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Preface 

The Amiga Technical Reference Series is the official guide to programming Commodore's Amiga 
computers. This revised edition of the Amiga Hardware Reference Manual provides detailed 
information about the Amiga's graphics and audio hardware, and how the Amiga talks to the out­
side world through peripheral devices. This edition has been updated for version 2.0 of the 
Amiga operating system and covers the newest Amiga computer systems including the A3000. 

This book is intended for the following audiences: 

o Assembly language programmers who need a more direct way of interacting with the 
Amiga than the routines provided in the system software. 

o Designers who want to interface new peripherals to the Amiga. 

o Anyone who wants to know how the Amiga hardware works. 

Here is a brief overview of the contents: 

Chapter 1, Introduction. An overview of the hardware and smvey of the Amiga's graph­
ics and audio features. 

Chapter 2, Coprocessor Hardware. Using the Copper coprocessor to control the entire 
graphics and audio system; directing mid-screen modifications in graphics displays and 
directing register changes during the time between displays. 

Chapter 3, Playfield Hardware. Creating, displaying and scrolling the playfields, one of 
the basic display elements of the Amiga; how the Amiga produces multi-color, bit­
mapped displays. 

Chapter 4, Sprite Hardware. Using the eight sprite direct memory access (DMA) chan­
nels to make sprite movable objects; creating their data structures, displaying and mov­
ing them, reusing the DMA channels. 

xi 



Chapter 5, Audio Hardware. Overview of sampled sound; how to produce quality 
sound, simple and complex sounds, and modulated sounds. 

Chapter 6, Blitter Hardware. Using the blitter DMA channel to create animation effects 
and draw lines into play fields. 

Chapter 7, System Control Hardware. Using the control registers to define depth 
arrangement of graphics objects, detect collisions between graphics objects, control 
direct memory access, and control interrupts. 

Chapter 8, Interface Hardware. How the Amiga talks to the outside world through con­
troller ports, keyboard, audio jacks and video connectors, serial and parallel interfaces; 
information about the disk controller and RAM expansion slot. 

Appendices. Alphabetical and address-order listings of all the graphics and audio system 
registers and the functions of their bits. Also included is a special section on the 
Amiga's Enhanced Chip Set (ECS), system memory maps, descriptions of internal and 
external connectors, specifications for the peripheral interface ports, keyboard, and an 
introduction to the Amiga 's Zorro expansion bus with detailed specifications for 
hardware add-on designers. 

We suggest that you use this book according to your level of familiarity with the Amiga system. 
Here are some suggestions: 

o If this is your initial exposure to the Amiga, read chapter 1, which gives a survey of all 
the hardware features and a brief rundown of graphics and audio effects created by 
hardware interaction. 

o If you are already familiar with the system and want to acquaint yourself with how the 
various bits in the hardware registers govern the way the system functions, browse 
through chapters 2 through 8. Examples are included in these chapters. 

o For advanced users, the appendices give a concise summary of the entire register set and 
the uses of the individual bits. Once you are familiar with the effects of changes in the 
various bits, you may wish to refer more often to the appendices than to the explanatory 
chapters. 

The other manuals in this series are the Amiga User Interface Style Guide, an application design 
specification and reference work for Amiga programmers, the Amiga ROM Kernel Reference 
Manual: Includes and Autodocs, an alphabetically organized reference of ROM function sum­
maries and Amiga system include files, the Amiga ROM Kernel Reference Manual: Libraries and 
the Amiga ROM Kernel Reference Manual: Devices with tutorial-style chapters on the use of each 
Amiga system library and device. 

xii 
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chapter one 
INTRODUCTION 

The Amiga family of computers consists of several models, each of which has been designed on 
the same premise - to provide the user with a low-cost computer that features high-cost 
performance. The Amiga does this through the use of custom silicon hardware that yields 
advanced graphics and sound features. 

There are four basic models that make up the Amiga computer family: the A500, AlOOO, A2000, 
and A3000. Though the models differ in price and features, they have a common hardware 
nucleus that makes them software compatible with one another. This chapter describes the 
Amiga 's hardware components and gives a brief overview of its graphics and sound features. 

Components of the Amiga 

These are the hardware components of the Amiga: 

o Motorola MC68000 16/32-bit main processor. The Amiga also supports the 68010, 68020, 
and 68030 processors as an option. The A 1000, A500 and A2000 contain the 68000, while 
the A3000 utilizes the 68030 processor. 

o Custom graphics and audio chips with DMA capability. All Amiga models are equipped 
with three custom chips named Paula, Agnus, and Denise which provide for superior color 
graphics, digital audio, and high-performance interrupt and l/0 handling. The custom chips 
can access up to 2MB of memory directly without using the 68000 CPU. 

o From 25 6K to 2 MB of RAM expandable to a total of 8 MB (over a gigabyte on the Amiga 
3000). 

o 512K of system ROM containing a real time, multitasking operating system with sound, 
graphics, and animation support routines. (V1.3 and earlier versions of the OS used 256K of 
system ROM.) 
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o Built-in 3.5 inch double sided disk drive with expansion floppy disk ports for connecting up 
to three additional disk drives (either 3.5 inch or 5.25 inch, double sided). 

o SCSI disk port for connecting additional SCSI disk drives (A3000 Only). 

o Fully programmable parallel and RS-232-C serial ports. 

o Two button opto-mechanical mouse and two reconfigurable controller ports (for mice, 
joysticks, light pens, paddles, or custom controllers). 

o A professional keyboard with numeric keypad, 10 function keys, and cursor keys. A variety 
of international keyboards are also supported. 

o Ports for analog or digital RGB output (all models), monochrome video (A500 and A2000), 
composite video (AlOOO), and VGA-stylc multiscan video (A3000). 

o Ports for left and right stereo audio from four special purpose audio channels. 

o Expansion options that allow you to add RAM, additional disk drives (floppy or hard), 
peripherals, or coprocessors. 

THE MC68000 AND THE AMIGA CUSTOM CHIPS 

The Motorola MC68000 microprocessor is the CPU used in the A 1000, the A500, and the A2000. 
The 68000 is a 16/32-bit microprocessor; internal registers are 32 bits wide, while the data bus 
and ALU are 16 bits. The 68000's system clock speed is 7.15909 MHz on NTSC systems (USA) 
or 7.09379 MHz on PAL systems (Europe). These speeds can vary when using an external 
system clock, such as from a genlock board. 

The 68000 has an address space of 16 megabytes. In the Amiga, the 68000 can address up to 9 
megabytes of random access memory (RAM). 

In the A3000, the Motorola MC68030 microprocessor is the CPU. This is a full 32-bit 
microprocessor with a system clock speed of 16 or 25 megahertz. The 68030 has an address 
space of 4 gigabytes. In the A3000, over a gigabyte of RAM can be addressed. 

In addition to the 680x0, all Amiga models contain special purpose hardware known as the 
custom chips that greatly enhance system performance. The term custom chips refers to the three 
integrated circuits which were designed specifically for the Amiga computer. These three custom 
chips, named Paula, Agnus, and Denise, each contain the logic to handle a specific set of tasks 
such as video, audio, or I/0. 

Because the custom chips have DMA capability, they can access memory without using the 
680x0 CPU - this frees the CPU for other types of operations. The division of labor between the 
custom chips and the 680x0 gives the Amiga its power; on most other systems the CPU has to do 
everything. 
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The memory shared between the Amiga's CPU and the custom chips is called Chip memory. The 
more Chip memory the Amiga has, the more graphics, audio, and 1/0 data it can operate on 
without the CPU being involved. All Amigas can access at least 512K of Chip memory. 

The latest version of the custom chips, known as the Enhanced Chip Set or ECS) can handle up to 
2 MB of memory and has other advanced features. For more details about the Enhanced Chip 
Set, refer to Appendix C. 

Although there are different versions of the Amiga's custom chips, all versions have some 
common features. Among other functions, the custom chips provide the following: 

o Bitplane generated, high resolution graphics capable of supporting both PAL and NTSC 
video standards. 

NTSC systems. On NTSC systems, the Amiga typically produces a 320 by 200 non­
interlaced or 320 by 400 interlaced display in 32 colors. A high resolution mode 
provides a 640 by 200 non-interlaced or 640 by 400 interlaced display in 16 colors. 

PAL systems. On PAL systems, the Amiga typically produces a 320 by 256 non­
interlaced or 320 by 512 interlaced display in 32 colors. High resolution mode provides 
a 640 by 256 non-interlaced or 640 by 512 interlaced display in 16 colors. 

The design of the Amiga's display system is very flexible and there are many other modes 
available. Hold-and-modify (HAM) mode allows for the display of up to 4,096 colors on 
screen simultaneously. Overscan mode allows the creation of higher resolution displays 
specially suited for video and film applications. Displays of arbitrary size, larger than the 
visible viewing area can be created. Amigas which contain the Enhanced Chip Set (ECS) 
support Productivity mode giving displays of 640 by 480, non-interlaced with 4 colors from 
a pallette of 64. 

o A custom graphics coprocessor, called the Copper, that allows changes to most of the special 
purpose registers in synchronization with the position of the video beam. This allows such 
special effects as mid-screen changes to the color palette, splitting the screen into multiple 
horizontal slices each having different video resolutions and color depths, beam-synchronized 
interrupt generation for the 680x0, and more. The coprocessor can trigger many times per 
screen, in the middle of lines, and at the beginning or during the blanking interval. The 
coprocessor itself can directly affect most of the registers in the other custom chips, freeing 
the 680x0 for general computing tasks. 

o 32 system color registers, each of which contains a 12-bit number as four bits of red, four bits 
of green, and four bits of blue intensity information. This allows a system color palette of 
4,096 different choices of color for each register. 

o Eight reusable 16-bit wide sprites with up to 15 color choices per sprite pixel (when sprites 
are paired). A sprite is an easily movable graphics object whose display is entirely 
independent of the background (called a playfield); sprites can be displayed over or under 
this background. A sprite is 16 low resolution pixels wide and an arbitrary number of lines 
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tall. After producing the last line of a sprite on the screen, a sprite DMA channel may be 
used to produce yet another sprite image elsewhere on screen (with at least one horizontal 
line between each reuse of a sprite processor). Thus, many small sprites can be produced by 
simply reusing the sprite processors appropriately. 

o Dynamically controllable inter-object priority, with collision detection. This means that the 
system can dynamically control the video priority between the sprite objects and the bitplane 
backgrounds (playfields). You can control which object or objects appear over or under the 
background at any time. Additionally, you can use system hardware to detect collisions 
between objects and have your program react to such collisions. 

o Custom bit blitter used for high srx::ed data movement, adaptable to bitplane animation. The 
blitter has been designed to efficiently retrieve data from up to three sources, combine the 
data in one of 256 different possible ways, and optionally store the combined data in a 
destination area. The bit blitter, in a special mode, draws patterned lines into rectangularly 
organized memory regions at a speed of about 1 million dots per second; and it can 
efficiently handle area fill. 

o Audio consisting of four digital channels with independently programmable volume and 
sampling rate. The audio channels retrieve their control and sample data via DMA. Once 
started, each channel can automatically play a specified waveform without further processor 
interaction. Two channels are directed into each of the two stereo audio outputs. The audio 
channels may be linked together to provide amplitude or frequency modulation or both forms 
of modulation simultaneously. 

o DMA controlled floppy disk read and write on a full track basis. This means that the built-in 
disk can read over 5600 bytes of data in a single disk revolution (11 sectors of 512 bytes 
each). 

AMIGA MEMORY SYSTEM 

As mentioned previously, the custom chips have DMA access to RAM which allows them to 
perform graphics, audio, and l/0 chores independently of the CPU. This shared memory that 
both the custom chips and the CPU can access directly is called Chip memory. 

The custom chips and the 680x0 CPU share Chip memory on a fully interleaved basis. Since the 
680x0 only needs to access the Chip memory bus during each alternate clock cycle in order to run 
full speed, the rest of the time the Chip memory bus is free for other activities. The custom chips 
use the memory bus during these free cycles, effectively allowing the CPU to run at full speed 
most of the time. 

There are some occasions though when the custom chips steal memory cycles from the 680x0. In 
the higher resolution video modes, some or all of the cycles normally used for processor access 
are needed by the custom chips for video refresh. In that case, the Copper and the blitter in the 
custom chips steal time from the 680x0 for jobs they can do better than the 680x0. Thus, the 
system DMA channels are designed with maximum performance in mind. 
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Even when such cycle stealing occurs, it only blocks the 680xO's access to the internal, shared 
memory. The custom chips cannot steal cycles when the 680x0 is using ROM or external 
memory, also known as Fast memory. 

The DMA capabilities of the custom chips vary depending on the version of the chips and the 
Amiga model. The original custom chip set found in the A1000 could access the first 512K of 
RAM. Most AlOOOs have only 512K of RAM so some of the Chip RAM is used up for operating 
system overhead. 

A later version of the custom chips found in early A500s and A2000s replaced the original Agnus 
chip (8361) with a newer version called Fat Agnus (8370/8371). The Fat Agnus chip has DMA 
access to 512K of Chip memory, just like the original Agnus, but also allows an additional 512K 
of internal slow memory or pseudo-fast memory located at ($00CO 0000). Since the slow memory 
can be used for operating system overhead, this allows all 512K of Chip memory to be used by 
the custom chips. 

The name slow memory comes from the fact that bus contention with the custom chips can still 
occur even though only the CPU can access the memory. Since slow memory is arbitrated by the 
same gate that controls Chip memory, the custom chips can block processor access to slow 
memory in the higher resolution video modes. 

The latest version of Agnus and the custom chips found in most A500s and A2000s is known as 
the Enhanced Chip Set or ECS. ECS Fat Agnus (8372A) can access up to one megabyte of Chip 
memory. It is pin compatible with the original Fat Agnus (8370/8371) found in earlier ASOO and 
A2000 models. In addition, ECS Fat Agnus supports both the NTSC and PAL video standards on 
a single chip. 

In the A3000, the Enhanced Chip Set can access up to two megabytes of Chip memory. 

The amount of Chip memory is important since it determines how much graphics, audio, and disk 
data the custom chips can operate on without the 680x0 CPU. Table 1-1 summarizes the basic 
memory configurations of the Amiga. 

Chip RAM Maximum Total RAM Maximum 
(base model) Chip RAM (base model) Total RAM 

Amiga 1000 256K 512K 256K 9MB 
Amiga 500 512K 1MB 1MB 9MB 
Amiga 2000 512K 1MB 1MB 9MB 
Amiga 3000 1MB 2MB 2MB over 1GB 

Table 1-1: Summary of Amiga Memory Configurations 
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Another primary feature of the Amiga hardware is the ability to dynamically control which part of 
the Chip memory is used for the background display, audio, and sprites. The Amiga is not 
limited to a small, specific area of RAM for a frame buffer. Instead, the system allows display 
bitplanes, sprite processor control lists, coprocessor instruction lists, or audio channel control lists 
to be located anywhere within Chip memory. 

This same region of memory can be accessed by the bit blitter. This means, for example, that the 
user can store partial images at scattered areas of Chip memory and use these images for 
animation effects by rapidly replacing on screen material while saving and restoring background 
images. In fact, the Amiga includes firmware support for display definition and control as well as 
support for animated objects embedded within playfields. 

PERIPHERALS 

Floppy disk storage is provided by a built-in, 3.5 inch floppy disk drive. Disks are 80 track, 
double sided, and formatted as 11 sectors per track, 512 bytes per sector (over 900,000 bytes per 
disk). The disk controller can read and write 320/360K IBM PCM (MS-DOS™) formatted 3.5 or 
5.25 inch disks, and 640n20K IBM PC (MS-DOS) formatted 3.5 inch disks. 

Up to three extra 3.5 inch or 5.25 inch disk drives can be added to the Amiga. The A2000 and 
A3000 also provide room to mount Ooppy or hard disks internally. The A3000 has a built-in hard 
disk drive and an on-board SCSI controller which can handle two internal drives and up to seven 
external SCSI devices. 

The Amiga has a full complement of dedicated l/0 connectors. lbe circuitry for some of these 
peripherals resides on the Paula custom chip while the Amiga's two 8520 CIA chips handle other 
1/0 chores not specifically assigned to any of the custom chips. These include modem control, 
disk status sensing, disk motor and stepping control, ROM enable, parallel input/output interface, 
and keyboard interface. 

The Amiga includes a standard RS-232-C serial port for external serial input/output devices such 
as a modem, MIDI interface, or printer. A programmable, Centronics-compatible parallel port 
supports parallel printers, audio digitizers, and other peripherals. 

The Amiga also includes a two-button, opto-mechanical mouse plus a keyboard with numeric 
keypad, cursor controls, and 10 function keys in the base system. A variety of international 
keyboards are supported. Many other input options are available. Other types of controllers can 
be attached through the two controller ports on the base unit including joysticks, keypads, 
trackballs, light pens, and graphics tablets. 
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SYSTEM EXPANDABILITY AND ADAPTABILITY 

New peripheral devices may be easily added to all Amiga models. These devices are 
automatically recognized and used by system software through a well defined, well documented 
linking procedure called AUTOCONFIG™. AUTOCONFIG is short for automatic configuration 
and is the process which allows memory or I/0 space for an expansion board to be dynamically 
allocated by the system at boot time. Unlike some other systems, there is no need to set DIP 
switches to select an address space from a fixed range reserved for expansion devices. 

On the A500 and AlOOO models, peripheral devices can be added using the Amiga's 86-pin 
expansion connector. Peripherals that can be added include hard disk controllers and drives, or 
additional external RAM. Extra floppy disk units may be added from a connector at the rear of 
the unit. 

The A2000 and A3000 models provide the user with the same features as the A500 or AlOOO, but 
with the added convenience of simple and extensive expandability through the Amiga's 100-pin 
Zorro expansion bus. 

The A2000 contains 7 internal slots and the A3000 contains 4 internal slots plus a SCSI disk 
controller that allow many types of expansion devices to be quickly and easily added inside the 
machine. Available options include RAM boards, coprocessors, hard disk controllers, video 
cards, and 1/0 ports. 

The A2000 and A3000 also support the special Bridgeboard™ coprocessor card. This provides a 
complete IBM PCTM on a card and allows the Amiga to run MS-DOS™ compatible software, 
while simultaneously running native Amiga software. In addition, both machines have expansion 
slots capable of supporting standard, IBM PCM style boards. 

VCR AND DIRECT CAMERA INTERFACE 

In addition to the connectors for monochrome composite, and analog or digital ROB monitors, 
the Amiga can be expanded to include a VCR or camera interface. With a genlock board, the 
system is capable of synchronizing with an external video source and replacing the system 
background color with the external image. This allows development of fully integrated video 
images with computer generated graphics. Laser disk input is accepted in the same manner. 

The A2000 and A3000 models also provide a special internal slot designed for video applications. 
This allows the Amiga to use low-cost video expansion boards such as genlocks and frame­
grabbers. 
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AMIGA SYSTEM BLOCK DIAGRAM 

The diagram below highlights the major hardware components of the Amiga's architecture. 
Notice that there are two separate buses, one that only the CPU can access (Fast memory) and 
another one that the custom chips share with the CPU (Chip memory). 
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Figure 1-1: Block Diagram for the Amiga Computer Family 

8 Amiga Hardware Reference Manual 



---------------~-~--··--···---

About the Examples 

The examples in this book all demonstrate direct manipulation of the Amiga hardware. However, 
as a general rule, it is not permissible to directly access the hardware in the Amiga unless your 
software either has full control of the system, or has arbitrated via the OS for exclusive access to 
the particular parts of the hardware you wish to control. 

Almost all of the hardware discussed in this manual, most notably the Blitter, Copper, playfield, 
sprite, CIA, trackdisk, and system control hardware, are in either exclusive or arbitrated use by 
portions of the Amiga OS in any running Amiga system. Additional hardware, such as the audio, 
parallel, and serial hardware, may be in use by applications which have allocated their use 
through the system software. 

Before attempting to directly manipulate any part of the hardware in the Amiga's multitasking 
environment, your application must first be granted exclusive access to that hardware by the 
operating system library, device, or resource which arbitrates its ownership. The operating 
system functions for requesting and receiving control of parts of the Amiga hardware are varied 
and are not within the scope of this manual. Generally such functions, when available, will be 
found in the library, device, or resource which manages that portion of the Amiga hardware in the 
multitasking environment. The following list will help you to find the appropriate operating 
system functions or mechanisms which may exist for arbitrated access to the hardware discussed 
in this manual. 

Hardware component 

Copper, Playfield, Sprite, Blitter 
Audio 
Track disk 
Serial 
Parallel 
Gameport 
Keyboard 
System Control 

Amiga system module that controls it 

graphics.library 
audio.device 
trackdisk.device, disk.resource 
serial.devicc, misc.resource 
parallel.device, cia.resource, misc.resource 
input.device, gameport.device, potgo.resource 
input.device, keyboard.device 
graphics.library, exec.library (interrupts) 

Most of the examples in this book use the hw _examples.i file (see Appendix I) to define the chip 
register names. Hw _ examples.i uses the system include file hardwarelcustom.i to define the chip 
structures and relative addresses. The values defined in hardwarelcustom.i and hw _examples.i 
arc offsets from the base of the chip register address space. In general, this base value is defined 
as _custom and is resolved during linking with the linker library amiga.lib. (_ciaa and _ciab are 
also resolved in this way.) 

Normally, the base address is loaded into an address register and the offsets given by 
hardware/custom.i and hw _examples.i are then used to access the correct register. (One 
exception to this rule is the Copper which uses only the offset access the registers.) 
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For example, in assembler: 

INCLUDE "execltypes.i" 
INCLUDE "hardwarelcustom.i" 

XREF custom 

Start: lea custom,aO 
move.w iS7FFF,intena(a0) 

External reference ... 

Use aO as base register and 
use the name intena as an offset 
to disable all interrupts 

In C, you would usc the structure definitions in hardware/custom.h For example: 

#include 
#include 

"execltypes.h" 
"hardwarelcustom.h" 

extern struct Custom custom; 

I* You may need to define the above external as 
** extern struct Custom far custom; 
** Check you compiler manual. 
*I 

main() 
{ 

custom.intena Ox7FFF; I* Disable all interrupts *I 

The Amiga hardware include files are generally supplied with your compiler or assembler. 
Listings of the hardware include files may also be found in the Amiga ROM Kernel Manual: 
Includes and Autodocs. Generally, the include file label names are very similar to the equivalent 
hardware register list names with the following typical differences. 

o Address registers which have low word and high word components arc generally listed as 
two word sized registers in the hardware register list, with each register name containing 
either a suffix or embedded "L" or "H" for low and high. The include file label for the 
same register will generally treat the whole register as a longword (32 bit) register, and 
therefore will not contain the "L" or "H" distinction. 

o Related sequential registers which are given individual names with number suffixes in the 
hardware register list, arc generally referenced from a single base register definition in the 
include files. For example, the color registers in the hardware list (COLOROO, COLOROl, 
etc.) would be referenced from the "color" label defined in hardware!custom.i (color+O, 
color+2, etc.). 

o Examples of how to define the correct register offset can be found in the hw _examples.i file 
listed in Appendix I. 

Except as noted, 68000 assembly language examples have been assembled under the 
Innovatronics CAPE assembler V2.x, the HiSoft Devpac assembler V1.2, and the Lake Forest 
Logic ADAPT assembler 1.0. No substantial changes should be required to switch between 
assemblers. 
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---------------~---··----

General Amiga Development Guidelines 

The Amiga is available in a variety of models and configurations, and is further diversified by a 
wealth of add-on expansion peripherals and processor replacements. In addition, even standard 
Amiga hardware such as the keyboard and floppy disks, are supplied by a number of different 
manufacturers and may vary subtly in both their timing and in thejr ability to perform outside of 
their specified capabilities. 

The Amiga operating system is designed to operate the Amiga hardware within spec, adapt to 
different hardware and RAM configurations, and generally provide upward compatibility with any 
future hardware upgrades or "add ons" envisioned by the designers. For maximum upward 
compatibility, it is strongly suggested that programmers deal with the hardware through the 
commands and functions provided by the Amiga operating system. 

If you find it necessary to program the hardware directly, then it is your responsibility to write 
code which will work properly on various models and configurations. Be sure to properly request 
and gain control of the hardware you are manipulating, and be especially careful in the following 
areas: 

The environment of the Amiga computer is quite different than that of many other systems. The 
Amiga is a multitasking platform, which means multiple programs can run on a single machine 
simultaneously. However, for multitasking to work correctly, care must be taken to ensure that 
programs do not interfere with one another. It also means that certain guidelines must be 
followed during programming. 

o Remember that memory, peripheral configurations, and ROMs differ between models and 
between individual systems. Do not make assumptions about memory address ranges, 
storage device names, or the locations of system structures or code. Never call ROM 
routines directly. Beware of any example code you find that calls routines at addresses in the 
$FO 0000 - $FF FFFF range. These are ROM routines and they will move with every OS 
release. The only supported interface to system ROM code is through the library, device, and 
resource calls. 

o Never assume library bases or structures will exist at any particular memory location. The 
only absolute address in the system is $0000 0004, which contains a pointer to the 
exec.library base. Do not modify or depend on the format of private system structures. This 
includes the poking of copper lists, memory lists, and library bases. 

o Never assume that programs can access hardware resources directly. Most hardware is 
controlled by system software that will not respond well to interference from other programs. 
Shared hardware requires programs to use the proper sharing protocols. Use the defined 
interface; it is the best way to ensure that your software will continue to operate on future 
models of the Amiga. 
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o Never access shared data structures directly without the proper mutual exclusion (locking). 
Remember that other tasks may be accessing the same structures. 

o All data for the custom chips must reside in Chip memory (type MEMF _CHIP). This 
includes bitplanes, sound samples, trackdisk buffers, and images for sprites, bobs, pointers, 
and gadgets. The AllocMemO call takes a flag for specifying the type of memory. A 
program that specifies the wrong type of memory may appear to run correctly because many 
Amigas have only Chip memory. (On all models of the Amiga, the first 512K of memory is 
Chip memory and in some later models, Chip memory may occupy the first one or two 
megabytes). 

However, once expansion memory has been added to an Amiga (type MEMF _FAST), any 
memory allocations will be made in the expansion memory area by default. Hence, a 
program can run correctly on an unexpanded Amiga which has only Chip memory while 
crashing on an Amiga which has expanded memory. A developer with only Chip memory 
may fail to notice that memory was incorrectly specified. 

Most compilers have options to mark specific data structures or object modules so that they 
will load into Chip RAM. Some older compilers provide the Atom utility for marking object 
modules. If this method is unacceptable, use the AllocMem() call to dynamically allocate 
Chip memory, and copy your data there. 

When making allocations that do not require Chip memory, do not explicitly ask for Fast 
memory. Instead ask for memory type MEMF _PUBLIC or OL as appropriate. If Fast 
memory is available, you will get it. 

o Never use software delay loops! Under the multitasking operating system, the time spent in 
a loop can be better used by other tasks. Even ignoring the effect it has on multitasking, 
timing loops are inaccurate and will wait different amounts of time depending on the specific 
model of Amiga computer. The timer.device provides precision timing for use under the 
multitasking system and it works the same on all models of the Amiga. The AmigaDOS 
Delay() function or the graphics.library/WaitTOF() function provide a simple interface for 
longer delays. The 8520 1/0 chips provide timers for developers who are bypassing the 
operating system (see the Amiga Hardware Reference Manual for more information). 

FOR 68010/68020/68030/68040 COMPATIBILITY 

Special care must be taken to be compatible with the entire family of 68000 processors: 

o Do not use the upper 8 bits of a pointer for storing unrelated information. The 68020, 68030, 
and 68040 use all 32 bits for addressing. 

o Do not use signed variables or signed math for addresses. 
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o Do not use software delay loops, and do not make assumptions about the order in which 
asynchronous tasks will finish. 

o The stack frame used for exceptions is different on each member of the 68000 family. The 
type identification in the frame must be checked! In addition, the interrupt autovectors may 
reside in a different location on processors with a VBR register. 

o Do not use the MOVE SR,<dest> instruction! This 68000 instruction acts differently on 
other members of the 68000 family. If you want to get a copy of the processor condition 
codes, use the exec.library/GetCC() function. 

o Do not use the CLR instruction on a hardware register which is triggered by Write access. 
The 68020 CLR instruction does a single Write access. The 68000 CLR instruction does a 
Read access first, then a Write access. This can cause a hardware register to be triggered 
twice. Use MOVE.x #0, <address> instead. 

o Self-modifying code is strongly discouraged. All 68000 family processors have a pre-fetch 
feature. This means the CPU loads instructions ahead of the current program counter. 
Hence, if your code modifies or decrypts itself just ahead of the program counter, the pre­
fetched instructions may not match the modified instructions. The more advanced processors 
prefetch more words. If self-modifying code must be used, flushing the cache is the safest 
way to prevent troubles. 

o The 68020, 68030, and 68040 processors all have instruction caches. These caches store 
recently used instructions, but do not monitor writes. After modifying or directly loading 
instructions, the cache must be flushed. See the exec.library/CacheClearU() Autodoc for 
more details. If your code takes over the machine, flushing the cache will be trickier. You 
can account for the current processors, and hope the same techniques will work in the future: 

CACRF Clear! 

Clear!Cache: 

cic 040: 
cic exit: 

EQU $0008 ;Bit for clear instruction cache 

;Supervisor mode only.Use only if you have taken 
;over the machine. Read and store the ExecBase 
;processor AttnFlags flags at boot time, call this 
;code only if the "68020 or better" bit was set. 

dc.w $4E7A,$0002 ;MOVEC CACR,DO 
tst.w dO ;movec does not affect CC's 
bmi.s cic_040 ;A 68040 with enabled cache! 
ori.w #CACRF_Cleari,dO 
dc.w $4E7B,$0002 ;MOVEC DO,CACR 
bra.s cic exit 
dc.w $f4b8 ;CPUSHA (IC) 

Introduction 13 



HARDWARE PROGRAMMING GUIDELINES 

If you find it necessary to program the hardware directly, then it is your responsibility to write 
code that will work correctly on the various models and configurations of the Amiga. Be sure to 
properly request and gain control of the hardware resources you are manipulating, and be 
especially careful in the following areas: 

o Kickstart 2.0 uses the 8520 Complex Interface Adaptor (CIA) chips differently than 1.3 did. 
To ensure compatibility, you must always ask for CIA access using the 
cia.resource/AddiCRVector() and RemiCRVector() functions. Do not make assumptions 
about what the system might be using the CIA chips for. If you write directly to the CIA 
chip registers, do not expect system services such as the trackdisk.device to function. If you 
are leaving the system up, do not read or write to the CIA Interrupt Control Registers 
directly; use the cia.resource/AbleiCR(), and SetiCR() functions. Even if you are taking over 
the machine, do not assume the initial contents of any of the CIA registers or the state of any 
enabled interrupts. 

o All custom chip registers arc Read-only or Write-only. Do not read Write-only registers, and 
do not write to Read-only registers. 

o Never write data to, or interpret data from the unused bits or addresses in the custom chip 
space. To be software-compatible with future chip revisions, all undefined bits must be set to 
zeros on writes, and must be masked out on reads before interpreting the contents of the 
register. 

o Never write past the current end of custom chip space. Custom chips may be extended or 
enhanced to provide additional registers, or to use bits that arc currently undefined in existing 
registers. 

0 Never read, write, or use any currently undefined address ranges or registers. The current and 
future usage of such areas is reserved by Commodore and is subject to change. 

0 Never assume that a hardware register will be initialized to any particular value. Different 
versions of the OS may leave registers set to different values. Check the Amiga Hardware 
Reference Manual to ensure that you are setting up all the registers that affect your code. 
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ADDITIONAL ASSEMBLER DEVELOPMENT GUIDELINES 

If you are writing in assembly language there are some extra rules to keep in mind in addition to 
those listed above. 

o Never use the T AS instruction on the Amiga. System DMA can conflict with this 
instruction's special indivisible read-modify-write cycle. 

o System functions must be called with register A6 containing the library or device base. 
Libraries and devices assume A6 is valid at the time of any function call. Even if a particular 
function does not currently require its base register, you must provide it for compatibility 
with future system software releases. 

o Except as noted, system library functions use registers DO, Dl, AO, and Al as scratch 
registers and you must consider their former contents to be lost after a system library call. 
The contents of all other registers will be preserved. System functions that provide a result 
will return the result in DO. 

o Never depend on processor condition codes after a system call. The caller must test the 
returned value before acting on a condition code. This is usually done with a TST or MOVE 
instruction. 

o If you are programming at the hardware level, you must follow hardware interfacing 
specifications. All hardware is not the same. Do not assume that low level hacks for speed 
or copy protection will work on all drives, or all keyboards, or all systems, or future systems. 
Test your software on many different systems, with different processors, OS, hardware, and 
RAM configurations. 
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Commodore Applications and Technical Support (CATS) 

Commodore maintains a technical support group dedicated to helping developers achieve their 
goals with the Amiga. Currently, technical support programs are available to meet the needs of 
both smaller, independent software developers and larger corporations. Subscriptions to 
Commodore's technical support publication, Amiga Mail, is available to anyone with an interest 
in the latest news, Commodore software and hardware changes, and tips for developers. 

To request an application for Commodore's developer support program, or a list of CATS 
technical publications send a self-addressed, stamped, 9" x 12" envelope to: 

CATS-Information 
1200 West Wilson Drive 
West Chester, PA 19380-4231 

Error Reports 

In a complex technical manual, errors are often found after publication. When errors in this 
manual are found, they will be corrected in a subsequent printing. Updates will be published in 
Amiga Mail, Commodore's technical support publication. 

Bug reports can be sent to Commodore electronically or by mail. Submitted reports must be 
clear, complete, and concise. Reports must include a telephone number and enough information 
so that the bug can be quickly verified from your report (i.e., please describe the bug and the steps 
that produced it). 

Amiga Software Engineering Group 
ATTN: BUG REPORTS 
Commodore Business Machines 
1200 Wilson Drive 
West Chester, PA 19380-4231 
USA 

BIX: amiga.com/bug.reports (Commercial developers) 
amiga.cert/bug.reports (Certified developers) 
amiga.dev/bugs (Others) 

USENET: bugs@commodore.COM or uunet!cbmvax!bugs 
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chapter two 
COPROCESSOR HARDWARE 

In this chapter, you will learn how to use the Amiga's graphics coprocessor (or Copper) and its 
simple instruction set to organize mid-screen register value modifications and pointer register 
set-up during the vertical blanking interval. The chapter shows how to organize Copper 
instructions into Copper lists, how to use Copper lists in interlaced mode, and how to use the 
Copper with the blitter. The Copper is discussed in this chapter in a general fashion. The 
chapters that deal with playfields, sprites, audio, and the blitter contain more specific suggestions 
for using the Copper. 

About the Copper 

The Copper is a general purpose coprocessor that resides in one of the Amiga's custom chips. It 
retrieves its instructions via direct memory access (DMA). The Copper can control nearly the 
entire graphics system, freeing the 680x0 to execute program logic; it can also directly affect the 
contents of most of the chip control registers. It is a very powerful tool for directing mid-screen 
modifications in graphics displays and for directing the register changes that must occur during 
the vertical blanking periods. Among other things, it can control register updates, reposition 
sprites, change the color palette, update the audio channels, and control the blitter. 

One of the features of the Copper is its ability to WAIT for a specific video beam position, then 
MOVE data into a system register. During the WAIT period, the Copper examines the contents 
of the video beam position counter directly. This means that while the Copper is waiting for the 
beam to reach a specific position, it does not use the memory bus at all. Therefore, the bus is 
freed for use by the other DMA channels or by the 680x0. 

When the WAIT condition has been satisfied, the Copper steals memory cycles from either the 
blitter or the 680x0 to move the specified data into the selected special-purpose register. 
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The Copper is a two-cycle processor that requests the bus only during odd-numbered memory 
cycles. This prevents collision with audio, disk, refresh, sprites, and most low resolution display 
DMA access, all of which use only the even-numbered memory cycles. The Copper, therefore, 
needs priority over only the 680x0 and the blitter (the DMA channel that handles animation, line 
drawing, and polygon filling). 

As with all the other DMA channels in the Amiga system, the Copper can retrieve its instructions 
only from the chip RAM area of system memory. 

What is a Copper Instruction? 

As a coprocessor, the Copper adds its own instruction set to the instructions already provided by 
the 680x0 CPU. The Copper has only three instructions, but you can do a lot with them: 

o WAIT for a specific screen position specified as x and y coordinates. 

o MOVE an immediate data value into one of the special-purpose registers. 

o SKIP the next instruction if the video beam has already reached a specified screen 
position. 

All Copper instructions consist of two 16-bit words in sequential memory locations. Each time 
the Copper fetches an instruction, it fetches both words. 

The MOVE and SKIP instructions require two memory cycles and two instruction words each. 
Because only the odd memory cycles are requested by the Copper, four memory cycle times are 
required per instruction. The WAIT instruction requires three memory cycles and six memory 
cycle times; it takes one extra memory cycle to wake up. 

Although the Copper can directly affect only machine registers, it can also affect memory 
indirectly by setting up a blitter operation. More information about how to use the Copper in 
controlling the blitter can be found in the sections called "Control Register" and "Using the 
Copper with the Blitter.'' 

The WAIT and MOVE instructions are described below. The SKIP instruction is described in the 
''Advanced Topics'' section. 
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The MOVE Instruction 

The MOVE instruction transfers data from RAM to a register destination. The transferred data is 
contained in the second word of the MOVE instruction; the first word contains the address of the 
destination register. This procedure is shown in detail in the section called "Summary of Copper 
Instructions.'' 

FIRST MOVE INSTRUCTION WORD (IR1) 

Bit 0 Always set to 0. 

Bits 8- 1 Register destination address (DA8-1). 

Bits 15 - 9 Not used, but should be set to 0. 

SECOND MOVE INSTRUCTION WORD (IR2) 

Bits 15-0 16 bits of data to be transferred (moved) 
to the register destination. 

The Copper can store data into the following registers: 

o Any register whose address is $20 or above. 1 

o Any register whose address is between $10 and $20 if the Copper danger bit is a 1. The 
Copper danger bit is in the Copper's control register, COPCON, which is described in 
the "Control Register" section. 

o The Copper cannot write into any register whose address is lower than $10. 

Appendix B contains all of the machine register addresses. 

The following example MOVE instructions set bitplane pointer 1 to $21000 and bitplane pointer 

2 to $25000.2 

DC.W 
DC.W 
DC.W 
DC.W 

$00E0,$0002 
$00E2,$1000 
$00E4,$0002 
$00E6,$5000 

;Move $0002 to register $0EO (BPLlPTH) 
;Move $1000 to register $0E2 (BPLlPTL) 
;Move $0002 to register $0E4 (BPL2PTH) 
;Move $5000 to register $0E6 (BPL2PTL) 

I Hexadecimal numbers are distinguished from decimal numbers by the $ prefix. 

2 All sample code segments are in assembly language. 
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Normally, the appropriate assembler ".i" files are included so that names, rather than addresses, 
may be used for referencing hardware registers. It is strongly recommended that you reference all 
hardware addresses via their defined names in the system include files. This will allow you to 
more easily adapt your software to take advantage of future hardware or enhancements. For 
example: 

INCLUDE "hardware/custom.i" 

DC.W bplpt+$00,$0002 ;Move $0002 into register $0EO (BPLlPTH) 
DC.W bplpt+$02,$1000 ;Move $1000 into register $0E2 (BPL1PTL) 
DC.W bplpt+$04,$0002 ;Move $0002 into register $0E4 (BPL2PTH) 
DC.W bplpt+$06,$5000 ;Move $5000 into register $0E6 (BPL2PTL) 

For use in the hardware manual examples, we have made a special include file (see Appendix I) 
that defines all of the hardware register names based off of the "hardware/custom.i" file. This 
was done to make the examples easier to read from a hardware point of view. Most of the 
examples in this manual are here to help explain the hardware and are, in most cases, not useful 
without modification and a good deal of additional code. 

The WAIT Instruction 

The WAIT instruction causes the Copper to wait until the video beam counters are equal to (or 
greater than) the coordinates specified in the instruction. While waiting, the Copper is off the bus 
and not using memory cycles. 

The first instruction word contains the vertical and horizontal coordinates of the beam position. 
The second word contains enable bits that are used to form a ''mask" that tells the system which 
bits of the beam position to usc in making the comparison. 

FIRST WAIT INSTRUCTION WORD (IRl) 

Bit 0 

Bit~ 15 - 8 

Bits 7- 1 

Always set to 1. 

Vertical beam position (called VP). 

Horizontal beam position (called HP). 

SECOND WAIT INSTRUCTION WORD (IR2) 

Bit 0 

Bit 15 

Bits 14- 8 

Bits 7- 1 

Always set to 0. 

The blitter-finished-disable bit. Normally, this bit is a 1. 
(See the'' Advanced Topics'' section below.) 

Vertical position compare enable bits (called VE). 

Horizontal position compare enable bits (called HE). 
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The following example WAIT instruction waits for scan line 150 ($96) with the horizontal 
position masked off. 

DC.W $9601,$FFOO ;Wait for line 150, 
ignore horizontal counters. 

The following example WAIT instruction waits for scan line 255 and horizontal position 254. 
This event will never occur, so the Copper stops until the next vertical blanking interval begins. 

DC.W $FFFF,$FFFE ;Wait for line 255, 
H = 254 (ends Copper list) . 

To understand why position VP=$FF HP=$FE will never occur, you must look at the comparison 
operation of the Copper and the size restrictions of the position information. Line number 255 is 
a valid line to wait for, in fact it is the maximum value that will fit into this field. Since 255 is the 
maximum number, the next line will wrap to zero (line 256 will appear as a zero in the 
comparison.) The line number will never be greater than $FF. The horizontal position has a 
maximum value of $E2. This means that the largest number that will ever appear in the 
comparison is $FFE2. When waiting for $FFFE, the line $FF will be reached, but the horizontal 
position $FE will never happen. Thus, the position will never reach $FFFE. 

You may be tempted to wait for horizontal position $FE (since it will never happen), and put a 
smaller number into the vertical position field. This will not lead to the desired result. The 
comparison operation is waiting for the beam position to become greater than or equal to the 
entered position. If the vertical position is not $FF, then as soon as the line number becomes 
higher than the entered number, the comparison will evaluate to true and the wait will end. 

The following notes on horizontal and vertical beam position apply to both the WAIT instruction 
and to the SKIP instruction. The SKIP instruction is described below in the "Advanced Topics" 
section. 

HORIZONTAL BEAM POSITION 

The horizontal beam position has a value of $0 to $E2. The least significant bit is not used in the 
comparison, so there are 113 positions available for Copper operations. This corresponds to 4 
pixels in low resolution and 8 pixels in high resolution. Horizontal blanking falls in the range of 
$OF to $35. The standard screen (320 pixels wide) has an unused horizontal portion of $04 to $47 
(during which only the background color is displayed). 

All lines arc not the same length in NTSC. Every other line is a long line (228 color clocks, O­
$E3), with the others being 227 color clocks long. In PAL, they are all 227 long. The display 
sees all these lines as 227 1/2 color clocks long, while the copper sees alternating long and short 
lines. 
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VERTICAL BEAM POSITION 

The vertical beam position can be resolved to one line, with a maximum value of 255. There are 
actually 262 NTSC (312 PAL) possible vertical positions. Some minor complications can occur 
if you want something to happen within these last six or seven scan lines. Because there are only 
eight bits of resolution for vertical beam position (allowing 256 different positions), one of the 
simplest ways to handle this is shown below. 

Copper Instruction 

WAIT for position (0,255) 

WAIT for any horizontal position with 
vertical position 0 through 5, covering 
the last 6 lines of the scan before vertical 
blanking occurs. 

Explanation 

At this point, the vertical counter 
appears to wrap to 0 because the 
comparison works on the least 
significant bits of the vertical count. 

Thus the total of 256 + 6 = 262 lines of 
video beam travel during which Copper 
instructions can be executed. 

Note that the vertical is like the horizontal. There are alternating long and short 
lines, there are also long and short fields (interlace only). In NTSC, the fields are 262, 
then 263 lines and in PAL, 312, then 313 lines. This alternation of lines and fields 
produces the standard NTSC 4 field repeating pattern: 

short field ending on short line 
long field ending on long line 
short field ending on long line 
long field ending on short line 
and back to the beginning ... 

One horizontal count takes one cycle of the system clock (processor is twice this). 

NTSC- 3,579,545 Hz 
PAL- 3,546,895 Hz 
genlocked- basic clock frequency plus or minus about 2% 

THE COMPARISON ENABLE BITS 

Bits 14-1 are normally set to all 1 s. The use of the comparison enable bits is described later in the 
''Advanced Topics'' section. 
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Using the Copper Registers 

There are several machine registers and strobe addresses dedicated to the Copper: 

o Location registers 

o Jump address strobes 

o Control register 

LOCATION REGISTERS 

The Copper has two sets of location registers: 

COP1LCH 

COPILCL 

COP2LCH 

COP2LCL 

High 3 bits of first Copper list address. 

Low 16 bits of first Copper list address. 

High 3 bits of second Copper list address. 

Low 16 bits of second Copper list address. 

In accessing the hardware directly, you often have to write to a pair of registers that contains the 
address of some data. The register with the lower address always has a name ending in "H" and 
contains the most significant data, or high 3 bit~ of the address. The register with the higher 
address has a name ending in "L" and contains the least significant data, or low 15 bits of the 
address. Therefore, you write the 18-bit address by moving one long word to the register whose 
name ends in ''H.'' This is because when you write long words with the 680x0, the most 
significant word goes in the lower addressed word. 

In the case of the Copper location registers, you write the address to CO PILCH. In the following 
text, for simplicity, these addresses are referred to as COPlLC or COP2LC. 

The Copper location registers contain the two indirect jump addresses used by the Copper. The 
Copper fetches its instructions by using its program counter and increments the program counter 
after each fetch. When a jump address strobe is written, the corresponding location register is 
loaded into the Copper program counter. This causes the Copper to jump to a new location, from 
which its next instruction will be fetched. Instruction fetch continues sequentially until the 
Copper is interrupted by another jump address strobe. 

About Copper restart. At the start of each vertical blanking interval, COPlLC is 
automatically used to start the program counter. That is, no matter what the Copper is 
doing, when the end of vertical blanking occurs, the Copper is automatically forced to 
restart its operations at the address contained in COPlLC. 
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JUMP STROBE ADDRESS 

When you write to a Copper strobe address, the Copper reloads its program counter from the 
corresponding location register. The Copper can write its own location registers and strobe 
addresses to perform programmed jumps. For instance, you might MOVE an indirect address 
into the COP2LC location register. Then, any MOVE instruction that addresses COPJMP2 
strobes this indirect address into the program counter. 

There are two jump strobe addresses: 

COPJMPl Restart Copper from address contained in COP1LC. 

COPJMP2 Restart Copper from address contained in COP2LC. 

CONTROL REGISTER 

The Copper can access some special-purpose registers all of the time, some registers only when a 
special control bit is set to a 1, and some registers not at all. The registers that the Copper can 
always affect are numbered $80 through $FF inclusive. (See Appendix B for a list of registers in 
address order.) Those it cannot affect at all are numbered $00 to $3E inclusive. The Copper 
control register is within this group ($00 to $3E). The rest of the registers, from $40 to $7E, are 
protected by a bit in the Copper control register. 

In the Copper control register, called COPCON, only bit 1 is currently in use by the system. This 
bit, called CDANG (for Copper Danger Bit) protects all registers numbered between $40 and $7E 
inclusive. This range includes the blitter control registers. When CDANG is 0, these registers 
cannot be written by the Copper. When CDANG is 1, these registers can be written by the 
Copper. Preventing the Copper from accessing the blitter control registers prevents a runaway 
Copper (caused by a poorly formed instruction list) from accidentally affecting system memory. 

Warning: Keep in mind that the CDANG bit is cleared after a reset. 

Putting Together a Copper Instruction List 

The Copper instruction list contains all the register resetting done during the vertical blanking 
interval and the register modifications necessary for making mid-screen alterations. As you are 
planning what will happen during each display field, you may find it easier to think of each aspect 
of the display as a separate subsystem, such as playfields, sprites, audio, interrupts, and so on. 
Then you can build a separate list of things that must be done for each subsystem individually at 
each video beam position. 

When you have created all these intermediate lists of things to be done, you must merge them 
together into a single instruction list to be executed by the Copper once for each display frame. 
The alternative is to create this all-inclusive list directly, without the intermediate steps. 

26 Amiga Hardware Reference Manual 



------------··- ---

For example, the bitplane pointers used in playfield displays and the sprite pointers must be 
rewritten during the vertical blanking interval so the data will be properly retrieved when the 
screen display starts again. This can be done with a Copper instruction list that does the 
following: 

WAIT until first line of the display 
MOVE data to bitplane pointer 1 
MOVE data to bitplane pointer 2 
MOVE data to sprite pointer 1, and so on. 

As another example, the sprite DMA channels that create movable objects can be reused multiple 
times during the same display field. You can change the size and shape of the reuses of a sprite; 
however, every multiple reuse normally uses the same set of colors during a full display frame. 
You can change sprite colors mid-screen with a Copper instruction list that waits until the last 
line of the first use of the sprite processor and changes the colors before the first line of the next 
use of the same sprite processor: 

WAIT for first line of display 
MOVE firstcolorl to COLOR17 
MOVE firstcolor2 to COLOR18 
MOVE firstcolor3 to COLOR19 
WAIT for last line + 1 of sprite's first use 
MOVE secondcolorl to COLOR17 
MOVE secondcolor2 to COLOR 18 
MOVE secondcolor3 to COLOR19, and so on. 

As you create Copper instruction lists, note that the final list must be in the same order as that in 
which the video beam creates the display. The video beam traverses the screen from position 
(0,0) in the upper left hand comer of the screen to the end of the display (226,262) NTSC (or 
(226,312) PAL) in the lower right hand comer. The first 0 in (0,0) represents the x position. The 
second 0 represents the y position. For example, an instruction that docs something at position 
(0, 100) should come after an instruction that affects the display at position (0,60). 

Note that given the form of the WAIT instruction, you can sometimes get away with not sorting 
the list in strict video beam order. The WAIT instruction causes the Copper to wait until the 
value in the beam counter is equal to or greater than the value in the instruction. 

This means, for example, if you have instructions following each other like this: 

WAIT for position (64,64) 
MOVE data 

WAIT for position (60,60) 
MOVE data 

Coprocessor Hardware 27 



then the Copper will perfonn both moves, even though the instructions are out of sequence. The 
"greater than" specification prevents the Copper from locking up if the beam has already passed 
the specified position. A side effect is that the second MOVE below will be perfonned: 

WAIT for position (60,60) 
MOVE data 

WAIT for position (60,60) 
MOVE data 

At the time of the second WAIT in this sequence, the beam counters will be greater than the 
position shown in the instructions. Therefore, the second MOVE will also be perfonned. 

Note also that the above sequence of instructions could just as easily be 

WAIT for position (60,60) 
MOVE data 
MOVE data 

because multiple MOVEs can follow a single WAlT. 

COMPLETE SAMPLE COPPER LIST 

The following example shows a complete Copper list. This list is for two bitplanes-one at 
$21000 and one at $25000. At the top of the screen, the color registers are loaded with the 
following values: 

Register Color 

COLOROO white 
COLOROI red 
COLOR02 green 
COLOR03 blue 

At line 150 on the screen, the color registers are reloaded: 

Register Color 

COLO ROO black 
COLOROl yellow 
COLOR02 cyan 
COLOR03 magenta 
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The complete Copper list follows. 

Notes: 1. Copper lists must be in Chip RAM. 
2. Bitplane addresses used in the example are arbitrary. 
3. Destination register addresses in copper move instructions are 

offsets from the base address of the custom chips. 
4. As always, hardware manual examples assume that your application 

has taken full control of the hardware, and is not conflicting 
with operating system use of the same hardware. 

5. Many of the examples just pick memory addresses to be used. 
Normally you would need to allocate the required type of 
memory from the system with AllocMem() 

6. As stated earlier, the code examples are mainly to help 
clarify the way the hardware works. 

7. The following INCLUDE files are required by all example code 
in this chapter. 

INCLUDE "exec/types.i" 
INCLUDE "hardware/custom.i" 
INCLUDE "hardware/dmabits.i" 
INCLUDE "hardware/hw_examples.i" 

COPPERLIST: 

Set up pointers to two bitplanes 

DC.W 
DC.W 
DC.W 
DC.W 

BPL1PTH,$0002 
BPL1PTL,$1000 
BPL2PTH,$0002 
BPL2PTL,$5000 

Load color registers 

DC.W 
DC.W 
DC.W 
DC.W 

COLOR00,$0FFF 
COLOR01,$0FOO 
COLOR02,$00FO 
COLOR03,$000F 

Specify 2 Lores bitplanes 

DC.W BPLCON0,$2200 

Wait for line 150 

DC.W $9601,$FFOO 

;Move $0002 into register 
;Move $1000 into register 
;Move $0002 into register 
;Move $5000 into register 

;Move white into register 
;Move red into register 
;Move green into register 
;Move blue into register 

;2 lores planes, celoron 

$0EO 
$0E2 
$0E4 
$0E6 

$180 
$182 
$184 
$186 

(BPL1PTH) 
(BPL1PTL) 
(BPL2PTH) 
(BPL2PTL) 

(COLOROO) 
(COLOR01) 
(COLOR02) 
(COLOR03) 

;Wait for line 150, ignore horiz. position 

Change color registers mid-display 

DC.W 
DC.W 
DC.W 
DC.W 

COLOR00,$0000 
COLOR01,$0FFO 
COLOR02,$00FF 
COLOR03,$0FOF 

;Move black into register $0180 (COLOROO) 
;Move yellow into register $0182 (COLOROl) 
;Move cyan into register $0184 (COLOR02) 
;Move magenta into register $0186 (COLOR03) 

End Copper list by waiting for the impossible 

DC.W $FFFF,$FFFE ;Wait for line 255, H = 254 (never happens) 

For more infonnation about color registers, see Chapter 3, ''Playfield Hardware.'' 
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Starting and Stopping the Copper 

STARTING THE COPPER AFTER RESET 

At power-on or reset time, you must initialize one of the Copper location registers (COPlLC or 
COP2LC) and write to its strobe address before Copper DMA is turned on. This ensures a known 
start address and known state. Usually, COPlLC is used because this particular register is reused 
during each vertical blanking time. The following sequence of instructions shows how to 
initialize a location register. It is assumed that the user has already created the correct Copper 
instruction list at location '' mycoplist.'' 

Install the copper list 

LEA CUSTOM,al 
LEA MYCOPLIST(pc) ,aO 
MOVE.L aO,COPlLC(al) 
MOVE.W COPJMPl(al),dO 

Then enable copper and raster dma 

al = address of custom chips 
Address of our copper list 
Write whole longword address 
Causes copper to load PC from COPlLC 

MOVE.W #(DMAF_SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(al) 

Now, if the contents of COPlLC are not changed, every time vertical blanking occurs the Copper 
will restart at the same location for each subsequent video screen. This forms a repeatable loop 
which, if the list is correctly formulated, will cause the displayed screen to be stable. 

STOPPING THE COPPER 

No stop instruction is provided for the Copper. To ensure that it will stop and do nothing until 
the screen display ends and the program counter starts again at the top of the instruction list, the 
last instruction should be to WAIT for an event that cannot occur. A typical instruction is to 
WAIT for VP = $FF and HP = $FE. An HP of greater than $E2 is not possible. When the screen 
display ends and vertical blanking starts, the Copper will automatically be pointed to the top of its 
instruction list, and this final WAIT instruction never finishes. 

You can also stop the Copper by disabling its ability to use DMA for retrieving instructions or 
placing data. The register called DMACON controls all of the DMA channels. Bit 7, COPEN, 
enables Copper DMA when set to 1. 

For information about controlling the DMA, see Chapter 7, ''System Control Hardware.'' 
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Advanced Topics 

THE SKIP INSTRUCTION 

The SKIP instruction causes the Copper to skip the next instruction if the video beam counters are 
equal to or greater than the value given in the instruction. 

The contents of the SKIP instruction's words are shown below. They arc identical to the WAIT 
instruction, except that bit 0 of the second instruction word is a 1 to identify this as a SKIP 
instruction. 

FIRST SKIP INSTRUCTION WORD (IR1) 

Bit 0 Always set to I. 

Bits 15 - 8 Vertical position (called VP). 

Bits 7- 1 Horizontal position (called HP). 

Skip if the beam counter is equal to or 
greater than these combined bits 
(bits 15 through 1). 

SECOND SKIP INSTRUCTION WORD (IR2) 

Bit 0 Always set to 1. 

Bit 15 The blitter-finishcd-disable bit. 
(Sec "Using the Copper with the 
Blitter" below.) 

Bits 14- 8 Vertical position compare enable bits (called VE). 

Bits 7- I Horizontal position compare enable bits (called HE). 

The notes about horizontal and vertical beam position found in the discussion of the WAIT 
instruction apply also to the SKIP instruction. 

The following example SKIP instruction skips the instruction following it if VP (vertical beam 
position) is greater than or equal to 100 ($64). 

DC.W $6401,$FF01 ; If VP >= 100, 
skip next instruction (ignore HP) 
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COPPERLOOPSANDBRANCHESANDCOMPAR~ONENABLE 

You can change the value in the location registers at any time and usc this value to construct 
loops in the instruction list. Before the next vertical blanking time, however, the COPlLC 
registers must be repainted to the beginning of the appropriate Copper list. The value in the 
COPlLC location registers will be restored to the Copper's program counter at the start of the 
vertical blanking period. 

Bits 14-1 of instruction word 2 in the WAIT and SKIP instructions specify which bits of the 
horizontal and vertical position are to be used for the beam counter comparison. The position in 
instruction word 1 and the compare enable bits in instruction word 2 are tested against the actual 
beam counters before any further action is taken. A position bit in instruction word 1 is used in 
comparing the positions with the actual beam counters if and only if the corresponding enable bit 
in instruction word 2 is set to 1. If the corresponding enable bit is 0, the comparison is always 
true. For instance, if you care only about the value in the last four bits of the vertical position, 
you set only the last four compare enable bits, bits ( 11-8) in instruction word 2. 

Not all of the bits in the beam counter may be masked. If you look at the description of the IR2 
(second instruction word) you will notice that bit 15 is the blitter-finished-disable bit. This bit is 
not part of the beam counter comparison mask, it has its own meaning in the Copper WAIT 
instruction. Thus, you can not mask the most significant bit in WAIT or SKIP instructions. In 
most situations this limitation does not come into play, however, the following example shows 
how to deal with it. 

A COPPER LOOP EXAMPLE 

This example will instruct the Copper to issue an interrupt every 16 scan lines. It might seem that 
the way to do this would be to use a mask of $OF and then compare the result with $OF. This 
should compare "true" for $IF, $2F, $3F, etc. Since the test is for greater than or equal to, this 
would seem to allow checking for every 16th scan line. However, the highest order bit cannot be 
masked, so it will always appear in the comparisons. When the Copper is waiting for $OF and the 
vertical position is past 128 (hex $80), this test will always be true. In this case, the minimum 
value in the comparison will be $80, which is always greater than $OF, and the interrupt will 
happen on every scan line. Remember, the Copper only checks for greater than or equal to. 

In the following example, the Copper list<> have been made to loop. The COPILC and COP2LC 
values are either set via the CPU or in the Copper list before this section of Copper code. Also, it 
is assumed that you have correctly installed an interrupt server for the Copper interrupt that will 
be generated every 16lines. Note that these are non-interlaced scan lines. 

Here's how it works. Both loops are, for the most part, exactly the same. In each, the Copper 
waits until the vertical position register has $xF (where x is any hex digit) in it, at which point we 
issue a Copper interrupt to the Amiga hardware. To make sure that the Copper does not loop 
back before the vertical position has changed and cause another interrupt on the same scan line, 
wait for the horizontal position to be $E2 after each interrupt. Position $E2 is horizontal position 
113 for the Copper and the last real horizontal position available. This will force the Copper to 

32 Amiga Hardware Reference Manual 



the next line before the next WAIT. The loop is executed by writing to the COPJMPl register. 
This causes the Copper to jump to the address that was initialized in COPlLC. 

The masking problem described above makes this code fail after vertical position 127. A separate 
loop must be executed when vertical position is greater than or equal 127. When the vertical 
position becomes greater than or equal to 127, the the first loop instruction is skipped, dropping 
the Copper into the second loop. The second loop is much the same as the first, except that it 
waits for $xF with the high bit set (binary lxxxllll). This is true for both the vertical and the 
horizontal WAIT instructions. To cause the second loop, write to the COPJMP2 register. The 
list is put into an infinite wait when VP >= 255 so that it will end before the vertical blank. At 
the end of the vertical blanking period COPlLC is written to by the operating system, causing the 
first loop to start up again. 

COPt LC is written at the end of vertical blanking. The COPlLC register is 
written at the end of the vertical blanking period by a graphics interrupt handler which 
is in the vertical blank interrupt server chain. As long as this server is intact, COPlLC 
will be correctly strobed at the end of each vertical blank. 

This is the data for the Copper list. 

It is assumed that COPPERLl is loaded into COPlLC and 
that COPPERL2 is loaded into COP2LC by some other code. 

COPPERLl: 
DC.W 
DC.W 

DC.W 

DC.W 
DC.W 

COPPERL2: 
DC.W 
DC.W 

DC.W 

DC.W 
DC.W 

$0F01,$8FOO 
INTREQ,$8010 

$00E3,$80FE 

$7F01,$7F01 
COPJMPl I $0 

$8F01,$8FOO 
INTREQ,$8010 

$80E3,$80FE 

$FF01,$FE01 
COPJMP2, $0 

Wait for VP=Oxxxllll 
Set the copper interrupt bit ... 

Wait for Horizontal $E2 
This is so the line gets finished before 
we check if we are there (The wait above) 

Skip if VP>=127 
Force a jump to COPlLC 

Wait for VP=lxxxllll 
Set the copper interrupt bit ... 

Wait for Horizontal $E2 
This is so the line gets finished before 
we check if we are there (The wait above) 

Skip if VP>=255 
Force a jump to COP2LC 

Whatever cleanup copper code that might be needed here ... 
Since there are 262 lines in NTSC, and we stopped at 255, there is a 
bit of time available 

DC.W $FFFF,$FFFE End of Copper list 
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-··----------------------------·~·-··~~---

USING THE COPPER IN INTERLACED MODE 

An interlaced bitplane display has twice the nonnal number of vertical lines on the screen. 
Whereas a nonnal NTSC display has 262 lines, an interlaced NTSC display has 524 lines. PAL 
has 312 lines nonnally and 625 in interlaced mode. In interlaced mode, the video beam scans the 
screen twice from top to bottom, displaying, in the case of NTSC, 262 lines at a time. During the 
first scan, the odd-numbered lines are displayed. During the second scan, the even-numbered 
lines are displayed and interlaced with the odd-numbered ones. The scanning circuitry thus treats 
an interlaced display as two display fields, one containing the even-numbered lines and one 
containing the odd-numbered lines. Figure 2-1 shows how an interlaced display is stored in 
memory. 

Odd field 
(time t) 

3 

5 

Even field 
(timet+ 16.6ms) 

2 

4 

6 

Figure 2-1: Interlaced Bitplane in RAM 

Data in Memory 

1 

2 

3 

4 

5 

6 

The system retrieves data for bitplane displays by using pointers to the starting address of the data 
in memory. As you can see, the starting address for the even-numbered fields is one line greater 
than the starting address for the odd-numbered fields. Therefore, the bitplane pointer must 
contain a different value for alternate fields of the interlaced display. 

Simply, the organization of the data in memory matches the apparent organization on the screen 
(i.e., odd and even lines are interlaced together). This is accomplished by having a separate 
Copper instruction list for each field to manage displaying the data. 
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To get the Copper to execute the correct list, you set an interrupt to the 680x0 just after the first 
line of the display. When the interrupt is executed, you change the contents of the COPILC 
location register to point to the second list. Then, during the vertical blanking interval, COPILC 
will be automatically reset to point to the original list. 

For more information about interlaced displays, see Chapter 3, ''Play field Hardware.'' 

USING THE COPPER WITH THE BLITIER 

If the Copper is used to start up a sequence of blitter operations, it must wait for the bUtter­
finished interrupt before starting another blitter operation. Changing blitter registers while the 
blitter is operating causes unpredictable results. For just this purpose, the WAIT instruction 
includes an additional control bit, called BFD (for blitter finished disable). Normally, this bit is a 
1 and only the beam counter comparisons control the WAIT. 

When the BFD bit is a 0, the logic of the Copper WAIT instruction is modified. The Copper will 
WAIT until the beam counter comparison is true and the blitter has finished. The blitter has 
finished when the blitter-finished flag is set. This bit should be unset with caution. It could 
possibly prevent some screen displays or prevent objects from being displayed correctly. 

For more information about using the blitter, see Chapter 6, ''Blitter Hardware.'' 

THE COPPER AND THE 680x0 

On those occasions when the Copper's instructions do not suffice, you can interrupt the 680x0 
and use its instruction set instead. The 680x0 can poll for interrupt flags set in the INTREQ 
register by various devices. To interrupt the 680x0, use the Copper MOVE instruction to store a 
1 into the following bits of INTREQ: 

Bit Number 

15 

4 

Table 2-1: Interrupting the 680x0 

Name 

SET/CLR 

COPEN 

Function 

Set/Clear control bit. Determines if bits 
written with a 1 get set or cleared. 

Coprocessor interrupting 680x0. 

See Chapter 7, ''System Control Hardware,'' for more information about interrupts. 

Coprocessor Hardware 35 



Summary of Copper Instructions 

The table below shows a summary of the bit positions for each of the Copper instructions. See 
Appendix A for a summary of all registers. 

Table 2-2: Copper Instruction Summary 

Move Wait 

Bit# IRl IR2 IRl IR2 

1S X RDlS VP7 BFD 
14 X RD14 VP6 VE6 
13 X RD13 VPS YES 
12 X RD12 VP4 YE4 
11 X ROll VP3 VE3 
10 X RDlO VP2 YE2 
09 X RD09 VPl VEl 
08 DA8 RD08 VPO YEO 
07 DA7 RD07 HP8 HE8 
06 DA6 RD06 HP7 HE7 
OS DAS RDOS HP6 HE6 
04 DA4 RD04 HPS HES 
03 DA3 RD03 HP4 HE4 
02 DA2 RD02 HP3 HE3 
01 DAl RDOl HP2 HE2 
00 0 RDOO 1 0 

X = don't care, but should be a 0 for upward compatibility 
IR 1 = first instruction word 
IR2 = second instruction word 
DA = destination address 
RD = RAM data to be moved to destination register 
VP =vertical beam position bit 
HP =horizontal beam position bit 
VE =enable comparison (mask bit) 
HE= enable comparison (mask bit) 
BFD = blitter-finished disable 

Skip 

IRl IR2 

VP7 BFD 
VP6 VE6 
VPS YES 
YP4 VE4 
VP3 VE3 
VP2 VE2 
VP1 VEl 
VPO YEO 
HP8 HE8 
HP7 HE7 
HP6 HE6 
HPS HES 
HP4 HE4 
HP3 HE3 
HP2 HE2 

1 1 

ECS Copper. For infonnation relating to the Copper in the Enhanced Chip Set 
(ECS), see Appendix C. 
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chapter three 
PLAVFIELD HARDWARE 

The screen display of the Amiga consists of two basic parts-playfields, which are sometimes 
called backgrounds, and sprites, which are easily movable graphics objects. This chapter 
describes how to directly access hardware registers to form playfields. The chapter begins with a 
brief overview ofplayfield features and covers the following major topics: 

o Forming a single "basic" playfield, which is a playfield the same size as the display 
screen. This section includes concepts that are fundamental to forming any playfield. 

o Forming a dual-playfield display in which one playfield is superimposed upon another. 
This procedure differs from that of forming a basic playfield in some details. 

o Forming play fields of various sizes and displaying only part of a larger playfield. 

o Moving playfields by scrolling them vertically and horizontally. 

o Advanced topics to help you use playfields in special situations. 

For information about movable sprite objects, see Chapter 4, ''Sprite Hardware.'' There are also 
movable playfield objects, which are subsections of a playfield. To move portions of a playfield, 
you use a technique called playfield animation, which is described in Chapter 6, "Blitter 
Hardware.'' 

For information relating to the playfield hardware in the Enhanced Chip Set (ECS), such as 
SuperHires Mode, programmable scan rates and synchronization, see Appendix C. 
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About Amiga Playfields 

A playfield fonns the basic foundation of an Amiga display and detennines its fundamental 
characteristics. To fonn a play field, you program the hardware registers of the custom chips with 
the basic parameters of the type of display you want. Fanning a playfield involves selecting the 
number of colors, setting up a color table and bitplanes, and selecting the resolution and display 
mode. 

To understand how Amiga playfields work, it will be helpful to review how the Amiga's video 
displays are produced. 

HOW THE AMIGA'S VIDEO DISPLAY IS PRODUCED 

The Amiga produces its video displays with raster display techniques. The picture you see on the 
screen is made up of a series of horizontal video lines displayed one after the other. Each 
horizontal video line is made up of a series of pixels. You create a graphic display by defining 
one or more bitplanes in memory and filling them with" 1 "sand "O"s. The combination of the 
"1 "sand "O"s will detennine the colors in your display. 

Video Picture 

Each line represents one sweep of an electron beam 
which is "painting" the picture as it goes along. 

The video beam produces each line by sweeping from 
left to right. It produces the full screen by sweeping 
the beam from the top to the bottom, one line at a time. 

Figure 3-1: How the Video Display Picture Is Produced 

The video beam produces about 262 video lines from top to bottom, of which 200 nonnally are 
visible on the screen with an NTSC system. With a PAL system, the beam produces 312lines, of 
which 256 are nonnally visible. Each complete set of lines (262/NTSC or 312/PAL) is called a 
display field. The field time, i.e. the time required for a complete display field to be produced, is 
approximately l/60th of a second for an NTSC system and approximately l/50th of a second for 
PAL. Between display fields, the video beam traverses the lines that are not visible on the screen 
and returns to the top of the screen to produce another display field. 

The display area is defined as a grid of pixels. A pixel is a single picture element, the smallest 
addressable part of a screen display. The drawings below show what a pixel is and how pixels 
fonn displays. 
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·-------------·-·-··-···· 

o...c------------------- ----------------- The picture is formed from many elements. 

~ ·------ ------------------

...c----------11-------------------------------~ 

320 Pixels 

In normal resolution mode, 
320 pixels fill a horizontal line. 

Each element is called a pixel. 

Pixels are used together to build larger 
graphic objects . 

---------·---------------------------------
640 Pixels 

In high resolution mode, 
640 pixels fill a horizontal line. 

Figure 3-2: What Is a Pixel? 

The Amiga offers a choice in both horizontal and vertical resolutions. Horizontal resolution can 
be adjusted to operate in low resolution or high resolution mode. Vertical resolution can be 
adjusted to operate in interlaced or non-interlaced mode. 

o In low resolution mode, the normal playfield has a width of 320 pixels. 

o High resolution mode gives finer horizontal resolution - 640 pixels in the same physical 
display area. 

o In non-interlaced mode, the normal NTSC playfield has a height of 200 video lines. The 
normal PAL screen has a height of 256 video lines. 

o Interlaced mode gives finer vertical resolution - 400 lines in the same physical display area 
in NTSC and 512 for PAL. 
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These modes can be combined, so you can have, for instance, an interlaced, high resolution 
display. 

Note that the dimensions referred to as "normal" in the previous paragraph are nominal 
dimensions and represent the normal values you should expect to use. Actually, you can display 
larger playfields; the maximum dimensions are given in the section called "Bitplanes and 
Playfields of All Sizes.'' Also, the dimensions of the play field in memory are often larger than 
the playfield displayed on the screen. You choose which part of this larger memory picture to 
display by specifying a different size for the display window. 

A playfield taller than the screen can be scrolled, or moved smoothly, up or down. A playfield 
wider than the screen can be scrolled horizontally, from left to right or right to left. Scrolling is 
described in the section called ''Moving (Scrolling) Playfields.'' 

In the Amiga graphics system, you can have up to thirty-two different colors in a single playfield, 
using normal display methods. You can control the color of each individual pixel in the playfield 
display by setting the bit or bits that control each pixel. A display formed in this way is called a 
bitmapped display. 

For instance, in a two-color display, the color of each pixel is determined by whether a single bit 
is on or off. If the bit is 0, the pixel is one user-defined color; if the bit is 1, the pixel is another 
color. For a four-color display, you build two bitplanes in memory. When the playfield is 
displayed, the two bitplanes are overlapped, which means that each pixel is now two bits deep. 
You can combine up to five bitplanes in this way. Displays made up of three, four, or five 
bitplanes allow a choice of eight, sixteen, or thirty-two colors, respectively. 

The color of a pixel is always determined by the binary combination of the bits that define it. 
When the system combines bitplanes for display, the combination of bits formed for each pixel 
corresponds to the number of a color register. This method of coloring pixels is called color 
indirection. The Amiga has thirty-two color registers, each containing bits defining a user­
selected color (from a total of 4,096 possible colors). 

Figure 3-3 shows how the combination of up to five bitplanes forms a code that selects which one 
of the thirty-two registers to use to display the color of a playfield pixel. 
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one pixel ,-' 

bit-plane 5 

bit-plane 4 

bit-plane 3 

0.. ...... ...... .... b"t I 2 
', ',, ',, ',, 1 -pane 

' ' ' ' , 

Bits from planes 
5,4,3, 2,1 

00000 
00001 
00010 
00011 
00100 

___________ ,... (!§) 
11001 
11010 
11011 
11100 
11101 
11110 
11111 

Color isters 

Figure 3-3: How Bitplanes Select a Color 

Values in the highest numbered bitplane have the highest significance in the binary number. As 
shown in Figure 3-4, the value in each pixel in the highest-numbered bitplane forms the leftmost 
digit of the number. The value in the next highest-numbered bitplane forms the next bit, and so 
on. 
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0 
0 

SAMPLE DATA FOR 
4 PIXELS 

1 
0 
0 

1 

0 

0 

0 

0 Data in bitplane 5- most significant 
0 Data in bitplane 4 

Data in bitplane 3 
1 Data in bitplane 2 
0 Data in bitplane 1 - least significant 

L_ Vol"e6-COLOR6 
Value 11- COLOR11 
Value 18- COLOR 18 
Value 28 - COLOR28 

Figure 3-4: Significance of Bitplane Data in Selecting Colors 

You also have the choice of defining two separate playfields, each formed from up to three 
bitplanes. Each of the two playfields uses a separate set of eight different colors. This is called 
dual-playfield mode. 

Forming a Basic Playfield 

To get you started, this section describes how to directly access hardware registers to form a 
single basic playfield that is the same size as the video screen. Here, "same size" means that the 
playfield is the same size as the actual display window. This will leave a small border between 
the playfield and the edge of the video screen. The playfield usually does not extend all the way 
to the edge of the physical display. 

To form a playfield, you need to define these characteristics: 

o Height and width of the playfield and size of the display window (that is, how much of 
the playfield actually appears on the screen). 

o Color of each pixel in the playfield. 

o Horizontal resolution. 
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o Vertical resolution, or interlacing. 

o Data fetch and modulo, which tell the system how much data to put on a horizontal line 
and how to fetch data from memory to the screen. 

In addition, you need to allocate memory to store the playfield, set pointers to tell the system 
where to find the data in memory, and (optionally) write a Copper routine to handle redisplay of 
the playfield. 

HEIGHT AND WIDTH OF THE PLAYFIELD 

To create a playfield that is the same size as the screen, you can use a width of either 320 pixels 
or 640 pixels, depending upon the resolution you choose. The height is either 200 or 400 lines 
for NTSC, 256 or 512 lines for PAL, depending upon whether or not you choose interlaced mode. 

BITPLANES AND COLOR 

You define playfield color by: 

1. Deciding how many colors you need and how you want to color each pixel. 

2. Loading the colors into the color registers. 

3. Allocating memory for the number of bitplanes you need and setting a pointer to each 
bitplane. 

4. Writing instructions to place a value in each bit in the bitplanes to give you the correct 
color. 

Table 3-1 shows how many bitplanes to use for the color selection you need. 

Number of 
Colors 

1 - 2 
3-4 
5-8 

9- 16 
17- 32 

Number of 
Bitplanes 

1 
2 
3 
4 
5 

Table 3-1: Colors in a Single Playfield 
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The Color Table 

The color table contains 32 registers, and you may load a different color into each of the registers. 
Here is a condensed view of the contents of the color table: 

Register Name Contents Meaning 

COLOROO 12 bits User-defined color for the 
background area and borders. 

COLOROl 

COLOR02 

COLOR31 

12 bits 

12 bits 

12 bits 

User-defined color number 1 
(For example, the alternate color 
selection for a two-color playfield). 

User-defined color number 2. 

U ser-defincd color number 31. 

Table 3-2: Portion of the Color Table 

COLOROO is always reserved for the background color. The background color shows in any area 
on the display where there is no other object present and is also displayed outside the defined 
display window, in the border area. 

Genlocks and the background color. If you are using the optional genlock board 
for video input from a camera, VCR, or laser disk, the background color will be 
replaced by the incoming video display. 

Twelve bits of color selection allow you to define, for each of the 32 registers, one of 4,096 
possible colors, as shown in Table 3-3. 

Bits 

Bits 15- 12 Unused 
Bits 11 - 8 Red 
Bits 7 - 4 Green 
Bits 3 - 0 Blue 

Table 3-3: Contents of the Color Registers 
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Table 3-4 shows some sample color register bit assignments and the resulting colors. At the end 
of the chapter is a more extensive list. 

Contents of the 
Color Register 

$FFF 
$6FE 
$DB9 
$000 

Resulting 
Color 

White 
Sky blue 
Tan 
Black 

Table 3-4: Sample Color Register Contents 

Some sample instructions for loading the color registers are shown below: 

LEA CUSTOM,aO 
MOVE.W t$FFF,COLOROO(a0) 
MOVE.W t$6FE,COLOR01(a0) 

Get base address of custom hardware ... 
Load white into color register 0 
Load sky blue into color register 1 

The color registers are write-only. Only by looking at the screen can you find out 
the contents of each color register. As a standard practice, then, for these and certain 
other write-only registers, you may wish to keep a "back-up" RAM copy. As you 
write to the color register itself, you should update this RAM copy. If you do so, you 
will always know the value each register contains. 
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Selecting the Number of Bltplanes 

After deciding how many colors you want and how many bitplanes are required to give you those 
colors, you tell the system how many bitplanes to use. 

You select the number of bitplanes by writing the number into the register BPLCONO (for 
Bitplane Control Register 0) The relevant bits are bits 14, 13, and 12, named BPU2, BPUl, and 
BPUO (for "Bitplanes Used"). Table 3-5 shows the values to write to these bits and how the 
system assigns bitplane numbers. 

Table 3-5: Setting the Number of Bitplanes 

Number of Name(s) of 
Value Bitplanes Bitplanes 

000 None* 
001 1 PLANE 1 
010 2 PLANES 1 and 2 
011 3 PLANES 1-3 
100 4 PLANES 1-4 
101 5 PLANES 1-5 
110 6 PLANES 1 - 6 ** 
Ill Value not used. 

* Shows only a background color; no playfield is visible. 

** Sixth bitplane is used only in dual-playfield mode and in hold-and-modify mode 
(described in the section called ''Advanced Topics''). 

About the BPLCONO register. The bits in the BPLCONO register cannot be set 
independently. To set any one bit, you must reload them all. 

The following example shows how to tell the system to use two low resolution bitplanes. 

MOVE.W #$2200,BPLCONO+CUSTOM ; Write to it 

Because register BPLCONO is used for setting other characteristics of the display and the bits are 
not independently settable, the example above also sets other parameters (all of these parameters 
are described later in the chapter). 

o Hold-and-modify mode is turned off. 
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o Single-playfield mode is set. 

o Composite video color is enabled. (Not applicable in all models.) 

o Genlock audio is disabled. 

o Light pen is disabled. 

o Interlaced mode is disabled. 

o External resynchronization is disabled. (genlock) 

SELECTING HORIZONTAL AND VERTICAL RESOLUTION 

Standard home television screens are best suited for low resolution displays. Low resolution 
mode provides 320 pixels for each horizontal line. High resolution monochrome and RGB 
monitors can produce displays in high resolution mode, which provides 640 pixels for each 
horizontal line. If you define an object in low resolution mode and then display it in high 
resolution mode, the object will be only half as wide. 

To set horizontal resolution mode, you write to bit 15, HIRES, in register BPLCONO: 

High resolution mode- write 1 to bit 15. 
Low resolution mode- write 0 to bit 15. 

Note that in high resolution mode, you can have up to four bitplanes in the playfield and, 
therefore, up to 16 colors. 

Interlaced mode allows twice as much data to be displayed in the same vertical area as in non­
interlaced mode. This is accomplished by doubling the number of lines appearing on the video 
screen. The following table shows the number of lines required to fill a normal, non-overscan 
screen. 

Non-interlaced 
Interlaced 

NTSC 
200 
400 

PAL 
256 
512 

Table 3-6: Lines in a Normal Playfield 

In interlaced mode, the scanning circuitry vertically offsets the start of every other field by half a 
scan line. 
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Field 1 =6===========\= Line 1 Line2 

Field 2 

' ' 

' 

Video display 

(400 lines) 

(Same physical space as used 

by a 200-line, 
noninterlaced display.) 

Figure 3-5: Interlacing 

Even though interlaced mode requires a modest amount of extra work in setting registers (as you 
will see later on in this section), it provides fine tuning that is needed for certain graphics effects. 
Consider the diagonal line in Figure 3-6 as it appears in non-interlaced and interlaced modes. 
Interlacing eliminates much of the jaggedness or '' staircasing'' in the edges of the line. 

non-interlaced interlaced 

Figure 3-6: Effect of Interlaced Mode on Edges of Objects 

When you use the special blitter DMA channel to draw lines or polygons onto an interlaced 
playfield, the playfield is treated as one display, rather than as odd and even fields. Therefore, 
you still get the smoother edges provided by interlacing. 
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To set interlaced or non-interlaced mode, you write to bit 2, LACE, in register BPLCONO: 

Interlaced mode- write 1 to bit 2. 
Non-interlaced mode- write 0 to bit 2. 

As explained above in "Setting the Number of Bitplanes," bits in BPLCONO are not 
independently settable. 

The following example shows how to specify high resolution and interlaced modes. 

MOVE.W #$A204,BPLCONO+CUSTOM ; Write to it 

The example above also sets the following parameters that are also controlled through register 
BPLCONO: 

0 High resolution mode is enabled. 

0 Two bitplanes are used. 

0 Hold-and-modify mode is disabled. 

0 Single-playfield mode is enabled. 

D Composite video color is enabled. 

0 Genlock audio is disabled. 

0 Light pen is disabled. 

0 Interlaced mode is enabled. 

0 External resynchronization is disabled. 

The amount of memory you need to allocate for each bitplane depends upon the resolution modes 
you have selected, because high resolution or interlaced playfields contain more data and require 
larger bitplanes. 
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ALLOCATING MEMORY FOR BITPLANES 

After you set the number of bitplanes and specify resolution modes, you are ready to allocate 
memory. A bitplane consists of an end-to-end sequence of words at consecutive memory 
locations. When operating under the Amiga operating system, use a system call such as 
AllocMem() to remove a block of memory from the free list and make it available to the program. 

A specialized allocation function named AllocRaster() in the graphics.library is recommended for 
all bitplane allocations. AllocRaster() will pad the allocation to properly align scan lines for the 
hardware. 

If the machine has been taken over, simply reserve an area of memory for the bitplanes. Next, set 
the bitplane pointer registers (BPLxVTH/BPLxPTL) to point to the starting memory address of 
each bitplane you are using. The starting address is the memory word that contains the bits of the 
upper left-hand comer of the bitplanc. 

Tables 3-7 and 3-8 show how much memory is needed for basic playfield modes under NTSC and 
PAL, respectively. You may need to balance your color and resolution requirements against the 
amount of available memory you have. 

Table 1-7: Playfield Memory Requirements, NTSC 

Number of Bytes 
Picture Size Modes per Bitplane 

320 X 200 Low resolution, 8,000 
non-interlaced 

320 X 400 Low resolution, 16,000 
interlaced 

640 X 200 High resolution, 16,000 
non-interlaced 

640 X 400 High resolution, 32,000 
interlaced 

Keep in mind that the number of bytes you allocate for a bitplane must be even. 
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Table 3-8: Playfield Memory Requirements, PAL 

Number of Bytes 
Picture Size Modes per Bitplane 

320 X 256 Low resolution, 8,192 
non-interlaced 

320 X 512 Low resolution, 16,384 
interlaced 

640 X 256 High resolution, 16,384 
non-interlaced 

640 X 512 High resolution, 32,768 
interlaced 

NTSC Example of Bitplane Size 

For example, using a normal, NTSC, low resolution, non-interlaced display with 320 pixels 

across each display line and a total of 200 display lines, each line of the bitplane requires 40 bytes 
(320 bits divided by 8 bits per byte = 40). Multiply the 200 lines times 40 bytes per line to get 
8,000 bytes per bitplane as given above. 

A low resolution, non-interlaced playfield made up of two bitplanes requires 16,000 bytes of 
memory area. The memory for each bitplane must be continuous, so you need to have two 
8,000-byte blocks of available memory. Figure 3-7 shows an 8,000-byte memory area organized 
as 200 lines of 40 bytes each, providing 1 bit for each pixel position in the display plane. 
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lllllllll--------------------------------------------------------·111111111 
Mem. location N Mem. location N+38 

111111111--------------------------------------------------------·lllllllll 
Mem. location N+40 Mem. location N + 78 

lllllllll---------------------------!----------------------------·111111111 
Mem. location N+7960 Mem. location N+7998 

Figure 3-7: Memory Organization for a Basic Bitplane 

Access to bitplanes in memory is provided by two address registers, BPLxPTH and BPLxPTL, 
for each bitplane (12 registers in all). The "x" position in the name holds the bitplanc number; 
for example BPLlPTH and BPL1PTL hold the starting address of PLANE 1. Pairs of registers 
with names ending in PTH and PTL contain 19-bit addresses. 68000 programmers may treat 
these as one 32-bit address and write to them as one long word. You write to the high order 
word, which is the register whose name ends in "PTH." 

The example below shows how to set the bitplane pointers. Assuming two bitplancs, one at 
$21000 and the other at $25000, the processor sets BPLl PT to $21000 and BPL2PT to $25000. 
Note that this is usually the Copper's task. 

Since the bitplane pointer registers are mapped as full 680x0 long-word 
data, we can store the addresses with a 32-bit move ... 

LEA CUSTOM,aO 
MOVE.L $21000,BPL1PTH(a0) 
MOVE.L $25000,BPL2PTH(a0) 

Get base address of custom hardware ... 
Write bitplane 1 pointer 
Write bitplane 2 pointer 

Note that the memory requirements given here are for the playfield only. You may need to 
allocate additional memory for other parts of the display - sprites, audio, animation - and for 
your application programs. Memory allocation for other parts of the display is discussed in the 
chapters describing those topics. 
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CODING THE BITPLANES FOR CORRECT COLORING 

After you have specified the number of bitplanes and set the bitplane pointers, you can actually 
write the color register codes into the bitplanes. 

A One- or Two-Color Playfleld 

For a one-color playfield, all you need do is write "O"s in all the bits of the single bitplane as 
shown in the example below. This code fills a low resolution bitplane with the background color 
(COLOROO) by writing all "O"s into its memory area. The bitplane starts at $21000 and is 8,000 
bytes long. 

LOOP: 

LEA 
MOVE.W 
MOVE.L 
DBRA 

$21000,a0 
f2000,d0 
to, (aO) + 
dO, LOOP 

Point at bitplane 
Write 2000 longwords = 8000 bytes 
Write out a zero 
Decrement counter and loop until done ... 

For a two-color playfield, you define a bitplane that has "O"s where you want the background 
color and "1 "s where you want the color in register 1. The following example code is identical 
to the last example, except the bitplane is filled with $FFOOFFOO instead of all O's. This will 
produce two colors. 

LEA $21000,a0 
MOVE.W t2000,d0 

LOOP: MOVE.L #$FFOOFFOO, (aO)+ 
DBRA dO, LOOP 

Point at bitplane 
Write 2000 longwords = 8000 bytes 
Write out $FFOOFFOO 

; Decrement counter and loop until done ... 
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A Playfield of Three or More Colors 

For three or more colors, you need more than one bitplane. The task here is to define each 
bitplane in such a way that when they are combined for display, each pixel contains the correct 
combination of bits. This is a little more complicated than a playfield of one bitplane. The 
following examples show a four-color playfield, but the basic idea and procedures are the same 
for playfields containing up to 32 colors. 

Figure 3-8 shows two bitplanes forming a four-color play field: 

___ .--q Color1 -------,,, 

' ', 
Image in 
bitplane 2 

0 0 0~0 0 
0 0 0 0 0 0 

0 0 
0 0 

-- ' ' 
' '•, '•, ""_ults In a display 

0 0 0 []1· 0 0 0 -. _____ similar to this: 

00011000 
00011000 
1 1 1 0 0 1 1 1 
1 1 1 0 0 1 1 1 

0 0 0 0 0 0 
111001 
1 1 1 0 0 1 

~ ~ ~~~ 
o o oli_2jo 

0 0 
1 1 
1 1 
0 0 
0 0 
0 0 

~ ~ ~~~ ~ ~ 
o o o li_2jo o o 

._.._,Color 00 

(background) 

' ' ------a 
Color 3·--------

Figure 3-8: Combining Bitplanes 

You place the correct" 1 "sand "O"s in both bitplanes to give each pixel in the picture above the 
correct color. 

In a single playfield you can combine up to five bitplanes in this way. Using five bitplanes allows 
a choice of 32 different colors for any single pixel. The playfield color selection charts at the end 
of this chapter summarize the bit combinations for playfields made from four and five bitplanes. 
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DEFINING THE SIZE OF THE DISPLAY WINDOW 

After you have completely defined the playfield, you need to define the size of the display 
window, which is the actual size of the on-screen display. Adjustment of display window size 
affects the entire display area, including the border and the sprites, not just the playfield. You 
cannot display objects outside of the defined display window. Also, the size of the border around 
the playfield depends on the size of the display window. 

The basic playfield described in this section is the same size as the screen display area and also 
the same size as the display window. This is not always the case; often the display window is 
smaller than the actual "big picture'' of the play field as defined in memory (the raster). 

A display window that is smaller than the playfield allows you to display some segment of a large 
playfield or scroll the playfield through the window. You can also define display windows larger 
than the basic playfield. These larger playficlds and different-sized display windows are 
described in the section below called ''Bitplanes and Display Windows of All Sizes.'' 

You define the size of the display window by specifying the vertical and horizontal positions at 
which the window starts and stops and writing these positions to the display window registers. 
The resolution of vertical start and stop is one scan line. The resolution of horizontal start and 
stop is one low resolution pixel. Each position on the screen defines the horizontal and vertical 
position of some pixel, and this position is specified by the x andy coordinates of the pixel. This 
document shows the x and y coordinates in this form: (x,y). 

Although the coordinates begin at (0,0) in the upper left-hand comer of the screen, the first 
horizontal position normally used is $81 and the first vertical position is $2C. The horizontal and 
vertical starting positions are the same both for NTSC and for PAL. 

The hardware allows you to specify a starting position before ($81,$2C), but part of the display 
may not be visible. The difference between the absolute starting position of (0,0) and the normal 
starting position of ($81 ,$2C) is the result of the way many video display monitors are designed. 

To overcome the distortion that can occur at the extreme edges of the screen, the scanning beam 
sweeps over a larger area than the front face of the screen can display. A starting position of 
($81 ,$2C) centers a normal size display, leaving a border of eight low resolution pixels around 
the display window. Figure 3-9 shows the relationship between the normal display window, the 
visible screen area, and the area actually covered by the scanning beam. 
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'----display window-­
starting and stopping positions 

--~----- visible screen boundaries 

Figure 3-9: Positioning the On-screen Display 

Setting the Display Window Starting Position 

A horizontal starting position of approximately $81 and a vertical starting position of 
approximately $2C centers the display on most standard television screens. If you select high 
resolution mode (640 pixels horizontally) or interlaced mode (400 lines NTSC, 512 PAL) the 
starting position does not change. The starting position is always interpreted in low resolution, 
non-interlaced mode. In other words, you select a starting position that represents the correct 
coordinates in low resolution, non-interlaced mode. 

The register DIWSTRT (for ''Display Window Start'') controls the display window starting 
position. This register contains both the horizontal and vertical components of the display 
window starting positions, known respectively as HST ART and VST ART. The following 
example sets DIWSTRT for a basic play field. You write $2C for VST ART and $81 for 
HSTART. 

LEA CUSTOM,aO 
MOVE.W #$2C8l,DIWSTRT(a0) 
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Setting the Display Window Stopping Position 

You also need to set the display window stopping position, which is the lower right-hand corner 
of the display window. If you select high resolution or interlaced mode, the stopping position 
does not change. Like the starting position, it is interpreted in low resolution, non-interlaced 
mode. 

The register DIWSTOP (for Display Window Stop) controls the display window stopping 
position. This register contains both the horizontal and vertical components of the display 
window stopping positions, known respectively as HSTOP and VSTOP. The instructions below 
show how to set HSTOP and VSTOP for the basic playfield, assuming a starting position of 
($81,$2C). Note that the HSTOP value you write is the actual value minus 256 ($100). The 
HSTOP position is restricted to the right-hand side of the screen. The normal HSTOP value is 
($1Cl) but is written as ($Cl). HSTOP is the same both forNTSC and for PAL. 

The VSTOP position is restricted to the lower half of the screen. This is accomplished in the 
hardware by forcing the MSB of the stop position to be the complement of the next MSB. This 
allows for a VSTOP position greater than 256 ($100) using only 8 bits. Normally, the VSTOP is 
set to ($F4) for NTSC, ($2C) for PAL. 

The normal NTSC DIWSTRT is ($2C81). 
The normal NTSC DIWSTOP is ($F4Cl). 

The normal PAL DIWSTRT is ($2C81). 
The normal PAL DIWSTOP is ($2CC1). 

The following example sets DIWSTOP for a basic playfield to $F4 for the vertical position and 
$C1 for the horizontal position. 

LEA CUSTOM,aO 
MOVE.W #$F4Cl,DIWSTOP(a0) 

Get base address of custom hardware ... 
Display window stop register ... 

Table 3-9: DIWSTRT and DIWSTOP Summary 

Nominal Values Possible Values 
NTSC PAL MIN MAX 

DIWSTRT: 
VSTART $2C $2C $00 $FF 
HSTART $81 $81 $00 $FF 

DIWSTOP: 
VSTOP $F4 $2C (=$12C) $80 $7F (=$17F) 
HSTOP $Cl $C1 $00 (=$100) $FF (=$IFF) 

The minimum and maximum values for display windows have been extended in the enhanced 
version of the Amiga's custom chip set (ECS). See "Appendix C, Enhanced Chip Set" for more 
information about the display window registers. 
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TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA 

After defining the size and position of the display window, you need to give the system the on­
screen location for data fetched from memory. To do this, you describe the horizontal positions 
where each line starts and stops and write these positions to the data-fetch registers. The data­
fetch registers have a four-pixel resolution (unlike the display window registers, which have a 
one-pixel resolution). Each position specified is four pixels from the last one. Pixel 0 is position 
0; pixel 4 is position 1, and so on. 

The data-fetch start and display window starting positions interact with each other. It is 
recommended that data-fetch start values be restricted to a programming resolution of 16 pixels (8 
clocks in low resolution mode, 4 clocks in high resolution mode). The hardware requires some 
time after the first data fetch before it can actually display the data. As a result, there is a 
difference between the value of window start and data-fetch start of 4.5 color clocks. 

The normal low resolution DDFSTRT is ($0038). 
The normal high resolution DDFSTRT is ($003C). 

Recall that the hardware resolution of display window start and stop is twice the hardware 
resolution of data fetch: 

$~1 - 8.5 = $38 

$~1 - 4.5 = $3C 

The relationship between data-fetch start and stop is 

DDFSTRT= DDFSTOP-(8*(word count-l))for low resolution 

DDFSTRT = DDFSTOP-( 4* (word count- 2)) for high resolution 

The normal low resolution DDFSTOP is ($0000). The normal high resolution DDFSTOP is 
($0004). 

The following example sets data-fetch start to $0038 and data-fetch stop to $0000 for a basic 
playfield. 

LEA CUSTOM,aO 
MOVE.W #$0038,DDFSTRT(a0) 
MOVE.W #$00DO,DDFSTOP(a0) 

Point to base hardware address 
Write to DDFSTRT 
Write to DDFSTOP 

You also need to tell the system exactly which bytes in memory belong on each horizontal line of 
the display. To do this, you specify the modulo value. Modulo refers to the number of bytes in 
memory between the last word on one horizontal line and the beginning of the first word on the 
next line. Thus, the modulo enables the system to convert bitplane data stored in linear form 
(each data byte at a sequential I y increasing memory address) into rectangular form (one "line" of 
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sequential data followed by another line). For the basic playfield, where the playfield in memory 
is the same size as the display window, the modulo is zero because the memory area contains 
exactly the same number of bytes as you want to display on the screen. Figures 3-10 and 3-11 
show the basic bitplane layout in memory and how to make sure the correct data is retrieved. 

The bitplane address pointers (BPLxPTH and BPLxPTL) are used by the system to fetch the data 
to the screen. These pointers are dynamic; once the data fetch begins, the pointers are 
continuously incremented to point to the next word to be fetched (data is fetched two bytes at a 
time). When the end-of-line condition is reached (defined by the data-fetch register, DDFSTOP) 
the modulo is added to the bitplane pointers, adjusting the pointer to the first word to be fetched 
for the next horizontal line. 

Data for line 1: 

Location: START 

leftmost 
display word 

START+2 START+4 START+38 

next word next word last display 
word 

+ Screen data fetch stops (DDFSTOP) for , 
each horizontal line after the last word : 
on the line has been fetched. -------------------- ~ 

Figure 3-10: Data Fetched for the First Line When Modulo = 0 

After the first line is fetched, the bitplane pointers BPLxPTH and BPLxPTL contain the value 
START +40. The modulo (in this case, 0) is added to the current value of the pointer, so when the 
pointer begins the data fetch for the next line, it fetches the data you want on that line. The data 
for the next line begins at memory location START +40. 

Data for line 2: 

Location: START+40 

leftmost 
display word 

START+42 

next word 

START+44 

next word 

START+78 

last display 
word 

Figure 3-11: Data Fetched for the Second Line When Modulo = 0 

Note that the pointers always contain an even number, because data is fetched from the display a 
word at a time. 
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There are two modulo registers-BPL lMOD for the odd-numbered bitplanes and BPL2MOD for 
the even-numbered bitplanes. This allows for differing modulos for each playfield in dual­
playfield mode. For normal applications, both BPL IMOD and BPL2MOD will be the same. 

The following example sets the modulo to 0 for a low resolution playfield with one bitplane. The 
bitplanc is odd-numbered. 

MOVE.W #O,BPLlMOD+CUSTOM ; Set modulo to 0 

Data Fetch In High resolution Mode 

When you are using high resolution mode to display the basic playfield, you need to fetch 80 
bytes for each line, instead of 40. 

Modulo In Interlaced Mode 

For interlaced mode, you must redefine the modulo, because interlaced mode uses two separate 
scannings of the video screen for a single display of the playfield. During the first scanning, the 
odd-numbered lines are fetched to the screen; and during the second scanning, the even-numbered 
lines are fetched. 

The bitplanes for a full-screen-sized, interlaced display arc 400 NTSC (512 PAL), rather than 200 
NTSC (256 PAL), lines long. Assuming that the playfield in memory is the normal 320 pixels 
wide, data for the interlaced picture begins at the following locations (these are all byte 
addresses): 

Line 1 START 
Line 2 START+40 
Line 3 START +80 
Line 4 START+120 

and so on. Therefore, you use a modulo of 40 to skip the lines in the other field. For odd fields, 
the bitplane pointers begin at START. For even fields, the bitplane pointers begin at START +40. 

You can use the Copper to handle resetting of the bitplane pointers for interlaced displays. 

DISPLAYING AND REDISPLAYING THE PLAYFIELD 

You start playfield display by making certain that the bitplane pointers are set and bitplane DMA 
is turned on. You tum on bitplane DMA by writing a I to bit BPLEN in the DMACON (for 
DMA control) register. See Chapter 7, "System Control Hardware," for instructions on setting 
this register. 

62 Amiga Hardware Reference Manual 



Each time the playfield is redisplayed, you have to reset the bitplane pointers. Resetting is 
necessary because the pointers have been incremented to point to each successive word in 
memory and must be repointed to the first word for the next display. You write Copper 
instructions to handle the redisplay or perfonn this operation as part of a vertical blanking task. 

ENABLING THE COLOR DISPLAY 

The stock AlOOO has a color composite output and requires bit 9 set in BPLCONO to create a 
color composite display signal. Without the addition of specialized hardware, the A500, A2000 
and A3000 cannot generate color composite output. 

NOTE: The color burst enable does not affect the RGB video signal. RGB video is 
correctly generated regardless of the output of the composite video signal. 

BASIC PLA YFIELD SUMMARY 

The steps for defining a basic playfield are summarized below: 

1. Define Playfield Characteristics 

a. Specify color for each pixel: 

o Load desired colors in color table registers. 

o Define color of each pixel in tenns of the binary value that points at the desired 
color register. 

o Build bitplanes and set bitplane registers: 

Bits 12-14 in BPLCONO- number ofbitplanes (BPU2- BPUO). 
BPLxPTH - pointer to bitplane starting position in memory 

(written as a long word). 

b. Specify resolution: 

o Low resolution: 

320 pixels in each horizontal line. 
Clear bit 15 in register BPLCONO (HIRES). 

o High resolution: 

640 pixels in each horizontal line. 
Set bit 15 in register BPLCONO (HIRES). 
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c. Specify interlaced or non-interlaced mode: 

o Interlaced mode: 

400 vertical lines for NTSC, 512 for PAL. 
Set bit 2 in register BPLCONO (LACE). 

o Non-interlaced mode: 

200 vertical lines for NTSC, 256 for PAL. 
Clear bit 2 in BPLCONO (LACE). 

2. Allocate Memory. To calculate data-bytes in the total bitplanes, use the following formula: 

Bytes per line * lines in playfield * number of bitplanes 

3. Define Size of Display Window. 

o Write start position of display window in DIWSTRT: 

Horizontal position in bits 0 through 7 (low order bits). 
Vertical position in bits 8 through 15 (high order bits). 

o Write stop position of display window in DIWSTOP: 

Horizontal position in bits 0 through 7. 
Vertical position in bits 8 through 15. 

4. Define Data Fetch. Set registers DDFSTRT and DDFSTOP: 

o For DDFSTRT, use the horizontal position as shown in "Setting the Display Window 
Starting Position.'' 

o For DDFSTOP, use the horizontal position as shown in ''Setting the Display Window 
Stopping Position.'' 

5. Define Modulo. Set registers BPLIMOD and BPL2MOD. Set modulo to 0 for non­
interlaced, 40 for interlaced. 

6. Write Copper Instructions To Handle Redisplay. 

7. Enable Color Display. For the AlOOO: set bit 9 in BPLCONO to enable the color display on 
a composite video monitor. RGB video is not affected. Only the A 1000 has color composite 
video output, other Amiga models cannot enable this feature using standard hardware. 
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EXAMPLES OF FORMING BASIC PLA YFIELDS 

The following examples show how to set the registers and write the coprocessor lists for two 
different playfields. 

The first example sets up a 320 x 200 playfield with one bitplane, which is located at $21000. 
Also, a Copper list is set up at $20000. 

This example relies on the include file ''hw _examples.i' ', which is found in Appendix I. 

LEA CUSTOM,aO aO points at custom chips 
MOVE.W #$1200,BPLCONO(a0) One bitplane, enable composite color 
MOVE.W #0, BPLCONl (aO) Set horizontal scroll value to 0 
MOVE.W #0, BPLlMOD (aO) Set modulo to 0 for all odd bitplanes 
MOVE.W #$0038,DDFSTRT(a0) Set data-fetch start to $38 
MOVE.W #$00DO,DDFSTOP(a0) Set data-fetch stop to $DO 
MOVE.W #$2C81,DIWSTRT(a0) Set DIWSTRT to $2C81 
MOVE.W #$F4Cl,DIWSTOP(a0) Set DIWSTOP to $F4Cl 
MOVE.W #$0FOO,COLOROO(a0) Set background color to red 
MOVE.W #$0FFO,COLOROl(a0) Set color register 1 to yellow 

Fill bitplane with $FFOOFFOO to produce stripes 

MOVE.L #$21000,al 
MOVE.L #$FFOOFFOO,d0 
MOVE.W #2000,dl 

LOOP: MOVE.L dO, (al) + 
DBRA dl,LOOP 

Point at beginning of bitplane 
We will write $FFOOFFOO long words 
2000 long words = 8000 bytes 

Write a long word 
Decrement counter and loop until done ... 

Set up Copper list at $20000 

CLOOP: 

MOVE.L #$20000,al 
LEA COPPERL(pc) ,a2 
MOVE.L (a2), (al)+ 
CMPI.L #$FFFFFFFE, (a2)+ 
BNE CLOOP 

Point at Copper list destination 
Point a2 at Copper list data 
Move a word 

; Check for last longword of Copper list 
Loop until entire copper list is moved 

Point Copper at Copper list 

MOVE.L #$20000,COP1LCH(a0) ; Write to Copper location register 
MOVE.W COPJMPl(aO),dO ; Force copper to $20000 

Start DMA 

MOVE.W #(DMAF_SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(aO) 
Enable bitplane and Copper DMA 

BRA ; Go do next task 

This is the data for the Copper list. 

COPPERL: 
DC.W 
DC.W 
DC.W 

BPLlPTH,$0002 
BPLlPTL,$1000 
$FFFF,$FFFE 

Move $0002 to address $0EO 
Move $1000 to address $0E2 
End of Copper list 

(BPLlPTH) 
(BPLlPTL) 
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The second example sets up a high resolution, interlaced display with one bitplane. This example 
also relies on the include file "hw _examples.i ",which is found in Appendix I. 

LEA CUSTOM,aO 
MOVE.W t$9204,BPLCONO(a0) 
MOVE.W tO, BPLCONl (aO) 
MOVE.W t80,BPL1MOD (aO) 
MOVE.W t80,BPL2MOD (aO) 
MOVE.W t$003C,DDFSTRT(a0) 
MOVE.W t$00D4,DDFSTOP(a0) 
MOVE.W t$2C8l,DIWSTRT(a0) 
MOVE.W t$F4Cl,DIWSTOP(a0) 

Set up color registers 

MOVE.W t$OOOF,COLOROO(a0) 
MOVE.W t$OFFF,COLOR0l(a0) 

Set up bitplane at $20000 

LEA $20000,al 
LEA CHARLIST(pc),a2 
MOVE.W HOO,dl 
MOVE.W t20,d0 

Ll: 
MOVE.L (a2), (al)+ 
DBRA dO,Ll 

MOVE.W t20,d0 
ADDQ.L t4,a2 
CMPI. L t $FFFFFFFF, (a 2) 
BNE L2 
LEA CHARLIST(pc),a2 

L2: DBRA dl,Ll 

Address of custom chips 
Hires, one bitplane, interlaced 
Horizontal scroll value = 0 
Modulo = 80 for odd bitplanes 
Ditto for even bitplanes 
Set data-fetch start for Hires 
Set data-fetch stop 
Set display window start 
Set display window stop 

Background color = blue 
Foreground color white 

Point al at bitplane 
a2 points at character data 
Write 400 lines of data 
Write 20 long words per line 

Write a long word 
Decrement counter and loop until full ... 

Reset long word counter 
Point at next word in char list 
End of char list? 

Yes, reset a2 to beginning of list 
Decrement line counter and loop until done ... 

Start DMA 

MOVE.W t(DMAF_SETCLR!DMAF_RASTER!DMAF_MASTER),DMACON(aO) 
; Enable bitplane DMA only, no Copper 

Because this example has no Copper list, it sits in a loop waiting 
for the vertical blanking interval. When it comes, you check the LOF 
( long frame ) bit in VPOSR. If LOF = 0, this is a short frame and the 
bitplane pointers are set to point to $20050. If LOF = 1, then this is 
a long frame and the bitplane pointers are set to point to $20000. This 
keeps the long and short frames in the right relationship to each other. 

VLOOP: 

VL1: 

MOVE.W 
AND.W 
BEQ 
MOVE.W 
MOVE.W 
BPL 
MOVE.L 
BRA 

INTREQR(aO),dO 
t$0020, dO 
VLOOP 
t$0020,INTREQ(a0) 
VPOSR(aO),dO 
VLl 
t$20000,BPL1PTH(a0) 
VLOOP 

MOVE.L t$20050,8PL1PTH(a0) 
BRA VLOOP 

Character list 
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Read interrupt requests 
Mask off all but vertical blank 
Loop until vertical blank comes 
Reset vertical interrupt 
Read LOF bit into dO bit 15 
If LOF = 0, jump 
LOF = 1, point to $20000 
Back to top 

LOF = 0, point to $20050 
Back to top 



CHARLIST: 
DC.L $18FC3DF0,$3C6666D8,$3C66COCC,$667CCOCC 
DC.L $7E66COCC,$C36666D8,$C3FC3DF0,$00000000 
DC.L $FFFFFFFF 

Forming a Dual-playfield Display 

For more flexibility in designing your background display, you can specify two playfields instead 
of one. In dual-playfield mode, one playfield is displayed directly in front of the other. For 
example, a computer game display might have some action going on in one playfield in the 
background, while the other playfield is showing a control panel in the foreground. You can then 
change either the foreground or the background without having to redesign the entire display. 
You can also move the two playfields independently. 

A dual-playfield display is similar to a singlc-playfield display, differing only in these aspects: 

o Each playfield in a dual display is formed from one, two or three bitplanes. 

o The colors in each playfield (up to seven plus transparent) are taken from different sets 
of color registers. 

o You must set a bit to activate dual-playfield mode. 

Figure 3-12 shows a dual-playfield display. 

In Figure 3-12, one of the colors in each playfield is "transparent" (color 0 in playfield 1 and 
color 8 in playfield 2). You can usc transparency to allow selected features of the background 
playfield to show through. 

In dual-playfield mode, each playfield is formed from up to three bitplanes. Color registers 0 
through 7 are assigned to playfield 1, depending upon how many bitplanes you use. Color 
registers 8 through 15 are assigned to playfield 2. 
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Playfield 1 
(1, 2 or 3 bitplanes) 

75 

0000 

FUEL 

123 1 

MISSILES 

1 317 

HEADING 

52 

OIL 

Both playfields appear on 
screen, combined to form the 

' complete display. 

'-._ 

1 75 

SPEED 

317 1 

HEADING 

oooo 1 1 123 1 52 

FUEL MISSILES OIL 

Playfield 2 
(1, 2 or 3 bitplanes) 

' , 

, , ' 
, , 

0 

-
' ' 
' 

,~--- The background 
,/ color shows 

through where 
there are 
transparent 
sections of both 
playfields. 

Figure 3-12: A Dual-playfield Display 

BITPLANE ASSIGNMENT IN DUAL-PLAYFIELD MODE 

The three odd-numbered bitplanes (1, 3, and 5) are grouped together by the hardware and may be 
used in playfield 1. Likewise, the three even-numbered bitplanes (2, 4, and 6) are grouped 
together and may be used in playfield 2. The bitplanes arc assigned alternately to each playficld, 
as shown in Figure 3-13. 

About dual-playfield bitplanes. In high resolution mode, you can have up to two 
bitplanes in each playfield- bitplancs 1 and 3 in playfield 1 and bitplanes 2 and 4 in 
playfield 2. 
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Number of 
bitplanes 

"turned on." 

0 

2 

3 

4 

5 

6 

Playfield 1 * Playfield 2 * 

none none 

D 

• Note: Either play field may be p/aoed "in front of" or "behind" the other using the "swap:bil." 

Figure 3-13: How Bitplancs Arc Assigned to Dual Playfields 
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COLOR REGISTERS IN DUAL-PLA YFIELD MODE 

When you are using dual playfields, the hardware interprets color numbers for playfield 1 from 
the bit combinations of bitplanes 1, 3, and 5. Bits from PLANE 5 have the highest significance 
and form the most significant digit of the color register number. Bits from PLANE 0 have the 
lowest significance. These bit combinations select the first eight color registers from the color 
palette as shown in Table 3-10. 

PLAYFIELD 1 

Bit Color 
Combination Selected 

000 Transparent mode 
001 COLOR1 
010 COLOR2 
011 COLOR3 
100 COLOR4 
101 COLORS 
110 COLOR6 
111 COLOR? 

Table 3-10: Playfield 1 Color Registers- Low resolution Mode 

The hardware interprets color numbers for playfield 2 from the bit combinations of bitplanes 2, 4, 
and 6. Bits from PLANE 6 have the highest significance. Bits from PLANE 2 have the lowest 
significance. These bit combinations select the color registers from the second eight colors in the 
color table as shown in Table 3-11. 

PLAYFIELD 2 

Bit Color 
Combination Selected 

000 Transparent mode 
001 COLOR9 
010 COLOR10 
011 COLORll 
100 COLOR12 
101 COLOR13 
110 COLOR14 
111 COLOR15 

Table 3-11: Play field 2 Color Registers- Low resolution Mode 
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Combination 000 selects transparent mode, to show the color of whatever object (the other 
playfield, a sprite, or the background color) may be "behind" the playfield. 

Table 3-12 shows the color registers for high resolution, dual-playfield mode. 

PLAYFIELD 1 

Bit Color 
Combination Selected 

00 Transparent mode 
01 COLOR! 
10 COLOR2 
11 COLOR3 

PLAYFIELD2 

Bit Color 
Combination Selected 

00 Transparent mode 
01 COLOR9 
10 COLOR10 
11 COLORll 

Table 3-12: Playfields 1 and 2 Color Registers- High resolution Mode 

DUAL-PLAYFIELD PRIORITY AND CONTROL 

Either playfield 1 or 2 may have priority; that is, either one may be displayed in front of the other. 
Playfield 1 normally has priority. The bit known as PF2PRI (bit 6) in register BPLCON2 is used 
to control priority. When PF2PRI = 1, playfield 2 has priority over playfield 1. When PF2PRI = 
0, playfield 1 has priority. 

You can also control the relative priority of playfields and sprites. Chapter 7, "System Control 
Hardware,'' shows you how to control the priority of these objects. 

You can control the two playfields separately as follows: 

o They can have different-sized representations in memory, and different portions of each 
one can be selected for display. 

o They can be scrolled separately. 
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An important warning. You must take special care when scrolling one playfield and 
holding the other stationary. When you arc scrolling low resolution playfields, you 
must fetch one word more than the width of the playfield you are trying to scroll (two 
words more in high resolution mode) in order to provide some data to display when 
the actual scrolling takes place. Only one data-fetch start register and one data-fetch 
stop register arc available, and these are shared by both playfields. If you want to 
scroll one playficld and hold the other, you must adjust the data-fetch start and data­
fetch stop to handle the playficld being scrolled. Then, you must adjust the modulo 
and the bitplane pointers of the playfield that is not being scrolled to maintain its 
position on the display. In low resolution mode, you adjust the pointers by -2 and the 
modulo by -2. In high resolution mode, you adjust the pointers by -4 and the modulo 
by -4. 

ACTIVATING DUAL-PLAYFIELD MODE 

Writing a 1 to bit 10 (called DBLPF) of the bitplanc control register BPLCONO selects dual­
playfield mode. Selecting dual-playfield mode changes both the way the hardware groups the 
bitplanes for color interpretation-all odd-numbered bitplanes are grouped together and all even­
numbered bitplanes are grouped together, and the way hardware can move the bitplanes on the 
screen. 

DUAL PLAYFIELD SUMMARY 

The steps for defining dual playfields are almost the same as those for defining the basic play field. 
Only in the following steps does the dual-playfield creation process differ from that used for the 
basic playfield: 

o Loading colors into the registers. Keep in mind that color registers 0-7 are used by 
playfield 1 and registers 8 through 15 are used by playfield 2 (if there are three bitplanes 
in each play field). 

o Building bitplanes. Recall that playfield 1 is formed from PLANES 1, 3, and 5 and 
playfield 2 from PLANES 2, 4, and 6. 

o Setting the modulo registers. Write the modulo to both BPLlMOD and BPL2MOD as 
you will be using both odd- and even-numbered bitplanes. 

These steps arc added: 

o Defining priority. If you want playficld 2 to have priority, set bit 6 (PF2PRI) in 
BPLCON2 to 1. 

o Activating dual-playfield mode. Set bit 10 (DBLPF) in BPLCONO to 1. 

72 Amiga Hardware Reference Manual 



Bitplanes and Display Windows of All Sizes 

You have seen how to form single and dual playfields in which the playfield in memory is the 
same size as the display window. This section shows you how to define and use a playfield 
whose big picture in memory is larger than the display window, how to define display windows 
that are larger or smaller than the normal playfield size, and how to move the display window in 
the big picture. 

WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW 

If you design a memory picture larger than the display window, you must choose which part of it 
to display. Displaying a portion of a larger playfield differs in the following ways from 
displaying the basic playfields described up to now: 

o If the big picture in memory is larger than the display window, you must respecify the 
modulos. The modulo must be some value other than 0. 

o You must allocate more memory for the larger memory picture. 

Specifying the Modulo 

For a memory picture wider than the display window, you need to respecify the modulo so that 
the correct data words arc fetched for each line of the display. As an example, assume the display 
window is the standard 320 pixels wide, so 40 bytes are to be displayed on each line. The big 
picture in memory, however, is exactly twice as wide as the display window, or 80 bytes wide. 
Also, assume that you wish to display the left half of the big picture. Figure 3-14 shows the 
relationship between the big picture and the picture to be displayed. 

START START+78 

' ___________________________________ t ________________________________ _ 

Width of the bit-pla~e defined in RAM 

' . 
4(---------------------------------~ 

Width of defined screen ' 
on which bit-plane data is 

to appear 

Figure 3-14: Memory Picture Larger than the Display 
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Because 40 bytes are to be fetched for each line, the data fetch for line 1 is as shown in Figure 3-
15. 

Data for line 1 : 

Location: START 

leftmost 
display word 

START+2 START+4 START+38 

next word next word last display 
word 
~ Screen data fetch stops (DDFSTOP) for , 

each horizontal line aher the last word : 
on the line has been fetched -------------------- J 

Figure 3-15: Data Fetch for the First Line When Modulo = 40 

At this point, BPLxPTH and BPLx.PTL contain the value START +40. The modulo, which is 40, 
is added to the current value of the pointer so that when it begins the data fetch for the next line, it 
fetches the data that you intend for that line. The data fetch for line 2 is shown in Figure 3-16. 

Data for line 2: 

Location: START+80 

leftmost 
display word 

START+82 

next word 

START+84 

next word 

Figure 3-16: Data Fetch for the Second Line When Modulo= 40 
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To display the right half of the big picture, you set up a vertical blanking routine to start the 
bitplane pointers at location START +40 rather than START with the modulo remaining at 40. 
The data layout is shown in Figures 3-17 and 3-18. 

Data for line 1: 

Location: START+40 

leftmost 
display word 

START+42 

next word 

START+44 

next word 

START+78 

last display 
word 

Figure 3-17: Data Layout for First Line-Right Half of Big Picture 

Now, the bitplane pointers contain the value START+80. The modulo (40) is added to the 
pointers so that when they begin the data fetch for the second line, the correct data is fetched. 

Data for line 2: 

Location: START+120 

leftmost 
display word 

START+122 

next word 

START+124 

next word 

START+158 

last display 
word 

Figure 3-18: Data Layout for Second Line-Right Half of Big Picture 

Remember, in high resolution mode, you need to fetch twice as many bytes as in low resolution 
mode. For a normal-sized display, you fetch 80 bytes for each horizontal line instead of 40. 
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Specifying the Data Fetch 

The data-fetch registers specify the beginning and end positions for data placement on each 
horizontal line of the display. You specify data fetch in the same way as shown in the section 
called ''Forming a Basic Play field.'' 

Memory Allocation 

For larger memory pictures, you need to allocate more memory. Here is a formula for calculating 
memory requirements in general: 

bytes per line * lines in playfield * #of bitplanes 

The nuber of bytes must be even. Thus, if the wide play field described in this section is formed 
from two bitplanes, it requires: 

80 * 200 * 2 = 32,000 bytes of memory 

Recall that this is the memory requirement for the playfield alone. You need more memory for 
any sprites, animation, audio, or application programs you are using. 

The amount of Chip memory is one of the basic constraints on the size of playfields. For 
instance, a playfield 2000 by 2000 pixels with five bitplanes would exceed even the two 
megabytes of Chip memory possible on an Amiga 3000. Another constraint on playfield size is 
the bit plane modulos which limit the width (but not the height) of a playfield to 262,144 pixels. 

As a practical matter, the blitter size registers also limit the size of playfields (unless the 680x0 
CPU is used for drawing operations). With the original chip set the largest area the blitter can 
draw in is 1008 by 1024. With the Enhanced Chip Set (ECS), the largest area the blitter can draw 
in is increased to 16368 by 16384 pixels. For more information on ECS and blitter limits refer to 
"Appendix C, Enhanced Chip Set". 

Selecting the Display Window Starting Position 

The display window starting position is the horizontal and vertical coordinates of the upper left­
hand comer of the display window. One register, DIWSTRT, holds both the horizontal and 
vertical coordinates, known as HST ART and VST ART. The eight bits allocated to HST ART are 
assigned to the first 256 positions, counting from the leftmost possible position. Thus, you can 
start the display window at any pixel position within this range. 
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0 ,_ _________ 25
1-.
5 ________ 5...,11($1FF) 

' ' ' ' ' ' ' ' rc. -- ·---------------------------- --.: 
HSTARTol 

DISPLAY WINDOW occurs 
in this region 

Figure 3-19: Display Window Horizontal Starting Position 

The eight bits allocated to VST ART are assigned to the first 256 positions counting down from 
the top of the display. 

~----------~~~------...,0 

VSTARTol 
DISPLAY WINDOW 

occurs in 
this region 

........................................... !.......................... . 255 
262·· ······•··•··•·••·•••·•• (NTSC) 

L..-------------------'383 ($17F) 

Figure 3-20: Display Window Vertical Starting Position 

Recall that you select the values for the starting position as if the display were in low resolution, 
non-interlaced mode. Keep in mind, though, that for interlaced mode the display window should 
be an even number of lines in height to allow for equal-sized odd and even fields. 

To set the display window starting position, write the value for HST ART into bits 0 through 7 
and the value for VSTART into bits 8 through 15 of DIWSTRT. 
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Selecting the Stopping Position 

The stopping position for the display window is the horizontal and vertical coordinates of the 
lower right-hand comer of the display window. One register, DIWSTOP, contains both 
coordinates, known as HSTOP and VSTOP. 

See the notes in the ''Forming a Basic Playfield'' section for instructions on setting these 
registers. 

0 255 
511 ($1 FF) 

.-----------------~----------------~ 
0 
0 
0 

0 
0 

:. ------------------- _____________ ,.. 
HSTOPof 

DISPLAY WINDOW occurs 
in this region 

Figure 3-21: Display Window Horizontal Stopping Position 

Select a value that represents the correct position in low resolution, non-interlaced mode. 
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.------------------,0 

·····································"i.································ . 128 

262 •• ••••••••••••••••••••••• (NTSC) 

VSTOPof 
DISPLAY WINDOW 
occurs in 
this region 

'------------l----------'383($17F) 

Figure 3-22: Display Window Vertical Stopping Position 

To set the display window stopping position, write HSTOP into bits 0 through 7 and VSTOP into 
bits 8 through 15 of DIWSTOP. 

MAXIMUM DISPLAY WINDOW SIZE 

The maximum size of a playfield display is determined by the maximum number of lines and the 
maximum number of columns. Vertically, the restrictions are simple. No data can be displayed 
in the vertical blanking area. The following table shows the allowable vertical display area. 

NTSC PAL 

Vertical Blank Start 0 0 
Vertical Blank Stop $15 (21) $1D (29) 

NTSC NTSC PAL PAL 
Normal Interlaced Normal Interlaced 

Displayable lines 
of screen video 241 483 283 567 

=525-(21 *2) =625-(29*2) 

Table 3-13: Maximum Allowable Vertical Screen Video 
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Horiwntally, the situation is similar. Strictly speaking, the hardware sets a rightmost limit to 
OOFSTOP of ($08) and a leftmost limit to OOFSTRT of ($18). This gives a maximum of 25 
words fetched in low resolution mode. In high resolution mode the maximum here is 49 words, 
because the rightmost limit remains ($08) and only one word is fetched at this limit. However, 
horizontal blanking actually limits the displayable video to 368 low resolution pixels (23 words). 
These numbers are the same both for NTSC and for PAL. In addition, it should be noted that 
using a data-fetch start earlier than ($38) will disable some sprites. 

Table 3-14: Maximum Allowable Horiwntal Screen Video 

Lores Hires 

OOFSTRT (standard) $0038 $003C 
OOFSTOP (standard) $0000 $0004 

OOFSTRT (hw limits) $0018 $0018 
OOFSTOP (hw limits) $0008 $0008 

max words fetched 25 49 
max display pixels 368 (low res) 

The limits on the display window starting and stopping positions described in this section apply 
to the Arniga's original custom chip set. In the Enhanced Chip Set (ECS), the limits for playfield 
display windows have been changed. For more infonnation on ECS and playfield display 
windows, refer to "Appendix C, Enhanced Chip Set" 

Moving (Scrolling) Playfields 

If you want a background display that moves, you can design a playfield larger than the display 
window and scroll it. If you are using dual playfields, you can scroll them separately. 

In vertical scrolling, the playfield appears to move smoothly up or down on the screen. All you 
need do for vertical scrolling is progressively increase or decrease the starting address for the 
bitplane pointers by the size of a horizontal line in the playfield. This has the effect of showing a 
lower or higher part of the picture each field time. 

In horizontal scrolling the playfield appears to move from right-to-left or left-to-right on the 
screen. Horiwntal scrolling works differently from vertical scrolling - you must arrange to 
fetch one more word of data for each display line and delay the display of this data. 

For either type of scrolling, resetting of pointers or data-fetch registers can be handled by the 
Copper during the vertical blanking inteiVal. 
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----------------

VERTICAL SCROLLING 

You can scroll a playfield upward or downward in the window. Each time you display the 
playfield, the bitplane pointers start at a progressively higher or lower place in the big picture in 
memory. As the value of the pointer increases, more of the lower part of the picture is shown and 
the picture appears to scroll upward. As the value of the pointer decreases, more of the upper part 
is shown and the picture scrolls downward. On an NTSC system, with a display that has 200 
vertical lines, each step can be as little as l/200th of the screen. In interlaced mode each step 
could be l/400th of the screen if clever manipulation of the pointers is used, but it is 
recommended that scrolling be done two lines at a time to maintain the odd/even field 
relationship. Using a PAL system with 256 lines on the display, the step can be l/256th of a 
screen, or l/512th of a screen in interlace. 

~-------, 
I 

I G? Bitplane pointer-----

start address -- ~pallllllllllllllllllllllllllllllllllllllllaia 

0 

-
I 

L _______ _j 

• As the value of the bitplane pointer 
increases, more of the lower part of the 
picture is shown. 

As it decreases, more of the 
y upper part is shown. 

Figure 3-23: Vertical Scrolling 

To set up a playfield for vertical scrolling, you need to form bitplanes tall enough to allow for the 
amount of scrolling you want, write software to calculate the bitplane pointers for the scrolling 
you want, and allow for the Copper to use the resultant pointers. 

Assume you wish to scroll a playfield upward one line at a time. To accomplish this, before each 
field is displayed, the bitplane pointers have to increase by enough to ensure that the pointers 
begin one line lower each time. For a normal-sized, low resolution display in which the modulo 
is 0, the pointers would be incremented by 40 bytes each time. 
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HORIZONTAL SCROLLING 

You can scroll playfields horizontally from left to right or right to left on the screen. You control 
the speed of scrolling by specifying the amount of delay in pixels. Delay means that an extra 
word of data is fetched but not immediately displayed. The extra word is placed just to the left of 
the window's leftmost edge and before nonnal data fetch. As the display shifts to the right, the 
bits in this extra word appear on-screen at the left-hand side of the window as bits on the right­
hand side disappear off-screen. For each pixel of delay, the on-screen data shifts one pixel to the 
right each display field. The greater the delay, the greater the speed of scrolling. You can have 
up to 15 pixels of delay. In high resolution mode, scrolling is in increments of 2 pixels. Figure 
3-24 shows how the delay and extra data fetch combine to cause the scrolling effect. 

To set up a playfield for horizontal scrolling, you need to 

o Define bitplanes wide enough to allow for the scrolling you need. 

o Set the data-fetch registers to correctly place each horizontal line, including the extra 
word, on the screen. 

o Set the delay bits. 

o Set the modulo so that the bitplane pointers begin at the correct word for each line. 

o Write Copper instructions to handle the changes during the vertical blanking interval. 

Specifying Data Fetch In Horizontal Scrolling 

The nonnal data-fetch start for non-scrolled displays is ($38). If horizontal scrolling is desired, 
then the data fetch must start one word sooner (DDFSTRT = $0030). Incidentally, this will 
disable sprite 7. DDFSTOP remains unchanged. Remember that the settings of the data-fetch 
registers affect both playfields. 

Specifying the Modulo In Horizontal Scrolling 

As always, the modulo is two counts less than the difference between the address of the next word 
you want to fetch and the address of the last word that was fetched. As an example for horizontal 
scrolling, let us assume a 40-byte display in an 80-byte ''big picture.'' Because horizontal 
scrolling requires a data fetch of two extra bytes, the data for each line will be 42 bytes long. 
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0-15 bits of 
delay will cause 
the system to 
show the 
early-fetched 
word. _____________ ---~I 

r-- Display Window 
' start 

As delay is added, 
---------,.... onscreen display 

shifts this direction. 

·-----background color 

1-c------~a~;:;;- ~--:;J -------
~--------1_.._---

This data is 
displayed if 

scroll= 0. 

16 bits -------------•1 
(1 word) 

I 

I 

J-c------- Display Window ----- JJoo-1 

320 bits (20 words) 

:g - ,. 
I I 
L-.._ ________ ft--

Display position in these example 
is shown with O-bits of delay. 

Figure 3-24: Horizontal Scrolling 

--- This data is 
displayed if 
scroll= 15. 

NOTE: Fetching an extra word for scrolling will disable some sprites. 
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START 
START +38 

I 

DISPLAYWINDOW ------•• 
width 

MEMORY PICTURE 
width 

START +78 

Figure 3-25: Memory Picture Larger Than the Display Window 

Data for line 1 : 

Location: START 

leftmost 
display word 

START+2 

next word 

START+4 

next word 

Figure 3-26: Data for Line 1 - Horizontal Scrolling 

START+40 

last display 
word 

At this point, the bitplane pointers contain the value START +42. Adding the modulo of 38 gives 
the correct starting point for the next line. 

Data for line 2: 

Location: START+80 

leftmost 
display word 

START+82 

next word 

START+84 

next word 

Figure 3-27: Data for Line 2-Horizontal Scrolling 

In the BPLxMOD registers you set the modulo for each bitplane used. 
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Specifying Amount of Delay 

The amount of delay in horizontal scrolling is controlled by bits 7-0 in BPLCONl. You set the 
delay separately for each playfield; bits 3-0 for playfield 1 (bitplanes 1, 3, and 5) and bits 7-4 for 
playfield 2 (bitplanes 2, 4, and 6). 

Warning: Always set all six bits, even if you have only one playfield. Set 3-0 and 
7-4 to the same value if you are using only one playfield. 

The following example sets the horizontal scroll delay to 7 for both playfields. 

MOVE.W #$77,BPLCONl+CUSTOM 

SCROLLING PLA VFIELD SUMMARY 

The steps for defining a scrolled playficld are the same as those for defining the basic playfield, 
except for the following steps: 

o Defining the data fetch. Fetch one extra word per horizontal line and start it 16 pixels 
before the normal (unscrolled) data-fetch start. 

o Defining the modulo. The modulo is two counts less than when there is no scrolling. 

These steps are added: 

o For vertical scrolling, reset the bitplane pointers for the amount of the scrolling 
increment. Reset BPLxPTH and BPLxPTL during the vertical blanking interval. 

o For horizontal scrolling, specify the delay. Set bit'i 7-0 in BPLCONl for 0 to 15 bits 
of delay. 
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Advanced Topics 

This section describes features that are used less often or are optional. 

INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS 

Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows how 
playficlds can be given different video display priorities relative to the sprites and how playfields 
can collide with (overlap) the sprites or each other. 

HOLD-AND-MODIFY MODE 

This is a special mode that allows you to produce up to 4,096 colors on the screen at the same 
time. Normally, as each value formed by the combination of bitplanes is selected, the data 
contained in the selected color register is loaded into the color output circuit for the pixel being 
written on the screen. Therefore, each pixel is colored by the contents of the selected color 
register. 

In hold-and-modify mode, however, the value in the color output circuitry is held, and one of the 
three components of the color (red, green, or blue) is modified by bits coming from certain 
preselected bitplanes. After modification, the pixel is written to the screen. 

The hold-and-modify mode allows very fine gradients of color or shading to be produced on the 
screen. For example, you might draw a set of 16 vases, each a different color, using all 16 colors 
in the color palette. Then, for each vase, you usc hold-and-modify to very finely shade or 
highlight or add a completely different color to each of the vases. Note that a particular hold­
and-modify pixel can only change one of the three color values at a time. Thus, the effect has a 
limited control. 

In hold and modify mode, you use all six bitplanes. Planes 5 and 6 arc used to modify the way 
bits from planes I -4 arc treated, as follows: 

o If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal color 
selection procedure is followed. Thus, the bit combinations from planes 4 - 1, in that 
order of significance, are used to choose one of 16 color registers (registers 0- 15). 

If only five bitplancs are used, the data from the sixth plane is automatically supplied 
with the value as 0. 

o If the 6-5 bit combination is 01, the color of the pixel immediately to the left of this 
pixel is duplicated and then modified. The bit combinations from planes 4- 1 are used to 
replace the four "blue" bits in the corresponding color register. 
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o If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this 
pixel is duplicated and then modified. The bit combinations from planes 4- 1 are used to 
replace the four "red" bits. 

o If the 6-5 bit combination is 11, the color of the pixel immediately to the left of this 
pixel is duplicated and then modified. The bit combinations from planes 4 - 1 are used to 
replace the four ''green' ' bits. 

Using hold-and-modify mode, it is possible to get by with defining only one color register, which 
is COLORO, the color of the background. You treat the entire screen as a modification of that 
original color, according to the scheme above. 

Bit 11 of register BPLCONO selects hold-and-modify mode. The following bits in BPLCONO 
must be set for hold-and-modify mode to be active: 

o Bit HOMOD, bit 11, is 1. 

o Bit DBLPF, bit 10, is 0 (single-playfield mode specified). 

o Bit HIRES, bit 15, is 0 (low resolution mode specified). 

o Bits BPU2, BPU1, and BPUO- bits 14, 13, and 12, are 101 or 110 (five or six bitplanes 
active). 

The following example code generates a six-bitplane display with hold-and-modify mode turned 
on. All 32 color registers are loaded with black to prove that the colors are being generated by 
hold-and-modify. The equates are the usual and are not repeated here. 

First, set up the control registers. 

LEA CUSTOM,aO 
MOVE.W *$6AOO,BPLCONO(a0) 
MOVE.W *O,BPLCONl(aO) 
MOVE.W *O,BPLlMOD(aO) 
MOVE.W *O,BPL2MOD(a0) 
MOVE.W *$0038,DDFSTRT(a0) 
MOVE.W *$00DO,DDFSTOP(a0) 
MOVE.W #$2C8l,DIWSTRT(a0) 
MOVE.W #$F4Cl,DIWSTOP(a0) 

Point aO at custom chips 
Six bitplanes, hold-and-modify mode 
Horizontal scroll = 0 
Modulo for odd bitplanes = 0 
Ditto for even bitplanes 
Set data-fetch start 
Set data-fetch stop 
Set display window start 
Set display window stop 

Set all color registers = black to prove that hold-and-modify mode is working. 

MOVE.W 
LEA 

CREGLOOP: 
MOVE.W 
DBRA 

*32,d0 
CUSTOM+COLOROO,al 

#$0000, (al) + 
dO,CREGLOOP 

Initialize counter 
Point al at first color register 

Write black to a color register 
Decrement counter and loop til done ... 

Fill six bitplanes with an easily recognizable pattern. 

NOTE: This is just for example use. Normally these bitplanes would 
need to be allocated from the system MEMF_CHIP memory pool. 
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MOVE.W t2000,d0 2000 longwords per bitplane 
MOVE.L #$21000,al Point a1 at bitplane 1 
MOVE.L #$23000,a2 Point a2 at bit plane 2 
MOVE.L t$25000,a3 Point a3 at bit plane 3 
MOVE.L #$27000,a4 Point a4 at bit plane 4 
MOVE.L t$29000,a5 Point aS at bit plane 5 
MOVE.L #$2BOOO,a6 Point a6 at bit plane 6 

FPLLOOP: 
MOVE.L #$55555555, (al) + Fill bit plane 1 with $55555555 
MOVE.L t$33333333, (a2) + Fill bit plane 2 with $33333333 
MOVE.L # SOFOFOFOF, (a3) + Fill bitplane 3 with $0FOFOFOF 
MOVE.L #$00FFOOFF, (a4)+ Fill bit plane 4 with $00FFOOFF 
MOVE.L #$CF3CF3CF, (aS)+ Fill bit plane 5 with $CF3CF3CF 
MOVE.L t$3CF3CF3C, (a6) + Fill bit plane 6 with $3CF3CF3C 
DBRA dO,FPLLOOP Decrement counter and loop til done ... 

Set up a Copper list at $20000. 

NOTE: As with the bitplanes, the copper list location should be allocated 

CLOOP: 

from the system MEMF_CHIP memory pool. 

MOVE.L #$20000,a1 
LEA COPPERL(pc) ,a2 
MOVE.L (a2), (a1) + 
CMPI.L t$FFFFFFFE, (a2)+ 
BNE CLOOP 

Point a1 at Copper list destination 
Point a2 at Copper list image 
Move a long word ... 
Check for end of Copper list 
Loop until entire Copper list moved 

Point Copper at Copper list. 

MOVE.L #$20000,COP1LCH(a0) 
MOVE.W COPJMP1(a0) ,dO 

Load Copper jump register 
Force load into Copper P.C. 

Start DMA. 

MOVE.W #$8380,DMACON(a0) ; Enable bitplane and Copper DMA 

BRA ..... next stuff to do ..... 

Copper list for six bitplanes. Bitplane 1 is at $21000; 2 is at $23000; 
3 is at $25000; 4 is at $27000; 5 is at $29000; 6 is at $28000. 

NOTE: These bitplane addresses are for example purposes only. 

COPPERL: 

See note above. 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

BPL1PTH,$0002 
BPLlPTL,$1000 
BPL2PTH,$0002 
BPL2PTL,$3000 
BPL3PTH,$0002 
BPL3PTL,$5000 
BPL4PTH,$0002 
BPL4PTL,$7000 
BPLSPTH,$0002 
BPLSPTL,$9000 
BPL6PTH,$0002 
BPL6PTL,$BOOO 
$FFFF,$FFFE 
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Bitplane 1 pointer $21000 

Bitplane 2 pointer $23000 

Bitplane 3 pointer $25000 

Bitplane 4 pointer $27000 

Bitplane 5 pointer $29000 

Bitplane 6 pointer $28000 

Wait for the impossible, i.e., quit 



FORMING A DISPLAY WITH SEVERAL DIFFERENT PLAYFIELDS 

The graphics library provides the ability to split the screen into several "ViewPorts", each with 
its own colors and resolutions. See the Amiga ROM Kernel Manual: Libraries for more 
information. 

USING AN EXTERNAL VIDEO SOURCE 

An optional board that provides genlock is available for the Amiga. Genlock allows you to bring 
in your graphics display from an external video source (such as a VCR, camera, or laser disk 
player). When you use genlock, the background color is replaced by the display from this 
external video source. For more information, see the instructions furnished with the optional 
board. 

Summary of Playfield Registers 

This section summarizes the registers used in this chapter and the meaning of their bit settings. 
The color registers are summarized in the next section. See Appendix A for a summary of all 
registers. 

BPLCONO - Bitplane Control 

(Warning: Bits in this register cannot be independently set.) 

Bit 0 - unused 

Bit 1 - ERSY (external synchronization enable) 
1 = External synchronization enabled (allows genlock synchronization to occur) 
0 = External synchronization disabled 

Bit 2 -LACE (interlace enable) 
I = interlaced mode enabled 
0 =non-interlaced mode enabled 

Bit 3- LPEN (light pen enable) 

Bits 4-7 not used (make 0) 

Bit 8- GAUD (genlock audio enable) 
1 = Genlock audio enabled 
0 = Genlock audio disabled 
(This bit also appears on Denise pin ZD during blanking period) 
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Bit 9- COLOR_ON (color enable) 
1 =composite video color-burst enabled 
0 = composite video color-burst disabled 

Bit 10- DBLPF (double-playficld enable) 
1 = dual playfields enabled 
0 = single playfield enabled 

Bit 11 - HOMOD (hold-and-modify enable) 
1 = hold-and-modify enabled 
0 =hold-and-modify disabled; extra-half brite (EHB) enabled 

if DBLPF=O and BPUx=6 

Bits 14, 13, 12- BPU2, BPU1, BPUO 
Number of bitplanes used. 

000 = only a background color 
001 = 1 bitplane, PLANE 1 
010 = 2 bitplanes, PLANES 1 and 2 
011 = 3 bitplanes, PLANES 1 - 3 
100 = 4 bitplanes, PLANES 1 - 4 
101 = 5 bitplanes, PLANES 1 - 5 
110 = 6 bitplanes, PLANES 1 - 6 
111 not used 

Bit 15- HIRES (high resolution enable) 
1 = high resolution mode 
0 = low resolution mode 

BPLCONl - Bitplane Control 

Bits 3-0- PF1H(3-0) Playficld 1 delay 

Bits 7-4- PF2H(3-0) Playfield 2 delay 

Bits 15-8 not used 

BPLCON2 - Bitplane Control 

Bit 6 - PF2PRI 
1 = Playfield 2 has priority 
0 = Playfield 1 has priority 

Bits 0-5 Playfield sprite priority 

Bits 7-15 not used 
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DDFSTRT - Data-fetch Start 
(Beginning position for data fetch) 

Bits 15-8 - not used 

Bits 7-2- pixel position H8-H3 (bit H3 only respected in Hires Mode.) 

Bits 1-0- not used 

DDFSTOP- Data-fetch Stop 
(Ending position for data fetch) 

Bits 15-8 - not used 

Bits 7-2- pixel position H8-H3 (bit H3 only respected in Hires Mode.) 

Bits 1-0- not used 

BPLxPTH - Bitplane Pointer 
(Bitplane pointer high word, where xis the bitplane number) 

BPLxPTL - Bitplane Pointer 
(Bitplane pointer low word, where xis the bitplane number) 

DIWSTRT - Display Window Start 
(Starting vertical and horizontal coordinates) 

Bits 15-8- VSTART (V7-VO) 

Bits 7-0- HSTART (H7-HO) 

DIWSTOP - Display Window Stop 
(Ending vertical and horizontal coordinates) 

Bits 15-8- VSTOP (V7-VO) 

Bits 7-0- HSTOP (H7-HO) 

BPLlMOD - Bitplane Modulo 
(Odd-numbered bitplanes, playfield 1) 

BPL2MOD - Bitplane Modulo 
(Even-numbered bitplanes, playfield 2) 
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Summary of Color Selection Registers 

This section contains summaries of the playfield color selection registers including color register 
contents, example colors, and the differences in color selection in high resolution and low 
resolution modes. The Amiga has 32 color registers and each one has 4 bits of red, 4 bits of 
green, and 4 bits of blue information. Table 3-15 shows the bit assignments of each color 
register. All color registers are write-only. 

Color Register Bits 

15- 12 
11- 8 
7- 4 
3- 0 

Contents 

Unused (set these to 0) 
Red data 

Green data 
Blue data 

Table 3-15: Color Register Contents 

SOME SAMPLE COLOR REGISTER CONTENTS 

Table 3-16 shows a variety of colors and the hexadecimal values to load into the color registers 
for these colors. 

Value Color Value Color 

$FFF White $1FB Light aqua 
$DOO Brick red $6FE Sky blue 
$FOO Red $6CE Light blue 
$F80 Red-orange $00F Blue 
$F90 Orange $61F Bright blue 
$FBO Golden orange $06D Dark blue 
$FDO Cadmium yellow $91F Purple 
$FFO Lemon yellow $C1F Violet 
$BFO Lime green $F1F Magenta 
$8EO Light green $FAC Pink 
$0FO Green $DB9 Tan 
$2CO Dark green $C80 Brown 
$0B1 Forest green $A87 Dark brown 
$0BB Blue green $CCC Light grey 
$0DB Aqua $999 Medium grey 

$000 Black 

Table 3-16: Some Rc6rister Values and Resulting Colors 
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COLOR SELECTION IN LOW RESOLUTION MODE 

Table 3-17 shows playfield color selection in low resolution mode. If the bit combinations from 
the playfields are as shown, the color is taken from the color register number indicated. 

Single Playfield Dual Playfields 
Normal Mode Hold-and-modify Mode 

(Bitplanes 5,4,3,2,1) (Bitplanes 4,3,2,1) 

00000 ()()()() 

00001 0001 
00010 0010 
00011 0011 
00100 0100 
00101 0101 
00110 0100 
00111 0111 

01000 1000 
01001 1001 
01010 1010 
01011 1011 
01100 1100 
01101 1101 
01110 1110 
01111 1111 
10000 I 
10001 
10010 
10011 I 
10100 NOT 
10101 USED 
10110 IN 
10111 THIS 
11000 MODE 
11001 
11010 
11011 
11100 
11101 
11110 
11111 

*Color register 0 always defines the background color. 
**Selects "transparent" mode instead of selecting color register 8. 

Playfield 1 
(Bitplanes 5.3.1) 

000 
001 
010 
011 
100 
101 
110 
111 

Playfield 2 
(Bitplanes 6,4,2) 

000** 
001 
010 
011 
100 
101 
110 
111 

I 
I 
I 
I 

NOT 
USED 

IN 
THIS 

MODE 
I 
I 

Table 3-17: Low resolution Color Selection 

Color 
Register 
Number 

0* 
1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Playfield Hardware 93 



COLOR SELECTION IN HIGH RESOLUTION MODE 

Table 3-18 shows playfield color selection in high resolution mode. If the bit combinations from 
the playfields are as shown, the color is taken from the color register number indicated. 

Single Dual Color 
Playfield Playfields Register 

(Bitplanes 4,3,2,1) Number 

Playfield 1 
(Bitplanes 3.1) 

0000 00* 0 ** 
0001 01 1 
0010 10 2 
0011 11 3 

0100 I 4 
0101 NOT USED 5 
0110 IN THIS MODE 6 
0111 I 7 

Playfield 2 
(Bitplanes 4,2) 

1000 00* 8 
1001 01 9 
1010 10 10 
1011 11 11 

1100 I 12 
1101 NOT USED 13 
1110 IN THIS MODE 14 
1111 I 15 

* Selects "transparent" mode. 

**Color register 0 always defines the background color. 

Table 3-18: High resolution Color Selection 
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COLOR SELECTION IN HOLD-AND-MODIFY MODE 

In hold-and-modify mode, the color register contents are changed as shown in Table 3-19. This 
mode is in effect only if bit 10 of BPLCONO = 1. 

Bitplane 6 Bitplane 5 Result 

0 0 Normal operation (use color register itself) 
0 1 Hold green and red B = Bitplane 4-1 contents 
1 0 Hold green and blue R = Bitplane 4-1 contents 
1 1 Hold blue and red G = Bitplane 4-1 contents 

Table 1-19: Color Selection in Hold-and-modify Mode 

COLOR SELECTION IN EXTRA HALF BRITE (EHB) MODE 

The Arniga has a special mode called Extra Half Brite or EHB mode which doubles the maximum 
number of colors that can be displayed at one time. To use EHB mode, you must set up six 
bitplanes. Then set BPU=6 (bits 12, 13 and 14) in the BPLCONO register. Set HAM=O (bit 11) 
and DPF=O (bit 10) in BPLCONO. In this mode, the information in bitplane 6 controls an 
intensity reduction in the other 5 bitplanes. The color register output selected by the first five 
bitplanes is shifted to half-intensity by the sixth bitplane. This allows 64 colors to be displayed at 
one time instead of the usual 32. 

ECS playfield registers. For information concerning the playfield hardware and the 
Enhanced Chip Set, see Appendix C. 
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chapter four 
SPRITE HARDWARE 

This chapter discusses sprites which are special graphic objects that are easy to define and easy to 
animate. The following sprite topics are covered: 

o Defining the size, shape, color, and screen position of sprites. 

o Displaying and moving sprites. 

o Combining sprites for more complex images, additional width, or additional colors. 

o Reusing a sprite DMA channel multiple times within a display field to create more than 
eight sprites on the screen at one time. 

What are Sprites? 

Sprites are graphic objects that are created and moved independently of the playfield display and 
independently of each other. Together with playfields, sprites form the graphics display of the 
Amiga. You can create more complex animation effects by using the blitter, which is described 
in the chapter called "Blitter Hardware." Sprites are produced on-screen by eight special­
purpose sprite DMA channels. Basic sprites are 16 pixels wide and any number of lines high. 
You can choose from three colors for a sprite's pixels, and a pixel may also be transparent, 
showing any object behind the sprite. For larger or more complex objects, or for more color 
choices, you can combine sprites. 

Sprite DMA channels can be reused several times within the same display field. Thus, you are 
not limited to having only eight sprites on the screen at the same time. 

Sprite Hardware 97 



Forming a Sprite 

To fonn a sprite, you must first define it and then create a fonnal data structure in memory. You 
define a sprite by specifying its characteristics: 

o On-screen width of up to 16 pixels. 

o Unlimited height. 

o Any shape. 

o A combination of three colors, plus transparent. 

o Any position on the screen. 

SCREEN POSITION 

A sprite's screen position is defined as a set of X,Y coordinates. Position (O,Q), where X = 0 and 
Y = 0, is the upper left-hand comer of the display. You define a sprite's location by specifying 
the coordinates of its upper left-hand pixel. Sprite position is always defined as though the 
display modes were low resolution and non-interlaced. The X,Y coordinate system and definition 
of a sprite's position are graphically represented in Figure 4-1. Notice that because of display 
overscan, position (0,0) (that is, X = 0, Y = 0) is not nonnally in a viewable region of the 
screen. 

(0,0) --

••• ·····X axis •••••• .,..~ ·-·-. ·-. 
·--~---····Visible 

screen area 

Figure 4-1: Defining Sprite On-screen Position 
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The amount of viewable area is also affected by the size of the playficld display window (defined 
by the values in DDFSTRT, DDFSTOP, DIWSTRT, DIWSTOP, etc.). See the "Playfield 
Hardware" chapter for more information about overscan and display windows. 

Horizontal Position 

A sprite's horizontal position (X value) can be at any pixel on the screen from 0 to 447. To be 
visible, however, an object must be within the boundaries of the playfield display window. In the 
examples in this chapter, a window with horizontal positions from pixel 64 to pixel 383 is used 
(that is, each line is 320 pixels long). Larger or smaller windows can be defined as required, but it 
is recommended that you read the "Playfield Hardware" chapter before attempting to do so. A 
larger area is actually scanned by the video beam but is not usually visible on the screen. 

If you specify an X value for a sprite that takes it outside the display window, then part or all of 
the sprite may not appear on the screen. This is sometimes desirable; such a sprite is said to be 
''clipped.'' 

To make a sprite appear in its correct on-screen horizontal position in the display window, simply 
add its left offset to the desired X value. In the example given above, this would involve adding 
64 to the X value. For example, to make the upper leftmost pixel of a sprite appear at a position 
94 pixels from the left edge of the screen, you would perform this calculation: 

Desired X position+ horizontal-offset of display window= 94 + 64 = 158 

Thus, 158 becomes the X value, which will be written into the data structure. 

Counting Pixels. The X position represents the location of the very first (leftmost) 
pixel in the full 16-bit wide sprite. This is always the case, even if the leftmost pixels 
are specified as transparent and do not appear on the screen. 
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If the sprite shown in Figure 4-2 were located at an X value of 158, the actual image would begin 
on-screen four pixels later at 162. The first four pixels in this sprite are transparent and allow the 
background to show through. 

I I 
.,. _________ 16 pixels -----------~ 

Figure 4-2: Position of Sprites 

Vertical Position 

You can select any position from line 0 to line 262 for the topmost edge of the sprite. In the 
examples in this chapter, an NTSC window with vertical positions from line 44 to line 243 is 
used. This allows the normal display height of 200 lines in non-interlaced mode. If you specify a 
vertical position (Y value) oflcss th<m 44 (i.e., above the top of the display window) the top edge 
of the sprite may not appear on screen. 

To make a sprite appear in its correct on-screen vertical position, add the Y value to the desired 
position. Using the above numbers, add 44 to the desired Y position. For example, to make the 
upper leftmost pixel appear 25 lines below the top edge of the screen, perform this calculation: 

Desired Y position+ vertical-offset of the display window= 25 + 44 = 69 

Thus, 69 is the Y value you will write into the data structure. 

Clipped Sprites 

As noted above, sprites will be partially or totally clipped if they pass across or beyond the 
boundaries of the display window. The values of 64 (horizontal) and 44 (vertical) arc "nonnal" 
for a centered display on a standard NTSC video monitor. See Chapter 3, "Playfield Hardware", 
for more information on display offsets. Information on PAL displays will be found there. If you 
choose other values to establish your display window, your sprites will be clipped accordingly. 
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SIZE OF SPRITES 

Sprites are 16 pixels wide and can be almost any height you wish- as short as one line or taller 
than the screen. You would probably move a very tall sprite vertically to display a portion of it at 
a time. 

Sprite size is based on a pixel that is l/320th of a screen's width, 1/200th of a NTSC screen's 
height, or 1/256 of a PAL screen's height. This pixel size corresponds to the low resolution and 
non-interlaced modes of the normal full-size playfield. Sprites, however, are independent of 
playfield modes of display, so changing the resolution or interlace mode of the playfield has no 
effect on the size or resolution of a sprite. 

SHAPE OF SPRITES 

A sprite can have any shape that will fit within the 16-pixel width. You define a sprite's shape by 
specifying which pixels actually appear in each of the sprite's locations. For example, Figures 
4-3 and 4-4 show a spaceship whose shape is marked by Xs. The first figure shows only the 
spaceship as you might sketch it out on graph paper. The second figure shows the spaceship 
within the 16-pixel width. The Os around the spaceship mark the part of the sprite not covered by 
the spaceship and transparent when displayed. 

XX 
xxxxxx 

xxxxxxxxxx 
X X X X X X X X X X 

xxxxxx 
X X 

Figure 4-3: Shape of Spaceship 

0 0 0 0 X X 0 0 0 0 0 0 0 0 0 0 
ooxxxxxxoooooooo 
X X X X X X X X X X 0 0 0 0 0 0 
xxxxxxxxxxoooooo 
ooxxxxxxoooooooo 
0 0 0 0 X X 0 0 0 0 0 0 0 0 0 0 

Figure 4-4: Sprite with Spaceship Shape Defined 
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In this example, the widest part of the shape is ten pixels and the shape is shifted to the left of the 
sprite. Whenever the shape is narrower than the sprite, you can control which part of the sprite is 
used to define the shape. This particular shape could also start at any of the pixels from 2-7 
instead of pixel 1. 

SPRITE COLOR 

When sprites are used individually (that is, not attached as described in the "Attached Sprites" 
section), each pixel can be one of three colors or transparent. Color selection in similar to the 
method used for playfield colors. Figure 4-5 shows how the color of each pixel in a sprite is 
determined. 

' 
' 

' - ' '-'-. transparent 

high-order word of sprite data line 

--~1 o I o I o I o I o 11 11 11 I o 11 11 11 I o I o I o I o I 
' ' ' 

-----/-{i1~J o I o I o 1 1 1 1 1 11 o 1 1 1 1 1 1 I o I o I o I o I 

' 

' ' ' ' ' ' 
/ / 

' ' ' 

,' 

' ' ' ' 

,' low-order word of sprite data line 

~------------
~ 

Forms a binary 
code, used as 

the color choice 
from a group of 
color registers. 

Figure 4-5: Sprite Color Definition 

The Os and 1 s in the two data words that define each line of a sprite in the data structure form a 
binary number. This binary number points to one of the four color registers assigned to that 
particular sprite DMA channel. The eight sprites use system color registers 16 - 31. For purposes 
of color selection, the eight sprites are organized into pairs and each pair uses four of the color 
registers as shown in Figure 4-6. 
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About sprite color registers. The color value of the first register in each group of 
four registers is ignored by sprites. When the sprite bits select this register, the 
"transparent" value is used. 

Codes 01, 10 or Color Register Set 

11 select one of r--

three possible ' 00 
Sprite 0 or 1 ~- _ ' 

registers from the ' 01 --- ----~ normal color 10 

unused 

register group, from 11 

which the actual r--

Sprite 2 or 3 ~- _ ' 00 
color data is taken. ' ' --- ' 01 ---- ~ 

unused 

10 

11 
r--

' 00 Sprite 4 or 5 "''it, 
01 ' 

unused 

--- .. _ ---: 
10 

11 
r--

Sprite 6 or 7 ~- _ ' 00 unused 

---: 01 

10 

11 

Figure 4-6: Color Register Assignments 

-~~---, 

.20 ---
' ' 

' 
--.. 

---..._ yields 

-----~ transparent ---

,.~//// 
'28 

31 

If you require certain colors in a sprite, you will want to load the sprite's color registers with 
those colors. The ''Play field Hardware'' chapter contains instructions on loading color registers. 

The binary number 00 is special in this color scheme. A pixel whose value is 00 becomes 
transparent and shows the color of any other sprite or playfield that has lower video priority. An 
object with low priority appears "behind" an object with higher priority. Each sprite has a fixed 
video priority with respect to all the other sprites. You can vary the priority between sprites and 
play fields. (See Chapter 7, ''System Control Hardware,'' for more information about sprite 
priority.) 
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---------·--·-----

DESIGNING A SPRITE 

For design purposes, it is convenient to lay out the sprite on paper first. You can show the desired 
colors as numbers from 0 to 3. For example, the spaceship shown above might look like this: 

0000122332210000 
0001223333221000 
0012223333222100 
0001223333221000 
0000122332210000 

The next step is to convert the numbers 0-3 into binary numbers, which will be used to build the 
color descriptor words of the sprite data structure. The section below shows how to do this. 

BUILDING THE DATA STRUCTURE 

After defining the sprite, you need to build its data structure, which is a series of 16-bit words in a 
contiguous memory area. Some of the words contain position and control information and some 
contain color descriptions. To create a sprite's data structure, you need to: 

o Write the horizontal and vertical position of the sprite into the first control word. 

o Write the vertical stopping position into the second control word. 

o Translate the decimal color numbers 0 - 3 in your sprite grid picture into binary color 
numbers. Use the binary values to build color descriptor (data) words and write these 
words into the data structure. 

o Write the control words that indicate the end of the sprite data structure. 

Warning: Sprite data, like all other data accessed by the custom chips, must be 
loaded into Chip RAM. Be sure all of your sprite data structures are word aligned in 
Chip Memory. 
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Table 4-1 shows a sprite data structure with the memory location and function of each word: 

Memory 
Location 

N 
N+l 
N+2 
N+3 
N+4 
N+5 

16-bit Word 

Sprite control word 1 
Sprite control word 2 
Color descriptor low word 
Color descriptor high word 
Color descriptor low word 
Color descriptor high word 

End-of-data words 

Function 

Vertical and horizontal start position 
Vertical stop position 
Color bits for line 1 
Color bits for line 1 
Color bits for line 2 
Color bits for line 2 

Two words indicating 
the next usage of this sprite 

Table 4-1: Sprite Data Structure 

All memory addresses for sprites are word addresses. You will need enough contiguous memory 
to provide room for two words for the control information, two words for each horizontal line in 
the sprite, and two end-of-data words. 

Because this data structure must be accessible by the special-purpose chips, you must ensure that 
this data is located within chip memory. 

Figure 4-7 shows how the data structure relates to the sprite. 
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' ' ' ' • 

-c-- ---------------- 16 bits --------------.. . . . . . ~ 
r-------------------------------~ I 

VSTART, HSTART 

VSTOP, control bits 

low word of data, line 1 

high word of data, line 1 

data describing 
central lines 
of this sprite 

low word of data, last line 

:¥ 
I 

high word of data, last line 

~----------------~--~-~ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Part of a screen display 

HSTART 

. ······ 
.. ----

.--- - - Pairs of words 
/ / containing color 

/ information for 
,., ,. pixel lines. 

_---- Last word pair contains all 
---- zeros if this sprite processor is to 

be used only once vertically in 
the display frame . 

Each word pair 

low word of pair 

high word of pair 

~ ____ ,. 
VSTART ----::rtJim / 

describes one video 
line of the sprite 

VSTOP ---- .. ·. :.~:: ' := = = := = = :=~ 
I I 

Figure 4-7: Data Structure Layout 
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Sprite Control Word 1 : SPRxPOS 

This word contains the vertical (VST ART) and horizontal (HST ART) starting position for the 
sprite. This is where the topmost line of the sprite will be positioned. 

Bits 15-8 contain the low 8 bits ofVSTART 
Bits 7-0 contain the high 8 bits ofHSTART 

Sprite Control Word 2 : SPRxCTL 

This word contains the vertical stopping position of the sprite on the screen (i.e., the line AFfER 
the last displayed row of the sprite). It also contains some data having to do with sprite 
attachment, which is described later on. 

Bits 15-8 
Bit 7 
Bits 6-3 
Bit2 
Bit 1 
Bit 0 

SPRxCfL 

The low eight bits of YSTOP 
(Used in attachment) 
Unused (make zero) 
The VST ART high bit 
The VSTOP high bit 
The HST ART low bit 

The value (VSTOP - VST ART) defines how many scan lines high the sprite will be when it is 
displayed. 

Sprite Color Descriptor Words 

It takes two color descriptor words to describe each horizontal line of a sprite; the high order 
word and the low order word. To calculate how many color descriptor words you need, multiply 
the height of the sprite in lines by 2. The bits in the high order color descriptor word contribute 
the leftmost digit of the binary color selector number for each pixel; the low order word 
contributes the rightmost digit. 

To form the color descriptor words, you first need to form a picture of the sprite, showing the 
color of each pixel as a number from 0 - 3. Each number represents one of the colors in the 
sprite's color registers. For example, here is the spaceship sprite again: 

0000122332210000 
0001223333221000 
0012223333222100 
0001223333221000 
0000122332210000 
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Next, you translate each of the numbers in this picture into a binary number. The first line in 
binary is shown below. The binary numbers are represented vertically with the low digit in the 
top line and the high digit right below it. This is how the two color descriptor words for each 
sprite line are written in memory. 

0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 ~ Low Sprite Word 
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 ~High Sprite Word 

The first line above becomes the color descriptor low word for line 1 of the sprite. The second 
line becomes the color descriptor high word. In this fashion, you translate each line in the sprite 
into binary Os and 1 s. See Figure 4-7. 

Each of the binary numbers fonned by the combination of the two data words for each line refers 
to a specific color register in that particular sprite channel's segment of the color table. Sprite 
channel 0, for example, takes its colors from registers 17- 19. The binary numbers corresponding 
to the color registers for sprite DMA channel 0 are shown in Table 4-2. 

Binary Number Color Register Number 

00 Transparent 
01 17 
10 18 
11 19 

Table 4-2: Sprite Color Registers 

Recall that binary 00 always means transparent and never refers to a color except background. 

End-of-data Words 

When the vertical position of the beam counter is equal to the VSTOP value in the sprite control 
words, the next two words fetched from the sprite data structure are written into the sprite control 
registers instead of being sent to the color registers. These two words are interpreted by the 
hardware in the same manner as the original words that were first loaded into the control registers. 
If the VSTART value contained in these words is lower than the current beam position, this sprite 
will not be reused in this display field. For consistency, the value 0 should be used for both 
words when ending the usage of a sprite. Sprite reuse is discussed later. 
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The following data structure is for the spaceship sprite. It will be located at V = 65 and 
H = 128 on the normally visible part of the screen. 

SPRITE: 
DC.W $6060,$7200 ;VSTART, HSTART, VSTOP 
DC.W $0990,$07EO ;First pair of descriptor words 
DC.W $13C8,$0FFO 
DC.W $23C4,$1FF8 
DC.W $13C8,$0FFO 
DC.W $0990,$07EO 
DC.W $0000,$0000 ;End of sprite data 

Displaying a Sprite 

After building the data structure, you need to tell the system to display it. This section describes 
the display of sprites in "automatic" mode. In this mode, once the sprite DMA channel begins to 
retrieve and display the data, the display continues until the VSTOP position is reached. Manual 
mode is described later on in this chapter. 

The following steps arc used in displaying the sprite: 

1. Decide which of the eight sprite DMA channels to use (making certain that the chosen 
channel is available). 

2. Set the sprite pointers to tell the system where to find the sprite data. 

3. Tum on sprite direct memory access if it is not already on. 

4. For each subsequent display field, during the vertical blanking interval, rewrite the sprite 
pointers. 

About sprite DMA. If sprite DMA is turned off while a sprite is being displayed (that 
is, after VST ART but before VSTOP), the system will continue to display the line of 
sprite data that was most recently fetched. This causes a vertical bar to appear on the 
screen. It is recommended that sprite DMA be turned off only during vertical 
blanking or during some portion of the display where you are sure that no sprite is 
being displayed. 
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SELECTING A DMA CHANNEL AND SETTING THE POINTERS 

In deciding which DMA channel to use, you should take into consideration the colors assigned to 
the sprite and the sprite's video priority. 

The sprite DMA channel uses two pointers to read in sprite data and control words. During the 
vertical blanking interval before the first display of the sprite, you need to write the sprite's 
memory address into these pointers. The pointers for each sprite are called SPRxVrH and 
SPRxPTL, where "x" is the number of the sprite DMA channel. SPRxPfH contains the high 
three bits of the memory address of the first word in the sprite and SPRxPTL contains the low 
sixteen bits. The least significant bit of SPRxPTL is ignored, as sprite data must be word aligned. 
Thus, only fifteen bits of SPRxPfL are used. As usual, you can write a long word into 
SPRxPfH. 

In the following example the processor initializes the data pointers for sprite 0. Normally, this is 
done by the Copper. The sprite is at address $20000. 

MOVE.L #$20000,SPROPTH+CUSTOM ;Write $20000 to sprite 0 pointer ... 

These pointers are dynamic; they are incremented by the sprite DMA channel to point first to the 
control words, then to the data words, and finally to the end-of-data words. After reading in the 
sprite control information and storing it in other registers, they proceed to read in the color 
descriptor words. The color descriptor words are stored in sprite data registers, which are used by 
the sprite DMA channel to display the data on screen. For more information about how the sprite 
DMA channels handle the display, see the "Hardware Details" section below. 

RESETTING THE ADDRESS POINTERS 

For one single display field, the system will automatically read the data structure and produce the 
sprite on-screen in the colors that are specified in the sprite's color registers. If you want the 
sprite to be displayed in subsequent display fields, you must rewrite the contents of the sprite 
pointers during each vertical blanking interval. This is necessary because during the display field, 
the pointers are incremented to point to the data which is being fetched as the screen display 
progresses. 

The rewrite becomes part of the vertical blanking routine, which can be handled by instructions in 
the Copper lists. 
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SPRITE DISPLAY EXAMPLE 

This example displays the spaceship sprite at location V = 65, H = 128. Remember to include 
the file ''hw _examples.i' ', located in Appendix I. 

First, we set up a single bitplane. 

LEA CUSTOM,aO 
MOVE.W t$1200,BPLCONO(a0) 
MOVE.W t$OOOO,BPL1MOD(a0) 
MOVE.W t$OOOO,BPLCON1(a0) 
MOVE.W t$0024,BPLCON2(a0) 
MOVE.W t$0038,DDFSTRT(a0) 
MOVE.W t$00DO,DDFSTOP(a0) 

Display window definitions. 

MOVE.W t$2C81,DIWSTRT(a0) 

MOVE.W t$F4C1,DIWSTOP(a0) 

Set up color registers. 

MOVE.W t$0008,COLOROO(a0) 
MOVE.W t$OOOO,COLOR01(a0) 
MOVE.W t$0FFO,COLOR17(a0) 
MOVE.W t$00FF,COLOR18(a0) 
MOVE.W t$OFOF,COLOR19(a0) 

Move Copper list to $20000. 

MOVE.L t$20000,a1 
LEA COPPERL(pc) ,a2 

CLOOP: 
MOVE.L (a2), (a1)+ 
CMP.L t$FFFFFFFE, (a2)+ 
BNE CLOOP 

Move sprite to $25000. 

MOVE.L t$25000,a1 
LEA SPRITE(pc),a2 

SPRLOOP: 
MOVE.L (a2), (a1)+ 
CMP.L t$00000000, (a2) + 
BNE SPRLOOP 

;Point aO at custom chips 
;1 bitplane color is on 
;Modulo = 0 
;Horizontal scroll value = 0 
;Sprites have priority over playfields 
;Set data-fetch start 
;Set data-fetch stop 

;Set display window start 
;Vertical start in high byte. 
;Horizontal start * 2 in low byte. 
;Set display window stop 
;Vertical stop in high byte. 
;Horizontal stop * 2 in low byte. 

;Background 
;Foreground 
;Color 17 
;Color 18 
; Color 19 

color = dark blue 
color = black 
yellow 
cyan 
magenta 

;Point A1 at Copper list destination 
;Point A2 at Copper list source 

;Move a long word 
;Check for end of list 
;Loop until entire list is moved 

;Point A1 at sprite destination 
;Point A2 at sprite source 

;Move a long word 
;Check for end of sprite 
;Loop until entire sprite is moved 

Now we write a dummy sprite to $30000, since all eight sprites are activated 
at the same time and we're only going to use one. The remaining sprites 
will point to this dummy sprite data. 

MOVE.L t$00000000,$30000 ;Write it 

Point Copper at Copper list. 

MOVE.L t$20000,COP1LC(a0) 
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Fill bitplane 

MOVE.L 
MOVE.W 

FLOOP 
MOVE.L 
DBF 

Start DMA. 

MOVE.W 

MOVE.W 
RTS 

with $FFFFFFFF. 

t$21000,a1 
tl999,d0 

f$FFFFFFFF, (a1)+ 
dO,FLOOP 

dO,COPJMP1 (aO) 

f$83AO,DMACON(a0) 

;Point A1 at bitplane 
;2000-1(for dbf) long words= 8000 bytes 

;Move a long word of $FFFFFFFF 
;Decrement, repeat until false. 

;Force load into Copper 
program counter 

;Bitplane, Copper, and sprite DMA 
; .. return to rest of program .. 

This is a Copper list for one bitplane, and 8 sprites. 
The bitplane lives at $21000. 
Sprite 0 lives at $25000; all others live at $30000 (the dummy sprite). 

COPPERL: 

Sprite 

SPRITE: 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

data 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

BPL1PTH,$0002 
BPL1PTL,$1000 
SPROPTH,$0002 
SPROPTL,$5000 
SPR1PTH,$0003 
SPR1PTL,$0000 
SPR2PTH,$0003 
SPR2PTL,$0000 
SPR3PTH,$0003 
SPR3PTL,$0000 
SPR4PTH,$0003 
SPR4PTL,$0000 
SPR5PTH,$0003 
SPR5PTL,$0000 
SPR6PTH,$0003 
SPR6PTL,$0000 
SPR7PTH,$0003 
SPR7PTL,$0000 
$FFFF,$FFFE 

for spaceship 

$6060,$7200 
$0990,$07EO 
$13C8,$0FFO 
$23C4,$1FF8 
$13C8,$0FFO 
$0990,$07EO 
$0000,$0000 

sprite. 
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;Bitplane 1 pointer = $21000 

;Sprite 0 pointer $25000 

; Sprite 1 pointer $30000 

; Sprite 2 pointer $30000 

; Sprite 3 pointer $30000 

; Sprite 4 pointer $30000 

; Sprite 5 pointer $30000 

; Sprite 6 pointer $30000 

;Sprite 7 pointer $30000 

;End of Copper list 

appears on the screen at V=65 and H=128. 

;VSTART, HSTART, VSTOP 
;First pair of descriptor words 

;End of sprite data 



Moving a Sprite 

A sprite generated in automatic mode can be moved by specifying a different position in the data 
structure. For each display field, the data is reread and the sprite redrawn. Therefore, if you 
change the position data before the sprite is redrawn, it will appear in a new position and will 
seem to be moving. 

You must take care that you are not moving the sprite (that is, changing control word data) at the 
same time that the system is using that data to find out where to display the object. If you do so, 
the system might find the start position for one field and the stop position for the following field 
as it retrieves data for display. This would cause a "glitch" and would mess up the screen. 
Therefore, you should change the content of the control words only during a time when the 
system is not trying to read them. Usually, the vertical blanking period is a safe time, so moving 
the sprites becomes part of the vertical blanking tasks and is handled by the Copper as shown in 
the example below. 

As sprites move about on the screen, they c<m collide with each other or with either of the two 
playfields. You can use the hardware to detect these collisions and exploit this capability for 
special effects. In addition, you can usc collision detection to keep a moving object within 
specified on-screen boundaries. Collision Detection is described in Chapter 7, "System Control 
Hardware.'' 

In this example of moving a sprite, the spaceship is bounced around on the screen, changing 
direction whenever it reaches an edge. 

The sprite position data, containing VSTART and HSTART, lives in memory at $25000. 
VSTOP is located at $25002. You write to these locations to move the sprite. Once during each 
frame, VSTART is incremented (or decremented) by 1 and HSTART by 2. Then a new VSTOP 
is calculated, which will be the new VST ART + 6. 

MOVE.B #15l,d0 ;Initialize horizontal count 
MOVE.B H94, dl ;Initialize vertical count 
MOVE.B #64, d2 ; Initialize horizontal position 
MOVE.B H4,d3 ;Initialize vertical position 
MOVE.B #l,d4 ;Initialize horizontal increment value 
MOVE.B tl,d5 ;Initialize vertical increment value 

;Here we wait for the start of the screen updating. 
;This ensures a glitch-free display. 

LEA CUSTOM,aO 
VLOOP: 

MOVE.B VHPOSR(a0),d6 
;Only insert the following line 

CMP.B t$20,d6 
BNE.S VLOOP 

;Alternatively you can use the 
;VLOOP: 

MOVE.W INTREQR(aO) ,d6 
AND.W t$0020,d6 
BEQ VLOOP 

;Set custom chip base pointer 

;Read Vertical beam position. 
if you are using a PAL machine. 
;Compare with end of PAL screen. 
;Loop if not end of screen. 

following code: 

;Read interrupt request word 
;Mask off all but vertical blank bit 
;Loop until bit is a 1 
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MOVE.W t$0020,INTREQ(a0) ;Vertical bit is on, so reset it 

;Please note that this will only work if you have turned OFF the Vertical 
;blanking interrupt enable (not recommended for long periods). 

L1: 

L2: 

ADD.B 
SUBQ.B 
BNE 
MOVE.B 
EOR.B 
MOVE.B 
ADD.B 
SUBQ.B 
BNE 
MOVE.B 
EOR.B 
MOVE.B 
MOVE.B 
ADD.B 
MOVE.B 
BRA 

d4,d2 
t1,d0 
L1 
U51,d0 
t$FE,d4 
d2,$25001 
d5,d3 
U,d1 
L2 
U94,d1 
tSFE,dS 
d3,$25000 
d3,d6 
t6,d6 
d6,$25002 
VLOOP 

;Increment horizontal value 
;Decrement horizontal counter 

;Count exhausted, reset to 151 
;Negate the increment value 
;Write new HSTART value to sprite 
;Increment vertical value 
;Decrement vertical counter 

;Count exhausted, reset to 194 
;Negate the increment value 
;Write new VSTART value to sprite 
;Must now calculate new VSTOP 
;VSTOP always VSTART+6 for spaceship 
;Write new VSTOP to sprite 
;Loop forever 

Creating Additional Sprites 

To use additional sprites, you must create a data structure for each one and arrange the display as 
shown in the previous section, naming the pointers SPRlPTH and SPRlPTL for sprite DMA 
channel 1, SPR2PTH and SPR2PTL for sprite DMA channel2, and so on. 

About sprite DMA. When you enable sprite DMA for one sprite, you enable DMA 
for all the sprites and place them all in automatic mode. Thus, you do not need to 
repeat this step when using additional sprite DMA channels. 

Once the sprite DMA channels are enabled, all eight sprite pointers must be initialized to either a 
real sprite or a safe null sprite. An uninitialized sprite could cause spurious sprite video to appear. 

Remember that some sprites can become unusable when additional DMA cycles are allocated to 
displaying the screen, for example when an extra wide display or horizontal scrolling is enabled 
(see Figure 6-9: DMA Time Slot Allocation). 

Also, recall that each pair of sprites takes its color from different color registers, as shown in 
Table4-3. 
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Table 4-3: Color Registers for Sprite Pairs 

Sprite Numbers 

0 and 1 
2 and 3 
4 and 5 
6 and 7 

Color Registers 

17- 19 
21-23 
25-27 
29-31 

Warning: Some sprites become unusable when additional DMA cycles are allocated 
to displaying the screen, e.g. when enabling an extra wide display or horizontal 
scrolling. (See Figure 6-11: DMA Time Slot Allocation.) 

SPRITE PRIORITY 

When you have more than one sprite on the screen, you may need to take into consideration their 
relative video priority, that is, which sprite appears in front of or behind another. Each sprite has 
a fixed video priority with respect to all the others. The lowest numbered sprite has the highest 
priority and appears in front of all other sprites; the highest numbered sprite has the lowest 
priority. This is illustrated in Figure 4-8. 

More about priorities. See Chapter 7, "System Control Hardware", for more 
information on sprite priorities. 

7 

6 
5 

1-
4 

1-
3 

I f-
2 

f-
I 1 

1-
0 

1--

f-

Figure 4-8: Sprite Priority 
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Reusing Sprite DMA Channels 

Each of the eight sprite DMA channels can produce more than one independently controllable 
image. There may be times when you want more than eight objects, or you may be left with 
fewer than eight objects because you have attached some of the sprites to produce more colors or 
larger objects or overlapped some to produce more complex images. You can reuse each sprite 
DMA channel several times within the same display field, as shown in Figure 4-9. 

Part of a screen display 

' ' ' 

" " .. .. 
---~- =---= ~ __ .... ,''/ 

• -- -====== ....,. _____ / 

Each image of this sprite may be placed 
at any desired spot, horizontally or 
vertically. However, at least one video 
line must separate the bottom of one 
usage of a sprite from the starting point 
of the next usage. 

Figure 4-9: Typical Example of Sprite Reuse 

In single-sprite usage, two all-zero words are placed at the end of the data structure to stop the 
DMA channel from retrieving any more data for that particular sprite during that display field. To 
reuse a DMA channel, you replace this pair of zero words with another complete sprite data 
structure, which describes the reuse of the DMA channel at a position lower on the screen than 
the first use. You place the two all-zero words at the end of the data structure that contains the 
information for all usages of the DMA channel. For example, Figure 4-10 shows the data 
structure that describes the picture above. 
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increasing 
RAM 

memory 
addresses 

Sprite Display List 

' ' / 

~-
' 

' ' _____ J 

------. 
.------------------------------, ~-

' 

' 
' ' ' ' ' ' I _..,."" 

~-
' 
' _____ J 

_-- --· Data describing the first 
- vertical usage of this sprite 

__ ---- Data describing the second vertical 
usage of this sprite. Contents of vertical 
start word must be at least one video 
line below actual end of preceding usage. 

_-- --- End-of-data words ending the 
_- -' usage of this sprite 

Figure 4-10: Typical Data Structure for Sprite Re-use 

The only restrictions on the reuse of sprites during a single display field is that the bottom line of 
one usage of a sprite must be separated from the top line of the next usage by at least one 
horizontal scan line. This restriction is necessary because only two DMA cycles per horizontal 
scan line are allotted to each of the eight channels. The sprite channel needs the time during the 
blank line to fetch the control word describing the next usage of the sprite. 
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The following example displays the spaceship sprite and then redisplays it as a different object. 
Only the sprite data list is affected, so only the data list is shown here. However, the sprite looks 
best with the color registers set as shown in the example. 

LEA CUSTOM,aO 
MOVE.W #$0FOO,COLOR17(a0) ;Color 17 = red 
MOVE.W #$0FFO,COLOR18(a0) ;Color 18 = yellow 
MOVE.W #$0FFF,COLOR19(a0) ;Color 19 = white 

SPRITE: 
OC.W $6060,$7200 
OC.W $0990,$07EO 
OC.W $13C8,$0FFO 
OC.W $23C4,$1FF8 
OC.W $13C8,$0FFO 
OC.W $0990,$07EO 
OC.W $8080,$8000 ;VSTART, HSTART, VSTOP for new sprite 
DC.W $1818,$0000 
DC.W $7E7E,$0000 
DC.W $7FFE,$0000 
DC.W SFFFF,$2000 
DC.W SFFFF,$2000 
DC.W $FFFF,$3000 
DC.W SFFFF,$3000 
DC.W $7FFE,$1800 
DC.W $7FFE,$0COO 
DC.W $3FFC,$0000 
OC.W SOFF0,$0000 
DC.W $03C0,$0000 
DC.W $0180,$0000 
OC.W $0000,$0000 ;End of sprite data 

Overlapped Sprites 

For more complex or larger moving objects, you can overlap sprites. Overlapping simply means 
that the sprites have the same or relatively close screen positions. A relatively close screen 
position can result in an object that is wider than 16 pixels. 

The built-in sprite video priority ensures that one sprite appears to be behind the other when 
sprites are overlapped. The priority circuitry gives the lowest-numbered sprite the highest 
priority and the highest numbered sprite the lowest priority. Therefore, when designing displays 
with overlapped sprites, make sure the "foreground" sprite has a lower number than the 
"background" sprite. In Figure 4-11, for example, the cage should be generated by a lower­
numbered sprite DMA channel than the monkey. 
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Individual sprites 
can be combined by 

simple overlap. 
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.. Built-in sprite "priority" 
-------------~~:::7 displays one sprite 

behind the other when 
overlapped. 

Figure 4-11: Overlapping Sprites (Not Attached) 

You can create a wider sprite display by placing two sprites next to each other. For instance, 
Figure 4-12 shows the spaceship sprite and how it can be made twice as large by using two sprites 
placed next to each other. 
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-- ~~-----------

(128,65) 

(128,65) (144,65) 

sprite 0 sprite 1 

Figure 4-12: Placing Sprites Next to Each Other 

Attached Sprites 

You can create sprites that have fifteen possible color choices (plus transparent) instead of three 
(plus transparent), by "attaching" two sprites. To create attached sprites, you must: 

o Use two channels per sprite, creating two sprites of the same size and located at the same 
position. 

o Set a bit called ATTACH in the second sprite control word. 

The fifteen colors are selected from the full range of color registers available to sprites -
registers 17 through 31. The extra color choices are possible because each pixel contains four bits 
instead of only two as in the normal, unattached sprite. Each sprite in the attached pair 
contributes two bits to the binary color selector number. For example, if you are using sprite 
DMA channels 0 and 1, the high and low order color descriptor words for line 1 in both data 
structures are combined into line 1 of the attached object. 
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Sprites can be attached in the following combinations: 

Sprite 1 to sprite 0 
Sprite 3 to sprite 2 
Sprite 5 to sprite 4 
Sprite 7 to sprite 6 

Any or all of these attachments can be active during the same display field. As an example, 
assume that you wish to have more colors in the spaceship sprite and you are using sprite DMA 
channels 0 and 1. There are five colors plus transparent in this sprite. 

0000154444510000 
0001564444651000 
0015676446765100 
0001564444651000 
0000154444 510000 

The first line in this sprite requires the four data words shown in Table 4-4 to form the correct 
binary color selector numbers. 

Table 4-4: Data Words for First Line of Spaceship Sprite 

Pixel Number 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Line 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Line2 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 
Line3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Line 4 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 

The highest numbered sprite (number 1, in this example) contributes the highest order bits 
(leftmost) in the binary number. The high order data word in each sprite contributes the leftmost 
digit. Therefore, the lines above are written to the sprite data structures as follows: 

Line 1 
Line 2 
Line 3 
Line4 

Sprite 1 high order word for sprite line 1 
Sprite 1 low order word for sprite line 1 
Sprite 0 high order word for sprite line 1 
Sprite 0 low order word for sprite line 1 

See Figure 4-7 for the order these words are stored in memory. Remember that this data is 
contained in two sprite structures. 
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The binary numbers 0 through 15 select registers 17 through 31 as shown in Table 4-5. 

Table 4-5: Color Registers in Attached Sprites 

Decimal Binary Color Register 
Number Number Number 

0 0000 16 * 
1 0001 17 
2 0010 18 
3 0011 19 
4 0100 20 
5 0101 21 
6 0110 22 
7 0111 23 
8 1000 24 
9 1001 25 

10 1010 26 
11 1011 27 
12 1100 28 
13 1101 29 
14 1110 30 
15 1111 31 

* Unused; yields transparent pixel. 

Attachment is in effect only when the A TI'ACH bit, bit 7 in sprite control word 2, is set to 1 in 
the data structure for the odd-numbered sprite. So, in this example, you set bit 7 in sprite control 
word 2 in the data structure for sprite 1. 

When the sprites arc moved, the Copper list must keep them both at exactly the same position 
relative to each other. If they are not kept together on the screen, their pixels will change color. 
Each sprite will revert to three colors plus transparent, but the colors may be different than if they 
were ordinary, unattached sprites. The color selection for the lower numbered sprite will be from 
color registers 17-19. The color selection for the higher numbered sprite will be from color 
registers 20, 24, and 28. 

122 Amiga Hardware Reference Manual 



The following data structure is for the six-color spaceship made with two attached sprites. 

SPRITEO: 
OC.W $6060,$7200 
OC.W $0C30,$0000 
OC.W $1818,$0420 
oc.w $342C,$0E70 
OC.W $1818,$0420 
OC.W $0C30,$0000 
OC.W $0000,$0000 

SPRITE1: 
oc.w $6060,$7280 
OC.W $07E0,$0000 
OC.W $0FF0,$0000 
OC.W $1FF8,$0000 
OC.W $0FF0,$0000 
DC.W $07E0,$0000 
DC.W $0000,$0000 

Manual Mode 

;VSTART = 65, HSTART = 128 
;First color descriptor word 

;End of sprite 0 

;Same as sprite 0 except attach bit on 
;First descriptor word for sprite 1 

;End of sprite 1 

It is almost always best to load sprites using the automatic DMA channels. Sometimes, however, 
it is useful to load these registers directly from one of the microprocessors. Sprites may be 
activated' 'manually'' whenever they arc not being used by a DMA channel. The same sprite that 
is showing a DMA-controlled icon near the top of the screen can also be reloaded manually to 
show a vertical colored bar ncar the bottom of the screen. Sprites can be activated manually even 
when the sprite DMA is turned off. 

You display sprites manually by writing to the sprite data registers SPRxDATB and SPRxDATA, 
in that order. You write to SPRxDATA last because that address "arms" the sprite to be output 
at the next horizontal comparison. The data written will then be displayed on every line, at the 
horizontal position given in the "H" portion of the position registers SPRxPOS and SPRxCfL. 
If the data is unchanged, the result will be a vertical bar. If the data is reloaded for every line, a 
complex sprite can be produced. 

The sprite can be terminated ("disarmed") by writing to the SPRxCfL register. If you write to 
the SPRxPOS register, you can manually move the sprite horizontally at any time, even during 
normal sprite usage. 

Sprite Hardware 123 



Sprite Hardware Details 

Sprites are produced by the circuitry shown in Figure 4-13. This figure shows in block form how 
a pair of data words becomes a set of pixels displayed on the screen. 

The circuitry elements for sprite display are explained below. 

o Sprite data registers. The registers SPRxDAT A and SPRxDATB hold the bit patterns that 
describe one horizontal line of a sprite for each of the eight sprites. A line is 16 pixels wide, 
and each line is defined by two words to provide selection of three colors and transparent. 

o Parallel-to-serial converters. Each of the 16 bits of the sprite data bit pattern is individually 
sent to the color select circuitry at the time that the pixel associated with that bit is being 
displayed on-screen. 

Immediately after the data is transferred from the sprite data registers, each parallel-to-serial 
converter begins shifting the bits out of the converter, most significant (leftmost) bit first. 
The shift occurs once during each low resolution pixel time and continues until all 16 bits 
have been transferred to the display circuitry. The shifting and data output does not begin 
again until the next time this convener is loaded from the data registers. 

Because the video image is produced by an electron beam that is being swept from left to 
right on the screen, the bit image of the data corresponds exactly to the image that actually 
appears on the screen (most significant data on the left). 

o Sprite serial video data. Sprite data goes to the priority circuit to establish the priority 
between sprites and playfields. 

o Sprite position registers. These registers, called SPRxPOS, contain the horizontal position 
value (X value) and vertical position value (Y value) for each of the eight sprites. 

o Sprite control registers. These registers, called SPRxCfL, contain the stopping position for 
each of the eight sprites and whether or not a sprite is attached. 

o Beam counter. The beam counter tells the system the current location of the video beam that 
is producing the picture. 

o Comparator. This device compares the value of the beam counter to the Y value in the 
position register SPRxPOS. If the beam has reached the position at which the leftmost upper 
pixel of the sprite is to appear, the comparator issues a load signal to the serial-to-parallel 
converter and the sprite display begins. 
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Figure 4-13 shows the following: 

o Writing to the sprite control registers disables the horizontal comparator circuitry. This 
prevents the system from sending any output from the data registers to the serial converter or 
to the screen. 

o Writing to the sprite A data register enables the horizontal comparator. This enables output 
to the screen when the horizontal position of the video beam equals the horizontal value in 
the position register. 

o If the comparator is enabled, the sprite data will be sent to the display, with the leftmost pixel 
of the sprite data placed at the position defined in the horizontal part of SPRxPOS. 

o As long as the comparator remains enabled, the current contents of the sprite data register 
will be output at the selected horizontal position on a video line. 

o The data in the sprite data registers does not change. It is either rewritten by the user or 
modified under DMA control. 

The components described above produce the automatic DMA display as follows: When the 
sprites arc in DMA mode, the 18-bit sprite pointer register (composed of SPRxPTH and 
SPRxPTL) is used to read the first two words from the sprite data structure. These words contain 
the starting and stopping position of the sprite. Next, the pointers write these words into 
SPRxPOS and SPRxCfL. Afler this write, the value in the pointers points to the address of the 
first data word (low word of data for line 1 of the sprite.) 

Writing into the SPRxCfL register disabled the sprite. Now the sprite DMA channel will wait 
until the vertical beam counter value is the same as the data in the VSTART (Y value) part of 
SPRxPOS. When these values match, the system enables the sprite data access. 

The sprite DMA channel examines the contents of VSTOP (from SPRxCfL, which is the 
location of the line after the last line of the sprite) and VST ART (from SPRxPOS) to see how 
many lines of sprite data are to be fetched. Two words are fetched per line of sprite height, and 
these words are written into the sprite data registers. The first word is stored in SPRxDAT A and 
the second word in SPRxDATB. 

The fetch and store for each horizontal scan line occurs during a horizontal blanking interval, far 
to the left of the start of the screen display. This arms the sprite horizontal comparators and 
allows them to start the output of the sprite data to the screen when the horizontal beam count 
value matches the value stored in the HST ART (X value) part of SPRxPOS. 

If the count of VSTOP - VSTART equals zero, no sprite output occurs. The next data word pair 
will be fetched, but it will not be stored into the sprite data registers. It will instead become the 
next pair of data words for SPRxPOS and SPRxCfL. 
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When a sprite is used only once within a single display field, the final pair of data words, which 
follow the sprite color descriptor words, is loaded automatically as the next contents of the 
SPRxPOS and SPRxCfL registers. To stop the sprite after that first data set, the pair of words 
should contain all zeros. 

Thus, if you have formed a sprite pattern in memory, this same pattern will be produced as pixels 
automatically under DMA control one line at a time. 

Summary of Sprite Registers 

There are eight complete sets of registers used to describe the sprites. Each set consists of five 
registers. Only the registers for sprite 0 are described here. All of the others are the same, except 
for the name of the register, which includes the appropriate number. 

POINTERS 

Pointers are registers that are used by the system to point to the current data being used. During a 
screen display, the registers are incremented to point to the data being used as the screen display 
progresses. Therefore, pointer registers must be freshly written during the start of the vertical 
blanking period. 

SPROPTH and SPROPTL 

This pair of registers contains the 32-bit word address of Sprite 0 DMA data. 

Pointer register names for the other sprites arc: 

CONTROL REGISTERS 

SPROPOS 

SPRlPTH 
SPR2PTH 
SPR3PTH 
SPR4PTH 
SPRSPTH 
SPR6PTH 
SPR7PTH 

SPRlPTL 
SPR2PTL 
SPR3PTL 
SPR4PTL 
SPRSPTL 
SPR6PTL 
SPR7PTL 

This is the sprite 0 position register. The word written into this register controls the position on 
the screen at which the upper left-hand comer of the sprite is to be placed. The most significant 
bit of the first data word will be placed in this position on the screen. 
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Sprite placement resolution. The sprites have a placement resolution on a full 
screen of 320 by 200 NTSC (320 by 256 PAL). The sprite resolution is independent 
of the bitplane resolution. 

Bit positions: 

o Bits 15-8 specify the vertical start position, bits V7 - VO. 

o Bits 7-0 specify the horizontal start position, bits H8- Hl. 

Warning: This register is nonnally only written by the sprite DMA channel itself. 
See the details above regarding the organization of the sprite data. This register is 
usually updated directly by DMA. 

SPROCTL 

This register is nonnally used only by the sprite DMA channel. It contains control infonnation 
that is used to control the sprite data-fetch process. Bit positions: 

o Bits 15-8 specify vertical stop position for a sprite image, bits V7 - VO. 

o Bit 7 is the attach bit. This bit is valid only for odd-numbered sprites. It indicates that 
sprites 0, 1 (or 2,3 or 4,5 or 6,7) will, for color interpretation, be considered as paired, 
and as such will be called four bits deep. The odd-numbered (higher number) sprite 
contains bits with the higher binary significance. 

During attach mode, the attached sprites are nonna1ly moved horizontally and vertically 
together under processor control. This allows a greater selection of colors within the 
boundaries of the sprite itself. The sprites, although attached, remain capable of 
independent motion, however, and they will assume this larger color set only when their 
edges overlay one another. 

o Bits 6-3 are reserved for future use (make zero). 

o Bit 2 is bit V8 of vertical start. 

o Bit 1 is bit V8 of vertical stop. 

o Bit 0 is bit HOof horizontal start. 
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Position and control registers for the other sprites work the same way as described above for 
sprite 0. The register names for the other sprites are: 

DATA REGISTERS 

SPRIPOS 
SPR2POS 
SPR3POS 
SPR4POS 
SPR5POS 
SPR6POS 
SPR7POS 

SPRICfL 
SPR2CfL 
SPR3CfL 
SPR4CfL 
SPR5CfL 
SPR6CfL 
SPR7CfL 

The following registers, although defined in the address space of the main processor, are normally 
used only by the display processor. They are the holding registers for the data obtained by DMA 

cycles. 

SPRODATA,SPRODATB 
SPRIDATA, SPRIDATB 
SPR2DATA, SPR2DATB 
SPR3DATA,SPR3DATB 
SPR4DATA, SPR4DATB 
SPR5DATA,SPR5DATB 
SPR6DATA,SPR6DATB 
SPR7DATA,SPR7DATB 

data registers for Sprite 0 
data registers for Sprite 1 
data registers for Sprite 2 
data registers for Sprite 3 
data registers for Sprite 4 
data registers for Sprite 5 
data registers for Sprite 6 
data registers for Sprite 7 
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Summary of Sprite Color Registers 

Sprite data words are used to select the color of the sprite pixels from the system color register set 
as indicated in the following tables. 

If the bit combinations from single sprites are as shown in Table 4-6, then the colors will be taken 
from the registers shown. 

Table 4-6: Color Registers for Single Sprites 

Single Sprites Color 
Sprite Value Register 

0 or 1 00 Not used* 
01 17 
10 18 
11 19 

2o 
r3 00 Not used* 

01 21 
10 22 
11 23 

4 or5 00 Not used* 
01 25 
10 26 
11 27 

6 or7 00 Not used* 
01 29 
10 30 
11 31 

* Selects transparent mode. 
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If the bit combinations from attached sprites are as shown in Table 4-7, then the colors will be 
taken from the registers shown. 

Table 4-7: Color Registers for Attached Sprites 

Value 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Attached Sprites 
Color 

Register 

Selects transparent mode 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

INTERACTIONS AMONG SPRITES AND OTHER OBJECTS 

Playfie1ds share the display with sprites. Chapter 7, "System Control Hardware," shows how 
playfields can be given different video display priorities relative to the sprites and how playfields 
can collide with (overlap) the sprites or each other. 

ECS Sprites. For information relating to sprites in the Enhanced Chip Set (ECS), 
such as SuperHires sprites and SuperHires sprite positioning, see Appendix C. 
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chapter five 
AUDIO HARDWARE 

This chapter shows you how to directly access the audio hardware to produce sounds. The major 
topics in this chapter are: 

o A brief overview of how a computer produces sound. 

o How to produce simple steady and changing sounds and more complex ones. 

o How to use the audio channels for special effects, wiring them for stereo sound if 
desired, or using one channel to modulate another. 

o How to produce quality sound within the system limitations. 

A section at the end of the chapter gives you values to use for creating musical notes on the 
equal-tempered musical scale. 

This chapter is not a tutorial on computer sound synthesis; a thorough description of creating 
sound on a computer would require a far longer document. The purpose here is to point the way 
and show you how to use the Amiga's features. Computer sound production is fun but complex, 
and it usually requires a great deal of trial and error on the part of the user-you use the 
instructions to create some sound and play it back, readjust the parameters and play it again, and 
so on. 

The following works are recommended for more information on creating music with computers: 

o Wayne A. Bateman, Introduction to Computer Music (New York: John Wiley and Sons, 
1980). 

o Hal Chamberlain, Musical Applications of Microprocessors (Rochelle Park, New Jersey: 
Hayden, 1980). 
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- ------------------------·----

Introducing Sound Generation 

Sound travels through air to your ear drums as a repeated cycle of air pressure variations, or 
sound waves. Sounds can be represented as graphs that model how the air pressure varies over 
time. The attributes of a sound, as you hear it, are related to the shape of the graph. If the 
waveform is regular and repetitive, it will sound like a tone with steady pitch (highness or 
lowness), such as a single musical note. Each repetition of a waveform is called a cycle of the 
sound. If the waveform is irregular, the sound will have little or no pitch, like a loud clash or 
rushing water. How often the waveform repeats (its frequency) has an effect upon its pitch; 
sounds with higher frequencies are higher in pitch. Humans can hear sounds that have a 
frequency of between 20 and 20,000 cycles per second. The amplitude of the waveform (highest 
point on the graph), is related to the perceived loudness of the sound. Finally, the general shape 
of the waveform determines its tone quality, or timbre. Figure 5-1 shows a particular kind of 
waveform, called a sine wave, that represents one cycle of a simple tone. 

a 
m 
p 
I 

u 
d 
e 

+ 

time (Msec) 

Figure 5-l: Sine Waveform 

In electronic sound recording and output devices, the attributes of sounds are represented by the 
parameters of amplitude and frequency. Frequency is the number of cycles per second, and the 
most common unit of frequency is the Hertz (Hz), which is 1 cycle per second. Large values, or 
high frequencies, are measured in kilohertz (KHz) or megahertz (MHz). 

Frequency is strongly related to the perceived pitch of a sound. When frequency increases, pitch 
rises. This relationship is exponential. An increase from 100Hz to 200Hz results in a large rise 
in pitch, but an increase from 1,000 Hz to 1,100 Hz is hardly noticeable. Musical pitch is 
represented in octaves. A tone that is one octave higher than another has a frequency twice as 
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high as that of the first tone, and its perceived pitch is twice as high. 

The second parameter that defines a waveform is its amplitude. In an electronic circuit, amplitude 
relates to the voltage or current in the circuit. When a signal is going to a speaker, the amplitude 
is expressed in watts. Perceived sound intensity is measured in decibels (db). Human hearing has 
a range of about 120 db; 1 db is the faintest audible sound. Roughly every 10 db corresponds to a 
doubling of sound, and 1 db is the smallest change in amplitude that is noticeable in a moderately 
loud sound. Volume, which is the amplitude of the sound signal which is output, corresponds 
logarithmically to decibel level. 

The frequency and amplitude parameters of a sine wave are completely independent. When 
sound is heard, however, there is interaction between loudness and pitch. Lower-frequency 
sounds decrease in loudness much faster than high-frequency sounds. 

The third attribute of a sound, timbre, depends on the presence or absence of overtones, or 
harmonics. Any complex waveform is actually a mixture of sine waves of different amplitudes, 
frequencies, and phases (the starting point of the waveform on the time axis). These component 
sine waves are called harmonics. A square waveform, for example, has an infinite number of 
harmonics. 

In summary, all steady sounds can be described by their frequency, overall amplitude, and 
relative harmonic amplitudes. The audible equivalents of these parameters are pitch, loudness, 
and timbre, respectively. Changing sound is a steady sound whose parameters change over time. 

In electronic production of sound, an analog device, such as a tape recorder, records sound 
waveforms and their cycle frequencies as a continuously variable representation of air pressure. 
The tape recorder then plays back the sound by sending the waveforms to an amplifier where they 
are changed into analog voltage waveforms. The amplifier sends the voltage waveforms to a 
loudspeaker, which translates them into air pressure vibrations that the listener perceives as 
sound. 

A computer cannot store analog waveform information. In computer production of sound, a 
waveform has to be represented as a finite string of numbers. This transformation is made by 
dividing the time axis of the graph of a single waveform into equal segments, each of which 
represents a short enough time so the waveform does not change a great deal. Each of the 
resulting points is called a sample. These samples are stored in memory, and you can play them 
back at a frequency that you determine. The computer feeds the samples to a digital-to-analog 
converter (DAC), which changes them into an analog voltage waveform. To produce the sound, 
the analog waveforms are sent first to an amplifier, then to a loudspeaker. 

Figure 5-2 shows an example of a sine wave, a square wave, and a triangle wave, along with a 
table of samples for each. 

Note: The illustrations are not to scale and there are fewer dots in the wave forms 
than there are samples in the table. The amplitude axis values 127 and -128 represent 
the high and low limits on relative amplitude. 
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sine waveform triangle waveform square waveform 

127 

-127 -127 

-----------------------------------· 
Samples taken over time 

TIME SINE SQUARE TRIANGLE 

0 0 100 0 

1 39 100 20 

2 75 100 40 

3 103 100 60 

4 121 100 80 

5 127 100 100 

6 121 100 80 

7 103 100 60 

8 75 100 40 

9 39 100 20 

10 0 -100 0 

11 -39 -100 -20 

12 -75 -100 -40 

13 -103 -100 -60 

14 -121 -100 -80 

15 -127 -100 -100 

16 -121 -100 -80 

17 -103 -100 -60 

18 -75 -100 -40 

19 -39 -100 -20 

Figure 5-2: Digitized Amplitude Values 

THE AMIGA SOUND HARDWARE 

The Amiga has four hardware sound channels. You can inde~ndently program each of the 

channels to produce complex sound effects. You can also attach channels so that one channel 

modulates the sound of another or combine two channels for stereo effects. 
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Each audio channel includes an eight-bit digital-to-analog converter driven by a direct memory 
access (DMA) channel. The audio DMA can retrieve two data samples during each horizontal 
video scan line. For simple, steady tones, the DMA can automatically play a waveform 
repeatedly; you can also program all kinds of complex sound effects. 

There are two methods of basic sound production on the Amiga - automatic (DMA) sound 
generation and direct (non-DMA) sound generation. When you use automatic sound generation, 
the system retrieves data automatically by direct memory access. 

Forming and Playing a Sound 

This section shows you how to create a simple, steady sound and play it. Many basic concepts 
that apply to all sound generation on the Amiga are introduced in this section. 

To produce a steady tone, follow these basic steps: 

1. Decide which channel to use. 

2. Define the waveform and create the sample table in memory. 

3. Set registers telling the system where to find the data and the length of the data. 

4. Select the volume at which the tone is to be played. 

5. Select the sampling period, or output rate of the data. 

6. Select an audio channel and start up the DMA. 

DECIDING WHICH CHANNEL TO USE 

The Amiga has four audio channels. Channels 1 and 2 are connected to the left-side stereo output 
jack. Channels 0 and 3 are connected to the right-side output jack. Select a channel on the side 
from which the output is to appear. 

CREATING THE WAVEFORM DATA 

The waveform used as an example in this section is a simple sine wave, which produces a pure 
tone. To conserve memory, you normally define only one full cycle of a waveform in memory. 
For a steady, unchanging sound, the values at the waveform's beginning and ending points and 
the trend or slope of the data at the beginning and end should be closely related. This ensures that 
a continuous repetition of the waveform sounds like a continuous stream of sound. 
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Sound data is organized as a set of eight-bit data items; each item is a sample from the waveform. 
Each data word retrieved for the audio channel consists of two samples. Sample values can range 
from -128 to+ 127. 

As an example, the data set shown below produces a close approximation to a sine wave. 

About the sample data. The data is stored in byte address order with the first 
digitized amplitude value at the lowest byte address, the second at the next byte 
address, and so on. Also, note that the first byte of data must start at a word-address 
boundary. This is because the audio DMA retrieves one word (16 bits) at a time and 
uses the sample it reads as two bytes of data. 

To use audio channel 0, write the address of "audiodata" into AUDOLC, where the audio data is 
organized as shown below. For simplicity, "AUDxLC" in the table below stands for the 
combination of the two actual location registers (AUDxLCH and AUDxLCL). For the audio 
DMA channels to be able to retrieve the data, the data address to which AUDOLC points must be 
somewhere in chip RAM. 

Notes: 

Table 5-1: Sample Audio Data Set for Channel 0 

audiodata ---> AUDOLC* 100 98 
AUDOLC+2 ** 92 83 
AUDOLC+ 4 71 56 
AUDOLC+ 6 38 20 
AUDOLC+ 8 0 -20 
AUDOLC+ 10 -38 -56 
AUDOLC + 12 -71 -83 
AUDOLC + 14 -92 -83 
AUDOLC+ 16 -100 -98 
AUDOLC+ 18 -92 -83 
AUDOLC+ 20 -71 -56 
AUDOLC+ 22 -38 -20 
AUDOLC+24 0 20 
AUDOLC+26 38 56 
AUDOLC+ 28 71 83 
AUDOLC+ 30 92 98 

*Audio data is located on a word-address boundary. 
**AUDOLC stands for AUDOLCL and AUDOLCH. 
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TELLING THE SYSTEM ABOUT THE DATA 

In order to retrieve the sound data for the audio channel, the system needs to know where the data 
is located and how long (in words) the data is. 

The location registers AUDxLCH and AUDxLCL contain the high three bits and the low fifteen 
bits, respectively, of the starting address of the audio data. Since these two register addresses are 
contiguous, writing a long word into AUDxLCH moves the audio data address into both 
locations. The "x" in the register names stands for the number of the audio channel where the 
output will occur. The channels are numbered 0, 1, 2, and 3. 

These registers are location registers, as distinguished from pointer registers. You need to 
specify the contents of these registers only once; no resetting is necessary when you wish the 
audio channel to keep on repeating the same waveform. Each time the system retrieves the last 
audio word from the data area, it uses the contents of these location registers to again find the start 
of the data. Assuming the first word of data starts at location '' audiodata'' and you are using 
channel 0, here is how to set the location registers: 

WHEREODATA: 
LEA CUSTOM,aO ; Base chip address ... 
LEA AUDIODATA,al 
MOVE.L al,AUDOLCH(aO) ;Put address (32 bits) 

into location register. 

The length of the data is the number of samples in your waveform divided by 2, or the number of 
words in the data set. Using the sample data set above, the length of the data is 16 words. You 
write this length into the audio data length register for this channel. The length register is called 
AUDxLEN, where "x" refers to the channel number. You set the length register AUDOLEN to 
16 as shown below. 

SETAUDOLENGTH: 
LEA CUSTOM,aO 
MOVE.W i16,AUDOLEN(a0) 

SELECTING THE VOLUME 

Base chip address 
Store the length ... 

The volume you set here is the overall volume of all the sound coming from the audio channel. 
The relative loudness of sounds, which will concern you when you combine notes, is determined 
by the amplitude of the wave form. There is a six-bit volume register for each audio channel. To 
control the volume of sound that will be output through the selected audio channel, you write the 
desired value into the register AUDxVOL, where "x" is replaced by the channel number. You 
can specify values from 64 to 0. These volume values correspond to decibel levels. At the end of 
this chapter is a table showing the decibel value for each of the 65 volume levels. 
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For a typical output at volume 64, with maximum data values of -128 to 127, the voltage output 
is between +.4 volts and -.4 volts. Some volume levels and the corresponding decibel values are 
shown in Table 5-2. 

Table 5-2: Volume Values 

Volume Decibel Value 

64 
48 
32 
16 

0 
-2.5 
-6.0 

-12.0 

(maximum volume) 

(12 db down from the 
volume at maximum level) 

For any volume setting from 64 to 0, you write the value into bits 5-0 of AUDOVOL. For 
example: 

SETAUDOVOLUME: 
LEA CUSTOM,aO 
MOVE.W #48,AUDOVOL(a0) 

The decibels are shown as negative values from a maximum of 0 because this is the way a 
recording device, such as a tape recorder, shows the recording level. Usually, the recorder has a 
dial showing 0 as the optimum recording level. Anything less than the optimum value is shown 
as a minus quantity. 

SELECTING THE DATA OUTPUT RATE 

The pitch of the sound produced by the waveform depends upon its frequency. To tell the system 
what frequency to use, you need to specify the sampling period. The sampling period specifies 
the number of system clock ticks, or timing intervals, that should elapse between each sample 
(byte of audio data) fed to the digital-to-analog converter in the audio channel. There is a period 
register for each audio channel. The value of the period register is used for count-down purposes; 
each time the register counts down to 0, another sample is retrieved from the waveform data set 
for output. In units, the period value represents clock ticks per sample. The minimum period 
value you should use is 124 ticks per sample NTSC (123 PAL) and the maximum is 65535. 
These limits apply to both PAL and NTSC machines. For high-quality sound, there are other 
constraints on the sampling period (see the section called "Producing High-quality Sound"). 

The period is inversely proportional to the frequency. A low period value 
corresponds to a higher frequency sound and a high period value corresponds to a 
lower frequency sound. 
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Limitations on Selection of Sampling Period 

The sampling period is limited by the number of DMA cycles allocated to an audio channel. 
Each audio channel is allocated one DMA slot per horizontal scan line of the screen display. An 
audio channel can retrieve two data samples during each horizontal scan line. The following 
calculation gives the maximum sampling rate in samples per second. 

2 samples/ line * 262.5 lines/frame * 59.94 frames/ second= 31,469 samples/ second 

The figure of 31,469 is a theoretical maximum. In order to save buffers, the hardware is designed 
to handle 28,867 samples/second. The system timing interval is 279.365 nanoseconds, or 
.279365 microseconds. The maximum sampling rate of 28,867 samples per second is 34.642 
microseconds per sample (1/28,867 = .000034642). The formula for calculating the sampling 
period is: 

P . d 1 sample interval clock constant 
erw va ue= = 

clock interval samples per second 

Thus, the minimum period value is derived by dividing 34.642 microseconds per sample by the 
number of microseconds per interval: 

M . . d 34.642 microseconds/sample 124 . . . 1 1 1 mumum peno = 0 2 9365 . nds . 1 = tzmmg znterva s samp e 
. 7 mzcroseco lmterva 

or: 

M . r· d- 3,579,545 ticks/second _ 124 . ks/ l mumum pe w - 28 86 1 nd - tzc samp e 
, 7 samp es/seco 

Therefore, a value of at least 124 must be written into the period register to assure that the audio 
system DMA will be able to retrieve the next data sample. If the period value is below 124, by 
the time the cycle count has reached 0, the audio DMA will not have had enough time to retrieve 
the next data sample and the previous sample will be reused. 

28,867 samples/second is also the maximum sampling rate for PAL systems. Thus, for PAL 
systems, a value of at least 123 ticks/sample must be written into the period register. 

Clock Values 
NTSC PAL units 

Clock Constant 3579545 3546895 ticks per second 
Clock Interval 0.279365 0.281937 microseconds per interval 

NOTE: The Clock Interval is derived from the clock constant, where: 

clock interval = 1 k 1 
c oc constant 

then scale the result to microseconds. In all of these calculations ''ticks'' and ''timing 
intervals'' refer to the same thing. 
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Specifying the Period Value 

After you have selected the desired interval between data samples, you can calculate the value to 
place in the period register by using the period fonnula: 

P . d 1 desired interval clock constant 
erto va ue= = 

clock interval samples per second 

As an example, say you wanted to produce a 1 KHz sine wave, using a table of eight data samples 
(four data words) (see Figure 5-3). 

127 

·127 

Figure 5-3: Example Sine Wave 

Sampled Values: 0 
90 

127 
90 
0 

-90 
-127 

-90 
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To output the series of eight samples at 1 KHz (1 ,000 cycles per second), each full cycle is output 
in 1/lOOOth of a second. Therefore, each individual value must be retrieved in l/8th of that time. 
This translates to 1,000 microseconds per waveform or 125 microseconds per sample. To 
correctly produce this waveform, the period value should be: 

. 125 microseconds/sample . . . 
Penod value= 0 2 936 . nds . 1 = 447 tlmmg mtervals!sample 

. 7 5 mzcroseco lmterva 

To set the period register, you must write the period value into the register AUDxPER, where 
"x" is the number of the channel you are using. For example, the following instruction shows 
how to write a period value of 447 into the period register for channel 0. 

SETAUDOPERIOD: 
LEA CUSTOM,aO 
MOVE.W f447,AUDOPER(a0) 

To produce high-quality sound, avoiding aliasing distortion, you should observe the limitations 
on period values that are discussed in the section below called "Producing Quality Sound." 

For the relationship between period and musical pitch, see the section at the end of the chapter, 
which contains a listing of the equal-tempered musical scale. 
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PLAYING THE WAVEFORM 

After you have defined the audio data location, length, volume and period, you can play the 
wavefonn by starting the DMA for that audio channel. This starts the output of sound. Once 
started, the DMA continues until you specifically stop it. Thus, the wavefonn is played over and 
over again, producing the steady tone. The system uses the value in the location registers each 
time it replays the wavefonn. 

For any audio DMA to occur (or any other DMA, for that matter), the DMAEN bit in DMACON 
must be set. When both DMAEN and AUDxEN are set, the DMA will start for channel x. All 
these bits and their meanings are shown in table 5-3. 

Table 5-3: DMA and Audio Channel Enable Bits 

DMACON Register 

Bit Name Function 

15 SET/CLR When this bit is written as a 1, it 
sets any bit in DMACONW for which 
the corresponding bit position is 
also a 1, leaving all other bits alone. 

9 DMAEN Only while this bit is a 1 can 
any direct memory access occur. 

3 AUD3EN Audio channel 3 enable. 
2 AUD2EN Audio channel 2 enable. 
1 AUDlEN Audio channel 1 enable. 
0 AUDOEN Audio channel 0 enable. 

For example, if you are using channel 0, then you write a 1 into bit 9 to enable DMA and a 1 into 
bit 0 to enable the audio channel, as shown below. 

BEGINCHANO: 
LEA CUSTOM,aO 
MOVE.W i(DMAF_SETCLR!DMAF_AUDO!DMAF_MASTER),DMACON(aO) 
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STOPPING THE AUDIO DMA 

You can stop the channel by writing a 0 into the AUDxEN bit at any time. However, you cannot 
resume the output at the same point in the waveform by just writing a 1 in the bit again. Enabling 
an audio channel almost always starts the data output again from the top of the list of data pointed 
to by the location registers for that channel. If the channel is disabled for a very short time (less 
than two sampling periods) it may stay on and thus continue from where it left off. 

The following example shows how to stop audio DMA for one channel. 

STOPAUDCHANO: 
LEA CUSTOM,aO 
MOVE.W i(DMAF_AUDO),DMACON(aO) 

AUDIO SUMMARY 

These are the steps necessary to produce a steady tone: 

1. Define the waveform. 

2. Create the data set containing the pairs of data samples (data words). Normally, a data 
set contains the definition of one waveform. 

3. Set the location registers: 

AUDxLCH (high three bits) 
AUDxLCL (low fifteen bits) 

4. Set the length register, AUDxLEN, to the number of data words to be retrieved before 
starting at the address currently in AUDxLC. 

5. Set the volume register, AUDxVOL. 

6. Set the period register, AUDxPER 

7. Start the audio DMA by writing a 1 into bit 9, DMAEN, along with a 1 in the SET/CLR 
bit and a 1 in the position of the A UDxEN bit of the channel or channels you want to 
start. 
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AUDIO EXAMPLE 

In this example, which gathers together all of the program segments from the preceding sections, 
a sine wave is played through channel 0. The example assumes exclusive access to the Audio 
hardware, and will not work directly in a multitasking environment. 

MAIN: 
LEA CUSTOM,aO ; Custom chip base address 
LEA SINEDATA(pc),a1 ;Address of data to 

audio location register 0 

WHEREODATA: 
MOVE.L a1,AUDOLCH(a0) 

SETAUDOLENGTH: 

;The 680x0 writes this as though it were a 
32-bit register at the low-bits location 
(common to all locations and pointer 
registers in the system) . 

MOVE.W #4,AUDOLEN(a0) ;Set length in words 

SETAUDOVOLUME: 
MOVE.W #64,AUDOVOL(a0) ;Use maximum volume 

SETAUDOPERIOD: 
MOVE.W #447,AUDOPER(a0) 

BEGINCHANO: 
MOVE.W #(DMAF_SETCLR!DMAF_AUDO!DMAF_MASTER),DMACON(aO) 

RTS ; Return to main code ... 

DS.W 0 ;Be sure word-aligned 

SINEDATA: 
DC.B 0, 90, 127, 90, 0, -90, -127, -90 
END 
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Producing Complex Sounds 

In addition to simple tones, you can create more complex sounds, such as different musical notes 
joined into a one-voice melody, different notes played at the same time, or modulated sounds. 

JOINING TONES 

Tones are joined by writing the location and length registers, starting the audio output, and 
rewriting the registers in preparation for the next audio waveform that you wish to connect to the 
first one. This is made easy by the timing of the audio interrupts and the existence of back-up 
registers. The location and length registers are read by the DMA channel before audio output 
begins. The DMA channel then stores the values in back-up registers. 

Once the original registers have been read by the DMA channel, you can change their values 
without disturbing the operation you started with the original register contents. Thus, you can 
write the contents of these registers, start an audio output, and then rewrite the registers in 
preparation for the next waveform you want to connect to this one. 

Interrupts occur immediately after the audio DMA channel has read the location and length 
registers and stored their values in the back-up registers. Once the interrupt has occurred, you can 
rewrite the registers with the location and length for the next waveform segment. This 
combination of back-up registers and interrupt timing lets you keep one step ahead of the audio 
DMA channel, allowing your sound output to be continuous and smooth. 

If you do not rewrite the registers, the current waveform will be repeated. Each time the length 
counter reaches zero, both the location and length registers are reloaded with the same values to 
continue the audio output. 
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Audio DMA Example 

This example details the system audio DMA action in a step-by-step fashion. 

Suppose you wanted to join together a sine and a triangle waveform, end-to-end, for a special 
audio effect, alternating between them. The following sequence shows the action of your 
program as well as its interaction with the audio DMA system. The example assumes that the 
period, volume, and length of the data set remains the same for the sine wave and the triangle 
wave. 

Interrupt Program 

If (wave= triangle) 
write AUDOLCL with address of sine wave data. 

Else if (wave= sine) 
write AUDOLCL with address of triangle wave data. 

Main Program 

1. Set up volume, period, and length. 

2. Write AUDOLCL with address of sine wave data. 

3. Start DMA. 

4. Continue with something else. 

System Response 

As soon as DMA starts, 

a. Copy to "back-up" length register from AUDOLEN. 

b. Copy to "back-up" location register from AUDOLCL (will be used as a pointer showing 
current data word to fetch). 

c. Create an interrupt for the 680x0 saying that it has completed retrieving working copies 
of length and location registers. 

d. Start retrieving audio data each allocated DMA time slot. 
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PLAYING MULTIPLE TONES AT THE SAME TIME 

You can play multiple tones either by using several channels independently or by summing the 
samples in several data sets, playing the summed data sets through a single channel. 

Since all four audio channels are independently programmable, each channel has its own data set; 
thus a different tone or musical note can be played on each channel. 

MODULATING SOUND 

To provide more complex audio effects, you can use one audio channel to modulate another. This 
increases the range and type of effects that can be produced. You can modulate a channel's 
frequency or amplitude, or do both types of modulation on a channel at the same time. 

Amplitude modulation affects the volume of the waveform. It is often used to produce vibrato or 
tremolo effects. Frequency modulation affects the period of the waveform. Although the basic 
waveform itself remains the same, the pitch is increased or decreased by frequency modulation. 

The system uses one channel to modulate another when you attach two channels. The attach bits 
in the ADKCON register control how the data from an audio channel is interpreted (see the table 
below). Normally, each channel produces sound when it is enabled. If the "attach" bit for an 
audio channel is set, that channel ceases to produce sound and its data is used to modulate the 
sound of the next higher-numbered channel. When a channel is used as a modulator, the words in 
its data set are no longer treated as two individual bytes. Instead, they are used as ''modulator'' 
words. The data words from the modulator channel are written into the corresponding registers of 
the modulated channel each time the period register of the modulator channel times out. 

To modulate only the amplitude of the audio output, you must attach a channel as a volume 
modulator. Define the modulator channel's data set as a series of words, each containing volume 
information in the following format: 

Bits Function 

15- 7 Not used 

6-0 Volume information, V6- VO 

To modulate only the frequency, you must attach a channel as a period modulator. Define the 
modulator channel's data set as a series of words, each containing period information in the 
following format: 

Bits Function 

15-0 Period information, P15- PO 
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If you want to modulate both period and volume on the same channel, you need to attach the 
channel as both a period and volume modulator. For instance, if channel 0 is used to modulate 
both the period and frequency of channel 1, you set two attach bits - bit 0 to modulate the 
volume and bit 4 to modulate the period. When period and volume are both modulated, words in 
the modulator channel's data set are defined alternately as volume and period information. 

The sample set of data in Table 5-4 shows the differences in interpretation of data when a channel 
is used directly for audio, when it is attached as volume modulator, when it is attached as a period 
modulator, and when it is attached as a modulator of both volume and period. 

Table 5-4: Data Interpretation in Attach Mode 

Independent Modulating 
Data (not Both Modulating Modulating 
Words Modulating) Period and Volume Period Only Volume Only 

Word 1 I data I data I I volume for other channel! I period I I volume I 

Word2 I data I data I I period for other channel! I period I I volume I 

Word3 I data I data I I volume for other channel I I period I I volume I 

Word4 I data I data I I period for other channel! I period I I volume I 

The lengths of the data sets of the modulator and the modulated channels are completely 
independent. 

Channels are attached by the system in a predetermined order, as shown in Table 5-5. To attach a 
channel as a modulator, you set its attach bit to 1. If you set either the volume or period attach 
bits for a channel, that channel's audio output will be disabled; the channel will be attached to the 
next higher channel, as shown in Table 5-5. Because an attached channel always modulates the 
next higher numbered channel, you cannot attach channel 3. Writing a 1 into channel 3's 
modulate bits only disables its audio output. 
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Table 5-5: Channel Attachment for Modulation 

ADKCON Register 

Bit Name Function 

7 ATPER3 Use audio channel3 to modulate nothing 
(disables audio output of channel 3) 

6 ATPER2 Use audio channel 2 to modulate period 
ofchannel3 

5 ATPERl Use audio channel 1 to modulate period 
ofchannel2 

4 ATPERO Use audio channel 0 to modulate period 
of channell 

3 ATVOL3 Use audio channel 3 to modulate nothing 
(disables audio output of channel 3) 

2 ATVOL2 Use audio channel2 to modulate volume 
ofchannel3 

1 ATVOLl Use audio channell to modulate volume 
ofchanne12 

0 ATVOLO Use audio channel 0 to modulate volume 
of channell 
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Producing High-quality Sound 

When trying to create high-quality sound, you need to consider the following factors: 

o Waveform transitions. 

o Sampling rate. 

o Efficiency. 

o Noise reduction. 

o A voidance of aliasing distortion. 

o Limitations of the low pass filter. 

MAKING WAVEFORM TRANSITIONS 

To avoid unpleasant sounds when you change from one waveform to another, you need to make 
the transitions smooth. You can avoid "clicks" by making sure the waveforms start and end at 
approximately the same value. You can avoid "pops" by starting a waveform only at a zero­
crossing point. You can avoid ''thumps'' by arranging the average amplitude of each wave to be 
about the same value. The average amplitude is the sum of the bytes in the waveform divided by 
the number of bytes in the waveform. 

SAMPLING RATE 

If you need high precision in your frequency output, you may find that the frequency you wish to 
produce is somewhere between two available sampling rates, but not close enough to either rate 
for your requirements. In those cases, you may have to adjust the length of the audio data table in 
addition to altering the sampling rate. 

For higher frequencies, you may also need to use audio data tables that contain more than one full 
cycle of the audio waveform to reproduce the desired frequency more accurately, as illustrated in 
Figure 5-4. 
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128 

-127 

always requires an even 
number of samples 

---------------------------------------------------------------~ 
samples taken over time 

This shows a case in which a high-frequency waveform may need more than one full cycle to accurately 
reproduce the periodic waveform. 

Figure 5-4: Waveform with Multiple Cycles 

EFFICIENCY 

A certain amount of overhead is involved in the handling of audio DMA. If you are trying to 
produce a smooth continuous audio synthesis, you should try to avoid as much of the system 
control overhead as possible. Basically, the larger the audio buffer you provide to the system, the 
less often it will need to interrupt to reset the pointers to the top of the next buffer and, 
coincidentally, the lower the amount of system interaction that will be required. If there is only 
one waveform buffer, the hardware automatically resets the pointers, so no software overhead is 
used for resetting them. 

The "Joining Tones" section illustrated how you could join "ends" of tones together by 
responding to interrupts and changing the values of the location registers to splice tones together. 
If your system is heavily loaded, it is possible that the response to the interrupt might not happen 
in time to assure a smooth audio transition. Therefore, it is advisable to utilize the longest 
possible audio table where a smooth output is required. This takes advantage of the audio DMA 
capability as well as minimizing the number of interrupts to which the 680x0 must respond. 
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NOISE REDUCTION 

To reduce noise levels and produce an accurate sound, try to use the full range of -128 to 127 
when you represent a wavefonn. This reduces how much noise (quantization error) will be added 
to the signal by using more bits of precision. Quantization noise is caused by the introduction of 
round-off error. If you are trying to reproduce a signal, such as a sine wave, you can represent the 
amplitude of each sample with only so many digits of accuracy. The difference between the real 
number and your approximation is round-off error, or noise. 

By doubling the amplitude, you create half as much noise because the size of the steps of the 
wave fonn stays the same and is therefore a smaller fraction of the amplitude. 

In other words, if you try to represent a wavefonn using, for example, a range of only +3 to -3, 
the size of the error in the output would be considerably larger than if you use a range of+ 127 to 
-128 to represent the same signal. Proportionally, the digital value used to represent the 
wavefonn amplitude will have a lower error. As you increase the number of possible sample 
levels, you decrease the relative size of each step and, therefore, decrease the size of the error. 

To produce quiet sounds, continue to define the wavefonn using the full range, but adjust the 
volume. This maintains the same level of accuracy (signal-to-noise ratio) for quiet sounds as for 
loud sounds. 

ALIASING DISTORTION 

When you use sampling to produce a wavefonn, a side effect is caused when the sampling rate 
"beats" or combines with the frequency you wish to produce. This produces two additional 
frequencies, one at the sampling rate plus the desired frequency and the other at the sampling rate 
minus the desired frequency. This phenomenon is called aliasing distortion. 

Aliasing distortion is eliminated when the sampling rate exceeds the output frequency by at least 
7 KHz. This puts the beat frequency out'lide the range of the low-pass filter, cutting off the 
undesirable frequencies. Figure 5-5 shows a frequency domain plot of the anti-aliasing low-pass 
filter used in the system. 
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0 db -\ 
filter response 

\ 
-30 db 

5kHz 10kHz 15kHz 20kHz 25kHz 30kHz 

Filter passes all frequencies below about 5 kHz. 

Figure 5-5: Frequency Domain Plot of Low-Pass Filter 

Figure 5-6 shows that it is permissible to use a 12 KHz sampling rate to produce a 4 KHz 
waveform. Both of the beat frequencies are outside the range of the filter, as shown in these 
calculations: 

12+4= 16KHz 

12-4=8KHz 

filter response 
Odb--1\ 12kHz sampling frequency 

4kHz 

\ Diff. 

\ 

\ 

-30db//_/~ .~, "~"' 
<------ desired output frequency 

Sum 

I I 
15kHz 20kHz 

I 
25kHz 

Figure 5-6: Noise-free Output (No Aliasing Distortion) 

I 
30kHz 
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You can sec in Figure 5-7 that is unacceptable to use a 10 KHz sampling rate to produce a 4 KHz 
wavefonn. One of the beat frequencies (10- 4) is within the range of the filter, allowing some of 
that undesirable frequency to show up in the audio output. 

filter response 

0 db 1----- -I\ 
Diff. 

4kHz 
\ 

\ 
-30 db ~ I 

5kHz 
' 

10 kHz sampling frequency 

Sum 

I I I 
10kHz 15kHz 20kHz 25kHz 

/----- desired output frequency 

Figure 5-7: Some Aliasing Distortion 

I 
30kHz 

All of this gives rise to the following equation, showing that the sampling frequency must exceed 
the output frequency by at least 7 KHz, so that the beat frequency will be above the cutoff range 
of the anti-aliasing filter: 

Minimum sampling rate= highest frequency component+ 7KHz 

The frequency component of the equation is stated as "highest frequency component" because 
you may be producing a complex wavefonn with multiple frequency clements, rather than a pure 
sine wave. 

LOW-PASS FILTER 

The system includes a low-pass filter that eliminates aliasing distortion as described above. This 
filter becomes active around 4 KHz and gradually begins to attenuate (cut off) the signal. 
Generally, you cannot clearly hear frequencies higher than 7 KHz. Therefore, you get the most 
complete frequency response in the frequency range of 0 - 7 KHz. If you are making frequencies 
from 0 to 7KHz, you should select a sampling rate no less than 14 KHz, which corresponds to a 
sampling period in the range 124 to 256. 
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At a sampling period around 320, you begin to lose the higher frequency values between 0 KHz 
and 7KHz, as shown in Table 5-6. 

Table 5-6: Sampling Rate and Frequency Relationship 

Sampling Sampling Maximum Output 
Period Rate (KHz) Frequency (KHz) 

Maximum sampling rate 124 29 7 

Minimum sampling rate 256 14 7 
for 7 KHz output 

Sampling rate too low 320 11 4 
for 7 KHz output 

In A2000's with 2layer motherboards and later ASOO models there is a control bit that allows the 
audio output to bypass the low pass filter. This control bit is the same output bit of the 8520 CIA 
that controls the brightness of the red "power" LED (CIA A $BFE001 - Bit 1: /LED). Bypassing 
the filter allows for improved sound in some applications, but an external filter with an 
appropriate cutoff frequency may be required. 

Using Direct (Non-DMA) Audio Output 

It is possible to create sound by writing audio data one word at a time to the audio output 
addresses, instead of setting up a list of audio data in memory. This method of controlling the 
output is more processor-intensive and is therefore not recommended. 

To use direct audio output, do not enable the DMA for the audio channel you wish to usc; this 
changes the timing of the interrupts. The normal interrupt occurs after a data address has been 
read; in direct audio output, the interrupt occurs after one data word has been output. 

Unlike in the DMA-controllcd automatic data output, in direct audio output, if you do not write a 
new set of data to the output addresses before two sampling intervals have elapsed, the audio 
output will cease changing. The last value remains as an output of the digital-to-analog converter. 

The volume and period registers are set as usual. 
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The Equal-tempered Musical Scale 

Table 5-7 gives a close approximation of the equal-tempered scale over one octave when the 
sample size is 16 bytes. The "Period" column gives the period count you enter into the period 
register. The length register AUDxLEN should be set to 8 (16 bytes = 8 words). The sample 
should represent one cycle of the wavefonn. 

Table 5-7: Equal-tempered Octave for a 16 Byte Sample 

NTSC PAL Ideal Actual NTSC Actual PAL 
Period Period Note Frequency Frequency Frequency 

254 252 A 880.0 880.8 879.7 
240 238 A# 932.3 932.2 931.4 
226 224 B 987.8 989.9 989.6 
214 212 c 1046.5 1045.4 1045.7 
202 200 C# 1108.7 1107.5 1108.4 
190 189 D 1174.7 1177.5 1172.9 
180 178 D# 1244.5 1242.9 1245.4 
170 168 E 1318.5 1316.0 1319.5 
160 159 F 1396.9 1398.3 1394.2 
151 150 F# 1480.0 1481.6 1477.9 
143 141 G 1568.0 1564.5 1572.2 
135 133 G# 1661.2 1657.2 1666.8 

The table above shows the period values to use with a 16 byte sample to make tones in the second 
octave above middle C. To generate the tones in the lower octaves, there are two methods you 
can use, doubling the period value or doubling the sample size. 

When you double the period, the time between each sample is doubled so the sample takes twice 
as long to play. This means the frequency of the tone generated is cut in half which gives you the 
next lowest octave. Thus, if you play a C with a period value of 214, then playing the same 
sample with a period value of 428 will play a C in the next lower octave. 

Likewise, when you double the sample size, it will take twice as long to play back the whole 
sample and the frequency of the tone generated will be in the next lowest octave. Thus, if you 
have an 8 byte sample and a 16 byte sample of the same wavefonn played at the same speed, the 
16 byte sample will be an octave lower. 

A sample for an equal-tempered scale typically represents one full cycle of a note. To avoid 
aliasing distortion with these samples you should use period values in the range 124-256 only. 
Periods from 124-256 correspond to playback rates in the range 14-28K samples per second 
which makes the most effective use of the Amiga's 7KHz cut-off filter to prevent noise. To stay 
within this range you will need a different sample for each octave. 
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If you cannot use a different sample for each octave, then you will have to adjust the period value 
over its full range 124-65536. This is easier for the programmer but can produce undesirable 
high-frequency noise in the resulting tone. Read the section called "Aliasing Distortion" for 
more about this. 

The values in Table 5-7 were generated using the formula shown below. To calculate the tone 
generated with a given sample size and period use: 

Frequency= Clock Constant = 35795~5 = SSO.SHz 
Sample Bytes* Period 16*Perwd 

The clock constant in an NTSC system is 3579545 ticks per second. In a PAL system, the clock 
constant is 3546895 ticks per second. Sample bytes is the number of bytes in one cycle of the 
waveform sample. (The clock constant is derived from dividing the system clock value by 2. The 
value will vary when using an external system clock, such as a genlock.) 

Using the formula above you can generate the values needed for the even-tempered scale for any 
arbitrary sample. Table 5-8 gives a close approximation of a five octave even tempered-scale 
using five samples. The values were derived using the formula above. Notice that in each octave 
period values are the same but the sample size is halved. The samples listed represent a simple 
triangular wave form. 
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Table 5-8: Five Octave Even-tempered Scale 

NTSC PAL Ideal ActuaiNTSC Actual PAL 
Period Period Note Frequency Frequency Frequency 

254 252 A 55.00 55.05 54.98 
240 238 A# 58.27 58.26 58.21 
226 224 B 61.73 61.87 61.85 
214 212 c 65.40 65.34 65.35 
202 200 C# 69.29 69.22 69.27 
190 189 D 73.41 73.59 73.30 
180 178 D# 77.78 77.68 77.83 
170 168 E 82.40 82.25 82.47 
160 159 F 87.30 87.39 87.13 
151 150 F# 92.49 92.60 92.36 
143 141 G 98.00 97.78 98.26 
135 133 G# 103.82 103.57 104.17 

Sample size= 256 bytes, AUDxLEN = 128 

254 252 A 110.00 110.10 109.96 
240 238 A# 116.54 116.52 116.43 
226 224 B 123.47 123.74 123.70 
214 212 c 130.81 130.68 130.71 
202 200 C# 138.59 138.44 138.55 
190 189 D 146.83 147.18 146.61 
180 178 D# 155.56 155.36 155.67 
170 168 E 164.81 164.50 164.94 
160 159 F 174.61 174.78 174.27 
151 150 F# 184.99 185.20 184.73 
143 141 G 196.00 195.56 196.52 
135 133 G# 207.65 207.15 208.35 

Sample size= 128 bytes, AUDxLEN = 64 

254 252 A 220.00 220.20 219.92 
240 238 A# 233.08 233.04 232.86 
226 224 B 246.94 247.48 247.41 
214 212 c 261.63 261.36 261.42 
202 200 C# 277.18 276.88 277.10 
190 189 D 293.66 294.37 293.23 
180 178 D# 311.13 310.72 311.35 
170 168 E 329.63 329.00 329.88 
160 159 F 349.23 349.56 348.55 
151 150 F# 369.99 370.40 369.47 
143 141 G 392.00 391.12 393.05 
135 133 G# 415.30 414.30 416.70 

Sample size = 64 bytes, AUDxLEN = 32 
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NTSC PAL Ideal Actual NTSC Actual PAL 
Period Period Note Frequency Frequency Frequency 

254 252 A 440.0 440.4 439.8 
240 238 A# 466.16 466.09 465.72 
226 224 B 493.88 494.96 494.82 
214 212 c 523.25 522.71 522.83 
202 200 C# 554.37 553.77 554.20 
190 189 D 587.33 588.74 586.46 
180 178 D# 622.25 621.45 622.70 
170 168 E 659.26 658.00 659.76 
160 159 F 698.46 699.13 697.11 
151 150 F# 739.99 740.80 738.94 
143 141 G 783.99 782.24 786.10 
135 133 G# 830.61 828.60 833.39 

Sample size= 32 bytes, AUDxLEN = 16 

254 252 A 880.0 880.8 879.7 
240 238 A# 932.3 932.2 931.4 
226 224 B 987.8 989.9 989.6 
214 212 c 1046.5 1045.4 1045.7 
202 200 C# 1108.7 1107.5 1108.4 
190 189 D 1174.7 1177.5 1172.9 
180 178 D# 1244.5 1242.9 1245.4 
170 168 E 1318.5 1316.0 1319.5 
160 159 F 1396.9 1398.3 1394.2 
151 150 F# 1480.0 1481.6 1477.9 
143 141 G 1568.0 1564.5 1572.2 
135 133 G# 661.2 1657.2 1666.8 

Sample size= 16 bytes, AUDxLEN = 8 
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256 Byte Sample 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 
32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 
64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 
96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 

128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 
96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 
64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 
32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 
0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 

-32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62 
-64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 
-96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 

-127 -126 -124 -122 -120 -118 -116 -114 -112 -110 -108 -106 -104 -102 -100 -98 
-96 -94 -92 -90 -88 -86 -84 -82 -80 -78 -76 -74 -72 -70 -68 -66 
-64 -62 -60 -58 -56 -54 -52 -50 -48 -46 -44 -42 -40 -38 -36 -34 
-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 

128 Byte Sample 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 

128 124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 
64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 
-127 -124 -120 -116 -112 -108 -104 -100 -96 -92 -88 -84 -80 -76 -72 -68 
-64 -60 -56 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 

64 Byte Sample 

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 
128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 

0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 
-127 -120 -112 -104 -96 -88 -80 -72 -64 -56 -48 -40 -32 -24 -16 -8 

32 Byte Sample 

0 16 32 48 64 80 96 112 128 112 96 80 64 48 32 16 
0 -16 -32 -48 -64 -80 -96 -112 -127 -112 -96 -80 -64 -48 -32 -16 

16 Byte Sample 

0 32 64 96 128 96 64 32 0 -32 -64 -96 -127 -96 -64 -32 
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Decibel Values for Volume Ranges 

Table 5-9 provides the corresponding decibel values for the volume ranges of the Amiga system. 

Table 5-9: Decibel Values and Volume Ranges 

Volume Decibel Value Volume Decibel Value 

64 0.0 32 -6.0 
63 -0.1 31 -6.3 
62 -0.3 30 -6.6 
61 -0.4 29 -6.9 
60 -0.6 28 -7.2 
59 -0.7 27 -7.5 
58 -0.9 26 -7.8 
57 -1.0 25 -8.2 
56 -1.2 24 -8.5 
55 -1.3 23 -8.9 
54 -1.5 22 -9.3 
53 -1.6 21 -9.7 
52 -1.8 20 -10.1 
51 -2.0 19 -10.5 
50 -2.1 18 -11.0 
49 -2.3 17 -11.5 
48 -2.5 16 -12.0 
47 -2.7 15 -12.6 
46 -2.9 14 -13.2 
45 -3.1 13 -13.8 
44 -3.3 12 -14.5 
43 -3.5 11 -15.3 
42 -3.7 10 -16.1 
41 -3.9 9 -17.0 
40 -4.1 8 -18.1 
39 -4.3 7 -19.2 
38 -4.5 6 -20.6 
37 -4.8 5 -22.1 
36 -5.0 4 -24.1 
35 -5.2 3 -26.6 
34 -5.5 2 -30.1 
33 -5.8 1 -36.1 

0 Minus infinity 
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The Audio State Machine 

For an explanation of the various states, refer to Figure 5-8. There is one audio state machine for 
each channel. The machine has eight states and is clocked at the clock constant rate (3.58 MHz 
NTSC). Three of the states are basically unused and just transfer back to the idle (000) state. 
One of the paths out of the idle state is designed for interrupt-driven operation (processor 
provides the data), and the other path is designed for DMA-driven operation (the "Agnus" 
special chip provides the data). 

In interrupt-driven operation, transfer to the main loop (states 010 and 011) occurs immediately 
after data is written by the processor. In the 010 state the upper byte is output, and in the 011 
state the lower byte is output. Transitions such as 010----jOll----jOlQ occur whenever the period 
counter counts down to one. The period counter is reloaded at these transitions. As long as the 
interrupt is cleared by the processor in time, the machine remains in the main loop. Otherwise, it 
enters the idle state. Interrupt~ are generated on every word transition (01J---j010). 

In DMA-driven operation, transition to the 001 state occurs and DMA requests are sent to Agnus 
as soon as DMA is turned on. Because of pipclining in Agnus, the first data word must be thrown 
away. State 101 is entered as soon as this word arrives; a request for the next data word has 
already gone out. When the data arrives, state 010 is entered and the main loop continues until 
the DMA is turned off. The length counter counts down once with each word that comes in. 
When it finishes, a DMA restart request goes to Agnus along with the regular DMA request. This 
tells Agnus to reset the pointer to the beginning of the table of data. Also, the length counter is 
reloaded and an interrupt request goes out soon after the length counter finishes (counts to one). 
The request goes out just as the last word of the waveform starts its output. 

DMA requests and restart requests arc transferred to Agnus once each horizontal line, and the data 
comes back about 14 clock cycles later (the duration of a clock cycle is 280 ns). 

In attach mode, things run a little differently. In attach volume, requests occur as they do in 
normal operation (on the 011----jOlQ transition). In attach period, a set of requests occurs on the 
01 0----jO 11 transition. When both attach period and attach volume are high, requests occur on both 
transitions. 

If the sampling rate is set much higher than the normal maximum sampling rate (approximately 
29 KHz), the two samples in the buffer register will be repeated. If the filter on the Amiga is 
bypassed and the volume is set to the maximum ($40), this feature can be used to make 
modulated carriers up to 1.79 MHz. The modulation is placed in the memory map, with plus 
values in the even bytes and minus values in the odd bytes. 

The symbols used in the state diagram are explained in the following list. Upper-case names 
indicate external signals; lower-case names indicate local signals. 

AUDxON DMA on ''x'' indicates channel number (signal from DMACON). 
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AUDxiP 

AUDxiR 

intreql 

intreq2 

AUDxDAT 

AUDxDR 

AUDxDSR 

dmasen 

percntrld 

percount 

perfin 

lencntrld 

len count 

len fin 

volcntrld 

pbufldl 

pbufld2 

AUDxAV 

AUDxAP 

penhi 

napnav 

Audio interrupt pending (input to channel from interrupt circuitry). 

Audio interrupt request (output from channel to interrupt circuitry) 

Interrupt request that combines with intreq2 to form AUDxiR.. 

Prepare for interrupt request. Request comes out after the next 011~010 
transition in normal operation. 

Audio data load signal. Loads 16 bits of data to audio channel. 

Audio DMA request to Agnus for one word of data. 

Audio DMA request to Agnus to reset pointer to start of block. 

Restart request enable. 

Reload period counter from back-up latch typically written by processor 
with AUDxPER (can also be written by attach mode). 

Count period counter down one latch. 

Period counter finished (value= 1). 

Reload length counter from back-up latch. 

Count length counter down one notch. 

Length counter finished (value= 1). 

Reload volume counter from back-up latch. 

Load output buffer from holding latch written to by AUDxDAT. 

Like pbufld1, but only during 010~011 with attach period. 

Attach volume. Send data to volume latch of next channel instead of to 
D~A converter. 

Attach period. Send data to period latch of next channel instead of to the 
D~A converter. 

Enable the high 8 bits of data to go to the D~A converter. 

I A UDxA V * I A UDxAP + A UDxA V-no attach stuff or else attach 
volume. Condition for normal DMA and interrupt requests. 
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S02 

sq2,1,0 The name of the state flip-flops, MSB to LSB. 

sao 

501 

Brackets [ i 'nd•cate actoon on fnndot,on 
Parentheses! I ondocate c.:~usr qf <.tatf Trans•t•on 

I {NOTE 
I 
I 
I 
I 
I 
I 
I 

E •cept tor th>s case. dmasen •s true j 

~~:~.wA~~;·6~:~~~~xOA • dmas~n \ 

Figure 5-8: Audio State Diagram 

ECS Audio. For information on the audio hardware in the Enhanced Chip Set, sec 
the ECS register map in Appendix C. 
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chapter six 
BLITTER HARDWARE 

This chapter covers the operation of the Amiga's blitter, the high speed line drawing and block 
movement component of the system. The discussion is divided into three parts: blitter basics, 
blitter area fill mode, and blitter line draw mode. Some example blitter operations are listed at the 
end of the chapter. 

For information concerning the blitter hardware in the Enhanced Chip Set, see Appendix C. 

What is the Blitter? 

The blitter is one of the two coprocessors in the Amiga. Part of the Agnus chip, it is used to copy 
rectangular blocks of memory around and to draw lines. When copying memory, it is 
approximately twice as fast as the 68000, able to move almost four megabytes per second. It can 
draw lines at almost a million pixels per second. 

In block move mode, the blitter can perform any logical operation on up to three source areas, it 
can shift up to two of the source areas by one to fifteen bits, it can fill outlined shapes, and it can 
mask the first and last words of each raster row. In line mode, any pattern can be imposed on a 
line, or the line can be drawn such that only one pixel per horizontal line is set. 

The blitter can only access Chip memory- that portion of memory accessible by the display 
hardware. Attempting to use the blitter to read or write Fast or other non-Chip memory may 
result in destruction of the contents of Chip memory. 

A "blit" is a single operation of the blitter- perhaps the drawing of a line or movement of a 
block of memory. A blit is performed by initializing the blitter registers with appropriate values 
and then starting the blitter by writing the BLTSIZE register. As the blitter is an asynchronous 
coprocessor, the 680x0 CPU continues to run as the blit is executing. 
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Memory Layout 

The blitter is a word blitter, not a bit blitter. All data fetched, modified, and written are in full 
16-bit words. Through careful programming, the blitter can do many ''bit" type operations. 

The blitter is particularly well suited to graphics operations. As an example, a 320 by 200 screen 
set up to display 16 colors is organized as four bitplanes of 8,000 bytes each. Each bitplane 
consists of 200 rows of 40 bytes or 20 16-bit words. (From here on, a "word" will mean a 16-bit 
word.) 

DMA Channels 

The blitter has four DMA channels - three source channels, labeled A, B, and C, and one 
destination channel, called D. Each of these channels has separate address pointer, modulo and 
data registers and an enable bit. Two have shift registers, and one has a first and last word mask 
register. All four share a single blit size register. 

The address pointer registers are each composed of two words, named BLTxPTH and BL TxPfL. 
(Here and later, in referring to a register, any '' x'' in the name should be replaced by the channel 
label, A, B, C, or D.) The two words of each register are adjacent in the 68000 address space, 
with the high address word first, so they can both be written with one 32-bit write from the 
processor. The pointer registers should be written with an address in bytes. Because the blitter 
works only on words, the least significant bit of the address is ignored. Because only Chip 
memory is accessible, some of the most significant bits will be ignored as well. On machines 
with 512 KB of Chip memory, the most significant 13 bits are ignored. On machines with more 
Chip memory, fewer bits will are ignored. A valid, even, Chip memory address should always be 
written to these registers. 

Set unused bits to zero. Be sure to write zeros to all unused bits in the custom chip 
registers. These bits may be used by later versions of the custom chips. Writing non­
zero values to these bit-; may cause unexpected results on future machines. 

Each of the DMA channels can be independently enabled or disabled. The enable bits are bits 
SRCA, SRCB, SRCC, and DEST in control register zero (BLTCONO). 

When disabled, no memory cycles will be executed for that channel and, for a source channel, the 
constant value stored in the data register of that channel will be used for each blitter cycle. For 
this purpose, each ofthe three source channels have preloadable data registers, called BLTxDAT. 
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Images in memory are usually stored in a linear fashion; each word of data on a line is located at 
an address that is one greater than the word on its left. i.e. Each line is a "plus one" 
continuation of the previous line. 

20 21 22 23 24 25 26 
27 28 29 30 31 32 33 
34 35 36 37 38 39 40 
41 42 43 44 45 46 47 
48 49 50 51 52 53 54 
55 56 57 58 59 60 61 

Figure 6-1: How Images are Stored in Memory 

The map in Figure 6-1 represents a single bitplane (one bit of color) of an image at word 
addresses 20 through 61. Each of these addresses accesses one word (16 pixels) of a single 
bitplane. If this image required sixteen colors, four bitplanes like this would be required in 
memory, and four copy (move) operations would be required to completely move the image. 

The blitter is very efficient at copying such blocks because it needs to be told only the starting 
address (20), the destination address, and the size of the block (height = 6, width = 7). It will then 
automatically move the data, one word at a time, whenever the data bus is available. When the 
transfer is complete, the blitter will signal the processor with a flag and an interrupt. 

NOTE: This copy (move) operation operates on memory and may or may not change 
the memory currently being used for display. 

All data copy blits are performed as rectangles of words, with a given width and height. All four 
DMA channels use a single blit size register, called BLTSIZE, used for both the width and height. 
The width can take a value of from 1 to 64 words (16 to 1024 bits). The height can run from 1 to 
1024 rows. The width is stored in the least significant six bits of the BLTSIZE register. If a 
value of zero is stored, a width count of 64 words is used. This is the only parameter in the blitter 
that is given in words. The height is stored in the upper ten bits of the BLTSIZE register, with 
zero representing a height of 1024 rows. Thus, the largest blit possible with the current Amiga 
blitter is 1024 by 1024 pixels. However, shifting and masking operations may require an extra 
word be fetched for each raster scan line, making the maximum practical horizontal width 1008 
pixels. 

8/itter counting. To emphasize the above paragraph: Blit width is in words with a 
zero representing 64 words. Blit height is in lines with a zero representing 1024 lines. 

Slitter Hardware 171 



----------------------------------

The blitter also has facilities, called modulos, for accessing images smaller than the entire 
bitplane. Each of the four DMA channels has a 16-bit modulo register called BL TxMOD. As 
each word is fetched (or written) for an enabled channel, the address pointer register is 
incremented by two (two bytes, or one word). After each row of the blit is completed, the signed 
16-bit modulo value for that DMA channel is added to the address pointer. (A row is defined by 
the width stored in BLTSIZE.) 

About blitter modulos. The modulo values are in bytes, not words. Since the blitter 
can only operate on words, the least significant bit is ignored. The value is sign­
extended to the full width of the address pointer registers. Negative modulos can be 
useful in a variety of ways, such as repeating a row by setting the modulo to the 
negative of the width of the bitplane. 

As an example, suppose we want to operate on a section of a full 320 by 200 pixel bitmap that 
started at row 13, byte 12 (where both are numbered from zero) and the section is 10 bytes wide. 
We would initialize the pointer register to the address of the bitplane plus 40 bytes per row times 
13 rows, plus 12 bytes to get to the correct horizontal position. We would set the width to 5 
words (10 bytes). At the end of each row, we would want to skip over 30 bytes to get to the 
beginning of the next row, so we would use a modulo value of 30. In general, the width (in 
words) times two plus the modulo value (in bytes) should equal the full width, in bytes, of the 
bitplane containing the image. 

These calculations are illustrated in Figure 6-1 which shows the required values used in the blitter 
registers BLTxMOD and BLTxPTR. 

About the blitter and ECS. The blitter size and pointer registers have increased 
range under the Enhanced Chip Set (ECS). With the original version of the Amiga's 
custom chips, blits were limited to 1008 by 1024 pixels. With the ECS version of the 
custom chips, up to 32K by 32K pixel blits are possible. Refer to Appendix C for 
more information on ECS and the blitter registers. 
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Figure 6-2: BLTxPTR and BLTxMOD calculations 

39 

1·· .. 

NOTE: The blitter can be used to process linear rather than rectangular regions by 
setting the horizontal or vertical count in BLTSIZE to 1. 

window 
bitmap 

Because each DMA channel has its own modulo register, data can be moved among bitplanes of 
different widths. This is most useful when moving small images into larger screen bitplanes. 
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Function Generator 

The blitter can combine the data from the three source DMA channels in up to 256 different ways 
to generate the values stored by the destination DMA channel. These sources might be one 
bitplane from each of three separate graphics images. While each of these sources is a rectangular 
region composed of many points, the same logic operation will be performed on each point 
throughout the rectangular region. Thus, for purposes of defining the blitter logic operation it is 
only necessary to consider what happens for all of the possible combinations of one bit from each 
of the three sources. 

There are eight possible combinations of values of the three bits, for each of which we need to 
specify the corresponding destination bit as a zero or one. This can be visualized with a standard 
truth table, as shown below. We have listed the three source channels, and the possible values for 
a single bit from each one. 

A B c D BL TCONO position Min term 

0 0 0 ? 0 ABC 
0 0 1 ? 1 ABC 
0 1 0 ? 2 ABC 
0 1 1 ? 3 ABC 
1 0 0 ? 4 ABC 
1 0 1 ? 5 ABC 
1 1 0 ? 6 ABC 
1 1 1 ? 7 ABC 

This information is collected in a standard format, the LF control byte in the BLTCONO register. 
This byte programs the blitter to perform one of the 256 possible logic operations on three 
sources for a given blit. 

To calculate the LF control byte in BLTCONO, fill in the truth table with desired values for D, 
and read the function value from the bottom of the table up. 

For example, if we wanted to set all bits in the destination where the corresponding A source bit 
is 1 or the corresponding B source bit is 1, we would fill in the last four entries of the truth table 
with 1 (because the A bit is set) and the third, fourth, seven, and eight entries with 1 (because the 
B bit is set), and all others (the first and second) with 0, because neither A nor B is set Then, we 
read the truth table from the bottom up, reading 11111100, or $FC. 

For another example, an LF control byte of $80 ( = 1000 0000 binary) turns on bits only for those 
points of the D destination rectangle where the corresponding bits of A, B, and C sources were all 
on (ABC = 1, bit 7 of LF on). All other points in the rectangle, which correspond to other 
combinations for A, B, and C, will be 0. This is because bits 6 through 0 of the LF control byte, 
which specify the D output for these situations, are set to 0. 
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DESIGNING THE LF CONTROL BYTE WITH MINTERMS 

One approach to designing the LF control byte uses logic equations. Each of the rows in the truth 
table corresponds to a "mintenn ", which is a particular~ent of values to the A, B, and C 
bits. For instance, the first mintenn is usually written ABC, or "not A and not B and not C". 
The last is written as ABC. 

Blitter logic. Two tenns that are adjacent are AND'ed, and two tenns that are 
separated by "+" are OR'ed. AND has a higher precedence, so AB + BC is equal to 
(AB) + (BC). 

Any function can be written as a sum of mintenns. If we wanted to calculate the function where 
D js one when the A bit is set and the C bit is clear, or when the B bit is set, we can write that as 
AC+B, or "A and not Cor B". Since "1 and A" is "A": 

-
D=AC+B 

D = A(l)C + (l)B(l) 

Since either A or A is true (1 = A + A), and similarly forB, and C; we can expand the above 
equation further: 

D = A(l)C + (l)B(l) 

D = A(B + B)C + (A + A)B(C + C) 

D = ABC + ABC + AB(C + C) + AB(C + C) 

D=ABC+ABC+ABC+ABC+ABC+ABC 

After eliminating duplicates, we end up with the five mintenns: 

AC+B = ABC+ ABC +ABC + ABC+ ABC 

These correspond to BLTCONO bit positions of 6, 4, 7, 3, and 2, according to our truth table, 
which we would then set, and clear the rest. 

The wide range of logic operations allow some sophisticated graphics techniques. For instance, 
you can move the image of a car across some pre-existing building images with a few blits. 
Producing this effect requires predrawn images of the car, the buildings (or background), and a 
car ''mask'' that contains bits set wherever the car image is not transparent. This mask can be 
visualized as the shadow of the car from a light source at the same position as the viewer. 
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About mask bitplanes. The mask for the car need only be a single bitplane 
regardless of the depth of the background bitplane. This mask can be used in tum on 
each of the background bitplanes. 

To animate the car, first save the background image where the car will be placed. Next copy the 
car to its first location with another blit. Your image is now ready for display. To create the next 
image, restore the old background, save the next portion of the background where the car will be, 
and redraw the car, using three separate blits. (This technique works best with beam­
synchronized blits or double buffering.) 

To temporarily save the background, copy a rectangle of the background (from the A channel, for 
instance) to some backup buffer (using the D channel). In this case, the function we would use is 
''A'', the standard copy function. From Table 6-1, we note that the corresponding LF code has a 
value of $FO. 

To draw the car, we might use the A DMA channel to fetch the car mask, the B DMA channel to 
fetch the actual car data, the C DMA channel to fetch the background, and the D DMA channel to 
write out the new image. 

Warning: We must fetch the destination background before we write it, as only a 
portion of a destination word might need to be modified, and there is no way to do a 
write to only a portion of a word. 

When blitting the car to the background we would want to use a function that, whenever the car 
mask (fetched with DMA channel A) had a bit set, we would pass through the car data from B, 
and whenever A did not have a bit set, we would pass through the original backgroun_il from C. 
The corresponding function, commonly referred to as the cookie-cut function, is AB+AC, which 
works out to an LF code value of $CA. 

To restore the background and prepare for the next frame, we would copy the information saved 
in the first step back, with the standard copy function ($FO). 

If you shift the data and the mask to a new location and repeat the above three steps over and 
over, the car will appear to move across the background (the buildings). 

NOTE: This may not be the most effective method of animation, depending on the 
application, but the cookie-cut function will appear often. 

Table 6-llists some of the most common functions and their values, for easy reference. 
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Table 6-1: Table of Common Mintenn Values 

Selected BLTCONO Selected BLTCONO 
Equation LFCode Equation LFCode 

D=A $FO D= AB $CO 

- -
D=A $OF D= AB $30 

-
D=B $CC D= AB $0C 

D=B $33 D= AB $03 

D=C $AA D= BC $88 

- -
D=C $55 D= BC $44 

-
D=AC $AO D= BC $22 

-
D=AC $50 D= AC $11 

- -
D=AC $0A D= A+B $F3 

D=AC $05 D= A+B $3F 

-
D=A+B $PC D= A+C $F5 

-
D=A+B $CF D= A+C $5F 

-
D=A+C $FA D= B+C $DD 

-
D=A+C $AF D= B+C $77 

-
D=B+C $EE D= AB +AC $CA 

-
D=B+C $BB 
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DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS 

Another way to arrive at a particular function is through the use of Venn diagrams: 

Slitter 

Figure 6-3: Blitter Mintenn Venn Diagram 

1. To select a function D=A (that is, destination = A source only), select only the mintenns that 
are totally enclosed by the A-circle in the Figure above. This is the set of mintenns 7, 6, 5, 
and 4. When written as a set of Is for the selected minterms and Os for those not selected, 
the value becomes: 

Minterm Number 
Selected Mintenns 

76543210 
11110000 

F 0 equals $FO 

2. To select a function that is a combination of two sources, look for the minterms by both of 
the circles (their intersection). For example, the combination AB (A ''and'' B) is represented 
by the area common to both the A and B circles, or mintenns 7 and 6. 

Minterm Numbers 
Selected Mintenns 
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76543210 
11000000 

C 0 equals $CO 



3. To use a function that is the inverse, or "not", of one of the sources, such as A, take all of 
the mintenns not enclosed by the circle represented by A on the above Figure. In this case, 
we have mintenns 0, 1, 2, and 3. 

Mintenn Numbers 
Selected Mintenns 

76543210 
00001111 

0 F equals $OF 

4. To combine mintenns, or "or" them, "or" the values together. For example, the equation 
AB+BC becomes 

Mintenn Numbers 
AB 
BC 

AB+BC 

Shifts and Masks 

76543210 
11000000 
10001000 

11001000 
C 8 equals $C8 

Up to now we have dealt with the blitter only in moving words of memory around and combining 
them with logic operations. This is sufficient for moving graphic images around, so long as the 
images stay in the same position relative to the beginning of a word. If our car image has its 
leftmost pixel on the second pixel from the left, we can easily draw it on the screen in any 
position where the leftmost pixel also starts two pixels from the beginning of some word. But 
often we want to draw that car shifted left or right by a few pixels. To this end, both the A and B 
DMA channels have a barrel shifter that can shift an image between 0 and 15 bits. 

This shifting operation is completely free; it requires no more time to execute a blit with shifts 
than a blit without shifts, as opposed to shifting with the 680x0. The shift is normally towards 
the right. This shifter allows movement of images on pixel boundaries, even though the pixels 
are addressed 16 at a time by each word address of the bitplane image. 

So if the incoming data is shifted to the right, what is shifted in from the left? For the first word 
of the blit, zeros are shifted in; for each subsequent word of the same blit, the data shifted out 
from the previous word is shifted in. 

The shift value for the A channel is set with bits 15 through 12 of BL TCONO; the B shift value is 
set with bits 15 through 12 of BLTCONl. For most operations, the same value will be used for 
both shifts. For shifts of greater than fifteen bits, load the address register pointer of the 
destination with a higher address; a shift of 100 bits would require the destination pointer to be 
advanced 100/16 or 6 words (12 bytes), and a right shift of the remaining 4 bits to be used. 
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As an example, let us say we are doing a blit that is three words wide, two words high, and we are 
using a shift of 4 bits. For simplicity, let us asswne we are doing a straight copy from A to D. 
The first word that will be written to D is the first word fetched from A, shifted right four bits 
with zeros shifted in from the left. The second word will be the second word fetched from the A, 
shifted right, with the least significant (rightmost) four bits of the first word shifted in. Next, we 
will write the first word of the second row fetched from A, shifted four bits, with the least 
significant four bits of the last word from the first row shifted in. This would continue until the 
blit is finished. 

On shifted blits, therefore, we only get zeros shifted in for the first word of the first row. On all 
other rows the blitter will shift in the bits that it shifted out of the previous row. For most 
graphics applications, this is undesirable. For this reason, the blitter has the ability to mask the 
first and last word of each row coming through the A DMA channel. Thus, it is possible to 
extract rectangular data from a source whose right and left edges are between word boundaries. 
These two registers are called BL T AFWM and BL TAL WM, for blitter A channel first and last 
word masks. When not in use, both should be initialized to all ones ($FFFF). 

A note about fonts. Text fonts on the Amiga are stored in a packed bitmap. 
Individual characters from the font are extracted using the blitter, masking out 
unwanted bits. The character may then be positioned to any pixel alignment by 
shifting it the appropriate amount. 

These masks are '' anded'' with the source data, before any shifts are applied. Only when there is 
a J bit in the first-word mask will that bit of source A actually appear in the logic operation. The 
first word of each row is anded with BLTAFWM, and the last word is "anded" with 
BLTALWM. If the width of the row is a single word, both masks are applied simultaneously. 

The masks are also useful for extracting a certain range of ''columns'' from some bitplane. Let 
us say we have, for example, a predrawn rectangle containing text and graphics that is 23 pixels 
wide. The leftmost edge is the leftmost bit in its bitmap, and the bitmap is two words wide. We 
wish to render this rectangle starting at pixel position 5 into our 320 by 200 screen bitmap, 
without disturbing anything that lies outside of the rectangle. 
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Figure 6-4: Extracting a Range of Columns 

To do this, we point the B DMA channel at the bitmap containing the source image, and the D 
DMA channel at the screen bitmap. We use a shift value of 5. We also point the C DMA channel 
at the screen bitmap. We use a blit width of 2 words. What we need is a simple copy operation, 
except we wish to leave the first five bits of the first word, and the last four bits (2 times 16, less 
23, less 5) of the last word alone. The A DMA channel comes to the rescue. We preload the A 
data register with $FFFF (all ones), and use a first word mask with the most significant five bits 
set to zero ($07FF) and a last word mask with the least significant four bits set to zero ($FFFO). 
We do not enable the A DMA channel, but only the B, C, and D channels, since we want to use 
the A channel as a simple row mask. We then wish to pass the B (source) data along wherever 
the A channel is 1 (for a minterm of AB) and p~s along the original destination data (from the C 
chann~l) wherever A is 0 (for a minterm of AC), yielding our classic cookie-cut function of 
AB+AC, or $CA. 

About disabling. Even though the A channel is disabled, we use It m our logic 
function and preload the data register. Disabling a channel simply turns off the 
memory fetches for that channel; all other operations are still performed, only from a 
constant value stored in the channel's data register. 
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An alternative but more subtle way of accomplishing the same thing is to use an A shift of five, a 
first word mask of all ones, and a last word mask with the rightmost nine bits set to zero. All 
other registers remain the same. 

Warning: Be sure to load the blitter immediate data registers only after setting the 
shift count in BLTCONO/BLTCONl, as loading the data registers first will lead to 
unpredictable results. For instance, if the last person left B SHIFT to be "4 ", and I 
load BDATA with "1" and then change BSHIFT to "2", the resulting BDATA that 
is used is "1<<4", not "1<<2". The act ofloading one of the data registers "draws" 
the data through the machine and shifts it. 

Descending Mode 

Our standard memory copy blit works fine if the source docs not overlap the destination. If we 
want to move an image one row down (towards increasing addresses), however, we run into a 
problem - we overwrite the second row before we get a chance to copy it! The blitter has a 
special mode of operation- descending mode- that solves this problem nicely. 

Descending mode is turned on by setting bit one of BLTCONl (defined as BLITREVERSE). If 
you use descending mode the address pointers will be decremented by two (bytes) instead of 
incremented by two for each word fetched. In addition, the modulo values will be subtracted 
rather than added. Shifts are then towards the left, rather than the right, the first word mask 
masks the last word in a row (which is still the first word fetched), and the last word mask masks 
the first word in a row. 

Thus, for a standard memory copy, the only difference in blittcr setup (assuming no shifting or 
masking) is to initialize the address pointer registers to point to the last word in a block, rather 
than the first word. The modulo values, blit size, and all other parameters should be set the same. 

NOTE: This differs from predecrement versus postincrement in the 680x0, where an 
address register would be initialized to point to the word after the last, rather than the 
last word. 

Descending mode is also necessary for area filling, which will be covered in a later section. 
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Copying Arbitrary Regions 

One of the most common uses of the blitter is to move arbitrary rectangles of data from one 
bitplane to another, or to different positions within a bitplane. These rectangles are usually on 
arbitrary bit coordinates, so shifting and masking are necessary. There are further complications. 
It may take several readings and some experimentation before everything in this section can be 
understood. 

A source image that spans only two words may, when copied with certain shifts, span three 
words. Our 23 pixel wide rectangle above, for instance, when shifted 12 bits, will span three 
words. Alternatively, an image spanning three words may fit in two for certain shifts. Under all 
such circumstances, the blit size should be set to the larger of the two values, such that both 
source and destination will fit within the blit size. Proper masking should be applied to mask out 
unwanted data. 

Some general guidelines for copying an arbitrary region are as follows. 

1. Use the A DMA channel, disabled, preloaded with all ones and the appropriate mask and 
shift values, to mask the cookie cut function. Use the B channel to fetch the source data, the 
C channel to fetch the destination data, and the D channel to write the destination data. Use 
the cookie-cut function $CA. 

2. If shifting, always use ascending mode if bit shifting to the right, and use descending mode if 
bit shifting to the left. 

NOTE: These shifts are the shifts of the bit position of the leftmost edge within a 
word, rather than absolute shifts, as explained previously. 

3. If the source and destination overlap, use ascending mode if the destination has a lower 
memory address (is higher on the display) and descending mode otherwise. 

4. If the source spans more words than the destination, use the same shift value for the A 
channel as for the source B channel and set the first and last word masks as if they were 
masking the B source data. 

5. If the destination spans more words than the source, use a shift value of zero for the A 
channel and set the first and last word masks as if they were masking the destination D data. 

6. If the source and destination span the same number of words, use the A channel to mask 
either the source, as in 4, or the destination, as in 5. 
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Warning: Conditions 2 and 3 can be contradictory if, for instance, you are trying to 
move an image one pixel down and to the right. In this case, we would want to use 
descending mode so our destination does not overwrite our source before we use the 
source, but we would want to use ascending mode for the right shift. In some 
situations, it is possible to get around general guideline 2 above with clever masking. 
But occasionally just masking the first or last word may not be sufficient; it may be 
necessary to mask more than 16 bits on one or the other end. In such a case, a mask 
can be built in memory for a single raster row, and the A DMA channel enabled to 
explicitly fetch this mask. By setting the A modulo value to the negative of the width 
of the mask, the mask will be repeatedly fetched for each row. 

Area Fill Mode 

In addition to copying data, the blitter can simultaneously perform a fill operation during the 
copy. The fill operation has only one restriction - the area to fill must be defined first by 
drawing untextured lines with only one bit set per horizontal row. A special line draw mode is 
available for this operation. Use a standard copy blit (or any other blit, as area fills take place 
after all shifts, masks and logical combination of sources). Descending mode must be used. Set 
either the inclusive-fill-enable bit (FILL_OR, or bit 3) or the exclusive-fill-enable bit 
(FILL_XOR, or bit 4) in BLTCON1. The inclusive fill mode fills between lines, leaving the lines 
intact. The exclusive fill mode fills between lines, leaving the lines bordering the right edge of 
filled regions but deleting the lines bordering the left edge. Exclusive fill yields filled shapes one 
pixel narrower than the same pattern filled with inclusive fill. 

For instance, the pattern: 

00100100-00011000 

filled with inclusive fill, yields: 

00111100-00011000 

with exclusive fill, the result would be 

00011100-00001000 

(Of course, fills are always done on full 16-bit words.) 
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, _________ ----------

There is another bit (FILL_CARRYIN or bit 3 in BLTCON1) that forces the area "outside" the 
lines be filled; for the above example, with inclusive fill, the output would be 

11100111-11111111 

with exclusive fill, the output would be 

11100011-11110111 
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Figure 6-5: Use of the FCI Bit- Bit Is a 0 
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If the FCI bit is a 1 instead of a 0, the area outside the lines is filled with 1s and the area inside the 
lines is left with Os in between. 
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Figure 6-6: Use of the FCI Bit -Bit Is a 1 

If you wish to produce very sharp, single-point vertices, exclusive-fill enable must be used. 
Figure 6-7 shows how a single-point vertex is produced using exclusive-fill enable. 
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before after exclusive fill 

1 1 1 1 1111 1111 
1 1 1 1 111 111 

1 1 1 1 11 11 
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1 1 1 1 1111 1111 

Figure 6-7: Single-Point Vertex Example 

The blitter uses the fill carry-in bit as the starting fill state beginning at the rightmost edge of each 
line. For each '' 1'' bit in the source area, the blitter flips the fill state, either filling or not filling 
the space with ones. This continues for each line until the left edge of the blit is reached, at which 
point the filling stops. 

Slitter Done Flag 

When the BLTSIZE register is written the blit is started. The processor does not stop while the 
blitter is working, though; they can both work concurrently, and this provides much of the speed 
evident in the Amiga. This does require some amount of care when using the blitter. 

A blitter done flag, also called the blitter busy flag, is provided as DMAF _BLTDONE in 
DMACONR. This flag is set when a blit is in progress. 

About the blitter done flag. If a blit has just been started but has been locked out of 
memory access because of, for instance, display fetches, this bit may not yet be set. 
The processor, on the other hand, may be running completely uninhibited out of Fast 
memory or its internal cache, so it will continue to have memory cycles. 

The solution is to read a chip memory or hardware register address with the processor before 
testing the bit. This can easily be done with the sequence: 

btst.b #DMAB_BLTDONE-8,DMACONR(al) 
btst.b #DMAB_BLTDONE-B,DMACONR(al) 

where al has been preloaded with the address of the hardware registers. The first "test" of the 
blitter done bit may not return the correct result, but the second will. 

186 Amiga Hardware Reference Manual 



NOTE: Starting with the Fat Agnus the blitter busy bit has been "fixed" to be set as 
soon as you write to BLTSIZE to start the blit, rather than when the blitter geL<; its first 
DMA cycle. However, not all machines will use these newer chips, so it is best to rely 
on the above method of testing. 

MULTITASKING AND THE BUTTER 

When a blit is in progress, none of the blitter registers should be written. For details on 
arbitration of blitter access in the system, please refer to the ROM Kernel Manual. In particular, 
read the discussion about the OwnBlitter() and DisownBlitter() functions. Even after the blitter 
has been "owned", a blit may still be finishing up, so the blitter done flag should be checked 
before using it even the first time. Use of the ROM kernel function WaitBlit() is recommended. 

You should also check the blitter done flag before using results of a blit. The blit may not be 
finished, so the data may not be ready yet. This can lead to difficult to find bugs, because a 68000 
may be slow enough for a blit to finish without checking the done flag, while a 68020, perhaps 
running out of its cache, may be able to get at the data before the blitter has finished writing it. 

Let us say that we have a subroutine that displays a text box on top of other imagery temporarily. 
This subroutine might allocate a chunk of memory to hold the original screen image while we arc 
displaying our text box, then draw the text box. On exit, the subroutine might blit the original 
imagery back and then free the allocated memory. If the memory is freed before the blitter done 
flag is checked, some other process might allocate that memory and store new data into it before 
the blit is finished, trashing the blitter source and, thus, the screen imagery being restored. 

Interrupt Flag 

The blitter also has an interrupt flag that is set whenever a blit finishes. This flag, INTF _BLIT, 
can generate a 680x0 interrupt if enabled. For more information on interrupts, see Chapter 7 
''System Control Hardware.'' 

Zero Flag 

A blitter zero flag is provided that can be tested to determine if the logic operation selected has 
resulted in zero bits for all destination bits, even if those destination bits are not written due to the 
D DMA channel being disabled. This feature is often useful for collision detection, by 
performing a logical "and" on two source images to test for overlap. If the images do not 
overlap, the zero flag will stay true. 

The Zero flag is only valid after the blitter has completed its operation and can be read from bit 
DMAF_BLTNZERO of the DMACONR register. 
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Pipeline Register 

The blitter performs many operations in each cycle - shifting and masking source words, logical 
combination of sources, and area fill and zero detect on the output. To enable so many things to 
take place so quickly, the blitter is pipelined. This means that rather than performing all of the 
above operations in one blitter cycle, the operations are spread over two blitter cycles. (Here 
"cycle" is used very loosely for simplicity.) To clarify this, the blitter can be imagined as two 
chips connected in series. Every cycle, a new set of source operations come in, and the first chip 
performs its operations on the data. It then passes the half-processed data to the second chip to be 
finished during the next cycle, when the first chip will be busy at work on the next set of data. 
Each set of data takes two "cycles" to get through the two chips, overlapped so a set of data can 
be pumped through each cycle. 

What all this means is that the first two sets of sources are fetched before the first destination is 
written. This allows you to shift a bitmap up to one word to the right using ascending mode, for 
instance, even though normally parts of the destination would be overwritten before they were 
fetched. 

USE Code 
in Active 

BLTCONO Channels Cycle Sequence 

F A B c D AO BO co - Al Bl Cl DO A2 B2 C2 Dl D2 
E A B c AO BO co Al Bl Cl A2 B2 C2 
D A B D AO BO - Al Bl DO A2 B2 Dl - D2 
c A B AO BO - Al Bl - A2 B2 
B A c D AO co - Al Cl DO A2 C2 Dl - D2 
A A c AO co Al Cl A2 C2 
9 A D AO - Al DO A2 Dl - D2 
8 A AO - Al - A2 
7 B c D BO co - Bl Cl DO - B2 C2 Dl - D2 
6 B c BO co - Bl Cl - B2 C2 
5 B D BO - Bl DO - B2 Dl - D2 
4 B BO - Bl - B2 
3 c D co - Cl DO - C2 Dl - D2 
2 c co - Cl - C2 
1 D DO - Dl - D2 
0 none 

Table 6-2: Typical Blitter Cycle Sequence 
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Here are a few caveats to keep in mind about Table 6-2. 

o No fill. 

o No competing bus activity. 

o Three-word blit. 

o Typical operation involves fetching all sources twice before the first destination becomes 
available. This is due to internal pipelining. Care must be taken with overlapping source and 
destination regions. 

Warning: This Table is only meant to be an illustration of the typical order of blitter 
cycles on the bus. Bus cycles are dynamically allocated based on blitter operating 
mode; competing bus activity from processor, bitplanes, and other DMA channels; 
and other factors. Commodore Amiga does not guarantee the accuracy of or future 
adherence to this chart. We reserve the right to make product improvements or design 
changes in this area without notice. 

Line Mode 

In addition to all of the functions described above, the blitter can draw patterned lines. The line 
draw mode is selected by setting bit 0 (LINEMODE) of BLTCONl, which changes the meaning 
of some other bits in BLTCONO and BLTCONl. In line draw mode, the blitter can draw lines up 
to 1024 pixels long, it can draw them in a variety of modes, with a variety of textures, and can 
even draw them in a special way for simple area fill. 

Many of the blitter registers serve other purposes in line-drawing mode. Consult Appendix A for 
more detailed descriptions of the use of these registers and control bits in line-drawing mode. 

In line mode, the blitter draws a line from one point to another, which can be viewed as a vector. 
The direction of the vector can lie in any of the following eight octants. (In the following 
diagram, the standard Amiga convention is used, with x increasing towards the right and y 
increasing down.) The number in parenthesis is the octant numbering; the other number 
represents the value that should be placed in bits 4 through 2 of BL TCONI. 
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Figure 6-8: Octants for Line Drawing 

Line drawing based on octants is a simplification that takes advantage of symmetries between x 
and -x, y and -y. The following Table lists the octant number and corresponding values: 

Table 6-3: BLTCONl Code Bits for Octant Line Drawing 

BL TCONl Code Bits 
4 3 2 

1 1 0 
0 0 1 
0 1 
1 1 1 
1 0 1 
0 1 0 
0 0 0 
1 0 0 

Octant# 

0 
1 
2 
3 
4 
5 
6 
7 

We initialize BLTCON1 bits 4 through 2 according to the above Table. Now, we introduce the 
variables dx and dy, and set them to the absolute values of the difference between the x 
coordinates and they coordinates of the endpoints of the line, respectively. 
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dx = abs(x2 - xl) 
dy = abs(y2- yl) 

Now, we rearrange them if necessary so dx is greater than dy. 

if (dx < dy) 
{ 

temp = dx 
dx dy ; 
dy = temp 
} 

Alternately, set dx and dy as follows: 

dx = max(abs(x2- xl), abs(y2- yl)) 
dy = min(abs(x2- xl), abs(y2- yl)) 

These calculations have the effect of ''normalizing'' our line into octant 0; since we have already 
informed the blitter of the real octant to use, it has no difficulty drawing the line. 

We initialize the A pointer register to 4 * dy- 2 * dx. If this value is negative, we set the sign bit 
(SIGNFLAG in BLTCONl), otherwise we clear it. We set the A modulo register to 4 * (dy- dx) 
and the B modulo register to 4 * dy. 

The A data register should be preloaded with $8000. Both word masks should be set to $FFFF. 
The A shift value should be set to the x coordinate of the first point (xl) modulo 15. 

The B data register should be initialized with the line texture pattern, if any, or $FFFF for a solid 
line. The B shift value should be set to the bit number at which to start the line texture (zero 
means the last significant bit.) 

The C and D pointer registers should be initialized to the word containing the first pixel of the 
line; the C and D modulo registers should be set to the width of the bitplane in bytes. 

The SRCA, SRCC, and DEST bits of BL TCONO should be set to one, and the SRCB flag should 
be set to zero. The OVFLAG should be cleared. If only a single bit per horizontal row is desired, 
the ONEDOT bit of BL TCONl should be set; otherwise it should be cleared. 

The logic function remains. The C DMA channel represents the original source, the A channel 
the bi!_ to set in the line, and the B channel the pattern to draw. Thus, to draw a line, the function 
AB+AC is the most common. To draw ti:!_e !!_ne using exclusive-or mode, so it can be easily 
erased by drawing it again, the function ABC+AC can be used. 

We set the blit height to the length of the line, which is dx + 1. The width must be set to two for 
all line drawing. (Of course, the BL TSIZE register should not be written until the very end, when 
all other registers have been filled.) 
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REGISTER SUMMARY FOR LINE MODE 

Preliminary setup: 

The line goes from (xl,yl) to (x2,y2). 

dx = max(abs(x2- xl), abs(y2- yl)) 
dy = min(abs(x2- xl), abs(y2- yl)) 

Register setup: 

BLT ADAT = $8000 
BLTBDAT =line texture pattern ($FFFF for a solid line) 

BLTAFWM = $FFFF 
BLTALWM = $FFFF 

BLTAMOD=4 * (dy-dx) 
BLTBMOD = 4 * dy 
BLTCMOD = width of the bitplane in bytes 
BLTDMOD =width of the bitplane in bytes 

BLTAPT = (4 * dy)- (2 * dx) 
BL TBPT = unused 
BL TCPT = word containing the first pixel of the line 
BLTDPT =word containing the first pixel of the line 

BLTCONO bits 15-12 =xi modulo 15 
BLTCONO bits SRCA, SRCC, and SRCD = 1 
BLTCONO bit SRCB = 0 

If exclusive-or line mode: 
then BLTCONO LF control byte = ABC ± AC 
else BL TCONO LF control byte = AB + AC 

BLTCONI bitLINEMODE= 1 
BLTCONl bit OVFLAG = 0 
BLTCONl bits 4-2 =octant number from table 
BLTCONI bits 15-12 =start bit for line texture (0 =last significant bit) 

If (((4 * dy)- (2 * dx)) < 0): 
then BLTCONl bit SIGNFLAG = 1 
else BLTCONl bit SIGNFLAG = 0 

If one pixeVrow: 
then BLTCONl bit ONEDOT = 1 
else BLTCONl bit ONEDOT= 0 

BLTSIZE bits 15-6 = dx + 1 
BLTSIZE bits 5-0= 2 

Warning: You must set the BLTSIZE register last as it starts the blit. 
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Slitter Speed 

The speed of the blitter depends entirely on which DMA channels are enabled. You might be 
using a DMA channel as a constant, but unless it is enabled, it does not count against you. The 
minimum blitter cycle is four ticks; the maximum is eight ticks. Use of the A register is always 
free. Usc of the B register always adds two ticks to the blitter cycle. Usc of either CorD is free, 
but use of both adds another two ticks. Thus, a copy cycle, using A and D, takes four clock ticks 
per cycle; a copy cycle using B and D takes six ticks per cycle, and a generalized bit copy using 
B, C, and D takes eight ticks per cycle. When in line mode, each pixel takes eight ticks. 

The system clock speed for NTSC Amigas is 7.16 megahertz (PAL Amigas 7.00 megahertz). 
The clock for the blitter is the system clock. To calculate the total time for the blit in 
microseconds, excluding setup and DMA contention, you use the equation (for NTSC): 

n*H*W 
t= 

7.16 

For PAL: 

n* H*W 
t= 

7.09 

where t is the time in microseconds, n is the number of clocks per cycle, and H and W are the 
height and width (in words) of the blit, respectively. 

For instance, to copy one bitplane of a 320 by 200 screen to another bitplane, we might choose to 
use the A and D channels. This would require four ticks per blitter cycle, for a total of 

4 * 200 * 20 ----- = 2235 microseconds. 
7.16 

These timings do not take into account blitter setup time, which is the time required to calculate 
and load the blitter registers and start the blit. They also ignore DMA contention. 
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Blitter Operations and System DMA 

The operations of the blitter affect the performance of the rest of the system. The following 
sections explain how system performance is affected by blitter direct memory access priority, 
DMA time slot allocation, bus sharing between the 680x0 and the display hardware, the 
operations of the blitter and Copper, and different play field display sizes. 

The blitter performs its various data-fetch, modify, and store operations through DMA sequences, 
and it shares memory access with other devices in the system. Each device that accesses memory 
has a priority level assigned to it, which indicates its importance relative to other devices. 

Disk DMA, audio DMA, display DMA, and sprite DMA all have the highest priority level. 
Display DMA has priority over sprite DMA under certain circumstances. Each of these four 
devices is allocated a group of time slots during each horizontal scan of the video beam. If a 
device does not request one of its allocated time slots, the slot is open for other uses. These 
devices are given first priority because missed DMA cycles can cause lost data, noise in the sound 
output, or on-screen interruptions. 

The Copper has the next priority because it has to perform its operations at the same time during 
each display frame to remain synchronized with the display beam sweeping across the screen. 

The lowest priorities are assigned to the blitter and the 68000, in that order. The blitter is given 
the higher priority because it performs data copying, modifying, and line drawing operations 
operations much faster than the 68000. 

During a horizontal scan line (about 63 microseconds), there are 227.5 "color clocks", or 
memory access cycles. A memory cycle is approximately 280 ns in duration. The total of 227.5 
cycles per horizontal line includes both display time and non-display time. Of this total time, 226 
cycles are available to be allocated to the various devices that need memory access. 

The time-slot allocation per horizontal line is: 

4 cycles for memory refresh 

3 cycles for disk DMA 

4 cycles for audio DMA (2 bytes per channel) 

16 cycles for sprite DMA (2 words per channel) 

80 cycles for bitplane DMA (even- or odd-numbered slots according to the display size used) 

Figure 6-9 shows one complete horizontal scan line and how the clock cycles are allocated. 
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The 68000 uses only the even-numbered memory access cycles. The 68000 spends about half of 
a complete processor instruction time doing internal operations and the other half accessing 
memory. Therefore, the allocation of alternate memory cycles to the 68000 makes it appear to the 
68000 that it has the memory all of the time, and it will run at full speed. 

Some 68000 instructions do not match perfectly with the allocation of even cycles and cause 
cycles to be missed. If cycles are missed, the 68000 must wait until its next available memory 
slot before continuing. However, most instructions do not cause cycles to be missed, so the 
68000 runs at full speed most of the time if there is no blitter DMA interference. 

Figure 6-10 illustrates the normal cycle of the 68000. 

Avoid the TAS instruction. The 68000 test-and-set instruction (TAS) should never 
be used in the Amiga; the indivisible read-modify-write cycle that is used only in this 
instruction will not fit into a DMA memory access slot. 

average 68000 cycle 

internal ---------•~--------- memory 
operation access 

portion portion 

odd cycle, 
assigned to 

other devices 

even cycle, 
available to 
the 68000 

Figure 6-10: Normal68000 Cycle 

If the display contains four or fewer low resolution bitplanes, the 68000 can be granted alternate 
memory cycles (if it is ready to ask for the cycle and is the highest priority item at the time). 
However, if there are more than four bitplanes, bitplane DMA will begin to steal cycles from the 
68000 during the display. 

During the display time for a six bitplane display (low resolution, 320 pixels wide), 160 time 
slots will be taken by bitplane DMA for each horizontal line. As you can see from Figure 6-11, 
bitplane DMA steals 50 percent of the open slots that the processor might have used if there were 
only four bitplanes displayed. 
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Figure 6-11: Time Slots Used by a Six Bitp1ane Display 

If you specify four high resolution bitplanes (640 pixels wide), bitplane DMA needs all of the 
available memory time slots during the display time just to fetch the 40 data words for each line 
of the four bitplanes (40 * 4 = 160 time slots). This effectively locks out the 68000 (as well as the 
blitter or Copper) from any memory access during the display, except during horizontal and 
vertical blanking. 

• timing cycle· 
T 

4 2 3 4 2 3 

Figure 6-12: Time Slots Used by a High Resolution Display 

Each horizontal line in a normal, full-sized display contains 320 pixels in low resolution mode or 
640 pixels in high resolution mode. Thus, either 20 or 40 words will be fetched during the 
horizontal line display time. If you want to scroll a playfield, one extra data word per line must 
be fetched from the memory. 

Display size is adjustable (see Chapter 3, "Playfield Hardware"), and bitplane DMA takes 
precedence over sprite DMA. As shown in Figure 6-9, larger displays may block out one or more 
of the highest-numbered sprites, especially with scrolling. 
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As mentioned above, the blitter normally has a higher priority than the processor for DMA cycles. 
There arc certain cases, however, when the blitter and the 68000 can share memory cycles. If 
given the chance, the blitter would steal every available Chip memory cycle. Display, disk, and 
audio DMA take precedence over the blitter, so it cannot block them from bus access. Depending 
on the setting of the blitter DMA mode bit, commonly referred to as the "blitter-nasty" bit, the 
processor may be blocked from bus access. This bit is called DMAF _BLITHOG and is in 
register DMACON. 

If DMAF _BUT HOG is a 1, the blitter will keep the bus for every available Chip memory cycle. 
This could potentially be every cycle (ROM and Fast memory are not typically Chip memory 
cycles). 

If DMAF _BLITHOG is a 0, the DMA manager will monitor the 68000 cycle requests. If the 
68000 is unsatisfied for three consecutive memory cycles, the blitter will release the bus for one 
cycle. 

Slitter Block Diagram 

o Figure 6-13 shows the basic building blocks for a single bit of a 16-bit wide operation of the 
blitter. It docs not cover the line-drawing hardware. 

o The upper left comer shows how the first- and last- word masks are applied to the 
incoming A-source data. When the blit shrinks to one word wide, both masks are applied. 

o The shifter (upper right and center left) drawing illustrates how 16 bits of data is taken from a 
specified position within a 32-bit register, based on the A shift orB shift values shown in 
BLTCONO and BLTCONl. 

o The mintcrm generator (center right) illustrates how the minterm select bits either allow or 
inhibit the use of a specific minterm. 

o The drawing shows how the fill operation works on the data generated by the minterm 
combinations. Fill operations can be performed simultaneously with other complex logic 
operations. 

o At the bottom, the drawing shows that data generated for the destination can be prevented 
from being written to a destination by using one of the blitter control bits. 

o Not shown on this diagram is the logic for zero detection, which looks at every bit generated 
for the destination. If there arc any 1-bits generated, this logic indicates that the area of the 
blit contained at least one 1-bit (zero detect is false.) 
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Figure 6-13: Blitter Block Diagram 
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Slitter Key Points 

This is a list of some key points that should be remembered when programming the blitter. 

o Write BLTSIZE last; writing this register starts the blit. 

o Modulos and pointers are in bytes; width is in words and height is in pixels. The least 
significant bit of all pointers and modulos is ignored. 

o The order of operations in the blitter is masking, shifting, logical combination of sources, 
area fill, and zero flag setting. 

o In ascending mode, the blitter increments the pointers, adds the modulos, and shifts to the 
right. 

o In descending mode, the blitter decrements the pointers, subtracts the modulos, and shifts to 
the left. 

o Area fill only works correctly in descending mode. 

o Check BL TDONE before writing blitter registers or using the results of a blit. 

o Shifts are done on immediate data as soon as it is loaded. 

EXAMPLE: ClearMem 

Blitter example---memory clear 

include 'exec/types.i' 
include 'hardware/custom.i' 
include 'hardware/dmabits.i' 
include 'hardware/blit.i' 
include 'hardware/hw_examples.i" 

xref custom 

Wait for previous blit to complete. 

waitblit: 
btst.b #DMAB_BLTDONE-8,DMACONR(al) 

waitblit2: 
btst.b #DMAB_BLTDONE-8,DMACONR(al) 
bne waitblit2 
rts 

This routine uses a side effect in the blitter. When each 
of the blits is finished, the pointer in the blitter is pointing 
to the next word to be blitted. 
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When this routine returns, the last blit is started and might 
not be finished, so be sure to call waitblit above before 
assuming the data is clear. 

aO pointer to first word to clear 
dO number of bytes to clear (must be even) 

xdef 
clearmem: 

lea 
bsr 
move.l 
clr.w 
asr.l 
clr.w 
move.w 

clearmem 

_custom,al 
waitblit 
aO,BLTDPT (al) 
BLTDMOD(al) 
tl,dO 
BLTCONl (al) 
tDEST,BLTCONO(al) 

Get pointer to chip registers 
Make sure previous blit is done 
Set up the D pointer to the region to clear 
Clear the D modulo (don't skip no bytes) 
Get number of words from number of bytes 
No special modes 

only enable destination 

First we deal with the smaller blits 

moveq t$3f,dl Mask out mod 64 words 
and.w dO,dl 
beq do rest none? good, do one blit 
sub.l dl,dO otherwise remove remainder 
or.l t$40,dl set the height to 1, width to n 
move.w dl,BLTSIZE(al) trigger the blit 

Here we do the rest of the words, as chunks of 128k 

dorest: 
move.w 
and.w 
beq 
sub.l 
bsr 
move.w 

dorest2: 
swap 
beq 
clr.w 

keepon: 
bsr 
move.w 
subq.w 
bne 

done: 
rts 
end 

t$ffc0,dl 
dO,dl 
dorest2 
dl,dO 
waitblit 
dO,BLTSIZE(al) 

dO 
done 
dl 

waitblit 
dl,BLTSIZE(al) 
tl,dO 
keepon 

look at some more upper bits 
extract 10 more bits 
any to do? 
pull of the ones we're doing here 
wait for prev blit to complete 
do another blit 

more? 
nope. 
do a 1024x64 word blit (128K) 

finish up this blit 
and again, blit 
still more? 
keep on going. 

finished. Blit still in progress. 
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EXAMPLE: Slmplellne 

This example uses the line draw mode of the blitter 
to draw a line. The line is drawn with no pattern 
and a simple 'or' blit into a single bitplane. 

Input: dO=x1 d1=y1 d2=x2 d3=y2 d4=width aO=aptr 

include 'exec/types.i' 
include 'hardware/custom.i' 
include 'hardware/blit.i' 
include 'hardware/dmabits.i' 

include 'hardware/hw_examples.i' 

xref custom 

xdef simpleline 

Our entry point. 

simpleline: 
lea 
sub.w 
bmi 
sub.w 
bmi 
cmp.w 
bmi 
moveq.l 
bra 

ygtx: 
exg 
moveq.l 
bra 

yneg: 
neg.w 
cmp.w 
bmi 
moveq.l 
bra 

ynygtx: 
exg 
moveq.l 
bra 

xneg: 
neg.w 
sub.w 
bmi 
cmp.w 
bmi 
moveq.l 
bra 

xnygtx: 
exg 
moveq.l 
bra 

custom,al 
dO,d2 

snarf up the custom address register 
calculate dx 

xneg if negative, octant is one of [3,4,5,6] 
dl,d3 calculate dy is one of [1,2,7,8] 
yneg if negative, octant is one of [7,8] 
d3,d2 cmp ldxl,ldyl is one of [1,2] 
ygtx if y>x, octant is 2 
#OCTANTl+LINEMODE,d5 ; otherwise octant is 1 
lineagain go to the common section 

d2,d3 X must be greater than Y 
#OCTANT2+LINEMODE,d5 ; we are in octant 2 
lineagain and common again. 

d3 calculate abs(dy) 
d3,d2 cmp ldxl, Idyl, octant is [7,8] 
ynygtx if y>x, octant is 7 
#OCTANT8+LINEMODE,d5 ; otherwise octant is 8 
lineagain 

d2,d3 ; X must be greater than Y 
#OCTANT7+LINEMODE,d5 ; we are in octant 7 
lineagain 

d2 dx was negative! octant is [3,4,5,6] 
dl,d3 we calculate dy 
xyneg if negative, octant is one of [5,6] 
d3,d2 otherwise it's one of [3,4] 
xnygtx if y>x, octant is 3 
#OCTANT4+LINEMODE,d5 ; otherwise it's 4 
lineagain 

d2,d3 ; X must be greater than Y 
#OCTANT3+LINEMODE,d5 ; we are in octant 3 
lineagain 
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xyneg: 
neg.w d3 y was negative, in one of [5,6] 
cmp.w d3,d2 is y>x? 
bmi xynygtx if so, octant is 6 
moveq.l tOCTANT5+LINEMODE,d5 ; otherwise, octant is 5 
bra lineagain 

xynygtx: 
exg 
moveq.l 

lineagain: 
mulu.w 
ror.l 
add.w 
add.l 
add.w 
swap 
or.w 
lsl.w 
add.w 
move.w 
lsl.w 
add.w 
btst 

waitblit: 
btst 
bne 
move.w 
sub.w 
ext.l 
move.l 
bpl 
or.w 

lineover: 
move.w 
move.w 
move.w 
move.w 
sub.w 
move.w 
move.w 
moveq.l 
move.l 
move.l 
move.l 
move.w 
rts 
end 

d2,d3 ; X must be greater than Y 
tOCTANT6+LINEMODE,d5 ; we are in octant 6 

d4,dl Calculate yl * width 
t4,d0 move upper four bits into hi word 
dO,dO multiply by 2 
dl,aO ptr +- (xl >> 3) 
dO,aO ptr +- yl * width 
dO get the four bits of xl 
t$BFA,d0 or with USEA, USEC, USED, F=A+C 
t2, d3 y = 4 * y 
d2,d2 X = 2 * X 
d2,dl set up size word 
tS,dl shift five left 
t$42,dl and add 1 to height, 2 to width 
tDMAB_BLTDONE-B,DMACONR(al) safety check 

tDMAB_BLTDONE-B,DMACONR(al) 
waitblit 

wait for blitter 

d3,BLTBMOD(al) ; B mod= 4 * Y 
d2,d3 
d3 
d3, BLTAPT (al) 
lineover 
tSIGNFLAG,dS 

dO,BLTCONO (al) 
dS,BLTCONl (al) 
d4,BLTCMOD(al) 
d4, BLTDMOD (al) 
d2,d3 

A ptr = 4 * Y - 2 * X 
if negative, 
set sign bit in conl 

write control registers 

C mod 
D mod 

bitplane width 
bitplane width 

d3,BLTAMOD(al) A mod 4 * Y - 4 * X 
A data = Ox8000 t$8000,BLTADAT(al) 

t-l,dS 
dS,BLTAFWM(al) 
aO, BLTCPT (al) 
aO, BLTDPT (al) 
dl,BLTSIZE(al) 

Set masks to all ones 
we can hit both masks at once 
Pointer to first pixel to set 

Start blit 
and return, blit still in progress. 
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EXAMPLE: RotateBits 

Here we rotate bits. This code takes a single raster row of a 
bitplane, and 'rotates' it into an array of 16-bit words, setting 
the specified bit of each word in the array according to the 
corresponding bit in the raster row. We use the line mode in 
conjunction with patterns to do this magic. 

Input: dO contains the number of words in the raster row. d1 
contains the number of the bit to set (0 .. 15). aO contains a 
pointer to the raster data, and a1 contains a pointer to the 
array we are filling; the array must be at least (d0)*16 words 
(or (d0)*32 bytes) long. 

include 'exec/types.i' 
include 'hardware/custom.i' 
include 'hardware/blit.i' 
include 'hardware/dmabits.i' 

include 'hardware/hw_examples.i' 

xref custom 

xdef rotatebits 

Our entry point. 

rotatebits: 

wait1: 

lea 
tst 
beq 
lea 
moveq.l 
btst 

btst 
bne 
moveq.l 
move.l 
move.w 
clr.w 
move.w 
move.w 
ror.w 
and.w 
or.w 
move.w 
move.w 
move.w 
move.w 
move.w 
move.l 
move.l 
lea 
lea 
move.w 
move.w 
bra 

_custom,a2 
dO 
gone 

We need to access the custom registers 
if no words, just return 

DMACONR(a2),a3 get the address of dmaconr 
tDMAB_BLTDONE-8,d2 ; get the bit number BLTDONE 
d2, (a3) check to see if we're done 

d2, (a3) 
wait1 
t-30,d3 
d3,BLTAPT(a2) 

check again. 
not done? Keep waiting 
Line mode: aptr = 4Y-2X, Y=O; X=15 

t-60,BLTAMOD(a2) ; amod = 4Y-4X 
BLTBMOD(a2) brood 4Y 
t2,BLTCMOD(a2) cmod = width of bitmap (2) 
t2,BLTDMOD(a2) ditto 
t4,d1 grab the four bits of the bit number 
t$fOOO,d1 mask them out 
t$bca,d1 USEA, USEC, USED, F=AB+-AC 
d1,BLTCONO(a2) stuff it 
t$f049,BLTCON1(a2) BSH=15, SGN, LINE 
t$8000,BLTADAT(a2) Initialize A dat for line 
t$ffff,BLTAFWM(a2) Initialize masks 
t$ffff,BLTALWM(a2) 
a1,BLTCPT(a2) 
a1,BLTDPT(a2) 
BLTBDAT(a2),a4 
BLTSIZE(a2),a5 
t$402,d1 
(a0)+,d3 
inloop 

Initialize pointer 

For quick access, we grab these two 
addresses 
Stuff bltsize; width=2, height=l6 
Get next word 
Go into the loop 
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again: 
move.w (a0)+,d3 Grab another word 
btst d2, (a3) Check blit done 

wait2: 
btst d2, (a3) Check again 
bne wait2 oops, not ready, loop around 

inloop: 
move.w d3, (a4) stuff new word to make vertical 
move.w dl, (aS) start the blit 
subq.w tl, dO is that the last word? 
bne again keep going if not 

gone: 
rts 
end 

ECS blitter. For infonnation relating to the blitter hardware in the Enhanced Chip 
Set, see Appendix C. 
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chapter seven 
SYSTEM CONTROL 
HARDWARE 

This chapter covers the control hardware of the Amiga system, including the following topics: 

o How playfield priorities may be specified relative to the sprites 

o How collisions between objects are sensed 

o How system direct memory access (DMA) is controlled 

o How interrupts are controlled and sensed 

o How reset and early powerup are controlled 

Video Priorities 

You can control the priorities of various objects on the screen to give the illusion of three 
dimensions. The section below shows how playfield priority may be changed relative to sprites. 

FIXED SPRITE PRIORITIES 

You cannot change the relative priorities of the sprites. They will always appear on the screen 
with the lower-numbered sprites appearing in front of (having higher screen priority than) the 
higher-numbered sprites. This is shown in Figure 7-1. Each box represents the image of the 
sprite number shown in that box. 
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Figure 7-1: Inter-Sprite Fixed Priorities 

HOW SPRITES ARE GROUPED 

For p1ayfield priority and collision purposes only, sprites are treated as four groups of two sprites 
each. The groups of sprites are: 

Sprites 0 and 1 
Sprites 2 and 3 
Sprites 4 and 5 
Sprites 6 and 7 
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UNDERSTANDING VIDEO PRIORITIES 

The concept of video priorities is easy to understand if you imagine that four fingers of one of 
your hands represent the four pairs of sprites and two fingers of your other hand represent the two 
playfields. Just as you cannot change the sequence of the four fingers on the one hand, neither 
can you change the relative priority of the sprites. However, just as you can intertwine the two 
fingers of one hand in many different ways relative to the four fingers of the other hand, so can 
you position the playfields in front of or behind the sprites. This is illustrated in Figure 7-2. 

In front (higher priority) 

~ 
' I 

Behind 

Figure 7-2: Analogy for Video Priority 

Five possible positions can be chosen for each of the two ''playfield fingers.'' For example, you 
can place playfield 1 on top of sprites 0 and 1 (0), between sprites 0 and 1 and sprites 2 and 3 (1), 
between sprites 2 and 3 and sprites 4 and 5 (2), between sprites 4 and 5 and sprites 6 and 7 (3), or 
beneath sprites 6 and 7 (4). You have the same possibilities for playfield 2. 

The numbers 0 through 4 shown in parentheses in the preceding paragraph are the actual values 
you use to select the playfield priority positions. See ''Setting the Priority Control Register'' 
below. 

You can also control the priority of playfield 2 relative to playfield 1. This gives you additional 
choices for the way you can design the screen priorities. 
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SETTING THE PRIORITY CONTROL REGISTER 

This register lets you define how objects will pass in front of each other or hide behind each other. 
Normally, playfield 1 appears in front of playfield 2. The PF2PRI bit reverses this relationship, 
making playfield 2 more important. You control the video priorities by using the bits in 
BPLCON2 (for ''bitplane control register number 2' ') as shown in Table 7 -t. 

Table 7-1: Bits in BPLCON2 

Bit 
Number Name Function 

t5-7 Not used (keep at 0) 

6 PF2PRI Playfield 2 priority 

5-3 PF2P2 - PF2PO Playfield 2 placement with 
respect to the sprites 

2-0 PF1P2 - PF1PO Playfield 1 placement with 
respect to the sprites 

The binary values that you give to bits PF1P2-PF1PO determine where playfield 1 occurs in the 
priority chain as shown in Table 7-2. This matches the description given in the previous section. 

Be careful: PF2P2 - PF2PO, bits 5-3, are the priority bits for normal (non-dual) 
playfields. 

Table 7-2: Priority of Playfields Based on Values of Bits PF1P2-PF1PO 

Value Placement 
(from most important to least important) 

()()() PFt SPOt SP23 SP45 SP67. 

oot SPOt PFt SP23 SP45 SP67 

010 SPOl SP23 PFt SP45 SP67 

Ott SPOt SP23 SP45 PFt SP67 

100 SPOl SP23 SP45 SP67 PF1 

In this table, PFl stands for playfield t, and SP01 stands for the group of sprites numbered 0 and 
1. SP23 stands for sprites 2 and 3 as a group; SP45 stands for sprites 4 and 5 as a group; and 
SP67 stands for sprites 6 and 7 as a group. 
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Bits PF2P2-PF2PO let you position playfield 2 among the sprite priorities in exactly the same 
way. However, it is the PF2PRI bit that detennines which of the two playfields appears in front 
of the other on the screen. Here is a sample of possible BPLCON2 register contents that would 
create something a little unusual: 

BITS 15-7 PF2PRI PF2P2-0 PFIP2-0 

VALUE Os 1 010 000 

This will result in a sprite/playfield priority placement of: 

PF1 SP01 SP23 PF2 SP45 SP67 

In other words, where objects pass across each other, play field 1 is in front of sprite 0 or 1; and 
sprites 0 through 3 are in front of playfield 2. However, playfield 2 is in front of playfield 1 in 
any area where they overlap and where playfield 2 is not blocked by sprites 0 through 3. 

Figure 7-3 shows one use of sprite/playfield priority. The single sprite object shown on the 
diagram is sprite 0. The sprite can "fly" across playfield 2, but when it crosses playfield 1 the 
sprite disappears behind that playfield. The result is an unusual video effect that causes the object 
to disappear when it crosses an invisible boundary on the screen. 

System Control Hardware 211 
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Playfield 2 

liit/71------ ---:.~~.------

·. --······------.. · 
,#'# 

---------~~------

When everything is displayed together, 
sprite 0 is more important than playfield 2 
but less important than playfield 1. 
So even though you can't see the boundary, 
the sprite disappears "behind" the invisible 
PF1 boundary. 

Figure 7-3: Spritc/Playfield Priority 

212 Amiga Hardware Reference Manual 



Collision Detection 

You can use the hardware to detect collisions between one sprite group and another sprite group, 
any sprite group and either of the playfields, the two playfields, or any combination of these 
items. 

The first kind of collision is typically used in a game operation to determine if a missile has 
collided with a moving player. The second kind of collision is typically used to keep a moving 
object within specified on-screen boundaries. The third kind of collision detection allows you to 
define sections of play field as individual objects, which you may move using the blitter. This is 
called playfield animation. If one playfield is defined as the backdrop or playing area and the 
other playfield is used to define objects (in addition to the sprites), you can sense collisions 
between the playfield-objects and the sprites or between the playficld-objects and the other 
playfield. 

HOW COLLISIONS ARE DETERMINED 

The video output is formed when the input data from all of the bitplanes and the sprites is 
combined into a common data stream for the display. For each of the pixel positions on the 
screen, the color of the highest priority object is displayed. Collisions are detected when two or 
more objects attempt to overlap in the same pixel position. This will set a bit in the collision data 
register. 
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HOW TO INTERPRET THE COLLISION DATA 

The collision data register, CLXDAT, is read-only, and its contents arc automatically cleared to 0 
after it is read. Its bits are as shown in Table 7-3. 

Table 7-3: CLXDAT Bits 

Bit Number Collisions Registered 

15 not used 
14 Sprite 4 (or 5) to sprite 6 (or 7) 
13 Sprite 2 (or 3) to sprite 6 (or 7) 
12 Sprite 2 (or 3) to sprite 4 (or 5) 
11 Sprite 0 (or 1) to sprite 6 (or 7) 
10 Sprite 0 (or 1) to sprite 4 (or 5) 
9 Sprite 0 (or 1) to sprite 2 (or 3) 
8 Even bitplanes to sprite 6 (or 7) 
7 Even bitplanes to sprite 4 (or 5) 
6 Even bitplancs to sprite 2 (or 3) 
5 Even bitplanes to sprite 0 (or 1) 
4 Odd bitplanes to sprite 6 (or 7) 
3 Odd bitplanes to sprite 4 (or 5) 
2 Odd bitplanes to sprite 2 (or 3) 
1 Odd bitp1anes to sprite 0 (or 1) 
0 Even bitplanes to odd bitplanes 

About odd-numbered sprites. The numbers in parentheses in Table 7-3 refer to 
collisions that will register only if you want them to show up. The collision control 
register described below lets you either ignore or include the odd-numbered sprites in 
the collision detection. 

Notice that in this table, collision detection does not change when you select either single- or 
dual-playfield mode. Collision detection depends only on the actual bits present in the odd­
numbered or even-numbered bitplanes. The collision control register specifies how to handle the 
bitplanes during collision detect. 

214 Amiga Hardware Reference Manual 



HOW COLLISION DETECTION IS CONTROLLED 

The collision control register, CLXCON, contains the bits that define certain characteristics of 
collision detection. Its bits are shown in Table 7-4. 

Table 7-4: CLXCON Bits 

Bit 
Number Name Function 

15 ENSP7 Enable sprite 7 (OR with sprite 6) 
14 ENSP5 Enable sprite 5 (OR with sprite 4) 
13 ENSP3 Enable sprite 3 (OR with sprite 2) 
12 ENSPl Enable sprite 1 (OR with sprite 0) 
11 ENBP6 Enable bitplane 6 (match required for collision) 
10 ENBP5 Enable bitplane 5 (match required for collision) 
9 ENBP4 Enable bitplane 4 (match required for collision) 
8 ENBP3 Enable bitplane 3 (match required for collision) 
7 ENBP2 Enable bitplane 2 (match required for collision) 
6 ENBPl Enable bitplane 1 (match required for collision) 
5 MVBP6 Match value for bitplane 6 collision 
4 MVBP5 Match value for bitplane 5 collision 
3 MVBP4 Match value for bitplane 4 collision 
2 MVBP3 Match value for bitplane 3 collision 
1 MVBP2 Match value for bitplane 2 collision 
0 MVBPl Match value for bitplane 1 collision 

Bits 15-12 let you specify that collisions with a sprite pair are to include the odd-numbered sprite 
of a pair of sprites. The even-numbered sprites always are included in the collision detection. 
Bits 11-6 let you specify whether to include or exclude specific bitplanes from the collision 
detection. Bits 5-0 let you specify the polarity (true-false condition) of bits that will cause a 
collision. For example, you may wish to register collisions only when the object collides with 
"something green" or "something blue." This feature, along with the collision enable bits, 
allows you to specify the exact bits, and their polarity, for the collision to be registered. 

NOTE: This register is write-only. If all bitplanes are excluded (disabled), then a 
bitplane collision will always be detected. 
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Beam Position Detection 

Sometimes you might want to synchronize the 680x0 processor to the video beam that is creating 
the screen display. In some cases, you may also wish to update a part of the display memory 
after the system has already accessed the data from the memory for the display area. 

The address for accessing the beam counter is provided so that you can determine the value of the 
video beam counter and perform certain operations based on the beam position. NOTE: The 
Copper is already capable of watching the display position for you and doing certain register­
based operations automatically. Refer to "Copper Interrupts" below and Chapter 2, 
"Coprocessor Hardware," for further information. 

In addition, when you are using a light pen, this same address is used to read the light pen 
position rather than the beam position. This is described fully in Chapter 8, "Interface 
Hardware.'' 

USING THE BEAM POSITION COUNTER 

There are four addresses that access the beam position counter. Their usage is described in Table 
7-5. 

VPOSR 

VHPOSR 

VPOSW 

VHPOSW 

Table 7-5: Contents of the Beam Position Counter 

Read-only Read the high bit of the vertical position (V8) and the 

Bit 15 

Bits 14-1 

Bit 0 

Read-only 

Bits 15-8 

Bits 7-0 

Write only 

Write only 

frame-type bit. 

LOF (Long-frame bit). Used to initialize interlaced displays. 

Unused 

High bit of the vertical position (V8). Allows PAL line 
counts (313) to appear in PAL versions of the Amiga. 

Read vertical and horizontal position of the counter that 
is producing the beam on the screen (also reads the light pen). 

Low bits of the vertical position, bits V7-VO 

The horizontal position, bits H8-Hl. Horizontal 
resolution is 1/160th of the screen width. 

Bits same as VPOSR above. 

Bits same as VHPOSR above. Used for counter 
synchronization with chip test patterns. 

As usual, the address pairs VPOSR,VHPOSR and VPOSW,VHPOSW can be read from and 
written to as long words, with the most significant addresses being VPOSR and VPOSW. 
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Interrupts 

This system supports the full range of 680x0 processor interrupts. The various kinds of interrupts 
generated by the hardware are brought into the peripherals chip and are translated into six of the 
seven available interrupts of the 680x0. 

NONMASKABLEINTERRUPT 

Interrupt level 7 is the nonmaskable interrupt and is not generated anywhere in the current system. 
The raw interrupt lines of the 680x0, IPL2 through IPLO, are brought out to the expansion 
connector and can be used to generate this level 7 interrupt for debugging purposes. 

MASKABLEINTERRUPTS 

Interrupt levels 1 through 6 are generated. Control registers within the peripherals chip allow you 
to mask certain of these sources and prevent them from generating a 680x0 interrupt. 

USER INTERFACE TO THE INTERRUPT SYSTEM 

The system software has been designed to correctly handle all system hardware interrupts at 
levels 1 through 6. A separate set of input lines, designated INTI* and INT6* 3 have been routed 
to the expansion connector for use by external hardware for interrupts. These are known as the 
external low- and external high-level interrupts. 

These interrupt lines are connected to the peripherals chip and create interrupt levels 2 and 6, 
respectively. It is recommended that you take advantage of the interrupt handlers built into the 
operating system by using these external interrupt lines rather than generating interrupts directly 
on the processor interrupt lines. 

INTERRUPT CONTROL REGISTERS 

There are two interrupt registers, interrupt enable (mask) and interrupt request (status). Each 
register has both a read and a write address. The names of the interrupt addresses are: 

INTENA 
InterruptO enable (mask) -write only. Sets or clears specific bits of INTENA. 

INTENAR 
Interrupt enable (mask) read - read only. Reads contents of INTENA. 

3 A * indicates an active low signal. 
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- -------------------------------

INTREQ 
Interrupt request (status) - write only. Used by the processor to force a certain kind of 
interrupt to be processed (software interrupt). Also used to clear interrupt request flags once 
the interrupt process is completed. 

INTREQR 
Interrupt request (status) read - read only. Contains the bits that define which items are 
requesting interrupt service. 

The bit positions in the interrupt request register correspond directly to those same positions 
in the interrupt enable register. The only difference between the read-only and the write-only 
addresses shown above is that bit 15 has no meaning in the read-only addresses. 

SETTING AND CLEARING BITS 

Below are the meanings of the bits in the interrupt control registers and how you use them. 

Set and Clear 

The interrupt registers, as well as the DMA control register, use a special way of selecting which 
of the bits are to be set or cleared. Bit 15 of these registers is called the SET/CLR bit. 

When you wish to set a bit (make it a 1), you must place a 1 in the position you want to set and a 
1 into position 15. 

When you wish to clear a bit (make it a 0), you must place a 1 in the position you wish to clear 
and a 0 into position 15. 

Positions 14-0 are bit selectors. You write a 1 to any one or more bits to select that bit. At the 
same time you write a 1 or 0 to bit 15 to either set or clear the bits you have selected. Positions 
14-0 that have 0 value will not be affected when you do the write. If you want to set some bits 
and clear others, you will have to write this register twice (once for setting some bits, once for 
clearing others). 

Master Interrupt Enable 

Bit 14 of the interrupt registers (INTEN) is for interrupt enable. This is the master interrupt 
enable bit. If this bit is a 0, it disables all other interrupts. You may wish to clear this bit to 
temporarily disable all interrupts to do some critical processing task. 

Warning: This bit is used for enable/disable only. It creates no interrupt request. 
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External Interrupts 

Bits 13 and 3 of the interrupt registers are reseiVed for external interrupts. 

Bit 13, EXTER, becomes a 1 when the system line called INT6* becomes a logic 0. Bit 13 
generates a level 6 interrupt. 

Bit 3, PORTS, becomes a 1 when the system line called INT2* becomes a logic 0. Bit 3 causes a 
level 2 interrupt. 

Vertical Blanking Interrupt 

Bit 5, VERTB, causes an interrupt at line 0 (start of vertical blank) of the video display frame. 
The system is often required to perform many different tasks during the vertical blanking interval. 
Among these tasks are the updating of various pointer registers, rewriting lists of Copper tasks 
when necessary, and other system-control operations. 

The minimum time of vertical blanking is 20 horizontal scan lines for an NTSC system and 25 
horizontal scan lines for a PAL system. The range starts at line 0 and ends at line 20 for NTSC or 
line 25 for PAL. After the minimum vertical blanking range, you can control where the display 
actually starts by using the DIWSTRT (display window start) register to extend the effective 
vertical blanking time. See Chapter 3, "Play field Hardware," for more information on 
DIWSTRT. 

If you find that you still require additional time during vertical blanking, you can use the Copper 
to create a level 3 interrupt. This Copper interrupt would be timed to occur just after the last line 
of display on the screen (after the display window stop which you have defined by using the 
DIWSTOP register). 

Copper Interrupt 

Bit 4, COPER, is used by the Copper to issue a level 3 interrupt. The Copper can change the 
content of any of the bits of this register, as it can write any value into most of the machine 
registers. However, this bit has been reseiVed for specifically identifying the Copper as the 
interrupt source. 

Generally, you use this bit when you want to sense that the display beam has reached a specific 
position on the screen, and you wish to change something in memory based on this occurrence. 
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- ------- --------

Audio Interrupts 

Bits 10-7, AUD3- 0, are assigned to the audio channels. They are called AUD3, AUD2, AUDl, 
and AUDO and are assigned to channels 3, 2, 1, and 0, respectively. 

This level 4 interrupt signals ''audio block done.'' When the audio DMA is operating in 
automatic mode, this interrupt occurs when the last word in an audio data stream has been 
accessed. In manual mode, it occurs when the audio data register is ready to accept another word 
of data. 

See Chapter 5, ''Audio Hardware,'' for more information about interrupt generation and timing. 

Blltter Interrupt 

Bit 6, BUT, signals "blitter finished." If this bit is a 1, it indicates that the blitter has completed 
the requested data transfer. The blitter is now ready to accept another task. This bit generates a 
level 3 interrupt. 

Disk Interrupt 

Bits 12 and 1 of the interrupt registers are assigned to disk interrupts. 

Bit 12, DSKSYN, indicates that the sync register matches disk data. This bit generates a level 5 
interrupt. 

Bit 1, DSKBLK, indicates "disk block finished." It is used to indicate that the specified disk 
DMA task that you have requested has been completed. This bit generates a Ievell interrupt. 

More information about disk data transfer and interrupts may be found in Chapter 8, "Interface 
Hardware.'' 

Serial Port Interrupts 

The following serial interrupts are associated with the specified bits of the interrupt registers. 

Bit 11, RBF (for receive buffer full), specifies that the input buffer of the UART has data that is 
ready to read. This bit generates a level 5 interrupt. 

Bit 0, TBE (for "transmit buffer empty"), specifies that the output buffer of the UART needs 
more data and data can now be written into this buffer. This bit generates a level 1 interrupt. 
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Hardware 
Exec software priority 

priority Description 

1 software interrupt SOFT INT 

1 2 disk block complete DSKBLK 

3 transmitter buffer empty TBE 

2 4 external INT2 & CIAA PORTS 

5 graphics coprocessor CO PER 

3 6 vertical blank interval VERTS 

7 blitter finished BUT 

8 audio channel 2 AUD2 

9 audio channel 0 AUOO 
4 

10 audio channel 3 AUD3 

11 audio channel1 AUD1 

12 receiver buffer full RBF 
5 

13 disk sync pattern found DSKSYNC 

14 external INT6 & CIAB EXTER 
6 

15 special (master enable) IN TEN 

7 -- non-maskable interrupt NMI 

Figure 7-4: Interrupt Priorities 
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DMA Control 

Many different direct memory access (DMA) functions occur during system operation. There is a 
read address as well as a write address to the DMA control register so you can tell which DMA 
channels are enabled. 

The address names for the DMA registers arc as follows: 

DMACONR - Direct Memory Access Control - read-only. 
DMACON -Direct Memory Access Control- write-only. 

The contents of this register are shown in Table 7-6 (bit on if enabled). 

Bit 
Number Name Function 

15 SET/CLR The set/reset control bit. See description of bit 
15 under "Interrupts" above. 

14 BBUSY Blitter busy status - read-only 

13 BZERO Blitter zero status- read-only. Remains 1 if, during 
a blitter operation, the blitter output was always zero. 

12, 11 Unassigned 

10 BLTPRI Blitter priority. Also known as "blitter-nasty." 
When this is a 1, the blitter has full (instead of 
partial) priority over the 680x0. 

9 DMAEN DMA enable. This is a master DMA enable bit. It 
enables the DMA for all of the channels at bits 8-0. 

8 BPLEN Bitplane DMA enable 

7 COPEN Coprocessor DMA enable 

6 BLTEN Blitter DMA enable 

5 SPREN Sprite DMA enable 

4 DSKEN Disk DMA enable 

3-0 AUDxEN Audio DMA enable for channels 3-0 (x = 3 - 0). 

Table 7-6: Contents of DMA Control Register 
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For more information on using the DMA, see the following chapters: 

Copper 
Bitplanes 
Sprites 
Audio 
Blitter 
Disk 

Chapter2 
Chapter 3 
Chapter4 
Chapter 5 
Chapter6 
Chapter 8 

''Coprocessor Hardware'' 
''Playfield Hardware'' 
"Sprite Hardware" 
''Audio Hardware'' 
''Blitter Hardware'' 
''Interface Hardware'' 

PROCESSOR ACCESS TO CHIP MEMORY 

The Amiga chips access Chip memory directly via DMA, rather than utilizing traditional bus 
arbitration mechanisms. Therefore, processor supplied features for multiprocessor support, such 
as the 68000 T AS (test and set) instruction, cannot serve their intended purpose and are not 
supported by the Amiga architecture. 

Reset and Early Startup Operation 

When the Amiga is turned on or externally reset, the memory map is in a special state. An 
additional copy of the system ROM responds starting at memory location $00000000. The 
system RAM that would normally be located at this address is not available. On some Amiga 
models, portions of the RAM still respond. On other models, no RAM responds. Software must 
assume that memory is not available. The OVL bit in one of the 8520 Chips disables the overlay 
(See Appendix F for the bit location). 

The Amiga System ROM contains an ID code as the first word. The value of the ID code may 
change in the future. The second word of the ROM contains a JMP instruction ($4ef9). The next 
two words are used as the initial program counter by the 680x0 processor. 

The 68000 RESET instruction works much like external reset or power on. All memory and 
AUTOCONFIGTM cards disappear, and the ROM image appears at location $00000000. The 
difference is that the CPU continues execution with the next instruction. Since RAM may not be 
available, special care is needed to write reboot code that will reliably reboot all Amiga models. 
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Here is a source code listing of the only supported reboot code: 

* NAME 
* ColdReboot - Official code to reset any Amiga (Version 2) 

* * SYNOPSIS 
* ColdReboot() 
* void ColdReboot(void); 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

FUNCTION 
Reboot the machine. All external memory and peripherals will be 
RESET, and the machine will start its power up diagnostics. 

Rebooting an Amiga in software is very tricky. Differing memory 
configurations and processor cards require careful treatment. This 
code represents the best available general purpose reset. The 
MagicResetCode must be used exactly as specified here. The code 
_must_ be longword aligned. Failure to duplicate the code EXACTLY 
may result in improper operation under certain system configurations. 

* RESULT 
* This function never returns. 

ABSEXECBASE 
MAGIC ROMEND 
MAGIC SIZEOFFSET 
V36 EXEC 
TEMP ColdReboot 

ColdReboot: 

INCLUDE "exec/types.i" 
INCLUDE "exec/libraries.i" 

XDEF 
XREF 

ColdReboot 
LVOSupervisor 

EQU 4 
EQU $01000000 
EQU -$14 
EQU 36 
EQU -726 

;Pointer to the Exec library base 
;End of Kickstart ROM 
;Offset from end of ROM to Kickstart size 
;Exec with the ColdReboot() function 
;Offset of the V36 ColdReboot function 

move.l ABSEXECBASE,a6 
cmp.w #V36_EXEC,LIB_VERSION(a6) 
blt.s old exec 
jmp TEMP_ColdReboot(a6) ;Let Exec do it ... 
;NOTE: Control flow never returns to here 

;---- manually 
old exec: 

reset the Amiga ---------------------------------------------

·--------------, 

GoAway: 

lea.l GoAway(pc),aS ;address of code to execute 
jsr _LVOSupervisor(a6) ;trap to code at (aS) ... 
;NOTE: Control flow never returns to here 

MagicResetCode ---------DO NOT CHANGE-----------------------
CNOP 0,4 
lea.l MAGIC_ROMEND,aO 
sub.l MAGIC_SIZEOFFSET(aO),aO 
move.l 4(a0),a0 
subq.l it2,a0 
reset 

;IMPORTANT! Longword align! 
; (end of ROM) 
; (end of ROM)-(ROM size)=PC 
;Get Initial Program Counter 
;now points to second RESET 
;first RESET instruction 

jmp (aO) ;CPU Prefetch executes this 
;NOTE: the RESET and JMP instructions must share a longword! 

;---------------------------------------00 NOT CHANGE----------------------­
END 

ECS system control. For infonnation on the system control registers in the 
Enhanced Chip Set (ECS), see Appendix C. 
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chapter eight 
INTERFACE HARDWARE 

This chapter covers the interface hardware through which the Amiga talks to the outside world, 
including the following features: 

o Two multiple purpose mouse/joystick/light pen control ports 

o Disk controller (for floppy disk drives & other MFM and GCR devices) 

o Keyboard 

o Centronics compatible parallel I/O interface (for printers) 

o RS232-C compatible serial interface (for external modems or other serial devices) 

o Video output connectors (RGB, monochrome, NTSC, RF modulator, video slot) 

Controller Port Interface 

Each Amiga has two nine-pin connectors that can be used for input or output with a variety of 
controllers. Usually, the nine-pin connectors are used with a mouse or joystick but they will also 
accept input from light pens, paddles, trackballs, and other popular input devices. 

Figure 8-1 shows one of the two connectors and the corresponding face-on view of a standard 
controller plug, while table 8-1 gives the pin assignments for some typical controllers. 
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Pen 

1 

2 

3 

4 

5* 

6* 

7 

8 

9* 

Figure 8-1: Controller Plug and Computer Connector 

Face view­
controller plug 

Face view­
computer connector 

Table 8-1: Typical Controller Connections 

Mouse, 
trackball, Proportional X-V 
driving controller proportional 

Joystick controller (pair) joystick 

forward V-pulse --- button 3** 

back H-pulse --- ---

left VQ-pulse left button button 1 

right HQ-pulse right button button 2 

middle right 
POTX --- button** POT 

button 1 left button --- ---

--- +5V +5V +5V 

GND GND GND GND 

button 2 ** right button left POT POTV 

• These pins may also be configured as outputs " These buttons are optional 
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Light pen 

---

---

---

---
pen pressed 

to screen 

beam 
trigger 

+5V 

GND 

button 2** 

-----



REGISTERS USED WITH THE CONTROLLER PORT 

The Amiga chip registers that handle the controller port 1/0 are listed below. 

JOYODAT 
JOYIDAT 
CIAAPRA 
POTODAT 
POTlDAT 
POTGO 
POTGOR 
BPLCONO 
VPOSR 
VHPOSR 

($DFFOOA) 
($DFFOOC) 
($BFE001) 
($DFF012) 
($DFF014) 
($DFF034) 
($DFF016) 
($DFF100) 
($DFF004) 
($DFF006) 

Counter for digital (mouse) input (port 1) 
Counter for digital (mouse) input (port 2) 
Input and output for pin 6 (port 1 and 2 fire buttons) 
Counter for proportional input (port 1) 
Counter for proportional input (port 2) 
Write proportional pin values and start counters 
Read proportional pin values 
Bit 3 enables the light pen latch 
Read light pen position (high order bits) 
Read light pen position (low order bits) 

READING MOUSE/TRACKBALL CONTROLLERS 

Pulses entering the mouse inputs are converted to separate horizontal and vertical counts. The 8 
bit wide horizontal and vertical counter registers can track mouse movement without processor 
intervention. 

The mouse uses quadrature inputs. For each direction, a mechanical wheel inside the mouse will 
produce two pulse trains, one 90 degrees out of phase with the other (see Figure 8-2 for details). 
The phase relationship determines direction. 

The counters increment when the mouse is moved to the right or "down" (toward you). 

The counters decrement when the mouse is moved to the left or' 'up'' (away from you). 
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MOUSE QUADRATURE v VQ D1 DO 

0 0 1 0 
0 1 0 1 
1 0 1 1 
1 1 0 0 

Case 1: Count Up: 

v __} ,--~\==~-
VQ 

I \ I \ I 

DO 

01 0 

Case 2: Count Down: 

v __} \ I \ I \____J 
VQ 

DO 

D1 

02 \_etc 

Figure 8-2: Mouse Quadrature 

Reading the Counters 

The mouse/trackball counter contents can be accessed by reading register addresses named 
JOYODAT and JOYlDAT. These registers contain counts for ports 1 and 2 respectively. 

The contentc; of each of these 16-bit registers are as follows: 

Bits 15-8 Mouse/trackball vertical count 
Bits 7-0 Mouse/trackball horizontal count 
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Counter Limitations 

These counters will "wrap around" in either the positive or negative direction. If you wish to 
use the mouse to control something that is happening on the screen, you must read the counters at 
least once each vertical blanking period and save the previous contents of the registers. Then you 
can subtract from the previous readings to determine direction of movement and speed. 

The mouse produces about 200 count pulses per inch of movement in either a horizontal or 
vertical direction. Vertical blanking happens once each l/60th of a second. If you read the 
mouse once each vertical blanking period, you will most likely find a count difference (from the 
previous count) of less than 127. Only if a user moves the mouse at a speed of more than 38 
inches per second will the counter values wrap. Fast-action games may need to read the mouse 
register twice per frame to prevent counter overrun. 

If you subtract the current count from the previous count, the absolute value of the difference will 
represent the speed. The sign of the difference (positive or negative) lets you determine which 
direction the mouse is traveling. 

The easiest way to calculate mouse velocity is with 8-bit signed arithmetic. The new value of a 
counter minus the previous value will represent the number of mouse counts since the last check. 
The example shown in Table 8-2 presents an alternate method. It treats both counts as unsigned 
values, ranging from 0 to 255. A count of 100 pulses is measured in each case. 

Table 8-2: Determining the Direction of the Mouse 

Previous 
Count 

200 
100 
200 
45 

Current 
Count Direction 

100 Up (Left) 
200 Down (Right) 
45 Down* 

200 Up** 

Notes for Table 8-2: 

* Because 200-45 = 155, which is more than 127, the true count must be 255- ( 200-45) = 100; the 
direction is down. 

** 45-200 = -155. Because the absolute value of -155 exceeds 127, the true count must be 255 + (-
155) = 100; the direction is up. 
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Mouse Buttons 

There are two buttons on the standard Amiga mouse. However, the control circuitry and software 
support up to three buttons. 

o The left button on the Amiga mouse is connected to CIAAPRA ($BFE001). Port 1 uses 
bit 6 and port 2 uses bit 7. A logic state of 1 means "switch open." A logic state of 0 
means ''switch closed.'' (See Appendix F for more information.) 

o Button 2 (right button on Amiga mouse) is connected to pin 9 of the controller ports, one 
of the proportional pins. See ''Digital Input/Output on the Controller Port'' for details. 

o Button 3, when used, is connected to pin 5, the other proportional controller input. 

READING DIGITAL JOYSTICK CONTROLLERS 

Digital joysticks contain four directional switches. Each switch can be individually activated by 
the control stick. When the stick is pressed diagonally, two adjacent switches are activated. The 
total number of possible directions from a digital joystick is 8. All digital joysticks have at least 
one fire button. 

Digital joystick switches are of the normally open type. When the switches are pressed, the input 
line is shorted to ground. An open switch reads as ''1 '', a closed switch as ''0' '. 

Reading the joystick input data logic states is not so simple, however, because the data registers 
for the joysticks are the same as the counters that are used for the mouse or trackball controllers. 
The joystick registers are named JOYODAT and JOY 1 DAT. 

Table 8-3 shows how to interpret the data once you have read it from these registers. The true 
logic state of the switch data in these registers is '' 1 = switch closed.'' 

Data Bit Interpretation 

1 True logic state of "right" .itch. 

9 True logic state of "left" switch. 

1 (XOR) 0 You must calculate the exclusive-or of bits 1 and 0 
to obtain the logic state of the "back" switch. 

9 (XOR) 8 You mu->t calculate the exclusive-or of bits 9 and 8 
to obtain the logic state of the "forward" switch. 

Table 8-3: Interpreting Data from JOYODAT and JOYlDAT 
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The fire buttons for ports 0 and 1 are connected to bits 6 and 7 of CIAAPRA ($BFE001). A 0 
here indicates the switch is closed. 

Some, but not all, joysticks have a second button. We encourage the use of this button if the 
function the button controls is duplicated via the keyboard or another mechanism. This button 
may be read in the same manner as the right mouse button. 
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READING PROPORTIONAL CONTROLLERS 

Each of the game controller ports can handle two variable-resistance input devices, also known as 
proportional input devices. This section describes how the positions of the proportional input 
devices can be detennined. There are two common types of proportional controllers: the 
"paddle" controller pair and the X-Y proportional joystick. A paddle controller pair consists of 
two individual enclosures, each containing a single resistor and fire-button and each connected to 
a common controller port input connector. Typical connections are shown in Figure 8-4. 

Left paddle Right paddle 

resistive element resistive element 

+5 A 
' ' L--------------------~ L--------------------, 

pin 7 
pin 9 pin 7 

pin 9 

j.------------ fire button -------------~ j.------------· fire button ·------------~ 
pin 8 pin 3 pin 8 pin 3 

Figure 8-4: Typical Paddle Wiring Diagram 

In an X-Yproportionaljoystick, the resistive elements are connected individually to the X andY 
axes of a single controller stick. 

Reading Proportional Controller Buttons 

For the paddle controllers, the left and right joystick direction lines serve as the fire buttons for 
the left and right paddles. 

Interpreting Proportional Controller Position 

Interpreting the position of the proportional controller nonnally requires some preliminary work 
during the vertical blanking interval. 

During vertical blanking, you write a value into an address called POTGO. For a standard X-Y 
joystick, this value is hex 0001. Writing to this register starts the operation of some special 
hardware that reads the potentiometer values and sets the values contained in the POT registers 
(described below) to zero. 
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The read circuitry stays in a reset state for the first seven or eight horizontal video scan lines. 
Following the reset interval, the circuit allows a charge to begin building up on a timing capacitor 
whose charge rate will be controlled by the position of the external controller resistance. For each 
horizontal scan line thereafter, the circuit compares the charge on the timing capacitor to a preset 
value. If the charge is below the preset, the POT counter is incremented. If the charge is above 
the preset, the counter value will be held until the next POTGO is issued. 
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_ __ .- for higher resistance 
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--- each pot counter stops 

when voltage reaches 
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______ ------ ------ starts eight horizontal lines 
----- after POT GO is wrinen 

TIM E 

Figure 8-5: Effects of Resistance on Charging Rate 

You normally issue POTGO at the beginning of a video screen, then read the values in the POT 
registers during the next vertical blanking period, just before issuing POTGO again. 

Nothing in the system prevents the counters from overflowing (wrapping past a count of 255). 
However, the system is designed to insure that the counter cannot overflow within the span of a 
single screen. This allows you to know for certain whether an overflow is indicated by the 
controller. 
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Proportional Controller Registers 

The following registers are used for the proportional controllers: 

POTODAT - port 1 data (vertical/horizontal) 
POTlDAT- port 2 data (vertical/horizontal) 

Bit positions: 

Bits 15-8 POTOY value or POTl Y value 
Bits 7-0 POTOX value or POT IX value 

All counts are reset to zero when POTGO is written with bit zero high. Counts are nonnally read 
one frame after the scan circuitry is enabled. 

Potentiometer Specifications 

The resistance of the potentiometers should be a linear taper. Based on the design of the 
integrating analog-to-digital converter used, the maximum resistance should be no more than 
528K (470K +/- 10 percent is suggested) for either the X or Y pots. This is based on a charge 
capacitor of 0.047uf, +/- 10 percent, and a maximum time of 16.6 milliseconds for charge to full 
value, ie. one video frame time. 

All potentiometers exhibit a certain amount of ''jitter''. For acceptable results on a wide base of 
configurations, several input readings will need to be averaged. 
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Figure 8-6: Potentiometer Charging Circuit 
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READING A LIGHT PEN 

A light pen can be connected to one of the controller ports. On the A1000, the light pen must be 
connected to port 1. Changing ports requires a minor internal modification. On the A500, A2000 
and A3000 the default is port 2. An internal jumper can select port 1. Regardless of the port 
used, the light pen design is the same. 

The signal called "pen-pressed-to-screen" is typically actuated by a switch in the nose of the 
light pen. Note that this switch is connected to one of the potentiometer inputs and must be read 
as same as the right or middle button on a mouse. 

The principles of light pen operation are as follows: 

1. Just as the system exits vertical blank, the capture circuitry for the light pen is 
automatically enabled. 

2. The video beam starts to create the picture, sweeping from left to right for each 
horizontal line as it paints the picture from the top of the screen to the bottom. 

3. The sensors in the light pen see a pulse of light as the video beam passes by. The pen 
converts this light pulse into an electrical pulse on the "Beam Trigger" line (pin 6). 

4. This trigger signal tells the internal circuitry to capture and save the current contents of 
the beam register, VPOSR. This allows you to determine where the pen was placed by 
reading the exact horizontal and vertical value of the counter beam at the instant the 
beam passed the light pen. 

Reading the Light Pen Registers 

The light pen register is at the same address as the beam counters. The bits are as follows: 

VPOSR: Bit 15 Long frame/short frame. O=short frame 

Bits 14-1 Chip ID code. Do not depend on value! 

Bit 0 V8 (most significant bit of vertical position) 

VHPOSR: Bits 15-8 V7-VO (vertical position) 

Bits 7-0 H8-H1 (horizontal position) 

The software can refer to this register set as a long word whose address is VPOSR. 
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The positional resolution of these registers is as follows: 

Vertical 1 scan line in non-interlaced mode 
2 scan lines in interlaced mode (However, if you know which interlaced 
frame is under display, you can determine the correct position) 

Horizontal 2 low resolution pixels in either high or low resolution 

The quality of the light pen will determine the amount of short-term jitter. For most applications, 
you should average several readings together. 

To enable the light pen input, write a 1 into bit 3 of BPLCONO. Once the light pen input is 
enabled and the light pen issues a trigger signal, the value in VPOSR is frozen. If no trigger is 
seen, the counters latch at the end of the display field. It is impossible to read the current beam 
location while the VPOSR register is latched. This freeze is released at the end of internal 
vertical blanking (vertical position 20). There is no single bit in the system that indicates a light 
pen trigger. To determine if a trigger has occurred, use one of these methods: 

1. Read (long) VPOSR twice. 

2. If both values are not the same, the light pen has not triggered since the last top-of­
screen (V = 20). 

3. If both values are the same, mask off the upper 15 bits of the 32-bit word and compare it 
with the hex value of $10500 (V=261). 

4. If the VPOSR value is greater than $10500, the light pen has not triggered since the last 
top-of-screen. If the value is less, the light pen has triggered and the value read is the 
screen position of the light pen. 

A somewhat simplified method of determining the truth of the light pen value involves instructing 
the system software to read the register only during the internal vertical blanking period of 
0<V20: 

1. Read (long) VPOSR once, during the period of0<V20. 

2. Mask off the upper 15 bits of the 32-bit word and compare it with the hex value of 
$10500 (V=261). 

3. If the VPOSR value is greater than $10500, the light pen has not triggered since the last 
top-of-screen. If the value is less, the light pen has triggered and the value read is the 
screen position of the light pen. 

Note that when the light pen latch is enabled, the VPOSR register may be latched at any time, and 
cannot be relied on as a counter. This behavior may cause problems with software that attempts 
to derive timing based on VPOSR ticks. 
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DIGITAL 1/0 ON THE CONTROLLER PORT 

The Amiga can read and interpret many different and nonstandard controllers. The control lines 
built into the POTGO register (address $DFF034) can redefine the functions of some of the 
controller port pins. 

Table 8-4 is the POTGO register bit description. POTGO ($DFF034) is the write-only address 
for the pot control register. POTINP ($DFF016) is the read-only address for the pot control 
register. The pot-control register controls a four-bit bidirectional 1/0 port that shares the same 
four pins as the four pot inputs. 

Table 8-4: POTGO ($DFF034) and POTINP ($DFF016) Registers 

Bit 
Number 

15 
14 
13 
12 
11 
10 
09 
08 
07-01 
00 

Name 

OUTRY 
DATRY 
OUTRX 
DATRX 
OUTLY 
DATLY 
OUTLX 
DATLX 
X 
START 

Function 

Output enable for bit 14 (1=output) 
data for port 2, pin 9 
Output enable for bit 12 
data for port 2, pin 5 
Output enable for bit 10 
data for port 1, pin 9 (right mouse button) 
Output enable for bit 8 
data for port 1, pin 5 (middle mouse button) 
chip revision identification number 
Start pots (dump capacitors, start counters) 

Instead of using the pot pins as variable-resistive inputs, you can use these pins as a four-bit 
input/output port. This provides you with two additional pins on each of the two controller ports 
for general purpose l/0. 

If you set the output enable for any pin to a 1, the Amiga disconnects the potentiometer control 
circuitry from the port, and configures the pin for output. The state of the data bit controls the 
logic level on the output pin. This register must be written to at the POTGO address, and read 
from the POTINP address. There are large capacitors on these lines, and it can take up to 300 
microseconds for the line to change state. 

To use the entire register as an input, sensing the current state of the pot pins, write all Os to 
POTGO. Thereafter you can read the current state by using read-only address POTINP. Note 
that bits set as inputs will be connected to the proportional counters (See the description of the 
START bit in POTGO). 
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These lines can also be used for button inputs. A button is a normally open switch that shorts to 
ground. The Amiga must provide a pull-up resistance on the sense pin. To do this, set the proper 
pin to output, and drive the line high (set both OUT ... and DAT ... to 1). Reading POTINP will 
produce a 0 if the button is pressed, a 1 if it is not. 

The joystick fire buttons can also be configured as outputs. CIAADDRA ($BFE201) contains a 
mask that corresponds one-to-one with the data read register, CIAAPRA ($BFE001). Setting a 1 
in the direction position makes the corresponding bit an output. See Appendix F for more details. 

Floppy Disk Controller 

The built-in disk controller in the system can handle up to four MFM-type devices. Typically 
these are double-sided, double-density, 3.5" (90mm) or 5.25" disk drives. One 3.5" drive is 
installed in the basic unit. 

The controller is extremely flexible. It can DMA an entire track of raw MFM data into memory 
in a single disk revolution. Special registers allow the CPU to synchronize with specific data, or 
read input a byte at a time. The controller can read and write virtually any double-density MFM 
encoded disk, including the Amiga Vl.O format, IBM PC (MS-DOS) 5.25", IBM PC (MS-DOS) 
3.5" and most CPJMTM formatted disks. The controller has provisions for reading and writing 
most disk using the Group Coded Recording (GCR) method, including Apple II™ disks. With 
motor speed tricks, the controller can read and write Commodore 1541!1571 format diskettes. 

REGISTERS USED BY THE DISK SUBSYSTEM 

The disk subsystem uses two ports on the system's 8520 CIA chips, and several registers in the 
Paula chip: 

CIAAPRA 
CIABPRB 
ADKCON 
ADKCONR 
DSKPTH 
DSKLEN 
DSKBYTR 
DSKSYNC 

($BFE001) 
($BFD100) 
($DFF09E) 
($DFF010) 
($DFF020) 
($DFF024) 
($DFF01A) 
($DFF07E) 

four input bits for disk sensing 
eight output bits for disk selection, control and stepping 
control bits (write only register) 
control bits (read only register) 
DMA pointer (32 biL<;) 
length of DMA 
Disk data byte and status read 
Disk sync finder; holds a match word 
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DISK SUBSYSTEM TIMING 

Figures 8-7 and 8-8 show the timing parameters of the Amiga's floppy disk subsystem with a 
Chinon drive. Keep in mind that this information can change with floppy drives from other 
vendors. To ensure compatibility with future versions of the system, you should avoid using this 
information in applications. 

MOTOR ON --l.,. SOOm•mm ~~ Amiga Floppy Disk Write Timing 
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Figure 1-7: Chinon Timing Diagram 
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Amiga Floppy Disk Access Timing 
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CIAAPRA/CIABPRB - Disk selection, control and sensing 

The following table lists how 8520 chip bits used by the disk subsystem. Bits labeled "PA" are 
input bits in CIAAPRA ($BFE001). Bits labeled "PB" are output \tits located in CIAAPRB 
($BFD100). More infonnation on how the 8520 chips operate can be found in Appendix F. 

Table 8-5: Disk Subsystem 

Bit Name Function 

PAS DSKRDY* Disk ready (active low). The drive will pull this line low when 
the motor is known to be rotating at full speed. This signal 
is only valid when the motor is ON, at other times configuration 
infonnation may obscure the meaning of this input. 

PA4 DSKTRACKO* Track zero detect. The drive will pull this line low 
when the disk heads are positioned over track zero. 
Software must not attempt to step outwards when this signal 
is active. Some drives will refuse to step, others will 
attempt the step, possibly causing alignment damage. 
All new drives must refuse to step outward in this condition. 

PA3 DSKPROT* Disk is write protected (active low). 

PA2 DSKCHANGE* Disk has been removed from the drive. The signal goes 
low whenever a disk is removed. It remains low until 

PB7 DSKMOTOR* 

a disk is inserted AND a step pulse is received. 

Disk motor control (active low). This signal is nonstandard 
on the Amiga system. Each drive will latch the motor signal at 
the time its select signal turns on. The disk drive motor 
will stay in this state until the next time select turns on. 
DSKMOTOR * also controls the activity light on the front 
of the disk drive. 

All software that selects drives must set up the motor signal 
before selecting any drives. The drive will "remember" 
the state of its motor when it is not selected. All drive 
motors tum off after system reset. 

After turning on the motor, software must further wait for 
one half second (500ms), or for the DSKRDY* line to go low. 
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PB6 DSKSEL3* Select drive 3 (active low). 

PBS DSKSEL2* Select drive 2 (active low). 

PB4 DSKSELI* Select drive 1 (active low). 

PB3 DSKSELO* Select drive 0 (internal drive) (active low). 

PB2 DSKSIDE Specify which disk head to use. Zero indicates the upper head. 
DSKSIDE must be stable for 100 microseconds before writing. 
After writing, at least 1.3 milliseconds must pass before 
switching DSKSIDE. 

PB1 DSKDIREC Specify the direction to seek the heads. Zero implies 
seek towards the center spindle. Track zero is at the outside 
of the disk. This line must be set up before the actual step 
pulse, with a separate write to the register. 

PBO DSKSTEP* Step the heads of the disk. This signal must always be 
used as a quick pulse (high, momentarily low, then high). 

The drives used for the Amiga are guaranteed to get to the next 
track within 3 milliseconds. Some drives will support a much 
faster rate, others will fail. Loops that decrement a counter 
to provide delay are not acceptable. See Appendix F 
for a better solution. 

When reversing directions, a minimum of 18 milliseconds delay is 
required from the last step pulse. Settle time for Amiga drives 
is specified at 15 milliseconds. 

FLAG DSKINDEX* Disk index pulse ($BFDDOO, bit 4). Can be used to 
create a level 6 interrupt. See Appendix F for details. 
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Disk DMA Channel Control 

Data is nonnally transferred to the disk by direct memory access (DMA). The disk DMA is 
controlled by four items: 

o Pointer to the area into which or from which the data is to be moved 

o Length of data to be moved by DMA 

o Direction of data transfer (read/write) 

o DMAenable 

DSKPTH - Pointer to Data 

You specify the 32-bit wide address from which or to which the data is to be transferred. The 
lowest bit of the address must be zero, and the buffer must be in Chip memory. The value must 
be written as a single long word to the DSKPTH register ($DFF020). 

DSKLEN • Length, Direction, DMA Enable 

All of the control bits relating to this topic are contained in a write-only register, called DSKLEN: 

Table 8-6: DSKLEN Register ($DFF024) 

Bit 
Number Name Usage 

15 DMAEN Secondary disk DMA enable 
14 WRITE Disk write (RAM ~ disk if 1) 
13-0 LENGTH Number of words to transfer 

246 Amiga Hardware Reference Manual 



The hardware requires a special sequence in order to start DMA to the disk. This sequence 
prevents accidental writes to the disk. In short, the DMAEN bit in the DSKLEN register must be 
turned on twice in order to actually enable the disk DMA hardware. Here is the sequence you 
should follow: 

1. Enable disk DMA in the DMACON register (See Chapter 7 for more information) 

2. Set DSKLEN to $4000, thereby forcing the DMA for the disk to be turned off. 

3. Put the value you want into the DSKLEN register. 

4. Write this value again into the DSKLEN register. This actually starts the DMA. 

5. After the DMA is complete, set the DSKLEN register back to $4000, to prevent 
accidental writes to the disk. 

As each data word is transferred, the length value is decremented. After each transfer occurs, the 
value of the pointer is incremented. The pointer points to the the next word of data to written or 
read. When the length value counts down to 0, the transfer stops. 

The recommended method of reading from the disk is to read an entire track into a buffer and then 
search for the sector(s) that you want. Using the DSKSYNC register (described below) will 
guarantee word alignment of the data. With this process you need to read from the disk only once 
for the entire track. In a high speed loader, the step to the next head can occur while the previous 
track is processed and checksummed. With this method there are no time-critical sections in 
reading data, other high-priority subsystems (such as graphics or audio) are be allowed to run. 

If you have too little memory for track buffering (or for some other reason decide not to read a 
whole track at once), the disk hardware supports a limited set of sector-searching facilities. There 
is a register that may be polled to examine the disk input stream. 

There is a hardware bug that causes the last three bits of data sent to the disk to be lost. Also, the 
last word in a disk-read DMA operation may not come in (that is, one less word may be read than 
you asked for). 
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DSKBYTR- Disk Data Byte and Status Read (read-only) 

This register is the disk-microprocessor data buffer. In read mode, data from the disk is placed 
into this register one byte at a time. As each byte is received into the register, the DSKBYT bit is 
set true. DSKBYT is cleared when the DSKBYTR register is read. 

DSKBYTR may be used to synchronize the processor to the disk rotation before issuing a read or 
write under DMA control. 

Table 8-7: DSKBYTR Register 

Bit 
Number Name Function 

15 DSKBYT When set, indicates that this register contains 
a valid byte of data (reset by reading this register). 

14 DMAON Indicates when DMA is actually enabled. All the various 
DMA bits must be true. This means the DMAEN bit in 
DKSLEN, and the DSKEN & DMAEN bits in DMACON. 

13 DISKWRITE The disk write bit (in DSKLEN) is enabled. 

12 WORDEQUAL Indicates the DISKSYNC register equals the disk input 
stream. This bit is true only while the input stream matches 
the sync register (as little as two microseconds). 

11-8 Currently unused; don't depend on read value. 

7-0 DATA Disk byte data. 
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ADKCON and ADKCONR- Audio and Disk Control Register 

ADKCON is the write-only address and ADKCONR is the read-only address for this register. 
Not all of the bits are dedicated to the disk. Bit 15 of this register allows independent setting or 
clearing of any bit or bits. If bit 15 is a one on a write, any ones in positions 0-14 will set the 
corresponding bit. If bit 15 is a zero, any ones will clear the corresponding bit 

Table 8-8: ADKCON and ADKCONR Register 

Bit 
Number Name Function 

15 SET/CLR Control bit that allows setting or clearing of individual 
bits without affecting the rest of the register. 

If bit 15 is a 1, the specified bits are set. 
If bit 15 is a 0, the specified bits arc cleared. 

14 PRECOMP1 MSB of Prccompensation specifier 
13 PRECOMPO LSB of Precompensation specifier 

Value of 00 selects none. 
Valueof01 selects 140ns. 
Value of 10 selects 280 ns. 
Value of 11 selects 560 ns. 

12 MFMPREC Value of 0 selects GCR Precompensation. 
Value of 1 selects MFM Precompensation. 

10 WORDSYNC Value of 1 enables synchronizing and starting 
of DMA on disk read of a word. The word on which 
to synchronize must be written into the DSKSYNC 
address ($DFF07E). This capability is highly 
useful. 

9 MSBSYNC Value of 1 enables sync on most significant bit of the 
input (usually used for GCR). 

8 FAST Value of 1 selects two microseconds per bit cell 
(usually MFM). Data must be valid raw MFM. 
0 selects four microseconds per bit (usually GCR). 

7-0 These bits are used by the audio subsystem for volume 
and frequency modulation. 
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The raw MFM data that must be presented to the disk controller will be twice as large as the 
unencoded data. The following table shows the relationship: 

1--+ 01 
0--+ 10 ;if following a 0 
0 --+ 00 ;if following a 1 

With clever manipulation, the blitter can be used to encode and decode the MFM. 

In one common form of GCR recording, each data byte always has the most significant bit set to a 
1. MSBSYNC, when a 1, tells the disk controller to look for this sync bit on every disk byte. 
When reading a GCR formatted disk, the software must use a translate table called a nybble-izer 
to assure that data written to the disk does not have too many consecutive 1 's orO's. 

DSKSYNC - Disk Input Synchronizer 

The DSKSYNC register is used to synchronize the input stream. This is highly useful when 
reading disks. If the WORDSYNC bit is enabled in ADKCON, no data is transferred until a 
word is found in the input stream that matches the word in the DSKSYNC register. On read, 
DMA will start with the following word from the disk. During disk read DMA, the controller 
will resync every time the word match is found. Typically the DSKSYNC will be set to the 
magic MFM sync mark value, $4489. 

In addition, the DSKSYNC bit in INTREQ is set when the input stream matches the DSKSYNC 
register. The DSKSYNC bit in INTREQ is independent of the WORDSYNC enable. 

DISK INTERRUPTS 

The disk controller can issue three kinds of interrupts: 

o DSKSYNC (levelS, INTREQ bit 12)-input stream matches the DSKSYNC register. 

o DSKBLK (levcll, INTREQ bit 1)-disk DMA has completed. 

o INDEX (level6, 8520 Flag pin)-index sensor triggered. 

Interrupts are explained further in the section ''Length, Direction, DMA Enable''. See Chapter 7, 
''System Control Hardware,'' for more information about interrupts. See Appendix F for more 
information on the 8520. 

250 Amiga Hardware Reference Manual 



The Keyboard 

The keyboard is interfaced to the system via the serial shift register on one of the 8520 CIA chips. 
The keyboard data line is connected to the SP pin, the keyboard clock is connected to the CNT 
pin. Appendix G contains a full description of the interface. 

HOW THE KEYBOARD DATA IS RECEIVED 

The CNT line is used as a clock for the keyboard. On each transition of this line, one bit of data 
is clocked in from the keyboard. The keyboard sends this clock when each data bit is stable on 
the SP line. The clock is an active low pulse. The rising edge of this pulse clocks in the data. 

After a data byte has been received from the keyboard, an interrupt from the 8520 is issued to the 
processor. The keyboard waits for a handshake signal from the system before transmitting any 
more keystrokes. This handshake is issued by the processor pulsing the SP line low then high. 
While some keyboards can detect a 1 microsecond handshake pulse, the pulse must be at least 85 
microseconds for operation with all models of Amiga keyboards. 

If another keystroke is received before the previous one has been accepted by the processor, the 
keyboard microprocessor holds keys in a 10 keycode type-ahead buffer. 

TYPE OF DATA RECEIVED 

The keyboard data is not received in the form of ASCII characters. Instead, for maximum 
versatility, it is received in the form of keycodes. These codes include both the down and up 
transitions of the keys. This allows your software to use both sets of information to determine 
exactly what is happening on the keyboard. 

Here is a list of the hexadecimal values that are assigned to the keyboard. A downstroke of the 
key transmits the value shown here. An upstroke of the key transmits this value plus $80. The 
picture of the keyboard at the end of this section shows the positions that correspond to the 
description in the paragraphs below. 

Note that raw keycodes provide positional information only, the legend which is printed on top of 
the keys changes from country to country. 
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RAW Keycodes ~ 00-3F hex 

These are key codes assigned to specific positions on the main body of the keyboard. The letters 
on the tops of these keys are different for each country; not all countries use the QWERTY key 
layout. These keycodes are best described positionally as shown in Figure 8-9 and Figure 8-10 at 
the end of the keyboard section. The international keyboards have two more keys that are "cut 
out" of larger keys on the USA version. These are $30, cut out from the the left shift, and $2B, 
cut out from the return key. 

RAW Keycodes ~ 40-SF hex (Codes common to all keyboards) 

40 Space 
41 Backspace 
42 Tab 
43 Numeric Pad "ENTER" 
44 Return 
45 Escape 
46 Delete 
4A Numeric pad minus 
4C Cursor up 
4D Cursor down 
4E Cursor right 
4F Cursor left 
50-59 Function keys Fl-FlO 
SA Numeric pad left parenthesis 
SB Numeric pad right parenthesis 
SC Numeric pad slash "/" 
SD Numeric pad asterisk 
5E Numeric pad plus 
SF Help 

RAW Keycodes ~ 60-67 hex (Key codes for qualifier keys) 

60 Left Shift 
61 Right Shift 
62 Caps Lock 
63 Control 
64 Left Alt 
65 Right Alt 
66 Left Amiga (or Commodore key) 
67 Right Amiga 
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FO-FFhex 

These key codes are used for keyboard to 680x0 communication, and are not associated with a 
keystroke. They have no key transition flag, and are therefore described completely by 8-bit 
codes: 

78 Reset warning. Ctrl-Amiga-Amiga has been pressed. The keyboard 
will wait a maximum of 10 seconds before resetting the machine. 
(Not available on all keyboard models) 

F9 Last key code bad, next key is same code retransmitted 
FA Keyboard key buffer overflow 
FC Keyboard self-test fail. Also, the caps-lock LED will blink 

to indicate the source of the error. Once for ROM failure, 
twice for RAM failure and three times if the watchdog timer 
fails to function. 

FD Initiate power-up key stream (for keys held or stuck at power on) 
FE Terminate power-up key stream. 

These key codes will usually be filtered out by keyboard drivers. 

LIMITATIONS OF THE KEYBOARD 

The Amiga keyboard is a matrix of rows and columns with a key switch at each intersection (see 
Appendix G for a diagram of the matrix). Because of this, the keyboard is subject to a 
phenomenon called "phantom keystrokes." While this is generally not a problem for typing, 
games may require several keys be independently held down at once. By examining the matrix, 
you can determine which keys may interfere with each other, and which ones are always safe. 

Phantom keystrokes occur when certain combinations of keys pressed arc pressed simultaneously. 
For example, hold the "A" and "S" keys down simultaneously. Notice that "A" and "S" are 
transmitted. While still holding them down, press "Z". On the original Amiga 1000 keyboard, 
both the "Z" and a ghost "X" would be generated. Starting with the Amiga 500, the controller 
was upgraded to notice simple phantom situations like the one above; instead of generating a 
ghost, the controller will hold off sending any character until the matrix has cleared (releasing 
"A" or "S" would clear the matrix). Some high-end Amiga keyboards may implement true 
"N-key rollover," where any combination of keys can be detected simultaneously. 

All of the keyboards are designed so that phantoms will not happen during normal typing, only 
when unusual key combinations like the one just described are pressed. Normally, the keyboard 
will appear to have "N-key rollover," which means that you will run out of fingers before 
generating a ghost character. 

About the qualifier keys. Seven keys are not part of the matrix, and will never 
contribute to generating phantoms. These keys are: Ctrl, the two Shift keys, the two 
Amiga keys, and the two Alt keys. 
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Figure 8-9: The Amiga 1000 Keyboard, Showing Keycodes in Hexadecimal 
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Figure 8-10: The Amiga 500/2000/3000 Keyboard, Showing Keycodes in Hexadecimal 
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Serial 1/0 Interface 

A 25-pin connector on the back panel of the computer serves as the general purpose serial 
interface. This connector can drive a wide range of different peripherals, including an external 
modem or a serial printer. 

For pin connections, see Appendix E. 

INTRODUCTION TO SERIAL CIRCUITRY 

The Paula custom chip contains a Universal Asynchronous Receiver(fransmitter, or UART. This 
UART is programmable for any rate from 110 to over 1,000,000 bits per second. It can receive or 
send data with a programmable length of eight or nine bits. 

The UART implementation provides a high degree of software control. The UART is capable of 
detecting overrun errors, which occur when some other system sends in data faster than you 
remove it from the data-receive register. There are also status bits and interrupts for the 
conditions of receive buffer full and transmit buffer empty. An additional status bit is provided 
that indicates ''all bits have been shifted out''. All of these topics are discussed below. 

SETTING THE BAUD RATE 

The rate of transmission (the baud rate) is controlled by the contents of the register named 
SERPER. Bits 14-0 of SERPER are the baud-rate divider bits. 

All timing is done on the basis of a "color clock," which is 279.36ns long on NTSC machines 
and 281.94ns on PAL machines. If the SERPER divisor is set to the number N, then N+l color 
clocks occur between samples of the state of the input pin (for receive) or between transmissions 
of output bits (for transmit). Thus SERPER=(3,579,545/baud)-1. On a PAL machine, 
SERPER=(3,546,895/baud)-1. For example, the proper SERPER value for 9600 baud on an 
NTSC machine is (3,579,545f]600)-1=371. 

With a cable of a reasonable length, the maximum reliable rate is on the order of 150,000-250,000 
bits per second. Maximum rates will vary between machines. At these high rate it is not possible 
to handle the overhead of interrupts. The receiving end will need to be in a tight read loop. 
Through the use of low speed control information and high-speed bursts, a very inexpensive 
communication network can be built. 

SETTING THE RECEIVE MODE 

The number of bits that are to be received before the system tells you that the receive register is 
full may be defined either as eight or nine (this allows for 8 bit transmission with parity). In 
either case, the receive circuitry expects to see one start bit, eight or nine data bits, and at least 
one stop bit. 
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Receive mode is set by bit 15 of the write-only SERPER register. Bit 15 is a 1 if you chose nine 
data bits for the receive-register full signal, and a 0 if you chose eight data bits. The normal state 
of this bit for most receive applications is a 0. 

CONTENTS OF THE RECEIVE DATA REGISTER 

The serial input data-receive register is 16 bits wide. It contains the 8 or 9 bit input data and 
status bits. 

The data is received, one bit at a time, into an internal serial-to-parallel shift register. When the 
proper number of bit times have elapsed, the contents of this register are transferred to the serial 
data read register (SERDA TR) shown in Table 8-10, and you are signaled that there is data ready 
for you. 

Immediately after the transfer of data takes place, the receive shift register again becomes ready to 
accept new data. After receiving the receiver-full interrupt, you will have up to one full 
character-receive time (8 to 10 bit times) to accept the data and clear the interrupt. If the interrupt 
is not cleared in time, the OVERRUN bit is set. 

Table 8-9 shows the definitions of the various bit positions within SERDATR. 

Bit 
Number 

15 

14 

Name 

OVRUN 

RBF 

Table 8-9: SERDA TR I ADKCON Registers 

SERDATR 

Function 

OVERRUN 
(Mirror-also appears in the interrupt request register.) 
Indicates that another byte of data was received before the 
previous byte was picked up by the processor. To prevent this 
condition, it is necessary to reset INTF _RBF (bit 11, 
receive-buffer-full) in INTREQ. 

READ BUFFER FULL 
(Mirror-also appears in the interrupt request register.) 
When this bit is 1, there is data ready to be picked 
up by the processor. After reading the contents of this data 
register, you must reset the INTF _RBF bit in INTREQ to prevent 
an overrun. 
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13 TBE TRANSMIT BUFFER EMPTY 
(Not a mirror-interrupt occurs when the buffer 
becomes empty.) When bit 14 is a 1, the data in the output 
data register (SERDA T) has been transferred to the serial 
output shift register, so SERDAT is ready to accept another 
output word. This is also true when the buffer is empty. 

This bit is normally used for full-duplex operation. 

12 TSRE TRANSMIT SHIFf REGISTER EMPTY 
When this bit is a 1, the output shift register has completed 
its task, all data has been transmitted, and the register is 
now idle. If you stop writing data into the output register 
(SERDAT), then this bit will become a 1 after both the word 
currently in the shift register and the word placed 
into SERDA T have been transmitted. 

This bit is normally used for half-duplex operation. 

11 RXD Direct read of RXD pin on Paula chip. 

10 Not used at this time. 

9 STP Stop bit if 9 data bits are specified for receive. 

8 STP Stop bit if 8 data bits are specified for receive. 
OR 

DB8 9th data bit if 9 bits are specified for receive. 

7-0 DB7-DBO Low 8 data bits of received data. Data is TRUE (data you 
read is the same polarity as the data expected). 

ADKCON 

15 SET/CLR Allows setting or clearing individual bits. 

If bit 15 is a 1 specified bits arc set. 
If bit 15 is a 0 specified bits are cleared. 

11 UARTBRK Force the transmit pin to zero. 
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HOW OUTPUT DATA IS TRANSMITTED 

You send data out on the transmit lines by writing into the serial data output register (SERDA T). 
This register is write-only. 

Data will be sent out at the same rate as you have established for the read. Immediately after you 
write the data into this register, the system will begin the transmission at the baud rate you 
selected. 

At the start of the operation, this data is transferred from SERDAT into an internal serial shift 
register. When the transfer to the serial shift register has been completed, SERDA T can accept 
new data; the TBE interrupt signals this fact. 

Data will be moved out of the shift register, one bit during each time interval, starting with the 
least significant bit. The shifting continues until all 1 bits have been shifted out. Any number or 
combination of data and stop bits may be specified this way. 

SERDAT is a 16-bit register that allows you to control the fonnat (appearance) of the transmitted 
data. To fonn a typical data sequence, such as one start bit, eight data bits, and one stop bit, you 
write into SERDAT the contents shown in Figures 8-11 and 8-12. 

15 9 8 7 0 

o o o o o o o o o o o o o o o ------------------~I 
one brt 

All zeros from last shift -

Figure 8-11: Starting Appearance of SERDAT and Shift Register 
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15 9 8 7 0 

0 0 0 0 0 0 0 j-c----· 8 bits data ---..j 

----------------------------~ 

Data gets shifted out this way. 

Figure 8-12: Ending Appearance of Shift Register 

The register stops shifting and signals "shift register empty" (fSRE) when there is a 1 bit 
present in the bit-shifted-out position and the rest of the contents of the shift register are Os. 
When new nonzero contents are loaded into this register, shifting begins again. 

SPECIFYING THE REGISTER CONTENTS 

The data to be transmitted is placed in the output register (SERDAT). Above the data bits, 1 bits 
must be added as stop bits. Normally, either one or two stop bits are sent. 

The transmission of the start bit is independent of the contents of this register. One start bit is 
automatically generated before the first data bit (bit 0) is sent. 

Writing this register starts the data transmission. If this register is written with all zeros, no data 
transmission is initiated. 

Parallel 1/0 Interface 

The general-purpose bi-directional parallel interface is a 25-pin connector on the back panel of the 
computer. This connector is generally used for a parallel printer. 

For each data byte written to the parallel port register, the hardware automatically generates a 
pulse on the data ready pin. The acknowledge pulse from the parallel device is hooked up to an 
interrupt. For pin connections and timing, see Appendix E and F. 
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Display Output Connections 

All Amigas provide a 23-pin connector on the back. This jack contains video outputs and inputs 
for external genlock devices. Two separate type of RGB video are available on the connector: 

o RGB Monitors (''analog RGB' '). Provides four outputs; Red (R), Green (G), Blue (B), 
and Sync (S). They can generate up to 4,096 different colors on-screen simultaneously 
using the circuitry presently available on the Amiga. 

o Digital RGB Monitors. Provides four outputs, distinct from those shown above, named 
Red (R), Green (G), Blue (B), Half-Intensity (1), and Sync (S). All output levels are 
logic levels (0 or 1). On some monitors these outputs allow up to 15 possible color 
combinations, where the values 0000 and 0001 map to the same output value (Half 
intensity with no color present is the same as full intensity, no color). Some monitors 
arbitrarily map the 16 combinations to 16 arbitrary colors. 

Note that the sync signals from the Amiga are unbuffered. For use with any device that 
presents a heavy load on the sync outputs, external buffers will be required. 

The Amiga 500 and 2000 provide a full-bandwidth monochrome video jack for use with 
inexpensive monochrome monitors. The Amiga colors are combined into intensities based on the 
following table: 

Red Green Blue 
30% 60% 10% 

The A3000 is not equipped with a monochrome video jack. 

The Amiga 1000 provides an RF modulator jack. An adapter is available that allows all Amiga 
models to use a television set for display. Stereo sound is available on the jack, but will generally 
be combined into monaural sound for the TV set. 

The Amiga 1000 provides a color composite video jack. This is suitable for recording directly 
with a VCR, but the output is not broadcast quality. For use on a monochrome monitor, the color 
information often has undesired effects; careful color selection or a modification to the internal 
circuitry can improve the results. The A500, A2000 and A3000 do not have a color composite 
video jack. High quality composite adapters for the A500, AlOOO, A2000 and A3000 plug into 
the 23 pin RGB port. 

The Amiga 2000 and 3000 provide a special "video slot" that contains many more signals than 
are available elsewhere: all the 23-pin RGB port signals, the unencoded digital video, light pen, 
power, audio, colorburst, pixel switch, sync, clock signals, etc. 
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appendix A 
REGISTER SUMMARY 
ALPHABETICAL ORDER 

This appendix contains the definitive summary, in alphabetical order, of the Amiga's custom chip 
register set and the usages of the individual bits. 

The addresses shown here are used by the special custom chips (named "Paula", "Agnus", and 
"Denise") for transferring data among themselves. Also, the Copper uses these addresses for 
writing to the special chip registers. To write to these registers with the 680x0, calculate the 
680x0 address using this formula: 

680x0 address= (chip address)+ $DFFOOO 

For example, for the 680x0 to write to ADKCON (address = $09E), the address would be 
$DFF09E. No other access address is valid. Do not attempt to access any documented or unused 
registers. 

All of the "pointer" type registers are organized as 32 bits on a long word boundary. These 
registers may be written with one MOVE.L instruction. The lowest bit of all pointers must be 
written as zero. The custom chips can only access Chip memory; using a non-Chip address will 
fail (See the AllocMem() documentation or your compiler manual for more information on Chip 
memory). Disk data, sprite data, bitplane data, audio data, copper lists and anything that will be 
blitted or accessed by custom chip DMA must be located in chip memory. 

When strobing any register which responds to either a read or a write, (for example copjmp2) be 
sure to use a MOVE.W, not CLR.W. The CLR instruction causes a read and a clear (two 
accesses) on a 68000, but only a single access on 68020 processors. This will give different 
results on different processors. 

Warning: Registers are either read-only or write-only. In the following descriptions, 
if a register is marked as a read-only register, only read its contents. Do not attempt to 
write to a read-only register, as this will cause unpredictable results. If a register is 
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marked as a write-only register, do not attempt to read from it, as this may trash the 
register and crash the system. 

If a bit is described as unused in a write-only register, be sure to keep that bit clear when writing 
values to that register. Similarly, do not rely on the values of unused bits when reading from a 
read only register. Further, do not write to an address or register that is not documented or defined 
in this appendix. Setting unused bits in a write-only register, reading unused bits from a read 
only register and writing to undocumented registers or addresses may cause serious future 
software incompatibility if those bits or addresses arc implemented in the future by Commodore 
Amiga. 

About the ECS registers. Registers denoted with an "(E)" in the chip column 
means that those registers have been changed the Enhanced Chip Set(ECS). The ECS 
is found in the A3000, and is installable in the A500 and A2000. Certain ECS 
registers are completely new, others have been extended in their functionality. See the 
register map in Appendix C for information on which ECS registers are new and 
which have been modified. 
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Read/ 
Register Address Write 

Agnus/ 
Denise/ 
Paula Function 

ADKCON 09E 
ADKCONR 010 

w p 
R p 

BITlt USE 

Audio, disk, control write 
Audio, disk, control read 

15 SET/CLR Set/clear control bit. Determines if bits 
written with a 1 get set or cleared. Bits 
written with a zero are always unchanged. 

14-13 PRECOMP 1-0 

CODE PRECOMP VALUE 

00 none 
01 140 ns 
10 280 ns 
11 560 ns 

12 MFMPREC ( 1=MFM precomp O=GCR precomp) 
11 UARTBRK Forces a UART break (clears TXD) if true. 
10 WORDSYNC Enables disk read synchronizing on a word 

equal to DISK SYNC CODE, located in 
address (3F)*2. 

09 MSBSYNC Enables disk read synchronizing on the MSB 
(most significant bit). Appl type GCR. 

08 FAST Disk data clock rate control 1=fast(2us) O=slow(4us). 
(fast for MFM, slow for MFM or GCR) 

07 USE3PN Use audio channel 3 to modulate nothing. 
06 USE2P3 Use audio channel 2 to modulate period of channel 3. 
05 USE1P2 Use audio channel 1 to modulate period of channel 2. 
04 USEOP1 Use audio channel 0 to modulate period of channel 1. 

03 USE3VN Use audio channel 3 to modulate nothing. 
02 USE2V3 Use audio channel 2 to modulate volume of channel 3. 
01 USE1V2 Use audio channel 1 to modulate volume of channel 2. 
00 USEOV1 Use audio channel 0 to modulate volume of channel 1. 

NOTE: If both period and volume are modulated on the 
same channel, the period and volume will be alternated. 
First word xxxxxxxx V6-VO , Second word P15-PO (etc) 

AUDxDAT OAA W p Audio channel x data 

This register is the audio channel x (x=0,1,2,3) 
DMA data buffer. It contains 2 bytes of data that 
are each 2's complement and are outputted 
sequentially (with digital-to-analog conversion) 
to the audio output pins. (LSB = 3 MV) The DMA 
controller automatically transfers data to this 
register from RAM. The processor can also write 
directly to this register. When the DMA data is 
finished (words outputted=length) and the data in 
this register has been used, an audio channel 
interrupt request is set. 
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AUDxLCH 
AUDxLCL 

AUDxLEN 

AUDxPER 

AUDxVOL 

BEAMCONO 

BLTAFWM 
BLTALWM 

OAO W 
OA2 W 

A(E) 
A 

Audio channel x location (high 3 bits,S bits if ECS) 
Audio channel x location (low 15 bits) 

This pair of registers contains the 18 bit starting address 
(location) of audio channel x (x=0,1,2,3) DMA data. 
This is not a pointer register and therefore needs 
to be reloaded only if a different memory location is to 
be outputted. 

OA4 W p Audio channel x length 

This register contains the length (number of words) of 
audio channel x DMA data. 

OA6 W P(E)Audio channel x Period 

This register contains the period (rate) of 
audio channel x DMA data transfer. 
The minimum period is 124 color clocks. This means 
that the smallest number that should be placed in 
this register is 124 decimal. This corresponds to 
a maximum sample frequency of 28.86 khz. 

0A8 W p Audio channel x volume 

1DC 

044 
046 

This register contains the volume setting for 
audio channel x. Bits 6,5,4,3,2,1,0 specify 65 
linear volume levels as shown below. 

Bitit 
---
15-07 
06 
05-00 

w A(E) 

w A 
w A 

Use 

Not used 
Forces volume to max (64 ones, no zeros) 
Sets one of 64 levels (OOOOOO=no output 
(111111=63 1s, one 0) 

Beam counter control register (SHRES,PAL) 

Slitter first-word mask for source A 
Slitter last-word mask for source A 

The patterns in these two registers are ANDed with 
the first and last words of each line of data from 
source A into the blitter. A zero in any bit 
overrides data from source A. These registers 
should be set to all 1s for fill mode or for 
line-drawing mode. 
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BLTCONO 
BLTCON1 

040 w 
042 w 

A 
A(E) 

Blitter control register 0 
Blitter control register 1 

These two control registers are used together to 
control blitter operations. There are two basic 
modes, area and line, which are selected by bit 
0 of BLTCON1, as shown below. 

AREA MODE ("normal") 

BITt BLTCONO BLTCON1 
------- -------

15 ASH3 BSH3 
14 ASH2 BSH2 
13 ASH1 BSH1 
12 ASAO BSFO 
11 USEA X 
10 USEB X 
09 USEC X 
08 USED X 
07 LF7 DOFF 
06 LF6 X 
05 LF5 X 
04 LF4 EFE 
03 LF3 !FE 
02 LF2 FCI 
01 LF1 DESC 
00 LFO LINE(=O) 

ASH3-0 Shift value of A source 
BSH3-0 Shift value of B source 
USEA Mode control bit to use source A 
USEB Mode control bit to use source B 
USEC Mode control bit to use source C 
USED Mode control bit to use destination D 
LF7-0 Logic function minterm select lines 
EFE Exclusive fill enable 
!FE Inclusive fill enable 
FCI Fill carry input 
DESC Descending (decreasing address) control bit 
LINE Line mode control bit (set to 0) 
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BLTCONO (cont.) LINE DRAW 
BLTCONl (cont.) LINE DRAW 

LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

LINE DRAW 
LINE DRAW 

LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

LINE DRAW 
LINE DRAW 

LINE MODE (line draw) 

BITlt BLTCONO BLTCONl 

15 
14 
13 
12 
11 
10 
09 
08 
07 
06 
05 
04 
03 
02 
01 
00 

START3 
START2 
STARTl 
STARTO 

1 
0 
1 
1 

LF7 
LF6 
LF5 
LF4 
LF3 
LF2 
LFl 
LFO 

TEXTURE3 
TEXTURE2 
TEXTURE! 
TEXTURED 

0 
0 
0 
0 
0 

SIGN 
0 (Reserved) 

SUD 
SUL 
AUL 
SING 
LINE{=l) 

START3-0 Starting point of line 
(0 thru 15 hex) 

LF7-0 Logic function minterm 
select lines should be preloaded 
with 4A to select the equation 
D=(AC+ABC). Since A contains a 
single bit true (8000), most bits 
will pass the C field unchanged 
(not A and C), but one bit will 
invert the C field and combine it 
with texture (A and B and not C) . 
The A bit is automatically moved 
across the word by the hardware. 

LINE 
SIGN 
0 
SING 

SUD 
SUL 
AUL 

Line mode control bit (set to 1) 
Sign flag 
Reserved for new mode 
Single bit per horizontal line for 
use with subsequent area fill 
Sometimes up or down (=AUD*) 
Sometimes up or left 
Always up or left 

The 3 bits above select the octant 
for line drawing: 

OCT SUD SUL AUL 

0 
1 
2 
3 
4 
5 
6 
7 

1 
0 
0 
1 
1 
0 
0 
1 

1 
0 
1 
1 
0 
1 
0 
0 

The "B" source is used for 
texturing the drawn lines. 

0 
1 
1 
1 
1 
0 
0 
0 
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BLTCONOL 
BLTDDAT 

BLTSIZE 

BLTSIZV 
BLTSIZH 

BLTxDAT 

05A W A(E) Blitter control 0, lower 8 bits (minterms) 
Blitter destination data register 

This register holds the data resulting from each 
word of blitter operation until it is sent to a 
RAM destination. This is a dummy address and 
cannot be read by the micro. The transfer is 
automatic during blitter operation. 

058 w A Blitter start and size (window width, 
height) 

05C 
05E 

074 

This register contains the width and height of 
the blitter operation (in line mode, width must 
= 2, height = line length). Writing to this 
register will start the blitter, and should be 
done last, after all pointers and control 
registers have been initialized. 

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

h9 h8 h7 h6 h5 h4 h3 h2 h1 hO,w5 w4 w3 w2 w1 wO 

h=height=vertical lines (10 bits=1024 lines max) 
w=width =horizontal pixels (6 bits=64 words=1024 pixels max) 

LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

w A(E) 
w A(E) 

w A 

BLTSIZE controls the line length and starts 
the line draw when written to. The h field 
controls the line length (10 bits gives 
lines up to 1024 dots long) . The w field 
must be set to 02 for all line drawing. 

Blitter V size (for 15 bit vertical size) 
Blitter H size and start (for 11 bit H size) 

Blitter source x data register 

This register holds source x (x=A,B,C) data for 
use by the blitter. It is normally loaded by the 
blitter DMA channel; however, it may also be 
preloaded by the microprocessor. 

LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

BLTADAT is used as an index register 
and must be preloaded with 8000. 
BLTBDAT is used for texture; it must 
be preloaded with FF if no texture 
(solid line) is desired. 
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SLTxMOD 

SLTxPTH 
SLTxPTL 

SPLlMOD 
SPL2MOD 

064 w A Slitter modulo x 

This register contains the modulo for blitter 
source (x=A,S,C) or destination (x-D). A modulo 
is a number that is automatically added to the 
address at the end of each line, to make the 
address point to the start of the next line. Each 
source or destination has its own modulo, allowing 
each to be a different size, while an identical 
area of each is used in the blitter operation. 

LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

SLTAMOD and SLTBMOD are used as slope 
storage registers and must be preloaded 
with the values (4Y-4X) and (4Y) 
respectively. Y/X= line slope. 
SLTCMOD and BLTDMOD must both be 
preloaded with the width (in bytes) 
of the image into which the line is 
being drawn (normally two times the 
screen width in words) . 

050 w 
052 w 

A(E) 
A 

Slitter pointer to x (high 3 bits, 5 bits if ECS) 
Slitter pointer to x (low 15 bits) 

108 
lOA 

This-pair of registers contains the 18-bit address 
of blitter source (x=A,S,C) or destination (x=D) 
DMA data. This pointer must be preloaded with the 
starting address of the data to be processed by 
the blitter. After the blitter is finished, it 
will contain the last data address (plus increment 
and modulo). 

LINE DRAW SLTAPTL is used as an accumulator 
LINE DRAW register and must be preloaded with 
LINE DRAW the starting value of (2Y-X) where 
LINE DRAW Y/X is the line slope. SLTCPT and 
LINE DRAW BLTDPT (both H and L) must be 
LINE DRAW preloaded with the starting address 
LINE DRAW of the line. 

w A Sitplane modulo (odd planes) 
w A Sitplane modulo (even planes) 

These registers contain the modules for the odd 
and even bitplanes. A modulo is a number that is 
automatically added to the address at the end of 
each line, so that the address then points to the 
start of the next line. 
Since they have separate modulos, the odd and even 
bitplanes may have sizes that are different from 
each other, as well as different from the display 
window size. 
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BPLCONO 

BPLCON1 

BPLCON2 

BPLCON3 

100 

102 

104 

w A D(E) Bitplane control register (misc. 
control bits) 

w D Bitplane control register 
(horizontal scroll control) 

w D(E) Bitplane control register 
(video priority control) 

These registers control the operation of the 
bitplanes and various aspects of the display. 

BITt BPLCONO BPLCON1 BPLCON2 
-------- -------- --------

15 HIRES X X 
14 BPU2 X X 
13 BPU1 X X 
12 BPUO X X 
11 HOMOD X X 
10 DBLPF X X 
09 COLOR X X 
08 GAUD X X 
07 X PF2H3 X 
06 X PF2H2 PF2PRI 
05 X PF2H1 PF2P2 
04 X PF2HO PF2P1 
03 LPEN PF1H3 PF2PO 
02 LACE PF1H2 PF1P2 
01 ERSY PF1H1 PF1P1 
00 X PF1HO PF1PO 

HIRES=High-resolution (70 ns pixels) 
BPU =Bitplane use code 000-110 (NONE through 6 inclusive) 
HOMOD=Hold-and-modify mode(1 =Hold-and-modify mode) 

(0 =Extra Half Brite(EHB) mode,only if 6 bitplanes specified) 
DBLPF=Double playfield (PF1~odd PF2=even bitplanes) 
COLOR=Composite video COLOR enable 

106 

GAUD=Genlock audio enable (muxed on BKGND pin 
during vertical blanking 

LPEN =Light pen enable (reset on power up) 
LACE =Interlace enable (reset on power up) 
ERSY =External resync (HSYNC, VSYNC pads become 

inputs) (reset on power up) 
PF2PRI=Playfield 2 (even planes) has priority over 

(appears in front of) playfield 1 
(odd planes) . 

PF2P=Playfield 2 priority code (with respect 
to sprites) 

PF1P=Playfield 1 priority code (with respect 
to sprites) 

PF2H=Playfield 2 horizontal scroll code 
PF1H=Playfield 1 horizontal scroll code 

w D(E) Bitplane control (enhanced features) 
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BPLxDAT 

BPLxPTH 
BPLxPTL 

CLXCON 

110 w D Bitplane x data (parallel-to-serial 
convert) 

These registers receive the DMA data fetched from 
RAM by the bitplane address pointers described 
above. They may also be written by either 
microprocessor. They act as a six-word parallel­
to-serial buffer for up to six memory bitplanes 
(x=1-6). The parallel-to-serial conversion is 
triggered whenever bitplane f1 is written, 
indicating the completion of all bitplanes for 
that word (16 pixels). The MSB is output first, 
and is, therefore, always on the left. 

OEO W 
OE2 W 

A 
A 

Bitplane x pointer (high 3 bits) 
Bitplane x pointer (low 15 bits) 

This pair of registers contains the 18-bit pointer to 
the address of bitplane x (x=1,2,3,4,5,6) DMA data. 
This pointer must be reinitialized by the processor 
or copper to point to the beginning of bitplane data 
every vertical blank time. 

098 w D Collision control 

This register controls which bitplanes are 
included (enabled) in collision detection and 
their required state if included. It also controls 
the individual inclusion of odd-numbered sprites 
in the collision detection by logically OR-ing 
them with their corresponding even-numbered sprite. 

BITt 

15 
14 
13 
12 
11 

10 

09 

08 

07 

06 

05 
04 
03 
02 
01 
00 

FUNCTION DESCRIPTION 
-------- ------------------------------
ENSP7 Enable sprite 7 (ORed with sprite 6) 
ENSP5 Enable sprite 5 (ORed with sprite 4) 
ENSP3 Enable sprite 3 (ORed with sprite 2) 
ENSP1 Enable sprite 1 (ORed with sprite 0) 
ENBP6 Enable bitplane 6 (match required 

for collision) 
ENBP5 Enable bitplane 5 (match required 

for collision) 
ENBP4 Enable bitplane 4 (match required 

for collision) 
ENBP3 Enable bitplane 3 (match required 

for collision) 
ENBP2 Enable bitplane 2 (match required 

for collision) 
ENBP1 Enable bitplane 1 (match required 

for collision) 
MVBP6 Match value for bitplane 6 collision 
MVBP5 Match value for bitplane 5 collision 
MVBP4 Match value for bitplane 4 collision 
MVBP3 Match value for bitplane 3 collision 
MVBP2 Match value for bitplane 2 collision 
MVBP1 Match value for bitplane 1 collision 

NOTE: Disabled bitplanes cannot prevent 
collisions. Therefore if all bitplanes are 
disabled, collisions will be continuous, 
regardless of the match values. 
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CLXDAT 

COLORxx 

COPlLCH 

COPlLCL 

COP2LCH 

COP2LCL 

OOE R D Collision data register (read and clear) 

This address reads (and clears) the collision 
detection register. The bit assignments are below. 

NOTE: Playfield 1 is all odd-numbered enabled 
bitplanes. Playfield 2 is all even-numbered 
enabled bitplanes 

BITJt COLLISIONS REGISTERED 

15 not used 
14 Sprite 4 (or 5) to sprite 6 (or 7) 
13 Sprite 2 (or 3) to sprite 6 (or 7) 
12 Sprite 2 (or 3) to sprite 4 (or 5) 
11 Sprite 0 (or 1) to sprite 6 (or 7) 
10 Sprite 0 (or 1) to sprite 4 (or 5) 
09 Sprite 0 (or 1) to sprite 2 (or 3) 
08 Playfield 2 to sprite 6 (or 7) 
07 Playfield 2 to sprite 4 (or 5) 
06 Playfield 2 to sprite 2 (or 3) 
05 Playfield 2 to sprite 0 (or 1) 
04 Playfield 1 to sprite 6 (or 7) 
03 Playfield 1 to sprite 4 (or 5) 
02 Playfield 1 to sprite 2 (or 3) 
01 Playfield 1 to sprite 0 (or 1) 
00 Playfield 1 to playfield 2 

180 w D Color table xx 

There are 32 of these registers (xx=00-31) and they 
are sometimes collectively called the "color 
palette." They contain 12-bit codes representing 
red, green, and blue colors for RGB systems. 
One of these registers at a time is selected 
(by the BPLxDAT serialized video code) 
for presentation at the RGB video output pins. 
The table below 'lhows the color register bit usage. 

BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

RGB X X X X R3 R2 Rl RO G3 G2 Gl GO 83 82 81 80 

B=blue, G=green, R=red, 

080 w 

082 w 

084 w 

086 w 

A(E) 

A 

A(E) 

A 

Copper first location register 
(high 3 bits, high 5 bits if ECS) 
Copper first location register 
(low 15 bits) 
Copper second location register 
(high 3 bits, high 5 bits if ECS) 
Copper second location register 
(low 15 bits) 

These registers contain the jump addresses 
described above. 
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COP CON 

COP INS 

02E W A(E) Copper control register 

This is a 1-bit register that when set true, allows 
the Copper to access the blitter hardware. This 
bit is cleared by power-on reset, so that the 
Copper cannot access the blitter hardware. See Appendix C 

for ECS operation. 

BITJf 

01 

08C W A 

NAME 

CDANG 

FUNCTION 

Copper danger mode. Allows Copper 
access to blitter if true. 

Copper instruction fetch identify 

This is a dummy address that is generated by the 
Copper whenever it is loading instructions into 
its own instruction register. This actually occurs 
every Copper cycle except for the second (IR2) 
cycle of the MOVE instruction. The three types 
of instructions are shown below. 

MOVE 
WAIT 

SKIP 

Move immediate to destination. 
Wait until beam counter is equal to, or 
greater than. (keeps Copper off of bus 
until beam position has been reached). 
Skip if beam counter is equal to or greater 
than (skips following MOVE instruction unless 
beam position has been reached) . 
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COP INS (cont.) MOVE WAIT UNTIL SKIP IF 
------~- ----------- ------------

BITt IRl IR2 IRl IR2 IRl IR2 
- ---- ---- ---- ---- ---

15 X R015 VP7 BFO * VP7 BFD * 
14 X RD14 VP6 VE6 
13 X RD13 VP5 VE5 
12 X R012 VP4 VE4 
11 X ROll VP3 VE3 
10 X RDlO VP2 VE2 
09 X RD09 VPl VEl 
08 DA8 R008 VPO VEO 
07 OA7 ROO? HP8 HE8 
06 DA6 RD06 HP7 HE? 
05 DA5 RD05 HP6 HE6 
04 OA4 R004 HP5 HE5 
03 OA3 RD03 HP4 HE4 
02 DA2 RD02 HP3 HE3 
01 DA1 RD01 HP2 HE2 
00 0 ROOO 1 0 

IR1=First instruction register 
IR2=Second instruction register 

VP6 VE6 
VP5 VES 
VP4 VE4 
VP3 VE3 
VP2 VE2 
VPl VEl 
VPO VEO 
HP8 HE8 
HP7 HE7 
HP6 HE6 
HP5 HE5 
HP4 HE4 
HP3 HE3 
HP2 HE2 

1 1 

DA =Destination address for MOVE instruction. Fetched 
during IR1 time, used during IR2 time on RGA bus. 

RD =RAM data moved by MOVE instruction at IR2 time 
directly from RAM to the address given by the 
DA field. 

VP =Vertical beam position comparison bit. 
HP =Horizontal beam position comparison bit. 
VE =Enable comparison (mask bit). 
HE =Enable comparison (mask bit) . 

* NOTE BFD=Blitter finished disable. When this bit 
is true, the Blitter Finished flag will 
have no effect on the Copper. m1en this 
bit is zero, the Blitter Finished flag 
must b: true (in addition to the rest of 
the bit comparisons) before the Copper 
can exit from its wait state or skip 
over an instruction. Note that the V7 
comparison cannot be masked. 

The Copper is basically a two-cycle machine that 
requests the bus only during odd memory cycles 
(4 memory cycles per instruction). This prevents 
collisions with display, audio, disk, refresh, and 
sprites, all of which use only even cycles. It 
therefore needs (and has) priority over only the 
blitter and microprocessor. 

There are only three types of instructions: 
MOVE immediate, WAIT until, and SKIP if. All 
instructions (except for WAIT) require two bus 
cycles (and two instruction words) . Since only 
the odd bus cycles are requested, four memory 
cycle times are required per instruction 
(memory cycles are 280 ns.) 
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COPINS (cont.) There are two indirect jump registers, COPlLC and 
COP2LC. These are 18-bit pointer registers whose 
contents are used to modify the program counter for 
initialization or jumps. They are transferred to 
the program counter whenever strobe addresses 
COPJMPl or COPJMP2 are written. In addition, 
COPlLC is automatically used at the beginning of 
each vertical blank time. 

COPJMPl 
COPJMP2 

It is important that one of the jump registers be 
initialized and its jump strobe address hit after 
power-up but before Copper DMA is initialized. 
This insures a determined startup address and state. 

088 s 
08A S 

A 
A 

Copper restart at first location 
Copper restart at second location 

These addresses are strobe addresses. When written 
to, they cause the Copper to jump indirect using 
the address contained in the first or second 
location registers described below. The Copper 
itself can write to these addresses, causing its 
own jump indirect. 
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DDFSTOP 
DDFSTRT 

DENISEID 

DIWHIGH 

DIWSTOP 

DIWSTRT 

094 w 
092 w 

A 
A 

Display data fetch stop (horiz. position) 
Display data fetch start (horiz. position) 

These registers control the horizontal timing of the 
beginning and end of the bitplane DMA display data 
fetch. The vertical bitplane DMA timing is identical 
to the display windows described above. 
The bitplane modules are dependent on the bitplane 
horizontal size and on this data-fetch window size. 

Register bit assignment 

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

USE X X X X X X X X H8 H7 H6 H5 H4 H3 X X 

(Always set X bits to 0 to maintain upward compatibility) 

The tables below show the start and stop timing for 
different register contents. 

DDFSTRT (left edge of display data fetch) 

PURPOSE H8,H7,H6,H5,H4 

----------------- --------------
Extra wide (max) * 0 0 1 0 1 
Wide 0 0 1 1 0 
Normal 0 0 1 1 1 
Narrow 0 1 0 0 0 

DDFSTOP (right edge of display data fetch) 

PURPOSE H8,H7,H6,H5,H4 
------------------ --------------
Narrow 1 1 0 0 1 
Normal 1 1 0 1 0 
Wide (max) 1 1 0 1 1 

07C R D(E) Chip revision level for Denise (video out chip) 

1E4 W A,D(E) Display window- upper bits for start, stop 

090 w A 

08E W A 

Display window stop (lower right 
vertical-horizontal position) 

Display window start (upper left 
vertical-horizontal position) 

These registers control display window size and position 
by locating the upper left and lower right corners. 

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

USE V7 V6 V5 V4 V3 V2 V1 VO H7 H6 H5 H4 H3 H2 H1 HO 

DIWSTRT is vertically restricted to the upper 2/3 
of the display (V8=0) and horizontally restricted to 
the left 3/4 of the display (H8=0) . 

DIWSTOP is vertically restricted to the lower 1/2 
of the display (V8=/=V7) and horizontally restricted 
to the right 1/4 of the display (H8=1). 
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DMACON 
DMACONR 

DSKBYTR 

096 w 
002 R 

A D P 
A p 

DMA control write (clear or set) 
DMA control (and blitter status) read 

This register controls all of the DMA channels and 
contains blitter DMA status bits. 

BITt FUNCTION 

15 

14 
13 

12 
11 
10 

09 
08 
07 
06 
05 
04 
03 
02 
01 
00 

SET/CLR 

BBUSY 
BZERO 

X 
X 
BLTPRI 

DMAEN 
BPLEN 
COPEN 
BLTEN 
SPREN 
DSKEN 
AUD3EN 
AUD2EN 
AUD1EN 
AUDOEN 

DESCRIPTION 

Set/clear control bit. Determines 
if bits written with a 1 get set or 
cleared. Bits written with a zero 
are unchanged. 
Blitter busy status bit (read only) 
Blitter logic zero status bit 
(read only). 

Blitter DMA priority 
(over CPU micro) (also called 
"blitter nasty") (disables /BLS 
pin, preventing micro from 
stealing any bus cycles while 
blitter DMA is running) . 
Enable all DMA below 
Bitplane DMA enable 
Copper DMA enable 
Blitter DMA enable 
Sprite DMA enable 
Disk DMA enable 
Audio channel 3 DMA enable 
Audio channel 2 DMA enable 
Audio channel 1 DMA enable 
Audio channel 0 DMA enable 

01A R p Disk data byte and status read 

This register is the disk-microprocessor data 
buffer. Data from the disk (in read mode) is 
loaded into this register one byte at a time, and 
bit 15 (DSKBYT) is set true. 

BITt 
---------

15 DSKBYT 
14 DMAON 

13 DISKWRITE 
12 WORD EQUAL 

11-08 X 
07--00 DATA 

Disk byte ready (reset on read) 
Mirror of bit 15 (DMAEN) in DSKLEN, 
ANDed with Bit09 (DMAEN) in DMACON 
Mirror of bit 14 (WRITE) in DSKLEN 
This bit true only while the 
DSKSYNC register equals the data 
from disk. 
Not used 
Disk byte data 
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DSKDAT 
DSKDATR 

DSKLEN 

DSKPTH 
DSKPTL 

DSKSYNC 

026 Disk DMA data write 
008 ER 

p 
p Disk DMA data read (early read dummy 

address) 

This register is the disk DMA data buffer. It 
contains two bytes of data that are either sent 
(written) to or received (read) from the disk. 
The write mode is enabled by bit 14 of the LENGTH 
register. The DMA controller automatically 
transfers data to or from this register and RAM, 
and when the DMA data is finished (length=O) it 
causes a disk block interrupt. See interrupts below. 

024 w p Disk length 

This register contains the length (number of words) 
of disk DMA data. It also contains two control 
bits, a DMA enable bit, and a DMA direction 
(read/write) bit. 

BITt FUNCTION DESCRIPTION 

15 DMAEN Disk DMA enable 
14 WRITE 
13-0 LENGTH 

Disk write (RAM to disk) if 1 
Length (t of words) of DMA data. 

020 w 
022 w 

A (E) 
A 

Disk pointer (high 3 bits, high 5 bits if ECS) 
Disk pointer (low 15 bits) 

This pair of registers contains the 18-bit 
address of disk DMA data. These address registers 
must be initialized by the processor or Copper 
before disk DMA is enabled. 

07E W p Disk sync register 

holds the match code for disk read synchronization. 
See ADKCON bit 10. 
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HBSTOP 
HBSTRT 
HCENTER 
HSSTOP 
HSSTRT 
HTOTAL 

INTENA 
INTENAR 

INTREQ 
INTREQR 

1C6 W 
1C4 W 
1E2 W 
1C2 W 
lDE W 
lCO W 

09A W 
OlC R 

A (E) 
A (E) 
A(E) 
A(E) 
A(E) 
A (E) 

p 
p 

Horizontal line position for HBLANK stop 
Horizontal line position for HBLANK start 
Horizontal position for Vsync on interlace 
Horizontal line position for HSYNC stop 
Horizontal sync start (VARHSY) 
Highest number count, horiz. line (VARBEAMEN=l) 

Interrupt enable bits (clear or set bits) 
Interrupt enable bits (read) 

This register contains interrupt enable bits. The bit 
assignment for both the request and enable registers 
is given below. 

BITi FUNCT LEVEL DESCRIPTION 

15 

14 

13 
12 

11 
10 
09 
08 
07 
06 
05 
04 
03 
02 

01 
00 

09C W 
OlE R 

SET/CLR 

INTEN 

EXTER 6 
DSKSYN 5 

RBF 5 
AUD3 4 
AUD2 4 
AUDl 4 
AUDO 4 
BLIT 3 
VERTB 3 
COPER 3 
PORTS 2 
SOFT 1 

DSKBLK 1 
TBE 1 

Set/clear control bit. Determines if 
bits written with a 1 get set or 
cleared. Bits written with a zero 
are always unchanged. 
Master interrupt (enable only, 

no request) 
External interrupt 
Disk sync register (DSKSYNC) 

matches disk data 
Serial port receive buffer full 
Audio channel 3 block finished 
Audio channel 2 block finished 
Audio channel 1 block finished 
Audio channel 0 block finished 
Blitter finished 
Start of vertical blank 
Copper 
I/0 ports and timers 
Reserved for software-initiated 

interrupt 
Disk block finished 
Serial port transmit buffer empty 

p 
p 

Interrupt request bits (clear or set) 
Interrupt request bits (read) 

This register contains interrupt request bits (or 
flags). These bits may be polled by the processor; 
if enabled by the bits listed in the next register, 
they may cause processor interrupts. Both a set and 
clear operation are required to load arbitrary data 
into this register. These status bits are not 
automatically reset when the interrupt is serviced, 
and must be reset when desired by writing to this 
address. The bit assignments are identical to the 
enable register below. 
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JOYODAT 

JOY1DAT 

OOA R D Joystick-mouse 0 data (left vertical, 
horizontal) 

OOC R D Joystick-mouse 1 data (right vertical, 
horizontal) 

These addresses each read a pair of 8-bit mouse 
counters. O=left controller pair, 1=right 
controller pair (four counters total). The bit 
usage for both left and right addresses is shown 
below. Each counter is clocked by signals from 
two controller pins. Bits 1 and 0 of each counter 
may be read to determine the state of these two 
clock pins. This allows these pins to double as 
joystick switch inputs. 

Mouse counter usage: 
(pins 1,3=Yclock, pins 2,4=Xclock) 

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 

ODAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO 
1DAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO 

X7 X6 X5 X4 X3 X2 X1 XO 
X7 X6 X5 X4 X3 X2 X1 XO 

The following table shows the Inouse/joystick 
connector pin usage. The pins (and their functions) 
are sampled (multiplexed) into the DENISE chip 
during the clock times shown in the table. 
This table is for reference only and should 
not be needed by the programmer. (Note that the 
joystick functions are all "active low" at the 
connector pins.) 

Sampled by DENISE 
Conn Joystick Mouse -----------------
Pin Function Function Pin Name Clock 

-------- --------
L1 FORW* y 38 MOV at CCK 
L3 LEFT* YQ 38 MOV at CCK* 
L2 BACK* X 9 MOH at CCK 
L4 RIGH* XQ 9 MOH at CCK* 
R1 FORW* y 39 M1V at CCK 
R3 LEFT* YQ 39 M1V at CCK* 
R2 BACK* X 8 M1H at CCK 
R4 RIGH* XQ 8 M1H at CCK* 

After being sampled, these connector pin signals 
are used in quadrature to clock the mouse counters. 
The LEFT and RIGHT joystick functions (active high) 
are directly available on the Y1 and X1 bits of 
each counter. In order to recreate the FORWARD 
and BACK joystick functions, however, it is 
necessary to logically combine (exclusive OR) 
the lower two bits of each counter. 
This is illustrated in the following table. 

To detect Read these counter bits 
-------- ----------------
Forward Y1 xor YO (BITt09 xor BITt08) 
Left Y1 
Back X1 xor XO (BITt01 xor BITtOO) 
Right X1 
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JOYTEST 

POTODAT 
POTlDAT 

POT GO 

POTGOR 

REFPTR 

036 w D Write to all four joystick-mouse counters 
at once. 

Mouse counter write test data: 

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 

ODAT 
lDAT 

012 R 
014 R 

Y7 Y6 Y5 Y4 Y3 Y2 xx XX 

Y7 Y6 Y5 Y4 Y3 Y2 XX xx 
X7 X6 X5 X4 X3 X2 XX XX 

X7 X6 X5 X4 X3 X2 XX XX 

P(E) 
P(E) 

Pot counter data left pair (vert,horiz.) 
Pot counter data right pair (vert,horiz.) 

These addresses each read a pair of 8-bit pot counters. 
(Four counters total.) The bit assignment for both 
addresses is shown below. The counters are stopped by 
signals from two controller connectors (left-right) 
with two pins each. 

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 

RIGHT Y7 Y6 Y5 Y4 Y3 Y2 Yl YO 
LEFT Y7 Y6 Y5 Y4 Y3 Y2 Yl YO 

X7 X6 XS X4 X3 X2 Xl XO 
X7 X6 X5 X4 X3 X2 Xl XO 

034 w 

016 R 

CONNECTORS 

Loc. Dir. Sym 

RIGHT Y 
RIGHT X 
LEFT Y 
LEFT X 

RY 
RX 
LY 
LX 

Pin 

9 
5 
9 
5 

Pini 

36 
35 
33 
32 

PAULA 

Pin Name 

(POTlY) 
(POTlX) 
(POTOY) 
(POT OX) 

p Pot port data write and start. 

p Pot port data read (formerly called POTINP) . 

This register controls a 4-bit bi-directional I/0 port 
that shares the same four pins as the four pot counters 
above. 

BITt FUNCT DESCRIPTION 

15 
14 
13 
12 
11 
10 
09 
08 
07-01 
00 

028 w A 

OUTRY 
DATRY 
OUTRX 
DATRX 
OUTLY 
DATLY 
OUT LX 
DATLX 

0 
START 

Output enable for Paula pin 36 
I/0 data Paula pin 36 
Output enable for Paula pin 35 
I/0 data Paula pin 35 
Output enable for Paula pin 33 
I/0 data Paula pin 33 
Output enable for Paula pin 32 
I/0 data Paula pin 32 
Reserved for chip ID code (presently 0) 
Start pots (dump capacitors, start 

counters) 

Refresh pointer 

This register is used as a dynamic RAM refresh 
address generator. It is writeable for test 
purposes only, and should never be written by 
the microprocessor. 
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SERDAT 

SERDATR 

030 w p Serial port data and stop bits write 
(transmit data buffer) 

This address writes data to a transmit data buffer. 
Data from this buffer is moved into a serial shift 
register for output transmission whenever it is 
empty. This sets the interrupt request TBE 
(transmit buffer empty). A stop bit must be 
provided as part of the data word. The length of 
the data word is set by the position of the stop 
bit. 

BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

USE 0 0 0 0 0 0 S D8 07 06 DS 04 03 02 D1 DO 

Note: S 

018 R p 

stop bit = 1, D = data bits. 

Serial port data and status read 
(receive data buffer) 

This address reads data from a receive data buffer. 
Data in this buffer is loaded from a receiving 
shift register whenever it is full. Several 
interrupt request bits are also read at this 
address, along with the data, as shown below. 

BITjf SYM 

15 OVRUN 

14 RBF 

13 TBE 

12 TSRE 

11 RXD 

10 0 
09 STP 
08 STP-DB8 

07 DB7 
06 DB6 
05 DB5 
04 DB4 
03 DB3 
02 DB2 
01 DB1 
00 DBO 

FUNCTION 

Serial port receiver overrun. 
Reset by resetting bit 11 of 
INTREQ. 
Serial port receive buffer full 
(mirror) . 
Serial port transmit buffer 
empty (mirror) . 
Serial port transmit shift 
register empty. 
Reset by loading into buffer. 
RXD pin receives UART serial 
data for direct bit test by 
the microprocessor. 
Not used 
Stop bit 
Stop bit if LONG, data bit if 
not. 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
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SERPER 

SPRxCTL 
SPRxPOS 

SPRxDATA 
SPRxDATB 

SPRxPOS 

032 w p Serial port period and control 

This register contains the control bit LONG referred to 
above, and a 15-bit number defining the serial port 
baud rate. If this number is N, then the baud rate is 
1 bit every (N+1)*.2794 microseconds. 

BITt SYM 

15 LONG 
14-00 RATE 

FUNCTION 

Defines serial receive as 9-bit word. 
Defines baud rate=1/((N+l)*.2794 microsec.) 

142 w 
140 w 

A D (E) 
A D 

Sprite x vert stop position and control data 
Sprite x vert-horiz start position data 

144 
146 

These two registers work together as position, size and 
feature sprite-control registers. They are usually loaded 
by the sprite DMA channel during horizontal blank; 
however, they may be loaded by either processor at any time. 
SPRxPOS register: 

BITlt SYM FUNCTION 

15-08 SV7-SVO Start vertical value. High bit(SV8) is 
in SPRxCTL register below. 

07-00 SH8-SH1 Start horizontal value. Low bit(SHO) is 
in SPRxCTL register below. 

SPRxCTL register (writing this address disables sprite 
horizontal comparator circuit) : 

BITJt 
----
15-08 
07 
06-04 
02 
01 
00 

w D 
w D 

SYM 

EV7-EVO 
ATT 

X 
SV8 
EV8 
SHO 

FUNCTION 

End (stop) vertical value low 8 bits 
Sprite attach control bit (odd sprites) 
Not used 
Start vertical value high bit 
End (stop) vertical value high bit 
Start horizontal value low bit 

Sprite x image data register A 
Sprite x image data register B 

These registers buffer the sprite image data. They are 
usually loaded by the sprite DMA channel but may be 
loaded by either processor at any time. When a 
horizontal comparison occurs, the buffers are dumped 
into shift registers and serially outputted to the 
display, MSB first on the left. 

NOTE: Writing to the A buffer enables (arms) the sprite. 
Writing to the SPRxCTL register disables the sprite. 
If enabled, data in the A and B buffers will be outputted 
whenever the beam counter equals the sprite horizontal 
position value in the SPRxPOS register. 

see SPRxCTL 
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SPRxPTH 
SPRxPTL 

STREQU 

STRHOR 
STRLONG 

STRVBL 

VBSTOP 
VBSTRT 

VHPOSR 

VHPOSW 

VPOSR 

VPOSW 

VSSTOP 
VSSTRT 
VTOTAL 

120 w 
122 w 

A 
A 

Sprite x pointer (high 3 bits) 
Sprite x pointer (low 15 bits) 

038 

03C 
03E 

03A 

1CE 
1CC 

006 

02C 

This pair of registers contains the 18-bit address 
of sprite x (x=0,1,2,3,4,5,6,7) DMA data. These address 
registers must be initialized by the processor or Copper 
every vertical blank time. 

s D Strobe for horizontal sync with VB 
and EQU 

s D p Strobe for horizontal sync 
s D(E) Strobe for identification of long 

horizontal line 

One of the first three strobe addresses above is 
placed on the destination address bus during the 
first refresh time slot. The fourth strobe shown 
above is used during the second refresh time slot of 
every other line to identify lines with long counts 
(228). There are four refresh time slots, and any 
not used for strobes will leave a null (FF) address 
on the destination address bus. 

s D Strobe for horizontal sync with VB 
(vertical blank) 

w A(E) Vertical line for VBLANK stop 
w A(E) Vertical line for VBLANK start 

R A Read vertical and horizontal position of 
beam or lightpen 

w A Write vertical and horizontal position 
of beam or lightpen 

BIT* 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

USE V7 V6 V5 V4 V3 V2 V1 VO,H8 H7 H6 H5 H4 H3 H2 H1 

RESOLUTION = 1/160 of screen width (280 ns) 

004 R A(E) Read vertical most significant bit 
(and frame flop) 

02A W A Write vertical most significant bit 
(and frame flop) 

BIT* 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

USE LOF-- -- -- -- -- -- --,-- -- -- -- -- -- -- V8 

LOF=Long frame (auto toggle control bit in BPLCONO) 

1CA W 
lEO W 
1C8 W 

A(E) 
A(E) 
A(E) 

Vertical line position for VSYNC stop 
Vertical sync start (VARVSY) 
Highest numbered vertical line (VARBEAMEN=l) 
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appendix B 
REGISTER SUMMARY 
ADDRESS ORDER 

This appendix contains information about the register set in address order. 

The following codes and abbreviations are used in this appendix: 

& Register used by DMA channel only. 

% Register used by DMA channel usually, processors sometimes. 

+ Address register pair. Must be an even address pointing to chip memory. 

* Address not writable by the Copper. 

Address not writable by the Copper unless the "copper danger bit", COPCON is set true. 

A,D,P 
A=Agnus chip, D=Denise chip, P=Paula chip. 

W,R 
W=write-only; R=read-only, 

ER Early read. This is a DMA data transfer to RAM, from either the disk or the blitter. 
RAM timing requires data to be on the bus earlier than microprocessor read cycles. 
These transfers are therefore initiated by Agnus timing, rather than a read address on the 
destination address bus. 

S Strobe (write address with no register bits). Writing the register causes the effect. 
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PTL,PTH 
Chip memory pointer that addresses DMA data. Must be reloaded by a processor before 
use (vertical blank for bitplane and sprite pointers, and prior to starting the blitter for 
blitter pointers). 

LCL,LCH 
Chip memory location (starting address) of DMA data. Used to automatically restart 
pointers, such as the Copper program counter (during vertical blank) and the audio 
sample counter (whenever the audio length count is finished). 

MOD 
15-bit modulo. A number that is automatically added to the memory address at the end 
of each line to generate the address for the beginning of the next line. This allows the 
blitter (or the display window) to operate on (or display) a window of data that is smaller 
than the actual picture in memory (memory map). Uses 15 bits, plus sign extend. 

About the ECS registers. Registers denoted with an "(E)" in the chip column means 
that those registers have been changed in the Enhanced Chip Set (ECS). The ECS is 
found in the A3000, and is installable in the A500 and A2000. Certain ECS registers 
are completely new, others have been extended in their functionality. See the register 
map in Appendix C for information on which ECS registers are new and which have 
been modified. 
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NAME 

BLTDDAT 
DMACONR 
VPOSR 
VHPOSR 
DSKDATR 
JOYODAT 
JOY1DAT 
CLXDAT 
ADKCONR 
POTODAT 
POTlDAT 
POTGOR 
SERDATR 
DSKBYTR 
INTENAR 
INTREQR 
DSKPTH 
DSKPTL 
DSKLEN 
DSKDAT 
REFPTR 
VPOSW 
VHPOSW 
COP CON 
SERDAT 
SERPER 
POT GO 
JOYTEST 
STREQU 
STRVBL 
STRHOR 
STRLONG 
BLTCONO 
BLTCONl 
BLTAFWM 
BLTALWM 
BLTCPTH 
BLTCPTL 
BLTBPTH 
BLTBPTL 
BLTAPTH 
BLTAPTL 
BLTDPTH 
BLTDPTL 
BLTSIZE 
BLTCONOL 
BLTSIZV 
BLTSIZH 
BLTCMOD 
BLTBMOD 
BLTAMOD 
BLTDMOD 

BLTCDAT 
BLTBDAT 

ADD R/W CHIP FUNCTION 

& *000 ER 
*002 R 
*004 R 
*006 R 

& *008 ER 
*OOA R 
*OOC R 
*DOE R 
*010 R 
*012 R 
*014 R 
*016 R 
*018 R 
*OlA R 
*OlC R 
*OlE R 

+ *020 w 
+ *022 w 

*024 w 
& *02 6 w 
& *028 w 

*02A W 
*02C W 
*02E W 
*030 w 
*032 w 
*034 w 
*036 w 

& *038 s 
& *03A S 
& *03C S 
& *03E S 

-o4o w 
-o42 w 
-o44 w 
-o46 w 

+ -o48 w 
+ -o4A w 
+ -o4c w 
+ -o4E w 
+ -o5o w 
+ -o52 w 
+ -o54 w 
+ -o56 w 

-o58 w 
-o5A w 
-o5c w 
-o5E w 
-o6o w 
-o62 w 
-o64 w 
-o66 w 
-o68 
-o6A 
-o6c 
-o6E 

% -o7o w 
% -072 w 

A 
A P 
A(E) 

Blitter destination early read (dummy address) 
DMA control (and blitter status) read 
Read vert most signif. bit (and frame flop) 
Read vert and horiz. position of beam A 

D 
D 
D 

p Disk data early read (dummy address) 
Joystick-mouse 0 data (vert,horiz) 
Joystick-mouse 1 data (vert,horiz) 
Collision data register (read and clear) 

P Audio, disk control register read 
P(E)Pot counter pair 0 data (vert,horiz) 
P(E)Pot counter pair 1 data (vert,horiz) 
P Pot port data read (formerly POTINP) 
P Serial port data and status read 
P Disk data byte and status read 
P Interrupt enable bits read 
P Interrupt request bits read 

A(E) Disk pointer (high 3 bits, 5 bits if ECS) 
A Disk pointer (low 15 bits) 

P Disk length 
P Disk DMA data write 

A 
A 
A 
A(E) 

D 
D 
D 

p 
p 
p 

D p 

D(E) 
A 
A(E) 
A 

A 
A 
A 
A 
A 
A(E) 
A 

A 
A 
A 
A(E} 
A(E} 
A (E) 
A 
A 
A 
A 

A 
A 

Refresh pointer 
Write vert most signif. bit (and frame flop) 
Write vert and horiz position of beam 
Coprocessor control register (CDANG) 
Serial port data and stop bits write 
Serial port period and control 
Pot port data write and start 
Write to all four joystick-mouse counters at once 
Strobe for horiz sync with VB and EQU 
Strobe for horiz sync with VB (vert. blank) 
Strobe for horiz sync 
Strobe for identification of long horiz. line. 
Blitter control register 0 
Blitter control register 1 
Blitter first word mask for source A 
Blitter last word mask for source A 
Blitter pointer to source C (high 3 bits) 
Blitter pointer to source C (low 15 bits) 
Blitter pointer to source B (high 3 bits) 
Blitter pointer to source B (low 15 bits) 
Blitter pointer to source A (high 3 bits) 
Blitter pointer to source A (low 15 bits) 
Blitter pointer to destination D (high 3 bits) 
Blitter pointer to destination D (low 15 bits) 
Blitter start and size (window width, height) 
Blitter control 0, lower 8 bits (minterms) 
Blitter V size (for 15 bit vertical size) 
Blitter H size and start (for 11 bit H size) 
Blitter modulo for source C 
Blitter modulo for source B 
Blitter modulo for source A 
Blitter modulo for destination D 

Blitter source C data register 
Blitter source B data register 
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BLTADAT 

SPRHDAT 

DENISEID 
DSKSYNC 

COP1LCH 

COPlLCL 

COP2LCH 

COP2LCL 

COPJMP1 
COPJMP2 
COP INS 
DIWSTRT 

DIWSTOP 

DDFSTRT 

DDFSTOP 

DMACON 
CLXCON 
INTENA 

INTREQ 

ADKCON 
AUDOLCH 
AUDOLCL 
AUDOLEN 
AUDOPER 
AUDOVOL 
AUDODAT 

AUD1LCH 
AUD1LCL 
AUD1LEN 
AUD1PER 
AUD1VOL 
AUD1DAT 

AUD2LCH 
AUD2LCL 
AUD2LEN 
AUD2PER 
AUD2VOL 
AUD2DAT 

AUD3LCH 
AUD3LCL 
AUD3LEN 
AUD3PER 

% -o74 w 
-o76 
-o78 w 
-o7A 
-o7c R 
-o7E w 

+ 080 w 

+ 082 w 

+ 084 w 

+ 086 w 

088 s 
08A S 
08C W 
08E W 

090 w 

092 w 

094 w 

096 w 
098 w 
09A W 

09C W 

09E W 
+ OAO W 
+ OA2 W 

0A4 W 
OA6 W 
OA8 W 

& OAA W 
OAC 
OAE 

+ OBO W 
+ OB2 W 

OB4 W 
OB6 W 
OB8 W 

& DBA W 
OBC 
OBE 

+ oco w 
+ OC2 W 

OC4 W 
OC6 W 
OC8 W 

& OCA W 
occ 
OCE 

+ ODO W 
+ OD2 w 

OD4 w 
OD6 w 

A Blitter source A data register 

A(E) Ext. logic UHRES sprite pointer and data id 

D(E) Chip revision level for Denise (video out chip) 

A(E) 

A 

A(E) 

A 

A 
A 
A 
A 

A 

A 

A 

P Disk sync pattern register for disk 
read 

Coprocessor first location register 
(high 3 bits, high 5 bits if ECS) 

Coprocessor first location register 
(low 15 bits) 

Coprocessor second location register 
(high 3 bits, high 5 bits if ECS) 

Coprocessor second location register 
(low 15 bits) 

Coprocessor restart at first location 
Coprocessor restart at second location 
Coprocessor instruction fetch identify 
Display window start (upper left 

vert-horiz position) 
Display window stop (lower right 

vert.-horiz. position) 
Display bitplane data fetch start 

(horiz. position) 
Display bitplane data fetch stop 

(horiz. position) 
A D P DMA control write (clear or set) 

Collision control D 
p 

p 

Interrupt enable bits (clear or 
set bits) 

Interrupt request bits (clear or 
set bits) 

p 

A(E) 
A 

Audio, disk, UART control 
Audio channel 0 location (high 3 bits, 5 if ECS) 
Audio channel 0 location (low 15 bits) 

A 
A 

A 

A 

A 
A 

P Audio channel 0 length 
P(E)Audio channel 0 period 
P Audio channel 0 volume 
P Audio channel 0 data 

p 
p 
p 
p 

p 
p 
p 
p 

p 
p 

Audio channel 1 location (high 3 bits) 
Audio channel 1 location (low 15 bits) 
Audio channel 1 length 
Audio channel 1 period 
Audio channel 1 volume 
Audio channel 1 data 

Audio channel 2 location (high 3 bits) 
Audio channel 2 location (low 15 bits) 
Audio channel 2 length 
Audio channel 2 period 
Audio channel 2 volume 
Audio channel 2 data 

Audio channel 3 location (high 3 bits) 
Audio channel 3 location (low 15 bits) 
Audio channel 3 length 
Audio channel 3 period 
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AUD3VOL 008 w p Audio channel 3 volume 
AUD3DAT & ODA w p Audio channel 3 data 

ODC 
ODE 

BPLlPTH + OEO w A Bitplane 1 pointer (high 3 bits) 
BPLlPTL + OE2 w A Bitplane 1 pointer (low 15 bits) 
BPL2PTH + OE4 w A Bitplane 2 pointer (high 3 bits) 
BPL2PTL + OE6 w A Bitplane 2 pointer (low 15 bits) 
BPL3PTH + OE8 w A Bitplane 3 pointer (high 3 bits) 
BPL3PTL + OEA w A Bitplane 3 pointer (low 15 bits) 
BPL4PTH + OEC w A Bitplane 4 pointer (high 3 bits) 
BPL4PTL + OEE w A Bitplane 4 pointer (low 15 bits) 
BPL5PTH + OFO w A Bitplane 5 pointer (high 3 bits) 
BPL5PTL + OF2 w A Bitplane 5 pointer (low 15 bits) 
BPL6PTH + OF4 w A Bitplane 6 pointer (high 3 bits) 
BPL6PTL + OF6 w A Bitplane 6 pointer (low 15 bits) 

OFB 
OFA 
OFC 
OFE 

BPLCONO 100 w A D(E) Bitplane control register (misc. control bits) 
BPLCONl 102 w D Bitplane control reg. (scroll value PFl, PF2) 
BPLCON2 104 w D (E) Bitplane control reg. (priority control) 
BPLCON3 106 w D (E) Bitplane control (enhanced features) 

BPLlMOD 108 w A Bitplane modulo (odd planes) 
BPL2MOD lOA w A Bitplane modulo (even planes) 

lOC 
lOE 

BPL1DAT & 110 w D Bitplane 1 data (parallel-to-serial convert) 
BPL2DAT & 112 w D Bitplane 2 data (parallel-to-serial convert) 
BPL3DAT & 114 w D Bitplane 3 data (parallel-to-serial convert) 
BPL4DAT & 116 w D Bitplane 4 data (parallel-to-serial convert) 
BPL5DAT & 118 w D Bitplane 5 data (parallel-to-serial convert) 
BPL6DAT & 11A w D Bitplane 6 data (parallel-to-serial convert) 

11C 
11E 

SPROP1'H + 120 w A Sprite 0 pointer (high 3 bits) 
SPROPTL + 122 w A Sprite 0 pointer (low 15 bits) 
SPR1PTH + 124 w A Sprite 1 pointer (high 3 bits) 
SPR1PTL + 126 w A Sprite 1 pointer (low 15 bits) 
SPR2PTH + 128 w A Sprite 2 pointer (high 3 bits) 
SPR2PTL + 12A w A Sprite 2 pointer (low 15 bits) 
SPR3PTH + 12C w A Sprite 3 pointer (high 3 bits) 
SPR3PTL + 12E w A Sprite 3 pointer (low 15 bits) 
SPR4PTH + 130 w A Sprite 4 pointer (high 3 bits) 
SPR4PTL + 132 w A Sprite 4 pointer (low 15 bits) 
SPR5PTH + 134 w A Sprite 5 pointer (high 3 bits) 
SPR5PTL + 136 w A Sprite 5 pointer (low 15 bits) 
SPR6PTH + 138 w A Sprite 6 pointer (high 3 bits) 
SPR6PTL + 13A w A Sprite 6 pointer (low 15 bits) 
SPR7PTH + 13C w A Sprite 7 pointer (high 3 bits) 
SPR7PTL + 13E w A Sprite 7 pointer (low 15 bits) 
SPROPOS % 140 w AD Sprite 0 vert-horiz start position 

data 
SPROCTL % 142 w A D(E) Sprite 0 vert stop position and 

control data 
SPRODATA % 144 w D Sprite 0 image data register A 
SPRODATB % 14 6 w D Sprite 0 image data register B 
SPRlPOS % 148 w AD Sprite 1 vert-horiz start position 

data 
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SPR1CTL % 14A w A D Sprite 1 vert stop position and 
control data 

SPR1DATA % 14C w D Sprite 1 image data register A 
SPRlDATB % 14E w D Sprite 1 image data register B 
SPR2POS % 150 w A D Sprite 2 vert-horiz start position 

data 
SPR2CTL % 152 w AD Sprite 2 vert stop position and 

control data 
SPR2DATA % 154 w D Sprite 2 image data register A 
SPR2DATB % 156 w D Sprite 2 image data register B 
SPR3POS % 158 w A D Sprite 3 vert-horiz start position 

data 
SPR3CTL % 15A w A D Sprite 3 vert stop position and 

control data 
SPR3DATA % 15C w D Sprite 3 image data register A 
SPR3DATB % 15E w D Sprite 3 image data register B 
SPR4POS % 160 w A D Sprite 4 vert-horiz start position 

data 
SPR4CTL % 162 w A D Sprite 4 vert stop position and 

control data 
SPR4DATA % 164 w D Sprite 4 image data register A 
SPR4DATB % 166 w D Sprite 4 image data register B 
SPR5POS % 168 w A D Sprite 5 vert-horiz start position 

data 
SPR5CTL % 16A w A D Sprite 5 vert stop position and 

control data 
SPR5DATA % 16C w D Sprite 5 image data register A 
SPR5DATB % 16E w D Sprite 5 image data register B 
SPR6POS % 170 w A D Sprite 6 vert-horiz start position 

data 
SPR6CTL % 172 w A D Sprite 6 vert stop position and 

control data 
SPR6DATA % 174 w D Sprite 6 image data register A 
SPR6DATB % 17 6 w D Sprite 6 image data register B 
SPR7POS % 178 w A D Sprite 7 vert-horiz start position 

data 
SPR7CTL % 17A w A D Sprite 7 vert stop position and 

control data 
SPR7DATA % 17C w D Sprite 7 image data register A 
SPR7DATB % 17E w D Sprite 7 image data register B 
COLOROO 180 w D Color table 00 
COLOR01 182 w D Color table 01 
COLOR02 184 w D Color table 02 
COLOR03 186 w D Color table 03 
COLOR04 188 w D Color table 04 
COLOR05 18A w D Color table 05 
COLOR06 18C w D Color table 06 
COLOR07 18E w D Color table 07 
COLOR OS 190 w D Color table 08 
COLOR09 192 w D Color table 09 
COLORlO 194 w D Color table 10 
COLOR11 196 w D Color table 11 
COLOR12 198 w D Color table 12 
COLOR13 19A w D Color table 13 
COLOR14 19C w D Color table 14 
COLOR15 19E w D Color table 15 
COLOR16 lAO w D Color table 16 
COLOR17 1A2 w D Color table 17 
COLOR18 1A4 w D Color table 18 
COLOR19 1A6 w D Color table 19 
COLOR20 lAS w D Color table 20 
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COLOR21 
COLOR22 
COLOR23 
COLOR24 
COLOR25 
COLOR26 
COLOR27 
COLOR28 
COLOR29 
COLOR30 
COLOR31 

HTOTAL 
HSSTOP 
H8STRT 
H8STOP 
VTOTAL 
VSSTOP 
V8STRT 
VBSTOP 

BEAMCONO 
HSSTRT 
VSSTRT 
HCENTER 
DIWHIGH 

RESERVED 
RESERVED 
NO-OP(NULL) 

lAA W 
lAC W 
lAE W 
180 W 
182 W 
184 w 
186 w 
188 w 
lBA W 
lBC W 
18E W 

lCO W 
1C2 W 
1C4 W 
1C6 W 
1C8 W 
lCA W 
lCC W 
lCE W 

lDO 
1D2 
104 
106 
108 
lDA 

lDC W 
lOE W 
lEO W 
1E2 W 
1E4 W 

lllOX 
llllX 
lFE 

D 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

A(E) 
A(E) 
A(E) 
A (E) 
A(E) 
A(E) 
A(E) 
A(E) 

A(E) 
A(E) 
A(E) 
A(E) 

A, D (E) 

Color table 21 
Color table 22 
Color table 23 
Color table 24 
Color table 25 
Color table 26 
Color table 27 
Color table 28 
Color table 29 
Color table 30 
Color table 31 

Highest number count, horiz line (VARBEAMEN=l) 
Horizontal line position for HSYNC stop 
Horizontal line position for HBLANK start 
Horizontal line position for HBLANK stop 
Highest numbered vertical line (VARBEAMEN=l) 
Vertical line position for VSYNC stop 
Vertical line for V8LANK start 
Vertical line for VBLANK stop 

Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 

Beam counter control register (SHRES,PAL) 
Horizontal sync start (VARHSY) 
Vertical sync start (VARVSY) 
Horizontal position for Vsync on interlace 
Display window - upper bits for start, stop 
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appendix C 
ENHANCED CHIP SET 

This appendix contains information on the Enhanced Chip Set (ECS). The Enhanced Chip Set 
consists of the Agnus (8372-R3) and Denise (8373-R3) custom Amiga chips. These chip 
revisions support advanced features in addition to all of the standard features previously available. 

The ECS is standard in the A3000. The enhanced Agnus and Denise chips are plug-compatible 
replacements for the originals in the A500 or A2000. There are no provisions for installing the 
ECS in the original AIOOO. The A2000, when jumpered for one megabyte of chip memory, will 
function normally with the ECS chips installed, under both Vl.3 and V2.0 Amiga System 
software. 

The ECS chips are designed to function with either NTSC or PAL Amigas. However, the chips 
from the US factory are configured for NTSC mode. In order to use them on a PAL system, you 
may have to reset the motherboard jumpers for proper performance. 

NEW FEATURES OF THE ENHANCED CHIP SET 

The new features of the Enhanced Chip Set are as follows: 

o New Memory Limits 

o New Blitter Range 

o New Mode Resolutions 

o New Monitor Scan Rates 

o New Genlock Capabilities 

o Built-in A2024 support 

The following briefly describes each of the new ECS features. 
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New Memory Limits 

The A3000 has 1 MB of Chip memory, and with proper jumpering of the motherboard, an 
additional 1 MB can be added. On the A2000, the enhanced Agnus can access up to 1 megabyte 
of Chip memory with proper jumpering of the motherboard. This provides programs with more 
bUtter-accessible memory for animation and graphics applications. 

New Blltter Range 

The enhanced Agnus provides rectangular blits up to 32k by 32k pixels in size. 

New Mode Resolutions 

The enhanced Denise chip provides the new SuperHires mode with up to 1280 horizontal pixels 
per scanline on a standard NTSC or PAL display. 

All of the standard display resolutions and depths of the original chip set are supported with the 
ECS. 

New Monitor Scan Rates 

The V2.0 Kickstart and ECS chips support a new high resolution Productivity mode. With the 
addition of a multi-sync monitor, this mode allows 640 x 480, non-interlaced screens in up to four 
colors. All programs which open and operate in the Workbench screen will automatically benefit 
from Productivity text and graphics. In addition, new programs can open their own Productivity 
screens in a system standard fashion. 

New Genlock Capabilities 

The enhanced Denise chip provides the following four new genlock features: 

o Chromakey 

o BitPlancKey 

o BorderBlank 

o BorderNotTransparent 

ChromaKey allows any color register to control the video overlay. BitPlaneKey allows any 
bitplane to enable the video overlay. BorderBlank creates a transparent "frame" surrounding the 
active area. BorderNotTransparent makes an opaque "frame" surrounding the active area. 
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Built-In A2024 Support 

Version 2.0 Kickstart ROMS have built-in support for the A2024 scan-converter monitor which 
displays 1008 x 800 pixels (1008 x 1024 in PAL mode) in four monochrome levels, non­
interlaced. In conjunction with 1 megabyte of Chip memory, this allows very high resolution 
Workbench screens, as well as support for "full page" text and CAD applications. 

ECS HARDWARE AND THE GRAPHICS LIBRARY 

The Enhanced Chip Set consists of compatible revisions to the Agnus and Denise custom chips. 
The V36 graphics.library software makes it possible for these chips to display images in new 
resolutions, at new monitor scan rates and with new sprite and genlock abilities. 

With the enhanced Agnus, the V36 graphics.library supports the new programmable scan rate 
registers to provide multi-sync and bi-sync monitor capability. The new SuperHires mode 
provides 35ns pixel rates and sprite positioning at 70ns rates. Support for big blits (up to 32k x 
32k) is provided for all graphics functions if the ECS Agnus is present. 

With the enhanced Denise, the V36 graphics.library provides display window start and stop with 
explicit control over larger ranges than was possible before. There are new color register 
interpretations as part of the SuperHires mode. Genlock control has been expanded for more 
flexibility. Borders may be explicitly transparent or opaque, color registers other than zero can 
control video overlay and a bitplane mask may be used for special-purpose video masking 
concurrently with the other genlock features. 

Warning: With these new features come certain new responsibilities when using the 
graphics.library. 
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The register map listed below shows the changes and new registers in the Amiga's Enhanced 
Chip Set. 

ADD REGISTER V2.0 R/W CHIP 

004 VPOSR 
012 POTODAT 
014 POTlDAT 
020 DSKPTH 
02E COPCON 
03E STRLONG 
042 BLTCONl 
050 BLTxPTH 
05A BLTCONOL 
05C BLTSIZV 
OSE BLTSIZH 
07C DENISEID 
080 COPlLCH 
084 COP2LCH 
OAO AUDxLCH 
OA6 AUDxPER 
100 BPLCONO 
104 BPLCON2 
106 BPLCON3 
142 SPRxCTL 
lCO HTOTAL 
1C2 HSSTOP 
lC4 HBSTRT 
1C6 HBSTOP 
1C8 VTOTAL 
lCA VSSTOP 
lCC VBSTRT 
lCE VBSTOP 
lDC BEAMCONO 
lDE HSSTRT 
lEO VSSTRT 
1E2 HCENTER 
1E4 DIWHIGH 

chg 
chg 
chg 
chg 
chg 
chg 
chg 
chg 
new 
new 
new 
new 
chg 
chg 
chg 
chg 
chg 
chg 
new 
chg 
new 
new 
new 
new 
new 
new 
new 
new 
new 
new 
new 
new 
new 

R 
R 
R 
w 
w 
s 
w 
w 
w 
w 
w 
R 
w 
w 
w 
~'l 

w 
w 
w 
w 
w 
w 
w 
w 
w 
w 
w 
w 
w 
w 
w 
w 
w 

A 
p 
p 

A 
A 
D 
A 
A 
A 
A 
A 
D 
A 
A 
A 
p 

A,D 
D 
D 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 

A 
A 
A 
A,D 

FUNCTION 

Read vertical most sig. bits (and frame flop) 
Pot counter data left pair (vertical, horiz) 
Pot counter data right pair (vertical, horiz) 
Disk pointer (high 5 bits, was 3 bits) 
Coprocessor control 
Strobe for identification of long horiz line 
Blitter control register 1 
Blitter pointer to x (high 5 bits, was 3 bits) 
Blitter control 0, lower 8 bits (minterms) 
Blitter V size (for 15 bit vertical size) 
Blitter H size and start (for 11 bit H size) 
Chip revision level for Denise (video out chip) 
Coprocessor 1st location(high 5 bits,was 3 bits) 
Coprocessor 2nd location(high 5 bits,was 3 bits) 
Audio channel x location(high 5 bits was 3 bits) 
Audio channel x period 
Bitplane control (miscellaneous control bits) 
Bitplane control (video priority control) 
Bitplane control (enhanced features) 
Sprite x position and control data 
Highest number count, horiz line (VARBE~~EN=1) 

Horizontal line position for HSYNC stop 
Horizontal line position for HBLANK start 
Horizontal line position for HBLANK stop 
Highest numbered vertical line (VARBEAMEN=l) 
Vertical line position for VSYNC stop 
Vertical line for VBLANK start 
Vertical line for VBLANK stop 
Beam counter control register (SHRES,UHRES,PAL) 
Horizontal sync start (VARHSY) 
Vertical sync start (VARVSY) 
Horizontal position for Vsync on interlace 
Display window - upper bits for start, stop 

A=Agnus chip, D=Denise chip, P=Paula chip, W=Write, R=Read, S=Strobe 

The following sections describe the new and modified features provided by the Enhanced Chip 
Set. 
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Determining Chip Revisions 

The V36 graphics.library field GfxBase->ChipRevBitsO contains bit definitions to tell you 
whether ECS is currently installed and activated. These bits are derived from the new or changed 
registers in the ECS chips. 

The bit GFXF _HR_AGNUS indicates that enhanced HiRes Agnus is installed. This is derived 
from the Agnus VPOSR register. The VPOSR register is defined as follows: 

VPOSR - Read vertical most significant bits (and frame flop) 

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 
Use LOF I6 IS I4 I3 I2 I1 IO LOL -- -- -- v10 v9 V8 

10-16 (bits 8-14) provide the chip identification. At present there are four possible settings. A 
value of 20 or 30 indicates that the enhanced HighRes A gnus is present. 

8361 (regular NTSC) or 8370 (fat NTSC) 
8367 (regular PAL) or 8371 (fat PAL) 
8368 (hr) or 8372 (fat-hr) 

10 for NTSC Agnus 
00 for PAL Agnus 
20 for PAL, 30 for NTSC 

Similarly, the graphics.library flag GFXF _HR_DENISE is derived from the Denise register 
DENISEID. This is a new register which can have one of two values. The original Denise (8362) 
does not have this register, so whatever value is left over on the bus from the last cycle will be 
there. The enhanced HighRes Denise (8373) will return $FC in the lower 8 bits. The upper 8 bits 
are reserved. 
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SuperHires Mode 

SuperHires mode provides a 35ns pixel display rate - twice the horizontal resolution of Hires 
mode, and four times the Lores rates. The nominal resolution of a SuperHires viewport is 1280 
pixels. The maximum plane depth for a SuperHires viewport is 2 bitplanes which saturates DMA 
bandwidth as much as FOUR Hires bitplanes. This mode is controlled by the graphics.library by 
writing to the BPLCONO register in the LOF copperlist (/SHF if interlaced). 

BPLCONO chg W A,D Bitplane control register (mise control bits) 

Bit Use 

15 
14 
13 
12 
11 
10 
09 
08 
07 
06 
05 
04 
03 
02 
01 
00 

HIRES 
BPU2 \ 
BPU1 } 
BPUO I 
HAM 
DPF 

SHRES 
BPLHWRM 
SPRHWRM 
LPEN 
LACE 

Set it to zero if SHRES enabled 

Depth of SuperHires mode (1 or 2) 

Incompatible w/ SuperHires mode 
Compatible with SuperHires mode 

SuperHires 35ns pixel enable bit 

Compatible with SuperHires mode 
Compatible with SuperHires mode 

Warning: Programmers must not rely on interpreting ViewPort->Modes bits directly 
when determining the mode of a ViewPort. 

Beginning with the V36 graphics.library, the ViewPort->Modes field is used for 
backward compatibility only. 

Under V1.3 and earlier the ViewPort->Modes field mirrored some of the BPLCONO 
bits most notably Hires and Lace. However, other logical defines in this field such as 
the Viewport->Modes PF2PRI bit conflict with the SHRES bit assignment in the 
actual hardware. 

For this reason, in release 2.0 of the operating system (graphics.library V36 and later), 
programmers will need to use the new DataBase/ModeiD scheme to determine their 
ViewPort's mode, and to specify a mode when creating, cloning, or copying 
View Ports. 
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SuperHires Mode and the Denise Color Registers 

SuperHires mode has a coarser granularity of color control than either Hires or Lores modes. 
This is because the timing of color conversions at these very high pixel rates requires special 
"tricks". There are only two bits of red, green and blue color resolution per hires pixel. 

In order to decode sprite and bitplane color information in SuperHires mode, certain multiplexing 
occurs in the use of the registers. Instead of 4 bits of red, green, and blue for bitplane registers 0-3 
stored as OxORGB in four color registers, SupcrHires bitplane colors are specially encoded in the 
sixteen lower color registers: 

R G B 
---- --

Bitplane (Color 0) : ab-- cd-- ef--
Bit plane (Color 1) ; gh-- ij-- kl--
Bitplane (Color 2) : mn-- op-- qr--
Bitplane (Color 3) : st-- uv-- wx--

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

c 00 a b a b c d c d e f e f 
0 01 g h a b i j c d k 1 e f 
L 02 m n a b 0 p c d q r e f 
0 03 s t a b u v c d w X e f 
R 04 a b g h c d i j e f k 1 

05 g h g h i j i j k 1 k 1 
R 06 m n g h 0 p i j q r k 1 
E 07 s t g h u v i j w X k 1 
G 08 a b m n c d 0 p e f q r 
I 09 g h m n i j 0 p k 1 q r 
s OA m n m n 0 p 0 p q r q r 
T OB s t m n u v 0 p w X q r 
E oc a b s t c d u v e f w X 

R OD g h s t i j u v k 1 w X 

OE m n s t 0 p u v q r w X 

OF s t s t u v u v w X w X 
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SuperHires sprites are encoded in the upper sixteen color registers using a similar scheme: 

R G B 
---- ---- --

Sprite (Color 16) : AB-- CD-- EF--
Sprite (Color 17) : GH-- IJ-- KL--
Sprite (Color 18) : MN-- OP-- QR--
Sprite (Color 19) : sT-- uv-- wx--

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

c 10 A B A B c D c D E F E 
0 11 G H A B I J c D K L E 
L 12 M N A B 0 p c D Q R E 
0 13 s T A B u v c D w X E 
R 14 A B G H c D I J E F K 

15 G H G H I J I J K L K 
R 16 M N G H 0 p I J Q R K 
E 17 s T G H u v I J w X K 
G 18 A B M N c D 0 p E F Q 

I 19 G H M N I J 0 p K L Q 

s 1A M N M N 0 p 0 p Q R Q 

T lB s T M N u v 0 p w X Q 
E lC A B s T c D u v E F w 
R lD G H s T I J u v K L w 

1E M N s T 0 p u v Q R w 
1F s T s T u v u v w X w 

About SuperHires color. SuperHires color encryption is not reflected in the 
ColorTable. The color encoding is, however, reflected in the ViewPort's copper lists 
generated by graphics via Make VPort(), SetRGB4(), etc. 

Keep in mind that because of the loss of lower bits of precision in specifying 
SuperHires colors, pastel colors in a closely graduated color scheme may be visually 
difficult to distinguish from each other. 
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SuperHires 70ns Sprite Positioning 

SuperHires mode has a finer granularity of sprite positioning than either Hires or Lores modes. 
This allows for positioning the sprite every other SuperHires pixel on 70ns boundaries. The ECS 
reJisters SPRxPOS and SPRxCfL work together as position, size and sprite feature control 
registers. They are usually loaded by the sprite DMA channel, during horizontal blank, however 
they may be loaded by the processor. 

The two registers are defined as follows: 

SPRxPOS W A D Sprite x vertical-horiz start position data 

Bit Use 

15-08 
07-00 SH8-SH1 Start horizontal value. Low bit (SHO) in SPRxCTL. 

SPRxCTL W A D Sprite x position and control data 

Bit Use 

15-08 
07 
06 
05 
04 
03 
02 
01 
00 

SHSHl 
SHSHO 

SHO 

Start horizontal (SHR mode) 70ns increment 
Start horizontal (SHR mode) 35ns (unimplemented) 

Start horiz. value Low bit 140 ns increment 

Note: bits 3 and 4 are in the ECS chips only. 

Warning: 70ns sprite positions are only available in SuperHires mode. Attempting to 
use 70ns sprite positioning with Hires mode under the current system may lead to 
unpredictable results. 
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Multi-Sync and BI-Sync Monitors 

The enhanced Agnus now includes registers for setting a standard programmable scan rate. The 
scan rates supported in the V36 graphics.library include: 

NTSC (525 lines, 227.5 colorclocks per scan line) 
PAL (625 lines, 227.5 colorclocks per scan line) 
VGA (525 lines, 114.0 colorclocks per scan line) 

The V36 graphics.library controls the variable number of colorclocks on each horirontal scan line 
with a combination of registers. Each combination of registers provides a different frequency of 
scan rate and number oflines per display field: 

HTOTAL W A Highest number count in horizontal line 

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 10 00 
Use 0 0 0 0 0 0 0 0 h8 h7 h6 h5 h4 h3 h2 h1 

The value in this register represents the number of 280ns increments on the horizontal line. 

VTOTAL W A Highest numbered vertical line 

VTOT AL contains the line number at which to reset the vertical position counter. This value 
represents the number of lines in a field(+l). The exception is if the INTERLACE bit is set 
(BPLCONO). In this case this value represents the number of lines in the long field ( +2) and the 
number of lines in the short field (+1). 

Programmable synchronization is implemented through five new enhanced Agnus registers: 

VSSTRT w A Vertical line position for VSYNC start 
VSSTOP w A Vertical line position for VSYNC stop 
HSSTRT w A Horizontal line position for HSYNC start 
HSSTOP w A Horizontal line position for HSYNC stop 
HCENTER w A Horizontal position for Vsync on interlace 

A reasonable composite can be generated by setting HCENTER half a horirontal line from 
HSSTRT, and HBSTOP at (HSSTOP-HSSTRT) before HCENTER, with HBSTRT at 
(HSSTOP-HSSTRT) before HSSTRT. 

Programmable blanking is implemented through four new ECS Agnus registers: 

HBSTRT w A Horizontal line position for HBLANK start 
HBSTOP w A Horizontal line position for HBLANK stop 
VBSTRT w A Vertical line position for VBLANK start 
VBSTOP w A Vertical line position for VBLANK stop 
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New BEAMCONO Register 

A new register in the enhanced Agnus, BEAM CO NO, provides a programmable signal generator. 

BEAMCONO W A Beam counter control register 

Bit Use 

15 
14 HARD DIS Disable hardwired vertical/horizontal blank 
13 LPENDIS Ignore latched pen value on vertical pos read 
12 VARVBEN Use VBSTRT/STOP disable hard window stop 
11 LOLDIS Disable long line/short line toggle 
10 CSCBEN Composite sync redirection 

9 VARVSYEN Variable vertical sync enable 
8 VARHSYEN Variable horizontal sync enable 
7 VARBEAMEN Variable beam counter comparator enable 
6 DUAL Special ultra resolution mode enable 
5 PAL Programmable pal mode enable 
4 VARCSYEN Variable composite sync 
3 BLANKEN Composite blank redirection 
2 CSYTRUE Polarity control for C sync pin 
1 VSYTRUE Polarity control for V sync pin 
0 HSYTRUE Polarity control for H sync pin 

Warning: Programmable changes between PAL and NTSC modes are new for V2.0. 
They rely on hardware sync and blank in the Agnus/Denise chip set to guarantee 
necessary signals for a correctly displayed picture. 

Other modes, such as VGA (31 kHz programmable mode) disable the hard stops on 
display sync and blank. Do not write to this register. 

Incorrectly writing directly to BEAMCONO has the (remote) possibility of destroying 
your multisync monitor. 
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Display Window Specification 

The new graphics.library and the ECS provide a more powerful display window specification. 
The registers DIWSTRT and DIWSTOP control the display window size and position: 

DIWSTRT W A D 
DIWSTOP W A D 

Display Window Start (upper left vert-hor pos) 
Display Window Stop (lower right vert-hor pos) 

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 
Use V7 V6 V5 V4 V3 V2 Vl VO H7 H6 H5 H4 H3 H2 H1 HO 

The way these two registers work has changed. DIWSTRT used to be vertically restricted to the 
upper 2/3 of the display (V8=0), and horizontally restricted to the left 3/4 of the display (H8=0). 
DIWSTOP used to be vertically restricted to the lower 1/2 of the display and horizontally 
restricted to the right l/4 of the display (H8=1). 

The V36 graphics.library now supports explicit display window start and stop positions within a 
larger and more useful range of values, via control of the the new DIWHIGH register in the 
ViewPort copper lists: 

DIWHIGH w AD Display Window upper bits for start,stop 

Bit Use 
-- --
15 0 
14 0 
13 H8 Horizontal stop, most significant bit. 
12 0 
11 0 
10 VlO \ 

9 V9 } Vertical stop, most significant 3 bits. 
8 V8 I 
7 0 
6 -
5 H8 Horizontal start, most significant bit. 
4 0 
3 0 
2 V10 \ 
1 V9 } Vertical stop, most significant 3 bits. 
0 V8 I 

This is an added register for the ECS chips, and allows larger start and stop ranges. If it is not 
written, the old scheme for DIWSTRT and DIWSTOP described above holds. If this register is 
written last in a sequence of setting the display window, it sets direct start and stop positions 
anywhere on the screen. 

A note on ECS compatibility. With the enhanced Denise chip present, the 
graphics.library will set up copperlists using the new, explicit display window 
controls. Programs which consistently call MakeVPort(), MrgCop() and Loadview() 
when changing the vertical position of their ViewPort (DxOffset) will continue to 
behave normally. 

Programs which failed to call MakeVPort() when moving the ViewPort vertically may 
not be displayed correctly on a system with ECS. 
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Genlock Extensions 

The V36 graphics.library supports the new genlock capabilities of the enhanced Denise chip in 
PAL or NTSC modes. Any color registers may be chosen as controlling video overlay 
(COLORKEY). A single bitplane may be chosen to control video overlay as well 
(BITPLANEKEY). The border areas surrounding the active display window may also be set to 
be opaque or transparent. 

BPLCONO W A,D 
BPLCON1 W D 
BPLCON2 W D 
BPLCON3 W D 

Bitplane control (miscellaneous control bits) 
Bitplane control (horizontal scroll control) 
Bitplane control (video priority control) 
Bitplane control (enhanced features) 

Bit BPLCONO BPLCON1 BPLCON2 BPLCON3 

15 
14 
13 
12 
11 
10 
09 
08 
07 
06 
OS 
04 
03 
02 
01 
00 ENBPLCN3 

ZDBPSEL2 \ 
ZDBPSEL1 
ZDBPSELO I 
ZDBPEN 
ZDCTEN 
KILLEHB 

} Select bitplane 

Use BITPLANEKEY 
Use COLORKEY 
Kill halfbrite 

BRDRBLNK Border blank 
BRDNTRAN Border opaque 

Enable new BLPCON3 
register. 

The ECS genlock features are enabled or. a ViewPort by ViewPort basis. 

Warning: Genlock has been designed to work with NTSC and PAL modes only. 
Genlock and 31 KHz programmable scan rates are not compatible modes. 
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Big Blits 

The V36 graphics.library supports the ECS Agnus Blitter enhancements, which provide for 
contiguous blits of up to 32768 x 32768 pixels at a time. Under the original chip set 1024 x 1024 
was the maximum: 

BLTSIZE W A Old Blitter size and start (window width, height) 

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 
Use h9 h8 h7 h6 h5 h4 h3 h2 h1 hO w5 w4 w3 w2 w1 wO 

h = Height (10 bit height = 1024 lines max) 
w = Width (6 bit width = 1024 pixels max) 

Two new registers have been added which make larger blits possible: 

BLTSIZV w A ECS Blitter V size 

Bit 15 14 12 12 11 10 09 08 07 06 05 04 03 02 01 00 
Use 0 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 hO 

h = Height (15 bit height = 32768 lines max) 

BLTSIZH w A ECS Blitter Horizontal size & start 

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 
Use 0 0 0 0 0 w10 w9 w8 w7 w6 w5 w4 w3 w2 w1 wO 

w = Width (11 bit width = 32768 pixels max) 

With these two registers, blits up to 32K by 32K are now possible- much larger than the original 
chip set could accept. The original commands are retained for compatibility. BLTSIZV should be 
written first, followed by BL TSIZH, which starts the blitter. 

The existence of the enhanced Agnus Blitter is reflected in the state of the GfxBase­
>ChipRevBits bit definition GFXB_BIG_BLITS and is initialized by the graphics.library at 
powerup. Note that the <hardware/blits.h> constant MAXBYTESPERROW has been redefined 
to reflect the larger range of legal blitter operations. 

About RastPort Sizes. If the ECS Blitter is accessible, the graphics.library supports 
its use for all graphics functions including areafill, gels, line and ellipse drawing 
functions. 

If the ECS Blitter is not installed, programmers should limit the absolute size of their 
RastPorts to values that the old BL TSIZE register can address. 
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Other ECS Modifications 

The preceding sections cover most of the ECS registers appearing in the ECS register map. This 
section briefly describes the remaining modifications to the Enhanced Chip Set registers. 

The following registers now have two additional bits for addressing larger segments of memory, 
when the Enhanced Chip Set is present: 

DSKPTH 020 w A Disk pointer (high 5 bits, was 3 bits) 
BLTxPTH 050 w A Blitter pointer to x (high 5 bits, was 3 bits) 
COPlLCH 080 w A Coprocessor 1st location(high 5 bits,was 3 bits) 
COP2LCH 084 w A Coprocessor 2nd location(high 5 bits,was 3 bits) 
AUDxLCH OAO w A Audio channel x location(high 5 bits was 3 bits) 

The Strobe Long Line register (STRLONG) can be disabled if the Disable Long Line (LOLDIS) 
bit is set in the BEAMCONO register. 

STRLONG 03E S D Strobe for identification of long horiz line 

See the Multi-Sync and Bi-Sync Monitors section in this appendix for the bit descriptions in 
BEAMCONO. 

Bit 7 (DOFF) of the BLTCONl register, when set, disables the output of the Blitter hardware on 
channel D. 

BLTCONl 042 W A Blitter control register 1 

This allows inputs to channels A, B and C and certain address modification if necessary, without 
the Blitter outputting over channel D. 

The BLTCONOL register writes the low bits of BLTCONO, thereby expediting the set up of some 
blits and generally speeding up the software, since the upper bits are often the same. 

BLTCONOL 05A W A Blitter control 0, lower 8 bits (minterms) 
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Interpretational Differences 

The following registers have the same functionality as the standard chip set, however, their 
behavior is interpreted differently. 

The POTO and POTl registers each read a pair of 8-bit pot counters as before. 

POTODAT 012 R P 
POTlDAT 014 R P 

Pot counter data left pair (vertical, horiz) 
Pot counter data right pair (vertical, horiz) 

However, with programmable scan rates, the values read from these registers will differ. 
Generally, the faster the scan rate, the smaller these values become. Adjustments to the scan rate 
are reflected in these values. See Appendix A for more detail on standard operation of these 
registers. 

Another register where the interpretation has been extended for the ECS is COPCON. 

COP CON 02E W A Coprocessor control 

This 1-bit register, the danger bit (CDANG), when set allows the Coprocessor to write to the 
Blitter hardware. In the standard chip set, if this is set, the Copper can access the address range 
from $DFF03E through $DFF07E. Now, in the ECS, if this bit is set, the Copper can access all 
of the Amiga chip registers. If this bit is clear, the Copper can access the address range from 
$DFF03E through $DFF07E, the same range as when the danger bit is set in the standard chip set. 

The AUDxPER register is another register value that varies according to the programmable scan 
rate. 

AUDxPER OA6 W P Audio channel x period 

With programmable scan rates, the maximum value read from this register will differ. Generally, 
the faster the scan rate, the smaller the maximum period becomes. Adjustments to the scan rate 
are reflected in this maximum value. 

For more information on the AUDxPER register, and any other register in the Amiga standard 
chip set, see Appendices A and B. 
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appendix D 
SYSTEM MEMORY MAPS 

A true software memory map, showing system utilization of the various sections of RAM and 
free space is not provided, nor possible with the Amiga. 

All memory is dynamically allocated by the memory manager at boot time, and the actual 
locations of system structures may change from release-to-release, machine-to-machine, or boot­
to-boot (see the AllocMemO function in the exec.library for more details). 

Likewise, Amiga applications are compiled in such a way that they can be dynamically relocated 
at run time by the system loader. 

To fmd the location of system structures, application software should use the function interface 
provided in the operating system. If this is not possible then the address of a data structure should 
be obtained by searching the lists of system structures maintained by Exec. The first step is to 
fetch the address of the exec .library from location 4; this is the only absolute memory location in 
the system. All other system data structures are indirectly linked to this base address. 

Though a detailed system memory map is not possible, this section does present the general 
layout of memory areas within the current generation of Amiga computers. To ensure maximum 
compatibility, avoid relying on the address ranges given here. Instead use the system provided 
interfaces to ask for the system reources you need. 
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A 1 000, A500 and A2000 Memory Map 

Address Range 
-----------------
00 0000 - 03 FFFF 

04 0000 - 07 FFFF 

08 0000 - OF FFFF 

10 0000 - lF FFFF 

20 0000 - 9F FFFF 

AO 0000 - BE FFFF 

BF DOOO - BF DFOO 

BF EOOl - BF EFOl 

co 0000 - DF EFFF 
I 

Description 

256K Chip RAM (AlOOO Chip RAM, 1st 256K for A500/A2000) 

256K bytes of Chip RAM (2nd 256K for A500/A2000) 

512K Extended chip RAM (to 1MB for A2000). 

Reserved. Do not use. 

Primary 8 MB Auto-config space. 

Reserved. Do not use. 

8520-B (access at even-byte addresses only) 

8520-A (access at odd-byte addresses only) 

The underlined digit chooses which of the 
16 internal registers of the 8520 is to be 
accessed. See Appendix F. 

Reserved. Do not use. 

I co 0000 - D7 FFFF Internal expansion (slow) memory (on some systems). 
I 
I DB 0000 - DB FFFF Reserved. Do not use. 
I 
I DC 0000 - DC FFFF Real time clock (not accessable on all systems) . 
I 
I DF FOOO - DF FFFF Chip registers. See Appendix A and Appendix B. 
+--

EO 0000 - E7 FFFF 

E8 0000 - E8 FFFF 

E9 0000 - EF FFFF 

FO 0000 - FB FFFF 

FC 0000 - FF FFFF 

Reserved. Do not use. 

Auto-config space. Boards appear here before 
the system relocates them to their final address. 

Secondary auto-config space (usually 64K I/0 
boards). 

Reserved. Do not use. 

256K System ROM. 
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A3000 Memory Map 

Address Range Description 

$0000 0000 - $001F FFFF Amiga Chip Memory 

$0020 0000 - $009F 0000 Zorro II Memory Expansion Space 

$00AO 0000 - $00B7 FFFF Zorro II I/0 Expansion Space 

$00B8 0000 - $00BE FFFF Reserved 

$00BF 0000 - $00BF FFFF CIA Ports & Timers 

$00CO 0000 - $00C7 FFFF Expansion Memory 

$00C8 0000 - $00D7 FFFF Reserved 

$00D8 0000 - $00DB FFFF Reserved 

$00DC 0000 - $DODD FFFF Memory Mapped Clock 

$00DD 0000 - $00DE FFFF SCSI Control 

$00DE 0000 - $00DE FFFF Motherboard Resources 

$00DF 0000 - $00DF FFFF Amiga Chip Registers 

$00EO 0000 - $00E7 FFFF Reserved 

$00E8 0000 - $0EFF FFFF Zorro II I/0 & Configuration 

$00FO 0000 - $00F7 FFFF Diagnostic ROM (Reserved) 

$00F8 0000 - $DOFF FFFF High ROM (512K) 

$0100 0000 - $03FF FFFF Reserved 

$0400 0000 - $07FF FFFF Motherboard Fast RAM 

$0800 0000 - $0FFF FFFF Coprocessor Slot Expansion 

$1000 0000 - $7FFF FFFF Zorro III Expansion 

$8000 0000 - $FEFF FFFF Reserved 

$FFOO 0000 - $FFOO FFFF Zorro III Configuration Unit 

$FF01 0000 - $FFFF FFFF Reserved 
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Amiga 3000 Memory Map 

32-blt Address Space 

(4 Gigabytes) 
$FFFF FFFF 

Reserved 

$8000 0000 

Zorrolll 
Expansion 

$1000 000 0 

Low memory 

$0000 000 0 
(256 Mbytes) 

I 

I 
I 

I 

I 
I 
I 
I 
I 
I 
I 
I 

$FFFF 

High memory 

(16 Mbytes) 

Reserved 

I $FF01 0000 Zorro III 

\$FFOO 0000 Confi nltim Unil 

Low memory 

r _ (256 Mbytes) 
I $0FFF FFFF 

C<?processor 
Slot Expansion 

$0800 0000 Motherboard 

$0700 0000 Fast RAM 

Reserved 

$0100 000 0 24-bit Address 

$0000 0000 Space 

I 
\I 
~ 

II 
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I 
I 
I 

I 
I 
I 
I 
I 

1--

24-blt Address Space 

(16 Mbytes) 

I $DOFF FFFF 
I 

$00F8 0000 

$00FO 0000 

I $00E8 0000 

I 
I 
I 

$00EO 0000 

$0008 0000 

$00C8 0000 

$00CO 0000 

$0088 0000 

$00AO 0000 

$0020 0000 

1$0000 000 0 

High ROM 

Diagnostic ROM 

Zcrro II 1/0 md c<mf'l. 

Reserved 

High 1/0 registers 

Reserved 

Ranger RAM 

Low I/O registers 

I 

Zorro II 1/0 
Expansion 

Zorroll 
Memory 

Expansion 

Standard Chip 
RAM 

(Up to 2 Mhytes) 

I 

I 
I 

I 
I 
I 

High 110 Registers 

I $DF FFFF 
I 

I $DF 0000 
AmigaCbiP" 

I $DE 0000 M~::::.:d 

I 

I 
I 

$DD 0000 

$DC 0000 

$DD 0000 

$DA 0000 

$D9 000 

$D8 000 

0 

0 

SCSI Control Memory· mapped 
clock 

Rc"""'cd 
~cd 

Rc!ICTYcd 
Rc"""'cd 

Low 110 Registers 

$BF FFFF CIAPommd 

$BF 0000 Timers 

$BE 0000 Rc"""'cd 

$BD 0000 
~cd 

$BC 0000 

$BB 0000 

$BA 0000 

Rc"""'cd 
~ 

~ 

Rc"""'cd 
$89 0000 

I $88 0000 
RciiCIVcd 



appendix E 
1/0 CONNECTORS AND 
INTERFACES 

This appendix consists of four distinct parts, related to the way in which the Amiga talks to the 
outside world. 

The first part specifics the pinouts of the externally accessible connectors and the power available 
at each connector. It does not, however, provide timing or loading information. 

The second part briefly describes the functions of those pins whose purpose may not be evident. 

The third part contains a list of the connections for certain internal connectors, notably the disk. 

The fourth part specifies how various signals relate to the available ports of the 8520. This 
information enables the programmer to relate the port addresses to the outside-world items (or 
internal control signals) that are to be affected. 

The third and fourth parts are primarily for the use of the systems programmer and should 
generally not be utilized by applications programmers. 

Systems software normally is configured to handle the setting of particular signals, no matter how 
the physical connections may change. In other words, if you have a version of the system 
software that matches the revision level of the machine (normally a true condition), when you ask 
that a particular bit be set, you don't care which port that bit is connected to. Thus, applications 
programmers should rely on system documentation rather than going directly to the ports. 
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Warning: In a multitasking operating system, many different tasks may be competing 
for the use of the system resources. Application programmers should follow the 
established rules for resource access in order to assure compatibility of their software 
with the system. Don't just hit the hardware registers directly, ask the system for 
exclusive control first. 

PART 1- AMIGA 1/0 CONNECTOR PINS 

This is a list of the 1/0 connections to the outside world on the Amiga. 

RS232 and MIDI Port 
-------------------

A500/ 
A2000/ CBM 

PIN RS232 AlOOO A3000 PCs HAYES DESCRIPTION 
-------------------------------------------------------
1 GND GND GND GND GND FRAME GROUND 
2 TXD TXD TXD TXD TXD TRANSMIT DATA 
3 RXD RXD RXD RXD RXD RECEIVE DATA 
4 RTS RTS RTS RTS REQUEST TO SEND 
5 CTS CTS CTS CTS CTS CLEAR TO SEND 
6 DSR DSR DSR DSR DSR DATA SET READY 
7 GND GND GND GND GND SYSTEM GROUND 
8 CD CD CD DCD DCD CARRIER DETECT 
9 +12v +12v + 12 VOLT POWER 
10 -12v -12v - 12 VOLT POWER 
11 AUDO AUDIO OUTPUT (A500, A2000, A3000) 
12 S.SD SI SPEED INDICATE 
13 S.CTS 
14 S.TXD -5Vdc - 5 VOLT POWER 
15 TXC AUDO AUDIO OUTPUT (AlOOO) 
16 S.RXD AUDI AUDIO INPUT (AlOOO) 
17 RXC EB BUFFERED PORT CLOCK 716kHz 
18 INT2* AUDI INTERRUPT LINE AlOOO/AUDIO INPUT(A500, 
19 S.RTS 
20 DTR DTR DTR DTR DTR DATA TERMINAL READY 
21 SQD +5 + 5 VOLT POWER 
22 RI RI RI RI RING INDICATOR 
23 ss +12Vdc - +12 VOLT POWER 
24 TXCl C2* 3.58 MHZ CLOCK 
25 RESB* BUFFERED SYSTEM RESET 
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Parallel (Centronics) Port 
--------------------------

PIN A1000 A500/A2000/A3000 Commodore PCs 
---------------- -------------

1 DRDY* STROBE* STROBE* 
2 Data 0 Data 0 Data 0 
3 Data 1 Data 1 Data 1 
4 Data 2 Data 2 Data 2 
5 Data 3 Data 3 Data 3 
6 Data 4 Data 4 Data 4 
7 Data 5 Data 5 Data 5 
8 Data 6 Data 6 Data 6 
9 Data 7 Data 7 Data 7 
10 ACK* ACK* ACK* 
11 BUSY (data) BUSY BUSY 
12 POUT (elk) POUT POUT 
13 SEL SEL SEL 
14 GND +5v pullup AUTOFDXT 
15 GND NC ERROR* 
16 GND RESET* INIT* 
17 GND GND SLCT IN* 
18-22 GND GND GND 
23 + 5 GND GND 
24 NC GND GND 
25 Reset* GND GND 

KEYBOARD ... RJ11 (Not Applicable to the A500) 

A1000 A2000/A3000 
-----------

1 +5 Volts KCLK 
2 CLOCK KDAT 
3 DATA NC 
4 GND GND 
5 +5 Volts 

Video ... DB23 MALE 

For A500, A1000, A2000 and A3000 unless otherwise stated 

1 XCLK* 13 GNDRTN (Return for XCLKEN*) 
2 XCLKEN* 14 ZD* 
3 RED 15 C1* 
4 GREEN 16 GND 
5 BLUE 17 GND 
6 DI 18 GND 
7 DB 19 GND 
8 DG 20 GND 
9 DR 21 -5 VOLT POWER(A1000,A2000,A3000) 
10 CSYNC* -12 VOLT POWER (A500) 
11 HSYNC* 22 +12 VOLT POWER 
12 VSYNC* 23 +5 VOLT POWER 

Appendix E 319 



Video Display Enhancer - DB 15 Female (A3000 ONLY) 

1 RED VIDEO 
2 GREEN VIDEO 
3 BLUE VIDEO 
4 MONITOR ID BIT 2 (NOT USED) 
5 GROUND 
6 RED RETURN (GROUND) 
7 GREEN RETURN (GROUND) 
8 BLUE RETURN (GROUND) 
9 KEY (NO PIN) 
10 SYNC RETURN (GROUND) 
11 MONITOR ID BIT 0 (NOT USED) 
12 MONITOR ID BIT 1 (NOT USED) 
13 HORIZONTAL SYNC 
14 VERTICAL SYNC 
15 NOT USED 

RF Monitor ... 8 PIN DIN (J2) (A1000 Only) 

1 N.C. 
2 GND 
3 AUDIO LEFT 
4 COMP VIDEO 
5 GND 
6 N.C. 
7 +12 VOLT POWER 
8 AUDIO RIGHT 

EXTERNAL DISK ... DB23 FEMALE 

For A1000, A500, A2000 and A3000 with A2000 and A3000 differences noted. 

1 RDY* 13 SIDEB* 
2 DKRD* 14 WPRO* 
3 GND 15 TKO* 
4 GND 16 DKWEB* 
5 GND 17 DKWDB* 
6 GND 18 STEPB* 
7 GND 19 DIRB 
8 MTRXD* 20 SEL3B* (A2000/A3000 not used (1)) 
9 SEL2B* (A2000/A3000 SEL3B* (1)) 21 SEL1B* (A2000/A3000 SEL2B* (1)) 
10 DRESB* 22 INDEX* 
11 CHNG* 23 +12 
12 +5 

(1) SEL1B* is not drive 1, but rather the first external drive. Not 
all select lines may be implemented. 
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EXTERNAL SCSI DISK DB25 FEMALE (A3000 ONLY) 
------------------------------------------------

1 REQ 14 GROUND 
2 MSG* 15 C/D 
3 I/0 16 GROUND 
4 RST* 17 ATN* 
5 ACK* 18 GROUND 
6 BSY* 19 SEL* 
7 GROUND 20 PARITY 
8 DATAO 21 DATAl 
9 GROUND 22 DATA2 
10 DATA3 23 DATA4 
11 DATA5 24 GROUND 
12 DATA6 25 TERMINATION POWER 
13 DATA? 

See the ANSI (American National Standard Institute) standard SCSI (Small Computer Standard 

Interface) Specification for more information. 

RAMEX ... 60 PIN EDGE (.156) (Pl) (AlOOO only) 

----------------------------------------------

1 gnd A gnd 

2 015 B 014 
3 +5 c +5 
4 012 D 013 
5 gnd E gnd 

6 Dll F 010 
7 +5 H +5 
8 08 J 09 
9 gnd K gnd 

10 07 L D6 
11 +5 M +5 
12 04 N 05 
13 gnd p gnd 

14 03 R 02 
15 +5 s +5 
16 DO T 01 
17 gnd u gnd 

18 DRA4 v DRA3 
19 DRA5 w DRA2 
20 DRA6 X ORAl 
21 DRA7 y DRAO 
22 gnd z gnd 

23 RAS* AA RRW* 
24 gnd BB gnd 

25 gnd cc gnd 

26 CASUO* DD CASUl* 
27 gnd EE gnd 

28 CASLO* FF CASLl* 
29 +5 HH +5 
30 +5 JJ +5 
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EXPANSION ..• 86 PIN EDGE (.1) (P2) 

See Appendix K for the 100 pin Zorro II and Zorro III bus connector 

PIN ASOO AlOOO A2000 A2000b FUNCTION 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 
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X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 
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ground 
ground 
ground 
ground 
+SVDC 
+SVDC 
No Connect 
-5VDC 
No Connect 
28MHz Clock 
+12VDC 
No Connect 
/COPCFG (Configuration Out) 
CONFIG IN, Grounded 
Ground 
/C3 Clock 
CDAC Clock 
/Cl Clock 
/OVR 
ROY 
/INT2 
/PALOPE 
No Connect 
/BOSS 
AS 
/INT6 
A6 
A4 
ground 
A3 
A2 
A7 
A1 
AS 
FCO 
A9 
FC1 
A10 
FC2 
All 
Ground 
Al2 
Al3 
/IPLO 
Al4 
/IPLl 
Al5 
/IPL2 
Al6 
BEER* 
Al7 
/VPA 
Ground 
E Clock 



EXPANSION ... 86 PIN EDGE (. 1) (P2) (cont.) 
--------------------------------------------------

PIN A500 AlOOO A2000 A2000b FUNCTION 
------ --------

51 X X X X /VMA 
52 X X X X AlB 
53 X X X X RST 
54 X X X X A19 
55 X X X X /HLT 
56 X X X X A20 
57 X X X X A22 
58 X X X X A21 
59 X X X X A23 
60 X X X /BR 

X /CBR 
61 X X X X Ground 
62 X X X X /BGACK 
63 X X X X 015 
64 X X X /BG 

X /CBG 
65 X X X X 014 
66 X X X X /DTACK 
67 X X X X D13 
68 X X X X R/W 
69 X X X X 012 
70 X X X X /LOS 
71 X X X X Dll 
72 X X X X /UDS 
73 X X X X Ground 
74 X X X X /AS 
75 X X X X DO 
76 X X X X 010 
77 X X X X Dl 
78 X X X X 09 
79 X X X X 02 
80 X X X X DB 
81 X X X X D3 
82 X X X X 07 
83 X X X X 04 
84 X X X X D6 
85 X X X X Ground 
86 X X X X D5 

JOY STICKS ... DB9 male 
----------------------

USAGE JOYSTICK MOUSE 
--------

1 FORWARD* (MOUSE V) 
2 BACK* (MOUSE H) 
3 LEFT* (MOUSE VQ) 
4 RIGHT* (MOUSE HQ) 
5 POT X (or button 3 ... if used ) 

6 FIRE* (or button 1) 
7 +5 
8 GND 
9 POT y (or button 2 ) 
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PART 2- EXPLANATION OF AMIGA 1/0 CONNECTORS 

Parallel Connector Interface Specification 

The 25-pin D-type connector with pins (DB25P=male for the A 1000, female for A500/A2000 and 
IBM compatibles) at the rear of the Amiga is nominally used to interface to parallel printers. In 
this capacity, data flows from the Amiga to the printer. This interface may also be used for input 
or bidirectional data transfers. The implementation is similar to Centronics, but the pin 
assignment and drive characteristics vary significantly from that specification (see Pin 
Assignment). Signal names correspond to those used in the other places in this appendix, when 
possible. 

PARALLEL PORT (J8) 

NAME DIR 

DRDY* 0 

DO I/0 
01 I/0 
02 I/0 
03 I/0 
04 I/0 
DS I/0 
06 I/0 
07 I/0 
ACK* I 

BUSY I/0 

POUT I/0 

SEL I/0 

RESET* 0 

NOTES 

Output-data-ready signal to parallel device in 
output mode, used in conjunction with ACK* (pin 10) 
for a two-line asynchronous handshake. Functions 
as input data accepted from Amiga in input mode 
(similar to ACK* in output mode). See timing 
diagrams in the following section. 
+ 

+ 

D0-07 comprise an eight-bit bidirectional bus 
for communication with parallel devices, 
nominally, a printer. 

Output-data-acknowledge from parallel device in 
output mode, used in conjunction with ORDY* (pin 1) 
for a two-line asynchronous handshake. Functions as 
input-data-ready from parallel device in input mode 
(similar to DRDY* in output mode). 
See timing diagrams. The 8520 can be programmed to 
conditionally generate a level 2 interrupt to the 
680x0 whenever the ACK* input goes active. 
This is a general purpose I/0 pin also connected to a 
serial data I/0 pin (serial clock on pin 12). 
Note: Nominally used to indicate printer buffer full. 
This is a general purpose I/0 pin to a 
serial clock I/0 pin (serial data on pin 11). 
Note: Nominally used to indicate printer paper out. 
This is a general purpose I/0 pin. 
Note: nominally a select output from the parallel 
device to the Amiga. On the A500/A2000 also shared 
with RS232 "ring indicator" signal. 

Amiga system reset 
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-------~~~-~----------

PARALLEL CONNECTOR INTERFACE TIMING, OUTPUT CYCLE 

PA<7:0> 
PB<7:0> x. _________________________________________ x 

1<-- Tl --->1 I 
I 1<-------- T2 ------>1 

_______________ v v ______________________ ~ 
DRDY* 

Output data ready 
I I 
1<- T3 ->1 
1<--- T4 --->1 

______________ 1<- TS -->1 _____ _ 
ACK* I I 

Output data acknowledge 

Microseconds 
Min Typ Max 

Tl: 4.3 -x-
T2: nsp -x-

5.3 
upc 

Output data setup to ready delay. 
Output data hold time. 

T3: 
T4: 
TS: 

nsp 1.4 nsp 
0 -x- upc 

nsp -x- upc 

nsp not specified 

Output data ready width. 
Ready to acknowledge delay. 
Acknowledge width. 

upc under program control 

PARALLEL CONNECTOR INTERFACE TIMING, INPUT CYCLE 

PA<7 :0> 
PB<7: 0> x. ________________________________________ x 

1<-- Tl --->1 
I T2 -->1<----->1 

_______________ v ___________ I ________ _ 
ACK* 

Input data ready 
1----=-- I 
1<- T3 ->1 I 
1<-- T4 --->1 

------------------------~1<- TS -->1 ________ _ 
DRDY* I I 

Input data acknowledge 

Microseconds 
Min Typ Max 

Tl: 0 -x- upc Input data setup time. 
T2: nsp -x- upc Input data hold time. 
T3: nsp -x- upc Input data ready width. 
T4: upc -x- upc Input data ready to data 

acknowledge delay. 
TS: nsp 1.4 nsp Input data acknowledge width. 

nsp not specified 
upc under program control 
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Serial Interface Connector Specification 

This 25-pin D-type connector with sockets (DB25S=female) is used to interface to RS-232-C 
standard signals. Signal names correspond to those used in other places in this appendix, when 
possible. 

WARNING: Pins on the RS232 connector other than these standard ones described 
below may be connected to power or other non-RS232 standard signals. When 
making up RS232 cables, connect only those pins actually used for a particular 
application. Avoid generic 25-connector "straight- thru" cables. 

SERIAL INTERFACE CONNECTOR PIN ASSIGNMENT (J6) 

RS-232-C 

NAME DIR STD NOTES 
--------------------------

FGND y Frame ground -- do not tie to signal ground 
TXD 0 y Transmit data 
RXD I y Receive data 
RTS 0 y Request to send 
CTS I y Clear to send 
DSR I y Data set ready 
GND y Signal ground -- do not tie to frame ground 
CD I y Carrier detect 
-sv n* 50 rna maximum *** WARNING -sv *** 
AUDO 0 n* Audio output from left (channels 0, 3) port, 

intended to send audio to the modem. 
AUDI I n* Audio input to right (channels 1, 2) port, 

intended to receive audio from the modem; this 
input is mixed with the analog output of the 
right (channels 1, 2). It is not digitized or 
used by the computer in any way. 

DTR 0 y Data terminal ready. 
RI I y Ring Indicator (A500/A2000 only) shared with printer 

"select" signal. 
RESB* 0 n* Amiga system reset. 

NOTES: 
n*: See warning above 
See part 1 of this appendix for pin numbers. 
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SERIAL INTERFACE CONNECTOR TIMING 

Maximum operating frequency is 19.2 KHz. Refer to EIA standard RS-232-C 
for operating and installation specifications. A rate of 31.25 KHz will 
be supported through the use of a MIDI adapter. 

Modem control signals (CTS, RTS, DTR, DSR, CD) are completely under 
software control. The modem control lines have no hardware affect on 
and are completely asynchronous to TXD and RXD. 

SERIAL INTERFACE CONNECTOR ELECTRICAL CHARACTERISTICS 

OUTPUTS MIN TYP MAX 
-------

Vo (-) : -13.2 -x- -2.5 v Negative output voltage range 
Vo (+) : 8.0 -x- 13.2 v Positive output voltage range 
Io: -x- -x- 10.0 rna Output current 

INPUTS MIN TYP MAX 
-------

Vi(+): 3.0 -x- 25.0 v Positive input voltage range 
Vi(-): -25.0 -x- 0.5 v Negative input voltage range 
Vhys: -x- 1.0 -x- v Input hysteresis voltage 
Ii: 0.3 -x- 10.0 rna Input current 

Unconnected inputs are interpreted the same as positive input voltages. 

Game Controller Connector Interface Specification 

The two 9-pin D-type connectors with pins (male) are used to interface to four types of devices: 

1. Mouse or trackball, 3 buttons max. 
2. Digital joystick, 2 buttons max. 
3. Proportional (pot or proportional joystick), 2 buttons max. 
4. Light pen, including pen-pressed-to-screen button. 

The connector pin assignments are discussed in sections organized by similar hardware and/or 
software operating requirements as shown in the previous list. Signal names follow those used 
elsewhere in this appendix, when possible. 

Jll is the right controller port connector (JOYlDAT, POTlDAT). 
Jl2 is the left controller port connector (JOYODAT, POTODAT). 

NOTE: While most of the hardware discussed below is directly accessible, hardware 
should be accessed through ROM kernel software. This will keep future hardware 
changes transparent to the user. 
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GAME CONTROLLER INTERFACE TO MOUSE/TRACKBALL QUADRATURE INPUTS 

A mouse or trackball is a device that translates planar motion into 
pulse trains. Quadrature techniques are employed to preserve the 
direction as well as magnitude of displacement. The registers JOYODAT 
and JOYlDAT become counter registers, with y displacement in the high 
byte and x in the low byte. Movement causes the following action: 

Up: y decrements 
Down: y increments 
Right: X increments 
Left: X decrements 

To determine displacement, JOYxDAT is read twice with corresponding x 
and y values subtracted (careful, modulo 128 arithmetic) . Note that 
if either count changes by more than 127, both distance and direction 
become ambiguous. There is a relationship between the sampling 
interval and the maximum speed (that is, change in distance) that 
can be resolved as follows: 

Velocity< Distance(max) I SampleTime 

Velocity < SQRT(DeltaX**2 + DeltaY**2) I SampleTime 

For an Amiga with a 200 count-per-inch mouse sampling during each 
vertical blanking interval, the maximum velocity in either the X or Y 
direction becomes: 

Velocity< (128 Counts * 1 inch/200 Counts) I .017 sec 38 in/sec 

which should be sufficient for most users. 

NOTE: The Amiga software is designed to do mouse update cycles during 
vertical blanking. The horizontal and vertical counters are always 
valid and may be read at any time. 

CONNECTOR PIN USAGE FOR MOUSE/TRACKBALL QUADRATURE INPUTS 

PIN 

1 
2 
3 
4 
5 
6 
7 
8 
9 

MNEMONIC 

v 
H 
VQ 
HQ 

UBUT* 
LBUT* 
+SV 

Ground 
RBUT* 

DESCRIPTION 

Vertical pulses 
Horizontal pulses 
Vertical quadrature pulses 
Horizontal quadrature pulses 
Unused mouse button 
Left mouse button 
+SV, current limited 

Right mouse button 
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HARDWARE REGISTER/NOTES 

JOY[0/1]DAT<15:8> 
JOY[0/1]DAT(7:0> 
JOY[0/1]DAT<15:8> 
JOY[0/1]DAT<7:0> 
See Proportional Inputs. 
See Fire Button. 

See Proportional Inputs. 



GAME PORT INTERFACE TO DIGITAL JOYSTICKS 

A joystick is a device with four normally opened switches arranged 90 
degrees apart. The JOY[O/l]DAT registers become encoded switch input 
ports as follows: 

Forward: 
Left: 
Back: 
Right: 

bitH xor bitlt8 
bitlt9 
bitU xor biUO 
bitU 

Data is encoded to facilitate the mouse/trackball operating mode. 

NOTE: The right and left direction inputs are also designed to be 
right and left buttons, respectively, for use with proportional 
inputs. In this case, the forward and back inputs are not used, 
while right and left become button inputs rather than joystick inputs. 

The JOY[O/l]DAT registers are always valid and may be read at any time. 

CONNECTOR PIN USAGE FOR DIGITAL JOYSTICK INPUTS 

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES 
-------- ----------- -----------------------

1 FORWARD* Forward joystick switch JOY[O/l]DAT<9 xor 
2 BACK* Back joystick switch JOY[O/l]DAT(l xor 
3 LEFT* Left joystick switch JOY[O/l]DAT<9> 
4 RIGHT* Right joystick switch JOY[O/l]DAT<l> 
5 Unused 
6 FIRE* Left mouse button See Fire Button. 
7 +5V 125ma max, 200ma surge Total both ports. 
8 Ground 
9 Unused 

GAME PORT INTERFACE TO FIRE BUTTONS 

The fire buttons are normally opened switches routed to the 8520 
adapter PRAO as follows: 

PRAO bit 7 
PRAO bit 6 

Fire* left controller port 
Fire* right controller port 

Before reading this register, the corresponding bits of the data 
direction register must be cleared to define input mode: 

DDRA0<7:6> cleared as appropriate 

8> 
0> 

NOTE: Do not disturb the settings of other bits in DDRAO (Use of ROM 
kernel calls is recommended) . 

Fire buttons are always valid and may be read at any time. 
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CONNECTOR PIN USAGE FOR FIRE BUTTON INPUTS 

PIN MNEMONIC DESCRIPTION 
-------- -----------

1 -x-
2 -x-
3 -x-
4 -x-
5 -x-
6 FIRE* Left mouse button/fire button 
7 -x-
8 ground 
9 -x-

PORT1 

-FI_R_E_oi----" FIRE11 : 
.-------~------------------------------------~ 

'--I'_F_I~-E-n~~--FI,RE~o-'~~-----'------~----~----L---~----~'~:~:,oo, 
l 

-----------------J 

I.__ __ o __ __.l ___ o __ ..... l __ o __ _,__ __ o __ _._ __ o __ _,___o __ _,__ ____ _._ __ ____.l !!i,t7"" 
IN IN OUT OUT OUT OUT OUT OUT 

READING FIRE BUTIONS 
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GAME PORT INTERFACE TO PROPORTIONAL CONTROLLERS 

Resistive (potentiometer) element linear taper proportional 
controllers are supported up to 528k Ohms max (470k +/- 10% 
recommended). The JOY[0/1]DAT registers contain digital 
translation values for y in the high byte and x in the low byte. 
A higher count value indicates a higher external resistance. 
The Amiga performs an integrating analog-to-digital conversion 
as follows: 

1. For the first 7 (NTSC) or 8 (PAL) horizontal display lines, 
the analog input capacitors are discharged and the positions 
counters reflected in the POT[0/1]DAT registers are held reset. 

For the remainder of the display field, the input capacitors are 
allowed to recharge through the resistive element in the external 
control device. 

2. The gradually increasing voltage is continuously compared to 
an internal reference level while counter keeps track of the 
number of lines since the end of the reset interval. 

3. When the input voltage finally exceeds the internal threshold 
for a given input channel, the current counter value is latched 
into the POT[0/1]DAT register corresponding to that channel. 

4. During the vertical blanking interval, the software examines 
the resulting POT[0/1]DAT register values and interprets the 
counts in terms of joystick position. 

NOTE: The POTY and POTX inputs are designated as "right mouse button" and 
"unused mouse button" respectively. An opened switch corresponds to high 
resistance, a closed switch to a low resistance. The buttons are also 
available in POTGO and POTINP registers. It is recommended that 
ROM kernel calls be used for future hardware compatibility. 

It is important to realize that the proportional controller is more of a 
"pointing" device than an absolute position input. It is up to the 
software to provide the calibration, range limiting and averaging functions 
needed to support the application's control requirements. 

The POT[0/1]DAT registers are typically read during video blanking, 
but MAY be available prior to that. 
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CONNECTOR PIN USAGE FOR PROPORTIONAL INPUTS 

PIN 

1 
2 
3 
4 
5 
6 
7 
8 
9 

MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES 
-------- ----------- -----------------------
XBUT Extra Button 
Unused 

LBUT* Left button See Digital Joystick 
RBUT* Right button See Digital Joystick 
POTX X analog in POT[O/l]DAT<7:0>, POTGO, 

Unused 
+5V 125ma max, 200 rna surge 

Ground 
POTY Y analog in POT[O,l]DAT<l5:8>, POTGO, 

PORTO 

\ a-lmmmPOTOY_pgy9~ mum---m m: 
. ~-~---------------------, ' ...__ _____ __ 

PORT1 

\ 0-)-----------POTlY J:QD)L----- ----------: 
0--- ----------------------, ' 

~------~ y ' 
POT1Y 

COUNTER LATCH 

POTODAT 
DFF012 

POT1DAT 
DFF014 

POT GO 
DFF034 

POTINP 
DFF016 

POT COUNTERS 
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GAME PORT INTERFACE TO LIGHT PEN 

A light pen is an optoelectronic device whose light-sensitive portion is 
placed in proximity to a CRT. As the electron beam sweeps past the light 
pen, a trigger pulse is generated which can be enabled to latch the horizontal 
and vertical beam positions. There is no hardware bit to indicate this 
trigger, but this can be determined in the two ways as shown in chapter 8, 
"Interface Hardware." 

Light pen position is usually read during blanking, but MAY be available 
prior to that. 

CONNECTOR PIN USAGE FOR LIGHT PEN INPUTS 

PIN MNEMONIC 
--------

1 Unused 
2 Unused 
3 Unused 
4 Unused 
5 LPENPR* 
6 LPENTG* 
7 +SV 
8 Ground 
9 Unused 

Note: depending 

15 

15 

LIGHT PEN 

DESCRIPTION HARDWARE REGISTER/NOTES 

Light pen pressed 
Light pen trigger 

See Proportional Inputs 
VPOSR, VHPOSR 

125ma max, 200 rna surge Both ports 

on the maker, the light pen input may be either. 

3 0 

VPOSR read only 
DFF004 

VHPOSR read only 
DFF006 

BPLCONO write only 
DFF104 

... 
"--------------------------- light pen enable 

I I 
0 

POTINP read only 
DFF104 

PEN PRESS = POTOX L-------------------------------------------------

PORTO 

1 2 3 4 5 
0 0 0 o o---

6 
Q 0 o 0 

light pen , 
-----------------------~ 

---------1 
I 

t ________ _ latches V & H positions 
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External Disk Interface Connector Specification 

The 23-pin D-type connector with sockets (DB23S) at the rear of the Amiga is nominally used to 
interface to MFM devices. 

EXTERNAL DISK CONNECTOR PIN ASSIGNMENT (J7) 

PIN NAME DIR NOTES 

1 ROY* 

2 DKRD* 
3 GND 
4 GND 
5 GND 
6 GND 
7 GND 
8 MTRXD* 

I/0 

I 

If motor on, indicates disk installed and up to 
speed. If motor not on, identification mode. See 
below. 
MFM input data to Amiga. 

OC Motor on data, clocked into drive's motor-on 
flip-flop by the active transition of SELxB*. 
Guaranteed setup time is 1.4 usee. 
Guaranteed hold time is 1.4 usee. 

9 SEL2B* OC 
10 DRESB* OC 

Select drive 2.* 
Amiga system reset. Drives should reset their 
motor-on flip-flops and set their write-protect 
flip-flops. 

11 CHNG* I/0 Note: Nominally used as an open collector input. 
Drive's change flop is set at power up or when no 
disk is not installed. Flop is reset when drive is 
selected and the head stepped, but only if a disk 
is installed. 

12 +5V 

13 SIDEB* 
14 WPRO* 
15 TKO* 

16 DKWEB* 
17 DKWDB* 
18 STEPB* 

19 DIRB 

20 SEL3B* 
21 SELlB* 
22 INDEX* 

0 
I/0 
I/0 

oc 
oc 
oc 

oc 

oc 
oc 

I/0 

270 rna maximum; 410 rna surge 
When below 3.75V, drives are required to reset their 
motor-on flops, and set their write-protect flops. 
Side 1 if active, side 0 if inactive 
Asserted by selected, write-protected disk. 
Asserted by selected drive when read/write head 
is positioned over track 0. 
Write gate (enable) to drive. 
MFM output data from Amiga. 
Selected drive steps one cylinder in the direction 
indicated by DIRB. 
Direction to step the head. Inactive to step 
towards center of disk (higher-numbered tracks) . 
Select drive 3. * 
Select drive 1. * 
Index is a pulse generated once per disk revolution, 
between the end and beginning of cylinders. The 
8520 can be programmed to conditionally generate a 
level 6 interrupt to the 680x0 whenever the INDEX* 
input goes active. 

23 +12V 160 rna maximum; 540 rna surge. 

* Note: the drive select lines are shifted as they pass through 
a string of daisy chained devices. Thus the signal that appears 
as drive 2 select at the first drive shows up as drive 1 select 
at the second drive and so on ... 
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EXTERNAL DISK CONNECTOR IDENTIFICATION MODE 

An identification mode is provided for reading a 32-bit serial 
identification data stream from an external device. To initialize 
this mode, the motor must be turned on, then off. See pin 8, 
MTRXD* for a discussion of how to turn the motor on and off. The 
transition from motor on to motor off reinitializes the serial 
shift register. 
After initialization, the SELxB* signal should be left in the 
inactive state. 
Now enter a loop where SELxB* is driven active, read serial input 
data on RDY* (pin 1), and drive SELxB* inactive. Repeat this loop 
a total of 32 times to read in 32 bits of data. The most significant 
bit is received first. 

EXTERNAL DISK CONNECTOR DEFINED IDENTIFICATIONS 

$0000 0000 -no drive present. 
$FFFF FFFF - Amiga standard 3.25 diskette. 
$5555 5555 - 48 TPI double-density, double-sided. 

As with other peripheral !D's, users should contact Commodore-Amiga 
for ID assignment. 
The serial input data is active low and must therefore be inverted 
to be consistent with the above table. 

EXTERNAL DISK CONNECTOR LIMITATIONS 

1. The total cable length, including daisy chaining, must not exceed 
1 meter. 

2. A maximum of 3 external devices may reside on this interface, 
but specific implementations may support fewer external devices. 

3. Each device must provide a 1000-0hm pull-up resistor on those 
outputs driven by an open-collector device on the Amiga 
(pins 8-10, 16-21). 

4. The system provides power for only the first external device in the 
daisy chains. 
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PART 3- INTERNAL CONNECTORS 

INTERNAL DISK ... 34 PIN RIBBON (JlO) 
-------------------------------------

1 GND 18 DIRB 
2 CHNG* 19 GND 
3 GND 20 STEPB* 
4 MTROD* (led) 21 GND 
5 GND 22 DKWDB* 
6 N.C. 23 GND 
7 GND 24 DKWEB* 
8 INDEX* 25 GND 
9 GND 26 TKO* 
10 SELOB* 27 GND 
11 GND 28 WPRO* 
12 N.C. 29 GND 
13 GND 30 DKRD* 
14 N.C. 31 GND 
15 GND 32 SIDEB* 
16 MTROD* 33 GND 
17 GND 34 RDY* 

INTERNAL DISK POWER ... 4 PIN STRAIGHT (Jl3) 

1 +12 (some drives are +5 only) 
2 GND 
3 GND 
4 +5 

INTERNAL SCSI DISK ... 50 PIN CONNECTOR (A3000 MOTHERBOARD) 

2 DATA 0 26 TERMINATION POWER 
4 DATA 1 28 GROUND 
6 DATA 2 30 GROUND 
8 DATA 3 32 ATN* 
10 DATA 4 34 N.C. 
12 DATA 5 36 BSY 
14 DATA 6 38 ACK* 
16 DATA 7 40 RST* 
18 PARITY 42 MSG* 
20 GROUND 44 SEL* 
22 GROUND 46 C/D 
24 GROUND 48 REQ* 

50 I/0 

(ALL ODD-NUMBERED PINS, EXCEPT PIN 25, ARE CONNECTED TO GROUND. PIN 25 IS OPEN) 
See the ANSI standard SCSI (Small Computer Standard Interface) Specification 
for more information. 
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PART 4- PORT SIGNAL ASSIGNMENTS FOR 8520 CIAS 

CIA-A Address BFExOl data bits 7-0 (A12*) (int2) 

PA7 .. game port 
PA6 .. game port 
PAS .. ROY* 
PA4 .. TKO* 
PA3 .. WPRO* 
PA2 .. CHNG* 

1, pin 6 (fire button*) 
0, pin 6 (fire button*) 
disk ready* 
disk track 00* 
write protect* 
disk change* 

PAl .. LED* 
PAO .. OVL 

led light (O=bright) I audio filter control (ASOO & A2000) 
ROM/RAM overlay bit 

data 
clock 

SP ... KDAT 
CNT .. KCLK 
PB7 .. P7 
PB6 .. P6 
PBS .. PS 
PB4 .. P4 
PB3 .. P3 
PB2 .. P2 
PBl .. Pl 

keyboard 
keyboard 
data 7 
data 6 
data 5 
data 4 
data 3 
data 2 
data 1 

Centronics parallel interface 
data 

PBO .. PO data 0 

PC ... drdy* Centronics control 
F .... ack* 

CIA-B Address BFDxOO data bits 15-8 

PA7 .. com line DTR*, driven output 
PA6 .. com line RTS*, driven output 
PAS .. com line carrier detect* 
PA4 .. com line CTS* 
PA3 .. com line DSR* 
PA2 .. SEL Centronics control 
PAl .. POUT +---paper out------------+ 
PAO .. BUSY I +--busy -------------+ 

I I I 
SP ... BUSY I +-commodore serial bus+ 

(A13*) (int6) 

CNT .. POUT +----commodore serial bus --+ 

PB7 .. MTR* 
PB6 •. SEL3* 
PBS .. SEL2* 
PB4 .. SELl* 
PB3 .. SELO* 
PB2 .. SIDE* 
PBl .. DIR 
PBO .. STEP* 

PC ... not used 
F .... INDEX* 

motor 
select external 3rd drive 
select external 2nd drive 
select external 1st drive 
select internal drive 
side select* 
direction 
step* 

disk index pulse* 
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appendix F 
8520 COMPLEX INTERFACE 
ADAPTERS 

This appendix contains infonnation about the 8520 Complex Interface Adapter (CIA) chips which 
handle the serial, parallel, keyboard and other Amiga 1/0 activities. Each Amiga system contains 
two 8520 Complex Interface Adapter (CIA) chips. Each chip has 16 general purpose input/output 
pins, plus a serial shift register, three timers, an output pulse pin and an edge detection input. In 
the Amiga system various tasks are assigned to the chip's capabilities as follows: 

CIAA Address Map 

Byte Register 
Address Name 

BFE001 
BFE101 
BFE201 
BFE301 
BFE401 
BFE501 
BFE601 
BFE701 
BFE801 
BFE901 
BFEA01 
BFEB01 
BFEC01 
BFED01 
BFEE01 
BFEF01 

pra 
prb 
ddra 
ddrb 
talo 
tahi 
tblo 
tbhi 
todlo 
todmid 
todhi 

sdr 
icr 
era 
crb 

Data bits 
7 6 5 4 3 2 1 0 

/FIR1 /FIRO /RDY /TKO /WPRO /CHNG /LED OVL 
Parallel port 
Direction for port A (BFE001);1=output (set to Ox03) 
Direction for port B (BFE101);1=output (can be in or out} 
CIAA timer A low byte (.715909 Mhz NTSC; .709379 Mhz PAL) 
CIAA timer A high byte 
CIAA timer Blow byte (.715909 Mhz NTSC; .709379 Mhz PAL) 
CIAA timer B high byte 
50/60 Hz event counter bits 7-0 (VSync or line tick) 
50/60 Hz event counter bits 15-8 
50/60 Hz event counter bits 23-16 
not used 
CIAA serial data register (connected to keyboard) 
CIAA interrupt control register 
CIAA control register A 
CIAA control register B 

Note: CIAA can generate interrupt INT2. 

Appendix F 339 



CIAB Address Map 

Byte 
Address 

BFDOOO 
BFDlOO 
BFD200 
BFD300 
BFD400 
BFD500 
BFD600 
BFD700 
BFDBOO 
BFD900 
BFDAOO 
BFDBOO 
BFDCOO 
BFDDOO 
BFDEOO 
BFDFOO 

Register 
Name 

pra 
prb 
ddra 
ddrb 
tala 
tahi 
tblo 
tbhi 
todlo 
todmid 
todhi 

sdr 
icr 
era 
crb 

Data bits 
7 6 5 4 3 2 1 

/DTR /RTS /CD /CTS /DSR SEL POUT 
/MTR /SEL3 /SEL2 /SELl /SELO /SIDE DIR 
Direction for Port A (BFDOOO} ;1 =output 
Direction for Port B (BFDlOO} ;1 = output 
CIAB timer A low byte (.715909 Mhz NTSC; 
CIAB timer A high byte 
CIAB timer B low byte (.715909 Mhz NTSC; 
CIAB timer B high byte 
Horizontal sync event counter bits 7-0 
Horizontal sync event counter bits 15-8 
Horizontal sync event counter bits 23-16 
not used 
CIAB serial data register (unused) 
CIAB interrupt control register 
CIAB Control register A 
CIAB Control register B 

Note: CIAB can generate INT6. 

Chip Register Map 

0 

BUSY 
/STEP 

(set to OxFF} 
(set to OxFF} 
.709379 Mhz PAL) 

.709379 Mhz PAL) 

Each 8520 has 16 registers that you may read or write. Here is the list of registers and the access 
address of each within the memory space dedicated to the 8520: 

Register 
RS3 RS2 RSl RSO jf(hex) NAME MEANING 
----------------------------------------------------------------

0 0 0 0 0 pra Peripheral data register A 
0 0 0 1 1 prb Peripheral data register B 
0 0 1 0 2 ddra Data direction register A 
0 0 1 1 3 ddrb Direction register B 
0 1 0 0 4 tala Timer A low register 
0 1 0 1 5 tahi Timer A high register 
0 1 1 0 6 tblo Timer B low register 
0 1 1 1 7 tbhi Timer B high register 
1 0 0 0 8 todlow Event LSB 
1 0 0 1 9 todmid Event 8-15 
1 0 1 0 A todhi Event MSB 
1 0 1 1 B No connect 
1 1 0 0 c sdr Serial data register 
1 1 0 1 D icr Interrupt control register 
1 1 1 0 E era Control register A 
1 1 1 1 F crb Control register B 

------------------------------------------------------------------
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Register Functional Description 

1/0 PORTS (PRA, PRB, DORA, DDRB) 

Ports A and B each consist of an 8-bit peripheral data register (PR) and an 8-bit data direction 
register (DDR). If a bit in the DDR is set to a 1, the corresponding bit position in the PR 
becomes an output. If a DDR bit is set to a 0, the corresponding PR bit is defined as an input. 

When you READ aPR register, you read the actual current state of the 1/0 pins (PAO-PA 7, PBO­
PB7, regardless of whether you have set them to be inputs or outputs. 

Ports A and B have passive pull-up devices as well as active pull-ups, providing both CMOS and 
TTL compatibility. Both ports have two TTL load drive capability. 

In addition to their normal 1/0 operations, ports PB6 and PB7 also provide timer output 
functions. 

HANDSHAKING 

Handshaking occurs on data transfers using the PC output pin and the FLAG input pin. PC will 
go low on the third cycle after a port B access. This signal can be used to indicate ''data ready'' 
at port B or "data accepted" from port B. Handshaking on 16-bit data transfers (using both ports 
A and B) is p<>ssible by always reading or writing port A first. FLAG is a negative edge-sensitive 
input that can be used for receiving the PC output from another 8520 or as a general- purpose 
interrupt input. Any negative transition on FLAG will set the FLAG interrupt bit. 

REG NAME 07 06 DS 04 03 02 Dl DO 
---- ---- ---- ---- ---- ---- ----

0 PRA PA7 PA6 PAS PA4 PA3 PA2 PAl PAO 
1 PRB PB7 PB6 PBS PB4 PB3 PB2 PBl PBO 
2 DORA DPA7 DPA6 DPAS DPA4 DPA3 DPA2 OPAl DPAO 
3 DDRB DPB7 DPB6 DPBS DPB4 DPB3 DPB2 DPBl DPBO 

INTERVAL TIMERS (TIMER A, TIMER B) 

Each interval timer consists of a 16-bit read-only timer counter and a 16-bit write-only timer 
latch. Data written to the timer is latched into the timer latch, while data read from the timer is 
the present contents of the timer counter. 

The latch is also called a prescalar in that it represents the countdown value which must be 
counted before the timer reaches an underflow (no more counts) condition. This latch (prescalar) 
value is a divider of the input clocking frequency. The timers can be used independently or linked 
for extended operations. Various timer operating modes allow generation of long time delays, 
variable width pulses, pulse trains, and variable frequency waveforms. Utilizing the CNT input, 

Appendix F 341 



the timers can count external pulses or measure frequency, pulse width, and delay times of 
external signals. 

Each timer has an associated control register, providing independent control over each of the 
following functions: 

Start/Stop 

A control bit allows the timer to be started or stopped by the microprocessor at any time. 

PB on/off 

A control bit allows the timer output to appear on a port B output line (PB6 for timer A and PB7 
for timer B). This function overrides the DDRB control bit and forces the appropriate PB line to 
become an output. 

Toggle/pulse 

A control bit selects the output applied to port B while the PB on/off bit is ON. On every timer 
underflow, the output can either toggle or generate a single positive pulse of one cycle duration. 
The toggle output is set high whenever the timer is started, and set low by RES. 

One-shot/continuous 

A control bit selects either timer mode. In one-shot mode, the timer will count down from the 
latched value to zero, generate an interrupt, reload the latched value, then stop. In continuous 
mode, the timer will count down from the latched value to zero, generate an interrupt, reload the 
latched value, and repeat the procedure continuously. 

In one-shot mode, a write to timer-high (register 5 for timer A, register 7 for Timer B) will 
transfer the timer latch to the counter and initiate counting regardless of the start bit. 

Force load 

A strobe bit allows the timer latch to be loaded into the timer counter at any time, whether the 
timer is running or not. 
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INPUT MODES 

Control bits allow selection of the clock used to decrement the timer. Timer A can count 02 
clock pulses or external pulses applied to the CNT pin. Timer B can count 02 pulses, external 
CNT pulses, timer A underflow pulses, or timer A underflow pulses while the CNT pin is held 
high. 

The timer latch is loaded into the timer on any timer underflow, on a force load, or following a 
write to the high byte of the pre- scalar while the timer is stopped. If the timer is running, a write 
to the high byte will load the timer latch but not the counter. 

BIT NAMES on READ-Register 

REG NAME D7 D6 DS D4 D3 D2 Dl DO 
---- ---- ---- ----

4 TALO TAL? TAL6 TALS TAL4 TAL3 TAL2 TALl TALO 
5 TAHI TAH7 TAH6 TAHS TAH4 TAH3 TAH2 TAHl TAHO 
6 TBLO TBL7 TBL6 TBLS TBL4 TBL3 TBL2 TBLl TBLO 
7 TBHI TBH7 TBH6 TBHS TBH4 TBH3 TBH2 TBHl TBHO 

BIT NAMES on WRITE-Register 

REG NAME D7 D6 DS D4 D3 D2 Dl DO 
---- ----

4 TALO PAL? PAL6 PALS PAL4 PAL3 PAL2 PALl PALO 
5 TAHI PAH7 PAH6 PAHS PAH4 PAH3 PAH2 PAHl PAHO 
6 TBLO PBL7 PBL6 PBLS PBL4 PBL3 PBL2 PBLl PBLO 
7 TBHI PBH7 PBH6 PBHS PBH4 PBH3 PBH2 PBHl PBHO 
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Time of Day Clock 

TOO consists of a 24-bit binary counter. Positive edge transitions on this pin cause the binary 
counter to increment. The TOO pin has a passive pull-up on it. 

A programmable alarm is provided for generating an interrupt at a desired time. The alarm 
registers are located at the same addresses as the corresponding TOO registers. Access to the 
alarm is governed by a control register bit. The alarm is write-only; any read of a TOO address 
will read time regardless of the state of the ALARM access bit. 

A specific sequence of events must be followed for proper setting and reading of TOO. TOO is 
automatically stopped whenever a write to the register occurs. The clock will not start again until 
after a write to the LSB event register. This assures that TOO will always start at the desired 
time. 

Since a carry from one stage to the next can occur at any time with respect to a read operation, a 
latching function is included to keep all TOO information constant during a read sequence. All 
TOO registers latch on a read of MSB event and remain latched until after a read of LSB event. 
The TOO clock continues to count when the output registers are latched. If only one register is to 
be read, there is no carry problem and the register can be read "on the fly" provided that any read 
of MSB event is followed by a read of LSB Event to disable the latching. 

BIT NAMES for WRITE TIME/ALARM or READ TIME 

REG NAME 

8 LSB Event E7 E6 ES E4 E3 E2 E1 EO 
9 Event 8-15 El5 E14 E13 E12 Ell E10 E9 E8 
A MSB Event E23 E22 E21 E20 E19 E18 E17 E16 

WRITE 
CRB7 0 
CRB7 = 1 ALARM 
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Serial Shift Register (SDR) 

The serial port is a buffered, 8-bit synchronous shift register. A control bit selects input or output 
mode. In the Amiga system one shift register is used for the keyboard, and the other is 
unassigned. Note that the RS-232 compatible serial port is controlled by the Paula chip; see 
chapter 8 for details. 

INPUT MODE 

In input mode, data on the SP pin is shifted into the shift register on the rising edge of the signal 
applied to the CNT pin. After eight CNT pulses, the data in the shift register is dumped into the 
serial data register and an interrupt is generated. 

OUTPUT MODE 

In the output mode, Timer A is used as the baud rate generator. Data is shifted out on the SP pin 
at 1/2 the underflow rate of Timer A. The maximum baud rate possible is 02 divided by 4, but 
the maximum usable baud rate will be determined by line loading and the speed at which the 
receiver responds to input data. 

To begin transmission, you must first set up Timer A in continuous mode, and start the timer. 
Transmission will start following a write to the serial data register. The clock signal derived from 
Timer A appears as an output on the CNT pin. The data in the serial data register will be loaded 
into the shift register, then shifted out to the SP pin when a CNT pulse occurs. Data shifted out 
becomes valid on the next falling edge of CNT and remains valid until the next falling edge. 

After eight CNT pulses, an interrupt is generated to indicate that more data can be sent. If the 
serial data register was reloaded with new information prior to this interrupt, the new data will 
automatically be loaded into the shift register and transmission will continue. 

If no further data is to be transmitted after the eighth CNT pulse, CNT will return high and SP 
will remain at the level of the last data bit transmitted. 

SDR data is shifted out MSB first. Serial input data should appear in this same format. 
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BIDIRECTIONAL FEATURE 

The bidirectional capability of the shift register and CNT clock allows many 8520s to be 
connected to a common serial communications bus on which one 8520 acts as a master, sourcing 
data and shift clock, while all other 8520 chips act as slaves. Both CNT and SP outputs are 
open drain to allow such a common bus. Protocol for master/slave selection can be transmitted 
over the serial bus or via dedicated handshake lines. 

REG NAME D7 D6 DS D4 D3 D2 Dl DO 

c SDR S7 S6 SS S4 S3 S2 Sl SO 

Interrupt Control Register (ICR) 

There are five sources of interrupts on the 8520: 

-Underflow from Timer A (timer counts down past 0) 
-Underflow from Timer B 
-TOD alarm 
-Serial port fulVempty 
-flag 

A single register provides masking and interrupt information. The interrupt control register 
consists of a write-only MASK register and a read-only DATA register. Any interrupt will set the 
corresponding bit in the DATA register. Any interrupt that is enabled by a 1-bit in that position 
in the MASK will set theIR bit (MSB) of the DATA register and bring the IRQ pin low. In a 
multichip system, the IR bit can be polled to detect which chip has generated an interrupt request. 

When you read the DATA register, its contents are cleared (set to 0), and the IRQ line returns to a 
high state. Since it is cleared on a read, you must assure that your interrupt polling or interrupt 
service code can preserve and respond to all bits which may have been set in the DATA register 
at the time it was read. With proper preservation and response, it is easily possible to intermix 
polled and direct interrupt service methods. 

You can set or clear one or more bits of the MASK register without affecting the current state of 
any of the other bits in the register. This is done by setting the appropriate state of the MSBit, 
which is called the set/clear bit. In bits 6-0, you yourself form a mask that specifies which of the 
bits you wish to affect. Then, using bit 7, you specify HOW the bits in corresponding positions in 
the mask are to be affected. 
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o If bit 7 is a 1, then any bit 6-0 in your own mask byte which is set to a 1 sets the 
corresponding bit in the MASK register. Any bit that you have set to a 0 causes the MASK 
register bit to remain in its current state. 

o If bit 7 is a 0, then any bit 6-0 in your own mask byte which is set to a 1 clears the 
corresponding bit in the MASK register. Again, any 0 bit in your own mask byte causes no 
change in the contents of the corresponding MASK register bit. 

If an interrupt is to occur based on a particular condition, then that corresponding MASK bit must 
be a 1. 

Example: Suppose you want to set the Timer A interrupt bit (enable the Timer A interrupt), but 
want to be sure that all other interrupts are cleared. Here is the sequence you can use: 

INCLUDE "hardware/cia.i" 
XREF ciaa 
lea _ciaa,aO 
move.b i%01111110,ciaicr(a0) 

From amiga.lib 
Defined in amiga.lib 

MSB is 0, means clear any bit whose value is 1 in the rest of the byte 

INCLUDE "hardware/cia.i" 
XREF ciaa 
lea _ciaa,aO 
move.b i%10000001,ciaicr(a0) 

From amiga.lib 
Defined in amiga.lib 

MSB is 1, means set any bit whose value is 1 in the rest of the byte (do not change any values 
wherein the written value bit is a zero) 

READ INTERRUPT CONTROL REGISTER 

REG NAME D7 D6 DS D4 D3 D2 Dl DO 

D ICR IR 0 0 FLG SP ALRM TB TA 

WRITE INTERRUPT CONTROL MASK 

REG NAME D7 06 05 D4 D3 D2 Dl DO 

D ICR S/C X x FLG SP ALRM TB TA 
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Control Registers 

There are two control registers in the 8520, CRA and CRB. CRA is associated with Timer A and 
CRB is associated with Timer B. The format of the registers is as follows: 

CONTROL REGISTER A 

BIT NAME FUNCTION 

0 START 1 = start Timer A, 0 = stop Timer A. 

1 

2 

3 

4 

5 

6 

PBON 1 

OUTMODE 1 

RUNMODE 1 

LOAD 1 

INMODE 1 
0 

SPMODE 1 

This bit is automatically reset (= 0) when 
underflow occurs during one-shot mode. 

Timer A output on PB6, 0 = PB6 is normal operation. 

toggle, 0 = pulse. 

one-shot mode, 0 continuous mode. 

force load (this is a strobe input, there is no 
data storage; bit 4 will always read back a zero 
and writing a 0 has no effect.) 

Timer A counts positive CNT transitions, 
Timer A counts 02 pulses. 

Serial port=output (CNT is the source of the shift 
clock) 

0 Serial port=input (external shift clock is 
required) 

7 UNUSED 
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BITMAP OF REGISTER CRA 

REGi NAME UNUSED SPMODE INMODE LOAD RUNMODE OUTMODE PBON START 

E CRA unused 
unused 

O=input 0=02 
l=output l=CNT 

l=force 
load 

(strobe) 

O=cont. O=pulse O=PB60FF O=stop 
l=one- l=toggle l=PB60N l=start 
shot 

1<-------- Timer A Variables ----------------->1 

All unused register bits are unaffected by a write and forced to 0 on a read. 

CONTROL REGISTER B: 

BIT NAME 

0 START 

1 PBON 

2 OUTMODE 
3 RUNMODE 
4 LOAD 

6,5 INMODE 

7 ALARM 

FUNCTION 

1 = start Timer B, 0 = stop Timer B. 
This bit is automatically reset (= 0) when 
underflow occurs during one-shot mode. 

1 Timer B output on PB7, 0 = PB7 is normal 
operation. 

1 toggle, 0 = pulse. 
1 one-shot mode, 0 = continuous mode. 
1 force load (this is a strobe input, there is no 

data storage; bit 4 will always read back a 
zero and writing a 0 has no effect.) 

Bits CRB6 and CRB5 select one of four possible 
input modes for Timer B, as follows: 

CRB6 CRB5 Mode Selected 

0 
0 
1 
1 

1 
0 

0 Timer B counts 02 pulses 
1 Timer B counts positive CNT transitions 
0 Timer B counts Timer A underflow pulses 
1 Timer B counts Timer A underflow pulses 

while CNT pin is held high. 

writing to TOD registers sets Alarm 
writing to TOD registers sets TOD clock. 
Reading TOD registers always reads TOD clock, 
regardless of the state of the Alarm bit. 
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BITMAP OF REGISTER CRB 

REG 
it NAME ALARM INMODE LOAD RUNMODE OUTMODE PBON START 

F CRB O=TOD 00=02 l=force O=cont. O=pulse 0=PB70FF O=stop 
l=Alarm Ol=CNT load l~one- l=toggle l=PB70N l=start 

lO=Timer A (strobe) shot 
ll=CNT+ 

Timer A 

1<----------------Timer B Variables--------------->1 

All unused register bits are unaffected by a write and forced to 0 on a read. 

Port Signal Assignments 

This part specifies how various signals relate to the available ports of the 8520. This infonnation 
enables the programmer to relate the port addresses to the outside-world items (or internal control 
signals) which are to be affected. This part is primarily for the use of the systems programmer 
and should generally not be used by applications programmers. Systems software nonnally is 
configured to handle the setting of particular signals, no matter how the physical connections may 
change. 

Warning: In a multitasking operating system, many different tasks may be competing 
for the use of the system resources. Applications programmers should follow the 
established rules for resource access in order to assure compatibility of their software 
with the system. 
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CIA-A Address BFErOl data bits 7-0 (A12*) (INT2) 

PA7 .. game port 
PA6 .. game port 
PAS .. RDY* 
PA4 .. TKO* 
PA3 .. WPRO* 
PA2 .. CHNG* 
PAl .. LED* 
PAO .. OVL 
SP ... KDAT 
CNT .. KCLK 
PB7 .. P7 
PB6 .. P6 
PBS .. PS 
PB4 .. P4 
PB3 .. P3 data 
PB2 .. P2 
PEl .. Pl 
PBO .. PO 

1, pin 6 (fire button*) 
0, pin 6 (fire button*) 
disk ready* 
disk track 00* 
write protect* 
disk change* 
led light (O=bright) 
memory overlay bit 
keyboard data 

data 7 
data 6 
data s Centronics 
data 4 data 

3 
data 2 
data 1 
data 0 

parallel interface 

PC ... drdy* centronics control 
F .... ack* 

CIA-B Address BFDrOO data bits lS-8 (A13*) (INT6) 

PA7 .. com line DTR*, driven output 
PA6 .. com line RTS*, driven output 
PAS .. com line carrier detect* 
PA4 .. com line CTS* 
PA3 .. com line DSR* 
PA2 .. SEL centronics control 
PAl .. POUT paper out---+ 
PAO .. BUSY busy ---+ 

SP ... BUSY 
CNT .. POUT 

I 
commodore -+ 
commodore ---+ 

motor 
select external 
select external 
select external 

3rd 
2nd 
1st 

drive 
drive 
drive 

PB7 .. MTR* 
PB6 .. SEL3* 
PBS .. SEL2 * 
PB4 .. SELl* 
PB3 .. SELO* 
PB2 .. SIDE* 
PBl .. DIR 
PBO .. STEP* 

select internal drive 

PC ... not used 
F .... INDEX* 

side select* 
direction 
step* (3.0 milliseconds minimum) 

disk index* 
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A complete 8520 timing example. This blinks the power light at (exactly) 
3 milisecond intervals. It takes over the machine, so watch out! 

The base Amiga crytal frequencies are: 
NTSC 28.63636 MHz 
PAL 28.37516 MHz 

The two 16 bit timers on the 8520 chips each count down at 1110 the CPU 
clock, or 0.715909 MHz. That works out to 1.3968255 microseconds per count. 
Under PAL the countdown is slightly slower, 0.709379 MHz. 

To wait 11100 second would require waiting 10,000 microseconds. 
The timer register would be set to (10,000 I 1.3968255 = 7159). 

To wait 3 miliseconds would require waiting 3000 microseconds. 
The register would be set to (3000 I 1.3968255 = 2148). 

INCLUDE "hardwarelcia.i" 
INCLUDE "hardwarelcustom.i" 

XREF 
XREF 
XREF 

cia a 
ciab 
custom 

lea custom,a3 
lea ciaa,a4 

move.w #$7fff,dmacon(a3) 

;----Setup, only do once 

Base of custom chips 
Get base address if CIA-A 

Kill all chip interrupts 

;----This sets all bits needed for timer A one-shot mode. 
move.b ciacra(a4),d0 
and.b #%11000000,d0 
or.b #%00001000,d0 
move.b d0,ciacra(a4) 
move.b #%01111111,ciaicr(a4) 

;----Set time (low byte THEN high byte) 
;----And the low order with $ff 
;----Shift the high order by 8 

TIME equ 2148 
move.b #(TIME&$FF) ,ciatalo(a4) 
move.b #(TIME>>8),ciatahi(a4) 

;----Wait for the timer to count down 
busy_wait: 

btst.b 
beq.s 
bchg.b 
bset.b 
bra.s 

END 

#O,ciaicr(a4) 
busy_wait 
#CIAB_LED,ciapra(a4) 
#0, ciacra (a4) 
busy_wait 
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;Set control register A on CIAA 
;Don't trash bits we are not 
;using ... 

;Clear all 8520 interrupts 

;Wait for timer expired flag 

; Blink light 
;Restart timer 



Hardware Connection Details 

The system hardware selects the CIAs when the upper three address bits are 101. Furthermore, 
CIAA is selected when A12 is low, A13 high; CIAB is selected when A12 is high, A13 low. 
CIAA communicates on data bits 7-0, CIAB communicates on data bits 15-8. 

Address bits All, AIO, A9, and A8 are used to specify which of the 16 internal registers you 
want to access. This is indicated by "r" in the address. All other bits are don't cares. So, CIAA 
is selected by the following binary address: 101x xxxx xx01 rrrr xxxx xxxO. CIAB address: 
IOlx xxxx xxlO rrrr xxxx xxxl 

With future expansion in mind, we have decided on the following addresses: CIAA = BFErOl; 
CIAB = BFDrOO. Software must use byte accesses to these address, and no other. 

INTERFACE SIGNALS 

Clock Input 

The 02 clock is a TTL compatible input used for internal device operation and as a timing 
reference for communicating with the system data bus. On the Amiga, this is connected to the 
680x0 "E" clock. The "E" clock runs at 1/10 of the CPU clock. This works out to .715909 
Mhz for NTSC or .709379 Mhz for PAL. 

CS - chip-select Input 

The CS input controls the activity of the 8520. A low level on CS while 02 is high causes the 
device to respond to signals on the R/W and address (RS) lines. A high on CS prevents these 
lines from controlling the 8520. The CS line is normally activated (low) at 02 by the appropriate 
address combination. 

RJW- read/write Input 

The R/W signal is normally supplied by the microprocessor and controls the direction of data 
transfers of the 8520. A high on R/W indicates a read (data transfer out of the 8520), while a low 
indicates a write (data transfer into the 8520). 
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~-~ --~-~--~- ----------------------------

RS3-RSO - address Inputs 

The address inputs select the internal registers as described by the register map. 

087-DBO - data bus Inputs/outputs 

The eight data bus output pins transfer information between the 8520 and the system data bus. 
These pins are high impedance inputs unless CS is low and R/W and 02 are high, to read the 
device. During this read, the data bus output buffers are enabled, driving the data from the 
selected register onto the system data bus. 

IRQ - Interrupt request output 

IRQ is an open drain output normally connected to the processor interrupt input. An external 
pull-up resistor holds the signal high, allowing multiple IRQ outputs to be connected together. 
The IRQ output is normally off (high impedance) and is activated low as indicated in the 
functional description. 

RES - reset Input 

A low on the RES pin resets all internal registers. The port pins are set as inputs and port 
registers to zero (although a read of the ports will return all highs because of passive pull-ups). 
The timer control registers are set to zero and the timer latches to all ones. All other registers are 
reset to zero. 
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appendix G 
KEYBOARD INTERFACE 

This appendix contaim the keyboard interface specification for AlOOO, A500, A2000 and A3000. 

The keyboard plugs into the Amiga computer via a cable with four primary connections. The 
four wires provide 5-volt power, ground, and signals called KCLK (keyboard clock) and KDAT 
(keyboard data). KCLK is unidirectional and always driven by the keyboard; KDAT is driven by 
both the keyboard and the computer. Both signals are open-collector; there are pullup resistors in 
both the keyboard (inside the keyboard microprocessor) and the computer. 

Keyboard Communications 

The keyboard transmits 8-bit data words serially to the main unit. Before the transmission starts, 
both KCLK and KDAT arc high. The keyboard starts the transmission by putting out the first 
data bit (on KDAT), followed by a pulse on KCLK (low then high); then it puts out the second 
data bit and pulses KCLK until all eight data bits have been sent. After the end of the last KCLK 
pulse, the keyboard pulls KDAT high again. 

When the computer has received the eighth bit, it must pulse KDAT low for at least I (one) 
microsecond, as a handshake signal to the keyboard. The handshake detection on the keyboard 
end will typically use a hardware latch. The keyboard must be able to detect pulses greater than 
or equal to 1 microsecond. Software MUST pulse the line low for 85 microseconds to ensure 
compatibility with all keyboard models. 

All codes transmitted to the computer are rotated one bit before transmission. The transmitted 
order is therefore 6-5-4-3-2-1-0-7. The reason for this is to transmit the up/down flag last, in 
order to cause a key-up code to be transmitted in case the keyboard is forced to restore lost sync 
(explained in more detail below). 
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The KDAT line is active low; that is, a high level ( +5V) is interpreted a-; 0, and a low level (OV) 
is interpreted as 1. 

KCLK \ I \ I \ I \ I \ I \ I \ I \ I 

KDAT \ __ x ___ x __ x __ x __ x __ x __ x __ l 
( 6) 

First 
sent 

(5) (4) (3) (2) ( 1) (0) (7) 

Last 
sent 

The keyboard processor sets the KDAT line about 20 microseconds before it pulls KCLK low. 
KCLK stays low for about 20 microseconds, then goes high again. The processor waits another 
20 microseconds before changing KDA T. 

Therefore, the bit rate during transmission is about 60 microseconds per bit, or 17 kbits/sec. 

Key codes 

Each key has a kcycodc associated with it (see accompanying table). Keycodes arc always 7 bits 
long. The eighth bit is a "key-up"/"key-down" flag; a 0 (high level) means that the key was 
pushed down, and a 1 (low level) means the key was released (the Caps Lock key is different -­
see below). 

For example, here is a diagram of the "B" key being pushed down. The keycode for "B" is $35 
= 00110101; due to the rotation of the byte, the bits transmitted are 01101010. 

KCLK \ I \ I \ I \ I \ I \ I \ I \ I 

KDAT \ __ _ I \ I \ I 
0 1 1 0 1 0 1 0 

In the next example, the B key is released. The keycode is still $35, except that bit 7 is set to 
indicate "key-up," resulting in a code of $B5 = 10110101. After rotating, the transmission will 
be 01101011: 

KCLK \ I \ I \ I \ I \ I \ I \ I \ I 

KDAT \ I \ I \ I 
--~·~ 

--~----

0 1 1 0 1 0 1 1 
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Caps Lock Key 

This key is different from all the others in that it generates a keycode only when it is pushed 
down, never when it is released. However, the up/down bit is still used. When pushing the Caps 
Lock key turns on the Caps Lock LED, the up/down bit will be 0; when pushing Caps Lock shuts 
off the LED, the up/down bit will be 1. 

"Out-of-Sync" Condition 

Noise or other glitches may cause the keyboard to get out of sync with the computer. This means 
that the keyboard is finished transmitting a code, but the computer is somewhere in the middle of 
receiving it. 

If this happens, the keyboard will not receive its handshake pulse at the end of its transmission. If 
the handshake pulse does not arrive within 143 ms of the last clock of the transmission, the 
keyboard will assume that the computer is still waiting for the rest of the transmission and is 
therefore out of sync. The keyboard will then attempt to restore sync by going into "resync 
mode.'' In this mode, the keyboard clocks out a 1 and waits for a handshake pulse. If none 
arrives within 143 ms, it clocks out another 1 and waits again. This process will continue until a 
handshake pulse arrives. 

Once sync is restored, the keyboard will have clocked a garbage character into the computer. 
That is why the key-up/key-down flag is always transmitted last. Since the keyboard clocks out 
1 's to restore sync, the garbage character thus transmitted will appear as a key release, which is 
less dangerous than a key hit. 

Whenever the keyboard detects that it has lost sync, it will assume that the computer failed to 
receive the keycode that it had been trying to transmit. Since the computer is unable to detect lost 
sync, it is the keyboard's responsibility to inform the computer of the disaster. It does this by 
transmitting a "lost sync" code (value $F9 = 11111001) to the computer. Then it retransmits the 
code that had been garbled. 

About Lost Sync. The only reason to transmit the "lost sync" code to the computer 
is to alert the software that something may be screwed up. The "lost sync" code does 
not help the recovery process, because the garbage key code can't be deleted, and the 
correct key code could simply be retransmitted without telling the computer that there 
was an error in the previous one. 
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Power-Up Sequence 

There are two possible ways for the keyboard to be powered up under normal circumstances: <1> 
the computer can be turned on with the keyboard plugged in, or <2> the keyboard can be plugged 
into an already "on" computer. The keyboard and computer must handle either case without 
causing any upset. 

The first thing the keyboard does on power-up is to perform a self-test. This involves a ROM 
checksum test, simple RAM test, and watchdog timer test. Whenever the keyboard is powered up 
(or restarted -- see below), it must not transmit anything until it has achieved synchronization 
with the computer. The way it does this is by slowly clocking out 1 bits, as described above, until 
it receives a handshake pulse. 

If the keyboard is plugged in before power-up, the keyboard may continue this process for several 
minutes as the computer struggles to boot up and get running. The keyboard must continue 
clocking out 1s for however long is necessary, until it receives its handshake. 

If the keyboard is plugged in after power-up, no more than eight clocks will be needed to achieve 
sync. In this case, however, the computer may be in any state imaginable but must not be 
adversely affected by the garbage character it will receive. Again, because it receives a key 
release, the damage should be minimal. The keyboard driver must anticipate this happening and 
handle it, as should any application that uses raw keycodes. 

Warning: The keyboard must not transmit a "lost sync" code after re-synchronizing 
due to a power-up or restart; only after re-synchronizing due to a handshake time-out. 

Once the keyboard and computer are in sync, the keyboard must inform the computer of the 
results of the self-test. If the self-test failed for any reason, a '' selftest failed'' code (value $FC = 
11111100) is transmitted (the keyboard does not wait for a handshake pulse after sending the 
'' selftest failed'' code). After this, the keyboard processor goes into a loop in which it blinks the 
Caps Lock LED to inform the user of the failure. The blinks are coded as bursts of one, two, 
three, or four blinks, approximately one burst per second: 

One blink ROM checksum failure. 
Two blinks RAM test failed. 
Three blinks Watchdog timer test failed. 
Four blinks A short exists between two row lines or one of 

the seven special keys (not implemented). 

If the self-test succeeds, then the keyboard will proceed to transmit any keys that are currently 
down. First, it sends an ''initiate power-up key stream'' code (value $FD = 11111101), followed 
by the key codes of all depressed keys (with keyup/down set to "down" for each key). After all 
keys are sent (usually there won't be any at all), a "terminate key stream" code (value $FE= 
11111110) is sent. Finally, the Caps Lock LED is shut off. This marks the end of the start-up 
sequence, and normal processing commences. 
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The usual sequence of events will therefore be: power-up; synchronize; transmit ''initiate 
power-up key stream'' ($FD); transmit ''terminate key stream'' ($FE). 

Reset Warning 

About Reset Warning. This feature is available on some A 1000 and A2000 
keyboards. You cannot rely on this feature for all Amigas. 

The keyboard has the additional task of resetting the computer on the command of the user. The 
user initiates Reset Warning by simultaneously pressing the Ctrl key and the two Amiga keys. 

The keyboard responds to this input by syncing up any pending transmit operations. The 
keyboard then sends a "reset warning" to the Amiga. This action alerts the Amiga software to 
finish up any pending operations (such as disk DMA) and prepare for reset. 

A specific sequence of operations ensure that the Amiga is in a state where it can respond to the 
reset warning. The keyboard sends two actual "reset warning" keycodes. The Amiga must 
handshake to the first code like any normal keystroke, else the keyboard goes directly to Hard 
Reset. On the second "reset warning" code the Amiga must drive KDAT low within 250 
milliseconds, else the keyboard goes directly to Hard Reset. If the all the tests are passed, the 
Amiga has 10 full seconds to do emergency processing. When the Amiga pulls KDA T high 
again, the keyboard finally asserts hard reset. 

If the Amiga fails to pull KDAT high within 10 seconds, Hard Reset is asserted anyway. 

Hard Reset 

About Hard Reset. Hard Reset happens after Reset Warning. Valid for all 
keyboards except the Amiga 500. 

The keyboard Hard Resets the Amiga by pulling KCLK low and starting a 500 millisecond timer. 
When one or more of the keys is released and 500 milliseconds have passed, the keyboard will 
release KCLK. 500 milliseconds is the minimum time KCLK must be held low. The maximum 
KCLK time depends on how long the user holds the three reset keys down. Circuitry on the 
Amiga motherboard detects the 500 millisecond KCLK pulse. 

After releasing KCLK, the keyboard jumps to its start-up code (internal RESET). This will 
initialize the keyboard in the same way as cold power-on. 

NOTE: The keyboard must resend the ''powerup key stream''! 
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Matrix Table 

Row 5 Row 4 Row 3 Row 2 Row 1 Row 0 
Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) 

+-------+-------+-------+-------+-------+-------+ 
15 I (spare) I (spare) I (spare) I (spare) I (spare) I (spare) I 

(PD. 7) I I I I I I I 
I (OE) I (lC) I (2C) I (47) I (48) I (49) I 
+-------+-------+-------+-------+-------+-------+ 

14 I * I<SHIFT>I CAPS I TAB I I ESC I 
(PD. 6) I note 1 I note 2 I LOCK I I I I 

I (50) I (30) I (62) I (42) I (00) I (45) I 
+-------+-------+-------+-------+-------+-------+ 

13 I + I Z I A I Q I I ( I 
(P0.5) lnote 1 I I I I 1 lnote 1 I 

I (5E) I (31) I (20) I (10) I (01) I (SA) I 
+-------+-------+-------+-------+-------+-------+ 

12 I 9 I X I s I W I @ Fl I 
(PO. 4) I note 3 I I I I 2 I 

I (3F) I (32) I (21) I (11) I (02) (50) I 
+-------+-------+-------+-------+-------+-------+ 

11 I 6 I c I o I E I t I F2 I 
(PO. 3) I note 3 I I I I 3 I I 

I (2F) I (33) I (22) I (12) I (03) I (51) I 
+-------+-------+-------+-------+-------+-------+ 

10 I 3 I V I F I R I S I F3 I 
(PO. 2) I note 3 I I I I 4 I I 

I (lF) I (34) I (23) I (13) I (04) I (52) I 
+-------+-------+-------+-------+-------+-------+ 

9 I I B I G I T I % I F4 I 
(PO. 1) I note 3 I I I I 5 I I 

I (3C) I (35) I (24) I (14) I (05) I (53) I 
+-------+-------+-------+-------+-------+-------+ 

8 I 8 I N I H I Y I I FS I 
(PO. 0) I note 3 I I I I 6 I I 

I (3E) I (36) I (25) I (15) I (06) I (54) I 
+-------+-------+-------+-------+-------+-------+ 

7 15 I M I J I u I & I) I 
(PC.7) lnote 3 I I I I 7 lnote 1 I 

I (2E) I (37) I (26) I (16) I (07) I (5B) I 
+-------+-------+-------+-------+-------+-------+ 

6 I 2 I < I K I I I * I F6 I 
(PC . 6) I note 3 I I I I 8 I I 

I (lE) I (38) I (27) I (17) I (08) I (55) I 
+-------+-------+-------+-------+-------+-------+ 

5 I ENTER I > I L I 0 I ( I I I 
(PC. 5) I note 3 I I I I 9 I note 1 I 

I (43) I (39) I (28) I (18) I (09) I (5C) I 
+-------+-------+-------+-------+-------+-------+ 
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Row 5 Row 4 Row 3 Row 2 Row 1 Row 0 
Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) 

+-------+-------+-------+-------+-------+-------+ 
4 I 7 I ? I I P I ) I F7 I 

(PC. 4) I note 3 I I I I I 0 I I 
I (3D) I (3A) I (29) I (19) I (OA) I (56) I 
+-------+-------+-------+-------+-------+-------+ 

3 I 4 I (spare) I I { I I FS I 
(PC. 3) I note 3 I I I [ I I I 

I (2D) I (3B) I (2A) I (lA) I (OB) I (57) I 
+-------+-------+-------+-------+-------+-------+ 

2 I 1 I SPACE I <RET> I } I + I F9 I 
(PC.2) lnote 3 I BAR lnote 2 I ] I I I 

I (lD) I (40) I (2B) I (lB) I (OC) I (58) I 
+-------+-------+-------+-------+-------+-------+ 

1 I 0 I BACK I DEL IRETURN I I I FlO I 
(PC. 1) I note 3 I SPACE I I I \ I I 

I (OF) I (41) I (46) I (44) I (OD) I (59) I 
+-------+-------+-------+-------+-------+-------+ 

0 I I CURS I CURS I CURS I CURS I HELP I 
(PC.O) lnote 3 I DOWN I RIGHT I LEFT I UP I I 

I (4A) I (4D) I (4E) I (4F) I (4C) I (SF) I 
+-------+-------+-------+-------+-------+-------+ 

note 1: A500, A2000 and A3000 keyboards only (numeric pad 
note 2: International keyboards only (these keys are cutouts of the 

larger key on the US ASCII version.) The key that generates 
$30 is cut out of the left Shift key. Key $2B is cut out of 
return. These keys are labeled with country-specific markings. 

note 3: Numeric pad. 

The following table shows which keys are independently readable. These keys never generate 
ghosts or phantoms. 

(Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) (Bit 1) (Bit 0) 
+-------+-------+-------+-------+-------+-------+-------+ 
I LEFT I LEFT I LEFT I CTRL I RIGHT I RIGHT I RIGHT I 
I AMIGA I ALT I SHIFT I I AMIGA I ALT I SHIFT I 
I (66) I (64) I (60) I (63) I (67) I (65) I (61) I 
+-------+-------+-------+-------+-------+-------+-------+ 

Appendix G 363 



~~--~---------------------------------------------------

Special Codes 

The special codes that the keyboard uses to communicate with the main unit are summarized here. 

About the special codes. The special codes are 8-bit numbers; there is no up/down 
flag associated with them. However, the transmission bit order is the same as 
previously described. 

Code Name Meaning 

78 Reset warning. Ctrl-Amiga-Amiga has been hit -
computer will be reset in 10 seconds. (see text) 

F9 Last key code bad, next code is the same code 
retransmitted (used when keyboard and main unit 
get out of sync) . 

FA Keyboard output buffer overflow 
FB Unused (was controller failure) 
FC Keyboard selftest failed 
FD Initiate power-up key stream (keys pressed at powerup) 
FE Terminate power-up key stream 
FF Unused (was interrupt) 
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appendix H 
EXTERNAL DISK CONNECTOR 
INTERFACE 

General 

The 23-pin female connector at the rear of the main computer unit is used to interface to and 
control devices that generate and receive MFM data. This interface can be reached either as a 
resource or under the control of a driver. The following pages describe the interface in both 
cases. 

Summary Table 
Pin# Name Note 

1 RDY- 1/0 ID and ready 
2 DKRD- I MFM input 
3 GRND G 
4 GRND G 
5 GRND G 
6 GRND G 
7 GRND G 
8 MTRXD- 0 Motor control. 
9 SEL2B- 0* Select drive 2 
10 DRESB- 0 Reset 
11 CHNG- 1/0 Disk changed 
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12 +5v PWR 540 rnA average 870 rnA surge 
13 SIDEB- 0 Side 1 iflow 
14 WRPRO- 1/0 Write protect 
15 TKO- I/0 Track 0 
16 DKWEB- 0 Write gate 
17 DKWDB- 0 Write data 
18 STEPB- 0 Step 
19 DIRB 0 Direction (high is out) 
20 SEL3B- 0* Select drive 3 
21 SELlB- 0* Select drive 1 
22 INDEX- 1/0 Index 
23 +12v PWR 120 rnA average 370 rnA surge 

Key to Class: 

G ground, note connector shield grounded. 

input pulled up to 5v by 1 K ohm. 

1/0 input in driver, but bidirectional input ( 1 k pull up) 

0 output pulled though 1 K to 5v 

0* output, separates resources. 

PWR available for external use, but currently used up by external drive. 

Signals When Driving a Disk 

The following describes the interface under driver control. 

SELlB-, SEL2B-, SEL3B-

TKO-

ROY-

Selcct lines for the three external disk drives active low. 

A selected drive pulls this signal low whenever its read-write head is on track 00. 

When a disk drive's motor is on, this line indicates the selected disk is installed and 
rotating at speed. The driver ignores this signal. When the motor is off this is used as a ID 
data line. See below. 

368 Amiga Hardware Reference Manual 



WPRO- (Pin #14) 

A selected drive pulls this signal low whenever it has a write-protected diskette installed. 

INDEX- (Pin #22) 

A selected drive pulses this signal low once for each revolution of its motor. 

SIDEB- (Pin #13) 

The system drives this signal to all disk drives-low for side 1, high for side 0. 

STEPB- (Pin #18) 

Pulsed to step the selected drive's head. 

DIRB (Pin #19) 

The system drives this signal high or low to tell the selected drive which way to step when 
the STEPB- pulse arrives. Low means step in (to higher-numbered track); high means step 
out. 

DKRD- (Pin #2) 

A selected drive will put out read data on this line. 

DKWDB- (Pin #17) 

The system drives write data to all disks via this signal. The data is only written when 
DKWEB- is active (low). Data is written only to selected drives. 

DKWEB- (Pin #16) 

This signal causes a selected drive to start writing data (provided by DKWDB-) onto the 
disk. 

CHNG- (Pin #11) 

A selected drive will drive this signal low whenever its internal ''disk change'' latch is set. 
This latch is set when the drive is first powered on, or whenever there is no diskette in the 
drive. To reset the latch, the system must select the drive, and step the head. Of course, the 
latch will not reset if there is no diskette installed. 

MTRXD- (Pin #8) 

This is the motor control line for all four disk drives. When the system wants to tum on a 
disk drive motor, it first deselects the drive (if selected), pulls MTRXD- low, and selects 
the drive. To tum the motor off, the system deselects the drive, pulls MTRXD- high, and 
selects the drive. The system will always set MTRXD- at least 1.4 microseconds before it 
selects the drive, and will not change MTRXD- for at least 1.4 microseconds after selecting 
the drive. All external drives must have logic equivalent to a D ftip-flop, whose D input is 
the MTRXD- signal, and whose clock input is activated by the off-to-on (high-to-low) 
transition of its SELxB- signal. As noted above, both the setup and hold times of 
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MTRXD- with respect to SELxB- will always be at least 1.4 microseconds. The output of 
this flip-flop controls the disk drive motor. Thus, the system can control all four motors 
using only one signal on the cable (MTRXD-). 

DRESB- (Pin #10) 

This signal is a buffered version of the system reset signal. Three things can make it go 
active (low): 

o System power-up (DRESB- will go low for approximately one second); 

o System CPU executes a RESET instruction (DRESB- will go low for approximately 
17 microseconds); 

o Hard reset from keyboard (lasts as long as keyboard reset is held down). 

External disk drives should respond to DRESB- by shutting off their motor flip-flops and 
write protecting themselves. 

A level of 3.75v or below on the 5v+ requires external disks to write-protect and reset the motor 
on line. 

Device I.D. 

This interface supports a method of establishing the type of disk(s) attached. The I. D. sequence is 
as follows. 

1. Drive MTRXD- low: Tum on the disk drive motor. 

2. Drive SELxB- low: Activate drive select x, where x is the number of the selected drive. 

3. Drive SELxB- high: Deactivate drive select x .. 

4. Drive MTRXD- high: Tum off disk drive motor. 

5. Drive SELxB- low: Activate drive select x. 

6. Drive SELxB- high: Deactivate drive select x. 

7. Drive SELxB-low: Activate drive select x. 

8. Read and save state ofRDY. 

9. Drive SELxB- high: Deactivate drive select x. 
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Repeat steps 7 through 9, 31 more times for a total of 32 iterations, in order to read 32 bits of 
data. The most significant bit is read first. 

Steps 1 through 4 in the algorithm above tum on and off the disk drive motor. This initializes the 
serial shift register. After initialization, the SELxB signal is driven (first active then) inactive as 
in steps 5 and 6. Keep in mind that the SELxB signal is active-low. 

Steps 7, 8 and 9 form a loop where (7) the SELxB signal is driven active (low), (8) the serial 
input data is read on RDY (pin 1) and (9) the SELxB signal is again driven high (inactive). This 
loop is performed 32 times, once for each of the bits in the input stream that comprise the device 
I. D. 

Convert the 32 values ofRDY- into a two 16-bit word. The most significant bit is the first value 
and so on. This 32-bit quantity is the device I.D .. 

The following I.D.s are defined: 

0000 0000 0000 0000 0000 0000 0000 0000 
1111 1111 1111 1111 1111 1111 1111 1111 
1010 1010 1010 1010 1010 1010 1010 1010 
0101 0101 0101 0101 0101 0101 0101 0101 

1 ()()() 0000 0000 0000 1000 0000 0000 0000 
0111 1111 1111 1111 0111 1111 1111 1111 
0000 1111 xxxx xxxx 0000 1111 xxxx xxxx 
1111 0000 xxxx xxxx 1111 0000 xxxx xxxx 
xxxx 0000 0000 0000 xxxx 0000 0000 0000 
xxxx 1111 1111 1111 xxxx 1111 1111 1111 
0011 0011 0011 0011 0011 0011 0011 0011 
1100 1100 1100 1100 1100 1100 1100 1100 

Reserved ($0000 0000) 
Amiga standard 3.25($FFFF FFFF) 
Reserved ($AAAA AAAA) 
48 TPI double-density, 
double-sided ($5555 5555) 
Reserved ($8000 8000) 
Reserved ($7FFF 7FFF) 
Available for users ($0Fxx OFxx) 
Extension reserved ($F0xx FOxx) 
Reserved ($x000 xOOO) 
Reserved ($x000 xOOO) 
Reserved ($3333 3333) 
Reserved ($CCCC CCCC) 
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appendix I 
HARDWARE EXAMPLE 
INCLUDE FILE 

This appendix contains an include file that maps the hardware register names, given in Appendix 
A and Appendix B, to names that can be resolved by the standard include files. Use of these 
names in code sections of this manual places the emphasis on what the code is doing, rather than 
getting bogged down in include file names. 

All code examples in this manual reference the names given in this file. 

IFND 
HARDWARE HW EXAMPLES I SET 

HARDWARE HW EXAMPLES I 
1 

** 
** 
** 
** 
** 
** 

Filename: hardware/hw_examples.i 
$Release: 1.3 $ 

(C) Copyright 1985,1986,1987,1988,1989 Commodore-Amiga, Inc. 
All Rights Reserved 

** 
******************************************************************************* 

IFND HARDWARE CUSTOM I 
INCLUDE "hardware/custom.i" 
ENDC 

******************************************************************************* 

* 
* 
* 
* 
* 
* 

This include file is designed to be used in conjunction with the hardware 
manual examples. This file defines the register names based on the 
hardware/custom.i definition file. There is no C-Language version of this 
file. 

******************************************************************************* 
* * This instruction for the copper will cause it to wait forever since 
* the wait command described in it will never happen. 

* 
COPPER HALT equ $FFFFFFFE 
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* 
******************************************************************************* 
* 
* This is the offset in the 680x0 address space to the custom chip registers 
* It is the same as custom when linking with AMIGA.lib 

* 
CUSTOM equ $DFFOOO 

* 
* Various control registers 

* 
DMACONR 
VPOSR 
VHPOSR 
JOYODAT 
JOYlDAT 
CLXDAT 
ADKCONR 
POTODAT 
POTlDAT 
POTINP 
SERDATR 
INTENAR 
INTREQR 
REFPTR 
VPOSW 
VHPOSW 
SERDAT 
SERPER 
POT GO 
JOYTEST 
STREQU 
STRVBL 
STRHOR 
STRLONG 
DIWSTRT 
DIWSTOP 
DDFSTRT 
DDFSTOP 
DMACON 
INTENA 
INTREQ 

* 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

* Disk control registers 
* 
DSKBYTR equ 
DSKPT equ 
DSKPTH equ 
DSKPTL equ 
DSKLEN equ 
DSKDAT equ 
DSKSYNC equ 
* 
* Blitter registers 
* 
BLTCONO equ 
BLTCONl equ 
BLTAFWM equ 
BLTALWM equ 
BLTCPT equ 
BLTCPTH equ 
BLTCPTL equ 

dmaconr 
vposr 
vhposr 
joyOdat 
joyldat 
clxdat 
adkconr 
potOdat 
potldat 
potinp 
serdatr 
intenar 
intreqr 
refptr 
vposw 
vhposw 
serdat 
serper 
pot go 
joytest 
strequ 
strvbl 
strhor 
strlong 
diwstrt 
diwstop 
ddfstrt 
ddfstop 
dmacon 
intena 
intreq 

dskbytr 
dskpt 
dskpt 
dskpt+$02 
dsklen 
dskdat 
dsksync 

bltconO 
bltconl 
bltafwm 
bltalwm 
bltcpt 
bltcpt 
bltcpt+$02 
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BLTBPT equ bltbpt 
BLTBPTH equ bltbpt 
BLTBPTL equ bltbpt+$02 
BLTAPT equ bltapt " 
BLTAPTH equ bltapt 
BLTAPTL equ bltapt+$02 
BLTDPT equ bltdpt 
BLTDPTH equ bltdpt 
BLTDPTL equ bltdpt+$02 
BLTSIZE equ bltsize 
BLTCMOD equ bltcmod 
BLTBMOD equ bltbmod 
BLTAMOD equ bltamod 
BLTDMOD equ bltdmod 
BLTCDAT equ bltcdat 
BLTBDAT equ bltbdat 
BLTADAT equ bltadat 
BLTDDAT equ bltddat 

* * Copper control registers 

* 
COP CON equ copcon Just capitalization ... 
COP INS equ cop ins 
COPJMPl equ copjmpl 
COPJMP2 equ copjmp2 
COPlLC equ copllc " 
COPlLCH equ copllc 
COPlLCL equ copllc+$02 
COP2LC equ cop2lc 
COP2LCH equ cop2lc 
COP2LCL equ cop2lc+$02 

* 
* * Audio channel registers 

* 
ADKCON equ adkcon Just capitalization ... 

AUDOLC equ au dO 
AUDOLCH equ au dO 
AUDOLCL equ aud0+$02 
AUDOLEN equ aud0+$04 
AUDOPER equ aud0+$06 
AUDOVOL equ aud0+$08 
AUDODAT equ aud0+$0A 

AUDlLC equ audl 
AUDlLCH equ audl 
AUDlLCL equ audl+$02 
AUDlLEN equ audl+$04 
AUDlPER equ audl+$06 
AUDlVOL equ audl+$08 
AUDlDAT equ audl+$0A 

AUD2LC equ aud2 
AUD2LCH equ aud2 
AUD2LCL equ aud2+$02 
AUD2LEN equ aud2+$04 
AUD2PER equ aud2+$06 
AUD2VOL equ aud2+$08 
AUD2DAT equ aud2+$0A 
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AUD3LC equ aud3 
AUD3LCH equ aud3 
AUD3LCL equ aud3+$02 
AUD3LEN equ aud3+$04 
AUD3PER equ aud3+$06 
AUD3VOL equ aud3+$08 
AUD3DAT equ aud3+$0A 

* 
* 
* The bitplane registers 

* 
BPL1PT equ bplpt+$00 
BPL1PTH equ bplpt+$00 
BPL1PTL equ bplpt+$02 
BPL2PT equ bplpt+$04 
BPL2PTH equ bplpt+$04 
BPL2PTL equ bplpt+$06 
BPL3PT equ bplpt+$08 
BPL3PTH equ bplpt+$08 
BPL3PTL equ bplpt+$0A 
BPL4PT equ bplpt+$0C 
BPL4PTH equ bplpt+$0C 
BPL4PTL equ bplpt+$0E 
BPLSPT equ bplpt+$10 
BPLSPTH equ bplpt+$10 
BPLSPTL equ bplpt+$12 
BPL6PT equ bplpt+$14 
BPL6PTH equ bplpt+$14 
BPL6PTL equ bplpt+$16 

BPLCONO equ bplconO Just capitalization ... 
BPLCON1 equ bplcon1 " 
BPLCON2 equ bplcon2 
BPL1MOD equ bpllmod 
BPL2MOD equ bpl2mod 

DPL1DATA equ bpldat+$00 
DPL2DATA equ bpldat+$02 
DPL3DATA equ bpldat+$04 
DPL4DATA equ bpldat+$06 
DPLSDATA equ bpldat+$08 
DPL6DATA equ bpldat+$0A 

* 
* 
* Sprite control registers 

* 
SPROPT equ sprpt+$00 
SPROPTH equ SPROPT+$00 
SPROPTL equ SPROPT+$02 
SPR1PT equ sprpt+$04 
SPR1PTH equ SPR1PT+$00 
SPR1PTL equ SPR1PT+$02 
SPR2PT equ sprpt+$08 
SPR2PTH equ SPR2PT+$00 
SPR2PTL equ SPR2PT+$02 
SPR3PT equ sprpt+$0C 
SPR3PTH equ SPR3PT+$00 
SPR3PTL equ SPR3PT+$02 
SPR4PT equ sprpt+$10 
SPR4PTH equ SPR4PT+$00 
SPR4PTL equ SPR4PT+$02 
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SPRSPT equ sprpt+$14 
SPRSPTH equ SPRSPT+$00 
SPRSPTL equ SPRSPT+$02 
SPR6PT equ sprpt+$18 
SPR6PTH equ SPR6PT+$00 
SPR6PTL equ SPR6PT+$02 
SPR7PT equ sprpt+$1C 
SPR7PTH equ SPR7PT+$00 
SPR7PTL equ SPR7PT+$02 

Note: SPRxDATB is defined as being +$06 from SPRxPOS. 
sd datab should be defined as $06, however, in the 1.3 assembler 
include file hardware/custom.i it is incorrectly defined as $08. 

SPROPOS 
SPROCTL 
SPRODATA 
SPRODATB 

SPRlPOS 
SPRlCTL 
SPR1DATA 
SPR1DATB 

SPR2POS 
SPR2CTL 
SPR2DATA 
SPR2DATB 

SPR3POS 
SPR3CTL 
SPR3DATA 
SPR3DATB 

SPR4POS 
SPR4CTL 
SPR4DATA 
SPR4DATB 

SPRSPOS 
SPRSCTL 
SPRSDATA 
SPRSDATB 

SPR6POS 
SPR6CTL 
SPR6DATA 
SPR6DATB 

SPR7POS 
SPR7CTL 
SPR7DATA 
SPR7DATB 

* 

equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 

*Color registers ... 

* 
COLOROO 
COLOR01 
COLOR02 
COLOR03 
COLOR04 

equ 
equ 
equ 
equ 
equ 

spr+$00 
SPROPOS+sd ctl 
SPROPOS+sd dataa 
SPROPOS+$06 should use sd datab 

spr+$08 
SPR1POS+sd ctl 
SPR1POS+sd dataa 
SPR1POS+$0G should use sd datab 

spr+$10 
SPR2POS+sd ctl 
SPR2POS+sd dataa 
SPR2POS+$06 should use sd datab 

spr+$18 
SPR3POS+sd ctl 
SPR3POS+sd dataa 
SPR3POS+$06 should use sd datab 

spr+$20 
SPR4POS+sd ctl 
SPR4POS+sd dataa 
SPR4POS+$0G should use sd datab 

spr+$28 
SPRSPOS+sd ctl 
SPRSPOS+sd dataa 
SPRSPOS+$06 should use sd datab 

spr+$30 
SPR6POS+sd ctl 
SPR6POS+sd dataa 
SPR6POS+$06 should use sd datab 

spr+$38 
SPR7POS+sd ctl 
SPR7POS+sd dataa 
SPR7POS+$0G should use sd datab 

color+$00 
color+$02 
color+$04 
color+$06 
color+$08 
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COLOR OS equ color+$0A 
COLOR06 equ color+$0C 
COLOR07 equ color+$0E 
COLOR08 equ color+$10 
COLOR09 equ color+$12 
COLOR10 equ color+$14 
COLORll equ color+$16 
COLOR12 equ color+$18 
COLOR13 equ color+$1A 
COLOR14 equ color+$1C 
COLOR15 equ color+$1E 
COLOR16 equ color+$20 
COLOR17 equ color+$22 
COLOR18 equ color+$24 
COLOR19 equ color+$26 
COLOR20 equ color+$28 
COLOR21 equ color+$2A 
COLOR22 equ color+$2C 
COLOR23 equ color+$2E 
COLOR24 equ color+$30 
COLOR25 equ color+$32 
COLOR26 equ color+$34 
COLOR27 equ color+$36 
COLOR28 equ color+$38 
COLOR29 equ color+$3A 
COLOR30 equ color+$3C 
COLOR31 equ color+$3E 

******************************************************************************* 
** 
** 

ENDC HARDWARE HW EXAMPLES I 
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appendix J 
CUSTOM CHIP PIN 
ALLOCATION LIST 

This section gives the pin assignments used by the Amiga's custom chip set. 

NOTE: * Means an active low signal. 

ORIGINAL AGNUS PIN ASSIGNMENT 

PIN # DESIGNATION FUNCTION DEFINITION 
----------- ------------------ ----------

01-09 D8-DO Data bus lines 8 to 0 I/0 
10 vee +5 Volt I 
11 RES* System reset I 
12 INT3* Interrupt level 3 0 
13 DMAL DMA request line I 
14 BLS* Slitter slowdown I 
15 DBR* Data bus request 0 
16 ARW* Agnus RAM write 0 
17-24 RGA8-RGA1 Register address bus 8-1 I/0 
25 CCK Color clock I 
26 CCKQ Color clock delay I 
27 vss Ground I 
28-36 DRAO-DRA8 DRAM address bus 0 to 8 0 
37 LP* Light pen input I 
38 VSY* Vertical sync I/0 
39 CSY* Composite sync 0 
40 HSY* Horizontal sync I/0 
41 vss Ground I 
42-48 D15-D9 Data bus lines 15 to 9 I/0 
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DENISE PIN ASSIGNMENT 
---------------------

PIN # DESIGNATION FUNCTION DEFINITION 
----------- ------------------ ----------

01-07 D6-DO Data bus lines 6 to 0 I/0 
08 M1H Mouse 1 horizontal I 
09 MOH Mouse 0 horizontal I 
10-17 RGA8-RGA1 Register address bus 8-1 I 
18 BURST* Color burst 0 
19 vee +5 Volt I 
20-23 RO-R3 Video red bits 0-3 0 
24-27 BO-B3 Video blue bits 0-3 0 
28-31 GO-G3 Video green bits 0-3 0 
32 /CSYNC Composite sync I 
33 ZD* Background indicator 0 
34 N/C Not connected N/C (old Denise) 

CDAC CDAC clock I (ECS Denise) 
35 7M 7.15909 MHZ I 
36 CCK Color clock I 
37 vss Ground I 
38 MOV Mouse 0 vertical I 
39 M1V Mouse 1 vertical I 
40-48 D15-D7 Data bus lines 15 to 7 I/0 

PAULA PIN ASSIGNMENT 
--------------------

PIN # DESIGNATION FUNCTION DEFINITION 
----------- ------------------ ----------

01-07 D8-D2 Data bus lines 8 to 2 I/0 
08 VSS Ground I 
09-10 D1-DO Data bus lines 1 and 0 I/0 
11 RES* System reset I 
12 DMAL DMA request line 0 
13-15 IPLO*-IPL2 Interrupt lines 0-2 0 
16 INT2* Interrupt level 2 I 
17 INT3* Interrupt level 3 I 
18 INT6* Interrupt level 6 I 
19-26 RGA8-RGA1 Register address bus 8-1 I 
27 vee +5 Volt I 
28 CCK Color clock I 
29 CCKQ Color clock delay I 
30 AUDB Right audio 0 
31 AUDA Left audio 0 
32 POT OX Pot ox I/0 
33 POTOY Pot OY I/0 
34 VSSANA Analog ground I 
35 POT1X Pot 1X I/0 
36 POT1Y Pot 1Y I/0 
37 DKRD* Disk read data I 
38 DKWD* Disk write data 0 
39 DKWE Disk write enable 0 
40 TXD Serial transmit data 0 
41 RXD Serial receive data I 
42-48 D15-D9 Data bus lines 15 to 9 I/0 
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FAT AGNUS PIN ASSIGNMENT 

PIN # DESIGNATION FUNCTION DEFINITION 
----------- ------------------ ----------

01-14 RD15-RD2 Register bus lines 15 to 2 I/0 
17 INT3* Blitter ready interrupt 0 
18 DMAL Request audio/disk DMA I 
18 RD1 Register bus line 1 I/0 
18 RST* Reset I 
19 BLS* Blitter slowdown I 
20 DBR* Data bus request 0 
21 RRW DRAM Write/Read 0 
22 PRW Processor Write/Read I 
23 RGEN* RG Enable I 
24 AS* Address Strobe I 
25 RAMEN* RAM Enable I 
26-33 RGA8-RGA1 Register address bus 8-1 0 
34 28MHZ Master clock I 
35 XCLK Alternate master clock I 
36 XCLKEN* Master clock enable I 
37 CDAC* Inverted shifted 7MHZ elk 0 
38 7MHZ 28MHZ elk divided by four 0 
39 CCKQ Color clock delay 0 
40 CCK Color clock 0 
41 TEST Test - access registers I (old Fat Agnus) 

NTSC/PAL Select video environment I (ECS Fat Agnus) 
43-51 MAO-MAS Output bus lines 0 to 8 0 
52 LDS* Lower data strobe I 
53 UDS* Upper data strobe I 
54 CASL* Column addr strobe lower 0 
55 CASU* Column addr strobe upper 0 
56 RAS1* Row address strobe one 0 
57 RASO* Row address strobe zero 0 
59-77 A19-A1 Address bus lines 19 to 1 I 
78 LP* Light pen 0 
79 VSY* Vertical synch I/0 
80 CSY* Composite video synch 0 
81 HSY* Horizontal synch I/0 
84 RDO Register bus line 0 I/0 
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appendix K 
ZORRO EXPANSION BUS 

This appendix describes the complete Zorro III bus, first implemented in the Amiga 3000 
computer. The Zorro III bus is a perfonnance 32-bit expansion bus that is also upward 
compatible with the Zorro II bus (Amiga 2000 expansion bus). The main intent of the Zorro III 
bus is to allow fast 32-bit peripherals and memory devices to be added to a high perfonnance 
Amiga, such as the Amiga 3000, while at the same time allowing standard Zorro II devices to be 
used wherever they make sense in such a system. This compatibility also insures that the Amiga 
3000 will have a number of hardware and software compatible expansion devices available upon 
introduction, and that Amiga 2000 owners will be able to take their expansion card investment 
along with them should they migrate to a higher perfonnance Amiga. 

INTENDED AUDIENCE 

This appendix was written primarily for hardware engineers interested in designing Plug-In Cards 
for the Zorro III expansion bus. While it may occasionally be of use to software engineers 
interfacing to such Zorro III PICs, Amiga system software provides an interface layer 
(expansion.library in the Amiga OS) which manages the needs of most card-level software. A 
reasonable level of microcomputer knowledge is prerequisite to get much meaning out of these 
pages. A good understanding of the Motorola 680x0 processors will be quite useful, as will be an 
understanding of the Zorro II expansion bus used on earlier Amiga computers such as the Amiga 
2000. 

AMIGA BUS HISTORY 

The original Amiga computer, the Amiga 1000, was introduced in 1985. While it had no built-in 
standard for expandability, the capability for some fonn of expansion was considered extremely 
important; personal computer history up to that date had shown several times that an open 
hardware expansion capability was often critical to a personal computer's success and to its 
capability to adapt to new or unusual applications. The A 1000 was designed with a connector 

Zorro Expansion Bus 383 



giving access to the internal 68000 bus and a few other system signals. Shortly after introduction, 
the formal expansion specification for a card chassis that would connect to the A 1000 was 
published. This bus became commonly known as the Zorro bus~ While the backplane 
specification was very easy to implement with 1985 PAL technology based on the existing 68000 
signals, the specification did incorporate a number of advanced features. Far more sophisticated 
than the IBM-XT/AT and Apple II buses in common use at the time, the Zorro bus allowed any 
slot to master the bus, and it linked expansion cards with the system software. Addressing 
jumpers were eliminated, the card's address instead being assigned by software, and cards could 
easily be identified by software and linked with appropriate driver programs, all with a minimum 
of user intervention. 

With the introduction of the Amiga 2000 system, the Zorro bus was changed slightly. Additional 
discrete interrupt lines were added, replacing the encoded lines that couldn't easily be used by any 
bus resident device. As it turns out, these additional encoded lines weren't any more useful, as 
they couldn't be disabled by software, and as such, they're no longer considered an official part of 
the Zorro II bus specification (they are supported as part of Zorro III). Finally, the form factor 
was changed to match that of the IBM PC-AT card, acting as both a cost reduction and allowing 
the Zorro II bus to offer the PC-AT bus as one optional secondary bus extension. This modified 
specification became commonly known as the Zorro II bus, and it's the Amiga bus standard that's 
been in use for most of the Amiga's life. And it's a bus standard that will continue to be 
important. 

THE ZORRO Ill RATIONALE 

With the creation of the Amiga 3000, it became clear that the Zorro II bus would not be adequate 
to support all of that system's needs. The Zorro II bus would continue to be quite useful, as the 
current Amiga expansion standard, and so it would have to be supported. A few unused pins on 
the Zorro II bus and the option of a bus controller custom LSI, gave rise to the Zorro III design, 
which supports the following features: 

o Compatibility with all Zorro II devices. 
o Full 32-bit address path for new devices. 
o Full 32-bit data path for new devices. 
o Bus speed independent of host system CPU speed. 
o High speed bus block transfer mode. 
o Bus locking for multiprocessor support. 
o Cache disable for simple cache support. 
o Fair arbitration for all bus masters. 
o Cycle-by-cycle bus arbitration mode. 
o High speed interrupt mode. 

1 The original "Zorro" name comes from the code name of one of the AlOOO prototype boards. The "Zorro" 
board was the one that followed the "Lorraine," and was the board in the works when much of the expansion 
specifications were worked up. Since everyone uses the "Zorro" name, and no one's suggested a better name, we've 
stuck with it. 
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Some of the advanced features, such as burst modes, are designed in such a way as to make them 
optional; both master and slave arbitrate for them. In addition, it is possible with a bit of extra 
cleverness, to design a card that automatically configures itself for either Zorro II or Zorro III 
operation, depending on the status of a sensing pin on the bus. 

The Zorro III bus is physically based on the same 100-pin single piece connector as the Zorro II 
bus. While some bus signals remain unchanged throughout bus operation, other signals change 
based on the specific bus mode in effect at any time. The bus is geographically mapped into three 
main sections: Zorro II Memory Space, Zorro II 1/0 Space, and Zorro Ill Space. The memory 
map in Figure K-1 shows how these three spaces are mapped in the A3000 system. The Zorro II 
space is limited to a 16 megabyte region, and since it has DMA access by convention to chip 
memory, it is in the original 68000 memory map for any bus implementation. The Zorro III 
space can physically be anywhere in 32-bit memory. 

The Zorro III bus functions in one of two different major modes, depending on the memory 
address on the bus. All bus cycles start with a 32-bit address, since the full 32-bit address is 
required for proper cycle typing. If the address is determined to be in Zorro II space, a Zorro II 
compatible cycle is initiated, and all responding slave devices are expected to be Zorro II 
compatible 16-bit PICs. Should a Zorro III address be detected, the cycle completes when a 
Zorro III slave responds or the bus times out, as driven by the motherboard logic. It is very 
important that no Zorro III device respond in Zorro III mode to a Zorro II bus access; the two 
types of cycles make very different use of many of the expansion bus lines, and serious buffer 
contention can result if the cycle types are somehow mixed up. The Zorro III bus of course 
started with the Zorro II bus as its necessary base, but the Zorro III bus mechanisms were 
designed as much as possible to solve specific needs for high end Amiga systems, rather than 
extend any particular Zorro II philosophy when that philosophy no longer made any sense. There 
are actually several variations of the basic Zorro III cycle, though they all work on the same 
principles. The variations are for optimization of cycle times and for service of interrupt vectors. 
But all of this in due time. 
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Zarro II Compatibility 

The A3000 bus is a rather extensive superset of the A2000 bus design. The compatibility is based 
on distinct bus modes, rather than a simple extension to the existing bus mechanisms. Through 
the use of an integrated bus controller (the Fat Buster chip), the expansion bus configures itself 
differently for the 16-bit A2000-compatible Zorro II modes than the 32-bit Zorro III modes. As a 
result, while there are still only 100 pins on the expansion bus, some pins change function 
considerably depending on the bus activity that's currently in progress. While the Zorro II modes 
of the Zorro III bus arc as compatible as possible with the Zorro II bus specification (especially 
the A2000 implementation of this specification), there arc some small differences between the 
two expansion buses. 

Aside from these differences, in general, it's important to understand the Zorro II bus in order to 
understand the Zorro III bus. The general features of the A3000 bus, like autoconfiguration, the 
master-slave bus architecture, and the physical attributes come from the Zorro II expansion bus. 
Other features of the Zorro III bus address shortcomings of the Zorro II architecture, but Zorro II 
has a hand in how some of these shortcomings are solved under Zorro III. Those with a full 
understanding of the Zorro II bus will mainly be concerned with the possible bus 
incompatibilities listed here. 

CHANGES FROM THE A2000 BUS 

While much effort has been made to assure that the Zorro II mode of the A3000 bus is as 
compatible as possible with the A2000 bus, there are a few points to consider here. Primarily, the 
A3000's Zorro II modes are driven with a state machine that emulates the 68000 bus protocol. 
This emulation must be based on the published Motorola specifications detailing 68000 bus 
behavior. While this has the interesting effect of changing the Zorro II bus from CPUdependent to 
CPU independent, there's some margin for trouble. Zorro II PICs also designed to these 
specifications should have no trouble in the A3000 bus in most cases. However, anything 
designed based on observed 68000 behavior rather than documented 68000 operation is at serious 
risk of failing in an A3000 bus, as one might expect. There are also actual documented 
differences, which are listed below. 

6800 Bus Interface 

A major difference between the A3000 expansion bus in Zorro II mode and the A2000 bus is the 
absence of the signals NPA and NMA, which comprise the 6800/6502 peripheral support 
mechanism that's part of the 68000 bus interface. This mechanism was never a supported part of 
the Zorro II specification, however, and it should not be used by any PIC. Any Zorro II PIC that 
depends on NPA or NMA will not work in the A3000 bus. It was, in fact, impossible to legally 
use this on the A2000 bus. TheE clock is, however, supported on the Zorro III bus, though its 
duty cycle may vary in some situations. 
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Bus Memory Mapping and Cache Support 

Another change to the Zorro II implementation is that the bus mapping logic works a little 
differently. Zorro II address space is broken up into memory and VO address space. Memory 
space is the standard 8 megabyte space from $00200000-$009FFFFF. The l/0 address space is 
mapped at $00E80000-$00EFFFFF, and a new 1.5 megabyte section (previously reserved for 
motherboard devices) from $00A()()(){)()-$00B7FFFF. Zorro II cycles are not generated for non­
Zorro II address space, even for 68000 space resources on the local bus. So, for example, a CPU 
access to chip memory would be visible to a Zorro II PIC in an A2000 backplane, but invisible to 
that same PIC in an A3000 backplane. Since this extra information on the Zorro II backplane 
can't be legally used by any PIC anyway, it should not be used by any existing A2000 PICs. 

The reason for the two distinct mapping regions is for cache support of Zorro II PICs. All access 
by the local bus5 master to Zorro II memory space results in the local bus cache enable signal 
being driven and a full port read (e.g., both bytes) regardless of the actual data transfer size being 
requested. A local bus access to Zorro II I/0 space results in the local bus cache disable signal 
being driven and the data strobes for reads indicating the requested transfer size. This cache 
mapping mechanism was first implemented in the A2630 coprocessor card, so it's not an entirely 
new concept. 

Bus Synchronization Delays 

Due to the asynchronous nature of the local-to-expansion bus interface for Zorro II cycles, extra 
wait states may occasionally be added for local to expansion or expansion to local cycles. These 
are generally manifested as delays between consecutive cycles, since the bus controller is not 
going to require extra waiting during the cycle - things will have already been synchronized at 
that point. The synchronization problems get more difficult for Zorro II master access to local 
bus slaves, and as a result, wait states here are very common. The actual number of wait states 
generated in any case will be based on the particular implementation. 

Zarro II Master Access to Local Slaves 

The only supported local bus resource that's guaranteed accessible to a Zorro II expansion bus 
master as a slave device is chip bus memory. All 1/0 devices are implementation dependent and 
not supportable via DMA. Any attempted access to unsupported local bus resources as expansion 
slaves will result in an error condition being signaled on both the local and the expansion buses. 
Most other local bus resources, such as local bus fast memory, are located outside of Zorro II 
space on most systems and obviously not available to Zorro II masters. 

5 The local bus, motherboard bus, and CPU bus are the same thing; the immediate 680x0 bus connected directly to 

the CPU in an Amiga computer. Current Amiga computers typically support three distinct buses; the expansion bus, 
local bus, and chip bus. From the point of view of the expansion bus, the local and chip buses appear as a unified 
device which may be master or slave to the expansion bus. 
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Bus Arbitration and Fairness 

The Zorro II bus is now arbitrated fairly. The normal slot-based order of precedence is given to 
requesting devices, just as in the A2000 implementation. As always, once a bus master assumes 
bus mastership, it has the bus for as long as it wants the bus (of course, trouble can result if a 
device takes the bus over for too long). Once a master gives up the bus, it will not be granted it 
back until all subsequent requests have been serviced. 

Bus arbitration at its best will be slightly slower than in the A2000 implementation, due to the 
fairness logic, but it is impossible to jam the arbiter with asynchronous bus requests as in the 
A2000. The new style arbiter also holds off bus grants while hidden local bus cycles are in 
progress, so there's no guarantee of a minimum time between bus request and bus grant specified. 

Intelligent Cycle Spacing 

In order to permit a free intermix of Zorro II and Zarro III cycles, the bus control logic is capable 
of making intelligent decisions when spacing bus cycles. In some cases, a Zorro II cycle has 
some component that would naturally extend into a following cycle. The cycle spacing logic 
detects such a condition, and refuses to start a new cycle until the current one is complete, even if 
this extends beyond the defined bounds of a Zorro II cycle. 

For Zorro II PICs that really follow the Zorro II specifications, this should have no effect. 
However, any Zorro II PIC that holds signals much beyond the end of a cycle, especially critical 
signals like /SLAVE and /DT ACK, will likely incur additional wait states on the Zorro III bus. 
This is not intended as a license for making sloppy expansion card designs, just an 
acknowledgement that some Zorro II devices may cause a conflict with the faster Zorro III bus 
timings. The best approach is to make them work, even with a possible performance penalty. 

Bus Drive and Termination 

Finally, the Zorro Ill bus uses different bus termination than that in the A2000. The Zorro II 
specification didn't specify the termination expected; backplanes were built that didn't even have 
termination. The A2000 bus used a circuit consisting of a capacitor in series with a resistor to 
ground for most of the bus signals. This has good reflection cancelling properties without 
increasing crosstalk (a major concern on the 2-layer A2000 motherboard), but it does slow 
operations down measureably. 
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The main reason for the change on the A3000 backplane is to support the faster Zorro III bus 
modes. The multi-layer A3000 motherboard permits a reasonably high current bus without undue 
crosstalk. The thevenin termination makes switching logic levels start from a midpoint instead of 
a rail, especially for a bus coming out of tri-state (which, based on the Zorro III design, happens 
constantly). This should not cause problems with Zorro II cards, but it's conceivable that some 
cards may need to be adjusted to work in this bus (the Zorro III bus requires somewhat higher 
current capability than the Zorro II bus does. The A3000 does not support enough slots for 
loading to be a likely problem, but future Zorro III backplanes will have more slots and make this 
an important consideration). 

LSorALS 
Driver 

a) A2000 Bus Termination 

FDrivcr 

b) A3000 Bus Termination 

Figure K-2: A2000 vs. A3000 Bus Termination 
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Zorro II bus masters in a Zorro III backplane will, in many cases, receive a bus grant much sooner 
than they would in a standard Zorro II backplane. Additionally, in some cases, expansion bus 
cycles will overlap local bus cycles. The latency incurred on the Zorro II bus during heavy 
custom chip activity has been greatly reduced for any Zorro III bus master. This should be 
transparent to the card in question, though keep this in mind. 

Power Supply Differences 

The Zorro II bus is defined as supplying +5VDC @ 2 Amps to each slot, with one slot per 
backplane supplying 5.0VDC @ 4.0 Amps. The Zorro III bus only provides the 5.0VDC@ 2.0 
Amps for each slot. 
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ZORRO II BUS ARCHITECTURE 

The Zorro II bus is a simple extension of the 68000 processor bus. Those without a working 
knowledge of the 68000 local bus will find The 68000 User's Manual from Motorola an excellent 
reference for many Zorro II issues. The A500JA2000 Technical Reference Manual from 
Commodore-Amiga is also required reading for any Zorro II design issues, as it includes a 
complete description of all the Commodore-Amiga details that aren't part of the 68000 
specification. 

The basic Zorro II bus is a buffered version of the 68000 processor bus, physically provided on a 
100-pin one-piece connector. The bus is 16 bits wide, and provides 24 bits of addressing 
information. A bus cycle looks exactly like a 68000 bus cycle. The cycle is defined by an 
address strobe, terminated by a data transfer strobe, and qualified by a read/write strobe, some 
memory space qualifiers, and one or two byte selection strobes. The basic bus cycle runs for a 
total of four cycles of a 7.16MHz clock, though it can be extended to add wait states when 
required. 

The Zorro II bus adds a number of features to the basic 68000 CPU bus. It supplies some Amiga 
system signals that are useful for expansion card designs, such as many of the Amiga system 
clocks. The bus provides a default data transfer signal, which expansion cards can easily use and 
modify rather than go to the trouble of creating their own. It provides a number of discrete 
interrupt lines which are mixed to provide the 68000 with its standard encoded interrupts. The 
68000 bus arbitration protocol is used to allow multiple bus masters; arbitration of the bus 
requests are managed by the Zorro II bus controller to avoid contention between multiple masters. 
And, of course, the bus supplies a number of supply voltages for powering cards. 

A powerful aspect of the Zorro II bus is its convention for automatically configuring expansion 
cards, AUTOCONFIG!M On system powerup, the system software interrogates each board to 
determine what kind of board is installed and how much memory space it needs on the bus. The 
software then tells each board where to reside in memory. The bus provides hardware lines to 
allow the boards to be configured in a daisy chained fashion regardless of which slots they occupy 
and to prevent damage to boards if accidently configured to reside at the same memory location. 
Firmware standards also permit software to autoboot or autoinitialize any board, to match soft­
loaded device drivers with individual boards, and to link memory boards into the appropriate 
system memory lists. 

SIGNAL DESCRIPTION 

The Zorro II bus can be broken down into various logical signal groups. Some of these groups 
are unchanged in the Zorro III bus modes, others are drastically different. This section makes 
note of the original Zorro II name for each signal and the current Zorro III physical pin name for 
each signal, where different. Some of this information will be repeated in the Zorro III sections, 
where appropriate; nothing in this section is considered critical to understanding the Zorro III bus, 
but it is useful. As previously mentioned, the A2000 bus signals unsupported by the Zorro II 
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but it is useful. As previously mentioned, the A2000 bus signals unsupported by the Zorro II 
specification have been deleted from the Zorro III specification and the A3000 implementation of 
Zorro III; this section will, however, document those signals for reference purposes. Please see 
the Physical and Logical Signal Names section for a complete list with pin numbers of the 
various logical signals that appear on the physical bus during the different phases of the Zorro II 
and Zorro III bus cycles. 

Power Connections 

The Zorro III expansion bus provides several different voltages designed to supply expansion 
devices. There are no changes here that affect Zorro II cards. 

Digital Ground (Ground) 
This is the digital supply ground used by all expansion cards as the return path for all 
expansion supplies. 

Main Supply ( +5VDC) 
This is the main power supply for all expansion cards, and it is capable of sourcing large 
currents; each expansion slot can draw up to 2.0 Amps @ +5VDC. The extra power for one 
card in any backplane drawing up to 4.0 Amps @ +5VDC is no longer supported. 

Negative Supply ( -5VDC) 
This is a negative version of the main supply, for small current loads only. There is no 
maximum load specified for the Zorro II bus on a per-slot basis; the A2000 implementation 
specifies 0.3 Amps @ -5VDC for the entire system. 

High Voltage Supply (+12VDC) 
This is a higher voltage supply, useful for communications cards and other devices requiring 
greater than digital voltage levels. This is intended for relatively small current loads only. 
There is no maximum load specified for the Zorro II bus on a per-slot basis; the A2000 
implementation specifies 8.0 Amps @ +12VDC for the entire system, most of which is 
normally devoted to floppy and hard disk drive motors, not slots. 

Negative High Supply (-12VDC) 
Negative version of the high voltage supply, also commonly used in communications 
applications, and similarly intended for small loads only. There is no maximum load 
specified for the Zorro II bus on a per-slot basis; the A2000 implementation specifies 0.3 
Amps@ -12VDC for the entire. 

Clock Signals 

The Zorro III expansion bus provides clock signals for expansion boards. These clocks are for 
synchronous Zorro II designs and for other synchronous activity such as bus arbitration. While 
originally based on Amiga local bus clocks, these have no guaranteed relationship to any local 
bus activity in newer Amiga computers, but are maintained in Amiga computers as part of the 
expansion bus specification. The relationship between these clocks is illustrated in Figure K-3. 
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/Cl Clock 
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the falling edge of 
the 7M system clock. 

/C3 Clock 
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the rising edge of 
the 7M system clock. 

CDAC Clock 
This is a 7.16 MHz system clock (7.09 MHz on PAL systems) which trails the 7M clock by 
90° (approximately 35ns). 

E Clock 
This is the 68000 generated "E" clock, used for 6800 family peripherals driven by "E" and 
6502 peripherals driven by <I>2. This clock is four 7M clocks high, six clocks low, as per the 
68000 spec. Note that the bus does not support the rest of the 68000's 6800/6502 compatible 
interface; there may be better ways to clock such devices. 

7M Clock 
This is the 7.16 MHz system clock (7.09 MHz on PAL systems). This clock forms the basis 
for all Zorro 11/68000 compatible activity, and for various other system functions, such as 
bus arbitration. 

C7M 

CDAC 

I 

/Cl !..._____,_ _ _J 

/C3 I 
E 

Figure K-3: Expansion Bus Clocks 

System Control Signals 

The signals in this group are available for various types of system control; most of these have an 
immediate or near immediate effect on expansion cards and/or the system CPU itself. 

Bus Error (!BERR) 
This is a general indicator of a bus fault condition. Any expansion card capable of detecting 
a hardware error relating directly to that card can assert /BERR when that bus error condition 
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is detected, especially any sort of hannful hardware error condition. This signal is the 
strongest possible indicator of a bad situation, as it causes all PICs to get off the bus, and 
will usually generate a level 2 exception on the host CPU. For any condition that can be 
handled in software and doesn't pose an immediate threat to hardware, notification via a 
standard processor interrupt is the better choice. The bus controller will drive /BERR in the 
event of a detected bus collision or DMA error (an attempt by a bus master to access local 
bus resources it doesn't have valid access pcnnission for). All cards must monitor /BERR 
and be prepared to tri-state all of their on-bus output buffers whenever this signal is asserted. 
The current bus master should, if possible, retry the bus cycle after /BERR is negated unless 
conditions warrant otherwise. Since any number of devices may assert /BERR, and all bus 
cards must monitor it, any device that drives /BERR must drive with an open collector or 
similar device capable of sinking at least 12ma, and any device that monitors /BERR should 
place a minimal load on it (1 "F" type load or less). This signal is pulled high by a passive 
backplane resistor. 

System Reset (/RST, /BUSRST) =(/RESET, IIORST) for Zorro III 
The bus supplies two versions of the system reset signal. The /RST signal is bidirectional 
and unbuffered, allowing an expansion card to hard reset the system. It should only be used 
by boards that need this reset capability, and is driven only by an open collector or similar 
device. The /B USRST signal is a buffered output-only version of the reset signal that should 
be used as the nonnal reset input to boards not concerned with resetting the system on their 
own. All expansion devices are required to reset their autoconfiguration logic when 
/BUSRST is asserted. This signal is pulled high by a passive backplane resistor. 

System Halt (/HL T) 
This signal is similar to the 68000 processor halt signal, and is driven by a PIC with an 
open-collector or similar gate only. Its main use is to indicate a full-system reset. Based on 
the 68000 conventions, an I/O-only reset, such as initiated by the 680x0 RESET instruction, 
will drive only /RST and /BUSRST on the bus. A full-system reset, such as a powerup reset 
or a keyboard reset, drives /HL T low as well. PICs that wish to reset the system CPU as well 
as the bus and 1/0 devices drive /RST and /HL T, some bus devices such as processor cards 
may internally reset only on full-system resets. This signal is pulled high by a passive 
backplane resistor. 

System Interrupts 
Six of the decoded, level sensitive 680x0 interrupt inputs were originally available on the 
expansion bus, and these are labelled as liNTz, IINT6, /EINTI, /EINT4, fEINTs, /EINT7 on 
the Zorro II bus. Only the liNTz and IINT6 interrupt inputs are actually supported by 
Commodore-Amiga as part of the Zorro II specification; the A2000 hardware did not provide 
the software with the required support mechanisms for the safe use of these lines. Each of 
these interrupt lines are shared by wired ORing, thus each line must be driven by an open­
collector or equivalent output type, and all arc pulled high by passive backplane resistors. 
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Slot Control Signals 

This group of signals is responsible for the control of operations between expansion slots. 

Slave (ISLA YEN) 
Each slot has its own /SLAVE output, driven actively, all of which go into the collision 
detect circuitry. The "N" refers to the expansion slot number of the particular /SLAVE 
signal. Whenever a Zorro II PIC is responding to an address on the bus, it must assert its 
/SLAVE output within 35ns of /AS asserted. The/SLAVE output must be negated at the end 
of a cycle within SOns of /AS negated. Late /SLAVE assertion on a Zorro II bus can result in 
loss of data setup times and other problems. A late /SLAVE negation for Zorro II cards can 
cause a collision to be detected on the following cycle. While the Zorro III sloppy cycle 
logic eliminates this fatal condition, late /SLAVE negation can nonetheless slow system 
performance unnecessarily. If more than one /SLAVE output occurs for the same address, or 
if a PIC asserts its /SLAVE output for an address reserved by the local bus, a collision is 
registered and results in /BERR being asse1ted. 

Configuration Chain (/CFGINN, /CFGOUT:-.~) 
The slot configuration mechanism uses the bus signals /CFGOUTN and /CFGINN, where 
"N" refers to the expansion slot number. Each slot has its own version of each, which make 
up the configuration chain between slots. Each subsequent /CFGIN is a result of all previous 
/CFGOUTs, going from slot 0 to the last slot on the expansion bus. During the 
AUTOCONFIG process, an unconfigured Zarro PIC responds to the 64K address space 
starting at $00E80000 if its /CFGIN signal is asse1ted. All unconfigured PICs start up with 
/CFGOUT negated. When configured, or told to "shut up;' a PIC will assert its /CFGOUT, 
which, results in the /CFGIN: of the next slot being asserted. The backplane passes on the 
state of the previous /CFGOUT to the next /CFGIN for any slot not occupied by a PIC, so 
there's no need to sequentially populate the expansion bus slots. 

Data Output Enable (DOE) 
This signal is used by an expansion card to enable the buffers on the data bus. The main 
Zorro II use of this line is to keep PICs from driving data on the bus until any other device is 
completely ofT the bus and the bus butTers arc pointing in the correct direction. This prevents 
any contention on the data bus. 

DMA Control Signals 

There are various signals on the expansion bus that coordinate the arbitration of bus masters. 
Native Zorro III bus masters use some of the same logical signals, but their arbitration protocol is 
considerably different. 

PIC is DMA Owner (!OWN) 
This signal is asserted by an expansion bus DMA device when it becomes bus master. This 
output is to be treated as a wired-OR output between all expansion slots, any of which may 
have a PIC signaling bus mastership. Thus, this should oc driven with an open-collector or 
similar output by any PIC using it. This signal is the main basis for data direction 
calculations between the local and expansion busses, and is pulled up by a backplane resistor. 
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Slot Specific Bus Arbitration (/BRN, /BGN) 
These are the slot-specific /BRN and /BGN signals, where "N" refers to the expansion slot 
number. The bus request from each board is taken in by the bus controller and ultimately 
used to take over the system from 680x0 on the local bus. The bus controller eventually 
returns one bus grant to the winner among all requesting PICs. From the point of view of the 
individual PIC, the protocol is very similar to that of the 68000 arbitration mechanism. The 
PIC asserts /BRN on the rising edge of 7M; some time later, /BGN is returned on the falling 
edge of 7M. The PIC waits for all bus activity to finish, asserts /OWN followed by 
/BGACK, then negates /BRN, assuming bus mastership. It retains mastership until it negates 
/BGACK followed by /OWN. 

7M 

/BR 

!BG 

Signals 

!OWN 

!BGACK 

Figure K-4: Zorro II Bus Arbitration 

Bus Grant Acknowledge (/BGACK) 
Any Zorro II PIC that receives a bus grant asserts this signal as long as it maintains bus 
mastery. This signal may never be asserted until the bus grant has been received, /AS is 
negated, /DT ACK is negated, and /BGACK itself is negated, indicating that all other 
potential bus masters have relinquished the bus. This output is driven as a wired-OR output, 
so all PICs must drive it with an open collector or equivalent device, and a passive pullup is 
supplied by the backplane. 

Bus Want/Clear (IGBG) = (/BCLR) for Zorro III 
This signal is asserted by the bus controller to indicate that a PIC wants to master the bus. A 
bus master assumes that the host CPU wants the bus, and that any time wasted as master is 
stealing time from the CPU. To avoid such waste, a master should use cache or FIFO to grab 
slow-coming data, and then transfer it all at once. /BCLR is asserted to indicate that 
additionally, another PIC wants the bus, and the current bus master should get off as soon as 
possible. This signal is equivalent to /GBG on the A2000 bus. 
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Addressing and Control Signals 

These signals are various items used for the addressing of devices in Zorro II mode by the local 
bus and any expansion DMA devices. Most of these signals are very much like 68000 generated 
bus signals bi-directionally buffered to allow any DMA device on the bus to drive the local bus 
when such a device is the bus master. 

Read Enable (READ) 
This is the read enable for the bus, which is equivalent to the 68000's R/W output. READ 
asserted during a bus cycle indicates a read cycle, READ negated indicates a write cycle. 
Note that this signal may become valid in a cycle earlier than a 68000 R/W line would, but it 
remains valid at least as long at the cycle's end. 

Address Bus (At-A23) 
This is logically equivalent to the 68000's address bus, providing 16 megabytes of address 
space, although much of that space is not assigned to the expansion bus (see the memory map 
in Figure K-1). 

Address Strobe (/AS)= (/CCS) for Zorro III 
This is equivalent to the 68000 /AS, called /CCS, for Compatibility Cycle Strobe, in the 
Zorro III nomenclature. The falling edge of this strobe indicates that addresses are valid, the 
READ line is valid, and a Zorro II cycle is starting. The rising edge signals the end of a 
Zorro II bus cycle, signaling the current slave to negate all slave-driven signals as quickly as 
possible. Note that /CCS, like /AS, can stay asserted during a read-modify-write access over 
multiple cycle boundaries. To correctly support such cycles, a device must consider both the 
state of /CCS and the state of the data strobes. Many current Zorro II cards don't correctly 
support this 680x0 style bus lock. 

Data Bus (Do-Dts) 
This is a buffered version of the 680x0 data bus, providing 16 bits of data accessible by word 
or either byte. A PIC uses the DOE signal to determine when the bus is to be driven on 
reads, and the data strobes to determine when data is valid on writes. 

Data Strobes (IUDS, /LOS) = (/DS3, /DS2) for Zorro III 
These strobes fall on data valid during writes, and indicate byte select for both reads and 
writes. The lower strobe is used for the lower byte (even byte), the upper strobe is used for 
the upper byte (odd byte). There is one slight difference between these lines and the 68000 
data strobes. On reads of Zorro II memory space, both /DS3 and /DS2 will be asserted, no 
matter what the actual size of the requested transfer is. This is required to support caching of 
the Zorro II memory space. For Zorro II 1/0 space, these strobes indicate the actual, 
requested byte enables, just as would a 68000 bus master. 
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Data Transfer Acknowledge (/DT ACK) 
This signal is used to nonnally tcnninate both Zorro bus cycles. For Zorro II modes, it is 
equivalent to the 68000's Data Transfer Acknowledge input. It can be asserted by the bus 
slave during a Zorro II cycle at any time, but won't be sampled by the bus master until the 
falling edge of the S4 state on the bus. Data will subsequently be latched on the S6 falling 
edge after this, and the cycle tenninatcd with /AS negated during S7. If a Zorro II slave does 
nothing, this /DT ACK will be driven by the bus controller with no wait states, making the 
bus essentially a 4-cycle synchronous bus. Any slow device on the bus that needs wait states 
has two options. It can modify the automatic /DT ACK negating XRDY to hold off 
/DTACK. Alternately, it may assert /OVR to inhibit the bus controller's generation of 
/DT ACK, allowing the slave to create its own /DT ACK. Any /DT ACK supplied by a slave 
must be driven with an open-collector or similar type output; the backplane provides a 
passive pullup. 

Processor Status (FCo-FC2) 
These signals are the cycle type or memory space bits, equivalent for the most part with the 
68000 Processor Status outputs. They function mainly as extensions to the bus address, 
indicating which type of access is taking place. For Zorro II devices, any use of these lines 
must be gated with /BGACK, since they are not driven valid by Zorro II bus masters. 
However, when operating on the Zorro III backplane, Zorro II masters that don't drive the 
function codes will be seen generating an FCI = 0, which results in a valid memory access. 
Zorro II cycles are not generated for invalid memory spaces when the CPU is the bus master. 

/DT ACK Override (/OVR) 
This signal is driven by a Zorro II slave to allow that slave to prevent the bus controller's 
/DT ACK generation. This allows the slave to generate its own /DT ACK. The previous use 
of this line to disable motherboard memory mapping, which was unsupported on the A2000 
expansion bus, has now been completely removed. The use of XDRY or /OVR in 
combination with /DT ACK is completely up to the board designer - both methods are 
equally valid ways for a slave to delay /DT ACK. In Zorro III mode, this pin is used for 
something completely different. 

External Ready (XRDY) 
This active high signal allows a slave to delay the bus controller's assertion of /DT ACK, in 
order to add wait states. XRDY must be negated within 60ns of the bus master's assertion of 
I AS, and it will remain negated until the slave wants /DT ACK. The /DT ACK signal will be 
asserted by the bus controller shortly following the assertion of XRDY, providing the bus 
cycle is a S4 or later. XRDY is a wired-OR from all PICs, and as such, must be driven by an 
open collector or equivalent output. In Zorro III mode, this pin is used for something 
completely different. 
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Zorro Ill Bus Architecture 

While the Zorro II bus design was based in large part on an already existing bus cycle, the 68000 
cycle, the Zorro III bus design had a much different set of preconditions. It is not modeled after 
any particular CPU specific bus protocol, but instead it's a logical outgrowth of both the need to 
support Zorro II cards on the same bus and the need to achieve various modem feature and 
preformance goals. These goals were summarized in the Zorro Expansion Bus Introduction, now 
they'll be covered in greater detail here. 

BASIC ZORRO Ill BUS CYCLES 

The basic Zorro III bus cycle is a multiplexed address/data cycle which supplies a full 32 bits 
worth of address and data per simple cycle. The cycle is a fully asynchronous cycle. The bus 
master for a given cycle supplies strobes to indicate when address is valid, write data is valid, and 
read data may be driven. In return, the bus slave for a cycle supplies a strobe to indicate that it is 
responding to a bus address, and a strobe to indicate that it is done with the bus data for a write 
cycle, or has supplied valid bus data for a read cycle. The minimum theoretical bus speed is 
governed only by setup and hold time requirements for the various bus signals. Actual bus 
speeds are always a function of the bus master and bus slave active for a given cycle. This is 
considerably different than the Zorro II bus, and for several good reasons, which are explained 
below. 

Design Goals 

For any computer bus, there are two basic possibilities concerning the fundamental operation of 
the bus; it's either synchronous or asynchronous. The difference is simple- the synchronous bus 
is ultimately tied to a clock of some sort, while the asynchronous bus has no defined relationship 
to any clock signal. While Motorola specifies the 68000 bus cycle as an asynchronous cycle, 
they're really referring to the fact that most 6SOOO inputs are internally synchronized with the bus 
clock, and therefore, synchronous setup times on the bus do not have to be met to avoid 
metastability. 

But the 68000 bus, and the Zarro II bus by extension, are synchronous buses, based on a single 
bus clock (called E7M on the Zorro II bus). Most Zorro II signals are asserted relative to an edge 
of the bus clock, and most Zorro II inputs are sampled on an edge of the bus clock. The 
minimum Zorro II cycle is four bus clocks long, and every wait state added, regardless of the 
method, will result in a single additional bus clock wait, regardless of the asynchronous 
appearance of the termination and wait signals on the Zorro II bus. 

The Zorro III bus is a fully asynchronous bus, in that all bus events are driven by strobes, and 
there is no reference clock. The choice of an asynchronous versus a synchronous bus design is 
governed by the intended application of the bus. Synchronous designs are preferred when a CPU 
and a memory system (e.g., master and slave) can be very tightly coupled to each other. Such 
designs generally require a tight adherence to timing based on the specific CPU. This is optimal 
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for tightly coupled systems, such the fast memory on the A3000 local bus. Synchronous designs 
can also be easier to do accurately, as the desi!:,mcr can usc clock edges for scheduling events, and 
there's never any need to waste time in synchronizers to achieve a reliable design. 

The design goals for an expansion bus are considerably different. While a fast memory circuit on 
a system motherboard can change for every new and better design, it's not feasible to require 
redesign of any significant number of expansion cards every time an improved motherboard 
design is created. And while a synchronous transfer can be optimal for matched clocks, it can be 
very inefficient for mismatched CPU and expansion clocks, as synchronizer delays must be 
introduced for any reliable operation. The A3000 project started with the need to support CPU 
systems at 16MHz and at 25MHz, and it's obvious that the growth of CPU clock speed will be 
here for some time to come. Zorro III cards arc based on asynchronous handshaking between 
master and slave in both directions. This means that, as long as masters and slaves manage their 
own needs, any slave can work with any master. But as masters and slaves improve with 
technology, bus transfer speeds can automatically increase, without rendering any slower cards 
obsolete. The Zorro III bus attempts to address the needs of device expansion as much as the 
needs of memory expansion. 

Simple Bus Cycle Operation 

The normal Zorro III bus cycle is quite different than the Zorro II bus in many respects. Figure 
K-5 shows the basic cycle. There is no bus clock visible on the expansion bus; the standard Zorro 
II clocks are still active during Zorro III cycles, but they have no relationship to the Zorro II bus 
cycle. Every bus event is based on a relationship to a particular bus strobe, and strobes are 
alternately supplied by master and slave. 

/FCS 

AD3l..AD8 

SA7 .. SA2 
FC2 .. FCO 

READ 

/SLAVE 

DOE 

/DS3 .. /DSO 

/DTACK 

Read Cycle 

Figure K-5: Basic Zorro III Cycles 

400 Amiga Hardware Reference Manual 

Write Cycle 



A Zorro III cycle begins when the bus master simultaneously drives addressing infonnation on 
the address bus and memory space codes on the FCN lines, quickly following that with the 
assertion of the Full Cycle Strobe, /FCS; this is called the address phase of the bus. Any active 
slaves will latch the bus address on the falling edge of IFCS, and the bus master will tri-state the 
addressing information very shortly after /FCS is asserted. It's necessary only to latch A31-As; the 
low order A1-A2 addresses and FCN codes are non-multiplexed. 

As quickly as possible after /FCS is asserted, a slave device will respond to the bus address by 
asserting its /SLA YEN line, and possibly other special-purpose signals. The autoconfiguration 
process assigns a unique address range to each PIC base on its needs, just as on the Zorro II bus. 
Only one slave may respond to any given bus address; the bus controller will generate a /BERR 
signal if more than one slave responds to an address, or if a single slave responds to an address 
reserved for the local bus (this is called a bus collision, and should never happen in normal 
operation). Slaves don't usually respond to CPU memory space or other reserved memory space 
types, as indicated by the memory space code on the FCN lines (see the Signal Description section 
following this section for details). 

The data phase is the next part of the cycle, and it's started when the bus master asserts DOE 
onto the bus, indicating that data operations can be started. The strobes are the same for both read 
and write cycles, but the data transfer direction is difTcrent. 

For a read cycle, the bus master drives at least one of the data strobes /DSN, indicating the 
physical transfer size requested (however, cachable slaves must always supply all 32 bits of data). 
The slave responds by driving data onto the bus, and then asserting /DT ACK. The bus master 
then terminates the cycle by negating /FCS, at which point the slave will negate its /SLA YEN line 
and tri-state its data. The cycle is done at this point. There arc a few actions that modify a cycle 
tennination, those will be covered in later sections. 

The write cycle starts out the same way, up until DOE is asserted. At this point, it's the master 
that must drive data onto the bus, and then assert at least one /DSN line to indicate to the slave 
that data is valid and which data bytes are being written. The slave has the data for its use until it 
tenninates the cycle by asserting /DT ACK, at which point the master can negate /FCS and tri­
state its data at any point. For maximum bus bandwidth, the slave can latch data on the falling 
edge of the logically ORed data strobes; the bus master doesn't sample /DT ACK until after the 
data strobes are asserted, so a slave can actually assert /DTACK any time after /FCS. 

ADVANCED MODE SUPPORT LOGIC 

The Zarro III bus provides support for some more advanced operations that weren't generally 
handled correctly on the Zarro II bus. Amiga computers have traditionally been supporting 
features that the more mainstream personal computers haven't. High speed DMA transfers and 
expansion coprocessors such as the Bridge Cards have been with the Amiga since the early days, 
and high perfonnance main system CPUs with cache memory arc now becoming common. The 
Zorro II bus never properly or easily supponed such devices; the Zorro III bus attempts to make 
support of cache and coprocessor both possible and relatively straightforward. Other new features 
are covered in later sections. 
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Bus Locking 

The first advanced modification of the basic bus cycle is bus locking, via the /LOCK signal. Bus 
locking is a hardware convention that allows a bus master to guarantee several cycles will be 
atomic on the bus. This is necessary to support the sharing of special "mail-box" memory 
between a bus master and an alternate PIC-based processor; Bridge Cards are an example of this 
kind of device. The Zorro II bus itself supports bus locking via the 68000 convention. However, 
the 68000 style of bus locking is often difficult to implement, and support for it was often ignored 
in Zorro II designs, especially those not directly concerned with multiprocessor support. 

The Zorro III mech<mism involves no change to the basic bus cycle, other than the monitoring of 
this /LOCK signal, and as such is much more reasonable to support. The /LOCK signal is 
asserted by a bus master at address time and maintained across cycles to lock out shared memory 
coprocessors, allowing hardware backed semaphores to easily be used between such 
coprocessors. We expect multiprocessing will be a greater concern on the Zorro III bus than it is 
at present; video coprocessors, RISC devices, and special purpose processors for image 
processing or mathematics should find a comfortable home on the Zorro III bus. 

Cache Support 

The other advanced cycle modifier on the Zorro III bus is the cache inhibit line, /CINH. On the 
Zorro II bus, there was originally no caching envisioned, and therefore no real support for caching 
of Zorro II PICs. First in the A2630 and later in the Zorro III bus' emulation of Zorro II, 
conventions were adopted to permit caching of Zorro II cards. These conventions aren't perfect; 
MMU tables will sometimes have to supplant this geographic mapping. While Zorro III doesn't 
have any cache consistency mechanisms for managing caches between several caching bus 
masters, it does allow cards that absolutely must not be cached to assert a cache inhibit line, 
/CINH, on a per-cycle basis (asserted at slave time by a responding slave). This cache 
management is basically the lowest level of a cache management system, mainly useful for 
support of 1/0 and other devices that shouldn't be cached. Software will be required for the 
higher levels of cache management. 

MULTIPLE TRANSFER CYCLES 

The multiplexed address/data design of the Zorro III bus has some definite advantages. It allows 
Zorro III cards to use the same 1 00-pin connector as the Zorro II cards, which results in every bus 
slot being a 32-bit slot, even if there's an alternate connector in-line with any or all of the system 
slots; current alternate connectors include Amiga Video and PC-AT (now sometimes called ISA, 
for Industry Standard Architecture, now that it's basically beyond the control of IBM) compatible 
connectors. This design also makes implementation of the bus controller for a system such as the 
A3000 simpler. And it can result in lower cost for Zorro III PICs in many cases. 
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The main disadvantage of the multiplexed bus is that the multiplexing can waste time. The 
address access time is the same for multiplexed and non-multiplexed buses, but because of the 
multiplexing time, Zorro III PICs must wait until data time to assert data, which places a fixed 
limit on how soon data can be valid. The Zorro III Multiple Transfer Cycle is a special mode 
designed to allow the bus to approach the speed of a non-multiplexed design. This mode is 
especially effective for high speed transfers between memory and 1/0 cards. 

As the name implies, the Multiple Transfer Cycle is an extension of the basic full cycle that 
results in multiple 32-bit transfers. It starts with a normal full cycle address phase transaction, 
where the bus master drives the 32-bit address and asserts the /FCS signal. A master capable of 
supporting a Multiple Transfer Cycle will also assert /MTCR at the same time as /FCS. The slave 
latches the address and responds by asserting its /SLA YEN line. If the slave is capable of 
multiple transfers, it'll also assert /MTACK, indicating to the bus master that it's capable of this 
extended cycle fonn. If either /MTCR or /MTACK is negated for a cycle, that cycle will be a 
basic full cycle. 

/FCS 

AD3l..AD8 

/MTCR 

SA7 .. SA2 
FC2 .. FCO 

READ 

DOE 

/DS3 .. /DSO 

/MTACK 

/DTACK 

Figure K-6: Multiple Transfer Cycles 

Assuming the multiple transfer handshake goes through, the multiple cycle continues to look 
similar to the basic cycle into the data phase. The bus master asserts DOE (possibly with write 
data) and the appropriate /DSN, then the slave responds with /DT ACK (possibly with read data at 
the same time), just as usual. Following t11is, however, the cycle's character changes. Instead of 
tenninating the cycle by negating /FCS, /DSN, and DOE, the master negates /DSN and /MTCR, 
but maintains /FCS and DOE. The slave continues to assert /SLAVEN, and the bus goes into 
what's called a short cycle. 
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The short cycle begins with the bus master driving the low order address lines A1-A2; these are 
the non-multiplexed addresses and can change without a new address phase being required (this 
is essentially a page mode, fully random accesses on this 256-byte page). The READ line may 
also change at this time. The master will then assert /MTCR to indicate to the slave that the short 
cycle is starting. For reads, the appropriate /DSN arc asserted simultaneously with /MTCR, for 
writes, data and /DSN are asserted slightly after /MTCR. The slave will supply data for reads, 
then assert /DT ACK, and the bus will will terminate the short cycle and start into either another 
short cycle or a full cycle, depending on the multiple cycle handshaking that has taken place. 

The question of whether a subsequent cycle will be a full cycle or a short cycle is answered by 
multiple cycle arbitration. If the master can't sustain another short cycle, it will negate /FCS and 
DOE along with /MTCR at the end of the current short cycle, terminating the full cycle as well. 
The master always samples the state of /MTACK on the falling edge of /MTCR. If a slave can't 
support additional short cycles, it negates /MT ACK one short cycle ahead of time. On the 
following short cycle, the bus master will see that no more short cycles can be handled by the 
slave, and fully terminate the multiple transfer cycle once this last short cycle is done. 

PICs aren't absolutely required to support Multiple Transfer Cycles, though it is a highly 
recommended feature, especially for memory boards. And of course, all PICs must act 
intelligently about such cycles on the bus; a card doesn't request or acknowledge any Multiple 
Transfer Cycle it can't support. 

QUICK BUS ARBITRATION 

The Zorro II bus docs an adequate job of supporting multiple bus masters, and the Zorro III bus 
extends this somewhat by introducing fair arbitration to Zorro II cards. However, some desirable 
features cannot be added directly to tl1c Zarro II arbitration protocol. Specifically, Zorro III bus 
arbitration is much faster than the Zorro II style, it prohibits bus hogging that's possible under the 
Zorro II protocol, and it supports intelligent bus load balancing. 

Load balancing requires a bit of explanation. A good analogy is to that of software multitasking; 
there, an operating system attempts to slice up CPU time between all tasks that need such time; 
here, a bus controller attempts to slice up bus time between all masters that need such time. With 
preemptive multitasking such as in the Amiga and UNIX OSs, equal CPU time can be granted to 
every task (possibly modified by priority levels), and such scheduling is completely under control 
of the OS; no task can hog the CPU time at the expense of all others. An alternate multitasking 
scheme is a popular add-on to some originally non-multitasking operating systems lately. In this 
scheme, each task has the CPU until it decides to give up the CPU, basically making the 
effectiveness of the CPU sharing at the mercy of each task. This is exactly the same situation 
with masters on the Zarro II bus. The Zorro III arbitration mechanism attempts to make bus 
scheduling under the control of the bus controller, with masters each being scheduled on a cycle­
by-cycle basis. 

When a Zorro Ill PIC wants to master the bus, it registers with the bus controller. This tells the 
bus controller to include that PIC in its scheduling of the expansion bus. There may be any 
number of other PICs registered with the bus controller at any given time. The CPU is always 
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scheduled expansion bus time, and other local bus devices, such as a hard disk controller, may be 
registered from time to time. 

Once registered, a PIC sits idle until it receives a grant from the bus controller. A grant is 
permission from the bus controller that allows the PIC to master the Zorro III bus for one full 
cycle. A PIC always gets one full cycle of bus time when given a grant, and assuming it stays 
registered, it may receive additional full cycles. Within the full cycle, the PIC may run any 
number of Multiple Transfer Cycles, assuming of course the responding slave supports such 
cycles. For multiprocessor support, a PIC will be granted multiple atomic full cycles if it locks 
the bus. This feature is only for support of hardware semaphores and other such multiprocessor 
needs; it is not intended as a means of bus hogging! 

7M 

!BRn -- - -~l Register j \ ,--------~~--~ 

Unregister f 

!BGn 

/FCS 

/OWN 

!BGACK 

Figure K-7: Zorro III Bus Arbitration 

Figure K-7 shows the basics of Zorro III bus arbitration. While it uses some of the same signals 
as the 680x0 inspired Zorro II bus arbitration mechanism, it has nothing to do with 680x0 bus 
arbitration; the /BRN and /BGN signals should be thought of as completely new signals. In order 
to register with the bus controller as a bus master, a PIC asserts its private /BRN strobe on the 
rising edge of the 7M clock, and negates it on the next rising edge. The bus controller will 
indicate mastership to a registered bus master by asserting its /BGN. 

Once granted the bus, the PIC drives only the standard cycle signals: addresses, /FCS, /EDSN, 
data, etc. in a full cycle. The bus controller manages the assertion of /OWN and /BGACK, which 
are important only for bus management and Zarro II support. While a scheduling scheme isn't 
part of this bus specification, the bus master will only be guaranteed one bus cycle at a time. The 
/BGN line is negated shortly after the master asserts /FCS unless the bus controller is planning to 
grant multiple full cycles to the master. A locked bus will force the controller to grant multiple 
full cycles. Any master that works better with multiple cycles, such as devices with buffers to 
empty into memory, should run a Multiple Transfer Cycle to transfer severallongwords during 
the same full cycle. For this reason, slave cards arc encouraged to support Multiple Transfer 
Cycles, even if they don't necessarily run any faster during them. 
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Once a registered bus master has no more work to do, it unregisters with the bus controller. This 
works just like registering - the PIC asserts /BRN on the rise of 7M, then negates it on next rising 
7M. This is best done during the last cycle the bus master requires on the bus. If a registered 
master gets a grant before unregistering and has no work to do, it can unregister without asserting 
/FCS, to give back the bus without runing a cycle. It's always far better to make sure that the 
master unregisters as quickly as possible. Bus timeout causes an automatic unregistering of the 
registered master that was granted that timed-out cycle; this guarantees that an inactive registered 
master can't drag down the system. If a master sees a /BERR during a cycle, it should tenninate 
that cycle immediately and re-try the same cycle. If the retried cycle results in a /BERR as well, 
nothing more can be done in hardware; notification of the driver program is the usual recourse. 

The bus controller may have to mix Zorro II style bus arbitration in with Zorro III arbitration, as 
Zorro II and Zorro III cards can be freely mixed in a backplane. Because of this, Multiple 
Transfer Cycles, and the self-timed nature of Zorro III cards, there's no way to guarantee the 
latency between bus grants for a Zorro III card. The bus controller does, however, make sure that 
all masters arc fairly scheduled so that no starvation occurs, if at all possible. Zorro III cards 
must use Zorro III style bus arbitration; although current Zorro III backplanes can't differentiate 
between Zorro II and Zorro III cards when they request (other than by the request mechanism), it 
can't be assumed that a backplane will support Zorro III cycles with Zorro II mastering, or visa­
versa. 

QUICK INTERRUPTS 

While the Zorro II bus has always supported shared interrupts, the Zorro III bus supports a 
mechanism wherein the interrupting PIC can supply its own vector. This has the potential to 
make such vectored interrupts much faster than conventional Zorro II chained interrupts, 
arbitrating the interrupting device in hardware instead of software. 

A PIC supporting quick interrupts has on-board registers to store one or more vector numbers; the 
numbers are obtained from the OS by the device driver for the PIC, and the PIC/driver 
combination must be able to handle the situation in which no additional vectors are available. 
During system operation, this PIC will interrupt the system in the nonnal manner, by asserting 
one of the bus interrupt lines. This interrupt will cause an interrupt vector cycle to take place on 
the bus. This cycle arbitrates in hardware between all PICs asserting that interrupt, and it's a 
completely different type of Zorro III cycle, as illustrated in Figure 9-8. 

The bus controller will start an interrupt vector cycle in response to an interrupt asserted by any 
PIC. This cycle starts with /FCS and /MTCR asserted, a FC code of7 (CPU space), a CPU space 
cycle type, given by address lines AI6-AI9, of 15, and the interrupt number, which is on AI-A3 
(AI is on the /LOCK line, as in Zorro II cycles). The interrupt numbers 2 and 6 are currently 
defined, corresponding to /INT2 and /INT6 respectively; all others are reserved for future use. At 
this point, called the polling phase, any PIC that has asserted an interrupt and wants to supply a 
vector will decode the FC lines, the cycle type, match its interrupt number against the one on the 
bus, and assert /SLA YEN if a match occurs. Shortly thereafter, the /MTCR line is negated, and 
the slaves all negate /SLA YEN. But the cycle doesn't end. 
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The next step is called the vector phase. The bus controller asserts one /SLAVEN back to one of 
the interrupting PICs, along with /MTCR and /DSo, but no addresses are supplied. That PIC will 
then assert its 8 bit vector onto the logical Do-07 (physically ADis-ADs) of the 32-bit data bus 
and /DTACK, as quickly as possible, thus terminating the cycle. The speed here is very critical; 
an automatic autovector timeout will occur very quickly, as any actual waiting that's required for 
the quick interrupt vector is potentially delaying the autovector response for Zorro II style 
interrupts. A PIC stops driving its interrupt when it gets the response cycle; it must also be 
possible for this interrupt to be cleared in software (e.g., the PIC must make choice of vectoring 
vs. autovectoring a software issue). 

/FCS 

/MTCR 

/SLAVE 

AD19 .. AD16 
SA3,SA2,/LOCK 

DOE 

!DSO 

SD7 .. SDO 

/DTACK 

Poll Phase 

Figure K-8: Interrupt Vector Cycle 

COMPATIBILITY WITH ZORRO II DEVICES 

Vector Phase 

As detailed in the Zorro II Compatibility section, the Zorro III bus supports a bus cycle mode 
very similar to the 68000-based Zorro II bus, and is expected to be compatible with all properly 
designed Zorro II PICs. As shown in Figure 9-1, Zorro II and Zorro III expansion spaces are 
geographically mapped on the Zorro III bus. The mapping logic resides on the bus, and operates 
on the bus address presented for any cycle. Every cycle starts out assuming a Zorro III cycle, but 
the mapping logic will inscribe a Zorro II cycle within the Zorro III cycle if the address range is 
right. Figure K-9 details the bus action for this mode. 

The cycle starts out with the usual address phase activity; the bus master asserts /FCS after 
asserting the full 32-bit address onto the address bus. The bus decoder maps the bus address 
asynchronously and quickly, so that by the time /FCS is asserted, the memory space is 
determined. A Zorro II space access will cause As-A23 to remain asserted, rather than being tri­
statcd along with A24-A3I, as the Zorro III cycle normally does. The bus controller synchs the 
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------------------------------------------------------------

asynchronous /FCS on the falling edge of CDAC, then drives /CCS (the /AS equivalent) out on 
the rising edge of 7M, based on that synched /FCS. For a read cycle, /DS3 and/or !DS2 (the IUDS 
and /LDS replacements, respectively) would be asserted along with /CCS; write cycles see those 
lines asserted on the next rising edge of 7M, at S4 time. The DOE line is also asserted at the start 
ofS4. 

Read Cycle Write Cycle 

!FCS 

CDAC 

7M 

/CCS 

AD31..AD24 ---< 

AD23 .. AD8 --< >---< " SA7 .. SA2 ..___ ------------~- ..__ _____________ ____,r-

READ 

/SLAVE 

DOE 

/DS3JDS2 

/DTACK 

Figure K-9: Zorro II Within Zorro III 

The bus controller starts to sample /DT ACK on the falling edge of 7M between S4 and Ss, adding 
wait states until /DT ACK is encountered. As per Zorro II specs, the PIC need not create a 
/DTACK unless it needs that level of control; there are Zorro II signals to delay the controller­
generated /DTACK, or take it over when necessary. The controller will drive its automatic 
/DT ACK at the start of S4, leaving plenty of time for the sampling to come at Ss. Once a 
/DTACK is encountered, cycle termination begins. The controller latches data on the falling 7M 
edge between S6 and S7, and also negates /CCS and the /DSN at this time. Shortly thereafter, the 
controller negates /DT ACK (when controlling it), DOE, and tri-states the data bus, getting ready 
for the next cycle. 
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Signal Description 

The signals detailed here are the Zorro III mode signals. While some of this information is the 
same as in the Zorro II signal description in the Zorro II Compatibility section, many bus signals 
that seem alike behave differently in Zorro III mode than Zorro II mode. These can be a very 
important differences; thus the complete set of signals is detailed here. 

POWER CONNECTIONS 

The expansion bus provides several different voltages designed to supply expansion devices. 
These are basically the same for the Zorro III bus as they were for the Zorro II bus, with the 
exception of one pin, and that the specification has been clarified a bit. Note that all Zorro III 
PICs must list their power consumption specifications. 

Digital Ground (Ground) 
This is the digital supply ground used by all expansion cards as the return path for all 
expansion supplies. 

Main Supply ( +5VDC) 
This is the main power supply for all expansion cards, and it is capable of sourcing large 
currents; each PIC can draw up to 2.0 Amps @ +5VDC. 

Negative Supply ( -5VDC) 
This is a negative version of the main supply, for small current loads only; each PIC can 
draw up to 60 rnA @ -5VDC. 

High Voltage Supply (+12VDC) 
This is a higher voltage supply, useful for communications cards and other devices requiring 
greater that digital voltage levels. This is intended for relatively small current loads only; 
each PIC can draw up to 500mA@ + 12VDC. 

Negative High Supply (-12VDC) 
Negative version of the high voltage supply, also used in communications applications, and 
similarly intended for small loads only; each PIC can draw up to 60 rnA@ -12VDC. 
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CLOCK SIGNALS 

The expansion bus provides clock signals for expansion boards. The main use for these clocks on 
Zorro III cards is bus arbitration clocking. There is no relationship between any of these clocks 
and normal Zorro III bus activity. The relationship between these clocks is illustrated in Figure 
9-3. 

/Cl Clock 
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the falling edge of 
the 7M system clock. 

/C3 Clock 
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the rising edge of 
the 7M system clock. 

CDAC Clock 
This is a 7.16 MHz system clock (7.09 MHz on PAL systems) which trails the 7M clock by 
90° (approximately 35ns). 

E Clock 
This is the 68000 generated "E" clock, used for 6800 family peripherals driven by "E" and 
6502 peripherals driven by <1>2. This clock is four 7M clocks high, six clocks low, as per the 
68000 spec. 

7M Clock 
This is the 7.16 MHz system clock (7.09 MHz on PAL systems). This clock drives the bus 
master registration mechanism for Zorro Ill bus masters. 

SYSTEM CONTROL SIGNALS 

The signals in this group are available for various types of system control; most of these have an 
immediate or near immediate effect on expansion cards and/or the system CPU itself. 

Hardware Bus Error/Interrupt (/BERR) 
This is a general indicator of a bus fault or special condition of some kind. Any expansion 
card capable of detecting a hardware error relating directly to that card can assert /BERR 
when that bus error condition is detected, especially any sort of harmful hardware error 
condition. This signal is the strongest possible indicator of a bad situation, as it causes all 
PICs to get off the bus, and will usually generate a level 2 exception on the host CPU. For 
any condition that can be handled in software and doesn't pose an immediate threat to 
hardware, notification via a st<mdard processor interrupt is the better choice. The bus 
controller will drive /BERR in the event of a detected bus collision or DMA error (an attempt 
by a bus master to access local bus resources it doesn't have valid access permission for). All 
cards must monitor /BERR and be prepared to tri-state all of their on-bus output buffers 
whenever this signal is asserted. An expansion bus master will attempt to retry a cycle 
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aborted by a single /BERR and notify system software in the case of two subsequent /BERR 
results. Since any number of devices may assert /BERR, and all bus cards must monitor it, 
any device that drives /BERR must drive with an open collector or similar device, and any 
device that monitors /BERR should place a minimal load on it. This signal is pulled high by 
a passive backplane resistor. 

Note that, especially for the slave device being addressed, that /BERR alone is not always 
necessaily an indication of a bus failure in the pure sense, but may indicate some other kind of 
unusual condition. Therefore, a device should still respond to the bus address, if otherwise 
appropriate, when a /BERR condition is indicated. It simply tri-states is bus buffers and other 
outputs, and waits for a change in the bus state. If the /BERR signal is negated with the cycle 
unterminated, the special condition has been resolved and the slave responds to the rest of the 
cycle as it normally would have. If the cycle is terminated by the bus master, the resolution of the 
special condition has indicated that the addressed slave is not needed, and so the cycle terminates 
without the slave being used. 

System Reset (/RESET, /IORST) 
The bus supplies two versions of the system reset signal. The /RESET signal is bi­
directional and unbuffered, allowing an expansion card to hard reset the system. It should 
only be used by boards that need this reset capability, and is driven only by an open collector 
or similar device. The /IORST signal is a buffered output-only version of the reset signal 
that should be used as the normal reset input to boards not concerned with resetting the 
system on their own. All expansion devices are required to reset their autoconfiguration 
logic when /IORST is asserted. These signals are pulled high by passive backplane resistors. 

System Halt' (/HL T) 
This signal is driven, along with /RESET, to assert a full-system reset. A full-system reset is 
asserted on a powerup reset or a keyboard reset; any PIC that needs to differentiate between 
full system and 1/0 reset should monitor /HLT and /IORST unless it also needs to drive a 
reset condition. This is driven with an open-collector output, or the equivalent, and pulled up 
by a backplane resistor. 

System Interrupts 
Two of the decoded, level-sensitive 680x0 interrupt inputs are available on the expansion 
bus, and these are labeled as /INT2 and /INT6. Each of these interrupt lines is shared by wired 
ORing, thus each line must be driven by an open-collector or equivalent output type. Zorro 
III interrupts can be handled Zorro II style, via autovectors and daisy-chained polling, or they 
can be vectored using the quick interrupt protocol described in the Bus Architecture section. 
Zorro II and Zorro III systems originally provided /INTI, /INT4, liNTs, and /INT7 lines as 
well, but as these were never properly supportable by system software, they have been 
eliminated. Those lines are considered reserved for future use in a Zorro III system. 
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SLOT CONTROL SIGNALS 

This group of signals is responsible for the control of operations between expansion slots. 

Slave (ISLA VEN) 
Each slot has its own /SLAVEN output, driven actively, all of which go into the collision 
detect circuitry. The "N" refers to the expansion slot number of the particular /SLAVE 
signal. Whenever a Zarro III PIC is responding to an address on the bus, it must assert its 
/SLAVEN output very quickly. If more than one /SLAVEN output occurs for the same 
address, or if a PIC asserts its /SLAVEN output for an address reserved by the local bus, a 
collision is registered and the bus controller asserts /BERR. The bus controller will assert 
/SLAVEN back to the interrupting device selected during a Quick Interrupt cycle, so any 
device supporting Quick Interrupts must be capable of tri-stating its /SLAVEN; all others can 
drive SLAVEN with a normal active output. 

Configuration Chain (/CFGINN, /CFGOUTN) 
The slot configuration mechanism uses the bus signals /CFGOUTN and /CFGINN, where 
• 'N'' refers to the slot number. Each slot has its own version of both signals, which make up 
the configuration chain between slots. Each subsequent /CFGINN is a result of all previous 
/CFGOUTs, going from slot 0 to the last slot on the expansion bus. During the 
autoconfiguration process, an unconfigured Zarro III PIC responds to the 64K address space 
starting at either $00E80000 or $FFOOOOOO if its /CFGINN signal is asserted. All 
unconfigured PICs start up with /CFGOUTN negated. When configured, or told to "shut up;' 
a PIC will assert its /CFGOUTN, which results in the /CFGINN of the next slot being 
asserted. Backplane logic automatically passes on the state of the previous /CFGOUTJ'\ to the 
next /CFGINN for any slot not occupied by a PIC, so there's no need to sequentially populate 
the expansion bus slots. 

Backplane Type Sense (SenseZ3) 
This line can be used by the PIC to determine the backplane type. It is grounded on a Zarro 
II backplane, but floating on a Zarro III backplane. The Zarro III PIC connects this signal to 
a lK pullup resistor to generate a real logic level for this line. ll's possible, though more 
complicated, to build a Zarro III PIC that can actually run in Zarro II mode when in a Zarro 
II backplane. It's hardly necessary or required to support this backward compatibility 
mechanism, and in many cases it will be inpractical. The Zarro III specification does require 
that this signal be used, at least, to shut the card down and pass /CFGIN to /CFGOUT when 
in a Zarro II backplane. 

DMA CONTROL SIGNALS 

There are various signals on the expansion bus that coordinate the arbitration of bus masters. 
Zarro II bus masters use some of the same logical signals, but their arbitration protocol is 
considerably different. 
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PIC is DMA Owner (/OWN) 
This is asserted by the bus controller when a master is about to go on the bus and indicates 
that some master owns the bus. Zorro II bus masters drive this, and some Zorro III slaves 
may find a need to monitor it, or /BGACK, to determine who's the bus master. This is 
ordinarily not important to Zorro III PICs, and they may not drive this line. 

Slot Specific Bus Arbitration (JBRN, /BGN) 
These are the slot-specific /BR.N and /BGN signals, where "N" refers to the expansion slot 
number. The bus request from each board is taken in by the bus controller and ultimately 
used to take over the system from the primary bus master, which is always the local master. 
Zorro III PICs toggle /BR.N to register or unregister as a master with the bus controller. /BGN 
is asserted to one registered PIC at a time, on a cycle by cycle basis, to indicate to the PIC 
that it gets the bus for one full cycle. 

Bus Grant Acknowledge (/BGACK) 
Asserted by the bus controller when a master is about to go on the bus. As with /OWN, most 
Zorro III PICs ignore this signal, and none may drive it. 

Bus Want/Clear (/BCLR) 
This signal is asserted by the bus controller to indicate that a PIC wants to master the bus; 
Zorro III cards can use this to determine if any Zorro II bus requests are pending; Zorro III 
bus requests don't affect /BCLR. 

ADDRESS AND RELATED CONTROL SIGNALS 

These signals are various items used for the addressing of devices in Zorro III mode by bus 
masters either on the bus or from the local bus. The bus controller translates local bus signals 
(68030 protocol on the A3000) into Zorro III signals; masters are responsible for creating the 
appropriate signals via their own bus control logic. 

Read Enable (READ) 
Read enable for the bus; READ is asserted by the bus master during a bus cycle to indicate a 
read cycle, READ is negated to indicate a write cycle. READ is asserted at address time, 
prior to /FCS, for a full cycle, and prior to /MTCR for a short cycle. READ stays valid 
throughout the cycle; no latching required. 

Multiplexed Address Bus (As-A31) 
These signals are driven by the bus master during address time, prior to the assertion of 
/FCS. Any responding slave must latch as many of these lines as it needs on the falling edge 
of /FCS, as they're tri-stated very shortly after /FCS goes low. These addresses always 
include all configuration address bits for normal cycles, and the cycle type information for 
Quick Interrupt cycles. 

Short Address Bus (A2-A1) 
These signals are driven by the bus master during address time, prior to the assertion of 
/FCS, for full cycles, and prior to the assertion of /MTCR for short cycles. They stay valid 
for the entire full or short cycle, and as such do not need to be latched by responding slaves. 
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Memory Space (FCo-FC2) 
The memory space bits are an extension to the bus address, indicating which type of access is 
taking place. Zorro III PICs must pay close attention to valid memory space types, as the 
space type can change the type of the cycle driven by the current bus master. The encoding 
is the same as the valid Motorola function codes for normal accesses. These are driven at 
address time, and like the low short address, are valid for an entire short or full cycle. 

FCo FC1 FC2 Address Space Type Z3 Response 

0 0 0 Reserved None 

0 0 1 User Data Space Memory 

0 1 0 User Program Space Memory 

0 1 1 Reserved None 

1 0 0 Reserved None 

1 0 1 Supervisor Data Space Memory 

1 1 0 Supervisor Program Space Memory 

1 1 1 CPU Space Interrupts 

Table K-1: Memory Space Type Codes 

Compatibility Cycle Strobe (/CCS) 
This is equivalent to the Zorro II address strobe, /AS. A Zorro III PIC doesn't use this for 
normal operation, but may use it during the autoconfiguration process if configuring at the 
Zorro II address. AUTOCONFIG cycles at $00E8xxxx always look like Zorro II cycles, 
though /FCS and the full Zorro III address is available, so a card can use either Zorro II or 
Zorro III addressing to start the cycle. However, using the /CCS strobe can save the designer 
the need to compare the upper 8 bits of the address. Data must be driven Zorro II style, 
though if the /DSN lines are respected for reads, /CINH is asserted, and /MT ACK is negated, 
the resulting Zorro III cycle will fit within the expected Zorro II cycle generated by the bus 
controller. Yes, that should sound weird; it's based on the mapping of Zorro II vs. Zorro III 
signals, and of course the fact that /FCS always starts any cycle. Also note that a bus cycle 
with /CCS asserted and /FCS negated is always a Zorro II PIC-as-master cycle. Many Zorro 
III cards will instead configure at the alternate $FFOOxxxx base address, fully in Zorro III 
mode, and thus completely ignore this signal. 

Full Cycle Strobe (!FCS) 
This is the standard Zorro III full cycle strobe. This is asserted by the bus master shortly 
after addresses are valid on the bus, and signals the start of any kind of Zorro III bus cycle. 
Shortly after this line is asserted, all the multiplexed addresses will go invalid, so in general, 
all slaves latch the bus address on the falling edge of /FCS. Also, /BGN line is negated for a 
Zorro III mastered cycle shortly after /FCS is asserted by the master. 
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DATA AND RELATED CONTROL SIGNALS 

The data time signals here manage the actual transfer of data between master and slave for both 
full and short cycle types. The burst mode signals are here too, as they're basically data phase 
signals even through they don't only concern the transfer of data. 

Data Output Enable (DOE) 
This signal is used by an expansion card to enable the buffers on the data bus. The bus 
master drives this line is to keep slave PICs from driving data on the bus until data time. 

Data Bus (Do-D3I) 
This is the Zorro III data bus, which is driven by either the master or the slave when DOE is 
asserted by the master (based on READ). It's valid for reads when /DTACK is asserted by 
the slave; on writes when at least one of /DSN is asserted by the master, for all cycle types. 

Data Strobes (/DSN) 
These strobes fall during data time; /DS3 strobes D24-D3I, while /DSo strobes Do-D7. For 
write cycles, these lines signal data valid on the bus. At all times, they indicate which bytes 
in the 32-bit data word the bus master is actually interested in. For cachable reads, all four 
bytes must be returned, regardless of the value of the sizing strobes. For writes, only those 
bytes corresponding to asserted /DSN arc written. Only contiguous byte cycles are 
supported; e.g., /DS3-0 = 2, 4, 5, 6, or 10 is invalid. 

Data Transfer Acknowledge (/DT ACK) 
This signal is used to normally terminate a Zorro III cycle. The slave is always responsible 
for driving this signal. For a read cycle, it asserts /DT ACK as soon as it has driven valid data 
onto the data bus. For a write cycle, it asserts /DTACK as soon as it's done with the data. 
Latching the data on writes may be a good idea; that can allow a slave to end the cycle before 
it has actually finished writing the data to its local memory. 

Cache Inhibit (/CINH) 
This line is asserted at the same time as /SLA YEN to indicate to the bus master that the cycle 
must not be cached. If a device doesn't support caching, it must assert /CINH and actually 
obey the /DSN byte strobes for read cycles. Conversely, if the device supports caching, 
/CINH is negated and the device returns all four bytes valid on reads, regardless of the actual 
supplied /DSN strobes. 

Multiple Cycle Transfers (!MTCR, /MT ACK) 
These lines comprise the Multiple Transfer Cycle handshake signals. The bus master asserts 
/MTCR at the start of data time if it's capable of supporting Multiple Transfer Cycles, and 
the slave asserts /MTACK with /SLA YEN if it's capable of supporting Multiple Transfer 
Cycles. If the handshake goes through, /MTCR strobes in the short address and write data as 
long as the full cycle continues. 
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Timing 

Some of this information is considered preliminary. Nothing is expected to get any more speed 
critical, but as mentioned previously, the testing of Zorro III designs has just started at the time of 
this writing, final bus controllers are not yet available, and only a few PIC designs have even been 
conceived. 

This section covers the various timing specifications in detail for different Zorro III operations. 
It's important to realize that this timing information is a specification. Actual Zorro III systems 
may offer much more relaxed timings. Today. The whole point of the specification is that as 
long as all Zorro III PICs and all Zorro III backplanes base things on the timings given here, 
they'll always work together nicely. Any design based on the actual characteristics of any 
particular backplane will very likely wind up working only on that particular backplane. 

The philosophy of timing on the Zorro III bus is to keep things as simple as possible without 
compromising the performance goals of the bus. Zorro III PICs are expected to be based on F­
Series or ACT-series TTL logic, fast PALs, and possibly full custom chip designs. It's very 
unlikely the designer will meet any of these specifications with the LS parts left over from old 
Zorro II card designs. 

STANDARD READ CYCLE TIMING 

No. Name Symbol Min Max 

1 Address setup to /FCS TAFS 15ns 

2 Address hold from /FCS Tl!AF IOns 

3 /FCS to /SLA YEN delay TSLV 25ns 

4 /FCS to DOE delay TDOE 30ns 

5 DOE to /DSN delay Tos IOns 

6 Data setup to /DT ACK TRos Ons 

7 /DT ACK to /FCS off TOFF IOns 

8 Master signal hold from /FCS off THMC Ons 5ns 

9 Slave signal hold from /FCS off THSC Ons 15ns 

11 /FCS to /CCS delay Tees 35ns 175ns 

12 /CCS off to /FCS off TOVL 40ns 
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Figure K-10: Read Cycle Timing 
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STANDARD WRITE CYCLE TIMING 
No. Name Symbol Min Max 

I Address setup to /FCS TAFS I5ns 

2 Address hold from /FCS THAF IOns 

3 /FCS to /SLAVEN delay TSLV 25ns 

4 /FCS to DOE delay TDOE 30ns 

5 DOE to /DSN delay Tos IOns 

7 /DTACK to /FCS off TOFF IOns 

8 Master signal hold from FCS off THMe Ons 5ns 

9 Slave signal hold from /FCS off THse Ons I5ns 

IO Write data setup to /DSN Twos 5ns 

11 /FCS to /CCS delay Tees 35ns I75ns 

12 /CCS off to /FCS off TOVL 40ns 
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Figure K-11: Write Cycle Timing 
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---- -- ---- -- -------------------------------------

MULTIPLE TRANSFER CYCLE TIMING 
No. Name Symbol Min Max 

I Address setup to /FCS TAFS I5ns 

2 Address hold from /FCS THAF IOns 

3 /FCS to /SLA YEN, /MTACK delay TSLV 25ns 

4 /FCS to DOE delay TDOE 30ns 

5 DOE to /DSN, /MTCR delay Tos IOns 

6 Data setup to /DT ACK TRDS Ons 

7 /DT ACK to /FCS, /MTCR off TOFF IOns 

8 Master signal hold from /FCS off THMC Ons 5ns 

9 Slave signal hold from /FCS off THSC Ons I5ns 

10 Write data setup to /DSN Twos 5ns 

13 Address, READ setup to /MTCR TAMS 5ns 

I4 /MTCR off to /MTCR on TREF IOns 

I5 Address, READ hold from /MTCR THAM Ons 

I6 /MTACK off to /MTCR TBCD IOns 

I7 Slave signal hold from /MTCR off THSM Ons 5ns 
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Figure K-12: Multiple Transfer Cycle Timing 
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QUICK INTERRUPT CYCLE TIMING 
No. Name Symbol Min Max 

1 Address setup to /FCS TAFS 15ns 

2 Address hold from /FCS THAF IOns 

3 IFCS to ISLA YEN delay TSLV 25ns 

5 DOE to /DSN delay Tos IOns 

6 Data setup to /DTACK TR.os Ons 

7 /DTACK to /FCS off TOFF tOns 

8 Master signal hold from /FCS off THMC Ons 5ns 

9 Slave signal hold from /FCS off THSC Ons 15ns 

14 /MTCR off to /MTCR on TREF tOns 

17 Slave signal hold from /MTCR off THSM Ons 5ns 

18 Poll Phase time TPOL 30ns lOOns 

19 Vector Phase start to /DT ACK time TVEC lOOns 
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Figure K-13: Quick Interrupt Cycle Timing 
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Electrical Specifications 

The Zorro III bus has a number of electrical specifications that are very important for 
PICdesigners to consider, along with the timing parameters of course. It's extremely important to 
base designs on the specification of the backplane, rather than the actual behavior of the 
backplane. New backplanes for new machines are designed to conform to the specification, they 
are not necessarily based on previous designs. This is especially important with the Zorro III bus, 
since timing is far more critical than in the past, and the bus controller is designed from this 
specification, rather than the reverse, as in the Amiga 2000. 

EXPANSION BUS LOADING 

The Zorro III bus loading is specified based on typical TIL family "F" series buffer devices, 
though in reality, compatible CMOS devices are likely to be used in some bus controllers or 
PICs. Thus, it's important to accept the TIL levels as a minimum voltage level, and make sure 
that all inputs are the appropriate TIL levels, while outputs can be at TIL or CMOS voltage 
levels as long as they provide the required source and sink. 

While some A2000 designs used "LS" or "ALS" buffers instead of "F," the bus will generally 
work with these older cards, at least with current backplane designs such as the A3000 backplane. 
However, Zorro III designs must exactly obey these loading rules; it's very probable that some 
future Zorro III machines will have a large number of slots. In such machines, PICs built on the 
Zorro II specification will still work in a lightly loaded bus, but may not function in a fully loaded 
bus. All Zorro III PICs built to spec will work in any Zorro III backplane, without any loading 
problems, if all loading and timing rules are followed by the PIC designer. The bus signals are 
divided up into the four groups shown in Table 9-2, based on the loading characteristics of the 
particular signal. The signals in each group are given here. Standard Signals 
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The majority of signals on the bus are in this group. These are bussed signals, driven actively on 
the bus by F-series (or compatible) drivers such as 74F245, usually tri-stated when ownership of 
the signal changed for master and slave, and generally terminated with a 220.Q/330Q thevenin 
terminator. PICs can apply two standard loads to each of these signals when necessary. 

/FCS 
Az-A7 
FCo-FC2 
/MfCR 

Clock Signals 

!CCS 
ADs-AD31 
DOE 
/MfACK 

/DSo-/DS3 
SDo-SD1 
/IORST 

/LOCK 
READ 

/BCLR 

All clock signals on the bus are in this group. Many designs are very sensitive to clock delay, 
skew, and rise/fall times, so loading on the clock lines must be kept to a minimum. These are 
bussed signals, actively driven by the backplane, and source terminated with a low value series 
resistor. PICs can apply one standard load to each of these signals when necessary. Zorro II cards 
have the same clock rules, so there should never be clocking problems when using either card 
type in a backplane. 

/C3 
EOock 

CDAC 

Open Collector Signals 

/Cl 7M 

Many of the bus signals are shared via open collector or open drain outputs rather than via tri­
stated signals; this is of course required for some asynchronous things like the shared interrupt 
lines, and it works well for other types of signals as well. Of course, a backplane resistor pulls 
these lines high, PICs only drive the line low. 

/OWN 
/DTACK 
/HLT 

Non-bussed Signals 

/BGACK 
/RESET 

/CINH 
/INT2 

/BERR 
/INT6 

The non-bussed, or slot specific, signals are involved with only one slot on the bus (e.g., each slot 
has its own copy). As a result, the drive requirements are much less for these signals. The 
backplane provides pullups or pulldowns, as required by the specific signal. 

/CFGINN 
SenseZ3 

/CFGOUTN 
/SLAVEN 

/BRN /BGN 
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SLOT POWER AVAILABILITY 

The system power for the Zorro III bus is totally based on the slot configurations. A backplane is 
always free to supply extra power, but it must meet the minimum requirements specified here. 
All PICs must be designed with the minimum specifications in mind, especially the tolerances. 

Pin 

5,6 
8 
10 
20 

Supply 

+5 VDC ± 5%@ 2 Amps 
-5 VDC±5%@ 60mA 
+ 12 VDC ± 5%@ 500mA 
-12 VDC ± 5%@ 60mA 

TEMPERATURE RANGE 

The Zorro III bus is specified for operation over a temperature range of 0° C to 70° C. 
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Mechanical Specifications 

This section covers the various mechanical details of Zorro III cards. 
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BASIC ZORRO Ill PIC 

This drawing shows the 
basic Zorro III PIC. All of 
the dimensions are in 
millimeters. 
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PIC WITH ISA OPTION 

This drawing shows the 
basic Zorro III PIC, with 
both Zorro III and the ISA 
Bus fingers specified. All 
of the dimensions are in 
millimeters. 
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PIC WITH VIDEO OPTION 

This drawing shows the 
basic Zorro III PIC, with 
both Zorro III and the 
Amiga Video Slot fingers 
specified. All of the 
dimensions are in milli­
meters. Please consult the 
A500!A2000 Technical 
Reference Manual for the 
form factor specification of 
a video-only card that will 
fit both Amiga 2000 and 
Amiga 3000 computers. 
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AUTOCONFIG™ 

THE AUTOCONFIG MECHANISM 

The AUTOCONFIG mechanism used for the Z<mo III bus is an extension of the original Zarro II 
configuration mechanism. The main reason for this is that the Zarro II mechanism works so well, 
there was little need to change anything. The changes are simply support for new hardware 
features on the Zarro III bus. 

Amiga autoconfiguration is surprisingly simple. When an Amiga powers up or resets, every card 
in the system goes to its unconfigured state. At this point, the most important signals in the 
system are /CFGINN and /CFGOUTN. As long as a card's /CFGINN line is negated, that card sits 
quietly and does nothing on the bus (though memory cards should continue to refresh even 
through reset, and any local board activities that don't concern the bus may take place after 
/RESET is negated). As part of the unconfigured state, /CFGOUTN is negated by the PIC 
immediately on reset. 

The configuration process begins when a card's /CFGINN line is asserted, either by the backplane, 
if it's the first slot, or via the configuration chain, if it's a later card. The configuration chain 
simply ensures that only one unconfigured card will see an asserted /CFGINN at one time. An 
unconfigurcd card that sees its /CFGINN line asserted will respond to a block of memory called 
configuration space. In this block, the PIC will assert a set of read-only registers, followed by a 
set of write-only registers (the read-only registers are also known as AUTOCONFIG ROM). 
Starting at the base of this block, the read registers describe the device's size, type, and other 
requirements. The operating system reads these, and based on them, decides what should be 
written to the board. Some write information is optional, but a board will always be assigned a 
base address or be told to shut up. The act of writing the final bit of base address, or writing 
anything to a shutup address, will cause the PIC to assert its /CFGOUTN, enabling the next board 
in the configuration chain. 

The Zarro II configuration space is the 64K memory block $00E8xxxx, which of course is driven 
with 16-bit Zarro II cycles; all Zarro II cards configure there. The Zorro III configuration space is 
the 64K memory block beginning at $FF00xxxx, which is always driven with 32-bit Zarro III 
cycles (PICs need only decode A3t-A24 during configuration). A Zarro III PIC can configure in 
Zarro II or Zorro III configuration space, at the designer's discretion, but not both at once. All 
read registers physically return only the top 4 bits of data, on 03!-028 for either bus mode. Write 
registers are written to support nybble, byte, and word registers for the same register, again based 
on what works best in hardware. This design attempts to map into real hardware as simply as 
possible. Every AUTOCONFIG register is logically considered to be 8 bits wide; the 8 bits 
actually being nybblcs from two paired addresses. 
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The register mappings for the two different blocks are shown in Figure 9-10. All the bit patterns 
mentioned in the following sections arc logical values. To avoid ambiguity, all registers are 
referred to by the number of the first register in the pair, since the first pair member is the same 
for both mapping schemes. In the actual implementation of these registers, all read registers 
except for the 00 register are physically complemented; eg, the logical value of register 3C is 
always 0, which means in hardware, the upper nybbles of locations $00E8003C and $00E8003E, 
or $FF00003C and $FF00013C, both return all 1s. 

$00E80000 $FFOOOOOO 
!@] I I I a) Zorro II Style Mapping 

................... , ___ _ WJill _J I I I I b) Zorro III Style Mapping 
... ~ ....... --

(OOI02) 17 !6lsl413I2III_91 
------- -

~~--n\ ___ _ 
$00E80002 

Figure K-14: Configuration Register Mapping 

REGISTER BIT ASSIGNMENTS 

The actual register assignments are below. Most of the registers are the same as for the Zarro II 
bus, and are included here for completeness. The Amiga OS software names for these registers in 
the ExpansionRom or Expansion Control structures are included. 

Reg ZII ZIII Bit 

00 02 100 7,6 These bits encode the PIC type: 
(er_Type) 

00 Reserved 
01 Reserved 
10 Zarro III 
11 Zarro II 

5 If this bit is set, the PIC's memory will be linked into the system free 
pool. The Zarro III register 08 may modify the size of the linked memory. 
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4 Setting this bit tells the OS to read an autoboot ROM. 

3 This bit is set to indicate that the next board is related to this one; often 
logically separate PICs are physically located on the same card. 

2-0 These bits indicate the configuration size of the PIC. This size can be 
modified for the Zarro III cards by the size extension bit, which is the new 
meaning of bit 5 in register 08. 

Bits 
000 
001 
010 
011 
100 
101 
110 
111 

Unextended 
8 megabytes 
64 kilobytes 
128 kilobytes 
256 kilobytes 
512 kilobytes 
1 megabyte 
2 megabytes 
4 megabytes 

Extended 
16 megabytes 
32 megabytes 
64 megabytes 
128 megabytes 
256 megabytes 
512 megabytes 
1 gigabyte 
RESERVED 

04 06 104 7-0 The device's product number, which is completely up to the manufacturer. 
(er_Product) This is generally unique between different products, to help in 

identification of system cards, and it must be unique between devices using 
the automatic driver binding features. 

08 OA 108 7 This was originally an indicator to place the card in the 8 megabyte Zarro II 
(er_Flags) space, when set, or anywhere it'll fit, if cleared. Under the Zarro III 

spec, this is set to indicate that the board is basically a memory device, 
cleared to indicate that the board is basically an 1/0 device. 

6 This bit is set to indicate that the board can't be shut up by software, 
cleared to indicate that the board can be shut up. 

5 This is the size extension bit. If cleared, the size bits in register 00 
mean the same as under Zorro II, if set, the size bits indicate a new size. 
The most common new Zorro III sizes are the smaller ones; all new sized cards 
get aligned on their natural boundaries. 

4 Reserved, must be 1 for all Zorro III cards. 

3-0 These bits indicate a board's sub-size; the amount of memory actually 
required by a PIC. For memory boards that auto-link, this is the actual 
amount of memory that will be linked into the system free memory pool. A 
memory card, with memory starting at the base address, can be automatically 
sized by the Operating System. This sub-size option is intended to support 
cards with variable setups without requiring variable physical configuration 
capability on such cards. It also may greatly simplify a Zorro III design, 
since 16-megabyte cards and up can be designed with a single latch and 
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comparator for base address matching, while 8 megabyte and smaller PICs 
require large latch/comparator circuits not available in standard TIL 
packages. 

Bits Encoding 
0000 Logical size matches physical size 
0001 Automatically sized by the Operating System 
0010 64 kilobytes 
0011 128 kilobytes 
0100 256 kilobytes 
0101 512 kilobytes 
0110 1 megabyte 
0111 2 megabytes 
1000 4 megabytes 
1001 6 megabytes 
1010 8 megabytes 
1011 10 megabytes 
1100 12 megabytes 
1101 14 megabytes 
1110 Reserved 
1111 Reserved 

For boards that wish to be automatically sized by the operating system, a few 
rules apply. The memory is sized in 512K increments, and grows from the base 
address upward. Memory wraps are detected, but the design must insure that 
its data bus doesn't float when the sizing routine addresses memory locations 
that aren't physically present on the board; data bus pull ups or pulldowns 
are recommended. This feature is designed to allow boards to be easily 
upgraded with additional or increased density memoried without the need for 
memory configuration jumpers. 

OC OE 10C 7-0 Reserved, must be 0. 
( er _ Reserved03) 

10 
14 

18 
lC 
20 
24 

12 110 7-0 
16 114 7-0 
( er _Manufacturer) 

1A 118 7-0 
1E llC 7-0 
22 120 7-0 
26 124 7-0 
(er_SeriaiNumber) 

Manufacturer's number, high byte. 
Manufacturer's number, low bytes. These are unique, and can only be assigned 
by Commodore (CATS). 

Optional serial number, byte 0 (msb) 
Optional serial number, byte 1 
Optional serial number, byte 2 
Optional serial number, byte 3 (lsb) 
This is for the manufacturer's use and can contain anything at all. The 
main intent is to allow a manufacturer to uniquely identify individual 
cards, but it can certainly be used for revision information or other data. 
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28 2A 128 7-0 Optional ROM vector, high byte. 

2C 2E 12C 7-0 Optional ROM vector, low byte. 
(er_InitDiagVec) If the ROM address valid bit (bit 4 of register (00102)) is set, these two 

registers provide the sixteen bit offset from the board's base at which the 
start of the ROM code is located. If the ROM address valid bit is cleared, 
these registers are ignored. 

30 32 130 7-0 Reserved, must be 0. Unsupported base register reset register under Zorro 
(er_ReservedOc) II~ 

34 36 134 7-0 
( er _ ReservedOd) 

38 3A 138 7-0 
( er _ ReservedOe) 

3C 3E 13C 7-0 
(er _ ReservedOI) 

40 42 140 7-0 
( ec _Interrupt) 

44 46 144 7-0 
48 4A 148 7-0 

(ec_Z3_HighByte) 

( ec _ BaseAddress) 

Reserved, must be 0. 

Reserved, must be 0. 

Reserved, must be 0. 

Reserved, must be 0. Unsupported control state register under Zorro n? 

High order base address register, write only. 
Low order base address register, write only. 
The high order register takes bits 31-24 of the board's configured address, 
the low order register takes bits 23-16. For Zorro III boards configured in 
the Zorro II space, the configuration address is written both nybble and 
byte wide, with the ordering: 

Reg Nybble Byte 

46 A27-A24 N/A 
44 A31-A2s A31-A24 
4A AI9-Al6 N/A 
48 A23-A2o A23-At6 

6 The original Zmo specifications called for a few registers, like these, that remained active after configuration. 
Support for this is impossible, since the configuration registers generally disappear when a board is configured, and 
absolutely must move out of the $00E8xxxx space. So since these couldn't really be implemented in hardware, system 
software has never supported them. They're included here for historical purposes. 

7 IBID 
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Note that writing to register 48 actually configures the board for both 
Zorro II and Zorro III boards in the Zorro II configuration block. For 
Zorro III PICs in the Zorro III configuration block, the action is slightly 
different. The software will actually write the configuration as byte and 
word wide accesses: 

Reg Byte Word 

48 A23-AI6 N/A 
44 A3t-A24 A3t-At6 

The actual configuration takes place when register 44 is written, thus 
supporting any physical size of configuration register. 

4C 4E 14C 7-0 Shut up register, write only. Anything written to 4C will cause a board 
(ec_Shutup) that supports shut-up to completely disappear until the next reset. 

so 52 150 7-0 Reserved, must be 0. 
54 56 154 7-0 Reserved, must be 0. 
58 SA 158 7-0 Reserved, must be 0. 
sc 5E 15C 7-0 Reserved, must be 0. 
60 62 160 7-0 Reserved, must be 0. 
64 66 164 7-0 Reserved, must be 0. 
68 6A 168 7-0 Reserved, must be 0. 
6C 6E 16C 7-0 Reserved, must be 0. 
70 72 170 7-0 Reserved, must be 0. 
74 76 174 7-0 Reserved, must be 0. 
78 7A 178 7-0 Reserved, must be 0. 
7C 7E 17C 7-0 Reserved, must be 0. 
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Physical and Logical Signal Names 

The Amiga 3000 Bus signals vary based on the particular bus mode in effect. This table lists each 
physical pin by physical name, and then by the logical names for Zorro II mode, Zorro III mode, 
address phase, and Zorro III data mode, data phase. 

PIN Physical Zorro II Zorro III Zorro III 
NO. Name Name Address Phase Data Phase 

1 Ground Ground Ground Ground 
2 Ground Ground Ground Ground 
3 Ground Ground Ground Ground 
4 Ground Ground Ground Ground 
5 +5VDC +5VDC +5VDC +5VDC 
6 +5VDC +5VDC +5VDC +5VDC 
7 /OWN /OWN /OWN /OWN 
8 -5VDC -5VDC -5VDC -5VDC 
9 /SLAVEN /SLAVEN /SLAVEN /SLAVEN 
10 +12VDC +12VDC +12VDC +12VDC 
11 /CFGOUTN /CFGOUTN /CFGOUTN /CFGOUTN 
12 /CFGINN /CFGINN /CFGINN /CFGINN 
13 Ground Ground Ground Ground 
14 /C3 /C3 Clock /C3 Clock /C3 Clock 
15 CDAC CDACClock CDAC Clock CDAC Clock 
16 /C1 /C1 Clock /C1 Clock /Cl Clock 
17 /CINH /OVR /CINH /CINH 
18 /MTCR XRDY /MTCR /MTCR 
19 liNTz /INT2 /INT2 /INT2 
20 -12VDC -12VDC -12VDC -12VDC 
21 As As As As 
22 /INT6 /INT6 /INT6 /INT6 
23 A6 A6 A6 A6 
24 A4 A4 A4 A4 
25 Ground Ground Ground Ground 
26 A3 A3 A3 A3 
27 A2 A2 A2 A2 
28 A1 A1 A1 A1 
29 !LOCK AI /LOCK !LOCK 
30 ADs As As Do 
31 FCo FCo FCo FCo 
32 AD9 A9 A9 D1 
33 FC1 FC1 FC1 FC1 
34 AD10 Aw Aw D2 
35 FC2 FC2 FC2 FC2 
36 AD11 A11 A11 03 
37 Ground Ground Ground Ground 
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PIN Physical Zorro II Zorro III Zorro III 

NO. Name Name Address Phase Data Phase 

38 AD12 A12 A12 D4 

39 ADI3 A13 A13 Ds 

40 Reserved (/EINT7) Reserved Reserved 

41 ADI4 AI4 At4 D6 
42 Reserved (fEINTs) Reserved Reserved 

43 ADIS Ats Ats D7 
44 Reserved (!EINT4) Reserved Reserved 

45 ADt6 At6 AI6 Ds 

46 /BERR /BERR /BERR /BERR 
47 ADI7 AI7 An D9 
48 /MTACK (!YPA) /MTACK /MTACK 
49 Ground Ground Ground Ground 
50 EOock E Clock EOock EOock 
51 /DSo (!YMA) /DSo /DSo 
52 ADIS AI8 AI8 DIO 

53 /RESET /RST /RESET /RESET 
54 ADI9 AI9 AI9 D11 

55 /HLT /HLT /HLT /HLT 

56 AD2o A2o Azo D12 
57 AD22 A22 A22 DI4 

58 AD21 A2I A21 D13 

59 AD23 A23 A23 DIS 
60 /BRN /BRN /BRN /BRN 
61 Ground Ground Ground Ground 
62 /BGACK /BGACK /BGACK /BGACK 
63 AD3I DIS A31 D3I 
64 /BGN /BGN /BGN /BGN 
65 AD3o DI4 A3o D30 
66 /DTACK /DTACK /DTACK /DTACK 
67 AD29 D13 A29 D29 
68 READ READ READ READ 
69 AD2s D12 A2s 028 
70 /DS2 /LDS /DS2 /DS2 
71 AD21 D11 A27 D21 
72 /DS3 IUDS /DS3 /DS3 
73 Ground Ground Ground Ground 
74 !CCS /AS !CCS !CCS 
75 SDo Do Reserved DI6 
76 AD26 D10 A26 D26 
77 SDI DI Reserved DI7 
78 AD2s D9 Azs 02s 
79 SD2 D2 Reserved DIS 
80 AD24 Ds A24 D24 
81 SD3 D3 Reserved DI9 
82 SD7 D7 Reserved D23 
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PIN Physical Zorro II Zorro III Zorroill 
NO. Name Name Address Phase Data Phase 

83 SD4 D4 Reserved D2o 
84 SD6 D6 Reserved D22 
85 Ground Ground Ground Ground 
86 SDs Ds Reserved D21 
87 Ground Ground Ground Ground 
88 Ground Ground Ground Ground 
89 Ground Ground Ground Ground 
90 Ground Ground Ground Ground 
91 SenseZ3 Ground SenseZ3 SenseZ3 
92 1M E7M 7M 7M 
93 DOE DOE DOE DOE 
94 /IORST /BUSRST /IORST /IORST 
95 /BCLR /GBG /BCLR /BCLR 
96 Reserved (fEINT I) Reserved Reserved 
97 /FCS No Connect /FCS /FCS 
98 /DSI No Connect /DSI /DSI 
99 Ground Ground Ground Ground 
100 Ground Ground Ground Ground 

Zorro Ill Implementations 

Functionally, there are two possible implementation levels in existance for the Zorro III bus. All 
of the features described in this chapter are required for a full compliance Zorro III bus. 
However, the original Amiga 3000 computers were shipped with a bus controller that supported 
only a subset of the Zorro III specification published here. This is, however, upgradable. 

The A3000 implementation of the Zorro III bus is driven by a custom controller chip called Fat 
Buster. The specification of this chip and the A3000 hardware are fully capable of supporting the 
complete Zorro III bus, but the initial silicon on Fat Buster, called the Level 1 Fat Buster, omits 
some features. Missing are: support of Multiple Transfer Cycles; support for Zorro III style bus 
arbitration; support for Quick Interrupts. 

The Level 2 version of Fat Buster has been in testing for some time at Commodore in West 
Chester, P A. Any developers who immediately intend to design PICs supporting these features 
are urged to contact Commodore Amiga Technical Support/Amiga Developer Support for more 
information on obtaining samples of this part for use in A3000 systems. These parts are likely to 
be introduced into production, and available as part of an A3000 upgrade, very soon. All Buster 
chip revisions ''13G'' and earlier support the Level 1 features. Buster chip revisions '' 13H'' and 
later support Level 2 features and improved Level 1 features as well. 
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GLOSSARY 

address 
A byte-numbered memory location. The Zorro II bus is based on a 24-bit address, the Zorro 
III bus on a 32-bit address. 

A gnus 
One of the three main Amiga custom chips. Contains the blitter, copper, and DMA circuitry. 

aliasing distortion 
A side effect of sound sampling, where two additional frequencies are produced, distorting 
the sound output. 

Alt keys 
Two keys on the keyboard to the left and right of the Amiga keys. 

Amiga keys 
Two keys on the keyboard to the left and right of the space bar. 

AmigaDOS 
The disk operating system (DOS) used by Amiga computers. 

amplitude 
In audio applications, the voltage or current output expressed as volume from a sound 
speaker. 

amplitude modulation 
In audio applications, a means of producing complex audio effects by using one audio 
channel to alter the amplitude of another. 

arbitration 
The unambiguous selection of one request out of a number of possible simultaneous requests 
for a resource. There are two kinds of arbitration in a Zorro III system; bus arbitration and 
quick interrupt arbitration. 

asserted 
The active state of a state, regardless of its logic sense. 
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atomic cycle 
A cycle or set of cycles that are uninterruptable, and thus treated as a unit; both Multiple 
Transfer and LOCKed cycles are considered atomic under the Zorro III bus. 

attach mode 
1. With sprites, a mode in which a sprite uses two DMA channels for additional colors. 2. In 
sound production, combining two audio channels for frequency/amplitude modulation or for 
stereo sound. 

AUTOCONFIGTM 
>From "automatic configuration," the Zorro bus specification for how software and 
hardware cooperate to permit PIC addresses to be set by software and PIC type information 
to be determined by software. 

automatic mode 
1. With sprites, the normal mode in which the sprite DMA channel automatically retrieves 
and displays all of the data for a sprite. 2. In audio applications, the normal mode in which 
the audio DMA channels automatically retrieve sound data. 

backplane 
The cage or motherboard subsection into which PICs are inserted. The Amiga 2000 and 
Amiga 3000 computers have integral backplanes, the Amiga 500 and Amiga 1000 computers 
require add-on backplane cages for Zorro II compatibility. 

barrel shifter 
Blitter circuit that allows movement of images on pixel boundaries. 

baud rate 
Rate of data transmission through a serial port. 

beam counters 
Registers that keep track of the position of the video beam. 

bitmap. 
An image made up of pixels. A bitmap is a complete definition for a video display 
consisting of one or more bitplanes stored in memory. 

bitplane 
A contiguous area of memory set aside for the video display and logically organized as if it 
were a rectangular shape. All displays consist of one or more bitplanes; each additional 
bitplane doubles the number of colors that can be displayed. 

bitplane animation 
A means of animating the display by moving around blocks of playfield data with the blitter. 

blanking interval 
Time period when the video beam is outside the display area. 
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blitter 
An Amiga coprocessor with its own DMA channel used for data copying and line drawing. 

burst 
A short name for Multiple Transfer Cycle mode. Essentially, within one full Zorro III cycle 
there can be any number of Multiple Transfer Cycles. Each full cycle has a complete 32-bit 
address supplied and a complete 32-bit datum transferred. Each burst cycle supplies only the 
8-bit page address, but transfers a complete 32-bit datum faster than the standard full cycle 
would allow. 

bus cycle 
One complete bus transaction, indicated by the assertion of at least one cycle strobe. For any 
single bus cycle, there is one address, one data value, one data direction, and one cycle type 
in effect. 

bus hogging 
When a bus master takes over the bus for an undue amount of time. The Zorro II bus leaves 
it completely up to the individual PIC to avoid bus hogging; the Zorro III bus schedules PICs 
with the bus controller to evenly distribute the bus load. 

bus starvation 
When a master can't get access to the bus, it is said to be starved. On the Zorro II bus, two 
busy masters can completely starve a third master. Complete starvation is impossible on the 
Zorro III bus, though a bus hogging Zorro II card can cause similar symptoms. 

byte 
A collection of eight signals into a logical group, and the smallest independently addressable 
quantity on the Zorro bus. 

Chip RAM 
The area of memory accessible to the Amiga's custom chip set used for graphics and sound 
data. The amount of Chip RAM varies from 512K to 2 megabytes depending on the Amiga 
model. See Fast RAM. 

clear 

CLI 

1. To change a bit or flag to 0, its off or disabled state. Opposite of set. 2. To erase a screen 
or window display. 

See Command Line Interface. 

clipping 
When a portion of a sprite is outside the display window and thus is not visible. 

clock 
A free running signal driven at a fixed frequency to the bus, used mainly for clocking state 
machines on Zorro II cards. 
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collision 
A means of detecting when sprites, playfields, or playfield objects attempt to overlap in the 
same pixel position or attempt to cross some pre-defined boundary. 

color descriptor words 
Pairs of words that define each line of a sprite. 

color indirection 
The method used by the Amiga for coloring individual pixels. For each pixel, a binary 
number is formed from corresponding bits in each bitplane which refers to one of the 32 
color registers. 

color palette 
See color table. 

color register 
One of 32 hardware registers containing colors that you can define. In general, each color 
register can be set to one of 4,096 colors from the Amiga's palette. 

color table 
The set of 32 color registers. 

Command Line Interface (Shell or CLI) 
A means of communicating with a computer by typing commands at the keyboard. On the 
Amiga, this is called the Shell and, along with Workbench and ARexx, is one of the three 
built-~n user interfaces. Before the Shell was available, this interface was called the CLI. 

composite video 
A video signal, transmitted over a single coaxial cable, which includes both picture and sync 
information. 

controller 
Hardware device, such as a mouse, joystick, or light pen, used to move the pointer or furnish 
other input to the system. 

coordinates 
A pair of numbers shown in the form (x,y), where x is an offset from the left side of the 
display or display window and y is an offset from the top. 

copper 
Display-synchronized coprocessor that resides on one of the Amiga custom chips and directs 
the graphics display. 

coprocessor 
An extra processor that enhances system performance by doing a specialized task, such as 
graphics or math, very quickly. This frees the main processor to do other work. Every 
Amiga has at least three coprocessor chips named Paula, Agnus, and Denise to handle 
graphics and audio. 
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cursor keys 
The four keys with directional arrows on them (found below the Del and Help keys on the 
Amiga). 

cycle strobe 
A bus signal that defines the boundary of a bus cycle; the Zarro II and Zarro III modes on a 
Zarro III bus each have their own cycle strobes. The current bus master always asserts the 
cycle strobes. 

data 
The contents of a memory location. The main purpose of a bus cycle is to transfer data 
between two locations. The Zarro II bus is based on a 16-bit data path, the Zarro III bus is 
based on a 32-bit data path. 

data fetch 
The number of words fetched for each line of the display. 

delay 
In playfield horizontal scrolling, specifies how many pixels the picture will shift for each 
display field. Delay controls the speed of scrolling. 

Denise 
One of the three main Amiga custom chips. Contains the circuitry for the color pallete, 
sprites, and video output. 

depth 
Number of bitplanes in a display. Each additional bitplane doubles the number of colors that 
can be displayed. 

device 
A PIC; e.g., a Zarro bus master or bus slave. 

Digital-to-Analog Converter (DAC) 
A device that converts a binary quantity to an analog level. 

Direct Memory Access (DMA) 
An arrangement that allows coprocessors or other system devices to read or write memory 
directly, without having to interrupt the main processor. Devices that have direct access to 
Zarro III slaves are said to have DMA capability. These devices are also called masters. 

display field 
One complete scanning of the video beam from top to bottom of the video display screen. 

display mode 
One of the basic types of display; for example, high or low resolution, interlaced or non­
interlaced, single or dual playfield. 
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display time 
The amount of time to produce one display field, approximately 1!60th of a second. 

display window 
The portion of the bitmap selected for display. Also, the actual size of the on-screen display. 

DMA 
See Direct Memory Access. 

DMA latency 
This is the time between a bus request and a bus grant as seen by a PIC wishing to become 
bus master. 

dual-playfield mode 
A display mode that allows you to manage two separate display memories, giving you two 
separately controllable displays at the same time. 

Enhanced Chip Set (ECS) 
The upgraded versions of the Amiga' s Agnus and Denise coprocessor chips. The ECS offers 
new display modes and expands the Amiga's graphic capabilities. Many of the benefits of 
the ECS are available only in conjunction with Release 2 of the operating system. 

equal-tempered scale 
A musical scale in which the frequency of each tone is the 12th root of 2 higher than the tone 
below it. The equal-tempered scale is used in almost all musical styles. 

Exec 
The Amiga system module which manages memory and performs other important low-level 
tasks. 

Fast RAM 
General-purpose memory used for programs and data; as opposed to Chip RAM. 

font 
A set of letters, numbers, and symbols sharing the same size and design. 

frequency 
In audio applications, the number of times per second a waveform repeats. 

frequency modulation 
In audio applications, a means of producing complex sounds by using one audio channel to 
affect the period of the waveform produced by another channel. 

genlock 
An optional feature of the Amiga that allows you to combine an external video source with 
Amiga's graphic display. 

grant 
The result of an arbitrated set of requests is a single grant; there are grants given for both the 
bus and quick interrupts. 
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HAM 
See hold-and-modify. 

hidden cycles 
Cycles that occur on the local bus of a system, but can't be seen by devices on the expansion 
bus. 

high 
A signal driven to a logical +5V state is said to be high. 

high resolution (Hires) 
A horizontal display mode in which 640 pixels are displayed across a horizontal line in a 
normal-sized display. On the Amiga a high resolution display is often called Hires. 

hold-and-modify (HAM) 
A display mode that gives you extended color selection. Normally, the Amiga supports up to 
32 different colors from a palette of 4,096. Hold-and-modify (HAM mode) allows all 4,096 
colors on the screen at one time by placing some restrictions on which colors may be 
displayed near each other. 

interlace mode 
A vertical display mode where 400 lines are displayed from top to bottom of the video 
display in a normal-size display. 

interrupt 
An asynchronous line driven by a PIC to notify the CPU of some event, usually some 
hardware event governed by that PIC. 

joystick 
A controller device with a handle that swings up, down, left, or right, used to position some­
thing on the screen. 

light pen 
A controller device consisting of a stylus and tablet used for drawing something on the 
screen. 

local bus 
The main system bus of an Amiga computer is called the local bus. In general, the main 
CPU, video chips, chip memory, and any other built-in resources are on the local bus. The 
bus controller sits on both the local and expansion buses and manages the communications 
between them. 

longword 
Based on the Motorola conventions, a longword is equal to 4 bytes. 

low 
A signal driven to a logical +OV state is said to be low. 
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low resolution (Lores) 
A horizontal display mode in which 320 pixels are displayed across a horiwntal line in a 
nonnal-sized display. On the Amiga, a low resolution display is often called Lores. 

manual mode 
Non-DMA output. In sprites, a mode in which each line of a sprite is written in a separate 
operation. In audio applications, a mode in which audio data words are written one at a time 
to the output channel. 

master 
The device currently generating addresses for the expansion bus. There is only one master 
on the bus at a time, this being insured by the bus arbitration logic. The master also drives 
data on writes, the read, cycle, and data strobes, and several other signals. 

MIDI 
A communications standard which allows electronic music devices to share infonnation. 
MIDI stands for Musical Instrument Digital Interface and is endorsed by the majority of 
musical instrument manufacturers. 

microsecond (us) 
One millionth of second (1/1,000,000). 

millisecond (ms) 
One thousandth of second ( l/1,000). 

min term 
One of eight possible logical combinations of data bits from three different data sources. 

modulo 
A number defining which data in memory belongs on each horizontal line of the display. 
Refers to the number of bytes in memory between the last word on one horiwntal line and 
the beginning of the first word on the next line. 

motherboard 
The main system circuit board for any Amiga computer. Resources on the local bus of a 
machine are often called motherboard resources. 

mouse 
A controller device that can be rolled around to move something on the screen; also has but­
tons to give other fonns of input. 

multitasking 
The ability to perfonn more than one operation, or task, at a time. 

nanosecond (ns) 
One billionth of a second (1/1,000,000,000). 
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negated 
The inactive state of a signal, regardless of its logic sense. 

non-interlaced mode 
A display mode in which 200 lines are displayed from top to bottom of the video display in a 
normal-sized display. 

NTSC 
Short for National Television Standards Committee specification for composite video. 
NTSC is the standard used for video broadcasting in the US. Other video standards include 
PAL, used widely in Europe, and SEC AM. When the Amiga is operating in an NTSC 
environment, the base crytal frequency is 28.63636 MHz. 

nybble 
A collection of four bits; one half of a byte. AUTOCONFIGm ROMs are physically nybble­
wide. 

overscan area 
The normally unused area surrounding a standard-size computer display. The overscan area 
is important in video applications. 

paddle controller 
A game controller that uses a potentiometer (variable resistor) to position objects on the 
screen. 

PAL 
Short for Phase Alternate Line. PAL is the video broadcast standard widely used in Europe. 
Although PAL is similar to the NTSC standard used in the US, the two systems are incompa­
tible. Under PAL, the base Amiga crystal frequency is 28.37516 Mhz. 

parallel port 
A connector on the back of the Amiga that allows extra equipment such as a printer to be 
attached. The parallel port transfers data one complete byte (8 bits) at a time, in contrast to 
the serial port which sends a single bit at a time. 

Paula 

PIC 

One of the three main Amiga custom chips, Paula contains audio, disk, and interrupt circui­
try. 

Plug-In Card. Any Amiga expansion card is called a PIC for short. 

pitch 
1. The quality of a sound expressed as its highness or lowness. 2. The number of characters 
printed in a horizontal inch. 

pixels 
The dots of light that make up the Amiga screen display. A pixel is the smallest unit of of 
display information for a given screen. 
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playfield 
The background for all the other display elements on the Amiga. Playfields provide the 
hardware-level logic for creating the Amiga's display. 

playfield object 
Subsection of a playfield that is used in playfield animation. 

playfield animation 
See bitplane animation. 

pointer register 
Register that is continuously incremented to point to a series of memory locations. 

polarity 
True or false state of a bit. 

potentiometer 
An electrical analog device used to adjust some variable value. 

quantization noise 
In audio applications; noise introduced by round-off errors when you are trying to reproduce 
a signal by approximation. 

RAM 
Short for random access memory. RAM is the part of the Amiga's memory which can be 
used for data storage and is directly accessible by the CPU. RAM storage is volatile, mean­
ing that data in RAM is lost when the Amiga is rebooted or turned off; as opposed to ROM 
memory which is permanent. 

raster 
The area in memory that completely defines a bitmap display. 

read-only 
Describes a register or memory area that can be read but not written. 

request 
Asking for the use of some resource; the Zorro III bus has two kinds of requests, bus requests 
and quick interrupt requests. 

resolution 
The number of pixels associated with a particular display mode. For example, a normal 
NTSC Hires screen has a resolution of 640 (horizontal) by 200 (vertical) pixels. 

ROM 
Short for read-only memory. ROM is the part of the Amiga's memory which is permanent, 
or non-volatile. The Amiga's operating system is stored in ROM. 

sample 
In audio applications, a single discrete data item which represents a waveform amplitude at a 
given instant. A group of samples taken over time is used to represent a waveform in the 
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Amiga's memory. 

sampling rate 
The number of samples played per second. Also used to mean the rate at which the samples 
were originally recorded. 

sampling period 
The value that determines how many clock cycles it takes to play one data sample. 

scroll 
To move a play field smoothly in a vertical or horizontal direction. 

SCSI 
Acronym for Small Computer System Interface. SCSI is a standard interface protocol for 
connecting peripherals, especially hard disk drives and other mass storage devices, to 
computers. 

serial port 

set 

A connector on the back of the Amiga that allows extra equipment such as a printer to be 
attached. The serial port transfers data one single bit at a time in contrast to the parallel port 
which sends one complete byte (8 bits) at a time. 

To change a bit or flag to 1, its on or enabled state.; as opposed to clear. 

Shell 
The command line interface used to send typed commands to the Amiga. One of the three 
user interfaces built into the Amiga. 

slave 

slot 

The device currently responding to the address on the expansion bus. There is only one slave 
on the bus at a time; an error is signalled by the bus collision detect logic if multiple slaves 
respond to the same address. The slave also drives data on reads, the transfer acknowledge 
strobe, and several other signals. 

A physical port on a Zorro backplane, which supplies independent /SLA YEN /BRN, and 
/BGN lines, chained /CFGINN and /CFGOUTN lines, and is mechanically manifested as a 
100 pin single-piece connector. 

sprite 
Easily movable graphics object that is produced by one of the eight sprite DMA channels and 
is independent of the playfield display. 

strobe address 
An address you put out to the bus in order to cause some other action to take place; the actual 
data written or read is ignored. 
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task 
A software function spawned by a process. Each task is an operating system module or 
application program which is running and that has full control over its own virtual 68000 
machine. 

termination 
Circuitry attached to a bus signal in order to minimize annoying analog things like ringing, 
reflections, crosstalk, and possibly random logic conditions which can arise when a bus is 
undriven. 

timbre 
The distinctive quality of a sound produced by its overtones. 

timeout 
A bus cycle terminated by the bus controller instead of by a responding slave device. If no 
slave responds to a bus cycle within a reasonable time period, the bus controller will 
terminate the cycle to prevent lockup of the system. 

transparent 
In graphics, a special color register definition that allows a background color to show 
through. Used in dual-playfield mode. 

tri-state 
A signal driven to a high impcdcncc condition is said to be tri-stated. 

UART 
The circuit that controls the serial link to peripheral devices, short for Universal Asynchro­
nous Receivcr/fransmitter. 

video priority 
Defines which graphic objects (playfields and sprites) arc shown in the foreground and which 
objects are shown in the background when they occupy the same area of the display. 
Higher-priority objects appear in front oflower-priority objects. 

video display 
Everything that appears on the screen of a video monitor or television. 

write-only 
Describes a register that can be written to but cannot be read. 

word 
Based on the Motorola conventions, a word is equal to 2 bytes. 

Zorro 
The name given to the Amiga bus specification. "Zorro I" refers to the original design for 
AIOOO backplane boxes, "Zorro II" refers to the modification to this specification used for 
the A2000 and compatible backplanes, and ''Zarro III'' refers to the Zorro II compatible bus 
specification first used in the Amiga 3000 computer. 
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INDEX 

$00C()()()()(), 5 
60 Pin Edge Connector, 321 
68000,2,5,187 

nonnal cycle, 196 
test-and-set instruction, 196 

68010, 1 
68020, 1, 187 
68030, 1 
680x0, 19,25,34,194,223 

instead of Copper, 35 
interrupting, 35, 217 
shared memory, 4 
synchronizing with the video beam, 216 

8361,5 
8370,5 
8371,5 
8372A, 5 
8520,157,223,241,244,251,339 

alann, 344 
handshaking, 341 
input modes, 343 
interval timers, 341 

continuous, 342 
force load, 342 
one-shot, 342 
PB on/off, 342 
start/stop, 342 
Toggle/pulse, 342 

1/0 ports, 341 
read bit names, 343 
register map, 340 
signal assignments, 337 
time-of-day clock, 344 
write bit names, 343 

86 Pin Edge Connector, 322 
A1000, 1,5-7,63-64,238,260 

expansion port, 321 

A2000, 1,5-7,63,157,238,260 
A3000, 1, 6-7, 260 

expansion bus, 383 
A500, 1,5-7,63,157,238,260 
Address Registers, 10 
ADKCON, 241,250,256 

disk control bits, 249 
in audio, 149-150 

Agnus,2,5, 164-165,169 
ECS fat Agnus, 295 
fat agnus, 187 

Alann, 344 
Aliasing 

audio, 154 
AllocMem(), 52 
AmigaOS, 9 
Amplitude Modulation, 4 
Animated Objects, 6 
Animation, 176 
Apple II, 241 
Area Fill, 4, 184 
ATTACH, 120 
Attachment 

audio, 150 
sprites, 120 

Audio, 4, 9, 20 
aliasing distortion, 154 
amplitude modulation, 4 
channels 

attaching, 149, 164 
choosing, 137 

data, 137 
data length registers, 139 
data location registers, 138-139 
data output rate, 140 
decibel values, 140, 163 
DMA, 138, 144, 147, 164 
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equal-tempered scale, 158 
frequency modulation, 4 
in ECS, 310 
interrupts, 147, 220 
joining tones, 147 
low-pass filter, 155 
modulation, 164 

amplitude, 149 
frequency, 149 

noise reduction, 154 
non-DMA output, 157 
period, 140 
period register, 143 
playing multiple tones, 149 
producing a steady tone, 145 
sampling period, 141 
sampling rate, 141, 152, 156, 164 
state machine, 164 
stopping, 145 
system overhead, 153 
volume, 139, 163 
volume registers, 139 
waveform transitions, 152 

Audio Channel, 19 
AUDx,220 
AUDxEN, 144, 222 
AUDxLCH, 138,298 
AUDxLCL, 138 
A UDxLEN, 139 
AUDxPER, 143, 298 
AUDxVOL, 139 
AUTOCONFIG, 7, 223, 430 
Background color, 46 
Barrel Shifter, 179 
BBUSY, 222 
Beam comparator, 124 
Beam position 

comparison enable bits, 24 
detection of, 216 
in Copper use, 31 
registers, 216 
vertical, 23-24 

Beam position counter, 216 
BEAMCONO, 298, 305 
Bitplanes 

coloring, 55 
DMA,62 
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in dual-playfield mode, 68 
setting the number of, 48 
setting the pointers, 54 

Blitter, 4, 6, 9, 19 
address scanning, 173 
addressing, 170 
animation, 176 
area fill, 4, 184 
area filling 

exclusive, 184 
inclusive, 184 

blit time, 193 
blitter done flag, 186 
blitter-finished disable bit (BFD), 35 
blitter-nasty bit, 198 
block transfers, 171, 183 
BLTSIZE, 187 
bus sharing, 196 
clock, 193 
cookie-cut, 176, 181, 183 
copying, 169, 183 
cycle time, 193 
data fetch, 170 
data overlap, 182 
descending mode, 182-183 
DisownBlitterQ, 187 
DMA enable, 181, 184, 187 
DMA priority, 194 
DMA time slots, 194 
equation-to-minterm conversion, 175 
example, 200 
FILL_CARRYIN bit, 185 
height, 171 
immediate data, 170, 182 
inECS, 296 
interrupts, 187, 220 
LF control byte, 174 
line drawing, 4 

logic function, 191 
octants, 190 
registers, 189 

line drawing mode, 189 
line texture, 191 
linear data, 173 
logic equations, 175 
logic operations, 174 
masking, 181, 183-184 



minterms, 175 
modulo, 172 
modulo registers, 172 
octants, 189 
OwnBlitter(), 187 
packed font, 180 
pipelined, 188 
pointer registers, 170 
sequence of bus cycles, 18 8 
shifting, 182-183 
size of blit, 171 
starting operation, 169 
text, 180 
truth-table, 174 
Venn Diagrams, 178 
WaitBlit(), 187 
width, 171 
with the Copper, 35 
zero detection, 187 

Blitter Busy, 187 
Blitter registers 

in line-drawing mode, 189 
Blitter shifting, 179 
BLTAxWM, 180 
BL TCONO, 182 

DMA enable, 170 
in line drawing, 189, 191 
in logic operations, 174 
in shift control, 179 

BL TCONOL, 298 
BLTCONl, 182, 189, 298 

in area fill, 184 
in blitter addressing, 182 
in line drawing, 189-191 
in shift control, 179 

BLTEN, 222 
BLTPRI, 222 
BLTSIZE, 169, 171-173, 186-187, 191,308 
BL TSIZH, 298 
BL TSIZV, 298, 308 
BLTxDAT, 170 
BLTxMOD, 172 
BLTxPTH, 170, 298 
BLTxPTL, 170 
BPLIMOD, 62, 64 
BPL2MOD, 62, 64 
BPLCONO, 87, 229, 298, 300 

enabling color, 63 
in dual-playfield mode, 72 
in hold-and-modify mode, 87 
in interlacing, 51 
in resolution mode, 49 
in the Enhanced Chip Set, 300 
selecting bitplanes, 48 
setting bits, 48 
with light pen, 239 

BPLCON1, 85 
setting scrolling delay, 85 

BPLCON2, 72, 210, 298 
in dual-playfield priority, 71 

BPLCON3, 298 
BPLCONx, 90, 307 
BPLEN, 222 
BPLxMOD, 75, 91 
BPLxPT, 91 
BPLxPTH, 52, 54, 61, 74 
BPLxPTL,52,54,61, 74 
BPUx, 48, 87, 90 
Bridgeboard, 7 
BZERO, 222 
Cache, 187, 388 
CDANG,26 
Chip Memory, 1, 5-6, 20, 105, 138, 169-170, 

186,223,246 
Chip memory, 296 
CIA,9, 157,241,251,339 
CIAA 

address map, 339 
CIAADDRA, 241 
CIAAPRA, 229, 232-233, 241 

disk, 244 
CIAB 

address map, 340 
CIABPRB 

disk, 244 
Clock, 260 

8520,344 
alarm, 344 
audio, 140-142, 159, 164 
blitter, 193-194 
color, 194, 255 
keyboard, 251 
system, 2, 193 

Clock Constant, 141, 159 
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Clock cycle, 4 
Clock Interval, 141 
CLXCON, 215 
CLXDAT,214 
CNT, 251 
Collision, 213 

control register, 215 
detection register, 213 

Collision Detection, 4 
Color 

attached sprites, 122 
background color, 46 
color indirection, 42 
color table, 46 
enabling,63 
in dual-playfield mode, 70 
in hold-and-modify mode, 86 
in SuperHires mode, 301 
in the Enhanced Chip Set, 301 
sample register contents, 92 
sprites, 102 

Color Clock, 60, 194, 255, 304 
Color Palette, 3, 19 
Color Registers, 3 
Color registers 

contents, 46 
loading, 47 
names of registers, 46 
sprites, 130 

Color selection 
in high resolution mode, 94 
in hold-and-modify mode, 95 
in low resolution mode, 93 

COLOROO, 46, 55 
COLOR_ON, 89 
COLORx, 10,27-28,46, 70-71, 87 
Comparator, 124 
Composite Video, 7 
Control Register, 348 

register A, 348 
bitmap, 349 

register B, 349 
bitmap, 350 

Controller Port 
connection chart, 228 
joystick, 232 
mouse, 229 
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output to, 240 
registers, 229 
trackball, 229 

Controllers 
light pen, 238 
potentiometers, 236 
proportional 

registers, 236 
special, 240 
types, 6 

COP1LC, 25, 30, 32, 34 
COP1LCH, 25, 298 
COP1LCL, 25 
COP2LC, 25-26, 33 
COP2LCH, 25, 298 
COP2LCL, 25 
COPCON, 26, 298 
COPEN, 30, 35, 222 
COPJMP1, 26 
COPJMP2, 26 
Copper, 9, 19, 45, 54, 62-65, 80-82, 110, 

122,194,197,216,219 
affecting registers, 26 
at reset, 30 
bus cycles used, 20 
comparison enable, 32 
control register, 26 
danger bit (CDANG), 26 
DMA, 30 
features, 20 
horizontal beam position, 23 
in interlaced mode, 34 
in memory operations, 20 
in vertical blanking interrupts, 219 
instruction fetch, 25 
instruction lists, 26, 28 
instructions 

description, 20 
ordering, 27 
summary, 36 

interrupt, 219 
interrupting the 680x0, 35 
jump, 25 
jump strobe addresses, 26 
location registers, 25, 30, 32 
loops and branches, 32 
memory cycles, 22 



MOVE instruction, 21 
MOVE to registers, 21 
registers, 25 
resolution, 23-24 
SKIP instruction, 31-32 
starting, 26, 30 
stopping, 30 
strobe address, 25 
vertical beam position, 24 
WAIT instruction, 22, 30, 32 
with sprites, 113 
with the blitter, 26, 35 

Coprocessor 
(see Copper), 19 

Copying data, 169 
CP/M, 241 
CTRL-AMIGA-AMIGA, 253 
Custom Chips, 2, 170, 255 

control registers, 19 
register, 263 
steal cycles, 4 

Data-fetch 
high resolution, 62 
in basic playfield, 60 
in horizontal scrolling, 82 

Data-fetch start 
normal, 60 

Data-fetch stop 
normal, 60 

DBLPF, 87,90 
DDFSTOP, 60-61, 79, 82, 91, 99 
DDFSTRT, 60, 79, 82, 91,99 
Decibel values, 163 
Denise, 2, 297 
DENISEID, 298 
Descending Mode 

blitter, 182 
DEST, 170 
Digital Joystick 

connection, 329 
fire buttons, 329 

Disk, 20 
controller, 6, 241 
DMA,246 
DMA pointer registers, 246 
drives, 6 
external 

identification, 335 
interface, 334 
limitations, 335 
pins, 334 

external connector, 367 
device ID, 370 
pins, 367 
signals, 368 

ftoppy,4 
input stream synchronization register 

(DSKSYNC), 250 
internal 

pins, 336 
power, 336 

interrupts, 220, 250 
MFM Encoding, 249 
read data register, 248 
write, 246 

Disk Port, 320 
Display 

size of, 57 
Display DMA, 20 
Display field, 40 
Display memory, 57 
Display modes, 41 
Display window 

positioning, 57 
size 

maximum, 79, 306 
normal, 58 

starting position 
horizontal, 58,77,306 
vertical, 58, 77, 306 

stopping position 
horizontal, 59,78,306 
vertical, 59, 79, 306 

DIWHIGH, 298, 306 
DIWSTOP, 59, 78, 91, 99,219, 306 
DIWSTRT,58-59, 76,91,99,219,306 
DMA,4,207 

audio, 137-138, 141, 144-145, 147-148, 
153,157,164-165,194,220 

bitplanes, 62 
blitter, 50, 170-174, 176, 179-181, 183-

184, 187, 189, 191, 193-194, 
196-198 

control, 222 
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control register, 218, 222 
copper, 19-20, 30 
disk, 4, 194,220,241, 246-247,250 
display, 20, 194, 300 
playfield, 62 
sprites, 4, 27, 97, 102, 108-110, 115-118, 

120-121, 123, 126-128, 194 
DMA Contention, 193 
DMA Priority, 194 
DMAB_BLTDONE, 187 
DMACON, 222, 247 

blitter done, 186 
DMAF _BLITHOG bit, 198 
in audio, 144 
in playfields, 62 
stopping the Copper, 30 
zero detection, 187 

DMACONR, 222 
DMAEN, 144, 222, 247 
DMAF_BLITHOG, 198 
DMAF_BLTNZERO, 187 
DSK, 244 
DSKBLK, 220 
DSKBYTR, 241, 248 
DSKCHANGE, 244 
DSKDIREC, 244 
DSKEN, 222 
DSKINDEX, 244 
DSKLEN, 241, 246-247 
DSKMOTOR, 244 
DSKPROT, 244 
DSKPTH, 241, 246, 298 
DSKRDY, 244 
DSKSELx, 244 
DSKSIDE, 244 
DSKSTEP, 244 
DSKSYN, 220 
DSKSYNC, 241,247,250 
DSKTRACKO, 244 
Dual Playfield, 44 

bitplane assignment, 68 
description, 67 
enabling, 72 
high resolution colors, 71 
in high resolution mode, 71 
low resolution colors, 70 
priority, 71 

460 Amiga Hardware Reference Manual 

scrolling, 71 
ECS 

sprites, 302-303 
ECS Registers 

ECS Registers, 36 
Enhanced Chip Set, 295 

blitter, 296 
ECS Registers, 131, 166, 169,205, 224 
memory, 296 

Enhanced Chip Set (ECS) 
ECS Registers, 95 

Examples, 9 
Expansion Boards, 7 
Expansion Bus, 383 
Expansion Connector, 7 
Expansion connector, 385 
External interrupts, 219 
FAST, 249 
Fast Memory, 5 
Fat Agnus, 5, 187 
Field time, 40 
Aoppy Disk, 4 
Aoppy: See DISK, 241 
Frame Buffer, 6 
Frequency Modulation, 4 
Game Controller Port, 327 
GAUD, 89 
GCR, 250 
Genlock,2,49,51,89, 159,260 

effect on background color, 46 
in ECS, 296 
in playfields, 89 

HAM,86 
Hardware Connection, 353 

address inputs, 354 
chip select, 353 
clock input, 353 
data bus 1/0, 354 
interrupt request, 354 
read/write input, 353 
reset input, 354 

HBSTOP, 298 
HBSTRT, 298 
HCENTER, 298 
High resolution 

color selection, 49, 94 
memory requirements, 53 



SuperHires, 300 
with dual p1ayfields, 71 
with ECS, 296 

HIRES, 87 
Hold-And-Modify, 3, 86 
HOMOD, 87,90 
Horizontal blanking interval, 23, 304 
HSSTOP, 298 
HSSTRT, 298 
HSTART, 59, 91, 107, 113 
HSTOP, 59, 78,91 
HTOT AL, 298, 304 
IBM PC, 6-7,241 
Include Files, 10, 22 
INTENA,218 
INTENAR, 218 
Interlaced mode 

Copper in, 34 
memory requirements, 53 
modulo, 62 
setting interlaced mode, 49 

Interleaved Memory, 4 
Internal Slots, 7 
Interrupt, 26, 34-35, 207, 217 

8520,251 
audio, 147-148, 153, 157, 164-165, 220 
beam synchronized, 3 
blitter, 35, 171, 187,220 
control registers, 217 
copper, 25, 32, 216 
Copper, 219 
copper, 219 
disk, 220, 245, 250 
external, 219 
graphics, 33 
interrupt enable bit, 218 
interrupt lines, 217 
maskab1e, 217 
nonmaskable, 217 
parallel, 259 
priorities, 220 
registers, 218 
serial, 255-256, 258 
serial port, 220 
setting and clearing bits, 218 
vertical blanking, 219 

Interrupt Control Register, 346 

read, 347 
write, 347 

Interrupts 
during vertical blanking, 219 

INTF _BLIT, 187 
INTREQ, 35, 218 
INTREQR, 218 
Joy Stick Port, 323 
JOYODAT/JOY1DAT 

with joystick, 232 
with mouse/trackball, 230 

Joystick 
connections, 228 
reading, 232 

JOYxDAT, 229 
Keyboard, 251, 357 

Caps lock, 359 
communications, 357 
errors, 360 
ghosting, 253 
hard reset, 361 
keycodcs,358 

transmission, 358 
matrix, 362 
out-of-sync, 359 
power up, 360 
raw keycodes, 251 
reading, 251 
reset warning, 361 
self test, 360 
signals, 6, 357 
special codes, 364 
timing diagram, 358 

Keyboard Port, 319 
LACE, 51 
LED 

caps-lock, 253 
Light Pen, 333 

connections, 228 
pins, 333 
reading, 238 
registers, 238 

Line Drawing, 4, 189 
length, 191 
logic function, 191 
octants, 189 
registers, 191 
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Low resolution 
color selection, 93 

LPEN, 89 
Manual mode 

in sprites, 123 
Memory 

adding, 7 
blittcr access to, 169 

Memory allocation 
audio, 138 
formula for playfields, 76 
playfields, 53 

Memory Allocation 
playfields, 76 

Memory allocation 
sprite data, 105 

Memory Cycle Time, 194 
Memory map, 388 
MFM Encoding, 241, 249-250 
MFMPREC, 249 
MIDI, 318 
Minterms, 175 
Modulation 

amplitude, 149 
frequency, 149 

Modulo 
blitter, 172 
in basic playfield, 61 
in horizontal scrolling, 82 
in interlaced mode, 62 
in larger playfield, 73 

Monitors - See Video, 260 
Mouse 

connections, 228 
reading, 229 

Mouse Port, 328 
MOVE, 19-21 
MSBSYNC, 249-250 
MS-DOS, 6-7,241 
Multiprocessor, 223 
Multitasking, 9 
Noise 

audio, 154 
NTSC, 62, 100 

audio, 140-141, 158-159 
blitter, 193 
clock, 2 
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playfield, 49, 52, 57-58 
serial baud rate, 255 
sprites, 100 
vertical blank, 219 
video, 3, 24, 27, 34,40-41,45,304 

Octants, 189 
OVERRUN, 256 
Overscan, 3, 57, 99 
Packed Font, 180 
Paddle Controller 

connections, 228 
reading, 234 

PAL, 3, 62 
audio, 140-141, 158-159 
beam position, 216 
blitter, 193 
clock, 2 
playfield, 49, 52, 57-58 
serial baud rate, 255 
sprites, 100 
vertical blank, 219 
video, 3,24,34,40-41,45, 304 

Parallel, 9 
Parallel Port, 227, 259, 319 

pin assignment, 324 
specification, 324 
timing, 325 

Paula, 2, 6, 255 
Peripherals, 6-7 
Pipeline, 188 
Pixels 

definition, 40 
in sprites, 101 

Playfield, 4, 6, 9 
Playfields 

allocating memory, 52 
bitplane pointers, 54 
collision, 213 
color of pixels, 42-44 
color register contents, 92 
color table, 46 
coloring the bitplanes, 45, 55 
colors in a single playfield, 45 
defining a scrolled playfield, 85 
defining display window, 57 
defining dual playfields, 72 
defining the basic playfield, 63 



display window size 
maximum, 79 
nonnal, 58 

displaying, 62 
dual-playfield mode, 67 
enabling DMA, 62 
fetching data, 60-61, 79 
forming, 44 
high resolution, 42 

color selection, 94 
example, 66 

hold-and-modify, 95 
hold-and-modify mode, 86 
interlaced, 42 
interlaced example, 66 
low resolution, 42 

colors, 93 
memory required, 52, 76 
modulo registers, 62 
multiple-playfield display, 89 
non-interlaced, 42 
nonnal, 42 
pointer registers, 66, 74 
priority, 210 
register summary, 89 
scrolling 

horizontal, 82 
vertical, 81 

selecting bitplanes, 48 
setting resolution mode, 49 
specifying modulo, 61, 73 
specifying the data fetch, 75 
with external video source, 89 
with genlock, 89 
with larger display memory, 73 

Playfield-sprite priority, 209 
Port Signal AssignmenL<>, 350 
Ports 

controller, 227 
disk, 241 
parallel, 259 
serial, 255 
video, 260 

POTODAT, 236, 298 
POTlDAT, 236,298 
POTG0,229 
POTGO I POTINP 

as digital l/0, 240 
as proportional inputs, 234 

POTGOR, 229 
name changed. See POTINP, 240 

POTxDAT, 229 
Power up operation, 223 
PRECOMPx, 249 
Priority 

dual playficlds, 71 
playfield-sprite, 209 
priority control register, 210 
sprites, 207 

Productivity mode, 3 
Proportional Controller, 331 

pins, 332 
Proportional Controllers 

reading, 234 
Proportional Joystick 

connections, 228 
reading, 234 

RAM, 21,47 
address space, 2 
at startup, 223 
chip, 6, 20, 138 
disk, 246 
expansion, 2, 7 
keyboard, 253 

RAMEX, 321 
Reboot, 223-224 
Refresh, 20 
Reset, 223 
Resolution 

setting, 49 
RF Modulator, 260 
RF Monitor, 320 
RGB 

analog, 260 
digital, 260 

RGB Video, 7, 49, 63-64 
ROM, 1, 6, 223,253 
RS-232, 6, 255 
RS-232 and MIDI, 318 
Sampling 

period, 141 
rate, 152 

Scrolling 
data fetch, 82 
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delay, 85 
horizontal, 82 
in dual-playfield mode, 71 
in high resolution mode, 82 
modulo, 82 
vertical, 81 

SCSI 
Disk Port, 321 

SCSI Disk 
internal 

pins, 336 
SERDAT, 258-259 
SERDATR, 256 
Serial, 9 
Serial Port, 255 

characteristics, 327 
pin assignment, 326 
specification, 326 
timing, 327 

Serial Shift Register, 345 
bidirectional feature, 346 
input mode, 345 
output mode, 345 

SERPER, 255 
SET/CLR, 35, 144-145, 218,222, 249,257 
Shifting 

blitter, 182 
SKIP, 20 
Slow Memory, 5 
Sound generation, 134 
SPREN, 222 
Sprite, 4, 9, 19-20 
Sprite Colors, 27 
Sprite DMA, 27 
Sprites 

address pointers, 11 0 
arming and disarming, 123 
attached 

color registers, 131 
colors, 122 
control word, 120 
copper list, 122 
data words, 121, 123 

clipped, 100 
collision, 113,213 
color, 102, 302 
color registers used, 103 
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comparator, 124, 126 
control registers, 124, 126-127 
control words, 107 
data registers, 126, 129 
data structure, 104 
data words, 107 
designing, 103 
displaying 

example, 111 
steps in, 109 

DMA, 110, 114 
end-of-data words, 108 
Enhanced Chip Set, 302-303 
forming, 98 
manual mode, 123 
memory requirements, 105 
moving, 113 
overlapped, 118 
parallel-to-serial converters, 124 
pixels in sprites, 101 
pointer registers, 127 

initializing, 110 
resetting, 110 

position registers, 124, 126 
priorities, 207 
priority, 115,118,210 
reuse, 114, 116 
screen position 

horizontal, 98, 107 
vertical, 100 

shape, 101 
size, 101 
vertical position, 107 
with copper, 113 

SPRxCTL, 107, 123-124, 126, 128-129, 298, 
303 

SPRxDATA, 123, 126, 129 
SPRxDATB, 123, 126, 129 
SPRxPOS, 107, 123-124, 126, 128-129, 303 
SPRxPT, 114 
SPRxPTH, 110, 126-127 
SPRxPTL, 110, 126-127 
SRCA, 170 
SRCB, 170 
SRCD, 170 
Stereo, 4 
STRLONG, 298 



System Clock, 2 
System Control Hardware, 9 
TAS, 196,223 
Trackball, 328 

connections, 228 
reading, 229 

Trackdisk, 9 
TSRE, 259 
UART, 255 
UARTBRK, 257 
VBSTOP, 298 
VBSTRT, 298 
VCR,46 
Vertical Blanking, 30, 32, 304 
VGA, 304 
VHPOSR, 229 

with beam counter, 216 
with light pen, 238 

VHPOSW 
with beam counter, 216 

Video 
analog RGB, 260 
beam position, 3, 23 
camera input, 7 
composite, 260 
digital RGB, 260 
external sources, 89 
interrupt, 3 
laser disk input, 7 
monitors, 7 
monochrome, 260 
output, 260 
priority, 4 
RF modulator, 260 
RGB, 49, 63-64 
synchronization, 3 
VCR input, 7 
video slot, 260 

Video Beam Position, 26 
Video Input, 46 
Video Port, 319 
Volume, 139 
VPOSR, 229, 298-299 

in playfields, 66 
with beam counter, 216 
with light pen, 238-239 

VPOSW 

with beam counter, 216 
VSSTOP, 298 
VSSTRT, 298 
VSTART, 59, 91, 107-108, 113 
VSTOP, 59, 78, 91, 107-108, 113 
VTOTAL, 298,304 
WAIT, 19-20 
Waveform, 4 
Waveforms 

audio, 134 
WORDSYNC, 249-250 
Zero Detection, 187 
Zorro Expansion Bus, 383 

A2000,384,387,391 
A3000,384,387 
autoconfiguration, 430 
mechanical specifications, 427 
memory mapping, 388 
multiple transfer timing, 420 
quick interrupt timing, 422 
read timing, 416 
write timing, 418 
Zorro II signals, 391,437-439 
Zorro III signals, 409, 437-439 
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