
Intuition

The AMIGA User Interface

INTUITION

THE AMIGA USER INTERFACE

=ROBERT J. MICAL=

AND

SUSAN DEYL

COMMODORE-AMIGA, INC.

PREFACE

This book provides information about the Intuition user interface, and is intended for people

who want to use this interface to write application programs for the Amiga. Some familiarity

with C language programming is assumed.

The first two chapters of this book are introductory in nature. Each of the next nine chapters

concentrates on some aspect of Intuition, and these chapters are organized in the same way.

First, there is a complete description of the component in general terms. The second part of

each chapter contains complete specifications for the data structure of the component and a

brief summary of the function calls that affect the component. The last chapter contains some

important programming style guidelines.

Here is a brief overview of the contents of each chapter:

Chapter 1, Introduction. A brief overview of the implementation and goals of the user

interface, how the user sees an Intuition application, and an approach to using Intui

tion.

Chapter 2, Getting Started with Intuition. A summary of Intuition components and a

sample program that shows the header files, how to access the Intuition library, and

some fundamental Intuition structures.

Chapter 3, Screens. Discussion of the fundamental display component of Intuition.

How to use the standard screens and how to design and use screens of your own.

Chapter 4, Windows. Description of the windows through which applications carry out

their input and output. How to define and open windows according to the needs of

your application.

Chapter 5, Gadgets. The multi-purpose input devices that you can design and attach

to your screens, windows, requesters, and alerts.

Chapter 6, Menus. Designing the menu items that Intuition forms into a complete

menu system for your window. How the user's choices of commands and options are

transmitted to the application.

Chapter 7, Requesters and Alerts. Description and instructions for using the requesters,

information exchange boxes that block input to the window until the user responds.

How to use the alerts, which are emergency communication devices.

Chapter 8, Input and Output Methods. When and how to use the Message Port for

input and the Console Device for input and output. How to use the message port mes-

Chapter 9, Images, Line Drawing, and Text. Using the Intuition graphics, border and

text structures and functions. Introduction to using the general Amiga graphics facili

ties in Intuition applications.

Chapter 10, Keyboard and Mouse. Using the input from the keyboard and mouse (or

other controller).

Chapter 11, Other Features. Information about the Preferences program, features that

affect the entire display, and notes for assembly language programmers.

Chapter 12, Style. Guidelines and cautions for making the interface consistent and easy

to use.

Appendix A contains a complete description of each Intuition function.

Appendix B contains the Intuition include file.

Appendix C contains some internal Intuition procedures for advanced users.

The Glossary contains definitions of all the important terms used in the book.

You will find related information in the following Amiga manuals:

o AmigaDOS Reference Manual

o AmigaDos User's Manual

o AmigaDos Technical Reference Manual

o Amiga ROMKernel Manual

INTUITION

Table of Contents

Chapter 1 INTRODUCTION 1-1

How the User Sees an Intuition Application 1-2

The Right Approach to Using Intuition 1-6

Chapter 2 GETTING STARTED WITH INTUITION 2-1

Intuition Components 2-1

General Program Requirements and Information 2-2

Simple Program: Opening a Window 2-2

Simple Program: Adding the Close Gadget 2-5

Simple Program: Adding the Rest of the System Gadgets 2-6

Simple Program: Opening a Custom Screen 2-7

Simple Program: The Final Version 2-9

Chapter 3 SCREENS „ 3-1

About Screens 3-1

Standard Screens 3-5

WORKBENCH „ 3-5

Custom Screens 3-8

INTUITION-MANAGED CUSTOM SCREENS 3-8

APPLICATION-MANAGED CUSTOM SCREENS 3-9

Screen Characteristics 3-10

DISPLAY MODES 3-10

DEPTH AND COLOR 3-11

TYPE STYLES 3-11

HEIGHT, WIDTH, AND STARTING LOCATION 3-12

SCREEN TITLE 3-14

CUSTOM GADGETS 3-15

Using Custom Screens 3-16

NEWSCREEN STRUCTURE 3-16

SCREEN STRUCTURE 3-18

SCREEN FUNCTIONS 3-19

Opening a Screen 3-19

Showing Screen Title Bar „ 3-19

Moving a Screen 3-20

Changing Screen Depth Arrangement 3-20

Closing a Screen 3-20

Handling the Workbench 3-20

Advanced Screen and Display Functions 3-21

Chapter 4 WINDOWS 4-1

About Windows 4-1

WINDOW INPUT/OUTPUT 4-3

OPENING, ACTIVATING, AND CLOSING WINDOWS 4-3

SPECIAL WINDOW TYPES 4-4

Borderless Window Type 4-5

Gimmezerozero Window Type 4-5

Backdrop Window Type 4-6

SuperBitMap Window 4-7

WINDOW GADGETS 4-7

System Gadgets „ 4-7

Application Gadgets 4-10

WINDOW BORDERS 4-10

PRESERVING THE WINDOW DISPLAY 4-11

Simple Refresh 4-14

Smart Refresh 4-14

SuperBitMap 4-15

REFRESHING THE WINDOW DISPLAY 4-15

WINDOW POINTER .'. M 4-15

Pointer Position 4-16

Custom Pointer 4-16

GRAPHICS AND TEXT IN WINDOWS 4-16

WINDOW COLORS 4-17

WINDOW DIMENSIONS 4-17

Using Windows 4-18

NEWWINDOW STRUCTURE 4-18

WINDOW STRUCTURE 4-23

WINDOW FUNCTIONS „ 4-24

Opening the Window 4-24

Menus 4-24

Changing Pointer Position Reports „ 4-25

Closing the Window 4-25

Requesters in the Window 4-25

Custom Pointers 4-26

Changing the Size Limits 4-26

Changing the Window or Screen Title 4-26

Refresh Procedures 4-27

Programmatic Control Of Window Arrangement 4-27

- li-

SETTING UP A SUPERBITMAP WINDOW 4-28

SETTING UP A CUSTOM POINTER .. 4-29

Chapter 5 GADGETS 5-1

About Gadgets „„...„„ 5-1

System Gadgets .. „ 5-2

SIZING GADGET 5-3

DEPTH ARRANGEMENT GADGETS 5-4

DRAGGING GADGET 5-4

CLOSE GADGET 5-4

Application Gadgets 5-5

RENDERING GADGETS 5-5

Hand-Drawn Gadgets 5-5

Line-Drawn Gadgets 5-6

Gadgets Without Imagery 5-7

USER SELECTION OF GADGETS 5-8

GADGET SELECT BOX 5-8

GADGET POINTER MOVEMENTS 5-9

GADGETS IN WINDOW BORDERS 5-10

MUTUAL EXCLUDE 5-10

GADGET HIGHLIGHTING 5-10

Highlighting by Color Complementing 5-11

Highlighting by Drawing a Box..... 5-11

Highlighting with an Alternate Image or Alternate Border 5-11

GADGET ENABLING AND DISABLING 5-11

BOOLEAN GADGET TYPE 5-12

PROPORTIONAL GADGET TYPE . 5-12

STRING GADGET TYPE 5-16

INTEGER GADGET TYPE 5-17

COMBINING GADGET TYPES 5-18

Using Application Gadgets 5-19

GADGET STRUCTURE 5-19

FLAGS 5-22

ACTIVATION FLAGS 5-23

SPECIALINFO DATA STRUCTURES 5-25

Proplnfo Structure.......... 5-25

Stringlnfo Structure 5-26

GADGET FUNCTIONS 5-28

Adding and Removing Gadgets from Windows or Screens 5-28

Disabling or Enabling a Gadget 5-28

Redraw the Gadeet Display 5-29

Modifying a Proportional Gadget 5-29

Chapter 6 MENUS 6-1

- m-

About Menus 6-1

SUBMITTING AND REMOVING MENU STRIPS 6-3

ABOUT MENU ITEM BOXES 6-3

ACTION/ATTRIBUTE ITEMS AND THE CHECKMARK 6-5

MUTUAL EXCLUSION 6-6

COMMAND-KEY SEQUENCES AND RENDERING 6-7

ENABLING AND DISABLING MENUS AND MENU ITEMS 6-8

CHANGING MENU STRIPS 6-8

MENU NUMBERS AND MENU SELECTION MESSAGES 6-9

HOW MENU NUMBERS REALLY WORK 6-10

INTERCEPTING NORMAL MENU OPERATIONS 6-11

MenuVerify 6-11

No Menu Operations — Right Mouse Button Trap 6-12

REQUESTERS AS MENUS 6-12

Using Menus 6-12

MENU STRUCTURES 6-13

Menu Structure „ 6-14

Menultem Structure 6-15

Menultem Flags 6-16

MENU FUNCTIONS 6-17

Attaching and Removing a Menu Strip 6-18

Enabling and Disabling Menus and Items 6-18

Getting an Item Address „ 6-19

Chapter 7 REQUESTERS AND ALERTS 7-1

About Requesters 7-1

Requester Display 7-2

Application Requesters 7-3

Another Option 7-4

REQUESTER RENDERING 7-4

REQUESTER DISPLAY POSITION 7-4

DOUBLE MENU REQUESTERS 7-5

GADGETS IN REQUESTERS 7-5

IDCMP REQUESTER FEATURES 7-5

A SIMPLE, AUTOMATIC REQUESTER 7-6

Using Requesters 7-7

REQUESTER STRUCTURE 7-7

Intuition Rendering 7-10

Custom Bit-Map Rendering 7-10

THE VERY EASY REQUESTER 7-11

REQUESTER FUNCTIONS 7-11

Initializing a Requester 7-11

Submitting a Requester for Display 7-12

Double Menu Requesters 7-12

- iv -

Removing a Requester from the Display 7-12

The Easy Yes or No Requester 7-12

Alerts 7-14

Chapter 8 INPUT AND OUTPUT METHODS 8-1

An Overview of Input and Output 8-1

About Input and Output 8-2

Using the IDCMP 8-7

INTUIMESSAGES 8-8

IDCMP FLAGS 8-9

Verification Functions 8-12

SETTING UP YOUR OWN IDCMP MONITOR TASK AND USER

PORT 8-12

An Example of the IDCMP 8-13

Using the Console Device 8-14

USING THE AMIGADOS CONSOLE : 8-15

USING THE CONSOLE DEVICE DIRECTLY 8-15

Reading from the Console Device 8-15

Writing Text to Your Window Via the Console Device 8-16

SETTING THE KEYMAP 8-17

Chapter 9 IMAGES, LINE DRAWING, AND TEXT 9-1

Using Intuition Graphics 9-1

DISPLAYING BORDERS, INTUITEXT, AND IMAGES 9-2

CREATING BORDERS 2-2

Border Coordinates 9-3

Border Colors and Drawing Modes 9-4

Linking Borders Together 9-5

Border Structure Definition 9-5

CREATING TEXT 9-6

Text Colors and Drawing Modes 9-6

Linking Text Strings 9-7

Starting Location 9-7

Fonts ~ 9-7

IntuiText Structure 9-7

CREATING IMAGES 9-9

Image Location 9-9

Defining Image Data 9-9

Picking Bit-Planes for Image Display 9-11

Image Structure 9-13

Image Example 9-14

INTUITION GRAPHICS"FUNCTIONS 9-16
Rendering Images, Lines, or Text into a Window or Screen 9-17

Obtaining the Width of a Text String 9-17

- v-

Obtaining the Address of a View or ViewPort 9-17

Using the Amiga Graphics Primitives 9-18

Chapter 10 MOUSE AND KEYBOARD 10-1

About the Mouse 10-1

Mouse Messages 10-3^j ■••••••••••••••••••■•••••■••■•••••••••■••••■•••••••■•••■••••■••■■••••••••••■••■•••••••••••• *v %^

About the Keyboard 10-3

Using the Keyboard as an Alternate to the Mouse 10-4

Chapter 11 OTHER FEATURES „ 11-1

Easy Memory Allocation and Deallocation 11-1

INTUITION HELPS YOU REMEMBER 11-2

HOW TO REMEMBER 11-3

THE REMEMBER STRUCTURE 11-3

AN EXAMPLE OF REMEMBERING 11-4

Preferences 11-4

PREFERENCES STRUCTURE 11-6

PREFERENCES FUNCTIONS 11-9

Remaking the ViewPorts 11-9

RethinkDisplayO . 11-9

RemakeDisplay() „ 11-10

MakeScreen() 11-10

Current Time Values 11-10

Flashing the Display 11-11

Using Sprites in Intuition Windows and Screens 11-11

Assembly Language Conventions 11-11

Chapter 12 STYLE 12-1

Menu Style 12-1

PROJECT MENUS 12-1

EDIT MENUS 12-2

Gadget Style 12-3

Requester Style 12-3

Command Key Style 12-4

Miscellaneous Style Notes 12-5

A Final Note on Style 12-6

Appendix A INTUITION FUNCTION CALLS A-l

Appendix B INTUITION INCLUDE FILE B-l

Appendix C INTERNAL PROCEDURES C-l

GLOSSARY G-1

-VI-

INTUITION

List of Figures

Figure 1-1 A Screen With Windows 1-3

Figure 1-2 Menu Items and Sub-Items 1-4

Figure 1-3 A Requester 1-5

Figure 1-4 An Alert 1-6

Figure 2-1 A Simple Window 2-4

Figure 2-2 A Simple Window With Gadgets 2-7

Figure 2-3 Intuition's " Hello World" Program 2-12

Figure 3-1 A Screen and Windows 3-3

Figure 3-2 Screen and Windows with Menu List Displayed 3-4

Figure 3-3 The Workbench Screen and the Workbench Application 3-6

Figure 3-4 Topaz Font in 60 Column and 80 Column Types 3-12

Figure 3-5 Acceptable Placement of Screens 3-13

Figure 3-6 Unacceptable Placement of Screens » 3-13

Figure 4-1 A High-Resolution Screen and Windows 4-2

Figure 4-2 System Gadgets for Windows 4-8

Figure 4-3 Simple Refresh 4-11

Figure 4-4 Smart Refresh 4-12

Figure 4-5 SuperBitMap Refresh 4-14

Figure 4-6 The "X"-Shaped Custom Pointer 4-31

Figure 5-1 System Gadgets in a Low-Resolution Window 5-3

Figure 5-2 Hand-drawn Gadget — Unselected and Selected 5-6

Figure 5-3 Line-draw Gadget — Unselected and Selected 5-7

Figure 5-4 Example of Combining Gadget Types 5-18

Figure 6-1 Screen with Menu Bar Displayed 6-2

Figure 6-2 Example Item Box 6-4

Figure 6-3 Example Sub-Item Box 6-4

Figure 6-4 Menu Items with Command Key Shortcuts 6-8

Figure 7-1 Requester Deluxe 7-2

Figure 7-2 A Simple Requester Made With AutoRequest() 7-6

Figure 7-3 The "Out Of Memory" Alert , 7-14

Figure 8-1 Watching the Stream 8-1

Figure 8-2 Input from the IDCMP, Output through the Graphics Primitives 8-4

Figure 8-3 Input and Output through the Console Device 8-5

Figure 8-4 Full-System Input and Output (A Busy Program) 8-5

Figure 8-5 Output Only 8-6

Figure 9-1 Example of Border Relative Position 9-3

l-

Figure 9-2 Intuition's High-Resolution Sizing Gadget Image 9-10

Figure 9-3 Example of PlanePick and PlaneOnOff 9-12

Figure 9-4 Example Image — the Front Gadget „ 9-15

Figure 11-1 Intuition Remembering 11-1

Figure 11-2 Preferences Display 11-5

Figure 12-1 The Dreaded Erase-Disk Requester 12-3

- li-

Chapter 1

INTRODUCTION

Welcome to Intuition, the Amiga user interface.

What is a user interface? This sweeping phrase covers all aspects of getting input from and

sending output to the user. It includes the innermost mechanisms of the computer and rises to

the height of defining a philosophy to guide the interaction between man and machine. Intui

tion is, above all else, a philosophy turned into software.

This user interface philosophy is simple to describe: the interaction between the user and the

computer should be simple, enjoyable, and consistent; in a word, intuitive. Intuition supplies a

bevy of tools and environments which can be used to meet this philosophy.

Intuition was designed with two major goals in mind. The first is to give users a convenient,

constant, colorful interface with the functions and features of both the Amiga operating system

and the programs that run in it. The other goal is to give application designers all the tools

they need to create this colorful interface, and to free them of the responsibility of worrying

about any other programs that may be running at the same time, competing for the same

display and resources.

The Intuition software manages a many-faceted windowing and display system for input and

output. This system allows full and flexible use of the Amiga's powerful multi-tasking, multi-

graphic, and sound synthesis capabilities. Under the Amiga Executive operating system, many

programs can reside in memory at the same time and share the system's resources with one

another. Intuition allows these programs to display their information in overlapping windows

without interfering with each other, and provides an orderly way for the user to decide which

program to work with at any given instant, and how to work with that program.

Intuition is implemented as a library of C-language functions. These functions are also available

to other high-level language programmers and to assembly-language programmers via alternate

interface libraries. Application programmers use these routines along with simple data struc

tures to generate program displays and interface with the user.

A program can have full access to all the functions and features of the machine by opening its

own virtual terminal. Upon opening a virtual terminal, your program will seem to have the

entire machine and display to itself. It may then display text and graphics to its terminal, and

it may ask for input from any number of sources, while ignoring the fact that any number of

other programs may be performing these same operations. In fact, your program can open

several of these virtual terminals and treat each one as if it were the only program running on

the machine.

The user sees each virtual terminal as a window. Many windows can appear on the same

display. Each window can be the virtual terminal of a different application program, or several

windows can be created by the same program.

The Amiga also gives you extremely powerful graphics and audio tools for your applications.

There are many display modes and combinations of modes (for instance, four display resolu

tions, Hold-and-Modify mode, dual-playfield mode, different color palettes, double-buflfering, and

more) plus animation, speech and music synthesis. You can combine sound, graphics, and ani

mation in your Intuition windows. As you browse through this book, or peruse it carefully,

Intuition Version 29.4 1-1

you'll find lots of creative ways to turn Intuition and the other Amiga tools into your very own

personal kind of interface.

How the User Sees an Intuition Application

From the user's viewpoint, the Amiga environment is colorful and graphic. Application pro

grams can use graphics as well as text in the windows, menus, and the other display features

described below. You can make liberal use of icons (small graphic objects symbolic of an

option, command, or object such as a document or program) to help make the user interface

clear and attractive.

The user of an Amiga application program, or of the AmigaDOS operating system, sees the

environment through windows, each of which can represent a different task or context. Each

window provides a way for the user and the program to interact. This kind of user interface

minimizes the context the user must remember. The user manipulates the windows, screens

(the background for windows), and the contents of the windows with a mouse or other con

troller. At his or her convenience, the user can switch back and forth between different tasks,

such as coding programs, testing programs, editing text, and getting help from the system.

Intuition remembers the state of partially completed tasks while the user is working on some

thing else.

The user can change the shape and size of these windows, move them around on the screen,

bring a window to the foreground, and send a window to the background. By changing the

arrangement of the windows, the user can select which information is visible and which terminal

will receive input. While the user is shaping and moving the windows around the display, your

program can ignore the changes. As far as the application is concerned, its virtual terminal cov

ers the entire screen, and outside of the virtual terminal there's nothing but a user with a key

board and a mouse (and any other kind of input device, including joysticks, graphics tablets,

light pens, and music keyboards).

Screens can be moved up or down in the display, and moved in front of or behind other screens.

In the borders of screens and windows there are control devices, called gadgets, that allow the

user to modify the characteristics of screens and windows. For instance, there is a gadget for

changing the size of a window and a gadget for depth arrangement of the screens.

1-2 Intuition Version 29.4

City Word

;* (dip) 1
i fonts (did

libs (4ii0j
j bigcity ^^^
: face IHHH5HHHB

• safe ' -,
transfer :

i> run bigcity
[CLI 21

1> |

[

z '
-

;

•

-

E!

Figure 1-1: A Screen With Windows

Applications can use a variety of custom gadgets. For example, the program might use a gadget

to request that the user type in a string of characters. Another gadget might be used to adjust

the sound volume or the color of the screen.

At any time, only one window is active in the sense that only one window receives input from

the user. Other windows, however, can work on some task that doesn't require input. For the

active window, the screen's title bar can be used to display a list of menus (called the menu bar)

at the user's command. By moving the mouse pointer along the menu bar, the user can view a

list of menu items for each menu category on the menu bar. Each item in the list of menus can

have its own sub-item list.

Intuition Version 29.4 1-3

I Project

lOpen

Save

Save As

Print

Print A<

i*
(ants (dii
libs (dip)

biffcity

face
safe

transfer
I) run higeity
ECU 2]

Foiwt Fonts Hell

)ocuMent

iFont File

Figure 1-2: Menu Items and Sub-Items

Menus present lists of options and commands. The user can make choices from menus by using

the mouse pointer and buttons. Applications can also provide the user with key-sequence

shortcuts, as an alternative to the mouse. Intuition supplies certain key-sequence shortcuts

automatically.

Windows can present the user with special requester boxes, invoked by the system or by appli

cations. Requesters provide extended communication between the user and the application.

When a requester is displayed, interaction with that window is halted until the user takes some

action. The user, however, can make some other window active and deal with the requester

later. If you wish, you can let the user bring up a requester on demand.

1-4 Intuition Version 29.4

i -.-H .-•!. - nit t iliMibMiMi i.' .'iiiibii
; - ■ ,t 'H;: . .»ir li'i' i.'i-'ii , iipi mpij.iji

> > i " " i i n n|i i1 ut.fciH'1'' * -•' <>"'t

-SAVE PAINTING

PLEASE TYPE IN A PAINTING NAME I
Illmiination of TwilightB ||

OK? CANCEL

:..:..f ::,.'■;
1 ,! I.i,,:. .1

jiJi..; 'P i' . ti . ■>' i' ' '.' i i! ' 'i i"i '• 'I1

-1 ■ --i
!"<!

! 'ill li I'! 11111 i'i

■Illiiiii'! i . hit

;: i:iijyiii:iyyiiyiuii

;'!! |rj!,^

'sil'l!

:W!i!;i.

I'!:!'"!""'' "!'"'!,•'

i'i

Figure 1-3: A Requester

The alert is another kind of special information exchange device invoked by the system or appli

cations. The alert display is dramatic. It appears in red and black at the top of the display,

with text and a blinking border. Alerts are meant for serious problems or when the user must

take some action immediately. The application may also try to get the user's attention by

flashing the screen or windows in a complementary color.

Intuition Version 29.4 1-5

ALERT! Systew Out «f Henory

Press left Button to Retry =- , Press Right Button to Abort

Meditation Itonbw 8x8788888 =;;

"N V,-.

Figure 1-4: An Alert

The Right Approach to Using Intuition

Intuition is a very flexible program environment, with a vast number of features and defaults

available to you. The tools and devices are well-defined and easily accessible. While there are

many default values for you to rely on, there are few restrictions placed on you, so that your

own creativity can flow. You are encouraged to take advantage of the many Intuition features.

Doing so serves two purposes: you spend less time implementing user-interaction mechanisms of

your own since Intuition already provides a wide range of them for you, and the user of your

code gets to work in an environment that doesn't change radically from one application to

another.

For example, you can define the windows for your program in one of the standard screens pro

vided by Intuition. Then you can use the standard system requesters and gadgets and simple

menu facilities. On the other hand, you can design a custom screen using your own choice of

modes and colors. You can use Intuition's standard imagery for your windows and gadgets, or

you can design completely custom graphics if you like. You can create your own pointer, and

your menu items can combine elaborate graphic images and text strings. You can also choose to

mix pre-defined features and custom designs. Your creative freedom is practically limitless

under Intuition.

No matter how simple or fanciful your program design, it will fit within the basic Intuition

framework of windows and screens, gadgets, menus, requesters and alerts. The users of the

Amiga will come to understand these basic Intuition elements, and will come to trust that the

building blocks remain constant. This consistency ensures that a well-designed program will be

1-6 Intuition Version 29.4

understandable to the naive user as well as the sophisticate. This is the essence and beauty of

the Intuition philosophy.

Intuition Version 29.4 1-7

Chapter 2

GETTING STARTED WITH INTUITION

Chapter 1 gave you an overview of how the Intuition components work together. This chapter

contains a quick overview of Intuition's components and a simple sample program demonstrat

ing how to open an Intuition window and screen.

Intuition Components

Intuition's major components are summarized in the following list.

o Windows provide the means for obtaining input from the user and the normal destina

tion for the program's output.

o Screens provide the background for opening windows.

o The mechanisms for interaction between users and applications are:

* Menus present users with options and give them an easy way of entering com

mands.

* Requesters provide a menu-like exchange of information.

* Gadgets are the main method of communication.

* Alerts are for emergency communications.

* The mouse is the user's primary tool for making selections and entering commands.

* The keyboard is used for entering text and as an alternate shortcut method of

entering commands.

* Other input devices, like graphics tablets or music keyboards, provide additional

means of user input.

o The methods of program input and output are:

* Input through the console device or Intuition Direct Communication Message Ports

(known as the IDCMP)

* Output through the console device or directly to the graphics, text, and animation

library functions

Intuition Version 29.4 2-1

General Program Requirements and Information

This section introduces the basic requirements for an Intuition application by showing you how

to create a very simple program, which involves the following.

o You must include the necessary header files. Header files contain all of the definitions

of data types and structures, constants, and macros.

o Because Intuition is implemented as a library, you must declare a pointer variable

named IntuitionBase and call OpenLibraryQ before you can use any of the Intuition

functions.

o You open a window by initializing the data of a NewWindow structure and then calling

OpenWindowQ with a pointer to that structure.

o You open a screen by initializing the data of a NewScreen structure and then calling

OpenScreenQ with a pointer to that structure.

o Finally, in the example we write some simple text to a window, demonstrating how sim

ple it is to use the graphics library with your window.

Simple Program: Opening a Window

First, here is the simplest program, which does nothing more than open a very plain window:

2-2 Intuition Version 29.4

* Simple OpenWindow() program

^include <exec/types.h>

^include <intuition/intuition.h>

struct IntuitionBase *IntuitionBase

#define INTUITIONJREV 29 /* You must be sure this is correct */

#define MILLION 1000000

main()

{
struct NewWindow NewWindow;

struct Window *Window;

LONG i;

/* Open the Intuition library. The result returned by this call is

* used to connect your program to the actual Intuition routines

* in ROM. If the result of this call is equal to zero, something

* is wrong and the Intuition you requested is not available, so

* your program should exit immediately

•/
IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.library", INTUITION.REV);

if (IntuitionBase == NULL) exit(FALSE);

/* Initialize the NewWindow structure for the call to OpenWindow() */

NewWindow.LeftEdge = 20;

NewWindow.TopEdge = 20;

NewWindow.Width = 300;

NewWindow.Height = 100;

NewWindow.DetailPen = 0;

NewWindow.BlockPen = 1;

NewWindow.Title = "A Simple Window";

NewWindow.Flags = SMARTJtEFRESH | ACTIVATE;

NewWindow.IDCMPFlags = NULL;

NewWindow.Type = WBENCHSCREEN;

NewWindow.FirstGadget = NULL;

NewWindow.CheckMark = NULL;

NewWindow.Screen = NULL;

NewWindow.BitMap = NULL;

NewWindow.MinWidth = 0;

NewWindow.MinHeight = 0;

NewWindow-MaxWidth = 0;

NewWindow.MaxHeight = 0;

/* Try to open the window. Like the call to OpenLibrary(), if

Intuition Version 29.4 2-3

* the OpenWindow call is successful, it returns a pointer to

* the structure for your new window. If the OpenWindow() call

* fails, it returns a zero.

•/
if ((Window = (struct Window *)OpenWindow(&NewWindow)) == NULL)
exit(FALSE);

/* Do nothing a million times. How long do you think it will take for
* the Amiga to do nothing a million times? Try it and see!

*/
for (i = 0; i < MILLION; i++);

/* Finally, close the Window, and then exit */

CloseWindow(Window);

See how easy it is to create a window under Intuition? This is a complete program, which can

be compiled as is. If run, this program would open the window shown in Figure 2-1.

Window

1

*
Type Total Largest

chip 3489B4 347672
fast 0 8
all 348994 347673
1> download siMple,8B.Id

pun

(CLI 31

Figure 2-1: A Simple Window

The Type variable in NewWindow describes the screen-type you want for this window. With

the Type variable set to WBENCHSCREEN, you are specifying to Intuition that you wish this

window to open in the Workbench screen. With the Flags variable initialized to

SMARTJREFRESH and ACTIVATE, you are specifying that you want this window to take

advantage of Intuition's SMARTJREFRESH mode of window display and you want this win

dow to become the active window when it opens. The rest of the NewWindow variables are set

to simple, safe default values. Consequently, there's not much you can do with this window.

2-4 Intuition Version 29.4

Simple Program: Adding the Close Gadget

So let's make a slightly fancier window. Let's change the window so that you can close it when

you like, rather than having it close automatically.

First, we'll ask Intuition to attach a WINDOWCLOSE gadget Then, we'll ask Intuition to tell

our program when someone activates that WINDOWCLOSE gadget.

To ask for the WINDOWCLOSE gadget, change the Flags variable to include the WINDOW-

CLOSE flag:

NewWindow.Flags = WINDOWCLOSE | SMARTJIEFRESH | ACTIVATE;

Now, to have Intuition tell us that the gadget has been activated requires several things. We

must:

o tell Intuition that we want to know about the event;

o wait for the event to happen;

o close the window and exit.

We instruct Intuition to tell us about the event by specifying one of the event flags in the

IDCMPFlags variable. The IDCMPt to remind you, is Intuition's Direct Communications Mes

sage Port system. By setting one of the IDCMP flags, we are requesting Intuition to open a pair

of message ports through which we may communicate.

/* Tell us about CLOSEWINDOW events */

NewWindow.IDCMPFlags = CLOSEWINDOW;

Finally, rather than counting to a million and then closing the window, here's how we wait for

the CLOSEWINDOW event:

Wait(l << Window->UserPort->mp_SigBit);

CloseWindow(Window);

exit(TRUE);

The variables UserPort and mp^SigBit are initialized for you by Intuition, so you can ignore

these for now. WaitQ is a function of the Amiga Executive. It allows your program to do abso

lutely nothing, and thereby free up the processor for other jobs, until some special event occurs

which is of the right type to wake you up again. In our very simple example, we've asked for

only one type of event to wake us up, so when we are awoken again we can automatically

assume that it was because someone pressed the WINDOWCLOSE gadget of our window.

When we start using the IDCMP for more elaborate functions, we will have to get a message

from the message port and examine it to see what event has occurred to awaken us.

Intuition Version 29.4 2-5

Simple Program: Adding the Rest of the System Gadgets

Next, try attaching all of the system gadgets to your window:

NewWindow.Flags = WINDOWCLOSE | SMARTJIEFRESH | ACTIVATE

| WINDOWDRAG | WINDOWDEPTH | WINDOWSIZING | NOOAREREFRESH;

The WINDOWDRAG flag means that you want to allow the user to drag this window around

the screen. If you don't set this flag, as in our previous example, then the window cannot be

moved.

The WINDOWDEPTH flag specifies that the user can depth-arrange this window with other

windows in the same screen. Having set this flag, you can now send this window behind all

other windows, or bring this window in front of all other windows.

The WINDOWSIZING flag means that you want to allow the user to change the size of this

window. This has two implications. First, resizing a window can sometimes require even

SMART_JtEFRESH windows to be refreshed (to refresh a window means to redisplay the infor

mation contained in that window). If you really don't care about whether you should refresh

your window (in this case we don't care), then you can set the NOOAREREFRESH flag and

Intuition will take care of all the refresh details for you. Because we're allowing our window to

be sized now, we have to tell Intuition about the minimum and maximum sizes for our window:

NewWindowJMinWidth = 100;

NewWindow.MinHeight = 25;

NewWindow.MaxWidth = 640;

NewWindow-MaxHeight = 200;

If you run the program with these changes, your window will now look like Figure 2-2.

Intuition Version 29.4

Type Total Largest
chip 34B9B4 347672
fast 8 8
ail 348994 347672
1) download 5iMpIe.82.ld sinple2
1) run siMple2
[CLI 31

Figure 2-2: A Simple Window With Gadgets

Simple Program: Opening a Custom Screen

To open a custom screen, we must initialize a struct NewScreen block of data, and then call
OpenScreenQ with a pointer to that data.

To open the window, we initialized a NewWindow structure by writing a long series of assign

ment statements. There is a more compact method for initializing a structure. We will use this

shorter method to illustrate opening a custom screen.

Intuition Version 29.4 2-7

/* This font declaration will be used for our new screen */

struct TextAttr MyFont =

{
"topaz.fonf, /* Font Name */

TOPAZJ3EXTY, /* Font Height */

FS.NORMAL, /* Style ♦/

FPFJtOMFONT, /* Preferences */

}

/* This is the declaration of a pre-initialized NewScreen data block.

* It often requires less work, and often uses less code space, to

* pre-initialize data structures in this fashion.

•/
struct NewScreen NewScreen =

{
0, /* the LeftEdge should be equal to zero */

0, /* TopEdge */

320, /* Width (low-resolution) */

200, /* Height (non-interlace) */

2, /* Depth (16 colors will be available) */

0,1, /* the DetailPen and BlockPen specifications */

NULL, /* no special display modes */

CUSTOMSCREEN, /* the Screen Type */

&MyFont, /* use my own font */

"My Own Screen", /* this declaration is compiled as a text pointer */

NULL, /* no special Screen Gadgets */

NULL, /* no special CustomBitMap */

}

Here's how we open the screen:

if ((Screen = (struct Screen *)OpenScreen(&NewScreen)) == NULL)

exit(FALSE);

Because we're now opening our window in a custom screen, we have to change our initialization

of the NewWindow data slightly. We have to change the Type declaration from WBEN-

CHSCREEN to CUSTOMSCREEN. Also, we previously set the Screen variable to NULL, since

we had wanted our window to open in the Workbench screen. Now, we have to set this vari

able to point to our new custom screen:

NewWindow.Type = CUSTOMSCREEN;

NewWindow.Screen = Screen;

After we close our window, let's close our screen, too:

CloseScreen(Screen);

2-8 Intuition Version 29.4

Our program now opens a custom screen and opens a window in that screen.

Simple Program: The Final Version

For a finishing touch, let's write a bit of text to our window. This will require another declara

tion, another call to OpenLibraryQ, and a call to the graphics library's MoveQ and TextQ func

tions:

struct GfxBase *GfxBase;

GfxBase = OpenLibrary("graphics.library", GRAPHICSJtEV);

Move(Window->RPort, 20, 20);

Text(Window->RPort, "Hello World", 11);

All together, our program looks like the following.

Intuition Version 29.4 2-9

* "Hello World"

*

**

#include <exec/types.h>

^include <intuition/intuition.h>

struct IntuitionBase *IntuitionBase;

struct GfxBase *GfxBase;

#define INTUITIONJtEV 29

#define GRAPHICSJtEV 29

#define MILLION 1000000

struct TextAttr MyFont =

{
"topaziont", /* Font Name */

TOPAZJ5IXTY, /* Font Height */

FS_NORMAL, /* Style */

FPFJIOMFONT, /* Preferences */

}

/* This is the declaration of a pre-initialized NewScreen data block.

* It often requires less work, and often uses less code space, to

* pre-initialize data structures in this fashion.

♦/
struct NewScreen NewScreen =

{
0, /* the LeftEdge should be equal to zero */

0, /* TopEdge */

320, /* Width (low-resolution) */

200, /* Height (non-interlace) */

2, /* Depth (16 colors will be available) */

0,1, /* the DetailPen and BlockPen specifications */

NULL, /* no special display modes */

CUSTOMSCREEN, /* the Screen Type */

&MyFont, /* use my own font */

"My Own Screen", /* this declaration is compiled as a text pointer */

NULL, /* no special Screen Gadgets */

NULL, /* no special CustomBitMap */

}

main()

{
struct Screen *Screen;

struct NewWindow NewWindow;

2-10 Intuition Version 29.4

struct Window *Window;

LONG i;

/* Open the Intuition library. The result returned by this call is

* used to connect your program to the actual Intuition routines

* in ROM. If the result of this call is equal to zero, something

* is wrong and the Intuition you requested is not available, so

* your program should exit immediately

•/
IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.library", INTUITIONJtEV);

if (IntuitionBase == NULL) exit(FALSE);

GfxBase = (struct GfxBase *)OpenLibrary("graphics.library", GRAPHICSJtEV);

if (GfxBase— NULL) exit(FALSE);

if ((Screen = (struct Screen *)OpenScreen(&NewScreen)) == NULL)

exit(FALSE);

NewWindowXeftEdge = 20;

NewWindow.TopEdge = 20;

NewWindow.Width = 300;

NewWindow.Height = 100;

NewWindow-DetailPen = 0;

NewWindow.BlockPen = 1;

NewWindow.Title = "A Simple Window";

NewWindow.Flags = WINDOWCLOSE | SMARTJREFRESH | ACTIVATE

| WINDOWSIZING | WINDOWDRAG | WINDOWDEPTH;

NewWindow.IDCMPFlags = CLOSEWINDOW;

NewWindow.Type = CUSTOMSCREEN;

NewWindow.FirstGadget = NULL;

NewWindow.CheckMark = NULL;

NewWindow.Screen = Screen;

NewWindow.BitMap = NULL;

NewWindow.MinWidth = 100;

NewWindow.MinHeight = 25;

NewWindow.MaxWidth = 640;

NewWindow-MaxHeight = 200;

if ((Window = (struct Window *)OpenWindow(&NewWindow)) — NULL)

exit(FALSE);

Move(Window->RPort, 20, 20);

Text(Window->RPort, "Hello World", 11);

Wait(l << Window->UserPort->mp_SigBit);

CloseWindow(Window);

CloseScreen(Screen);

exit(TRUE);

Intuition Version 29.4 2-11

The display created by the final version looks like Figure 2-3.

My Own;S.creen

N1ndow

HelI a World

Figure 2-3: Intuition's " Hello World" Program

2-12 Intuition Version 29.4

Chapter 3

SCREENS

We begin the discussion of Intuition components with screens, because they are the basis for all

Intuition displays. They set up the environment for overlapping windows and they give you

easy access to all the Amiga display modes and graphics features. In this chapter you will learn

how to use the standard screens provided by Intuition and how to create your own custom

screens.

The first section of this chapter is a general description of screens, including their characteristics

and their place in the overall Intuition scheme.

The next section describes the standard screens, including the Workbench. Any program can

open its windows in one of the standard screens.

The largest section of this chapter concerns custom screens. You will want to use a custom

screen if none of the standard screens supplies display modes that match your needs, or if you

want to do anything with a screen's display other than simply open windows. In the last sec-

tion you will find an overview of the process of creating and opening a custom screen, the

specifications for the custom screen structure, and all the functions you use in working with cus

tom screens.

About Screens

The screen is Intuition's basic unit of display. By using an Intuition screen, you can create a

video display with any combination of the many Amiga display modes. Certain basic parame

ters of the video display (such as fineness of vertical and horizontal resolution, number of colors,

and color choices) are defined by these modes. By combining modes, you can have many

different types of displays. For example, the display may show 8 different colors of low-

resolution pixels, or 32 colors in interlace mode (high resolution of lines). For a description of all

the different display modes, see the "Custom Screens" section below.

Every other Intuition display component is defined with respect to the screen in which it is

created. Each screen's data structure contains definitions that describe the modes for the par

ticular screen. Windows inherit their display parameters from the screens in which they open,

so a window that opens in a given screen always has the same display modes and colors as that

screen. If your program needs to open windows that differ from each other in their display

characteristics, you can open more than one screen.

Screens are always the full width of the display. This is because the Amiga hardware allows

very flexible control of the video display, but imposes certain minor restrictions. Sometimes it is

not possible to change display modes in the middle of a scan line. Even when it is possible, it is

usually aesthetically unpleasant or visually jarring to do so. To avoid these problems, Intuition

imposes its own display restriction that allows only one screen (one collection of display modes)

Intuition Version 29.4 3-1

per video line. Because of this, screens can be dragged vertically but not horizontally. This

allows screens with different display modes to overlap, but prevents any changes in display

mode within a video line. This is contrasted with windows which (as you will see in the next

chapter) can be any width, can overlap in any way, and can be dragged vertically and horizon

tally.

Screens provide display memory, which is the RAM where all imagery is first rendered and then

translated by the hardware into the actual video display. The Amiga graphics structure that

describes how rendering is done into display memory is called a RastPort The RastPort also

has pointers into the actual display memory locations. The screen's display memory is also used

by Intuition for windows and other high-level display components that overlay the screen.

Application programs that open custom screens can use the screen's display memory in any way

they choose.

Screens are rectangular in shape, and when they first open they usually cover the entire surface

of the video display, although they can be shorter than the height of the display. Like windows,

the user can drag screens up or down and depth-arrange them by using special control mechan

isms called gadgets. Unlike windows, the user can't change the size of screens and can't drag

screens left or right.

The dragging and depth-arrangement gadgets come with all Intuition screens. These gadgets

reside in the title bar at the top of the screen. Also in the title bar there may be a line of text

identifying the screen and its windows. You can have other gadgets besides the ones that are

automatically supplied with every screen. You can place gadgets of your own anywhere in the

screen's title bar.

Figure 3-1 shows a screen with open windows. The depth-arrangement gadgets (front gadget

and back badget) are at the extreme right of the screen title bar. The drag dadget occupies the

entire area of the screen title bar not occupied by other gadgets. The user changes the front-

to-back order of the displayed screens by using a controller (such as a mouse) or the keyboard

cursor control keys to move the Intuition pointer within one of the depth-arrangement gadgets.

When the user clicks the left mouse button (known as the select button), the screen's depth

arrangement is changed.

3-2 Intuition Version 29.4

AMiga Workbench — INTUITION Version 28,15

New CLI task

3> snoop
Alloc/Free Menory Snooper #2

5e caller's stack

safe
snoop

->
Available Menory
Type Total Largest
fillip 386888 381128
fast S 8
all 386888 381128

Figure 3-1: A Screen and Windows

The user drags the entire screen up or down on the video display by moving the pointer within

the drag gadget, holding down the left mouse button while moving the pointer, and finally

releasing the button when the screen is in the desired location.

The screen's title bar has many uses. It's also used to display a window's menus when the user

asks to see them. Typically, when the user presses the right mouse button (known as the menu

button), a list of menu topics called a menu list appears across the title bar. Figure 3-2 shows

the same screen after the user has displayed the menu list.

Intuition Version 29.4 3-3

All rig

Version
CLI Versi
Use date
Date DD-M
Thursday
i> dip

c (dir)
1 (dip)
devs (dip:
s (dip)
t (dip)
fonts (dii
libs (dip!

debug
ideno
test

1> pun ideno
[CLI 21

hi* I AW I 4U

face
safe
transfer

_E

Figure 3-2: Screen and Windows with Menu List Displayed

By further mouse movement and mouse button manipulation, the user can see a list of menu

items and sub-items for each of the topics in the menu list. The menu list, menu items, and

sub-items that are displayed pertain to the currently active window, which is the window receiv

ing the user's input. There is only one active window at any time. The screen containing the

active window can be thought of as the active screen. Because there is only one active window,

there can be only one active menu list at a time. The menu list appears on the title bar of the

active screen. Menus are handled by the Intuition menu system. See Chapter 6, "Menus", for

more information about how you put together menus and attach them to windows.

Both you and the user will find working with screens much like working with windows—for you,

the data structures and the functions for manipulating screens and windows are similar. For

the user, moving and arranging screens will require the same steps as moving and arranging

windows. However, the user will be less aware of screens than of windows, since user input and

application output occur mostly through windows.

There are two kinds of screens—standard screens supplied by Intuition and custom screens

created by you. Standard screens are described in the next section, and the remainder of the

chapter deals with custom screens.

3-4 Intuition Version 29.4

Standard Screens

Standard screens differ from custom screens in three basic ways.

o Standard screens close and go away if all their windows go away. Only the Workbench

standard screen (described below) differs in this regard. You can think of the Work

bench as the default screen—if all its windows close, it remains open. When all other

screens close, if the Workbench isn't already open it will open then.

o Standard screens are opened differenty. There is no function you call to explicitly open

a standard screen. You simply specify the screen type in the window structure, and

Intuition opens the screen if it's not already open. This is contrasted with custom

screens, which you must explicitly open yourself before opening a window in the screen.

o You are free to design and change the characteristics of your custom screen practically

any way you choose, but you should not change the colors, display modes, and other

parameters of standard screens. These parameters have been pre-defined so that more

than one application may open windows in a standard screen and be able to depend

upon constant display characteristics. For instance, a business package that runs in a

standard screen may expect the colors to be reasonable for a dither pattern in a graph.

If you change the colors, then that program's graphics display will not be able to share

the screen with you, thereby defeating the purpose of standard screens.

All of the Intuition standard screens are the full height and width of the video display area.

Intuition manages standard screens and any program may open its windows in any of the stan

dard screens. An application can display more than one window in a standard screen at the

same time, and more than one application can open a window in a standard screen at the same

time.

The standard screens currently available are:

o Workbench

o Others, as described in "Appendix B: Intuition Include File."

WORKBENCH

The Workbench is both a screen and an application.

The Workbench is the Intuition standard screen. It is a high-resolution (640 pixels x 200 lines)

4-color screen. The default colors are blue for the background, white and black for details, and

orange for the cursor and pointer.

Intuition Version 29.4 3-5

AMiga Horkbench, 244352 free

Figure 3-3: The Workbench Screen and the Workbench Application

The Workbench screen is used by both the Amiga Command Line Interface (CLI) and the

Workbench tool. If you want to use the Workbench as a screen for the windows of your pro

gram, you just specify a window type of WBENCHSCREEN in the data structure called

NewWindow, which you initialize when opening a window.

Any application program can use the Workbench screen for opening its windows. Developers of

text-oriented applications are especially encouraged to open in the Workbench screen. This is

convenient for the user because many windows will open in the same standard screen, requiring

less movement between screens. Using the Workbench screen is also very memory-efficient

because you won't be allocating the memory for your own custom screen.

The Workbench screen is the only one, besides your own custom screen, that you can explicitly

close. Also the Workbench screen does not close when all the windows in it are closed, as do

the other standard screens, and it automatically reopens when all other screens close down.

If your application needs more memory than what's available, it can attempt to reclaim the

memory used by the Workbench screen by calling CloseWorkBenchQ. You should, however,

call OpenWorkBenchQ as your program exits. It is good Intuition programming practice to

always attempt to reopen the Workbench screen when your program is terminating, whether or

not you called Close WorkBenchQ. If all programs do this, it will help to present the user with

as consistent and dependable interface as possible, since the Workbench screen will be available

as much as possible.

The Workbench application program allows users to interact with the Amiga file system, using

icons (small graphics images) to represent files. Intuition treats the Workbench application as a

special case, communicating with it in extraordinary ways. For example, you can open or close

the Workbench screen by calling the Intuition functions OpenWorkBenchf) and CloseWork-

Benchfl, even though the Workbench tool may have open windows in the screen.

You have access to a body of library functions which allow you to create and manipulate the

Workbench application's objects and iconography. The functions in the library allow you to

3-6 Intuition Version 29.4

create disk files which the user can handle within the context of the Workbench program. For

more information about the Workbench library, see the AmigaDOS Developer's Manual.

The user can change the colors of the Workbench screen via the Preferences program. For more
information about Preferences, see Chapter 11, "Other Features".

Intuition Version 29.4 3-7

Custom Screens

Typically, you create your own screen when you need a specific kind of display that's not

offered as one of the standard screens, or when you want to modify the screen or its parameters

directly—as in changing colors or directly modifying the Copper list or display memory. The

Copper is the display-synchronized coprocessor that handles the actual video display by directly

affecting the hardware registers. For example, you might need a display in which you can have

movable sprite objects. Or, you might have your own display memory that you want to use for

the screen's display memory. Or, you may want to allow the user to play with the colors of a

display that you've created. If you want to do these sorts of things, you'll have to create a cus

tom screen; such operations not allowed in standard screens.

Custom screens don't automatically close when all windows in them close (as system standard

screens do, except for the Workbench). If you've opened a custom screen, you have to call

CloseScreenQ before your program exits. Otherwise, your screen stays around forever.

You can create two kinds of custom screens:

o one that is entirely managed by Intuition, or

o one where you use the Amiga graphics primitives to write directly into the display

memory or otherwise directly modify the screen display characteristics. In this case,

you have to take on some of the responsibility of managing the display.

These screen types are described in the following paragraphs.

INTUITION-MANAGED CUSTOM SCREENS

If you want this kind of custom screen, you still have a great deal of latitude in creating custom

effects. You can set any or all of the following screen parameters:

o Height of the screen and starting point of the screen when it first opens

o Depth of the screen, which determines how many colors you can use for the display

o Choice of the available colors for drawing details, such as gadgets, and doing block fills,

such as the title bar area

o Display modes—high or low resolution, interlace or non interlace, sprites, and dual

playfields

o Custom gadgetry

o Initial display memory

You can also use the special Intuition graphics, line, and text structures and functions for

rendering into windows in your custom screen. See Chapter 9, "Images, Line Drawing, and

Text", for details about these.

3-8 Intuition Version 29.4

APPLICATION-MANAGED CUSTOM SCREENS

In this kind of custom screen, you still use the same structures and functions. However, another

dimension is added when you directly access the display memory. You can now use all of the

Amiga graphics primitives to do any kind of rendering you want. You can do color animation,

scrolling, patterned line drawing and patterned fills, and much, much more. Although you can

still combine such a screen with other Intuition features like windows, menus, and requesters,

certain interactions can trash the display. The interactions described in the next paragraph

involve what happens when you write to the custom screen while windows and menus are being

displayed and moved over the screen.

First, Intuition does not save background screen information when a window is opened, sized, or

moved. Screen areas that are subsequently revealed are restored to a blank background color,

obliterating any data you write into the display memory area of your screen. Second, menus are

protected from data being output to the windows behind them but not from data being output

to screens. When a menu is on the screen, all underlying windows are locked against graphical

output to prevent such output from trashing the menu display. Menus cannot, however, lock

graphical output to the display memory of a screen. So be very careful about writing to a

screen that has or can have menus displayed in it. You can easily overstrike the menus and

obliterate the information contained in them.

In summary, you must keep in mind that the user can modify the display by moving things

around (by using window gadgets) or making things appear and disappear (menus and reques

ters). If you want to write directly to a custom screen's display memory, you have to design the

pieces to interact together without conflict. It's not impossible to do, but you must be careful

and think your design through in detail. If you want complete control of the screen display

memory and are willing to give up some windowing capabilities (such as menus and window siz

ing and dragging), then you should use a custom screen. If you want to control the display

memory and run windows and menus in the custom screen, then you need to deal with the

hazards. Always bear in mind that playing with screen displays in this way requires an intricate

knowledge of how screens and windows work, and you should not attempt it lightheartedly.

But what if you want a screen with your own display memory, one you can manipulate any way

you choose, but you still want access to all the windowing and menu capabilities without worry?

There is a special kind of window that satisfies all of these needs—the Backdrop window which

always stays in the background and can be fashioned to fill the entire display area. Writing to

this kind of window is almost as flexible as writing directly to display memory and requires only

a little more overhead in memory image and performance. Menus and ordinary windows can

safely reside over this window. You can also cause the screen's title bar to disappear behind a

Backdrop window by calling the ShowTitleQ function, thereby filling the entire video display

with your display memory. This is the Intuition-blessed way to fill the entire display and still

exist in an Intuition environment. For more information about setting up Backdrop windows,

see Chapter 4, "Windows".

When you are using the graphics primitives (functions) to render in your custom screen, the

functions sometimes require pointers to the graphics display memory structures that lie beneath

the Intuition display. These graphics structures are the RastPort, ViewPort, and View. For

more information and details about how to get the pointers into the display memory, see

Chapter 9, "Images, Line Drawing, and Text".

Intuition Version 29.4 3-9

Screen Characteristics

The following characteristics apply to both standard screens and custom screens. Keep in mind,

however, that you should not change the characteristics of any of the standard screens.

DISPLAY MODES

You can use any or all of the following display modes in your custom screens. The windows

that open in a screen inherit the screen's display modes and colors.

There are two modes of horizontal display: low-resolution and high-resolution. In low-

resolution mode, there are 320 pixels across a horizontal line. In high resolution mode, there are

640 pixels across. A pixel is the smallest addressable part of the display and corresponds to one

bit in a bit-plane. Twice as much data is displayed in high resolution mode. Low resolution

mode gives you twice as many potential colors, 32 instead of 16.

There are two modes of vertical display: interlace and non-interlace. You can have 200 vertical

lines of display in non-interlaced mode and 400 lines in interlaced mode. Twice as much data is

displayed in interlaced mode. Typically, applications use non-interlaced mode, which requires

half as much memory and creates a display that doesn't have the potential for flickering, as

interlaced displays tend to do. Intuition supports interlace because some applications will want

to use it; for instance, a computer-aided design package running on a high-phosphor-persistence

monitor, will want to use it.

In sprite mode, you can have up to 8 small moving objects on the display. You define sprites

with a simple data structure and move them by specifying a series of x,y coordinates. Sprites

can be up to 16 bits wide and any number of lines tall, can have 3 colors (plus transparent), and

pairs of sprites can be joined to create a 15-color (plus transparent) sprite. They're also reus

able vertically so you can really have more than 8 at one time. The Amiga GELS system

described in the Amiga ROM Kernel Manual provides just such a multi-plexing, or interleaving,

of sprites for you. Chapter 4, "Windows", contains a brief description of a sprite used as a cus

tom pointer.

Dual playfield mode is a special display mode where you can have two display memories. This

gives you two separately controllable and separately scrollable entities that you can display at

the same time, one in front of the other. With this mode, you can have some really interesting

displays, because wherever the front display has a pixel which selects color register 0, that pixel

is displayed as if it were transparent. You can see through these transparent pixels into the

background display. In the background display, wherever a pixel selects color register 0, that

pixel is displayed in whatever color is in color register 0.

Hold-and-modify mode gives you extended color selection.

If you want to use sprites, dual playfields, or hold-and-modify, you should read about all of

their features in the Amiga ROMKernel Manual.

3-10 Intuition Version 29.4

DEPTH AND COLOR

Screen depth refers to the number of bit-planes in the the screen display. This affects the colors

you can have in your screen and in the windows that open in that screen.

Display memory for a screen is made up of one or more of bit-planes, each of which is a contigu

ous series of memory words. When they're displayed, the planes are overlapped so that each

pixel in the final display is defined by one bit from each of the bit-planes. For instance, each

pixel in a 3-bit-plane display is defined by 3 bits. The binary number formed by these 3 bits

specifies the color register to be used for displaying a color at that particular pixel location. In

this case, the color register would be one of the 8 registers numbered 0 through 7. The 32 sys

tem color registers are completely independent of any particular display. You load colors into

these registers by specifying the amounts of red, green and blue that make up the colors. To

load colors into the registers, you use the graphics primitive SetRGBQ. Table 3-1 shows the

relationship between screen depth, number of possible colors in a display, and the color registers

used.

Table 3-1: Screen Depth and Color

MAXIMUM COLOR REGISTER

DEPTH NUMBER OF COLORS NUMBERS

1 2 0-1

2 4 0-3

3 8 0-7

4 16 0-15

5 32 0-31

The maximum number of bit-planes in a screen depends upon two of the display modes—dual

playfields and hold-and-modify. For a normal display you can have from 1 to 5 bit-planes. For

dual playfields, you can have from 2 to 6 bit-planes, which are divided between the two

playfields. For hold-and-modify mode you need 6 bit-planes.

The color registers are also used for the "pen" colors. If you specify a depth of 5, for instance,

then you also have 32 choices (in low-resolution mode) for the DetailPen and BlockPen fields in

the structure. DetailPen is used for details such as gadgets and title bar text and BlockPen is

used for block fills, like all of the title bar area not taken up by text and gadgets.

TYPE STYLES

When you open a custom screen, you can specify a text font for the text in the screen title bar

and the title bars of all windows that open in the screen. A font is a specification of type size

and type style. The system default font is called "Topaz". Topaz is a fixed-width font and

comes in two sizes.

Intuition Version 29.4 3-11

o 8 display lines tall with 80 characters per line in a 640-pixel high-resolution display (40
characters in low-resolution)

o 9 display lines tall with 64 characters per line in a high resolution display (32 characters
in low-resolution)

On a television screen, you may not be able to see all 640 pixels across a horizontal line. On

any reasonable television, however, a width of 600 pixels is a safe minimum, so you should be

able to fit 60 columns of the large Topaz font. Note that font is a Preferences item and the

user can choose either the 80- or 60-column (8- or 9-line) default, whichever looks best on his or

her own monitor. You can use or ignore the user's choice of default font size.

WindowHA

This text is in TOPAZ-SIXTY Font

This text is in T0PA2-EIGHIY Font

Figure 3-4: Topaz Font in 60 Column and 80 Column Types

If you want the default Topaz font in the default size currently selected by the user, set the

Font field in the screen structure to NULL. If you want some other font, you specify it by

creating a TextAttr structure and setting the screen's Font field to point to the structure. See

the Amiga ROMKernel Manual for more information about text support primitives.

HEIGHT, WIDTH, AND STARTING LOCATION

When you open a custom screen, you specify the initial starting location for the top line of the

screen in the Top and Left fields of the screen structure. After that, the user can drag the

screen up or down. You must always set the Left field (the x coordinate) to 0. (This parameter

is included only for upward-compatibility with future versions of Intuition.)

You specify the dimensions of the screen in the Height and Width fields. You can set the screen

Height field to any value equal to or less than the maximum number of lines in the display. For

non-interlace mode, you can have a maximum of 200 lines and for interlace mode, 400 lines.

You set the width to either 320 for low-resolution mode or 640 for high-resolution mode.

3-12 Intuition Version 29.4

In setting the Top and Height fields, you must take into consideration a minor limitation of this

release of Intuition and the graphics library. The bottom line of the screen cannot be above the

bottom line of the video display. Therefore, the top position plus the height should not be such

that the bottom line of the screen will be higher than the bottom line of the video display. To

illustrate, you can have a display like this:

BACK SCREEN
Valid Placement of Screens

FRONT SCREEN

J

Figure 3-5: Acceptable Placement of Screens

but not like this:

Intuition Version 29.4 3-13

BACK SCREEN Invalid Placement of Screens

q|

♦

FRONTSCREEN

1

Figure 3-6: Unacceptable Placement of Screens

SCREEN TITLE

The screen title is used for two purposes:

o to identify the screen like an identification tab on a file folder, and

o to designate which window is the active one.

Although the initial screen title is set in the NewScreen structure, it can change according to the

preferences of the windows that open in the screen. Each screen has two kinds of titles that can

be displayed in the screen title bar:

o A "default" title, which is specified in the NewScreen structure and is always displayed

when the screen first opens.

o A "current" title, which is associated with the currently active window. When the

screen is first opened, the current title is the same as the default title. The current title

depends upon the preferences of the currently active window.

Each window can have its own title, which appears in its own title bar, and its "screen title",

which appears in the screen's title bar. When the window is the active window, it can display

its screen title in the screen's title bar. The function SetWindowTitlesQ allows you to specify,

change, or delete both the window's own title and its screen title.

3-14 Intuition Version 29.4

Screen title display is also affected by calls to ShowTitleQj which coordinates the display of the

screen title and windows that overlay the screen title bar. Depending upon how you call this

function, the screen's title bar can be behind or in front of any special Backdrop windows that

open at the top of the screen. By default, the title bar is displayed in front of a Backdrop win

dow when the screen is first opened. Non-Backdrop windows always appear in front of the

screen title bar.

You can change or eliminate the title of the active screen by calling SetWindowTitlesQ.

CUSTOM GADGETS

You can attach a linked list of custom gadgets to your custom screen. Each screen custom

gadget must have the gadget flag SCRGADGET set in the gadget structure. See Chapter 5,

"Gadgets", for information about creating custom gadgets and linking them together.

Intuition Version 29.4 3-15

Using Custom Screens

To create a custom screen, you follow these steps:

1. Initialize a NewScreen structure with the data describing the screen you desire.

2. Call OpenScreenQ with a pointer to the NewScreen structure. The call to Open-

ScreenQ returns a pointer to your new screen (or it returns zero if your screen couldn't

be opened).

After you call OpenScreenQ, the NewScreen structure is no longer needed. If you've

allocated memory for it, you can free this memory.

Before you create a NewScreen structure, you need to decide on the following:

o The height of the screen in lines and where on the display the screen should begin; that

is, its y-position.

o How many colors you want; the color you want for the background; the color for

rendering text, graphics, and details such as borders; and the color for filling block areas

such as the title bar.

o Horizontal resolution (320 or 640 pixels in a horizontal line) and vertical resolution (200

non-interlace or 400 interlace lines high).

o The text font to use for this screen and all windows that open in this screen,

o Text to be displayed in the screen's title bar

o Custom gadgets to be added to the screen

o Whether you want your own display memory for this screen or you want Intuition to

allocate the display memory for you

NEWSCREEN STRUCTURE

Here are the specifications for the NewScreen structure:

3-16 Intuition Version 29.4

struct NewScreen

SHORT LeftEdge, TopEdge, Width, Height, Depth;

UBYTE DetailPen, BlockPen;

USHORT ViewModes;

USHORT Type;

struct TextAttr *Font;

UBYTE *DefaultTitle;

struct Gadget ^Gadgets;

struct BitMap *CustomBitMap;

The meanings of the variables and flags in NewScreen structure are as follows.

LeftEdge Initial x-position for the screen.

This field is not currently used by Intuition; however, for upward compatibility,

always set this field to 0.

TopEdge Initial y-position of the screen.

Set this field to an integer or constant representing one of the lines on the

screen.

Width Width of the screen.

Set this field to 320 for low-resolution mode or 640 for high-resolution mode.

Height Height of the screen in number of lines.

Set this field to up to 200 for non-interlace mode and 400 for interlace mode.

Depth Number of bit-planes in the screen.

Set this field from 1 to 6.

DetailPen, BlockPen

DetailPen—color register number for details such as gadgets and text in the title

bar.

BlockPen—color register number for block fills, such as the title bar area.

ViewModes

These flags select display modes. You can set any or all of them:

HIRES

Selects high resolution mode (640 pixels across). The default is 320 pixels

across.

Intuition Version 29.4 3-17

INTERLACE

Selects interlace mode (400 lines). The default is 200 lines.

SPRITES

Set this flag if you are want to use sprites in the display.

DUALPF

Set this flag if you want two playfields.

HAM

Set this flag if you want hold-and-modify.

Type Set this to CUSTOMSCREEN. You may also set the CUSTOMBITMAP flag if

you have your own BitMap and display memory which you want used for this

screen (see CustomBitMap below).

Font A pointer to the default TextAttr structure for this screen and all Intuition-

managed text that appears in the screen and its windows. Set this to NULL if

you want to use the default Intuition font.

DefaultTitle

A pointer to a null-terminated line of text that will be displayed in the screen's

title bar, or just NULL if you want a blank title bar.

Null-terminated means that the last character in the text string is NULL.

Gadgets A pointer to the first gadget in a linked list of your custom gadgets for this

screen.

CustomBitMap

A pointer to a BitMap structure if you you have your own display memory

which you want used as the display memory for this screen. You inform Intui

tion that you want to supply your own display memory by setting the flag CUS

TOMBITMAP in the Types variables above, creating a BitMap structure that

points to your display memory, and having this variable point to your BitMap.

SCREEN STRUCTURE

If you've successfully opened a screen by calling the OpenScreenQ function, you receive a

pointer to a Screen structure. The following list shows the variables of the Screen structure

which may be of interest to you. This isn't a complete list of the Screen variables, only the

more useful ones. Also, most of these variables are for use by advanced programmers, so you

may choose to ignore them for now.

TopEdge Examine this to see where the user has positioned your screen.

3-18 Intuition Version 29.4

MouseX, MouseY

You can look here to see where the mouse is with respect to the upper-left

corner of your screen.

ViewPort, RastPort, BitMap, Layerlnfo

For the hard-core graphics users, these are actual instances of these graphics

structures (NOTE: not pointers to structures). For simple use of custom

screens, these structures can be ignored completely.

BarLayer This is the pointer to the Layer structure for the screen's title bar.

SCREEN FUNCTIONS

The following functions affect screen display.

Opening a Screen

This is the basic function to open an Intuition custom screen according to the parameters

specified in NewScreen. This function sets up the screen structure and substructures, does all

the memory allocations, and links the screen's ViewPort into Intuition.

OpenScreen (NewScreen)

Showing Screen Title Bar

This function causes the screen's title bar to be displayed or not, according to your specification

of the Showit variable and the position of the various types of windows that may be opened in

the screen.

ShowTitle (Screen, Showit)

The screen's title bar can be behind or in front of any Backdrop windows that

are opened at the top of the screen. The title bar is always concealed by other

windows, no matter how this function sets the title bar.

The variable Screen is a pointer to a screen structure.

Set the variable Showit to Boolean TRUE or FALSE according to whether the

title is to be hidden behind Backdrop windows:

- When Showit is TRUE, the screen title bar is shown in front of Backdrop

windows.

Intuition Version 29.4 3-19

- When Showlt is FALSE, the screen title bar is always behind any window.

Moving a Screen

With this function, you can move the screen vertically.

MoveScreen (Screen, DeltaX, DeltaY)

Moves the screen in a vertical direction by the number of lines specified in the

DeltaY argument. (DeltaX is here for upward-compatibility only, and is

currently ignored).

Screen is a pointer to the screen structure.

Changing Screen Depth Arrangement

These functions change the screen's depth arrangement with respect to other displayed screens.

ScreentoBack (Screen)

Sends the specified screen to the back of the display.

ScreentoFront (Screen)

Brings the specified screen to the front of the display.

Closing a Screen

The following function unlinks the screen and ViewPort and deallocates everything. It ignores

any windows attached to the screen. All windows should be closed first. Attempting to close a

window after the screen is closed will crash the system. If this is the last screen displayed,

Intuition attempts to reopen the Workbench.

CloseScreen (Screen)

The variable Screen is a pointer to the screen to be closed.

Handling the Workbench

These functions are for opening, closing, and modifying the Workbench screen.

3«20 Intuition Version 29.4

OpenWorkBenchQ

This routine attempts to open the Workbench screen. If there's not enough

memory to open the screen, this routine fails. Also, if the Workbench tool is

active, it will attempt to reopen its windows.

CloseWorkBenchQ

This routine attempts to close the Workbench screen. If another application

(other than the Workbench tool) has windows opened in the Workbench screen,

this routine fails. If only the Workbench tool has opened windows in the Work

bench screen, then the Workbench tool will graciously close its windows and

allow the screen to close.

WBenchToFrontQ, WBenchToBackQ

If the Workbench screen is opened, calling these routines will cause it to be

depth-arranged accordingly. If the Workbench screen isn't opened, these routines

have no effect.

Advanced Screen and Display Functions

These functions are for advanced users of Intuition and graphics. They are used primarily in

programs that want to make changes in their custom screens (for instance, in the Copper

instruction list). These functions cause Intuition to incorporate a changed screen and merge it

with all the other screens in a synchronized fashion. For more information about these func

tions, see Chapter 11, "Other Features".

MakeScreen (Screen)

This function is the Intuition equivalent of the lower-level MakeVPortQ graphics

library function. This performs the MakeVPortf) call for you, synchronized with

Intuition's own use of the screen's ViewPort. The variable Screen is a pointer to

the screen which has the ViewPort that you want remade.

RethinkDisplayQ

This procedure performs the Intuition global display reconstruction. This

includes massaging some of Intuition's internal state data, rethinking about all of

the Intuition screen ViewPorts and their relationship to one another, and, finally,

reconstructing the entire display by merging the new screens into the Intuition

View structure. This function calls the graphics primitives MrgCopQ and Load-

ViewQ.

Intuition Version 29.4 3-21

RemakeDisplayQ

This routine remakes the entire Intuition display. It performs a MakeVPortQ

(graphics primitive) on every Intuition screen, and then calls RethinkDisplayQ to

recreate the view.

3-22 Intuition Version 29.4

Chapter 4

WINDOWS

In the last chapter, you learned about Intuition screens, the basic unit of display. This chapter

covers the windows supported by those screens. The first half of the chapter provides a general

description of windows in general—including the different ways of handling the I/O of the vir

tual terminal; preserving the display when windows get overlapped; how you open windows and

define their characteristics; and how you get the pre-defined gadgets for shaping, moving, clos

ing, and depth-arranging windows. This section also defines the different kinds of special win

dows that extend even further the capabilities of the Intuition windowing system. You will also

see how you can customize your windows by adding individual touches like your own custom

pointer.

In the second half of the chapter, you get all the details you need for designing your own

windows—an overview of the process of creating and opening a window, the specification for

the window structure, and brief descriptions of the functions you can use for windows.

About Windows

The windows you open can be colorful, lively, and interesting places for the user to work. You

can use all of the standard Amiga graphics, text, and animation primitives (functions) in every

one of your windows. You can also use the quick and easy Intuition structures and functions

for rendering images, text, and lines into your windows. The special Intuition features that go

along with windows, like the gadgets and menus, can be visually exciting as well.

Each window can open an Intuition Direct Communication Message Port (IDCMP), which offers

a direct communication channel with the underlying Intuition software, or the window can open

a Console Device for input and output. Either of these communication methods turns the win

dow into a visual representation of a virtual terminal, where your program can carry on its

interaction with the user as if it had the entire machine and display to itself. Your program can

open more than one window and treat each separately as a virtual terminal.

Both you and the user deal with each individual window as if it were a complete terminal. The

user has the added benefit of being able to arrange the terminals front to back, shrink them or

expand them, or overlap them.

Intuition Version 29.4 4-1

Figure 4-1: A High-Resolution Screen and Windows

Windows are rectangular display areas, but this doesn't begin to describe the forms they can

take. The user can shape windows by making them wider or longer or both to reveal more of

the information being output by the program. The user can shrink windows into long, narrow

strips or small boxes to reveal other windows or make room for other windows to open. Multi

ple windows can be overlapped and the user can bring a window up front or send it to the bot

tom of the stack with a click of the mouse button. While the user is doing all this shaping and

rearranging and stacking of windows, your program doesn't have to pay any attention. To the

program, there is nothing out there but a user with a keyboard and a mouse (or, in place of a

mouse, there could be a joystick or graphics tablet or practically any other input device).

Your program can open as many of these virtual terminal windows as the memory configuration

of your Amiga will allow. Each window opens in a specific screen and several windows may

open in the same screen. Even windows opened by different programs may coexist in the same

screen.

Your program can open windows for any purpose. For example, different windows of an appli

cation can represent:

o different interpretations of an object, such as the same data represented as a bar chart

and a pie chart

o related parts of a whole, such as the listing and output of a program

o different parts of a document or separate documents being edited simultaneously

You open a window by specifying its structure and issuing a call to a function that opens win

dows. After that, you can output to the user and receive input while Intuition manages all the

user's requests to move, shape, and depth-arrange the window. Intuition lets you know if the

user makes a menu choice, chooses one of your own custom gadgets, or wants to close the win

dow. If you need to know when the user changes the window's size or moves the pointer,

4-2 Intuition Version 29.4

Intuition will tell you about that, too.

Custom gadgets, menus, input/output, and controllers are dealt with in their own chapters.

The balance of this section deals with some important window concepts. You'll need to know

about these before proceeding with the specific instructions for opening your own windows in

the "Using Windows" section.

WINDOW INPUT/OUTPUT

You can choose from two different paths for input and two different paths for output. Each

path satisfies particular needs. The two paths for user input are:

o Intuition Direct Communications Message Ports

The Message Ports give you mouse (or other controller) events, keyboard events, and

Intuition messages in their most raw form, and also supply the way for your program to

communicate to Intuition.

o Console Device

This gives you processed input data, including keycodes translated to ASCII characters

and Intuition event messages converted to ANSI escape sequences. If you wish, you can

also get raw (untranslated) input through the Console Device.

There are also two paths for program output:

o Text is output through the Console Device, which formats and supplies special text

primitives and text functions such as auto-line wrapping and scrolling.

o Graphics are output through the general-purpose Amiga graphics primitives, which pro

vide rendering functions like area fill and line drawing and animation functions.

If you use the Console Device for input or output or both, you need to open it after opening

your window. If you want the IDCMP for input, you specify one or more of the IDCMP flags in

the NewWindow structure. This automatically sets up a pair of Message Ports, one for Intui

tion and one for you. Although the IDCMP doesn't offer text formatting or keycode transla

tion, it has many special features that you may want, and requires less RAM and processing

overhead.

To select your I/O methods, you should read Chapter 8, "Input and Output Methods".

OPENING, ACTIVATING, AND CLOSING WINDOWS

Before your program can open a window, you need to initialize a NewWindow structure. This

structure contains all the arguments needed to define and open a window, including initial posi

tion and size, sizing limits, color choices for window detailing, gadgets to attach, how to

preserve the display, IDCMP flags, window type if it's one of the special windows, and the

screen to open in.

Intuition Version 29.4 4-3

A window is opened and displayed by a call to the OpenWindowQ function whose only argu

ment is a pointer to the NewWindow structure. After successfully opening a window, you

receive a pointer to another structure, the Window structure. If you are opening the window in

a custom screen, you need to call OpenScreenf) before opening the window.

Only one window is active in the system at a time. The active window is the one that's receiv

ing user input through a keyboard and mouse (or some other controller). The active window

looks different from inactive windows. In relation to inactive windows, some areas of the active

window are displayed more boldly. In particular, the title bars of inactive windows are covered

with a faint pattern of dots, rendering them slightly less distinct. This is called "ghosting".

See Figure 4-1 for an example of the appearance of inactive windows. When the user brings up

a menu list in the screen title bar, the active window's menu list is displayed. Also, the active

window has an input cursor when an input request is pending, and the active window receives

system messages.

Your program doesn't have to worry about whether one of its windows is active or not. The

inactive windows can just wait for the user to get back to them, or they can be doing some

background task that doesn't require user input. The job of activating windows is mostly left

up to the user, who activates a window by moving the pointer into the window and clicking the

right mouse button. There is, however, an ACTIVATE flag in the NewWindow structure. Set

ting this flag causes the window to become active when it opens. If the user is doing something

else when a window opens with the ACTIVATE flag set, input is immediately redirected to the

newly opened window. You will probably want to set this flag in the first window opened when

your program starts up. Windows opened after the first one don't need to have the

ACTIVATE flag set, though they may. It's up to you to design the flow of information and

control.

After your window is opened, you can discover when it's activated and inactivated by setting

the IDCMP flags ACTIVEWINDOW and INACTIVEWINDOW. If you set these flags, you will

receive a message every time the user activates your window or causes your window to become

inactive by activating some other window.

Although there is a window closing gadget, a window does not automatically close when the

user selects this gadget. Intuition sends you a message about the user's action. You can then

do whatever clean-up is necessary, such as replying to any outstanding Intuition messages or

verifying that the user really meant to close the window, and then call CloseWindowQ.

If the user closes the last window in a standard screen other than the Workbench screen, the

screen also closes.

When the active window is closed, the previously active window may become the active window.

The window (call it Window A) that was active when this one was opened will become the

active window. If Window A is already closed, then the window (if any) that was active when

Window A opened will become the active window, and so on.

SPECIAL WINDOW TYPES

Intuition's special windows give you some very useful bonus features, in addition to all the nor

mal window features. The Backdrop window stays anchored to the back of the display and

gives you a way to take over the display without taking over the machine. The Borderless win

dow gives you a window with no drawn border lines. The window with the fanciful (some even

say whimsical) name, Gimmezerozero, gives you all the border features plus the freedom to

ignore borders altogether when you're rendering into the window. Finally, there's SuperBitMap,

4-4 Intuition Version 29.4

a window that not only gives you your own display memory in which to render, but frees you

from ever worrying about preserving the window when the user sizes it or overlaps it with

another window.

Notice that these are not necessarily separate, discrete window types. You can combine them

for even more special effects. For instance, you can create a Backdrop, Borderless window that

fills the entire screen and looks like a normal computer display terminal.

Borderless Window Type

This window is distinguished from other windows by having no default borders. With normal

windows, Intuition creates a thin border around the perimeter of the window, allowing the win

dow to be easily distinguished from other windows and the background. When you ask for a

Borderless window, you do not get this default thin border; however, your window can still have

borders. It can have borders based solely on the location of border gadgets, and whether or not

you've supplied title text, or it may have no gadgets or text and thus no visible borders, and no

border padding, at all. You can use this window to cover the entire video display. It's espe

cially effective combined with a Backdrop window. This combination forms a window that you

can render in almost as freely as writing directly to the display memory of a custom screen. It

has the added benefit that you can render in it without running the risk of trashing menus or

other windows in the display.

If you use a Borderless window that doesn't cover the entire display, then be aware that its lack

of borders may tend to cause visual confusion on the screen. Since windows and screens share

the same color palette, borders are often the only way of distinguishing a window from the

background.

Set the BORDERLESS flag in the NewWindow structure to get this window type.

Gimmezerozero Window Type

The unique feature of a Gimmezerozero window is that there are actually two "planes" to the

window: a larger, outer plane where the window title, gadgets, and border are rendered; and a

smaller, inner plane (also called the inner window) into which you can draw freely without wor

rying about the window border and its contents. The top-left coordinates of the inner window

are always (0,0), regardless of the size or contents of the outer window; thus the name "Gim

mezerozero".

The area into which you can draw is formally defined as the area within the variables Border-

Left, BorderTop, BorderRight, and BorderBottom. These variables are computed by Intuition

when the window is opened. To render into normal windows with the graphics primitives (for

instance to draw a line from the top left to somewhere else in the window), you have to start

the line away from the window title bar and borders. Otherwise, you risk drawing the line over

the title bar and any gadgets that may be in the borders. In a Gimmezerozero window, you can

just draw a line from (0,0) to some other point in the window without worrying at all about

things in the window borders.

The Gimmezerozero window has the disadvantages of using more RAM and degrading perfor

mance in moving and sizing of windows. There can be a noticeable performance lag, especially

when several Gimmezerozero windows are open at the same time.

Intuition Version 29.4 4-5

There are some special variables in the Window structure which pertain only to Gimmezerozero

windows. The GZZMouseX and GZZMouseY variables can be examined to discover the position

of the mouse relative to the inner-window or the window. The GZZWidth and GZZHeight vari

ables can be used to discover the width and height of the inner-window.

The Console Device gives you another kind of encumbrance-free window. If you are using the

Console Device, any formatted text you are outputting goes into an inner window automatically

and you don't need to worry about gadgets. Therefore, you don't need a Gimmezerozero win

dow just for the purpose of text output. See the Chapter 8, "Input and Output", for more

information about this aspect of the Console Device.

Requesters in a Gimmezerozero window appear relative to the inner window. If you are bring

ing up requesters in the window, you may wish to take this into consideration when deciding

where to put the requesters. See Chapter 7, "Requesters and Alerts" for more information

about requester location.

To specify a Gimmezerozero window, you set the GIMMEZEROZERO flag in the Window

structure's flags. All system gadgets you attach to this type of window will automatically go

into the gadget bit-map; however, if you are attaching custom gadgets and you want the gadg

ets to appear in the border (not in the inner-window), be sure to set the GZZGADGET flag in

your gadget structures. If you don't, Intuition will render custom gadgets in the display of the

inner-window.

Backdrop Window Type

The Backdrop window, as its name implies, always opens in the back of the Intuition screen.

Its great advantage is that other windows can overlap it and be depth-arranged without ever

going behind the Backdrop window. Because of this characteristic, you can use the Backdrop

window as a primary display surface while opening other auxiliary windows on top of it.

The Backdrop window is like normal windows except:

o It always opens behind all other windows (including other Backdrop windows that you

might have already opened).

o The only system gadget you can attach is the close-window gadget. (You can attach

your own gadgets, as usual.)

o Normal windows in the same screen open in front of all Backdrop windows and always

stay in front of them. No amount of depth arranging will ever send a non-Backdrop

window behind a Backdrop window.

You might want to use a Backdrop window, for example, in a simulation program where the

environment is rendered in the Backdrop window while the simulation controls exist in normal

windows that float above the environment. Another example is a sophisticated graphics pro

gram where the primary work surface is on the Backdrop window while auxiliary tools are made

available in normal windows in front of the work surface.

You can often use a Backdrop window instead of rendering directly in the display memory of a

custom screen. If you want to render into your background with the graphics primitives, you

may even prefer a Backdrop window to a custom screen because you do not run the danger of

writing to the window at the wrong time and trashing a menu that is being displayed. In fact,

if you also set the BORDERLESS flag and you create a window that's the full-screen width and

4-6 Intuition Version 29.4

height, you get a window that fills the entire screen and stays in the background. If you also

specify no gadgets, there will be no borders at all. Finally, if you add a call to ShowTitleQ with

an argument of FALSE, the window will conceal the screen title. All of these steps result in a

window that fills the entire video display, has no borders, and stays in the background!

To get the Backdrop feature, you set the BACKDROP flag in the Window structure.

SuperBitMap Window

SuperBitMap is both a window type and a way of preserving and redrawing the display. This

window is like other windows except you get your own bit-map instead of using the screen's

bit-map. The windowing system displays some portion of the window's bit-map in the screen's

raster according to the dimensions and limits you specify and the user's actions. You can make

the bit-map any size as long as the window sizing limits are set accordingly.

This window is very handy where you want to give the user the flexibility of scrolling around

and revealing any portion of the bit-map. You can do this because the entire bit-map is always

available to be displayed.

To get this type of window, you set the SUPER-BITMAP flag in the window structure and set

up a BitMap structure. You probably want to set the GIMMEZEROZERO flag also, so that

the borders and gadgets will be rendered in a separate bit-map. You need to be certain that the

size-limiting variables in the window structure are properly set, considering the size of the bit

map and how much of it you want to display.

For complete information about SuperBitMap, see "Setting Up a SuperBitMap Window" later

in this chapter.

WINDOW GADGETS

The easiest way for a user to communicate with a program running under Intuition is through

the use of window gadgets. There are two basic kinds of window gadgets—system gadgets that

are pre-defined and managed by Intuition, and your own custom application gadgets.

System Gadgets

System gadgets are supplied for the user to manage these aspects of window display: size and

shape of windows, location of windows on the screen, and depth arrangement. Also, there is a

system gadget for the user to tell the application when he or she is ready to close the window.

These gadgets save you a lot of work because, with the exception of the close gadget, your pro

gram never has to pay any attention to what the user does with them. On the other hand, if

you want to be notified when the user sizes the window because of some special rendering you

may be doing in the window, Intuition will let you know. For more information, read about

IDCMP functions in the Chapter 8, "Input and Output Methods".

In the Window structure, you define the starting location and starting size of a window and a

maximum and minimum height and width for sizing the window. When the window opens, it

appears in the location and in the size you have specified. After that, however, the user

Intuition Version 29.4 4-7

normally has the option of shaping the window within the limits you have set, moving the win

dow about on the screen, and depth arranging it—either sending it into the background behind

all the other displayed windows or bringing it into the foreground. To give the user this free

dom, plus the ability to request that the window be closed, you can attach system gadgets to

the window. The graphic representations of these gadgets are pre-defined, and Intuition always

displays them in the same well-publicized locations in the window borders. In the window

structure, you can set flags to request that all, some, or none of these system gadgets be

attached to your window. The system gadgets and their locations in the window are:

o a sizing gadget in the lower right of the window. With the sizing gadget, the user can

stretch or shrink the height and width of the window. You set the maximum and

minimum limits for sizing. You can specify whether this gadget is located in the right

border or bottom border, or in both borders.

o two depth arrangement gadgets in the upper right of the window. One sends the win

dow behind all other displayed windows (back gadget) and the other brings the window

to the front of the display (front gadget).

o a drag gadget, which occupies every part of the window title bar not taken up by other

gadgets. The drag gadget allows the user to move the window to a new location on the

screen. A title in the title bar does not interfere with drag gadget operation.

o a close gadget in the upper left of the window, which allows the user to request that the

window be closed.

The picture below shows how all the system window gadgets look and where they are located in

the window borders.

Intuition Version 29.4

EJFroM Here To Katmandu

E!

Figure 4-2: System Gadgets for Windows

Intuition Version 29.4
4-9

Application Gadgets

Application gadgets come in four flavors — proportional, Boolean, string, and integer. You can

use application gadgets to request various kinds of input from the user, and that input can

affect the application in any way you like. You design them as text or graphic images to go

anywhere in the window. For application gadgets, you define a data structure for each one and

create a linked list of these structures. To attach your list of gadgets to a window, you set a

pointer in the NewWindow structure to point to the first gadget in the list. For details about

creating gadgets, see the chapter called "Gadgets".

WINDOW BORDERS

Intuition offers you several possibilities for handling window borders. You can take advantage

of the fancy border features, such as automatic double border lines around the window and

automatic padding of borders to allow for gadgets. If you'd rather, you can eliminate borders

completely, or you can use the Gimmezerozero window that gives you all the border features

and then lets you ignore them.

The actual border lines are drawn around the perimeter of the window, and are mostly distinct

from the border area where border gadgets are placed. Intuition automatically draws a double

border around a window unless you ask for something different. This nominal border consists of

an outer line around the entire window, rendered in the BlockPen color and within this a second

line rendered in the DetailPen color. The two "pen" colors are defined in the NewWindow

structure.

The default minimum thickness of the border areas depends upon certain parameters set in the

definition of the underlying screen, certain choices the user has made with Preferences, and the

default font. If the window is not a special Borderless window, then the borders will be at least

the default thickness. Intuition adjusts the size of a window's border areas to accommodate

system gadgets or your own application gadgets.

You can find the thickness of the border areas in the variables BorderLeft, BorderTop, Border-

Right, and BorderBottom. These variables are computed when the window is opened and can be

found in the Window structure. You may want to use them if you are drawing lines into the

window with graphics primitives, where you need to specify a set of coordinates as the begin

ning and ending points for the line. In a typical window, you can't specify a line from (0,0) to

(50,50) because you may draw a line over the window title bar. Instead, you would use the

border variables to specify a line from (O+BorderLeft, 0+BorderTop) to (50+BorderLeft),

50+BorderTop). This may look clumsy, but it offers a way of avoiding a Gimmezerozero win

dow, which is much more convenient to use but requires extra memory and impacts perfor

mance.

For the top border, in addition to the system gadgets and your own gadgets, you can specify a

window title. The window title bar does not appear at all unless you specify one of the follow

ing:

o a window title, or

o any of the system gadgets for window dragging, window depth arranging, or window

closing.

4-10 Intuition Version 29.4

Usually, borders are drawn automatically and adjusted within the dimensions you specify in the

NewWindow structure. In the special Borderless and Gimmezerozero windows, borders are han

dled differently. A Borderless window has no drawn borders and no automatic border spacing

or padding. If you have system gadgets or your own gadgets with a border flag set, borders

may be visually defined by the gadgets. A Gimmezerozero window places the borders and gadg

ets in their own bit-map separate from the window's bit-map. This means you can render freely

into the entire surface of the window without worry about scribbling over the gadgets.

You can specify whether or not your application gadgets reside in the borders, and in which

border, by setting a flag in the gadget structure. See Chapter 5, "Gadgets", for more informar

tion about gadgets and how to place them where you want them.

PRESERVING THE WINDOW DISPLAY

When a window is revealed after having been overlapped, the display has to be redrawn. Intui

tion offers three ways of preserving the display:

o In the Simple Refresh method, your program redraws the display.

o In the Smart Refresh method, Intuition keeps a copy of the display in RAM buffers.

o In the SuperBitMap method, you allocate an entirely separate display memory for your

window.

Smart Refresh and SuperBitMap use the window's idea of its display memory space to save the

parts of the window that are not currently being displayed. Windows and other high-level

display components, like menus and gadgets, have a "virtual" understanding of their display

memory. The application can ignore other windows being displayed and write into its own vir

tual memory area. The Amiga graphics software then takes these requests to render to virtual

display memory and translates them into real operations that render into save buffers (for

Smart Refresh) or into areas of a private bit-map (for SuperBitMap) maintained by the applica

tion.

The following figures compare the three different methods of refreshing the window display.

Intuition Version 29.4 4-11

SIMPLE REFRESH

The obscured portion

is discarded.

Figure 4-3: Simple Refresh

4-12 Intuition Version 29.4

SMART REFRESH

The obscured portion is

preserved offscreen.

Figure 4-4: Smart Refresh

Intuition Version 29.4 4-13

SUPER BIT MAP

Portions of your offscreen

bitmap are shown onscreen.

Figure 4-5: SuperBitMap Refresh

The three methods of preservation are explained below. You must choose one of them.

Simple Refresh

With this redrawing method, Intuition doesn't need to remember anything about windows that

are overlapped. For the most part, the program is responsible for redrawing the window. If the

user sizes the window larger on either axis or reveals a window that was overlapped, the pro

gram must redraw the display. However, if the user merely drags the window around, Intuition

preserves it and redisplays it in the new location. Simple Refresh tends to be slower than other

methods, but it is memory efficient since no RAM is consumed in saving the obscured portions

of a window. Simple refresh uses the screen's display memory for the window's display.

Smart Refresh

With this redrawing method, Intuition keeps all information about the window in RAM,

whether the window is currently concealed or is up front. If the user reveals a window that was

overlapped, Intuition recreates the display for you. If the sizing gadget is attached, the applica

tion can still recreate a portion of the display when the user makes the window larger. Smart

refresh uses the screen's display memory for the window display and requires extra buffers for

the off-screen portions of the window (portions not currently being displayed). Smart Refresh

uses more display memory but it redraws the display faster than Simple Refresh.

4-14 Intuition Version 29.4

SuperBitMap

This is both a special type of window and a method of redrawing the display. When you choose

this method of redrawing, you get your own bit-map to use as display memory instead of using

the screen's display memory. You make this bit-map as large as the window can get (or larger).

You never have to worry about redisplay after the window is uncovered because the entire

display is always there in RAM. For more information about SuperBitMap, see the "Special

Windows" section in this chapter.

REFRESHING THE WINDOW DISPLAY

If you open either a Simple Refresh or Smart Refresh window, you may be asked to refresh part

of your display at some time or other. When a Simple Refresh window is moved or sized, or

when other windows are moved or sized in such a way that areas of a Simple Refresh window

are revealed, the window will have to be refreshed. With Smart Refresh windows, the window

has to be sized larger on either axis to generate a REFRESHWINDOW event.

You find out that your window needs refreshing via either source of input, the IDCMP or the

Console Device. You get a message telling you that your window needs to be refreshed. The

message is of class REFRESHWINDOW. Every time you learn that you should refresh your

window, you must take some action, even if it's just the acceptable minimum action described

below.

When you are asked to refresh your window, before you actually start to refresh it you should

call the Intuition function BeginRefreshQ. This function makes sure that refreshing is done in

the most efficient way, only redrawing those portions of your window that really need to be

redrawn. The rest of the rendering commands are discarded.

After you call BeginRefreshQ, you redraw the display. Then, after the display is redrawn, you

call EndRefreshQ to restore the state of the internal structures.

Even if you don't want to redraw right now, you should at least call Begin/EndRefreshQ each

time you are asked to refresh your window. This helps Intuition and the layer library to keep

things sorted and organized.

If you are opening a window which you will never care to refresh, no matter what happens to or

around it, then you can avoid the requirement of calling Begin/EndRefreshQ by setting the

NOCAREREFRESH flag in the NewWindow structure when you open your window.

WINDOW POINTER

The active window contains a pointer for the user to make selections from menus, select gadg

ets, and so on. The user moves the pointer around with a mouse controller, but other kinds of

controllers or the keyboard cursor keys can be substituted.

Intuition Version 29.4 4-15

Pointer Position

If your program needs to know about pointer movements, you can either look at the position

variables or arrange to receive broadcasts each time the pointer moves. The position variables

MouseX and MouseY always contain the current pointer x and y coordinates, whether or not

your window is the active one. If you elect to receive broadcasts, you get a set of x,y coordi

nates each time the pointer moves These coordinates are relative to the upper left corner of

your window and are reported in the resolution of your screen, even though the pointer's visible

resolution is always in low resolution mode (Note that the pointer is actually a sprite).

If your window is a Gimmezerozero window, you can examine the variables GZZMouseX and

GZZMouseY to find the position of the mouse relative to the upper-left corner of the inner-

window.

To get broadcasts about pointer movements, either InputEvents or Message Port messages, you

must set the REPORTMOUSE flag in your window structure. Thereafter, whenever your win

dow is active, you'll get a broadcast every single time the pointer moves. This can be a lot of

messages, so be prepared to handle them efficiently. If you want to change whether or not you

are following mouse movements, you can call ReportMouseQ.

You can also get broadcasts about pointer movements by setting the flag FOLLOWMOUSE in

your application gadget structures. If this flag is set in a gadget, you get the current pointer

position as long as that gadget is selected by the user. This can result in a lot of messages, too.

Custom Pointer

You can set up your window with a custom pointer to replace the default arrow pointer. To

define the pointer, set up a sprite data structure. Sprites are one of the general-purpose Amiga

graphics structures. To place your custom pointer in the window, you call SetPointerQ. To

remove your custom pointer from the window, you call ClearPointerQ. Both of these functions

take effect immediately if yours is the active window.

Also, you can change the colors of the Intuition pointer. The Intuition pointer is always sprite

0. To change the colors of sprite 0, call the graphics library routine SetRGB^Q- Refer to

Chapter 12, "Style", for more information about this.

See the last section of this chapter for a complete example of a custom pointer.

GRAPHICS AND TEXT IN WINDOWS

There are two ways of rendering graphics, lines, and text into windows. You can use all of the

Amiga graphics, animation, and text primitives in any window. Also, you can use the quick and

easy Intuition structures and functions to display Intuition Image, Border, or IntuiText struc

tures in windows. Note that the Border structure is a general purpose line-drawing mechanism.

See chapter 9, "Images, Line Drawing, and Text", for more information about these topics.

4-16 Intuition Version 29.4

WINDOW COLORS

The number of colors you can use for the window display and the actual colors that will appear

in the color registers are defined by the screen where the window opens. In the window struc

ture, you specify two color register numbers ("pens"), one for the border outline text, and gadg

ets and one for block fills (like the title bar). These pen colors are also a function of the screen.

You can specify different colors for the pens than those used by the screen or you can use the

screen's pen colors.

WINDOW DIMENSIONS

In the NewWindow structure, you define the dimensions and the starting location of your win

dow on the screen. If you are letting the user change the size and shape of the window, you

also need to specify the minimum size to which the window can shrink and the maximum size to

which it can grow. If you don't ask that the window sizing gadget be attached to the window,

then you don't need to initialize any of these maximum and minimum variables.

In setting all these size dimensions, you need to bear in mind the the horizontal and vertical

resolutions of the screen where you are opening the window.

If you want to change the sizing limits after you've opened the window, you can call Window-

LimitsQ with the new values.

Intuition Version 29.4 4-17

Using Windows

To create a window, you follow these steps:

1. Initialize a NewWindow structure.

2. When you are ready to display the window, call OpenWindowQ with a pointer to the

NewWindow structure.

3. After calling OpenWindowQ, the NewWindow structure is no longer needed.

When creating a NewWindow structure, you need to decide on:

o The screen in which the window will appear

o The window's characteristics

* Which system gadgets you want

* Preservation method for the window display

* Special window features—Gimmezerozero, Borderless, Backdrop, or SuperBitMap

* Type of input from the Intuition Direct Communications Message Ports (if any)

* Pointer movement broadcasts

* Other characteristics, such as starting position and size, color of the pens used to

draw borders and fill blocks

* Custom images, such as a custom "check mark" for the menus or a custom pointer

NEWWINDOW STRUCTURE

Here are the specifications for the NewWindow structure:

4-18 Intuition Version 29.4

struct NewWindow

{
SHORT LeftEdge, TopEdge;

SHORT Width, Height;

UBYTE DetailPen, BlockPen;

USHORT IDCMPFlags;

ULONG Flags;

struct Gadget *FirstGadget;

struct Image *CheckMark;

UBYTE *Title;

struct Screen *Screen;

struct BitMap *BitMap;

SHORT MinWidth, MinHeight;

SHORT MaxWidth, MaxHeight;

USHORT Type;

Here are the meanings of the fields in the NewWindow structure. Some of the fields contain

variables to which you need to assign a value, some contain flag bits to set or unset, and some

are pointers to other structures.

LeftEdge, TopEdge, Width and Height

These describe where your window will first appear on the screen and how large it will be

initially. These dimensions are relative to the top-left corner of the screen, which has the

coordinates (0,0):

LeftEdge The initial x-position, which represents the offset from the first pixel on the line,

pixel 0.

TopEdge The initial y-position, which represents how many lines down from the top (line

0) youSvant the window to begin.

Width The initial width in pixels

Height The initial height in lines

DetailPen and BlockPen

Contain the "pen" numbers used to render details of the window. The colors associated

with the pens are a function of the screen. If you supply a value of -1 for either of these,

you will get the screen's value for that pen by default.

DetailPen The pen number (or -1) for the rendering of window details like gadgets or text

in the title bar

BlockPen The pen number (or -1) for window block fills (like the title bar) and the outer

rim of the window border.

Intuition Version 29.4 4-19

Flags variable

You can set any of the following flags.

To get system gadgets, you set the applicable flags. They are:

WINDOWSIZING

Allows the user to change the size of the window. Intuition places the window sizing

gadget in the lower-right of your window. By default, the right border is adjusted to

accommodate the sizing gadget, but you can change this with the following two flags,

which work in conjunction with WINDOWSIZING. The sizing gadget can go in either

the right or bottom border (or both) of the window.

o SIZEBRIGHT

Puts the sizing gadget in the right border. This is the default.

o SIZEBBOTTOM

Puts the sizing gadget in the bottom border.

You might wish to set SIZEBBOTTOM to put the sizing gadget in the bottom

border if you want all possible horizontal bits, for instance, for 80-column text, and

are willing to sacrifice vertical space.

WINDOWDEPTH

Allows the user to change the window's depth arrangement with respect to all other

currently displayed windows. Intuition places the window depth-arrangement gadgets

in the upper-right of the window.

Setting this flag selects both the UPFRONT gadget to bring the window into the fore

ground and the DOWNBACK gadget to send it behind other currently displayed win

dows.

WINDOWCLOSE

When the user selects this gadget, Intuition transmits a message to your application.

It's up to the application to call CloseWindowQ when ready. Setting this flag attaches

the standard close gadget to the upper-left of the window.

WINDOWDRAG

This turns the entire title bar of the window into a drag gadget, allowing the user to

move the window into a different position on the screen by placing the pointer any

where in the window title bar and dragging.

NOTE: Even if you do not specify a text string in the Text variable shown below, a

title bar appears if you use any one of the system gadgets WINDOWDRAG, WIN

DOWDEPTH, or WINDOWCLOSE. In that case, the title bar is blank.

GIMMEZEROZERO

Set this flag if you want a Gimmezerozero window.

The following three flags determine how Intuition preserves the display when an overlapped

window is uncovered by the user. You must select one of the following:

4-20 Intuition Version 29.4

SIMPLEJtEFRESH

Every time a portion of the window is revealed, the application program must redraw

its display.

SMARTJtEFRESH

The only time you have to redraw your display is when the user uses the window-sizing

gadget to make the window larger.

NOTE: If you don't ask for the WINDOWSIZING gadget when you open a

SMARTJREFRESH window, then Intuition never tells you to redraw this window.

SUPER_BITMAP

Setting this flag means you are allocating and maintaining your own bit-map and

display register.

You must also set the BitMap field to point to your own BitMap structure.

BACKDROP

Set this flag if you want a Backdrop window.

REPORTMOUSE

Sets the window to receive pointer movements as x,y coordinates.

Also, see the description of the IDCMP flag, MOUSEMOVE, in Chapter 8, "Input and

Output Methods".

BORDERLESS

Creates a window with none of the default border padding and border lines.

NOTES: Be careful when you set this flag. It may cause visual confusion on the

screen. Also, there may still be some borders if you've selected some of the system

gadgets, supplied text for the window's title bar, or specified that any of your custom

gadgets go in the borders.

ACTIVATE

When this window opens, it automatically becomes active.

NOTE: Use this flag carefully. It can change where the user's input is going.

NOCAREREFRESH

Set this flag if you don't want to receive messages telling you to refresh your window.

ACTIVEWINDOW and INACTIVEWINDOW

Set these flags to discover that your window has become active or inactive. You can set

either or both of these flags.

Intuition Version 29.4 4-21

IDCMPFlags

The IDCMPFlags are listed and described in the Appendix A reference section for the

OpenWindowQ function and in Chapter 8, "Input and Output Methods". If any of these

flags are set, Intuition creates a pair of Message Ports and uses them selectively for sending

input to the task opening this window instead of using the Console Device.

Gadgets

A pointer to the first in the linked list of custom gadget structures which you want included

in the window.

CheckMark

A pointer to an instance of a custom image to be used when menu items selected by the

user are to be checkmarked. If you just want to use the default checkmark (y/), set this

field to NULL.

Text

A pointer to a null-terminated text string, which becomes the window title and is displayed

in the window title bar.

Intuition draws the text using the colors in the DetailPen and BlockPen fields, and displays

as much as possible of the window title, depending upon the current width of the title bar.

You get the screen's default font.

Note: The window title is not an instance of IntuiText; it is simply a string ending in a

NULL.

Type

The screen type for this window. The currently available types are WBENCHSCREEN and

CUSTOMSCREEN.

NOTE: If you choose CUSTOMSCREEN, you must have already opened opened your cus

tom screen via a call to OpenScreenQ, and you must copy that pointer into the Screen field

immediately below.

Screen

If your type is one of the standard screens, then this argument is ignored. If Type is CUS

TOMSCREEN, this is a pointer to your custom screen structure.

BitMap

If you specify SUPER_BITMAP as the refresh type, this must be a pointer to your own Bit-

Map structure. If you specify some other refresh type, Intuition ignores this field.

4-22 Intuition Version 29.4

The following four variables are used to set the minimum and maximum size to which you allow

the user to size the window. If you do not set the flag WINDOWSIZING, then these variables

are ignored by Intuition.

If you set any of these variables to 0, that means you want to use the initial setting for that

dimension. For example, if MinWidth is 0, Intuition gives this variable the same value as the

opening Width of the window.

NOTE: To change the limits after the window is opened, call WindowLimitsQ.

MinWidth

The minimum width for window sizing, in pixels.

MinHeight

The minimum height for window sizing, in lines.

MaxWidth

The maximum width for window sizing, in pixels.

MaxHeight

The maximum height for window sizing, in lines.

WINDOW STRUCTURE

If you've successfully opened a window by calling the OpenWindowf) function, you receive a

pointer to a Window structure. This section describes some of the variables of the Window

structure which may be of interest to you. This isn't a complete list of the Window variables,

only the more useful ones. You'll find a complete description of the Window structure in

Appendix B.

LeftEdge, TopEdge, Width and Height

As the user moves and sizes your window, these variables will change to reflect the new

parameters.

MouseX, MouseY, GZZMouseX, GZZMouseY

These variables always reflect the current position of the Intuition pointer, whether or not

your window is currently the active one. The GZZMouse variables reflect the position of

the pointer relative to the inner window of Gimmezerozero windows.

ReqCount

You can examine the ReqCount variable to discover how many requesters are currently

displayed in the window.

WScreen

This variable points to the data structure for this window's screen. If you've opened this

window in a custom screen of your own making, then you should already know the address

of the screen. However, if you've opened this window in one of the standard screens, this

variable will point you to that screen's data structure.

Intuition Version 29.4 4-23

RPort

The RPort variable is a pointer to this window's RastPort. You may need the address of

the RastPort when using the graphics, text, and animation functions.

BorderLeft, BorderTop, BorderRight, BorderBottom

These variables describe the current size of the respective borders that surround the win

dow.

BorderRPort

With Gimmezerozero windows, this variable points to the RastPort for the outer-window,

where the border gadgets are kept.

UserData

This is a memory location that's reserved for your use. You can attach your own block of

data to the window structure by setting this variable to point to your data.

WINDOW FUNCTIONS

Here's a quick rundown of Intuition functions that affect windows. For a complete description

of these functions, see Appendix A.

Opening the Window

Use the following function to open a window:

OpenWindow (NewWindow)

NewWindow is a pointer to a NewWindow structure. This pointer is required by

many of the other functions listed below.

Menus

Use the following functions to attach and remove menus:

SetMenuStrip(Window, Menu)

Attaches menus to a window, manages the display of windows and reports to the

application when the user makes a menu choice.

4-24 Intuition Version 29.4

ClearMenuStrip(Window)

Removes the menu strip from a window. After this is done, the user can no

longer access menus for this window. If you've called SetMenuStripQ, you should

call ClearMenuStripf) before closing your window.

See Chapter 6, "Menus", for complete information about setting up your menus.

Changing Pointer Position Reports

Although you decide when opening the window whether or not you want broadcasts about

pointer position, you can change this later with the following function:

ReportMousefWindow, Boolean)

Change whether or not mouse movements in this window are reported.

Closing the Window

After the user selects the close gadget, you can do whatever you need to do to clean up and

then actually close the window with the following function:

CloseWindow (Window)

Closes a window and if its screen is a standard screen (but not the WorkBench)

that would be empty without the window, closes the screen as well.

Requesters in the Window

The following two functions allow requesters to become active:

Request (Requester, Window)

Activates a requester in the window.

SetDMRequest (Window, Requester)

Sets up a requester that the user can bring up in the window by double-clicking

the menu button.

These two functions disable requesters:

Intuition Version 29.4 4-25

EndRequest (Requester, Window)

Removes a requester from the window.

ClearDMRequest (Window, Requester)

Clears the double-click requester, so that the user can no longer access it

Custom Pointers

The following functions apply if you have a custom pointer:

SetPointer (Window, Pointer, Height, Width, Xoffset, Yoffset)

Sets up the window with a sprite definition for a custom pointer. If the window

is the active one, the change takes place immediately.

ClearPointer (Window)

Clears the sprite definition from the window and resets to the default Intuition

pointer.

Changing the Size Limits

The following function changes the limits for window sizing:

WindowLimits (Window, MinWidth, MinHeight, MaxWidth, MaxHeight)

Changes the maximum and minimum sizing of the window from the initial

dimensions in the NewWindow structure. If you don't want to change a dimen

sion, set the corresponding argument to 0. Out-of-range numbers are ignored. If

the user is currently sizing the window, new limits take effect after the user

releases the select button.

Changing the Window or Screen Title

The following function changes the window title after the window has already been displayed:

SetWindowTitles (Window, WindowTitle, ScreenTitle)

Changes the window title (and screen title, if this is the active window) immedi

ately. Either WindowTitle or ScreenTitle can be -1, 0, or a null terminated

string:

Intuition Version 29.4

-1 Don't change this one.

0 Leave a blank title bar

string Change to the title given in this string.

Refresh Procedures

The following functions allow you to refresh your window in an optimized way:

BeginRefresh (Window)

Initializes Intuition and layer library internal states for optimized refresh. After

you call this procedure, you may redraw your entire window; only those portions

that need to refreshed will actually be redrawn, while the other rendering com

mands will be discarded.

EndRefresh (Window)

After you've refreshed your window, call EndRefresh () to restore the internal

states of Intuition and the layer library.

Programmatic Control Of Window Arrangement

These functions allow you to modify the arrangement of your window as if the user was activat

ing the associated system window gadgets:

MoveWindow (Window, DeltaX, DeltaY)

Allows you to move the window to a new position in the screen.

SizeWindow (Window, DeltaX, DeltaY)

You can change the size of your window with a call to this procedure.

WindowToFront (Window)

Causes your window to move in front of all other windows in this screen.

WindowToBack (Window)

Causes your window to move behind all other windows in this screen.

Intuition Version 29.4 4_27

SETTING UP A SUPERBITMAP WINDOW

For a SuperBitMap window, you need to set up your own bit-map since you won't be using the

screen's display memory. To set up the bit-map, you need to:

1. Create a bit-map structure.

2. Allocate memory space for the bit-map.

The general purpose graphics function InitBitMapQ prepares a BitMap structure. A BitMap

structure describes how a linear memory area is organized as a series of one or more rectangular

bit-planes. Here is the specification for this function:

InitBitMap (bitmap, depth, bitwidth, bitheight)

The arguments you supply are:

bitmap

A pointer to the BitMap structure to initialize.

depth

Number of bit-planes to set up.

bitwidth

How wide each bit-plane should be, in bits. Should be a multiple of 16.

bitheight

How high each bit-plane should be, in lines.

The general purpose graphics function AllocRaster () allocates the memory space for the Bit-

Map. Here is the specification for this function:

AllocRaster (width, height)

The arguments width and height are the maximum dimensions of the array in bits.

The sample code fragment below shows how you can use these functions in defining the bit-map

for your SuperBitMap window:

4-28 Intuition Version 29.4

#define WIDTH 640

#define HEIGHT 200

#define DEPTH 3

struct BitMap BitMap;

InitBitMap(&BitMap, DEPTH, WIDTH, HEIGHT);

for (i = 0; i < DEPTH; i++)

if ((BitMap.Planes[i] = AllocRaster(WIDTH, HEIGHT)) == 0)

Panic("Hey! No memory for allocating planes!");

SETTING UP A CUSTOM POINTER

Follow these procedures to replace the default pointer with your own custom pointer:

1. Create a sprite data structure.

2. Call SetPointerQ. If your window is the active window, the new pointer will be

attached to the window.

A sprite data structure is made up of words of data. In a pointer sprite, the first two words

and the last four words are all 0's. All the other words define the appearance of the pointer,

two words for each line. For example, here's the data structure for a sprite shaped like an "X":

Intuition Version 29.4 4-29

/* The sprite image for our "X" should have these colors:
*

* 130000031

* 213000313

* 021303130

* 002101300

* 0000.0000 the dot is a zero that marks the pointer hot spot

* 002101300

* 021202130

* 212000213

* 120000021

*

♦/
#define XPOINTER.WIDTH 9

#define XPOINTER.HEIGHT 9

#define XPOINTER_XOFFSET -4

#define XPOINTER.YOFFSET -4

USHORT XPointerO =

0x0000, 0x0000, /* one word each for position and control */

0xCl80, 0x4100,

0x6380, 0xA280,

0x3700, 0x5500,

0x1600, 0x2200,

0x0000, 0x0000,

0x1600, 0x2200,

0x2300, 0x5500,

0x4180, 0xA280,

0x8080, 0x4100,

0x0000, 0x0000,

This example sprite creates an Intuition pointer that looks like the one shown in Figure 4-6.

4.3O Intuition Version 29.4

ResetCol or*

Set Point

Figure 4-6: The "X"-Shaped Custom Pointer

You call SetPointer with the following arguments:

Window

Pointer to the window to receive thb pointer definition.

Pointer

Pointer to the data definition of a sprite.

Height

Height of the pointer; can be as tall as you like.

Width

Width of the sprite (must be less than or equal to 16).

XOffset, YOffset

Horizontal and vertical offsets for your pointer from Intuition's idea of the current posi
tion of the pointer.

For instance, if you specify offsets of 0 for both, then the top left corner of your image

is placed at the pointer position. If you specify an Xoffset of -7, your sprite is centered

over the pointer position. If you specify an Xoffset of -15, the right edge of your sprite
is over the pointer position.

Intuition Version 29.4 4-31

Chapter 5

GADGETS

This chapter describes the workhorses of Intuition—the multi-purpose input devices called

gadgets. Most of the user's input to an Intuition application can take place through the gadgets

in your screens, windows, and requesters. Gadgets are also used by Intuition itself for handling

screen and window dragging and depth arrangement, and window sizing and closing.

The first section of this chapter describes gadgets in general and gives details about gadget

features and the different kinds of gadgets. The second section tells about the pre-defined sys

tem gadgets for windows and screens. The third section shows how you can create your own

gadgets, gives specifications for gadget structures and an outline of the procedures for designing

gadgets, and summarizes the functions that relate to using gadgets.

About Gadgets

Gadgets can make the user's interaction with your application consistent, easy, and fun. There

are two kinds of gadgets: pre-defined system gadgets and custom application gadgets. The sys

tem gadgets help to make the user interface consistent. They are used for depth-arranging and

dragging screens and for depth-arranging, dragging, sizing, and closing windows. Since they

always have the same imagery and always reside in the same location, they make it easy for the

user to manipulate the windows and screens of any application.

Application gadgets add power and fun to Intuition-based programs. These gadgets can be used

in a multitude of ways in your programs. You can design your own gadgets for your windows,

requesters, and screens.

There are 4 basic types of application gadgets:

o Boolean gadgets elicit true/false or yes/no kinds of answers from the user.

o Proportional gadgets are very flexible devices that you use to get some kind of propor

tional setting from the user or to simply display proportional information. With the

proportional gadget, you can use imagery furnished by Intuition or design any kind of

image you want for the slider or knob used to pick a proportional setting.

o String gadgets are used to get text from the user. A number of editing functions are

available for users of string gadgets.

o The integer gadget is a special class of string gadget which allows the user to enter an

integer value only.

Although system gadgets are always in the borders of windows and screens, your own gadgets

can go anywhere and can be any size or shape. You can choose from the following ways of

Intuition Version 29.4 5-1

highlighting gadgets to emphasize that the gadget has been selected:

o alternate image or alternate border

o a box around the gadget

o color change

You can elect to have your gadgets change in size as the user sizes the window so they remain

proportional to the size of the window. Also, window gadgets can be located relative to one of

the window's borders so they move with the borders as the user shapes or sizes the window. If

you want the gadget in the border like the system gadgets, Intuition can adjust the border size

accordingly.

Typically, the user selects a gadget by moving the pointer within an area called the select box;

you define the dimensions of this area. Next, the user takes some action which varies according

to the type of gadget. For a Boolean gadget, the user may simply choose an action by clicking

the mouse button. For a string or integer gadget, a cursor appears and the user enters some

data from the keyboard. For a proportional gadget, the user might either move the knob by

dragging it with the mouse or click the mouse button to move the knob by a set increment.

Although you attach a list of pre-defined application gadgets when you define a screen, window,

requester, or alert structure, you can make changes to this list later. You can enable or disable

gadgets, add or remove gadgets, modify the internal states of gadgets, and redraw some or all of

the gadgets in the list.

When one of your application gadgets is selected by the user, your program learns about it from

either the IDCMP or the Console Device. See Chapter 8, "Input and Output Methods", for

details about the messages you get.

System Gadgets

Intuition automatically attaches system gadgets to every screen. For windows, you specify

which system gadgets you want. The system gadgets for screens are dragging and depth

arrangement. The system gadgets for windows are dragging, depth arrangement, sizing, and

closing.

System gadgets have fixed, well-publicized locations in screens and windows, as shown in Table

5-1.

5-2 Intuition Version 29.4

Table 5-1: System Gadget Placement in Windows and Screens

SYSTEM

GADGET

Sizing

Dragging

Depth arrangers

Close

LOCATION

Lower-right

Entire title bar in all areas

not used by other gadgets

Top-right

Top-left

Your program need never know that the user selected a system gadget (with the exception of

the close gadget), if you don't want it to. You can attach these gadgets to your windows and

let Intuition do the work of responding to the user's wishes.

A SiMple Hindow

HelId Horld

Figure 5-1: System Gadgets in a Low-Resolution Window

The following paragraphs describe each system gadget in detail.

SIZING GADGET

When the user selects the window sizing gadget, Intuition is put into a special state. The user

is allowed to elongate or shrink a rectangular outline of the window until the user achieves the

desired new shape of the window and releases the select button. The window is then reesta

blished in the new shape. This may involve asking the application to redraw part of its display.

For more information about the application's responsibilities in sizing, see the discussion about

Intuition Version 29.4 5-3

preserving the display in Chapter 4, "Windows".

You attach the sizing gadget to your window by setting the WINDOWSIZING flag in the Flags

variable of the NewWindow structure when you open your window.

If you are using the IDCMP for input, you can elect to receive a message when the user

attempts to size the window. There is a special IDCMP flag, SIZEVERIFY, that allows you to

hold off window sizing until you are ready for it. See Chapter 8, "Input and Output Methods",

for more information about SIZEVERIFY.

DEPTH ARRANGEMENT GADGETS

The depth arrangers come in pairs—one for bringing the window or screen to the front of the

display and one for sending the window or screen to the back. Notice that the actual depth

arrangement of windows and screens is transparent to your program. The only time you might

learn about it at all is indirectly when Intuition notifies your program that it needs to refresh its

display.

You attach the depth arrangement gadgets to your window by setting the WINDOWDEPTH

flag in the Flags variable of the NewWindow structure when you open your window. You get

screen depth arrangement gadgets automatically with every screen you open.

DRAGGING GADGET

The dragging gadgets are also known as "drag bars" because they occupy the entire title bar

area that's not taken up by other gadgets. Users can slide screens up and down, much like

some classroom blackboards, to reveal more pertinent information. They can slide windows

around on the surface of the screen to arrange the display any way they want.

In dragging a window, the user actually drags a rectangular outline of the window to the new

position and releases the select button. The window is then reestablished in its new position.

As in window sizing, this may involve asking the application to redraw part of its display.

If you want the window drag gadget, set the WINDOWDRAG flag in the Flags variable of the

NewWindow structure when you open your window. You get the screen drag gadget automati

cally with every screen you open.

CLOSE GADGET

The close gadget is a special case among system gadgets, because Intuition notifies your pro

gram about the user's intent, but doesn't actually close the window. When the user selects the

close gadget, Intuition modifies some internal states and then broadcasts a message to your pro

gram. It's then up to the program to call CloseWindowQ when ready. There may be actions

that you need or want to take before the window closes; for instance, bring up a Requester to

verify that the user really wants to close that window.

To get the window close gadget, set the WINDOWCLOSE flag in the Flags variable of the

NewWindow structure when you open your window.

5-4 Intuition Version 29.4

Application Gadgets

Intuition gadgets imitate real-life gadgets. They are the switches, knobs, controllers, gauges and

keys of the Intuition environment. You can create almost any kind of gadget that you can ima

gine, and you can have it do just about anything you want it to do. You can create any visual

imagery that you like for your gadgets, including combining text with hand-drawn imagery or

supplying coordinates for drawing lines. You can also choose a highlighting method to change

the appearance of the gadget after it is selected. All of this flexibility gives you the freedom to

create gadgets that mimic real devices like light switches or joysticks, as well as the freedom to

create devices that satisfy your own unique needs.

RENDERING GADGETS

You can draw your gadgets by hand, specify a series lines for a simple line gadget, or have no

imagery at all.

Hand-Drawn Gadgets

Because you are allowed to supply a hand-drawn image, there's no limit to the designs you can

create for your gadgets. You can make them simple and elegant, or whimsical and outrageous.

You design the imagery using one of Amiga's many art tools, and then translate your design

into an instance of an Image structure. Figure 5-2 shows an example of a gadget made of

hand-drawn imagery. It also shows how you can use an alternate image when the gadget is

selected.

Intuition Version 29.4 5-5

Figure 5-2: Hand-drawn Gadget — Unselected and Selected

You incorporate a hand-drawn image into your gadget by:

o setting the GADGIMAGE flag in the gadget variable Flags to select that this gadget

should be rendered as an Image

o putting the address of your Image structure into the gadget variable GadgetRender

For more information about creating an Image structure, see Chapter 9, "Images, Line Drawing,

and Text".

Line-Drawn Gadgets

You can also create simple designs for gadgets by specifying a series of lines to be drawn as the

imagery of your gadget. You can have these lines go around or through the select box of your

gadget, and specify more than one group of lines, each with its own color and drawing mode.

You create line-draw imagery for your gadget by first deciding on the color and placement of

the lines.

Figure 5-3 shows an example of a gadget that uses line-draw imagery. It also shows an example

of the complement mode of highlighting a gadget when it's selected. Furthermore, it shows

additional text that's been included in the gadget imagery.

5-6
Intuition Version 29.4

Figure 5-3: Line-draw Gadget — Unselected and Selected

After deciding on the placement and color of your lines, you create an instance of a Border

structure to describe your design. You incorporate the Border structure of your line-draw

imagery into your gadget by:

o sot setting the GADGIMAGE flag in the gadget's Flags variable, thus specifying that

this is a Border, not an Image

o putting the address of your Border structure into the GadgetRender variable of your

gadget

For more information about creating a Border structure, see Chapter 9, "Images, Line Drawing,

and Text".

Gadgets Without Imagery

You can create gadgets that have no imagery at all. You may, for instance, only want to follow

the user's mouse activity without cluttering the display with unnecessary graphics. An example

of this is the window and screen dragging gadget, where no actual imagery is rendered. The

title bar itself sufficiently implies the imagery of the gadget.

You specify no imagery by not setting the gadget's GADIMAGE flag, and by setting the

GadgetRender variable to NULL.

Intuition Version 29.4 5-7

USER SELECTION OF GADGETS

When the user positions the pointer over a gadget and presses the select button, that gadget

becomes "selected" and is immediately highlighted. Intuition has two different ways of notify

ing your program about gadget selection.

If you want to find out immediately when the gadget has been selected, you can set the

GADGIMMEDIATE flag in the Activation field of the Gadget structure. When the user selects

that gadget, you will get an IDCMP event of class GADGETDOWN. If you set only this flag,

then you will hear nothing more about that gadget until it's selected again.

On the other hand, if you want to be absolutely sure that the user wanted to select the gadget,

you can set the RELVERIFY flag (for "Release Verify"). When RELVERIFY is set and the

user selects the gadget, you will only learn that the gadget was selected if the user still has the

pointer over the select box of the gadget when the select button is released. You may want to

know this about some gadget selections, for instance the close window gadget, where the conse

quences may be serious. If you set the RELVERIFY flag, you will learn about these events via

an IDCMP message of the class GADGETUP. There are two main benefits to RELVERIFY:

o The unsure user gets one last chance to reconsider, and

o It helps avoid casual errors caused by the user brushing against or resting fingers on the

mouse button.

If you want to receive both a GADGETDOWN and GADGETUP message, set both the REL

VERIFY and GADGIMMEDIATE flags.

GADGET SELECT BOX

To use a gadget, the user begins by moving the pointer into the gadget select box. You define

the location and dimensions of the select box In the Gadget data structure. The location is an

offset from one of the corners of the display element (window, screen, or requester) that contains

the gadget. You place the left and top coordinates in the LeftEdge, and TopEdge fields of the

gadget structure.

LeftEdge describes a coordinate that is either an absolute offset from the left edge of the ele

ment, or a negative offset from the current right edge. The offset method is determined by the

GRELRIGHT flag. For instance:

o if GRELRIGHT is cleared and LeftEdge is set to 5, the select box of the gadget starts 5

pixels from the left edge of the display element

o if GRELRIGHT is set and LeftEdge is set to -5, the select box of the gadget starts 5

pixels left of the (current) right edge

In the same way, TopEdge is either an absolute offset from the top of the element, or a negative

offset from the current bottom edge according to how the flag GRELBOTTOM is set.

5-8 Intuition Version 29.4

o If GRELBOTTOM is cleared, TopEdge is an absolute offset from the top of the element.

o If GRELBOTTOM is set, TopEdge is a negative offset from the current bottom edge.

Similarly, the height and width of the gadget can be absolute or relative to the height and

width of the display element in which it resides. If you set the width of a window gadget to

-28, for example, and you set the gadget's GRELWIDTH flag, then the gadget's select box will

always be 28 pixels less than the width of the window. If GRELWIDTH is not set and you set

the width of the gadget to 28, the gadget's select box will always be 28 pixels wide. The

GRELHEIGHT flag has the same effect on the height of the gadget select box.

Here are some examples of how you can take advantage of the special relativity modes of the

select box.

o Consider the Intuition window sizing gadget. The LeftEdge and TopEdge of this

gadget are both defined relative to the right and bottom edges of the window. No

matter how the window is sized, the gadget always appears in the lower-right.

o In the window dragging gadget, the LeftEdge and TopEdge are always absolute in relar

tion to the top-left corner of the window. Also, the Height is always an absolute quan

tity. The Width of the gadget, however, is defined to be zero. When the Width is com

bined with the effect of the GRELWIDTH flag, the dragging gadget is always as wide as

the window.

o Assume that you are designing a program that has several requesters, and each reques

ter has a pair of "OK" and "CANCEL" gadgets in the lower left and lower right

corners of the requester. You can design "OK" and "CANCEL" gadgets that can be

used in any of the requesters simply by virtue of their positions relative to the lower left

and lower right corners of the requester. Regardless of the size of the requesters, these

gadgets appear in the same relative positions.

The GRELRIGHT, GRELBOTTOM, GRELWIDTH, and GRELHEIGHT flags are set in the

Flags field of the gadget structure.

GADGET POINTER MOVEMENTS

If you set the FOLLOWMOUSE flag for a gadget, you will receive mouse movement broadcasts

as long as the gadget is selected. You may want to follow the mouse, for example, in a sound

effects program where you use the mouse movement to change some quality of the sound. You

might also want to follow the mouse in a game where you use it for aiming a weapon.

The broadcasts you receive differ according to the following flag settings:

o If you set the GADGIMMEDIATE and RELVERIFY flags, you learn that the gadget

was selected, get some mouse reports (at least one), and find out that the mouse button

was released over the gadget.

o If you set only the GADGIMMEDIATE flag, you learn that the gadget was selected,

and get some mouse reports. Then the mouse reports will stop (when the user releases

the select button, though you'll have no way of knowing for sure that this has hap

pened).

Intuition Version 29.4 5-9

o If you set only the RELVERIFY flag, you get some mysterious, anonymous mouse

reports (which may be just what you want) followed, perhaps, by a release event for a
gadget.

o If you set neither the GADGIMMEDIATE nor the RELVERIFY flag, you get only

mouse reports. This may be exactly what you want.

The FOLLOWMOUSE, GADGIMMEDIATE, and RELVERIFY flags are all set in the Activa

tion field of the Gadget structure.

GADGETS IN WINDOW BORDERS

In windows only, you can elect to put your own gadgets in the borders. In the Gadget struc

ture, you set one or more of the border flags to tuck your gadget away into the window border.

Setting these flags also tells Intuition to adjust the size of the window's borders to accommodate

the gadget.

Note that the borders are adjusted only when the window is opened. Although you can add

and remove window gadgets after the window is opened, with AddGadgetQ and Remo-

veGadgetQ, Intuition does not readjust the borders.

Note also that you can put a given gadget in more than one border by setting more than one

border flag. Ordinarily, it only makes sense to put a gadget into two adjoining borders. If you

set both side border flags or both the top and bottom border flags for a particular gadget, you

get a window that's all border.

The flags are RIGHTBORDER, LEFTBORDER, TOPBORDER, and BOTTOMBORDER; and

you set them in the Activation field of the gadget structure.

MUTUAL EXCLUDE

NOTE: As of the time this was published, this feature had not been implemented.

If a gadget is selected and a bit has been set in the MutualExclude variable of the gadget, the

gadget corresponding to that bit (for example, bit 0 set refers to the first gadget in the gadget

list, bit 2 to the third, and so on) becomes disabled. Intuition sets or clears the appropriate bits

in the disabled gadgets and changes the display to reflect the new state of affairs. It's up to

your program to note internally, as needed, that the other gadgets have been disabled. Note

that there is no reason to limit yourself to 32 gadgets in the gadget list. However, the mutual

exclude works only on the first 32 gadgets in a list.

GADGET HIGHLIGHTING

You can change the appearance of a selected gadget to let the user know that the gadget has

indeed been selected.

You select a highlighting method by setting one of the highlighting bits in Flags. Note that you

must specify one of the highlighting values. If you don't want any highlighting, then set the

GADGHNONE bit in the gadget's Flag field,

5-10 Intuition Version 29.4

The methods of highlighting after selection are described below.

Highlighting by Color Complementing

You can highlight by complementing all of the colors in the gadget's select box. In the context,

complementing means the complement of the binary number used to select a particular color

register. For example, if the color in color register 2 is used (binary 10) in some of the pixels in

the selected gadget, those pixels get changed to whatever color is in color register 1 (binary 01).

Figure 5-3 (the good-idea figure) shows an example of complement highlighting. Note that only

the select box of the gadget is complemented, while the text, which is outside of the select box,

is not disturbed. See Chapter 9, "Images, Line Drawing, and Text", for more information about

complementing and about color in general.

Highlighting by Drawing a Box

To highlight by drawing a simple border around the gadget's select box, set the GADGHBOX

bit in the Flags field.

Highlighting with an Alternate Image or Alternate Border

You can supply an alternate Image or Border imagery as highlighting. When the gadget is

selected, the alternate Image or Border is displayed in place of the non-highlighted imagery. If

the non-highlighted imagery is an Image, the highlight imagery should be an Image as well; the

same is true for Border imagery. Figure 5-2 (the light-bulb illustration) shows an example of

this method of highlighting. For this highlighting method, you should set the SelectRender field

of the gadget structure to point to the Image structure or Border structure for the alternate

display.

An Image or Border structure contains a set of coordinates that specifies its location when

displayed. Intuition renders the image or border relative to the top left corner of the gadget's

select box.

For information about how to create an Image or Border structure, see Chapter 9, "Images, Line

Drawing, and Text".

GADGET ENABLING AND DISABLING

You can disable a gadget so that it cannot be selected by the user. When a gadget is disabled,

its image is "ghosted", and it cannot be selected. Ghosted means that the normal image is

overlaid with a pattern of dots, thereby making the image less distinct. Before you first submit

your gadget to Intuition, you initialize whether your gadget is disabled by setting or not setting

the GADGDISABLE flag in the gadget's Flags field. If you always want the gadget to be

enabled, you can ignore this flag.

Intuition Version 29.4 5-11

After you've submitted a gadget for Intuition to display, you can change its current enable state

by calling OnGadgetQ or OffGadgetQ. If it's a requester gadget, the requester must currently be

displayed. If you use OnGadgetQ to enable a previously disabled gadget, its image is returned

to its normal, non-ghosted, state.

BOOLEAN GADGET TYPE

This is a simple TRUE or FALSE gadget. For Boolean gadgets, you can choose from two

methods of selecting—hit select or toggle select:

o Hit select means that when the gadget is hit (that is, when the user moves the pointer

into the select box and presses the mouse select button) the gadget becomes selected

and the select highlighting method is employed. When the mouse select button is

released, the gadget is unselected and unhighlighted.

o Toggle select means that when the gadget is hit, it toggles between selected and

unselected. That is, if the user selects the gadget, it remains selected when the user

releases the button. To "unselect" the gadget, the user has to repeat the process of hit

ting the gadget. You can have the imagery reflect the selected/unselected state of the

gadget by supplying an alternate image as the highlighting mode of the gadget. When

the gadget is selected, the chosen highlighting method is employed.

Note the following two flags that have an effect upon toggle-selection:

o If you want a gadget to be toggle-selected, you need to set the TOGGLESELECT flag

in the Activation field of the Gadget structure.

o The SELECTED flag in Gadget structure Flags determines the initial and current

on/off selected state of a toggle-selected gadget. If SELECTED is set, the gadget will

be highlighted. You can set the SELECTED flag before submitting the gadget to Intui

tion if you like. You can examine this flag at any time to determine whether the user

has selected this gadget.

If a Boolean gadget is selected by the user, the application will hear about it. If it's never

selected, the application will never know. This differs from string or proportional gadgets,

which always are set to some value, even if that value is the one initialized by you.

PROPORTIONAL GADGET TYPE

This is an enormously flexible input device. You can use one of these to get a proportional set

ting from the user or to display a proportional value to the user. Best of all, you can use the

same gadget to accomplish both of these feats.

The user can adjust the setting of a proportional gadget to specify how much of some measur

able data or attribute is desired. For instance, the user may adjust a proportional gadget to

specify a location in a text file or a desired volume setting. The current setting of a propor

tional gadget may also be set by the program as an indicator of how much of some measurable

data or attribute is visible or available. For instance, the proportional gadget of a text editor's

5-12 Intuition Version 29.4

window might show how many lines are currently being displayed out of the total lines in the

text file. A graphics program may want to allow the user to set the amount of red, green, and

blue in a color, and so provides a proportional gadget for each of the three hues. The graphics

program would initialize these settings to designate how much red, green, and blue is already

contained in the color. An audio program may deal with the volume of the sound being pro

duced by providing a gadget that allows the user to set the volume and to see what the current

volume is in relation to the highest and lowest possible volume settings.

Proportional gadgets can do all of these things for you, and much more, because they can take

many shapes and sizes and get fractional settings on either the vertical or horizontal axis, or

both.

A proportional gadget has several parts that work together to give the gadget its flexibility.

They are the the pot variables, the body variables, the knob, and the container.

o The HorizPot and VertPot variables contain the actual proportional values. The word pot

is short for potentiometer, which is an electrical analog device that can be used to adjust

some variable value. The proportional gadget pots enable the user or program to set how

much of the total data is visible or available. Because they represent fractional parts of a

whole, the values in these variables ranges from 0 to (almost) 1. The data, then, ranges

from none visible or available to all of it visible or available.

There are two pot variables because proportional gadgets are adjustable on the horizontal

axis or the vertical axis or both. For example, a gadget that allows the user to center the

screen on the video display, or center his gunsights on a fleeing enemy, has to be adjustable

on both axes.

Pot variables are typically initialized to 0, and change while the user is playing with the

gadget. You can initialize the pot variables to whatever you want. In the case of the color

gadget, you might want to initialize them to some current color. You may read the values

in the pots any time you want after you have submitted the gadget to the user via Intui

tion. They will always have the current settings as adjusted by the user.

o The HorizBody and VertBody variables describe the increment, or typical step value, by

which the pot variables change. For example, the proportional gadgets for color mixing

might allow the user to add or subtract a color by 1/16 of the full value each time, as there

are 16 possible settings for each RGB (red, green, blue) component of a color on the Amiga.

The proportional gadget for centering the screen might allow the user to move the screen

vertically a line at a time, or you may choose to have the step increment be many lines, and

leave the fine-resolution tuning to the use of the gadget's knob.

Body variables are also used in conjunction with the auto-knob (described below) to display

for the user how much of the total quantity of data is directly available. For instance, if

the user is working on a text file that's 15 lines long, and 5 lines of the file are currently

visible in the window, then you can graphically represent the total size of the file by setting

the body variable to one third (OxFFFF / 3 = 0x5555). In this case, the auto-knob would

fill one third of the container, which represents the proportion of the visible text lines to the

total number of text lines. Also, the user can tell at a glance that clicking in the container

(not on the knob) will advance the text file by one-third in any direction, to the next "win

dow" of data.

You can set the two body variables to the same or different increments. When the user

clicks in the container, your pot variables are adjusted by the amount set in the body vari

ables.

Intuition Version 29.4 5-13

o The knob is the object actually manipulated by the user to change the pot variables by the

increments specified in the body variables. The knob is directly analogous to proportional

controls like the volume knob on a radio, if the Intuition knob is restricted to one axis of

movement. If the knob is free to move on both axes, it's more analogous to, say, a control-

stick of an airplane. The user can move the knob by placing the pointer on it and dragging

it on the vertical or horizontal axis or by moving the pointer near it (within the select box)

and clicking the mouse button. With each click, the pot variable is increased or decreased

by one increment, defined by the settings of the Body variables. The current position of the

knob reflects the pot value. For instance, in the color selection gadget, the knob slides in a

long narrow container. As the user moves the knob to the right, more of that color is

added. When the knob is halfway along the container, the value in HorizPot is also half

way. For a picture of this color selection gadget, see the Preferences display in Figure 11-2.

You can design your own imagery for the knob or use Intuition's very handy auto-knob.

The auto-knob is a rectangle that can move on either axis and changes its length or height

according to the current body settings. The auto-knob also proportionally changes in size

when the user sizes the window. Therefore, you can place an auto-knob in a proportional

gadget that sizes relative to the size of a window, and the auto-knob will always be propor

tionally correct. For example, consider a proportional gadget with auto-knob being used as

a scroll bar in the right border of a window. If the VertBody variable is set to show that

1/3 of a text file is being displayed in the window, the auto-knob fills 1/3 of the container.

If the user makes the window (and therefore the container) larger, the auto-knob gets

larger, too, so that it still visually represents 1/3. For an example of such a scroll bar, see

Figure 5-4. This is yet another visual aide for the user, which makes the user-interface of

the Amiga as intuitive to use as possible.

o The container is the area in which the knob can move. It is actually the select box of the

gadget. The size of the container, like that of any other gadget select box, can be relative

to the size of the window.

The pot variable is a 16-bit word that contains a value ranging from 0 to OxFFFF. This value

range represents a fixed-point fraction that ranges from 0 to (almost) 1. You need to convert

the current setting of the pot variable to a number that you can use. The proportional gadget

example below shows how to do this conversion.

/***

* Conversion of a pot variable

**

#define MAXSECONDS 4 /* an arbitrary assignment */

#define MILLION 1000000 /* a real assignment */

LONG RealTime;

SHORT Seconds, MicroSeconds;

The next line converts the 16-bit fraction into a 32-bit intermediate value which expresses

5-14 Intuition Version 29.4

integer and fractional parts of the constant MAXSECONDS. The integer portion is in the

upper 16 bits, and the fractional remainder is in the lower 16.

RealTime = (PropInfo.HorizPot + 1) * MAXSECONDS;

This line gets the number of seconds, which is the integer portion:

Seconds = RealTime >> 16;

Because the lower 16 bits represent only a fraction, we must multiply this by some other mean

ingful constant to have it mean something real. Because we want the fractional portion to

represent microseconds and there are a million microseconds to the second, we'll multiply the

fraction by a MILLION. Then, in the integer portion (the upper 16 bits) we'll find the whole

number of millionths of a second contained in RealTime. (By the way, in the lower 16 bits of

the multiplication, which we shift away into the bottomless bit bucket, is a fraction representing

the fractional part of a millionth of a second contained in RealTime. If we wanted to be techni

cally accurate, we should test whether this fraction is greater than or equal to 0x8000 (one half),

and round our MicroSeconds result up if it is.)

MicroSeconds — ((RealTime & OxFFFF) * MILLION) >> 16;

You set up a proportional gadget like any other gadget except for the extra Proplnfo data struc

ture (shown below under "Using Application Gadgets"). Carry out the following procedures to

set up the Proplnfo structure:

o If you want the auto-knob, set the AUTOKNOB flag and set GadgetRender to point to

an Image. In this case, you don't initialize the Image structure.

If you want your own knob imagery instead, GadgetRender points to a real Image or

Border structure.

o Set either or both of the FREEHORIZ and FREEVERT flags according to the

direction(s) you want the knob to move.

o Initialize either or both of the HorizPot and VertPot variables to their starting values.

o Set either or both of the HorizBody and VertBody variables to the increment you want.

If there is no data to show or the total amount displayed is less than the area in which

to display it, set the body variables to the maximum (OxFFFF).

o The remaining variables and flags are used by Intuition.

In the Gadget structure, set the GadgetType field to PROPGADGET and set the Speciallnfo

field to point to an instance of a Proplnfo structure.

After the gadget is displayed, you can call ModifyPropf) to change the flags and the pot and

body variables. The gadget's internal state will be recalculated and the imagery will be

redisplayed to show the new state.

If you receive a message telling you that the user has played with this gadget, you can examine

the KNOBHIT flag in the Proplnfo structure. This flag tells you whether the user hit the knob,

or hit in the container but not on the knob itself. If the flag is set, the user has hit the knob

Intuition Version 29.4 5-15

and moved it.

STRING GADGET TYPE

A string gadget prompts the user to enter some text. Like a proportional gadget, a string

gadget can also be used in many different ways. String gadgets also require their own special

structure, called the Stringlnfo structure.

A string gadget consists of a container and buffers to hold the strings. You supply two buffers

for the string gadget. The input buffer contains the "initial" string, and the other is an

optional "undo" buffer. You pre-set the initial string. By pre-setting the string, you give the

user the choice of editing the initial string or simply accepting the default initial string.

If you've given Intuition an undo buffer, the string in the gadget reverts to the initial setting

when the user types "Right AMIGA - Q". (To type this key sequence, the user holds down the

right AMIGA key while pressing the Q key.)

You specify the size of the container into which the user types the string. Like the container of

the proportional gadget, the container for the string gadget is its select box. As the user types

text into a string gadget, the characters appear in the gadget's container.

You can change the justification of the string as it's displayed in the container. The default is

left-justification. If the flag STRINGCENTER is set, the text is center-justified; if

STRINGRIGHT is set, the text is right-justified.

A very important and useful feature of the string gadget is that you can supply a buffer to con

tain more text than will fit in the container. This allows you to get text strings from the user

that are much longer than the visible portion of the buffer. Intuition maintains the cursor posi
tion and scrolls the text in the container as needed.

You can initialize the input buffer to any starting value, as long as the initial string is ter

minated with a null. If you want to initialize the buffer to the null string (no characters), you

must put a null character in the first position of the buffer. After the gadget is de-selected by

the user (either by hitting the RETURN key or by using the mouse to select some other opera
tion), you can examine this buffer to discover the current string.

String gadgets feature "auto-insert", which allows the user to insert ASCII characters wherever

the cursor is. The following simple editing functions are available to the user:

5-16 Intuition Version 29.4

Table 5-2: Editing Keys and Their Functions

KEY(S)

or

SHIFT 4- or

DEL

BACKSPACE

RETURN

FUNCTION

Move the cursor around the current string.

Move the cursor to the beginning or end of

current string.

Delete the character under the cursor.

Delete character to left of cursor.

Terminate input and de-select the gadget.

If the RELVERIFY activation flag is set,

notify the program that the user has select

ed this gadget.

Right AMIGA - Q Undo (cancel) the last editing change to the

string. To allow the user to undo, you have

to supply another buffer as large as the in

put buffer. All string gadgets can share the

same undo buffer

You can supply any type of image for the rendering of this gadget—Image or Border type—or

no image at all. For this release, you must specify that the highlighting is of type

GADGHCOMP (complementary), and you cannot supply an alternate image for highlighting.

The string gadget inherits the font and input attributes of the window or screen. If you haven't

done anything fancy, the strings will appear in the default font with simple ASCII key transla

tions. If you are using the Console Device for input, you can set up alternate key-mapping any

way you like. If you do, Intuition will use your key map. Nevertheless, you get the default sys

tem font. See the Amiga ROM Kernel Manual for more information about the Console Device

and key-mapping.

For a string gadget, you set the GadgetType field to STRGADGET in the Gadget structure.

Also set the Speciallnfo field to point to an instance of a Stringlnfo structure. This structure

contains buffer and container information.

INTEGER GADGET TYPE

The integer gadget is really a special sort of string gadget. You initialize it as you do a string

gadget, except that you also set the flag LONGINT in the gadget's Activation variable. The

user interacts with an integer gadget using exactly the same rules, except Intuition filters the

input and allows the user to enter only a unary sign and digits. The integer gadget returns a

signed 32-bit integer in the Stringlnfo variable Longlnt.

Intuition Version 29.4 5-17

To initialize an integer gadget, in this release, you need to pre-set the buffer by putting an ini

tial integer string in it. It is not sufficient to initialize an integer gadget by setting a value in
the Longlnt variable.

To specify that this string gadget is an integer gadget, set the flag LONGINT in the gadget's
Activation variable.

COMBINING GADGET TYPES

You can make some very useful gadgets by combining types. As an example, you can make a

horizontal or vertical scroll bar with a proportional gadget and two Boolean gadgets. Figure
5-4 shows an example.

::

1

■'.■-■.
■

-

OPEN PAINTING

PLEASE SELECT A PAINTING NAME

transfer
safe

face

debus

libs

OR TYPE IN A NAME

face

OK? CANCEL

. --

:, ■. .:

1

-

."■"...

Figure 5-4: Example of Combining Gadget Types

If the scroll bar goes in the right border of the window, then you may wish to place the system

sizing gadget in the right border by setting the Flag SIZEBRIGHT in the window structure.

Remember that the sizing gadget has to fit in either the right or bottom border. You get to

choose which. If you are going to cause the right edge border to be wide enough to accommo

date a scroll bar, then you might as well put the sizing gadget there, too.

5-18 Intuition Version 29.4

Using Application Gadgets

To create application gadgets, you follow these steps:

1. Create a structure for each gadget.

2. Create a linked list of gadgets for each display element (screen, window, or requester)

that has gadgets attached to it.

3. Set the Gadgets variable in your screen, window, or requester structure to point to the

first gadget in the list.

Each gadget structure includes specifications for:

o either an image or a border or NULL for no imagery

o the select box of the gadget, which is the zone Intuition uses to detect if the user is

selecting that gadget

o left and top offsets that are either are absolute or relative to the current borders of the

window, requester, or screen containing the gadget

o width and height dimensions that are absolute or relative to the current size of the win

dow, requester, or screen containing the gadget

o gadget type—Boolean, integer, proportional, or string

o the method of highlighting the gadget, if any

o how you want Intuition to behave while the user is playing with your gadget

GADGET STRUCTURE

Here is the general specification for a gadget structure:

Intuition Version 29.4 5"19

struct Gadget

struct Gadget *NextGadget;

SHORT LeftEdge, TopEdge, Width, Height;

USHORT Flags;

USHORT Activation;

USHORT GadgetType;

APTR GadgetRender;

APTR SelectRender;

struct IntuiText *GadgetText;

LONG MutualExclude;

APTR Speciallnfo;

USHORT GadgetID;

APTR UserData;

Here are the meanings of the variables and flags in the gadget structure:

NextGadget

A pointer to the next gadget in the list. The last gadget in the list should have a

NextGadget value of NULL.

LeftEdge, TopEdge, Width, Height

These variables describe the location and dimensions of the select box of the gadget. Both

locations and dimensions can be either absolute or relative to the edges and size of the win

dow, screen, or requester that contains the gadget.

LeftEdge and TopEdge are relative to one of the corners of the base structure, according to

how GRELRIGHT and GRELBOTTOM are set in the Flags variable below.

Width and Height can be either absolute dimensions or a negative increment to the width

and height of a requester, screen, or alert or the current width and height of a window,

according to how the GRELWIDTH and GRELHEIGHT flags are set below.

Flags

The Flags field is shared by your program and Intuition. See the section below called

"Flags" for a complete description of all the flag bits.

Activation

This field is used for information about some gadget attributes. See the Activation Flags

section below for a description of the various flags.

GadgetType

This field contains information about gadget type and in what sort of display element the

gadget is to be displayed.

You must set one of the following flags to specify the type:

5-20 Intuition Version 29.4

BOOLGADGET

Boolean gadget type.

STRGADGET

String gadget type.

For an integer gadget, also set the LONGINT flag. See the "Flags" section below.

PROPGADGET

Proportional gadget type.

The following flags tell Intuition if the gadget is for a screen, requester, or Gimmezerozero

window:

SCRGADGET

Set this bit if this gadget is a screen gadget, clear it if not.

GZZGADGET

If this gadget is for a Gimmezerozero window, setting this flag puts the gadget in the

special bit-map for gadgets and borders (and out of your inner window). If you don't

set this flag, the gadget will go into your inner window. If the destination of this

gadget is not a Gimmezerozero window, clear this bit.

REQGADGET

If this gadget is a Requester gadget, set this bit, otherwise clear it.

GadgetRender

This is a pointer to the Image or Border structure containing the graphics of this gadget.

If this field is set to NULL, no rendering will be done.

NOTE: To tell Intuition what sort of data is pointed to by this variable set or clear the

Flag bit, GADGMAGE.

SelectRender

This field contains a pointer to an alternate Image or Border for highlighting.

NOTE: You specify that you want SelectRender by setting the GADGHIMAGE flag. You

specify which type, Image or Border, by setting the same GADGIMAGE bit that you set for

GadgetRender above. SelectRender must point to the same data type as GadgetRender.

GadgetText

If you want text printed after this gadget is rendered, set this field to point to an IntuiText

structure. The offsets in the IntuiText structure are relative to the top left of the gadget's

select box.

Set this field to NULL if the gadget has no associated text.

MutualExclude

When this feature is implemented, you will use these bits to describe which if any of the

other gadgets are mutually excluded by this one.

Intuition Version 29.4 5-21

Meanwhile, Intuition ignores this field.

Speciallnfo

If this gadget is of type proportional, string, or integer, this variable points to an instance of

a Proplnfo or Stringlnfo data structure, respectively. The structure contains the special

information needed by the gadget.

If the gadget is not of type proportional, string, or integer, this variable is ignored.

GadgetID

Strictly for your own use. Assign any value you'd like here. This variable is ignored by

Intuition.

Typical uses in C are in switch and case statements, and in assembly language, table

lookup.

UserData

A pointer to any general data you'd care to associate with this particular gadget. This vari

able is ignored by Intuition.

FLAGS

Following are the flags you can set in the Flags variable of the gadget structure.

GADGHIGHBITS

Combinations of these bits describe what type of highlighting you want when the user

has selected this gadget. There are four highlighting methods to choose from. You

must set one of the four flags below.

GADGHCOMP

Complements all of the bits contained within this gadget's select box.

GADGHBOX

Draws a box around this gadget's select box.

GADGHIMAGE

Displays an alternate Image or Border.

GADGHNONE

Set this flag if you want no highlighting.

GADGMAGE

Use this bit if you have not set GadgetRender to NULL. Set this flag if the gadget

should be rendered as an Image, clear the flag if it's a Border.

This bit is also used by SelectRender.

5-22 Intuition Version 29.4

GRELBOTTOM

Set this flag if the gadget's TopEdge variable describes an offset relative to the bottom

of the display element containing it. Clear this flag if TopEdge is relative to the top.

GRELRIGHT

Set this flag if the gadget's LeftEdge variable describes an offset relative to the right

edge of the display element containing it. Clear this flag if LeftEdge is relative to the

left edge.

GRELWIDTH

Set this flag if the gadget's Width variable describes an increment to the width of the

display element containing the gadget. Clear this flag if Width is an absolute value.

GRELHEIGHT

Set this flag if the gadget's Height variable describes an increment to the height of the

display element containing the gadget. Clear this flag if Height is an absolute value.

SELECTED

Use this flag to pre-select the on/off selected state for a toggle-selected gadget. If the

flag is set, the gadget starts off being on and it is highlighted. If the flag is clear, the

gadget starts off in the unselected state.

GADGDISABLED

If this flag is set, this gadget is disabled. If you want to enable or disable a gadget later

on, you can change the current state with the routines OnGadgetQ and OffGadgetQ.

You don't need to use this flag if you want the gadget to always remain enabled.

ACTIVATION FLAGS

Here are the flags you can set in the Activation variable of the Gadget structure:

TOGGLESELECT

When this bit is set, the on/off selected state of the gadget (and its imagery) toggles

each time it is hit.

You preset the selection state with the gadget Flag SELECTED and later discover the

selected state by examining SELECTED.

GADGIMMEDIATE

Set this bit if you want to know immediately when the user selects this gadget.

RELVERIFY

This is short for "Release Verify." Set this bit if you want this gadget selection broad

cast to your program only if the user still has the pointer positioned over this gadget

when releasing the select button.

Intuition Version 29.4 5-23

ENDGADGET

This flag pertains only to gadgets attached to requester. To make a requester go away,

the user has to select a gadget that has this flag set.

See Chapter 7, "Requesters and Alerts", for more information about requester gadget

considerations.

FOLLOWMOUSE

When the user selects a gadget that has this flag set, you will receive mouse position

broadcasts every time the mouse moves at all.

You can use the following flags in window gadgets to adjust the size of a window's borders

when you want to tuck your own window gadgets out of the way into the window border:

RIGHTBORDER

If this flag is set, the width and position of this gadget are used in deriving the width of

the window's right border.

LEFTBORDER

If this flag is set, the width and position of this gadget are used in deriving the width of

the window's left border.

TOPBORDER

If this flag is set, the height and position of this gadget are used in deriving the height

of the window's top border.

BOTTOMBORDER

If this flag is set, the height and position of this gadget are used in deriving the height

of the window's bottom border.

The following flags apply to string gadgets:

STRINGCENTER

If this flag is set, the text in a string gadget is center-justified when rendered.

STRINGRIGHT

If this flag is set, the text in a string gadget is right-justified when rendered.

LONGINT

If this flag is set, the user can construct a 32-bit signed integer value in a normal string

gadget. You must also pre-set the string gadget input buffer by putting an initial

integer string in it.

ALTKEYMAP

This flag specifies that you have an alternate key-map. You also need to put a pointer

to the key-map in the Stringlnfo structure variable AltKeyMap.

5-24 Intuition Version 29.4

SPECIALINFO DATA STRUCTURES

Following are the specifications for the structure pointed to by the Speciallnfo pointer in the

Gadget structure.

Proplnfo Structure

This is the special data required by the proportional gadget.

struct Proplnfo

USHORT Flags;

USHORT HorizPot;

USHORT VertPot;

USHORT HorizBody;

USHORT VertBody;

USHORT CWidth;

USHORT CHeight;

USHORT HPotRes, VPotRes;

USHORT LeftBorder;

USHORT TopBorder;

>;

The meanings of the fields in this structure are as follows:

Flags

General purpose flag bits:

AUTOKNOB

Set this if you want to use the auto-knob.

FREEHORIZ

If set, the knob can move horizontally.

FREEVERT

If set, the knob can move vertically.

KNOBHIT

This is set when this knob is hit by the user.

PROPBORDERLESS

Set this if you want your proportional gadget to appear without a border drawn around

its container.

Intuition Version 29.4 5-25

Initialize these variables before the gadget is added to the system; then look here for the current

settings:

HorizPot

Horizontal quantity percentage.

VertPot

Vertical quantity percentage.

These variables describe what percentage of the the entire body of the stuff is actually shown at

one time:

HorizBody

Horizontal body.

VertBody

Vertical body.

Intuition sets and maintains the following variables:

CWidth

Container real width.

CHeight

Container real height.

HPotRes, VPotRes

Pot increments.

LeftBorder

Container real left border.

TopBorder

Container real top border.

Stringlnfo Structure

This is the special data required by the string gadget.

5-26 Intuition Version 29.4

struct Stringlnfo

{
UBYTE *Buffer;

UBYTE *UndoBuffer;

SHORT BufferPos;

SHORT MaxChars;

SHORT DispPos;

SHORT UndoPos;

SHORT NumChars;

SHORT DispCount;

SHORT CLeft, CTop;

struct Layer *LayerPtr;

LONG Longlnt;

struct KeyMap *AltKeyMap;

The meanings of the fields in this structure are given in the following.

You initialize the following variables and Intuition maintains them:

Buffer

Pointer to a buffer containing the start and final string. The string you write into this

buffer should be null-terminated.

UndoBuffer

Optional pointer to a buffer for undoing the current entry. If you are supplying an

undo buffer, the memory location should be as large as the buffer for the start and final

string. Because only one string gadget can be active at a time under Intuition, all of

your string gadgets can share the same undo buffer. However, the undo buffer must be

large enough to hold the largest buffer for start and final strings.

MaxChars

must be number of characters in the buffer, including the terminating NULL.

BufferPos

Initial character position of the cursor in the buffer.

DispPos

Buffer position of the first displayed character.

Intuition initializes and maintains these variables for you:

UndoPos

Character position in the undo buffer.

NumChars

Number of characters currently in the buffer.

Intuition Version 29.4 5-27

DispCount

Number of whole characters visible in the container.

CLeft, CTop

Top left offset of the container.

LayerPtr

The Layer containing this gadget.

Longlnt

After the user has finished entering an integer, you can examine this variable to dis

cover the value if this is an integer string gadget.

AUKeyMap

This variable points to your own alternate keymap; you must also set the ALTKEYMAP

bit in the Activation flags of the gadget:

GADGET FUNCTIONS

These are brief descriptions of the functions you can use to manipulate gadgets. For complete

descriptions see Appendix A, "Intuition Function Calls".

Adding and Removing Gadgets from Windows or Screens

Use the following functions to add a gadget to or remove a gadget from the gadget list of a win

dow or screen.

AddGadgetfAddPtr, Gadget, Position)

Adds a gadget to the gadget list of a window or screen.

AddPtr is a pointer to the window or screen.

Gadget is a pointer to the Gadget.

Position is where the new gadget should go in the list.

RemoveGadgetfRemPtr, Gadget)

Removes a gadget from the gadget list of the specified window or screen.

RemPtr is a pointer to the window or screen from which gadget is to be removed.

Gadget is a pointer to the gadget to be removed;

Disabling or Enabling a Gadget

The following functions disable or enable a gadget in a window, screen, or requester.

5-28 Intuition Version 29.4

OnGadget(Gadget,Ptr,Requester)

Enables the specified gadget.

Gadget points to the Gadget you want enabled.

Ptr points to a screen or window.

Requester points to a requester, or is NULL.

OffGadgetfGadget, Ptr, Requester)

Disables the specified Gadget.

Gadget points to the gadget to be disabled.

Ptr points to a screen or window structure.

Requester points to a requester or is NULL.

Redraw the Gadget Display

This function redraws all of the gadgets in the gadget list of a screen, window, or requester,

starting with the specified gadget. You might want to use this if you have modified the imagery

of your gadgets and want to display the new imagery. You might also use it if you think some

graphic operation has trashed the imagery of the gadgets.

RefreshGadgetsfGadgets, Ptr, Requester)

Gadgets points to the gadget where the redrawing should start.

Ptr points to the window or screen.

Requester points to a requester or is NULL.

Modifying a Proportional Gadget

Use this function to modify the current parameters of a proportional gadget.

ModifyPropfGadget, Ptr, Requester, Flags, HorizPot, VertPot, HorizBody, VertBody)

Modifies the parameters of a proportional gadget. The gadget's internal state is

recalculated and the imagery is redisplayed.

Intuition Version 29.4 5-29

Chapter 6

MENUS

This chapter shows how to set up the menus that let the user choose from your program's com

mands and options. The Intuition menu system handles all of the menu display from menu

data structures that you set up. If you wish, some or all of your menu selections can be graphic

images instead of text.

The first section of this chapter describes menus, menu items, and sub-items; how they are

displayed; and how your program finds out about the user's menu selections. The second sec

tion gives complete specifications for all the menu structures and menu-related functions.

About Menus

Intuition's menu system provides you with a convenient way to group together and display the

functions and options that your application presents to the user. For instance, in a word-

processor environment, menus may provide the following functions:

o access to text files

o edit functions

o search and replace

o formatting

o multiple fonts

o a general help facility

Or in a game, menus may provide the user with choices about how to:

o load a new game or save the current one

o get hints

o bring up special information windows

o set the difficulty level

o auto-annihilate the enemy

Menu commands are either actions or attributes. Actions are represented by verbs and attri

butes by adjectives. An attribute stays in effect until canceled, while a command is executed

and then forgotten. You can set up menus so that some attribute items are mutually exclusive

(selecting an attribute cancels the effects of one or more other attributes), or you can allow a

Intuition Version 29.4 6-1

number of attributes to be in effect at the same time. For example, an adventure game might

have a menu list for things that the hero is holding in his hand. He could hold several small,

lightweight objects, but holding the heavy sword excludes holding anything else. In a database

program, you might be able to choose to send a report to a file, to the window, or to a printer.

You could, for example, send it to both window and printer, while the "file" option excludes the

other two.

After you set up a linked list of menu structures (called a menu strip) and attach the list to a

window, the menu system handles the menu display. Using this list and any graphic images you

have designed, the menu system displays the menu bar text that appears across the screen title

bar when requested by the user. It also creates the lists of menu items and sub-menus that

appear at the user's request. The application doesn't have to worry about menus until Intuition

sends a message with news that the user has selected a menu item. This message gives the

application the number of the selected item.

You can enable and disable menus and menu items during the display of the window and make

changes to the menus you previously attached to a window. Disabling an item prevents the

user from selecting it, and disabled items are ghosted to look different from enabled items.

Menu items can be graphic images or text. When the user positions the pointer over an item,

the item can be highlighted through a variety of techniques and have a check mark placed next

to it. Next to the menu items, you can display command-key alternatives.

To activate the menu system, the user presses the mouse menu button (or an appropriate

command-key sequence) to display the menu bar in the screen title area. The menu bar

displays a list of topics (called menus) that have menu items associated with them.

Figure 6-1: Screen with Menu Bar Displayed

When the user moves the mouse pointer to a topic in the menu bar, a list of menu items

appears below the topic name. To select an item, the user moves the mouse pointer in the list

of menu items while holding down the menu button, releasing the button when the pointer is

over the desired item. If an item has a sub-item list, moving the pointer over the item reveals a

list of sub-items. The user moves the pointer over one of the sub-items and makes a selection in

6-2 Intuition Version 29.4

the same way as an item is selected. If there is a command-key sequence alternative, the user

can make menu selections with the keyboard instead of the mouse. Furthermore, the user can
select multiple items by:

o pressing and releasing the mouse select button without releasing the menu button. This

selects that item and keeps the user in "menu state" so that other items can be

selected.

o holding down both mouse buttons and moving the pointer over several items. This is
called "drag-selecting".

SUBMITTING AND REMOVING MENU STRIPS

Once you have constructed a menu strip, you submit it to Intuition using the function Set-

MenuStripQ. You must always remove every menu strip that you've submitted. When you

want to remove the menu strip, you call ClearMenuStripQ. If you want to change the menu

strip, you call ClearMenuStripf), change the menu, and resubmit it with SetMenuStripQ.

The flow of events for menu operations should be:

o OpenWindowQ

o Zero or more iterations of

- SetMenuStripf)

ClearMenuStripQ

o CloseWindowQ

Clearing the menu strip before closing the window avoids any of the problems that can occur if

the user is accessing menus when you close the window.

ABOUT MENU ITEM BOXES

The item box is the rectangle containing your menu items or sub-items. You do not have to

describe the size and location of the item or sub-item boxes directly. You describe the size

indirectly by how you place items and sub-items. Intuition figures out the size of the minimum

box required. It then adjusts the size of the box to make sure your menu display conforms to

certain design philosophy constraints for items and sub-items.

Items

o The item box must start no further right than the leftmost position of the menu

header's select box.

o The item box must end no further left than the rightmost position of the menu

header's select box.

Intuition Version 29.4 6-3

o The top edge of the menu box must overlap the screen's title bar by one line.

Sub-items

o The sub-item box must overlap its item's select box somewhere.

Left edge of the item box can—v

be no further right than this. \
^r—Right edge of the item box can

\ be no further left than this.

MENU HEADER

ITEM1

ITEM 2

ITEM 3

^—The item box overlaps the
menu bar by one line.

^s—The item box is tall enough

^^ to hold your lowest item.

Example Item Box

Figure 6-2: Example Item Box

6-4 Intuition Version 29.4

MENU HEADER

-The subitem box must overlap

the item's select box somewhere.

(It does not matter where.)

Example Subitem Box

Figure 6-3: Example Sub-Item Box

ACTION/ATTRIBUTE ITEMS AND THE CHECKMARK

Menu action items are selected and acted upon immediately. Action items can be selected

repeatedly. Every time the user selects an action item, the selection is transmitted to your pro

gram.

Menu attribute items, on the other hand, are selected and remain selected until the attribute is

mutually excluded by the selection of some other attribute item. Menu attribute items, when

selected, appear with a checkmark drawn along the left edge of the item's select box. A selected

attribute item cannot be reselected until mutual exclusion causes it to become unselected. See

the "Mutual Exclusion" section below for a description of how this works.

You specify that a particular menu item is an attribute item by setting the CHECKIT flag in

the Flags variable of the item's Menultem structure. If you set this flag, then this item will

have a checkmark drawn next to it whenever it is selected..

You can initialize the state of an attribute item by presetting the item's CHECKED flag. If this

flag is set when you submit your menu strip to Intuition, then the item is considered to be

already selected and the checkmark will be drawn.

You can use the default Intuition checkmark (y/), or you can design your own and set a

pointer to it in the NewWindows structure when you open a window. See Chapter 4, "Win

dows", for details about supplying your own checkmark.

If your items are going to be checkmarked, you should leave sufficient blank space at the left

edge of your select box for the checkmark imagery. If you are taking advantage of the default

Intuition Version 29.4 6-5

checkmarks, you should leave CHECKWIDTH (pixel width) amount of blank space on high-

resolution screens, and LOWCHECKWIDTH amount of blank pixels on low-resolution screens.

These are defined constants describing the pixel-width in high- and low-resolution. They define

the space required by the standard checkmarks (with a bit of space for aesthetic purposes). If

you would normally place the LeftEdge of the image within the item's select box at 5, and you

decide that you want a checkmark to appear with the item, then you should start the item at

5+CHECKWIDTH instead. You should also make your select box CHECKWIDTH wider than

it would be without the checkmark.

MUTUAL EXCLUSION

You can choose to have some of your attribute items, when selected, to cause other items to

become unselected. This is known as mutual exclusion. For example, if you have a list of menu

items describing the available type sizes for a particular font, the selection of any type size

would mutually exclude all other type sizes. You use the MutualExclude variable in the Menul-

tem structure to specify other menu items to be excluded when the user selects an item. Exclu

sion also depends upon the CHECKED and CHECKIT flags of the Menultem as explained

below.

o If CHECKIT is set, then this item is an attribute item that can be selected and

unselected. If CHECKED is not set;, then this item is available to be selected. If the

user selects this item, then the CHECKED flag is set and the user cannot then re-select

this item. If the item is selected, the CHECKED flag will be set, and the checkmark

will be drawn to the left of the item.

o If CHECKIT is not set, then this is an action item—not an attribute item. The

CHECKED flag is ignored and the checkmark will never be drawn. Mutual exclusion

affects only attribute items.

o If an item is selected that has bits set in the MutualExclude field, the CHECKIT and

CHECKED flags are examined in the excluded items. If any item is currently

CHECKED, its checkmark is erased.

o Mutual exclusion is an active event. It pertains only to items that have the CHECKIT

flag set. Attempting to exclude items that don't have the CHECKIT flag set has no

effect.

It's up to you to note internally as needed that excluded items have been disabled and

deselected.

In the MutualExclude field, bit 0 refers to the first item in the item list, bit 1 to the second, bit 2

to the third, and so on. In the adventure game example described earlier where carrying the

heavy sword excludes carrying any other items, the MutualExclude fields of the four items would

look like this:

Heavy sword OxFFFE

Stiletto 0x0001

Rope 0x0001

Canteen 0x0001

"Heavy Sword" is the first item on the list. You can see that it excludes all items except the

first one. All of the other items exclude only the first item, so that carrying the rope excludes

6-6 Intuition Version 29.4

carrying the sword, but not the canteen.

COMMAND-KEY SEQUENCES AND RENDERING

A command-key sequence is an event generated by the user, where the user holds down one of

the AMIGA keys (the ones with the fancy A) and presses one of the normal alphanumeric keys

at the same time. You can associate a command-key sequence with a particular menu item.

Menu command-key sequences are combinations of the right AMIGA key with any

alphanumeric character. If the user presses a command-key sequence that's associated with one

of your menu items, then Intuition will send you an event that will look like the user went

through the entire process of selecting the menu item manually. This allows you to provide

shortcuts to the user, since many people find it easy to memorize the command-key sequences

for often-repeated menu selections. When accessing those often-repeated selections, most users

would rather keep their hands on the keyboard than go to the mouse to make a menu selection.

You associate a command-key sequence with a menu item by:

o setting the COMMSEQ flag in the Flags variable of the Menultem structure, and

o putting the ASCII character (upper or lower case) that you want associated with the

sequence into the Command variable of the Menultem structure.

When items have alternate key sequences, the menu boxes show:

o a special AMIGA key icon rendered about one character span plus a few pixels from the

right edge of the menu select box, and

o the command-key used with the AMIGA key rendered immediately to the right of the

AMIGA key image, at the rightmost edge of the menu select box.

If you want to show a command-key sequence for an item, you should make sure that you leave

blank space at the right edge of your select box and imagery. You should leave COMMWIDTH

amount of blank space on high-resolution screens, and LOWCOMMWIDTH amount of space on

low-resolution screens.

Intuition Version 29.4 6-7

:ditProject

Undo

i-:l F-r-a.n

4 Cut

-Copy

Figure 6-4: Menu Items with Command Key Shortcuts

Please be sure to see Chapter 12, "Style Notes", for suggested command key sequences.

ENABLING AND DISABLING MENUS AND MENU ITEMS

Disabling menu items makes them unavailable for selection by the user. Disabled menus and

menu items are displayed in a "ghosted" fashion; that is, the imagery is overlaid with a faint

pattern of dots, making it less distinct. Enabling or disabling a menu or menu item is always a

safe procedure, whether or not the user is currently using the menus. A problem arises only if

you disable a menu item that the user has already selected with extended select. You will

receive a MENULIST message for that item, even though you think you have already disabled

it. You will have to ignore items that you already know are disabled.

You use the routines OnMenuf) and OffMenuQ to enable and disable individual sub-items, items

or whole menus. These routines check if the user is using the menus and whether the menus

need to be redrawn to reflect your new states.

CHANGING MENU STRIPS

If you want to make changes to the menu strip you previously attached to your window, you

must first call ClearMenuStripf). You may alter the menu strip only after it has been removed

from the window.

To add a new menu strip to your window, you must call ClearMenuStripQ before you call Set-

6-8 Intuition Version 29.4

MenuStripQ with the new menus.

MENU NUMBERS AND MENU SELECTION MESSAGES

An input event is generated every time the user activates the menu system by pressing the

mouse menu button (or entering an appropriate command-key sequence). Your program

receives a message of type MENULIST telling which menu item has been selected. If one of

your items has a sub-item list, the menu number you receive for that item includes some sub-

item selection.

Even if the user presses and releases the menu button without selecting any of the menu items,

an event is generated. If the user presses and releases the menu button without selecting one of

the menu items, you receive a message with the menu number equal to MENUNULL. In this

way, you can always find out when the user has simply clicked the menu button rather than

making a menu selection.

The user can select multiple menu items with one of the extended selection procedures (pressing

the mouse select button without releasing the menu button, or drag-selecting). Your program

finds out whether or not multiple items have been chosen by examining the field called

NextSelect in the menu item data structure. After you take the appropriate action for the item

selected by the user, you should check the NextSelect field. If the number there is equal to the

constant MENUNULL, there is no next selection. However, if it's not equal to MENUNULL,

the user has selected another option after this one. You should process the next item as well,

by checking its NextSelect field, until you find a NextSelect equal to MENUNULL.

The following code fragment shows the correct way to process a menu event:

while (MenuNumber != MENUNULL)

{
Item = ItemAddress(MenuStrip, MenuNumber);

/* process this item */

MenuNumber = Item->NextSelect;

The number given in the MENULIST message describes the ordinal position of the Menu in

your linked list, the ordinal position of the Menultem beneath that Menu, and (if applicable) the

ordinal position of the sub-item beneath that Menultem. Ordinal means the successive number

of the linked items, starting from 0. To discover the Menus and Menultems that were selected,

you should use the following macros:

Use MENUNUM(num) to extract the ordinal menu number from the value.

Use ITEMNUM(num) to extract the ordinal item number from the value.

Use SUBNUM(num) to extract the ordinal sub-item number from the value.

MENUNULL is the constant describing "no menu selection made".

Likewise, NOMENU, NOITEM, and NOSUB are the null states of the parts.

For example:

Intuition Version 29.4 6-9

if (number == MENUNULL) then no menu selection was made, else

MenuNumber = MENUNUM(number);

ItemNumber = ITEMNUM(number);

SubNumber = SUBNUM(number);

if there were no sub-items attached to that item, SubNumber will equal NOSUB.

When you get a menu number, it describes either MENUNULL or a valid menu selection. If it's

a valid selection, it will always have at least a menu number and a menu item number. Users

can never "select" the menu text itself, but they always select at least an item within a menu.

Therefore, you always get one menu specifier and one menu item specifier. If a given menu item

has a sub-item, you will receive a sub-item specifier as well. Just as it's not possible to select a

menu, it's not possible to select a menu item that has a list of sub-items. The user must select

one of the options in the sub-item before you ever hear about it as a valid selection.

If the user enters a command-key sequence, Intuition checks to see if the sequence is associated

with a current menu item. If so, Intuition sends the menu item number to the program with

the active window just as if the user had made the selection using the mouse buttons.

The function ItemAddressQ translates a menu number into an item address.

HOW MENU NUMBERS REALLY WORK

Here is a description of how menu numbers really work. This should illuminate why there are

certain numeric restrictions on the number of menu components Intuition allows. You should

not use the information given here to access the menu number information directly. This dis

cussion is included only for completeness. To assure upward compatibility, always use the mac

ros supplied. For example, call ITEMNUM(MenuNumber) to extract the item number from the

variable MenuNumber. See the previous section, "Menu Numbers and Menu Selection Mes

sages", for a complete description of the menu number macros.

MENU NUMBERS are 16-bit numbers with 5 bits used for the menu number, 6 bits used for

the menu item number, and 5 bits used for the sub-item number. Everything is specified by its

ordinal position in a list of same-level pieces, as shown below.

cccccbbbbbbaaaaa

I i
| > These bits are for the menu number.

I
> These bits are for the menu items within the menu.

> These bits are for the sub-menu items within the menu items.

This means that for each level of menu item and sub-item, up to 31 pieces can be specified.

And there are 63 item pieces that you can build under each menu. 63 items per menu is a lot,

especially with 31 sub-items per item. You can have 31 menu choices across the menu bar (it

would be a tight squeeze, but in 80-column mode you could do it), and each of those menus can

exercise up to 1953 items. You shouldn't need any more choices than that.

6-10 Intuition Version 29.4

The value "all bits on" means that no selection of this particular component was made.

MENUNULL actually equals "no selection of any of the components was made" so MENUNULL

always equals "all bits of all components on".

Here's an example. Say that your program gets back the menu number (in hexadecimal)

OxOCAO. In binary that equals:

000011001010000 0

I
>Menu number 0

>Menu item number 0x25 = 37

> Sub-item number 1

Again, it is never safe to examine these numbers directly. Use the macros described above if

you want to design sanely and assure upward-compatibility.

INTERCEPTING NORMAL MENU OPERATIONS

You have two convenient ways to intercept the normal menu operations that take place when

the user presses the right mouse button. The first, MENUVERIFY, gives you the opportunity

to react before menu operations take place, and optionally to cancel menu operations. The

second, RMBTRAP allows you to trap right mouse button events for your own use.

MenuVerify

MenuVerify is one of the Intuition verification functions. These functions allow you to make

sure that you're prepared for some event before it takes place. Using MenuVerify, Intuition

allows all windows in a screen to verify that they are prepared for menu operations before the

operations begin. In general, you would want to use this if you are doing something special to

the display of a custom screen, and you want to make sure it's completed before menus are ren

dered.

Any window can access the MenuVerify feature by setting the MENUVERIFY flag in the

NewWindow structure when opening the window. When you get a message of class MENU-

VERIFY, menu operations will not proceed until you reply to the message.

The active window gets special MenuVerify treatment. It's allowed to see the MenuVerify mes

sage before any other window and has the option of cancelling menu operations altogether. You

could use this, for instance, to examine where the user has positioned the mouse when the right

button was pressed. If the pointer is in the menu bar area, then you can let normal menu

operations proceed. If the pointer is below the menu bar, then you can use the right button

event for some non-menu purpose.

You can tell whether or not you are the active window by examining the code field of the

MENUVERIFY message. If the code field is equal to MENUWAITING, you are not the active

window and Intuition is simply waiting for you to verify that menu operations may continue.

Intuition Version 29.4 6-11

However, if the code field is equal to MENUHOT, you ai£ the active window and you get to

decide whether or not menu operations should proceed. If you do nai want them to proceed,

you should change the code field of the message to MENUCANCEL before replying to the mes

sage. This will cause Intuition to cancel the menu operations.

No Menu Operations — Right Mouse Button Trap

By setting the RMBTRAP flag in the NewWindow structure when you open your window, you

select that you don't want any menu operations at all for your window. Whenever the user

presses the right button while your window is the active one, you will receive right button

events as normal MOUSEBUTTON events.

REQUESTERS AS MENUS

You may, in some cases, want to use a requester instead of a menu. A requester can function as

a "super-menu" because you can attach a requester to the double-click of the mouse menu but

ton. This allows users to bring up the requester on demand. With a requester, however, the

user must make some response before resuming input to the window. See Chapter 7, "Reques

ters and Alerts", for more information.

Using Menus

Follow these steps to design and use menus:

o Design the menu structures and link them together into a menu strip,

o Submit the menu strip to Intuition, which attaches the strip to a window

o Arrange for your program to respond to Intuition's menu selection messages.

To create the menu structures, you need to decide on:

o The menu names that appear in the screen title bar

o The menu items that appear when the user selects a menu, including:

o Each menu item's position in the list

o Text or a graphic image for each menu item

o Highlighting method for this item when the user positions the pointer over it

o Any equivalent command-key sequence

o Menu items that have have sub-items. For the sub-menu items, you make the same

decisions as for the menu items, except for this one.

6-12 Intuition Version 29.4

Menu strips are constructed of three components: menus, menu items, and sub-items. They

use two data types: Menu and Menultem. Sub-items are of the Menultem data type.

Menu is the data type that describes the basic unit of the menu strip. The menu strip is made

up of a linked list of Menus. Each menu is the header or topic name for a list of Menultems

that can be selected by the user. The user never selects just a Menu, but rather a Menu and at

least one of its Menultems.

The Menu structure contains the following:

o Menu bar text that appears across the screen's title bar when the menu button is

pressed

o The position for the menu bar text

o A pointer to the next in the list of Menus

o A pointer to the first in a linked list of Menultems

The Menultem structure contains the following:

o The location of the item (with respect to the select box of its Menu)

o A pointer to text or a graphics image

o Highlighting method when the user positions the pointer over this item

o Any equivalent command sequence

o The "select box" for the item (used to detect selection and for some of the highlighting

modes)

o Other items mutually excluded by the selection of this one (if any)

o A pointer to the first in a linked list of sub-items (if any)

o The menu number of the next selected item (if any). When more than one item has

been selected, this field provides the link.

The third menu component, the sub-item, uses the same data structure as the menu item.

Sub-items are identical in most respects to menu items. The differences are:

o The sub-item's location is relative to its menu item's select box.

o The sub-item's sub-item link is ignored.

MENU STRUCTURES

This sub-section contains the specifications for the menu structures:

o Menus - the headers that show in the menu bar

o Menultems - the items and sub-items that can be chosen by the user

Intuition Version 29.4

Menu Structure

Here is the specification for a Menu structure:

struct Menu

{
struct Menu *NextMenu;

SHORT LeftEdge, TopEdge, Width, Height;

USHORT Flags;

BYTE *MenuName;

struct Menultem *FirstItem;

};

The variables in the Menu structure have the following meanings:

NextMenu

This variable points to the next Menu header in the list. The last Menu in the list should

have a NextMenu value of NULL.

LeftEdge, TopEdge, Width, Height

These fields describe the select box of the header. Currently, any values you may supply

for TopEdge and Height are ignored by Intuition, which uses instead the screen's Top-

Border for the TopEdge and the height of the screen's Title Bar for the Height. This will

change someday when menu headers are allowed to be either textual or graphical, and are

allowed to appear anywhere in the menu title bar. LeftEdge is relative to the LeftEdge of

the screen plus the screen's left border width, so if you say LeftEdge is 0, Intuition puts this

header at the leftmost allowable position.

Flags

The flag space is shared by your program and Intuition. The flags are:

MENUENABLED

Whether or not this Menu is currently enabled. You set this flag before you submit the

menu strip to Intuition. If this flag is not set, the menu header and all menu items

below it will be disabled, and the user will not be able to select any of the items. After

you submit the strip to Intuition, you can change whether your menu is enabled or dis

abled by calling OnMenuQ or OffMenuQ.

MDRAWN

Whether or not this Menu's items are currently displayed to the user.

MenuName

This is a pointer to a null-terminated character string which is printed on the screen title

Bar starting at the LeftEdge of this Menu's select box, and TopEdge just below the screen

title bar's top border

6-14 Intuition Version 29.4

Firstltem

This points to the first item in the linked list of this Menu's items (Menultem structures).

Menultem Structure

Here is the specification for a Menultem structure (used both for items and sub-items):

struct Menultem

struct Menultem *NextItem;

SHORT LeftEdge, TopEdge, Width, Height;

USHORT Flags;

LONG MutualExclude

APTR ItemFill;

BYTE Command;

struct Menultem *SubItem;

USHORT NextSelect;

The fields have the following meanings:

Nextltem

Pointer to the next item in the list. The last item in the list should have a Nextltem value

of NULL.

LeftEdge, TopEdge, Width, Height

These fields describe the select box of the Menultem. The LeftEdge is relative to the

LeftEdge of the Menu. The TopEdge is relative to topmost position Intuition allows.

TopEdge is based on the way the user has the system configured, — which font, which reso

lution, and so on. Use 0 for the topmost position.

Flags

The flag space is shared by your program and Intuition. See "Menultem Flags" below for a

description of the flag bits.

MutualExclude

This LONG word refers to the items that may be on the same "plane" as this one (max

imum of 32 items). You use these bits to describe which if any of the other items are mutu

ally excluded by this one. This doesn't mean that you can't have more than 32 items in

any given plane, just that only the first 32 can be mutually excluded.

ItemFill

This points to the data used in rendering this Menultem. It can point to either an instance

of an IntuiText structure with text for this Menultem, or it can point to an instance of an

Image structure with image data. You tell Intuition what sort of data is pointed to by this

variable by either setting or clearing the Menultem flag bit ITEMTEXT. See "Menultem

Intuition Version 29.4 6-15

Flags" below for more information about ITEMTEXT.

SekctFill

If you select the Menultem highlighting mode HIGHIMAGE (in the Flags variable), Intui

tion substitutes this alternate image for the original rendering described by ItemFilL

SekctFill can point to either an Image or an IntuiText, and the flag ITEMTEXT describes

which.

Command

This variable is storage for a single alphanumeric character. If the Flag COMMSEQ is set,

the user can hold down the right AMIGA key on the keyboard (to mimic using the right

mouse menu button) and press the key for this character as a shortcut for using the mouse

to select this item. If the user does this, Intuition transmits the menu number for this item

to your program. It will look to your program exactly as if the user had selected a menu

item using menus and the pointer.

Subltem

If this item has a sub-item list, this variable should point to the first sub-item in the list.

Note that if this item is a sub-item, this variable is ignored.

NextSelect

This field is filled in by Intuition when this item is selected by the user. If this item is

selected by the user, your program should process the request and then check the

NextSelect field. If the NextSelect field is equal to MENUNULL, then no other items were

selected, otherwise there's another item to process. See "Menu Numbers and Menu Selec

tion Messages" above for more information about user selections.

Menultem Flags

Here are the flags that you can set in the Flags field of the Menultem structure:

CHECKIT

You set this flag to inform Intuition that this item is an attribute item and you want item

rendered with a preceding check mark if the flag CHECKED is set. See the section

"Action/Attribute Items and the CheckMark" above for full details.

CHECKED

Set the CHECKIT flag above if you want this item to be checked when the user selects it.

When you first submit the menu strip to Intuition, set this bit to specify whether or not

this item is currently a selected one. Thereafter, Intuition maintains this bit based on

effects from the item list's mutual exclusions.

ITEMTEXT

You set this flag if the representation of this item (pointed to by the ItemFill field and pos

sibly by SelectFilt) is text and points to an IntuiText, or clear it if the item is graphic and

points to an Image.

6-16 Intuition Version 29.4

COMMSEQ

If this flag is set, this item has an equivalent command-key sequence (see the Command field

above).

ITEMENABLED

This flag describes whether or not this item is currently enabled. If an item is not enabled,

its image will be ghosted and the user will not be able to select it. Set this flag before you

submit the menu strip to Intuition. Once you have submitted your menu strip to Intuition,

you enable or disable items only by using OnMenuf) or OffMenuQ. If this item has sub-

items, all of the sub-items are disabled when you disable this item.

HIGHFLAGS

An item can be highlighted when the user positions the pointer over the item. These bits

describe what type of highlighting you want, if any.

You must set one of the following bits according to the type of highlighting you want:

HIGHCOMP

Complements all of the bits contained by this item's select box.

HIGHBOX

Draws a box outside this item's select box.

HIGHIMAGE

Displays the alternate imagery in SelectFill (textual or image).

HIGHNONE

No highlighting.

The following two flags are used by Intuition:

ISDRAWN

Intuition sets this flag when this item's sub-items are currently displayed to the user and

clears it when they are not.

HIGHITEM

Intuition sets this flag when this item is highlighted, and clears it when the item is not

highlighted.

MENU FUNCTIONS

There are menu functions for attaching and clearing menu strips, for enabling and disabling

Intuition Version 29.4 6-17

menus or menu items, and for finding a menu number.

Attaching and Removing a Menu Strip

The following functions attempt to attach a menu strip to a window or clear a menu strip from

a window:

SetMenuStrip(Window,Menu)

Menu is a pointer to the first menu in the menu strip. This procedure sets the

menu strip into the window.

ClearMenuStrip(Window)

This procedure clears any menu strip from the window.

Enabling and Disabling Menus and Items

You can use the following functions to enable and disable items after a menu strip has been

attached to the window. If the item component referenced by MenuNumber equals NOITEM,

the entire menu will be disabled or enabled. If the item component equates to an actual com

ponent number, then that item will be disabled or enabled.

You can enable or disable whole menus, just the menu items, or just single sub-items.

o To enable or disable a whole menu, set the item component of the menu number to

NOITEM. This will disable all items and any sub-items.

o To enable or disable a single item and all sub-items attached to that item, set the item

component of the menu number to your item's ordinal number. If your item has a

sub-item list, set the sub-item component of the menu number to NOSUB. If your item

has no sub-item list, the sub-item component of the menu number is ignored.

o To enable or disable a single sub-item, set the item and sub-item components appropri

ately.

OnMenufWindow, MenuNumber)

Enables the given menu or menu item.

OffMenufWindow, MenuNumber)

Disables the given menu or menu item.

6-18 Intuition Version 29.4

Getting an Item Address

This function finds the address of a menu item when given the item number:

ItemAddre8s(MenuStrip, MenuNumber)

MenuStrip is a pointer to the first menu in the menu strip.

Intuition Version 29.4 6-19

Chapter 7

REQUESTERS AND ALERTS

This chapter describes requesters and alerts. Requesters are menu-like information exchange

boxes that can be displayed in windows by the system or by application programs. You can

also have requesters that the user can bring up on demand. They're called requesters because

the user has to "satisfy the request" before continuing input through the window. Alerts are

similar to requesters, but are reserved for emergency messages.

The first section of the chapter gives you general information about the features of application

requesters—how to design your own completely custom requesters or let Intuition render them

for you, how to place requesters in constant locations or display them relative to the current

pointer position, and how to use the special IDCMP requester features. The second section

shows you the mechanics of setting up requesters, invoking them, and removing them from the

display. The last section covers alerts.

About Requesters

Requesters are like menus since both menus and requesters offer options to the user. Reques

ters, however, go beyond menus. They become "super menus" because you can place them any

where in the window, design them to look however you want, and bring them up in the window

whenever your program needs to elicit a response from the user—and they come replete with

any kind of gadgets you care to use. The most fundamental differences between requesters and

menus is that requesters require a response from the user; and while the requester is in the win

dow, the window locks out all user input. The requirement of a user response is just about the

only restriction placed on your program's use of requesters.

Intuition Version 29.4 7-1

.

HI -1

U| - 1
Bl

COPY

RANGE

OK

CANCEL

-

-

.. -;

Figure 7-1: Requester Deluxe

Requester Display

Requesters can be brought up in a window in three different ways.

o System requesters are invoked by the operating system; your program has no control

over these. For example, someone using a text editor might try to save a file to disk

when there's no disk in the drive. The system requester comes up and makes sure the

user understands the situation by demanding a response from the user.

o You can bring up the regular application requesters whenever your program needs input

from the user.

o You can attach a requester to a double-click of the mouse menu button. Users can

bring up this "double-menu request" whenever they need the particular option supplied

by the requester.

Once a requester is brought up in an window, all further input to the program from that win

dow is blocked. This is true even if the user has brought up the requester. The requester

remains in the window and input remains blocked until the user satisfies the request by choos

ing one of the requester gadgets. You decide which of your gadgets meets this criterion. While

the requester is in the window, the only input the program receives from that window is broad

casts when the user selects a requester gadget. Even though the window containing the reques

ter is locked for input, the user can work in another application or even in a different window of

your application and respond to the requester later.

A window with an unsatisfied requester is not blocked for program output. Nothing prevents

your program from writing to the window. You must, however, use caution since the requester

7-2 Intuition Version 29.4

resides in the display memory of the window. If you should over-write the requester or cause

the text window to scroll, you may render the window or even the entire display unusable. For

tunately, there are several ways to monitor the comings and goings of requesters, which you can

use to ensure that you can safely bring up an application requester. (See "IDCMP Features"

below.)

In displaying any kind of requester (except the super-simple yes or no kind created with

AutoRequestQ), you can specify the location in two ways. You can select either a constant loca

tion that is an offset from the top left corner of the window or a location relative to the current

location of the pointer. Displaying the requester relative to the pointer can get the user's atten

tion immediately and closely associates the requester with whatever the user was doing just

before the requester came up in the window.

You can nest several application requesters in the same window, and the system may present

requesters of its own that become nested with the application requesters. These are all satisfied

in reverse sequence; the last requester to be displayed must be satisfied first.

Application Requesters

In adding requesters to your program, you have several options. You can supply a minimum of

information and let Intuition do the work of rendering the requester, or you can design a com

pletely custom requester, drawing the background, borders, and gadgets yourself and submit the

requester to Intuition for display.

For a requester rendered by Intuition you have two choices. If the requester is complex and you

want to attach gadgets and have some custom features, you initialize a requester for general

usage. In the requester structure, you supply the gadget list, borders, text, and size of the rec

tangle that encloses the requester. Intuition will allocate the buffers, construct a bit-map that

lasts for the duration of the display, and render the requester in the window on demand from

your program or the user. If the requester requires only a simple yes or no answer from the

user, you can use the special AutoRequestQ function that builds the requester, displays it, and

waits for the user's response.

On the other hand, you can design your own custom requester with your own hand-drawn

image for the background, gadgets, borders, and text. You get your own bit-map with a custom

requester, so you can design the imagery pixel-by-pixel if you wish, using any of the Amiga art

creation tools. When you have completed the design, you submit it to Intuition for display as

usual. Consistency and style are the only restrictions imposed on designing your own requester.

The gadgets should look like gadgets and the gadget list should correspond to your images (par

ticularly the gadget select boxes, to avoid confusing the user).

You should always provide a safe way for the user to back out of a requester without taking

any action that affects the user's work. This is very important.

A user's action or response to a requester can be as simple as telling the requester to go away.

Because the user's action consists of choosing a requester gadget, there must be one or more

gadgets that terminate the requester.

Intuition Version 29.4 7-3

Another Option

As an option to bringing up a requester, you can flash your screen in a complementary color

(binary complement, that is—see the "Images, Line Drawing, and Text" chapter for an expla

nation). This is handy if you want to notify the user of an event that is not serious enough to

warrant a requester and the user doesn't really need to indicate a choice. For instance, the user

might be trying to choose an unavailable function from a menu or trying to use an incorrect

command-key sequence. If the event is a little more serious, you can flash all the screens simul

taneously. See the description of DisplayBeepf) in Chapter 11, "Other Features".

REQUESTER RENDERING

There are two ways of rendering complex requesters—you can supply Intuition with enough

information to do the rendering for you or you can supply your own completely custom bit-map

image. You fill in the Requester structure differently according to which rendering method you

have chosen.

If you want Intuition to render the requester for you, you need to supply regular gadgets, a

"pen" color for filling the requester background, and one or more text structures and border

structures.

For custom bit-map requesters, you draw the gadgets yourself, so you supply a valid list of

gadgets, but the text and image information in the gadgets structures can be set to NULL

because it will be ignored. Other gadget information—select box dimensions, highlighting, and

gadget type—is still relevant. The select box information is especially important since the

select box must have a well-defined correspondence with the gadget imagery that you supply.

The basic idea here is to make sure that the user understands your requester imagery and

gadgetry. The fields that define borders, text, and pen color are ignored and can be set to

NULL.

For both Intuition-rendered and custom-design requesters, you declare the requester structure

and then call InitRequester() to initialize the requester.

REQUESTER DISPLAY POSITION

You can have Intuition display the requester in a position relative to the position of the pointer

or as an offset from the upper-left corner of the window.

To display the requester relative to the current pointer position, set the POINTREL flag and

initialize the RelLeft and RelTop variables, which describe the offset of the upper left corner of

the requester from the pointer position. The values in these variables can be negative or posi

tive. Note that the values you supply are only advisory. If the pointer is in a location that

would cause the requester to be rendered outside the window, it will be rendered as close as pos

sible to the desired location but still within the window frame. The actual top and left position

are stored in the TopEdge and LeftEdge variables.

To display the requester as an offset from the upper left corner of the window, initialize the

TopEdge and LeftEdge variables. These should be positive values.

7-4 Intuition Version 29.4

DOUBLE MENU REQUESTERS

A double-menu requester is just like other requesters with one exception. It is displayed only

when the user double-clicks the mouse menu button. After the user brings up one of these

requesters, window input is blocked as if your program or Intuition had brought up the reques

ter. A message stating that a requester has been brought up in your window is entered into the

input stream. If you want to stop the user from bringing up a double-menu requester, (for

instance, if you want to modify it or simply just throw it away) you can unlink it from the win

dow.

GADGETS IN REQUESTERS

Each requester gadget should have the REQGADGET flag set in its GadgetType variable.

Each requester must have at least one gadget that satisfies the request and allows input to begin

again. For each gadget that ends the interaction and removes the requester, you set the

ENDGADGET flag in the gadget Flags. Every time one of the requester gadgets is selected,

Intuition examines the ENDGADGET flag; if the flag is set, the requester is erased from the

screen and unlinked from the window's active-requester list.

Algorithmic (Intuition-rendered) and custom bit-map requesters differ in how their gadgets are

rendered. In algorithmic requesters, you supply regular gadgets just like the application gadgets

in windows or screens. In custom bit-map requesters, the gadgets are part of the bit-map that

you supply for display. Even in custom bit-map requesters, however, you do supply a list of

gadgets because you must still define the select box, highlighting, and gadget type for each

gadget.

IDOMP REQUESTER FEATURES

If you are using the IDCMP for input, the following IDCMP flags add refinements to the use of

requesters:

REQVERIFY

With this flag set, you can make sure that your program is ready to allow a requester to

appear in the window. When you receive a REQVERIFY message, the requester will

not be rendered until you reply to the message.

REQSET

With this flag set, you will receive a message when the first requester opens in your win
dow.

REQCLEAR

With this flag set, you will receive a message when the last xequester is cleared from the
window.

Intuition Version 29.4 7-5

You set these flags when you create a NewWindow structure or call ModifylDCMPQ. See

Chapter 8, "Input and Output Methods", for further information about these IDCMP flags.

A SIMPLE, AUTOMATIC REQUESTER

For a very simple requester that prompts the user for a positive or negative response, you can

use the AutoRequestQ function. You supply some explanatory text for the body of the reques
ter, negative and positive text to prompt the user's response, the width and height of the

requester, and some optional flags for the IDCMP. The positive text is the text you want asso

ciated with the user choice of "Yes", "True", "Retry", and similar responses. Likewise, the

negative text is associated with the user choice of "No", "False", "Cancel" and so on. The posi

tive text is automatically rendered in a gadget in the lower left of the requester, and the nega

tive text is rendered in a gadget in the lower right of the requester. The positive text pointer

can be set to NULL, specifying that there is no positive choice for the user to make. The

IDCMP flags allow either positive or negative external events to satisfy the request. For

instance, the positive external event of the user putting a disk in the drive could satisfy the

request.

Cancel

libs tdir)

pH (dip)
avail

duw
highsafe
pastoral, pic

safe
i siHple2

snoop

I) din Atii
1

colorp
Disk.info

frags
idefto

prefs
sihple
sirtple3

S

n

Figure 7-2: A Simple Requester Made With AutoRequestQ

When you call the function, Intuition will build the requester, display it, and wait for a response

from the user. If possible, the requester is displayed in the window supplied as an argument to

the routine. If not, Intuition opens a window to display the requester.

The AutoRequestQ function calls BuildSysRequestQ to construct the simple requester. You can

call BuildSysRequestQ directly if you want the simple requester and if you want to monitor the

requester yourself. AH gadgets created by BuildSysRequestQ have the following gadget flags set:

7-6 Intuition Version 29.4

BOOLGADGET

It's a Boolean TRUE or FALSE gadget.

RELVERIFY

You receive a broadcast if this gadget is activated.

REQGADGET

Specifies that this is a requester gadget.

TOGGLESELECT

Specifies that this is a toggle-select type of gadget.

Using Requesters

To create and use a requester, you follow these steps:

1. Declare or allocate a Requester structure.

2. Initialize the structure with a call to InitRequesterQ.

3. Fill out the Requester with your specifications for gadgets, text, borders, and imagery.

4. If you are using the IDCMP for input, decide whether to use the special functions pro

vided.

5. Display the requester by calling either:

* RequestQ, or

* SetDMRequestf) so the user can bring up the requester.

REQUESTER STRUCTURE

To create a requester structure, follow these steps:

1. Fill in the values you need in the structure and leave the unused variables set to the

values initialized by the call to InitRequesterf).

2. Set up a gadget list.

3. Supply a BitMap structure if this is a custom requester.

Here is the specification for a requester structure:

Intuition Version 29.4 7-7

struct Requester

{
struct Requester *OlderRequest;

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

SHORT RelLeft, RelTop;

struct Gadget *ReqGadget;

struct Border *ReqBorder;

struct IntuiText *ReqText;

USHORT Flags;

UBYTE BackFill;

struct ClipRect ReqCRect;

struct BitMap *ImageBMap;

struct BitMap ReqBMap;

Here are the meanings of the fields in the requester structure:

NOTE: See "Intuition Rendering" and "Custom Bit-Map Rendering" below for information

about how the initialization of the structure differs according to how the requester is ren

dered.

OlderRequest

This is a link maintained by Intuition, which points to requesters that were rendered

before this one.

LeftEdge, TopEdge

Initialize these if the requester is to appear relative to the upper left corner of the win

dow (as contrasted to the POINTREL method, where the requester is rendered relative

to the pointer).

Width, Height

Describe the size of the entire requester rectangle, containing all the text and gadgets.

RelLeft, RelTop

Initialize these if the requester is to appear relative to the current position of the

pointer. Also, set the POINTREL flag.

ReqGadget

A pointer to the first in a linked list of gadget structures.

There must be at least one gadget with the ENDGADGET flag set to terminate the

requester.

ReqBorder

A pointer to an optional Border structure for the drawing lines around and within your

requester.

7-8 Intuition Version 29.4

ReqText

A pointer to an IntuiText structure containing text for the requester.

Flags

You can set these flags:

POINTREL

Set this flag to specify that you want the requester to appear relative to the pointer

(rather than offset from the upper-left corner of your window).

PREDRAWN

Set this flag if you are supplying a custom BitMap structure for the requester and

ImageBMap points to the structure.

Intuition uses these flags:

REQOFFWINDOW

Set by Intuition if the requester is currently active and some part of the gadgets

was rendered off-window.

REQACTIVE

Set or cleared by Intuition based on whether or not this requester is currently

being used.

SYSREQUEST

Set by Intuition if this is a system-generated requester.

BackFill

Pen number for filling the requester rectangle before anything is drawn into the rectan

gle.

ReqCRect, ReqBMap

These are used by Intuition to create the requester image.

ImageBMap

Pointer to the custom bit-map for this requester. If you are not supplying a custom

bit-map for this requester, then Intuition ignores this variable.

If you are supplying a custom bit-map, the PREDRAWN flag must be set.

The following sections describe the differences in the Requester structure between requesters

rendered by Intuition and custom bit-map requesters.

Intuition Version 29.4 7-9

Intuition Rendering

The following notes apply to requesters rendered by Intuition.

o ReqGadget is a pointer to the first in a list of regular gadgets to be rendered in the

requester box. Take care not to specify gadgets that extend beyond the requester-

rectangle that you describe in the Width and Height fields, for Intuition does no boun

dary checking.

o ReqBorder is a pointer to a Border structure for your requester. The lines specified in

this structure can go anywhere in the requester; they are not confined to the perimeter

of the requester.

o ReqText is a pointer to an IntuiText structure. This is for general text in the requester.

o BackFill is the pen number to be used to fill the rectangle of your requester before any

rendering takes place.

For example, here is a Requester structure that allows Intuition to do the rendering:

struct Requester MyRequest =

{
NULL, /* OlderRequester maintained by Intuition */

20, 20, 200,100, /* LeftEdge, TopEdge, Width, Height */

0, 0, /* RelLeft, RelTop */

&BoolGadget, /* First gadget */

NULL, /* ReqBorder */

&MyText /* ReqText */

NULL, /* Flags */

2, /* BackFill */

NULL, /* ReqCRect */

NULL, /* BitMap */

NULL, /* Other BitMap */

Custom Bit-Map Rendering

These notes apply to custom bit-map requesters.

o ReqGadget points to a valid list of gadgets, which are real gadgets in every way except

that the gadget text and imagery information are ignored (and can be NULL). The

select box, highlighting, and gadget type data is still pertinent. You must make sure

there is an extremely well-defined correspondence between the gadgets' select boxes and

the requester imagery that you supply.

7-10 Intuition Version 29.4

o The ReqBorder, ReqText, and BackFill variables are ignored, and can be set to NULL,

o The ImageBMap pointer points to your own BitMap of imagery for this requester,

o You should set the flag PREDRAWN.

THE VERY EASY REQUESTER

Here are the arguments you supply to AutoRequestf) for the automatic, simple Boolean reques

ter that Intuition will build for you:

Window

Pointer to the window where the requester is to appear.

BodyText

Pointer to an IntuiText structure that explains the purpose of the requester.

PositiveText

Pointer to the IntuiText structure containing the positive response text.

This field can be NULL if there is no positive response.

NegativeText

Pointer to the IntuiText structure containing the negative response text.

PositiveFlags

Flags for the IDCMP for positive external events that will satisfy the request.

NegativeFlags

Flags for the IDCMP for negative external events that will satisfy the request.

Width, Height

Size of the rectangle enclosing the requester.

REQUESTER FUNCTIONS

This section gives a brief rundown of the requester functions.

Initializing a Requester

The following function initializes a requester for general use, for both algorithmic and custom

bit-map rendering:

Intuition Version 29.4 7-11

InitRequester(Requester)

Requester points to the requester structure.

Submitting a Requester for Display

The following function submits regular requesters to Intuition for display:

Request(Requester, Window)

Displays a requester in the specified window.

Double Menu Requesters

The following functions affect double-menu requesters:

SetDMRequest(Windov), Requester)

Attaches a requester to the double-click of the mouse menu button.

ClearDMRequestfWindow, Requester)

Unlinks the requester from the window, and stops the user from bringing it up.

Removing a Requester from the Display

EndRequest(Requester, Window)

Erases a requester invoked by the user or application and resets the window.

Doesn't remove all requesters, just the one named.

The Easy Yes or No Requester

This function automatically builds, displays, and gets a negative or positive response from a

requester:

7-12 Intuition Version 29.4

AutoRequest (Window, BodyText, PositiveText, NegativeText

PositiveFlags, NegativeFlags, Width, Height)

Builds a requester from the arguments supplied, displays the requester, and

returns TRUE or FALSE.

Intuition Version 29.4 7-13

Alerts

Alerts are for emergency messages. There are two types: system alerts and application alerts.

System and application alerts display absolutely essential messages and should be reserved for

critical communications where the user must take some immediate action; for instance, where

the application has experienced a fatal error, or the system has or is about to crash. System

alerts are managed entirely by Intuition.

ttERTJ Systtft Out of Momw Em&i*

|Press Left Button to Retpy Press Rigfhi Btitton te Abort |

Curai Meditation Nunber BxB788888

(C> 1985 Cottttc
Ail rights reserved*

Version 26,12
CLI VcPSiOR 23*3
Use date to set date & tim

Friday lt-Jul-85 18:8714?
■pan t

[CLI 2]

Figure 7-3: The "Out Of Memory" Alert

The sudden display of an alert is a jarring experience for the user, and the system stops and

holds its breath while the alert is displayed. For these reasons, you should use alerts only when

there is no other recourse. If you can, use requesters with warning messages instead.

The alert display has a black background and red border, a 640 pixel resolution, and can be as

tall as needed to display your text. The alert appears at the top of the video display. If the

rest of the display is still healthy, it's pushed down low enough to show the alert. If this is a

fatal alert and the system is going down, the alert takes over the entire display.

There are two types of alerts: RECOVERY_jVLERT, and DEADENELALERT.

o RECOVERY_j\LERT displays your text and flashes the alert's border outline while

waiting for the user to respond. This alert is optimistic and presumes that the system

can continue operations after the alert is satisfied. It returns TRUE if the user presses

the left mouse button in response to your message. Otherwise it returns FALSE.

7-14 Intuition Version 29.4

o DEADEND_j\LERT prints your text and returns FALSE to you immediately.

The Boolean function DisplayAlertQ creates and displays an alert message. Your message will

most likely get out to the screen regardless of the current state of the machine (with the excep

tion of catastrophic hardware failures). If the user presses one of the mouse buttons, the display

returns to its original state, if possible. DisplayAlertQ also displays the Amiga system alert mes

sages. DisplayAlertQ needs three arguments: an AlertNumber, a pointer to a string, and a

number describing the required display height.

o AlertNumber is a LONG value. Here you set bits specifying whether this is a

RECOVERXjVLERT or a DEADEND_ALERT.

o The String argument points to an AlertMessage string which is made up of one or more

sub-strings. Each sub-string contains the following:

* The first component is a 16-bit x-coordinate and an 8-bit y-coordinate describing

where on the alert display you want the string to appear. The y-coordinate

describes the location of the text baseline.

* The second component is the text itself. The string must be null-terminated (it

ends with a zero byte).

* The last component is the continuation byte. If this byte is zero, this is the last

sub-string in the message. If this byte is non-zero, there is another sub-string in

this alert message.

o The last argument, Height, tells Intuition how many display lines are required for your

alert display.

Intuition Version 29.4 7-15

Chapter 8

INPUT AND OUTPUT METHODS

This chapter describes the methods of getting input from the user and sending output to the

user. The first section contains an overview of the input/output functions. The next two sec

tions explain the Intuition Direct Communication Message Ports and show how to set up a cus

tom monitor task and user port. The last section introduces the Console Device.

An Overview of Input and Output

Figure 8-1: Watching the Stream

Intuition Version 29.4 8-1

From the Intuition point of view, infortnation flows through the system in the following steps:

o Information originates from somewhere in the user's cranial area.

o From there, it flows through biological output devices such as fingers and into electro

mechanical input devices like keyboards, mice, graphics tablets, light pens. These input

devices create input signals which enter the Amiga through several different ports.

o Inside, these input signals are merged together into a coherent stream of input events.

o This input stream is examined and manipulated by several entities, including Intuition.

Intuition gazes deeply into the essence of every event it sees. Sometimes it consumes

events, other times it adds to the stream, and often it sits lazily by, watching the

stream flow through its fourth dimension.

o Finally, application programs receive the input stream and take action based on the

data contained therein. The result of the action is often to create output, which is

presented to the user via a video monitor.

o The user's eye input devices detect the information being displayed on the video output

device. The eyes, and some still-mysterious merge mechanism, translate the data into

signals which are transmitted to the brain, thus completing the cycle.

About Input and Output

The Amiga has an Input Device to monitor all input activity, which nominally includes key

board and mouse activity., but which can be extended to include many different types of input

signals. Whenever the user moves the mouse, presses the one of the mouse buttons, or types on

the keyboard, the Input Device detects it and constructs an input event (a message describing

what just occurred). Other devices and programs can ask the Input Device to construct an

input message using their own data (for instance, the AmigaDOS is able to generate an input

event whenever a disk is inserted or removed, and an application-installed music-keyboard dev

ice can add note events to the stream as well). All of these events are merged together into the

input stream. The Input Device then broadcasts this input event stream through special message

ports so that any interested party can monitor the events, intercept some of the events, and

even add new ones to the stream. Intuition is one of the interested parties.

Some of the events, like "mouse-button pressed", may have great meaning to Intuition. If they

do, Intuition consumes them, which is to say that Intuition extracts those events from the input

stream. Other events, like the "disk inserted" event, may be of interest to more than one user

of Intuition, so Intuition translates these into a separate message for each application. Still

other events, like most of the keyboard events, mean nothing to Intuition, and Intuition merely

passes them along.

A typical application decides what to do from moment to moment by responding to the events

in the input stream. Although many applications may be waiting for input simultaneously, only

the application that Intuition regards as active for input will receive these input stream events.

Usually, as described in Chapter 4, "Windows", the user selects which application is active for

input by using the Intuition pointer to select that application's window. If your program is the

active one, then you get to see the input stream events after Intuition has examined them.

8-2 Intuition Version 29.4

Your program receives the input stream either directly from Intuition or via another mechanism

known as the Console Device. If you don't have any use for the messages either, then the next

consumer gets a chance to examine the stream, and so on.

Intuition provides two paths for your program to receive messages from the input stream. One

is immediate and involves no pre-processing of the data. The other can supply you with stan

dard terminal input functions, buffers, and data representations. The paths are:

o Intuition's Direct Communications Message Ports system (IDCMP), which is standard

Amiga Exec message communications made easy for you, and which gives you input

data in its most raw (untranslated) form. This also supplies the only mechanism you

have for communicating to Intuition.

o The Console Device, which gives you "cooked" input data, including key-code conver

sions to ASCII, and conversions to ANSI escape sequences (Intuition-generated events,

like CLOSEWINDOW, will be translated into escape sequences).

When your program wants to present visual information to the user via your window or screen,

you can choose from three methods. The one you choose depends on your particular needs.

These three methods are:

o Creating imagery by sending your output directly to the graphics, text and animation

primitives of the Amiga ROM kernel. You can use these for rendering functions like

line drawing, area fill, specialized animation, and output of unformatted text. This is

the most elementary method.

o Using the Intuition-supplied support functions for rendering text, graphical imagery,

and line drawing. These provide many of the same functions as the deeper ROM rou

tines, but these routines do the clerical work of saving, initializing and restoring states

for you. Also, the Image functions provide a new method of object-oriented rendering

for you.

o Outputting text via the Console Device, which formats text with special text primitives

like ClearEndOfLineQ and text functions like auto line-wrapping and scrolling. For

string output, if you want to do anything more than the simplest text rendering, you

should use the Console Device. This gives you nicely formatted text with little fuss.

Note that the Console Device is mentioned as both a source for input and a mechanism for out

put. It's very convenient to do both input and output via the Console Device only. In particu

lar, text-only programs can open the Console and do all their I/O there without ever learning

anything about Windows, BitMaps, RastPorts, or Message Ports. Use of the Console Device for

most text-only applications is encouraged, since it requires less work on your part and simplifies

the I/O logic of your programs.

On the other hand, opening a Console Device consumes a fair amount of RAM (currently about

1.5K). If you don't need the Console Device or are willing to forego its features, it may be

better for you to open the IDCMP for input and do your graphics rendering directly through

the Intuition and graphics primitives. Under some conditions (for instance, when you have a

complex program doing lots of different things), you might want to open both the Console Dev

ice and the IDCMP for input. There is no rule for deciding which mechanism you should use.

After you read this chapter, you'll be able to decide for yourself.

The rest of this section describes in more detail how I/O flow works with (and around) your
program. Please refer to the illustrations while you read this. This is actually a super-

Intuition Version 29.4

simplified model of how system-wide I/O really works, but is a true representation of I/O at the

microcosmic level of your program.

In the illustrations that follow, you will find the Input Device at the top of the diagram. This is

where mouse, keyboard, and other input events are merged together into a single stream of

InputEvents. These InputEvents are then submitted to Intuition for further processing.

Figure 8-2 shows an example of a program after it has opened the IDCMP. This will be the

typical configuration for games or other applications that are willing to process input data

themselves. The IDCMP allows you to configure the events that are important to you. You

can, for instance, learn about gadget events and get notification that your application should

stop writing to its window (the IDCMP flags SIZEVERIFY and REQVERIFY), but you may

not want to learn about other mouse or keyboard events. If you ask to learn about keyboard

events through the IDCMP, note that the key codes you receive come straight from the key

board to you. These keycodes are as raw as they get, although the IDCMP also provides the

special Qualifier field to assist your translations. Messages sent via the IDCMP are instances of

the structure IntuiMessage. When you open the IDCMP, you must monitor the Message Port

supplied by Intuition.

Other-

Application

Program

Graphics, Text

and Animation

Input Device

IDCMP

Intuition

1

o

o

Figure 8-2: Input from the IDCMP, Output through the Graphics Primitives

Figure 8-3 illustrates the flow of information when the only the Console is opened. This will be
the typical configuration for text-only applications, and applications that want the simplest I/O
possible. Refer to the Amiga ROM Kernel Manual for details on opening a Console Device and

8-4
Intuition Version 29.4

performing I/O through it.

a

Other

Console Device

Application

Program

-u

Graphics, Text

and Animation

Input Device

A
Intuition

Figure 8-3: Input and Output through the Console Device

Figure 8-4 shows a complex program that needs the features of both the Console Device and the

IDCMP. For instance, a program that needs ASCII input and formatted output and the

IDCMP verification functions (for example, to verify that it has finished writing to the window

before the user can bring up a requester).

Intuition Version 29.4 8-5

Other •

Input Device

Console Device

Application

Program

IDCMP

Graphics, Text

and Animation

Intuition

1

0

o

Figure 8-4: Full-System Input and Output (A Busy Program)

Figure 8-5 shows an application that has opened a window with neither a Console nor an

IDCMP. This window gets no input, and the application can write to the window only via the

graphics primitives. You might want to do this if your program has opened other windows that

do I/O and you want special graphics-only windows (for instance, to monitor RAM usage or

watch the clock) which you will close later. If the user selects a window that has no Console or

IDCMP, further input is discarded until a different window is selected.

8-6 Intuition Version 29.4

[1il *
U v

t it
Application >

Program \

I -Or

Graphics, Text

and Animation

r

)

)

A

M

M

-A

N
1/V

1/

s

v

1
0

0

1

Figure 8-5: Output Only

Using the IDCMP

The IDCMP ports allow your application and Intuition to talk directly to each other. You can

use the IDCMP to learn about mouse, keyboard, and Intuition events without going through the

Console Device. Intuition also uses the IDCMP, for example, to control the menu display or

manage gadget lists. Also, there are certain useful Intuition features, most notably the

verification functions (described under IDCMP Flags below), which require that the IDCMP be

opened as this is the only mechanism available for communicating to Intuition.

The IDCMP consists of a pair of message ports, which are allocated and initialized by Intuition

on your request: one port for you and one port for Intuition. These are standard Exec message

ports, used to allow inter-process communications in the Amiga multi-tasking environment. To

open these ports automatically, you request IDCMP functions when you define window struc

tures. To open or close them later, you call ModifylDCMPQ. As with much of Intuition, all of

the "grunt work" with message ports is done for you, leaving you free to concentrate on more

Intuition Version 29.4 8-7

global issues.

Alternatively, if you have a message port that you've already created, you can have Intuition

use that port to communicate with you. This is described below.

If you set IDCMP flags in the NewWindow structure when you open the window, Intuition allo

cates and initializes both message ports. You can call ModifylDCMPQ to allocate or deallocate

message ports or to change which events will be broadcast to your program through the

IDCMP. Once the IDCMP is opened, you can receive many different flavors of information

directly from Intuition, based on which flags you have set.

CAUTION: If you attempt to close the IDCMP, either by calling ModifylDCMPQ or by closing

the window, without first having ReplyQ'd to all of the messages sent out by Intuition, Intuition

will reclaim and deallocate those messages without waiting for a ReplyQ from you. If you

attempt to ReplyQ after the close, you will get to watch the Amiga FIREWORKS_DISPLAY

mode.

To learn more about message ports and message passing, please refer to the Amiga ROMKernel

Manual.

INTUIMESSAGES

The IntuiMessage data type is an Exec Message that's been extended to include Intuition-

specific information. The Exec Message part of the IntuiMessage is used by the Executive to

manage the transmission of the message. The Intuition extensions of the IntuiMessage are used

to transmit all sorts of information to you.

Here's what the IntuiMessage looks like:

struct IntuiMessage

{
struct Message ExecMessage;

ULONG Class;

USHORT Code;

USHORT Qualifier;

APTR IAddress;

SHORT MouseX, MouseY;

ULONG Seconds, Micros;

struct Window *IDCMPWindow;

struct IntuiMessage *SpecialLink;

}

IntuiMessages contain the following components:

ExecMessage

The ExecMessage data is maintained by Exec. It's used for linking the message into the
system and broadcasting it to a message port.

Class

A ULONG variable, whose bits correspond directly with the IDCMP flags

Intuition Version 29.4

Code

A USHORT whose bits contain special values like menu numbers or special code values

set by Intuition. The meaning of this field is directly tied to the Class (above) of this

message. Often, there's no special meaning for the code field, and it's merely a copy of

the code of the InputEvent initially sent to Intuition by the Input Device. In the case

where this message is of class RAWKEY, this has the raw key code generated by the

keyboard device.

Qualifier

Contains a copy of the ie_Qualifier field that's transmitted to Intuition by the Input

Device. This field is useful if you are handling raw key codes since the Qualifier tells

you, for instance, whether or not the SHIFT key or CTRL key is currently pressed.

MouseX and MouseY

Every IntuiMessage you receive will have the mouse coordinates in these variables. The

coordinates are relative to the upper-left corner of your window.

Seconds and Micros

These ULONG values are copies of the current system clock time in seconds and

microseconds. Microseconds range from zero up to one million minus one. 32 bits for

the Seconds variable means that the Amiga clock can run for 139 years before wrapping

around to zero again.

IAddress

Has the address of some Intuition object, such as a gadget or a screen, when the mes

sage concerns, for example, a gadget selection or screen operation.

IDCMPWindow

Contains the address of the window to which this message pertains.

SpecialLink

For system use only.

IDCMP FLAGS

You specify the information you want Intuition to send you via the IDCMP by setting the

IDCMP flags. You can set them either in the NewWindow structure when you open a window,

or when calling ModifylDCMPQ to change the IDCMP specifications. The following is a

specification of the IDCMP functions and flags.

Mouse flags:

MOUSEBUTTONS

Reports about mouse button up and down events are sent to you, if these transitions

don't mean something to Intuition.

When you receive a MOUSEBUTTONS class of event, you can examine the code field

to discover which button was pressed or released. The code field will be equal to

Intuition Version 29.4 8-9

SELECTDOWN, SELECTUP, MENUDOWN or MENUUP.

NOTE: If the user clicks the mouse button over a gadget, Intuition deals with it and

you don't hear about it. Also, the only way you can learn about menu button events in

this way is by setting the RMBTRAP flag in the window. See Chapter 4, "Windows",

for more information.

MOUSEMOVE

Reports about mouse movements are sent in the form of X and Y coordinates. This can

mean a lot of messages, so you should reply to them swiftly. See the section called "An

Example of the IDCMP" below.

NOTE: This works only if the REPORTMOUSE flag is set in the NewWindow struc

ture, or some gadget is selected with the FOLOWMOUSE flag set.

By setting both RAWKEY and MOUSEMOVE, you don't need a Console Device to get

mouse and keyboard input.

DELTAMOVE

When you set this flag, you get mouse movement reports as deltas (amount of change

from the last position) rather than as absolute positions. This flag works in conjunction

with the MOUSEMOVE flag.

Gadget flags:

GADGETDOWN

When the user selects a gadget you have created with the flag GADGIMMEDIATE set,

you will receive a message of this class.

GADGETUP

When the user releases a gadget that you have created with the flag RELVERIFY set,

you will receive a message of this class.

CLOSEWINDOW

If the user has selected your window's close gadget, the message telling you about it will

be of this class.

Menu flags:

MENUPICK

The user has pressed the menu button. If a menu item was selected, the menu number

of the menu item can be found in the Code field of the IntuiMessage. If no item was

selected, the code field will be equal to MENUNULL.

MENUVERIFY

This is a special verification mode which, like the others, allows you to verify that

you're finished drawing to your window before Intuition allows the users to start menu

operations.

This is a special kind of verification, however, in that any window in the entire screen

that has this flag set will have to respond that menu operations may proceed. Also, the

active window of the screen is allowed to cancel the menu operation. This is unique to

8-10 Intuition Version 29.4

MENUVERIFY. Please refer to Chapter 6, "Menus", for a complete description.

See the "Verification Functions" section below for some things to consider when using

this flag.

Requester flags:

REQSET

Set this flag to receive a message when the first requester opens in a window

REQCLEAR

Set this flag to receive a message when the last requester is cleared from the window.

REQVERIFY

Set this flag if your application wants to make sure that rendering to its window has

ceased before a requester is rendered into the window. This includes requiring the sys

tem to get your approval before opening a system requester in your window. With this

flag set, Intuition sends the application a message that a requester is pending, and and

then WaitQ's for the application to ReplyQ before drawing the requester into the win

dow.

If several requesters open in the window, Intuition asks the application to verify only

the first one. After that, Intuition assumes that all output is being held off until all the

requesters are gone. You can set the REQCLEAR flag to find out when all requesters

are removed from the window. Once the application receives a message of the type

REQCLEAR, it is safe to write to the window until another REQVERIFY is received.

You can also check the INREQUEST flag of the window, although this is not as safe a

method because of the asynchronous nature of any multi-tasking environment.

See the "Verification Functions" section below for some things to consider when using

this flag.

Window flags:

NEWSIZE

Intuition sends you a message after the user has re-sized the window. After receiving

this, you can examine the size variable in the window structure to discover the new size

of the window.

REFRESHWINDOW

A message is sent to the application whenever your window needs refreshing. This flag

makes sense only with windows where the SIMPLE_REFRESH or SMART_REFRESH

type of refresh has been selected.

SIZEVERIFY

You set this flag if you are drawing to the window in such a way that you need to

finish before the user sizes the window. If the user tries to size the window, a message

is sent to the application and Intuition will WaitQ until you reply.

See the "Verification Functions" section below for some things to consider when using

this flag.

Intuition Version 29.4 8-11

ACTIVEWINDOW and INACTIVEWINDOW

You set these flags to discover when your window becomes activated or inactivated.

Other flags:

RAWKEY

Keycodes from the keyboard are sent in the Code field. They are raw keycodes, so you

may want to process them.

NOTE: By combining this and the two mouse flags, you don't need a Console Device

to get mouse and keyboard inputs.

NEWPREFS

When the user changes the system Preferences by using the Preferences tool, or when

some other routine causes the system Preferences to change, you can find out about it

by setting this flag.

When you get a message of class NEWPREFS, you can call the procedure GetPrefsQ to

get the new Preferences.

DISKINSERTED and DISKREMOVED

When the user inserts or ejects any disk with any drive, you can ask to be told about

the event by setting either or both of these flags.

Note that everyone who sets these flags will learn about these events, not just the

active window.

Verification Functions

SIZEVERIFY, REQVERIFY, and MENUVERIFY are exceptional in that Intuition sends an

IntuiMessage and then waits, by calling the Exec message port function WaitQ, for the applica

tion to reply that it's OK to proceed. The application replies by calling the Exec message pass

ing function ReplyMsgQ.

The implication is that the user requested some operation, but it won't happen immediately

and, in fact, won't happen at all until you say it's safe. Because this delay can be frustrating

and intimidating, you should strive to make the delay as short as possible. You should always

reply to a verification message as immediately as you can.

You can overcome these problems by setting up a separate task to monitor the IDCMP and

respond to incoming IntuiMessages immediately. This is recommended whenever you are plan

ning heavy traffic through the IDCMP, which occurs when you have set many IDCMP flags.

SETTING UP YOUR OWN IDCMP MONITOR TASK AND USER PORT

To set up your own IDCMP monitor task, you supply your own port. The addresses of the

IDCMP message ports can be found in two variables, UserPort (your application's input port)

and WindowPort (Intuition's input port).

Intuition Version 29.4

In the simplest case, Intuition allocates (and deallocates) both of these ports for you when you

define a window with IDCMP flags or call ModifylDCMPQ. If the WindowPort isn't already

opened when you call one of these functions, it will be allocated and initialized. The UserPort is

checked separately to see whether it is already opened. Intuition will send messages to you via

the UserPort, and will receive replies from you via the WindowPort. The port variables point

to a valid message port if they are opened, and are NULL if not opened.

When Intuition initializes the UserPort for you, Intuition calls AllocSignalQ to get a signal bit

for you. Since your task called OpenWindowQ, this allocation of a signal is valid for your task.

The address of your task is saved into the SigTask variable of the Message Port.

You can choose to supply your own port, if you want. You might do this in an environment

where your program is going to open several windows, and you want to monitor input from all

of the windows using only one message port. To supply your own port, do the following:

1. Define the window with the variable IDCMPFlags set to NULL, which means no ports

will be opened.

2. Set the UserPort variable of the window to any valid port of your own choosing.

3. Call ModifylDCMPQ with the flags set as you wish. When Intuition sees that the User-

Port variable is non-null, it will assume that the variable points to a valid message port.

When Intuition sees that the WindowPort variable is still NULL, a message port will be

created.

4. Later, before calling CloseWindowQ, set UserPort equal to NULL. Intuition will delete

the WindowPort, and will detect that the UserPort is not there to be deleted.

An Example of the IDCMP

This section shows a short example of working with the IDCMP. Let's say that we've opened a

window that has the following IDCMP flags set:

RAWKEY

MOUSEMOVE

MOUSEBUTTONS

CLOSEWINDOW

GADGETUP

REQSET

REQCLEAR

You could receive and respond to these events using a loop like this:

Intuition Version 29.4

FOREVER

/* Wait until some message arrives at the port */

Wait(l << MyWindow->UserPort->mp_SigBit);

/* Now, one or more messages have arrived. Respond to all of them

* First, set up to accumulate mouse moves (rather than responding

* to each one as it comes in)

*/
MouseMoved = FALSE;

while (message = GetMsg(MyWindow->UserPort))

/* First, gather some relevant information and then reply right away! */

class = message->Class;

code = message->Code;

address = message->IAddress;

x = message->MouseX;

y = message->MouseY;

ReplyMsg(message);

if (class == MOUSEMOVE) MouseMoved = TRUE;

else (ProcessMessage(class, code, address, x, y));

}

/* If the mouse moved during the loop, respond to it now */

if (MouseMoved) ProcessMove(x, y);

}

Using the Console Device

This is an extremely brief description of how you open and use the Console Device. For full

details, refer to the Amiga ROM Kernel Manual and the AmigaDOS Technical Reference

Manual

There are two ways to open the Console Device. You can use the one that gives you the power

and flexibility you want and suits the environment in which you are working. You can either

open the Console Device as a normal AmigaDOS file, or you open it directly via a call to Open-

DeviceQ. There are advantages and disadvantages to both approaches.

o Opening the Console as an AmigaDOS file

Doing Console input and output via AmigaDOS file-handling is very simple and con

venient. Also, there are special line-edit capabilities that you get when opening an Ami
gaDOS Console.

8"14 Intuition Version 29.4

There are, however, two limitations. File I/O requires more processing overhead than

going straight to the Console Device. Also, you must be in an AmigaDOS environment

(AmigaDOS must be active), which won't be the case for those of you who want to take

over the machine.

o Opening the Console Device directly

When you open the Console Device directly, you have direct control over the parame

ters and use of the console input and output.

Opening the Console Device directly is more involved than opening a file; you have to

open the device and then send packets of information using a special data structure.

Also, you don't have the special line-edit capabilities.

USING THE AMIGADOS CONSOLE

There are two sorts of input that you can get with an AmigaDOS console: unprocessed input

through a "RAW:" file type, or processed input either through the DOS's window or through a

window of your own choosing.

Getting input from the AmigaDOS console merely involves opening a file with the DOS com

mand OpenQ, and reading from that file with the DOS command ReadQ. These files are simple

character-oriented files (also known as byte-stream files). The characters are read into a buffer

of your choosing.

To write characters to a window via the AmigaDOS console, you should use the AmigaDOS

command WriteQ. When you've finished with console I/O, you should call CloseQ to close the

file.

USING THE CONSOLE DEVICE DIRECTLY

To use the Console Device directly, you create an IOStdReq data structure, in which you initial

ize only one field — the ioJData field. You initialize this field with a pointer to your window.

Then you call OpenDeviceQ, which opens the Console Device and attaches it to your window.

The call to OpenDeviceQ also initializes your IOStdReq structure for subsequent calls to Con

sole Device routines. You can then get input from the Console and send text output to the

Console using the functions sketched out below.

Reading from the Console Device

When you want to read from or write to the Console Device, you use the same IOStdReq data

structure information that was created by the call to OpenDeviceQ, with the following extra ini

tializations:

o Set the ioJData field to point to your buffer. A buffer is a block of memory that will be

used to to receive the characters from the Console Device.

Intuition Version 29.4 8-15

o Set the ioJLength field of the IOStdReq equal to the number of bytes in your buffer.

The Console Device will not write more bytes than this into the buffer.

o Set the iojCommand field to the constant CMDJRJEAD.

After you initialize the IOStdReq structure with your buffer information, you call either the

SendlOQ or DoIOQ function to read in any characters that are waiting to be read. The

difference between SendlOQ and DoIOQ is that SendlOQ is asynchronous, which means that

while the Console Device monitors the keyboard you go away and do other processing and check

later to see whether or not the user has typed something. DoIOQ, on the other hand, is syn

chronous, which means that when you call DoIOQ control doesn't return to you until the user

has typed something.

After the call to one of the input routines, you can examine the io_Actual field to discover how

many characters were actually written into your buffer.

Writing Text to Your Window Via the Console Device

You can write characters to your window or do special formatting by writing control escape

sequences to the Console Device. Control escape sequences are special sequences of characters

that start with the "Escape" character, which is a character with the byte value of 155 (that's

0x9B in hex). This character is also known as the control sequence introducer, or CSI.

When you want to read from or write to the Console Device, you use the same IOStdReq data

structure information that was created by the call to OpenDeviceQ, with the following extra ini

tializations:

o Put the characters (and control escape sequences) you want written to your window

into a buffer, and put the address of the buffer into the ioJData field of the IOStdReq

structure.

o Initialize the field ioJLength with the number of characters that are found in the

ioJData buffer. Or, if your text is null-terminated, you can specify a length of -1 and

let the Console Device figure out the length for you.

o Set the iojCommand field to CMD.WRITE.

Text is written entirely within the non-border area of a window (it doesn't matter what sort of

refresh mode the window has). When writing text with the Console Device, you never have to

worry about the text being written over the gadget imagery in the borders of the window.

Character-wrap is supported at edge-of-window boundaries. Character wrap is a special feature

of all of the console devices. It allows the console devices to behave like virtual terminals.

Character-wrap means that if a character to be written won't fit in the remaining space of the

current line, the Console Device will write the character in the first position of the next line

instead. Compare this with writing text directly into a window using the text primitives: if

your character string reaches the boundary of the window, it will be written out in the invisible
space beyond the window.

The control escape sequences can be used for special text operations like LINE FEED,

CLEAR_END_OF_LINE, and cursor movements. The complete list of control functions avail
able from the Console Device is quite long. For a complete list of these and other special con
trol functions of the Console Device, please refer to the Amiga ROMKernel Manual

8"16 Intuition Version 29.4

SETTING THE KEYMAP

The keymap is the translation table that the Console Device uses when translating the raw key-

codes that come from the Keyboard Device into normal characters (usually ASCII) for your pro

gram to use. If you never bother with the keymap of your virtual terminal, then you will get

plain ASCII translations of the characters typed at the keyboard. These are equivalent to the

characters that are printed on the keys of the Amiga keyboard.

The keymap also describes higher-level functions such as which keys repeat, which keys combine

with the control keys to result in special control-key sequences, and more. The default Console

Device keymap configures these functions to look like a generic terminal.

You can supply your own keymapping translation tables if you like. For example, if you are

supporting something like a Dvorak keyboard, you can map the input signals to your own

choice of alphanumerics.

You can see the current keymap table by using the CDAskKeyMapQ routine, which returns a

copy of the table to you. You can set your own keymap by calling the CDSetKeyMapQ routine

with your own table.

Intuition Version 29.4 8-17

Chapter 9

IMAGES, LINE DRAWING, AND TEXT

Intuition provides two approaches to rendering graphics images, lines, and text into displays:

o For quick and easy rendering, Intuition provides its own high-level data structures and

functions.

o You are also free to use all of the lower-level Amiga graphics, animation, and text prim

itives.

This chapter shows you how to you use the Intuition structures and functions, but the Amiga

primitives are a large topic in themselves and we can only point the way. You will find instruc

tions for using the primitives in the Amiga ROM Kernel Manual

The first section of this chapter describes the three Intuition structures for graphics, lines, and

text. In the section for each structure, there is initially some general information, then the com

plete specification for the formal data structure, and an example or two.

The last part of this section shows how to use Intuition functions to display your graphics, line,

and text data structures in windows and screens. The mechanics of displaying the structures in

windows and screens differ slightly from the way you display them in requesters, gadgets, and

menus.

The last section shows how to get the address of display memory for windows and screens. You

need this information to use both the graphics primitives and the Intuition functions.

Using Intuition Graphics

Images, Borders, and IntuiText are the general-purpose Intuition structures for rendering graph

ics and text into your display. They are called illustration data types.

o Images are graphic objects of any size and complexity.

o Borders are connected lines of any length and number, drawn at any angle, and defining

any arbitrary shape,

o IntuiText strings can be written in the default font or in a custom font of your own

design.

The illustration data types are easy to design and economical to use. They are easy to design

because their definitions are brief and flexible. Even though each structure defines a different

data type, the data types share a consistency of features and capabilities, so once you've learned

Intuition Version 29.4 9-1

one you've pretty much learned them all. This decreases the amount of energy spent in learn

ing new things, and you can reuse the same structures in many places. It also buys an economy

of Intuition-internal routines, so we all win.

Each of these illustration data types is located with respect to a display element, or containing

element, which can be any of the primary Intuition components: a window, screen, menu,

gadget, or requester. The starting location of an image, border, or text string is defined as an

offset relative to some particular pixel, usually the top-left corner of the element. Any of the

illustration data types can be rendered in any of the display elements. In fact, you can display

the same structure in more than one of the elements at the same time.

There are two methods of rendering images, borders, and text into display elements:

o In menus, gadgets, and requesters, you use a pointer field provided in the menu, gadget

or requester structure. Then, as Intuition handles those structures, the illustrations are

rendered for you.

o In windows or screens, you render the illustration types directly into the display ele

ment by using one of the functions Drawlmagef), DrawBorderQ, or PrintlTextQ.

In the definitions of all three of these general-purpose structures, you supply a top-left location

that is a relative offset from the top-left of the display element that will contain the illustration.

These relative offsets allow you to use the underlying data arrays across limitless instances of

Image, Border, or IntuiText structures. For example, if you have numerous gadgets of the same

size, you can use the same Border coordinate pairs to draw a line around each gadget.

An important fact about the illustration elements is that each can point to another of its own

kind. You can link many of them together and have them all rendered with just one procedure

call.

DISPLAYING BORDERS, INTUITEXT, AND IMAGES

Requester, gadget and menu structures contain a field for rendering borders, text and images.

This field contains a pointer to an instance of a Border, IntuiText, or Image structure. For

rendering the illustration types directly into screens and windows, however, you use the Intui

tion functions DrawBorderf), DrawImageQ, and PrintlTextQ. You supply a Border, Image, or

IntuiText structure as an argument to the function.

Note that the offsets you specify as arguments to these functions are added to the offsets in the

graphics structures. Sometimes this extra level of offset can come in handy, especially when

positioning as a group a linked list of illustration structures.

For rendering into screens and windows, you also need a pointer into the window or screen

RastPort. See the "Using the Graphics Primitives" section below.

CREATING BORDERS

Although this data structure is called a Border, it's actually a general purpose structure for

drawing connected lines at any angles and rendering any arbitrary shape made up of groups of

connected lines. It's called a Border because that's how it started out.

9-2 Intuition Version 29.4

To define a Border, you specify the following:

o A set of x and y offsets to the beginning point of the line

o A set of coordinate pairs for each vertex

o Two colors and a drawing mode:

* A color for the lines

* A color that can be used for background areas enclosed within lines

* One of several drawing modes

o Optional pointer to another instance of Border

Border Coordinates

Intuition draws lines between points that you specify as as sets of x,y coordinates. The Border

variables LeftEdge and TopEdge contain offsets to the first pair of coordinates. The XY field

contains a pointer to an array of coordinate pairs. All of these coordinates are offsets from the

top-left corner of the element that contains the line. Thus, you can define one line and use it in

different display elements or use it many times in the same element. The first coordinate pair

describes the starting point of the first line. Every coordinate pair after the first describes the

ending point of the current line and, if there's another coordinate pair, the starting point of the

next line.

Here's an example for you. Consider a gadget whose select box is 140 pixels wide and 80 pixels

high. The top-left corner of the gadget's select box is located in a window at position (10,5). If

the border's {LeftEdge, TopEdge) coordinates are (10,10), this results in an absolute base posi
tion of (10+10,5+10), or (20,15), as shown in Figure 9-1.

Intuition Version 29.4 9"3

0

5 -

10—

15 -

20-

25 -

30—

0 5 10 15 20 25 30 35 40 45 50

ill i I i I

-Top left corner of the gadget's select box (10,5)

Absolute base position

(20,15)

zFirst Coordinate

(20+0,15+5)

Third Coordinate (20+15,15+0)

Second Coordinate (20+15,15+5)

Example of

Border Relative Position

Figure 9-1: Example of Border Relative Position

The (LeftEdge, TopEdge) coordinate pair define the absolute base pixel for this border. All coor

dinate pairs of the border are relative to this point. If the first set of coordinates in the array of

coordinates is (0,5), the starting point of the first line will be at (20+0,15+5), or (20,20). If the

next coordinate pair is (15,5), the end point of the first line will be at (20+15,15+5), or (35,20).

A line will be drawn from absolute position (20,20) to absolute position (35,20). If there is one

last coordinate pair, (15,0), then the next point is at (20+15,15+0), or (35,15). A second line

segment is drawn from (35,20) to (35,15).

For a border that is outside the select box of a gadget, you can specify negative offsets. For

example, starting position (-1,-1) for a gadget border is just outside the gadget select box.

Border Colors and Drawing Modes

Intuition uses the current set of colors in the color register to draw the border and, optionally,

to draw its background. As usual, the available colors depend upon the number of bit-planes

used in the screen. For instance, if the screen has 5 bit-planes, then you can select from the

colors in color registers 0 through 31. The lines are always drawn in the color in the FrontPen
field.

Two drawing modes pertain to border lines: JAMl, and XOR. To draw the line in your choice
of color, use JAMl. You can choose to have the line "invert" the color of the pixels over which
it is drawn by selecting the XOR drawing mode. If you use XOR mode, then for every pixel the
line is drawn over, the data bits of the pixel are changed to their binary complement. The com
plement is formed by reversing the all the O-bits and 1-bits in the binary representation of the

9-4
Intuition Version 29.4

color register number. In a 3-bit-plane display, for example, color 6 is 110 in binary. If a pixel

is color 6, it will be changed to the complement of 001 (binary), which is color 1.

Linking Borders Together

The NextBorder field can point to another instance of a Border structure. This allows you to

link borders together to describe complex line-draw shapes. Having multiple borders allows you

to draw multiple, distinct groups of lines, each with its own set of line segments, and its own

color and draw mode. For example, you may want a double border to make a requester stand

out more from the surrounding display. You can define the inner border in a second Border

structure and link it to the first structure by using this field.

Border Structure Definition

Here is the specification for a Border structure:

struct Border

{
SHORT LeftEdge, TopEdge;

SHORT FrontPen, BackPen, DrawMode;

SHORT Count;

SHORT *XY;

struct Border *NextBorder

};

The meanings of the fields in the Border structure are:

LeftEdge, TopEdge

Starting origin for the border as an offset from the top-left of the containing element.

LeftEdge is the x coordinate and TopEdge is the y coordinate for the top-left bit of the

image. This field can contain integers or constants.

LeftEdge

Number of pixels from left edge of containing element.

TopEdge

Number of lines from top line of containing element.

FrontPen, BackPen, DrawMode

FrontPen is the color used to draw the line. The pen color fields contain integers or
constants that correspond to color registers. BackPen is currently unused.

Intuition Version 29.4 9.5

You set the DrawMode field to one of the following:

JAM1

Uses FrontPen to draw the line and makes no change in the background.

XOR

Changes the background beneath the line to its binary complement.

NextBorder

Pointer to another instance of a Border structure.

Set this field to NULL if there is no other Border structure or if this is the last Border
structure in the linked list.

XY

Pointer to an array of coordinate pairs, one pair for each line.

Count

The number of pairs in the array of coordinate pairs.

This field contains an integer or constant.

CREATING TEXT

The IntuiText structure provides a simple way of writing text strings anywhere in your display.

For example, an array of IntuiText strings is very handy in creating menus.

To Refine and display IntuiText, you specify the following:

o Colors for the text and, optionally, for the text's background.

o One of three drawing modes

o Starting location for the text

o Default font or your own special font

o Pointer to another instance of IntuiText (if any).

Text Colors and Drawing Modes

As with border colors, Intuition uses the current set of colors in the color register to write the

text and, optionally, to draw its background. As usual, the available colors depend upon the

number of bit-planes used in the screen. For instance, if the screen has 5 bit-planes, then you

can select from the colors in color registers 0 through 31. The text is usually drawn in the color

in the FrontPen field.

Text characters in general are made of two areas: the character image itself, and the back

ground area surrounding the character image.

g.g Intuition Version 29.4

In addition to the two drawing modes for borders, JAM1 and XOR, you also have JAM2.

These modes are described in the following paragraphs.

If you select JAM1 drawing mode, the text character images will be drawn but the character

background areas won't be drawn. The character image is drawn in FrontPen color. Because

the background of a character is not drawn, the pixels of the destination memory around the

character image are not disturbed. This is called overstrike.

If you select JAM2 drawing mode, the character image is drawn in FwntPen and the character

background is drawn in the color in the BackPen field. Using this mode, you completely cover

any graphics that previously appeared beneath the letters.

If drawing mode is XOR, the character is drawn in the binary complement of the colors at its

destination. The destination is the display memory where the text is rendered. FrontPen and

BackPen are ignored. To form the complement, you reverse the all the O-bits and 1-bits in the

binary representation of the color register number. In a 3-bit-plane display, for example, color 6

is 110 in binary. The complement is 001 (binary), which is color 1.

Linking Text Strings

The NextText field can point to another instance of an IntuiText structure. Using this field,

you can have several distinct groups of characters rendered with one stroke, each with its own

color, font, location, and drawing mode.

Starting Location

The starting TopEdge for a text string is the topmost pixels of the tallest characters. Note that

this is different from the baseline of the text. The baseline is the horizontal line on which the

characters and punctuation marks rest. The system default fonts are designed to be both above

and below the baseline. The descenders of letters (the part of certain letters that is usually

below the writing line, like the tail on the lower-case "y") are rendered below the base line.

Therefore, you need to allow for this in rendering text in the display. For more information

about text imagery, refer to the Amiga ROMKernel Manual.

Fonts

You can use the default font, as set by Preferences, or you can have your own custom font in a

FontDesc structure and use the TextAttr field to point to the custom font. For more informa

tion about custom fonts, see the Amiga ROMKernel Manual

IntuiText Structure

Here is the specification for an IntuiText structure:

Intuition Version 29.4 9.7

struct IntuiText

{
UBYTE FrontPen, BackPen;

UBYTE DrawMode;

SHORT LeftEdge;

SHORT TopEdge;

struct TextAttr *ITextFont;

UBYTE *IText;

struct IntuiText *NextText;

}

The meanings of the fields in the IntuiText structure are as follows.

FrontPen, BackPen

FrontPen is the color used to draw the text. BackPen is the color used to draw the

background for the text, if JAM2 drawing mode is specified.

These fields contain integers or constants that correspond to color register numbers.

DrawMode

One of three drawing modes:

JAM1

FrontPen is used to draw the text; background color is unchanged.

JAM2

FrontPen is used to draw the text; background color is changed to the color in

BackPen.

XOR

The characters are drawn in the complement of the background.

LeftEdge

Starting position for the text as an offset from the left corner of the containing element.

This field contains an integer or constant, which is the number of pixels from left edge

of containing element.

TopEdge

Starting position for the text as an offset from the top line of the display element.

This field contains an integer or constant, which is the number of lines from top line of

containing element.

TextAttr

Pointer to a TextAttr structure containing your own font description. Set to NULL if

you want the default font.

g.g Intuition Version 29.4

IText

Pointer to null-terminated text.

NextText

Pointer to another instance of IntuiText, if this is part of a linked list of text strings.

Set this field to NULL if this is not part of a list or if this is the last structure in the

list.

CREATING IMAGES

With an Image structure you can create graphics objects quickly and easily and display them

almost anywhere. Images have an additional attribute that makes them even more

economical—with one minor change in the structure, you can display the same image in

different colors within the same display element.

To define and display an Image, you specify the following:

o Location of the Image within the display element

o Image data — width and height of the Image and the data to create the Image

o Depth of the Image; that is, how many bit-planes are used to define it

o Bit-planes in the display element that are used to display the Image. This determines

the colors in the image.

Image Location

You specify a location for the Image that places its top-left corner as an offset from the top-left

corner of the element that contains the Image.

Defining Image Data

To create the data for your image, you write l's and O's into a block of 16-bit memory words,

which are located at sequentially increasing addresses. When the image is displayed, this

sequential series of memory words is organized into a rectangular area, called a bit-plane. You

can have up to 6 bit-planes in an image; they are drawn together when the image is displayed.

The color of each pixel in the image is directly related to the value in one or more memory bits

depending upon:

o how many bit-planes there are in the image data, and

o in which bit-planes of the screen or window you choose to display your image.

The color of a given pixel is determined by one or more data bits Each bit in the pixel is taken

from the same position in each of the bit-planes used to define the image. For each pixel, the

Intuition Version 29.4 9.9

system combines all the bits in the same position to create a binary value that corresponds to

one of the system color registers. This method of determining pixel color is called color indirec

tion because the actual color value is not in the display memory. Instead, it is in color registers

which are located somewhere else in memory.

If an image consists of only one bit-plane and is displayed in a one-bit-plane display, then:

o Wherever there is a 0 bit in the image data, the color in color register 0 is displayed.

o Wherever there is a 1-bit, the color in color register 1 is displayed.

In an image composed of two bit-planes, the color of each pixel is obtained from a binary

number formed by the values in two bits, one from bit-plane 0 and one from bit-plane 1. If

bit-plane 0 contains all l's and bit-plane 1 contains 05s and l's, the pixels derive their colors

from register 1 (binary 01) and register 3 (binary 11).

You create your image data by giving Intuition a series of data words. Before specifying these

numbers, you may find it helpful to lay out your image on graph paper, or to use one of the

Amiga art tools to assist you. For example, the following illustration shows the layout for the

system sizing gadget, which is a one-bit-plane image.

Image Data Hexidecimal Representation

F F F F

C 0 F F

C C F F

C 0 0 3

F C F 3

F C F 3

F C F 3

F C 0 3

F F F F

Figure 9-2: Intuition's High-Resolution Sizing Gadget Image

In hex notation, the data words of the sizing gadget image are defined as follows:

9-10 Intuition Version 29.4

USHORT SizeData[] =

{
OxFFFF,

OxCOFF,

OxCCFF,

0xC003,

0xFCF3,

0xFCF3,

0xFCF3,

0xFC03,

OxFFFF,

In the image data, you need to specify enough whole words to contain the Image width. For

example, an image 7 bits wide requires one word per line while an image 17 bits wide requires

two words per line. In the Width field of the Image structure, you specify the actual width in

pixels of the widest part of the image not how many pixels are contained in the words that

define the image. The Height field contains the height of the image in pixels.

Here is the actual Image structure of the system sizing gadget. The last two fields in the struc

ture, PlanePick and PlaneOnOff are explained in the next section.

struct Image Sizelmage =

{
0, 0, /* left top */

16, 9, 1, /* width, height, depth */

&SizeData[0], /* Address

0x1, 0x0, /* PlanePick, PlaneOnOff */

NULL, /* Nextlmage */

Picking Bit-Planes for Image Display

You use the PlanePick and PlaneOnOff fields in the Image structure to specify which bit-planes

of the containing window or screen are used to display the image. This gives you great flexibil

ity in using Image structures. You can:

o draw an Image into a screen or window of any depth (if you've designed it right)

o make one Image and display it in different colors

o minimize the amount of memory needed to define a simple Image that is destined for a

display of multiple bit-planes

PlanePick "picks" the bit-planes of the containing window or screen RastPort that will receive

the bit-planes of the Image. PlaneOnOff specifies what to do with the window or screen bit-

planes that are not picked to receive image data. For each display element plane that is

"picked" to receive data, the next successive plane of image data is drawn there. For every

Intuition Version 29.4 9-11

bit-plane not picked to receive image data, you tell Intuition to fill the plane with O's or l's.

For both variables, the binary form of the number you supply has a direct correspondence to

the bit-planes of the window or screen containing the Image. The lowest bit position

corresponds to the lowest-numbered bit-plane. For example, for a window or screen with 3 bit-

planes (consisting of Planes 0, 1, and 2), all the possible values for PlanePick or PlaneonOffand
the planes picked are as follows.

PLANEPICK OR

PLANEONOFF

000

001

010

011

100

101

110

111

PLANES PICKED

No planes

Plane 0

Plane 1

Planes 0 and 1

Plane 2

Planes 0 and 2

Planes 1 and 2

Planes 0, 1 and 2

The system sizing gadget shown above has only one bit-plane of data. To display this gadget in

Plane 0 of a 4-bit-plane window using Color 1 for the Image and Color 0 for its background you

set PlanePick to 0001 (binary) and PlaneOnOff to (XXX) (binary). These settings give Intuition

the following instructions:

o Display the data that describes the image in plane 0 of the destination RastPort

o For all of the other planes in the RastPort, set the bits in the area where the Image is

displayed to 0.

Figure 9-3 illustrates the discussion in the preceding paragraphs.

9-12 Intuition Version 29.4

Bit Map Planes

Plane 3 Plane 2 Plane 1 Plane 0

Planepick: 0

FIE

1

Planeonoff: 0 don't care

Image Data

Figure 9-3: Example of PlanePick and PlaneOnOff

If you want the sizing gadget to be rendered in Color 2 and its background in Color 0, you need

to define pixels whose values are 0010 and 0000. To do this, simply change PlanePick to 0010.

If you want Color 3 for the sizing gadget and color 1 for its background, you need to define pix

els with values 0011 and 0001. Therefore, plane 1 defines the image and plane 0 has to be all

l's. You can achieve this by setting PlanePick to 0010 and PlaneOnOff to 0001.

If you want an Image that is simply a filled rectangle, you don't have to supply any image data

at all! You specify a Depth of zero, set Width and Height to any size you like, and set PlanePick

to 0000 since there are no planes of image data to pick. Then, set PlaneOnOff to the color you

want for the rectangle. To see how a gadget like this looks, refer to the "Requester Deluxe"

illustration, Figure 7-1, in Chapter 7, "Requesters and Alerts".

Image Structure

Here is the specification for an Image structure:

Intuition Version 29.4 9-13

struct Image

SHORT LeftEdge, TopEdge;

SHORT Width, Height, Depth;

SHORT *ImageData;

UBYTE PlanePick, PlaneOnOff;

struct Image *NextImage;

The meanings of the fields in the Image structure are:

LeftEdge, TopEdge

Offsets from the top-left of the display element.

These fields contain integers or constants:

LeftEdge

Number of pixels from left edge of display element.

TopEdge

Number of lines from top line of display element.

Width

Width in pixels of the actual image.

This field contains an integer or constant.

Height, Depth

Height of the image in pixels and number of bit-planes needed to define the image.

These fields contain integers or constants.

ImageData

Pointer to the actual bits defining the image.

PlanePick, PlaneOnOff

PlanePick tells which planes of the containing element you "pick" to receive planes of

image data. PlaneOnOff tells what to do about the planes that are not "picked".

These fields represent bit-plane numbers.

Image Example

Here is a more complex example of an Image. The Image shown in Figure 9-4 below belongs to

one of the system depth-arrangement gadgets (the front gadget, which brings a window or

screen to the front of the display):

9-14 Intuition Version 29.4

y 3||£§f sIn

i MM ■ ;^ i
yp ■ i ;

The 3-Color Front Gadget Plane 0, Works even in Plane 1, for

One-plane Screens

• Highlight

Figure 9-4: Example Image — the Front Gadget

Its data structure and data definition look like this:

Intuition Version 29.4 9-15

USHORT UpFrontDataQ =

{
0x3FFF, 0xFF3C,

0x3000, 0x3F3C,

0x3000, 0x033C,

0x303F, 0xF33C,

0x303F, 0xF33C,

0x303F, 0xF33C,

0x303F, 0xF33C,

0x3F3F, 0xF33C,

0x3F00, 0x033C,

0x3FFF, 0xFF3O,

/**/
0x0000, 0x0000,

OxOFFF, OxCOOO,

OxOFOO, 0x0000,

OxOFOO, 0x0000,

OxOFOO, 0x0000,

OxOFOO, 0x0000,

OxOFOO, 0x0000,

0x0000,0x0000,

0x0000,0x0000,

0x0000,0x0000,

struct Image UpFImage =

{
0, 0, /* left top */

29, 10, 2, /* width, height, depth */

&UpFrontData[0], /* image data */

0x3, 0x0, /* PlanePick, PlaneOnOff */

NULL, /* Nextlmage */

This gadget was designed to look good in a window or screen of any depth. PlanePick 0x3

(000011) picks Planes 0 and 1 of the destination RastPort for Planes 0 and 1 of the gadget,

respectively. If this gadget is displayed in a window or screen of depth 1, only Plane 0 of its

data is displayed. Color 0 is used for the background and Color 1 for the imagery.

If this gadget is displayed in a window or screen of depth 2 or more, both planes are displayed.

The resulting colors are 0 for the background and 1 and 2 for the imagery.

INTUITION GRAPHICS FUNCTIONS

Following are brief descriptions of the Intuition functions that relate to the use of the Intuition

illustration data types and the Amiga graphics primitives.

9-16 Intuition Version 29.4

Rendering Images, Lines, or Text into a Window or Screen

Drawlmage (RPort, Image, LeftOffset, TopOffsei)

Moves the Image data into the RastPort of the screen or window.

RPort = pointer to the RastPort

Image = pointer to an Image structure

LeftOjfset = offset added to the Image's x coordinate.

TopOjfset = offset added to the Image's y coordinate.

DrawBorder (RPort, Border, LeftOffset, TopOjfset)

Draws the vectors of the Border into the window or screen RastPort.

RPort = pointer to the RastPort

Border = pointer to a Border structure

LeftOffset = offset added to each vector's x coordinate.

TopOffset = offset added to each vector's y coordinate.

PrintlText (RPort, IText, LeftOffset, TopOffset)

Prints IntuiText into the window or screen RastPort.

RPort = pointer to the RastPort to receive the text

IText = pointer to an IntuiText structure

LeftOffset = offset added to IntuiText x coordinate.

TopOffset = offset added to IntuiText y coordinate.

Obtaining the Width of a Text String

IntuiTextLength (IText)

Returns the width in pixels of an IntuiText. IText is a pointer to an instance of

an IntuiText structure.

Obtaining the Address of a View or ViewPort

Intuition Version 29.4 9-17

ViewAddress ()

This function returns the address of the Intuition View structure for any graph

ics, text or animation primitive that requires a pointer to a View.

ViewPortAddress (window)

This functions returns the address of the screen ViewPort associated with the

specified window, for any graphics, text or animation primitive that requires a

pointer to a ViewPort.

Using the Amiga Graphics Primitives

This section shows how to get pointers into display memory. You need these pointers for

rendering into windows and custom screens with the general-purpose Amiga graphics routines

and for rendering borders, images and text into windows and screens with the Intuition rou

tines. This section also has some cautionary advice about using rendering routines in Intuition

displays. Unfortunately, this book does not have the space to provide a primer for using the

graphics routines. To learn how to use them, you will need to refer to the Amiga ROM Kernel

Manual.

You can use all of the Amiga graphics routines in your Intuition windows and custom screens.

All of the routines require a pointer to some writable display area, either a RastPort, ViewPort,

or View. Intuition creates a RastPort and ViewPort for each of your windows and custom

screens. A RastPort defines some general parameters of a complete display and provides an

area where you can safely write. A ViewPort specifies some portion of a RastPort.

You can obtain a pointer to any window or screen RastPort or ViewPort by using instructions

like these:

POINTERS TO WINDOW RASTPORT AND VIEWPORT:

struct Window *MyWindow;

struct RastPort *MyRPort;

struct ViewPort *MyVPort;

struct View *BigView;

MyWindow = OpenWindow(...);

MyRPort = MyWindow->RPort;

MyVPort = ViewPortAddress(MyWindow);

BigView = ViewAddressQ;

9-18
Intuition Version 29.4

POINTERS TO SCREEN RASTPORT AND VIEWPORT:

struct Screen *MyScreen;

struct RastPort *MyRPort;

struct ViewPort *MyVPort;

struct View *BigView;

MyScreen = OpenScreen(...);

MyRPort = &MyScreen->RastPort;

MyVPort = &MyScreen->ViewPort;

BigView = ViewAddress();

The Intuition function ViewPortAddresaQ returns the address of a window's ViewPort.

A View structure is a linked list of one or more ViewPorts. Intuition's View is a linked list of

all the display structures that you use in your Intuition-based program. The function ViewAd-

dressQ returns the address of the Intuition View structure.

When you use graphics primitives to render directly into a window RastPort, and you allow the

user to size or move the window, the underlying screen display is destroyed. A blank back

ground is displayed in the areas uncovered when the screen is sized or moved. If this is a prob

lem for your program, you can overcome it by opening windows that cannot be moved or sized.

If a graphics routine requires the allocation and initialization of other graphics mechanisms—

TmpRas structure, Gelslnfo, AreaFill buffers, UserCopperList or the like—you set these up as

usual as cjescribed in the Amiga ROM Kernel Manual.

Intuition Version 29.4 9-19

Chapter 10

MOUSE AND KEYBOARD

In the Intuition system, the mouse is the normal method of making selections. This chapter

describes how users employ the mouse to interact with the system and your programs and how

you can arrange for your program to use the mouse in other ways. It also describes the use of

the keyboard as an alternate means of input.

About the Mouse

A mouse is a small, hand-held input device connected to the Amiga by a flexible cable. By rol

ling the mouse around on a smooth surface, the user can input horizontal and vertical position

coordinates to the computer. The mouse also provides a pair of input keys, called mouse but

tons, for the user to input further information to the computer.

Most of the things the user does with the mouse are meaningful to Intuition. Because of this,

Intuition monitors mouse activity very closely. As the user moves the mouse, Intuition follows

the motion by changing the position of the Intuition pointer. The Intuition pointer is an image

(using hardware sprite zero) that can move around the entire video display, mimicking the

user's movement of the mouse. The user can use the mouse and pointer to point at some object

and then have some action performed on that object. Typically, users specify an action by

manipulating either or both mouse buttons. Users can also position the mouse while the but

tons are activated.

The basic mouse activities are shown in Table 10-1.

Intuition Version 29.4 1(M

Table 10-1: Mouse Activities

ACTION EXPLANATION

Pressing Positioning the pointer while holding down

a button. The action specified by the posi

tion of the pointer can continue to occur

until the button is released, or alternatively

may not occur at all until the button is

released.

Clicking Positioning the pointer and quickly pressing

and releasing one of the mouse buttons.

Double-clicking Positioning the pointer and pressing and

releasing a mouse button twice.

Dragging Positioning the pointer over some object,

pressing a button, moving the mouse to a

new location, and releasing the button.

The left mouse button is most often used for selection. The right mouse button is most often

used for information transfer. The terms selection and information are intentionally left open to

some interpretation, as it's impossible to imagine all the uses you'll find for the mouse buttons.

The selection/information paradigm can be crafted to cover most interaction between the user

and your program. You are encouraged, when designing mouse usage, to emphasize this model.

It will help the user to understand and remember the elements of everyone's design.

When the user presses the left button, Intuition examines the state of the system and the posi

tion of the pointer. Intuition uses this information to decide whether or not the user is trying

to select some object, operation, or option. For example, the user positions the pointer over a

gadget and then presses the left button to select that gadget. Or the user may position the

pointer over a window and press the select button to activate the window. If the user moves

the mouse while holding down the select button, this sometimes means that the user wants to

select everything that the pointer moves over while the button is still pressed.

The right mouse button is used to initiate and control information-gathering processes. Intui

tion uses this button most often for menu operations. Pressing the right button usually displays

the active window's menu bar over the screen title bar. Moving the mouse while holding down

the right button sometimes means that the user wishes to browse through all available informa

tion; for example, browsing through the menus. Double-clicking the right mouse button can

bring up a special requester for extended exchange of information. This requester is called the

double-menu requester, because of the double-click of the menu button required to reveal it, and

because this requester is like a super menu where a complex exchange of information can take

place. Because the requester is used for the transfer of information, it's appropriate that this

mechanism is called up by using the right button.

Your program can receive mouse button and mouse movement events directly. If you are plan

ning to handle mouse button events yourself, you should continue the selection/information
model used by Intuition.

You can combine mouse button activations and mouse movement to create compound instruc

tions. Here's an example of how Intuition combines multiple mouse events. While the right

button is pressed to reveal the menu items of the active window, the user can press the left

10"2 Intuition Version 29.4

button several times to select more than one option from the menus. Also, you can allow the

user to move objects or select multiple objects by moving the mouse while holding down the

buttons. As another example, consider the Workbench tool. There, to move an object, the user

places the pointer within the object's icon and then presses the left button and moves the

pointer. When the icon is in the desired location, the user releases the button.

Dragging can have different effects, depending on the object being dragged. To move a window

to another area of the screen, the user positions the pointer within the window's drag gadget

and drags the window to a new position. To change the size of a window, the user positions the

pointer within the size gadget and drags the window to some smaller or larger size. In drag

selection, the user can hold down both buttons while in menu mode and move the pointer across

the menu display, making multiple selections with one stroke.

Mouse Messages

Mouse events are broadcast to your program via the IDCMP or the Console Device. See

Chapter 9, "Input and Output Methods", for information on how to receive communications.

Simple mouse button activity not associated with any Intuition function will be reported as the

event class MOUSEBUTTONS, with the codes SELECTDOWN, SELECTUP, MENUDOWN

and MENUUP to specify changes in the state of the left and right buttons respectively. Mouse

button activity over your gadgets is reported with a class of GADGETDOWN or GADGETUP,

and the IAddress field (or EventAddress field of InputEvents) has the address of the selected

gadget. Menu selections appear with a class of MENUPICK, with the menu number in the code

field.

Your program receives mouse position changes in the event class MOUSEMOVE. The MouseX

and MouseY position coordinates describe the position of the mouse relative to the upper-left

corner of your window. These coordinates are always in the resolution of the screen you are

using, and may represent of any pixel position in your screen, even though the hardware sprites

can be positioned only on the even-numbered pixels of a high-resolution screen and on the

even-numbered rows of an interlace screen.

For mouse movement reports as deltas (amount of change from the last position) instead of

absolute positions, you can use the IDCMP flag, DELTAMOVE.

About the Keyboard

The keyboard is used mainly for entering data. However, there are several special ways to use

the keyboard events as alternate methods for the user to enter commands. In particular, the

Amiga keyboard has several special command keys. Each is uniquely identifiable when pressed

along with one of the regular alphanumeric keys. The user can hold down one of these command

keys and type an alphanumeric key at the same time. This generates a keyboard event that is

recognizably different from a normal keystroke. These special keyboard events are known as

Intuition Version 29.4

command-key sequences. Intuition responds to certain of the sequences. Your program can

respond to them, too. When you receive a RAWKEY event through the IDCMP, you can tell if

the user pressed any of the special command keys at the same time by examining the input

message's Qualifier field for the special flags designating the special keys.

These special command keys (and their flags) are shown in Table 10-2.

Table 10-2: Special Command Keys

KEY LABEL EXPLANATION

control CTRL The associated Qualifier flag is the CON

TROL flag.

alternate ALT Please note that there are two separate

ALT keys, one on each side of the space

bar. These can be treated distinctly. You

can detect which one was pressed by exam-

ing the LALT and RALT commands for the

Left ALT and Right ALT keys respectively

escape ESC When this key is struck, its keycode is en

tered into the input stream as an actual

keystroke.

function Fl to F10 Shortcut methods for entering command-

key sequences starting with the ESC key.

AMIGA Fancy A Like the ALT keys, there are two Amiga

keys, one on each side of the space bar.

These are distinctly identifiable as well.

The Left AMIGA key is recognized by the

Qualifier flag LCOMMAND, and the Right

AMIGA key by RCOMMAND.

Certain command-key sequences starting with one of the AMIGA keys have special meaning to

Intuition. Most notably, these involve shortcuts and alternatives to using the mouse, as

described in the following sections.

Using the Keyboard as an Alternate to the Mouse

All Intuition mouse activities can be emulated using the keyboard, by combining the Amiga

command keys with other keystrokes.

The pointer can be moved by pressing down either AMIGA key along with one of the four cur

sor keys (the ones with the arrows). The longer these keys are held down, the faster the mouse

will move. Also, you can hold down either SHIFT key to make the pointer leap greater

10-4 Intuition Version 29.4

distances.

To emulate the left mouse button, users can press the left ALT key and the left AMIGA key

simultaneously. To emulate the right mouse button, users can press the right ALT key and the

right AMIGA key simultaneously. These key combinations permit users to make gadget selec

tions and perform menu operations using the keyboard alone. This will be a boon for mouse-

haters.

The following special shortcut functions are supported by Intuition:

o "Bring Workbench to the Front" (Left AMIGA and the "N" key)

o "Send Workbench to the Back" (Left AMIGA and the "M" key)

Note that these functions emulate left mouse button and mouse movement operations. Also

note that Intuition always consumes these two command-key sequences for its own use. That

is, it always detects these events and removes them from the input stream.

You can pair up menu items with command-key sequences to associate certain letters with

specific menu item selects. This gives the user a shortcut method to select oft-used menu opera

tions, such as UNDO, CUT, and PASTE. Whenever the user presses the Right AMIGA key

with some alphanumeric key, the menu strip of the active window is scanned to see if there are

any command-key sequences in the list that match the sequence entered by the user. If there is

a match, Intuition translates the key combination into the appropriate menu item number and

transmits the menu number to the application program. It looks to the application as if the

user had selected a given menu item with the mouse. For more information on menu item selec

tion, see Chapter 6, "Menus".

If Intuition sees a command key sequence that means nothing to it, the key sequence is broad

cast to your program as usual. See Chapter 8, "Input and Output Methods", for how this

works.

The final chapter of this book, "Style", contains a complete list of the suggested standard com

mand key usage. We recommend that you take advantage of this standard so that the Amiga

user can grow accustomed to a common set of functions across applications.

Intuition Version 29.4 10"5

Chapter 11

OTHER FEATURES

The topics in this chapter have effects on the entire program or the entire Intuition display.

This chapter:

o introduces you to Intuition's easy way to allocate and free memory in an orderly

fashion.

o shows you how to get the user's Preferences settings or the default Preferences settings.

Preferences is the program that allows the user to set numerous system-wide parame

ters.

o describes the two functions that affect the entire Intuition display—one function

remakes the ViewPort for each screen and the other reconstructs the entire display.

o describes the functions for flashing the screen, and getting the current time values.

o discusses using sprites in Intuition displays.

o gives information about register allocation and variable names for assembly language

programmers.

Easy Memory Allocation and Deallocation

Intuition has a pair of routines that make it easy for you to do easy and easily abortable

memory allocations and deallocations. The routines are AllocRememberQ and FreeRememberQ.

They use a data type called Remember.

Intuition Version 29.4 11-1

Figure 11-1: Intuition Remembering

INTUITION HELPS YOU REMEMBER

The AllocRememberQ routine calls the Exec AllocMem() function for you, but also allocates a

link node and uses it to save the parameters of the allocation into a master linked list for you.

Then you can simply call FreeRememberQ at a later time to deallocate all allocated memory

without being required to remember the details of the memory you've allocated.

The FreeRememberQ function gives you the option of freeing memory one of two ways:

o You can free both the memory blocks you've allocated and the link nodes that Intuition

allocates, or

o After you've successfully allocated all the memory blocks you need, you can free up

only the link nodes and keep the memory blocks for yourself.

These routines have two primary uses:

o The most general use of these routines is to do all of a program's memory allocations

using AllocRememberQ. The advantage of this is that a linked list of all your memory

allocations is created for you, so that when you want to free up all the memory, a single

call to FreeRememberQ does the job for you.

o The other use is to do a series of memory allocations and abandon it in midstream

easily, if you must. Let's say that you're doing a long series of allocations in a pro

cedure (for example, the Intuition OpenWindowQ procedure), and you detect some error

11-2 Intuition Version 29.4

condition, like "out of memory". When aborting, you should free up any memory that

you've already managed to allocate. These procedures allow you to free up that

memory easily, without being required to keep track of how many allocations you've

already done, the sizes of the allocations, and where the memory was allocated.

HOW TO REMEMBER

You create the "anchor" for the allocation master list by creating a variable that's a pointer to

the data structure Remember, and initializing that pointer to NULL. This is called the

RememberKey. Whenever you call AllocRemember()y the routine actually does two memory

allocations, one for the memory you want and the other for a copy of a Remember structure.

The Remember structure is filled in with data describing your memory allocation, and it's

linked into the master list pointed to by your RememberKey. Then, to free up any memory

that's been allocated, all you have to do is call FreeRememberf) with your RememberKey.

See the Amiga ROMKernel Manual for a description of the AllocMemQ call and the values you

should use for the Size and Flags variables.

THE REMEMBER STRUCTURE

Here's the Remember structure:

struct Remember

{
struct Remember *NextRemember;

ULONG RememberSize;

UBYTE *Memory;

};

Here's what the Remember variables mean:

NextRemember

This is the link to the next Remember node.

RememberSize

This is the size of the memory remembered by this node.

Memory

This is a pointer to the memory remembered by this node.

Intuition Version 29.4 H.3

AN EXAMPLE OF REMEMBERING

struct Remember *RememberKey;

UBYTE *MemAPointer, *MemBPointer;

RememberKey = NULL;

MemAPointer = AllocRemember(&RememberKey, BUFSIZE, MEMF_CHIP);

MemBPointer = AllocRemember(&RememberKey, BUFSIZE, MEMFJ3HIP);

/* Use the memory for various things ... */

/* and finally, give up the memory ... */

FreeRemember(&RememberKey, TRUE);

Preferences

Preferences is a program that lets the user see and change many system-wide parameters on the

Amiga. Users can also edit the standard Intuition pointer image and colors. You have access to

the Command Line Interpreter (CLI) through Preferences, by setting a flag that allows the CLI

icon to be visible on the Workbench display. (See the AmigaDOS manuals for more information

about the CLI.)

The user invokes Preferences to make settings and you can call GetPrefsQ to find out what set

tings the user has made. In a system where the user does not use Preferences, you can call Get-

DefPrefsQ to find out the Intuition default Preference settings. If you are using the IDCMP for

input, you can set the IDCMP flag NEWPREFS. With this flag set, you will receive an

IntuiMessage telling you that there is a new set of Preferences for you to examine. To get the

new settings, you then call GetPrefsQ.

Developers of printer driver programs should always call GetPrefsQ just before every print job.

The user may change to a different printer and run Preferences to modify the printer settings.

When Intuition is initialized (when the system is reset), you can call GetDefPrefsQ to find the

default Preferences settings that Intuition uses when it is first opened. Then, under AmigaDOS,

Intuition is configured according to the set of Preferences that are saved on the startup disk.

Upon invoking the Preferences tool, the user is shown a screen full of gadgets and can change

settings by selecting and playing with the gadgets. In some cases, a requester appears after the

user selects a gadget. Figure 11-2 shows the main Preferences display.

Intuition Version 29.4

Preferences

| Reset All

1 Last SavedT|

87/19/85 QQ
line m

ltd Rate

Key Repeat Delay

Shorti ► 1 Long

Key Repeat Speed

1 ► I Fast

Figure 11-2: Preferences Display

One of the arguments to GetPrefsQ and GetDefPrefsf) is the size of the buffer you are supply-
ing to receive the Preferences data. If you are interested only in the first few bits of data, you
don't have to allocate a buffer large enough to hold the entire Preferences structure. For this
reason, the most commonly used data has been grouped near the beginning of the structure.

Preferences allows the user to change the following:

o Date and time of day.

o Key repeat speed — the speed at which a key repeats when held down,

o Key repeat delay — the amount of delay before the key begins repeating,

o Mouse speed — how far the pointer moves when the user moves the mouse.

o Double-click delay — maximum time allowed between the two clicks of a mouse double

click. For information about how to test for double-click timeout, see the description of the

DoubleClickQ function in Appendix A.

o Text size — size of the default font characters. The user can choose 60-column mode (60

characters on a line in high resolution mode and 30 characters in low resolution mode) or

80-column mode (80 characters on a line in high resolution mode and 40 characters in low

resolution mode). The first variable in the Preferences structure is FontHeight, which is the

height of the characters in display lines. If this this is equal to the constant

TOPAZJ3IGHTY, the user has chosen the 80-column version. If it is equal to

TOPAZJSECTY, the user has chosen the 60-column version. The Preferences Display in

Figure 11-2 shows TOPAZJSIXTY.

Intuition Version 29.4 11-5

o CLI — allows access to the Command Line Interpreter for developers.

o Display centering — allows the user to center the image on the video display.

o Baud rate — the user can change the rate of data transmission to accommodate whatever

device is attached to the serial connector.

o Workbench colors — the user can change any of the four colors in the Workbench display

by adjusting the amounts of red, green, and blue in each color.

o Printer — the user can select from a number of printers supported by Amiga or can type in

another printer name, depending upon which printers are supported by any application.

The user can also indicate whether the printer is connected to the serial connector or the

parallel connector.

o Print characteristics — the user can select paper size, right and left margin, continuous feed

or single sheets, draft or letter quality, pitch, and line spacing. If the user chooses the

"Graphic Select" gadget, a requester appears from which the user can select shade (gray

scale printing), aspect (normal or sideways), positive or reverse image, and threshold (for

black and white printing, which colors are printed as white and which as black).

The Preferences settings can be written to a Workbench disk so the user can save the settings

for the next work session. The manual called Introduction to Amiga contains more information

about Preferences from the user's standpoint.

PREFERENCES STRUCTURE

Here is the Preferences data structure:

11-6 Intuition Version 29.4

struct Preferences

{
BYTE FontHeight;

UBYTE PrinterPort;

USHORT BaudRate;

struct timeval KeyRptSpeed, KeyRptDelay;

struct timeval DoubleClick;

USHORT PointerMatrix[POINTERSIZE];

BYTE XOffset, YOffset;

USHORT colorl7, colorl8, colorl9;

USHORT PointerTicks;

USHORT colorO, colorl, color2, color3;

BYTE ViewXOffset, ViewYOffset;

WORD ViewInitX, ViewInitY;

BOOL EnableCLI;

USHORT PrinterType;

UBYTE PrinterFilename[FILENAME_SIZE];

USHORT PrintPitch;

USHORT PrintQuality;

USHORT PrintSpacing;

UWORD PrintLeftMargin, PrintRightMargin;

USHORT Printlmage;

USHORT PrintAspect;

USHORT PrintShade;

WORD PrintThreshold;

USHORT PaperSize;

UWORD PaperLength;

USHORT PaperType;

}

The meanings of the fields in the Preferences structure are as follows:

FontHeight

This variable will contain one of two constants: TOPAZJSDCTY or TOPAZJ5IGHTY.

These are the font heights required to cause the default Topaz font to be rendered in

either 60- or 80-column mode wherever the default font is requested.

PrinterPort

This is set to either PARALLEL_PRINTER or SERIAL_PRINTER, to describe which

type of printer is attached to the printer port.

BaudRate

This can be set to any of these default baud rates. See Appendix B for a complete list

of the definitions you might find in this variable.

KeyRptSpeed, KeyRptDelay

These are timeval structures, which have two components, seconds and microseconds.

KeyRptDelay describes how long the system hesitates before the Input Device starts

Intuition Version 29.4 11-7

repeating the keys. KeyRptSpeed describes how the time between repeats of the key.

DoubleClick

This is a timeval structure, which describes the maximum time allowable between clicks

of the mouse button for the operation to be considered a double-click operation. See

Chapter 10, "Keyboard and Mouse", for details about double-clicking.

PointerMatrixfPOINTERSIZE]

This contains the sprite data for the Intuition pointer.

XOffset, YOffset

This describes the offsets from the upper-left corner of the pointer image to the

pointer's active spot.

color17, color18, color19

These are the colors of the Intuition pointer.

Pointer Ticks

This describes how many ticks are required for the mouse to move one increment. This

should always be a power of two. The Preferences tool allows it to be set to 1, 2, or 4.

Setting it to greater than 4 is not a great thing to do. For instance, if PointerTicks was

set to 32768, then to move the pointer from the bottom to the top of the screen the

user would have to move the mouse more than a mile.

colorO, colorl, colorS, colorS

These are the Workbench colors.

ViewXOffset, ViewYOffset

These describe the offset of the View from its initial startup position. This configurable

offset allows the user to position the display on his monitor.

ViewInitX, ViewInitY

These have copies of the initial View values, as created by the graphics library.

EnableCLI

This Boolean value describes whether or not the Workbench should display the CLI

icon when the CLI tool is available.

PrinterType

These are the definitions of the available printer types. See Appendix B for a complete

list of the definitions you might find in this variable.

PrinterFilename[FILENAME_SIZE]

The default name for the disk-based printer configuration file is kept in this buffer.

PrintPitch, PrintQuality, PrintSpacing

These describe the pitch, print quality, and page spacing for printer drivers.

11-8 Intuition Version 29.4

PrintLeftMargin, PrintRightMargin

The character spacing of the print margins are described by these variables.

Printlmage, PrintAspect, PrintShade

The values of these variables tell printer drivers about the desired type of page imagery.

PrintThreshold

For simple black/white printer dumps, this describes the intensity threshold required to

trigger a print of a pixel.

PaperSize, PaperLength, PaperType

These describe the user's choice of printer paper.

PREFERENCES FUNCTIONS

You can use the following functions to check the current Preferences settings.

GetPrefsfPrefBuffer, Size); Gets a copy of the current Preferences data.

PrefBuffer - pointer to the memory buffer to receive the Preferences data

Size - number of bytes to copy to the buffer

GetDefPrefsfPrefBuffer, Size); Gets a copy of the default Preferences data.

PrefBuffer - pointer to the memory buffer to receive the Preferences data

Size - number of bytes to copy to the buffer

Remaking the ViewPorts

This section is for advanced programmers who are interested in controlling their custom screens

directly and want to control the entire Intuition display.

There are two functions that operate on the entire display. These are RethinkDisplayQ and

RemakeDisplayQ. The MakeScreenQ function works only with the Copper lists of your custom
screen.

RethinkDisplay()

RethinkDisplayQ reworks Intuition's internal state data, rethinks the relationship of all of the
screen ViewPorts to each other and reconstructs the entire Intuition display by calling the

graphics primitives MrgCopQ and LoadViewQ. This includes all the screens in the display, not
just the ones controlled by your program. It is especially handy if you are creating custom
screens and want to make up your own lists of Copper instructions for handling the display.
For more information about the Copper, see the Amiga ROM Kernel Manual and Amiga

Intuition Version 29.4 jj.g

Hardware Reference Manual.

RethinkDisplayQ makes calls to the graphics primitives MrgCopQ and LoadViewQ, which causes

the display of Intuition's screens to be reconstructed. MrgCopQ merges all the various Copper

instructions for different ViewPorts of the display into a single instruction stream. This creates

a complete set of instructions for each display field (complete scanning of the video beam from

top to bottom of the video display). LoadViewQ uses this merged Copper instruction list to

create the display. Before calling RethinkDisplayQ, you may wish to call MakeScreenQ to create

the Copper instruction list for your own custom screens.

Note that RethinkDisplayQ can take several milliseconds to run, and it locks out all other tasks

while it runs. This can seriously degrade the performance of the multi-tasking Executive, so

don't use this routine lightly.

RemakeDisplay()

The function RemakeDisplay reconstructs the entire Intuition display. It calls MakeScreenQ for

every screen in the system and then calls RethinkDisplayQ. As with RethinkDisplayQ, Remak-

eDisplayQ can take several milliseconds to run, and it locks out all other tasks while it runs.

This can seriously degrade the performance of the multi-tasking Executive, so do not use this

routine lightly.

MakeScreenQ

To remake the Copper lists of your custom screen, call MakeScreenQ. Then only difference

between MakeScreenQ and the graphics library routine MakeVPortQ is that Intuition synchron

izes your call to MakeVPortQ with any that it needs to make.

Current Time Values

The function CurrentTimeQ gets the current time values. To use this function, you first

declare the variables Seconds and Micros. Then, when you call the function, the current time is

copied into the argument pointers. The synopsis of this function is:

ULONG Seconds, Micros;

CurrentTime(&Seconds, &Micros);

Intuition Version 29.4

Flashing the Display

Because the Amiga has no internal bell or beeper, this function is supplied to notify the user of
some event that is not serious enough to require a requester. For example, Intuition uses this

function when the user types an invalid character into an integer gadget. This function flashes

the background color of the screen. If the argument to the function is NULL, every screen in

the display is flashed. The synopsis of this function is:

DisplayBeep(Screen);

Using Sprites in Intuition Windows and Screens

Sprites do not behave well under Intuition, except in somewhat limited cases. The hardware and
graphics library sprite systems manage sprites independent of the Intuition display. In particu

lar:

o sprites can't be "attached" to any particular screen. Instead, they always appear in

front of every screen,

o when a screen is moved, the sprites do not automatically move with it. The sprites

move to their correct locations only when the appropriate function is called (either

DrawGListQ or MoveSpriteQ).

Hardware sprites are of limited use under the Intuition paradigm. They travel out of windows

and out of screens, unlike all other Intuition mechanisms (except the Intuition pointer, which is

meant to be global).

Assembly Language Conventions

In all Intuition routines, the arguments always follow the same order: addresses first, data

second. The registers are allocated in ascending order from register 0. Always. So you can look

at any routine, start from register A0 if the routine's arguments start with an address, and start

from DO when the routine's arguments become data values. As an added mnemonic, even the

register names are in alphabetical order—A0 precedes DO. Good enough?

Unfortunately for assembly programmers, many of you will have to use assemblers that don't

give you macros to declare and reference structure elements. If this is the case for you, then

Intuition Version 29.4 11-11

you should use the include file called "intuition.i", where every Intuition structure variable has
a unique name, found in assembler format.

Intuition Version 29.4

Chapter 12

STYLE

This chapter describes some important aspects of Intuition style. If you adhere to these style

notes, you will help to ensure that Intuition applications present a consistent interface to the

user. Try to exercise all of the suggestions in this chapter.

Menu Style

Always make sure that you use OffMenuQ when a item becomes meaningless or non-functional

Don't ever let the user select something and then have the application do nothing in response.

Always take away the user's ability to select that item.

The pens you set when you open a window are used to render the menu bar and the items. If

you are opening multiple windows, you might consider color-coding the window frames and

menus.

PROJECT MENUS

If you are going to be allowing the user to select which project to work with, we suggest that

you create a "Project" menu. For consistency, we suggest that everyone create their menu

strips with the Project menu as the leftmost menu. It should contain the items shown in Table

12-1. If possible, the items should be in the order shown.

Intuition Version 29.4 12-1

Table 12-1: Project Menus

MENU

ITEM FUNCTION

NEW Creates a project

OPEN Gets back a project previously saved

SAVE Saves the current project to the disk

SAVE AS Saves the current project using a different name

PRINT Prints the entire project

PRINT AS Prints part of a project or selects other than the

default printer settings

QUIT Stops the program

(if the project was modified,

ask if the user wants to save the work)

EDIT MENUS

If your application can perform edit-like functions, we suggest that you create an "Edit" menu,

which should appear to the right of the Project menu. It should contain the items shown in

Table 12-2. If possible, the items should be in the order shown in the table.

Table 12-2: Edit Menus

MENU

ITEM

UNDO

CUT

COPY

PASTE

ERASE

FUNCTION

Undoes the previous operation (if possible.

If not, disable this option!)

Removes the selected portion of the project

and puts it in the ClipBoard

Puts a copy of the selected bit of the project

in the ClipBoard

Puts a copy of the ClipBoard into the project

Removes the selected bit without putting it

into the ClipBoard

12-2 Intuition Version 29.4

Gadget Style

When creating a list of gadgets, in a requester or perhaps a window, be sure to design bolder,

more eye-catching imagery for the obvious or safe choice. For example, note how the CANCEL

choice is highlighted in Figure 12-1.

Overlapping the select boxes of gadgets is in general not a good thing to do. This is especially

true when it's not obvious to users which gadget they are selecting. Unless you're very careful,

all sorts of weird things can happen and the gadgets will behave in unusual ways.

As with menus, use OffGadgetf) to remove a gadget when it becomes meaningless or nonfunc

tional.

Figure 12-1: The Dreaded Erase-Disk Requester

Requester Style

This is easily.the most important rule about requesters: Always make sure that there's a safe

way to exit from any requester. As in Figure 12-2, notice that the dire "ERASE DISK" reques

ter can be cancelled and, in fact, the "run away" option is rendered in bolder imagery. If, for

instance, the user accidentally selected the ERASE DISK option from a menu, the CANCEL

option saves the day. This is an extremely important note. We can't emphasize this point

Intuition Version 29.4 12-3

strongly enough.

When you design a requester with your own BitMap imagery, make sure that the imagery works

well with the select boxes of the gadget list that you supply.

Command Key Style

Treat the AMIGA keys like SHIFT keys. To enter a shortcut, users should be able to hold

down the AMIGA key with the little finger of one hand, and press one of the keys they'd nor

mally press with the other hand. This will help touch typists as well as prevent that clumsy

feeling that we all experience.

Table 12-3 shows our recommendations for standard selection shortcuts (using the left AMIGA

key to emulate usage of the left button of the mouse):

Table 12-3: Selection Shortcuts

Press Left AMIGA

with: To:

I "Select a small piece to the right of the cursor"

like the next word

O "Select a bigger piece to the right of the cursor"

like the next sentence

P "Select an even bigger piece to the right of the cursor"

like the next paragraph

J "Select a small piece to the left of the cursor"

like the previous word

K "Select a bigger piece to the left of the cursor"

like the previous sentence

L "Select an even bigger piece to the left of the cursor"

like the previous paragraph

N Bring the Workbench to the front (this is automatically

trapped by Intuition)

M Send the Workbench to the back (this is automatically

trapped by Intuition)

Table 12-4 shows our recommendations for standard information (menu) shortcuts (using the

right AMIGA key to emulate usage of the right button of the mouse):

Intuition Version 29.4

Table 12-4: Information (Menu) Shortcuts

Press Right AMIGA

with:

X

C

P

I

B

U

P

Q

s

To:

Cut

Copy

Paste

Change font type to italic

Change font type to bold

Change font mode to underline

Reset font characteristics to plain defaults

Undo (cancel)

Save

Miscellaneous Style Notes

Remember, exiting programs should always make a call to OpenWorkBenchf), even if you didn't

call CloseWorkBenchQ. We want Workbench to be open as much as possible. If Workbench

was closed and your departure has freed up enough memory for Workbench to reopen, we want

it to happen. OpenWorkBenchQ won't necessarily work (if there's no memory for the display, it

won't open). But if everyone calls OpenWorkBenchf) then Workbench will open if it can. By

using this mechanism, you can help give the user a consistent environment. Intuition always

checks to see if Workbench must open whenever any screen is closed.

As much as possible, allow the user to configure the parameters of your program. For instance,

if you've opened a custom screen, let the user change the colors. If your program makes sound,

give the user the ability to adjust the tone and volume. Don't make the configuration a require

ment, however, and always give the user an avenue for restoring the defaults.

The Intuition default pointer is designed with the light source coming from the top-right. If

you design your own pointer, consider mimicking this. Most importantly, here are the color

assignments used for the Intuition pointer sprite data:

o Color 0 is transparent

o Color 1 of the sprite (hardware color register 17) is the color with medium intensity

o Color 2 of the sprite (hardware color register 18) is low intensity

o Color 3 of the sprite (hardware color register 19) is high intensity

Intuition Version 29.4 12-5

Your pointer should be framed by either Color 1 or Color 3.

Since the Intuition pointer is always hardware sprite zero, you can set the colors of the pointer

by calling the SetRGB() function on the ViewPort of any screen. An example of this is:

struct Screen *MyScreen;

SetRGB(&MyScreen->ViewPort, 17, Redl7, Greenl7, Bluel7);

SetRGB(&MyScreen->ViewPort, 18, Redl8, Greenl8, Bluel8);

SetRGB(&MyScreen->ViewPort, 19, Redl9, Greenl9, Bluel9);

A Final Note on Style

Design beautiful Gadgets, Menus, Requesters. Think simplicity and elegance. And always

remember the 4th grader, the sophisticated user, and the poor soul who's terrified of breaking

the machine.

Dare to be gorgeous and unique! But don't ever be cryptic or otherwise unfathomable. Make it

unforgettably great.

12-6 Intuition Version 29.4

Appendix A

INTUITION FUNCTION CALLS

In this appendix, all of the Intuition functions are presented in alphabetical order. The descrip

tion of each function follows the format shown below:

NAME

The name of the function and a one-line description of what it does.

SYNOPSIS

The correct form of the function call.

FUNCTION

Everything the function does.

RESULT

The results, if any, returned by the function.

BUGS

All known bugs, limitations, and deficiencies.

SEE ALSO

References to related functions in this and other books, references to the text of this book.

APPENDIXA

TABLE OF CONTENTS

AddGadget

AllocRemember

AutoRequest

BeginRefresh

BuildSysRequest

ClearDMRequest

ClearMenuStrip

ClearPointer

CloseScreen

CloseWindow

CloseWorkBench

CurrentTime

DisplayAlert

DisplayBeep

DoubleClick

DrawBorder

Drawlmage

EndRefresh

EndRequest

FreeRemember

FreeSysRequest

GetDefPrefs

GetPrefs

InitRequester

IntuiTextLength

ItemAddress

Adds a Gadget to the Gadget list of the Window or Screen

AUocMem and create a link node to make FreeMem easy

Automatically builds and gets response from a Requester

Sets up a Window for optimized refreshing

Builds and displays a system Requester

Clears the DMRequest of the Window

Clears the Menu strip from the Window

Clears the Pointer definition from a Window

Closes an Intuition Screen

Closes an Intuition Window

Closes the WorkBench Screen

Gets the current time values

Creates a display of an Alert message

"Beeps" the video display

Tests two time values for double-click timing

Draws the specified border into the RastPort

Draws the specified Image into the RastPort

Ends the optimized refresh state of the Window

Ends the Request and resets the Window

Frees memory allocated by calls to AllocRemember()

Frees up memory used by a call to BuildSysRequest()

Gets a copy of the the Intuition default Preferences

Gets the current setting of the Intuition Preferences

Initializes a Requester structure

Returns the length (pixel-width) of an IntuiText

Returns the address of the specified Menultem

MakeScreen Does an Intuition-integrated MakeVPortQ of a custom screen

ModifylDCMP

ModifyProp

MoveScreen

MoveWindow

OffGadget

OffMenu

OnGadget

OnMenu

OpenScreen

OpenWorkBench

PrintlText

RefreshGadgets

RemakeDisplay

RemoveGadget

ReportMouse

Request

RethinkDisplay

ScreenToBack

ScreenToFront

SetDMRequest

SetMenuStrip

SetPointer

SetWindowTitles

ShowTitle

SizeWindow

ViewAddress

ViewPortAddress

WBenchToBack

WBenchToFront

WindowLimits

WindowToBack

WindowToFront

Modifies the state of the Window's IDCMP

Modifies the current parameters of a Proportional Gadget

Attempts to move the Screen by the delta amounts

Asks Intuition to move a Window

Disables the specified Gadget

Disables the given menu or menu item

Enables the specified Gadget

Enables the given menu or menu item

Opens an Intuition Screen

Opens the WorkBench Screen

Prints the text according to the IntuiText argument

Refreshes (redraws) the Gadget display

Remakes the entire Intuition display

Removes a Gadget from a Window or a Screen

Tells Intuition whether or not to report mouse movement

Activates a Requester

The grand manipulator of the entire Intuition display

Sends the specified Screen to the back of the display

Brings the specified Screen to the front of the display

Sets the DMRequest of the Window

Attaches the Menu strip to the Window

Sets a Window with its own Pointer

Sets the Window's titles for both Window and Screen

Sets the Screen title bar display mode

Asks Intuition to size a Window

Returns the address of the Intuition View structure

Returns the address of a Window's ViewPort structure

Sends the WorkBench Screen in back of all Screens

Brings the WorkBench Screen in front of all Screens

Sets the minimum and maximum limits of the Window

Asks Intuition to send this Window to the back

Asks Intuition to bring this Window to the front

u

AddGadget AddGadget

NAME

AddGadget — add a Gadget to the Gadget list of the Window or Screen

SYNOPSIS

SHORT AddGadget(Pointer, Gadget, Position);

FUNCTION

Adds the specified Gadget to the Gadget list of the given Window or Screen, linked in at

the position in the list specified by the Position argument (that is, if Pos == 0, the

Gadget will be inserted at the head of the list, and if Position == 1 then the Gadget

will be inserted after the first Gadget and before the second). If the Position you specify

is greater than the number of Gadgets in the list, your Gadget will be added to the end

of the list. The SCRGADGET Flag of the Gadget specifies whether the Pointer argu

ment points to a Window (SCRGADGET not set) or a Screen (SCRGADGET is set).

This procedure returns the position at which your Gadget was added.

NOTE: A relatively safe way to add the Gadget to the end of the list is to specify a Po

sition of -1. That way, only the 65536th (and multiples of it) will be inserted at the

wrong position. The return value of the procedure will tell you where it was actually in
serted.

NOTE: The System Window and Screen Gadgets are initially added to the front of the

Gadget List. The reason for this is: if you position your own Gadgets in some way that

interferes with the graphical representation of the system Gadgets, the system's ones will

be "hit" first by User. If you then start adding Gadgets to the front of the list, you will

disturb this plan, so beware. On the other hand, if you don't violate the design rule of
never overlapping your Gadgets, there's no problem.

INPUTS

Pointer =

pointer to the Window or Screen to get your Gadget

Gadget =

pointer to the new Gadget

Position =

integer position in the list for the new Gadget (starting from zero as the first po

sition in the list)

RESULT

Returns the position of where the Gadget was actually added.

BUGS

None

SEE ALSO

RemoveGadgetQ

Intuition Version 29.4

AllocRemember AllocRemember

NAME

AllocRemember — AllocMem and create a link node to make FreeMem easy

SYNOPSIS

AllocRemember(RememberKey, Size, Flags);

FUNCTION

This routine calls the EXEC AllocMem() function for you, but also links the parameters

of the allocation into a master list, so that you can simply call the Intuition routine

FreeRemember() at a later time to deallocate all allocated memory without being re

quired to remember the details of the memory you've allocated.

This routine will have two primary uses:

- Let's say that you're doing a long series of allocations in a procedure (such as

the Intuition OpenWindow() procedure). If any one of the allocations fails for

lack of memory, you need to abort the procedure. Abandoning ship correctly

involves freeing up what memory you've already allocated. This procedure al

lows you to free up that memory easily, without being required to keep track

of how many allocations you already done, what the sizes of the allocations

were, where the memory was allocated.

- Also, in the more general case, you may do all of the allocations in your entire

program using this routine. Then, when your program is exiting, you can free

it all up at once with a simple call to FreeRememberQ.

You create the "anchor" for the allocation master list by creating a variable that's a

pointer to struct Remember, and initializing that pointer to NULL. This is called the

RememberKey. Whenever you call AllocRemember(), the routine actually does two

memory allocations, one for the memory you want and the other for a copy of a

Remember structure. The Remember structure is filled in with data describing your

memory allocation, and it's linked into the master list pointed to by your Remember

Key. Then, to free up any memory that's been allocated, all you have to do is call

FreeRememberQ with your RememberKey.

Please read the FreeRemember() header too. As you will see, you can select to either

free just the link nodes and keep all the allocated memory for yourself, or you can elect

to free both the nodes and your memory buffers.

See the "Amiga ROM Kernel Manual" for a description of the AllocMemQ call and the

values you should use for the Size and Flags variables.

INPUTS

RememberKey =

the address of a pointer to struct Remember. Before the very first call to Allo

cRemember, initialize this pointer to NULL. For instance:

struct Remember *RememberKey;

RememberKey = NULL;

AllocRemember(&RememberKey, BUFSIZE, MEMF_CHIP);

FreeRemember(&RememberKey, TRUE);

Intuition Version 29.4

AllocRemember AllocRemember

Size —

the size in bytes of the memory allocation. Please refer to the EXEC AllocMem()

function in the "Amiga ROM Kernel Manual" for details.

Flags =

the specifications for the memory allocation. Please refer to the EXEC Alloc-

Mem() function in the "Amiga ROM Kernel Manual" for details.

RESULT

If the memory allocation is successful, this routine returns the byte address of your re

quested memory block. Also, the node to your block will be linked into the list pointed

to by your RememberKey variable. If the allocation fails, this routine returns NULL

and the list pointed to by RememberKey, if any, will be undisturbed.

BUGS

None

SEE ALSO

FreeRemember()

The EXEC AllocMemQ function

Intuition Version 29.4

AutoRequest AutoRequest

NAME

AutoRequest — Automatically build and get response from a Requester

SYNOPSIS

AutoRequest(Window, BodyText, PositiveText, NegativeText,
PositiveFlags, NegativeFlags, Width, Height);

FUNCTION

This procedure automatically builds a Requester for you and then waits for a response

from the user or the system to satisfy your request. If the response is Positive, this pro

cedure returns TRUE. If the response is negative, this procedure returns FALSE.

This procedure first preserves the state of the IDCMP values of the Window argument.

Then it creates an IDCMPFlag specification by merging together your PositiveFlags,

NegativeFlags, and the IDCMP class GADGETUP. You may choose to specify no flags

for either the PositiveFlags or NegativeFlags arguments.

The IntuiText arguments, and the Width and Height values, are passed directly to the

BuildSysRequest() procedure along with your Window pointer and the IDCMP flags.
Please refer to BuildSysRequest() for a description of the IntuiText that you are expect
ed to supply when calling this routine. It's an important but long-winded description

that need not be duplicated here.

If the BuildSysRequest() procedure does not return a pointer to a Window, it will return

TRUE or FALSE (not valid structure pointers) instead, and these BOOL values will be

returned to you immediately.

On the other hand, if a valid Window pointer is returned, that Window will have had its

IDCMP Ports and flags initialized according to your specifications. AutoRequestQ then

waits for an IDCMP message on the UserPort, which message will satisfy one of three re

quirements:

- either the message is of a class that matches one of your PositiveFlags argu

ments (if you've supplied any), in which case this routine returns TRUE. Or

- the message class matches one of your NegativeFlags arguments (if you've

supplied any), in which case this routine returns FALSE. Or

- the only other possibility is that the IDCMP message is of class GADGETUP,

which means that one of the two Gadgets, as specified by the PositiveText

and NegativeText arguments, was selected by the user. If the TRUE Gadget

was selected, TRUE is returned. If the FALSE Gadget was selected, FALSE

is returned.

When the dust has settled, this routine calls FreeSysRequestQ if necessary to clean up

the Requester and any other allocated memory.

INPUTS

Window =

pointer to a Window structure

BodyText =

Intuition Version 29.4

AutoRequest AutoRequest

pointer to an IntuiText structure

PositiveText =

pointer to an IntuiText structure

NegativeText =

pointer to an IntuiText structure

PositiveFlags =

flag forthelDCMP

NegativeFlags =

flags for the IDCMP

Width, Height =

the sizes required for the rendering of the Requester

RESULT

The return value is either TRUE or FALSE. See the text above for a complete descrip

tion of the chain of events that might lead to either of these values being returned.

BUGS

None

SEE ALSO

BuildSysRequestQ

Intuition Version 29.4

BeginRefresh BeginRefresh

NAME

BeginRefresh — Sets up a Window for optimized refreshing

SYNOPSIS

BeginRefresh(Window);

FUNCTION

This routine sets up your Window for optimized refreshing. It sets Intuition internal

states and then sets up the layer underlying your Window for a call to the layer library.

There, the "clip rectangles" of the layer are reorganized in a fashion where any rendering

performed in your Window (until you call to EndRefresh()) will occur only in the regions

which need to be refreshed. The phrase "clip rectangles" refers to the division of your

Window into visible and concealed rectangles. For more information about clipping rec

tangles and the layer library, refer to the "Amiga ROM Kernel Manual".

For instance, if you have a SIMPLE_REFRESH Window which is partially concealed

and the user brings it to the front, you will receive a message asking you to refresh your

display. If you call BeginRefresh() before doing any of the rendering, then the layer that

underlies your Window will be arranged such that the only rendering that will actually

take place will be that which goes to the newly-revealed areas. This is very

performance-efficient.

After you have performed your refresh of the display, you should call EndRefresh() to

reset the state of the layer and the Window. Then you may proceed with rendering to

the Window as usual.

You learn that your Window needs refreshing by receiving either a message of class RE-

FRESHWINDOW through the IDCMP, or an input event of class

IECLASS_REFRESHWINDOW through the Console Device. Whenever you are told

that your Window needs refreshing, you should call BeginRefresh() and EndRefresh() to
clear the refresh-needed state, even if you don't plan on doing any rendering.

INPUTS
Window = pointer to the Window structure which needs refreshing

RESULT

None

BUGS

None

SEE ALSO

EndRefresh()
The "Windows" chapter in this book

Intuition Version 29.4

BuildSysRequest BuildSysRequest

NAME

BuildSysRequest — Build and display a system Requester

SYNOPSIS

BuildSysRequest(Window, BodyText, PositiveText, NegativeText,

IDCMPFlags, Width, Height);

FUNCTION

This procedure builds a Requester based on the supplied information. If all goes well and

the Requester is constructed, this procedure returns a pointer to the Window in which

the Requester appears. That Window will have the IDCMP UserPort and WindowPort

initialized to reflect the flags found in the IDCMPFlags argument. You may then Wait()

on those ports to detect the user's response to your Requester, which response may in

clude either selecting one of the Gadgets or causing some other event to be noticed by

Intuition (like DISKINSERTED, for instance). After the Requester is satisfied, you

should call the FreeSysRequest() procedure to remove the Requester and free up any al

located memory.

If it isn't possible to construct the Requester for any reason, this procedure will instead

use the text arguments to construct a text string for a call to the DisplayAlert() pro

cedure, and then will return either a TRUE or FALSE depending on whether Display-

Alert() returned a FALSE or TRUE respectively.

If the Window argument you supply is equal to NULL, a new Window will be created for

you in the Workbench Screen. If you want the Requester created by this routine to be

bound to a particular Window, you should not supply a Window argument of NULL.

The text arguments are used to construct the display. They are pointers to instances of

the struct IntuiText.

The BodyText argument should be used to describe the nature of the Requester. As

usual with IntuiText data, you may link several lines of text together, and the text may

be placed in various locations in the Requester. This IntuiText pointer will be stored in

the ReqText variable of the new Requester.

The PositiveText argument describes the text that you want associated with the user

choice of "Yes. TRUE. Retry. Good." If the Requester is successfully opened, this text

will be rendered in a Gadget in the lower-left of the Requester, which Gadget will have

the GadgetID field set to TRUE. If the Requester cannot be opened and the Display-

Alert() mechanism is used, this text will be rendered in the lower-left corner of the Alert

display with additional text specifying that the left mouse button will select this choice.

This pointer can be set to NULL, which specifies that there is no TRUE choice that can

be made.

The NegativeText argument describes the text that you want associated with the user

choice of "No. FALSE. Cancel. Bad." If the Requester is successfully opened, this text
will be rendered in a Gadget in the lower-right of the Requester, which Gadget will have
the GadgetID field set to FALSE. If the Requester cannot be opened and the Display-

Alert() mechanism is used, this text will be rendered in the tower-right corner of the
Alert display with additional text specifying that the right mouse button will select this

Intuition Version 29.4

BuildSysRequest BuildSysRequest

choice. This pointer cannot be set to NULL. There must always be a way for the user

to cancel this Requester.

The Positive and Negative Gadgets created by this routine have the following features:

- BOOLGADGET

- RELVERIFY

- REQGADGET

- TOGGLESELEOT

When defining the text for your Gadgets, you may find it convenient to use the special

defines used by Intuition for the construction of the Gadgets. These include defines like

AUTODRAWMODE, AUTOLEFTEDGE, AUTOTOPEDGE and AUTOFRONTPEN.

You can find these in your local intuition.h (or intuition.i) file.

The Width and Height values describe the size of the Requester. All of your BodyText

must fit within the Width and Height of your Requester. The Gadgets will be created to

conform to your sizes.

VERY IMPORTANT NOTE: for the preliminary release of this procedure, a new Win

dow is opened in the same Screen as the one containing your Window. However, with a

forthcoming update of Intuition, this will change such that the Requester will be opened

in the Window supplied as an argument to this routine, if possible. The primary implica

tion of this will be that the IDCMPFlags and Ports will be disturbed by a call to this

routine. To assure upward-compatibility, it's your responsibility to make sure that the

Ports and IDCMPFlags of the Window passed to the routine are protected before the

call.

INPUTS

Window =

pointer to a Window structure

BodyText =

pointer to an IntuiText structure

PositiveText =

pointer to an IntuiText structure

NegativeText =

pointer to an IntuiText structure

IDCMPFlags =

the IDCMP flags you want used for the initialization of the

IDCMP of the Window containing this Requester

Width, Height =

the size required to render your Requester

RESULT

If the Requester was successfully rendered in a Window, the value returned by this pro

cedure is a pointer to the Window in which the Requester was rendered. If, however,
the Requester cannot be rendered in the Window, this routine will have called Display-
AlertQ before returning and will pass back TRUE if the user pressed the left mouse but-

Intuition Version 29.4 g

BuildSysRequest BuildSysRequest

ton and FALSE if the user pressed the right mouse button.

BUGS

This procedure currently opens a Window as wide as the Screen in which it was ren

dered, and then opens the Requester within that Window. Also, if DisplayAlert() is

called, the PositiveText and NegativeText are not rendered in the lower corners of the

Alert.

SEE ALSO

FreeSysRequest()

DisplayAlert()

ModifyIDCMP()

The Executive's Wait() instruction

AutoRequestQ

Intuition Version 29.4

ClearDMRequest ClearDMRequest

NAME

ClearDMRequest — clears the DMRequest of the Window

SYNOPSIS

ClearDMRequest(Window);

FUNCTION

Attempts to clear the DMRequester from the specified window. The DMRequester is the

special Requester that you attach to the double-click of the menu button which the user

can then bring up on demand. This routine WILL NOT clear the DMRequester if it's

active (in use by the user). After having called SetDMRequest(), if you want to change

the DMRequester, the correct way to start is by calling ClearDMRequest() until it re

turns a value of TRUE; then you can call SetDMRequestQ with the new DMRequester.

INPUTS

Window =

pointer to the window from which the DMRequest is to be cleared

RESULT

If the DMRequest was not currently in use, zeroes out the DMRequest pointer in

the Window and returns TRUE.

If the DMRequest was currently in use, doesn't change the pointer and returns

FALSE.

BUGS

None

SEE ALSO

SetDMRequest()

RequestQ

Intuition Version 29.4 10

ClearMenuStrip ClearMenuStrip

NAME

ClearMenuStrip — Clears the Menu strip from the Window

SYNOPSIS

ClearMenuStrip(Window);

FUNCTION

Clears the menu strip from the Window.

INPUTS

Window = pointer to a Window structure

RESULT

None

BUGS

None

SEE ALSO

SetMenuStripQ

Intuition Version 29.4 11

ClearPointer ClearPointer

NAME

ClearPointer — clears the Pointer definition from a Window

SYNOPSIS

ClearPointer(Window);

FUNCTION

Clears the Window of its own definition of the Intuition pointer. After calling Clear-

Pointer(), every time this Window is the active one the default Intuition pointer will be

the pointer displayed to the user. If your Window is the active one when this routine is

called, the change will take place immediately.

INPUTS

Window = pointer to the Window to be cleared of its Pointer definition

RESULT

None

BUGS

None

SEE ALSO

SetPointerQ

Intuition Version 29.4

CloseScreen CloseScreen

NAME

CloseScreen — Closes an Intuition Screen

SYNOPSIS

CloseScreen(Screen);

FUNCTION

Unlinks the Screen, unlinks the ViewPort, deallocates everything. Doesn't care whether

or not there are still any Windows attached to the Screen. Doesn't try to close any at

tached Windows; in fact, ignores them altogether. If this is the last Screen to go, at

tempts to reopen WorkBench

INPUTS

Screen = pointer to the Screen to be deallocated

RESULT

None

BUGS

Don't think so

SEE ALSO

OpenScreen

Intuition Version 29.4 13

CloseWindow CloseWindow

NAME

CloseWindow — Closes an Intuition Window

SYNOPSIS

CloseWindow(Window);

FUNCTION

Closes an Intuition Window. Unlinks it from the system, unallocates its memory, and if

its Screen is a system one that would be empty without the Window, closes the system

Screen too

A Grim, Foreboding Note: if you are ever rude enough to CloseWindow() on a Window

that has an IDCMP without first having Reply()'d to all of my messages to the IDCMP

port, Intuition in turn will so rude as to reclaim and deallocate its messages without

waiting for your permission.

Another grim note: if you have added a Menu strip to this Window (via a call to Set-

MenuStrip()) you must be sure to remove that Menu strip (via a call to ClearMenuS-

trip()) before closing your Window. CloseWindow() doesn't check whether or not the

menus of your Window are currently being used when the Window is closed. If this in

fact happens to be the case, then as soon as the user releases the Menu button the sys

tem will crash with pyrotechnics that are usually quite lovely.

INPUTS

Window = a pointer to a Window structure

RESULT

None

BUGS

Don't think so. What do you think?

SEE ALSO

OpenWindowQ, CloseScreenQ

Intuition Version 29.4

CloseWorkBench CloseWorkBench

NAME

CloseWorkBench - Closes the WorkBench Screen

SYNOPSIS

BOOL CloseWorkBench();

FUNCTION

This routine attempts to close the WorkBench. The actions taken are:

- Test whether or not any applications have opened Windows on the

- WorkBench, and return FALSE if so. Otherwise ...

- Clean up all special buffers

- Close the WorkBench Screen

- Make the WorkBench program mostly inactive (it will still monitor disk ac
tivity)

- Return TRUE

INPUTS

None

RESULT

TRUE if the WorkBench Screen closed successfully.

FALSE if anything went wrong and the WorkBench Screen is still out there.

BUGS

None

SEE ALSO

None

Intuition Version 29.4 15

CurrentTime CurrentTime

NAME

CurrentTime — Get the current time values

SYNOPSIS

ULONG Seconds, Micros;

CurrentTime(&Seconds, &Micros);

FUNCTION

Puts copies of the current time into the supplied argument pointers.

This time value is not extremely accurate, nor is it of a very fine resolution. This time

will be updated no more than sixty times a a second, and will typically be updated far

fewer times a second.

INPUTS

Seconds = pointer to a LONG variable to receive the current seconds value Micros =

pointer to a LONG variable for the current microseconds value

RESULT

Puts the time values into the memory locations specified by the arguments

BUGS

None

SEE ALSO

None

Intuition Version 29.4

DisplayAlert DisplayAlert

NAME

DisplayAlert — Create a display of an Alert message

SYNOPSIS

DisplayAlert(AlertNumber, String, Height);

FUNCTION

Creates an Alert display with the specified message.

If the system can recover from this Alert, its a RECOVERY_ALERT and this routine

waits until the user presses one of the mouse buttons, after which the display is restored

to its original state and a BOOL value is returned by this routine to specify whether or

not the User pressed the LEFT mouse button.

If the system cannot recover from this Alert, it's a DEADEND^ALERT and this routine

returns immediately upon creating the Alert display. The return value is FALSE.

The AlertNumber is a LONG value, related to the value sent to the Alert() routine. But

the only bits that are pertinent to this routine are the ALERTJTYPE bits. These bits

must be set to either RECOVERY_ALERT for Alerts from which the system may safely

recover, or DEADEND_ALERT for those fatal Alerts. These states are described in the

paragraph above. There is a third type of Alert, the DAISY_ALERT, which is used only

by the Executive.

The String argument points to an AlertMessage string. The AlertMessage string is

comprised of one or more substrings, each of which is comprised of the following com

ponents:

- first, a 16-bit x-coordinate and an 8-bit y-coordinate,

describing where on the Alert display you want this string

to appear. The y-coordinate describes the offset to the

baseline of the text.

- then, the bytes of the string itself, which must be

null-terminated (end with a byte of zero)

- lastly, the continuation byte, which specifies whether or

not there's another substring following this one. If the

continuation byte is non-zero, there IS another substring

to be processed in this Alert Message. If the continuation

byte is zero, this is the last substring in the message.

The last argument, Height, describes how many video lines tall you want the Alert
display to be.

INPUTS

"AlertNumber =" the number of this Alert Message. The only pertinent bits of

this number are the ALERTJTYPE bits. The rest of the number is ignored by
this routine

" String =" pointer to the Alert message string, as described above

"Height =" minimum display lines required for your message

Intuition Version 29.4 yj

DisplayAlert DisplayAlert

RESULT

A BOOL value of TRUE or FALSE. If this is a DEADENELALERT, FALSE is always

the return value. If this is a RECOVERY^ALERT. The return value will be TRUE if

the User presses the left mouse button in response to your message, and FALSE if the

User presses the right hand button is response to your text.

BUGS

If the system is worse off than you think, the level of your Alert may become

DEADEND_ALERT without you ever knowing about it.

SEE ALSO

None

Intuition Version 29.4 18

DisplayBeep DisplayBeep

NAME

DisplayBeep — "beeps" the video display

SYNOPSIS

DisplayBeep(Screen);

FUNCTION

"Beeps" the video display by flashing the background color of the specified Screen. If

the Screen argument is NULL, every Screen in the display will be beeped. Flashing

everyone's Screen is not a polite thing to do, so this should be reserved for dire cir

cumstances.

The reason such a routine is supported is because the Amiga has no internal bell or

speaker. When the user needs to know of an event that is not serious enough to require

the use of a Requester, the DisplayBeepQ function should be called.

INPUTS

Screen =

pointer to a Screen. If NULL, every Screen in the display will be flashed

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 19

Doubleclick DoubleClick

NAME

DoubleClick — Test two time values for double-click timing

SYNOPSIS

DoubleClick(StartSeconds, StartMicros, CurrentSeconds, CurrentMicros);

FUNCTION

Compares the difference in the time values with the double-click timeout range that the

user (using the "Preferences" tool) or some other source has configured into the system.

If the difference between the specified time values is within the current double-click time

range, this function returns TRUE, else it returns FALSE.

These time values can be found in InputEvents and IDCMP Messages. The time values

are not perfect; however, they are precise enough for nearly all applications.

INPUTS

StartSeconds, StartMicros = the timestamp value describing the start of

the double-click time period you are considering

CurrentSeconds, CurrentMicros = the timestamp value describing

the end of the double-click time period you are considering

RESULT
If the difference between the supplied timestamp values is within the double-click time

range in the current set of Preferences, this function returns TRUE, else it returns

FALSE

BUGS

None

SEE ALSO

CurrentTimeQ;

Intuition Version 29.4 20

DrawBorder DrawBorder

NAME

DrawBorder — draws the specified border into the RastPort

SYNOPSIS

DrawBorder(RastPort, Border, LeftOffset, TopOffset);

FUNCTION

First, sets up the DrawMode and Pens in the RastPort according to the arguments of
the Border structure. Then, draws the vectors of the Border argument into the Rast
Port, offset by the Left and Top Offsets. This routine does Intuition window clipping as

appropriate — if you draw a line outside of your Window, your imagery will be clipped
at the Window's edge.

If the NextBorder field of the Border argument is non-zero, the next Border is rendered
as well (return to the top of this .SH FUNCTION section for details).

INPUTS

RastPort =

pointer to the RastPort to receive the border crossing

Border =

pointer to a Border structure

LeftOfifset =

the offset which will be added to each vector's x coordinate

TopOffset =

the offset which will be added to each vector's y coordinate

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 21

Drawlmage Drawlmage

NAME

Drawlmage — draws the specified Image into the RastPort

SYNOPSIS

DrawImage(RastPort, Image, LeftOffset, TopOffset);

FUNCTION

First, sets up the DrawMode and Pens in the RastPort according to the arguments of

the Image structure. Then, moves the image data of the Image argument into the Rast

Port, offset by the Left and Top Offsets. This routine does Intuition window clipping as

appropriate — if you draw an image outside of your Window, your imagery will be

clipped at the Window's edge.

If the Nextlmage field of the Image argument is non-zero, the next Image is rendered as

well (return to the top of this .SH FUNCTION section for details).

INPUTS

RastPort =

pointer to the RastPort to receive the border crossing

Image =

pointer to an Image structure

LeftOffset =

the offset which will be added to the Image's x coordinate

TopOffset =

the offset which will be added to the Image's y coordinate

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 22

EndRefresh EndRefresh

NAME

EndRefresh — Ends the optimized refresh state of the Window

SYNOPSIS

EndRefresh(Window, Complete);

FUNCTION

This function gets you out of the special refresh state of your Window. It is called fol

lowing a call to BeginRefresh(), which routine puts you into the special refresh state.

While your Window is in the refresh state, the only rendering that will be wrought in

your Window will be to those areas which were recently revealed and need to be re

freshed.

After you've done all the refreshing you want to do for this Window, you should call this

routine to restore the Window to its non-refreshing state. Then all rendering will go to

the entire Window, as usual.

The Complete argument is a boolean TRUE or FALSE value used to describe whether or

not the refreshing you've done was all the refreshing that needs to be done at this time.

Most often, this argument will be TRUE. But if, for instance, you have multiple tasks

or multiple procedure calls which must run to completely refresh the Window, then each

can call its own Begin/EndRefresh() pair with a Complete argument of FALSE, and only

the last calls with a Complete argument of TRUE.

INPUTS

Window =

pointer to the Window currently in optimized-refresh mode

Complete =

Boolean TRUE or FALSE describing whether or not this Window is completely

refreshed

RESULT

None

BUGS

None

SEE ALSO

BeginRefresh()

The "Screens" chapter in this book

Intuition Version 29.4 23

EndRequest EndRequest

NAME

EndRequest — Ends the Request and resets the Window

SYNOPSIS

EndRequest(Requester, Window);

FUNCTION

Ends the Request by erasing the Requester and resetting the Window. Note that this

doesn't necessarily clear all Requesters from the Window, only the specified one. If the

Window labors under other Requesters, they will remain in the Window.

INPUTS

Requester =

pointer to the Requester to be removed

Window =

pointer to the Window structure with which this Requester is associated

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 24

FreeRemember FreeRemember

NAME

FreeRemember — Free memory allocated by calls to AllocRemember()

SYNOPSIS

FreeRemember(RememberKey, ReallyForget);

FUNCTION

This function frees up memory allocated by the AllocRemember() function. It will either

free up just the Remember structures, which supply the link nodes that tie your alloca

tions together, or it will deallocate both the link nodes AND your memory bufifers too.

If you want to deallocate just the Remember structure link nodes, you should set the

ReallyForget argument to FALSE. However, if you want FreeRemember to really forget

about all the memory, including both the Remember structure link nodes and the buffers

you requested via earlier calls to AllocRemember() then you should set the ReallyForget

argument to TRUE.

INPUTS

RememberKey =

the address of a pointer to struct Remember. This pointer should either be

NULL or set to some value (possibly NULL) by a call to AllocRemember(). For

example:

struct Remember *RememberKey;

RememberKey = NULL;

AllocRemember(&RememberKey, BUFSIZE, MEMF_CHIP);

FreeRemember(&RememberKey, TRUE);

ReallyForget =

a BOOL FALSE or TRUE describing, respectively, whether you want to free up

only the Remember nodes or if you want this procedure to really forget about all

of the memory, including both the nodes and the memory buffers pointed to by

the nodes.

RESULT

None

BUGS

None

SEE ALSO

AllocRememberQ

Intuition Version 29.4 25

FreeSysRequest FreeSysRequest

NAME

FreeSysRequest — Frees up memory used by a call to BuildSysRequestQ

SYNOPSIS

FreeSysRequest(Window);

FUNCTION

This routine frees up all memory allocated by a successful call to the BuildSysRequest()

procedure. If BuildSysRequest() returned a pointer to a Window, then you are able to

Wait() on the message port of that Window to detect an event which satisfies the Re

quester. When you want to remove the Requester, you call this procedure. It ends the

Requester and deallocates any memory used in the creation of the Requester.

NOTE: if BuildSysRequest() did not return a pointer to a Window, you should not call

FreeSysRequest()!

INPUTS

Window = a copy of the Window pointer returned by a successful call to

the BuildSysRequest() procedure

RESULT

None

BUGS

None

SEE ALSO

BuildSysRequest()

The Executive's Wait() instruction

AutoRequestQ

Intuition Version 29.4 26

GetDefPrefs GetDefPrefs

NAME

GetDefPrefs - Get a copy of the the Intuition default Preferences

SYNOPSIS

GetDefPrefs(PrefBuffer, Size);

FUNCTION

Gets a copy of the Intuition default preferences data. Writes the data into the buffer

you specify. The number of bytes you want copied is specified by the Size argument.

The default Preferences are those that Intuition uses when it is first opened. If no

preferences file is found, these are the preferences that are used. These would also be

the startup Preferences in an AmigaDOS-less environment.

It is legal to take a partial copy of the Preferences structure. The more pertinent Prefer

ences variables have been grouped near the top of the structure to facilitate the memory

conservation that can be had by taking a copy of only some of the Preferences structure.

INPUTS

PrefBuffer =

pointer to the memory buffer to receive your copy of the Intuition Preferences

Size =

the number of bytes in your PrefBuffer, the number of bytes you want copied

from the system's internal Preference settings

RESULT

Returns your Preferences pointer

BUGS

None

SEE ALSO

GetPrefs()

Intuition Version 29.4 27

GetPrefs GetPrefs

NAME

GetPrefs — Get the current setting of the Intuition Preferences

SYNOPSIS

GetPrefs(PrefBuffer, Size);

FUNCTION

Gets a copy of the current Intuition Preferences data. Writes the data into the buffer

you specify. The number of bytes you want copied is specified by the Size argument.

It is legal to take a partial copy of the Preferences structure. The more pertinent Prefer

ences variables have been grouped near the top of the structure to facilitate the memory

conservation that can be had by taking a copy of only some of the Preferences structure.

INPUTS

PrefBuffer =

pointer to the memory buffer to receive your copy of the Intuition Preferences

Size =

the number of bytes in your PrefBuffer, the number of bytes you want copied

from the system's internal Preference settings

RESULT

Returns a copy of your Preferences pointer

BUGS

None

SEE ALSO

GetDefPrefsQ

Intuition Version 29.4 28

InitRequester InitRequester

NAME

InitRequester — initializes a Requester structure

SYNOPSIS

InitRequester(Requester);

FUNCTION

Initializes a requester for general use. After calling InitRequester, you need fill in only

those Requester values that fit your needs. The other values are set to states that Intui

tion regards as NULL

INPUTS

Requester = a pointer to a Requester

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 29

IntuiTextLength IntuiTextLength

NAME

IntuiTextLength — Return the length (pixel-width) of an IntuiText

SYNOPSIS

IntuiTextLength(IText);

FUNCTION

This routine accepts a pointer to an instance of an IntuiText structure, and returns the

length (the pixel-width) of the string that that instance of the structure represents.

All of the usual IntuiText rules apply. Most notably, if the Font pointer of the structure

is set to NULL, you'll get the pixel-width of your text in terms of the current default

font.

INPUTS

IText = pointer to an instance of an IntuiText structure

RESULT
Returns the pixel-width of the text specified by the IntuiText data

BUGS

None

SEE ALSO

None

Intuition Version 29.4 30

ItemAddress ItemAddress

NAME

ItemAddress — Returns the address of the specified Menultem

SYNOPSIS

ItemAddress(MenuStrip, MenuNumber);

FUNCTION

This routine feels through the specified MenuStrip and returns the address of the Item

specified by the MenuNumber. Typically, you will use this routine to get the address of

a Menultem from a MenuNumber sent to you by Intuition after User has played with

your Menus.

This routine requires that the arguments are well-defined. MenuNumber may be

equal to MENUNULL, in which case this routine returns NULL. If MenuNumber

doesn't equal MENUNULL, it's presumed to be a valid Item number selector for your

MenuStrip, which includes:

- a valid Menu number

- a valid Item Number

- if the Item specified by the above two components has a Subltem, the

MenuNumber may have a Subltem component too

Note that there must be BOTH a Menu number and an Item number. Because a Subl

tem specifier is optional, the address returned by this routine may point to either an

Item or a Subltem.

INPUTS

MenuStrip =

a pointer to the first Menu in your MenuStrip

MenuNumber =

the value which contains the packed data that selects the Menu and Item (and

Subltem)

RESULT

If MenuNUmber == MENUNULL, this routine returns NULL else this routine returns

the address of the Menultem specified by MenuNumber.

BUGS

None

SEE ALSO

The "Menus" chapter in this book for more information about MenuNumbers

Intuition Version 29.4 O1

MakeScreen MakeScreen

NAME

MakeScreen — Do an Intuition-integrated MakeVPort() of a custom screen

SYNOPSIS

MakeScreen(Screen);

FUNCTION

This procedure allows you to do a MakeVPort() for the ViewPort of your Custom Screen

in an Intuition-integrated way. This allows you to do your own Screen manipulations

without worrying about interference with Intuition's usage of the same ViewPort.

After calling this routine, you can call RethinkDisplayQ to incorporate the new ViewPort

of your custom screen into the Intuition display.

INPUTS

Screen = address of the Custom Screen structure

RESULT

None

BUGS

None

SEE ALSO

RethinkDisplayQ

RemakeDisplayQ
The graphics library's MakeVPortQ

Intuition Version 29.4

ModifylDCMP ModifylDCMP

NAME

ModifylDCMP - Modify the state of the Window's IDCMP

SYNOPSIS

ModifyIDCMP(Window, IDCMPFlags);

FUNCTION

This routine modifies the state of your Window's IDCMP (Intuition Direct Communicar

tion Message Port). The state is modified to reflect your desires as described by the flag

bits in the value IDCMPFlags. When you call ModifyIDCMP(), if the IDCMPFlags

equals NULL, you are asking that if the Port is currently opened, you want it closed. If
you set any of the IDCMPFlags, this means that you want the message ports to be open;

if not currently opened, the Ports will be opened now.

The four actions that might be taken are:

- if there is currently no IDCMP in the given Window, and IDCMPFlags is

NULL, nothing happens

- if there is currently no IDCMP in the given Window, and any of the IDCMP

Flags is selected (set), then the IDCMP of the Window is created, including

allocating and initializing the message ports and allocating a Signal bit for

your Port. See the "Input and Output Methods" chapter of this book for full

details

- if the IDCMP for the given Window is opened, and the IDCMPFlags argu

ment is NULL, this says that you want Intuition to close the Ports, free the

buffers and free your Signal bit. You MUST be the same Task that was ac

tive when this Signal bit was allocated

- if the IDCMP for the given Window is opened, and the IDCMPFlags argu

ment is not NULL, this means that you want to change the state of which

events will be broadcast to you through the IDCMP

NOTE: You can set up the Window- >UserPort to any Port of your own before you call

ModifyIDCMP(). If IDCMPFlags is non-null but your UserPort is already initialized, In

tuition will assume that it's a valid Port with Task and Signal data preset and Intuition

won't disturb your set-up at all, Intuition will just allocate the Intuition Message Port

half of it. The converse is true as well: if UserPort is NULL when you call here with

IDCMPFlags == NULL, I'll deallocate only the Intuition Port. This allows you to use a

Port that you already have allocated:

- OpenWindow() with IDCMPFlags equal to NULL (open no ports)

- set the UserPort variable of your Window to any valid Port of your own
choosing

- call ModifylDCMP with IDCMPFlags set to what you want

- then, to clean up later, set UserPort equal to NULL before calling CloseWin-
dow() (leave IDCMPFlags alone)

A Grim, Foreboding Note: if you are ever rude enough to close an IDCMP without first
having Reply()'d to all of the messages sent to the IDCMP port, Intuition in turn will so
rude as to reclaim and deallocate its messages without waiting for your permission.

Intuition Version 29.4 33

ModifylDCMP ModifylDCMP

INPUTS

Window =

pointer to the Window structure containing the IDCMP Ports

IDCMPFlags =

the flag bits describing the new desired state of the IDCMP

RESULT

None

BUGS

None

SEE ALSO

OpenWindow

Intuition Version 29.4

ModifyProp ModifyProp

NAME

ModifyProp — Modify the current parameters of a Proportional Gadget

SYNOPSIS

ModifyProp(Gadget, Pointer, Requester,

Flags, HorizPot, VertPot, HorizBody, VertBody);

FUNCTION

Modifies the parameters of the specified Proportional Gadget. The Gadget's internal

state is then recalculated and the imagery is redisplayed, wherever it is that the Pointer

argument points.

The Pointer argument can point to either a Window or a Screen structure. Which it ac

tually points to is decided by examining the SCRGADGET flag of the Gadget; if the flag

is set, Pointer points to a Screen structure, otherwise it points to a Window structure.

The Requester variable can point to a Requester structure. If the Gadget has the

REQGADGET flag set, the Gadget is in a Requester and the Pointer must necessarily

point to a Window. If this is not the Gadget of a Requester, the Requester argument

may be NULL.

INPUTS

PropGadget =

pointer to a Proportional Gadget

Pointer =

pointer to the "owning" display element of the Gadget, be it a Window or a

Screen

Requester =

pointer to a Requester (may be NULL if this isn't a Requester Gadget)

Flags =

value to be stored in the Flags variable of the Proplnfo

HorizPot =

value to be stored in the HorizPot variable of the Proplnfo

VertPot =

value to be stored in the VertPot variable of the Proplnfo

HorizBody =

value to be stored in the HorizBody variable of the Proplnfo

VertBody =

value to be stored in the VertBody variable of the Proplnfo

RESULT

None

BUGS

None

Intuition Version 29.4 35

ModifyProp ModifyProp

SEE ALSO

None

Intuition Version 29.4 36

MoveScreen MoveScreen

NAME

MoveScreen — attempts to move the Screen by the delta amounts

SYNOPSIS

MoveScreen(Screen, DeltaX, DeltaY);

FUNCTION

Attempts to move the specified Screen. This movement must follow certain constraints

(only for the current release of the software):

- the bottom of the Screen must not move higher than the bottom of the video

display

- horizontal movements are ignored

If the DeltaX and DeltaY variables you specify would move the Screen in a way that

violates the above restrictions, the Screen will be moved as far as possible.

INPUTS

Screen = pointer to a Screen structure DeltaX = amount to move the screen on the x-

axis DeltaY = amount to move the screen on the y-axis

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4

MoveWindow MoveWindow

NAME

MoveWindow — Ask Intuition to move a Window

SYNOPSIS

MoveWindow(Window, DeltaX, DeltaY);

FUNCTION

This routine sends a request to Intuition asking to move the Window the specified dis

tance. The delta arguments describe how far to move the Window along the respective

axes.

Note that the Window will not be moved immediately, but rather will be moved the

next time Intuition receives an input event, which happens currently at a minimum rate

of ten times per second, and a maximum of sixty times a second.

This routine does no error-checking. If your delta values specify some far corner of the

Universe, Intuition will attempt to move your Window to the far corners of the

Universe. Because of the distortions in the space-time continuum that can result from

this, as predicted by special relativity, the result is generally not a pretty sight.

INPUTS

Window =

pointer to the structure of the Window to be moved

DeltaX =

signed value describing how far to move the Window on the x-axis

DeltaY =

signed value describing how far to move the Window on the y-axis

RESULT

None

BUGS

None

SEE ALSO

SizeWindow()

WindowToFront()

WindowToBackQ

Intuition Version 29.4

OffGadget OffGadget

NAME

OffGadget — disables the specified Gadget

SYNOPSIS

OffGadget(Gadget, Pointer, Requester);

FUNCTION

This command disables the specified Gadget. When a Gadget is disabled, these things

happen:

- its imagery is displayed ghosted

- the GADGDISABLED flag is set

the Gadget cannot be selected by User

The Pointer argument can point to either a Window or a Screen structure. Which it ac

tually points to is decided by examining the SCRGADGET flag of the Gadget; if the flag

is set, Pointer points to a Screen structure, else it points to a Window structure. The

Requester variable can point to a Requester structure. If the Gadget has the

REQGADGET flag set, the Gadget is in a Requester and the Pointer must necessarily

point to a Window. If this is not the Gadget of a Requester, the Requester argument

may be NULL.

NOTE: it's never safe to tinker with the Gadget list yourself. Don't supply some Gadg

et that Intuition hasn't already processed in the usual way.

NOTE: if you have specified that this is the Gadget list of a Requester, that Requester

must be currently displayed

INPUTS

Gadget =

pointer to the Gadget that you want disabled

Pointer =

pointer to either a Screen or Window structure (defined by the SCRGADGET

flag of the Gadget)

Requester =

pointer to a Requester (may by NULL if this isn't a Requester Gadget list)

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4

OffMenu OfiMenu

NAME

OfiMenu — disables the given menu or menu item

SYNOPSIS

OfiMenu(Window, MenuNumber);

FUNCTION

This command disables a sub-item, an item, or a whole menu If the base of the menu

number matches the menu currently revealed, the menustrip is redisplayed

INPUTS

Window =

pointer to the window

MenuNumber =

the menu piece to be enabled

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 40

OnGadget OnGadget

NAME

OnGadget — enables the specified Gadget

SYNOPSIS

OnGadget(Gadget, Pointer, Requester);

FUNCTION

This command enables the specified Gadget. When a Gadget is enabled, these things

happen:

its imagery is displayed normally (not ghosted)

- the GADGDISABLED flag is cleared

- the Gadget can thereafter be selected by the user

The Pointer argument can point to either a Window or a Screen structure: which it ac

tually points to is decided by examining the SCRGADGET flag of the Gadget: if the

flag is set, Pointer points to a Screen struct, else it points to a Window. The Requester

variable can point to a Requester structure. If the Gadget has the REQGADGET flag

set, the Gadget is in a Requester and the Pointer must necessarily point to a Window.

If this is not the Gadget of a Requester, the Requester argument may be NULL.

NOTE: It's never safe to tinker with the Gadget list yourself. Don't supply some Gadg

et that Intuition hasn't already processed in the usual way.

NOTE: If you have specified that this is the Gadget list of a Requester, that Requester

must be currently displayed.

INPUTS

Gadget =

pointer to the Gadget that you want enabled

Pointer =

pointer to either a Screen or Window structure (defined by the SCRGADGET

flag of the Gadget)

Requester =

pointer to a Requester (may be NULL if this isn't a Requester Gadget list)

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 41

OnMenu OnMenu

NAME

OnMenu — enables the given menu or menu item

SYNOPSIS

OnMenu(Window, MenuNumber);

FUNCTION

This command enables a sub-item, an item, or a whole menu. If the base of the menu

number matches the menu currently revealed, the menustrip is redisplayed.

INPUTS

Window =

pointer to the window

MenuNumber =

the menu piece to be enabled

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 42

OpenScreen OpenScreen

NAME

OpenScreen — open an Intuition Screen

SYNOPSIS

OpenScreen(NewScreen); where NewScreen is a structure that is initialized with:
Left, Top, Width, Height, Depth, DetailPen, BlockPen,

ViewModes, Type, Font, DefaultTitle, Gadgets

FUNCTION

Opens an Intuition Screen according to the specified parameters. Does all the alloca

tions, sets up the Screen structure and all substructures completely, and links this
Screen's ViewPort into Intuition's View of the world.

Before you call OpenScreen(), you must initialize an instance of a NewScreen structure.
NewScreen is a structure that contains all of the arguments needed to open a Screen.

The NewScreen structure may be discarded immediately after it is used to open the
Screen.

The TextAttr pointer that you supply as an argument will be used as the default font

for all Intuition-managed text that appears in the Screen and its Windows. This in

cludes, but is not limited to, the text on the title bars of both Screen and Windows.

The SHOWTITLE flag is set to TRUE by default when a Screen is opened. To change

this, you must call the routine ShowTitle().

INPUTS

NewScreen = pointer to an instance of a NewScreen structure.

That structure is initialized with the following information:

Left =

initial x-position of your Screen (should be zero for now)

Top =

initial y-position of the opening Screen

Width =

the width for this Screen's RastPort

Height =

the height for his Screen's RastPort

Depth =

number of BitPlanes

DetailPen =

pen number for details (like gadgets or text in title bar)

BlockPen =

pen number for block fills (like title bar)

Type =

Screen type (if you are not Intuition, this should be equal to CUSTOMSCREEN).
Types currently supported include:

Intuition Version 29.4 43

OpenScreen OpenScreen

CUSTOMSCREEN - this is your own Screen

You may also set the Type flags CUSTOMBITMAP and then supply your own BitMap

for Intuition to use rather than allocating the display memory for you.

ViewModes =

the appropriate argument for the data type ViewPort.Modes. these might in

clude:

HIRES for this screen to be HIRES width

INTERLACE for the display to switch to interlace

SPRITES for this Screen to use sprites

DUALPF for dual-playfield mode (not supported yet)

Font =

pointer to the default TextAttr structure for this Screen and all Windows that

open in this Screen

DefaultTitle =

pointer to a line of text that will be displayed along the Screen's Title Bar. Null

terminated, or just a NULL pointer to get no text

Gadgets =

first in a linked list of the Gadgets you want for this Screen

CustomBitMap =

if you're not supplying a custom BitMap, this value is ignored. However, if you

have your own display memory that you want used for this Screen, the Custom

BitMap argument should point to the BitMap that describes your display

memory. See the "Screens" chapter and the "Amiga ROM Kernel Manual" for

more information about BitMaps.

RESULT

If all is well, returns the pointer to your new Screen.

If anything goes wrong, returns NULL.

BUGS

No way

SEE ALSO

OpenWindow

Intuition Version 29.4

OpenWindow OpenWindow

NAME

OpenWindow — Opens an Intuition Window

SYNOPSIS

OpenWindow(NewWindow);

where the NewWindow structure is initialized with:

Left, Top, Width, Height, DetailPen, BlockPen, Flags, IDCMPFlags, Gadgets,

CheckMark, Text, Type, Screen, BitMap, MinWidth, MinHeight, MaxWidth,

MaxHeight

FUNCTION

Opens an Intuition window of the given height, width and depth, including the specified

system Gadgets as well as any of your own. Allocates everything you need to get going.

Before you call OpenWindow(), you must initialize an instance of a NewWindow struc

ture. NewWindow is a structure that contains all of the arguments needed to open a

Window. The NewWindow structure may be discarded immediately after it is used to

open the Window.

If Type == OUSTOMSCREEN, you must have opened your own Screen already via a

call to OpenScreen(). Then Intuition uses your screen argument for the pertinent infor

mation needed to get your Window going. On the other hand, if type == one of the

Intuition's standard Screens, your screen argument is ignored. Instead, Intuition will

check to see whether or not that Screen already exists: if it doesn't, it will be opened

first before Intuition opens your window in the Standard Screen. If the flag

SUPERJBITMAP is set, the bitmap variable must point to your own BitMap. The De

tailPen and the BlockPen are used for system rendering; for instance, the Title bar is

first filled using the BlockPen, and then the Gadgets and text are rendered using Detail-

Pen. You can either choose to supply special pens for your Window, or, by setting ei

ther of these arguments to -1, the Screen's Pens will be used instead.

INPUTS

NewWindow =

pointer to an instance of a NewWindow structure. That structure is initialized
with the following data:

Left =

the initial x-position for your window

Top =

the initial y-position for your window

Width =

the initial width of this window

Height =

the initial height of this window

DetailPen =

pen number (or -1) for the rendering of Window details
(like gadgets or text in title bar)

Intuition Version 29.4
45

OpenWindow OpenWindow

BlockPen =

pen number (or -1) for Window block fills (like Title Bar)

Flags =

specifiers for your requirements of this window, including:

- which system Gadgets you want attached to your window:

- WINDOWDRAG allows this Window to be dragged

- WINDOWDEPTH lets the user depth-arrange this Window

- WINDOWCLOSE attaches the standard Close Gadget

- WINDOWSIZING allows this Window to be sized. If you ask the WIN-

DOWSIZING Gadget, you must specify one or both of the flags SIZE-

BRIGHT and SIZEBBOTTOM below; if you don't, the default is SIZE-

BRIGHT. See the following items SIZEBRIGHT and SIZEBBOTTOM for
extra information.

- SIZEBRIGHT is a special system Gadget flag that you set to specify

whether or not you want the RIGHT Border adjusted to account for the

physical size of the Sizing Gadget. The Sizing Gadget must, after all, take

up room in either the right or bottom border (or both, if you like) of the

Window. Setting either this or the SIZEBBOTTOM flag selects which

edge will take up the slack. This will be particularly useful to applications

that want to use the extra space for other Gadgets (like a Proportional

Gadget and two Booleans done up to look like scroll bars) or, for for in

stance, applications that want every possible horizontal bit and are willing

to lose lines vertically.

NOTE: if you select WINDOWSIZING, you must select either SIZE-

BRIGHT or SIZEBBOTTOM or both. If you select neither, the default is

SIZEBRIGHT.

- SIZEBBOTTOM is a special system Gadget flag that you set to specify

whether or not you want the BOTTOM Border adjusted to account for

the physical size of the Sizing Gadget. For details, refer to SIZEBRIGHT

above. NOTE: if you select WINDOWSIZING, you must select either

SIZEBRIGHT or SIZEBBOTTOM or both. If you select neither, the de

fault is SIZEBRIGHT.

- GIMMEZEROZERO for easy but expensive output

- What type of window raster you want, either:

- SIMPLEJtEFRESH

- SMARTJIEFRESH

- SUPER_BITMAP

- BACKDROP for whether or not you want this window to be one of
Intuition's special backdrop windows. See BORDERLESS as well.

- REPORTMOUSE for whether or not you want to "listen" to mouse move

ment events whenever your Window is the active one. After you've opened
your Window, if you want to change you can later change the status of this
via a call to ReportMouse(). Whether or not your Window is listening to
Mouse is affected by Gadgets too, since they can cause you to start getting re-

4fi
Intuition Version 29.4

OpenWindow OpenWindow

ports too if you like. The mouse move reports (either InputEvents or mes
sages on the IDCMP) that you get will have the x/y coordinates of the
current mouse position, relative to the upper-left corner of your Window
(GIMMEZEROZERO notwithstanding). This flag can work in conjunction

with the IDCMP Flag called MOUSEMOVE, which allows you to listen via

the IDCMP.

- BORDERLESS should be set if you want a Window with no Border padding.
Your Window may have the Border variables set anyway, depending on what

Gadgetry you've requested for the Window, but you won't get the standard
border lines and spacing that comes with typical Windows. This is a good
way to take over the entire Screen, since you can have a Window cover the
entire width of the Screen using this flag. This will work particularly well in
conjunction with the BACKDROP flag (see above), since it allows you to

open a Window that fills the ENTIRE Screen.

NOTE: this is not a flag that you want to set casually, since it may cause

visual confusion on the Screen. The Window borders are the only dependable
visual division between various Windows and the background Screen. Taking

er takes away that visual cue, so make sure that your design doesn't need it

at all before you proceed.

- ACTIVATE is the flag you set if you want this Window to automatically be

come the active Window. The active Window is the one that receives input

from the keyboard and mouse. It's usually a good idea to to have the Win

dow you open when your application first starts up be an ACTIVATED one,

but all others opened later not be ACTIVATED (if the user is off doing some

thing with another Screen, for instance, your new Window will change where

the input is going, which would have the effect of yanking the input rug from

under the user). Please use this flag thoughtfully and carefully.

- RMBTRAP, when set, causes the right mouse button events to be trapped

and broadcast as events. You can receive these events through either the

IDCMP or the Console.

WCMPFlags =

IDCMP is the acronym for Intuition Direct Communications Message Port. It's

Intuition's sole acronym, given in honor of all hack-heads who love to mangle our

brains with maniacal names, and fashioned especially cryptic and unpronounce

able to make them squirm with sardonic delight. Here's to you, my chums.

Meanwhile, I still opt (and argue) for simplicity and elegance.

If any of the IDCMP Flags is selected, Intuition will create a pair of messageports

and use them for direct communications with the Task opening this Window (as

compared with broadcasting information via the Console Device). See the "Input

and Output Methods" chapter of this book for complete details.

You request an IDCMP by setting any of these flags. Except for the special
VERIFY flags, every other flag you set tells me that if a given event occurs which
your program wants to know about, I'm to broadcast the details of that event

through the IDCMP rather than via the Console device, device. This allows a
program to interface with Intuition directly, rather than going through the Con
sole device.

Remember, if you are going to open both an IDCMP and a Console, it will be far

Intuition Version 29.4

OpenWindow OpenWindow

better to get most of the event messages via the Console. Reserve your usage of
the IDCMP for special performance cases; that is, when you aren't going to open
a Console for your Window and you do want to learn about a certain set of
events (for instance, CLOSEWINDOW); another example would be SIZEVERI-
FY, which is a function that you get ONLY through the use of the IDCMP (be

cause the Console doesn't give you any way to talk to Intuition directly).

On the other hand, if the IDCMPFlags argument is equal to zero, no IDCMP is

created and the only way you can learn about any Window event for this Win

dow is via a Console opened for this Window. And you have no way to
SIZEVERIFY.

If you want to change the state of the IDCMP some time after you've opened the

Window (including opening or closing the IDCMP) you call the routine
ModifyIDCMP().

The flags you can set are:

- REQVERIFY is the flag which, like SIZEVERIFY and(see MENUVERIFY

(see immediately below), specifies that you want to make sure that your
graphical state is quiescent before something extraordinary happens. In this

case, the extraordinary event is that a rectangle of graphical data is about to

be blasted into your Window. If you're drawing into that Window, you prob

ably will wish to make sure that you've ceased drawing before the user is al

lowed to bring up the DMRequest you've set up, and the same for when sys

tem has a request for the user. Set this flag to ask for that verification step.

- REQCLEAR is the flag you set to hear about it when the last Requester is

cleared from your Window and it's safe for you to start output again

(presuming you're using REQVERIFY)

- REQSET is a flag that you set to receive a broadcast when the first Requester

is opened in your Window. Compare this with REQCLEAR above. This

function is distinct from REQVERIFY. This functions merely tells you that a

Requester has opened, whereas REQVERIFY requires you to respond before

the Requester is opened.

- MENUVERIFY is the flag you set to have Intuition stop and wait for you to

finish all graphical output to your Window before rendering the menus.

Menus are currently rendered in the most memory-efficient way, which in

volves interrupting output to all Windows in the Screen before the Menus are

drawn. If you need to finish your graphical output before this happens, you

can set this flag to make sure that you do.

- SIZEVERIFY means that you will be doing output to your Window which

depends on a knowledge of the current size of the Window. If the user wants

to resize the Window, you may want to make sure that any queued output

completes before the sizing takes place (critical Text, for instance). If this is
the case, set this flag. Then, when the user wants to size, Intuition will send

you the SIZEVERIFY message and Wait() until you reply that it's OK to

proceed with the sizing.

NOTE: when I say that Intuition will Wait() until you reply, what I'm really
saying is that User will WAIT until you reply, which suffers the great negar

tive potential of User-Unfriendliness. So remember: use this flag sparingly,
and, as always with any IDCMP Message you receive, Reply to it promptly!

Intuition Version 29.4 48

OpenWindow OpenWindow

Then, after User has sized the Window, you can find out about it using

NEWSIZE:

- NEWSIZE is the flag that tells Intuition to send an IDCMP Message to you

after the user has resized your Window. At this point, you could examine the

size variables in your Window structure to discover the new size of the Win

dow

- REFRESHWINDOW when set will cause a Message to be sent whenever your

Window needs refreshing. This flag makes sense only with

SIMPLE_REFRESH and SMART_REFRESH Windows.

- MOUSEBUTTONS will get reports about Mouse-button Up/Down events

broadcast to you (Note: only the ones that don't mean something to Intui

tion. If the user clicks the Select button over a Gadget, Intuition deals with

it and you don't find out about it through here).

- MOUSEMOVE will work only if you've set the flag REPORTMOUSE above,

or if one of your Gadgets has the flag FOLLOWMOUSE set. Then all mouse

movements will be reported here.

- GADGETDOWN means that when the User "selects" a Gadget you've creat

ed with the GADGIMMEDIATE flag set, the fact will be broadcast through

the IDCMP.

- GADGETUP means that when the User "releases" a Gadget that you've

created with the RELVERIFY flag set, the fact will be broadcast through the

IDCMP.

- MENUPICK selects that MenuNumber data will come this way

- CLOSEWINDOW means broadcast the CLOSEWINDOW event through the

IDCMP rather than the Console

- RAWKEY selects that all RAWKEY events are transmitted via the IDCMP

Note that these are absolutely RAW keycodes, which you will have to mas

sage before using. Setting this and the MOUSE flags effectively eliminates the

need to open a Console Device to get input from the keyboard and mouse. Of

course, in exchange you lose all of the Console features, most notably the

"cooking" of input data and the systematic output of text to your Window.

Gadgets =

the pointer to the first of a linked list of the your own Gadgets which you want at

tached to this Window. Can be NULL if you have no Gadgets of your own

CheckMark =

a pointer to an instance of the struct Image where can be found the imagery you

want used when any of your Menultems is to be checkmarked. If you don't want

to supply your own imagery and you want to just use Intuition's own checkmark,

set this argument to NULL

Text =

a null-terminated line of text to appear on the title bar of your window (may be

null if you want no text)

Type =

the Screen type for this window. If this equal CUSTOMSCREEN, you must have

already opened a CUSTOMSCREEN (see text above). Types available include:

Intuition Version 29.4 49

OpenWindow OpenWindow

- WBENCHSCREEN

- CUSTOMSCREEN

Screen =

if your type is one of Intuition's Standard Screens, then this argument is ignored.

However, if Type == CUSTOMSCREEN, this must point to the structure of

your own Screen

BitMap =

if you have specified SUPERJMTMAP as the type of raster you want for this

Window, then this value points to a instance of the struct BitMap. However, if

the raster type is NOT SUPERJBITMAP, this pointer is ignored

MinWidth, MinHeight, MaxWidth, MaxHeight =

the size limits for this Window. These must be reasonable values, which is to say

that the minimums cannot be greater than the current size, nor can the maximums

be smaller than the current size. If they are, they're ignored. Any one of these

can be initialized to zero, which means that that limit will be set to the current di

mension of that axis. The limits can be changed after the Window is opened by

calling the WindowLimitsQ routine. If you haven't requested the WINDOWSIZ-

ING option, these variables are ignored so you don't have to initialize them.

RESULT

If all is well, returns the pointer to your new Window.

If anything goes wrong, returns NULL.

BUGS

None

SEE ALSO

OpenScreen()

ModifyIDCMP()

WindowTitlesQ

Intuition Version 29.4 50

OpenWorkBench OpenWorkBench

NAME

OpenWorkBench — Opens the WorkBench Screen

SYNOPSIS

BOOL OpenWorkBench();

FUNCTION

This routine attempts to reopen the WorkBench. The actions taken are:

- general good stuff and nice things, and then return TRUE

- find that something has gone wrong, and return FALSE

Even though this routine does return a BOOL value, you can ignore the return value if

you want

INPUTS

None

RESULT

TRUE if the WorkBench Screen opened successfully, or was already opened.

FALSE if anything went wrong and the WorkBench Screen isn't out there.

BUGS

None

SEE ALSO

None

Intuition Version 29.4

PrintlText PrintlText

NAME

PrintlText — prints the text according to the IntuiText argument

SYNOPSIS

PrintIText(RastPort, IText, LeftEdge, TopEdge)

FUNCTION

Prints the IntuiText into the specified RastPort. Sets up the RastPort as specified by

the IntuiText values, then prints the text into the RastPort at the IntuiText x/y coordi

nates offset by the left/top arguments.

This routine does Intuition window clipping as appropriate — if you print text outside of

your Window, your characters will be clipped at the Window's edge.

If the NextText field of the IntuiText argument is non-zero, the next IntuiText is ren

dered as well (return to the top of this FUNCTION section for details).

INPUTS

RastPort =

the RastPort destination of the text

IText =

pointer to an instance of the structure IntuiText

LeftEdge =

left offset of the IntuiText into the RastPort

TopEdge =

top offset of the IntuiText into the RastPort

RESULT

None

BUGS

None

SEE ALSO

None

52
Intuition Version 29.4

RefreshGadgets RefreshGadgets

NAME
RefreshGadgets — Refresh (redraw) the Gadget display

SYNOPSIS

RefreshGadgets(Gadgets, Pointer, Requester);

FUNCTION

Refreshes (redraws) all of the Gadgets in the Gadget List starting from the specified

Gadget.

The Pointer argument can point to either a Window or a Screen structure. Which it ac

tually points to is decided by examining the SCRGADGET flag in the first Gadget of
the list; if the flag is set, then Pointer points to a Screen structure, else it points to a

Window structure.

The Requester variable can point to a Requester structure. If the first Gadget in the list
has the REQGADGET flag set, the Gadget list refers to Gadgets in a Requester and the

Pointer must necessarily point to a Window. If these are not the Gadgets of a Reques

ter, the Requester argument may be NULL.

The two main reasons why you might want to use this routine are: first, that you've

modified the imagery of the Gadgets in your display and you want the new imagery to

be displayed; secondly, if you think that some graphic operation you just performed

trashed the Gadgetry of your display, this routine will refresh the imagery for you.

The Gadgets argument can be a copy of the FirstGadget variable in either the Screen or

Window structure that you want refreshed: the effect of this will be that all Gadgets will

be redrawn. However, you can selectively refresh just some of the Gadgets by starting

the refresh part-way into the list: for instance, redrawing your Window non-

GIMMEZEROZERO Gadgets only, which you've conveniently grouped at the end of

your Gadget list.

NOTE: It's never safe to tinker with the Gadget list yourself. Don't supply some Gadg

et list that Intuition hasn't already processed in the usual way.

NOTE: If you have specified that this is the Gadget list of a Requester, that Requester

must be currently displayed

INPUTS

Gadgets =

pointer to the first in the list of Gadgets wanting refreshment

Pointer =

pointer to either a Screen or Window structure (defined by the SCRGADGET
flag of the first Gadget (see next))

Requester =

pointer to a Requester (may by NULL if this isn't a Requester Gadget list)

Intuition Version 29.4 53

RefreshGadgets RefreshGadgets

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 54

RemakeDisplay RemakeDisplay

NAME

RemakeDisplay — Remake the entire Intuition display

SYNOPSIS

RemakeDisplayQ;

FUNCTION

This is the big one.

This procedure remakes the entire Intuition display. It calls MakeScreenQ for every

Screen in the system, and then it calls RethinkDisplay() which rethinks the relationships

of the Screens to one another and then rethinks the display copper lists.

WARNING: This routine can take several milliseconds to run, so do not use it lightly.

RethinkDisplay() (called by this routine) does a Forbid() on entry and a Permit() on exit,
which can seriously degrade the performance of the multitasking Executive.

INPUTS

None

RESULT

None

BUGS

None

SEE ALSO

RethinkDisplay()

The graphics library's MakeScreen()

Intuition Version 29.4 55

RemoveGadget RemoveGadget

NAME

RemoveGadget — removes a Gadget from a Window or a Screen

SYNOPSIS

USHORT RemoveGadget(Pointer, Gadget);

FUNCTION

Removes the given Gadget from the Gadget list of the specified Window or Screen. Re

turns the ordinal position of the removed Gadget. If the Gadget's SCRGADGET flag is

set, the Pointer variable is regarded as a pointer to a Screen; else, it's regarded as a

pointer to a Window. If the Gadget pointer points to a Gadget that isn't in the ap

propriate list, -1 is returned. If there aren't any Gadgets in the list, -1 is returned. If

you remove the 65535th Gadget from the list -1 is returned.

INPUTS

Pointer =

pointer to the Window or Screen from which the Gadget is to be removed, the

Gadget's SCRGADGET flag describes whether this is a pointer to a Window or a

Screen

Gadget =

pointer to the Gadget to be removed. The Gadget itself describes whether this is

a a Gadget that should be removed from the Window or the Screen

RESULT

Returns the ordinal position of the removed Gadget. If the Gadget wasn't found in the

appropriate list, or if there are no Gadgets in the list, returns -1.

BUGS

None

SEE ALSO

AddGadget

Intuition Version 29.4 56

ReportMouse ReportMouse

NAME

ReportMouse — tells Intuition whether or not to report mouse movement

SYNOPSIS

ReportMouse(Window, Boolean);

FUNCTION

Tells Intuition whether or not to broadcast mouse-movement events to this Window

when it's the active one. The Boolean value specifies whether to start or stop broadcast

ing position information of mouse-movement. If the Window is the active one, mouse-

movement reports start coming immediately afterwards. This same routine will change

the current state of the FOLLOWMOUSE function of a currently-selected Gadget too.

Note that calling ReportMouse() when a Gadget is selected will only temporarily change

whether or not mouse movements are reported while the Gadget is selected; the next

time the Gadget is selected, its FOLLOWMOUSE flag is examined anew. Note also that

calling ReportMouse() when no Gadget is currently selected will change the state of the

Window's REPORTMOUSE flag, but will have no effect on any Gadget that may be

subsequently selected.

The ReportMouse() function is first performed when OpenWindowQ is first called; if the
flag REPORTMOUSE is included among the options, then all mouse-movement events

are reported to the opening task and will continue to be reported until ReportMouse() is

called with a Boolean value of FALSE. If REPORTMOUSE is not set, then no mouse-

movement reports will be broadcast until ReportMouse() is called with a Boolean of

TRUE.

INPUTS

Window =

pointer to a Window structure associated with this request

Boolean =

TRUE or FALSE value specifying whether to turn this function on or off

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 57

Request Request

NAME

Request — Activates a Requester

SYNOPSIS

Request(Requester, Window);

FUNCTION

Links in and displays a Requester into the specified Window.

This routine ignores the Window's REQVERIFY flag.

INPUTS

Requester =

pointer to the Requester to be displayed

Window =

pointer to the Window into which this Requester goes

RESULT

If the Requester is successfully opened, TRUE is returned. Otherwise, if the Requester

could not be opened, FALSE is returned.

BUGS

None

SEE ALSO

None

Intuition Version 29.4 58

RethinkDisplay RethinkDisplay

NAME

RethinkDisplay — the grand manipulator of the entire Intuition display

SYNOPSIS

RethinkDisplay();

FUNCTION

This function performs the Intuition global display reconstruction. This includes: mas

saging internal state data, rethinking about all of the ViewPorts and their relationship

to one another, and, finally, reconstructing the entire display based on the results of all

this rethinking.

The reconstruction of the display includes calls to the graphics library to perform

MrgCopQ and LoadView() for all of Intuition's Screens.

You may perform a MakeScreen() on your Custom Screen before calling this routine.
The results will be incorporated in the new display.

WARNING: This routine can take several milliseconds to run, so do not use it lightly.

RethinkDisplay() does a Forbid() on entry and a Permit() on exit, which can seriously
degrade the performance of the multi-tasking Executive.

INPUTS

None

RESULT

None

BUGS

None

SEE ALSO

RemakeDisplay()

The graphics library's MakeVPort(), MrgCop(), and LoadView()

Intuition Version 29.4 59

ScreenToBack ScreenToBack

NAME

ScreenToBack - send the specified Screen to the back of the display

SYNOPSIS

ScreenToBack(Screen);

FUNCTION

Sends the specified Screen to the back of the display

INPUTS

Screen =

pointer to a Screen structure

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 60

ScreenToFront ScreenToFront

NAME

ScreenToFront — brings the specified Screen to the front of the display

SYNOPSIS

ScreenToFront(Screen);

FUNCTION

Brings the specified Screen to the front of the display

INPUTS

Screen =

a pointer to a Screen structure

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4 61

SetDMRequest SetDMRequest

NAME

SetDMRequest — sets the DMRequest of the Window

SYNOPSIS

SetDMRequest(Window, DMRequester);

FUNCTION

Attempts to set the DMRequester into the specified window. The DMRequester is the

special Requester that you attach to the double-click of the menu button which the user

can then bring up on demand. This routine WILL NOT set the DMRequester if it's al

ready set and is currently active (in use by the user). After having called SetDMRe-

quest(), if you want to change the DMRequester, the correct way to start is by calling

ClearDMRequest() until it returns a value of TRUE; then you can call SetDMRequest()

with the new DMRequester.

INPUTS

Window =

pointer to the window from which the DMRequest is to be set

DMRequester =

a pointer to a Requester

RESULT

If the current DMRequest was not in use, sets the DMRequest

pointer into the Window and returns TRUE.

If the DMRequest was currently in use, doesn't change the pointer

and returns FALSE.

BUGS

None

SEE ALSO

ClearDMRequest()

RequestQ

Intuition Version 29.4 62

SetMenuStrip SetMenuStrip

NAME

SetMenuStrip — Attaches the Menu strip to the Window

SYNOPSIS

SetMenuStrip(Window, Menu);

FUNCTION

Attaches the Menu strip to the Window. After calling this routine, if the user presses

the menu button, this specified menu strip will be displayed and accessible.

NOTE: You should always design your Menu strip changes to be a two-way operation,

where for every Menu strip you add to your Window you should always plan to clear

that strip sometime. Even in the simplest case, where you will have just one Menu strip

for the lifetime of your Window, you should always clear the Menu strip before closing

the Window. If you already have a Menu strip attached to this Window, the correct

procedure for changing to a new Menu strip involves calling ClearMenuStrip() to clear

the old first. The sequence of events should be:

- OpenWindow()

zero or more iterations of:

- SetMenuStripQ

- ClearMenuStripQ

- CloseWindow()

INPUTS

Window =

pointer to a Window structure

Menu =

pointer to the first Menu in the Menu strip

RESULT

N^ne

BUGS

None

SEE ALSO

ClearMenuStripQ

Intuition Version 29.4 63

SetPointer SetPointer

NAME

SetPointer — sets a Window with its own Pointer

SYNOPSIS

SetPointer(Window, Pointer, Height, Width, XOffset, YOffset);

FUNCTION

Sets up the Window with the sprite definition for the Pointer. Then whenever the Win

dow is the active one, the Pointer image will change to its version of the Pointer. If the

Window is the active one when this routine is called, the change takes place immediate-

ly.

The XOffset and YOffset are used to offset the top-left corner of the hardware sprite im

agery from what Intuition regards as the current position of the Pointer. Another way

of describing it is as the offset from the "hot spot" of the Pointer to the top-left corner

of the sprite. For instance, if you specify offsets of zero, zero, then the top-left corner of

your sprite image will be placed at the Pointer position. On the other hand, if you

specify an XOffset of -7 (remember, sprites are 16 pixels wide) then your sprite will be

centered over the Pointer position. If you specify an XOffset of -15, the right-edge of the

sprite will be over the Pointer position.

INPUTS

Window =

pointer to the Window to receive this Pointer definition

Pointer =

pointer to the data definition of a Sprite

Height =

the height of the Pointer

Width =

the Width of the sprite (must be less than or equal to sixteen)

XOffset =

the offset for your sprite from the Pointer position

YOffset =

the offset for your sprite from the Pointer position

RESULT

None

BUGS

None

SEE ALSO

ClearPointerQ

Intuition Version 29.4 64

SetWindowTitles SetWindowTitles

NAME

SetWindowTitles - Sets the Window's titles for both Window and Screen

SYNOPSIS

SetWindowTitles(Window, WindowTitle, ScreenTitle);

FUNCTION

Allows you to set the text which appears in the Window and/or Screen title bars.

The Window Title appears at all times along the Window Title Bar. The Window's

Screen Title appears at the Screen Title Bar whenever this Screen is the active one.

When this routine is called, your Window Title will be changed immediately. If your

Window is the active one when this routine is called, the Screen Title will be changed

immediately.

You can specify a value of -1 (negative one) for either of the title pointers. This desig

nates that you want to Intuition to leave the current setting of that particular title

alone, and modify only the other one. Of course, you could set both to -1.

Furthermore, you can set a value of 0 (zero) for either of the title pointers. Doing so

specifies that you want no title to appear (the title bar will be blank).

INPUTS

Window =

pointer to your Window structure

WindowTitle =

pointer to a null-terminated text string, or set to either the value of -1 (negative

one) or 0 (zero)

ScreenTitle =

pointer to a null-terminated text string, or set to either the value of -1 (negative

one) or 0 (zero)

RESULT

None

BUGS

None

SEE ALSO

OpenWindowQ

Intuition Version 29.4 65

ShowTitle ShowTitle

NAME

ShowTitle — Set the Screen title bar display mode

SYNOPSIS

ShowTitle(Screen, Showlt);

FUNCTION

This routine sets the SHOWTITLE flag of the specified Screen, and then coordinates the

redisplay of the Screen and its Windows.

The Screen title bar can appear either in front of or behind BACKDROP Windows.

This is contrasted with the fact that non-BACKDROP Windows always appear in front

of the Screen Title Bar. You specify whether you want the Screen Title Bar to be in

front of or behind the Screen's BACKDROP Windows by calling this routine.

The Showlt argument should be set to either TRUE or FALSE. If TRUE, the Screen's

Title Bar will be shown in front of BACKDROP Windows. If FALSE, the Title Bar will

be rendered behind all Windows.

When a Screen is first opened, the default setting of the SHOWTITLE flag is TRUE.

INPUTS

Screen =

pointer to a Screen structure

Showlt =
Boolean TRUE or FALSE describing whether to show or hide the Screen Title

Bar

RESULT

None

BUGS

None

SEE ALSO

None

Intuition Version 29.4

SizeWindow SizeWindow

NAME

SizeWindow — Ask Intuition to size a Window

SYNOPSIS

SizeWindow(Window, DeltaX, DeltaY);

FUNCTION

This routine sends a request to Intuition asking to size the Window the specified

amounts. The delta arguments describe how much to size the Window along the respec

tive axes.

Note that the Window will not be sized immediately, but rather will be sized the next

time Intuition receives an input event, which happens currently at a minimum rate of

ten times per second, and a maximum of sixty times a second. You can discover when

you Window has finally been sized by setting the NEWSIZE flag of the IDCMP of your

Window. See the "Input and Output Methods" chapter of this book for description of

the IDCMP.

This routine does no error-checking. If your delta values specify some far corner of the

Universe, Intuition will attempt to size your Window to the far corners of the Universe.

Because of the distortions in the space-time continuum that can result from this, as

predicted by special relativity, the result is generally not a pretty sight.

INPUTS

Window =

pointer to the structure of the Window to be sized

DeltaX =

signed value describing how much to size the Window on the x-axis

DeltaY =

signed value describing how much to size the Window on the y-axis

RESULT

None

BUGS

None

SEE ALSO

MoveWindow()

WindowToFront()

WindowToBackQ

Intuition Version 29.4 67

ViewAddress ViewAddress

NAME

ViewAddress — returns the address of the Intuition View structure

SYNOPSIS

ViewAddress();

FUNCTION

Returns the address of the Intuition View structure. If you want to use any of the

graphics, text, or animation primitives in your Window and that primitive requires a

pointer to a View, this routine will return the address of the View for you.

INPUTS

None

RESULT

Returns the address of the Intuition View structure

BUGS

Would be hard for this routine to have a bug

SEE ALSO

All of the graphics, text, and animation primitives

Intuition Version 29.4 68

ViewPortAddress ViewPortAddress

NAME

ViewPortAddress — returns the address of a Window's ViewPort structure

SYNOPSIS

ViewPortAddress(Window);

FUNCTION

Returns the address of the ViewPort associated with the specified Window. The

ViewPort is actually the ViewPort of the Screen within which the Window is displayed.

If you want to use any of the graphics, text, or animation primitives in your Window

and that primitive requires a pointer to a ViewPort, you can use this call.

INPUTS

Window =

pointer to the Window for which you want the ViewPort address

RESULT

Returns the address of the Intuition View structure

BUGS

Would be hard for this routine to have a bug

SEE ALSO

All of the graphics, text, and animation primitives

Intuition Version 29.4 69

WBenchToBack WBenchToBack

NAME

WBenchToBack — Sends the WorkBench Screen in back of all Screens

SYNOPSIS

WBenchToBack();

FUNCTION

Causes the WorkBench Screen, if it's currently opened, to go to the background. This

does not 'move' the Screen up or down, instead only affects the depth-arrangement of

the Screen.

If the WorkBench Screen was opened, this function returns TRUE, otherwise it returns

FALSE.

INPUTS

None

RESULT

If the WorkBench Screen was opened, this function returns TRUE, otherwise it returns

FALSE.

BUGS

None

SEE ALSO

WBenchToFrontQ

Intuition Version 29.4 70

WBenchToFront WBenchToFront

NAME

WBenchToFront -- Brings the WorkBench Screen in front of all Screens

SYNOPSIS

WBenchToFront();

FUNCTION

Causes the WorkBench Screen, if it's currently opened, to come to the foreground. This

does not 'move' the Screen up or down, instead only affects the depth-arrangement of
the Screen.

If the WorkBench Screen was opened, this function returns TRUE, otherwise it returns

FALSE.

INPUTS

None

RESULT

If the WorkBench Screen was opened, this function returns TRUE, otherwise it returns

FALSE.

BUGS

None

SEE ALSO

WBenchToBackQ

Intuition Version 29.4 71

WindowLimits WindowLimits

NAME

WindowLimits — Set the minimum and maximum limits of the Window

SYNOPSIS

WindowLimits(Window, MinWidth, MinHeight, MaxWidth, MaxHeight);

FUNCTION

Sets the minimum and maximum limits of the Window's size. Until this routine is

called, the Window's size limits are equal to the Window's initial size, which means that

the user won't be able to size it at all After the call to this routine, the Window will be

able to be sized to any dimensions within the specified limits.

If you don't want to change any one of the dimensions, set the limit argument for that

dimension to zero. If any of the limit arguments is equal to zero, that argument is ig

nored and the initial setting of that parameter remains undisturbed.

If any of the arguments is out of range (minimums greater than the current size, max-

imums less than the current size), that limit will be ignored, though the others will still

take effect if they are in range. If any are out of range, the return value from this pro

cedure will be FALSE. If all arguments are valid, the return value will be TRUE.

If the user is currently sizing this Window, the new limits will not take effect until after

the sizing is completed.

INPUTS

Window =

pointer to a Window structure

MinWidth, MinHeight, MaxWidth, MaxHeight =

the new limits for the size of this Window. If any of these is set to zero, it will

be ignored and that setting will be unchanged.

RESULT

Returns TRUE if everything was in order. If any of the parameters was out of range

(minimums greater than current size, maximums less than current size), FALSE is re
turned and the errant limit request is not fulfilled (though the valid ones will be).

BUGS

None

SEE ALSO

None

Intuition Version 29.4 72

WindowToBack WindowToBack

NAME

WindowToBack — Ask Intuition to send this Window to the back

SYNOPSIS

WindowToBack(Window);

FUNCTION

This routine sends a request to Intuition asking to send the Window in back of all other

Windows in the Screen.

Note that the Window will not be depth-arranged immediately, but rather will be ar

ranged the next time Intuition receives an input event, which happens currently at a

minimum rate of ten times per second, and a maximum of sixty times a second.

Remember that BACKDROP Windows cannot be depth-arranged.

INPUTS

Window =

pointer to the structure of the Window to be sent to the back

RESULT

None

BUGS

None

SEE ALSO

MoveWindowQ, SizeWindowQ, WindowToFrontQ

Intuition Version 29.4 73

WindowToFront WindowToFront

NAME

WindowToFront — Ask Intuition to bring this Window to the front

SYNOPSIS

WindowToFront(Window);

FUNCTION

This routine sends a request to Intuition asking to bring the Window in front of all oth

er Windows in the Screen.

Note that the Window will not be depth-arranged immediately, but rather will be ar

ranged the next time Intuition receives an input event, which happens currently at a

minimum rate of ten times per second, and a maximum of sixty times a second.

Remember that BACKDROP Windows cannot be depth-arranged.

INPUTS

Window =

pointer to the structure of the Window to be brought to front

RESULT

None

BUGS

None

SEE ALSO

MoveWindow()

SizeWindow()

WindowToBackQ

Intuition Version 29.4 74

Appendix B

INTUITION INCLUDE FILE

This appendix contains a printout of the Intuition "include" file, which contains the definitions

of all the Intuition data types and structures, constants, and macros. You include this file in all

Intuition-based applications.

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 1

#ifndef INTUITION_INTUITION_JI

#define INTUITION_INTUITION_H TRUE

/*** intuition.h

* intuition.h main include for c programmers
*

* Confidential Information: Commodore-Amiga Computer, Inc.

* Copyright (c) Commodore-Amiga Computer, Inc.

* Modification History

* date : author : Comments
if — — — — — — — — __. — — — — — «--.-.-. — — _ — — — — — __ — — — ____««.-.-

* 1-30-85 -=RJ=- created this file!
*

* CONFIDENTIAL and PROPRIETARY

* Copyright (C) 1985, COMMODORE-AMIGA, INC.

* All Rights Reserved

#ifndef INTUITION_INTUITIONBASE_H

ttinclude "intuition/intuitionbase.h"

#endif

#ifndef GRAPHICS_GEX_H

#include "graphics/gfx.h"

#endif

#ifndef GRAPHICS_CLIP_JI

#include "

#endif

#ifndef GRAPHICS_VIEW_H

#include "graphics/view.h"

#endif

#ifndef GBAPHICS_RASTPORT_H

#include "graphics/rastport.h11
#endif

ttifndef GRAPHICS-LAYERS_H

#include "graphics/layers.h"
#endif

ttifndef GRAPHICS_TEXT_H

ttinclude "graphics/text .h"
ttendif

ttifndef EXEC_PORTS_H

ttinclude "exec/ports.h"
ttendif

ttifndef DEVICES_TIMER_H
ttinclude "devices/timer.h"
ttendif

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 2

#ifndef DEVICES_INPUTEVENT_H

#include "devices/inputevent .h"
ttendif

/* =
/* =
/*

struct Menu

V
V
V

Menu

struct Menu *NextMenu;

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

USHORT Flags;

BYTE *MenuName;

struct Menultem *FirstItem;

/* same level */

/* dimensions of the select box */

/* dimensions of the select box */

/* see flag definitions below */

/* text for this Menu Header */

/* pointer to first in chain */

/* these mysteriously-named variables are for internal use only */

SHORT JazzX, JazzY, BeatX, BeatY;

/* FLAGS SET BY BOTH TEE APPLIPROG AND INTUITION */

#define MENUENABLED 0x0001 /* whether or not this menu is enabled */

/* FLAGS SET BY INTUITION */

#define MIDRAWN 0x0100 /* this menu's items are currently drawn */

/* =
/* =

struct Menultem

struct Menultem *NextItem; /* pointer to next in chained list */
SHORT LeftEdge, TopEdge; /* dimensions of the select box */
SHORT Width, Height; /* dimensions of the select box */
USHORT Flags; /* see the defines below */

V
V
V

Menultem

LONG MutualExclude;

APTR ItemFill;

/* set bits mean this item excludes that */

/* points to Image, IntuiText, or NULL */

/* when this item is pointed to by the cursor and the items highlight
* mode HIGHIMAGE is selected, this alternate image will be displayed

*/
APTR SelectFill; /* points to Image, IntuiText, or NULL */

BYTE Command;

struct Menultem *SubItem;

/* only if appliprog sets the COMMSEQ flag */

/* if non-zero, DrawMenu shows "->" */

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 3

/* The NextSelect field represents the menu number of next selected

* item (when user has drag-selected several items)

V
USHORT NextSelect;

/* FLAGS SET BY THE APPLIPROG */
#define CHECKIT 0x0001 /* whether to check this item if selected */

#define ITEMTEXT OxOOO2 /* set if textual, clear if graphical item */
OxO0O4 /* set if there's an command sequence */

0x0010 /* set if this item is enabled */
#define CONMSEQ

#define ITEMENABLED

/* these are the SPECIAL HIGHLIGHT FLAG state meanings */

#define HIGHFLAGS

#define HIGHIMAGE

#define HIGHCOMP

#define HIGHBOX

#define HIGHNONE

OxOOCO /* see definitions below for these bits */

0x0000 /* use the user's "select image" */

OxOO4O /* highlight by complementing the selectbox */

0x0080 /* highlight by "boxing" the selectbox */

OxOOCO /* don't highlight */

/* FLAGS SET BY BOTH APPLIPROG AND INTUITION */

#define CHECKED 0x0100 /* if CHECKIT, then set this when selected */

/* FLAGS SET BY INTUITION */

#define ISDRAWN 0x1000

#define HIGHITEM 0x2000

/* this item's subs are currently drawn */

/* this item is currently highlighted */

/* ===========

/* = Requester --- -■- ■ ts=^.. '-t=-====

/* ===== ===== ============

struct Requester

i
/* the ClipRect and BitMap and used for rendering the requester */
struct Requester *01derRequest;

SHORT LeftEdge, TopEdge; /* dimensions of the entire box */

SHORT Width, Height; /* dimensions of the entire box */

SHORT RelLeft, RelTop; /* for Pointer relativity offsets */

V
V
V

struct Gadget *ReqGadget;

struct Border *ReqBorder;

struct IntuiText *ReqText;

USHORT Flags;

/* pointer to a list of Gadgets */
/* the box's border */

/* the box's text */

/* see definitions below */

/* pen number for back-plane fill before draws */
UBYTE BackFill;

struct ClipRect ReqCRect;

/* If the BitMap plane pointers are non-zero, this tells the system
* that the image comes pre-drawn (if the appliprog wants to define
* it's own box, in any shape or size it wants!); this is OK by

Aug 27 12:O9 1985 Appendix B: Intuition Include File Page 4

* Intuition as long as there fs a good correspondence between

* the image and the specified Gadgets

V
struct BitMap *ImageBMap; /* points to the BitMap of PREDRAWN imagery */

struct BitMap ReqBMap;

/* FLAGS SET BY THE APPLIPROG */

#define POINTREL 0x0001 /* if POINTREL set, TopLeft is relative to pointer*/

#define PREDRAWN OxOOO2 /* if ReqBMap points to predrawn Requester imagery */

/* FLAGS SET BY BOTH THE APPLIPROG AND INTUITION */

/* FLAGS SET BY INTUITION */

#define RE^DFFWINDOW OxlOOO /* part of one of the Gadgets was offwindow */

#define REQACTIVE Ox2OOO /* this requester is active */

#define SYSREQUEST Ox4OOO /* this requester caused by system */

#define DEFERREFRESH Ox8OOO /* this Requester stops a Refresh broadcast */

/* ================== */

/* = Gadget == */

/* == */

struct Gadget

struct Gadget *NextGadget; /* next gadget in the list */

SHORT LeftEdge, TopEdge; /* "hit box11 of gadget */

SHORT Width, Height; /* "hit box11 of gadget */

USHORT Flags; /* see below for list of defines */

USHORT Activation; /* see below for list of defines */

USHORT GadgetType; /* see below for defines */

/* appliprog can specify that the Gadget be rendered as either as Border

* or an Image. This variable points to which (or equals NULL if therefs

* nothing to be rendered about this Gadget)

V
APTR GadgetRender;

/* appliprog can specify "highlighted" imagery rather than algorithmic

* this can point to either Border or Image data

V
APTR SelectRender;

struct IntuiText *GadgetText; /* text for this gadget */

/* by using the MutualExclude word, the appliprog can describe

* which gadgets mutually-exclude which other ones. The bits

* in MutualExclude correspond to the gadgets in object containing

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 5

* the gadget list. If this gadget is selected and a bit is set

* in this gadget's MutualExclude and the gadget corresponding to

* that bit is currently selected (e.g. bit 2 set and gadget 2

* is currently selected) that gadget must be unselected.

* Intuition does the visual unselecting (with checkmarks) and

* leaves it up to the program to unselect internally

V
LONG MutualExclude; /* set bits mean this gadget excludes that gadget */

/* pointer to a structure of special data required by Proportional,

* String and Integer Gadgets

V
APTR SpecialInfo;

USHORT GadgetID; /* user-definable ID field */

APTR UserData; /* ptr to general purpose User data (ignored by In) */

/* —- FLAGS SET BY THE APPLIPROG */

/* combinations in these bits describe the highlight technique to be used */

#define GADGHIGHBITS 0x0003

#define GADGHCOMP OxOOOO /* Complement the select box */

#define GADGHBOX OxOOOl /* Draw a box around the image */

#define GADGHIMAGE 0x0002 /* Blast in this alternate image */

#define GADGHNONE 0x0003 /* donft highlight */

/* set this flag if the GadgetRender and SelectRender point to Image imagery,

* clear if it's a Border

V
#define GADGIMAGE Ox0004

/* combinations in these next two bits specify to which corner the gadget's

* Left & Top coordinates are relative. If relative to Top/Left,

* these are "normal" coordinates (everything is relative to something in

* this universe)

v
#define GRELBOTTOM QxOOO8 /* set if rel to bottom, clear if rel top */

#define GRELRIGHT QxOOlO /* set if rel to right, clear if to left */

/* set the RELWIDTH bit to spec that Width is relative to width of screen */

#define GRELWIDTH 0x0020

/* set the RELHEIGHT bit to spec that Height is rel to height of screen */
#define GRELHEIGHT 0x0040

/* the SELECTED flag is initialized by you and set by Intuition. It

* specifies whether or not this Gadget is currently selected/highlighted

#define SELECTED 0x0080

/* the GADGDISABLED flag is initialized by you and later set by Intuition

* according to your calls to On/OffGadget(). It specifies whether or not
* this Gadget is currently disabled from being selected

#define GADGDISABLED 0x0100

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 6

/* These are the Activation flag bits

/* RELVERIFY is set if you want to verify that the pointer was still over

* the gadget when the select button was released

V
#define RELVERIFY 0x0001

/* the flag GADGIMMEDIATE, when set, informs the caller that the gadget

* was activated when it was activated, this flag works in conjunction with

* the RELVERIFY flag

V
#define GADGIMMEDIATE 0x0002

/* the flag ENDGADGET, when set, tells the system that this gadget, when

* selected, causes the Requester or AbsMessage to be ended. Requesters or

* AbsMessages that are ended are erased and unlinked from the system */

#define ENDGADGET 0x0004

/* the FOLLOWMOUSE flag, when set, specifies that you want to receive

* reports on mouse movements (ie, you want the REPORTMOUSE function for

* your Window) . When the Gadget is deselected (immediately if you have

* no RELVERIFY) the previous state of the REPORTMOUSE flag is restored

* You probably want to set the GADGIMMEDIATE flag when using FOLLOWMOUSE,

* since that's the only reasonable way you have of learning why Intuition

* is suddenly sending you a stream of mouse movement events. If you don't

* set RELVERIFY, you'll get at least one Mouse Position event.

V
#define FOLLOWMOUSE 0x0008

/* if any of the BORDER flags are set in a Gadget that's included in the

* Gadget list when a Window is opened, the corresponding Border will

* be adjusted to make room for the Gadget

V
0x0010

0x0020

0x0040

0x0080

#define RIGHTBORDER

ttdefine LEFTBORDER

#define TOPBORDER

ttdefine BOTTOMBORDER

ttdefine TOGGLESELECT 0x0100 /* this bit for toggle-select mode */

ttdefine STRINGCENTER

#define STRINGRIGHT

ttdefine LONGINT

ttdefine ALTKEYMAP

0x0200 /* should be a Stringlnfo flag, but it's OK */

OxO4OO /* should be a Stringlnfo flag, but it's OK */

0x0800 /* this String Gadget is actually LONG Int */

0x1000 /* this String has an alternate keymap */

/* — GADGET TYPES •

/* These are the Gadget Type definitions for the variable GadgetType

* gadget number type MUST start from one. NO TYPES OF ZERO ALLOWED.

* first comes the mask for Gadget flags reserved for Gadget typing

V
ttdefine GADGETTYPE OxFCOO /* all Gadget Global Type flags (padded) */

ttdefine SYSGADGET 0x8000 /* 1 = SysGadget, 0 = AppliGadget */

ttdefine SCRGADGET 0x4000 /* 1 = ScreenGadget, 0 = WindowGadget */

Aug 27 12:O9 1985 Appendix B: Intuition Include File Page 7

ttdefine GZZGADGET 0x2000 /* 1 = Gadget for GIMyEZEROZERO borders */

#define REQGADGET 0x1000 /* 1 = this is a Requester Gadget */

/* system gadgets */

ttdefine SIZING 0x0010

#define WDRAGGING 0x0020

#define SDRAGGING 0x0030

ttdefine WUPFRONT 0x0040

ttdefine SUPFRONT 0x0050

#define WDOWNBACK 0x0060

#define SDOWNBACK 0x0070

#define CLOSE 0x0080

/* application gadgets */

ttdefine BOOLGADGET 0x0001

ttdefine GADGET0002 0x0002

ttdefine PROPGADGET 0x0003

ttdefine STRGADGET 0x0004

/
/* = Proplnfo

/*
/* this is the special data required by the proportional Gadget

* typically, this data will be pointed to by the Gadget variable Special!

V
struct Proplnfo

{
USHORT Flags; /* general purpose flag bits (see defines below) *

/* You initialize the Pot variables before the Gadget is added to

* the system. Then you can look here for the current settings

* any time, even while User is playing with this Gadget. To

* adjust these after the Gadget is added to the System, use

* ModifyProp() ; The Pots are the actual proportional settings,

* where a value of zero means zero and a value of MAXPOT means

* that the Gadget is set to its maximum setting.

V
USHORT HorizPot; /* 16-bit FixedPoint horizontal quantity percentag

USHORT VertPot; /* 16-bit FixedPoint vertical quantity percentage

/* the 16-bit FixedPoint Body variables describe what percentage of

* the entire body of stuff referred to by this Gadget is actually

* shown at one time. This is used with the AUTOKNOB routines,

* to adjust the size of the AUTOKNOB according to how much of

* the data can be seen. This is also used to decide how far

to advance the Pots when User hits the Container of the Gadget.

For instance, if you were controlling the display of a 5-line

Window of text with this Gadget, and there was a total of 15

lines that could be displayed, you would set the VertBody value to

(MAXBODY / (TotalLines / DisplayLines)) = MAXBODY / 3.

Therefore, the AUTOKNOB would fill 1/3 of the container, and

if User hits the Cotainer outside of the knob, the pot would

advance 1/3 (plus or minus) If there's no body to show, or

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 8

* the total amount of displayable info is less than the display area,

* set the Body variables to the MAX. To adjust these after the

* Gadget is added to the System, use ModifyProp() ;

*/
USHORT HorizBody; /* horizontal Body */

USHORT VertBody; /* vertical Body */

/* these are the variables that Intuition sets and maintains */
USHORT CWidth; /* Container width (with any relativity absoluted) */
USHORT (Height; /* Container height (with any relativity absoluted) */

USHORT HPotRes, VPotRes; /* pot increments */

USHORT LeftBorder; /* Container borders */
USHORT TopBorder; /* Container borders */

/* —- FLAG BITS

#define AUTOKNOB OxOOOl

#define FREEHORIZ 0x0002

#define FREEVERT OxOOO4

#define PROPBORDERLESS 0x0008

#define KNOBHIT 0x0100

#define KNOBHMIN 6

#define KNOBVMIN 4

#define MAXBODY OxFFFF

#define MAXPOT OxFFFF

/*
/*
/*
/*
/*

- -- v
this flag sez: gimme that old auto-knob */

if set, the knob can move horizontally */

if set, the knob can move vertically */

if set, no border will be rendered */

set when this Knob is hit */

/* minimum horizontal size of the Knob */

/* minimum vertical size of the Knob */

/* maximum body value */

/* maximum pot value */

/* stringlnfo /

/* this is the special data required by the string Gadget

* typically, this data will be pointed to by the Gadget variable Speciallnfo

struct Stringlnfo

/* you initialize these variables, and then Intuition maintains them */
UBYTE *Buffer;

UBYTE *UndoBuffer

SHORT BufferPos;

SHORT MaxChars;

SHORT DispPos;

/* the buffer containing the start and final string */

/* optional buffer for undoing current entry */

/* character position in Buffer */

/* max number of chars in Buffer (including NULL) */
/* Buffer position of first displayed character */

/* Intuition initializes and maintains these variables for you */
SHORT UhdoPos; /* character position in the undo buffer */

SHORT NumChars; /* number of characters currently in Buffer */
SHORT DispCount; /* number of whole characters visible in Container */
SHORT CLeft, CTop; /* topleft offset of the container */

struct Layer *LayerPtr; /* the RastPort containing this Gadqet */
LONG Longlnt; '

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 9

/* If you want this Gadget to use your own Console keymapping, you
* set the ALTKEYMAP bit in the Activation flags of the Gadget, and then

* set this variable to point to your keymap. If you don't set the

* ALTKEYMAP, you111 get the standard ASCII keymapping.

struct KeyMap *AltKeyMap;

/*
/*
/*

V
VIntuiText

===== V
/* IntuiText is a series of strings that start with a screen location

* (always relative to the upper-left corner of something) and then the

* text of the string. The text is null-terminated.

V
struct IntuiText

UBYTE FrontPen, BackPen;

UBYTE DrawMode;

SHORT LeftEdge;

SHORT TopEdge;

struct TextAttr *ITextFont;

UBYTE *IText;

struct IntuiText *NextText;

/* the pen numbers for the rendering */

/* the mode for rendering the text */

relative start location for the text */

relative start location for the text */

/* if NULL, you accept the default */

/* pointer to null-terminated text */

/* continuation to TxWrite another text */

/*
/*

V
V

/* =
/* =
/* — — ■- -— ========== v

/* Data type Border, used for drawing a series of lines which is intended for

* use as a border drawing, but which may, in fact, be used to render any

* arbitrary vector shape.

The routine DrawBorder sets up the RastPort with the appropriate

variables, then does a Move to the first coordinate, then does Draws

to the subsequent coordinates.

After all the Draws are done, if NextBorder is non-zero we call DrawBorder

recursively

Border

struct Border

SHORT LeftEdge, TopEdge;

UBYTE FrontPen, BackPen;

UBYTE DrawMode;

BYTE Count;

SHORT *XY;

struct Border *NextBorder;

/* initial offsets from the origin */
/* pens numbers for rendering */
/* mode for rendering */

/* number of XY pairs */
/* vector coordinate pairs rel to LeftTop*/

/* pointer to any other Border too */

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 10

/* ===== V
/* = image === */
>* = V
/* This is a brief image structure for very simple transfers of

* image data to a RastPort

V
struct Image

SHORT LeftEdge; /* starting offset relative to some origin */

SHORT TopEdge; /* starting offsets relative to some origin */

SHORT Width; /* pixel size (though data is word-aligned) */

SHORT Height, Depth; /* pixel sizes */

USHORT *ImageData; /* pointer to the actual word-aligned bits */

/* the PlanePick and PlaneOnOff variables work much the same way as the

* equivalent GELS Bob variables. It's a space-saving

* mechanism for image data. Rather than defining the image data

* for every plane of the RastPort, you need define data only

* for the planes that are not entirely zero or one. As you

* define your Imagery, you will often find that most of the planes

* ARE just as color selectors. For instance, if you're designing

* a two-color Gadget to use colors two and three, and the Gadget

* will reside in a five-plane display, bit plane zero of your

* imagery would be all ones, bit plane one would have data that

* describes the imagery, and bit planes two through four would be

* all zeroes. Using these flags allows you to avoid wasting all

* that memory in this way: first, you specify which planes you

* want your data to appear in using the PlanePick variable. For

* each bit set in the variable, the next "plane" of your image

* data is blitted to the display. For each bit clear in this

* variable, the corresponding bit in PlaneOnOff is examined.

* If that bit is clear, a "plane" of zeroes will be used.

* If the bit is set, ones will go out instead. So, for our example:

* Gadget.PlanePick = 0x02;

* Gadget.PlaneOnOff = OxOl;

* Note that this also allows for generic Gadgets, like the

* System Gadgets, which will work in any number of bit planes.

* Note also that if you want an Image that is only a filled

* rectangle, you can get this by setting PlanePick to zero

* (pick no planes of data) and set PlaneOnOff to describe the pen
* color of the rectangle.

V
UBYTE PlanePick, PlaneOnOff;

/* if the NextImage variable is not NULL, Intuition presumes that
* it points to another Image structure with another Image to be
* rendered

V
struct Image *NextImage;

Aug 27 12:O9 1985 Appendix B: Intuition Include File Page 11

/* ==================================^^ */

/* == IntuiMessage =======■'■■■' ■ ■ '■ ""■' ^-==—: s^sz== */

struct IntuiMessage

struct Message ExecMessage;

/* the Class bits correspond directly with the IDCMP Flags, except for the

* special bit LONELYMESSAGE (defined below)

V
ULONG Class;

/* the Code field is for special values like MENU number */

USHORT Code;

/* the Qualifier field is a copy of the current InputEvent's Qualifier */

USHORT Qualifier;

/* IAddress contains particular addresses for Intuition functions, like

* the pointer to the Gadget or the Screen

V
APTR IAddress;

/* when getting mouse movement reports, any event you get will have the

* the mouse coordinates in these variables, the coordinates are relative

* to the upper-left corner of your Window (GIMMEZEROZERO notwithstanding)

V
SHORT MouseX, MouseY;

/* the time values are copies of the current system clock time. Micros

* are in units of microseconds, Seconds in seconds.

V
ULONG Seconds, Micros;

/* the IDCMPWindow variable will always have the address of the Window of

* this IDCMP

*/
struct Window *IDCMPWindow;

/* system-use variable */
struct IntuiMessage *SpecialLink;

>;

*/

/* IDCMP Classes , _ . . '.
#define SIZEVERIFY 0x00000001 /* See the Programmer s Guide */
Sdefine NEWSIZE 0x00000002 /* See the Programmer s Guide */
ttdefiS REFRESHWINDOW 0x00000004 /* See the Programmer s Guide */
#define MOUSEBUTTONS 0x00000008 /* See the Programmer's Guide */

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 12

#define MOUSEMOVE

#define GADGETDOWN

ttdefine GADGETUP

#define REQSET

ttdefine MENUPICK

#define CLOSEWINDOW

ttdefine RAWKEY

#define REQVERIFY

#define REQCLEAR

ttdefine MENUVERIFY

#define NEWPREFS

ttdefine DISKINSERTED

ttdefine DISKREMOVED

#define WBENCHMESSAGE

ttdefine ACTIVEWINDOW

ttdefine INACTIVEWINDOW

ttdefine DELTAMOVE

/* NOTEZ-BIEN:

/* the IDCMP Flags do not use this special bit, which is cleared when

* Intuition sends its special message to the Task, and set when Intuition

* gets its Message back from the Task. Therefore, I can check here to

* find out fast whether or not this Message is available for me to send

V
ttdefine LONELYMESSAGE 0x80000000

OxOOOOOOlO

0x00000020

0x00000040

0x00000080

0x00000100

0x00000200

0x00000400

0x00000800

OxOOOOlOOO

0x00002000

0x00004000

0x00008000

0x00010000

0x00020000

0x00040000

0x00080000

OxOOlOOOOO

0x80000000

/*
/*
/*
/*
/*

**
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

See

See

See

See

See

See

See

See

See

See

See

See

See

See

See

See

See

is reserved

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

the

for

Programmer's

Programmer's

Programmer's

Programmer's

Programmer's

Programmer's

Programmer's

Programmer's

Programmer * s

Programmer's

Programmer's

Programmer's

Programmer's

Programmer's

Programmer's

Programmer's

Programmer's

internal use

Guide

Guide

Guide

Guide

Guide

Guide

Guide

Guide

Guide

Guide

Guide

Guide

Guide

Guide

Guide

Guide

Guide

by IDCMP

V
V
V
V
V
V
V
*/
V
*/
V
V
V
V
V
V
V
V

/* IDCMP Codes */

/* This group of codes is for the MENUVERIFY function */

ttdefine MENUHOT 0x0001 /* IntuiWants verification or MENUCANCEL */

ttdefine MENUCANCEL 0x0002 /* HOT Reply of this cancels Menu operation */

ttdefine MENUWAITING 0x0003 /* Intuition simply wants a ReplyMsg() ASAP */

/* This group of codes is for the WBENCHMESSAGE messages */

ttdefine WBENCHOPEN 0x0001

ttdefine WBENCHCLOSE 0x0002

/* =

■/* = Window =======

/* =
struct Window

i
struct Window *NextWindow;

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

SHORT MouseY, MouseX;

SHORT MinWidth, MinHeight;

SHORT MaxWidth, MaxHeight;

V
V
V

/* for the linked list in a screen */

/* screen dimensions of window */

/* screen dimensions of window */

/* relative to upper-left of window */

/* minimum sizes */

/* maximum sizes */

ULONG Flags; /* see below for defines */

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 13

struct Menu *MenuStrip; /* the strip of Menu headers */

UBYTE *Title; /* the title text for this window */

struct Requester *FirstRequest; /* all active Requesters */

struct Requester *DMRequest; /* double-click Requester */

SHORT ReqCount; /* count of reqs blocking Window */

struct Screen *WScreen; /* this Window's Screen */

struct RastPort *RPort; /* this Window's very own RastPort */

/* the border variables describe the window border. If you specify

* GIMMEZEROZERO when you open the window, then the upper-left of the

* ClipRect for this window will be upper-left of the BitMap (with correct

* offsets when in SuperBitMap mode; you MUST select GIMMEZEROZERO when

* using SuperBitMap) . If you don't specify ZeroZero, then you save

* memory (no allocation of RastPort, Layer, ClipRect and associated

* Bitmaps), but you also must offset all your writes by BorderTop,

* BorderLeft and do your own mini-clipping to prevent writing over the

* system gadgets

V
BYTE BorderLeft, BorderTop. BorderRight, BorderBottom;

struct RastPort *BorderRPoit;

/* You supply a linked-list of Gadgets for your Window.

* This list DOES NOT include system gadgets. You get the standard

* window system gadgets by setting flag-bits in the variable Flags (see

* the bit definitions below)

V
struct Gadget *FirstGadget;

/* these are for opening/closing the windows */

struct Window *Parent, *Descendant;

/* sprite data information for your own Pointer

* set these AFTER you Open the Window by calling SetPointer()

V
USHORT *Pointer; /* sprite data */

BYTE PtrHeight; /* sprite height (not including sprite padding) */

BYTE PtrWidth; /* sprite width (must be less than or equal to 16) */

BYTE XOffset, YOffset; /* sprite offsets */

/* the IDCMP Flags and User's and Intuition's Message Ports */

ULONG IDCMPFlags; /* User-selected flags */

struct MsgPort *UserPort, *WindowPort;

struct IntuiMessage *MessageKey;

UBYTE DetailPen, BlockPen; /* for bar/border/gadget: rendering */

/* the CheckMark is a pointer to the imagery that will be used whan

* rendering Menultoons of this Window that want to be checkmarked

* if this is equal to NULL, you'll get the default imagery

V

f\ug 27 12:09 1985 Appendix B: Intuition Include File Page 14

struct Image *CheckMark;

UBYTE *ScreenTitle; /* if non-null, Screen title when Window is active */

/* These variables have the mouse coordinates relative to the

* inner-Window of GIMMEZEROZERO Windows. This is compared with the

* MouseX and MouseY variables, which contain the mouse coordinates

* relative to the upper-left corner of the Window, GIMMEZEROZERO

* notwithstanding

V
SHORT GZZMouseX;

SHORT GZZMouseY;

/* these variables contain the width and height of the inner-Window of

* GIMMEZEROZERO Windows

V
SHORT GZZWidth;

SHORT GZZHeight;

UBYTE *ExtData;

BYTE *UserData; /* general-purpose pointer to User data extension */

/* FLAGS REQUESTED (NOT DIRECTLY SET THOUGH) BY THE APPLIPROG

#define WINDOWSIZING 0x0001 /* include sizing system-gadget? */
#define WINDOWDRAG 0x0002 /* include dragging system-gadget? */

#define WINDOWDEPTH OxOOO4 /* include depth arrangement gadget? */

#define WINDOWCLOSE 0x0008 /* include close-box system-gadget? */

#define SIZEBRIGHT

ttdefine SIZEBBOTTOM

0x0010 /* size gadget uses right border */

OxOO2O /* size gadget uses bottom border */

/* refresh modes

/* combinations of the REFRESHBITS select the refresh type */

ttdefine REFRESHBITS OxOOCO

ttdefine SMART_REFRESH 0x0000

ttdefine SIMPLE_REFRESH 0x0040

ttdefine SUPER_BITMAP OxOO8O

ttdefine OTHER_REFRESH OxOOCO

ttdefine BACKDROP 0x0100

ttdefine REPORTMOUSE 0x0200

ttdefine GIMMEZEROZERO 0x0400

ttdefine BORDERLESS 0x0800

ttdefine ACTIVATE 0x1000

/* FLAGS SET BY INTUITION */
ttdefine WINDOWACTIVE Ox2OOO

ttdefine INREQUEST 0x4000

ttdefine MENUSTATE Ox8000

/* this is an ever-popular BACKDROP window */

/* set this to hear about every mouse move */

/* make extra border stuff */

/* set this to get a Window sans border */

/* when Window opens, it's the Active one */

/* this window is the active one */
/* this window is in request mode */
/* this Window is active with its Menus on */

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 15

/* Other User Flags */

#define RMBTRAP OxOOOlOOOO /* Catch RMB events for your own */

#define NOCAREREFRESH 0x00020000 /* not to be bothered with REFRESH */

/* Other Intuition Flags */

#define WINDOWREFRESH 0x01000000 /* Window is currently refreshing */

#define WBENCHWINDOW 0x02000000 /* WorkBench Window */

#define SUPERJUNUSED OxFCFCOOOO /* bits of Flag unused yet */

/* see struct IntuiMessage for the IDCMP Flag definitions */

/* ===== ==, _ == */

/* = NewWindow ===^~==z======== */

/* — =— V
struct NewWindow

SHORT LeftEdge, TopEdge; /* screen dimensions of window */

SHORT Width, Height; /* screen dimensions of window */

UBYTE DetailPen, BlockPen; /* for bar/border/gadget rendering */

ULONG IDCMPFlags; /* User-selected IDCMP flags */

ULONG Flags; /* see Window struct for defines */

/* You supply a linked-list of Gadgets for your Window.

* This list DOES NOT include system Gadgets. You get the standard

* system Window Gadgets by setting flag-bits in the variable Flags (see

* the bit definitions under the Window structure definition)

V
struct Gadget *FirstGadget;

/* the CheckMark is a pointer to the imagery that will be used when

* rendering Menultems of this Window that want to be checkmarked

* if this is equal to NULL, you'll get the default imagery

V
struct Image *CheckMark;

UBYTE *Title; /* t*1© title text for this window */

/* the Screen pointer is used only if you've defined a CUSTOMSCREEN and
* want this Window to open in it. If so, you pass the address of the
* Custom Screen structure in this variable. Otherwise, this variable
* is ignored and doesn't have to be initialized.

*/
struct Screen *Screen;

/* SUPER3ITMAP Window? If so, put the address of your BitMap structure
* in Sis variable. If not, this variable is ignored and doesn t have

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 16

* to be initialized

V
struct BitMap *BitMap;

/* the values describe the minimum and maximum sizes of your Windows.

* these matter only if you've chosen the WINDOWSIZING Gadget option,

* which means that you want to let the User to change the size of

* this Window. You describe the minimum and maximum sizes that the

* Window can grow by setting these variables. You can initialize

* any one these to zero, which will mean that you want to duplicate

* the setting for that dimension (if MinWidth = 0, MinWidth will be

* set to the opening Width of the Window) .

* You can change these settings later using SetWindowLimits () .

* If you haven't asked for a SIZING Gadget, you don't have to

* initialize any of these variables.

*/
SHORT MinWidth, MinHeight; /* minimums */

SHORT MaxWidth, MaxHeight; /* maximums */

/* the type variable describes the Screen in which you want this Window to

* open. The type value can either be CUSTOMSCREEN or one of the

* system standard Screen Types such as WBENCHSCREEN. See the

* type definitions under the Screen structure

V
USHORT Type;

/* = ======= */

/* = Screen ===== */
/* == == ========= */

struct Screen

i
struct Screen *NextScreen; /* linked list of screens */

struct Window *FirstWindow; /* linked list Screen's Windows */

SHORT LeftEdge, TopEdge; /* parameters of the screen */

SHORT Width, Height; /* parameters of the screen */

SHORT MouseY, MouseX; /* position relative to upper-left */

USHORT Flags; /* see definitions below */

UBYTE *Title; /* null-terminated Title text */

UBYTE *DefaultTitle; /* for Windows without ScreenTitle */

/* Bar sizes for this Screen and all Window's in this Screen */

BYTE BarHeight, BarVBorder, BarHBorder, MenuVBorder, MenuHBorder;

BYTE WBorTop, WBorLeft, WBorRight, WBorBottom;

struct TextAttr *Font; /* this screen's default font */

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 17

/* the display data structures for this Screen */

struct ViewPort ViewPort; /* describing the Screen's display */

struct RastPort RastPort; /* describing Screen rendering */

struct BitMap BitMap; /* auxiliary graphexcess baggage */

struct Layer_Info LayerInfo; /* each screen gets a LayerInfo */

/* You supply a linked-list of Gadgets for your Screen.

* This list DOES NOT include system Gadgets. You get the standard

* system Screen Gadgets by default

V
struct Gadget *FirstGadget;

UBYTE DetailPen, BlockPen; /* for bar/border/gadget rendering */

/* the following variable (s) are maintained by Intuition to support the

* DisplayBeep () color flashing technique

V
USHORT SaveColorO;

/* This layer is for the Screen and Menu bars */

struct Layer *BarLayer;

UBYTE *ExtData;

UBYTE *UserData; /* general-purpose pointer to User data extension */

/* — FLAGS SET BY INTUITION */

/* The SCREENTYPE bits are reserved for describing various Screen types

* available under Intuition.

V
#define SCREENTYPE OxOOOF /* all the screens types available */

/* the definitions for the Screen Type */

#define WBENCHSCREEN 0x0001 /* Ta Da! The Workbench */

#define CUSTOMSCREEN OxOOOF /* for that special look */

#define SHOWTITLE 0x0010 /* this gets set by a call to ShowTitle() */

#define BEEPING 0x0020 /* set when Screen is beeping */

#define CUSTOMBITMAP 0x0040 /* if you are supplying your own BitMap */

*/
/* = NewScreen — ■"■■ ■—'——- */

/* V
struct NewScreen

SHORT LeftEdge, TopEdge, Width, Height, Depth; /* screen dimensions */

UBYTE DetailPen, BlockPen; /* for bar/border/gadget rendering */

USHORT ViewModes; /* the Modes for the ViewPort (and View) */

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 18

USHORT Type; /* the Screen type (see defines below) */

struct TextAttr *Font; /* this Screen's default text attributes */

UBYTE *DefaultTitle; /* the default title for this Screen */

struct Gadget *Gadgets; /* your own Gadgets for this Screen */

/* if you are opening a CUSTOMSCREEN and already have a BitMap

* that you want used for your Screen, you set the flags CUSTOMBITMAP in

* the Types variable and you set this variable to point to your BitMap

* structure. The structure will be copied into your Screen structure,

* after which you may discard your own BitMap if you want

V
struct BitMap *CustomBitMap;

/* - V

/* ===== Preferences -'■ ■ ■' ' ■■=—■" '■■ =■■■——■ ' ■"'"• -•— */

/* — — — V

/* these are the definitions for the printer configurations */

#define FILENAME_SIZE 3O /* Filename size */

#define POINTERSIZE (1 + 16 + 1) * 2 /* Size of Pointer data buffer */

/* These defines are for the default font size. These actually describe the

height of the defaults fonts. The default font type is the topaz

font, which is a fixed width font that can be used in either

eighty-column or sixty-column mode. The Preferences structure reflects

which is currently selected by the value found in the variable FontSize,

which may have either of the values defined below. These values actually

are used to select the height of the default font. By changing the

height, the resolution of the font changes as well.

V
#define TOPAZ_EIGHTY 8

#define TOPAZ_SIXIY 9

struct Preferences

{
/* the default font height */

BYTE FontHeight; /* height for system default font */

/* constant describing what's hooked up to the port */

UBYTE PrinterPort; /* printer port connection */

/* the baud rate of the port */

USHORT BaudRate; /* baud rate for the serial port */

/* various timing rates */

struct timeval KeyRptSpeed; /* repeat speed for keyboard */

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 19

struct timeval KeyRptDelay;

struct timeval Doubleclick;

/* Intuition Pointer data */

USHORT PointerMatrix [POINTERSIZE];

BYTE XOffset;

BYTE YOffset;

USHORT color17;

USHORT color18;

USHORT color19;

USHORT PointerTicks;

/* Workbench Screen colors */

USHORT colorO;

USHORT color1;

USHORT color2;

USHORT color3;

/* Delay before keys repeat */

/* Interval allowed between clicks */

/* Definition of pointer sprite

/* X-Offset for active 'bit'

/* Y-Offset for active 'bit'
/******************************j

/* Colours for sprite pointer

/* Sensitivity of the pointer

V
V
V
V
V

it** /

.*/

/* Standard default colours */

/* Used in the Workbench */
/***********************************/

/* positioning data for the Intuition View */

BYTE ViewXOffset; /* Offset for top lefthand corner

BYTE ViewYOffset; /* X and Y dimensions

WORD ViewInitX, ViewInitY; /* View initial offset values */

BOOL EnableCLI; /* CLI availability switch */

/* printer configurations */

USHORT PrinterType; /* printer type

UBYTE PrinterFilename [FILENAME_SIZE];/* file for printer

/* print format and quality

USHORT PrintPitch;

USHORT PrintQuality;

USHORT PrintSpacing;

UWORD PrintLeftMargin;

UWORD PrintRightMargin;

USHORT PrintImage;

USHORT PrintAspect;

USHORT PrintShade;

WORD PrintThreshold;

configurations */

/* print pitch

/* print quality

/* number of lines per inch

/* left margin in characters

/* right margin in characters

/* positive or negative

/* horizontal or vertical

/* b&w, half-tone, or color

/* darkness Ctrl for b/w dumps

/* print paper descriptors */

USHORT PaperSize;

UWORD PaperLength;

USHORT PaperType;

BYTE padding[50];

V
V

V
V
V
V
V
V
V
V
V

/* paper size */

/* paper length in number of lines */

/* continuous or single sheet */

/* For further system expansion V

/* PrinterPort */

#define PARALLELJ>RINTER 0x00

#define SERIALJKINTER 0x01

/* BaudRate */

#define BAUD_11O

#define BAUD_300

0x00

0x01

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 20

#define

#define

#define

ttdefine

ttdefine

#define

BAUD_1200

BAUD_2400

BAUD_4800

BAUD_9600

BAUD_192OO

BAUELMIDI

/* PaperType */

#define FANFOLD

ttdefine SINGLE

/* PrintPitch */

#define PICA

#define ELITE

#define FINE

/* PrintQuality

ttdefine DRAFT

ttdefine LETTER

V

/* PrlntSpacing */

ttdefine SIXJLPI

ttdefine EIGHT_-LPI

0x02

0x03

OxO4

OxO5

OxO6

0x07

OxOO

Ox8O

OxOOO

0x400

Ox8OO

0x000

OxlOO

0x000

0x200

/* Print Image */

#define IMAGEJPOSITIVE OxOO

ttdefine IMAGE_NEGATIVE OxOl

/* PrintAspect */

ttdefine ASPECTJHORIZ OxOO

ttdefine ASPECT_VERT 0x01

/* PrintShade */

#define SHADE_3W OxOO

#define SHADE_GREYSCALE 0x01

ttdefine SHADE_COLOR OxO2

/* PaperSize */

ttdefine US^LETTER OxOO

ttdefine USJLEGAL 0x10

ttdefine NJTRACTOR Ox2O

ttdefine WJTRACTOR Ox3O

ttdefine CUSTOM 0x40

/* PrinterType */

ttdefine CUSTOM-NAME OxOO

ttdefine ALPHAJP_101 OxOl

ttdefine BR0THER_15XL 0x02

ttdefine CBM_MPS1000 0x03

ttdefine DIAB_63O 0x04

ttdefine DIAB^ADV_P25 OxO5

ttdefine DIAB_C_150 0x06

ttdefine EPSON 0x07

ttdefine EPS0N_JX_80 0x08

ttdefine OKIMATE_2O OxO9

ttdefine QUME_LP_20 OxOA

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 21

** Written by Jon Prince (Commodore Business Machines (UK) Ltd.) **

** & Barry Walsh (Commodore Business Machines (UK) Ltd.) **
** **

** Intultioned by -=RJMical=- (Commodore-Amiga Inc, don'cha know) **

V

/* ===== V
/* = Remember ■ ' ' " ' - */

/* == -= V
/* this structure is used for remembering what memory has been allocated to

* date by a given routine, so that a premature abort or systematic exit

* can deallocate memory cleanly, easily, and completely

V
struct Remember

i
struct Remember *NextRemember;

ULONG RememberSize;

UBYTE *Memory;

/* */
/* = Miscellaneous ■ —lji- ■ —===== */

/* v

/* = MACROS ~ */

#define MENUNUM(n) (n & OxlF)

#define ITEMNUM(n) ((n » 5) & OxOO3F)

#define SUBNUM(n) ((n » 11) & QxOOlF)

#define SHIFIMENU(n) (n & OxlF)

#define SHIFTITEM(n) ((n & 0x3F) « 5)

#define SEHFTSUB(n) ((n & OxlF) « 11)

/* = MENU STUFF —' •- ' ■ — ■ ■ ■■■ — . ^- */

#define NOMENU OxOOlF '
#define NOITEM 0x003F

#define NOSUB OxOOlF

#define MENUNULL OxFFFF

/* = =RJ='s peculiarities ===^ */
#define FOREVER for(;;) '
ttdefine SIGN(x) (((x) > 0) - ((x) < 0))
#define NOT !

/* these defines are for the COMMSEQ and CHECKIT menu stuff. If CHECKIT
* I'll use a generic Width (for all resolutions) for the CheckMark.

Aug 27 12:09 1985 Appendix B: Intuition Include File Page 22

* If CONMSEQ, likewise I'll use this generic stuff

V
#define CHECKWIDTH 19

#define CONMWIDTH 27

#define LOWCHECKWIDTH 13

#define LOWCOMMWIDTH 16

/* these are the AlertNumber defines, if you are calling DisplayAlert()

* the AlertNumber you supply must have the ALERTJTYPE bits set to one

* of these patterns

V
#define ALERTJTYPE 0x80000000

#define RECOVERY^ALERT 0x00000000 /* the system can recover from this */

#define DEADEND_ALERT 0x80000000 /* no recovery possible, this is it +/

/* When you're defining IntuiText for the Positive and Negative Gadgets

* created by a call to AutoRequest (), these defines will get you

* reasonable-looking text. The only field without a define is the IText

* field; you decide what text goes with the Gadget

V
#define AUTOFRONTPEN O

#define AUTOBACKPEN 1

#define AUTODRAWMODE JAM2

#define AUTOLEFTEDGE 6

#define AUTOTOPEDGE 3

#define AUTOITEXTFONT NULL

#define AUTONEXTTEXT NULL

/* RAWMOUSE Codes and Qualifiers (Console OR IDCMP) */

#define SELECTUP (IECODEL-LBUTTON | IECODE_UP_J>REFIX)

#define SELECTDOWN (IECODEJLBUTTON)

#define MENUUP (IECODE_RBUTTON | IECODE_UPJPREFIX)

#define MENUDOWN (IECODE_^BUTTON)

#define ALTLEFT (IEQUALIFIERJALT)

#define ALTRIGHT (IEQUALIFIER.RALT)

#define AMIGALEFT (IEQUALIFIERJ.COMMAND)

#define AMIGARIGHT (IEQUALIFIER_RCOMMAND)

#define AMIGAKEYS (AMIGALEET | AMIGARIGHT)

#define CURSORUP 0x4C

#define CURSORLEFT 0x4F

#define CURSORRIGHT 0x4E

#define CURSORDOWN 0x4D

#define KEYCODE_Q OxlO

#define KEYCODE_N 0x36

#define KEYCODE_M 0x37

ttendif

Appendix C

INTERNAL PROCEDURES

This appendix discusses the more esoteric and internal Intuition functions. These functions are

definitely not for the casual user. Using these functions can seriously alter the user's environ

ment, which is potentially a hazardous thing to do. You have more leeway when using these

functions in an machine environment where you've taken complete control of the Amiga and do

not intend to allow other tasks to co-exist with yours. However, if you intend to have your pro

gram run in the multitasking environment, please use these routines very thoughtfully, since the

effects you can cause on other people's programs and on the user's understanding of the normal

course of events can be dramatic at best, and can cause serious loss of data and the user's

confidence in using the Amiga.

With that caveat aside, here's a list of the functions covered in this appendix:

SetPrefsQ

This routine allows you to set Intuition's internal state of the Preferences.

AlohaWorkbenchQ

This routine allows the Workbench tool to make its presence and departure known to

Intuition.

IntuitionQ

This is the main entry point into Intuition, where input events arrive and are

dispatched.

SetPrefsQ

This routine configures Intuition's internal data states according to the specified Preferences

structure. Normally, this routine is called only by:

o the Preferences program itself after the user has changed the Preferences. The Prefer

ences program also saves the user's Preferences data into a disk file named

devs/system-configuration.

o AmigaDOS when the system is being booted up. AmigaDOS opens the devs/system-
configuration file and passes the information there to the SetPrefsQ routine. This way,

the user can create an environment and have that environment restored every time the
system is booted.

Note that the intended use for the SetPrefsQ call is entirely to serve the user. You should never

use this routine to make your programming or design job easier at the cost of yanking the rug

out from beneath the user.

The synopsis of this function is:

SetPrefsfPreferences, Size, RealThing)

Preferences - a pointer to a Preferences structure

Size - the number of bytes contained in your Preferences structure. Typically,

you will use "sizeof(struct Preferences)" for this argument.

RealThing - a Boolean TRUE or FALSE designating whether or not this is an

intermediate or final version of the Preferences. The difference is that final

changes to Intuition's preferences causes a global broadcast of NEWPREFS

events to everyone who's listening for this event. Intermediate changes may be

used, for instance, to update the screen colors while the user is playing with the

color gadgets.

Refer to Chapter 11, "Other Features", for information about the Preferences structure and the

standard Preferences procedure calls.

AlohaWorkbenchQ

In Hawaiian, "aloha" means both hello and goodbye. The AlohaWorkbenchQ routine allows the

Workbench program to inform Intuition that it's become active and that it's shutting down.

If the Workbench program is active, Intuition is able to tell it to open and close its windows

when someone uses the Intuition OpenWorkBenchQ and CloseWorkBenchQ functions to open or

close the Workbench screen. If the Workbench program is not active, presumably it has no

opened windows, so there is no need for this communication.

This routine is called with an argument that is either a pointer to an initialized message port

which designates that Workbench is active and communications can take place, or NULL to

designate that the Workbench tool is shutting down.

When the message port is active, Intuition will send IntuiMessages to the port. The messages

will have the Class field set to WBENCHMESSAGE. The Code field will equal either WBEN-

CHOPEN or WBENCHCLOSE, depending on whether the Workbench application should open

or close its windows. Intuition assumes that Workbench will comply, so as soon as the message

is replied to, Intuition proceeds with the expectation that the windows have been opened or

closed accordingly.

The procedure synopsis is:

Intuition Version 29.4

AlohaWorkbench(WBPort)

WBPort - a pointer to an initialized MsgPort structure where the special com

munications are to take place

IntuitionQ

This is Intuition's main entry point. All of Intuition's I/O operations originate here. The input

stream flows into Intuition at this portal.

This routine accepts a single argument: a pointer to a linked list of InputEvent structures.

These events have all the real-time state information that Intuition needs to create its art.

Refer to the Amiga ROMKernel Manual for more information about InputEvent structure and

the operation of the Input Device.

When IntuitionQ exits, it returns a pointer to a linked list of InputEvent structures. This list of

InputEvents has no dependable correspondence to the list that was initially submitted to Intui

tion(). Intuition may add events to the list and extract events from the list. This list of events

is normally intended for the Console Device.

If you are considering feeding false input events to Intuition, please think again. And then

think about it one more time. If you are running in an environment where you've taken over

the machine, it's probably safe to fool Intuition in a controlled way. But if you are running in a

multi-tasking environment, especially where the Input Device is still feeding input events

directly into the stream, you can easily cause more harm than good. You may not be able to

anticipate the things that could go wrong when other programs try to exist in an environment

that you are modifying.

An important note is that IntuitionQ is sometimes required to call the Exec WaitQ function.

Normally, IntuitionQ is called from within the Input Device's task, so the Input Device enters

the wait state when these situations arise. If you call IntuitionQ directly, your task may have

to wait. The obvious problem with this the classic lockout problem where your task can't

create the required response because your task has forced itself to wait, which will cause the sys

tem to freeze. The best way to get around this is to have a separate task that calls IntuitionQ

and does nothing more.

The synopsis of this function is:

Intuition(InputEvent)

InputEvent - a pointer to the first in a linked list of InputEvent structures

GLOSSARY

active screen

active window

alert

ALT kejs

alternate

Amiga keys

AmigaDOS

application gadget

auto-knob

Backdrop window

bit-map

bit-plane

The screen containing the active window.

The window receiving user input. Only one window is active at

a time.

Information exchange device displayed by the system or the

application when serious problems occur or when immediate

action is necessary.

Two command keys on the keyboard to the left and right of the

Amiga keys.

An image or border used in gadget highlighting. When the

gadget is selected, the alternate image or border is substituted

for the original image or border.

Two command keys on the keyboard to the left and right of the

space bar.

The Amiga disk operating system.

A custom gadget created by the developer.

The special automatic knob for proportional gadgets; changes

its shape according to the current proportional settings.

A window that stays anchored to the back of the display.

The complete definition of a display in memory, consisting of

one or more bit-planes and information about how to organize

the rectangular display.

A contiguous series of memory words, treated as if it were a rec

tangular shape.

G-l

body variables

Boolean gadget

border area

border line

Borderless window

buffer

checkmark

Proportional gadget variables that contain the increment by

which the pot variables may change.

A simple yes-or-no gadget.

The area containing border gadgets.

The default double-line drawn around the perimeter of all win

dows, except the Borderless window.

A window with no drawn border lines.

An area of continuous memory, typically used for storing blocks

of data such as text strings.

A small image that appears next to a menu item showing that

the user has selected that item. By default, the checkmark is

y/ , but a custom image can be substituted.

CLI = Command Line Interpreter

click

ClipBoard

clipping

close

close gadget

color indirection

color palette

color register

column

To quickly press and release a mouse button.

Workbench file used to store the last data cut (removed) from a

project.

Causing a graphical rendering to appear only in some bounded

area, such as only within the non-concealed areas of a window.

To remove a window or screen from the display.

Gadget in the upper left corner of a screen or window that the

user selects to request that a window or screen be closed.

The method used by Amiga for coloring individual pixels, in

which the binary number formed from all the bits that define a

given pixel refers to one of the 32 color registers. Each of the

32 color registers can be set equal to any of 4096 colors.

The set of colors available in a screen.

One of 32 hardware registers containing colors that you can

define.

A set of adjoining pixels that form a vertical line on the video

display.

G-2

command keys Keys that combine with alphanumeric keys to create command

key sequences, which substitute for making selections with the

mouse buttons.

Command Line Interpreter The command line interface to system commands and utilities.

complement The binary complement of a color, used as a method of gadget

highlighting and in flashing the screen. To complement a

binary number means to change all the l's to O's and all the O's

to l's.

Console Device A communication path for both user input and program output.

Especially recommended for input/output of text-only applica

tions.

container Part of a proportional gadget; the area within which the knob

or slider can move; the select box of the gadget*

control escape sequence Special sequences of characters that start with the "Escape"

character.

controller

coordinates

Copper

Hardware device, such as mouse or light pen, used to move the

pointer or furnish some other input.

A pair of numbers shown in the form, (x,y), where x is an offset

from the left side of the display or display component and y is

an offset from the top.

Display-synchronized coprocessor that handles the Amiga video

display.

coprocessor = Copper

cursor keys

data structure

The arrow keys, which can be used as a substitute for using the

mouse to move the pointer.

The grouping together of the components required to define

some data element.

depth Number of bit-planes in a display.

depth-arrangement gadgets Gadgets in the title bar of a screen or window used to send the

screen or window to the back of the display or bring it up front.

disable To make something unavailable to the user.

G-3

display

display field

display memory

display modes

double-click

double-menu requester

drag

drag gadget

dual playfield mode

edit menu

enable

Exec

extended selection

fill

Put up a screen, window, requester, alert, or any other graphics

object on the video display.

One complete scanning of the video beam from top to bottom of

the video display screen.

The RAM that contains the information for the display

imagery; the hardware translates the contents of the display

memory into video signals.

Display parameters set in the definition of a screen. The modes

are high or low horizontal resolution, interlace or non-interlace

vertical resolution, sprite mode, and dual playfield mode

To quickly press and release a mouse button twice.

A requester that the user can open by double-clicking the mouse

menu button.

To move an icon, gadget, window, or screen by placing the

pointer over the object to moved and holding down the selec

tion button while moving the mouse.

The portion of a window or screen title bar that contains no

other gadgets, used for moving a window or screen around on

the video display.

A display mode that allows you to manage two separate display

memories, giving you two separately controllable displays at the

same time.

A menu for text processing that includes various text editing

functions.

To make something available to the user; a menu item or

gadget that is enabled can be selected by the user.

Low level primitives that comprise the Amiga multi-tasking

operating system.

A technique for selecting more than one menu item at a time.

To put a color or pattern within an enclosed area.

A mechanism for selecting an option or detecting a state; a

name representing a bit to be set or cleared.

G-4

font

gadget

ghost

ghost shape

Gimmezerozero window

header file

high resolution

highlight

hit select

hold-and-modify

hue

icon

IDCMP

initialize

A set of letters, numbers, and symbols that share the same

basic design.

Any of the control devices provided within a window, screen, or

requester; employed by users to change what is being displayed

or to communicate with an application or with Intuition.

Display less distinctly (overlay an area with a faint pattern of

dots) to indicate that something, such as a gadget or a window,

is not available or not active.

The new outline of a window that shows briefly when the user

is dragging or sizing a window.

A window with a separate bit-map for the window border.

A file that is included at the beginning of a C program and con

tains definitions of data types and structures, constants, and

macros.

A horizontal display mode where there are 640 pixels displayed

across a horizontal line.

To modify the display of a selected menu item or gadget in a

way that distinguishes it from its non-selected state.

A method of gadget selection where the gadget is unselected as

soon as the select button is released.

A display mode that gives you extended color selection — up to

4,096 colors on the screen at one time.

The characteristic of a color that is determined by the color's

position in the color spectrum.

A visual representation of an object in the Workbench, such as

a program, file, or disk.

"Intuition Direct Communications Message Ports"; the primary

communication path for user input to an application. Gives

mouse and keyboard events and Intuition events in raw form.

Provides a path for communicating to Intuition.

To set up an Intuition component with certain default parame

ters.

input event

interlace

IntuiMessage

keymap

The message created by the Input Device whenever a signal is

detected at one of the Amiga input ports.

A vertical display mode where 400 lines are displayed from top

to bottom of the video display.

The input message created by Intuition for application pro

grams; the message is the medium in this case.

Translation table used by the Console Device to translate key-

codes into normal characters.

knob

library

linked list

low resolution

Part of a proportional gadget; the user manipulates the knob to

set a proportional value.

A collection of pre-defined functions that can be used by any

program.

A collection of like objects linked together by having a pointer

variable in one contain the address of the next; the last object

in the list has a next-pointer of NULL.

A horizontal display mode where 320 pixels are displayed across

a horizontal line.

menu

menu bar

A category that has menu items associated with it. One of the

entries in the menu list displayed in the screen title bar.

A strip in the screen title bar that shows the menu list when

the user holds down the menu button.

menu button

menu item

menu list

The right-hand button on the mouse.

One of the choices in a menu; the options presented to the user.

List of menus displayed in the screen title bar when the user

holds down the menu button.

menu shortcut

menu title = menu

Message Ports

An alternate way of choosing a menu item by pressing a key on

the keyboard while holding down the right AMIGA key.

A software mechanism managed by the Amiga Exec which

allows inter-task communications.

G-6

mouse A controller device used to move the pointer and make selec

tions.

multi-tasking

mutual exclusion

non-interlace

null-terminated

offset

open

option

parallel port

pen

pixel

playfield

pointer

pot variables

Preferences

preserve

A system where many tasks can be operating at the same time,

with no task forced to be aware of any other task.

Selecting a menu item (or gadget) can cause other menu items

(or gadgets) to become deselected.

A display mode where 200 lines are displayed from top to bot

tom of the video display.

A text string must always end with a byte of zero.

A position in the display that is relative to some other position.

For the user, to display a window. For an application, to

display a window or screen.

A feature that, once selected, persists until it is deselected.

A connector on the back of the Amiga used to attach printers

and other add-ons.

A variable containing a color register number used for drawing

lines or filling background.

Short for "picture element". The smallest addressable element

in the video display. Each pixel is one dot of color.

One of the basic elements in Amiga graphics; the background

for all the other display elements.

A small object, usually an arrow, that moves on the display

when the user moves the mouse (or the cursor keys). It is used

to choose menu items, open windows, and drag and select other

objects.

Proportional gadget variables that contain the actual propor

tional values.

A program that allows the user to change various settings of an

Amiga.

To keep overlapped portions of the display in hidden memory
buffers.

G-7

primitives Amiga low-level library functions.

project menu

proportional gadget

RAM

raster

RastPort

refresh

render

requester

resolution

screen

scroll

scroll bar

select

select box

select button

selected option

A menu for opening and saving project files.

Gadget used to display a proportional value or get a propor

tional setting from the user. Consists of a knob or slider and a

container.

Random access (volatile) memory.

The area in memory where the bit-map is located.

The data structure that defines the general parameters of a win

dow or screen.

Recreate a display that was hidden and is now revealed.

To draw or write into display memory.

A rectangular information exchange region in a window. When

a requester appears, the user must select a gadget in the reques

ter to close the requester before doing anything else in the win

dow.

On a video display, the number of pixels that can be displayed

in the horizontal and vertical directions.

A full-width area of the display with a set color palette, resolu

tion, and other display modes. Windows open in screens.

To move the contents of display memory within a window.

A proportional gadget with which the user can display different

parts of the display memory.

To pick a gadget or menu item.

The sensitive area of a gadget or menu item. When the user

moves the pointer within a gadget's select box, the gadget

becomes selected.

The left-hand button on a mouse.

An option that is currently in effect.

G-8

selection shortcut

serial port

shortcut

simple refresh

size

sizing gadget

slider

smart refresh

sprite

sprite mode

string gadget

A quick way to select a gadget by pressing some key while hold

ing down the left Amiga key.

A connector on the back of the Amiga used to attach modems

and other serial add-ons.

A quick way, from the keyboard, to choose a menu item or

select a gadget.

A method of refreshing window display where concealed areas

are redrawn by the program when they are revealed

To change the dimensions of a window or screen.

A gadget for the user to change the size of a window or a

screen.

Part of a proportional gadget, used to pick a value within a

range, by dragging the slider or by moving the slider by incre

ments with clicks of a mouse button.

A method of refreshing window display where Intuition keeps

information about concealed areas in off-display buffers and

refreshes the display from this information. If the window is

sized, the program may have to recreate the display.

Small, easily movable graphic object. You can have multiple

sprites in a window at the same time.

A display mode that allows you to have sprites in your win

dows.

Gadget that prompts the user to enter a text string or an

integer.

structure = data structure

sub-menu

SuperBitMap refresh

SuperBitMap window

An additional menu that appears when some menu items are

chosen by the user.

A method of window refresh where the display is recreated from

a separate bit-map area.

A window with its own bit-map; doesn't use the screen's bit

map.

G-9

system gadgets

task

text cursor

title bar

toggle select

tool

Topaz

transparent

typeface = font

type style

undo

UserPort

vector

video display

View

ViewPort

Predefined gadgets for windows and screens; for screens, drag

ging and depth arranging; for windows; dragging, depth arrang

ing, sizing, and closing.

Operating system module or application program. Each task

appears to have full control over its own virtual 68000 machine.

In programs containing text and in string gadgets, a marker

that indicates your position in the text.

A strip at the top of a screen or window that contains gadgets

and an optional name for the screen or window.

A method of gadget selection where the gadget remains selected

when the user releases the select button, and does not become

deselected until the user picks it again.

An application program.

The default system font. It is a fixed-width font in two sizes:

60-columns wide and 8 lines tall; 80-columns wide and 9 lines

tall.

A special color register definition that allows a background color

to show through. Used in dual playfield mode.

A variation of a typeface, such as italic or bold.

A text editing function that reverses an action.

The message port created for you when you request IDCMP

functionality. You receive messages from Intuition via this

port.

A line segment.

Everything that appears on the screen of a video monitor or

television.

The graphics library data structure used to create the Intuition

display.

The graphics library data structure used to create and manage

the Intuition screen.

G-10

virtual terminal

window

WindowPort

Workbench

WorkBench screen

An Intuition window; it accepts input from the user and display

output from the application.

Rectangular display in a screen that accepts input from the user

and displays output from the application.

The message port created for you when you request IDCMP

functionality. You respond to messages from Intuition via this

port.

A program to manipulate AmigaDOS disk file objects.

The primary Intuition screen.

G-ll

Index

active screen, 3-4

active window, 4-4

alerts

creating, 7-15

display, 7-14

types, 7-14

alternate (ALT) keys, 10-4

AMIGA keys

as command keys, 10-4

in command-key sequences, 6-7

Workbench shortcuts, 10-5

application gadgets

(also see gadgets), 4-10

assembly language, 11-11

Backdrop window, 4-6

beeping, 11-11

bit-planes

in image display, 9-11

in screens, 3-11

Border structure, 9-5

border variables, 4-5

Borderless window, 4-5

borders

in Borderless windows, 4-5

in Gimmezerozero windows, 4-5

window, 4-10

window variables, 4-10

CHECKED and CHECKIT

checkmark, 6-5

mutual exclusion, 6-6

close gadget, 5-4

color, 3-11

color in windows, 4-17

command key style, 12-4

command-key sequence events, 10-3

command-key sequences, 6-7

Console Device

keymap, 8-17

using directly

reading from, 8-15

writing to windows, 8-16

using through AmigaDos, 8-15

control (CTRL) key, 10-4

Copper

in custom screens, 3-8

custom gadgets

in screens, 3-15

custom pointer

setting up, 4-29

custom screens

closing, 3-8

managed by applications, 3-9

managed by Intuition, 3-8

rendering in, 3-9

depth

screen, 3-11

depth arrangement gadgets, 5-4

display element, 9-2

display memory

pointers into, 9-18

RastPort, 3-2

screen, 3-2

display modes

in custom screens, 3-10

set by screen, 3-1

dragging gadget

screens, 3-3

dragging gadgets, 5-4

dual playfield mode, 3-10

escape (ESC) key, 10-4

flashing the display, 11-11

fonts

custom, 3-12

default, 3-12

in creating text, 9-7

Topaz, 3-12

function keys, 10-4

Gadget structure, 5-19

gadget style, 12-3

gadgets

Boolean type

hit select, 5-12

toggle select, 5-12

combining types, 5-18

enabling and disabling, 5-11

Gadget structure, 5-19

hand-drawn, 5-5

highlighting, 5-10

in window borders, 5-10

integer type, 5-17

line-drawn, 5-6

proportional

example, 5-14

Proplnfo structure, 5-25

proportional type, 5-12

select box, 5-8

selection of, 5-8

string

Stringlnfo structure, 5-26

string type, 5-16

without imagery, 5-7

Gimmezerozero window

gadgets in, 4-6

requesters in, 4-6

Gimmezerozero window type, 4-5

graphics

Amiga primitives, 9-16

special Intuition functions, 9-16

header files, 2-2

Hello World, 2-9

high-resolution mode, 3-10

hold-and-modify mode, 3-10

IDCMP

closing, 8-8

example, 8-13

flags, 8-9

IntuiMessages, 8-8

message ports, 8-7

monitor task, 8-12

opening, 8-7

requester features, 7-5

UserPort, 8-12

verification functions, 8-12

WindowPort, 8-12

illustration data types, 9-1

Image structure, 9-13

images

data, 9-9

defining, 9-9

displaying, 9-2

example, 9-14

Image structure, 9-13

location, 9-9

inner window

in Gimmezerozero windows, 4-5

with the Console Device, 4-6

Input Device, 8-2

input event, 8-2

input stream, 8-2

input/output

Console Device, 8-14

IDCMP, 8-7

Input Device, 8-2

input stream, 8-2

paths, 8-3

interlace mode, 3-10

IntuiMessage structure, 8-8

IntuiMessages, 8-8

IntuiText structure, 9-7

keyboard

as alternate to mouse, 10-4

command keys, 10-4

keymap, 8-17

library

opening, 2-2

lines

Border structure, 9-5

colors, 9-4

coordinates, 9-3

defining, 9-3

displaying, 9-2

drawing modes, 9-4

linking, 9-5

low-resolution mode, 3-10

memory

allocation, 11-2

deallocation, 11-2

Remember structure, 11-3

RememberKey, 11-3

menu boxes

item, 6-3

sub-items, 6-4

- li-

menu checkmark, 6-5

menu commands

actions, 6-1

attributes, 6-5

menu items

command key shorcuts, 10-5

enabling and disabling, 6-8

menu numbers

how they work, 6-10

how to get them, 6-9

menu operations

getting menu numbers, 6-9

intercepting

MenuVerify, 6-11

RMBTRAP, 6-12

menu selection

by user, 6-2

menu strips

changing, 6-8

removing, 6-3

submitting, 6-3

Menu structure, 6-14

menu style

edit menus, 12-2

project menus, 12-1

menu system

activating, 6-2

Menultem structure, 6-15

menus

command-key sequences, 6-7

designing, 6-12

enabling and disabling, 6-8

menu numbers, 6-9

Menu structure, 6-14

Menultem structure, 6-15

mutual exclusion, 6-5

requesters, 6-12

messages

IDCMP, 8-8

menu selection, 6-9

mouse, 10-3

monitor task

IDCMP, 8-12

mouse

basic activities, 10-1

combining buttons and movement, 10-2

dragging, 10-3

keyboard as alternate, 10-4

left (select) button, 10-2

messages, 10-3

right (information transfer) button, 10-2

mouse button philosophy, 10-2

mutual exclusion

in menus, 6-5

NewScreen structure, 3-16

NewWindow structure, 4-18

non-interlace mode, 3-10

philosophy, 1-1

pixel, 3-10

pointer

broadcasts, 4-16

custom, 4-29

position in gadgets, 5-9

position in Gimmezerozero windows, 4-6

position in windows, 4-16

variables, 4-16

Preferences

getting user settings, 11-4

structure, 11-6

preserving the display

Simple Refresh, 4-14

Smart Refresh, 4-14

SuperBitMap, 4-15

Proplnfo structure, 5-25

RastPort structure, 9-18

Remember structure, 11-3

Remembering, 11-1

rendering

requesters, 7-4

requester rendering

by hand, 7-10

by Intuition, 7-10

Requester structure, 7-7

requesters

as menus, 6-12

as super menus, 7-1

designing, 7-7

display

position", 7-4

displaying, 7-2

double-menu, 7-5

IDCMP features, 7-5

rendering, 7-4

simple, 7-11

- in-

structure, 7-7

Screen structure, 3-18

screens

active, 3-4

color, 3-11

custom, 3-8

depth, 3-11

display modes, 3-10

gadgets

custom, 3-15

system, 3-2

height and width, 3-12

location limits, 3-13

NewScreen structure, 3-16

Screen structure, 3-18

standard, 3-5

starting location, 3-12

title

current, 3-14

default, 3-14

effect of Backdrop window on, 3-15

Workbench, 3-5

shortcuts

menu, 12-4

selection, 12-4

Simple Refresh, 4-14

sizing gadget, 5-3

Smart Refresh, 4-14

Speciallnfo structures, 5-25

sprite mode, 3-10

sprite pointer

colors, 12-5

sprites

as pointer, 4-16

in Intuition windows & screens, 11-11

Stringlnfo structure, 5-26

structures

Border, 9-5

Gadget, 5-19

Image, 9-13

IntuiMessage, 8-8

IntuiText, 9-7

Menu, 6-14

Menultem, 6-15

NewScreen, 3-16

NewWindow, 4-18

Preferences, 11-6

Proplnfo, 5-25

RastPort, 9-18

Remember, 11-3

Requester, 7-7

Screen, 3-18

STpeciallnfo, 5-25

Stringlnfo, 5-26

View, 9-18

ViewPort, 9-18

Window, 4-23

SuperBitMap refresh, 4-15

SuperBitMap window

setting up the bit-map, 4-28

SuperBitMap window type, 4-7

system gadgets

placement, 5-2

screens, 3-2

windows, 4-7

text

colors, 9-6

defining", 9-6

displaying, 9-7

drawing modes, 9-7

fonts, 9-7

IntuiText structure, 9-7

linking, 9-7

TextAttr structure, 3-12

time

getting current values, 11-10

title

screen, 3-14

title bar

screen, 3-2

window, 4-10

topaz font, 3-11

type styles, 3-11

type styles, custom, 3-12

user settings

Preferences, 11-4

verification functions

IDCMP, 8-12

View

address of, 9-18

remaking, 11-9

ViewPorts

address of, 9-18

remaking, 11-9

iv -

virtual display memory, 4-11

virtual terminal, 1-1, 4-1

virtual terminal windows, 4-2

Window structure, 4-23

windows

activating, 4-4

application gadgets in, 4-10

Backdrop, 4-6

Borderless, 4-5

borders, 4-10

closing, 4-4

colors, 4-17

dimensions

limits, 4-17

starting, 4-17

Gimmezerozero, 4-5

graphics and text in, 4-16

input/output, 4-3

NewWindow structure, 4-18

opening, 4r3

pens, 4rl7

pointer, 4-16

preserving the display, 4-11

refreshing the display

NOCAREREFRESH, 4-15

Simple Refresh, 4-14

Smart Refresh, 4-14

SuperBitMap, 4-15

screen title, 3-14

special types, 4-4

SuperBitMap, 4-7

system gadgets in, 4-7

Window structure, 4-23

Workbench

application program, 3-6

library, 3-6

screen, 3-5

shortcut key functions, 10-5

- v -

Commodore Business Machines, Inc.

1200 Wilson Drive, West Chester, PA 19380

Commodore Business Machines, Limited

3370 Pharmacy Avenue, Agincourt, Ontario, M1W 2K4

Copyright 1985 © Commodore-Amiga, Inc.

