specific *I
if (PED->ped_YDotsinch == 216)
{

}

BufOffset *= y % 3;
y I= 3;

else if (PED->ped_YDotsinch 144)
{

}
else
{

}
bit
bptr
yptr
mptr
cptr

BufOffset *= y & 1;
y I= 2;

BufOffset 0;

bit table[y & 7 J;
ptr + colors[O] + BufOffset;
ptr + colors[1] + BufOffset;
ptr + colors[2] + BufOffset;
ptr + colors[3] + BufOffset;

/* pre-compute threshold; are we thresholding? */
if (threshold = Pinfo->pi threshold)
{ I* thresholding */

dvalue = threshold ' 15;
bptr += x;
do { I* for all source pixels *I

I* pre-compute intensity values for Black component *I
Black= Colorint->colorByte[PCMBLACK];

else

Colorint++;

sx *sxptr++;

do I* use this pixel 'sx' times *I
if (Black > dvalue)
{

*bptr I= bit;
}
bptr++; I* done 1 more printer pixel *I

} while (--sx);
} while (--width);

Printer Device 229

(I* not thresholding, pre-compute ptr to dither matrix *I
dmatrix = Pinfo->pi dmatrix + ((y & 3) << 2);
if (PD->pd Preferences.PrintShade == SHADE GREYSCALE)
(- -

}
else

do (I* for all source pixels *I
I* pre-compute intensity values for Black *I
Black= Colorint->colorByte[PCMBLACK];
Color!nt++;

sx * sxptr++;

do I* use this pixel 'sx' times *I
if (Black > dmatrix [x & 3])
(

* (bptr + x) I= bit;

x++; I* done 1 more printer pixel *I
} while (--sx);

} while (--width);

(I* color *I
do (I* for all source pixels *I

I* compute intensity values for each color *I
Black= Colorint->colorByte[PCMBLACK];
Yellow= Colorint->colorByte[PCMYELLOW];
Magenta= Colorint->colorByte[PCMMAGENTA];
Cyan = Colorint->colorByte[PCMCYAN];
Color!nt++;

sx *sxptr++;

do I* use this pixel 'sx' times *I
x3 = x >> 3;
dvalue = dmatrix[x & 3];
if (Black > dvalue)
(

* (bptr + x) I= bit;

else
(I* black not rendered *I

if (Yellow > dvalue)
(

* (yptr + x) I= bit;
}
if (Magenta > dvalue)
(

* (mptr + x) I= bit;
}
if (Cyan > dvalue)
(

*(cptr + x) I= bit;

++x; I* done 1 more printer pixel *I
} while (--sx);

} while (--width);

Epsonx: denslty.c

I*
Density module for EpsonX driver.

*I

#include <execltypes.h>
#include "deviceslprinter.h"
#include "deviceslprtbase.h"

SetDensity(density code)
ULONG density code;
(-

extern struct PrinterData *PD;

230 Amiga ROM Kernel Reference Manual: Devices

extern struct PrinterExtcndedData *PED;

/* SPECIAL DENSITY
static int-XDPI[8] =
static int YDPI[8] =
static char codes[8]

0 1 2 3 5 6 7 */
{120, 120, 120, 240, 120, 240, 240, 240);
{72, 72, 144, 72, 216, 144, 216, 216);
= {'1', 'L', 'L', 'Z', 'L', 'Z', 'Z', 'Z'};

PED->ped MaxColumns =
PD->pd Preferences.PaperSize == W TRACTOR ? 136 80;

density code /=-SPECIAL DENSITYl;
I* default is 80 chars (8.0 in.), W TRACTOR is 136 chars (13.6 in.) */
PED->ped MaxXDots = -

fXDPI [density code] * PED->ped MaxColumns) I 10;
PED->ped XDotsinch = -XDPI [density code];
PED->ped-YDotsinch = YDPI[density-code];
if ((PED-->ped YDotsinch = YDPI [density code]) == 216) {

PED->ped_NumRows = 24; -
}
else if (PED->ped YDotsinch == 144) {

PED->ped_NumRows 16;

else
PED->ped NumRows = 8;

}

return((int)codes[density code]);

HP _Laserjet

The driver for the HP _LaserJct can be generated with the following Makefilc.

LC = lc: lc
ASM = lc:asm
CFLAGS = -iiNCLUDE: -bO -dO -v
ASMFLAGS = -iiNCLUDE:
LINK = lc:blink
LIB= lib:amiga.lib+lib:lc.lib
OBJ = printertag.o+init.o+data.o+dospecial.o+render.o+transfer.o+density.o
TARGET = hp_laserjet

@$(LC) $(CFLAGS) $*

$(TARGET): printertag.o init.o data.o dospecial.o render.o density.o transfer.o
@$(LINK) <WITH <
FROM $ (OBJ)
TO $(TARGET)
LIBRARY $(LIB)
NODEBUG SC SO VERBOSE MAP $(TARGET) .map H
<

init.o: init.asm
@$(ASM) $(ASMFLAGS) init.asm

printertag.o: printertag.asm hp rev.i
@$(ASM) $ (ASMFLAGS) printertag.asm

transfer.o: transfer.asm
@$(ASM) $(ASMFLAGS) transfer.asm

dospecial.o: dospecial.c

data.o: data.c

density.o: density.c

render.o: render.c

Printer Device 231

HP _Laserjet: macros./

**
*
*
*

printer device macro definitions

**

*------ external definition macros -----------------------------------

XREF EXE MACRO
XREF LV0\1

ENDM

XREF DOS MACRO
XREF LV0\1 -ENDM

XREF GFX MACRO
XREF LV0\1

ENDM

XREF ITU MACRO
XREF LV0\1 -ENDM

*------ library dispatch macros --------------------------------------

CALLEXE MACRO
CALLLIB LV0\1
ENDM

LINKEXE MACRO
LINKLIB LV0\1, SysBase
ENDM

LINKDOS MACRO
LINKLIB LV0\1, DOSBase
ENDM

LINKGFX MACRO
LINKLIB LV0\1, GfxBase
ENDM

LINKITU MACRO
LINKLIB LV0\1, IntuitionBase
ENDM

HP _Laserjet: printertag.asm

**
*
*
*

printer device dependent code tag

**

*------

*------

SECTION

Included Files

INCLUDE
INCLUDE
INCLUDE

INCLUDE

INCLUDE

printer

"exec/types.i"
"exec/nodes.i 11

''exec/strings.i''

nhp rev.i"

"devices/prtbase.i"

Imported Names ---

XREF
XREF
XREF

I nit
Expunge
Open

232 Amiga ROM Kernel Reference Manual: Devices

*------

XREF
XREF
XREF
XREF
XREF
XREF
XREF

Exported Names

XDEF

Close
-Command Table
-PrinterSegmentData
-DoSpecial
-Render

ExtendedCharTable
ConvFunc

PEDData

**

PEDData:

MOVEQ
RTS
DC.W
DC.W

!10, DO

VERSION
REVISION

printerName
Init
Expunge
Open
Close

PPC BWGFX
PCC-BW
0
0
1
600
795
75
75

; show error for OpenLibrary()

PrinterClass
ColorClass
MaxColumns
NumCharSets
NumRows
MaxXDots
MaxYDots
XDotsinch
YDotsinch

CommandTable Commands
DoSpecial
Render

30 ; Timeout
ExtendedCharTable 8BitChars

I ; PrintMode (reserve space)

DC.L
DC.L
DC.L
DC.L
DC.L
DC.B
DC.B
DC.B
DC.B
DC.W
DC.L
DC.L
DC.W
DC.W
DC.L
DC.L
DC.L
DC.L
DC.L
DS.L
DC.L ConvFunc ; ptr to char conversion function

printerName:
dc.b

END

HP _Laser}et: hp_rev.l

VERSION
REVISION

EQU
EQU

HP _Laserjet: lnlt.asm

'HP LaserJet',O

35
1

**
*
*
*

printer device functions

**

SECTION printer

*------ Included Files ---

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

INCLUDE

"exec/types.i"
11 exec/nodes.i 11

"exec/lists.i"
11 exec/memory.i 11

"exec/ports.i"
''cxcc/libraries.i''

11 macros.i"

Printer Device 233

*------ Imported Functions ---

XREF EXE
XREF-EXE
XREF-

XREF

CloseLibrary
OpenLibrary
AbsExecBase

PEDData

*------ Exported Globals ---

XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF

I nit
-Expunge
-Open
-PO
-PED

SysBase
-DOSBase
-GfxBase

IntuitionBase

**
SECTION

PO
-PED

SysBase
DOSBase
GfxBase
IntuitionBase

DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

printer,DATA
0
0
0
0
0
0

**
SECTION printer,CODE

Init:

*

*

*

pdiRts:

initPAErr:

initiLErr:

initGLErr:

initDLErr:

MOVE.L
LEA
MOVE.L
MOVE.L
MOVE.L
MOVE.L

4(A7), PO
PEDData(PC),AO

AO, PED
A6,-:::(A7)

AbsExecBase,A6
A6, SysBase

;------ open the dos library
LEA DLName(PC),Al
MOVEQ #0,00
CALLEXE OpenLibrary
MOVE.L DO, DOSBase
BEQ initDLErr

·------ open the graphics library
LEA GLName(PC),Al
MOVEQ #0,00
CALLEXE OpenLibrary
MOVE.L DO, GfxBase
BEQ initGLErr

open the intuition library
ILName (PC) ,Al LEA

MOVEQ
CALLEXE
MOVE.L
BEQ

MOVEQ

MOVE.L
RTS

MOVE.L
LINKEXE

MOVE.L
LINKEXE

MOVE.L
LINKEXE

MOVEQ
BRA.S

#0,00
OpenLibrary
DO, IntuitionBase
initiLErr

#0,00

(A7) +,A6

IntuitionBase,Al
CloseLibrary

GfxBase,Al
CloseLibrary

DOSBase,Al
CloseLibrary

#-1,00
pdiRts

234 Amiga ROM Kernel Reference Manual: Devices

ILName:

DLName:

GLName:

DC.B
DC.B

DC.B
DC.B

DC.B
DC.B
DS.W

'intuition. library'
0

'dos .library'
0

'graphics.library'
0
0

*---
Expunge:

MOVE.L IntuitionBase,A1
LINKEXE CloseLibrary

MOVE.L GfxBase,A1
LINKEXE CloseLibrary

MOVE.L DOSBase,A1
LINKEXE CloseLibrary

*---
Open:

MOVEQ
RTS

END

HP_Laserjet: data.c

I*

#0,00

Data.c table for HP LaserJet (Plus and II compatible) driver.
*I

char *CommandTable[] = {
"\375\033E\375",1* 00 aRIS reset
"\377", I* 01 aRIN initialize
"\012", I* 02 aiND linefeed
"\015\012", I* 03 aNEL CRLF
"\033&a-1R", I* 04 aRI reverse LF

I* OS aSGRO normal char set
"\033&d@\033(sbS",
"\033(slS", I* 06 aSGR3 italics on
"\033(sS", I* 07 aSGR23 italics off
"\033&dD", I* 08 aSGR4 underline on
"\033&d@", I* 09 aSGR24 underline off
"\033(s5B", I* 10 aSGRl boldface on
"\033(sB", I* 11 aSGR22 boldface off
"\377", I* 12 aSFC set foreground color
"\377", I* 13 aSBC set background color

"\033(s10h1T",
"\033(s12h2T",
"\033(s10h1T",
"\033 (s15H",
"\033 (s10H'',
"\377",
"\377",

"\033(s7B",
"\033 (sB",
"\033(s3B",
"\033(sB",
"\377",
"\377",

"\377",
"\377",
"\377",
"\377",
"\377",
"\033&a-.5R",

I* 14 aSHORPO normal pitch
I* 15 aSHORP2 elite on
I* 16 aSHORP1 elite off
I* 17 aSHORP4 condensed fine on
I* 18 aSHORP3 condensed fine off
I* 19 aSHORP6 enlarge on
I* 20 aSHORPS enlarge off

I* 21 aDEN6 shadow print on
I* 22 aDENS shadow print off
I* 23 aDEN4 double strike on
I* 24 aDEN3 double strike off
I* 25 aDEN2 NLQ on
I* 26 aDENl NLQ off

I* 27 aSUS2 superscript on
I* 28 aSUS1 superscript off
I* 29 aSUS4 subscript on
I* 30 aSUS3 subscript off
/* 31 aSUSO normalize the line
/* 32 aPLU partial line up

*I
*I
*I
*I
*I

*I

*I
*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I

Printer Device 235

) ;

"\033=",

"\033(s3T",
"\033(s0T",
"\033(s1T",
"\033(s2T",
"\033(s4T",
"\033(s5T",
"\033 (s6T",
"\033 (s7T",
"\033 (s8T",
"\033(s9T",
"\033 (slOT",

"\033(s1P",
"\033 (sP",
"\033(sP",
"\377",
"\377",
"\377",
"\377",
"\377",
11 \377",
"\377",

"\033&180",
"\033&160",
"\377",
"\033&11L",
"\033&1L",

"\377",
"\377",
"\377",
"\377",
"\377",
"\377n,
"\0339\015",

"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",

"\377",
"\377"

I* 33 aPLO partial line down

I* 34 aFNTO Typeface 0
I* 35 aFNTl Typeface 1
I* 36 aFNT2 Typeface 2
I* 37 aFNT3 Typeface 3
I* 38 aFNT4 Typeface 4
I* 39 aFNT5 Typeface 5
I* 40 aFNT6 Typeface 6
I* 41 aFNT7 Typeface 7
I* 42 aFNT8 Typeface 8
I* 43 aFNT9 Typeface 9
I* 44 aFNTlO Typeface 10

I* 45 aPROP2 proportional on
I* 46 aPROPl proportional off
I* 47 aPROPO proportional clear
I* 48 aTSS set proportional offset
I* 49 aJFY5 auto left justify
I* 50 aJFY7 auto right justify
I* 51 aJFY6 auto full jusitfy
I* 52 aJFYO auto jusity off
I* 53 aJFY3 letter space
I* 54 aJFYl word fill

I* 55 aVERPO 118" line spacing
I* 56 aVERPl 116" line spac1ng
I* 57 aSLPP set form length
I* 58 aPERF perf skip n (n > 0)
I* 59 aPERFO perf skip off

I* 60 aLMS set left margin
I* 61 aRMS set right margin
I* 62 aTMS set top margin
I* 63 aBMS set bottom margin
I* 64 aSTBM set T&B margins
I* 65 aSLRM set L&R margins
I* 66 aCAM clear margins

I* 67 aHTS set horiz tab
I* 68 aVTS set vert tab
I* 69 aTBCO clear horiz tab
I* 70 aTBC3 clear all horiz tabs
I* 71 aTBCl clear vert tab
I* 72 aTBC4 clear all vert tabs
I* 73 aTBCALL clear all h & v tabs
I* 74 aTBSALL set default tabs

I* 75 aEXTEND extended commands
I* 76 aRAW next 'n' chars are raw

char *ExtendedCharTable[] = {
I*

It .. , IITn, "c", "Ln, no", "Y", "I", "S",

"\"n, "en, "a", "<", n-n, n_n 1 "r", n_n

11*11

11 II

'
ITA",

"Ell,

non,

"0",

"an'

lien I

"d",

no",

n+n 1 n2n 1 "311, 1 nun 1 11pn 1 II II

'
"ln, 11011 1 11>11/ 11/11/ n;n, "/", "?",

"Au, "A", "An, nAn, "A", IIAII, ucn,

"E", ''E'•, ''E'', ''I'', ''!'', ''I'', ''I'',

"0", "0", "0", "0", "0", "x",

nun, "U", "U", 11 U", "Y", "P", "B",

uan, "a", "a 11 , "an, "a", 11 a", 11 C 11 ,

"e", "e", "e", "i 11 , "i", "i", "i",

"nn, "o 11 , no", no", "o", "o", "/",

nun, "u", "u", "u", "y", "pn, nyn

236 Amiga ROM Kernel Reference Manual: Devices

*I

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I

*I

*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I
*I

*I
*I

*I

} ;

, "\270", "\277", "\273", "\272", "\274", "I", "\275",
"\253", "c", "\371", "\373 11 , n-n, "\366 11 , 11 r 11 , "\260",
"\263", "\376", "2", "3", "\250", "\363", "\364", "\362",
11 1 11 1 11 1 11 , n\372", "\375", "\367", "\370 11 1 11 \365 11 , 11 \271 11 ,

"\241", "\340", "\242", "\341", "\330", "\320", "\323", "\264",
"\243", "\334", "\244", "\245", "\346", "\345", "\246", "\247",
"\343 11 , "\266 11 , "\350", 11 \347", "\337 11 , "\351", 11 \332", "x",
"\322", "\255", "\355", "\256", "\333", "\261", "\360", "\336",
"\310", "\304", "\300", "\342", "\314", "\324", "\327", "\265",
"\311", "\305", "\301", "\315", "\331", "\325", "\321", "\335",
"\344", "\267", "\312", "\306", "\302", "\352", "\316", "-\010:",
"\326", "\313"' "\307"' "\303"' "\317", "\262"' "\361"' "\357"

HP _Laserjet: dospecial.c

I*
DoSpecial for HP LaserJet driver.

*I

#include "exec/types.h"
#include "deviceslprinter.h"
#include "deviceslprtbase.h"

#define LPI 7
#define CPI 15
#define QUALITY 17
#define INIT LEN 30
#define LPP 7
#define FORM LEN 11
#define LEFT-MARG 3
#define RIGHT MARG 7
#define MARG LEN 12

DoSpecial(command, outputBuffer, vline, currentVMI, crlfFlag, Parms)
char outputBuffer[];
UWORD *command;
BYTE *vline;
BYTE *currentVMI;
BYTE *crlfFlag;
UBYTE Parms[];
{

extern struct PrinterData *PD;
extern struct PrinterExtendedData *PED;

static UWORD textlength, topmargin;
int x, y, j;
static char initThisPrinter[INIT LEN]

"\033&d@\033&16D\033(sObiOh1qOp0s3tOu12V";
static char initForm[FORM LEN] = "\033&1002e000F";
static char initMarg[MARG-LEN) = "\033&a0001000M\015";
static char initTMarg[) =-"\033&1000e000F";

X = y = j = 0;

if (*command == aRIN) {
while (x < INIT LEN) {

outputBuffer(x] = initThisPrinter[x);
x++;

}
outputBuffer[x++] = '\015';

if (PD->pd Preferences.PrintSpacing EIGHT LPI)
outputBuffer[LPI] = '8';

if (PD->pd Preferences.PrintPitch ELITE)
outputBuffer[CPI] = '2';

}
else if (PD->pd Preferences.PrintPitch

outputBuffer[CPI] = '5';
FINE)

Printer Device 237

if (PD->pd Preferences.PrintQuality
outputBuffer[QUALITY] = '2';

LETTER) I

j = x; /* set the formlength = textlength, top margin 2 *I
textlength = PD->pd Preferences.PaperLength;
topmargin = 2; -

while (y < FORM LEN) I
outputBUffer[x++l = initForm[y++];

}
numberString(textlength, j + LPP, outputBuffer);

Parms[O]
Parms[1]
*command

PD->pd Preferences.PrintLeftMargin;
PD->pd-Preferences.PrintRightMargin;
aSLRM; -

if (*command == aSLRM) I
j = x;
y = 0;
while (y < MARG LEN) I

outputBuffer[x++] = initMarg[y++];
}
numberString(Parms[O]
numberString(Parms[1]
return(x);

1, j +LEFT MARG, outputBuffer);
- 1, j + RIGHT_MARG, outputBuffer);

if ((*command== aSUS2} && (*vline
*command = aPLU;
*vline = 1;
return(O);

0) l I

if ((*command == aSUS2) && (*vline < 0)) I
*command = aRI;
*vline = 1;
return(O);

if ((*command == aSUS1) && (*vline > 0)) I
*command = aPLD;
*vline = 0;
return(O);

if ((*command== aSUS4) && (*vline
*command = aPLD;
*vline = -1;
return(O);

0)) I

if ((*command == aSUS4) && (*vline > 0)) I
*command = aiND;
*vline = -1;
return(O);

if ((*command == aSUS3) && (*vline < 0)) I
*command = aPLU;
*vline = 0;
return(O);

if(*command == aSUSO) I
if (*vline > 0)

*command = aPLD;
}
if (*vline < 0) I

*command aPLU;

*vline = 0;
return(O);

if (*command == aPLU)

238 Amiga ROM Kernel Reference Manual: Devices

(*vline)++;
return(O);

if (*command == aPLD) {
(*vline)--;
return(O);

if (*command == aSTBM) {
if (Parms[O] == 0)

Parms[O] = topmargin;
}
else

topmargin = --Parms[O];

if (Parms[1] == 0) {
Parms[1] = textlength;

else
textlength=Parms[1];

}
while (x < 11) {

outputBuffer[x] = initTMarg[x];
x++;

}
numberString(Parms[O], 3, outputBuffer);
numberString(Parms[1] - Parms[O], 7, outputBuffer);
return (x);

if (*command == aSLPP) {
while (x < 11) {

outputBuffer [x]
x++;

}

initForm[x];

/*restore textlength, margin*/
numberString(topmargin, 3, outputBuffer);
numberString(textlength, 7, outputBuffer);
return (x);

if (*command == aRIS) {
PD- >pd _PWai tEnabled 253;

return(O);

numberString(Param, x, outputBuffer)
UBYTE Param;
int x;
char outputBuffer[];
{

if (Param > 199) {
outputBuffer[x++] '2';
Param -= 200;

)
else if (Param > 99) {

outputBuffer[x++] '1';
Param -= 100;

else
outputBuffer[x++]

if (Param > 9) {
outputBuffer[x++]

}
else

'0'; /*always return 3 digits*/

Param I 10 + '0';

outputBuffer[x++] '0';

outputBuffer[x++] Param% 10 + '0';

Printer Device 239

ConvFunc(buf, c, flag)
char *buf, c;
int flag; /* expand lf into lf/cr flag (0-yes, else no) */
{

if (c == '\014') (/* if formfeed (page eject) */
PED->ped_PrintMode = 0; I* no data to print */

)
return(-1); /*pass all chars back to the printer device*/

Close(ior)
struct printeriO *ior;
(

if (PED->ped PrintMode) (/* if data has been printed */
(*(PD-:.>pd PWrite)) ("\014",1); /*eject page*/
(* (PD->pd-PBothReady)) (); /* wait for it to finish */
PED->ped_PrintMode = 0; /* no data to print */

)
return(O);

HP _Laserjet: render.c

I*
HP LaserJet driver.

*I

llinclude <exec/types.h>
llinclude <exec/nodes.h>
llinclude <exec/lists.h>
llinclude <exec/memory.h>
II include <devices/prtbase. h>
II include <devices/printer. h>

lldefine NUMSTARTCMD 7 /* II of cmd bytes before binary data */
lldefine NUMENDCMD 0 /* II of cmd bytes after binary data */
lldefine NUMTOTALCMD (NUMSTARTCMD + NUMENDCMD) /* total of above */

extern SetDensity();
I*

*I

00-04
05-ll
12-16

\033&10L
\033*t075R
\033*r0A

perf skip mode off
set raster graphics resolution (dpi)
start raster graphics

char StartCmd[18] = "\033&10L\033*t075R\033*r0A";

Render(ct, x, y, status)
long ct, x, y, status;
(

extern void *AllocMem(), FreeMem();

extern struct PrinterData *PD;
extern struct PrinterExtendedData *PED;

static UWORD RowSize, BufSize, TotalBufSize, dataoffset;
static UWORD huns, tens, ones; /* used to program buffer size */
UBYTE *ptr, *ptrstart;
int i, err;

err=PDERR NOERR;
switch(status) (

case 0 I* Master Initialization */
I*

ct - pointer to IODRPReq structure.
x - width of printed picture in pixels.
y - height of printed picture in pixels.

*I
RowSize (x + 7) I 8;
BufSize RowSize + NUMTOTALCMD;
TotalBufSize = BufSize * 2;
PD->pd PrintBuf = AllocMem(TotalBufSize, MEMF_PUBLIC);
if (PD-"">pd PrintBuf == NULL) (

err-= PDERR_BUFFERMEMORY; /* no mem */

else

240 Amiga ROM Kernel Reference Manual: Devices

ptr = PD->pd PrintBuf;
*ptr++ 27; -
ptr++ '';
ptr++ 'b'; I transfer raster graphics *I
*ptr++ huns '0';
*ptr++ tens '0';
ptr++ ones '0'; I printout width *I
ptr = 'W'; I terminator *I
ptr = &PD->pd PrintBuf[BufSize];
*ptr++ 27; -
ptr++ '';
ptr++ 'b'; I transfer raster graphics *I
*ptr++ huns '0';
*ptr++ tens '0';
ptr++ ones '0'; I printout width *I
ptr = 'W'; I terminator *I
dataoffset = NUMSTARTCMD;

I* perf skip mode off, set dpi, start raster gfx *I
err= (*(PD->pd_PWrite)) (StartCmd, 17);

break;

case 1 : I* Scale, Dither and Render *I
I*

ct - pointer to Prt!nfo structure.
X - 0.
y - row j (0 to Height - 1) .

*I
Transfer(ct, y, &PD->pd PrintBuf[dataoffset]);
err = PDERR NOERR; I* all ok *I
break; -

case 2 : I* Dump Buffer to Printer *I
I*

ct - 0.
X - 0.
y - j of rows sent (1 to NumRows) .
White-space strip.

*I
i = RowSize;
ptrstart = &PD->pd PrintBuf[dataoffset- NUMSTARTCMD];
ptr = ptrstart + NUMSTARTCMD + i - 1;
while (i > 0 && *ptr == 0) {

i--;
ptr--;

ptr ptrstart + 3; I* get ptr to density info *I
*ptr++ = (huns = i I 100) I '0';
*ptr++ = (i - buns * 100) I 10 I '0';
ptr = i % 10 I '0'; I set printout width *I
err= (*(PD->pd PWrite)) (ptrstart, i + NUMTOTALCMD);
if (err == PDERR-NOERR) {

}
break;

dataoffset = (dataoffset == NUMSTARTCMD ?
BufSize : 0) + NUMSTARTCMD;

case 3 : I* Clear and !nit Buffer *I
I*

ct - 0.
X - 0.
y - 0.

*I
ptr &PD->pd_PrintBuf[dataoffset];
i = RowSize;
do {

*ptr++ 0;
} while (--i);
break;

case 4 : I* Close Down *I
I*

ct - error code.
x - io Special flag from IODRPReq struct
y - 0.-

*I
err PDERR_NOERR; I* assume all ok *I

Printer Device 241

}

/* if user did not cancel the print */
if (ct != PDERR CANCEL) (

}
I*

*I

!* end raster graphics, perf skip mode on */
if ((err = (* (PD->pd PWrite))

("\033*rB\033&llL", 9)) == PDERR NOERR)
/* if want to unload paper */ -
if (! (x & SPECIAL NOFORMFEED)) (

I* eject paper */
err = (* (PD->pd PWrite))

("\014",-1);

flag that there is no alpha data waiting that
needs a formfeed (since we just did one)

PED->ped PrintMode = 0;
/* wait for both buffers to empty */

(* (PD->pd PBothReady)) ();
if (PD->pd PrintBuf != NULL) (

FreeMem(PD->pd_PrintBuf, TotalBufSize);
}
break;

case 5 : /* Pre-Master Initialization */
I*

ct - 0 or pointer to IODRPReq structure.
x - io Special flag from IODRPReq struct
y - 0.-

*I
/* select density */
SetDensity(x & SPECIAL_DENSITYMASK);
break;

return (err);

HP _Laserjet: density.c

I*
Density module for HP LaserJet

*I

#include <exec/types. h>
#include <devices/printer. h>
#include <devices/prtbase. h>

SetDensity(density code)
ULONG density code;
(-

extern struct PrinterData *PD;
extern struct PrinterExtendedData *PED;
extern char StartCmd[];

/* SPECIAL DENSITY 0 1 2 3 4 5 6 7 */
static int-XDPI[8] = (75, 75, 100, 150, 300, 300, 300, 300};
static char codes[8] [3] = (
('0','7','5'},('0','7','5'},('1','0','0'},('1','5','0'},
(, 3,', 0'', 0' } ' (, 3'', 0'', 0' } ' (, 3'', 0'', 0, } ' (, 3'', 0'' '0' } '
} ;

density code /= SPECIAL DENSITYl;
PED->ped_MaxXDots = XDPI[density_code] * 8; /* 8 inches */

/* default is 10.0, US LEGAL is 14.0 */
PED->ped MaxYDots = -

PD->pd Preferences.PaperSize == US LEGAL ? 14 10;
PED->ped_MaxYDots *= XDPI[density_code];

PED->ped XDotsinch = PED->ped YDotsinch
StartCmd[B] = codes[density code] [0];
StartCmd[9] = codes[density-code] [1];
StartCmd[lO] = codes[density_code] [2];

242 Amiga ROM Kernel Reference Manual: Devices

XDPI[density_code];

HP _Laser}et transfer.c

I*
Example transfer routine for HP LaserJet driver.

Transfer() should be written in assembly code for speed
*I

#include <execltypes.h>
#include <deviceslprtgfx. h>

Transfer(Pinfo, y, ptr)
struct Prtinfo *Pinfo;
UWORD y; I* row # *I
UBYTE *ptr; I* ptr to buffer *I
{

static UBYTE bit table[] = {128, 64, 32, 16, 8, 4, 2, 1};
UBYTE *dmatrix, Black, dvalue, threshold;
union colorEntry *Colorint;
UWORD x, width, sx, *sxptr, bit;

I* pre-compute *I
I* printer non-specific, MUST DO FOR EVERY PRINTER *I
x = Pinfo->pi xpos; I* get starting x position *I
Colorint = Pinfo->pi Colorlnt; I* get ptr to color intensities *I
sxptr = Pinfo->pi Sca:IeX;
width = Plnfo->pi=width; I* get # of source pixels *I

I* pre-compute threshold; are we thresholding? *I
if (threshold = Plnfo->pi threshold) { I* thresholding *I

}
else

dvalue =threshold-. 15; I* yes, so pre-compute dither value *I
do { I* for all source pixels *I

I* pre-compute intensity value for Black *I
Black= Colorlnt->colorByte[PCMBLACK];
Colorlnt++; I* bump ptr for next time *I

sx = *sxptr++;

I* dither and render pixel *I
do { I* use this pixel 'sx' times *I

I* if we should render Black *I
if (Black > dvalue) {

I* set bit *I
* (ptr + (x >> 3)) I= bit_table [x & 7];

++x; I* done 1 more printer pixel *I
} while (--sx);

} while (--width);

I* not thresholding, pre-compute ptr to dither matrix *I
dmatrix = Pinfo->pi dmatrix + ((y & 3) << 2);
do { I* for all source pixels *I

I* pre-compute intensity value for Black *I
Black= Colorlnt->colorByte[PCMBLACK];
Colorlnt++; /* bump ptr for next time *I

sx = *sxptr++;

I* dither and render pixel *I
do { I* use this pixel 'sx' times *I

I* if we should render Black *I
if (Black > dmatrix [x & 3]) {

I* set bit *I
* (ptr + (x >> 3)) I= bit_table[x & 7];

++x; I* done 1 more printer pixel *I
} while (--sx);

) while (--width);

Printer Device 243

HP _Laserjet transfer.asm

**
*
* Transfer routine for HP LaserJet

*
**

INCLUDE "exec/types.i"

INCLUDE "intuition/intuition.i"
INCLUDE "devices/printer.i"
INCLUDE "devices/prtbase.i"
INCLUDE "devices/prtgfx.i"

XREF PD

XDEF Transfer

SECTION printer,CODE
Transfer:
Transfer(Pinfo, y, ptr)
struct Prtinfo *Pinfo
UWORD y;
UBYTE *ptr;

4-7
8-11
12-15

movem.l d2-d6/a2-a3,-(sp)

movea.1 32(sp),a0
move.1 36(sp),d0
movea.l 40(sp),a1

move.w pi width(a0),d1
subq.w u-;-d1

move.w pi_ threshold(a0),d3
beq.s grey scale -

threshold:
aO - Pinfo
a1 - ptr
dO - y
d1 - width
d3 - threshold

eori.b
movea.l
move.w
movea.l

aD - sxptr
a1 - ptr

#15,d3
pi Colorint(aO),a2
pi=xpos(a0),d2
pi_ ScaleX(aO),aO

a2 - Colorint ptr
a3 - dmatrix ptr (NOT USED)
dO - byte to set (x >> 3)
d1 - width
d2 - X
d3 - dvalue
d4 - Black
dS - sx
d6 - bit to set

twidth loop:
move.b
addq.l

move.w

cmp.b
ble.s
subq.w

tsx render:

PCMBLACK(a2),d4
#ce SIZEOF,a2

(a0)+,d5

d3,d4
tsx end
#1, a:s

move.w d2,d0
lsr.w #3,d0
move.w d2,d6

;save regs used

; aO Pinfo
;dO y
;a1 ptr

;d1 width
; adjust for dbra

;d3 = threshold, thresholding?
;no, grey-scale

;d3 dvalue
;a2 Colorint ptr
;d2 X
;aO ScaleX (sxptr)

;d4 = Black
;advance to next entry

;dS = # of times to use this pixel (sx)

;render this pixel?
;no, skip to next pixel.
;adjust for dbra

;yes, render this pixel sx times

;compute byte to set

244 Amiga ROM Kernel Reference Manual: Devices

not.w
bset.b

addq.w
dbra
dbra
bra.s

tsx end:
add.w
dbra
bra.s

grey scale:
aD-- Pinfo
al - ptr
dO - y
dl - width

movea.l
moveq.l
and.w
lsl.w
movea.l
adda.l
move.w
movea.l

aD - sxptr
al - ptr

d6
d6,0(al,d0.w)

lll,d2
dS,tsx render
dl,twidth loop
exit

d5,d2
dl,twidth loop
exit -

pi Colorlnt(a0),a2
113-;-d2
dO,d2
112,d2
pi dmatrix(a0),a3
d2-;-a3
pi xpos(a0),d2
pi=ScaleX(aO),aO

a2 - Colorlnt ptr
a3 - dmatrix ptr
dO - byte to set (x >> 3)
dl - width
d2 - X
d3- dvalue (dmatrix[x & 3))
d4 - Black
dS - sx
d6 - bit to set

gwidth loop:
- move.b

addq.l

move.w
subq.w

gsx_loop:
moveq.l
and.w
move.b

cmp.b
ble.s

move.w
lsr.w
move.w
not.w
bset.b

gsx_ end
addq.w
dbra
dbra

exit:
movem.l
moveq.l
rts

END

PCMBLACK(a2),d4
llce_SIZEOF,a2

(a0)+,d5
Ill, dS

113, d3
d2,d3
0 (a3,d3.w) ,d3

d3,d4
gsx_end

d2,d0
113,d0
d2,d6
d6
d6,0(al,d0.w)

Ill, d2
dS,gsx loop
dl,gwidth_loop

(sp)+,d2-d6/a2-a3
IID,dO

;compute bit to set
;* (ptr + x >> 3) I= 2 • x

;x++
;sx-­
;width-­
;all done

;x += sx
;width--

;a2

; d2
;d2
;a3
; a3
;d2
;aD

Colorlnt ptr

y & 3
(y & 3) << 2
dmatrix
dmatrix + ((y & 3) << 2)
X

ScaleX (sxptr)

;d4 = Black
;advance to next entry

;dS = II of times to use this pixel (sx)
;adjust for dbra

;d3 = X & 3
;d3 = dmatrix[x & 3)

;render this pixel?
;no, skip to next pixel.

;compute byte to set

;compute bit to set
;*(ptr+x>>3) 1=2"x

x++
sx-­
width--

restore regs used
flag all ok
goodbye

Printer Device 245

Additional Information on the Printer Device

Additional programming information on the printer device can be found in the include files and the
Autodocs for the printer device. Both are contained in the Amiga ROM Kernel Reference Manual:
Includes and Autodocs.

Printer Device Information

INCLUDES

AUTO DOCS

devices/printer.h
devices/printer.i
devices/prtbase.h
devices/prtbase.i
devices/prtgfx.h
devices/prtgfx.i

printer.doc

Additional printer drivers can be found on Fred Fish Disk #344 under RKMCompanion.

246 Amiga ROM Kernel Reference Manual: Devices

chapter eleven
SCSI DEVICE

The Small Computer System Interface (SCSI) hardware of the A3000 and A2091/ A590 is controlled
by the SCSI device. The SCSI device allows an application to send Exec 1/0 commands and SCSI
commands to a SCSI peripheral. Common SCSI peripherals include hard drives, streaming tape
units and CD-ROM drives.

SCSI Device 247

SCSI Device Commands and Functions

SCSI Device Command Operation

HD-.SCSICMD Issue a SCSI-direct command to a SCSI unit.

Trackdisk Device Commands Supported by the SCSI Device

TD_CHANGESTATE
TDJORMAT
TD_pROTSTATUS
TD-.SEEK

Return the disk present/not-present status of a drive.
Initialize one or more tracks with a data buffer.
Return the write-protect status of a disk.
Move the head to a specific track.

Exec Commands Supported by SCSI Device

CMD_READ
CMD-.START
CMD-.STOP
CMD_WRITE

Read one or more sectors from a disk.
Restart a SCSI unit that was previously stopped with CMD_STOP.
Stop a SCSI unit.
Write one or more sectors to a disk.

Exec Functions as Used in This Chapter

AbortiO()
AllocMeJDO
AllocSignal()
CheckiO()
CloseDevice()

DolO()
FreeMem()
FreeSignal()
OpenDevice()

WaitiO()

Abort an 1/0 request to the SCSI device.
Allocate a block of memory.
Allocate a signal bit.
Return the status of an 1/0 request.
Relinquish use of the SCSI device. All requests must be complete
before closing.
Initiate a command and wait for completion (synchronous request).
Free a block of previously allocated memory.
Free a previously allocated signal.
Obtain use of the SCSI device. You specify the type of unit and its
characteristics in the call to OpenDevice().
Wait for completion of an 1/0 request and remove it from the reply
port.

Exec Support Functions as Used in This Chapter

CreateExtiO

CreatePort()

DeleteExtiO()
DeletePort()

Create an extended IORequest structure for use in communicating
with the SCSI device.
Create a message port for reply messages from the SCSI device. Exec
will signal a task when a message arrives at the port.
Delete the extended IORequest structure created by CreateExtiO().
Delete the message port created by CreatePort().

248 Amiga ROM Kernel Reference Manual: Devices

Device Interface

The SCSI device operates like other Amiga devices. To use it, you must first open the SCSI device,
then send 1/0 requests to it, and then close it when finished. See the "Introduction to Amiga System
Devices" chapter for general information on device usage.

The power of the SCSI device comes from its special facility for passing SCSI and SCSI-2 command
blocks to any SCSI unit on the bus. This facility is commonly called SCSI-direct and it allows the
Amiga to perform SCSI functions that are "non-standard" in terms of the normal Amiga 1/0 model.

To send SCSI-direct or other commands to the SCSI device, an extended 1/0 request structure
named IOStdReq is used.

struct IOStdReq
{

} ;

struct
struct
struct
UWORD
UBYTE
BYTE
ULONG
ULONG
APTR
ULONG

Message io Message;
Device *io Device;
Unit *io-Unit;
io Command;­
io-Flags;
io -Error;
io -Actual;
io-Length;
io-Data;
io::::offset;

/* device node pointer */
/*unit (driver private)*/
/* device command */

/* error or warning num */
/* actual number of bytes transferred */
/* requested number bytes transferred*/
/* points to data area */
/* offset for block structured devices */

See the include file execlio.h for the complete structure definition.

OPENING THE SCSI DEVICE

Three primary steps are required to open the SCSI device:

• Create a message port using CreatePort(). Reply messages from the device must be directed
to a message port.

• Create an 1/0 request structure of type IOStdReq. The IOStdReq structure is created by the
CreateExtiO() function. CreateExtiO will initialize your IOStdReq to point to your reply
port.

• Open the SCSI device. Call OpenDevice() passing it the 1/0 request and the SCSI unit encoded
in the unit field.

SCSI unit encoding consists of three decimal digits which refer to the SCSI Target ID (bus address)
in the ls digit, the SCSI logical unit (LUN) in the lOs digit, and the controller board in the lOOs
digit. For example:

SCSI unit

6
12
104
88

Meaning

drive at address 6
LUN I on multiple drive controller at address 2
second controller board, address 4
not valid: both logical units and addresses range from 0-7

SCSI Device 249

The Commodore 2090/2090A/2091 unit numbers are encoded differently. The SCSI logical unit
(LUN) is in the 100s digit, and the SCSI Target ID is a permuted 1s digit: Target ID ~maps to
unit 3-9 (7 is reserved for the controller).

2090/ All unit

3

Meaning

drive at address 0
109 drive at address 6, logical unit 1
1 not valid: this is not a SCSI unit. Perhaps it's an ST506 unit.

Some controller boards generate a unique name for the second controller board, instead of imple­
menting the lOOs digit (e.g., the 2090A's iddisk.device).

struct MsgPort *SCSIMP;
struct IOStdReq *SCSIIO;

I* Message port pointer *I
I* IORequest pointer *I

/* Create message port */
if (! (SCSIMP = CreatePort (NULL, NULL)))

cleanexit("Can't create message port\n",RETURN_FAIL);

I* Create IORequest */
if (! (SCSIIO = CreateExtiO(SCSIMP,sizeof(struct IOStdReq))))

cleanexit("Can't create IORequest\n",RETURN_FAIL);

!* Open the SCSI device */
if (error= OpenDevice("scsi.device",6L,SCSIIO,OL))

cleanexit ("Can't open scsi.device\n",RETURN_FAIL);

In the code above, the SCSI unit at address 6 of logical unit 0 of board 0 is opened.

CLOSING THE SCSI DEVICE

Each OpenDevice() must eventually be matched by a call to CloseDevice(). All 1/0 requests
must be complete before calling CloseDevice(). If any requests are still pending, abort them with
AbortiO().

if (! (CheckiO(SCSIIO)))
{
AbortiO(SCSIIO);
I

WaitiO(SCSIIO);
CloseDevice(SCSIIO);

SCSI-Direct

!* Ask device to abort any pending requests */

I* Wait for abort, then clean up */
I* Close SCSI device */

SCSI-direct is the facility of the Amiga's SCSI device interface that allows low-level SCSI com­
mands to be passed directly to a SCSI unit on the bus. This makes it possible to support the special
features of tape drives, hard disks and other SCSI equipment that do not fit into the Amiga 's normal
1/0 model. For example, with SCSI-direct, special commands can be sent to hard drives to modify
various drive parameters that are normally inaccessible or which differ from drive to drive.

In order to use SCSI-direct, you must first open the SCSI device for the unit you want to use in the
manner described above. You then send an HD__5CSICMD 1/0 request with a pointer to a SCSI
command data structure.

250 Amiga ROM Kernel Reference Manual: Devices

The SCSI device uses a special data structure for SCSI-direct commands named SCSICmd.

struct SCSICmd
(

l;

UWORD

ULONG

ULONG
UBYTE
UWORD
UWORD
UBYTE
UBYTE
UBYTE

UWORD

UWORD

*scsi_Data;

scsi_ Length;

scsi Actual;
*scsi-Command;

scsi-CmdLength;
scsi -CmdActual;
scsi -Flags;
scsi-Status;

*scsi=SenseData;

scsi SenseLength;

scsi_SenseActual;

I* word aligned data for SCSI Data Phase *I
I* (optional) data need not be byte aligned *I
I* (optional) data need not be bus accessible *I
I* even length of Data area *I
I* (optional) data can have odd length *I
I* (optional) data length can be > 2**24 *I
I* actual Data used *I
I* SCSI Command (same options as scsi Data) *I
I* length of Command *I -
I* actual Command used *I
I* includes intended data direction *I
I* SCSI status of command *I
I* sense data: filled if SCSIF [OLD]AUTOSENSE *I
I* is set and scsi Status has CHECK CONDITION *I
I* (bit 1) set *I-
I* size of scsi SenseData, also bytes to *I
I* request wl SCSIF AUTOSENSE, must be 4 .. 255 *I
I* amount actually fetched (0 means no sense) *I

See the include file deviceslscsidisk.h for the complete structure definition.

SCSICmd will contain the SCSI command and any associated data that you wish to pass to the
SCSI unit. You set its fields to the values required by the unit and the command. When you have
opened the SCSI device and set the SCSICmd to the proper values, you are ready for SCSI-direct.

You send a SCSI-direct command by passing an IOStdReq to the SCSI device with a pointer to
the SCSICmd structure set in io_Data, the size of the SCSICmd structure set in io_Length and
HD_SCSICMD set in io_Command.:

struct IOStdReq *SCSireq = NULL;
struct SCSICmd Cmd; I* where the actual SCSI command goes *I

SCSireq->io Length
SCSireq->io -Data
SCSireq->io -Command
DolO (SCSI req);

sizeof(struct SCSICmd);
(APTR) &Cmd;

HD SCSICMD;

The SCSICmd structure must be filled in prior to passing it to the SCSI unit. How it is filled in
depends on the SCSI-direct being passed to the unit. Below is an example of setting up a SCSICmd
structure for the MODE_5ENSE SCSI-direct command.

UBYTE *buffer; /* a data buffer used for mode sense data */
UBYTE Sense(20]; I* buffer for request sense data *I
struct SCSICmd Cmd; I* where the actual SCSI command goes *I
static UBYTE ModeSense[]={ Oxla,O,Oxff,0,254,0); I* the command being sent *I

Cmd.scsi Data = (UWORD *)buffer;
Cmd.scsi-Length = 254;
Cmd.scsi-CmdLength = 6;
Cmd.scsi-Flags = SCSIF AUTOSENSE

- SCSIF-READ;
Cmd.scsi SenseData= (UBYTE *)Sense;
Cmd.scsi-SenseLength = 18;
Cmd.scsi=SenseActual = 0;

I* where we put mode sense data *I
I* how much we will accept *I
I* length of the command *I
I* do automatic REQUEST SENSE *I
/* set expected data direction *I
/* where sense data will go *I
I* how much we will accept *I
I* how much has been received *I

Cmd.scsi Command=(UBYTE *)ModeSense;l* issuing a MODE SENSE command *I

SCSI Device 251

The fields of the SCSICmd are:

scsLdata
This field points to the data buffer for the SCSI data phase (if any is expected). It is generally
the job of the driver software to ensure that the given buffer is DMA-accessible and to drop
to programmed 1/0 if it isn't. The filing system provides a stop-gap fix for non-conforming
drivers with the AddressMask parameter in DEVS:mountlist. For absolute safety, restrict all
direct reads and writes to Chip RAM.

scsLLength
This is the expected length of data to be transferred. If an unknown amount of data is to be
transferred from target to host, set the scsLLength to be larger than the maximum amount of
data expected. Some controllers explicitly use scsLLength as the amount of data to transfer.
The A2091, A590 and A3000 drivers always do programmed 1/0 for data transfers under 256
bytes or when the DMA chip doesn't support the required alignment.

scsLActual
How much data was actually received from or sent to the SCSI unit in response to the SCSI­
direct command.

scsLCommand
The SCSI-direct command.

scsLCmdLength
The length of the SCSI -direct command in bytes.

scsLCmdActual
The actual number of bytes of the SCSI-direct command that were transferred to the SCSI unit.

scsLFiags
These flags contain the intended data direction for the SCSI command. It is not strictly
necessary to set the data direction flag since the SCSI protocol will inform the driver which
direction data transfers will be going. However, some controllers use this information to set up
DMA before issuing the command. It can also be used as a sanity check in case the data phase
goes the wrong way.

One flag in particular, is worth noting. SCSIF _AUTOSENSE is used to make the driver per­
form an automatic REQUEST SENSE if the target returns CHECK CONDITION for a SCSI
command. The reason for having the driver do this is the multitasking nature of the Amiga. If
two tasks were accessing the same drive and the first received a CHECK CONDITION, the sec­
ond task would destroy the sense information when it sent a command. SCSIF_AUTOSENSE
prevents the caller from having to make two 1/0 requests and removes this window of vulner­
ability.

scsLStatus
The status of the SCSI-direct command. The values returned in this field can be found in the
SCSI specification. For example, 2 is CHECK_CONDITION.

scsLSenseActual
If the SCSIF _AUTOSENSE flag is set, it is important to initialize this field to zero before issuing
a SCSI command because some drivers don't support AUTOSENSE and won't initialize the
field.

252 Amiga ROM Kernel Reference Manual: Devices

scsL.SenseData
This field is used only for SCSIF_AUTOSENSE. If a REQUEST SENSE command is directly
sent to the driver, the data will be deposited in the buffer pointed to by scsLData.

Keep in mind that SCSI-direct is geared toward an initiator role so it can't be expected to perform
target-like operations. You can only send commands to a device, not receive them from an initiator.
There is no provision for SCSI messaging, either. This is due mainly to the interactive nature of the
extended messages (such as synchronous transfer requests) which have to be handled by the driver
because it knows the limitations of the controller card and has to be made aware of such protocol
changes.

RigidDiskBiock- Fields and Implementation

The RigidDiskBiock (RDB) standard was borne out of the same development effort as
HD_SCSICMD and as a result has a heavy bias towards SCSI. However, there is nothing in
the RDB specification that makes it unusable for devices using other bus protocols. The XT style
disks used in the A590 also support the RDB standard.

The RDB scheme was designed to allow the automatic mounting of all partitions on a hard drive
and subsequent booting from the highest priority partition even if it has a soft loaded filing system.
Disks can be removed from one controller and plugged into another (supporting the RDB scheme)
and will carry with it all the necessary information for mounting and booting with them.

The preferred method of creating RigidDiskBlocks is with the HDToolBox program supplied by
Commodore. Most controllers include an RDB editor or utility.

When a driver is initialized, it uses the information contained in the RDB to mount the required
partitions and mark them as bootable if needed. The driver is also responsible for loading any
filing systems that are required if they are not already available on the filesystem.resource list. File­
systems are added to the resource according to DosType and version number.

The following is a listing of devices/hardblocks.h that describes all the fields in the RDB specifica­
tion.

!*--
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

This file describes blocks of data that exist on a hard disk
to describe that disk. They are not generically accessable to
the user as they do not appear on any DOS drive. The blocks
are tagged with a unique identifier, checksummed, and linked
together. The root of these blocks is the RigidDiskBlock.

The RigidDiskBlock must exist on the disk within the first
RDB LOCATION LIMIT blocks. This inhibits the use of the zero
cylinder in ~n AmigaDOS partition: although it is strictly
possible to store the RigidDiskBlock data in the reserved
area of a partition, this practice is discouraged since the
reserved blocks of a partition are overwritten by "Format",
"Install", "DiskCopy", etc. The recommended disk layout,
then, is to use the first cylinder(s) to store all the drive
data specified by these blocks: i.e. partition descriptions,
file system load images, drive bad block maps, spare blocks,
etc.

* Though only 512 byte blocks are currently supported by the
* file system, this proposal tries to be forward-looking by
* making the block size explicit, and by using only the first
* 256 bytes for all blocks but tho LoadSeg data.
*

SCSI Device 253

*--*1
I*
*
*
*
*I

NOTE
optional block addresses below contain $ffffffff to indicate
a NULL address, as zero is a valid address

struct RigidDiskBlock
{

} ;

ULONG rdb ID;
ULONG rdb-SummedLongs;
LONG rdb-ChkSum;
ULONG rdb-HostiD;
ULONG rdb-BlockBytes;
ULONG rdb-Flags;
I* block list heads *I

I* 4 character identifier *I
I* size of this checksummed structure *I
I* block checksum (longword sum to zero) *I
I* SCSI Target ID of host *I
I* size of disk blocks *I
I* see below for defines *I

ULONG rdb BadBlockList; /* optional bad block list */
ULONG rdb-PartitionList; /* optional first partition block */
ULONG rdb-FileSysHeaderList; /* optional file system header block *I
ULONG rdb-Driveinit; I* optional drive-specific init code */

- I* Driveinit(lun,rdb,ior): "C" stk & dO/aO/al */
ULONG rdb Reservedl[6]; I* set to $ffffffff *I
I* physical-drive characteristics *I
ULONG rdb Cylinders; I* number of drive cylinders *I
ULONG rdb-Sectors; /* sectors per track */
ULONG rdb-Heads; /* number of drive heads *I
ULONG rdb-Interleave; I* interleave *I
ULONG rdb-Park; /* landing zone cylinder *I
ULONG rdb-Reserved2[3];
ULONG rdb-WritePreComp;
ULONG rdb-ReducedWrite;
ULONG rdb-StepRate;
ULONG rdb-Reserved3[5];

I* starting cylinder: write precompensation *I
/* starting cylinder: reduced write current *I
I* drive step rate *I

/* logical drive characteristics */
ULONG rdb RDBBlocksLo; /* low block of range reserved for hardblocks */
ULONG rdb-RDBBlocksHi; /* high block of range for these hardblocks */
ULONG rdb-LoCylinder; /* low cylinder of partitionable disk area */
ULONG rdb HiCylinder; /* high cylinder of partitionable data area */
ULONG rdb-CylBlocks; I* number of blocks available per cylinder */
ULONG rdb-AutoParkSeconds; I* ze:co for no auto park */
ULONG rdb-Reserved4[2];
I* drive identification *I
char rdb DiskVendor[B];
char rdb-DiskProduct[16];
char rdb-DlskRevision[4];
char rdb-ControllerVendor[B];
char rdb-ControllerProduct[16];
char rdb-ControllerRevision[4];
ULONG rdb-Reserved5[10];

#define IDNAME RIGIDDISK Ox5244534B /* 'RDSK' */

#define RDB LOCATION LIMIT 16

#define RDBFB LAST 0
#define RDBFF-LAST Ox01L
#define RDBFB-LASTLUN 1
#define RDBFF-LASTLUN Ox02L
#define RDBFB LASTTID 2
#define RDBFF LASTTID Ox04L
#define RDBFB-NORESELECT 3
#define RDBFF-NORESELECT Ox08L
#define RDBFB-DISKID 4
#define RDBFF-DISKID Ox10L
#define RDBFB-CTRLRID 5
#define RDBFF-CTRLRID Ox20L

/* no disks exist to be configured after *I
I* this one on this controller *I
I* no LUNs exist to be configured greater *I
I* than this one at this SCSI Target ID *I
I* no Target IDs exist to be configured *I
I* greater than this one on this SCSI bus *I
I* don't bother trying to perform reselection *I
I* when talking to this drive */
/* rdb Disk ... identification valid*/

/* rdb Controller ... identification valid *I

1*--*l
struct BadBlockEntry {

ULONG bbe BadBlock;
ULONG bbe=GoodBlock;

) ;
struct BadBlockBlock {

ULONG bbb ID;
ULONG bbb-SummedLongs;
LONG bbb-ChkSum;
ULONG bbb-HostiD;

I* block number of bad block *I
I* block number of replacement block */

I* 4 character identifier *I
I* size of this checksummed structure *I
I* block checksum (longword sum to zero) *I
I* SCSI Target ID of host */

254 Amiga ROM Kernel Reference Manual: Devices

ULONG bbb Next; I* block number of the next BadBlockBlock *I
ULONG bbb-Reserved;
struct BadBlockEntry bbb BlockPairs[61]; I* bad block entry pairs *I
I* note [61] assumes 512-byte blocks *I

l;

#define IDNAME BADBLOCK Ox42414442 I* 'BADB' *I

1*--*l
struct PartitionBlock {

l ;

ULONG
ULONG
LONG
ULONG
ULONG
ULONG
ULONG
ULONG
UBYTE

ULONG
ULONG
ULONG

pb ID;
pb-SummedLongs;
pb-ChkSum;
pb-HostiD;
pb -Next;
pb -Flags;
pb-Reserved1[2];
pb-DevFlags;
pb-DriveName[32];

pb Reserved2[15];
pb-Environment[17];
pb=EReserved[15];

#define IDNAME PARTITION

#define PBFB BOOTABLE
#define PBFF-BOOTABLE
#define PBFB-NOMOUNT
#define PBFF-NOMOUNT

0
1L
1
2L

I* 4 character identifier *I
I* size of this checksummed structure *I
I* block checksum (longword sum to zero) *I
I* SCSI Target ID of host *I
I* block number of the next PartitionBlock *I
I* see below for defines *I

I* preferred flags for OpenDevice *I
I* preferred DOS device name: BSTR form *I
I* (not used if this name is in use) *I
I* filler to 32 longwords *I
I* environment vector for this partition *I
I* reserved for future environment vector *I

Ox50415254 I* 'PART' *I

I* this partition is intended to be boatable *I
I* (expected directories and files exist) *I
I* do not mount this partition (e.g. manually *I
I* mounted, but space reserved here) *I

l*--*1
struct FileSysHeaderBlock {

l;

ULONG
ULONG
LONG
ULONG
ULONG
ULONG
ULONG
ULONG

ULONG
ULONG

ULONG
ULONG
ULONG
ULONG
ULONG
LONG
LONG
LONG

LONG
ULONG
ULONG

fhb ID;
fhb-SummedLongs;
fhb-ChkSum;
fhb-HostiD;
fhb -Next;
fhb -Flags;
fhb-Reserved1[2];
fhb=DosType;

fhb Version;
fhb-PatchFlags;

fhb Type;
fhb-Task;
fhb-Lock;
fhb-Handler;
fhb-StackSize;
fhb-Priority;
fhb-Startup;
fhb-SegListBlocks;

fhb Global Vee;
fhb-Reserved2[23];
fhb=Reserved3[21];

I* 4 character identifier *I
I* size of this checksummed structure *I
I* block checksum (longword sum to zero) *I
I* SCSI Target ID of host *I
I* block number of next FileSysHeaderBlock *I
I* see below for defines *I

I* file system description: match this with *I
I* partition environment's DE DOSTYPE entry *I
I* release version of this code *I
I* bits set for those of the following that *I
I* need to be substituted into a standard *I
I* device node for this file system: e.g. *I
I* Ox180 to substitute SegList & GlobalVec *I
I* device node type: zero *I
I* standard dos "task" field: zero *I
I* not used for devices: zero *I
I* filename to loadseg: zero placeholder *I
I* stacksize to use when starting task *I
I* task priority when starting task *I
I* startup msg: zero placeholder */
I* first of linked list of LoadSegBlocks: *I
I* note that this entry requires some */
I* processing before substitution *I
I* BCPL global vector when starting task *I
I* (those reserved by PatchFlags) *I

#define IDNAME FILESYSHEADER Ox46534844 I* 'FSHD' */

l*--*1
struct LoadSegBlock {

lsb ID; I* 4 character identifier *I
lsb-SummedLongs; I* size of this checksummed structure *I

ULONG
ULONG
LONG
ULONG
ULONG
ULONG
I* note

lsb-ChkSum; I* block checksum (longword sum to zero) *I
lsb-HostiD; I* SCSI Target ID of host *I
lsb-Next; I* block number of the next LoadSegBlock *I
lsb-LoadData[123]; I* data for "loadseg" *I
[123] assumes 512 byte blocks *I

l ;

#define IDNAME LOADSEG Ox4C534547 I* 'LSEG' *I

SCSI Device 255

HOW A DRIVER USES ROB

The information contained in the RigidDiskBiock and subsequent PartitionBiocks, et al., is used
by a driver in the following manner.

After determining that the target device is a hard disk (using the SCSI-direct command INQUIRY),
the driver will scan the first RDB_LOCATION_LIMIT (16) blocks looking for a block with the
"RDSK" identifier and a correct sum -to-zero checksum. If no RDB is found then the driver will give
up and not attempt to mount any partitions for this unit. If the RDB is found then the driver looks to
see if there's a partition list for this unit (rdb_PartitionList). If none, then just the rdb_Fiags will
be used to determine if there are any LUNs or units after this one. This is used for early termination
of the search for units on bootup.

If a partition list is present, and the partition blocks have the correct ID and checksum, then for each
partition block the driver does the following.

1. Checks the PBFB_NOMOUNT flag. If set then this partition is just reserving space. Skip to
the next partition without mounting the current one.

2. If PBFB_NOMOUNT is false, then the partition is to be mounted. The driver fetches the given
drive name from pb_DriveName. This name will be of the form dhO, work, wb_2.x etc. A
check is made to sec if this name already exists on eb_MountList or DOS's device list. If
it does, then the name is algorithmically altered to remove duplicates. The A590, A2091 and
A3000 append .n (where n is a number) unless another name ending with .n is found. In that
case the name is changed to .n+ 1 and the search for duplicates is retried.

3. Next the driver constructs a parameter packet for MakeDosNode() using the (possibly altered)
drive name and information about the Exec device name and unit number. MakeDosNode() is
called to create a DOS device node. MakeDosNode() constructs a filcsystem startup message
from the giver1 information and fills in defaults for the ROM filing system.

4. If MakeDosNode() succeeds then the driver checks to see if the entry is using a standard
("DOS\0") filing system. If not then the routine for patching in non-standard filing systems is
called (see "Alien File Systems" below).

5. Now that the DOS node has been set up and the correct filing system segment has been
associated with it, the driver checks PBFB_BOOTABLE to see if this partition is marked as
boatable. If the partition is not boatable, or this is not autoboot time (DiagArea == 0) then
the driver simply calls AddDosNode() to enqueue the DOS device node. If the partition is
boatable, then the driver constructs a boot node and enqueues it on eb_MountList using the
boot priority from the environment vector. If this boot priority is -128 then the partition is not
considered boatable.

256 Amiga ROM Kernel Reference Manual: Devices

ALIEN FILING SYSTEMS

When a filing system other than the ROM filing system is to be used, the following steps take place.

1. First, open filesystem.resource in preparation for finding the filesystem segment we want. If
filesystem.resource doesn't exist then create it and add it via AddResource(). Under 2.0
the resource is created by the system early on in the initialization sequence. Under pre-V36
Kickstart, it is the responsibility of the first RDB driver to create it.

2. Scan filesystem.resource looking for a filcsystem that matches the DosType and version that
we want. If it exists go to step 4.

3. Since the driver couldn't find the filesystem it needed, it will have to load it from the RDB area.
The list of FileSysHeaderBiocks (pointed to by the "RDSK" block) is scanned for a filesystem
of the required DosType and version. If none is found then the driver will give up and abort
the mounting of the partition. If the required filesystem is found, then it is LoadSeg() 'ed from
the "LSEG" blocks and added as a new entry to the filesystem.resource.

4. The SegList pointer of the found or loaded filesystem is held in the FileSysEntry structure
(which is basically an environment vector for this filing system). Using the patch flags, the
driver now patches the newly created environment vector (pointed to by the new DosNode)
using the values in the FileSysEntry being used. This ensures that the partition will have the
correct filing system set up with the correct mount variables using a shared SegList.

The eb_Mountlist will now be set up with prioritized bootnodes and maybe some non-boatable,
but mounted partitions. The system bootstrap will now take over.

Amiga BootStrap

At priority -40 in the system module initialization sequence, after most other modules are initialized,
appropriate expansion boards are configured. Appropriate boards will match a FindConfigDev (1

-1 1 -1) --these are all boards on the expansion library board list. Furthermore, they will meet all
of the following conditions:

1. CDB_CONFIGME set in cd_Fiags,

2. ERTB_DIAGVALID set in cd_Rom->eL Type,

3. diagnostic area pointer (in cd__Rom->er __ ReservedOc) is non-zero,

4. DAC_CONFIGTIME set in da_Config, and

5. at least one valid resident tag within the diagnostic area, the first of which is used by
InitResident() below. This resident structure was patched to be valid during the ROM di­
agnostic routine run when the expansion library first initialized the board.

SCSI Device 257

Boards meeting all these conditions arc initialized with the standard InitResident() mechanism, with
a NULL SegList. The board initialization code can find its ConfigDev structure with the expansion
library's GetCurrentBinding() function. This is an appropriate time for drivers to Enqueue() a
boot node on the expansion library's eb_MountList for use by the strap module below, and clear
CDB_CONFIGME so a C:BindDrivers command will not try to initialize the board a second time.

This module will also enqueue nodes for 3.5" trackdisk device units. These nodes will be at the
following priorities:

Priority

5
-10
-20
-30

Drive

dfO:
dfl:
df2:
df3:

Next, at priority -60 in the system module initialization sequence, the strap module is invoked.
Nodes from the prioritized eb_MountList list is used in priority order in attempts to boot. An
item on the list is given a chance to boot via one of two different mechanisms, depending on
whether it it uses boot code read in off the disk (BootBlack booting), or uses boot code provided
in the device ConfigDev diagnostic area (BootPoint booting). Floppies always use the BootBlack
method. Other entries put on the eb_MountList (e.g. hard disk partitions) used the BootPoint
mechanism for pre-V36 Kick start, but can usc either for V36N37.

The eb_MountList is modified before each boot attempt, and then restored and re-modified for the
next attempt if the boot fails:

1. The node associated with the current boot attempt is placed at the head of the eb_MountList.

2. Nodes marked as unusable under AmigaDOS are removed from the list. Nodes that are unusable
are marked by the longword bn_DeviceNode->diLHandler having the most significant bit
set. This is used, for example, to keep UNIX partitions off the AmigaDOS device list when
booting AmigaDOS instead of UNIX.

The selection of which of the two different boot mechanisms to use proceeds as follows:

1. The node must be valid boot node, i.e. meet both of the following conditions:
a) In_ Type is NT_BOOTNODE,
b) bn_DeviceNode is non-zero,

2. The type of boot is determined by looking at the DosEnvec pointed to by fssm_Environ
pointed to by the dn_Startup in the biLDeviceNode:

a) if the de_ TableSize is less than DE_BOOTBLOCKS, or the de_BootBiocks entry is zero,
BootPoint booting is specified, otherwise

b) de_BootBiocks contains the number ofblocks to read in from the beginning of the partition,
checksum, and try to boot from.

258 Amiga ROM Kernel Reference Manual: Devices

BOOTBLOCK BOOTING

In BootBlack booting the sequence of events is as follows:

1. The disk device must contain valid boot blocks:
a) the device and unit from dn_Startup opens successfully,
b) memory is available for the <de_BootBiocks> * <de_SizeBiock> * 4 bytes of boot block

code,
c) the device commands CMD_CLEAR, TD_CHANGENUM, and CMD_READ of the boot

blocks execute without error,
d) the boot blocks start with the three characters "DOS" and pass the longword checksum

(with carry wraparound), and
e) memory is available to construct a boot node on the eb_MountList to describe the floppy.

If a device error is reported in I.e., or if memory is not available for l.b. or l.e., a
recoverable alert is presented before continuing.

2. The boot code in the boot blocks is invoked as follows:
a) The address of the entry point for the boot code is offset BB_ENTRY into the boot blocks

in memory.
b) The boot code is invoked with the l/0 request used to issue the device commands in l.c.

above in register Al, with the io_Offset pointing to the beginning of the partition (the
origin of the boot blocks) and SysBase in A6.

3. The boot code returns with results in both DO and AO.
a) Non-zero DO indicates boot failure. The recoverable alert AN__BootError is presented

before continuing.
b) Zero DO indicates AO contains a pointer to the function to complete the boot. This

completion function is chained to with SysBase in A6 after the strap module frees all its
resources. It is usually the dos.library initialization function, from the dos.library resident
tag. Return from this function is identical to return from the strap module itself.

BOOTPOINT BOOTING

BootPoint booting follows this sequence:

1. The eb_MountList node must contain a valid BootPoint:
a) ConfigDev pointer (in IILName) is non-zero,
b) diagnostic area pointer (in cd_Rom er _ReservedOc) is non-zero,
c) DAc_coNFIGTIME set in da_Config.

2. The boot routine of a valid boot node is invoked as follows:
a) The address of the boot routine is calculated from da_BootPoint.
b) The resulting boot routine is invoked with the ConfigDev pointer on the stack inC fashion

(i.e., (*boot) (conf igDev) ;). Moreover, register A2 will contain the address of the
associated eb_MountList node.

3. Return from the boot routine indicates failure to boot.

If all entries fail to boot, the user is prompted to put a boatable disk into a floppy drive with the
"strap screen". The system floppy drives are polled for new disks. When one appears, the "strap
screen" is removed and the appropriate boot mechanism is applied as described above. The process
of prompting and trying continues till a successful boot occurs.

SCSI Device 259

SCSI-Direct Example

/*
* SCSI Direct.c
*
* The following program demonstrates the use of the HD SCSICmd to send a
* MODE SENSE to a unit on the requested device (default scsi.device). This
* code can be easily modified to send other commands to the drive.

*
* Compile with SAS C 5.10 lc -b1 -cfistq -v -y -L

*
* Run from CLI only
*I

#include <exec/types.h>
#include <exec/memory. h>
#include <exec/io. h>
#include <devices/ scsidi sk. h>
#include <dos/dosextens. h>

#include <clib/exec protos.h>
#include <clib/alib::::protos.h>

#include <stdlib.h>
#include <stdio.h>

#ifdef LATTICE
int CXBRK (void) { return (0);
int chkabort(void) { return(O);
#endif

#define BUFSIZE 256

UBYTE *buffer;
struct IOStdReq SCSIReq;
struct SCSICmd Cmd;
UBYTE Sense[20];
struct MsgPort Port;

void ShowSenseData(void);

/* Disable SAS CTRL/C handling */
} /* really */

I* a data buffer used for mode sense data */
/* a standard IORequest structure */
I* where the actual SCSI command goes */
/* buffer for request sense data */
/* our ReplyPort */

static UBYTE TestReady[] =
static UBYTE StartUnit[] =
static UBYTE StopUnit[] =

0,0,0,0,0,0);
Oxlb,O,O,O,l,O };
Oxlb,O,O,O,O,O };

I* not used but here for */
I* illustration of other */
/* commands. */

static UBYTE ModeSense[]={ Ox1a,O,Oxff,0,254,0 }; /*the command being sent*/

void main(int argc, char **argv)
(
int unit,tval,i;
char *dname = ''scsi.device'';
UBYTE *tbuf;

if ((argc < 2) I I (argc > 3))
{
printf("Usage: %s unit [xxxx.device]\n",argv[O]);
exit(100);
}

unit= atoi(argv[1]);
if (argc == 3)

dname = argv[2];

buffer= (UBYTE *) AllocMem(BUFSIZE, MEMF_PUBLICIMEMF CLEAR);

if (!buffer)
{
printf("Couldn't get memory\n");
exit (100);
}

Port.mp Node.ln Pri O· /* setup the ReplyPort */
Port.mp-SigBit AllocSignal(-1);
Port.mp-SigTask (struct Task *)FindTask(O);
NewList(&(Port.mp_MsgList));

260 Amiga ROM Kernel Reference Manual: Devices

SCSIReq.io_Message.mn_ReplyPort = &Port;

if (OpenDevice(dname, unit, &SCSIReq, 0))
{
printf("Couldn't open unit %ld on %s\n",unit,dname);
FreeMem(buffer,BUFSIZE);
exit (100);
}

SCSIReq.io Length
SCSIReq.io-Data
SCSIReq.io-Command

sizeof(struct SCSICmd);
(APTR) &Cmd;

HD SCSICMD; I* the command we are sending *I

Cmd.scsi Data = (UWORD *)buffer; I* where we put mode sense data *I
Cmd.scsi-Length = 254; I* how much we will accept *I
Cmd.scsi-CmdLength = 6; I* length of the command *I
Cmd.scsi-Flags = SCSIF AUTOSENSE]SCSIF READ;

- - I* do automatic REQUEST SENSE *I
I* set expected data direction *I

Cmd.scsi SenseData =(UBYTE
Cmd.scsi-SenseLength = 18;
Cmd.scsi-SenseActual = 0;

)Sense; I where sense data will go
I* how much we will accept
I* how much has been received

*I
*I
*I

Cmd.scsi Command=(UBYTE *)ModeSense;l* issuing a MODE SENSE command *I
DoiO(&SCSIReq); I* send it to-the device driver *I

if (Cmd.scsi Status)
ShowSenseData(); I* if bad status then show it *I

else
{
printf("\nBlock descriptor header\n");
printf("=======================\n");
printf("Mode Sense data length %d\n", (short)buffer[O]);
printf("Block descriptor length= %d\n", (short)buffer[3]);
tbuf = &buffer[4];
printf("Density code = %d\n", (short)tbuf[O]);
tval = (tbuf[1J<<l6) + (tbuf[2J<<B) + tbuf[3];
printf("Number of blocks = %ld\n",tval);
tval = (tbuf[SJ<<16) + (tbuf[6J<<B) + tbuf[7];
printf("B1ock size = %ld\n",tval);

tbuf += buffer[3]; I* move to page descriptors *I

while ((tbuf - buffer) < buffer[O])
{

switch (tbuf[O] & Ox7f)
{
case 1:

case 2:

printf("\nError Recovery Parameters\n");
printf("=========================\n");
printf("Page length %d\n", (short)tbuf[1]);
printf("DTSABLE CORRECTION %d\n", (short)tbuf[2]&1);
printf("DISABLE XFER ON ERROR %d\n", (short) (tbuf[2J>>l)&l);
printf ("POST ERROR %d\n", (short) (tbuf[2] >>2) &1);
printf("ENABLE EARLY CORRECTION %d\n", (short) (tbuf[2] >>3) &1);
printf("READ CONTINUOUS %d\n", (short) (tbuf[2] >>4) &1);
printf ("TRANSFER BLOCK %d\n", (short) (tbuf[2] >>S) &1);
printf("AUTO READ REALLOCATION %d\n", (short) (tbuf[2J>>6)&1);
printf ("AUTO WRITE REALLOCATION %d\n", (short) (tbuf[2] >>7) &1);
printf("Retry count %d\n", (short)tbuf[3]);
printf("Correction span %d\n", (short)tbuf[4]);
printf("Head offset count %d\n", (short)tbuf[S]);
printf("Data strobe offset count= %d\n", (short)tbuf[6]);
printf ("Recovery time limit %d\n", (short) tbuf[7]);

tbuf += tbuf[1]+2;
break;

printf("\nDisconnectiReconnect Control\n");
printf("============================\n");
printf("Page length %d\n", (short)tbuf[1]);
printf("Buffer full ratio %d\n", (short)tbuf[2]);
printf("Buffer empty ratio = %d\n", (short)tbuf[3]);

SCSI Device 261

case 3:

case 4:

tval = (tbuf[4] <<B) +tbuf[5];
printf("Bus inactivity limit
tval = (tbuf[6] <<B) +tbuf[7];
printf("Disconnect time limit
tval = (tbuf[B] <<Bl+tbuf[9];
printf("Connect time limit
tval = (tbuf[10l<<Bl+tbuf[ll];
printf("Maximum burst size
printf("Disable disconnection

tbuf += tbuf[1]+2;
break;

%d\n",tval);

%d\n",tval);

%d\n",tval);

%d\n",tval);
%d\n", (short) tbuf[12] &1);

printf("\nDevice Format Parameters\n");
printf("========================\n");
printf("Page length %d\n", (short)tbuf[1]);
tval = (tbuf(2] <<B)+tbuf[3];
printf("Tracks per zone %d\n",tval);
tval = (tbuf[4] <<Bl+tbuf[5];
printf("Alternate sectors/zone %d\n",tval);
tval = (tbuf[6] <<B) +tbuf[7];
printf("Alternate tracks/zone %d\n",tval);
tval = (tbuf(B] <<B) +tbuf[9];
printf("Alternate tracks/volume %d\n",tval);
tval = (tbuf[10J<<B)+tbuf[ll];
printf("Sectors per track %d\n",tval);
tval = (tbuf[12l<<B)+tbuf[l3];
printf("Bytes per sector %d\n",tval);
tval = (tbuf[14] <<B) +tbuf[15];
printf("Interleave %d\n",tval);
tval = (tbuf[16] <<B) +tbuf[17];
printf("Track skew factor %d\n",tval);
tval = (tbuf[1B] <<B) +tbuf[19];
printf("Cylinder skew factor %d\n",tval);

tbuf += tbuf[1]+2;
break;

printf("\nDrive Geometry Parameters\n");
printf("=========================\n");
printf("Page length = %d\n",(short)tbuf[1]);
tval = (tbuf[2J<<16)+(tbuf[3J<<B)+tbuf[4];
printf ("Number of cylinders = %ld\n", tval);
printf("Number of heads = %d\n", (short)tbuf[5]);
tval = (tbuf[6J<<16)+(tbuf[6J<<B)+tbuf[B];
printf("Start write precomp = %ld\n",tval);
tval = (tbuf[9J<<16)+(tbuf[10l<<Bl+tbuf[ll];
printf("Start reduced write = %ld\n",tval);
tval = (tbuf[12l<<Bl+tbuf[13];
printf("Drive step rate = %d\n",tval);
tval = (tbuf[14] <<16)+ (tbuf[15] <<Bl +tbuf[16];
printf("Landing zone cylinder = %ld\n",tval);

tbuf += tbuf[1]+2;
break;

default:

CloseDevice(&SCSIReq);
FreeMem(buffer, BUFSIZE);
FreeSignal(Port.mp SigBit);
l -

printf ("\nVendor Unique Page Code %2x\n", (short) tbuf [0]);
printf("==========================\n");
for (i=O; i<=tbuf[1] +1; i++)

printf("%x ", (short)tbuf(i]);

printf("\n");
tbuf += tbuf[1]+2;

262 Amiga ROM Kernel Reference Manual: Devices

void ShowSenseData(void)
{
int i;

for (i=O; i<lB; i++)
printf("%x ", (int)Sense[i]);

printf("\n");
)

Additional Information on the SCSI Device

Additional programming infonnation on the SCSI device can be found in the include files for the
SCSI device and RigidDiskBlock. Both are contained in theAmigaROM Kernel Reference Manual:
Includes and Autodocs.

Forinfonnationon the SCSI commands, see either the ANSI-X3T9 (draft SCSI-2) or ANSI X3.131
(SCSI-I) specification. The NCR SCSI BBS-phone number (316)636-8700 (2400 baud)-has
electronic copies of the current SCSI specifications.

SCSI Device Information

INCLUDES devices/scsidisk.h
devices/scsidisk.i
devices/hardblocks.h
devices/hardblocks.i

SCSI Device 263

chapter twelve
SERIAL DEVICE

The serial device provides a hardware-independent interface to the Amiga's built-in RS-232C
compatible serial port. Serial ports have a wide range of uses, including communication with
modems, printers, MIDI devices, and other computers. The same device interface can be used for
additional "byte stream oriented devices"-usually more serial ports. The serial device is based on
the conventions of Exec device 1/0, with extensions for parameter setting and control.

Serial Device Characteristics

MODES

BAUD RATES

HANDSHAKING

Exclusive
Shared Access

110-292,000

Three-Wire
Seven-Wire

Serial Device 265

Serial Device Commands and Functions

Device Command

CMD_CLEAR
CMD_FLUSH

CMD_READ

CMD_RESET

CMD_START
CMD_STOP
CMD_WRITE

SDCMD_BREAK

SDCMD_QUERY

SDCMD_SETPARAMS

Operation

Reset the serial port's read buffer pointers.
Purge all queued requests for the serial device (does not affect active
requests).
Read a stream of characters from the serial port buffer. The number
of characters can be specified or a termination character(s) used.
Reset the serial port to its initialized state. All active and queued l/0
requests will be aborted and the current buffer will be released.
Restart all paused 1/0 over the serial port. Also sends an "xON".
Pause all active 1/0 over the serial port. Also sends an "xOFF".
Write out a stream of characters to the serial port. The number of
characters can be specified or a NULL-terminated string can be sent.
Send a break signal out the serial port. May be done immediately or
queued. Duration of the break (in microseconds) can be set by the
application.
Return the status of the serial port lines and registers, and the number
of bytes in the serial port's read buffer.
Set the parameters of the serial port. This ranges from baud rate to
number of microseconds a break will last.

Exec Functions as Used In This Chapter

AbortiO()

BeginiO()

CheckiO()
CloseDevice()
DolO()
OpenDevice()
SendiO()
WaitiO()

Abort a command to the serial device. If the command is in progress,
it is stopped immediately. If it is queued, it is removed from the queue.
Initiate a command and return immediately (asynchronous request).
This is used to minimize the amount of system overhead.
Determine the current state of an I/0 request.
Relinquish use of the serial device. All requests must be complete.
Initiate a command and wait for completion (synchronous request).
Obtain use of the serial device.
Initiate a command and return immediately (asynchronous request).
Wait for the completion of an asynchronous request. When the request
is complete the message will be removed from your reply port.

Exec Support Functions as Used in This Chapter

CreateExtiO()

CreatePort()

DeleteExtiO()
DeletePort()

Create an extended 1/0 request structure of type IOExtSer. This
structure will be used to communicate commands to the serial device.
Create a signal message port for reply messages from the serial device.
Exec will signal a task when a message arrives at the port.
Delete an extended 1/0 request structure created by CreateExtiO().
Delete the message port created by CreatePort().

266 Amiga ROM Kernel Reference Manual: Devices

Device Interface

The serial device operates like the other Amiga devices. To use it, you must first open the serial
device, then send 1/0 requests to it, and then close it when finished. See the "Introduction to Amiga
System Devices" chapter for general information on device usage.

The 1/0 request used by the serial device is called IOExtSer.

struct IOExtSer
{

struct IOStdReq IOSer;
ULONG io CtlChar; I* control characters *I -
ULONG io RBufLen; I* length - in bytes of serial read buffer *I
ULONG io ExtFlags; I* additional serial flags *I -
ULONG io Baud; I* baud rate *I -
ULONG io BrkTime; I* duration of break in microseconds *I
struct iOTArray io TermArray; I* termination character array *I
UBYTE io ReadLen; I* number of bits per read character *I
UBYTE io-WriteLen; I* number of bits per write character *I
UBYTE io-StopBits; I* number of stopbits for read *I -
UBYTE io SerFlags; I* serial device flags *I -
UWORD io Status; I* status of serial port and lines *I -

} ;

See the include file deviceslserial.h for the complete structure definition.

OPENING THE SERIAL DEVICE

Three primary steps are required to open the serial device:

• Create a message port using CreatePort(). Reply messages from the device must be directed
to a message port.

• Create an extended l/0 request structure of type IOExtSer using CreateExtiO().
CreateExtiO() will initialize the 1/0 request to point to your reply port.

• Open the serial device. Call OpenDevice{), passing the 1/0 request.

struct MsgPort *SerialMP;
struct IOExtSer *SerialiO;

if (SerialMP=CreatePort(D,O))

I* Define storage for one pointer *I
I* Define storage for one pointer *I

if (SerialiO=(struct IOExtSer *)
CreateExtiO(SerialMP,sizeof(struct IOExtSer)))

SerialiO->io SerFlags=SERF SHARED; I* Turn on SHARED mode *I
if (OpenDevice (SERIALNAME, OL, (struct IORequest *) SerialiO, 0))

printf("%s did not open\n",SERIALNAME);

During the open, the serial device pays attention to a subset of the flags in the io__5erFiags field.
The flag bits, SERF _SHARED and SERF _7WIRE, must be set before open. For consistency, the
other flag bits should also be properly set. Full descriptions of all flags will be given later.

The serial device automatically fills in default settings for all parameters-stop bits, parity, baud
rate, etc. For the default unit, the settings will come from Preferences. You may need to change
certain parameters, such as the baud rate, to match your requirements. Once the serial device is
opened, all characters received will be buffered, even if there is no current requestfor them.

Serial Device 267

READING FROM THE SERIAL DEVICE

You read from the serial device by passing an IOExtSer to the device with CMD_READ set in
io_Command, the number of bytes to be read set in io_Length and the address of the read buffer
set in io_Data.

#define READ BUFFER SIZE 256
char SerialReadBuffer[READ_BUFFER_SIZE}; /*Reserve SIZE bytes of scorage */

SerialiO->IOSer.io Length = READ BUFFER SIZE;
SerialiO->IOSer.io-Data = (APT~)&Seri~lReadBuffer[O];
SerialiO->IOSer.io-Cornmand = CMD READ;
DoiO((struct IORequest *)SerialiO);

If you usc this example, your task will be put to sleep waiting until the serial device reads 256 bytes
(or terminates early). Early termination can be caused by error conditions such as a break. The
number of characters actually received will be recorded in the io_Actual field of the IOExtSer
structure you passed to the serial device.

WRITING TO THE SERIAL DEVICE

You write to the serial device by passing an IOExtSer to the device with CMD_ WRITE set in
io_Command, the number of bytes to be written set in io--.Length and the address of the write
buffer set in io_Data.

To write a NULL-terminated string, set the length to -1; the device will output from your buffer
until it encounters and transmits a value of zero (OxOO).

SerialiO->IOSer.io Length = -1;
SerialiO->IOSer.io-Data = (APTR)"Life is but a dream. ";
SerialiO->IOSer.io-Cornmand = CMD WRITE;
DolO((struct IOReqliest *) SerialiO); /* execute write */

The length of the request is -1, meaning we arc writing a NULL-terminated string. The number of
characters sent can be found in io_Actual.

CLOSING THE SERIAL DEVICE

Each OpenDevice() must eventually be matched by a call to CloseDevice(). When the last close is
performed, the device will deallocate all resources and buffers.

All IORequests must be complete before CloseDevice(). Abort any pending requests with
AbortiO().

if (' (CheckiO (SerialiO)))
{

AbortiO((struct IORequest *)SerialiO); /*Ask device to abort request, if pending*/
)

WaitiO((struct IORequest *)SerialiO); /*Wait for abort, then clean up*/
CloseDevice((struct IORequest *)SerialiO);

268 Amiga ROM Kernel Reference Manual: Devices

A Simple Serial Port Example

I*
* Simple_Serial.c
*
* This is an example of using the serial device. First, we will attempt
*to create a message port with CreateMsgPort(). Next, we will attempt
* to create the IORequest with CreateExtiO(). Then, we will attempt to
* open the serial device with OpenDevice(). If successful, we will write
* a NULL-terminated string to it and reverse our steps. If we encounter
* an error at any time, we will gracefully exit.
*
* Compile with SAS C 5.10 lc -b1 -cfistq -v -y -L
*
* Run from CLI only
*I

#include <exec/types. h>
#include <exec/memory. h>
#include <exec/io. h>
#include <devices/ serial. h>

#include <clib/exec protos.h>
#include <clib/ alib-protos. h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK(void) { return(O); } /*Disable SAS CTRL/C handling*/
int chkabort(void) { return(O); } /*really*/
#endif

void main(void)
{
struct MsgPort *SerialMP;
struct IOExtSer *SerialiO;

/* Create the message port */
if (SerialMP=CreateMsgPort())

{
/* Create the IORequest */

!* pointer to our message port */
I* pointer to our IORequest */

if (SerialiO (struct IOExtSer *)
CreateExtiO(SerialMP,sizeof(struct IOExtSer)))

{
/* Open the serial device */
if (OpenDevice(SERIALNAME,O, (struct IORequest *)SerialiO,OL))

else

/* Inform user that it could not be opened */
printf("Error: %s did not open\n",SERIALNAME);

{
/* device opened, write NULL-terminated string */
SerialiO->IOSer.io Length = -1;
Serialio->roser. io Data = (APTR) "Amiga ";
SerialiO->IOSer.io-Command = CMD WRITE;
if (DoiO((struct IORequest *)SerialiO)) /*execute write*/

else

printf("Write failed. Error- %d\n",Serialro->roser.io Error);

else

/* Close the serial device */
CloseDevice((struct IORequest *)SerialiO);
}

/* Delete the IORequest */
DeleteExtiO(SerialiO);
}

/* Inform user that the IORequest could be created */
printf("Error: Could create IORequest\n");

/* Delete the message port */
DeleteMsgPort(SerialMP);
}

/* Inform user that the message port could not be created */
printf("Error: Could not create message port\n");

Serial Device 269

DolO() vs. Send/0(). The above example code contains some simplifications. The
DolO() function in the example is not always appropriate for executing the CMD_READ
or CMD_ WRITE commands. DolO() will not return until the 1/0 request has finished.
With serial handshaking enabled, a write request may never finish. Read requests will not
finish until characters arrive at the serial port. The following sections will demonstrate a
solution using the SendiO() and AbortiO() functions.

Alternative Modes for Serial Input or Output

As an alternative to DolO() you can use an asynchronous 1/0 request to transmit the command.
Asynchronous requests are initiated with SendiO(). Your task can continue to execute while
the device processes the command. You can occasionally do a CheckiO() to see if the 1/0 has
completed. The write request in this example will be processed while the example continues to run:

SerialiO->IOSer.io Length = -1;
SerialiO->IOSer. io -Data = (APTR) "Save the whales! "·
SerialiO->IOSer.io-Command = CMD WRITE;
SendiO((struct IORequest *)SerialiO);

printf("CheckiO %lx\n",CheckiO((struct IORequest *)SerialiO));
printf("The device will process the request in the background\n");
printf("CheckiO %lx\n",CheckiO((struct IORequest *)SerialiO));
WaitiO((struct IORequest *)SerialiO); /*Remove message and cleanup*/

Most applications will want to wait on multiple signals. A typical application will wait for menu
messages from Intuition at the same time as replies from the serial device. The following fragment
demonstrates waiting for one of three signals. The Wait() will wake up if the read request ever
finishes, or if the user presses Ctrl-C or Ctrl-F from the Shell. This fragment may be inserted into
the above complete example.

/* Precalculate a wait mask for the CTRL-C, CTRL-F and message
* port signals. When one or more signals are received,
*Wait() will return. Press CTRL-C to exit the example.
* Press CTRL-F to wake up the example without doing anything.
* NOTE: A signal may show up without an associated messager
*I

WaitMask SIGBREAKF CTRL Cl
SIGBREAKF CTRL Fl

lL << SerialMP->mp SigBit;

Serialro->roser. io Command
Serial IO- >roser. io -Length
SerialiO->IOSer.io-Data
SendiO(SerialiO); -

CMD READ;
READ BUFFER SIZE;
(APTR)&SerialReadBuffer[O];

printf("Sleeping until CTRL-C, CTRL-F, or serial input\n");

while (1)
{
Temp= Wait(WaitMask);
printf("Just woke up (YAWN!)\n");

if (SIGBREAKF CTRL C & Temp)
break; - -

if (CheckiO(SerialiO)
{
WaitiO(SerialiO);
printf("%ld bytes
break;
}

) /*If request is complete ... */

I* clean up and remove reply */
received\n", SerialiO->roser. io_Actual);

270 Amiga ROM Kernel Reference Manual: Devices

AbortiO(SerialiO); /*Ask device to abort request, if pending*/
WaitiO(SerialiO); /*Wait for abort, then clean up*/

Wait/0() vs. Remove(). The WaitiO() function is used above, even if the request
is already known to be complete. WaitiO() on a completed request simply removes the
reply and cleans up. The Remove() function is not acceptable for clearing the reply port;
other messages may arrive while the function is executing.

HIGH SPEED OPERATION

The more characters that arc processed in each 1/0 request, the higher the total throughput of the
device. The following technique will minimize device overhead for reads:

• Use the SDCMD_QUERY command to get the number of characters currently in the buffer
(see the devices/serial.h Autodocs for information on SDCMD_QUERY).

• Use DolO() to read all available characters (or the maximum size of your buffer). In this case,
DolO() is guaranteed to return without waiting.

• If zero characters are in the buffer, post an asynchronous request (SendiO()) for 1 character.
When at least one is ready, the device will return it. Now go back to the first step.

• If the user decides to quit the program, AbortiO() any pending requests.

USE OF BeginiO() WITH THE SERIAL DEVICE

Instead of transmitting the read command with either DolO() or SendiO(), you might elect to use
the low level BeginiO() interface to a device.

BeginiO() works much like SendiO(), i.e., asynchronously, except it gives you control over the
quick 1/0 bit (IOB_QUICK) in the io_Fiags field. Quick 1/0 saves the overhead of a reply message,
and perhaps the overhead of a task switch. If a quick 1/0 request is actually completed quickly,
the entire command will execute in the context of the caller. See the "Exec: Device Input/Output"
chapter of the Amiga ROM Kernel Reference Manual: Libraries for more detailed information on
quick 1/0.

The device will determine if a quick 1/0 request will be handled quickly. Most non-I/O commands
will execute quickly; read and write commands may or may not finish quickly.

SerialiO.IOSer.io_Flags 1~ IOF_QUICK; /* Set QuickiO Flag*/

BeginiO((struct IORequest *)SerialiO);
if (SerialiO->IOSer.io Flags & IOF QUICK)

/* If flag is still- set, I/O was synchronous and is now finished.
* The IORequest was NOT appended a reply port. There is no
* need to remove or WaitiO() for the message.
*I

printf("QuickiO\n");
else

/* The device cleared the QuickiO bit. QuickiO could not happen
* for some reason; the device processed the command normally.
* In this case BeginiO() acted exactly like SendiO().
*I

printf("Regular I/0\n");
WaitiO(SerialiO);

Serial Device 271

The way you read from the device depends on your need for processing speed. Generally the
BeginiO() route provides the lowest system overhead when quick 1/0 is possible. However, if
quick 1/0 does not work, the same reply message overhead still exists.

ENDING A READ OR WRITE USING TERMINATION CHARACTERS

Reads and writes from the serial device may terminate early if an error occurs or if an end-of-file
(EOF) is sensed. For example, if a break is detected on the line, any current read request will be
returned with the error SerErr_DetectedBreak. The count of characters read to that point will be
in the io__Actual field of the request.

You can specify a set of possible end-of-file characters that the serial device is to look for in the
input stream or output using the SDCDMD_SETPARAMS command. These are contained in an
io_TermArray that you provide. io_TermArray is used only when the SERF _EOFMODE flag is
selected (see the "Serial Flags" sectionbelow).

If EOF mode is selected, each input data character read into or written from the user's data block
is compared against those in io_TermArray. If a match is found, the IOExtSer is terminated as
complete, and the count of characters transferred (including the termination character) is stored in
io__Actual.

To keep this search overhead as efficient as possible, the serial device requires that the array of
characters be in descending order. The array has eight bytes and all must be valid (that is, do not
pad with zeros unless zero is a valid EOF character). Fill to the end of the array with the lowest
value termination character. When making an arbitrary choice ofEOF character(s), you will get the
quickest response from the lowest value(s) available.

I*
* Terminate Serial.c

* * This is an example of using a termination array for reads from the serial
* device. A termination array is set up for the characters Q, E, etx (CTRL-D)
* and eot (CTRL-C) . The EOFMODE flag is set in io SerFlags to indicate that
* we want to use a termination array by sending the SDCMD SETPARAMS command to
* the device. Then, a CMD READ command is sent to the device with
* io_Length set to 25. -
*
* The read will terminate whenever one of the four characters in the termination
* array is received or when 25 characters have been received.
*
* Compile with SAS C 5.10 lc -bl -cfistq -v -y -L
* * Run from CLI only
*I

Unclude <exec/types. h>
#include <exec/memory. h>
#include <exec/io.h>
#include <devices/serial.h>

#include <clib/exec protos.h>
#include <clib/alib::::protos.h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK(void) { return(O); } /* Disable SAS CTRL/C handling*/
int chkabort(void) { return(O); } /*really*/
#endif

272 Amiga ROM Kernel Reference Manual: Devices

void main(void)
{
struct MsgPort *SerialMP;
struct IOExtSer *SerialiO;

struct IOTArray Terminators

I* Q E etx eot *I

I* Define storage for one pointer *I
I* Define storage for one pointer *I

{
Ox51450403,
Ox03030303 I* fill to end with lowest value *I
) ;

#define READ BUFFER SIZE 25
UBYTE ReadBuff[READ-BUFFER SIZE];
UWORD ctr; - -

if (SerialMP=CreatePort(O,O))
{
if (SerialiO=(struct IOExtSer *) CreateExtiO(SerialMP,sizeof(struct IOExtSer)))

{

else

else

if (OpenDevice(SERIALNAME,OL, (struct IORequest *)SerialiO,O))
printf("%s did not open\n",SERIALNAME);

else
{
I* Tell user what we are doing *I
printf("\fLooking for Q, E, EOT or ETX\n");

I* Set EOF mode flag
* Set the termination array
* Send SDCMD SETPARAMS to the serial device
*I

SerialiO->io SerFlags I= SERF EOFMODE;
SerialiO->io-TermArray = Terminators;
SerialiO->IOSer.io Command = SDCMD SETPARAMS;
if (DoiO((struct IORequest *)SerialiO))

else
printf("Set Params failed"); I* Inform user of error *I

{
SerialiO->IOSer.io Length =READ BUFFER SIZE;
SerialiO->IOSer.io-Data = (APTR)&ReadBuff[O];
SerialiO->IOSer.io-Command = CMD READ;
if (DoiO((struct IORequest *)SerialiO)) /*Execute Read *I

else
printf("Error: Read failed\n");

{
I* Display all characters received *I
printf("\nThese characters were read:\n\t\t\tASCII\tHEX\n");
for (ctr=O;ctr<SerialiO->IOSer.io Actual;ctr++)

printf("\t\t\t %c\t%x\n",ReadBuff[ctr],ReadBuff[ctr]);
printf("\nThe actual number of characters read: %d\n",

SerialiO- >roser. io _Actual);

CloseDevice((struct IORequest *)SerialiO);
)

DeleteExtiO((struct IORequest *)SerialiO);
}

printf("Error: Could not create IORequest\n");

DeletePort(SerialMP);
}

printf("Error: Could not create message port\n");

The read will terminate before the io_Length number of characters is read if a 'Q', 'E', ETX, or
EOT is detected in the serial input stream.

Serial Device 273

---------------------------------~--------~~-

USING SEPARATE READ AND WRITE TASKS

In some cases there are advantages to creating a separate IOExtSer for reading and writing. This
allows simultaneous operation of both reading and writing. Some users of the device have separate
tasks for read and write operations. The sample code below creates a separate reply port and request
for writing to the serial device.

struct IOExtSer *SerialWriteiO;
struct MsgPort *SerialWriteMP;

I*
* If two tasks will use the same device at the same time, it is preferred
* use two OpenDevice() calls and SHARED mode. If exclusive access mode
* is required, then you will need to copy an existing IORequest.
*
* Remember that two separate tasks will require two message ports.
*I

SerialWriteMP CreatePort(O,O);
SerialWriteiO (struct IOExtSer *)

CreateExtiO(SerialWriteMP,sizeof(struct IOExtSer));

if (SerialWriteMP && SerialWriteiO
{

I* Copy over the entire old IO request, then stuff the
* new Message port pointer.
*I

CopyMem(SerialiO, SerialWriteiO, sizeof(struct IOExtSer)) ;
SerialWriteiO->IOSer.io_Message.mn_ReplyPort = SerialWriteMP;

SerialWriteiO->IOSer.io Command
SerialWriteiO->IOSer.io-Length
SerialWriteiO->IOSer.io-Data
DoiO(SerialWriteiO); -
}

CMD_WRITE;
-1;
(APTR)"A poet's food is love and fame";

Where's Open Device()? This code assumes that the OpenDevice() function has already
been called. The initialized read request block is copied onto the new write request block.

274 Amiga ROM Kernel Reference Manual: Devices

Setting Serial Parameters (SDCMD_SETPARAMS)

When the serial device is opened, default values for baud rate and other parameters arc automatically
filled in from the serial settings in Preferences. The parameters may be changed by using the
SDCMD_SETPARAMS command. The flags are defined in the include file deviceslserial.h.

IOExtSer
Field Name

io_CtiChar

io__R.BufLen

io__ExtFiags

io__Baud

io__BrkTime

Serial Device Parameters (IOExtSer)

Serial Device Parameter It Controls

Control characters to usc for xON, xOFF, INQ, ACK respectively. Posi­
tioned within an unsigned longword in the sequence from low address to
high as listed. INQ and ACK handshaking is not currently supported.

Recommended size of the buffer that the serial device should allocate for
incoming data. For some hardware the buffer size will not be adjustable.
Changing the value may cause the device to allocate a new buffer, which
might fail due to lack of memory. In this case the old buffer will continue
to be used.

For the built-in unit, the minimum size is 64 bytes. Out-of-range numbers
will be truncated by the device. When you do an SDCMD_SETPARAMS
command, the driver senses the difference between its current value and
the value of buffer size you request. All characters that may already be
in the old buffer will be discarded. Thus it is wise to make sure that you
do not attempt buffer size changes (or any change to the serial device, for
that matter) while any 1/0 is actually taking place.

An unsigned long that contains the flags SEXTF _MSPON and
SEXTF _MARK. SEXTF __MSPON enables either mark or space parity.
SEXTF _MARK selects mark parity (instead of space parity). Unused
bits are reserved.

The real baud rate you request. This is an unsigned long value in the
range of 1 to 4,294,967,295. The device will reject your baud request if
the hardware is unable to support it.

For the built-in driver, any baud rate in the range of 110 to about 1
megabaud is acceptable. The built -in driver may round 110 baud requests
to 112 baud. Although baud rates above 19,200 are supported by the
hardware, software overhead will limit your ability to "catch" every
single character that should be received. Output data rate, however, is
not software-dependent.

If you issue a break command, this variable specifies how long, in
microseconds, the break condition lasts. This value controls the
break time for all future break commands until modified by another
SDCMD_SETPARAMS.

Serial Device 275

io_ Term Array A byte-array of eight termination characters, must be in descending order ..
If the EOFMODE bit is set in the serial flags, this array specifies eight
possible choices of character to use as an end of file mark. See the
section above titled "Ending A Read Using Termination Characters" and
the SDCMD_SETPARAMS summary page in the Autodocs

io__ReadLen How many bits per read character; typically a value of 7 or 8. Generally
must be the same as io_ WriteLen.

io_ WriteLen How many bits per write character; typically a value of 7 or 8. Generally
must be the same as io__ReadLen.

io_StopBits How many stop bits are to be expected when reading a character and to be
produced when writing a character; typically 1 or 2. The built-in driver
does not allow values above 1 if io_ WriteLen is larger than 7.

io_SerFiags See the "Serial Flags" section below.

io_Status Contains status information filled in by the SDCMD_QUERY command.
Break status is cleared by the execution of SDCMD_QUERY.

You set the serial parameters by passing an IOExtSer to the device with SDCMD_SETPARAMS
set in io_Command and with the flags and parameters set to the values you want.

SerialiO->io SerFlags &= -sERF PARTY ON;
SerialiO->io-SerFlags I= SERF_XDISABLED;
Serialro->io-Baud = 9600;
SerialiO->IOSer.io Command = SDCMD SETPARAMS;
if (DoiO((struct IORequest *)SerialiO))

printf("Error setting parameters!\n");

I* set parity off *I
/* set xON/xOFF disabled */
I* set 9600 baud *I
I* Set params command *I

The above fragment modifies two bits in io_8erFiags and changes the baud rate. If the parameters
you request are unacceptable or out of range, the SDCMD_SETPARAMS command will fail. You
are responsible for checking the error code and informing the user.

Proper Time for Parameter Changes. A parameter change should not be performed
while an 1/0 request is actually being processed because it might invalidate the request
handling already in progress. To avoid this, you should use SDCMD_SETPARAMS only
when you have no serial 1/0 requests pending.

SERIAL FLAGS (Bit Definitions For lo_SerFiags)

There are additional serial device parameters which are controlled by flags set in the io_8erFlags
field of the I 0 ExtSer structure. The default state of all of these flags is zero. SERF _SHARED and
SERF _7WIRE must always be set before OpenDevice(). The flags are defined in the include file
devices! serial.h.

276 Amiga ROM Kernel Reference Manual: Devices

Serial Flags (lo_SerFiags)

Flag Name Effect on Device Operation

SERF_XDISABLED Disable the XON/XOFF feature. XON/XOFF must be disabled during
XModem transfers.

SERF_EOFMODE Set this bit if you want the serial device to check input charac­
ters against io_TermArray and to terminate the read immediately
if an end-of-file character has been encountered. Note: this bit may
be set and reset directly in the user's IOExtSer without a call to
SDCMD_SETPARAMS.

SERF_SHARED Set this bit if you want to allow other tasks to simultaneously access
the serial port. The default is exclusive-access. Any number of tasks
may have shared access. Only one task may have exclusive access. If
someone already has the port for exclusive access, your OpenDevice()
call will fail. This flag must be set before Open Device().

SERF_RAD_BOOGIE If set, this bit activates high-speed mode. Certain peripheral devices
(MIDI, for example) require high serial throughput. Setting this bit
high causes the serial device to skip certain of its internal checking
code to speed throughput. Use SERF _RAD_BOOGIE only when you
have:

SERF_QUEUEDBRK

SERF_7WIRE

SERF_PARTY_ODD

SERF_PARTY_ON

• Disabled parity checking
• Disabled XON/XOFF handling
• Use 8-bit character length
• Do not wish a test for a break signal

Note that the Amiga is a multitasking system and has immediate
processing of software interrupts. If there are other tasks running,
it is possible that the serial driver may be unable to keep up with
high data transfer rates, even with this bit set.

If set, every break command that you transmit will be enqueued.
This means that all commands will be executed on a FIFO (first
in, first out) basis.

If this bit is cleared (the default), a break command takes immediate
precedence over any serial output already enqueued. When the
break command has finished, the interrupted request will continue
(if not aborted by the user).

If set at OpenDevice() time, the serial device will use seven-wire
handshaking for RS-232-C communications. Default is three-wire
(pins 2, 3, and 7).

If set, selects odd parity. If clear, selects even parity.

If set, parity usage and checking is enabled. Also sec the
SERF _MSPON bit described under io_ExtFiags above.

Serial Device 277

Querying The Serial Device

You query the serial device by passing an IOExtSer to the device with SDCMD_QUERY set in
io_Command. The serial device will respond with the status of the serial port lines and registers,
and the number of unread characters in the read buffer.

UWORD Serial Status;
ULONG Unread=Chars;

SerialiO->IOSer.io Command = SDCMD QUERY; /* indicate query */
SendiO((struct IORequest *)Serialio);

Serial Status = Serialro->io Status; /* store returned status */
Unread=Chars = serialio->roser.io_Actual; /* store unread count */

The 16 status bits of the serial device arc returned in io_Btatus; the number of unread characters is
returned in io__Actual.

Serial Device Status Bits

Bit Active Symbol Function

0 Reserved
1 Reserved
2 high (RI) Parallel Select on the AlOOO. On the A500

and A2000, Select is also connected to these-
rial port's Ring Indicator. (Be cautious when
making cables.)

3 low (DSR) Data set ready
4 low (CfS) Oear to send
5 low (CD) Carrier detect
6 low (RTS) Ready to send
7 low (DTR) Data terminal ready
8 high Read overrun
9 high Break sent
10 high Break received
11 high Transmit x-OFFed
12 high Receive x-OFFed
13-15 (reserved)

278 Amiga ROM Kernel Reference Manual: Devices

Sending the Break Command

You send a break through the serial device by passing an IOExtSer to the device with
SDCMD_BREAK set in io_Command. The break may be immediate or queued. The choice
is determined by the state of flag SERF _QUEUEDBRK in io_serFiags.

SerialiO->IOSer.io Command = SDCMD BREAK; /* send break*/
SendiO((struct IORequest *)Seriallo);

The duration of the break (in microseconds) can be set in io_BrkTime. The default is 250,000
microseconds (.25 seconds).

Error Codes from the Serial Device

The serial device returns error codes whenever an operation is attempted.

SerialiO->IOSer.io Command ~ SDCMD SETPARAMS; /* Set parameters */
if (DoiO((struct IORequest *)SerialiO))

printf ("Set Params failed. Error: %d ", Serialio->roser.io_Error);

The error is returned in the io_Error field of the IOExtSer structure.

Serial Device Error Codes

Error Value Explanation

Device in use SerErr_Dev Busy
SerErr_BaudMismatch
SerErr_BufErr
SerErr_Inv Param
SerErr_LineErr
SerErr_ParityErr
SerErr_ TimerErr
SerErr_BufOverflow
SerErr_NoDSR
SerErr_DetectedBreak
SerErr_UnitBusy

1
2
4
5
6
9
11
12
13
15
16

Baud rate not supported by hardware
Failed to allocate new read buffer
Bad parameter
Hardware data overrun
Parity error
Timeout (if using 7 -wire handshaking)
Read buffer overflowed
No Data Set Ready
Break detected
Selected unit already in use

Serial Device 279

Multiple Serial Port Support

Applications that use the serial port should provide the user with a means to select the name and
unit number of the driver. The defaults will be "serial.device" and unit number 0. Typically unit
0 refers to the user-selected default. Unit 1 refers to the built-in serial port. Numbers above 1 are
for extended units. The physically lowest connector on a board will always have the lowest unit
number.

Careful attention to error handling is required to survive in a multiple port environment. Differ­
ing serial hardware will have different capabilities. The device will refuse to open non-existent
unit numbers (symbolic name mapping of unit numbers is not provided at the device level). The
SDCMD_SETPARAMS command will fail if the underlying hardware cannot support your param­
eters. Some devices may use quick 1/0 for read or write requests, others will not. Watch out for
partially completed read requests; io....Actual may not match your requested read length.

If the Tool Types mechanism is used for selecting the device and unit, the defaults of "DE­
VICE=serial.device" and "UNIT=O" should be provided. The user should be able to permanently
set the device and unit in a configuration file.

Taking Over the Hardware

For some applications use of the device driver interface is not possible. By following the established
rules, applications may take over the serial interface at the hardware level. This extreme step is not,
however, encouraged. Taking over means losing the ability to work with additional serial ports, and
will limit future compatibility.

Access to the hardware registers is controlled by the misc.resource. See the "Resources" chapter,
and execlmisc.i for details. The MR_SERIALBITS and MR_SERIALPORT units control the serial
registers.

One additional complication exists. The current serial device will not release the misc.resource bits
until after an expunge. This code provides a work around:

I*
* A safe way to expunge ONLY a certain device.
* This code attempts to flush ONLY the named device out of memory and
* nothing else. If it fails, no status is returned (the information
*would have no valid use after the Permit().
*I
#include <exec/types. h>
#include <exec/execbase.h>

void FlushDevice(char *);

extern struct ExecBase *SysBase;

void FlushDevice(name)
char *name;
{
struct Device *devpoint;

Forbid(); /*ugly*/
if (devpoint = (struct Device *)FindName(&SysBase->DeviceList,name))

RernDevice(devpoint);
Permit();
)

280 Amiga ROM Kernel Reference Manual: Devices

Advanced Example of Serial Device Usage

I*
* Complex Serial.c
*
* Complex tricky example of serial.device usage

* * Compile with SAS C 5.10 lc -bl -cfistq -v -y -L

*
* Run from CLI only
*I

#include <execltypes.h>
#include <execlmemory.h>
#include <exec/io.h>
#include <deviceslserial.h>

#include <clib/exec protos.h>
#include <clib/alib:=protos.h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK (void) { ret urn (0);) I* Disable SAS CTRLIC handling *I
int chkabort (void) { return (0); } I* really *I
#end if

void main(void)
{
struct MsgPort *SerialMP;
struct IOExtSer *SerialiO;

#define READ BUFFER SIZE 32

I* Define storage for one pointer *I
I* Define storage for one pointer *I

char SerialReadBuffer[READ_BUFFER SIZE]; I* Reserve SIZE bytes of storage *I

struct IOExtSer *SerialWriteiO 0;
struct MsgPort *SerialWriteMP 0;

ULONG Temp;
ULONG WaitMask;

if (SerialMP=CreatePort(O,O)
{
if (SerialiO=(struct IOExtSer *)

CreateExtiO(SerialMP,sizeof(struct IOExtSer)))
{
SerialiO->io SerFlags=O; /* Example of setting flags *I

if (OpenDevice(SERIALNAME,OL,SerialiO,O))
printf("%s did not open\n",SERIALNAME);

else
{
SerialiO->IOSer.io Command
SerialiO->io SerFlags
SerialiO->io -SerFlags
SerialiO->io -Baud
if (Temp=DoiO(SerialiO))

SDCMD SETPARAMS;
&= "SERF-PARTY ON;
I SERF XDISABLED;

96oo;

printf("Error setting parameters -code %ld 1 \n",Temp);

SerialiO->IOSer. io Command
Seri aliO- >roser. io -Length
Serial IO- >roser. io -Data
SendiO(SerialiO);

CMD WRITE;
-1;-
(APTR) "Amiga. ";

printf("CheckiO %lx\n",CheckiO(SerialiO));
printf("The device will process the request
printf("CheckiO %lx\n",CheckiO(SerialiO));
WaitiO(SerialiO);

in the background\n");

SerialiO->IOSer. io Command
SerialiO->IOSer.io-Length
serialiO- >IOSer. io -Data
DoiO(SerialiO); -

- CMD WRITE;
-1;-
(APTR)"Save the whales! "·

I* execute write *I

Serial Device 281

CMD WRITE;
-1;

SerialiO->IOSer.io Command
SerialiO->IOSer.io-Length
SerialiO->IOSer. io -Data
DolO (SerialiO);

(APTR)"Life is but a dream.";
I* execute write *I

SerialiO->IOSer.io Command
Seri a liO- >lOSer. io -Length
SerialiO->IOSer. io -Data
SerialiO->IOSer.io-Flags
BeginiO(SerialiO);

CMD_WRITE;
-1;
(APTR)"Row,

IOF QUICK;

if (SerialiO->IOSer.io Flags & IOF QUICK
{

I*

row, row your boat.'1 ;

* Quick IO could not happen for some reason; the device processed
* the command normally. In this case BeginiO () acted exactly

else

* like SendiO().
*I

printf("Quick IO\n");
}

(

I* If flag is still set, IO was synchronous and is now finished.
* The IO request was NOT appended a reply port. There is no
* need to remove or WaitiO() for the message.
*I

printf("Regular IO\n");
}

WaitiO(SerialiO);

SerialiO->IOSer.io Command
Serial TO->IOSer. io -Length
Serial 10- > IOSer. i o -Data
SerialiO- >roser. io -Flags =
BeginiO(SerialiO);

CMD UPDATE;
-1;
(APTR) "Row,

IOF QUICK;
row, row your boat.'';

if (0
(

Serialio->roser.io_Flags & IOF QUICK

else

I*
* Quick IO could not happen for some reason; the device processed
* the command normally. In this case BeginiO () acted exactly
* like SendiO().
*I

printf("Regular IO\n");

WaitiO(SerialiO);
}

{

I* If flag is still set, IO was synchronous and is now finished.
* The IO request was NOT appended a reply port. There is no
* need to remove or WaitiO() for the message.
*I

printf("Quick 10\n");
}

I* Precalculate a wait mask for the CTRL-C, CTRL-F and message
* port signals. When one or more signals are received,
*Wait() will return. Press CTRL-C to exit the example.
* Press CTRL-F to wake up the example without doing anything.
* NOTE: A signal may show up without an associated message!
*I

WaitMask SIGBREAKF CTRL C(
SIGBREAKF CTRI Fl

lL << SerialMP->mp SigBit;

282 Amiga ROM Kernel Reference Manual: Devices

else

else

CMD READ; Serialro->roser.io Command
Serial ro- >roser. io -Length
Serial IO- >IOSer. io -Data
SendiO(SerialiO); -

READ BUFFER SIZE;
(APTR)&SerialReadBuffer[O];

printf("Sleeping until CTRL-C, CTRL-F, or serial input\n");

while (1)
{
Temp= Wait(WaitMask);
printf("Just woke up (YAWN!)\n");

if (SIGBREAKF CTRL C & Temp)
break; -

if (CheckiO(SerialiO)
{
WaitiO(SerialiO);

I* If request is complete ... *I

I* clean up and remove reply *I

printf ("%ld bytes received\n", SerialiO->IOSer. io_Actual);
break;
l

AbortiO(SerialiO);
WaitiO(SerialiO);

I* Ask device to abort request, if pending *I
I* Wait for abort, then clean up *I

I*
* If two tasks will use the same device at the same time, it is preferred
* use two OpenDevice() calls and SHARED mode. If exclusive access mode
* is required, then you will need to copy an existing 10 request.
*
* Remember that two separate tasks will require two message ports.
*I

SerialWriteMP
SerialWriteiO

CreatePort(O,O);
(struct IOExtSer *)
CreateExtiO(SerialWriteMP,sizeof(struct IOExtSer));

if (SerialWriteMP && SerialWriteiO)
{

I* Copy over the entire old IO request, then stuff the
* new Message port pointer.
*I

CopyMem(SerialiO, SerialWriteiO, sizeof(struct IOExtSer));
SerialWriteiO->IOSer.io_Message.mn_ReplyPort = SerialWriteMP;

SerialWriteio->roser.io Command
SerialWriteiO->IOSer.io-Length
SerialWriteio->roser.io-Data
DoiO(SerialWriteiO); -
)

if (SerialWriteMP)
DeletePort(SerialWriteMP);

if (SerialWriteiO)
DeleteExtiO(SerialWriteiO);

CloseDevice(SerialiO);
l

DeleteExtiO(SerialiO);
l

printf("Unable to create IORequest\n");

CMD_WRITE;
-1;
(APTR)"A poet's food is love and fame";

DeletePort(SerialMP);
l

printf("Unable to create message port\n");

Serial Device 283

Additional Information on the Serial Device

Additional programming information on the serial device can be found in the include files and the
Autodocs for the serial device. Both are contained in the Amiga ROM Kernel Reference Manual:
Includes and Autodocs.

Serial Device Information

INCLUDES

AUTO DOCS

devices/serial.h
devices/serial.i

serial.doc

284 Amiga ROM Kernel Reference Manual: Devices

chapter thirteen
TIMER DEVICE

The Amiga timer device provides a general interface to the Amiga's internal clocks. Through the
timer device, time intervals can be measured, time delays can be effected, system time can be set
and retrieved, and arithmetic operations can be performed on time values.

New Timer Features for Version 2.0

Feature Description

UNIT_ECLOCK New timer device unit
UNIT_ WAITUNTIL New timer device unit
UNIT_ WAITECLOCK New timer device unit
ReadECiock() New function

Compatibility Warning: The new features for 2.0 are not backwards compatible.

Timer Device 285

Timer Device Commands and Functions

Command

TILADDREQUEST

TILGETSYSTIME
TILSETSYSTIME

Device Functions

Add Time()

CmpTime()

GetSysTime()
ReadECiock()

Sub Time()

Operation

Request that the timer device wait a specified period of time before
replying to the request.
Get system time and place in a timeval structure.
Set the system time from the value in a timeval structure.

Add one timeval structure to another. The result is placed in the first
timeval structure.
Compare one timeval structure to another. The result is returned as a
longword.
Get system time and place in a timeval structure.
Read the current 64 bit value of the E-Clock into an EClockVal
structure. The count rate of theE-Clock is also returned. (V36)
Subtract one timerequest structure from another. The result is placed
in the first timerequest structure.

Exec Functions as Used in This Chapter

AbortiO()
CheckiO()
CloseDevice()

DolO()
OpenDevice()

SendiO()

Abort a command to the timer device.
Return the status of an 1/0 request.
Relinquish usc of the timer device. All requests must be complete
before closing.
Initiate a command and wait for completion (synchronous request).
Obtain use of the timer device. The timer device may be opened
multiple times.
Initiate a command and return immediately (asynchronous request).

Exec Support Functions as Used in This Chapter

CreateExtiO()

CreatePort()

DeleteExtiO()

DeletePort()

Create an extended 1/0 request structure of type timerequest. This
structure will be used to communicate commands to the timer device.
Create a signal message port for reply messages from the timer device.
Exec will signal a task when a message arrives at the reply port.
Delete the timerequest extended 1/0 request structure created by
CreateExtiO().
Delete the message port created by CreatePort().

286 Amiga ROM Kernel Reference Manual: Devices

Device Interface

The timer device operates in a similar manner to the other Amiga devices. To use it, you must first
open it, then send 1/0 requests to it, and then close it when finished. See the "Introduction to Amiga
System Devices" chapter for general information on device usage.

The timer device also provides timer functions in addition to the usual I/O request protocol. These
functions still require the device to be opened with the proper timer device unit, but do not require
a message port. However, the base address of the timer library must be obtained in order to use the
timer functions.

The two modes of timer device operation are not mutually exclusive. You may use them both within
the same application.

The 1/0 request used by the timer device is called timerequest.

struct timerequest
{

} ;

struct IORequest tr node;
struct timeval tr_time;

The timer device functions are passed a time structure, either timeval for non E-Oock units or
ECiockVal for E-Oock units.

struct timeval
{

} ;

ULONG tv sees; /* seconds */
ULONG tv=micro; /* microseconds */

struct EClockVal
{

} ;

ULONG ev hi; /* Upper longword of E-Clock time */
ULONG ev=lo; /* Lower longword of E-Clock time */

See the include file devicesltimer.h for the complete structure definitions. Time requests fall into
three categories:

• Time delay- wait a specified period of time. A time delay causes an application to wait a certain
length of time. When a time delay is requested, the number of seconds and microseconds to
delay are specified in the 1/0 request.

• Time measure - how long something takes to complete. A time measure is a three-step
procedure where the system or E-Oock time is retrieved, an operation or series of operations
is performed, and then another time retrieval is done. The difference between the two time
values is the measure of the duration of the operation.

• Time alarm - wait till a specific time. A time alarm is a request to be notified when a specific
time value has occurred. It is similar to a time delay except that the absolute time value is
specified in the 1/0 request.

What is an E-Ciock? The E-Oock is the clock used by the Motorola 68000 processor
family to communicate with other Motorola 8-bit chips. The E-Oock returns two distinct
values-the E-Oock value in the form of two longwords and the count rate (tics/second)
of the E-Oock. The count rate is related to the master frequency of the machine and is
different between PAL and NTSC machines.

Timer Device 287

TIMER DEVICE UNITS

There are five units in the timer device.

Timer Device Units

Unit Use

UNIT _MICRO HZ Interval Timing
UNIT_ VB LANK Interval Timing
UNIT_ECLOCK Interval Timing
UNIT_ WAITUNTIL Time Event Occurrence
UNIT_ WAITECLOCK Time Event Occurrence

• The VB LANK timer unit is very stable and has a granularity comparable to the vertical blanking
time. When you make a timing request, such as "signal me in 21 seconds," the reply will come
at the next vertical blank after 21 seconds have elapsed. This timer has very low overhead and
may be more accurate then the MICROHZ and ECLOCK units for long time periods. Keep in
mind that the vertical blanking time varies depending on the display mode.

• The MICROHZ timer unit uses the built-in precision hardware timers to create the timing
interval you request. It accepts the same type of command-"signal me in so many seconds
and microseconds." The microhertz timer has the advantage of greater resolution than the
vertical blank timer, but it may have less accuracy over long periods of time. The microhertz
timer also has much more system overhead, which means accuracy is reduced as the system
load increases. It is primarily useful for short-burst timing for which critical accuracy is not
required.

• The ECLOCK timer unit uses the Amiga E-Oock to measure the time interval you request.
This is the most precise time measure available through the timer device.

• The WAITUNTIL timer unit acts as an alarm clock for time requests. It will signal the task
when systime is greater than or equal to a specified time value. It has the same granularity as
the VB LANK timer unit.

• The WAITECLOCK timer unit acts as an alarm clock for time requests. It will signal the task
when the E-Oock value is greater than or equal to a specified time value. It has the same
granularity as the ECLOCK timer unit.

Granularity vs. Accuracy. Granularity is the sampling frequency used to check the
timers. Accuracy is the precision of a measured time interval with respect to the same
time interval in real-time. We speak only of granularity because the sampling frequency
directly affects how accurate the timers appear to be.

288 Amiga ROM Kernel Reference Manual: Devices

OPENING THE TIMER DEVICE

Three primary steps are required to open the timer device:

• Create a message port using CreatePort(). Reply messages from the device must be directed
to a message port.

• Create an 1/0 request structure of type timerequest using CreateExtiO().

• Open the timer device with one of the five timer device units. Call OpenDevice() passing a
pointer to the timerequest.

struct MsgPort *TimerMP; I* Message port pointer *I
struct timerequest *TimeriO; I* IIO structure pointer *I

I* Create port for timer device communications *I
if (! (TimerMP = CreatePort (0, 0)))

cleanexit(" Error: Can't create port\n",RETURN_FAIL);

I* Create message block for device IO *I
if (! (TimeriO = (struct timerequest *)

CreateExtiO (TimerMP) (si zeof time request)))
cleanexit(" Error: Can't create IO request\n",RETURN_FAIL);

I* Open the timer device with UNIT MICROHZ *I
if (error=OpenDevice(TIMERNAME,UNIT MICROHZ,TimeriO,O))

cleanexit(" Error: Can't open Timer.device\n",RETURN_FAIL);

The procedure for applications which only use the timer device functions is slightly different:

• Declare the timer device base address variable Timer Base in the global data area.

• Allocate memory for a timerequest structure and a timeval structure using AllocMem().

• Call OpenDevice(), passing the allocated timerequest structure.

• Set the timer device base address variable to point to the timer device base.

struct Library *TimerBase; I* global library pointer *I

struct timerequest *TimeriO;
struct timeval *timel;

I* Allocate memory for timerequest and timeval structures *I
TimeriO=(struct timerequest *)AllocMem(sizeof(struct timerequest),

MEMF PUBLIC I MEMF CLEAR);
timel=(struct timeval *)AllocMem(sizeof(struct timeval),

MEMF_PUBLIC I MEMF_CLEAR);
if (!TimeriO I !timel)

cleanexit(" Error: Can't allocate memory for IIO structures\n",RETURN_FAIL);

if (error=OpenDevice(TIMERNAME,UNIT MICROHZ,TimeriO,O))
cleanexit(" Error: Can't open Timer.device\n",RETURN_FAIL);

I* Set up pointer for timer functions */
TimerBase = (struct Library *)TimeriO->tr_node.io_Device;

Timer Device 289

---~---

CLOSING THE TIMER DEVICE

Each OpenDevice() must eventually be matched by a call to CloseDevice().

All 1/0 requests must be complete before CloseDevice(). If any requests are still pending, abort
them with AbortiO().

if (! (CheckiO (TimeriO)))
{

AbortiO(TimeriO); /*Ask device to abort any pending requests*/
}

WaitiO(TimeriO); /*Clean up*/
CloseDevice((struct IORequest *)TimeriO); /*Close Timer device*/

System Time

The Amiga has a system time feature provided for the convenience of the developer. It is a
monotonically increasing time base which should be the same as real time. The timer device
provides two commands to use with the system time. In addition, there are utility functions in
utility.library which are very useful with system time. See the "Utilities Library" chapter of the
Amiga ROM Kernel Reference Manual: Libraries for more information.

The command TR_SETSYSTIME sets the system's idea of what time it is. The system starts out
at time "zero" so it is safe to set it forward to the "real" time. However, care should be taken when
setting the time backwards.

The command TR_GETSYSTIME is used to get the system time. The timer device does not
interpret system time to any physical value. By convention, it tells how many seconds have passed
since midnight, January 1, 1978. Your program must calculate the time from this value.

The function GetSysTime() can also be used to get the system time. It returns the same value as
TR_GETSYSTIME, but uses less overhead.

Whenever someone asks what time it is using TR_GETSYSTIME, the return value of the system
time is guaranteed to be unique and unrepeating so that it can be used by applications as a unique
identifier.

System time at boot time. The timer device sets system time to zero at boot time.
AmigaDOS will then reset the system time to the value specified on the boot disk. If the
AmigaDOS C:SetClock command is given, this also resets system time.

Here is a program that can be used to determine the system time. The command is executed by the
timer device and, on return, the caller can find the data in his request block.

/* Get_Systime.c
*
* Get system time example
*
* Compile with SAS C 5.10: LC -bl -cfistq -v -y -L
*
* Run from CLI only
*I

#include <exec/types.h>
#include <exec/io.h>
#include <exec/memory. h>
#include <devices/timer.h>

290 Amiga ROM Kernel Reference Manual: Devices

fl nclude <cl b/exec protos.h>
fl nclude <cl b/alib-protos.h>
fl nclude <cl b/dos protos.h>
fl nclude <cl b/intuition_protos.h>

hnclude <stdio.h>

flifdef LATTICE
int CXBRK(void) { return(O);)
int chkabort(void) { return(O);
flendif

struct timerequest *TimeriO;
struct MsgPort *TimerMP;
struct Message *TimerMSG;

VOID main(VOID);

void main()
{
LONG error;
ULONG days,hrs,secs,mins,mics;

if (TimerMP = CreatePort(O,O))
{

/* Disable SAS CTRL/C handling */
/* really */

if (TimeriO = (struct timerequest *)
CreateExtiO(TimerMP,sizeof(struct timerequest)))

/* Open with UNIT VBLANK, but any unit can be used */
if (! (error=OpenDevice(TIMERNAME,UNIT VBLANK, (struct IORequest *)TimeriO,OL)))

else

else

else

{ -

/* Issue the command and wait for it to finish, then get the reply */
TimeriO->tr node.io Command= TR GETSYSTIME;
DoiO ((struct- IORequest *) TimeriO);

/* Get the results and close the timer device */
mics=TimeriO->tr time.tv micro;
secs=TimeriO->tr=time.tv=secs;

/* Compute days, hours, etc. */
mins=secs/60;
hrs=mins/60;
days=hrs/24;
secs=secs%60;
mins=mins%60;
hrs=hrs%24;

I* Display the time */
printf("\nSystem Time (measured from Jan.1,1978)\n");
printf(" Days Hours Minutes Seconds Microseconds\n");
printf("%6ld %6ld %6ld %6ld %10ld\n",days,hrs,mins,secs,mics);

/* Close the timer device */
CloseDevice((struct IORequest *) TimeriO);
)

printf("\nError: Could not open timer device\n");

I* Delete the IORequest structure */
DeleteExtiO(TimeriO);
)

printf("\nError: Could not create I/O structure\n");

/* Delete the port */
DeletePort(TirnerMP);
}

printf("\nError: Could not create port\n");

limer Device 291

Adding a Time Request

Time delays and time alanns are done by opening the timer device with the proper unit and submitting
a timerequest to the device with TR._ADDREQUEST set in io_Command and the appropriate
values set in tv _sees and tv_micro.

Time delays are used with the UNIT_MICROHZ, UNIT_VBLANK, and UNIT_ECLOCK units.
The time specified in a time delay timerequest is a relative measure from the time the request
is posted. This means that the tv _sees and tv_micro fields should be set to the amount of delay
required.

When the specified amount of time has elapsed, the driver will send the timerequest back via
ReplyMsg(). You must fill in the Reply Port pointer of the timerequest structure if you wish to be
signaled. Also, the number of microseconds must be normalized; it should be a value less than one
million.

For a minute and a half delay, set 60 in tv _sees and 500,000 in tv_micro.

Time riO->tr node. io Command = TR ADDREQUEST;
TimeriO->tr-time.tv-secs = 60; - /* Delay a minute */
TimeriO->tr-time.tv-micro = 500000; /* and a half */
DoiO(TimeriO); -

Time alanns are used with the UNIT_WAITUNTIL and UNIT_WAITECLOCK units. The tv_secs
and tv_micro fields should be set to the absolute time value of the alann. For an alann at 10:30
tonight, the number of seconds from midnight, January 1, 1978 till10:30 tonight should be set in
tv _sees. The timer device will not return until the time is greater than or equal to the absolute time
value.

For our purposes, we will set an alarm for three hours from now by getting the current system time
and adding three hours of seconds to it.

#define SECSPERHOUR (60*60)
struct timeval *systime;

GetSysTime(systime); /*Get current system time*/

TimeriO->tr node.io Command= TR ADDREQUEST;
TimeriO->tr-time.tv-secs = systime.tv secs+(SECSPERHOUR*3); /*Alarm in 3 hours*/
TimeriO->tr-time.tv-micro = systime.tv-micro;
DolO (Time riO); - -

Time requests with the E-Ciock Units. Time requests with the E-Oock units­
UNIT_ECLOCK and UNIT_WAITECLOCK-work the same as the other units except
that the values specified in their 1/0 requests are compared against the value of the E-Oock.
See the section "E-Oock Time and Its Relationship to Actual Time" below.

Remember, you must never reuse a timerequest until the timer device has replied to it. When you
submit a timer request, the driver destroys the values you have provided in the timeval structure.
This means that you must reinitialize the time specification before reposting a timerequest.

292 Amiga ROM Kernel Reference Manual: Devices

Keep in mind that the timer device provides a general time-delay capability. It can signal you
when at least a certain amount of time has passed. The timer device is very accurate under normal
system loads, but because the Amiga is a multitasking system, the timer device cannot guarantee
that exactly the specified amount of time has elapsed-processing overhead increases as more tasks
are run. High-performance applications (such as MIDI time-stamping) may want to take over the
16-bit counters of the CIA B timer resource instead of using the timer device.

Problems with small time requests in V1.3 and earlier versions. You must also take
care to avoid posting a timerequest ofless than 2 microseconds with the UNIT _MICRO HZ
timer device if you are using V1.3 or earlier versions of the system software. In V/.3
and earlier versions of the Amiga system software, sending a timerequest for 0 or 1
microseconds can cause a system crash. Make sure all your timer requests are for 2
microseconds or more when you use the UNIT _MICRO HZ timer with those versions.

MULTIPLE TIMER REQUESTS

Multiple requests may be posted to the timer driver. For example, you can make three timer requests
in a row:

Signal me in 20 seconds (request 1)
Signal me in 30 seconds (request 2)
Signal me in 10 seconds (request 3)

As the timer queues these requests, it changes the time values and sorts the timer requests to service
each request at the desired interval, resulting effectively in the following order:

(request 3) in now+ 10 seconds
(request 1) 10 seconds after request 3 is satisfied
(request 2) 10 seconds after request 1 is satisfied

If you wish to send out multiple timer requests, you have to create multiple request blocks. You can
do this by allocating memory for each timerequest you need and filling in the appropriate fields
with command data. Some fields are initialized by the call to the OpenDevice() function. So, for
convenience, you may allocate memory for the timerequests you need, call OpenDevice() with
one of them, and then copy the initialized fields into all the other timerequests.

It is also permissible to open the timer device multiple times. In some cases this may be easier than
opening it once and using multiple requests. When multiple requests are given, SendiO() should
be used to transmit each one to the timer.

/* Multiple_Timers.c
* * This program is designed to do multiple (3) time requests using one
* OpenDevice. It creates a message port - TimerMP, creates an
* extended I/0 structure of type timerequest named TimeriO[O] and
* then uses that to open the device. The other two time request
* structures - TimeriO[l] and Timeri0[2] - are created using AllocMem
* and then copying TimeriO[O] into them. The tv sees field of each
* structure is set and then three SendiOs are done with the requests.
* The program then goes into a while loop until all messages are received.

* * Compile with SAS C 5.10 lc -bl -cfistq -v -y -L
* * Run from CLI only
*I

Timer Device 293

II nclude <exec/types. h>
II nclude <exec/memory. h>
II nclude <devices/timer.h>

#include <clib/exec protos.h>
#include <clib/alib:::protos.h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK(void) (return(O); I
int chkabort(void) (return(O);
#endif

/* Disable Lattice CTRL/C handling */
I /* really *I

VOID main(VOID);

void main(void)
(
struct timerequest *Timeri0[3];
struct MsgPort *TimerMP;
struct Message *TimerMSG;

ULONG error,x,seconds[3]=(4,1,21, microseconds[3]=(0,0,01;

int allin = 3;
char *position[]=("last","second","first"l;

if (TimerMP = CreatePort(O,O))
(
if (TimeriO[O] = (struct timerequest *)

CreateExtiO(TimerMP,sizeof(struct timerequest)))

I* Open the device once */
if (! (error=OpenDevice(TIMERNAME, UNIT VBLANK, (struct IORequest *) TimeriO[O], OL)))

(-
/* Set command to TR ADDREQUEST */
TimeriO[OJ->tr node:-io_Command = TR_ADDREQUEST;

if (TimeriO[l]=(struct timerequest *)

(
AllocMem(sizeof(struct timerequest),MEMF_PUBLIC I MEMF_CLEAR))

if (Timeri0[2]=(struct timerequest *)
AllocMem(sizeof(struct timerequest),MEMF_PUBLIC I MEMF_CLEAR))

{
/* Copy fields from the request used to open the timer device */
*TimeriO[l] = *TimeriO[O];
*Timeri0[2] = *TimeriO[O];

/* Initialize other fields */
for (x=O;x<3;x++)

(
TimeriO[xJ->tr time.tv sees = seconds[x];
TimeriO[xJ->tr-time.tv-micro = microseconds[x];
printf ("\nini tiali zing Time riO [%d] ", x);
I

printf("\n\nSending multiple requests\n\n");

/* Send multiple requests asynchronously */
I* Do not got to sleep yet... *I
SendiO((struct IORequest *)TimeriO[O]);
SendiO((struct IORequest *)TimeriO[l]);
SendiO((struct IORequest *)Timeri0[2]);

/* There might be other processing done here */

/*Now go to sleep with WaitPort() waiting for the requests*/
while (allin)

(
WaitPort(TimerMP);
I* Get the reply message */
TimerMSG=GetMsg(TimerMP);
for (x=O;x<3;x++)

if (TimerMSG==(struct Message *)TimeriO[x])
printf("Request %ld finished %s\n",x,position[--allin]);

294 Amiga ROM Kernel Reference Manual: Devices

else

FreeMem(Timeri0[2],sizeof(struct timerequest));
)

printf("Error: could not allocate Timeri0[2] memory\n");

else

else

else

else

FreeMem(TimeriO[l],sizeof(struct timerequest));
)

printf("Error could not allocate TimeriO[l] memory\n");

CloseDevice((struct IORequest *) TimeriO[O]);
)

printf("\nError: Could not OpenDevice\n");

DeleteExtiO((struct IORequest *) TimeriO[O]);
)

printf("Error: could not create IORequest\n");

DeletePort(TimerMP);
)

printf("\nError: Could not CreatePort\n");

If all goes according to plan, TirneriO[l) will finish first, Tirneri0[2) will finish next, and
TirneriO [0) will finish last.

Using the Time Arithmetic Functions

As indicated above, the time arithmetic functions are accessed in the timer device structure as if
they were a routine library. To use them, you create an IORequest block and open the timer. In the
IORequest block is a pointer to the device's base address. This address is needed to access each
routine as an offset-for example, _LVOAddTime, _LVOSubTime, _LVOCmpTime---from that
base address.

/*
* Timer Arithmetic.c
* * Example of timer device arithmetic functions
*
* Compile with SAS C 5.10 lc -bl -cfistq -v -y -L
*
* Run from CLI only
*
*I

#include <exec/types.h>
#include <exec/io.h>
#include <exec/memory. h>
#include <devices/timer. h>

#include <clib/exec protos.h>
#include <clib/alib-protos.h>
#include <clib/timer_protos.h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK (void) { return (0);)
int chkabort(void) { return(O);

/* Disable SAS CTRL/C handling */
/* really *I

Timer Device 295

ltendif

struct Library *TimerBase; I* setup the interface variable (must be global) *I

void main(int argc,char **argv)
{
struct timeval *time1, *time2, *time3;
struct timerequest *tr;
LONG error,result;

1*------------------------------------*1
I* Get some memory for our structures *I
1*------------------------------------*1
time1=(struct timeval *)AllocMem(sizeof(struct timeval),

MEMF PUBLIC I MEMF CLEAR);
time2=(struct timeval *)AllocMem(sizeof(struct timeval),

MEMF PUBLIC I MEMF CLEAR);
time3=(struct timeval *)AllocMem(sizeof(struct timeval),

MEMF PUBLIC I MEMF CLEAR);
tr=(struct timerequest *)AllocMem(sizeof(struct timerequest),

MEMF PUBLIC I MEMF CLEAR);
I* Make sure we got the memory *I - -
if(!time1 I !time2 I !time3 I !tr) goto cleanexit;

l*---*1
I* Set up values to test time arithmetic with. In a real application these *I
I* values might be filled in via the GET SYSTIME command of the timer device *I
1*--------------------------------------~------------------------------------*l
time1->tv sees 3; time1->tv micro 0; I* 3.0 seconds *I
time2->tv-secs = 2; time2->tv-micro = 500000; I* 2.5 seconds *I
time3->tv:::secs = 1; time3->tv:::micro = 900000; I* 1. 9 seconds *I

printf ("Time1 is %1d. %ld\n" , time1->tv sees, time1->tv micro);
printf("Time2 is %ld.%ld\n" , time2->tv-secs,time2->tv-micro);
printf ("Time3 is %ld. %ld\n\n", time3- >tv::: sees, time3->tv :::micro);

1*-------------------------------*1
I* Open the MICROHZ timer device *I
1*-------------------------------*1
error= OpenDevice(TIMERNAME,UNIT MICROHZ, (struct IORequest *) tr, OL);
if(error) goto cleanexit; -

I* Set up to use the special time arithmetic functions *I
TimerBase = (struct Library *)tr->tr_node.io_Device;

l*--*1
I* Now that TimerBase is initialized, it is permissible to call the *I
I* time-comparison or time-arithmetic routines. Result of this example *I
I* is -1 which means the first parameter has greater time value than second *I
I* parameter; +1 means the second parameter is bigger; 0 means equal. *I
l*--*1
result = CmpTime(time1, time2);
printf("Time1 and Time2 compare= %ld\n",result);

I* Add time2 to time1, result in time1 *I
AddTime(time1, time2);
printf("Time1 + Time2 = %ld.%ld\n",time1->tv_secs,time1->tv_micro);

I* Subtract time3 from time2, result in time2 *I
SubTime(time2, time3);
printf("Time2- Time3 = %ld.%ld\n",time2->tv_secs,time2->tv_micro);

1*------------------------------------*1
I* Free system resources that we used *I
1*------------------------------------*1
cleanexit:

if (time1)
FreeMem(time1,sizeof(struct timeval));

if (time2)
FreeMem(time2,sizeof(struct timeval));

if (time3)
FreeMem(time3,sizeof(struct timeval));

if (!error)
CloseDevice((struct IORequest *) tr);

if (tr)
FreeMem(tr,sizeof(struct timerequest));

296 Amiga ROM Kernel Reference Manual: Devices

WHY USE TIME ARITHMETIC?

As mentioned earlier in this section, because of the multitasking capability of the Amiga, the timer
device can provide timings that arc at least as long as the specified amount of time. If you need
more precision than this, using the system timer along with the time arithmetic routines can at least,
in the long run, let you synchronize your software with this precision timer after a selected period
of time.

Say, for example, that you select timer intervals so that you get 161 signals within each 3-minute
span. Therefore, the timeval you would have selected would be 180/161, which comes out to 1
second and 118,012 microseconds per interval. Considering the time it takes to set up a call to set
the timer and delays due to task-switching (especially if the system is very busy), it is possible that
after 161 timing intervals, you may be somewhat beyond the 3-minute time. Here is a method you
can use to keep in sync with system time:

1. Begin.

2. Read system time; save it.

3. Perform your loop however many times in your selected interval.

4. Read system time again, and compare it to the old value you saved. (For this example, it will
be more or less than 3 minutes as a total time elapsed.)

5. Calculate a new value for the time interval (timeval); that is, one that (if precise) would put
you exactly in sync with system time the next time around. Timeval will be a lower value if
the loops took too long, and a higher value if the loops didn't take long enough.

6. Repeat the cycle.

Over the long run, then, your average number of operations within a specified period of time can
become precisely what you have designed.

You Can't Do 1 + 1 on E-Ciock Values. The arithmetic functions arc not designed to
operate on ECiockVals.

Timer Device 297

-- --·-

E-Ciock Time and Its Relationship to Actual Time

Unlike GetSysTime(), the two values returned by ReadECiock()-tics/sec and the ECiockVal
structure-have no direct relationship to actual time. The tics/sec is the E-Oock count rate, a value
which is related to the system master clock. The EClockVal structure is simply the upper longword
and lower longword of the E-Oock 64 bit register.

However, when two ECiockVal structures are subtracted from each other and divided by the
tics/sec (which remains constant), the result does have a relationship to actual time. The value of
this calculation is a measure of fractions of a second that passed between the two readings.

/* E-Clock Fractions of a second fragment
*
* This fragment reads the E-Clock twice and subtracts the two ev lo values
* time2->ev lo - timel->ev lo
* and divides the result by theE-Clock tics/sees returned by ReadEClock()
* to get the fractions of a second
*I

struct EClockVal *timel,*time2;
ULONG E_Freq;
LONG error;
struct timerequest *TimeriO;

TimeriO ~ (struct timerequest *)AllocMem(sizeof(struct timerequest),
MEMF_CLEAR I MEMF PUBLIC);

timel (struct EClockVal *)AllocMem(sizeof(struct EClockVal),
MEMF_CLEAR I MEMF_PUBLIC);

time2 ~ (struct EClockVal *)AllocMem(sizeof(struct EClockVal),
MEMF_CLEAR I MEMF_PUBLIC);

if (!(error ~ OpenDevice (TIMERNAME, UNIT_ECLOCK, (struct IORequest *) TimeriO, OL)))
{
TimerBase ~ (struct Library *)TimeriO->tr node.io Device;
E_Freq ReadEClock ((struct EClockVal *) timel);- /* Get initial reading */

/* place operation to be measured here */

E Freq ReadEClock((struct EClockVal *) time2); /*Get second reading*/
piintf("\nThe operation took: %f fractions of a second\n",

(time2->ev_lo-timel->cv_lo) I (double)E_Frea);

CloseDevice((struct IORequest *) TimerlO);
}

The Code Takes Some Liberties. The above fragment only uses the lower longword
of the ECiockVal structures in calculating the fractions of a second that passed. This was
done to simplify the fragment. Naturally, you would have to at least check the values of
the upper longwords if not use them to get an accurate measure.

298 Amiga ROM Kernel Reference Manual: Devices

Example Timer Program

Here is an example program showing how to use the timer device.

/* Simple_Timer.c
*
* A simple example of using the timer device.
*
* Compile with SAS C 5.10: LC -b1 -cfistq -v -y -L
* * Run from CLI only
*I

#include <exec/types.h>
#include <exec/io.h>
#include <exec/memory. h>
#include <devices/timer.h>

#include <clib/exec protos. h>
#include <clib/alib-protos.h>
#include <clib/dos_protos.h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK (void) { return (0);)
int chkabort(void) return(O);
#endif

I* Our timer sub-routines */

/* Disable SAS CTRL/C handling */
/* really */

void delete timer (struct timerequest *);
LONG get sys time (struct timeval *);
LONG set new time (LONG);
void wait for timer(struct timerequest *, struct timeval *);
LONG time-delay (struct timeval *, LONG) ;
struct timerequest *create timer(ULONG);
void show time (ULONG);

struct Library *TimerBase; I* to get at the time comparison functions */

/* manifest constants
#define SECSPERMIN
#define SECSPERHOUR
#define SECSPERDAY

-- "will never change" */
(60)
(60*60)
(60*60*24)

void main(int argc,char **argv)
{
LONG seconds;
struct timerequest *tr;
struct timeval oldtimeval;
struct timeval mytimeval;
struct timeval currentval;

printf("\nTimor test\n");

/* sleep for two seconds */
currentval.tv sees ~ 2;
currentval.tv-micro ~ 0;

/* IO block for timer commands */
/* timevals to store times */

time delay(¤tval, UNIT VBLANK);
printf("After 2 seconds dela~\n");

/* sleep for four seconds */
currentval.tv sees~ 4;
currentval.tv-micro ~ 0;
time delay (¤tva1, UNIT VBLANK) ;
printf("After 4 seconds dela~\n");

/* sleep for 500,000 micro-seconds 1/2 second*/
currentval.tv sees~ 0;
currentval.tv-micro ~ 500000;
time delay(¤tval, UNIT MICROHZ);
printf ("After 1/2 second delay\n") ;

printf("DOS Date command shows: ");
(void) Execute ("date", 0, 0) ;

limer Device 299

/*save what system thinks is the time we'll advance it temporarily*/
get sys time(&oldtimeval);
printf("original system time is:\n");
show_time(oldtimeval.tv_secs);

printf("Setting a new system time\n");

seconds= 1000 * SECSPERDAY + oldtimeval.tv sees;

set new_time(seconds);

/* (if user executes the AmigaDOS DATE command now, he will*/
/* see that the time has advanced something over 1000 days */
printf("DOS Date command now shows: ");
(void) Execute("date", 0, 0);

get sys time(&mytimeval);
printf ("Current system time is: \n");
show_time(mytimeval.tv sees);

/* Added the microseconds part to show that time keeps */
/* increasing even though you ask many times in a row */
printf("Now do three TR GETSYSTIMEs in a row (notice how the microseconds increase)\n\n");
get sys time(&mytimevai);
printf("First TR GETSYSTIME \l%ld.%ld\n",mytimeval.tv sees, mytimeval.tv micro);
get sys time(&mytimeval);
printf("Second TR GETSYSTIME \t%ld.%ld\n",mytimeval.tv sees, mytimeval.tv micro);
get sys time (&mytimeval) ; -
printf("Third TR_GETSYSTIME \t%ld.%ld\n",mytimeval.tv sees, mytimeval.tv_micro);

printf("\nResetting to former time\n");
set new_time(oldtimeval.tv sees);

get sys time(&mytimeval);
printf("Current system time is:\n");
show time(mytimeval.tv sees);

/* just shows how to set up for using the timer functions, does not */
/* demonstrate the functions themselves. (TimerBase must have a */
/* legal value before AddTime, SubTime or CmpTime are performed. */
tr =create timer(UNIT MICROHZ);
TimerBase =-(struct Library *)tr->tr node.io Device;

/* and how to clean up afterwards */
TimerBase = (struct Library *) (-1);
delete timer(tr);
l

struct timerequest *create timer(ULONG unit)
{
/* return a pointer to a timer request. If any problem, return NULL */
LONG error;
struct MsgPort *timerport;
struct timerequest *TimeriO;

timerport = CreatePort(0, 0);
if (timerport == NULL)

return(NULL);

TimeriO = (struct timerequest *)
CreateExtiO(timerport, sizeof(struct timerequest));

if (TimeriO == NULL)
{

DeletePort(timerport); /*Delete message port*/
return(NULL);
l

error= OpenDevice(TIMERNAME, unit, (slruct IORequest *) TimeriO, OL);
if (error != 0)

{
delete timer(TimeriO);
return(NULL);
l

return(TimeriO);
l

300 Amiga ROM Kernel Reference Manual: Devices

/* more precise timer than AmigaDOS Delay() */
LONG time delay(struct timeval *tv, LONG unit
{
struct timerequest *tr;
/* get a pointer to an initialized timer request block */
tr ~ create_timer (unit) ;

/* any nonzero return says timedelay routine didn't work. */
if (tr ~~NULL)

return(-1L);

wdit for timer(tr, tv);

/* deallocate temporary structures */
delete timer(tr);
return(OL);
}

void wait for timer(struct timerequest *tr, struct timeval *tv)
{

tr->tr node.io Command ~ TR_ADDREQUEST; /* add a new timer request */

/* structure assignment */
tr->tr time ~ *tv;

/* post request to the timer will go to sleep till done */
DoiO((struct IORequest ~) tr);
)

LONG set new time(LONG sees)
{
struct timerequest *tr;
tr ~create timer(UNIT MICROHZ);

/* non zero return says error */
if (tr ~~ 0)

return (-1) ;

tr->tr time.tv sees~ sees;
tr->tr-time.tv-micro ~ 0;
tr->tr-node.io-Command ~ TR SETSYSTIME;
DoiO ((struct IORequest *) t r-) ;

delete timer(tr);
return(O);
}

LONG get sys time(struct timeval *tv)
{ -
struct timerequest *tr;
tr ~create timer(UNIT_MICROHZ);

/* non zero return says error */
if (tr =~ 0)

return(-1);

tr->tr node.io Command TR GETSYSTIME;
DoiO ((struct IORequest *) tr-);

/* structure assignment */
*tv = tr->tr time;

delete timer(tr);
ret urn 1 0) ;
}

Timer Device 301

void delete timer(struct timerequest *tr)
(-

struct MsgPort *tp;

if (tr ! ; 0)
(
tp; tr->tr node.io_Message.mn_ReplyPort;

if (tp !; 0)
DeletePort(tp);

CloseDevice((struct IORequest *) tr);
DeleteExtiO((struct IORequest *) tr);
)

void show time(ULONG sees)
(-

ULONG days,hrs,mins;

/* Compute days, hours, etc. */
mins;secs/60;
hrs;mins/60;
days;hrs/24;
secs;secs%60;
mins=mins%60;
hrs;hrs%24;

/* Display the time */
printf("* Hour Minute Second (Days since Jan.l,l978)\n");
printf("*%Sld:%Sld:%Sld (%6ld)\n\n",hrs,mins,secs,days);
} /* end of main */

Additional Information on the Timer Device

Additional programming information on the timer device and the utilities library can be found in
their include files and Autodocs. All are contained in the Amiga ROM Kernel Reference Manual:
Includes and Autodocs.

Timer Device Information

INCLUDES

AUTO DOCS

devices/timer.h
devices/timer.i
utility/date.h
utility/date.i

timer. doc
utility.doc

302 Amiga ROM Kernel Reference Manual: Devices

chapter fourteen
TRACKDISK DEVICE

The Amiga trackdisk device directly drives the disk, controls the disk motors, reads raw data from
the tracks, and writes raw data to the tracks. Nonnally, you use the AmigaDOS functions to write or
read data from the disk. The trackdisk device is the lowest-level software access to the disk data and
is used by AmigaDOS to access the disks. The trackdisk device supports the usual commands such
as CMD_ WRITE and CMD_READ. In addition, it supports an extended fonn of these commands
to allow additional control over the trackdisk device.

New Features for Version 2.0

Feature Description

TD_GETGEOMETRY Device Command
TD_EJECT Device Command
IOTF _lNDEXSYNC Device Command Flag
IOTF_WORDSYNC Device Command Flag
Fast RAM Buffers Now Supported

Compatibility Warning: The new features for 2.0 are not backwards compatible.

Trackdisk Device 303

Trackdisk Device Commands and Functions

Command

CMD_CLEAR
ETD_CLEAR

CMD_READ
ETD_READ

CMD_UPDATE
ETD_UPDATE

CMD_WRITE
ETD_WRITE

TD_ADDCHANGEINT

TD_CHANGENUM

TD_CHANGESTATE

TD_EJECT

TDJORMAT
ETD_FORMAT

TD_GETDRIVETYPE

TD_GETGEOMETRY

TD_GETNUMTRACKS

TD_MOTOR
ETD_MOTOR

TD_pRQTSTATUS

TD_RAWREAD
ETD_RAWREAD

TD_RAWWRITE
ETD_RAWWRITE

TD_REMCHANGEINT

TD_sEEK
ETD_SEEK

Operation

Mark track buffer as invalid. Forces the track to be re-read.
ETD_CLEAR also checks for a diskchange.

Read one or more sectors from a disk. ETD_READ also reads the
sector label area and checks for a diskchange.

Write out track buffer if it has been changed. ETD_UPDATE also
checks for a diskchange.

Write one or more sectors to a disk. ETD_ WRITE also writes the
sector label area and checks for a diskchange.

Add an interrupt handler to be activated on a diskchange.

Return the current value of the diskchange counter used by the
ETD commands to determine if a diskchange has occurred.

Return the disk present/not-present status of a drive.

Eject a disk from a drive. This command will only work on drives
that support an eject command (V36).

Initialize one or more tracks with a data buffer. ETD_FORMAT
also initializes the sector label area.

Return the type of disk drive in use by the unit.

Return the disk geometry table (V36).

Return the number of tracks usable with the unit.

Tum the motor on or off. ETD__MOTOR also checks for a
diskchange.

Return the write-protect status of a disk.

Read RAW sector data from disk (unencoded MFM).
ETD_RA WREAD also checks for a disk change.

Write RAW sector data to disk. ETD_RA WWRITE also checks
for a diskchange.

Remove a diskchange interrupt handler.

Move the head to a specific track. ETD_SEEK also checks for a
disk change.

304 Amiga ROM Kernel Reference Manual: Devices

Exec Functions as Used in This Chapter

AbortiO()
BeginiO()
CloseDevice()
DolO()
OpenDevice()

Abort a command to the trackdisk device.
Initiate a command and return immediately (asynchronous request).
Relinquish usc of a disk unit.
Initiate a command and wait for completion (synchronous request).
Obtain exclusive use of a particular disk unit.

Exec Support Functions as Used in This Chapter

CreateExtiO()

CreatePort()

DeleteExtiO()
DeletePort()

Create an extended 1/0 request structure of type IOExtTD. This structure will
be used to communicate commands to the trackdisk device.
Create a signal message port for reply messages from the trackdisk device.
Exec will signal a task when a message arrives at the reply port.
Delete an l/0 request structure created by CreateExtiO().
Delete the message port created by CreatePort().

Device Interface

The trackdisk device operates like other Amiga devices. To use it, you must first open the device,
then send 1/0 requests to it, and then close it when finished. See the "Introduction to Amiga System
Devices" chapter for general information on device usage.

The trackdisk device uses two different types of 1/0 request blocks, IOStdReq and IOExtTD and
two types of commands, standard and extended. An IOExtTD is required for the extended trackdisk
commands (those beginning with "ETD_"), but can be used for both types of commands. Thus, the
IOExtTD is the type of I/0 request that will be used in this chapter.

struct IOExtTD
{

) ;

struct
ULONG
ULONG

IOStdReq iotd Req;
iotd Count; -
iotd:::secLabel;

/* Diskchange counter */
/* Sector label data */

See the include file devices!trackdisk.h for the complete structure definition.

The enhanced commands listed above-those beginning with "ETD_"- are similarto their standard
counterparts but have additional features: they allow you to control whether a command will be
executed if the disk has been changed and they allow you to read or write to the sector label portion
of a sector.

Enhanced commands require a larger 1/0 request, IOExtTD, than the IOStdReq request used by
the standard commands. IOExtTD contains extra information needed by the enhanced command;
since the standard form of a command ignores the extra fields, IOExtTD requests can be used for
both types. The extra information takes the form of two extra longwords at the end of the data
structure. These commands are performed only if the change count is less than or equal to the value
in the iotd_Count field of the command's request block.

Trackdisk Device 305

The iotd_Count field keeps old 1/0 requests from being performed when the disk is changed. Any
request found with an iotd_Count less than the current change counter value will be returned with
a characteristic error (TDERILDiskChange) in the io___Error field. This allows stale 1/0 requests to
be returned to the user after a disk has been changed. The current disk-change counter value can be
obtained by TD_CHANGENUM. If the user wants enhanced disk 1/0 but does not care about disk
removal, then iotd_Count may be set to the maximum unsigned long integer value (OxFFFFFFFF).

The iotd__8ecLabel field allows access to the sector identification section of the sector header. Each
sector has 16 bytes of descriptive data space available to it; the trackdisk device does not interpret
this data. If iotd_SecLabel is NULL, then this descriptive data is ignored. If it is not NULL, then
iotd_SecLabel should point to a series of contiguous 16-byte chunks (one for each sector that is to
be read or written). These chunks will be written out to the sector's label region on a write or filled
with the sector's label area on a read. If a CMD_ WRITE (the standard write call) is done, then the
sector label area is left unchanged.

ABOUT AMIGA FLOPPY DISKS

The standard 3.5 inch Amiga floppy disk consists of a number of tracks that are NUMSECS (11)
sectors of TD_SECTOR (512) usable data bytes plus TD_LABELSIZE (16) bytes of label area.
There are usually 2 tracks per cylinder (2 heads) and 80 cylinders per disk. The number of tracks
can be found using the TD_GETNUMTRACKS command.

For V36 and higher systems, the NUMSECS in some drives may be variable and may change when
a disk is inserted. Use TD_GETGEOMETRY to determine the current number of sectors.

Think Tracks not Cylinders. The result is given in tracks and not cylinders. On a
standard 3.5" drive, this gives useful space of 880K bytes plus 28K bytes of sector label
area per floppy disk.

Although the disk is logically divided up into sectors, alll/0 to the disk is done a track at a time.
This allows access to the drive with no interleaving and increases the useful storage capacity by
about 20 percent. Each disk drive on the system has its own buffer which holds the track data going
to and from the drive.

Normally, a read of a sector will only have to copy the data from the track buffer. If the track buffer
contains another track's data, then the buffer will first be written back to the disk (if it is "dirty")
and the new track will be read in. All track boundaries are transparent to the programmer (except
for FORMAT, SEEK, and RAWREAD/RAWWRITE commands) because you give the device an
offset into the disk in the number of bytes from the start of the disk. The device ensures that the
correct track is brought into memory.

The performance of the disk is greatly enhanced if you make effective use of the track buffer. The
performance of sequential reads will be up to an order of magnitude greater than reads scattered
across the disk. In addition, only full-sector writes on sector boundaries are supported.

The trackdisk device is based upon a standard device structure. It has the following restrictions:

• All reads and writes must use an io_Length that is an integer multiple ofTD_SECTOR bytes
(the sector size in bytes).

• The offset field must be an integer multiple ofTD_SECTOR.

• The data buffer must be word-aligned.

• Under pre-V36, the data buffer must be also be in Chip RAM.

306 Amiga ROM Kernel Reference Manual: Devices

OPENING THE TRACKDISK DEVICE

Three primary steps are required to open the trackdisk device:

• Create a message port by calling CreatePort(). Reply messages from the device must be
directed to a message port.

• Create an extended 1/0 request structure of type IOExtTD. The IOExtTD structure is created
by the CreateExtiO() function.

• Open the trackdisk device. Call OpenDevice(), passing it the extended 1/0 request.

For the trackdisk device, the flags parameter of the OpenDevice() function specifies whether you
are opening a 3.5" drive (flags=O) or a 5.25" drive (flags= I). With flags set to 0 trackdisk will only
open a 3.5" drive. To tell the device to open any drive it understands, set the flags parameter to
TDF _ALLOW _NQN_J_..5. (See the include file devicesltrackdisk.h for more information.)

#include <devices/trackdi sk. h>

struct MsgPort *TrackMP;
struct IOExtTD *TrackiO;

if (TrackMP=CreatePort(O,O))

/* Pointer for message port */
/* Pointer for IORequest */

if (TrackiO=(struct IOExtTD *)
CreateExtiO(TrackMP,sizeof(struct IOExtTD)))

if (OpenDevice(TD NAME,OL, (struct IORequest *)TrackiO,Flags)
printf("%s did not open\n",TD_NAME);

Disk Drive Unit Numbers. The unit number-second parameter of the OpenDevice()
call-can be any value from 0 to 3. Unit 0 is the built-in 3.5" disk drive. Units 1 through
3 represent additional disk drives that may be connected to an Amiga system.

READING FROM THE TRACKDISK DEVICE

You read from the trackdisk device by passing an IOExtTD to the device with CMD_READ set in
io_Command, the number of bytes to be read set in io_Length, the address of the read buffer set
in io_Data and the track you want to read-specified as a byte offset from the start of the disk-set
in io_Offset.

The byte offset of a particular track is calculated by multiplying the number of the track you want
to read by the number of bytes in a track. The number of bytes in a track is obtained by multiplying
the number of sectors (NUMSECS) by the number of bytes per sector (TD_SECTOR). Thus you
would multiply 11 by 512 to get 5632 bytes per track. To read track 15, you would multiply 15 by
5632 giving 84,480 bytes offset from the beginning of the disk.

#define TRACK SIZE ((LONG) (NUMSECS * TD_SECTOR))
UBYTE *Readbuffer;
SHORT tracknum;

if (Readbuffer = AllocMem(TRACK_SIZE,MEMF_CLEARIMEMF_CHIP))
{
DiskiO->iotd Req.io Length= TRACK SIZE;
DiskiO->iotd-Req.io-Data = (APTR)Readbuffer;
DiskiO->iotd-Req.io-Offset = (ULONG) (TRACK SIZE * track);
DiskiO->iotd-Req.io-Command = CMD READ; -
DolO ((struct IORequest *) DiskiO); -
)

Trackdisk Device 307

For reads using the enhanced read command ETD_READ, the IOExtTD is set the same as above
with the addition of setting iotd_Count to the current diskchange number. The diskchange number
is returned by the TD_CHANGENUM command (see below). If you wish to also read the sector
label area, you must set iotd_SecLabel to a non-NULL value.

DiskiO->iotd Req.io Length= TRACK SIZE;
DiskiO->iotd-Req.io-Data = (APTR)Readbuffer;
DiskiO->iotd-Req. io-Offset = (ULONG) (TRACK SIZE * track);
Di skiO- >iotd-Count ~ change count; -
DiskiO->iotd-Req.io Command-= ETD READ;
DoiO((struct IORequest *)DiskiO);-

ETD_READ and CMD_READ obey all of the trackdisk device restrictions noted above. They
transfer data from the track buffer to the user's buffer. If the desired sector is already in the track
buffer, no disk activity is initiated. If the desired sector is not in the buffer, the track containing that
sector is automatically read in. If the data in the current track buffer has been modified, it is written
out to the disk before a new track is read.

WRITING TO THE TRACKDISK DEVICE

You write to the trackdisk device by passing an IOExtTD to the device with CMD_ WRITE set in
io_Command, the number of bytes to be written set in io_Length, the address of the write buffer
set in io_Data and the track you want to write-specified as a byte offset from the start of the
disk-set in io_Offset.

#define TRACK SIZE ((LONG) (NUMSECS * TD_SECTOR))
UBYTE *Writebuffer;

if (Writebuffer = AllocMem(TRACK SIZE,MEMF CLEARIMEMF PUBLIC))
{ - - -

DiskiO->iotd Req.io Length= TRACK SIZE;
DiskiO->iotd-Req.io-Data = (APTR)Writebuffer;
DiskiO->iotd-Req.io-Offset = (ULONG) (TRACK SIZE * tracknum);
DiskiO->iotd-Req.io-Command = CMD WRITE; -
DoiO((struct IORequest *)DiskiO);-
}

For writes using the enhanced write command ETD_ WRITE, the IOExtTD is set the same as above
with the addition of setting iotd_Count to the current disk change number. The diskchange number
is returned by the TD_CHANGENUM command (see below). If you wish to also write the sector
label area, you must set iotd_5ecLabel to a non-NULL value.

DiskiO->iotd Req.io Length= TRACK SIZE;
DiskiO->iotd-Req.io-Data = (APTR)Writebuffer;
DiskiO->iotd-Req.io-Offset = (ULONG) (TRACK SIZE* tracknum);
DiskiO->iotd-Count ~ change count; -
DiskiO->iotd-Req.io Command-= ETD WRITE;
DoiO ((struct IORequest *) DiskiO); -

ETD_ WRITE and CMD_ WRITE obey all of the trackdisk device restrictions noted above. They
transfer data from the user's buffer to the track buffer. If the track that contains this sector is already
in the track buffer, no disk activity is initiated. If the desired sector is not in the buffer, the track
containing that sector is automatically read in. If the data in the current track buffer has been
modified, it is written out to the disk before a new track is read in for modification.

308 Amiga ROM Kernel Reference Manual: Devices

CLOSING THE TRACKDISK DEVICE

As with all devices, you must close the trackdisk device when you have finished using it. To release
the device, a CloseDevice() call is executed with the same IOExtTD used when the device was
opened. This only closes the device and makes it available to the rest of the system. It does not
deallocate the IOExtTD structure.

CloseDevice((struct IORequest *)DiskiO);

Advanced Commands

DETERMINING THE DRIVE GEOMETRY TABLE

The layout geometry of a disk drive can be determined by using the TD_GETGEOMETRY com­
mand. The layout can be defined three ways:

• TotalSectors

• Cylinders and CylSectors

• Cylinders, Heads, and TrackSectors.

Of the three, TotalSectors is the most accurate, Cylinders and CylSectors is less so, and Cylinders,
Heads and TrackSectors is the least accurate. All are usable, though the last two may waste some
portion of the available space on some drives.

The TD_GETGEOMETRY commands returns the disk layout geometry in a DriveGeometry
structure:

struct DriveGeometry
{

ULONG dg SectorSize;
ULONG dg-TotalSectors;
ULONG dg-Cylinders;
ULONG dg-CylSectors;
ULONG dg-Heads;
ULONG dg-TrackSectors;
ULONG dg=BufMemType;

/* in bytes */
/* total # of sectors on drive */
/* number of cylinders */
/* number of sectors/cylinder */
/* number of surfaces */
/* number of sectors/track */
/* preferred buffer memory type */
/* (usually MEMF PUBLIC) */

UBYTE dg DeviceType;
UBYTE dg-Flags;
UWORD dg=Reserved;

/* codes as defined in the SCSI-2 spec*/
/* flags, including removable */

} ;

See the include file devicesltrackdisk.h for the complete structure definition and values for the
dg__DeviceType and dg__Fiags fields.

You determine the drive layout geometry by passing an IOExtTD with TD_GETGEOMETRY set
in io_Command and a pointer to a DriveGeometry structure set in io__Data.

struct DriveGeometry *Euclid;

Euclid ~ (struct DriveGeometry *)
AllocMem(sizeof(struct DriveGeometry),MEMF_PUBLIC I MEMF_CLEAR);

DiskiO->iotd Req.io Data~ Euclid; /* put layout geometry here */
DiskiO->iotd-Req.io-Command TD GETGEOMETRY;
DoiO ((struct IORequest *) DiskiO) ;-

Trackdisk Device 309

For V36 and higher versions of the operating system, TD_GETGEOMETRY is preferred over
TD_GETNUMTRACKS for determining the number of tracks on a disk. This is because new drive
types may have more sectors or different sector sizes, etc., than standard Amiga drives.

CLEARING THE TRACK BUFFER

ETD_CLEAR and CMD_CLEAR mark the track buffer as invalid, forcing a reread of the disk on
the next operation. ETD_UPDATE or CMD_UPDATE would be used to force data out to the disk
before turning the motor off. ETD_CLEAR or CMD_CLEAR is usually used after having locked
out the trackdisk device via the use of the disk resource, when you wish to prevent the track from
being updated, or when you wish to force the track to be re-read. ETD_CLEAR or CMD_CLEAR
will not do an update, nor will an update command do a clear.

You clear the track buffer by passing an IOExtTD to the device with CMD_CLEAR or
ETD_CLEAR set in io_Command. For ETD_CLEAR, you must also set iotd_Count to the
current diskchange number.

DiskiO->iotd Req.io Command~ TD CLEAR;
DoiO ((st ruct IORequest *) Di skiO) ;~

CONTROLLING THE DRIVE MOTOR

ETD_MOTOR and TD_MOTOR give you control of the motor. When the trackdisk device executes
this command, the old state of the motor is returned in io__Actual. If io__Actual is zero, then the
motor was off. Any other value implies that the motor was on. If the motor is just being turned on,
the device will delay the proper amount of time to allow the drive to come up to speed. Normally,
turning the drive on is not necessary-the device does this automatically if it receives a request
when the motor is off.

However, turning the motor off is the programmer's responsibility. In addition, the standard
instructions to the user are that it is safe to remove a disk if, and only if, the motor is off (that is, if
the disk light is off).

You control the drive motor by passing an IOExtTD to the device with CMD_MOTOR or
ETD_MOTOR set in io_Command and the state you want to put the motor in set in io_Length.
If io_Length is set to 1, the trackdisk device will tum on the motor; a 0 will tum it off. For
ETD_MOTOR, you must also set iotd_Count to the current diskchange number.

DiskiO->iotd Req.io Length~ 1; /* Turn on the drive motor*/
DiskiO->iotd~Req.io~Command ~ TD MOTOR;
DoiO ((st ruct IORequest *) Di skiO) ;~

UPDATING A TRACK SECTOR

The Amiga trackdisk device does not write data sectors unless it is necessary (you request that a
different track be used) or until the user requests that an update be performed. This improves system
speed by caching disk operations. The update commands ensure that any buffered data is flushed
out to the disk. If the track buffer has not been changed since the track was read in, the update
commands do nothing.

310 Amiga ROM Kernel Reference Manual: Devices

You update a data sector by passing an IOExtTD to the device with CMD_UPDATE or
ETD_UPDATE set in io_Command. For ETD_UPDATE, you must also set iotd_Count to
the current diskchange number.

DiskiO->iotd Req.io Command= TD UPDATE;
DoiO((struct IORequest *)DiskiO) ;-

FORMATTING A TRACK

ETD_FORMAT and TDJORMAT are used to write data to a track that either has not yet been
formatted or has had a hard error on a standard write command. TD_FORMAT completely ignores
all data currently on a track and does not check for disk change before performing the command.
The device will format the requested tracks, filling each sector with the contents of the buffer pointed
to by io_Data field. You should do a read pass to verify the data.

If you have a hard write error during a normal write, you may find it possible to use the TD_FORMAT
command to reformat the track as part of your error recovery process. ETD_FORMAT will write
the sector label area if the iotd_SecLabel is non-NULL.

You format a track by passing an IOExtTD to the device with CMD_FORMAT or ETDJORMAT
set in io_Command, io_Data set to at least track worth of data, io_Offset field set to the byte offset
of the track you want to write and the io_Length set to the length of a track. For ETDJORMAT,
you must also set iotd_Count to the current diskchange number.

#define TRACK SIZE ((LONG) (NUMSECS * TO SECTOR))
UBYTE *Writebuffer; -

if (WriteBuffer = AllocMem(TRACK SIZE,MEMF CLEARIMEMF CHIP))
(- -
DiskiO->iotd Req.io Length=TRACK SIZE;
DisklO->iotd-Req.io-Data=(APTR)Writebuffer;
DiskiO->iotd-Req.io-Offset= (ULONG) (TRACK SIZE * track);
DiskiO->iotd-Req.io-Co~~and = TD FORMAT;-
DoiO((struct IORequest *)DiskiO);-
)

EJECTING A DISK

Certain disk drive manufacturers allow software control of disk ejection. The trackdisk device
provides the TD_EJECT command to tell such drives to eject a disk.

You eject a disk by passing an IOExtTD to the device with TD_EJECT set in io_Command.

DiskiO->iotd Req. io Command = TO EJECT;
DoiO((struct IORequest *)DiskiO);-

Read the Instruction Manual. The Commodore 3.5" drives for the Amiga and most
other Amiga drive manufacturers do not support software disk ejects. Attempting this
command on those drives will result in an error condition. Consult the instruction manual
for your disk drive to determine whether this is supported.

Trackdisk Device 311

Disk Status Commands

Disk status commands return status on the current disk in the opened unit. These commands may
be done with quick 1/0 and thus may be called within interrupt handlers (such as the trackdisk
disk change handler). See the "Exec: Device Input/Output" chapter of the Amiga ROM Kernel
Reference Manual: Libraries for more detailed information on quick 1/0.

DETERMINING THE PRESENCE OF A DISK

You determine the presence of a disk in a drive by passing an IOExtTD to the device with
TD_CHANGESTATE set in io_Command. For quick 1/0, you must set io_Flags to IOF _QUICK.

DiskiO->iotd Req.io Flags= IOF QUICK;
DiskiO->iotd-Req.io-Command =TO CHANGESTATE;
BeginiO((struct IORequest *)DiskiO);

TD_CHANGESTATE returns the presence indicator of a disk in io-.Actual. The value returned
will be zero if a disk is currently in the drive and nonzero if the drive has no disk.

DETERMINING THE WRITE-PROTECT STATUS OF A DISK

You determine Lhe write-protect status of a disk by passing an IOExtTD to the device with
TD_FROTSTATUS set in io_Command. For quick 1/0, you must set io_Fiags to IOF _QUICK.

DiskiO->iotd Req.io Flags = IOF QUICK;
DiskiO->iotd-Req.io-Command = TO PROTSTATUS;
BeginiO((struct IORequest *)DiskiO);

TD_FROTSTATUS returns the write-protect status in io-.Actual. The value will be zero if the disk
is not write-protected and nonzero if the disk is write-protected.

DETERMINING THE DRIVE TYPE

You determine the drive type of a unit by passing an IOExtTD to the device with
TD_GETDRIVETYPE set in io_Command. For quick 1/0, you must set io_Fiags to IOF _QUICK.

DiskiO->iotd Req.io Flags = IOF QUICK;
DiskiO->iotd-Req.io-Command =TO GETDRIVETYPE;
BeginiO((struct IORequest *)DiskiO);

TD_GETDRIVETYPE returns the drive type for the unit that was opened in io-.Actual. The value
will be DRIVE3_5 for 3.5" drives and DRIVE5_25 for 5.25" drives. The unit can be opened only
if the device understands the drive type it is connected to.

312 Amiga ROM Kernel Reference Manual: Devices

DETERMINING THE NUMBER OF TRACKS OF A DRIVE

You determine the number of a tracks of a drive by passing an IOExtTD to the device
with TD_GETNUMTRACKS set in io_Command. For quick 1/0, you must set ioJ'Iags to
IOF_QUICK.

DiskiO->iotd Req.io Flags= IOF QUICK;
DiskiO->iotd-Req.io-Command =TO GETNUMTRACKS;
BeginiO((struct IORequest *)DiskiO);

TD_GETNUMTRACKS returns the number of tracks on that device in io_Actual. This is the
number of tracks of TD_SECTOR * NUMSECS size. It is not the number of cylinders. With two
heads, the number of cylinders is half of the number of tracks. The number of cylinders is equal
to the number of tracks divided by the number of heads (surfaces). The standard 3.5" Amiga drive
has two heads

TD_GETGEOMETRY is the preferred over TD_GETNUMTRACKS for V36 and higher versions
of the operating system especially since new drive types may have more sectors or different sector
sizes, etc., than standard Amiga drives.

DETERMINING THE CURRENT DISKCHANGE NUMBER

You determine the current diskchange number of a disk by passing an IOExtTD to the device with
TD_CHANGENUM set in io_Command. For quick 1/0, you must set ioJ'Iags to IOF _QUICK.

DiskiO->iotd Req. io Flags = IOF QUICK;
DiskiO->iotd-Req.io-Command =TO CHANGENUM;
BeginiO((struct IORequest *)Diski-0);

TD_CHANGENUM returns the current value of the diskchange counter (as used by the enhanced
commands) in io_Actual. The disk change counter is incremented each time the disk is inserted or
removed.

ULONG change_count;

DiskiO->iotd Req. io Flags = IOF QUICK;
DiskiO->iotd-Req.io-Command = TD CHANGENUM;
BeginiO((struct IORequest *)DiskiO);
change_count = DiskiO->iotd_Req.io_Actual; /* store current diskchange value */

DiskiO->iotd Req.io Length= 1; /* Turn on the drive motor */
DiskiO->iotd-Count ~ change count;
DiskiO->iotd-Req.io Command-= ETD MOTOR;
DoiO ((st ruct I ORequest *) Di skiO) ; -

Trackdisk Device 313

Commands for Diagnostics and Repair

The trackdisk device provides commands to move the drive heads to a specific track. These
commands are provided for internal diagnostics, disk repair, and head cleaning only.

MOVING THE DRIVE HEAD TO A SPECIFIC TRACK

You move the drive head to a specific track by passing an IOExtTD to the device with TD_SEEK
or ETD_SEEK set in io_Command, and io_Offset set to the byte offset of the track to which the
seck is to occur.

DiskiO->iotd Req.io Offset ~ (ULONG) (TRACK SIZE * track);
DiskiO->iotd-Req.io-Command ~TO SEEK; -
DoiO((struct IORequest *)Disk=o);-

Seeking is not Reading. TD_SEEK and ETD_SEEK do not verify their position until
the next read. That is, they only move the heads; they do not actually read any data.

Notification of Disk Changes

Many programs will wish to be notified if the user has changed the disk in the active drive. While
this can be done via the Intuition DISKREMOVED and DISKINSERTED messages, sometimes
more tightly controlled testing is required. The trackdisk device provides commands to initiate
interrupt processing when disks change.

ADDING A DISKCHANGE SOFTWARE INTERRUPT HANDLER

The track disk device lets you add a software interrupt handler that will be Cause()' ed when a disk
insert or remove occurs. Within the handler, you may only call the status commands that can use
IOF_QUICK.

You add a software interrupt handler by passing an IOExtTD to the device with a pointer
to an Interrupt structure set in io_Data, the length of the structure set in io_Length and
TD_ADDCHANGEINT set in io_Command.

DiskiO->iotd Req.io Length~ sizeof(slruct Interrupt)
Diskio->iotd-Req.io~~ata = (APTR)Disk Interrupt;
DiskiO->iotd-Roq.io-Command = TD ADDCHANGEINT;
SendiO((struct IORequest *)DiskiO);

Going, going, gone. This command docs not return when executed. It holds onto
the IORequest until the TD_REMCHANGEINT command is executed with that same
IORequest. Hence, you must use SendiO() with this command.

314 Amiga ROM Kernel Reference Manual: Devices

REMOVING A DISKCHANGE SOFTWARE INTERRUPT HANDLER

You remove a software interrupt handler by passing an IOExtTD to the device with a pointer
to an Interrupt structure set in io_Data, the length of the structure set in io_Length and
TD_REMCHANGEINT set in io_Command. You must pass it the same Interrupt structure used
to add the handler.

DiskiO->iotd Req.io Length= sizeof(struct Interrupt)
DiskiO->iotd-Req.io-Data = (APTR)Disk Interrupt;
DiskiO->iotd-Req.io-Command = TD REMCHANGEINT;
DoiO((struct IORequest *)DiskiO);-

Don't use with pre-V36 and earlier versions. Under pre-V36 and earlier versions
of the Amiga system software, TD_REMCHANGEINT does not work and should not be
used. Instead, use the work around listed in the "trackdisk.doc" of the Amiga ROM Kernel
Reference Manual: Includes and Autodocs.

Commands for Low-Level Access

The trackdisk device provides commands to read and write raw flux changes on the disk. The data
returned from a low-level read or sent via a low-level write should be encoded into some form
of legal flux patterns. See the Amiga Hardware Reference Manual and books on magnetic media
recording and reading.

Proceed at your own risk with V1.3 and earlier versions. In V1.3 Kickstart and earlier
these functions are unreliable even though under certain configurations the commands may
appear to work.

READING RAW DATA FROM A DISK

ETD_RAWREAD and TD_RAWREAD perform a raw read from a track on the disk. They seek to
the specified track and read it into the user's buffer.

No processing of the track is done. It will appear exactly as the bits come off the disk -typically
in some legal flux format (such as MFM, FM, GCR, etc; if you don't know what these are, you
shouldn't be using this call). Caveat programmer.

This interface is intended for sophisticated programming only. You must fully understand digital
magnetic recording to be able to utilize this call. It is also important that you understand that the
MFM encoding scheme used by the higher level trackdisk routines may change without notice.
Thus, this routine is only really useful for reading and decoding other disks such as MS-DOS
formatted disks.

You read raw data from a disk by passing an IOExtTD to the device with TD_RAWREAD or
ETD_RA WREAD set in io_Command, the number of bytes to be read set in io_Length (maximum
32K), a pointer to the read buffer set in io_Data, and io_Offset set to the byte offset of the track
where you want to the read to begin. For ETD_RAWREAD, you must also set iotd_Count to the
current diskchange number.

Trackdisk Device 315

DiskiO->iotd_Req.io_Length = 1024; I* number of bytes to read *I
DiskiO->iotd Req.io Data= (APTR)Readbuffer; /* pointer to buffer */
DiskiO->iotd-Req.io-Offset = (ULONG) (TRACK SIZE * track); /* track number */
DiskiO->iotd-Req.io-Flags = IOTDF INDEX - I* Set for index sync */
DiskiO->iotd-Count ~change count; I* diskchange number *I
DiskiO->iotd-Req.io Command-= ETD RAWREAD;
DolO ((struct IORequest *)Disk IO); -

A raw read may be synched with the index pulse by setting the IOTDF_JNDEXSYNC flag or synched
with a $4489 sync pattern by setting the IOTDF _ WORDSYNC flag. See the "trackdisk.doc" of the
Amiga ROM Kernel Reference Manual: Includes and Autodocs for more information about these
flags.

Forewarned is Forearmed. Commodore-Amiga may make enhancements to the
disk format in the future. Commodorc-Amiga intends to provide compatibility within
the trackdisk device. Anyone who uses these raw routines is bypassing this upward­
compatibility and docs so at her own risk.

WRITING RAW DATA TO A DISK

ETD_RAWWRITE and TD_RAWWRITE perform a raw write to a track on the disk. They seek to
the specified track and write it from the user's buffer.

No processing of the track is done. It will be written exactly as the bits come out of the buffer­
typically in some legal flux format (such as MFM, FM, GCR; if you don't know what these are,
you shouldn't be using this call). Caveat Programmer.

This interface is intended for sophisticated programming only. You must fully understand digital
magnetic recording to be able to utilize this call. It is also important that you understand that the
MFM encoding scheme used by the higher level trackdisk routines may change without notice.
Thus, this routine is only really useful for encoding and writing other disk formats such as MS-DOS
disks.

You write raw data to a disk by passing an IOExtTD to the device with TD_RAWRITE or
ETD_RA WRITE set in io_Command, the number of bytes to be written set in io_Length (maxi­
mum 32K), a pointer to the write buffer set in io_Data, and io_Offset set to the byte offset of the
track where you want to the write to begin. For ETD_RA WWRITE, you must also set iotd_Count
to the current diskchange number.

DiskiO->iotd Req.io Length= 1024; I* number of bytes to write *I
DiskiO->iotd-Req.io-Data = (APTR)Writebuffer; I* pointer to buffer *I
DiskiO->iotd-Req. io -Offset = (ULONG) (TRACK SIZE * track); I* track number *I
DiskiO->iotd-Req.io-Flags = IOTDF INDEX - I* Set for index sync */
DiskiO->iotd-Count ~change count; I* diskchange number *I
DiskiO->iotd-Req.io Command-= ETD RAWWRITE;
DoiO ((struct IORequest *) DiskiO); -

A raw read may be synched with the index pulse by setting the IOTDF _1NDEXSYNC flag or synched
with a $4489 sync pattern by setting the IOTDF _ WORDSYNC flag. See the "trackdisk.doc" of the
Amiga ROM Kernel Reference Manual: Includes and Autodocs for more information about these
flags.

316 Amiga ROM Kernel Reference Manual: Devices

LIMITATIONS FOR SYNC'ED READS AND WRITES

There is a delay between the index pulse and the start of bits coming in from the drive (e.g.
dma started). It is in the range of 135-200 microseconds. This delay breaks down as follows:
55 microseconds for software interrupt overhead (this is the time from interrupt to the write of
the DSKLEN register); 66 microsecs for one horizontal line delay (remember that disk 1/0 is
synchronized with Agnus' display fetches). The last variable (0-65 microseconds) is an additional
scan line since DSKLEN is poked anywhere in the horizontal line. This leaves 15 microseconds
unaccounted for. In short, you will almost never get bits within the first 135 microseconds of the
index pulse, and may not get it until200 microseconds. At 4 microsecs/bit, this works out to be
between 4 and 7 bytes of user data delay.

Forewarned is Forearmed. Commodore-Amiga may make enhancements to the
disk format in the future. Commodore-Amiga intends to provide compatibility within
the trackdisk device. Anyone who uses these raw routines is bypassing this upward­
compatibility and does so at her own risk.

Trackdisk Device Errors

The trackdisk device returns error codes whenever an operation is attempted.

DiskiO->iotd Req.io Length= TRACK SIZE;
DiskiO->iotd-Req.io-Data = (APTR)Writebuffer;
DiskiO->iotd-Req.io-Offset = (ULONG) (TRACK SIZE* tracknum);
DiskiO->iotd-Count :;;; change count; -
DiskiO->iotd-Req.io Command-= ETD WRITE;
if (DoiO((struct IORequest *)DiskiO))

printf("ETD_WRITE failed. Error: %ld\n",DiskiO-iotd.io_Error);

When an error occurs, these error numbers will be returned in the io_Error field of your IOExtTD
block.

Trackdlsk Device Error Codes

Error
TDERR.__NotSpecified
TDERR.__NoSecHdr
TDERR.__BadSecPream ble
TDERR.__BadSeciD
TDERR.__BadHdrSum
TDERR.__BadSecSum
TDERR.__ TooFewSecs
TDERR.__BadSecHdr
TDERR.__ WriteProt
TDERR.__DiskChanged
TDERR.__SeekError
TDERR.__NoMem
TDERR.__BadUnitNum
TDERR.__BadDriveType
TDERR.__DrivelnUse
TDERR.__PostReset

Value
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Explanation
Error could not be determined
Could not find sector header
Error in sector preamble
Error in sector identifier
Header field has bad checksum
Sector data field has bad checksum
Incorrect number of sectors on track
Unable to read sector header
Disk is write-protected
Disk has been changed or is not currently present
While verifying seek position, found seek error
Not enough memory to do this operation
Bad unit number (unit# not attached)
Bad drive type (not an Amiga 3 1/2 inch disk)
Drive already in use (only one task exclusive)
User hit reset; awaiting doom

Trackdisk Device 317

Example Trackdisk Program

I*
* Track_Copy.c
*
* This program does a track by track copy from one drive to another
*
* Compile with SAS C 5.10 LC -cfist -ms -v -L
*
* This program will only run from the CLI. If started from
*the workbench, it will just exit ...
*
* Usage: trackcopy dfx dfy
*I

#include <exec/types. h>
#include <exec/memory. h>
#include <devices/trackdisk.h>
#include <dos/dosextens.h> */

#include <clib/exec protos.h>
#include <clib/ a lib-protos. h>
#include <clib/dos_protos.h>

#include <stdio.h>
#include <string. h>

#ifdef LATTICE
int CXBRK (void) (return (0);)
int chkabort(void) (return(O);
#endif

/* Disable SAS CTRL/C handling */
/* really */

#define TRACK SIZE ((LONG) (NUMSECS * TD_SECTOR))

I*
* Turn the BUSY flag off/on for the drive
*If onflag is TRUE, the disk will be marked as busy ...
*
* This is to stop the validator from executing while
* we are playing with the disks.
*I

VOID disk busy(UBYTE *drive,LONG onflag)
(-
struct StandardPacket *pk;
struct Process *tsk;

I*

tsk=(struct Process *)FindTask(NULL);
if (pk=AllocMem(sizeof(struct StandardPacket),MEMF_PUBLICIMEMF_CLEAR))
(

pk->sp_Msg.mn_Node.ln_Name=(UBYTE *)&(pk->sp_Pkt);

pk- >sp Pkt. dp Link=& (pk- >sp Msg);
pk- >sp -Pkt. dp -Port=& (tsk- >pr MsgPort);
pk->sp-Pkt.dp-Type=ACTION INHIBIT;
pk->sp=Pkt.dp=Argl=(onflag? -lL: OL);

PutMsg(DeviceProc(drive), (struct Message *)pk);
WaitPort (& (tsk->pr MsgPort));
GetMsg (& (tsk->pr MsgPort));
FreeMem (pk, (long)sizeof (*pk));

* This turns the motor off
*I

VOID Motor Off(struct IOExtTD *disk)
(-

disk->iotd Req.io Length=O;
disk->iotd-Req.io-Command=TD MOTOR;
DoiO((struct IORequest *)disk);

318 Amiga ROM Kernel Reference Manual: Devices

I*
* This turns the motor on
*I

VOID Motor_On(struct IOExtTD *disk)
(

disk->iotd Req.io Length=l;
disk->iotd-Req.io-Command=TD MOTOR;
DoiO((struct IORequest *)disk);

I*
*This reads a track, reporting any errors ...
*I

SHORT Read_Track(struct IOExtTD *disk,UBYTE *buffer,SHORT track)
(
SHORT All_OK=TRUE;

disk->iotd Req.io Length=TRACK SIZE;
disk->iotd-Req.io-Data=(APTR)buffer;
disk->iotd-Req.io-Command=CMD READ;
disk->iotd-Req.io-Offset=(ULONG) (TRACK SIZE* track);
DoiO((struCE IORequest *)disk); -
if (disk->iotd Req.io Error)
(- -

All OK=FALSE;
printf("Error %u when reading track %d",disk->iotd_Req.io_Error,track);

)
return (All_OK);

I*
*This writes a track, reporting any errors ...
*I

SHORT Write_Track(struct IOExtTD *disk,UBYTE *buffer,SHORT track)
(
SHORT All_OK=TRUE;

disk->iotd Req.io Length=TRACK SIZE;
disk->iotd-Req.io-Data=(APTR)buffer;
disk->iotd-Req.io-Command=TD FORMAT;
disk->iotd-Req.io-Offset=(ULONG) (TRACK SIZE* track);
DoiO((struct IORequest *)disk); -
if (disk->iotd Req.io Error)
(- -

All OK=FALSE;
printf("Error %d when writing track %d",disk->iotd_Req.io_Error,track);

)
return (All_OK);

I*
* This function finds the number of TRACKS on the device.
* NOTE That this is TRACKS and not cylinders. On a Two-Head
* drive (such as the standard 3.5" drives) the number of tracks
* is 160, 80 cylinders, 2-heads.
*I

SHORT FindNumTracks(struct IOExtTD *disk)
(

disk->iotd Req.io Command=TD GETNUMTRACKS;
DoiO((struct IORequest *)disk);
return ((SHORT) disk->iotd_Req.io_Actual);

Trackdisk Device 319

I*
* This routine allocates the memory for one track and does
* the copy loop.
*I

VOID Do_Copy(struct IOExtTD *diskreqO,struct IOExtTD *diskreql)
{
UBYTE *buffer;
SHORT track;
SHORT All OK;
SHORT NumTracks;

I*

if (buffer=AllocMem(TRACK_SIZE,MEMF_CHIPIMEMF_PUBLIC))
{

}

printf(" Starting Motors\r");
Motor On(diskreqO);
Motor-On(diskreql);
All_OK=TRUE;

NumTracks=FindNumTracks(diskreqO);

for (track=O; (track<NumTracks) && All_OK;track++)
{

}

printf(" Reading track %d\r",track);

if (All_OK=Read_Track(diskreqO,buffer,track))
{

printf(" Writing track %d\r",track);

All_OK=Write_Track(diskreql,buffer,track);

if (All OK) printf(" *Copy complete*");
print f <"\n") ;
Motor Off(diskreqO);
Motor-Off(diskreql);
FreeMem(buffer,TRACK_SIZE);

else printf ("No memory for track buffer ... \n");

* Prompts the user to remove one of the disks.
* Since this program makes an EXACT copy of the disks
* AmigaDOS would get confused by them so one must be removed
* before the validator is let loose. Also, note that the
* disks may NEVER be in drives on the SAME computer at the
* SAME time unless one of the disks is renamed. This is due
* to a bug in the system. It would normally be prevented
* by a diskcopy program that knew the disk format and modified
* the creation date by one clock-tick such that the disks would
* be different.
*I

VOID Remove_Disks(VOID)
{

I*

printf("\nYou *MUST* remove at least one of the disks now.\n");
printf("\nPress RETURN when ready\n");
while (get char() ! =' \n');

* Prompts the user to insert the disks.
*I

VOID Insert_Disks(char drivel[], char drive2[])
{

printf("\nPlease insert source disk in %s\n",drivel);
printf("\n and destination in %s\n",drive2);
printf("\nPress RETURN when ready\n");
while(getchar() !='\n');

320 Amiga ROM Kernel Reference Manual: Devices

I*
* Open the devices and mark them as busy
*I

VOID Do_OpenDevice(struct IOExtTD *diskreqO,struct IOExtTD *diskreql, long unit[])
{
char drivel[]
char drive2[]

drivel[2]

"DFx:"; I* String for source drive *I
"DFx:"; I* String for destination drive *I

unit[O]+ '0'; I* Set drive number for source *I

if (! OpenDevice (TD_NAME, unit [0], (struct IORequest *) diskreqO, OL))
{

disk busy(drivel,TRUE);
drive2[2] = unit[l]+ '0'; I* Set drive number for destination *I

if (!OpenDevice(TD_NAME,unit[l], (struct IORequest *)diskreql,OL))
{

disk_busy(drive2,TRUE);

Insert Disks(drivel,drive2);
Do Copy(diskreqO,diskreql);
Remove_Disks ();

disk busy(drive2,FALSE);
CloseDevice((struct IORequest *)diskreql);

)
else printf("Could not open %s\n",drive2);

disk busy(drive1,FALSE);
CloseDevice((struct IORequest *)diskreqO);

)
else printf("Could not open %s\n",drive1);

SHORT ParseArgs(int argc, char **argv, long Unit[])
#define OKAY 1
{
int j=1, params = OKAY;
char *position[]={"First","Second");

if (argc != 3)
{
printf("\nYou must specify a source and destination disk\n");
return (!OKAY);
)

else if (strcmp(argv[1],argv[2]) == 0)
{
printf("\nYou must specify different disks for source and destination\n");
return (!OKAY);
)

else while (params == OKAY && j<3)
{
if (strnicmp(argv[j],"df",2)==0)

{
if (argv[j] [2] >= '0' && argv[j] [2] <= '3' && argv[j] [3] '\0')

{
Unit[j-1] = argv[j] [2] - Ox30;
)

else

)
else

{

{
printf("\n%s parameter is wrong, unit number must be 0-3\n",position[j-1]);
params = !OKAY;
return (!OKAY);
)

printf("\n%s parameter is wrong, you must specify a floppy device dfO - df3\n",
position [j-1]);

params=!OKAY;
return (!OKAY);
)

j++;
)

return (OKAY);
)

Trackdisk Device 321

VOID main(int argc,char **argv)
{
struct IOExtTD *diskreqO;
struct IOExtTD *diskreql;
struct MsgPort *diskPort;
long unit[2);

if (ParseArgs(argc, argv, unit))
{

/* Check inputs */

if (diskPort=CreatePort(NULL,NULL))
{

}

if (diskreqO=(struct IOExtTD *)CreateExtiO(diskPort,
sizeof(struct IOExtTD)))

}

if (diskreql=(struct IOExtTD *)CreateExtiO(diskPort,
sizeof(struct IOExtTD)))

}

Do OpenDevice(diskreqO,diskreql, unit);
DeleteExtiO((struct IORequest *)diskreql);

else printf ("Out of memory\n");
DeleteExtiO((struct IORequest *)diskreqO);

else printf ("Out of memory\n");
DeletePort(diskPort);

else printf("Could not create diskReq port\n");

Only one per customer. Since this example program makes an exact track-for-track
duplicate, AmigaDOS will get confused if both disks are in drives on the system at the
same time. While the disks are inhibited, this does not cause a problem, but during normal
operation, this will cause a system hang. To prevent this, you can relabel one of the disks.
A commercial diskcopy program would have to understand the disk format and either
relabel the disk or modify the volume creation date/time by a bit in order to make the disks
look different to the system.

Additional Information on the Trackdisk Device

Additional programming information on the trackdisk device can be found in the include files and
the autodocs for the trackdisk device. Both are contained in the Amiga ROM Kernel Reference
Manual: Includes and Autodocs.

Trackdisk Device Information

INCLUDES

AUTO DOCS

devices/trackdisk.h
devices/trackdisk.i

trackdisk.doc

322 Amiga ROM Kernel Reference Manual: Devices

chapter fifteen
RESOURCES

The Amiga's low-level hardware control functions are collectively referred to as "Resources".
Most applications will never need to use the hardware at the resource level-the Amiga 's device
interface is much more convenient and provides for multitasking. However, some high performance
applications, such as MIDI time stamping, may require direct access to the Amiga hardware registers.

New Features for Version 2.0

Feature Description

Batt Clock New resource
BattMem New resource
FileSystem New resource

Compatibility Warning: The new features for 2.0 are not backwards compatible.

Resources 323

The Amiga Resources

There are currently seven standard resources in the Amiga system. The following lists the name of
each resource and its function.

battclock.resource
grants access to the battery-backed clock chip.

battmem.resource
grants access to non-volatile RAM.

cia.resource
grants access to the interrupts and timer bits of the 8520 CIA (Complex Interface Adapter)
chips.

disk.resource
grants temporary exclusive access to the disk hardware.

FileSystem.resource
grants access to the file system.

misc.resource
grants exclusive access to functional blocks of chip registers. At present, definitions have been
made for the serial and parallel hardware only.

potgo.resource
manages the bits of the proportional I/O pins on the game controller ports.

The resources allow you direct access to the hardware in a way that is compatible with multitasking.
They also allow you to temporarily bar other tasks from using the resource. You may then use the
associated hardware directly for your special purposes. If applicable, you must return the resource
back to the system for other tasks to use when you are finished with it.

See the Amiga Hardware Reference Manual for detailed information on the actual hardware in­
volved.

Look Before You Leap. Resources are just one step above direct hardware manipulation.
You are advised to try the higher level device and library approach before resorting to the
hardware.

Resource Interface

Resources provide functions that you call to do low-level operations with the hardware they access.
In order to use the functions of a resource, you must obtain a pointer to the resource. This is done
by calling the OpenResource() function with the resource name as its argument.

OpenResource() returns a pointer to the resource you request or NULL if it does not exist.

#include <resources/filesysres. h>

struct FileSysResource *FileSysResBase = NULL;

if (! (FileSysResBase = OpenResource(FSRNAME)))
printf("Cannot open %s\n",FSRNAME);

324 Amiga ROM Kernel Reference Manual: Devices

There is no CloseResource() function. When you are done with a resource, you are done with it.
However, as you will see later in this chapter, some resources provide functions to allocate parts of
the hardware they access. In those cases, you will have to free those parts for anyone else to use
them.

Each resource has at least one include file in the resources subdirectory of the include directory.
Some of the include files contain only the name of the resource; others list structures and bit
definitions used by the resource. The include files will be listed at the end of this chapter.

Calling a resource function is the same as calling any other function on the Amiga. You have to
know what parameters it accepts and the return value, if any. The Autodocs for each resource lists
the functions and their requirements.

#include <hardware/cia.h>
#include <resources/cia.h>

struct Library *CIAResource = NULL;

void main()
{

WORD mask = 0;

if (! (CIAResource = OpenResource(CIABNAME)))
printf("Cannot open %s\n",CIABNAME);

else
{
/* What is the interrupt enable mask? */
mask= AbleiCR(CIAResource,O);

printf("\nThe CIA interrupt enable mask: %x \n",mask);
)

Looks Can Be Deceiving. Some resources may look like libraries and act like libraries,
but be assured they are not libraries.

BattCiock Resource

The battery-backed clock (BattOock) keeps Amiga time while the system is powered off. The time
from the Batt Clock is loaded into the Amiga system clock as part of the boot sequence.

The battclock resource provides access to the BattClock. Three functions allow you to read the
BattClock value, reset it and set it to a value you desire.

ReadBattCiock()

ResetBattCiock()
WriteBattCiock()

BattCiock Resource Functions

Read the time from the BattClock and returns it as the number of
seconds since 12:00 AM, January 1, 1978.
Reset the BattOock to 12:00 AM, January 1, 1978.
Set the BattClock to the number of seconds you pass it relative to
12:00 AM, January 1, 1978.

The utility.library contains time functions which convert the number of seconds since 12:00 AM,
January 1, 1978 to a date and time we can understand, and vice versa. You will find these functions
useful when dealing with the BattClock. The example program below uses the Amiga2Date() utility
function to convert the value returned by ReadBattCiock(). See the "Utility Library" chapter of

Resources 325

the Amiga ROM Kernel Reference Manual: Libraries for a discussion of the utility.library and the
Amiga ROM Kernel Reference Manual: Includes and Autodocs for a listing of its functions.

So, You Want to Be A Time Lord? This resource will allow you to set the BattOock to
any value you desire. Keep in mind that this time will endure a reboot and could adversely
affect your system.

I*
* Read BattClock.c
*
* Example of reading the BattClock and converting its output to
* a useful measure of time by calling the Amiga2Date() utility function.

*
* Compile with SAS C 5.10 lc -b1 -cfistq -v -y -L
*
* Run from CLI only
*I

#include <execltypes.h>
#include <dosldos.h>
#include <utilityldate.h>
#include <resourceslbattclock. h>

#include <cliblexec protos.h>
#include <cliblalib-protos.h>
#include <cliblbattclock protos.h>
#include <cliblutility _protos. h>

#include <stdio.h>

#i fdef LATTICE
int CXBRK(void) { return(O);)
int chkabort (void) { return (0);
#endif

VOID main(VOID);

I* Disable SAS CTRLIC handling */
) I* really */

struct Library *UtilityBase = NULL;
struct Library *BattClockBase;

VOID main(VOID)
{
UBYTE *Days[] ={"Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday");
UBYTE *Months[] = {"January","February","March","April","May","June",

11 July 11 ,"August","Septernber 11 , 11 0ctober","November","December"};
UBYTE * ampm;
ULONG AmigaTime;
struct ClockData MyClock;

if (UtilityBase = (struct Library *)OpenLibrary("utility.library",33))
{
if (BattClockBase= OpenResource(BATTCLOCKNAME))

{
I* Get number of seconds till now */
AmigaTime = ReadBattClock();

I* Convert to a ClockData structure */
Amiga2Date(AmigaTime,&MyClock);

printf("\nRobin, tell everyone the BatDate and BatTime");

I* Print the Date */
printf("\n\nOkay Batman, the BatDate is");
printf("%s, %s %d, %d",Days[MyClock.wday],Months[MyClock.month-1],

MyClock.mday,MyClock.year);

I* Convert military time to normal time and set AM/PM */
if (MyClock.hour < 12)

else
ampm HAMil;

{
amprn = "PM";
MyClock.hour - 12;
) ;

I* hour less than 12, must be morning *I

/* hour greater than 12,must be night *I
I* subtract the extra 12 of military */

326 Amiga ROM Kernel Reference Manual: Devices

else

else

if (MyClock.hour == 0)
MyClock.hour = 12; /* don't forget the 12s */

/* Print the time */
printf("\n the BatTime is ");
printf("%d:%02d:%02d %s\n\n",MyClock.hour,MyClock.min,MyClock.sec,ampm);
}

printf("Error: Unable to open the %s\n",BATTCLOCKNAME);

/* Close the utility library */
CloseLibrary(UtilityBase);
}

printf("Error: Unable to open utility.library\n");

Additional programming information on the battclock resource can be found in the include files and
the Autodocs for the battclock resource and the utility library.

BattMem Resource

The battery-backed memory (BattMem) preserves a small portion of Amiga memory while the
system is powered off. Some of the information stored in this memory is used during the system
boot sequence.

The battmem resource provides access to the BattMem. Four functions allow you to use the
BattMem.

ObtainBattSemaphore
ReadBattMem()

ReleaseBattSemaphore()
WriteBattMem()

BattMem Resource Functions

Obtain exclusive access to the BattMem.
Read a bitstring from the BattMem. You specify the bit position
and the number of bits you wish to read.
Relinquish exclusive access to the BattMem.
Write a bitstring to the BattMem. You specify the bit position
and the number of bits you wish to write.

The system considers BattMem to be a set of bits rather than bytes. This is done to conserve the lim­
ited space available. All bits are reserved, and applications should not read, or write undefined bits.
Writing bits should be done with extreme caution since the settings will survive power-down/power­
up. You can find the bit definitions in the BattMem include files resources!battmembitsamiga.h,
resources!battmembitsamix.h and resources!battmembitsshared.h. They should be consulted before
you do anything with the resource.

You Don't Need This Resource. The BattMem resource is basically for system use
only. There is generally no reason for applications to use it. It is documented here simply
for completeness.

Additional information on the battmem resource can be found in the include files and the Autodocs
for the battmem resource.

Resources 327

BattMem Resource Information

INCLUDES

AUTO DOCS

resources/battmem.i
resources/battmembitsamiga.h
resources/battmembitsamix.h
rcsources/battmembitsshared.h

battmem.doc

CIA Resource

The CIA resource provides access to the timers and timer interrupt bits of the 8520 Complex
Interface Adapter (CIA) A and B chips. This resource is intended for use by high performance
timing applications such as MIDI time stamping and SMPTE time coding.

Four functions allow you to interact with the CIA hardware.

CIA Resource Functions

AbleiCR() Enable or disable Interrupt Control Register interrupts. Can also
return the current or previous enabled interrupt mask.

AddiCRVector() Allocate one of the CIA timers by assigning an interrupt handler to
an interrupt bit and enabling the interrupt of one of the timers. If the
timer you request is not available, a pointer to the interrupt structure
that owns it will be returned.

RemiCRVector() Remove an interrupt handler from an interrupt bit and disable the
interrupt.

SetiCR() Cause or clear one or more interrupts, or return the current or previ­
ous interrupt status.

Each CIA chip has two interval timers within it-Timer A and Timer B-that may be available.
The CIA chips operate at different interrupt levels with the CIA-A timers at interrupt level 2 and
the CIA-B timers at interrupt level 6.

Choose A Timer Wisely. The timer you use should be based solely on interrupt level
and availability. If the timer you request is not available, try for another. Whatever you
do, do not base your decision on what you think the timer is used for by the system.

You allocate a timer by calling AddiCRVector(). This is the only way you should access a timer. If
the function returns zero, you have successfully allocated that timer. If it is unavailable, the owner
interrupt will be returned.

I* allocate CIA-A Timer A */
inta = AddiCRVector (CIAResource, CIAICRB_TA, &tint);

if (inta) /* if allocate was not successful */

else
printf("Error: Could not allocate timer\n");

{
.•• ready for timing
)

328 Amiga ROM Kernel Reference Manual: Devices

The timer is deallocated by calling RemiCRVector(). This is the only way you shoUld deallocate
a timer.

RemiCRVector(CIAResource, CIAICRB_TA, &tint);

Your application should not make any assumptions regarding which interval timers (if any) are
available for use; other tasks or critical operating system routines may be using the interval timers.
In fact, in the latest version of the operating system, the timer device may dynamically allocate one
of the interval timers.

Time Is Of The Essence! There are a limited number of free CIA interval timers.
Applications which use the interval timers may not be able to run at the same time if all
interval timers are in usc. As a general rule, you should use the timer device for most
interval timing.

You read from and write to the CIA interrupt control registers using SetiCR() and AbleiCR().
SetiCR() is useful for sampling which cia interrupts (if any) are active. It can also be used to
clear and generate interrupts. AbleiCR() is used to disable and enable a particular CIA interrupt.
Additional information about these functions can be found in the Amiga ROM Kernel Reference
Manual: Includes and Autodocs.

Things to keep in mind:

1. Never directly read from or write to the CIA interrupt control registers. Always usc SetiCR()
and AbleiCR().

2. Your interrupt routine will be called with a pointer to your data area in register A 1, and a pointer
to the code being called in register A5. No other registers are set up for you. You must observe
the standard convention of preserving all registers except DO-Dl and AO-Al.

3. Never tum off all level 2 or level 6 interrupts. The proper way to disable interrupts for an
interval timer that you've successfully allocated is via the AbleiCR() function.

4. Interrupt handling code should be written in assembly code and, if possible, should signal a
task to do most of the work.

5. Do not make assumptions about which CIA interval timers (if any) are available for use. The
only proper way to own an interval timer is via the AddiCRVector() function.

6. Do not use SetiCR(), AbleiCR() and RemiCRVector() to affect timers or other CIA hardware
which your task does not own.

Changes in the CIA resource:

• In pre-V36 versions of the operating system, SetiCR() could return FALSE for a particular
interrupt just prior to processing the interrupt. SetiCR() now returns TRUE for a particular
interrupt until sometime after the interrupt has been processed.

• Applications which only need to read a CIA interval timer should use the ReadECiock() func­
tion of the timer device. See the ''Timer Device" chapter of this manual for more information
on ReadECiock().

• The timer device may dynamically allocate a free CIA interval timer. Do not make any
assumptions regarding which interval timers are in use unless you are taking over the machine
completely.

Resources 329

I*
* Cia IntervaLe

*
* Demonstrate allocation and use of a cia interval timer
*
* Compile with SAS C 5.10 lc -bl -cfistq -v -y -L
*
* Run from CLI only
*I

#include <exec/types.h>
#include <exec/memory.h>
#include <exec/tasks. h>
#include <exec/interrupts.h>
#include <hardware/cia.h>
#include <resources/cia.h>

#include <clib/exec protos.h>
#include <clib/cia protos.h>

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* prototypes */

void
int
int
void

Start Timer
FindFreeTimer
TryTimer

(struct freetimer *ft, struct exampledata *ed);
(struct freetimer *ft, int preferA);
(struct freetimer *ft);

main (USHORT, char**);

/* see usage of these defines in StartTimer() below*/

#define COUNTDOWN 20
#define HICOUNT OxFF
#define LOCOUNT OxFF

#define STOPA AND CIACRAF TODIN ICIACRAF_PBON CIACRAF OUTMODE

/*

*I

AND mask for use with control register A
(interval timer A on either CIA)

STOP -
START bit 0 0 (STOP IMMEDIATELY)
PEON bit 1 same
OUT bit 2 same
RUN bit 3 0 (SET CONTINUOUS MODE)
LOAD bit 4 0 (NO FORCE LOAD)
IN bit 5 0 (COUNTS 02 PULSES)
SP bit 6 same
TODIN bit 7 same (unused on ciacra)

#define STOPB AND CIACRBF ALARM CIACRBF PBON CIACREF OUTMODE

I*

*I

AND mask for use with control register E
(interval timer B on either CIA)

STOP -
START bit 0 0 (STOP IMMEDIATELY)
PEON bit l same
OUT bit 2 same
RUN bit 3 0 (SET CONTINUOUS MODE)
LOAD bit 4 0 (NO FORCE LOAD)
INO bit 5 0 (COUNTS 02 PULSES)
INl bit 6 0 (COUNTS 02 PULSES)
ALARM bit 7 same (TOO alarm control

330 Amiga ROM Kernel Reference Manual: Devices

bit)

CIACRAF SPMODE

#define STARTA OR CIACRAF START

I*

*I

OR mask for use with control register A
(interval timer A on either CIA)

START -

START bit 0 == 1 (START TIMER)

All other bits unaffected.

#define STARTB OR CIACRBF START

/*

OR mask for use with control register B
(interval timer A on either CIA)

START -

START bit 0 -- 1 (START TIMER)

All other bits unaffected.

*I

/*
* Structure which will be used to hold all relevant information about
* the cia timer we manage to allocate.
*
*I

struct freetimer
{

struct Library *ciabase;
ULONG timerbit;
struct CIA *cia;
UBYTE *ciacr;
UBYTE *cialo;
UBYTE *ciahi;

I* CIA Library Base
I* timer bit allocated
/* ptr to hardware

struct Interrupt timerint;
UBYTE stopmask;

I* ptr to control register
I* ptr to low byte of timer
/* ptr to high byte of timer
I* Interrupt structure
/* Stop/set-up timer

UBYTE startmask; I* Start timer
} ;

I*
* Structure which will be used by lhe interrupt routine called
* when our cia interval timer generates an interrupt.

*
*I

struct exampledata
{

} ;

struct Task *task;
ULONG signal;
ULONG counter;

I* task to signal *I
I* Signal bit to use *I

struct CIA *ciaa
struct CIA *ciab

(struct CIA *)OxbfeOOl;
(struct CIA *)OxbfdOOO;

#ifdef LATTICE
int CXBRK(void) { return(O); } I* Disable SAS CTRL/C handling*/
int chkabort (void) { return (0); } I* really *I
#endif

I*

*I
*I
*I
*I
*I
*I
*I
*I
*I

Resources 331

* This is the interrupt routine which will be called when our CIA
* interval timer counts down.
*
* This example decrements a counter each time the interrupt routine
* is called until the counter reaches 0, at which time it signals
* our main task.
*
* Note that interrupt handling code should be efficient, and will
* generally be written in assembly code. Signaling another task
* such as this example does is also a useful way of handling
* interrupts in an expedient manner.
*I

void __ asm Exampleinterrupt(register al struct exampledata *ed)
{
if (ed->counter)

{

else

ed->counter--; I* decrement counter */
}

{
ed->counter = COUNTDOWN; I* reset counter *I

Signal (ed->task, (lL << ed->signal));
)

!****************************~******

* main()
***********************************!

void main(USHORT argc,char **argv)
{
struct freetimer ft;
struct exampledata ed;

I* Set up data which will be passed to interrupt *I

ed.task = FindTask(OL);

if (ed.signal = AllocSignal(-lL))
{
I* Prepare freetimer structure : set-up interrupt *I

ft.timerint.is Node.ln Type
ft.timerint.is-Node.ln-Pri
ft.timerint.is-Node.ln-Name

ft.timerint.is Data
ft.timerint.is-Code

NT INTERRUPT;
0.
"cia example 11 ;

(APTR) &ed;
(APTR)Exampleinterrupt;

/* Call function to find a free CIA interval timer
* with flag indicating that we prefer a CIA-A timer.
*I

printf("Attempting to allocate a free timer\n");

if (FindFreeTimer(&ft,TRUE))
{
if (ft.cia == ciaa)

(

else

printf("CIA-A timer");
)

(
printf ("CIA-B timer ");
)

if (ft.timerbit == CIAICRB TA)
(-

else

printf("A allocated\n");
)

(
printf("B allocated\n");
)

332 Amiga ROM Kernel Reference Manual: Devices

I* We found a free interval timer. Let's start it running. *I

I*

else

StartTimer(&ft,&ed);

I* Wait for a signal *I

printf("Waiting for signal bit %ld\n",ed.signal);

Wait (lL<<ed. signal);

printf("We woke up!\n");

I* Release the interval timer *I

RemiCRVector(ft.ciabase,ft.timerbit,&ft.timerint);

{
printf("No CIA interval timer available\n");
}

FreeSignal(ed.signal);
}

* This routine sets up the interval timer we allocated with
* AddiCRVector(). Note that we may have already received one, or
* more interrupts from our timer. Make no assumptions about the
* initial state of any of the hardware registers we will be using.
*
*I

void StartTimer(struct freetimer *ft, struct exampledata *ed)
{
register struct CIA *cia;

cia = ft->cia;

I* Note that there are differences between control register A,
* and Bon each CIA (e.g., the TOD alarm bit, and INMODE bits.
*I

if (ft->timerbit
(

== CIAICRB TA)

else

ft->ciacr
ft->cialo
ft->ciahi

&cia->ciacra;
&cia->ciatalo;
&cia->ciatahi;

ft->stopmask = STOPA AND;
ft->startmask STARTA OR;
}

{
ft->ciacr
ft->cialo
ft->ciahi

&cia->ciacrb;
&cia- >ciatblo;
&cia->ciatbhi;

ft->stopmask = STOPE AND;
ft->startmask STARTB OR;
} -

I* control register A
I* low byte counter
I* high byte counter

I* set-up mask values

I* control register B
I* low byte counter
I* high byte counter

I* set-up mask values

*I
*I
*I

*I

*I
*I
*I

*I

I* Modify control register within Disable(). This is done to avoid
* race conditions since our compiler may generate code such as:
*
* value = Read hardware byte
* AND value with MASK
* Write value to hardware byte

*
* If we take a task switch in the middle of this sequence, two tasks
* trying to modify the same register could trash each others' bits.
*

Resources 333

* Normally this code would be written in assembly language using atomic
* instructions so that the Disable() would not be needed.
*I

Disable();

I* STOP timer, set 02 pulse count-down mode, set continuous mode *I

* ft- >ciacr &= ft- >stopmask;
Enable();

I* Clear signal bit - interrupt will signal us later *I
SetSignal (OL, lL<<ed->signal);

I* Count-down X # of times *I
ed->counter = COUNTDOWN;

I* Start the interval timer - we will start the counter after
* writing the low, and high byte counter values
*I

*ft->cialo
*ft->ciahi

LOCOUNT;
HICOUNT;

I* Turn on start bit - same bit for both A, and B control regs *I

Disable();
*ft->ciacr I= ft->startmask;

Enable();
)

I*
* A routine to find a free interval timer.
*
* This routine makes no assumptions about which interval timers
* (if any) are available for use. Currently there are two interval
* timers per CIA chip.
*
* Because CIA usage may change in the future, your code should use
* a routine like this to find a free interval timer.
*
* Note that the routine takes a preference flag (which is used to
* to indicate that you would prefer an interval timer on CIA-A).
* If the flag is FALSE, it means that you would prefer an interval
* timer on CIA-B.
*
*I

FindFreeTimer(struct freetimer *ft, int preferA)
{
struct CIABase *ciaabase, *ciabbase;

I* get pointers to both resource bases */

ciaabase
ciabbase

OpenResource(CIAANAME);
OpenResource(CIABNAME);

I* try for a CIA-A timer first ? *I

if (preferA)

else

{
ft->ciabase
ft->cia
)

{
ft->ciabase
ft->cia
}

if (TryTimer(ft))
return(TRUE);

ciaabase; I* library address *I
ciaa; I* hardware address *I

ciabbase; I* library address *I
- ciab; I* hardware address *I

I* try for an interval timer on the other cia *I

334 Amiga ROM Kernel Reference Manual: Devices

if (! (preferA))

else

{
ft- >ciabase
ft->cia
)

{
ft->ciabase
ft->cia
)

if (TryTimer(ft))
return(TRUE);

return (FALSE);

I*

ciaabase;
ciaa;

ciabbase;
ciab;

I* library address
I* hardware address

I* library address
I* hardware address

* Try to obtain a free interval timer on a CIA.
*I

TryTimer(struct freetimer *ft)
{

*I
*I

*I
*I

if (! (AddiCRVector (ft->ciabase,CIAICRB TA, &ft->timerint)))
{ ~

ft->timerbit = CIAICRB~TA;
return (TRUE);
)

if (! (AddiCRVector (ft->ciabase, CIAICRB TB, &ft->timerint)))
{ ~

ft- >timerbit = CIAICRB _ TB;
return(TRUE);
}

return(FALSE);
}

Additional programming information on the CIA resource can be found in the include files and
the Autodocs for the CIA resource and the 8520 spec. The includes files and Autodocs are in the
Amiga ROM Kernel Reference Manual: Includes and Autodocs and the 8520 spec is in the Amiga
Hardware Reference Manual.

CIA Resource Information

INCLUDES

AUTO DOCS

HARDWARE

resources/cia.h
resources/cia.i
hardware/cia.h
hardware/cia.i

cia. doc

8520 specification

Resources 335

Disk Resource

The Disk resource obtains exclusive access to the floppy disk hardware There are four disk/MFM
units available, units 0--3.

Six functions are available for dealing with the floppy disk hardware.

AllocUnit()
Free Unit()
GetUnit()
GetUnitiD()
GiveUnit()
ReadUnitiD()

Disk Resource Functions

Allocate one of the units of the disk resource.
Deallocate an allocated disk unit.
Allocate the disk for a driver.
Return the drive ID of a specified drive unit.
Free the disk.
Reread and return the drive ID of a specified unit.

The disk resource provides both a gross and a fine unit allocation scheme. AllocUnit() and
FreeUnit() are used to claim a unit for long term use, and GetUnit() and GiveUnit() are used to
claim a unit and the disk hardware for shorter periods.

The trackdisk device uses and abides by both allocation schemes. Because a trackdisk unit is never
closed for Amiga 3.5" drives (the file system keeps them open) the associated resource units will
always be allocated for these drives. Get Unit() and Give Unit() can still be used, however, by other
applications that have not succeeded with AllocUnit().

You must not change the state of of a disk that the trackdisk device is using unless you either
a) force its removal before giving it up, or
b) return it to the original track (with no changes to the track), or
c) CMD_STOP the unit before GetUnit(), update the current track number and CMD_START it

after GiveUnit(). This option is only available under V36 and higher versions of the operating
system.

ReadUnitiD() is provided to handle drives which use the unit number in a dynamic manner.
Subsequent GetUnit() calls will return the value obtained by ReadUnitiD().

It is therefore possible to prevent the trackdisk device from using units that have not yet been
mounted by successfully performing an AllocUnit() for that unit. It is also possible to starve
trackdisk usage by performing a GetUnit(). The appropriate companion routine (FreeUnit() or
GiveUnit()) should be called to restore the resource at the end of its use.

I*
* Get Disk Unit ID.c
* * Example of getting the UnitiD of a disk
*
* Compile with SAS C 5.10 lc -bl -cfistq -v -y -L
* * Run from CLI only
*I

#include <exec/types. h>
it include <exec/memory. h>
#include <dos/dos.h>
it include <resources/disk. h>

ltinclude <clib/exec_protos.h>

Unclude <stdio. h>

336 Amiga ROM Kernel Reference Manual: Devices

#ifdef LATTICE
int CXBRK(void) { return(O); } I* Disable SAS CTRLIC handling *I
int chkabort (void) { return (0); l I* really *I

I* There is no amiga.lib stub for this function so a pragma is required
* This is a pragma for SAS C
* Your compiler may require a different format
*I

#pragma libcall DiskBase GetUnitiD 1e 1
ilendif

struct Library *DiskBase = NULL;

LONG GetUnitiD(long);

void main(int argc, char **argv)
{
LONG ids= 0;
LONG type;

if (! {DiskBase= (struct Library *)OpenResource(DISKNAME)))
printf{"Cannot open %s\n,DISKNAME");

else
{
printf("Defined drive types are:\n");
printf(" AMIGA $00000000\n");
printf(" 5.25'' $55555555\n");
printf(" AMIGA $00000000 (high density)\n");
printf(" None $FFFFFFFF\n\n");

!* What are the UnitiDs? */
for {ids = 0; ids < 4; ids++)

{
type= GetUnitiD(ids);
printf{"The UnitiD for unit %dis $%08lx\n",ids,type);

l

Additional programming information on the disk resource can be found in the include files and the
Autodocs for the disk resource.

Disk Resource Information

INCLUDES

AUTO DOCS

FileSystem Resource

resources/disk.h
resources/disk.i

disk.doc

The FileSystem resource returns the filesystcms that are available on the Amiga. It has no func­
tions. Opening the FileSystem resource returns a pointer to a List structure containing the current
filesystems in the Amiga.

I*
* Get_Filesys.c

*
* Example of examining the FileSysRes list

* * Compile with SAS C 5.10 lc -b1 -cfistq -v -y -L
*

Resources 337

*I

#include <exec/types. h>
#include <exec/memory.h>
#include <dos/dos.h>
#include <resources/filesysres. h>

#include <clib/exec _protos. h>

#include <stdio.h>

#ifdef LATTICE
int CXBRK (void) { return (0); }
int chkabort(void) { return(O);
#endif

/* Disable SAS CTRL/C handling */
) I* really *I

struct FileSysResource *FileSysResBase = NULL;

void main(int argc, char **argv)
{

struct FileSysEntry *fse;
int x;

I* NOTE - you should actually be in a Forbid while accessing any
* system list for which no other method of arbitration is available.
* However, for this example we will be printing the information
* (which would break a Forbid anyway) so we won't Forbid.
* In real life, you should Forbid, copy the information you need,
* Permit, then print the info.
*I

if (! (Fi leSysResBase = (struct Fi leSy sResource *) OpenResource (FSRNAME)))
printf("Cannot open %s\n",FSRNAME);

else
{
for (fse = (struct FileSysEntry *)FileSysResBase->fsr_FileSysEntries.lh_Head;

fse->fse Node.ln Succ;
fse = (struct FileSysEntry *)fse->fse_Node.ln_Succ)

{
printf ("Found filesystem creator: %s\n", fse->fse_Node.ln Name);

printf(" DosType: ");
for (x=24; x>=8; x-=8)

putchar ((fse->fse DosType >> x) & OxFF);

putchar ((fse->fse_DosType & OxFF) + Ox30);

printf ("\n Version: %d", (fse->fse Version >> 16));
printf(".%ld\n\n", (fse->fse Version & OxFFFF));
} -

Additional programming information on the FileSystem resource can be found in the include
files and the Autodocs for the FileSystem resource in the Amiga ROM Kernel Reference Manual:
Includes and Autodocs and the "Expansion" chapter of the Amiga ROM Kernel Reference Manual:
Libraries.

FileSystem Resource Information

INCLUDES

AUTO DOCS

LIBRARIES

resources/filesysres.h
resources/filesysres. i

filesysres.doc

expansion library

338 Amiga ROM Kernel Reference Manual: Devices

Mise Resource

The mise resource oversees usage of the serial data port, the serial communication bits, the parallel
data and handshake port, and the parallel communication bits. Before using serial or parallel port
hardware, it first must be acquired from the mise resource.

The mise resource provides two functions for allocating and freeing the serial and parallel hardware.

AllocMiscResource()
FreeMiscResource()

Mise Resource Functions

Allocate one of the serial or parallel mise resources.
Deallocate one of the serial or parallel mise resources.

Once you've successfully allocated one of the mise resources, you are free to write directly to its
hardware locations. Information on the serial and parallel hardware can be found in the Amiga
Hardware Reference Manual and the hardware/custom.h include file.

The two examples below are assembly and C versions of the same code for locking the serial mise
resources and waiting for CI'RL-C to be pressed before releasing them.

ASSEMBLY EXAMPLE OF ALLOCATING MISC RESOURCES

* Alloc Misc.a
*
* Assembly language fragment that grabs the two parts of the serial
* resource (using misc. resource). If it gets the resource, it will
* wait for CTRL-C to be pressed before releasing.
* * While we are waiting, the query serial program should be run. It will try
* to open the serial device and if unsuccessful, will return the name of the
* owner. It will be us, Serial Port Hog!
*
* When a task has successfully obtained the serial resource, it "owns"
* the hardware registers that control the serial port. No other tasks
* are allowed to interfere.
*
* Assemble with Adapt
* HX68 Allocate Misc.a to Allocate Misc.o
*
* Link
* Blink FROM Allocate Misc.o TO Allocate Mise LIB LIB:amiga.lib
*

INCDIR "include:"
INCLUDE "exec/types.i"
INCLUDE "resources/misc.i"
INCLUDE "dos/dos.i"

xref AbsExecBase We get th s from outside .. .
xref LVOOpenResource We get th s from outside .. .
xref -LVOWait We get th s from outside .. .

Open Exec and the misc.resource, check for success

move.l
lea.l
jsr
move.l
bne.s
moveq
rts

AbsExecBase,a6
MiscName(pc),al

LVOOpenResource(a6)
d0,d7
resource ok
#RETURN_FAIL,dO

;Prepare to use exec

;Open ''misc.resource''
;Stash resource base

resource ok exg.l d7,a6 ;Put resource base in A6

Resources 339

We now have a pointer to a resource.
Call one of the resource's library-like vectors.

move.l #MR SERIALBITS,dO ;We want these bits
lea.l MyName(pc),al ;This is our name
jsr MR_ALLOCMISCRESOURCE(a6)
tst.l dO
bne.s no bits ; Someone else has it. ..
move.l #MR SERIALPORT,dO
lea.l MyName(pc),al
jsr MR_ALLOCMISCRESOURCE(a6)
tst.l dO
bne.s no_port ;Someone else has it. ..

We just stole the serial port registers; wait.
Nobody else can use the serial port, including the serial.device!

Free 'em up

no_port

no bits

Text area

' MiscName
My Name

exg.l
move.l
jsr
exg.l

move.l
jsr

move.l
jsr

moveq
rts

dc.b
dc.b
dc.w
END

d7,a6
#SIGBREAKF CTRL C,dO

LVOWait(a6)
d7,a6

#MR SERIALPORT,dO
MR_FREEMISCRESOURCE{a6)

#MR SERIALBITS,d0
MR_FREEMISCRESOURCE{a6)

#RETURN_FAIL,dO

'rnisc.resource',O
'Serial Port Hog',O
0

;use exec again

;Wait for CTRL-C
;Get resource base back

C EXAMPLE OF ALLOCATING MISC RESOURCES

I*
* Allocate Misc.c
* * Example of allocating a miscellaneous resource
* We will allocate the serial resource and wait till
* CTRL-C is pressed. While we are waiting, the
* query serial program should be run. It will try
* to open the serial device and if unsuccessful, will
* return the name of the owner. It will be us!
*
* Compile with SAS C 5.10 lc -bl -cfistq -v -y -L
* * Run from CLI only
*I

#include <exec/types. h>
#include <exec/memory. h>
#include <dos/dos.h>
#include <resources/misc. h>

#include <clib/exec protos.h>
#include <clib/misc::::protos.h>

#include <stdio. h>

#ifdef LATTICE
int CXBRK{void) { return{O);) /* Disable SAS CTRL/C handling */
int chkabort {void) { return (0);) I* really *I
#endif

340 Amiga ROM Kernel Reference Manual: Devices

struct Library *MiscBase = NULL;

void main(int argc, char **argv)
{
UBYTE *owner = NULL; /* owner of mise resource */

if (! (MiscBase= (struct Library *)OpenResource(MISCNAME)))
printf("Cannot open %s\n",MISCNAME);

else
(
/* Allocate both pieces of the serial hardware */
if ((owner= AllocMiscResource(MR SERIALPORT,"Serial Port Hog")) ==NULL)

(
if ((owner= AllocMiscResource(MR SERIALBITS,"Serial Port Hog")) ==NULL)

else

{ -

I* Wait for CTRL-C to be pressed */
printf ("\nWaiting for CTRL-C ... \n");
Wait(SIGBREAKF_CTRL_C);

I* We're back*/

/* Deallocate the serial port register */
FreeMiscResource(MR SERIALBITS);
} -

printf("\nUnable to allocate MR SERIALBITS because %s owns it\n",owner);

/* Deallocate the serial port */
FreeMiscResource(MR SERIALPORT);

} -

else
printf("\nUnable to a~locate MR SERIALPORT because %s owns it\n",owner);

The example below will try to open the serial device and execute the SDCMD_QUERY command.
If it cannot open the serial device, it will do an AllocMiscResource() on the serial port and return
the name of the owner.

I*
* Query Serial.c
* * We will try to open the serial device and if unsuccessful,
* will return the name of the owner.
*
* Compile with SAS C 5.10 lc -bl -cfistq -v -y -L
*
* Run from CLI only
*I

#include <exec/types. h>
#include <exec/memory. h>
#include <dos/dos. h>
#include <resources/misc.h>
#include <devices/serial.h>

#include <clib/excc protos.h>
#include <clib/alib-protos.h>
#include <clib/dos protos.h>
#include <clib/mi sc_protos. h>

#include <std.io. h>
#include <stdlib.h>

#ifdef LATTICE
int CXBRK (void) { return (0); }
int chkabort (void) (return (0);
#endif

struct Library *MiscBase;

struct MsgPort *SerialMP;
struct IOExtSer *SerialiO;

/* Disable SAS CTRL/C handling */
/* really *I

/* Message port pointer */
/* I/0 request pointer */

Resources 341

void main(void)
{
UWORD status;
UBYTE *user;

/* return value of SDCMD QUERY */
/* name of serial port owner if not us */

if (SerialMP=CreatePort(NULL,NULL))
{

else

if (SerialiO=(struct IOExtSer *)CreateExtiO(SerialMP,sizeof(struct IOExtSer)))
{

else

if (OpenDevice(SERIALNAME,OL, (struct IORequest *)SerialiO,O))
{
printf("\n%s did not open",SERIALNAME);

MiscBase= (struct Library *)OpenResource(MISCNAME);

else

/* Find out who has the serial device */
if ((user= AllocMiscResource(MR SERIALPORT,"Us"))

else

{

{ -
printf("\n");
FreeMiscResource(MR SERIALPORT);
} -

printf(" because %s owns it \n\n",user);

NULL)

SerialiO->IOSer.io Command = SDCMD QUERY;
DoiO((struct IORequest *)SerialiO); /* execute query *I

status = SerialiO->io_Status;

printf("\tThe serial port status is %x\n",status);

CloseDevice((struct IORequest *)SerialiO);
}

DeleteExtiO(SerialiO);
I

printf("Can't create IIO request\n");

I* store returned status */

DeletePort(SerialMP);
}

printf("Can't create message port\n");

Take Over Everything. There are two serial.device resources to take over,
MILSERIALBITS and MILSERIALPORT. You should get both resources when you
take over the serial port to prevent other tasks from using them. The parallel.device also
has two resources to take over. See the resources/misc.h include file for the relevant
definitions and structures.

Under Vl.3 and earlier versions of the Amiga system software the MILGETMISCRESOURCE
routine will always fail if the serial device has been used at all by another task (even if that task
has finished using the resource. In other words, once a printer driver or communication package
has been activated, it will keep the associated resource locked up preventing your task from using
it. Under these conditions, you must get the resource back from the system yourself.

You do this by calling the function FlushDevice():

I*
* A safe way to expunge ONLY a certain device. The serial.device holds
* on to the mise serial resource until a general expunge occurs.
* This code attempts to flush ONLY the named device out of memory and
* nothing else. If it fails, no status is returned since it would have
*no valid use after the Permit().
*I

342 Amiga ROM Kernel Reference Manual: Devices

#include <exec/types.h>
#include <exec/execbase.h>

#include <clib/exec_protos.h>

void FlushDevice(char *);

extern struct ExecBase *SysBase;

void FlushDevice(char *name)
{
struct Device *devpoint;

Forbid();

if (devpoint=(struct Device *)FindName(&SysBase->DeviceList,name))
RemDevice(devpoint);

Permit();
)

Additional programming information on the mise resource can be found in the include files and the
Autodocs for the mise resource.

Potgo Resource

Mise Resource Information

INCLUDES

AUTO DOCS

resources/misc.h
resources/misc.i
hardware/custom.h
hardware/custom.i

misc.doc

The potgo resource is used to get control of the hardware POTGO register connected to the
proportional I/O pins on the game controller ports. There are two registers, POTGO (write-only)
and POTINP (read-only). These pins could also be used for digital I/O.

The potgo resource provides three functions for working with the POTGO hardware.

AllocPotBits()
FreePotBits()
WritePotgo()

Potgo Resource Functions

Allocate bits in the POTGO register.
Free previously allocated bits in the POTGO register.
Set and clear bits in the POTGO register. The bits must have been
allocated before calling this function.

The example program shown below demonstrates how to use the ptogo resource to track mouse
button presses on port 1.

/*
* Read_Potinp.c
* * An example of using the potgo.resource to read pins 9 and 5 of
* port 1 (the non-mouse port). This bypasses the gameport.device.
* When the right or middle button on a mouse plugged into port 1 is pressed,
* the read value will change.

Resources 343

*
* Use of port 0 (mouse) is unaffected.

*
* Compile with SAS C 5.10 lc -b1 -cfistq -v -y -L

*
* Run from CLI only
*I

#include <exec/types.h>
!!include <exec/memory. h>
#include <dosldos.h>
#include <resourceslpotgo.h>
!!include <hardware/custom.h>

#include <clib/exec protos.h>
#include <clib/potgo_protos.h>

#include <stdio.h>

llifdef LATTICE
int CXBRK(void) {return(O);} /*Disable SAS Ctrl-C checking*/
int chkabort (void) { return (0); /* really *I
#endif

struct PotgoBase *PotgoBase;
ULONG potbits;
UWORD value;

#define UNLESS (x) if (! (x))
#define UNTIL (x) while {! (x))

#define OUTRY 1L<<1S
!!define DATRY 1L<<14
#define OUTRX lL< <13
#define DATRX lL< <12

extern struct Custom far custom;

void main(int argc,char **argv)
{
UNLESS (PotgoBase=(struct PotgoBase *)OpenResource("potgo.resource"))

return;

potbits=AllocPotBits(OUTRYIDATRYIOUTRXIDATRX);

/* Get the bits for the right and middle mouse buttons on the alternate mouse port. */

if (potbits != (OUTRYIDATRYIOUTRXIDATRX))
{
printf("Pot bits are already allocated! %lx\n",potbits);
FreePotBits(potbits);
return;
}

I* Set all ones in the register (masked by potbits) *I
WritePotgo(OxFFFFFFFFL,potbits);

printf("\nPlug a mouse into the second port. This program will indicate when\n");
printf("the right or middle button (if the mouse is so equipped) is pressed.\n");
printf("Stop the program with Control-C. Press return now to begin.\n");

getchar();

UNTIL (SIGBREAKF CTRL C & SetSignal(OL,OL))
/* until CTRL-C-is pressed */
{
I* Read word at $DFF016 */

value = custom.potinp;

I* Show what was read (restricted to our allocated bits) *I
printf("POTINP = $%lx\n",value & potbits);
}

FreePotBits(potbits);
}

344 Amiga ROM Kernel Reference Manual: Devices

Additional programming information on the potgo resource can be found in the include files and
the Autodocs for the pot go resource.

Potgo Resource Information

INCLUDES

AUTO DOCS

resources/potgo.h
resources/potgo.i
utility/hooks.h
utility/hooks.i

potgo.doc

Resources 345

appendix A
IFF: INTERCHANGE FILE
FORMAT

One of the Amiga's strengths is the wide acceptance of several IFF specifications. Most notable
is the ease with which graphic files (of form "ILBM") can be transferred among dozens of paint,
animation and special effects packages. This ability to to easily share data between a variety of
programs lets the user select the best program for a specific job rather than fighting the restritions
of a single, all-in-one software package. Developers can market specialized applications that are
good at a certain limited set of operations, and with the help of the multitasking Amiga operating
system, create the effect of a large integrated system.

Any developer with a package that creates or reads data should use an existing IFF standard. If
no current IFF form is suitable then the developer should contact other developers and users with
similar needs and work out a new IFF form using the design principles specified in this appendix.
To prevent conflicts, new IFF forms must be registered with Commodore before they are used. No
additional restrictions are placed on the design of IFF forms aside from the general IFF syntax rules
listed here.

IFF: Interchange File Format 347

Contents of the IFF Specification

EA IFF 85 - General IFF Format Specifications
Quick Introduction to IFF .. A-349
EA IFF 85 .. A-355

FORM Specifications from the Original EA Document
ILBM- Interleaved Bitmap ... A-381
FfXT- Formatted Text ... A-393
SMUS - Simple Musical Score ... A-401
8SVX- 8-bit Sampled Voice .. A-419

Third Party Public FORM and Chunk Specifications and Additional Documents
IFF FORM and Chunk Registry . A-429
Third Party Public FORM and Chunk Specifications A-431
Additional Documents .. A-486

IFF Source Code
IFF Include Files ... A-489
Source listings of examples ... A-503

348 Amiga ROM Kernel Reference Manual: Devices

A Quick Introduction to IFF
Jerry Morrison, Electronic Arts

10-17-88

IFF is the Amiga-standard "Interchange File Format", designed to worlc across many machines.

Why IFF?

Did you ever have this happen to your picture file?

You can't load it into another paint program.
You need a converter to adopt to "ZooPaint" release 2.0 or a new hardware feature.
You must "export" and "import" to use it in a page layout program.
You can't move it to another brand of computer.

What about interchanging musical scores, digitized audio, and other data? It seems the only thing
that does interchange well is plain ASCII text files.

It's inexcusable. And yet this is "normal" in MS-DOS.

What is IFF?

IFF, the "Interchange File Format" standard, encourages multimedia interchange between different
programs and different computers. It supports long-lived, extensible data. It's great for composite
files like a page layout file that includes photos, an animation file that includes music, and a library
of sound effects.

IFF is a 2-level standard. The first layer is the "wrapper" or "envelope" structure for all IFF files.
Technically, it's the syntax. The second layer defines particular IFF file types such as ILBM (stan­
dard raster pictures), ANIM (animation), SMUS (simple musical score), and 8SVX (8-bit sampled
audio voice).

IFF is also a design idea:
programs should use interchange formats for their everyday storage.

This way, users rarely need converters and import/export commands to change software releases,
application programs, or hardware.

What's the trick?

File compatibility is easy to achieve if programmers let go of one notion-dumping internal data
structures to disk. A program's internal data structures should really be suited to what the program
does and how it works. What's "best" changes as the program evolves new functions and methods.
But a disk format should be suited to storage and interchange.

Once we design internal formats and disk formats for their own separate purposes, the rest is easy.
Reading and writing become behind-the-scenes conversions. But two conversions hidden in each
program is much better than a pile of conversion programs.

Does this seem strange? It's what ASCII text programs do! Text editors use line tables, piece tables,
gaps, and other structures for fast editing and searching. Text generators and consumers construct
and parse files. That's why the ASCII standard works so well.

IFF Specification 349

Also, every file must be self-sufficient. E.g., a picture file has to include its size and number of
bits/pixel.

What does an IFF file look like?

IFF is based on data blocks called "chunks". Here's an example color map chunk:

char typeiD[4)

unsigned long dataSize

char data[]

'CMAP'

48

0, 0,
255, 255

0, 255,
...

in an ILBM file, CMAP means "color map"

48 data bytes

16 3-byte color values: black, white,

A chunk is made of a 4-character type identifier, a 32 bit data byte count, and the data bytes. It's
like a Macintosh "resource" with a 32-bit size.

Fine points:

• Every 16- and 32-bit number is stored in 68000 byte order-highest byte first.

• An Intel CPU must reverse the 2- or 4-byte sequence of each number. This applies to chunk
dataSize fields and to numbers inside chunk data. It does not affect character strings and byte
data because you can't reverse a 1-byte sequence. But it does affect the 32-bit math used in
IFF's MakeiD macro. The standard does allow CPU specific byte ordering hidden within a
chunk itself, but the practice is discouraged.

• Every 16- and 32-bit number is stored on an even address.

• Every odd-length chunk must be followed by a 0 pad byte. This pad byte is not counted in
dataSize.

• An ID is made of 4 ASCII characters in the range " " (space, hex 20) through "-" (tilde, hex
7E). Leading spaces are not permitted.

• IDs are compared using a quick 32-bit equality test. Case matters.

A chunk typically holds a C structure, Pascal record, or an array. For example, an 'ILBM' picture
has a 'BMHD' bitmap header chunk (a structure) and a 'BODY' raster body chunk (an array).

To construct an IFF file, just put a file type ID (like 'ILBM') into a wrapper chunk called a 'FORM'
(Think "FILE"). Inside that wrapper place chunks one after another (with pad bytes as needed). The
chunk size always tells you how many more bytes you need to skip over to get to the next chunk.

350 Amiga ROM Kernel Reference Manual: Devices

'FORM'

24070

'ILBM'

'BMHD'

20

320, 200, 0 ...

'CMAP'
24070

21

0, 0, 0' 255 ...

0

'BODY'

24000

0, 0, 0 ...

FORM is a special chunk ID

24070 data bytes

FORM type is ILBM

a BMHD bitmap header chunk
(20 data bytes)

a CMAP color map chunk
(21 data bytes+ 1 pad)

a pad byte

a BODY raster body chunk
(24000 data bytes)

A FORM always contains one 4-character FORM type ID (a file type, in this case 'ILBM')
followed by any number of data chunks. In this example, the FORM type is 'ILBM', which stands
for InterLeaved Bitmap. (ILBM is an IFF standard for bitplane raster pictures.) This example has
3 chunks. Note the pad byte after the odd length chunk.

Within FORMs ILBM, 'BMHD' identifies a bitmap header chunk, 'CMAP' a color map, and
'BODY' a raster body. In general, the chunk IDs in a FORM are local to the FORM type ID.
The exceptions are the 4 global chunk IDs 'FORM', 'LIST', 'CAT ', and 'PROP'. (A FORM may
contain other FORM chunks. E.g., an animation FORM might contain picture FORMs and sound
FORMs.)

How to read an IFF file?

Example code and modules are provided for reading IFF files using iffparse.library. However, if
you wish to read a non-complex FORM by hand, the following logic can be used.

Once you have entered the FORM (for example, the FORM ILBM shown above), stored the FORM
length (24070 in the ILBM example) and are positioned on the first chunk, you may:

Loop: (until end-of-file or end-of-form)

- Read the 4-character identifier of the chunk
- Read the 32-bit (4 byte) chunklength
- Decide if you want that chunk

If yes, read chunklength bytes into destination structure
or buffer

If no, seek forward chunklength bytes
- If chunklength is odd, seek one more byte

IFF Specification 351

Every IFF file is a 'FORM', 'LIST', or 'CAT ' chunk. You can recognize an IFF file by those first
4 bytes. ('FORM' is far and away the most common. We'll get to LIST and CAT below.) If the file
contains a FORM, dispatch on the FORM type ID to a chunk-reader loop like the one above.

File extensibility

IFF files are extensible and forward/backward compatible:

• Chunk contents should be designed for compatibility across and for longevity. Every chunk
should have a path for expansion; at minimum this will be an unused bit or two.

• The standards team for a FORM type can extend one of the chunks that contains a structure by
appending new, optional structure fields.

• Anyone can define new FORM types as well as new chunk types within a FORM type. Storing
private chunks within a FORM is OK, but be sure to register your activities with Commodore
Applications and Technical Support.

• A chunk can be superseded by a new chunk type, e.g., to store more bits per RGB color register.
New programs can output the old chunk (for backward compatibility) along with the new
chunk.

• If you must change data in an incompatible way, change the chunk ID or the FORM type ID.

Advanced Topics: CAT, LIST, and PROP (not all that important)

Sometimes you want to put several "files" into one, such as a picture library. This is what CAT is
for. It "concatenates" FORM and LIST chunks.

'CAT , concatenation

48160 48160 data bytes

'ILBM'
hint: contains FORMs ILBMs

'FORM' AFORMILBM

24070

'ILBM'

...

'FORM' Another FORM ILBM

24070

'ILBM'

...

352 Amiga ROM Kernel Reference Manual: Devices

This example CAT holds two ILBMs. It can be shown outline-style:

CAT ILBM
.. FORM ILBM
•... BMHD
.... CMAP
•... BODY
.. FORM ILBM
.... BMHD
.... CMAP
•... BODY

\
I a complete FORM ILBM picture
I
I

Sometimes you want to share the same color map across many pictures. LIST and PROP do this:

LIST ILBM
.• PROP ILBM default properties for FORMs ILBM
.•.. CMAP an ILBM CMAP chunk (there could be a BMHD chunk here, too)
.. FORM ILBM
.... BMHD (there could be a CMAP here to override the default)
.... BODY
.. FORM ILBM
.... BMHD (there could be a CMAP here to override the default)
.... BODY

A LIST holds PROPs and FORMs (and occasionally LISTs and CATs). A PROP ILBM contains
default data (in the above example, just one CMAP chunk) for all FORMs ILBM in the LIST. Any
FORM may override the PROP-defined default with its own CMAP. All PROPs must appear at
the beginning of a LIST. Each FORM type defines as standard (among other things) which of its
chunks are "property chunks" (may appear in PROPs) and which are "data chunks" (may not appear
in PROPs).

IFF Specification 353

"EA IFF 85" Standard for Interchange Format Files
Document Date:
From:
Status Of Standard:

1. Introduction

January 14, 1985 (Updated Oct, 1988 Commodore-Amiga, Inc.)
Jerry Morrison, Electronic Arts
Released to the public domain, and in use

Standards are Good for Software Developers

As home computer hardware evolves into better and better media machines, the demand increases
for higher quality, more detailed data. Data development gets more expensive, requires more
expertise and better tools, and has to be shared across projects. Think about several ports of a
product on one CD-ROM with 500M Bytes of common data!

Development tools need standard interchange file formats. Imagine scanning in images of "player"
shapes, transferring them to an image enhancement package, moving them to a paint program for
touch up, then incorporating them into a game. Or writing a theme song with a Macintosh score
editor and incorporating it into an Amiga game. The data must at times be transformed, clipped,
filled out, and moved across machine kinds. Media projects will depend on data transfer from
graphic, music, sound effect, animation, and script tools.

Standards are Good for Software Users

Customers should be able to move their own data between independently developed software
products. And they should be able to buy data libraries usable across many such products. The
types of data objects to exchange are open-ended and include plain and formatted text, raster and
structured graphics, fonts, music, sound effects, musical instrument descriptions, and animation.

The problem with expedient file formats-typically memory dumps is that they're too provincial.
By designing data for one particular use (such as a screen snapshot), they preclude future expansion
(would you like a full page picture? a multi-page document?). In neglecting the possibility that
other programs might read their data, they fail to save contextual information (how many bit planes?
what resolution?). Ignoring that other programs might create such files, they're intolerant of extra
data (a different picture editor may want to save a texture palette with the image), missing data (such
as no color map), or minor variations (perhaps a smaller image). In practice, a filed representation
should rarely mirror an in-memory representation. The former should be designed for longevity;
the latter to optimize the manipulations of a particular program. The same filed data will be read
into different memory formats by different programs.

The IFF philosophy: "A little behind-the-scenes conversion when programs read and write files is
far better than NxM explicit conversion utilities for highly specialized formats".

So we need some standardization for data interchange among development tools and products. The
more developers that adopt a standard, the better for all of us and our customers.

Here is "EA IFF 1985"

Here is our offering: Electronic Arts' IFF standard for Interchange .Eile .Eormat. The full name
is "EA IFF 1985". Alternatives and justifications are included for certain choices. Public domain
subroutine packages and utility programs are available to make it easy to write and use IFF­
compatible programs.

IFF Specification 355

Part 1 introduces the standard. Part 2 presents its requirements and background. Parts 3, 4, and 5
define the primitive data types, FORMs, and LISTs, respectively, and how to define new high level
types. Part 6 specifies the top level file structure. Section 7lists names of the group responsible for
this standard. Appendix A is included for quick reference and Appendix B.

References

American National Standard Additional Control Codes for Use with ASCII, ANSI standard 3.64-
1979 for an 8-bit character set. See also ISO standard 2022 and ISO/DIS standard 6429.2.

The r;_ Programming Language, Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories.
Prentice-Hall, Englewood Oiffs, NJ, 1978.

r;., A Reference Manual, Samuel P. Harbison and Guy L. Steele Jr., Tartan Laboratories. Prentice­
Hall, Englewood Oiffs, NJ, 1984.

Compiler Construction, An Advanced Course, edited by F. L. Bauer and J. Eickel (Springer-Verlag,
1976). This book is one of many sources for information on recursive descent parsing.

DIF Technical Specification © 1981 by Software Arts, Inc. DJFfM is the format for spreadsheet
data interchange developed by Software Arts, Inc. DJFfM is a trademark of Software Arts, Inc.

"FTXT" IFF Formatted Text, from Electronic Arts. IFF supplement document for a text format.

"ILBM" IFF Interleaved Bitmap, from Electronic Arts. IFF supplement document for a raster image
format.

M68000 16/32-Bit Microprocessor Programmer's Reference Manual© 1984, 1982, 1980, 1979 by
Motorola, Inc.

PostScript Language Manual © 1984 Adobe Systems Incorporated.
PostScript™ is a trademark of Adobe Systems, Inc.
Times and Helvetica® are registered trademarks of Allied Corporation.

Inside Macintosh © 1982, 1983, 1984, 1985 Apple Computer, Inc., a programmer's reference
manual.
Apple® is a trademark of Apple Computer, Inc.
MacPaint™ is a trademark of Apple Computer, Inc.
Macintosh™ is a trademark licensed to Apple Computer, Inc.

InterScript: A Proposal for!! Standard for the Interchange of Editable Documents © 1984 Xerox
Corporation. Introduction to InterScript © 1985 Xerox Corporation.

Amiga® is a registered trademark of Commodore-Amiga, Inc.

Electronics Arts TM is a trademark of Electronic Arts.

356 Amiga ROM Kernel Reference Manual: Devices

2. Background for Designers

Part 2 is about the background, requirements, and goals for the standard. It's geared for people who
want to design new types of IFF objects. People just interested in using the standard may wish to
quickly scan this section.

What Do We Need?

A standard should be long on prescription and short on overhead. It should give lots of rules for
designing programs and data files for synergy. But neither the programs nor the files should cost
too much more than the expedient variety. Although we are looking to a future with CD-ROMs and
perpendicular recording, the standard must work well on floppy disks.

For program portability, simplicity, and efficiency, formats should be designed with more than one
implementation style in mind. It ought to be possible to read one of many objects in a file without
scanning all the preceding data. (In practice, pure stream 1/0 is adequate although random access
makes it easier to write files.) Some programs need to read and play out their data in real time, so
we need good compromises between generality and efficiency.

As much as we need standards, they can't hold up product schedules. So we also need a kind of
decentralized extensibility where any software developer can define and refine new object types
without some "standards authority" in the loop. Developers must be able to extend existing formats
in a forward- and backward-compatible way. A central repository for design information and
example programs can help us take full advantage of the standard.

For convenience, data formats should heed the restrictions of various processors and environments.
For example, word-alignment greatly helps 68000 access at insignificant cost to 8088 programs.

Other goals include the ability to share common elements over a list of objects and the ability to
construct composite objects.

And finally, "Simple things should be simple and complex things should be possible" -Alan Kay.

Think Ahead

Let's think ahead and build programs that read and write files for each other and for programs yet to
be designed. Build data formats to last for future computers so long as the overhead is acceptable.
This extends the usefulness and life oftoday's programs and data.

To maximize interconnectivity, the standard file structure and the specific object formats must all
be general and extensible. Think ahead when designing an object. File foi1Jl ats should serve many
purposes and allow many programs to store and read back all the information they need; even
squeeze in custom data. Then a programmer can store the available data and is encouraged to
include fixed contextual details. Recipient programs can read the needed parts, skip unrecognized
stuff, default missing data, and use the stored context to help transform the data as needed.

Scope

IFF addresses these needs by defining a standard file structure, some initial data object types, ways
to define new types, and rules for accessing these files. We can accomplish a great deal by writing
programs according to this standard, but do not expect direct compatibility with existing software.
We'll need conversion programs to bridge the gap from the old world.

IFF Specification 357

IFF is geared for computers that readily process information in 8-bit bytes. It assumes a "physical
layer" of data storage and transmission that reliably maintains "files" as sequences of 8-bit bytes.
The standard treats a "file" as a container of data bytes and is independent of how to find a file and
whether it has a byte count.

This standard does not by itself implement a eli pboard for cutting and pasting data between programs.
A clipboard needs software to mediate access, and provide a notification mechanism so updates and
requests for data can be detected.

Data Abstraction

The basic problem is how to represent information in a way that's program-independent, compiler­
independent, machine-independent, and device-independent.

The computer science approach is "data abstraction", also known as "objects", "actors", and "abstract
data types". A data abstraction has a "concrete representation" (its storage format), an "abstract
representation" (its capabilities and uses), and access procedures that isolate all the calling software
from the concrete representation. Only the access procedures touch the data storage. Hiding mutable
details behind an interface is called "information hiding". What is hidden arc the non-portable
details of implementing the object, namely the selected storage representation and algorithms for
manipulating it.

The power of this approach is modularity. By adjusting the access procedures we can extend and
restructure the data without impacting the interface or its callers. Conversely, we can extend and
restructure the interface and callers without making existing data obsolete. It's great for interchange!

But we seem to need the opposite: fixed file formats for all programs to access. Actually, we could
file data abstractions ("filed objects") by storing the data and access procedures together. We'd
have to encode the access procedures in a standard machine-independent programming language a
la PostScript. Even with this, the interface can't evolve freely since we can't update all copies of
the access procedures. So we'll have to design our abstract representations for limited evolution
and occasional revolution (conversion).

In any case, today's microcomputers can't practically store true data abstractions. They can do
the next best thing: store arbitrary types of data in "data chunks", each with a type identifier and
a length count. The type identifier is a reference by name to the access procedures (any local
implementation). The length count enables storage-level object operations like "copy" and "skip to
next" independent of object type or contents.

Chunk writing is straightforward. Chunk reading requires a trivial parser to scan each chunk and
dispatch to the proper access/conversion procedure. Reading chunks nested inside other chunks
may require recursion, but no look ahead or backup.

That's the main idea of IFF. There are, of course, a few other details

358 Amiga ROM Kernel Reference Manual: Devices

Previous Work

Where our needs are similar, we borrow from existing standards.

Our basic need to move data between independently developed programs is similar to that addressed
by the Apple Macintosh desk scrap or "clipboard" [Inside Macintosh chapter "Scrap Manager"].
The Scrap Manager works closely with the Resource Manager, a handy filer and swapper for data
objects (text strings, dialog window templates, pictures, fonts) including types yet to be designed
[Inside Macintosh chapter "Resource Manager"]. The Resource Manager is akin to Smalltalk 's
object swapper.

We will probably write a Macintosh desk accessory that converts IFF files to and from the Macintosh
clipboard for quick and easy interchange with programs like MacPaint and Resource Mover.

Macintosh uses a simple and elegant scheme of four-character "identifiers" to identify resource
types, clipboard format types, file types, and file creator programs. Alternatives are unique ID
numbers assigned by a central authority or by hierarchical authorities, unique ID numbers generated
by algorithm, other fixed length character strings, and variable length strings. Character string
identifiers double as readable signposts in data files and programs. The choice of 4 characters is a
good tradeoff between storage space, fetch/compare/store time, and name space size. We'll honor
Apple's designers by adopting this scheme.

"PICf" is a good example of a standard structured graphics format (including raster images) and its
many uses [Inside Macintosh chapter "QuickDraw"]. Macintosh provides QuickDraw routines in
ROM to create, manipulate, and display PICfs. Any application can create a PICf by simply asking
QuickDraw to record a sequence of drawing commands. Since it's just as easy to ask QuickDraw
to render a PICf to a screen or a printer, it's very effective to pass them between programs, say
from an illustrator to a word processor. An important feature is the ability to store "comments" in a
PICf which QuickDraw will ignore. (Actually, it passes them to your optional custom "comment
handler".)

PostScript, Adobe System's print file standard, is a more general way to represent any print image
(which is a specification for putting marks on paper) [PostScript Language Manual]. In fact,
PostScript is a full-fledged programming language. To interpret a PostScript program is to render a
document on a raster output device. The language is defined in layers: a lexical layer of identifiers,
constants, and operators; a layer of reverse polish semantics including scope rules and a way
to define new subroutines; and a printing-specific layer of built-in identifiers and operators for
rendering graphic images. It is clearly a powerful (Turing equivalent) image definition language.
PICf and a subset of PostScript are candidates for structured graphics standards.

A PostScript document can be printed on any raster output device (including a display) but cannot
generally be edited. That's because the original flexibility and constraints have been discarded.
Besides, a PostScript program may use arbitrary computation to supply parameters like placement
and size to each operator. A Quick Draw PICf, in comparison, is a more restricted format of graphic
primitives parameterized by constants. So a PICf can be edited at the level of the primitives, e.g.,
move or thicken a line. It cannot be edited at the higher level of, say, the bar chart data which
generated the picture.

IFF Specification 359

PostScript has another limitation: not all kinds of data amount to marks on paper. A musical
instrument description is one example. PostScript is just not geared for such uses.

"DIF" is another example of data being stored in a general format usable by future programs [DIF
Technical Specification]. DIF is a format for spreadsheet data interchange. DIF and PostScript are
both expressed in plain ASCII text files. This is very handy for printing, debugging, experimenting,
and transmitting across modems. It can have substantial cost in compaction and read/write work,
depending on use. We won't store IFF files this way but we could define an ASCII alternate
representation with a converter program.

InterScript is the Xerox standard for interchange of editable documents [Introduction to InterScript].
It approaches a harder problem: How to represent editable word processor documents that may
contain formatted text, pictures, cross-references like figure numbers, and even highly specialized
objects like mathematical equations? InterScript aims to define one standard representation for
each kind of information. Each InterScript-compatible editor is supposed to preserve the objects it
doesn't understand and even maintain nested cross-references. So a simple word processor would
let you edit the text of a fancy document without discarding the equations or disrupting the equation
numbers.

Our task is similarly to store high level information and preserve as much content as practical while
moving it between programs. But we need to span a larger universe of data types and cannot expect
to centrally define them all. Fortunately, we don't need to make programs preserve information
that they don't understand. And for better or worse, we don't have to tackle general-purpose
cross-references yet.

360 Amiga ROM Kernel Reference Manual: Devices

3. Primitive Data Types

Atomic components such as integers and characters that are interpretable directly by the CPU are
specified in one format for all processors. We chose a format that's the same as used by the Motorola
MC68000 processor [M68000 16/32-Bit Microprocessor Programmer's Reference Manual]. The
high byte and high word of a number are stored first.

N.B.: Part 3 dictates the format for "primitive" data types where-and only where-used in the
overall file structure. The number of such occurrences of dictated formats will be small enough that
the costs of conversion, storage, and management of processor-specific files would far exceed the
costs of conversion during 1/0 by "foreign" programs. A particular data chunk may be specified with
a different format for its internal primitive types or with processor or environment specific variants
if necessary to optimize local usage. Since that hurts data interchange, it's not recommended. (Cf.
Designing New Data Sections, in Part 4.)

Alignment

All data objects larger than a byte are aligned on even byte addresses relative to the start of the
file. This may require padding. Pad bytes are to be written as zeros, but don't count on that when
reading.

This means that every odd-length "chunk" must be padded so that the next one will fall on an even
boundary. Also, designers of structures to be stored in chunks should include pad fields where
needed to align every field larger than a byte. For best efficiency, long word data should be arranged
on long word (4 byte) boundaries. Zeros should be stored in all the pad bytes.

Justification: Even-alignment causes a little extra work for files that are used only on certain
processors but allows 68000 programs to construct and scan the data in memory and do block 1/0.
Any 16-bit or greater CPU will have faster access to aligned data. You just add an occasional pad
field to data structures that you're going to block read/write or else stream read/write an extra byte.
And the same source code works on all processors. Unspecified alignment, on the other hand,
would force 68000 programs to (dis)assemble word and long word data one byte at a time. Pretty
cumbersome in a high level language. And if you don't conditionally compile that step out for other
processors, you won't gain anything.

Numbers

Numeric types supported arc two's complement binary integers in the format used by the MC68000
processor-high byte first, high word first-the reverse of 8088 and 6502 format.

UBYTE 8 bits unsigned
WORD 16 bits signed
UWORD 16 bits unsigned
LONG 32 bits signed

The actual type definitions depend on the CPU and the compiler. In this document, we '11 express
data type definitions in the C programming language. [See ~. A Reference Manual.] In 68000
Lattice C:

typedef unsigned char UBYTE;
typedef short WORD;
typedef unsigned short UWORD;
typedef long LONG;

I* 8 b ts unsigned
I* 16 b ts signed
I* 16 b ts unsigned
I* 32 b ts signed

*I
*I
*I
*I

IFF Specification 361

Characters

The following character set is assumed wherever characters are used, e.g., in text strings, IDs, and
TEXT chunks (see below). Characters are encoded in 8-bit ASCII. Characters in the range NUL
(hex 0) through DEL (hex 7F) are well defined by the 7-bit ASCII standard. IFF uses the graphic
group " " (SP, hex 20) through ,_, (hex 7E).

Most of the control character group hex 01 through hex IF have no standard meaning in IFF. The
control character LF (hex OA) is defined as a "newline" character. It denotes an intentional line
break, that is, a paragraph or line terminator. (There is no way to store an automatic line break. That
is strictly a function of the margins in the environment the text is placed.) The control character
ESC (hex lB) is a reserved escape character under the rules of ANSI standard 3.64-1979 American
National Standard Additional Control Codes for Use with ASCII, ISO standard 2022, and ISO/DIS
standard 6429.2.

Characters in the range hex 7F through hex FF are not globally defined in IFF. They are best left
reserved for future standardization. (Note that the FORM type FTXT (formatted text) defines the
meaning of these characters within FTXT forms.) In particular, character values hex 7F through
hex 9F are control codes while characters hex AO through hex FF are extended graphic characters
like ©. as per the ISO and ANSI standards cited above. [See the supplementary document "FTXT"
IFF Formatted Text.]

Dates

A "creation date" is defined as the date and time a stream of data bytes was created. (Some systems
call this a "last modified date".) Editing some data changes its creation date. Moving the data
between volumes or machines does not.

The IFF standard date format will be one of those used in MS-DOS, Macintosh, or AmigaDOS
(probably a 32-bit unsigned number of seconds since a reference point). Issue: Investigate these
three.

Type IDs

A "type ID", "property name", "FORM type", or any other IFF identifier is a 32-bit value: the
concatenation of four ASCII characters in the range " " (SP, hex 20) through ,_, (hex 7E). Spaces
(hex 20) should not precede printing characters; trailing spaces are OK. Control characters are
forbidden.

typedef CHAR ID[4];

IDs are compared using a simple 32-bit case-dependent equality test. FORM type IDs are restricted.
Since they may be stored in filename extensions lower case letters and punctuation marks are
forbidden. Trailing spaces are OK.

Carefully choose those four characters when you pick a new ID. Make them mnemonic so pro­
grammers can look at an interchange format file and figure out what kind of data it contains. The
name space makes it possible for developers scattered around the globe to generate ID values with
minimal collisions so long as they choose specific names like "MUS4" instead of general ones like
"TYPE" and "FILE".

362 Amiga ROM Kernel Reference Manual: Devices

Commodore Applications and Technical Support has undertaken the task of maintaining the registry
of FORM type IDs and fonnat descriptions. See the IFF registry document for more infonnation.

Sometimes it's necessary to make data fonnat changes that aren't backward compatible. As much
as we work for compatibility, unintended interactions can develop. Since IDs are used to denote
data fonnats in IFF, new IDs are chosen to denote revised fonnats. Since programs won't read
chunks whose IDs they don't recognize (see Chunks, below), the new IDs keep old programs from
stumbling over new data. The conventional way to chose a "revision" ID is to increment the last
character if it's a digit or else change the last character to a digit. E.g., first and second revisions of
the ID "XY" would be "XYl" and "XY2". Revisionsof"CMAP" would be "CMAl" and "CMA2".

Chunks

Chunks are the building blocks in the IFF structure. The fonn expressed as a C typedef is:

typedef struct {
ID ckiD; /* 4 character ID */
LONG ckSize; /* sizeof(ckData) */
UBYTE ckData[/* ckSize */];
} Chunk;

We can diagram an example chunk- a "CMAP" chunk containing 12 data bytes -like this:

'CMAP'

48 i ckiD:

ckSize:

ckData: t
12

~

0, 0, 0, 32

0, 0, 64, 0

0, 0, 64, 0

20

1
That's 4 bytes of ckiD, 4 bytes of ckSize and 12 data bytes. The total space used is 20 bytes.

The ckiD identifies the fonnat and purpose of the chunk. As a rule, a program must recognize
ckiD to interpret ckData. It should skip over all unrecognized chunks. The ckiD also serves as a
fonnat version number as long as we pick new IDs to identify new fonnats of ckData (see above).

The following ckiDs are universally reserved to identify chunks with particular IFF meanings:
"LIST", "FORM", "PROP", "CAT", and" ". The special ID" "(4 spaces) is a ckiD for "filler"
chunks, that is, chunks that fill space but have no meaningful contents. The IDs "LIS 1" through
"LIS9", "FORI" through "FOR9", and "CATl" through "CAT9" are reserved for future "version
number" variations. All IFF-compatible software must account for these chunk IDs.

The ckSize is a logical block size-how many data bytes are in ckData. If ckData is an odd
number of bytes long, a 0 pad byte follows which is not included in ckSize. (Cf. Alignment.) A
chunk's total physical size is ckSize rounded up to an even number plus the size of the header. So
the smallest chunk is 8 bytes long with ckSize = 0. For the sake of following chunks, programs
must respect every chunk's ckSize as a virtual end-of-file for reading its ckData even ifthat data
is malfonned, e.g., if nested contents are truncated.

IFF Specification 363

We can describe the syntax of a chunk as a regular expression with "#" representing the ckSi ze,

the length of the following braced bytes. The "[0]'' represents a sometimes needed pad byte. (The
regular expressions in this document are collected in Appendix A along with an explanation of
notation.)

Chunk ::= ID #{ UBYTE*} [0]

One chunk output technique is to stream write a chunk header, stream write the chunk contents,
then random access back to the header to fill in the size. Another technique is to make a preliminary
pass over the data to compute the size, then write it out all at once.

Strings, String Chunks, and String Properties

In a string of ASCII text, linefeed (OxOA) denotes a forced line break (paragraph or line terminator).
Other control characters are not used. (Cf. Characters.) For maximum compatibility with line
editors, two linefeed characters are often used to indicate a paragraph boundary.

The ckiD for a chunk that contains a string of plain, unformatted text is "TEXT". As a practical
matter, a text string should probably not be longer than 32767 bytes. The standard allows up to 231

- 1 bytes. The ckiD "TEXT" is globally reserved for this use.

When used as a data property (see below), a text string chunk may be 0 to 255 characters long.
Such a string is readily converted to a C string or a Pascal STRING [255]. The ckiD of a property
must have a unique property name, not "TEXT".

When used as a part of a chunk or data property, restricted C string format is normally used. That
means 0 to 255 characters followed by a NULL byte (ASCII value 0).

Data Properties (advanced topic)

Data properties specify attributes for following (non-property) chunks. A data property essentially
says "identifier= value", for example "XY = (1 0, 200)", telling something about following chunks.
Properties may only appear inside data sections ("FORM" chunks, cf. Data Sections) and property
sections ("PROP" chunks, cf. Group PROP).

The form of a data property is a type of Chunk. The ckiD is a property name as well as a property
type. The ckSize should be small since data properties are intended to be accumulated in RAM
when reading a file. (256 bytes is a reasonable upper bound.) Syntactically:

Property ::= Chunk

When designing a data object, use properties to describe context information like the size of an
image, even if they don't vary in your program. Other programs will need this information.

Think of property settings as assignments to variables in a programming language. Multiple
assignments are redundant and local assignments temporarily override global assignments. The
order of assignments doesn't matter as long as they precede the affected chunks. (Cf. LISTs, CATs,
and Shared Properties.)

Each object type (FORM type) is a local name space for property IDs. Think of a "CMAP" property
in a "FORM ILBM" as the qualified ID "ILBM.CMAP". A "CMAP" inside some other type of
FORM may not have the same meaning. Property IDs specified when an object type is designed

364 Amiga ROM Kernel Reference Manual: Devices

(and therefore known to all clients) are called "standard" while specialized ones added later are
"nonstandard".

Links

Issue: A standard mechanism for "links" or "cross references" is very desirable for things like
combining images and sounds into animations. Perhaps we'll define "link" chunks within FORMs
that refer to other FORMs or to specific chunks within the same and other FORMs. This needs
further work. EA IFF 1985 has no standard link mechanism.

For now, it may suffice to read a list of, say, musical instruments, and then just refer to them within
a musical score by sequence number.

File References

Issue: We may need a standard form for references to other files. A "file ref' could name a directory
and a file in the same type of operating system as the reference's originator. Following the reference
would expect the file to be on some mounted volume, or perhaps the same directory as the file that
made the reference. In a network environment, a file reference could name a server, too.

Issue: How can we express operating-system independent file references?

Issue: What about a means to reference a portion of another file? Would this be a "file ref' plus a
reference to a "link" within the target file?

IFF Specification 365

4. Data Sections

The first thing we need of a file is to check: Does it contain IFF data and, if so, does it contain the
kind of data we're looking for? So we come to the notion of a "data section".

A "data section" or IFF "FORM" is one self-contained "data object" that might be stored in a file by
itself. It is one high level data object such as a picture or a sound effect, and generally contains a
grouping of chunks. The IFF structure "FORM" makes it self-identifying. It could be a composite
object like a musical score with nested musical instrument descriptions.

Group FORM

A data section is a chunk with ckiD "FORM" and this arrangement:

FORM .. "FORM"#{ FormType (LocalChunk I FORM I LIST I CAT)*)
FormType ::= ID
LocalChunk ::=Property I Chunk

The ID "FORM" is a syntactic keyword like "struct" in C. Think of a "struct ILBM" containing a
field "CMAP". If you see "FORM" you will know to expect a FORM type ID (the structure name,
"ILBM" in this example) and a particular contents arrangement or "syntax" (local chunks, FORMs,
LISTs, and CATs). A "FORM ILBM", in particular, might contain a local chunk "CMAP", an
"ILBM.CMAP" (to use a qualified name).

So the chunk ID "FORM" indicates a data section. It implies that the chunk contains an ID and
some number of nested chunks. In reading a FORM, like any other chunk, programs must respect
its ckSi ze as a virtual end-of-file for reading its contents, even if they're truncated.

The FORM type is a restricted ID that may not contain lower case letters or punctuation characters.
(Cf. Type IDs. Cf. Single Purpose Files.)

The type-specific information in a FORM is composed of its "local chunks": data properties and
other chunks. Each FORM type is a local name space for local chunk IDs. So "CMAP" local chunks
in other FORM types may be unrelated to "ILBM.CMAP". More than that, each FORM type defines
semantic scope. If you know what a FORM ILBM is, you will know what an ILBM.CMAP is.

Local chunks defined when the FORM type is designed (and therefore known to all clients of this
type) are called "standard" while specialized ones added later are "nonstandard".

Among the local chunks, property chunks give settings for various details like text font while the
other chunks supply the essential information. This distinction is not clear cut. A property setting
can be cancelled by a later setting of the same property. E.g., in the sequence:

propl = x (Data A) propl = z propl = y (Data B)

propl is= x for Data A, andy for Data B. The setting propl = z has no effect.

For clarity, the universally reserved chunk IDs "LIST", "FORM", "PROP", "CAT ", " ", "LIS 1"
through "LIS9", "FORl" through "FOR9", and "CATl" through "CAT9" may not be FORM type
IDs.

Part 5, below, talks about grouping FORMs into LISTs and CATs. They let you group a bunch of
FORMs but don't impose any particular meaning or constraints on the grouping. Read on.

366 Amiga ROM Kernel Reference Manual: Devices

Composite FORMs

A FORM chunk inside a FORM is a full-fledged data section. This means you can build a composite
object such as a multi-frame animation sequence by nesting available picture FORMs and sound
effect FORMs. You can insert additional chunks with information like frame rate and frame count.

Using composite FORMs, you leverage on existing programs that create and edit the component
FORMs. Those editors may even look into your composite object to copy out its type of component.
Such editors are not allowed to replace their component objects within your composite object. That's
because the IFF standard lets you specify consistency requirements for the composite FORM such
as maintaining a count or a directory of the components. Only programs that are written to uphold
the rules of your FORM type may create or modify such FORMs.

Therefore, in designing a program that creates composite objects, you are strongly requested to
provide a facility for your users to import and export the nested FORMs. Import and export could
move the data through a clipboard or a file.

Here are several existing FORM types and rules for defining new ones:

FTXT

An FfXT data section contains text with character formatting information like fonts and faces. It
has no paragraph or document formatting information like margins and page headers. FORM FfXT
is well matched to the text representation in Amiga 's Intuition environment. See the supplemental
document "FfXT" IFF Formatted Text.

ILBM

"ILBM" is an InterLeaved JiitMap image with color map; a machine-independent format for raster
images. FORM ILBM is the standard image file format for the Commodore-Amiga computer and is
useful in other environments, too. See the supplemental document "ILBM" IFF Interleaved Bitmap.

PICS

The data chunk inside a "PICS" data section has ID "PICT" and holds a QuickDraw picture. Issue:
Allow more than one PICT in a PICS? See Inside Macintosh chapter "QuickDraw" for details on
PICTs and how to create and display them on the Macintosh computer.

The only standard property for PICS is "XY", an optional property that indicates the position of the
PICT relative to "the big picture". The contents of an XY is a QuickDraw Point.

Note: PICT may be limited to Macintosh usc, in which case there'll be another format for structured
graphics in other environments.

Other Macintosh Resource Types

Some other Macintosh resource types could be adopted for usc within IFF files; perhaps MWRT,
ICN, ICN#, and STR#.

Issue: Consider the candidates and reserve some more IDs.

IFF Specification 367

Designing New Data Sections

Supplemental documents will define additional object types. A supplement needs to specify the
object's purpose, its FORM type ID, the IDs and formats of standard local chunks, and rules for
generating and interpreting the data. It's a good idea to supply typedefs and an example source
program that accesses the new object. See "ILBM" IFF Interleaved Bitmap for such an example.

Anyone can pick a new FORM type ID but should reserve it with Commodore Applications and
Technical Support (CATS) at their earliest convenience. While decentralized format definitions and
extensions are possible in IFF, our preference is to get design consensus by committee, implement
a program to read and write it, perhaps tune the format before it becomes locked in stone, and then
publish the format with example code. Some organization should remain in charge of answering
questions and coordinating extensions to the format.

If it becomes necessary to incompatibly revise the design of some data section, its FORM type ID
will serve as a version number (Cf. Type IDs). E.g., a revised "VDEO" data section could be called
"VDEl ". But try to get by with compatible revisions within the existing FORM type.

In a new FORM type, the rules for primitive data types and word-alignment (Cf. Primitive Data
Types) may be overridden for the contents of its local chunks- but not for the chunk structure itself
- if your documentation spells out the deviations. If machine-specific type variants are needed,
e.g., to store vast numbers of integers in reverse bit order, then outline the conversion algorithm and
indicate the variant inside each file, perhaps via different FORM types. Needless to say, variations
should be minimized.

In designing a FORM type, encapsulate all the data that other programs will need to interpret your
files. E.g., a raster graphics image should specify the image size even if your program always uses
320 x 200 pixels x 3 bitplanes. Receiving programs are then empowered to append or clip the image
rectangle, to add or drop bitplanes, etc. This enables a lot more compatibility.

Separate the central data (like musical notes) from more specialized information (like note beams)
so simpler programs can extract the central parts during read-in. Leave room for expansion so other
programs can squeeze in new kinds of information (like lyrics). And remember to keep the property
chunks manageably short-let's say:::; 256 bytes.

When designing a data object, try to strike a good tradeoff between a super- general format and a
highly-specialized one. Fit the details to at least one particular need, for example a raster image
might as well store pixels in the current machine's scan order. But add the kind of generality that
makes the format usable with foreseeable hardware and software. E.g., use a whole byte for each
red, green, and blue color value even if this year's computer has only 4-bit video DACs. Think
ahead and help other programs so long as the overhead is acceptable. E.g., run compress a raster
by scan line rather than as a unit so future programs can swap images by scan line to and from
secondary storage.

Try to design a general purpose "least common multiple" format that encompasses the needs of
many programs without getting too complicated. Be sure to leave provisions for future expansion.
Let's coalesce our uses around a few such formats widely separated in the vast design space. Two
factors make this flexibility and simplicity practical. First, file storage space is getting very plentiful,
so compaction is not always a priority. Second, nearly any locally-performed data conversion work
during file reading and writing will be cheap compared to the 1/0 time.

368 Amiga ROM Kernel Reference Manual: Devices

It must be permitted to copy a LIST or FORM or CAT intact, e.g., to incorporate it into a composite
FORM. So any kind of internal references within a FORM must be relative references. They could
be relative to the start of the containing FORM, relative from the referencing chunk, or a sequence
number into a collection.

With composite FORMs, you leverage on existing programs that create and edit the components.
If you write a program that creates composite objects, please provide a facility for users to import
and export the nested FORMs.

Finally, don't forget to specify all implied rules in detail.

IFF Specification 369

5. LISTs, CATs, and Shared Properties (Advanced topics)

Data often needs to be grouped together, for example, consider a list of icons. Sometimes a trick
like arranging little images into a big raster works, but generally they'll need to be structured as a
first class group. The objects "LIST" and "CAT" are IFF-universal mechanisms for this purpose.
Note: LIST and CAT are advanced topics the first time reader will want to skip.

Property settings sometimes need to be shared over a list of similar objects. E.g., a list of icons may
share one color map. LIST provides a means called "PROP" to do this. One purpose of a LIST is
to define the scope of a PROP. A "CAT", on the other hand, is simply a concatenation of objects.

Simpler programs may skip LISTs and PROPs altogether and just handle FORMs and CATs. All
"fully-conforming" IFF programs also know about "CAT", "LIST", and "PROP". Any program
that reads a FORM inside a LIST must process shared PROPs to correctly interpret that FORM.

Group CAT

A CAT is just an untyped group of data objects.

Structurally, a CAT is a chunk with chunk ID "CAT" containing a "contents type" ID followed by
the nested objects. The ckSi ze of each contained chunk is essentially a relative pointer to the next
one.

CAT
ContentsType

::="CAT"#{ ContentsType (FORM I LIST I CAT)* }
::= ID --a hint or an "abstract data type" ID

In reading a CAT, like any other chunk, programs must respect its ckSize as a virtual end-of-file
for reading the nested objects even if they're malformed or truncated.

The "contents type" following the CAT's ckSize indicates what kind of FORMs are inside. So a
CAT of ILBMs would store "ILBM" there. It's just.!! hint. It may be used to store an "abstract data
type". A CAT could just have blank contents ID (" ") if it contains more than one kind of FORM.

CAT defines only the format of the group. The group's meaning is open to interpretation. This
is like a list in LISP: the structure of cells is predefined but the meaning of the contents as, say,
an association list depends on use. If you need a group with an enforced meaning (an "abstract
datatype" or Smalltalk "subclass"), some consistency constraints, or additional data chunks, use a
composite FORM instead (Cf. Composite FORMs).

Since a CAT just means a concatenation of objects, CATs are rarely nested. Programs should really
merge CATs rather than nest them.

Group LIST

A LIST defines a group very much like CAT but it also gives a scope for PROPs (see below). And
unlike CATs, LISTs should not be merged without understanding their contents.

Structurally, a LIST is a chunk with ckiD "LIST" containing a "contents type" ID, optional shared
properties, and the nested contents (FORMs, LISTs, and CATs), in that order. The ckSize of each
contained chunk is a relative pointer to the next one. A LIST is not an arbitrary linked list-the
cells are simply concatenated.

LIST ::="LIST"#{ ContentsType PROP* (FORM I LIST I CAT)* }
ContentsType ::= ID

370 Amiga ROM Kernel Reference Manual: Devices

Group PROP

PROP chunks may appear in LISTs (not in FORMs or CATs). They supply shared properties for
the FORMs in that LIST. This ability to elevate some property settings to shared status for a list of
forms is useful for both indirection and compaction. E.g., a list of images with the same size and
colors can share one "size" property and one "color map" property. Individual FORMs can override
the shared settings.

The contents of a PROP is like a FORM with no data chunks:

PROP ::~"PROP"#(FormType Property*}

It means, "Here are the shared properties for FORM type <FormType>".

A LIST may have at most one PROP of a FORM type, and all the PROPs must appear before any of
the FORMs or nested LISTs and CATs. You can have subsequences of FORMs sharing properties
by making each subsequence a LIST.

Seeping: Think of property settings as variable bindings in nested blocks of a programming
language. In C this would look like:

#define Roman 0
#define Helvetica 1

void main()
(
int font~Roman; /* The global default */

(

/*

printf("The font number is %d\n",font);
}
(
int font~Helvetica; /* local setting */
printf("The font number is %d\n",font);
}
{
printf("The font number is %d\n",font);
}

* Sample output: The font number is 0
* The font number is 1
* The font number is 0
*I

An IFF file could contain:

LIST (
PROP TEXT {

FONT (TimesRoman}
}

I* shared setting */

FORM TEXT {
FONT (Helvetica}
CHRS (Hello }
}

FORM TEXT (
CHRS (there.}
}

/* local setting */
/* uses font Helvetica */

I* uses font TimesRoman */

IFF Specification 371

The shared property assignments selectively override the reader's global defaults, but only for
FORMs within the group. A FORM's own property assignments selectively override the global
and group-supplied values. So when reading an IFF file, keep property settings on a stack. They
are designed to be small enough to hold in main memory.

Shared properties are semantically equivalent to copying those properties into each of the nested
FORMs right after their FORM type IDs.

Properties for LIST

Optional "properties for LIST" store the origin of the list's contents in a PROP chunk for the
pseudo FORM type "LIST". They are the properties originating program "OPGM", processor
family "OCPU", computer type "OCMP", computer serial number or network address "OSN ", and
user name "UNAM". In our imperfect world, these could be called upon to distinguish between
unintended variations of a data format or to work around bugs in particular originating/receiving
program pairs. Issue: Specify the format of these properties.

A creation date could also be stored in a property, but let's ask that file creating, editing, and
transporting programs maintain the correct date in the local file system. Programs that move files
between machine types are expected to copy across the creation dates.

372 Amiga ROM Kernel Reference Manual: Devices

6. Standard File Structure

File Structure Overview

An IFF file is just a single chunk of type FORM, LIST, or CAT. Therefore an IFF file can be
recognized by its first 4 bytes: "FORM", "LIST", or "CAT". Any file contents after the chunk's
end are to be ignored. (Some file transfer programs add garbage to the end of transferred files. This
specification protects against such common damage).

The simplest IFF file would be one that does no more than encapsulate some binary data (perhaps
even an old-fashioned single-purpose binary file). Here is a binary dump of such a minimal IFF
example:

0000: 464F524D OOOOOOlA 534E4150 43524143
0010: OOOOOOOD 68656C6C 6F2C776F 726C6421
0020: OAOO

FORM SNAPCRAC
.... hello,world!

The first 4 bytes indicate this is a "FORM"; the most common IFF top level structure. The following
4 bytes indicate that the contents totals 26 bytes. The form type is listed as "SNAP".

Our form "SNAP" contains only one chunk at the moment; a chunk of type "CRAC". From the size
($0000000D) the amount of data must be 13 bytes. In this case, the data happens to correspond to
the ASCII string "hello, world! <lf>". Since the number 13 is odd, a zero pad byte is added to
the file. At any time new chunks could be added to form SNAP without affecting any other aspect
of the file (other than the form size). It's that simple.

Since an IFF file can be a group of objects, programs that read/write single objects can communicate
to an extent with programs that read/write groups. You're encouraged to write programs that handle
all the objects in a LIST or CAT. A graphics editor, for example, could process a list of pictures as
a multiple page document, one page at a time.

Programs should enforce IFF's syntactic rules when reading and writing files. Users should be
told when a file is corrupt. This ensures robust data transfer. For minor damage, you may wish to
give the user the option of using the suspect data, or cancelling. Presumably a user could read in a
damaged file, then save whatever was salvaged to a valid file. The public domain IFF reader/writer
subroutine package does some syntactic checks for you. A utility program"IFFCheck" is available
that scans an IFF file and checks it for conformance to IFF's syntactic rules. IFFCheck also prints
an outline of the chunks in the file, showing the ckiD and ckSize of each. This is quite handy
when building IFF programs. Example programs are also available to show details of reading and
writing IFF files.

A merge program "IFFJoin" will be available that logically appends IFF files into a single CAT
group. It "unwraps" each input flle that is a CAT so that the combined file isn't nested CATs.

If we need to revise the IFF standard, the three anchoring IDs will be used as "version numbers".
That's why IDs "FORI" through "FOR9", "LISl" through "LIS9", and "CATl" through "CAT9"
are reserved.

IFF formats are designed for reasonable performance with floppy disks. We achieve considerable
simplicity in the formats and programs by relying on the host file system rather than defining
universal grouping structures like directories for LIST contents. On huge storage systems, IFF files
could be leaf nodes in a file structure like a B-tree. Let's hope the host file system implements that
for us!

IFF Specification 373

There are two kinds of IFF files: single purpose files and scrap files. They differ in the interpretation
of multiple data objects and in the file's external type.

Single Purpose Files

A single purpose IFF file is for normal "document" and "archive" storage. This is in contrast with
"scrap files" (see below) and temporary backing storage (non-interchange files).

The external file type (or filename extension, depending on the host file system) indicates the file's
contents. It's generally the FORM type of the data contained, hence the restrictions on FORM type
IDs.

Programmers and users may pick an "intended use" type as the filename extension to make it easy
to filter for the relevant files in a filename requester. This is actually a "subclass" or "subtype"
that conveniently separates files of the same FORM type that have different uses. Programs cannot
demand conformity to its expected subtypes without overly restricting data interchange since they
cannot know about the subtypes to be used by future programs that users will want to exchange data
with.

Issue: How to generate 3-letter MS-DOS extensions from 4-letter FORM type IDs?

Most single purpose files will be a single FORM (perhaps a composite FORM like a musical score
containing nested FORMs like musical instrument descriptions). If it's a LIST or a CAT, programs
should skip over unrecognized objects to read the recognized ones or the first recognized one. Then
a program that can read a single purpose file can read something out of a "scrap file", too.

Scrap Files (not currently used)

A "scrap file" is for maximum interconnectivity in getting data between programs; the core of a
clipboard function. Scrap files may have type "IFF " or filename extension ".IFF".

A scrap file is typically a CAT containing alternate representations of the same basic information.
Include as many alternatives as you can readily generate. This redundancy improves intercon­
nectivity in situations where we can't make all programs read and write super-general formats.
[Inside Macintosh chapter "Scrap Manager".] E.g., a graphically-annotated musical score might be
supplemented by a stripped down 4-voice melody and by a text (i.e., the lyrics).

The originating program should write the alternate representations in order of "preference": most
preferred (most comprehensive) type to least preferred (least comprehensive) type. A receiving
program should either use the first appearing type that it understands or search for its own "preferred"
type.

A scrap file should have at most one alternative of any type. (A LIST of same type objects is OK
as one of the alternatives.) But don't count on this when reading; ignore extra sections of a type.
Then a program that reads scrap files can read something out of single purpose files.

374 Amiga ROM Kernel Reference Manual: Devices

Rules for Reader Programs

Here are some notes on building programs that read IFF files. For LIST and PROP work, you
should also read up on recursive descent parsers. [See, for example, Compiler Construction, An
Advanced Course.]

• The standard is very flexible so many programs can exchange data. This implies a program has
to scan the file and react to what's actually there in whatever order it appears. An IFF reader
program is a parser.

• For interchange to really work, programs must be willing to do some conversion during read­
in. If the data isn't exactly what you expect, say, the raster is smaller than those created by
your program, then adjust it. Similarly, your program could crop a large picture, add or drop
bitplanes, or create/discard a mask plane. The program should give up gracefully on data that
it can't convert.

• If it doesn't start with "FORM", "LIST", or "CAT", it's not an IFF-85 file.

• For any chunk you encounter, you must recognize its type ID to understand its contents.

• For any FORM chunk you encounter, you must recognize its FORM type ID to understand the
contained "local chunks". Even if you don't recognize the FORM type, you can still scan it for
nested FORMs, LISTs, and CATs of interest.

• Don't forget to skip the implied pad byte after every odd-length chunk, this is not included in
the chunk count!

• Chunk types LIST, FORM, PROP, and CAT are generic groups. They always contain a subtype
ID followed by chunks.

• Readers ought to handle a CAT of FORMs in a file. You may treat the FORMs like document
pages to sequence through, or just usc the first FORM.

• Many IFF readers completely skip LISTs. "Fully IFF-conforming" readers are those that handle
LISTs, even if just to read the first FORM from a file. If you do look into a LIST, you must
process shared properties (in PROP chunks) properly. The idea is to get the correct data or

none at all.

• The nicest readers arc willing to look into unrecognized FORMs for nested FORM types that
they do recognize. For example, a musical score may contain nested instrument descriptions
and animation or desktop publishing files may contain still pictures. This extra step is highly
recommended.

Note to programmers: Processing PROP chunks is not simple! You'll need some background in
interpreters with stack frames. If this is foreign to you, build programs that read/write only one
FORM per file. For the more intrepid programmers, the next paragraph summarizes how to process
LISTs and PROPs.

Allocate a stack frame for every LIST and FORM you encounter and initialize it by copying the
stack frame of the parent LIST or FORM. At the top level, you '11 need a stack frame initialized to
your program's global defaults. While reading each LIST or FORM, store all encountered properties
into the current stack frame. In the example ShowiLBM, each stack frame has a place for a bitmap
header property ILBM.BMHD and a color map property ILBM.CMAP. When you finally get to the
ILBM's BODY chunk, usc the property settings accumulated in the current stack frame.

IFF Specification 375

An alternate implementation would just remember PROPs encountered, forgetting each on reaching
the end of its scope (the end of the containing LIST). When a FORM XXXX is encountered, scan the
chunks in all remembered PROPs XXXX, in order, as if they appeared before the chunks actually
in the FORM XXXX. This gets trickier if you read FORMs inside of FORMs.

Rules for Writer Programs

Here are some notes on building programs that write IFF files, which is much easier than reading
them.

• An IFF file is a single FORM, LIST, or CAT chunk.

• Any IFF-85 file must start with the 4 characters "FORM", "LIST", or "CAT", followed by a
LONG ckSi ze. There should be no data after the chunk end.

• Chunk types LIST, FORM, PROP, and CAT are generic. They always contain a subtype ID
followed by chunks. These three IDs are universally reserved, as are "LIS 1" through "LIS9",
"FORI" through "FOR9", "CATl" through "CAT9", and" ".

• Don't forget to write a 0 pad byte after each odd-length chunk.

• Do not try to edit a file that you don't know how to create. Programs may look into a file and
copy out nested FORMs of types that they recognize, but they should not edit and replace the
nested FORMs and not add or remove them. Breaking these rules could make the containing
structure inconsistent. You may write a new file containing items you copied, or copied and
modified, but don't copy structural parts you don't understand.

• You must adhere to the syntax descriptions in Appendix A. E.g., PROPs may only appear inside
LISTs.

There are at least four common techniques for writing an IFF group:

(1) build the data in a file mapped into virtual memory.
(2) build the data in memory blocks and use block 1/0.
(3) stream write the data piecemeal and (don't forget!) random access back
to set the group (or FORM) length count.
(4) make a preliminary pass to compute the length count then stream write the data.

Issue: The standard disallows "blind" chunk copying for consistency reasons. Perhaps we can
define a ckiD convention for chunks that are OK to replicate without knowledge of the contents.
Any such chunks would need to be internally consistent, and not be bothered by changed external
references.

Issue: Stream-writing an IFF FORM can be inconvenient. With random access files one can write
all the chunks then go back to fix up the FORM size. With stream access, the FORM size must be
calculated before the file is written. When compression is involved, this can be slow or inconvenient.
Perhaps we can define an "END " chunk. The stream writer would use -1 ($FFFFFFFF) as the
FORM size. The reader would follow each chunk, when the reader reaches an "END ", it would
tenninate the last -1 sized chunk. Certain new IFF FORMs could require that readers understand
"END".

376 Amiga ROM Kernel Reference Manual: Devices

7. Standards Committee

The following people contributed to the design of this IFF standard:

Bob "Kodiak" Bums, Commodore-Amiga
R. J. Mical, Commodore-Amiga
Jerry Morrison, Electronic Arts
Greg Riker, Electronic Arts
Steve Shaw, Electronic Arts
Barry Walsh, Commodore-Amiga
Oct, 1988 revision by Bryce Nesbitt, and Carolyn Scheppner, Commodore-Amiga

Appendix A. Reference

Type Definitions

The following C typedefs describe standard IFF structures. Declarations to use in practice will vary
with the CPU and compiler. For example, 68000 Lattice C produces efficient comparison code if
we define ID as a "LONG". A macro "MakeiD" builds these IDs at compile time.

I* Standard IFF types, expressed in 68000 Lattice C. *I

typedef unsigned char UBYTE;
typedef short WORD;
typedef unsigned short UWORD;
typedef long LONG;

I* 8 bits unsigned
I* 16 bits signed
I* 16 bits unsigned
I* 32 bits signed

*I
*I
*I
*I

typedef char ID[4]; I* 4 chars in ' ' through '_, *I

typedef struct {
ID ckiD;
LONG ckSize;
UBYTE ckData[l* ckSize *I];
} Chunk;

I* sizeof(ckData)

I* ID typedef and builder for 68000 Lattice C. *I

*I

typedef LONG ID; I* 4 chars in' ' through,_, *I

#define MakeiD(a,b,c,d) ((al<<24 I (bl<<l6 I (cl<<B I (d)

I* Globally reserved IDs. */
#define ID FORM MakeiD('F','O','R','M')
#define ID-LIST MakeiD('L' ,'I' ,'S' ,'T')
#define ID-PROP MakeiD('P','R','O','P')
#define ID-CAT MakeiD('C' ,'A' ,'T' ,' ')
#define ID:::FILLER MakeiD (' ',' ',' ',' ')

Syntax Definitions

Here's a collection of the syntax definitions in this document.

Chunk : := ID #{ UBYTE* } [0]

Property Chunk

FORM
FormType
LocalChunk

: ::::;:.
"FORM" #{ FormType (LocalChunk I FORM I LIST I CAT)* }
ID

CAT
ContentsType

LIST
PROP

: :=

Property I Chunk

"CAT "
ID

#{ ContentsType (FORM I LIST I CAT)* }
a hint or an "abstract data type" ID

"LIST" # { ContentsType PROP* (FORM I LIST I CAT)*
"PROP" #{ FormType Property* }

IFF Specification 377

In this extended regular expression notation, the token "#" represents a count of the following
braced data bytes. Literal items are shown in "quotes", [square bracketed items] are optional, and
"*" means 0 or more instances. A sometimes-needed pad byte is shown as " [0 J ".

Example Diagrams

Here's a box diagram for an example IFF file, a raster image FORM ILBM. This FORM contains a
bitmap header property chunk BMHD, a color map property chunk CMAP, and a raster data chunk
BODY. This particular raster is 320 x 200 pixels x 3 bit planes uncompressed. The "o" after the
CMAP chunk represents a zero pad byte; included since the CMAP chunk has an odd length. The
text to the right of the diagram shows the outline that would be printed by the IFFCheck utility
program for this particular file.

'FORM' 24070 FORM 24070 ILBM

'ILBM'

'BMHD' 20
.BMHD 20

320, 200, 0, 0, 3, 0, o, 0 ...

24070 'CMAP' 21 .CMAP 21

0, 0, 0; 32, 0, 0; 64, 0, 0 ...

0

'BODY' 24000
.BODY 24000

0, 0, 0 ...

378 Amiga ROM Kernel Reference Manual: Devices

This second diagram shows a LIST of two FORMs ILBM sharing a common BMHD property and
a common CMAP property. Again, the text on the right is an outline ala IFFCheck.

'LIST' 48114 LIST 48114 ILBM

'ILBM'

'PROP' 62 .PROP 62 ILBM

'ILBM'

'BMHD' 20

320, 200, 0, 0, 3, 0, 0, 0BMHD 20

'CMAP' 21

0, 0, 0; 32, 0, 0; 64, 0, 0CMAP 21

0

'FORM' 24012
.FORM 24012 ILBM

'ILBM'

'BODY' 24000
.. BODY 24000

0, 0, 0 ...

'FORM' 24012

.FORM 24012 ILBM
'ILBM'

'BODY' 24000

0, 0, 0 BODY 24000

IFF Specification 379

"ILBM" IFF Interleaved Bitmap

Date: January 17, 1986 (CRNG data updated Oct, 1988 by Jerry Morrison)

From:
(Appendix E added and CAMG updated Oct, 1988 by Commodore-Amiga, Inc.)
Jerry Morrison, Electronic Arts

Status: Released and in use

1. Introduction

"EA IFF 85" is Electronic Arts' standard for interchange format files. "ILBM" is a format for a 2
dimensional raster graphics image, specifically an InterLeaved bitplane }!itMap image with color
map. An ILBM is an IFF "data section" or "FORM type", which can be an IFF file or a part of one.
ILBM allows simple, highly portable raster graphic storage.

An ILBM is an archival representation designed for three uses. First, a stand- alone image that
specifies exactly how to display itself (resolution, size, color map, etc.). Second, an image intended
to be merged into a bigger picture which has its own depth, color map, and so on. And third,
an empty image with a color map selection or "palette" for a paint program. ILBM is also
intended as a building block for composite IFF FORMs like "animation sequences" and "structured
graphics". Some uses ofiLBM will be to preserve as much information as possible across disparate
environments. Other uses will be to store data for a single program or highly cooperative programs
while maintaining subtle details. So we're trying to accomplish a lot with this one format.

This memo is the IFF supplement for FORM ILBM. Section 2 defines the purpose and format
of property chunks bitmap header "BMHD", color map "CMAP", hotspot "GRAB", destination
merge data "DEST", sprite information "SPRT", and Commodore Amiga viewport mode "CAMG".
Section 3 defines the standard data chunk "BODY". These are the "standard" chunks. Section
4 defines the non- standard data chunks. Additional specialized chunks like texture pattern can
be added later. The ILBM syntax is summarized in Appendix A as a regular expression and in
Appendix B as a box diagram. Appendix C explains the optional run encoding scheme. Appendix
D names the committee responsible for this FORM ILBM standard.

Details of the raster layout are given in part 3, "Standard Data Chunk". Some elements are based
on the Commodore Amiga hardware but generalized for use on other computers. An alternative to
ILBM would be appropriate for computers with true color data in each pixel, though the wealth of
available ILBM images makes import and export important.

Reference:

"EA IFF 85" Standard for Interchange Format Files describes the underlying conventions for all
IFF files.
Amiga® is a registered trademark of Commodore-Amiga, Inc.
Electronic Arts™ is a trademark of Electronic Arts.
Macintosh ™ is a trademark licensed to Apple Computer, Inc.
MacPaint™ is a trademark of Apple Computer, Inc.

IFF Specification: ILBM 381

2. Standard Properties
ILBM has several defined property chunks that act on the main data chunks. The required property
"BMHD" and any optional properties must appear before any "BODY" chunk. (Since an ILBM has
only one BODY chunk, any following properties would be superfluous.) Any of these properties
may be shared over a LIST of several IBLMs by putting them in a PROP ILBM (See the EA IFF
85 document).

BMHD

The required property "BMHD" holds a BitmapHeader as defined in the following documentation.
It describes the dimensions of the image, the encoding used, and other data necessary to understand
the BODY chunk to follow.

typedef UBYTE Masking; I* Choice of masking technique. *I

#define mskNone 0
#define mskHasMask 1
#define mskHasTransparentColor 2
#define mskLasso 3

typedef UBYTE Compression; I* Choice of compression
applied to the rows of all source and mask planes.
is the byte run encoding described in Appendix C.
across rows! *I

#define cmpNone 0
#define cmpByteRun1 1

typedef struct {

algorithm
"cmpByteRun1"

Do not compress

UWORD w, h;
WORD x, y;
UBYTE nPlanes;

I* raster width & height in pixels
I* pixel position for this image
I* # source bitplanes

Masking masking;
Compression compression;

*I
*I
*I

UBYTE pad1; I* unused; ignore on read, write as 0 *I
UWORD transparentColor; /* transparent "color number" (sort of) *I
UBYTE xAspect, yAspect; I* pixel aspect, a ratio width : height *I
WORD pageWidth, pageHeight; I* source "page" size in pixels *I
BitmapHeader;

Fields are filed in the order shown. The UBYTE fields are byte-packed (the C compiler must not
add pad bytes to the structure).

The fields w and h indicate the size of the image rectangle in pixels. Each row of the image is stored
in an integral number of 16 bit words. The number of words per row is words= ((w+15) /16)
or Ceiling (w/16). The fields x andy indicate the desired position of this image within the
destination picture. Some reader programs may ignore x and y. A safe default for writing an ILBM
is (x, y) = (0, 0).

The number of source bitplanes in the BODY chunk is stored in nP lanes. An ILBM with a CMAP
but no BODY and nP lanes = 0 is the recommended way to store a color map.

Note: Color numbers are color map index values formed by pixels in the destination bitmap, which
may be deeper than nPlanes if a DEST chunk calls for merging the image into a deeper image.

The field masking indicates what kind of masking is to be used for this image. The value mskNone
designates an opaque rectangular image. The value mskHasMask means that a mask plane is inter­
leaved with the bitplanes in the BODY chunk (see below). The value mskHasTransparentColor
indicates that pixels in the source planes matching transparentColor are to be considered "trans­
parent". (Actually, transparentColor isn't a "color number" since it's matched with numbers
formed by the source bitmap rather than the possibly deeper destination bitmap. Note that having

382 Amiga ROM Kernel Reference Manual: Devices

a transparent color implies ignoring one of the color registers. The value mskLasso indicates the
reader may construct a mask by lassoing the image as in MacPaint™. To do this, put a 1 pixel
border of transparentColor around the image rectangle. Then do a seed fill from this border.
Filled pixels are to be transparent.

Issue: Include in an appendix an algorithm for converting a transparent color to a mask plane, and
maybe a lasso algorithm.

A code indicating the kind of data compression used is stored in compression. Beware that using
data compression makes your data unreadable by programs that don't implement the matching
decompression algorithm. So we'll employ as few compression encodings as possible. The run
encoding byteRunl is documented in Appendix C.

The field padl is a pad byte reserved for future use. It must be set to 0 for consistency.

The transparentColor specifies which bit pattern means "transparent". This only applies if
masking is mskHasTransparentColor or mskLasso. Otherwise, transparentColor should
be 0 (see above).

The pixel aspect ratio is stored as a ratio in the two fields xAspect and yAspect. This may be
used by programs to compensate for different aspects or to help interpret the fields w, h, x, y,
pageWidth, and pageHeight, which are in units of pixels. The fraction xAspect/yAspect
represents a pixel's width/height. It's recommended that your programs store proper fractions in
the BitmapHeader, but aspect ratios can always be correctly compared with the test:

xAspect * yDesiredAspect = yAspect * xDesiredAspect

Typical values for aspect ratio are width : height= 10 : 11 for an Amiga 320 x 200 display and 1 :
1 for a Macintosh ™ display.

The size in pixels of the source "page" (any raster device) is stored in pageWidth and pageHeight,
e.g., (320, 200) for a low resolution Amiga display. This information might be used to scale an
image or to automatically set the display format to suit the image. Note that the image can be larger
than the page.

CMAP

The optional (but encouraged) property "CMAP" stores color map data as triplets of red, green, and
blue intensity values. Then color map entries ("color registers") are stored in the order 0 through
n-1, totaling 3n bytes. Thus n is the ckSize/3. Normally, n would equal2nPianes.

A CMAP chunk contains a ColorMap array as defined below. Note that these typedefs assume a C
compiler that implements packed arrays of 3-byte elements.

typedef struct {
UBYTE red, green, blue;
} ColorRegister;

typedef ColorRegister ColorMap[n];

/*color intensities 0 .. 255 */
/* size = 3 bytes */

/* size = 3n bytes *I

The color components red, green, and blue are each stored as a byte (8 bits) representing frac­
tional intensity values expressed in 256ths in the range 0 through 255 (e.g., 24/256). White is
(255,255,255-i.e., hex OxFF,OxFF,OxFF) and black is (0,0,0). If your machine has less color
resolution, use the higher order color bits when displaying by simply shifting the CMAP R, G, and
B values to the right. When writing a CMAP, storage of less than 8 bits each of R, G, and B was

IFF Specification: ILBM 383

previously accomplished by left justifying the significant bits within the stored bytes (i.e., a 4-bit
per gun value of OxF,OxF,OxF was stored as OxFO,OxFO,OxFO). This provided correct color values
when the ILBM was redisplayed on the same hardware since the zeros were shifted back out.

However, if color values stored by the above method were used as-is when redisplaying on
hardware with more color resolution, diminished color could result. For example, a value of
(OxFO,OxFO,OxFO) would be pure white on 4-bit-per-gun hardware (i.e., OxF,OxF,OxF), but not quite
white (OxFO,OxFO,OxFO) on 8-bit-per-gun hardware.

Therefore, when storing CMAP values, it is now suggested that you store full 8 bit values for R,
G, and B which correctly scale your color values for eight bits. For 4-bit RGB values, this can be
as simple as duplicating the 4-bit values in both the upper and lower parts of the bytes-i.e., store
(Oxl,Ox7,0xF) as (Oxll,Ox77,0xFF). This will provide a more correct color rendition if the image
is displayed on a device with 8 bits per gun.

When reading in a CMAP for 8-bit-per-gun display or manipulation, you may want to assume that
any CMAP which has 0 values for the low bits of all guns for all registers was stored shifted rather
than scaled, and provide your own scaling. Use defaults if the color map is absent or has fewer
color registers than you need. Ignore any extra color registers.

The example type Color4 represents the format of a color register in working memory of an Amiga
computer, which has 4 bit video DACs. (The " : 4" tells smarter C compilers to pack the field into 4
bits.)

typedef struct {
unsigned padl :4, red :4, green :4, blue :4;
} Color4; /* Amiga RAM format. Not filed. *I

Remember that every chunk must be padded to an even length, so a color map with an odd number
of entries would be followed by a 0 byte, not included in the ckSi ze.

Storing 24-bit ILBMs Information on storing 24-bit ILBMs can be found in the appendix
of this section.

GRAB

The optional property "GRAB" locates a "handle" or "hotspot" of the image relative to its upper left
comer, e.g., when used as a mouse cursor or a "paint brush". A GRAB chunk contains a Point2D.

typedef struct
WORD x, y;
} Point2D;

I* relative coordinates (pixels) *I

DEST

The optional property "DEST" is a way to say how to scatter zero or more source bitplanes into a
deeper destination image. Some readers may ignore DEST.

The contents of a DEST chunk is Destmerge structure:

typedef struct {
UBYTE depth;
UBYTE padl;
UWORD planePick;
UWORD planeOnOff;
UWORD planeMask;
} Destmerge;

I* # bitplanes in the original source */
I* unused; for consistency put 0 here *I
I* how to scatter source bitplanes into destination *I
I* default bitplane data for planePick *I
I* selects which bitplanes to store into *I

384 Amiga ROM Kernel Reference Manual: Devices

~ ~ ~-~--~-------------------<

The low order depth number of bits in planePick, planeOnOff, and planeMask correspond
one-to-one with destination bitplanes. Bit 0 with bitplane 0, etc. (Any higher order bits should
be ignored.) "1" bits in planeP ick mean "put the next source bitplane into this bitplane", so
the number of "1" bits should equal nPlanes. "0" bits mean "put the corresponding bit from
planeOnOff into this bitplane". Bits in planeMask gate writing to the destination bitplane: "1"
bits mean "write to this bitplane" while "0" bits mean "leave this bitplane alone". The normal case
(with no DEST property) is equivalent to planePick = planeMask = 2nPlanes - 1.

Remember that color numbers are formed by pixels in the destination bitmap (depth planes deep)
not in the source bitmap (nPlanes planes deep).

SPRT

The presence of an "SPRT" chunk indicates that this image is intended as a sprite. It's up to the
reader program to actually make it a sprite, if even possible, and to use or overrule the sprite
precedence data inside the SPRT chunk:

typedef UWORD SpritePrecedence; /* relative precedence, 0 is the highest */

Precedence 0 is the highest, denoting a sprite that is foremost.

Creating a sprite may imply other setup. E.g., a 2 plane Amiga sprite would have transparent­
Color = 0. Color registers 1, 2, and 3 in the CMAP would be stored into the correct hardware
color registers for the hardware sprite number used, while CMAP color register 0 would be ignored.

CAMG

A "CAMG" chunk is specifically for Commodore Amiga ILBMs. All Amiga-based reader and
writer software should deal with CAMG. The Amiga supports many different video display modes
including interlace, Extra Halfbrite, hold and modify (HAM), plus a variety of new modes under
the 2.0 operating system. A CAMG chunk contains a single long word (length=4) which specifies
the Amiga display mode of the picture.

Prior to 2.0, it was possible to express all available Amiga ViewModes in 16 bits of flags
(viewport->Modes or NewScreen->ViewModes). Old-style writers and readers place a 16-
bit Amiga viewModes value in the low word of the CAMG, and zeros in the high word. The
following Viewmode flags should always be removed from old-style 16-bit ViewModes values
when writing or reading them:

EXTENDED __ MODE I SPRITES I VP_HIDE I GENLOCK_AUDIO I GENLOCK_VIDEO (=Ox7102, mask=Ox8EFD)

New ILBM readers and writers, should treat the full CAMG longword as a 32-bitModeiD to support
new and future display modes.

New ILBM writers, when running under the 2.0 Amiga operating system, should directly store the
full32-bit return value of the graphics function Get VPMode I D (vp) in the CAMG longword. When
running under 1.3, store a 16-bit Viewmodes value masked as described above.

ILBM readers should only mask bits out of a CAMG if the CAMG has a zero upper word (see
exception below). New ILBM readers, when running under 2.0, should then treat the 32-bit CAMG
value as a ModeiD, and should use the graphics ModeNotAvailable () function to determine if
the mode is available. If the mode is not available, fall back to another suitable display mode. When
running under 1.3, the low word of the CAMG may generally be used to open a compatible display.

IFF Specification: ILBM 385

Note that one popular graphics package stores garbage in the upper word of the CAMG of brushes,
and incorrect values (generally zero) in the low word. You can screen for such garbage values by
testing for non-zero in the upper word of a Modem in conjunction with the OxOOOOIOOO bit NOT
set in the low word.

The following code fragment demonstrates ILBM reader filtering of inappropriate bits in 16-bit
CAMG values.

#include <graphics/view.h>
#include <graphics/ di splayi n fa. h>

/* Knock bad bits out of old-style CAMG modes before checking availability.
* (some ILBM CI\MG' s have these bits set in old 1. 3 modes, and should not)
* If not an extended monitor ID, or if marked as extended but missing
* upper 16 bits, screen out inappropriate bits now.
*I

if ((! (modeid & MONITOR ID MASK)) II
((modeid & EXTENDED MODE) && (! (modeid & OxFFFFOOOO))))

modeid &= -
(- (EXTENDED_I'10DE I SPRITES I GENLOCK_ AUDIO I GENLOCK_ VIDEO I VP _HIDE)) ;

/* Check for bogus CI\MG like some brushes have, with junk in
* upper word and extended bit NOT set not set in lower word.
*I

if((modeid & OxFFFFOOOO)&&(! (modeid & EXTENDED_MODE)))
{
/* Bad CI\MG, so ignore CAMG and determine a mode based on
* based on pagesize or aspect
*I
modeid = NULL;
if(wide >= 610) modeid I= HIRES;
if(high >= 400) modeid I= LACE;
}

/* Now, ModeNotAvailable() may be used to determine if the mode is available.
*
• If the mode is not avaiiable, you may prompt the user for a mode
* choice, or search the 2.0 display database for an appropriate
* replacement mode, or you may be able to get a relatively compatible
* old display ~ode by masking out all bits except
* HIRES i LACE HAM I EXTRA f!ALFBRITE
*I

386 Amiga ROM Kernel Reference Manual: Devices

3. Standard "BODY" Data Chunk

Raster Layout

Raster scan proceeds left-to-right (increasing X) across scan lines, then top-to-bottom (increasing
Y) down columns of scan lines. The coordinate system is in units of pixels, where (0,0) is the upper
left comer.

The raster is typically organized as bitplanes in memory. The corresponding bits from each plane,
taken together, make up an index into the color map which gives a color value for that pixel. The
first bitplane, plane 0, is the low order bit of these color indexes.

A scan line is made of one "row" from each bitplane. A row is one plane's bits for one scan line,
but padded out to a word (2 byte) boundary (not necessarily the first word boundary). Within each
row, successive bytes are displayed in order and the most significant bit of each byte is displayed
first.

A "mask" is an optional "plane" of data the same size (w, h) as a bitplane. It tells how to "cut
out" part of the image when painting it onto another image. "One" bits in the mask mean "copy the
corresponding pixel to the destination". "Zero" mask bits mean "leave this destination pixel alone".
In other words, "zero" bits designate transparent pixels.

The rows of the different bitplancs and mask are interleaved in the file (see below). This localizes
all the information pertinent to each scan line. It makes it much easier to transform the data while
reading it to adjust the image size or depth. It also makes it possible to scroll a big image by
swapping rows directly from the file without the need for random-access to all the bitplanes.

BODY

The source raster is stored in a "BODY" chunk. This one chunk holds all bitplanes and the optional
mask, interleaved by row.

The BitMapHeader, in a BMHD property chunk, specifies the raster's dimensions w, h, and
nPlanes. It also holds the masking field which indicates if there is a mask plane and the
compression field which indicates the compression algorithm used. This information is needed
to interpret the BODY chunk, so the BMHD chunk must appear first. While reading an ILBM's
BODY, a program may convert the image to another size by filling (with transparentColor) or
clipping.

The BODY's content is a concatenation of scan lines. Each scan line is a concatenation of one
row of data from each plane in order 0 through nPlanes-1 followed by one row from the mask
(if masking = hasMask). If the BitMapHeader field compression is cmpNone, all h rows arc
exactly (w+15) /16 words wide. Otherwise, every row is compressed according to the specified
algorithm and the stored widths depend on the data compression.

Reader programs that require fewer bitplancs than appear in a particular ILBM file can combine
planes or drop the high-order (later) planes. Similarly, they may add bitplanes and/or discard the
mask plane.

Do not compress across rows, and don't forget to compress the mask just like the bitplanes.
Remember to pad any BODY chunk that contains an odd number of bytes and skip the pad when
reading.

IFF Specification: ILBM 387

4. Nonstandard Data Chunks
The following data chunks were defined after various programs began using FORM ILBM so
they are "nonstandard" chunks. See the registry document for the latest information on additional
non-standard chunks.

CRNG
A "CRNG" chunk contains "color register range" information. It's used by Electronic Arts' Deluxe
Paint program to identify a contiguous range of color registers for a" shade range" and color cycling.
There can be zero or more CRNG chunks in an ILBM, but all should appear before the BODY
chunk. Deluxe Paint normally writes 4 CRNG chunks in an ILBM when the user asks it to "Save
Picture".

typedef struct {
WORD padl; /* reserved for future use; store 0 here */
WORD rate; /* color cycle rate */
WORD flags; /* see below */
UBYTE low, high; /* lower and upper color registers selected */
) CRanqe;

The bits of the flags word arc interpreted as follows: if the low bit is set then the cycle is "active",
and if this bit is clear it is not active. Normally, color cycling is done so that colors move to the
next higher position in the cycle, with the color in the high slot moving around to the low slot. If
the second bit of the flags word is set, the cycle moves in the opposite direction. As usual, the other
bits of the flags word are reserved for future expansion. Here arc the masks to test these bits:

#define RNG ACTIVE 1
#define RNG-REVERSE 2

The fields low and high indicate the range of color registers (color numbers) selected by this
CRange.

The field active indicates whether color cycling is on or off. Zero means off.

The field rate determines the speed at which the colors will step when color cycling is on. The
units arc such that a rate of 60 steps per second is represented as 214 = 16384. Slower rates can be
obtained by linear scaling: for 30 steps/second, rate = 8192; for 1 step/second, rate = 16384/60 ~
273.

Warning! One popular paint package always sets the RNG_ACfiVE bit, but uses a rate
of 36 (decimal) to indicate cycling is not active.

CCRT
Commodore's Graphicraft program uses a similar chunk "CCRT" (for Color Cycling Range and
Timing). This chunk contains a Cycleinfo structure.

typedef str-uct (
WORD direction;

UBYTE start, end;
LONG seconds;
LONG microseconds;
WORD pad;
) Cycleinfo;

/* 0 ~don't cycle. l ~cycle forwards */
/* (1, 2, 3). -1 = cycle backwards (3, 2, 1) */
/* lower and upper color- registers selected */
!*#seconds between changing colors plus ... */
/* # microseconds between changinq colors */
/* reserved for future use; store 0 here */

This is very similar to a CRNG chunk. A program would probably only usc one of these two
methods of expressing color cycle data, new programs should use CRNG. You could write out both
if you want to communicate this information to both Deluxe Paint and Graphicraft.

388 Amiga ROM Kernel Reference Manual: Devices

·-··-------~---~·

Appendix A. ILBM Regular Expression

Here's a regular expression summary of the FORM ILBM syntax. This could be an IFF file or a
part of one.

ILBM .. - "FORM" #{ nrLBM" BMHD [CMAP] [GRAB] [DEST] [SPRT] [CAMG)
CRNG* CCRT* [BODY))

BMHD : := "BMHD" # { BitMapHeader)
CMAP .. - "CMAP" # { (red green blue)* [0 l
GRAB .. - "GRAB" # { Point2D }
DEST :::::::: "DEST" #{ DestMerge)
SPRT .. - "SPRT" #{ SpritePrecedence
CAMG .. - "CAMG" # (LONG)

CRNG .. - "CRNG" # (CRange
CCRT .. - "CCRT" # (Cycle Info)
BODY : := "BODY" # { UBYTE* [0]

The token"#" represents a ckSi ze LONG count of the following braced data bytes. E.g., a BMHD's
"#"should equal sizeof (Bi tMapHeader). Literal strings are shown in "quotes", [square bracket
items] are optional, and "*"means 0 or more repetitions. A sometimes-needed pad byte is shown
as"[O]".

The property chunks BMHD, CMAP, GRAB, DEST, SPRT, CAMG and any CRNG and CCRT
data chunks may actually be in any order but all must appear before the BODY chunk since ILBM
readers usually stop as soon as they read the BODY. If any of the 6 property chunks are missing,
default values arc inherited from any shared properties (if the ILBM appears inside an IFF LIST
with PROPs) or from the reader program's defaults. If any property appears more than once, the
last occurrence before the BODY is the one that counts since that's the one that modifies the BODY.

Appendix B. ILBM Box Diagram

Here is a box diagram for a simple example: an uncompressed image 320 x 200 pixels x 3 bitplanes.
The text to the right of the diagram shows the outline that would be printed by the Sift utility
program for this particular file.

'FORM' 24070 FORM 24070 ILBM

'ILBM'

'BMHD' 20

320, 200' 0, 0, 3, 0, 0, 0 ...
.BMHD 20

'CMAP' 21

0, 0, 0; 32, 0, 0; 64, 0, 0CMAP 21

0

I
'BODY' 24000

I 0, 0, 0 ...
.BODY 24000

The 11 o II after the CMAP chunk is a pad byte.

IFF Specification: ILBM 389

Appendix C. IFF Hints

Hints on ILBM files from Jerry Morrison, Oct 1988. How to avoid some pitfalls when reading
ILBM files:

• Don't ignore the BitMapHeader.masking field. A bitmap with a mask (such as a partially­
transparent DPaint brush or a DPaint picture with a stencil) will read as garbage if you don't
de-interleave the mask.

• Don't assume all images are compressed. Narrow images aren't usually run-compressed since
that would actually make them longer.

• Don't assume a particular image size. You may encounter overscan pictures and PAL pictures.

Different hardware display devices have different color resolutions:

Device R:G:B bits rnaxColor
------- ---------- --------
Mac SE 1 1
IBM EGA 2:2:2 3
Atari ST 3:3:3 7
Amiga 4: 4:4 15
CD-I 5:5:5 31
IBM VGA 6: 6: 6 63
Mac II 8: 8:8 255

An ILBM CMAP defines 8 bits of Red, Green and Blue (i.e., 8:8:8 bits ofR:G:B). When displaying
on hardware which has less color resolution, just take the high order bits. For example, to convert
ILBM's 8-bit Red to the Amiga's 4-bit Red, right shift the data by 4 bits (R4 := R8 >> 4).

To convert hardware colors to ILBM colors, the ILBM specification says just set the high bits (R8
:= R4 < < 4). But you can transmit higher contrast to foreign display devices by scaling the data
[O .. maxColor] to the full range [0 .. 255]. In other words, R8 := (Rn x 255) ? maxColor. (Example
#1: EGA color I :2:3 scales to 85:170:255. Example #2: Arniga 15:7:0 scales to 255:119:0). This
makes a big difference where maxColor is less than 15. In the extreme case, Mac SE white (1)
should be converted to ILBM white (255), not to ILBM gray (128).

CGA and EGA subtleties

IBM EGA colors in 350 scan line mode are 2:2:2 bits ofR:G:B, stored in memory as xxR'G'B 'RBG.
That's 3 low-order bits followed by 3 high-order bits.

IBM CGA colors arc 4 bits stored in a byte as xxxxiRGB. (EGA colors in 200 scan line modes are
the same as CGA colors, but stored in memory as xxxlxRGB.) That's 3 high-order bits (one for each
of R, G, and B) plus one low-order" Intensity" bit for all 3 components R, G, and B. Exception:
IBM monitors show IRGB = 0110 as brown, which is really the EGA color R:G:B = 2:1:0, not dark
yellow 2:2:0.

24-bit ILBMs

When storing deep images as ILBMs (e.g., images with 8 bits each ofR,G, and B), the bits for each
pixel represent an absolute RGB value for that pixel rather than an index into a limited color map.
The order for saving the bits is critical since a deep ILBM would not contain the usual CMAP of
RGB values (such a CMAP would be too large and redundant).

390 Amiga ROM Kernel Reference Manual: Devices

----~-- .. ·-~-·~-- .. --·-------------------

To interpret these "deep" ILBMs, it is necessary to have a standard order in which the bits of the
R, G, and B values will be stored. A number of different orderings have already been used in deep
ILBMs and a default has been chosen from them.

The following bit ordering has been chosen as the default bit ordering for deep ILBMs.

Default standard deep ILBM bit ordering:
saved first saved last
RO Rl R2 R3 R4 R5 R6 R7 GO Gl G2 G3 G4 G5 G6 G7 BO Bl B2 B3 B4 B5 B6 B7

One other existing deep bit ordering that you may encounter is the 21-bit NewTek format.

NewTek deep ILBM bit ordering:
saved first saved last
R7 G7 B7 R6 G6 B6 R5 G5 B5 R4 G4 B4 R3 G3 B3 R2 G2 B2 Rl Gl Bl RO GO BO

Note that you may encounter CLUT chunks in deep ILBMs. See the Third Party Specs appendix
for more information on CLUT chunks.

Appendix D. ByteRunl Run Encoding

The run encoding scheme byteRunl is best described by pseudo code for the decoder Unpacker

(called UnPackBi ts in the Macintosh™ toolbox):

UnPacker:
LOOP until produced the desired number of bytes

Read the next source byte into n
SELECT n FROM

[0 .. 127] =>copy the next n+l bytes literally
(-1. .-127] => replicate the next byte -n+1 times
-128 => no operation
ENDCASE;

ENDLOOP;

In the inverse routine Packer, it's best to encode a 2 byte repeat run as a replicate run except when
preceded and followed by a literal run, in which case it's best to merge the three into one literal run.
Always encode 3 byte repeats as replicate runs.

Remember that each row of each scan line of a raster is separately packed.

Appendix E. Standards Committee

The following people contributed to the design of this FORM ILBM standard:

Bob "Kodiak" Bums, Commodore-Amiga
R. J. Mical, Commodore-Amiga
Jerry Morrison, Electronic Arts
Greg Riker, Electronic Arts
Steve Shaw, Electronic Arts
Dan Silva, Electronic Arts
Barry Walsh, Commodore-Amiga

IFF Specification: ILBM 391

Date:
From:
Status:

"FTXT" IFF Formatted Text

November 15, 1985 (Updated Oct, 1988 Commodore-Amiga, Inc.)
Steve Shaw and Jerry Morrison, Electronic Arts and Bob "Kodiak" Bums, Commodore-Amiga
Adopted

1. Introduction
This memo is the IFF supplement for FORM FI'XT. An FI'XT is an IFF "data section" or "FORM
type" -which can be an IFF file or a part of one-containing a stream of text plus optional formatting
information."EA IFF 85" is Electronic Arts' standard for interchange format files. (See the IFF
reference.)

An FI'XT is an archival and interchange representation designed for three uses. The simplest use
is for a "console device" or "glass teletype" (the minimal 2-D text layout means): a stream of
"graphic" ("printable") characters plus positioning characters "space" ("SP") and line terminator
("LF"). This is not intended for cursor movements on a screen although it does not conflict with
standard cursor-moving characters. The second use is text that has explicit formatting information
(or "looks") such as font family and size, typeface, etc. The third use is as the lowest layer of a
structured document that also has "inherited" styles to implicitly control character looks. For that
use, FORMs FI'XT would be embedded within a future document FORM type. The beauty of
FI'XT is that these three uses are interchangeable, that is, a program written for one purpose can
read and write the others' files. So a word processor does not have to write a separate plain text file
to communicate with other programs.

Text is stored in one or more "CHRS" chunks inside an FI'XT. Each CHRS contains a stream of
8-bit text compatible with ISO and ANSI data interchange standards. FI'XT uses just the central
character set from the ISO/ ANSI standards. (These two standards are henceforth called "ISO/ ANSI"
as in "see the ISO/ANSI reference".)

Since it's possible to extract just the text portions from future document FORM types, programs
can exchange data without having to save both plain text and formatted text representations.

Character looks are stored as embedded control sequences within CHRS chunks. This document
specifies which class of control sequences to use: the CSI group. This document does not yet
specify their meanings, e.g., which one means "tum on italic face". Consult ISO/ANSI.

Section 2 defines the chunk types character stream "CHRS" and font specifier "FONS". These are
the "standard" chunks. Specialized chunks for private or future needs can be added later. Section 3
outlines an FI'XT reader program that strips a document down to plain unformatted text. Appendix
A is a code table for the 8-bit ISO/ANSI character set used here. Appendix B is an example FI'XT
shown as a box diagram. Appendix Cis a racetrack diagram of the syntax ofiSO/ANSI control
sequences.

Reference:

Amiga® is a registered trademark ofCommodore-Amiga, Inc. Electronic Arts™ is a trademark of
Electronic Arts.

IFF: "EA IFF 85" Standard for Interchange Format Files describes the underlying conventions for
all IFF files.

IFF Specification: FTXT 393

ISO/ ANSI: ISO/DIS 6429.2 and ANSI X3.64-1979. International Organization for Standardization
(ISO) and American National Standards Institute (ANSI) data-interchange standards. The relevant
parts of these two standards documents are identical. ISO standard 2022 is also relevant.

2. Standard Data and Property Chunks

The main contents of a FORM FfXT is in its character stream "CHRS" chunks. Formatting property
chunks may also appear. The only formatting property yet defined is "FONS", a font specifier. A
FORM FfXT with no CHRS represents an empty text stream. A FORM FfXT may contain nested
IFF FORMs, LISTs, or CATs, although a "stripping" reader (see section 3) will ignore them.

Character Set

FORM FfXT uses the core of the 8-bit character set defined by the ISO/ ANSI standards cited at
the start of this document. (See Appendix A for a character code table.) This character set is
divided into two "graphic" groups plus two "control" groups. Eight of the control characters begin
ISO/ANSI standard control sequences. (See "Control Sequences" below.) Most control sequences
and control characters are reserved for future use and for compatibility with ISO/ ANSI. Current
reader programs should skip them.

• CO is the group of control characters in the range NUL (hex 0) through hex lF. Of these, only
LF (hex OA) and ESC (hex lB) are significant. ESC begins a control sequence. LF is the line
terminator, meaning "go to the first horizontal position of the next line". All other CO characters
are not used. In particular, CR (hex OD) is not recognized as a line terminator.

• GO is the group of graphic characters in the range hex 20 through hex 7F. SP (hex 20) is the
space character. DEL (hex 7F) is the delete character which is not used. The rest are the
standard ASCII printable characters"!" (hex 21) through,_, (hex 7E).

• Cl is the group of extended control characters in the range hex 80 through hex 9F. Some of
these begin control sequences. The control sequence starting with CSI (hex 9B) is used for
FfXT formatting. All other control sequences and Cl control characters are unused.

• G 1 is the group of extended graphic characters in the range NBSP (hex AO) through "Y'' (hex
FF). It is one of the alternate graphic groups proposed for ISO/ ANSI standardization.

Control Sequences

Eight of the control characters begin ISO/ANSI standard "control sequences" (or "escape se­
quences"). These sequences are described below and diagramed in Appendix C.

GO (SP through DEL)

Gl :: = (NBSP through "Y")

ESC-Seq
ShiftToG2
ShiftToG3
CSI-Seq
DCS-Seq

::=ESC (SP through"/") *
: : = SS2 GO
: : = SS3 GO
: := CSI (SP through "?") *
.. - (DCS I OSC I PM I APC)

("0" through n-n)

("@" through "-")
(SP through n-n I Gl) * ST

394 Amiga ROM Kernel Reference Manual: Devices

"ESC-Seq" is the control sequence ESC (hex lB), followed by zero or more characters in the range
SP through "f' (hex 20 through hex 2F), followed by a character in the range "0" through ,._,. (hex
30 through hex 7E). These sequences are reserved for future use and should be skipped by current
FfXT reader programs.

SS2 (hex 8E) and SS3 (hex 8F) shift the single following GO character into yet -to-be-defined graphic
sets G2 and G3, respectively. These sequences should not be used until the character sets G2 and
G3 are standardized. A reader may simply skip the SS2 or SS3 (taking the following character as
a corresponding GO character) or replace the two-character sequence with a character like"?" to
mean "absent".

FfXT uses "CSI-Seq" control sequences to store character formatting (font selection by number,
type face, and text size) and perhaps layout information (position and rotation). "CSI-Seq" control
sequences start with CSI (the "control sequence introducer", hex 9B). Syntactically, the sequence
includes zero or more characters in the range SP through "?" (hex 20 through hex 3F) and a
concluding character in the range"@" through,._,. (hex 40 through hex 7E). These sequences may
be skipped by a minimal FfXT reader, i.e., one that ignores formatting information.

Note: A future FfXT standardization document will explain the uses of CSI-Seq sequences for
setting character face (light weight vs. medium vs. bold, italic vs. upright, height, pitch, position,
and rotation). For now, consult the ISO/ ANSI references.

"DCS-Seq" is the control sequences starting with DCS (hex 90), OSC (hex 9D), PM (hex 9E), or
APC (hex 9F), followed by zero or more characters each of which is in the range SP through ,._,.
(hex 20 through hex 7E) or else a G 1 character, and terminated by an ST (hex 9C). These sequences
are reserved for future use and should be skipped by current FfXT reader programs.

Data Chunk CHRS

A CHRS chunk contains a sequence of 8-bit characters abiding by the ISO/ ANSI standards cited at
the start of this document. This includes the character set and control sequences as described above
and summarized in Appendix A and C.

A FORM FfXT may contain any number of CHRS chunks. Taken together, they represent a single
stream of textual information. That is, the contents of CHRS chunks are effectively concatenated
except that (1) each control sequence must be completely within a single CHRS chunk, and (2)
any formatting property chunks appearing between two CHRS chunks affects the formatting of the
latter chunk's text. Any formatting settings set by control sequences inside a CHRS carry over to
the next CHRS in the same FORM FfXT. All formatting properties stop at the end of the FORM
since IFF specifies that adjacent FORMs are independent of each other (although not independent
of any properties inherited from an enclosing LIST or FORM).

Property Chunk FONS

The optional property "FONS" holds a FontSpecifier as defined in the C declaration below. It assigns
a font to a numbered "font register" so it can be referenced by number within subsequent CHRS
chunks. (This function is not provided within the ISO and ANSI standards.) The font specifier
gives both a name and a description for the font so the recipient program can do font substitution.

IFF Specification: FTXT 395

By default, CHRS text uses font 1 until it selects another font. A minimal text reader always uses
font 1. If font 1 hasn't been specified, the reader may use the local system font as font 1.

typedef struct {
UBYTE id; /* 0 through 9 is a font id number referenced by an SGR

control sequence selective parameter of 10 through 19.
Other values are reserved for future standardization. */

UBYTE pad1; /* reserved for future use; store 0 here */
UBYTE proportional; /* proportional font-- O~unknown, l=no, 2=yes */
UBYTE serif; j• serif font-- 0 ~ unknown, 1 = no, 2 ~yes */
char name[]; /*A NUL-terminated string naming the preferred font. */
) FontSpecifier;

Fields are filed in the order shown. The UBYTE fields are byte-packed (2 per 16-bit word). The
field padl is reserved for future standardization. Programs should store 0 there for now.

The field proportional indicates if the desired font is proportional width as opposed to fixed
width. The field serif indicates if the desired font is serif as opposed to sans serif. Issue: Discuss
font substitution!

Future Properties

New optional property chunks may be defined in the future to store additional formatting information.
They will be used to represent formatting not encoded in standard ISO/ ANSI control sequences and
for "inherited" formatting in structured documents. Text orientation might be one example.

Positioning Units

Unless otherwise specified, position and size units used in FTXT formatting properties and control
sequences are in decipoints (720 decipoints/inch). This is ANSI/ISO Positioning Unit Mode (PUM)
2. While a metric standard might be nice, decipoints allow the existing U.S.A. typographic units to
be encoded easily, e.g., "12 points" is "120 decipoints".

3. FTXT Stripper

An FfXT reader program can read the text and ignore all formatting and structural information in a
document FORM that uses FORMs FTXT for the leaf nodes. This amounts to stripping a document
down to a stream of plain text. It would do this by skipping over all chunks except FTXT.CHRS
(CHRS chunks found inside a FORM FTXT) and within the FTXT.CHRS chunks skipping all
control characters and control sequences. (Appendix C diagrams this text scanner.) It may also
read FTXT.FONS chunks to find a description for font 1.

396 Amiga ROM Kernel Reference Manual: Devices

Appendix A: Character Code Table

This table corresponds to the ISO/DIS 6429.2 and ANSI X3.64-1979 8-bit character set standards.
Only the core character set of those standards is used in FfXT.

Two G1 characters aren't defined in the standards and are shown as dark gray entries in this table.
Light gray shading denotes control characters. (DEL is a control character although it belongs to
the graphic group GO.)

ISO I DIS 6429.2 and ANSI X3.64-1979 Character Code Table

MSN (most significant nibble)

1 A a
2 B R b

* 3 c s c
$ 4 D T d
% 5 E u e
& 6 F v f

7 G w g

(8 H X h
) 9 I y i

* J z j
+ K [k

< L 1
M m

> N
? 0

Control Graphic group GO
group CO

NBSP is a non-breaking space
SHY is a soft hyphen

q
r

s

t
u
v
w

X

y
z

Control
group Cl

j

¢

£

l::t

¥

§

©

«

D

N
A. 6
A 6

A o
'll lE b

c
0

E u
1!: 0

» E 0

f
1
:t

Graphic group
Gl

E F

a.
a. n
a 0
a 6

a 6
a 0
re b
c;:

e 0

e u
e 6.
e 0.

i i.i
i
i
l. y

IFF Specification: FTXT 397

Appendix B. FTXT Example

Here's a box diagram for a simple example: "The quick brown fox jumped. Four score and seven",
written in a proportional serif font named "Roman".

'FORM' 86

'FTXT'

'FONS' 10

01, 0 0, 02, 02

Roman\0

86

'CHRS' 27

The quick brown fox jumped.

0

'CHRS' 20

Four score and seven

The "0" after the first CHRS chunk is a pad byte.

398 Amiga ROM Kernel Reference Manual: Devices

Appendix C. ISO/ ANSI Control Sequences
This is a racetrack diagram of the ISO/ ANSI characters and control sequences as used in
Ff:XT.CHRS chunks.

line terminator

printable

ShiftToG2
(produces a G2 character)

ShiftToG3 1----1..... (produces a G3 character)

CSI-Seq

SP through (I)
DCS-Seq

DCS, OSC, PM, or APC]---,;:::::::======::::;;;:::;--]!~~ ST q SP through C)~ ~
discard

....___ _____ ..-J any other character I------~

Of the various control sequences, only CSI-Seq is used for Ff:XT character formatting information.
The others are reserved for future use and for compatibility with ISO/ANSI standards. Certain
character sequences are syntactically malformed, e.g., CSI followed by a CO, Cl, or G 1 character.
Writer programs should not generate reserved or malformed sequences and reader programs should
skip them.

Consult the ISO/ ANSI standards for the meaning of the CSI -Seq control sequences.

The two character set shifts SS2 and SS3 may be used when the graphic character groups G2 and
G3 become standardized.

IFF Specification: FTXT 399

"SMUS" IFF Simple Musical Score

Date:
From:

February 20, 1987 (SID _Qef and SID_ Tempo added Oct, 1988)
Jerry Morrison, Electronic Arts

Status: Adopted

1. Introduction
This is a reference manual for the data interchange format "SMUS", which stands for Simple
MUsical Score. "EA IFF 85" is Electronic Arts' standard for interchange format files. A FORM
or "data section") such as FORM SMUS can be an IFF file or a part of one. [See "EA IFF 85"
Electronic Arts Interchange File Format.]

SMUS is a practical data format for uses like moving limited scores between programs and storing
theme songs for game programs. The format should be geared for easy read-in and playback. So
FORM SMUS uses the compact time encoding of Common Music Notation (half notes, dotted
quarter rests, etc.). The SMUS format should also be structurally simple. So it has no provisions
for fancy notational information needed by graphical score editors or the more general timing
(overlapping notes, etc.) and continuous data (pitch bends, etc.) needed by performance-oriented
MIDI recorders and sequencers. Complex music programs may wish to save in a more complete
format, but still import and export SMUS when requested.

A SMUS score can say which "instruments" are supposed play which notes. But the score is
independent of whatever output device and driver software is used to perform the notes. The score
can contain device- and driver-dependent instrument data, but this is just a cache. As long as a
SMUS file stays in one environment, the embedded instrument data is very convenient. When you
move a SMUS file between programs or hardware configurations, the contents of this cache usually
become useless.

Like all IFF formats, SMUS is a filed or "archive" format. It is completely independent of score
representations in working memory, editing operations, user interface, display graphics, computation
hardware, and sound hardware. Like all IFF formats, SMUS is extensible.

SMUS is not an end-all musical score format. Other formats may be more appropriate for certain
uses. (We'd like to design an general-use IFF score format "GSCR". FORM GSCR would encode
fancy notational data and performance data. There would be a SMUS to/from GSCR converter.)

Section 2 gives important background information. Section 3 details the SMUS components by
defining the required property score header "SHDR", the optional text properties name "NAME",
copyright "(c) ",and author "AUTH", optional text annotation "ANNO", the optional instrument
specifier "INS 1 ", and the track data chunk "TRAK". Section 4 defines some chunks for particular
programs to store private information. These are "standard" chunks; specialized chunks for future
needs can be added later. Appendix A is a quick-reference summary. Appendix B is an example
box diagram. Appendix C names the committee responsible for this standard.

References:

"EA IFF 85" Standard for Interchange Format Files describes the underlying conventions for all
IFF files.
"8SVX" IFF 8-Bit Sampled Voice documents a data format for sampled instruments.
MIDI: Musical Instrument Digital Interface Specification 1.0, International MIDI Association,
1983.

IFF Specification: SMUS 401

SSSP: See various articles on Structured Sound Synthesis Project in Foundations of Computer
Music.

Electronic Arts™ is a trademark of Electronic Arts.
Amiga® is a registered trademark of Commodore-Amiga, Inc.

2. Background
Here's some background information on score representation in general and design choices for
SMUS.

First, we'll borrow some terminology from the Structured Sound Synthesis Project. [See the SSSP
reference.] A "musical note" is one kind of scheduled event. Its properties include an event duration,
an event delay, and a timbre object. The event duration tells the scheduler how long the note should
last. The event delay tells how long after starting this note to wait before starting the next event.
The timbre object selects sound driver data for the note; an "instrument" or "timbre". A "rest" is a
sort of a null event. Its only property is an event delay.

Classical Event Durations

SMUS is geared for "classical" scores, not free-form performances. So its event durations are
classical (whole note, dotted quarter rest, etc.). SMUS can tie notes together to build a "note event"
with an unusual event duration. The set of useful classical durations is very small. So SMUS needs
only a handful of bits to encode an event duration. This is very compact. It's also very easy to
display in Common Music Notation (CMN).

Tracks

The events in a SMUS score are grouped into parallel "tracks". Each track is a linear stream of
events.

Why use tracks? Tracks serve 4 functions:

1. Tracks make it possible to encode event delays very compactly. A "classical" score has chorded
notes and sequential notes; no overlapping notes. That is, each event begins either simultaneous
with or immediately following the previous event in that track. So each event delay is either 0
or the same as the event's duration. This binary distinction requires only one bit of storage.

2. Tracks represent the "voice tracks" in Common Music Notation. CMN organizes a score in
parallel staves, with one or two "voice tracks" per staff. So one or two SMUS tracks represents
a CMN staff.

3. Tracks are a good match to available sound hardware. We can use "instrument settings" in a
track to store the timbre assignments for that track's notes. The instrument setting may change
over the track.

4. Furthermore, tracks can help to allocate notes among available output channels or performance
devices or tape recorder "tracks". Tracks can also help to adapt polyphonic data to monophonic
output channels.

402 Amiga ROM Kernel Reference Manual: Devices

5. Tracks are a good match to simple sound software. Each track is a place to hold state settings
like "dynamic markpp ","time signature 3/4", "mute this track", etc., just as it's a context for
instrument settings. This is a lot like a text stream with running "font" and "face" properties
(attributes). Running state is usually more compact than, say, storing an instrument setting in
every note event. It's also a useful way to organize "attributes" of notes. With "running track
state" we can define new note attributes in an upward- and backward-compatible way.

Running track state can be expanded (run decoded) while loading a track into memory or while
playing the track. The runtime track state must be reinitialized every time the score is played.

Separated vs. interleaved tracks. Multi-track data could be stored either as separate event streams
or interleaved into one stream. To interleave the streams, each event has to carry a "track number"
attribute.

If we were designing an editable score format, we might interleave the streams so that nearby events
are stored nearby. This helps when searching the data, especially if you can't fit the entire score
into memory at once. But it takes extra storage for the track numbers and may take extra work to
manipulate the interleaved tracks.

The musical score format FORM SMUS is intended for simple loading and playback of small scores
that fit entirely in main memory. So we chose to store its tracks separately.

There can be up to 255 tracks in a FORM SMUS. Each track is stored as a TRAK chunk. The count
of tracks (the number of TRAK chunks) is recorded in the SHDR chunk at the beginning of the
FORM SMUS. The TRAK chunks appear in numerical order 1, 2, 3, This is also priority order,
most important track first. A player program that can handle up to N parallel tracks should read the
first N tracks and ignore any others.

The different tracks in a score may have different lengths. This is true both of storage length and of
playback duration.

Instrument Registers

Instrument reference. In SSSP, each note event points to a "timbre object" which supplies the
"instrument" (the sound driver data) for that note. FORM SMUS stores these pointers as a "current
instrument setting" for each track. It's just a run encoded version of the same information. SSSP
uses a symbol table to hold all the pointers to "timbre object". SMUS uses INSl chunks for the
same purpose. They name the score's instruments.

The actual instrument data to use depends on the playback environment, but we want the score
to be independent of environment. Different playback environments have different audio output
hardware and different sound driver software. And there are channel allocation issues like how
many output channels there are, which ones are polyphonic, and which 1/0 ports they're connected
to. If you use MIDI to control the instruments, you get into issues of what kind of device is
listening to each MIDI channel and what each of its presets sounds like. If you use computer-based
instruments, you need driver- specific data like waveform tables and oscillator parameters.

We just want some orchestration. If the score wants a "piano", we let the playback program find a
"piano".

IFF Specification: SMUS 403

Instrument reference by name. A reference from a SMUS score to actual instrument data is normally
by name. The score simply names the instrument, for instance "tubular bells". It's up to the player
program to find suitable instrument data for its output devices. (More on locating instruments
below.)

Instrument reference by MIDI channel and preset. ASMUS score can also ask for a specific MIDI
channel number and preset number. MIDI programs may honor these specific requests. But these
channel allocations can become obsolete or the score may be played without MIDI hardware. In
such cases, the player program should fall back to instrument reference by name.

Instrument reference via instrument register. Each reference from a SMUS track to an instrument
is via an "instrument register". Each track selects an instrument register which in tum points to the
specific instrument data.

Each score has an array of instrument registers. Each track has a "current instrument setting", which
is simply an index number into this array. This is like setting a raster image's pixel to a specific
color number (a reference to a color value through a "color register") or setting a text character to a
specific font number (a reference to a font through a "font register"). This is diagramed below:

"piano"

"guitar"

"Spanish guitar"

"bass drum"

internal piano data

internal guitar data

internal Spanish guitar data

internal bass drum data

Locating instrument data by name. "INSI" chunks in a SMUS score name the instruments to use
for that score. The player program uses these names to locate instrument data.

To locate instrument data, the player performs these steps:

For each right register, check for a suitable instrument with the right name ...
{Suitable" means usable with an available output device and driver.}
{Use case independent name comparisons.}

1. Initialize the instrument register to point to a built-in default instrument.

2. Every player program must have default instruments. Simple programs stop here. For fancier
programs, the default instruments are a backstop in case the search fails.

3. Check any instrument FORMs embedded in the FORM SMUS. (This is an "instrument cache".)

4. Else check the default instruments.

5. Else search the local "instrument library". (The library might simply be a disk directory.)

6. If all else fails, display the desired instrument name and ask the user to pick an available one.

404 Amiga ROM Kernel Reference Manual: Devices

This algorithm can be implemented to varying degrees of fanciness. It's OK to stop searching after
step 1, 2, 3, or 4. If exact instrument name matches fail, it's OK to try approximate matches. E.g.,
search for any kind of "guitar" if you can't find a "Spanish guitar". In any case, a player only has
to search for instruments while loading a score.

When the embedded instruments are suitable, they save the program from asking the user to insert
the "right" disk in a drive and searching that disk for the "right" instrument. But it's just a cache. In
practice, we rarely move scores between environments so the cache often works. When the score
is moved, embedded instruments must be discarded (a cache miss) and other instrument data used.

Be careful to distinguish an instrument's name from its filename-the contents name vs. container
name. A musical instrument FORM should contain a NAME chunk that says what instrument it
really is. Its filename, on the other hand, is a handle used to locate the FORM. Filenames arc affected
by external factors like drives, directories, and filename character and length limits. Instrument
names arc not.

Issue: Consider instrument naming conventions for consistency. Consider a naming convention
that aids approximate matches. E.g., we could accept "guitar, bassi" if we didn't find "guitar, bass".
Failing that, we could accept "guitar" or any name starting with "guitar".

Set instrument events. If the player implements the set-instrument score event, each track can
change instrument numbers while playing. That is, it can switch between the loaded instruments.

Initial instrument settings. Each time a score is played, every track's running state information must
be initialized. Specifically, each track's instrument number should be initialized to its track number.
Track 1 to instrument 1, etc. It's as if each track began with a set-instrument event.

In this way, programs that don't implement the set-instrument event still assign an instrument to
each track. The INSl chunks imply these initial instrument settings.

MIDI Instruments

As mentioned above, A SMUS score can also ask for MIDI instruments. This is done by putting
the MIDI channel and preset numbers in an INSl chunk with the instrument name. Some programs
will honor these requests while others will just find instruments by name.

MIDI Recorder and sequencer programs may simply transcribe the MIDI channel and preset com­
mands in a recording session. For this purpose, set-MIDI-channel and set-MIDI-preset events can
be embedded in a SMUS score's tracks. Most programs should ignore these events. An editor
program that wants to exchange scores with such programs should recognize these events. It should
let the user change them to the more general set-instrument events.

IFF Specification: SMUS 405

3. Standard Data and Property Chunks

A FORM SMUS contains a required property "SHDR" followed by any number of parallel "track"
data chunks "TRAK". Optional property chunks such as "NAME", copyright "(c) ", and instrument
reference "INS 1" may also appear. Any of the properties may be shared over a LIST of FORMs
SMUS by putting them in a PROP SMUS. [See the IFF reference.]

Required Property SHDR

The required property "SHDR" holds an SScoreHeader as defined in these C declarations and
following documentation. An SHDR specifies global information for the score. It must appear
before the TRAKs in a FORM SMUS.

#define ID SMUS MakeiD (' S', 'M', 'U', 'S')
#define ID=SHDR MakeiD('S', 'H', 'D', 'R')

typedef struct (
UWORD tempo;
UBYTE volume;
UBYTE ctTrack;
} SScoreHeader;

/* tempo, 128ths quarter note/minute */
/* overall playback volume 0 through 127 */
/* count of tracks in the score */

[Implementation details. In the C struct definitions in this memo, fields are filed in the order shown.
A UBYTE field is packed into an 8-bit byte. Programs should set all "pad" fields to 0. MakeiD is a
C macro defined in the main IFF document and in the source file IFF.h.]

The field tempo gives the nominal tempo for all tracks in the score. It is expressed in 128ths of a
quarter note per minute, i.e., 1 represents 1 quarter note per 128 minutes while 12800 represents
100 quarter notes per minute. You may think of this as a fixed point fraction with a 9-bit integer
part and a 7-bit fractional part (to the right of the point). A coarse-tempoed program may simply
shift tempo right by 7 bits to get a whole number of quarter notes per minute. The tempo field can
store tempi in the range 0 up to 512. The playback program may adjust this tempo, perhaps under
user control.

Actually, this global tempo could actually be just an initial tempo if there are any "set tempo"
SEvents inside the score (see TRAK, below). Or the global tempo could be scaled by "scale tempo"
SEvents inside the score. These are potential extensions that can safely be ignored by current
programs. [See More SEvents To Be Defined, below.]

The field volume gives an overall nominal playback volume for all tracks in the score. The range
of volume values 0 through 127 is like a MIDI key velocity value. The playback program may
adjust this volume, perhaps under direction of a user "volume control".

Actually, this global volume level could be scaled by dynamic-mark SEvents inside the score (see
TRAK, below).

The field ctTrack holds thecountoftracks, i.e., the numberofTRAKchunks in the FORM SMUS
(see below). This information helps the reader prepare for the following data.

A playback program will typically load the score and call a driver routine PlayScore(tracks,
tempo, volume), supplying the tempo and volume from the SHDR chunk.

406 Amiga ROM Kernel Reference Manual: Devices

Optional Text Chunks NAME, (c), AUTH, ANNO

Several text chunks may be included in a FORM SMUS to keep ancillary information.

The optional property "NAME" names the musical score, for instance "Fugue in C".

The optional property "(c)" holds a copyright notice for the score. The chunk ID "(c)" serves the
function of the copyright characters"©". E.g., a "(c)" chunk containing "1986 Electronic Arts"
means"© 1986 Electronic Arts".

The optional property "AUTH" holds the name of the score's author.

The chunk types "NAME", "(c)", and "AUTH" are property chunks. Putting more than one NAME
(or other) property in a FORM is redundant. Just the last NAME counts. A property should be
shorter than 256 characters. Properties can appear in a PROP SMUS to share them over a LIST of
FORMsSMUS.

The optional data chunk "ANNO" holds any text annotations typed in by the author.

An ANNO chunk is not a property chunk, so you can put more than one in a FORM SMUS. You
can make ANNO chunks any length up to 231 - 1 characters, but 32767 is a practical limit. Since
they're not properties, ANNO chunks don't belong in a PROP SMUS. That means they can't be
shared over a LIST of FORMs SMUS.

Syntactically, each of these chunks contains an array of 8-bit ASCII characters in the range " "
(SP, hex 20) through,_, (tilde, hex 7F), just like a standard "TEXT" chunk. [See "Strings, String
Chunks, and String Properties" in "EA IFF 85" Electronic Arts Interchange File Format.] The
chunk's ckSize field holds the count of characters.

#define ID NAME MakeiD('N', 'A', 'M', 'E')
I* NAME chunk contains a CHAR[], the musical score's name. *I

#define ID Copyright MakeiD (' (', 'c', ') ', ' ')
I* "(c) " chunk contains a CHAR [], the FORM's copyright notice. *I

#define ID AUTH MakeiD('A', 'U', 'T', 'H')
I* AUTH chunk contains a CHAR[], the name of the score's author. *I

#define ID ANNO MakeiD ('A', 'N', 'N', '0')
I* ANNO chunk contains a CHAR(], author's text annotations. *I

Remember to store a 0 pad byte after any odd-length chunk.

Optional Property INSl

The "INS 1" chunks in a FORM SMUS identify the instruments to use for this score. A program can
ignore INS1 chunks and stick with its built-in default instrument assignments. Or it can use them
to locate instrument data. [See "Instrument Registers" in section 2, above.]

#define ID_INSl MakeiD('I', 'N', '5', '1')

I* Values for the Refinstrument field "type". *I
#define INSl Name 0 I* just use the name; ignore datal, data2 *I
#define INSl=MIDI 1 I* <datal, data2> = MIDI <channel, preset> *I

typedef struct {
UBYTE register;
UBYTE type;
UBYTE datal, data2;
CHAR name [] ;
} Refinstrument;

I* set this instrument register number *I
I* instrument reference type *I
I* depends on the "type" field *I
I* instrument name *I

IFF Specification: SMUS 407

An INS1 chunk names the instrument for instrument register number register. The register
field can range from 0 through 255. In practice, most scores will need only a few instrument
registers.

The name field gives a text name for the instrument. The string length can be determined from the
ckSi ze of the INS 1 chunk. The string is simply an array of 8-bit ASCII characters in the range " "
(SP, hex 20) through "-" (tilde, hex 7F).

Besides the instrument name, an INS 1 chunk has two data numbers to help locate an instrument.
The use of these data numbers is controlled by the type field. A value type = INSL.Name means
just find an instrument by name. In this case, datal and data2 should just be set to 0. A value
type = INSLMIDI means look for an instrument on MIDI channel# datal, preset# data2.
Programs and computers without MIDI outputs will just ignore the MIDI data. They '11 always look
for the named instrument. Other values of the type field are reserved for future standardization.

See section 2, above, for the algorithm for locating instrument data by name.

Obsolete Property INST

The chunk type "INST" is obsolete in SMUS. It was revised to form the "INS 1" chunk.

Data Chunk TRAK

The main contents of a score is stored in one or more TRAK chunks representing parallel "tracks".
One TRAK chunk per track.

The contents of a TRAK chunk is an array of 16-bit "events" such as "note", "rest", and "set
instrument". Events are really commands to a simple scheduler, stored in time order. The tracks
can be polyphonic, that is, they can contain chorded "note" events.

Each event is stored as an "SEvent" record. ("SEvent" means "simple musical event".) Each SEvent
has an 8-bit type field called an "siD" and 8 bits of type-dependent data. This is like a machine
language instruction with an 8-bit opcode and an 8-bit operand.

This format is extensible since new event types can be defined in the future. The "note" and "rest"
events are the only ones that every program must understand. We will carefully design any new
event types so that programs can safely skip over unrecognized events in a score.

Caution: ID codes must be allocated by a central clearinghouse to avoid conflicts. Commodore
Applications and Technical Support provides this clearinghouse service.

Here are the C type definitions forTRAK and SEvent and the currently defined siD values. Afterward
are details on each SEvent.

#define ID TRAK MakeiD('T', 'R', 'A', 'K')
I* TRAK chunk contains an SEvent[]. *I

I* SEvent: Simple musical event. *I
typedef struct {

UBYTE siD; I* SEvent type code *I
UBYTE data; I* siD-dependent data *I
) SEvent;

I* SEvent type codes "siD". *I
#define SID FirstNote 0
lldefine SID-LastNote 127 I* siDs in the range SID FirstNote through

* SID LastNote (sign bit = 0) are notes.
* The-siD is the MIDI tone number (pitch) .*1

#define SID Rest 128 I* a rest (same data format as a note) . *I

408 Amiga ROM Kernel Reference Manual: Devices

ldefine SID Instrument
ldefine SID-TimeSig
ldefine SID-KeySig
ldefine SID-Dynamic
ldefine SID-MIDI Chnl
#define SID-MIDI-Preset
#define SID-Clef-

#define SID_Tempo

129 I*
130 I*
131 I*
132 I*
133 I*
134 I*
135 I*

*
136 I*

set instrument number for this track. *I
set time signature for this track. *I
set key signature for this track. *I
set volume for this track. *I
set MIDI channel number (sequencers) *I
set MIDI preset number (sequencers) *I
inline clef change.
O=Treble, 1=Bass, 2=Alto, 3=Tenor. (new) *I
Inline tempo in beats per minute. (new) *I

I* SID values 144 through 159: reserved for Instant Music SEvents. *I

I* Remaining siD values up through 254: reserved for future
* standardization. *I

#define SID Mark 255 I* siD reserved for an end-mark in RAM. *I

Note and Rest SEvents

The note and rest SEvents SID_FirstNote through SID-Rest have the following structure
overlaid onto the SEvent structure:

typedef struct {
UBYTE tone;
unsigned chord :1,

I SNote;

tieOut :1,
nTuplet :2,

dot :1,
division :3;

I* MIDI tone number 0 to 127; 128 = rest *I
I* 1 a chorded note *I
I* 1 = tied to the next note or chord *I
I* 0 = none, 1 = triplet, 2 = quintuplet,
* 3 = septuplet *I

I* dotted note; multiply duration by 312 *I
I* basic note duration is 2"-division: 0 =
* whole note, 1 = half note, 2 = quarter
* note, 7 = 128th note *I

[Implementation details. Unsigned ":n" fields are packed into n bits in the order shown, most
significant bit to least significant bit. An SNote fits into 16 bits like any other SEvent. Warning:
Some compilers don't implement bit-packed fields properly. E.g., Lattice 68000 C pads a group of
bit fields out to a LONG, which would make SNote take 5-bytes! In that situation, use the bit-field
constants defined below.]

The SNote structure describes one "note" or "rest" in a track. The field SNote. tone, which is
overlaid with the SEvent. siD field, indicates the MIDI tone number (pitch) in the range 0 through
127. A value of 128 indicates a rest.

The fields nTuplet, dot, and division together give the duration of the note or rest. The division
gives the basic duration: whole note, half note, etc. The dot indicates if the note or rest is dotted. A
dotted note is 3/2 as long as an undotted note. The value nTuplet (0 through 3) tells if this note or
rest is part of an N-tupletoforder 1 (normal), 3, 5, or7; an N-tupletoforder (2 * nTuplet + 1).
A triplet note is 2/3 as long as a normal note, while a quintuplet is 4/5 as long and a septuplet is 6n
as long.

Putting these three fields together, the duration of the note or rest is

2·division * {1, 3/2} * {1, 2/3,4/5, 6/7}

These three fields are contiguous so you can easily convert to your local duration encoding by using
the combined 6 bits as an index into a mapping table.

The field chord indicates if the note is chorded with the following note (which is supposed to have
the same duration). A group of notes may be chorded together by setting the chord bit of all but
the last one. (In the terminology of SSSP and GSCR, setting the chord bit to 1 makes the "entry

IFF Specification: SMUS 409

delay" 0.) A monophonic-track player can simply ignore any SNote event whose chord bit is set,
either by discarding it when reading the track or by skipping it when playing the track.

Programs that create polyphonic tracks are expected to store the most important note of each chord
last, which is the note with the 0 chord bit. This way, monophonic programs will play the most
important note of the chord. The most important note might be the chord's root note or its melody
note.

If the field tieOut is set, the note is tied to the following note in the track if the following note
has the same pitch. A group of tied notes is played as a single note whose duration is the sum of
the component durations. Actually, the tie mechanism ties a group of one or more chorded notes to
another group of one or more chorded notes. Every note in a tied chord should have its tieOut bit
set.

Of course, the chord and tieOut fields don't apply to SID_Rest SEvents.

Programs should be robust enough to ignore an unresolved tie, i.e., a note whose tieOut bit is set
but isn't followed by a note of the same pitch. If that's true, monophonic-track programs can simply
ignore chorded notes even in the presense of ties. That is, tied chords pose no extra problems.

The following diagram shows some combinations of notes and chords tied to notes and chords. The
text below the staff has a column for each SNote SEvent to show the pitch, chord bit, and tieOut
bit.

A treble staff with chords and ties:

Corresponding SNote values in the TRAK chunk:

Pitch: D B G D B G
chord: c c - c c -
tieOut: t t t

D B G G
c c -
t t t

D B G B
c c -
t t t

B

t

D B G
c c -

If you read the above track into a monophonic-track program, it'll strip out the chorded notes and
ignore unresolved ties. You'll end up with:

Pitch: G
chord:
tieOut: t

G G

t

j

G G

(t)

J J J II
B B G

(t)

A rest event (siD = SID.-Rest) has the same SEvent. data field as a note. It tells the duration
of the rest. The chord and tieOut fields of rest events are ignored.

Within a TRAK chunk, note and rest events appear in time order.

41 0 Amiga ROM Kernel Reference Manual: Devices

Instead of the bit-packed structure SNote, it might be easier to assemble data values by or­
ing constants and to disassemble them by masking and shifting. In that case, use the following
definitions.

#define noteChord (1<<7) I* note is chorded to next note *I
#define noteTieOut n<<Gl I* tied to next note/chord *I

#define noteNShift 4 I* shift count for nTuplet field *I
#define noteN3 (1 < <noteNShi ft) I* note is a triplet *I
#define noteN5 (2 < <noteNShi ft) I* note is a quintuplet *I
#define noteN7 (3<<noteNShift) I* note is a septuplet *I
#define noteNMask noteN7 I* bit mask for the nTuplet field *I

#define note Dot n<<3l /* note is dotted *I

#define noteDl 0 I* whole note division *I
#define noteD2 1 /* half note division *I
#define noteD4 2 /* quarter note division *I
#define noteDB 3 I* eighth note division *I
#define noteD16 4 I* sixteenth note division *I
#define noteD32 5 I* thirty-secondth note division *I
#define noteD64 6 I* sixty-fourth note division *I
#define noteD128 7 I* 1/128 note division *I
#define noteDMask noteD128 /* bit mask for the division field *I

#define noteDurMask Ox3F I* mask for combined duration fields*/

Note: The remaining SEvent types are optional. A writer program doesn't have to generate them.
A reader program can safely ignore them.

Set Instrument SEvent

One of the running state variables of every track is an instrument number. An instrument number is
the array index of an "instrument register", which in tum points to an instrument. (See "Instrument
Registers", in section 2.) This is like a color number in a bitmap; a reference to a color through a
"color register".

The initial setting for each track's instrument number is the track number. Track 1 is set to instrument
1, etc. Each time the score is played, every track's instrument number should be reset to the track
number.

The SEvent SID_Instrument changes the instrument number for a track, that is, which instrument
plays the following notes. Its SEvent. data field is an instrument register number in the range 0
through 255. If a program doesn't implement the SID_Instrument event, each track is fixed to
one instrument.

Set Time Signature SEvent

The SEvent s ID_TimeSig sets the time signature for the track. A "time signature" SEvent has the
following structure overlaid on the SEvent structure:

typedef struct {
UBYTE type;
unsigned timeNSig :5,

timeDSig :3;

STimeSig;

/* = SID TimeSig */
/* time sig. "numerator" is timeNSig + 1 */
/* time sig. "denominator" is 2"timeDSig:*

* 0 = whole note, 1 = half note, 2 *
*quarter note, 7 = 128th note */

[Implementation details. Unsigned ":n" fields are packed into n bits in the order shown, most
significant bit to least significant bit. An STimeSig fits into 16 bits like any other SEvent. Warning:
Some compilers don't implement bit-packed fields properly. E.g., Lattice C pads a group of bit

IFF Specification: SMUS 411

fields out to a LONG, which would make an STimeSig take 5-bytes! In that situation, use the
bit-field constants defined below.)

The field type contains the value SID_TimeSig, indicating that this SEvent is a "time signature"
event. The field timeNSig indicates the time signature "numerator" is timeNSig + 1, that is,
I through 32 beats per measure. The field timeDSig indicates the time signature "denominator"
is 2timeDSig, that is each "beat" is a 2-timeDSig note (see SNote division, above). So 4/4 time is
expressed as timeNSig = 3, timeDSig = 2.

The default time signature is 4/4 time. Be aware that the time signature has no effect on the
score's playback. Tempo is uniformly expressed in quarter notes per minute, independent of time
signature. (Quarter notes per minute would equal beats per minute only if timeDSig = 2, n/4
time). Nonetheless, any program that has time signatures should put them at the beginning of each
TRAK when creating a FORM SMUS because music editors need them.

Instead of the bit-packed structure STimeSig, it might be easier to assemble data values by or­
ing constants and to disassemble them by masking and shifting. In that case, use the following
definitions.

#define timeNMask OxF8 /* bit rcask for the timeNSig field */
#define timeNShift 3 /* shift count for timeNSig field */
#define timeDMask Ox07 /* bit mask for the timeDSig field */

Key Signature SEvent

An SEvent SID _ _KeySig sets the key signature for the track. Its data field is a UBYTE number
encoding a major key:

data key music notation data key music notation

0 C maj
1 G # 8 F b
2 D ## 9 Bb bb
3 A ### 10 Eb bbb
4 E #### 11 Ab bbbb
5 B ##### 12 Db bbbbb
6 F# ###### 1 3 Gb bbbbbb
7 C# ### #### 14 Cb bbbbbbb

A s ID_KeySig SEvent changes the key for the following notes in that track. C major is the default
key in every track before the first SID.....KeySig SEvent.

Dynamic Mark SEvent

An SEvent SID__j)ynamic represents a dynamic mark like ppp andff!in Common Music Notation.
Its data field is a MIDI key velocity number 0 through 127. This sets a "volume control" for
following notes in the track. This "track volume control" is scaled by the overall score volume in
the SHDR chunk. The default dynamic level is 127 (full volume).

Set MIDI Channel SEvent

The SEvent SID_MIDI_Chnl is for recorder programs to record the set-MIDI-channel low level
event. The data byte contains a MIDI channel number. Other programs should use instrument
registers instead.

412 Amiga ROM Kernel Reference Manual: Devices

Set MIDI Preset SEvent

The SEvent SIDJ1IDI_preset is for recorder programs to record the set-MIDI-preset low level
event. The data byte contains a MIDI preset number. Other programs should use instrument
registers instead.

Instant Music Private SEvents

Sixteen SEvents are used for private data for the Instant Music program. SID values 144 through
159 are reserved for this purpose. Other programs should skip over these SEvents.

End-Mark SEvent

The SEvent type SIDJ1ark is reserved for an end marker in working memory. This event is never
stored in a file. It may be useful if you decide to use the filed TRAK format intact in working
memory.

More SEvents To Be Defined

More SEvents can be defined in the future. The siD codes 133 through 143 and 160 through 254
are reserved for future needs. Caution: siD codes must be allocated by a central "clearinghouse" to
avoid conflicts.

The following SEvent types are under consideration and should not yet be used.

Issue: A "change tempo" SEvent changes tempo during a score. Changing the tempo affects all
tracks, not just the track containing the change tempo event.

One possibility is a "scale tempo" SEvent sro_scaleTempo that rescales the global tempo:

currentTempo := globalTempo * (data + 1) I 128

This can scale the global tempo (in the SHDR) anywhere from x l/128 to x2 in roughly 1%
increments.

An alternative is two events sro_setHTempo and SID_SetLTempo. sro_setHTempo gives the
high byte and SID_SetLTempo gives the low byte of a new tempo setting, in 128ths quarter
note/minute. SetHTempo automatically sets the low byte to 0, so the SetLTempo event isn't
needed for coarse settings. In this scheme, the SHDR's tempo is simply a starting tempo.

An advantage of SID_ScaleTempo is that the playback program can just alter the global tempo to
adjust the overall performance time and still easily implement tempo variations during the score.
But the "set tempo" SEvent may be simpler to generate.

Issue: The events SID_BeginRepeat and SID_EndRepeat define a repeat span for one track. The
span of events between a BeginRepeat and an EndRepeat is played twice. The SEvent. data
field in the BeginRepeat event could give an iteration count, 1 through 255 times or 0 for "repeat
forever".

Repeat spans can be nested. All repeat spans automatically end at the end of the track.

An event SID_Ending begins a section like "first ending" or "second ending". The SEvent.data
field gives the ending number. This SID_Ending event only applies to the innermost repeat group.
(Consider generalizing it.)

IFF Specification: SMUS 413

A more general alternative is a "subtrack" or "subscore" event. A "subtrack" event is essentially
a "subroutine call" to another series of SEvents. This is a nice way to encode all the possible
variations of repeats, first endings, codas, and such.

To define a subtrack, we must demark its start and end. One possibility is to define a relative branch­
to-subtrack event SID_BSR and a rctum-from-subtrack event SID_RTS. The 8-bit data field in the
SID_BSR event can reach as far as 512 SEvents. A second possibility is to call a subtrack by index
number, with an IFF chunk outside the TRAK defining the start and end of all subtracks. This is
very general since a portion of one subtrack can be used as another subtrack. It also models the
tape recording practice of first "laying down a track" and then selecting portions of it to play and
repeat. To embody the music theory idea of playing a sequence like "ABBA", just compose the
"main" track entirely of subtrack events. A third possibility is to use a numbered subtrack chunk
"STRK" for each subroutine.

4. Private Chunks

As in any IFF FORM, there can be private chunks in a FORM SMUS that are designed for one
particular program to store its private information. All IFF reader programs skip over unrecognized
chunks, so the presense of private chunks can't hurt.

Instant Music stores some global score information in a chunk of ID "IRev" and some other
information in a chunk of ID "BIAS".

414 Amiga ROM Kernel Reference Manual: Devices

Appendix A. Quick Reference

Type Definitions

Here's a collection of the C type definitions in this memo. In the "struct" type definitions, fields
are filed in the order shown. A UBYTE field is packed into an 8-bit byte. Programs should set all
"pad" fields to 0.

#define ID SMUS MakeiD('S', 'M', 'U', 'S')
#define ID-SHDR MakeiD('S', 'H', 'D', 'R')

typedef struct {
UWORD tempo;
UBYTE volume;
UBYTE ctTrack;
) SScoreHeader;

/* tempo, 128ths quarter note/minute
/* overall playback volume 0 through 127
/* count of tracks in the score

#define ID NAME MakeiD('N', 'A', 'M', 'E')
/*NAME chunk contains a CHAR[], the musical score's name.

#define ID Copyright MakeiD (' (', 'c', •) •, • •)
I* "(c) "~hunk contains a CHAR[], the FORM's copyright notice.

#define ID AUTH MakeiD('A', 'U', 'T', 'H')
I* AUTH chunk contains a CHAR[], the name of the score's author.

#define ID ANNO MakeiD('A', 'N', 'N', 'O')
!*ANNO chunk contains a CHAR[], author's text annotations.

#define ID INSl MakeiD('I', 'N', 'S', '1')
!*Values for the Refinstrument field "type".

#define INSl Name 0 I* just use the name; ignore datal, data2
#define INSl-MIDI 1 I* <datal, data2> = MIDI <channel, preset>

typedef struct {

*I
*I
*I

*I

*I

*I

*I

*I
*I

UBYTE register; /* set this instrument register number */
UBYTE type; /* instrument reference type *I
UBYTE datal, data2; /* depends on the "type" field */
CHAR name[]; I* instrument name */
) Refinstrument;

#define ID TRAK MakeiD('T', 'R', 'A', 'K')
/* TRAK chunk contains an SEvent[]. *I

/* SEvent: Simple
typedef struct {

UBYTE siD;
UBYTE data;

musical event. *I

/* SEvent type code
/* siD-dependent data

*I
*I

} SEvent;

/* SEvent type codes 11 siD 11 ~

#define SID FirstNote 0
#define SID LastNote 127

#define SID Rest 128

#define SID Instrument 129 -#define SID TimeSig 130
#define SID-KeySig 131
#define SID -Dynamic 132 -
#define SID MIDI Chnl 133
#define SID-MIDI - Preset 134 -
#define SID Clef 135

#define SID Tempo 136 -

*I

/* siDs in the range SID_FirstNote through
* SID LastNote (sign bit = 0) are notes. The
* siD-is the MIDI tone number (pitch). *I

/* a rest (same data format as a note). *I

/* set instrument number for this track.*/
/* set time signature for this track. */
/* set key signature for this track. */
/* set volume for this track. */
/* set MIDI channel number (sequencers) *I
I* set MIDI preset number (sequencers) */
I* inline clef change. *

* D=Treble, l=Bass, 2=Alto, 3=Tenor. */
/* Inline tempo in beats per minute. */

/* SID values 144 through 159: reserved for Instant Music SEvents. *I

/* Remaining siD values up through 254: reserved for future
* standardization. *I

IFF Specification: SMUS 415

#define SID Mark 255 /* siD reserved for an end-mark in RAM. */

I* SID FirstNote .. SID_LastNote, SID_Rest SEvents *I

typedef struct {
UBYTE tone;
unsigned chord :1,

tieOut :1,
nTuplet :2,

dot :1,
division :3;

} SNote;

#define noteChord (1<<7)

/* MIDI tone number 0 to 127; 128 rest */
/* 1 a chorded note */
/* 1 tied to the next note or chord */
/* 0 none, 1 = triplet, 2 = quintuplet,

* 3 septuplet */
!* dotted note; multiply duration by 312 *I
!* basic note duration is 2-division: 0 = whole

* note, 1 = half note, 2 = quarter note,
* 7 = 12Bth note */

I* note is chorded to next note *I

#define noteTieOut Cl<<6l /* tied to next note/chord *I

#define noteNShift 4 I* shift count for nTuplet field

#define noteN3
#define noteN5
#define noteN7

(1 < <noteNShift)
(2<<noteNShift)
(3 < <noteNShi ft)

!* note is a triplet
!* note is a quintuplet
/* note is a septuplet

#define noteNMask noteN7 /* bit mask for the nTuplet field

#define noteDot (1<<3) /* note is dotted

#define noteD1 0 !* whole note division
#define noteD2 1 /* half note division
#define noteD4 2 !* quarter note division
#define noteDB 3 I* eighth note division
#define noteD16 4 I* sixteenth note division
#define noteD32 5 I* thirty-secondth note division
#define noteD64 6 !* sixty-fourth note division
#define noteD128 7 I* 1/128 note division
#define noteDMask noteD12B I* bit mask for the division field

#define noteDurMask Ox3F !* mask for combined duration fields

*I

*I
*I
*I

*I

*I

*I
*I
*I
*I
*I
*I
*I
*I
*I

*I

I* SID Instrument SEvent *I
I* "data" value is an instrument register number 0 through 255. */

/* SID TimeSig SEvent
typedef struct {

UBYTE type;
unsigned timeNSig :5,

timeDSig :3;

} STimeSig;

#define timeNMask OxFB
#define timeNShift 3

#define timeDMask Ox07

/* SID KeySig SEvent

*I

/* = SID TimeSig */
I* time sig. "numerator" is timeNSig + 1 */
!* time sig. "denominator" is 2"timeDSig: *

* 0 = whole note, 1 half note, 2 *
*quarter note, 7 = 128th note */

/* bit mask for the timeNSig field
/* shift count for timeNSig field

/* bit mask for the timeDSig field

*I
*I

*I

!* "data" value 0 = Cmaj; 1 through 7 = G,D,A,E,B,F#,C#;
* 8 through 14 = F,Bb,Eb,Ab,Db,Gb,Cb.

*I
*
*I

I* SID Dynamic SEvent
!*"data" value is a MIDI key velocity 0 .. 127.

416 Amiga ROM Kernel Reference Manual: Devices

*I
*I

SMUS Regular Expression

Here's a regular expression summary of the FORM SMUS syntax. This could be an IFF file or part
of one.

SMUS .. - "FORM" # { "SMUS" SHDR [NAME] [Copyright] [AUTH] [IRev]
ANNO* INSl* TRAK* InstrForm* }

SHDR : := 11 SHDR" # { SScoreHeader
NAME .. - "NAME 11 #{ CHAR* } [0]
Copyright : := "(c) .. fl { CHAR* } [0 l
AUTH : := "AUTH" #{ CHAR* } [0]
I Rev .. - "I Rev" fl { }

ANNO .. - "ANNO" #{ CHAR* } [0 l
INSl : := "INSl" # { Refinstrument } [0]

TRAK : := 11 TRAK 11 II{ SEvent*
InstrForm ::= nFORM" # {

The token"#" represents a ckSi ze LONG count of the following {braced} data bytes. Literal items
are shown in "quotes", [square bracket items] are optional, and 11*11 means 0 or more replications.
A sometimes-needed pad byte is shown as 11

[o J 11
•

Actually, the order of chunks in a FORM SMUS is not as strict as this regular expression indicates.
The SHDR, NAME, Copyright, AUTH, IRev, ANNO, and INSl chunks may appear in any order,
as long as they precede the TRAK chunks.

The chunk 11 InstrForrn" represents any kind of instrument data FORM embedded in the FORM
SMUS. For example, see the document "8SVX11 IFF 8-Bit Sampled Voice. Of course, a recipient
program will ignore an instrument FORM if it doesn't recognize that FORM type.

IFF Specification: SMUS 417

Appendix B. SMUS Example

Here's a box diagram for a simple example, a SMUS with two instruments and two tracks. Each
track contains 1 note event and 1 rest event.

'FORM' 94

'SMUS'

'SHDR' 4

12800, 127, 2

'NAME' 10

'Fugue in C'

'INS1' 9

94 1, 0, 0, 0, 'piano'

0

'INS1' 10

2, O, 0, 0, 'guitar'

'TRAK' 4

60, 16, 128, 16

'TRAK' 4

128, 16, 60, 16

The "0" after the first INS 1 chunk is a pad byte.

Appendix C. Standards Committee

The following people contributed to the design of this SMUS standard:

Ralph Bcllafatto, Cherry Lane Technologies
Geoff Brown, Uhuru Sound Software
Steve Hayes, Electronic Arts
Jerry Morrison, Electronic Arts

418 Amiga ROM Kernel Reference Manual: Devices

Date:
From:
Status:

"8SVX" IFF 8-Bit Sampled Voice

February 7, 1985 (Re-Typeset Oct, 1988 Commodore-Amiga, Inc.)
Steve Hayes and Jerry Morrison, Electronic Arts
Adopted

1. Introduction

This is the IFF supplement for FORM "8SVX". An 8SVX is an IFF "data section" or "FORM"
(which can be an IFF file or a part of one) containing a digitally sampled audio voice consisting of
8-bit samples. A voice can be a one-shot sound or-with repetition and pitch scaling-a musical
instrument. "EA IFF 85" is Electronic Arts' standard interchange file fonnat. [See "EA IFF 85"
Standard for Interchange Fonnat Files.]

The 8SVX fonnat is designed for playback hardware that uses 8-bit samples attenuated by a volume
control for good overall signal-to-noise ratio. So a FORM 8SVX stores 8-bit samples and a volume
level.

A similar data fonnat (or two) will be needed for higher resolution samples (typically 12 or 16
bits). Properly converting a high resolution sample down to 8 bits requires one pass over the data
to find the minimum and maximum values and a second pass to scale each sample into the range
-128 through 127. So it's reasonable to store higher resolution data in a different FORM type and
convert between them.

For instruments, FORM 8SVX can record a repeating wavefonn optionally preceded by a startup
transient wavefonn. These two recorded signals can be pre-synthesized or sampled from an acoustic
instrument. For many instruments, this representation is compact. FORM 8SVX is less practical
for an instrument whose wavefonn changes from cycle to cycle like a plucked string, where a long
sample is needed for accurate results.

FORM 8SVX can store an "envelope" or "amplitude contour" to enrich musical notes. A future
voice FORM could also store amplitude, frequency, and filter modulations.

FORM 8SVX is geared for relatively simple musical voices, where one wavefonn per octave is
sufficient, the wavefonns for the different octaves follow a factor-of-two size rule, and one envelope
is adequate for all octaves. You could store a more general voice as a LIST containing one or more
FORMs 8SVX per octave. A future voice FORM could go beyond one "one-shot" waveform and
one "repeat" wavefonn per octave.

Section 2 defines the required property sound header "VHDR", optional properties name "NAME",
copyright "(c)", and author "AUTH", the optional annotation data chunk "ANNO", the required
data chunk "BODY", and optional envelope chunks" ATAK" and "RLSE". These are the "standard"
chunks. Specialized chunks for private or future needs can be added later, e.g., to hold a frequency
contour or Fourier series coefficients. The 8SVX syntax is summarized in Appendix A as a regular
expression and in Appendix B as an example box diagram. Appendix C explains the optional
Fibonacci-delta compression algorithm.

Reference:

"EA IFF 85" Standard for Interchange Format Files describes the conventions for all IFF files.
Amig;® is a registered trademark ofCommodore-Amiga, Inc.
Electronic Arts TM is a trademark of Electronic Arts.

IFF Specification: BSVX 419

2. Standard Data and Property Chunks

FORM 8SVX stores all the wavefonn data in one body chunk "BODY". It stores playback
parameters in the required header chunk "VHDR". "VHDR" and any optional property chunks
"NAME", "(c)", and "AUTH" must all appear before the BODY chunk. Any of these properties
may be shared over a LIST of FORMs 8SVX by putting them in a PROP 8SVX. [See "EA IFF 85"
Standard for Interchange Fonnat Files.]

Background

There are two ways to use FORM 8SVX: as a one-shot sampled sound or as a sampled musical
instrument that plays "notes". Storing both kinds of sounds in the same kind of FORM makes it
easy to play a one-shot sound as an instrument or an instrument as a one-note sound.

A one-shot sound is a series of audio data samples with a nominal playback rate and amplitude.
The recipient program can optionally adjust or modulate the amplitude and playback data rate.

For musical instruments, the idea is to store a sampled (or pre-synthesized) waveform that will be
parameterized by pitch, duration, and amplitude to play each "note". The creator of the FORM
8SVX can supply a wavefonn per octave over a range of octaves for this purpose. The intent is to
perform a pitch by selecting the closest octave's wavefonn and scaling the playback data rate. An
optional "one-shot" waveform supplies an arbitrary startup transient, then a "repeat" waveform is
iterated as long as necessary to sustain the note.

A FORM 8SVX can also store an envelope to modulate the waveform. Envelopes are mostly useful
for variable-duration notes but could be used for one-shot sounds, too.

The FORM 8SVX standard has some restrictions. For example, each octave of data must be twice
as long as the next higher octave. Most sound driver software and hardware imposes additional
restrictions. E.g., the Amiga sound hardware requires an even number of samples in each one-shot
and repeat waveform.

Required Property VHDR

The required property "VHDR" holds a Voice8Headcr structure as defined in these C declarations and
following documentation. This structure holds the playback parameters for the sampled waveforms
in the BODY chunk. (See "Data Chunk BODY", below, for the storage layout of these waveforms.)

#define TD BSVX MakeiD('8', 'S', 'V', 'X')
#define ID=VHDR MakeiD('V', 'H', 'D', 'R')

typedef LONG Fixed; /* A fixed-point value, 16 bits to the left of the
point and 16 to the right. A Fixed is a number
of 2'16ths, i.e., 65536ths. *I

#define Unity Ox10000L /* Unity = Fixed 1.0 = maximum volume */

/* sCompression: Choice of compression algorithm applied to the samples. */
#define sCmpNone 0 /* not compressed */
#define sCmpFibDelta 1 /* Fibonacci-delta encoding (Appendix C) */

/* Can be more kinds in the future. */
typedef struct {

ULONG oneShotHiSamples, /* # samples in the high octave 1-shot part */
repeatHiSamples, /* # samples in the high octave repeat part */
samplesPerHiCycle;/* # samples/cycle in high octave, else 0 */

UWORD samplesPerSec; /* data sampling rate */
UBYTE ctOctave, /* # octaves of waveforms */

sCompression; /* data compression technique used */
Fixed volume; /* playback volume from 0 to Unity (full

* volume) . Map this value into the output
*hardware's dynamic range. */

} Voice8Header;

420 Amiga ROM Kernel Reference Manual: Devices

[Implementation details. Fields arc filed in the order shown. The UBYTE fields are byte-packed
(2 per 16-bit word). MakeiD is a C macro defined in the main IFF document and in the source file
IFF.h.]

A FORM 8SVX holds waveform data for one or more octaves, each containing a one-shot part and
a repeat part. The fields oneShotHiSarnples and repeatHiSarnples tell the number of audio
samples in the two parts of the highest frequency octave. Each successive (lower frequency) octave
contains twice as many data samples in both its one-shot and repeat parts. One of these two parts
can be empty across all octaves.

Note: Most audio output hardware and software has limitations. For example the Amiga computer
has sound hardware that requires that all one-shot and repeat parts have even numbers of samples.
Amiga sound driver software should adjust an odd-sized waveform, ignore an odd-sized lowest
octave, or ignore odd 8SVX FORMs altogether. Some other output devices require all sample sizes
to be powers of two.

The field sarnplesPerHiCycle tells the number of samples/cycle in the highest frequency octave
of data, or else 0 for "unknown". Each successive (lower frequency) octave contains twice as many
samples/cycle. The sarnplesPerHiCycle value is needed to compute the data rate for a desired
playback pitch.

Actually, sarnplesPerHiCycle is an average number of samples/cycle. If the one-shot part
contains pitch bends, store the samples/cycle of the repeat part in sarnplesPerHiCycle. The
division repeatHiSarnples/sarnplesPerHiCycle should yield an integer number of cycles.
(When the repeat waveform is repeated, a partial cycle would come out as a higher-frequency cycle
with a "click".)

More limitations: some Amiga music drivers require sarnplesPerHiCycle to be a power of
two in order to play the FORM 8SVX as a musical instrument in tune. They may even assume
sarnplesPerHiCycle is a particular power of two without checking. (If sarnplesPerHiCycle
is different by a factor of two, the instrument will just be played an octave too low or high.)

The field sarnplesPerSec gives the sound sampling rate. A program may adjust this to achieve
frequency shifts or vary it dynamically to achieve pitch bends and vibrato. A program that plays a
FORM 8SVX as a musical instrument would ignore sarnplesPerSec and select a playback rate
for each musical pitch.

The field ctOctave tells how many octaves of data are stored in the BODY chunk. See "Data
Chunk BODY", below, for the layout of the octaves.

The field sCornpression indicates the compression scheme, if any, that was applied to the entire
set of data samples stored in the BODY chunk. This field should contain one of the values defined
above. Of course, the matching decompression algorithm must be applied to the BODY data before
the sound can be played. (The Fibonacci-delta encoding scheme sCrnpFibDelta is described in
Appendix C.) Note that the whole series of data samples is compressed as a unit.

The field volume gives an overall playback volume for the waveforms (all octaves). It lets the
8-bit data samples use the full range -128 through 127 for good signal-to-noise ratio. The playback
program should multiply this value by a "volume control" and perhaps by a playback envelope (see
ATAK and RLSE, below).

IFF Specification: 8SVX 421

Recording a one-shot sound. To store a one-shot sound in a FORM 8SVX, set oneShotHiSamples
= number of samples, repeatHiSamples = 0 , samplesPerHiCycle = 0, samplesPerSec =
sampling rate, and ctOctave = 1. Scale the signal amplitude to the full sampling range -128
through 127. Set volume so the sound will playback at the desired volume level. If you set the
samplesPerHiCycle field properly, the data can also be used as a musical instrument.

Experiment with data compression. If the decompressed signal sounds OK, store the compressed
data in the BODY chunk and set sCompression to the compression code number.

Recording a musical instrument. To store a musical instrument in a FORM 8SVX, first record or
synthesize as many octaves of data as you want to make available for playback. Set ctOctave to
the count of octaves. From the recorded data, excerpt an integral number of steady state cycles for
the repeat part and set repeatHiSamples and samplesPerHiCycle. Either excerpt a startup
transient waveform and set one Shot Hi Samples, or else set oneShotHi Samples to 0. Remember,
the one-shot and repeat parts of each octave must be twice as long as those of the next higher octave.
Scale the signal amplitude to the full sampling range and set volume to adjust the instrument
playback volume. If you set the samplesPerSec field properly, the data can also be used as a
one-shot sound.

A distortion-introducing compressor like sCmpF ibDel t a is not recommended for musical instru­
ments, but you might try it anyway.

Typically, creators of FORM 8SVX record an acoustic instrument at just one frequency. Decimate
(down-sample with filtering) to compute higher octaves. Interpolate to compute lower octaves.

If you sample an acoustic instrument at different octaves, you may find it hard to make the one­
shot and repeat waveforms follow the factor-of-two rule for octaves. To compensate, lengthen an
octave's one-shot part by appending replications of the repeating cycle or prepending zeros. (This
will have minimal impact on the sound's start time.) You may be able to equalize the ratio of
one-shot-samples to repeat-samples across all octaves.

Note that a "one-shot sound" may be played as a "musical instrument" and vice-versa. How­
ever, an instrument player depends on samplesPerHiCycle, and a one-shot player depends on
samplesPerSec.

Playing a one-shot sound. To play any FORM 8SVX data as a one-shot sound, first select an octave
if ctoctave > 1. (The lowest-frequency octave has the greatest resolution.) Play the one-shot
samples then the repeat samples, scaled by volume, at a data rate of samplesPerSec. Of course,
you may adjust the playback rate and volume. You can play out an envelope, too. (See ATAK and
RLSE, below.)

Playing a musical note. To play a musical note using any FORM 8SVX, first select the nearest
octave of data from those available. Play the one-shot waveform then cycle on the repeat waveform
as long as needed to sustain the note. Scale the signal by volume, perhaps also by an envelope,
and by a desired note volume. Select a playback data rate s samples/second to achieve the desired
frequency (in Hz):

frequency = s I samplesPerHiCycle

for the highest frequency octave.

The idea is to select an octave and one of 12 sampling rates (assuming a 12-tone scale). If the
FORM 8SVX doesn't have the right octave, you can decimate or interpolate from the available data.

422 Amiga ROM Kernel Reference Manual: Devices

When it comes to musical instruments, FORM 8SVX is geared for a simple sound driver. Such
a driver uses a single table of 12 data rates to reach all notes in all octaves. That's why 8SVX
requires each octave of data to have twice as many samples as the next higher octave. If you restrict
sarnplesPerHiCycle to a power of two, you can use a predetermined table of data rates.

Optional Text Chunks NAME, (c), AUTH, ANNO

Several text chunks may be included in a FORM 8SVX to keep ancillary information.

The optional property "NAME" names the voice, for instance "tubular bells".

The optional property "(c)" holds a copyright notice for the voice. The chunk ID "(c)" serves as
the copyright characters "©". E.g., a "(c) "chunk containing "1986 Electronic Arts" means "©
1986 Electronic Arts".

The optional property "AUTH" holds the name of the instrument's "author" or "creator".

The chunk types "NAME", "(c)", and "AUTH" are property chunks. Putting more than one NAME
(or other) property in a FORM is redundant. Just the last NAME counts. A property should be
shorter than 256 characters. Properties can appear in a PROP 8SVX to share them over a LIST of
FORMs 8SVX.

The optional data chunk "ANNO" holds any text annotations typed in by the author.

An ANNO chunk is not a property chunk, so you can put more than one in a FORM 8SVX. You
can make ANNO chunks any length up to 231 - 1 characters, but 32767 is a practical limit. Since
they're not properties, ANNO chunks don't belong in a PROP 8SVX. That means they can't be
shared over a LIST of FORMs 8SVX.

Syntactically, each of these chunks contains an array of 8-bit ASCII characters in the range " "
(SP, hex 20) through,_, (tilde, hex 7F), just like a standard "TEXT" chunk. [See "Strings, String
Chunks, and String Properties" in "EA IFF 85" Electronic Arts Interchange File Format.] The
chunk's ckSi ze field holds the count of characters.

#define ID NAME MakeiD (' N', 'A', 'M', 'E')
/*NAME chunk contains a CHAR[], the voice's name. *I

define ID Copyright MakeiD('(', 'c', ')', '')
/*"(c) "-chunk contains a CHAR[], the FORM's copyright notice.*/

#define ID AUTH MakeiD ('A', 'U', 'T', 'H')
/* AUTH chunk contains a CHAR[], the author's name. */

#define ID ANNO MakeiD('A', 'N', 'N', '0')
/*ANNO chunk contains a CHAR[], author's text annotations. */

Remember to store a 0 pad byte after any odd-length chunk.

Optional Data Chunks ATAK and RLSE

The optional data chunks ATAK and RLSE together give a piecewise-linear "envelope" or "amplitude
contour". This contour may be used to modulate the sound during playback. It's especially useful for
playing musical notes of variable durations. Playback programs may ignore the supplied envelope
or substitute another.

IFF Specification: 8SVX 423

#define ID ATAK MakeiD('A', 'T', 'A', 'K')
#defineiD:::RLSEMakeiD('R', 'L', 'S', 'E')

typedef struct {
UWORD duration; /* segment duration in milliseconds, > 0 *!
Fixed dest; /* destination volume factor */
I EGPoint;

/* ATAK and RLSE chunks contain an EGPoint[), piecewise-linear envelope.*/
/*The envelope defines a function of time returning Fixed values. It's*

* used to scale the nominal volume specified in the Voice8Header. */

To explain the meaning of the ATAK and RLSE chunks, we'll overview the envelope generation
algorithm. Start at 0 volume, step through the ATAK contour, then hold at the sustain level (the last
ATAK EGPoint's dest), and then step through the RLSE contour. Begin the release at the desired
note stop time minus the total duration of the release contour (the sum of the RLSE EGPoints'
durations). The attack contour should be cut short if the note is shorter than the release contour.

The envelope is a piecewise-linear function. The envelope generator interpolates between the
EGPoints.

Remember to multiply the envelope function by the nominal voice header volume and by any
desired note volume.

Figure 1 shows an example envelope. The attack period is described by 4 EGPoints in an ATAK
chunk. The release period is described by 4 EGPoints in a RLSE chunk. The sustain period in the
middle just holds the final ATAK level until it's time for the release.

ATAK sustain RLSE

Note: The numberofEGPoints in an ATAK orRLSE chunk is its ckSize I sizeof (EGPoint).
In RAM, the playback program may terminate the array with a 0 duration EGPoint.

Issue: Synthesizers also provide frequency contour (pitch bend), filtering contour (wah-wah),
amplitude oscillation (tremolo), frequency oscillation (vibrato), and filtering oscillation (leslie).
In the future, we may define optional chunks to encode these modulations. The contours can
be encoded in linear segments. The oscillations can be stored as segments with rate and depth
parameters.

Data Chunk BODY

The BODY chunk contains the audio data samples.

#define ID_BODY MakeiD('B', '0', 'D', 'Y')

typedef character BYTE; /* 8 bit signed number, -128 through 127. */
/*BODY chunk contains a BYTE[), array of audio data samples. */

424 Amiga ROM Kernel Reference Manual: Devices

The BODY contains data samples grouped by octave. Within each octave are one-shot and repeat
portions. Figure 2 depicts this arrangement of samples for an 8SVX where oneShotHiSamples =
24, repeatHiSamples = 16, samplesPerHiCycle = 8, and ctOctave = 3. The major divisions
are octaves, the intermediate divisions separate the one-shot and repeat portions, and the minor
divisions are cycles.

one-shot

hi octave mid octave low octave

In general, the BODY has ctOctave octaves of data. The highest frequency octave comes first,
comprising the fewest samples: oneShotHiSamples + repeatHiSamples. Each successive
octave contains twice as many samples as the next higher octave but the same number of cycles. The
lowest frequency octave comes last with the most samples: 2ctOctave-t * (oneShotHi Samples +
repeatHiSamples).

The number of samples in the BODY chunk is

(2° + . . . + 2ctOctave-l) * (oneShotHiSamples + repeatHiSamples)

Figure 3, below, looks closer at an example waveform within one octave of a different BODY chunk.
In this example, oneShotHiSamples I samplesPerHiCycle = 2 cycles and repeatHiSam­
ples I samplesPerHiCycle = 1 cycle.

oneS hot repeat

To avoid playback "clicks" the one-shot part should begin with a small sample value, and flow
smoothly into the repeat part. The end of the repeat part should flow smoothly into the beginning
of the next repeat part.

If the VHDR field sCompression =/= sCmpNone, the BODY chunk is just an array of data bytes
to feed through the specified decompresser function. All this stuff about sample sizes, octaves, and
repeat parts applies to the decompressed data.

Be sure to follow an odd-length BODY chunk with a 0 pad byte.

IFF Specification: 8SVX 425

Other Chunks

Issue: In the future, we may define an optional chunk containing Fourier series coefficients for a
repeating waveform. An editor for this kind of synthesized voice could modify the coefficients and
regenerate the waveform.

See the IFF Registry and the Third-Party Specification section for details on additional 8SVX
Chunks such as CHAN, PAN, SEQN and FADE.

Appendix A. Quick Reference

Type Definitions

#define ID 8SVX MakeiD('8', 'S', 'V', 'X')
#define ID=VHDR MakeiD('V', 'H', 'D', 'R')

typedef LONG Fixed; /* A fixed-point value, 16 bits to the left of
the point and 16 to the right. A Fixed is a
number of 2"16ths, i.e., 65536ths.

#define Unity Ox10000L /* Unity = Fixed 1.0 = maximum volume

/* sCompression: Choice of
#define sCmpNone 0
#define sCmpFibDelta 1

typedef struct {

compression algorithm.
/* not compressed
/* Fibonacci-delta encoding
I* Can be more kinds in the

*I
*I

(Appendix C) *I
future. */

*
*
*I
*I

ULONG oneShotHiSamples, /* # samples in the high octave 1-shot part */
repeatHiSamples, /* # samples in the high octave repeat part */
samplesPerHiCycle;/* # samples/cycle in high octave, else 0 *I

UWORD samplesPerSec; /* data sampling rate */
UBYTE ctOctave, /* # octaves of waveforms */

sCompression; /* data compression technique used */
Fixed volume; /* playback volume from 0 to Unity (full

) Voice8Header;

* volume). Map this value into the output
*hardware's dynamic range.

#define ID NAME MakeiD('N', 'A', 'M', 'E')
/*NAME chunk contains a CHAR[], the voice's name.

#define ID Copyright MakeiD (' (', 'c', ') ', ' ')
/* "(c) " chunk contains a CHAR[], the FORM's copyright notice.

#define ID AUTH MakeiD('A', 'U', 'T', 'H')
/* AUTH chunk contains a CHAR[], the author's name.

#define ID ANNO MakeiD('A', 'N', 'N', 'O')
/*ANNO chunk contains a CHAR[], author's text annotations.

#define ID ATAK MakeiD('A', 'T', 'A', 'K')
#define ID=RLSE MakeiD('R', 'L', 'S', 'E')

typedef struct {
UWORD duration;
Fixed dest;
) EGPoint;

/* segment duration in milliseconds, > 0
/* destination volume factor

*
*
*I

*I

*I

*I

*I

*I
*I

/* ATAK and RLSE chunks contain an EGPoint[],piecewise-linear envelope. */
/*The envelope defines a function of time returning Fixed values. It's*

* used to scale the nominal volume specified in the Voice8Header. */

#define ID BODY MakeiD('B', '0', 'D', 'Y')
typedef character BYTE; /* 8 bit signed number, -128 through 127. */
/*BODY chunk contains a BYTE[], array of audio data samples. */

426 Amiga ROM Kernel Reference Manual: Devices

SSVX Regular Expression

Here's a regular expression summary of the FORM 8SVX syntax. This could be an IFF file or part
of one.

ssvx .. - "FORM" II{ "8SVX" VHDR [NAME] [Copyright] [AUTH] ANNO*
[ATAK] [RLSE] BODY)

VHDR : := "VHDR" Ill Voice8Header
NAME : := "NAME" Ill CHAR*) [0]
Copyright::= "(c) " Ill CHAR*) [0]
AUTH ::== "AUTH" Ill CHAR*) [0]
ANNO ::= "ANNO" Ill CHAR*) [0]

ATAK ::= "ATAK" Ill EGPoint*
RLSE .. - "RLSE" II{ EGPoint*
BODY .. - "FORM" II{ BYTE* [0]

The token "#" represents a ckSize LONG count of the following {braced} data bytes. E.g., a
VHDR's "#"should equal sizeof (Voice8Header). Literal items are shown in "quotes", [square
bracket items] are optional, and"*" means 0 or more replications. A sometimes-needed pad byte is
shown as " [o J ".

Actually, the order of chunks in a FORM 8SVX is not as strict as this regular expression indicates.
The property chunks VHDR, NAME, Copyright, and AUTH may actually appear in any order as
long as they all precede the BODY chunk. The optional data chunks ANNO, ATAK, and RLSE
don't have to precede the BODY chunk. And of course, new kinds of chunks may appear inside a
FORM 8SVX in the future.

Appendix B. 8SVX Example

Here's a box diagram for a simple example containing the three octave BODY shown earlier in
Figure 2.

'FORM' 368

'8SVX'

'VHDR' 20

24, 16, 8, 10000, 3, 0, 1, 0

'NAME' 11

368
'bass guitar'

0

'(c) ' 20

1985 Electronic Arts

'BODY' 280

1, 2, 3, 4 ...

The "0" after the NAME chunk is a pad byte.

IFF Specification: 8SVX 427

Appendix C. Fibonacci Delta Compression

This is Steve Hayes' Fibonacci Delta sound compression technique. It's like the traditional delta
encoding but encodes each delta in a mere 4 bits. The compressed data is half the size of the
original data plus a 2-byte overhead for the initial value. This much compression introduces some
distortion, so try it out and use it with discretion.

To achieve a reasonable slew rate, this algorithm looks up each stored 4-bit value in a table of
Fibonacci numbers. So very small deltas are encoded precisely while larger deltas are approximated.
When it has to make approximations, the compressor should adjust all the values (forwards and
backwards in time) for minimum overall distortion.

Here is the decompressor written in the C programming language.

I* Fibonacci delta encoding for sound data. *I
BYTE codeToDelta[16] = {-34,-21,-13,-8,-5,-3,-2,-1,0,1,2,3,5,8,13,21};

I* Unpack Fibonacci-delta encoded data from n byte source buffer into
* 2*n byte dest buffer, given initial data value x. It returns the
* last data value x so you can call it several times to incrementally
* decompress the data. *I

short D1Unpack(source, n, dest, x)
BYTE source[], dest[];
LONG n;
BYTE x;
{

BYTE d;
LONG i, lim;

lim = n << 1;
for (i = 0; i < lim; ++i)

{ I* Decode a data nibble; high nibble then low nibble. *I
d = source[i >> 1]; I* get a pair of nibbles *I
if (i & 1) I* select low or high nibble? *I

d &= Dxf; I* mask to get the low nibble *I
else

d >>= 4;
x += codeToDelta[d];
dest[i] = x;
}

return (x);
}

I* shift to get the high nibble *I
I* add in the decoded delta *I
I* store a 1-byte sample *I

I* Unpack Fibonacci-delta encoded data from n byte source buffer into
* 2*(n-2) byte dest buffer. Source buffer has a pad byte, an 8-bit
initial value, followed by n-2 bytes comprising 2(n-2) 4-bit
* encoded samples. *I

void DUnpack(source, n, dest)
BYTE source[], dest[];
LONG n;
{

D1Unpack(source + 2, n- 2, dest, source[l]);

428 Amiga ROM Kernel Reference Manual: Devices

~-~----~-----------------

IFF FORM and Chunk Registry

This section contains the official list of registered FORM and Chunk names that are reserved and
in use. This list is often referred to as the 3rd part registry since these are FORM and Chunk types
created by application developers and not part of the original IFF specification created by Electronic
Arts and Commodore.

For all FORM and Chunk types that are public, the official specifications from the third party
company are listed (in alphabetical order). At the end of this section are additional documents
describing how the ILBM FORM type works on the Amiga.

New chunks and FORMS should be registered with CATS US, IFF Registry, 1200 Wilson Drive,
West Chester, PA. 19380. Please make all submissions on Amiga diskette and include your address,
phone, and fax.

IFF Specification: FORM and Chunk Registry 429

..,.
w
0

)J

~
~
3
(!)

)J
(!)
(i)

<ti
::J

8
s::
ill
::J c::
ill

CJ
(!)
<::
o·
C])
(J)

IFF Form and Chunk Re Page 1

IFF FORM And Chunk Registry

The following is an alphabetical list of registered FORMs, generic chunks
{shown as (any) .chunkname), and registered new chunks for existing FORMs
(shown as for.mname.chunknarne).

The center col~~ describes where additional information on the FORM or chunk
may be found. Items marked "F...A IFF" are described in the main chapters of
the E.A IFF specs. Those marked-"TP SPECS" are described in the this sect.1.on.
Items marked "propos" are proposals-which have been submitted to CATS, some
of which are private. And items marked with "------" are private or as yet
unreleased specifications.

New chunks and FORMS should be registered with CATS US, IFF Registry,
1200 Wilson Drive, West Chestex, PA. 19380. Please make all submissions
on Amiga diskette and i.nclude your address, phone, and fax.

(any) .ANNO
(any) .AUTH
(any) . CHRS
{any) .CSET.doc
(any) .FVER.doc
(any) .HLID.doc
(any) .NAME
(anyj . TEXT
(any). (c)
8SVX
8 S\.'X . CHAN. PAN. doc
85'JX.SEQN.FADE.doc
ACB.M.doc
AHAM
AIFF.doc
ANBM.doc
.ANIM.brush.doc
AN~H.doc

ANIM. op6. doc
ARC.proposal
ARES
ATXT
AVCF
AVCF.doc
AVCO
AVE.V
BA..,-K
BBSD
ClC0
CAT
Ch8M
c-:7~.: p
CPFM
DCCL
DCPA
DCTV
DECK
DR2D. doc
DRAW
FANT.doc
FIGR
FNTR
FNTV
FORM

EA IFF
EA-IFF
EA-IFF
IFF TP
IFF-TP

£A IFF
EA-IFF
EA-IFF
EA-IFF
IFF TP
IFF-TP
IFF-TP

IFF TP
IFF-TP
IFF-TP
IFF-TP
IFF TP
propos

IFF TP

EA IFF 85 Generic Annotation chunk
EA IFF 85 Generic Author chunk
EA IFF 85 Generic character string chunk
chunk for specifying character set
chunk for 2.0 VERSION string of an IFF file
HotLink IDentification (Contact CATS for info)
EA IFF 85 Generic Name of art, music, etc chunk
EA IFF 85 Generic unformatted ASCII text chunk
EA IFF 85 Generic Copyright text chunk
EA IFF 85 8-bit sound sample form
Stereo chunks for 8SVX form
Looping chunks for 8SVX form
Amiga Contiguous Bitmap form
unregistered (???)
Audio 1-32 bit samples (Mac,Appleii,Synthia Pro)
Animated bitmap form (Framer, Deluxe Video)
ANIM brush fol~t
Cel animation form
Stereo (3D) Animations
archive format proposal (old)
unregistered (???)
temporariliy reserved
AmigaVision flow (format not yet released)

AmigaVision commands (format not yet released)
AmigaVision events (format not yet. released)
Soundquest Editor/Librarian MIDI Sysex dump
BBS Database, F.Patnaude,Jr., Phalanx Software
Cloanto Italia private format

EA IFF £A IFF 85 group identifier
Chunky bitmap (name reserved by Eric Lavitsky)
CAT CI,IP ·to hold various formats in clipboard
Cloanto Personal FontMaker (doc in their manual)
DCCL - DCTV paint clip
DCPA - DCTV paint palette
DCTV - DCTV raw picture file
private format for Inovatronics CanDo

IF'F 'l'P 2 -D Object standard format
---- reserved by Jim Bayless, 12/90

IFF TP Fantavision movie format
---- Deluxe Video - reserved

EA IFF EA IFF 85 reserved for raster font
EA-IFF EA IFF as reserved for vector font
EA-IFF EA IFF 85 group identifier

FTXT
GRYP.proposal
GSCR
GUI.proposal
HEAD.doc
ILB.M
ILB.M. 3DCM
ILB.M. 3DPA
ILB.M.ASDG
ILB.M. BHBA
ILBM.BI!CP
ILB.M.BHSM
ILB.M.CLUT.doc
ILB.M.CMYK.doc
ILB.M.CNAM.doc
ILBM.CTBL.DYCP.doc
ILB.M.DCTV
ILB.M.DGVW
ILB.M.DPI. doc
ILB.M.DPPV.doc
ILB.M.DRNG.doc
ILB.M.EPSF.doc
ILB.M. TMAP
ILBM.VTAG.proposal
ILB.M.XB.MI.doc
IOBJ
ITRF
LIST
MIDI
MOVI
MSCX
MSMP
MTRX.doc
NSEQ
OCMP
OCPU
OPGM
OSN
PGTB.doc
PICS
PLB.M
PROP
PRSP.doc
PTCH
PTXT
README
RGB4
RGBN-RGB8.doc
RGBX
ROXN
SAMP.doc
SC3D
SHAK
SI!Ol
SHOW
SMUS
SYTH
TCDE
TDDD.doc
UNAM
USCR
uvox
VDEO
WORD.doc

IFF Form and Chunk Registry Page 2

EA IFF
propos
EA IFF
propos
IFF TP
EA IFF

IFF TP
IFF-TP

IFF TP

IFF TP
IFF-TP
IFF-TP
IFF-TP

propos
IFF TP

EA IFF

IFF TP

EA IFF
EA-IFF
EA-IFF
EA-IFF
IFF TP
EA IFF
EA-IFF
EA-IFF
IFF TP

IFF TP

IFF TP

EA IFF
---·-

IFF TP
EA IFF
EA-IFF
EA-IFF

IFF TP

EA IFF 85 formatted text form
byteplane storage proposal (copyrighted)
EA IFF 85 reserved gen. music score
user interface storage proposal (private)
Flow - New Horizons Software
EA IFF 85 raster bitmap form
reserved by Haitex
reserved by Haitex
private ASDG application chunk
private Photon Paint chunk (brushes)
private Photon Paint chunk (screens)
private Photon Paint chunk
Color Lookup Table chunk
Cyan, Magenta, Yellow, & Black cmap (Contact CATS)
Color naming chunk (Soft-Logik) (Contact CATS)
Newtek Dynamic Ham color chunks
reserved
private Newtek DigiView chunk
Dots per inch chunk
DPaint perspective chunk (EA)
DPaint IV enhanced color cycle chunk (EA)
Encapsulated Postscript chunk
Transparency map (temporarily reserved)
Viewmode tags chunk suggestion
eXtended BitMap Information (Contact CATS)
reserved by Seven Seas Software
reserved
EA IFF 85 group identifier
Circum Design
LIST MOVI - private format
private Music-X format
temporarily reserved
Numerical data storage (MathVision - Seven Seas)
Numerical sequence (Stockhausen GmbH)
EA IFF 85 reserved computer prop
EA IFF 85 reserved processor prop
EA IFF 85 reserved program prop
EA IFF 85 reserved serial num prop
Program traceback (SAS Institute)
EA IFF 85 reserved Macintosh picture
EA IFF 85 reserved obsolete name
EA IFF 85 group identifier
DPaint IV perspective move form (EA)
Patch file format (SAS Institute)
temporarily reserved

4-bit RGB (format not available)
RGB image forms, Turbo Silver (Impulse)
temporarily reserved
private animation form
Sampled sound format
private scene format (Sculpt-3D)
private Shakespeare format
Reserved by Gary Bonham (private)
Reserved by Gary Bonham (private)
EA IFF 85 simple music score form
SoundQuest Master Librarian MIDI System driver
reserved by Merging Technologies
3-D rendering data, Turbo Silver (Impulse)
EA IFF 85 reserved user name prop
EA IFF 85 reserved Uhuru score
EA IFF 85 reserved Uhuru Mac voice
private Deluxe Video format
ProWrite document for.mat (New Horizons)

11
11
(/)
"0
CD
(")
=.;
()"

~
6"
::l

"Tl
0
JJ
5::
P.l
::l
Q.

(")
:::r
c
::l
A"

JJ
CD

tQ.
en -..... '"<

+:>.
w

OOOO.CSET .doc
chunk for specifying character set

Registered by Martin Taillefer.

A chunk for use in any FORM, to specify character set used for
text in FORM.

Page 1

struct CSet {
LONG CodeSet; /* O~ECMA Latin 1 (std Amiga charset) */

/* CBM will define additional values */
LONG
l

Reserved[?];

OOOO.FVER.doc
chunk for 2.0 VERSION string of an IFF file

Registered by Martin Taillefer.

A chunk for use in any FORM, to contain standard 2.0 version string.

$VER: name ver.rev

where "name" is the name or identifier of the file
and ver.rev is a version/revision such as 37.1

Example:

$VER: workbench.catalog 37.42

Page 1

~
w
1\.)

)J

~
~
3
(])

)J
(])

iD'
(ti
::J

~

~
::J
c:
tlJ

CJ
(])

" fi•
(])
(f)

8SVX.CHAN.PAN.doc Page 1

Stereo chunks for 8SVX for-m

SMUS.CHAN and SMUS.PAN Chunks
Stereo imaging in the "8SVX 11 IFF 8-bit Sample Voice

Regtstered by David Jones, Gold Disk Inc.

There are two ways to create stereo imaging when playing back a digitized
sound. The first relies on the original sound being created with a stereo
sampler: two different samples are digitized simultaneously, using right and
left inputs. To play back this type of sample while maintaining the
stereo imaging, both channels must be set to the same volume. The second type
of stereo sound plays the identical information on two different channels at
different volumes. This gives the sample an absolute position in the stereo
field. Unfortunately, there are currently a number of methods for doing this
currently implemented on the Amiga, none truly adhering to any type of
standard. What I have tried to to is provide a way of doing this
consistently, while retaining compatibility with existing (non-standard)
systems. Introduced below are two optional data chunks, CHAN and PAN. CHAN
deals with sounds sampled in stereo, and PAN with samples given stereo
characteristics after the fact.

Optional Data Chunk CHAN

This chunk is already written by the software for a popular stereo sampler. To
maintain the ability read these samples, its implementation here is
therefore limited to maintain compatability.

The optional data chunk CHAN gives the information neccessary to play a
sample on a specified channel, or combination of channels. This chunk
would be useful for programs employing stereo recording or playback of sampled
sounds.

#define RIGHT
#define LEFT
#define STEREO

4L
2L
6L

#define ID CHAN MakeiD (' C', 'H', 'A',' N')

typedef sampletype LONG;

If "sarnpletypeu is RIGHT, the program reading the sample knows that it was
originally intended to play on a channel routed to the right speaker,
(channels 1 and 2 on the Amiga) . If "sampletype" is LEFT, the left speaker
was intended (Amiga channels 0 and 3) . It is left to the discretion of the
programmer to decide whether or not to play a sample when a channel on the
side designated by "sampletype" cannot be allocated.

If "sampletype" is STEREO, then the sample requires a pair of channels routed
to both speakers (Amiga pairs [0,1] and [2,3]). The BODY chunk for stereo
pairs contains both left and right information. To adhere to existing
conventions, sampling software should write first the LEFT information,
followed by the RIGHT. The LEFT and RIGHT information should be equal in
length.

Again, it is left to the programmer to decide what to do if a channel for
a stereo pair can't be allocated; wether to play the available channel only,
or to allocate another channels routed to the wrong speaker.

8SVX.CHAN.PAN.doc Page 2

Optional Data Chunk PAN

The optional data chunk PAN provides the neccessary information to create a
stereo sound using a single array of data. It is neccessary to replay the
sample simultaneously on two channels, at different volumes.

#define ID PAN MakeiD('P','A','N',' ')

typedef sposition Fixed; I* 0 <; sposition <; Unity *I
/* Unity is elsewhere #def

ined as lOOOOL, and
* refers to the maximum p

ossible volume.
* I

/*Please note that 'Fixed' (elsewhere #defined as LONG) is used to
* allow for compatabilty between audio hardware of different resolutions.
*I

The 'sposition' variable describes a position in the stereo field. The
numbers of discrete stereo positions available is equal to 1/2 the number of
discrete volumes for a single channel.

The sample must be played on both the right and left channels. The overall
volume of the sample is determined by the 11 Volurne 11 field in the VoiceSHeader
structure in the VHDR chunk.

The left channel volume
right

overall volume I {Unity I sposition) .
overall volume - left channel volume.

For example:
If sposition
If sposition
If sposition

Unity, the sample is panned all the way to the left.
0, the sample is panned all the way to the right.
Unity/2, the sample is centered in the stereo field.

11
11
(f)
-o
<D
0
~
()"

~
6"
::J

11
0
::rJ
s;:
til
::J
0.
()
::::l"
c
::J
T

::rJ
<D

t.Q.
£2
'<

~
w
w

8SVX.SEQN.FADE.doc Page 1

Looping chunks for 8SVX form

SEQN and FADE Chunks

Multiple Loop Sequencing in the '"SSVX'" IFF 8-bit Sample Voice

Registered by Peter Norman, RamScan Software Pty Ltd.

Sound samples are notorious for demanding huge amounts of memory.

While earlier uses of digital sound on the Amiga were mainly in the form of
short looping wavefor.ms for use as musical instruments, many people today
wish to record several seconds (even minutes) of sound. This of course eats
memory.

Assuming that quite often the content of these recordings is music, and that
quite often music contains several passages which repeat at given times,
"versel .. chorus . . verse2 .. chorus .. '' etc, a useful extention has been
added to the SSVX list of optional data chunks. It's purpose is to conserve
memory by having the computer repeat sections rather than having several
instances of a similar sound or musical passage taking up valuable sample
space.

The "SEQN" chunk has been created to define "Multiple" loops or sections
within a single octave SSVX MONO or STEREO wavefor.m.

It is intended that a sampled sound player program which supports this chunk
will play sections of the waveform sequentially in an order that the SEQN
chunk specifies. This means for example, if an identical chorus
repeats throughout a recording, rather than have this chorus stored several
times along the wavefor.m, it is only necessary to have one copy of the chorus
stored in the wavefor.m.

A ••sEQeNce" of definitions can then be set up to have the computer loop back
and repeat the chorus at the required time. The remaining choruses
stored in the waveform will no longer be necessary and can be removed.

E.g., if we had a recording of the following example, we would find that
there are several parts which simply repeat. Substantial savings can be made
by having the computer repeat sections rather than have them stored in memory.

EXAMPLE

"Haaaallelujah Haaaallelujah ... Hallelujah .. Hallelujah .. Halleeeelujaaaah. ••

Applying a sequence to the above recording would look as follows.

Haaaallelujah Haaaallelujah ... Hallelujah .. Hallelujah .. Halleeeelujaaaah.
[Loop1]
[Loop2]

Dead Space

Loop3
Loop4

LoopS
Dead Space

The DEAD SPACE can be removed. With careful editing of the multiple loop
positions, the passage can be made to sound exactly the same as the original
with far less memory required.

8SVX.SEQN.FADE.doc Page 2

Chunk Definitions ...

Optional Data Chunk SEQN

The optional data chunk SEQN gives the information necessary to play a
sample in a sequence of defined blocks. To have a segment repeat twice,
the definition occurs twice in the list.

This list consists of pairs of ULONG .. loop start" and ••end .. definitions which
are offsets from the start of the wavefor-m. The locations or values must be
LONGWORD aligned (divisab1e by 4) .

To determine how many loop definitions in a given file, simply divide the
SEQN chunk size by 8.

E.g., if chunk size== 40 ... number of loops (40 I 8) .. equals 5 loops.

The raw data in a file might look like this ...

'S-E-Q-N' [size] [Loop 1 Loop 2 Loop 3

S345514E oooooo29 oooooooo ooooocoo oooooooo ooooocoo oooooco8 oooo2ooo

'Haaaallelujah .. ' 'Haaaallelujah .. ' 'Hallelujah .. '

40 bytes decimal I 8 5 loop or segments

Loop 4 l [Loop 5] 'B-0-D-Y' Size Data

oooooco8 oooo2ooo oooo2009 oooo3ooo 424F4459 ooOBE974 010101010101010

'Hallelujah .. ' 'Halleeeelujah .. '

In a waveform containing SEQN chunks, the oneShotHiSamples should be set to 0
and the repeatHiSamples should equal the BODY length (divided by 2 if STEREO) .

Remember the locations of the start and end of each segment or loop should
be LONGWORD aligned.

If the wavefor.m is Stereo, treat the values and locations in exactly the same
way. In other words, if a loop starts at location 400 within a Stereo
waveform, you start the sound at the 400th byte position in the left data
and the 400th byte position in the right data simultaneously.

#define ID_SEQN MakeiD('S', 'E' ,'Q' ,'N')

.j::..
c..v
.j::..

::0

~
~
3
~
::0
Q)

CD'
(i3
:;:,
@

~
§
:-:-
CJ
Q)
<:::
C)•
Q)
(I)

8SVX.SEQN.FADE.doc Page 3

Optional Data Chunk FADE

The FADE chunk defines at what loop number the sound should begin to
fade away to silence. It is possible to finish a sample of music in much
the same way as commercial music does today. A FADE chunk consists of
one ULONG value which has a number in it. This number corresponds to the
loop number at which the fade should begin.

eg. You may have a wavefor.m containing 50 loops. A FADE definition of 45 will
specify that once loop 45 is reached, fading to zero volume should begin.
The rate at which this fade takes place is determined by the length of time
left to play. The playing software should do a calculation based on the
following ...

Length of all remaining sequences including current sequence (in bytes)

divided by

the current playback rate in samples per second

= time remaining.

Begin stepping the volume down at a rate which will hit zero volume just as
the wavefor.m finishes.

The raw data in a file may look like this.

'F-A-D-E' [Size] Loop No. 'B-0-D-Y' Size Data ..

46414445 00000004 0000002D 424F4459 OOOBE974 01010101 01010101 etc etc

Start fading when loop number 45 is reached.

#define ID FADE MakeiD('F' ,'A' ,'D' ,'E')

Although order shouldn't make much difference, it is a general rule of thumb
that SEQN should come before FADE and FADE should be last before the BODY.

Stereo wavefor.ms would have CHAN,SEQN,FADE,BODY in that order.

ACBM.doc
Amiga Contiguous Bitmap form

IFF FORM / CHUNK DESCRIPTION

Form/Chunk ID: FORM ACBM (Amiga Contiguous BitMap)
Chunk ABIT (Amiga BITplanes)

Date Submitted: 05/29/86
Submitted by: Carolyn Scheppner CBM

FORM

FORM ID: ACBM (Amiga Contiguous BitMap)

FORM Description:

Page 1

FORM ACBM has the same format as FORM ILBM except the normal BODY
chunk (InterLeaved BitMap) is replaced by an ABIT chunk (Amiga BITplanes) .

FORM Purpose:

To enable faster loading/saving of screens, especially from Basic,
while retaining the flexibility and portability of IFF format files.

CHUNKS

Chunk ID: ABIT (Amiga BITplanes)

Chunk Description:

The ABIT chunk contains contiguous bitplane data. The chunk contains
sequential data for bitplane 0 through bitplane n.

Chunk Purpose:

To enable loading/storing of bitmaps with one DOS Read/Write per
bitplane. Significant speed increases are realized when loading/saving
screens from Basic.

SUPPORTING SOFTWARE

(Public Domain, available soon via Fish PD disk, various networks)

LoadiLBM-SaveACBM (AmigaBasic)
Loads and displays an IFF ILBM pic file (Graphicraft, DPaint, Images) .
Optionally saves the screen in ACBM format.

LoadACBM (AmigaBasic)
Loads and display an ACBM format pic file.

SaveiLBM (AmigaBasic)
Saves a demo screen as an ILBM pic file which can be loaded into
Graphicraft, DPaint, Images.

11
ll
(/)
"0
(1)
(")

()'

~
6'
::J

11
0
JJ
;;:;:
Ill
::J
a.
0
::r
c
::J
T

JJ
(1)
co
~
-<

.!::>.
w
U1

AIFF.doc Page 1

Audio 1-32 bit samples (Mac,Appleii,Synthia Pro)

provided by Steve Milne and Matt Deatherage, Apple Computer, Inc.

AIFF: Audio Interchange File Format File

The Audio Interchange File Format (Audio IFF) provides a standard for storing
sampled sounds. The format is quite flexible, allowing the storage of
monaural or multichannel sampled sounds at a variety of sample rates and
sample widths.

Audio IFF conforms to the "'EA IFF 85' Standard for Interchange Format Files"
developed by Electronic Arts.

Audio IFF is primarily an interchange format, although application designers
should find it flexible enough to use as a data storage format as well. If an
application does choose to use a different storage for.rnat, it should be able
to convert to and from the format defined in this document. This ability to
convert will facilitate the sharing of sound data between applications.

Audio IFF is the result of several meetings held with music developers over a
period of ten months during 1987 and 1988. Apple Computer greatly appreciates
the comments and cooperation provided by all developers who helped define this
standard.

Another "EA IFF 85~' sound storage fonnat is "'BSVX' IFF 8-blt Sampled Voice"
by Electronic Arts. 11 8SVX.," which handles eight-bit monaural samples, is
intended mainly for storing sound for playback on personal computers. Audio
IFF is intended for use with a larger variety of computers, sampled sound
instruments, sound software applications, and high fidelity recording devices.

Data Types

A C-like language will be used to describe the data structures in this document
The data types used are listed below.

char: 8 bits signed. A char can contain more than just ASCII
characters. It can contain any number from -128 to 127
(inclusive) .

unsigned char: 8 bits signed. Contains any number from 0 to 255 {inclusive).
short: 16 bits signed. Contains any number from -32,768 to 32,767

(inclusive) .
unsigned short: 16 bits unsigned. Contains any number from 0 to 65,535

(inclusive) .
long: 32 bits signed. Contains any number from -2,147,483,648

to 2,147,483,647 (inclusive).
unsigned long: 32 bits unsigned. Contains any number from 0 to

4,294,967,295 (inclusive).
extended: 80 bit IEEE Standard 754 floating point number (Standard

Apple Numeric Environment [SANE] data type Extended)
pstring: Pascal-style string, a one-byte count followed by text

bytes. The total number of bytes in this data type should
be even. A pad byte can be added to the end of the text to
accomplish this. This pad byte is not reflected in the
count.

ID: 32 bits, the concatenation of four printable ASCII characters
in the range " " (space, Ox20) through "-" (t>lde, Ox7E).
Leading spaces are not allowed in the ID but trailing spaces
are OK. Control characters are forbidden.

AIFF.doc Page 2

Constants

Decimal values are referred to as a string of digits, for example 123, 0, 100
are all decimal numbers. Hexadecimal values are preceded by a Ox- e.g., OxOA,
Oxl, Ox64.

Data Organization

All data is stored in Motorola 68000 format. The bytes of rnultj.ple-byte
values are stored with the high-order bytes first. Data is organized as
follows:

7 6 5 4 3 2 1 0

char: I msb lsb

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

char: I msb byte 0 byte 1 lsb 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

char: msb byte 0 byte 1

char: byte 2 byte 3 lsb

Figure 1: IFF data storage formats

Referring to Audio IFF

The official name for this standard is Audio Interchange File Format. If an
application p.r_·ogram needs to present the name of this format to a user, such
as in a "Save As ... " dialog box, the name can be abbreviated to Audio IFF.
Referring to Audio IFF files by a four-letter abbreviation (i.e., "AIFF") in
user-level documentation or program-generated messages should be a,roided.

File Structure

The "'EA IFF 85' Standard for Interchange Format Files" defines an overall
structure for storing data in files. Audio IFF conforms to those portions
of .. EA IFF 85" that are germane to Audio IFF. For a more complete discussion
of "EA IFF 85", please refer to the document "'EAIFF 85', Standard for
Interchange Format Files. "

An "EA IFF 85" file is made up of a number of chunks of data. Chunks are the
building blocks of "EA IFF 85" files. A chunk consists of some header
information followed by data:

I ckiD 1\
+--------------------+) header info
I ckSize 1/

data

Figure 2: IFF Chunk structure

.j::o.
c.v
0)

lJ

~
~
3
~
lJ
(1)

&'
(ti
:::J

2
~
@
~
~
"' ()•
C1)
C/)

AIFF.doc Page 3

A chunk can be represented using our C-like language in the following manner:

typedef struct
ID ckiD;
long ckSize;

char ckData[];
} Chunk;

/* chunk ID
/* chunk Size

/* data

*I
*I

*I

The ckiD describes the format of the data portion of a chunk. A program can
determine how to interpret the chunk data by examining ckiD.

The ckSize is the size of the data portion of the chunk, in bytes. It does
not include the 8 bytes used by ckiD and ckSize.

The ckOata contains the data stored in the chunk. The format of this data is
determined by ckiD. If the data is an odd number of bytes in length, a zero pad
byte must be added at the end. The pad byte is not included in ckSize.

Note that an array with no size specification (e.g., char ckData[];) indicates a
variable-sized array in our C-like language. This differs from standard c.

An Audio IFF file is a collection of a number of different types of chunks.
There is a Common Chunk which contains important parameters describing the
sampled sound, such as its length and sample rate. There is a Sound Data
Chunk which contains the actual audio samples. There are several other
optional chunks which define markers, list instrument parameters, store
application-specific information, etc. All of these chunks are described in
detail in later sections of this document.

The chunks in an Audio IFF file are grouped together in a container chunk.
"FA IFF 85" Standard for Interchange Format Files defines a nwnber of
container chunks, but the one used by Audio IFF is called a FORM. A FORM has
the following format:

typedef struct {
ID ckiD;
long ckSize;

ID
char
}

formType;
chunks[];

The ckiD is always 'FORM'. This indicates that this is a FORM chunk.

The ckSize contains the size of data portion of the 'FORM' chunk. Note that
the data portion has been broken into two parts, formType and chunks[].

The for.mType field describes what's in the 'FORM' chunk. For Audio IFF files,
for.mType is always 'AIFF'. This indicates that the chunks within the FORM
pertain to sampled sound. A FORM chunk of formType 'AIFF' is called a FORM
AIFF.

The chunks field are the chunks contained within the FORM. These chunks are
called local chunks. A FORM AIFF along with its local chunks make up an
Audio IFF file.

Here is an example of a simple Audio IFF file. It consists of a file containing
single FORM AIFF which contains two local chunks, a Common Chunk and a Sound
Data Chunk.

AIFF.doc

F(f!UCA:rFF-Cliiinlt
ckiD = 'FORM'
formType = 'AIFF'

Common Chunk
ckiD = ' COMM'

Sound Data Chunk
ckiD = 'SSND'

Figure 3: Simple Audio IFF File

Page 4

There are no restrictions on the ordering of local chunks within a FORM AIFF.

A more detailed example of an Audio IFF file can be found in Appendix A. Please
refer to this example as often as necessary while reading the remainder of this
document.

Storage of AIFF on Apple and Other Platforms

On a Macintosh, the FORM AIFF, is stored in the data fork of an Audio IFF file.
The Macintosh file type of an Audio IFF file is 'AIFF'. This is the same as
the foDmType of the FORM AIFF. Macintosh applications should not store any
information in Audio IFF file's resource fork, as this information may not be
preserved by all applications. Applications can use the Application Specific
Chunk, defined later in this document, to store extra information specific to
their application.

Audio IFF files may be identified in other Apple file systems as well. On a
Macintosh under MFS or HFS, the FORM AIFF is stored in the data fork of a file
with file type "AIFF." This is the same as the formType of the FORM AIFF.

On an operating system such as MS-DOS or UNIX, where it is customary to use a
file name extension, it is recommended that Audio IFF file names use ".AIF"
for the extension.

On an Apple II, FORM AIFF is stored in a file with file type $D8 and auxiliary
type $0000. Versions 1.2 and earlier of the Audio IFF standard used file type
$CB and auxiliary type $0000. This is incorrect; the assignment listed in
this document is the correct assignment.

On the Apple IIGS stereo data is stored with right data on even channels and
left data on odd channels. Some portions of AIFF do not follow this
convention. Even where it does follow the convention, AIFF usually uses
channel two for right data instead of channel zero as most Apple IIGS
standards do. Be prepared t.o interpret data accordingly.

Local Chunk Types

The for.mats of the different local chunk types found within a FORM AIFF are
described in the following sections, as are their ckiDs.

There are two types of chunks: required and optional. The Common Chunk is
required. The Sound Data chunk is required if the sampled sound has a length
greater than zero. All other chunks are optional. All applications that use
FORM AIFF must be able to read the required chunks and can choose to
selectively ignore the optional chunks. A program that copies a FORM AIFF
should copy all the chunks in the FORM AIFF, even those it chooses not to
interpret.

11
11
(/)

""0
CD
(")
::::;;
()"

~ a·
::J

11
0
JJ
5::
>U
::J
0..

0
:::y
c
::J
;<::"

JJ
CD

<Q.
~
'<
..,..
w
--.1

AIFF.doc Page 5

The Common Chunk

The Common Chunk describes fundamental parameters of the sampled sound.

#define commoniD

typedef struct
ID
long

short
unsigned long
short
extended

ComrnonChunk;

ckiD;
ckSize;

'COMM' /* ckiD for Common Chunk */

numChannels;
nwnSampleFrames;
sampleSize;
sampleRate;

The ckiD is always 'COMM'. The ckSize is the size of the data portion of the
chunk, in bytes. It does not include the 8 bytes used by ckiD and ckSize.
For the Common Chunk, ckSize is always 18.

The nwmChannels field contains the number of audio channels for the sound.
A value of 1 means monophonic sound, 2 means stereo, and 4 means four channel
sound, etc. Any number of audio channels may be represented. For
multichannel sounds, single sample points from each channel are interleaved.
A set of interleaved sample points is called a sample frame.

The actual sound samples are stored in another chunk, the Sound Data Chunk,
which will be described shortly.

Single sample points from each channel are interleaved such that each
sample frame is a sample point from the same moment in time for each channel
available.

The numSampleFrames field contains the number of sample frames. This is not
necessarily the same as the number of bytes nor the number of samplepoints in
the Sound Data Chunk. The total number of sample points in the file is
numSampleFrames times numChannels.

The sampleSize is the number of bits in each sample point. It can be any
number from 1 to 32. The format of a sample point will be described in the
next section.

The sampleRate field is the sample rate at which the sound 1s to be played
back in sample frames per second.

One, and only one, Common Chunk is required in every FORM AIFF.

Sound Data Chunk

The Sound Data Chunk contains the actual sample frames.

#define Sound.DataiD 'SSND' /* ckiD for Sound Data Chunk

typedef struct
ID
long

unsigned long
unsigned long
unsigned char

SoundDataChunk;

ckiD;
ckSize;

offset;
blockSize;
SoundData [);

*I

The ckiD is always 'SSND'. The ckSize is the size of the data portion of the
chunk, in bytes. It does not include the 8 bytes used by ckiD and ckSize.

AIFF.doc Page 6

The offset field determines where
starts4 The offset is in bytes.
should set it to zero. Use for a
Block-Aligning Sound Data section

the first sample frame in the soundData
MOst applications won't use offset and
non-zero offset is explained in the
below.

The blockSize is used in conjunction with offset for block-aligning sound
data. It contains the size in bytes of the blocks that sound data is aligned
to. As with offset, most applications won't use blockSize and should set it
to zero. More information on blockSize is in the Block-Aligning Sound Data
section below.

The soundData field contains the sample frames that make up the sound. The
number of sample frames in the soundData is determined by the numSampleFrames
field in the Common Chunk. Sample points and sample frames are explained in
detail in the next section.

The Sound Data Chunk is required unless the numSampleFrames field in the
Common Chunk is zero. A maximum of one Sound Data Chunk may appear in a FORM
AIFF.

Sample Points and Sample Frames

A large part of interpreting Audio IFF files revolves around the two concepts
of sample points and sample frames.

A sample point is a value representing a sample of a sound at a given point in
time. Each sample point is stored as a linear, 2's-complement value which may
be from 1 to 32 bits wide, as deter.mined by sampleSize in the Common Chunk.

Sample points are stored in an integral number of contiguous bytes. One- to
eight-bit wide sample points are stored in one byte, 9- to 16-bit wide sample
points are stored in two bytes, 17- to 24-bit wide sample points are stored
in three bytes, and 25- to 32-bit wide sample points are stored in four bytes
(most significant byte first) . When the width of a sample point is not a
multiple of eight bits, the sample point data is left justified, with the
remaining bits zeroed. An example case is illustrated in Figure 4. A 12-bit
sample point, binary 101000010111, is stored left justified in two bytes.
The remaining bits are set to zero.

1-1---~-~- -~-~- _1_1_1_1_1_1_1
1 1 o 1 o o o o 1 1 o 1 1 1 o o o o 1

I I I I I I I I I I I
<---===-~-==-=-===-==-=--===-==--=-=-=--===---> <---=-=-=-=-=-=---->

12 bit sample point is left justified rightmost
4 bits are
zero padded

Figure 4: 12-Bit Sample Point

For multichannel sounds, single sample points from each channel are
interleaved. A set of interleaved sample points is called a sample frame.
Single sample points from each channel are interleaved such that each
sample frame is a sample point from the same moment in time for each channel
available. This is illustrated in Figure 5 for the stereo (two channel) case.

sample
frame 0

sample
frame 1

IChliCli21 Ch11Cli21
I I I I I

sample
frame N

IChl Cli2
I

= one sample point

Figure 5: Sample Frames for Multichannel Sound

.1:>­
w
CXl

::0

~
~
3
~
::0
Q)

Ci)
Cti
:::l

ft5
s:
tll
:::l
§
:-:-

a?
"" C)•
Q)
(/)

AIFF.doc Page 7

For monophonic sound, a sample frame is a single sample point. For
multichannel sounds, you should follow the conventions in Figure 6.

channel
1 2 3 4 5

left I right
stereo I I

I I
I left I right I -center

3 channel I I
I I
I front I front I rear I rear

quad I left I right I left I right
I I I

left I center I right I surround I
4 channel I I I I I

I I I I

6

left I left I center I right I right I surround
6 channel I I center I I I center I

I I I I I

Figure 6: Sample Frame Conventions for Multichannel Sound

Sample frames are stored contiguously in order of increasing time. The sample
points within a sample frame are packed together; there are no unused bytes
between them. Likewise, the sample frames are packed together with no pad
bytes.

Block-Aligning Sound Data

There may be some applications that, to ensure real time recording and
playback of audio, wish to align sampled sound data with fixed-size blocks.
This alignment can be accomplished with the offset and blockSize parameters of
the Sound Data Chunk, as shown in Figure 7.

1\\ unused \\1 sample frames 1\\ unused \\1
I I I I
<-- offset ><- numSampleFrames sample frames ->·

1 blockSize I
1<- bytes ->1
I I

block N-1 --,b~l~o~c~k~Nu------ block N+1 block N+2

Figure 7: Block-Aligned Sound Data

In Figure 7, the first sample frame starts at the beginning of block
is accomplished by skipping the first offset bytes of the soundData.
too, that the soundData bytes can extend beyond valid sample frames,
the soundData bytes to end on a block boundary as well.

N. This
Note

allowing

The blockSize specifies the size in bytes of the block to which you would
align the sound data. A blockSize of zero indicates that the sound data does
not need to be block-aligned. Applications that don't care about block
alignment should set the blockSize and offset to zero when creating Audio IFF
files. Applications that write block-aligned sound data should set blockSize
to the appropriate block size. Applications that modify an existing Audio IFF
file should try to preserve alignment of the sound data, although this is not
required. If an application does not preserve alignment, it should set the
blockSize and offset to zero. If an application needs to realign sound data
to a different sized block, it should update blockSize and offset accordingly.

AIFF.doc Page 8

The Marker Chunk

The Marker Chunk contains markers that point to positions in the sound data.
Markers can be used for whatever purposes an application desires. The
Instrument Chunk, defined later in this Note, uses markers to mark loop
beginning and end points.

Markers

A marker has the following format.

typedef

typedef

} Marker;

short

struct {
MarkeriD
unsigned long
pstring

Markerid;

id;
position;
markerName;

The id is a number that uniquely identifies that marker within a FORM AIFF.
The id can be any positive non-zero integer, as long as no other marker
within the same FORM AIFF has the same id.

The marker's position in the sound data is determined by the position field.
Markers conceptually fall between two sample frames. A marker that falls
before the first sample frame in the sound data is at position zero, while a
marker that falls between the first and second sample frame in the sound data
is at position 1. Note that the units for position are sample frames, not
bytes nor sample points.

Sample Frames

---·---·---·--- --- --- --- --- --- --- --- ---h h h

position 0 position 5 position 12

Figure 8: Sample Frame Marker Positions

The markerName field is a Pascal-style text string containing the name of the
mark.

Note: Some "EA IFF 85" files store strings a C-strings (text bytes followed by
a null terminating character) instead of Pascal-style strings. Audio IFF uses
pstrings because they are more efficiently skipped over when scanning through
chunks. Using pstrings, a program can skip over a string by adding the string
count to the address of the first character. C strings require that each
character in the string be examined for the null ter.minator.

Marker Chunk Format

The format for the data within a Marker Chunk is shown below.

#define MarkeriD

typedef struct {
ID
long

unsigned short
Marker

MarkerChunk;

'MARK' /* ckiD for Marker Chunk */

ckiD;
ckSize;

numMarkers;
Markers [];

11
11
(f)

""0
<t>
0
~
0
~
6"
:::1

11
0
JJ
:::;::
OJ
:::1
a.
()
::J"
c
:::1
;r

JJ
<t>

<0

~
-<
~
c.v
c.o

AIFF.doc Page 9

The ckiD is always 'MARK'. The ckSize is the size of the data portion of the
chunk in bytes. It does not include the 8 bytes used by ckiD and ckSize.

The numMarkers field is the number of markers in the Marker Chunk. If
numMarkers is non-zero, it is followed by the markers themselves. Because
all fields in a marker are an even number of bytes, the length of any marker
will always be even. Thus, markers are packed together with no unused bytes
between them. The markers need not be ordered in any particular manner.

The Marker Chunk is optional. No more than one Marker Chunk can appear in a
FORM AIFF.

The Instrument Chunk

The Instrument Chunk defines basic parameters that an instrument, such as a
sample, could use to play the sound data.

Looping

Sound data can be looped, allowing a portion of the sound to be repeated in
order to lengthen the sound. The structure below describes a loop.

typedef struct {
short PlayMode;
Markerid beginLoop;
Markerid endLoop;

LoOpi

A loop is marked with two points, a begin position and an end position. There
are two ways to play a loop, forward looping and forward/backward looping.
In the case of forward looping, playback begins at the beginning of the sound,
continues past the begin position and continues to the end position, at which
point playback starts again at the begin position. The segment between the
begin and end positions, called the loop segment, is played repeatedly until
interrupted by a user action, such as the release of a key on a sampling
instrument.

sample frames ~---~---~---l<----r0op-5egmen~-==>l--- --- ---
1 I I I I I I I I --- --- ---A--- --- --- --- --- ---A--- ---

begin position end position

Figure 9: Sample Frame Looping

With forward/backward looping, the loop segment is first played from the begin
position to the end position, and then played backwards from the end position
to the begin position. This flip-flop pattern is repeated over and over again
until interrupted.

The playMode specifies which type of looping is to be performed;

#define NoLooping 0
#define ForwardLooping 1
#define ForwardBackwardLooping 2

If NoLooping is specified, then the loop points are ignored during playback.

The beginLoop is a marker id that marks the begin position of the loop segment.

The endLoop marks the end position of a loop. The begin position must be
less than the end position. If this is not the case, then the loop segment
has zero or negative length and no looping takes place.

AIFF.doc Page 10

The Instrument Chunk Format

The format of the data within an Instrument Chunk is described below.

#define InstrumentiD 'INST' /*ckiD for Instruments Chunk*/

typedef struct
ID
long

char
char
char
char
char
char
short
Loop
Loop

InstrumentChunk;

ckiD;
ckSize;

baseNote;
detune;
lowNote;
highNote;
lowvelocity;
highvelocity;
gain;
sustainLoop;
releaseLoop;

The ckiD is always 'INST'. ckSize is the size of the data portion of the
chunk, in bytes. For the Instrument Chunk, ckSize is always 20.

The baseNote is the note at which the instrument plays back the sound data
without pitch modification. Units are MIDI (MIDI is an acronym for Musical
Instrument Digital Interface) note numbers, and are in the range 0 through
127. Middle Cis 60.

The detune field determines how much the instrument should alter the pitch of
the sound when it is played back. Units are in cents (1/100 of a semitone)
and range from -50 to +50. Negative numbers mean that the pitch of the sound
should be lowered, while positive numbers mean that it should be raised.

The lowNote and highNote fields specify the
playback of the sound data. The sound data
is requested to play a note between the low
note does not have to be within this range.
are MIDI note values.

suggested range on a keyboard for
should be played if the instrument
and high, inclusive. The base
Units for lowNote and highNote

The lowVelocity and highVelocity fields specify the suggested range of
velocities for playback of the sound data. The sound data should be played
if the note-on velocity is between low and high velocity, inclusive. Units
are MIDI velocity values, 1 {lowest velocity) through 127 (highest velocity) .

The gain is the amount by which to change the gain of the sound when it is
played. Units are decibels. For example, Odb means no change, 6db means
double the value of each sample point, while -6db means halve the value of
each sample point.

The sustainLoop field specifies a loop that is to be played when an instrument
is sustaining a sound.

The releaseLoop field specifies a loop that is to be played when an instrument
is in the release phase of playing back a sound. The release phase usually
occurs after a key on an instrument is released.

The Instrument Chunk is optional. No more than one Instrument Chunk can
appear in a FORM AIFF.

ASIF Note: The Apple IIGS Sampled Instrument Format also defines a
chunk with ID of "INST," which is not the same as the Audio
IFF Instrument Chunk. A good way to tell the two chunks
apart in generic IFF-style readers is by the ckSize fields.

~
~
0

JJ

~
~
3
~
JJ
Q)

CD'
~
:;)

@

~
:;)
c::
~
a?
-.:: c:s·
Q)
(I)

AIFF.doc Page 11

The Audio IFF Instrument Chunk's ckSize field is always 20,
whereas the Apple IIGS Sampled Instrument Format Instrument
Chunk's ckSize field, for structural reasons, can never he
20.

The MIDI Data Chunk

The MIDI Data Chunk can be used to store MIDI data. Please refer to Musical
Instrament Digital Interface Specification 1.0, available from the
International MIDI Association, for more details on MIDI.

The primary purpose of this chunk is to store MIDI System Exclusive messages,
although other types of MIDI data can be stored in the block as well. As more
instruments come to market, they will likely have parameters that have not
been included in the Audio IFF specification. The MIDI System Exclusive
messages for these instruments may contain many parameters that are not
included in the Instrument Chunk. For example, a new sampling instrument may
have more than the two loops defined in the Instrument Chunk. These loops
will likely be represented in the MIDI System Exclusive message for the new
machine. This MIDI System Exclusive message can be stored in the MIDI Data
Chunk.

#define

typedef struct
ID
long

unsigned char
MIDIDataChunk;

MIDIDataiD

ckiD;
ckSize;

MIDidata[];

'MIDI' /* ckiD for MIDI Data Chunk */

The ckiD is always 'MIDI'. ckSize of the data portion of the chunk, in bytes.
It does not include the 8 bytes used by ckiD and ckSize.

The MIDIData field contains a stream of MIDI data.

The MIDI Data Chunk is optional. Any number of MIDI Data Chunks may exist in
a FORM AIFF. If MIDI System Exclusive messages for several instruments are to
be stored in a FORM AIFF, it is better to use one MIDI Data Chunk per
instrument than one big MIDI Data Chunk for all of the instruments.

The Audio Recording Chunk

The Audio Recording Chunk contains infor.mation pertinent to audio recording
devices.

#define AudioRecordingiD 'AESD'

typedef struct
ID
long

ckiD
ckSize;

/* ckiD for Audio Recording */
/* Chunk. */

unsigned char AESChannelStatusData[24];
AudioRecordingChunk;

The ckiD is always 'AESD'. The ckSize is the size of the data portion of the
chunk, in bytes For the Audio Recording Chunk, ckSize is always 24.

The 24 bytes of AESCChannelStatusData are specified in the "AES Recommended
Practice for Digital Audio Engineering - Serial Transmission For.mat for Linearly
Represented Digital Audio Data 11 , transmission of digital audio between audio
devices. This information is duplicated in the Audio Recording Chunk for
convenience. Of general interest would be bits 2, 3, and 4 of byte 0, which
describe recording emphasis.

AIFF.doc Page 12

The Audio Recording Chunk is optional. No more than one Audio Recording Chunk
may appear in a FORM AIFF.

The Application Specific Chunk

The Application Specific Chunk can be used for any purposes whatsoever by
developers and application authors. For example, an application that edits
sounds might want to use this chunk to store editor state parameters such as
magnification levels, last cursor position, etc.

#define ApplicationSpecificiD 'APPL' /* ckiD for Application */

typedef struct
ID
long

ckiD;
ckSize;

OSType applicationSignature;
char data[];

ApplicationSpecificChunk;

/* Specific Chunk. */

The ckiD is always 'APPL'. The ckSize is the size of the data portion of the
chunk, in bytes. It does not include the 8 bytes used by ckiD and ckSize.

The applicationSignature identifies a particular application. For Macintosh
applications, this will be the application's four character signature.

The OSType field is used by applications which run on platforms from Apple
Computer, Inc. For the Apple II, the OStype field should be set to 'pdos'.
For the Macintosh, this field should be set to the four character signature
as registered with Apple Technical Support.

The data field is the data specific to the application.

The Application Specific Chunk is optional. Any number of Application
Specific Chunks may exist in a single FORM AIFF.

The Comments Chunk

The Comments Chunk is used to store comments in the FORM AIFF. "EA IFF 85"
has an Annotation Chunk (used in ASIF) that can be used for comments, but the
Comments Chunk has two features not found in the "EA IFF 85" chunk. They are
a time-stamp for the comment and a link to a marker.

..,., ..,.,
(fJ

"D
CD
(")
:=;;
c:;·
~
6"
:::l

..,.,
0
:rJ
$;::

~
:::l
a.
0
::;
c:
:::l
"A

:rJ
CD

(Q

S!!.
-;::

""'" ""'"

AIFF.doc Page 13

Comment

A comment consists of a time stamp, marker id, and a text count followed by
text.

typedef struct {
unsigned long
MarkeriD
unsiqned short
char

Comment;

timeStamp;
marker;
count;
text;

The timeStamp indicates when the comment was created. On the Arniga, units
are the number of seconds since January 1, 1978, On the Macintosh, units are
the number of seconds since January 1, 1904.

A comment can be linked to a marker. This allows applications to store long
descriptions of markers as a comment. If the comment is referring to a marker,
then the marker field is the ID of that marker. Otherwise, marker is zero,
indicating that this comment is not linked to a marker.

The count is the length of the text that makes up the comment. This is a 16-bit
quantity, allowing much longer comments than would be available with a pstring.

The text field contains the comment itself.

The Comments Chunk is optional. No more than one Comments Chunk may appear in
a single FORM AIFF.

Comments Chunk For.mat

#define Comm.entiD

typedef struct
ID
long

ckiD;
ckSize;

'COMT' /* ckiD for Comments Chunk */

unsigned short
Comment

numCorrunents;
comments[];

} CommentsChunk;

The ckiD is always 'COMT'. The ckSize is the size of the data portion of
the chunk, in bytes. It does not include the 8 bytes used by ckiD and ckSize .

The numComments field contains the number of comments ~n the Comments Chunk_
This is followed by the comments themselves. Comments are always even
numbers of bytes in length, so there is no padding between comments in
the Comments Chunk.

The Comments Chunk is optional. No more than one Comments Chunk may appear
in a single FORM AIFF.

The Text Chunks, Name, Author, Copyright, Annotation

These four chunks are included in the definition of every "E.A IFF 85" file.
All are text chunks; their data portion consists solely of text_ Each of
these chunks is optional.

#define
#define
#define
#define

Nam.eiD ' NAME'
NameiD 'AUTH'
NameiD ' (c) '
NameiD 'ANNO'

I* ckiD for Name Chunk *I
I* ckiD for Author Chunk *I
I* ckiD for Copyright Chunk *I
I* ckiD for Annotation Chunk *I

AIFF.doc Page 14

typedef struct {
ID ckiD;
long ckSize;
char text [] ;

}TextChunk;

The ckiD is either 'NAME', 'AUTH', '(c) ', or 'ANNO' dependinq on whether the
chunk is a Name Chunk, Author Chunk, Copyright Chunk, or Annotation Chunk,
respectively. For the Copyright Chunk, the 'c' is lowercase and there is a
space (Ox20) after the close parenthesis.

The ckSize is the size of the data portion of the chunk, in this case the text.

The text field contains pure ASCII characters. it is not a pstring or a C
string. The number of characters in text is determined by ckSize. The
contents of text depend on the chunk, as described below:

Name Chunk. The text contains the name of the sampled sound. The Name Chunk
is optional. No more than one Name Chunk may exist within a FORM AIFF.

~
~
1\)

J:J

~
~
3
~
J:J
CD
iii'
(i)
::J

fJ5

~
::J
c::
~
tJ
CD

" fi•
CD en

AIFF.doc Page 15

Author Chunk. The text contains one or more author names. An author in this
case is the creator of a sampled sound. The Author Chunk is optional. No
more than one Author Chunk may exist within a FORM AIFF.

Copyright Chunk. The Copyright Chunk contains a copyright notice for the
sound. The text field contains a date followed by the name of the copyright
owner. The chunk ID '(c) ' serves as the copyright character. For example,
a Copyright Chunk containing the text 11 1991 Commodore-Amiga, Inc. 11 means
"(c) 1991 Commodore-Amiga, Inc." The Copyright Chunk is optional. No more
than one Copyright Chunk may exist within a FORM AIFF.

Annotation Chunk. The text contains a comment. Use of this chunk is
discouraged within a FORM AIFF. The more powerful Comments Chunk should be
used instead. The Annotation Chunk is optional. Many Annotation Chunks may
exist within a FORM AIFF.

Chunk Precedence

Several of the local chunks for FORM AIFF may contain duplicate information.
For example, the Instrument Chunk defines loop points and MIDI System
Exclusive data in the MIDI Data Chunk may also define loop points. What
happens if these loop points are different? How is an application supposed
loop the sound? Such conflicts are resolved by defining a precedence for
chunks. This precedence is illustrated in Figure 10.

Common Chunk
I

Sound Data Chunk
I

Marker Chunk
I

Instrument Chunk
I

Comment Chunk
I

Name Chunk
I

Author Chunk
I

Copyright Chunk
I

Annotation Chunk
I

Audio Recording Chunk
I

MIDI Data Chunk
I

Application Specific Chunk

Highest Precedence

Lowest Precedence

Figure 10: Chunk Precedence

to

The Common Chunk has the highest precedence, while the Application Specific
Chunk has the lowest. Information in the Common Chunk always takes precedence
over conflicting information in any other chunk. The Application Specific
Chunk always loses in conflicts with other chunks. By looking at the chunk
hierarchy, for example, one sees that the loop points in the Instrument Chunk
take precedence over conflicting loop points found in the MIDI Data Chunk.

It is the responsibility of applications that write data into the lower
precedence chunks to make sure that the higher precedence chunks are updated
accordingly.

Figure 11 illustrates an example of a FORM AIFF. An Audio IFF file is simple
a file containing a single FORM AIFF. The FORM AIFF is stored in the data
fork of Macintosh file systems that can handle resource forks.

FORM AIFF

ckiD
ckSize

~C~ommo====n------ form~~i;
Chunk ckSize

AIFF.doc

'FORM'
176516
'AIFF'
'COMM'

18 ---;----
2 I
88200 --

Page 16

numChannels
numSampleFrames

sampleSize
sampleRate

ckiD

16 I
44100.AOA0----------------------------

Marker
Chunk

'MARK'
ckSize I 34

numMarkers 1- 2 --·~------­

id 1-1-1
position 1- 44100 -------

markerName 1-8 I 'b' I~ I 7"'9'" 1-, --, 17"'1' I T()T I T()T l""i)TI __ O_I
id I 2 I

position 1- 88200 -------
markerName 1-8 I 'e' ~~~-,--, i7"'l'IT()TIT()TI""i)TI--0-I

~I~n~s~t~r=um~e~n~t" ckiD I 'INST' I
Chunk ckSize 1- 20 ------1

baseNote 1-601
detune I -31

lowNote I 571
highNote I 631

lowVelocity I 1 I
highVelocity 11271

gain I 6
sustainLoop.playMode 1- 1

sustainLoop.beginLoop 1- 1
sustainLoop.endLoop 1- 2

releaseLoop.playMode 1- 0
releaseLoop.beginLoop I

releaseLoop.endLoop I
-sound ckiD 1- 'SSND7

Data ckSize 1- 176408
Chunk offset 1- 0 ------------

blockSize 1- 0
soundData 1-ch 'l--,l~c~h~2~­

first simPle frime
. . I""""C!lr--1~1
88200th sample frame

Figure 11: Sample FORM AIFF

Further Reference

0

0

0

0

0

0

0

0

"Ins1de Macintosh", Volume II, Apple Computer,·-Inc.
11Apple Numerics Manual", Second Edition, Apple Computer, Inc.
"File Type Note: File Type $D8, Auxiliary Type $0002, Apple IIGS
Sampled Instrument Format", Apple Computer, Inc.

"Audio Interchange File Format v1.3 11 , APDA
11 AES Recommended Practice for Digital Audio Engineering--Serial
Transmission Format for Linearly Represented Digital Audio Data",
Audio Engineering Society, 60 East 42nd Street, New York, NY 10165
"MIDI: Musical Instrument Digital Interface, Specification 1.0", the
International MIDI Association.
11 'EA IFF 85' Standard for Interchange Format Files .. , Electronic Arts
"'8SVX' IFF 8-bit Sampled Voice", Electronic Arts

11
11
(/)
"0
<D
()
::::;;
()"

2?.
6"
::l

11
0
JJ
s::
!ll
::l
a.
0
:::;
t::
::l
="""
JJ
<D
(0

~
-<
+:>.
+:>.
w

ANBM.doc Page 1

Animated bitmap form (Framer, Deluxe Video)

TITLE: Form ANBM (animated bitmap form used by Framer, Deluxe Video)

(note from the author)

The format was designed for simplicity at a time when the IFF
standard was very new and strange to us all. It was not designed
to be a general purpose animation format. It was intended to be
a private format for use by DVideo, with the hope that a more
powerful for.mat would emerge as the Amiga became more popular.

I hope you will publish this format so that other formats will
not inadvertantly conflict with it.

PURPOSE: To define simple animated bitmaps for use in DeluxeVideo.

In Deluxe Video objects appear and move in the foreground
with a picture in the background. Objects are "small" bitmaps
usually saved as brushes from DeluxePaint and pictures are large
full screen bitmaps saved as files from DeluxePaint.

Two new chunk headers are defined: ANBM and FSQN,

An animated bitmap (ANBM) is a series of bitmaps of the same
size and depth. Each bitmap in the series is called a frame and
is labeled by a character, 'abc ... ' in the order they
appear in the file.

The frame sequence chunk (FSQN) specifies the playback
sequence of the individual bitmaps to achieve animation.
FSQN CYCLE and FSQN TOFRO specify two algorithmic sequences, If
neither of these bits is set, an arbitrary sequence can be used
instead.

ANBM
.FSQN
.LIST ILBM
, .PROP ILBM
• , .BMIID
, , .CMAP
, .FORM ILBM
, .BODY

- identifies this file as an animated bitmap
- playback sequence information
- LIST allows following ILBMs to share properties
- properties follow
- bitmap header defines common size and depth
- colormap defines common colors
- first frame follows
- the first frame
- FORM ILBM and BODY for each remaining frame

Chunk Description:

The ANBM chunk identifes this file as an animated bitmap

Chunk Spec:

#define ANBM MakeiD('A', 'N', 'B', 'M')

Disk record:

none

ANBM.doc Page 2

Chunk Description:

The FSQN chunk specifies the frame playback sequence

Chunk Spec:

#define FSQN MakeiD('F' ,'S' ,'Q' ,'N')

/* Flags */
#define FSQN CYCLE OxOOOl
#define FSQN-TOFRO Ox0002
/* Disk record */

/*Ignore sequence, cycle a,b, .. y,z,a,b, .. */
/*Ignore sequence, cycle a,b, .. y,z,y, .. a,b, */

typedef struct {
WORD nwnframes;
LONG dt;
WORDBITS flags;
UBYTE sequence(SO];
} FrameSeqn;

Supporting Software:

/* Number of frames in the sequence */
/* Nominal time between frames in jiffies */
/* Bits modify behavior o£ the animation */
/*string of 'a' .. 'z' specifying sequence*/

DeluxeVideo by Mike Posehn and Tom Case for Electronic Arts

Thanks,
Mike Posehn

.!).

.!).

.!).

::0

~
~
3
~
::0
(t)

(i)'
(i3
::J

~

~
::J c:
tl)
:-:-
CJ
(t)

" C)•
(t)
(I)

ANIM.brush.doc
ANIM brush format

Dpaint Anim Brush IFF Format

From a description by the author of DPaint,
Dan Silva, Electronic Arts

Page 1

The "Anim Brushes 11 of DPaint III are saved on disk in the IFF "ANIM" format.
Basically, an ANIM Form consists of an initial ILBM which is the first frame
of the animation, and any number of subsequent "ILBM"S (which aren't really
ILBM's) each of which contains an ANHD animation header chunk and a DLTA chunk
comprised of the encoded difference between a frame and a previous one.

To use ANIM terminology (for a description of the ANIM format, see the IFF
Anim Spec, by Gary Bonham) . Anim Brushes use a "type 5 11 encoding, which is
a vertical, byte-oriented delta encoding (based on Jim Kent's RIFF). The
deltas have an interleave of 1, meaning deltas are computed between adjacent
frames, rather than between frames 2 apart, which is the usual ANIM custom
for the purpose of fast hardware page-flipping. Also, the deltas use
Exclusive Or to allow reversable play.

However, to my knowledge, all the existing Anim players in the Amiga world
will only play type 5 11 Anim 11 s which have an interleave of 0 (i.e. 2) and
which use a Store operation rather than Exclusive Or, so no existing programs
will read Anim Brushes anyway. The job of modifying existing Anim readers
to read Anim Brushes should be simplified, however.

Here is an outline of the structure of the IFF For.m output by DPaint III as
an 11 Anim Brush 11 • The IFF Reader should of course be flexible enough to
tolerate variation in what chunks actually appear in the initial ILBM.

FORM ANIM
FORM ILBM

BMHD
CMAP
DPPS
GRAB
CRNG
CRNG
CRNG
CRNG
CRNG
CRNG

first frame

DPAN my own little chunk.
CAMG
BODY

FORM ILBM frame 2
ANHD animation header chunk

. DLTA delta mode data

FORM ILBM frame 3
ANHD animation header chunk

. DLTA delta mode data

FORM ILBM frame 4
ANHD animation header chunk
DLTA delta mode data

FORM ILBM frame N
ANHD animation header chunk
DLTA delta mode data

ANIM.brush.doc

--- Here is the format of the DPAN chunk:

typedef struct {
UWORD version;
UWORD nframes;
ULONG flags;
} DPAnimChunk;

/* current version=4 */
/*number of frames in the animation.*/

I* Not used */

Page 2

The version number was necessary during development. At present all I look
at is "nframes".

--- Here is the ANHD chunk format:

typedef struct {
UBYTE operation; /* =0 set directly

=1 XOR ILBM mode,

*I

=2 Long Delta mode,
=3 Short Delta mode
=4 Generalize short/long Delta mode,
=5 Byte Vertical Delta (riff)
=74 (Eric Grahams compression mode)

UBYTE mask; /* XOR ILBM only: plane mask where data is*/
UWORD w,h;
WORD x,y;
ULONG abstime;
ULONG reltime;
UBYTE interleave; /* 0 defaults to 2 */
UBYTE padO; /* not used */
ULONG bits; /* meaning of bits:

bit# =0 =1
0 short data long data
1 store XOR
2 separate info one info for

for each plane for all planes
3 not RLC RLC (run length encoded)
4 horizontal vertical
5 short info offsets long info offsets

-------------------------*/
UBYTE pad[16];
} AnimHdr;

for Anim Brushes, I set:

animHdr.operation = 5; /* RIFF encoding */
animHdr.interleave = 1;
animHdr.w = curAnimBr.bmob.pict.box.w;
animHdr.h = curAnimBr.bmob.pict.box.h;
animHdr.reltime = 1;
animHdr.abstime = 0;
animHdr.bits = 4; /* indicating XOR */

-- everything else is set to 0.

NOTE: the "bits" field was actually intended (by the original creator of
the ANIM format, Gary Bonham of SPARTA, Inc.) for use with only with
compression method 4. I am using bit 2 of the bits field to indicate the
Exclusive OR operation in the context of method 5, which seems like a
reasonable generalization.

"11
"11
(J)
"0
CD g
6"
a
6"
::J

"11
0
:JJ
s:
Ill
::J
a.
(")
::J"
c::
::J
=""
:JJ
CD

(Q

§:
-<
~
~
01

ANIM.brush.doc Page 3

For an Anim Brush with 10 frames, there will be an initial frame followed
by 10 Delta's (i.e ILBMS containing ANHD and DLTA chunks). Applying the
first Delta to the initial frame generates the second frame, applying the
second Delta to the second frame generates the third frame, etc. Applying
the last Delta thus brings back the first frame.

The DLTA chunk begins with 16 LONG plane offets, of which DPaint only uses
the first 6 (at most) . These plane offsets are either the offset (in bytes)
from the beginning of the DLTA chunk to the data for the corresponding plane,
or Zero, if there was no change in that plane. Thus the first plane offset
is either 0 or 64.

(The following description of the method is based on Gary Bonham's rewording
of Jim Kent's RIFF documentation.)

Compression/decompression is perfor.med on a plane-by-plane
basis.

Each byte-column of the bitplane is compressed separately. A
320x200 bitplane would have 40 columns of 200 bytes each. In
general, the bitplanes are always an even number of bytes wide,
so for instance a 17x20 bitplane would have 4 columns of 20
bytes each.

Each column starts with an op-count followed by a number of
ops. If the op-count is zero, that's ok, it just means there's
no change in this column from the last frame. The ops are of
three kinds, and followed by a varying amount of data depending
on which kind:

1. SKIP - this is a byte with the hi bit clear that says
how many rows to move the ''dest" pointer forward, ie to
skip. It is non-zero.

2. DUMP -this is a byte with the hi bit set. The hi bit is
masked off and the remainder is a count of the number of
bytes of data to XOR directly. It is followed by the
bytes to copy.

3. RUN - this is a 0 byte followed by a count byte, followed
by a byte value to repeat 11 Count" times, XOR'ing it into
the destination.

Bear in mind that the data is compressed vertically rather than
horizontally, so to get to the next byte in the destination you
add the number of bytes per row instead of one.

The Format of DLTA chunks is as described in section 2.2.2 of the Anim Spec.
The encoding for type 5 is described in section 2.2.3 of the Anim Spec.

ANIM.doc
Cel animation for.m

AN I M
An IFF Format For CEL Animations

1.0 Introduction

Revision date: 4 May 1988

prepared by:
SPARTA Inc.
23041 de la Carlota
Laguna Hills, Calif 92653
(714) 768-8161
contact: Gary Bonham

also by:
Aegis Development Co.
2115 Pico Blvd.
Santa Monica, Calif 90405
213) 392-9972

Page 1

The ANIM IFF format was developed at Sparta originally for the
production of animated video sequences on the Amiga computer. The
intent was to be able to store, and play back, sequences of frames
and to minimize both the storage space on disk (through compression)
and playback time (through efficient de-compression algorithms) .
It was desired to maintain maximum compatibility with existing
IFF formats and to be able to display the initial frame as a normal
still IFF picture.

Several compression schemes have been introduced in the ANIM format.
Most of these are strictly of historical interest as the only one
currently being placed in new code is the vertical run length encoded
byte encoding developed by Jim Kent.

1.1 ANIM Format overview

The general philosophy of ANIMs is to present the initial frame
as a normal, run-length-encoded, IFF picture. Subsequent
frames are then described by listing only their differences
from a previous frame. Normally, the "previous., frame is two
frames back as that is the frame remaining in the hidden
screen buffer when double-buffering is used. To better
understand this, suppose one has two screens, called A and B,
and the ability to instantly switch the display from one to
the other. The normal playback mode is to load the initial
frame into A and duplicate it into B. Then frame A is displayed
on the screen. Then the differences for frame 2 are used to
alter screen B and it is displayed. Then the differences for
frame 3 are used to alter screen A and it is displayed, and so
on. Note that frame 2 is stored as differences from frame 1,
but all other frames are stored as differences from two frames
back.

.j:>.

.j:>.
O'l

::0

~
~
3
~
::0
(1)

(i)
en
::J

f,5

~
::J
t:::
tll
:-:-
CJ
(1)
<:::
(')'
(1)
(/)

ANIM.doc

ANIM is an IFF FORM and its basic format is as follows (this
assumes the reader has a basic understanding of IFF format
files) :

first frame
normal type IFF data

Page 2

FORM ANIM
FORM ILBM

BMHD
ANHD optional animation header

chunk for timing of 1st frame.
CMAP
BODY

FORM ILBM
. ANHD
. DLTA
FORM ILBM

ANHD
DLTA

frame 2
animation header chunk
delta mode data

frame 3

The initial FORM ILBM can contain all the normal ILBM chunks,
such as CRNG, etc. The BODY will normally be a standard
run-length-encoded data chunk (but may be any other legal
compression mode as indicated by the BMHD) . If desired, an ANHD
chunk can appear here to provide timing data for the first
frame. If it is here, the operation field should be =0.

The subsequent FORMs ILBM contain an ANHD, instead of a BMHD,
which duplicates some of BMHD and has additional par~eters
pertaining to the animation frame. The DLTA chunk contains
the data for the delta compression modes. If the older XOR
compression mode is used, then a BODY chunk will be here. In
addition, other chunks may be placed in each of these as deemed
necessary (and as code is placed in player programs to utilize
them) . A good example would be CMAP chunks to alter the color
palette. A basic assumption in ANIMs is that the size of the
bitmap, and the display mode (e.g. HAM) will not change through
the animation. Take care when playing an ANIM that if a CMAP
occurs with a frame, then the change must be applied to both buffers.

Note that the DLTA chunks are not interleaved bitmap representations,
thus the use of the ILBM form is inappropriate for these frames.
However, this inconsistency was not noted until there were a number
of commercial products either released or close to release which
generated/played this for.mat. Therefore, this is probably an
inconsistency which will have to stay with us.

1.2 Recording ANIMs

To record an ANIM will require three bitmaps - one for creation of
the next frame, and two more for a "history~' of the previous two
frames for performing the compression calculations (e.g. the delta
mode calculations) .

There are five frame-to-frame compression methods currently defined.
The first three are mainly for historical interest. The product Aegis
VideoScape 3D utilizes the third method in version 1.0, but switched
to method 5 on 2.0. This is the only instance known of a commercial
product generating ANIMs of any of the first three methods. The
fourth method is a general short or long word compression scheme which
has several options including whether the compression is horizontal
or vertical, and whether or not it is XOR format. This offers a
choice to the user for the optimization of file size and/or playback
speed. The fifth method is the byte vertical run length encoding as
designed by Jim Kent. Do not confuse this with Jim's RIFF file format
which is different than ANIM. Here we utilized his compression/
decompression routines within the ANIM file structure.

ANIM.doc

The following paragraphs give a general outline of each of the
methods of compression currently included in this spec.

1 . 2 . 1 XOR mode

Page 3

This mode is the original and is included here for historical
interest. In general, the delta modes are far superior.
The creation of XOR mode is quite simple. One simply
perfor.ms an exclusive-or (XOR) between all corresponding
bytes of the new frame and two frames back. This results
in a new bitmap with 0 bits wherever the two frames were
identical, and 1 bits where they are different. Then this
new bitmap is saved using run-length-encoding. A major
obstacle of this mode is in the time consumed in perfor.ming
the XOR upon reconstructing the image.

1.2.2 Long Delta mode

This mode stores the actual new frame long-words which are
different, along with the offset in the bitmap. The
exact format is shown and discussed in section 2 below.
Each plane is handled separately, with no data being saved
if no changes take place in a given plane. Strings of
2 or more long-words in a row which change can be run
together so offsets do not have to be saved for each one.

Constructing this data chunk usually consists of having a buffer
to hold the data, and calculating the data as one compares the
new frame, long-word by long-word, with two frames back.

1.2.3 Short Delta mode

This mode is identical to the Long Delta mode except that
short-words are saved instead of long-words. In most
instances, this mode results in a smaller DLTA chunk.
The Long Delta mode is mainly of interest in improving
the playback speed when used on a 32-bit 68020 Turbo Amiga.

1.2.4 General Delta mode

The above two delta compression modes were hastily put together.
This mode was an attempt to provide a well-thought-out delta
compression scheme. Options provide for both short and long
word compression, either vertical or horizontal compression,
XOR mode (which permits reverse playback), etc. About the time
this was being finalized, the fifth mode, below, was developed
by Jim Kent. In practice the short-vertical-run-length-encoded
deltas in this mode play back faster than the fifth mode (which
is in essence a byte-vertical-run-length-encoded delta mode) but
does not compress as well - especially for very noisy data such
as digitized images. In most cases, playback speed not being
terrifically slower, the better compression (sometimes 2x) is
preferable due to limited storage media in most machines.

Details on this method are contained in section 2.2.2 below.

1.2.5 Byte Vertical Compression

This method does not offer the many options that method 4 offers,
but is very successful at producing decent compression even for
very noisy data such as digitized images. The method was devised
by Jim Kent and is utilized in his RIFF file format which is
different than the ANIM format. The description of this method
in this document is taken from Jim's writings. Further, he has
released both compression and decompression code to public domain.

"Tl
"Tl
(/)
-a
CD
()
:::;;
()"

~
6"
:::l

"Tl
0
JJ
s
Q.l
:::l
0.

0
:::J"
c
:::l
"T

JJ
CD

<Q.
S1
-<
.j::..
.j::..

"'

ANIM.doc Page 4

Details on this method are contained in section 2.2.3 below.

1.3 Playing ANIMs

Playback of ANIMs will usually require two buffers, as mentioned
above, and double-buffering between them. The frame data from
the ANIM file is used to modify the hidden frame to the next
frame to be shown. When using the XOR mode, the usual run­
length-decoding routine can be easily modified to do the
exclusive-or operation required. Note that runs of zero bytes,
which will be very common, can be ignored, as an exclusive or
of any byte value to a byte of zero will not alter the original
byte value.

The general procedure, for all compression techniques, is to first
decode the initial ILBM picture into the hidden buffer and double­
buffer it into view. Then th1s picture is copied to the other (now
hidden) buffer. At this point each frame is displayed with the
same procedure. The next frame is formed in the hidden buffer by
applying the DLTA data (or the XOR data from the BODY chunk in the
case of the f1rst XOR method) and the new frame is double-buffered
into view. This process continues to the end of the file.

A master colormap should be kept for the entire ANIM which would
be initially set from the CMAP chunk in the initial ILBM. This
color.map should be used for each frame. If a CMAP chunk appears
in one of the frames, then this master colormap is updated and the
new colormap applies to all frames until the occurrance of another
CMAP chunk.

Looping ANIMs may be constructed by simply making the last two frames
identical to the first two. Since the first two frames are special
cases (the first being a normal ILBM and the second being a delta from
the first) one can continually loop the anirn by repeating from frame
three. In this case the delta for creating frame three will modify
the next to the last frame which is in the hidden buffer (which is
identical to the first frame), and the delta for creating frame four
will modify the last frame which is identical to the second frame.

Multi-File ANIMs are also supported so long as the first two frames
of a subsequent file are identical to the last two frames of the
preceeding file. Upon reading subsequent files, the ILBMs for the
first two frames are simply ignored, and the remaining frames are
simply appended to the preceeding frames. This permits splitting
ANIMs across multiple floppies and also per.mits playing each section
independently and/or editing it independent of the rest of the ANIM.

Timing of ANIM playback is easily achieved using the vertical blank
interrupt of the Amiga. There is an example of setting up such
a timer in the ROM Kernel Manual. Be sure to remember the timer
value when a frame is flipped up, so the next frame can be flipped
up relative to that time. This will make the playback independent
of how long it takes to decompress a frame (so long as there is enough
time between frames to accomplish this decompression) .

2.0 Chunk Formats
2.1 ANHD Chunk

ANIM.doc Page 5

The ANHD chunk consists of the following data structure:

UBYTE operation

UBYTE mask

UWORD w,h

WORD x,y

ULONG abstime

ULONG reltime

UBYTE interleave

UBYTE padO
ULONG bits

UBYTE pad[l6]

The compression method:
=0 set directly (normal ILBM BODY) ,
=1 XOR ILBM mode,
=2 Long Delta mode,
=3 Short Delta mode,
=4 Generalized short/long Delta mode,
=5 Byte Vertical Delta mode
=6 Stereo op 5 (third party)
=74 (ascii 'J') reserved for Eric Graham's

compression technique (details to be
released later) .

(XOR mode only - plane mask where each
bit is set =1 if there is data and =0
if not.)

(XOR mode only - width and height of the
area represented by the BODY to eliminate
unnecessary un-changed data)

(XOR mode only - position of rectangular
area representd by the BODY)

(currently unused - timing for a frame
relative to the time the first frame
was displayed- in jiffies (1/60 sec))

(timing for frame relative to time
previous frame was displayed - in
jiffies (1/60 sec))
(unused so far - indicates how may frames
back this data is to modify. =0 defaults
to indicate two frames back (for double
buffering). =n indicates n frames back.
The main intent here is to allow values
of =1 for special applications where
frame data would modify the immediately
previous frame)
Pad byte, not used at present.
32 option bits used by options=4 and 5.
At present only 6 are identified, but the
rest are set =0 so they can be used to
implement future ideas. These are defined
for option 4 only at this point. It is
recommended that all bits be set =0 for
option 5 and that any bit settings used in
the future (such as for XOR mode) be compatible
with the option 4 bit settings. Player code
should check undefined bits in options 4 and 5
to assure they are zero.

The six bits for current use are:

bit #

0
1
2

3
4
5

set =0

short data
set

separate info
for each plane

not RLC
horizontal

short info offsets

set =1

long data
XOR

one info list
for all planes

RLC (run length coded)
vertical

long info offsets

This is a pad for future use for future
compression modes.

.j::..

.j::..
o:>

JJ

~
~
3
~
JJ
CD
CD'
(i)
::::J

8
s:
tll
::::J c::
tll
:-:-
tJ
CD
<:::
(')•
CD
(/)

ANIM.doc Page 6

2.2 DLTA Chunk

This chunk is the basic data chunk used to hold delta compression
data. The format of the data will be dependent upon the exact
compression for.mat selected. At present there are two basic
for.mats for the overall structure of this chunk.

2.2.1 Format for methods 2 & 3

This chunk is a basic data chunk used to hold the delta
compression data. The minimum size of this chunk is 32 bytes
as the first 8 long-words are byte pointers into the chunk for
the data for each of up to 8 bitplanes. The pointer for the
plane data starting immediately following these 8 pointers will
have a value of 32 as the data starts in the 33-rd byte of the
chunk (index value of 32 due to zero-base indexing) .

The data for a given plane consists of groups of data words. In
Long Delta mode, these groups consist of both short and long
words - short words for offsets and numbers, and long words for
the actual data. In Short Delta mode, the groups are identical
except data words are also shorts so all data is short words.
Each group consists of a starting word which is an offset. If
the offset is positive then it indicates the increment in long
or short words (whichever is appropriate) through the bitplane.
In other words, if you were reconstructing the plane, you would
start a pointer (to shorts or longs depending on the mode) to
point to the first word of the bitplane. Then the offset would
be added to it and the following data word would be placed at
that position. Then the next offset would be added to the
pointer and the following data word would be placed at that
position. And so on ... The data terminates with an offset
equal to OxFFFF.

A second interpretation is given if the offset is negative. In
that case, the absolute value is the offset+2. Then the
following short-word indicates the number of data words that
follow. Following that is the indicated number of contiguous
data words (longs or shorts depending on mode) which are to
be placed in contiguous locations of the bitplane.

If there are no changed words in a given plane, then the pointer
in the first 32 bytes of the chunk is =0.

2.2.2 Format for method 4

The DLTA chunk is modified slightly to have 16 long pointers at
the start. The first 8 are as before - pointers to the start of
the data for each of the bitplanes (up to a theoretical max of 9
planes) . The next 9 are pointers to the start of the offset/numbers
data list. If there is only one list of offset/numbers for all
planes, then the pointer to that list is repeated in all positions
so the playback code need not even be aware of it. In fact, one
could get fancy and have some bitplanes share lists while others
have different lists, or no lists (the problems in these schemes
lie in the generation, not in the playback) .

ANIM.doc Page 7

The best way to show the use of this format is in a sample playback
routine.

SetDLTAshort(bm,deltaword)
struct -BitMap *bm;
WORD *deltaword;
{

int i;
LONG *deltadata;
WORD *ptr,*planeptr;
register int s,size,nw;
register WORD *data,*dest;

deltadata = (LONG *)deltaword;
nw = bm->BytesPerRow >>1;

for (i=O;i<bm->Depth;i++) {
planeptr = (WORD*) (bm->Planes[i]);
data= deltaword + deltadata[i];
ptr = deltaword + deltadata[i+B];
while (*ptr != OxFFFF) {

dest = planeptr + *ptr++;
size = *ptr++;
if (size < 0) {

}

for (s=size;s<O;s++)
*dest = *data;
dest += nw;

data++;

else {
for (s=O;s<size;s++)

*dest = *data++;
dest += nw;

}
return(O);

The above routine is for short word vertical compression with
run length compression. The most efficient way to support
the various options is to replicate this routine and make
alterations for, say, long word or XOR. The variable nw
indicates the number of words to skip to go down the vertical
column. This one routine could easily handle horizontal
compression by simply setting nw=l. For ultimate playback
speed, the core, at least, of this routine should be coded in
assembly language.

2.2.2 Format for method 5

In this method the same 16 pointers are used as in option 4.
The first 8 are pointers to the data fer up to 8 planes.
The second set of 8 are not used but were retained for several
reasons. First to be somewhat compatible with code for option
4 (although this has not proven to be of any benefit) and
second, to allow extending the for.mat for more bitplanes (code
has been written for up to 12 planes) .

11
11
(f)

"'0
<D
(")
::;;
c:;·
~
6"
:::::l

11
0
JJ
s
Q.l

:::::l
Q.

()
:::::l"
c
:::::l
A"

JJ
<D

(Q

~
-<
~
~
(!)

ANIM.doc Page 8

Compression/decompression is performed on a plane-by-plane basis.
For each plane, compression can be handled by the skip.c code
(provided Public Domain by Jim Kent) and decompression can be
handled by unvscomp.asm (also provided Public Domain by Jim Kent).

Compression/decompression is performed on a plane-by-plane basis.
The following description of the method is taken directly from
Jim Kent's code with minor re-wording. Please refer to Jim's
code {skip.c and unvscomp.asm) for more details:

Each column of the bitplane is compressed separately.
A 320x200 bitplane would have 40 columns of 200 bytes each.
Each column starts with an op-count followed by a number
of ops. If the op-count is zero, that's ok, it just means
there's no change in this column from the last frame.
The ops are of three classes, and followed by a varying
amount of data depending on which class:

1. Skip ops - this is a byte with the hi bit clear that
says how many rows to move the "dest'' pointer forward,
ie to skip. It is non-zero.

2. Uniq ops- this is a byte with the hi bit set. The hi
bit is masked down and the remainder is a count of the
number of bytes of data to copy literally. It's of
course followed by the data to copy.

3. Same ops - this is a 0 byte followed by a count byte,
followed by a byte value to repeat count times.

Do bear in mind that the data is compressed vertically rather
than horizontally, so to get to the next byte in the destination
we add the number of bytes per row instead of one!

DR2D.doc Page 1

2-D Object standard format

FORM DR2D

Description by Ross Cunniff and John Orr

A standard IFF FORM to describe 2D drawings has been sorely needed for
a long time. Several commercial drawing packages have been available
for some time but none has established its file for.mat as the Amiga
standard. The absence of a 2D drawing standard hinders the
development of applications that use 2D drawings as it forces each
application to understand several private standards instead of a
single one. Without a standard, data exchange for both the developer
and the user is difficult, if not impossible.

The DR2D FORM fills this void. This FORM was developed by Taliesin,
Inc. for use as the native file format for their two-dimensional
structured drawing package, ProVector. Saxon Industries and Soft
Logik Publishing Corporation are planning to support this new FORM in
the near future.

Many of the values stored in the DR2D FORM are stored as IEEE single
precision floating point numbers. These numbers consist of 32 bits,
arranged as follows:

1-s-e- e e·-- e e -e e 1 e m m m m m m m I m m m m m m m m I m m m m m m m m 1

31

where:

e

m

24 23 16 15 8 7

is the sign of the number where 1 is negative and 0 is
positive.

is the 8 bit exponent in excess 127 form. This number
is the power of two to which the mantissa is raised
(Excess 127 form means that 127 is added to the
exponent before packing it into the IEEE number.)

is the 23 bit mantissa. It ranges from 1.0000000 to
1.999999 ... , where the leading base-ten one is
assumed.

An IEEE single precision with the value of 0.0000000 has all its bits
cleared.

The DR2D Chunks

FORM (Ox464F524D) I* All drawings are a FORM */

struct FORMstruct {
ULONG ID; /* DR2D */
ULONG Size;

};

DR2D (Ox44523244) /* ID of 2D drawing */

0

..,.
(}l
0

:0

~
~,
::J
~
:0
(])

Ci)'
(i)
::J
CJ
(])

$;::
:ll
::J c::
:ll
:-:-
t:::J
(])
<:::
()•
(])
(/)

DR2D.doc Page 2

The DR2D chu-::1ks are broken up into three groups: the global drawing
attribute chunks, the object attribute chunks, and the object chunks_
The global dra ring attribute chunks describe elements of a 20 drawing
that are co~non ~o many objects in the drawing. Document preferences,
palette information, and custom fill patterns are typical
document-wide settings defined in global drawing at.tribute chunks.
The object attribute chunks are used tv set certain properties of the
object chunk{s} Lhat follows the o:bJeCt attribute chunk. The current
fill pattern, dash pattern, and line color are all set using an object
attribute chunk. Ob:ject chunks describe the actual DR2D drawing.
Polygons, text, and b1tmaps are found in these chunks.

IJ'he Global Drawing Attribute Chunks

The following chunks describe global attrib-utes of a DR2D document.

DRHD (Ox44524844) /* Drawing header */

The DRHD chunk contains the upper left and lower right e:-:tremes of the
document in (X, Y) coordinates. Th~s chunk is required and should
only appear once in a document in the outermost layer of the DR2D file
{DR2Ds can be nested) .

struct DRHDstruct {

);

ULONG ID;
ULONG Size;
IEEE XLeft, YTop,

XRight, YBot;

I* Always 16 *I

The point (XLeft,YTop) is the upper left corner of the project and the
point (XRight,YBot) is its lower right corner. These coordinates not
only supply the size and position of the document in a coordinate
system, they also supply the project's orientation. If XLeft <
XRight, the X-axis increases toward the right. If YTop < YBot, the
Y-axis increases toward the bottom. Other combinations are possible;
for example in Cartesian coordinates, XLeft would be less than XRight
but YTop would be greater than YBot.

PPRF {Ox50505249) /* Page preferences */

The PPRF chunk contains preference settings for ProVector. Although
this chunk is not required, its use is encouraged because it contains
some important environment information.

struct PPRFstruct {
ULONG ID;
ULONG Size;
char Prefs[Size];

};

DR2D stores preferences as a concatenation of several null-ter.minated
strings, in the Prefs[] array. The strings can appear in any order.
The currently supported strings are:

where:

DR2D.doc

Units~<unit-type>
Portrait;<boolean>
PageType=<page-type>
GridS.ize::::::<numher>

s either Inch, ern, or Pica
s either True or False

Page 3

<unit-type>
<boolean>
<page-type> s either Standard, Legal, B4, B5, A3,

A4, AS, or Custom
<number> is a floating-point number

The DR2D FORM does not require this chunk to explicitly state all the
possible preferences. In the absence of any particular preference
string, a DR2D reader should fall back on the default value. The
defaults are:

Units~Inch

Portrait=True
PageType=Standard
GridSize=l.O

CMAP {Ox434D4150} I* Color map {Same as ILBM CMAP) *I

This chunk is identical to the ILBM CMAP chunk as described in the IFF
ILBM documentation.

struct CMAPstruct

};

ULONG ID;
ULONG
UBYTE

Size;
ColorMap[Size];

ColorMap is an array of 24-bit RGB color values. The 24-bit value is
spread across three bytes, the first of which contains the red
intensity, the next contains the green intensity, and the third
contains the blue intensity. Because DR2D stores its colors with
24-b~t accuracy, DR2D readers must not make the mistake that some ILBM
readers do in assuming the CMAP chunk colors correspond directly to
Amiga color registers.

FONS {Ox464F4E53) I* Font chunk {Same as FTXT FONS chunk) *I

The FONS chunk contains information about a font used in the DR2D
FORM. ProVector does not include support for Amiga fonts. Instead,
ProVector uses fonts defined in the OFNT FORM which is documented
later in this article.

struct FONSstruct {

);

ULONG ID;
ULONG
UBYTE
UBYTE
UBYTE
UBYTE
CHAR

Size;
FontiD;
Padl;
Proportional;
Serif;
Name[Size-4];

I* ID the font is referenced by */
I* Always 0 *I
/* Is it proportional? */
/* does it have serifs? */
/* The name of the font */

The UBYTE FontiD field is the number DR2D assigns to this font.
References to this font by other DR2D chunks are made using this
number.

II
II

(/)
"0
<D

~
0
~ a·
::J

T1
0
JJ
s
(lJ
::J
Q.

0
::r
c
::J
;;;:-

JJ
<D

<Q.
~
-<
.j:,.
()l

DR2D.doc Page 4

The Proportional and Serif fields indicate properties of this font.
Specifically, Proportional indicates if this font is proportional, and
Serif indicates if this font has serifs. These two options were
created to allow for font substitution in case the specified font is
not available. They are set according to these values:

0 The DR2D writer didn't know if this font is
proportional/has serifs.

1 No, this font is not proportional/does not have
serifs.

2 Yes, this font is proportional/does have serifs.

The last field, Name[), is a NULL ter.minated string containing the
name of the font.

DASH (Ox44415348) /* Line dash pattern for edges */

This chunk describes the on-off dash pattern associated with a line.

struct DASHstruct {

);

ULONG ID;
ULONG
USHORT
USHORT
IEEE

Size;
DashiD;
Nu.mDashes;
Dashes[NurnDashes];

/* ID of the dash pattern */
/* Should always be even */
/* On-off pattern */

DashiD is the number assigned to this specific dash pattern.
References to this dash pattern by other DR2D chunks are made using
this number.

The Dashes[] array contains the actual dash pattern. The first number
in the array {element 0) is the length of the ''on'' portion of the
pattern. The second number {element 1) specifies the ''off'' portion
of the pattern. If there are more entries in the Dashes array, the
pattern will continue. Even-index elements specify the length of an
''on'' span, while odd-index elements specify the length of an ''off''
span. There must be an even number of entries. These lengths are not
in the same units as specified in the PPRF chunk, but are multiples of
the line width, so a line of width 2.5 and a dash pattern of 1.0, 2.0
would have an ''on'' span of length 1.0 x 2.5 = 2.5 followed by an
' 'off.' ' span of length 2. 0 x 2. 5 = 5. The following figure shows
several dash pattern examples. Notice that for lines longe.r than the
dash pattern, the pattern repeats.

[figure 1 ·- dash patterns]

By convention, DashiD 0 is reserved to mean \No line pattern at all',
i.e. the edges are invisible. This DASH pattern should not be defined
by a DR2D DASH chunk. Again by convention, a NumDashes of 0 means
that the line is solid.

AROW (0>:41524F57) /* An arrow-head pattern */

The AROW chunk describes an arrowhead pattern. DR2D open polygons
(OPLY) can have arrowheads attached to their endpoints. See the
description of the OPLY chunk later in this article for more
information on the OPLY chunk.

DR2D.doc Page 5

#define ARROW FIRST
#define ARROW=LAST

OxOl /*Draw an arrow on the OPLY's first point*/
Ox02 /*Draw an arrow on the OPLY's last point*/

struct AROWstruct {
ULONG ID;
ULONG Size;
UBYTE Flags;
UBYTE PadO;
USHORT ArrowiD;
USHORT NumPoints;

I* Flags, from ARROW *, above */
/* Should always 0 *7
/* Name of the arrow head */

IEEE ArrowPoints[NumPoints*2];
);

The Flags field specifies which end(s) of an OPLY to place an
arrowhead based on the #defines above. ArrowiD is the number by which
an OPLY will reference this arrowhead pattern.

The coordinates in the array AxrowPoints[] define the arrowhead's
shape. These points for.m a closed polygon. See the section on the
OPLY/CPLY object chunks for a descriptionof how DR2D defines shapes.
The arrowhead is drawn in the same coordinate system relative to the
endpoint of the OPLY the arrowhead is attached to. The arrowhead's
origin (0,0) coincides with the OPLY's endpoint. DR2D assumes that
the arrowhead represented in the AROW chunk is pointing to the right
so the proper rotation can be applied to the arrowhead. The arrow is
filled according to the current fill pattern set in the ATTR object
attribute chunk.

FILL (0x46494C4C) /* Object-oriented fill pattern */

The FILL chunk defines a fill pattern. This chunk is only valid
inside nested DR2D FORMs. The GRU~ object chunk section of this
article contans an example of the FILL chunk.

struct FILLstruct {

);

ULONG ID;
ULONG
USHORT

Size;
FilliD; /* ID of the fill */

FilliD is the number by which the ATTR object attribute chunk
references fill patterns. The FILL chunk must be the first chunk
inside a nested DR2D FORM. A FILL is followed by one DR2D object plus
any of the object attribute chunks (ATTR, BBOX) associated with the
object.

[Figure 2 - fill patterns]

DR2D makes a ''tile'' out of the fill pattern, giving it a virtual
bounding box based on the extreme X andY values of the FILL's object
(Fig. A). The bounding box shown in Fig. A surrounding the pattern
(the two ellipses) is invisible to the user. In concept, this
rectangle is pasted on the page left to right, top to bottom like
floor tiles (Fig. B). Again, the bounding boxes are not visible. The
only portion of this tiled pattern that is visible is the part that
overlaps the object (Fig. C) being filled. The object's path is
called a clipping path, as it ''clips'' its shape from the tiled
pattern (Fig_ D). Note that the fill is only masked on top of
underlying objects, so any ''holes'' in the pattern will act as a
window, leaving visible underlying objects.

.j::.
01
1\)

JJ

~
~
3
~
JJ
Cb
Qj'
<D
::J
C)
Cb

~
::J c::
~
CJ
Cb

"' ()•
Cb
(f)

DR2D.doc Page 6

LAYR (Ox4C415952) /* Define a layer */

A DR2D project is broken up into one or more layers. Each DR2D object
is in one of these layers. Layers provide several useful features.
Any particular layer can be ''turned off'', so that the objects in the
layer are not displayed. This eliminates the unnecessary display of
objects not currently needed on the screen. Also, the user can lock a
layer to protect the layer's objects from accidental changes.

struct LAYRstruct {

};

ULONG ID;
ULONG
USHORT
char
UBYTE
UBYTE

Size;
LayeriD;
LayerName[l6]:
Flags;
PadO;

I* ID of the layer *I
I* Null terminated and padded */
/* Flags, from LF *, below */
I* Always 0 *I -

LayeriD is the number assigned to this layer. As the field's name
indicates, LayerName[] is the NULL terminated name of the layer.
Flags is a bit field who's bits are set according to the #defines
below:

#define LF ACTIVE
#define LF-DISPLAYED

OxOl
Ox02

/* Active for editing */
/* Displayed on the screen */

If the LF ACTIVE bit is set 1 this layer is unlocked. A set
LF DISPLAYED bit indicates that this layer is currently visible on the
screen. A cleared LF DISPLAYED bit implies that LF ACTIVE is not set.
The reason for this iS to keep the user from accidefitally editing
layers that are invisible.

The Object Attribute Chunks

ATTR (Ox41545452) /* Object attributes */

The ATTR chunk sets various att.ributes for the objects tha·t follo\'1 it.
The attributes stay in effect until the next ATTR changes the
attributes, or the enclosing FORM ends, whichever comes first.

I* Various fill types *I
#define FT NONE 0
#define FT-COLOR 1
#define FT-OBJECTS 2

struct ATTRstruct

};

ULONG ID;
ULONG Size;
UBYTE FillType;
UBYTE
UBYTE
UBYTE
USHORT
USHORT
USHORT
IEEE

Join Type;
DashPattern;
ArrowHead;
Fill Value;
EdgeValue;
WhichLayer;
EdgeThick;

I* No fill *I
I* Fill with color from palette */
I* Fill with tiled objects *I

/* One of FT *, above */
/* One of JT-*, below */
/* ID of edge dash pattern */
/* ID of arrowhead to use */
/* Color or object with which to fill */
/* Edge color index *I
/* ID of layer it's in */
I* Line width *I

DR2D.doc Page 7

FillType specifies what kind of fill to use on this ATTR chunk's
objects. A value of FT NONE means that this ATTR chunk's objects are
not filled. FT COLOR indicates that the objects should be filled in
with a color. That color's ID (from the CMAF chunk) is stored in the
FillValue field. If FillType is equal to FT OBJECTS, FillValue
contains the ID of a fill pattern defined in-a FILL chunk.

JoinType deter.mines which style of line join to use when connecting
the edges of line segments. The field contains one of these four
values:

I* Join types *I
#define JT NONE 0 /* Don't do line joins */
#define JT-MITER 1 /* Mitered join */
#define JT-BEVEL 2 I* Beveled join *I
#define JT-ROUND 3 /* Round join */

DashPattern and ArrowHead contain the ID of the dash pattern and arrow
head for this ATTR's objects. A DashPattern of zero means that there
is no dash pattern so lines will be invisible. If ArrowHead is 0,
OPLYs have no arrow head. EdgeValue is the color of the line
segments. WhichLayer contains the ID of the layer this ATTR1 s objects
are in. EdgeThick is the width of this ATTR 1 s line segments.

BBOX (Ox42424F4B) /* Bounding box of next object in FO~~ */

The BBOX chunk supplies the dimensions and position of a bounding box
surrounding the DR2D object that follows this chunk in the FORM. A
BBOX chunk can apply to a FILL or AROW as well as a DR2D object. The
BBOX chunk appears just before its DR2D object, FILL, or AROW chunk.

struct BBOXstruct {
ULONG ID;
ULONG Size;
IEEE

};

XMin, YMin,
XMax, YMax;

I* Bounding box of obj. */
/* including line width */

In a Cartesian coordinate system, the point (XMin, YMin) is the
coordinate of the lower left hand corner of the bounding box and
(XMax, YMax) is the upper right. These coordinates take into
consideration the width of the lines making up the bounding box.

XTRN (Ox5B54524E) /* Externally controlled object */

The XTRN chunk was created primarily to allow ProVector to link DR2D
objects to ARexx functions.

struct XTRNstruct {
ULONG ID;
ULONG Size;
short ApplCallBacks; /* From #defines, below *I
short ApplNameLength;
char ApplName[ApplNarneLength]; I* Name of ARexx func to call *I

};

ApplNarr.e[] contains the name of the ARexx script ProVector calls when
the user manipulates the object in some way. The ApplCallBacks field
specifies the particular action that triggers calling the ARexx script
according to the #defines listed below.

11
11
(J)

""0
('!)
(")
:::::;;
()"

~
0
::J

11
0
JJ
s
Qj
::J
Q

0
::;
c
:::J
T

JJ
('!)

<Q.
:e.
-<
.t>­
()1
C0

DR2D.doc Page 8

/* Flags for ARexx script callbacks */
#define X CLONE OxOOOl /* The object has been cloned */
#define X-MOVE Ox0002 /* The object has been moved */
#define X-ROTATE Ox0004 /* The object has been rotated */
#define X-RESIZE Ox0008 /* The object has been resized */
#define X-CHANGE OxOOlO /* An attribute (see ATTR) of the

object has changed */
#define X DELETE Ox0020 /* The object has been deleted */
#define X-CUT Ox0040 /* The object has been deleted, but-.

stored in the clipboard */
#define X COPY Ox0080 /* The object has been copied to t.he

clipboard */
#define X UNGROUP Ox0100 /* The object has been ungrouped */

For example, given the XTRN object:

FORM xxxx DR2D
XTRN xxxx { X RESIZE I X MOVE, 10, "Dimension"
ATTR xxxx { 0~ 0, 1, 0, 0, 0, 0.0 }
FORM xxxx DR2D {

GRUP xxxx
STXT xxxx
OPLY xxxx

2 }
0, 0.5, 1.0, 6.0, 5.0, 0.0, 4, '"3.0" l
2, { 5.5, 5.5, 8.5, 5.5 } l

ProVector would call the ARexx script named Dimension if the user
resized or moved this object. What exactly ProVector sends depends
upon what the user does to the object. The following list shows what
string{s) ProVector sends according to which flag{s) are set. The
parameters are described below.

where:

X CLONE ''appl CLONE objiD dx dy''
X-MOVE ''appl MOVE objiD dx dy''
X-ROTATE ''appl ROTATE objiD ex cy angle''
X-RESIZE ''appl RESIZE objiD ex cy sx sy''
X-CHANGE ''appl CHANGE objiD et ev ft fv ew jt fn''
X-DELETE ''appl DELETE objiD''
X-CUT ''appl CUT objiD''
X-COPY ''appl COPY objiD''
X-UNGROUP ''appl UNGROUP objiD''

appl is the name of the ARexx script
CLONE, MOVE, ROTATE, RESIZE, etc. are literal strings
objiD is the object ID that ProVector assigns to this object
(dx, dy) is the position offset of the CLONE or MOVE
(ex, cy) is the point around which the object is rotated or resized
angle is the angle (in degrees) the object is rotated
S}: and sy are the scaling factors in the horizontal and

vertical directions, respectively.
et is the edge type (the dash pattern index)
ev is the edge value (the edge color index)
ft is the fill type
fv is the fill index
ew is the edge weight
jt is the JO~n type
fn is the font name

The X CHANGE message reflects changes to the attributes found in the
ATTR chunk.

DR2D.doc

If the user resized the XTRN object shown above by factor of 2,
ProVector would call the ARexx script Dimension like this:

Dimension RESIZE 1985427 7.0 4.75 2.0 2.0

The Object Chunks

The following chunks define the objects available in the DR2D FORM.

VBM (Ox56424D20) /* Virtual BitMap */

The VBM chunk contains the position, dimensions, and file name of an
ILBM image.

struct VBMstruct

);

IEEE XPos, YPos,
XSize, YSiZe 1

Rotation;
USHORT PathLen;
char Path[PathLen];

I* Virtual coords */
/* Virtual size */
I* in degrees */
/* Length of dir path */
/* Null-terminated path of file */

Page 9

The coordinate (XPos, YPos) is the position of the upper left hand
corner of the bitmap and the XSize and YSize fields supply the x and y
dimensions to which the image should be scaled. Rotation tells how
many degrees to rotate the ILBM around its upper left hand corner.
ProVector does not currently support rotation of bitmaps and will
ignore this value. Path contains the name o£ the ILBM file and may
also contain a partial or full path to the file. DR2D readers should
not assume the path is correct. The full path to an ILBM on one
system may not match the path to the same ILBM on another system. If
a DR2D reader cannot locate an ILBM file based on the full path name
or the file name itself (looking in the current directory), it should
ask the user where to find the image.

CPLY (Ox43504C59)
OPLY (Ox4F504C59)

/* Closed polygon */
/* Open polygon */

Polygons are the basic components of almost all 2D objects in the DR2D
FORM. Lines, squares, circles, and arcs are all examples of DR2D
polygons. There are two types of DR2D polygons, the open polygon
(OPLY) and the closed polygon (CPLY) . The difference between a closed
and open polygon is that the computer adds a line segment connecting
the endpoints of a closed polygon so that it is a continuous path. An
open polygon's endpoints do not have to meet, like the endpoints of a
line seq.ment.

struct POLYstruct {
ULONG ID;
ULONG Size;
USHORT NuroPoints;
IEEE PolyPoints[2*NumPoints];

);

.j:>.
U1
.j:>.

::0

~
~
3
~
::0
(])

Ci)
(i3
::J
0
(])

~
::J c::
(1)

CJ
(])

"' fi•
ct>
(J)

DR2D.doc Page 10

The NumPoints field contains the number of points in the polygon and
the PolyPoints array contains the (X, Y) coordinates of the points of
the non-curved parts of polygons. The even index elements are X
coordinates and the odd index elements are Y coordinates.

[Figure 3 - Bezier curves]

DR2D uses Bezier cubic sections, or cubic splines, to describe curves
in polygons. A set of four coordinates (Pl thr·ough P4) defines the
shape of a cubic spline. The first coordinate (Pl) is the point where
the curve begins. The line from the first to the second coordinate
(Pl to P2) is tangent to the curve at the first point. The line from
P3 to P4 is tangent to the cubic section, where it ends at P4.

The coordinates describing the cubic section are stored in the
PolyPoints[] array with the coordinates of the normal points. DR2D
inserts an indicator point before a set of cubic section points to
differentiate a normal point from the points that describe a curve.
An indicator point has an X value of OxFFFFFFFF. The indicator
point's Y value is a bit field. If this bit field's low-order bit is
set, the points that follow the indicator point make up a cubic
section.

The second lowest order bit in the indicator point's bit field is the
MOVETO flag. If this bit is set, the point (or set of cubic section
points) starts a new polygon, or subpolygon. This subpolygon will
appear to be completely separate from other polygons but there is an
important connection between a polygon and its subpolygon.
Subpolygons make it possible to create holes in polygons. An example
of a polygon with a hole is the letter ''0''. The ''0'' is a filled
circular polygon with a smaller circular polygon within it. The
reason the inner polygon isn't covered up when the outer polygon is
filled is that DR2D fills are done using the even-odd rule.

The even-odd rule determines if a point is ''inside'' a polygon by
drawing a ray outward from that point and counting the number of path
segments the ray crosses. If the number is even, the point is outside
the object and shouldn't be filled. Conversely, an odd number of
crossings means the point is inside and should be filled. DR2D only
applies the even-odd rule to a polygon and its subpolygons, so no
other objects are considered in the calculations.

Taliesin, Inc. supplied the following algorithm to illustrate the
format of DR2D polygons. OPLYs, CPLYs, AROWs, and ProVector's outline
fonts all use the same format:

typedef union
IEEE num;
LONG bits;

I Coord;

#def~ne INDICATOR
#define IND SPLINE
#define IND-MOVETO

OxFFFFFFFF
OxOOOOOOOl
Ox00000002

I* A common pitfall in attempts to support DR2D has
been to fail to recognize the case when an
INDICATOR point indicates the following
coordinate to be the first point of BOTH a
Bezier cubic and a sub-polygon, ie. the
value of the flag ; (IND_CURVE I IND_MOVETO) *I

DR2D.doc Page 11

Coord
int

TempO, Templ;
FirstPoint, i, Increment;

I* Initialize the path */
NewPath ();
FirstPoint = 1;

I* Draw the path */
i = 0;
while(i < NumPoints) {

TempO.num = PolyPoints[2*i]; Templ.num = PolyPoints[2*i + 1];
if(TempO.bits =; INDICATOR) {

/* Increment past the indicator */
Increment = 1;
if(Templ.bits & IND MOVETO) {

I* Close and filT, if appropr~ate *I
if(ID == CPLY) {

I

FillPath();
}
else {

StrokePath () ;

I* Set up the new path *I
NewPath ();
FirstPoint = 1;

if(Templ.bits & IND CURVE)

else {

I* The next 4 points are Bezier cubic control points */
if(FirstPoint)

MoveTo(PolyPoints[2*i + 2], PolyPoints[2*i + 3]) ;
else

LineTo(PolyPoints[2*i + 2], PolyPoints[2* + 3]) ;
CurveTo(PolyPoints[2*i + 4], PolyPoints[2* + 5],

PolyPoints[2*i + 6], PolyPoints[2* + 7],
PolyPoints[2*i + 8], PolyPoints[2* + 9]);

FirstPoint = 0;
I* Increment past the control points */
Increment += 4·

if(FirstPoint
MoveTo(

else

)
PolyPoints[2*i], PolyPoints[2*i + 1]);

LineTo(
FirstPoint = 0;

PolyPoints[2*i], PolyPoints[2*i + 1]);

I* Increment past the last endpoint *I
Increment = 1;

I* Add the increment *I
i += Increment;

I* Close the last path *I
if(ID == CPLY)

FillPath () ;
I
else {

StrokePath () ;

11
11
(f)
"0
C1l
()
::;;
c:;·
~ a·
::::l

11
0
)J

s:::
Ill
::::l
Q.

0
:::r
c
::::l
T

)J
C1l
co
§."
-< ..,.
()l
()l

DR2D.doc Page 12

GRUP (Ox47525550) I* Group *I

The GRUP chunk combines several DR2D objects into one. This chunk is
only valid inside nested DR2D FORMs, and must be the first chunk in
the FORM.

struct GROUPstruct I

};

ULONG ID;
ULONG
USHORT

Size;
NumObjs;

The NumObjs field contains the number of objects contained in this
group. Note that the layer of the GRUP FORM overrides the layer of
objects within the GRUP. The following example illustrates the layout
of the GRUP (and FILL) chunk.

FORM DR2D
DRHD
CMAP
FONS
FORM

}
FORM

)
FORM

... }

... }

... }
DR2D

FILL {
CPLY {

DR2D
GRUP {
TEXT {
CPLY {

OPLY {

DR2D
GRUP {
OPLY {
TEXT {

/* Top-level drawing ... *I
I* Confirmed by presence of DRHD chunk *I
/*Various other things ... *I

/* A nested form ... *I
1 } I* Ah! The fill-pattern table */
... } I* with only 1 object */

I* Yet another nested form *I
... , 3 } /* Ah' A group of 3 objects *I
... }
... }
... }

I* Still another nested form *I
... , 2 } I* A GRUP with 2 objects *I
...)
... }

STXT (Ox53545B54) I* Simple text *I

The STXT chunk contains a text string along with some information on
how and where to render the text.

struct STXTstruct {

};

ULONG ID;
ULONG Size;
UBYTE PadO;
UBYTE WhichFont;
IEEE CharW, CharH,

BaseX, BaseY,
Rotation;

/* Always 0 (for future expansion) */
/* Which font to use */
/* W/H of an individual char */
/* Start of baseline */
/* Angle of text (in degrees) *I

USHORT
char

Nu.mChars;
TextChars[NumChars];

The text string is in the character array, TextChars[]. The ID of the
font used to render the text is WhichFont. The font's ID is set in a
FONS chunk. The starting point of the baseline of the text is (BaseX,
BaseY). This is the point around which the text is rotated. If the
Rotation field is zero (degrees), the text's baseline will originate
at (BaseX, BaseY) and move to the right. CharW and CharH are used to
scale the text after rotation. CharW is the average character width
and CharH is the average character height. The CharW/H fields are
comparable to an X and Y font size.

DR2D.doc

TPTH (Ox5450544B) I* A text string along a path *I

This chunk defines a path (polygon) and supplies a string to render
along the edge of the path.

struct TPTHstruct {
ULONG ID;

Size;
Justification; /*
WhichFont; /*

see defines, below */
Which font to use */

Page 13

ULONG
UBYTE
UBYTE
IEEE
USHORT
USHORT
char
IEEE

CharW, CharH; /*
NumChars; /*
NumPoints; /*
TextChars[NumChars];l*
Path[2*NumPoints]; I*

W/H of an individual char */
Number of chars in the string */
Number of points in the path *I
PAD TO EVEN#! *I
The path on which the text lies */

);

WhichFont contains the ID of the font used to render the text.
Justification controls how the text is justified on the line.
Justification can be one o.f the following values:

#define J LEFT
#define J-RIGHT
#define J-CENTER
#define J-SPREAD

OxOO
OxOl
Ox02
Ox03

I* Left justified *I
I* Right justified *I
I* Center text *I
/* Spread text across path */

CharW and CharH are the average width and height of the font
characters and are akin to X and Y font sizes, respectively. A
negative FontH implies that the font is upsidedown. Note that CharW
must not be negative. NumChars is the number of characters in the
TextChars[] string, the string containing the text to be rendered.
NumPoints is the number of points in the Path[] array. Path[) is the
path along which the text is rendered. The path itself is not
rendered. The points of Path[] are in the same format as the points
of a DR2D polygon.

A Simple DR2D Example

Here is a (symbolic) DR2D FORM:

FORM { DR2D
DRHD
CMA.P
FONS
DASH
ATTR
BBOX
FORM

16 { 0.0, 0.0, 10.0, 8.0 }
6 { 0,0,0, 255,255,255)
9 { 1, 0, 1, 0, "Roman") 0

12 { 1' 2' { 1. 0' 1. 0} }
14 { 0' 0' 1' 0' 0' 0' 0' 0.0
16 { 2.0, 2.0, B.O, 6.0 }
{ DR2D

GRUP 2
BBOX 16
STXT 36

16
42

BBOX
OPLY

2)
3.0, 4.0, 7.0, 5.0)
0,1, 0.5, 1.0, 3.0, 5.0, 0.0, 12, "Hello, World")
2.0, 2.0, B.O, 6.0 }
5, {2.0,2.0, 8.0,2.0, 8.0,6.0, 2.0,6.0, 2.0,2.0)

[Figure 4 - Simple DR2D drawing)

""" (.}1
0")

:::0

~
~
3
CD

:::0
CD
~
~
:::J

~
~
Ul
:::J c:
Ul

CJ
CD

~-
CD
(/,)

DR2D.doc Page 14

The OFNT FORM

OFNT (Ox4F464E54) /* ID of outline font file */

ProVector's outline fonts are stored in an IFF FORM called OFNT. This
IFF is a separate file from a DR2D. DR2D's FONS chunk refers only to
fonts defined in the OFNT for.m.

OFHD (Ox4F464844) /* ID of OutlineFontHeaDer */

This chunk contains some basic information on the font.

struct OFHDstruct {

);

char FontName[32];
short FontAttrs;
IEEE FontTop,

FontBot,
Font Width;

#define FA BOLD
#define FA-OBLIQUE
#define FA-SERIF

I* Font name, null padded *I
/* See FA*, below */
I* Typical height above baseline *I
/* Typical descent below baseline */
/* Typical width, i.e. of the letter

OxOOOl
Ox0002
Ox0004

The FontName field is a NULL ter.minated string containing the name of

o *I

this font. FontAttrs is a bit field with flags for several font attributes.
The flags, as defined above, are bold, oblique, and serif. The unused
higher order bits are reserved for later use. The other fields describe the
average dimensions of the characters in this font. FontTop is the average
height above the baseline, FontBot is the average descent below the baseline,
and FontWidth is the average character width.

KERN (Ox4B45524C) I* Kerning pair */

The KERN chunk describes a kerning pair. A kerning pair sets the
distance between a specific pair of characters.

struct KERNstruct {
short Chl, Ch2; I* The pair to kern (allows for 16 bits ...) *I

/* Amount to displace -left +right */ IEEE XDisplace,
YDisplace; /* Amount to displace -down +up */

};

The Chl and Ch2 fields contain the pair of characters to kern. These
characters are typically stored as ASCII codes. Notice that OFNT stores
the characters as a 16-bit value. Normally, characters are stored as 8-bit
values. The wary programmer will be sure to cast assigns properly to avoid
problems with assigning an 8-bit value to a 16-bit variable. The remaining
fields, XDisplace and YDisplace, supply the baseline shift from Chl to Ch2.

CHDF (Ox43484446) I* Character definition */

This chunk defines the shape of ProVector's outline fonts.

struct CHDFstruct {
short Ch; I* The character we're defining (ASCII) */
short NumPoints; /* The number of points in the def~nition */
IEEE XWidth, /* Position for next char on baseline - X */

YWidth; /* Position for next char on baseline - Y */
/* IEEE Points[2*NumPoints]*/ I* The actual points*/

);

DR2D.doc Page 15

#define INDICATOR OxFFFFFFFF /* If X == INDICATOR, Y is an action */
#define IND SPLINE OxOOOOOOOl /* Next 4 pts are spline control pts */
#define IND-MOVETO Ox00000002 I* Start new subpoly *I
#define IND-STROKE Ox00000004 /* Stroke previous path */
#define IND-FILL OxOOOOOOOB /* Fill previous path *I

Ch is the value (normally ASCII) of the character outline this chunk
defines. Like Chl and Ch2 in the KERN chunk, Ch is stored as a 16-bit
value. (XWidth,YWidth) is the offset to the baseline for the
£allowing character. OFNT outlines are defined using the same method
used to define DR2D's polygons (see the description of OPLY/CPLY for
details) .

Because the OFNT FORM does not have an ATTR chunk, it needed an
alternative to make fills and strokes possible. There are two extra
bits used in font indicator points not found in polygon indicator
points, the IND STROKE and IND FILL bits (see defines above). These
two defines desCribe how to rencter the current path when rendering
fonts.

The current path remains invisible until the path is either filled
and/or stroked. When the IND FILL bit is set, the currently defined
path is filled in with the current fill pattern (as specified in the
current ATTR chunk) . A set IND STROKE bit indicates that the
currently defined path itself should be rendered. The current ATTR's
chunk dictates the width o£ the line, as well as several other
attributes of the line. These two bits apply only to the OFNT FORM
and should not be used in describing DR2D polygons.

"11
"11
(/)
"0
C1)

g
()'

~ o·
:::J

"11
0
Il
:;;:::
(I)
:::J
0.
()
::T
c
:::J
A"

Il
C1)

(Q

~
'< ..,.
(.]1
-...j

:~··:

Fig. A

DR2D.doc

--------------------· [3, 3] linewidth = 1

------ [3, 6] linewidth = 2.5

------ - [1, 2, 3, 2] linewidth = 0.5

Figure 1 - Dash Patterns

~ .;.1 ~lf!.;.l: @l ~;!!"!i
Fig. B Fig. C

Figure 2 - Fill Patterns

Page 16

p.
~

!'/ . . . :

Po p,

@l
Fig. D

DR2D.doc Page 17

p,
p, p. , . .
' ·- . ··;;x:_ ,.c,

~ Po p, Po / p,

• P.

Figure 3 - Bezier Curves

·-----------------· I I

I I
I I
I I
I Hello \Vorld I

I I
I I

I I

·-----------------·
Figure 4- Simple DR2D Drawing

.,..
(.)1

00

:::0

~
~
3
Q)

:::0
Q)

CD'
~
:::J
(")
Q)

~
:::J c::
t:u
:-:-
t:J
Q)
<:::
()•
Q)
C/)

FANT.doc Page 1

Fantavision movie format

FORM FANT

I*** I
/* **

**
**

**

**

**

**

**

- FantForm.h

This is the IFF movie format for Amiga Fantavision.

(c) Copyright 1988 Broderbund Software

- FORMAT FROZED May 5, 1988 -

Implemented by Steve Hales

Overvue -
This is a description of the for.mat used for Amiga
Fantavision. It assumes you have intimate knowledge of how
IFF-FORMs are constructed, layed out, and read. This file
can be used as a header file. This is fairly complete, but
I'm sure there are a few things missing.

I can be reached in the following ways:
UseNet: Steve A Hales@cup.portal.com OR

sun!cUp~portal.com!Steve_A_Hales

US Mail: 882 Hagemann Drive
Liver.more, CA, 94550-2420

Phone: (415) 449-5297

NOTE: I cannot, by contract, give out any code to load or
play Fantavision movies. If that is want you want
then you will need to contact Broderbund Software
directly. Their number is (415) 492-3200.

Enjoy' Aloha.

**

**
**
**
**
**

**

**
**

**
**
**

**
**
**

**
**
**

**
**
**
*I

I*** I

I* ~sc Fantavision structures
*I
typedef struct Rect
{

int left, top, right, bottom;
I;
typedef struct Point
{

int h, v;
I;

/* go on to next frame */
I* Frame opcodes */
#define opNEXT 0
#define opREPEAT 1
I

I* repeat sequence starting from frame Parm repl times *

#define opGOTO 2

I* Frame modes *I
#define fNORMAL OxOOOO
#define fTRACE OxOOOl
#define fLIGHTNING Ox0020

I* goto frame Parm *I

I* redraw every frame *I
I* draw into both paged screens *I
I* don't erase background */

/* Fantavision FORM defines
*I
#define ID FANT 'FANT'
#define ID-FHDR 'FHDR'
#define ID-FRAM 'FRAM'
#define ID-POLY 'POLY'
#define ID-CSTR 'CSTR'

I* Polygon modes *I
#define pTYP~~SK OxOOFF
#define pSELECT Ox8000
#define pOUTLINE Ox4000

#define pBACKDROP Ox2000

#define pMSKBITMAP OxlOOO

I* Polygon types *I
#define pDELETE Ox7000
#define pFILLED 0
#define pLINE 1
#define pLINED 2
#define pTEXTBLOCK 3
#define pCIRCLEDOT 4

#define pRECTDOT 5

#define pBITMAPDOT 6

#define pBITMAP 7

FANT.doc

I* FORM type *I
I* Movie Header *I
I* Format info for a Frame *I
/* Format info for a Polygon *I
I* \0 terminated string *I

Page 2

/* type mask to get just type of poly *I
/* is object selected? *I
/* outlined polygon using DotModeSide to
** determine when to not connect a line.
** ex. 0 draws on all sides 1 1 will draw on
** everyother side, 2 will leave every second

side blank, 3 will every third side
blank, etc. *I

I* polygon will be dropped into the background
** during animation. *I
I* bitmap has a mask *I

I* object is a filler (its deleted from display) *I
I* filled polygon *I
I* not-connected line polygon *I
I* connected line polygon */
I* text block to draw */
/*draw circle dots at vertex's using
** dotSize at size. */
/*draw square dots at vertex's using
** dotSize at size. */
/*draw dots using a bitmap at vertex's using
** BitMap. *I
I* draw just bitmap image *I

I* These are used for the pTEXTBLOCK polygon type
*I
I* Text justification
*I
#define tLEFT
#define tCENTER
#define tRIGHT
I* Text style
*I
#define
#define
#define
#define
#define

tNORMAL
tBOLD
tiTALIC
tUNDERLINE
tEXTENDED

0
1
2

(int) (FS NORMAL)
(int) (FSF BOLD)
(int) (FSF-ITALIC)
(int) (FSF-UNDERLINED)
(int) (FSF=EXTENDED)

I* Fantavision movie header -
**

This header defines how much RAM is needed, how many frames, and sounds
in the movie.

*I
typedef struct FantHeader
{

int PointsPerObj;
int ObjsPerFrame;
int ScreenDepth;
int ScreenWidth;
int ScreenHeight;
int BackColor;
long SizeOfMovie;

I* number of vertexs per object *I
I* number of objects per frame *I
I* 0 to 6, for number of bit planes */
I* in pixels *I
I* in pixels *I
I* background color palette number */
I* RAM Size of movie, expanded *I

"11
"11
(f)
"0
CD a c=;·
~ a·
::J

"11
0
JJ
:s::
OJ
::J
0..

0
::;
c:
::J
;A

JJ
CD

<Q.
~ -.
'<
.j::>.
(}1
(!)

};

int pad[30];
int NumberOfFrames;
int NumberOfSounds;
int NumberOfBitMaps;
int Background;
int SpeedOfMovie;
int pad[3];

I* Fantavision frame info -
**

FANT.doc Page 3

I* padding for expanding *I

/* non-zero if first bitmap is a background */
I* 100 is normal speed, 50 is half speed, etc *I
/* expansion */

** Each frame has this structure defined.
*I
typedef struct FrameFormat
{

};

int OpCode;
long Parm;
char Repl, Rep2 ;
int TweenRate;

int Channe1Index[2];

int NumberOfPolys;
int ColorPalette[32];
int Pan, Tilt;
int Modes;
int pad;

/* Fantavision polygon info -
**

I* Frame opcode *I
I* contains frame number for opNEXT, opREPEAT *I
/* Repl is repeat counter, Rep2 is not used */
/* number of tweens per frame */

/* -3 stop sound is this channel
-2 modify current sound
-1 no sound for this channel
{all others) is an index into the sound

** list. Which sound to use.
*I

/* number of polygons in this frame */
/* xRGB - format 4 bits per register */
/* 0 is centered, (+-) amounts are in pixels */
I* Frame modes */
I* expansion *I

** Each polygon has this structure defined.
*I
typedef struct PolyFormat
{

};

int NurnberOfPoints;
int Type;
int Color;
Rect Bounds;
int Depth;
char DotMOdeSize;
char DotModeSide;
int OutlineColor;
int BitMapindex;
int BMRealiiidth;
int BMRealHeight;
int TextLength;
int TextJust;
char TextSize;
char TextStyle;
long pad;
Point p[];

I* how many vertexs for this polygon *I
I* polygon type *I
I* palette color number (see note 1) *I
I* enclosing rectangle of polygon *I
I* polygon view depth (see note 2) *I
/* in pixels, not larger than 40 */
/* deter.mines outlining features */
I* palette color number for outline *I
/* if not -1, then bitmap index into bitmap
I* in pixels *I

I* length of text for pTEXTBLOCK *I

/* size in pixels */

/* expansion */
/* array of points defining vertexs */

list *I

FANT.doc Page4

I* Fantavision high-level IFF format.

**

*I

FORM FANT
FHDR

- background -
FORM ILBM if Background is non-zero

BMHD
BODY

- bitmap list -
NOTE: If a bitmap has a mask, it will be compute during load time.

FORM ILBM
BMHD
BODY

times NumberOfBitMaps

- sound list -
FORM 8SVX times NumberOfSounds

VHDR
BODY

SEFX } Default parameters for sound

- frame list -
FRAM times NumberOfFrames
SEFX if sound for channel 1.
SEFX if sound for channel 2.
POLY times NumberOfPolys
CSTR Text of poly if PolyType pTEXTBLOCK
CSTR } } Name of font

/******- NOTES -**/
I*

**

1 - The color palette is a number from 0 to 1120. The first 32 numbers
are nor.mal RGB colors, but the rest index into a pre-defined
set of patterns.

** 2 - The view depth of each polygon deter.mines the display order. The
higher the number the closer the polygon is to the viewer. During
editing, each polygon is assigned numbers in multiplies of 100,
but to function, any number can work.

**
**
**
*I

-1::­
m
0

::0

~
~
3
~
::0
(!)

<b'
q;
:::J

~

~
:::J
c:
):\)

CJ
(!)

" C'i'
(!)
(/)

HEAD.doc
Flow - New Horizons Software

TITLE: HEAD (FORM used by Flow- New Horizons Software, Inc.)

IFF FORM I CHUNK DESCRIPTION

Form/Chunk ID: FORM HEAD, Chunks NEST, TEXT, FSCC

Date Submitted: 03187
Submitted by: James Bayless - New Horizons Software, Inc.

FORM

FORM ID: HEAD

FORM Description:

FORM HEAD is the file storage format of the Flow idea processor
by New Horizons Software, Inc. Currently only the TEXT and NEST
chunks are used. There are plans to incorporate FSCC and some
additional chunks for headers and footers.

CHUNKS

CHUNK ID: NEST

This chunk consists of only of a word (two byte) value that gives

Page 1

the new current nesting level of the outline. The initial nesting level
{outermost level) is zero. It is necessary to include a NEST chunk only
when the nesting level changes. Valid changes to the nesting level are
either to decrease the current value by any amount {with a minimum of 0)
or to increase it by one {and not more than one) .

CHUNK ID: TEXT

This chunk is the actual text of a heading. Each heading has a TEXT
chunk (even if empty) . The text is not NULL terminated - the chunk
size gives the length of the heading text.

CHUNK ID: FSCC

This chunk gives the Font/Style/Color changes in the heading from the
most recent TEXT chunk. It should occur immediately after the TEXT chunk
it modifies. The for.mat is identical to the FSCC chunk for the IFF
form type 'WORD' (for compatibility), except that only the 'Location'
and 'Style' values are used {i.e., there can be currently only be style
changes in an outline heading). The structure definition is:

typedef struct {
UWORD Location;
UBYTE FontNum;
UBYTE Style;
UBYTE MiscStyle;
UBYTE Color;
UWORD pad;

FSCChange;

/* Char location of change */
I* Ignored */
/* Amiga style bits *I
/* Ignored */
/* Ignored *I
I* Ignored *I

The actual chunk consists of an array of these structures, one entry
for each Style change in the heading text.

ILBM.CLUT.doc
Color Lookup Table chunk

amiga.dev/iff message 1527

TITLE: CLUT IFF chunk proposal

"CLUT" IFF 8-Bit Color Look Up Table

Date: July 2, 1989
From: Justin V. McCormick
Status: Public Proposal
Supporting Software: FG 2.0 by Justin V. McCormick for PP&S

Introduction:

This memo describes the IFF supplement for the new chunk "CLUT 11 •

Description:

A CLUT (Color Look Up Table) is a special purpose data module
containing table with 256 8-bit entries. Entries in this table
can be used directly as a translation for one 8-bit value to
another.

Purpose:

To store 8-bit data look up tables in a simple format for
later retrieval. These tables are used to translate or bias
B-bit intensity, contrast, saturation, hue, color registers, or
other similar data in a reproducable manner.

Specifications:

/* Here is the IFF chunk ID macro for a CLUT chunk */
#define ID_CLUT MakeiD('C' ,'L' ,'U' ,'T')

I*
* Defines for different flavors of 8-bit CLOTs.
*I

Page 1

#define CLUT MONO OL /* A Monochrome, contrast or intensity LUT */
#define CLUT-RED lL I* A LUT for reds *I
#define CLUT-GREEN 2L I* A LUT for greens *I
#define CLUT-BLUE 3L I* A LUT for blues *I
#define CLUT HUE 4L I* A LUT for hues *I
#define CLUT-SAT 5L I* A LUT for saturations *I
#define CLUT-UNUSED6 6L I* How about a Signed Data flag *I
#define CLUT-UNUSED7 7L /* Or an Assumed Negative flag

I* All types > 7 are reserved until formally claimed *I
#define CLUT_RESERVED_BITS Oxfffffff8L

I* The struct for Color Look-Up-Tables of all types *I
typedef struct
{

ULONG type;
ULONG resO;
UBYTE lut [256];
ColorLUT;

/* See above type defines */
/* RESERVED FOR FUTURE EXPANSION */
/* The 256 byte look up table */

*I

"Tl
"Tl
(/)

"'0
CD
(")
::::;;
()'

2::. o·
::l

"Tl
0
JJ
s;:
tl.l
::l
Q.

()
:::T
c
::l
A'

JJ
CD
tQ.
~
-<

-&:>.
O'l

ILBM.CLUT.doc

CLUT Example:

Normally, the CLUT chunk will appear after the BMHD of an FORM
ILBM before the BODY chunk, in the same 11 section" as CMAPs are
normally found. However, a FORM may contain only CLUTs with no
other supporting information.

As a general guideline, it is desirable to group all CLOTs
together in a form without other chunk types between them.
If you were using CLUTs to store RGB intensity corrections, you
would write three CLOTs in a row, R, G, then B.

Here is a box diagram for a 320x200x8 image stored as an IFF ILBM
with a single CLUT chunk for intensity mapping:

+-----------------------------------+
I 'FORM' 64284 I FORM 64284 ILBM

I 'ILBM'

'BMHD' 20 .BMHD 20
320, 200, 0, 0, 8, 0, 0,

'CLUT' 264 .CLUT 264
0, 0, 0; 32, 0, 0; 64, o, 0; ..

+-------------------------------+
I 'BODY' 64000 .BODY 64000
I o, o, o,

+-----------------------------------+

Design Notes:

I have deliberately kept this chunk simple (KISS) to
facilitate implementation. In particular, no provision is made
for expansion to 16-bit or 32-bit tables. My reasoning is that
a 16-bit table can have 64K entries, and thus would benefit from
data compression. My suggestion would be to propose another
chunk or FORM type better suited for large tables rather than
small ones like CLUT.

Page 2 ILBM.CTBL.DYCP.doc
Newtek Dynamic Ham color chunks

Newtek for Digiview IV (dynamic Ham)

ILBM.DYCP - dynamic color palette
3 longwords (file setup stuff)

ILBM.CTBL - array of words, one for each color (Orgb)

Page 1

-!:>.
(3)
1\)

:JJ

~
~
(])

3
~
:JJ
(])

~
Ci3
:::J
CJ
(])

~
:::J
c:
:\:)

c:J
(1)
<::: o·
(])
(/}

Dots per inch chunk

ILBM DPI chunk

Registered by:

Spencer Shanson
16 Genesta Rd
Plumstead
London SE18 3ES
ENGLAND

1-16-90

ILBM.DPI Dots Per Inch

ILBM.DPI.doc

to allow output of an image at the
same resolution it was scanned at

typedef struct (
UWORD dpi .-.,
UWORD dpi-y;
) DPIHeader ;

For example, an image scanned at horizontal resolution of
240dpi and vertical resolution of 300dpi would be saved as:

44504920 00000004 OOFO Ol2C
D P I size dp~_x dpi_y

Page 1

DPaint perspective chunk (EA)

IFF FORM / CHUNK DESCRIPTION

Form/Chunk ID:
Date Submitted:
Submitted by:

Chunk DPPV
12/86
Dan Silva

Chunk Description:

ILBM.DPPV.doc Page 1

(DPaint II ILBM perspective chunk)

The DPPV chunk describes the perspective state in a DPaintii ILBM.

Chunk Spec:

I* The chunk identifier DPPV */
#define ID_DPPV MakeiD{'D' ,'P' ,'P' ,'V')

typedef LONG LongFrac;
typedef struct (LongFrac x,y,z;
typedef LongFrac APoint[3];

LFPoint;

typedef union
LFPoint 1;
APoint a;
) UPoint;

I* values taken by variable rotType *I
#define ROT EULER 0
#define ROT-INCR 1

I* Disk record describing Perspective state */

typedef
WORD
WORD

struct {
rot Type;
iA, iB, iC;

LongFrac Depth;
WORD ucenter, vcenter;

WORD
WORD
UP oint
UP oint
UPoint

UPoint

fixCoord;
angleStep;
grid;
gridReset;
gridBrCenter;

permBrCenter;

LongFrac rot[3] [3];
} PerspState;

SUPPORTING SOFTWARE

/* rotation type */
/* rotation angles (in degrees) */
/* perspective depth */
I* coords of center perspective,
* relative to backing bitmap,
* in Virtual coords
*I

I* which coordinate is fixed *I
/* large angle stepping amount */
/* gridding spacing in X,Y,Z */
I* where the grid goes on Reset *I
/* Brush center when grid was last on,
* as reference point
*I

/* Brush center the last t~ the mouse
* button was clicked, a rotation perfor.med,
* or motion along "fixed" axis
*I

/* rotation matrix */

DPaint II by Dan Silva for Electronic Arts

"i1
"i1
(/)
"0
Cl>
(")
::::;;
(")'

el.
6'
::J

"i1
0
:IJ
:5::
lll
::J
Q.
()
:::1'
c:
::J
'7'

:IJ
Cl>

(Q

~
-<
.j)o.
0)
VJ

ILBM.DRNG.doc
DPaint IV enhanced color cycle chunk (EA)

DRNG Chunk for FORM ILBM

Submitted by Lee Taran

Purpose:

Enhanced Color Cycling Capabilities

* DPaintiV supports a new color cycling model which does NOT
require that color cycles contain a contiguous range of color
registers.

For example:
If your range looks like: [1] [3] [8] [2]
then at each cycle tick

temp = [2],
[2] = [8]'
[8] = [3]'
[3] = [1]'
[1] = temp

Page 1

* You can now cycle a single register thru a series of rgb values.
For example:

If your range looks like: [1] [orange] [blue] [purple]
then at each cycle tick color register 1 will take on the
next color in the cycle.

ie: t=O
t=1
t=2
t=3
t=4

[1] = curpal [1]
[1] =purple
[1] = blue
[1] = orange
goto t=O

* You can combine rgb cycling with traditional color cycling.

Note:

For example:
Your range can look like:

[1] [orange] [blue] [2] [green] [yellow]

t=O [1] = curpal[1],
t=1 [1] = yellow,
t=2 [1] = green,
t=3 [1] = curpal [2],
t=4 [1] = blue,
t=S [1] = orange,
t=6 goto t=O

[2]
[2]
[2]
[2]
[2]
[2]

curpal[2]
blue
orange
curpal [1]
yellow
green

* DPaint will save out an old style range CRNG if the range fits
the CRNG model otherwise it will save out a DRNG chunk.

* no thought has been given (yet) to interlocking cycles

ILBM.DRNG.doc Page 2

I* ---

IFF Information: DPaintiV DRNG chunk

DRNG ::= "DRNG" # {ORange DColor* Dindex*)

a <cell> is where the color or register appears within the range

The RNG ACTIVE flags is set when the range is cyclable. A range
should only have the RNG ACTIVE if it:

1> contains at least one color register
2> has a defined rate
3> has more than one color and/or color register

If the above conditions are met then RNG ACTIVE is a user/program
preference. If the bit is NOT set the program should NOT cycle the
ranqe.

The RNG_DP_RESERVED flags should always be 0!!!
--- */

t ypedef struct
UBYTE min;
UBYTE max;
SHORT rate;
SHORT flags
UBYTE ntrue
UBYTE nregs
) ORange;

typedef struct
t ypedef struct

/* min cell value */
/* max cell value */
I* color cycling rate, 16384 = 60 steps/second */
/* 1=RNG ACTIVE,4=RNG DP RESERVED */
/* number of DColor structs to follow */
/* number of Dindex structs to follow */

UBYTE cell; UBYTE r,g,b;
UBYTE cell; UBYTE index;

DColor; /* true color cell */
Dindex; /* color register cell */

..,..
0) ..,..

:::0

~
~
3
~
:::0
(1)

CD'
(i3
:::J
f,5

~
:::J c::
~
CJ
(1)

" C)•
(1)
(/)

ILBM.EPSF.doc
Encapsulated Postscript chunk

ILBM EPSF Chunk

Pixelations Kevin Saltzman 617-277-5414

Chunk to hold encapsulated postscript

Used by PixelScript in their clip art. Holds a postscript
representation of the ILBM's graphic image.

EPSF length
; Bounding box
WORD lowerleftx;
WORD lowerlefty;
WORD upperrightx;
WORD upperrighty;
CHAR [] ; asc~~ postscript file

Page 1 MTRX.doc
Numerical data storage (MathVision - Seven Seas)

MTRX FORM, for matrix data storage

Submitted by: Doug Houck

INTRODUCTION:

Seven Seas Software
(address, etc)

Page 1

19-July-1990

Numerical datar as it comes from the real world, is an ill-~~nnered beast.
Often much is assumed about the data, such as the number of dimensions,
formatting, compression, limits, and sizes. As such, data is not portable.
The MTRX FORM will both store the data, and completely describe its
format, such that programs no longer need to guess the parameters of
a data file. There needs to be but one program to read ascii files and
output MTRX IFF files.

A matrix, by our definition, is composed of three types of things.
Firstly, the atomic data, such as an integer, or floating point number.
s~condly, arrays, which are simply lists of things which are all the same.
Thirdly, structures, which are lists of things which are different.
Both arrays and structures may be composed of things besides atomic data -
they may contain other structures and arrays as well. This concept
of nesting structures may be repeated to any desired depth.

For example, a list of data pairs could be encoded as an array of structures,
where each structure contains two numbers. A two-dimensional array is
simply an array of arrays.

Since space conservation is often desirable, there is provision for
representing each number with fewer bits, and compressing the bits together.

CHUNKS

The MTRX FORM is composed of the definition of the structure, followed
by the BODY which contains the data which is defined. Usually, there
is only one set of data, but a smarter IFF read could use the definition
as a PROPerty, with identically formatted data sets (BODYs) in a LIST.

FORM MTRX
definition (ARRY I STRU I DTYP)
BODY

ARRY: The array chunk defines a counted list of similar items.
The first (required) chunk in an ARRY is ELEM, which gives the number
of elements in the array. Optionally, there may be limits given, (LOWR
and UPPR), which could be used in scaling during sampling of the data.
Lastly is the definition of an element of the array, which may be a
nested definition like everything else.

ARRY ::~ "ARRY" #{ ELEM [LOWR] [UPPR] [PACK] ARRYISTRUJDTYP }

STRU: The structure chunk defines a counted list of dissimilar things.
The first (required} chunk in a STRU is FLDS, which gives the number
o£ fields in the structure. Lastly are definitions of each field
in the structure. Again, each field may have a nested definition like
everything else.

STRU "STRU" #(FLDS ([PACK) ARRYISTRUIDTYP)* }

VALU: The value contains a datatype, and then a constant of that type.
The datatype contains the size of the constant, so this chunk has variable
size. VALU is used in the ARRY chunk to give the scaling limits of the array.

"'Tl
"'Tl
(J)
"0

CD g
6"
~
6"
::::l

"'Tl
0
::Il
s:
Q)
::::l
0.
()
:::r
c
::::l
A"

::Il
CD

<Q.
!e.
-<
~
O"l
01

MTRX.doc Page 2

BODY: This is the actual data we went to so much effort to describe.
It is stored in "row-first 11 format, that is, items at the bottom of the
nested description are stored next to each other. In most cases, it
should be sufficient to simply block-read the whole chunk from disk,
unless the reader needs to adjust byte-ordering or store in a more
time-efficient for.mat in memory. Data is assumed to be byte-aligned.

PACK: The PACK chunk is necessary when the bit length of the data is
not a multiple of 8, that is, not byte-aligned, and the user wishes
to conserve space by packing data items together. PACK is simply a
number - the number of items to bit-pack before aligning on a byte.
A PACK is in effect for the remainder of its nested scope, or until
overridden by a new specification. A STRU or ARRY is assumed to have
a PACK of 1 by default - it is not affected by PACKs in definitions above.
A PACK of 0 means to byte-align before processing the next definition.
The PACK specifier should be normalized. For example, when packing a large
array of 3-bit numbers, PACK should be 8 since 3*8 = 24. In this case 8 is
the smallest PACK number which aligns on a byte naturally.

DTYP: The DataType is the most interesting chunk, as it attempts to define
every conceivable type of numeric data with 32 bits. The 32 bits are broken
down into three fields, 1) the size in bits, 2) the Class, and 3) SubClass.
The Class makes the most major distinction, separating integers from floating
point numbers from Binary Coded Decimal and etc. Within each class is a
SubClass, which gives the specific encoding used. Finally, the Size tells
what how much roam the data occupies. The basic division of datatypes is
given in the tree structure below.

Class SubClass Size Final Specific Type

I
Binary

I
I
I

Unsigned - 0 ------------ 8
16
32

UByte
UWord
ULong

Binary Signed --- 0 ------------ 8 Byte
I 16 Word
I 32 ULong
I

Real ------------Ieee38 -------- 32 Ieee Single Precision
I I
I Ieee308 ------- 64 Double Precision
I I 32 Truncated Double Precision
I I
1 FFP ----------- 32 Motorola Fast Floating Point
I

Text ----------- TextO --------- ?? Null-terminated text
I I
I CText --------- ?? Number of characters in first byte
I I
I FText --------- ?? Fixed length, space padded
I

BCD ------------ Nibble -------- ??
I

Character ----- ??

A design goal was to create a classification system which other people
can easily plug into. Many data types are simply size variations on
existing data types. For example, a 4-bit integer can be specified by
giving the size as four bits in the Signed Binary class. Be aware that
not all MTRX readers may support your new type, but there will not be
any type clashes or ambiguities by following these rules. If you have
a truly unique Class or SubClass, you will need to register it with
Commodore to prevent clashes.

MTRX.doc Page 3

A second design goal was to create a format which is easily decoded
by software. By aligning fields on bytes, you have the option of redefining
the datatype as a structure, so as to avoid shifting when accessing the
fields. Since the numbers are sequentially assigned, they are suitable
as array indicies, and may be optimized in a C switch statement.

A third design goal was allowing for naive and sophisticated readers.
In checking for a certain datatype, a naive reader can simply compare
the whole datatype with a small set of known types, which assumes that
each different Size defines a unique datatype. Sophisticated readers
will consider the Class, SubClass and Size separately, so as to support
arbitrary size integers, and truncated Floating Point numbers, for example.

*
* MTRX : := "FORM" #{ "MTRX" ARRYISTRUIDTYP BODY I Matrix
* ARRY : := "ARRY" #{ ELEM [LOWR] [UPPR] [PACK] ARRYISTRUIDTYP) Array
* STRU : := "STRU" #{ FLDS {[PACK] ARRYISTRUIDTYP)*
* ELEM : : = "ELEM" # { elements
* LOWR : := "LOWR" { VALU
* UPPR : : = "UPPR" { VALU
* VALU : := #{ dtyp value
* dtyp { size, subclass, class
* DTYP : := "DTYP" #{ dtyp
* FLDS ::= "FLDS" #{number of fields
* PACK : := "PACK" #{ units packed b4 byte alignment
* BODY ::= uBODY 11 #{inner-first binary dump
*
*
*
*
*

[] means optional
means the size of the unit following
* means one or more of

I Structure
) Array elements
1 Minimum limit
) Maximum limit
I Value (in union)
I Data Type (scalar)
I
I Number of Fields
I Packing
I Data

~
en
en
J:J

~
~
3
~
J:J
CD
(i)
Cil
::J

~
s:
lll
::J
c:
lll :-:-
tJ
CD
<:::
()•
CD
(J)

PGTB.doc Page 1

Program traceback (SAS Institute)

FORM PGTB

Proposal:
New IFF chunk type, to be named PGTB, meaning ProGr~ TraceBack.

Format:

'PGTB'
length

'FAIL'
length
NameLen
Name
Envirorunent

VBlankFreq
PowerSupFreq

Starter
GURUNum
SegCount
SegList

'REGS'
length
GURUAddr
Flags
DDump
ADump

'VERS'
length
version
revision
TBNameLen
TBName

'STAK'
length
(type)

Info
Stack Top
StackPtr
StackLen

- chunk identifier
- longword for length of chunk

- subfield giving environment at time of crash
- longword length of subfield
- length of program name in longwords (BSTR)
- program name packed in lonqwords
- copy of AttnFlags field from ExecBase,

gives type of processor, and existence of
math chip

- copy of VBlankFrequency field from ExecBase
- copy of PowerSupplyFrequency field from ExecBase

above fields may be used to deter.mine whether
machine was PAL or NTSC

- non-zero = CLI, zero = WorkBench
- exception number of crash
- number of segments for program
- copy of seglist for program

(Includes all seglist pointers, paired with
sizes of the segments)

- register dump subfield
- length of subfield in longwords
- PC at time of crash
- copy of Condition Code Register
- dump of data registers
- dump of address registers

- revision of program which created this file
- length of subfield in longwords
- main version of writing program
- minor revision level of writing program
- length of name of writing program
- name of writing program packed in longwords (BSTR)

- stack dump subfield
- length of subfield in longwords
- tells type of stack subfield, which can be any of

the following:

- value 0
- address of top of stack
- stack pointer at time of crash
- number of longwords on stack

Whole stack - value 1

Stack

Top 4k

Stack

only used if total stack to be dumped is Sk
or less in size

- dump of stack from current to top

- value 2
if stack used larger than 8k, this part
is a dump of the top 4k

- dump of stack from top - 4k to top

Bottom 4k

Stack

PGTB.doc Page 2

- value 3
if stack used larger than Sk, this part
is a dump of the bottom 4k

- dump of stack from current to current + 4k

In other words, we will dump a maximum of 8k of stack data. This
does NOT mean the stack must be less than 8k in size to dump the
entire stack, just that the amount of stack USED be less than Bk.

'UDAT'

length

- Optional User DATa chunk. If the user assigns
a-function pointer to the label" ONGURU", the
catcher will call this routine prior to closing
the SnapShot file, passing one parameter on the
stack - an AmigaDOS file pointer to the SnapShot
file. Spec for the _ONGURU routine:

void <function name>(fp)
long fp;

In other words, your routine must be of type 'void'
and must take one parameter, an AmigaDOS file
handle (which AmigaDOS wants to see as a LONG) .

- length of the UserDATa chunk, calculated after the
user routine terminates.

"TI
"TI
(/)

"'0
ct>
()
:::::;;
c=;·
~
6"
::J

"TI
0
::D
s:::
Sll
::J a.
()
::::T
c:
::J
'A

::D
ct> co
$[
-<

.j::o..
en
-...,)

PRSP.doc Page 1

DPaint IV perspective move form (EA)

Submitted by Lee Taran

I* ---
IFF Information:

PRSP : := '"FORM'" # {'"PSRP'" MOVE)
MOVE : := '"MOVE'" # { MoveState)

* -- */
typedef struct {

BYTE reserved;
BYTE moveDir;
BYTE recordDir;
BYTE rotationType;
BYTE translationType;
BYTE cyclic;
SHORT distance[3];
SHORT angle[3];
SHORT nframes;
SHORT easeout;
SHORT easein;
} MoveState;

/* initialize to 0 */
/* 0 = from point 1 = to point */
/* 0 = FORWARD, 1 = STILL, 2 = BACKWARD */
/* 0 = SCREEN RELATIVE, 1 = BRUSH RELATIVE */
/* 0 = SCREEN-RELATIVE, 1 = BRUSH-RELATIVE */
/* 0 = NO, 1 ~ YES */ -
/* x,y,z distance displacement */
/* x,y,z rotation angles */
/* number of frames to move */
/* number of frames to ease out */
I* number of frames to ease in */

RGBN-RGBS.doc Page 1

RGB image forms, Turbo Silver (Impulse)

FORM RGBN and FORM RGBB

RGBN and RGBB files are used in Impulse's Turbo Silver and Imagine.
They are almost identical to FORM ILBM's except for the BODY chunk
and slight differences in the BMHD chunk.

A CAMG chunk IS REQUIRED.

The BMHD chunk specfies the number of bitplanes as 13 for type RGBN
and 25 for type RGBB, and the compression type as 4.

The FORM RGBN uses 12 bit RGB values, and the FORM RGBB uses
24 bit RGB values.

The BODY chunk contains RGB values, a .. genlock" bit, and repeat
counts. In Silver, when "genlock" bit is set, a "zero color" is
written into the bitplanes for genlock video to show through.
In Diamond and Light24 (Impulse 12 & 24 bit paint programs),
the genlock bit is ignored if the file is loaded as a picture
(and the RGB color is used instead), and if the file is loaded
as a brush the genlock bit marks pixels that are not part of
the brush.

For both RGBN and RGBB body chunks, each RGB value always has a
repeat count. The values are written in different formats depending
on the magnitude of the repeat count.

For the RGBN BODY chunk:

For each RGB value, a WORD (16-bits) is written: with the
12 RGB bits in the MSB (most significant bit) positions;
the '"genlock'" bit next; and then a 3 bit repeat count.
If the repeat count is greater than 7, the 3-bit count is
zero, and a BYTE repeat count follows. If the repeat count
is greater than 255, the BYTE count is zero, and a WORD
repeat count follows. Repeat counts greater than 65536 are
not supported.

For the RGBB body chunk:

For each RGB value, a LONG-word (32 bits) is written:
with the 24 RGB bits in the MSB positions; the '"genlock'"
bit next, and then a 7 bit repeat count.

In a previous version of this document, there appeared the
following line:

'"If the repeat count is greater than 127, the same rules apply
as in the RGBN BODY. 11

But Impulse has never written more than a 7 bit repeat count,
and when Imagine and Light24 were written, they didn't support
reading anything but 7 bit counts.

.j::..
0)
CXl

::0

~
~
3
~
::0
(1)

Ci)
Ci3
:::J

hi
s::
OJ
:::J c::
OJ
:-:-
CJ
(1)
~
(')•
(1)
{/)

RGBN-RGB8.doc

Sample BODY code:

if('count) {
if (Rgb8)

) else {

fread (&w, 4, 1, RGBF"le);
lock = w & Ox00000080;
rgb = w >> 8;
count = w & Ox0000007f;

w = (UWORD) getw (RGBFile) ;
lock = w & 8;
rgb = w >> 4;
count = w & 7;

if (!count)

Page 2

if (!(count
count

(UBYTE) getc (RGBFile)))
(UWORD) getw (RGBFile);

The pixels are scanned from left to right across horizontal
lines, processing from top to bottom. The (12 or 24 bit) RGB
values are stored with the red bits as the MSB's, the green
bits next, and the blue bits as the LSB's.

Special note: As of this writing (Sep 88), Silver does NOT
support anything but black for color zero.

SAMP.doc Page 1

Sampled sound format

IFF FORM "SAMP" Sampled Sound

Date: Dec 3,1989
From: Jim Fiore and Jeff Glatt, dissidents

The form "SAMP 11 is a file format used to store sampled sound data in some
ways like the current standard, ,.SSVX". Unlike "8SVX", this new format is not
restricted to 8 bit sample data. There can be more than one waveform per
octave, and the lengths of different waveforms do not have to be factors of
2. In fact, the lengths (wavefor.m size) and playback mapping (which musical
notes each wavefor.m will "play") are independently determined for each wave­
form. Furthermore, this format takes into account the MIDI sample dump stan­
dard (the defacto standard for musical sample storage), while also incorpo­
rating the ability to store Amiga specific info {for example, the sample data
that might be sent to an audio channel which is modulating another channel) .

Although this form can be used to store "sound effects" (typically oneShot
sounds played at a set pitch), it is primarily intended to correct the many
deficiencies of the "8SVX" form in regards to musical sampling. Because the
emphasis is on musical sampling, this format relies on the MIDI (Musical
Instrument Digital Interface) method of describing 11 SOund events 11 as does
virtually all currently manufactured, musical samplers. In addition, it at­
tempts to incorporate features found on many professional music samplers, in
anticipation that future Amiga models will implement 16 bit sampling, and
thus be able to achieve this level of perfor.rnance. Because this format is
more complex than "8SVX 11 , programming examples to demonstrate the use of this
format have been included in both C and assembly. Also, a library of func­
tions to read and write SAMP files is available, with example applications.

SEMANTICS: When MIDI literature talks about a sample, usually it means a
collection of many sample points that make up what we call a "wave".

=====SIMILARITIES AND DIFFERENCES FROM THE "8SVX" FORM=======

Like ''8SVX", this new format uses headers to separate the various sections
of the sound file into chunks. Some of the chunks are exactly the same since
there wasn't a need to improve them. The chunks that remain unchanged are as
follows:

"(c) "
"AUTH"
"ANNO"

Since these properties are all described in the original "BSVX" document,
please refer to that for a description of these chunks and their uses. Like
the "8SVX" form, none of these chunks are required to be in a sound file.
If they do appear, they must be padded out to an even number of bytes.

Furthermore, two "8SVX" chunks no longer exist as they have been incorpo­
rated into the "BODY" chunk. They are:

"ATAK"
"RLSE"

Since each wave can be completely different than the other waves in the
sound file {one wave might be middle C on a piano, and another might be a
snare drum hit), it is necessary for each wave to have its own envelope de­
scription, and name.

The major changes from the "8SVX" format are in the 11 MHDR", 1'NAME", and
"BODY" chunks.

"'Tl
"'Tl
(/)
"0
Cl)

a o·
a o·
:::J

"'Tl
0
:::0
s::
Ill
:::J
a.
()
;::r
c
:::J

" :::0
Cl)

(Q

~
-<
~

ffi

SAMP.doc Page 2

=================THE "SAM!?" HEADER================

At the very beginning of a sound file is the "SAMI'" header. This is used to
deter.mine if the disk file is indeed a SAMP sound file. It's attributes are
as follows:

#define ID_SAMP MakeiD('S' ,'A' ,'M' ,'P')

In assembly, this looks like:

CNOP 0,2 ;word-align

SAMP dc.b 'SAMP'
sizeOfChunks dc.l [sizes of all subsequent chunks summed]

=================THE "MHDR" CHUNK=================

The required 11MRDR" chunk immediately follows the 11 SAMP" header and consists
of the following components:

#define ID_MHDR MakeiD('M' ,'H' ,'D' ,'R')

/* MHDR size is dependant on the size of the imbedded PlayMap. */

typedef struct{
UBYTE NumOfWaves,

Format,
Flags,
PlayMode,
NumOfChans,
Pad,
PlayMap [128*4),

MHDRChunk;

/* The number of waves in this file */
/* # of ORIGINAL significant bits from 8-28 */
/* Various bits indicate various functions */
/* determines play MODE of the PlayMap */

/* a map of which wave numbers to use for
each of 128 possible Midi Notes. Default to 4 */

The PlayMap is an array of bytes representing wave numbers. There can be a
total of 255 waves in a "SAMP" file. They are numbered from 1 to 255. A wave
number of 0 is reserved to indicate "NO WAVE". The Midi Spec 1.0 designates
that there are 128 possible note numbers (pitches), 0 to 127. The size of an
MHDR's PlayMap is determined by (NumOfChans * 128). For example, if NumOfChans
= 4, then an MHDR's PlayMap is 512 bytes. There are 4 bytes in the PlayMap
for EACH of the 128 Midi Note numbers. For example, the first 4 bytes
in PlayMap pertain to Midi Note #0. Of those 4 bytes, the first byte is thA
wave number to play back on Amiga audio channel 0. The second byte is the
wave number to play back on Amiga audio channel 1, etc. In this way, a single
Midi Note Number could simultaneously trigger a sound event on each of the 4
Amiga audio channels. If NumOfChans is 1, then the PlayMap is 128 bytes and
each midi note has only 1 byte in the PlayMap. The first byte pertains to midi
note #0, the second pertains to midi note #1, etc. In this case, a player
program might elect to simply play back the PlayMap wave number on any
available amiga audio channel. If NumOfChans = 0, then there is no imbedded
PlayMap in the MHDR, no midi note assignments for the waves, and an application
should play back waves on any channel at their default sampleRates.

In effect, the purpose of the PlayMap array is to determine which (if any)
waves are to be played back for each of the 128 possible Midi Note Numbers.
Usually, the MHDR's NumOfChans will be set to 4 since the Amiga has 4 audio
channels. For the rest of this document, the NumOfChans is assumed to be 4.

As mentioned, there can be a total of 255 waves in a "SAMP" file, numbered
from 1 to 255. A PlayMap wave number of 0 is reserved to indicate that NO WAVE
number should be played back. Consider the following example:

SAMP.doc Page 3

The first 4 bytes of PlayMap are 1,3,0,200.

If a sample playing program receives (from the serial port or another task
perhaps) Midi Note Number 0, the following should occur:

1) The sampler plays back wave 1 on Amiga audio channel
number 0 (because the first PlayMap byte is l) .

2) The sampler plays back wave 3 on Amiga audio channel
number 1 (because the second PlayMap byte is 3) .

3) The sampler does not effect Amiga audio channel 2 in
any way (because the third PlayMap byte is a 0) .

4) The sampler plays back wave 200 on Amiga audio channel
number 4 (because the fourth PlayMap byte is 200) .

(This assumes INDEPENDANT CHANNEL play MODE to be discussed later in this
document.)

All four of the PlayMap bytes could even be the same wave number. This would
cause that wave to be output of all 4 Amiga channels simultaneously.

NumOfWaves is simply the number of waves in the sound file.

For.mat is the number of significant bits in every sample of a wave.
For example, if Format = 8, then this means that the sample data is an
8 bit for.mat, and that every sample of the wave can be expressed by a single
BYTE. (A 16 bit sample would need a WORD for every sample point).

Each bit of the Flags byte, when set, means the following:

Bit #0 - File continued on another disc. This might occur if the SAMP file
was too large to fit on 1 floppy. The accepted practice (as incor­
porated by Yamaha's TX sampler and Casio's FZ-1 for example) is to
dump as much as possible onto one disc and set a flag to indicate
that more is on another disc's file. The name of the files must
be the related. The continuation file should have its own SAMP header
MHDR, and BODY chunks. This file could even have its continuation
bit set, etc. Never chop a sample wave in half. Always close the
file on 1 disc after the last wave which can be completely saved.
Resume with the next wave within the BODY of the continuation file.
Also, the NumOfWaves in each file's BODY should be the number saved
on that disc (not the total number in all combined disk files) .
See the end of this document for filename conventions.

In C, here is how the PlayMap is used when receiving a midi note-on event:

MapOffset = (UBYTE) MidiNoteNumber * numOfChans;
/* MidiNoteNumber is the received note number (i.e. the second byte of a

midi note-on event. numOfChans is from the SAMP MHDR. */
chanOwaveNum = (UBYTE) playMap[MapOffset];
chanlwaveNum = (UBYTE) playMap[MapOffset+l)
chan2waveNum = (UBYTE) playMap[MapOffset+2)
chan3waveNum = (UBYTE) playMap[MapOffset+3]

if (chanOwaveNum != 0)
{ /*get the pointer to wave #l's data, determine the values

that need to be passed to the audio device, and play this
wave on Amiga audio channel #0 (if INDEPENDANT PlayMode) */

/*do the same with the other 3 channel's wave numbers*/

""" '-1
0

JJ

~
~
3
:!?..
JJ
(J)

iii'
it
::::
C)
(J)

s:
Ul
:::: c::
Ul
:-:-
CJ
(J)
<:::
(')•
(J)
(F)

SAMP.doc

In assembly, the "MHDR" structure looks like this:

CNOP 0,2
dc.b 'MHDR'
dc.l [this is 6 + (NumOfChans * 128)]
dc.b [a byte count of the # of waves in the file]

Page 4

MHDR
sizeOfMHDR
NurnOfWaves
Format
Flags
PlayMode
NumOfChans
PlayMap

dc.b [a byte count of the # of significant bits in a sample point]
dc.b [bit mask]
dc.b [play MODE discussed later]
dc.b [# of bytes per midi note for PlayMap]
ds.b [128 x Num0£Chans bytes of initialized values]

and a received MidiNoteNumber is interpreted as follows:

moveq
move.b
bmi.s
rnoveq
move.b
mulu.w
lea
adda.l
move.b
move.b
move.b
move.b

#O,dO
MidiNoteNumber,dO
Illegal Number
IIO,dl -
NumOfChans,dl
dl,dO
PlayMap,aO
dO,aO
{aO)+,chanOwaveNum
(aO)+,chanlwaveNum
(aO)+,chan2waveNum
(aO) ,chan3waveNum

tst.b chanOwaveNum
beq.s Chanl

;this is the received midi note #
;exit, as this is an illegal midi note #

;MidiNoteNumber x NumOfChans

Now get the address of this wave number's sample data, deter.mine the
values that need to be passed to the audio device, and output the wave's
data on Amiga chan 0 (assuming INDEPENDANT PlayMode) .

Chanl tst.b chanlwaveNum
beq.s Chan2

;do the same for the other wave numbers, etc.

=====================THE "NAME" CHUNK=========================
#define ID NAME MakeiD('N' ,'A', 'M' ,'E')

If a NAME chunk is included in the file, then EVERY wave must have a name.
Each name is NULL-ter.minated. The first name is for the first wave, and it
is immediately followed by the second wave's name, etc. It is legal for a
wave's name to be simply a NULL byte. For example, if a file contained 4
waves and a name chunk, the chunk might look like this:

CNOP 0, 2

Name dc.b 'NAME'
sizeOfName dc.l 30

dc.b 'Snare Drum' ,0 wave 1
dc.b 'Piano 1' ,0 wave 2
dc.b 'Piano A4' ,0 wave 3
dc.b 0 wave 4
dc.b 0

NAME chunks should ALWAYS be padded out to an even number of bytes_ {Hence
the extra NULL byte in this example). The chunk's size should ALWAYS be even
consequently. DO NOT USE the typical IFF method of padding a chunk out to an
even number of bytes, but allowing an odd number size in the header.

SAMP.doc Page 5

==============THE "BODY" CHUNK===============
The "BODY" chunk is CONSIDERABLY different than the "8SVX" form. Like all
chunks it has an ID.

#define ID BODY MakeiD('B' ,'0' ,'D' ,'Y')

Every wave has an SO byte waveHeader, followed by its data. The waveHeader
structure is as follows:

/* total # of BYTES in the wave (MUST be even) */
/* ONLY USED for Mid~ Dumps */
/* ONLY USED for Midi Dumps */

typedef struct (
ULONG WaveSize;
UWORD MidiSampNum;
UBYTE LoopType,
Ins Type; /* Used for searching for a certain instrument */

/* in nanoseconds at original pitch */ ULONG Period,
Rate,
LoopStart,

Loop End;

UBYTE RootNote,
Vel Start;

/* # of samples per second at original pitch *I
/* an offset in BYTES (from the beginning of the

of the wave) where the looping portion of the
wave begins. Set to WaveSize if no loop. *I

I* an offset in BYTES {from the beginning of the
of the wave) where the looping portion of the
wave ends. Set to WaveSize i£ no loop. */

/* the Midi Note # that plays back original pitch *I
/* 0 = NO velocity effect, 128 =

negative direction, 64 = positive
direction (it must be one of these 3) */

UWORD Ve1Table[l6]; /*contains 16 successive offset values
in BYTES from the beginning of the wave */

I* The ATAK and RLSE segments contain an EGPoint[] piece-wise
linear envelope just like SSVX. The structure of an EGPoint[]
is the same as 8SVX. See that document for details. */

ULONG ATAKsize,

RLSEsize,

I* # of BYTES in subsequent ATAK envelope.
If 0, then no ATAK data for this wave. *I

I* # of BYTES in subsequent RLSE envelope
If 0, then no RLSE envelope follows */

/* The FATK and FRLS segments contain an EGPoint[] piece-wise
linear envelope for filtering purposes. This is included in
the hope that future Amiga audio will incorporate a VCF
(Voltage Controlled Filter) . Until then, if you are doing any
non-realtime digital filtering, you could store info here. */

sizeOfFATK,
sizeOfFRLS,

/* # of BYTES in FATK segment */
/* # of BYTES in FRLS segment *I

USERsize; I* # of BYTES in the following data
segment (not including USERtype) .
If zero, then no user data *I

UWORD USERtype; /* See explanation below. If USERsize
0 1 then ignore this. */

I* End of the waveHeader. */

/* The data for any ATAK, RLSE, FATK, FRLS, USER, and the actual wave
data for wave Ill follows in this order:
Now list each EGPoint[] (if any) for the VCA's (Voltage Controlled Amp)
attack portion.
Now list each EGPoint[] for the VCA's (Voltage Controlled Amp)
release portion.
List EGPoints[] (if any) for FATK.
List EGPoints[] if any for FRLS */

., .,
(/)

"'0
CD g
()"

~
6"
::J .,
0
::IJ
s::
Ill
::J a.
()
:;r
c::
::J
;I\

::IJ
CD

<0

~
-<
~
-...J

SAMP.doc

/* Now include the user data here if there is any. Just pad it out
to an even number of bytes and have USERsize reflect that.

Page 6

Finally, here is the actual sample data for the wave. The size (in BYTES)
of this data is WaveSize. It MUST be padded out to an even number of bytes. */

WaveForminfo;

/* END OF WAVE #1 */

/* The waveHeader and data for the next wave would now follow. It is
the same for.m as the first wave */

In assembly, the BODY chunk looks like this:

CNOP 0,2
BodyHEADER dc.b 'BODY'
sizeOfBody dc.l [total bytes in the BODY chunk not counting 8 byte header]

; Now for
WaveSize
MidiSampNum
LoopType
Ins Type
Period
Rate
LoopStart

LoopEnd

RootNote
Vel Start
Vel Table

ATAKsize

RLSEsize

FATKsize
FRLSsize
USERsize

USERtype

the first wave
dc.l ; [total # of BYTES
dc.w ; [from Midi Sample
dc.b ; [0 or 1)

in this wave (MUST be even)]
Dump] ; ONLY USED for Midi Dumps

; ONLY USED for Midi Dumps
dc.b 0
dc.l ; [period in nanoseconds at original pitch]
dc.l ; [# of samples per second at original pitch)
dc.l ; [an offset in BYTES (from the beginning of the

dc.l

dc.b
dc.b
dc.w
dc.w
ds.w

dc.l

dc.l

dc.l
dc.l
dc.l

dc.w

; of the wave) to where the looping
; portion of the wave begins.]
; [an offset in BYTES (from the beginning of the
; of the wave) to where the looping
; portion of the wave ends]
; [the Midi Note # that plays back original pitch]
; [0, 64, or 128]
; [first velocity offset]
; [second velocity offset] ... etc

14 ; ... for a TOTAL of 16 velocity offsets

;# of BYTES in subsequent ATAK envelope.
;If 0, then noATAK data for this wave.
;# of BYTES in subsequent RLSE envelope
;If 0, then no RLSE data
;# of BYTES in FATK segment
;# of BYTES in FRLS segment
;# of BYTES in the following User data
;segment (not including USERtype).
;If zero, then no user data
; See explanation below. If USERsize

= 0, then ignore this.

;Now include the EGpoints[] (data) for the ATAK if any
;Now the EGpoints for the RLSE
;Now the EGpoints for the FATK
;Now the EGpoints for the FLSR
;Now include the user data here if there is any. Just pad
;it out to an even number of bytes.
;After the userdata (if any) is the actual sample data for
;the wave. The size (in BYTES) of this seg.ment is WaveSize.
;It MUST be padded out to an even number of bytes.

; END OF WAVE #1

SAMP.doc Page 7

=============STRUCTURE OF AN INDIVIDUAL SAMPLE POINT=============

Even though the next generation of computers will probably have 16 bit
audio, and 8 bit sampling will quickly disappear, this spec has sizes expressed
in BYTES. (ie LoopStart, WaveSize, etc.) This is because each successive
address in RAM is a byte to the 68000, and so calculating address offsets
will be much easier with all sizes in BYTES. The Midi sample dump, on the
other hand, has sizes expressed in WORDS. What this means is that if you
have a 16 bit wave, for example, the WaveSize is the total number of BYTES,
not WORDS, in the wave.

Also, there is no facility for storing a compression type. This is because
sample data should be stored in linear format (as per the MIDI spec). Currently,
all music samplers, regardless of their internal method of playing sample data
must transmit and expect to receive sample dumps in a linear format. It is
up to each device to translate the linear format into its own compression
scheme. For example, if you are using an 8 bit compression scheme that yields
a 14 bit linear range, you should convert each sample data BYTE to a decom­
pressed linear WORD when you save a sound file. Set the MHDR's Format
to 14. It is up to the application to do its own compression upon loading
a file. The midi spec was set up this way because musical samplers need to
pass sample data between each other, and computers (via a midi interface).
Since there are almost as many data compression schemes on the market as
there are musical products, it was decided that all samplers should expect
data received over midi to be in LINEAR format. It seems logical to store it
this way on disc as well. Therefore, any software program 11 need not know" how
to decompress another software program's SAMP file. When 16 bit sampling is
eventually implemented there won't be much need for compression on playback
anyway. The continuation Flag solves the problem of disc storage as well.

Since the 68000 can only perform math on BYTES, WORDS, or LONGS, it has
been decided that a sample point should be converted to one of these sizes
when saved in SAMP as follows:

ORIGINAL significant bits SAMP sample point size
M--M-­

M--
8 BYTE

9 to 16 WORD
17 to 28 LONG

Furthermore, the significant bits should be left-justified since it is
easier to perfor.m math on the samples.

So, for example, an 8 bit sample point (like 8SVX) would be saved as a
BYTE with all 8 bits being significant. The MHDR's Format= 8. No
conversion is necessary.

A 12 bit sample point should be stored as a WORD with the significant bits
being numbers 4 to 15. (i.e shift the 12-bit WORD 4 places to the left). Bits
0, 1, 2 and 3 may be zero (unless some 16-bit math was performed and you wish to
save these results). The MHDR's Format= 12. In this way, the sample
may be loaded and manipulated as a 16-bit wave, but when transmitted via
midi, it can be converted back to 12 bits (rounded and shifted right by 4) .

A 16 bit sample point would be saved as a WORD with all 16 bits being
significant. The MHDR's Format= 16. No conversion is necessary.

..,.
-...J
1\)

JJ

~
~
3
~
JJ
<1:>
ii)
(!)
::J

"' <1:>

~
::J c::
~
tJ
<1:>

" ()•
<1:>
(/)

SAMP.doc Page 8

============== The waveHeader explained ==============
The WaveSize is, as stated, the number of BYTES in the wave's sample table.
If your sample data consisted of the following 8 bit samples:

BYTE 100,-90,80,-60,30,35,40,-30,-35,-40,00,12,12,10

then WaveSize ; 14. (PAD THE DATA OUT TO AN EVEN NUMBER OF BYTES')

The MidiSampNum is ONLY used to hold the sample number received from a MIDI
Sample Dump. It has no bearing on where the wave should be placed in a SAMP
file. Also, the wave numbers in the PlayMap are between 1 to 255, with 1 being
the number of the first wave in the file. Remember that a wave number of 0 is
reserved to mean "no wave to play back ... Likewise, the LoopType is only used
to hold info from a MIDI sample dump.

The InsType is explained at the end of this document. Often it will be set
to 0.

The RootNote is the Midi Note number that will play the wave back at it's
original, recorded pitch. For example, consider the following excerpt of a
P1ayMap:

P1ayMap {2, 0, 0, 4
4/100,1,0
1,4,0,0
60,2,1,1. .. }

I* Midi Note
I* Midi Note
I* Midi Note
I* Midi Note

#0 channel
#1
#2
#3

assignment */
" *I

*I
*I

Notice that Midi Notes 0, l, and 2 are all set to play wave number 4 (on
Amiga channels 3, 0, and 1 respectively). If we set wave 4's RootNote = 1,
then receiving Midi Note number 1 would play back wave 4 (on Amiga channel 0)
at it's original pitch. If we receive a Midi Note number 0, then wave 4 would
be played back on channel 3) a half step lower than it's original pitch. If we
receive Midi Note number 2, then wave 4 would be played (on channel 1) a half
step higher than it's original pitch. If we receive Midi Note number 3, then
wave 4 would not be played at all because it isn't specified in the PlayMap
bytes for Midi Note number 3.

The Rate is the number of samples per second of the original pitch.
For example, if Rate; 20000, then to play the wave at it's original
pitch, the sampling period would be:

(1/20000)1.279365; .000178977

#define AUDIO_HARDWARE_FUDGE .279365

where .279365 is the Amiga Fudge Factor (a hardware limitation). Since the
Amiga needs to see the period in ter.ms of microseconds, move the decimal place
to the right 6 places and our sampling period = 179 (rounded to an integer).

In order to play the wave at higher or lower pitches, one would need to
"transposeu this period value. By specifying a higher period value, the Amiga
will play back the samples slower, and a lower pitch will be achieved. By
specifying a lower period value, the amiga will play back the sample faster,
and a higher pitch will be achieved. By specifying this exact period, the wave
will be played back exactly uas it was recorded (sampled)". (11 This period is
JUST RIGHT!", exclaimed GoldiLocks.) Later, a method of transposing pitch will
be shown using a "look up" table of periods. This should prove to be the
fastest way to transpose pitch, though there is nothing in the SAMP for.mat
that compels you to do it this way.

SAMP.doc Page9

The LoopStart is a BYTE offset from the beginning of the wave to where the
looping portion of the wave begins. For example, if SampleData points to the
st.art of the wave, then SampleOata + LoopStart is the start address of the
looping portion. In SSVX, the looping portion was referred to as
repeatHiSamples. The data from the start of the wave up to the start of the
looping portion is the oneShot portion of the wave. LoopEnd is a BYTE offset
from the beginning of the wave to where the looping portion ends. This might
be the very end of the wave in memory, or perhaps there might be still more
data after this point. You can choose to ignore this 11 trailing .. data and
play back the two other portions of the wave just like an 8SVX file (except
that there are no other interpolated octaves of this wave) .

VelTable contains 16 BYTE offsets from the beginning of the wave. Each
successive value should be greater (or equal to) the preceding value. If
VelStart; POSITIVE (64), then for each 8 increments in Midi Velocity
above 0, you move UP in the table, add this offset to the wave's beginning
address (start of oneShot), and start playback at that address. Here is a
table relating received midi note-on velocity vs. start playback address for
POSITIVE VelStart. SamplePtr points to the beginning of the sample.

If midi velocity ; 0, then don't play a sample, this is a note off
If midi velocity = 1 to 7, then start play at SamplePtr + VelTable[O]
If midi velocity = 8 to 15, then start at SamplePtr + Ve1Table[l]
If midi velocity = 16 to 23, then start at Samp1ePtr + Ve1Table[2]
If midi velocity = 24 to 31, then start at Samp1ePtr + VelTab1e[3]
If midi velocity ; 32 to 39, then start at SamplePtr + Ve1Table[4]
If midi velocity; 40 to 47, then start at SamplePtr + VelTable[5]
If midi velocity ; 48 to 55, then start at SamplePtr + VelTable[6]
If midi velocity ; 56 to 63, then start at SamplePtr + Ve1Table[7]
If midi velocity ; 64 to 71, then start at SamplePtr + Ve1Table[8]
If midi velocity ; 72 to 79, then start at SamplePtr + VelTable[9]
If midi velocity= SO to 87, then start at SamplePtr + VelTable[lO]
If midi velocity ; 88 to 95, then start at SamplePtr + VelTable[ll]
If midi velocity ; 96 to 103, then start at SamplePtr + VelTable[12]
If midi velocity ; 104 to 111, then start at SamplePtr + VelTable[l3)
If midi velocity ; 112 to 119, then start at SamplePtr + VelTable[14)
If midi velocity ; 120 to 127, then start at SamplePtr + VelTable[15)

We don't want to specify a scale factor and use integer division to find the
sample start. This would not only be slow, but also, it could never be certain
that the resulting sample would be a zero crossing if the start point is calcu­
lated '"on the fly". The reason for having a table is so that the offsets can be
be initially set on zero crossings via an editor. This way, no audio 11 Clicks 11

is guaranteed. This table should provide enough resolution.

If VelStart ; NEGATIVE (128), then for each 8 increments in midi velocity,
you start from the END of VelTable, and work backwards. Here is a table
for NEGATIVE velocity start.

If midi velocity = 0, then don't play a sample, this is a note off
If midi velocity~ 1 to 7, then start play at SamplePtr + VelTable[15]
If midi velocity ; 8 to 15, then start at SamplePtr + VelTable[l4)
If midi velocity ; 16 to 23, then start at SamplePtr + VelTable[13]
If midi velocity ; 24 to 31, then start at Samp1ePtr + VelTable[l2]
If midi velocity ; 32 to 39, then start at SamplePtr + VelTable[ll)
If midi velocity; 40 to 47, then start at SamplePtr + VelTable[10]
If midi velocity ; 48 to 55, then start at SamplePtr + VelTable[9)
If midi velocity ; 56 to 63, then start at SamplePtr + VelTable[8)
If midi velocity ; 64 to 71, then start at SamplePtr + VelTable[7)
If midi velocity ; 72 to 81, then start at SamplePtr + Ve1Table[6]
If midi velocity; 80 to 87, then start at Samp1ePtr + VelTable[S]
If midi velocity ; 88 to 95, then start at SamplePtr + VelTable[4)
If midi velocity ; 96 to 103, then start at SamplePtr + VelTable[3)
If midi velocity ; 104 to 111, then start at SamplePtr + VelTable[2)
If midi velocity ; 112 to 119, then start at SamplePtr + VelTable[l)
If midi velocity; 120 to 127, then start at SamplePtr + VelTable[O]

"'T1
"'T1
en
"0
co
£:
(')'

a
6'
::I

"'T1
0
JJ
s:
Q)
::I
a.
()
:::r
c::
::I
~

JJ
co

(Q

sa
-<
~

(j

SAMP.doc Page 10

In essence, increasing midi velocity starts playback ••farther into 11 the wave
for I?OSITIVE VelStart. Increasing midi velocity "brings the start point
back" toward the beginning of the wave for NEGATIVE VelStart.

If VelStart is set to NONE (0), then the wave's playback start should
not be affected by the table of offsets.

What is the use of this feature? As an example, when a snare drum is hit with
a soft volume, its initial attack is less pronounced than when it is struck
hard. You might record a snare being hit hard. By setting VelStart to a
NEGATIVE value and setting up the offsets in the Table, a lower midi velocity
will 11 skip 11 the beginning samples and thereby tend to soften the initial
attack. In this way, one wave yields a true representation of its instrument
throughout it~ volume range. Further.more, stringed and plucked instruments
(violins, guitars, pianos, etc) exhibit different attacks at different
volumes. VelStart makes these kinds of waves more realistic via a software
implementation. Also, an application program can allow the user to enable/
disable this feature. See the section "Making the Velocity Table" for info on
how to best choose the 16 table values.

=========MIDI VELOCITY vs. AMIGA CHANNEL VOLUME============

The legal range for Midi Velocity bytes is 0 to 127. (A midi velocity of 0
should ALWAYS be interpreted as a note off) .

The legal range for Amiga channel volume is 0 to 64. Since this is half of
the midi range, a received midi velocity should be divided by 2 and add 1
(but only AFTER checking for a received midi velocity of 0) .

An example of how to implement a received midi velocity in C:

If (ReceivedVelocity != 0 && ReceivedVelocity < 128)
{ I* the velocity byte of a midi message *I

If (velStart != 0)
{

tableEntry = ReceivedVelocity I 8;
If (velStart == 64)
{ I* Is it I?OSITIVE *I

startOfWave = Samplel?tr + velTable[tableEntry];
I* Awhere to find the sample start point *I

)
If (velStart == 128)
{ I* Is it NEGATIVE *I

startOfWave = Samplel?tr + velTable[lS- tableEntry];
}
volume = (receivedVelocityl2 + 1; I* playback volume *I
I* Now playback the wave *I

SAMP.doc Page 11

In assembly,

lea
moveq
m.ove.b
beq

SampleData,aO
#O,dO
ReceivedVelocity,dO
A NoteOff

;the start addr of the sample data

the velocity byte of a midi message
If zero, branch to a routine to
process a note-off message.

bmi Illegal Vol
;---Check for veiocity
move.b VelStart,dl
beq.s Volume
bmi.s NegativeVel

;exit if received velocity > 127
start feature ON, and direction

;skip the velocity offset routine if 0
;is it NEGATIVE? (128)

;---l?ositive velocity
move.l dO,dl

offset

lsr.b #3,dl
add.b dl,dl
lea VelTable,al
adda.l dl,al
move.w (al),dl
adda.l dl,aO
hra.s Volume

NegativeVel:

;duplicate velocity
;divide by 8
;x 2 because we need to fetch a word

;start at table's HEAD
;go forward
;get the velocity offet

;where to start actual playback

;---Negative velocity offset
move.l dO,dl ;duplicate velocity

;divide by 8 lsr.b #3,dl
add.b dl,dl
lea Ve1Table+30,al
suba.l dl,al
move.w (al) ,dl
adda.l dl,aO

;x 2 because we need to fetch a word
;start at table's END

;go backwards
;get the velocity offset

;where to start actual playback

;---convert Midi velocity to an Amiga volume
Volume lsr.b #l,dO ;divide by 2

addq.b #l,dO ;an equivalent Amiga volume

;---Now aO and dO are the address of sample start, and volume

================= AN EGpoint (envelope generator) ================

A single EGpoint is a 6 byte structure as follows:

EGpointl: dc.w [the duration in milliseconds]
dc.l [the volume factor - fixed point, 16 bits to the left of the

decimal point and 16 to the right.]

The volume factor is a fixed point where 1.0 ($00010000) represents the
MAXIMDM volume possible. (i.e. No volume factor should exceed this value.)
The last EGpoint in the ATAK is always the sustain point. Each EG's volume
is determined from 0.0, not as a difference from the previous EG's volume.
I hope that this clears up the ambiguity in the original 8SVX document.
So, to recreate an amplifier envelope like this:

1\
I \

I ~
I \

I I I I I
1 2 3 4

""" "-J

""" :a
~
~
3
~
:a
CD
(i)
(i)
::J

&;

~
::J
t:::

~
CJ
CD
<::
C'i'
CD
(J)

SAMP.doc

Stages 1, 2, and 3 would be in the ATAK data, like so:

;Stage 1
dc.w 100
dc.l $00004000
dc.w 100
dc.l $00008000
dc.w 100
dc.l $0000COOO
dc.w 100
dc.l $00010000
; Stage 2
dc.w 100
dc.l $0000COOO
dc.l 100

;take lOOms
;go to this volume

;the "peak' 1 of our attack is full volume

;back off to this level

Page 12

dc.l $00008000 ;this is where we hold (SUSTAIN) until the note is turned
;off. (We are now holding at stage 3)

Now the RLSE data would specify stage 4 as follows:
dc.w 100
dc.l $00004000
dc.w 100
dc.l $00000000 ;the volume is 0

~~~======~~~===ADDITIONAL USER DATA SECTION===~~~=~=~~=====~ 

There is a provision for storing user data for each wave. This is where an 
application can store Amiga hardware info, or other, application specific info. 
The waveHeader's USERtype tells what kind of data is stored. The current 
types are: 

#define SPECIFIC 0 
#define VOLMOD 1 
#define PERMOD 2 
#define LOOPING 3 

SPECIFIC (0) - application specific data. It should be stored 
in a for.mat that some application can immediately 
recognize. (i.e. a "format within" the SAMP format) 
If the USERtype is SPECIFIC, and an application 
doesn't find some sort of header that it can re­
cognize, it should conclude that this data was 
put there by "someone else", and ignore the data. 

VOLMOD (1) - This data is for volume modulation of an Arniga 
channel as described by the ADKCON register. This 
data will be sent to the modulator channel of the 
channel set to play the wave. 

PERMOD (2) - This data is for period modulation of an Amiga 
channel as described by the ADKCON register. This 
data will be sent to the modulator channel of the 
channel set to play the wave. 

SAMP.doc 

LOOPING (3) - This contains more looping points for the sample. 
There are some samplers that allow more than just 
one loop (Casio products primarily) . Additional 
looping info can be stored in this format: 

Page 13 

UWORD numOfLoops; /* number of loop points to follow */ 

ULONG StartLoopl, 

EndLoopl, 

StartLoop2, 

/* BYTE offset from the beginning of 
the sample to the start of loopl *I 

I* BYTE offset from the beginning of 
the sample to the end of loopl *I 

I* ... etc *I 

=========Converting Midi Sample Dump to SAMP========= 

SEMANTICS: When MIDI literature talks about a sample, usually it means a 
collection of many sample points that make up what we call ,.a wave". 
Therefore, a Midi Sample Dump sends all the sample data that makes up ONE 
wave. A SAMP file is designed to hold up to 255 of these waves (midi dumps). 

The Midi Sample Dump specifies playback rate only in ter.ms of a sample 
PERIOD in nanoseconds. SAMP also expresses playback in ter.ms of samples per 
second (frequency) . The Amiga needs to see its period rounded to the nearest 
microsecond. If you take the sample period field of a Midi sample Dump (the 
8th, 9th, and lOth bytes of the Dump Header LSB first) which we will call 
MidiSamplePer, and the Rate of a SAMP file, here is the relationship: 

Rate = (liMidiSamplePer) x 10E9 

Also the number of samples (wave's length) in a Midi Sample Dump (the 11th, 
12th, and 13th bytes of the Dump header) is expressed in WORDS. SAMP's 
WaveSize is expressed in the number of BYTES. (For the incredibly stupid), 
the relationship is: 

WaveSize ~ MidiSampleLength x 2 

A Midi sample dump's LoopStart point and LoopEnd point are also in WORDS as 
versus the SAMP equivalents expressed in BYTES. 

A Midi sample dump's sample number can be 0 to 65535. A SAMP file can hold 
up to 255 waves, and their numbers in the playmap must be 1 to 255. (A single, 
Midi Sample Dump only sends info on one wave.) When recieving a Midi Sample 
Dump, just store the sample number (5th and 6th bytes of the Dump Header LSB 
first) in SAMP's MidiSampNum field. Then forget about this number until you 
need to send the wave back to the Midi instrument from whence it came. 

A Midi Dump's loop type can be forward, or forward/backward. Amiga hardware 
supports forward only. You should store the Midi Dump's LoopType byte here, 
but ignore it otherwise until/unless Amiga hardware supports "reading audio 
data" in various ways. If so, then the looptype is as follows: 

forward ; 0, backward/forward ; l 

A Midi Dump's sample format byte is the same as SAMP's. 



"'Tl 
"'Tl 
(f) 

"'0 
CD 
(") 
:::::;; 
(')' 

~ 
15' 
:::l 

"'Tl 
0 
JJ 
s: 
lll 
:::l 
0.. 

0 
::J 
c: 
:::l 
A' 

JJ 
CD 

CQ. 
~ 
-< 
~ 
-...J 
U1 

SAMP.doc Page 14 

===================== INTERPRETING THE PLAYMODE ========================== 

PlayMode specifies how the bytes in the PlayMap are to be interpreted. 
Remember that a PlayMap byte of 0 means "No Wave to Play". 

#define INDEPENDANT 0 
#define MULTI 1 
#define STEREO 2 
#define PAN 3 

PlayMode types: 

INDEPENDANT (0) - The wave #s for a midi note are to be output on 
Amiga audio channels 0, 1, 2, and 3 respectively. 

MULTI 

STEREO 

PAN 

If the NumOfChans is< 4, then only use that many channels. 

(1) - The first wave # (first of the PlayMap bytes) for a 
midi note is to be output on any free channel. The other 
wave numbers are ignored. If all four channels are in 
play, the application can decide whether to "steal" a 
channel. 

(2) - The first wave # (first of the PlayMap bytes) is to be 
output of the Left stereo jack (channel 1 or 3) and if 
there is a second wave number (the second of the PlayMap 
bytes), it is to be output the Right jack (channel 2 or 4). 
The other wave numbers are ignored. 

(3) - This is just like STEREO except that the volume of wave 1 
should start at its initial volume (midi velocity) and 
fade to 0. At the same rate, wave 2 should start at 0 
volume and rise to wave #l's initial level. The net 
effect is that the waves 11 Cross 11 from Left to Right in 
the stereo field. This is most effective when the wave 
numbers are the same. (ie the same wave) The application 
program should set the rate. Also, the application can 
reverse the stereo direction (ie Right to Left fade) . 

The most important wave # to be played back by a midi note should be the 
first of the PlayMap bytes. If the NumOfChans > 1, the second P1ayMap byte 
should be a defined wave number as well (even if it is deliberately set to the 
same value as the first byte) . This insures that all 4 PlayModes will have some 
effect on a given SAMP file. Also, an application should allow the user to 
change the PlayMode at will. The PlayMode stored in the SAMP file is only a 
default or initial set-up condition. 

=================== MAKING A TRANSPOSE TABLE ===================== 

In order to allow a wave to playback over a range of musical notes, (+/­
semitones), its playback rate must be raised or lowered by a set amount. 
From one semitone to the next, this set amount is by a factor of the 12th 
root of 2 (assuming a western, equal-tempered scale) . Here is a table that 
shows what factor would need to be multiplied by the sampling rate in order 
to transpose the wave's pitch. 

SAMP.doc Page 15 

Pitch in relation to the Root Multiply Rate by this amount 

DOWN 6 semi tones 0.5 
DOWN 5 1/2 sernitones 0.529731547 
DOWN 5 semi tones 0.561231024 
DOWN 4 1/2 sernitones 0.594603557 
DOWN 4 semi tones 0.629960525 
DOWN 3 1/2 sernitones 0.667419927 
DOWN 3 semi tones 0.707106781 
DOWN 2 1/2 sernitones 0.749153538 
DOWN 2 semi tones 0.793700526 
DOWN 1 1/2 sernitones 0.840896415 
DOWN 1 semi tones 0.890898718 
DOWN 1/2 semi tone 0.943874312 

ORIGINAL PITCH 1.0 I* rootnote•s pitch*/ 
UP l/2 semi tone 1.059463094 
UP 1 semi tones 1.122562048 
UP 1 1/2 sernitones 1.189207115 
UP 2 semi tones 1.259921050 
UP 2 1/2 sernitones 1.334839854 
UP 3 semi tones 1.414213562 
UP 3 112 sernitones 1.498307077 
UP 4 semi tones 1.587401052 
UP 4 112 sernitones 1.681792830 
UP 5 semi tones 1.781797436 
UP 5 1/2 semitones 1.887748625 
UP 6 semi tones 2 

For example, if the wave's Rate is 18000 hz, and you wish to play the wave 
UP 1 semitone, then the playback rate is: 

18000 x 1.122562048 = 20206.11686 hz 

The sampling period for the Amiga is therefore: 

(1120206.11686)1.279365 = .000177151 

and to send it to the Audio Device, it is rounded and expressed in micro­
seconds: 177 

Obviously, this involves floating point math which can be time consuming 
and impractical for outputing sound in real-time. A better method is to 
construct a transpose table that contains the actual periods already calculated 
for every semitone. The drawback of this method is that you need a table for 
EVERY DIFFERENT Rate in the SAMP file. If all the Rates in the file happened 
to be the same, then only one table would be needed. Let's assume that this 
is the case, and that the Rate = 18000 hz. Here is a table containing enough 
entries to transpose the waves +/- 6 semitones. 

Pitch in relation to the Root The Amiga Period (assuming rate = 18000 hz) 

Transposition table[TRANS TABLE SIZE]={ 
/* DOWN 6 -semitones */ - 398, 
/* DOWN 5 112 sernitones *I 375, 
/* DOWN 5 semi tones *I 354, 
I* DOWN 4 112 sernitones *I 334, 
I* DOWN 4 semi tones *I 316, 
/* DOWN 3 112 sernitones *I 298, 
I* DOWN 3 semi tones *I 281, 
I* DOWN 2 112 sernitones *I 265, 
I* DOWN 2 semi tones *I 251, 
I* DOWN 1 112 semitones *I 236, 
I* DOWN 1 semi tones *I 223, 
/* DOWN 1/2 semi tone *I 211, 
I* ORIGINAL PITCH *I 199, I* rootnote•s pitch*/ 



-1:>-
-.._J 
OJ 

JJ 

~ 
~ 
3 
~ 
JJ 
<ll 
iii' 
(ti 
::J 

~ 

~ 
::J c:: 
~ 
CJ 
<ll 
<::: 
fS• 
<ll 
(J) 

SAMP.doc Page 16 

/* UP 1/2 semi tone *I 187, 
/* UP 1 semi tones *I 177, 
/* UP 1 1/2 semitones *I 167' 
I* UP 2 semi tones *I 157' 
I* UP 2 112 semitones *I 148, 
I* UP 3 semi tones *I 141, 
I* UP 3 112 semitones *I 133, 
I* Since the minimum Arniga period ; 127 the following 

are actually out of range. *I 
I* UP 4 semi tones *I 125, 
I* UP 4 112 sernitones *I 118, 
I* UP 5 semi tones *I 112, 
I* UP 5 112 sernitones *I 105, 
I* UP 6 semi tones *I 99 }; 

Let's assume that (according to the PlayMap) midi note #40 is set to play 
wave number 3. Upon examining wave 3's structure, we discover that the 
Rate ; 18000, and the RootNote ; 38. Here is how the Arniga sampling 
period is calulated using the above 18000hz "transpose chart., in C: 

/* MidiNoteNumber is the received midi note's number (here 40) */ 

#define ORIGINAL PITCH TRANS TABLE SIZE/2 + 1 
/* TRANS TABLE SIZE is the number of entries in the transposition table 

(dynamic, ie this can change with the application) *I 

transposeAmount 
am.igaPeriod 

(LONG) (MidiNoteNwnber - rootNote); /* make it a SIGNED LONG * / 
Transposition_table[ORIGINAL_PITCH + transposeAmount]; 

In assembly, the 18000hz transpose chart and above example would be: 

Table dc.w 398 
dc.w 375 
dc.w 354 
dc.w 334 
dc.w 316 
dc.w 298 
dc.w 281 
dc.w 265 
dc.w 251 
dc.w 236 
dc.w 223 
dc.w 211 

ORIGINAL PITCH dc.w 199 rootnote's pitch 
dc.w 187 
dc.w 177 
dc.w 167 
dc.w 157 
dc.w 148 
dc.w 141 
dc.w 133 

SAMP.doc 

Since the minimum Amiga period 
are actually out of range. 

dc.w 125 

127, the following 

lea 
move.b 
sub.b 
ext.w 
ext.l 
add.l 
adda.l 
move.w 

dc.w 118 
dc.w 112 
dc.w 105 
dc.w 99 

ORIGINAL PITCH,aO 
MidiNoteNumber,dO 
RootNote,dO 
dO 
dO 
dO,dO 
dO,aO 
(aO), dO 

;the received note number 
;subtract the wave's root note 

;make it a signed LONG 
;x 2 in order to fetch a WORD 

;the Arniga Period (WORD) 

Page 17 

Note that these examples don't check to see if the transpose amount is 
beyond the number of entries in the transpose table. Nor do they check if 
the periods in the table are out of range of the Aroiga hardware. 

=================;=== MAKING THE VELOCITY TABLE ;;;===============;=== 
The 16 entries in the velocity table should be within the oneShot portion of 
the sample (ie not in the looping portion). THe first offset, VelTable[O] 
should be set to zero (in order to play back from the beginning of the data) . 
The subsequent values should be increasing numbers. If you are using a graphic 
editor, try choosing offsets that will keep you within the initial attack 
portion of the wave. In practice, these values will be relatively close 
together within the wave. Always set the offsets so that when they are added 
to the sample start point, the resulting address points to a sample value of 
zero (a zero crossing point) . This will eliminate pops and clicks at the 
beginning of the playback. 

In addition, the start of the wave should be on a sample with a value of 
zero. The last sample of the oneShot portion and the first sample of the 
looping portion should be approximately equal, (or zero points). The same is 
true of the first and last samples of the looping portion. Finally, try to 
keep the slopes of the end of the oneShot, the beginning of the looping, and 
the end of the looping section, approximately equal. All this will eliminate 
noise on the audio output and provide "seamless .. looping. 

======================== THE INSTRUMENT TYPE ;;=;;;=======;============ 
Many SMUS players search for certain instruments by name. Not only is this 
slow (comparing strings), but if the exact name can't be found~ then it is 
very difficult and time-consuming to search for a suitable replacement. For 
this reason, many SMUS players resort to .. default" instruments even if these 
are nothing like the desired instruments. The InsType byte in each waveHeader 
is meant to be a numeric code which will tell an SMUS player exactly what the 
instrument is. In this way, the SMUS player can search for the correct 
"type" of instrument if it can't find the desired name. The type byte is 
divided into 2 nibbles (4 bits for you C programmers) with the low 4 bits 
representing the instrument "family., as follows: 

l = STRING, 2 ; WOODWIND, 3 = KEYBOARD, 4 = GUITAR, 5 = VOICE, 6 = DRUMl, 
7 = DRUM2, 8 = PERCUSSIONl, 9 = BRASS1, A = BRASS2, B = CYMBAL, C ; EFFECTl, 
D = EFFECT2, E ; SYNTH, F is undefined at this time 

Now, the high nibble describes the particular type within that family. 



11 
11 
(f) 

"'0 
CD 
('") 
==--: 
(')" 

a 
6" 
::::J 

11 
0 
JJ 
$: 
m 
::::J 
0. 
() 
::::; 
c 
::::J 

" JJ 
CD 

CQ. 
{/) --< 
./::>. 
-...j 
-...j 

SAMP.doc Page 18 

For the STRING family, the high nibble is as follows: 

1 = VIOLIN BOW, 2 = VIOLIN PLUCK, 3 = VIOLIN GLISSANDO, 4 = VIOLIN TREMULO, 
5 = VIOLA BOW, 6 = VIOLA PLUCK, 7 = VIOLA GLIS, 8 = VIOLA TREM, 9 = CELLO 
BOW, A = CELLO PLUCK, B = CELLO GLIS, C = CELLO TREM, D = BASS BOW, E = 
BASS PLUCK (jazz bass), F =BASS TREM 

For the BRASSl family, the high nibble is as follows: 

1 = BARITONE SAX, 2 = BARI GROWL, 3 = TENOR SAX, 4 = TENOR GROWL, 5 = ALTO 
SAX, 6 = ALTO GROWL, 7 = SOPRANO SAX, 8 = SOPRANO GROWL, 9 = TRUMPET, A 
MUTED TRUMPET, B = TRUMPET DROP, C = TROMBONE, D = TROMBONE SLIDE, E = 
TROMBONE MUTE 

For the BRASS2 family, the high nibble is as follows: 

l = FRENCH HORN, 2 = TUBA, 3 = FLUGAL HORN, 4 = ENGLISH HORN 

For the WOODWIND family, the high nibble is as follows: 

1 = CLARINET, 2 = FLUTE, 3 = PAN FLUTE, 4 = OBOE, 5 = PICCOLO, 6 
7 = BASSOON, 8 = BASS CLARINET, 9 = HARMONICA 

For the KEYBOARD family, the high nibble is as follows: 

RECORDER, 

l = GRAND PIANO, 2 = ELEC. PIANO, 3 = HONKYTONK PIANO, 4 = TOY PIANO, 5 
HARPSICHORD, 6 = CLAVINET, 7 = PIPE ORGAN, 8 = HAMMOND B-3, 9 = FARFISA 
ORGAN, A = HARP 

For the DRUMl family, the high nibble is as follows: 

l = KICK, 2 = SNARE, 3 = TOM, 4 = TIMBALES, 5 = CONGA HIT, 6 = CONGA SLAP, 
7 = BRUSH SNARE, 8 = ELEC SNARE, 9 = ELEC KICK, A = ELEC TOM, B = RIMSHOT, 
C = CROSS STICK, D = BONGO, E = STEEL DRUM, F = DOUBLE TOM 

For the DRUM2 family, the high nibble is as follows: 

l = TIMPANI, 2 = TIMPANI ROLL, 3 = LOG DRUM 

For the PERCUSSIONl family, the high nibble is as follows: 

1 = BLOCK, 2 = COWBELL, 3 = TRIANGLE, 4 = TAMBOURINE, 5 = WHISTLE, 6 = 
MARACAS, 7 = BELL, 8 = VIBES, 9 = MARIMBA, A = XYLOPHONE, B = TUBULAR BELLS, 
C = GLOCKENSPEIL 

For the CYMBAL family, the high nibble is as follows: 

l = CLOSED HIHAT, 2 = OPEN HIHAT, 3 = STEP HIHAT, 4 = RIDE, 5 = BELL CYMBAL, 
6 = CRASH, 7 = CHOKE CRASH, 8 = GONG, 9 = BELL TREE, A = CYMBAL ROLL 

For the GUITAR family, the high nibble is as follows: 

l = ELECTRIC, 2 = MUTED ELECTRIC, 3 = DISTORTED, 4 = ACOUSTIC, 5 = 12-STRING, 
6 = NYLON STRING, 7 = POWER CHORD, 8 = HARMONICS, 9 = CHORD STRUM, A = BANJO, 
B = ELEC. BASS, C = SLAPPED BASS, D = POPPED BASS, E = SITAR, F = MANDOLIN 
(Note that an acoustic picked bass is found in the STRINGS - Bass Pluck) 

For the VOICE family, the high nibble is as follows: 

1 = MALE AHH, 2 = FEMALE AHH, 3 = MALE 000, 4 = FEMALE 000, 5 
BREATHY, 6 = LAUGH, 7 = WHISTLE 

FEMALE 

SAMP.doc Page 19 

For the EFFECTSl family, the high nibble is as follows: 

l = EXPLOSION, 2 = GUNSHOT, 3 = CREAKING 
CLOSE, 6 = SPACEGUN, 7 = JET ENGINE, 8 
BROKEN GLASS, B = THUNDER, C = RAIN, D = 
FOOTSTEP 

DOOR OPEN, 4 = DOOR SLAM, 5 = DOOR 
PROPELLER, 9 = HELOCOPTER, A = 
BIRDS, E = JUNGLE NOISES, F = 

For the EFFECTS2 family, the high nibble is as follows: 

1 = MACHINE GUN, 2 = TELEPHONE, 3 = DOG BARK, 4 = DOG GROWL, 5 = BOAT 
WHISTLE, 6 = OCEAN, 7 = WIND, 8 = CROWD BOOS, 9 = APPLAUSE, A = ROARING 
CROWDS, B = SCREAM, C = SWORD CLASH, D = AVALANCE, E = BOUNCING BALL, 
F = BALL AGAINST BAT OR CLUB 

For the SYNTH family, the high nibble is as follows: 

l = STRINGS, 2 = SQUARE, 3 = SAWTOOTH, 4 TRIANGLE, 5 = SINE, 6 = NOISE 

so, for example if a wave's type byte was Ox26, this would be a SNARE DRUM. 
If a wave's type byte is 0, then this means ''UNKNOWN'' instrument. 

===================== THE ORDER OF THE CHUNKS ========================= 
The SAMP header obviously must be first in the file, followed by the MHDR 
chunk. After this, the ANNO, (c), AUTH and NAME chunks may follow in any 
order, though none of these need appear in the file at all. The BODY chunk 
must be last. 

================= FILENAME CONVENTIONS ================= 
For when it becomes necessary to split a SAMP file between floppies using 
the Continuation feature, the filenames should be related. The method is the 
following: 

The "root" file has the name that the user chose to save under. Subsequent 
files have an ascii number appended to the name to indicate what sublevel the 
file is in. In this way, a program can reload the files in the proper order. 

For example, if a user saved a file called .. Gurgle", the first continuation 
file should be named "Gurglel 11 , etc, 

============ WHY DOES ANYONE NEED SUCH A COMPLICATED FILE? ============== 
(or "What's wrong with SSVX anyway?") 

In a nutshell, SSVX is not adequate for professional music sampling. First 
of all, it is nearly impossible to use multi-sampling (utilizing several, 
different samples of any instrument throughout its musical range) . This very 
reason alone makes it impossible to realistically reproduce a musical in­
strument, as none in existance (aside from an electronic organ) uses inter­
polations of a single wave to create its musical note range. 

Also, stretching a sample out over an entire octave range does grotesque 
(and VERY unmusical) things to such elements as the overtone structure, 
wind/percussive noises, the instrument's amplitude envelope, etc. The SSVX 
format is designed to stretch the playback in exactly this manner. 

8SVX ignores MIDI which is the de facto standard of musical data transmission. 
SSVX does not allow storing data for features that are commonplace to pro­
fessional music samplers. Such features are: velocity sample start, separate 
filter and envelopes for each sample, separate sampling rates, and various 
playback modes like stereo sampling and panning. 



.+::> 
'-1 
Q:) 

]J 

~ 
~ 
3 
~ 
]J 
Cll 
CD' 
<"D 
::J 
C') 
Cll 

~ 
::J 
t:: 
Ill 

CJ 
Cll 
<::: 
()' 
Cll 
(}) 

SAMP.doc Page 20 

SAMP attempts to remedy all of these problems w~th a format that can be 
used by a program that simulates these professional features in software. The 
for.mat was inspired by the capabilities of the following musical products: 

EMU's 
SEQUENTIAL CIRCUIT's 
ENSONIQ's 
CASIO's 
OBER.IIEIM' s 
YAMAHA 

EMAX, EMULATOR 
PROPHET 2000, STUDIO 440 
MIRAGE 
FZ-1 
DPX 
TX series 

So why does the Arniga need the SAMP format? Because professional musicia1J's 
are buying computers. With the firm establishment of MIDI, musician's are 
buying and using a variety of sequencers, patch editors, and scoring programs. 
It is now common knowledge amoung professional musicians that the Amiga 
lags far behind IBM clones, Macintosh, and Atari ST computers in both music 
software and hardware support. Both Commodore and the current crop of short­
sighted 3rd party Amiga developers are pigeon-holing the Amiga as "a video 
computer". It is important for music software to exploit whatever capabili­
ties the Amiga offers before the paint and animation programs, genlocks, 
frame-grabbers, and video breadboxes are the only applications selling 
for the Amiga. Hopefully, this format, with the SAMP disk I/0 library will 
make it possible for Amiga software to attain the level of professionalism 
that the other machines now boast, and the Amiga lacks. 

TDDD.doc 
3-D rendering data, Turbo Silver (Impulse) 

FORM TDDD 

FORM TODD is used by Impulse's Turbo Silver 3.0 for 3D rendering 
data. TODD stands for "3D data description". The files contain 
object and (optionally) observer data. 

Turbo Silver's successor, "Imagine", uses an upgraded FORM TODD 
when it reads/writes object data. 

Page 1 

Currently, in "standard IFF" terms, a FORM TODD has only two chunk 
types: an INFO chunk describing observer data; and an OBJ chunk 
describing an object heirarchy. The INFO chunk appears only in 
Turbo Silver's "cell" files, and the OBJ chunk appears in both 
"cell" files and "object" files. 

The FORM has an (optional) INFO chunk followed by some number of 
OBJ chunks. (Note: OBJ is followed by a space -- ckiD :::;:: "OBJ '') 

The INFO and OBJ chunks, in turn, are made up of smaller chunks with 
the standard IFF structure: <ID> <data-size> <data>. 

The INFO "sub-chunks" are relatively straightforward to interpret. 

The OBJ "sub-chunks" support object heirarchies, and are slightly 
more difficult to interpret. Currently, there are 3 types of OBJ 
sub-chunks: an EXTR chunk, describing an ''external'' object in a 
separate file; a DESC chunk, describing one node of a heirarchy; 
and a TOBJ chunk marking the end of a heirarchy chain. For each 
DESC chunk, there must be a corresponding TOBJ chunk. And an 
EXTR chunk is equivalent to a DESC/TOBJ pair. 

In Turbo Silver and Imagine, the structure of the object heirarchy 
is as follows. There is a head object, and its (sexist) brothers. 
Each brother may have child objects. The children may have 
grandchildren, and so on. The brother nodes are kept in a doubly 
linked list, and each node has a (possibly NULL) pointer to a 
doubly linked "child" list. The children point to the "grandchildren" 
lists, and so on. (In addition, each node has a "back'' pointer to 
its parent) . 

Each of the "head" brothers is written in a seperate OBJ chunk, 
along with all its descendants. The descendant heirarchy is 
supported as follows: 

for each node of a doubly linked list, 

l) A DESC chunk is written, describing its object. 
2) If it has children, steps 1) to 3) are performed 

for each child. 
3) A TOBJ chunk is written, marking the end of the children. 

For "external" objects, steps 1) to 3) are not performed, but 
an EXTR chunk is written instead. (This means that an external 
object cannot have children unless they are stored in the same 
"external" file). 

The TOBJ sub-chunks have zero size -- and no data. The DESC 
and EXTR sub-chunks are made up of "sub-sub-chunksu, again, 
with the standard IFF structure: <ID> <data-size> <data>. 



., ., 
(/) 

"'0 
CD 
() 
:::;: 
()" 

~ 
(5" 
:::l ., 
0 
JJ 
~ 
~ 
:::l 
Q. 

0 
::::l" 
c 
:::l 

"' JJ 
CD 

<Q. 
~ .... 
'< ..,. 

"""-J 
(0 

TDDD.doc 

( "External" objects were used by Turbo Silver to allow a its 
"cell" data files to refer to an 11 0bject" data file that is 
''external'' to the cell file. Imagine abandons the idea of 
individual cell files, and deals only in TODD "object" files. 
Currently, Imaqine does not support EXTR chunks in TDD files.) 

Reader software WILL FOLLOW the standard IFF procedure of 
skipping over any un-recognized chunks -- and "sub-chunks'' 
or "sub-sub-chunks". The <data-size> field indicates how many 
bytes to skip. In addition it WILL OBSERVE the IFF rule that 
an odd <data-size> may appear 1 in which case the corredponding 
<data> field will be padded at the end with one extra byte to 
give it an even size. 

Now, on with the details. 

Page 2 

First 1 there are several numerical fields appearing in the data, 
describing object positions, rotation angles, scaling factors, etc. 
They are stored as 11 32-bit fractional" numbers, such that the true 
number is the 32-bit number divided by 65536. So as an example, 
the number 3.14159 is stored as (hexadecimal) $0003243F. This 
allows the data to be independant of any particular floating point 
format. And it (actually) is the internal format used in the 
"integer 11 version of Turbo Silver. Numbers stored in this format 
are called as 11 FRACT 11 s below. 

Second, there are several color (or RGB) fields in the data. 
They are always stored as three UBYTEs representing the red, 
green and blue components of the color. Red is always first, 
followed by green, and then blue. For some of the data chunks, 
Turbo Silver reads the color field into the 24 LSB's of a 
LONGword. In such cases, the 3 RGB bytes are preceded by a 
zero byte in the file . 

The following "typedef"s are used below: 

typedef LONG 
typedef UBYTE 

FRACT; 
COLOR[3]; 

I* 4 bytes *I 
I* 3 bytes *I 

typedef struct vectors { 
FRACT X; I* 4 bytes *I 
FRACT Y; I* 4 bytes *I 
FRACT Z; I* 4 bytes *I 

VECTOR; I* 12 bytes total *I 

typedef struct matrices { 
VECTOR I; 
VECTOR J; 
VECTOR K; 

MATRIX; 

typedef struct 
VECTOR r; 
VECTOR a; 
VECTOR b; 
VECTOR c; 
VECTOR s; 

TFORM; 

I* 12 bytes *I 
I* 12 bytes *I 
I* 12 bytes *I 
I* 36 bytes total *I 

tform { 
I* 
I* 
I* 
I* 
I* 
I* 

12 bytes - position *I 
12 bytes - x axis */ 
12 bytes - y axis *I 
12 bytes - z axis *I 
12 bytes - size */ 

60 bytes total *I 

The following structure is used in generating animated cells 
from a single cell. It can be attached to an object or to the 
camera. It is also used for Turbo Silver's "extrude along a 
path" feature. (It is ignored and forgotten by Imagine.) 

TDDD.doc 

typedef struct story { 
UBYTE Path[l8]; I* 18 bytes *I 
VECTOR Translate; I* 12 bytes *I 
VECTOR Rotate; I* 12 bytes *I 
VECTOR Scale; I* 12 bytes *I 
UWORD info; I* 2 bytes *I 

STORY; I* 56 bytes total *I 

The Path[] name refers to a named object in the cell data. 
The path object should be a sequence of points connected 
with edqes. The object moves from the first point of the 
first edqe, to the last point of the last edge. The edge 
ordering is important. The path is interpolated so that 
the object always moves an equal distance in each frame of 
the animation. If there is no path the Path[] field should 
be set to zeros. 
The Translate vector is not currently used. 
The Rotate "vector" specifies rotation angles about the 
X, Y, and Z axes. 
The Scale vector specfies X,Y, and Z scale factors. 
The "info" word is a bunch of bit flags: 

Page 3 

ABS TRA 
ABS-ROT 
ABS-SCL 
LOC-TRA 
LOC-ROT 
LOC-SCL 

OxOOOl 
Ox0002 
Ox0004 
OxOOlO 
Ox0020 
Ox0040 
OxOlOO 
Ox0200 
Ox0400 
OxlOOO 

- translate in world coorinates (not used) 

X ALIGN 
Y-ALIGN 
Z-ALIGN 
FOLLOW ME 

DESC sub-sub-chunks 

NAME - size 18 

BYTE Name [18]; 

- rotation in world coorinates 
- scaling in world coorinates 
- translate in local coorinates (not used) 
- rotation in local coorinates 
- scaling in local coorinates 
- (not used) 
-align Y axis to path's direction 
- (not used) 
- children follow parent on path 

a name for the object. 

Used for camera tracking, specifying story paths, etc. 

SHAP - size 4 

WORD 
WORD 

Shape; 
Lamp; 

number indicatinq object type 
number indicatinq lamp type 

Lamp nwnbers are composed of several bit fields: 

Bits 0-1: 
0 - not a lamp 
1 - like sunlight 
2 - like a lamp - intensity falls off with distance. 
3 - unused/reserved 

Bits 2: 
0 - non-shadow-castinq light 
4 - shadow-casting light 

Bits 3-4: 
0 - Spherical light source 
8 - cylindrical light source. 
16 - Conical light source . 
24 - unused/reserved 



~ 
CP 
0 

J:J 

~ 
~ 
3 
~ 
J:J 
Cl) 

it)' 
Q3 
::::J 

~ 

~ 
::::J 
c: 
Ill 

CJ 
Cl) 
<::: 
~-
Crl 

TDDD.doc Page 4 

Shape numbers are: 

not supported by Imagine 
0 - Sphere 
1 - Stencil 
2 - Axis 
3 - Facets 
4 - Surface 
5 - Ground 

custom objects with points/triangles 
illegal - for internal use only 
not supported by Imagine 

Spheres have thier radius set by the X size parameter. 
Stencils and surfaces are plane-parallelograms, with one 
point at the object's position vector; one side lying along 
the object's X axis with a length set by the X size; and 
another side starting from the position vector and going 
uy size" units in the Y direction and "Z size" units in 
the X direction. A ground object is an in£inte plane 
perpendicular to the world Z axis. Its Z coordinate sets 
its height, and the X and Y coordinates are only relevant 
to the position of the "hot point" used in selecting the 
object in the editor. Custom objects have points, edges 
and triangles associated with them. The size fields are 
relevant only for drawing the object axes in the editor. 
Shape number 3 is used internally for triangles of custom 
objects, and should never appear in a data file. 

POSI - size 12 

VECTOR Position; the object's position. 

Legal coordinates are in the range -32768 to 32767 and 65535/65536. 
Currently, the ray-tracer only sees objects in the -1024 to 1024 
range. Light sources, and the camera may be placed outside that 
range, however. 

AXIS - size 36 

VECTOR XAxis 
VECTOR YAxis 
VECTOR ZAxis 

These are direction vectors for the object coordinate system. 
They must be "orthogonal unit vectors" - i.e. the sum of the 
squares of the vevtor components must equal one (or close to it), 
and the vectors must be perpendicular. 

SIZE - size 12 

VECTOR Size; 

See SHAP chunk above. The sizes are used in a variety of ways 
depending on the object shape. For custom objects, they are 
the lengths of the coordinate axes drawn in the editor. If the 
object has its "Quickdraw" flag set, the axes lengths are also 
used to set the size of a rectangular solid that is drawn rather 
than drawing all the points and edges. 

PNTS - size 2 + 12 * point count 

UWORD PCount; 
VECTOR Points[]; 

point count 
; points 

This chunk has all the points for custom objects. The are 
refered to by thier position in the array. 

TDDD.doc 

EDGE - size 4 + 4 * edge cout 

UWORD 
UWORD 

ECount; 
Edges(] [2]; 

edge count 
edges 

This chunk contins the edge list for custom objects. 
The Edges[] [2] array is pairs of point numbers that 
are connected by the edges. Edges are refered to by thier 
position in the Edges[] array. 

FACE - size 2 + 6 * face count 

UWORD 
UWORD 

TCount; 
Connects[] [3]; 

; face count 
faces 

Page 5 

This chunk contains the triangle (face) list for custom objects. 
The Connects[] [3] array is triples of edge numbers that are 
connected by triangles. 

PTHD - size 2 + 6 * axis count - Imagine only 

UWORD 
TFORM 

ACount; 
PData [] [3]; 

axis count 
axis data 

This chunk contains the axis data for Imagine "pathu objects. 
The PData array contains a TFORM structure for each point along 
the path. The uy size" item for the last point on the path tells 
whether the path is closed or not. Zero means closed, non-zero 
means open. Otherwise the Y size field is the distance along 
the path to the next path point/axis. 

COLR - s ze 4 
REFL - s ze 4 
TRAN - s ze 4 
SPCl - s ze 4 - Imagine only 

BYTE 
COLOR 

pad; 
col; 

pad byte - must be zero 
RGB color 

These are the main object RGB color, and reflection, transmission 
and specularity coefficients. 

CLST - s ze 2 + 3 * count 
RLST - s ze 2 + 3 * count 
TLST - s ze 2 + 3 * count 

UWORD count; 
COLOR colors[]; 

count of colors 
colors 

These are the color, reflection and transmission coefficients 
for each face in custom objects. The count should match the 
face count in the FACE chunk. The ordering corresponds to the 
face order. 

TPAR - size 64 - not written by Imagine - see TXTl below 

FRACT Params[l6]; ; texture parameters 

This is the list of parameters for texture modules when 
texture mapping is used. 



-n 
-n 
(j) 

"'0 
CD 
() 
::;; 
;:=;· 
~ 
6" 
~ 

-n 
0 
JJ 
:s: 
!ll 
~ 
a. 
0 
:::T 
c 
~ 
:;s::-

JJ 
CD 
~­
~ 
.:2 
..,. 
00 

TDDD.doc Page 6 

TXTl - variable size - Imagine only 

This chunk contains texture data when texture mapping is used. 

UWORD 

TFORM 
FRACT 
UBYTE 
UBYTE 
UBYTE 
UBYTE 

Flags; 

TForrn; 
Params [16); 
PFlags[16]; 
Length; 
Name [Length] ; 
pad; 

texture flags: 
1 - TXTR CHILDREN - apply to child objs 

local coordinates of texture axes. 
texture parameters 
parameter flags (currently unused) 
length of texture file name 
texture file name (not NULL ter.minated) 
(if necessary to make an even length) 

BRSl - variable size - Imagine only (version 1.0) 
BRS2 - variable size - Imagine only (version 1.1) 

UWORD 

UWORD 

TFORM 
(UWORD 
(UWORD 
UBYTE 
UBYTE 
UBYTE 

Flags; 

WFlags; 

TForm; 
FullScale;) 
MaxSeq;) 

Length; 
Name [Length) ; 
pad; 

brush type: 
0 - Color 
1 - Reflection 
2 - Filter 
3 - Altitude 

brush wrapping flags: 
1 WRAP X 
2 WRAP-Z 
4 WRAP-CHILDREN 
8 WRAP-REPEAT 
16 WRAP-FLIP 

local coordinates of 
full scale value 

wrap type 
wrap type 
apply to children 
repeating brush 

- flip with repeats 
brush axes. 

highest number for sequenced brushes 
length of brush file name 
brush file name (not NULL ter.minated) 
(if necessary to make an even length) 

The FullScale and MaxSeq items are in BRS2 chunks only. 

SURF - size 5 - not written by Imagine 

BYTE SProps [5]; ; object properties 

This chunk contains object (surface) properties used by Turbo Silver. 

SProps(O] - PRP SURFACE 

SProps[l) - PRP BRUSH 
SProps[2) - PRP-WRAP 

SProps[3) - PRP STENCIL 
SProps[4) - PRP-TEXTURE 

surface type 
0 - normal 
4 - genlock 
5 - IFF brush 

brush number (if IFF mapped) 
IFF brush wrapping type 

0 - no wrapping 
1 - wrap X 
2 - wrap Z 
3 - wrap X and Z 

stencil number for stencil objects 
texture number if texture mapped 

MTTR - size 2 - not written by Imagine - see PRPl chunk. 

UBYTE 
UBYTE 

Type; 
Index; 

refraction type (0-4) 
custom index of refraction 

This chunk contains refraction data for transparent or glossy 
objects. If the refraction type is 4, the object has a ••custom" 
refractive index stored in the Index field. The Index field is 
100 * (true index of refraction - 1.00) -- so it must be in the 
range of 1.00 to 3.55. The refraction types 0-3 specify 0) Air 
- 1.00, 1) Water- 1.33, 2) Glass - 1.67 or 3) Crystal 2.00. 

TDDD.doc 

SPEC - size 2 - not written by Imagine - see SPCl above. 

UBYTE 
UBYTE 

Speculari.ty; 
Hardness; 

; range of 0-255 
; specular exponent (0-31) 

This chunk contains specular infor.mation. The Specularity 
field is the amount of specular reflection -- 0 is none, 
255 is fully specular. The .. specular exponent 11 controls 
the .. tiqhtness .. of the specular spots. A value of zero 
gives broad specular spots and a value of 31 gives smaller 
spots. 

PRPO - size 6 - not written by Imagine 

UBYTE Props[6]; ; more object properties 

This chunk contains object properties that programs other 
than Turbo Silver might support. 

Props (OJ 
Props [1) 
Props(2] 
Props [3) 
Props [4) 
Props [5] 

- PRP BLEND 
- PRP-SMOOTH 
- PRP-SHADE 
- PRP-PHONG 

PRP-GLOSSY 
- PRP=QUICK 

blending factor (0-255) 
roughness factor 
shading on/off flag 
phong shading on/off flag 
glossy on/off flag 
Quickdraw on/off flag 

The blending factor controls ·tbe amount of dithering used 

Page 7 

on the object - 255 is fully dithered. The roughness factor 
controls how rough the object should appear - 0 is smooth, 255 
is max roughness. The shading flag is interpreted differently 
depending on whether the object is a light source or not. For 
light sources, it sets the light to cast shadows or not. For 
normal objects, if the flag is set, the object is always 
considered as fully lit- i.e., it's color is read directly 
from the object (or IFF brush), and is not affected by light 
sources. The phong shading is on by default - a non-zero value 
turns it off. The glossy flag sets the object to be glossy or 
not. If the object is glossy, the ••transmit,. colors and the 
index of refraction control the amount of "sheen... The glossy 
feature is meant to simulate something like a wax coating 
on the object with the specified index of refraction. The 
trasmission coefficients control how much light from the 
object makes it through the wax coating. 
The Quickdraw flag, if set, tells the editor not to draw 
all the points and edges for the object, but to draw a 
rectanglular solid centered at the object position, and 
with sizes detemined by the axis lengths. 

PRPl - size 8 - Imagine only 

UBYTE IProps[B]; ; more object properties 

This chunk contains object properties that programs other 
than Imagine might support. 

IProps(O] - IPRP DITHER 
IProps[l] - IPRP-HARD 
IProps[2) - IPRP-ROUGH 
IProps[3] - IPRP-SHINY 
IProps[4) - IPRP-INDEX 
IProps[5) - IPRP-QUICK 
IProps[6] - IPRP-PHONG 
IProps[7] - IPRP-GENLOCK 

blending factor (0-255) 
hardness factor (0-255) 
roughness factor (0-255) 
shinyness factor (0-255) 
index of refraction 
flag - Quickdraw on/off 
flag - Phong shading on/off 
flag - Genlock on/off 



..,.. 
00 
rv 

lJ 

~ 
~ 
3 
~ 
lJ 
(J) 

iD 
Q3 
::J 
CJ 
(J) 

:s:: 
tll 
::J c:: 
tll 
:-:-
CJ 
<ll 
<:: 
()• 
(J) 
en 

TDDD.doc 

The blending factor controls the amount of dithering used 
on the object - 255 is fully dithered. 
The hardness factor controls how tight the specular spot 
should be - 0 is a big soft spot, 255 is a tight hot spot 
The roughness factor controls how rough the object should 
appear - 0 is smooth, 255 is max roughness. 
The shiny factor in interaction with the object's filter 
values controls how shiny the object appears. Setting it 

Page 8 

to anything but zero forces the object to be non-transparent 
since then the filter values are used in the shiny (reflection) 
calculations. A value of 255 means maximum shinyness. 

INTS - size 4 - not written by Imagine 

FRACT Intensity; light intensity 

This is the intensity field for light source objects. 
an intensity of 255 for a sun-like light fully lights 
object surfaces which are perpendicular to the direction 
to the light source. For lamp-like light sources, the 
necessary intensity will depend on the distance to the light. 

INTl - size 12 - Imagine only 

VECTOR Intensity; light intensity 

This is like INTS above, but has seperate R, G & B intensities. 

STRY - size 56 - not written by Imagine 

STORY story; a story structure for the object. 

The story structure is described above. 

ANID - size 64 - Imagine only 

LONG 
TFORM 

Cellno; 
TForm; 

cell nwnber 
object position/axes/size in that cell. 

For Imagine's "Cycle" objects, within EACH DESC chunk in the 
file - that is, for each object of the group, there will be 
a series of ANID chunks. The cell number sequences of each 
part of the must agree with the sequence for the head object, 
and the first cell number must be zero. 

FORD - size 56 + 12 * PC - Imagine only 

WORD 
WORD 
WORD 
WORD 
MATRIX 
VECTOR 
VECTOR 

NumC; 
NumF; 
Flags; 
pad; 
TForm; 
Shift; 
Points[PC]; 

number of cross section points 
number of slices 
orientation flag 
reserved 
object rotation/scaling transformation 
object translation 
11 Forms 11 editor points 

For Imagine's "Forms" objects, the "PNTS" chunk above is not 
written out, but this structure is written instead. The point 
count is PC= NumC + 4 * NumF. The object's real points are 
then calculated from these using a proprietary algorithm. 
The tranformation parameters above allow the axes of the 
real object be moved around relative to the ~"Forms" points. 

TDDD.doc Page 9 

DESC notes 

Again, most of these fields are optional, and de£aults are supplied. 
However, if there is a FACE chunk, there must also be a CLST chunk, 
an RLST chunk and a TLST chunk -- all with matching "count" fields. 
The SHAP chunk is not optional. 

Defaults are: Colors set to (240,240,240); reflection and 
transmission coefficients set to zero; illegal shape; no story or 
special surface types; position at (0,0,0); axes aligned to the 
world axes; size fields all 32.0; intensity at 300; no name; 
no points/edges or faces; texture parameters set to zero; refraction 
type 0 with index 1.00; specular, hardness and roughness set to zero; 
blending at 255; glossy off; phong shading on; not a light source; 
not brightly lit; 

In Imagine, defaults are the same, but with colors (255,255,255). 

INFO sub-chunks 

BRSH - size 82 

WORD 
CHAR 

Number; 
Filename[80]; 

Brush number (between 0 and 7) 
IFF ILBM filename 

There may be more than one of these. 

STNC - size 82 

Same format as BRSH chunk. 

TXTR - size 82 

Same format as BRSH chunk. The Filename field is the name of 
a code module that can be loaded with LoadSeg(). 

OBSV - size 28 

VECTOR Camera; 
VECTOR Rotate; 
FRACT Focal; 

Camera position 
Camera rotation angles 
Camera focal length 

This tells where the camera is, how it is aimed, and its 
focal length. The rotation angles are in degrees, and specify 
rotations around the X, Y, and Z axes. The camera looks down 
its own Y axis, with the top of the picture in the direction of 
the Z axis. If the rotation angles are all zero, its axes 
are aligned with the world coordinate axes. The rotations are 
perfor.med in the order ZXY about the camera axes. A positive 
angle rotates Y toward Z, Z toward X, and X toward Y for 
rotations about the X, Y, and Z axes respectively. To 
understand the focal length, imagine a 320 x 200 pixel 
rectangle perpendicular to, and centered on the camera's 
Y axis. Any objects in the infinite rectangular cone defined 
by the camera position and the 4 corners of the rectangle will 
appear in the picture. 



"Tl 
"Tl 
(J) 

""0 
CD 
() 

3. 
() 

~ a· 
::::l 

"Tl 
0 
JJ 
s 
Q..l 
::::l 
0. 
() 
::r 
c 
::::l 
;;>:" 

JJ 
CD 

<Q. 
~ 
-< 
.j::. 
()) 
w 

TDDD.doc Page 10 

OTRK - size 18 

BYTE Trackname [18]; 

This chunk specifies the name of an object that the camera is 
"tracked" to. If the name is NULL, the camera doesn't track 
Otherwise, if the object is moved inside Turbo Silver, the 
camera will follow it. 

OSTR - size 56 

STORY CStory; ; a STORY structure for the camera 

The story structure is defined above. 

FADE - size 12 

FRACT FadeAt; 
FRACT FadeBy; 
BYTE pad; 
COLOR FadeTo; 

SKYC - size 8 

BYTE pad; 
COLOR Horizon; 
BYTE pad; 
COLOR Zenith; 

AMBI - size 4 

BYTE pad; 
COLOR Ambient; 

GLBO - size 8 

BYTE 

Props [OJ 
Props [1] 
Props[2) 
Props [3] 
Props [4] 
Props [5] 
Props [6) 
Props[?] 

Props[8]; 

GLB EDGING 
GLB-PERTURB 
GLB-SKY BLEND 

- GLB-LENS 
- GLB-FADE 

GLB-SIZE 
GLB-RESOLVE 

- GLB-EXTRA 

distance to start fade 
distance of total fade 
pad byte - must be zero 
RGB color to fade to 

pad byte - must be zero 
horizon color 
pad byte - must be zero 
zenith color 

pad byte - must be zero 
abrnient light color 

an array of 8 "global properties" used 
by Turbo Silver. 

edge level (globals requester) 
perturbance (globals requester) 
sky blending factor (0-255) 
lens type (see below) 
flag - Sharp/Fuzzy focus (g1obals) 
11 apparant size" (see below) 
resolve depth (globals requester) 
flag - genlock sky on/off 

The edging and perturbance values control the heuristics in ray 
tracing. The sky blending factor is zero for no blending, and 255 
for full blending. The lens type lS a number from 0-4, corresponding 
to the boxes in the "camera 11 requester, and correspond to 0) Manual, 
1) Wide angle, 2) Normal, 3) Telephoto, and 4) Custom. It is used 
in setting the camera's focal length if the camera is tracked to an 
object. The Sharp/Fuzzy flag turns the "fade" feature on and off­
non-zero means on. The "apparant size" parameter is 100 times the 
"custom size" parameter in the camera requester. And is used to set 
the focal length for a custom lens. The "resolve depth" controls 
the number of rays the ray tracer will shoot for a single pixel. 
Each reflective/refractive ray increments the depth counter, and 
the count is never allowed to reach the "resolve depth". If both 
a reflective and a refractive ray are traced, each ray gets its 
own version of the count - so theoretically, a resolve depth of 
4 could allow much more than 4 rays to be traced. The ''genlock 
sky" flag controls whether the sky will be colored, or set to 
the genlock color (color 0 - black) in the final picture. 

TDDD.doc Page 11 

All of the INFO sub-chunks are optional, as is the INFO chunk. 
Default values are supplied if the chunks are not present. The 
defaults are: no brushes, stencils, or textures defined; no story 
for the camera; horizon and zenith and ambient light colors set 
to black; fade color set to (80,80,80); un-rotated, un-tracked 
camera at (-100, -100, 100); and global properties array set to 
[30, 0, 0, 0, o, 100, 8, 0]. 

EXTR sub-sub-chunks 

MTRX - size 60 

VECTOR Translate; 
VECTOR Scale; 
MATRIX Rotate; 

translation vector 
X1 Y and Z scaling factors 
rotation matrix 

The translation vector is i world coordinates. 
The scaling factors are with respect to local axes. 
The rotation matrix is with respect to the world axes, 
and it should be a "unit ma.trix 11 • 

The rotation is such that a rotated axis's X,Y, and Z 
components are the dot products of the MATRIX's I,J, 
and K vectors with the un-rotated axis vector. 

LOAD - size 80 

BYTE Filename[SO]; ; the name of the external file 

This chunk contains the name of an external object file. 
The external file should be a FORM TODD file. It may contain 
an any number of objects possibly grouped into heirarchy(ies). 

Both of these chunks are required. 



.!::> 
OJ 
.!::> 

::0 
0 s: 
~ 
3 
~ 
::0 
(]) 

CD' 
(i3 
:::J 
CJ 
(]) 

~ 
:::J 
c:: 
tll 
:-:-
CJ 
(]) 

"" o· 
(]) 
(f) 

WORD.doc 
ProWrite document format (New Horizons) 

TITLE: WORD (word processing FORM used by ProWrite) 

IFF FORM / CHUNK DESCRIPTION 

Form/Chunk IDs: 
FORM WORD 
Chunks FONT,COLR,DOC,HEAD,FOOT,PCTS,PARA,TABS,PAGE,TEXT,FSCC,PINF 

Date Submitted: 03/87 
Submitted by: James Bayless - New Horizons Software, Inc. 

FORM 

FORM ID: WORD 

FORM Purpose: Document storage (supports color, fonts, pictures) 

FORM Description: 

This include file describes FORM WORD and its Chunks 

/* 
* 
* 

IFF For.m WORD structures and defines 
Copyright (c) 1987 New Horizons Software, Inc. 

* 
* 

Per.mission is hereby granted to use this file in any and all 
applications. Modifying the structures or defines included 
in this file is not permitted without written consent of 
New Horizons Software, Inc. 

*I 

#include ':IFF/ILBM.h" /* Makes use of ILBM defines */ 

#define ID _WORD MakeiD('W', '0', 'R', 'D') /* Form type */ 

#define ID FONT MakeiD('F', '0', 'N' ,'T' /* Chunks */ 
#define ID-COLR MakeiD('C', '0', 'L', 'R' 
#define ID-DOC MakeiD (' D', 'O' 1 1 C', 1 

#define ID-HEAD MakeiD('H', 'E' ,'A' ,'D' 
#define ID-FOOT MakeiD('F', '0', '0' 1 'T' 
#define ID-PCTS MakeiD('P', 'C' 1 'T', 'S') 
#define ID-PARA MakeiD (' P' , 'A' , 'R' , 'A') 
#define ID-TABS MakeiD (' T', 1 A',' B', 'S') 
#define ID-PAGE MakeiD('P', 'A', 1 G 1 , 'E') 
#define ID-TEXT MakeiD{'T' 1 1 E' 1 'X' ,'T') 
#define ID-FSCC MakeiD (' F', 'S', 'C', 'C') 
#define ID=PINF MakeiD ( 1 P 1 

1 
1 I 1 , ' N' , ' F' ) 

/* 
Special text characters for page number, date, and time 

Page 1 

Note: ProWrite currently supports only PAGENUM CRAR, and only in 
* headers and footers -
*I 

#define PAGENUM CHAR 
#define DATE CHAR 
#define TIME-CHAR 

Ox80 
Ox81 
Ox82 

WORD.doc Page 2 

I* 
* Chunk structures follow 
*I 

/* 
* FONT - Font name/number table 
* There are one of these for each font/size combination 

These chunks should appear at the top of the file (before document data) 
*I 

typedef struct { 
UBYTE Num; 
UWORD Size; 

/* UBYTE Name[]; 
I FontiD; 

/* 

/* 0 .. 255 */ 

*/ /*NULL terminated, without ".font" */ 

COLR - Color translation table 
* Translates from color numbers used in file to ISO color numbers 

Should be at top of file (before document data) 
Note: Currently ProWrite only checks these values to be its current map, 

* it does no translation as it does for FONT chunks 
*I 

typedef struct { 
UBYTE ISOColors[8]; 

I ISOColors; 

I* 
DOC - Begin document section 
All text and paragraph formatting following this chunk and up to a 

* HEAD, FOOT, or PICT chunk belong to the document section 
*I 

#define PAGESTYLE l 0 
#define PAGESTYLE-I l 
#define PAGESTYLE-i 2 
#define PAGESTYLE-A 3 
#define PAGESTYLE-a 4 

typedef struct { 
UWORD StartPage; 
UBYTE PageNumStyle; 
UBYTE pad1; 
LONG pad2; 

DocHdr; 

/* 

/* 1, 2, 3 */ 
I* I, II, III */ 
I* i, li, iii */ 
/* A, B, C */ 
/* a, b, c */ 

/* Starting page number */ 
/* From defines above */ 

* HEAD/FOOT - Begin header/footer section 
* All text and paragraph for.matting following this chunk and up to a 

DOC, HEAD, FOOT, or PICT chunk belong to this header/footer 
Note: This format supports multiple headers and footers, but currently 

* ProWrite only allows a single header and footer per document 
*I 

#define PAGES NONE 0 
#define PAGES-LEFT 1 
#define PAGES-RIGHT 2 
#define PAGES-BOTH 3 

typedef struct { 
UBYTE PageType; 
UBYTE FirstPage; 
LONG pad; 

HeadHdr; 

/* From defines above */ 
/* 0 = Not on first page */ 



"11 
"11 
(/) 
-o 
CD 
() 
:::;.; 
i'i" 

~ 
6" 
:::1 

"11 
0 
::0 
:::;:: 
P-l 
:::1 
a.. 
() 
:::r 
c 
:::1 
:;>::"" 

::0 
CD 

<.Q. 
~ 
-< 
..,.. 
OJ 
(J1 

WORD.doc Page 3 

I* 
* PCTS - Begin picture section 

Note: ProWrite currently requires NPlanes to be three (3) 
*I 

typedef struct { 
UBYTE NPlanes; 
UBYTE pad; 

/* Number of planes used in picture bitmaps */ 

) PictHdr; 

I* 
PARA - New paragraph format 
This chunk should be inserted first when a new section is started (DOC. 

* HEAD, or FOOT), and again whenever the paragraph format changes 
*I 

#define SPACE SINGLE 
#define SPACE=DOUBLE 

#define JUSTIFY LEFT 
#define JUSTIFY-CENTER 
#define JUSTIFY-RIGHT 
#define JUSTIFY=FULL 

#define MISCSTYLE NONE 
#define MISCSTYLE-SUPER 
#define MISCSTYLE-SUB 

typedef struct { 

I* 

UWORD Leftindent; 
UWORD LeftMargin; 
UWORD RightMargin; 
UBYTE Spacing; 
UBYTE Justify; 
UBYTE FontNum; 
UBYTE Style; 
UBYTE MiscStyle; 
UBYTE Color; 
LONG pad; 

ParaFormat; 

0 
OxlO 

0 
1 
2 
3 

0 
1 
2 

/* Superscript */ 
/* Subscript */ 

/* In decipoints (720 dpl) */ 

I* From defines above */ 
/* From defines above */ 
/* FontNum, Style, etc. for first char in para*/ 
/* Standard Amiga style bits */ 
I* From defines above */ 
/* Internal number, use COLR to translate */ 

TABS - New tab stop types/locations 
Use an array of values in each chunk 
Like the PARA chunk, this should be inserted whenever the tab settings 

for a paragraph change 
* Note: ProWrite currently does not support TAB CENTER 
*I 

#define TAB LEFT 0 
#define TAB-CENTER 1 
#define TAB-RIGHT 2 
#define TAB-DECIMAL 3 

typedef struct { 
UWORD Position; 
UBYTE Type; 
UBYTE pad; 

Tab Stop; 

/* 
PAGE - Page break 

/* In decipoints */ 

Just a marker -- this chunk has no data 
*I 

/* 
* 

* *I 

/* 

* 
* 
*I 

WORD.doc 

TEXT - Paragraph text (one block per paragraph) 
Block is actual text, no need for separate structure 

Page 4 

If the paragraph is empty, this is an empty chunk -- there MUST be 
a TEXT block for every paragraph 
Note: The only ctrl characters ProWrite can currently handle in TEXT 
chunks are Tab and PAGENUM_CHAR, ie no Return's, etc. 

FSCC - Font/Style/Color changes in previous TEXT block 
Use an array of values in each chunk 
Only include this chunk if the previous TEXT block did not have 

the same Font/Style/Color for all its characters 

typedef struct { 
UWORD Location; 
UBYTE FontNum; 
UBYTE Style; 
UBYTE M1scStyle; 
UBYTE Color; 
UWORD pad; 

/* Character location in TEXT chunk of change */ 

FSCChange; 

/* 
* PINF - Picture info 
* This chunk must only be in a PCTS section 

Must be followed by ILBM BODY chunk 
Pictures are treated independently of the document text (like a 

page-layout system), this chunk includes information about what 
page and location on the page the picture is at 

* *I 

Note: ProWrite currently only supports mskTransparentColor and 
mskHasMask masking 

typedef struct 
UWORD 
UWORD 
UWORD 
Masking 
Compression 
UBYTE 
UBYTE 

Pictinfo; 

/* end */ 

Width, Height; /* In pixels */ 
Page; /* Which page picture is on (0 .. max) */ 
XPos, YPos; /* Location on page in decipoints */ 
Masking; /* Like ILBM format */ 
Compression; /* Like ILBM format */ 
TransparentColor; /* Like ILBM format */ 
pad; 



~ 
(X) 
0) 

::0 

~ 
~ 
3 
~ 
::0 
Q) 

(i) 
<D 
:::l 
C") 
Q) 

s:: 
0,) 
:::l c: 
0,) 
~ 

tJ 
Q) 
<::: 
()• 
Q) 
(J) 

Additional IFF Documents Page 1 

Intro to IFF Amiga ILBM Files and Amiga Viewrnodes 

The IFF (Interchange File Format) for graphic images on the Amiga is called 
FORM ILBM (InterLeaved BitMap). It follows a standard parsable IFF format. 

Sample hex dump of beginning of an ILBM: 

Important note! You can NOT ever depend on any particular ILBM chunk being 
at any particular offset into the file! IFF files are composed, in their 
simplest form 1 of chunks within a FORM~ Each chunk starts starts with a 
4-letter chunkiD, followed by a 32-bit length of the rest of the chunk. You 
PARSE IFF files, skipping past unneeded or unknown chunks by seeking their 
length (+1 if odd length) to the next 4-letter chunkiD. 

0000 464F524D 00016418 494C424D 424D4844 
0010 00000014 01400190 00000000 06000100 
0020 OOOOOAOB 01400190 43414D47 00000004 
0030 00000804 434D4150 00000030 001100EE 
0040 EEEEOOOO 22000055 33333355 55550033 
0050 99885544 77777711 66EE2266 EE6688DD 
0060 AAAAAAAA 99EECCCC CCDDAAEE 424F4459 
0070 000163AC F8000F80 148A5544 2ABDEFFF 

Interpretation: 

FORM .. d. ILBMBMHD 
••••• @ •••••••••• 

..... @ .. CAMG .... 
•••• CMAP ••• 0 ..•• 
...... POOOPPP.O 
.. P@ppp.'. '.' .. 
............ BODY 
. . c ....... lTD*... etc. 

'F 0 R M' length 'I L B M''B M H D'<-start of BitMapHeader chunk 
0000: 464F524D 00016418 494C424D 42404844 FORM .. d.ILBMBMHD 

length WideHigh XorgYorg PlMkCoPd <- Planes Mask Compression Pad 
0010: 00000014 01400190 00000000 06000100 ..... @ ......... . 

TranAspt PagwPagh 'CAM G' length 
0020: OOOOOAOB 01400190 43414047 00000004 

Viewmode 'C MAP' length R g b R 
0030: 00000804 434D4150 00000030 OOllOOEE 

<- start of C-AMiGa View modes chunk 
••••• @ •• CAMG .... 

<- Viewmode BOO=HAM 4=LACE 
•••. CMAP ••• 0 .. 

g b R g b R g b R g b R g b R g <- Rgb's are for regO thru regN 
0040: EEEEOOOO 22000055 33333355 55550033 ...... POOOPPP.O 

b R g b R g b R g b R g b R g b 
0050: 99885544 77777711 66EE2266 EE6688DD 

R g b R g b R g b R g b 'B 0 D Y' 
0060: AAAAAAAA 99EECCCC CCDDAAEE 424F4459 

length start of body data 
0070: 000163AC FSOOOFBO 148A5544 2ABDEFFF 
0080: FFBFF800 OF7FF7FC FF04FB5A 77AD5DFE 

. . P@ppp. '. . .. 

............ BODY 

<- Compacted (Compression;1 above) 
. . c ....... UD* .. . 
........... Zw.]. etc. 

Notes on CAMG Viewmodes: HIRES=OxSOOO LACE=Ox4 HAM=Or-800 HALFBRITE=Ox80 

Additional IFF Documents Page 2 

Interpreting ILBMs 

ILBM is a fairly simple IFF FORM. All you really need to deal with to 
extract the image are the following chunks: 

(Note - Also watch for AUTH Author chunks and (c) Copyright chunks 
and preserve any copyright information if you rewrite the ILBM) 

BMHD - info about the size, depth, compaction method 
(See interpreted hex dump above) 

CAMG - optional Amiqa viewrnodes chunk 
Most HAM and HALFBRITE ILBMs should have this chunk. If no 
CAMG chunk is present, and image is 6 planes deep, assume 
HAM and you'll probably be right. Some Amiga viewmodes 
flags are HIRES=OxBOOO, LACE=Ox4, HAM=Ox800, HALFBRITE;0x80. 
Note that new Amiga 2.0 ILBMs may have more complex 32-bit 
numbers (modeid) stored in the CAMG. However, the bits 
described above should get you a compatible old viewmode. 

CMAP - RGB values for color registers 0 to n 
(each component left justified in a byte) 
If a deep ILBM (like 12 or 24 planes), there should be no CMAP 
and instead the BODY planes are interpreted as the bits of RGB 
in the order RO ... Rn GO ... Gn BO ... Bn 

BODY - The pixel data, stored in an interleaved fashion as follows: 
(each line individually compacted if BMHD Compression = l) 

plane 0 scan line 0 
plane 1 scan line 0 
plane 2 scan line 0 

plane 
plane 
plane 
etc. 

Body Compression 

n scan line 0 
0 scan line 1 
1 scan line 1 

The BODY contains pixel data for the image. Width, Height, and depth 
(Planes) is specified in the BMHD . 

If the BMHD Compression byte is 0, then the scan line data is not compressed. 
If Compression;!, then each scan line is individually compressed as follows: 

More than 2 bytes the same stored as BYTE code value n from -1 to -127 
followed by byte to be repeated (-n) + 1 times. 

Varied bytes stored as BYTE code n from 0 to 127 followed by n+l bytes 
of data. 

The byte code -128 is a NOP. 



11 
11 
(f) 

l:J 
<D g 
c=;· 
~ c;· 
::J ., 
0 
JJ 
s::: 
Cl 
::J 
Q. 

() 
::r 
c 
::J 
7" 

JJ 
<D 

<Q. 
::1 .... 
'< ..,. 
OJ 
'-l 

Additional IFF Documents Page 3 

Interpreting the Scan Line Data: 

If the ILBM is not HAM or HALFBRITE, then after parsing and uncompacting if 
necessary, you will have N planes of pixel data. Color register used for 
each pixel is specified by looking at each pixel thru the planes. I.e., 
if you have 5 planes, and the bit for a particular pixel is set in planes 
0 and 3: 

PLANE 
PIXEL 

4 3 2 1 0 
0 1 0 0 1 

then that pixel uses color register binary 01001 = 9 

The RGB value for each color register is stored in the CMAP chunk of the 
ILBM, starting with register 0, with each register's RGB value stored as 
one byte of R, one byte G, and one byte of B, with each component scaled 
to 8-bits. (ie. 4-bit Amiga R, G, and B components are each stored in the 
high nibble of a byte. The low nibble may also contain valid data if the 
color was stored with 8-bit-per-gun color resolution) . 

BUT - if the picture is HAM or RALFBRITE, it is interpreted differently. 

Hopefully, if the picture is HAM or HALFBRITE, the package that saved it 
properly saved a CAMG chunk (look at a hex dump of your file with ACSII 
interpretation - you will see the chunks - they all start with a 4-ASCII­
character chunk ID) . If the picture is 6 planes deep and has no CAMG chunk, 
it is probably HAM. If you see a CAMG chunk, the "CAMG" is followed by the 
32-bit chunk length, and then the 32-bit Amiga Viewmode flags. 

HAM pies with a 16-bit CAMG will have the Ox800 bit set in CAMG ViewModes. 
HALBRITE pies W1ll have the OxBO bit set. 

To transport a HAM or HALFBRITE picture to another machine, you must 
understand how HAM and RALFBRITE work on the Amiga. 

How Arniga HAM mode works: 

Amiga HAM (Hold and Modify) mode lets the Amiga display all 4096 RGB values . 
In HAM mode, the bits in the two last planes describe an R G or B 
modification to the color of the previous pixel on the line to create the 
color of the current pixel. So a 6-plane HAM picture has 4 planes for 
specifying absolute color pixels giving up to 16 absolute colors which would 
be specified in the ILBM CMAP chunk. The bits in the last two planes are 
color modification bits which cause the Amiga, in HAM mode, to take the RGB 
value of the previous pixel (Hold and), substitute the 4 bits in planes 0-3 
for the previous color's R G orB component (Modify) and display the result 
for the current pixel. If the first pixel of a scan line is a modification 
pixel, it modifies the RGB value of the border color (register 0). The color 
modification bits in the last two planes (planes 4 and 5) are interpreted as 
follows: 

00 - no modification. Use planes 0-3 as normal color register index 
10 - hold previous, replacing Blue component with bits from planes 0-3 
01 - hold previous, replacing Red component with bits from planes 0-3 
11 -hold previous. replacing Green component with bits from planes 0-3 

Additional IFF Documents Page 4 

How Amiga HALFBRITE mode works: 

This one is simpler. In HALFBRITE mode, the Amiga interprets the bit in the 
last plane as HALFBRITE modification. The bits in the other planes are 
treated as normal color register numbers (RGB values £or each color reqister 
is specified in the CMAP chunk). If the bit in the last plane is set (1), 
then that pixel is displayed at half brightness. This can provide up to 64 
absolute colors. 

Other Notes: 

Amiga ILBMs images must be a even number of bytes wide. Smaller images (such 
as brushes) are padded to an even byte width. 

ILBMs created with Electronic Arts IBM and Amiga "DPaintii 11 packages are 
compatible (though you may have to use a 1 .lbm' filename extension on an 
IBM) . The ILBM graphic files may be transferred between the machines (or 
between the Amiga and IBM sides your Amiga if you have a CBM Bridgeboard 
card installed) and loaded into either package. 





---------------~-

IFF Source Code 

This section contains a variety of source code listings showing how to use IFF files in applications. 
All of these programs require the new iffparse.library included with Release 2.0 of the Amiga 
operating system (Kickstart V36 and greater). There are four parts: 

• IFF include files. These have been updated to be compatible with iffparse.library. 

• Link modules which provide convenient IFF handling routines such as showilbm.c. 

• Example programs showing how to use the link modules. 

• Stand-alone utility and example programs. 

IFF Specification: Source Code 489 



t5 
0 

JJ 

~ 
~ 
3 
~ 
JJ 
(]) 

(i) 
(ti 
::J 

~ 

~ 
::J 
§ 
~ 

tJ 
(]) 

" c:;· 
(]) 
(f) 

IFFP Modules.README 

IFFP Modules - July 1991 
version 37.5 

These iffparse.library code modules and examples are designed as 
replacements for the original EA IFF code. In some modules, it has 
been possible to retain much of the original code. However, most 
structures and most higher level function interfaces have changed. 

On the plus side, these new modules contain many new high-level 
easy-to-use functions for querying, loading, displaying, and saving 
ILBMs. During their development, modules similar to these have been 

Page 1 

used inhouse at Commodore for the 2.0 Display program and several other 
ILBM applications. The screen.c module provides powerful display-opening 
functions which are 1.3-compatible yet provide a host of new options under 
2.0 such as centered overscan screens, full-video display clips, border 
transparency control, and autoscroll. New modules have been added for 
printing (screendump) and for preserving/adding chunks (copychunks) . 
And the SSVX example now actually plays samples and instruments. 
In addition, clipboard support is automatic for all applications that 
use the IFFP modules because parse.c's openifile{) interprets the 
filename -c[n] {ie. u-c", "-cl", 11 -c2", etc.) as clipboard unit n. 

All of the applications presented here require iffparse.library which 
is distributed on Workbench 2.0. Please note that iffparse.library is 
a 1.3-compatible library, and that all of these modules and examples 
have been designed to take advantage of 2.0, but also work under 1.3. 
Developers who wish to distribute iffparse.library on their commercial 
products may execute a 2.0 Workbench license, or may get an addendum to 
their 1.3 Workbench license to allow distribution of iffparse.library. 

It was not necessary to port the gio IO speedup code since iffparse 
can use your compiler's own buffered IO routines through the callback 
stdio stream() in parse.c. Depending on your application, you may want 
to add your own additional buffering to this stdio_stream() code. 

Most of the high-level function pairs provided in these modules have 
been designed to provide safe cleanup for themselves. For example, 
a loadbrush{) that succeeds or fails at any point can be cleaned up 
via unloadbrush. The cleanup routines null out the appropriate 
pointers so that allocations will not be freed twice. 

All applications are built upon the parse.c module. The basic concept 
of using the parse.c module are: 

- Define tag-like arrays of your desired chunks (readers only) 
-Allocates one or more [form]Info structures as defined in 

iffp/[form]app.h (for example an ILBMinfo defined in 
iffp/ilbmapp. h) . 

- Initialize the Parseinfo part of these structures to the desired 
chunk arrays, and to an IFFHandle allocated via iffparse 
AllociFF () . 

- Use the provided high level load/save functions, or use the 
lower level parse.c openifile(), reader-only parseifile()/ 
getcontext()/nextcontext(), and closeifile(). The filename 
-c[n] may be used to read/write clipboard unit n. 

-Clean up, FreeiFF(), and deallocate [for.m]Info's. 

IFFP Modules.README Page 2 

IMPORTANT NOTES - Most of the higher-level load functions keep the 
IFFHandle (file or clipboard) open. While the handle is 
open, you may use parse.c functions (such as findpropdata) 
OR direct iffparse functions (FindProp(), FindCollection()) 
for accessing the gathered chunks. However, it is not a good 
idea to keep a filehandle OR the clipboard open. While 
a clipboard unit is open, no other applications can clip 
to the unit. And while a file is open, you can't write the 
file back out. So, instead of keeping the file or unit 
open, you can use copychunks (in copychunks.c) to create 
a copy of your gathered chunks, and do an early closeifile() 
(parse.c). Then access and later write back out (if you wish) 
and deallocate your copied chunks via the routines in the 
copychunks module (findchunk, writechunklist, freechunklist) . 

WARNING REGARDING COMPLEX FORMS 
Regarding Complex FORMS - The parse.c module will enter complex 
formats such as CATSs, LISTs, and nested FORMs to find the FORM 
that you are interested in. This is great. However, if you are 
a read-modify-write program, you should warn your user when this 
occurs unless YOU are capable of recreating the complex format. 
Otherwise, your user may unknowingly destroy his complex file 
by writing over it with your program. Example - a paint 
program could read an ILBM out of a complex LIST containing 
pictures and music, and then save it back out as a simple ILBM, 
causing the user to lose his music and other pictures. 
To deter.mine if a complex form was entered after a load, 
check the (form)Info.Parseinfo.hunt field. If TRUE (non-zero), 
then your file was found inside a complex format. 

COMPILATION NOTES 
These modules and examples have been compiled using SAS C 5.10a 
and Manx C 5.0d, with 2.0 (37.1) include files and 2.0 amiga.lib. 
You must have at least 37.1 alib_protos.h (older versions of 
this include file contained the amiga.lib stdio protos also 
which conflict with both SAS and Manx stdio) . For Manx, I 
also had to comment out the conditional definition of abs() in 
libraries/mathffp.h. These modules do not use mathffp, but 
the mathffp include file is pulled in by alib_protos.h. 
When compiling with Manx, a warning seems to be generated for 
each string constant assigned to a UBYTE * field, and also 
by some references to ilbm->colortable. 

LIST OF IFFP MODULES AND APPLICATIONS 

NOTE - Some useful functions are listed with each module 
See module source code for docs on each function. 

APPLICATIONS (these require linkage with modules - see Makefiles) 

ILBMDemo 
ILBMLoad 
ILBMtoC 
ILBMtoRaw 
RawtoiLBM 
24bitDerno 

PlayBSVX 

Screen Save 

Displays an ILBM, loads a brush, saves an ILBM, opt. print 
Queries an ILBM and loads it into an existing screen 
Outputs an ILBM as c source code 
Converts an ILBM to raw plane/color file 
Converts raw plane/color file (from ILBMtoRaw) to an ILBM 
Saves a simple 24-bit ILBM and then shows it 4 planes at 
a time (if given filename, just does the show part) 
Reads and plays an SSVX sound effect or instrument 

- LoadSarnple, UnloadSarnple, Playsample, OpenAudio, 
CloseAudio, and body load/unpack functions 

Save the front screen as an ILBM, with an icon 



"'T1 
"'T1 
(J) 

"'C 
CD 
(') 
:::;; 
c;· 
~ 
6" 
::J 

(J) 
0 
c:: 
0 
CD 
() 
0 
0.. 
CD 

~ c.o ..... 

IFFP Modules.README Page 3 

OTHER EXAMPLES {use iffparse.library directly and require no modules) 

Sift 
ILBMScan 
ClipFTXT 
cycvb~c 

apack.asm 

Checks and prints outline of any IFF file {uses RAWSTEP) 
Prints out useful info about any ILBM 
Demonstrates simply clipping of FTXT to/from clipboard 
Dan Silva's routine for interrupt based color cycling 
Dr. Gerald Hull's assembler replacement for packer.c 

GENERAL IFFPARSE SUPPORT MODULE 

parse.c File/clipboard IO and general parsing 
- openifile, closeifile, parseifile, getcontext, 

nextcontext, contextis, currentchunkis, PutCk chunk 
writing function, and IFFerr text error routine 

ILBM READ MODULES 

loadilbm.c 

getbitmap.c 

getdisplay. c 

screen.c 

ilbmr.c 

unpacker.c 

High level ILBM load routines which are passed filenames 
{calls getbitmap) 

- loadbrush/unloadbrush, loadilbm/unloadilbm, and queryilbm 
brush/bitmap loading {non-display, calls ilbmr.c) 

- createbrush/deletebrush, getbitmap/freebitmap 
bitmap load/display {calls screen.c, ilbmr.c) 

- showilbm/unshowilbm, createdisplay/deletedisplay 
1.3/2.0 ECS/non-ECS compatible screen/window module 

- opendisplay, openidscreen, modefallback, clipit 
Lower level ILBM body/color load routines {calls unpacker.c) 

- loadbody, loadcmap, getcolors/freecolors, 
alloccolortable, getcamg (gets or creates modeid) 

BODY unpacker 

ILBM WRITE MODULES 

saveilbm.c 

ilbmw.c 

packer.c 

EXTRA MODULES 

copychunks.c 

screendwnp.c 
bmprintc.c 

INCLUDE FILES 

iffp/ll?.h 

High level ILBM saving routines which are passed filenames 
{calls ilbmw.c) 

- screensave and saveilbm 
Lower level ILBM body/color save routines {calls packer.c) 

- InitBMHD, PutCMAP, PutBODY 
BODY packer 

Chunk cloning and chunk list writing routines 
- copychunks, findchunk, writechunklist, freechunklist 

Screen printing module {iffparse not required) 
Module to output ILBM as C code 

This subdirectory may be kept in your current directory 
or in your main include directory. 

Thanks to Steve Walton for his code changes for Manx/SAS compatibility, 
and to Bill Barton and John Bittner for their comments and suggestions. 

Makefile.SAS 

IIMYLIBS= LIB:debug.lib 

CC = lc 
ASM = asm 

CFLAGS 
AFLAGS 
LFLAGS 

M 
A 

II Our 
IFFO 
ILBMRO 
ILBMSO 
ILBMLO 
ILBMWO 
ILBMO 
EXTRAO 

II Our 
APPl 
APP2 
APP3 
APP4 
APPS 
APP6 
APP7 
APP8 

-cfistq -v -j73 -iiNCLUDE: 
-iiNCLUDE: 
SC BATCH ND 

modules/ 
apps/ 

iffparse support object modules to link with 
${M)parse.o $(M)Hook.o 
${M)ilbmr.o $(M)unpacker.o 
${M)getdisplay.o $(M)screen.o 
${M)loadilbm.o ${M)getbitmap.o 
${M)saveilbm.o $(M)ilbmw.o ${M)packer.o 
$ (IFFO) $ (ILBMRO) $ (ILBMLO) $ (ILBMSO) $ (ILBMWO) 
${M)copychunks.o ${M)screendump.o ${M)bmprintc.o 

iffparse applications 
$(A)ILBMDemo/ILBMDemo 
${A)ILBMLoad/ILBMLoad 
${A)Play8SVX/Play8SVX 
${A)ILBMtoC/ILBMtoC 
$(A)ILBMtoRaw/ILBMtoRaw 
$(A)ScreenSave/ScreenSave 
${A)RawtoiLBM/RawtoiLBM 
${A)24bitDemo/24bitDemo 

II The 
APPlO 
APP20 
APP30 
APP40 
APPSO 
APP60 
APP70 
APP80 

object modules needed by each application example 
$(APP1) .o ${ILBMO) ${M)screendump.o $(M)copychunks.o 
$(APP2) .o ${IFFO) ${ILBMRO) ${ILBMLO) $(ILBMSO) 
$(APP3) .o $(IFFO) 
${APP4) .o ${IFFO) 
$(APP5) .o $(IFFO) 
${APP6) .o ${IFFO) 
${APP7) .o $(IFFO) 
${APP8) .o $(IFFO) 

${ILBMRO) 
${ILBMRO) 
${ILBMWO) 
$(ILBMWO) 
$(ILBMRO) 

.SUFFIXES: 

.SUFFIXES: .o .c .h .asm .i 

# Make all of the applications 

${ILBMLO) ${M)bmprintc.o 
${ILBMLO) 

${ILBMLO) ${ILBMSO) ${ILBMWO) 

Page 1 

all: $(APP1) ${APP2) ${APP3) ${APP4) ${APP5) ${APP6) ${APP7) ${APP8) 

# Linkage for each application 

${APP1): ${APP10) 
blink <WITH < 

FROM lib:c.o ${APP10) 
LIBRARY lib:lc.lib LIB:amiga.lib ${MYLIBS) 
TO ${APP1) $(LFLAGS) 
< 

$ {APP2) : $ {APP20) 
blink <WITH < 

FROM lib:c.o $(APP20) 
LIBRARY lib:lc.lib LIB:amiga.lib ${MYLIBS) 
TO $(APP2) ${LFLAGS) 
< 



_.,.. 
tO 
N 

::0 

2 
~ 
3 
~ 
::0 
<b 
(b' 
(t 
::::J 
C") 

<b 

s: 
llJ 
::::J 
c: 
~ 
tJ 
<b 

" (')" 
<b 
(I) 

Makefile.SAS 
$(APP3): $(APP30) 

blink <WITH < 
FROM lib:c.o $(APP30) 
LIBRARY lib:lc.lib LIB:arniga.lib $(MYLIBS) 
TO $(APP3) $(LFLAGS) 
< 

$ (APP4) : $ (APP40) 
blink <WITH < 

FROM lib:c.o $(APP40) 
LIBRARY lib:lc.lib LIB:arniga.lib $(MYLIBS) 
TO $(APP4) $(LFLAGS) 
< 

$ (APPS) : $ (APPSO) 
blink <WITH < 

FROM lib:c.o $(APP50) 
LIBRARY lib:lc.lib LIB:arniga.lib $(MYLIBS) 
TO $(APP5) $(LFLAGS) 
< 

$(APP6): $(APP60) 
bl~nk <WITH < 

FROM lib:c.o $(APP60) 
LIBRARY lib:lc.lib LIB:arniga.lib $(MYLIBS) 
TO $(APP6) $(LFLAGS) 
< 

$ (APP7) : $ (APP70) 
blink <WI'rH < 

FROM l~b:c.o $(APP70) 
LIBRARY lib:lc.lib LIB:arniga.lib $(MYLIBS) 
TO $(APP7) $(LFLAGS) 
< 

$ (APP8) : $ (APP80) 
blink <WITH < 

FROM lib:c.o $(APP80) 
LIBRARY l~b:lc.lib LIB:arniga.lib $(MYLIBS) 
TO $(APP8) $(LFLAGS) 
< 

.c.o: 
$(CC) $(CFLAGS) $*.c 

.asrn.o: 
$(ASM) $(AFLAGS) $*.asrn 

Page 2 Makefile.Manx 

#MYLIBS: LIB:debug.lib 

cc :::: cc 
ASM : as 

CFLAGS 
AFLAGS 
LFLAGS 

M 
A 

# Our 
IFFO 
ILBMRO 
ILBMSO 
ILBMLO 
ILBMWO 
ILBMO 
EXTRAO 

# Our 
APPl 
APP2 
APP3 
APP4 
APPS 
APP6 
APP7 
APP8 

-IWork:rnanxinclude 

: modules/ 
: apps/ 

iffparse support object modules to link with 
$(M)parse.o $(M)Hook.o 
$(M)ilbmr.o $(M)unpacker.o 
$(M)getdisplay.o $(M)screen.o 
$(M)loadilbrn.o $(M)getbitrnap.o 
$(M)saveilbrn.o $(M)ilbrnw.o $(M)packer.o 
$(IFFO) $(ILBMRO) $(ILBMLO) $(ILBMSO) $(ILBMWO) 
$(M)copychunks.o $(M)screendurnp.o $(M)bmprintc.o 

iffparse applications 
$(A)ILBMDemo/ILBMDemo 
$(A)ILBMLoad/ILBMLoad 
$(A)Play8SVX/Play8SVX 
$(A)ILBMtoC/ILBMtoC 
$(A)ILBMtoRaw/ILBMtoRaw 
$(A)ScreenSave/ScreenSave 
$(A)RawtoiLBM/RawtoiLBM 
$(A)24bitDemo/24bitDemo 

object modules needed by each application example 
$(APP1) .o $(ILBMO) $(M)screendurnp.o $(M)copychunks.o 
$(APP2) .o $(IFFO) $(ILBMRO) $(ILBMLO) $(ILBMSO) 
$(APP3) .o $(IFFO) 
$(APP4) .o $(IFFO) $(ILBMRO) $(ILBMLO) $(M)bmprintc.o 
$(APP5) .o $(IFFO) $(ILBMRO) $(ILBMLO) 
$(APP6) .o $(IFFO) $(ILBMWO) 
$(APP7) .o $(IFFO) $(ILBMWO) 

Page 1 

# The 
APPlO 
APP20 
APP30 
APP40 
APPSO 
APP60 
APP70 
APP80 $(APP8) .o $(IFFO) $(ILBMRO) $(ILBMLO) $(ILBMSO) $(ILBMWO) 

.SUFFIXES: 

.SUFFIXES: .o .c .h .asm .i 

# Make all of the applications 
all: $ (APPl) $ (APP2) $ (APP3) 

# Linkage for each application 

$ (APPl) : $ (APPlO) 
ln -o $ (APPl) $(LFLAGS) 

$ (APP2) : $ (APP20) 
ln -o $(APP2) $ (LFLAGS) 

$(APP3): $(APP30) 
ln -o $ (APP3) $(LFLAGS) 

$(APP4): $(APP40) 
ln -o $ (APP4) $ (LFLAGS) 

$ (APPS): $ (APPSO) 
ln -o $ (APPS) $ (LFLAGS) 

$ (APP4) $ (APPS) $ (APP6) $ (APP7) $ (APP8) 

$(APP10) -lc +l arniga.lib 

$ (APP20) -lc +l arniga.lib 

$ (APP30) -lc +l amiga.lib 

$ (APP40) -lc +1 arniga.lib 

$ (APPSO) -lc +1 amiga.lib 



11 
11 
(J) 

"'0 
ro 
() 
::::o; 
c:;· 
!a 
6" 
:::J 

(J) 
0 
c 
0 
ro 
() 
0 
0. 
ro 

tt 
(...) 

Makefile.Manx Page 2 

$(APP6): $(APP60) 
ln -o $ (APP6) $(LFLAGS) $(APP60) -lc +1 amiga.lib 

$(APP7): $(APP70) 
ln -o $ (APP7) $(LFLAGS) $(APP70) -lc +1 amiga.lib 

$(APP8): $(APP80) 
ln -o $(APP8) $(LFLAGS) $(APP80) -lc +l amiga.lib 

.c.o: 
cc $(CFLAGS) -o $*.o $*.c 

.asm.o: 
as $(AFLAGS) -o $*.o $*.asm 

iffp/8svx.h Page 1 

/*-----------------------------------------------------------------------* 
* 8SVX.H Definitions for 8-bit sampled voice (VOX) . 2/10/86 
* 
*By Jerry MOrrison and Steve Hayes, Electronic Arts. 
* This software is in the public domain. 
* 
* Modified for use with iffparse.library 05/91 - CAS_CBM 
* * This version for the Cammodore-Amiga computer. 
*----------------------------------------------------------------------*1 

#ifndef EIGHTSVX H 
#define EIGHTSVX=H 

#ifndef COMPILER H 
#include "iffp/compiler.h" 
#endif 

#include "iffp/iff.h" 

#define ID 8SVX 
#define ID-VHDR 

#define ID ATAK 
#define ID-RLSE 

MAKE ID('8' 'S' 'V' 'X') 
MAKE=ID('V'; 'H': 'D': 'R') 

MAKE-ID (,A' I IT' I , A' I I K') 
MAKE_ID('R', 'L', 'S', 'E') 

/* defined in iffp/iff.h 
#define ID NAME MAKE ID('N', 'A', 'M', 'E') 
#define ID-Copyright MAKE-ID(' (', 'c', ')', ' ') 
#define ID-AUTH MAKE-ID('A', 'U', 'T', 'H') 
#define ID-ANNO MAKE-ID{'A', 'N', 'N', '0') 
#define ID-BODY MAKE-ID('B', '0', 'D', 'Y') 
*I - -

/* ---------- Voice8Header ---------------------------------------------*/ 
typedef LONG Fixed; /* A fixed-point value, 16 bits to the left of 

* the point and 16 to the right. A Fixed is a 
* number of 2**16ths, i.e. 65536ths. */ 

#define Unity Ox10000L /* Unity = Fixed 1.0 =maximum volume */ 

/* sCompression: Choice of 
#define sCmpNone 0 
#define sCmpFibDelta 1 

typedef struct { 

compression algorithm applied to the samples. 
/* not compressed */ 
I* Fibonacci-delta encoding (Appendix C) 
I* Could be more kinds in the future. */ 

*I 

*I 

ULONG oneShotHiSamples, 
repeatHiSamples, 
samplesPerHiCycle; 

UWORD samplesPerSec; 
UBYTE ctOctave, 

sCompression; 

I* # samples in the high octave 1-shot part */ 
I* # samples in the high octave repeat part */ 
/* # samples/cycle in high octave, else 0 */ 
/* data sampling rate */ 

Fixed volwne; 

} Voice8Header; 

/* # of octaves of waveforms */ 
I* data compression technique used */ 
/* playback nominal volume from 0 to Unity 
* (full volume) . Map this value into 
*the output hardware's dynamic range. 
*I 

I* ---------- NAME -----------------------------------------------------*/ 
I* NAME chunk contains a CHAR[], the voice's name. */ 

/* ---------- Copyright ------------------------------------------------*/ I* "(c) "chunk contains a CHAR[], the FORM's copyright notice. */ 

I* ---------- AUTH -----------------------------------------------------*/ 
/* AUTH chunk contains a CHAR[], the author's name. */ 



..,.. 
c.o ..,.. 

JJ 

~ 
~ 
3 
~ 
JJ 
(tJ 

ct> 
Ci3 
:::J 
@ 
s: 
t1l 
:::J c:: 
t1l 
:-:-
tJ 
(1) 
<:: 
()• 
(1) 
(f) 

I* ---------- ANNO 
/*ANNO chunk contains a CHAR[], the author's text annotations. */ 

/* ---------- Envelope ATAK & RLSE 
typedef struct { 

UWORD duration; 
Fixed dest; 
} EGPoint; 

/* segment duration in milliseconds, > 0 */ 
/* destination volume factor */ 

/* A'rAK and RLSE chunks contain an EGPoint [], piecewise-linear envelope. *I 

/* The envelope defines a function of time returning Fixed values. 
*It's used to scale the nominal volume specified in the Voice8Header. 
*I 

I* ---------- BODY 
/*BODY chunk contains a BYTE[], array of audio data samples.*/ 
I* (B-bit signed numbers, -128 through 127.) *I 

I* 8SVX Writer Support Routines 

/* Just call this macro to write a VHDR chunk. */ 
#define PutVHDR(iff, vHdr) \ 

PutCk(iff, ID_VHDR, sizeof(VoiceBHeader), (BYTE *)vHdr) 

#endif 

iffp/8svxa p p. h 
I* Ssvxapp.h 

* - definition of EightSVXInfo structure 
* - inclusion of includes needed by modules and application 
* - application-specific definitions 
*I 

#ifndef EIGHTSVXAPP H 
#define EIGHTSVXAPP=H 

#include "iffpiBsvx.h" 

#include <deviceslaudio.h> 

#define MAXOCT 16 

struct EightSVXInfo 
/* general parse.c related */ 
struct Parseinfo Parseinfo; 

/* For convenient access to VHDR, Name, and sample. 
* Other chunks will be accessible through FindProp() 
* (or findchunk() if the chunks have been copied) 
*I 

I* BSVX *I 
VoiceBHeader 

BYTE 
ULONG 

BYTE 
ULONG 
BYTE 
ULONG 
ULONG 

UBYTE 

ULONG 

Vhdr; 

*sample; 
samplebytes; 

*osamps[MAXOCT); 
osizes [MAXOCT]; 
*rsamps[MAXOCT]; 
rsizes [MAXOCT]; 
spcycs [MAXOCT] ; 

name [80]; 

Reserved[B]; I* must be 0 for now */ 

/* Applications may add variables here */ 
); 

/* referenced by modules */ 
extern struct Library *IFFParseBase; 

#endif 

Page 1 



"'T1 
"'T1 
(/) 
"0 
(!) 

£: 
()" 

a 
6" 
::l 

(/) 
0 
c: 
Cl 
(!) 

() 
0 a. 
(!) 

~ c.o 
()1 

I* IFF application include files 
*I 

#ifndef 
#define 

AMIGA H 
AMIGA-H 

#include <execltypes.h> 
#include <execlmemory.h> 
#include <exec/libraries.h> 

#include <librariesldos.h> 

#include <intuition/intuition.h> 
#include <intuition/screens.h> 

iffp/amiga.h 

#include <graphicslview.h> 
#include <graphicsldisplayinfo.h> 
#include <graphicslvideocontrol.h> 
#include <graphicslgfxmacros.h> 

#include <librariesliffparse.h> 

#include <cliblexec~rotos.h> 
#include <clibldos~rotos.h> 
#include <cliblintuition~rotos.h> 
#include <cliblgraphics~rotos.h> 
#include <clibliffparse~rotos.h> 

#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 

#include "iffpldebug.h" 

#endif 

Page 1 

#ifndef COMPILER H 
#define COMPILER-H 

iffp/compiler .h Page 1 

/*** compiler~h *********************************************************/ 
I* Steve Shaw 1129186 *I 
I* Portability file to handle compiler idiosyncrasies. *I 
I* *I 
I* This software is in the public domain. *I 
I* modified 05191 for use with iffparse - CAS CBM *I 
I************************************************************************ I 

#ifndef EXEC TYPES H 
#include "execltypes.h" 
#endif 

I* 
#define NO PROTOS 
*I 
#endif COMPILER H 



.... 
<.0 
m 

JJ 

2 
~ 
3 
~ 
JJ 
<!:> 
Cii' 
<ti 
:::J 

2 

* :::J 
c: 
OJ 
:-:-
c::J 
<!:> 
<::: 
()• 
<!:> 
(/) 

if!P/debu_g.h 
I* 
* mydebug.h - #include this file sometime after stdio.h 
* Set MYDEBUG to 1 to turn on debugging, 0 to turn off debugging 
*I 

#ifndef MYDEBUG H 
#define MYDEBUG=H 

#define MYDEBUG 0 

#if MYDEBUG 

I* 
* MYDEBUG User Options 
*I 

I* Set to 1 to turn second level D2(bug()) statements *I 
#define DEBUGLEVEL2 1 

Page 1 

I* Set to a non-zero # of ticks if a delay is wanted after each debug message *I 
#define DEBUGDELAY 0 

/* Always non-zero for the DDx macros */ 
#define DDEBUGDELAY 50 

I* Set to 1 for serial debugging (link with debug.lib) *I 
#define KDEBUG 0 

I* Set to 1 for parallel debugging (link with ddebug.lib) *I 
#define DDEBUG 0 

#endif I* MYDEBUG *I 

I* Prototypes for Delay, kprintf, dprintf. Or use protoldos.h or functions.h. *I 
#include <clibldos_protos.h> 
void kprintf(UBYTE *fmt, ... ); 
void dprintf(UBYTE *fmt, ... ); 

I* 
* D(bug()), D2(bug()), DQ((bug()) only generate code if MYDEBUG is non-zero 
* 
*Use D(bug()) for general debugging, D2(bug()) for extra debugging that 
*you usually won't need to see, DD(bug()) for debugging statements that 
*you always want followed by a delay, and DQ(bug()) for debugging that 
*you'll NEVER want a delay after (ie. debugging inside a Forbid, Disable, 
* Task, or Interrupt) 

* Some example uses (all are used the same) : 
* D (bug( 11 about to do xyz. variable = $%lx\n 11 ,myvariable)); 
* D2 (bug ("vl~$%lx v2~$%lx v3~$%lx\n", vl, v2, v3)); 
* DQ (bug ("in subtask: variable ~ $%lx\n", myvariable) ) ; 
* DD(bug("About to do xxx\n")); 

* Set MYDEBUG above to 1 when debugging is desired and recompile the modules 
you wish to debug. Set to 0 and recompile to turn off debugging. 

* * User options set above: 
* Set DEBUGDELAY to a non-zero # of ticks (ex. 50) when a delay is desired. 
* Set DEBUGLEVEL2 nonzero to turn on second level (D2) debugging statements 
* Set KDEBUG to 1 and link with debug.lib for serial debugging. 
* Set DDEBUG to 1 and link with ddebug.lib for parallel debugging. 
*I 

iffp/d~J>u _g_.h Page 2 

I* 
* Debugging function automaticaly set to printf, kprintf, or dprintf 
*I 

#if KDEBUG 
#define bug kprintf 
#elif DDEBUG 
#define bug dprintf 
#else /*else changes all bug's to printf's */ 
#define bug printf 
#endif 

/* 
* Debugging macros 
*I 

I* D(bug( 
* DD(bug( 
* DQ(bug( 
* The similar 
*I 

delays DEBUGDELAY if DEBUGDELAY is > 0 
always delays DDEBUGDELAY 
(debug quick) never uses Delay. Use in forbids,disables,ints 

macros with 11 2" in their names are second level debuqqinq 

#if MYDEBUG /* Turn on first level debugging */ 
#define D(x) (x); if(DEBUGDELAY>O) Delay(DEBUGDELAY) 
#define DD(x) (x); Delay(DDEBUGDELAY) 
#define DQ (x) (x) 
#if DEBUGLEVEL2 /* Turn on second level debugging *I 
#define D2(x) (x); if(DEBUGDELAY>O) Delay(DEBUGDELAY) 
#define DD2(x) (x); Delay(DDEBUGDELAY) 
#define DQ2 (x) (x) 
#else I* Second level debugging turned off *I 
#define D2(x) ; 
#define DD2(x) ; 
#define DQ2(x) ; 
#endif I* DEBUGLEVEL2 *I 
#else I* First level debugging turned off *I 
#define D(x) ; 
#define DQ (x) 
#define D2 (x) 
#define DD(x) ; 
#endif 

#endif I* MYDEBUG H */ 



11 
11 
(/) 

"'0 
CD 
0 
=-; 
6" 
el. 
6" 
::::l 

(/) 
0 
c:: 
0 
CD 
() 
0 a. 
CD 

~ ...... 

iffp/iff.h 
I* 
* * iff.h: General Definitions for IFFParse modules 

* * 6/27/91 
*I 

#ifndef IFFP IFF H 
#define IFFP=IFF=H 

#include "iffp/campiler.h" 

#ifndef EXEC TYPES H 
#include <exec/types.h> 
#endif 
#ifndef EXEC MEMORY H 
#include <exec/memory.h> 
#endif 
#ifndef UTILITY TAGITEM H 
#include <utilityltagitem.h> 
#endif 
#ifndef UTILITY HOOKS H 
#include <utility/hooKs.h> 
#endif 
#ifndef LIBRARIES IFFPARSE H 
#include <libraries/iffparse.h> 
#endif 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

#ifndef MYDEBUG H 
#include "iffp/debug.h" 
#endif 

#ifndef NO PROTOS 
#include <clib/exec~rotos.h> 
#include <clib/iffparse~rotos.h> 
#endif 

#ifndef MAX 
#define MAX(a,b) ((a) > (b) 
#endif 
#ifndef MIN 
#define MIN(a,b) ((a) < (b) 
#endif 
#ifndef ABS 

? (a) 

? (a) 

#define ABS(x) ((x) < 0 ? - (x) 
#endif 

: (b)) 

: (b)) 

: (x)) 

#define CkErr(expression) 
#define ChunkMOreBytes(cn) 
#define IS_ODD(a) 

{if (!error) error= (expression);} 
(cn->cn Size - cn->cn Scan) 
(a & 1)- -

#define IFF OKAY OL 
#define CLIENT ERROR lL 
#define NOFILE- SL 

#define message printf 

I* Generic Chunk 
#define ID ANNO 
#define ID-AUTH 
#define ID-CHRS 

ID's we may encounter *I 
MAKE ID('A' 'N' 'N' '0') 
MAKE-ID('A' I 'U', 'T'', H') 
~-ID('C':'H':'R':'S') 

Page 1 

#define 
#define 
#define 
#define 
#define 
#define 

~~-~~~~right 
ID-FVER 
ID-NAME 
ID-TEXT 
ID-BODY 

iffp/iff.h 
MAKE ID('(','c',')',' ') 
MAKE-ID('C' I, S' I 'E' I 'T') 
MAKE:ID('F', 'V' I 'E', 'R') 
MAKE ID('N','A','M','E') 
MAKE-ID('T', 'E', 'X' I 'T') 
MAKE:ID('B', '0', 'D', 'Y') 

I* Used to keep track of allocated IFFHandle, and whether file is 
* clipboard or not, filename, copied chunks, etc. 
* This structure is included in the beginning of every 
* form-specific info structure used by the example modules. 
*I 

struct Parseinfo { 

Page 2 

I* general parse.c related */ 
struct IFFHandle *iff; 
UBYTE *filename; 
LONG *propchks; 

/* to be alloc'd with AllociFF */ 
/* current filename of this ui */ 
I* properties to get */ 

LONG *collectchks; 
LONG *stopchks; 
BOOL opened; 
BOOL clipboard; 
BOOL hunt; 
BOOL Reservedl; 

/* properties to collect */ 
I* stop on these (like BODY) *I 
/* this iff has been opened */ 
I* file is clipboard */ 
I* we are parsing a complex file */ 
/* must be zero for now */ 

/* for copychunks.c - for read/modify/write programs 
* and programs that need to keep parsed chunk info 
* around after closing file. 
*Deallocated by freechunklist(); 
*I 

struct Chunk *copiedchunks; 

I* application may hang its own list of new chunks here 
* just to keep it with the frame. 
*I 

struct Chunk *newchunks; 

I* 

ULONG 
}; 

Reserved[8]; 

* Used by some modules to save or pass a singly linked list of chunks 
*I 

struct Chunk { 
struct 
long 
long 
long 
void 

}; 

Chunk *ch Next; 
ch Type; -
ch-ID; 
ch-Size; 
*ch_Data; 

#ifndef NO PROTOS 
/* parse.c-*/ 
LONG openifile(struct Parseinfo *,UBYTE *,ULONG); 
void closeifile(struct Parseinfo *); 
LONG parseifile(struct Parseinfo *, 

LONG, LONG, LONG*, LONG*, LONG*); 
LONG getcontext(struct IFFHandle *); 
LONG nextcontext(struct IFFHandle *); 
LONG currentchunkis(struct IFFHandle *, LONG type, LONG id); 
LONG contextis(struct IFFHandle *, LONG type, LONG id); 
UBYTE *findpropdata(struct IFFHandle *iff, LONG type, LONG id); 
void initiffasstdio(struct IFFHandle *); 
UBYTE *IFFerr(LONG); 



.j::.. 
CD 
CXl 

::0 

~ 
~ 
3 
~ 
::0 
Q) 

Ci)' 
<i3 
;::, 
0 
Q) 

~ 
tll 
;::, 
c: 
tll 
:-:-
tJ 
Q) 
00::: 
()" 
Q) 
(J) 

iffp/iff.h 
LONG chkcnt(LONG *); 
long PutCk(struct IFFHandle *iff, long id, long size, void *data); 

/* copychunks.c */ 
struct Chunk *copychunks(struct IFFHandle *iff, 

LONG *propchks, LONG *collectchks, ULONG memtype); 
void freechunklist(struct Chunk *first); 
struct Chunk *findchunk(struct Chunk *first, long type, long id); 
long writechunklist(struct IFFHandle *iff, struct Chunk *first); 
#endif /* NO_PROTOS */ 

#endif /* IFFP IFF H */ 

Page 3 

/* 
* 

iffo/ilbm.h 

* ilbm.h: Definitions for IFFParse ILBM reader. 
* * 6/27/91 
*I 

#ifndef IFFP ILBM H 
#define IFFP-ILBM-H 

#ifndef IFFP IFF H 
#include "iffp/iff.h" 
#endif 

#ifndef INTUITION INTUITION H 
#include <intuition/intuition.h> 
#endif 
#l.fndef GRAPHICS VIDEOCONTROL H 
#include <graphics/videocontrol.h> 
#endif 

#ifndef NO PROTOS 
#include <clib/graphics_protos.h> 
#include <clib/intuition_protos.h> 
#include <clib/alib_protos.h> 
#endif 

/* IFF types we may encounter */ 
#define ID ILBM ~_ID('I' ,'L' ,'B' ,'M') 

/* ILBM 
* (see 
*I 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

Chunk ID's we may encounter 
iffp/iff.h for some other generic chunks) 

ID BMHD 
ID-CMAP 
ID-CRNG 
ID-CCRT 
ID-GRAB 
ID-SPRT 
ID-DEST 
ID-CAMG 

MAKE ID('B','M','H','D') 
MAKE-ID('C' I'M' I 'A' I 'P') 
MAKE-ID( 1 C' ,'R' ,'N' ,'G') 
MAKE-ID('C', 'C', 'R', 'T') 
MAKE-ID('G', 'R', 'A', 'B') 
MAKE-ID(' S' I 'P', 'R', 'T') 
MAKE-ID('D' I 'E', 'S', 'T') 
MAKE:ID('C' I 'A' I'M', 'G') 

/* Use this constant instead of sizeof(ColorRegister). *I 
#define sizeofColorRegister 3 

typedef WORD Color4; /* Amiga RAM version of a color-register, 
*with 4 bits each RGB in low 12 bits.*/ 

I* Maximum number of bitplanes storable in BitMap structure */ 
#define MAXAMDEPTH 8 
#define MAXAMCOLORREG 32 

/* Maximum planes we can save */ 
#define MAXSAVEDEPTH 24 

/* convert width to BytesPerRow */ 
#define BytesPerRow(w) ((w) + 15 >> 4 << 1) 
#define BitsPerRow(w) ((w) + 15 >> 4 << 4) 

Page 1 

I* Flags that should be masked out of old 16-bit CAMG before save or use. 
* Note that 32-bit mode id (non-zero high word) bits should not be twiddled 
*I 

#define BADFLAGS (SPRITESIVP HIDE I GENLOCK AUDIO I GENLOCK VIDEO) 
#define OLDCAMGMASK (-BADFLAGS) - -



11 
11 
(/) 
"0 
CD 
(") 
:::;; 
(") 

~ 
6" 
::I 

(/) 
0 
c 
a 
CD 

0 
0 a. 
CD 

..j::.. 
<.0 
<.0 

/* Masking techniques */ 
#define mskNone 0 
#define mskHasMask 1 
#define mskHasTransparentColor 2 
#define mskLasso 3 

/* Compression techniques */ 
#define cmpNone 0 
#define cmpByteRunl l 

iffo/ilbm.h 

#define RowBytes(w) (( ( (w) + 15) » 4) « 1) 

Page 2 

I* ---------- BitMapHeader 
/* Required Bitmap header 
typedef struct { 

---------------------------------------------*1 
(BMHD) structure describes an ILBM */ 

UWORD w, h; /* 
WORD X, y; I* 
UBYTE nPlanes; /* 
UBYTE masking; /* 
UBYTE compression; /* 
UBYTE reservedl; /* 
UWORD transparentColor; 
UBYTE xAspect, yAspect; 

Width, height in pixels */ 
x, y position for this bitmap */ 
# of planes {not including mask) */ 
a masking technique listed above */ 
cmpNone or cmpByteRunl */ 
must be zero for now */ 

WORD pageWidth, pageHeight; 
BitMapHeader; 

/* ---------- ColorRegister 
/* A CMAP chunk is a packed array of ColorRegisters {3 bytes each) . *I 
typedef struct { 

UBYTE red, green, blue; /*MUST be UBYTEs so">> 4" won't sign extend.*/ 
} ColorRegister; 

/* ---------- Point2D 
/* A Point2D is stored in a GRAB chunk. */ 
typedef struct { 

WORD x, y; /* coordinates {pixels) */ 
} Point2D; 

I* ---------- DestMerge 
/* A DestMerge is stored in a DEST chunk. */ 
typedef struct { 

UBYTE depth; 
UBYTE padl; 

/* # bitplanes in the original source */ 

UWORD planePick; 
UWORD planeOnOff; 
UWORD planeMask; 
} DestMerge; 

/* UNUSED; for consistency store 0 here */ 
/* how to scatter source bitplanes into destination */ 
/* default bitplane data for planePick */ 

/* selects which bitplanes to store into */ 

/* ---------- SpritePrecedence 
/* A SpritePrecedence is stored in a SPRT chunk. */ 
typedef UWORD SpritePrecedence; 

I* ---------- camg Amiga Viewport Mode ---------------------------------*/ 
I* A Commodore Amiga ViewPort->Modes is stored in a CAMG chunk. */ 
/*The chunk's content is declared as a LONG. */ 
typedef struct { 

ULONG ViewModes; 
I CamgChunk; 

/* ---------- CRange cycling chunk -------------------------------------*/ 
#define RNG NORATE 36 /* Dpaint uses this rate to mean non-active */ 
/* A CRange-is store in a CRNG chunk. */ 
typedef struct { 

WORD padl; 
WORD rate; 
WORD active; 

/* reserved for future use; store 0 here */ 
/* 60/sec=l63B4, 30/sec=Bl92, l/sec=l6384/60=273 */ 
/* bitO set = active, bit 1 set = reverse */ 

iffp/ilbm.h Page 3 

UBYTE low, high; 
I CRange; 

/* lower and upper color registers selected */ 

/* ---------- Ccrt {Graphicraft) cycling chunk -------------------------*/ 
I* A Ccrt is stored in a CCRT chunk. */ 
typedef struct { 

WORD direction; /* O=don't cycle, l=forward, -l=backwards */ 
UBYTE start; /* range lower */ 
UBYTE end; /* range upper */ 
LONG seconds; /* seconds between cycling */ 
LONG microseconds; /* msecs between cycling */ 
WORD pad; /* future exp - store 0 here */ 
) CcrtChunk; 

/* If you are writinq all of your chunks by hand, 
* you can use these macros for these simple chunks. 
*I 

#define putbmhd{iff, bmHdr) \ 
PutCk{iff, ID BMHD, sizeof(BitMapHeader), {BYTE *)bmHdr) 

#define putgrab{iff, point2D) \ 
PutCk(iff, ID GRAB, sizeof(Point2D), (BYTE *)point2D) 

#define putdest(iff, destMerge) \ 
PutCk(iff, ID DEST, sizeof(DestMerge), {BYTE *)destMerge) 

#define putsprt{iff, spritePrec) \ 
PutCk{iff, ID SPRT, sizeof{SpritePrecedence), (BYTE *)spritePrec) 

#define putcamg{iff, camg) \ 
PutCk(iff, ID CAMG, sizeof(CamgChunk), (BYTE *)camg) 

#define putcrng(iff, crng) \ 
PutCk(iff, ID CRNG, sizeof{CRange), (BYTE *)crng) 

#define putccrt(iff, ccrt) \ 
PutCk{iff, ID_CCRT, sizeof{CcrtChunk), (BYTE *)ccrt) 

#ifndef NO PROTOS 
/* unpacker.c */ 
BOOL unpackrow{BYTE **pSource, BYTE **pDest, WORD srcBytesO, WORD dstBytesO); 

/* packer.c */ 
LONG packrow{BYTE **pSource, BYTE **pDest, LONG rowSize); 

/* ilbmr.c ILBM reader routines */ 
LONG loadbody(struct IFFHandle *iff, struct BitMap *bitmap, 

BitMapHeader *bmhd) ; 
LONG loadbody2(struct IFFHandle *iff, struct BitMap *bitmap, 

BYTE *mask, BitMapHeader *bmhd, 
BYTE *buffer, ULONG bufsize); 

LONG loadcmap{struct IFFHandle *, WORD *colortable, USHORT *pNcolors); 
LONG getcolors{struct ILBMinfo *ilbm); 
void freecolors(struct ILBMinfo *ilbm); 
LONG alloccolortable(struct ILBMinfo *ilbm); 
ULONG getcamg{struct ILBMinfo *ilbm); 

/* ilbmw.c ILBM writer routines */ 
long initbmhd(BitMapHeader *bmhd, struct BitMap *bitmap, 

WORD masking, WORD compression, WORD transparentColor 1 

WORD width, WORD height, WORD pageWidth, WORD pageHeight, 
ULONG modeid); 

long putcmap{struct IFFHandle *iff,APTR colortable,UWORD ncolors,UWORD bitspergun); 
long putbody(struct IFFHandle *iff, struct BitMap *bitmap, 

BYTE *mask, BitMapHeader *bmHdr, 
BYTE *buffer, LONG bufsize); 

I* getdisplay.c (used to load a display) */ 
LONG showilbm(struct ILBMinfo *ilbm, UBYTE *filename); 
void unshowilbm(struct ILBMinfo *ilbm); 
LONG createdisplay(struct ILBMinfo *); 
void deletedisplay(struct ILBMinfo *); 



U1 
0 
0 

)J 
0 s: 
~ 
3 
~ 
)J 
Ct> 
(D' 
Ci3 
:::J 

~ 

~ 
:::J 
c: 
~ 
CJ 
Ct> 

' 0 
Ct> 
(/) 

iffp/ilbm.h 
LONG getdisplay(struct ILBMinfo *); 
void freedisplay(struct ILBMinfo *); 

I* getbitmap.c (used if just loading brush or bitmap) */ 
LONG createbrush(struct ILBMinfo *); 
vo~d deletebrush(struct ILBMinfo *); 
LONG getbitmap(struct ILBMinfo *); 
void freebitmap(struct ILBMinfo *); 

/* screen.c (opens 1.3 or 2.0 screen) */ 

Page 4 

struct Screen *openidscreen(struct ILBMinfo *,SHORT,SHORT,SHORT,ULONG); 
struct Window *opendisplay(struct ILBMinfo *,SHORT,SHORT,SHORT,ULONG); 
ULONG rnodefallback(ULONG, SHORT, SHORT, SHORT); 
void clipit(SHORT wide, SHORT high, struct Rectangle *spos, 

struct Rectangle *dclip, struct Rectangle *txto, 
struct Rectangle *stdo,struct Rectangle *rnaxo, 
struct Rectangle* uclip); 

void closedisplay(struct ILBMinfo *); 
void rnodeErrorMsg(ULONG,ULONG); 

I* loadilbrn.c *I 
LONG loadbrush(struct ILBMinfo *ilbm, UBYTE *filename); 
void unloadbrush(struct ILBMinfo *ilbm); 

LONG queryilbrn(struct ILBMinfo *ilbm, UBYTE *filename); 

LONG loadilbm(struct ILBMinfo *ilbm, UBYTE *filename); 
void unloadilbm(struct ILBMinfo *ilbm); 

I* saveilbm.c *I 
LONG screensave(struct ILBMinfo *ilbm 1 

struct Screen *scr, 
struct Chunk *chunklistl, struct Chunk *chunklist2, 
UBYTE *filename); 

LONG saveilbm(struct ILBMinfo *ilbm, 
struct BitMap *bitmap, ULONG modeid, 
WORD width, WORD height, WORD pagewidth, WORD pageheight, 
APTR colortable, UWORD count, UWORD bitspergun, 
WORD masking, WORD transparentColor, 
struct Chunk *chunklistl, struct Chunk *chunklist2, 
UBYTE *filename); 

/* screendump.c (print screen or brush) */ 
int screendump(struct Screen *scr, 

UWORD srcx, UWORD srcy, UWORD srcw, UWORD srch, 
LONG destcols, UWORD special); 

I* bmprintc.c (write C source for ILBM) *I 
void BMPrintCRep(struct BitMap *bm, FILE *fp, UBYTE *name, UBYTE *fmt); 

#endif I* NO_PROTOS *I 

#endif I* IFFP ILBM H *I 

iffp/ilbmaJm.h Page 1 

I* ilbmapp.h 
* - definition of ILBMinfo structure 
* - inclusion of includes needed by modules and application 
* - application-specific definitions 

* * 07103191 - added ilbm->stags for screen.c 
*I 

#ifndef ILBMAPP H 
#define ILBMAPP=H 

#include "iffplilbm.h" 

struct ILBMinfo { 
/* general parse.c related */ 
struct Parseinfo Parseinfo; 

/* The following variables are for 
* programs using the ILBM-related 
* They may be removed or replaced 
* programs parsing other for.ms. 
*I 

modules. 
for 

I* ILBM *I 
BitMapHeader Bmhd; 
ULONG camg; 
Color4 *colortable; 
ULONG ctabsize; 
USHORT ncolors; 
USHORT Reservedl; 

I* for getbitmap.c *I 
struct BitMap *brbitmap; 

/* for screen.c */ 
struct Screen *scr; 
struct Window *win; 
struct ViewPort *vp; 
struct RastPort *srp; 
struct RastPort *wrp; 
BOOL TBState; 

I* caller preferences *I 
struct NewWindow *windef; 
UBYTE *stitle; I* 
LONG stype; I* 
WORD ucliptype; I* 
BOOL EHB; I* 
BOOL Video; I* 
BOOL Autoscroll; I* 
BOOL Notransb; I* 
ULONG *stags; I* 

I* filled in by load and save ops *I 
I* filled in by load and save ops *I 
I* allocated by getcolors *I 
/* size of colortable in bytes */ 
/* number of color registers loaded */ 

I* for loaded brushes only *I 

I* screen of loaded display *I 
I* window of loaded display *I 
I* viewport of loaded display *I 
/*screen's rastport */ 
/*window's rastport */ 
/* state of titlebar hiddenness */ 

I* definition for window *I 
screen title *I 
additional screen types *I 
overscan display clip type *I 
default to EHB for 6-planeiNoCAMG *I 
Max Video Display Clip (non-adjustable) *I 
Enable Autoscroll of screens */ 
Borders not transparent to genlock */ 
Additional screen tags for 2.0 screens */ 

ULONG Reserved[?]; I* must be 0 for now *I 

/* Application-specific variables may go here */ 
}; 

I* referenced by modules *I 

extern struct Library *IFFParseBase; 

I* protos for application module(s) *I 

#endif 



"'T1 
"'T1 
(/) 

"'0 
co 
() 
::::;.: 
6' 
~ 
6' 
:::J 

(/) 
0 
c 
n 
co 
() 
0 
0. 
co 
01 
0 ...... 

#ifndef PACKER H 
#define PACKER-H 

ifmLQ_acker .h Page 1 

/*------------=---------------------------------------------------------* 
* PACKER.H typedefs for Data-Compresser. 1/22/86 

* * This module implements the run compression algoritlun 11 cmpByteRunl"; the 
*same encoding generated by Mac's PackBits. 

* * By Jerry MOrrison and Steve Shaw, Electronic Axts. 
* This software is in the public domain. 

* * This version for the Commodore-Amiga computer. 
*----------------------------------------------------------------------*1 

#include <exec/types.h> 

/* This macro computes the worst case packed size of a "row" of bytes. */ 
#define MaxPackedSize(rowSize) ( (rowSize) + ( ((rowSize)+l27) >> 7 ) ) 

/* Given POINTERS to POINTER variables, packs one row, updating the source 
* and destination pointers. Returns the size in bytes of the packed row. 
* ASSUMES destination buffer is large enough for the packed row. 
* See MaxPackedSize. */ 

extern LONG PackRow(BYTE **, BYTE**, LONG); 
/* pSource, pDest, rowSize */ 

/* Given POINTERS to POINTER variables, unpacks one row, updating the source 
* and destination pointers until it produces dstBytes bytes (i.e., the 
* rowSize that went into PackRow). 
*If it would exceed the source's limit srcBytes or if a run would overrun 
* the destination buffer size dstBytes, it stops and returns TRUE4 
* Otherwise, it returns FALSE (no error). *I 

extern BOOL UnPackRow(BYTE **, BYTE**, WORD, WORD); 
/* pSource, pDest, srcBytes, dstBytes */ 

BYTE *PutDump(BYTE *, int); 
BYTE *PutRun(BYTE *,int,int); 
LONG PackRow(BYTE **,BYTE **,LONG); 
BOOL UnPackRow(BYTE **,BYTE **,WORD,WORD); 

#endif 

iffp/smus.h Page 1 

1*----------------------------------------------------------------------* 
* SMUS.H Definitions for Simple MUSical score. 2/12/86 
* 
* By Jerry MOrrison and Steve Hayes, Electronic Arts. 
* This software is in the public domain. 

* Modified for use with iffparse.library 05/91 - CAS CBM 
* -
* This version for the Commodore-Amiga computer. 
*----------------------------------------------------------------------*1 

#ifndef SMUS H 
#define SMUS-H 

#ifndef COMPILER H 
#include "iffp/compiler.h" 
#endif 

#include "iffp/iff.h" 

#define ID SMUS 
#define ID=SHDR 

MAKE ID('S', 'M', '0', 'S') 
MAKE=ID('S', 'H', 'D', 'R') 

iffp/iff.h as generic chunks 
MAKE ID('N', 'A', 'M', 'E') 
MAKE-ID (' (' , ' c' , ' ) ' , ' ' ) 
MAKE-ID('A', 'U', 'T', 'H') 

/* Now defined in 
#define ID NAME 
#define ID-Copyright 
#define ID-AUTH 
#define ID-ANNO 
*I 

#define ID INSl 
#define ID-TRAK 

MAKE=ID('A', 'N', 'N', '0') 

MAKE ID('I' 'N' 'S' '1') 
MAKE:ID('T': 'R': 'A'; 'K') 

/* ---------- SScoreHeader ---------------------------------------------*/ 
typedef struct I 

UWORD tempo; 
UBYTE volume; 
UBYTE ctTrack; 
} SScoreHeader; 

I* tempo, 128ths quarter note/minute */ 
/* playback volume 0 through 127 */ 
I* count of tracks in the score */ 

/* ---------- NAME -----------------------------------------------------*/ 
/*NAME chunk contains a CHAR[], the musical score's name. */ 

/* ---------- Copyright (c) --------------------------------------------*/ 
/* "(c) "chunk contains a CHAR[], the FORM's copyright notice. */ 

/* ---------- AUTH -----------------------------------------------------*/ 
/* AUTH chunk contains a CHAR[], the name of the score's author. */ 

I* ---------- ANNO -----------------------------------------------------*/ 
/*ANNO chunk contains a CHAR[], the author's text annotations4 */ 

/* ---------- INSl -----------------------------------------------------*/ 
/* Constants for the Refinstrument' s "type" field. */ 
#define INSl Name 0 /* just use the name; ignore datal, data2 */ 
#define INSl=MIDI 1 /* <datal, data2> = MIDI <channel, preset> */ 

typedef struct I 
UBYTE iRegister; /* set this instrument register number */ 
UBYTE type; /* instrument reference type (see above) */ 
UBYTE datal, data2; /* depends on the "type" field */ 
char name[60]; /*instrument name*/ 
) Refinstrument; 

I* ---------- TRAK -----------------------------------------------------*/ 



U1 
0 
1\) 

:::0 

~ 
~ 
3 
~ 
:::0 
CD 
CD' 
(ti 
:::s 
~ 

~ :::s c: 
Ill 
:--:-

~ 
<::: 
c=s· 
CD 
(I) 

iffp/smus.h Page 2 

/* TRAK chunk contains an SEvent[). *I 

/* SEvent: Simple 
typedef struct { 

UBYTE siD; 
UBYTE data; 

musical event. */ 

I* SEvent type code */ 
/* siD-dependent data */ 

} SEvent; 

/* SEvent type codes "siD". */ 
#define SID FirstNote 0 
#define SID-LastNote 127 

#define SID Rest 128 

#define SID Instrument 129 
#define SID-TimeSig 130 
#define SID-KeySig 131 
#define SID-Dynamic 132 
#define SID-MIDI Chnl 133 
#define SID-MIDI-Preset 134 
#define SID-Clef- 135 

#define SID_Tempo 136 

/* siDs in the range SID FirstNote through 
* SID LastNote (sign bit= 0) are notes. The 
* siD-is the MIDI tone number (pitch). *I 

/* a rest; same data format as a note. */ 

/* set instrument number for this track. */ 
I* set time signature for this track. */ 
/* set key signature for this track. */ 
/* set volume for this track. */ 
/* set MIDI channel number (sequencers) */ 
/* set MIDI preset number (sequencers) */ 
/* inline clef change. 

* O=Treble, l=Bass, 2=Alto, 3=Tenor. */ 
/* Inline tempo change in beats per minute.*/ 

/* SID values 144 through 159: reserved for Instant Music SEvents. */ 

/* The rema1n1ng siD values up through 254: reserved for future 
* standardization. */ 

#define SID_Mark 255 /* SID reserved for an end-mark in RAM. */ 

/* ---------- SEvent 
typedef struct { 

FirstNote .. LastNote or Rest-----------------------*/ 

unsigned tone 
chord 
tieOut 
nTuplet 

8, 
1, 
1, 
2, 

dot :1, 
division :3; 

} SNote; 

/* MIDI tone number 0 to 127; 128 = rest */ 
/* 1 = a chorded note */ 
I* 1 = tied to the next note or chord */ 
/* 0 = none, 1 = triplet, 2 = quintuplet, 

* 3 = septuplet */ 
/* dotted note; multiply duration by 3/2 */ 
/* basic note duration is 2**-division: 
* 0 = whole note, 1 = half note, 2 = quarter 
*note, ... 7 = 128th note*/ 

/* Warning: An SNote is supposed to be a 16-bit entity. 
* Some C compilers will not pack bit fields into anything smaller 
* than an int. So avoid the actual use of this type unless you are certain 
* that the compiler packs it into a 16-bit word. 
*I 

/* You may get better object code by masking, ORing, and shifting using the 
* following definitions rather than the bit-packed fields, above. */ 

#define noteChord (1<<7) /* note is chorded to next note */ 

#define noteTieOut (1<<6) I* note/chord is tied to next note/chord */ 

#define noteNShift 4 /* shift count for nTuplet field */ 
#define noteN3 (l<<noteNShift) /* note is a triplet */ 
#define noteN5 (2<<noteNShift) /* note is a quintuplet */ 
#define noteN7 (3<<noteNShift) /* note is a septuplet */ 
#define noteNMask noteN7 /* bit mask for the nTuplet field */ 

#define noteDot (1<<3) /* note is dotted */ 

iffQ!smus.h Page3 

#define noteDShift 
#define noteDl 
#define noteD2 
#define noteD4 
#define noteD8 
#define noteD16 
#define noteD32 
#define noteD64 
#define noteD128 
#define noteDMask 

0 
(O<<noteDShift) 
(l<<noteDShift) 
(2<<noteDShift) 
(3<<noteDShift) 
( 4<<noteDShift) 
( 5<<noteDShift) 
(6<<noteDShift) 
(7<<noteDShift) 
noteD128 

/* shift count for division field */ 
/* whole note division */ 
/* half note division */ 
/* quarter note division */ 
/* eighth note division */ 
/* sixteenth note division */ 
/* thirty-secondth note division */ 
I* sixty-fourth note division */ 
/* 1/128 note division */ 
/* bit mask for the division field */ 

#define noteDurMask Ox3F I* bit mask for all duration fields 
* division, nTuplet, dot */ 

/* Field access: */ 
#define IsChord(snote) 
#define IsTied(snote) 
#define NTuplet(snote) 
#define IsDot(snote) 
#define Division(snote) 

(((UWORD)snote) & noteChord) 
(((UWORD)snote) & noteTieOut) 
((((UWORD)snote) & noteNMask) >> noteNShift) 
(((UWORD)snote) & noteDot) 
((((UWORD)snote) & noteDMask) >> noteDShift) 

/* ---------- TimeSig 
typedef struct ( 

unsigned type 
timeNSig 
timeDSig 

SEvent -------------------------------------------*/ 

} STimeSig; 

#define timeNMask OxF8 
#define timeNShift 3 

#define timeDMask Ox07 

/* Field access: */ 
#define TimeNSig(sTime) 
#define TimeDSig(sTime) 

8, /* = SID TimeSig */ 
5, /* time Signature "numerator 11 timeNSig + 1 */ 
3; /* time signature "denominator" is 

* 2**timeDSig: 0 = whole note, 1 = half 
*note, 2 =quarter note, ... 
* 7 = 128th note */ 

I* bit mask for timeNSig field */ 
/* shift count for timeNSig field */ 

/* bit mask for timeDSig field */ 

( ( ( (UWORD) sTime) & timeNMask) >> timeNShift) 
( ( (UWORD) sTime) & timeDMask) 

I* ---------- KeySig SEvent --------------------------------------------*/ 
/* 11 data 11 value 0 = Cmaj; 1 through 7 = G,D,A,E,B,F#,C#; 

* 8 through 14 = F,Bb,Eb,Ab,Db,Gb,Cb. */ 

/* ---------- Dynamic SEvent -------------------------------------------*/ 
/* "data 11 value is a MIDI key velocity 0 .. 127. */ 

I* ---------- SMUS Writer Support Routines -----------------------------*/ 
/* Just call this to write a SHDR chunk. */ 
#define PutSHDR(iff, ssHdr) \ 

PutCk(iff, ID_SHDR, sizeof(SScoreHeader), (BYTE *)ssHdr) 

#endif 



"'Tl 
"'Tl 
(J) 
"0 
CD 
g 
()" 

a 
(5" 
::::l 

(f) 
0 
c: 
0 
CD 
() 
0 
Q. 
CD 

01 
0 w 

apps/24bitDemo/24bitDemo.c 
/* 24b1tDemo.c 05/91 C. Scheppner CBM 

* Example which creates a 24-bit raster, saves it as a 24-bit ILBM, 
* then loads it as a brush and shows it to you 4 planes at a time 

Page 1 

* Optionally (if given a filename) just displays 4 planes at a time. 

* requires linkage with several IFF modules 
* see Makefile 
*I 

#include "iffp/ilbrnapp.h" 

#ifdef LATTICE 
int CXBRK(void) ( return(O); } /*Disable Lattice CTRLIC handling *I 
int chkabort(void) ( return(O); ) I* really*/ 
#endif 

void cleanup(void); 
void bye(UBYTE *s,int error); 

#define MINARGS 1 
char *vers = 11 \0$VER: 24bitDemo 37.5 11 ; 

char *Copyright = "24bitDemo v37. 5 (Freely Redistributable) "; 
char *usage = "Usage: 24bitDemo [loadname] (saves/loads if no loadname given)''; 

struct Library *IntuitionBase =NULL 
struct Library *GfxBase =NULL 
struct Library *IFFParseBase =NULL 

I* Note - these fields are also available in the ILBMinfo structure *I 
struct Screen *scr; /* for ptr to screen structure */ 
struct Window *win; /* for ptr to window structure */ 
struct RastPort *wrp; I* for ptr to RastPort *I 
struct ViewPort *vp; /* for ptr to Viewport *I 

struct NewWindow mynw 
0, 0, I* LeftEdga and TopEdge *I 
o, 0, /* Width and Height *I 
-1, -1, /* DetailPen and BlockPen */ 
VANILLAKEYIMOUSEBUTTONS, I* IDCMP Flags with Flags below *I 
BACKDROPIBORDERLESSISMART REFRESHINOCAREREFRESHIACTIVATEIRMBTRAP, 
NULL, NULL, - I* Gadgat and Image pointers *I 
NULL, /* Title string */ 
NULL, I* Screen ptr null till opened *I 
NULL, I* BitMap pointer *I 
50, 20, I* MinWidth and MinHeight *I 
0 , 0, I* MaxWidth and MaxHeight *I 
CUSTOMSCREEN /* Type of window */ 
}; 

BOOL FromWb; 

I* ILBM Property chunks to be grabbed 
* List BMHD, CMAP and CAMG first so we can skip them when we write 
* the file back out (they will be written out with separate code) 
*I 

LONG ilbmprops [] = ( 
ID ILBM, 
ID-ILBM, 
ID-ILBM, 
ID-ILBM, 

ID BMHD, 
ID-CMAP, 
ID-CAMG, 
ID-CCRT, 

I* ILBM 
LONG 

I* ILBM 
LONG 

apps/24bitDemo/24bitDemo.c 
ID ILBM, ID AUTH, 
ID-ILBM, ID-Copyright, 
TAG DONE -
}; 

Collection chunks (more than one in file) to be gathered */ 
ilbmcollects[] = { 

ID ILBM, ID CRNG, 
TAG DONE -
); 

Chunk to stop on *I 
ilbmstops [] = { 

ID ILBM, ID BODY, 
TAG DONE -
);-

UBYTE nomem [] 
UBYTE noiffh [] 

"Not enough memory\n .. ; 
"Can't alloc iff\n 11 ; 

I* For our allocated ILBM frames *I 
struct ILBMinfo *ilbm[2]; 

#define SCRPLANES 4 

USHORT colortable[32]; 
USHORT cstarts[]= { OxOOO, Ox800, OxOOO, Ox080, OxOOO, Ox008 ); 
USHORT coffs[] = { OxlOO, OxlOO, OxOlO, OxOlO, OxOOl, OxOOl ); 

UBYTE *ilbmname = "RAM:24bit.ilbm"; 
UBYTE *rgbnames []={ "RO", "Rl", 11 R2", "R3", "R4", "RS", "R6", "R7", 

"GO","Gl","G2","G3","G4","G5","G6","G7", 
"BO", "Bl", "B2", "B3", "B4", "B5", "B6", "B7" ) ; 

UBYTE *endtextl 
UBYTE *endtext2 

"Displayed 24 planes, 4 at a time."; 
11 Press mousebutton or key to exit. 11 ; 

I* 
*MAIN 
*I 

void main(int argc, char **argv) 

RastPort *rp = NULL; 
BitMap dummy = {0); 
BitMap *bm = NULL, *xbm, *sbm; 

error = OL; 

Page 2 

( 
struct 
struct 
struct 
LONG 
USHORT 
ULONG 
UBYTE 
BOOL 
int 

width, height, depth, pwidth, pheight, pmode, extra, rgb; 
plsize; 
*tpp; 
DoSave = TRUE; 
k, p, s, n; 

FromWb argc ? FALSE : TRUE; 

if((argc > l)&&(argv[argc-1] [0]=='?')) 
{ 
printf("%s\n%s\n", Copyright, usage); 
bye("",RETURN_OK); 
l 

if(argc==2) 
{ 
ilbmname = argv[l]; 
DoSave = FALSE; 



01 
0 
~ 

JJ 

~ 
~ 
3 
~ 
JJ 
(I) 
(i) 
(i) 
::J 

~ 

~ 
::J 
c: 
~ 
CJ 
(J) 
<::: o· 
(J) 
(f) 

I* 

apps/24bitDemo/24bitDemo.c 

I* Open Libraries *I 

if ( r (IntuitionBase = OpenLibrary ( "intuition.library", 0))) 
bye( 11 Can't open intuition library. \n 11 , RETURN_WARN); 

if (! (GfxBase = OpenLibrary ("graphics .library", 0))) 
bye("Can't open graphics library. \n", RETURN_WARN); 

if (! (IFFParseBase = OpenLibrary ("iffparse.library", 0))) 
bye("Can't open iffparse library. \n",RETURN_WARN); 

* Allee ILBMinfo structs 
*I 

if(! (ilbm[O] = (struct ILBMinfo *) 
AllocMem(sizeof(struct ILBMinfo),MEMF PUBLICIMEMF CLEAR))) 

bye(nomem,RETURN FAIL); -
if(' (ilbm[1] = (struct ILBMinfo *) 

AllocMem(sizeof(struct ILBMinfo),MEMF PUBLICIMEMF CLEAR))) 
bye(nomem,RETURN_FAIL); - -

I* 
* Here we set up our ILBMinfo fields for our 
* application. 
* Above we have defined the propery and collection chunks 
* we are interested in (some required like BMHD) 
*I 

I* 

lbm[O]->Parseinfo.propchks 
lbm[O]->Parseinfo.collectchks 
lbm[O]->Parseinfo.stopchks 

ilbm[O]->windef &mynw; 

*ilbm[l] = *ilbm[O]; 

* Alloc IFF handles for frame 
*I 

ilbmprops; 
ilbmcollects; 
ilbmstops; 

Page 3 

if(' (ilbm[O]->Parseinfo.iff 
if(' (ilbm[1]->Parseinfo.iff 

AllociFF())) bye(noiffh,RETURN FAIL); 
AllociFF{))) bye{noiffh,RETURN=FAIL); 

I* for saving our demo 24-bit ILBM *I 

width 
height 
depth 

I* Page 
pwidth 
pheight 
pmode 
pmode 

320; 
200; 
24; 

width, height, and mode for saved 
width < 320 ? 320 : width; 
height < 200 ? 200 : height 

= pwidth >= 640 ? HIRES : OL 
I= pheight >= 400 ? LACE : OL 

plsize = RASSIZE(width,height); 

if(!DoSave) goto nosave; 

I* 
* Allocate Bitmap and planes 
*I 

ILBM *I 

apps/24bitDemo/24bitDemo.c Page 4 

extra = depth > 8 ? depth - 8 : 0; 
if(ilbm[O]->brbitmap = AllocMem{sizeof(struct BitMap) + (extra<<2), 

MEMF _CLEAR) ) 
{ 
bm = ilbm[O]->brbitmap; 
InitBitMap(bm,depth,width,height); 
for(k=O, error=O; k<depth && {!error); k++) 

{ 
if(! (bm->Planes[k] = AllocRaster(width,height))) 

error = IFFERR_NOMEM; 
if(! error) 

{ 
BltClear(bm->Planes[k], RASSIZE(width,height),O); 
} 

if(!error) 
{ 
if(! (rp = AllocMem(sizeof(struct RastPort),MEMF CLEAR))) 

error = IFFERR NOMEM; -
else -

{ 
InitRastPort(rp); 
rp->BitMap = bm; 
rp->Mask = OxOl; 
SetAPen (rp, 1); 
SetDrMd(rp,JAM1); 

/*we'll render 1 plane at a time*/ 

} 

if(!error) 
{ 
/* Put something recognizable in the planes. 
* Our bitmap is not part of a screen or viewport 
* so we can fiddle with the pointers and depth 
*I 

tpp = bm->Planes[O]; 
bm->Depth = 1; 
for(k=O; k<depth; k++) 

I* save first plane pointer *I 

I* swap in planeptrs 1 at a time *I 
{ 
bm->Planes[O] = bm->Planes[k]; 
Move(rp,k * 10, (k * 8) + 8); 
Text(rp, rgbnames[k], 2); 
} 

I* render rgb bitname text *I 

bm->Depth = depth; 
bm->Planes[O] = tpp; 

I* restore depth *I 
I* and first pointer *I 

I* Save the 24-bit ILBM *I 
printf("Saving %s\n",ilbmname); 
error= saveilbm(ilbm[O], ilbm[O]->brbitmap, pmode, 

width, height, pwidth, pheight, 
NULL, 0, 0, I* colortable *I 
rnskNone, 0, /* masking, transparent */ 
NULL, NULL, I* chunklists *I 
ilbmname); 

I* Free our bitmap *I 
for(k=O; k<depth; k++) 

{ 
if(ilbm[O]->brbitmap->Planes[k]) 

FreeRaster(ilbm[O]->brbitmap->Planes[k],width,height); 
} 

FreeMem(ilbm[O]->brbitmap, sizeof(struct BitMap) + (extra<< 2)); 
ilbm[O]->brbitmap =NULL; 
if(rp) FreeMem(rp, sizeof(struct RastPort)); 



"T1 
"T1 
(f) 
"0 

C1) 
(") 
=.; 
()' 

~ 
Ci' 
::::l 

(f) 
0 
c 
0 
C1) 

() 
0 a. 
C1) 

(}1 
0 
(}1 

apps/24bitDemo/24bitDemo.c 

if(error) 
{ 
printf("%s\n",IFFerr(error)); 
bye(" " RETURN FAIL); 
} -

Page 5 

nosave: 

/* Nor.mally you would use showilbm() to open an appropriate acreen 
* and display an ILBM in it. However, this is a 24-bit ILBM 
* so we will load it as a brush {bitmap) . 
* Here we are demonstrating 
* - first querying an ILBM to get its BMHD and CAMG (real or computed) 

then opening our own display 
* - then loading the 24-bit ILBM as a brush (bitmap) and displaying 
* it 4 planes at a time in our 4-plane screen. 
*I 

printf("Attempting to load %s as a bitmap and display 4 planes at a time\n", 
ilbmname); 

if(! (error= queryilbm(ilbm[O],ilbmname))) 
{ 
D(bug("24bitDemo: after query, this ILBM is %ld x %ld x %ld,modeid=$%lx\n", 

ilbm[O]->Bmhd.w, ilbm[O]->Bmhd.h, ilbm[O]->Bmhd.nPlanes, ilbm[O)->camg)); 

I* Note - you could use your own routines to open your 
*display, but if so, you must initialize ilbm[O]->scr, 
* ilbm[O]->win, ilbm[O]->wrp, ilbm[O]->srp, and ilbm[O]->vp for your 
* display. Here we will use opendisplay() which will initialize 
*those fields. 
*I 

if(! (opendisplay(ilbm[O], 
MAX(ilbm[O]->Bmhd.pageWidth, ilbm[O]->Bmhd.w), 
MAX(ilbm[O]->Bmhd.pageHeight,ilbm[O)->Bmhd.h), 
MIN(ilbm[O]->Bmhd.nPlanes, SCRPLANES), 
ilbm[O]->camg))) 

printf("Failed to open display\n"); 
) 

else 
( 
D(bug("24bitDemo: opendisplay (%ld planes) successful \n", SCRPLANES)); 

scr = ilbm(O]->scr 
win= ilbm[O]->win 
wrp = ilbm(O]->wrp 
vp = ilbm[O]->vp; 

if(! (error= loadbrush(ilbm[l), ilbmname))) 
( 
D(bug("24bitDemo: loadbrush successful\n")); 

/* Note - we don't need to examine or copy any 
* chunks from the file, so we will close file now 
*I 

closeifile(ilbm[O]); 
ScreenToFront(ilbm(O]->scr); 

xbm = &dummy; 
sbm ; &scr->BitMap; 
bm = ilbm[l]->brbitmap; 
depth = bm->Depth; 

I* spare bitmap *I 
I* screen's bitmap *I 
I* the 24-plane bitmap *I 

apps/24bitDemo/24bitDemo.c 

InitBitMap(xbm,SCRPLANES,scr->Width,scr->Height); 

I* Show the 24 planes *I 
for(p=O; p<depth; p+=SCRPLANES) I* 4 at a time *I 

( 
SetRast(&scr->RastPort, 0); 
for(s=O; s<SCRPLANES; s++) 

( 

Page 6 

if((p+s) <depth) xbm->Planes[s) 
else xbm->Planes[s) 
) 

bm->Planes[p+s]; 
NULL, xbm->Depth--; 

I* Blit planes to the screen *I 
BltBitMap(xbm, 0, 0, 

sbm, 0, 0, 
scr->Width, scr->Height, 
OxCO, OxOF, NULL); 

I* Emulate 8-bit color with 4-bit per gun colors 
* by using each rgb value twice 
*I 

for(n;O, rgb=cstarts[p ISCRPLANES]; n < 16; n++) 
( 
if(!n) colortable(n) = OxFFF; 
else colortable[n] = rgb; 
I* bump gun for every 2 planes since 
* we only have 8 bits per gun 
*I 

if(n & 1) rgb += coffs[ pI SCRPLANES); 
} 

LoadRGB4(vp, colortable, 16); 
Delay(SO); 
) 

SetRast(&scr->RastPort, 0); 

SetAPen(wrp, 1); 
Move(wrp, 24, 80); 
Text(wrp, endtext1, strlen(endtext1)); 
Move(wrp, 24, 120); 
Text(wrp, endtext2, strlen(endtext2)); 

Wait(l<<win->UserPort->mp SigBit); 
unloadbrush(ilbm(l]); I* deallocs colors, 
) 

closeifile if needed */ 

closedisplay(ilbm[O]); 
printf("Done\n"); 
) 

if(error) printf ( "%s\n", IFFerr (error)); 

cleanup(); 
exit(RETURN OK); 
} -

void bye(UBYTE *s,int error) 
( 
if( (*s) && ( !FromWb)) printf ("%s\n", s); 
cleanup(); 
exit (error) ; 
) 



01 
0 
(j) 

J:J 

~ 
~ 
3 
9?. 
J:J 
(J) 

<b' 
(i) 
:::s 
(') 
(J) 

s::: 
Ill 
:::s c:: 
Ill 
:-;-

CJ 
(J) 

" C)• 
(J) 
{/) 

a_p_Q_s/24bitDemo/24bitDemo.c Page 7 

void cleanup () 
{ 

if(ilbm[O]) 
{ 
if(ilbm[O]->Parseinfo.iff) 
FreeMem(ilbm[O],sizeof(struct 
} 

if(ilbm[l]) 
{ 
if(ilbm[l]->Parseinfo.iff) 
FreeMem(ilbm[l],sizeof(struct 
} 

FreeiFF(ilbm[O]->Parseinfo.iff); 
ILBMinfo}) ; 

FreeiFF(ilbrn[l]->Parseinfo.iff}; 
ILBMinfo)) ; 

if (GfxBase) 
if(IntuitionBase) 
if(IFFParseBase) 

CloseLibrary(GfxBase); 
CloseLibrary(IntuitionBase); 
CloseLibrary(IFFParseBase); 

} 

a s/ILBMDemo/ILBMDemo.c Page 1 

I* ILBMDemo.c 05191 C. Scheppner CBM 

* * Demonstrates displaying an ILBM, loading a brush, 
saving an ILBM, and optionally printing a screen (CTRL-p) 
Use -c (or -cl, -c2, etc) as filename to read from or save to clipboard. 

* * requires linkage with several iffp modules - see Makefile 
*I 

#include "iffplilbmapp.h" 

#ifdef LATTICE 
int CXBRK(void) { return(O); I I* Disable Lattice CTRLIC handling *I 
int chkabort(void) { return(O); I I* really *I 
#endif 

void chkmsg(void); 
void cleanup(void); 
void bye(UBYTE *s,int error); 

#define SAVECHANGES 

#define MINARGS 3 
char *vers = "\0$VER: ILBMDem.o 37.5 11 ; 

char *Copyright= "ILBMDemo v37.5 (Freely Redistributable) "; 
char *usage = 
11 Usage: ILBMDemo sourceilbm destilbm [brushname] (CTRL-p to print screen) \n'' 
"Displays source, optionally loads and blits brush, saves to dest\n" 
"Use filename -c[unit] (ie. -c, -c1, -c2, etc.) for clipboard\n"; 

char *savena.me; 

struct Library *IntuitionBase 
struct Library *GfxBase 
struct Library *IFFParseBase 

NULL 
NULL 
NULL 

/* Note - these fields are also available in the 
struct Screen *scr; I* for ptr 
struct Window *win; I* for ptr 
struct RastPort *wrp; I* for ptr 
~ttruct ViewPort *vp; I* for ptr 

struct IntuiMessage *msg; 

struct NewWindow mynw = 

ILBMinfo structure */ 
to screen structure */ 
to window structure */ 
to RastPort *I 
to Viewport *I 

0, 0, I* LeftEdge and TopEdge *I 
0, 0, I* Width and Height *I 
-1, -1 1 /* DetailPen and BlockPen */ 
VANILLAKEYIMOUSEBUTTONS, I* IDCMP Flags with Flags below *I 
BACKDROPIBORDERLESSISMART REFRESHINOCAREREFRESHJACTIVATEIRMBTRAP, 
NULL, NULL, - I* Gadget and Image pointers *I 
NULL, I* Title string *I 
NULL, I* Screen ptr null till opened *I 
NULL, I* BitMap pointer *I 
50, 20, I* MinWidth and MinHeight *I 
0 , 0, I* MaxWidth and MaxHeight *I 
CUSTOMSCREEN I* Type of window *I 
I; 

BOOL FromWb, Done; 

I* ILBM Property chunks to be grabbed 
* List BMHD, CMAP and CAMG first so we can skip them when we write 



11 
11 
(/) 
"0 
CD 

~ c=;· 
a 
6" 
:::l 

(/) 
0 
c: 
0 
CD 
() 
0 a. 
CD 

01 
0 
....... 

apps/ILBMDemo/ILBMDemo.c 
* the file back out (they will be written out with separate code) 
*I 

LONG 

I* ILBM 
LONG 

I* ILBM 
LONG 

ilbmprops [] = { 
ID ILBM, 
ID-ILBM, 
ID-ILBM, 
ID-ILBM, 
ID-ILBM, 
ID-ILBM, 
TAG DONE 
I;-

ID BMHD, 
ID-CMAP, 
ID-CAMG, 
ID-CCRT, 
ID-AUTH, 
ID=Copyriqht, 

Collection chunks (more than one in file) to be qathered *I 
ilbmcollects[J = { 

ID ILBM, ID CRNG, 
TAG DONE -
I; 

Chunk to stop on *I 
ilbmstops[J = ( 

ID ILBM, ID BODY, 
TAG DONE -
I; 

I* For test of addinq new chunks to saved FORM *I 
struct Chunk newchunks[2J = ( 

( 
&newchunks[lJ, 
ID ILBM, ID AUTH, IFFSIZE UNKNOWN, 
"cAs CBM"I,- -
( -
NULL, 
ID ILBM, ID NAME, IFFSIZE UNKNOWN, 
"Untitled No. 27"1. 
I; 

UBYTE nomem[J = "Not enouqh memory\n"; 
UBYTE noiffh[J = "Can't alloc iff\n"; 

/* our indexes to reference our frames 
* DEFault, BRUsh, and SCReen 
*I 

#define DEF 0 
#define BRU 1 
#define SCR 2 
#define UICOUNT 3 

I* For our ILBM frames *I 
struct ILBMinfo *ilbms[UICOUNTJ = ( NULL I; 

I* 
*MAIN 
*I 

void main(int arqc, char **arqv) 
( 

#ifdef SAVECHANGES 
struct Chunk *chunk; 
CamqChunk *camq; 
LONG saverror; 

#endif 
UBYTE *ilbmname=NULL, *brushname=NULL, ans, c; 
BPTR lock; 
LONG error; 

Page 2 apps/ILBMDemo/ILBMDemo.c 

FromWb = arqc ? FALSE : TRUE; 

if((arqc<MINARGS) I I (arqv[arqc-lJ [OJ=='?')) 
( 
printf("%s\n%s\n",Copyriqht,usaqe); 
bye("",RETURN OK); 
I -

switch (arqc) 
( 
case 4: 

brushname 
case 3: 

savename 
ilbmname 
break; 

arqv[3J; 

arqv[2]; 
arqv[lJ; 

I* if dest not clipboard, warn if dest file already exists *I 
if(strcmp(savename, "-c")) 

{ 
if(lock = Lock(savename,ACCESS READ)) 

( -
UnLock(lock); 

Page3 

printf("Dest file \"%s\" already exists. OVerwrite (y or n) ? " 
savename); 

ans = 0; 
while((c = qetchar()) != '\n') if(!ans) ans = c 1 Ox20; 
if(ans == 'n') bye("Exitinq.\n",RETURN OK); 
I -

I* 

I* Open Libraries *I 

if(! (IntuitionBase = OpenLibrary("intuition.library", 0))) 
bye("Can't open intuition library. \n",RETURN_WARN); 

if(! (GfxBase = OpenLibrary("qraphics.library",O))) 
bye ("Can't open qraphics library. \n", RETURN_WARN); 

if(!(IFFParseBase = OpenLibrary("iffparse.library",O))) 
bye("Can't open iffparse library.\n",RETURN_WARN); 

.<1 

* Alloc three ILBMinfo structs (one each for defaults, screen, brush) 
*I 

I* 

if(! (ilbms[OJ = (struct ILBMinfo *) 
AllocMem(UICOUNT * sizeof(struct ILBMinfo),MEMF PUBLICIMEMF CLEAR))) 

else 
bye(nomem,RETURN_FAIL); - -

( 
ilbms[BRU] 
ilbms[SCRJ 
I 

ilbms [OJ + l; 
ilbms[OJ + 2; 

* Here we set up default ILBMinfo fields for our 
*application's frames. 
* Above we have defined the propery and collection chunks 
* we are interested in (some required like BMHD) 
*Since all of our frames are for ILBM's, we'll initialize 
* one default frame and clone the others from it. 
*I 



01 
0 
o:> 

::0 

~ 
~ ...., 
:::J 
(]) 

::0 
(]) 

(i) 
(i) 
:::J 

f6 
~ 
:::J 
c: 
~ 
c::J 
(]) 
<:: 
()' 
(]) 
(J') 

I* 

a_QJ:>_s/ILBMDemo/ILBMDemo.c 
lbms[DEF]->Parseinfo.propchks 
lbms[DEF]->Parseinfo.collectchks 
lbms[DEF]->Parseinfo.stopchks 

ilbms[DEF]->windef &mynw; 

lbmprops; 
lbmcollects; 
lbrnstops; 

* Initialize our working ILBM frames from our default one 
*I 

/* 

*ilbrns [SCR] 
*>lbrns[BRU] 

*ilbrns [DEF]; 
*ilbrns [DEF] ; 

/* for our screen */ 
/* for our brush */ 

* Allee two IFF handles (one for screen frame, one for brush frame) 
*I 

Page 4 

if(' (ilbms[SCR]->Parseinfo.iff 
if(' (ilbms[BRU]->Parseinfo.iff 

AllociFF())) bye(noiffh,RETURN FAIL); 
AllociFF())) bye(noiffh,RETURN=FAIL); 

I* Load and display an ILBM 
*I 

if(error ~ showilbrn(ilbms[SCR],ilbmnarne)) 
{ 
printf( 11 Can't load background \"%s\"\n",ilbrtU'lame); 
bye ("",RETURN WARN) ; 
} -

/* These were set up by our 
win~ ilbms[SCR]->win 
wrp; ilbms[SCR]->wrp 
scr = ilbms[SCR]->scr 
vp ; ilbms[SCR]->vp; 

ScreenToFront(scr); 

successful showilbm() above */ 
/* our window */ 
/*our window's RastPort */ 
/* our screen */ 

/*our screen's ViewPort*/ 

I* Now let's load a brush and blit it into the window 
*I 

if (brushnarne) 
{ 
if (error= loadbrush(ilbms[BRU],brushname)) 

{ 
printf("Can't load brush \"%s\"\n",brushname); 
bye ("",RETURN WARN) ; 
} -

else /* Success */ 
{ 
D(bug("About to Blt bitmap $%lx to rp $Ux, w=%ld h=%ld\n", 

ilbms[BRU]->brbitmap,wrp,ilbms[BRU]->Bmhd.w,ilbms[BRU]->Bmhd.h)); 
BltBitMapRastPort(ilbms[BRU]->brbitmap,O,O, 

wrp, 0, 0, 
ilbms[BRU]->Bmhd.w, ilbms[BRU]->Bmhd.h, 
OxCO); 

#ifdef SAVECHANGES 

/* This code is an example for Read/Modify/Write programs 

* * We copy off the parsed chunks we want to preserve, 
* close the IFF read file, reopen it for write, 
* and save a new ILBM which 
* will include the chunks we have preserved, but 
* with newly computed and set-up BMHD, CMAP, and CAMG. 
*I 

if(' (ilbms[SCR]->Parseinfo.copiedchunks 

else 

apps/ILBMDemo/ILBMDemo.c 
copychunks(ilbms[SCR]->Parseinfo.iff, 

ilbmprops, ilbmcollects, 
MEMF PUBLIC) ) ) 

printf(0 error cloning chunks\n''); 

{ 
/* we can close the file now */ 
closeifile(ilbms[SCR]); 

printf("Test of copychunks and findchunk:\n"); 

I* Find copied CAMG chunk if any */ 

Page 5 

if(chunk = findchunk(ilbms[SCR]->Parseinfo.copiedchunks,ID ILBM,ID CAMG)) 
{ -
camg = (CamgChunk *)chunk->ch Data; 
printf("CAMG: $%08lx\n",camg-:>"ViewModes); 
} 

else printf ("No CAMG found\n") ; 

I* Find copied CRNG chunks if any *I 
if(chunk = findchunk(ilbms[SCR]->Parseinfo.copiedchunks,ID ILBM,ID CRNG)) 

( - -
while((chunk)&&(chunk->ch ID == ID CRNG)) 

{ - -
printf("Found a CRNG chunk\n"); 
chunk = chunk->ch Next; 
} -

} 
else printf("No CRNG chunks found\n"); 
) 

printf(''\n.About to save screen as %s, adding NAME and AUTH chunks\n 11 , 

savename); 

if(saverror = screensave(ilbms[SCR], ilbms[SCR]->scr, 
ilbms[SCR]->Parseinfo.copiedchunks, 
newchunks, 

#endif 

Done = FALSE; 
while (!Done) 

{ 

sa venarne) ) 
printf("%s\n 11 , IFFerr (saverror)); 

Wait(l<<win->UserPort->mp SigBit); 
chkmsg(); -
} 

cleanup(); 
exit(RETURN OK); 
) -



..,., ..,., 
(/) 
"0 
CD 
() 
=.; 
(')" 

~ 
6" 
:::l 

(/) 
0 
c 
c:; 
CD 

0 
0 
0. 
CD 

(.)1 
0 
r.o 

apps/ILBMDemo/ILBMDemo.c 

void chkmsg(void) 
{ 
LONG 
ULONG 
UWORD 

error; 
class; 
code; 

WORD mousex, mousey; 

while(msg = (struct IntuiMessage *)GetMsg(win->UserPort)) 
{ 
class = msg->Class; 
code = rnsg->Code; 
mousex = msg->MouseX; 
mousey = msg->MouseY; 

ReplyMsg(msg); 
switch (class) 

{ 
case MOUSEBUTTONS: 
switch(code) 

{ 
/* emulate a close gadget */ 
case SELECTDOWN: 

if ( (mousex < 12) && (mousey < 12)) 
break; 

default: 
break; 

} 
case VANILLAKEY: 
switch (code) 

{ 
/* also quit on CTRL-C, CTRL-D, or q */ 
case 'q': case Ox04: case Ox03: 

Done = TRUE; 
break; 

case OxlO: /* CTRL-p means print */ 

/* Print the whole screen */ 
if(error=screendump(ilbms[SCR]->scr, 

o, 0, 
ilbms[SCR]->scr->Width, 
ilbms[SCR]->scr->Height, 
0,0)) 

Done = TRUE; 

Page 6 

printf ( 11 Screendump printer error=%ld\n H, error) ; 
break; 

default: 
break; 

} 
default: 
break; 
} 

void bye(UBYTE *s,int error) 
{ 
if ( (*s) && ( •FromWb)) printf ("%s\n", s); 
cleanup(); 
exit (error); 
} 

void cleanup() 
{ 
if ( ilbms [ SCR] ) 

{ 

apps/ILBMDemo/ILBMDemo.c 

if(ilbms[SCR]->scr) unshowilbm(ilbms[SCR]); 
#ifdef SAVECHANGES 

freechunklist(ilbms[SCR]->Parseinfo.copiedchunks); 
#endif 

Page 7 

if(ilbms[SCR]->Parseinfo.iff) 
} 

FreeiFF(ilbms[SCR]->Parseinfo.iff); 

if (ilbms [BRU]) 
{ 
if(ilbms[BRU]->brbitmap) 
if(ilbms[BRU]->Parseinfo.iff) 
} 

unloadbrush(ilbms[BRU]); 
FreeiFF(ilbms[BRU]->Parseinfo.iff); 

if(ilbms [OJ) 
{ 
FreeMem(ilbms[O],UICOUNT * sizeof(struct ILBMinfo)); 
} 

if (GfxBase) 
if(IntuitionBase) 
if(IFFParseBase) 
) 

CloseLibrary(GfxBase); 
CloseLibrary(IntuitionBase); 
CloseLibrary(IFFParseBase); 



01 _.. 
0 

:::0 

~ 
~ 
3 
3?.. 
:::0 
C1l 
~ 
(i3 
::::! 

2 
~ 
§ 
:-:-
CJ 
C1l 

"" ()• 
C1l 
(/) 

apps/ILBMLoad/ILBMLoad.c 
I* ILBMLoad.c 05191 C. Scheppner CBM 

* Example which 
* - first queries an ILBM to deter.mine size and mode 
* - then opens an appropriate screen and window 

- then loads the ILBM into the already opened screen 

* For clipboard, use filename -c[unit] (like -c, -cl, -c2, etc.) 

* * requires linkage with several IFF modules 
* see Makefile 
*I 

#include "iffplilbmapp.h" 

#ifdef LATTICE 

Page 1 

int CXBRK(void) { return(O); ) I* Disable Lattice CTRLIC handling *I 
int chkabort(void) { return(O); ) I* really*/ 
#endif 

void cleanup(void); 
void bye(UBYTE *s,int error); 

#define MINARGS 2 
char *vers = "\0$VER: ILBMLoad 37.5"; 
char *Copyright= "ILBMLoad v37.5 (Freely Redistributable)"; 
char *usage= 11Usage: ILBMLoad ilbmname (-c[unit] for clipboard 11 ; 

struct Library *IntuitionBase =NULL 
struct Library *GfxBase =NULL 
struct Library *IFFParseBase =NULL 

/* Note - these fields are also available in the 
struct Screen *scr; I* for ptr 
struct Window *win; I* for ptr 
struct RastPort *wrp; I* for ptr 
struct ViewPort *vp; I* for ptr 

struct IntuiMessage *msg; 

struct NewWindow mynw = 

ILBMinfo structure */ 
to screen structure */ 
to window structure */ 
to RastPort *I 
to Viewport */ 

0, 0, /* LeftEdge and TopEdge *I 
0, 0, I* Width and Height */ 
-1, -1, /* DetailPen and BlockPen */ 
VANILLAKEYIMOUSEBUTTONS, I* IDCMP Flags with Flags below */ 
BACKDROPIBORDERLESSISMART REFRESHINOCAREREFRESHIACTIVATEIRMBTRAP, 
NULL, NULL, - /* Gadget and Image pointers */ 
NULL, I* Title string */ 
NULL, I* Screen ptr null till opened *I 
NULL, /* BitMap pointer *I 
50, 20, I* MinWidth and MinHeight *I 
0 , 0, /* MaxWidth and MaxHeight *I 
CUSTOMSCREEN I* Type of window */ 
); 

BOOL FromWb; 

I* ILBM Property chunks to be grabbed 
* List BMHD, CMAP and CAMG first so we can skip them when we write 
* the file back out (they will be written out with separate code) 
*I 

LONG ilbmprops[) = ( 

a_QQ_s/ILBMLoad/ILBMLoad.c 
ID ILBM, ID BMHD, 
ID-ILBM, ID-CMAP, 
ID-ILBM, ID-CAMG, 
ID-ILBM, ID-CCRT, 
ID-ILBM, ID-AUTH, 
ID-ILBM, ID-Copyright, 
TAG DONE -
);-

I* ILBM 
LONG 

Collection chunks (more than 
ilbmcollects[] = { 

one in file) to be gathered *I 

ID ILBM, ID CRNG, 
TAG DONE -
); 

I* ILBM Chunk to stop on *I 
LONG ilbmstops[) = { 

ID ILBM, ID BODY, 
TAG DONE -
);-

UBYTE nomem[) 
UBYTE noiffh[) 

~'Not enough memory\n 11 ; 

"Can't alloc iff\n"; 

I* For our allocated ILBM frame *I 
struct ILBMinfo *ilbm; 

I* 
* MAIN 
*I 

void main(int argc, char **arqv) 
( 

I* 

UBYTE *ilbmname=NULL; 
LONG error = OL; 

FromWb = argc ? FALSE : TRUE; 

if ( (argc<MINARGS) 1 I (argv [argc-1] [OJ=='?')) 
{ 
printf("%s\n%s\n",Copyright,usage); 
bye ("",RETURN OK) ; 
) -

ilbmname = argv[l]; 

I* Open Libraries *I 

if(! (IntuitionBase = OpenLibrary("intuition.library", 0))) 
bye("Can't open intuition library.\n 11 ,RETURN_WARN); 

if(! (GfxBase = OpenLibrary ("graphics .library", 0))) 
bye (''Can't open graphics library. \n", RETURN_ WARN); 

if(! (IFFParseBase = OpenLibrary("iffparse.library",O))) 
bye("Can't open iffparse library.\n",RETURN_WARN); 

* Alloc one ILBMinfo struct 
*I 

if(' (ilbm = (struct ILBMinfo *) 

Page 2 



"'T1 
"'T1 
(/) 
"0 
CD 
(") 
~ 
()" 

~ 
6" 
:::J 

(/) 
0 
c 
n 
CD 

() 
0 
a. 
Cll 

tTl 

apps/ILBMLoad/ILBMLoad.c 
AllocMem(sizeof(struct ILBMinfo),MEMF PUBLICIMEMF CLEAR))) 

bye (nomem, RETU!Ul_FAIL) ; - -

I* 
* Here we set up our ILBMinfo fields for our 
* application. 
* Above we have defined the propery and collection 
* we are interested in (some required like BMHD) 
*I 

I* 

ilbm->Parseinfo.propchks 
ilbm->Parseinfo.collectchks 
ilbm->Parseinfo.stopchks 

ilbm->windef = &mynw; 

* Alloc IFF handle for frame 
*I 

ilbmprops; 
ilbm.collects; 
ilbmstops; 

chunks 

if(! (ilbm->Parseinfo.iff = AllociFF())) bye(noiffh,RETU!Ul_FAIL); 

I* Normally you would use showilbm() to open an appropriate acreen 
* and display an ILBM in it. 
* * However, here we are demonstrating 

Page 3 

* - first querying an ILBM to get its BMHD and CAMG (real or computed) 
* - then opening our own display 
* - then loading the ILBM into it 
*I 

if(! (error= queryilbm(ilbm,ilbmname))) 
{ 
D(bug("ilbmload: after query, this ILBM is %ld x %ld x %ld, modeid=$%lx\n", 

ilbm->Bmhd.w, ilbm->Bmhd.h, ilbm->Bmhd.nPlanes, ilbm->camq)); 

/* Note - you could use your own routines to open your 
* display, but if so, you must initialize ilbm->scr, 
* ilbm->win, ilbm->wrp, ilbm->srp, and ilbm->vp for your display. 
* Here we will use opendisplay() which will initialize 
*those fields. 
*I 

if(! (opendisplay(ilbm, 

else 

{ 

MAX(ilbm->Bmhd.pageWidth, ilbm->Bmhd.w), 
MAX(ilbm->Bmhd.pageHeight,ilbm->Bmhd.h), 
MIN(ilbm->Bmhd.nPlanes,MAXAMDEPTH), 
ilbm->camq))) 

printf("Failed to open display\n"); 
) 

{ 
D(bug("ilbmload: opendisplay successful\n")); 

scr = ilbm->scr; 
win = ilbm->win; 

if(' (error= loadilbm(ilbm, ilbmname))) 
{ 

D(bug("ilbmload: loadilbm successful\n")); 

/* Note - we don't need to examine or copy any 
* chunks from the file, so we will close file now 
*I 

closeifile(ilbm); 
ScreenToFront(ilbm->scr); 
Wait(l<<win->UserPort->mp_SigBit); 

apps/ILBMLoad/ILBMLoad.c Page 4 
unloadilbm(ilbm); 
I 

closedisplay(ilbm); 

I* deallocs colors, closeifile if needed *I 

} 

if(error) printf("%s\n",IFFerr(error)); 

cleanup(); 
exit (RETU!Ul OK); 
I -

void bye(UBYTE *s,int error) 
{ 
if( (*s) && ( !FromWb)) printf("%s\n", sl; 
cleanup(); 
exit (error) ; 
} 

void cleanup() 
{ 
if(ilbm) 

{ 
if(ilbm->Parseinfo.iff) 
FreeMam(ilbm,sizeof(struct 
} 

FreeiFF(ilbm->Parseinfo.iff); 
ILBMinfo)); 

if(GfxBase) 
if(IntuitionBase) 
if(IFFParseBase) 
I 

CloseLibrary(GfxBase); 
CloseLibrary(IntuitionBase); 
CloseLibrary(IFFParseBase); 



(J1 __._ 
rv 

::0 

~ 
~ 
3 
~ 
::0 
Q) 

CD' 
(D 
::J 

2 
s: 
Ill 
::J 
c: 
~ 
tJ 
Q) 

"' o· 
Q) 
(/) 

apps/ILBMtoC/ILBMtoC.c Page 1 

l*--------------------------------------------------------------*1 
I* *I 
/* ILBMtoC: reads in ILBM, prints out ascii representation, */ 
I* for including in C files. *I 
I* *I 
/* Based on ILBMDump.c by Jerry Morrison and Steve Shaw, */ 
I* Electronic Arts. *I 
I* Jan 31, 1986 *I 
I* *I 
/* This software is in the public domain. */ 
/* This version for the Commodore-Amiqa computer. */ 
I* *I 
I* Callable from CLI ONLY *I 
I* modified 05-91 for use wuth iffparse modules *I 
I* Requires linkage with several other modules - see Makefile *I 
1*--------------------------------------------------------------*l 

#include "iffplilbmapp.h" 

#ifdef LATTICE 
int CXBRK (void) { return (0) ; } 
int chkabort(void) { return(O); 
#endif 

/* Disable Lattice CTRL/C handling */ 
) I* really */ 

char *vers = "\0$VER: ILBMtoC 37.5"; 
char *Copyright= "ILBMtoC v37.5 (Freely Redistributable)"; 

void GetSuffix(UBYTE *to, UBYTE *fr); 
void bye(UBYTE *s, int e); 
void cleanup(void); 

struct Library *IFFParseBase = NULL; 
struct Library *GfxBase = NULL; 

I* ILBM frame *I 
struct ILBMinfo ilbm = {0}; 

/* ILBM Property chunks to be grabbed - only BMHD needed for this app 
*I 

LONG ilbmprops [] = { 
ID ILBM, 
TAG DONE 
); 

ID_BMHD, 

/* ILBM Collection chunks (more than one in file) to be gathered *I 
LONG *ilbmcollects = NULL; /* none needed for this app */ 

I* ILBM Chunk to stop on */ 
LONG ilbmstops[] = { 

ID ILBM, ID BODY, 
TAG DONE -
);-

UBYTE defSwitch[] = "b"; 

I** main() ******************************************************************/ 

void main(int argc, char **argv) 
{ 

UBYTE *sw; 
FILE *fp; 
LONG error=NULL; 
UBYTE *ilbmname, name[SO], fname[SO]; 

/* 

apps/ILBMtoC/ILBMtoC.c 
if ((argc < 2) II (argv[argc-1] [0]=='?')} 

{ 

Page 2 

printf ( 11 Usaqe from CLI: 'ILBMtoC filename switch-string' \n"); 
printf(" where switch-string = \n"); 
printf (" <nothing> Bob format (default) \n") ; 
printf(" s Sprite format (with header and trailer words)\n"); 
printf(" sn : Sprite format (No header and trailer words)\n"); 
printf (" a : Attached sprite (with header and trailer) \n") ; 
printf(" an :Attached sprite (No header and trailer)\n"); 
printf(" Add 'c' to switch list to output CR.'s with LF's \n"); 
exit (RETURN OK); 
) -

if (! (GfxBase = OpenLibrary ("graphics .library", 0))) 
bye ("Can't open graphics .library", RETURN_FAIL); 

if (! (IFFParseBase = OpenLibrary ( "iffparse .library", 0))) 
bye("Can't open iffparse.library",RETURN_FAIL); 

* Here we set up default ILBMinfo fields for our 
*application's frames. 
* Above we have defined the propery and collection chunks 
* we are interested in (some required like BMHD) 
*I 

ilbrn.Parseinfo.propchks = ilbmprops; 
ilbm.Parseinfo.collectchks = ilbmcollects; 
ilbm.Parseinfo.stopchks = ilbmstops; 
if(!(ilbm.Parseinfo.iff = AllociFF())) 

bye(IFFerr(IFFERR_NOMEM},RETURN_FAIL); /*Allee an IFFHandle */ 

sw = (argc>2) ? (UBYTE *)argv[2] : defSwitch; 
ilbmname = argv[l]; 

if (error: loadbrush(&ilbrn,ilbmname)) 
{ 
printf("Can't load ilbrn \"%s\", ifferr=%s\n",ilbmname,IFFerr(error)); 
bye("",RETURN WARN); 
) -

else /* Successfully loaded ILBM */ 
{ 
printf(" Creating file %s.c \n",argv[l]); 
GetSuffix(name,argv[l]); 
strcpy(fname,argv[l]); 
strcat (fname, ".c"); 
fp = fopen(fname, "w"); 
if(fp) 

{ 
BMPrintCRep(ilbm.brbitmap,fp,name,sw); 
fclose (fp) ; 
} 

else printf("Couldn't open output file: %s. \n", fname); 
unloadbrush(&ilbrn); 
) 

printf("\n"); 
bye("",RETURN OK); 
} -

/*this copies part of string after the last'/' or':' */ 
void GetSuffix(to, fr) UBYTE *to, *fr; { 

int i; 
UBYTE c,*s = fr; 
for (i=O; ;i++} { 



., ., 
(J) 
-o 
CD 
() 

3. 
() 

e:;. 
6" 
::::l 

(J) 
0 
c 
~ 
CD 

0 
0 
Q. 
CD 

01 ...... 
w 

apps/ILBMtoC/ILBMtoC.c 
c = *s++; 
if (c == 0) break; 
if (c == '/') fr = s; 
else if (c == ':') fr = s; 
I 

strcpy(to,fr); 
} 

void bye(UBYTE *s, int e) 
{ 
if(s&&(*s}) printf("%s\n",s); 
cleanup(); 
exit(e); 
} 

void cleanup() 
{ 
if(ilbm.Parseinfo.iff) FreeiFF(ilbm.Parseinfo.iff); 

if(IFFParseBase) 
if (GfxBase) 

CloseLibrary(IFFParseBase); 
CloseLibrary(GfxBase); 

} 

Page 3 apps/ILBMtoRaw/ILBMtoRaw.c 
1*--------------------------------------------------------------*l 
I* *I 
I* ILBMtoRaw: reads in ILBM, writes out raw file (raw planes, *I 
I* followed by colormap) *I 
I* *I 
/* Based on ILBMRaw~c by Jerry Morrison and Steve Shaw, */ 
I* Electronic Arts. *I 
I* Jan 31, 1986 *I 
I* *I 
I* This software is in the public domain. *I 
I* This version for the Commodore-Amiga computer. *I 
I* *I 
I* Callable from CLI ONLY *I 
I* modified 05-91 for use wuth iffparse modules *I 
I* Requires linkage with several other modules - see Makefile *I 
l*--------------------------------------------------------------*1 

#include "iffplilbmapp.h" 

#ifdef LATTICE 

Page 1 

int CXBRK(void) { return(O); 1 
int chkabort(void) { return(O); 
#endif 

I* Disable Lattice CTRLIC handling *I 
I I* really *I 

char *vers = "\0$VER: ILBMtoRaw 37. 5"; 
char *Copyright= "ILBMtoRaw v37.5 (Freely Redistributable)"; 

void bye(UBYTE *s, int e); 
void cleanup{void); 

LONG SaveBitMap(UBYTE *name, struct BitMap *bm, SHORT *cols, int ncols); 

struct Library *IFFParseBase = NULL; 
struct Library *GfxBase = NULL; 

I* ILBM frame *I 
struct ILBMinfo ilbm = {0); 

I* ILBM Property chunks to be grabbed - BMHD and CMAP needed for this app 
*I 

LONG ilbmprops[] = { 
ID ILBM, 
ID-ILBM, 
TAG DONE 
I; -

ID BMHD, 
ID:CMAP, 

I* ILBM Collection chunks (more than one in file) to be gathered *I 
LONG *ilbmcollects = NULL; I* none needed for this app *I 

I* ILBM 
LONG 

Chunk to stop on *I 
ilbmstops [] = { 

ID ILBM, ID BODY, 
TAG DONE -
};-

/**main() ******************************************************************/ 

void main(int argc, char **argv) 
{ 
LONG error=NULL; 
UBYTE *ilbmname, fname[SO], buf[24]; 

if ((argc < 2) II (argv[argc-1] [OJ=='?')) 
bye ("Usage from CLI: 'ILBMtoRaw filename' \n", RETURN OK) ; 



()1 
...... 
~ 

:::0 

~ 
~ 
3 
~ 
:::0 
(J) 

iD' 
(ti 
:::J 

~ 

~ 
:::J c:: 
~ 
~ 
"' ()• 
(J) 
(/) 

I* 

apps/ILBMtoRaw/ILBMtoRaw.c 

if(! (GfxBase = OpenLibrary ("graphics .library", 0))) 
bye("Can't open graphics.library'',RETURN_FAIL); 

if(! (IFFI?arseBase = OpenLibrary ("iffparse.library", 0))) 
bye ( 11 Can' t open iffparse.library'', RETURN_FAIL); 

* Here we set up default ILBMinfo fields for our 
* applicationis frames. 
* Above we have defined the propery and collection chunks 
* we are interested in (some required like BMHD) 
*I 

ilbm.Parseinfo.propchks = ilbmprops; 
ilbm.Parseinfo.collectchks = ilbmcollects; 
ilbm.Parseinfo.stopchks = ilbmstops; 
if(! (ilbm.Parseinfo.iff = AllociFF())) 

Page 2 

bye(IFFerr(IFFERR_NOMEM) ,RETURN_FAIL); I* Alloc an IFFHandle *I 

ilbmname = argv[l]; 

/* Load as a brush since we don't need to display it */ 
if (error= loadbrush(&ilbm,ilbmname)) 

{ 
printf(ucan' t load ilbm \ "%s\ '', ifferr=%s\n 11 , ilbnmarne, IFFerr (error)); 
bye (" " , RETURN WARN) ; 
) -

else I* Successfully loaded ILBM *I 
{ 
strcpy(fname,argv[l]); 

if(ilbm.camg & HAM) strcat(fname, ".ham"); 
if(ilbm.camg & EXTRA_HALFBRITE) strcat(fname, ".ehb"); 

if(ilbm.camg & HIRES) strcat(fname, ".hi"); 
else strcat(fname, ".lo"); 

if(ilbm.camg & LACE) strcat(fname, ".lace"); 

strcat (fname, ". ") 
sprintf(buf, "%d", lbm.Bmhd.w); 
strcat(fname,buf) 
strcat (fname, "x") 
sprintf(buf, 11 %d", lbm.Brnhd.h); 
strcat{fname,buf); 
strcat (£name, "x 11 ); 

sprint£ (buf, "%d", ilbrn .brbitm.ap->Depth); 
strcat(fname, buf); 
printf(" Creating file %s \n", fname); 
error=SaveBitMap(fname, ilbrn.brbitmap, ilbm.colortable, ilbm.ncolors); 

unloadbrush(&ilbm); 
) 

if(error) 
else 

bye(IFFerr(error),RETURN WARN); 
bye("",RETURN_OK); -

) 

I* SaveBitMap (as raw planes and colortable) 

* Given filename, bitmap structure, and colortable pointer, 
* writes out raw bitplanes and colortable (not an ILBM) 
* Returns 0 for success 
*I 

a s/ILBMtoRaw/ILBMtoRaw.c Page 3 

LONG SaveBitMap(UBYTE *name, struct BitMap *bm, SHORT *cols, int ncols) 
{ 
SHORT i; 
LONG nb,plsize; 

LONG file= Open( name, MODE NEWFILE); 
if( file == 0 ) -

{ 
printf( 11 couldn't open %s \n",name); 
return(CLIENT ERROR); I* couldnt open a load-file *I 
I -

plsize = bm->BytesPerRow*bm->Rows; 
for (i=O; i<bm->Depth; i++) 

{ 
nb = Write(file, bm->Planes[i], plsize); 
if (nb<plsize) break; 
) 

if(nb>O) nb=Write(file, cols, (l<<bm->Depth)*2); I* save color map *I 
Close(file); 
return(nb >= 0? OL : IFFERR WRITE); 
) -

void bye(UBYTE *s, int e) 
{ 
if(s&&(*s)) printf("%s\n",s); 
cleanup(); 
exit(e); 
) 

void cleanup() 
{ 
if(ilbm.Parseinfo.iff) FreeiFF(ilbm.Parseinfo.iff); 

if(IFFParseBase) 
if(GfxBase) 

CloseLibrary(IFFParseBase); 
CloseLibrary(GfxBase); 

) 



11 
11 
(f) 
"0 
(!) 

g 
r;· 
~ 
6" 
:::l 

(f) 
0 
c: 
c=; 
(!) 

0 
0 
Q. 
(!) 

01 ...... 
01 

apps/Piay8S\[Xiplay8SVX.c Page 1 

/** PlaySSVX.c ************************************************************** 
* * Read and play sound sample from an IFF file. 21Jan85 

* By Steve Hayes, Electronic Arts. 
* This software is in the public domain. 

* 
* Modified 05191 for use with iffparse & to play notes - CAS CBM 
* requires linkage with several IFF modules - see Makefile -
****************************************************************************/ 

#include "iffpl8svxapp.h" 

#include <exec/execbase.h> 
#include <graphicslgfxbase.h> 
#include <cliblalib~rotos.h> 

#ifdef LATTICE 
int CXBRK(void) { return(O); } 
int chkabort(void) { return(O); 
#endif 

I* Disable Lattice CTRL/C handling */ 
} I* really *I 

/* prototypes for our functions */ 
void cleanup(void); 
void bye(UBYTE *s,int error); 
void DUnpack(BYTE source[], LONG n, BYTE dest[]); 
BYTE DlUnpack(BYTE source[], LONG n, BYTE dest[], BYTE x); 
LONG LoadSample(struct EightSVXInfo *esvx, UBYTE *filename); 
void UnloadSample(struct EightSVXInfo *esvx); 
LONG LoadSBody(struct EightSVXInfo *esvx); 
void UnloadSBody(struct EightSVXInfo *esvx); 

LONG ShowSample(struct EightSVXInfo *esvx); 

LONG OpenAudio(void); 
void CloseAudio(void); 
LONG PlaySample(struct EightSVXInfo *esvx, 

LONG octave, LONG note, UWORD volume, ULONG delay); 

struct IOAudio *playbigsarnple(struct IOAudio *aioO, struct IOAudio *aiol, 
BYTE *samptr, LONG ssize, ULONG period, UWORD volume); 

#define MINARGS 2 
char *vers = "\0$VER: Play8SVX 37.5"; 
char *Copyright= "Play8SVX v37.5 (Freely Redistributable)"; 
char *usage :::; "Usage: Play8SVX 8SVXname"; 

I* globals *I 
struct Library *IFFParseBase = NULL; 
struct Library *GfxBase = NULL; 

BOOL FromWb; 

I* 8SVX Property chunks to be grabbed 
*I 

LONG esvxprops[] = { 
ID 8SVX, 
ID-8SVX, 
ID-8SVX, 
ID-8SVX, 
ID-8SVX, 
ID-BSVX, 
TAG DONE 
}; -

ID VHDR, 
ID-NAME, 
ID-ATAK, 
ID-RLSE, 
ID-AUTH, 
ID:::copyright, 

apps/Piay8SVX/Pia_y8SVX.c 

I* 8SVX 
LONG 

I* BSVX 
LONG 

Collection chunks (more than 
esvxcollects[] = { 

ID 8SVX, ID ANNO, 
TAG DONE -
}; 

Chunk to stop on *I 
esvxstops[] = { 

ID 8SVX, ID BODY, 
TAG DONE -
};-

one in file) to be gathered *I 

UBYTE nomem[] 
UIIYTE noiffh [] 

"Not enough memory\n"; 
"Can't alloc iff\n 11 ; 

I* For our allocated EightSVXInfo *I 
struct EightSVXInfo *esvx = NULL; 

/* 
* MAIN 
*I 

void main(int argc, char **argv) 
{ 
UBYTE *esvxname=NULL; 
ULONG oct; 
LONG error=OL; 

FromWb = argc ? FALSE TRUE; 

if((argc<MINARGS) I 1 (argv[argc-1] [0]=='?')) 
{ 
printf("%s\n%s\n", Copyright, usage); 
bye ("" , RETURN OK) ; 
I -

esvxnam.e argv[l]; 

I* Open Libraries *I 

I* 

if(' (IFFParseBase = OpenLibrary("iffparse.library",O))) 
bye ("Can't open iffparse library. \n", RETURN_ WARN) ; 

* Alloc one EightSVXInfo struct 
*I 

if(' (esvx = (struct EightSVXInfo *) 

Page 2 

AllocMem(sizeof(struct EightSVXInfo) ,MEMF PUBLICIMEMF CLEAR))) 
bye(nomem,RETURN_FAIL); -

I* 
* Here we set up our EightSVXInfo fields for our 
* application. 
* Above we have defined the propery and collection chunks 
* we are interested in (some required like VHDR) . 
* We want to stop on BODY. 
*I 

/* 

esvx->Parseinfo.propchks 
esvx->Parseinfo.collectchks 
esvx->Parseinfo.stopchks 

esvxprops; 
esvxcollects; 
esvxstops; 

* Alloc the IFF handle for the frame 



01 _.. 
(J') 

:::0 

~ 
~ 
3 
~ 
:::0 
(]) 

Ci) 
Ci3 
:::3 

2 
s:: 
Ill 
:::3 c: 
Ill 
:-:-
CJ 
(]) 

"' (=)• 
(]) 
(J) 

*I 

apps/Piay8SVX/Piay8SVX.c 

if(' (esvx->Parseinfo.iff = AllociFF())) bye(noiffh,RETURN_FAIL); 

i£( 1 (error= LoadSample(esvx, esvxname))) 
{ 
ShowSample(esvx); 

i£( 1 (error= OpenAudio())) 
{ 

Page 3 

I* If we think this is a sound effect, play it as such (note=-1) *I 
if((esvx->Vhdr.ctOctave==l)&&(esvx->Vhdr.samplesPerSec) 

&&(esvx->Vhdr.oneShotHiSamples)&&(!esvx->Vhdr.repeatHiSamples)) 
{ 
Playsample(esvx,0,-1,64,0); 
) 

/* Else play it like an instrument */ 
else 

{ 
for(oct=O; oct < esvx->Vhdr.ctOctave; oct++) 

{ 
PlaySample(esvx,oct,0,64,50) 
PlaySample(esvx,oct,4,64,50) 
PlaySample(esvx,oct,7,64,50) 
) 

CloseAudio () ; 
} 

else printf("error opening audio device\n"); 
} 

else 
printf("%s\n",IFFerr(error)); 

cleanup(); 
exit (RETURN OK); 
} -

void bye(UBYTE *s,int error) 
{ 
if( (*s) && (! FromWb)) print£ ( "%s\n", s); 
cleanup(); 
exit(error); 
) 

void cleanup() 
{ 
if(esvx) 

( 
DD (bug ("About to UnloadSample\n")); 
UnloadSample(esvx); 

DD(bug("About to FreeiFF\n")); 
if(esvx->Parseinfo.iff) FreeiFF(esvx->Parseinfo.iff); 

DD (bug ("About to free EightSVXInfo\n")); 
FreeMem(esvx,sizeof(struct EightSVXInfo)); 
} 

if(IFFParseBase) 
} 

CloseLibrary(IFFParseBase); 

/** ShowSample() ********************************************** 

a Page4 

* Show sample information after calling LoadSample() 
* 
*************************************************************************/ 

LONG ShowSample(struct EightSVXInfo *esvx) 
( 
LONG error = OL; 
BYTE *buf; 
Voice8Header *vhdr; 

if('esvx) 
if(! (buf = esvx->sample)) 

return(CLIENT ERROR); 
return(CLIENT=ERROR); 

I* LoadSample copied VHDR and NAME (if any) to our esvx frame *I 
vhdr = &esvx->Vhdr; 
if(esvx->name[O]) printf("\nNAME: %s",esvx->name); 

printf("\n\nVHDR Info:"); 
printf ( .. \noneSbotHiSamples=% ld '', vhdr->oneShotHiSamples) ; 
printf("\nrepeatHiSamples=%ld", vhdr->repeatHiSamples); 
printf ( "\nsamplesPerH1Cycle=%ld", vhdr->samplesPerHiCycle) ; 
printf("\nsamplesPerSec=%ld 11 , vhdr->samplesPerSec); 
print£ ( "\nctOctave=%ld", vhdr->ctOctave) ; 
print£ ("\nsCompression=%ld", vhdr->sCompression); 
printf ( 11 \nvolwne=Ox%lx", vhdr->volume) ; 
printf("\nData = %3ld %3ld %3ld %3ld %3ld %3ld %3ld %3ld", 

buf[O),buf[l],buf[2],buf[3),buf[4],buf[5),buf[6],buf[7]); 
printf("\n %3ld %3ld %3ld %3ld %3ld %3ld %3ld %3ld ... \n", 

buf[8+0),buf[8+l],buf[8+2],buf[8+3],buf[8+4],buf[8+5), 
buf[8+6],buf[8+ 7)); 

return(erro.r); 
} 

I* OpenAudio 

* Opens audio device for one audio channel, 2 IO requests 
* Returns 0 for success 
* * Based on code by Dan Baker 
*I 

UBYTE whichannel [) = ( 1,2,4,8 ); 

/* periods for scale starting at 65.40Hz (C) with 128 samples per cycle 

* 
* 

*I 

L'WORD per_ntsc[l2)= 

or l30.81Hz (C) 
or 261.63Hz (C) 
or 523.25Hz (C) 
or 1046.50Hz {C) 
or 2093.00Hz (C) 

428, 404, 380, 360, 
340, 320, 302, 286, 
270, 254, 240, 226 } ; 

with 
with 
with 
with 
with 

I* periods adjusted for system clock frequency *I 
UWORD per[l2]; 

I* Note - these values 3579545 NTSC, 3546895 PAL *I 
#define NTSC CLOCK 3579545L 
#define PAL CLOCK 3546895L 

#define AIOCNT 4 

64 samples per cycle 
32 samples per cycle 
16 samples per cycle 

8 samples per cycle 
4 samples per cycle 

struct IOAudio *aio[AIOCNT) (NULL); I* Ptrs to IO blocks for commands *I 



"Tl 
"Tl 
(J) 

"'0 
CD g 
r;· 
~ 
6" 
:::l 

(J) 
0 
c 
(=l 
CD 

0 
0 
Cl. 
CD 

01 
~ 

-....] 

apps/Piay8SVX/Piay8SVX.c Page 5 

struct 
BOOL 
ULONG 

MsgPort *port; 
devopened; 

/* Pointer to a port so the device can reply */ 

clock = NTSC_CLOCK; 

LONG OpenAudio () 
{ 

/* Will check for PAL and change if necessary *I 

extern struct ExecBase *SysBase; 
LONG error=OL; 
ULONG period; 
int k; 

if (devopened) return (-1); 

l*-------------------------------------------------------------------------*1 
/* Ask the system if we are PAL or NTSC and set clock constant accordingly */ 
l*-------------------------------------------------------------------------*1 
if (GfxBase=OpenLibrary ("graphics .library", OL)) 

{ 
if(((struct GfxBase *)GfxBase)->DisplayFlags & PAL) 

clock = PAL_CLOCK; 
else 

clock = NTSC CLOCK; 
CloseLibrary((struct Library*) GfxBase); 
} 

printf ( "OpenAudio: For period calculations, clock=%ld\n", clock) ; 

I* calculate period values for one octave based on system clock *I 
for(k=O; k<12; k++) 

I 
period= ((per ntsc[k] *clock) + (NTSC CLOCK>> 1)) / NTSC CLOCK; 
per [k] = period; - -
D(bug("per[%ld]=%ld ",k,per[k])); 
} 

D (bug ("\n")); 

/*-------------------------------------------------------------------*/ 
I* Create a reply port so the audio device can reply to our commands *I 
/*-------------------------------------------------------------------*1 
if(' (port=CreatePort(O,O))) 

{ error = 1; goto bailout; } 

1*--------------------------------------------------------------------------*l 
I* Create audio IIO blocks so we can send commands to the audio device *I 
l*--------------------------------------------------------------------------*1 
for(k=O; k<AIOCNT; k++) 

( 
if(' (aio[k]=(struct IOAudio *)CreateExtiO(port,sizeof(struct IOAudio)))) 

{ error = k+2; goto bailout; } 

/*----------------------------------------------------------------------*1 
/* Set up the audio I/O block for channel allocation: */ 
/* ioa Request.io Message.mn ReplyPort is the address of a reply port. */ 
/* ioa-Request.io-Message.mn-Node.ln Pri sets the precedence (priority) */ 
/* of our use of the audio-device.-Any tasks asking to use the audio */ 
/* device that have a higher precedence will steal the channel from us.*/ 
/* ioa Request.io Command is the command field for IO. */ 
I* ioa-Request.io-Flags is used for the IO flags. */ 
/* ioa-AllocKey will be filled in by the audio device if the allocation */ 
/* sUcceeds. We must use the key it gives for all other commands sent.*/ 
/* ioa Data is a pointer to the array listing the channels we want. */ 
/* ioa-Length tells how long our list of channels is. */ 
/*----=-----------------------------------------------------------------*1 
aio[O]->ioa Request.io Command ; ADCMD ALLOCATE; 

apps/Piay8~Y~/PI(!Y8SVX.c 
aio[O]->ioa Request.io Flags 
aio[O]->ioa-AllocKey -
aio[O]->ioa-Data 
aio[O]->ioa=Length 

ADIOF NOWAIT; 
o· -
whichannel; 
sizeof(whichannel); 

l*-----------------------------------------------*1 
I* Open the audio device and allocate a channel */ 
/*-----------------------------------------------*1 

Page 6 

if(!(OpenDevice("audio.device",OL, (struct IORequest *) aio[O] ,OL))) 
devopened = TRUE; 

else { error = 5; goto bailout; } 

I* Clone the flags, channel allocation, etc. into other IOAudio requests *I 
for(k=l; k<AIOCNT; k++) *aio[k] = *aio[O]; 

bailout: 
if(error) 

{ 
printf ( "OpenAudio errored out at step %ld\n", error) ; 
CloseAudio () ; 
) 

return (error); 
} 

/* CloseAudio 

* Close audio device as opened by OpenAudio, null out pointers 
*I 

void CloseAudio() 
( 
int k; 

D(bug("Closing audio device ... \n")); 

I* Note - we know we have no outstanding audio requests *I 
if(devopened) 

{ 
CloseDevice((struct IORequest *) aio[O]); 
devopened = FALSE; 
) 

for(k=O; k<AIOCNT; k++) 
( 
if(aio[k]) DeleteExtiO(aio[k]), aio[k] =NULL; 
} 

if(port) 
} 

DeletePort(port), port= NULL; 

I** Playsample() ********************************************** 

* Play a note in octave for delayl50ths of a second 
* OR Play a sound effect (set octave and note to 0, -1) 

" * Requires successful OpenAudio() called previously 

* When playing notes: 
* Expects note values between 0 (C) and 11 (B#) 
* Uses largest octave sample in SSVX as octave 0, next smallest 

as octave 1, etc. 

* Notes - this simple example routine does not do ATAK and RLSE) 
* - use of Delay for timing is simplistic, synchronous, and does 

not take into account that the oneshot itself may be 



01 
~ 

CX> 

::0 

~ 
~ 
3 
~ 
::0 
(]) 

(i)' 
(b 
::J 

~ 

~ 
::J 
c: 
~ 
0 
(]) 

" ()• 
(]) 
(/) 

apps/Piay8SVX/Piay8SVX.c Page 7 

longer than the delay. 
* Use tirner.device for more accurate asynchronous delays 

*************************************************************************/ 
/* Max playable sample in one IO request is l2BK */ 
#define MAXSAMPLE 131072 

LONG PlaySample(struct EightSVXInfo *esvx, 
LONG octave, LONG note, UWORD volume, ULONG delay) 

{ 
to outstanding requests */ /* pointers 

struct 
ULONG 

IOAudio *aoutO=NULL, *aoutl=NULL; 
period; 

LONG osize, rsize; 
BYTE *oneshot, *repeat; 

if(!devopened) return(-1); 

if(note > ll) note=O; 

if( note == -1 ) period = clock I esvx->Vhdr.samplesPerSec; 
else period= per[note]; /*table set up by OpenAudio */ 

if(octave > esvx->Vhdr.ctOctave) octave = 0; 
if(volume > 64) volume = 64; 

ones hot 
osize 
repeat 
rsize 

esvx->osamps[octave] 
esvx->osizes[octave] 
esvx->rsamps[octave] 
esvx->rsizes[octave] 

D(bug("oneshot $%lx size %ld, repeat $%lx size %ld\n", 
oneshot, osize, repeat, rsize)); 

l*------------------------------------------------------------*1 
/* Set up audio I/O blocks to play a sample using CMD WRITE. */ 
/* Set up one request for the oneshot and one for repeat */ 
/* (all ready for simple case, but we may not need both) */ 
/* The io Flags are set to ADIOF PERVOL so we can set the */ 
I* period (speed) and volume with the our sample; */ 
/* ioa Data points to the sample; ioa Length gives the length */ 
/* ioa-Cycles tells how many times to-repeat the sample */ 
/* If You want to play the sample at a given sampling rate, */ 
/*set ioa Period= clock/(given sampling rate) */ 
1*--------~---------------------------------------------------*l 
aio[O]->ioa Request.io Command =CMD WRITE; 
aio[O]->ioa=Request.io=Flags =ADIOF_PERVOL; 
aio[O]->ioa Data =oneshot; 
aio[O]->ioa-Length =osize; 
aio[O]->ioa-Period =period; 
aio[O]->ioa-Volmme =volume; 
aio[O]->ioa:cycles =l; 

aio[2]->ioa Request.io Command 
aio[2]->ioa-Request.io-Flags 
aio[2]->ioa-Data -
aio[2]->ioa-Length 
aio[2]->ioa-Period 
aio[2]->ioa-Volume 
aio(2]->ioa=Cycles 

=CMD WRITE; 
=ADIOF PERVOL; 
=repeat'; 
=rsize; 
=period; 
=volwne; 
=0; I* repeat until stopped */ 

/*---------------------------------------------------*1 
/* Send the command to start a sound using BeginiO() */ 
/* Go to sleep and wait for the sound to finish with */ 
/* WaitiO() to wait and get the get the ReplyMsg */ 

l*---------------------------------------------------*1 

apps/Piay8SVX/Piay8SVX.c Page 8 

printf("Starting tone 0 len %1d for %Old eye, R len %ld for %Old eye, per=%ld ... ", 
osize, aio[O]->ioa_cycles, rsize, aio[l]->ioa_Cycles, period); 

if(osize) 
{ 
/* Simple case for oneshot sample <= l28K (ie. most samples) */ 
if(osize <= MAXSAMPLE) BeginiO((struct IORequest *) (aoutO=aio[O])); 

I* Note - this else case code is for samples >l28K */ 
else 

{ 
*aio[l] 
aoutO 
} 

= *aio[O]; 
playbigsample(aio[O],aio[l],oneshot,osize,period,volume); 

if(rsize) 
{ 
/* Simple case for oneshot sample <= 12BK (ie. most samples) */ 
if(rsize <= MAXSAMPLE) BeginiO((struct IORequest *) (aoutl=aio[2])); 

I* Note - this else case code is for samples >128K */ 
else 

{ 
*aio[3] = *aio[2]; 
aoutl = playbigsample(aio[2],aio[3],repeat,rsize,period,volume); 
} 

if(delay) Delay(delay); I* crude timing for notes */ 

/* Wait for any requests we still have out */ 
if(aoutO) WaitiO(aoutO); 

if (aoutl) 
{ 
if(note >= 0) AbortiO(aoutl); 
WaitiO(aoutl); 

/* if a note, stop it now */ 

} 

printf("Done\n"); 
) 

/** playbigsample() ******************************************************** 

* called by playsample to deal with samples > 128K 

wants pointers to two ready-to-use IOAudio iorequest blocks 

* 
returns pointer to the IOAudio request that is still out 

* or NULL if none (error) 
*************************************************************************/ 

struct IOAudio *playbigsample(struct IOAudio *aioO, struct IOAudio* aiel, 
BYTE *samptr, LONG ssize, ULONG period, UWORD volume) 

struct IOAudio *aio[2]; 
LONG size; 
int req=O, reqn=l; /* current and next IOAudio request indexes */ 

if((!aioO) I I ( 1aiol) I I (ssize < MAXSAMPLE)) 

aio[req] = aioO; 
aio[reqn] = aiol; 

return (NULL); 



-n 
-n 
(f) 
"0 
(t) 
() 
::;; 
('i" 
~ o· 
::::l 

(f) 
0 
c 
(i 
(t) 

() 
0 
a. 
(t) 

Ul __. 
c.o 

apps/Piay8SVX/Piay8SVX.c 
/* start the first 128 K playing */ 
aio[req]->ioa Request.io Command 
aio[req]->ioa-Request.io-Flags 
aio[req]->ioa-Data -
aio[req]->ioa-Length 
aio[req]->ioa-Period 
aio[req]->ioa-Volume 
aio[req]->ioa-Cycles 
BeginiO((struct IORequest*)aio[req]); 

=CMD WRITE; 
=ADIOF PERVOL; 
=samptr; 
=MAXSAMPLE; 
=period; 
=volume; 
=1; 

for(samptr=samptr + MAXSAMPLE, size = ssize - MAXSAMPLE; 
size > 0; 

samptr += MAXSAMPLE) 
{ 
/* queue the next piece of sample */ 
reqn = req A 1; /* alternate IO blocks 0 
aio[reqn]->ioa Request.io Command 
aio[reqn]->ioa-Request.io-Flags 
aio[reqn]->ioa-Data -
aio[reqn]->ioa-Length = (size > MAXSAMPLE) ? 
aio[reqn]->ioa-Period 
aio[reqn]->ioa-Volume 
aio[reqn]->ioa-Cycles 
BeginiO((struct IORequest*)aio[reqn]); 

/* Wait for previous request to finish */ 
WaitiO(aio[req]); 
/* decrement size */ 
size = (size > MAXSAMPLE) ? size-MAXSAMPLE : 
req = reqn; /* switch between aio[O) 
} 

return(aio[reqn]); 
} 

and 1 */ 
=CMD WRITE; 
=ADIOF PERVOL; 
::samptr; 

MAXSAMPLE : size; 
=period,­
=volume; 
=1; 

0; 
and aio[l] */ 

Page 9 

/** LoadSample() ********************************************************** 

* 
* Read 8SVX, given an initialized EightSVXInfo with not-in-use IFFHandle, 
* and filename. Leaves the IFFHandle open so you can FindProp(} 

additional chunks or copychunks(). You must UnloadSample() 
when done. UnloadSample will closeifile if the file is still 

* open. 

* Fills in esvx->Vhdr and Name, and allocates/loads esvx->sample, 
setting esvx->sarnplebytes to size for deallocation. 

* 
* Returns 0 for success of an IFFERR (libraries/iffparse.h) 
*************************************************************************/ 

LONG LoadSample(struct EightSVXInfo *esvx, UBYTE *filename) 
{ 
struct IFFBandle *iff; 
struct StoredProperty *sp; 
Voice8Header *vhdr; 
BYTE *oneshot, *repeat; 
ULONG osize, rsize, spcyc; 
int oct; 
LONG error = OL; 

D (bug ( "LoadSample: \n") ) ; 

if(!esvx) 
if(' (iff=esvx->Parseinfo.iff)) 

return(CLIENT ERROR); 
return(CLIENT=ERROR); 

if(' (error= openifile((struct Parseinfo *)esvx, filename, IFFF READ))) 
{ -
printf("Reading '%s' ... \n'", filename); 
error = parseifile((struct Parseinfo *)esvx, 

apps/Piay8SVX/Piay8SVX.c 
ID FORM, ID 8SVX, 
esVx->Parseinfo.propchks, 
esvx->Parseinfo.collectchks, 
esvx->Parseinfo.stopchks); 

Page 10 

D(bug("LoadSample: after parseifile- error;;;; %ld\n 11 ,error)); 

if((!error) I I (error== IFFERR EOC) I I (error== IFFERR EOF)) 
{ - -
if(contextis(iff,ID BSVX,ID FORM)) 

else 

{ - -
D (bug ( "LoadSample: context is 8SVX\n"}} ; 
if( 1 (sp = FindProp(iff,ID BSVX,ID VHDR))) 

{ - -
message ("No SSVX. VHDR! ") ; 
error = IFFERR SYNTAX; 
} -

else 
{ 

} 

{ 

D (bug ( "LoadSample: Have VHDR\n"} ) ; 
/* copy Voice8Header into frame */ 
vhdr = (VoiceBHeader *) (sp->sp Data); 
*(&esvx->Vhdr) = *vhdr; -
/* copy name if any */ 
esvx->name[0]='\0'; 
if(sp = FindProp(iff,ID SSVX,ID NAME)) 

{ -
strncpy(esvx->name,sp->sp Data,sp->sp Size); 
esvx->name[MIN(sp->sp Size,79)] = '\07 ; 
} -

error= LoadSBody(esvx); 
D (bug ( "LoadSample: After LoadSBody - error 
if(!error) 

{ 
osize = esvx->Vhdr.oneShotHiSamples; 
rsize = esvx->Vhdr.repeatHiSarnples; 

%ld\n", error)) ; 

spcyc = esvx->Vhdr.samplesPerHiCycle; 
if(!spcyc) spcyc = esvx->Vhdr.repeatHiSamples; 
if(!spcyc) spcyc = 8; 

oneshot = esvx->sample; 

for(oct = esvx->Vhdr.ctOctave-1; oct >= 0; 
oct--, oneshot+=(osize+rsize), 

osize <<= 1, rsize <<=1, spcyc <<=1) 

repeat = oneshot + osize; 
esvx->osizes[oct] = osize; 
if(osize) esvx->osamps[oct] 
else esvx->osamps[oct] 
esvx->rsizes[oct] = rsize; 
if(rsize) esvx->rsamps[oct] 
else esvx->rsamps[oct] 
esvx->spcycs[oct] = spcyc; 

oneshot; 
o· 

repeat; 
o· 

D (bug ("ones hot $%lx size %ld, repeat $%lx size %ld\n", 
oneshot, osize, repeat, rsize)); 

messaqe( 11 Not an SSVX\n"); 
error = NOFILE; 



01 
1\J 
0 

JJ 

~ 
~ 
3 
~ 
JJ 
<1:> 

iD' 
Q3 
::3 

~ 

~ 
2 
~ 
tJ 
<1:> 
<:;: 
C)• 
<1:> 
(/) 

if(error) 
{ 

aJm§/Piay8SVX/Piay8SVX.c 

closeifile((struct Parselnfo *)esvx); 
UnloadSample(esvx); 
) 

ret urn (error) ; 
} 

Page 11 

/** UnloadSample() ******************************************************* 

* Frees and closes everything opened/alloc'd by LoadSample(} 

* 
*************************************************************************/ 

void UnloadSample(struct EightSVXInfo *esvx) 
{ 
if(esvx) 

{ 
UnloadSBody(esvx); 
closeifile((struct Parseinfo *)esvx); 
} 

/** LoadSBody () ****************************-******************************* 
* Read a 8SVX Sample BODY into RAM. 

* 
*************************************************************************/ 

LONG LoadSBody(struct EightSVXInfo *esvx) 
{ 
struct IFFHandle *iff; 
LONG sbytes, rlen, error = OL; 
ULONG memtype; 
Voice8Header *vhdr = &esvx->Vhdr; 
BYTE *t; 

D(bug("LoadSBody:\n")); 

if(! (iff=esvx->Parseinfo.iff)) 
if('esvx) 

return(CLIENT ERROR); 
return(CLIENT=ERROR); 

if(! {currentchunkis(iff,ID 8SVX,ID BODY))) 
{ - -
message("LoadSBody: not at BODY! .. ); 
return(IFFERR READ); 
} -

sbytes = ChunkMoreBytes(CurrentChunk(iff)); 

/*if we have to decompress, let's just load it into public mem */ 
memtype = vhdr->sCompression ? MEMF PUBLIC : MEMF_CHIP; 

D (bug ( "LoadSBody: samplebytes=%ld, compression=%ld\n", 
sbytes,vhdr->sCompression)); 

if(' (esvx->sample 
{ 

(BYTE *)AllocMem(sbytes, memtype))) 

error CLIENT_ ERROR; 

else 
{ 

a 
D(bug("LoadSBody: have load buffer\n")); 
esvx->samplebytes = sbytes; 
if(rlen=ReadChunkBytes(iff,esvx->sample,sbytes) != sbytes) 

error = IFFERR_READ; 

if(error) 
{ 

Page 12 

D{bug("LoadSBody: ReadChunkBytes error= %ld, read %ld bytes\n", 
error)); 

UnloadSample(esvx); 
} 

else if (vhdr->sCompression) /* Decompress, if needed. */ 
{ 
if(t = (BYTE *)AllocMem(sbytes<<l, MEMF CHIP)) 

else 

{ -
D(bug("LoadSBody: have decompression buffer\n")); 
DUnpack(esvx->sample, sbytes, t); 
FreeMem{esvx->sample, sbytes); 
esvx->sample = t; 
esvx->samplebytes = sbytes << 1; 
} 

{ 
UnloadSample(esvx); 
error = IFFERR NOMEM; 
} -

return(error); 
} 

/** UnloadSBody() ******************************************************** 

* Deallocates esvx->smaple 
* 
*************************************************************************/ 

void UnloadSBody(struct EightSVXInfo *esvx) 
{ 
if(esvx) 

{ 
if(esvx->sample) 

{ 
DD(bug("About to free SBody\n")); 
FreeMem(esvx->sample 1 esvx->samplebytes); 
esvx->sample = NULL; 
} 

esvx->samplebytes = NULL; 
} 

I* DUnpack.c --- Fibonacci Delta decompression by Steve Hayes */ 

/* Fibonacci delta encoding for sound data */ 
BYTE codeToDelta[16] = {-34,-21,-13,-8,-S,-3,-2,-1,0,1,2,3,5,8,13,21}; 

/* Unpack Fibonacci-delta encoded data from n byte source 
* buffer into 2*n byte dest buffer, given initial data 
* value x. It returns the lats data value x so you can 
* call it several times to incrementally decompress the data. 
*I 

BYTE D1Unpack(BYTE source[], LONG n, BYTE dest[], BYTE x) 
{ 
BYTE d; 



11 
11 
(f) 

"'0 
Ci) 
(") 
::::;; 
()" 

9::. 
6" 
:::J 

(f) 
0 
c: 
0 
Ci) 

(") 
0 
0.. 
Ci) 

U1 
1\) ...... 

apps/Piay8SVX/Piay8SVX.c 
LONG i, lim; 

lim = n << 1; 
for (i=O; i < lim; ++i) 

( 
/* Decode a data nibble, high nibble then low nibble */ 
d = source[i >> 1]; /*get a pair of nibbles */ 
if (i & 1) /* select low or high nibble */ 

d &= Oxf; /* mask to get the low nibble */ 
else 

d >>= 4; 
x += codeToDelta[d]; 
dest [i] = x; 
) 

return(x); 
} 

/* shift to get the high nibble */ 
/* add in the decoded delta */ 
/* store a l byte sample */ 

/* Unpack Fibonacci-delta encoded data from n byte 
* source buffer into 2*(n-2) byte dest buffer. 
* Source buffer has a pad byte, an 8-bit initial 
* value, followed by n-2 bytes comprising 2*(n-2) 
* 4-bit encoded samples. 
*I 

void DUnpack(source, n, dest) 
BYTE source[], dest[); 
LONG n; 

{ 
D1Unpack(source+2, n-2, dest, source[l]); 
) 

Page 13 apps/RawtoiLBM/AawtoiLBM.c 
/* RawtoiLBM 
* Converts raw file (from ILBMtoRaw) i.nto an ILBM 
* Requires linkage with several iffparse modi~1les - See Ma.kefile 
*I 

#include "iffp/ilbmapp.h" 

#include <intuition/intuitionbase.h> 
#include <workbench/workbench.h> 

#ifdef LATTICE 

Page 1 

int CXBRK(void) { return(O); ) 
int chkabort(void) { return(O); 
#endif 

;·• Disable Lattj.ce CTRL/C handling */ 
l* reaL:y */ 

char *vers = "\0$VER: RawtoiLBM 37.5"; 
char *Copyright = 

11 RawtoiLBM v37. 5 - converts raw file to ILBl-! Freely Redistributable 11 ; 

#define MINARGS 6 
char *usage= "Usage: RawtoiLBM rawname ilbmname width height depth\n"; 

void bye(UBYTE *s,int e); 
void cleanup(void); 

struct Library 
struct Library 
struct Library 

*IntuitionBase == .NULJ..~; 
*GfxBase = NULL; 
*IFFParseBase == N"f.JL.L; 

struct ILBMinfo ilbm = {0); 

USHORT colortable[MAXAMCOLORREG]; 

BOOL fromWB; 

void main(int 
( 
LONG 
USHORT 
ULONG 
char 
int 

fromWB 

argc, char **argv) 

error = OL, rawfile, rlen; 
width, height, depth, pwidth, 
plsize; 
*rawname 1 *ilbmname; 
k; 

(argc==O) ? TRUE : FALSE; 

phej .. c::·ht, pmode, extra; 

if(! (IntuitionBase = OpenLibrary("intuition.: i.hrary", 0))) 
bye ( 41 Can 1 t open intuition library. \n", RETt:RN __ HARN) ; 

if(! (GfxBase = OpenLibrary ("graphics .lib:tary", 0))) 
bye ("Can't open graphics library. \n" 1 RE'i'UR.:.'\1"_ w.~.RN); 

if(! (IFFI?arseBase = OpenLibrary ("iffpa.rse.lib.t:ary", 0))) 
bye ("Can't open iffparse library. \n", RETURN_.WA~); 

if(' (ilbm.l?arseinfo.iff = AllociFF())) 
bye ( IFFerr ( IFFERR _ NOMEM) , RETU!<ll_ WARN) ; 

if(argc==MINARGS) 
{ 
rawname 
ilbmname 
width 
height = 
depth 

= argv[l]; 
= argv[2]; 
atoi(argv[3)) 
atoi(argv[4]) 
atoi(argv[5)) 

I* Pas:-;"-;<' .f.J. lenames via command line 

/*Page width, height, and mode !::'r saved. ::·_,.81< */ 

*I 

--------------------~ 



(11 
1\) 
1\) 

:::0 

~ 
~ 
3 
~ 
:::0 
<1> 
(i)' 
Q3 
::J 
("') 
<1> 

~ 
::J c: 
Ill 
:-:-
t:l 
<1> 

"' (')' 
<1> 
(/) 

"); 

pwidth 
pheight 
pmode 
pmode 

a s/RawtoiLBM/RawtoiLBM.c 
width < 320 ? 
height < 200 ? 
pwidth >= 640 

I= pheight >= 400 

320 : width; 
200 : height 
? HIRES OL 
? LACE : OL 

plsize = RASSIZE{width,height); 
) 

Page 2 

else 
{ 

print£( "%s\n%s\n", Copyright, usage); 
bye { "\n", RETURN OK) ; 
) -

if(! {rawfile = Open{rawname,MODE OLDFILE))) 

/* 

{ -
printf("Can't open raw file '%s'\n",rawname); 
bye {" ", RETURN WARN) ; 
I -

* Allocate Bitmap and planes 
*I 
extra = depth > 8 ? depth - 8 : 0; 
if{ilbm.brbitmap = AllocMem{sizeof{struct BitMap) + {extra<<2), 

MEMF _CLEAR} ) 
{ 
InitBitMap{ilbm.brbitmap,depth,width,height); 
for{k=O, error=O, rlen=l; k<depth && {!error) && {rlen >0); k++) 

{ 
if{' {ilbm,brbitmap->Planes[k] = AllocRaster{width,height))) 

if{' error) 
{ 

error = IFFERR_NOMEM; 

BltClear{ilbm.brbitmap->Planes[k], RASSIZE{width,height),O); 
/* Read a plane */ 
rlen = Read{rawfile,ilbm.brbitmap->Planes[k],plsize); 
) 

/* get colortable */ 
if({!error)&&{rlen > 0)) 

rlen=Read{rawfile,colortable, {MIN{l<<depth,MAXAMCOLORREG)<<l)); 

if{(error) I I {rlen<=O)) 

else 

{ 
if(rlen <= 0) printf{ 11 Error loading raw file - check dirnensions\n 

else printf( 11 Error allocating planes\n"); 
} 

{ 
error = saveilbm(&ilbm, ilbm.brbitmap, pmode, 

width, height, pwidth, pheight, 
colortable, MIN{l<<depth,MAXAMCOLORREG), 4, /*colors*/ 
mskNone, 0, /* masking. transColor */ 
NULL, NULL, /* additional chunk lists */ 
ilbmname); 

for(k=O; k<depth; k++) 
{ 
if(ilbm.brbitmap->Planes[k]) 

FreeRaster{ilbm.brbitmap->Planes[k],width,height); 
I 

FreeMem{ilbm.brbitmap, sizeof(struct BitMap) + {extra<< 2)); 

apps/RawtoiLBM/RawtoiLBM.c 

Close{rawfile); 

if{error) 
{ 
printf("%s\n", IFFerr (error)); 
bye {" ", RETURN FAIL) ; 
I -

else bye("",RETURN OK); 
I -

void bye{UBYTE *s,int e) 
{ 
if{s&& {*s)) printf("%s\n", s); 
if ((fromWB)&&{*s)) /*Wait so user can read messages */ 

{ 
printf{"\nPRESS RETURN TO EXIT\n"); 
while{getchar{) != '\n'); 
I 

cleanup{); 
exit(e); 
I 

void cleanup{) 
{ 
if{ilbm.Parseinfo.iff) FreeiFF(ilbm.Parseinfo.iff); 

if{GfxBase) 
if(IntuitionBase) 
if{IFFParseBase) 
) 

CloseLibrary{GfxBase): 
CloseLibrary(IntuitionBase); 
CloseLibrary(IFFParseBase); 

Page 3 



"'Tl 
"'Tl 
(j) 
"0 
CD 
(") 
:::::;.; 
c::;· 
~ a· 
:::l 

(j) 
0 
c 
0 
CD 

() 
0 
a. 
CD 

Ul 
1\:) 
c.v 

apps/ScreenSave/ScreenSave.c 
/* ScreenSave 
* Saves front screen as an ILBM 
* Requires linkage with several iffparse modiules - See Makefile 
*I 

#include "iffp/ilbmapp.h" 

#include <intuition/intuitionbase.h> 
#include <workbench/workbench.h> 

#include <clib/icon_protos.h> 

#ifdef LATTICE 

Page 1 

int CXBRK(void) { return(O); ) 
int chkabort(void) { return(O); 
#endif 

/* Disable Lattice CTRL/C handling */ 
) I* really */ 

char *vers = "\0$VER: screensave 37.5"; 
char *Copyright = 

"screensave v37.5- supports new modes- Freely Redistributable 11 ; 

char *usage = 
"Usage: screensave filename (filename -c[unit] for clipboard)\n" 
"Options: QUIET, NODELAY, NOICON, SEQUENCE (sequence adds a nwtlber to name)\n" 
"Saves front screen after 10-sec delay (unless NODELAY) . \n"; 

int mygets(char *s); 
void bye(UBYTE *s,int e); 
void cleanup(void); 

struct Library 
struct Library 
struct Library 
struct Library 

*IntuitionBase = NULL; 
*GfxBase = NULL; 
*IconBase = NULL; 
*IFFParseBase = NULL; 

struct ILBMinfo ilbm = {0); 

BOOL fromWB, Quiet, NoDelay, Nolcon, Sequence; 

#define INBUFSZ 128 
char nbuf[INBUFSZ]; 

/* Data for project icon for saved ILBM 
* 
*I 

UWORD ILBMilData [] = 
{ 
/* Plane 0 *I 

OxOOOO,OxOOOO,OxOOOO,Ox000l,OxOOOO,OxOOOO,OxOOOO,Ox0003, 
OxOFFF,OxFFFF,OxFFFF,OxFFF3,0xOFFF,OxOOOO,OxOOOO,OxFFF3, 
OxOFFC,OxOOOO,OxOOOO,Ox3FF3,0xOFEO,OxOE80,0xFBOO,Ox07F3, 
OxOFBO,OxlCOl,Ox8COO,Ox01F3,0xOFOO,OxOOOl,Ox8COO,OxOOF3, 
Ox0600,0xOOOO,Ox0600,0x0063,0x0600,0x0003,0xBCOO,Ox0063, 
Ox0600,0x0001,0xFCOO,Ox0063,0x0600,0xOOOO,OxFCOO,Ox0063, 
Ox0600,0xlFCl,OxFE40,0x0063,0x0600,0xlDCl,OxFE20,0x0063, 
Ox0600,0xlCE3,0xFF12,0x0063,0xOFOO,OxlCEO,Ox004F,OxCOF3, 
OxOFBO,OxlCEO,Ox002F,Ox01F3,0xOFEO,OxOE78,0x423D,Ox07F3, 
OxOFFC,OxOOOO,OxOOOO,Ox3FF3,0xOFFF,OxOOOO,OxOOOO,OxFFF3, 
OxOFFF,OxFFFF,OxFFFF,OxFFF3,0xOOOO,OxOOOO,OxOOOO,Ox0003, 
Ox?FFF,OxFFFF,OxFFFF,OxFFFF, 

I* Plane 1 *I 
OxFFFF,OxFFFF,OxFFFF,OxFFFE,OxD555,0x5555,0x5555,0x5554, 
OxDOOO,OxOOOO,OxOOOO,Ox0004,0xD3FC,OxFFFF,OxFFFF,Ox3FC4, 
OxD3CO,OxOOOO,OxOOOO,Ox03C4,0xD300,0x0100,0xF800,0xOOC4, 
OxD300,0x038l,OxFCOO,OxOOC4,0xDOBO,Ox070l,OxFCOO,Ox0104, 

); 

apps/ScreenSave/ScreenSave.c 
OxD180,0xF883,0xFEOO,Ox0194,0xDl8l,OxDF80,0x4700,0x0194, 
OxD181,0xDFB2,0x0180,0x0194,0xD180,0x6F82,0xOOCO,Ox0194, 
OxD180,0x0002,0x0020,0x0194,0xD180,0xOOOO,OxOOOO,Ox0194, 
OxDlBO,OxOOOO,Ox0002,0x0194,0xD080,0xOOOO,OxCC46,0xC104, 
OxD300,0xOOOO,OxCC2F,OxOOC4,0xD300,0xOE78,0x883D,OxOOC4, 
OxD3CO,OxOOOO,OxOOOO,Ox03C4,0xD3FC,OxFFFF,OxFFFF,Ox3FC4, 
OxDOOO,OxOOOO,OxOOOO,Ox0004,0xD5SS,Ox5555,0x5555,0x5554, 
Ox8000,0xOOOO,OxOOOO,OxOOOO, 

struct Image ILBMil 
{ 

); 

0, 0, 
64, 23, 2, 
ILBMilData, 
Ox0003, OxOOOO, 
NULL 

UBYTE *ILBMTools[] = 
{ 

); 

"FILETYPE=ILBM", 
NULL 

struct DiskObject ILBMobject 
{ 

WB DISKMAGIC, 
WB-DISKVERSION, 
{ -

I* Upper left corner *I 
I* Width, Height, Depth *I 
I* Image data *I 
I* PlanePick, PlaneOnOff *I 
I* Next image *I 

I* Magic Number *I 
I* Version *I 
I* Embedded Gadget Structure */ 

NULL, I* Next Gadget Pointer *I 
0, 0, 64, 24, I* Left,Top,Width,Height *I 
GADGIMAGE I GADGBACKFILL, I* Flags *I 

Page 2 

RELVERIFY I GADGIMMEDIATE, I* Activation Flags */ 

); 

BOOLGADGET, I* Gadget Type *I 
(APTR)&ILBMil, I* Render Image */ 
NULL, I* Select Image *I 
NULL, I* Gadget Text *I 
NULL, I* Mutual Exclude */ 
NULL, I* Special Info *I 
0, I* Gadget ID *I 
NULL, I* User Data *I 

), 
WBPROJECT, 
11 Display", 
ILBMTools, 
NO ICON POSITION, 
NO-ICON-POSITION, 
NULL, -
NULL, 
0 

/* Icon Type *I 
I* Default Tool *I 
I* Tool Type Array */ 
I* Current X *I 
I* Current Y *I 
/* Drawer Structure */ 
I* Tool Window *I 
I* Stack Size *I 

void rnain(int argc, char **argv) 
{ 
struct Screen *frontScreen; 
LONG error = OL, seqlock; 
char *filename; 
int l, k; 

fromWB = (argc==O) ? TRUE FALSE; 

if(! (IntuitionBase OpenLibrary("intuition.library", 0))) 



01 
1\) 
.j::. 

:::0 

~ 
~ 
3 
~ 
:::0 
(!) 

<'D 
(ti 
::;:) 
() 
(!) 

s: 
Ul 
::;:) 
c:: 
Ul 
~ 

tJ 
(!) 
<::: 
()' 
(!) 
(J) 

apps/ScreenSave/ScreenSave.c 
bye {"Can't open intuition library. \n", RETURN_WARN); 

if (! {GfxBase ~ OpenLibrary ("graphics .library", 0))) 
bye ("Can't open graphics library. \n", RETURN_ WARN) ; 

if (' (IFFParseBase ~ OpenLibrary ("iffparse.library", 0))) 
bye ("Can't open iffparse library. \n", RETURN_WARN); 

if(' (IconBase ~ OpenLibrary ( "icon.library", 0))) 
bye { 11 Can' t open icon library. \n 10 , RETURN _WARN); 

if(! (ilbm.Parseinfo.iff ~ AllociFF())) 
bye(IFFerr(IFFERR_NOMEM),RETURN_WARN); 

Page 3 

if(argc>l) /* Passed filename via command line */ 
{ 
if(argv[lJ [OJ~~'?') 

{ 

printf ( "%s\n%s\n", Copyright, usage); 
bye (" \n" , RETURN OK) ; 
) -

else filename~ argv[lJ; 

NoDelay = Noicon = Quiet = Sequence 
for(k~2; k < (argc); k++) 

FALSE; 

( 
if(! (stricmp (argv[kJ, "NODELAY"))) 
else if(! (stricmp (argv[kJ, "NOICON"))) 
else if (! (stricmp (argv[kJ, "QUIET"))) 
else if (! (stricmp (argv [kJ , "SEQUENCE"))) 
) 

if(Sequence) 
{ 
for(k~l; k<9999; k++) 

{ 

NoDelay 
No Icon 
Quiet 
Sequence 

TRUE 
TRUE 
TRUE 
TRUE 

sprintf(nbuf, "%s%04ld", filename, k); 
if(seqlock ~ Lock(nbuf,ACCESS READ)) UnLock(seqlock); 

else 

else break; -
) 

filename = nbuf; 
) 

{ 
printf("%s\n%s\n",Copyright,usage); 
printf("Enter filename for save: "); 
1 ~ mygets(&nbuf[OJ); 

if(l~~o) /* No filename - Exit */ 
{ 

bye("\nScreen not saved, filename required\n",RETURN FAIL); 
) -

else 
{ 
filename 
) 

&nbuf[OJ; 

if(!NoDelay) Delay(SOO); 

Forbid(); 
frontScreen ~ ((struct IntuitionBase *)IntuitionBase)->FirstScreen; 
Permit(); 

if(error = screensave(&ilbm, frontScreen 1 

NULL, NULL, 

app_s/ScreenSave/ScreenSave.c Page 4 

filename)) 
{ 
printf("%s\n",IFFerr(error)); 
) 

else 
{ 
if(!Quiet) printf("Screen saved as %s ... ",filename); 
if( ( !Noicon) && (filename [OJ!~'-') && (filename [lJ !~' c')) 

{ 
if(' (PutDiskObject(filename,&ILBMobject))) 

{ 
bye ( 11 Error saving icon \n", RETURN WARN) ; 
) -

if(! Quiet) printf("Icon saved\n"); 
) 

else if( !Quiet) printf("\n"); 
bye ( " " , RETURN OK) ; 
) -

void bye(UBYTE *s,int e) 
{ 
if(s&& (*s)) printf("%s\n", s); 
if ((fromWB)&&(*s)) /*Wait so user can read messages*/ 

{ 
printf("\nPRESS RETURN TO EXIT\n"); 
mygets{&nbuf[OJ); 
} 

cleanup(); 
exit(e); 
) 

void cleanup() 
{ 
if(ilbm.Parseinfo.iff) FreeiFF(ilbm.Parseinfo.iff); 

if(GfxBase) 
if(IntuitionBase) 
if (IconBase) 
if(IFFParseBase) 
) 

int mygets(char *s) 
{ 

CloseLibrary(GfxBase); 
CloseLibrary(IntuitionBase); 
CloseLibrary(IconBase); 
CloseLibrary(IFFParseBase); 

int 1 = 0, max = INBUFSZ - 1; 

while (((*s~getchar()) •~•\n' )&&(l<max)) s++, 1++; 
*s = NULL; 
return(l); 
) 

/* not clipboard */ 



11 
11 
(f) 

"'0 
CD 
() 
::::;.; 
()' 

a 
5' 
:J 

(f) 
0 
c 
(3 
CD 

0 
0 
a. 
CD 

U1 
1\.) 
U1 

modules/bmprintc.c 
/*--------------------------------------------------------------*1 
/* */ 
/* bmprintc.c */ 
/* */ 
/* print out a C-language representation of data for bitmap */ 
/* *I 
/* By Jerry Morrison and Steve Shaw, Electronic Arts. */ 
/* This software is in the public domain. */ 
/* */ 
/* This version for the Cornmodore-Amiga computer. */ 
/* Cleaned up and modified a bit by Chuck McManis, Aug 1988 */ 
/* Modified 05/91 by CBM for use with iffparse modules */ 
/* */ 
l*--------------------------------------------------------------*1 

#include "iffp/ilbmapp.h" 
#include <stdio.h> 

#define NO 0 
#define YES 1 

Page 1 

void PSprite(struct BitMap *bm, FILE *fp, UBYTE *name, int p, BOOL dohead); 
void PrCRLF(FILE *fp); 
void PrintBob(struct BitMap *bm, FILE *fp, UBYTE *name); 
void PrintSprite(struct BitMap *bm, FILE *fp, UBYTE *name, 

BOOL attach, BOOL dohdr); 

static BOOL doCRLF; 
char sp_colors[] = 11 .o0@"; 

void PrCRLF(FILE *fp) 
{ 

if (doCRLF) 
fprintf(fp, "%c%c", OxD, OxA); 

else 
fprintf(fp, "\n"); 

void PrintBob{struct BitMap *bm, FILE *fp, UBYTE *name) 
{ 

register UWORD *wp; /* Pointer to the bitmap data */ 

short 
short 

p,i,j,nb; /*temporaries*/ 
nwords = (bm->BytesPerRow/2)*bm->Rows; 

fprintf(fp, "/*----- bitmap : w = %ld, h = %ld ------ */", 
bm->BytesPerRow*S, bm->Rows) ; 

PrCRLF (fp); 

for (p = 0; p < bm->Depth; ++p) { /* For each bit plane */ 
wp = (UWORD *)bm->Planes[p]; 
fprintf(fp, "/*------plane# %ld: --------*/", p); 
PrCRLF (fp) ; 
fprintf(fp, "UWORD %s%c[%ld] = {",name, (p?('O'+p):' '), nwords); 

PrCRLF(fp); 
for (j = 0; j < bm->Rows; j++, wp += (bm->BytesPerRow >> 1)) { 

fprintf(fp, " "); 
for (nb = 0; nb < (bm->BytesPerRow) >> 1; nb++) 

fprintf(fp, "Ox%04x, ", * (wp+nb)); 
if (bm->BytesPerRow <= 6) { 

fprintf(fp, "\t/* "); 
for (nb = 0; nb < (bm->BytesPerRow) >> 1; nb++) 

for (i=O ; i<16; i++) 
fprintf(fp, "%c", 

mod u les/bmpri ntc.c Page 2 

(((*(wp+nb)>>(15-i))&1) ? 
fprintf(fp, "*/"); 

I 
PrCRLF(fp); 

) 
fprintf (fp," 
PrCRLF (fp); 

);"); 

void PSprite(struct BitMap *brn, FILE *fp, UBYTE *name, int p, BOOL dohead) 
{ 

UWORD 
short 

short 

*wpO, *wpl; /* Pointer temporaries */ 
i, j, nwords, /* Counter temporaries */ 
color; /* pixel color */ 
wplen = bm->BytesPerRow/2; 

nwords = 2*bm->Rows + (dohead?4:0); 
wpO = (UWORD *)bm->Planes[p]; 
wp1 = (UWORD *)bm->Planes[p+1]; 

fprintf(fp, "UWORD %s[%ld] = {", name, nwords); 
PrCRLF(fp); 

if (dohead) { 
fprintf(fp," OxOOOO, OxOOOO, /* VStart, VStop */"); 
PrCRLF(fp); 

for (j=O ; j < bm->Rows; j++) 
fprintf(fp, " Ox%04x, Ox%04x", *wpO, *wpl); 
if (dohead I I (j != bm->Rows-1)) 

fprintf(fp, 11 , 11 ); 

) 
fprintf(fp, "\t/* "); 
for (i = 0; i < 16; i++) { 

'.')); 

color= ((*wp1 >> (14-i)) & 2) + ((*wpO >> (15-i)) & 1); 
fprintf(fp, 11 %C 11 , sp_colors[color]); 

) 

) 
fprintf(fp," */"); 
PrCRLF (fp); 
wpO += wplen; 
wp1 += wplen; 

if (dohead) 
fprintf(fp, " OxOOOO, OxOOOO ); /* End of Sprite */"); 

else 
fprintf(fp," }; "); 

PrCRLF (fp) ; 
PrCRLF (fp) ; 

void PrintSprite(struct BitMap *brn, FILE *fp, UBYTE *name, 
BOOL attach, BOOL dohdr) 

fprintf(fp, "/*----- Sprite format: h = %ld ------ */", bm->Rows); 
PrCRLF(fp); 

if (bm->Depth > 1) { 
fprintf(fp, u/*--Sprite containing lower order two planes: 
PrCRLF (fp) ; 
PSprite(bm, fp, name, 0, dohdr); 

) 
if (attach && (bm->Depth > 3) ) { 

*/"); 



01 
rv 
(j) 

JJ 

~ 
~ 
3 
(!) -JJ 
(!) 

(i) 
(i1 
::J 

~ 

~ 

~ 
CJ 
(!) 

"' ()• 
(!) 
({) 

modules/bmprintc.c Page 3 
strcat(name, .,1 10 ); 

fprintf(fp, 11 /*--Sprite containing higher order two planes: 

PrCRLF (fp); 
PSprite(bm, fp, name, 2, dohdr); 

#define BOB 0 
#define SPRITE 1 

/* BMPrintCRep 
* Passed pointer to BitMap structure, C filehandle opened for write, 
* name associated with file, and string describing the output 
* for.mat desired (see cases below), outputs C representation of the ILBM. 
*I 

void BMPrintCRep(struct BitMap *bm, FILE *fp, UBYTE *name, UBYTE *fmt) 
{ 

BOOL attach, doHdr; 
char c; 
SHORT type; 

doCRLF = NO; 
doHdr = YES; 
type = BOB; 
attach = NO; 
while ( (c=*fmt++) ! = 0 ) 

switch (c) { 
case 'b': 

type = BOB; 
break; 

case 's': 
type = SPRITE; 
attach = NO; 
break; 

case 1 a': 
type = SPRITE; 
attach = YES; 
break; 

case 'n': 
doHdr = NO; 
break; 

case 'c': 

) 
switch(type) { 

case BOB: 

doCRLF = YES; 
break; 

PrintBob(bm, fp, name); 
break; 

case SPRITE: 
PrintSprite(bm, fp, name, attach, doHdr); 
break; 

*/"); 

modules/copychunks.c 
I* copychunks 
* 
* For Read/Modify/Write programs and other programs that need 
* to close the IFF file but still reference gathered chunks. 
* Copies your gathered property and collection chunks 

* 

from an iff context so that IFF handle may be 
closed right after parsing (allowing file or clipboard to 
to be reopened for read or write by self or other programs) 

* The created list of chunks can be modified and written 
back out to a new handle with writechunklist(). 

*If you have used copychunks(), remember to free the copied 
* chunks with freechunklist(), when ready, to deallocate them_ 

* Note that this implementation is flat and is suitable only 
for simple FORMs. 

*I 

#include "iffp/iff.h" 

/* copychunks () 

* Copies chunks specified in propchks and collectchks 
* FROM an already-parsed IFFHandle 
* TO a singly linked list of Chunk structures, 
* and returns a pointer to the start of the list. 
* * Generally you would store this pointer in parseinfo.copiedchunks. 
* * You must later free the list of copied chunks by calling 
* FreeChunkList(). 

* Reorders collection chunks so they appear in SAME ORDER 
* in chunk list as they did in the file. 

* Returns 0 for failure 
*I 

struct Chunk *copychunks(struct IFFHandle *iff, 
LONG *propchks, LONG *collectchks, 
ULONG memtype) 

struct Chunk *chunk, *first=NULL, *prevchunk = NULL; 
struct StoredProperty *sp; 
struct Collectionitem *ci, *cii; 
long error; 
int k, kk, bk; 

if(!iff) return (NULL); 

/* Copy gathered property chunks */ 
error = 0; 

Page 1 

for(k=O; (!error) && (propchks) && (propchks[k] !=TAG DONE); k+=2) 
{ -
if(sp=FindProp(iff,propchks[k],propchks[k+l])) 

{ 
D(bug("copying %.4s.%.4s chunk\n",&propchks(k],&propchks[k+l])); 

if(chunk=(struct Chunk *) 
AllocMem(sizeof(struct Chunk),memtypeiMEMF_CLEAR)) 

{ 
chunk->ch Type= propchks[k]; 
chunk->ch-ID = propchks[k+l]; 
if(chunk->ch Data= AllocMem(sp->sp Size,memtype)) 

{ - -
chunk->ch Size = sp->sp Size; 



..,., ..,., 
(/} 
"0 
Cl) 

g 
(:'5" 

a:. 
6" 
:::::l 

(/} 
0 
c: 
0 
Cl) 

() 
0 
a. 
Cl) 

tn 
1\) 
-...! 

])); 

else 

modules/copychunks.c 
CopyMem(sp->sp Data,chunk->ch Data,sp->sp Size); 
if(prevchunk) - prevchunk=>ch Next = chunk; 
else first = chunkT 
prevchunk = chunk; 
} 

{ 
FreeMem(chunk,sizeof(struct Chunk)); 
chunk=NULL; 
error = 1; 
} 

else error = 1; 
} 

I* Copy gathered collection chunks in reverse order *I 

Page 2 

for(k=O; (!error) && (collectchks) && (collectchks[k] !=TAG DONE); k+=2) 
{ -
if(ci=FindCollection(iff,collectchks[k],collectchks[k+l])) 

{ 
D(bug("copying %.4s.%.4s collection\n",&collectchks[k],&collectchks[k+l 

for(cii=ci, bk=O; cii; cii=cii->ci_Next) bk++; 

D(bug(" There are %ld of these, first is at $%lx\n",bk,ci)); 

for( bk; bk; bk--) 
{ 
for(kk=l, cii=ci; kk<bk; kk++) cii=cii->ci_Next; 

D (bug (" copying number %ld\n", kk) ) ; 

if(chunk=(struct Chunk *) 
AllocMem(sizeof(struct Chunk),memtypeiMEMF CLEAR)) 
{ -
chunk->ch Type= collectchks[k]; 
chunk->ch-ID = collectchks[k+l]; 
if(chunk->ch Data= AllocMem(cii->ci Size,memtype)) 

{ - -
chunk->ch Size = cii->ci Size; 
CopyMem(cii->ci Data,chunk->ch Data,cii->ci Size); 
if(prevchunk) -prevchunk->ch Next = chunk;-
else first = chunkT 
prevchunk = chunk; 
} 

else 
{ 
FreeMem(chunk,sizeof(struct Chunk)); 
chunk=NULL; 
error = 1; 
} 

else error = 1; 
} 

if(error) 
{ 
if(first) freechunklist(first); 
first = NULL; 
} 

return (first) ; 
} 

mod ules/copych un ks.c 

I* freechunklist - Free a dynamically allocated Chunk list and 
all of its ch Data. 

* 
*Note- if a chunk's ch Size is IFFSIZE UNKNOWN, its ch Data 
* will not be deallocated. -
*I 

void freechunklist(struct Chunk *first) 
{ 
struct Chunk *chunk, *next; 

chunk = first; 
while (chunk) 

{ 
next = chunk->ch Next; 
if((chunk->ch Data)&&(chunk->ch Size != IFFSIZE UNKNOWN)) 

FreeMem(chunk->ch Data,chunk->ch Size); 
FreeMem(chunk, sizeof(struct Chunk)); -
chunk = next; 
} 

I* findchunk - find first matching chunk in list of struct Chunks 
* example finchunk(pi->copiedchunks,ID_ILBM,ID_CRNG); 

* returns struct Chunk *, or NULL if none found 
*I 

struct Chunk *findchunk(struct Chunk *first, long type, long id) 
{ 
struct Chunk *chunk; 

for(chunk=first; chunk; chunk=chunk->ch Next) 
{ -

Page 3 

if((chunk->ch Type== type)&&(chunk->ch ID id)) return(chunk); 
} - -

return(NULL); 
} 

I* writechunklist- write out list of struct Chunk's 
* If data is a null ter.minated string, you may use 
* IFFSIZE UNKNOWN as the ch Szie and strlen(chunk->ch Data) 
* will be-used here as size~ -

* * Returns 0 for success or an IFFERR 
*I 

long writechunklist(struct IFFHandle *iff, struct Chunk *first) 
{ 
struct Chunk *chunk; 
long size, error = 0; 

D(bug("writechunklist: first chunk pointer= $%lx\n",first)); 

for(chunk=first; chunk && (!error); chunk=chunk->ch Next) 
{ -
size = (chunk->ch Size == IFFSIZE UNKNOWN) ? 

strlen(chunk->ch Data) : chunk->ch Size; 
error= PutCk(iff, chunk->ch ID,-size, chunk->ch Data); 
D(bug("writechunklist: put %-:-4s size=%ld, error=%ld\n", 

&chunk->ch_ID,size, error)); 

return (error); 
} 



(.J1 
1\) 
CXl 

:::0 

~ 
~ 
3 
~ 
:::0 
()) 

~ 
Ci3 
:::J 
C) 
()) 

s: 
Ill 
:::J 
c: 
Ill 
:-;-

CJ 
()) 
<::: 
()• 
(!) 
C/) 

modules/getbitmap.c Page 1 

1*----------------------------------------------------------------------* 
* GETBITMAP.C Support routines for reading ILBM files. 
* (IFF is Interchange Format File.) 

* * Based on code by Jerry Morrison and Steve Shaw, Electronic Arts. 
* This software is in the public domain. 
* Modified for iffparse.library by CBM 04190 
* This version for the Commodore-Amiga computer. 
*----------------------------------------------------------------------*1 

#include "iffplilbm.h" 
#include "iffplpacker.h" 
#include "iffplilbmapp.h" 

/* createbrush 

* * Passed an initialized ILBMinfo with a parsed IFFHandle (chunks parsed, 
*stopped at BODY), 
* gets the bitmap and colors 
* Sets up ilbm->brbitmap, ilbm->colortable, ilbm->ncolors 
* Returns 0 for success 
*I 

LONG createbrush(struct ILBMinfo *ilbm) 
( 
int error; 

error 
if(!error) error 

if(!error) 
if(error) 
return(error); 
} 

/* deletebrush 

= getbitmap(ilbm); 
= loadbody(ilbm->Parseinfo.iff, 

ilbm->brbitmap,&ilbm->Brnhd); 
getcolors(ilbm); 
deletebrush(ilbm); 

* closes and deallocates created brush bitmap and colors 
*I 

void deletebrush(ilbm) 
struct ILBMinfo *ilbm; 

{ 
freebitmap(ilbm); 
freecolors(ilbm); 
} 

I* getbitmap 

* * Passed an initialized ILBMinfo with parsed IFFHandle (chunks parsed, 
* stopped at BODY) , allocates a BitMap structure and planes just large 
*enough for the BODY. Generally used for brushes but may be used 
*to load backgrounds without displaying, or to load deep ILBM's. 
* Sets ilbm->brbitmap. Returns 0 for success. 
*I 

LONG getbitmap(struct ILBMinfo *ilbm) 
( 
struct IFFHandle *iff; 
BitMapHeader *bmhd; 
USHORT wide, high; 
LONG error = NULL; 
int k, extra=O; 
BYTE deep; 

if(! (iff=ilbm->Parseinfo.iff)) return(CLIENT_ERROR); 

modules/ 
ilbm->brbitmap = NULL; 

if (! ( bmhd = (BitMapHeader *) 
findpropdata (iff, li) 

message( 11 No ILBM.BMHD chunk' 
return(IFFERR SYNTAX); 
} -

* (&ilbm->Brnhd) *bmhd; /* copy cor:.t~~nts 

wide 
high 
deep 

BitsPerRow(bmhd->w); 
bmhd->h; 
bmhd->nPlanes; 

ilbm->camg = getcamg(ilbm); 

D (bug ("allocbitmap: bmhd~$%lx wide~L' 
bmhd, wide, high, deep l ·, 

I* 
* Allocate Bitmap and planes 
*I 

extra = deep > B ? deep - B : 0; 
if(ilbm->brbitmap = AllocMem(sizeof(::ct.: 

{ 
InitBitMap (ilbm->brbitmap, d.,, ... 
for(k=O; k<deep && (!error); 

{ 
if(! (ilbm->brbitmap->Pla; 

error = 1; 
if(! error) 

Page 2 

. EiMH'J))) 

of BMl:!O Y: I 

'd dcep=%ld\n", 

Uit.VMip) -:-.,extra<<2) ,MEMF_CLEAR)) 

.1(•_ h.i gh}; 

_;J }J..,c~~' 'lter (wide, high))) 

BltClear (ilbm->brbit ..•. ,,. ,;··la:Hs: •c:, c.·.SSIZE (wide, high), 0); 

if(error) 
{ 
message ( HFailed to allocC' 
freebitmap(ilbm); 
} 

else error = 1; 
return(error); 
} 

I* freebitmap 

* * deallocates ilbm->brbitmap BitMap structure 
*I 

void freebitmap(struct ILBMinfo * ilbm) 
{ 
int k, extra=O; 

if(ilbm->brbitmap) 
{ 
for(k=O; k< ilbm->brbitmap->DeF· :, 

{ 
if (ilbm->brbitmap->Plan.·. 

. \ n") 

;:;.<-~s 

1" ) 

FreeRaster(ilbm ·!• -nap·>l?lan<::s[k], 
{USHORT·· . ; ~ .... ~~- <·.n"!::.itmap >BytesPerR.ow << 3), 
ilbm->b...:.i.', ~--:,;.ap--~Rrq.rs) · 

extra = ilbm->brbitmap->Depth > "' 
FreeMem(ilbm->brbitmap,s1zeof(st: 
ilbm->brbitmap = NULL; 

'· ' np->Depth - 8 
,xtra << 2)); 

o· 



"'Tl 
"'Tl 
CJ) 

"'0 
(!) 
C') 
::::;: 
()" 

a 
6" 
::J 

CJ) 
0 
c: 
a 
(!) 

() 
0 
a. 
(!) 

01 
I\) 
(0 

modules/getbitmap.c Page3 

I* end */ 

mod ules/getdisplay .c Page 1 

1*----------------------------------------------------------------------* 
* GETDISPLAY.C Support routines for reading/displaying ILBM files. 
* (IFF is Interchange Format File.) .. 
* Based on code by Jerry Morrison and Steve Shaw, Electronic Arts. 
* This software is in the public domain. 
* Modified for iffparse.library by CBM 04/90 
* This version for the Commodore-Amiga computer. 
*----------------------------------------------------------------------*1 

#include "iffp/ilbm.h" 
#include "iffp/packer.h" 
#include "iffp/ilbmapp.h" 

extern struct Library *GfxBase; 

/* showilbm .. 
* Passed an ILBMinfo initilized with with a not-in-use Parseinfo.iff 

IFFHandle and desired propchks, collectchks, stopchks, and a filename, 
will load and display an ILBM, initializing ilbm->Bmhd, ilbm->camg, 
ilbm->scr, ilbm->win, ilbm->vp, ilbm->srp, ilbm->wrp, 
ilbm->colortable, and ilbm->ncolors . 

.. .. .. .. .. .. .. .. 
Note that ncolors may be more colors than you can LoadRGB4 . 
Use MIN(ilbm->ncolors,MAXAMCOLORREG) for color count if you change 
the colors yourself using 1.3/2.0 functions . 

* Returns 0 for success or an IFFERR (libraries/iffparse.h) 
*I 

LONG showilbm(struct ILBMinfo *ilbm, UBYTE *filename) 
{ 
LONG error = OL; 

if(! (ilbm->Parseinfo.iff)) return(CLIENT_ERROR); 

if(! (error= openifile((struct Parseinfo *)ilbm, filename, IFFF READ))) 
{ -
D(bug("showilbm: openifile successful\n")); 

error= parseifile((struct Parseinfo *)ilbm, 
ID FORM, ID ILBM, 
ilEm->Parseinfo.propchks, 
ilbm->Parseinfo.collectchks, 
ilbm->Parseinfo.stopchks); 

if((!error) I I (error== IFFERR EOC) I I (error== IFFERR EOF)) 
{ - -
D(bug("showilbm: parseifile successful\n")); 

if(contextis(ilbm->Parseinfo.iff,ID ILBM,ID FORM)) 

else 

{ - -
if(error = createdisplay(ilbm)) deletedisplay(ilbm); 
I 

{ 
closeifile((struct Parseinfo *)ilbm); 
message("Not an ILBM\n"); 
error = NOFILE; 
} 

I 
return(error); 



CJ1 
(..) 
0 

:J:J 

~ 
~ 
3 
~ 
:J:J 
(!) 

CD' 
~ 
:::::; 

2 
~ 
:::::; 
c:: 
Ill 
:-:-
CJ 
(!) 
<:: 
()• 
(!) 
(/) 

modules/getdisQJay .c 

I* unshowilbm 

* frees and closes everything alloc'd/opened by showilbm 
*I 

void unshowilbm(struct ILBMinfo *ilbm) 
{ 

deletedisplay(ilbm); 
closeifile((struct Parseinfo *)ilbm); 

I* createdisplay 

* 

Page 2 

* Passed a initialized ILBMinfo with parsed IFFHandle (chunks parsed, 
*stopped at BODY), 
* openslallocs the display and colortable, and displays the ILBM. 
* * If successful, sets up ilbm->Bmhd, ilbm->carng, ilbm->scr, ilbm->win, 
* ilbm->vp, ilbm->wrp, ilbm->srp and also ilbm->colortable and 
* ilbm->ncolors. 

* * Note that ncolors may be more colors than you can LoadRGB4. 
* Use MIN(ilbrn->ncolors,~COLORREG) for color count if you change 
* the colors yourself using 1.312.0 functions. 

* 
* Returns 0 for success or an IFFERR (librariesliffparse.h) 
*I 

LONG createdisplay(struct ILBMinfo *ilbm) 
{ 
int error; 

D(bug("createdisplay:\n")); 

error = getdisplay(ilbm); 

D(bug("createdisplay: after getdisplay, error = %ld\n", error)); 

if(!error) error = loadbody(ilbm->Parseinfo.iff, 
&ilbm->scr->BitMap,&ilbm->Bmhd); 

D (bug ( "createdisplay: after loadbody, error = %ld\n", error)) ; 

if(!error) 
{ 
if(! (getcolors(ilbm))) 

) 

LoadRGB4(ilbm->vp, ilbm->colortable, 
MIN(ilbm->ncolors,MAXAMCOLORREG)); 

if(error) deletedisplay(ilbm); 
return(error); 
) 

I* deletedisplay 

* closes and deallocates created display and colors 
*I 

void deletedisplay(struct ILBMinfo *ilbm) 
{ 
freedisplay(ilbm); 
freecolors(ilbm); 
) 

modules/ .c Page 3 

I* getdisplay 
* 
* Passed an initialized ILBMinfo with a parsed IFFHandle (chunks parsed, 
*stopped at BODY), 
* gets the dimensions and mode for the display and calls the external 
* routine opendisplay(). Our opendisplay() is in the screen.c 
*module. It opens a 2.0 or 1.3, ECS or non-ECS screen and window. 
* It also does 2.0 overscan centering based on the closest user prefs. 

* If successful, sets up ilbm->Bmhd, ilbm->camg, ilbm->scr, ilbm->win, 
* ilbm->vp, ilbm->wrp, ilbm->srp 

* 
* Returns 0 for success or an IFFERR (librariesliffparse.h) 
*I 

LONG getdisplay(struct ILBMinfo 
{ 
struct IFFHandle *iff; 
BitMapHeader *bmhd; 
ULONG 
UWORD 

*ilbm) 

modeid; 
wide, hiqh, deep; 

if(' (iff=ilbm->Parseinfo.iff)) return(CLIENT_ERROR); 

if(' (bmhd = (BitMapHeader *)findpropdata(iff, ID ILBM, ID BMHD))) 
{ - -
message ("No ILBM.BMHD chunk\n"); 
return (IFFERR SYNTAX) .: 
) -

*(&ilbm->Bmhd) = *bmhd; 

wide 

high 
deep 

(RowBytes(bmhd->w)) >= (RowBytes(bmhd->pageWidth)) ? 
bmhd->w : bmhd->pageWidth; 

MAX(bmhd->h, bmhd->pageHeight); 
MIN(bmhd->nPlanes,MAXAMDEPTH); 

ilbm->camg = modeid = getcamg(ilbm); 

I* 
* Open the display 
*I 

if(' (opendisplay(ilbm,wide,high,deep,modeid))) 
{ 
message("Failed to open display.\n"); 
return(l); 
) 

return(O); 
) 

I* freedisplay 
* 
* closes and deallocates display from getdisplay (not colors) 
*I 

void freedisplay(struct ILBMinfo *ilbm) 
{ 
closedisplay(ilbm); 
) 



, , 
en 
"0 
CD 

& 
(')" 

a o· 
:::J 

en 
0 
c: 
0 
CD 
() 
0 
0.. 
CD 

01 
VJ 

modules/ilbmr.c Page 1 

/* ilbmr.c --- ILBM loading routines for use with iffparse */ 

/*----------------------------------------------------------------------* 
* ILBMR.C Support routines for reading ILBM files. 
* (IFF is Interchange Format File.) 
* * Based on code by Jerry MOrrison and Steve Shaw, Electronic Arts. 
* This software is in the public domain. 
* Modified for iffparse.library 05/90 
* This version for the Commodore-Amiga computer. 
*----------------------------------------------------------------------*/ 

#include "iffp/ilbm.h" 
#include "iffp/packer.h" 
#include "iffp/ilbmapp.h" 

#define movmem CopyMem 

#define MaxSrcPlanes (25) 

extern struct Library *GfxBase; 

1*---------- loadbody ---------------------------------------------------*/ 

LONG loadbody(iff, bitmap, bmhd) 
struct IFFHandle *iff; 
struct BitMap *bitmap; 
BitMapHeader *bmhd; 

{ 
BYTE *buffer; 
ULONG bufsize; 
LONG error = 1; 

D(bug("In loadbody\n")); 

if(!(currentchunkis(iff,ID_ILBM,ID_BODY))) 
{ 
message("ILBM has no BODY\n"); 
return(IFF OKAY); 
} -

if( (bitmap) && (bmhd)) 
{ 
D (bug ("Have bitmap and bmhd\n") ) ; 

/*Maybe it's a palette*/ 

bufsize = MaxPackedSize(RowBytes(bmhd->w)) << 4; 
if(! (buffer= AllocMem(bufsize,OL))) 

{ 
D (bug ("Buffer alloc of %ld failed\n" ,bufsize)); 
return(IFFERR NOMEM); 
) -

error= loadbody2(iff, bitmap, NULL, bmhd, buffer, bufsize); 
D(bug("Returned from getbody, error= %ld\n",error)); 
I 

FreeMem(buffer,bufsize); 
return(error); 
I 

/* like the old GetBODY */ 
LONG loadbody2(iff, bitmap, mask, bmhd, buffer, bufsize) 
struct IFFHandle *iff; 
struct BitMap *bitmap; 
BYTE *mask; 
BitMapHeader *bmhd; 
BYTE *buffer; 

ULONG bufsize; 
{ 

modules/ilbmr.c Page 2 

UBYTE srcPlaneCnt = bmhd->nPlanes; /* Haven't counted for mask plane yet*/ 
WORD srcRowBytes = RowBytes(bmhd->w); 
WORD destRowBytes = bitmap->BytesPerRow; 
LONG bufRowBytes = MaxPackedSize(srcRowBytes); 
int nRows = bmhd->h; 
WORD compression = bmhd->campression; 
register int iPlane, iRow, nEmpty; 
register WORD nFilled; 
BYTE *buf, *nullDest, *nullBuf, **pDest; 
BYTE *planes[MaxSrcPlanes]; /* array of ptrs to planes & mask*/ 
struct ContextNode *en; 

D(bug("srcRowBytes = %ld\n",srcRowBytes)); 

en= CurrentChunk(iff); 

if (compression > cmpByteRun1) 
return(CLIENT_ERROR); 

D(bug("loadbody2: compression=%ld srcBytes=%ld bitmapBytes=%ld\n", 
compression, srcRowBytes, bitmap->BytesPerRow)); 

D(bug("loadbody2: bufsize=%ld bufRowBytes=%ld, srcPlaneCnt=%ld\n", 
bufsize, bufRowBytes, srcPlaneCnt)); 

/*Complain if client asked for a conversion GetBODY doesn't handle.*/ 
if ( srcRowBytes > bitmap->BytesPerRow I I 

bufsize < bufRowBytes * 2 I I 
srcPlaneCnt > MaxSrcPlanes ) 

return(CLIENT_ERROR); 

D(bug("loadbody2: past conversion checks\n")); 

if (nRows > bitmap->Rows) nRows = bitmap->Rows; 

D(bug("loadbody2: srcRowBytes=%ld, srcRows=%ld, srcDepth=%ld, destDepth=%ld\n", 
srcRowBytes, nRows, bmhd->nPlanes, bitmap->Depth)); 

/* Initialize array 11 planes 11 with bitmap ptrs; NULL in empty slots.*/ 
for (iPlane = 0; iPlane < bitmap->Depth; iPlane++) 

planes[iPlane] = (BYTE *)bitmap->Planes[iPlane]; 
for ( ; iPlane < MaxSrcPlanes; iPlane++) 

planes[iPlane] =NULL; 

/*Copy any mask plane ptr into corresponding 11 planes 11 slot.*/ 
if (bmhd->masking == mskHasMask) 

{ 
if (mask ! = NULL) 

else 

planes[srcPlaneCnt] =mask; /* If there are more srcPlanes than 
* dstPlanes, there will be NULL plane-pointers before this.*/ 

planes[srcPlaneCnt] =NULL; /* In case more dstPlanes than src.*/ 
srcPlaneCnt += 1; /*Include mask plane in count.*/ 
I 

/* Setup a 
nullDest 
buffer += 
bufsize 

sink for dummy 
buffer; 
srcRowBytes; 
srcRowBytes; 

destination of rows from unwanted planes.*/ 

/*Read the BODY contents into client's bitmap. 
* De-interleave planes and decompress rows. 
*MODIFIES: Last iteration modifies bufsize.*/ 

buf = buffer + bufsize; /* Buffer is currently empty.*/ 



01 
w 
1\) 

lJ 

~ 
~ 
3 
:!?.. 
lJ 
(1) 

<D' 
(i3 
:::l 

f6 
s: 
Ill 
:::l 
r:::: 
Ill 
:-:-
CJ 
(1) 

"' (')' 
(1) 
[J) 

I* 

modules/ilbmr.c Page 3 

for (iRow = nRows; iRow > 0; iRow--) 
{ 

} 

for (iPlane = 0; iPlane < srcPlaneCnt; iPlane++) 
{ 
pDest = &planes[iPlane]; 

/*Establish a sink for any unwanted plane.*/ 
if (*pDest == NULL) 

{ 
nullBuf 
pDest 
} 

nullDest; 
&nullBuf; 

/*Read in at least enough bytes to uncompress next row.*/ 
nEmpty = buf- buffer; /*size of empty part of buffer.*/ 
nFilled = bufsize- nEmpty; /*this part has data.*/ 
if (nFilled < bufRowBytes) 

{ 
/*Need to read more.*/ 

I* Move the existing data to the front of the buffer.*/ 
I* Now covers range buffer[O] .. buffer[nFilled-1].*/ 
movmem(buf, buffer, nFilled); I* Could be moving 0 bytes.*/ 

if(nEmpty > ChunkMoreBytes(cn)) 
{ 
/* There aren't enough bytes left to fill the buffer.*/ 
nEmpty = ChunkMoreBytes(cn); 
bufsize = nFilled + nEmpty; /* heh-heh */ 
} 

I* Append new data to the existing data.*/ 
if(ReadChunkBytes(iff, &buffer[nFilled], nEmpty) < nEmpty) 

return(CLIENT_ERROR); 

buf 
nFilled 
nEmpty 
} 

buffer; 
bufsize; 
0; 

/*Copy uncompressed row to destination plane.*/ 
if(compression == cmpNone) 

{ 
if(nFilled < srcRowBytes) return(IFFERR MANGLED); 
rnovmem(buf, *pDest, srcRowBytes); 
buf += srcRowBytes; 
*pDest += destRowBytes; 
} 

else 
{ 
I* Decompress row to destination plane.*/ 
if ( unpackrow(&buf, pDest, nFilled, srcRowBytes) 

/* pSource, pDest, srcBytes, dstBytes */ 
return(IFFERR MANGLED); 

else *pDest += (destRowBytes- srcRowBytes); 
} 

return(IFF OKAY); 
} -

getcolors ------------- *I 

I* getcolors - allocates a ilbm->colortable for at least MAXAMCOLORREG 
and loads CMAP colors into it, setting ilbm->ncolors to number 

modules/ilbmr.c 
of colors actually loaded. 

*I 
LONG getcolors(struct ILBMinfo *ilbm) 

{ 
struct IFFHandle *iff; 
int error = 1; 

if(' (iff=ilbm->Parseinfo.iff)) return(CLIENT_ERROR); 

if(! (error= alloccolortable(ilbm))) 
error = loadcmap(iff, ilbm->colortable, &ilbm->ncolors); 

if(error) freecolors(ilbm); 
D(bug( 11 qetcolors: error= %ld\n",error)); 
return(error); 
} 

Page 4 

/* alloccolortable - allocates ilbm->colortable and sets ilbm->ncolors 
* to the number of colors we have room for in the table. 
*I 

LONG alloccolortable(struct ILBMinfo *ilbm) 
{ 

void 

struct IFFHandle *iff; 
struct StoredProperty *sp; 

LONG error = CLIENT ERROR; 
ULONG ctabsize; -
USHORT ncolors; 

if(!(iff=ilbm->Parseinfo.iff)) return(CLIENT_ERROR); 

if(sp = FindProp (iff, ID ILBM, ID CMAP)) 
{ - -
/* 
* Compute the size table we need 
*I 

ncolors 
ncolors 

sp->sp Size I 3; I* how many in CMAP */ 
MAX(ncolors, MAXAMCOLORREG); 

ctabsize = ncolors * sizeof(Co1or4); 
if(ilbm->colortable = 

(Color4 *)AllocMem(ctabsize,MEMF CLEARIMEMF PUBLIC)) r - -
ilbm->ncolors = ncolors; 
ilbm->ctabsize = ctabsize; 
error = OL; 
I 

else error = IFFERR NOMEM; 
} -

D(bug("alloccolortable for %ld colors: error 
return (error) ; 
I 

freecolors(struct ILBMinfo *ilbm) 
{ 
if(ilbm->colortable) 

{ 

%ld\n",ncolors,error)); 

FreeMem(ilbm->colortable, ilbm->ctabsize); 
} 

ilbm->colortable = NULL; 
ilbm->ctabsize = 0; 
} 



"'T1 
"'T1 
(f) 

"'0 co g 
6" 
~ 
6" 
::J 

(/) 
0 
c:: 
a co 
() 
0 
a. 
co 
01 w w 

modules/ilbmr.c 

I* Passed IFFHandle, pointer to colortable array, and pointer to 
* a USHORT containing number of colors caller has space to hold, 
* loads the colors and sets pNcolors to the number actually read. 

* 
*NOTE !!! -Old GetCMAP passed a pointer to a UBYTE for pNcolors 
* This one is passed a pointer to a USHORT 
*I 

Page 5 

LONG loadcmap(struct IFFHandle *iff, WORD *colortable,USHORT *pNcolors) 
{ 

I* 

register struct StoredProperty 
register LONG 
register ULONG 
register UBYTE 
LONG 

if(! (colortable)) 
{ 

*sp; 
idx; 
ncolors; 
*rgb; 
r, q, b; 

message ( 11 NO colortable allocated\n 11 ) ; 

return(l); 
} 

if(! (sp = FindProp (iff, ID_ILBM, ID_CMAP))) 

rgb = sp->sp Data; 
ncolors = sp=>sp Size I sizeofColorRegister; 
if(*pNcolors < nColors) ncolors = *pNcolors; 
*pNcolors = ncolors; 

idx = 0; 
while (ncolors--) 

{ 
r = (*rgb++ & OxFO) << 4· 
g = *rgb++ & OxFO; 
b = *rgb++ >> 4; 
colortable[idx] = r I g I b; 
idx++; 
} 

return(O); 
} 

return(l); 

* Returns CAMG or computed mode for storage in ilbm->camg 

* * ilbm->Bmhd structure must be initialized prior to this call. 
*I 

ULONG getcamg(struct ILBMinfo *ilbm) 
{ 
struct IFFHandle *iff; 
struct StoredProperty *sp; 
UWORD wide,high,deep; 
ULONG modeid = OL; 

if(! (iff=ilbm->Parseinfo.iff)) return(OL); 

wide = ilbm->Bmhd.pageWidth; 
high = ilbm->Brnhd.pageHeight; 
deep = ilbm->Brnhd.nPlanes; 

D (bug ("Getting CAMG for w=%ld h=%ld d=%ld ILBM\n", wide, high, deep)) ; 

I* 
*Grab CAMG's idea of the view.modes. 
*I 

if (sp = FindProp (iff, ID ILBM, ID CAMG)) 
{ - -

modules/ilbmr.c Page 6 

modeid = (* (ULONG *) sp->sp_Data); 

I* knock bad bits out of old-style 16-bit viewmode CAMGs 
*I 

if((!(modeid & MONITOR ID ~SK)) I I 
((modeid & EXTENDED MODE)&&(!(modeid & OxFFFFOOOO)))) 
modeid &= -

(-(EXTENDED_MODEISPRITESIGENLOCK_AUDIOIGENLOCK_VIDEOIVP_HIDE)); 

I* check for bogus CAMG like DPaintii brushes 
* with junk in upper word and extended bit 
* not set in lower word. 
*I 

if((modeid & OxFFFFOOOO)&&(! (modeid & OxOOOOlOOO))) sp=NULL; 
} 

if(!sp) { 
I* 

* No CAMG (or bad CAMG) present; use computed modes. 
*I 

if (wide >= 640) 
if (high >= 400) 
if (deep == 6) 

{ 

modeid = HIRES; 
modeid I= LACE; 

modeid I= ilbm->EHB ? EXTRA HALFBRITE : HAM; 
} -

D(bug("No CAMG found- using mode $%08lx\n",modeid)); 
) 

D (bug ( "getcamg: modeid = $%08lx\n", modeid) ) ; 
return (modeid) ; 
} 



01 
c.v 
~ 

::0 

~ 
~ 
3 
~ 
::0 
Q) 

Ci) 
(i3 
:::! 

~ 

~ 
:::! 
§ 
:-:-
C:J 
Q) 

"' R 

modules/ilbmw.c Page 1 

1*----------------------------------------------------------------------* 
* ILBMW.C Support routines for writing ILBM files using IFFParse. 
* (IFF is Interchange Format File.) 

* * Based on code by Jerry Morrison and Steve Shaw, Electronic Arts. 
* This software is in the public domain. 

* * This version for the Cammodore-Amiqa computer. 
*----------------------------------------------------------------------*1 

#include "iffplilbm.h" 
#include "iffplpacker.h" 

#include <graphicslgfxbase.h> 

extern struct Library *GfxBase; 

1*---------- initbmhd -------------------------------------------------*1 
long initbmhd(BitMapHeader *bmhd, struct BitMap *bitmap, 

WORD masking, WORD compression, WORD transparentColor, 
WORD width, WORD height, WORD pageWidth, WORD pageHeight, 
ULONG modeid) 

extern struct Library *GfxBase; 
struct Displayinfo DI; 

WORD rowBytes = bitmap->BytesPerRow; 

D(bug("In InitBMHD\n")); 

bmhd->w = width; 
bmhd->h = height; 
bmhd->x = bmhd->y = 0; I* Default position is (0,0) .*I 
bmhd->nPlanes = bitmap->Depth; 
bmhd->masking = masking; 
bmhd->campression = compression; 
bmhd->reservedl = 0; 
bmhd->transparentColor = transparentColor; 
bmhd->pageWidth = pageWidth; 
bmhd->pageHeight = pageHeight; 

bmhd->xAspect = 0; I* So we can tell when we've got it *I 
if(GfxBase->lib Version >=36) 

{ -
if(GetDisplayinfoData(NULL, (UBYTE *)&DI, 

sizeof(struct Displayinfo), DTAG DISP, modeid)) 
{ -
bmhd->xAspect = DI.Resolution.x; 
bmhd->yAspect = DI.Resolution.y; 
) 

I* If running under 1.3 or GetDisp1ayinfoData failed, use old method 
* of guessing aspect ratio 
*I 

if(! bmhd->xAspect) 
{ 
bmhd->xAspect = 44; 
bmhd->yAspect = 

((struct GfxBase *)GfxBase)->DisplayFlags & PAL ? 44 
if(modeid & HIRES) bmhd->xAspect = bmhd->xAspect >> 1; 
if(modeid & LACE) bmhd->yAspect = bmhd->yAspect >> 1; 
} 

return{ IS ODD{rowBytes) ? CLIENT ERROR 
) - - IFF OKAY ) ; 

52; 

modules/ilbmw.c Page 2 

1*---------- putcmap ---------------------------------------------------*1 
I* This function will accept a table of color values in one of the 

* following forms: 
* if bitspergun=4, 
* if bitspergun=S, 
* if bitspergun=32, 
* (only the high 
*I 

colortable 
colortable 
colortable 
eight bits 

is 
is 
is 
of 

words, each with nibbles ORGB 
bytes of RGBRGB etc. {like a CMAP) 
ULONGS of RGBRGB etc. 
each gun will be written to CMAP) 

long putcmap(struct IFFHandle *iff, APTR colortable, 
UWORD ncolors, UWORD bitspergun} 

lonq error, offs; 
WORD *tabw; 
UBYTE *tabS; 
ColorRegister cmapReg; 

D(bug("In PutCMAP\n")); 

if ( (!iff) I I (! colortable) ) return{CLIENT_ERROR); 

I* size of CMAP is 3 bytes * ncolors */ 
if(error = PushChunk(iff, NULL, ID CMAP, ncolors * sizeofColorRegister)) 

return(error); -

D(bug{"Pushed ID_CMAP, error %ld\n",error)); 

if(bitspergun == 4) 
{ 
I* Store each 4-bit value n 
tabw = {UWORD *)colortable; 
for( ; ncolors; --ncolors 

as nn *I 

} 

{ 
cmapReg. red 
cmapReg. red 

( *tabw >> 4 ) & OxfO; 
I= (cmapReg.red >> 4); 

cmapReg. green = ( *tabw ) & OxfO; 
cmapReg.green I= (cmapReg.green >> 4); 

cmapReg.blue 
cmapReg.blue 

( *tabw << 4 ) & OxfO; 
I= (cmapReg.blue >> 4); 

if((WriteChunkBytes{iff, {BYTE *)&cmapReg, sizeofColorRegister)) 
!= sizeofColorRegister) 

++tabw; 
) 

return{IFFERR_WRITE); 

else if((bitspergun == S) I I (bitspergun == 32)) 
{ 
tabS = {UBYTE *)colortable; 
offs = (bitspergun == S) ? 1 : 4; 
for( ; ncolors; --ncolors ) 

{ 
cmapReg.red = *tabS; 
tabS += offs; 
cmapReg.green = *tabS; 
tabS += offs; 
cmapReg.blue = *tabS; 
tabS += offs; 
if{{WriteChunkBytes(iff, (BYTE *)&cmapReg, sizeofColorRegister)) 

!= sizeofColorRegister) 
return(IFFERR_WRITE); 

else (error CLIENT ERROR) 



""T1 
""T1 
(j) 

"'0 
<D 
(") 
::::+; 
()" 

~ 
6" 
::J 

(j) 
0 
c: 
0 
<D 
(") 
0 
0. 
<D 

(]1 
w 
(]1 

mod ules/il bmw .c 

D (bug ("Wrote registers, error ;;;: %·ld\n 11 , error)); 

error= PopChunk(iff); 
return(error); 
} 

/*---------- putbody 

Page 3 

/* NOTE: This implementation could be a LOT faster if it used more of the 
* supplied buffer. It would make far fewer calls to IFFWriteBytes (and 
* therefore to DOS Write). */ 

long putbody(struct IFFHandle *iff, struct BitMap *bitmap, BYTE *mask, 
BitMapHeader *bmhd, BYTE *buffer, LONG bufsize) 

long error; 
LONG rowBytes = bitmap->BytesPerRow; 
int dstDepth = bmhd->nflanes; 
UBYTE compression = bmhd->compression; 
int planeCnt; /* number of bit planes including mask */ 
register int iPlane, iRow; 
register LONG packedRowBytes; 
BYTE *buf· 
BYTE *pla~es[MAXSAVEDEPTH + 1]; /*array of ptrs to planes & mask*/ 

D(bug("In PutBODY\n")); 

if ( bufsize < MaxPackedSize(rowBytes) I I 
compression > cmpByteRunl I I 
bitmap->Rows != bmhd->h I I 
rowBytes != RowBytes(bmhd->w) I I 
bitmap->Depth < dstDepth I I 
dstDepth > MAXSAVEDEPTH ) 

return(CLIENT_ERROR); 

planeCnt = dstDepth + (mask== NULL? 0 ; 1); 

/* Must buffer a comprsd row*/ 
/* bad arg */ 
/* inconsistent */ 
/* inconsistent*/ 
/* inconsistent */ 
/* too many for this routine*/ 

/* Copy the ptrs to bit & mask planes into local array "planes" */ 
for (iPlane = 0; iPlane < dstDepth; iPlane++) 

planes[iPlane] = (BYTE *)bitmap->Planes[iflane]; 
if (mask 1 = NULL) 

planes(dstDepth] =mask; 

/* Write out a BODY chunk header */ 
if(error = PushChunk(iff, NULL, ID_BODY, IFFSIZE_UNKNOWN)) return(error); 

/* Write out the BODY contents */ 
for (iRow = bmhd->h; iRow > 0; iRow--) { 

for (iPlane = 0; iPlane < planeCnt; iflane++) { 

/*Write next row.*/ 
if (compression == cmpNone) { 

if(WriteChunkBytes(iff,planes[iPlane],rowBytes) != rowBytes) 
error = IFFERR WRITE; 

planes[iflane] += rowBytes; 
} 

/*Compress and write next row.*/ 
else { 

buf = buffer; 
packedRowBytes = packrow(&planes[iPlane], &buf, rowBytes); 
if(WriteChunkBytes(iff,buffer,packedRowBytes) 1 = packedRowBytes) 

error = IFFERR_WRITE; 

if(error) 
) 

return (error) ; 

/* Finish the chunk */ 
error = PopChunk(iff); 
return (error); 
} 

modules/ilbmw .c Page 4 



01 
c:.v 
0) 

::0 

~ 
~ 
3 
~ 
::0 
<D 
<ti 
<i3 
::J 
C') 
<D 

s: 
Ill 
::J c:: 
Ill 
:-:-

~ 
<::: 
fi• 
<D 
(/) 

modules/loadilbm.c 
I* loadilbm.c 05191 C. Scheppner CBM 

* High-level ILBM load routines 
*I 

#include "iffplilbm.h" 
#include "iffplilbmapp.h" 

extern struct Library *GfxBase; 

I* loadbrush 
* * Passed an initialized ILBMinfo with a not-in-use Parseinfo.iff 

Page 1 

* 

IFFHandle and desired propchks, collectchks, and stopchks, and filename, 
will load an ILBM as a brush, setting up ilbm->Bmhd, ilbm->camg, 
ilbm->brbitmap, ilbm->colortable, and ilhm->ncolors 

* 
* 
* 
* 
* 

Note that ncolors may be more colors than you can LoadRGB4. 
Use MIN(ilbm->ncolors,~COLORREG) for color count if you change 
the colors yourself using 1.312.0 functions. 

* Returns 0 for success or an IFFERR (libraries/iffparse.h) 
*I 

LONG loadbrush(struct ILBMinfo *ilbm, UBYTE *filename) 
{ 
LONG error ; OL; 

if(! (ilbm->Parseinfo.iff)) return(CLIENT_ERROR); 

if(!{error; openifile((struct Parseinfo *)ilbm, filename, IFFF READ))) 
{ -
error= parseifile((struct Parseinfo *)ilbm, 

ID FORM, ID ILBM, 
ilnm->Parseinfo.propchks, 
ilbm->Parseinfo.collectchks, 
ilbm->Parseinfo.stopchks); 

if(( 1error) I I (error;; IFFERR EOC) I I (error;; IFFERR EOF)) 
{ - -

if(contextis(ilbm->Parseinfo.iff,ID ILBM,ID FORM)) 

else 

{ - -
if(error; createbrush(ilbm)) deletebrush(ilbm); 
) 

{ 
closeifile((struct Parseinfo *)ilbm); 
message ( 11 Not an ILBM\n") ; 
error = NOFILE; 
I 

return(error); 

I* unloadbrush 
* * frees and close everything alloc'd/opened by loadbrush 
*I 

void unloadbrush(struct ILBMinfo *ilbm) 
{ 

closeifile((struct Parseinfo *)ilbm); 
deletebrush(ilbm); 

modules/loadilbm.c Page 2 

I* queryilbm 
* 
* Passed an initilized ILBMinfo with a not-in-use IFFHandle, 
* and a filename, 
* will open an ILBM, fill in ilbm->camq and ilbm->bmhd, 
* and close the ILBM. 

* This allows you to determine if the ILBM is a size and 
type you want to deal with. 

* 
* Returns 0 for success or an IFFERR (librariesliffparse.h) 
*I 

I* query just wants these chunks */ 
LONG queryprops[] = { ID ILBM, ID BMHD, 

ID-ILBM, ID-CAMG, 
TAG DONE };-

/* scan can stop when 
LONG querystops[] ; { 

a CMAP or BODY is 
ID ILBM, ID CMAP, 
ID-ILBM, ID-BODY, 
TAG DONE );-

reached *I 

LONG queryilbm(struct ILBMinfo *ilbm, UBYTE *filename) 
{ 
LONG error = OL; 
BitMapHeader *bmhd; 

if(' (ilbm->Parseinfo.iff)) return(CLIENT_ERROR); 

if(! (error; openifile((struct Parseinfo *)ilbm, filename, IFFF READ))) 
{ -
D(bug("queryilbm: openifile successful\n")); 

error; parseifile((struct Parseinfo *)ilbm, 
ID FORM, ID ILBM, 
queryprops,-NULL, querystops); 

D (bug ( "queryilbm: after parseifile, error ; %ld\n", error)); 

if((!error) I I (error;; IFFERR EOC) I I (error;; IFFERR EOF)) 
{ - -
if(contextis(ilbm->Parseinfo.iff,ID ILBM,ID FORM)) 

else 

{ - -
if(bmhd ; (BitMapHeader*) 

findpropdata(ilbm->Parseinfo.iff,ID_ILBM,ID_BMHD)) 
{ 
*(&ilbm->Bmhd) ; *bmhd; 
ilbm->camq = getcamq(ilbm); 
} 

else error = NOFILE; 
) 

{ 
message("Not an ILBM\n"); 
error = NOFILE; 
I 

l 
closeifile(ilbm); 
I 

return (error); 

I* loadilbm 
* 



"'Tl 
"'Tl 
(/) 
"0 
CD g 
6" 
~ 
6" 
:::l 

(J) 
0 
c:: 
0 
CD 
() 
0 
a. 
CD 

01 
(...) 
-...J 

modules/loadilbm.c Page3 

* Passed a not-in-use IFFHandle, an initialized ILBMinfo, and filename, 
* will load an ILBM into your already opened ilbm->scr, setting up 

ilbm->Bmhd, ilbm->camg, ilbm->colortable, and ilbm->ncolors 

* 
* 
* 
* 
* 
* 

and loading the colors into the screen's viewport 

Note that ncolors may be more colors than you can LoadRGB4. 
Use MIN(ilbm->ncolors,MAXAMCOLORREG) for color count if you change 
the colors yourself using 1.312.0 functions. 

* Returns 0 for success or an IFFERR (librariesliffparse.h) 

* 
* NOTE - loadilbm() keeps the IFFHandle open so you can copy 
* or examine other chunks. You must call closeifile(iff,ilbm) 

to close the file and deallocate the parsed context 

* 
*I 

LONG loadilbm(struct ILBMinfo *ilbm, UBYTE *filename) 
{ 
LONG error = OL; 

D(bug("loadilbm:\n")); 

if(! (ilbm->Parseinfo.iff)) 
if (! ilbm->scr) 

return(CLIENT ERROR); 
return(CLIENT:ERROR); 

if(! (error= openifile((struct Parseinfo *)ilbm, filename, IFFF READ))) 
{ -
D(bug("loadilbm: openifile successful\n")); 

error= parseifile((struct Parseinfo *)ilbm, 
ID FORM, ID ILBM, 
ilbm->Parseinfo.propchks, 
ilbm->Parseinfo.collectchks, 
ilbm->Parseinfo.stopchks); 

D (bug ( "loadilbm: after parseifile, error = %ld\n", error)) ; 

if((!error) I I (error== IFFERR EOC) I I (error== IFFERR EOF)) 
{ - -
if(contextis(ilbm->Parseinfo.iff,ID ILBM,ID FORM)) 

{ - -
error = loadbody(ilbm->Parseinfo.iff, 

&ilbm->scr->BitMap, &ilbm->Bmhd); 

D(bug("loadilbm: after loadbody, error= %ld\n",error)); 

else 

if(!error) 
{ 

{ 

if(! (getcolors(ilbm))) 
LoadRGB4(&ilbm->scr->Viewfort,ilbm->colortable, 

MIN(ilbm->ncolors,MAXAMCOLORREG)); 

closeifile((struct Parseinfo *)ilbm); 
message ("Not an ILBM\n") ; 
error = NOFILE; 

return (error); 

modules/loadilbm.c 

I* unloadilbm 
* 
* frees and closes everything allocated by loadilbm 
*I 

void unloadilbm(struct ILBMinfo *ilbm) 
{ 

closeifile((struct Parseinfo *)ilbm); 
freecolors(ilbm); 

Page4 



01 
(;.) 
(X) 

)J 

~ 
~ 
3 
~ 
)J 
Q) 

CD' 
(]) 
::J 

2 
~ 
2 
Ill :--:-

~ 
"' ()• 
Q) 
(/) 

modules/packer .c Page 1 

/*----------------------------------------------------------------------* 
* packer. c convert data to "cmpByteRunl" run compression. 11/15/85 

* By Jerry Morrison and Steve Shaw, Electronic Arts. 
* This software is in the public domain. 

* 
control bytes: 

* [0 .. 127] : followed by n+l bytes of data. 
* [-1 .. -127] followed by byte to be repeated (-n)+l times. 
* -128 : NOOP. 
* * This version for the Commodore-Amiga computer. 
*----------------------------------------------------------------------*/ 

#include "iffp/packer.h" 

#define DUMP 0 
#define RUN 1 

#define MinRun 3 
#define MaxRun 128 
#define MaxDat 129 

/* When used on global definitions, static means private. 
* This keeps these names, which are only referenced in this 
* module, from conficting with same-named objects in your program. 
*I 

static LONG putSize; 
static char buf[256]; /* [TBD] should be 128? on stack?*/ 

#define Get Byte () 
#define PutByte(c) 

(*source++) 
{ *dest++ = (c); ++putSize; } 

static BYTE *PutDump(dest, nn) BYTE *dest; int nn; { 
int i; 

PutByte(nn-1); 
for(i = 0; i < nn; i++) 
return (dest) ; 

PutByte(buf[i]); 

) 

static BYTE *PutRun(dest, 
PutByte(-(nn-1)); 
PutByte(cc); 
return (dest) ; 
) 

#define OutDump(nn) dest 
#define OutRun(nn,cc) dest 

/*----------- packrow 

nn, cc) BYTE *dest; 

PutDump(dest, nn) 
PutRun(dest, nn, cc) 

int nn, cc; { 

/* Given POINTERS TO POINTERS, packs one row, updating the source and 
* destination pointers. RETURNs count of packed bytes. 
*I 

LONG packrow(BYTE **pSource, BYTE **pDest, LONG rowSize) 
{ 
BYTE *source, *dest; 
char c,lastc = '\0'; 
BOOL mode = DUMP; 
short nbuf = 0; 
short rstart = 0; 

source ~ *pSource; 
dest = *pDest; 
putSize = 0; 

/* number of chars in buffer */ 
/* buffer index current run starts */ 

buf[O] = lastc = c = GetByte(); /*so have valid lastc */ 
nbuf ::;:: 1; rowSize--; /* since one byte eaten.*/ 

I I 

for 

modules/oacker.c Page 2 

(; row Size; --rowSize) { 
buf[nbuf++] = c = GetByte(); 
switch (mode) { 

lastc 
) 

case DUMP: 
/* If the buffer is full, write the length byte, 

then the data */ 
if (nbuf>MaxDat) { 

OutDump (nbuf-1) ; 
buf[O] = c; 

if 

nbuf = 1; rstart = 0; 
break; 
) 

(c == lastc) { 
if (nbuf-rstart >= MinRun) { 

if (rstart > 0) OutDump(rstart); 
mode = RUN; 
) 

else if (rstart == 0) 
mode = RUN; /* no dump in progress, 
so can't lose by making these 2 a run.*/ 

else rstart = nbuf-1; 
break; 

I* first of run */ 

case RUN: if ( (c != lastc) 11 ( nbuf-rstart > MaxRun)) { 
/* output run */ 

c· 

OutRun(nbuf-1-rstart,lastc); 
buf[O] = c; 
nbuf = 1; rstart = 0; 
mode = DUMP; 
) 
break; 

switch (mode) { 
case DUMP: OutDump(nbuf); break; 
case RUN: OutRun(nbuf-rstart,lastc); break; 
) 

*pSource = source; 
*pDest = dest; 
return(putSize); 
) 



"'T1 
"'T1 
(/) 
"0 
CD 
(") 
:::;; 
()" 
~ 
6" 
:::J 

(/) 
0 
c:: 
n 
CD 
() 
0 a. 
CD 

(11 
(...J 
c.o 

modules/parse.c 
/* 

* parse.c - iffparse file IO support module 
* based on same of looki.c by Leo Schwab 

* 

Page 1 

* The filename for clipboard is -c or -cUnit as in -cO -cl etc. (default 0) 
*I 

#include <exec/types.h> 

#include "iffp/iff.h" 

/* local function prototypes */ 

LONG stdio_stream(struct Hook*, struct IFFHandle *, struct IFFStreamCmd *); 

UBYTE *omodes[2] = {"r","W11 }; 

/* openifile 
* * Passed a Parseinfo structure with a not-in-use IFFHandle, filename 
* ("-c." or -cUnit like ''-cl" for clipboard), and IFF open mode 
* (IFFF READ or IFFF WRITE) opens file or clipboard for use with 
* iffparse.library support modules. 

* 
* Returns 0 for success or an IFFERR (libraries/iffparse.h) 
*I 

LONG openifile(struct Parseinfo *pi, UBYTE *filename, ULONG iffopenmode) 
{ 

struct 
BOOL 
ULONG 
LONG 

IFFHandle *iff; 
cboard; 
unit = PRIMARY_CLIP; 
error; 

if(!pi) 
if(!(iff=pi->iff)) 

return(CLIENT ERROR); 
return(CLIENT:ERROR); 

cboard = (*filename== '-' 
if(cboard && filename[2]) 

&& filename[l] == 'c'); 
unit= atoi(&filename[2]); 

if (cboard) 

else 

{ 
/* 

* Set up IFFHandle for Clipboard I/0. 
*I 

pi->clipboard = TRUE; 
if (! (iff->iff Stream 

- (ULONG)OpenClipboard(unit))) 
{ 
message( 11 Clipboard open of unit %ld failed.\n",unit); 
return (NOFILE); 
} 

InitiFFasClip(iff); 
I 

{ 
pi->clipboard = FALSE; 
/* 

* Set up IFFHandle for buffered stdio I/0. 
*I 

if (! (iff->iff Stream= (ULONG) 
fopen(filename, omodes[iffopenmode & 1]))) 

{ 
message("%s: File open failed. \n", filename); 
return(NOFILE); 

modules/parse.c 
} 

else initiffasstdio(iff); 
} 

Page 2 

D(bug("%s file opened: \n", cboard? "[Clipboard]" 

pi->filename = filename; 

filename)); 

error=OpeniFF(iff, iffopenmode); 

pi->opened = error ? FALSE : TRUE; 

D(bug("OpeniFF error= %ld\n",error)); 
return(error); 

/* currently open handle */ 

/* closeifile 
* 
* closes file or clipboard opened with openifile, and frees all 
* iffparse context parsed by parseifile. 

* * Note - You should closeifile as soon as possible if using clipboard 
* ("-c[n] 11 ). You also need to closeifile if, for example, you wish to 
* reopen the file to write changes back out. See the copychunks.c 
* module for routines which allow you clone the chunks iffparse has 
* gathered so that you can closeifile and still be able to modify and 
* write back out gathered chunks. 
* *I 

void closeifile(struct Parseinfo *pi) 
{ 
struct IFFBandle *iff; 

D(bug("closeifile:\n")); 

if(!pi) 
if(! (iff=pi->iff)) 

return; 
return; 

DD(bug("closeifile: About to CloseiFF if open, iff=$%lx, opened=%ld\n", 
iff, pi->opened)); 

if(pi->opened) CloseiFF(iff); 

DD(bug("closeifile: About to close %s, stream=$%lx\n", 
pi->clipboard? "clipboard" : "file", iff->iff Stream)); 

if(iff->iff Stream) -
{ -
if (pi->clipboard) 

CloseClipboard((struct ClipBandle *) (iff->iff Stream)); 
else -

fclose ((FILE*) (iff->iff_Stream)); 

iff->iff Stream = NULL; 
pi->clipboard = NULL; 
pi->opened = NULL; 

/* parseifile 
* 
* Passed a Parseinfo with an initialized and open IFFBandle, 
* grouptype (like ID FORM), groupid (like ID ILBM), 
* and TAG DONE terminated longword arrays o~type,id 



U1 ..,. 
0 

J:J 

2 
~ 
3 
Q) 

J:J 
Q) 

(i) 
(tl 
:::l 
C") 
Q) 

s: 
tl.l 
:::l c:: 
tl.l 

CJ 
Q) 

" (')' 
Q) 
(JJ 

modules/_p_arse.c 
for chunks to be grabbed, gathered, and stopped on 
(like { ID ILBM, ID BMHD, ID ILBM, ID CAMG, TAG DONE }) 

* will parse-an IFF file, grabbing/gathering and Stopping 
on specified chunk. 

Page 3 

*Note -you can call getcontext() (to continue after a stop chunk) or 
* nextcontext() (after IFFERR EOC, to parse next for.m in the same file) 

if you wish to continue parSing the same IFF file. If parseifile() 
* has to delve into a complex format to find your desired FORM, the 
* pi->hunt flag will be set. This should be a signal to you that 
* you may not have the capability to simply modify and rewrite 

the data you have gathered. 

* * Returns 0 for success else and IFFERR (libraries/iffparse.h) 
*I 

LONG parseifile(pi,groupid,grouptype,propchks,collectchks,stopchks) 
struct Parseinfo *pi; 
LONG groupid, grouptype; 
LONG *propchks, *collectchks, *stopchks; 
{ 
struct IFFHandle *iff; 
register struct ContextNode 
LONG error 

if (' (iff=pi->iff)) 

if ( 'iff->iff_Stream) 

pi->hunt = FALSE; 

I* 

*en; 
OL; 

return(CLIENT_ERROR); 

return(IFFERR_READ); 

* Declare property, collection and stop chunks. 
*I 

if (propchks) 
if (error= PropChunks (iff, propchks, chkcnt(propchks))) 

return (error) ; 
if (collectehks) 

if (error = 
CollectionChunks(iff, collectchks, chkcnt(collectchks))) 

return (error); 
if (stopchks) 

I* 

if (error= StopChunks (iff, stopehks, chkcnt(stopchks))) 
return (error); 

* We want to stop at the end of an ILBM context. 
*I 
~f (grouptype) 

I* 

if (error= StopOnExit (iff, grouptype, groupid)) 
return (error); 

* Take first parse step to enter main chunk. 
*I 

if (error= ParseiFF (iff, IFFPARSE STEP)) 
return(error); -

I* 
* Test the chunk info to see if simple form of type we want (ILBM) . 
*I 

if ('(en= CurrentChunk (iff))) 
( 
I* 

* This really should never happen. If it does, it means 

modulesmarse.c 
* our parser is broken. 
*I 

message( 11 Parsing error; no top chunk!\n"); 
return (NOFILE) ; 
) 

if (cn->cn ID != groupid I I cn->en Type '= grouptype) 
{- -

Page 4 

D(bug("This is a(n) %.4s.%.4s. Looking for embedded %.4s' s ... \n", 
&cn->cn_Type, &cn->cn_ID, &grouptype)); 

pi->hunt = TRUE; I* Warning - this is a complex file *I 
) 

if('error) error= getcontext(iff); 
return (error); 

I* chkcnt 

*simply counts the number of chunk pairs (type,id) in array 
*I 

LONG chkcnt(LONG *taggedarray) 
{ 
LONG k = 0; 

while(taggedarray[k] '=TAG DONE) k++; 
return(k>>l); -

/* currentchunkis 

* returns the ID of the current chunk (like ID CAMG) 
*I -

LONG currentchunkis(struct IFFHandle *iff, LONG type, LONG id) 
{ 
register struct ContextNode *en; 
LONG result = 0; 

if (en= CurrentChunk (iff)) 
{ 
if((cn->cn Type== type)&&(cn->cn ID 
} - -

return(result); 

/* contextis 

id)) result 

* returns the enclosing context of the current chunk (like ID ILBM) 
*I -

LONG contextis(struct IFFHandle *iff, LONG type, LONG id) 
{ 
register struct ContextNode *en; 
LONG result = 0; 

if (en= (CurrentChunk (iff))) 
{ 
if (en= (ParentChunk(cn})) 

{ 
if((cn->cn Type== type)&&(cn->cn ID 
) - -

id)) result 

1• 

l• 



"'Tl 
"'Tl 
(/) 

"'0 
('[) 
(") 
::::;; 
()' 

a 
5' 
:::J 

(/) 
0 
c 
n 
('[) 

() 
0 
a. 
('[) 

01 
-l::o-_.. 

mod ules/parse.c 
D(bug("This is a %.4s %.4s\n",&cn->cn_Type,&cn->cn_ID)); 

return (result) ; 

/* getcontext() 

* 

Page 5 

*Continues to gather the context which was specified to parseifile(), 
* stopping at specified stop chunk, or end of context, or EOF 

* 
* Returns 0 (stopped on a stop chunk) 
* or IFFERR EOC (end of context, not an error) 
* or IFFER EOF (end of file) 
*/ -

LONG getcontext(iff) 
struct IFFHandle *iff; 
{ 

LONG error = OL; 

I* Based on our parse initialization, 
* FarseiFF() will return on a stop chunk (error = 0) 
* or end of context for an ILBM FORM (error = IFFERR EOC) 
* or end of file (error = IFFERR EOF) -
*/ -

return(error = FarseiFF(iff, IFFFARSE_SCAN)); 

/* nextcontext 

* 
*If you have finished parsing and reading your context (IFFERR EOC), 
* nextcontext will enter the next context contained in the file 
* and parse it. 
* 
* Returns 0 or an IFFERR such as IFFERR EOF (end of file) 
*I 

LONG nextcontext(iff) 
struct IFFHandle *iff; 
{ 

LONG error = OL; 

error= FarseiFF(iff, IFFFARSE_STEF); 

D(bug("nextcontext: Got through next step\n")); 

return(error); 

/* findpropdata 
* * finds specified chunk parsed from IFF file, and 
* returns pointer to its sp Data (or 0 for not found) 
*/ -

UBYTE *findpropdata(iff, type, id) 
struct IFFHandle *iff; 
LONG type, id; 

{ 
register struct Storedfroperty *sp; 

if(sp = Findfrop (iff, type, id)) return(sp->sp Data); 
return(O); -
I 

modules/parse.c 

/* 
* File I/O hook functions which the IFF library will call. 
* A return of 0 indicates success (no error) . 

* Iffparse.library calls this code via struct Hook and Hook.asm 
*I 

static LONG 
stdio stream (hook, 
struct Hook 
struct IFFHandle 
struct IFFStreamCmd 
{ 

iff, actionpkt) 
*hook; 
*iff; 
*actionpkt; 

register FILE 
register LONG 
register int 
register UBYTE 
long len; 

*stream; 
nbytes; 
actual; 
*buf; 

stream = (FILE *) iff->iff Stream; 
if(!stream) return(!);-

nbytes = actionpkt->sc NBytes; 
buf = (UBYTE *) actTonpkt->sc_Buf; 

switch (actionpkt->sc Command) { 
case IFFSCC READ: -

~T 
actual = nbytes > 32767 ? 32767 : nbytes; 

Page 6 

if ((len=fread (buf, 1, actual, stream)) !=actual) 
break; 

nbytes -= actual; 
buf += actual; 

I while (nbytes > 0); 
return (nbytes? IFFERR_READ : 0 ); 

case IFFSCC WRITE: 
doT 

actual = nbytes > 32767 ? 32767 : nbytes; 
if ((len=fwrite (buf, 1, actual, stream)) !=actual) 

break; 
nbytes -= actual; 
buf += actual; 

I while (nbytes > 0); 
return (nbytes? IFFERR_WRITE : 0); 

case IFFSCC SEEK: 
return ((fseek (stream, nbytes, 1) == -1) ? IFFERR SEEK: 0); 

default: 
/* No !NIT or CLEANUP required. */ 
return (OJ; -

/* initiffasstdio (ie. init iff as stdio) 
* 
* sets up hook callback for the file stream handler above 
*I 

void initiffasstdio (iff) 
struct IFFHandle *iff; 
{ 

extern LONG 
static struct Hook 

{ NULL }, 
(ULONG (*) ()) 

HookEntry () ; 
stdiohook = { 

HookEntry, 



0'1 
~ 
1\.) 

:::0 

~ 
~ 
3 
~ 
:::0 
('!) 

(i)' 
~ 
::J 

2 
s: 
Ill 
::J 
c::: 
Ill 
:-;-

CJ 
('!) 
<::: 
()• 
('!) 
(f) 

/* 

modules/parse.c 
(ULONG (*) ()) stdio stream, 

NULL -
}; 

/* 
* Initialize the IFF structure to point to the buffered I/O 
* routines. Unbuffered I/0 is terribly slow. 
*I 

InitiFF (iff, IFFF FSEEK I IFFF_RSEEK, &stdiohook); 

* IFFerr 

* * Returns pointer to IFF Error string or NULL (no error) 
*I 

UBYTE *IFFerr(error) 
LONG 
{ 

error; 

I* 

Page 7 

* English error messages for possible IFFERR #? returns from various 
* IFF routines. To get the index into this array, take your IFFERR 
* code, negate it, and subtract one. 

I* 

* idx ~ -error - 1; 
*I 

static UBYTE *errormsgs[] = { 

}; 

"End of file (not an error) ... , 
"End of context (not an error) . ", 
"No lexical scope ... , 
"Insufficient memory. ", 
"Stream read error. 11 , 

11 Stream write error.", 
"Stream seek error.", 
11 File is corrupt. ", 
''IFF syntax error. ", 
"Not an IFF file ... , 
"Required hook vector missing.", 
"Return to client." 

static UBYTE unknown[32]; 
static UBYTE client[] = "Client error"; 
static UBYTE no file[] = "File not found or wrong type 11 ; 

if (error < 0) 
{ 
return(errormsgs[(-error) - 1]); 
} 

else if(error = CLIENT ERROR) 
{ -
return (client); 
} 

else if(error = NOFILE) 
{ 
return(nofile); 
} 

else if(error) 
{ 
sprintf(unknown, "Unknown error %ld'', error); 
return(unknown); 
I 

else return(NULL); 

* PutCk 

* 

modules/parse.c 

* Writes one chunk of data to an iffhandle 

* 
*I 

long PutCk(struct IFFHandle *iff, long id, long size, void *data) 
{ 
long error ; 0, wlen; 

Page 8 

D (bug ("PutCk: asked to push chunk \ "%. 4s\" ($%lx) length %ld\n", &id, id, size)); 

if(error=PushChunk(iff, 0, id, size)) 
{ 

else 

D(bug("PutCk: PushChunk of %.4s, error 
id, IFFerr(error), id)); 

{ 

%s, size %ld\n", 

D(bug("PutCk: PushChunk of %.4s, error= %ld\n",&id, error)); 

/* Write the actual data */ 
if((wlen = WriteChunkBytes(iff,data,size)) '=size) 

{ 
D(bug("WriteChunkBytes error: size= %ld, wrote %ld\n",size,wlen)); 
error = IFFERR WRITE; 
} -

else error= PopChunk(iff); 
D (bug ( "PutCk: After PopChunk - error = %ld\n", error)); 
} 

return (error) ; 
l 



"'T1 
"'T1 
(/) 
"0 
CD 
(') 
::::;; 
fi" 
~ 
6" 
:::J 

(/) 
0 
c 
0 
CD 

() 
0 
a. 
CD 

U1 
~ w 

modules/saveilbm.c 
I* saveilbm.c 05/91 C. Scheppner CBM 
* * High-level ILBM save routines 
*I 

#include "iffp/ilbm.h" 
#include "iffp/ilbmapp.h" 

extern struct Library *GfxBase; 

/* screensave.c 
* * Given an ILBMinfo with a currently available (not in use) 
* Parseinfo->iff IFFHandle, a screen pointer, filename, and 
* optional chunklist, will save screen as an ILBM 

Page 1 

* The struct Chunk *chunklistl and 2 are for chunks you wish written 
* out other than BMHD, CMAP, and CAMG (they will be screened out 
* because they are computed and written separately) . 

* Note - screensave passes NULL for transparent color and mask 

* Returns 0 for success or an IFFERR (libraries/iffparse.h) 
*I 

LONG screensave(struct ILBMinfo *ilbm, 
struct Screen *scr, 
struct Chunk *chunklistl, struct Chunk *chunklist2, 
UBYTE *filename) 

extern struct Library *GfxBase; 
UWORD *colortable, count; 
ULONG modeid; 
LONG error; 
int k; 

if(GfxBase->lib Version >= 36) 
modeid=GetVPModeiD(&scr->ViewPort); 

else 
modeid = scr->ViewPort.Modes & OLDCAMGMASK; 

count = scr->ViewPort.ColorMap->Count; 
if(colortable = (UWORD *)AllocMem(count << 1, MEMF CLEAR)) 

{ -
for(k=O; k<count; k++) colortable[k]=GetRGB4(scr->ViewPort.ColorMap,k); 

error = saveilbm(ilbm, &scr->BitMap, modeid, 
scr->Width, scr->Height, scr->Width, scr->Height, 
colortable, count, 4, 
mskNone, 0, 
chunklistl, chunklist2, filename); 

FreeMem(colortable,count << 1); 
I 

else error = IFFERR NOMEM; 
return(error); -

/* saveilbm 

* * Given an ILBMinfo with a currently available (not-in-use) 
* Parseinfo->iff IFFHandle, a BitMap ptr, 
* modeid, widths/heights, colortable, ncolors, bitspergun, 

maskinq, transparent color, optional chunklists, and filename, 
will save the bitmap as an ILBM. 

* 
* 

if bitspergun=4, 
if bitspergun=S, 

colortable is words, each with nibbles ORGB 
colortable is byte guns of RGBRGB etc. (like a CMAP) 

* 
* 
* 
* 

modules/saveilbm.c 
if bitspergun=32, colortable is ULONG guns of RGBRGB etc. 

Only the high eight bits of each gun will be written to CMAP. 
Four bit guns n will be saved as nn 

* The struct Chunk *chunklist is for chunks you wish written 
* other than BMHD, CMAP, and CAMG (they will be screened out) 
* because they are calculated and written separately 

* Returns 0 for success, or an IFFERR 
*I 

LONG saveilbm(struct ILBMinfo *ilbm, 
struct BitMap *bitmap, ULONG modeid, 

Page 2 

WORD width, WORD height, WORD pagewidth, WORD pageheight, 
APTR colortable, UWORD ncolors, UWORD bitspergun, 
WORD masking, WORD transparentColor, 
struct Chunk *chunklistl, struct Chunk *chunklist2, 
UBYTE *filename) 

struct IFFHandle *iff; 
struct Chunk *chunk; 
ULONG chunkiD; 
UBYTE *bodybuf; 
LONG size, error = OL; 
#define BODYBUFSZ 4096 

iff = ilbm->Parseinfo.iff; 

if(! (modeid & OxFFFFOOOO)) modeid &= OLDCAMGMASK; 

if(! (bodybuf = AllocMem(BODYBUFSZ,MEMF PUBLIC))) 
{ -
message ("Not enough memory\n") ; 
return(IFFERR NOMEM); 
I -

if(! (error= openifile(ilbm, filename, IFFF WRITE))) 
{ -
D(bug("Opened %s for write\n",filename)); 

error= PushChunk(iff, ID_ILBM, ID_FORM, IFFSIZE_UNKNOWN); 

D(bug("After PushChunk FORM ILBM- error= %ld\n", error)); 

initbmhd(&ilbm->Bmhd, bitmap, masking, cmpByteRunl, transparentColor, 
width, height, pagewidth, pageheight, modeid); 

D(bug("Error before putbmhd = %ld\n",error)); 

CkErr(putbmhd(iff,&ilbm->Bmhd)); 

if(colortable) CkErr(putcmap(iff,colortable,ncolors,bitspergun)); 

ilbm->camq = modeid; 
D(bug("before putcamq- error= %ld\n",error)); 
CkErr(putcamq(iff,&modeid)); 

D(bug("Past putBMHD, CMAP, CAMG- error= %ld\n",error)); 

/*Write out chunklists 1 & 2 (if any), except for 
* any BMHD, CMAP, or CAMG (computed/written separately) 
*I 

for(chunk = chunklistl; chunk; chunk = chunk->ch Next) 
{ -
D (bug ("chunklistl - have a %. 4s\n", &chunk->ch ID)); 
chunkiD = chunk->ch ID; -
if((chunkiD != ID BMHD)&&(chunkiD != ID CMAP)&&(chunkiD != ID CAMG)) 



U1 
.)::. 
.)::. 

::0 

~ 
~ 
3 
~ 
::0 
(!) 

iii 
Q) 
:::J 
(") 
(!) 

~ 
:::J 
c: 
(l) 
:--;--

CJ 
(!) 

"' ()• 
(!) 
(/) 

modules/saveilbm.c 

size = chunk->ch Size==IFFSIZE UNKNOWN ? 
strlen(cnunk->ch Data)-: chunk->ch Size; 

D (bug ("Putting %. 4s\n", &chunk->ch ID)) ; -
CkErr(PutCk(iff, chunkiD, size, cnunk->ch Data)); 
} -

for(chunk = chunklist2; chunk; chunk = chunk->ch Next) 
{ -
chunkiD = chunk->ch ID; 
D (bug ("chunklist2 --have a %. 4s\n", &chunk->ch ID)); 

Page 3 

if((chunkiD != ID BMHD)&&(chunkiD 1 = ID CMAP)&&(chunkiD '= ID CAMG)) 
( - - -
size = chunk->ch Size==IFFSIZE UNKNOWN ? 

strlen(chunk->ch Data)-: chunk->ch Size; 
D(bug("Putting %.4s\n",&chunk->ch ID)); -
CkErr(PutCk(iff, chunkiD, size, chunk->ch Data)); 
I -

I* Write out the BODY 
*I 

CkErr(putbody(iff, bitmap, NULL, &ilbm->Brnhd, bodybuf, BODYBUFSZ)); 

D(bug("Past putbody- error= %ld\n",error)); 

CkErr(PopChunk(iff)); 
closeifile(ilbm); 
) 

FreeMem(bodybuf,BODYBUFSZ); 

return (error); 

I* close out the FORM *I 
I* and the file *I 

modules/screen.c 
I* screen.c - 2.0 screen module for Display 
* based on scdemo, oscandemo, looki 
*I 

I* 
Copyright (c) 1989, 1990 Commodore-Amiga, Inc. 

Executables based on this information may be used in software 
for Commodore Amiga computers. All other rights reserved. 
This information is provided "as is"; no warranties are made. 
All use is at your own risk, and no liability or responsibility 
is assumed. 
*I 

#include "iffplilbmapp.h" 

BOOL VideoControlTags(struct ColorMap *,ULONG tags, ... ) ; 

extern struct Library *GfxBase; 
extern struct Library *IntuitionBase; 

struct TextAttr SafeFont = 
UWORD penarray[] = {-0}; 

(UBYTE *) "topaz.font", 8, 0, 0, }; 

/* default new window if none supplied in ilbm->nw */ 
struct NewWindow defnw = { 

0, 0, I* LeftEdge and TopEdge *I 
0, 0, I* Width and Height *I 

Page 1 

-1, -1, /* DetailPen and BlockPen */ 
VANILLAKEYJMOUSEBUTTONS, I* IDCMP Flags with Flags below *I 
BACKDROPIBORDERLESSJSMART REFRESHINOCAREREFRESHIACTIVATEIRMBTRAP, 
NULL, NULL, - I* Gadget and Image pointers */ 
NULL, I* Title string *I 
NULL, I* Screen ptr null till opened *I 
NULL, I* BitMap pointer *I 
50, 20, I* MinWidth and MinHeight *I 
0 , 0, I* MaxWidth and MaxHeight *I 
CUSTOMSCREEN I* Type of window *I 
}; 

/* opendisplay - passed ILBMinfo, dimensions, modeiD 

* * Attempts to open correct 2.0 modeiD screen and window, 
else an old 1.3 mode screen and window. 

~ Returns *window or NULL. 
*I 

struct Window *opendisplay(struct ILBMinfo *ilbm, 
SHORT wide, SHORT high, SHORT deep, 
ULONG mode) 

struct NewWindow newwin, *nw; 

closedisplay(ilbm); 
if(ilbm->scr = openidscreen(ilbm, wide, high, deep, mode)) 

{ 
nw = &newwin; 
if(ilbm->windef) *nw = *(ilbm->windef); 
else *nw = *(&defnw); 
nw->Screen = ilbm->scr; 

D(bug("sizes: scr= %ld x %ld passed= %ld x %ld\n", 
ilbrn->scr->Width,ilbm->scr->Heiqht,wide,high)); 



II 
II 
(/) 

""0 
('!) 
() 
::::;; 
() 

~ a· 
::J 

(/) 
0 
c 
n 
('!) 

() 
0 
a. 
('!) 

01 
~ 
01 

modules/screen.c 
nw->Width = wide; 
nw->Height : high; 
if (! (ilbm->win: OpenWindow(nw))) 

{ 
closedisplay(ilbm); 
D (bug ("Failed to open 
} 

else 
{ 

window.")); 

if(ilbm->win->Flags & BACKDROP} 
{ 
ShowTitle(ilbm->scr, FALSE}; 
ilbm->TBState : FALSE; 
I 

Page 2 

if(ilbm->scr) 
{ 

I* nulled out by closedisplay if OpenWindow failed */ 

ilbm->vp = &ilbm->scr->ViewPort; 
ilbm->srp = &ilbm->scr->RastPort; 
ilbm->wrp = ilbm->win->RPort; 
I 

return(ilbm->win); 
I 

void closedisplay(struct ILBMinfo *ilbm) 
{ 
if(ilbm) 

{ 
if (ilbm->win) CloseWindow(ilbm->win), ilbm->win: NULL; 
if (ilbm->scr) CloseScreen(ilbm->scr), ilbm->scr: NULL; 
ilbm->vp : NULL; 
ilbm->srp : ilbm->wrp = NULL; 
} 

/* openidscreen - ILBMinfo, dimensions, modeiD 

* 
* 
* 
* 
* * If 
* 
* If 

* 

Attempts to open correct 2.0 modeiD screen with centered 
overscan based on user's prefs, 
else old 1.3 mode screen. 

ilbm->stype includes CUSTOMBITMAP, ilbm->brbitmap will be 
used as the screen's bitmap. 

ilbm->stags is non-NULL, these tags will be added to the 
end of the taglist. 

* Returns *screen or NULL. 
*I 

struct Screen *openidscreen(struct ILBMinfo *ilbm, 

I 

SHORT wide, SHORT high, SHORT deep, 
ULONG mode) 

struct NewScreen ns; I* for old style OpenScreen */ 
struct Rectangle spas, dclip, txto, stdo, maxo, uclip; I* display rectangles * 

struct 
struct 
LONG 
ULONG 
BOOL 

Rectangle *uclipp; 
Screen *scr = NULL; 
error, trynew; 
bitmaptag, passedtags; 
vctl; 

modules/screen.c 

if (trynew : ( ( ( (struct Library *) GfxBase) ->lib .v"' ,i0n 
(((struct Library *)IntuitionBase)->lib_v,~··cn'c.n •.... 

{ 

I* if >: v36, see if mode is available *I 
if(error = ModeNotAvailable(mode)) 

{ 

3.S) :: & 

3f) ~ ' 

D (bug ( 11 Mode $·%08lx not available, error=::..--, d: \n", ;:nu:ie-_ <:~.­
/* if not available, try fall back mode ·~<.-/ 

mode = modefallback(mode,wide,high,deep); 
error= ModeNotAvailable(mode); 

D (bug ("$%08lx ModeNotAvailable=%ld: \n" ,mod'"·· en:n.c); : 
I 

if(error) trynew ~ FALSE; 
else trynew=( (QueryOverscan(mode, &txto, OSCAN ·:•EXT)) >& 

(QueryOverscan (mode, &stdo, osCr~u STANDARI::,' l ;: & 

(Queryoverscan (mode, &maxo, OSCll.N_l'!AX));; 

D(bug("\niLBM: w:%ld, h=%ld, d=%ld, mode=Ox%08lx\n'. 
wide,high,deep,mode)); 

D(bug("OPEN: %s.\n", 

Page 3 

'r)); 

trynew ? 11 IS >= 2. 0 and mode available, trying OpenScre~:-r.TarJ3 , 
: .. Not 2.0, doing old OpenScreen")); 

if(trynew) 
{ 
I* If user clip type specified and available, ,_~,:;~~ .it -k / 

if(ilbm->Videol ilbm->ucliptype = OSCAN VIDEO; 
if( (ilbm->ucliptype) && (Queryoverscan (mode, &uclJ;:;. il..b·n.-.'<.:chpt.yp .. ))) 

uclipp = &uclip; 
else uclipp : NULL; 

clipit(wide,high,&spos,&dclip,&txto,&stdo,&maxo,uclipp); 

D (bug ("Using dclip %ld, %ld to %ld, %ld ... widtll~%ld h•.nqh·• "dc•\n", 
de lip. MinX, dclip .MinY, de lip. MaxX, de lip Mo:· Y 
dclip.MaxX-dclip.MinX+l, dclip.MaxY-dclip .M'cn'l+l;); 

D (buq ("spos->minx = %ld, spos->miny = %ld\n", spos M.L1X 5pcs. t-1tnY) ) ; 
D (bug ("DEBUG: About to attempt OpenScreenTags\n") 1 

bitmaptag : ( (ilbm->brbitmap) && (ilbm->stype & CUSTOHB T"'MAP)) ? 

SA BitMap : TAG IGNORE; 
passedtags-= ilbm->stags ? TAG MORE : TAG IGNORE; 

scr:(struct Screen *)OpenScreenTags((struct NewScreen *)NULL, 
SA DisplayiD, 
SA-Type, 
SA-Behind, 
SA-Top, 
SA-Left, 
SA-Width, 
SA-Height, 
SA-Depth, 
SA-DClip, 
SA-AutoScroll, 
SA-Title, 
SA-Font, 
SA-Pens, 
SA-ErrorCode, 
bitmaptag, 
passedtags, 
TAG DONE 
); -

mode, 
ilbm->stype, 
TRUE, 
spos.MinY, 
spos.MinX, 
wide, 
high, 
deep, 
&dclip, 
ilbm->Autoscroll ? TRUE : FALSE. 
ilbm->stitle, 
&SafeFont, 
penarray, 
&error, 
ilbm->brbitmap, 
ilbm->stags, 



Ul ..,.. 
m 

:::0 

~ 
~ 
3 
(]) 

:::0 
(]) 

qj' 
(b 
:;:) 
() 
(]) 

$:: 
Sll 
:;:) 
c: 
Sll 
:-:-
CJ 
(]) 

"' ()• 
(]) 
(J) 

modules/screen.c 

D(bug("DEBUG: OpenScreenTags scr at Ox%lx\n",scr)); 

if(scr) 
{ 
if(ilbm->Notransb) 

{ 
vctl=VideoControlTags(scr->ViewPort.ColorMap, 

VTAG BORDERNOTRANS SET, TRUE, 
TAG_DONE) ; -

Page 4 

D(bug("VideoControl to set bordernotrans, error %ld\n",vctl)); 

I* 

MakeScreen(scr); 
RethinkDisplay(); 
) 

else modeErrorMsg(mode,error); 

if(!scr) 
{ 
I* ns initialization for 1.3 old style OpenScreen only 
*I 

ns. LeftEdge 
ns.Width 
ns.Height 
ns.Depth 
ns.ViewModes 
ns.DetailPen 
ns.BlockPen 

ns . Top Edge = 0; 

ns.Gadgets 
ns.CustomBitMap 

ns.Font 
ns.DefaultTitle 
ns.Type 

wide; 
high; 
deep; 
modefallback(rnode,wide,high,deep); 
o· 
1; 
NULL; 
((ilbm->brbitmap)&&(ilbm->stype & CUSTOMBITMAP)) 

? ilbm->brbitmap : NULL; 
&SafeFont; 
ilbm->stitle; 
ilbm->stype & OxOlFF; I* allow only 1.3 types *I 

scr=(struct Screen *)OpenScreen(&ns); 

D (bug ("DEBUG: ns. ViewModes=Ox%lx, vp->Modes=Ox%lx\n", 
ns.ViewModes,scr->ViewPort.Modes)); 

D (bug ("DEBUG: non-extended scr at Ox%lx (O=failure) \n", scr) ) ; 
I 

return(scr); 
} 

* modefallback - passed a mode id, attempts to provide a 
* suitable old mode to use instead 
*I 

/* for old 1.3 screens */ 
#define MODE_ID_MASK (LACEIHIRESIHAMIEXTRA_HALFBRITE) 

ULONG modefallback(ULONG mode, SHORT wide, SHORT high, SHORT deep) 
{ 
ULONG newmode; 

/* For now, simply masks out everything but old mode bits. 
* This is just a cheap way to get some kind of display open 
* and may be totally invalid for future modes. 
* Should search the display database for a suitable mode 
* based on the specific needs of your application. 
*I 

I* 

modules/screen.c 
newmode = mode & MODE_ID_MASK; 

D(bug("Try Ox%08lx instead of Ox%0Blx\n",newmode,mode)); 
return(newmode); 

Page 5 

* clipit - passed width and height of a display, and the text, std, and 
* max overscan rectangles for the mode, clipit fills in the 
* spos (screen pos) and dclip rectangles to use in centering. 

Centered around smallest containing user-editable oscan pref, 
with dclip confined to legal maxoscan limits. 
Screens which center such that their top is below text 
oscan top, will be moved up. 

* If a non-null uclip is passed, that clip is used instead. 
*I 

void clipit(SHORT wide, SHORT high, 
struct Rectangle *spos, struct Rectangle *dclip, 
struct Rectangle *txto, struct Rectangle *stdo, 
struct Rectangle *maxo, struct Rectangle *uclip) 

struct Rectangle *besto; 
SHORT minx, maxx, miny, maxy; 
SHORT txtw, txth, stdw, stdh, rnaxw, maxh, bestw, besth; 

I* get 
txtw 
txth 
stdw 
stdh 
maxw 
maxh 

the txt, std and max widths and 
txto->MaxX - txto->MinX + 1; 
txto->MaxY - txto->MinY + 1; 
stdo->MaxX - stdo->MinX + 1; 
stdo->MaxY - stdo->MinY + 1; 
maxo->MaxX - roaxo->~nX + 1; 
maxo->MaxY- maxo->MinY + 1· 

if((wide <= txtw}&&(high <= txth)) 
{ . 

else 

besto 
bestw 
besth 

txto; 
txtw; 
txth; 

D(bug("Best clip is txto\n")); 
) 

{ 
besto 
bestw 
besth 

stdo 
stdw 
stdh 

D(bug("Best clip is stdo\n")); 
) 

heights *I 

D (bug ( "TXTO: mnx=%ld mny=%ld mxx=%ld mxy=%ld stdw=%ld stdh=%ld\n", 
txto->MinX,txto->MinY,txto->MaxX,txto->MaxY,txtw,txth)); 

D(bug("STDO: mnx=%ld mny=%ld mxx=%ld mxy=%ld stdw=%ld stdh=%ld\n", 
stdo->MinX,stdo->MinY,stdo->MaxX,stdo->MaxY,stdw,stdh)); 

D (bug ( "MAXO: mnx=%ld mny=%ld mxx=%ld mxy=%ld maxw=%ld maxh=%ld\n", 
maxo->MinX,maxo->MinY,maxo->MaxX,maxo->MaxY,maxw,maxh)); 

if(uclip) 
{ 
*dclip = *uclip; 
spos->MinX = uclip->MinX; 
spos->MinY = uclip->MinY; 

D(bug("UCLIP: mnx=%ld mny=%ld maxx=%ld maxy=%ld\n", 
dclip->MinX,dclip->MinY,dclip->MaxX,dclip->MaxY)); 



"11 
"11 
(/) 
"0 
(!) 
() 
::;.; 
() 

~ a· 
:::l 

(/) 
0 
c 
n 
(!) 

0 
0 
Q. 
(!) 

01 
~ 
-....1 

else 

modules/screen.c 

{ 
/* CENTER the screen based on best oscan prefs 
* but confine dclip within max oscan limits 

* FIX MinX first *I 
spos->MinX =minx= besto->MinX- ((wide­ bestw) >> 1); 

Page 6 

maxx = wide + minx - 1; 
if(rnaxx > maxo->MaxX) maxx 
if(minx < maxo->MinX) minx 

maxo->MaxX; 
maxo->MinX; 

I* too right *I 
I* too left *I 

D (bug ( "DCLIP: minx adjust from %ld to %ld\n", spos->MinX, minx)) ; 

/* FIX MinY */ 
spos->MinY = miny = besto->MinY- ((high- besth) >> 1); 
/* if lower than top of txto, move up */ 
spos->MinY = miny = MIN(spos->MinY,txto->MinY); 
maxy = high + miny - 1; 
if(maxy > maxo->MaxY) maxy = maxo->MaxY; /* too down */ 
if(miny < maxo->MinY) miny = maxo->MinY; /* too up *I 

D(bug("DCLIP: miny adjust from %ld to %ld\n",spos->MinY,miny)); 

/* SET up dclip */ 
dclip->MinX = minx 
dclip->MinY = miny 
dclip->MaxX = maxx 
dclip->MaxY = maxy 

D(bug("CENTER: mnx=%ld mny=%ld maxx=%ld maxy=%ld\n", 
dclip->MinX,dclip->MinY,dclip->MaxX,dclip->MaxY)); 

void modeErrorMsq(ULONG mode, ULONG errorcode) 
{ 
UBYTE *s=NULL; 

D (bug ("DEBUG: Can't open mode ID Ox%0Blx screen: ",mode) ) ; 

switch ( errorcode 
{ 
case OSERR NOMEM: 

s="Not-enough memory.''; 
break; 

case OSERR NOCHIPMEM: 
s::::"Not-enough chip memory."; 
break; 

#ifdef DEBUG 
case OSERR NOMONITOR: 

s="monitor not available."; 
break; 

case OSERR NOCHIPS: 
s::::unew-chipset not available."; 
break; 

case OSERR PUBNOTUNIQUE: 
s="pubiic screen already open."; 
break; 

case OSERR UNKNOWNMODE: 
s= 01 mod8 ID is unknown.~'; 
break; 

default: 

modules/screen.c 
message(''unknown mode error %ld\n .. ,errorcode); 

#endif 
l 

if(s) message("%s\n",s); 
l 

Page 7 

1*----------------------------------------------------------------------*l 
BOOL VideoControlTags(struct ColorMap *em, ULONG tags, ... ) 

{ 
return (VideoControl(cm, (struct Tagitem *)&tags)); 
) 



01 
.j:>. 
Ol 

J:J 

~ 
~ 
3 
~ 
J:J 
ct> 
(i) 
Ci3 
:::J 

~ 
:s:: 
Ill 
:::J 

~ 
~ 
"' C'i" 
ct> 
(I) 

modules/screendump.c Page 1 

/* 
* screendump.c - routine to dump rastport (iffparse not required) 

*I 

#include <exec/types.h> 
#include <intuition/screens.h> 
#include <devices/printer.h> 

#ifndef NO PROTOS 
#include <clib/exec~rotos.h> 
#include <clib/alib~rotos.h> 
#endif 

/* screendump 
* * Passed a screen pointer, source x, source y, width, height, 

destcols and io_Special flags, will print part or all of a screen. 

* * If 0 is passed for BOTH destcols and special, screendump() 
* assumes you want IT to compute suitable values. 
* In this case: 

1. If srcx and srcy are 0, and srcw and srch are same as 
screen width and height, screendump will set destcols=O, 

* and special = SPECIAL FULLCOLSISPECIAL ASPECT 

* 
* 

* 

for a full width aspected dump. -

2. If srcx or srcy are nonzero, or srcw or srch are different 
from screen width or height, screendump will print a 
fractional size dump relative to the size whole screendump 
would have been. 

* Returns 0 for success or printer io Error {devices/printer.h) 
*/ -

int screendump(struct Screen *scr, 
UWORD srcx, UWORD srcy, UWORD srcw, UWORD srch, 
LONG destcols, UWORD iospecial) 

struct IODRPReq 
struct MsgPort 
struct ViewPort 
ULONG tmpl; 

*iodrp; 
*printerPort; 
*vp; 

int error PDERR_BADDIMENSION; 

if(!scr) return (error); 

if((!destcols)&&(!iospecial)) 
{ 
/* Then we compute what they should be */ 
if((!srcx)&&(!srcy)&&(srcw==scr->Width)&&(srch==scr->Height)) 

else 

{ 
iospecial 
} 

{ 

SPECIAL_FULLCOLSISPECIAL_ASPECT; 

iospecial =SPECIAL FRACCOLSISPECIAL ASPECT; 
tmpl = srcw; - -
tmpl = tmpl << 16; 
destcols = (tmpl I scr->Width) << 16; 
l 

if (printerPort 
{ 

CreatePort (0, 0)) 

modules/screendumo.c Page 2 

if(iodrp= 
(struct IODRPReq *)CreateExtiO(printerPort,sizeof(struct IODRPReq))) 

{ 
if(! (error=OpenDevice ( 11 printer. device", 0, iodrp, 0))) 

{ 
vp = &scr->ViewPort; 
iodrp->io Command = PRD DUMPRPORT; 
iodrp->io-RastPort = &sCr->RastPort; 
iodrp->io-ColorMap = vp->ColorMap; 
iodrp->io-Modes = (ULONG)vp->Modes; 
iodrp->io-SrcX = srcx; 
iodrp->io-SrcY = srcy; 
iodrp->io-SrcWidth = srcw; 
iodrp->io-SrcHeight = srch; 
iodrp->io-DestCols = destcols; 

/* iodrp->io-DestRows = 0; cleared by allocation */ 
iodrp->io=Special = iospecial; 

error= DoiO(iodrp); 

CloseDevice(iodrp); 
l 

DeleteExtiO(iodrp); 
l 

DeletePort(printerPort); 
l 

return (error); 
l 



-n 
-n 
(J) 

"'0 
co 
0 
::::;.: 
a· 
~ 
6' 
::l 

(J) 
0 
c 
(=j 
co 
0 
0 
0. 
co 
(.}1 
.j::.. 
c.o 

#include "iffp/ilbm.h" 
#include "iffp/packer.h" 

mod u les/u n packer .c Page 1 

/*----------------------------------------------------------------------* 
* unpacker.c Convert data from ''cmpByteRunl" run compression. 11/15/85 

* * Based on code by Jerry Morrison and Steve Shaw, Electronic Arts. 
* This software is in the public domain. 

* 

* 
* 
* 

control bytes: 
[0 .. 127] : followed by n+l bytes of data. 
[-1 .. -127] followed by byte to be repeated (-n)+l times. 
-128 : NOOP. 

* This version for the Commodore-Amiga computer. 
*----------------------------------------------------------------------*1 

1*----------- UnPackRow 

#define UGetByte() 
#define UPutByte(c) 

(*source++) 
(*dest++ = (c)) 

/* Given POINTERS to POINTER variables, unpacks one row, updating the source 
* and destination pointers until it produces dstBytes bytes. 
*I 

BOOL unpackrow(BYTE **pSource, BYTE **pDest, WORD srcBytesO, WORD dstBytesO) 
{ 

*pSource; 
*pDest; 

register BYTE *source 
register BYTE *dest 
register WORD n; 
register BYTE c; 
register WORD srcBytes 
BOOL error = TRUE; /* 
WORD minusl2S = -128; 

= srcBytesO, dstBytes = dstBytesO; 
assume error until we make it through the loop */ 
/* get the compiler to generate a CMP.W */ 

while( dstBytes > 0 ) { 
if ( (srcBytes -= 1) < 0 ) goto ErrorExit; 
n = UGetByte () ; 

if (n >= 
n += 
if ( 
if( 
do { 
} 

0) { 
1; 
(srcBytes -= n) < 0 ) 
(dstBytes -= n) < 0 ) 
UPutByte(UGetByte()); 

else if (n 1= minusl28) { 
n = -n + 1; 

goto ErrorExit; 
goto ErrorExit; 

) while (--n > 0); 

if ( (srcBytes -= 1) < 0 ) goto ErrorExit; 
if ( (dstBytes -= n) < 0 ) goto ErrorExit; 
c = UGetByte () ; 
do { UPutByte(c); } while (--n > 0); 
} 

error FALSE; /* success! */ 

ErrorExit: 
*pSource = source; *pDest 
return(error); 
} 

/* end */ 

dest; 

other/clipftxt.c 
;/~ clipftxt.c - Execute me to compile me with SAS C 5.10 
LC -bl -cfistq -v -j73 clipftxt.c 

Page 1 

Blink FROM LIB:c.o,clipftxt.o TO clipftxt LIBRARY LIB:LC.lib,LIB:Amiga.lib 
quit 

* clipftxt.c: 
* 

Writes ASCII text to clipboard unit as FTXT 
(All clipboard data must be IFF) 

* * Usage: clipftxt unitnumber 

* To convert to an example of reading only, comment out #define WRITEREAD 
*I 

#include <exec/types.h> 
#include <exec/memory.h> 
#include <libraries/dos.h> 
#include <libraries/iffparse.h> 

#include <clib/exec_protos.h> 
#include <clib/dos_protos.h> 
#include <clib/iffparse_protos.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 

#ifdef LATTICE 
int CXBRK(void) { return(O); } 
int chkabort(void) { return(O); 
#endif 

I* Disable Lattice CTRL/C handling */ 
} /* really */ 

/* Causes example to write FTXT first, then read it back 
* Comment out to create a reader only 
*I 

#define WRITEREAD 

#define MINARGS 2 

/* 2.0 Version string for c:Version to find */ 
UBYTE vers[] = "\0$VER: clipftxt 37.2"; 

UBYTE usage[] 

/* 

11 Usage: clipftxt unitnurnber (use zero for primary unit) 11 ; 

* Text error messages for possible IFFERR #? returns from various 
* IFF routines. To get the index into this array, take your IFFERR code, 
* negate it, and subtract one. 
* idx = -error - 1; 
*I 

char 

}; 

*errormsgs[] = { 
"End of file (not an error) . 11 , 

1'End of context (not an error) . '', 
11 No lexical scope.", 
11 Insufficient memory." r 

., Stream read error. 11 , 

"Stream write error.", 
"Stream seek error. ", 
"File is corrupt.", 
11 IFF syntax error. 11 , 

"Not an IFF file. 11 , 

"Required call-back hook missing.", 
"Return to client. You should never see this." 

#define RBUFSZ 512 



()") 
()") 
0 

::::0 

~ 
~ 
3 
~ 
::::0 
(!) 

(i) 
Q3 
:::J 

~ 
s: 
tll 

~ 
~ 
c:J 
(!) 

"' (')" 
(!) 
en 

#define 
#define 

ID FTXT 
ID-CHRS 

other/clipftxt.c 

MAKE ID('F' 'T' 'X' 'T') 
MAKE-ID ( 1 C': 'H': 1 R': 1 5') 

struct Library *IFFParseBase; 

Page 2 

UBYTE rnytext []="This FTXT written to clipboard by clipftxt example. \n"; 

void main(int argc, char **argv) 
( 

struct IFFHandle *iff = NULL; 
struct ContextNode *en; 
long error=O, unitnumber=O, rlen; 
int textlen; 
UBYTE readbuf[RBUFSZ]; 

/* if not enough args or '?', print usage*/ 
if( ( (argc) && (argc<MINARGS)) II (argv[argc-1] [0]==' ?')) 

( 
printf("%s\n", usage); 
exit(RETURN WARN); 
} -

unitnumber atoi (argv[l]); 

if (' (IFFParseBase = OpenLibrary ( "iffparse .library", OL)) ) 
{ 

I* 

puts("Can't open iff parsing library."); 
goto bye; 
} 

* Allocate IFF File structure. 
*I -

if (!(iff= AllociFF ())) 
{ 

I* 

puts ("AllociFF () failed."); 
goto bye; 
l 

* Set up IFF File for Clipboard IIO. 
*I -

if ( 1 (iff->iff Stream= (ULONG) OpenClipboard (unitnurnber))) 
{ -
puts ("Clipboard open failed."); 
goto bye; 
) 

else printf ("Opened clipboard unit %ld\n", unitnurnber); 

InitiFFasClip (iff); 

#ifdef WRITEREAD 

I* 
* Start the IFF transaction. 
*I 

if (error= OpeniFF (iff, IFFF WRITE)) 

I* 

{ -
puts ("OpeniFF for write failed."); 
goto bye; 
} 

* Write our text to the clipboard as CHRS chunk in FORM FTXT 

* 

other/clipftxt.c 
* First, write the FORM ID (FTXT) 
*I 

Page 3 

if(! (error=PushChunk(iff, ID FTXT, ID FORM, IFFSIZE UNKNOWN))) 
{ - - -
I* Now the CHRS chunk ID followed by the chunk data 
*We'll just write one CHRS chunk. 
* You could write more chunks. 
*I 

if(! (error=PushChunk(iff, 0, ID CHRS, IFFSIZE UNKNOWN))) 
{ - -
I* Now the actual data (the text) *I 
textlen = strlen(rnytext); 
if(WriteChunkBytes(iff, mytext, textlen) != textlen) 

{ 

} 

puts ("Error writing CHRS data."); 
error = IFFERR WRITE; 
} -

if(!error) error= PopChunk(iff); 
l 

if(!error) error= PopChunk(iff); 

if(error) 
{ 
printf ( 11 IFF write failed, error %ld: %s\n 11 , 

error, error.msgs[-error- 1]); 
goto bye; 
l 

else printf("Wrote text to clipboard as FTXT\n"); 

I* 
*Now let's close it, then read it back 
* First close the write handle, then close the clipboard 
*I 

CloseiFF(iff); 
if (iff->iff Stream) CloseClipboard ((struct ClipboardHandle *) 

- iff->iff_Stream); 

if (! (iff->iff Stream= (ULONG) OpenClipboard (unitnumber))) 
{ -
puts ("Reopen of Clipboard failed."); 
goto bye; 
) 

else print£ ("Reopened clipboard unit %ld\n", unitnumber); 

#endif I* WRITEREAD *I 

if (error= OpeniFF (iff, IFFF READ)) 
{ -
puts ("OpeniFF for read failed."); 
qoto bye; 
) 

I* Tell iffparse we want to stop on FTXT CHRS chunks *I 
if (error= StopChunk(iff, ID FTXT, ID CHRS)) 

{ - -
puts ("StopChunk failed."); 
goto bye; 
) 

I* Find all of the FTXT CHRS chunks *I 
while(l) 

{ 
error= ParseiFF(iff,IFFPARSE SCAN); 
if(error == IFFERR EOC) continue; I* enter next context *I 



bye: 

.,., .,., 
(f) 

"'0 
CD 

~ I ) 
()" 

~ 
6" 
:::l 

(f) 
0 
c 
(i 
CD 
() 
0 
0. 
CD 

U1 
U1 

other/clipftxt.c 
else if(error) break; 

I* We only asked to stop at FTXT CHRS chunks 
* If no error we've hit a stop chunk 
* Read the CHRS chunk data 
*I 

en: CurrentChunk(iff); 

Page 4 

if((cn)&&(cn->cn Type:: ID FTXT)&&(cn->cn ID :: ID CHRS)) 
{ - - - -
printf("CHRS chunk contains:\n"); 
while((rlen: ReadChunkBytes(iff,readbuf,RBUFSZ)) > 0) 

{ 
Write(Output() ,readbuf,rlen); 
) 

if(rlen < 0) error = rlen; 
) 

if((error)&&(error !: IFFERR EOF)) 
{ -
printf ("IFF read failed, error Ud: %s\n", 

error, error.msgs[-error- 1]); 

if (iff) { 
I* 
* Terminate the IFF transaction with the stream. Free 
* all associated structures. 
*I 

CloseiFF (iff); 

I* 
* Close the clipboard stream 
*I 

if (iff->iff Stream) 

I* 

- CloseCl~pboard ((struct Cl~pboardHandle *) 
iff->iff Stream); 

* Free the IFF File structure itself. 
*I -

FreeiFF (iff) ; 
l 

if (IFFParseBase) CloseLibrary (IFFParseBase); 

exit (RETURN_OK); 

other/cycvb.c Page 1 

I* 
* cycvb.c ---Dan Silva's DPaint color cycling interrupt code 

* 
* 
* 

Use this fraq.ment as an example for interrupt driven color cycling 
If compiled with SAS, include flags -v -y on LC2 

*I 

#include <exec/types.h> 
#include <exec/interrupts.h> 
#include <graphics/view.h> 
#include <iff/compiler.h> 

#define MAXNCYCS 4 
#define NO FALSE 
#define YES TRUE 
#define LOCAL static 

typedef struct { 
SHORT count; 
SHORT rate; 
SHORT flags; 
UBYTE low, high; /* bounds of range */ 
) Range; 

/* Range flags values */ 
#define RNG ACTIVE 1 
#define RNG-REVERSE 2 
#define RNG=NORATE 36 /* if rate 

I* cycling frame rates *I 
#define OnePerTick 16384 
#define OnePerSec OnePerTickl60 

extern Range cycles[]; 
extern BOOL cycling[]; 
extern WORD cycols[]; 
extern struct ViewPort *vport; 
extern SHORT nColors; 

MyVBlank () { 
int i, j; 
LOCAL Range 
LOCAL WORD 
LOCAL BOOL 

#ifdef IS AZTEC 
#asm 

movem~l 
move.l 

#endasm 
#endif 

*eye; 
temp; 
anyChange; 

a2-a7ld2-d7,-(sp) 
al,a4 

if (cycling) { 
anyChange : NO; 
for (i=O; i<MAXNCYCS; i++) { 

eye: &cycles[i]; 

NORATE, don't cycle */ 

if ( (cyc->low == cyc->high) I I 
((cyc->flags&RNG ACTIVE) := 0) I I 
(cyc->rate :: RNG NORATE) ) 

continue; -

cyc->count += cyc->rate; 
if (cyc->count >: OnePerTick) { 

anyChange : YES; 
cyc->count -= OnePerTick; 



(.)1 
(.)1 
1\:) 

::0 

~ 
~ 
3 
~ 
::0 
(!) 
Ci) 
(ti 
:::! 
@ 

~ 
:::! 
§ 
:-:-
CJ 
(!) 
.;: 
C"i" 
(!) 
(/) 

) 

other/cy_cvb.c 

if (cyc->flags&RNG REVERSE) 
temp~ cycols[cyc->low]; 
for (j~cyc->low; j < cyc->high; j++) 

cycols[j] ~ cycols[j+l]; 
cycols[cyc->low] ~temp; 
) 

else { 
temp~ cycols[cyc->high]; 
for (j~cyc->high; j > cyc->low; j--) 

cycols[j] ~ cycols[j-1]; 
cycols[cyc->low] =temp; 
) 

if (anyChange) LoadRGB4(vport,cycols,nColors); 
) 

#ifdef IS AZTEC 
-1* this is necessary */ 

#asm 
movem.l (sp)+,a2-a7/d2-d7 

#endasm 
#endif 

/* 
* 
*I 

return(O); /* interrupt routines have to do this */ 
) 

Code to install/remove cycling interrupt handler 

LOCAL char myname[] ~ "MyVB"; /*Name of interrupt handler */ 
LOCAL struct Interrupt intserv; 

typedef void (*VoidFunc) () ; 

StartVBlank () { 
#ifdef IS AZTEC 

Page 2 

intServ.is Data= GETAZTEC(); /*returns contents of register a4 */ 
#else -

intServ.is Data =NULL; 
#endif -

intServ.is Code = (VoidFunc)&MyVBlank; 
intServ.is-Node.ln Succ = NULL; 
intServ.is-Node.ln-Pred = NULL; 
intServ.is-Node.ln-Type = NT INTERRUPT; 
intServ.is-Node.ln-Pri = 0;­
intServ.is-Node.ln-Name = rnyname; 
AddintServer(S,&intserv); 
) 

StopVBlank() { RemintServer(5,&intServ); 

/**/ 

other/ilbmscan.c 
;/* ilbmscan.c - Execute me to compile me with SAS C 5.10 
LC -bl -cfistq -v -j73 ilbmscan c 

Page 1 

Blink FROM LIB:c.o,llbmscan.o TO ilbmscan LIBRARY LIB:LC.lib,LIB:Amiga.lib 
quit 

* ilbmscan.c: Prints the size, aspect, mode, etc. of ILBM's 
Scans through an IFF' file for all ILBM' s 

* Usage: ilbmscan -c 
* or ilbmscan <file> 

For clipboard scanning 
; For DOS file scanning 

* Based on sift.c by by Stuart Ferguson and Leo Schwab 
*I 

#include <exec/types.h> 
#include <exec/memory.h> 
#include <libraries/dos.h> 
#include <libraries/iffparse.h> 

#include <clib/exec_protos.h> 
#include <clib/dos_protos.h> 
#include <clib/iffparse_protos.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 

#ifdef LATTICE 
int CXBRK(void) { return(O); f 
int chkabort(void) { return(O); 
#endif 

/* Disable Lattice CTRL/C handling */ 
l /* really */ 

/* 
* 
*I 

The structure of a FORM ILBM 'BMHD' and 'CAMG' chunks 
Such structures are definen in the spec for a FORM 
and may also be provided in include files 

/* Bitmap header (BMHD) structure */ 
typedef struct { 

UWORD w, h; /* Wicth, height in pixels */ 
WORD x, y; /* x, y position for this bitmap */ 
UBYTE nplanes; /* # of planes */ 
UBYTE Masking; 
UBYTE Compression; 
UBYTE padl; 
UWORD TransparentColor; 
UBYTE XAspect, YAspect; 
WORD PageWidth, PageHeight; 

BitMapHeader; 

/* Commodore Amiga (CAMG) Viewmodes st.ructure */ 
typedef struct { 

ULONG ViewModes; 
} CamgChunk; 

#define ID ILBM 
#define ID-BMHD 
#define ID-CMAP 
#define ID-CAMG 
#define IO-BODY 

MAKE ID('I' 'L' 'B' 'M') 
MAKE=ID('B': 'M' ;.H': 'D') 
MAKE ID('C','M','A','P') 
MAKE-ID (' C' , 'A' , 'M' , 'G') 
MAKE=ID(~"B' I '0' ,'D' ,'Y') 

void PrintiLBMinfo(struct IFFHandle *); 

#define MINARGS 2 

/* 2.0 Version string for c:Version to find */ 
UBYTE vers[] ~ "\0$VER: ilbmscan 37.3": 



11 
11 
(/) 

"'0 
CD 
(') 
::::;; 
o· 
a 
6" 
::I 

(/) 
0 
c:: 
~ 
CD 

0 
0 
0.. 
CD 

01 
01 w 

other /il bmscan.c Page 2 

UBYTE usage [ J "Usage: ilbmscan IFFfilename (or -c for clipboard)"; 

I* 
* Text error messages for possible IFFERR #? returns from various 
* IFF routines. To get the index into this array, take your IFFERR 
* negate it, and subtract one. 
* idx = -error - 1; 
*I 

char 

}; 

*errormsgs[J = { 
"End of file (not an error) . ", 
11 End of context (not an error) ... , 
11 NO lexical scope. 11 , 

"Insufficient memory. '', 
11 Stream read error.", 
"Stream write error. 11 , 

"Stream seek error.", 
"File is corrupt. 11 , 

"IFF syntax error.", 
11 Not an IFF file.", 
''Required call-back hook missing.'', 
11 Return to client. You should never see this." 

struct Library *IFFParseBase; 

void main(int argc, char **argv) 
{ 

struct IFFHandle 
long 

*iff = NULL; 
error; 

short cbio; 

/*if not enough args or'?', print usage*/ 
if(((argc)&&(argc<MINARGS)) I I (argv[argc-lJ [OJ=='?')) 

{ 

/* 

printf("%s\n", usage); 
exit (RETURN OK); 
} -

* Check to see if we are doing I/O to the Clipboard. 
*I 

cbio = (argv[lJ [OJ == '-' && argv[lJ [lJ == 'c'); 

if (! (IFFParseBase = OpenLibrary ("iffparse.library", OL))) 
{ 

/* 

printf("Can't open iff parsing library."); 
goto bye; 
} 

* Allocate IFF File structure. 
*/ -

if (!(iff= AllociFF ())) 
{ 

/* 

printf ("AllociFF() failed."); 
goto bye; 
) 

code, 

* Internal support is provided for both AmigaDOS files, and the 
* clipboard.device. This bizarre 'if' statement performB the 
* appropriate machinations for each case. 
*I 

if (cbio) 

{ 
/* 

other/ilbmscan.c 

* Set up IFF File for Clipboard I/0. 
*/ -

if (! (iff->iff Stream= 

Page 3 

- (ULONG) OpenClipboard (PRIMARY_CLIP))) 
{ 
printf("Clipboard 
goto bye; 

else 

/* 

) 
InitiFFasClip (iff); 
) 

{ 
/* 

open failed."); 

* Set up IFF File for AmigaDOS I/0. 
*I -

if (!(iff->iff Stream= Open (argv[lJ, MODE OLDFILE))) 
{ - -
printf("File open failed."); 
goto bye; 
} 

InitiFFasDOS (iff); 
} 

* Start the IFF transaction. 
*I 

if (error= OpeniFF (iff, IFFF READ)) 
{ -
printf ("Open IFF failed.") ; 
goto bye; 
) 

/* We want to collect BMHD and CAMG */ 
PropChunk(iff, !D ILBM, ID BMHD); 
PropChunk(iff, ID-ILBM, ID-CAMG); 
PropChunk(iff, ID=ILBM, ID=CMAP); 

/* Stop at the BODY */ 
StopChunk(iff, ID_ILBM, ID_BODY); 

/* And let us know (IFFERR EOC) when leaving a FORM ILBM */ 
StopOnExit(iff,ID_ILBM, ID=FORM); 

I* Do the scan. 
* The while(l) will let us delve into more complex fozmats 
*to find FORM ILBM's 
*I 

while (1) 
{ 
error= ParseiFF(iff, IFFPARSE SCAN); 
I* -
* Since we're only interested in when we enter a context, 
* we "discard" end-of-context ( EOC) events~ 
*I -

if (error == IFFERR EOC) 
{ -
printf("Exiting FORM ILBM\n\n"); 
continue; 
} 

else if (error) 
/* 
* Leave the loop if there is any other error. 
*I 

break; 



01 
01 
.j:>. 

lJ 

~ 
~ 
3 
~ 
lJ 
(]) 

(i)' 

Cti 
::;) 
C) 
(]) 

s: s:u 
2 
~ 
CJ 
(]) 

"' i:'i" 
(]) 
(/) 

1 bye: 

I* 

otherlilbmscan.c Page 4 

I* 
* If we get here, error was zero 
* Since we did IFFPARSE SCAN, zero error should mean 
* we are at our Stop Chunk (BODY) 
*I 

PrintiLBMinfo(iff); 
} 

* If error was IFFERR EOF, then the parser encountered the end of 
* the file without prOblems. Otherwise, we print a diagnostic. 
*I 

if (error :: IFFERR EOF) 

else 
printf(''Fil'e scan complete, \n"); 

printf("File scan aborted, error %ld: %s\n", 
error, errormsgs[-error- 1]); 

if (iff) { 
I* 
* Terminate the IFF transaction with the stream. Free 
* all associated structures. 
*I 

CloseiFF (iff) ; 

I* 
* Close the stream itself. 
*I 

if (iff->iff Stream) 
if (cbio) 

CloseClipboard 

else 

((struct ClipboardHandle *) 
iff->iff_Stream); 

Close (iff->iff_Stream); 

I* 
* Free the IFF File structure itself. 
*I -

FreeiFF (iff) ; 
} 

if (IFFParseBase) CloseLibrary (IFFParseBase) ; 

exit (RETURN_OK); 

void 
PrintiLBMinfo(iff) 
struct IFFHandle *iff; 

struct StoredProperty *sp; 
BitMapHeader *bmhd; 
CamgChunk *camg; 

I* 
* Get a pointer to the stored propery BMHD 
*I 

if (' (sp: FindProp(iff, ID ILBM, ID BMHD))) 
printf ("No BMHD fo·~nd\n") ; -

else 
{ 
I* If property is BMHD, sp->sp Data is ptr to data in BMHD */ 
bmhd: (BitMapHeader *)sp->sp_Data; 
printf ( "BMHD: Width : %ld\n" ,bmhd->w); 

I* 

printf(" 
printf(" 
printf(" 
printf(" 
printf(" 
printf(" 
printf(" 
printf(" 
} 

other/ilbmscan.c Page 5 

Height 
PageWidth 
PageHeight 
nplanes 
Masking 
Compression= 
Trans Color 
XIY Aspect : 

%ld\n",bmhd->h); 
%ld\n", bmhd->PageWidth) ; 
%ld\n", bmhd->PageHeight); 
%ld\n", bmhd->nplanes); 
%ld\n",bmhd->Masking); 
% ld\n .. , brnhd->Compression) ; 
%ld\n 11 , bmhd->TransparentColor) ; 
%ldl%ld\n" ,bmhd->XAspect, bmhd->YAspect); 

* Get a pointer to the stored propery ~ 
*I 

if (!(sp: FindProp(iff, ID ILBM, ID ~))) 
printf("No ~ found\n"); -

else 

I* 

{ 
I* If property is ~. sp->sp Data 1s ptr to data in CMAP *I 
printf( 11 CMAP: contains RGB valUes for %ld registers\n", 

sp->sp_Size I 3); 

* Get a pointer to the stored propery CAMG 
*I 

if(! (sp: FindProp(iff, ID ILBM, ID CAMG))) 
printf("No CAMG found\n"); -

else 
{ 
I* If property is CAMG, sp->sp Data is ptr to data in CAMG *I 
camg: (CamgChunk *)sp->sp Data; 
printf ( "CAMG: ModeiD : -$%08lx\n \n", camg->ViewModes) ; 
} 



"'Tl 
"'Tl 
(/) 

"'C 
(!) 

~ c=;· 
~ 
(5" 
:::l 

(/) 
0 
c:: 
d 
(!) 

() 
0 c. 
(!) 

(]1 
(]1 
(]1 

other/sift.c 
;I* sift.c - Execute me to compile me with SAS C 5.10 
LC -b1 -cfistq -v -j73 sift.c 
Blink FROM LIB:c.o,sift.o TO sift LIBRARY LIB:LC.lib,LIB:Amiga.lib 
quit 

* 

Page 1 

* sift.c: Takes any IFF file and tells you what's in it. 
syntax and all that cool stuff. 

Verifies 
* 
* 
* Usage: sift -c 
* or sift <file> 
* 

; For clipboard scanning 
; For DOS file scanning 

* Reads the specified stream and prints an IFFCheck-like listing of the 
* contents of the IFF file, if any. Stream is a DOS file for <file> 
*argument, or is the clipboard's primary clip for -c. 
* This program must be run from a CLI. 
* 
* Based on original sift.c by by Stuart Ferguson and Leo Schwab 
*I 
#include <execltypes.h> 
#include <execlmemory.h> 
#include <librariesldos.h> 
#include <librariesliffparse.h> 

#include <cliblexec_protos.h> 
#include <clibldos_protos.h> 
#include <clibliffparse_protos.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 

#ifdef LATTICE 
int CXBRK(void) { return(O); ) I* Disable Lattice CTRLIC handling *I 
int chkabort(void) { return(O); ) I* really *I 
#endif 

#define MINARGS 2 

/* 2.0 Version string for c:Version to find */ 
UBYTE vers [) = "\0$VER: sift 37 .1"; 

UBYTE usage[) = "Usage: sift IFFfilename (or -c for clipboard)"; 

I* proto for our function *I 
void PrintTopChunk (struct IFFHandle *); 

I* 
* Text error messages for possible IFFERR #? returns from various 
* IFF routines. To get the index into this array, take your IFFERR code, 
* negate it, and subtract one. 
* idx = -error - 1; 
*I 

char *errormsgs[) = { 
"End of file (not an error) . 11 , 

"End of context (not an error) ... , 
"No lexical scope ... , 
"Insufficient memory.", 
"Stream read error. 11 , 

11 Stream write error II 

"Stream seek error. ;, , ' 
"File is corrupt.", 
"IFF syntax error.", 
"Not an IFF file.", 
"Required call-back hook missing. 11 , 

"Return to client. You should never see this." 

other/sift.c Page 2 
); 

struct Library *IFFParseBase; 

void main(int argc, char **argv) 
{ 

struct IFFHandle 
long 

*iff = NULL; 
error; 
cbio; short 

I* if not enough args or'?', print usage *I 
if(((argc)&&(argc<MINARGS)) I I (argv[argc-1) [OJ=='?')) 

{ 
printf("%s\n",usage); 
goto bye; 
l 

I* 
* Check to see if we are doing IIO to the Clipboard. 
*I 

cbio = (argv[1) [OJ '_, && argv [1) [1) == 'c') ; 

if (!(IFFParseBase = OpenLibrary ("iffparse.library", OL))) 
{ 

I* 

puts ("Can't open iff parsing library."); 
goto bye; 
} 

* Allocate IFF File structure. 
*I -

if (!(iff= AllociFF ())) 
{ 

I* 

puts ("AllociFF() failed."); 
goto bye; 
l 

* Internal support is provided for both AmigaDOS files, and the 
* clipboard.device~ This bizarre 'if' statement perfor.ms the 
* appropriate machinations for each case. 
*I 

if (cbio) 

else 

{ 

I* 
* Set up IFF File for Clipboard IIO. 
*I -

if (! (iff->iff Stream= 
- (ULONG) OpenClipboard (PRI~Y_CLIP))) 

puts ("Clipboard open failed."); 
goto bye; 
) 

InitiFFasClip (iff); 
l 

{ 

I* 
* Set up IFF File for AmigaDOS IIO. 
*I -

if (! (iff->iff Stream= Open (argv[1), MODE OLDFILE))) 
{ - -
puts ("File open failed."); 
goto bye; 
l 



()1 
()1 
(J) 

JJ 

~ 
~ 
3 
~ 
JJ 
Q) 

Q) 
(i) 
:::J 
0 
Q) 

~ 
:::J c:: 
~ 
tJ 
Q) 
<:: 
fi• 
Q) 
(/) 

bye: 

/* 

other/sift.c 
InitiFFasDOS (iff); 
) 

Page 3 

* Start the IFF transaction. 
*I 

if (error= OpeniFF (iff, IFFF READ)) 
{ -
puts ("OpeniFF failed."); 
goto bye; 
) 

while (1) 

I* 

{ 
I* 
* The interesting bit. IFFPARSE RAWSTEP permits us to 
* have precision monitoring of the parsing process, which 
* is necessary if we wish to print the structure of an 
* IFF file. ParseiFF() with RAWSTEP will return the 
* following things for the following reasons: 

* Return code: 
* 0 
* IFFERR EOC 
* IFFERR-EOF 
* <anythlng else> 
*I 

Reason: 
Entered new context. 
About to leave a context. 
Encountered end-of-file. 
A parsing error. 

error = ParseiFF (iff, IFFPARSE_RAWSTEP): 

I* 
* Since we're only interested in when we enter a context, 
* we "discard" end-of-context ( EOC) events. 
*I -

if (error == IFFERR EOC) 
continue; -

else if (error) 

I* 

I* 
* Leave the loop if there is any other error. 
*I 

break; 

* If we get here, error was zero. 
~ Print out the current state of affairs. 
*I 

PrintTopChunk (iff) ; 
} 

* If error was IFFERR EOF, then the parser encountered the end of 
*the file without prOblems. Otherwise, we print a diagnostic. 
*I 

if (error == IFFERR EOF) 

else 
puts ("File-scan complete."); 

printf ("File scan aborted, error %ld: -%s\n", 
error, errormsgs[-error- 1]); 

if (iff) { 
I* 
* Terminate the IFF transaction with the stream. Free 
* all associated structures. 
*I 

CloseiFF (iff); 

void 

other/sift.c 
I* 
* Close the stream itself. 
*I 

if (iff->iff Stream) 
if (cbio) 

Page 4 

CloseClipboard ((struct ClipboardHandle *) 
iff->iff_Stream); 

else 
Close (iff->iff_Stream); 

I* 
* Free the IFF File structure itself. 
*I 

FreeiFF (iff) ; 
) 

if (IFFParseBase) CloseLibrary (IFFParseBase); 

exit (RETURN_OK); 

PrintTopChunk (iff) 
struct IFFHandle *iff; 
( 

struct ContextNode 
short 
char 

I* 

*top; 
i; 
idbuf[S]; 

* Get a pointer to the context node describing the current context. 
*I 

if ( 1 (top= CurrentChunk (iff))) 
return; 

I* 
* Print a series of dots equivalent to the current nesting depth of 
* chunks processed so far. This will cause nested chunks to be 
* printed out indented. 
*I 

for (i = iff->iff Depth; i--; ) 
printf ( "":"' ") ; 

I* 
*Print out the current chunk's ID and size. 
*I 

print£ ("%s %ld 11 , IDtoStr (top->cn_ID, idbuf), top->cn_Size); 

I* 
*Print the current chunk's type, with a newline. 
*I 

puts (IDtoStr (top->cn_Type, idbuf)); 



appendix B 
EXAMPLE DEVICE 

This appendix contains source code for a sample device. The example code is an excellent starting 
point for those who want to create a custom device and add it to the Amiga's system software. 

The example is a complete four-unit, static-sized RAM disk that works under the old (standard) filing 
system, the new Fast Filing System (FFS), and has optional code to bind it to an AUTOCONFIG™ 
device. 

The examples have been assembled under the Metacomco assembler Vll.O and under the CAPE 
assembler V2.0. 

Example Device 557 



U1 
U1 
OJ 

)J 

~ 
~ 
3 
~ 
)J 
Q) 

(i)' 
Q3 
:::J 

~ 

~ 
:::J c:: 
~ 
tJ 
Q) 
<;:: 
fi• 
Q) 
(f) 

ramdev-mountlist 
/* 
* Mountlist for manually mounting the sample ramdisk driver. 

* * FO: and Fl: are set up for the Vl.3 fast file system (FFS). 
* S2: and 53: are setup for the old file system (OFS). 

* After mounting, the drives must be formatted. Be sure to 
* use the FFS flag when formatting the Fast File System 
* ramdrives: 

*I 
FO: 

# 
Fl: 

# 
52: 

# 
53: 

# 

;make sure ''ramdev.device" is in DEVS: 

mount fO: from mydev-mountlist 
format drive fO: name 11 Zippy" FFS 

Device = ramdev.device 
Unit = 0 
LowCyl = 0 ; HighCyl = 14 
Surfaces = 1 
Buffers = 1 
BlocksPerTrack = 10 
Flags = o 
Reserved = 2 
GlobVec = -1 
BufMemType = 0 
DosType = Ox444F5301 
StackSize = 4000 
FileSystem = l:fastfilesystem 

Device = ramdev.device 
Unit = 1 
LowCyl = 0 ; HighCyl = 14 
Surfaces ;::; 1 
Buffers = l 
BlocksPerTrack = 10 
Flags = 0 
Reserved = 2 
GlobVec = -1 
BufMemType = 0 
DosType = Ox444F5301 
StackSize = 4000 
FileSystem = l:fastfilesystem 

Device = ramdev.device 
Unit = 2 
Flags = 0 
Surfaces = 1 
BlocksPerTrack = 10 
Reserved = l 
Interleave = 0 
LowCyl = 0 ; HighCyl 
Buffers = 1 
BufMemType = 0 

Device = ramdev.device 
Unit = 3 
Flags = 0 
Surfaces = 1 
BlocksPerTrack = 10 
Reserved = 1 
Interleave = 0 
LowCyl = 0 HighCyl 
Buffers = 1 
BufMemType = 0 

14 

14 

Page 1 ramdev.i 
****************************************************************** 
* 
* 
* Copyright (C) 1986, Commodore Amiga Inc. All rights reserved. 
* Permission granted for non-commercial use 

* 
***************************************************************** 
* * ramdev.i -- external declarations for skeleton ramdisk device 

***************************************************************** 

Assemble-time 
INFO LEVEL EQU 0 

*INTRRUPT 
AUTOMOUNT 

SET 1 
EQU 0 

options 
Specify amount of debugging info desired 
If > 0 you must link with debug.lib! 
You will need to run a ter.minal proqram to 
set the baud rate. 
Remove "*u to enable fake interrupt code 
Work with the ~'mount" command if 0 
Do it automatically if 1 

;--- stack size and priority for the process we will create 
MYPROCSTACKSIZE EQU $900 
MYPROCPRI EQU 0 ;Devices are often 5, NOT higher 

Page 1 

;--- Base constants 
NUMBEROFTRACKS EQU 40 
SECTOR EQU 512 

<<<< Change THIS to change size of ramdisk <<<< 
# bytes per sector 

SECSHIFT EQU 9 Shift count to convert byte # to sector # 
# Sectors per 11 track 11 SECTORSPER EQU 10 

RAMSIZE EQU 

BYTESPERTRACK EQU 

SECTOR*NUMBEROFTRACKS*SECTORSPER 
; Use this much RAM per unit 
SECTORSPER*SECTOR 

IAMPULLING 
I NT ENABLE 
INTCTRLl 
INTCTRL2 
INTACK 

EQU 
EQU 
EQU 
EQU 
EQU 

7 
4 
$40 
$42 
$50 

device command definitions 

BITDEF 

DEVIN IT 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 

DRIVE3 5 
DRIVE5-25 

TD,EXTCOM,lS 

CMD MOTOR 
CMD-SEEK 
CMD-FORMAT 
CMD-REMOVE 
CMD-CHANGENUM 
CMD-CHANGESTATE 
CMD-PROTSTATUS 
CMD-RAWREAD 
CMD-RAWWRITE 
CMD-GETDRIVETYPE 
CMD-GETNUMTRACKS 
CMD-ADDCHANGEINT 
CMD-REMCHANGEINT 
MYDEV END 

EQU 
EQU 

1 
2 

"I am pulling the interrupt" bit of INTCRLl 
"Interrupt Enable" bit of INTCRL2 
Interrupt control register offset on board 
Interrupt control register offset on board 
My board's interrupt reset address 

(copied from devices/trackdisk.i) 

for 11 extended10 commands !!! 

control the disk's motor (NO-OP) 
explicit seek (NO-OP) 
format disk - equated to WRITE for RAMDISK 
notify when disk changes (NO-OP) 
number of disk changes (always 0) 
is there a disk in the drive? (always TRUE) 
is the disk write protected? (always FALSE) 
Not supported 
Not supported 
Get drive type 
Get number of tracks 
Add disk change interrupt (NO-OP) 
Remove disk change interrupt ( NO-OP) 
place marker -- first illegal command # 



m 
X 
Ill 
3 

"'0 
co 
0 
CD 
< c=;· 
CD 

CJ1 
CJ1 
tO 

ramdev.i Page 2 

;-----------------------------------------------------------------------
; Layout of parameter packet for MakeDosNode 

STRUCTURE MkDosNodePkt,O 
AI?TR 
AI?TR 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
STRUCT 
LABEL 

mdn dosName ; Pointer to DOS file handler name 
mdn-execName ; Pointer to device driver name 
m.dn-unit ; Unit number 
mdn=flags ; OpenDevice flags 
mdn tableSize ; Environment size 
mdn-sizeBlock ; # longwords in a block 
mdn-secOrg ; sector origin -- unused 
mdn-numHeads ; number of surfaces 
mdn-secsPerBlk ; sees per logical block -- unused 
mdn-blkTrack ; sees per track 
mdn-resBlks ; reserved blocks --MUST be at least 1! 
mdn:prefac ; unused 
mdn interleave ; interleave 
mdn-lowCyl ; lower cylinder 
mdn-upperCyl ; upper cylinder 
mdn-numBuffers ; number of buffers 
mdn=memBufType ; Type of memory for AmigaDOS buffers 
mdn dName,S ; DOS file handler name 11 RAM0 11 

mdn-Sizeof ; Size of this structure 

; device data structures 

; maximum number of units in this device 
MD_NUMUNITS EQU 4 

STRUCTURE MyDev,LIB SIZE 
UBYTE md Flags -
UBYTE md-Padl 
;now longwOrd aligned 

md SysLib 
md-SegList 

ULONG 
ULONG 
ULONG 
STRUCT 
LABEL 

md=Base ; Base address of this device's expansion board 
md Units,MD NUMUNITS*4 
Myi5ev_sizeor 

STRUCTURE MyDevUnit,UNIT SIZE 
UBYTE mdu UnitNum -

;Odd # longwords 

UBYTE mdu-SigBit ; Signal bit allocated for interrupts 
;Now longword aligned~ 
APTR mdu Device 
STRUCT mdu-stack,MYPROCSTACKSIZE 
STRUCT mdu-tcb,TC SIZE ; Task Control Block (TCB) for disk 
ULONG mdu-SigMasK ; Signal these bits on interrupt 
IFD INTRRUPT 

STRUCT mdu is,IS SIZE 
UWORD mdu~ad1 -
E~C 

STRUCT 
LABEL 

mdu RAM,RAMSIZE 
MyD8vUnit_Sizeof 

; Interrupt structure 
;Longword aliqn 

; RAM used to simulate disk 

state bit for unit stopped 
BITDEF MDU,STOPPED,2 

MYDEVNAME MACRO 
DC.B 'ramdev.device' ,0 
E~M 

task 

asmsuJm.i Page 1 

************************************************************************* 
* 
* Copyright (C) 1985, Commodore Amiga Inc. All rights reserved. 

Per.mission qranted for non-commercial use 
* * asmsupp.i -- random low level assembly support routines 
* used by the Commodore sample Library & Device 
* 
************************************************************************* 
CLEAR 

;BHS 

MACRO 
MOVEQ 
E~M 

MACRO 

;quick way to clear a D register on 68000 
#0,\1 

BCC.\0 \1 ;\0 is the extension used on the macro (such as ".s") 
ENDM 

;BLO MACRO 
BCS.\0 \1 
E~M 

;EVEN MACRO ; word align code stream 
DS.W 0 
E~M 

LINKSYS MACRO 
MOVE.L 
MOVE.L 
JSR 
MOVE.L 
ENDM 

CALLSYS MACRO 
JSR 
ENDM 

XLIB MACRO 
XREF 
E~M 

; link to a library without having to see a LVO 
A6,-(SP) 
\2,A6 
LV0\1(A6) 

(SP)+,A6 

; call a library via A6 without having to see LVO 
_LV0\1 (A6) 

define a library reference without the LVO 
_LV0\1 

Put a message to the serial port at 9600 baud. Used as so: 

PUTMSG 30,<'%s/Init: called'> 

Parameters can be printed out by pushing them on the stack and 
adding the appropriate C printf-style % formatting commands. 

PUTMSG: 

msg\@ 

end\@ 

XREF 
MACRO 

IFGE 

PEA 
MOVEM.L 
LEA 
LEA 
JSR 
MOVEM.L 
ADDQ.L 
BRA.S 

DC.B 
DC.B 
DC.B 
DS.W 

E~C 
ENDM 

KPutFmt 
* level,msg 

INFO_LEVEL-\1 

subSysName (PC) 
AO/Al/D0/01,-(SP) 
msg\@(pc),AO ;Point 
4*4(SP),A1 ;Point 
KPutFmt 
(SP)+,DO/Dl/AO/Al 
#4,SP 
end\@ 

\2 
10 
0 
0 

to static format string 
to args 



<J1 
Q) 
0 

:::0 

~ 
~ 
3 
CD 
~ 

:::0 
CD 
(i) 
(il 
:::J 

~ 

~ 
:::J c:: 
~ 
CJ 
CD 

~-
CD 
(J) 

ramdev .device.asm Page 1 

************************************************************************* 

Copyright (C) 1986,1988,1989 Commodore Amiga Inc. All rights reserved. 
Per.mission granted for non-commercial use. 

************************************************************************* 

* ramdev.asm -- Skeleton device code. 

* A sample 4 unit ramdisk that can he bound to an expansion slot device, 
* or used without. Works with the Fast File System. 
* This code is required reading for device driver writers. It contains 
* information not found elsewhere. This code is somewhat old; you probably 
* don't want to copy it directly. 

* * This example includes a task, though a task is not actually needed for 
* a simple ram disk. Unlike a single set of hardware registers that 
* may need to be shared by multiple tasks, ram can be freely shared. 
* This example does not show arbitration of hardware resources. 

* Tested with CAPE and Metacamco 

* 
* 

* 

Based on mydev.asm 
10/07/86 Modified by Lee Erickson to be a simple disk device 

using RAM to simulate a disk. 
02/02/88 Modified by C. Scheppner, renamed ramdev 
09/28/88 Repaired by Bryce Nesbitt for new release 
11/02/88 More clarifications . 
02/01/89 Even more clarifications & warnings 
02/22/89 START/STOP fix from Marco Papa 

* Bugs: If RTF_AUTOINIT fails, library base still left in memory. 

************************************************************************* 

SECTION firstsection 

NOLIST 
include "exec/types.i" 
include "exec/devices. i 11 

include "exec/initializers.i" 
include "exec/memory.i" 
include "exec/resident.i" 
include "exec/io.i 11 

include "exec/ables.i 11 

include "exec/errors.i 11 

include "exec/tasks.i 11 

include "hardware/intbits.i" 

include "asmsupp.i" ;standard asmsupp.i, same as used for library 
include "ramdev.i 11 

IFNE AUTOMOUNT 
include "libraries/expansion.i" 
include "libraries/configvars.i" 
include "libraries/configregs.i 11 

ENDC 
LIST 

ABSEXECBASE equ 4 ;Absolute location of the pointer to exec.library base 

These don't have to be external, but it helps some 
debuggers to have them globally visible 

XDEF 
XDEF 
XDEF 
XDEF 
XDEF 
XDEF 
XDEF 
XDEF 

Init 
Open 
Close 
Expunge 
Null 
my Name 
BeginiO 
AbortiO 

ramdev .device.asm 

;Pull these LVOs in from amiga.lib 
XLIB AddintServer 
XLIB RemintServer 
XLIB Debug 
XLIB InitStruct 
XLIB OpenLibrary 
XLIB CloseLibrary 
XLIB Alert 
XLIB FreeMern 

Remove 
AddPort 
AllocMem 
AddTask 
PutMsg 
RernTask 
ReplyMsg 
Signal 
GetMsg 
Wait 

Page 2 

XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 
XLIB 

WaitPort 
AllocSignal 
SetTaskPri 
GetCurrentBinding 
MakeDosNode 

;Use to get list of boards for this driver 

AddDosNode 
CopyMamQuick ;Highly optimized copy function from exec.library 

INT ABLES ;Macro from exec/ables.i 

The first executable location. This should return an error 
in case someone tried to run you as a program (instead of 
loading you as a device) . 

FirstAddress: 
moveq 
rts 

#-l,dO 

A romtag structure. After your driver is brought in from disk, the 
disk image will be scanned for this structure to discover magic constants 
about you (such as where to start running you from ... ). 

-----------
; Most people will not need a priority and should leave it at zero. 
; the RT PRI field is used for configuring the roms. Use "mods" from 
; wack tO look at the other romtags in the system 

MYPRI EQU 0 

initDDescrip: 

DC.W 
DC.L 
DC.L 
DC.B 
DC.B 

RTC MATCHWORD 
inft'DDescrip 
EndCode 
RTF AUTOINIT 
VERSION 

; STRUCTURE RT, 0 
UWORD RT MATCHWORD 
APTR RT-MATCHTAG 
APTR RT-ENDSKIP 
UBYTE RT-FLAGS 
UBYTE RT-VERSION 

(Magic cookie) 
(Back pointer) 
(To end of this hunk) 
{magic-see 11 Ini t: 11 ) 



"'Tl 
"'Tl 
(/) 

"'0 
CD 
() 
::::;; 
('i" 

~ 
6" 
::J 

(/) 
0 
c 
0 
CD 

0 
0 
Q. 
CD 

01 
0) ..... 

ramdev .device.asm Page 3 

DC.B NT DEVICE UBYTE RT TYPE (must be correct) 
DC.B MYPRI BYTE RT-PRI 
DC.L my Name APTR RT-NAME 
DC.L idString APTR RT-IDSTRING 
DC.L I nit APTR RT-INIT 

; LABEL RT SIZE 

;This name for debugging use 
IFNE INFO LEVEL ;If any debugging enabled at all 

subSysName: -
dc.b 11 ramdev", 0 

ENDC 

; this is the name that the device will have 
myName: MYDEVNAME 

IFNE AUTOMOUNT 

(exec name) 
(text string) 

ExLibName dc.b 'expansion.library' ,0 Expansion Library Name 
ENDC 

; a major version number. 
VERSION: EQU 37 

A particular revision. This should uniquely identify the bits in the 
device. I use a script that advances the revision number each time 
I recompile. That way there is never a question of which device 
that really is. 

REVISION: EQU 1 

; this is an identifier tag to help in supporting the device 
; for.mat is 'name version.revision (d.m.yy)' 1 <cr>,<lf>,<null> 

idString: dc.b 'ramdev 37.1 (28.8.91)' ,13,10,0 

; force word alignment 
ds.w 0 

The rorntag specified that we were "RTF AUTOINIT 11 • This means 
that the RT INIT structure member points to one of these 
tables below. If the AUTOINIT bit was not set then RT !NIT 
would point to a routine to run. 

Init: 
DC.L 
DC.L 
DC.L 
DC.L 

funcTable: 

dc.l 
dc.l 
dc.l 
dc.l 

MyDev Sizeof 
funcTable 
data Table 
initRoutine 

data space size 
pointer to function initializers 
pointer to data initializers 
routine to run 

standard system routines 
Open 
Close 
Expunge 
Null ;Reserved for future use! 

;------ my device definitions 
dc.l BeginiO 
de .1 AbortiO 

;------ custom extended functions 
dc.l FunctionA 
dc.l FunctionS 

function table end marker 

ramdev .device.asm Page 4 

de .1 -1 

;The data table initializes static data structures. The for.mat is 
;specified in exec/InitStruct routine's manual pages. The 
;INITBYTE/INITWORD/INITLONG macros are in the file 11exec/initializers.i 11 • 

;The first argument is the offset from the device base for this 
;byte/word/long. The second argument is the value to put in that cell. 
;The table is null terminated 

data Table: 
INITBYTE 
INITLONG 
INITBYTE 
INITWORD 
INITWORD 
INITLONG 
DC.W 0 

LN TYPE,NT DEVICE ;Must be LN TYPE! 
LN-NAME,myName -
LIB FLAGS,LIBF SUMUSED!LIBF CHANGED 
LIB-VERSION,VERSION -
LIB-REVISION, REVISION 
LIB-IDSTRING,idString 
;terminate list 

-------- initRoutine -------------------------------------------------------

FOR RTF AUTOINIT: 
This routine gets called after the device has been allocated. 
The device pointer is in DO. The AmigaDOS segment list is in aO. 
If it returns the device pointer, then the device will be linked 
into the device list. If it returns NULL, then the device 
will be unloaded. 

IMPORTANT: 
If you don't use the ''RTF AUTOINIT'' feature, there is an additional 
caveat. If you allocate memory in your Open function, remember that 
allocating memory can cause an Expunge ... including an expunge of your 
device. This must not be fatal. The easy solution is don't add your 
device to the list until after it is ready for action. 

This call is single-threaded by exec; please read the description for 
"Open" below. 

Register Usage 

a3 -- Points to temporary RAM 
a4 -- Expansion library base 
aS -- device pointer 
a6 -- Exec base 

;----------------------------------------------------------------------
initRoutine: 

;------ get the device pointer into a convenient A register 
PUTMSG 5,<'%s/Init: called'> 
movem.l dl-d7/a0-a5,-(sp) ; Preserve ALL modified registers 
move.l dO,aS 

move.l 

move.l 

save a pointer to exec 
a6,md_SysLib(a5) ;faster access than move.l 4,a6 

save pointer to our loaded code (the SegList) 
aO,md_SegList(aS) 

IFNE AUTOMOUNT 
************************************************************************** 
* * Here starts the AutoConfig stuff. If this driver was to be tied to 
* an expansion board, you would put this driver in the expansion drawer, 
* and be called when BindDrivers finds a board that matches this driver . 
* The Commodore-Amiga assigned product number of your board must be 
*specified in the "PRODUCT=" field in the TOOLTYPES of this driver's icon. 



01 
CJ) 
1\) 

::0 

~ 
~ 
3 
~ 
::0 
(!) 

(j) 
(iS 
::J 
CJ 
(!) 

~ 
::J 
c: 
~ 
CJ 
(!) 
<:: 
()• 
(!) 
(/) 

ramdev .device.asm 
* GetCurrentBinding() returns your (first) board. 

* 
lea.l 
m.oveq.l 
CALLSYS 
tst.l 
beq 

move.l 
moveq 
lea 
moveq 
LINICLIB 
move.l 
tst.l 
beq 

PUTMSG 
move.l 
move.l 
bclr.b 

Get expansion lib. name ExLibName,Al 
#O,DO 
OpenLibrary 
DO 
Init_Error 

Open the expansion library 

init OpSuccess: 
DO~A4 ; [expansionbase to A4] 
#O,D3 
md Base(AS),AO ; Get the Current Bindings 
#4~00 ; Just get address (length 
LVOGetCurrentBinding,A4 

rod Base(AS),DO ; Get start of list 
DO- If controller not found 
Init_End ; Exit and unload driver 

4 bytes) 

10,<'%s/Init: GetCurrentBinding returned non-zero'> 
DO,AO ; Get config structure address 
cd BoardAddr(AO),md Base(A5); Save board base address 
#CDB_CONFIGME,cd_Flags(AO); Mark board as configured 

Page 5 

Here we build a packet describing the characteristics of our disk to 
pass to AmigaDOS. This serves the same purpose as a "mount" command 
of this device would. For disks, it might be useful to actually 
get this information right from the disk itself. Just as mount, 
it could be for multiple partitions on the single physical device. 
For this example, we will simply hard code the appropriate parameters. 

The AddDosNode call adds things to dos's list without needing to 
use mount. We'll mount all 4 of our units whenever we are 
started. 

;!!! If your card was successfully configured, you can mount the 
;!!! units as DOS nodes 

move.l 
move.l 
CALLSYS 
move.l 

move.l 
moveq.l 
lea.l 
CALLSYS 

lea 
move.l 

moveq 
Uloop: 

move.b 
add.b 
move.b 
move.l 

Allocate temporary RAM to build MakeDosNode parameter packet 
#MEMF CLEAR'MEMF PUBLIC,dl 
#mdn Sizeof,dO -; Enough room for our pararo~ter packet 
AlloCMem 
dO,a3 ;:BUG: AllocMem error not checked here. 

Use InitStruct 
d0,a2 

to initialize the constant portion of packet 
Point to memory to initialize 

#O,dO 
mdn Init(pc) ,Al 
Init'Struct 

Don't need tore-zero it 

mdn dName(a3),aO ; Get addr of Device name 
ao 1 mdn_dosName(a3) and save in environment 

#O,d6 Now tell AmigaDOS about all units UNITNUM 

d6,d0 ; Get unit number 
#$30,d0 ; Make ASCII, minus 1 
dO,mdn dName+2(a3) ; and store in name 
d6,mdn=unit(a3) ; Store unit # in environment 

! Before adding to the dos list, you should really check if you 
! are about to cause a name collision. This example does not. 

* 

ramdev .device.asm 

move.l 
LINICLIB 
;This can 
move.l 
moveq.l 
moveq.l 
moveq.l 
;It's ok 
LINICLIB 

a3,a0 
LVOMakeDosNode,a4 

xail, but so what? 
dO,aO 
#O,dO 
#O,dl 
#ADNF STARTPROC,dl 

to pasS a zero in here 
_LVOAddDosNode,a4 

Build AmigaDOS structures 

Get deviceNode address 
Set device priority to 0 

; See note below 

ADNF STARTPROC will work, but only if dn SegList is filled in 
in the SegPtr of the handler task. -

addq 
cmp.b 
bls.s 

#1, d6 ; Bump unit number 
#MD NUMUNITS,d6 
UloOp ; Loop until all units installed 

move.l a3,al ; Return RAM to system 
move.l #mdn Sizeof,dO 
CALLSYS FreeMem 

Page 6 

Init End: 

move.l a4,al ; Now close expansion library 
CALLSYS CloseLibrary 

You would normally set dO to a NULL if your initialization failed, 
but I'm not doing that for this demo, since it is unlikely 

* you actually have a board with any particular manufacturer ID 
* installed when running this demo. 
************************************************************************* 

ENDC 

move.l aS,dO 
Init Error: 

movem.l (sp)+,dl-d7/a0-a5 
rts 

Here begins the system interface commands. When the user calls 
OpenDevice/CloseDevice/RemDevice, this eventually gets translated 
into a call to the following routines (Open/Close/Expunge) . 
Exec has already put our device pointer in a6 for us. 

IMPORTANT: 
These calls are guaranteed to be single-threaded; only one task 
will execute your Open/Close/Expunge at a time. 

For Kickstart V33/34, the single-threading method involves "Forbid". 
There is a good chance this will change. Anything inside your 
Open/Close/Expunge that causes a direct or indirect Wait() will break 
the Forbid(). If the Forbid() is broken, some other task might 
manage to enter your Open/Close/Expunge code at the same time. 
Take care! 

Since exec has turned off task switching while in these routines 
(via Forbid/Permit), we should not take too long in them. 



m 
X 
Ill 
3 

"0 
ro 
0 
CD 
< c:;· 
CD 

01 
0> 
(J.) 

ramdev .device.asm Page 7 

Open sets the IO ERROR field on an error. If it was successful!, 
we should also set up the IO UNIT and LN TYPE fields. 
exec takes care of setting up IO_DEVICE.-

Open: ; ( device:a6, iob:al, unitnum:dO, flags:dl ) 

;**Subtle point: any AllocMem() call can cause a call to this device's 
;** expunge vector. If LIB OPENCNT is zero, the device might get expunged. 

addq.w #l,LIB_OPENCNT(a6) ;Fake an opener for duration of call <I> 

PUTMSG 
movem.l 

move.l 

cmp.l 
bcc.s 

move.l 
lsl.l 
lea.l 
move.l 
bne.s 

bsr 

move.l 
beq.s 

20,<'%s/Open: called'> 
d2/a2/a3/a4,-(sp) 

al,a2 ; save the iob 

see if the unit number is in range *!* UNIT 0 to 3 
#MD NUMUNITS,dO 
Open_Range_Error ; unit number out of range (BHS) 

see if the unit is already initialized 
dO,d2 ; save unit number 
#2,d0 
md Units(a6,d0.l),a4 
(a4) ,dO 
Open_UnitOK 

try and conjure up a unit 
InitUnit ;scratch:a3 unitnum:d2 devpoint:a6 

see if it initialized OK 
(a4) ,dO 
Open_Error 

Open UnitOK: 
move.l dO,a3 ; unit pointer in a3 
move.l d0,IO_UNIT(a2) 

;------
addq.w 
addq.w 

mark us as having another opener 
#l,LIB OPENCNT(a6) 
#l,UNIT_OPENCNT(a3) ;Internal bookkeeping 

;------ prevent delayed expunges 
bclr #LIBB_DELEXP,md_Flags(a6) 

CLEAR dO 
dO,IO ERROR(a2) 

*!* 

move.b 
move.b #NT_REPLYMSG,LN_TYPE(a2) ;IMPORTANT: Mark IORequest as "complete" 

Open_End: 

subq.w 
movem.l 
rts 

#l,LIB OPENCNT(a6) ;** End of expunge protection <I> 
(sp)+,d2/a2/a3/a4 

Open Range Error: 
Open-Error: 

moveq #IOERR OPENFAIL,dO 
move.b dO,IO ERROR(a2) 
move.l dO,IO-DEVICE(a2) ;IMPORTANT: trash IO DEVICE on open failure 
PUTMSG 2,<'%s/Open: failed'> 
bra.s Open End 

There are two different things that might be returned from the Close 
routine. If the device wishes to be unloaded, then Close must return 

ramdev .device.asm Page 8 
; the segment list (as given to Init) . Otherwise close MUST return NULL. 

Close: ; ( device:a6, iob:al ) 
movem.l dl/a2-a3,-(sp) 
PUTMSG 20,<'%s/Close: called'> 

move.l 

move.l 

moveq.l 
move.l 
m.ove.l 

;------
subq.w 

al,a2 

IO_UNIT(a2),a3 

IMPORTANT: make sure the IORequest is not used again 
with a -1 in IO DEVICE, any BeginiO() attempt will 
immediatly halt-(which is better than a subtle corruption 
that will lead to hard-to-trace crashes!!!!!!!!!!!!!!!!!! 

#-l,dO 
dO,IO UNIT(a2) 
dO,IO=DEVICE(a2) 

;We're closed ... 
;customers not welcome at this IORequest!! 

see if the unit is still in use 
#l,UNIT_OPENCNT(a3) 

Since this example is a RAM disk (and we don't want the contents to 
disappear between opens, ExpungeUnit will be skipped here. It would 
be used for drivers of "real .. devices 

bne.s Close Device 
bsr ExpungeUnit 

Close Device: 
CLEAR dO 
;------
subq.w 

;------
bne~s 

btst 
beq.s 

;------
bsr 

Close End: 
moVem.l 
rts 

mark us as havinq one fewer openers 
#l,LIB_OPENCNT(a6) 

see if there is anyone left with us open 
Close End 

see if we have a delayed expunge pending 
#LIBB DELEXP,md Flags(a6) 
Close-End -

do the expunge 
Expunge 

(sp) +, dl/a2-a3 
;MUST return either zero or the SegList!!! 

;------- Expunqe -----------------------------------------------------------

Expunge is called by the memory allocator when the system is low on 
memory. 

There are two different things that might be returned from the Expunge 
routine. If the device is no longer open then Expunge may return the 
segment list (as given to Init) . Otherwise Expunge may set the 
delayed expunge flag and return NULL. 

One other important note: because Expunge is called from the memory 
allocator, it may NEVER Wait() or otherwise take long time to complete. 

A6 - library base (scratch) 
DO-Dl/AO-Al - scratch 

Expunge: ; ( device: a6 ) 
PUTMSG 10,<'%s/Expunge: called'> 



()1 
0) 
.j:>. 

:J;J 

~ 
~ 
3 
~ 
:J;J 
(!) 

(i) 
(i) 
:::J 
@ 
$.;: 
tll 
:::J c:: 
~ 
CJ 
(!) 
<::: 
(=)• 
(!) 
C/) 

ramdev .device.asm 
movem.l dl/d2/a5/a6,-(sp) 
move.l a6,a5 
move.l rnd_SysLib(aS) ,a6 

; Save ALL modified registers 

see if anyone has us open 
tst.w LIB OPENCNT(a5) 

Page 9 

!!!!! The following line is commented out for this RAM disk d~o, since 
!! !! ! we don't want the RAM to be freed after FORMkT, for example. 

beq 1$ 

bset 
CLEAR 
bra.s 

it is still open. set the delayed expunge flag 
#LIBB DELEXP,md Flags{a5) 
dO - -
Expunge_End 

1$: 
go ahead and get rid of us. Store our seglist in d2 

move.l rnd_SegList{aS) ,d2 

unlink from device list 
move.l aS,al 
CALLSYS Remove ; Remove first (before FreeMem) 

device specific closings here ... 

free our memory (must calculate from 
aS,al ;Devicebase 

LIB POSSIZE & LIB_NEGSIZE) 

dO 
move.l 
CLEAR 
move.w 
suba.l 
add.w 
CALLSYS 

LIB NEGSIZE(aS),dO 
do,al ;Calculate base of functions 
LIB POSSIZE(a5),d0 
FreeMem 

;Calculate size of functions + data area 

move.l 
set up our return value 
d2,d0 

Expunge End: 
movem.l (sp)+,dl/d2/a5/a6 
rts 

;-------Null 
Null: 

PUTMSG 
CLEAR 

l,<'%s/Null: called'> 
dO 

rts ;The "Null 11 function MUST return NULL. 

Custom ------------------------------------------------------------

;Two "do nothing" device-specific functions 

FunctionA: 
add.l dl, dO 
rts 

FunctionS: 
add.l dO,dO 
rts 

;Add 

;Double 

**************************************************************************** 

InitUnit: 
PUTMSG 

; ( d2:unit number, a3:scratch, a6:devptr) 
30,<'%s/InitUnit: called'> 

movem.l 

;------
move.l 
move.l 
LINKSYS 
tst.l 
beq 
move.l 

moveq.1 
move.l 
lea.1 
LINKSYS 

ramdev .device.asm 
d2-d4/a2,-(sp) 

allocate unit memory 
#MyDevUnit Sizeof,dO 
#MEMF PUBLIC!MEMF CLEAR,dl 
AllocMem,md SysLib(a6) 
dO -
InitUnit End 
d0,a3 -

#0, dO Don't need to re-zero it 
a3,a2 InitStruct is initializing the UNIT 
mdu_Init(pc),Al 
InitStruct,md_SysLib(a6) 

; ! ! IMPORTANT ! ! 

Page 10 

move.l #42414400,mdu RAM(a3) ;Mark offset zero as ASCII 11 BAD " 
; ! ! IMPORTANT ! ! -

move.b 
move.l 

;------

;------

lea 
move.l 
lea 
move.l 
move.l 
move.l 
lea 
move.l 

d2,mdu UnitNum(a3) 
a6,mdu=Device(a3) 

;initialize unit number 
;initialize device pointer 

start up the unit task. We do a trick here -­
we set his message port to PA IGNORE until the 
new task has a change to set It up. 
We cannot go to sleep here: it would be very nasty 
if someone else tried to open the unit 
(exec's OpenDevice has done a Forbid() for us 
we depend on this to become single threaded) . 

Initialize the stack information 
mdu stack(a3) ,aO ; Low end of stack 
aO,mdu tcb+TC SPLOWER(a3) 
MYPROCSTACKSIZE(aO),aO ; High end of stack 
aO,mdu tcb+TC SPUPPER(a3) 
a3,-(A0) - ; argument-- unit ptr (send on stack) 
aO,mdu tcb+TC SPREG(a3) 
rndu tcb(a3),a0 
aO,MP_SIGTASK(a3) 

IFGE INFO LEVEL-30 
move.I aO,-(SP) 
move.l a3,-(SP) 

ENDC 

PUTMSG 30,<'%s/InitUnit, unit= %1x, task=%1x'> 
addq.l #S,sp 

initialize the unit's message port's list 
lea MP MSGLIST(a3),a0 
NEWLIST aO- <- IMPORTANT! Lists MUST! have NEWLIST 

work magic on them before use. (AddPort() 
can do this for you) 

IFD INTR:RUPT 
move.l 
ENDC 

a3,mdu_is+IS DATA(a3) Pass unit addr to interrupt server 

Startup 
lea 
lea 
move.! 
lea 

the task 
rndu tcb(a3),al 
Task Begin(PC) ,a2 
a3,-(sp) ; Preserve UNIT pointer 
-l,a3 ; generate address error 

if task ever "returns" 
to get rid of it ... ) 

CLEAR dO 
PUTMSG 30,<'%s/About to add task'> 

(we RemTask () it 



m 
>< 
tl.l 
3 
"0 
ro 
0 
c:t> 
< 
(')" 
c:t> 

01 
O'l 
01 

ramdev .device.asm 
LINKSYS AddTask,md SysLib(a6) 
move.l (sp)+,a3- ; restore UNIT pointer 

move.l 
lsl.l 
move.l 
I?UTMSG 

mark us as ready to go 
d2,d0 ; unit number 
#2,d0 
a3,md Units(a6,d0.1) ; set unit table 
30,<'%s/InitUnit: ok'> 

InitUnit End: 
movem~l (sp)+,d2-d4/a2 
rts 

FreeUnit: 
move.l 
move.l 
LINKSYS 
rts 

; ( a3:unitptr, a6:deviceptr 
a3,al 
#MyDevUnit Sizeof,dO 
FreeMem,md=SysLib(a6) 

Page 11 

;---------------------------------------------------------------------------
ExpungeUnit: ; ( a3:unitptr, a6:deviceptr 

I?UTMSG 10,<'%s/ExpungeUnit: called'> 
move.l d2,-(sp) 

If you can expunge you unit, and each unit has it's own interrupts, 
you must remember to remove its interrupt server 

IFD 
lea.l 

INTRRUI?T 

moveq 
LINKSYS 
ENDC 

mdu is(a3),al 
#INTB I?ORTS,dO 
RemintServer,md_SysLib(a6) 

Point to interrupt structure 
l?ortia interrupt bit 3 

Now remove the interrupt server 

;------get rid of the unit's task. We know this is safe 
;------ because the unit has an open count of zero, so it 
;------ is 'guaranteed' not in use. 
lea mdu tcb(a3),al 
LINKSYS RemTask,md_SysLib(a6) 

save the unit number 
CLEAR d2 
move.b mdu_UnitNum(a3),d2 

bsr 
free the unit structure. 
FreeUnit 

;------ clear out the unit vector in the device 
lsl.l #2,d2 
clr.l md_Units(a6,d2.1) 

move.l (sp)+,d2 
rts 

***************************************************************************** 

; here begins the device functions 

----------------------------------------------------------------------------
cmdtable is used to look up the address of a routine that will 
implement the device command. 

ramdev .device.asm Page 12 

NOTE: the "extended" commands (ETD READ/ETD WRITE) have bit 15 set! 
We deliberately refuse to operate On such commands. However a driver 
that supports removable media may want to implement this. One 
open issue is the handling of the 11 Seclabel 11 area. It is probably 
best to reject any command with a non-null 11 Seclabel•• pointer. 

cmdtable: 
DC.L Invalid ;$00000001 ;0 CMD INVALID 
DC.L My Reset ;$00000002 ;1 CMD-RESET 
DC.L RdWrt ;$00000004 ;2 CMD-READ (\/co:mmon) 
DC.L Rd.Wrt ;$00000008 ;3 CMD-WRITE (/\common) 
DC.L Update ;$00000010 ;4 CMD-UI?DATE (N0-01?) 
DC.L Clear ;$00000020 ;5 CMD-CLEAR (N0-01?) 
DC.L My Stop ;$00000040 ; 6 CMD-STOI? 
DC.L Start ;$00000080 ;7 CMD-START 
DC.L Flush ;$00000100 ;8 CMD-FLUSH 
DC.L Motor ;$00000200 ; 9 TD MOTOR (N0-01?) 
DC.L Seek ;$00000400 ;A TD-SEEK (N0-01?) 

ETD 
ETD-
ETD 
ETD-

ETD 
ETD-

DC.L RdWrt ;$00000800 ;B TO-FORMAT (Same as write) 
DC.L My Remove ;$00001000 ;C TO-REMOVE (N0-01?) 
DC.L ChangeNum ;$00002000 ;D TD-CIIANGENUM (returns 0) 
DC.L ChangeState ;$00004000 ;E TD-CIIANGESTATE (returns 0) 
DC.L !?rot Status ;$00008000 ;F TD-I?ROTSTATUS (returns 0) 
DC.L RawRead ;$00010000 ; 10 TD-RAWREAD (INVALID) 
DC.L RawWrite ;$00020000 ; 11 TD-RAWWRITE (INVALID) 
DC.L GetDriveType ;$00040000 ;12 TD-GETDRIVETYI?E (Returns 1) 
DC.L GetNumTracks ;$00080000 ; 13 TD-GETNOMTRACKS (Returns NtlMTRKS) 
DC.L AddChangeint ;$00100000 ;14 TD-ADDCHANGEINT (N0-01?) 
DC.L RemChangeint ;$00200000 ;15 TD-REMCHANGEINT (N0-01?) 

cmdtable end: 

this define is used to tell which commands should be handled 
immediately (on the caller's schedule). 

The ~diate commands are Invalid, Reset, Stop, Start, Flush 

Note that this method limits you to just 32 device specific commands, 
which may not be enough. 

;IMMEDIATES EQU %00000000000000000000000111000011 

FEDCBA9876543210FEDCBA9876543210 

An alternate version. All commands that are trivially short 
and %100 reentrant are included. This way you won't get the 
task switch overhead for these commands. 

IMMEDIATES EQU %11111111111111111111011111110011 

FEDCBA9876543210FEDCBA9876543210 

IFD INTRRUI?T ; if using interrupts, 
These commands can NEVER be done 11 immediately 11 if using interrupts, 
since they would ••wait 11 for the interrupt forever! 
Read, Write, Format 

NEVERIMMED EQU $0000080C 
ENDC 

;--------------------------------
BeginiO starts all incoming io. The IO is either queued up for the 
unit task or processed immediately. 

BeginiO often is given the responsibility of making devices single 
threaded ... so two tasks sending commands at the same time don't cause 



{TJ 
en 
0> 

::0 

~ 
~ 
3 
~ 
::0 
CD 
CD' 
~ 
:::1 

~ 

~ 
:::1 c: 
Ill 
:-:-
CJ 
CD 

"" ()' 
CD 
(/) 

ramdev .device.asm Page 13 

a problem. Once this has been done, the command is dispatched via 
PerfoJ:miO. 

There are many ways to do the threading. This example uses the 
ONITB ACTIVE bit. Be sure this is good enough for your device before 
usingT Any method is ok. If 1mmediate access can not be obtained, the 
request is queued for later processing. 

Some IO requests do not need single threading, these can be perfoJ:med 
1mmediatley. 

IMPORTANT: 
The exec WaitiO() function uses the IORequest node type (LN TYPE) 
as a flag. If set to NT MESSAGE, it assumes the request is-
still pending and will wait. If set to NT REPLYMSG, it assumes the 
request is finished. It's the responsibility of the device driver 
to set the node type to NT_MESSAGE before returning to the user. 

BeginiO: ; ( iob: al, device:a6 ) 

IFGE INFO LEVEL-l 
bchg.b #1,$bfe001 ;Blink the power LED 

ENDC 
IFGE INFO LEVEL-3 
clr.l --(sp) 
move.w IO COMMAND(al),2(sp) ;Get entire word 
PUTMSG 3,<•ts/BeginiO -- $%lx'> 
addq.l #4, sp 

ENDC 

movem.l dl/a0/a3,-(sp) 

move.b #NT MESSAGE,LN TYPE(al) ;So WaitiO() is guaranteed to work 
move.l IO UNIT(al),a3- ;bookkeeping-> what unit to play with 
move.w Io:coMMAND(al),dO 

;Do a range check & make sure ETD XXX type requests are rejected 
cmp.w #MYDEV END,dO ;Compare all 16 bits 
bee BeginiO_NoCmd ;no, reject it. (bcc=bhs - unsigned) 

;------
move.l 
DISABLE 
btst.l 
bne 

process all ~diate commands no matter what 
#IMMEDIATES,dl 
aO ;<-- Ick, nasty stuff, but needed here. 
dO,dl 
BeginiO_DDmediate 

IFD INTRRUPT ; if using interrupts, 
;------ queue all NEVERIMMED commands no matter what 
move.w #NEVERIMMED,dl 
btst dO,dl 
bne.s BeginiO QueueMsg 

ENDC -

;------ see if the unit is STOPPED. If so, queue the msg. 
btst #MDUB STOPPED,ONIT FLAGS(a3) 
bne BeginiO_QueueMsg -

This is not an ~diate command. See if the device is 
busy. If the device is not, do the command on the 

------ user schedule. Else fire up the task. 
------ This type of arbitration is not really needed for a ram 
------ disk, but is essential for a device to reliably work 
------ with shared hardware 

ramdev .device.asm Page 14 

;------When the lines below are 11 i 11 commented out, the task gets 
;------ a better workout. When the lines are active, the calling 

process is usually used for the operation. 
:------
------REMEMBER:::: Never Wait() on the user's schedule in BeginiO()! 
------ The only exception is when the user has indicated it is ok 
------ by setting the 11 quick" bit. Since this device copies from 

ram that never needs to be waited for, this subtlely may not 
be clear. 

bset 
beq.s 

#ONITB ACTIVE,ONIT FLAGS(a3) 
BeginiO_Immediate -

;<---- comment out these 
;<---- lines to test task. 

;------ we need to queue the device. mark us as needing 
;------ task attention. Clear the quick flag 

BeginiO QueueMsg: 
bset #ONITB INTASK,ONIT FLAGS(a3) 
bclr #IOB QUICK,IO FLAGS(al) ;We did NOT complete this quickly 
ENABLE aO - -

IFGE INFO LEVEL-250 
move.l al,-(sp) 
move.l a3,-(sp) 
PUTMSG 250,<'%s/PutMsg: Port=%lx Message=%lx'> 
addq.l #8,sp 

ENDC 

move.l a3,a0 
LINKSYS PutMsg,md SysLib(a6) ;Port=aO, Message=al 
bra.s BeginiO Ena 
;----- return tO caller before completing 

Do it on the schedule of the calling process 
;------

BeginiO Immediate: 
ENABLE aO 
bsr.s PerformiO 

BeginiO End: 
PUTMSG 200,<'%s/BeginiO End'> 
movem.l (sp)+,dl/a0/a3 -
rts 

BeginiO NoCmd: 
move.b #IOERR NOCMD,IO ERROR(al) 
bra.s BeginiO_End -

Perfo=IO actually dispatches an io request. It might be called from 
the task, or directly from BeginiO (thus on the callers's schedule) 

It expects a3 to already 
have the unit pointer in it. a6 has the device pointer (as always). 
al has the io request. Bounds checking has already been done on 
the I/O Request. 

Perfo=IO: ; ( iob:al, unitptr:a3, devptr:a6 ) 
IFGE INFO LEVEL-150 
clr.l --(sp) 
move.w IO COMMAND(a1),2(sp) ;Get entire word 
PUTMSG 150,<'%s/Perfo=IO -- $%lx'> 



m 
X 
lll 
3 

"'0 
m 
0 
CD 
< 
()" 
CD 

U1 
en 
-..,J 

addq.l 
ENDC 

moveq 
m.ove.b 
move.b 
lsl.w 
lea.l 
move.l 

jmp 

ramdev .device.asm 
#4,sp 

#O,dO 
dO, IO ERROR(Al) 
IO COMMAND+l(al),dO 
112-;-do 
cmdtable{pc),aO 
O(aO,dO.w),aO 

No error so far 
Look only at low byte 
Multiply by 4 to get table offset 

(aO) ;iob:al unit:a3 devprt:a6 

Page 15 

TermiO sends the IO request back to the user. It knows not to mark 
the device as inactive if this was an immediate request or if the 
request was started from the server task. 

TermiO: 
PUTMSG 
move.w 

move.w 
btst 
bne.s 

btst 
bne.s 

; ( iob:al, unitptr:a3, devptr:a6 ) 
160,<'%s/TermiO'> 
IO_COMMAND(al) ,dO 

#IMMEDIATES,dl 
dO,dl 
TermiO Immediate ;IO was immediate, don't do task stuff ... 

we may need to turn the active bit off. 
IIUNITB INTASK,UNIT FLAGS{a3) 
Ter.miO-Immediate - ;IO was came from task, don't clear ACTIVE ... 

;------ the task does not have more work to do 
bclr #UNITB_ACTIVE,UNIT_FLAGS(a3) 

TermiO Immediate: 
- if the quick bit is still set then we don't need to reply 

msg -- just return to the user. 
btst #IOB QUICK,IO FLAGS{al) 
bne.s TermiO End -
LINKSYS ReplyMsg,md SysLib(a6) ;al-message 
; (ReplyMsg sets the-LN_TYPE to NT_REPLYMSG) 

TermiO End: 
rtS 

***************************************************************************** 

Here begins the functions that implement the device commands 
all functions are called with: 

al -- a pointer to the io request block 
a3 -- a pointer to the unit 
a6 -- a pointer to the device 

Commands that conflict with 68000 instructions have a "My" prepended 
to them. 

;We can't AbortiO anything, so don't touch the IORequest! 

AbortiO () is a REQUEST to "hurry up" processing of an IORequest. 
If the IORaquest was already complete, nothing happens (if an IORequest 
is quick or LN TYPE=NT REPLYMSG, the IORequest is complete) . 
The message must be replied with ReplyMsg{), as normal. 

AbortiO: 
moveq 
rts 

RawRead: 
RawWrite: 
Invalid: 

m.ove.b 
bra.s 

ramdev .device.asm 
; ( iob: a1, device:a6 ) 

#IOERR_NOCMD,dO ;return "AbortiO() request failed" 

; 10 Not supported 
; 11 Not supported 

#IOERR NOCMD,IO ERROR(al) 
TermiO- -

{INVALID) 
(INVALID) 

Page 16 

Update and Clear are internal buffering commands. Update forces all 
io out to its final resting spot, and does not return until this is 
totally done. Since this is automatic in a ramdisk, we simply return 11 0k 11 • 

Clear invalidates all internal buffers. Since this device 
has no internal buffers, these commands do not apply. 

Update: 
Clear: 
MyReset: 
AddChangeint: 
RemChangeint: 
MyRemove: 
Seek: 
Motor: 
ChangeNum: 
ChangeState: 
Prot Status: 

clr.l IO ACTUAL(a1) 
bra. s TeriniO 

;Do nothing {nothing reasonable to do) 
;Do nothing 
;Do nothing 
;Do nothinq 
;Do nothing 
;Do nothing 
;Return zero {changecount =0) 
;Zero indicates disk inserted 
;Zero indicates unprotected 

GetDriveType: ;make it look like 3.5" {90mm) drive 
moveq IIDRIVE3 S,dO 
move.l dO,IO ACTUAL{al) 
bra. s TermiO 

GetNumTracks: 
move.l #RAMSIZE/BYTESPERTRACK,IO ACTUAL(al) ;Number of tracks 
bra.s TermiO -

Foo and Bar are two device specific commands that are provided just 
to show you how commands are added. They currently return that 
no work was done. 

Foo: 
Bar: 

clr.l 
bra 

IO ACTUAL{al) 
Terinl:o 

---------------------------------------------------------------------------
This device is designed so that no combination of bad 
inputs can ever cause the device driver to crash. 

;---------------------------------------------------------------------------
RdWrt: 

IFGE INFO LEVEL-200 
move.l IO DATA{al),-{sp) 
move.l IO-OFFSET{a1),-{sp) 
move.l IO-LENGTH{al),-{sp) 
PUTMSG 200,<'%s/RdWrt len %ld offset %ld data $%lx'> 
addq.l #8,sp 
addq.l #4,sp 



tTl 
0) 
CXl 

JJ 

2 
~ 
3 
~ 
JJ 
<D 
Cii 
~ 
~ 

2 
~ 
~ 
c: 
tll 
:-:-

~ 
"' (')' 
<D 
(f) 

* 

* 

ramdev .device.asm 
ENDC 

movem.l a2/a3,-(sp) 
move.l a1, a2 
move.l IO_UNIT(a2),a3 

;Copy iob 
;Get unit pointer 

check operation for legality 
btst.b #O,IO DATA+3(a2) ;check if user's pointer is ODD 
bne.s IO LenErr ;bad ... 
; [DO=offset) 

move.l IO OFFSET(a2),d0 
move.l dO-;-dl 
and.l #SECTOR-l,dl 
bne.s IO LenErr 
; [DO=offset) 

;Bad sector boundary or alignment? 
;bad ... 

check for IO within disc range 
;[DO=offset] 
add.l IO LENGTH(a2),d0 ;Add length to offset 
bcs.s IO-LenErr ;overflow ... (important test) 

Page 17 

cmp.l #RAMSIZE,dO ;Last byte is highest acceptable total 
bhi.s IO LenErr ;bad ... (unsigned compare) 
and.l #SECTOR-l,dO ;Even sector boundary? 
bne.s IO LenErr ;bad ... 

We've gotten this far, it must be'a valid request. 

IFD INTRRUPT 
move.l mdu SigMask(a3),dO 
LINKSYS Wait,md SysLib(a6) 

ENDC -

lea.l 
add.l 
move.l 
move.l 
beq.s 
move.l 

mdu RAM(a3),a0 
IO OFFSET(a2),a0 
IO-LENGTH(a2),d0 
dO-;-Io ACTUAL(a2) 
RdWrt-end 
IO_DATA(a2),al 

AO=ramdisk index 
Al=user buffer 
DO= length 

Get signals to wait for 
Wait for interrupt before proceeding 

Point to RAMDISK 11 sector" for I/O 
Add offset to ram base 

Indicate we've moved all bytes 
;---deal with zero length I/O 
; Point to data buffer 

cmp.b #CMD READ,IO COMMAND+l(a2) ; Decide on direction 
BEQ.S CopyTheBlock-
EXG AO,Al ; For Write and Format, swap source & dest 

CopyTheBlock: 
LINKSYS CopyMernQuick,md SysLib(a6) ;AO=source Al=dest DO=size 
;CopyMernQuick is very fast 

RdWrt end: 
mOve.l 
movem.l 
bra 

IO LenErr: 
- PUTMSG 

move.b 
IO End: 

- clr.l 
bra.s 

a2,al 
(sp)+,a2/a3 
TerrniO ;END 

lO,<'bad length'> 
#IOERR_BADL£NGTH,IO_ERROR(a2) 

IO ACTUAL (a2) 
RdWrt end 

;Initially, no data moved 

; 

ramdev .device.asm 

the Stop command stop all future io requests from being 
processed until a Start command is received. The Stop 
command is NOT stackable: e.g. no matter how many stops 
have been issued, it only takes one Start to restart 
processing. 

;Stop is rather 
MyStop: 

silly for a ramdisk 

PUTMSG 
bset 
bra 

30,<'%s/MyStop: called'> 
#MDUB STOPPED,UNIT FLAGS(a3) 

TerrniO- -

Start: 
PUTMSG 30,<'%s/Start: called'> 
bsr.s InternalStart 
bra TerrniO 

; [A3=unit A6=device] 
InternalStart: 

move.l al,-(sp) 
;------ turn processing back on 
bclr #MDUB STOPPED,UNIT FLAGS(a3) 
;------ kick-the task to start it moving 
move.b MP SIGBIT(a3),dl 
CLEAR dO­
bset dl,dO 
move.l MP SIGTASK(a3),al 
LINKSYS Siqnal,md SysLib(a6) 
move.l (sp)+,al -
rts 

prepared signal mask 
:FIXED:marco-task to signal 
:FIXED:rnarco-a6 not a3 

Flush pulls all I/O requests off the queue and sends them back. 
We must be careful not to destroy work in progress, and also 
that we do not let some io requests slip by. 

Some funny magic goes on with the STOPPED bit in here. Stop is 
defined as not being reentrant. We therefore save the old state 
of the bit and then restore it later. This keeps us from 

Page 18 

needing to DISABLE in flush. It also fails miserably if someone 
does a start in the middle of a flush. (A semaphore might help ... ) 

Flush: 
PUTMSG 30,<'%s/Flush: called'> 
movern.l d2/al/a6,-(sp) 

move.l md_SysLib(a6),a6 

bset #MDUB STOPPED,UNIT FLAGS(a3) 
sne d2 - -

Flush Loop: 
moVe.l 
CALLSYS 

tst.l 
beq.s 

move.l 
move.b 

a3,a0 
GetMsg 

dO 
Flush End 

dO,al 

;Steal messages from task's port 

#IOERR ABORTED,IO ERROR(al) 



m 
X 
Ill 
3 

"'C 
Ci) 

0 
CD 
< 
6" 
CD 

01 
O'l c.o 

CALLSYS ReplyMsg 

bra.s Flush_Loop 

Flush End: 
moVe.l 
movem.l 

tst.b 
beq.s 

d2,d0 
(sp)+,d2/al/a6 

dO 
1$ 

bsr 
1$: 

Internal Start 

bra TermiO 

ramdev .device.asm Page 19 

***************************************************************************** 

Here begins the task related routines 

A Task is provided so that queued requests may be processed at 
a later time. This is not very justifiable for a ram disk, but 
is very useful for 11 real" hardware devices. Take care with 
your arbitration of shared hardware with all the multitasking 
programs that might call you at once. 

Register Usage 

a3 -- unit pointer 
a6 -- syslib pointer 
aS -- device pointer 
a4 -- task (NOT process) pointer 
d7 -- wait mask 

same dos magic, useful for Processes (not us) . A process is started at 
the first executable address after a segment list. We hand craft a 
segment list here. See the the DOS technical reference if you really 
need to know more about this. 
The next instruction after the segment list is the first executable address 

cnop 
DC.L 

0,4 
16 

long word align 
segment length -- any number will do (this is 4 
bytes back from the segment pointer) 

myproc seglist: 
Dc:-L o pointer to next segment 

Task Begin: 
PUTMSG 35,<'%s/Task Begin'> 
move.l ABSEXECBASE,a6 

Grab the argument passed down from our parent 
move.l 4(sp),a3 ; Unit pointer 
move.l mdu_Device(a3),a5 ; Point to device structure 

IFD INTRRUPT 
;------
moveq 
CALLSYS 
move.b 
moveq 
bset 
move.l 
lea.l 
moveq 
CALLSYS 

Allocate a signal for "I/O Complete" interrupts 
#-l,dO ; -1 is any signal at all 

AllocSignal 
dO,mdu SigBit(A3) ; Save in unit structure 

#O,d7 - ; Convert bit number signal mask 
dO,d7 

d7,mdu SigMask(A3) 
mdu is(a3),al 
#INTB PORTS,dO 
AddintServer 

; Save in unit structure 
Point to interrupt structure 
Portia interrupt bit 3 
Now install the server 

* 

ramdev .device.asm 
move.l 
bset.b 

ENDC 

md Base(aS),aO ; Get board base address 
#INTENABLE,INTCTRL2(a0) ; Enable interrupts 

;------ Allocate a signal 
moveq #-l,dO ; -l is any signal at all 
CALLSYS AllocSignal 
move.b dO,MP SIGBIT(a3) 
move.b #PA SIGNAL,MP FLAGS(a3) ;Make message port "live" 
;------ change the bit number into a mask, and save in d7 
moveq #O,d7 ;Clear D7 
bset dO,d7 

IFGE INFO LEVEL-40 
move.l $ll4(a6),-(sp) 
move.l aS,-(sp) 
move.l a3,-(sp) 
move.l dO,-(sp) 
PUTMSG 40,<'%s/Signal=%ld, Unit=%lx Device=%lx Task=%lx'> 
add.l #4*4,sp 

ENDC 

bra.s Task StartHere 

Page 20 

OK, kids, we are done with initialization. We now can start the main loop 
of the driver. It goes like this. Because we had the port marked 
PA IGNORE for a while (in InitUnit) we jump to the getmsg code on entry. 
(The first message will probably be posted BEFORE our task gets a chance 
to run) 

;------
;------

Task Unlock: 

wait for a message 
lock the device 
get a message. If no message, unlock device and loop 
dispatch the message 
loop back to get a message 

no more messages. back ourselves out. 

and.b #$ff&(-(UNITF ACTIVE!UNITF INTASK)),UNIT FLAGS(a3) 
;------ main loop: wait for a new message -

Task MainLoop: 
PUTMSG 75,<'%s/++Sleep'> 
move.l d7,d0 
CALLSYS Wait 
IFGE INFO LEVEL-S 

bchg.b #l,$bfe00l ;Blink the power LED 
ENDC 

Task StartHere: 
PUTMSG 75,<'%s/++Wakeup'> 
;------ see if we are stopped 
btst #MDUB STOPPED,UNIT FLAGS(a3) 
bne.s Task ~inLoop - ; device is stopped, ignore messages 
;------ lock-the device 
bset #UNITB ACTIVE,UNIT FLAGS(a3) 
bne Task_MainLoop - ; device in use (immediate command?) 

;------ get the next request 
Task NextMessage: 

iiiove.l a3,a0 
CALLSYS GetMsg 
PUTMSG l,<'%s/GotMsg'> 
tst.l dO 
beq Task_Unlock ; no message? 

do this request 



(.}1 
---J 
0 

:::0 

~ 
~ 
3 
~ 
:::0 
(b 

(i) 
(i3 
:::J 
\) 
(b 

~ 
:::J c:: 
tll 

CJ 
(b 

~· 
(b 
(/) 

move.l 
exg 
bsr 
exg 

bra.s 

dO,al 
aS, a6 
PerformiO 
a5,a6 

ramdev .de vi ce.asm 

put device ptr in right place 

get syslib back in a6 

Task_NextMessage 

Page 21 

***************************************************************************** 

Here is a dummy interrupt handler, with some crucial components commented 
out. If the IFD INTRRUPT is enabled, this code will cause the device to 
wait for a level two interrupt before it will process each request 
(pressing RETURN on the keyboard will do it) . This code is nor.mally 
disabled, and must fake or omit certain operations since there isn't 
really any hardware for this driver. Similar code has been used 
successfully in other, ''REAL 11 device drivers. 

IFD INTRRUPT 

Al should be pointing to the unit structure upon entry' (IS DATA) 
myintr: -
* move.l rod Base(aO),aO ; point to board base address 

* 
* 

btst.b 
beq.s 
move,b 

#IAMPULLING,INTCTRLl(aO) ;See if I'm interrupting 
myexnm ; if not set, exit, not mine 

#O,INTACK(aO) ; toggle controller's int2 bit 

signal the task that an interrupt has occurred 

move.l mdu Device(al),aO 
move.l mdu-SigMask(al),dO 
lea.l mdu-tcb(al),al 
move.l md SysLib(aO) ,a6 
CALLSYS Signal 

Get device pointer 

Get pointer to system 

now clear the zero condition code so that 
the interrupt handler doesn't call the next 
interrupt server. 

moveq 
bra.s 

#l,dO 
myexit 

clear zero flag 
now exit 

this exit point sets the zero condition code 
so the interrupt handler will try the next server 
in the interrupt chain 

myexnm moveq #O,dO set zero condition code 

' myexit rts 
ENDC 

***************************************************************************** 

mdu Init: 
Initialize the device 

INITBYTE MP FLAGS,PA IGNORE ;Unit starts with a message port 
INITBYTE LN-TYPE,NT MSGPORT 
INITLONG LN-NAME,myName 
INITLONG mdu tcb+LN NAME,myName 
INITBYTE mdu-tcb+LN-TYPE,NT TASK 
INITBYTE mdu-tcb+LN-PRI,S -
IFD INTRRUPT - -

INITBYTE mdu is+LN PRI,4 Int priority 4 
INITLONG rndu-is+IS-CODE,rnyintr ; Interrupt routine addr 

INITLONG 
ENDC 
DC.W 0 

ramdev .device.asm 
mdu is+LN_NAME,myName 

Page 22 

IFNE AUTOMOUNT 
mdn Init: 
* ;------ Initialize packet for MakeDosNode 

INITLONG 
INITLONG 
INITLONG 
INITLONG 
INITLONG 
INITLONG 
INITLONG 
INITLONG 
INITLONG 
INITLONG 
DC.W 0 

ENDC 

mdn execName,myName ; Address of driver name 
mdn-tableSize,l2 ; # long words in AmigaDOS env. 
mdn-dName,$524dOOOO ; Store 'RM' in name 
mdn-sizeBlock,SECTOR/4 # longwords in a block 
mdn-num.Heads,l RAM disk has only one ''head" 
mdn-secsPerBlk,l sees/logical block, must: 11 1 11 

mdn-blkTrack,SECTORSPER; sees/track (must be reasonable) 
mdn-resBlks,l ; reserved blocks, MUST > 0! 
mdn-upperCyl, (RAMSIZE/BYTESPERTRACK)-1 ; upper cylinder 
mdn=numBuffers,l ; # AmigaDOS buffers to start 

EndCode is a marker that shows the end of your code. Make sure it does not 
span hunks, and is not before the rom tag! It is ok to put it right after 
the rom tag -- that way you are always safe. I put it here because it 
happens to be the "right" thing to do, and I know that it is safe in this 
case (this program has only a single code hunk) . 

EndCode: END 



appendix C 
FLOPPY BOOT PROCESS AND 
PHYSICAL LAYOUT 

The first two sectors on each floppy disk contain special boot information. These sectors are read 
into the system at an arbitrary position; therefore, the code must be position independent. The first 
three longwords come from the include file devices!bootblock.h. The type must be BBID_DOS; 
the checksum must be correct (an additive carry wraparound sum of Oxffffffff). Execution starts at 
location 12 of the first sector read in. 

The code is called with an open trackdisk.device 1/0 request pointer in Al (see the "Trackdisk" 
chapter for more information). The boot code is free to use the 10 request as it wishes (the code 
may trash A 1, but must not trash the 1/0 request itself). 

The boot code must return values in two registers: DO and AO. DO is a failure code- if it is non-zero 
then a system alert will be called, and the system will reboot. 

If DO is zero then AO must contain the start address to jump to. The strap module will free the boot 
sector memory, free the boot picture memory, close the trackdisk.device 1/0 request, do any other 
cleanup that is required, then jump to the location pointed to by AO. 

Boot code may allocate memory, use trackdisk.device to load relocatable information into the 
memory, then return with DO=O and AO pointing to code. The system will clean up, then call the 
code. 

Floppy Boot Process and Physical Layout 571 



COMMODORE-AMIGA DISK FORMAT 

The following are details about how the bits on the Commodore-Amiga disk are actually written. 

Gross Data Organization: 

3 1/2 inch (90mm) disk 
double-sided 
80 cylinders/160 tracks 

Per-track Organization: 

Nulls written as a gap, then 11 or 22 sectors of data. 
No gaps written between sectors. 

Per-sector Organization: 

All data is MFM encoded. This is the pre-encoded contents 
of each sector: 

two bytes of 00 data (MFM = $AAAA each) 
two bytes of A1* ("standard sync byte" -- MFM 

encoded A1 without a clock pulse) 
(MFM = $4489 each) 

one byte of format byte (Amiga 1.0 format = $FF) 
one byte of track number 
one byte of sector number 
one byte of sectors until end of write (NOTE 1) 

[above 4 bytes treated as one longword 
for purposes of MFM encoding] 

16 bytes of OS recovery info (NOTE 2) 
[treated as a block of 16 bytes for encoding] 

four bytes of header checksum 
[treated as a longword for encoding] 

four bytes of data-area checksum 
[treated as a longword for encoding] 

512 bytes of data 
[treated as a block of 512 bytes for encoding] 

NOTE: The track number and sector number are constant for each particular sector. 
However, the sector offset byte changes each time we rewrite the track. 

The Amiga does a full track read starting at a random position on the track and going for 
slightly more than a full track read to assure that all data gets into the buffer. The data 
buffer is examined to determine where the first sector of data begins as compared to the 
start of the buffer. The track data is block moved to the beginning of the buffer so as to 
align some sector with the first location in the buffer. 

Because we start reading at a random spot, the read data may be divided into three chunks: 
a series of sectors, the track gap, and another series of sectors. The sector offset value tells 
the disk software how many more sectors remain before the gap. From this the software 
can figure out the buffer memory location of the last byte of legal data in the buffer. It can 
then search past the gap for the next sync byte and, having found it, can block move the 
rest of the disk data so that all 11 sectors of data are contiguous. 

Example: 

The first-ever write of the track from a buffer looks like this: 

<GAP> lsector01sector11sector21 ...... 1sector101 

sector offset values: 

11 10 9 1 

(If I find this one at the start of my read buffer, then I know 
there are this many more sectors with no intervening gaps before 

572 Amiga ROM Kernel Reference Manual: Devices 



I hit a gap). Here is a sample read of this track: 

<junk> I sector91 sector10 I <gap> I sectorO I ••• I sectorS I <junk> 

value of 'sectors till end of write': 

2 1 11 3 

result of track re-aligning: 

<GAP> I sector91 sector10 I sect orO I ••• I sectorS I 

new sectors till end of write: 

11 10 9 1 

so that when the track is rewritten, the sector offsets 
are adjusted to match the way the data was written. 

Sector Label Area This is operating system dependent data and relates to how AmigaDOS 
assigns sectors to files. Reserved for future use. 

MFM TRACK ENCODING 

When data is MFM encoded, the encoding is performed on the basis of a data block-size. In the 
sector encoding described above, there are bytes individually encoded; three segments of 4 bytes 
of data each, treated as longwords; one segment of 16 bytes treated as a block; two segments of 
longwords for the header and data checksums; and the data area of 512 bytes treated as a block. 

When the data is encoded, the odd bits are encoded first, then the even bits of the block. 

The procedure is: Make a block of bytes formed from all odd bits of the block, encode as MFM. 
Make a block of bytes formed from all even bits of the block, encode as MFM. Even bits are shifted 
left one bit position before being encoded. 

The raw MFM data that must be presented to the disk controller will be twice as large as the 
unencoded data. The relationship is: 

1-> 01 
0-> 10 
0-> 00 

;if following a 0 
;if following a 1 

With clever manipulation, the blitter can be used to encode and decode the MFM. 

Floppy Boot Process and Physical Layout 573 





AbortiOO. 7 
AbsoluteJoystick.c, 95 
Accessing a Device, 2 
ADCMD....ALLOCATE command, 22 

examples, 23 
ADCMD_FINISH command, 26 
ADCMD_FREE command, 24 
ADCMD_LOCK command, 24, 25 
ADCMD_pERVOL command, 26 
ADCMD-.SETPREC command, 24 
ADCMD_ WAITCYCLE command, 27 
AddTimeO, 295 
ADIOF_NOWAIT flag, 23 
ADIOF _p£RVOL flag, 25 
ADIOF_SYNCCYCLE flag, 26 
ADIOF_WRITEMESSAGE, 25 
Allocate_Misc.c, 340 
Alloc_Misc.a, 339 
Amiga BootStrap, 257 

boot mechanisms, 258 
bootblack booting, 259 
bootpoint booting, 259 
expansion board configuration, 257 
nodes, 258 

AMIGA keys, 79 
Amiga System Devices, 1 

accessing functions, 8 
asynchronous 1/0 requests, 5 
closing, 7 
commands, 4 
definition, 2 
device base address pointer, 8 
device names, 3 
device specific command prefixes, 4 
devices with functions, 8 
error checking, 6 
error indications, 6 
error processing, 6 
error reporting, 6 
Exec command prefixes, 4 
gracefully exiting, 7 
opening, 3 
passing 1/0 requests, 3 
synchronous 1/0 requests, 5 

ARPABET, 144 
Audio Channels, 13 

allocation key, 24 
allocation/arbitration commands, 22 
allocation, 21, 22 
changing the precedence, 24 
combinations, 22 
freeing, 24 
Lock, 22 

multi-channel, 24 
stealing, 21, 22 

Audio Device, 13 
AbortiOO, 18 
additional information, 34 
BeginiO(), 18 
changing the volume, 26 
channel, 14 
CloseDevice(), 18 
closing, 18 
CMD_fl.USH, 27 
CMD_READ, 27 
CMD-RESET, 27 
CMD-.START, 27 
CMD_STOP, 27 
CMD_ WRITE, 25 
commands and functions, 15 
definitions, 14 
device interface, 16 
double-buffering, 26 
free, 17 
hardware control commands, 25 
IORequest block, 16 
IORequest structures, 16 
lock, 17 
opening, 16 
playing a sound, 25 
precedence of users, 22 
precedence, 17 
reserve, 17 
sample, 14 
scope of commands, 17 
simple audio example, 18 
starting a sound, 27 
steal channel, 22 
stopping a sound, 26, 27 
WaitO, 18 
WaitPort(), 18 

Audio Hardware, 22 
Audio.c, 19 
Audio_8SVX.c, 28 
BattClock Resource, 325 

additional information, 327 
functions, 325 

BattMem Resource, 327 
additional information, 327 
functions, 327 

BeginiO(), 4, 5, 18, 271 
Boot priority 

floppy disks, 258 
Caps Lock key, 78 
CauseO. 314 
CBD_CHANGEHOOK command, 42 

Index 575 



caveats, 43 
CBD_CURRENTREADID command, 40 
Cbio.c, 50 
ChangehooLTest.c, 47 
CheckiOQ, 6 
CIA Resource, 328 

additional information, 335 
functions, 328 
reading and writing ICRs, 329 
reminders, 329 
timer allocation, 328 

Ciunterval.c, 329 
Clipboard Device, 35 

additional information, 59 
advanced uses, 38 
closing, 42 
CMD__READ, 41 
CMD_UPDATE, 40 
CMD_ WRITE, 39 
commands and functions, 36 
current clip, 40 
data, 37 
device interface, 37 
disk file, 37 
end-of-clip, 41 
IFF, 38 
IORequest structures, 37 
io_Offset, 39 
monitoring changes, 42 
multiple clips, 38 
multiple units, 38 
new features, 35 
opening, 37 
posting, 40 
post, 41 
reading, 41 
unit numbers, 38 
updating,40 
writing, 39 

Clipboard Tool, 38 
Clipdemo.c, 43 
ClipiD, 41 
Clip 

identification, 37 
Closing A Device, 7 

outstanding 1/0 requests, 7 
CMD_CLEAR Command, 310 
CMD__READ Command, 307 
CMD_UPDATE Command, 310 
CMD_ WRITE command, 177 
CMD_ WRITE Command, 308 
CmpTimeQ, 295 
Commodore SCSI Drives 

unit numbers, 250 
Complex_Serial.c, 280 
Console Device, 61 

additional information, 86 
caveats, 81 
character output, 66 
closing, 65 
console units, 63, 64 
control sequence introducer, 78 
control sequences, 67 
device interface, 63 
input event qualifiers, 78 
input stream, 75 
1/0 request structures, 63 
keyboard input, 66 
new features, 61 
OpenDevice flags, 64 
raw events, 77 
raw input types, 77 
reads, 74 
system functions, 62 
window bounds, 75 

Console.c, 81 
Current Clip, 40 
Demo_Dump.c, 190 
Device Specifi.c Commands, 2 
devices/audio.h, 16 
devices/clipboard.h, 37, 40 
devices/gameport.h, 92 
dcvices/hardblocks.h, 256 
devices/inputevent.h, 105, 106 
devices/narrator.h, 134 
devices/parallel.h, 161 
devices/printer.h, 175 
devices/prtbas,e.h, 181, 196 
devices/scsidisk.h, 251 
devices/serial.h, 267 
devices/timer.h, 287 
devices/trackdisk.h, 305 
Digital-To-Analog, 13 
Disk Resource, 335 

additional information, 337 
allocation, 336 
functions, 335 

DISKINSERTED message, 314 
DISKREMOVED message, 314 
DoiOQ, 4, 5 
DoSpecial(), 199 

parameters, 199 
E-Clock, 287 

E-Clock time, 298 
ECLOCK Timer Unit, 288 
EClockVal, 298 

576 Amiga ROM Kernel Reference Manual: Devices 



Ejecting a disk, 311 
End-of-Clip, 41 
End-of-File, 41 
EspsonX Driver, 210 

data.c, 214 
density.c, 230 
dospecial.c, 217 
init.asm, 213 
macros.i, 211 
makefile, 210 
printertag.asm, 212 
render.c, 221 
rev.i, 212 
transfer.asm, 225 
transfer.c, 228 

ETD_CLEAR Command, 310 
ETD__FORMAT Command, 311 
ETD_MOTOR Command, 310 
ETD_RAWREAD Command, 315 
ETD_RAWWRITE Command, 316 
ETD_READ Command, 307 
ETD_SEEK Command, 314 
ETD_UPDATE Command, 310 
ETD_ WRITE Command, 308 
Exec Commands, 2, 4 
exec/errors.h, 6 
exec/interrupts.h, 106 
exec/io.h, 4 
Exec error codes, 187 
Filesystem Resource, 337 

additional information, 338 
Floppy Disk, 306 

floppy boot process, 571 
floppy disk format, 572 
floppy physical layout, 571 
MFM encoding, 573 
I/0, 306 

FlushDevice(), 342 
Flux Format, 315, 316 
FTXT, 39 
FulLNarrator.c, 151 
Gameport Connectors, 104 
Gameport Device, 87 

additional information, 100 
closing, 90 
commands and functions, 88 
connectors, 87 
controllers, 89 
determining controller type, 94 
determining triggering conditions, 93 
IORequest structures, 89 
joystick controller, 90 
joystick controller, 93 

mouse controller, 90 
mouse controller, 92 
opening, 89 
reading, 91 

--------------· -------------

setting controller type, 94 
setting triggering conditions, 92 
triggering events, 92 
units, 104 
use protocol, 94 

Gameport Events, 91 
GamePortTrigger structure, 92 
GetSysTime(), 290 
GeLDisLUniUD.c, 336 
GeLFilesys.c, 337 
GeLSystime.c, 290 
GPCLABSJOYSTICK flag, 90, 94 
GPCT_ALLOCATED flag, 90,94 
GPCT _MOUSE flag, 90, 94 
GPCT_NOCONTROLLER flag, 90, 94,95 
GPCT_REUOYSTICK flag, 90,94 
GPD_ASKCTYPE command, 94 
GPD-ASKTRIGGER command, 93 
GPD_READEVENT command, 91 
GPD_SETCTYPE command, 94 
GPD_SETTRIGGER command, 92 
GPTF __I)()WNKEYS flag, 92 
GPTF _UPKEYS flag, 92 
Graphic Dumps 

additional notes, 194 
hardware/custom.h, 339 
Harmony, 13 
HDToolBox, 253 
HD_SCSICMD command, 251 
Hookface.asm, 56 
Hook, 42 
HP __LaserJet Driver, 231 

data.c, 235 
density.c, 242 
dospecial.c, 237 
hpJev.i, 233 
init.asm, 233 
macros.i, 231 
printertag.asm, 232 
render.c, 240 
transfer.asm, 243 
transfer.c, 242 

I/0 request, 2 
creating, 2 

IDCMP, 114 
IECLASS_NEWPOINTERPOS, 106, 110 
IECLASS_j>()INTERPOS, 110 
iffparse.library, 35, 38, 353 
IFF 

Index 577 



chunk,352 
color map chunk, 352 
definition, 351 
file contents, 351 
file extensibility, 354 
FORM and chunk registry, 429 
FORM, 352 
ILBM, 352 
introduction, 351 

Index Pulse, 317 
IND_ADDHANDLER Command, 108 
IND_REMHANDLER Command, 109 
IND_SETMPORT command, 107 
IND_SETMTRIG command, 107 
IND_SETPERIOD Command, 113 
IND_SETTHRESH Command, 112 
IND_ WRITEEVENT Command, 109 
IND_ WRITEEVENT command, 110 
Input Device, 101 

adding a handler, 108 
additional information, 118 
and Intuition, 114 
closing, 106 
commands and functions, 102 
designing an input handler, 108 
detennining current qualifiers, 113 
device interface, 103 
event handler, 108 
generating input events, 109 
input events, 105 
key repeat events, 113 
memory dcallocation, 109 
new features, 101 
opening, 103 
PeekQualifier(), 113 
removing a handler, 109 
setting key repeat interval, 113 
setting key repeat timing, 112 
setting mouse port report, 107 
setting mouse port, 107 
setting the mouse position, llO 
time specification, 104 

Input Event Chain, 108 
multiple events, 108 
new events, 108 

Input Events 
generators of, 109 
Intuition handling of, 108 

Input Qualifiers, 114 
Input Request Block, 103 
InputHandler.a, 116 
International Phonetic Alphabet, 144 
Interrupt, 314 

Intuition 
as input device handler, 108 
mouse input, 104 

IOAudio, 16 
IQB_QUICK flag, 271 
IOClipReq, 37 
IOExtPar, 161 
IOExtSer, 267 
IOStdReq Structure, 63, 89, 249 
IOTDF _INDEXSYNC flag, 316 
IOTDF_WORDSYNC flag, 316 
io_parFlags, 166 
io-PTermArray, 163, 165 
io-SerFlags, 276 
io_TermArray, 272 
Joystick Controller, 90, 93 
KBD_ADDRESETHANDLER command, 124 
KBD_READEVENT command, 128 
KBD_READMATRIX command, 121 
KBD_REMRESETHANDLER command, 124 
KBD_RESETHANDLERDONE command, 124 
Keyboard Device, 104, 119 

adding a reset handler routine, 124 
additional information, 130 
closing, 121 
commands and functions, 120 
device interface, 121 
IORequest structures, 121 
keyboard events, 119 
opening, 121 
reading keyboard events, 128 
reading the keyboard matrix, 121 
removing a reset handler routine, 124 
signaling the end of a reset routine, 124 

Keyboar<LEvents.c, 128 
KeyHandler.a, 127 
Key_Reset.c, 125 
Light Pen, 90 
macros.i, 210 
Makeup Of Speech, 144 
Message Port, 2 

creating, 2 
MFM encoding, 315, 316 
MICROHZ Timer Unit, 288 
Mise Resource, 280, 338 

additional information, 343 
allocation, 339 
functions, 339 

Mouse Button Events, 104 
Mouse Controller, 90, 92 
Mouse Movement Events, 104 
mout!Lrb 

sync field values, 141 

578 Amiga ROM Kernel Reference Manual: Devices 



Multiple Asynchronous I/0 requests, 5 
Multiple_Timers.c, 293 
Narrator Device, 131 

additional information, 158 
closing, 136 
CMD_READ, 134 
CMD_ WRITE, 134 
commands and functions, 132 
controlling speech characteristics, 136 
device interface, 133 
dialect, 136 
introduction, 134 
mouth movement IORequest, 133, 135 
mouth movements, 141 
new features, 131 
OpenDeviceO flags, 135 
opening, 135 
phonemes, 143 
Punctuating phonetic strings, 144 
reading, 141 
speaking, 136 
speech IORequest, 133 
syllable synchronization, 141 
technical explanation, 149 
word synchronization, 141 
writing phonetically, 143 
writing, 136 

narrator_.rb 
field descriptions, 136 
field descriptions, 137 
field descriptions, 138 

NDE_NEWIORB flag, 135, 138 
NDF _SYLSYNC flag, 138 
NDF _ WORDSYNC flag, 138 
OpenDeviceQ, 3 
Opening A Device, 3 
OpenResource, 324 
Parallel Device, 159 

additional information, 168 
break conditions, 163 
closing, 162 
commands and functions, 160 
device interface, 161 
EOF mode, 163 
error codes, 167 
flags, 166 
io__IYfermArray, 163, 165 
null-terminated write, 162 
opening, 161 
parameters, 165 
querying the device, 166 
reading, 162 
setting parameters, 165 

status bits, 166 
terminating a read or write, 163 
writing, 162 

Parallel.c, 167 
PARE_.ACKMODE flag, 166 
PARF....EOFMODE flag, 163, 166 
PARF__FASTMODE flag, 166 
PARF_SHARED flag, 161, 166 
PARF _SLOWMODE flag, 166 
PBFB__NOMOUNT flag, 256 
PDCMD_QUERY command, 166 
PDCMD_SETPARAMS command, 165 
PeekQualifierQ, 113 
Pending Post, 41 
Phonemes, 143 

consonant groups, 145 
consonants, 143 
contraction and special symbols, 145 
contractions, 144 
digits and punctuation, 144 
diphthongs, 143, 145 
example text, 149 
glottal stop, 146 
hints for intelligibility, 148 
punctuation, 148 
sentence length, 148 
special symbols, 144 
stress and intonation, 146, 147 
stress mark placement rules, 146 
vowel groups, 145 
vowels, 143 

POTGO Resource, 343 
Potgo Resource 

additional information, 345 
functions, 343 

PRD_j)UMPRPORT command, 187 
PRD__pRTCOMMAND command, 178 
PRD_QUERY command, 186 
PRD_RA WWRITE command, 177 
Pre_ V36_])evice_Use.c, 9 
Printer Device, 171 

access, 173 
additional information, 246 
alphanumeric drivers, 198 
changing printer preferences, 182 
closing AmigaDOS printer device, 174 
closing, 177 
commands and functions, 172, 179 
CommandTable, 198 
creating drivers, 196 
data structures, 175 
device interface, 175 
direct use, 173 

Index 579 



double buffering, 204 
driver modules, 196 
dumping a RastPort, 187 
dumping buffer, 205 
error codes, 187 
Exec printer l/0, 175 
graphic driver modules, 196 
graphic preferences, 183 
graphics printer drivers, 203 
ISO color table, 181 
NULL-terminated writes, 177 
obtaining printer data, 181 
opening AmigaDOS printer device, 173 
opening, 175 
parallel status bits, 186 
Preferences, 198, 200 
print request guidelines, 177 
printer command definitions, 178 
printer special flags, 188 
printing with corrected aspect ratio, 189 
processes and tasks, 174 
querying the device, 185 
sending printer commands, 178 
serial status bits, 186 
strip printing, 193 
suggested typefaces, 181 
text preferences, 182 
timeout, 198 
two methods of output, 173 
using directly, 175 
writing processed text, 17 6 
writing unprocessed text, 176 

Printer Driver, 171, 196 
buffer deallocation, 206 
character conversion routine, 201 
CommandTable, 198 
DoSpecial(), 199 
driver modules, 196 
example source code, 209 
extended character table, 200 
graphic driver modules, 196, 203 
printertag.asm, 208 
Render(), 203 
SetDensity(), 208 
testing, 209 
Transfer(), 206 

printeriO Union, 175 
printertag.asm, 196 

fields, 200 
parts, 197 

Printer_Data.c, 181 
PRT:, 173 

closing, 174 

opening, 173 
writing output, 173 

PStat 
printer device status structure, 186 

Query_Serial.c, 341 
Quick l/0, 4, 271 
RastPort, 187, 193 

building dimensions, 189 
dump arguments, 188 
printing a non-displayed, 189 

ReacLBattClock.c, 326 
Read_Keyboa.nLMatrix.c, 122 
Rca<LPotinp.c, 343 
Render(), 203 

cases, 203 
clearing and initializing pixel buffer, 205 
closing down, 206 
dumping a pixel buffer, 205 
master initialization, 203 
pre-master initialization, 203 
putting pixels in a buffer, 205 
switching to next color, 206 

ReplyMsg(), 292 
Reset Handlers, 124 
Resources, 323 

BattClock Resource, 325 
BattMem Resource, 327 
CIA resource, 328 
Disk resource, 335 
FileSystem resource, 337 
include files, 325 
interface, 324 
listing, 324 
Mise resow·ce, 338 
OpenRcsource(), 324 
Potgo Resource, 34 3 

RigidDiskBlock, 253 
creation, 253 
non-ROM filing system, 257 
specification, 253 
use of information, 256 

Run Length Encoding, 205 
SatisfyMsg, 40 
SCSI Device, 247 

additional information, 263 
closing, 250 
commands and functions, 248 
device interface, 249 
opening, 249 
RigidDiskBlock, 253 
SCSI-direct, 250 
system functions, 248 
unit numbers, 249 

580 Amiga ROM Kernel Reference Manual: Devices 



SCSI-Direct, 250 
ModeScnse setup, 251 
SCSICmd, 251 

SCSICmd, 251 
fields, 252 

SCSIF_AUTOSENSE flag, 252 
SCSLDirect.c, 260 
SDCMD_BREAK, 279 
SDCMD_QUERY command, 278 
SDCMD_SE1PARAMS command, 275 
Sending A Command To A Device, 4 
SendiO(), 4, 5, 270 
SERF _?WIRE flag, 267 
SERF _EOFMODE flag, 272 
SERF _QUEUEDBRK, 279 
SERF _SHARED flag, 267 
Serial Device, 265 

additional information, 284 
alternative I/0 modes, 270 
break command, 279 
break conditions, 272 
buffered characters, 267 
closing, 268 
commands and functions, 266 
device characteristics, 265 
device interface, 266 
EOF mode, 272 
error codes, 279 
high speed operation, 271 
io_ TermArray, 272 
multiple ports, 280 
NULL-terminated write, 268 
opening, 267 
parameters, 275 
querying the device, 278 
quick l/0, 271 
reading, 267 
separate tasks, 273 
serial flags, 276 
setting parameters, 275 
status bits, 278 
terminating the read, 272 
using BeginiO(), 271 
writing, 268 

SetDensity(), 208 
Setting The Mouse Position 

basic method, 110 
pre-V36 absolute position, 110 
pre-V36 relative position, 110 
V36 absolute position, 110 
V36 normalized position, 110 
V36 relative position, 110 

SeLMouse.c, Ill 

SeLPrefs.c, 183 
Simple_Serial.c, 268 
Simple_ Timer.c, 299 
Sound Synthesis, 13 
Speak.._Narrator.c, 139 
SPECIAL_ASPECT flag, 189 
SPECIAL_NOPRINT flag, 194 
Speech Output 

introduction, 134 
Strip Printing, 193 

aspect-ratio-corrected image, 194 
height of strip, 194 
procedure, 194 
smoothing, 194 

Structures 
DriveGeometry, 309 
EClockVal, 287 
GamePortTrigger, 92 
GamePortTrigger, 107 
IEPointerPixel, 106 
IEPointcrTablet, 106 
InputEvent, 91, 104, 106, 110 
Interrupt, 106 
IOAudio, 16 
IOClipReq, 37 
IODRPReq, 175 
IODRPReq, 187 
IOExtPar, 161 
IOExtSer, 267 
IOExtTD, 305 
IOExtTD, 305 
IOPrtCmdReq, 175 
IOStdReq, 103, 175, 249 
moutlLrb, 133 
narrator..Jb, 133 
PrinterData, 181 
PrinterData, 197 
PrinterExtendedData, 181 
printeriO, 175 
PrinterSegment, 196 
SatisfyMsg, 40 
SCSICmd, 251 
timerequcst, 103, 112, 113,287 
timeval, 287 

SubTime(), 295 
Swap_Buttons.c, 115 
Sync'ed Read and Write Limitations, 316 
System Time, 290 
Taking Over The Serial Hardware, 280 
TDF _ALLOW _NON_3_5 flag, 307 
TD_ADDCHANGEINT Command, 314 
TD_CHANGENUM Command, 313 
TD_CHANGESTATE Command, 312 

Index 581 



----------------------------- - --

TD_FORMAT Command, 311 
TD_GETDRIVETYPE command, 312 
TD_GETGEOMETRY command, 309 
TD_GETGEOMETRY, 313 
TD_GE1NUMTRACKS Command, 312 
TD__MOTOR Command, 310 
ro_pRQTSTATUS Command, 312 
TD-.RAWREAD Command, 315 
TD-.RAWWRITE Command, 316 
TD-.REMCHANGEINT Command, 314 
TD_SEEK Command, 314 
Terminate_parallel.c, 163 
Terminate_Serial.c, 272 
Text To Speech 

introduction, 134 
Time Events, 104 
Timer Device, 104, 285 

adding a time request, 291 
additional information, 302 
closing, 290 
commands and functions, 286 
device interface, 287 
E-Clock time, 287, 298 
functions, 287 
multiple timer requests, 293 
opening for device functions, 289 
opening multiple times, 293 
opening, 289 
time alarms, 292 
time arithmetic functions, 295 
time delays, 292 
time requests, 287 
units, 288 
uses of time arithmetic, 296 

TimerBase Variable, 289 
Timer_Arithmetic.c, 295 
Trackdisk Device, 303 

adding an interrupt handler, 314 
additional information, 322 
byte offset calculation, 307 
clearing the track buffer, 310 
closing, 308 
commands and functions, 304 
controlling the drive motor, 310 
determing drive geometry, 309 
determing the diskchange number, 313 
determing write-protect status, 312 
determining drive type, 312 
determining the number of tracks, 312 
determining the presence of a disk, 312 
device interface, 305 
diagnostic commands, 314 
ejecting a disk, 311 

582 Amiga ROM Kernel Reference Manual: Devices 

enhanced commands, 305 
error codes, 317 
floppy disk 1/0, 306 
formatting a track, 311 
iot<LCount, 305 
low-level access, 315 
moving the drive head, 314 
notification of disk changes, 314 
opening, 307 
reading raw data, 315 
reading, 307 
removing an interrupt handler, 314 
restrictions, 306 
sector label, 306 
status commands, 311 
updating a track sector, 310 
writing raw data, 316 
writing, 308 

TracLCopy.c, 318 
TransferO. 206 

dithering, 206 
Translator Library, 134 

example fragment, 134 
TILGETSYS11ME command, 290 
TILSETSYSTlME Command, 290 
Using a Device, 3 
utility.library, 290, 325 
V36-.Device_Use.c, 10 
VBLANK Timer Unit, 288 
Vertical Blank Frequency 

find current VB frequency, 92 
WaitQ, 6, 18, 270 
WAITECLOCK Timer Unit, 288 
WaitiOO. 6, 7 
WaitPortO, 6, 18 
WAITUNTIL Timer Unit, 288 
Window structure, 66 





-----------------------------------"-






	middle.pdf
	Amiga_ROM_Kernal_Reference_Manual_Devices_Third_Part 1  1-250
	Amiga_ROM_Kernal_Reference_Manual_Devices_Third_Part 2
	Amiga_ROM_Kernal_Reference_Manual_Devices_Third_Part 3


