AMIGA Hardware
Reference Manual

\
%
EEEEE S EEEEEEEEE
\

AMIGA TECHNICALFREFERENCEH SERIES

_ COMMODORE-AMIGA, INC.
Tt 1 R D E D T -k e dls N

AMIGA

Har dwar (S Refer ence Manual
Third Edition

Commodore-Amiga, Inc.

AMIGA TECHNICAL REFERENCE SERIES
A
vy
Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan
Paris Seoul Milan Mexico City Taipei

Contributors:

Joe Augenbraun, Dan Baker, Greg Berlin, Susan Deyl, Ken Farinsky, Mark Green, Larry Greenley, Dave Haynie, Lee Ho,

Glenn Keller, Bill Kolb, Dale Luck, Jay Miner, Dave Needle, Bryce Nesbitt, Rob Peck, Nancy Rains, Chris Raymond, Tom Rokicki,
Jez San, Carolyn Scheppner, and Bart Whitebook.

Third edition by:
Larry Greenley, Mark Green, and Dan Baker

Cover designer:
Hannus Design Associates

Copyright © 1991 by Commodore-Electronics, Ltd.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book and
Addison-Wesley was aware of a trademark claim, the designations have been printed in initial caps. Amiga, Amiga 500, Amiga 1000, Amiga 2000, and Amiga 3000 are registered
trademarks of Commodore-Amiga, Inc. AmigaDOS, Workbench, and Kickstart are trademarks of Commodore-Amiga, Inc. AUTOCONFIG is a trademark of Commodore Elec-
tronics Limited. 68000, 68010, 68020, 68030, 68040, and Motorola are trademarks of Motorola, Inc. Commodore and the Commodore logo are registered trademarks of Com-
modore Electronics Limited. CAPE and Inovatronics are trademarks of Inovatronics, Inc. Centronics is a registered trademark of Centronics Data Computer Corp. Hisoft and
Devpac Amiga are trademarks of HiSoft. IBM is a registered trademark of International Business Machines Corp. Macintosh is a registered trademark of Apple Computer, Inc.
UNIX is a registered trademark of AT&T.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Commodore item number: 327272-05

123456789-AL-9594939291
First printing, August 1991
ISBN 0-201-56776-8

WARNING: The information described in this manual may contain errors or bugs, and may not function as described. All information is subject to enhancement or upgrade for
any reason including to fix bugs, add features, or change performance. As with all software upgrades, full compatibility, although a goal, cannot be guaranteed, and is in fact
unlikely.

DISCLAIMER: COMMODORE-AMIGA, INC., (‘COMMODORE") MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED, OR REPESENTATIONS WITH RESPECT
TO THE INFORMATION DESCRIBED HEREIN. SUCH INFORMATION IS PROVIDED ON AN "AS IS" BASIS AND IS EXPRESSLY SUBJECT TO CHANGE WITHOUT
NOTICE. IN NO EVENT WILL COMMODORE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
CLAIM ARISING OUT OF THE INFORMATION PRESENTED HEREIN, EVEN IF IT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY.

CONTENTS

Chapter 1 INTRODUCTION ..o s ssnssee s sesssssss s sessas s sas s sanasssnssssses sras 1
Components Of the AMIZAcceivvreiinniiieniiiienseiiii sttt tassssesessstessbssessssesessasssssens 1
ADOUL the EXAMPIEScviietiieiireeeseceeetsecntseesteaesseresssaese st snssssase st snsssssssssrassssessssassssessssssssnssressasassans 9
General Amiga Development GUIAEHNESc.cvveeereriinreiienintinne sttt s seess s ssansseseseneesens 11

Chapter 2 COPROCESSOR HARDWAREccccitiiiimnimnnnisnmsnsimssnesnmeanmessmsssssssesns 19
ADOUL thE COPPETcveereueerrrerrierirenreestesesssreseosssessssssrsssnessssessssssesssesssssssssesssssnssssssenssessssasaessessseesssaons 19
What is 2 COPPET INSITUCHIONTcueeviveienereiersieereeseeseessrnssssseeesessesssesessssestesessesesssnsssnssansssssassosenses 20
The MOVE INSIUCLON «c.cvouieuiereeertrreeeeticeteeneesesseesestessssessesseseessssessessesns sessersesssssessasansstsssssssessassnses 21
The WAIT INSHUCHON.......c.erereeeunrercenerenienssesssnereenresssesssesseesesessesessssensesssessssssssstssessessnsnsssnsssensesasens 22
Using the COPPEr REZISIETS....cccuiueuimeeeciniiiecre sttt st eseseos secn s st sas s sensenssessanaeesens 25
Putting Together a Copper INSUCHON LiS......c.ccveriiiiueriieereseranesessesestsessesessseseeseseesassesessssassnsassns 26
Starting and StOPPINE the COPPETcoveueeverrirerrrecrrierreeisenreesesreesemssensessssesesssssssssssssssnessessssenessensen 30
AQVANCEA TOPICS. ...ueivireieeererierniretectsesreststest s et e eessestsstestsssesessasssssastesssressassensestessessessessassessessasss 31
Summary of COPPET INSIIUCHONS c....ieiiirieeiriieriritirreterer sttt bttt sss s ssstssessesssrossssborsssssanses 36

Chapter 3 PLAYFIELD HARDWARE..........ccccumeirnninsnicssammssessisssisesssmemssnmesssassassasssssssessssennss 39
ADbOUt AMIZA PlaYfIClASceevrerecrierieirieneneeseereeesesssssssenstesessessssssnsssesssnassnesssasatsstonssesssseneestessensene 40
Forming a BasiC Playfield.......cccvecevnenerininiineenieieneneeessnsesesssressssssessesecsassnssessssnnesessssnessssscsssssesnees 44
Forming a Dual-playfield DiSPlay.........ccceveveriverirermriisieneinsesreiesssesesrensssessssssssssssssassssosessosesessosesasens 67
Bitplanes and Display Windows Of ALl SIZES......ccccverrereerernerenienesenenesrsressesecsenssesesssssemessessnsessesaens 73
Moving (Scrolling) Playfieldsccccererrereinreomecenecreseentrenectsessesnsessstessens cvesesssecnssessseenssosssassesens 80
AQVANCEA TOPICS...ueerernrenrenrerterenrasiestesessessessestosessessesseseosessestessssesnassassssersssssssssssnss ssssnssssssasssasassassee 86
Summary of Playfield REZISIEIS....cccoueriiureeiirentrictienireiinstseeeisiassstssesssestssessssssssssesssnssssessensssnssenns 89
Summary of Color Selection REZISIETS.......c..uevtrrrrrerenrrrresersesesreresesenessonsssasserressssesassssarscssssesssssssesene 92

Chapter 4 SPRITE HARDWARE ...t cinnssssenisssnisssnssssansssssesesssssssssssnssanssesses 97
WRAL ATC SPIIEST .veeervrreerricrersercrnssreseesreesseressssssessesssessessnssesstarnastosneesssssrms sessmsessssessusssssaasssssassssesssssne 97
FOIMING @ SPIILE.....vevieereienreeeereerentssieesrenesssessseessesessssessesnessssesssesessessesssssessssestesesseseresssssssotsssnssns 98
DiSPIAYING @ SPIILE ..ottt st s s s e e s b e b e 109
MOVING @ SPIILC.c.voveeeirecrereretesereserseseteee st s e stesteesnesessests st eseseesseneratastsreensessasessenssassnessesessnssesesasssans 113
Creating Additional SPIILES.......cvvuiviiiiriniiiniiniitnn st ss bbb s e s b s 114
Reusing Sprite DMA ChanmnelS.......c..covereeniereniineceeenerenene e secseneesnsessesesssestonessscsssssssssssssssssssossssons 116
OVETIAPPEA SPIIIES cecuvevveerenereeereneeenteneseeseeeereseseesesnssessaesesessesstsststsstssentss susssssarsssessestsssssssenssassssssnens 118
ALACREA SPIIES ..ottt ettt ettt et et es e saeae st st se et sres et ssennsbtessmsnssaesserenssstbesasresssrsnesns 120
MaANUAL MOGE ...ttt et ettt tse e se st st e e seesaestssee st sresb s se e st erecunsntestsnssmsssessesassnssasanes 123
Sprite Hardware DELAILScecevivirirniciieciiiceniiniiiesinise s sissessssisesssssssmssesessessssessssessasessesssnens 124
Summary Of SPrite REGISIETScceecereevererrecerrenerteenereereneseseeesrrsseseesessssisssssesssssassassesssssssesessesesnssesns 127
Summary of SPrite Color REZISIETSccvvreiririiveriniiiiiiintiniiisisssises st asssssssensssasnnns 130

iii

Chapter 5 AUDIO HARDWARE. ..ottt n s nsaee s se s s ssnssseessnesssnessessssnnnas 133

Introducing SOUNA GENETALONcccruriirierre ettt er bbb s s s s s 134
Forming and Playing @ SOUNd............ccvmiiiiimiiiiniisiiiir s sesssessssssssesssssosssssosns 137
Producing CompleX SOUMAS........ceecinirerinmiiniiiiicemiitincscsseni s sress s s ss s ssssssssnssesssnsssessaens 147
Producing High-quality SOUNQ........cccceiiiviniiiiniiiisc e 152
Using Direct (NOR-DMA) AUdIO OULPUL......cucoueerrerecreerereieerenesecseeserissssesasseseescssssessesssassessssesesseses 157
The Equal-tempered MUSICAl SCALEcccceerevriereuirreeeernrinerereieeenee et enmsessensessssssesmaesssssssesessssesseses 158
Decibel Values for Volume Ranges......c.cc.ovieriniiincciinintecnenccieentncseesetss s stsseeneseens 163
The Audio State MACKINE.......cocieiiveeriiririeniniiniiiseniste sttt s s sa e saas e e srs s cssesaesesaesnnen s ssassseen 164
Chapter 6 BLITTER HARDWARE ...t sancsessss s ssan s ssnessnssennssnses 169
WHat iS the BLUEIT ...ccveeiieieiieeencceeresrire e sese e sessabsb e sestsebes s sen e s sss e ses s st b st ses s sasseons 169
MEIMOTY LAYOUL....cviueerereiieinintriteestnsesesessesenessssessesesestasssesensssenessenesssassessenesssassnsseseseessnsessssasneses 170
DMA CRaNDEIS ..veeveuiriieeeeceecereieire et seee et stese st ese et e s ses e se st sassaseenss st saesusasessestsstenssnessessssasssons 170
FUNCHON GEIETALOT........coveterriererreenieritssessesseseneseresesesnsssessssessasssessenentesesenessenessenersestsnsacessneseeseseens 174
ShiftS QNA MASKSeeeceerecrireie st stestereseeseestesbestaesaeseaseassasssasssssssrssssessessassassrasses srasssassonsasssenes 179
DESCENAING MOGEC.....ccciieriereiieiriereneerenreesresiesee st steseessssessesssssssessesssnsssessessessessssassessessessensesaessesessassens 182
Copying ArItrary REZIONS ..ccvcveeireiiriireetesireestenterstectenen e st e saesecets st s smtotanses s se s e sassananans s assresn 183
ATEA FlL MOEecverreeeririiriiesctentesc et eassansesseseasessesesasssste st snesssenssssstesesasssassssaansesssnsssesssssansesessens 184
BLEr DONE FIAG....c.eoieiiiiiiii ettt st st sa e et st s saeat et e sett e et s st emesae s 186
INEEITUPE FIAZ ..ottt et ste st sraesastesas s stesessessassessentsssanssnentesessassassnosarsestensesssssn 187
ZETO FIAGccvveviierreieeientineeterertestesesesssesessassessesesteseestssestasaesestessesesaassessestessasassessestensassssassansesteseasessens 187
PIPEliNE REGISIETocveeerieeririee ettt s et e e st s ae e et e s semesssan e sesas semen e ses e san s nes 188
LiINE MOGE ...cveeeririeecereeenreisriesssestessresesusssnasesessessessonsssessestrssssessarsessssessessess suassessessensassssassnssensnnsase 189
BLHUEE SPEEA....eceeitiiireeiiricirit ittt e rres e er et es st sees s st ese st enserse st seeseacsssasseneasensoneneonsarasenensan 193
Blitter Operations and SyStem DIMAc.c.oorrieinirieenerenrerrenreersresesstseseensosssesessesessessssessosssessasesses 194
Blitter BIOCK DIAGIAIMNcviveieerceiiiieieseeeieerisinsesseiereesesaesesessesassesessssessesassntssessessssesessessssesassrnsnns 198
BIUET K@Y POINES....c.coiriiiierieirieietseecnieriee st eietssee st etsiestesessesassssesessstassssessssasssasssassassssassssessnssessensssen 200
Chapter 7 SYSTEM CONTROL HARDWAREccoerrrerrnnsceersessassnnessnesssnsesmnssnssnsesans 207
VIAEO PTIOTIHES «...cuveverreenreneeeeeritesenesrresessesesseasesssssssssesessssesasessensasessssesssssssssssesessessssssesssssnsssssanes 207
COllSION DELECHOMccvvrerereeieerierieeesstetereresessereeseressssesessnsesassasassesessesasessasessesassesessnseseessssnsessrses 213
Beam POSItion DELECLON.c.cocerieirierrreresiesiisesessseeresssessssresessesssssessssssssssesssssssssssssessesssssssesssssseses 216
INIEITUPLS ..ottt ittt st ettt st stsstee e st e eseesansenssnsse e e st ennesss sassssensessassnessnasnserassserasass 217
DIMA CONIOL ...ttt sttt e senesserasseesessassasse st sesessessesasssessessessarassessessessastassessensasensens 222
Reset and Early Startup OPErationccceevererveeerirecennientssntesesesssssssesrsessossasssssessssssasssssessssesssesssnes 223
Chapter 8 INTERFACE HARDWARE.cccociiiimicnnineesscessssessssnsnessnssssasesessassssassessnmssssnsnsens 227
Controller POTE INLETTACEc.ovuieceieteeircecicetirtsteireee et ter s s eteaserensesersesnsesesnsssssssessosessssssssreneens 227
FLOPPY DiSK CONLIOLIET «....cuecrieveerereineciiniisentevesrestestssessansesssressenestassssessessessessesessessassensonsossensesessnnnes 241
THE KEYDOAIU.coviiieriiientinriicirre e srese st tesern s ese e et e sessabes s e ssesssrbesbessessstnessrnssasmnsssansestensenesaesn 251
Serial I/O INLETTACE......c.cueeveeiieecie ettt sttt st srse st st se st e saesesaeseseenesssnssesssssssesassessensssnseneones 255
Paralle] I/O INEITACEc.ocerevreeeerrierierstsisieresssnessessssssassssssssessssssssssssssstssssesesenssesssesessassssasssesonssessns 259
Display Output CONNECLIONScveuereerrrensesereresesssssesissesesessnsssssansesssessssssssesesesssassesesessssnssssesssssones 260
Appendix A REGISTER SUMMARY ALPHABETICAL ORDER........cccceccvrieiirniecsenscnnsensecennes 263
Appendix B REGISTER SUMMARY ADDRESS ORDERc.cccvervmirnerrnnnssnessssssssssesssssenes 287

iv

Appendix C ENHANCED CHIP SET......coiiiciiininiineiiiseiemisiss s 295

New Features of the Enhanced Chip SEt.......c.cvoviiiviniinieniieninriieniesesneesesesseeresiesssesseesssssnessssnenses 295
ECS REZISIETS cuevvrveveuerreiirinieeertssssesesesessssssssassssssssesesssssssssesssessssssssssssassssesessosssssssssesesessssesenensosesenses 298
Appendix D SYSTEM MEMORY MAPS ...t reeeereessnesssnsssmsssnssenseesaassesasssassennaes 313
Appendix E /O CONNECTORS AND INTERFACES.........ciicnninensenrreseeseessncessssnaeens 317
Appendix F 8520 COMPLEX INTERFACE ADAPTERS.........cocvcervrerrrrresnessnemansessessssnenas 339
ChiD REZISIET MAP ..ottt sttt ettt ste s sass et ess e as b e e ses s sne et e basaese st e s ersensanansasennennsnesns 340
Register FUNCtional DESCIIPLON......c...ecerreerretertarierieeseseisesssssessesssssesassessessasssessesssssesassassensessasssessssnens 341
TimeE Of DAY CIOCK......cciieriniriniicineientcise st et s e st ersae s sosesastseestnstsassesesrssssenssssasssonsasnnns 344
Serial Shift RegiSter (SDR) ..ottt stsicessssostsssssessessessesssssinsesesussssesssssssssosssesess 345
Interrupt Control ReIStEr (ICR).....coveieeerieeriintirenreesrenisesrisseseeseeessssessesessssssssssesessessenessssessesassssasans 346
CONUTOL REGISIETS. ... e eueereurretrietreteeeeeterse s tiree et es et eseatss e esesesmessentesebeseresseesesesaeseenesnesesssnessensases 348
POrt Signal ASSIZIIMIEIILSccvecirveverecteesteesecereetesecteststeesteses e e sesassessssesssessstesessessassssanssansesessesersanes 350
Hardware Connection DELAILScccovveeiiriiiirniecc ettt esterns e e ssesssesesssassssseresseassessessessessassssaenes 353
Appendix G KEYBOARD INTERFACEcccccviiimccsnnniinniinssensisessisssnsisssssssssssassessssssans 357
Keyboard COMMUNICALIONS.........corerererrreeresrersstrnresessreseasessrssessessessessssasseesessessesssnsessansassssssassessessensane 357
KEYCOUES .. rvvvenverieirteiee et srtnreiesreseerastasesse st ess st esaessestesssrassensessessessestesasstrsessessassessesrnssnsneessessessasaestans 358
CAPS LOCK KEY ..uvieviieierriniiriesienteeserseisesteesreseesessessasessasnsssesaessessassssessansssasseses sassassassssnessasssesaasesnans 359
“OUL-Of-SYNC™” CONAILIONeevivieerieireciesstiisteireseesnessrsseessesssssess e sassssasssssssessssssessaseesessssssssssesesseses 359
POWET-UD SEQUEIICEueviurreeentereeerreseeesrestssersessenessesnssesessesessssassessnessssesssssesesssssssesessessensssessesssseses 360
RESEL WAITHIIZc.vveterietecieentereststestereesress e esasessase st anaesasassesansesassasanssserassesesessessstesessesessansensesensesesseses 361
HAIA RESCL...cveeeiieeeremieceriree ettt st ese st sae s et stsre b os st sreatsnessesbasennasesbssesbensabboseabssassas 361
IMATIX TADIE. ..ottt ettt e st e st et st e st sr e e st ese st erasseneasesassesensentasessesensentesssensasansan 362
SPECIAL COUCS ..uvevierereiinientienrieree e sttt etsree e sre st et esae st sesnesaensenseseensssaneassenesseaseensenesssantenasnseseeaneasasnsens 364
Appendix H EXTERNAL DISK CONNECTOR INTERFACEcoovmiinmnnstinnsnnsreseeeseenane 367
GEIMETALcueeevictereteae st ettt st st et s ea e st et eates et eae st et esse st et sa esassenseste st emeent s sae st aesenseaneseeesaassueeneen 367
SUMMATY TADIC ...viiiiieeeictrircrie sttt rese et et sveese e sae st es s eraesasse st asaaesssseseeseessensesnasesnssenesseensesesasens 367
Signals When Driving @ DiSK.......cocerieviiinirneneeneneersiieseseerenisseesessessessesssssessensesssssassessssssseesseesssassse 368
DIEVICE LD, .ttt st s st e st st st et st st st es et sr e b b e s et s sas e saere s R et e s e nen e sensens 370
Appendix | HARDWARE EXAMPLE INCLUDE FILE.........cccoiiviniinnirnnnnnenneenesensseessnennes 373
Appendix J CUSTOM CHIP PIN ALLOCATION LIST...cccccciveniirnniisssenssnsrissssansscssonisssssssnas 379
Appendix K ZORRO EXPANSION BUS........cicieinnein e sseeannnnsseenessessesssssssssssseases 383
Z0I10 IT COMPALIDILILYeeeeeeeececiese et ese s st steee e srbesbesresnsesreeseeseesasssnesmsssnsesnmesnasstesasssessrneanas 387
Z0rT0 ITT BUS ATCRILECIUIE .eiiie ettt sttt ettt e st ss s st e s s b sasssssne e ens 399
SIZNAL DESCIIPLOMNeetitiereiresrerteeerteteieeressertestssee e ssesteneeseesesae st eeenseste st enesaesatesssrssaessennssoessesessssoessess 409
THMHNE ottt et sttt ettt en et e s e et ea s ses et be st sae e se s seeaeseeae seeaeseemtseestsaentsnesssassuosssassbens 416
Electrical SPECIfICALIONScveurreeireiireiireriee ettt ectreeesse st seseses e stssssneseseesesresessestssestsas sossssns saons 424
Mechanical SPECIfICALONS........ivvirieririierete et serseenessesere st e seeseseeseseeresssstseessssssaensntosssassesus saons 427
AUTOCONFEIG™.......coooeeeisiecereriistetste st sseee e tssesassssesstssestssssssasssesssessasesssensssessasssssossaeststnsesesesssasssseses 430
Physical and Logical Signal Names.........ccevviiiiinnicnsicsse e eseanas 437
ZOIT0 IT1 IMPIEMENIALONS......c.eetieieereireeteieere e srereesse st e seseessests st st esssses st esesssesaene sassssanssesassrasssessans 439

vi

Figure 1-1
Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 5-1
Figure 5-2
Figure 5-3

LIST OF FIGURES

Block Diagram for the Amiga Computer Familycccccovcevenineieiennrecrneenensessenensensnene 8
Interlaced Bitplane in RAM........couviiveienieeeiiniece st eseseessesssssesessessessasssesesnsensssssseons 34
How the Video Display Picture Is Produced...........covveurveneenineerseneenrennneeneeseeneeesseseeseesnens 40
WRAL IS @ PIXCLT .ttt ces e s st ese e st st saees e seoss sasssessnesasmesneen 41
How Bitplanes Select @ COLOTcvvevreneiverrierenrennneesenesresesteseesssssesaesessessessessesnsesessasnens 43
Significance of Bitplane Data in Selecting CoOlOrS........co.eeeeerereeeerrreenreesererseserseserseseesesnens 44
INEETIACINE «cuverirrecreerrieeereseresrestensareesseseesesnsssessesessesnessessesensnessossssasssessssssnssessssnsesssncesesns 50
Effect of Interlaced Mode on Edges 0f ODJECtSc.ecuereveruerereecenrerenrerenreeeresesessseneesassenns 50
Memory Organization for a Basic Bitplaneccceeeieeeenrecenenennneeseenesrenesnsnneseseesenees 54
Combining BItPIANESccccveeueereieriereeerereeeseeiee st e e sesesss e sa e stesesnesessessssessesessesersssasenes 56
Positioning the On-screen DiSPlay........cocccvvereiererinresesrnsesssereeseseeesesseseesessessssesessesseseeees 58
Data Fetched for the First Line When Modulo = 0.....covveveeiveninieesenicinreneieseceeseseeneenes 61
Data Fetched for the Second Line When Modulo = 0ceeveeveeiveneenieneneeenennseeneneenesenne 61
A Dual-playfield DiSPlayccceeeriirrierinieineniennieinterisnssessssessessssessssesessessssessessssenessonens 68
How Bitplanes Are Assigned to Dual Playfieldsccceoevieveeveninenrecienrineeerenennnnessennnnns 69
Memory Picture Larger than the DiSplayc..eceeeverrenenrennneenennesenseeesesessesesesesessessonens 73
Data Fetch for the First Line When Modulo = 40.........c.cooveririerennieneeeneneennseneesecnnenens 74
Data Fetch for the Second Line When Modulo =40ccoeveiieveeneneneeeneecnnenecrrcesensenaes 74
Data Layout for First Line—Right Half of Big Pictureccccceveeevereevenereereneereneeennenns 75
Data Layout for Second Line—Right Half of Big PiCture...........ccceeeereverveneernereereennrennene. 75
Display Window Horizontal Starting POSItON..........cceververrenrenrereeseeserrecrneseeseeseeneesneseeseenes 71
Display Window Vertical Starting POSILON.cceveerreriruerrrnsrerieressesenrenesssssenessessssensesenees 77
Display Window Horizontal Stopping POSItION........cccceevueveereerenereeerenrensinreesesenenseesenenne 78
Display Window Vertical Stopping POSItIONccceveeeerinereneneneeneneeeeseereseeneeseeesenseses 79
VErtiCal SCIOIINEvveueeriieeeecrccreset ettt er et sbe e sesee e sesss s snessessnsns e 81
HOTIZONAL SCIOIING ...cvivieieiirteeneetieetese ettt ettt e e saee e e e sresnesonsessesesssnenns 83
Memory Picture Larger Than the Display Window.........c.ccoecvvniinninininnnicnnenecnenns 84
Data for Line 1 - Horizontal SCTOIINGceveeeereeruereeeerrirnnreiereieeieseneeensreseenssessssessssesses 84
Data for Line 2—Horizontal SCTOIlNG.....cccccvevevvivrerienreneriesenrenenieseeesenresseeesnesesssnenne 84
Defining Sprite On-SCreen POSILION........cccvvieereeriereerrsteneeeseeseseeesesseseessessessessessnssesscsseses 98
POSILION Of SPIILES .. cuviuiiirenteteceeee sttt ettt teresae st e seesr e e s e sassb e e e sre st e sesbesassnens 100
Shape Of SPACESHIP ...eveveeceieieeertetcce ettt stsseessee st esnesseeseesaesneessssusessesmsensessnsnnes 101
Sprite with Spaceship Shape Definedccccoevivvnicienninnniicciiicenicccnee e 101
Sprite Color DefiNitioN.......cceueeueerenirneneiereersterenrieets st se e srersesseste st sressasassssesessassesnes 102
Color RegiSter ASSIZNIMCIILS.....cccecerreruereriererceteseieessestestessssessessessssssssssesssssesassssssossensones 103
Data Sructure LAYOULcccecieuertetreiecienteeercetese st eaestesseseestsssesnessesessesessssnsessessssesssnsenes 106
SPLILE PLIOTILY .ouvetecveeeecreeerie e esrestesesses e seeseesesesesesessasesnessensesesssenssssssnenssns sunesessssusssssenses 115
Typical Example of SPrite REUSE......ccccuevveverinrereniiiiireinvcirececineticciinses s cviseeneens 116
Typical Data Structure for Sprite Re-USE........ccevueveereueervievniiienniinriisctinrciriienenesennes 117
Overlapping Sprites (NOt Attached).........coeeevvvivenimriirnicnnininciss e 119
Placing Sprites Next to Each Other ... 120
SPrite CONIOl CITCUILTY ..oveuerveeiereeeeteenerreeneeeterecsrese s it esistsreseresbesssesesbessssessssssssresnens 125
SINE WAVEIOTIN ot sttt ettt srssser et es s sea e sesbe st sbe s sas st ons 134
Digitized AMPLtUAE VAIUES......c.coveririemrmiiriinienrinciniiieresinetcsee s es s seses s en s 136
EXamMPIE SINE WAVE ..ottt s ss e b cas s s e s e e s s s 142

vii

Figure 54
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12
Figure E-1
Figure E-2
Figure E-3
Figure K-1
Figure K-3
Figure K-4
Figure K-5
Figure K-6
Figure K-7
Figure K-8
Figure K-9
Figure K-10
Figure K-11
Figure K-12
Figure K-13
Figure K-14

Waveform with Multiple CyCIEs......ccoicievniiniiniiiniieitiesense st steeseceessseenssssacensae 153

Frequency Domain Plot of LOW-Pass Filter........cccverinirrerecrerererineescrnsteseeececssesecneennees 155
Noise-free Output (NO Aliasing DiStOTtON)ceeeerreeeerureeerereseesaneesesnsseesesssssessssseseesssnes 155
Some Aliasing DISLOTHON.........cccccirirreeineneernn sttt resnssest st ssesssesesrs s sssnsasssnsns 156
Audio State DIagraml........cvieiereeeceirneceniiieeriiiit s ssesassesassessesesas s sessss 166
How Images are Stored in MEMOTYcvoeiieveiriemecinieciniisei e iieeeis s sessssesassesesseses 171
BLTXPTR and BLTXMOD CalCUlations.........oceeeuereeererenreecueseseeneressesensesessssssssesssseesssses 173
Blitter Minterm Venn DIagraM.........c.ccocecererverereeserieseeseesssesuesesessonessesesssessesesessessessssssenes 178
Extracting a Range of COIUMNSccveriieviiieneneneneeensnereseseeenernssessessessesssessssressassenses 181
Use of the FCT Bit - Bit IS @ 0 ...cuueveeviveeeinreiesrieceeneneeseeeesie s nre st scrace e s seseeseses e enesesseannss 185
Use of the FCI Bit - Bit IS @ 1uiiiieiieiireeir et e ieneneentssesese st e s e seessnesesnsnssnnns 185
Single-Point Vertex EXAMPIE........cccuveereerentecenenrennreeieseesenessesessesessassessessessessssassaesssessens 186
Octants for Ling DIaWINg........ccvevivereceriiiiceiiiesteseceserecesne st sne e sreaesessesssresesesseseassssssaseesanes 190
DMA Time SI0t AILOCALON......cccccererrrerrrereesennensresssseressserersssssesessseasssesesmsassosmaessssssasaseses 195
NOIMAL 68000 CYCIEevernirrererreteirceteirnre s ersesveeeeststsaesesesessstssssssssesessssssssesssessssssasessanns 196
Time Slots Used by a Six Bitplane DiSplay..........cccceveerervererseecreninesincnsesesnssesnssessesssessenes 197
Time Slots Used by a High Resolution DiSplayc.ccceeuenreereseseseeseseesrersserssssesessens 197
Blitter BIOCK DIBEIAM......oceeureerierireinteesinreissesesesseseseseesessesassssassssesessasassesessesessessasssssasses 199
Inter-Sprite Fixed PriOTILESccevveieiriecieierienreieisreiesesceeseeeses e sesseressesersessrssssesesesneseses 208
Analogy fOr VIdeOo PrOTILYccccivevreiiiieeininieieieneiereieserescere e sessesessesessrsssssnsssesesessensans 209
Sprite/Playfield PHHOTILYccoveeevieicnenieenietreniesreeisesesesessesereseseseasesssssssesessssessssssssessesssnnes 212
INLEITUPL PTIOTILESvveeveeeieceeiieressntstsstetste e essvssssaeassessetasesassentosenssssrassensnesensesersoses 221
Controller Plug and Computer CONNECLOTcceceveerreeernreeeeeceneseseensresseseseessnessssnesessssenes 228
MOUSE QUAAIALUTE.......oveeeeeeerereereeieieseeseeaeer e e stesesesnessessssresssrsassssssesnessessssesnnestenessssnnen 230
Joystick to Counter CONNECHIONS.c.ceereerrrrrieerererereesessreessssesesesesesessesesesesessssesssssensens 233
Typical Paddle Wiring DIagramccecoecerevereeeiecersnsienensssesnesseseesesesssesesssesesessssssssnsnes 234
Effects of Resistance on Charging Ratec.cvvvveeeeeereceveeeeeerevcceeeeee e cereses e seessenes 235
Potentiometer Charging CirCUIL.......ccoviieveeecereveeieice s eveeeserere e eerenee s s srsrssensssnsanes 237
Chinon Timing DIAZIAMccvviieiiiereinerireninisineseresssse e ssesssess s ssssssssssssssssssnsssassenes 242
Chinon Timing Diagram (CONL)......cuuereirernrereernreenrernsresessssesesssesseressssessssessesesoesseessons 243
The Amiga 1000 Keyboard, Showing Keycodes in Hexadecimal...........ccccecveerveenennene. 254
The Amiga 500/2000/3000 Keyboard, Showing Keycodes in Hexadecimal 254
Starting Appearance of SERDAT and Shift REISIErcvvvvverveerverirererereeee st 258
Ending Appearance of Shift REZISIET.........ccoeiererinieieriereeie ettt sseenens 259
Reading Fire BUIOMSc.cocoeiureeereriirerenenetereenaistsnsssssssaseresssnssssssssesasesssesssesssssssssessesens 330
POt COUNLETS.....vevvieireereierntnterenessensestsrreese e ssassssesesesesessssssssesenessassnenssessssssesssssssssnssnsennn 332
LAGRE PN ...ttt ettt sttt res st st ses e saese et s et st s s ss s s sases s srnsenan 333
A2000 vs A3000 Bus TErMInAtioncccccveveeeeerereeereersreseeeresessmssesesssessesssesssessssosesssssens 386
EXpansion BUS CIOCKSccc.ccurmtriiereeriiieeetstniecesesstse et e e ebessssesenese e st st e sesssssssssssnsseses 393
20110 I1 BUS ATDIITALON ...c.ecertrie e st strese e ce st sstsssssesrate e ete e sresssnssesessessasesssssnsssons 394
BaSiC ZOITO IIT CYCIES.....c.cueiieeerrrerreirireseereressis st sssesssssesesessssssssesssssesssssssenssssssasanas 400
Multiple TranSFEr CYCIESoeoveviviriiieiiiienensesse e resrse e ssssses et et sssss s sesonssssones 403
Z0170 111 BUS ATDITAUON. ... trversvirenretenciieersse e sreeesse s esenesssesessesssese et sesnesenssssssssasseseons 405
INLETUPL VECIOT CYCIE...ouvivieeivirneeireeninceiencreics e e rsns s tes s stssssessasessssssssessssssesossrsssssans 407
Z0rr0 II Within Zorro ITL......coiciiiirinisiccecie e seereseseresesesesessse e esen st ses st st ssssnssseses 408
Read Cycle TIMING .c.ccovieciriririreriiie e nensssere e sesssessrebesesessnsssse st st stesssesasosssososssssses 417
WIHE CYCle TIMING «..cevveeieieesie ettt en s s enssasss s s nns e bs e ser b s ssssmenscenes 419
Multiple Transfer Cycle TIMINGvcvovveervererenirieneneerereresese e e e ses st ssssssesssssessessesenes 421
Quick Interrupt Cycle TIMING.....cvovuvivevereirrreririe e eeerereserere s esseses s eesesessssssssssssssosacsssenes 423
Configuration RegiSter MaPPINE.........cceuevevereviriririeeereeeeeeesessesee s e s e sesessoesnssesesssessonen 432

viii

Table 1-1
Table 2-1
Table 2-2
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 3-16
Table 3-17
Table 3-18
Table 3-19
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 6-1
Table 6-2
Table 6-3
Table 7-1
Table 7-2
Table 7-3
Table 7-4

L1ST OF TABLES

Summary of Amiga Memory CONfigUIAtIONScccuereereeveerenreceseeseereeuesueseessessesasscessonens 5
Interrupting the 680X0.......ccccceverirrerenieeerirerreresteresresreesesseseessessesaessesesssesnsssassasessessessanses 35
Copper INStruCtion SUMIMATYcoeevevereerereneserssesessessseessessesssssessesessessessssssssssssessessesseses 36
Colors in a Single Playfield........c.cocovveivniniiniiniiinninececcnesnescseesesscsessenesesessssens 45
Portion of the COIOr TaDIEc..oceeeeeveeeererirereeteetnee ettt s ssse st ssesssreseenses 46
Contents Of the COlOr REGISIETScoueveeereeieeireeetincernnstene e sresisstnssesessstsscssesesesressssens 46
Sample Color REIStEr CONIENLS........coceereeerinreeerereesesestesesesessesesesssesessssesesesesssesessoseseses 47
Setting the Number of Bitplanes.........cccuvvvuivinnniririnnssniniinciiceineeesnnenes 48
Lines in a Normal Playfieldcccoviiieinennieniniinniennisenecssesessesessessesesesesesssssesseneenes 49
Playfield Memory Requirements, NTSCccoooeirreeeneruninenneninescsisresesseseseseessessesesasne 52
Playfield Memory Requirements, PALcoccevrevenennienineennseencesecsesneseseesnseessesenes 53
DIWSTRT and DIWSTOP SUIMMATYc.ccovvererererrrenesenseesenssosesesssesenessssesesssssssssessesens 59
Playfield 1 Color Registers — Low resolution Mode.......co.c.eeeemreeeceerenenecneneernneecneenees 70
Playfield 2 Color Registers — Low resolution Mode..........coveevereeeeenenreneneceseeseenunceseenene 70
Playfields 1 and 2 Color Registers — High resolution Mode........c.cocevvvirvvvinenivrnncnnninns 71
Maximum Allowable Vertical SCreen VIide0.......cceeeueererrecerecemrecceieesnineienierserenessesenenne 79
Maximum Allowable Horizontal Screen Video........ccceeveveniiienininieiniinnnciininieniiscnesennene 80
C0lor ReGIiSIEr COMLENLScueeverereereeeererenneseiesestssestssesesrestsueseeneseestssensenessessosssssessesessone 92
Some Register Values and Resulting ColOTScccvvuvireerireninierireninnisesnnncsneresessasesenns 92
Low 1esolution Color SEIECHOMceveeererrereerenrererteneseeereesiseeesseseesessesesssseesesssnssesssssenes 93
High resolution Color SEIECHOMN.........oeeeieiierietirrecreest ettt ssesessesssrens 94
Color Selection in Hold-and-modify MOdeccooveveerrieerinieeneierertecesreesessenessesessenees 95
SPIIte DALA SITUCIUIEveveuereereirirrieseesereresesesessseseressseseesssesssesssnesesosssessssssessssssesssassssenes 105
SPrite COIOr REISLETSvvvveverereirrenineeeirieretetenee st esee e sesesesaesesssstsssstenesesnsesensesesssnsnesns 108
Color Registers for SPrit€ Pairsccccecevereinerecinentiennitietniieiestse e esssossssesses 115
Data Words for First Line of Spaceship SPriteccccveveeeeiverinnereriseeineeeseeeseeesesseneene 121
Color Registers in Attached SPIILES....cc.eueeererremicreininniriieneneeeiesc e sssaeseaes 122
Color Registers for SINGIE SPriles........eeviverrrererereirrneererereststsissesesssseressenssessssssesssessesesess 130
Color Registers for AUaChed SPIILESc.cvveereerecriieniieiricinieecse e 131
Sample Audio Data Set for Channel O..........cccvuevveeivererienivcnnninninircrnnneiscrcises s 138
VOIUME VAIUES......ccovererivenieeetreeeeieereneseeeesessssss e sesesssesassesssesessesecnsssesensessasnassssensosssessssss 140
DMA and Audio Channel Enable Bits........ccccooeveeninmincininccnneniinntinecinenssiesaeenae oo 144
Data Interpretation in Attach MOdEcoovveveverieneectnriese ettt sae s sneanes 150
Channel Attachment for MOQUIALONcccveveierereenieese et sressessessaenssnesens 151
Sampling Rate and Frequency RelationShipceeeiveevervenienreneeenicscenereecricceesensceenens 157
Equal-tempered Octave for a 16 Byte Sample........c.ceeveverevenenenencnicnenennicnincnieesninenne 158
Five Octave Even-tempered SCAlecovvvreenicveniininiiiniiniriisinsiss et ssesnessesennas 160
Decibel Values and Volume RaANEES.......c.ovvvveeeveeneeiiieneeieeninsenese st e s esstessesueeesenees 163
Table of Common MiInterm ValUEScoceveeereereenieneccretnniinissiiessese e ceessnessessessseseens 177
Typical Blitter Cycle SEQUENCE........ceveueeerieireertcertiestintssiteriissss s sresesrasnessssesens 188
BLTCONI1 Code Bits for Octant Line Drawingccecceeevererecercneeineceneissesinsessesesnnenns 190
Bits i BPLCONZ ...ttt st st ses e seses st sacsasestsassesesesssnssssssssssassssnsassssssssssns 210
Priority of Playfields Based on Values of Bits PF1P2-PF1P0..........covvvuinnninnnerennnnene. 210
CLXDAT BilS ..veeiveeirereereeresesussssesenesssnesesssssessssesesessssssesssessssssssssssssassssssssssasessssssssssssssans 214
CLXCON BilS....ucreeirrerereeesenseresereeseseesesesssssesesesesssssssesesssassessssssssssssssssssnssssssussesssessans 215

iX

Table 7-5
Table 7-6
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9
Table K-1

Contents of the Beam POSition COUNLET.......c.ccvruirirrereseesnsereessessessessesssssessessessessessesassasses 216
Contents of DMA CORtrol REZISIETccciiereveirrnirreseenteieessseresessessessessessessssssssesessassasnes 222
Typical Controller CONNECLONSccevvrererreriereererrestestersesiesesessessersessesssssessesaesesssssessasseses 228
Determining the Direction Of the MOUSEccccevetrrereninerseincecnc et cesesennes 231
Interpreting Data from JOYODAT and JOYIDAT......cc.covvevrrerienerieeeeeneeesneseseesesseseseens 232
POTGO ($DFF034) and POTINP ($DFF016) REGIStETS.....c.covevrrereerrrenrerrerreerenesnsessenenes 240
DiSK SUDSYSIEM .. .civeveeierirerirsenteeneseistsersestesestseesessesesssssssssessssessssessssessssensesessssssssssssssassesesns 244
DSKLEN RegiSter (SDFF024)........cccoceueueerererenereerereseessesssenesesssseresesssssssssessssessssssssessseses 246
DSKBYTR REZISIEL.....cccueeeeerereereeeeeeeeeesreaeessesessesssessessessessassssssssssssnssssessssssesssssanns 248
ADKCON and ADKCONR REEISLET........c.cccurerereerresenmnsenereenessssaressssssssesssssssesessssasasesasns 249
SERDATR / ADKCON REZISLETSeeveererrireerenreeenieseeseerasressessessessessessesessesssssassssssssassasses 256
Memory SPAce TYPE COUCSoevreirriririirieereenterirtsteresretsseassesasesassesessesssessensssesessasessans 414

Preface

The Amiga Technical Reference Series is the official guide to programming Commodore’s Amiga
computers. This revised edition of the Amiga Hardware Reference Manual provides detailed
information about the Amiga’s graphics and audio hardware, and how the Amiga talks to the out-
side world through peripheral devices. This edition has been updated for version 2.0 of the
Amiga operating system and covers the newest Amiga computer systems including the A3000.

This book is intended for the following audiences:

[m]

m}

Assembly language programmers who need a more direct way of interacting with the
Amiga than the routines provided in the system software.

Designers who want to interface new peripherals to the Amiga.

Anyone who wants to know how the Amiga hardware works.

Here is a brief overview of the contents:

Chapter 1, Introduction. An overview of the hardware and survey of the Amiga’s graph-
ics and audio features.

Chapter 2, Coprocessor Hardware. Using the Copper coprocessor to control the entire
graphics and audio system; directing mid-screen modifications in graphics displays and
directing register changes during the time between displays.

Chapter 3, Playfield Hardware. Creating, displaying and scrolling the playfields, one of
the basic display elements of the Amiga; how the Amiga produces multi-color, bit-
mapped displays.

Chapter 4, Sprite Hardware. Using the eight sprite direct memory access (DMA) chan-

nels to make sprite movable objects; creating their data structures, displaying and mov-
ing them, reusing the DMA channels.

Xi

Chapter 5, Audio Hardware. Overview of sampled sound; how to produce quality
sound, simple and complex sounds, and modulated sounds.

Chapter 6, Blitter Hardware. Using the blitter DMA channel to create animation effects
and draw lines into playfields.

Chapter 7, System Control Hardware. Using the control registers to define depth
arrangement of graphics objects, detect collisions between graphics objects, control
direct memory access, and control interrupts.

Chapter 8, Interface Hardware. How the Amiga talks to the outside world through con-
troller ports, keyboard, audio jacks and video connectors, serial and parallel interfaces;
information about the disk controller and RAM expansion slot.

Appendices. Alphabetical and address-order listings of all the graphics and audio system
registers and the functions of their bits. Also included is a special section on the
Amiga’s Enhanced Chip Set (ECS), system memory maps, descriptions of internal and
external connectors, specifications for the peripheral interface ports, keyboard, and an
introduction to the Amiga’s Zorro expansion bus with detailed specifications for
hardware add-on designers.

We suggest that you use this book according to your level of familiarity with the Amiga system.
Here are some suggestions:

a

If this is your initial exposure to the Amiga, read chapter 1, which gives a survey of all
the hardware features and a brief rundown of graphics and audio effects created by
hardware interaction.

If you are already familiar with the system and want to acquaint yourself with how the
various bits in the hardware registers govern the way the system functions, browse
through chapters 2 through 8. Examples are included in these chapters.

For advanced users, the appendices give a concise summary of the entire register set and
the uses of the individual bits. Once you are familiar with the effects of changes in the
various bits, you may wish to refer more often to the appendices than to the explanatory
chapters.

The other manuals in this series are the Amiga User Interface Style Guide, an application design
specification and reference work for Amiga programmers, the Amiga ROM Kernel Reference
Manual: Includes and Autodocs, an alphabetically organized reference of ROM function sum-
maries and Amiga system include files, the Amiga ROM Kernel Reference Manual: Libraries and
the Amiga ROM Kernel Reference Manual: Devices with tutorial-style chapters on the use of each
Amiga system library and device.

xii

chapter one
INTRODUCTION

The Amiga family of computers consists of several models, each of which has been designed on
the same premise -— to provide the user with a low-cost computer that features high-cost
performance. The Amiga does this through the use of custom silicon hardware that yields
advanced graphics and sound features.

There are four basic models that make up the Amiga computer family: the AS00, A1000, A2000,
and A3000. Though the models differ in price and features, they have a common hardware
nucleus that makes them software compatible with one another. This chapter describes the
Amiga’s hardwarc components and gives a brief overview of its graphics and sound features.

Components of the Amiga

These are the hardware components of the Amiga:

m]

Motorola MC68000 16/32-bit main processor. The Amiga also supports the 68010, 68020,
and 68030 processors as an option. The A1000, A500 and A2000 contain the 68000, while
the A3000 utilizes the 68030 processor.

Custom graphics and audio chips with DMA capability. All Amiga models are equipped
with three custom chips named Paula, Agnus, and Denise which provide for superior color
graphics, digital audio, and high-performance interrupt and I/O handling. The custom chips
can access up to 2MB of memory directly without using the 68000 CPU.

From 256K to 2 MB of RAM expandable to a total of § MB (over a gigabyte on the Amiga
3000).

512K of system ROM containing a real time, multitasking operating system with sound,

graphics, and animation support routines. (V1.3 and carlier versions of the OS used 256K of
system ROM.)

Introduction 1

o Built-in 3.5 inch double sided disk drive with expansion floppy disk ports for connecting up
to three additional disk drives (either 3.5 inch or 5.25 inch, double sided).

0 SCSI disk port for connecting additional SCSI disk drives (A3000 Only).
O Fully programmable parallel and RS-232-C serial ports.

o Two button opto-mechanical mouse and two reconfigurable controller ports (for mice,
joysticks, light pens, paddles, or custom controllers).

o A professional keyboard with numeric keypad, 10 function keys, and cursor keys. A variety
of international keyboards are also supported.

o Ports for analog or digital RGB output (all models), monochrome video (A500 and A2000),
composite video (A1000), and VGA-style multiscan video (A3000).

o Ports for left and right stereo audio from four special purpose audio channels.

o Expansion options that allow you to add RAM, additional disk drives (floppy or hard),
peripherals, or coprocessors.

THE MC68000 AND THE AMIGA CUSTOM CHIPS

The Motorola MC68000 microprocessor is the CPU used in the A1000, the A500, and the A2000.
The 68000 is a 16/32-bit microprocessor; internal registers are 32 bits wide, while the data bus
and ALU are 16 bits. The 68000’s system clock speed is 7.15909 MHz on NTSC systems (USA)
or 7.09379 MHz on PAL systems (Europe). These speeds can vary when using an external
system clock, such as from a genlock board.

The 68000 has an address space of 16 megabytes. In the Amiga, the 68000 can address up to 9
megabytes of random access memory (RAM).

In the A3000, the Motorola MC68030 microprocessor is the CPU. This is a full 32-bit
microprocessor with a system clock speed of 16 or 25 megahertz. The 68030 has an address
space of 4 gigabytes. In the A3000, over a gigabyte of RAM can be addressed.

In addition to the 680x0, all Amiga models contain special purpose hardware known as the
custom chips that greatly enhance system performance. The term custom chips refers to the three
integrated circuits which were designed specifically for the Amiga computer. These three custom
chips, named Paula, Agnus, and Denise, each contain the logic to handle a specific set of tasks
such as video, audio, or I/O.

Because the custom chips have DMA capability, they can access memory without using the
680x0 CPU - this frees the CPU for other types of operations. The division of labor between the
custom chips and the 680x0 gives the Amiga its power; on most other systems the CPU has to do
everything.

2 Amiga Hardware Reference Manual

The memory shared between the Amiga’s CPU and the custom chips is called Chip memory. The
more Chip memory the Amiga has, the more graphics, audio, and I/O data it can operate on
without the CPU being involved. All Amigas can access at least 512K of Chip memory.

The latest version of the custom chips, known as the Enhanced Chip Set or ECS) can handle up to
2 MB of memory and has other advanced features. For more details about the Enhanced Chip
Set, refer to Appendix C.

Although there are different versions of the Amiga’s custom chips, all versions have some
common features. Among other functions, the custom chips provide the following:

o Bitplane generated, high resolution graphics capable of supporting both PAL and NTSC
video standards.

NTSC systems. On NTSC systems, the Amiga typically produces a 320 by 200 non-
interlaced or 320 by 400 interlaced display in 32 colors. A high resolution mode
provides a 640 by 200 non-interlaced or 640 by 400 interlaced display in 16 colors.

PAL systems. On PAL systems, the Amiga typically produces a 320 by 256 non-
interlaced or 320 by 512 interlaced display in 32 colors. High resolution mode provides
a 640 by 256 non-interlaced or 640 by 512 interlaced display in 16 colors.

The design of the Amiga’s display system is very flexible and there are many other modes
available. Hold-and-modify (HAM) mode allows for the display of up to 4,096 colors on
screen simultaneously. Overscan mode allows the creation of higher resolution displays
specially suited for video and film applications. Displays of arbitrary size, larger than the
visible viewing area can be created. Amigas which contain the Enhanced Chip Set (ECS)
support Productivity mode giving displays of 640 by 480, non-interlaced with 4 colors from
a pallette of 64.

O A custom graphics coprocessor, called the Copper, that allows changes to most of the special
purpose registers in synchronization with the position of the video beam. This allows such
special effects as mid-screen changes to the color palette, splitting the screen into multiple
horizontal slices each having different video resolutions and color depths, beam-synchronized
interrupt generation for the 680x0, and more. The coprocessor can trigger many times per
screen, in the middle of lines, and at the beginning or during the blanking interval. The
coprocessor itself can directly affect most of the registers in the other custom chips, freeing
the 680x0 for general computing tasks.

o 32 system color registers, each of which contains a 12-bit number as four bits of red, four bits
of green, and four bits of blue intensity information. This allows a system color palette of
4,096 different choices of color for each register.

o Eight reusable 16-bit wide sprites with up to 15 color choices per sprite pixel (when sprites
are paired). A sprite is an easily movable graphics object whose display is entirely
independent of the background (called a playfield); sprites can be displayed over or under
this background. A sprite is 16 low resolution pixels wide and an arbitrary number of lines

Introduction 3

tall. After producing the last line of a sprite on the screen, a spritt DMA channel may be
used to produce yet another sprite image elsewhere on screen (with at least one horizontal
line between each reuse of a sprite processor). Thus, many small sprites can be produced by
simply reusing the sprite processors appropriately.

o Dynamically controllable inter-object priority, with collision detection. This means that the
system can dynamically control the video priority between the sprite objects and the bitplane
backgrounds (playfields). You can control which object or objects appear over or under the
background at any time. Additionally, you can use system hardware to detect collisions
between objects and have your program react to such collisions.

o Custom bit blitter used for high speed data movement, adaptable to bitplane animation. The
blitter has been designed to efficiently retrieve data from up to three sources, combine the
data in one of 256 different possible ways, and optionally store the combined data in a
destination area. The bit blitter, in a special mode, draws patterned lines into rectangularly
organized memory regions at a speed of about 1 million dots per second; and it can
efficiently handle area fill.

0 Audio consisting of four digital channels with independently programmable volume and
sampling rate. The audio channels retrieve their control and sample data via DMA. Once
started, each channel can automatically play a specified waveform without further processor
interaction. Two channels are directed into each of the two stereo audio outputs. The audio
channels may be linked together to provide amplitude or frequency modulation or both forms
of modulation simultaneously.

o DMA controlled floppy disk read and write on a full track basis. This means that the built-in
disk can read over 5600 bytes of data in a single disk revolution (11 sectors of 512 bytes
each).

AMIGA MEMORY SYSTEM

As mentioned previously, the custom chips have DMA access to RAM which allows them to
perform graphics, audio, and I/O chores independently of the CPU. This shared memory that
both the custom chips and the CPU can access directly is called Chip memory.

The custom chips and the 680x0 CPU share Chip memory on a fully interleaved basis. Since the
680x0 only needs to access the Chip memory bus during each alternate clock cycle in order to run
full speed, the rest of the time the Chip memory bus is free for other activities. The custom chips
use the memory bus during these free cycles, effectively allowing the CPU to run at full speed
most of the time.

There are some occasions though when the custom chips steal memory cycles from the 680x0. In
the higher resolution video modes, some or all of the cycles normally used for processor access
are needed by the custom chips for video refresh. In that case, the Copper and the blitter in the
custom chips steal time from the 680x0 for jobs they can do better than the 680x0. Thus, the
system DMA channels are designed with maximum performance in mind.

4 Amiga Hardware Reference Manual

Even when such cycle stealing occurs, it only blocks the 680x0’s access to the internal, shared
memory. The custom chips cannot steal cycles when the 680x0 is using ROM or extemnal
memory, also known as Fast memory.

The DMA capabilities of the custom chips vary depending on the version of the chips and the
Amiga model. The original custom chip set found in the A1000 could access the first 512K of
RAM. Most A1000s have only 512K of RAM so some of the Chip RAM is used up for operating
system overhead.

A later version of the custom chips found in early A500s and A2000s replaced the original Agnus
chip (8361) with a newer version called Fat Agnus (8370/8371). The Fat Agnus chip has DMA
access to 512K of Chip memory, just like the original Agnus, but also allows an additional 512K
of internal slow memory or pseudo-fast memory located at ($00C0 0000). Since the slow memory
can be used for operating system overhead, this allows all 512K of Chip memory to be used by
the custom chips.

The name slow memory comes from the fact that bus contention with the custom chips can still
occur even though only the CPU can access the memory. Since slow memory is arbitrated by the
same gate that controls Chip memory, the custom chips can block processor access to slow
memory in the higher resolution video modes.

The latest version of Agnus and the custom chips found in most A500s and A2000s is known as
the Enhanced Chip Set or ECS. ECS Fat Agnus (8§372A) can access up to one megabyte of Chip
memory. Itis pin compatible with the original Fat Agnus (8370/8371) found in earlier A500 and
A2000 models. In addition, ECS Fat Agnus supports both the NTSC and PAL video standards on
a single chip.

In the A3000, the Enhanced Chip Set can access up to two megabytes of Chip memory.
The amount of Chip memory is important since it determines how much graphics, audio, and disk

data the custom chips can operate on without the 680x0 CPU. Table 1-1 summarizes the basic
memory configurations of the Amiga.

Chip RAM Maximum Total RAM Maximum
(base model) Chip RAM (base model) Total RAM

Amiga 1000 256K 512K 256K 9 MB
Amiga 500 512K 1 MB 1 MB 9 MB
Amiga 2000 512K 1 MB 1 MB 9 MB
Amiga 3000 1 MB 2 MB 2 MB over 1 GB

Table 1-1: Summary of Amiga Memory Configurations

Introduction 5

Another primary feature of the Amiga hardware is the ability to dynamically control which part of
the Chip memory is used for the background display, audio, and sprites. The Amiga is not
limited to a small, specific area of RAM for a frame buffer. Instead, the system allows display
bitplanes, sprite processor control lists, coprocessor instruction lists, or audio channel control lists
to be located anywhere within Chip memory.

This same region of memory can be accessed by the bit blitter. This means, for example, that the
user can store partial images at scattered arecas of Chip memory and use these images for
animation effects by rapidly replacing on screen material while saving and restoring background
images. In fact, the Amiga includes firmware support for display definition and control as well as
support for animated objects embedded within playfields.

PERIPHERALS

Floppy disk storage is provided by a built-in, 3.5 inch floppy disk drive. Disks are 80 track,
double sided, and formatted as 11 sectors per track, 512 bytes per sector (over 900,000 bytes per
disk). The disk controller can read and write 320/360K IBM PC™ (MS-DOS™) formatted 3.5 or
5.25 inch disks, and 640/720K IBM PC (MS-DOS) formatted 3.5 inch disks.

Up to three extra 3.5 inch or 5.25 inch disk drives can be added to the Amiga. The A2000 and
A3000 also provide room to mount floppy or hard disks internally. The A3000 has a built-in hard
disk drive and an on-board SCSI controller which can handle two internal drives and up to seven
external SCSI devices.

The Amiga has a full complement of dedicated I/O connectors. The circuitry for some of these
peripherals resides on the Paula custom chip while the Amiga’s two 8520 CIA chips handle other
I/O chores not specifically assigned to any of the custom chips. These include modem control,
disk status sensing, disk motor and stepping control, ROM enable, parallel input/output interface,
and keyboard interface.

The Amiga includes a standard RS-232-C serial port for external serial input/output devices such
as a modem, MIDI interface, or printer. A programmable, Centronics-compatible parallel port
supports parallel printers, audio digitizers, and other peripherals.

The Amiga also includes a two-button, opto-mechanical mouse plus a keyboard with numeric
keypad, cursor controls, and 10 function keys in the base system. A variety of international
keyboards are supported. Many other input options are available. Other types of controllers can
be attached through the two controller ports on the base unit including joysticks, keypads,
trackballs, light pens, and graphics tablets.

6 Amiga Hardware Reference Manual

SYSTEM EXPANDABILITY AND ADAPTABILITY

New peripheral devices may be easily added to all Amiga models. These devices are
automatically recognized and used by system software through a well defined, well documented
linking procedure called AUTOCONFIG™. AUTOCONFIG is short for automatic configuration
and is the process which allows memory or I/O space for an expansion board to be dynamically
allocated by the system at boot time. Unlike some other systems, there is no need to set DIP
switches to select an address space from a fixed range reserved for expansion devices.

On the A500 and A1000 models, peripheral devices can be added using the Amiga’s 86-pin
expansion connector. Peripherals that can be added include hard disk controllers and drives, or
additional external RAM. Extra floppy disk units may be added from a connector at the rear of
the unit.

The A2000 and A3000 models provide the user with the same features as the ASOO or A1000, but
with the added convenience of simple and extensive expandability through the Amiga’s 100-pin
Zorro expansion bus.

The A2000 contains 7 internal slots and the A3000 contains 4 internal slots plus a SCSI disk
controller that allow many types of expansion devices to be quickly and easily added inside the
machine. Available options include RAM boards, coprocessors, hard disk controllers, video
cards, and I/O ports.

The A2000 and A3000 also support the special Bridgeboard™ coprocessor card. This provides a
complete IBM PC™ on a card and allows the Amiga to run MS-DOS™ compatible software,
while simultaneously running native Amiga software. In addition, both machines have expansion
slots capable of supporting standard, IBM PC™ style boards.

VCR AND DIRECT CAMERA INTERFACE

In addition to the connectors for monochrome composite, and analog or digital RGB monitors,
the Amiga can be expanded to include a VCR or camera interface. With a genlock board, the
system is capable of synchronizing with an external video source and replacing the system
background color with the external image. This allows development of fully integrated video
images with computer generated graphics. Laser disk input is accepted in the same manner.

The A2000 and A3000 models also provide a special internal slot designed for video applications.

This allows the Amiga to use low-cost video expansion boards such as genlocks and frame-
grabbers.

Introduction 7

AMIGA SYSTEM BLOCK DIAGRAM

The diagram below highlights the major hardware components of the Amiga’s architecture.
Notice that there are two separate buses, one that only the CPU can access (Fast memory) and
another one that the custom chips share with the CPU (Chip memory).

| SYSTEM EXPANSION |

.
| I OTHER EXPANSION DEVICES I l
| l | L CUSTOM CHIP SECTION
I HARD DISK INTERFACE I —_— J— |
) |
[o | | | |
| X | |
L EXPANSION CONNECTOR(S)) | pre—]) | AGNUS |
e 4 J |
. | G
; al |
I < A |
(68000) I l I I BUFFERS < s |
- > AND 1
ARBITRATION P
LociC o DENISE [
D C
= ¢ R H
l s 2 |
| i
MUX |
l—] |
| |
ki 5 v CHIP |
(8520) (8520) | _’ RAM
l
| - D
] 1| “pseuDO” ||
I FAST [
[| RAM * :
|

* addressed as CHIP RAM with IMB Agnus

Figure 1-1: Block Diagram for the Amiga Computer Family

8 Amiga Hardware Reference Manual

About the Examples

The examples in this book all demonstrate direct manipulation of the Amiga hardware. However,
as a general rule, it is not permissible to directly access the hardware in the Amiga unless your
software either has full control of the system, or has arbitrated via the OS for exclusive access to
the particular parts of the hardware you wish to control.

Almost all of the hardware discussed in this manual, most notably the Blitter, Copper, playfield,
sprite, CIA, trackdisk, and system control hardware, are in either exclusive or arbitrated use by
portions of the Amiga OS in any running Amiga system. Additional hardware, such as the audio,
parallel, and serial hardware, may be in use by applications which have allocated their use
through the system software.

Before attempting to directly manipulate any part of the hardware in the Amiga’s multitasking
environment, your application must first be granted exclusive access to that hardware by the
operating system library, device, or resource which arbitrates its ownership. The operating
system functions for requesting and receiving control of parts of the Amiga hardware are varied
and are not within the scope of this manual. Generally such functions, when available, will be
found in the library, device, or resource which manages that portion of the Amiga hardware in the
multitasking environment. The following list will help you to find the appropriate operating
system functions or mechanisms which may exist for arbitrated access to the hardware discussed
in this manual.

Hardware component Amiga system module that controls it

Copper, Playfield, Sprite, Blitter ~ graphics.library

Audio audio.device

Trackdisk trackdisk.device, disk.resource

Serial serial.device, misc.resource

Parallel parallel.device, cia.resource, misc.resource
Gameport input.device, gameport.device, potgo.resource
Keyboard input.device, keyboard.device

System Control graphics.library, exec.library (interrupts)

Most of the examples in this book use the hw_examples.i file (see Appendix I) to define the chip
register names. Hw_examples.i uses the system include file hardware/custom.i to define the chip
structures and relative addresses. The values defined in hardware/custom.i and hw_examples.i
are offsets from the base of the chip register address space. In general, this base value is defined
as _custom and is resolved during linking with the linker library amiga.lib. (_ciaa and _ciab are
also resolved in this way.)

Normally, the base address is loaded into an address register and the offsets given by

hardware/custom.i and hw_examples.i are then used to access the correct register. (One
exception to this rule is the Copper which uses only the offset access the registers.)

Introduction 9

For example, in assembler:

INCLUDE "exec/types.i"
INCLUDE "hardware/custom.i"

XREF _custom ; External reference...
Start: lea _custom, a0 ; Use a0 as base register and
move.w #S$S7FFF, intena (a0) ; use the name intena as an offset

; to disable all interrupts

In C, you would use the structure definitions in hardware/custom.h For example:

#include "exec/types.h"
#include "hardware/custom.h"

extern struct Custom custom;

/* You may need to define the above external as
** extern struct Custom far custom;
** Check you compiler manual.

*/

main ()
{
custom.intena = Ox7FFF; /* Disable all interrupts */

}

The Amiga hardware include files are generally supplied with your compiler or assembler.
Listings of the hardware include files may also be found in the Amiga ROM Kernel Manual:
Includes and Autodocs. Generally, the include file label names are very similar to the equivalent
hardware register list names with the following typical differences.

o

Address registers which have low word and high word components are generally listed as
two word sized registers in the hardware register list, with each register name containing
either a suffix or embedded ‘L’ or ‘“‘H’’ for low and high. The include file label for the
same register will generally treat the whole register as a longword (32 bit) register, and
therefore will not contain the ‘L’ or **H’’ distinction.

Related sequential registers which are given individual names with number suffixes in the
hardware register list, are generally referenced from a single base register definition in the
include files. For example, the color registers in the hardware list (COLOR0O, COLOROI,
etc.) would be referenced from the ‘‘color’’ label defined in hardware/custom.i (color+0,
color+2, etc.).

Examples of how to define the correct register offset can be found in the hw_examples.i file
listed in Appendix I.

Except as noted, 68000 assembly language examples have been assembled under the
Innovatronics CAPE assembler V2.x, the HiSoft Devpac assembler V1.2, and the Lake Forest
Logic ADAPT assembler 1.0. No substantial changes should be required to switch between
assemblers.

10 Amiga Hardware Reference Manual

General Amiga Development Guidelines

The Amiga is available in a variety of models and configurations, and is further diversified by a
wealth of add-on expansion peripherals and processor replacements. In addition, even standard
Amiga hardware such as the keyboard and floppy disks, are supplied by a number of different
manufacturers and may vary subtly in both their timing and in their ability to perform outside of
their specified capabilities.

The Amiga operating system is designed to operate the Amiga hardware within spec, adapt to
different hardware and RAM configurations, and generally provide upward compatibility with any
future hardware upgrades or ‘‘add ons’’ envisioned by the designers. For maximum upward
compatibility, it is strongly suggested that programmers deal with the hardware through the
commands and functions provided by the Amiga operating system.

If you find it necessary to program the hardware directly, then it is your responsibility to write
code which will work properly on various models and configurations. Be sure to properly request
and gain control of the hardware you are manipulating, and be especially careful in the following
areas:

The environment of the Amiga computer is quite different than that of many other systems. The
Amiga is a multitasking platform, which means multiple programs can run on a single machine
simultaneously. However, for multitasking to work correctly, care must be taken to ensure that
programs do not interfere with one another. It also means that certain guidelines must be
followed during programming.

0 Remember that memory, peripheral configurations, and ROMs differ between models and
between individual systems. Do not make assumptions about memory address ranges,
storage device names, or the locations of system structures or code. Never call ROM
routines directly. Beware of any example code you find that calls routines at addresses in the
$F0 0000 - $FF FFFF range. These are ROM routines and they will move with every OS
release. The only supported interface to system ROM code is through the library, device, and
resource calls.

0 Never assume library bases or structures will exist at any particular memory location. The
only absolute address in the system is $0000 0004, which contains a pointer to the
exec.library base. Do not modify or depend on the format of private system structures. This
includes the poking of copper lists, memory lists, and library bases.

O Never assume that programs can access hardware resources directly. Most hardware is
controlled by system software that will not respond well to interference from other programs.
Shared hardware requires programs to use the proper sharing protocols. Use the defined
interface; it is the best way to ensure that your software will continue to operate on future
models of the Amiga.

Introduction 11

Never access shared data structures directly without the proper mutual exclusion (locking).
Remember that other tasks may be accessing the same structures.

All data for the custom chips must reside in Chip memory (type MEMF_CHIP). This
includes bitplanes, sound samples, trackdisk buffers, and images for sprites, bobs, pointers,
and gadgets. The AllocMem() call takes a flag for specifying the type of memory. A
program that specifies the wrong type of memory may appear to run correctly because many
Amigas have only Chip memory. (On all models of the Amiga, the first 512K of memory is
Chip memory and in some later models, Chip memory may occupy the first one or two
megabytes).

However, once expansion memory has been added to an Amiga (type MEMF_FAST), any
memory allocations will be made in the expansion memory area by default. Hence, a
program can run correctly on an unexpanded Amiga which has only Chip memory while
crashing on an Amiga which has expanded memory. A developer with only Chip memory
may fail to notice that memory was incorrectly specified.

Most compilers have options to mark specific data structures or object modules so that they
will load into Chip RAM. Some older compilers provide the Atom utility for marking object
modules. If this method is unacceptable, use the AllocMem() call to dynamically allocate
Chip memory, and copy your data there.

When making allocations that do not require Chip memory, do not explicitly ask for Fast
memory. Instead ask for memory type MEMF_PUBLIC or OL as appropriate. If Fast
memory is available, you will get it.

Never use software delay loops! Under the multitasking operating system, the time spent in
a loop can be better used by other tasks. Even ignoring the effect it has on multitasking,
timing loops are inaccurate and will wait different amounts of time depending on the specific
model of Amiga computer. The timer.device provides precision timing for use under the
multitasking system and it works the same on all models of the Amiga. The AmigaDOS
Delay() function or the graphics.library/WaitTOF() function provide a simple interface for
longer delays. The 8520 I/O chips provide timers for developers who are bypassing the
operating system (see the Amiga Hardware Reference Manual for more information).

FOR 68010/68020/68030/68040 COMPATIBILITY

Special care must be taken to be compatible with the entire family of 68000 processors:

a

o

Do not use the upper 8 bits of a pointer for storing unrelated information. The 68020, 68030,
and 68040 use all 32 bits for addressing.

Do not use signed variables or signed math for addresses.

12 Amiga Hardware Reference Manual

Do not use software delay loops, and do not make assumptions about the order in which
asynchronous tasks will finish.

The stack frame used for exceptions is different on each member of the 68000 family. The
type identification in the frame must be checked! In addition, the interrupt autovectors may
reside in a different location on processors with a VBR register.

Do not use the MOVE SR,<dest> instruction! This 68000 instruction acts differently on
other members of the 68000 family. If you want to get a copy of the processor condition
codes, use the exec.library/GetCC() function.

Do not use the CLR instruction on a hardware register which is triggered by Write access.
The 68020 CLR instruction does a single Write access. The 68000 CLR instruction does a
Read access first, then a Write access. This can cause a hardware register to be triggered
twice. Use MOVE.x #0, <address> instead.

Self-modifying code is strongly discouraged. All 68000 family processors have a pre-fetch
feature. This means the CPU loads instructions ahead of the current program counter.
Hence, if your code modifies or decrypts itself just ahead of the program counter, the pre-
fetched instructions may not match the modified instructions. The more advanced processors
prefetch more words. If self-modifying code must be used, flushing the cache is the safest
way to prevent troubles.

The 68020, 68030, and 68040 processors all have instruction caches. These caches store
recently used instructions, but do not monitor writes. After modifying or directly loading
instructions, the cache must be flushed. See the exec.library/CacheClearU() Autodoc for
more details. If your code takes over the machine, flushing the cache will be trickier. You
can account for the current processors, and hope the same techniques will work in the future:

CACRF_ClearlI EQU $0008 ;Bit for clear instruction cache
; Supervisor mode only.Use only if you have taken
;over the machine. Read and store the ExecBase
;processor AttnFlags flags at boot time, call this
;code only if the "68020 or better" bit was set.

’

ClearICache: dc.w $4E7A, $0002 ; MOVEC CACR,DO
tst.w do ;movec does not affect CC’'s
bmi.s cic_040 ;A 68040 with enabled cache!
ori.w #CACRF_ClearI,do
dc.w $4E7B, $0002 ;MOVEC DO, CACR
bra.s cic_exit

cic_040: dc.w $f4b8 ;CPUSHA (IC)

cic_exit:

Introduction 13

HARDWARE PROGRAMMING GUIDELINES

If you find it necessary to program the hardware directly, then it is your responsibility to write
code that will work correctly on the various models and configurations of the Amiga. Be sure to
properly request and gain control of the hardware resources you are manipulating, and be
especially careful in the following areas:

m]

Kickstart 2.0 uses the 8520 Complex Interface Adaptor (CIA) chips differently than 1.3 did.
To ensure compatibility, you must always ask for CIA access using the
cia.resource/AddICR Vector() and RemICRVector() functions. Do not make assumptions
about what the system might be using the CIA chips for. If you write directly to the CIA
chip registers, do not expect system services such as the trackdisk.device to function. If you
are leaving the system up, do not read or write to the CIA Interrupt Control Registers
directly; use the cia.resource/AbleICR(), and SetICR() functions. Even if you are taking over
the machine, do not assume the initial contents of any of the CIA registers or the state of any
enabled interrupts.

All custom chip registers are Read-only or Write-only. Do not read Write-only registers, and
do not write to Read-only registers.

Never write data to, or interpret data from the unused bits or addresses in the custom chip
space. To be software-compatible with future chip revisions, all undefined bits must be set to
zeros on writes, and must be masked out on reads before interpreting the contents of the
register.

Never write past the current end of custom chip space. Custom chips may be extended or
enhanced to provide additional registers, or to use bits that are currently undefined in existing
registers.

Never read, write, or use any currently undefined address ranges or registers. The current and
future usage of such areas is reserved by Commodore and is subject to change.

Never assume that a hardware register will be initialized to any particular value. Different
versions of the OS may leave registers set to different values. Check the Amiga Hardware
Reference Manual to ensure that you are setting up all the registers that affect your code.

14 Amiga Hardware Reference Manual

ADDITIONAL ASSEMBLER DEVELOPMENT GUIDELINES

If you are writing in assembly language there are some extra rules to keep in mind in addition to
those listed above.

o

Never use the TAS instruction on the Amiga. System DMA can conflict with this
instruction’s special indivisible read-modify-write cycle.

System functions must be called with register A6 containing the library or device base.
Libraries and devices assume A6 is valid at the time of any function call. Even if a particular
function does not currently require its base register, you must provide it for compatibility
with future system software releases.

Except as noted, system library functions use registers DO, D1, AQ, and Al as scratch
registers and you must consider their former contents to be lost after a system library call.
The contents of all other registers will be preserved. System functions that provide a result
will return the result in DO.

Never depend on processor condition codes after a system call. The caller must test the
returned value before acting on a condition code. This is usually done with a TST or MOVE
instruction.

If you are programming at the hardware level, you must follow hardware interfacing
specifications. All hardware is not the same. Do not assume that low level hacks for speed
or copy protection will work on all drives, or all keyboards, or all systems, or future systems.
Test your software on many different systems, with different processors, OS, hardware, and
RAM configurations.

Introduction 15

Commodore Applications and Technical Support (CATS)

Commodore maintains a technical support group dedicated to helping developers achieve their
goals with the Amiga. Currently, technical support programs are available to meet the needs of
both smaller, independent software developers and larger corporations. Subscriptions to
Commodore’s technical support publication, Amiga Mail, is available to anyone with an interest
in the latest news, Commodore software and hardware changes, and tips for developers.

To request an application for Commodore’s developer support program, or a list of CATS
technical publications send a self-addressed, stamped, 9" x 12" envelope to:

CATS-Information
1200 West Wilson Drive
West Chester, PA 19380-4231

Error Reports

In a complex technical manual, errors are often found after publication. When errors in this
manual are found, they will be corrected in a subsequent printing. Updates will be published in
Amiga Mail, Commodore’s technical support publication.

Bug reports can be sent to Commodore electronically or by mail. Submitted reports must be
clear, complete, and concise. Reports must include a telephone number and enough information
so that the bug can be quickly verified from your report (i.e., please describe the bug and the steps
that produced it).

Amiga Software Engineering Group
ATTN: BUG REPORTS
Commodore Business Machines
1200 Wilson Drive

West Chester, PA 19380-4231
USA

BIX: amiga.com/bug.reports (Commercial developers)
amiga.cert/bug.reports (Certified developers)
amiga.dev/bugs (Others)

USENET: bugs@commodore.COM or uunet!cbmvax!bugs

16 Amiga Hardware Reference Manual

chapter two
COPROCESSOR HARDWARE

In this chapter, you will learn how to use the Amiga’s graphics coprocessor (or Copper) and its
simple instruction set to organize mid-screen register value modifications and pointer register
set-up during the vertical blanking interval. The chapter shows how to organize Copper
instructions into Copper lists, how to use Copper lists in interlaced mode, and how to use the
Copper with the blitter. The Copper is discussed in this chapter in a general fashion. The
chapters that deal with playfields, sprites, audio, and the blitter contain more specific suggestions
for using the Copper.

About the Copper

The Copper is a general purpose coprocessor that resides in one of the Amiga’s custom chips. It
retrieves its instructions via direct memory access (DMA). The Copper can control nearly the
entire graphics system, freeing the 680x0 to execute program logic; it can also directly affect the
contents of most of the chip control registers. It is a very powerful tool for directing mid-screen
modifications in graphics displays and for directing the register changes that must occur during
the vertical blanking periods. Among other things, it can control register updates, reposition
sprites, change the color palette, update the audio channels, and control the blitter.

One of the features of the Copper is its ability to WAIT for a specific video beam position, then
MOVE data into a system register. During the WAIT period, the Copper examines the contents
of the video beam position counter directly. This means that while the Copper is waiting for the
beam to reach a specific position, it does not use the memory bus at all. Therefore, the bus is
freed for use by the other DMA channels or by the 680x0.

When the WAIT condition has been satisfied, the Copper steals memory cycles from either the
blitter or the 680x0 to move the specified data into the selected special-purpose register.

Coprocessor Hardware 19

The Copper is a two-cycle processor that requests the bus only during odd-numbered memory
cycles. This prevents collision with audio, disk, refresh, sprites, and most low resolution display
DMA access, all of which use only the even-numbered memory cycles. The Copper, therefore,
needs priority over only the 680x0 and the blitter (the DMA channel that handles animation, line
drawing, and polygon filling).

As with all the other DMA channels in the Amiga system, the Copper can retrieve its instructions
only from the chip RAM area of system memory.

What is a Copper Instruction?

As a coprocessor, the Copper adds its own instruction set to the instructions already provided by
the 680x0 CPU. The Copper has only three instructions, but you can do a lot with them:

0 WAIT for a specific screen position specified as x and y coordinates.
@ MOVE an immediate data value into one of the special-purpose registers.

o SKIP the next instruction if the video beam has already reached a specified screen
position.

All Copper instructions consist of two 16-bit words in sequential memory locations. Each time
the Copper fetches an instruction, it fetches both words.

The MOVE and SKIP instructions require two memory cycles and two instruction words each.
Because only the odd memory cycles are requested by the Copper, four memory cycle times are
required per instruction. The WAIT instruction requires three memory cycles and six memory
cycle times; it takes one extra memory cycle to wake up.

Although the Copper can directly affect only machine registers, it can also affect memory
indirectly by setting up a blitter operation. More information about how to use the Copper in
controlling the blitter can be found in the sections called ‘‘Control Register’” and ‘‘Using the
Copper with the Blitter.”’

The WAIT and MOVE instructions are described below. The SKIP instruction is described in the
‘“Advanced Topics’’ section.

20 Amiga Hardware Reference Manual

The MOVE Instruction

The MOVE instruction transfers data from RAM to a register destination. The transferred data is
contained in the second word of the MOVE instruction; the first word contains the address of the
destination register. This procedure is shown in detail in the section called ‘‘Summary of Copper
Instructions.”’

FIRST MOVE INSTRUCTION WORD (IR1)

Bit 0 Always set to 0.

Bits 8 - 1 Register destination address (DAS-1).
Bits 15-9 Not used, but should be set to 0.

SECOND MOVE INSTRUCTION WORD (IR2)

Bits 15 -0 16 bits of data to be transferred (moved)
to the register destination.

The Copper can store data into the following registers:

O Any register whose address is $20 or above.!

O Any register whose address is between $10 and $20 if the Copper danger bit is a 1. The
Copper danger bit is in the Copper’s control register, COPCON, which is described in
the ‘‘Control Register’’ section.

o The Copper cannot write into any register whose address is lower than $10.

Appendix B contains all of the machine register addresses.

The following example MOVE instructions set bitplane pointer 1 to $21000 and bitplane pointer
2 to $25000.2

DC.W $00EO, $0002 ;Move $0002 to register $OEO (BPL1PTH)
DC.W $00E2,$1000 ;Move $1000 to register S$OE2 (BPL1PTL)
DC.W $00E4, $0002 ;Move $0002 to register $0E4 (BPL2PTH)
DC.W $00E6, $5000 ;Move $5000 to register $0E6 (BPL2PTL)

! Hexadecimal numbers are distinguished from decimal numbers by the $ prefix.

2 All sample code segments are in assembly language.

Coprocessor Hardware 21

Normally, the appropriate assembler *“.i’’ files are included so that names, rather than addresses,
may be used for referencing hardware registers. It is strongly recommended that you reference all
hardware addresses via their defined names in the system include files. This will allow you to
more easily adapt your software to take advantage of future hardware or enhancements. For
example:

INCLUDE "hardware/custom.i"

DC.W bplpt+$00,$0002 ;Move $0002 intoc register S$OEO (BPL1PTH)
DC.W bplpt+$02,$1000 ;Move $1000 into register $0E2 (BPL1PTL)
DC.W bplpt+$04,$0002 ;Move $0002 into register $0E4 (BPL2PTH)
DC.W bplpt+$06,$5000 ;Move $5000 into register $OE6 (BPL2PTL)

For use in the hardware manual examples, we have made a special include file (see Appendix I)
that defines all of the hardware register names based off of the ‘‘hardware/custom.i’’ file. This
was done to make the examples easier to read from a hardware point of view. Most of the
examples in this manual are here to help explain the hardware and are, in most cases, not useful
without modification and a good deal of additional code.

The WAIT Instruction

The WAIT instruction causes the Copper to wait until the video beam counters are equal to (or
greater than) the coordinates specified in the instruction. While waiting, the Copper is off the bus
and not using memory cycles.

The first instruction word contains the vertical and horizontal coordinates of the beam position.
The second word contains enable bits that are used to form a ‘‘mask" that tells the system which
bits of the beam position to use in making the comparison.

FIRST WAIT INSTRUCTION WORD (IR1)

Bit 0 Always setto 1.

Bits 15-8 Vertical beam position (called VP).
Bits 7-1 Horizontal beam position (called HP).

SECOND WAIT INSTRUCTION WORD (IR2)
Bit 0 Always set to 0.

Bit 15 The blitter-finished-disable bit. Normally, this bitis a 1.
(See the “*Advanced Topics’’ section below.)

Bits 14 - 8 Vertical position compare enable bits (called VE).
Bits 7-1 Horizontal position compare enable bits (called HE).

22 Amiga Hardware Reference Manual

The following example WAIT instruction waits for scan line 150 ($96) with the horizontal
position masked off.

DC.W $9601, SFFOO ;Wait for line 150,
ignore horizontal counters.

The following example WAIT instruction waits for scan line 255 and horizontal position 254.
This event will never occur, so the Copper stops until the next vertical blanking interval begins.

DC.W SFFFF, SFFFE ;Wait for line 255,
H = 254 (ends Copper list).

To understand why position VP=$FF HP=$FE will never occur, you must look at the comparison
operation of the Copper and the size restrictions of the position information. Line number 255 is
a valid line to wait for, in fact it is the maximum value that will fit into this field. Since 255 is the
maximum number, the next line will wrap to zero (line 256 will appear as a zero in the
comparison.) The line number will never be greater than $FF. The horizontal position has a
maximum value of $E2. This means that the largest number that will ever appear in the
comparison is $FFE2. When waiting for $FFFE, the line $FF will be reached, but the horizontal
position $FE will never happen. Thus, the position will never reach $FFFE.

You may be tempted to wait for horizontal position $FE (since it will never happen), and put a
smaller number into the vertical position field. This will not lead to the desired result. The
comparison operation is waiting for the beam position to become greater than or equal to the
entered position. If the vertical position is not $FF, then as soon as the line number becomes
higher than the entered number, the comparison will evaluate to true and the wait will end.

The following notes on horizontal and vertical beam position apply to both the WAIT instruction
and to the SKIP instruction. The SKIP instruction is described below in the ‘‘Advanced Topics’’
section.

HORIZONTAL BEAM POSITION

The horizontal beam position has a value of $0 to $E2. The least significant bit is not used in the
comparison, so there are 113 positions available for Copper operations. This corresponds to 4
pixels in low resolution and 8 pixels in high resolution. Horizontal blanking falls in the range of
$0F to $35. The standard screen (320 pixels wide) has an unused horizontal portion of $04 to $47
(during which only the background color is displayed).

All lines are not the same length in NTSC. Every other line is a long line (228 color clocks, O-
$E3), with the others being 227 color clocks long. In PAL, they are all 227 long. The display
sees all these lines as 227 1/2 color clocks long, while the copper sees alternating long and short
lines.

Coprocessor Hardware 23

VERTICAL BEAM POSITION

The vertical beam position can be resolved to one line, with a maximum value of 255. There are
actually 262 NTSC (312 PAL) possible vertical positions. Some minor complications can occur
if you want something to happen within these last six or seven scan lines. Because there are only
eight bits of resolution for vertical beam position (allowing 256 different positions), one of the
simplest ways to handle this is shown below.

Copper Instruction Explanation

WAIT for position (0,255) At this point, the vertical counter
appears to wrap to 0 because the
comparison works on the least
significant bits of the vertical count.

WAIT for any horizontal position with
vertical position O through 5, covering
the last 6 lines of the scan before vertical

Thus the total of 256 + 6 = 262 lines of
video beam travel during which Copper
instructions can be executed.

blanking occurs.

Note that the vertical is like the horizontal. There are alternating long and short
lines, there are also long and short fields (interlace only). In NTSC, the fields are 262,
then 263 lines and in PAL, 312, then 313 lines. This alternation of lines and fields
produces the standard NTSC 4 field repeating pattern:

short field ending on short line
long field ending on long line
short field ending on long line
long field ending on short line
and back to the beginning...

One horizontal count takes one cycle of the system clock (processor is twice this).
NTSC- 3,579,545 Hz

PAL - 3,546,895 Hz
genlocked- basic clock frequency plus or minus about 2%

THE COMPARISON ENABLE BITS

Bits 14-1 are normally set to all 1s. The use of the comparison enable bits is described later in the
‘‘Advanced Topics’’ section.

24 Amiga Hardware Reference Manual

Using the Copper Registers

There are several machine registers and strobe addresses dedicated to the Copper:
0 Location registers
0 Jump address strobes

o Control register

LOCATION REGISTERS

The Copper has two sets of location registers:

COPILCH High 3 bits of first Copper list address.
COPILCL Low 16 bits of first Copper list address.
COP2LCH High 3 bits of second Copper list address.
COP2LCL Low 16 bits of second Copper list address.

In accessing the hardware directly, you often have to write to a pair of registers that contains the
address of some data. The register with the lower address always has a name ending in ‘‘H’’ and
contains the most significant data, or high 3 bits of the address. The register with the higher
address has a name ending in ‘‘L’’ and contains the least significant data, or low 15 bits of the
address. Therefore, you write the 18-bit address by moving one long word to the register whose
name ends in ‘‘H.”” This is because when you write long words with the 680x0, the most
significant word goes in the lower addressed word.

In the case of the Copper location registers, you write the address to COP1LCH. In the following
text, for simplicity, these addresses are referred to as COP1LC or COP2LC.

The Copper location registers contain the two indirect jump addresses used by the Copper. The
Copper fetches its instructions by using its program counter and increments the program counter
after each fetch. When a jump address strobe is written, the corresponding location register is
loaded into the Copper program counter. This causes the Copper to jump to a new location, from
which its next instruction will be fetched. Instruction fetch continues sequentially until the
Copper is interrupted by another jump address strobe.

About Copper restart. At the start of each vertical blanking interval, COP1LC is
automatically used to start the program counter. That is, no matter what the Copper is
doing, when the end of vertical blanking occurs, the Copper is automatically forced to
restart its operations at the address contained in COP1LC.

Coprocessor Hardware 25

JUMP STROBE ADDRESS

When you write to a Copper strobe address, the Copper reloads its program counter from the
corresponding location register. The Copper can write its own location registers and strobe
addresses to perform programmed jumps. For instance, you might MOVE an indirect address
into the COP2LC location register. Then, any MOVE instruction that addresses COPIMP2
strobes this indirect address into the program counter.

There are two jump strobe addresses:

COPJMP1 Restart Copper from address contained in COP1LC.
COPIMP2 Restart Copper from address contained in COP2LC.

CONTROL REGISTER

The Copper can access some special-purpose registers all of the time, some registers only when a
special control bit is set to a 1, and some registers not at all. The registers that the Copper can
always affect are numbered $80 through $FF inclusive. (See Appendix B for a list of registers in
address order.) Those it cannot affect at all are numbered $00 to $3E inclusive. The Copper
control register is within this group (300 to $3E). The rest of the registers, from $40 to $7E, are
protected by a bit in the Copper control register.

In the Copper control register, called COPCON, only bit 1 is currently in use by the system. This
bit, called CDANG (for Copper Danger Bit) protects all registers numbered between $40 and $7E
inclusive. This range includes the blitter control registers. When CDANG is 0, these registers
cannot be written by the Copper. When CDANG is 1, these registers can be written by the
Copper. Preventing the Copper from accessing the blitter control registers prevents a runaway
Copper (caused by a poorly formed instruction list) from accidentally affecting system memory.

Warning: Keep in mind that the CDANG bit is cleared after a reset.

Putting Together a Copper Instruction List

The Copper instruction list contains all the register resetting done during the vertical blanking
interval and the register modifications necessary for making mid-screen alterations. As you are
planning what will happen during each display field, you may find it easier to think of each aspect
of the display as a separate subsystem, such as playfields, sprites, audio, interrupts, and so on.
Then you can build a separate list of things that must be done for each subsystem individually at
each video beam position.

When you have created all these intermediate lists of things to be done, you must merge them

together into a single instruction list to be executed by the Copper once for each display frame.
The alternative is to create this all-inclusive list directly, without the intermediate steps.

26 Amiga Hardware Reference Manual

For example, the bitplane pointers used in playfield displays and the sprite pointers must be
rewritten during the vertical blanking interval so the data will be properly retrieved when the
screen display starts again. This can be done with a Copper instruction list that does the
following:

WAIT until first line of the display
MOVE data to bitplane pointer 1

MOVE data to bitplane pointer 2

MOVE data to sprite pointer 1, and so on.

As another example, the sprite DMA channels that create movable objects can be reused multiple
times during the same display field. You can change the size and shape of the reuses of a sprite;
however, every multiple reuse normally uses the same set of colors during a full display frame.
You can change sprite colors mid-screen with a Copper instruction list that waits until the last
line of the first use of the sprite processor and changes the colors before the first line of the next
use of the same sprite processor:

WAIT for first line of display

MOVE firstcolorl to COLOR17

MOVE firstcolor2 to COLOR18

MOVE firstcolor3 to COLOR19

WAIT for last line +1 of sprite’s first use
MOVE secondcolorl to COLOR17

MOVE secondcolor2 to COLOR18

MOVE secondcolor3 to COLOR19, and so on.

As you create Copper instruction lists, note that the final list must be in the same order as that in
which the video beam creates the display. The video beam traverses the screen from position
(0,0) in the upper left hand corner of the screen to the end of the display (226,262) NTSC (or
(226,312) PAL) in the lower right hand corner. The first O in (0,0) represents the x position. The
second O represents the y position. For example, an instruction that does something at position
(0,100) should come after an instruction that affects the display at position (0,60).

Note that given the form of the WAIT instruction, you can sometimes get away with not sorting
the list in strict video beam order. The WAIT instruction causes the Copper to wait until the
value in the beam counter is equal to or greater than the value in the instruction.

This means, for example, if you have instructions following each other like this:

WAIT for position (64,64)
MOVE data

WAIT for position (60,60)
MOVE data

Coprocessor Hardware 27

then the Copper will perform both moves, even though the instructions are out of sequence. The
‘‘greater than’’ specification prevents the Copper from locking up if the beam has already passed
the specified position. A side effect is that the second MOVE below will be performed:

WAIT for position (60,60)
MOVE data

WAIT for position (60,60)
MOVE data

At the time of the second WAIT in this sequence, the beam counters will be greater than the
position shown in the instructions. Therefore, the second MOVE will also be performed.

Note also that the above sequence of instructions could just as easily be

WAIT for position (60,60)
MOVE data
MOVE data

because multiple MOVESs can follow a single WAIT.

COMPLETE SAMPLE COPPER LIST

The following example shows a complete Copper list. This list is for two bitplanes—one at
$21000 and one at $25000. At the top of the screen, the color registers are loaded with the
following values:

Register Color

COLOROO white
COLORO1 red
COLORO2 green
COLORO3 blue

At line 150 on the screen, the color registers are reloaded:
Register Color

COLOROO black
COLORO1 yellow
COLOR02 cyan
COLORO3 magenta

28 Amiga Hardware Reference Manual

The complete Copper list follows.

’

Notes: 1.

N

Copper lists must be in Chip RAM.
Bitplane addresses used in the example are arbitrary.

3. Destination register addresses in copper move instructions are
offsets from the base address of the custom chips.

4. As always,

hardware manual examples assume that your application
has taken full control of the hardware,

and is not conflicting

with operating system use of the same hardware.

5. Many of the examples just pick memory addresses to be used.
Normally you would need to allocate the required type of
memory from the system with AllocMem()

6. As stated earlier, the code examples are mainly to help
clarify the way the hardware works.

7. The following INCLUDE files are required by all example code
in this chapter.

INCLUDE
INCLUDE
INCLUDE
INCLUDE

COPPERLIST:

’
’

’

’

’

"exec/types.i"

"hardware/custom.i"
"hardware/dmabits.i"
"hardware/hw_examples.i"

Set up pointers to two bitplanes

DC.W
DC.W
DC.W
DC.W

Load

DC.W
DC.W
DC.W
DC.W

BPL1PTH, $0002
BPL1PTL, $1000
BPL2PTH, $0002
BPL2PTL, $5000

color registers

COLOROO, $SOFFF
COLORO1, $OF00
COLORO2, $00F0
COLORO3, $000F

Specify 2 Lores bitplanes

DC.W

BPLCONO, $2200

Wait for line 150

DC.W
Change color

DC.W
DC.W
DC.W
DC.W

$9601, SFFOO

$0002
$1000
$0002
$5000

$O0EO
$0E2
$SOE4
$OE6

into
into
into
into

; Move
; Move
;Move
; Move

(BPL1PTH)
(BPL1PTL)
(BPL2PTH)
(BPL2PTL)

register
register
register
register

$180
$182
$184
$186

;s Move
; Move
; Move
; Move

(COLOROO0)
(COLORO1)
(COLORO2)
(COLORO03)

white into register
red into register

green into register
blue into register

;2 lores planes, coloron

;Wait for line 150, ignore horiz. position

registers mid-display

COLORO00, $0000
COLORO1, $OFFO
COLORO02, $O0FF
COLORO03, $OFOF

;Move
;Move
; Move
; Move

black into register $0180 (COLORO0O)
yellow into register $0182 (COLORO1)
cyan into register $0184 (COLORO02)
magenta into register $0186 (COLORO3)

End Copper list by waiting for the impossible

DC.W

SFFFF, SFFFE

;Wait for line 255, H = 254 (never happens)

For more information about color registers, see Chapter 3, ‘‘Playfield Hardware.”’

Coprocessor Hardware 29

Starting and Stopping the Copper

STARTING THE COPPER AFTER RESET

At power-on or reset time, you must initialize one of the Copper location registers (COP1LC or
COP2LC) and write to its strobe address before Copper DMA is tumed on. This ensures a known
start address and known state. Usually, COP1LC is used because this particular register is reused
during each vertical blanking time. The following sequence of instructions shows how to
initialize a location register. It is assumed that the user has already created the correct Copper
instruction list at location ‘‘mycoplist.”’

; Install the copper list

LEA CUSTOM, al ; al = address of custom chips

LEA MYCOPLIST (pc), a0 ; Address of our copper list

MOVE.L a0,COP1LC(al) ; Write whole longword address

MOVE.W COPJMPI1 (al),doO ; Causes copper to load PC from COP1lLC

; Then enable copper and raster dma

MOVE.W # (DMAF_SETCLR!DMAF COPPER!DMAF RASTER!DMAF_ MASTER), DMACON (al)

Now, if the contents of COP1LC are not changed, every time vertical blanking occurs the Copper
will restart at the same location for each subsequent video screen. This forms a repeatable loop
which, if the list is correctly formulated, will cause the displayed screen to be stable.

STOPPING THE COPPER

No stop instruction is provided for the Copper. To ensure that it will stop and do nothing until
the screen display ends and the program counter starts again at the top of the instruction list, the
last instruction should be to WAIT for an event that cannot occur. A typical instruction is to
WAIT for VP = $FF and HP = $FE. An HP of greater than $E2 is not possible. When the screen
display ends and vertical blankin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>