

------~---~----

Hardvvare Reference Manual
Third Edition

Commodore-Amiga, Inc.

AMIGA TECHNICAL REFERENCE SERIES,..,.
Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Miils, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Contributors:
Joe Augen braun, Dan Baker, Greg Berlin, Susan Dey!, Ken Farinsky, Mark Green, Larry Greenley, Dave Haynie, Lee Ho,
Glenn Keller, Bill Kolb, Dale Luck, Jay Miner, Dave Needle, Bryce Nesbitt, Rob Peck, Nancy Rains, Chris Raymond, Tom Rokicki,
Jez San, Carolyn Scheppner, and Bart Whitebook.

Third edition by:
Larry Greenley, Mark Green, and Dan Baker

Cover designer:
I lannus Design Associates

Copyright© 1991 by Commodore-Electronics, Ltd.

Many of the designations used by manufacturers and sellers to distinguish their products arc claimed as trademarks. Where those designations appear in this book and

Addison-Wesl£'y was aware of a trademark claifl\ the designations have l:x-en printed in initial caps. Amiga, Amiga 500, Amiga 1000, Amiga 2000, and Amiga 3000 are registered
trademarks of Commodore-Amiga, Inc. AmigaDOS, Workbench, and Kickstart are trademarks of Commodore-Amiga, Inc. AliTOCONHG is a trademark of Commodore Elec­
tronics Limited. 68()(X), 68010, 68020, 68030, 68040, and Motorola are trademarks of Motorola, Inc. Commodore and the Commodore logo are registered trademarks ol Com­
modore Electronics Limited. CAPE and Inovatronics are trademarks of lnovatronics, Inc. Centronics is a registered trademark of Centronics Data Computer Corp. I Iisoft and

Devpac Amiga are trademarks of HiSoft. IBM is a registered trademark of International Business Machines Corp. Madntosh is a registered trademark of Apple Computer, Inc.

UNIX is a registered trademark of AT&T.

AU rights reserved. No part of this publication may be reproduced, stored in a retrieval systell\. or transmitted, in any form or by any means, electronic, mechanical photocopy­

ing.. recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Commodore item number: 327272-05

123456789-AL-9594939291

First printing, August 1991
ISBN 0-201-56776-8

WARNING: The information described in this manual may contain errors or bugs, and may not function as described. All information is subject to enhancement or upgrade for
any reason including to fix bugs, add features, or change performance. As with all software upgrades, full compatibility, although a goal, cannot be guaranteed, and is in fact
unlikely.

DISCLAIMER: CO~ODORE-AMIGA, lNC, (''COMMOLJORE') MAKES NO WARRANTIFS, FJTHER EXPRESSED OR IMPLIED, OR REPESENTATIONS W!TI{ RESPECT

10 TilE Il\o'FORMATION DESCRJBED HEREIN. SUCH INFORMATION IS PROVIDED ON AN "AS IS' BASIS AND IS EXPRESSLY SUBJECT 10 CHANGE WITI-IOUT
NOTICE. IN" NO EVENT WILL COMMODORE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTil,IG FROM A..'\'Y
CLAIM ARISL'JC OUT OF TI-IE INFOR.\iA TION PRESENTED HEREIN, EVEN IF IT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO
NOT ALLOW 11 IE EXCLt.:SlON OR LIMITATION OF IMPLIED WARRANTIES OR UABllJ11ES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, so TI IE ABOVE
L'MITATION OR EXCLUSION MAY NOT Al'I'LY.

---------------~------------------- --------

CONTENTS

Chapter 1 INTRODUCTION .. 1
Components of the Amiga 1
About the Examples 9
General Amiga Development Guidelines 11

Chapter 2 COPROCESSOR HARDWARE ... 19
About the Copper.. 19
What is a Copper Instruction?... 20
The MOVE Instruction... 21
The WAIT Instruction... 22
Using the Copper Registers... 25
Putting Together a Copper Instruction List... 26
Starting and Stopping the Copper... 30
Advanced Topics... 31
Summary of Copper Instructions 36

Chapter 3 PLA YFIELD HARDWARE.. 39
About Amiga Playfields 40
Forming a Basic Playfield... 44
Forming a Dual-playfield Display... 67
Bitplanes and Display Windows of All Sizes... 73
Moving (Scrolling) Playfields 80
Advanced Topics... 86
Summary ofPlayfield Registers.. 89
Summary of Color Selection Registers... 92

Chapter 4 SPRITE HARDWARE.. 97
What are Sprites? 97
Forming a Sprite.. 98
Displaying a Sprite.. 109
Moving a Sprite ... 113
Creating Additional Sprites ... 114
Reusing Sprite DMA Channels ... 116
Overlapped Sprites .. 118
Attached Sprites.. 120
Manual Mode.. 123
Sprite Hardware Details.. 124
Summary of Sprite Registers .. 127
Summary of Sprite Color Registers.. 130

Ill

Chapter 5 AUDIO HARDWARE .. 133
Introducing Sound Generation.. 134
Forming and Playing a Sound... 137
Producing Complex Sounds.. 147
Producing High-quality Sound.. 152
Using Direct (Non-DMA) Audio Output.. 157
The Equal-tempered Musical Scale.. 158
I>ecibel Values for Volume Ranges .. 163
The Audio State Machine.. 164

Chapter 6 BLITTER HARDWARE .. 169
What is the Blitter? ... 169
Memory Layout... 170
DMA Channels... 170
Function Generator .. 174
Shifts and Masks 179
Descending Mode.. 182
Copying Arbitrary Regions... 183
Area Fill Mode.. 184
Blitter Done Flag... 186
Interrupt Flag... 187
Zero Flag... 187
Pipeline Register... 188
Line Mode... 189
Blitter Speed.. 193
Blitter Operations and System DMA .. 194
Blitter Block Diagram... 198
Blitter Key Points .. 200

Chapter 7 SYSTEM CONTROL HARDWARE .. 207
Video Priorities... 207
Collision Detection ... 213
Beam Position Detection ... 216
Interrupts... 217
DMA Control.. 222
Reset and Early Startup Operation .. 223

Chapter 8 INTERFACE HARDWARE ... 227
Controller Port Interface... 227
Floppy Disk Controller... 241
The Keyboard.. 251
Serial I/O Interface.. 255
Parallel I/O Interface... 259
Display Output Connections 260

Appendix A REGISTER SUMMARY ALPHABETICAL ORDER .. 263

Appendix B REGISTER SUMMARY ADDRESS ORDER .. 287

iv

Appendix C ENHANCED CHIP SET ... 295
New Features of the Enhanced Chip Set... 295
ECS Registers 298

Appendix D SYSTEM MEMORY MAPS... 313

Appendix E 1/0 CONNECTORS AND INTERFACES ... 317

Appendix F 8520 COMPLEX INTERFACE ADAPTERS .. 339
Chip Register Map 340
Register Functional Description.. 341
Time of Day Clock .. 344
Serial Shift Register (SDR) ... 345
Interrupt Control Register (ICR) ... 346
Control Registers... 348
Port Signal Assignments... 350
Hardware Connection Details... 353

Appendix G KEYBOARD INTERFACE.. 357
Keyboard Communications... 357
Keycodes. 358
Caps Lock Key.. 359
''Out-of-Sync'' Condition .. 359
Power-Up Sequence .. 360
Reset Warning ... 361
Hard Reset... 361
Matrix Table.. 362
Special Codes .. 364

Appendix H EXTERNAL DISK CONNECTOR INTERFACE .. 367
General.. 367
Summary Table ... 367
Signals When Driving a Disk.. 368
Device I.D. .. 370

Appendix I HARDWARE EXAMPLE INCLUDE FILE ... 373

Appendix J CUSTOM CHIP PIN ALLOCATION LIST .. 379

Appendix K ZORRO EXPANSION BUS ... 383
Zorro II Compatibility... 387
Zorro III Bus Architecture .. 399
Sigp.al Description... 409
Timing ... 416
Electrical Specifications.. 424
Mechanical Specifications... 427
AUTOCONFIGTM .. 430
Physical and Logical Signal Names.. 437
Zorro III Implementations... 439

v

Glossary... 441

Index ... 455

vi

Figure 1-1
Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 5-1
Figure 5-2
Figure 5-3

LIST OF FIGURES

Block Diagram for the Amiga Computer Family
Interlaced Bitplane in RAM
How the Video Display Picture Is Produced
What Is a Pixel? .. .

8
34
40
41

How Bitplanes Select a Color.. 43
Significance of Bitplane Data in Selecting Colors... 44
Interlacing 50
Effect of Interlaced Mode on Edges of Objects 50
Memory Organization for a Basic Bitplane ... 54
Combining Bitplanes ... 56
Positioning the On-screen Display... 58
Data Fetched for the First Line When Modulo = 0 61
Data Fetched for the Second Line When Modulo = 0 61
A Dual-playfield Display... 68
How Bitplanes Are Assigned to Dual Playfields ... 69
Memory Picture Larger than the Display... 73
Data Fetch for the First Line When Modulo= 40.. 74
Data Fetch for the Second Line When Modulo = 40 ... 74
Data Layout for First Line-Right Half of Big Picture
Data Layout for Second Line-Right Half of Big Picture
Display Window Horizontal Starting Position
Display Window Vertical Starting Position .. .
Display Window Horizontal Stopping Position
Display Window Vertical Stopping Position
Vertical Scrolling .. .
Horizontal Scrolling .. .
Memory Picture Larger Than the Display Window .. .
Data for Line I - Horizontal Scrolling .. .
Data for Line 2-Horizontal Scrolling
Defining Sprite On-screen Position
Position of Sprites
Shape of Spaceship
Sprite with Spaceship Shape Defined
Sprite Color Definition .. .
Color Register Assignments .. .
Data Structure Layout
Sprite Priority .. .
Typical Example of Sprite Reuse .. .
Typical Data Structure for Sprite Re-use .. .
Overlapping Sprites (Not Attached)
Placing Sprites Next to Each Other
Sprite Control Circuitry .. .
Sine Waveform
Digitized Amplitude Values .. .
Example Sine Wave .. .

vii

75
75
77
77
78
79
81
83
84
84
84
98

100
101
101
102
103
106
ll5
ll6
117
ll9
120
125
134
136
142

Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12
Figure E-1
Figure E-2
Figure E-3
Figure K-1
Figure K-3
Figure K-4
Figure K-5
Figure K-6
Figure K-7
Figure K-8
Figure K-9
Figure K-10
Figure K-11
Figure K-12
Figure K-13
Figure K-14

Waveform with Multiple Cycles.. 153
Frequency Domain Plot of Low-Pass Filter... 155
Noise-free Output (No Aliasing Distortion).. 155
Some Aliasing Distortion... 156
Audio State Diagram.. 166
How Images are Stored in Memory 171
BL TxPTR and BL TxMOD calculations.. 173
Blitter Minterrn Venn Diagram .. 178
Extracting a Range of Columns 181
Use of the FCI Bit- Bit Is a 0 .. 185
Use of the FCI Bit- Bit Is a 1 .. 185
Single-Point Vertex Example... 186
Octants for Line Drawing... 190
DMA Time Slot Allocation .. 195
Normal 68000 Cycle.. 196
Time Slots Used by a Six Bitplane Display... 197
Time Slots Used by a High Resolution Display.. 197
Blitter Block Diagram.. 199
Inter-Sprite Fixed Priorities ... 208
Analogy for Video Priority.. 209
Sprite/Playfield Priority ... 212
Interrupt Priorities.. 221
Controller Plug and Computer Connector ... 228
Mouse Quadrature.. 230
Joystick to Counter Connections .. 233
Typical Paddle Wiring Diagram 234
Effects of Resistance on Charging Rate ... 235
Potentiometer Charging Circuit... 237
Chinon Timing Diagram.. 242
Chinon Timing Diagram (cont.) ... 243
The Amiga 1000 Keyboard, Showing Key codes in Hexadecimal..................................... 254
The Amiga 500/2000/3000 Keyboard, Showing Keycodes in Hexadecimal 254
Starting Appearance of SERDAT and Shift Register .. 258
Ending Appearance of Shift Register ... 259
Reading Fire Buttons... 330
Pot Counters ... 332
Light Pen.. 333
A2000 vs A3000 Bus Termination .. 386
Expansion Bus Clocks 393
Zorro II Bus Arbitration ... 394
Basic Zorro III Cycles.. 400
Multiple Transfer Cycles 403
Zorro III Bus Arbitration.. 405
Interrupt Vector Cycle .. 407
Zarro II Within Zorro III.. 408
Read Cycle Timing 417
Write Cycle Timing... 419
Multiple Transfer Cycle Timing .. 421
Quick Interrupt Cycle Timing .. 423
Configuration Register Mapping.. 432

viii

Table 1-1
Table 2-1
Table 2-2
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 3-16
Table 3-17
Table 3-18
Table 3-19
Table 4-1
Table 4-2
Table 4-3
Table4-4
Table 4-5
Table 4-6
Table 4-7
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 6-1
Table 6-2
Table 6-3
Table 7-1
Table 7-2
Table 7-3
Table 7-4

LIST OF TABLES

S run mary of Amiga Memory Configurations 5
Interrupting the 680x0 35
Copper Instruction Summary... 36
Colors in a Single Playfield.. 45
Portion of the Color Table 46
Contents of the Color Registers 46
Sample Color Register Contents.. 4 7
Setting the Number of Bitplanes.. 48
Lines in a Normal Playfield ... 49
Playfield Memory Requirements, NTSC 52
Playfield Memory Requirements, PAL.. 53
DIWSTRT and DIWSTOP Summary.. 59
Playfield 1 Color Registers- Low resolution Mode.. 70
Playfield 2 Color Registers- Low resolution Mode.. 70
Playfields 1 and 2 Color Registers- High resolution Mode.. 71
Maximum Allowable Vertical Screen Video... 79
Maximum Allowable Horizontal Screen Video... 80
Color Register Contents... 92
Some Register Values and Resulting Colors... 92
Low resolution Color Selection... 93
High resolution Color Selection... 94
Color Selection in Hold-and-modify Mode... 95
Sprite Data Structure .. 105
Sprite Color Registers.. 108
Color Registers for Sprite Pairs... 115
Data Words for First Line of Spaceship Sprite.. 121
Color Registers in Attached Sprites... 122
Color Registers for Single Sprites.. 130
Color Registers for Attached Sprites ... 131
Sample Audio Data Set for Channel 0 138
Volume Values... 140
DMA and Audio Channel Enable Bits... 144
Data Interpretation in Attach Mode... 150
Channel Attachment for Modulation... 151
Sampling Rate and Frequency Relationship.. 157
Equal-tempered Octave for a 16 Byte Sample ... 158
Five Octave Even-tempered Scale... 160
Decibel Values and Volume Ranges.. 163
Table of Common Min term Values... 177
Typical Blitter Cycle Sequence.. 188
BLTCONl Code Bits for Octant Line Drawing.. 190
Bits in BPLCON2 .. 210
Priority ofPlayfields Based on Values of Bits PF1P2-PF1PO ... 210
CLXDAT Bits .. 214
CLXCON Bits.. 215

ix

Table 7-5
Table 7-6
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9
Table K-1

Contents of the Beam Position Counter... 216
Contents of DMA Control Register... 222
Typical Controller Connections... 228
Determining the Direction of the Mouse 231
Interpreting Data from JOYODAT and JOYlDAT .. 232
POTGO ($DFF034) and POTINP ($DFF016) Registers ... 240
Disk Subsystem .. 244
DSKLEN Register ($DFF024)... 246
DSKBYTR Register... 248
ADKCON and ADKCONR Register ... 249
SERDA TR I ADKCON Registers... 256
Memory Space Type Codes ... 414

X

------------------~------

Preface

The Amiga Technical Reference Series is the official guide to programming Commodore's Amiga
computers. This revised edition of the Amiga Hardware Reference Manual provides detailed
information about the Amiga's graphics and audio hardware, and how the Amiga talks to the out­
side world through peripheral devices. This edition has been updated for version 2.0 of the
Amiga operating system and covers the newest Amiga computer systems including the A3000.

This book is intended for the following audiences:

o Assembly language programmers who need a more direct way of interacting with the
Amiga than the routines provided in the system software.

o Designers who want to interface new peripherals to the Amiga.

o Anyone who wants to know how the Amiga hardware works.

Here is a brief overview of the contents:

Chapter 1, Introduction. An overview of the hardware and smvey of the Amiga's graph­
ics and audio features.

Chapter 2, Coprocessor Hardware. Using the Copper coprocessor to control the entire
graphics and audio system; directing mid-screen modifications in graphics displays and
directing register changes during the time between displays.

Chapter 3, Playfield Hardware. Creating, displaying and scrolling the playfields, one of
the basic display elements of the Amiga; how the Amiga produces multi-color, bit­
mapped displays.

Chapter 4, Sprite Hardware. Using the eight sprite direct memory access (DMA) chan­
nels to make sprite movable objects; creating their data structures, displaying and mov­
ing them, reusing the DMA channels.

xi

Chapter 5, Audio Hardware. Overview of sampled sound; how to produce quality
sound, simple and complex sounds, and modulated sounds.

Chapter 6, Blitter Hardware. Using the blitter DMA channel to create animation effects
and draw lines into play fields.

Chapter 7, System Control Hardware. Using the control registers to define depth
arrangement of graphics objects, detect collisions between graphics objects, control
direct memory access, and control interrupts.

Chapter 8, Interface Hardware. How the Amiga talks to the outside world through con­
troller ports, keyboard, audio jacks and video connectors, serial and parallel interfaces;
information about the disk controller and RAM expansion slot.

Appendices. Alphabetical and address-order listings of all the graphics and audio system
registers and the functions of their bits. Also included is a special section on the
Amiga's Enhanced Chip Set (ECS), system memory maps, descriptions of internal and
external connectors, specifications for the peripheral interface ports, keyboard, and an
introduction to the Amiga 's Zorro expansion bus with detailed specifications for
hardware add-on designers.

We suggest that you use this book according to your level of familiarity with the Amiga system.
Here are some suggestions:

o If this is your initial exposure to the Amiga, read chapter 1, which gives a survey of all
the hardware features and a brief rundown of graphics and audio effects created by
hardware interaction.

o If you are already familiar with the system and want to acquaint yourself with how the
various bits in the hardware registers govern the way the system functions, browse
through chapters 2 through 8. Examples are included in these chapters.

o For advanced users, the appendices give a concise summary of the entire register set and
the uses of the individual bits. Once you are familiar with the effects of changes in the
various bits, you may wish to refer more often to the appendices than to the explanatory
chapters.

The other manuals in this series are the Amiga User Interface Style Guide, an application design
specification and reference work for Amiga programmers, the Amiga ROM Kernel Reference
Manual: Includes and Autodocs, an alphabetically organized reference of ROM function sum­
maries and Amiga system include files, the Amiga ROM Kernel Reference Manual: Libraries and
the Amiga ROM Kernel Reference Manual: Devices with tutorial-style chapters on the use of each
Amiga system library and device.

xii

-----------~--~·-·------~-~------ .. ---------

chapter one
INTRODUCTION

The Amiga family of computers consists of several models, each of which has been designed on
the same premise - to provide the user with a low-cost computer that features high-cost
performance. The Amiga does this through the use of custom silicon hardware that yields
advanced graphics and sound features.

There are four basic models that make up the Amiga computer family: the A500, AlOOO, A2000,
and A3000. Though the models differ in price and features, they have a common hardware
nucleus that makes them software compatible with one another. This chapter describes the
Amiga 's hardware components and gives a brief overview of its graphics and sound features.

Components of the Amiga

These are the hardware components of the Amiga:

o Motorola MC68000 16/32-bit main processor. The Amiga also supports the 68010, 68020,
and 68030 processors as an option. The A 1000, A500 and A2000 contain the 68000, while
the A3000 utilizes the 68030 processor.

o Custom graphics and audio chips with DMA capability. All Amiga models are equipped
with three custom chips named Paula, Agnus, and Denise which provide for superior color
graphics, digital audio, and high-performance interrupt and l/0 handling. The custom chips
can access up to 2MB of memory directly without using the 68000 CPU.

o From 25 6K to 2 MB of RAM expandable to a total of 8 MB (over a gigabyte on the Amiga
3000).

o 512K of system ROM containing a real time, multitasking operating system with sound,
graphics, and animation support routines. (V1.3 and earlier versions of the OS used 256K of
system ROM.)

Introduction 1

o Built-in 3.5 inch double sided disk drive with expansion floppy disk ports for connecting up
to three additional disk drives (either 3.5 inch or 5.25 inch, double sided).

o SCSI disk port for connecting additional SCSI disk drives (A3000 Only).

o Fully programmable parallel and RS-232-C serial ports.

o Two button opto-mechanical mouse and two reconfigurable controller ports (for mice,
joysticks, light pens, paddles, or custom controllers).

o A professional keyboard with numeric keypad, 10 function keys, and cursor keys. A variety
of international keyboards are also supported.

o Ports for analog or digital RGB output (all models), monochrome video (A500 and A2000),
composite video (AlOOO), and VGA-stylc multiscan video (A3000).

o Ports for left and right stereo audio from four special purpose audio channels.

o Expansion options that allow you to add RAM, additional disk drives (floppy or hard),
peripherals, or coprocessors.

THE MC68000 AND THE AMIGA CUSTOM CHIPS

The Motorola MC68000 microprocessor is the CPU used in the A 1000, the A500, and the A2000.
The 68000 is a 16/32-bit microprocessor; internal registers are 32 bits wide, while the data bus
and ALU are 16 bits. The 68000's system clock speed is 7.15909 MHz on NTSC systems (USA)
or 7.09379 MHz on PAL systems (Europe). These speeds can vary when using an external
system clock, such as from a genlock board.

The 68000 has an address space of 16 megabytes. In the Amiga, the 68000 can address up to 9
megabytes of random access memory (RAM).

In the A3000, the Motorola MC68030 microprocessor is the CPU. This is a full 32-bit
microprocessor with a system clock speed of 16 or 25 megahertz. The 68030 has an address
space of 4 gigabytes. In the A3000, over a gigabyte of RAM can be addressed.

In addition to the 680x0, all Amiga models contain special purpose hardware known as the
custom chips that greatly enhance system performance. The term custom chips refers to the three
integrated circuits which were designed specifically for the Amiga computer. These three custom
chips, named Paula, Agnus, and Denise, each contain the logic to handle a specific set of tasks
such as video, audio, or I/0.

Because the custom chips have DMA capability, they can access memory without using the
680x0 CPU - this frees the CPU for other types of operations. The division of labor between the
custom chips and the 680x0 gives the Amiga its power; on most other systems the CPU has to do
everything.

2 Amiga Hardware Reference Manual

The memory shared between the Amiga's CPU and the custom chips is called Chip memory. The
more Chip memory the Amiga has, the more graphics, audio, and 1/0 data it can operate on
without the CPU being involved. All Amigas can access at least 512K of Chip memory.

The latest version of the custom chips, known as the Enhanced Chip Set or ECS) can handle up to
2 MB of memory and has other advanced features. For more details about the Enhanced Chip
Set, refer to Appendix C.

Although there are different versions of the Amiga's custom chips, all versions have some
common features. Among other functions, the custom chips provide the following:

o Bitplane generated, high resolution graphics capable of supporting both PAL and NTSC
video standards.

NTSC systems. On NTSC systems, the Amiga typically produces a 320 by 200 non­
interlaced or 320 by 400 interlaced display in 32 colors. A high resolution mode
provides a 640 by 200 non-interlaced or 640 by 400 interlaced display in 16 colors.

PAL systems. On PAL systems, the Amiga typically produces a 320 by 256 non­
interlaced or 320 by 512 interlaced display in 32 colors. High resolution mode provides
a 640 by 256 non-interlaced or 640 by 512 interlaced display in 16 colors.

The design of the Amiga's display system is very flexible and there are many other modes
available. Hold-and-modify (HAM) mode allows for the display of up to 4,096 colors on
screen simultaneously. Overscan mode allows the creation of higher resolution displays
specially suited for video and film applications. Displays of arbitrary size, larger than the
visible viewing area can be created. Amigas which contain the Enhanced Chip Set (ECS)
support Productivity mode giving displays of 640 by 480, non-interlaced with 4 colors from
a pallette of 64.

o A custom graphics coprocessor, called the Copper, that allows changes to most of the special
purpose registers in synchronization with the position of the video beam. This allows such
special effects as mid-screen changes to the color palette, splitting the screen into multiple
horizontal slices each having different video resolutions and color depths, beam-synchronized
interrupt generation for the 680x0, and more. The coprocessor can trigger many times per
screen, in the middle of lines, and at the beginning or during the blanking interval. The
coprocessor itself can directly affect most of the registers in the other custom chips, freeing
the 680x0 for general computing tasks.

o 32 system color registers, each of which contains a 12-bit number as four bits of red, four bits
of green, and four bits of blue intensity information. This allows a system color palette of
4,096 different choices of color for each register.

o Eight reusable 16-bit wide sprites with up to 15 color choices per sprite pixel (when sprites
are paired). A sprite is an easily movable graphics object whose display is entirely
independent of the background (called a playfield); sprites can be displayed over or under
this background. A sprite is 16 low resolution pixels wide and an arbitrary number of lines

Introduction 3

tall. After producing the last line of a sprite on the screen, a sprite DMA channel may be
used to produce yet another sprite image elsewhere on screen (with at least one horizontal
line between each reuse of a sprite processor). Thus, many small sprites can be produced by
simply reusing the sprite processors appropriately.

o Dynamically controllable inter-object priority, with collision detection. This means that the
system can dynamically control the video priority between the sprite objects and the bitplane
backgrounds (playfields). You can control which object or objects appear over or under the
background at any time. Additionally, you can use system hardware to detect collisions
between objects and have your program react to such collisions.

o Custom bit blitter used for high srx::ed data movement, adaptable to bitplane animation. The
blitter has been designed to efficiently retrieve data from up to three sources, combine the
data in one of 256 different possible ways, and optionally store the combined data in a
destination area. The bit blitter, in a special mode, draws patterned lines into rectangularly
organized memory regions at a speed of about 1 million dots per second; and it can
efficiently handle area fill.

o Audio consisting of four digital channels with independently programmable volume and
sampling rate. The audio channels retrieve their control and sample data via DMA. Once
started, each channel can automatically play a specified waveform without further processor
interaction. Two channels are directed into each of the two stereo audio outputs. The audio
channels may be linked together to provide amplitude or frequency modulation or both forms
of modulation simultaneously.

o DMA controlled floppy disk read and write on a full track basis. This means that the built-in
disk can read over 5600 bytes of data in a single disk revolution (11 sectors of 512 bytes
each).

AMIGA MEMORY SYSTEM

As mentioned previously, the custom chips have DMA access to RAM which allows them to
perform graphics, audio, and l/0 chores independently of the CPU. This shared memory that
both the custom chips and the CPU can access directly is called Chip memory.

The custom chips and the 680x0 CPU share Chip memory on a fully interleaved basis. Since the
680x0 only needs to access the Chip memory bus during each alternate clock cycle in order to run
full speed, the rest of the time the Chip memory bus is free for other activities. The custom chips
use the memory bus during these free cycles, effectively allowing the CPU to run at full speed
most of the time.

There are some occasions though when the custom chips steal memory cycles from the 680x0. In
the higher resolution video modes, some or all of the cycles normally used for processor access
are needed by the custom chips for video refresh. In that case, the Copper and the blitter in the
custom chips steal time from the 680x0 for jobs they can do better than the 680x0. Thus, the
system DMA channels are designed with maximum performance in mind.

4 Amiga Hardware Reference Manual

Even when such cycle stealing occurs, it only blocks the 680xO's access to the internal, shared
memory. The custom chips cannot steal cycles when the 680x0 is using ROM or external
memory, also known as Fast memory.

The DMA capabilities of the custom chips vary depending on the version of the chips and the
Amiga model. The original custom chip set found in the A1000 could access the first 512K of
RAM. Most AlOOOs have only 512K of RAM so some of the Chip RAM is used up for operating
system overhead.

A later version of the custom chips found in early A500s and A2000s replaced the original Agnus
chip (8361) with a newer version called Fat Agnus (8370/8371). The Fat Agnus chip has DMA
access to 512K of Chip memory, just like the original Agnus, but also allows an additional 512K
of internal slow memory or pseudo-fast memory located at ($00CO 0000). Since the slow memory
can be used for operating system overhead, this allows all 512K of Chip memory to be used by
the custom chips.

The name slow memory comes from the fact that bus contention with the custom chips can still
occur even though only the CPU can access the memory. Since slow memory is arbitrated by the
same gate that controls Chip memory, the custom chips can block processor access to slow
memory in the higher resolution video modes.

The latest version of Agnus and the custom chips found in most A500s and A2000s is known as
the Enhanced Chip Set or ECS. ECS Fat Agnus (8372A) can access up to one megabyte of Chip
memory. It is pin compatible with the original Fat Agnus (8370/8371) found in earlier ASOO and
A2000 models. In addition, ECS Fat Agnus supports both the NTSC and PAL video standards on
a single chip.

In the A3000, the Enhanced Chip Set can access up to two megabytes of Chip memory.

The amount of Chip memory is important since it determines how much graphics, audio, and disk
data the custom chips can operate on without the 680x0 CPU. Table 1-1 summarizes the basic
memory configurations of the Amiga.

Chip RAM Maximum Total RAM Maximum
(base model) Chip RAM (base model) Total RAM

Amiga 1000 256K 512K 256K 9MB
Amiga 500 512K 1MB 1MB 9MB
Amiga 2000 512K 1MB 1MB 9MB
Amiga 3000 1MB 2MB 2MB over 1GB

Table 1-1: Summary of Amiga Memory Configurations

Introduction 5

Another primary feature of the Amiga hardware is the ability to dynamically control which part of
the Chip memory is used for the background display, audio, and sprites. The Amiga is not
limited to a small, specific area of RAM for a frame buffer. Instead, the system allows display
bitplanes, sprite processor control lists, coprocessor instruction lists, or audio channel control lists
to be located anywhere within Chip memory.

This same region of memory can be accessed by the bit blitter. This means, for example, that the
user can store partial images at scattered areas of Chip memory and use these images for
animation effects by rapidly replacing on screen material while saving and restoring background
images. In fact, the Amiga includes firmware support for display definition and control as well as
support for animated objects embedded within playfields.

PERIPHERALS

Floppy disk storage is provided by a built-in, 3.5 inch floppy disk drive. Disks are 80 track,
double sided, and formatted as 11 sectors per track, 512 bytes per sector (over 900,000 bytes per
disk). The disk controller can read and write 320/360K IBM PCM (MS-DOS™) formatted 3.5 or
5.25 inch disks, and 640n20K IBM PC (MS-DOS) formatted 3.5 inch disks.

Up to three extra 3.5 inch or 5.25 inch disk drives can be added to the Amiga. The A2000 and
A3000 also provide room to mount Ooppy or hard disks internally. The A3000 has a built-in hard
disk drive and an on-board SCSI controller which can handle two internal drives and up to seven
external SCSI devices.

The Amiga has a full complement of dedicated l/0 connectors. lbe circuitry for some of these
peripherals resides on the Paula custom chip while the Amiga's two 8520 CIA chips handle other
1/0 chores not specifically assigned to any of the custom chips. These include modem control,
disk status sensing, disk motor and stepping control, ROM enable, parallel input/output interface,
and keyboard interface.

The Amiga includes a standard RS-232-C serial port for external serial input/output devices such
as a modem, MIDI interface, or printer. A programmable, Centronics-compatible parallel port
supports parallel printers, audio digitizers, and other peripherals.

The Amiga also includes a two-button, opto-mechanical mouse plus a keyboard with numeric
keypad, cursor controls, and 10 function keys in the base system. A variety of international
keyboards are supported. Many other input options are available. Other types of controllers can
be attached through the two controller ports on the base unit including joysticks, keypads,
trackballs, light pens, and graphics tablets.

6 Amiga Hardware Reference Manual

SYSTEM EXPANDABILITY AND ADAPTABILITY

New peripheral devices may be easily added to all Amiga models. These devices are
automatically recognized and used by system software through a well defined, well documented
linking procedure called AUTOCONFIG™. AUTOCONFIG is short for automatic configuration
and is the process which allows memory or I/0 space for an expansion board to be dynamically
allocated by the system at boot time. Unlike some other systems, there is no need to set DIP
switches to select an address space from a fixed range reserved for expansion devices.

On the A500 and AlOOO models, peripheral devices can be added using the Amiga's 86-pin
expansion connector. Peripherals that can be added include hard disk controllers and drives, or
additional external RAM. Extra floppy disk units may be added from a connector at the rear of
the unit.

The A2000 and A3000 models provide the user with the same features as the A500 or AlOOO, but
with the added convenience of simple and extensive expandability through the Amiga's 100-pin
Zorro expansion bus.

The A2000 contains 7 internal slots and the A3000 contains 4 internal slots plus a SCSI disk
controller that allow many types of expansion devices to be quickly and easily added inside the
machine. Available options include RAM boards, coprocessors, hard disk controllers, video
cards, and 1/0 ports.

The A2000 and A3000 also support the special Bridgeboard™ coprocessor card. This provides a
complete IBM PCTM on a card and allows the Amiga to run MS-DOS™ compatible software,
while simultaneously running native Amiga software. In addition, both machines have expansion
slots capable of supporting standard, IBM PCM style boards.

VCR AND DIRECT CAMERA INTERFACE

In addition to the connectors for monochrome composite, and analog or digital ROB monitors,
the Amiga can be expanded to include a VCR or camera interface. With a genlock board, the
system is capable of synchronizing with an external video source and replacing the system
background color with the external image. This allows development of fully integrated video
images with computer generated graphics. Laser disk input is accepted in the same manner.

The A2000 and A3000 models also provide a special internal slot designed for video applications.
This allows the Amiga to use low-cost video expansion boards such as genlocks and frame­
grabbers.

Introduction 7

AMIGA SYSTEM BLOCK DIAGRAM

The diagram below highlights the major hardware components of the Amiga's architecture.
Notice that there are two separate buses, one that only the CPU can access (Fast memory) and
another one that the custom chips share with the CPU (Chip memory).

O'U It'
(68000) tl.. I

I I SYSTEM EXPANSION

I I OTI-IER EXPANSION DEVICES

I I

I I HARD DISK INI"ERFACB

I I FAST RAM

Ll EXPANSION CONNECfOR(S)

' ·~

I CPU ADDRFS< I

I KICKSTART I
ROM

I

I
I

l
I

I
I
I

~_J

~II
,,

-
I
I
I
I

l

BUFFERS I
AND

ARBITRATION
LOGIC

'"!""'····
I
I

I
I
I

I
I

l CUSTOM CHIP SECTION I

..---+1 I AGNUS I ~

~

II ~
~--~

A I D

J R

B
u

~

EJ

!-+I[PAULA

c
/1
I
p

D
A
T
A

I
I
I
I
l

I DENISE

"PSEUDO"
FAST
RAM*

R
E
G

A
D
R

II+-~
_I~

1
I
I
I
I

l----
• addrus.d<U ClllP RAM>Mlh 1MB Agnws

Figure 1-1: Block Diagram for the Amiga Computer Family

8 Amiga Hardware Reference Manual

---------------~-~--··--···---

About the Examples

The examples in this book all demonstrate direct manipulation of the Amiga hardware. However,
as a general rule, it is not permissible to directly access the hardware in the Amiga unless your
software either has full control of the system, or has arbitrated via the OS for exclusive access to
the particular parts of the hardware you wish to control.

Almost all of the hardware discussed in this manual, most notably the Blitter, Copper, playfield,
sprite, CIA, trackdisk, and system control hardware, are in either exclusive or arbitrated use by
portions of the Amiga OS in any running Amiga system. Additional hardware, such as the audio,
parallel, and serial hardware, may be in use by applications which have allocated their use
through the system software.

Before attempting to directly manipulate any part of the hardware in the Amiga's multitasking
environment, your application must first be granted exclusive access to that hardware by the
operating system library, device, or resource which arbitrates its ownership. The operating
system functions for requesting and receiving control of parts of the Amiga hardware are varied
and are not within the scope of this manual. Generally such functions, when available, will be
found in the library, device, or resource which manages that portion of the Amiga hardware in the
multitasking environment. The following list will help you to find the appropriate operating
system functions or mechanisms which may exist for arbitrated access to the hardware discussed
in this manual.

Hardware component

Copper, Playfield, Sprite, Blitter
Audio
Track disk
Serial
Parallel
Gameport
Keyboard
System Control

Amiga system module that controls it

graphics.library
audio.device
trackdisk.device, disk.resource
serial.devicc, misc.resource
parallel.device, cia.resource, misc.resource
input.device, gameport.device, potgo.resource
input.device, keyboard.device
graphics.library, exec.library (interrupts)

Most of the examples in this book use the hw _examples.i file (see Appendix I) to define the chip
register names. Hw _ examples.i uses the system include file hardwarelcustom.i to define the chip
structures and relative addresses. The values defined in hardwarelcustom.i and hw _examples.i
arc offsets from the base of the chip register address space. In general, this base value is defined
as _custom and is resolved during linking with the linker library amiga.lib. (_ciaa and _ciab are
also resolved in this way.)

Normally, the base address is loaded into an address register and the offsets given by
hardware/custom.i and hw _examples.i are then used to access the correct register. (One
exception to this rule is the Copper which uses only the offset access the registers.)

Introduction 9

For example, in assembler:

INCLUDE "execltypes.i"
INCLUDE "hardwarelcustom.i"

XREF custom

Start: lea custom,aO
move.w iS7FFF,intena(a0)

External reference ...

Use aO as base register and
use the name intena as an offset
to disable all interrupts

In C, you would usc the structure definitions in hardware/custom.h For example:

#include
#include

"execltypes.h"
"hardwarelcustom.h"

extern struct Custom custom;

I* You may need to define the above external as
** extern struct Custom far custom;
** Check you compiler manual.
*I

main()
{

custom.intena Ox7FFF; I* Disable all interrupts *I

The Amiga hardware include files are generally supplied with your compiler or assembler.
Listings of the hardware include files may also be found in the Amiga ROM Kernel Manual:
Includes and Autodocs. Generally, the include file label names are very similar to the equivalent
hardware register list names with the following typical differences.

o Address registers which have low word and high word components arc generally listed as
two word sized registers in the hardware register list, with each register name containing
either a suffix or embedded "L" or "H" for low and high. The include file label for the
same register will generally treat the whole register as a longword (32 bit) register, and
therefore will not contain the "L" or "H" distinction.

o Related sequential registers which are given individual names with number suffixes in the
hardware register list, arc generally referenced from a single base register definition in the
include files. For example, the color registers in the hardware list (COLOROO, COLOROl,
etc.) would be referenced from the "color" label defined in hardware!custom.i (color+O,
color+2, etc.).

o Examples of how to define the correct register offset can be found in the hw _examples.i file
listed in Appendix I.

Except as noted, 68000 assembly language examples have been assembled under the
Innovatronics CAPE assembler V2.x, the HiSoft Devpac assembler V1.2, and the Lake Forest
Logic ADAPT assembler 1.0. No substantial changes should be required to switch between
assemblers.

1 0 Amiga Hardware Reference Manual

---------------~---··----

General Amiga Development Guidelines

The Amiga is available in a variety of models and configurations, and is further diversified by a
wealth of add-on expansion peripherals and processor replacements. In addition, even standard
Amiga hardware such as the keyboard and floppy disks, are supplied by a number of different
manufacturers and may vary subtly in both their timing and in thejr ability to perform outside of
their specified capabilities.

The Amiga operating system is designed to operate the Amiga hardware within spec, adapt to
different hardware and RAM configurations, and generally provide upward compatibility with any
future hardware upgrades or "add ons" envisioned by the designers. For maximum upward
compatibility, it is strongly suggested that programmers deal with the hardware through the
commands and functions provided by the Amiga operating system.

If you find it necessary to program the hardware directly, then it is your responsibility to write
code which will work properly on various models and configurations. Be sure to properly request
and gain control of the hardware you are manipulating, and be especially careful in the following
areas:

The environment of the Amiga computer is quite different than that of many other systems. The
Amiga is a multitasking platform, which means multiple programs can run on a single machine
simultaneously. However, for multitasking to work correctly, care must be taken to ensure that
programs do not interfere with one another. It also means that certain guidelines must be
followed during programming.

o Remember that memory, peripheral configurations, and ROMs differ between models and
between individual systems. Do not make assumptions about memory address ranges,
storage device names, or the locations of system structures or code. Never call ROM
routines directly. Beware of any example code you find that calls routines at addresses in the
$FO 0000 - $FF FFFF range. These are ROM routines and they will move with every OS
release. The only supported interface to system ROM code is through the library, device, and
resource calls.

o Never assume library bases or structures will exist at any particular memory location. The
only absolute address in the system is $0000 0004, which contains a pointer to the
exec.library base. Do not modify or depend on the format of private system structures. This
includes the poking of copper lists, memory lists, and library bases.

o Never assume that programs can access hardware resources directly. Most hardware is
controlled by system software that will not respond well to interference from other programs.
Shared hardware requires programs to use the proper sharing protocols. Use the defined
interface; it is the best way to ensure that your software will continue to operate on future
models of the Amiga.

Introduction 11

o Never access shared data structures directly without the proper mutual exclusion (locking).
Remember that other tasks may be accessing the same structures.

o All data for the custom chips must reside in Chip memory (type MEMF _CHIP). This
includes bitplanes, sound samples, trackdisk buffers, and images for sprites, bobs, pointers,
and gadgets. The AllocMemO call takes a flag for specifying the type of memory. A
program that specifies the wrong type of memory may appear to run correctly because many
Amigas have only Chip memory. (On all models of the Amiga, the first 512K of memory is
Chip memory and in some later models, Chip memory may occupy the first one or two
megabytes).

However, once expansion memory has been added to an Amiga (type MEMF _FAST), any
memory allocations will be made in the expansion memory area by default. Hence, a
program can run correctly on an unexpanded Amiga which has only Chip memory while
crashing on an Amiga which has expanded memory. A developer with only Chip memory
may fail to notice that memory was incorrectly specified.

Most compilers have options to mark specific data structures or object modules so that they
will load into Chip RAM. Some older compilers provide the Atom utility for marking object
modules. If this method is unacceptable, use the AllocMem() call to dynamically allocate
Chip memory, and copy your data there.

When making allocations that do not require Chip memory, do not explicitly ask for Fast
memory. Instead ask for memory type MEMF _PUBLIC or OL as appropriate. If Fast
memory is available, you will get it.

o Never use software delay loops! Under the multitasking operating system, the time spent in
a loop can be better used by other tasks. Even ignoring the effect it has on multitasking,
timing loops are inaccurate and will wait different amounts of time depending on the specific
model of Amiga computer. The timer.device provides precision timing for use under the
multitasking system and it works the same on all models of the Amiga. The AmigaDOS
Delay() function or the graphics.library/WaitTOF() function provide a simple interface for
longer delays. The 8520 1/0 chips provide timers for developers who are bypassing the
operating system (see the Amiga Hardware Reference Manual for more information).

FOR 68010/68020/68030/68040 COMPATIBILITY

Special care must be taken to be compatible with the entire family of 68000 processors:

o Do not use the upper 8 bits of a pointer for storing unrelated information. The 68020, 68030,
and 68040 use all 32 bits for addressing.

o Do not use signed variables or signed math for addresses.

12 Amiga Hardware Reference Manual

o Do not use software delay loops, and do not make assumptions about the order in which
asynchronous tasks will finish.

o The stack frame used for exceptions is different on each member of the 68000 family. The
type identification in the frame must be checked! In addition, the interrupt autovectors may
reside in a different location on processors with a VBR register.

o Do not use the MOVE SR,<dest> instruction! This 68000 instruction acts differently on
other members of the 68000 family. If you want to get a copy of the processor condition
codes, use the exec.library/GetCC() function.

o Do not use the CLR instruction on a hardware register which is triggered by Write access.
The 68020 CLR instruction does a single Write access. The 68000 CLR instruction does a
Read access first, then a Write access. This can cause a hardware register to be triggered
twice. Use MOVE.x #0, <address> instead.

o Self-modifying code is strongly discouraged. All 68000 family processors have a pre-fetch
feature. This means the CPU loads instructions ahead of the current program counter.
Hence, if your code modifies or decrypts itself just ahead of the program counter, the pre­
fetched instructions may not match the modified instructions. The more advanced processors
prefetch more words. If self-modifying code must be used, flushing the cache is the safest
way to prevent troubles.

o The 68020, 68030, and 68040 processors all have instruction caches. These caches store
recently used instructions, but do not monitor writes. After modifying or directly loading
instructions, the cache must be flushed. See the exec.library/CacheClearU() Autodoc for
more details. If your code takes over the machine, flushing the cache will be trickier. You
can account for the current processors, and hope the same techniques will work in the future:

CACRF Clear!

Clear!Cache:

cic 040:
cic exit:

EQU $0008 ;Bit for clear instruction cache

;Supervisor mode only.Use only if you have taken
;over the machine. Read and store the ExecBase
;processor AttnFlags flags at boot time, call this
;code only if the "68020 or better" bit was set.

dc.w $4E7A,$0002 ;MOVEC CACR,DO
tst.w dO ;movec does not affect CC's
bmi.s cic_040 ;A 68040 with enabled cache!
ori.w #CACRF_Cleari,dO
dc.w $4E7B,$0002 ;MOVEC DO,CACR
bra.s cic exit
dc.w $f4b8 ;CPUSHA (IC)

Introduction 13

HARDWARE PROGRAMMING GUIDELINES

If you find it necessary to program the hardware directly, then it is your responsibility to write
code that will work correctly on the various models and configurations of the Amiga. Be sure to
properly request and gain control of the hardware resources you are manipulating, and be
especially careful in the following areas:

o Kickstart 2.0 uses the 8520 Complex Interface Adaptor (CIA) chips differently than 1.3 did.
To ensure compatibility, you must always ask for CIA access using the
cia.resource/AddiCRVector() and RemiCRVector() functions. Do not make assumptions
about what the system might be using the CIA chips for. If you write directly to the CIA
chip registers, do not expect system services such as the trackdisk.device to function. If you
are leaving the system up, do not read or write to the CIA Interrupt Control Registers
directly; use the cia.resource/AbleiCR(), and SetiCR() functions. Even if you are taking over
the machine, do not assume the initial contents of any of the CIA registers or the state of any
enabled interrupts.

o All custom chip registers arc Read-only or Write-only. Do not read Write-only registers, and
do not write to Read-only registers.

o Never write data to, or interpret data from the unused bits or addresses in the custom chip
space. To be software-compatible with future chip revisions, all undefined bits must be set to
zeros on writes, and must be masked out on reads before interpreting the contents of the
register.

o Never write past the current end of custom chip space. Custom chips may be extended or
enhanced to provide additional registers, or to use bits that arc currently undefined in existing
registers.

0 Never read, write, or use any currently undefined address ranges or registers. The current and
future usage of such areas is reserved by Commodore and is subject to change.

0 Never assume that a hardware register will be initialized to any particular value. Different
versions of the OS may leave registers set to different values. Check the Amiga Hardware
Reference Manual to ensure that you are setting up all the registers that affect your code.

14 Amiga Hardware Reference Manual

ADDITIONAL ASSEMBLER DEVELOPMENT GUIDELINES

If you are writing in assembly language there are some extra rules to keep in mind in addition to
those listed above.

o Never use the T AS instruction on the Amiga. System DMA can conflict with this
instruction's special indivisible read-modify-write cycle.

o System functions must be called with register A6 containing the library or device base.
Libraries and devices assume A6 is valid at the time of any function call. Even if a particular
function does not currently require its base register, you must provide it for compatibility
with future system software releases.

o Except as noted, system library functions use registers DO, Dl, AO, and Al as scratch
registers and you must consider their former contents to be lost after a system library call.
The contents of all other registers will be preserved. System functions that provide a result
will return the result in DO.

o Never depend on processor condition codes after a system call. The caller must test the
returned value before acting on a condition code. This is usually done with a TST or MOVE
instruction.

o If you are programming at the hardware level, you must follow hardware interfacing
specifications. All hardware is not the same. Do not assume that low level hacks for speed
or copy protection will work on all drives, or all keyboards, or all systems, or future systems.
Test your software on many different systems, with different processors, OS, hardware, and
RAM configurations.

Introduction 15

Commodore Applications and Technical Support (CATS)

Commodore maintains a technical support group dedicated to helping developers achieve their
goals with the Amiga. Currently, technical support programs are available to meet the needs of
both smaller, independent software developers and larger corporations. Subscriptions to
Commodore's technical support publication, Amiga Mail, is available to anyone with an interest
in the latest news, Commodore software and hardware changes, and tips for developers.

To request an application for Commodore's developer support program, or a list of CATS
technical publications send a self-addressed, stamped, 9" x 12" envelope to:

CATS-Information
1200 West Wilson Drive
West Chester, PA 19380-4231

Error Reports

In a complex technical manual, errors are often found after publication. When errors in this
manual are found, they will be corrected in a subsequent printing. Updates will be published in
Amiga Mail, Commodore's technical support publication.

Bug reports can be sent to Commodore electronically or by mail. Submitted reports must be
clear, complete, and concise. Reports must include a telephone number and enough information
so that the bug can be quickly verified from your report (i.e., please describe the bug and the steps
that produced it).

Amiga Software Engineering Group
ATTN: BUG REPORTS
Commodore Business Machines
1200 Wilson Drive
West Chester, PA 19380-4231
USA

BIX: amiga.com/bug.reports (Commercial developers)
amiga.cert/bug.reports (Certified developers)
amiga.dev/bugs (Others)

USENET: bugs@commodore.COM or uunet!cbmvax!bugs

16 Amiga Hardware Reference Manual

------------------------~

chapter two
COPROCESSOR HARDWARE

In this chapter, you will learn how to use the Amiga's graphics coprocessor (or Copper) and its
simple instruction set to organize mid-screen register value modifications and pointer register
set-up during the vertical blanking interval. The chapter shows how to organize Copper
instructions into Copper lists, how to use Copper lists in interlaced mode, and how to use the
Copper with the blitter. The Copper is discussed in this chapter in a general fashion. The
chapters that deal with playfields, sprites, audio, and the blitter contain more specific suggestions
for using the Copper.

About the Copper

The Copper is a general purpose coprocessor that resides in one of the Amiga's custom chips. It
retrieves its instructions via direct memory access (DMA). The Copper can control nearly the
entire graphics system, freeing the 680x0 to execute program logic; it can also directly affect the
contents of most of the chip control registers. It is a very powerful tool for directing mid-screen
modifications in graphics displays and for directing the register changes that must occur during
the vertical blanking periods. Among other things, it can control register updates, reposition
sprites, change the color palette, update the audio channels, and control the blitter.

One of the features of the Copper is its ability to WAIT for a specific video beam position, then
MOVE data into a system register. During the WAIT period, the Copper examines the contents
of the video beam position counter directly. This means that while the Copper is waiting for the
beam to reach a specific position, it does not use the memory bus at all. Therefore, the bus is
freed for use by the other DMA channels or by the 680x0.

When the WAIT condition has been satisfied, the Copper steals memory cycles from either the
blitter or the 680x0 to move the specified data into the selected special-purpose register.

Coprocessor Hardware 19

The Copper is a two-cycle processor that requests the bus only during odd-numbered memory
cycles. This prevents collision with audio, disk, refresh, sprites, and most low resolution display
DMA access, all of which use only the even-numbered memory cycles. The Copper, therefore,
needs priority over only the 680x0 and the blitter (the DMA channel that handles animation, line
drawing, and polygon filling).

As with all the other DMA channels in the Amiga system, the Copper can retrieve its instructions
only from the chip RAM area of system memory.

What is a Copper Instruction?

As a coprocessor, the Copper adds its own instruction set to the instructions already provided by
the 680x0 CPU. The Copper has only three instructions, but you can do a lot with them:

o WAIT for a specific screen position specified as x and y coordinates.

o MOVE an immediate data value into one of the special-purpose registers.

o SKIP the next instruction if the video beam has already reached a specified screen
position.

All Copper instructions consist of two 16-bit words in sequential memory locations. Each time
the Copper fetches an instruction, it fetches both words.

The MOVE and SKIP instructions require two memory cycles and two instruction words each.
Because only the odd memory cycles are requested by the Copper, four memory cycle times are
required per instruction. The WAIT instruction requires three memory cycles and six memory
cycle times; it takes one extra memory cycle to wake up.

Although the Copper can directly affect only machine registers, it can also affect memory
indirectly by setting up a blitter operation. More information about how to use the Copper in
controlling the blitter can be found in the sections called "Control Register" and "Using the
Copper with the Blitter.''

The WAIT and MOVE instructions are described below. The SKIP instruction is described in the
''Advanced Topics'' section.

20 Amiga Hardware Reference Manual

The MOVE Instruction

The MOVE instruction transfers data from RAM to a register destination. The transferred data is
contained in the second word of the MOVE instruction; the first word contains the address of the
destination register. This procedure is shown in detail in the section called "Summary of Copper
Instructions.''

FIRST MOVE INSTRUCTION WORD (IR1)

Bit 0 Always set to 0.

Bits 8- 1 Register destination address (DA8-1).

Bits 15 - 9 Not used, but should be set to 0.

SECOND MOVE INSTRUCTION WORD (IR2)

Bits 15-0 16 bits of data to be transferred (moved)
to the register destination.

The Copper can store data into the following registers:

o Any register whose address is $20 or above. 1

o Any register whose address is between $10 and $20 if the Copper danger bit is a 1. The
Copper danger bit is in the Copper's control register, COPCON, which is described in
the "Control Register" section.

o The Copper cannot write into any register whose address is lower than $10.

Appendix B contains all of the machine register addresses.

The following example MOVE instructions set bitplane pointer 1 to $21000 and bitplane pointer

2 to $25000.2

DC.W
DC.W
DC.W
DC.W

$00E0,$0002
$00E2,$1000
$00E4,$0002
$00E6,$5000

;Move $0002 to register $0EO (BPLlPTH)
;Move $1000 to register $0E2 (BPLlPTL)
;Move $0002 to register $0E4 (BPL2PTH)
;Move $5000 to register $0E6 (BPL2PTL)

I Hexadecimal numbers are distinguished from decimal numbers by the $ prefix.

2 All sample code segments are in assembly language.

Coprocessor Hardware 21

Normally, the appropriate assembler ".i" files are included so that names, rather than addresses,
may be used for referencing hardware registers. It is strongly recommended that you reference all
hardware addresses via their defined names in the system include files. This will allow you to
more easily adapt your software to take advantage of future hardware or enhancements. For
example:

INCLUDE "hardware/custom.i"

DC.W bplpt+$00,$0002 ;Move $0002 into register $0EO (BPLlPTH)
DC.W bplpt+$02,$1000 ;Move $1000 into register $0E2 (BPL1PTL)
DC.W bplpt+$04,$0002 ;Move $0002 into register $0E4 (BPL2PTH)
DC.W bplpt+$06,$5000 ;Move $5000 into register $0E6 (BPL2PTL)

For use in the hardware manual examples, we have made a special include file (see Appendix I)
that defines all of the hardware register names based off of the "hardware/custom.i" file. This
was done to make the examples easier to read from a hardware point of view. Most of the
examples in this manual are here to help explain the hardware and are, in most cases, not useful
without modification and a good deal of additional code.

The WAIT Instruction

The WAIT instruction causes the Copper to wait until the video beam counters are equal to (or
greater than) the coordinates specified in the instruction. While waiting, the Copper is off the bus
and not using memory cycles.

The first instruction word contains the vertical and horizontal coordinates of the beam position.
The second word contains enable bits that are used to form a ''mask" that tells the system which
bits of the beam position to usc in making the comparison.

FIRST WAIT INSTRUCTION WORD (IRl)

Bit 0

Bit~ 15 - 8

Bits 7- 1

Always set to 1.

Vertical beam position (called VP).

Horizontal beam position (called HP).

SECOND WAIT INSTRUCTION WORD (IR2)

Bit 0

Bit 15

Bits 14- 8

Bits 7- 1

Always set to 0.

The blitter-finished-disable bit. Normally, this bit is a 1.
(See the'' Advanced Topics'' section below.)

Vertical position compare enable bits (called VE).

Horizontal position compare enable bits (called HE).

22 Amiga Hardware Reference Manual

------------,-·-···-~--------- ------

The following example WAIT instruction waits for scan line 150 ($96) with the horizontal
position masked off.

DC.W $9601,$FFOO ;Wait for line 150,
ignore horizontal counters.

The following example WAIT instruction waits for scan line 255 and horizontal position 254.
This event will never occur, so the Copper stops until the next vertical blanking interval begins.

DC.W $FFFF,$FFFE ;Wait for line 255,
H = 254 (ends Copper list) .

To understand why position VP=$FF HP=$FE will never occur, you must look at the comparison
operation of the Copper and the size restrictions of the position information. Line number 255 is
a valid line to wait for, in fact it is the maximum value that will fit into this field. Since 255 is the
maximum number, the next line will wrap to zero (line 256 will appear as a zero in the
comparison.) The line number will never be greater than $FF. The horizontal position has a
maximum value of $E2. This means that the largest number that will ever appear in the
comparison is $FFE2. When waiting for $FFFE, the line $FF will be reached, but the horizontal
position $FE will never happen. Thus, the position will never reach $FFFE.

You may be tempted to wait for horizontal position $FE (since it will never happen), and put a
smaller number into the vertical position field. This will not lead to the desired result. The
comparison operation is waiting for the beam position to become greater than or equal to the
entered position. If the vertical position is not $FF, then as soon as the line number becomes
higher than the entered number, the comparison will evaluate to true and the wait will end.

The following notes on horizontal and vertical beam position apply to both the WAIT instruction
and to the SKIP instruction. The SKIP instruction is described below in the "Advanced Topics"
section.

HORIZONTAL BEAM POSITION

The horizontal beam position has a value of $0 to $E2. The least significant bit is not used in the
comparison, so there are 113 positions available for Copper operations. This corresponds to 4
pixels in low resolution and 8 pixels in high resolution. Horizontal blanking falls in the range of
$OF to $35. The standard screen (320 pixels wide) has an unused horizontal portion of $04 to $47
(during which only the background color is displayed).

All lines arc not the same length in NTSC. Every other line is a long line (228 color clocks, O­
$E3), with the others being 227 color clocks long. In PAL, they are all 227 long. The display
sees all these lines as 227 1/2 color clocks long, while the copper sees alternating long and short
lines.

Coprocessor Hardware 23

VERTICAL BEAM POSITION

The vertical beam position can be resolved to one line, with a maximum value of 255. There are
actually 262 NTSC (312 PAL) possible vertical positions. Some minor complications can occur
if you want something to happen within these last six or seven scan lines. Because there are only
eight bits of resolution for vertical beam position (allowing 256 different positions), one of the
simplest ways to handle this is shown below.

Copper Instruction

WAIT for position (0,255)

WAIT for any horizontal position with
vertical position 0 through 5, covering
the last 6 lines of the scan before vertical
blanking occurs.

Explanation

At this point, the vertical counter
appears to wrap to 0 because the
comparison works on the least
significant bits of the vertical count.

Thus the total of 256 + 6 = 262 lines of
video beam travel during which Copper
instructions can be executed.

Note that the vertical is like the horizontal. There are alternating long and short
lines, there are also long and short fields (interlace only). In NTSC, the fields are 262,
then 263 lines and in PAL, 312, then 313 lines. This alternation of lines and fields
produces the standard NTSC 4 field repeating pattern:

short field ending on short line
long field ending on long line
short field ending on long line
long field ending on short line
and back to the beginning ...

One horizontal count takes one cycle of the system clock (processor is twice this).

NTSC- 3,579,545 Hz
PAL- 3,546,895 Hz
genlocked- basic clock frequency plus or minus about 2%

THE COMPARISON ENABLE BITS

Bits 14-1 are normally set to all 1 s. The use of the comparison enable bits is described later in the
''Advanced Topics'' section.

24 Amiga Hardware Reference Manual

Using the Copper Registers

There are several machine registers and strobe addresses dedicated to the Copper:

o Location registers

o Jump address strobes

o Control register

LOCATION REGISTERS

The Copper has two sets of location registers:

COP1LCH

COPILCL

COP2LCH

COP2LCL

High 3 bits of first Copper list address.

Low 16 bits of first Copper list address.

High 3 bits of second Copper list address.

Low 16 bits of second Copper list address.

In accessing the hardware directly, you often have to write to a pair of registers that contains the
address of some data. The register with the lower address always has a name ending in "H" and
contains the most significant data, or high 3 bit~ of the address. The register with the higher
address has a name ending in "L" and contains the least significant data, or low 15 bits of the
address. Therefore, you write the 18-bit address by moving one long word to the register whose
name ends in ''H.'' This is because when you write long words with the 680x0, the most
significant word goes in the lower addressed word.

In the case of the Copper location registers, you write the address to CO PILCH. In the following
text, for simplicity, these addresses are referred to as COPlLC or COP2LC.

The Copper location registers contain the two indirect jump addresses used by the Copper. The
Copper fetches its instructions by using its program counter and increments the program counter
after each fetch. When a jump address strobe is written, the corresponding location register is
loaded into the Copper program counter. This causes the Copper to jump to a new location, from
which its next instruction will be fetched. Instruction fetch continues sequentially until the
Copper is interrupted by another jump address strobe.

About Copper restart. At the start of each vertical blanking interval, COPlLC is
automatically used to start the program counter. That is, no matter what the Copper is
doing, when the end of vertical blanking occurs, the Copper is automatically forced to
restart its operations at the address contained in COPlLC.

Coprocessor Hardware 25

JUMP STROBE ADDRESS

When you write to a Copper strobe address, the Copper reloads its program counter from the
corresponding location register. The Copper can write its own location registers and strobe
addresses to perform programmed jumps. For instance, you might MOVE an indirect address
into the COP2LC location register. Then, any MOVE instruction that addresses COPJMP2
strobes this indirect address into the program counter.

There are two jump strobe addresses:

COPJMPl Restart Copper from address contained in COP1LC.

COPJMP2 Restart Copper from address contained in COP2LC.

CONTROL REGISTER

The Copper can access some special-purpose registers all of the time, some registers only when a
special control bit is set to a 1, and some registers not at all. The registers that the Copper can
always affect are numbered $80 through $FF inclusive. (See Appendix B for a list of registers in
address order.) Those it cannot affect at all are numbered $00 to $3E inclusive. The Copper
control register is within this group ($00 to $3E). The rest of the registers, from $40 to $7E, are
protected by a bit in the Copper control register.

In the Copper control register, called COPCON, only bit 1 is currently in use by the system. This
bit, called CDANG (for Copper Danger Bit) protects all registers numbered between $40 and $7E
inclusive. This range includes the blitter control registers. When CDANG is 0, these registers
cannot be written by the Copper. When CDANG is 1, these registers can be written by the
Copper. Preventing the Copper from accessing the blitter control registers prevents a runaway
Copper (caused by a poorly formed instruction list) from accidentally affecting system memory.

Warning: Keep in mind that the CDANG bit is cleared after a reset.

Putting Together a Copper Instruction List

The Copper instruction list contains all the register resetting done during the vertical blanking
interval and the register modifications necessary for making mid-screen alterations. As you are
planning what will happen during each display field, you may find it easier to think of each aspect
of the display as a separate subsystem, such as playfields, sprites, audio, interrupts, and so on.
Then you can build a separate list of things that must be done for each subsystem individually at
each video beam position.

When you have created all these intermediate lists of things to be done, you must merge them
together into a single instruction list to be executed by the Copper once for each display frame.
The alternative is to create this all-inclusive list directly, without the intermediate steps.

26 Amiga Hardware Reference Manual

------------··- ---

For example, the bitplane pointers used in playfield displays and the sprite pointers must be
rewritten during the vertical blanking interval so the data will be properly retrieved when the
screen display starts again. This can be done with a Copper instruction list that does the
following:

WAIT until first line of the display
MOVE data to bitplane pointer 1
MOVE data to bitplane pointer 2
MOVE data to sprite pointer 1, and so on.

As another example, the sprite DMA channels that create movable objects can be reused multiple
times during the same display field. You can change the size and shape of the reuses of a sprite;
however, every multiple reuse normally uses the same set of colors during a full display frame.
You can change sprite colors mid-screen with a Copper instruction list that waits until the last
line of the first use of the sprite processor and changes the colors before the first line of the next
use of the same sprite processor:

WAIT for first line of display
MOVE firstcolorl to COLOR17
MOVE firstcolor2 to COLOR18
MOVE firstcolor3 to COLOR19
WAIT for last line + 1 of sprite's first use
MOVE secondcolorl to COLOR17
MOVE secondcolor2 to COLOR 18
MOVE secondcolor3 to COLOR19, and so on.

As you create Copper instruction lists, note that the final list must be in the same order as that in
which the video beam creates the display. The video beam traverses the screen from position
(0,0) in the upper left hand comer of the screen to the end of the display (226,262) NTSC (or
(226,312) PAL) in the lower right hand comer. The first 0 in (0,0) represents the x position. The
second 0 represents the y position. For example, an instruction that docs something at position
(0, 100) should come after an instruction that affects the display at position (0,60).

Note that given the form of the WAIT instruction, you can sometimes get away with not sorting
the list in strict video beam order. The WAIT instruction causes the Copper to wait until the
value in the beam counter is equal to or greater than the value in the instruction.

This means, for example, if you have instructions following each other like this:

WAIT for position (64,64)
MOVE data

WAIT for position (60,60)
MOVE data

Coprocessor Hardware 27

then the Copper will perfonn both moves, even though the instructions are out of sequence. The
"greater than" specification prevents the Copper from locking up if the beam has already passed
the specified position. A side effect is that the second MOVE below will be perfonned:

WAIT for position (60,60)
MOVE data

WAIT for position (60,60)
MOVE data

At the time of the second WAIT in this sequence, the beam counters will be greater than the
position shown in the instructions. Therefore, the second MOVE will also be perfonned.

Note also that the above sequence of instructions could just as easily be

WAIT for position (60,60)
MOVE data
MOVE data

because multiple MOVEs can follow a single WAlT.

COMPLETE SAMPLE COPPER LIST

The following example shows a complete Copper list. This list is for two bitplanes-one at
$21000 and one at $25000. At the top of the screen, the color registers are loaded with the
following values:

Register Color

COLOROO white
COLOROI red
COLOR02 green
COLOR03 blue

At line 150 on the screen, the color registers are reloaded:

Register Color

COLO ROO black
COLOROl yellow
COLOR02 cyan
COLOR03 magenta

28 Amiga Hardware Reference Manual

The complete Copper list follows.

Notes: 1. Copper lists must be in Chip RAM.
2. Bitplane addresses used in the example are arbitrary.
3. Destination register addresses in copper move instructions are

offsets from the base address of the custom chips.
4. As always, hardware manual examples assume that your application

has taken full control of the hardware, and is not conflicting
with operating system use of the same hardware.

5. Many of the examples just pick memory addresses to be used.
Normally you would need to allocate the required type of
memory from the system with AllocMem()

6. As stated earlier, the code examples are mainly to help
clarify the way the hardware works.

7. The following INCLUDE files are required by all example code
in this chapter.

INCLUDE "exec/types.i"
INCLUDE "hardware/custom.i"
INCLUDE "hardware/dmabits.i"
INCLUDE "hardware/hw_examples.i"

COPPERLIST:

Set up pointers to two bitplanes

DC.W
DC.W
DC.W
DC.W

BPL1PTH,$0002
BPL1PTL,$1000
BPL2PTH,$0002
BPL2PTL,$5000

Load color registers

DC.W
DC.W
DC.W
DC.W

COLOR00,$0FFF
COLOR01,$0FOO
COLOR02,$00FO
COLOR03,$000F

Specify 2 Lores bitplanes

DC.W BPLCON0,$2200

Wait for line 150

DC.W $9601,$FFOO

;Move $0002 into register
;Move $1000 into register
;Move $0002 into register
;Move $5000 into register

;Move white into register
;Move red into register
;Move green into register
;Move blue into register

;2 lores planes, celoron

$0EO
$0E2
$0E4
$0E6

$180
$182
$184
$186

(BPL1PTH)
(BPL1PTL)
(BPL2PTH)
(BPL2PTL)

(COLOROO)
(COLOR01)
(COLOR02)
(COLOR03)

;Wait for line 150, ignore horiz. position

Change color registers mid-display

DC.W
DC.W
DC.W
DC.W

COLOR00,$0000
COLOR01,$0FFO
COLOR02,$00FF
COLOR03,$0FOF

;Move black into register $0180 (COLOROO)
;Move yellow into register $0182 (COLOROl)
;Move cyan into register $0184 (COLOR02)
;Move magenta into register $0186 (COLOR03)

End Copper list by waiting for the impossible

DC.W $FFFF,$FFFE ;Wait for line 255, H = 254 (never happens)

For more infonnation about color registers, see Chapter 3, ''Playfield Hardware.''

Coprocessor Hardware 29

Starting and Stopping the Copper

STARTING THE COPPER AFTER RESET

At power-on or reset time, you must initialize one of the Copper location registers (COPlLC or
COP2LC) and write to its strobe address before Copper DMA is turned on. This ensures a known
start address and known state. Usually, COPlLC is used because this particular register is reused
during each vertical blanking time. The following sequence of instructions shows how to
initialize a location register. It is assumed that the user has already created the correct Copper
instruction list at location '' mycoplist.''

Install the copper list

LEA CUSTOM,al
LEA MYCOPLIST(pc) ,aO
MOVE.L aO,COPlLC(al)
MOVE.W COPJMPl(al),dO

Then enable copper and raster dma

al = address of custom chips
Address of our copper list
Write whole longword address
Causes copper to load PC from COPlLC

MOVE.W #(DMAF_SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(al)

Now, if the contents of COPlLC are not changed, every time vertical blanking occurs the Copper
will restart at the same location for each subsequent video screen. This forms a repeatable loop
which, if the list is correctly formulated, will cause the displayed screen to be stable.

STOPPING THE COPPER

No stop instruction is provided for the Copper. To ensure that it will stop and do nothing until
the screen display ends and the program counter starts again at the top of the instruction list, the
last instruction should be to WAIT for an event that cannot occur. A typical instruction is to
WAIT for VP = $FF and HP = $FE. An HP of greater than $E2 is not possible. When the screen
display ends and vertical blanking starts, the Copper will automatically be pointed to the top of its
instruction list, and this final WAIT instruction never finishes.

You can also stop the Copper by disabling its ability to use DMA for retrieving instructions or
placing data. The register called DMACON controls all of the DMA channels. Bit 7, COPEN,
enables Copper DMA when set to 1.

For information about controlling the DMA, see Chapter 7, ''System Control Hardware.''

30 Amiga Hardware Reference Manual

Advanced Topics

THE SKIP INSTRUCTION

The SKIP instruction causes the Copper to skip the next instruction if the video beam counters are
equal to or greater than the value given in the instruction.

The contents of the SKIP instruction's words are shown below. They arc identical to the WAIT
instruction, except that bit 0 of the second instruction word is a 1 to identify this as a SKIP
instruction.

FIRST SKIP INSTRUCTION WORD (IR1)

Bit 0 Always set to I.

Bits 15 - 8 Vertical position (called VP).

Bits 7- 1 Horizontal position (called HP).

Skip if the beam counter is equal to or
greater than these combined bits
(bits 15 through 1).

SECOND SKIP INSTRUCTION WORD (IR2)

Bit 0 Always set to 1.

Bit 15 The blitter-finishcd-disable bit.
(Sec "Using the Copper with the
Blitter" below.)

Bits 14- 8 Vertical position compare enable bits (called VE).

Bits 7- I Horizontal position compare enable bits (called HE).

The notes about horizontal and vertical beam position found in the discussion of the WAIT
instruction apply also to the SKIP instruction.

The following example SKIP instruction skips the instruction following it if VP (vertical beam
position) is greater than or equal to 100 ($64).

DC.W $6401,$FF01 ; If VP >= 100,
skip next instruction (ignore HP)

Coprocessor Hardware 31

COPPERLOOPSANDBRANCHESANDCOMPAR~ONENABLE

You can change the value in the location registers at any time and usc this value to construct
loops in the instruction list. Before the next vertical blanking time, however, the COPlLC
registers must be repainted to the beginning of the appropriate Copper list. The value in the
COPlLC location registers will be restored to the Copper's program counter at the start of the
vertical blanking period.

Bits 14-1 of instruction word 2 in the WAIT and SKIP instructions specify which bits of the
horizontal and vertical position are to be used for the beam counter comparison. The position in
instruction word 1 and the compare enable bits in instruction word 2 are tested against the actual
beam counters before any further action is taken. A position bit in instruction word 1 is used in
comparing the positions with the actual beam counters if and only if the corresponding enable bit
in instruction word 2 is set to 1. If the corresponding enable bit is 0, the comparison is always
true. For instance, if you care only about the value in the last four bits of the vertical position,
you set only the last four compare enable bits, bits (11-8) in instruction word 2.

Not all of the bits in the beam counter may be masked. If you look at the description of the IR2
(second instruction word) you will notice that bit 15 is the blitter-finished-disable bit. This bit is
not part of the beam counter comparison mask, it has its own meaning in the Copper WAIT
instruction. Thus, you can not mask the most significant bit in WAIT or SKIP instructions. In
most situations this limitation does not come into play, however, the following example shows
how to deal with it.

A COPPER LOOP EXAMPLE

This example will instruct the Copper to issue an interrupt every 16 scan lines. It might seem that
the way to do this would be to use a mask of $OF and then compare the result with $OF. This
should compare "true" for $IF, $2F, $3F, etc. Since the test is for greater than or equal to, this
would seem to allow checking for every 16th scan line. However, the highest order bit cannot be
masked, so it will always appear in the comparisons. When the Copper is waiting for $OF and the
vertical position is past 128 (hex $80), this test will always be true. In this case, the minimum
value in the comparison will be $80, which is always greater than $OF, and the interrupt will
happen on every scan line. Remember, the Copper only checks for greater than or equal to.

In the following example, the Copper list<> have been made to loop. The COPILC and COP2LC
values are either set via the CPU or in the Copper list before this section of Copper code. Also, it
is assumed that you have correctly installed an interrupt server for the Copper interrupt that will
be generated every 16lines. Note that these are non-interlaced scan lines.

Here's how it works. Both loops are, for the most part, exactly the same. In each, the Copper
waits until the vertical position register has $xF (where x is any hex digit) in it, at which point we
issue a Copper interrupt to the Amiga hardware. To make sure that the Copper does not loop
back before the vertical position has changed and cause another interrupt on the same scan line,
wait for the horizontal position to be $E2 after each interrupt. Position $E2 is horizontal position
113 for the Copper and the last real horizontal position available. This will force the Copper to

32 Amiga Hardware Reference Manual

the next line before the next WAIT. The loop is executed by writing to the COPJMPl register.
This causes the Copper to jump to the address that was initialized in COPlLC.

The masking problem described above makes this code fail after vertical position 127. A separate
loop must be executed when vertical position is greater than or equal 127. When the vertical
position becomes greater than or equal to 127, the the first loop instruction is skipped, dropping
the Copper into the second loop. The second loop is much the same as the first, except that it
waits for $xF with the high bit set (binary lxxxllll). This is true for both the vertical and the
horizontal WAIT instructions. To cause the second loop, write to the COPJMP2 register. The
list is put into an infinite wait when VP >= 255 so that it will end before the vertical blank. At
the end of the vertical blanking period COPlLC is written to by the operating system, causing the
first loop to start up again.

COPt LC is written at the end of vertical blanking. The COPlLC register is
written at the end of the vertical blanking period by a graphics interrupt handler which
is in the vertical blank interrupt server chain. As long as this server is intact, COPlLC
will be correctly strobed at the end of each vertical blank.

This is the data for the Copper list.

It is assumed that COPPERLl is loaded into COPlLC and
that COPPERL2 is loaded into COP2LC by some other code.

COPPERLl:
DC.W
DC.W

DC.W

DC.W
DC.W

COPPERL2:
DC.W
DC.W

DC.W

DC.W
DC.W

$0F01,$8FOO
INTREQ,$8010

$00E3,$80FE

$7F01,$7F01
COPJMPl I $0

$8F01,$8FOO
INTREQ,$8010

$80E3,$80FE

$FF01,$FE01
COPJMP2, $0

Wait for VP=Oxxxllll
Set the copper interrupt bit ...

Wait for Horizontal $E2
This is so the line gets finished before
we check if we are there (The wait above)

Skip if VP>=127
Force a jump to COPlLC

Wait for VP=lxxxllll
Set the copper interrupt bit ...

Wait for Horizontal $E2
This is so the line gets finished before
we check if we are there (The wait above)

Skip if VP>=255
Force a jump to COP2LC

Whatever cleanup copper code that might be needed here ...
Since there are 262 lines in NTSC, and we stopped at 255, there is a
bit of time available

DC.W $FFFF,$FFFE End of Copper list

Coprocessor Hardware 33

-··----------------------------·~·-··~~---

USING THE COPPER IN INTERLACED MODE

An interlaced bitplane display has twice the nonnal number of vertical lines on the screen.
Whereas a nonnal NTSC display has 262 lines, an interlaced NTSC display has 524 lines. PAL
has 312 lines nonnally and 625 in interlaced mode. In interlaced mode, the video beam scans the
screen twice from top to bottom, displaying, in the case of NTSC, 262 lines at a time. During the
first scan, the odd-numbered lines are displayed. During the second scan, the even-numbered
lines are displayed and interlaced with the odd-numbered ones. The scanning circuitry thus treats
an interlaced display as two display fields, one containing the even-numbered lines and one
containing the odd-numbered lines. Figure 2-1 shows how an interlaced display is stored in
memory.

Odd field
(time t)

3

5

Even field
(timet+ 16.6ms)

2

4

6

Figure 2-1: Interlaced Bitplane in RAM

Data in Memory

1

2

3

4

5

6

The system retrieves data for bitplane displays by using pointers to the starting address of the data
in memory. As you can see, the starting address for the even-numbered fields is one line greater
than the starting address for the odd-numbered fields. Therefore, the bitplane pointer must
contain a different value for alternate fields of the interlaced display.

Simply, the organization of the data in memory matches the apparent organization on the screen
(i.e., odd and even lines are interlaced together). This is accomplished by having a separate
Copper instruction list for each field to manage displaying the data.

34 Amiga Hardware Reference Manual

To get the Copper to execute the correct list, you set an interrupt to the 680x0 just after the first
line of the display. When the interrupt is executed, you change the contents of the COPILC
location register to point to the second list. Then, during the vertical blanking interval, COPILC
will be automatically reset to point to the original list.

For more information about interlaced displays, see Chapter 3, ''Play field Hardware.''

USING THE COPPER WITH THE BLITIER

If the Copper is used to start up a sequence of blitter operations, it must wait for the bUtter­
finished interrupt before starting another blitter operation. Changing blitter registers while the
blitter is operating causes unpredictable results. For just this purpose, the WAIT instruction
includes an additional control bit, called BFD (for blitter finished disable). Normally, this bit is a
1 and only the beam counter comparisons control the WAIT.

When the BFD bit is a 0, the logic of the Copper WAIT instruction is modified. The Copper will
WAIT until the beam counter comparison is true and the blitter has finished. The blitter has
finished when the blitter-finished flag is set. This bit should be unset with caution. It could
possibly prevent some screen displays or prevent objects from being displayed correctly.

For more information about using the blitter, see Chapter 6, ''Blitter Hardware.''

THE COPPER AND THE 680x0

On those occasions when the Copper's instructions do not suffice, you can interrupt the 680x0
and use its instruction set instead. The 680x0 can poll for interrupt flags set in the INTREQ
register by various devices. To interrupt the 680x0, use the Copper MOVE instruction to store a
1 into the following bits of INTREQ:

Bit Number

15

4

Table 2-1: Interrupting the 680x0

Name

SET/CLR

COPEN

Function

Set/Clear control bit. Determines if bits
written with a 1 get set or cleared.

Coprocessor interrupting 680x0.

See Chapter 7, ''System Control Hardware,'' for more information about interrupts.

Coprocessor Hardware 35

Summary of Copper Instructions

The table below shows a summary of the bit positions for each of the Copper instructions. See
Appendix A for a summary of all registers.

Table 2-2: Copper Instruction Summary

Move Wait

Bit# IRl IR2 IRl IR2

1S X RDlS VP7 BFD
14 X RD14 VP6 VE6
13 X RD13 VPS YES
12 X RD12 VP4 YE4
11 X ROll VP3 VE3
10 X RDlO VP2 YE2
09 X RD09 VPl VEl
08 DA8 RD08 VPO YEO
07 DA7 RD07 HP8 HE8
06 DA6 RD06 HP7 HE7
OS DAS RDOS HP6 HE6
04 DA4 RD04 HPS HES
03 DA3 RD03 HP4 HE4
02 DA2 RD02 HP3 HE3
01 DAl RDOl HP2 HE2
00 0 RDOO 1 0

X = don't care, but should be a 0 for upward compatibility
IR 1 = first instruction word
IR2 = second instruction word
DA = destination address
RD = RAM data to be moved to destination register
VP =vertical beam position bit
HP =horizontal beam position bit
VE =enable comparison (mask bit)
HE= enable comparison (mask bit)
BFD = blitter-finished disable

Skip

IRl IR2

VP7 BFD
VP6 VE6
VPS YES
YP4 VE4
VP3 VE3
VP2 VE2
VP1 VEl
VPO YEO
HP8 HE8
HP7 HE7
HP6 HE6
HPS HES
HP4 HE4
HP3 HE3
HP2 HE2

1 1

ECS Copper. For infonnation relating to the Copper in the Enhanced Chip Set
(ECS), see Appendix C.

36 Amiga Hardware Reference Manual

--------------------------·-----------------------

chapter three
PLAVFIELD HARDWARE

The screen display of the Amiga consists of two basic parts-playfields, which are sometimes
called backgrounds, and sprites, which are easily movable graphics objects. This chapter
describes how to directly access hardware registers to form playfields. The chapter begins with a
brief overview ofplayfield features and covers the following major topics:

o Forming a single "basic" playfield, which is a playfield the same size as the display
screen. This section includes concepts that are fundamental to forming any playfield.

o Forming a dual-playfield display in which one playfield is superimposed upon another.
This procedure differs from that of forming a basic playfield in some details.

o Forming play fields of various sizes and displaying only part of a larger playfield.

o Moving playfields by scrolling them vertically and horizontally.

o Advanced topics to help you use playfields in special situations.

For information about movable sprite objects, see Chapter 4, ''Sprite Hardware.'' There are also
movable playfield objects, which are subsections of a playfield. To move portions of a playfield,
you use a technique called playfield animation, which is described in Chapter 6, "Blitter
Hardware.''

For information relating to the playfield hardware in the Enhanced Chip Set (ECS), such as
SuperHires Mode, programmable scan rates and synchronization, see Appendix C.

Playfield Hardware 39

About Amiga Playfields

A playfield fonns the basic foundation of an Amiga display and detennines its fundamental
characteristics. To fonn a play field, you program the hardware registers of the custom chips with
the basic parameters of the type of display you want. Fanning a playfield involves selecting the
number of colors, setting up a color table and bitplanes, and selecting the resolution and display
mode.

To understand how Amiga playfields work, it will be helpful to review how the Amiga's video
displays are produced.

HOW THE AMIGA'S VIDEO DISPLAY IS PRODUCED

The Amiga produces its video displays with raster display techniques. The picture you see on the
screen is made up of a series of horizontal video lines displayed one after the other. Each
horizontal video line is made up of a series of pixels. You create a graphic display by defining
one or more bitplanes in memory and filling them with" 1 "sand "O"s. The combination of the
"1 "sand "O"s will detennine the colors in your display.

Video Picture

Each line represents one sweep of an electron beam
which is "painting" the picture as it goes along.

The video beam produces each line by sweeping from
left to right. It produces the full screen by sweeping
the beam from the top to the bottom, one line at a time.

Figure 3-1: How the Video Display Picture Is Produced

The video beam produces about 262 video lines from top to bottom, of which 200 nonnally are
visible on the screen with an NTSC system. With a PAL system, the beam produces 312lines, of
which 256 are nonnally visible. Each complete set of lines (262/NTSC or 312/PAL) is called a
display field. The field time, i.e. the time required for a complete display field to be produced, is
approximately l/60th of a second for an NTSC system and approximately l/50th of a second for
PAL. Between display fields, the video beam traverses the lines that are not visible on the screen
and returns to the top of the screen to produce another display field.

The display area is defined as a grid of pixels. A pixel is a single picture element, the smallest
addressable part of a screen display. The drawings below show what a pixel is and how pixels
fonn displays.

40 Amiga Hardware Reference Manual

·-------------·-·-··-····

o...c------------------- ----------------- The picture is formed from many elements.

~ ·------ ------------------

...c----------11-------------------------------~

320 Pixels

In normal resolution mode,
320 pixels fill a horizontal line.

Each element is called a pixel.

Pixels are used together to build larger
graphic objects .

---------·---------------------------------
640 Pixels

In high resolution mode,
640 pixels fill a horizontal line.

Figure 3-2: What Is a Pixel?

The Amiga offers a choice in both horizontal and vertical resolutions. Horizontal resolution can
be adjusted to operate in low resolution or high resolution mode. Vertical resolution can be
adjusted to operate in interlaced or non-interlaced mode.

o In low resolution mode, the normal playfield has a width of 320 pixels.

o High resolution mode gives finer horizontal resolution - 640 pixels in the same physical
display area.

o In non-interlaced mode, the normal NTSC playfield has a height of 200 video lines. The
normal PAL screen has a height of 256 video lines.

o Interlaced mode gives finer vertical resolution - 400 lines in the same physical display area
in NTSC and 512 for PAL.

Playfield Hardware 41

These modes can be combined, so you can have, for instance, an interlaced, high resolution
display.

Note that the dimensions referred to as "normal" in the previous paragraph are nominal
dimensions and represent the normal values you should expect to use. Actually, you can display
larger playfields; the maximum dimensions are given in the section called "Bitplanes and
Playfields of All Sizes.'' Also, the dimensions of the play field in memory are often larger than
the playfield displayed on the screen. You choose which part of this larger memory picture to
display by specifying a different size for the display window.

A playfield taller than the screen can be scrolled, or moved smoothly, up or down. A playfield
wider than the screen can be scrolled horizontally, from left to right or right to left. Scrolling is
described in the section called ''Moving (Scrolling) Playfields.''

In the Amiga graphics system, you can have up to thirty-two different colors in a single playfield,
using normal display methods. You can control the color of each individual pixel in the playfield
display by setting the bit or bits that control each pixel. A display formed in this way is called a
bitmapped display.

For instance, in a two-color display, the color of each pixel is determined by whether a single bit
is on or off. If the bit is 0, the pixel is one user-defined color; if the bit is 1, the pixel is another
color. For a four-color display, you build two bitplanes in memory. When the playfield is
displayed, the two bitplanes are overlapped, which means that each pixel is now two bits deep.
You can combine up to five bitplanes in this way. Displays made up of three, four, or five
bitplanes allow a choice of eight, sixteen, or thirty-two colors, respectively.

The color of a pixel is always determined by the binary combination of the bits that define it.
When the system combines bitplanes for display, the combination of bits formed for each pixel
corresponds to the number of a color register. This method of coloring pixels is called color
indirection. The Amiga has thirty-two color registers, each containing bits defining a user­
selected color (from a total of 4,096 possible colors).

Figure 3-3 shows how the combination of up to five bitplanes forms a code that selects which one
of the thirty-two registers to use to display the color of a playfield pixel.

42 Amiga Hardware Reference Manual

one pixel ,-'

bit-plane 5

bit-plane 4

bit-plane 3

0.. b"t I 2
', ',, ',, ',, 1 -pane

' ' ' ' ,

Bits from planes
5,4,3, 2,1

00000
00001
00010
00011
00100

___________ ,... (!§)
11001
11010
11011
11100
11101
11110
11111

Color isters

Figure 3-3: How Bitplanes Select a Color

Values in the highest numbered bitplane have the highest significance in the binary number. As
shown in Figure 3-4, the value in each pixel in the highest-numbered bitplane forms the leftmost
digit of the number. The value in the next highest-numbered bitplane forms the next bit, and so
on.

Playfield Hardware 43

0
0

SAMPLE DATA FOR
4 PIXELS

1
0
0

1

0

0

0

0 Data in bitplane 5- most significant
0 Data in bitplane 4

Data in bitplane 3
1 Data in bitplane 2
0 Data in bitplane 1 - least significant

L_ Vol"e6-COLOR6
Value 11- COLOR11
Value 18- COLOR 18
Value 28 - COLOR28

Figure 3-4: Significance of Bitplane Data in Selecting Colors

You also have the choice of defining two separate playfields, each formed from up to three
bitplanes. Each of the two playfields uses a separate set of eight different colors. This is called
dual-playfield mode.

Forming a Basic Playfield

To get you started, this section describes how to directly access hardware registers to form a
single basic playfield that is the same size as the video screen. Here, "same size" means that the
playfield is the same size as the actual display window. This will leave a small border between
the playfield and the edge of the video screen. The playfield usually does not extend all the way
to the edge of the physical display.

To form a playfield, you need to define these characteristics:

o Height and width of the playfield and size of the display window (that is, how much of
the playfield actually appears on the screen).

o Color of each pixel in the playfield.

o Horizontal resolution.

44 Amiga Hardware Reference Manual

o Vertical resolution, or interlacing.

o Data fetch and modulo, which tell the system how much data to put on a horizontal line
and how to fetch data from memory to the screen.

In addition, you need to allocate memory to store the playfield, set pointers to tell the system
where to find the data in memory, and (optionally) write a Copper routine to handle redisplay of
the playfield.

HEIGHT AND WIDTH OF THE PLAYFIELD

To create a playfield that is the same size as the screen, you can use a width of either 320 pixels
or 640 pixels, depending upon the resolution you choose. The height is either 200 or 400 lines
for NTSC, 256 or 512 lines for PAL, depending upon whether or not you choose interlaced mode.

BITPLANES AND COLOR

You define playfield color by:

1. Deciding how many colors you need and how you want to color each pixel.

2. Loading the colors into the color registers.

3. Allocating memory for the number of bitplanes you need and setting a pointer to each
bitplane.

4. Writing instructions to place a value in each bit in the bitplanes to give you the correct
color.

Table 3-1 shows how many bitplanes to use for the color selection you need.

Number of
Colors

1 - 2
3-4
5-8

9- 16
17- 32

Number of
Bitplanes

1
2
3
4
5

Table 3-1: Colors in a Single Playfield

Playfield Hardware 45

The Color Table

The color table contains 32 registers, and you may load a different color into each of the registers.
Here is a condensed view of the contents of the color table:

Register Name Contents Meaning

COLOROO 12 bits User-defined color for the
background area and borders.

COLOROl

COLOR02

COLOR31

12 bits

12 bits

12 bits

User-defined color number 1
(For example, the alternate color
selection for a two-color playfield).

User-defined color number 2.

U ser-defincd color number 31.

Table 3-2: Portion of the Color Table

COLOROO is always reserved for the background color. The background color shows in any area
on the display where there is no other object present and is also displayed outside the defined
display window, in the border area.

Genlocks and the background color. If you are using the optional genlock board
for video input from a camera, VCR, or laser disk, the background color will be
replaced by the incoming video display.

Twelve bits of color selection allow you to define, for each of the 32 registers, one of 4,096
possible colors, as shown in Table 3-3.

Bits

Bits 15- 12 Unused
Bits 11 - 8 Red
Bits 7 - 4 Green
Bits 3 - 0 Blue

Table 3-3: Contents of the Color Registers

46 Amiga Hardware Reference Manual

Table 3-4 shows some sample color register bit assignments and the resulting colors. At the end
of the chapter is a more extensive list.

Contents of the
Color Register

$FFF
$6FE
$DB9
$000

Resulting
Color

White
Sky blue
Tan
Black

Table 3-4: Sample Color Register Contents

Some sample instructions for loading the color registers are shown below:

LEA CUSTOM,aO
MOVE.W t$FFF,COLOROO(a0)
MOVE.W t$6FE,COLOR01(a0)

Get base address of custom hardware ...
Load white into color register 0
Load sky blue into color register 1

The color registers are write-only. Only by looking at the screen can you find out
the contents of each color register. As a standard practice, then, for these and certain
other write-only registers, you may wish to keep a "back-up" RAM copy. As you
write to the color register itself, you should update this RAM copy. If you do so, you
will always know the value each register contains.

Playfield Hardware 47

Selecting the Number of Bltplanes

After deciding how many colors you want and how many bitplanes are required to give you those
colors, you tell the system how many bitplanes to use.

You select the number of bitplanes by writing the number into the register BPLCONO (for
Bitplane Control Register 0) The relevant bits are bits 14, 13, and 12, named BPU2, BPUl, and
BPUO (for "Bitplanes Used"). Table 3-5 shows the values to write to these bits and how the
system assigns bitplane numbers.

Table 3-5: Setting the Number of Bitplanes

Number of Name(s) of
Value Bitplanes Bitplanes

000 None*
001 1 PLANE 1
010 2 PLANES 1 and 2
011 3 PLANES 1-3
100 4 PLANES 1-4
101 5 PLANES 1-5
110 6 PLANES 1 - 6 **
Ill Value not used.

* Shows only a background color; no playfield is visible.

** Sixth bitplane is used only in dual-playfield mode and in hold-and-modify mode
(described in the section called ''Advanced Topics'').

About the BPLCONO register. The bits in the BPLCONO register cannot be set
independently. To set any one bit, you must reload them all.

The following example shows how to tell the system to use two low resolution bitplanes.

MOVE.W #$2200,BPLCONO+CUSTOM ; Write to it

Because register BPLCONO is used for setting other characteristics of the display and the bits are
not independently settable, the example above also sets other parameters (all of these parameters
are described later in the chapter).

o Hold-and-modify mode is turned off.

48 Amiga Hardware Reference Manual

o Single-playfield mode is set.

o Composite video color is enabled. (Not applicable in all models.)

o Genlock audio is disabled.

o Light pen is disabled.

o Interlaced mode is disabled.

o External resynchronization is disabled. (genlock)

SELECTING HORIZONTAL AND VERTICAL RESOLUTION

Standard home television screens are best suited for low resolution displays. Low resolution
mode provides 320 pixels for each horizontal line. High resolution monochrome and RGB
monitors can produce displays in high resolution mode, which provides 640 pixels for each
horizontal line. If you define an object in low resolution mode and then display it in high
resolution mode, the object will be only half as wide.

To set horizontal resolution mode, you write to bit 15, HIRES, in register BPLCONO:

High resolution mode- write 1 to bit 15.
Low resolution mode- write 0 to bit 15.

Note that in high resolution mode, you can have up to four bitplanes in the playfield and,
therefore, up to 16 colors.

Interlaced mode allows twice as much data to be displayed in the same vertical area as in non­
interlaced mode. This is accomplished by doubling the number of lines appearing on the video
screen. The following table shows the number of lines required to fill a normal, non-overscan
screen.

Non-interlaced
Interlaced

NTSC
200
400

PAL
256
512

Table 3-6: Lines in a Normal Playfield

In interlaced mode, the scanning circuitry vertically offsets the start of every other field by half a
scan line.

Playfield Hardware 49

Field 1 =6===========\= Line 1 Line2

Field 2

' '

'

Video display

(400 lines)

(Same physical space as used

by a 200-line,
noninterlaced display.)

Figure 3-5: Interlacing

Even though interlaced mode requires a modest amount of extra work in setting registers (as you
will see later on in this section), it provides fine tuning that is needed for certain graphics effects.
Consider the diagonal line in Figure 3-6 as it appears in non-interlaced and interlaced modes.
Interlacing eliminates much of the jaggedness or '' staircasing'' in the edges of the line.

non-interlaced interlaced

Figure 3-6: Effect of Interlaced Mode on Edges of Objects

When you use the special blitter DMA channel to draw lines or polygons onto an interlaced
playfield, the playfield is treated as one display, rather than as odd and even fields. Therefore,
you still get the smoother edges provided by interlacing.

50 Amiga Hardware Reference Manual

To set interlaced or non-interlaced mode, you write to bit 2, LACE, in register BPLCONO:

Interlaced mode- write 1 to bit 2.
Non-interlaced mode- write 0 to bit 2.

As explained above in "Setting the Number of Bitplanes," bits in BPLCONO are not
independently settable.

The following example shows how to specify high resolution and interlaced modes.

MOVE.W #$A204,BPLCONO+CUSTOM ; Write to it

The example above also sets the following parameters that are also controlled through register
BPLCONO:

0 High resolution mode is enabled.

0 Two bitplanes are used.

0 Hold-and-modify mode is disabled.

0 Single-playfield mode is enabled.

D Composite video color is enabled.

0 Genlock audio is disabled.

0 Light pen is disabled.

0 Interlaced mode is enabled.

0 External resynchronization is disabled.

The amount of memory you need to allocate for each bitplane depends upon the resolution modes
you have selected, because high resolution or interlaced playfields contain more data and require
larger bitplanes.

Playfield Hardware 51

ALLOCATING MEMORY FOR BITPLANES

After you set the number of bitplanes and specify resolution modes, you are ready to allocate
memory. A bitplane consists of an end-to-end sequence of words at consecutive memory
locations. When operating under the Amiga operating system, use a system call such as
AllocMem() to remove a block of memory from the free list and make it available to the program.

A specialized allocation function named AllocRaster() in the graphics.library is recommended for
all bitplane allocations. AllocRaster() will pad the allocation to properly align scan lines for the
hardware.

If the machine has been taken over, simply reserve an area of memory for the bitplanes. Next, set
the bitplane pointer registers (BPLxVTH/BPLxPTL) to point to the starting memory address of
each bitplane you are using. The starting address is the memory word that contains the bits of the
upper left-hand comer of the bitplanc.

Tables 3-7 and 3-8 show how much memory is needed for basic playfield modes under NTSC and
PAL, respectively. You may need to balance your color and resolution requirements against the
amount of available memory you have.

Table 1-7: Playfield Memory Requirements, NTSC

Number of Bytes
Picture Size Modes per Bitplane

320 X 200 Low resolution, 8,000
non-interlaced

320 X 400 Low resolution, 16,000
interlaced

640 X 200 High resolution, 16,000
non-interlaced

640 X 400 High resolution, 32,000
interlaced

Keep in mind that the number of bytes you allocate for a bitplane must be even.

52 Amiga Hardware Reference Manual

Table 3-8: Playfield Memory Requirements, PAL

Number of Bytes
Picture Size Modes per Bitplane

320 X 256 Low resolution, 8,192
non-interlaced

320 X 512 Low resolution, 16,384
interlaced

640 X 256 High resolution, 16,384
non-interlaced

640 X 512 High resolution, 32,768
interlaced

NTSC Example of Bitplane Size

For example, using a normal, NTSC, low resolution, non-interlaced display with 320 pixels

across each display line and a total of 200 display lines, each line of the bitplane requires 40 bytes
(320 bits divided by 8 bits per byte = 40). Multiply the 200 lines times 40 bytes per line to get
8,000 bytes per bitplane as given above.

A low resolution, non-interlaced playfield made up of two bitplanes requires 16,000 bytes of
memory area. The memory for each bitplane must be continuous, so you need to have two
8,000-byte blocks of available memory. Figure 3-7 shows an 8,000-byte memory area organized
as 200 lines of 40 bytes each, providing 1 bit for each pixel position in the display plane.

Playfield Hardware 53

lllllllll--·111111111
Mem. location N Mem. location N+38

111111111--·lllllllll
Mem. location N+40 Mem. location N + 78

lllllllll---------------------------!----------------------------·111111111
Mem. location N+7960 Mem. location N+7998

Figure 3-7: Memory Organization for a Basic Bitplane

Access to bitplanes in memory is provided by two address registers, BPLxPTH and BPLxPTL,
for each bitplane (12 registers in all). The "x" position in the name holds the bitplanc number;
for example BPLlPTH and BPL1PTL hold the starting address of PLANE 1. Pairs of registers
with names ending in PTH and PTL contain 19-bit addresses. 68000 programmers may treat
these as one 32-bit address and write to them as one long word. You write to the high order
word, which is the register whose name ends in "PTH."

The example below shows how to set the bitplane pointers. Assuming two bitplancs, one at
$21000 and the other at $25000, the processor sets BPLl PT to $21000 and BPL2PT to $25000.
Note that this is usually the Copper's task.

Since the bitplane pointer registers are mapped as full 680x0 long-word
data, we can store the addresses with a 32-bit move ...

LEA CUSTOM,aO
MOVE.L $21000,BPL1PTH(a0)
MOVE.L $25000,BPL2PTH(a0)

Get base address of custom hardware ...
Write bitplane 1 pointer
Write bitplane 2 pointer

Note that the memory requirements given here are for the playfield only. You may need to
allocate additional memory for other parts of the display - sprites, audio, animation - and for
your application programs. Memory allocation for other parts of the display is discussed in the
chapters describing those topics.

54 Amiga Hardware Reference Manual

CODING THE BITPLANES FOR CORRECT COLORING

After you have specified the number of bitplanes and set the bitplane pointers, you can actually
write the color register codes into the bitplanes.

A One- or Two-Color Playfleld

For a one-color playfield, all you need do is write "O"s in all the bits of the single bitplane as
shown in the example below. This code fills a low resolution bitplane with the background color
(COLOROO) by writing all "O"s into its memory area. The bitplane starts at $21000 and is 8,000
bytes long.

LOOP:

LEA
MOVE.W
MOVE.L
DBRA

$21000,a0
f2000,d0
to, (aO) +
dO, LOOP

Point at bitplane
Write 2000 longwords = 8000 bytes
Write out a zero
Decrement counter and loop until done ...

For a two-color playfield, you define a bitplane that has "O"s where you want the background
color and "1 "s where you want the color in register 1. The following example code is identical
to the last example, except the bitplane is filled with $FFOOFFOO instead of all O's. This will
produce two colors.

LEA $21000,a0
MOVE.W t2000,d0

LOOP: MOVE.L #$FFOOFFOO, (aO)+
DBRA dO, LOOP

Point at bitplane
Write 2000 longwords = 8000 bytes
Write out $FFOOFFOO

; Decrement counter and loop until done ...

Playfield Hardware 55

A Playfield of Three or More Colors

For three or more colors, you need more than one bitplane. The task here is to define each
bitplane in such a way that when they are combined for display, each pixel contains the correct
combination of bits. This is a little more complicated than a playfield of one bitplane. The
following examples show a four-color playfield, but the basic idea and procedures are the same
for playfields containing up to 32 colors.

Figure 3-8 shows two bitplanes forming a four-color play field:

___ .--q Color1 -------,,,

' ',
Image in
bitplane 2

0 0 0~0 0
0 0 0 0 0 0

0 0
0 0

-- ' '
' '•, '•, ""_ults In a display

0 0 0 []1· 0 0 0 -. _____ similar to this:

00011000
00011000
1 1 1 0 0 1 1 1
1 1 1 0 0 1 1 1

0 0 0 0 0 0
111001
1 1 1 0 0 1

~ ~ ~~~
o o oli_2jo

0 0
1 1
1 1
0 0
0 0
0 0

~ ~ ~~~ ~ ~
o o o li_2jo o o

._.._,Color 00

(background)

' ' ------a
Color 3·--------

Figure 3-8: Combining Bitplanes

You place the correct" 1 "sand "O"s in both bitplanes to give each pixel in the picture above the
correct color.

In a single playfield you can combine up to five bitplanes in this way. Using five bitplanes allows
a choice of 32 different colors for any single pixel. The playfield color selection charts at the end
of this chapter summarize the bit combinations for playfields made from four and five bitplanes.

56 Amiga Hardware Reference Manual

DEFINING THE SIZE OF THE DISPLAY WINDOW

After you have completely defined the playfield, you need to define the size of the display
window, which is the actual size of the on-screen display. Adjustment of display window size
affects the entire display area, including the border and the sprites, not just the playfield. You
cannot display objects outside of the defined display window. Also, the size of the border around
the playfield depends on the size of the display window.

The basic playfield described in this section is the same size as the screen display area and also
the same size as the display window. This is not always the case; often the display window is
smaller than the actual "big picture'' of the play field as defined in memory (the raster).

A display window that is smaller than the playfield allows you to display some segment of a large
playfield or scroll the playfield through the window. You can also define display windows larger
than the basic playfield. These larger playficlds and different-sized display windows are
described in the section below called ''Bitplanes and Display Windows of All Sizes.''

You define the size of the display window by specifying the vertical and horizontal positions at
which the window starts and stops and writing these positions to the display window registers.
The resolution of vertical start and stop is one scan line. The resolution of horizontal start and
stop is one low resolution pixel. Each position on the screen defines the horizontal and vertical
position of some pixel, and this position is specified by the x andy coordinates of the pixel. This
document shows the x and y coordinates in this form: (x,y).

Although the coordinates begin at (0,0) in the upper left-hand comer of the screen, the first
horizontal position normally used is $81 and the first vertical position is $2C. The horizontal and
vertical starting positions are the same both for NTSC and for PAL.

The hardware allows you to specify a starting position before ($81,$2C), but part of the display
may not be visible. The difference between the absolute starting position of (0,0) and the normal
starting position of ($81 ,$2C) is the result of the way many video display monitors are designed.

To overcome the distortion that can occur at the extreme edges of the screen, the scanning beam
sweeps over a larger area than the front face of the screen can display. A starting position of
($81 ,$2C) centers a normal size display, leaving a border of eight low resolution pixels around
the display window. Figure 3-9 shows the relationship between the normal display window, the
visible screen area, and the area actually covered by the scanning beam.

Playfield Hardware 57

(0,0) --?
'

' '

,r---- · {$81 ,$2C)

---1----- 320 ------------------

200

'----display window-­
starting and stopping positions

--~----- visible screen boundaries

Figure 3-9: Positioning the On-screen Display

Setting the Display Window Starting Position

A horizontal starting position of approximately $81 and a vertical starting position of
approximately $2C centers the display on most standard television screens. If you select high
resolution mode (640 pixels horizontally) or interlaced mode (400 lines NTSC, 512 PAL) the
starting position does not change. The starting position is always interpreted in low resolution,
non-interlaced mode. In other words, you select a starting position that represents the correct
coordinates in low resolution, non-interlaced mode.

The register DIWSTRT (for ''Display Window Start'') controls the display window starting
position. This register contains both the horizontal and vertical components of the display
window starting positions, known respectively as HST ART and VST ART. The following
example sets DIWSTRT for a basic play field. You write $2C for VST ART and $81 for
HSTART.

LEA CUSTOM,aO
MOVE.W #$2C8l,DIWSTRT(a0)

58 Amiga Hardware Reference Manual

Get base address of custom hardware ...
Display window start register .•.

Setting the Display Window Stopping Position

You also need to set the display window stopping position, which is the lower right-hand corner
of the display window. If you select high resolution or interlaced mode, the stopping position
does not change. Like the starting position, it is interpreted in low resolution, non-interlaced
mode.

The register DIWSTOP (for Display Window Stop) controls the display window stopping
position. This register contains both the horizontal and vertical components of the display
window stopping positions, known respectively as HSTOP and VSTOP. The instructions below
show how to set HSTOP and VSTOP for the basic playfield, assuming a starting position of
($81,$2C). Note that the HSTOP value you write is the actual value minus 256 ($100). The
HSTOP position is restricted to the right-hand side of the screen. The normal HSTOP value is
($1Cl) but is written as ($Cl). HSTOP is the same both forNTSC and for PAL.

The VSTOP position is restricted to the lower half of the screen. This is accomplished in the
hardware by forcing the MSB of the stop position to be the complement of the next MSB. This
allows for a VSTOP position greater than 256 ($100) using only 8 bits. Normally, the VSTOP is
set to ($F4) for NTSC, ($2C) for PAL.

The normal NTSC DIWSTRT is ($2C81).
The normal NTSC DIWSTOP is ($F4Cl).

The normal PAL DIWSTRT is ($2C81).
The normal PAL DIWSTOP is ($2CC1).

The following example sets DIWSTOP for a basic playfield to $F4 for the vertical position and
$C1 for the horizontal position.

LEA CUSTOM,aO
MOVE.W #$F4Cl,DIWSTOP(a0)

Get base address of custom hardware ...
Display window stop register ...

Table 3-9: DIWSTRT and DIWSTOP Summary

Nominal Values Possible Values
NTSC PAL MIN MAX

DIWSTRT:
VSTART $2C $2C $00 $FF
HSTART $81 $81 $00 $FF

DIWSTOP:
VSTOP $F4 $2C (=$12C) $80 $7F (=$17F)
HSTOP $Cl $C1 $00 (=$100) $FF (=$IFF)

The minimum and maximum values for display windows have been extended in the enhanced
version of the Amiga's custom chip set (ECS). See "Appendix C, Enhanced Chip Set" for more
information about the display window registers.

Playfield Hardware 59

TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA

After defining the size and position of the display window, you need to give the system the on­
screen location for data fetched from memory. To do this, you describe the horizontal positions
where each line starts and stops and write these positions to the data-fetch registers. The data­
fetch registers have a four-pixel resolution (unlike the display window registers, which have a
one-pixel resolution). Each position specified is four pixels from the last one. Pixel 0 is position
0; pixel 4 is position 1, and so on.

The data-fetch start and display window starting positions interact with each other. It is
recommended that data-fetch start values be restricted to a programming resolution of 16 pixels (8
clocks in low resolution mode, 4 clocks in high resolution mode). The hardware requires some
time after the first data fetch before it can actually display the data. As a result, there is a
difference between the value of window start and data-fetch start of 4.5 color clocks.

The normal low resolution DDFSTRT is ($0038).
The normal high resolution DDFSTRT is ($003C).

Recall that the hardware resolution of display window start and stop is twice the hardware
resolution of data fetch:

$~1 - 8.5 = $38

$~1 - 4.5 = $3C

The relationship between data-fetch start and stop is

DDFSTRT= DDFSTOP-(8*(word count-l))for low resolution

DDFSTRT = DDFSTOP-(4* (word count- 2)) for high resolution

The normal low resolution DDFSTOP is ($0000). The normal high resolution DDFSTOP is
($0004).

The following example sets data-fetch start to $0038 and data-fetch stop to $0000 for a basic
playfield.

LEA CUSTOM,aO
MOVE.W #$0038,DDFSTRT(a0)
MOVE.W #$00DO,DDFSTOP(a0)

Point to base hardware address
Write to DDFSTRT
Write to DDFSTOP

You also need to tell the system exactly which bytes in memory belong on each horizontal line of
the display. To do this, you specify the modulo value. Modulo refers to the number of bytes in
memory between the last word on one horizontal line and the beginning of the first word on the
next line. Thus, the modulo enables the system to convert bitplane data stored in linear form
(each data byte at a sequential I y increasing memory address) into rectangular form (one "line" of

60 Amiga Hardware Reference Manual

sequential data followed by another line). For the basic playfield, where the playfield in memory
is the same size as the display window, the modulo is zero because the memory area contains
exactly the same number of bytes as you want to display on the screen. Figures 3-10 and 3-11
show the basic bitplane layout in memory and how to make sure the correct data is retrieved.

The bitplane address pointers (BPLxPTH and BPLxPTL) are used by the system to fetch the data
to the screen. These pointers are dynamic; once the data fetch begins, the pointers are
continuously incremented to point to the next word to be fetched (data is fetched two bytes at a
time). When the end-of-line condition is reached (defined by the data-fetch register, DDFSTOP)
the modulo is added to the bitplane pointers, adjusting the pointer to the first word to be fetched
for the next horizontal line.

Data for line 1:

Location: START

leftmost
display word

START+2 START+4 START+38

next word next word last display
word

+ Screen data fetch stops (DDFSTOP) for ,
each horizontal line after the last word :
on the line has been fetched. -------------------- ~

Figure 3-10: Data Fetched for the First Line When Modulo = 0

After the first line is fetched, the bitplane pointers BPLxPTH and BPLxPTL contain the value
START +40. The modulo (in this case, 0) is added to the current value of the pointer, so when the
pointer begins the data fetch for the next line, it fetches the data you want on that line. The data
for the next line begins at memory location START +40.

Data for line 2:

Location: START+40

leftmost
display word

START+42

next word

START+44

next word

START+78

last display
word

Figure 3-11: Data Fetched for the Second Line When Modulo = 0

Note that the pointers always contain an even number, because data is fetched from the display a
word at a time.

Playfield Hardware 61

There are two modulo registers-BPL lMOD for the odd-numbered bitplanes and BPL2MOD for
the even-numbered bitplanes. This allows for differing modulos for each playfield in dual­
playfield mode. For normal applications, both BPL IMOD and BPL2MOD will be the same.

The following example sets the modulo to 0 for a low resolution playfield with one bitplane. The
bitplanc is odd-numbered.

MOVE.W #O,BPLlMOD+CUSTOM ; Set modulo to 0

Data Fetch In High resolution Mode

When you are using high resolution mode to display the basic playfield, you need to fetch 80
bytes for each line, instead of 40.

Modulo In Interlaced Mode

For interlaced mode, you must redefine the modulo, because interlaced mode uses two separate
scannings of the video screen for a single display of the playfield. During the first scanning, the
odd-numbered lines are fetched to the screen; and during the second scanning, the even-numbered
lines are fetched.

The bitplanes for a full-screen-sized, interlaced display arc 400 NTSC (512 PAL), rather than 200
NTSC (256 PAL), lines long. Assuming that the playfield in memory is the normal 320 pixels
wide, data for the interlaced picture begins at the following locations (these are all byte
addresses):

Line 1 START
Line 2 START+40
Line 3 START +80
Line 4 START+120

and so on. Therefore, you use a modulo of 40 to skip the lines in the other field. For odd fields,
the bitplane pointers begin at START. For even fields, the bitplane pointers begin at START +40.

You can use the Copper to handle resetting of the bitplane pointers for interlaced displays.

DISPLAYING AND REDISPLAYING THE PLAYFIELD

You start playfield display by making certain that the bitplane pointers are set and bitplane DMA
is turned on. You tum on bitplane DMA by writing a I to bit BPLEN in the DMACON (for
DMA control) register. See Chapter 7, "System Control Hardware," for instructions on setting
this register.

62 Amiga Hardware Reference Manual

Each time the playfield is redisplayed, you have to reset the bitplane pointers. Resetting is
necessary because the pointers have been incremented to point to each successive word in
memory and must be repointed to the first word for the next display. You write Copper
instructions to handle the redisplay or perfonn this operation as part of a vertical blanking task.

ENABLING THE COLOR DISPLAY

The stock AlOOO has a color composite output and requires bit 9 set in BPLCONO to create a
color composite display signal. Without the addition of specialized hardware, the A500, A2000
and A3000 cannot generate color composite output.

NOTE: The color burst enable does not affect the RGB video signal. RGB video is
correctly generated regardless of the output of the composite video signal.

BASIC PLA YFIELD SUMMARY

The steps for defining a basic playfield are summarized below:

1. Define Playfield Characteristics

a. Specify color for each pixel:

o Load desired colors in color table registers.

o Define color of each pixel in tenns of the binary value that points at the desired
color register.

o Build bitplanes and set bitplane registers:

Bits 12-14 in BPLCONO- number ofbitplanes (BPU2- BPUO).
BPLxPTH - pointer to bitplane starting position in memory

(written as a long word).

b. Specify resolution:

o Low resolution:

320 pixels in each horizontal line.
Clear bit 15 in register BPLCONO (HIRES).

o High resolution:

640 pixels in each horizontal line.
Set bit 15 in register BPLCONO (HIRES).

Playfield Hardware 63

c. Specify interlaced or non-interlaced mode:

o Interlaced mode:

400 vertical lines for NTSC, 512 for PAL.
Set bit 2 in register BPLCONO (LACE).

o Non-interlaced mode:

200 vertical lines for NTSC, 256 for PAL.
Clear bit 2 in BPLCONO (LACE).

2. Allocate Memory. To calculate data-bytes in the total bitplanes, use the following formula:

Bytes per line * lines in playfield * number of bitplanes

3. Define Size of Display Window.

o Write start position of display window in DIWSTRT:

Horizontal position in bits 0 through 7 (low order bits).
Vertical position in bits 8 through 15 (high order bits).

o Write stop position of display window in DIWSTOP:

Horizontal position in bits 0 through 7.
Vertical position in bits 8 through 15.

4. Define Data Fetch. Set registers DDFSTRT and DDFSTOP:

o For DDFSTRT, use the horizontal position as shown in "Setting the Display Window
Starting Position.''

o For DDFSTOP, use the horizontal position as shown in ''Setting the Display Window
Stopping Position.''

5. Define Modulo. Set registers BPLIMOD and BPL2MOD. Set modulo to 0 for non­
interlaced, 40 for interlaced.

6. Write Copper Instructions To Handle Redisplay.

7. Enable Color Display. For the AlOOO: set bit 9 in BPLCONO to enable the color display on
a composite video monitor. RGB video is not affected. Only the A 1000 has color composite
video output, other Amiga models cannot enable this feature using standard hardware.

64 Amiga Hardware Reference Manual

EXAMPLES OF FORMING BASIC PLA YFIELDS

The following examples show how to set the registers and write the coprocessor lists for two
different playfields.

The first example sets up a 320 x 200 playfield with one bitplane, which is located at $21000.
Also, a Copper list is set up at $20000.

This example relies on the include file ''hw _examples.i' ', which is found in Appendix I.

LEA CUSTOM,aO aO points at custom chips
MOVE.W #$1200,BPLCONO(a0) One bitplane, enable composite color
MOVE.W #0, BPLCONl (aO) Set horizontal scroll value to 0
MOVE.W #0, BPLlMOD (aO) Set modulo to 0 for all odd bitplanes
MOVE.W #$0038,DDFSTRT(a0) Set data-fetch start to $38
MOVE.W #$00DO,DDFSTOP(a0) Set data-fetch stop to $DO
MOVE.W #$2C81,DIWSTRT(a0) Set DIWSTRT to $2C81
MOVE.W #$F4Cl,DIWSTOP(a0) Set DIWSTOP to $F4Cl
MOVE.W #$0FOO,COLOROO(a0) Set background color to red
MOVE.W #$0FFO,COLOROl(a0) Set color register 1 to yellow

Fill bitplane with $FFOOFFOO to produce stripes

MOVE.L #$21000,al
MOVE.L #$FFOOFFOO,d0
MOVE.W #2000,dl

LOOP: MOVE.L dO, (al) +
DBRA dl,LOOP

Point at beginning of bitplane
We will write $FFOOFFOO long words
2000 long words = 8000 bytes

Write a long word
Decrement counter and loop until done ...

Set up Copper list at $20000

CLOOP:

MOVE.L #$20000,al
LEA COPPERL(pc) ,a2
MOVE.L (a2), (al)+
CMPI.L #$FFFFFFFE, (a2)+
BNE CLOOP

Point at Copper list destination
Point a2 at Copper list data
Move a word

; Check for last longword of Copper list
Loop until entire copper list is moved

Point Copper at Copper list

MOVE.L #$20000,COP1LCH(a0) ; Write to Copper location register
MOVE.W COPJMPl(aO),dO ; Force copper to $20000

Start DMA

MOVE.W #(DMAF_SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(aO)
Enable bitplane and Copper DMA

BRA ; Go do next task

This is the data for the Copper list.

COPPERL:
DC.W
DC.W
DC.W

BPLlPTH,$0002
BPLlPTL,$1000
$FFFF,$FFFE

Move $0002 to address $0EO
Move $1000 to address $0E2
End of Copper list

(BPLlPTH)
(BPLlPTL)

Playfield Hardware 65

The second example sets up a high resolution, interlaced display with one bitplane. This example
also relies on the include file "hw _examples.i ",which is found in Appendix I.

LEA CUSTOM,aO
MOVE.W t$9204,BPLCONO(a0)
MOVE.W tO, BPLCONl (aO)
MOVE.W t80,BPL1MOD (aO)
MOVE.W t80,BPL2MOD (aO)
MOVE.W t$003C,DDFSTRT(a0)
MOVE.W t$00D4,DDFSTOP(a0)
MOVE.W t$2C8l,DIWSTRT(a0)
MOVE.W t$F4Cl,DIWSTOP(a0)

Set up color registers

MOVE.W t$OOOF,COLOROO(a0)
MOVE.W t$OFFF,COLOR0l(a0)

Set up bitplane at $20000

LEA $20000,al
LEA CHARLIST(pc),a2
MOVE.W HOO,dl
MOVE.W t20,d0

Ll:
MOVE.L (a2), (al)+
DBRA dO,Ll

MOVE.W t20,d0
ADDQ.L t4,a2
CMPI. L t $FFFFFFFF, (a 2)
BNE L2
LEA CHARLIST(pc),a2

L2: DBRA dl,Ll

Address of custom chips
Hires, one bitplane, interlaced
Horizontal scroll value = 0
Modulo = 80 for odd bitplanes
Ditto for even bitplanes
Set data-fetch start for Hires
Set data-fetch stop
Set display window start
Set display window stop

Background color = blue
Foreground color white

Point al at bitplane
a2 points at character data
Write 400 lines of data
Write 20 long words per line

Write a long word
Decrement counter and loop until full ...

Reset long word counter
Point at next word in char list
End of char list?

Yes, reset a2 to beginning of list
Decrement line counter and loop until done ...

Start DMA

MOVE.W t(DMAF_SETCLR!DMAF_RASTER!DMAF_MASTER),DMACON(aO)
; Enable bitplane DMA only, no Copper

Because this example has no Copper list, it sits in a loop waiting
for the vertical blanking interval. When it comes, you check the LOF
(long frame) bit in VPOSR. If LOF = 0, this is a short frame and the
bitplane pointers are set to point to $20050. If LOF = 1, then this is
a long frame and the bitplane pointers are set to point to $20000. This
keeps the long and short frames in the right relationship to each other.

VLOOP:

VL1:

MOVE.W
AND.W
BEQ
MOVE.W
MOVE.W
BPL
MOVE.L
BRA

INTREQR(aO),dO
t$0020, dO
VLOOP
t$0020,INTREQ(a0)
VPOSR(aO),dO
VLl
t$20000,BPL1PTH(a0)
VLOOP

MOVE.L t$20050,8PL1PTH(a0)
BRA VLOOP

Character list

66 Amiga Hardware Reference Manual

Read interrupt requests
Mask off all but vertical blank
Loop until vertical blank comes
Reset vertical interrupt
Read LOF bit into dO bit 15
If LOF = 0, jump
LOF = 1, point to $20000
Back to top

LOF = 0, point to $20050
Back to top

CHARLIST:
DC.L $18FC3DF0,$3C6666D8,$3C66COCC,$667CCOCC
DC.L $7E66COCC,$C36666D8,$C3FC3DF0,$00000000
DC.L $FFFFFFFF

Forming a Dual-playfield Display

For more flexibility in designing your background display, you can specify two playfields instead
of one. In dual-playfield mode, one playfield is displayed directly in front of the other. For
example, a computer game display might have some action going on in one playfield in the
background, while the other playfield is showing a control panel in the foreground. You can then
change either the foreground or the background without having to redesign the entire display.
You can also move the two playfields independently.

A dual-playfield display is similar to a singlc-playfield display, differing only in these aspects:

o Each playfield in a dual display is formed from one, two or three bitplanes.

o The colors in each playfield (up to seven plus transparent) are taken from different sets
of color registers.

o You must set a bit to activate dual-playfield mode.

Figure 3-12 shows a dual-playfield display.

In Figure 3-12, one of the colors in each playfield is "transparent" (color 0 in playfield 1 and
color 8 in playfield 2). You can usc transparency to allow selected features of the background
playfield to show through.

In dual-playfield mode, each playfield is formed from up to three bitplanes. Color registers 0
through 7 are assigned to playfield 1, depending upon how many bitplanes you use. Color
registers 8 through 15 are assigned to playfield 2.

Playfield Hardware 67

Playfield 1
(1, 2 or 3 bitplanes)

75

0000

FUEL

123 1

MISSILES

1 317

HEADING

52

OIL

Both playfields appear on
screen, combined to form the

' complete display.

'-._

1 75

SPEED

317 1

HEADING

oooo 1 1 123 1 52

FUEL MISSILES OIL

Playfield 2
(1, 2 or 3 bitplanes)

' ,

, , '
, ,

0

-
' '
'

,~--- The background
,/ color shows

through where
there are
transparent
sections of both
playfields.

Figure 3-12: A Dual-playfield Display

BITPLANE ASSIGNMENT IN DUAL-PLAYFIELD MODE

The three odd-numbered bitplanes (1, 3, and 5) are grouped together by the hardware and may be
used in playfield 1. Likewise, the three even-numbered bitplanes (2, 4, and 6) are grouped
together and may be used in playfield 2. The bitplanes arc assigned alternately to each playficld,
as shown in Figure 3-13.

About dual-playfield bitplanes. In high resolution mode, you can have up to two
bitplanes in each playfield- bitplancs 1 and 3 in playfield 1 and bitplanes 2 and 4 in
playfield 2.

68 Amiga Hardware Reference Manual

Number of
bitplanes

"turned on."

0

2

3

4

5

6

Playfield 1 * Playfield 2 *

none none

D

• Note: Either play field may be p/aoed "in front of" or "behind" the other using the "swap:bil."

Figure 3-13: How Bitplancs Arc Assigned to Dual Playfields

Playfield Hardware 69

COLOR REGISTERS IN DUAL-PLA YFIELD MODE

When you are using dual playfields, the hardware interprets color numbers for playfield 1 from
the bit combinations of bitplanes 1, 3, and 5. Bits from PLANE 5 have the highest significance
and form the most significant digit of the color register number. Bits from PLANE 0 have the
lowest significance. These bit combinations select the first eight color registers from the color
palette as shown in Table 3-10.

PLAYFIELD 1

Bit Color
Combination Selected

000 Transparent mode
001 COLOR1
010 COLOR2
011 COLOR3
100 COLOR4
101 COLORS
110 COLOR6
111 COLOR?

Table 3-10: Playfield 1 Color Registers- Low resolution Mode

The hardware interprets color numbers for playfield 2 from the bit combinations of bitplanes 2, 4,
and 6. Bits from PLANE 6 have the highest significance. Bits from PLANE 2 have the lowest
significance. These bit combinations select the color registers from the second eight colors in the
color table as shown in Table 3-11.

PLAYFIELD 2

Bit Color
Combination Selected

000 Transparent mode
001 COLOR9
010 COLOR10
011 COLORll
100 COLOR12
101 COLOR13
110 COLOR14
111 COLOR15

Table 3-11: Play field 2 Color Registers- Low resolution Mode

70 Amiga Hardware Reference Manual

Combination 000 selects transparent mode, to show the color of whatever object (the other
playfield, a sprite, or the background color) may be "behind" the playfield.

Table 3-12 shows the color registers for high resolution, dual-playfield mode.

PLAYFIELD 1

Bit Color
Combination Selected

00 Transparent mode
01 COLOR!
10 COLOR2
11 COLOR3

PLAYFIELD2

Bit Color
Combination Selected

00 Transparent mode
01 COLOR9
10 COLOR10
11 COLORll

Table 3-12: Playfields 1 and 2 Color Registers- High resolution Mode

DUAL-PLAYFIELD PRIORITY AND CONTROL

Either playfield 1 or 2 may have priority; that is, either one may be displayed in front of the other.
Playfield 1 normally has priority. The bit known as PF2PRI (bit 6) in register BPLCON2 is used
to control priority. When PF2PRI = 1, playfield 2 has priority over playfield 1. When PF2PRI =
0, playfield 1 has priority.

You can also control the relative priority of playfields and sprites. Chapter 7, "System Control
Hardware,'' shows you how to control the priority of these objects.

You can control the two playfields separately as follows:

o They can have different-sized representations in memory, and different portions of each
one can be selected for display.

o They can be scrolled separately.

Playfield Hardware 71

An important warning. You must take special care when scrolling one playfield and
holding the other stationary. When you arc scrolling low resolution playfields, you
must fetch one word more than the width of the playfield you are trying to scroll (two
words more in high resolution mode) in order to provide some data to display when
the actual scrolling takes place. Only one data-fetch start register and one data-fetch
stop register arc available, and these are shared by both playfields. If you want to
scroll one playficld and hold the other, you must adjust the data-fetch start and data­
fetch stop to handle the playficld being scrolled. Then, you must adjust the modulo
and the bitplane pointers of the playfield that is not being scrolled to maintain its
position on the display. In low resolution mode, you adjust the pointers by -2 and the
modulo by -2. In high resolution mode, you adjust the pointers by -4 and the modulo
by -4.

ACTIVATING DUAL-PLAYFIELD MODE

Writing a 1 to bit 10 (called DBLPF) of the bitplanc control register BPLCONO selects dual­
playfield mode. Selecting dual-playfield mode changes both the way the hardware groups the
bitplanes for color interpretation-all odd-numbered bitplanes are grouped together and all even­
numbered bitplanes are grouped together, and the way hardware can move the bitplanes on the
screen.

DUAL PLAYFIELD SUMMARY

The steps for defining dual playfields are almost the same as those for defining the basic play field.
Only in the following steps does the dual-playfield creation process differ from that used for the
basic playfield:

o Loading colors into the registers. Keep in mind that color registers 0-7 are used by
playfield 1 and registers 8 through 15 are used by playfield 2 (if there are three bitplanes
in each play field).

o Building bitplanes. Recall that playfield 1 is formed from PLANES 1, 3, and 5 and
playfield 2 from PLANES 2, 4, and 6.

o Setting the modulo registers. Write the modulo to both BPLlMOD and BPL2MOD as
you will be using both odd- and even-numbered bitplanes.

These steps arc added:

o Defining priority. If you want playficld 2 to have priority, set bit 6 (PF2PRI) in
BPLCON2 to 1.

o Activating dual-playfield mode. Set bit 10 (DBLPF) in BPLCONO to 1.

72 Amiga Hardware Reference Manual

Bitplanes and Display Windows of All Sizes

You have seen how to form single and dual playfields in which the playfield in memory is the
same size as the display window. This section shows you how to define and use a playfield
whose big picture in memory is larger than the display window, how to define display windows
that are larger or smaller than the normal playfield size, and how to move the display window in
the big picture.

WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW

If you design a memory picture larger than the display window, you must choose which part of it
to display. Displaying a portion of a larger playfield differs in the following ways from
displaying the basic playfields described up to now:

o If the big picture in memory is larger than the display window, you must respecify the
modulos. The modulo must be some value other than 0.

o You must allocate more memory for the larger memory picture.

Specifying the Modulo

For a memory picture wider than the display window, you need to respecify the modulo so that
the correct data words arc fetched for each line of the display. As an example, assume the display
window is the standard 320 pixels wide, so 40 bytes are to be displayed on each line. The big
picture in memory, however, is exactly twice as wide as the display window, or 80 bytes wide.
Also, assume that you wish to display the left half of the big picture. Figure 3-14 shows the
relationship between the big picture and the picture to be displayed.

START START+78

' ___________________________________ t ________________________________ _

Width of the bit-pla~e defined in RAM

' .
4(---------------------------------~

Width of defined screen '
on which bit-plane data is

to appear

Figure 3-14: Memory Picture Larger than the Display

Playfield Hardware 73

Because 40 bytes are to be fetched for each line, the data fetch for line 1 is as shown in Figure 3-
15.

Data for line 1 :

Location: START

leftmost
display word

START+2 START+4 START+38

next word next word last display
word
~ Screen data fetch stops (DDFSTOP) for ,

each horizontal line aher the last word :
on the line has been fetched -------------------- J

Figure 3-15: Data Fetch for the First Line When Modulo = 40

At this point, BPLxPTH and BPLx.PTL contain the value START +40. The modulo, which is 40,
is added to the current value of the pointer so that when it begins the data fetch for the next line, it
fetches the data that you intend for that line. The data fetch for line 2 is shown in Figure 3-16.

Data for line 2:

Location: START+80

leftmost
display word

START+82

next word

START+84

next word

Figure 3-16: Data Fetch for the Second Line When Modulo= 40

74 Amiga Hardware Reference Manual

START+118

last display
word

To display the right half of the big picture, you set up a vertical blanking routine to start the
bitplane pointers at location START +40 rather than START with the modulo remaining at 40.
The data layout is shown in Figures 3-17 and 3-18.

Data for line 1:

Location: START+40

leftmost
display word

START+42

next word

START+44

next word

START+78

last display
word

Figure 3-17: Data Layout for First Line-Right Half of Big Picture

Now, the bitplane pointers contain the value START+80. The modulo (40) is added to the
pointers so that when they begin the data fetch for the second line, the correct data is fetched.

Data for line 2:

Location: START+120

leftmost
display word

START+122

next word

START+124

next word

START+158

last display
word

Figure 3-18: Data Layout for Second Line-Right Half of Big Picture

Remember, in high resolution mode, you need to fetch twice as many bytes as in low resolution
mode. For a normal-sized display, you fetch 80 bytes for each horizontal line instead of 40.

Playfield Hardware 75

Specifying the Data Fetch

The data-fetch registers specify the beginning and end positions for data placement on each
horizontal line of the display. You specify data fetch in the same way as shown in the section
called ''Forming a Basic Play field.''

Memory Allocation

For larger memory pictures, you need to allocate more memory. Here is a formula for calculating
memory requirements in general:

bytes per line * lines in playfield * #of bitplanes

The nuber of bytes must be even. Thus, if the wide play field described in this section is formed
from two bitplanes, it requires:

80 * 200 * 2 = 32,000 bytes of memory

Recall that this is the memory requirement for the playfield alone. You need more memory for
any sprites, animation, audio, or application programs you are using.

The amount of Chip memory is one of the basic constraints on the size of playfields. For
instance, a playfield 2000 by 2000 pixels with five bitplanes would exceed even the two
megabytes of Chip memory possible on an Amiga 3000. Another constraint on playfield size is
the bit plane modulos which limit the width (but not the height) of a playfield to 262,144 pixels.

As a practical matter, the blitter size registers also limit the size of playfields (unless the 680x0
CPU is used for drawing operations). With the original chip set the largest area the blitter can
draw in is 1008 by 1024. With the Enhanced Chip Set (ECS), the largest area the blitter can draw
in is increased to 16368 by 16384 pixels. For more information on ECS and blitter limits refer to
"Appendix C, Enhanced Chip Set".

Selecting the Display Window Starting Position

The display window starting position is the horizontal and vertical coordinates of the upper left­
hand comer of the display window. One register, DIWSTRT, holds both the horizontal and
vertical coordinates, known as HST ART and VST ART. The eight bits allocated to HST ART are
assigned to the first 256 positions, counting from the leftmost possible position. Thus, you can
start the display window at any pixel position within this range.

76 Amiga Hardware Reference Manual

0 ,_ _________ 25
1-.
5 ________ 5...,11($1FF)

' ' ' ' ' ' ' ' rc. -- ·---------------------------- --.:
HSTARTol

DISPLAY WINDOW occurs
in this region

Figure 3-19: Display Window Horizontal Starting Position

The eight bits allocated to VST ART are assigned to the first 256 positions counting down from
the top of the display.

~----------~~~------...,0

VSTARTol
DISPLAY WINDOW

occurs in
this region

... !.......................... . 255
262·· ······•··•··•·••·•••·•• (NTSC)

L..-------------------'383 ($17F)

Figure 3-20: Display Window Vertical Starting Position

Recall that you select the values for the starting position as if the display were in low resolution,
non-interlaced mode. Keep in mind, though, that for interlaced mode the display window should
be an even number of lines in height to allow for equal-sized odd and even fields.

To set the display window starting position, write the value for HST ART into bits 0 through 7
and the value for VSTART into bits 8 through 15 of DIWSTRT.

Playfield Hardware 77

Selecting the Stopping Position

The stopping position for the display window is the horizontal and vertical coordinates of the
lower right-hand comer of the display window. One register, DIWSTOP, contains both
coordinates, known as HSTOP and VSTOP.

See the notes in the ''Forming a Basic Playfield'' section for instructions on setting these
registers.

0 255
511 ($1 FF)

.-----------------~----------------~
0
0
0

0
0

:. ------------------- _____________ ,..
HSTOPof

DISPLAY WINDOW occurs
in this region

Figure 3-21: Display Window Horizontal Stopping Position

Select a value that represents the correct position in low resolution, non-interlaced mode.

78 Amiga Hardware Reference Manual

.------------------,0

·····································"i.································ . 128

262 •• ••••••••••••••••••••••• (NTSC)

VSTOPof
DISPLAY WINDOW
occurs in
this region

'------------l----------'383($17F)

Figure 3-22: Display Window Vertical Stopping Position

To set the display window stopping position, write HSTOP into bits 0 through 7 and VSTOP into
bits 8 through 15 of DIWSTOP.

MAXIMUM DISPLAY WINDOW SIZE

The maximum size of a playfield display is determined by the maximum number of lines and the
maximum number of columns. Vertically, the restrictions are simple. No data can be displayed
in the vertical blanking area. The following table shows the allowable vertical display area.

NTSC PAL

Vertical Blank Start 0 0
Vertical Blank Stop $15 (21) $1D (29)

NTSC NTSC PAL PAL
Normal Interlaced Normal Interlaced

Displayable lines
of screen video 241 483 283 567

=525-(21 *2) =625-(29*2)

Table 3-13: Maximum Allowable Vertical Screen Video

Playfield Hardware 79

Horiwntally, the situation is similar. Strictly speaking, the hardware sets a rightmost limit to
OOFSTOP of ($08) and a leftmost limit to OOFSTRT of ($18). This gives a maximum of 25
words fetched in low resolution mode. In high resolution mode the maximum here is 49 words,
because the rightmost limit remains ($08) and only one word is fetched at this limit. However,
horizontal blanking actually limits the displayable video to 368 low resolution pixels (23 words).
These numbers are the same both for NTSC and for PAL. In addition, it should be noted that
using a data-fetch start earlier than ($38) will disable some sprites.

Table 3-14: Maximum Allowable Horiwntal Screen Video

Lores Hires

OOFSTRT (standard) $0038 $003C
OOFSTOP (standard) $0000 $0004

OOFSTRT (hw limits) $0018 $0018
OOFSTOP (hw limits) $0008 $0008

max words fetched 25 49
max display pixels 368 (low res)

The limits on the display window starting and stopping positions described in this section apply
to the Arniga's original custom chip set. In the Enhanced Chip Set (ECS), the limits for playfield
display windows have been changed. For more infonnation on ECS and playfield display
windows, refer to "Appendix C, Enhanced Chip Set"

Moving (Scrolling) Playfields

If you want a background display that moves, you can design a playfield larger than the display
window and scroll it. If you are using dual playfields, you can scroll them separately.

In vertical scrolling, the playfield appears to move smoothly up or down on the screen. All you
need do for vertical scrolling is progressively increase or decrease the starting address for the
bitplane pointers by the size of a horizontal line in the playfield. This has the effect of showing a
lower or higher part of the picture each field time.

In horizontal scrolling the playfield appears to move from right-to-left or left-to-right on the
screen. Horiwntal scrolling works differently from vertical scrolling - you must arrange to
fetch one more word of data for each display line and delay the display of this data.

For either type of scrolling, resetting of pointers or data-fetch registers can be handled by the
Copper during the vertical blanking inteiVal.

80 Amiga Hardware Reference Manual

VERTICAL SCROLLING

You can scroll a playfield upward or downward in the window. Each time you display the
playfield, the bitplane pointers start at a progressively higher or lower place in the big picture in
memory. As the value of the pointer increases, more of the lower part of the picture is shown and
the picture appears to scroll upward. As the value of the pointer decreases, more of the upper part
is shown and the picture scrolls downward. On an NTSC system, with a display that has 200
vertical lines, each step can be as little as l/200th of the screen. In interlaced mode each step
could be l/400th of the screen if clever manipulation of the pointers is used, but it is
recommended that scrolling be done two lines at a time to maintain the odd/even field
relationship. Using a PAL system with 256 lines on the display, the step can be l/256th of a
screen, or l/512th of a screen in interlace.

~-------,
I

I G? Bitplane pointer-----

start address -- ~pallaia

0

-
I

L _______ _j

• As the value of the bitplane pointer
increases, more of the lower part of the
picture is shown.

As it decreases, more of the
y upper part is shown.

Figure 3-23: Vertical Scrolling

To set up a playfield for vertical scrolling, you need to form bitplanes tall enough to allow for the
amount of scrolling you want, write software to calculate the bitplane pointers for the scrolling
you want, and allow for the Copper to use the resultant pointers.

Assume you wish to scroll a playfield upward one line at a time. To accomplish this, before each
field is displayed, the bitplane pointers have to increase by enough to ensure that the pointers
begin one line lower each time. For a normal-sized, low resolution display in which the modulo
is 0, the pointers would be incremented by 40 bytes each time.

Playfield Hardware 81

HORIZONTAL SCROLLING

You can scroll playfields horizontally from left to right or right to left on the screen. You control
the speed of scrolling by specifying the amount of delay in pixels. Delay means that an extra
word of data is fetched but not immediately displayed. The extra word is placed just to the left of
the window's leftmost edge and before nonnal data fetch. As the display shifts to the right, the
bits in this extra word appear on-screen at the left-hand side of the window as bits on the right­
hand side disappear off-screen. For each pixel of delay, the on-screen data shifts one pixel to the
right each display field. The greater the delay, the greater the speed of scrolling. You can have
up to 15 pixels of delay. In high resolution mode, scrolling is in increments of 2 pixels. Figure
3-24 shows how the delay and extra data fetch combine to cause the scrolling effect.

To set up a playfield for horizontal scrolling, you need to

o Define bitplanes wide enough to allow for the scrolling you need.

o Set the data-fetch registers to correctly place each horizontal line, including the extra
word, on the screen.

o Set the delay bits.

o Set the modulo so that the bitplane pointers begin at the correct word for each line.

o Write Copper instructions to handle the changes during the vertical blanking interval.

Specifying Data Fetch In Horizontal Scrolling

The nonnal data-fetch start for non-scrolled displays is ($38). If horizontal scrolling is desired,
then the data fetch must start one word sooner (DDFSTRT = $0030). Incidentally, this will
disable sprite 7. DDFSTOP remains unchanged. Remember that the settings of the data-fetch
registers affect both playfields.

Specifying the Modulo In Horizontal Scrolling

As always, the modulo is two counts less than the difference between the address of the next word
you want to fetch and the address of the last word that was fetched. As an example for horizontal
scrolling, let us assume a 40-byte display in an 80-byte ''big picture.'' Because horizontal
scrolling requires a data fetch of two extra bytes, the data for each line will be 42 bytes long.

82 Amiga Hardware Reference Manual

0-15 bits of
delay will cause
the system to
show the
early-fetched
word. _____________ ---~I

r-- Display Window
' start

As delay is added,
---------,.... onscreen display

shifts this direction.

·-----background color

1-c------~a~;:;;- ~--:;J -------
~--------1_.._---

This data is
displayed if

scroll= 0.

16 bits -------------•1
(1 word)

I

I

J-c------- Display Window ----- JJoo-1

320 bits (20 words)

:g - ,.
I I
L-.._ ________ ft--

Display position in these example
is shown with O-bits of delay.

Figure 3-24: Horizontal Scrolling

--- This data is
displayed if
scroll= 15.

NOTE: Fetching an extra word for scrolling will disable some sprites.

Playfield Hardware 83

START
START +38

I

DISPLAYWINDOW ------••
width

MEMORY PICTURE
width

START +78

Figure 3-25: Memory Picture Larger Than the Display Window

Data for line 1 :

Location: START

leftmost
display word

START+2

next word

START+4

next word

Figure 3-26: Data for Line 1 - Horizontal Scrolling

START+40

last display
word

At this point, the bitplane pointers contain the value START +42. Adding the modulo of 38 gives
the correct starting point for the next line.

Data for line 2:

Location: START+80

leftmost
display word

START+82

next word

START+84

next word

Figure 3-27: Data for Line 2-Horizontal Scrolling

In the BPLxMOD registers you set the modulo for each bitplane used.

84 Amiga Hardware Reference Manual

START+120

last display
word

Specifying Amount of Delay

The amount of delay in horizontal scrolling is controlled by bits 7-0 in BPLCONl. You set the
delay separately for each playfield; bits 3-0 for playfield 1 (bitplanes 1, 3, and 5) and bits 7-4 for
playfield 2 (bitplanes 2, 4, and 6).

Warning: Always set all six bits, even if you have only one playfield. Set 3-0 and
7-4 to the same value if you are using only one playfield.

The following example sets the horizontal scroll delay to 7 for both playfields.

MOVE.W #$77,BPLCONl+CUSTOM

SCROLLING PLA VFIELD SUMMARY

The steps for defining a scrolled playficld are the same as those for defining the basic playfield,
except for the following steps:

o Defining the data fetch. Fetch one extra word per horizontal line and start it 16 pixels
before the normal (unscrolled) data-fetch start.

o Defining the modulo. The modulo is two counts less than when there is no scrolling.

These steps are added:

o For vertical scrolling, reset the bitplane pointers for the amount of the scrolling
increment. Reset BPLxPTH and BPLxPTL during the vertical blanking interval.

o For horizontal scrolling, specify the delay. Set bit'i 7-0 in BPLCONl for 0 to 15 bits
of delay.

Playfield Hardware 85

Advanced Topics

This section describes features that are used less often or are optional.

INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS

Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows how
playficlds can be given different video display priorities relative to the sprites and how playfields
can collide with (overlap) the sprites or each other.

HOLD-AND-MODIFY MODE

This is a special mode that allows you to produce up to 4,096 colors on the screen at the same
time. Normally, as each value formed by the combination of bitplanes is selected, the data
contained in the selected color register is loaded into the color output circuit for the pixel being
written on the screen. Therefore, each pixel is colored by the contents of the selected color
register.

In hold-and-modify mode, however, the value in the color output circuitry is held, and one of the
three components of the color (red, green, or blue) is modified by bits coming from certain
preselected bitplanes. After modification, the pixel is written to the screen.

The hold-and-modify mode allows very fine gradients of color or shading to be produced on the
screen. For example, you might draw a set of 16 vases, each a different color, using all 16 colors
in the color palette. Then, for each vase, you usc hold-and-modify to very finely shade or
highlight or add a completely different color to each of the vases. Note that a particular hold­
and-modify pixel can only change one of the three color values at a time. Thus, the effect has a
limited control.

In hold and modify mode, you use all six bitplanes. Planes 5 and 6 arc used to modify the way
bits from planes I -4 arc treated, as follows:

o If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal color
selection procedure is followed. Thus, the bit combinations from planes 4 - 1, in that
order of significance, are used to choose one of 16 color registers (registers 0- 15).

If only five bitplancs are used, the data from the sixth plane is automatically supplied
with the value as 0.

o If the 6-5 bit combination is 01, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit combinations from planes 4- 1 are used to
replace the four "blue" bits in the corresponding color register.

86 Amiga Hardware Reference Manual

o If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit combinations from planes 4- 1 are used to
replace the four "red" bits.

o If the 6-5 bit combination is 11, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit combinations from planes 4 - 1 are used to
replace the four ''green' ' bits.

Using hold-and-modify mode, it is possible to get by with defining only one color register, which
is COLORO, the color of the background. You treat the entire screen as a modification of that
original color, according to the scheme above.

Bit 11 of register BPLCONO selects hold-and-modify mode. The following bits in BPLCONO
must be set for hold-and-modify mode to be active:

o Bit HOMOD, bit 11, is 1.

o Bit DBLPF, bit 10, is 0 (single-playfield mode specified).

o Bit HIRES, bit 15, is 0 (low resolution mode specified).

o Bits BPU2, BPU1, and BPUO- bits 14, 13, and 12, are 101 or 110 (five or six bitplanes
active).

The following example code generates a six-bitplane display with hold-and-modify mode turned
on. All 32 color registers are loaded with black to prove that the colors are being generated by
hold-and-modify. The equates are the usual and are not repeated here.

First, set up the control registers.

LEA CUSTOM,aO
MOVE.W *$6AOO,BPLCONO(a0)
MOVE.W *O,BPLCONl(aO)
MOVE.W *O,BPLlMOD(aO)
MOVE.W *O,BPL2MOD(a0)
MOVE.W *$0038,DDFSTRT(a0)
MOVE.W *$00DO,DDFSTOP(a0)
MOVE.W #$2C8l,DIWSTRT(a0)
MOVE.W #$F4Cl,DIWSTOP(a0)

Point aO at custom chips
Six bitplanes, hold-and-modify mode
Horizontal scroll = 0
Modulo for odd bitplanes = 0
Ditto for even bitplanes
Set data-fetch start
Set data-fetch stop
Set display window start
Set display window stop

Set all color registers = black to prove that hold-and-modify mode is working.

MOVE.W
LEA

CREGLOOP:
MOVE.W
DBRA

*32,d0
CUSTOM+COLOROO,al

#$0000, (al) +
dO,CREGLOOP

Initialize counter
Point al at first color register

Write black to a color register
Decrement counter and loop til done ...

Fill six bitplanes with an easily recognizable pattern.

NOTE: This is just for example use. Normally these bitplanes would
need to be allocated from the system MEMF_CHIP memory pool.

Playfield Hardware 87

MOVE.W t2000,d0 2000 longwords per bitplane
MOVE.L #$21000,al Point a1 at bitplane 1
MOVE.L #$23000,a2 Point a2 at bit plane 2
MOVE.L t$25000,a3 Point a3 at bit plane 3
MOVE.L #$27000,a4 Point a4 at bit plane 4
MOVE.L t$29000,a5 Point aS at bit plane 5
MOVE.L #$2BOOO,a6 Point a6 at bit plane 6

FPLLOOP:
MOVE.L #$55555555, (al) + Fill bit plane 1 with $55555555
MOVE.L t$33333333, (a2) + Fill bit plane 2 with $33333333
MOVE.L # SOFOFOFOF, (a3) + Fill bitplane 3 with $0FOFOFOF
MOVE.L #$00FFOOFF, (a4)+ Fill bit plane 4 with $00FFOOFF
MOVE.L #$CF3CF3CF, (aS)+ Fill bit plane 5 with $CF3CF3CF
MOVE.L t$3CF3CF3C, (a6) + Fill bit plane 6 with $3CF3CF3C
DBRA dO,FPLLOOP Decrement counter and loop til done ...

Set up a Copper list at $20000.

NOTE: As with the bitplanes, the copper list location should be allocated

CLOOP:

from the system MEMF_CHIP memory pool.

MOVE.L #$20000,a1
LEA COPPERL(pc) ,a2
MOVE.L (a2), (a1) +
CMPI.L t$FFFFFFFE, (a2)+
BNE CLOOP

Point a1 at Copper list destination
Point a2 at Copper list image
Move a long word ...
Check for end of Copper list
Loop until entire Copper list moved

Point Copper at Copper list.

MOVE.L #$20000,COP1LCH(a0)
MOVE.W COPJMP1(a0) ,dO

Load Copper jump register
Force load into Copper P.C.

Start DMA.

MOVE.W #$8380,DMACON(a0) ; Enable bitplane and Copper DMA

BRA next stuff to do

Copper list for six bitplanes. Bitplane 1 is at $21000; 2 is at $23000;
3 is at $25000; 4 is at $27000; 5 is at $29000; 6 is at $28000.

NOTE: These bitplane addresses are for example purposes only.

COPPERL:

See note above.

DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

BPL1PTH,$0002
BPLlPTL,$1000
BPL2PTH,$0002
BPL2PTL,$3000
BPL3PTH,$0002
BPL3PTL,$5000
BPL4PTH,$0002
BPL4PTL,$7000
BPLSPTH,$0002
BPLSPTL,$9000
BPL6PTH,$0002
BPL6PTL,$BOOO
$FFFF,$FFFE

88 Amiga Hardware Reference Manual

Bitplane 1 pointer $21000

Bitplane 2 pointer $23000

Bitplane 3 pointer $25000

Bitplane 4 pointer $27000

Bitplane 5 pointer $29000

Bitplane 6 pointer $28000

Wait for the impossible, i.e., quit

FORMING A DISPLAY WITH SEVERAL DIFFERENT PLAYFIELDS

The graphics library provides the ability to split the screen into several "ViewPorts", each with
its own colors and resolutions. See the Amiga ROM Kernel Manual: Libraries for more
information.

USING AN EXTERNAL VIDEO SOURCE

An optional board that provides genlock is available for the Amiga. Genlock allows you to bring
in your graphics display from an external video source (such as a VCR, camera, or laser disk
player). When you use genlock, the background color is replaced by the display from this
external video source. For more information, see the instructions furnished with the optional
board.

Summary of Playfield Registers

This section summarizes the registers used in this chapter and the meaning of their bit settings.
The color registers are summarized in the next section. See Appendix A for a summary of all
registers.

BPLCONO - Bitplane Control

(Warning: Bits in this register cannot be independently set.)

Bit 0 - unused

Bit 1 - ERSY (external synchronization enable)
1 = External synchronization enabled (allows genlock synchronization to occur)
0 = External synchronization disabled

Bit 2 -LACE (interlace enable)
I = interlaced mode enabled
0 =non-interlaced mode enabled

Bit 3- LPEN (light pen enable)

Bits 4-7 not used (make 0)

Bit 8- GAUD (genlock audio enable)
1 = Genlock audio enabled
0 = Genlock audio disabled
(This bit also appears on Denise pin ZD during blanking period)

Playfield Hardware 89

Bit 9- COLOR_ON (color enable)
1 =composite video color-burst enabled
0 = composite video color-burst disabled

Bit 10- DBLPF (double-playficld enable)
1 = dual playfields enabled
0 = single playfield enabled

Bit 11 - HOMOD (hold-and-modify enable)
1 = hold-and-modify enabled
0 =hold-and-modify disabled; extra-half brite (EHB) enabled

if DBLPF=O and BPUx=6

Bits 14, 13, 12- BPU2, BPU1, BPUO
Number of bitplanes used.

000 = only a background color
001 = 1 bitplane, PLANE 1
010 = 2 bitplanes, PLANES 1 and 2
011 = 3 bitplanes, PLANES 1 - 3
100 = 4 bitplanes, PLANES 1 - 4
101 = 5 bitplanes, PLANES 1 - 5
110 = 6 bitplanes, PLANES 1 - 6
111 not used

Bit 15- HIRES (high resolution enable)
1 = high resolution mode
0 = low resolution mode

BPLCONl - Bitplane Control

Bits 3-0- PF1H(3-0) Playficld 1 delay

Bits 7-4- PF2H(3-0) Playfield 2 delay

Bits 15-8 not used

BPLCON2 - Bitplane Control

Bit 6 - PF2PRI
1 = Playfield 2 has priority
0 = Playfield 1 has priority

Bits 0-5 Playfield sprite priority

Bits 7-15 not used

90 Amiga Hardware Reference Manual

DDFSTRT - Data-fetch Start
(Beginning position for data fetch)

Bits 15-8 - not used

Bits 7-2- pixel position H8-H3 (bit H3 only respected in Hires Mode.)

Bits 1-0- not used

DDFSTOP- Data-fetch Stop
(Ending position for data fetch)

Bits 15-8 - not used

Bits 7-2- pixel position H8-H3 (bit H3 only respected in Hires Mode.)

Bits 1-0- not used

BPLxPTH - Bitplane Pointer
(Bitplane pointer high word, where xis the bitplane number)

BPLxPTL - Bitplane Pointer
(Bitplane pointer low word, where xis the bitplane number)

DIWSTRT - Display Window Start
(Starting vertical and horizontal coordinates)

Bits 15-8- VSTART (V7-VO)

Bits 7-0- HSTART (H7-HO)

DIWSTOP - Display Window Stop
(Ending vertical and horizontal coordinates)

Bits 15-8- VSTOP (V7-VO)

Bits 7-0- HSTOP (H7-HO)

BPLlMOD - Bitplane Modulo
(Odd-numbered bitplanes, playfield 1)

BPL2MOD - Bitplane Modulo
(Even-numbered bitplanes, playfield 2)

Playfield Hardware 91

Summary of Color Selection Registers

This section contains summaries of the playfield color selection registers including color register
contents, example colors, and the differences in color selection in high resolution and low
resolution modes. The Amiga has 32 color registers and each one has 4 bits of red, 4 bits of
green, and 4 bits of blue information. Table 3-15 shows the bit assignments of each color
register. All color registers are write-only.

Color Register Bits

15- 12
11- 8
7- 4
3- 0

Contents

Unused (set these to 0)
Red data

Green data
Blue data

Table 3-15: Color Register Contents

SOME SAMPLE COLOR REGISTER CONTENTS

Table 3-16 shows a variety of colors and the hexadecimal values to load into the color registers
for these colors.

Value Color Value Color

$FFF White $1FB Light aqua
$DOO Brick red $6FE Sky blue
$FOO Red $6CE Light blue
$F80 Red-orange $00F Blue
$F90 Orange $61F Bright blue
$FBO Golden orange $06D Dark blue
$FDO Cadmium yellow $91F Purple
$FFO Lemon yellow $C1F Violet
$BFO Lime green $F1F Magenta
$8EO Light green $FAC Pink
$0FO Green $DB9 Tan
$2CO Dark green $C80 Brown
$0B1 Forest green $A87 Dark brown
$0BB Blue green $CCC Light grey
$0DB Aqua $999 Medium grey

$000 Black

Table 3-16: Some Rc6rister Values and Resulting Colors

92 Amiga Hardware Reference Manual

COLOR SELECTION IN LOW RESOLUTION MODE

Table 3-17 shows playfield color selection in low resolution mode. If the bit combinations from
the playfields are as shown, the color is taken from the color register number indicated.

Single Playfield Dual Playfields
Normal Mode Hold-and-modify Mode

(Bitplanes 5,4,3,2,1) (Bitplanes 4,3,2,1)

00000 ()()()()

00001 0001
00010 0010
00011 0011
00100 0100
00101 0101
00110 0100
00111 0111

01000 1000
01001 1001
01010 1010
01011 1011
01100 1100
01101 1101
01110 1110
01111 1111
10000 I
10001
10010
10011 I
10100 NOT
10101 USED
10110 IN
10111 THIS
11000 MODE
11001
11010
11011
11100
11101
11110
11111

*Color register 0 always defines the background color.
**Selects "transparent" mode instead of selecting color register 8.

Playfield 1
(Bitplanes 5.3.1)

000
001
010
011
100
101
110
111

Playfield 2
(Bitplanes 6,4,2)

000**
001
010
011
100
101
110
111

I
I
I
I

NOT
USED

IN
THIS

MODE
I
I

Table 3-17: Low resolution Color Selection

Color
Register
Number

0*
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Playfield Hardware 93

COLOR SELECTION IN HIGH RESOLUTION MODE

Table 3-18 shows playfield color selection in high resolution mode. If the bit combinations from
the playfields are as shown, the color is taken from the color register number indicated.

Single Dual Color
Playfield Playfields Register

(Bitplanes 4,3,2,1) Number

Playfield 1
(Bitplanes 3.1)

0000 00* 0 **
0001 01 1
0010 10 2
0011 11 3

0100 I 4
0101 NOT USED 5
0110 IN THIS MODE 6
0111 I 7

Playfield 2
(Bitplanes 4,2)

1000 00* 8
1001 01 9
1010 10 10
1011 11 11

1100 I 12
1101 NOT USED 13
1110 IN THIS MODE 14
1111 I 15

* Selects "transparent" mode.

**Color register 0 always defines the background color.

Table 3-18: High resolution Color Selection

94 Amiga Hardware Reference Manual

COLOR SELECTION IN HOLD-AND-MODIFY MODE

In hold-and-modify mode, the color register contents are changed as shown in Table 3-19. This
mode is in effect only if bit 10 of BPLCONO = 1.

Bitplane 6 Bitplane 5 Result

0 0 Normal operation (use color register itself)
0 1 Hold green and red B = Bitplane 4-1 contents
1 0 Hold green and blue R = Bitplane 4-1 contents
1 1 Hold blue and red G = Bitplane 4-1 contents

Table 1-19: Color Selection in Hold-and-modify Mode

COLOR SELECTION IN EXTRA HALF BRITE (EHB) MODE

The Arniga has a special mode called Extra Half Brite or EHB mode which doubles the maximum
number of colors that can be displayed at one time. To use EHB mode, you must set up six
bitplanes. Then set BPU=6 (bits 12, 13 and 14) in the BPLCONO register. Set HAM=O (bit 11)
and DPF=O (bit 10) in BPLCONO. In this mode, the information in bitplane 6 controls an
intensity reduction in the other 5 bitplanes. The color register output selected by the first five
bitplanes is shifted to half-intensity by the sixth bitplane. This allows 64 colors to be displayed at
one time instead of the usual 32.

ECS playfield registers. For information concerning the playfield hardware and the
Enhanced Chip Set, see Appendix C.

Playfield Hardware 95

. --

chapter four
SPRITE HARDWARE

This chapter discusses sprites which are special graphic objects that are easy to define and easy to
animate. The following sprite topics are covered:

o Defining the size, shape, color, and screen position of sprites.

o Displaying and moving sprites.

o Combining sprites for more complex images, additional width, or additional colors.

o Reusing a sprite DMA channel multiple times within a display field to create more than
eight sprites on the screen at one time.

What are Sprites?

Sprites are graphic objects that are created and moved independently of the playfield display and
independently of each other. Together with playfields, sprites form the graphics display of the
Amiga. You can create more complex animation effects by using the blitter, which is described
in the chapter called "Blitter Hardware." Sprites are produced on-screen by eight special­
purpose sprite DMA channels. Basic sprites are 16 pixels wide and any number of lines high.
You can choose from three colors for a sprite's pixels, and a pixel may also be transparent,
showing any object behind the sprite. For larger or more complex objects, or for more color
choices, you can combine sprites.

Sprite DMA channels can be reused several times within the same display field. Thus, you are
not limited to having only eight sprites on the screen at the same time.

Sprite Hardware 97

Forming a Sprite

To fonn a sprite, you must first define it and then create a fonnal data structure in memory. You
define a sprite by specifying its characteristics:

o On-screen width of up to 16 pixels.

o Unlimited height.

o Any shape.

o A combination of three colors, plus transparent.

o Any position on the screen.

SCREEN POSITION

A sprite's screen position is defined as a set of X,Y coordinates. Position (O,Q), where X = 0 and
Y = 0, is the upper left-hand comer of the display. You define a sprite's location by specifying
the coordinates of its upper left-hand pixel. Sprite position is always defined as though the
display modes were low resolution and non-interlaced. The X,Y coordinate system and definition
of a sprite's position are graphically represented in Figure 4-1. Notice that because of display
overscan, position (0,0) (that is, X = 0, Y = 0) is not nonnally in a viewable region of the
screen.

(0,0) --

••• ·····X axis •••••• .,..~ ·-·-. ·-.
·--~---····Visible

screen area

Figure 4-1: Defining Sprite On-screen Position

98 Amiga Hardware Reference Manual

The amount of viewable area is also affected by the size of the playficld display window (defined
by the values in DDFSTRT, DDFSTOP, DIWSTRT, DIWSTOP, etc.). See the "Playfield
Hardware" chapter for more information about overscan and display windows.

Horizontal Position

A sprite's horizontal position (X value) can be at any pixel on the screen from 0 to 447. To be
visible, however, an object must be within the boundaries of the playfield display window. In the
examples in this chapter, a window with horizontal positions from pixel 64 to pixel 383 is used
(that is, each line is 320 pixels long). Larger or smaller windows can be defined as required, but it
is recommended that you read the "Playfield Hardware" chapter before attempting to do so. A
larger area is actually scanned by the video beam but is not usually visible on the screen.

If you specify an X value for a sprite that takes it outside the display window, then part or all of
the sprite may not appear on the screen. This is sometimes desirable; such a sprite is said to be
''clipped.''

To make a sprite appear in its correct on-screen horizontal position in the display window, simply
add its left offset to the desired X value. In the example given above, this would involve adding
64 to the X value. For example, to make the upper leftmost pixel of a sprite appear at a position
94 pixels from the left edge of the screen, you would perform this calculation:

Desired X position+ horizontal-offset of display window= 94 + 64 = 158

Thus, 158 becomes the X value, which will be written into the data structure.

Counting Pixels. The X position represents the location of the very first (leftmost)
pixel in the full 16-bit wide sprite. This is always the case, even if the leftmost pixels
are specified as transparent and do not appear on the screen.

Sprite Hardware 99

If the sprite shown in Figure 4-2 were located at an X value of 158, the actual image would begin
on-screen four pixels later at 162. The first four pixels in this sprite are transparent and allow the
background to show through.

I I
.,. _________ 16 pixels -----------~

Figure 4-2: Position of Sprites

Vertical Position

You can select any position from line 0 to line 262 for the topmost edge of the sprite. In the
examples in this chapter, an NTSC window with vertical positions from line 44 to line 243 is
used. This allows the normal display height of 200 lines in non-interlaced mode. If you specify a
vertical position (Y value) oflcss th<m 44 (i.e., above the top of the display window) the top edge
of the sprite may not appear on screen.

To make a sprite appear in its correct on-screen vertical position, add the Y value to the desired
position. Using the above numbers, add 44 to the desired Y position. For example, to make the
upper leftmost pixel appear 25 lines below the top edge of the screen, perform this calculation:

Desired Y position+ vertical-offset of the display window= 25 + 44 = 69

Thus, 69 is the Y value you will write into the data structure.

Clipped Sprites

As noted above, sprites will be partially or totally clipped if they pass across or beyond the
boundaries of the display window. The values of 64 (horizontal) and 44 (vertical) arc "nonnal"
for a centered display on a standard NTSC video monitor. See Chapter 3, "Playfield Hardware",
for more information on display offsets. Information on PAL displays will be found there. If you
choose other values to establish your display window, your sprites will be clipped accordingly.

100 Amiga Hardware Reference Manual

SIZE OF SPRITES

Sprites are 16 pixels wide and can be almost any height you wish- as short as one line or taller
than the screen. You would probably move a very tall sprite vertically to display a portion of it at
a time.

Sprite size is based on a pixel that is l/320th of a screen's width, 1/200th of a NTSC screen's
height, or 1/256 of a PAL screen's height. This pixel size corresponds to the low resolution and
non-interlaced modes of the normal full-size playfield. Sprites, however, are independent of
playfield modes of display, so changing the resolution or interlace mode of the playfield has no
effect on the size or resolution of a sprite.

SHAPE OF SPRITES

A sprite can have any shape that will fit within the 16-pixel width. You define a sprite's shape by
specifying which pixels actually appear in each of the sprite's locations. For example, Figures
4-3 and 4-4 show a spaceship whose shape is marked by Xs. The first figure shows only the
spaceship as you might sketch it out on graph paper. The second figure shows the spaceship
within the 16-pixel width. The Os around the spaceship mark the part of the sprite not covered by
the spaceship and transparent when displayed.

XX
xxxxxx

xxxxxxxxxx
X X X X X X X X X X

xxxxxx
X X

Figure 4-3: Shape of Spaceship

0 0 0 0 X X 0 0 0 0 0 0 0 0 0 0
ooxxxxxxoooooooo
X X X X X X X X X X 0 0 0 0 0 0
xxxxxxxxxxoooooo
ooxxxxxxoooooooo
0 0 0 0 X X 0 0 0 0 0 0 0 0 0 0

Figure 4-4: Sprite with Spaceship Shape Defined

Sprite Hardware 101

In this example, the widest part of the shape is ten pixels and the shape is shifted to the left of the
sprite. Whenever the shape is narrower than the sprite, you can control which part of the sprite is
used to define the shape. This particular shape could also start at any of the pixels from 2-7
instead of pixel 1.

SPRITE COLOR

When sprites are used individually (that is, not attached as described in the "Attached Sprites"
section), each pixel can be one of three colors or transparent. Color selection in similar to the
method used for playfield colors. Figure 4-5 shows how the color of each pixel in a sprite is
determined.

'
'

' - ' '-'-. transparent

high-order word of sprite data line

--~1 o I o I o I o I o 11 11 11 I o 11 11 11 I o I o I o I o I
' ' '

-----/-{i1~J o I o I o 1 1 1 1 1 11 o 1 1 1 1 1 1 I o I o I o I o I

'

' ' ' ' ' '
/ /

' ' '

,'

' ' ' '

,' low-order word of sprite data line

~------------
~

Forms a binary
code, used as

the color choice
from a group of
color registers.

Figure 4-5: Sprite Color Definition

The Os and 1 s in the two data words that define each line of a sprite in the data structure form a
binary number. This binary number points to one of the four color registers assigned to that
particular sprite DMA channel. The eight sprites use system color registers 16 - 31. For purposes
of color selection, the eight sprites are organized into pairs and each pair uses four of the color
registers as shown in Figure 4-6.

102 Amiga Hardware Reference Manual

About sprite color registers. The color value of the first register in each group of
four registers is ignored by sprites. When the sprite bits select this register, the
"transparent" value is used.

Codes 01, 10 or Color Register Set

11 select one of r--

three possible ' 00
Sprite 0 or 1 ~- _ '

registers from the ' 01 --- ----~ normal color 10

unused

register group, from 11

which the actual r--

Sprite 2 or 3 ~- _ ' 00
color data is taken. ' ' --- ' 01 ---- ~

unused

10

11
r--

' 00 Sprite 4 or 5 "''it,
01 '

unused

--- .. _ ---:
10

11
r--

Sprite 6 or 7 ~- _ ' 00 unused

---: 01

10

11

Figure 4-6: Color Register Assignments

-~~---,

.20 ---
' '

'
--..

---..._ yields

-----~ transparent ---

,.~////
'28

31

If you require certain colors in a sprite, you will want to load the sprite's color registers with
those colors. The ''Play field Hardware'' chapter contains instructions on loading color registers.

The binary number 00 is special in this color scheme. A pixel whose value is 00 becomes
transparent and shows the color of any other sprite or playfield that has lower video priority. An
object with low priority appears "behind" an object with higher priority. Each sprite has a fixed
video priority with respect to all the other sprites. You can vary the priority between sprites and
play fields. (See Chapter 7, ''System Control Hardware,'' for more information about sprite
priority.)

Sprite Hardware 1 03

---------·--·-----

DESIGNING A SPRITE

For design purposes, it is convenient to lay out the sprite on paper first. You can show the desired
colors as numbers from 0 to 3. For example, the spaceship shown above might look like this:

0000122332210000
0001223333221000
0012223333222100
0001223333221000
0000122332210000

The next step is to convert the numbers 0-3 into binary numbers, which will be used to build the
color descriptor words of the sprite data structure. The section below shows how to do this.

BUILDING THE DATA STRUCTURE

After defining the sprite, you need to build its data structure, which is a series of 16-bit words in a
contiguous memory area. Some of the words contain position and control information and some
contain color descriptions. To create a sprite's data structure, you need to:

o Write the horizontal and vertical position of the sprite into the first control word.

o Write the vertical stopping position into the second control word.

o Translate the decimal color numbers 0 - 3 in your sprite grid picture into binary color
numbers. Use the binary values to build color descriptor (data) words and write these
words into the data structure.

o Write the control words that indicate the end of the sprite data structure.

Warning: Sprite data, like all other data accessed by the custom chips, must be
loaded into Chip RAM. Be sure all of your sprite data structures are word aligned in
Chip Memory.

104 Amiga Hardware Reference Manual

Table 4-1 shows a sprite data structure with the memory location and function of each word:

Memory
Location

N
N+l
N+2
N+3
N+4
N+5

16-bit Word

Sprite control word 1
Sprite control word 2
Color descriptor low word
Color descriptor high word
Color descriptor low word
Color descriptor high word

End-of-data words

Function

Vertical and horizontal start position
Vertical stop position
Color bits for line 1
Color bits for line 1
Color bits for line 2
Color bits for line 2

Two words indicating
the next usage of this sprite

Table 4-1: Sprite Data Structure

All memory addresses for sprites are word addresses. You will need enough contiguous memory
to provide room for two words for the control information, two words for each horizontal line in
the sprite, and two end-of-data words.

Because this data structure must be accessible by the special-purpose chips, you must ensure that
this data is located within chip memory.

Figure 4-7 shows how the data structure relates to the sprite.

Spri1e Hardware 1 05

' ' ' ' •

-c-- ---------------- 16 bits --------------.. ~
r-------------------------------~ I

VSTART, HSTART

VSTOP, control bits

low word of data, line 1

high word of data, line 1

data describing
central lines
of this sprite

low word of data, last line

:¥
I

high word of data, last line

~----------------~--~-~

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Part of a screen display

HSTART

. ······
.. ----

.--- - - Pairs of words
/ / containing color

/ information for
,., ,. pixel lines.

_---- Last word pair contains all
---- zeros if this sprite processor is to

be used only once vertically in
the display frame .

Each word pair

low word of pair

high word of pair

~ ____ ,.
VSTART ----::rtJim /

describes one video
line of the sprite

VSTOP ---- .. ·. :.~:: ' := = = := = = :=~
I I

Figure 4-7: Data Structure Layout

106 Amiga Hardware Reference Manual

Sprite Control Word 1 : SPRxPOS

This word contains the vertical (VST ART) and horizontal (HST ART) starting position for the
sprite. This is where the topmost line of the sprite will be positioned.

Bits 15-8 contain the low 8 bits ofVSTART
Bits 7-0 contain the high 8 bits ofHSTART

Sprite Control Word 2 : SPRxCTL

This word contains the vertical stopping position of the sprite on the screen (i.e., the line AFfER
the last displayed row of the sprite). It also contains some data having to do with sprite
attachment, which is described later on.

Bits 15-8
Bit 7
Bits 6-3
Bit2
Bit 1
Bit 0

SPRxCfL

The low eight bits of YSTOP
(Used in attachment)
Unused (make zero)
The VST ART high bit
The VSTOP high bit
The HST ART low bit

The value (VSTOP - VST ART) defines how many scan lines high the sprite will be when it is
displayed.

Sprite Color Descriptor Words

It takes two color descriptor words to describe each horizontal line of a sprite; the high order
word and the low order word. To calculate how many color descriptor words you need, multiply
the height of the sprite in lines by 2. The bits in the high order color descriptor word contribute
the leftmost digit of the binary color selector number for each pixel; the low order word
contributes the rightmost digit.

To form the color descriptor words, you first need to form a picture of the sprite, showing the
color of each pixel as a number from 0 - 3. Each number represents one of the colors in the
sprite's color registers. For example, here is the spaceship sprite again:

0000122332210000
0001223333221000
0012223333222100
0001223333221000
0000122332210000

Sprite Hardware 1 07

Next, you translate each of the numbers in this picture into a binary number. The first line in
binary is shown below. The binary numbers are represented vertically with the low digit in the
top line and the high digit right below it. This is how the two color descriptor words for each
sprite line are written in memory.

0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 ~ Low Sprite Word
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 ~High Sprite Word

The first line above becomes the color descriptor low word for line 1 of the sprite. The second
line becomes the color descriptor high word. In this fashion, you translate each line in the sprite
into binary Os and 1 s. See Figure 4-7.

Each of the binary numbers fonned by the combination of the two data words for each line refers
to a specific color register in that particular sprite channel's segment of the color table. Sprite
channel 0, for example, takes its colors from registers 17- 19. The binary numbers corresponding
to the color registers for sprite DMA channel 0 are shown in Table 4-2.

Binary Number Color Register Number

00 Transparent
01 17
10 18
11 19

Table 4-2: Sprite Color Registers

Recall that binary 00 always means transparent and never refers to a color except background.

End-of-data Words

When the vertical position of the beam counter is equal to the VSTOP value in the sprite control
words, the next two words fetched from the sprite data structure are written into the sprite control
registers instead of being sent to the color registers. These two words are interpreted by the
hardware in the same manner as the original words that were first loaded into the control registers.
If the VSTART value contained in these words is lower than the current beam position, this sprite
will not be reused in this display field. For consistency, the value 0 should be used for both
words when ending the usage of a sprite. Sprite reuse is discussed later.

1 08 Amiga Hardware Reference Manual

The following data structure is for the spaceship sprite. It will be located at V = 65 and
H = 128 on the normally visible part of the screen.

SPRITE:
DC.W $6060,$7200 ;VSTART, HSTART, VSTOP
DC.W $0990,$07EO ;First pair of descriptor words
DC.W $13C8,$0FFO
DC.W $23C4,$1FF8
DC.W $13C8,$0FFO
DC.W $0990,$07EO
DC.W $0000,$0000 ;End of sprite data

Displaying a Sprite

After building the data structure, you need to tell the system to display it. This section describes
the display of sprites in "automatic" mode. In this mode, once the sprite DMA channel begins to
retrieve and display the data, the display continues until the VSTOP position is reached. Manual
mode is described later on in this chapter.

The following steps arc used in displaying the sprite:

1. Decide which of the eight sprite DMA channels to use (making certain that the chosen
channel is available).

2. Set the sprite pointers to tell the system where to find the sprite data.

3. Tum on sprite direct memory access if it is not already on.

4. For each subsequent display field, during the vertical blanking interval, rewrite the sprite
pointers.

About sprite DMA. If sprite DMA is turned off while a sprite is being displayed (that
is, after VST ART but before VSTOP), the system will continue to display the line of
sprite data that was most recently fetched. This causes a vertical bar to appear on the
screen. It is recommended that sprite DMA be turned off only during vertical
blanking or during some portion of the display where you are sure that no sprite is
being displayed.

Sprite Hardware 1 09

SELECTING A DMA CHANNEL AND SETTING THE POINTERS

In deciding which DMA channel to use, you should take into consideration the colors assigned to
the sprite and the sprite's video priority.

The sprite DMA channel uses two pointers to read in sprite data and control words. During the
vertical blanking interval before the first display of the sprite, you need to write the sprite's
memory address into these pointers. The pointers for each sprite are called SPRxVrH and
SPRxPTL, where "x" is the number of the sprite DMA channel. SPRxPfH contains the high
three bits of the memory address of the first word in the sprite and SPRxPTL contains the low
sixteen bits. The least significant bit of SPRxPTL is ignored, as sprite data must be word aligned.
Thus, only fifteen bits of SPRxPfL are used. As usual, you can write a long word into
SPRxPfH.

In the following example the processor initializes the data pointers for sprite 0. Normally, this is
done by the Copper. The sprite is at address $20000.

MOVE.L #$20000,SPROPTH+CUSTOM ;Write $20000 to sprite 0 pointer ...

These pointers are dynamic; they are incremented by the sprite DMA channel to point first to the
control words, then to the data words, and finally to the end-of-data words. After reading in the
sprite control information and storing it in other registers, they proceed to read in the color
descriptor words. The color descriptor words are stored in sprite data registers, which are used by
the sprite DMA channel to display the data on screen. For more information about how the sprite
DMA channels handle the display, see the "Hardware Details" section below.

RESETTING THE ADDRESS POINTERS

For one single display field, the system will automatically read the data structure and produce the
sprite on-screen in the colors that are specified in the sprite's color registers. If you want the
sprite to be displayed in subsequent display fields, you must rewrite the contents of the sprite
pointers during each vertical blanking interval. This is necessary because during the display field,
the pointers are incremented to point to the data which is being fetched as the screen display
progresses.

The rewrite becomes part of the vertical blanking routine, which can be handled by instructions in
the Copper lists.

11 0 Amiga Hardware Reference Manual

SPRITE DISPLAY EXAMPLE

This example displays the spaceship sprite at location V = 65, H = 128. Remember to include
the file ''hw _examples.i' ', located in Appendix I.

First, we set up a single bitplane.

LEA CUSTOM,aO
MOVE.W t$1200,BPLCONO(a0)
MOVE.W t$OOOO,BPL1MOD(a0)
MOVE.W t$OOOO,BPLCON1(a0)
MOVE.W t$0024,BPLCON2(a0)
MOVE.W t$0038,DDFSTRT(a0)
MOVE.W t$00DO,DDFSTOP(a0)

Display window definitions.

MOVE.W t$2C81,DIWSTRT(a0)

MOVE.W t$F4C1,DIWSTOP(a0)

Set up color registers.

MOVE.W t$0008,COLOROO(a0)
MOVE.W t$OOOO,COLOR01(a0)
MOVE.W t$0FFO,COLOR17(a0)
MOVE.W t$00FF,COLOR18(a0)
MOVE.W t$OFOF,COLOR19(a0)

Move Copper list to $20000.

MOVE.L t$20000,a1
LEA COPPERL(pc) ,a2

CLOOP:
MOVE.L (a2), (a1)+
CMP.L t$FFFFFFFE, (a2)+
BNE CLOOP

Move sprite to $25000.

MOVE.L t$25000,a1
LEA SPRITE(pc),a2

SPRLOOP:
MOVE.L (a2), (a1)+
CMP.L t$00000000, (a2) +
BNE SPRLOOP

;Point aO at custom chips
;1 bitplane color is on
;Modulo = 0
;Horizontal scroll value = 0
;Sprites have priority over playfields
;Set data-fetch start
;Set data-fetch stop

;Set display window start
;Vertical start in high byte.
;Horizontal start * 2 in low byte.
;Set display window stop
;Vertical stop in high byte.
;Horizontal stop * 2 in low byte.

;Background
;Foreground
;Color 17
;Color 18
; Color 19

color = dark blue
color = black
yellow
cyan
magenta

;Point A1 at Copper list destination
;Point A2 at Copper list source

;Move a long word
;Check for end of list
;Loop until entire list is moved

;Point A1 at sprite destination
;Point A2 at sprite source

;Move a long word
;Check for end of sprite
;Loop until entire sprite is moved

Now we write a dummy sprite to $30000, since all eight sprites are activated
at the same time and we're only going to use one. The remaining sprites
will point to this dummy sprite data.

MOVE.L t$00000000,$30000 ;Write it

Point Copper at Copper list.

MOVE.L t$20000,COP1LC(a0)

Sprite Hardware 111

Fill bitplane

MOVE.L
MOVE.W

FLOOP
MOVE.L
DBF

Start DMA.

MOVE.W

MOVE.W
RTS

with $FFFFFFFF.

t$21000,a1
tl999,d0

f$FFFFFFFF, (a1)+
dO,FLOOP

dO,COPJMP1 (aO)

f$83AO,DMACON(a0)

;Point A1 at bitplane
;2000-1(for dbf) long words= 8000 bytes

;Move a long word of $FFFFFFFF
;Decrement, repeat until false.

;Force load into Copper
program counter

;Bitplane, Copper, and sprite DMA
; .. return to rest of program ..

This is a Copper list for one bitplane, and 8 sprites.
The bitplane lives at $21000.
Sprite 0 lives at $25000; all others live at $30000 (the dummy sprite).

COPPERL:

Sprite

SPRITE:

DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

data

DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

BPL1PTH,$0002
BPL1PTL,$1000
SPROPTH,$0002
SPROPTL,$5000
SPR1PTH,$0003
SPR1PTL,$0000
SPR2PTH,$0003
SPR2PTL,$0000
SPR3PTH,$0003
SPR3PTL,$0000
SPR4PTH,$0003
SPR4PTL,$0000
SPR5PTH,$0003
SPR5PTL,$0000
SPR6PTH,$0003
SPR6PTL,$0000
SPR7PTH,$0003
SPR7PTL,$0000
$FFFF,$FFFE

for spaceship

$6060,$7200
$0990,$07EO
$13C8,$0FFO
$23C4,$1FF8
$13C8,$0FFO
$0990,$07EO
$0000,$0000

sprite.

112 Amiga Hardware Reference Manual

It

;Bitplane 1 pointer = $21000

;Sprite 0 pointer $25000

; Sprite 1 pointer $30000

; Sprite 2 pointer $30000

; Sprite 3 pointer $30000

; Sprite 4 pointer $30000

; Sprite 5 pointer $30000

; Sprite 6 pointer $30000

;Sprite 7 pointer $30000

;End of Copper list

appears on the screen at V=65 and H=128.

;VSTART, HSTART, VSTOP
;First pair of descriptor words

;End of sprite data

Moving a Sprite

A sprite generated in automatic mode can be moved by specifying a different position in the data
structure. For each display field, the data is reread and the sprite redrawn. Therefore, if you
change the position data before the sprite is redrawn, it will appear in a new position and will
seem to be moving.

You must take care that you are not moving the sprite (that is, changing control word data) at the
same time that the system is using that data to find out where to display the object. If you do so,
the system might find the start position for one field and the stop position for the following field
as it retrieves data for display. This would cause a "glitch" and would mess up the screen.
Therefore, you should change the content of the control words only during a time when the
system is not trying to read them. Usually, the vertical blanking period is a safe time, so moving
the sprites becomes part of the vertical blanking tasks and is handled by the Copper as shown in
the example below.

As sprites move about on the screen, they c<m collide with each other or with either of the two
playfields. You can use the hardware to detect these collisions and exploit this capability for
special effects. In addition, you can usc collision detection to keep a moving object within
specified on-screen boundaries. Collision Detection is described in Chapter 7, "System Control
Hardware.''

In this example of moving a sprite, the spaceship is bounced around on the screen, changing
direction whenever it reaches an edge.

The sprite position data, containing VSTART and HSTART, lives in memory at $25000.
VSTOP is located at $25002. You write to these locations to move the sprite. Once during each
frame, VSTART is incremented (or decremented) by 1 and HSTART by 2. Then a new VSTOP
is calculated, which will be the new VST ART + 6.

MOVE.B #15l,d0 ;Initialize horizontal count
MOVE.B H94, dl ;Initialize vertical count
MOVE.B #64, d2 ; Initialize horizontal position
MOVE.B H4,d3 ;Initialize vertical position
MOVE.B #l,d4 ;Initialize horizontal increment value
MOVE.B tl,d5 ;Initialize vertical increment value

;Here we wait for the start of the screen updating.
;This ensures a glitch-free display.

LEA CUSTOM,aO
VLOOP:

MOVE.B VHPOSR(a0),d6
;Only insert the following line

CMP.B t$20,d6
BNE.S VLOOP

;Alternatively you can use the
;VLOOP:

MOVE.W INTREQR(aO) ,d6
AND.W t$0020,d6
BEQ VLOOP

;Set custom chip base pointer

;Read Vertical beam position.
if you are using a PAL machine.
;Compare with end of PAL screen.
;Loop if not end of screen.

following code:

;Read interrupt request word
;Mask off all but vertical blank bit
;Loop until bit is a 1

Sprite Hardware 113

MOVE.W t$0020,INTREQ(a0) ;Vertical bit is on, so reset it

;Please note that this will only work if you have turned OFF the Vertical
;blanking interrupt enable (not recommended for long periods).

L1:

L2:

ADD.B
SUBQ.B
BNE
MOVE.B
EOR.B
MOVE.B
ADD.B
SUBQ.B
BNE
MOVE.B
EOR.B
MOVE.B
MOVE.B
ADD.B
MOVE.B
BRA

d4,d2
t1,d0
L1
U51,d0
t$FE,d4
d2,$25001
d5,d3
U,d1
L2
U94,d1
tSFE,dS
d3,$25000
d3,d6
t6,d6
d6,$25002
VLOOP

;Increment horizontal value
;Decrement horizontal counter

;Count exhausted, reset to 151
;Negate the increment value
;Write new HSTART value to sprite
;Increment vertical value
;Decrement vertical counter

;Count exhausted, reset to 194
;Negate the increment value
;Write new VSTART value to sprite
;Must now calculate new VSTOP
;VSTOP always VSTART+6 for spaceship
;Write new VSTOP to sprite
;Loop forever

Creating Additional Sprites

To use additional sprites, you must create a data structure for each one and arrange the display as
shown in the previous section, naming the pointers SPRlPTH and SPRlPTL for sprite DMA
channel 1, SPR2PTH and SPR2PTL for sprite DMA channel2, and so on.

About sprite DMA. When you enable sprite DMA for one sprite, you enable DMA
for all the sprites and place them all in automatic mode. Thus, you do not need to
repeat this step when using additional sprite DMA channels.

Once the sprite DMA channels are enabled, all eight sprite pointers must be initialized to either a
real sprite or a safe null sprite. An uninitialized sprite could cause spurious sprite video to appear.

Remember that some sprites can become unusable when additional DMA cycles are allocated to
displaying the screen, for example when an extra wide display or horizontal scrolling is enabled
(see Figure 6-9: DMA Time Slot Allocation).

Also, recall that each pair of sprites takes its color from different color registers, as shown in
Table4-3.

114 Amiga Hardware Reference Manual

Table 4-3: Color Registers for Sprite Pairs

Sprite Numbers

0 and 1
2 and 3
4 and 5
6 and 7

Color Registers

17- 19
21-23
25-27
29-31

Warning: Some sprites become unusable when additional DMA cycles are allocated
to displaying the screen, e.g. when enabling an extra wide display or horizontal
scrolling. (See Figure 6-11: DMA Time Slot Allocation.)

SPRITE PRIORITY

When you have more than one sprite on the screen, you may need to take into consideration their
relative video priority, that is, which sprite appears in front of or behind another. Each sprite has
a fixed video priority with respect to all the others. The lowest numbered sprite has the highest
priority and appears in front of all other sprites; the highest numbered sprite has the lowest
priority. This is illustrated in Figure 4-8.

More about priorities. See Chapter 7, "System Control Hardware", for more
information on sprite priorities.

7

6
5

1-
4

1-
3

I f-
2

f-
I 1

1-
0

1--

f-

Figure 4-8: Sprite Priority

Sprite Hardware 115

Reusing Sprite DMA Channels

Each of the eight sprite DMA channels can produce more than one independently controllable
image. There may be times when you want more than eight objects, or you may be left with
fewer than eight objects because you have attached some of the sprites to produce more colors or
larger objects or overlapped some to produce more complex images. You can reuse each sprite
DMA channel several times within the same display field, as shown in Figure 4-9.

Part of a screen display

' ' '

" "
---~- =---= ~ __ ,''/

• -- -======,. _____ /

Each image of this sprite may be placed
at any desired spot, horizontally or
vertically. However, at least one video
line must separate the bottom of one
usage of a sprite from the starting point
of the next usage.

Figure 4-9: Typical Example of Sprite Reuse

In single-sprite usage, two all-zero words are placed at the end of the data structure to stop the
DMA channel from retrieving any more data for that particular sprite during that display field. To
reuse a DMA channel, you replace this pair of zero words with another complete sprite data
structure, which describes the reuse of the DMA channel at a position lower on the screen than
the first use. You place the two all-zero words at the end of the data structure that contains the
information for all usages of the DMA channel. For example, Figure 4-10 shows the data
structure that describes the picture above.

116 Amiga Hardware Reference Manual

increasing
RAM

memory
addresses

Sprite Display List

' ' /

~-
'

' ' _____ J

------.
.------------------------------, ~-

'

'
' ' ' ' ' ' I _..,.""

~-
'
' _____ J

_-- --· Data describing the first
- vertical usage of this sprite

__ ---- Data describing the second vertical
usage of this sprite. Contents of vertical
start word must be at least one video
line below actual end of preceding usage.

_-- --- End-of-data words ending the
_- -' usage of this sprite

Figure 4-10: Typical Data Structure for Sprite Re-use

The only restrictions on the reuse of sprites during a single display field is that the bottom line of
one usage of a sprite must be separated from the top line of the next usage by at least one
horizontal scan line. This restriction is necessary because only two DMA cycles per horizontal
scan line are allotted to each of the eight channels. The sprite channel needs the time during the
blank line to fetch the control word describing the next usage of the sprite.

Sprite Hardware 117

The following example displays the spaceship sprite and then redisplays it as a different object.
Only the sprite data list is affected, so only the data list is shown here. However, the sprite looks
best with the color registers set as shown in the example.

LEA CUSTOM,aO
MOVE.W #$0FOO,COLOR17(a0) ;Color 17 = red
MOVE.W #$0FFO,COLOR18(a0) ;Color 18 = yellow
MOVE.W #$0FFF,COLOR19(a0) ;Color 19 = white

SPRITE:
OC.W $6060,$7200
OC.W $0990,$07EO
OC.W $13C8,$0FFO
OC.W $23C4,$1FF8
OC.W $13C8,$0FFO
OC.W $0990,$07EO
OC.W $8080,$8000 ;VSTART, HSTART, VSTOP for new sprite
DC.W $1818,$0000
DC.W $7E7E,$0000
DC.W $7FFE,$0000
DC.W SFFFF,$2000
DC.W SFFFF,$2000
DC.W $FFFF,$3000
DC.W SFFFF,$3000
DC.W $7FFE,$1800
DC.W $7FFE,$0COO
DC.W $3FFC,$0000
OC.W SOFF0,$0000
DC.W $03C0,$0000
DC.W $0180,$0000
OC.W $0000,$0000 ;End of sprite data

Overlapped Sprites

For more complex or larger moving objects, you can overlap sprites. Overlapping simply means
that the sprites have the same or relatively close screen positions. A relatively close screen
position can result in an object that is wider than 16 pixels.

The built-in sprite video priority ensures that one sprite appears to be behind the other when
sprites are overlapped. The priority circuitry gives the lowest-numbered sprite the highest
priority and the highest numbered sprite the lowest priority. Therefore, when designing displays
with overlapped sprites, make sure the "foreground" sprite has a lower number than the
"background" sprite. In Figure 4-11, for example, the cage should be generated by a lower­
numbered sprite DMA channel than the monkey.

118 Amiga Hardware Reference Manual

'
' ' ' ' ' ' ' ' ' ' ' ' '

'
',-:.a..

Individual sprites
can be combined by

simple overlap.

,, ---
I

I

I
I

I
I

I

' ' I
I

I
I

.. Built-in sprite "priority"
-------------~~:::7 displays one sprite

behind the other when
overlapped.

Figure 4-11: Overlapping Sprites (Not Attached)

You can create a wider sprite display by placing two sprites next to each other. For instance,
Figure 4-12 shows the spaceship sprite and how it can be made twice as large by using two sprites
placed next to each other.

Sprite Hardware 119

-- ~~-----------

(128,65)

(128,65) (144,65)

sprite 0 sprite 1

Figure 4-12: Placing Sprites Next to Each Other

Attached Sprites

You can create sprites that have fifteen possible color choices (plus transparent) instead of three
(plus transparent), by "attaching" two sprites. To create attached sprites, you must:

o Use two channels per sprite, creating two sprites of the same size and located at the same
position.

o Set a bit called ATTACH in the second sprite control word.

The fifteen colors are selected from the full range of color registers available to sprites -
registers 17 through 31. The extra color choices are possible because each pixel contains four bits
instead of only two as in the normal, unattached sprite. Each sprite in the attached pair
contributes two bits to the binary color selector number. For example, if you are using sprite
DMA channels 0 and 1, the high and low order color descriptor words for line 1 in both data
structures are combined into line 1 of the attached object.

120 Amiga Hardware Reference Manual

Sprites can be attached in the following combinations:

Sprite 1 to sprite 0
Sprite 3 to sprite 2
Sprite 5 to sprite 4
Sprite 7 to sprite 6

Any or all of these attachments can be active during the same display field. As an example,
assume that you wish to have more colors in the spaceship sprite and you are using sprite DMA
channels 0 and 1. There are five colors plus transparent in this sprite.

0000154444510000
0001564444651000
0015676446765100
0001564444651000
0000154444 510000

The first line in this sprite requires the four data words shown in Table 4-4 to form the correct
binary color selector numbers.

Table 4-4: Data Words for First Line of Spaceship Sprite

Pixel Number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Line 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Line2 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
Line3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Line 4 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

The highest numbered sprite (number 1, in this example) contributes the highest order bits
(leftmost) in the binary number. The high order data word in each sprite contributes the leftmost
digit. Therefore, the lines above are written to the sprite data structures as follows:

Line 1
Line 2
Line 3
Line4

Sprite 1 high order word for sprite line 1
Sprite 1 low order word for sprite line 1
Sprite 0 high order word for sprite line 1
Sprite 0 low order word for sprite line 1

See Figure 4-7 for the order these words are stored in memory. Remember that this data is
contained in two sprite structures.

Sprite Hardware 121

The binary numbers 0 through 15 select registers 17 through 31 as shown in Table 4-5.

Table 4-5: Color Registers in Attached Sprites

Decimal Binary Color Register
Number Number Number

0 0000 16 *
1 0001 17
2 0010 18
3 0011 19
4 0100 20
5 0101 21
6 0110 22
7 0111 23
8 1000 24
9 1001 25

10 1010 26
11 1011 27
12 1100 28
13 1101 29
14 1110 30
15 1111 31

* Unused; yields transparent pixel.

Attachment is in effect only when the A TI'ACH bit, bit 7 in sprite control word 2, is set to 1 in
the data structure for the odd-numbered sprite. So, in this example, you set bit 7 in sprite control
word 2 in the data structure for sprite 1.

When the sprites arc moved, the Copper list must keep them both at exactly the same position
relative to each other. If they are not kept together on the screen, their pixels will change color.
Each sprite will revert to three colors plus transparent, but the colors may be different than if they
were ordinary, unattached sprites. The color selection for the lower numbered sprite will be from
color registers 17-19. The color selection for the higher numbered sprite will be from color
registers 20, 24, and 28.

122 Amiga Hardware Reference Manual

The following data structure is for the six-color spaceship made with two attached sprites.

SPRITEO:
OC.W $6060,$7200
OC.W $0C30,$0000
OC.W $1818,$0420
oc.w $342C,$0E70
OC.W $1818,$0420
OC.W $0C30,$0000
OC.W $0000,$0000

SPRITE1:
oc.w $6060,$7280
OC.W $07E0,$0000
OC.W $0FF0,$0000
OC.W $1FF8,$0000
OC.W $0FF0,$0000
DC.W $07E0,$0000
DC.W $0000,$0000

Manual Mode

;VSTART = 65, HSTART = 128
;First color descriptor word

;End of sprite 0

;Same as sprite 0 except attach bit on
;First descriptor word for sprite 1

;End of sprite 1

It is almost always best to load sprites using the automatic DMA channels. Sometimes, however,
it is useful to load these registers directly from one of the microprocessors. Sprites may be
activated' 'manually'' whenever they arc not being used by a DMA channel. The same sprite that
is showing a DMA-controlled icon near the top of the screen can also be reloaded manually to
show a vertical colored bar ncar the bottom of the screen. Sprites can be activated manually even
when the sprite DMA is turned off.

You display sprites manually by writing to the sprite data registers SPRxDATB and SPRxDATA,
in that order. You write to SPRxDATA last because that address "arms" the sprite to be output
at the next horizontal comparison. The data written will then be displayed on every line, at the
horizontal position given in the "H" portion of the position registers SPRxPOS and SPRxCfL.
If the data is unchanged, the result will be a vertical bar. If the data is reloaded for every line, a
complex sprite can be produced.

The sprite can be terminated ("disarmed") by writing to the SPRxCfL register. If you write to
the SPRxPOS register, you can manually move the sprite horizontally at any time, even during
normal sprite usage.

Sprite Hardware 123

Sprite Hardware Details

Sprites are produced by the circuitry shown in Figure 4-13. This figure shows in block form how
a pair of data words becomes a set of pixels displayed on the screen.

The circuitry elements for sprite display are explained below.

o Sprite data registers. The registers SPRxDAT A and SPRxDATB hold the bit patterns that
describe one horizontal line of a sprite for each of the eight sprites. A line is 16 pixels wide,
and each line is defined by two words to provide selection of three colors and transparent.

o Parallel-to-serial converters. Each of the 16 bits of the sprite data bit pattern is individually
sent to the color select circuitry at the time that the pixel associated with that bit is being
displayed on-screen.

Immediately after the data is transferred from the sprite data registers, each parallel-to-serial
converter begins shifting the bits out of the converter, most significant (leftmost) bit first.
The shift occurs once during each low resolution pixel time and continues until all 16 bits
have been transferred to the display circuitry. The shifting and data output does not begin
again until the next time this convener is loaded from the data registers.

Because the video image is produced by an electron beam that is being swept from left to
right on the screen, the bit image of the data corresponds exactly to the image that actually
appears on the screen (most significant data on the left).

o Sprite serial video data. Sprite data goes to the priority circuit to establish the priority
between sprites and playfields.

o Sprite position registers. These registers, called SPRxPOS, contain the horizontal position
value (X value) and vertical position value (Y value) for each of the eight sprites.

o Sprite control registers. These registers, called SPRxCfL, contain the stopping position for
each of the eight sprites and whether or not a sprite is attached.

o Beam counter. The beam counter tells the system the current location of the video beam that
is producing the picture.

o Comparator. This device compares the value of the beam counter to the Y value in the
position register SPRxPOS. If the beam has reached the position at which the leftmost upper
pixel of the sprite is to appear, the comparator issues a load signal to the serial-to-parallel
converter and the sprite display begins.

124 Amiga Hardware Reference Manual

DATA BUS

equal

SPRxPOS
load decode

(68000 or DMA)

"ARM" sprite

SPRxDATA
load decode

(68000 or DMA)

.--------1 Q s .__ _ __J

Q

---------,
' '

------------ -------------------~:

' '
---------------------------------~:

"ARM" sprite

' ---------'

SPRxDATB
load decode

(68000 or DMA)

Figure 4-13: Sprite Control Circuitry

R
SPRxCTL

load decode
(68000 or DMA)

sprite serial
video data

output to
video priority

logic

Sprite Hardware 125

Figure 4-13 shows the following:

o Writing to the sprite control registers disables the horizontal comparator circuitry. This
prevents the system from sending any output from the data registers to the serial converter or
to the screen.

o Writing to the sprite A data register enables the horizontal comparator. This enables output
to the screen when the horizontal position of the video beam equals the horizontal value in
the position register.

o If the comparator is enabled, the sprite data will be sent to the display, with the leftmost pixel
of the sprite data placed at the position defined in the horizontal part of SPRxPOS.

o As long as the comparator remains enabled, the current contents of the sprite data register
will be output at the selected horizontal position on a video line.

o The data in the sprite data registers does not change. It is either rewritten by the user or
modified under DMA control.

The components described above produce the automatic DMA display as follows: When the
sprites arc in DMA mode, the 18-bit sprite pointer register (composed of SPRxPTH and
SPRxPTL) is used to read the first two words from the sprite data structure. These words contain
the starting and stopping position of the sprite. Next, the pointers write these words into
SPRxPOS and SPRxCfL. Afler this write, the value in the pointers points to the address of the
first data word (low word of data for line 1 of the sprite.)

Writing into the SPRxCfL register disabled the sprite. Now the sprite DMA channel will wait
until the vertical beam counter value is the same as the data in the VSTART (Y value) part of
SPRxPOS. When these values match, the system enables the sprite data access.

The sprite DMA channel examines the contents of VSTOP (from SPRxCfL, which is the
location of the line after the last line of the sprite) and VST ART (from SPRxPOS) to see how
many lines of sprite data are to be fetched. Two words are fetched per line of sprite height, and
these words are written into the sprite data registers. The first word is stored in SPRxDAT A and
the second word in SPRxDATB.

The fetch and store for each horizontal scan line occurs during a horizontal blanking interval, far
to the left of the start of the screen display. This arms the sprite horizontal comparators and
allows them to start the output of the sprite data to the screen when the horizontal beam count
value matches the value stored in the HST ART (X value) part of SPRxPOS.

If the count of VSTOP - VSTART equals zero, no sprite output occurs. The next data word pair
will be fetched, but it will not be stored into the sprite data registers. It will instead become the
next pair of data words for SPRxPOS and SPRxCfL.

126 Amiga Hardware Reference Manual

When a sprite is used only once within a single display field, the final pair of data words, which
follow the sprite color descriptor words, is loaded automatically as the next contents of the
SPRxPOS and SPRxCfL registers. To stop the sprite after that first data set, the pair of words
should contain all zeros.

Thus, if you have formed a sprite pattern in memory, this same pattern will be produced as pixels
automatically under DMA control one line at a time.

Summary of Sprite Registers

There are eight complete sets of registers used to describe the sprites. Each set consists of five
registers. Only the registers for sprite 0 are described here. All of the others are the same, except
for the name of the register, which includes the appropriate number.

POINTERS

Pointers are registers that are used by the system to point to the current data being used. During a
screen display, the registers are incremented to point to the data being used as the screen display
progresses. Therefore, pointer registers must be freshly written during the start of the vertical
blanking period.

SPROPTH and SPROPTL

This pair of registers contains the 32-bit word address of Sprite 0 DMA data.

Pointer register names for the other sprites arc:

CONTROL REGISTERS

SPROPOS

SPRlPTH
SPR2PTH
SPR3PTH
SPR4PTH
SPRSPTH
SPR6PTH
SPR7PTH

SPRlPTL
SPR2PTL
SPR3PTL
SPR4PTL
SPRSPTL
SPR6PTL
SPR7PTL

This is the sprite 0 position register. The word written into this register controls the position on
the screen at which the upper left-hand comer of the sprite is to be placed. The most significant
bit of the first data word will be placed in this position on the screen.

Sprite Hardware 127

Sprite placement resolution. The sprites have a placement resolution on a full
screen of 320 by 200 NTSC (320 by 256 PAL). The sprite resolution is independent
of the bitplane resolution.

Bit positions:

o Bits 15-8 specify the vertical start position, bits V7 - VO.

o Bits 7-0 specify the horizontal start position, bits H8- Hl.

Warning: This register is nonnally only written by the sprite DMA channel itself.
See the details above regarding the organization of the sprite data. This register is
usually updated directly by DMA.

SPROCTL

This register is nonnally used only by the sprite DMA channel. It contains control infonnation
that is used to control the sprite data-fetch process. Bit positions:

o Bits 15-8 specify vertical stop position for a sprite image, bits V7 - VO.

o Bit 7 is the attach bit. This bit is valid only for odd-numbered sprites. It indicates that
sprites 0, 1 (or 2,3 or 4,5 or 6,7) will, for color interpretation, be considered as paired,
and as such will be called four bits deep. The odd-numbered (higher number) sprite
contains bits with the higher binary significance.

During attach mode, the attached sprites are nonna1ly moved horizontally and vertically
together under processor control. This allows a greater selection of colors within the
boundaries of the sprite itself. The sprites, although attached, remain capable of
independent motion, however, and they will assume this larger color set only when their
edges overlay one another.

o Bits 6-3 are reserved for future use (make zero).

o Bit 2 is bit V8 of vertical start.

o Bit 1 is bit V8 of vertical stop.

o Bit 0 is bit HOof horizontal start.

128 Amiga Hardware Reference Manual

Position and control registers for the other sprites work the same way as described above for
sprite 0. The register names for the other sprites are:

DATA REGISTERS

SPRIPOS
SPR2POS
SPR3POS
SPR4POS
SPR5POS
SPR6POS
SPR7POS

SPRICfL
SPR2CfL
SPR3CfL
SPR4CfL
SPR5CfL
SPR6CfL
SPR7CfL

The following registers, although defined in the address space of the main processor, are normally
used only by the display processor. They are the holding registers for the data obtained by DMA

cycles.

SPRODATA,SPRODATB
SPRIDATA, SPRIDATB
SPR2DATA, SPR2DATB
SPR3DATA,SPR3DATB
SPR4DATA, SPR4DATB
SPR5DATA,SPR5DATB
SPR6DATA,SPR6DATB
SPR7DATA,SPR7DATB

data registers for Sprite 0
data registers for Sprite 1
data registers for Sprite 2
data registers for Sprite 3
data registers for Sprite 4
data registers for Sprite 5
data registers for Sprite 6
data registers for Sprite 7

Sprite Hardware 129

Summary of Sprite Color Registers

Sprite data words are used to select the color of the sprite pixels from the system color register set
as indicated in the following tables.

If the bit combinations from single sprites are as shown in Table 4-6, then the colors will be taken
from the registers shown.

Table 4-6: Color Registers for Single Sprites

Single Sprites Color
Sprite Value Register

0 or 1 00 Not used*
01 17
10 18
11 19

2o
r3 00 Not used*

01 21
10 22
11 23

4 or5 00 Not used*
01 25
10 26
11 27

6 or7 00 Not used*
01 29
10 30
11 31

* Selects transparent mode.

130 Amiga Hardware Reference Manual

If the bit combinations from attached sprites are as shown in Table 4-7, then the colors will be
taken from the registers shown.

Table 4-7: Color Registers for Attached Sprites

Value

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Attached Sprites
Color

Register

Selects transparent mode
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

INTERACTIONS AMONG SPRITES AND OTHER OBJECTS

Playfie1ds share the display with sprites. Chapter 7, "System Control Hardware," shows how
playfields can be given different video display priorities relative to the sprites and how playfields
can collide with (overlap) the sprites or each other.

ECS Sprites. For information relating to sprites in the Enhanced Chip Set (ECS),
such as SuperHires sprites and SuperHires sprite positioning, see Appendix C.

Sprite Hardware 131

-···-·-------------------·-----------------------

chapter five
AUDIO HARDWARE

This chapter shows you how to directly access the audio hardware to produce sounds. The major
topics in this chapter are:

o A brief overview of how a computer produces sound.

o How to produce simple steady and changing sounds and more complex ones.

o How to use the audio channels for special effects, wiring them for stereo sound if
desired, or using one channel to modulate another.

o How to produce quality sound within the system limitations.

A section at the end of the chapter gives you values to use for creating musical notes on the
equal-tempered musical scale.

This chapter is not a tutorial on computer sound synthesis; a thorough description of creating
sound on a computer would require a far longer document. The purpose here is to point the way
and show you how to use the Amiga's features. Computer sound production is fun but complex,
and it usually requires a great deal of trial and error on the part of the user-you use the
instructions to create some sound and play it back, readjust the parameters and play it again, and
so on.

The following works are recommended for more information on creating music with computers:

o Wayne A. Bateman, Introduction to Computer Music (New York: John Wiley and Sons,
1980).

o Hal Chamberlain, Musical Applications of Microprocessors (Rochelle Park, New Jersey:
Hayden, 1980).

Audio Hardware 133

- ------------------------·----

Introducing Sound Generation

Sound travels through air to your ear drums as a repeated cycle of air pressure variations, or
sound waves. Sounds can be represented as graphs that model how the air pressure varies over
time. The attributes of a sound, as you hear it, are related to the shape of the graph. If the
waveform is regular and repetitive, it will sound like a tone with steady pitch (highness or
lowness), such as a single musical note. Each repetition of a waveform is called a cycle of the
sound. If the waveform is irregular, the sound will have little or no pitch, like a loud clash or
rushing water. How often the waveform repeats (its frequency) has an effect upon its pitch;
sounds with higher frequencies are higher in pitch. Humans can hear sounds that have a
frequency of between 20 and 20,000 cycles per second. The amplitude of the waveform (highest
point on the graph), is related to the perceived loudness of the sound. Finally, the general shape
of the waveform determines its tone quality, or timbre. Figure 5-1 shows a particular kind of
waveform, called a sine wave, that represents one cycle of a simple tone.

a
m
p
I

u
d
e

+

time (Msec)

Figure 5-l: Sine Waveform

In electronic sound recording and output devices, the attributes of sounds are represented by the
parameters of amplitude and frequency. Frequency is the number of cycles per second, and the
most common unit of frequency is the Hertz (Hz), which is 1 cycle per second. Large values, or
high frequencies, are measured in kilohertz (KHz) or megahertz (MHz).

Frequency is strongly related to the perceived pitch of a sound. When frequency increases, pitch
rises. This relationship is exponential. An increase from 100Hz to 200Hz results in a large rise
in pitch, but an increase from 1,000 Hz to 1,100 Hz is hardly noticeable. Musical pitch is
represented in octaves. A tone that is one octave higher than another has a frequency twice as

134 Amiga Hardware Reference Manual

high as that of the first tone, and its perceived pitch is twice as high.

The second parameter that defines a waveform is its amplitude. In an electronic circuit, amplitude
relates to the voltage or current in the circuit. When a signal is going to a speaker, the amplitude
is expressed in watts. Perceived sound intensity is measured in decibels (db). Human hearing has
a range of about 120 db; 1 db is the faintest audible sound. Roughly every 10 db corresponds to a
doubling of sound, and 1 db is the smallest change in amplitude that is noticeable in a moderately
loud sound. Volume, which is the amplitude of the sound signal which is output, corresponds
logarithmically to decibel level.

The frequency and amplitude parameters of a sine wave are completely independent. When
sound is heard, however, there is interaction between loudness and pitch. Lower-frequency
sounds decrease in loudness much faster than high-frequency sounds.

The third attribute of a sound, timbre, depends on the presence or absence of overtones, or
harmonics. Any complex waveform is actually a mixture of sine waves of different amplitudes,
frequencies, and phases (the starting point of the waveform on the time axis). These component
sine waves are called harmonics. A square waveform, for example, has an infinite number of
harmonics.

In summary, all steady sounds can be described by their frequency, overall amplitude, and
relative harmonic amplitudes. The audible equivalents of these parameters are pitch, loudness,
and timbre, respectively. Changing sound is a steady sound whose parameters change over time.

In electronic production of sound, an analog device, such as a tape recorder, records sound
waveforms and their cycle frequencies as a continuously variable representation of air pressure.
The tape recorder then plays back the sound by sending the waveforms to an amplifier where they
are changed into analog voltage waveforms. The amplifier sends the voltage waveforms to a
loudspeaker, which translates them into air pressure vibrations that the listener perceives as
sound.

A computer cannot store analog waveform information. In computer production of sound, a
waveform has to be represented as a finite string of numbers. This transformation is made by
dividing the time axis of the graph of a single waveform into equal segments, each of which
represents a short enough time so the waveform does not change a great deal. Each of the
resulting points is called a sample. These samples are stored in memory, and you can play them
back at a frequency that you determine. The computer feeds the samples to a digital-to-analog
converter (DAC), which changes them into an analog voltage waveform. To produce the sound,
the analog waveforms are sent first to an amplifier, then to a loudspeaker.

Figure 5-2 shows an example of a sine wave, a square wave, and a triangle wave, along with a
table of samples for each.

Note: The illustrations are not to scale and there are fewer dots in the wave forms
than there are samples in the table. The amplitude axis values 127 and -128 represent
the high and low limits on relative amplitude.

Audio Hardware 135

sine waveform triangle waveform square waveform

127

-127 -127

-----------------------------------·
Samples taken over time

TIME SINE SQUARE TRIANGLE

0 0 100 0

1 39 100 20

2 75 100 40

3 103 100 60

4 121 100 80

5 127 100 100

6 121 100 80

7 103 100 60

8 75 100 40

9 39 100 20

10 0 -100 0

11 -39 -100 -20

12 -75 -100 -40

13 -103 -100 -60

14 -121 -100 -80

15 -127 -100 -100

16 -121 -100 -80

17 -103 -100 -60

18 -75 -100 -40

19 -39 -100 -20

Figure 5-2: Digitized Amplitude Values

THE AMIGA SOUND HARDWARE

The Amiga has four hardware sound channels. You can inde~ndently program each of the

channels to produce complex sound effects. You can also attach channels so that one channel

modulates the sound of another or combine two channels for stereo effects.

136 Amiga Hardware Reference Manual

Each audio channel includes an eight-bit digital-to-analog converter driven by a direct memory
access (DMA) channel. The audio DMA can retrieve two data samples during each horizontal
video scan line. For simple, steady tones, the DMA can automatically play a waveform
repeatedly; you can also program all kinds of complex sound effects.

There are two methods of basic sound production on the Amiga - automatic (DMA) sound
generation and direct (non-DMA) sound generation. When you use automatic sound generation,
the system retrieves data automatically by direct memory access.

Forming and Playing a Sound

This section shows you how to create a simple, steady sound and play it. Many basic concepts
that apply to all sound generation on the Amiga are introduced in this section.

To produce a steady tone, follow these basic steps:

1. Decide which channel to use.

2. Define the waveform and create the sample table in memory.

3. Set registers telling the system where to find the data and the length of the data.

4. Select the volume at which the tone is to be played.

5. Select the sampling period, or output rate of the data.

6. Select an audio channel and start up the DMA.

DECIDING WHICH CHANNEL TO USE

The Amiga has four audio channels. Channels 1 and 2 are connected to the left-side stereo output
jack. Channels 0 and 3 are connected to the right-side output jack. Select a channel on the side
from which the output is to appear.

CREATING THE WAVEFORM DATA

The waveform used as an example in this section is a simple sine wave, which produces a pure
tone. To conserve memory, you normally define only one full cycle of a waveform in memory.
For a steady, unchanging sound, the values at the waveform's beginning and ending points and
the trend or slope of the data at the beginning and end should be closely related. This ensures that
a continuous repetition of the waveform sounds like a continuous stream of sound.

Audio Hardware 137

Sound data is organized as a set of eight-bit data items; each item is a sample from the waveform.
Each data word retrieved for the audio channel consists of two samples. Sample values can range
from -128 to+ 127.

As an example, the data set shown below produces a close approximation to a sine wave.

About the sample data. The data is stored in byte address order with the first
digitized amplitude value at the lowest byte address, the second at the next byte
address, and so on. Also, note that the first byte of data must start at a word-address
boundary. This is because the audio DMA retrieves one word (16 bits) at a time and
uses the sample it reads as two bytes of data.

To use audio channel 0, write the address of "audiodata" into AUDOLC, where the audio data is
organized as shown below. For simplicity, "AUDxLC" in the table below stands for the
combination of the two actual location registers (AUDxLCH and AUDxLCL). For the audio
DMA channels to be able to retrieve the data, the data address to which AUDOLC points must be
somewhere in chip RAM.

Notes:

Table 5-1: Sample Audio Data Set for Channel 0

audiodata ---> AUDOLC* 100 98
AUDOLC+2 ** 92 83
AUDOLC+ 4 71 56
AUDOLC+ 6 38 20
AUDOLC+ 8 0 -20
AUDOLC+ 10 -38 -56
AUDOLC + 12 -71 -83
AUDOLC + 14 -92 -83
AUDOLC+ 16 -100 -98
AUDOLC+ 18 -92 -83
AUDOLC+ 20 -71 -56
AUDOLC+ 22 -38 -20
AUDOLC+24 0 20
AUDOLC+26 38 56
AUDOLC+ 28 71 83
AUDOLC+ 30 92 98

*Audio data is located on a word-address boundary.
**AUDOLC stands for AUDOLCL and AUDOLCH.

138 Amiga Hardware Reference Manual

TELLING THE SYSTEM ABOUT THE DATA

In order to retrieve the sound data for the audio channel, the system needs to know where the data
is located and how long (in words) the data is.

The location registers AUDxLCH and AUDxLCL contain the high three bits and the low fifteen
bits, respectively, of the starting address of the audio data. Since these two register addresses are
contiguous, writing a long word into AUDxLCH moves the audio data address into both
locations. The "x" in the register names stands for the number of the audio channel where the
output will occur. The channels are numbered 0, 1, 2, and 3.

These registers are location registers, as distinguished from pointer registers. You need to
specify the contents of these registers only once; no resetting is necessary when you wish the
audio channel to keep on repeating the same waveform. Each time the system retrieves the last
audio word from the data area, it uses the contents of these location registers to again find the start
of the data. Assuming the first word of data starts at location '' audiodata'' and you are using
channel 0, here is how to set the location registers:

WHEREODATA:
LEA CUSTOM,aO ; Base chip address ...
LEA AUDIODATA,al
MOVE.L al,AUDOLCH(aO) ;Put address (32 bits)

into location register.

The length of the data is the number of samples in your waveform divided by 2, or the number of
words in the data set. Using the sample data set above, the length of the data is 16 words. You
write this length into the audio data length register for this channel. The length register is called
AUDxLEN, where "x" refers to the channel number. You set the length register AUDOLEN to
16 as shown below.

SETAUDOLENGTH:
LEA CUSTOM,aO
MOVE.W i16,AUDOLEN(a0)

SELECTING THE VOLUME

Base chip address
Store the length ...

The volume you set here is the overall volume of all the sound coming from the audio channel.
The relative loudness of sounds, which will concern you when you combine notes, is determined
by the amplitude of the wave form. There is a six-bit volume register for each audio channel. To
control the volume of sound that will be output through the selected audio channel, you write the
desired value into the register AUDxVOL, where "x" is replaced by the channel number. You
can specify values from 64 to 0. These volume values correspond to decibel levels. At the end of
this chapter is a table showing the decibel value for each of the 65 volume levels.

Audio Hardware 139

For a typical output at volume 64, with maximum data values of -128 to 127, the voltage output
is between +.4 volts and -.4 volts. Some volume levels and the corresponding decibel values are
shown in Table 5-2.

Table 5-2: Volume Values

Volume Decibel Value

64
48
32
16

0
-2.5
-6.0

-12.0

(maximum volume)

(12 db down from the
volume at maximum level)

For any volume setting from 64 to 0, you write the value into bits 5-0 of AUDOVOL. For
example:

SETAUDOVOLUME:
LEA CUSTOM,aO
MOVE.W #48,AUDOVOL(a0)

The decibels are shown as negative values from a maximum of 0 because this is the way a
recording device, such as a tape recorder, shows the recording level. Usually, the recorder has a
dial showing 0 as the optimum recording level. Anything less than the optimum value is shown
as a minus quantity.

SELECTING THE DATA OUTPUT RATE

The pitch of the sound produced by the waveform depends upon its frequency. To tell the system
what frequency to use, you need to specify the sampling period. The sampling period specifies
the number of system clock ticks, or timing intervals, that should elapse between each sample
(byte of audio data) fed to the digital-to-analog converter in the audio channel. There is a period
register for each audio channel. The value of the period register is used for count-down purposes;
each time the register counts down to 0, another sample is retrieved from the waveform data set
for output. In units, the period value represents clock ticks per sample. The minimum period
value you should use is 124 ticks per sample NTSC (123 PAL) and the maximum is 65535.
These limits apply to both PAL and NTSC machines. For high-quality sound, there are other
constraints on the sampling period (see the section called "Producing High-quality Sound").

The period is inversely proportional to the frequency. A low period value
corresponds to a higher frequency sound and a high period value corresponds to a
lower frequency sound.

140 Amiga Hardware Reference Manual

Limitations on Selection of Sampling Period

The sampling period is limited by the number of DMA cycles allocated to an audio channel.
Each audio channel is allocated one DMA slot per horizontal scan line of the screen display. An
audio channel can retrieve two data samples during each horizontal scan line. The following
calculation gives the maximum sampling rate in samples per second.

2 samples/ line * 262.5 lines/frame * 59.94 frames/ second= 31,469 samples/ second

The figure of 31,469 is a theoretical maximum. In order to save buffers, the hardware is designed
to handle 28,867 samples/second. The system timing interval is 279.365 nanoseconds, or
.279365 microseconds. The maximum sampling rate of 28,867 samples per second is 34.642
microseconds per sample (1/28,867 = .000034642). The formula for calculating the sampling
period is:

P . d 1 sample interval clock constant
erw va ue= =

clock interval samples per second

Thus, the minimum period value is derived by dividing 34.642 microseconds per sample by the
number of microseconds per interval:

M . . d 34.642 microseconds/sample 124 . . . 1 1 1 mumum peno = 0 2 9365 . nds . 1 = tzmmg znterva s samp e
. 7 mzcroseco lmterva

or:

M . r· d- 3,579,545 ticks/second _ 124 . ks/ l mumum pe w - 28 86 1 nd - tzc samp e
, 7 samp es/seco

Therefore, a value of at least 124 must be written into the period register to assure that the audio
system DMA will be able to retrieve the next data sample. If the period value is below 124, by
the time the cycle count has reached 0, the audio DMA will not have had enough time to retrieve
the next data sample and the previous sample will be reused.

28,867 samples/second is also the maximum sampling rate for PAL systems. Thus, for PAL
systems, a value of at least 123 ticks/sample must be written into the period register.

Clock Values
NTSC PAL units

Clock Constant 3579545 3546895 ticks per second
Clock Interval 0.279365 0.281937 microseconds per interval

NOTE: The Clock Interval is derived from the clock constant, where:

clock interval = 1 k 1
c oc constant

then scale the result to microseconds. In all of these calculations ''ticks'' and ''timing
intervals'' refer to the same thing.

Audio Hardware 141

Specifying the Period Value

After you have selected the desired interval between data samples, you can calculate the value to
place in the period register by using the period fonnula:

P . d 1 desired interval clock constant
erto va ue= =

clock interval samples per second

As an example, say you wanted to produce a 1 KHz sine wave, using a table of eight data samples
(four data words) (see Figure 5-3).

127

·127

Figure 5-3: Example Sine Wave

Sampled Values: 0
90

127
90
0

-90
-127

-90

142 Amiga Hardware Reference Manual

To output the series of eight samples at 1 KHz (1 ,000 cycles per second), each full cycle is output
in 1/lOOOth of a second. Therefore, each individual value must be retrieved in l/8th of that time.
This translates to 1,000 microseconds per waveform or 125 microseconds per sample. To
correctly produce this waveform, the period value should be:

. 125 microseconds/sample . . .
Penod value= 0 2 936 . nds . 1 = 447 tlmmg mtervals!sample

. 7 5 mzcroseco lmterva

To set the period register, you must write the period value into the register AUDxPER, where
"x" is the number of the channel you are using. For example, the following instruction shows
how to write a period value of 447 into the period register for channel 0.

SETAUDOPERIOD:
LEA CUSTOM,aO
MOVE.W f447,AUDOPER(a0)

To produce high-quality sound, avoiding aliasing distortion, you should observe the limitations
on period values that are discussed in the section below called "Producing Quality Sound."

For the relationship between period and musical pitch, see the section at the end of the chapter,
which contains a listing of the equal-tempered musical scale.

Audio Hardware 143

PLAYING THE WAVEFORM

After you have defined the audio data location, length, volume and period, you can play the
wavefonn by starting the DMA for that audio channel. This starts the output of sound. Once
started, the DMA continues until you specifically stop it. Thus, the wavefonn is played over and
over again, producing the steady tone. The system uses the value in the location registers each
time it replays the wavefonn.

For any audio DMA to occur (or any other DMA, for that matter), the DMAEN bit in DMACON
must be set. When both DMAEN and AUDxEN are set, the DMA will start for channel x. All
these bits and their meanings are shown in table 5-3.

Table 5-3: DMA and Audio Channel Enable Bits

DMACON Register

Bit Name Function

15 SET/CLR When this bit is written as a 1, it
sets any bit in DMACONW for which
the corresponding bit position is
also a 1, leaving all other bits alone.

9 DMAEN Only while this bit is a 1 can
any direct memory access occur.

3 AUD3EN Audio channel 3 enable.
2 AUD2EN Audio channel 2 enable.
1 AUDlEN Audio channel 1 enable.
0 AUDOEN Audio channel 0 enable.

For example, if you are using channel 0, then you write a 1 into bit 9 to enable DMA and a 1 into
bit 0 to enable the audio channel, as shown below.

BEGINCHANO:
LEA CUSTOM,aO
MOVE.W i(DMAF_SETCLR!DMAF_AUDO!DMAF_MASTER),DMACON(aO)

144 Amiga Hardware Reference Manual

STOPPING THE AUDIO DMA

You can stop the channel by writing a 0 into the AUDxEN bit at any time. However, you cannot
resume the output at the same point in the waveform by just writing a 1 in the bit again. Enabling
an audio channel almost always starts the data output again from the top of the list of data pointed
to by the location registers for that channel. If the channel is disabled for a very short time (less
than two sampling periods) it may stay on and thus continue from where it left off.

The following example shows how to stop audio DMA for one channel.

STOPAUDCHANO:
LEA CUSTOM,aO
MOVE.W i(DMAF_AUDO),DMACON(aO)

AUDIO SUMMARY

These are the steps necessary to produce a steady tone:

1. Define the waveform.

2. Create the data set containing the pairs of data samples (data words). Normally, a data
set contains the definition of one waveform.

3. Set the location registers:

AUDxLCH (high three bits)
AUDxLCL (low fifteen bits)

4. Set the length register, AUDxLEN, to the number of data words to be retrieved before
starting at the address currently in AUDxLC.

5. Set the volume register, AUDxVOL.

6. Set the period register, AUDxPER

7. Start the audio DMA by writing a 1 into bit 9, DMAEN, along with a 1 in the SET/CLR
bit and a 1 in the position of the A UDxEN bit of the channel or channels you want to
start.

Audio Hardware 145

AUDIO EXAMPLE

In this example, which gathers together all of the program segments from the preceding sections,
a sine wave is played through channel 0. The example assumes exclusive access to the Audio
hardware, and will not work directly in a multitasking environment.

MAIN:
LEA CUSTOM,aO ; Custom chip base address
LEA SINEDATA(pc),a1 ;Address of data to

audio location register 0

WHEREODATA:
MOVE.L a1,AUDOLCH(a0)

SETAUDOLENGTH:

;The 680x0 writes this as though it were a
32-bit register at the low-bits location
(common to all locations and pointer
registers in the system) .

MOVE.W #4,AUDOLEN(a0) ;Set length in words

SETAUDOVOLUME:
MOVE.W #64,AUDOVOL(a0) ;Use maximum volume

SETAUDOPERIOD:
MOVE.W #447,AUDOPER(a0)

BEGINCHANO:
MOVE.W #(DMAF_SETCLR!DMAF_AUDO!DMAF_MASTER),DMACON(aO)

RTS ; Return to main code ...

DS.W 0 ;Be sure word-aligned

SINEDATA:
DC.B 0, 90, 127, 90, 0, -90, -127, -90
END

146 Amiga Hardware Reference Manual

Producing Complex Sounds

In addition to simple tones, you can create more complex sounds, such as different musical notes
joined into a one-voice melody, different notes played at the same time, or modulated sounds.

JOINING TONES

Tones are joined by writing the location and length registers, starting the audio output, and
rewriting the registers in preparation for the next audio waveform that you wish to connect to the
first one. This is made easy by the timing of the audio interrupts and the existence of back-up
registers. The location and length registers are read by the DMA channel before audio output
begins. The DMA channel then stores the values in back-up registers.

Once the original registers have been read by the DMA channel, you can change their values
without disturbing the operation you started with the original register contents. Thus, you can
write the contents of these registers, start an audio output, and then rewrite the registers in
preparation for the next waveform you want to connect to this one.

Interrupts occur immediately after the audio DMA channel has read the location and length
registers and stored their values in the back-up registers. Once the interrupt has occurred, you can
rewrite the registers with the location and length for the next waveform segment. This
combination of back-up registers and interrupt timing lets you keep one step ahead of the audio
DMA channel, allowing your sound output to be continuous and smooth.

If you do not rewrite the registers, the current waveform will be repeated. Each time the length
counter reaches zero, both the location and length registers are reloaded with the same values to
continue the audio output.

Audio Hardware 147

Audio DMA Example

This example details the system audio DMA action in a step-by-step fashion.

Suppose you wanted to join together a sine and a triangle waveform, end-to-end, for a special
audio effect, alternating between them. The following sequence shows the action of your
program as well as its interaction with the audio DMA system. The example assumes that the
period, volume, and length of the data set remains the same for the sine wave and the triangle
wave.

Interrupt Program

If (wave= triangle)
write AUDOLCL with address of sine wave data.

Else if (wave= sine)
write AUDOLCL with address of triangle wave data.

Main Program

1. Set up volume, period, and length.

2. Write AUDOLCL with address of sine wave data.

3. Start DMA.

4. Continue with something else.

System Response

As soon as DMA starts,

a. Copy to "back-up" length register from AUDOLEN.

b. Copy to "back-up" location register from AUDOLCL (will be used as a pointer showing
current data word to fetch).

c. Create an interrupt for the 680x0 saying that it has completed retrieving working copies
of length and location registers.

d. Start retrieving audio data each allocated DMA time slot.

148 Amiga Hardware Reference Manual

PLAYING MULTIPLE TONES AT THE SAME TIME

You can play multiple tones either by using several channels independently or by summing the
samples in several data sets, playing the summed data sets through a single channel.

Since all four audio channels are independently programmable, each channel has its own data set;
thus a different tone or musical note can be played on each channel.

MODULATING SOUND

To provide more complex audio effects, you can use one audio channel to modulate another. This
increases the range and type of effects that can be produced. You can modulate a channel's
frequency or amplitude, or do both types of modulation on a channel at the same time.

Amplitude modulation affects the volume of the waveform. It is often used to produce vibrato or
tremolo effects. Frequency modulation affects the period of the waveform. Although the basic
waveform itself remains the same, the pitch is increased or decreased by frequency modulation.

The system uses one channel to modulate another when you attach two channels. The attach bits
in the ADKCON register control how the data from an audio channel is interpreted (see the table
below). Normally, each channel produces sound when it is enabled. If the "attach" bit for an
audio channel is set, that channel ceases to produce sound and its data is used to modulate the
sound of the next higher-numbered channel. When a channel is used as a modulator, the words in
its data set are no longer treated as two individual bytes. Instead, they are used as ''modulator''
words. The data words from the modulator channel are written into the corresponding registers of
the modulated channel each time the period register of the modulator channel times out.

To modulate only the amplitude of the audio output, you must attach a channel as a volume
modulator. Define the modulator channel's data set as a series of words, each containing volume
information in the following format:

Bits Function

15- 7 Not used

6-0 Volume information, V6- VO

To modulate only the frequency, you must attach a channel as a period modulator. Define the
modulator channel's data set as a series of words, each containing period information in the
following format:

Bits Function

15-0 Period information, P15- PO

Audio Hardware 149

If you want to modulate both period and volume on the same channel, you need to attach the
channel as both a period and volume modulator. For instance, if channel 0 is used to modulate
both the period and frequency of channel 1, you set two attach bits - bit 0 to modulate the
volume and bit 4 to modulate the period. When period and volume are both modulated, words in
the modulator channel's data set are defined alternately as volume and period information.

The sample set of data in Table 5-4 shows the differences in interpretation of data when a channel
is used directly for audio, when it is attached as volume modulator, when it is attached as a period
modulator, and when it is attached as a modulator of both volume and period.

Table 5-4: Data Interpretation in Attach Mode

Independent Modulating
Data (not Both Modulating Modulating
Words Modulating) Period and Volume Period Only Volume Only

Word 1 I data I data I I volume for other channel! I period I I volume I

Word2 I data I data I I period for other channel! I period I I volume I

Word3 I data I data I I volume for other channel I I period I I volume I

Word4 I data I data I I period for other channel! I period I I volume I

The lengths of the data sets of the modulator and the modulated channels are completely
independent.

Channels are attached by the system in a predetermined order, as shown in Table 5-5. To attach a
channel as a modulator, you set its attach bit to 1. If you set either the volume or period attach
bits for a channel, that channel's audio output will be disabled; the channel will be attached to the
next higher channel, as shown in Table 5-5. Because an attached channel always modulates the
next higher numbered channel, you cannot attach channel 3. Writing a 1 into channel 3's
modulate bits only disables its audio output.

150 Amiga Hardware Reference Manual

Table 5-5: Channel Attachment for Modulation

ADKCON Register

Bit Name Function

7 ATPER3 Use audio channel3 to modulate nothing
(disables audio output of channel 3)

6 ATPER2 Use audio channel 2 to modulate period
ofchannel3

5 ATPERl Use audio channel 1 to modulate period
ofchannel2

4 ATPERO Use audio channel 0 to modulate period
of channell

3 ATVOL3 Use audio channel 3 to modulate nothing
(disables audio output of channel 3)

2 ATVOL2 Use audio channel2 to modulate volume
ofchannel3

1 ATVOLl Use audio channell to modulate volume
ofchanne12

0 ATVOLO Use audio channel 0 to modulate volume
of channell

Audio Hardware 151

Producing High-quality Sound

When trying to create high-quality sound, you need to consider the following factors:

o Waveform transitions.

o Sampling rate.

o Efficiency.

o Noise reduction.

o A voidance of aliasing distortion.

o Limitations of the low pass filter.

MAKING WAVEFORM TRANSITIONS

To avoid unpleasant sounds when you change from one waveform to another, you need to make
the transitions smooth. You can avoid "clicks" by making sure the waveforms start and end at
approximately the same value. You can avoid "pops" by starting a waveform only at a zero­
crossing point. You can avoid ''thumps'' by arranging the average amplitude of each wave to be
about the same value. The average amplitude is the sum of the bytes in the waveform divided by
the number of bytes in the waveform.

SAMPLING RATE

If you need high precision in your frequency output, you may find that the frequency you wish to
produce is somewhere between two available sampling rates, but not close enough to either rate
for your requirements. In those cases, you may have to adjust the length of the audio data table in
addition to altering the sampling rate.

For higher frequencies, you may also need to use audio data tables that contain more than one full
cycle of the audio waveform to reproduce the desired frequency more accurately, as illustrated in
Figure 5-4.

152 Amiga Hardware Reference Manual

128

-127

always requires an even
number of samples

---~
samples taken over time

This shows a case in which a high-frequency waveform may need more than one full cycle to accurately
reproduce the periodic waveform.

Figure 5-4: Waveform with Multiple Cycles

EFFICIENCY

A certain amount of overhead is involved in the handling of audio DMA. If you are trying to
produce a smooth continuous audio synthesis, you should try to avoid as much of the system
control overhead as possible. Basically, the larger the audio buffer you provide to the system, the
less often it will need to interrupt to reset the pointers to the top of the next buffer and,
coincidentally, the lower the amount of system interaction that will be required. If there is only
one waveform buffer, the hardware automatically resets the pointers, so no software overhead is
used for resetting them.

The "Joining Tones" section illustrated how you could join "ends" of tones together by
responding to interrupts and changing the values of the location registers to splice tones together.
If your system is heavily loaded, it is possible that the response to the interrupt might not happen
in time to assure a smooth audio transition. Therefore, it is advisable to utilize the longest
possible audio table where a smooth output is required. This takes advantage of the audio DMA
capability as well as minimizing the number of interrupts to which the 680x0 must respond.

Audio Hardware 153

NOISE REDUCTION

To reduce noise levels and produce an accurate sound, try to use the full range of -128 to 127
when you represent a wavefonn. This reduces how much noise (quantization error) will be added
to the signal by using more bits of precision. Quantization noise is caused by the introduction of
round-off error. If you are trying to reproduce a signal, such as a sine wave, you can represent the
amplitude of each sample with only so many digits of accuracy. The difference between the real
number and your approximation is round-off error, or noise.

By doubling the amplitude, you create half as much noise because the size of the steps of the
wave fonn stays the same and is therefore a smaller fraction of the amplitude.

In other words, if you try to represent a wavefonn using, for example, a range of only +3 to -3,
the size of the error in the output would be considerably larger than if you use a range of+ 127 to
-128 to represent the same signal. Proportionally, the digital value used to represent the
wavefonn amplitude will have a lower error. As you increase the number of possible sample
levels, you decrease the relative size of each step and, therefore, decrease the size of the error.

To produce quiet sounds, continue to define the wavefonn using the full range, but adjust the
volume. This maintains the same level of accuracy (signal-to-noise ratio) for quiet sounds as for
loud sounds.

ALIASING DISTORTION

When you use sampling to produce a wavefonn, a side effect is caused when the sampling rate
"beats" or combines with the frequency you wish to produce. This produces two additional
frequencies, one at the sampling rate plus the desired frequency and the other at the sampling rate
minus the desired frequency. This phenomenon is called aliasing distortion.

Aliasing distortion is eliminated when the sampling rate exceeds the output frequency by at least
7 KHz. This puts the beat frequency out'lide the range of the low-pass filter, cutting off the
undesirable frequencies. Figure 5-5 shows a frequency domain plot of the anti-aliasing low-pass
filter used in the system.

154 Amiga Hardware Reference Manual

0 db -\
filter response

\
-30 db

5kHz 10kHz 15kHz 20kHz 25kHz 30kHz

Filter passes all frequencies below about 5 kHz.

Figure 5-5: Frequency Domain Plot of Low-Pass Filter

Figure 5-6 shows that it is permissible to use a 12 KHz sampling rate to produce a 4 KHz
waveform. Both of the beat frequencies are outside the range of the filter, as shown in these
calculations:

12+4= 16KHz

12-4=8KHz

filter response
Odb--1\ 12kHz sampling frequency

4kHz

\ Diff.

\

\

-30db//_/~ .~, "~"'
<------ desired output frequency

Sum

I I
15kHz 20kHz

I
25kHz

Figure 5-6: Noise-free Output (No Aliasing Distortion)

I
30kHz

Audio Hardware 155

You can sec in Figure 5-7 that is unacceptable to use a 10 KHz sampling rate to produce a 4 KHz
wavefonn. One of the beat frequencies (10- 4) is within the range of the filter, allowing some of
that undesirable frequency to show up in the audio output.

filter response

0 db 1----- -I\
Diff.

4kHz
\

\
-30 db ~ I

5kHz
'

10 kHz sampling frequency

Sum

I I I
10kHz 15kHz 20kHz 25kHz

/----- desired output frequency

Figure 5-7: Some Aliasing Distortion

I
30kHz

All of this gives rise to the following equation, showing that the sampling frequency must exceed
the output frequency by at least 7 KHz, so that the beat frequency will be above the cutoff range
of the anti-aliasing filter:

Minimum sampling rate= highest frequency component+ 7KHz

The frequency component of the equation is stated as "highest frequency component" because
you may be producing a complex wavefonn with multiple frequency clements, rather than a pure
sine wave.

LOW-PASS FILTER

The system includes a low-pass filter that eliminates aliasing distortion as described above. This
filter becomes active around 4 KHz and gradually begins to attenuate (cut off) the signal.
Generally, you cannot clearly hear frequencies higher than 7 KHz. Therefore, you get the most
complete frequency response in the frequency range of 0 - 7 KHz. If you are making frequencies
from 0 to 7KHz, you should select a sampling rate no less than 14 KHz, which corresponds to a
sampling period in the range 124 to 256.

156 Amiga Hardware Reference Manual

At a sampling period around 320, you begin to lose the higher frequency values between 0 KHz
and 7KHz, as shown in Table 5-6.

Table 5-6: Sampling Rate and Frequency Relationship

Sampling Sampling Maximum Output
Period Rate (KHz) Frequency (KHz)

Maximum sampling rate 124 29 7

Minimum sampling rate 256 14 7
for 7 KHz output

Sampling rate too low 320 11 4
for 7 KHz output

In A2000's with 2layer motherboards and later ASOO models there is a control bit that allows the
audio output to bypass the low pass filter. This control bit is the same output bit of the 8520 CIA
that controls the brightness of the red "power" LED (CIA A $BFE001 - Bit 1: /LED). Bypassing
the filter allows for improved sound in some applications, but an external filter with an
appropriate cutoff frequency may be required.

Using Direct (Non-DMA) Audio Output

It is possible to create sound by writing audio data one word at a time to the audio output
addresses, instead of setting up a list of audio data in memory. This method of controlling the
output is more processor-intensive and is therefore not recommended.

To use direct audio output, do not enable the DMA for the audio channel you wish to usc; this
changes the timing of the interrupts. The normal interrupt occurs after a data address has been
read; in direct audio output, the interrupt occurs after one data word has been output.

Unlike in the DMA-controllcd automatic data output, in direct audio output, if you do not write a
new set of data to the output addresses before two sampling intervals have elapsed, the audio
output will cease changing. The last value remains as an output of the digital-to-analog converter.

The volume and period registers are set as usual.

Audio Hardware 157

The Equal-tempered Musical Scale

Table 5-7 gives a close approximation of the equal-tempered scale over one octave when the
sample size is 16 bytes. The "Period" column gives the period count you enter into the period
register. The length register AUDxLEN should be set to 8 (16 bytes = 8 words). The sample
should represent one cycle of the wavefonn.

Table 5-7: Equal-tempered Octave for a 16 Byte Sample

NTSC PAL Ideal Actual NTSC Actual PAL
Period Period Note Frequency Frequency Frequency

254 252 A 880.0 880.8 879.7
240 238 A# 932.3 932.2 931.4
226 224 B 987.8 989.9 989.6
214 212 c 1046.5 1045.4 1045.7
202 200 C# 1108.7 1107.5 1108.4
190 189 D 1174.7 1177.5 1172.9
180 178 D# 1244.5 1242.9 1245.4
170 168 E 1318.5 1316.0 1319.5
160 159 F 1396.9 1398.3 1394.2
151 150 F# 1480.0 1481.6 1477.9
143 141 G 1568.0 1564.5 1572.2
135 133 G# 1661.2 1657.2 1666.8

The table above shows the period values to use with a 16 byte sample to make tones in the second
octave above middle C. To generate the tones in the lower octaves, there are two methods you
can use, doubling the period value or doubling the sample size.

When you double the period, the time between each sample is doubled so the sample takes twice
as long to play. This means the frequency of the tone generated is cut in half which gives you the
next lowest octave. Thus, if you play a C with a period value of 214, then playing the same
sample with a period value of 428 will play a C in the next lower octave.

Likewise, when you double the sample size, it will take twice as long to play back the whole
sample and the frequency of the tone generated will be in the next lowest octave. Thus, if you
have an 8 byte sample and a 16 byte sample of the same wavefonn played at the same speed, the
16 byte sample will be an octave lower.

A sample for an equal-tempered scale typically represents one full cycle of a note. To avoid
aliasing distortion with these samples you should use period values in the range 124-256 only.
Periods from 124-256 correspond to playback rates in the range 14-28K samples per second
which makes the most effective use of the Amiga's 7KHz cut-off filter to prevent noise. To stay
within this range you will need a different sample for each octave.

158 Amiga Hardware Reference Manual

If you cannot use a different sample for each octave, then you will have to adjust the period value
over its full range 124-65536. This is easier for the programmer but can produce undesirable
high-frequency noise in the resulting tone. Read the section called "Aliasing Distortion" for
more about this.

The values in Table 5-7 were generated using the formula shown below. To calculate the tone
generated with a given sample size and period use:

Frequency= Clock Constant = 35795~5 = SSO.SHz
Sample Bytes* Period 16*Perwd

The clock constant in an NTSC system is 3579545 ticks per second. In a PAL system, the clock
constant is 3546895 ticks per second. Sample bytes is the number of bytes in one cycle of the
waveform sample. (The clock constant is derived from dividing the system clock value by 2. The
value will vary when using an external system clock, such as a genlock.)

Using the formula above you can generate the values needed for the even-tempered scale for any
arbitrary sample. Table 5-8 gives a close approximation of a five octave even tempered-scale
using five samples. The values were derived using the formula above. Notice that in each octave
period values are the same but the sample size is halved. The samples listed represent a simple
triangular wave form.

Audio Hardware 159

Table 5-8: Five Octave Even-tempered Scale

NTSC PAL Ideal ActuaiNTSC Actual PAL
Period Period Note Frequency Frequency Frequency

254 252 A 55.00 55.05 54.98
240 238 A# 58.27 58.26 58.21
226 224 B 61.73 61.87 61.85
214 212 c 65.40 65.34 65.35
202 200 C# 69.29 69.22 69.27
190 189 D 73.41 73.59 73.30
180 178 D# 77.78 77.68 77.83
170 168 E 82.40 82.25 82.47
160 159 F 87.30 87.39 87.13
151 150 F# 92.49 92.60 92.36
143 141 G 98.00 97.78 98.26
135 133 G# 103.82 103.57 104.17

Sample size= 256 bytes, AUDxLEN = 128

254 252 A 110.00 110.10 109.96
240 238 A# 116.54 116.52 116.43
226 224 B 123.47 123.74 123.70
214 212 c 130.81 130.68 130.71
202 200 C# 138.59 138.44 138.55
190 189 D 146.83 147.18 146.61
180 178 D# 155.56 155.36 155.67
170 168 E 164.81 164.50 164.94
160 159 F 174.61 174.78 174.27
151 150 F# 184.99 185.20 184.73
143 141 G 196.00 195.56 196.52
135 133 G# 207.65 207.15 208.35

Sample size= 128 bytes, AUDxLEN = 64

254 252 A 220.00 220.20 219.92
240 238 A# 233.08 233.04 232.86
226 224 B 246.94 247.48 247.41
214 212 c 261.63 261.36 261.42
202 200 C# 277.18 276.88 277.10
190 189 D 293.66 294.37 293.23
180 178 D# 311.13 310.72 311.35
170 168 E 329.63 329.00 329.88
160 159 F 349.23 349.56 348.55
151 150 F# 369.99 370.40 369.47
143 141 G 392.00 391.12 393.05
135 133 G# 415.30 414.30 416.70

Sample size = 64 bytes, AUDxLEN = 32

160 Amiga Hardware Reference Manual

NTSC PAL Ideal Actual NTSC Actual PAL
Period Period Note Frequency Frequency Frequency

254 252 A 440.0 440.4 439.8
240 238 A# 466.16 466.09 465.72
226 224 B 493.88 494.96 494.82
214 212 c 523.25 522.71 522.83
202 200 C# 554.37 553.77 554.20
190 189 D 587.33 588.74 586.46
180 178 D# 622.25 621.45 622.70
170 168 E 659.26 658.00 659.76
160 159 F 698.46 699.13 697.11
151 150 F# 739.99 740.80 738.94
143 141 G 783.99 782.24 786.10
135 133 G# 830.61 828.60 833.39

Sample size= 32 bytes, AUDxLEN = 16

254 252 A 880.0 880.8 879.7
240 238 A# 932.3 932.2 931.4
226 224 B 987.8 989.9 989.6
214 212 c 1046.5 1045.4 1045.7
202 200 C# 1108.7 1107.5 1108.4
190 189 D 1174.7 1177.5 1172.9
180 178 D# 1244.5 1242.9 1245.4
170 168 E 1318.5 1316.0 1319.5
160 159 F 1396.9 1398.3 1394.2
151 150 F# 1480.0 1481.6 1477.9
143 141 G 1568.0 1564.5 1572.2
135 133 G# 661.2 1657.2 1666.8

Sample size= 16 bytes, AUDxLEN = 8

Audio Hardware 161

256 Byte Sample

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94
96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126

128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98
96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66
64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34
32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30

-32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62
-64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94
-96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126

-127 -126 -124 -122 -120 -118 -116 -114 -112 -110 -108 -106 -104 -102 -100 -98
-96 -94 -92 -90 -88 -86 -84 -82 -80 -78 -76 -74 -72 -70 -68 -66
-64 -62 -60 -58 -56 -54 -52 -50 -48 -46 -44 -42 -40 -38 -36 -34
-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2

128 Byte Sample

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

128 124 120 116 112 108 104 100 96 92 88 84 80 76 72 68
64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
-127 -124 -120 -116 -112 -108 -104 -100 -96 -92 -88 -84 -80 -76 -72 -68
-64 -60 -56 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4

64 Byte Sample

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120
128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8

0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120
-127 -120 -112 -104 -96 -88 -80 -72 -64 -56 -48 -40 -32 -24 -16 -8

32 Byte Sample

0 16 32 48 64 80 96 112 128 112 96 80 64 48 32 16
0 -16 -32 -48 -64 -80 -96 -112 -127 -112 -96 -80 -64 -48 -32 -16

16 Byte Sample

0 32 64 96 128 96 64 32 0 -32 -64 -96 -127 -96 -64 -32

162 Amiga Hardware Reference Manual

Decibel Values for Volume Ranges

Table 5-9 provides the corresponding decibel values for the volume ranges of the Amiga system.

Table 5-9: Decibel Values and Volume Ranges

Volume Decibel Value Volume Decibel Value

64 0.0 32 -6.0
63 -0.1 31 -6.3
62 -0.3 30 -6.6
61 -0.4 29 -6.9
60 -0.6 28 -7.2
59 -0.7 27 -7.5
58 -0.9 26 -7.8
57 -1.0 25 -8.2
56 -1.2 24 -8.5
55 -1.3 23 -8.9
54 -1.5 22 -9.3
53 -1.6 21 -9.7
52 -1.8 20 -10.1
51 -2.0 19 -10.5
50 -2.1 18 -11.0
49 -2.3 17 -11.5
48 -2.5 16 -12.0
47 -2.7 15 -12.6
46 -2.9 14 -13.2
45 -3.1 13 -13.8
44 -3.3 12 -14.5
43 -3.5 11 -15.3
42 -3.7 10 -16.1
41 -3.9 9 -17.0
40 -4.1 8 -18.1
39 -4.3 7 -19.2
38 -4.5 6 -20.6
37 -4.8 5 -22.1
36 -5.0 4 -24.1
35 -5.2 3 -26.6
34 -5.5 2 -30.1
33 -5.8 1 -36.1

0 Minus infinity

Audio Hardware 163

The Audio State Machine

For an explanation of the various states, refer to Figure 5-8. There is one audio state machine for
each channel. The machine has eight states and is clocked at the clock constant rate (3.58 MHz
NTSC). Three of the states are basically unused and just transfer back to the idle (000) state.
One of the paths out of the idle state is designed for interrupt-driven operation (processor
provides the data), and the other path is designed for DMA-driven operation (the "Agnus"
special chip provides the data).

In interrupt-driven operation, transfer to the main loop (states 010 and 011) occurs immediately
after data is written by the processor. In the 010 state the upper byte is output, and in the 011
state the lower byte is output. Transitions such as 010----jOll----jOlQ occur whenever the period
counter counts down to one. The period counter is reloaded at these transitions. As long as the
interrupt is cleared by the processor in time, the machine remains in the main loop. Otherwise, it
enters the idle state. Interrupt~ are generated on every word transition (01J---j010).

In DMA-driven operation, transition to the 001 state occurs and DMA requests are sent to Agnus
as soon as DMA is turned on. Because of pipclining in Agnus, the first data word must be thrown
away. State 101 is entered as soon as this word arrives; a request for the next data word has
already gone out. When the data arrives, state 010 is entered and the main loop continues until
the DMA is turned off. The length counter counts down once with each word that comes in.
When it finishes, a DMA restart request goes to Agnus along with the regular DMA request. This
tells Agnus to reset the pointer to the beginning of the table of data. Also, the length counter is
reloaded and an interrupt request goes out soon after the length counter finishes (counts to one).
The request goes out just as the last word of the waveform starts its output.

DMA requests and restart requests arc transferred to Agnus once each horizontal line, and the data
comes back about 14 clock cycles later (the duration of a clock cycle is 280 ns).

In attach mode, things run a little differently. In attach volume, requests occur as they do in
normal operation (on the 011----jOlQ transition). In attach period, a set of requests occurs on the
01 0----jO 11 transition. When both attach period and attach volume are high, requests occur on both
transitions.

If the sampling rate is set much higher than the normal maximum sampling rate (approximately
29 KHz), the two samples in the buffer register will be repeated. If the filter on the Amiga is
bypassed and the volume is set to the maximum ($40), this feature can be used to make
modulated carriers up to 1.79 MHz. The modulation is placed in the memory map, with plus
values in the even bytes and minus values in the odd bytes.

The symbols used in the state diagram are explained in the following list. Upper-case names
indicate external signals; lower-case names indicate local signals.

AUDxON DMA on ''x'' indicates channel number (signal from DMACON).

164 Amiga Hardware Reference Manual

AUDxiP

AUDxiR

intreql

intreq2

AUDxDAT

AUDxDR

AUDxDSR

dmasen

percntrld

percount

perfin

lencntrld

len count

len fin

volcntrld

pbufldl

pbufld2

AUDxAV

AUDxAP

penhi

napnav

Audio interrupt pending (input to channel from interrupt circuitry).

Audio interrupt request (output from channel to interrupt circuitry)

Interrupt request that combines with intreq2 to form AUDxiR..

Prepare for interrupt request. Request comes out after the next 011~010
transition in normal operation.

Audio data load signal. Loads 16 bits of data to audio channel.

Audio DMA request to Agnus for one word of data.

Audio DMA request to Agnus to reset pointer to start of block.

Restart request enable.

Reload period counter from back-up latch typically written by processor
with AUDxPER (can also be written by attach mode).

Count period counter down one latch.

Period counter finished (value= 1).

Reload length counter from back-up latch.

Count length counter down one notch.

Length counter finished (value= 1).

Reload volume counter from back-up latch.

Load output buffer from holding latch written to by AUDxDAT.

Like pbufld1, but only during 010~011 with attach period.

Attach volume. Send data to volume latch of next channel instead of to
D~A converter.

Attach period. Send data to period latch of next channel instead of to the
D~A converter.

Enable the high 8 bits of data to go to the D~A converter.

I A UDxA V * I A UDxAP + A UDxA V-no attach stuff or else attach
volume. Condition for normal DMA and interrupt requests.

Audio Hardware 165

S02

sq2,1,0 The name of the state flip-flops, MSB to LSB.

sao

501

Brackets [i 'nd•cate actoon on fnndot,on
Parentheses! I ondocate c.:~usr qf <.tatf Trans•t•on

I {NOTE
I
I
I
I
I
I
I

E •cept tor th>s case. dmasen •s true j

~~:~.wA~~;·6~:~~~~xOA • dmas~n \

Figure 5-8: Audio State Diagram

ECS Audio. For information on the audio hardware in the Enhanced Chip Set, sec
the ECS register map in Appendix C.

166 Amiga Hardware Reference Manual

--~-

chapter six
BLITTER HARDWARE

This chapter covers the operation of the Amiga's blitter, the high speed line drawing and block
movement component of the system. The discussion is divided into three parts: blitter basics,
blitter area fill mode, and blitter line draw mode. Some example blitter operations are listed at the
end of the chapter.

For information concerning the blitter hardware in the Enhanced Chip Set, see Appendix C.

What is the Blitter?

The blitter is one of the two coprocessors in the Amiga. Part of the Agnus chip, it is used to copy
rectangular blocks of memory around and to draw lines. When copying memory, it is
approximately twice as fast as the 68000, able to move almost four megabytes per second. It can
draw lines at almost a million pixels per second.

In block move mode, the blitter can perform any logical operation on up to three source areas, it
can shift up to two of the source areas by one to fifteen bits, it can fill outlined shapes, and it can
mask the first and last words of each raster row. In line mode, any pattern can be imposed on a
line, or the line can be drawn such that only one pixel per horizontal line is set.

The blitter can only access Chip memory- that portion of memory accessible by the display
hardware. Attempting to use the blitter to read or write Fast or other non-Chip memory may
result in destruction of the contents of Chip memory.

A "blit" is a single operation of the blitter- perhaps the drawing of a line or movement of a
block of memory. A blit is performed by initializing the blitter registers with appropriate values
and then starting the blitter by writing the BLTSIZE register. As the blitter is an asynchronous
coprocessor, the 680x0 CPU continues to run as the blit is executing.

Slitter Hardware 169

Memory Layout

The blitter is a word blitter, not a bit blitter. All data fetched, modified, and written are in full
16-bit words. Through careful programming, the blitter can do many ''bit" type operations.

The blitter is particularly well suited to graphics operations. As an example, a 320 by 200 screen
set up to display 16 colors is organized as four bitplanes of 8,000 bytes each. Each bitplane
consists of 200 rows of 40 bytes or 20 16-bit words. (From here on, a "word" will mean a 16-bit
word.)

DMA Channels

The blitter has four DMA channels - three source channels, labeled A, B, and C, and one
destination channel, called D. Each of these channels has separate address pointer, modulo and
data registers and an enable bit. Two have shift registers, and one has a first and last word mask
register. All four share a single blit size register.

The address pointer registers are each composed of two words, named BLTxPTH and BL TxPfL.
(Here and later, in referring to a register, any '' x'' in the name should be replaced by the channel
label, A, B, C, or D.) The two words of each register are adjacent in the 68000 address space,
with the high address word first, so they can both be written with one 32-bit write from the
processor. The pointer registers should be written with an address in bytes. Because the blitter
works only on words, the least significant bit of the address is ignored. Because only Chip
memory is accessible, some of the most significant bits will be ignored as well. On machines
with 512 KB of Chip memory, the most significant 13 bits are ignored. On machines with more
Chip memory, fewer bits will are ignored. A valid, even, Chip memory address should always be
written to these registers.

Set unused bits to zero. Be sure to write zeros to all unused bits in the custom chip
registers. These bits may be used by later versions of the custom chips. Writing non­
zero values to these bit-; may cause unexpected results on future machines.

Each of the DMA channels can be independently enabled or disabled. The enable bits are bits
SRCA, SRCB, SRCC, and DEST in control register zero (BLTCONO).

When disabled, no memory cycles will be executed for that channel and, for a source channel, the
constant value stored in the data register of that channel will be used for each blitter cycle. For
this purpose, each ofthe three source channels have preloadable data registers, called BLTxDAT.

170 Amiga Hardware Reference Manual

Images in memory are usually stored in a linear fashion; each word of data on a line is located at
an address that is one greater than the word on its left. i.e. Each line is a "plus one"
continuation of the previous line.

20 21 22 23 24 25 26
27 28 29 30 31 32 33
34 35 36 37 38 39 40
41 42 43 44 45 46 47
48 49 50 51 52 53 54
55 56 57 58 59 60 61

Figure 6-1: How Images are Stored in Memory

The map in Figure 6-1 represents a single bitplane (one bit of color) of an image at word
addresses 20 through 61. Each of these addresses accesses one word (16 pixels) of a single
bitplane. If this image required sixteen colors, four bitplanes like this would be required in
memory, and four copy (move) operations would be required to completely move the image.

The blitter is very efficient at copying such blocks because it needs to be told only the starting
address (20), the destination address, and the size of the block (height = 6, width = 7). It will then
automatically move the data, one word at a time, whenever the data bus is available. When the
transfer is complete, the blitter will signal the processor with a flag and an interrupt.

NOTE: This copy (move) operation operates on memory and may or may not change
the memory currently being used for display.

All data copy blits are performed as rectangles of words, with a given width and height. All four
DMA channels use a single blit size register, called BLTSIZE, used for both the width and height.
The width can take a value of from 1 to 64 words (16 to 1024 bits). The height can run from 1 to
1024 rows. The width is stored in the least significant six bits of the BLTSIZE register. If a
value of zero is stored, a width count of 64 words is used. This is the only parameter in the blitter
that is given in words. The height is stored in the upper ten bits of the BLTSIZE register, with
zero representing a height of 1024 rows. Thus, the largest blit possible with the current Amiga
blitter is 1024 by 1024 pixels. However, shifting and masking operations may require an extra
word be fetched for each raster scan line, making the maximum practical horizontal width 1008
pixels.

8/itter counting. To emphasize the above paragraph: Blit width is in words with a
zero representing 64 words. Blit height is in lines with a zero representing 1024 lines.

Slitter Hardware 171

The blitter also has facilities, called modulos, for accessing images smaller than the entire
bitplane. Each of the four DMA channels has a 16-bit modulo register called BL TxMOD. As
each word is fetched (or written) for an enabled channel, the address pointer register is
incremented by two (two bytes, or one word). After each row of the blit is completed, the signed
16-bit modulo value for that DMA channel is added to the address pointer. (A row is defined by
the width stored in BLTSIZE.)

About blitter modulos. The modulo values are in bytes, not words. Since the blitter
can only operate on words, the least significant bit is ignored. The value is sign­
extended to the full width of the address pointer registers. Negative modulos can be
useful in a variety of ways, such as repeating a row by setting the modulo to the
negative of the width of the bitplane.

As an example, suppose we want to operate on a section of a full 320 by 200 pixel bitmap that
started at row 13, byte 12 (where both are numbered from zero) and the section is 10 bytes wide.
We would initialize the pointer register to the address of the bitplane plus 40 bytes per row times
13 rows, plus 12 bytes to get to the correct horizontal position. We would set the width to 5
words (10 bytes). At the end of each row, we would want to skip over 30 bytes to get to the
beginning of the next row, so we would use a modulo value of 30. In general, the width (in
words) times two plus the modulo value (in bytes) should equal the full width, in bytes, of the
bitplane containing the image.

These calculations are illustrated in Figure 6-1 which shows the required values used in the blitter
registers BLTxMOD and BLTxPTR.

About the blitter and ECS. The blitter size and pointer registers have increased
range under the Enhanced Chip Set (ECS). With the original version of the Amiga's
custom chips, blits were limited to 1008 by 1024 pixels. With the ECS version of the
custom chips, up to 32K by 32K pixel blits are possible. Refer to Appendix C for
more information on ECS and the blitter registers.

172 Amiga Hardware Reference Manual

row
number

--- <Mem_Addr>=Address(O,O)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

-
-
-
-

byte (column) number

0 10 20

~;:;: ~ sl.ip lei ~ bytes ::;: ~~
;

1-1-1- ' ' ' ' ' '

BLTxPTR = <Mem_Addr> + (40 * 13) + 12
= <Mem_Addr> + 532

BLTxMOD= 12+ 18
=30 bytes

' ' ' ' ' '

I··

30

I· 's~ ip ~~~ttytes •

, ,
' ' ' ' '

'

.......... _ b
- -------- one yte ----

·--. image to manipulate

Figure 6-2: BLTxPTR and BLTxMOD calculations

39

1·· ..

NOTE: The blitter can be used to process linear rather than rectangular regions by
setting the horizontal or vertical count in BLTSIZE to 1.

window
bitmap

Because each DMA channel has its own modulo register, data can be moved among bitplanes of
different widths. This is most useful when moving small images into larger screen bitplanes.

Slitter Hardware 173

Function Generator

The blitter can combine the data from the three source DMA channels in up to 256 different ways
to generate the values stored by the destination DMA channel. These sources might be one
bitplane from each of three separate graphics images. While each of these sources is a rectangular
region composed of many points, the same logic operation will be performed on each point
throughout the rectangular region. Thus, for purposes of defining the blitter logic operation it is
only necessary to consider what happens for all of the possible combinations of one bit from each
of the three sources.

There are eight possible combinations of values of the three bits, for each of which we need to
specify the corresponding destination bit as a zero or one. This can be visualized with a standard
truth table, as shown below. We have listed the three source channels, and the possible values for
a single bit from each one.

A B c D BL TCONO position Min term

0 0 0 ? 0 ABC
0 0 1 ? 1 ABC
0 1 0 ? 2 ABC
0 1 1 ? 3 ABC
1 0 0 ? 4 ABC
1 0 1 ? 5 ABC
1 1 0 ? 6 ABC
1 1 1 ? 7 ABC

This information is collected in a standard format, the LF control byte in the BLTCONO register.
This byte programs the blitter to perform one of the 256 possible logic operations on three
sources for a given blit.

To calculate the LF control byte in BLTCONO, fill in the truth table with desired values for D,
and read the function value from the bottom of the table up.

For example, if we wanted to set all bits in the destination where the corresponding A source bit
is 1 or the corresponding B source bit is 1, we would fill in the last four entries of the truth table
with 1 (because the A bit is set) and the third, fourth, seven, and eight entries with 1 (because the
B bit is set), and all others (the first and second) with 0, because neither A nor B is set Then, we
read the truth table from the bottom up, reading 11111100, or $FC.

For another example, an LF control byte of $80 (= 1000 0000 binary) turns on bits only for those
points of the D destination rectangle where the corresponding bits of A, B, and C sources were all
on (ABC = 1, bit 7 of LF on). All other points in the rectangle, which correspond to other
combinations for A, B, and C, will be 0. This is because bits 6 through 0 of the LF control byte,
which specify the D output for these situations, are set to 0.

174 Amiga Hardware Reference Manual

DESIGNING THE LF CONTROL BYTE WITH MINTERMS

One approach to designing the LF control byte uses logic equations. Each of the rows in the truth
table corresponds to a "mintenn ", which is a particular~ent of values to the A, B, and C
bits. For instance, the first mintenn is usually written ABC, or "not A and not B and not C".
The last is written as ABC.

Blitter logic. Two tenns that are adjacent are AND'ed, and two tenns that are
separated by "+" are OR'ed. AND has a higher precedence, so AB + BC is equal to
(AB) + (BC).

Any function can be written as a sum of mintenns. If we wanted to calculate the function where
D js one when the A bit is set and the C bit is clear, or when the B bit is set, we can write that as
AC+B, or "A and not Cor B". Since "1 and A" is "A":

-
D=AC+B

D = A(l)C + (l)B(l)

Since either A or A is true (1 = A + A), and similarly forB, and C; we can expand the above
equation further:

D = A(l)C + (l)B(l)

D = A(B + B)C + (A + A)B(C + C)

D = ABC + ABC + AB(C + C) + AB(C + C)

D=ABC+ABC+ABC+ABC+ABC+ABC

After eliminating duplicates, we end up with the five mintenns:

AC+B = ABC+ ABC +ABC + ABC+ ABC

These correspond to BLTCONO bit positions of 6, 4, 7, 3, and 2, according to our truth table,
which we would then set, and clear the rest.

The wide range of logic operations allow some sophisticated graphics techniques. For instance,
you can move the image of a car across some pre-existing building images with a few blits.
Producing this effect requires predrawn images of the car, the buildings (or background), and a
car ''mask'' that contains bits set wherever the car image is not transparent. This mask can be
visualized as the shadow of the car from a light source at the same position as the viewer.

Slitter Hardware 175

About mask bitplanes. The mask for the car need only be a single bitplane
regardless of the depth of the background bitplane. This mask can be used in tum on
each of the background bitplanes.

To animate the car, first save the background image where the car will be placed. Next copy the
car to its first location with another blit. Your image is now ready for display. To create the next
image, restore the old background, save the next portion of the background where the car will be,
and redraw the car, using three separate blits. (This technique works best with beam­
synchronized blits or double buffering.)

To temporarily save the background, copy a rectangle of the background (from the A channel, for
instance) to some backup buffer (using the D channel). In this case, the function we would use is
''A'', the standard copy function. From Table 6-1, we note that the corresponding LF code has a
value of $FO.

To draw the car, we might use the A DMA channel to fetch the car mask, the B DMA channel to
fetch the actual car data, the C DMA channel to fetch the background, and the D DMA channel to
write out the new image.

Warning: We must fetch the destination background before we write it, as only a
portion of a destination word might need to be modified, and there is no way to do a
write to only a portion of a word.

When blitting the car to the background we would want to use a function that, whenever the car
mask (fetched with DMA channel A) had a bit set, we would pass through the car data from B,
and whenever A did not have a bit set, we would pass through the original backgroun_il from C.
The corresponding function, commonly referred to as the cookie-cut function, is AB+AC, which
works out to an LF code value of $CA.

To restore the background and prepare for the next frame, we would copy the information saved
in the first step back, with the standard copy function ($FO).

If you shift the data and the mask to a new location and repeat the above three steps over and
over, the car will appear to move across the background (the buildings).

NOTE: This may not be the most effective method of animation, depending on the
application, but the cookie-cut function will appear often.

Table 6-llists some of the most common functions and their values, for easy reference.

176 Amiga Hardware Reference Manual

Table 6-1: Table of Common Mintenn Values

Selected BLTCONO Selected BLTCONO
Equation LFCode Equation LFCode

D=A $FO D= AB $CO

- -
D=A $OF D= AB $30

-
D=B $CC D= AB $0C

D=B $33 D= AB $03

D=C $AA D= BC $88

- -
D=C $55 D= BC $44

-
D=AC $AO D= BC $22

-
D=AC $50 D= AC $11

- -
D=AC $0A D= A+B $F3

D=AC $05 D= A+B $3F

-
D=A+B $PC D= A+C $F5

-
D=A+B $CF D= A+C $5F

-
D=A+C $FA D= B+C $DD

-
D=A+C $AF D= B+C $77

-
D=B+C $EE D= AB +AC $CA

-
D=B+C $BB

Slitter Hardware 177

DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS

Another way to arrive at a particular function is through the use of Venn diagrams:

Slitter

Figure 6-3: Blitter Mintenn Venn Diagram

1. To select a function D=A (that is, destination = A source only), select only the mintenns that
are totally enclosed by the A-circle in the Figure above. This is the set of mintenns 7, 6, 5,
and 4. When written as a set of Is for the selected minterms and Os for those not selected,
the value becomes:

Minterm Number
Selected Mintenns

76543210
11110000

F 0 equals $FO

2. To select a function that is a combination of two sources, look for the minterms by both of
the circles (their intersection). For example, the combination AB (A ''and'' B) is represented
by the area common to both the A and B circles, or mintenns 7 and 6.

Minterm Numbers
Selected Mintenns

178 Amiga Hardware Reference Manual

76543210
11000000

C 0 equals $CO

3. To use a function that is the inverse, or "not", of one of the sources, such as A, take all of
the mintenns not enclosed by the circle represented by A on the above Figure. In this case,
we have mintenns 0, 1, 2, and 3.

Mintenn Numbers
Selected Mintenns

76543210
00001111

0 F equals $OF

4. To combine mintenns, or "or" them, "or" the values together. For example, the equation
AB+BC becomes

Mintenn Numbers
AB
BC

AB+BC

Shifts and Masks

76543210
11000000
10001000

11001000
C 8 equals $C8

Up to now we have dealt with the blitter only in moving words of memory around and combining
them with logic operations. This is sufficient for moving graphic images around, so long as the
images stay in the same position relative to the beginning of a word. If our car image has its
leftmost pixel on the second pixel from the left, we can easily draw it on the screen in any
position where the leftmost pixel also starts two pixels from the beginning of some word. But
often we want to draw that car shifted left or right by a few pixels. To this end, both the A and B
DMA channels have a barrel shifter that can shift an image between 0 and 15 bits.

This shifting operation is completely free; it requires no more time to execute a blit with shifts
than a blit without shifts, as opposed to shifting with the 680x0. The shift is normally towards
the right. This shifter allows movement of images on pixel boundaries, even though the pixels
are addressed 16 at a time by each word address of the bitplane image.

So if the incoming data is shifted to the right, what is shifted in from the left? For the first word
of the blit, zeros are shifted in; for each subsequent word of the same blit, the data shifted out
from the previous word is shifted in.

The shift value for the A channel is set with bits 15 through 12 of BL TCONO; the B shift value is
set with bits 15 through 12 of BLTCONl. For most operations, the same value will be used for
both shifts. For shifts of greater than fifteen bits, load the address register pointer of the
destination with a higher address; a shift of 100 bits would require the destination pointer to be
advanced 100/16 or 6 words (12 bytes), and a right shift of the remaining 4 bits to be used.

Slitter Hardware 179

As an example, let us say we are doing a blit that is three words wide, two words high, and we are
using a shift of 4 bits. For simplicity, let us asswne we are doing a straight copy from A to D.
The first word that will be written to D is the first word fetched from A, shifted right four bits
with zeros shifted in from the left. The second word will be the second word fetched from the A,
shifted right, with the least significant (rightmost) four bits of the first word shifted in. Next, we
will write the first word of the second row fetched from A, shifted four bits, with the least
significant four bits of the last word from the first row shifted in. This would continue until the
blit is finished.

On shifted blits, therefore, we only get zeros shifted in for the first word of the first row. On all
other rows the blitter will shift in the bits that it shifted out of the previous row. For most
graphics applications, this is undesirable. For this reason, the blitter has the ability to mask the
first and last word of each row coming through the A DMA channel. Thus, it is possible to
extract rectangular data from a source whose right and left edges are between word boundaries.
These two registers are called BL T AFWM and BL TAL WM, for blitter A channel first and last
word masks. When not in use, both should be initialized to all ones ($FFFF).

A note about fonts. Text fonts on the Amiga are stored in a packed bitmap.
Individual characters from the font are extracted using the blitter, masking out
unwanted bits. The character may then be positioned to any pixel alignment by
shifting it the appropriate amount.

These masks are '' anded'' with the source data, before any shifts are applied. Only when there is
a J bit in the first-word mask will that bit of source A actually appear in the logic operation. The
first word of each row is anded with BLTAFWM, and the last word is "anded" with
BLTALWM. If the width of the row is a single word, both masks are applied simultaneously.

The masks are also useful for extracting a certain range of ''columns'' from some bitplane. Let
us say we have, for example, a predrawn rectangle containing text and graphics that is 23 pixels
wide. The leftmost edge is the leftmost bit in its bitmap, and the bitmap is two words wide. We
wish to render this rectangle starting at pixel position 5 into our 320 by 200 screen bitmap,
without disturbing anything that lies outside of the rectangle.

180 Amiga Hardware Reference Manual

source
DMAB

mask on
DMAA

final
destination
DMAD
(points to same
address as OMAC)

destination
before blit
DMAC
(to be ove!Written)

t --- -- ------ --- -- --- --- --- ----- -- two word source bitmap - - - - - - - - -- - - - - -- --- -- -~

t------------------ extracta23-bitimage ----------------1 I
------------ 16-bitword ------------1 1

00000000
11111111
10101010

00000000
11111111
01010101

00000000
11111111
10101010

00000000
11111111
01010101

Spurce is passed through,mask when it is a one. otherwise_the destination is copied.
I I I I

11111111
first word mask

00000000
11111111
10101010

00800000
11111111
01010101

00000000
11111111
10101010

11111111
11111111
11111111

+ + + +
.-----~-----------L--------------~----·~-----·~~~--.~-.

' ' 11111111
11111111
11111111

11111111
11111111
11111111

11111111
11111111
11111111

11111111
11111111
11111111

' ' '

Destination does not change where mask is 0. - ... '

Figure 6-4: Extracting a Range of Columns

To do this, we point the B DMA channel at the bitmap containing the source image, and the D
DMA channel at the screen bitmap. We use a shift value of 5. We also point the C DMA channel
at the screen bitmap. We use a blit width of 2 words. What we need is a simple copy operation,
except we wish to leave the first five bits of the first word, and the last four bits (2 times 16, less
23, less 5) of the last word alone. The A DMA channel comes to the rescue. We preload the A
data register with $FFFF (all ones), and use a first word mask with the most significant five bits
set to zero ($07FF) and a last word mask with the least significant four bits set to zero ($FFFO).
We do not enable the A DMA channel, but only the B, C, and D channels, since we want to use
the A channel as a simple row mask. We then wish to pass the B (source) data along wherever
the A channel is 1 (for a minterm of AB) and p~s along the original destination data (from the C
chann~l) wherever A is 0 (for a minterm of AC), yielding our classic cookie-cut function of
AB+AC, or $CA.

About disabling. Even though the A channel is disabled, we use It m our logic
function and preload the data register. Disabling a channel simply turns off the
memory fetches for that channel; all other operations are still performed, only from a
constant value stored in the channel's data register.

Blitter Hardware 181

An alternative but more subtle way of accomplishing the same thing is to use an A shift of five, a
first word mask of all ones, and a last word mask with the rightmost nine bits set to zero. All
other registers remain the same.

Warning: Be sure to load the blitter immediate data registers only after setting the
shift count in BLTCONO/BLTCONl, as loading the data registers first will lead to
unpredictable results. For instance, if the last person left B SHIFT to be "4 ", and I
load BDATA with "1" and then change BSHIFT to "2", the resulting BDATA that
is used is "1<<4", not "1<<2". The act ofloading one of the data registers "draws"
the data through the machine and shifts it.

Descending Mode

Our standard memory copy blit works fine if the source docs not overlap the destination. If we
want to move an image one row down (towards increasing addresses), however, we run into a
problem - we overwrite the second row before we get a chance to copy it! The blitter has a
special mode of operation- descending mode- that solves this problem nicely.

Descending mode is turned on by setting bit one of BLTCONl (defined as BLITREVERSE). If
you use descending mode the address pointers will be decremented by two (bytes) instead of
incremented by two for each word fetched. In addition, the modulo values will be subtracted
rather than added. Shifts are then towards the left, rather than the right, the first word mask
masks the last word in a row (which is still the first word fetched), and the last word mask masks
the first word in a row.

Thus, for a standard memory copy, the only difference in blittcr setup (assuming no shifting or
masking) is to initialize the address pointer registers to point to the last word in a block, rather
than the first word. The modulo values, blit size, and all other parameters should be set the same.

NOTE: This differs from predecrement versus postincrement in the 680x0, where an
address register would be initialized to point to the word after the last, rather than the
last word.

Descending mode is also necessary for area filling, which will be covered in a later section.

182 Amiga Hardware Reference Manual

Copying Arbitrary Regions

One of the most common uses of the blitter is to move arbitrary rectangles of data from one
bitplane to another, or to different positions within a bitplane. These rectangles are usually on
arbitrary bit coordinates, so shifting and masking are necessary. There are further complications.
It may take several readings and some experimentation before everything in this section can be
understood.

A source image that spans only two words may, when copied with certain shifts, span three
words. Our 23 pixel wide rectangle above, for instance, when shifted 12 bits, will span three
words. Alternatively, an image spanning three words may fit in two for certain shifts. Under all
such circumstances, the blit size should be set to the larger of the two values, such that both
source and destination will fit within the blit size. Proper masking should be applied to mask out
unwanted data.

Some general guidelines for copying an arbitrary region are as follows.

1. Use the A DMA channel, disabled, preloaded with all ones and the appropriate mask and
shift values, to mask the cookie cut function. Use the B channel to fetch the source data, the
C channel to fetch the destination data, and the D channel to write the destination data. Use
the cookie-cut function $CA.

2. If shifting, always use ascending mode if bit shifting to the right, and use descending mode if
bit shifting to the left.

NOTE: These shifts are the shifts of the bit position of the leftmost edge within a
word, rather than absolute shifts, as explained previously.

3. If the source and destination overlap, use ascending mode if the destination has a lower
memory address (is higher on the display) and descending mode otherwise.

4. If the source spans more words than the destination, use the same shift value for the A
channel as for the source B channel and set the first and last word masks as if they were
masking the B source data.

5. If the destination spans more words than the source, use a shift value of zero for the A
channel and set the first and last word masks as if they were masking the destination D data.

6. If the source and destination span the same number of words, use the A channel to mask
either the source, as in 4, or the destination, as in 5.

Slitter Hardware 183

------------·--

Warning: Conditions 2 and 3 can be contradictory if, for instance, you are trying to
move an image one pixel down and to the right. In this case, we would want to use
descending mode so our destination does not overwrite our source before we use the
source, but we would want to use ascending mode for the right shift. In some
situations, it is possible to get around general guideline 2 above with clever masking.
But occasionally just masking the first or last word may not be sufficient; it may be
necessary to mask more than 16 bits on one or the other end. In such a case, a mask
can be built in memory for a single raster row, and the A DMA channel enabled to
explicitly fetch this mask. By setting the A modulo value to the negative of the width
of the mask, the mask will be repeatedly fetched for each row.

Area Fill Mode

In addition to copying data, the blitter can simultaneously perform a fill operation during the
copy. The fill operation has only one restriction - the area to fill must be defined first by
drawing untextured lines with only one bit set per horizontal row. A special line draw mode is
available for this operation. Use a standard copy blit (or any other blit, as area fills take place
after all shifts, masks and logical combination of sources). Descending mode must be used. Set
either the inclusive-fill-enable bit (FILL_OR, or bit 3) or the exclusive-fill-enable bit
(FILL_XOR, or bit 4) in BLTCON1. The inclusive fill mode fills between lines, leaving the lines
intact. The exclusive fill mode fills between lines, leaving the lines bordering the right edge of
filled regions but deleting the lines bordering the left edge. Exclusive fill yields filled shapes one
pixel narrower than the same pattern filled with inclusive fill.

For instance, the pattern:

00100100-00011000

filled with inclusive fill, yields:

00111100-00011000

with exclusive fill, the result would be

00011100-00001000

(Of course, fills are always done on full 16-bit words.)

184 Amiga Hardware Reference Manual

, _________ ----------

There is another bit (FILL_CARRYIN or bit 3 in BLTCON1) that forces the area "outside" the
lines be filled; for the above example, with inclusive fill, the output would be

11100111-11111111

with exclusive fill, the output would be

11100011-11110111

1 1
1 1

1 1
1 1

11
1 1

1 1
1 1

before

1
1

1

1
1

1
1
1

1 1
11

1 1
1
1

11111
11111

1111
111

11
111

1111
11111

after

Figure 6-5: Use of the FCI Bit- Bit Is a 0

11111
11111

1111
111

11
111

1111
11111

If the FCI bit is a 1 instead of a 0, the area outside the lines is filled with 1s and the area inside the
lines is left with Os in between.

1 1
1 1

1 1
1 1

11
1 1

1 1
1 1

before

1 1
1 1

1 1
1 1

11
1 1

1 1
1 1

after

111 111111 11
111 1111111 11
1111 11111111 .11
11111 111111111 11
111111111111111111
11111 111111111 11
1111 11111111 11
111 1111111 11

Figure 6-6: Use of the FCI Bit -Bit Is a 1

If you wish to produce very sharp, single-point vertices, exclusive-fill enable must be used.
Figure 6-7 shows how a single-point vertex is produced using exclusive-fill enable.

Blitter Hardware 185

------------·--

before after exclusive fill

1 1 1 1 1111 1111
1 1 1 1 111 111

1 1 1 1 11 11
11 11 1 1

1 1 1 1 11 11
1 1 1 1 111 111

1 1 1 1 1111 1111

Figure 6-7: Single-Point Vertex Example

The blitter uses the fill carry-in bit as the starting fill state beginning at the rightmost edge of each
line. For each '' 1'' bit in the source area, the blitter flips the fill state, either filling or not filling
the space with ones. This continues for each line until the left edge of the blit is reached, at which
point the filling stops.

Slitter Done Flag

When the BLTSIZE register is written the blit is started. The processor does not stop while the
blitter is working, though; they can both work concurrently, and this provides much of the speed
evident in the Amiga. This does require some amount of care when using the blitter.

A blitter done flag, also called the blitter busy flag, is provided as DMAF _BLTDONE in
DMACONR. This flag is set when a blit is in progress.

About the blitter done flag. If a blit has just been started but has been locked out of
memory access because of, for instance, display fetches, this bit may not yet be set.
The processor, on the other hand, may be running completely uninhibited out of Fast
memory or its internal cache, so it will continue to have memory cycles.

The solution is to read a chip memory or hardware register address with the processor before
testing the bit. This can easily be done with the sequence:

btst.b #DMAB_BLTDONE-8,DMACONR(al)
btst.b #DMAB_BLTDONE-B,DMACONR(al)

where al has been preloaded with the address of the hardware registers. The first "test" of the
blitter done bit may not return the correct result, but the second will.

186 Amiga Hardware Reference Manual

NOTE: Starting with the Fat Agnus the blitter busy bit has been "fixed" to be set as
soon as you write to BLTSIZE to start the blit, rather than when the blitter geL<; its first
DMA cycle. However, not all machines will use these newer chips, so it is best to rely
on the above method of testing.

MULTITASKING AND THE BUTTER

When a blit is in progress, none of the blitter registers should be written. For details on
arbitration of blitter access in the system, please refer to the ROM Kernel Manual. In particular,
read the discussion about the OwnBlitter() and DisownBlitter() functions. Even after the blitter
has been "owned", a blit may still be finishing up, so the blitter done flag should be checked
before using it even the first time. Use of the ROM kernel function WaitBlit() is recommended.

You should also check the blitter done flag before using results of a blit. The blit may not be
finished, so the data may not be ready yet. This can lead to difficult to find bugs, because a 68000
may be slow enough for a blit to finish without checking the done flag, while a 68020, perhaps
running out of its cache, may be able to get at the data before the blitter has finished writing it.

Let us say that we have a subroutine that displays a text box on top of other imagery temporarily.
This subroutine might allocate a chunk of memory to hold the original screen image while we arc
displaying our text box, then draw the text box. On exit, the subroutine might blit the original
imagery back and then free the allocated memory. If the memory is freed before the blitter done
flag is checked, some other process might allocate that memory and store new data into it before
the blit is finished, trashing the blitter source and, thus, the screen imagery being restored.

Interrupt Flag

The blitter also has an interrupt flag that is set whenever a blit finishes. This flag, INTF _BLIT,
can generate a 680x0 interrupt if enabled. For more information on interrupts, see Chapter 7
''System Control Hardware.''

Zero Flag

A blitter zero flag is provided that can be tested to determine if the logic operation selected has
resulted in zero bits for all destination bits, even if those destination bits are not written due to the
D DMA channel being disabled. This feature is often useful for collision detection, by
performing a logical "and" on two source images to test for overlap. If the images do not
overlap, the zero flag will stay true.

The Zero flag is only valid after the blitter has completed its operation and can be read from bit
DMAF_BLTNZERO of the DMACONR register.

Slitter Hardware 187

Pipeline Register

The blitter performs many operations in each cycle - shifting and masking source words, logical
combination of sources, and area fill and zero detect on the output. To enable so many things to
take place so quickly, the blitter is pipelined. This means that rather than performing all of the
above operations in one blitter cycle, the operations are spread over two blitter cycles. (Here
"cycle" is used very loosely for simplicity.) To clarify this, the blitter can be imagined as two
chips connected in series. Every cycle, a new set of source operations come in, and the first chip
performs its operations on the data. It then passes the half-processed data to the second chip to be
finished during the next cycle, when the first chip will be busy at work on the next set of data.
Each set of data takes two "cycles" to get through the two chips, overlapped so a set of data can
be pumped through each cycle.

What all this means is that the first two sets of sources are fetched before the first destination is
written. This allows you to shift a bitmap up to one word to the right using ascending mode, for
instance, even though normally parts of the destination would be overwritten before they were
fetched.

USE Code
in Active

BLTCONO Channels Cycle Sequence

F A B c D AO BO co - Al Bl Cl DO A2 B2 C2 Dl D2
E A B c AO BO co Al Bl Cl A2 B2 C2
D A B D AO BO - Al Bl DO A2 B2 Dl - D2
c A B AO BO - Al Bl - A2 B2
B A c D AO co - Al Cl DO A2 C2 Dl - D2
A A c AO co Al Cl A2 C2
9 A D AO - Al DO A2 Dl - D2
8 A AO - Al - A2
7 B c D BO co - Bl Cl DO - B2 C2 Dl - D2
6 B c BO co - Bl Cl - B2 C2
5 B D BO - Bl DO - B2 Dl - D2
4 B BO - Bl - B2
3 c D co - Cl DO - C2 Dl - D2
2 c co - Cl - C2
1 D DO - Dl - D2
0 none

Table 6-2: Typical Blitter Cycle Sequence

188 Amiga Hardware Reference Manual

Here are a few caveats to keep in mind about Table 6-2.

o No fill.

o No competing bus activity.

o Three-word blit.

o Typical operation involves fetching all sources twice before the first destination becomes
available. This is due to internal pipelining. Care must be taken with overlapping source and
destination regions.

Warning: This Table is only meant to be an illustration of the typical order of blitter
cycles on the bus. Bus cycles are dynamically allocated based on blitter operating
mode; competing bus activity from processor, bitplanes, and other DMA channels;
and other factors. Commodore Amiga does not guarantee the accuracy of or future
adherence to this chart. We reserve the right to make product improvements or design
changes in this area without notice.

Line Mode

In addition to all of the functions described above, the blitter can draw patterned lines. The line
draw mode is selected by setting bit 0 (LINEMODE) of BLTCONl, which changes the meaning
of some other bits in BLTCONO and BLTCONl. In line draw mode, the blitter can draw lines up
to 1024 pixels long, it can draw them in a variety of modes, with a variety of textures, and can
even draw them in a special way for simple area fill.

Many of the blitter registers serve other purposes in line-drawing mode. Consult Appendix A for
more detailed descriptions of the use of these registers and control bits in line-drawing mode.

In line mode, the blitter draws a line from one point to another, which can be viewed as a vector.
The direction of the vector can lie in any of the following eight octants. (In the following
diagram, the standard Amiga convention is used, with x increasing towards the right and y
increasing down.) The number in parenthesis is the octant numbering; the other number
represents the value that should be placed in bits 4 through 2 of BL TCONI.

Slitter Hardware 189

(3)
7

I
(2) 1 (1)

3 I 1

I
(0)

6

-~5--~--4-:-

2 I o
(5) (6)

I

Figure 6-8: Octants for Line Drawing

Line drawing based on octants is a simplification that takes advantage of symmetries between x
and -x, y and -y. The following Table lists the octant number and corresponding values:

Table 6-3: BLTCONl Code Bits for Octant Line Drawing

BL TCONl Code Bits
4 3 2

1 1 0
0 0 1
0 1
1 1 1
1 0 1
0 1 0
0 0 0
1 0 0

Octant#

0
1
2
3
4
5
6
7

We initialize BLTCON1 bits 4 through 2 according to the above Table. Now, we introduce the
variables dx and dy, and set them to the absolute values of the difference between the x
coordinates and they coordinates of the endpoints of the line, respectively.

190 Amiga Hardware Reference Manual

dx = abs(x2 - xl)
dy = abs(y2- yl)

Now, we rearrange them if necessary so dx is greater than dy.

if (dx < dy)
{

temp = dx
dx dy ;
dy = temp
}

Alternately, set dx and dy as follows:

dx = max(abs(x2- xl), abs(y2- yl))
dy = min(abs(x2- xl), abs(y2- yl))

These calculations have the effect of ''normalizing'' our line into octant 0; since we have already
informed the blitter of the real octant to use, it has no difficulty drawing the line.

We initialize the A pointer register to 4 * dy- 2 * dx. If this value is negative, we set the sign bit
(SIGNFLAG in BLTCONl), otherwise we clear it. We set the A modulo register to 4 * (dy- dx)
and the B modulo register to 4 * dy.

The A data register should be preloaded with $8000. Both word masks should be set to $FFFF.
The A shift value should be set to the x coordinate of the first point (xl) modulo 15.

The B data register should be initialized with the line texture pattern, if any, or $FFFF for a solid
line. The B shift value should be set to the bit number at which to start the line texture (zero
means the last significant bit.)

The C and D pointer registers should be initialized to the word containing the first pixel of the
line; the C and D modulo registers should be set to the width of the bitplane in bytes.

The SRCA, SRCC, and DEST bits of BL TCONO should be set to one, and the SRCB flag should
be set to zero. The OVFLAG should be cleared. If only a single bit per horizontal row is desired,
the ONEDOT bit of BL TCONl should be set; otherwise it should be cleared.

The logic function remains. The C DMA channel represents the original source, the A channel
the bi!_ to set in the line, and the B channel the pattern to draw. Thus, to draw a line, the function
AB+AC is the most common. To draw ti:!_e !!_ne using exclusive-or mode, so it can be easily
erased by drawing it again, the function ABC+AC can be used.

We set the blit height to the length of the line, which is dx + 1. The width must be set to two for
all line drawing. (Of course, the BL TSIZE register should not be written until the very end, when
all other registers have been filled.)

Slitter Hardware 191

REGISTER SUMMARY FOR LINE MODE

Preliminary setup:

The line goes from (xl,yl) to (x2,y2).

dx = max(abs(x2- xl), abs(y2- yl))
dy = min(abs(x2- xl), abs(y2- yl))

Register setup:

BLT ADAT = $8000
BLTBDAT =line texture pattern ($FFFF for a solid line)

BLTAFWM = $FFFF
BLTALWM = $FFFF

BLTAMOD=4 * (dy-dx)
BLTBMOD = 4 * dy
BLTCMOD = width of the bitplane in bytes
BLTDMOD =width of the bitplane in bytes

BLTAPT = (4 * dy)- (2 * dx)
BL TBPT = unused
BL TCPT = word containing the first pixel of the line
BLTDPT =word containing the first pixel of the line

BLTCONO bits 15-12 =xi modulo 15
BLTCONO bits SRCA, SRCC, and SRCD = 1
BLTCONO bit SRCB = 0

If exclusive-or line mode:
then BLTCONO LF control byte = ABC ± AC
else BL TCONO LF control byte = AB + AC

BLTCONI bitLINEMODE= 1
BLTCONl bit OVFLAG = 0
BLTCONl bits 4-2 =octant number from table
BLTCONI bits 15-12 =start bit for line texture (0 =last significant bit)

If (((4 * dy)- (2 * dx)) < 0):
then BLTCONl bit SIGNFLAG = 1
else BLTCONl bit SIGNFLAG = 0

If one pixeVrow:
then BLTCONl bit ONEDOT = 1
else BLTCONl bit ONEDOT= 0

BLTSIZE bits 15-6 = dx + 1
BLTSIZE bits 5-0= 2

Warning: You must set the BLTSIZE register last as it starts the blit.

192 Amiga Hardware Reference Manual

Slitter Speed

The speed of the blitter depends entirely on which DMA channels are enabled. You might be
using a DMA channel as a constant, but unless it is enabled, it does not count against you. The
minimum blitter cycle is four ticks; the maximum is eight ticks. Use of the A register is always
free. Usc of the B register always adds two ticks to the blitter cycle. Usc of either CorD is free,
but use of both adds another two ticks. Thus, a copy cycle, using A and D, takes four clock ticks
per cycle; a copy cycle using B and D takes six ticks per cycle, and a generalized bit copy using
B, C, and D takes eight ticks per cycle. When in line mode, each pixel takes eight ticks.

The system clock speed for NTSC Amigas is 7.16 megahertz (PAL Amigas 7.00 megahertz).
The clock for the blitter is the system clock. To calculate the total time for the blit in
microseconds, excluding setup and DMA contention, you use the equation (for NTSC):

n*H*W
t=

7.16

For PAL:

n* H*W
t=

7.09

where t is the time in microseconds, n is the number of clocks per cycle, and H and W are the
height and width (in words) of the blit, respectively.

For instance, to copy one bitplane of a 320 by 200 screen to another bitplane, we might choose to
use the A and D channels. This would require four ticks per blitter cycle, for a total of

4 * 200 * 20 ----- = 2235 microseconds.
7.16

These timings do not take into account blitter setup time, which is the time required to calculate
and load the blitter registers and start the blit. They also ignore DMA contention.

Slitter Hardware 193

Blitter Operations and System DMA

The operations of the blitter affect the performance of the rest of the system. The following
sections explain how system performance is affected by blitter direct memory access priority,
DMA time slot allocation, bus sharing between the 680x0 and the display hardware, the
operations of the blitter and Copper, and different play field display sizes.

The blitter performs its various data-fetch, modify, and store operations through DMA sequences,
and it shares memory access with other devices in the system. Each device that accesses memory
has a priority level assigned to it, which indicates its importance relative to other devices.

Disk DMA, audio DMA, display DMA, and sprite DMA all have the highest priority level.
Display DMA has priority over sprite DMA under certain circumstances. Each of these four
devices is allocated a group of time slots during each horizontal scan of the video beam. If a
device does not request one of its allocated time slots, the slot is open for other uses. These
devices are given first priority because missed DMA cycles can cause lost data, noise in the sound
output, or on-screen interruptions.

The Copper has the next priority because it has to perform its operations at the same time during
each display frame to remain synchronized with the display beam sweeping across the screen.

The lowest priorities are assigned to the blitter and the 68000, in that order. The blitter is given
the higher priority because it performs data copying, modifying, and line drawing operations
operations much faster than the 68000.

During a horizontal scan line (about 63 microseconds), there are 227.5 "color clocks", or
memory access cycles. A memory cycle is approximately 280 ns in duration. The total of 227.5
cycles per horizontal line includes both display time and non-display time. Of this total time, 226
cycles are available to be allocated to the various devices that need memory access.

The time-slot allocation per horizontal line is:

4 cycles for memory refresh

3 cycles for disk DMA

4 cycles for audio DMA (2 bytes per channel)

16 cycles for sprite DMA (2 words per channel)

80 cycles for bitplane DMA (even- or odd-numbered slots according to the display size used)

Figure 6-9 shows one complete horizontal scan line and how the clock cycles are allocated.

194 Amiga Hardware Reference Manual

CD
a
CD ..,
::c
Ill

~
Ill
Cil
......
<0
01

DMA Time Slot Allocation/Horizontal line

Oeoimal nurrbe,. atx:w. tl\e ~luttration reptnenl color
docks. Decimal nurrbefs b.low the iHustrallon repreaent
high-r..olution cycles. NegatNe number$ indicate tl'le start
of data fetch f04' di.pla~ thai are larger than normal,

Oecrmal numbers mstde the riJustratrons represent the btl plane
for whrch the data 15 bemg fetched.

Hardware stop mstalled here. Data fetch cannot begm any sooner
than cycle $18. Thrs allows the user to wrpe out most of the spntes
tf desrred (by defm.ng an extra·wtde dtsplay) but leaves the audro
and dtsk OMA untouched.

so# -l'"ol- $8 $10 $18 S2D $28 SJO S38

' "' ' '~ i ' iiii ~ l.llJ-!m!.:i!,;.".~ ' I ' bJ ~ I ~-~~~-·I ~ ~ ggj·~=

Data fetch start can only be spec1f1ed at even
multoples of 8 clocks Thos 1s the clock pos1t1on
whoch should be spec•foec1 for the normal w1dth
dosplay 120 word fetch for 320 p1xel. 40 word
fetch tor 640 p1xel w•dth)

F1ve clocks must occur before the data fetched for a part•cular
pos•t•on can appear on· screen. For example. 1f data fetch start
IS $38. data w1ll not be ava•lable for d•splay until clock number
$45. It IS ava1lable at $45 because d•splay process•ng does not
begm until sll ot the b•t·planes for a particular P•xel have been
fetched.

t These operat•ons only take slots 1f the assoc•ated operat•on "be•ng performed.
Note Copper Data Move mstruCtiOns requ~re 4 slot~

Copper Wa1t •nstruct•ons reQUire 6 slots.

Th•s cycle 0 appears to eKclude one of the memory refresh cycles. Th•s •s not the tHe .

Actual system hardware demands certam spec1f1C values for data fet'ch start and d•splay start.
Therefore th1s !lmmg chart has been "adtusted" to match those reQUirement~

S lnd•cates a hex numbet.

as cycle 7

D 320 mode B•t·Piane OMA. by plane t

• 640 mode B1t Plane DMA. by plane ~

D Slots ava•lable for Bhtter. Copper and 68000 *

EIJ Spnte OMA t t2 words/channel)

Figure 6-9: DMA Time Slot Allocation

Some spr~tes are unusable ,f the drsplay starts early due to
an extra word(sl assocrated woth a wrde drsplay and or
horrzontal scrolling. In thrs case. tl"le b•t plane OMA steals
the cycles normally allocated to the spntes. as Illustrated
above.

A hardware data· fetch stop has been mstalled at count SOB
so as to prevent the b11 plane data fetch from overrunn.ng
the lime allolted for the memory refresh or d1sk DMA.

ffiii) Aud•O DMA i {2 bytes channel)

~O,skOMAt

~ Memory Refresh

End of
Hor•tOntat
Lme Data

Fetch Cycle

The 68000 uses only the even-numbered memory access cycles. The 68000 spends about half of
a complete processor instruction time doing internal operations and the other half accessing
memory. Therefore, the allocation of alternate memory cycles to the 68000 makes it appear to the
68000 that it has the memory all of the time, and it will run at full speed.

Some 68000 instructions do not match perfectly with the allocation of even cycles and cause
cycles to be missed. If cycles are missed, the 68000 must wait until its next available memory
slot before continuing. However, most instructions do not cause cycles to be missed, so the
68000 runs at full speed most of the time if there is no blitter DMA interference.

Figure 6-10 illustrates the normal cycle of the 68000.

Avoid the TAS instruction. The 68000 test-and-set instruction (TAS) should never
be used in the Amiga; the indivisible read-modify-write cycle that is used only in this
instruction will not fit into a DMA memory access slot.

average 68000 cycle

internal ---------•~--------- memory
operation access

portion portion

odd cycle,
assigned to

other devices

even cycle,
available to
the 68000

Figure 6-10: Normal68000 Cycle

If the display contains four or fewer low resolution bitplanes, the 68000 can be granted alternate
memory cycles (if it is ready to ask for the cycle and is the highest priority item at the time).
However, if there are more than four bitplanes, bitplane DMA will begin to steal cycles from the
68000 during the display.

During the display time for a six bitplane display (low resolution, 320 pixels wide), 160 time
slots will be taken by bitplane DMA for each horizontal line. As you can see from Figure 6-11,
bitplane DMA steals 50 percent of the open slots that the processor might have used if there were
only four bitplanes displayed.

196 Amiga Hardware Reference Manual

·timing cycle·
T

+ +

4 6 2 3 5

Figure 6-11: Time Slots Used by a Six Bitp1ane Display

If you specify four high resolution bitplanes (640 pixels wide), bitplane DMA needs all of the
available memory time slots during the display time just to fetch the 40 data words for each line
of the four bitplanes (40 * 4 = 160 time slots). This effectively locks out the 68000 (as well as the
blitter or Copper) from any memory access during the display, except during horizontal and
vertical blanking.

• timing cycle·
T

4 2 3 4 2 3

Figure 6-12: Time Slots Used by a High Resolution Display

Each horizontal line in a normal, full-sized display contains 320 pixels in low resolution mode or
640 pixels in high resolution mode. Thus, either 20 or 40 words will be fetched during the
horizontal line display time. If you want to scroll a playfield, one extra data word per line must
be fetched from the memory.

Display size is adjustable (see Chapter 3, "Playfield Hardware"), and bitplane DMA takes
precedence over sprite DMA. As shown in Figure 6-9, larger displays may block out one or more
of the highest-numbered sprites, especially with scrolling.

Slitter Hardware 197

As mentioned above, the blitter normally has a higher priority than the processor for DMA cycles.
There arc certain cases, however, when the blitter and the 68000 can share memory cycles. If
given the chance, the blitter would steal every available Chip memory cycle. Display, disk, and
audio DMA take precedence over the blitter, so it cannot block them from bus access. Depending
on the setting of the blitter DMA mode bit, commonly referred to as the "blitter-nasty" bit, the
processor may be blocked from bus access. This bit is called DMAF _BLITHOG and is in
register DMACON.

If DMAF _BUT HOG is a 1, the blitter will keep the bus for every available Chip memory cycle.
This could potentially be every cycle (ROM and Fast memory are not typically Chip memory
cycles).

If DMAF _BLITHOG is a 0, the DMA manager will monitor the 68000 cycle requests. If the
68000 is unsatisfied for three consecutive memory cycles, the blitter will release the bus for one
cycle.

Slitter Block Diagram

o Figure 6-13 shows the basic building blocks for a single bit of a 16-bit wide operation of the
blitter. It docs not cover the line-drawing hardware.

o The upper left comer shows how the first- and last- word masks are applied to the
incoming A-source data. When the blit shrinks to one word wide, both masks are applied.

o The shifter (upper right and center left) drawing illustrates how 16 bits of data is taken from a
specified position within a 32-bit register, based on the A shift orB shift values shown in
BLTCONO and BLTCONl.

o The mintcrm generator (center right) illustrates how the minterm select bits either allow or
inhibit the use of a specific minterm.

o The drawing shows how the fill operation works on the data generated by the minterm
combinations. Fill operations can be performed simultaneously with other complex logic
operations.

o At the bottom, the drawing shows that data generated for the destination can be prevented
from being written to a destination by using one of the blitter control bits.

o Not shown on this diagram is the logic for zero detection, which looks at every bit generated
for the destination. If there arc any 1-bits generated, this logic indicates that the area of the
blit contained at least one 1-bit (zero detect is false.)

198 Amiga Hardware Reference Manual

DATA BUS

16 16 16

Minterm Generator (all minterms produced)

ABC ABC ABc

Store to 1------,
Destination

Slitter Control

DATA BUS

Figure 6-13: Blitter Block Diagram

ABC ABC

Fill
Carry
Out

(to next
word)

Blitter Hardware 199

Slitter Key Points

This is a list of some key points that should be remembered when programming the blitter.

o Write BLTSIZE last; writing this register starts the blit.

o Modulos and pointers are in bytes; width is in words and height is in pixels. The least
significant bit of all pointers and modulos is ignored.

o The order of operations in the blitter is masking, shifting, logical combination of sources,
area fill, and zero flag setting.

o In ascending mode, the blitter increments the pointers, adds the modulos, and shifts to the
right.

o In descending mode, the blitter decrements the pointers, subtracts the modulos, and shifts to
the left.

o Area fill only works correctly in descending mode.

o Check BL TDONE before writing blitter registers or using the results of a blit.

o Shifts are done on immediate data as soon as it is loaded.

EXAMPLE: ClearMem

Blitter example---memory clear

include 'exec/types.i'
include 'hardware/custom.i'
include 'hardware/dmabits.i'
include 'hardware/blit.i'
include 'hardware/hw_examples.i"

xref custom

Wait for previous blit to complete.

waitblit:
btst.b #DMAB_BLTDONE-8,DMACONR(al)

waitblit2:
btst.b #DMAB_BLTDONE-8,DMACONR(al)
bne waitblit2
rts

This routine uses a side effect in the blitter. When each
of the blits is finished, the pointer in the blitter is pointing
to the next word to be blitted.

200 Amiga Hardware Reference Manual

When this routine returns, the last blit is started and might
not be finished, so be sure to call waitblit above before
assuming the data is clear.

aO pointer to first word to clear
dO number of bytes to clear (must be even)

xdef
clearmem:

lea
bsr
move.l
clr.w
asr.l
clr.w
move.w

clearmem

_custom,al
waitblit
aO,BLTDPT (al)
BLTDMOD(al)
tl,dO
BLTCONl (al)
tDEST,BLTCONO(al)

Get pointer to chip registers
Make sure previous blit is done
Set up the D pointer to the region to clear
Clear the D modulo (don't skip no bytes)
Get number of words from number of bytes
No special modes

only enable destination

First we deal with the smaller blits

moveq t$3f,dl Mask out mod 64 words
and.w dO,dl
beq do rest none? good, do one blit
sub.l dl,dO otherwise remove remainder
or.l t$40,dl set the height to 1, width to n
move.w dl,BLTSIZE(al) trigger the blit

Here we do the rest of the words, as chunks of 128k

dorest:
move.w
and.w
beq
sub.l
bsr
move.w

dorest2:
swap
beq
clr.w

keepon:
bsr
move.w
subq.w
bne

done:
rts
end

t$ffc0,dl
dO,dl
dorest2
dl,dO
waitblit
dO,BLTSIZE(al)

dO
done
dl

waitblit
dl,BLTSIZE(al)
tl,dO
keepon

look at some more upper bits
extract 10 more bits
any to do?
pull of the ones we're doing here
wait for prev blit to complete
do another blit

more?
nope.
do a 1024x64 word blit (128K)

finish up this blit
and again, blit
still more?
keep on going.

finished. Blit still in progress.

Blitter Hardware 201

---- " ·----------------··-·----··--------

EXAMPLE: Slmplellne

This example uses the line draw mode of the blitter
to draw a line. The line is drawn with no pattern
and a simple 'or' blit into a single bitplane.

Input: dO=x1 d1=y1 d2=x2 d3=y2 d4=width aO=aptr

include 'exec/types.i'
include 'hardware/custom.i'
include 'hardware/blit.i'
include 'hardware/dmabits.i'

include 'hardware/hw_examples.i'

xref custom

xdef simpleline

Our entry point.

simpleline:
lea
sub.w
bmi
sub.w
bmi
cmp.w
bmi
moveq.l
bra

ygtx:
exg
moveq.l
bra

yneg:
neg.w
cmp.w
bmi
moveq.l
bra

ynygtx:
exg
moveq.l
bra

xneg:
neg.w
sub.w
bmi
cmp.w
bmi
moveq.l
bra

xnygtx:
exg
moveq.l
bra

custom,al
dO,d2

snarf up the custom address register
calculate dx

xneg if negative, octant is one of [3,4,5,6]
dl,d3 calculate dy is one of [1,2,7,8]
yneg if negative, octant is one of [7,8]
d3,d2 cmp ldxl,ldyl is one of [1,2]
ygtx if y>x, octant is 2
#OCTANTl+LINEMODE,d5 ; otherwise octant is 1
lineagain go to the common section

d2,d3 X must be greater than Y
#OCTANT2+LINEMODE,d5 ; we are in octant 2
lineagain and common again.

d3 calculate abs(dy)
d3,d2 cmp ldxl, Idyl, octant is [7,8]
ynygtx if y>x, octant is 7
#OCTANT8+LINEMODE,d5 ; otherwise octant is 8
lineagain

d2,d3 ; X must be greater than Y
#OCTANT7+LINEMODE,d5 ; we are in octant 7
lineagain

d2 dx was negative! octant is [3,4,5,6]
dl,d3 we calculate dy
xyneg if negative, octant is one of [5,6]
d3,d2 otherwise it's one of [3,4]
xnygtx if y>x, octant is 3
#OCTANT4+LINEMODE,d5 ; otherwise it's 4
lineagain

d2,d3 ; X must be greater than Y
#OCTANT3+LINEMODE,d5 ; we are in octant 3
lineagain

202 Amiga Hardware Reference Manual

xyneg:
neg.w d3 y was negative, in one of [5,6]
cmp.w d3,d2 is y>x?
bmi xynygtx if so, octant is 6
moveq.l tOCTANT5+LINEMODE,d5 ; otherwise, octant is 5
bra lineagain

xynygtx:
exg
moveq.l

lineagain:
mulu.w
ror.l
add.w
add.l
add.w
swap
or.w
lsl.w
add.w
move.w
lsl.w
add.w
btst

waitblit:
btst
bne
move.w
sub.w
ext.l
move.l
bpl
or.w

lineover:
move.w
move.w
move.w
move.w
sub.w
move.w
move.w
moveq.l
move.l
move.l
move.l
move.w
rts
end

d2,d3 ; X must be greater than Y
tOCTANT6+LINEMODE,d5 ; we are in octant 6

d4,dl Calculate yl * width
t4,d0 move upper four bits into hi word
dO,dO multiply by 2
dl,aO ptr +- (xl >> 3)
dO,aO ptr +- yl * width
dO get the four bits of xl
t$BFA,d0 or with USEA, USEC, USED, F=A+C
t2, d3 y = 4 * y
d2,d2 X = 2 * X
d2,dl set up size word
tS,dl shift five left
t$42,dl and add 1 to height, 2 to width
tDMAB_BLTDONE-B,DMACONR(al) safety check

tDMAB_BLTDONE-B,DMACONR(al)
waitblit

wait for blitter

d3,BLTBMOD(al) ; B mod= 4 * Y
d2,d3
d3
d3, BLTAPT (al)
lineover
tSIGNFLAG,dS

dO,BLTCONO (al)
dS,BLTCONl (al)
d4,BLTCMOD(al)
d4, BLTDMOD (al)
d2,d3

A ptr = 4 * Y - 2 * X
if negative,
set sign bit in conl

write control registers

C mod
D mod

bitplane width
bitplane width

d3,BLTAMOD(al) A mod 4 * Y - 4 * X
A data = Ox8000 t$8000,BLTADAT(al)

t-l,dS
dS,BLTAFWM(al)
aO, BLTCPT (al)
aO, BLTDPT (al)
dl,BLTSIZE(al)

Set masks to all ones
we can hit both masks at once
Pointer to first pixel to set

Start blit
and return, blit still in progress.

Slitter Hardware 203

EXAMPLE: RotateBits

Here we rotate bits. This code takes a single raster row of a
bitplane, and 'rotates' it into an array of 16-bit words, setting
the specified bit of each word in the array according to the
corresponding bit in the raster row. We use the line mode in
conjunction with patterns to do this magic.

Input: dO contains the number of words in the raster row. d1
contains the number of the bit to set (0 .. 15). aO contains a
pointer to the raster data, and a1 contains a pointer to the
array we are filling; the array must be at least (d0)*16 words
(or (d0)*32 bytes) long.

include 'exec/types.i'
include 'hardware/custom.i'
include 'hardware/blit.i'
include 'hardware/dmabits.i'

include 'hardware/hw_examples.i'

xref custom

xdef rotatebits

Our entry point.

rotatebits:

wait1:

lea
tst
beq
lea
moveq.l
btst

btst
bne
moveq.l
move.l
move.w
clr.w
move.w
move.w
ror.w
and.w
or.w
move.w
move.w
move.w
move.w
move.w
move.l
move.l
lea
lea
move.w
move.w
bra

_custom,a2
dO
gone

We need to access the custom registers
if no words, just return

DMACONR(a2),a3 get the address of dmaconr
tDMAB_BLTDONE-8,d2 ; get the bit number BLTDONE
d2, (a3) check to see if we're done

d2, (a3)
wait1
t-30,d3
d3,BLTAPT(a2)

check again.
not done? Keep waiting
Line mode: aptr = 4Y-2X, Y=O; X=15

t-60,BLTAMOD(a2) ; amod = 4Y-4X
BLTBMOD(a2) brood 4Y
t2,BLTCMOD(a2) cmod = width of bitmap (2)
t2,BLTDMOD(a2) ditto
t4,d1 grab the four bits of the bit number
t$fOOO,d1 mask them out
t$bca,d1 USEA, USEC, USED, F=AB+-AC
d1,BLTCONO(a2) stuff it
t$f049,BLTCON1(a2) BSH=15, SGN, LINE
t$8000,BLTADAT(a2) Initialize A dat for line
t$ffff,BLTAFWM(a2) Initialize masks
t$ffff,BLTALWM(a2)
a1,BLTCPT(a2)
a1,BLTDPT(a2)
BLTBDAT(a2),a4
BLTSIZE(a2),a5
t$402,d1
(a0)+,d3
inloop

Initialize pointer

For quick access, we grab these two
addresses
Stuff bltsize; width=2, height=l6
Get next word
Go into the loop

204 Amiga Hardware Reference Manual

again:
move.w (a0)+,d3 Grab another word
btst d2, (a3) Check blit done

wait2:
btst d2, (a3) Check again
bne wait2 oops, not ready, loop around

inloop:
move.w d3, (a4) stuff new word to make vertical
move.w dl, (aS) start the blit
subq.w tl, dO is that the last word?
bne again keep going if not

gone:
rts
end

ECS blitter. For infonnation relating to the blitter hardware in the Enhanced Chip
Set, see Appendix C.

Blitter Hardware 205

---·--

chapter seven
SYSTEM CONTROL
HARDWARE

This chapter covers the control hardware of the Amiga system, including the following topics:

o How playfield priorities may be specified relative to the sprites

o How collisions between objects are sensed

o How system direct memory access (DMA) is controlled

o How interrupts are controlled and sensed

o How reset and early powerup are controlled

Video Priorities

You can control the priorities of various objects on the screen to give the illusion of three
dimensions. The section below shows how playfield priority may be changed relative to sprites.

FIXED SPRITE PRIORITIES

You cannot change the relative priorities of the sprites. They will always appear on the screen
with the lower-numbered sprites appearing in front of (having higher screen priority than) the
higher-numbered sprites. This is shown in Figure 7-1. Each box represents the image of the
sprite number shown in that box.

System Control Hardware 207

7
6

5
f-

4
I-I 3

I
f--

2
I-I 1

I-
0

1---

-

Figure 7-1: Inter-Sprite Fixed Priorities

HOW SPRITES ARE GROUPED

For p1ayfield priority and collision purposes only, sprites are treated as four groups of two sprites
each. The groups of sprites are:

Sprites 0 and 1
Sprites 2 and 3
Sprites 4 and 5
Sprites 6 and 7

208 Amiga Hardware Reference Manual

UNDERSTANDING VIDEO PRIORITIES

The concept of video priorities is easy to understand if you imagine that four fingers of one of
your hands represent the four pairs of sprites and two fingers of your other hand represent the two
playfields. Just as you cannot change the sequence of the four fingers on the one hand, neither
can you change the relative priority of the sprites. However, just as you can intertwine the two
fingers of one hand in many different ways relative to the four fingers of the other hand, so can
you position the playfields in front of or behind the sprites. This is illustrated in Figure 7-2.

In front (higher priority)

~
' I

Behind

Figure 7-2: Analogy for Video Priority

Five possible positions can be chosen for each of the two ''playfield fingers.'' For example, you
can place playfield 1 on top of sprites 0 and 1 (0), between sprites 0 and 1 and sprites 2 and 3 (1),
between sprites 2 and 3 and sprites 4 and 5 (2), between sprites 4 and 5 and sprites 6 and 7 (3), or
beneath sprites 6 and 7 (4). You have the same possibilities for playfield 2.

The numbers 0 through 4 shown in parentheses in the preceding paragraph are the actual values
you use to select the playfield priority positions. See ''Setting the Priority Control Register''
below.

You can also control the priority of playfield 2 relative to playfield 1. This gives you additional
choices for the way you can design the screen priorities.

System Control Hardware 209

SETTING THE PRIORITY CONTROL REGISTER

This register lets you define how objects will pass in front of each other or hide behind each other.
Normally, playfield 1 appears in front of playfield 2. The PF2PRI bit reverses this relationship,
making playfield 2 more important. You control the video priorities by using the bits in
BPLCON2 (for ''bitplane control register number 2' ') as shown in Table 7 -t.

Table 7-1: Bits in BPLCON2

Bit
Number Name Function

t5-7 Not used (keep at 0)

6 PF2PRI Playfield 2 priority

5-3 PF2P2 - PF2PO Playfield 2 placement with
respect to the sprites

2-0 PF1P2 - PF1PO Playfield 1 placement with
respect to the sprites

The binary values that you give to bits PF1P2-PF1PO determine where playfield 1 occurs in the
priority chain as shown in Table 7-2. This matches the description given in the previous section.

Be careful: PF2P2 - PF2PO, bits 5-3, are the priority bits for normal (non-dual)
playfields.

Table 7-2: Priority of Playfields Based on Values of Bits PF1P2-PF1PO

Value Placement
(from most important to least important)

()()() PFt SPOt SP23 SP45 SP67.

oot SPOt PFt SP23 SP45 SP67

010 SPOl SP23 PFt SP45 SP67

Ott SPOt SP23 SP45 PFt SP67

100 SPOl SP23 SP45 SP67 PF1

In this table, PFl stands for playfield t, and SP01 stands for the group of sprites numbered 0 and
1. SP23 stands for sprites 2 and 3 as a group; SP45 stands for sprites 4 and 5 as a group; and
SP67 stands for sprites 6 and 7 as a group.

210 Amiga Hardware Reference Manual

Bits PF2P2-PF2PO let you position playfield 2 among the sprite priorities in exactly the same
way. However, it is the PF2PRI bit that detennines which of the two playfields appears in front
of the other on the screen. Here is a sample of possible BPLCON2 register contents that would
create something a little unusual:

BITS 15-7 PF2PRI PF2P2-0 PFIP2-0

VALUE Os 1 010 000

This will result in a sprite/playfield priority placement of:

PF1 SP01 SP23 PF2 SP45 SP67

In other words, where objects pass across each other, play field 1 is in front of sprite 0 or 1; and
sprites 0 through 3 are in front of playfield 2. However, playfield 2 is in front of playfield 1 in
any area where they overlap and where playfield 2 is not blocked by sprites 0 through 3.

Figure 7-3 shows one use of sprite/playfield priority. The single sprite object shown on the
diagram is sprite 0. The sprite can "fly" across playfield 2, but when it crosses playfield 1 the
sprite disappears behind that playfield. The result is an unusual video effect that causes the object
to disappear when it crosses an invisible boundary on the screen.

System Control Hardware 211

Playfield 1

Sprite 0

Playfield 2

liit/71------ ---:.~~.------

·. --······------.. ·
,#'#

---------~~------

When everything is displayed together,
sprite 0 is more important than playfield 2
but less important than playfield 1.
So even though you can't see the boundary,
the sprite disappears "behind" the invisible
PF1 boundary.

Figure 7-3: Spritc/Playfield Priority

212 Amiga Hardware Reference Manual

Collision Detection

You can use the hardware to detect collisions between one sprite group and another sprite group,
any sprite group and either of the playfields, the two playfields, or any combination of these
items.

The first kind of collision is typically used in a game operation to determine if a missile has
collided with a moving player. The second kind of collision is typically used to keep a moving
object within specified on-screen boundaries. The third kind of collision detection allows you to
define sections of play field as individual objects, which you may move using the blitter. This is
called playfield animation. If one playfield is defined as the backdrop or playing area and the
other playfield is used to define objects (in addition to the sprites), you can sense collisions
between the playfield-objects and the sprites or between the playficld-objects and the other
playfield.

HOW COLLISIONS ARE DETERMINED

The video output is formed when the input data from all of the bitplanes and the sprites is
combined into a common data stream for the display. For each of the pixel positions on the
screen, the color of the highest priority object is displayed. Collisions are detected when two or
more objects attempt to overlap in the same pixel position. This will set a bit in the collision data
register.

System Control Hardware 213

HOW TO INTERPRET THE COLLISION DATA

The collision data register, CLXDAT, is read-only, and its contents arc automatically cleared to 0
after it is read. Its bits are as shown in Table 7-3.

Table 7-3: CLXDAT Bits

Bit Number Collisions Registered

15 not used
14 Sprite 4 (or 5) to sprite 6 (or 7)
13 Sprite 2 (or 3) to sprite 6 (or 7)
12 Sprite 2 (or 3) to sprite 4 (or 5)
11 Sprite 0 (or 1) to sprite 6 (or 7)
10 Sprite 0 (or 1) to sprite 4 (or 5)
9 Sprite 0 (or 1) to sprite 2 (or 3)
8 Even bitplanes to sprite 6 (or 7)
7 Even bitplanes to sprite 4 (or 5)
6 Even bitplancs to sprite 2 (or 3)
5 Even bitplanes to sprite 0 (or 1)
4 Odd bitplanes to sprite 6 (or 7)
3 Odd bitplanes to sprite 4 (or 5)
2 Odd bitplanes to sprite 2 (or 3)
1 Odd bitp1anes to sprite 0 (or 1)
0 Even bitplanes to odd bitplanes

About odd-numbered sprites. The numbers in parentheses in Table 7-3 refer to
collisions that will register only if you want them to show up. The collision control
register described below lets you either ignore or include the odd-numbered sprites in
the collision detection.

Notice that in this table, collision detection does not change when you select either single- or
dual-playfield mode. Collision detection depends only on the actual bits present in the odd­
numbered or even-numbered bitplanes. The collision control register specifies how to handle the
bitplanes during collision detect.

214 Amiga Hardware Reference Manual

HOW COLLISION DETECTION IS CONTROLLED

The collision control register, CLXCON, contains the bits that define certain characteristics of
collision detection. Its bits are shown in Table 7-4.

Table 7-4: CLXCON Bits

Bit
Number Name Function

15 ENSP7 Enable sprite 7 (OR with sprite 6)
14 ENSP5 Enable sprite 5 (OR with sprite 4)
13 ENSP3 Enable sprite 3 (OR with sprite 2)
12 ENSPl Enable sprite 1 (OR with sprite 0)
11 ENBP6 Enable bitplane 6 (match required for collision)
10 ENBP5 Enable bitplane 5 (match required for collision)
9 ENBP4 Enable bitplane 4 (match required for collision)
8 ENBP3 Enable bitplane 3 (match required for collision)
7 ENBP2 Enable bitplane 2 (match required for collision)
6 ENBPl Enable bitplane 1 (match required for collision)
5 MVBP6 Match value for bitplane 6 collision
4 MVBP5 Match value for bitplane 5 collision
3 MVBP4 Match value for bitplane 4 collision
2 MVBP3 Match value for bitplane 3 collision
1 MVBP2 Match value for bitplane 2 collision
0 MVBPl Match value for bitplane 1 collision

Bits 15-12 let you specify that collisions with a sprite pair are to include the odd-numbered sprite
of a pair of sprites. The even-numbered sprites always are included in the collision detection.
Bits 11-6 let you specify whether to include or exclude specific bitplanes from the collision
detection. Bits 5-0 let you specify the polarity (true-false condition) of bits that will cause a
collision. For example, you may wish to register collisions only when the object collides with
"something green" or "something blue." This feature, along with the collision enable bits,
allows you to specify the exact bits, and their polarity, for the collision to be registered.

NOTE: This register is write-only. If all bitplanes are excluded (disabled), then a
bitplane collision will always be detected.

System Control Hardware 215

Beam Position Detection

Sometimes you might want to synchronize the 680x0 processor to the video beam that is creating
the screen display. In some cases, you may also wish to update a part of the display memory
after the system has already accessed the data from the memory for the display area.

The address for accessing the beam counter is provided so that you can determine the value of the
video beam counter and perform certain operations based on the beam position. NOTE: The
Copper is already capable of watching the display position for you and doing certain register­
based operations automatically. Refer to "Copper Interrupts" below and Chapter 2,
"Coprocessor Hardware," for further information.

In addition, when you are using a light pen, this same address is used to read the light pen
position rather than the beam position. This is described fully in Chapter 8, "Interface
Hardware.''

USING THE BEAM POSITION COUNTER

There are four addresses that access the beam position counter. Their usage is described in Table
7-5.

VPOSR

VHPOSR

VPOSW

VHPOSW

Table 7-5: Contents of the Beam Position Counter

Read-only Read the high bit of the vertical position (V8) and the

Bit 15

Bits 14-1

Bit 0

Read-only

Bits 15-8

Bits 7-0

Write only

Write only

frame-type bit.

LOF (Long-frame bit). Used to initialize interlaced displays.

Unused

High bit of the vertical position (V8). Allows PAL line
counts (313) to appear in PAL versions of the Amiga.

Read vertical and horizontal position of the counter that
is producing the beam on the screen (also reads the light pen).

Low bits of the vertical position, bits V7-VO

The horizontal position, bits H8-Hl. Horizontal
resolution is 1/160th of the screen width.

Bits same as VPOSR above.

Bits same as VHPOSR above. Used for counter
synchronization with chip test patterns.

As usual, the address pairs VPOSR,VHPOSR and VPOSW,VHPOSW can be read from and
written to as long words, with the most significant addresses being VPOSR and VPOSW.

216 Amiga Hardware Reference Manual

Interrupts

This system supports the full range of 680x0 processor interrupts. The various kinds of interrupts
generated by the hardware are brought into the peripherals chip and are translated into six of the
seven available interrupts of the 680x0.

NONMASKABLEINTERRUPT

Interrupt level 7 is the nonmaskable interrupt and is not generated anywhere in the current system.
The raw interrupt lines of the 680x0, IPL2 through IPLO, are brought out to the expansion
connector and can be used to generate this level 7 interrupt for debugging purposes.

MASKABLEINTERRUPTS

Interrupt levels 1 through 6 are generated. Control registers within the peripherals chip allow you
to mask certain of these sources and prevent them from generating a 680x0 interrupt.

USER INTERFACE TO THE INTERRUPT SYSTEM

The system software has been designed to correctly handle all system hardware interrupts at
levels 1 through 6. A separate set of input lines, designated INTI* and INT6* 3 have been routed
to the expansion connector for use by external hardware for interrupts. These are known as the
external low- and external high-level interrupts.

These interrupt lines are connected to the peripherals chip and create interrupt levels 2 and 6,
respectively. It is recommended that you take advantage of the interrupt handlers built into the
operating system by using these external interrupt lines rather than generating interrupts directly
on the processor interrupt lines.

INTERRUPT CONTROL REGISTERS

There are two interrupt registers, interrupt enable (mask) and interrupt request (status). Each
register has both a read and a write address. The names of the interrupt addresses are:

INTENA
InterruptO enable (mask) -write only. Sets or clears specific bits of INTENA.

INTENAR
Interrupt enable (mask) read - read only. Reads contents of INTENA.

3 A * indicates an active low signal.

System Control Hardware 217

- -------------------------------

INTREQ
Interrupt request (status) - write only. Used by the processor to force a certain kind of
interrupt to be processed (software interrupt). Also used to clear interrupt request flags once
the interrupt process is completed.

INTREQR
Interrupt request (status) read - read only. Contains the bits that define which items are
requesting interrupt service.

The bit positions in the interrupt request register correspond directly to those same positions
in the interrupt enable register. The only difference between the read-only and the write-only
addresses shown above is that bit 15 has no meaning in the read-only addresses.

SETTING AND CLEARING BITS

Below are the meanings of the bits in the interrupt control registers and how you use them.

Set and Clear

The interrupt registers, as well as the DMA control register, use a special way of selecting which
of the bits are to be set or cleared. Bit 15 of these registers is called the SET/CLR bit.

When you wish to set a bit (make it a 1), you must place a 1 in the position you want to set and a
1 into position 15.

When you wish to clear a bit (make it a 0), you must place a 1 in the position you wish to clear
and a 0 into position 15.

Positions 14-0 are bit selectors. You write a 1 to any one or more bits to select that bit. At the
same time you write a 1 or 0 to bit 15 to either set or clear the bits you have selected. Positions
14-0 that have 0 value will not be affected when you do the write. If you want to set some bits
and clear others, you will have to write this register twice (once for setting some bits, once for
clearing others).

Master Interrupt Enable

Bit 14 of the interrupt registers (INTEN) is for interrupt enable. This is the master interrupt
enable bit. If this bit is a 0, it disables all other interrupts. You may wish to clear this bit to
temporarily disable all interrupts to do some critical processing task.

Warning: This bit is used for enable/disable only. It creates no interrupt request.

218 Amiga Hardware Reference Manual

External Interrupts

Bits 13 and 3 of the interrupt registers are reseiVed for external interrupts.

Bit 13, EXTER, becomes a 1 when the system line called INT6* becomes a logic 0. Bit 13
generates a level 6 interrupt.

Bit 3, PORTS, becomes a 1 when the system line called INT2* becomes a logic 0. Bit 3 causes a
level 2 interrupt.

Vertical Blanking Interrupt

Bit 5, VERTB, causes an interrupt at line 0 (start of vertical blank) of the video display frame.
The system is often required to perform many different tasks during the vertical blanking interval.
Among these tasks are the updating of various pointer registers, rewriting lists of Copper tasks
when necessary, and other system-control operations.

The minimum time of vertical blanking is 20 horizontal scan lines for an NTSC system and 25
horizontal scan lines for a PAL system. The range starts at line 0 and ends at line 20 for NTSC or
line 25 for PAL. After the minimum vertical blanking range, you can control where the display
actually starts by using the DIWSTRT (display window start) register to extend the effective
vertical blanking time. See Chapter 3, "Play field Hardware," for more information on
DIWSTRT.

If you find that you still require additional time during vertical blanking, you can use the Copper
to create a level 3 interrupt. This Copper interrupt would be timed to occur just after the last line
of display on the screen (after the display window stop which you have defined by using the
DIWSTOP register).

Copper Interrupt

Bit 4, COPER, is used by the Copper to issue a level 3 interrupt. The Copper can change the
content of any of the bits of this register, as it can write any value into most of the machine
registers. However, this bit has been reseiVed for specifically identifying the Copper as the
interrupt source.

Generally, you use this bit when you want to sense that the display beam has reached a specific
position on the screen, and you wish to change something in memory based on this occurrence.

System Control Hardware 219

- ------- --------

Audio Interrupts

Bits 10-7, AUD3- 0, are assigned to the audio channels. They are called AUD3, AUD2, AUDl,
and AUDO and are assigned to channels 3, 2, 1, and 0, respectively.

This level 4 interrupt signals ''audio block done.'' When the audio DMA is operating in
automatic mode, this interrupt occurs when the last word in an audio data stream has been
accessed. In manual mode, it occurs when the audio data register is ready to accept another word
of data.

See Chapter 5, ''Audio Hardware,'' for more information about interrupt generation and timing.

Blltter Interrupt

Bit 6, BUT, signals "blitter finished." If this bit is a 1, it indicates that the blitter has completed
the requested data transfer. The blitter is now ready to accept another task. This bit generates a
level 3 interrupt.

Disk Interrupt

Bits 12 and 1 of the interrupt registers are assigned to disk interrupts.

Bit 12, DSKSYN, indicates that the sync register matches disk data. This bit generates a level 5
interrupt.

Bit 1, DSKBLK, indicates "disk block finished." It is used to indicate that the specified disk
DMA task that you have requested has been completed. This bit generates a Ievell interrupt.

More information about disk data transfer and interrupts may be found in Chapter 8, "Interface
Hardware.''

Serial Port Interrupts

The following serial interrupts are associated with the specified bits of the interrupt registers.

Bit 11, RBF (for receive buffer full), specifies that the input buffer of the UART has data that is
ready to read. This bit generates a level 5 interrupt.

Bit 0, TBE (for "transmit buffer empty"), specifies that the output buffer of the UART needs
more data and data can now be written into this buffer. This bit generates a level 1 interrupt.

220 Amiga Hardware Reference Manual

Hardware
Exec software priority

priority Description

1 software interrupt SOFT INT

1 2 disk block complete DSKBLK

3 transmitter buffer empty TBE

2 4 external INT2 & CIAA PORTS

5 graphics coprocessor CO PER

3 6 vertical blank interval VERTS

7 blitter finished BUT

8 audio channel 2 AUD2

9 audio channel 0 AUOO
4

10 audio channel 3 AUD3

11 audio channel1 AUD1

12 receiver buffer full RBF
5

13 disk sync pattern found DSKSYNC

14 external INT6 & CIAB EXTER
6

15 special (master enable) IN TEN

7 -- non-maskable interrupt NMI

Figure 7-4: Interrupt Priorities

System Control Hardware 221

DMA Control

Many different direct memory access (DMA) functions occur during system operation. There is a
read address as well as a write address to the DMA control register so you can tell which DMA
channels are enabled.

The address names for the DMA registers arc as follows:

DMACONR - Direct Memory Access Control - read-only.
DMACON -Direct Memory Access Control- write-only.

The contents of this register are shown in Table 7-6 (bit on if enabled).

Bit
Number Name Function

15 SET/CLR The set/reset control bit. See description of bit
15 under "Interrupts" above.

14 BBUSY Blitter busy status - read-only

13 BZERO Blitter zero status- read-only. Remains 1 if, during
a blitter operation, the blitter output was always zero.

12, 11 Unassigned

10 BLTPRI Blitter priority. Also known as "blitter-nasty."
When this is a 1, the blitter has full (instead of
partial) priority over the 680x0.

9 DMAEN DMA enable. This is a master DMA enable bit. It
enables the DMA for all of the channels at bits 8-0.

8 BPLEN Bitplane DMA enable

7 COPEN Coprocessor DMA enable

6 BLTEN Blitter DMA enable

5 SPREN Sprite DMA enable

4 DSKEN Disk DMA enable

3-0 AUDxEN Audio DMA enable for channels 3-0 (x = 3 - 0).

Table 7-6: Contents of DMA Control Register

222 Amiga Hardware Reference Manual

For more information on using the DMA, see the following chapters:

Copper
Bitplanes
Sprites
Audio
Blitter
Disk

Chapter2
Chapter 3
Chapter4
Chapter 5
Chapter6
Chapter 8

''Coprocessor Hardware''
''Playfield Hardware''
"Sprite Hardware"
''Audio Hardware''
''Blitter Hardware''
''Interface Hardware''

PROCESSOR ACCESS TO CHIP MEMORY

The Amiga chips access Chip memory directly via DMA, rather than utilizing traditional bus
arbitration mechanisms. Therefore, processor supplied features for multiprocessor support, such
as the 68000 T AS (test and set) instruction, cannot serve their intended purpose and are not
supported by the Amiga architecture.

Reset and Early Startup Operation

When the Amiga is turned on or externally reset, the memory map is in a special state. An
additional copy of the system ROM responds starting at memory location $00000000. The
system RAM that would normally be located at this address is not available. On some Amiga
models, portions of the RAM still respond. On other models, no RAM responds. Software must
assume that memory is not available. The OVL bit in one of the 8520 Chips disables the overlay
(See Appendix F for the bit location).

The Amiga System ROM contains an ID code as the first word. The value of the ID code may
change in the future. The second word of the ROM contains a JMP instruction ($4ef9). The next
two words are used as the initial program counter by the 680x0 processor.

The 68000 RESET instruction works much like external reset or power on. All memory and
AUTOCONFIGTM cards disappear, and the ROM image appears at location $00000000. The
difference is that the CPU continues execution with the next instruction. Since RAM may not be
available, special care is needed to write reboot code that will reliably reboot all Amiga models.

System Control Hardware 223

Here is a source code listing of the only supported reboot code:

* NAME
* ColdReboot - Official code to reset any Amiga (Version 2)

* * SYNOPSIS
* ColdReboot()
* void ColdReboot(void);

*
*
*
*
*
*
*
*
*
*
*
*

FUNCTION
Reboot the machine. All external memory and peripherals will be
RESET, and the machine will start its power up diagnostics.

Rebooting an Amiga in software is very tricky. Differing memory
configurations and processor cards require careful treatment. This
code represents the best available general purpose reset. The
MagicResetCode must be used exactly as specified here. The code
must be longword aligned. Failure to duplicate the code EXACTLY
may result in improper operation under certain system configurations.

* RESULT
* This function never returns.

ABSEXECBASE
MAGIC ROMEND
MAGIC SIZEOFFSET
V36 EXEC
TEMP ColdReboot

ColdReboot:

INCLUDE "exec/types.i"
INCLUDE "exec/libraries.i"

XDEF
XREF

ColdReboot
LVOSupervisor

EQU 4
EQU $01000000
EQU -$14
EQU 36
EQU -726

;Pointer to the Exec library base
;End of Kickstart ROM
;Offset from end of ROM to Kickstart size
;Exec with the ColdReboot() function
;Offset of the V36 ColdReboot function

move.l ABSEXECBASE,a6
cmp.w #V36_EXEC,LIB_VERSION(a6)
blt.s old exec
jmp TEMP_ColdReboot(a6) ;Let Exec do it ...
;NOTE: Control flow never returns to here

;---- manually
old exec:

reset the Amiga ---

·--------------,

GoAway:

lea.l GoAway(pc),aS ;address of code to execute
jsr _LVOSupervisor(a6) ;trap to code at (aS) ...
;NOTE: Control flow never returns to here

MagicResetCode ---------DO NOT CHANGE-----------------------
CNOP 0,4
lea.l MAGIC_ROMEND,aO
sub.l MAGIC_SIZEOFFSET(aO),aO
move.l 4(a0),a0
subq.l it2,a0
reset

;IMPORTANT! Longword align!
; (end of ROM)
; (end of ROM)-(ROM size)=PC
;Get Initial Program Counter
;now points to second RESET
;first RESET instruction

jmp (aO) ;CPU Prefetch executes this
;NOTE: the RESET and JMP instructions must share a longword!

;---------------------------------------00 NOT CHANGE----------------------­
END

ECS system control. For infonnation on the system control registers in the
Enhanced Chip Set (ECS), see Appendix C.

224 Amiga Hardware Reference Manual

chapter eight
INTERFACE HARDWARE

This chapter covers the interface hardware through which the Amiga talks to the outside world,
including the following features:

o Two multiple purpose mouse/joystick/light pen control ports

o Disk controller (for floppy disk drives & other MFM and GCR devices)

o Keyboard

o Centronics compatible parallel I/O interface (for printers)

o RS232-C compatible serial interface (for external modems or other serial devices)

o Video output connectors (RGB, monochrome, NTSC, RF modulator, video slot)

Controller Port Interface

Each Amiga has two nine-pin connectors that can be used for input or output with a variety of
controllers. Usually, the nine-pin connectors are used with a mouse or joystick but they will also
accept input from light pens, paddles, trackballs, and other popular input devices.

Figure 8-1 shows one of the two connectors and the corresponding face-on view of a standard
controller plug, while table 8-1 gives the pin assignments for some typical controllers.

Interface Hardware 227

Pen

1

2

3

4

5*

6*

7

8

9*

Figure 8-1: Controller Plug and Computer Connector

Face view­
controller plug

Face view­
computer connector

Table 8-1: Typical Controller Connections

Mouse,
trackball, Proportional X-V
driving controller proportional

Joystick controller (pair) joystick

forward V-pulse --- button 3**

back H-pulse --- ---

left VQ-pulse left button button 1

right HQ-pulse right button button 2

middle right
POTX --- button** POT

button 1 left button --- ---

--- +5V +5V +5V

GND GND GND GND

button 2 ** right button left POT POTV

• These pins may also be configured as outputs " These buttons are optional

228 Amiga Hardware Reference Manual

Light pen

pen pressed

to screen

beam
trigger

+5V

GND

button 2**

REGISTERS USED WITH THE CONTROLLER PORT

The Amiga chip registers that handle the controller port 1/0 are listed below.

JOYODAT
JOYIDAT
CIAAPRA
POTODAT
POTlDAT
POTGO
POTGOR
BPLCONO
VPOSR
VHPOSR

($DFFOOA)
($DFFOOC)
($BFE001)
($DFF012)
($DFF014)
($DFF034)
($DFF016)
($DFF100)
($DFF004)
($DFF006)

Counter for digital (mouse) input (port 1)
Counter for digital (mouse) input (port 2)
Input and output for pin 6 (port 1 and 2 fire buttons)
Counter for proportional input (port 1)
Counter for proportional input (port 2)
Write proportional pin values and start counters
Read proportional pin values
Bit 3 enables the light pen latch
Read light pen position (high order bits)
Read light pen position (low order bits)

READING MOUSE/TRACKBALL CONTROLLERS

Pulses entering the mouse inputs are converted to separate horizontal and vertical counts. The 8
bit wide horizontal and vertical counter registers can track mouse movement without processor
intervention.

The mouse uses quadrature inputs. For each direction, a mechanical wheel inside the mouse will
produce two pulse trains, one 90 degrees out of phase with the other (see Figure 8-2 for details).
The phase relationship determines direction.

The counters increment when the mouse is moved to the right or "down" (toward you).

The counters decrement when the mouse is moved to the left or' 'up'' (away from you).

Interface Hardware 229

MOUSE QUADRATURE v VQ D1 DO

0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

Case 1: Count Up:

v __} ,--~\==~-
VQ

I \ I \ I

DO

01 0

Case 2: Count Down:

v __} \ I \ I ____J
VQ

DO

D1

02 _etc

Figure 8-2: Mouse Quadrature

Reading the Counters

The mouse/trackball counter contents can be accessed by reading register addresses named
JOYODAT and JOYlDAT. These registers contain counts for ports 1 and 2 respectively.

The contentc; of each of these 16-bit registers are as follows:

Bits 15-8 Mouse/trackball vertical count
Bits 7-0 Mouse/trackball horizontal count

230 Amiga Hardware Reference Manual

Counter Limitations

These counters will "wrap around" in either the positive or negative direction. If you wish to
use the mouse to control something that is happening on the screen, you must read the counters at
least once each vertical blanking period and save the previous contents of the registers. Then you
can subtract from the previous readings to determine direction of movement and speed.

The mouse produces about 200 count pulses per inch of movement in either a horizontal or
vertical direction. Vertical blanking happens once each l/60th of a second. If you read the
mouse once each vertical blanking period, you will most likely find a count difference (from the
previous count) of less than 127. Only if a user moves the mouse at a speed of more than 38
inches per second will the counter values wrap. Fast-action games may need to read the mouse
register twice per frame to prevent counter overrun.

If you subtract the current count from the previous count, the absolute value of the difference will
represent the speed. The sign of the difference (positive or negative) lets you determine which
direction the mouse is traveling.

The easiest way to calculate mouse velocity is with 8-bit signed arithmetic. The new value of a
counter minus the previous value will represent the number of mouse counts since the last check.
The example shown in Table 8-2 presents an alternate method. It treats both counts as unsigned
values, ranging from 0 to 255. A count of 100 pulses is measured in each case.

Table 8-2: Determining the Direction of the Mouse

Previous
Count

200
100
200
45

Current
Count Direction

100 Up (Left)
200 Down (Right)
45 Down*

200 Up**

Notes for Table 8-2:

* Because 200-45 = 155, which is more than 127, the true count must be 255- (200-45) = 100; the
direction is down.

** 45-200 = -155. Because the absolute value of -155 exceeds 127, the true count must be 255 + (-
155) = 100; the direction is up.

Interface Hardware 231

Mouse Buttons

There are two buttons on the standard Amiga mouse. However, the control circuitry and software
support up to three buttons.

o The left button on the Amiga mouse is connected to CIAAPRA ($BFE001). Port 1 uses
bit 6 and port 2 uses bit 7. A logic state of 1 means "switch open." A logic state of 0
means ''switch closed.'' (See Appendix F for more information.)

o Button 2 (right button on Amiga mouse) is connected to pin 9 of the controller ports, one
of the proportional pins. See ''Digital Input/Output on the Controller Port'' for details.

o Button 3, when used, is connected to pin 5, the other proportional controller input.

READING DIGITAL JOYSTICK CONTROLLERS

Digital joysticks contain four directional switches. Each switch can be individually activated by
the control stick. When the stick is pressed diagonally, two adjacent switches are activated. The
total number of possible directions from a digital joystick is 8. All digital joysticks have at least
one fire button.

Digital joystick switches are of the normally open type. When the switches are pressed, the input
line is shorted to ground. An open switch reads as ''1 '', a closed switch as ''0' '.

Reading the joystick input data logic states is not so simple, however, because the data registers
for the joysticks are the same as the counters that are used for the mouse or trackball controllers.
The joystick registers are named JOYODAT and JOY 1 DAT.

Table 8-3 shows how to interpret the data once you have read it from these registers. The true
logic state of the switch data in these registers is '' 1 = switch closed.''

Data Bit Interpretation

1 True logic state of "right" .itch.

9 True logic state of "left" switch.

1 (XOR) 0 You must calculate the exclusive-or of bits 1 and 0
to obtain the logic state of the "back" switch.

9 (XOR) 8 You mu->t calculate the exclusive-or of bits 9 and 8
to obtain the logic state of the "forward" switch.

Table 8-3: Interpreting Data from JOYODAT and JOYlDAT

232 Amiga Hardware Reference Manual

The fire buttons for ports 0 and 1 are connected to bits 6 and 7 of CIAAPRA ($BFE001). A 0
here indicates the switch is closed.

Some, but not all, joysticks have a second button. We encourage the use of this button if the
function the button controls is duplicated via the keyboard or another mechanism. This button
may be read in the same manner as the right mouse button.

PORT1 \ (mouse)

MOUSE 0
Y counter

vertical

1 2 3

?s 7
0 0

>
w x g
"' ::> w
0 "' w
~ ::> "' 0 ::>
C5 ~ 0
c

C5
~

a: C5
~

~
{) ti: a: c(w

0 "' ...J
lL

4

8
0

8
:I:
w

"' ::>
0
~

~
Cl a:

5

90
0

MOUSE 0
X counter

horizontal

PORT2

JOYODAT
DFFOOA
read only

Figure 8-3: Joystick to Counter Connections

1 2 3 4 5

060708090
0 0 0 0

JOY1DAT
DFFOOC
is wired similarly

Interface Hardware 233

READING PROPORTIONAL CONTROLLERS

Each of the game controller ports can handle two variable-resistance input devices, also known as
proportional input devices. This section describes how the positions of the proportional input
devices can be detennined. There are two common types of proportional controllers: the
"paddle" controller pair and the X-Y proportional joystick. A paddle controller pair consists of
two individual enclosures, each containing a single resistor and fire-button and each connected to
a common controller port input connector. Typical connections are shown in Figure 8-4.

Left paddle Right paddle

resistive element resistive element

+5 A
' ' L--------------------~ L--------------------,

pin 7
pin 9 pin 7

pin 9

j.------------ fire button -------------~ j.------------· fire button ·------------~
pin 8 pin 3 pin 8 pin 3

Figure 8-4: Typical Paddle Wiring Diagram

In an X-Yproportionaljoystick, the resistive elements are connected individually to the X andY
axes of a single controller stick.

Reading Proportional Controller Buttons

For the paddle controllers, the left and right joystick direction lines serve as the fire buttons for
the left and right paddles.

Interpreting Proportional Controller Position

Interpreting the position of the proportional controller nonnally requires some preliminary work
during the vertical blanking interval.

During vertical blanking, you write a value into an address called POTGO. For a standard X-Y
joystick, this value is hex 0001. Writing to this register starts the operation of some special
hardware that reads the potentiometer values and sets the values contained in the POT registers
(described below) to zero.

234 Amiga Hardware Reference Manual

The read circuitry stays in a reset state for the first seven or eight horizontal video scan lines.
Following the reset interval, the circuit allows a charge to begin building up on a timing capacitor
whose charge rate will be controlled by the position of the external controller resistance. For each
horizontal scan line thereafter, the circuit compares the charge on the timing capacitor to a preset
value. If the charge is below the preset, the POT counter is incremented. If the charge is above
the preset, the counter value will be held until the next POTGO is issued.

v
0

L

T
A
G

E

charging curve for ------ _
low resistance --

_ __ .- for higher resistance

~

- - - - ~-------
--- each pot counter stops

when voltage reaches
this value

______ ------ ------ starts eight horizontal lines
----- after POT GO is wrinen

TIM E

Figure 8-5: Effects of Resistance on Charging Rate

You normally issue POTGO at the beginning of a video screen, then read the values in the POT
registers during the next vertical blanking period, just before issuing POTGO again.

Nothing in the system prevents the counters from overflowing (wrapping past a count of 255).
However, the system is designed to insure that the counter cannot overflow within the span of a
single screen. This allows you to know for certain whether an overflow is indicated by the
controller.

Interface Hardware 235

Proportional Controller Registers

The following registers are used for the proportional controllers:

POTODAT - port 1 data (vertical/horizontal)
POTlDAT- port 2 data (vertical/horizontal)

Bit positions:

Bits 15-8 POTOY value or POTl Y value
Bits 7-0 POTOX value or POT IX value

All counts are reset to zero when POTGO is written with bit zero high. Counts are nonnally read
one frame after the scan circuitry is enabled.

Potentiometer Specifications

The resistance of the potentiometers should be a linear taper. Based on the design of the
integrating analog-to-digital converter used, the maximum resistance should be no more than
528K (470K +/- 10 percent is suggested) for either the X or Y pots. This is based on a charge
capacitor of 0.047uf, +/- 10 percent, and a maximum time of 16.6 milliseconds for charge to full
value, ie. one video frame time.

All potentiometers exhibit a certain amount of ''jitter''. For acceptable results on a wide base of
configurations, several input readings will need to be averaged.

236 Amiga Hardware Reference Manual

PORT 1 connector

+5

Max=470K~
±10% ~

OPEN

POT COUNTER

POT1Y

47n!T

v

~
~
:::)
0

BIT 15

POTW
COUNTER

I ~ ~ 0 I~

POT1X
COUNTER

~ ~ ~ !;;: ~ :::)

0 0 0

§
0

POT1DAT
DFF014
read only

::5
~
0

POT GO
DFF034
write only

-

li:
g

BITO

I 0 I ~ 1°1~1°1~1°1~1 0

14

Figure 8-6: Potentiometer Charging Circuit

POTINP
DFF016
read only

Interface Hardware 237

READING A LIGHT PEN

A light pen can be connected to one of the controller ports. On the A1000, the light pen must be
connected to port 1. Changing ports requires a minor internal modification. On the A500, A2000
and A3000 the default is port 2. An internal jumper can select port 1. Regardless of the port
used, the light pen design is the same.

The signal called "pen-pressed-to-screen" is typically actuated by a switch in the nose of the
light pen. Note that this switch is connected to one of the potentiometer inputs and must be read
as same as the right or middle button on a mouse.

The principles of light pen operation are as follows:

1. Just as the system exits vertical blank, the capture circuitry for the light pen is
automatically enabled.

2. The video beam starts to create the picture, sweeping from left to right for each
horizontal line as it paints the picture from the top of the screen to the bottom.

3. The sensors in the light pen see a pulse of light as the video beam passes by. The pen
converts this light pulse into an electrical pulse on the "Beam Trigger" line (pin 6).

4. This trigger signal tells the internal circuitry to capture and save the current contents of
the beam register, VPOSR. This allows you to determine where the pen was placed by
reading the exact horizontal and vertical value of the counter beam at the instant the
beam passed the light pen.

Reading the Light Pen Registers

The light pen register is at the same address as the beam counters. The bits are as follows:

VPOSR: Bit 15 Long frame/short frame. O=short frame

Bits 14-1 Chip ID code. Do not depend on value!

Bit 0 V8 (most significant bit of vertical position)

VHPOSR: Bits 15-8 V7-VO (vertical position)

Bits 7-0 H8-H1 (horizontal position)

The software can refer to this register set as a long word whose address is VPOSR.

238 Amiga Hardware Reference Manual

The positional resolution of these registers is as follows:

Vertical 1 scan line in non-interlaced mode
2 scan lines in interlaced mode (However, if you know which interlaced
frame is under display, you can determine the correct position)

Horizontal 2 low resolution pixels in either high or low resolution

The quality of the light pen will determine the amount of short-term jitter. For most applications,
you should average several readings together.

To enable the light pen input, write a 1 into bit 3 of BPLCONO. Once the light pen input is
enabled and the light pen issues a trigger signal, the value in VPOSR is frozen. If no trigger is
seen, the counters latch at the end of the display field. It is impossible to read the current beam
location while the VPOSR register is latched. This freeze is released at the end of internal
vertical blanking (vertical position 20). There is no single bit in the system that indicates a light
pen trigger. To determine if a trigger has occurred, use one of these methods:

1. Read (long) VPOSR twice.

2. If both values are not the same, the light pen has not triggered since the last top-of­
screen (V = 20).

3. If both values are the same, mask off the upper 15 bits of the 32-bit word and compare it
with the hex value of $10500 (V=261).

4. If the VPOSR value is greater than $10500, the light pen has not triggered since the last
top-of-screen. If the value is less, the light pen has triggered and the value read is the
screen position of the light pen.

A somewhat simplified method of determining the truth of the light pen value involves instructing
the system software to read the register only during the internal vertical blanking period of
0<V20:

1. Read (long) VPOSR once, during the period of0<V20.

2. Mask off the upper 15 bits of the 32-bit word and compare it with the hex value of
$10500 (V=261).

3. If the VPOSR value is greater than $10500, the light pen has not triggered since the last
top-of-screen. If the value is less, the light pen has triggered and the value read is the
screen position of the light pen.

Note that when the light pen latch is enabled, the VPOSR register may be latched at any time, and
cannot be relied on as a counter. This behavior may cause problems with software that attempts
to derive timing based on VPOSR ticks.

Interface Hardware 239

DIGITAL 1/0 ON THE CONTROLLER PORT

The Amiga can read and interpret many different and nonstandard controllers. The control lines
built into the POTGO register (address $DFF034) can redefine the functions of some of the
controller port pins.

Table 8-4 is the POTGO register bit description. POTGO ($DFF034) is the write-only address
for the pot control register. POTINP ($DFF016) is the read-only address for the pot control
register. The pot-control register controls a four-bit bidirectional 1/0 port that shares the same
four pins as the four pot inputs.

Table 8-4: POTGO ($DFF034) and POTINP ($DFF016) Registers

Bit
Number

15
14
13
12
11
10
09
08
07-01
00

Name

OUTRY
DATRY
OUTRX
DATRX
OUTLY
DATLY
OUTLX
DATLX
X
START

Function

Output enable for bit 14 (1=output)
data for port 2, pin 9
Output enable for bit 12
data for port 2, pin 5
Output enable for bit 10
data for port 1, pin 9 (right mouse button)
Output enable for bit 8
data for port 1, pin 5 (middle mouse button)
chip revision identification number
Start pots (dump capacitors, start counters)

Instead of using the pot pins as variable-resistive inputs, you can use these pins as a four-bit
input/output port. This provides you with two additional pins on each of the two controller ports
for general purpose l/0.

If you set the output enable for any pin to a 1, the Amiga disconnects the potentiometer control
circuitry from the port, and configures the pin for output. The state of the data bit controls the
logic level on the output pin. This register must be written to at the POTGO address, and read
from the POTINP address. There are large capacitors on these lines, and it can take up to 300
microseconds for the line to change state.

To use the entire register as an input, sensing the current state of the pot pins, write all Os to
POTGO. Thereafter you can read the current state by using read-only address POTINP. Note
that bits set as inputs will be connected to the proportional counters (See the description of the
START bit in POTGO).

240 Amiga Hardware Reference Manual

These lines can also be used for button inputs. A button is a normally open switch that shorts to
ground. The Amiga must provide a pull-up resistance on the sense pin. To do this, set the proper
pin to output, and drive the line high (set both OUT ... and DAT ... to 1). Reading POTINP will
produce a 0 if the button is pressed, a 1 if it is not.

The joystick fire buttons can also be configured as outputs. CIAADDRA ($BFE201) contains a
mask that corresponds one-to-one with the data read register, CIAAPRA ($BFE001). Setting a 1
in the direction position makes the corresponding bit an output. See Appendix F for more details.

Floppy Disk Controller

The built-in disk controller in the system can handle up to four MFM-type devices. Typically
these are double-sided, double-density, 3.5" (90mm) or 5.25" disk drives. One 3.5" drive is
installed in the basic unit.

The controller is extremely flexible. It can DMA an entire track of raw MFM data into memory
in a single disk revolution. Special registers allow the CPU to synchronize with specific data, or
read input a byte at a time. The controller can read and write virtually any double-density MFM
encoded disk, including the Amiga Vl.O format, IBM PC (MS-DOS) 5.25", IBM PC (MS-DOS)
3.5" and most CPJMTM formatted disks. The controller has provisions for reading and writing
most disk using the Group Coded Recording (GCR) method, including Apple II™ disks. With
motor speed tricks, the controller can read and write Commodore 1541!1571 format diskettes.

REGISTERS USED BY THE DISK SUBSYSTEM

The disk subsystem uses two ports on the system's 8520 CIA chips, and several registers in the
Paula chip:

CIAAPRA
CIABPRB
ADKCON
ADKCONR
DSKPTH
DSKLEN
DSKBYTR
DSKSYNC

($BFE001)
($BFD100)
($DFF09E)
($DFF010)
($DFF020)
($DFF024)
($DFF01A)
($DFF07E)

four input bits for disk sensing
eight output bits for disk selection, control and stepping
control bits (write only register)
control bits (read only register)
DMA pointer (32 biL<;)
length of DMA
Disk data byte and status read
Disk sync finder; holds a match word

Interface Hardware 241

DISK SUBSYSTEM TIMING

Figures 8-7 and 8-8 show the timing parameters of the Amiga's floppy disk subsystem with a
Chinon drive. Keep in mind that this information can change with floppy drives from other
vendors. To ensure compatibility with future versions of the system, you should avoid using this
information in applications.

MOTOR ON --l.,. SOOm•mm ~~ Amiga Floppy Disk Write Timing

DRIVE
SELECT

STEP

Ius min

WRITE GATE : I

SIDE SELErT I

l.2ms min

1.2msmin

WRITEDATA sun~~ [~~ ~.. '"'m"

1 I I I I

Figure 1-7: Chinon Timing Diagram

242 Amiga Hardware Reference Manual

~ -~

Amiga Floppy Disk Access Timing

DRIVE SELECf I I
I t I 18ms min ~ I 3ms mi\j 18ms min I I t

STEP

DIRECTION
SELECT

TRACKOO

. ~.
I t I t I t I ~ 1.. 1.. t ~.. t i t ~~--

----lf _w ---h~_' __
I I t: 1 us min.

j

DRIVE
SELECT

I Amiga Floppy Disk Read Timing

STEP

WRITE GATE

SIDE SELECT

VALID
READ DATA

Hlusmin

•
u

~
ISms min

1 us min :1
1000 us min 1 r

1.2ms min

~ c-""(J I• J•
I I I 1000~~

18msmax I 1.2msmax I (seetext)

. ' 1 •I I• 1 us min

D
Figure 8-8: Chinon Timing Diagram (cont.)

Interface Hardware 243

CIAAPRA/CIABPRB - Disk selection, control and sensing

The following table lists how 8520 chip bits used by the disk subsystem. Bits labeled "PA" are
input bits in CIAAPRA ($BFE001). Bits labeled "PB" are output \tits located in CIAAPRB
($BFD100). More infonnation on how the 8520 chips operate can be found in Appendix F.

Table 8-5: Disk Subsystem

Bit Name Function

PAS DSKRDY* Disk ready (active low). The drive will pull this line low when
the motor is known to be rotating at full speed. This signal
is only valid when the motor is ON, at other times configuration
infonnation may obscure the meaning of this input.

PA4 DSKTRACKO* Track zero detect. The drive will pull this line low
when the disk heads are positioned over track zero.
Software must not attempt to step outwards when this signal
is active. Some drives will refuse to step, others will
attempt the step, possibly causing alignment damage.
All new drives must refuse to step outward in this condition.

PA3 DSKPROT* Disk is write protected (active low).

PA2 DSKCHANGE* Disk has been removed from the drive. The signal goes
low whenever a disk is removed. It remains low until

PB7 DSKMOTOR*

a disk is inserted AND a step pulse is received.

Disk motor control (active low). This signal is nonstandard
on the Amiga system. Each drive will latch the motor signal at
the time its select signal turns on. The disk drive motor
will stay in this state until the next time select turns on.
DSKMOTOR * also controls the activity light on the front
of the disk drive.

All software that selects drives must set up the motor signal
before selecting any drives. The drive will "remember"
the state of its motor when it is not selected. All drive
motors tum off after system reset.

After turning on the motor, software must further wait for
one half second (500ms), or for the DSKRDY* line to go low.

244 Amiga Hardware Reference Manual

PB6 DSKSEL3* Select drive 3 (active low).

PBS DSKSEL2* Select drive 2 (active low).

PB4 DSKSELI* Select drive 1 (active low).

PB3 DSKSELO* Select drive 0 (internal drive) (active low).

PB2 DSKSIDE Specify which disk head to use. Zero indicates the upper head.
DSKSIDE must be stable for 100 microseconds before writing.
After writing, at least 1.3 milliseconds must pass before
switching DSKSIDE.

PB1 DSKDIREC Specify the direction to seek the heads. Zero implies
seek towards the center spindle. Track zero is at the outside
of the disk. This line must be set up before the actual step
pulse, with a separate write to the register.

PBO DSKSTEP* Step the heads of the disk. This signal must always be
used as a quick pulse (high, momentarily low, then high).

The drives used for the Amiga are guaranteed to get to the next
track within 3 milliseconds. Some drives will support a much
faster rate, others will fail. Loops that decrement a counter
to provide delay are not acceptable. See Appendix F
for a better solution.

When reversing directions, a minimum of 18 milliseconds delay is
required from the last step pulse. Settle time for Amiga drives
is specified at 15 milliseconds.

FLAG DSKINDEX* Disk index pulse ($BFDDOO, bit 4). Can be used to
create a level 6 interrupt. See Appendix F for details.

Interface Hardware 245

Disk DMA Channel Control

Data is nonnally transferred to the disk by direct memory access (DMA). The disk DMA is
controlled by four items:

o Pointer to the area into which or from which the data is to be moved

o Length of data to be moved by DMA

o Direction of data transfer (read/write)

o DMAenable

DSKPTH - Pointer to Data

You specify the 32-bit wide address from which or to which the data is to be transferred. The
lowest bit of the address must be zero, and the buffer must be in Chip memory. The value must
be written as a single long word to the DSKPTH register ($DFF020).

DSKLEN • Length, Direction, DMA Enable

All of the control bits relating to this topic are contained in a write-only register, called DSKLEN:

Table 8-6: DSKLEN Register ($DFF024)

Bit
Number Name Usage

15 DMAEN Secondary disk DMA enable
14 WRITE Disk write (RAM ~ disk if 1)
13-0 LENGTH Number of words to transfer

246 Amiga Hardware Reference Manual

The hardware requires a special sequence in order to start DMA to the disk. This sequence
prevents accidental writes to the disk. In short, the DMAEN bit in the DSKLEN register must be
turned on twice in order to actually enable the disk DMA hardware. Here is the sequence you
should follow:

1. Enable disk DMA in the DMACON register (See Chapter 7 for more information)

2. Set DSKLEN to $4000, thereby forcing the DMA for the disk to be turned off.

3. Put the value you want into the DSKLEN register.

4. Write this value again into the DSKLEN register. This actually starts the DMA.

5. After the DMA is complete, set the DSKLEN register back to $4000, to prevent
accidental writes to the disk.

As each data word is transferred, the length value is decremented. After each transfer occurs, the
value of the pointer is incremented. The pointer points to the the next word of data to written or
read. When the length value counts down to 0, the transfer stops.

The recommended method of reading from the disk is to read an entire track into a buffer and then
search for the sector(s) that you want. Using the DSKSYNC register (described below) will
guarantee word alignment of the data. With this process you need to read from the disk only once
for the entire track. In a high speed loader, the step to the next head can occur while the previous
track is processed and checksummed. With this method there are no time-critical sections in
reading data, other high-priority subsystems (such as graphics or audio) are be allowed to run.

If you have too little memory for track buffering (or for some other reason decide not to read a
whole track at once), the disk hardware supports a limited set of sector-searching facilities. There
is a register that may be polled to examine the disk input stream.

There is a hardware bug that causes the last three bits of data sent to the disk to be lost. Also, the
last word in a disk-read DMA operation may not come in (that is, one less word may be read than
you asked for).

Interface Hardware 247

DSKBYTR- Disk Data Byte and Status Read (read-only)

This register is the disk-microprocessor data buffer. In read mode, data from the disk is placed
into this register one byte at a time. As each byte is received into the register, the DSKBYT bit is
set true. DSKBYT is cleared when the DSKBYTR register is read.

DSKBYTR may be used to synchronize the processor to the disk rotation before issuing a read or
write under DMA control.

Table 8-7: DSKBYTR Register

Bit
Number Name Function

15 DSKBYT When set, indicates that this register contains
a valid byte of data (reset by reading this register).

14 DMAON Indicates when DMA is actually enabled. All the various
DMA bits must be true. This means the DMAEN bit in
DKSLEN, and the DSKEN & DMAEN bits in DMACON.

13 DISKWRITE The disk write bit (in DSKLEN) is enabled.

12 WORDEQUAL Indicates the DISKSYNC register equals the disk input
stream. This bit is true only while the input stream matches
the sync register (as little as two microseconds).

11-8 Currently unused; don't depend on read value.

7-0 DATA Disk byte data.

248 Amiga Hardware Reference Manual

ADKCON and ADKCONR- Audio and Disk Control Register

ADKCON is the write-only address and ADKCONR is the read-only address for this register.
Not all of the bits are dedicated to the disk. Bit 15 of this register allows independent setting or
clearing of any bit or bits. If bit 15 is a one on a write, any ones in positions 0-14 will set the
corresponding bit. If bit 15 is a zero, any ones will clear the corresponding bit

Table 8-8: ADKCON and ADKCONR Register

Bit
Number Name Function

15 SET/CLR Control bit that allows setting or clearing of individual
bits without affecting the rest of the register.

If bit 15 is a 1, the specified bits are set.
If bit 15 is a 0, the specified bits arc cleared.

14 PRECOMP1 MSB of Prccompensation specifier
13 PRECOMPO LSB of Precompensation specifier

Value of 00 selects none.
Valueof01 selects 140ns.
Value of 10 selects 280 ns.
Value of 11 selects 560 ns.

12 MFMPREC Value of 0 selects GCR Precompensation.
Value of 1 selects MFM Precompensation.

10 WORDSYNC Value of 1 enables synchronizing and starting
of DMA on disk read of a word. The word on which
to synchronize must be written into the DSKSYNC
address ($DFF07E). This capability is highly
useful.

9 MSBSYNC Value of 1 enables sync on most significant bit of the
input (usually used for GCR).

8 FAST Value of 1 selects two microseconds per bit cell
(usually MFM). Data must be valid raw MFM.
0 selects four microseconds per bit (usually GCR).

7-0 These bits are used by the audio subsystem for volume
and frequency modulation.

Interface Hardware 249

The raw MFM data that must be presented to the disk controller will be twice as large as the
unencoded data. The following table shows the relationship:

1--+ 01
0--+ 10 ;if following a 0
0 --+ 00 ;if following a 1

With clever manipulation, the blitter can be used to encode and decode the MFM.

In one common form of GCR recording, each data byte always has the most significant bit set to a
1. MSBSYNC, when a 1, tells the disk controller to look for this sync bit on every disk byte.
When reading a GCR formatted disk, the software must use a translate table called a nybble-izer
to assure that data written to the disk does not have too many consecutive 1 's orO's.

DSKSYNC - Disk Input Synchronizer

The DSKSYNC register is used to synchronize the input stream. This is highly useful when
reading disks. If the WORDSYNC bit is enabled in ADKCON, no data is transferred until a
word is found in the input stream that matches the word in the DSKSYNC register. On read,
DMA will start with the following word from the disk. During disk read DMA, the controller
will resync every time the word match is found. Typically the DSKSYNC will be set to the
magic MFM sync mark value, $4489.

In addition, the DSKSYNC bit in INTREQ is set when the input stream matches the DSKSYNC
register. The DSKSYNC bit in INTREQ is independent of the WORDSYNC enable.

DISK INTERRUPTS

The disk controller can issue three kinds of interrupts:

o DSKSYNC (levelS, INTREQ bit 12)-input stream matches the DSKSYNC register.

o DSKBLK (levcll, INTREQ bit 1)-disk DMA has completed.

o INDEX (level6, 8520 Flag pin)-index sensor triggered.

Interrupts are explained further in the section ''Length, Direction, DMA Enable''. See Chapter 7,
''System Control Hardware,'' for more information about interrupts. See Appendix F for more
information on the 8520.

250 Amiga Hardware Reference Manual

The Keyboard

The keyboard is interfaced to the system via the serial shift register on one of the 8520 CIA chips.
The keyboard data line is connected to the SP pin, the keyboard clock is connected to the CNT
pin. Appendix G contains a full description of the interface.

HOW THE KEYBOARD DATA IS RECEIVED

The CNT line is used as a clock for the keyboard. On each transition of this line, one bit of data
is clocked in from the keyboard. The keyboard sends this clock when each data bit is stable on
the SP line. The clock is an active low pulse. The rising edge of this pulse clocks in the data.

After a data byte has been received from the keyboard, an interrupt from the 8520 is issued to the
processor. The keyboard waits for a handshake signal from the system before transmitting any
more keystrokes. This handshake is issued by the processor pulsing the SP line low then high.
While some keyboards can detect a 1 microsecond handshake pulse, the pulse must be at least 85
microseconds for operation with all models of Amiga keyboards.

If another keystroke is received before the previous one has been accepted by the processor, the
keyboard microprocessor holds keys in a 10 keycode type-ahead buffer.

TYPE OF DATA RECEIVED

The keyboard data is not received in the form of ASCII characters. Instead, for maximum
versatility, it is received in the form of keycodes. These codes include both the down and up
transitions of the keys. This allows your software to use both sets of information to determine
exactly what is happening on the keyboard.

Here is a list of the hexadecimal values that are assigned to the keyboard. A downstroke of the
key transmits the value shown here. An upstroke of the key transmits this value plus $80. The
picture of the keyboard at the end of this section shows the positions that correspond to the
description in the paragraphs below.

Note that raw keycodes provide positional information only, the legend which is printed on top of
the keys changes from country to country.

Interface Hardware 251

RAW Keycodes ~ 00-3F hex

These are key codes assigned to specific positions on the main body of the keyboard. The letters
on the tops of these keys are different for each country; not all countries use the QWERTY key
layout. These keycodes are best described positionally as shown in Figure 8-9 and Figure 8-10 at
the end of the keyboard section. The international keyboards have two more keys that are "cut
out" of larger keys on the USA version. These are $30, cut out from the the left shift, and $2B,
cut out from the return key.

RAW Keycodes ~ 40-SF hex (Codes common to all keyboards)

40 Space
41 Backspace
42 Tab
43 Numeric Pad "ENTER"
44 Return
45 Escape
46 Delete
4A Numeric pad minus
4C Cursor up
4D Cursor down
4E Cursor right
4F Cursor left
50-59 Function keys Fl-FlO
SA Numeric pad left parenthesis
SB Numeric pad right parenthesis
SC Numeric pad slash "/"
SD Numeric pad asterisk
5E Numeric pad plus
SF Help

RAW Keycodes ~ 60-67 hex (Key codes for qualifier keys)

60 Left Shift
61 Right Shift
62 Caps Lock
63 Control
64 Left Alt
65 Right Alt
66 Left Amiga (or Commodore key)
67 Right Amiga

252 Amiga Hardware Reference Manual

FO-FFhex

These key codes are used for keyboard to 680x0 communication, and are not associated with a
keystroke. They have no key transition flag, and are therefore described completely by 8-bit
codes:

78 Reset warning. Ctrl-Amiga-Amiga has been pressed. The keyboard
will wait a maximum of 10 seconds before resetting the machine.
(Not available on all keyboard models)

F9 Last key code bad, next key is same code retransmitted
FA Keyboard key buffer overflow
FC Keyboard self-test fail. Also, the caps-lock LED will blink

to indicate the source of the error. Once for ROM failure,
twice for RAM failure and three times if the watchdog timer
fails to function.

FD Initiate power-up key stream (for keys held or stuck at power on)
FE Terminate power-up key stream.

These key codes will usually be filtered out by keyboard drivers.

LIMITATIONS OF THE KEYBOARD

The Amiga keyboard is a matrix of rows and columns with a key switch at each intersection (see
Appendix G for a diagram of the matrix). Because of this, the keyboard is subject to a
phenomenon called "phantom keystrokes." While this is generally not a problem for typing,
games may require several keys be independently held down at once. By examining the matrix,
you can determine which keys may interfere with each other, and which ones are always safe.

Phantom keystrokes occur when certain combinations of keys pressed arc pressed simultaneously.
For example, hold the "A" and "S" keys down simultaneously. Notice that "A" and "S" are
transmitted. While still holding them down, press "Z". On the original Amiga 1000 keyboard,
both the "Z" and a ghost "X" would be generated. Starting with the Amiga 500, the controller
was upgraded to notice simple phantom situations like the one above; instead of generating a
ghost, the controller will hold off sending any character until the matrix has cleared (releasing
"A" or "S" would clear the matrix). Some high-end Amiga keyboards may implement true
"N-key rollover," where any combination of keys can be detected simultaneously.

All of the keyboards are designed so that phantoms will not happen during normal typing, only
when unusual key combinations like the one just described are pressed. Normally, the keyboard
will appear to have "N-key rollover," which means that you will run out of fingers before
generating a ghost character.

About the qualifier keys. Seven keys are not part of the matrix, and will never
contribute to generating phantoms. These keys are: Ctrl, the two Shift keys, the two
Amiga keys, and the two Alt keys.

Interface Hardware 253

7

3D
4

20
1

10
0

OF
-

4A

Figure 8-9: The Amiga 1000 Keyboard, Showing Keycodes in Hexadecimal

Fl I F1 I F2 I F3 I F4 I FS II F6 I H I F8 I F9 I F10 I
L§J 50 51 52 53 54 55 56 57 58 59

00
Tab

CTRL

Shift

~
~

.
i

4C

r It I~
4F 40 4E

()

5A 58
7 8

30 3E
4 5

20 2E
1 2

10 1E
0

OF

8

3E
5

2E
2

1E

t::nter

43

I

5C
9

3F
6

2F
3

1F

3C

Figure 8-10: The Amiga 500/2000/3000 Keyboard, Showing Keycodes in Hexadecimal

254 Amiga Hardware Reference Manual

9

3F
6

2F
3 I

1 F ,

3C

.
50

4A
+

5E
En1er

43

Serial 1/0 Interface

A 25-pin connector on the back panel of the computer serves as the general purpose serial
interface. This connector can drive a wide range of different peripherals, including an external
modem or a serial printer.

For pin connections, see Appendix E.

INTRODUCTION TO SERIAL CIRCUITRY

The Paula custom chip contains a Universal Asynchronous Receiver(fransmitter, or UART. This
UART is programmable for any rate from 110 to over 1,000,000 bits per second. It can receive or
send data with a programmable length of eight or nine bits.

The UART implementation provides a high degree of software control. The UART is capable of
detecting overrun errors, which occur when some other system sends in data faster than you
remove it from the data-receive register. There are also status bits and interrupts for the
conditions of receive buffer full and transmit buffer empty. An additional status bit is provided
that indicates ''all bits have been shifted out''. All of these topics are discussed below.

SETTING THE BAUD RATE

The rate of transmission (the baud rate) is controlled by the contents of the register named
SERPER. Bits 14-0 of SERPER are the baud-rate divider bits.

All timing is done on the basis of a "color clock," which is 279.36ns long on NTSC machines
and 281.94ns on PAL machines. If the SERPER divisor is set to the number N, then N+l color
clocks occur between samples of the state of the input pin (for receive) or between transmissions
of output bits (for transmit). Thus SERPER=(3,579,545/baud)-1. On a PAL machine,
SERPER=(3,546,895/baud)-1. For example, the proper SERPER value for 9600 baud on an
NTSC machine is (3,579,545f]600)-1=371.

With a cable of a reasonable length, the maximum reliable rate is on the order of 150,000-250,000
bits per second. Maximum rates will vary between machines. At these high rate it is not possible
to handle the overhead of interrupts. The receiving end will need to be in a tight read loop.
Through the use of low speed control information and high-speed bursts, a very inexpensive
communication network can be built.

SETTING THE RECEIVE MODE

The number of bits that are to be received before the system tells you that the receive register is
full may be defined either as eight or nine (this allows for 8 bit transmission with parity). In
either case, the receive circuitry expects to see one start bit, eight or nine data bits, and at least
one stop bit.

Interface Hardware 255

Receive mode is set by bit 15 of the write-only SERPER register. Bit 15 is a 1 if you chose nine
data bits for the receive-register full signal, and a 0 if you chose eight data bits. The normal state
of this bit for most receive applications is a 0.

CONTENTS OF THE RECEIVE DATA REGISTER

The serial input data-receive register is 16 bits wide. It contains the 8 or 9 bit input data and
status bits.

The data is received, one bit at a time, into an internal serial-to-parallel shift register. When the
proper number of bit times have elapsed, the contents of this register are transferred to the serial
data read register (SERDA TR) shown in Table 8-10, and you are signaled that there is data ready
for you.

Immediately after the transfer of data takes place, the receive shift register again becomes ready to
accept new data. After receiving the receiver-full interrupt, you will have up to one full
character-receive time (8 to 10 bit times) to accept the data and clear the interrupt. If the interrupt
is not cleared in time, the OVERRUN bit is set.

Table 8-9 shows the definitions of the various bit positions within SERDATR.

Bit
Number

15

14

Name

OVRUN

RBF

Table 8-9: SERDA TR I ADKCON Registers

SERDATR

Function

OVERRUN
(Mirror-also appears in the interrupt request register.)
Indicates that another byte of data was received before the
previous byte was picked up by the processor. To prevent this
condition, it is necessary to reset INTF _RBF (bit 11,
receive-buffer-full) in INTREQ.

READ BUFFER FULL
(Mirror-also appears in the interrupt request register.)
When this bit is 1, there is data ready to be picked
up by the processor. After reading the contents of this data
register, you must reset the INTF _RBF bit in INTREQ to prevent
an overrun.

256 Amiga Hardware Reference Manual

13 TBE TRANSMIT BUFFER EMPTY
(Not a mirror-interrupt occurs when the buffer
becomes empty.) When bit 14 is a 1, the data in the output
data register (SERDA T) has been transferred to the serial
output shift register, so SERDAT is ready to accept another
output word. This is also true when the buffer is empty.

This bit is normally used for full-duplex operation.

12 TSRE TRANSMIT SHIFf REGISTER EMPTY
When this bit is a 1, the output shift register has completed
its task, all data has been transmitted, and the register is
now idle. If you stop writing data into the output register
(SERDAT), then this bit will become a 1 after both the word
currently in the shift register and the word placed
into SERDA T have been transmitted.

This bit is normally used for half-duplex operation.

11 RXD Direct read of RXD pin on Paula chip.

10 Not used at this time.

9 STP Stop bit if 9 data bits are specified for receive.

8 STP Stop bit if 8 data bits are specified for receive.
OR

DB8 9th data bit if 9 bits are specified for receive.

7-0 DB7-DBO Low 8 data bits of received data. Data is TRUE (data you
read is the same polarity as the data expected).

ADKCON

15 SET/CLR Allows setting or clearing individual bits.

If bit 15 is a 1 specified bits arc set.
If bit 15 is a 0 specified bits are cleared.

11 UARTBRK Force the transmit pin to zero.

Interface Hardware 257

HOW OUTPUT DATA IS TRANSMITTED

You send data out on the transmit lines by writing into the serial data output register (SERDA T).
This register is write-only.

Data will be sent out at the same rate as you have established for the read. Immediately after you
write the data into this register, the system will begin the transmission at the baud rate you
selected.

At the start of the operation, this data is transferred from SERDAT into an internal serial shift
register. When the transfer to the serial shift register has been completed, SERDA T can accept
new data; the TBE interrupt signals this fact.

Data will be moved out of the shift register, one bit during each time interval, starting with the
least significant bit. The shifting continues until all 1 bits have been shifted out. Any number or
combination of data and stop bits may be specified this way.

SERDAT is a 16-bit register that allows you to control the fonnat (appearance) of the transmitted
data. To fonn a typical data sequence, such as one start bit, eight data bits, and one stop bit, you
write into SERDAT the contents shown in Figures 8-11 and 8-12.

15 9 8 7 0

o o o o o o o o o o o o o o o ------------------~I
one brt

All zeros from last shift -

Figure 8-11: Starting Appearance of SERDAT and Shift Register

258 Amiga Hardware Reference Manual

15 9 8 7 0

0 0 0 0 0 0 0 j-c----· 8 bits data ---..j

----------------------------~

Data gets shifted out this way.

Figure 8-12: Ending Appearance of Shift Register

The register stops shifting and signals "shift register empty" (fSRE) when there is a 1 bit
present in the bit-shifted-out position and the rest of the contents of the shift register are Os.
When new nonzero contents are loaded into this register, shifting begins again.

SPECIFYING THE REGISTER CONTENTS

The data to be transmitted is placed in the output register (SERDAT). Above the data bits, 1 bits
must be added as stop bits. Normally, either one or two stop bits are sent.

The transmission of the start bit is independent of the contents of this register. One start bit is
automatically generated before the first data bit (bit 0) is sent.

Writing this register starts the data transmission. If this register is written with all zeros, no data
transmission is initiated.

Parallel 1/0 Interface

The general-purpose bi-directional parallel interface is a 25-pin connector on the back panel of the
computer. This connector is generally used for a parallel printer.

For each data byte written to the parallel port register, the hardware automatically generates a
pulse on the data ready pin. The acknowledge pulse from the parallel device is hooked up to an
interrupt. For pin connections and timing, see Appendix E and F.

Interface Hardware 259

Display Output Connections

All Amigas provide a 23-pin connector on the back. This jack contains video outputs and inputs
for external genlock devices. Two separate type of RGB video are available on the connector:

o RGB Monitors (''analog RGB' '). Provides four outputs; Red (R), Green (G), Blue (B),
and Sync (S). They can generate up to 4,096 different colors on-screen simultaneously
using the circuitry presently available on the Amiga.

o Digital RGB Monitors. Provides four outputs, distinct from those shown above, named
Red (R), Green (G), Blue (B), Half-Intensity (1), and Sync (S). All output levels are
logic levels (0 or 1). On some monitors these outputs allow up to 15 possible color
combinations, where the values 0000 and 0001 map to the same output value (Half
intensity with no color present is the same as full intensity, no color). Some monitors
arbitrarily map the 16 combinations to 16 arbitrary colors.

Note that the sync signals from the Amiga are unbuffered. For use with any device that
presents a heavy load on the sync outputs, external buffers will be required.

The Amiga 500 and 2000 provide a full-bandwidth monochrome video jack for use with
inexpensive monochrome monitors. The Amiga colors are combined into intensities based on the
following table:

Red Green Blue
30% 60% 10%

The A3000 is not equipped with a monochrome video jack.

The Amiga 1000 provides an RF modulator jack. An adapter is available that allows all Amiga
models to use a television set for display. Stereo sound is available on the jack, but will generally
be combined into monaural sound for the TV set.

The Amiga 1000 provides a color composite video jack. This is suitable for recording directly
with a VCR, but the output is not broadcast quality. For use on a monochrome monitor, the color
information often has undesired effects; careful color selection or a modification to the internal
circuitry can improve the results. The A500, A2000 and A3000 do not have a color composite
video jack. High quality composite adapters for the A500, AlOOO, A2000 and A3000 plug into
the 23 pin RGB port.

The Amiga 2000 and 3000 provide a special "video slot" that contains many more signals than
are available elsewhere: all the 23-pin RGB port signals, the unencoded digital video, light pen,
power, audio, colorburst, pixel switch, sync, clock signals, etc.

260 Amiga Hardware Reference Manual

- --

appendix A
REGISTER SUMMARY
ALPHABETICAL ORDER

This appendix contains the definitive summary, in alphabetical order, of the Amiga's custom chip
register set and the usages of the individual bits.

The addresses shown here are used by the special custom chips (named "Paula", "Agnus", and
"Denise") for transferring data among themselves. Also, the Copper uses these addresses for
writing to the special chip registers. To write to these registers with the 680x0, calculate the
680x0 address using this formula:

680x0 address= (chip address)+ $DFFOOO

For example, for the 680x0 to write to ADKCON (address = $09E), the address would be
$DFF09E. No other access address is valid. Do not attempt to access any documented or unused
registers.

All of the "pointer" type registers are organized as 32 bits on a long word boundary. These
registers may be written with one MOVE.L instruction. The lowest bit of all pointers must be
written as zero. The custom chips can only access Chip memory; using a non-Chip address will
fail (See the AllocMem() documentation or your compiler manual for more information on Chip
memory). Disk data, sprite data, bitplane data, audio data, copper lists and anything that will be
blitted or accessed by custom chip DMA must be located in chip memory.

When strobing any register which responds to either a read or a write, (for example copjmp2) be
sure to use a MOVE.W, not CLR.W. The CLR instruction causes a read and a clear (two
accesses) on a 68000, but only a single access on 68020 processors. This will give different
results on different processors.

Warning: Registers are either read-only or write-only. In the following descriptions,
if a register is marked as a read-only register, only read its contents. Do not attempt to
write to a read-only register, as this will cause unpredictable results. If a register is

Appendix A 263

marked as a write-only register, do not attempt to read from it, as this may trash the
register and crash the system.

If a bit is described as unused in a write-only register, be sure to keep that bit clear when writing
values to that register. Similarly, do not rely on the values of unused bits when reading from a
read only register. Further, do not write to an address or register that is not documented or defined
in this appendix. Setting unused bits in a write-only register, reading unused bits from a read
only register and writing to undocumented registers or addresses may cause serious future
software incompatibility if those bits or addresses arc implemented in the future by Commodore
Amiga.

About the ECS registers. Registers denoted with an "(E)" in the chip column
means that those registers have been changed the Enhanced Chip Set(ECS). The ECS
is found in the A3000, and is installable in the A500 and A2000. Certain ECS
registers are completely new, others have been extended in their functionality. See the
register map in Appendix C for information on which ECS registers are new and
which have been modified.

264 Amiga Hardware Reference Manual

Read/
Register Address Write

Agnus/
Denise/
Paula Function

ADKCON 09E
ADKCONR 010

w p
R p

BITlt USE

Audio, disk, control write
Audio, disk, control read

15 SET/CLR Set/clear control bit. Determines if bits
written with a 1 get set or cleared. Bits
written with a zero are always unchanged.

14-13 PRECOMP 1-0

CODE PRECOMP VALUE

00 none
01 140 ns
10 280 ns
11 560 ns

12 MFMPREC (1=MFM precomp O=GCR precomp)
11 UARTBRK Forces a UART break (clears TXD) if true.
10 WORDSYNC Enables disk read synchronizing on a word

equal to DISK SYNC CODE, located in
address (3F)*2.

09 MSBSYNC Enables disk read synchronizing on the MSB
(most significant bit). Appl type GCR.

08 FAST Disk data clock rate control 1=fast(2us) O=slow(4us).
(fast for MFM, slow for MFM or GCR)

07 USE3PN Use audio channel 3 to modulate nothing.
06 USE2P3 Use audio channel 2 to modulate period of channel 3.
05 USE1P2 Use audio channel 1 to modulate period of channel 2.
04 USEOP1 Use audio channel 0 to modulate period of channel 1.

03 USE3VN Use audio channel 3 to modulate nothing.
02 USE2V3 Use audio channel 2 to modulate volume of channel 3.
01 USE1V2 Use audio channel 1 to modulate volume of channel 2.
00 USEOV1 Use audio channel 0 to modulate volume of channel 1.

NOTE: If both period and volume are modulated on the
same channel, the period and volume will be alternated.
First word xxxxxxxx V6-VO , Second word P15-PO (etc)

AUDxDAT OAA W p Audio channel x data

This register is the audio channel x (x=0,1,2,3)
DMA data buffer. It contains 2 bytes of data that
are each 2's complement and are outputted
sequentially (with digital-to-analog conversion)
to the audio output pins. (LSB = 3 MV) The DMA
controller automatically transfers data to this
register from RAM. The processor can also write
directly to this register. When the DMA data is
finished (words outputted=length) and the data in
this register has been used, an audio channel
interrupt request is set.

Appendix A 265

AUDxLCH
AUDxLCL

AUDxLEN

AUDxPER

AUDxVOL

BEAMCONO

BLTAFWM
BLTALWM

OAO W
OA2 W

A(E)
A

Audio channel x location (high 3 bits,S bits if ECS)
Audio channel x location (low 15 bits)

This pair of registers contains the 18 bit starting address
(location) of audio channel x (x=0,1,2,3) DMA data.
This is not a pointer register and therefore needs
to be reloaded only if a different memory location is to
be outputted.

OA4 W p Audio channel x length

This register contains the length (number of words) of
audio channel x DMA data.

OA6 W P(E)Audio channel x Period

This register contains the period (rate) of
audio channel x DMA data transfer.
The minimum period is 124 color clocks. This means
that the smallest number that should be placed in
this register is 124 decimal. This corresponds to
a maximum sample frequency of 28.86 khz.

0A8 W p Audio channel x volume

1DC

044
046

This register contains the volume setting for
audio channel x. Bits 6,5,4,3,2,1,0 specify 65
linear volume levels as shown below.

Bitit

15-07
06
05-00

w A(E)

w A
w A

Use

Not used
Forces volume to max (64 ones, no zeros)
Sets one of 64 levels (OOOOOO=no output
(111111=63 1s, one 0)

Beam counter control register (SHRES,PAL)

Slitter first-word mask for source A
Slitter last-word mask for source A

The patterns in these two registers are ANDed with
the first and last words of each line of data from
source A into the blitter. A zero in any bit
overrides data from source A. These registers
should be set to all 1s for fill mode or for
line-drawing mode.

266 Amiga Hardware Reference Manual

BLTCONO
BLTCON1

040 w
042 w

A
A(E)

Blitter control register 0
Blitter control register 1

These two control registers are used together to
control blitter operations. There are two basic
modes, area and line, which are selected by bit
0 of BLTCON1, as shown below.

AREA MODE ("normal")

BITt BLTCONO BLTCON1
------- -------

15 ASH3 BSH3
14 ASH2 BSH2
13 ASH1 BSH1
12 ASAO BSFO
11 USEA X
10 USEB X
09 USEC X
08 USED X
07 LF7 DOFF
06 LF6 X
05 LF5 X
04 LF4 EFE
03 LF3 !FE
02 LF2 FCI
01 LF1 DESC
00 LFO LINE(=O)

ASH3-0 Shift value of A source
BSH3-0 Shift value of B source
USEA Mode control bit to use source A
USEB Mode control bit to use source B
USEC Mode control bit to use source C
USED Mode control bit to use destination D
LF7-0 Logic function minterm select lines
EFE Exclusive fill enable
!FE Inclusive fill enable
FCI Fill carry input
DESC Descending (decreasing address) control bit
LINE Line mode control bit (set to 0)

Appendix A 267

BLTCONO (cont.) LINE DRAW
BLTCONl (cont.) LINE DRAW

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

LINE DRAW
LINE DRAW

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

LINE DRAW
LINE DRAW

LINE MODE (line draw)

BITlt BLTCONO BLTCONl

15
14
13
12
11
10
09
08
07
06
05
04
03
02
01
00

START3
START2
STARTl
STARTO

1
0
1
1

LF7
LF6
LF5
LF4
LF3
LF2
LFl
LFO

TEXTURE3
TEXTURE2
TEXTURE!
TEXTURED

0
0
0
0
0

SIGN
0 (Reserved)

SUD
SUL
AUL
SING
LINE{=l)

START3-0 Starting point of line
(0 thru 15 hex)

LF7-0 Logic function minterm
select lines should be preloaded
with 4A to select the equation
D=(AC+ABC). Since A contains a
single bit true (8000), most bits
will pass the C field unchanged
(not A and C), but one bit will
invert the C field and combine it
with texture (A and B and not C) .
The A bit is automatically moved
across the word by the hardware.

LINE
SIGN
0
SING

SUD
SUL
AUL

Line mode control bit (set to 1)
Sign flag
Reserved for new mode
Single bit per horizontal line for
use with subsequent area fill
Sometimes up or down (=AUD*)
Sometimes up or left
Always up or left

The 3 bits above select the octant
for line drawing:

OCT SUD SUL AUL

0
1
2
3
4
5
6
7

1
0
0
1
1
0
0
1

1
0
1
1
0
1
0
0

The "B" source is used for
texturing the drawn lines.

0
1
1
1
1
0
0
0

268 Amiga Hardware Reference Manual

BLTCONOL
BLTDDAT

BLTSIZE

BLTSIZV
BLTSIZH

BLTxDAT

05A W A(E) Blitter control 0, lower 8 bits (minterms)
Blitter destination data register

This register holds the data resulting from each
word of blitter operation until it is sent to a
RAM destination. This is a dummy address and
cannot be read by the micro. The transfer is
automatic during blitter operation.

058 w A Blitter start and size (window width,
height)

05C
05E

074

This register contains the width and height of
the blitter operation (in line mode, width must
= 2, height = line length). Writing to this
register will start the blitter, and should be
done last, after all pointers and control
registers have been initialized.

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

h9 h8 h7 h6 h5 h4 h3 h2 h1 hO,w5 w4 w3 w2 w1 wO

h=height=vertical lines (10 bits=1024 lines max)
w=width =horizontal pixels (6 bits=64 words=1024 pixels max)

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

w A(E)
w A(E)

w A

BLTSIZE controls the line length and starts
the line draw when written to. The h field
controls the line length (10 bits gives
lines up to 1024 dots long) . The w field
must be set to 02 for all line drawing.

Blitter V size (for 15 bit vertical size)
Blitter H size and start (for 11 bit H size)

Blitter source x data register

This register holds source x (x=A,B,C) data for
use by the blitter. It is normally loaded by the
blitter DMA channel; however, it may also be
preloaded by the microprocessor.

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

BLTADAT is used as an index register
and must be preloaded with 8000.
BLTBDAT is used for texture; it must
be preloaded with FF if no texture
(solid line) is desired.

Appendix A 269

SLTxMOD

SLTxPTH
SLTxPTL

SPLlMOD
SPL2MOD

064 w A Slitter modulo x

This register contains the modulo for blitter
source (x=A,S,C) or destination (x-D). A modulo
is a number that is automatically added to the
address at the end of each line, to make the
address point to the start of the next line. Each
source or destination has its own modulo, allowing
each to be a different size, while an identical
area of each is used in the blitter operation.

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

SLTAMOD and SLTBMOD are used as slope
storage registers and must be preloaded
with the values (4Y-4X) and (4Y)
respectively. Y/X= line slope.
SLTCMOD and BLTDMOD must both be
preloaded with the width (in bytes)
of the image into which the line is
being drawn (normally two times the
screen width in words) .

050 w
052 w

A(E)
A

Slitter pointer to x (high 3 bits, 5 bits if ECS)
Slitter pointer to x (low 15 bits)

108
lOA

This-pair of registers contains the 18-bit address
of blitter source (x=A,S,C) or destination (x=D)
DMA data. This pointer must be preloaded with the
starting address of the data to be processed by
the blitter. After the blitter is finished, it
will contain the last data address (plus increment
and modulo).

LINE DRAW SLTAPTL is used as an accumulator
LINE DRAW register and must be preloaded with
LINE DRAW the starting value of (2Y-X) where
LINE DRAW Y/X is the line slope. SLTCPT and
LINE DRAW BLTDPT (both H and L) must be
LINE DRAW preloaded with the starting address
LINE DRAW of the line.

w A Sitplane modulo (odd planes)
w A Sitplane modulo (even planes)

These registers contain the modules for the odd
and even bitplanes. A modulo is a number that is
automatically added to the address at the end of
each line, so that the address then points to the
start of the next line.
Since they have separate modulos, the odd and even
bitplanes may have sizes that are different from
each other, as well as different from the display
window size.

270 Amiga Hardware Reference Manual

BPLCONO

BPLCON1

BPLCON2

BPLCON3

100

102

104

w A D(E) Bitplane control register (misc.
control bits)

w D Bitplane control register
(horizontal scroll control)

w D(E) Bitplane control register
(video priority control)

These registers control the operation of the
bitplanes and various aspects of the display.

BITt BPLCONO BPLCON1 BPLCON2
-------- -------- --------

15 HIRES X X
14 BPU2 X X
13 BPU1 X X
12 BPUO X X
11 HOMOD X X
10 DBLPF X X
09 COLOR X X
08 GAUD X X
07 X PF2H3 X
06 X PF2H2 PF2PRI
05 X PF2H1 PF2P2
04 X PF2HO PF2P1
03 LPEN PF1H3 PF2PO
02 LACE PF1H2 PF1P2
01 ERSY PF1H1 PF1P1
00 X PF1HO PF1PO

HIRES=High-resolution (70 ns pixels)
BPU =Bitplane use code 000-110 (NONE through 6 inclusive)
HOMOD=Hold-and-modify mode(1 =Hold-and-modify mode)

(0 =Extra Half Brite(EHB) mode,only if 6 bitplanes specified)
DBLPF=Double playfield (PF1~odd PF2=even bitplanes)
COLOR=Composite video COLOR enable

106

GAUD=Genlock audio enable (muxed on BKGND pin
during vertical blanking

LPEN =Light pen enable (reset on power up)
LACE =Interlace enable (reset on power up)
ERSY =External resync (HSYNC, VSYNC pads become

inputs) (reset on power up)
PF2PRI=Playfield 2 (even planes) has priority over

(appears in front of) playfield 1
(odd planes) .

PF2P=Playfield 2 priority code (with respect
to sprites)

PF1P=Playfield 1 priority code (with respect
to sprites)

PF2H=Playfield 2 horizontal scroll code
PF1H=Playfield 1 horizontal scroll code

w D(E) Bitplane control (enhanced features)

Appendix A 271

BPLxDAT

BPLxPTH
BPLxPTL

CLXCON

110 w D Bitplane x data (parallel-to-serial
convert)

These registers receive the DMA data fetched from
RAM by the bitplane address pointers described
above. They may also be written by either
microprocessor. They act as a six-word parallel­
to-serial buffer for up to six memory bitplanes
(x=1-6). The parallel-to-serial conversion is
triggered whenever bitplane f1 is written,
indicating the completion of all bitplanes for
that word (16 pixels). The MSB is output first,
and is, therefore, always on the left.

OEO W
OE2 W

A
A

Bitplane x pointer (high 3 bits)
Bitplane x pointer (low 15 bits)

This pair of registers contains the 18-bit pointer to
the address of bitplane x (x=1,2,3,4,5,6) DMA data.
This pointer must be reinitialized by the processor
or copper to point to the beginning of bitplane data
every vertical blank time.

098 w D Collision control

This register controls which bitplanes are
included (enabled) in collision detection and
their required state if included. It also controls
the individual inclusion of odd-numbered sprites
in the collision detection by logically OR-ing
them with their corresponding even-numbered sprite.

BITt

15
14
13
12
11

10

09

08

07

06

05
04
03
02
01
00

FUNCTION DESCRIPTION
-------- ------------------------------
ENSP7 Enable sprite 7 (ORed with sprite 6)
ENSP5 Enable sprite 5 (ORed with sprite 4)
ENSP3 Enable sprite 3 (ORed with sprite 2)
ENSP1 Enable sprite 1 (ORed with sprite 0)
ENBP6 Enable bitplane 6 (match required

for collision)
ENBP5 Enable bitplane 5 (match required

for collision)
ENBP4 Enable bitplane 4 (match required

for collision)
ENBP3 Enable bitplane 3 (match required

for collision)
ENBP2 Enable bitplane 2 (match required

for collision)
ENBP1 Enable bitplane 1 (match required

for collision)
MVBP6 Match value for bitplane 6 collision
MVBP5 Match value for bitplane 5 collision
MVBP4 Match value for bitplane 4 collision
MVBP3 Match value for bitplane 3 collision
MVBP2 Match value for bitplane 2 collision
MVBP1 Match value for bitplane 1 collision

NOTE: Disabled bitplanes cannot prevent
collisions. Therefore if all bitplanes are
disabled, collisions will be continuous,
regardless of the match values.

272 Amiga Hardware Reference Manual

CLXDAT

COLORxx

COPlLCH

COPlLCL

COP2LCH

COP2LCL

OOE R D Collision data register (read and clear)

This address reads (and clears) the collision
detection register. The bit assignments are below.

NOTE: Playfield 1 is all odd-numbered enabled
bitplanes. Playfield 2 is all even-numbered
enabled bitplanes

BITJt COLLISIONS REGISTERED

15 not used
14 Sprite 4 (or 5) to sprite 6 (or 7)
13 Sprite 2 (or 3) to sprite 6 (or 7)
12 Sprite 2 (or 3) to sprite 4 (or 5)
11 Sprite 0 (or 1) to sprite 6 (or 7)
10 Sprite 0 (or 1) to sprite 4 (or 5)
09 Sprite 0 (or 1) to sprite 2 (or 3)
08 Playfield 2 to sprite 6 (or 7)
07 Playfield 2 to sprite 4 (or 5)
06 Playfield 2 to sprite 2 (or 3)
05 Playfield 2 to sprite 0 (or 1)
04 Playfield 1 to sprite 6 (or 7)
03 Playfield 1 to sprite 4 (or 5)
02 Playfield 1 to sprite 2 (or 3)
01 Playfield 1 to sprite 0 (or 1)
00 Playfield 1 to playfield 2

180 w D Color table xx

There are 32 of these registers (xx=00-31) and they
are sometimes collectively called the "color
palette." They contain 12-bit codes representing
red, green, and blue colors for RGB systems.
One of these registers at a time is selected
(by the BPLxDAT serialized video code)
for presentation at the RGB video output pins.
The table below 'lhows the color register bit usage.

BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

RGB X X X X R3 R2 Rl RO G3 G2 Gl GO 83 82 81 80

B=blue, G=green, R=red,

080 w

082 w

084 w

086 w

A(E)

A

A(E)

A

Copper first location register
(high 3 bits, high 5 bits if ECS)
Copper first location register
(low 15 bits)
Copper second location register
(high 3 bits, high 5 bits if ECS)
Copper second location register
(low 15 bits)

These registers contain the jump addresses
described above.

Appendix A 273

COP CON

COP INS

02E W A(E) Copper control register

This is a 1-bit register that when set true, allows
the Copper to access the blitter hardware. This
bit is cleared by power-on reset, so that the
Copper cannot access the blitter hardware. See Appendix C

for ECS operation.

BITJf

01

08C W A

NAME

CDANG

FUNCTION

Copper danger mode. Allows Copper
access to blitter if true.

Copper instruction fetch identify

This is a dummy address that is generated by the
Copper whenever it is loading instructions into
its own instruction register. This actually occurs
every Copper cycle except for the second (IR2)
cycle of the MOVE instruction. The three types
of instructions are shown below.

MOVE
WAIT

SKIP

Move immediate to destination.
Wait until beam counter is equal to, or
greater than. (keeps Copper off of bus
until beam position has been reached).
Skip if beam counter is equal to or greater
than (skips following MOVE instruction unless
beam position has been reached) .

274 Amiga Hardware Reference Manual

COP INS (cont.) MOVE WAIT UNTIL SKIP IF
------~- ----------- ------------

BITt IRl IR2 IRl IR2 IRl IR2
- ---- ---- ---- ---- ---

15 X R015 VP7 BFO * VP7 BFD *
14 X RD14 VP6 VE6
13 X RD13 VP5 VE5
12 X R012 VP4 VE4
11 X ROll VP3 VE3
10 X RDlO VP2 VE2
09 X RD09 VPl VEl
08 DA8 R008 VPO VEO
07 OA7 ROO? HP8 HE8
06 DA6 RD06 HP7 HE?
05 DA5 RD05 HP6 HE6
04 OA4 R004 HP5 HE5
03 OA3 RD03 HP4 HE4
02 DA2 RD02 HP3 HE3
01 DA1 RD01 HP2 HE2
00 0 ROOO 1 0

IR1=First instruction register
IR2=Second instruction register

VP6 VE6
VP5 VES
VP4 VE4
VP3 VE3
VP2 VE2
VPl VEl
VPO VEO
HP8 HE8
HP7 HE7
HP6 HE6
HP5 HE5
HP4 HE4
HP3 HE3
HP2 HE2

1 1

DA =Destination address for MOVE instruction. Fetched
during IR1 time, used during IR2 time on RGA bus.

RD =RAM data moved by MOVE instruction at IR2 time
directly from RAM to the address given by the
DA field.

VP =Vertical beam position comparison bit.
HP =Horizontal beam position comparison bit.
VE =Enable comparison (mask bit).
HE =Enable comparison (mask bit) .

* NOTE BFD=Blitter finished disable. When this bit
is true, the Blitter Finished flag will
have no effect on the Copper. m1en this
bit is zero, the Blitter Finished flag
must b: true (in addition to the rest of
the bit comparisons) before the Copper
can exit from its wait state or skip
over an instruction. Note that the V7
comparison cannot be masked.

The Copper is basically a two-cycle machine that
requests the bus only during odd memory cycles
(4 memory cycles per instruction). This prevents
collisions with display, audio, disk, refresh, and
sprites, all of which use only even cycles. It
therefore needs (and has) priority over only the
blitter and microprocessor.

There are only three types of instructions:
MOVE immediate, WAIT until, and SKIP if. All
instructions (except for WAIT) require two bus
cycles (and two instruction words) . Since only
the odd bus cycles are requested, four memory
cycle times are required per instruction
(memory cycles are 280 ns.)

Appendix A 275

COPINS (cont.) There are two indirect jump registers, COPlLC and
COP2LC. These are 18-bit pointer registers whose
contents are used to modify the program counter for
initialization or jumps. They are transferred to
the program counter whenever strobe addresses
COPJMPl or COPJMP2 are written. In addition,
COPlLC is automatically used at the beginning of
each vertical blank time.

COPJMPl
COPJMP2

It is important that one of the jump registers be
initialized and its jump strobe address hit after
power-up but before Copper DMA is initialized.
This insures a determined startup address and state.

088 s
08A S

A
A

Copper restart at first location
Copper restart at second location

These addresses are strobe addresses. When written
to, they cause the Copper to jump indirect using
the address contained in the first or second
location registers described below. The Copper
itself can write to these addresses, causing its
own jump indirect.

276 Amiga Hardware Reference Manual

DDFSTOP
DDFSTRT

DENISEID

DIWHIGH

DIWSTOP

DIWSTRT

094 w
092 w

A
A

Display data fetch stop (horiz. position)
Display data fetch start (horiz. position)

These registers control the horizontal timing of the
beginning and end of the bitplane DMA display data
fetch. The vertical bitplane DMA timing is identical
to the display windows described above.
The bitplane modules are dependent on the bitplane
horizontal size and on this data-fetch window size.

Register bit assignment

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

USE X X X X X X X X H8 H7 H6 H5 H4 H3 X X

(Always set X bits to 0 to maintain upward compatibility)

The tables below show the start and stop timing for
different register contents.

DDFSTRT (left edge of display data fetch)

PURPOSE H8,H7,H6,H5,H4

----------------- --------------
Extra wide (max) * 0 0 1 0 1
Wide 0 0 1 1 0
Normal 0 0 1 1 1
Narrow 0 1 0 0 0

DDFSTOP (right edge of display data fetch)

PURPOSE H8,H7,H6,H5,H4
------------------ --------------
Narrow 1 1 0 0 1
Normal 1 1 0 1 0
Wide (max) 1 1 0 1 1

07C R D(E) Chip revision level for Denise (video out chip)

1E4 W A,D(E) Display window- upper bits for start, stop

090 w A

08E W A

Display window stop (lower right
vertical-horizontal position)

Display window start (upper left
vertical-horizontal position)

These registers control display window size and position
by locating the upper left and lower right corners.

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

USE V7 V6 V5 V4 V3 V2 V1 VO H7 H6 H5 H4 H3 H2 H1 HO

DIWSTRT is vertically restricted to the upper 2/3
of the display (V8=0) and horizontally restricted to
the left 3/4 of the display (H8=0) .

DIWSTOP is vertically restricted to the lower 1/2
of the display (V8=/=V7) and horizontally restricted
to the right 1/4 of the display (H8=1).

Appendix A 277

DMACON
DMACONR

DSKBYTR

096 w
002 R

A D P
A p

DMA control write (clear or set)
DMA control (and blitter status) read

This register controls all of the DMA channels and
contains blitter DMA status bits.

BITt FUNCTION

15

14
13

12
11
10

09
08
07
06
05
04
03
02
01
00

SET/CLR

BBUSY
BZERO

X
X
BLTPRI

DMAEN
BPLEN
COPEN
BLTEN
SPREN
DSKEN
AUD3EN
AUD2EN
AUD1EN
AUDOEN

DESCRIPTION

Set/clear control bit. Determines
if bits written with a 1 get set or
cleared. Bits written with a zero
are unchanged.
Blitter busy status bit (read only)
Blitter logic zero status bit
(read only).

Blitter DMA priority
(over CPU micro) (also called
"blitter nasty") (disables /BLS
pin, preventing micro from
stealing any bus cycles while
blitter DMA is running) .
Enable all DMA below
Bitplane DMA enable
Copper DMA enable
Blitter DMA enable
Sprite DMA enable
Disk DMA enable
Audio channel 3 DMA enable
Audio channel 2 DMA enable
Audio channel 1 DMA enable
Audio channel 0 DMA enable

01A R p Disk data byte and status read

This register is the disk-microprocessor data
buffer. Data from the disk (in read mode) is
loaded into this register one byte at a time, and
bit 15 (DSKBYT) is set true.

BITt

15 DSKBYT
14 DMAON

13 DISKWRITE
12 WORD EQUAL

11-08 X
07--00 DATA

Disk byte ready (reset on read)
Mirror of bit 15 (DMAEN) in DSKLEN,
ANDed with Bit09 (DMAEN) in DMACON
Mirror of bit 14 (WRITE) in DSKLEN
This bit true only while the
DSKSYNC register equals the data
from disk.
Not used
Disk byte data

278 Amiga Hardware Reference Manual

DSKDAT
DSKDATR

DSKLEN

DSKPTH
DSKPTL

DSKSYNC

026 Disk DMA data write
008 ER

p
p Disk DMA data read (early read dummy

address)

This register is the disk DMA data buffer. It
contains two bytes of data that are either sent
(written) to or received (read) from the disk.
The write mode is enabled by bit 14 of the LENGTH
register. The DMA controller automatically
transfers data to or from this register and RAM,
and when the DMA data is finished (length=O) it
causes a disk block interrupt. See interrupts below.

024 w p Disk length

This register contains the length (number of words)
of disk DMA data. It also contains two control
bits, a DMA enable bit, and a DMA direction
(read/write) bit.

BITt FUNCTION DESCRIPTION

15 DMAEN Disk DMA enable
14 WRITE
13-0 LENGTH

Disk write (RAM to disk) if 1
Length (t of words) of DMA data.

020 w
022 w

A (E)
A

Disk pointer (high 3 bits, high 5 bits if ECS)
Disk pointer (low 15 bits)

This pair of registers contains the 18-bit
address of disk DMA data. These address registers
must be initialized by the processor or Copper
before disk DMA is enabled.

07E W p Disk sync register

holds the match code for disk read synchronization.
See ADKCON bit 10.

Appendix A 279

HBSTOP
HBSTRT
HCENTER
HSSTOP
HSSTRT
HTOTAL

INTENA
INTENAR

INTREQ
INTREQR

1C6 W
1C4 W
1E2 W
1C2 W
lDE W
lCO W

09A W
OlC R

A (E)
A (E)
A(E)
A(E)
A(E)
A (E)

p
p

Horizontal line position for HBLANK stop
Horizontal line position for HBLANK start
Horizontal position for Vsync on interlace
Horizontal line position for HSYNC stop
Horizontal sync start (VARHSY)
Highest number count, horiz. line (VARBEAMEN=l)

Interrupt enable bits (clear or set bits)
Interrupt enable bits (read)

This register contains interrupt enable bits. The bit
assignment for both the request and enable registers
is given below.

BITi FUNCT LEVEL DESCRIPTION

15

14

13
12

11
10
09
08
07
06
05
04
03
02

01
00

09C W
OlE R

SET/CLR

INTEN

EXTER 6
DSKSYN 5

RBF 5
AUD3 4
AUD2 4
AUDl 4
AUDO 4
BLIT 3
VERTB 3
COPER 3
PORTS 2
SOFT 1

DSKBLK 1
TBE 1

Set/clear control bit. Determines if
bits written with a 1 get set or
cleared. Bits written with a zero
are always unchanged.
Master interrupt (enable only,

no request)
External interrupt
Disk sync register (DSKSYNC)

matches disk data
Serial port receive buffer full
Audio channel 3 block finished
Audio channel 2 block finished
Audio channel 1 block finished
Audio channel 0 block finished
Blitter finished
Start of vertical blank
Copper
I/0 ports and timers
Reserved for software-initiated

interrupt
Disk block finished
Serial port transmit buffer empty

p
p

Interrupt request bits (clear or set)
Interrupt request bits (read)

This register contains interrupt request bits (or
flags). These bits may be polled by the processor;
if enabled by the bits listed in the next register,
they may cause processor interrupts. Both a set and
clear operation are required to load arbitrary data
into this register. These status bits are not
automatically reset when the interrupt is serviced,
and must be reset when desired by writing to this
address. The bit assignments are identical to the
enable register below.

280 Amiga Hardware Reference Manual

JOYODAT

JOY1DAT

OOA R D Joystick-mouse 0 data (left vertical,
horizontal)

OOC R D Joystick-mouse 1 data (right vertical,
horizontal)

These addresses each read a pair of 8-bit mouse
counters. O=left controller pair, 1=right
controller pair (four counters total). The bit
usage for both left and right addresses is shown
below. Each counter is clocked by signals from
two controller pins. Bits 1 and 0 of each counter
may be read to determine the state of these two
clock pins. This allows these pins to double as
joystick switch inputs.

Mouse counter usage:
(pins 1,3=Yclock, pins 2,4=Xclock)

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00

ODAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO
1DAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

X7 X6 X5 X4 X3 X2 X1 XO
X7 X6 X5 X4 X3 X2 X1 XO

The following table shows the Inouse/joystick
connector pin usage. The pins (and their functions)
are sampled (multiplexed) into the DENISE chip
during the clock times shown in the table.
This table is for reference only and should
not be needed by the programmer. (Note that the
joystick functions are all "active low" at the
connector pins.)

Sampled by DENISE
Conn Joystick Mouse -----------------
Pin Function Function Pin Name Clock

-------- --------
L1 FORW* y 38 MOV at CCK
L3 LEFT* YQ 38 MOV at CCK*
L2 BACK* X 9 MOH at CCK
L4 RIGH* XQ 9 MOH at CCK*
R1 FORW* y 39 M1V at CCK
R3 LEFT* YQ 39 M1V at CCK*
R2 BACK* X 8 M1H at CCK
R4 RIGH* XQ 8 M1H at CCK*

After being sampled, these connector pin signals
are used in quadrature to clock the mouse counters.
The LEFT and RIGHT joystick functions (active high)
are directly available on the Y1 and X1 bits of
each counter. In order to recreate the FORWARD
and BACK joystick functions, however, it is
necessary to logically combine (exclusive OR)
the lower two bits of each counter.
This is illustrated in the following table.

To detect Read these counter bits
-------- ----------------
Forward Y1 xor YO (BITt09 xor BITt08)
Left Y1
Back X1 xor XO (BITt01 xor BITtOO)
Right X1

Appendix A 281

JOYTEST

POTODAT
POTlDAT

POT GO

POTGOR

REFPTR

036 w D Write to all four joystick-mouse counters
at once.

Mouse counter write test data:

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00

ODAT
lDAT

012 R
014 R

Y7 Y6 Y5 Y4 Y3 Y2 xx XX

Y7 Y6 Y5 Y4 Y3 Y2 XX xx
X7 X6 X5 X4 X3 X2 XX XX

X7 X6 X5 X4 X3 X2 XX XX

P(E)
P(E)

Pot counter data left pair (vert,horiz.)
Pot counter data right pair (vert,horiz.)

These addresses each read a pair of 8-bit pot counters.
(Four counters total.) The bit assignment for both
addresses is shown below. The counters are stopped by
signals from two controller connectors (left-right)
with two pins each.

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00

RIGHT Y7 Y6 Y5 Y4 Y3 Y2 Yl YO
LEFT Y7 Y6 Y5 Y4 Y3 Y2 Yl YO

X7 X6 XS X4 X3 X2 Xl XO
X7 X6 X5 X4 X3 X2 Xl XO

034 w

016 R

CONNECTORS

Loc. Dir. Sym

RIGHT Y
RIGHT X
LEFT Y
LEFT X

RY
RX
LY
LX

Pin

9
5
9
5

Pini

36
35
33
32

PAULA

Pin Name

(POTlY)
(POTlX)
(POTOY)
(POT OX)

p Pot port data write and start.

p Pot port data read (formerly called POTINP) .

This register controls a 4-bit bi-directional I/0 port
that shares the same four pins as the four pot counters
above.

BITt FUNCT DESCRIPTION

15
14
13
12
11
10
09
08
07-01
00

028 w A

OUTRY
DATRY
OUTRX
DATRX
OUTLY
DATLY
OUT LX
DATLX

0
START

Output enable for Paula pin 36
I/0 data Paula pin 36
Output enable for Paula pin 35
I/0 data Paula pin 35
Output enable for Paula pin 33
I/0 data Paula pin 33
Output enable for Paula pin 32
I/0 data Paula pin 32
Reserved for chip ID code (presently 0)
Start pots (dump capacitors, start

counters)

Refresh pointer

This register is used as a dynamic RAM refresh
address generator. It is writeable for test
purposes only, and should never be written by
the microprocessor.

282 Amiga Hardware Reference Manual

SERDAT

SERDATR

030 w p Serial port data and stop bits write
(transmit data buffer)

This address writes data to a transmit data buffer.
Data from this buffer is moved into a serial shift
register for output transmission whenever it is
empty. This sets the interrupt request TBE
(transmit buffer empty). A stop bit must be
provided as part of the data word. The length of
the data word is set by the position of the stop
bit.

BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

USE 0 0 0 0 0 0 S D8 07 06 DS 04 03 02 D1 DO

Note: S

018 R p

stop bit = 1, D = data bits.

Serial port data and status read
(receive data buffer)

This address reads data from a receive data buffer.
Data in this buffer is loaded from a receiving
shift register whenever it is full. Several
interrupt request bits are also read at this
address, along with the data, as shown below.

BITjf SYM

15 OVRUN

14 RBF

13 TBE

12 TSRE

11 RXD

10 0
09 STP
08 STP-DB8

07 DB7
06 DB6
05 DB5
04 DB4
03 DB3
02 DB2
01 DB1
00 DBO

FUNCTION

Serial port receiver overrun.
Reset by resetting bit 11 of
INTREQ.
Serial port receive buffer full
(mirror) .
Serial port transmit buffer
empty (mirror) .
Serial port transmit shift
register empty.
Reset by loading into buffer.
RXD pin receives UART serial
data for direct bit test by
the microprocessor.
Not used
Stop bit
Stop bit if LONG, data bit if
not.
Data bit
Data bit
Data bit
Data bit
Data bit
Data bit
Data bit
Data bit

Appendix A 283

SERPER

SPRxCTL
SPRxPOS

SPRxDATA
SPRxDATB

SPRxPOS

032 w p Serial port period and control

This register contains the control bit LONG referred to
above, and a 15-bit number defining the serial port
baud rate. If this number is N, then the baud rate is
1 bit every (N+1)*.2794 microseconds.

BITt SYM

15 LONG
14-00 RATE

FUNCTION

Defines serial receive as 9-bit word.
Defines baud rate=1/((N+l)*.2794 microsec.)

142 w
140 w

A D (E)
A D

Sprite x vert stop position and control data
Sprite x vert-horiz start position data

144
146

These two registers work together as position, size and
feature sprite-control registers. They are usually loaded
by the sprite DMA channel during horizontal blank;
however, they may be loaded by either processor at any time.
SPRxPOS register:

BITlt SYM FUNCTION

15-08 SV7-SVO Start vertical value. High bit(SV8) is
in SPRxCTL register below.

07-00 SH8-SH1 Start horizontal value. Low bit(SHO) is
in SPRxCTL register below.

SPRxCTL register (writing this address disables sprite
horizontal comparator circuit) :

BITJt

15-08
07
06-04
02
01
00

w D
w D

SYM

EV7-EVO
ATT

X
SV8
EV8
SHO

FUNCTION

End (stop) vertical value low 8 bits
Sprite attach control bit (odd sprites)
Not used
Start vertical value high bit
End (stop) vertical value high bit
Start horizontal value low bit

Sprite x image data register A
Sprite x image data register B

These registers buffer the sprite image data. They are
usually loaded by the sprite DMA channel but may be
loaded by either processor at any time. When a
horizontal comparison occurs, the buffers are dumped
into shift registers and serially outputted to the
display, MSB first on the left.

NOTE: Writing to the A buffer enables (arms) the sprite.
Writing to the SPRxCTL register disables the sprite.
If enabled, data in the A and B buffers will be outputted
whenever the beam counter equals the sprite horizontal
position value in the SPRxPOS register.

see SPRxCTL

284 Amiga Hardware Reference Manual

SPRxPTH
SPRxPTL

STREQU

STRHOR
STRLONG

STRVBL

VBSTOP
VBSTRT

VHPOSR

VHPOSW

VPOSR

VPOSW

VSSTOP
VSSTRT
VTOTAL

120 w
122 w

A
A

Sprite x pointer (high 3 bits)
Sprite x pointer (low 15 bits)

038

03C
03E

03A

1CE
1CC

006

02C

This pair of registers contains the 18-bit address
of sprite x (x=0,1,2,3,4,5,6,7) DMA data. These address
registers must be initialized by the processor or Copper
every vertical blank time.

s D Strobe for horizontal sync with VB
and EQU

s D p Strobe for horizontal sync
s D(E) Strobe for identification of long

horizontal line

One of the first three strobe addresses above is
placed on the destination address bus during the
first refresh time slot. The fourth strobe shown
above is used during the second refresh time slot of
every other line to identify lines with long counts
(228). There are four refresh time slots, and any
not used for strobes will leave a null (FF) address
on the destination address bus.

s D Strobe for horizontal sync with VB
(vertical blank)

w A(E) Vertical line for VBLANK stop
w A(E) Vertical line for VBLANK start

R A Read vertical and horizontal position of
beam or lightpen

w A Write vertical and horizontal position
of beam or lightpen

BIT* 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

USE V7 V6 V5 V4 V3 V2 V1 VO,H8 H7 H6 H5 H4 H3 H2 H1

RESOLUTION = 1/160 of screen width (280 ns)

004 R A(E) Read vertical most significant bit
(and frame flop)

02A W A Write vertical most significant bit
(and frame flop)

BIT* 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

USE LOF-- -- -- -- -- -- --,-- -- -- -- -- -- -- V8

LOF=Long frame (auto toggle control bit in BPLCONO)

1CA W
lEO W
1C8 W

A(E)
A(E)
A(E)

Vertical line position for VSYNC stop
Vertical sync start (VARVSY)
Highest numbered vertical line (VARBEAMEN=l)

Appendix A 285

--

appendix B
REGISTER SUMMARY
ADDRESS ORDER

This appendix contains information about the register set in address order.

The following codes and abbreviations are used in this appendix:

& Register used by DMA channel only.

% Register used by DMA channel usually, processors sometimes.

+ Address register pair. Must be an even address pointing to chip memory.

* Address not writable by the Copper.

Address not writable by the Copper unless the "copper danger bit", COPCON is set true.

A,D,P
A=Agnus chip, D=Denise chip, P=Paula chip.

W,R
W=write-only; R=read-only,

ER Early read. This is a DMA data transfer to RAM, from either the disk or the blitter.
RAM timing requires data to be on the bus earlier than microprocessor read cycles.
These transfers are therefore initiated by Agnus timing, rather than a read address on the
destination address bus.

S Strobe (write address with no register bits). Writing the register causes the effect.

Appendix B 287

PTL,PTH
Chip memory pointer that addresses DMA data. Must be reloaded by a processor before
use (vertical blank for bitplane and sprite pointers, and prior to starting the blitter for
blitter pointers).

LCL,LCH
Chip memory location (starting address) of DMA data. Used to automatically restart
pointers, such as the Copper program counter (during vertical blank) and the audio
sample counter (whenever the audio length count is finished).

MOD
15-bit modulo. A number that is automatically added to the memory address at the end
of each line to generate the address for the beginning of the next line. This allows the
blitter (or the display window) to operate on (or display) a window of data that is smaller
than the actual picture in memory (memory map). Uses 15 bits, plus sign extend.

About the ECS registers. Registers denoted with an "(E)" in the chip column means
that those registers have been changed in the Enhanced Chip Set (ECS). The ECS is
found in the A3000, and is installable in the A500 and A2000. Certain ECS registers
are completely new, others have been extended in their functionality. See the register
map in Appendix C for information on which ECS registers are new and which have
been modified.

288 Amiga Hardware Reference Manual

NAME

BLTDDAT
DMACONR
VPOSR
VHPOSR
DSKDATR
JOYODAT
JOY1DAT
CLXDAT
ADKCONR
POTODAT
POTlDAT
POTGOR
SERDATR
DSKBYTR
INTENAR
INTREQR
DSKPTH
DSKPTL
DSKLEN
DSKDAT
REFPTR
VPOSW
VHPOSW
COP CON
SERDAT
SERPER
POT GO
JOYTEST
STREQU
STRVBL
STRHOR
STRLONG
BLTCONO
BLTCONl
BLTAFWM
BLTALWM
BLTCPTH
BLTCPTL
BLTBPTH
BLTBPTL
BLTAPTH
BLTAPTL
BLTDPTH
BLTDPTL
BLTSIZE
BLTCONOL
BLTSIZV
BLTSIZH
BLTCMOD
BLTBMOD
BLTAMOD
BLTDMOD

BLTCDAT
BLTBDAT

ADD R/W CHIP FUNCTION

& *000 ER
*002 R
*004 R
*006 R

& *008 ER
*OOA R
*OOC R
*DOE R
*010 R
*012 R
*014 R
*016 R
*018 R
*OlA R
*OlC R
*OlE R

+ *020 w
+ *022 w

*024 w
& *02 6 w
& *028 w

*02A W
*02C W
*02E W
*030 w
*032 w
*034 w
*036 w

& *038 s
& *03A S
& *03C S
& *03E S

-o4o w
-o42 w
-o44 w
-o46 w

+ -o48 w
+ -o4A w
+ -o4c w
+ -o4E w
+ -o5o w
+ -o52 w
+ -o54 w
+ -o56 w

-o58 w
-o5A w
-o5c w
-o5E w
-o6o w
-o62 w
-o64 w
-o66 w
-o68
-o6A
-o6c
-o6E

% -o7o w
% -072 w

A
A P
A(E)

Blitter destination early read (dummy address)
DMA control (and blitter status) read
Read vert most signif. bit (and frame flop)
Read vert and horiz. position of beam A

D
D
D

p Disk data early read (dummy address)
Joystick-mouse 0 data (vert,horiz)
Joystick-mouse 1 data (vert,horiz)
Collision data register (read and clear)

P Audio, disk control register read
P(E)Pot counter pair 0 data (vert,horiz)
P(E)Pot counter pair 1 data (vert,horiz)
P Pot port data read (formerly POTINP)
P Serial port data and status read
P Disk data byte and status read
P Interrupt enable bits read
P Interrupt request bits read

A(E) Disk pointer (high 3 bits, 5 bits if ECS)
A Disk pointer (low 15 bits)

P Disk length
P Disk DMA data write

A
A
A
A(E)

D
D
D

p
p
p

D p

D(E)
A
A(E)
A

A
A
A
A
A
A(E)
A

A
A
A
A(E}
A(E}
A (E)
A
A
A
A

A
A

Refresh pointer
Write vert most signif. bit (and frame flop)
Write vert and horiz position of beam
Coprocessor control register (CDANG)
Serial port data and stop bits write
Serial port period and control
Pot port data write and start
Write to all four joystick-mouse counters at once
Strobe for horiz sync with VB and EQU
Strobe for horiz sync with VB (vert. blank)
Strobe for horiz sync
Strobe for identification of long horiz. line.
Blitter control register 0
Blitter control register 1
Blitter first word mask for source A
Blitter last word mask for source A
Blitter pointer to source C (high 3 bits)
Blitter pointer to source C (low 15 bits)
Blitter pointer to source B (high 3 bits)
Blitter pointer to source B (low 15 bits)
Blitter pointer to source A (high 3 bits)
Blitter pointer to source A (low 15 bits)
Blitter pointer to destination D (high 3 bits)
Blitter pointer to destination D (low 15 bits)
Blitter start and size (window width, height)
Blitter control 0, lower 8 bits (minterms)
Blitter V size (for 15 bit vertical size)
Blitter H size and start (for 11 bit H size)
Blitter modulo for source C
Blitter modulo for source B
Blitter modulo for source A
Blitter modulo for destination D

Blitter source C data register
Blitter source B data register

Appendix B 289

BLTADAT

SPRHDAT

DENISEID
DSKSYNC

COP1LCH

COPlLCL

COP2LCH

COP2LCL

COPJMP1
COPJMP2
COP INS
DIWSTRT

DIWSTOP

DDFSTRT

DDFSTOP

DMACON
CLXCON
INTENA

INTREQ

ADKCON
AUDOLCH
AUDOLCL
AUDOLEN
AUDOPER
AUDOVOL
AUDODAT

AUD1LCH
AUD1LCL
AUD1LEN
AUD1PER
AUD1VOL
AUD1DAT

AUD2LCH
AUD2LCL
AUD2LEN
AUD2PER
AUD2VOL
AUD2DAT

AUD3LCH
AUD3LCL
AUD3LEN
AUD3PER

% -o74 w
-o76
-o78 w
-o7A
-o7c R
-o7E w

+ 080 w

+ 082 w

+ 084 w

+ 086 w

088 s
08A S
08C W
08E W

090 w

092 w

094 w

096 w
098 w
09A W

09C W

09E W
+ OAO W
+ OA2 W

0A4 W
OA6 W
OA8 W

& OAA W
OAC
OAE

+ OBO W
+ OB2 W

OB4 W
OB6 W
OB8 W

& DBA W
OBC
OBE

+ oco w
+ OC2 W

OC4 W
OC6 W
OC8 W

& OCA W
occ
OCE

+ ODO W
+ OD2 w

OD4 w
OD6 w

A Blitter source A data register

A(E) Ext. logic UHRES sprite pointer and data id

D(E) Chip revision level for Denise (video out chip)

A(E)

A

A(E)

A

A
A
A
A

A

A

A

P Disk sync pattern register for disk
read

Coprocessor first location register
(high 3 bits, high 5 bits if ECS)

Coprocessor first location register
(low 15 bits)

Coprocessor second location register
(high 3 bits, high 5 bits if ECS)

Coprocessor second location register
(low 15 bits)

Coprocessor restart at first location
Coprocessor restart at second location
Coprocessor instruction fetch identify
Display window start (upper left

vert-horiz position)
Display window stop (lower right

vert.-horiz. position)
Display bitplane data fetch start

(horiz. position)
Display bitplane data fetch stop

(horiz. position)
A D P DMA control write (clear or set)

Collision control D
p

p

Interrupt enable bits (clear or
set bits)

Interrupt request bits (clear or
set bits)

p

A(E)
A

Audio, disk, UART control
Audio channel 0 location (high 3 bits, 5 if ECS)
Audio channel 0 location (low 15 bits)

A
A

A

A

A
A

P Audio channel 0 length
P(E)Audio channel 0 period
P Audio channel 0 volume
P Audio channel 0 data

p
p
p
p

p
p
p
p

p
p

Audio channel 1 location (high 3 bits)
Audio channel 1 location (low 15 bits)
Audio channel 1 length
Audio channel 1 period
Audio channel 1 volume
Audio channel 1 data

Audio channel 2 location (high 3 bits)
Audio channel 2 location (low 15 bits)
Audio channel 2 length
Audio channel 2 period
Audio channel 2 volume
Audio channel 2 data

Audio channel 3 location (high 3 bits)
Audio channel 3 location (low 15 bits)
Audio channel 3 length
Audio channel 3 period

290 Amiga Hardware Reference Manual

AUD3VOL 008 w p Audio channel 3 volume
AUD3DAT & ODA w p Audio channel 3 data

ODC
ODE

BPLlPTH + OEO w A Bitplane 1 pointer (high 3 bits)
BPLlPTL + OE2 w A Bitplane 1 pointer (low 15 bits)
BPL2PTH + OE4 w A Bitplane 2 pointer (high 3 bits)
BPL2PTL + OE6 w A Bitplane 2 pointer (low 15 bits)
BPL3PTH + OE8 w A Bitplane 3 pointer (high 3 bits)
BPL3PTL + OEA w A Bitplane 3 pointer (low 15 bits)
BPL4PTH + OEC w A Bitplane 4 pointer (high 3 bits)
BPL4PTL + OEE w A Bitplane 4 pointer (low 15 bits)
BPL5PTH + OFO w A Bitplane 5 pointer (high 3 bits)
BPL5PTL + OF2 w A Bitplane 5 pointer (low 15 bits)
BPL6PTH + OF4 w A Bitplane 6 pointer (high 3 bits)
BPL6PTL + OF6 w A Bitplane 6 pointer (low 15 bits)

OFB
OFA
OFC
OFE

BPLCONO 100 w A D(E) Bitplane control register (misc. control bits)
BPLCONl 102 w D Bitplane control reg. (scroll value PFl, PF2)
BPLCON2 104 w D (E) Bitplane control reg. (priority control)
BPLCON3 106 w D (E) Bitplane control (enhanced features)

BPLlMOD 108 w A Bitplane modulo (odd planes)
BPL2MOD lOA w A Bitplane modulo (even planes)

lOC
lOE

BPL1DAT & 110 w D Bitplane 1 data (parallel-to-serial convert)
BPL2DAT & 112 w D Bitplane 2 data (parallel-to-serial convert)
BPL3DAT & 114 w D Bitplane 3 data (parallel-to-serial convert)
BPL4DAT & 116 w D Bitplane 4 data (parallel-to-serial convert)
BPL5DAT & 118 w D Bitplane 5 data (parallel-to-serial convert)
BPL6DAT & 11A w D Bitplane 6 data (parallel-to-serial convert)

11C
11E

SPROP1'H + 120 w A Sprite 0 pointer (high 3 bits)
SPROPTL + 122 w A Sprite 0 pointer (low 15 bits)
SPR1PTH + 124 w A Sprite 1 pointer (high 3 bits)
SPR1PTL + 126 w A Sprite 1 pointer (low 15 bits)
SPR2PTH + 128 w A Sprite 2 pointer (high 3 bits)
SPR2PTL + 12A w A Sprite 2 pointer (low 15 bits)
SPR3PTH + 12C w A Sprite 3 pointer (high 3 bits)
SPR3PTL + 12E w A Sprite 3 pointer (low 15 bits)
SPR4PTH + 130 w A Sprite 4 pointer (high 3 bits)
SPR4PTL + 132 w A Sprite 4 pointer (low 15 bits)
SPR5PTH + 134 w A Sprite 5 pointer (high 3 bits)
SPR5PTL + 136 w A Sprite 5 pointer (low 15 bits)
SPR6PTH + 138 w A Sprite 6 pointer (high 3 bits)
SPR6PTL + 13A w A Sprite 6 pointer (low 15 bits)
SPR7PTH + 13C w A Sprite 7 pointer (high 3 bits)
SPR7PTL + 13E w A Sprite 7 pointer (low 15 bits)
SPROPOS % 140 w AD Sprite 0 vert-horiz start position

data
SPROCTL % 142 w A D(E) Sprite 0 vert stop position and

control data
SPRODATA % 144 w D Sprite 0 image data register A
SPRODATB % 14 6 w D Sprite 0 image data register B
SPRlPOS % 148 w AD Sprite 1 vert-horiz start position

data

Appendix B 291

SPR1CTL % 14A w A D Sprite 1 vert stop position and
control data

SPR1DATA % 14C w D Sprite 1 image data register A
SPRlDATB % 14E w D Sprite 1 image data register B
SPR2POS % 150 w A D Sprite 2 vert-horiz start position

data
SPR2CTL % 152 w AD Sprite 2 vert stop position and

control data
SPR2DATA % 154 w D Sprite 2 image data register A
SPR2DATB % 156 w D Sprite 2 image data register B
SPR3POS % 158 w A D Sprite 3 vert-horiz start position

data
SPR3CTL % 15A w A D Sprite 3 vert stop position and

control data
SPR3DATA % 15C w D Sprite 3 image data register A
SPR3DATB % 15E w D Sprite 3 image data register B
SPR4POS % 160 w A D Sprite 4 vert-horiz start position

data
SPR4CTL % 162 w A D Sprite 4 vert stop position and

control data
SPR4DATA % 164 w D Sprite 4 image data register A
SPR4DATB % 166 w D Sprite 4 image data register B
SPR5POS % 168 w A D Sprite 5 vert-horiz start position

data
SPR5CTL % 16A w A D Sprite 5 vert stop position and

control data
SPR5DATA % 16C w D Sprite 5 image data register A
SPR5DATB % 16E w D Sprite 5 image data register B
SPR6POS % 170 w A D Sprite 6 vert-horiz start position

data
SPR6CTL % 172 w A D Sprite 6 vert stop position and

control data
SPR6DATA % 174 w D Sprite 6 image data register A
SPR6DATB % 17 6 w D Sprite 6 image data register B
SPR7POS % 178 w A D Sprite 7 vert-horiz start position

data
SPR7CTL % 17A w A D Sprite 7 vert stop position and

control data
SPR7DATA % 17C w D Sprite 7 image data register A
SPR7DATB % 17E w D Sprite 7 image data register B
COLOROO 180 w D Color table 00
COLOR01 182 w D Color table 01
COLOR02 184 w D Color table 02
COLOR03 186 w D Color table 03
COLOR04 188 w D Color table 04
COLOR05 18A w D Color table 05
COLOR06 18C w D Color table 06
COLOR07 18E w D Color table 07
COLOR OS 190 w D Color table 08
COLOR09 192 w D Color table 09
COLORlO 194 w D Color table 10
COLOR11 196 w D Color table 11
COLOR12 198 w D Color table 12
COLOR13 19A w D Color table 13
COLOR14 19C w D Color table 14
COLOR15 19E w D Color table 15
COLOR16 lAO w D Color table 16
COLOR17 1A2 w D Color table 17
COLOR18 1A4 w D Color table 18
COLOR19 1A6 w D Color table 19
COLOR20 lAS w D Color table 20

292 Amiga Hardware Reference Manual

COLOR21
COLOR22
COLOR23
COLOR24
COLOR25
COLOR26
COLOR27
COLOR28
COLOR29
COLOR30
COLOR31

HTOTAL
HSSTOP
H8STRT
H8STOP
VTOTAL
VSSTOP
V8STRT
VBSTOP

BEAMCONO
HSSTRT
VSSTRT
HCENTER
DIWHIGH

RESERVED
RESERVED
NO-OP(NULL)

lAA W
lAC W
lAE W
180 W
182 W
184 w
186 w
188 w
lBA W
lBC W
18E W

lCO W
1C2 W
1C4 W
1C6 W
1C8 W
lCA W
lCC W
lCE W

lDO
1D2
104
106
108
lDA

lDC W
lOE W
lEO W
1E2 W
1E4 W

lllOX
llllX
lFE

D
0
0
0
0
0
0
0
0
0
0

A(E)
A(E)
A(E)
A (E)
A(E)
A(E)
A(E)
A(E)

A(E)
A(E)
A(E)
A(E)

A, D (E)

Color table 21
Color table 22
Color table 23
Color table 24
Color table 25
Color table 26
Color table 27
Color table 28
Color table 29
Color table 30
Color table 31

Highest number count, horiz line (VARBEAMEN=l)
Horizontal line position for HSYNC stop
Horizontal line position for HBLANK start
Horizontal line position for HBLANK stop
Highest numbered vertical line (VARBEAMEN=l)
Vertical line position for VSYNC stop
Vertical line for V8LANK start
Vertical line for VBLANK stop

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Beam counter control register (SHRES,PAL)
Horizontal sync start (VARHSY)
Vertical sync start (VARVSY)
Horizontal position for Vsync on interlace
Display window - upper bits for start, stop

Appendix B 293

~~ --~--

appendix C
ENHANCED CHIP SET

This appendix contains information on the Enhanced Chip Set (ECS). The Enhanced Chip Set
consists of the Agnus (8372-R3) and Denise (8373-R3) custom Amiga chips. These chip
revisions support advanced features in addition to all of the standard features previously available.

The ECS is standard in the A3000. The enhanced Agnus and Denise chips are plug-compatible
replacements for the originals in the A500 or A2000. There are no provisions for installing the
ECS in the original AIOOO. The A2000, when jumpered for one megabyte of chip memory, will
function normally with the ECS chips installed, under both Vl.3 and V2.0 Amiga System
software.

The ECS chips are designed to function with either NTSC or PAL Amigas. However, the chips
from the US factory are configured for NTSC mode. In order to use them on a PAL system, you
may have to reset the motherboard jumpers for proper performance.

NEW FEATURES OF THE ENHANCED CHIP SET

The new features of the Enhanced Chip Set are as follows:

o New Memory Limits

o New Blitter Range

o New Mode Resolutions

o New Monitor Scan Rates

o New Genlock Capabilities

o Built-in A2024 support

The following briefly describes each of the new ECS features.

Appendix C 295

New Memory Limits

The A3000 has 1 MB of Chip memory, and with proper jumpering of the motherboard, an
additional 1 MB can be added. On the A2000, the enhanced Agnus can access up to 1 megabyte
of Chip memory with proper jumpering of the motherboard. This provides programs with more
bUtter-accessible memory for animation and graphics applications.

New Blltter Range

The enhanced Agnus provides rectangular blits up to 32k by 32k pixels in size.

New Mode Resolutions

The enhanced Denise chip provides the new SuperHires mode with up to 1280 horizontal pixels
per scanline on a standard NTSC or PAL display.

All of the standard display resolutions and depths of the original chip set are supported with the
ECS.

New Monitor Scan Rates

The V2.0 Kickstart and ECS chips support a new high resolution Productivity mode. With the
addition of a multi-sync monitor, this mode allows 640 x 480, non-interlaced screens in up to four
colors. All programs which open and operate in the Workbench screen will automatically benefit
from Productivity text and graphics. In addition, new programs can open their own Productivity
screens in a system standard fashion.

New Genlock Capabilities

The enhanced Denise chip provides the following four new genlock features:

o Chromakey

o BitPlancKey

o BorderBlank

o BorderNotTransparent

ChromaKey allows any color register to control the video overlay. BitPlaneKey allows any
bitplane to enable the video overlay. BorderBlank creates a transparent "frame" surrounding the
active area. BorderNotTransparent makes an opaque "frame" surrounding the active area.

296 Amiga Hardware Reference Manual

Built-In A2024 Support

Version 2.0 Kickstart ROMS have built-in support for the A2024 scan-converter monitor which
displays 1008 x 800 pixels (1008 x 1024 in PAL mode) in four monochrome levels, non­
interlaced. In conjunction with 1 megabyte of Chip memory, this allows very high resolution
Workbench screens, as well as support for "full page" text and CAD applications.

ECS HARDWARE AND THE GRAPHICS LIBRARY

The Enhanced Chip Set consists of compatible revisions to the Agnus and Denise custom chips.
The V36 graphics.library software makes it possible for these chips to display images in new
resolutions, at new monitor scan rates and with new sprite and genlock abilities.

With the enhanced Agnus, the V36 graphics.library supports the new programmable scan rate
registers to provide multi-sync and bi-sync monitor capability. The new SuperHires mode
provides 35ns pixel rates and sprite positioning at 70ns rates. Support for big blits (up to 32k x
32k) is provided for all graphics functions if the ECS Agnus is present.

With the enhanced Denise, the V36 graphics.library provides display window start and stop with
explicit control over larger ranges than was possible before. There are new color register
interpretations as part of the SuperHires mode. Genlock control has been expanded for more
flexibility. Borders may be explicitly transparent or opaque, color registers other than zero can
control video overlay and a bitplane mask may be used for special-purpose video masking
concurrently with the other genlock features.

Warning: With these new features come certain new responsibilities when using the
graphics.library.

Appendix C 297

The register map listed below shows the changes and new registers in the Amiga's Enhanced
Chip Set.

ADD REGISTER V2.0 R/W CHIP

004 VPOSR
012 POTODAT
014 POTlDAT
020 DSKPTH
02E COPCON
03E STRLONG
042 BLTCONl
050 BLTxPTH
05A BLTCONOL
05C BLTSIZV
OSE BLTSIZH
07C DENISEID
080 COPlLCH
084 COP2LCH
OAO AUDxLCH
OA6 AUDxPER
100 BPLCONO
104 BPLCON2
106 BPLCON3
142 SPRxCTL
lCO HTOTAL
1C2 HSSTOP
lC4 HBSTRT
1C6 HBSTOP
1C8 VTOTAL
lCA VSSTOP
lCC VBSTRT
lCE VBSTOP
lDC BEAMCONO
lDE HSSTRT
lEO VSSTRT
1E2 HCENTER
1E4 DIWHIGH

chg
chg
chg
chg
chg
chg
chg
chg
new
new
new
new
chg
chg
chg
chg
chg
chg
new
chg
new
new
new
new
new
new
new
new
new
new
new
new
new

R
R
R
w
w
s
w
w
w
w
w
R
w
w
w
~'l

w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w

A
p
p

A
A
D
A
A
A
A
A
D
A
A
A
p

A,D
D
D
A
A
A
A
A
A
A
A
A
A

A
A
A
A,D

FUNCTION

Read vertical most sig. bits (and frame flop)
Pot counter data left pair (vertical, horiz)
Pot counter data right pair (vertical, horiz)
Disk pointer (high 5 bits, was 3 bits)
Coprocessor control
Strobe for identification of long horiz line
Blitter control register 1
Blitter pointer to x (high 5 bits, was 3 bits)
Blitter control 0, lower 8 bits (minterms)
Blitter V size (for 15 bit vertical size)
Blitter H size and start (for 11 bit H size)
Chip revision level for Denise (video out chip)
Coprocessor 1st location(high 5 bits,was 3 bits)
Coprocessor 2nd location(high 5 bits,was 3 bits)
Audio channel x location(high 5 bits was 3 bits)
Audio channel x period
Bitplane control (miscellaneous control bits)
Bitplane control (video priority control)
Bitplane control (enhanced features)
Sprite x position and control data
Highest number count, horiz line (VARBE~~EN=1)

Horizontal line position for HSYNC stop
Horizontal line position for HBLANK start
Horizontal line position for HBLANK stop
Highest numbered vertical line (VARBEAMEN=l)
Vertical line position for VSYNC stop
Vertical line for VBLANK start
Vertical line for VBLANK stop
Beam counter control register (SHRES,UHRES,PAL)
Horizontal sync start (VARHSY)
Vertical sync start (VARVSY)
Horizontal position for Vsync on interlace
Display window - upper bits for start, stop

A=Agnus chip, D=Denise chip, P=Paula chip, W=Write, R=Read, S=Strobe

The following sections describe the new and modified features provided by the Enhanced Chip
Set.

298 Amiga Hardware Reference Manual

Determining Chip Revisions

The V36 graphics.library field GfxBase->ChipRevBitsO contains bit definitions to tell you
whether ECS is currently installed and activated. These bits are derived from the new or changed
registers in the ECS chips.

The bit GFXF _HR_AGNUS indicates that enhanced HiRes Agnus is installed. This is derived
from the Agnus VPOSR register. The VPOSR register is defined as follows:

VPOSR - Read vertical most significant bits (and frame flop)

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Use LOF I6 IS I4 I3 I2 I1 IO LOL -- -- -- v10 v9 V8

10-16 (bits 8-14) provide the chip identification. At present there are four possible settings. A
value of 20 or 30 indicates that the enhanced HighRes A gnus is present.

8361 (regular NTSC) or 8370 (fat NTSC)
8367 (regular PAL) or 8371 (fat PAL)
8368 (hr) or 8372 (fat-hr)

10 for NTSC Agnus
00 for PAL Agnus
20 for PAL, 30 for NTSC

Similarly, the graphics.library flag GFXF _HR_DENISE is derived from the Denise register
DENISEID. This is a new register which can have one of two values. The original Denise (8362)
does not have this register, so whatever value is left over on the bus from the last cycle will be
there. The enhanced HighRes Denise (8373) will return $FC in the lower 8 bits. The upper 8 bits
are reserved.

Appendix C 299

SuperHires Mode

SuperHires mode provides a 35ns pixel display rate - twice the horizontal resolution of Hires
mode, and four times the Lores rates. The nominal resolution of a SuperHires viewport is 1280
pixels. The maximum plane depth for a SuperHires viewport is 2 bitplanes which saturates DMA
bandwidth as much as FOUR Hires bitplanes. This mode is controlled by the graphics.library by
writing to the BPLCONO register in the LOF copperlist (/SHF if interlaced).

BPLCONO chg W A,D Bitplane control register (mise control bits)

Bit Use

15
14
13
12
11
10
09
08
07
06
05
04
03
02
01
00

HIRES
BPU2 \
BPU1 }
BPUO I
HAM
DPF

SHRES
BPLHWRM
SPRHWRM
LPEN
LACE

Set it to zero if SHRES enabled

Depth of SuperHires mode (1 or 2)

Incompatible w/ SuperHires mode
Compatible with SuperHires mode

SuperHires 35ns pixel enable bit

Compatible with SuperHires mode
Compatible with SuperHires mode

Warning: Programmers must not rely on interpreting ViewPort->Modes bits directly
when determining the mode of a ViewPort.

Beginning with the V36 graphics.library, the ViewPort->Modes field is used for
backward compatibility only.

Under V1.3 and earlier the ViewPort->Modes field mirrored some of the BPLCONO
bits most notably Hires and Lace. However, other logical defines in this field such as
the Viewport->Modes PF2PRI bit conflict with the SHRES bit assignment in the
actual hardware.

For this reason, in release 2.0 of the operating system (graphics.library V36 and later),
programmers will need to use the new DataBase/ModeiD scheme to determine their
ViewPort's mode, and to specify a mode when creating, cloning, or copying
View Ports.

300 Amiga Hardware Reference Manual

SuperHires Mode and the Denise Color Registers

SuperHires mode has a coarser granularity of color control than either Hires or Lores modes.
This is because the timing of color conversions at these very high pixel rates requires special
"tricks". There are only two bits of red, green and blue color resolution per hires pixel.

In order to decode sprite and bitplane color information in SuperHires mode, certain multiplexing
occurs in the use of the registers. Instead of 4 bits of red, green, and blue for bitplane registers 0-3
stored as OxORGB in four color registers, SupcrHires bitplane colors are specially encoded in the
sixteen lower color registers:

R G B
---- --

Bitplane (Color 0) : ab-- cd-- ef--
Bit plane (Color 1) ; gh-- ij-- kl--
Bitplane (Color 2) : mn-- op-- qr--
Bitplane (Color 3) : st-- uv-- wx--

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

c 00 a b a b c d c d e f e f
0 01 g h a b i j c d k 1 e f
L 02 m n a b 0 p c d q r e f
0 03 s t a b u v c d w X e f
R 04 a b g h c d i j e f k 1

05 g h g h i j i j k 1 k 1
R 06 m n g h 0 p i j q r k 1
E 07 s t g h u v i j w X k 1
G 08 a b m n c d 0 p e f q r
I 09 g h m n i j 0 p k 1 q r
s OA m n m n 0 p 0 p q r q r
T OB s t m n u v 0 p w X q r
E oc a b s t c d u v e f w X

R OD g h s t i j u v k 1 w X

OE m n s t 0 p u v q r w X

OF s t s t u v u v w X w X

Appendix C 301

SuperHires sprites are encoded in the upper sixteen color registers using a similar scheme:

R G B
---- ---- --

Sprite (Color 16) : AB-- CD-- EF--
Sprite (Color 17) : GH-- IJ-- KL--
Sprite (Color 18) : MN-- OP-- QR--
Sprite (Color 19) : sT-- uv-- wx--

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

c 10 A B A B c D c D E F E
0 11 G H A B I J c D K L E
L 12 M N A B 0 p c D Q R E
0 13 s T A B u v c D w X E
R 14 A B G H c D I J E F K

15 G H G H I J I J K L K
R 16 M N G H 0 p I J Q R K
E 17 s T G H u v I J w X K
G 18 A B M N c D 0 p E F Q

I 19 G H M N I J 0 p K L Q

s 1A M N M N 0 p 0 p Q R Q

T lB s T M N u v 0 p w X Q
E lC A B s T c D u v E F w
R lD G H s T I J u v K L w

1E M N s T 0 p u v Q R w
1F s T s T u v u v w X w

About SuperHires color. SuperHires color encryption is not reflected in the
ColorTable. The color encoding is, however, reflected in the ViewPort's copper lists
generated by graphics via Make VPort(), SetRGB4(), etc.

Keep in mind that because of the loss of lower bits of precision in specifying
SuperHires colors, pastel colors in a closely graduated color scheme may be visually
difficult to distinguish from each other.

302 Amiga Hardware Reference Manual

F
F
F
F
L
L
L
L
R
R
R

R
X

X

X
X

SuperHires 70ns Sprite Positioning

SuperHires mode has a finer granularity of sprite positioning than either Hires or Lores modes.
This allows for positioning the sprite every other SuperHires pixel on 70ns boundaries. The ECS
reJisters SPRxPOS and SPRxCfL work together as position, size and sprite feature control
registers. They are usually loaded by the sprite DMA channel, during horizontal blank, however
they may be loaded by the processor.

The two registers are defined as follows:

SPRxPOS W A D Sprite x vertical-horiz start position data

Bit Use

15-08
07-00 SH8-SH1 Start horizontal value. Low bit (SHO) in SPRxCTL.

SPRxCTL W A D Sprite x position and control data

Bit Use

15-08
07
06
05
04
03
02
01
00

SHSHl
SHSHO

SHO

Start horizontal (SHR mode) 70ns increment
Start horizontal (SHR mode) 35ns (unimplemented)

Start horiz. value Low bit 140 ns increment

Note: bits 3 and 4 are in the ECS chips only.

Warning: 70ns sprite positions are only available in SuperHires mode. Attempting to
use 70ns sprite positioning with Hires mode under the current system may lead to
unpredictable results.

Appendix C 303

Multi-Sync and BI-Sync Monitors

The enhanced Agnus now includes registers for setting a standard programmable scan rate. The
scan rates supported in the V36 graphics.library include:

NTSC (525 lines, 227.5 colorclocks per scan line)
PAL (625 lines, 227.5 colorclocks per scan line)
VGA (525 lines, 114.0 colorclocks per scan line)

The V36 graphics.library controls the variable number of colorclocks on each horirontal scan line
with a combination of registers. Each combination of registers provides a different frequency of
scan rate and number oflines per display field:

HTOTAL W A Highest number count in horizontal line

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 10 00
Use 0 0 0 0 0 0 0 0 h8 h7 h6 h5 h4 h3 h2 h1

The value in this register represents the number of 280ns increments on the horizontal line.

VTOTAL W A Highest numbered vertical line

VTOT AL contains the line number at which to reset the vertical position counter. This value
represents the number of lines in a field(+l). The exception is if the INTERLACE bit is set
(BPLCONO). In this case this value represents the number of lines in the long field (+2) and the
number of lines in the short field (+1).

Programmable synchronization is implemented through five new enhanced Agnus registers:

VSSTRT w A Vertical line position for VSYNC start
VSSTOP w A Vertical line position for VSYNC stop
HSSTRT w A Horizontal line position for HSYNC start
HSSTOP w A Horizontal line position for HSYNC stop
HCENTER w A Horizontal position for Vsync on interlace

A reasonable composite can be generated by setting HCENTER half a horirontal line from
HSSTRT, and HBSTOP at (HSSTOP-HSSTRT) before HCENTER, with HBSTRT at
(HSSTOP-HSSTRT) before HSSTRT.

Programmable blanking is implemented through four new ECS Agnus registers:

HBSTRT w A Horizontal line position for HBLANK start
HBSTOP w A Horizontal line position for HBLANK stop
VBSTRT w A Vertical line position for VBLANK start
VBSTOP w A Vertical line position for VBLANK stop

304 Amiga Hardware Reference Manual

New BEAMCONO Register

A new register in the enhanced Agnus, BEAM CO NO, provides a programmable signal generator.

BEAMCONO W A Beam counter control register

Bit Use

15
14 HARD DIS Disable hardwired vertical/horizontal blank
13 LPENDIS Ignore latched pen value on vertical pos read
12 VARVBEN Use VBSTRT/STOP disable hard window stop
11 LOLDIS Disable long line/short line toggle
10 CSCBEN Composite sync redirection

9 VARVSYEN Variable vertical sync enable
8 VARHSYEN Variable horizontal sync enable
7 VARBEAMEN Variable beam counter comparator enable
6 DUAL Special ultra resolution mode enable
5 PAL Programmable pal mode enable
4 VARCSYEN Variable composite sync
3 BLANKEN Composite blank redirection
2 CSYTRUE Polarity control for C sync pin
1 VSYTRUE Polarity control for V sync pin
0 HSYTRUE Polarity control for H sync pin

Warning: Programmable changes between PAL and NTSC modes are new for V2.0.
They rely on hardware sync and blank in the Agnus/Denise chip set to guarantee
necessary signals for a correctly displayed picture.

Other modes, such as VGA (31 kHz programmable mode) disable the hard stops on
display sync and blank. Do not write to this register.

Incorrectly writing directly to BEAMCONO has the (remote) possibility of destroying
your multisync monitor.

Appendix C 305

Display Window Specification

The new graphics.library and the ECS provide a more powerful display window specification.
The registers DIWSTRT and DIWSTOP control the display window size and position:

DIWSTRT W A D
DIWSTOP W A D

Display Window Start (upper left vert-hor pos)
Display Window Stop (lower right vert-hor pos)

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Use V7 V6 V5 V4 V3 V2 Vl VO H7 H6 H5 H4 H3 H2 H1 HO

The way these two registers work has changed. DIWSTRT used to be vertically restricted to the
upper 2/3 of the display (V8=0), and horizontally restricted to the left 3/4 of the display (H8=0).
DIWSTOP used to be vertically restricted to the lower 1/2 of the display and horizontally
restricted to the right l/4 of the display (H8=1).

The V36 graphics.library now supports explicit display window start and stop positions within a
larger and more useful range of values, via control of the the new DIWHIGH register in the
ViewPort copper lists:

DIWHIGH w AD Display Window upper bits for start,stop

Bit Use
-- --
15 0
14 0
13 H8 Horizontal stop, most significant bit.
12 0
11 0
10 VlO \

9 V9 } Vertical stop, most significant 3 bits.
8 V8 I
7 0
6 -
5 H8 Horizontal start, most significant bit.
4 0
3 0
2 V10 \
1 V9 } Vertical stop, most significant 3 bits.
0 V8 I

This is an added register for the ECS chips, and allows larger start and stop ranges. If it is not
written, the old scheme for DIWSTRT and DIWSTOP described above holds. If this register is
written last in a sequence of setting the display window, it sets direct start and stop positions
anywhere on the screen.

A note on ECS compatibility. With the enhanced Denise chip present, the
graphics.library will set up copperlists using the new, explicit display window
controls. Programs which consistently call MakeVPort(), MrgCop() and Loadview()
when changing the vertical position of their ViewPort (DxOffset) will continue to
behave normally.

Programs which failed to call MakeVPort() when moving the ViewPort vertically may
not be displayed correctly on a system with ECS.

306 Amiga Hardware Reference Manual

Genlock Extensions

The V36 graphics.library supports the new genlock capabilities of the enhanced Denise chip in
PAL or NTSC modes. Any color registers may be chosen as controlling video overlay
(COLORKEY). A single bitplane may be chosen to control video overlay as well
(BITPLANEKEY). The border areas surrounding the active display window may also be set to
be opaque or transparent.

BPLCONO W A,D
BPLCON1 W D
BPLCON2 W D
BPLCON3 W D

Bitplane control (miscellaneous control bits)
Bitplane control (horizontal scroll control)
Bitplane control (video priority control)
Bitplane control (enhanced features)

Bit BPLCONO BPLCON1 BPLCON2 BPLCON3

15
14
13
12
11
10
09
08
07
06
OS
04
03
02
01
00 ENBPLCN3

ZDBPSEL2 \
ZDBPSEL1
ZDBPSELO I
ZDBPEN
ZDCTEN
KILLEHB

} Select bitplane

Use BITPLANEKEY
Use COLORKEY
Kill halfbrite

BRDRBLNK Border blank
BRDNTRAN Border opaque

Enable new BLPCON3
register.

The ECS genlock features are enabled or. a ViewPort by ViewPort basis.

Warning: Genlock has been designed to work with NTSC and PAL modes only.
Genlock and 31 KHz programmable scan rates are not compatible modes.

Appendix C 307

Big Blits

The V36 graphics.library supports the ECS Agnus Blitter enhancements, which provide for
contiguous blits of up to 32768 x 32768 pixels at a time. Under the original chip set 1024 x 1024
was the maximum:

BLTSIZE W A Old Blitter size and start (window width, height)

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Use h9 h8 h7 h6 h5 h4 h3 h2 h1 hO w5 w4 w3 w2 w1 wO

h = Height (10 bit height = 1024 lines max)
w = Width (6 bit width = 1024 pixels max)

Two new registers have been added which make larger blits possible:

BLTSIZV w A ECS Blitter V size

Bit 15 14 12 12 11 10 09 08 07 06 05 04 03 02 01 00
Use 0 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 hO

h = Height (15 bit height = 32768 lines max)

BLTSIZH w A ECS Blitter Horizontal size & start

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Use 0 0 0 0 0 w10 w9 w8 w7 w6 w5 w4 w3 w2 w1 wO

w = Width (11 bit width = 32768 pixels max)

With these two registers, blits up to 32K by 32K are now possible- much larger than the original
chip set could accept. The original commands are retained for compatibility. BLTSIZV should be
written first, followed by BL TSIZH, which starts the blitter.

The existence of the enhanced Agnus Blitter is reflected in the state of the GfxBase­
>ChipRevBits bit definition GFXB_BIG_BLITS and is initialized by the graphics.library at
powerup. Note that the <hardware/blits.h> constant MAXBYTESPERROW has been redefined
to reflect the larger range of legal blitter operations.

About RastPort Sizes. If the ECS Blitter is accessible, the graphics.library supports
its use for all graphics functions including areafill, gels, line and ellipse drawing
functions.

If the ECS Blitter is not installed, programmers should limit the absolute size of their
RastPorts to values that the old BL TSIZE register can address.

308 Amiga Hardware Reference Manual

Other ECS Modifications

The preceding sections cover most of the ECS registers appearing in the ECS register map. This
section briefly describes the remaining modifications to the Enhanced Chip Set registers.

The following registers now have two additional bits for addressing larger segments of memory,
when the Enhanced Chip Set is present:

DSKPTH 020 w A Disk pointer (high 5 bits, was 3 bits)
BLTxPTH 050 w A Blitter pointer to x (high 5 bits, was 3 bits)
COPlLCH 080 w A Coprocessor 1st location(high 5 bits,was 3 bits)
COP2LCH 084 w A Coprocessor 2nd location(high 5 bits,was 3 bits)
AUDxLCH OAO w A Audio channel x location(high 5 bits was 3 bits)

The Strobe Long Line register (STRLONG) can be disabled if the Disable Long Line (LOLDIS)
bit is set in the BEAMCONO register.

STRLONG 03E S D Strobe for identification of long horiz line

See the Multi-Sync and Bi-Sync Monitors section in this appendix for the bit descriptions in
BEAMCONO.

Bit 7 (DOFF) of the BLTCONl register, when set, disables the output of the Blitter hardware on
channel D.

BLTCONl 042 W A Blitter control register 1

This allows inputs to channels A, B and C and certain address modification if necessary, without
the Blitter outputting over channel D.

The BLTCONOL register writes the low bits of BLTCONO, thereby expediting the set up of some
blits and generally speeding up the software, since the upper bits are often the same.

BLTCONOL 05A W A Blitter control 0, lower 8 bits (minterms)

Appendix C 309

Interpretational Differences

The following registers have the same functionality as the standard chip set, however, their
behavior is interpreted differently.

The POTO and POTl registers each read a pair of 8-bit pot counters as before.

POTODAT 012 R P
POTlDAT 014 R P

Pot counter data left pair (vertical, horiz)
Pot counter data right pair (vertical, horiz)

However, with programmable scan rates, the values read from these registers will differ.
Generally, the faster the scan rate, the smaller these values become. Adjustments to the scan rate
are reflected in these values. See Appendix A for more detail on standard operation of these
registers.

Another register where the interpretation has been extended for the ECS is COPCON.

COP CON 02E W A Coprocessor control

This 1-bit register, the danger bit (CDANG), when set allows the Coprocessor to write to the
Blitter hardware. In the standard chip set, if this is set, the Copper can access the address range
from $DFF03E through $DFF07E. Now, in the ECS, if this bit is set, the Copper can access all
of the Amiga chip registers. If this bit is clear, the Copper can access the address range from
$DFF03E through $DFF07E, the same range as when the danger bit is set in the standard chip set.

The AUDxPER register is another register value that varies according to the programmable scan
rate.

AUDxPER OA6 W P Audio channel x period

With programmable scan rates, the maximum value read from this register will differ. Generally,
the faster the scan rate, the smaller the maximum period becomes. Adjustments to the scan rate
are reflected in this maximum value.

For more information on the AUDxPER register, and any other register in the Amiga standard
chip set, see Appendices A and B.

310 Amiga Hardware Reference Manual

--·---

appendix D
SYSTEM MEMORY MAPS

A true software memory map, showing system utilization of the various sections of RAM and
free space is not provided, nor possible with the Amiga.

All memory is dynamically allocated by the memory manager at boot time, and the actual
locations of system structures may change from release-to-release, machine-to-machine, or boot­
to-boot (see the AllocMemO function in the exec.library for more details).

Likewise, Amiga applications are compiled in such a way that they can be dynamically relocated
at run time by the system loader.

To fmd the location of system structures, application software should use the function interface
provided in the operating system. If this is not possible then the address of a data structure should
be obtained by searching the lists of system structures maintained by Exec. The first step is to
fetch the address of the exec .library from location 4; this is the only absolute memory location in
the system. All other system data structures are indirectly linked to this base address.

Though a detailed system memory map is not possible, this section does present the general
layout of memory areas within the current generation of Amiga computers. To ensure maximum
compatibility, avoid relying on the address ranges given here. Instead use the system provided
interfaces to ask for the system reources you need.

Appendix D 313

A 1 000, A500 and A2000 Memory Map

Address Range

00 0000 - 03 FFFF

04 0000 - 07 FFFF

08 0000 - OF FFFF

10 0000 - lF FFFF

20 0000 - 9F FFFF

AO 0000 - BE FFFF

BF DOOO - BF DFOO

BF EOOl - BF EFOl

co 0000 - DF EFFF
I

Description

256K Chip RAM (AlOOO Chip RAM, 1st 256K for A500/A2000)

256K bytes of Chip RAM (2nd 256K for A500/A2000)

512K Extended chip RAM (to 1MB for A2000).

Reserved. Do not use.

Primary 8 MB Auto-config space.

Reserved. Do not use.

8520-B (access at even-byte addresses only)

8520-A (access at odd-byte addresses only)

The underlined digit chooses which of the
16 internal registers of the 8520 is to be
accessed. See Appendix F.

Reserved. Do not use.

I co 0000 - D7 FFFF Internal expansion (slow) memory (on some systems).
I
I DB 0000 - DB FFFF Reserved. Do not use.
I
I DC 0000 - DC FFFF Real time clock (not accessable on all systems) .
I
I DF FOOO - DF FFFF Chip registers. See Appendix A and Appendix B.
+--

EO 0000 - E7 FFFF

E8 0000 - E8 FFFF

E9 0000 - EF FFFF

FO 0000 - FB FFFF

FC 0000 - FF FFFF

Reserved. Do not use.

Auto-config space. Boards appear here before
the system relocates them to their final address.

Secondary auto-config space (usually 64K I/0
boards).

Reserved. Do not use.

256K System ROM.

314 Amiga Hardware Reference Manual

A3000 Memory Map

Address Range Description

$0000 0000 - $001F FFFF Amiga Chip Memory

$0020 0000 - $009F 0000 Zorro II Memory Expansion Space

$00AO 0000 - $00B7 FFFF Zorro II I/0 Expansion Space

$00B8 0000 - $00BE FFFF Reserved

$00BF 0000 - $00BF FFFF CIA Ports & Timers

$00CO 0000 - $00C7 FFFF Expansion Memory

$00C8 0000 - $00D7 FFFF Reserved

$00D8 0000 - $00DB FFFF Reserved

$00DC 0000 - $DODD FFFF Memory Mapped Clock

$00DD 0000 - $00DE FFFF SCSI Control

$00DE 0000 - $00DE FFFF Motherboard Resources

$00DF 0000 - $00DF FFFF Amiga Chip Registers

$00EO 0000 - $00E7 FFFF Reserved

$00E8 0000 - $0EFF FFFF Zorro II I/0 & Configuration

$00FO 0000 - $00F7 FFFF Diagnostic ROM (Reserved)

$00F8 0000 - $DOFF FFFF High ROM (512K)

$0100 0000 - $03FF FFFF Reserved

$0400 0000 - $07FF FFFF Motherboard Fast RAM

$0800 0000 - $0FFF FFFF Coprocessor Slot Expansion

$1000 0000 - $7FFF FFFF Zorro III Expansion

$8000 0000 - $FEFF FFFF Reserved

$FFOO 0000 - $FFOO FFFF Zorro III Configuration Unit

$FF01 0000 - $FFFF FFFF Reserved

Appendix D 315

Amiga 3000 Memory Map

32-blt Address Space

(4 Gigabytes)
$FFFF FFFF

Reserved

$8000 0000

Zorrolll
Expansion

$1000 000 0

Low memory

$0000 000 0
(256 Mbytes)

I

I
I

I

I
I
I
I
I
I
I
I

$FFFF

High memory

(16 Mbytes)

Reserved

I $FF01 0000 Zorro III

\$FFOO 0000 Confi nltim Unil

Low memory

r _ (256 Mbytes)
I $0FFF FFFF

C<?processor
Slot Expansion

$0800 0000 Motherboard

$0700 0000 Fast RAM

Reserved

$0100 000 0 24-bit Address

$0000 0000 Space

I
\I
~

II

316 Amiga Hardware Reference Manual

I
I
I

I
I
I
I
I

1--

24-blt Address Space

(16 Mbytes)

I $DOFF FFFF
I

$00F8 0000

$00FO 0000

I $00E8 0000

I
I
I

$00EO 0000

$0008 0000

$00C8 0000

$00CO 0000

$0088 0000

$00AO 0000

$0020 0000

1$0000 000 0

High ROM

Diagnostic ROM

Zcrro II 1/0 md c<mf'l.

Reserved

High 1/0 registers

Reserved

Ranger RAM

Low I/O registers

I

Zorro II 1/0
Expansion

Zorroll
Memory

Expansion

Standard Chip
RAM

(Up to 2 Mhytes)

I

I
I

I
I
I

High 110 Registers

I $DF FFFF
I

I $DF 0000
AmigaCbiP"

I $DE 0000 M~::::.:d

I

I
I

$DD 0000

$DC 0000

$DD 0000

$DA 0000

$D9 000

$D8 000

0

0

SCSI Control Memory· mapped
clock

Rc"""'cd
~cd

Rc!ICTYcd
Rc"""'cd

Low 110 Registers

$BF FFFF CIAPommd

$BF 0000 Timers

$BE 0000 Rc"""'cd

$BD 0000
~cd

$BC 0000

$BB 0000

$BA 0000

Rc"""'cd
~

~

Rc"""'cd
$89 0000

I $88 0000
RciiCIVcd

appendix E
1/0 CONNECTORS AND
INTERFACES

This appendix consists of four distinct parts, related to the way in which the Amiga talks to the
outside world.

The first part specifics the pinouts of the externally accessible connectors and the power available
at each connector. It does not, however, provide timing or loading information.

The second part briefly describes the functions of those pins whose purpose may not be evident.

The third part contains a list of the connections for certain internal connectors, notably the disk.

The fourth part specifies how various signals relate to the available ports of the 8520. This
information enables the programmer to relate the port addresses to the outside-world items (or
internal control signals) that are to be affected.

The third and fourth parts are primarily for the use of the systems programmer and should
generally not be utilized by applications programmers.

Systems software normally is configured to handle the setting of particular signals, no matter how
the physical connections may change. In other words, if you have a version of the system
software that matches the revision level of the machine (normally a true condition), when you ask
that a particular bit be set, you don't care which port that bit is connected to. Thus, applications
programmers should rely on system documentation rather than going directly to the ports.

Appendix E 317

Warning: In a multitasking operating system, many different tasks may be competing
for the use of the system resources. Application programmers should follow the
established rules for resource access in order to assure compatibility of their software
with the system. Don't just hit the hardware registers directly, ask the system for
exclusive control first.

PART 1- AMIGA 1/0 CONNECTOR PINS

This is a list of the 1/0 connections to the outside world on the Amiga.

RS232 and MIDI Port

A500/
A2000/ CBM

PIN RS232 AlOOO A3000 PCs HAYES DESCRIPTION

1 GND GND GND GND GND FRAME GROUND
2 TXD TXD TXD TXD TXD TRANSMIT DATA
3 RXD RXD RXD RXD RXD RECEIVE DATA
4 RTS RTS RTS RTS REQUEST TO SEND
5 CTS CTS CTS CTS CTS CLEAR TO SEND
6 DSR DSR DSR DSR DSR DATA SET READY
7 GND GND GND GND GND SYSTEM GROUND
8 CD CD CD DCD DCD CARRIER DETECT
9 +12v +12v + 12 VOLT POWER
10 -12v -12v - 12 VOLT POWER
11 AUDO AUDIO OUTPUT (A500, A2000, A3000)
12 S.SD SI SPEED INDICATE
13 S.CTS
14 S.TXD -5Vdc - 5 VOLT POWER
15 TXC AUDO AUDIO OUTPUT (AlOOO)
16 S.RXD AUDI AUDIO INPUT (AlOOO)
17 RXC EB BUFFERED PORT CLOCK 716kHz
18 INT2* AUDI INTERRUPT LINE AlOOO/AUDIO INPUT(A500,
19 S.RTS
20 DTR DTR DTR DTR DTR DATA TERMINAL READY
21 SQD +5 + 5 VOLT POWER
22 RI RI RI RI RING INDICATOR
23 ss +12Vdc - +12 VOLT POWER
24 TXCl C2* 3.58 MHZ CLOCK
25 RESB* BUFFERED SYSTEM RESET

318 Amiga Hardware Reference Manual

2000, 3000)

Parallel (Centronics) Port

PIN A1000 A500/A2000/A3000 Commodore PCs
---------------- -------------

1 DRDY* STROBE* STROBE*
2 Data 0 Data 0 Data 0
3 Data 1 Data 1 Data 1
4 Data 2 Data 2 Data 2
5 Data 3 Data 3 Data 3
6 Data 4 Data 4 Data 4
7 Data 5 Data 5 Data 5
8 Data 6 Data 6 Data 6
9 Data 7 Data 7 Data 7
10 ACK* ACK* ACK*
11 BUSY (data) BUSY BUSY
12 POUT (elk) POUT POUT
13 SEL SEL SEL
14 GND +5v pullup AUTOFDXT
15 GND NC ERROR*
16 GND RESET* INIT*
17 GND GND SLCT IN*
18-22 GND GND GND
23 + 5 GND GND
24 NC GND GND
25 Reset* GND GND

KEYBOARD ... RJ11 (Not Applicable to the A500)

A1000 A2000/A3000

1 +5 Volts KCLK
2 CLOCK KDAT
3 DATA NC
4 GND GND
5 +5 Volts

Video ... DB23 MALE

For A500, A1000, A2000 and A3000 unless otherwise stated

1 XCLK* 13 GNDRTN (Return for XCLKEN*)
2 XCLKEN* 14 ZD*
3 RED 15 C1*
4 GREEN 16 GND
5 BLUE 17 GND
6 DI 18 GND
7 DB 19 GND
8 DG 20 GND
9 DR 21 -5 VOLT POWER(A1000,A2000,A3000)
10 CSYNC* -12 VOLT POWER (A500)
11 HSYNC* 22 +12 VOLT POWER
12 VSYNC* 23 +5 VOLT POWER

Appendix E 319

Video Display Enhancer - DB 15 Female (A3000 ONLY)

1 RED VIDEO
2 GREEN VIDEO
3 BLUE VIDEO
4 MONITOR ID BIT 2 (NOT USED)
5 GROUND
6 RED RETURN (GROUND)
7 GREEN RETURN (GROUND)
8 BLUE RETURN (GROUND)
9 KEY (NO PIN)
10 SYNC RETURN (GROUND)
11 MONITOR ID BIT 0 (NOT USED)
12 MONITOR ID BIT 1 (NOT USED)
13 HORIZONTAL SYNC
14 VERTICAL SYNC
15 NOT USED

RF Monitor ... 8 PIN DIN (J2) (A1000 Only)

1 N.C.
2 GND
3 AUDIO LEFT
4 COMP VIDEO
5 GND
6 N.C.
7 +12 VOLT POWER
8 AUDIO RIGHT

EXTERNAL DISK ... DB23 FEMALE

For A1000, A500, A2000 and A3000 with A2000 and A3000 differences noted.

1 RDY* 13 SIDEB*
2 DKRD* 14 WPRO*
3 GND 15 TKO*
4 GND 16 DKWEB*
5 GND 17 DKWDB*
6 GND 18 STEPB*
7 GND 19 DIRB
8 MTRXD* 20 SEL3B* (A2000/A3000 not used (1))
9 SEL2B* (A2000/A3000 SEL3B* (1)) 21 SEL1B* (A2000/A3000 SEL2B* (1))
10 DRESB* 22 INDEX*
11 CHNG* 23 +12
12 +5

(1) SEL1B* is not drive 1, but rather the first external drive. Not
all select lines may be implemented.

320 Amiga Hardware Reference Manual

EXTERNAL SCSI DISK DB25 FEMALE (A3000 ONLY)
--

1 REQ 14 GROUND
2 MSG* 15 C/D
3 I/0 16 GROUND
4 RST* 17 ATN*
5 ACK* 18 GROUND
6 BSY* 19 SEL*
7 GROUND 20 PARITY
8 DATAO 21 DATAl
9 GROUND 22 DATA2
10 DATA3 23 DATA4
11 DATA5 24 GROUND
12 DATA6 25 TERMINATION POWER
13 DATA?

See the ANSI (American National Standard Institute) standard SCSI (Small Computer Standard

Interface) Specification for more information.

RAMEX ... 60 PIN EDGE (.156) (Pl) (AlOOO only)

--

1 gnd A gnd

2 015 B 014
3 +5 c +5
4 012 D 013
5 gnd E gnd

6 Dll F 010
7 +5 H +5
8 08 J 09
9 gnd K gnd

10 07 L D6
11 +5 M +5
12 04 N 05
13 gnd p gnd

14 03 R 02
15 +5 s +5
16 DO T 01
17 gnd u gnd

18 DRA4 v DRA3
19 DRA5 w DRA2
20 DRA6 X ORAl
21 DRA7 y DRAO
22 gnd z gnd

23 RAS* AA RRW*
24 gnd BB gnd

25 gnd cc gnd

26 CASUO* DD CASUl*
27 gnd EE gnd

28 CASLO* FF CASLl*
29 +5 HH +5
30 +5 JJ +5

Appendix E 321

EXPANSION ..• 86 PIN EDGE (.1) (P2)

See Appendix K for the 100 pin Zorro II and Zorro III bus connector

PIN ASOO AlOOO A2000 A2000b FUNCTION

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

322 Amiga Hardware Reference Manual

ground
ground
ground
ground
+SVDC
+SVDC
No Connect
-5VDC
No Connect
28MHz Clock
+12VDC
No Connect
/COPCFG (Configuration Out)
CONFIG IN, Grounded
Ground
/C3 Clock
CDAC Clock
/Cl Clock
/OVR
ROY
/INT2
/PALOPE
No Connect
/BOSS
AS
/INT6
A6
A4
ground
A3
A2
A7
A1
AS
FCO
A9
FC1
A10
FC2
All
Ground
Al2
Al3
/IPLO
Al4
/IPLl
Al5
/IPL2
Al6
BEER*
Al7
/VPA
Ground
E Clock

EXPANSION ... 86 PIN EDGE (. 1) (P2) (cont.)
--

PIN A500 AlOOO A2000 A2000b FUNCTION
------ --------

51 X X X X /VMA
52 X X X X AlB
53 X X X X RST
54 X X X X A19
55 X X X X /HLT
56 X X X X A20
57 X X X X A22
58 X X X X A21
59 X X X X A23
60 X X X /BR

X /CBR
61 X X X X Ground
62 X X X X /BGACK
63 X X X X 015
64 X X X /BG

X /CBG
65 X X X X 014
66 X X X X /DTACK
67 X X X X D13
68 X X X X R/W
69 X X X X 012
70 X X X X /LOS
71 X X X X Dll
72 X X X X /UDS
73 X X X X Ground
74 X X X X /AS
75 X X X X DO
76 X X X X 010
77 X X X X Dl
78 X X X X 09
79 X X X X 02
80 X X X X DB
81 X X X X D3
82 X X X X 07
83 X X X X 04
84 X X X X D6
85 X X X X Ground
86 X X X X D5

JOY STICKS ... DB9 male

USAGE JOYSTICK MOUSE

1 FORWARD* (MOUSE V)
2 BACK* (MOUSE H)
3 LEFT* (MOUSE VQ)
4 RIGHT* (MOUSE HQ)
5 POT X (or button 3 ... if used)

6 FIRE* (or button 1)
7 +5
8 GND
9 POT y (or button 2)

Appendix E 323

PART 2- EXPLANATION OF AMIGA 1/0 CONNECTORS

Parallel Connector Interface Specification

The 25-pin D-type connector with pins (DB25P=male for the A 1000, female for A500/A2000 and
IBM compatibles) at the rear of the Amiga is nominally used to interface to parallel printers. In
this capacity, data flows from the Amiga to the printer. This interface may also be used for input
or bidirectional data transfers. The implementation is similar to Centronics, but the pin
assignment and drive characteristics vary significantly from that specification (see Pin
Assignment). Signal names correspond to those used in the other places in this appendix, when
possible.

PARALLEL PORT (J8)

NAME DIR

DRDY* 0

DO I/0
01 I/0
02 I/0
03 I/0
04 I/0
DS I/0
06 I/0
07 I/0
ACK* I

BUSY I/0

POUT I/0

SEL I/0

RESET* 0

NOTES

Output-data-ready signal to parallel device in
output mode, used in conjunction with ACK* (pin 10)
for a two-line asynchronous handshake. Functions
as input data accepted from Amiga in input mode
(similar to ACK* in output mode). See timing
diagrams in the following section.
+

+

D0-07 comprise an eight-bit bidirectional bus
for communication with parallel devices,
nominally, a printer.

Output-data-acknowledge from parallel device in
output mode, used in conjunction with ORDY* (pin 1)
for a two-line asynchronous handshake. Functions as
input-data-ready from parallel device in input mode
(similar to DRDY* in output mode).
See timing diagrams. The 8520 can be programmed to
conditionally generate a level 2 interrupt to the
680x0 whenever the ACK* input goes active.
This is a general purpose I/0 pin also connected to a
serial data I/0 pin (serial clock on pin 12).
Note: Nominally used to indicate printer buffer full.
This is a general purpose I/0 pin to a
serial clock I/0 pin (serial data on pin 11).
Note: Nominally used to indicate printer paper out.
This is a general purpose I/0 pin.
Note: nominally a select output from the parallel
device to the Amiga. On the A500/A2000 also shared
with RS232 "ring indicator" signal.

Amiga system reset

324 Amiga Hardware Reference Manual

-------~~~-~----------

PARALLEL CONNECTOR INTERFACE TIMING, OUTPUT CYCLE

PA<7:0>
PB<7:0> x. ___ x

1<-- Tl --->1 I
I 1<-------- T2 ------>1

_______________ v v ______________________ ~
DRDY*

Output data ready
I I
1<- T3 ->1
1<--- T4 --->1

______________ 1<- TS -->1 _____ _
ACK* I I

Output data acknowledge

Microseconds
Min Typ Max

Tl: 4.3 -x-
T2: nsp -x-

5.3
upc

Output data setup to ready delay.
Output data hold time.

T3:
T4:
TS:

nsp 1.4 nsp
0 -x- upc

nsp -x- upc

nsp not specified

Output data ready width.
Ready to acknowledge delay.
Acknowledge width.

upc under program control

PARALLEL CONNECTOR INTERFACE TIMING, INPUT CYCLE

PA<7 :0>
PB<7: 0> x. __ x

1<-- Tl --->1
I T2 -->1<----->1

_______________ v ___________ I ________ _
ACK*

Input data ready
1----=-- I
1<- T3 ->1 I
1<-- T4 --->1

------------------------~1<- TS -->1 ________ _
DRDY* I I

Input data acknowledge

Microseconds
Min Typ Max

Tl: 0 -x- upc Input data setup time.
T2: nsp -x- upc Input data hold time.
T3: nsp -x- upc Input data ready width.
T4: upc -x- upc Input data ready to data

acknowledge delay.
TS: nsp 1.4 nsp Input data acknowledge width.

nsp not specified
upc under program control

Appendix E 325

Serial Interface Connector Specification

This 25-pin D-type connector with sockets (DB25S=female) is used to interface to RS-232-C
standard signals. Signal names correspond to those used in other places in this appendix, when
possible.

WARNING: Pins on the RS232 connector other than these standard ones described
below may be connected to power or other non-RS232 standard signals. When
making up RS232 cables, connect only those pins actually used for a particular
application. Avoid generic 25-connector "straight- thru" cables.

SERIAL INTERFACE CONNECTOR PIN ASSIGNMENT (J6)

RS-232-C

NAME DIR STD NOTES

FGND y Frame ground -- do not tie to signal ground
TXD 0 y Transmit data
RXD I y Receive data
RTS 0 y Request to send
CTS I y Clear to send
DSR I y Data set ready
GND y Signal ground -- do not tie to frame ground
CD I y Carrier detect
-sv n* 50 rna maximum *** WARNING -sv ***
AUDO 0 n* Audio output from left (channels 0, 3) port,

intended to send audio to the modem.
AUDI I n* Audio input to right (channels 1, 2) port,

intended to receive audio from the modem; this
input is mixed with the analog output of the
right (channels 1, 2). It is not digitized or
used by the computer in any way.

DTR 0 y Data terminal ready.
RI I y Ring Indicator (A500/A2000 only) shared with printer

"select" signal.
RESB* 0 n* Amiga system reset.

NOTES:
n*: See warning above
See part 1 of this appendix for pin numbers.

326 Amiga Hardware Reference Manual

SERIAL INTERFACE CONNECTOR TIMING

Maximum operating frequency is 19.2 KHz. Refer to EIA standard RS-232-C
for operating and installation specifications. A rate of 31.25 KHz will
be supported through the use of a MIDI adapter.

Modem control signals (CTS, RTS, DTR, DSR, CD) are completely under
software control. The modem control lines have no hardware affect on
and are completely asynchronous to TXD and RXD.

SERIAL INTERFACE CONNECTOR ELECTRICAL CHARACTERISTICS

OUTPUTS MIN TYP MAX

Vo (-) : -13.2 -x- -2.5 v Negative output voltage range
Vo (+) : 8.0 -x- 13.2 v Positive output voltage range
Io: -x- -x- 10.0 rna Output current

INPUTS MIN TYP MAX

Vi(+): 3.0 -x- 25.0 v Positive input voltage range
Vi(-): -25.0 -x- 0.5 v Negative input voltage range
Vhys: -x- 1.0 -x- v Input hysteresis voltage
Ii: 0.3 -x- 10.0 rna Input current

Unconnected inputs are interpreted the same as positive input voltages.

Game Controller Connector Interface Specification

The two 9-pin D-type connectors with pins (male) are used to interface to four types of devices:

1. Mouse or trackball, 3 buttons max.
2. Digital joystick, 2 buttons max.
3. Proportional (pot or proportional joystick), 2 buttons max.
4. Light pen, including pen-pressed-to-screen button.

The connector pin assignments are discussed in sections organized by similar hardware and/or
software operating requirements as shown in the previous list. Signal names follow those used
elsewhere in this appendix, when possible.

Jll is the right controller port connector (JOYlDAT, POTlDAT).
Jl2 is the left controller port connector (JOYODAT, POTODAT).

NOTE: While most of the hardware discussed below is directly accessible, hardware
should be accessed through ROM kernel software. This will keep future hardware
changes transparent to the user.

Appendix E 327

GAME CONTROLLER INTERFACE TO MOUSE/TRACKBALL QUADRATURE INPUTS

A mouse or trackball is a device that translates planar motion into
pulse trains. Quadrature techniques are employed to preserve the
direction as well as magnitude of displacement. The registers JOYODAT
and JOYlDAT become counter registers, with y displacement in the high
byte and x in the low byte. Movement causes the following action:

Up: y decrements
Down: y increments
Right: X increments
Left: X decrements

To determine displacement, JOYxDAT is read twice with corresponding x
and y values subtracted (careful, modulo 128 arithmetic) . Note that
if either count changes by more than 127, both distance and direction
become ambiguous. There is a relationship between the sampling
interval and the maximum speed (that is, change in distance) that
can be resolved as follows:

Velocity< Distance(max) I SampleTime

Velocity < SQRT(DeltaX**2 + DeltaY**2) I SampleTime

For an Amiga with a 200 count-per-inch mouse sampling during each
vertical blanking interval, the maximum velocity in either the X or Y
direction becomes:

Velocity< (128 Counts * 1 inch/200 Counts) I .017 sec 38 in/sec

which should be sufficient for most users.

NOTE: The Amiga software is designed to do mouse update cycles during
vertical blanking. The horizontal and vertical counters are always
valid and may be read at any time.

CONNECTOR PIN USAGE FOR MOUSE/TRACKBALL QUADRATURE INPUTS

PIN

1
2
3
4
5
6
7
8
9

MNEMONIC

v
H
VQ
HQ

UBUT*
LBUT*
+SV

Ground
RBUT*

DESCRIPTION

Vertical pulses
Horizontal pulses
Vertical quadrature pulses
Horizontal quadrature pulses
Unused mouse button
Left mouse button
+SV, current limited

Right mouse button

328 Amiga Hardware Reference Manual

HARDWARE REGISTER/NOTES

JOY[0/1]DAT<15:8>
JOY[0/1]DAT(7:0>
JOY[0/1]DAT<15:8>
JOY[0/1]DAT<7:0>
See Proportional Inputs.
See Fire Button.

See Proportional Inputs.

GAME PORT INTERFACE TO DIGITAL JOYSTICKS

A joystick is a device with four normally opened switches arranged 90
degrees apart. The JOY[O/l]DAT registers become encoded switch input
ports as follows:

Forward:
Left:
Back:
Right:

bitH xor bitlt8
bitlt9
bitU xor biUO
bitU

Data is encoded to facilitate the mouse/trackball operating mode.

NOTE: The right and left direction inputs are also designed to be
right and left buttons, respectively, for use with proportional
inputs. In this case, the forward and back inputs are not used,
while right and left become button inputs rather than joystick inputs.

The JOY[O/l]DAT registers are always valid and may be read at any time.

CONNECTOR PIN USAGE FOR DIGITAL JOYSTICK INPUTS

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES
-------- ----------- -----------------------

1 FORWARD* Forward joystick switch JOY[O/l]DAT<9 xor
2 BACK* Back joystick switch JOY[O/l]DAT(l xor
3 LEFT* Left joystick switch JOY[O/l]DAT<9>
4 RIGHT* Right joystick switch JOY[O/l]DAT<l>
5 Unused
6 FIRE* Left mouse button See Fire Button.
7 +5V 125ma max, 200ma surge Total both ports.
8 Ground
9 Unused

GAME PORT INTERFACE TO FIRE BUTTONS

The fire buttons are normally opened switches routed to the 8520
adapter PRAO as follows:

PRAO bit 7
PRAO bit 6

Fire* left controller port
Fire* right controller port

Before reading this register, the corresponding bits of the data
direction register must be cleared to define input mode:

DDRA0<7:6> cleared as appropriate

8>
0>

NOTE: Do not disturb the settings of other bits in DDRAO (Use of ROM
kernel calls is recommended) .

Fire buttons are always valid and may be read at any time.

Appendix E 329

CONNECTOR PIN USAGE FOR FIRE BUTTON INPUTS

PIN MNEMONIC DESCRIPTION
-------- -----------

1 -x-
2 -x-
3 -x-
4 -x-
5 -x-
6 FIRE* Left mouse button/fire button
7 -x-
8 ground
9 -x-

PORT1

-FI_R_E_oi----" FIRE11 :
.-------~------------------------------------~

'--I'_F_I~-E-n~~--FI,RE~o-'~~-----'------~----~----L---~----~'~:~:,oo,
l

-----------------J

I.__ __ o __ __.l ___ o __ l __ o __ _,__ __ o __ _._ __ o __ _,___o __ _,__ ____ _._ __ ____.l !!i,t7""
IN IN OUT OUT OUT OUT OUT OUT

READING FIRE BUTIONS

330 Amiga Hardware Reference Manual

GAME PORT INTERFACE TO PROPORTIONAL CONTROLLERS

Resistive (potentiometer) element linear taper proportional
controllers are supported up to 528k Ohms max (470k +/- 10%
recommended). The JOY[0/1]DAT registers contain digital
translation values for y in the high byte and x in the low byte.
A higher count value indicates a higher external resistance.
The Amiga performs an integrating analog-to-digital conversion
as follows:

1. For the first 7 (NTSC) or 8 (PAL) horizontal display lines,
the analog input capacitors are discharged and the positions
counters reflected in the POT[0/1]DAT registers are held reset.

For the remainder of the display field, the input capacitors are
allowed to recharge through the resistive element in the external
control device.

2. The gradually increasing voltage is continuously compared to
an internal reference level while counter keeps track of the
number of lines since the end of the reset interval.

3. When the input voltage finally exceeds the internal threshold
for a given input channel, the current counter value is latched
into the POT[0/1]DAT register corresponding to that channel.

4. During the vertical blanking interval, the software examines
the resulting POT[0/1]DAT register values and interprets the
counts in terms of joystick position.

NOTE: The POTY and POTX inputs are designated as "right mouse button" and
"unused mouse button" respectively. An opened switch corresponds to high
resistance, a closed switch to a low resistance. The buttons are also
available in POTGO and POTINP registers. It is recommended that
ROM kernel calls be used for future hardware compatibility.

It is important to realize that the proportional controller is more of a
"pointing" device than an absolute position input. It is up to the
software to provide the calibration, range limiting and averaging functions
needed to support the application's control requirements.

The POT[0/1]DAT registers are typically read during video blanking,
but MAY be available prior to that.

Appendix E 331

CONNECTOR PIN USAGE FOR PROPORTIONAL INPUTS

PIN

1
2
3
4
5
6
7
8
9

MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES
-------- ----------- -----------------------
XBUT Extra Button
Unused

LBUT* Left button See Digital Joystick
RBUT* Right button See Digital Joystick
POTX X analog in POT[O/l]DAT<7:0>, POTGO,

Unused
+5V 125ma max, 200 rna surge

Ground
POTY Y analog in POT[O,l]DAT<l5:8>, POTGO,

PORTO

\ a-lmmmPOTOY_pgy9~ mum---m m:
. ~-~---------------------, ' ...__ _____ __

PORT1

\ 0-)-----------POTlY J:QD)L----- ----------:
0--- ----------------------, '

~------~ y '
POT1Y

COUNTER LATCH

POTODAT
DFF012

POT1DAT
DFF014

POT GO
DFF034

POTINP
DFF016

POT COUNTERS

332 Amiga Hardware Reference Manual

POTINP

POTINP

GAME PORT INTERFACE TO LIGHT PEN

A light pen is an optoelectronic device whose light-sensitive portion is
placed in proximity to a CRT. As the electron beam sweeps past the light
pen, a trigger pulse is generated which can be enabled to latch the horizontal
and vertical beam positions. There is no hardware bit to indicate this
trigger, but this can be determined in the two ways as shown in chapter 8,
"Interface Hardware."

Light pen position is usually read during blanking, but MAY be available
prior to that.

CONNECTOR PIN USAGE FOR LIGHT PEN INPUTS

PIN MNEMONIC

1 Unused
2 Unused
3 Unused
4 Unused
5 LPENPR*
6 LPENTG*
7 +SV
8 Ground
9 Unused

Note: depending

15

15

LIGHT PEN

DESCRIPTION HARDWARE REGISTER/NOTES

Light pen pressed
Light pen trigger

See Proportional Inputs
VPOSR, VHPOSR

125ma max, 200 rna surge Both ports

on the maker, the light pen input may be either.

3 0

VPOSR read only
DFF004

VHPOSR read only
DFF006

BPLCONO write only
DFF104

...
"--------------------------- light pen enable

I I
0

POTINP read only
DFF104

PEN PRESS = POTOX L---

PORTO

1 2 3 4 5
0 0 0 o o---

6
Q 0 o 0

light pen ,
-----------------------~

---------1
I

t ________ _ latches V & H positions

Appendix E 333

External Disk Interface Connector Specification

The 23-pin D-type connector with sockets (DB23S) at the rear of the Amiga is nominally used to
interface to MFM devices.

EXTERNAL DISK CONNECTOR PIN ASSIGNMENT (J7)

PIN NAME DIR NOTES

1 ROY*

2 DKRD*
3 GND
4 GND
5 GND
6 GND
7 GND
8 MTRXD*

I/0

I

If motor on, indicates disk installed and up to
speed. If motor not on, identification mode. See
below.
MFM input data to Amiga.

OC Motor on data, clocked into drive's motor-on
flip-flop by the active transition of SELxB*.
Guaranteed setup time is 1.4 usee.
Guaranteed hold time is 1.4 usee.

9 SEL2B* OC
10 DRESB* OC

Select drive 2.*
Amiga system reset. Drives should reset their
motor-on flip-flops and set their write-protect
flip-flops.

11 CHNG* I/0 Note: Nominally used as an open collector input.
Drive's change flop is set at power up or when no
disk is not installed. Flop is reset when drive is
selected and the head stepped, but only if a disk
is installed.

12 +5V

13 SIDEB*
14 WPRO*
15 TKO*

16 DKWEB*
17 DKWDB*
18 STEPB*

19 DIRB

20 SEL3B*
21 SELlB*
22 INDEX*

0
I/0
I/0

oc
oc
oc

oc

oc
oc

I/0

270 rna maximum; 410 rna surge
When below 3.75V, drives are required to reset their
motor-on flops, and set their write-protect flops.
Side 1 if active, side 0 if inactive
Asserted by selected, write-protected disk.
Asserted by selected drive when read/write head
is positioned over track 0.
Write gate (enable) to drive.
MFM output data from Amiga.
Selected drive steps one cylinder in the direction
indicated by DIRB.
Direction to step the head. Inactive to step
towards center of disk (higher-numbered tracks) .
Select drive 3. *
Select drive 1. *
Index is a pulse generated once per disk revolution,
between the end and beginning of cylinders. The
8520 can be programmed to conditionally generate a
level 6 interrupt to the 680x0 whenever the INDEX*
input goes active.

23 +12V 160 rna maximum; 540 rna surge.

* Note: the drive select lines are shifted as they pass through
a string of daisy chained devices. Thus the signal that appears
as drive 2 select at the first drive shows up as drive 1 select
at the second drive and so on ...

334 Amiga Hardware Reference Manual

EXTERNAL DISK CONNECTOR IDENTIFICATION MODE

An identification mode is provided for reading a 32-bit serial
identification data stream from an external device. To initialize
this mode, the motor must be turned on, then off. See pin 8,
MTRXD* for a discussion of how to turn the motor on and off. The
transition from motor on to motor off reinitializes the serial
shift register.
After initialization, the SELxB* signal should be left in the
inactive state.
Now enter a loop where SELxB* is driven active, read serial input
data on RDY* (pin 1), and drive SELxB* inactive. Repeat this loop
a total of 32 times to read in 32 bits of data. The most significant
bit is received first.

EXTERNAL DISK CONNECTOR DEFINED IDENTIFICATIONS

$0000 0000 -no drive present.
$FFFF FFFF - Amiga standard 3.25 diskette.
$5555 5555 - 48 TPI double-density, double-sided.

As with other peripheral !D's, users should contact Commodore-Amiga
for ID assignment.
The serial input data is active low and must therefore be inverted
to be consistent with the above table.

EXTERNAL DISK CONNECTOR LIMITATIONS

1. The total cable length, including daisy chaining, must not exceed
1 meter.

2. A maximum of 3 external devices may reside on this interface,
but specific implementations may support fewer external devices.

3. Each device must provide a 1000-0hm pull-up resistor on those
outputs driven by an open-collector device on the Amiga
(pins 8-10, 16-21).

4. The system provides power for only the first external device in the
daisy chains.

Appendix E 335

PART 3- INTERNAL CONNECTORS

INTERNAL DISK ... 34 PIN RIBBON (JlO)

1 GND 18 DIRB
2 CHNG* 19 GND
3 GND 20 STEPB*
4 MTROD* (led) 21 GND
5 GND 22 DKWDB*
6 N.C. 23 GND
7 GND 24 DKWEB*
8 INDEX* 25 GND
9 GND 26 TKO*
10 SELOB* 27 GND
11 GND 28 WPRO*
12 N.C. 29 GND
13 GND 30 DKRD*
14 N.C. 31 GND
15 GND 32 SIDEB*
16 MTROD* 33 GND
17 GND 34 RDY*

INTERNAL DISK POWER ... 4 PIN STRAIGHT (Jl3)

1 +12 (some drives are +5 only)
2 GND
3 GND
4 +5

INTERNAL SCSI DISK ... 50 PIN CONNECTOR (A3000 MOTHERBOARD)

2 DATA 0 26 TERMINATION POWER
4 DATA 1 28 GROUND
6 DATA 2 30 GROUND
8 DATA 3 32 ATN*
10 DATA 4 34 N.C.
12 DATA 5 36 BSY
14 DATA 6 38 ACK*
16 DATA 7 40 RST*
18 PARITY 42 MSG*
20 GROUND 44 SEL*
22 GROUND 46 C/D
24 GROUND 48 REQ*

50 I/0

(ALL ODD-NUMBERED PINS, EXCEPT PIN 25, ARE CONNECTED TO GROUND. PIN 25 IS OPEN)
See the ANSI standard SCSI (Small Computer Standard Interface) Specification
for more information.

336 Amiga Hardware Reference Manual

PART 4- PORT SIGNAL ASSIGNMENTS FOR 8520 CIAS

CIA-A Address BFExOl data bits 7-0 (A12*) (int2)

PA7 .. game port
PA6 .. game port
PAS .. ROY*
PA4 .. TKO*
PA3 .. WPRO*
PA2 .. CHNG*

1, pin 6 (fire button*)
0, pin 6 (fire button*)
disk ready*
disk track 00*
write protect*
disk change*

PAl .. LED*
PAO .. OVL

led light (O=bright) I audio filter control (ASOO & A2000)
ROM/RAM overlay bit

data
clock

SP ... KDAT
CNT .. KCLK
PB7 .. P7
PB6 .. P6
PBS .. PS
PB4 .. P4
PB3 .. P3
PB2 .. P2
PBl .. Pl

keyboard
keyboard
data 7
data 6
data 5
data 4
data 3
data 2
data 1

Centronics parallel interface
data

PBO .. PO data 0

PC ... drdy* Centronics control
F ack*

CIA-B Address BFDxOO data bits 15-8

PA7 .. com line DTR*, driven output
PA6 .. com line RTS*, driven output
PAS .. com line carrier detect*
PA4 .. com line CTS*
PA3 .. com line DSR*
PA2 .. SEL Centronics control
PAl .. POUT +---paper out------------+
PAO .. BUSY I +--busy -------------+

I I I
SP ... BUSY I +-commodore serial bus+

(A13*) (int6)

CNT .. POUT +----commodore serial bus --+

PB7 .. MTR*
PB6 •. SEL3*
PBS .. SEL2*
PB4 .. SELl*
PB3 .. SELO*
PB2 .. SIDE*
PBl .. DIR
PBO .. STEP*

PC ... not used
F INDEX*

motor
select external 3rd drive
select external 2nd drive
select external 1st drive
select internal drive
side select*
direction
step*

disk index pulse*

Appendix E 337

--

appendix F
8520 COMPLEX INTERFACE
ADAPTERS

This appendix contains infonnation about the 8520 Complex Interface Adapter (CIA) chips which
handle the serial, parallel, keyboard and other Amiga 1/0 activities. Each Amiga system contains
two 8520 Complex Interface Adapter (CIA) chips. Each chip has 16 general purpose input/output
pins, plus a serial shift register, three timers, an output pulse pin and an edge detection input. In
the Amiga system various tasks are assigned to the chip's capabilities as follows:

CIAA Address Map

Byte Register
Address Name

BFE001
BFE101
BFE201
BFE301
BFE401
BFE501
BFE601
BFE701
BFE801
BFE901
BFEA01
BFEB01
BFEC01
BFED01
BFEE01
BFEF01

pra
prb
ddra
ddrb
talo
tahi
tblo
tbhi
todlo
todmid
todhi

sdr
icr
era
crb

Data bits
7 6 5 4 3 2 1 0

/FIR1 /FIRO /RDY /TKO /WPRO /CHNG /LED OVL
Parallel port
Direction for port A (BFE001);1=output (set to Ox03)
Direction for port B (BFE101);1=output (can be in or out}
CIAA timer A low byte (.715909 Mhz NTSC; .709379 Mhz PAL)
CIAA timer A high byte
CIAA timer Blow byte (.715909 Mhz NTSC; .709379 Mhz PAL)
CIAA timer B high byte
50/60 Hz event counter bits 7-0 (VSync or line tick)
50/60 Hz event counter bits 15-8
50/60 Hz event counter bits 23-16
not used
CIAA serial data register (connected to keyboard)
CIAA interrupt control register
CIAA control register A
CIAA control register B

Note: CIAA can generate interrupt INT2.

Appendix F 339

CIAB Address Map

Byte
Address

BFDOOO
BFDlOO
BFD200
BFD300
BFD400
BFD500
BFD600
BFD700
BFDBOO
BFD900
BFDAOO
BFDBOO
BFDCOO
BFDDOO
BFDEOO
BFDFOO

Register
Name

pra
prb
ddra
ddrb
tala
tahi
tblo
tbhi
todlo
todmid
todhi

sdr
icr
era
crb

Data bits
7 6 5 4 3 2 1

/DTR /RTS /CD /CTS /DSR SEL POUT
/MTR /SEL3 /SEL2 /SELl /SELO /SIDE DIR
Direction for Port A (BFDOOO} ;1 =output
Direction for Port B (BFDlOO} ;1 = output
CIAB timer A low byte (.715909 Mhz NTSC;
CIAB timer A high byte
CIAB timer B low byte (.715909 Mhz NTSC;
CIAB timer B high byte
Horizontal sync event counter bits 7-0
Horizontal sync event counter bits 15-8
Horizontal sync event counter bits 23-16
not used
CIAB serial data register (unused)
CIAB interrupt control register
CIAB Control register A
CIAB Control register B

Note: CIAB can generate INT6.

Chip Register Map

0

BUSY
/STEP

(set to OxFF}
(set to OxFF}
.709379 Mhz PAL)

.709379 Mhz PAL)

Each 8520 has 16 registers that you may read or write. Here is the list of registers and the access
address of each within the memory space dedicated to the 8520:

Register
RS3 RS2 RSl RSO jf(hex) NAME MEANING
--

0 0 0 0 0 pra Peripheral data register A
0 0 0 1 1 prb Peripheral data register B
0 0 1 0 2 ddra Data direction register A
0 0 1 1 3 ddrb Direction register B
0 1 0 0 4 tala Timer A low register
0 1 0 1 5 tahi Timer A high register
0 1 1 0 6 tblo Timer B low register
0 1 1 1 7 tbhi Timer B high register
1 0 0 0 8 todlow Event LSB
1 0 0 1 9 todmid Event 8-15
1 0 1 0 A todhi Event MSB
1 0 1 1 B No connect
1 1 0 0 c sdr Serial data register
1 1 0 1 D icr Interrupt control register
1 1 1 0 E era Control register A
1 1 1 1 F crb Control register B

--

340 Amiga Hardware Reference Manual

Register Functional Description

1/0 PORTS (PRA, PRB, DORA, DDRB)

Ports A and B each consist of an 8-bit peripheral data register (PR) and an 8-bit data direction
register (DDR). If a bit in the DDR is set to a 1, the corresponding bit position in the PR
becomes an output. If a DDR bit is set to a 0, the corresponding PR bit is defined as an input.

When you READ aPR register, you read the actual current state of the 1/0 pins (PAO-PA 7, PBO­
PB7, regardless of whether you have set them to be inputs or outputs.

Ports A and B have passive pull-up devices as well as active pull-ups, providing both CMOS and
TTL compatibility. Both ports have two TTL load drive capability.

In addition to their normal 1/0 operations, ports PB6 and PB7 also provide timer output
functions.

HANDSHAKING

Handshaking occurs on data transfers using the PC output pin and the FLAG input pin. PC will
go low on the third cycle after a port B access. This signal can be used to indicate ''data ready''
at port B or "data accepted" from port B. Handshaking on 16-bit data transfers (using both ports
A and B) is p<>ssible by always reading or writing port A first. FLAG is a negative edge-sensitive
input that can be used for receiving the PC output from another 8520 or as a general- purpose
interrupt input. Any negative transition on FLAG will set the FLAG interrupt bit.

REG NAME 07 06 DS 04 03 02 Dl DO
---- ---- ---- ---- ---- ---- ----

0 PRA PA7 PA6 PAS PA4 PA3 PA2 PAl PAO
1 PRB PB7 PB6 PBS PB4 PB3 PB2 PBl PBO
2 DORA DPA7 DPA6 DPAS DPA4 DPA3 DPA2 OPAl DPAO
3 DDRB DPB7 DPB6 DPBS DPB4 DPB3 DPB2 DPBl DPBO

INTERVAL TIMERS (TIMER A, TIMER B)

Each interval timer consists of a 16-bit read-only timer counter and a 16-bit write-only timer
latch. Data written to the timer is latched into the timer latch, while data read from the timer is
the present contents of the timer counter.

The latch is also called a prescalar in that it represents the countdown value which must be
counted before the timer reaches an underflow (no more counts) condition. This latch (prescalar)
value is a divider of the input clocking frequency. The timers can be used independently or linked
for extended operations. Various timer operating modes allow generation of long time delays,
variable width pulses, pulse trains, and variable frequency waveforms. Utilizing the CNT input,

Appendix F 341

the timers can count external pulses or measure frequency, pulse width, and delay times of
external signals.

Each timer has an associated control register, providing independent control over each of the
following functions:

Start/Stop

A control bit allows the timer to be started or stopped by the microprocessor at any time.

PB on/off

A control bit allows the timer output to appear on a port B output line (PB6 for timer A and PB7
for timer B). This function overrides the DDRB control bit and forces the appropriate PB line to
become an output.

Toggle/pulse

A control bit selects the output applied to port B while the PB on/off bit is ON. On every timer
underflow, the output can either toggle or generate a single positive pulse of one cycle duration.
The toggle output is set high whenever the timer is started, and set low by RES.

One-shot/continuous

A control bit selects either timer mode. In one-shot mode, the timer will count down from the
latched value to zero, generate an interrupt, reload the latched value, then stop. In continuous
mode, the timer will count down from the latched value to zero, generate an interrupt, reload the
latched value, and repeat the procedure continuously.

In one-shot mode, a write to timer-high (register 5 for timer A, register 7 for Timer B) will
transfer the timer latch to the counter and initiate counting regardless of the start bit.

Force load

A strobe bit allows the timer latch to be loaded into the timer counter at any time, whether the
timer is running or not.

342 Amiga Hardware Reference Manual

INPUT MODES

Control bits allow selection of the clock used to decrement the timer. Timer A can count 02
clock pulses or external pulses applied to the CNT pin. Timer B can count 02 pulses, external
CNT pulses, timer A underflow pulses, or timer A underflow pulses while the CNT pin is held
high.

The timer latch is loaded into the timer on any timer underflow, on a force load, or following a
write to the high byte of the pre- scalar while the timer is stopped. If the timer is running, a write
to the high byte will load the timer latch but not the counter.

BIT NAMES on READ-Register

REG NAME D7 D6 DS D4 D3 D2 Dl DO
---- ---- ---- ----

4 TALO TAL? TAL6 TALS TAL4 TAL3 TAL2 TALl TALO
5 TAHI TAH7 TAH6 TAHS TAH4 TAH3 TAH2 TAHl TAHO
6 TBLO TBL7 TBL6 TBLS TBL4 TBL3 TBL2 TBLl TBLO
7 TBHI TBH7 TBH6 TBHS TBH4 TBH3 TBH2 TBHl TBHO

BIT NAMES on WRITE-Register

REG NAME D7 D6 DS D4 D3 D2 Dl DO
---- ----

4 TALO PAL? PAL6 PALS PAL4 PAL3 PAL2 PALl PALO
5 TAHI PAH7 PAH6 PAHS PAH4 PAH3 PAH2 PAHl PAHO
6 TBLO PBL7 PBL6 PBLS PBL4 PBL3 PBL2 PBLl PBLO
7 TBHI PBH7 PBH6 PBHS PBH4 PBH3 PBH2 PBHl PBHO

Appendix F 343

Time of Day Clock

TOO consists of a 24-bit binary counter. Positive edge transitions on this pin cause the binary
counter to increment. The TOO pin has a passive pull-up on it.

A programmable alarm is provided for generating an interrupt at a desired time. The alarm
registers are located at the same addresses as the corresponding TOO registers. Access to the
alarm is governed by a control register bit. The alarm is write-only; any read of a TOO address
will read time regardless of the state of the ALARM access bit.

A specific sequence of events must be followed for proper setting and reading of TOO. TOO is
automatically stopped whenever a write to the register occurs. The clock will not start again until
after a write to the LSB event register. This assures that TOO will always start at the desired
time.

Since a carry from one stage to the next can occur at any time with respect to a read operation, a
latching function is included to keep all TOO information constant during a read sequence. All
TOO registers latch on a read of MSB event and remain latched until after a read of LSB event.
The TOO clock continues to count when the output registers are latched. If only one register is to
be read, there is no carry problem and the register can be read "on the fly" provided that any read
of MSB event is followed by a read of LSB Event to disable the latching.

BIT NAMES for WRITE TIME/ALARM or READ TIME

REG NAME

8 LSB Event E7 E6 ES E4 E3 E2 E1 EO
9 Event 8-15 El5 E14 E13 E12 Ell E10 E9 E8
A MSB Event E23 E22 E21 E20 E19 E18 E17 E16

WRITE
CRB7 0
CRB7 = 1 ALARM

344 Amiga Hardware Reference Manual

Serial Shift Register (SDR)

The serial port is a buffered, 8-bit synchronous shift register. A control bit selects input or output
mode. In the Amiga system one shift register is used for the keyboard, and the other is
unassigned. Note that the RS-232 compatible serial port is controlled by the Paula chip; see
chapter 8 for details.

INPUT MODE

In input mode, data on the SP pin is shifted into the shift register on the rising edge of the signal
applied to the CNT pin. After eight CNT pulses, the data in the shift register is dumped into the
serial data register and an interrupt is generated.

OUTPUT MODE

In the output mode, Timer A is used as the baud rate generator. Data is shifted out on the SP pin
at 1/2 the underflow rate of Timer A. The maximum baud rate possible is 02 divided by 4, but
the maximum usable baud rate will be determined by line loading and the speed at which the
receiver responds to input data.

To begin transmission, you must first set up Timer A in continuous mode, and start the timer.
Transmission will start following a write to the serial data register. The clock signal derived from
Timer A appears as an output on the CNT pin. The data in the serial data register will be loaded
into the shift register, then shifted out to the SP pin when a CNT pulse occurs. Data shifted out
becomes valid on the next falling edge of CNT and remains valid until the next falling edge.

After eight CNT pulses, an interrupt is generated to indicate that more data can be sent. If the
serial data register was reloaded with new information prior to this interrupt, the new data will
automatically be loaded into the shift register and transmission will continue.

If no further data is to be transmitted after the eighth CNT pulse, CNT will return high and SP
will remain at the level of the last data bit transmitted.

SDR data is shifted out MSB first. Serial input data should appear in this same format.

Appendix F 345

BIDIRECTIONAL FEATURE

The bidirectional capability of the shift register and CNT clock allows many 8520s to be
connected to a common serial communications bus on which one 8520 acts as a master, sourcing
data and shift clock, while all other 8520 chips act as slaves. Both CNT and SP outputs are
open drain to allow such a common bus. Protocol for master/slave selection can be transmitted
over the serial bus or via dedicated handshake lines.

REG NAME D7 D6 DS D4 D3 D2 Dl DO

c SDR S7 S6 SS S4 S3 S2 Sl SO

Interrupt Control Register (ICR)

There are five sources of interrupts on the 8520:

-Underflow from Timer A (timer counts down past 0)
-Underflow from Timer B
-TOD alarm
-Serial port fulVempty
-flag

A single register provides masking and interrupt information. The interrupt control register
consists of a write-only MASK register and a read-only DATA register. Any interrupt will set the
corresponding bit in the DATA register. Any interrupt that is enabled by a 1-bit in that position
in the MASK will set theIR bit (MSB) of the DATA register and bring the IRQ pin low. In a
multichip system, the IR bit can be polled to detect which chip has generated an interrupt request.

When you read the DATA register, its contents are cleared (set to 0), and the IRQ line returns to a
high state. Since it is cleared on a read, you must assure that your interrupt polling or interrupt
service code can preserve and respond to all bits which may have been set in the DATA register
at the time it was read. With proper preservation and response, it is easily possible to intermix
polled and direct interrupt service methods.

You can set or clear one or more bits of the MASK register without affecting the current state of
any of the other bits in the register. This is done by setting the appropriate state of the MSBit,
which is called the set/clear bit. In bits 6-0, you yourself form a mask that specifies which of the
bits you wish to affect. Then, using bit 7, you specify HOW the bits in corresponding positions in
the mask are to be affected.

346 Amiga Hardware Reference Manual

o If bit 7 is a 1, then any bit 6-0 in your own mask byte which is set to a 1 sets the
corresponding bit in the MASK register. Any bit that you have set to a 0 causes the MASK
register bit to remain in its current state.

o If bit 7 is a 0, then any bit 6-0 in your own mask byte which is set to a 1 clears the
corresponding bit in the MASK register. Again, any 0 bit in your own mask byte causes no
change in the contents of the corresponding MASK register bit.

If an interrupt is to occur based on a particular condition, then that corresponding MASK bit must
be a 1.

Example: Suppose you want to set the Timer A interrupt bit (enable the Timer A interrupt), but
want to be sure that all other interrupts are cleared. Here is the sequence you can use:

INCLUDE "hardware/cia.i"
XREF ciaa
lea _ciaa,aO
move.b i%01111110,ciaicr(a0)

From amiga.lib
Defined in amiga.lib

MSB is 0, means clear any bit whose value is 1 in the rest of the byte

INCLUDE "hardware/cia.i"
XREF ciaa
lea _ciaa,aO
move.b i%10000001,ciaicr(a0)

From amiga.lib
Defined in amiga.lib

MSB is 1, means set any bit whose value is 1 in the rest of the byte (do not change any values
wherein the written value bit is a zero)

READ INTERRUPT CONTROL REGISTER

REG NAME D7 D6 DS D4 D3 D2 Dl DO

D ICR IR 0 0 FLG SP ALRM TB TA

WRITE INTERRUPT CONTROL MASK

REG NAME D7 06 05 D4 D3 D2 Dl DO

D ICR S/C X x FLG SP ALRM TB TA

Appendix F 347

Control Registers

There are two control registers in the 8520, CRA and CRB. CRA is associated with Timer A and
CRB is associated with Timer B. The format of the registers is as follows:

CONTROL REGISTER A

BIT NAME FUNCTION

0 START 1 = start Timer A, 0 = stop Timer A.

1

2

3

4

5

6

PBON 1

OUTMODE 1

RUNMODE 1

LOAD 1

INMODE 1
0

SPMODE 1

This bit is automatically reset (= 0) when
underflow occurs during one-shot mode.

Timer A output on PB6, 0 = PB6 is normal operation.

toggle, 0 = pulse.

one-shot mode, 0 continuous mode.

force load (this is a strobe input, there is no
data storage; bit 4 will always read back a zero
and writing a 0 has no effect.)

Timer A counts positive CNT transitions,
Timer A counts 02 pulses.

Serial port=output (CNT is the source of the shift
clock)

0 Serial port=input (external shift clock is
required)

7 UNUSED

348 Amiga Hardware Reference Manual

BITMAP OF REGISTER CRA

REGi NAME UNUSED SPMODE INMODE LOAD RUNMODE OUTMODE PBON START

E CRA unused
unused

O=input 0=02
l=output l=CNT

l=force
load

(strobe)

O=cont. O=pulse O=PB60FF O=stop
l=one- l=toggle l=PB60N l=start
shot

1<-------- Timer A Variables ----------------->1

All unused register bits are unaffected by a write and forced to 0 on a read.

CONTROL REGISTER B:

BIT NAME

0 START

1 PBON

2 OUTMODE
3 RUNMODE
4 LOAD

6,5 INMODE

7 ALARM

FUNCTION

1 = start Timer B, 0 = stop Timer B.
This bit is automatically reset (= 0) when
underflow occurs during one-shot mode.

1 Timer B output on PB7, 0 = PB7 is normal
operation.

1 toggle, 0 = pulse.
1 one-shot mode, 0 = continuous mode.
1 force load (this is a strobe input, there is no

data storage; bit 4 will always read back a
zero and writing a 0 has no effect.)

Bits CRB6 and CRB5 select one of four possible
input modes for Timer B, as follows:

CRB6 CRB5 Mode Selected

0
0
1
1

1
0

0 Timer B counts 02 pulses
1 Timer B counts positive CNT transitions
0 Timer B counts Timer A underflow pulses
1 Timer B counts Timer A underflow pulses

while CNT pin is held high.

writing to TOD registers sets Alarm
writing to TOD registers sets TOD clock.
Reading TOD registers always reads TOD clock,
regardless of the state of the Alarm bit.

Appendix F 349

BITMAP OF REGISTER CRB

REG
it NAME ALARM INMODE LOAD RUNMODE OUTMODE PBON START

F CRB O=TOD 00=02 l=force O=cont. O=pulse 0=PB70FF O=stop
l=Alarm Ol=CNT load l~one- l=toggle l=PB70N l=start

lO=Timer A (strobe) shot
ll=CNT+

Timer A

1<----------------Timer B Variables--------------->1

All unused register bits are unaffected by a write and forced to 0 on a read.

Port Signal Assignments

This part specifies how various signals relate to the available ports of the 8520. This infonnation
enables the programmer to relate the port addresses to the outside-world items (or internal control
signals) which are to be affected. This part is primarily for the use of the systems programmer
and should generally not be used by applications programmers. Systems software nonnally is
configured to handle the setting of particular signals, no matter how the physical connections may
change.

Warning: In a multitasking operating system, many different tasks may be competing
for the use of the system resources. Applications programmers should follow the
established rules for resource access in order to assure compatibility of their software
with the system.

350 Amiga Hardware Reference Manual

CIA-A Address BFErOl data bits 7-0 (A12*) (INT2)

PA7 .. game port
PA6 .. game port
PAS .. RDY*
PA4 .. TKO*
PA3 .. WPRO*
PA2 .. CHNG*
PAl .. LED*
PAO .. OVL
SP ... KDAT
CNT .. KCLK
PB7 .. P7
PB6 .. P6
PBS .. PS
PB4 .. P4
PB3 .. P3 data
PB2 .. P2
PEl .. Pl
PBO .. PO

1, pin 6 (fire button*)
0, pin 6 (fire button*)
disk ready*
disk track 00*
write protect*
disk change*
led light (O=bright)
memory overlay bit
keyboard data

data 7
data 6
data s Centronics
data 4 data

3
data 2
data 1
data 0

parallel interface

PC ... drdy* centronics control
F ack*

CIA-B Address BFDrOO data bits lS-8 (A13*) (INT6)

PA7 .. com line DTR*, driven output
PA6 .. com line RTS*, driven output
PAS .. com line carrier detect*
PA4 .. com line CTS*
PA3 .. com line DSR*
PA2 .. SEL centronics control
PAl .. POUT paper out---+
PAO .. BUSY busy ---+

SP ... BUSY
CNT .. POUT

I
commodore -+
commodore ---+

motor
select external
select external
select external

3rd
2nd
1st

drive
drive
drive

PB7 .. MTR*
PB6 .. SEL3*
PBS .. SEL2 *
PB4 .. SELl*
PB3 .. SELO*
PB2 .. SIDE*
PBl .. DIR
PBO .. STEP*

select internal drive

PC ... not used
F INDEX*

side select*
direction
step* (3.0 milliseconds minimum)

disk index*

Appendix F 351

A complete 8520 timing example. This blinks the power light at (exactly)
3 milisecond intervals. It takes over the machine, so watch out!

The base Amiga crytal frequencies are:
NTSC 28.63636 MHz
PAL 28.37516 MHz

The two 16 bit timers on the 8520 chips each count down at 1110 the CPU
clock, or 0.715909 MHz. That works out to 1.3968255 microseconds per count.
Under PAL the countdown is slightly slower, 0.709379 MHz.

To wait 11100 second would require waiting 10,000 microseconds.
The timer register would be set to (10,000 I 1.3968255 = 7159).

To wait 3 miliseconds would require waiting 3000 microseconds.
The register would be set to (3000 I 1.3968255 = 2148).

INCLUDE "hardwarelcia.i"
INCLUDE "hardwarelcustom.i"

XREF
XREF
XREF

cia a
ciab
custom

lea custom,a3
lea ciaa,a4

move.w #$7fff,dmacon(a3)

;----Setup, only do once

Base of custom chips
Get base address if CIA-A

Kill all chip interrupts

;----This sets all bits needed for timer A one-shot mode.
move.b ciacra(a4),d0
and.b #%11000000,d0
or.b #%00001000,d0
move.b d0,ciacra(a4)
move.b #%01111111,ciaicr(a4)

;----Set time (low byte THEN high byte)
;----And the low order with $ff
;----Shift the high order by 8

TIME equ 2148
move.b #(TIME&$FF) ,ciatalo(a4)
move.b #(TIME>>8),ciatahi(a4)

;----Wait for the timer to count down
busy_wait:

btst.b
beq.s
bchg.b
bset.b
bra.s

END

#O,ciaicr(a4)
busy_wait
#CIAB_LED,ciapra(a4)
#0, ciacra (a4)
busy_wait

352 Amiga Hardware Reference Manual

;Set control register A on CIAA
;Don't trash bits we are not
;using ...

;Clear all 8520 interrupts

;Wait for timer expired flag

; Blink light
;Restart timer

Hardware Connection Details

The system hardware selects the CIAs when the upper three address bits are 101. Furthermore,
CIAA is selected when A12 is low, A13 high; CIAB is selected when A12 is high, A13 low.
CIAA communicates on data bits 7-0, CIAB communicates on data bits 15-8.

Address bits All, AIO, A9, and A8 are used to specify which of the 16 internal registers you
want to access. This is indicated by "r" in the address. All other bits are don't cares. So, CIAA
is selected by the following binary address: 101x xxxx xx01 rrrr xxxx xxxO. CIAB address:
IOlx xxxx xxlO rrrr xxxx xxxl

With future expansion in mind, we have decided on the following addresses: CIAA = BFErOl;
CIAB = BFDrOO. Software must use byte accesses to these address, and no other.

INTERFACE SIGNALS

Clock Input

The 02 clock is a TTL compatible input used for internal device operation and as a timing
reference for communicating with the system data bus. On the Amiga, this is connected to the
680x0 "E" clock. The "E" clock runs at 1/10 of the CPU clock. This works out to .715909
Mhz for NTSC or .709379 Mhz for PAL.

CS - chip-select Input

The CS input controls the activity of the 8520. A low level on CS while 02 is high causes the
device to respond to signals on the R/W and address (RS) lines. A high on CS prevents these
lines from controlling the 8520. The CS line is normally activated (low) at 02 by the appropriate
address combination.

RJW- read/write Input

The R/W signal is normally supplied by the microprocessor and controls the direction of data
transfers of the 8520. A high on R/W indicates a read (data transfer out of the 8520), while a low
indicates a write (data transfer into the 8520).

Appendix F 353

~-~ --~-~--~- ----------------------------

RS3-RSO - address Inputs

The address inputs select the internal registers as described by the register map.

087-DBO - data bus Inputs/outputs

The eight data bus output pins transfer information between the 8520 and the system data bus.
These pins are high impedance inputs unless CS is low and R/W and 02 are high, to read the
device. During this read, the data bus output buffers are enabled, driving the data from the
selected register onto the system data bus.

IRQ - Interrupt request output

IRQ is an open drain output normally connected to the processor interrupt input. An external
pull-up resistor holds the signal high, allowing multiple IRQ outputs to be connected together.
The IRQ output is normally off (high impedance) and is activated low as indicated in the
functional description.

RES - reset Input

A low on the RES pin resets all internal registers. The port pins are set as inputs and port
registers to zero (although a read of the ports will return all highs because of passive pull-ups).
The timer control registers are set to zero and the timer latches to all ones. All other registers are
reset to zero.

354 Amiga Hardware Reference Manual

-----------~----------~---

appendix G
KEYBOARD INTERFACE

This appendix contaim the keyboard interface specification for AlOOO, A500, A2000 and A3000.

The keyboard plugs into the Amiga computer via a cable with four primary connections. The
four wires provide 5-volt power, ground, and signals called KCLK (keyboard clock) and KDAT
(keyboard data). KCLK is unidirectional and always driven by the keyboard; KDAT is driven by
both the keyboard and the computer. Both signals are open-collector; there are pullup resistors in
both the keyboard (inside the keyboard microprocessor) and the computer.

Keyboard Communications

The keyboard transmits 8-bit data words serially to the main unit. Before the transmission starts,
both KCLK and KDAT arc high. The keyboard starts the transmission by putting out the first
data bit (on KDAT), followed by a pulse on KCLK (low then high); then it puts out the second
data bit and pulses KCLK until all eight data bits have been sent. After the end of the last KCLK
pulse, the keyboard pulls KDAT high again.

When the computer has received the eighth bit, it must pulse KDAT low for at least I (one)
microsecond, as a handshake signal to the keyboard. The handshake detection on the keyboard
end will typically use a hardware latch. The keyboard must be able to detect pulses greater than
or equal to 1 microsecond. Software MUST pulse the line low for 85 microseconds to ensure
compatibility with all keyboard models.

All codes transmitted to the computer are rotated one bit before transmission. The transmitted
order is therefore 6-5-4-3-2-1-0-7. The reason for this is to transmit the up/down flag last, in
order to cause a key-up code to be transmitted in case the keyboard is forced to restore lost sync
(explained in more detail below).

Appendix G 357

The KDAT line is active low; that is, a high level (+5V) is interpreted a-; 0, and a low level (OV)
is interpreted as 1.

KCLK \ I \ I \ I \ I \ I \ I \ I \ I

KDAT \ __ x ___ x __ x __ x __ x __ x __ x __ l
(6)

First
sent

(5) (4) (3) (2) (1) (0) (7)

Last
sent

The keyboard processor sets the KDAT line about 20 microseconds before it pulls KCLK low.
KCLK stays low for about 20 microseconds, then goes high again. The processor waits another
20 microseconds before changing KDA T.

Therefore, the bit rate during transmission is about 60 microseconds per bit, or 17 kbits/sec.

Key codes

Each key has a kcycodc associated with it (see accompanying table). Keycodes arc always 7 bits
long. The eighth bit is a "key-up"/"key-down" flag; a 0 (high level) means that the key was
pushed down, and a 1 (low level) means the key was released (the Caps Lock key is different -­
see below).

For example, here is a diagram of the "B" key being pushed down. The keycode for "B" is $35
= 00110101; due to the rotation of the byte, the bits transmitted are 01101010.

KCLK \ I \ I \ I \ I \ I \ I \ I \ I

KDAT \ __ _ I \ I \ I
0 1 1 0 1 0 1 0

In the next example, the B key is released. The keycode is still $35, except that bit 7 is set to
indicate "key-up," resulting in a code of $B5 = 10110101. After rotating, the transmission will
be 01101011:

KCLK \ I \ I \ I \ I \ I \ I \ I \ I

KDAT \ I \ I \ I
--~·~

--~----

0 1 1 0 1 0 1 1

358 Amiga Hardware Reference Manual

Caps Lock Key

This key is different from all the others in that it generates a keycode only when it is pushed
down, never when it is released. However, the up/down bit is still used. When pushing the Caps
Lock key turns on the Caps Lock LED, the up/down bit will be 0; when pushing Caps Lock shuts
off the LED, the up/down bit will be 1.

"Out-of-Sync" Condition

Noise or other glitches may cause the keyboard to get out of sync with the computer. This means
that the keyboard is finished transmitting a code, but the computer is somewhere in the middle of
receiving it.

If this happens, the keyboard will not receive its handshake pulse at the end of its transmission. If
the handshake pulse does not arrive within 143 ms of the last clock of the transmission, the
keyboard will assume that the computer is still waiting for the rest of the transmission and is
therefore out of sync. The keyboard will then attempt to restore sync by going into "resync
mode.'' In this mode, the keyboard clocks out a 1 and waits for a handshake pulse. If none
arrives within 143 ms, it clocks out another 1 and waits again. This process will continue until a
handshake pulse arrives.

Once sync is restored, the keyboard will have clocked a garbage character into the computer.
That is why the key-up/key-down flag is always transmitted last. Since the keyboard clocks out
1 's to restore sync, the garbage character thus transmitted will appear as a key release, which is
less dangerous than a key hit.

Whenever the keyboard detects that it has lost sync, it will assume that the computer failed to
receive the keycode that it had been trying to transmit. Since the computer is unable to detect lost
sync, it is the keyboard's responsibility to inform the computer of the disaster. It does this by
transmitting a "lost sync" code (value $F9 = 11111001) to the computer. Then it retransmits the
code that had been garbled.

About Lost Sync. The only reason to transmit the "lost sync" code to the computer
is to alert the software that something may be screwed up. The "lost sync" code does
not help the recovery process, because the garbage key code can't be deleted, and the
correct key code could simply be retransmitted without telling the computer that there
was an error in the previous one.

Appendix G 359

Power-Up Sequence

There are two possible ways for the keyboard to be powered up under normal circumstances: <1>
the computer can be turned on with the keyboard plugged in, or <2> the keyboard can be plugged
into an already "on" computer. The keyboard and computer must handle either case without
causing any upset.

The first thing the keyboard does on power-up is to perform a self-test. This involves a ROM
checksum test, simple RAM test, and watchdog timer test. Whenever the keyboard is powered up
(or restarted -- see below), it must not transmit anything until it has achieved synchronization
with the computer. The way it does this is by slowly clocking out 1 bits, as described above, until
it receives a handshake pulse.

If the keyboard is plugged in before power-up, the keyboard may continue this process for several
minutes as the computer struggles to boot up and get running. The keyboard must continue
clocking out 1s for however long is necessary, until it receives its handshake.

If the keyboard is plugged in after power-up, no more than eight clocks will be needed to achieve
sync. In this case, however, the computer may be in any state imaginable but must not be
adversely affected by the garbage character it will receive. Again, because it receives a key
release, the damage should be minimal. The keyboard driver must anticipate this happening and
handle it, as should any application that uses raw keycodes.

Warning: The keyboard must not transmit a "lost sync" code after re-synchronizing
due to a power-up or restart; only after re-synchronizing due to a handshake time-out.

Once the keyboard and computer are in sync, the keyboard must inform the computer of the
results of the self-test. If the self-test failed for any reason, a '' selftest failed'' code (value $FC =
11111100) is transmitted (the keyboard does not wait for a handshake pulse after sending the
'' selftest failed'' code). After this, the keyboard processor goes into a loop in which it blinks the
Caps Lock LED to inform the user of the failure. The blinks are coded as bursts of one, two,
three, or four blinks, approximately one burst per second:

One blink ROM checksum failure.
Two blinks RAM test failed.
Three blinks Watchdog timer test failed.
Four blinks A short exists between two row lines or one of

the seven special keys (not implemented).

If the self-test succeeds, then the keyboard will proceed to transmit any keys that are currently
down. First, it sends an ''initiate power-up key stream'' code (value $FD = 11111101), followed
by the key codes of all depressed keys (with keyup/down set to "down" for each key). After all
keys are sent (usually there won't be any at all), a "terminate key stream" code (value $FE=
11111110) is sent. Finally, the Caps Lock LED is shut off. This marks the end of the start-up
sequence, and normal processing commences.

360 Amiga Hardware Reference Manual

The usual sequence of events will therefore be: power-up; synchronize; transmit ''initiate
power-up key stream'' ($FD); transmit ''terminate key stream'' ($FE).

Reset Warning

About Reset Warning. This feature is available on some A 1000 and A2000
keyboards. You cannot rely on this feature for all Amigas.

The keyboard has the additional task of resetting the computer on the command of the user. The
user initiates Reset Warning by simultaneously pressing the Ctrl key and the two Amiga keys.

The keyboard responds to this input by syncing up any pending transmit operations. The
keyboard then sends a "reset warning" to the Amiga. This action alerts the Amiga software to
finish up any pending operations (such as disk DMA) and prepare for reset.

A specific sequence of operations ensure that the Amiga is in a state where it can respond to the
reset warning. The keyboard sends two actual "reset warning" keycodes. The Amiga must
handshake to the first code like any normal keystroke, else the keyboard goes directly to Hard
Reset. On the second "reset warning" code the Amiga must drive KDAT low within 250
milliseconds, else the keyboard goes directly to Hard Reset. If the all the tests are passed, the
Amiga has 10 full seconds to do emergency processing. When the Amiga pulls KDA T high
again, the keyboard finally asserts hard reset.

If the Amiga fails to pull KDAT high within 10 seconds, Hard Reset is asserted anyway.

Hard Reset

About Hard Reset. Hard Reset happens after Reset Warning. Valid for all
keyboards except the Amiga 500.

The keyboard Hard Resets the Amiga by pulling KCLK low and starting a 500 millisecond timer.
When one or more of the keys is released and 500 milliseconds have passed, the keyboard will
release KCLK. 500 milliseconds is the minimum time KCLK must be held low. The maximum
KCLK time depends on how long the user holds the three reset keys down. Circuitry on the
Amiga motherboard detects the 500 millisecond KCLK pulse.

After releasing KCLK, the keyboard jumps to its start-up code (internal RESET). This will
initialize the keyboard in the same way as cold power-on.

NOTE: The keyboard must resend the ''powerup key stream''!

Appendix G 361

Matrix Table

Row 5 Row 4 Row 3 Row 2 Row 1 Row 0
Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2)

+-------+-------+-------+-------+-------+-------+
15 I (spare) I (spare) I (spare) I (spare) I (spare) I (spare) I

(PD. 7) I I I I I I I
I (OE) I (lC) I (2C) I (47) I (48) I (49) I
+-------+-------+-------+-------+-------+-------+

14 I * I<SHIFT>I CAPS I TAB I I ESC I
(PD. 6) I note 1 I note 2 I LOCK I I I I

I (50) I (30) I (62) I (42) I (00) I (45) I
+-------+-------+-------+-------+-------+-------+

13 I + I Z I A I Q I I (I
(P0.5) lnote 1 I I I I 1 lnote 1 I

I (5E) I (31) I (20) I (10) I (01) I (SA) I
+-------+-------+-------+-------+-------+-------+

12 I 9 I X I s I W I @ Fl I
(PO. 4) I note 3 I I I I 2 I

I (3F) I (32) I (21) I (11) I (02) (50) I
+-------+-------+-------+-------+-------+-------+

11 I 6 I c I o I E I t I F2 I
(PO. 3) I note 3 I I I I 3 I I

I (2F) I (33) I (22) I (12) I (03) I (51) I
+-------+-------+-------+-------+-------+-------+

10 I 3 I V I F I R I S I F3 I
(PO. 2) I note 3 I I I I 4 I I

I (lF) I (34) I (23) I (13) I (04) I (52) I
+-------+-------+-------+-------+-------+-------+

9 I I B I G I T I % I F4 I
(PO. 1) I note 3 I I I I 5 I I

I (3C) I (35) I (24) I (14) I (05) I (53) I
+-------+-------+-------+-------+-------+-------+

8 I 8 I N I H I Y I I FS I
(PO. 0) I note 3 I I I I 6 I I

I (3E) I (36) I (25) I (15) I (06) I (54) I
+-------+-------+-------+-------+-------+-------+

7 15 I M I J I u I & I) I
(PC.7) lnote 3 I I I I 7 lnote 1 I

I (2E) I (37) I (26) I (16) I (07) I (5B) I
+-------+-------+-------+-------+-------+-------+

6 I 2 I < I K I I I * I F6 I
(PC . 6) I note 3 I I I I 8 I I

I (lE) I (38) I (27) I (17) I (08) I (55) I
+-------+-------+-------+-------+-------+-------+

5 I ENTER I > I L I 0 I (I I I
(PC. 5) I note 3 I I I I 9 I note 1 I

I (43) I (39) I (28) I (18) I (09) I (5C) I
+-------+-------+-------+-------+-------+-------+

362 Amiga Hardware Reference Manual

Row 5 Row 4 Row 3 Row 2 Row 1 Row 0
Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2)

+-------+-------+-------+-------+-------+-------+
4 I 7 I ? I I P I) I F7 I

(PC. 4) I note 3 I I I I I 0 I I
I (3D) I (3A) I (29) I (19) I (OA) I (56) I
+-------+-------+-------+-------+-------+-------+

3 I 4 I (spare) I I { I I FS I
(PC. 3) I note 3 I I I [I I I

I (2D) I (3B) I (2A) I (lA) I (OB) I (57) I
+-------+-------+-------+-------+-------+-------+

2 I 1 I SPACE I <RET> I } I + I F9 I
(PC.2) lnote 3 I BAR lnote 2 I] I I I

I (lD) I (40) I (2B) I (lB) I (OC) I (58) I
+-------+-------+-------+-------+-------+-------+

1 I 0 I BACK I DEL IRETURN I I I FlO I
(PC. 1) I note 3 I SPACE I I I \ I I

I (OF) I (41) I (46) I (44) I (OD) I (59) I
+-------+-------+-------+-------+-------+-------+

0 I I CURS I CURS I CURS I CURS I HELP I
(PC.O) lnote 3 I DOWN I RIGHT I LEFT I UP I I

I (4A) I (4D) I (4E) I (4F) I (4C) I (SF) I
+-------+-------+-------+-------+-------+-------+

note 1: A500, A2000 and A3000 keyboards only (numeric pad
note 2: International keyboards only (these keys are cutouts of the

larger key on the US ASCII version.) The key that generates
$30 is cut out of the left Shift key. Key $2B is cut out of
return. These keys are labeled with country-specific markings.

note 3: Numeric pad.

The following table shows which keys are independently readable. These keys never generate
ghosts or phantoms.

(Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) (Bit 1) (Bit 0)
+-------+-------+-------+-------+-------+-------+-------+
I LEFT I LEFT I LEFT I CTRL I RIGHT I RIGHT I RIGHT I
I AMIGA I ALT I SHIFT I I AMIGA I ALT I SHIFT I
I (66) I (64) I (60) I (63) I (67) I (65) I (61) I
+-------+-------+-------+-------+-------+-------+-------+

Appendix G 363

~~--~---

Special Codes

The special codes that the keyboard uses to communicate with the main unit are summarized here.

About the special codes. The special codes are 8-bit numbers; there is no up/down
flag associated with them. However, the transmission bit order is the same as
previously described.

Code Name Meaning

78 Reset warning. Ctrl-Amiga-Amiga has been hit -
computer will be reset in 10 seconds. (see text)

F9 Last key code bad, next code is the same code
retransmitted (used when keyboard and main unit
get out of sync) .

FA Keyboard output buffer overflow
FB Unused (was controller failure)
FC Keyboard selftest failed
FD Initiate power-up key stream (keys pressed at powerup)
FE Terminate power-up key stream
FF Unused (was interrupt)

364 Amiga Hardware Reference Manual

--

appendix H
EXTERNAL DISK CONNECTOR
INTERFACE

General

The 23-pin female connector at the rear of the main computer unit is used to interface to and
control devices that generate and receive MFM data. This interface can be reached either as a
resource or under the control of a driver. The following pages describe the interface in both
cases.

Summary Table
Pin# Name Note

1 RDY- 1/0 ID and ready
2 DKRD- I MFM input
3 GRND G
4 GRND G
5 GRND G
6 GRND G
7 GRND G
8 MTRXD- 0 Motor control.
9 SEL2B- 0* Select drive 2
10 DRESB- 0 Reset
11 CHNG- 1/0 Disk changed

Appendix H 367

12 +5v PWR 540 rnA average 870 rnA surge
13 SIDEB- 0 Side 1 iflow
14 WRPRO- 1/0 Write protect
15 TKO- I/0 Track 0
16 DKWEB- 0 Write gate
17 DKWDB- 0 Write data
18 STEPB- 0 Step
19 DIRB 0 Direction (high is out)
20 SEL3B- 0* Select drive 3
21 SELlB- 0* Select drive 1
22 INDEX- 1/0 Index
23 +12v PWR 120 rnA average 370 rnA surge

Key to Class:

G ground, note connector shield grounded.

input pulled up to 5v by 1 K ohm.

1/0 input in driver, but bidirectional input (1 k pull up)

0 output pulled though 1 K to 5v

0* output, separates resources.

PWR available for external use, but currently used up by external drive.

Signals When Driving a Disk

The following describes the interface under driver control.

SELlB-, SEL2B-, SEL3B-

TKO-

ROY-

Selcct lines for the three external disk drives active low.

A selected drive pulls this signal low whenever its read-write head is on track 00.

When a disk drive's motor is on, this line indicates the selected disk is installed and
rotating at speed. The driver ignores this signal. When the motor is off this is used as a ID
data line. See below.

368 Amiga Hardware Reference Manual

WPRO- (Pin #14)

A selected drive pulls this signal low whenever it has a write-protected diskette installed.

INDEX- (Pin #22)

A selected drive pulses this signal low once for each revolution of its motor.

SIDEB- (Pin #13)

The system drives this signal to all disk drives-low for side 1, high for side 0.

STEPB- (Pin #18)

Pulsed to step the selected drive's head.

DIRB (Pin #19)

The system drives this signal high or low to tell the selected drive which way to step when
the STEPB- pulse arrives. Low means step in (to higher-numbered track); high means step
out.

DKRD- (Pin #2)

A selected drive will put out read data on this line.

DKWDB- (Pin #17)

The system drives write data to all disks via this signal. The data is only written when
DKWEB- is active (low). Data is written only to selected drives.

DKWEB- (Pin #16)

This signal causes a selected drive to start writing data (provided by DKWDB-) onto the
disk.

CHNG- (Pin #11)

A selected drive will drive this signal low whenever its internal ''disk change'' latch is set.
This latch is set when the drive is first powered on, or whenever there is no diskette in the
drive. To reset the latch, the system must select the drive, and step the head. Of course, the
latch will not reset if there is no diskette installed.

MTRXD- (Pin #8)

This is the motor control line for all four disk drives. When the system wants to tum on a
disk drive motor, it first deselects the drive (if selected), pulls MTRXD- low, and selects
the drive. To tum the motor off, the system deselects the drive, pulls MTRXD- high, and
selects the drive. The system will always set MTRXD- at least 1.4 microseconds before it
selects the drive, and will not change MTRXD- for at least 1.4 microseconds after selecting
the drive. All external drives must have logic equivalent to a D ftip-flop, whose D input is
the MTRXD- signal, and whose clock input is activated by the off-to-on (high-to-low)
transition of its SELxB- signal. As noted above, both the setup and hold times of

Appendix H 369

MTRXD- with respect to SELxB- will always be at least 1.4 microseconds. The output of
this flip-flop controls the disk drive motor. Thus, the system can control all four motors
using only one signal on the cable (MTRXD-).

DRESB- (Pin #10)

This signal is a buffered version of the system reset signal. Three things can make it go
active (low):

o System power-up (DRESB- will go low for approximately one second);

o System CPU executes a RESET instruction (DRESB- will go low for approximately
17 microseconds);

o Hard reset from keyboard (lasts as long as keyboard reset is held down).

External disk drives should respond to DRESB- by shutting off their motor flip-flops and
write protecting themselves.

A level of 3.75v or below on the 5v+ requires external disks to write-protect and reset the motor
on line.

Device I.D.

This interface supports a method of establishing the type of disk(s) attached. The I. D. sequence is
as follows.

1. Drive MTRXD- low: Tum on the disk drive motor.

2. Drive SELxB- low: Activate drive select x, where x is the number of the selected drive.

3. Drive SELxB- high: Deactivate drive select x ..

4. Drive MTRXD- high: Tum off disk drive motor.

5. Drive SELxB- low: Activate drive select x.

6. Drive SELxB- high: Deactivate drive select x.

7. Drive SELxB-low: Activate drive select x.

8. Read and save state ofRDY.

9. Drive SELxB- high: Deactivate drive select x.

370 Amiga Hardware Reference Manual

Repeat steps 7 through 9, 31 more times for a total of 32 iterations, in order to read 32 bits of
data. The most significant bit is read first.

Steps 1 through 4 in the algorithm above tum on and off the disk drive motor. This initializes the
serial shift register. After initialization, the SELxB signal is driven (first active then) inactive as
in steps 5 and 6. Keep in mind that the SELxB signal is active-low.

Steps 7, 8 and 9 form a loop where (7) the SELxB signal is driven active (low), (8) the serial
input data is read on RDY (pin 1) and (9) the SELxB signal is again driven high (inactive). This
loop is performed 32 times, once for each of the bits in the input stream that comprise the device
I. D.

Convert the 32 values ofRDY- into a two 16-bit word. The most significant bit is the first value
and so on. This 32-bit quantity is the device I.D ..

The following I.D.s are defined:

0000 0000 0000 0000 0000 0000 0000 0000
1111 1111 1111 1111 1111 1111 1111 1111
1010 1010 1010 1010 1010 1010 1010 1010
0101 0101 0101 0101 0101 0101 0101 0101

1 ()()() 0000 0000 0000 1000 0000 0000 0000
0111 1111 1111 1111 0111 1111 1111 1111
0000 1111 xxxx xxxx 0000 1111 xxxx xxxx
1111 0000 xxxx xxxx 1111 0000 xxxx xxxx
xxxx 0000 0000 0000 xxxx 0000 0000 0000
xxxx 1111 1111 1111 xxxx 1111 1111 1111
0011 0011 0011 0011 0011 0011 0011 0011
1100 1100 1100 1100 1100 1100 1100 1100

Reserved ($0000 0000)
Amiga standard 3.25($FFFF FFFF)
Reserved ($AAAA AAAA)
48 TPI double-density,
double-sided ($5555 5555)
Reserved ($8000 8000)
Reserved ($7FFF 7FFF)
Available for users ($0Fxx OFxx)
Extension reserved ($F0xx FOxx)
Reserved ($x000 xOOO)
Reserved ($x000 xOOO)
Reserved ($3333 3333)
Reserved ($CCCC CCCC)

Appendix H 371

appendix I
HARDWARE EXAMPLE
INCLUDE FILE

This appendix contains an include file that maps the hardware register names, given in Appendix
A and Appendix B, to names that can be resolved by the standard include files. Use of these
names in code sections of this manual places the emphasis on what the code is doing, rather than
getting bogged down in include file names.

All code examples in this manual reference the names given in this file.

IFND
HARDWARE HW EXAMPLES I SET

HARDWARE HW EXAMPLES I
1

**
**
**
**
**
**

Filename: hardware/hw_examples.i
$Release: 1.3 $

(C) Copyright 1985,1986,1987,1988,1989 Commodore-Amiga, Inc.
All Rights Reserved

**

IFND HARDWARE CUSTOM I
INCLUDE "hardware/custom.i"
ENDC

*
*
*
*
*
*

This include file is designed to be used in conjunction with the hardware
manual examples. This file defines the register names based on the
hardware/custom.i definition file. There is no C-Language version of this
file.

* * This instruction for the copper will cause it to wait forever since
* the wait command described in it will never happen.

*
COPPER HALT equ $FFFFFFFE

Appendix I 373

*

*
* This is the offset in the 680x0 address space to the custom chip registers
* It is the same as custom when linking with AMIGA.lib

*
CUSTOM equ $DFFOOO

*
* Various control registers

*
DMACONR
VPOSR
VHPOSR
JOYODAT
JOYlDAT
CLXDAT
ADKCONR
POTODAT
POTlDAT
POTINP
SERDATR
INTENAR
INTREQR
REFPTR
VPOSW
VHPOSW
SERDAT
SERPER
POT GO
JOYTEST
STREQU
STRVBL
STRHOR
STRLONG
DIWSTRT
DIWSTOP
DDFSTRT
DDFSTOP
DMACON
INTENA
INTREQ

*

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

* Disk control registers
*
DSKBYTR equ
DSKPT equ
DSKPTH equ
DSKPTL equ
DSKLEN equ
DSKDAT equ
DSKSYNC equ
*
* Blitter registers
*
BLTCONO equ
BLTCONl equ
BLTAFWM equ
BLTALWM equ
BLTCPT equ
BLTCPTH equ
BLTCPTL equ

dmaconr
vposr
vhposr
joyOdat
joyldat
clxdat
adkconr
potOdat
potldat
potinp
serdatr
intenar
intreqr
refptr
vposw
vhposw
serdat
serper
pot go
joytest
strequ
strvbl
strhor
strlong
diwstrt
diwstop
ddfstrt
ddfstop
dmacon
intena
intreq

dskbytr
dskpt
dskpt
dskpt+$02
dsklen
dskdat
dsksync

bltconO
bltconl
bltafwm
bltalwm
bltcpt
bltcpt
bltcpt+$02

374 Amiga Hardware Reference Manual

Just capitalization ...

Just capitalization ...

Just capitalization ...

BLTBPT equ bltbpt
BLTBPTH equ bltbpt
BLTBPTL equ bltbpt+$02
BLTAPT equ bltapt "
BLTAPTH equ bltapt
BLTAPTL equ bltapt+$02
BLTDPT equ bltdpt
BLTDPTH equ bltdpt
BLTDPTL equ bltdpt+$02
BLTSIZE equ bltsize
BLTCMOD equ bltcmod
BLTBMOD equ bltbmod
BLTAMOD equ bltamod
BLTDMOD equ bltdmod
BLTCDAT equ bltcdat
BLTBDAT equ bltbdat
BLTADAT equ bltadat
BLTDDAT equ bltddat

* * Copper control registers

*
COP CON equ copcon Just capitalization ...
COP INS equ cop ins
COPJMPl equ copjmpl
COPJMP2 equ copjmp2
COPlLC equ copllc "
COPlLCH equ copllc
COPlLCL equ copllc+$02
COP2LC equ cop2lc
COP2LCH equ cop2lc
COP2LCL equ cop2lc+$02

*
* * Audio channel registers

*
ADKCON equ adkcon Just capitalization ...

AUDOLC equ au dO
AUDOLCH equ au dO
AUDOLCL equ aud0+$02
AUDOLEN equ aud0+$04
AUDOPER equ aud0+$06
AUDOVOL equ aud0+$08
AUDODAT equ aud0+$0A

AUDlLC equ audl
AUDlLCH equ audl
AUDlLCL equ audl+$02
AUDlLEN equ audl+$04
AUDlPER equ audl+$06
AUDlVOL equ audl+$08
AUDlDAT equ audl+$0A

AUD2LC equ aud2
AUD2LCH equ aud2
AUD2LCL equ aud2+$02
AUD2LEN equ aud2+$04
AUD2PER equ aud2+$06
AUD2VOL equ aud2+$08
AUD2DAT equ aud2+$0A

Appendix I 375

AUD3LC equ aud3
AUD3LCH equ aud3
AUD3LCL equ aud3+$02
AUD3LEN equ aud3+$04
AUD3PER equ aud3+$06
AUD3VOL equ aud3+$08
AUD3DAT equ aud3+$0A

*
*
* The bitplane registers

*
BPL1PT equ bplpt+$00
BPL1PTH equ bplpt+$00
BPL1PTL equ bplpt+$02
BPL2PT equ bplpt+$04
BPL2PTH equ bplpt+$04
BPL2PTL equ bplpt+$06
BPL3PT equ bplpt+$08
BPL3PTH equ bplpt+$08
BPL3PTL equ bplpt+$0A
BPL4PT equ bplpt+$0C
BPL4PTH equ bplpt+$0C
BPL4PTL equ bplpt+$0E
BPLSPT equ bplpt+$10
BPLSPTH equ bplpt+$10
BPLSPTL equ bplpt+$12
BPL6PT equ bplpt+$14
BPL6PTH equ bplpt+$14
BPL6PTL equ bplpt+$16

BPLCONO equ bplconO Just capitalization ...
BPLCON1 equ bplcon1 "
BPLCON2 equ bplcon2
BPL1MOD equ bpllmod
BPL2MOD equ bpl2mod

DPL1DATA equ bpldat+$00
DPL2DATA equ bpldat+$02
DPL3DATA equ bpldat+$04
DPL4DATA equ bpldat+$06
DPLSDATA equ bpldat+$08
DPL6DATA equ bpldat+$0A

*
*
* Sprite control registers

*
SPROPT equ sprpt+$00
SPROPTH equ SPROPT+$00
SPROPTL equ SPROPT+$02
SPR1PT equ sprpt+$04
SPR1PTH equ SPR1PT+$00
SPR1PTL equ SPR1PT+$02
SPR2PT equ sprpt+$08
SPR2PTH equ SPR2PT+$00
SPR2PTL equ SPR2PT+$02
SPR3PT equ sprpt+$0C
SPR3PTH equ SPR3PT+$00
SPR3PTL equ SPR3PT+$02
SPR4PT equ sprpt+$10
SPR4PTH equ SPR4PT+$00
SPR4PTL equ SPR4PT+$02

376 Amiga Hardware Reference Manual

SPRSPT equ sprpt+$14
SPRSPTH equ SPRSPT+$00
SPRSPTL equ SPRSPT+$02
SPR6PT equ sprpt+$18
SPR6PTH equ SPR6PT+$00
SPR6PTL equ SPR6PT+$02
SPR7PT equ sprpt+$1C
SPR7PTH equ SPR7PT+$00
SPR7PTL equ SPR7PT+$02

Note: SPRxDATB is defined as being +$06 from SPRxPOS.
sd datab should be defined as $06, however, in the 1.3 assembler
include file hardware/custom.i it is incorrectly defined as $08.

SPROPOS
SPROCTL
SPRODATA
SPRODATB

SPRlPOS
SPRlCTL
SPR1DATA
SPR1DATB

SPR2POS
SPR2CTL
SPR2DATA
SPR2DATB

SPR3POS
SPR3CTL
SPR3DATA
SPR3DATB

SPR4POS
SPR4CTL
SPR4DATA
SPR4DATB

SPRSPOS
SPRSCTL
SPRSDATA
SPRSDATB

SPR6POS
SPR6CTL
SPR6DATA
SPR6DATB

SPR7POS
SPR7CTL
SPR7DATA
SPR7DATB

*

equ
equ
equ
equ

equ
equ
equ
equ

equ
equ
equ
equ

equ
equ
equ
equ

equ
equ
equ
equ

equ
equ
equ
equ

equ
equ
equ
equ

equ
equ
equ
equ

*Color registers ...

*
COLOROO
COLOR01
COLOR02
COLOR03
COLOR04

equ
equ
equ
equ
equ

spr+$00
SPROPOS+sd ctl
SPROPOS+sd dataa
SPROPOS+$06 should use sd datab

spr+$08
SPR1POS+sd ctl
SPR1POS+sd dataa
SPR1POS+$0G should use sd datab

spr+$10
SPR2POS+sd ctl
SPR2POS+sd dataa
SPR2POS+$06 should use sd datab

spr+$18
SPR3POS+sd ctl
SPR3POS+sd dataa
SPR3POS+$06 should use sd datab

spr+$20
SPR4POS+sd ctl
SPR4POS+sd dataa
SPR4POS+$0G should use sd datab

spr+$28
SPRSPOS+sd ctl
SPRSPOS+sd dataa
SPRSPOS+$06 should use sd datab

spr+$30
SPR6POS+sd ctl
SPR6POS+sd dataa
SPR6POS+$06 should use sd datab

spr+$38
SPR7POS+sd ctl
SPR7POS+sd dataa
SPR7POS+$0G should use sd datab

color+$00
color+$02
color+$04
color+$06
color+$08

Appendix I 377

COLOR OS equ color+$0A
COLOR06 equ color+$0C
COLOR07 equ color+$0E
COLOR08 equ color+$10
COLOR09 equ color+$12
COLOR10 equ color+$14
COLORll equ color+$16
COLOR12 equ color+$18
COLOR13 equ color+$1A
COLOR14 equ color+$1C
COLOR15 equ color+$1E
COLOR16 equ color+$20
COLOR17 equ color+$22
COLOR18 equ color+$24
COLOR19 equ color+$26
COLOR20 equ color+$28
COLOR21 equ color+$2A
COLOR22 equ color+$2C
COLOR23 equ color+$2E
COLOR24 equ color+$30
COLOR25 equ color+$32
COLOR26 equ color+$34
COLOR27 equ color+$36
COLOR28 equ color+$38
COLOR29 equ color+$3A
COLOR30 equ color+$3C
COLOR31 equ color+$3E

**
**

ENDC HARDWARE HW EXAMPLES I

378 Amiga Hardware Reference Manual

appendix J
CUSTOM CHIP PIN
ALLOCATION LIST

This section gives the pin assignments used by the Amiga's custom chip set.

NOTE: * Means an active low signal.

ORIGINAL AGNUS PIN ASSIGNMENT

PIN # DESIGNATION FUNCTION DEFINITION
----------- ------------------ ----------

01-09 D8-DO Data bus lines 8 to 0 I/0
10 vee +5 Volt I
11 RES* System reset I
12 INT3* Interrupt level 3 0
13 DMAL DMA request line I
14 BLS* Slitter slowdown I
15 DBR* Data bus request 0
16 ARW* Agnus RAM write 0
17-24 RGA8-RGA1 Register address bus 8-1 I/0
25 CCK Color clock I
26 CCKQ Color clock delay I
27 vss Ground I
28-36 DRAO-DRA8 DRAM address bus 0 to 8 0
37 LP* Light pen input I
38 VSY* Vertical sync I/0
39 CSY* Composite sync 0
40 HSY* Horizontal sync I/0
41 vss Ground I
42-48 D15-D9 Data bus lines 15 to 9 I/0

Appendix J 379

DENISE PIN ASSIGNMENT

PIN # DESIGNATION FUNCTION DEFINITION
----------- ------------------ ----------

01-07 D6-DO Data bus lines 6 to 0 I/0
08 M1H Mouse 1 horizontal I
09 MOH Mouse 0 horizontal I
10-17 RGA8-RGA1 Register address bus 8-1 I
18 BURST* Color burst 0
19 vee +5 Volt I
20-23 RO-R3 Video red bits 0-3 0
24-27 BO-B3 Video blue bits 0-3 0
28-31 GO-G3 Video green bits 0-3 0
32 /CSYNC Composite sync I
33 ZD* Background indicator 0
34 N/C Not connected N/C (old Denise)

CDAC CDAC clock I (ECS Denise)
35 7M 7.15909 MHZ I
36 CCK Color clock I
37 vss Ground I
38 MOV Mouse 0 vertical I
39 M1V Mouse 1 vertical I
40-48 D15-D7 Data bus lines 15 to 7 I/0

PAULA PIN ASSIGNMENT

PIN # DESIGNATION FUNCTION DEFINITION
----------- ------------------ ----------

01-07 D8-D2 Data bus lines 8 to 2 I/0
08 VSS Ground I
09-10 D1-DO Data bus lines 1 and 0 I/0
11 RES* System reset I
12 DMAL DMA request line 0
13-15 IPLO*-IPL2 Interrupt lines 0-2 0
16 INT2* Interrupt level 2 I
17 INT3* Interrupt level 3 I
18 INT6* Interrupt level 6 I
19-26 RGA8-RGA1 Register address bus 8-1 I
27 vee +5 Volt I
28 CCK Color clock I
29 CCKQ Color clock delay I
30 AUDB Right audio 0
31 AUDA Left audio 0
32 POT OX Pot ox I/0
33 POTOY Pot OY I/0
34 VSSANA Analog ground I
35 POT1X Pot 1X I/0
36 POT1Y Pot 1Y I/0
37 DKRD* Disk read data I
38 DKWD* Disk write data 0
39 DKWE Disk write enable 0
40 TXD Serial transmit data 0
41 RXD Serial receive data I
42-48 D15-D9 Data bus lines 15 to 9 I/0

380 Amiga Hardware Reference Manual

FAT AGNUS PIN ASSIGNMENT

PIN # DESIGNATION FUNCTION DEFINITION
----------- ------------------ ----------

01-14 RD15-RD2 Register bus lines 15 to 2 I/0
17 INT3* Blitter ready interrupt 0
18 DMAL Request audio/disk DMA I
18 RD1 Register bus line 1 I/0
18 RST* Reset I
19 BLS* Blitter slowdown I
20 DBR* Data bus request 0
21 RRW DRAM Write/Read 0
22 PRW Processor Write/Read I
23 RGEN* RG Enable I
24 AS* Address Strobe I
25 RAMEN* RAM Enable I
26-33 RGA8-RGA1 Register address bus 8-1 0
34 28MHZ Master clock I
35 XCLK Alternate master clock I
36 XCLKEN* Master clock enable I
37 CDAC* Inverted shifted 7MHZ elk 0
38 7MHZ 28MHZ elk divided by four 0
39 CCKQ Color clock delay 0
40 CCK Color clock 0
41 TEST Test - access registers I (old Fat Agnus)

NTSC/PAL Select video environment I (ECS Fat Agnus)
43-51 MAO-MAS Output bus lines 0 to 8 0
52 LDS* Lower data strobe I
53 UDS* Upper data strobe I
54 CASL* Column addr strobe lower 0
55 CASU* Column addr strobe upper 0
56 RAS1* Row address strobe one 0
57 RASO* Row address strobe zero 0
59-77 A19-A1 Address bus lines 19 to 1 I
78 LP* Light pen 0
79 VSY* Vertical synch I/0
80 CSY* Composite video synch 0
81 HSY* Horizontal synch I/0
84 RDO Register bus line 0 I/0

Appendix J 381

appendix K
ZORRO EXPANSION BUS

This appendix describes the complete Zorro III bus, first implemented in the Amiga 3000
computer. The Zorro III bus is a perfonnance 32-bit expansion bus that is also upward
compatible with the Zorro II bus (Amiga 2000 expansion bus). The main intent of the Zorro III
bus is to allow fast 32-bit peripherals and memory devices to be added to a high perfonnance
Amiga, such as the Amiga 3000, while at the same time allowing standard Zorro II devices to be
used wherever they make sense in such a system. This compatibility also insures that the Amiga
3000 will have a number of hardware and software compatible expansion devices available upon
introduction, and that Amiga 2000 owners will be able to take their expansion card investment
along with them should they migrate to a higher perfonnance Amiga.

INTENDED AUDIENCE

This appendix was written primarily for hardware engineers interested in designing Plug-In Cards
for the Zorro III expansion bus. While it may occasionally be of use to software engineers
interfacing to such Zorro III PICs, Amiga system software provides an interface layer
(expansion.library in the Amiga OS) which manages the needs of most card-level software. A
reasonable level of microcomputer knowledge is prerequisite to get much meaning out of these
pages. A good understanding of the Motorola 680x0 processors will be quite useful, as will be an
understanding of the Zorro II expansion bus used on earlier Amiga computers such as the Amiga
2000.

AMIGA BUS HISTORY

The original Amiga computer, the Amiga 1000, was introduced in 1985. While it had no built-in
standard for expandability, the capability for some fonn of expansion was considered extremely
important; personal computer history up to that date had shown several times that an open
hardware expansion capability was often critical to a personal computer's success and to its
capability to adapt to new or unusual applications. The A 1000 was designed with a connector

Zorro Expansion Bus 383

giving access to the internal 68000 bus and a few other system signals. Shortly after introduction,
the formal expansion specification for a card chassis that would connect to the A 1000 was
published. This bus became commonly known as the Zorro bus~ While the backplane
specification was very easy to implement with 1985 PAL technology based on the existing 68000
signals, the specification did incorporate a number of advanced features. Far more sophisticated
than the IBM-XT/AT and Apple II buses in common use at the time, the Zorro bus allowed any
slot to master the bus, and it linked expansion cards with the system software. Addressing
jumpers were eliminated, the card's address instead being assigned by software, and cards could
easily be identified by software and linked with appropriate driver programs, all with a minimum
of user intervention.

With the introduction of the Amiga 2000 system, the Zorro bus was changed slightly. Additional
discrete interrupt lines were added, replacing the encoded lines that couldn't easily be used by any
bus resident device. As it turns out, these additional encoded lines weren't any more useful, as
they couldn't be disabled by software, and as such, they're no longer considered an official part of
the Zorro II bus specification (they are supported as part of Zorro III). Finally, the form factor
was changed to match that of the IBM PC-AT card, acting as both a cost reduction and allowing
the Zorro II bus to offer the PC-AT bus as one optional secondary bus extension. This modified
specification became commonly known as the Zorro II bus, and it's the Amiga bus standard that's
been in use for most of the Amiga's life. And it's a bus standard that will continue to be
important.

THE ZORRO Ill RATIONALE

With the creation of the Amiga 3000, it became clear that the Zorro II bus would not be adequate
to support all of that system's needs. The Zorro II bus would continue to be quite useful, as the
current Amiga expansion standard, and so it would have to be supported. A few unused pins on
the Zorro II bus and the option of a bus controller custom LSI, gave rise to the Zorro III design,
which supports the following features:

o Compatibility with all Zorro II devices.
o Full 32-bit address path for new devices.
o Full 32-bit data path for new devices.
o Bus speed independent of host system CPU speed.
o High speed bus block transfer mode.
o Bus locking for multiprocessor support.
o Cache disable for simple cache support.
o Fair arbitration for all bus masters.
o Cycle-by-cycle bus arbitration mode.
o High speed interrupt mode.

1 The original "Zorro" name comes from the code name of one of the AlOOO prototype boards. The "Zorro"
board was the one that followed the "Lorraine," and was the board in the works when much of the expansion
specifications were worked up. Since everyone uses the "Zorro" name, and no one's suggested a better name, we've
stuck with it.

384 Amiga Hardware Reference Manual

Some of the advanced features, such as burst modes, are designed in such a way as to make them
optional; both master and slave arbitrate for them. In addition, it is possible with a bit of extra
cleverness, to design a card that automatically configures itself for either Zorro II or Zorro III
operation, depending on the status of a sensing pin on the bus.

The Zorro III bus is physically based on the same 100-pin single piece connector as the Zorro II
bus. While some bus signals remain unchanged throughout bus operation, other signals change
based on the specific bus mode in effect at any time. The bus is geographically mapped into three
main sections: Zorro II Memory Space, Zorro II 1/0 Space, and Zorro Ill Space. The memory
map in Figure K-1 shows how these three spaces are mapped in the A3000 system. The Zorro II
space is limited to a 16 megabyte region, and since it has DMA access by convention to chip
memory, it is in the original 68000 memory map for any bus implementation. The Zorro III
space can physically be anywhere in 32-bit memory.

The Zorro III bus functions in one of two different major modes, depending on the memory
address on the bus. All bus cycles start with a 32-bit address, since the full 32-bit address is
required for proper cycle typing. If the address is determined to be in Zorro II space, a Zorro II
compatible cycle is initiated, and all responding slave devices are expected to be Zorro II
compatible 16-bit PICs. Should a Zorro III address be detected, the cycle completes when a
Zorro III slave responds or the bus times out, as driven by the motherboard logic. It is very
important that no Zorro III device respond in Zorro III mode to a Zorro II bus access; the two
types of cycles make very different use of many of the expansion bus lines, and serious buffer
contention can result if the cycle types are somehow mixed up. The Zorro III bus of course
started with the Zorro II bus as its necessary base, but the Zorro III bus mechanisms were
designed as much as possible to solve specific needs for high end Amiga systems, rather than
extend any particular Zorro II philosophy when that philosophy no longer made any sense. There
are actually several variations of the basic Zorro III cycle, though they all work on the same
principles. The variations are for optimization of cycle times and for service of interrupt vectors.
But all of this in due time.

Zorro Expansion Bus 385

$8()()()()()()()

$1()()()()()()()

$08000000

$01000000
$00000000

Zorroiii
expansion

space

32-bit memory
expansion

space

A3000
motherboard

space
I

I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I

I
I

I
I

I
I

I

I
I

I

I
I

I

I Motherboard ROM

Zorro_!!_ _1I<.J_

A2000
motherboard
register space

Zorrolll/0
expansion space

Zorroll
memory

expansion space

AmigaChip
memory

Figure K-1: Expansion Memory Map

386 Amiga Hardware Reference Manual

$01000000

$00FOOOOO

$00E80000

$00B80000

$00AOOOOO

$00200000

$00000000

Zarro II Compatibility

The A3000 bus is a rather extensive superset of the A2000 bus design. The compatibility is based
on distinct bus modes, rather than a simple extension to the existing bus mechanisms. Through
the use of an integrated bus controller (the Fat Buster chip), the expansion bus configures itself
differently for the 16-bit A2000-compatible Zorro II modes than the 32-bit Zorro III modes. As a
result, while there are still only 100 pins on the expansion bus, some pins change function
considerably depending on the bus activity that's currently in progress. While the Zorro II modes
of the Zorro III bus arc as compatible as possible with the Zorro II bus specification (especially
the A2000 implementation of this specification), there arc some small differences between the
two expansion buses.

Aside from these differences, in general, it's important to understand the Zorro II bus in order to
understand the Zorro III bus. The general features of the A3000 bus, like autoconfiguration, the
master-slave bus architecture, and the physical attributes come from the Zorro II expansion bus.
Other features of the Zorro III bus address shortcomings of the Zorro II architecture, but Zorro II
has a hand in how some of these shortcomings are solved under Zorro III. Those with a full
understanding of the Zorro II bus will mainly be concerned with the possible bus
incompatibilities listed here.

CHANGES FROM THE A2000 BUS

While much effort has been made to assure that the Zorro II mode of the A3000 bus is as
compatible as possible with the A2000 bus, there are a few points to consider here. Primarily, the
A3000's Zorro II modes are driven with a state machine that emulates the 68000 bus protocol.
This emulation must be based on the published Motorola specifications detailing 68000 bus
behavior. While this has the interesting effect of changing the Zorro II bus from CPUdependent to
CPU independent, there's some margin for trouble. Zorro II PICs also designed to these
specifications should have no trouble in the A3000 bus in most cases. However, anything
designed based on observed 68000 behavior rather than documented 68000 operation is at serious
risk of failing in an A3000 bus, as one might expect. There are also actual documented
differences, which are listed below.

6800 Bus Interface

A major difference between the A3000 expansion bus in Zorro II mode and the A2000 bus is the
absence of the signals NPA and NMA, which comprise the 6800/6502 peripheral support
mechanism that's part of the 68000 bus interface. This mechanism was never a supported part of
the Zorro II specification, however, and it should not be used by any PIC. Any Zorro II PIC that
depends on NPA or NMA will not work in the A3000 bus. It was, in fact, impossible to legally
use this on the A2000 bus. TheE clock is, however, supported on the Zorro III bus, though its
duty cycle may vary in some situations.

Zorro Expansion Bus 387

Bus Memory Mapping and Cache Support

Another change to the Zorro II implementation is that the bus mapping logic works a little
differently. Zorro II address space is broken up into memory and VO address space. Memory
space is the standard 8 megabyte space from $00200000-$009FFFFF. The l/0 address space is
mapped at $00E80000-$00EFFFFF, and a new 1.5 megabyte section (previously reserved for
motherboard devices) from $00A()()(){)()-$00B7FFFF. Zorro II cycles are not generated for non­
Zorro II address space, even for 68000 space resources on the local bus. So, for example, a CPU
access to chip memory would be visible to a Zorro II PIC in an A2000 backplane, but invisible to
that same PIC in an A3000 backplane. Since this extra information on the Zorro II backplane
can't be legally used by any PIC anyway, it should not be used by any existing A2000 PICs.

The reason for the two distinct mapping regions is for cache support of Zorro II PICs. All access
by the local bus5 master to Zorro II memory space results in the local bus cache enable signal
being driven and a full port read (e.g., both bytes) regardless of the actual data transfer size being
requested. A local bus access to Zorro II I/0 space results in the local bus cache disable signal
being driven and the data strobes for reads indicating the requested transfer size. This cache
mapping mechanism was first implemented in the A2630 coprocessor card, so it's not an entirely
new concept.

Bus Synchronization Delays

Due to the asynchronous nature of the local-to-expansion bus interface for Zorro II cycles, extra
wait states may occasionally be added for local to expansion or expansion to local cycles. These
are generally manifested as delays between consecutive cycles, since the bus controller is not
going to require extra waiting during the cycle - things will have already been synchronized at
that point. The synchronization problems get more difficult for Zorro II master access to local
bus slaves, and as a result, wait states here are very common. The actual number of wait states
generated in any case will be based on the particular implementation.

Zarro II Master Access to Local Slaves

The only supported local bus resource that's guaranteed accessible to a Zorro II expansion bus
master as a slave device is chip bus memory. All 1/0 devices are implementation dependent and
not supportable via DMA. Any attempted access to unsupported local bus resources as expansion
slaves will result in an error condition being signaled on both the local and the expansion buses.
Most other local bus resources, such as local bus fast memory, are located outside of Zorro II
space on most systems and obviously not available to Zorro II masters.

5 The local bus, motherboard bus, and CPU bus are the same thing; the immediate 680x0 bus connected directly to

the CPU in an Amiga computer. Current Amiga computers typically support three distinct buses; the expansion bus,
local bus, and chip bus. From the point of view of the expansion bus, the local and chip buses appear as a unified
device which may be master or slave to the expansion bus.

388 Amiga Hardware Reference Manual

Bus Arbitration and Fairness

The Zorro II bus is now arbitrated fairly. The normal slot-based order of precedence is given to
requesting devices, just as in the A2000 implementation. As always, once a bus master assumes
bus mastership, it has the bus for as long as it wants the bus (of course, trouble can result if a
device takes the bus over for too long). Once a master gives up the bus, it will not be granted it
back until all subsequent requests have been serviced.

Bus arbitration at its best will be slightly slower than in the A2000 implementation, due to the
fairness logic, but it is impossible to jam the arbiter with asynchronous bus requests as in the
A2000. The new style arbiter also holds off bus grants while hidden local bus cycles are in
progress, so there's no guarantee of a minimum time between bus request and bus grant specified.

Intelligent Cycle Spacing

In order to permit a free intermix of Zorro II and Zarro III cycles, the bus control logic is capable
of making intelligent decisions when spacing bus cycles. In some cases, a Zorro II cycle has
some component that would naturally extend into a following cycle. The cycle spacing logic
detects such a condition, and refuses to start a new cycle until the current one is complete, even if
this extends beyond the defined bounds of a Zorro II cycle.

For Zorro II PICs that really follow the Zorro II specifications, this should have no effect.
However, any Zorro II PIC that holds signals much beyond the end of a cycle, especially critical
signals like /SLAVE and /DT ACK, will likely incur additional wait states on the Zorro III bus.
This is not intended as a license for making sloppy expansion card designs, just an
acknowledgement that some Zorro II devices may cause a conflict with the faster Zorro III bus
timings. The best approach is to make them work, even with a possible performance penalty.

Bus Drive and Termination

Finally, the Zorro Ill bus uses different bus termination than that in the A2000. The Zorro II
specification didn't specify the termination expected; backplanes were built that didn't even have
termination. The A2000 bus used a circuit consisting of a capacitor in series with a resistor to
ground for most of the bus signals. This has good reflection cancelling properties without
increasing crosstalk (a major concern on the 2-layer A2000 motherboard), but it does slow
operations down measureably.

Zorro Expansion Bus 389

The main reason for the change on the A3000 backplane is to support the faster Zorro III bus
modes. The multi-layer A3000 motherboard permits a reasonably high current bus without undue
crosstalk. The thevenin termination makes switching logic levels start from a midpoint instead of
a rail, especially for a bus coming out of tri-state (which, based on the Zorro III design, happens
constantly). This should not cause problems with Zorro II cards, but it's conceivable that some
cards may need to be adjusted to work in this bus (the Zorro III bus requires somewhat higher
current capability than the Zorro II bus does. The A3000 does not support enough slots for
loading to be a likely problem, but future Zorro III backplanes will have more slots and make this
an important consideration).

LSorALS
Driver

a) A2000 Bus Termination

FDrivcr

b) A3000 Bus Termination

Figure K-2: A2000 vs. A3000 Bus Termination

DMA Latency and Overlap

+SV

220W

330W

Zorro II bus masters in a Zorro III backplane will, in many cases, receive a bus grant much sooner
than they would in a standard Zorro II backplane. Additionally, in some cases, expansion bus
cycles will overlap local bus cycles. The latency incurred on the Zorro II bus during heavy
custom chip activity has been greatly reduced for any Zorro III bus master. This should be
transparent to the card in question, though keep this in mind.

Power Supply Differences

The Zorro II bus is defined as supplying +5VDC @ 2 Amps to each slot, with one slot per
backplane supplying 5.0VDC @ 4.0 Amps. The Zorro III bus only provides the 5.0VDC@ 2.0
Amps for each slot.

390 Amiga Hardware Reference Manual

ZORRO II BUS ARCHITECTURE

The Zorro II bus is a simple extension of the 68000 processor bus. Those without a working
knowledge of the 68000 local bus will find The 68000 User's Manual from Motorola an excellent
reference for many Zorro II issues. The A500JA2000 Technical Reference Manual from
Commodore-Amiga is also required reading for any Zorro II design issues, as it includes a
complete description of all the Commodore-Amiga details that aren't part of the 68000
specification.

The basic Zorro II bus is a buffered version of the 68000 processor bus, physically provided on a
100-pin one-piece connector. The bus is 16 bits wide, and provides 24 bits of addressing
information. A bus cycle looks exactly like a 68000 bus cycle. The cycle is defined by an
address strobe, terminated by a data transfer strobe, and qualified by a read/write strobe, some
memory space qualifiers, and one or two byte selection strobes. The basic bus cycle runs for a
total of four cycles of a 7.16MHz clock, though it can be extended to add wait states when
required.

The Zorro II bus adds a number of features to the basic 68000 CPU bus. It supplies some Amiga
system signals that are useful for expansion card designs, such as many of the Amiga system
clocks. The bus provides a default data transfer signal, which expansion cards can easily use and
modify rather than go to the trouble of creating their own. It provides a number of discrete
interrupt lines which are mixed to provide the 68000 with its standard encoded interrupts. The
68000 bus arbitration protocol is used to allow multiple bus masters; arbitration of the bus
requests are managed by the Zorro II bus controller to avoid contention between multiple masters.
And, of course, the bus supplies a number of supply voltages for powering cards.

A powerful aspect of the Zorro II bus is its convention for automatically configuring expansion
cards, AUTOCONFIG!M On system powerup, the system software interrogates each board to
determine what kind of board is installed and how much memory space it needs on the bus. The
software then tells each board where to reside in memory. The bus provides hardware lines to
allow the boards to be configured in a daisy chained fashion regardless of which slots they occupy
and to prevent damage to boards if accidently configured to reside at the same memory location.
Firmware standards also permit software to autoboot or autoinitialize any board, to match soft­
loaded device drivers with individual boards, and to link memory boards into the appropriate
system memory lists.

SIGNAL DESCRIPTION

The Zorro II bus can be broken down into various logical signal groups. Some of these groups
are unchanged in the Zorro III bus modes, others are drastically different. This section makes
note of the original Zorro II name for each signal and the current Zorro III physical pin name for
each signal, where different. Some of this information will be repeated in the Zorro III sections,
where appropriate; nothing in this section is considered critical to understanding the Zorro III bus,
but it is useful. As previously mentioned, the A2000 bus signals unsupported by the Zorro II

Zorro Expansion Bus 391

but it is useful. As previously mentioned, the A2000 bus signals unsupported by the Zorro II
specification have been deleted from the Zorro III specification and the A3000 implementation of
Zorro III; this section will, however, document those signals for reference purposes. Please see
the Physical and Logical Signal Names section for a complete list with pin numbers of the
various logical signals that appear on the physical bus during the different phases of the Zorro II
and Zorro III bus cycles.

Power Connections

The Zorro III expansion bus provides several different voltages designed to supply expansion
devices. There are no changes here that affect Zorro II cards.

Digital Ground (Ground)
This is the digital supply ground used by all expansion cards as the return path for all
expansion supplies.

Main Supply (+5VDC)
This is the main power supply for all expansion cards, and it is capable of sourcing large
currents; each expansion slot can draw up to 2.0 Amps @ +5VDC. The extra power for one
card in any backplane drawing up to 4.0 Amps @ +5VDC is no longer supported.

Negative Supply (-5VDC)
This is a negative version of the main supply, for small current loads only. There is no
maximum load specified for the Zorro II bus on a per-slot basis; the A2000 implementation
specifies 0.3 Amps @ -5VDC for the entire system.

High Voltage Supply (+12VDC)
This is a higher voltage supply, useful for communications cards and other devices requiring
greater than digital voltage levels. This is intended for relatively small current loads only.
There is no maximum load specified for the Zorro II bus on a per-slot basis; the A2000
implementation specifies 8.0 Amps @ +12VDC for the entire system, most of which is
normally devoted to floppy and hard disk drive motors, not slots.

Negative High Supply (-12VDC)
Negative version of the high voltage supply, also commonly used in communications
applications, and similarly intended for small loads only. There is no maximum load
specified for the Zorro II bus on a per-slot basis; the A2000 implementation specifies 0.3
Amps@ -12VDC for the entire.

Clock Signals

The Zorro III expansion bus provides clock signals for expansion boards. These clocks are for
synchronous Zorro II designs and for other synchronous activity such as bus arbitration. While
originally based on Amiga local bus clocks, these have no guaranteed relationship to any local
bus activity in newer Amiga computers, but are maintained in Amiga computers as part of the
expansion bus specification. The relationship between these clocks is illustrated in Figure K-3.

392 Amiga Hardware Reference Manual

/Cl Clock
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the falling edge of
the 7M system clock.

/C3 Clock
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the rising edge of
the 7M system clock.

CDAC Clock
This is a 7.16 MHz system clock (7.09 MHz on PAL systems) which trails the 7M clock by
90° (approximately 35ns).

E Clock
This is the 68000 generated "E" clock, used for 6800 family peripherals driven by "E" and
6502 peripherals driven by <I>2. This clock is four 7M clocks high, six clocks low, as per the
68000 spec. Note that the bus does not support the rest of the 68000's 6800/6502 compatible
interface; there may be better ways to clock such devices.

7M Clock
This is the 7.16 MHz system clock (7.09 MHz on PAL systems). This clock forms the basis
for all Zorro 11/68000 compatible activity, and for various other system functions, such as
bus arbitration.

C7M

CDAC

I

/Cl !..._____,_ _ _J

/C3 I
E

Figure K-3: Expansion Bus Clocks

System Control Signals

The signals in this group are available for various types of system control; most of these have an
immediate or near immediate effect on expansion cards and/or the system CPU itself.

Bus Error (!BERR)
This is a general indicator of a bus fault condition. Any expansion card capable of detecting
a hardware error relating directly to that card can assert /BERR when that bus error condition

Zorro Expansion Bus 393

is detected, especially any sort of hannful hardware error condition. This signal is the
strongest possible indicator of a bad situation, as it causes all PICs to get off the bus, and
will usually generate a level 2 exception on the host CPU. For any condition that can be
handled in software and doesn't pose an immediate threat to hardware, notification via a
standard processor interrupt is the better choice. The bus controller will drive /BERR in the
event of a detected bus collision or DMA error (an attempt by a bus master to access local
bus resources it doesn't have valid access pcnnission for). All cards must monitor /BERR
and be prepared to tri-state all of their on-bus output buffers whenever this signal is asserted.
The current bus master should, if possible, retry the bus cycle after /BERR is negated unless
conditions warrant otherwise. Since any number of devices may assert /BERR, and all bus
cards must monitor it, any device that drives /BERR must drive with an open collector or
similar device capable of sinking at least 12ma, and any device that monitors /BERR should
place a minimal load on it (1 "F" type load or less). This signal is pulled high by a passive
backplane resistor.

System Reset (/RST, /BUSRST) =(/RESET, IIORST) for Zorro III
The bus supplies two versions of the system reset signal. The /RST signal is bidirectional
and unbuffered, allowing an expansion card to hard reset the system. It should only be used
by boards that need this reset capability, and is driven only by an open collector or similar
device. The /B USRST signal is a buffered output-only version of the reset signal that should
be used as the nonnal reset input to boards not concerned with resetting the system on their
own. All expansion devices are required to reset their autoconfiguration logic when
/BUSRST is asserted. This signal is pulled high by a passive backplane resistor.

System Halt (/HL T)
This signal is similar to the 68000 processor halt signal, and is driven by a PIC with an
open-collector or similar gate only. Its main use is to indicate a full-system reset. Based on
the 68000 conventions, an I/O-only reset, such as initiated by the 680x0 RESET instruction,
will drive only /RST and /BUSRST on the bus. A full-system reset, such as a powerup reset
or a keyboard reset, drives /HL T low as well. PICs that wish to reset the system CPU as well
as the bus and 1/0 devices drive /RST and /HL T, some bus devices such as processor cards
may internally reset only on full-system resets. This signal is pulled high by a passive
backplane resistor.

System Interrupts
Six of the decoded, level sensitive 680x0 interrupt inputs were originally available on the
expansion bus, and these are labelled as liNTz, IINT6, /EINTI, /EINT4, fEINTs, /EINT7 on
the Zorro II bus. Only the liNTz and IINT6 interrupt inputs are actually supported by
Commodore-Amiga as part of the Zorro II specification; the A2000 hardware did not provide
the software with the required support mechanisms for the safe use of these lines. Each of
these interrupt lines are shared by wired ORing, thus each line must be driven by an open­
collector or equivalent output type, and all arc pulled high by passive backplane resistors.

394 Amiga Hardware Reference Manual

Slot Control Signals

This group of signals is responsible for the control of operations between expansion slots.

Slave (ISLA YEN)
Each slot has its own /SLAVE output, driven actively, all of which go into the collision
detect circuitry. The "N" refers to the expansion slot number of the particular /SLAVE
signal. Whenever a Zorro II PIC is responding to an address on the bus, it must assert its
/SLAVE output within 35ns of /AS asserted. The/SLAVE output must be negated at the end
of a cycle within SOns of /AS negated. Late /SLAVE assertion on a Zorro II bus can result in
loss of data setup times and other problems. A late /SLAVE negation for Zorro II cards can
cause a collision to be detected on the following cycle. While the Zorro III sloppy cycle
logic eliminates this fatal condition, late /SLAVE negation can nonetheless slow system
performance unnecessarily. If more than one /SLAVE output occurs for the same address, or
if a PIC asserts its /SLAVE output for an address reserved by the local bus, a collision is
registered and results in /BERR being asse1ted.

Configuration Chain (/CFGINN, /CFGOUT:-.~)
The slot configuration mechanism uses the bus signals /CFGOUTN and /CFGINN, where
"N" refers to the expansion slot number. Each slot has its own version of each, which make
up the configuration chain between slots. Each subsequent /CFGIN is a result of all previous
/CFGOUTs, going from slot 0 to the last slot on the expansion bus. During the
AUTOCONFIG process, an unconfigured Zarro PIC responds to the 64K address space
starting at $00E80000 if its /CFGIN signal is asse1ted. All unconfigured PICs start up with
/CFGOUT negated. When configured, or told to "shut up;' a PIC will assert its /CFGOUT,
which, results in the /CFGIN: of the next slot being asserted. The backplane passes on the
state of the previous /CFGOUT to the next /CFGIN for any slot not occupied by a PIC, so
there's no need to sequentially populate the expansion bus slots.

Data Output Enable (DOE)
This signal is used by an expansion card to enable the buffers on the data bus. The main
Zorro II use of this line is to keep PICs from driving data on the bus until any other device is
completely ofT the bus and the bus butTers arc pointing in the correct direction. This prevents
any contention on the data bus.

DMA Control Signals

There are various signals on the expansion bus that coordinate the arbitration of bus masters.
Native Zorro III bus masters use some of the same logical signals, but their arbitration protocol is
considerably different.

PIC is DMA Owner (!OWN)
This signal is asserted by an expansion bus DMA device when it becomes bus master. This
output is to be treated as a wired-OR output between all expansion slots, any of which may
have a PIC signaling bus mastership. Thus, this should oc driven with an open-collector or
similar output by any PIC using it. This signal is the main basis for data direction
calculations between the local and expansion busses, and is pulled up by a backplane resistor.

Zorro Expansion Bus 395

Slot Specific Bus Arbitration (/BRN, /BGN)
These are the slot-specific /BRN and /BGN signals, where "N" refers to the expansion slot
number. The bus request from each board is taken in by the bus controller and ultimately
used to take over the system from 680x0 on the local bus. The bus controller eventually
returns one bus grant to the winner among all requesting PICs. From the point of view of the
individual PIC, the protocol is very similar to that of the 68000 arbitration mechanism. The
PIC asserts /BRN on the rising edge of 7M; some time later, /BGN is returned on the falling
edge of 7M. The PIC waits for all bus activity to finish, asserts /OWN followed by
/BGACK, then negates /BRN, assuming bus mastership. It retains mastership until it negates
/BGACK followed by /OWN.

7M

/BR

!BG

Signals

!OWN

!BGACK

Figure K-4: Zorro II Bus Arbitration

Bus Grant Acknowledge (/BGACK)
Any Zorro II PIC that receives a bus grant asserts this signal as long as it maintains bus
mastery. This signal may never be asserted until the bus grant has been received, /AS is
negated, /DT ACK is negated, and /BGACK itself is negated, indicating that all other
potential bus masters have relinquished the bus. This output is driven as a wired-OR output,
so all PICs must drive it with an open collector or equivalent device, and a passive pullup is
supplied by the backplane.

Bus Want/Clear (IGBG) = (/BCLR) for Zorro III
This signal is asserted by the bus controller to indicate that a PIC wants to master the bus. A
bus master assumes that the host CPU wants the bus, and that any time wasted as master is
stealing time from the CPU. To avoid such waste, a master should use cache or FIFO to grab
slow-coming data, and then transfer it all at once. /BCLR is asserted to indicate that
additionally, another PIC wants the bus, and the current bus master should get off as soon as
possible. This signal is equivalent to /GBG on the A2000 bus.

396 Amiga Hardware Reference Manual

Addressing and Control Signals

These signals are various items used for the addressing of devices in Zorro II mode by the local
bus and any expansion DMA devices. Most of these signals are very much like 68000 generated
bus signals bi-directionally buffered to allow any DMA device on the bus to drive the local bus
when such a device is the bus master.

Read Enable (READ)
This is the read enable for the bus, which is equivalent to the 68000's R/W output. READ
asserted during a bus cycle indicates a read cycle, READ negated indicates a write cycle.
Note that this signal may become valid in a cycle earlier than a 68000 R/W line would, but it
remains valid at least as long at the cycle's end.

Address Bus (At-A23)
This is logically equivalent to the 68000's address bus, providing 16 megabytes of address
space, although much of that space is not assigned to the expansion bus (see the memory map
in Figure K-1).

Address Strobe (/AS)= (/CCS) for Zorro III
This is equivalent to the 68000 /AS, called /CCS, for Compatibility Cycle Strobe, in the
Zorro III nomenclature. The falling edge of this strobe indicates that addresses are valid, the
READ line is valid, and a Zorro II cycle is starting. The rising edge signals the end of a
Zorro II bus cycle, signaling the current slave to negate all slave-driven signals as quickly as
possible. Note that /CCS, like /AS, can stay asserted during a read-modify-write access over
multiple cycle boundaries. To correctly support such cycles, a device must consider both the
state of /CCS and the state of the data strobes. Many current Zorro II cards don't correctly
support this 680x0 style bus lock.

Data Bus (Do-Dts)
This is a buffered version of the 680x0 data bus, providing 16 bits of data accessible by word
or either byte. A PIC uses the DOE signal to determine when the bus is to be driven on
reads, and the data strobes to determine when data is valid on writes.

Data Strobes (IUDS, /LOS) = (/DS3, /DS2) for Zorro III
These strobes fall on data valid during writes, and indicate byte select for both reads and
writes. The lower strobe is used for the lower byte (even byte), the upper strobe is used for
the upper byte (odd byte). There is one slight difference between these lines and the 68000
data strobes. On reads of Zorro II memory space, both /DS3 and /DS2 will be asserted, no
matter what the actual size of the requested transfer is. This is required to support caching of
the Zorro II memory space. For Zorro II 1/0 space, these strobes indicate the actual,
requested byte enables, just as would a 68000 bus master.

Zorro Expansion Bus 397

Data Transfer Acknowledge (/DT ACK)
This signal is used to nonnally tcnninate both Zorro bus cycles. For Zorro II modes, it is
equivalent to the 68000's Data Transfer Acknowledge input. It can be asserted by the bus
slave during a Zorro II cycle at any time, but won't be sampled by the bus master until the
falling edge of the S4 state on the bus. Data will subsequently be latched on the S6 falling
edge after this, and the cycle tenninatcd with /AS negated during S7. If a Zorro II slave does
nothing, this /DT ACK will be driven by the bus controller with no wait states, making the
bus essentially a 4-cycle synchronous bus. Any slow device on the bus that needs wait states
has two options. It can modify the automatic /DT ACK negating XRDY to hold off
/DTACK. Alternately, it may assert /OVR to inhibit the bus controller's generation of
/DT ACK, allowing the slave to create its own /DT ACK. Any /DT ACK supplied by a slave
must be driven with an open-collector or similar type output; the backplane provides a
passive pullup.

Processor Status (FCo-FC2)
These signals are the cycle type or memory space bits, equivalent for the most part with the
68000 Processor Status outputs. They function mainly as extensions to the bus address,
indicating which type of access is taking place. For Zorro II devices, any use of these lines
must be gated with /BGACK, since they are not driven valid by Zorro II bus masters.
However, when operating on the Zorro III backplane, Zorro II masters that don't drive the
function codes will be seen generating an FCI = 0, which results in a valid memory access.
Zorro II cycles are not generated for invalid memory spaces when the CPU is the bus master.

/DT ACK Override (/OVR)
This signal is driven by a Zorro II slave to allow that slave to prevent the bus controller's
/DT ACK generation. This allows the slave to generate its own /DT ACK. The previous use
of this line to disable motherboard memory mapping, which was unsupported on the A2000
expansion bus, has now been completely removed. The use of XDRY or /OVR in
combination with /DT ACK is completely up to the board designer - both methods are
equally valid ways for a slave to delay /DT ACK. In Zorro III mode, this pin is used for
something completely different.

External Ready (XRDY)
This active high signal allows a slave to delay the bus controller's assertion of /DT ACK, in
order to add wait states. XRDY must be negated within 60ns of the bus master's assertion of
I AS, and it will remain negated until the slave wants /DT ACK. The /DT ACK signal will be
asserted by the bus controller shortly following the assertion of XRDY, providing the bus
cycle is a S4 or later. XRDY is a wired-OR from all PICs, and as such, must be driven by an
open collector or equivalent output. In Zorro III mode, this pin is used for something
completely different.

398 Amiga Hardware Reference Manual

Zorro Ill Bus Architecture

While the Zorro II bus design was based in large part on an already existing bus cycle, the 68000
cycle, the Zorro III bus design had a much different set of preconditions. It is not modeled after
any particular CPU specific bus protocol, but instead it's a logical outgrowth of both the need to
support Zorro II cards on the same bus and the need to achieve various modem feature and
preformance goals. These goals were summarized in the Zorro Expansion Bus Introduction, now
they'll be covered in greater detail here.

BASIC ZORRO Ill BUS CYCLES

The basic Zorro III bus cycle is a multiplexed address/data cycle which supplies a full 32 bits
worth of address and data per simple cycle. The cycle is a fully asynchronous cycle. The bus
master for a given cycle supplies strobes to indicate when address is valid, write data is valid, and
read data may be driven. In return, the bus slave for a cycle supplies a strobe to indicate that it is
responding to a bus address, and a strobe to indicate that it is done with the bus data for a write
cycle, or has supplied valid bus data for a read cycle. The minimum theoretical bus speed is
governed only by setup and hold time requirements for the various bus signals. Actual bus
speeds are always a function of the bus master and bus slave active for a given cycle. This is
considerably different than the Zorro II bus, and for several good reasons, which are explained
below.

Design Goals

For any computer bus, there are two basic possibilities concerning the fundamental operation of
the bus; it's either synchronous or asynchronous. The difference is simple- the synchronous bus
is ultimately tied to a clock of some sort, while the asynchronous bus has no defined relationship
to any clock signal. While Motorola specifies the 68000 bus cycle as an asynchronous cycle,
they're really referring to the fact that most 6SOOO inputs are internally synchronized with the bus
clock, and therefore, synchronous setup times on the bus do not have to be met to avoid
metastability.

But the 68000 bus, and the Zarro II bus by extension, are synchronous buses, based on a single
bus clock (called E7M on the Zorro II bus). Most Zorro II signals are asserted relative to an edge
of the bus clock, and most Zorro II inputs are sampled on an edge of the bus clock. The
minimum Zorro II cycle is four bus clocks long, and every wait state added, regardless of the
method, will result in a single additional bus clock wait, regardless of the asynchronous
appearance of the termination and wait signals on the Zorro II bus.

The Zorro III bus is a fully asynchronous bus, in that all bus events are driven by strobes, and
there is no reference clock. The choice of an asynchronous versus a synchronous bus design is
governed by the intended application of the bus. Synchronous designs are preferred when a CPU
and a memory system (e.g., master and slave) can be very tightly coupled to each other. Such
designs generally require a tight adherence to timing based on the specific CPU. This is optimal

Zorro Expansion Bus 399

for tightly coupled systems, such the fast memory on the A3000 local bus. Synchronous designs
can also be easier to do accurately, as the desi!:,mcr can usc clock edges for scheduling events, and
there's never any need to waste time in synchronizers to achieve a reliable design.

The design goals for an expansion bus are considerably different. While a fast memory circuit on
a system motherboard can change for every new and better design, it's not feasible to require
redesign of any significant number of expansion cards every time an improved motherboard
design is created. And while a synchronous transfer can be optimal for matched clocks, it can be
very inefficient for mismatched CPU and expansion clocks, as synchronizer delays must be
introduced for any reliable operation. The A3000 project started with the need to support CPU
systems at 16MHz and at 25MHz, and it's obvious that the growth of CPU clock speed will be
here for some time to come. Zorro III cards arc based on asynchronous handshaking between
master and slave in both directions. This means that, as long as masters and slaves manage their
own needs, any slave can work with any master. But as masters and slaves improve with
technology, bus transfer speeds can automatically increase, without rendering any slower cards
obsolete. The Zorro III bus attempts to address the needs of device expansion as much as the
needs of memory expansion.

Simple Bus Cycle Operation

The normal Zorro III bus cycle is quite different than the Zorro II bus in many respects. Figure
K-5 shows the basic cycle. There is no bus clock visible on the expansion bus; the standard Zorro
II clocks are still active during Zorro III cycles, but they have no relationship to the Zorro II bus
cycle. Every bus event is based on a relationship to a particular bus strobe, and strobes are
alternately supplied by master and slave.

/FCS

AD3l..AD8

SA7 .. SA2
FC2 .. FCO

READ

/SLAVE

DOE

/DS3 .. /DSO

/DTACK

Read Cycle

Figure K-5: Basic Zorro III Cycles

400 Amiga Hardware Reference Manual

Write Cycle

A Zorro III cycle begins when the bus master simultaneously drives addressing infonnation on
the address bus and memory space codes on the FCN lines, quickly following that with the
assertion of the Full Cycle Strobe, /FCS; this is called the address phase of the bus. Any active
slaves will latch the bus address on the falling edge of IFCS, and the bus master will tri-state the
addressing information very shortly after /FCS is asserted. It's necessary only to latch A31-As; the
low order A1-A2 addresses and FCN codes are non-multiplexed.

As quickly as possible after /FCS is asserted, a slave device will respond to the bus address by
asserting its /SLA YEN line, and possibly other special-purpose signals. The autoconfiguration
process assigns a unique address range to each PIC base on its needs, just as on the Zorro II bus.
Only one slave may respond to any given bus address; the bus controller will generate a /BERR
signal if more than one slave responds to an address, or if a single slave responds to an address
reserved for the local bus (this is called a bus collision, and should never happen in normal
operation). Slaves don't usually respond to CPU memory space or other reserved memory space
types, as indicated by the memory space code on the FCN lines (see the Signal Description section
following this section for details).

The data phase is the next part of the cycle, and it's started when the bus master asserts DOE
onto the bus, indicating that data operations can be started. The strobes are the same for both read
and write cycles, but the data transfer direction is difTcrent.

For a read cycle, the bus master drives at least one of the data strobes /DSN, indicating the
physical transfer size requested (however, cachable slaves must always supply all 32 bits of data).
The slave responds by driving data onto the bus, and then asserting /DT ACK. The bus master
then terminates the cycle by negating /FCS, at which point the slave will negate its /SLA YEN line
and tri-state its data. The cycle is done at this point. There arc a few actions that modify a cycle
tennination, those will be covered in later sections.

The write cycle starts out the same way, up until DOE is asserted. At this point, it's the master
that must drive data onto the bus, and then assert at least one /DSN line to indicate to the slave
that data is valid and which data bytes are being written. The slave has the data for its use until it
tenninates the cycle by asserting /DT ACK, at which point the master can negate /FCS and tri­
state its data at any point. For maximum bus bandwidth, the slave can latch data on the falling
edge of the logically ORed data strobes; the bus master doesn't sample /DT ACK until after the
data strobes are asserted, so a slave can actually assert /DTACK any time after /FCS.

ADVANCED MODE SUPPORT LOGIC

The Zarro III bus provides support for some more advanced operations that weren't generally
handled correctly on the Zarro II bus. Amiga computers have traditionally been supporting
features that the more mainstream personal computers haven't. High speed DMA transfers and
expansion coprocessors such as the Bridge Cards have been with the Amiga since the early days,
and high perfonnance main system CPUs with cache memory arc now becoming common. The
Zorro II bus never properly or easily supponed such devices; the Zorro III bus attempts to make
support of cache and coprocessor both possible and relatively straightforward. Other new features
are covered in later sections.

Zorro Expansion Bus 401

Bus Locking

The first advanced modification of the basic bus cycle is bus locking, via the /LOCK signal. Bus
locking is a hardware convention that allows a bus master to guarantee several cycles will be
atomic on the bus. This is necessary to support the sharing of special "mail-box" memory
between a bus master and an alternate PIC-based processor; Bridge Cards are an example of this
kind of device. The Zorro II bus itself supports bus locking via the 68000 convention. However,
the 68000 style of bus locking is often difficult to implement, and support for it was often ignored
in Zorro II designs, especially those not directly concerned with multiprocessor support.

The Zorro III mech<mism involves no change to the basic bus cycle, other than the monitoring of
this /LOCK signal, and as such is much more reasonable to support. The /LOCK signal is
asserted by a bus master at address time and maintained across cycles to lock out shared memory
coprocessors, allowing hardware backed semaphores to easily be used between such
coprocessors. We expect multiprocessing will be a greater concern on the Zorro III bus than it is
at present; video coprocessors, RISC devices, and special purpose processors for image
processing or mathematics should find a comfortable home on the Zorro III bus.

Cache Support

The other advanced cycle modifier on the Zorro III bus is the cache inhibit line, /CINH. On the
Zorro II bus, there was originally no caching envisioned, and therefore no real support for caching
of Zorro II PICs. First in the A2630 and later in the Zorro III bus' emulation of Zorro II,
conventions were adopted to permit caching of Zorro II cards. These conventions aren't perfect;
MMU tables will sometimes have to supplant this geographic mapping. While Zorro III doesn't
have any cache consistency mechanisms for managing caches between several caching bus
masters, it does allow cards that absolutely must not be cached to assert a cache inhibit line,
/CINH, on a per-cycle basis (asserted at slave time by a responding slave). This cache
management is basically the lowest level of a cache management system, mainly useful for
support of 1/0 and other devices that shouldn't be cached. Software will be required for the
higher levels of cache management.

MULTIPLE TRANSFER CYCLES

The multiplexed address/data design of the Zorro III bus has some definite advantages. It allows
Zorro III cards to use the same 1 00-pin connector as the Zorro II cards, which results in every bus
slot being a 32-bit slot, even if there's an alternate connector in-line with any or all of the system
slots; current alternate connectors include Amiga Video and PC-AT (now sometimes called ISA,
for Industry Standard Architecture, now that it's basically beyond the control of IBM) compatible
connectors. This design also makes implementation of the bus controller for a system such as the
A3000 simpler. And it can result in lower cost for Zorro III PICs in many cases.

402 Amiga Hardware Reference Manual

The main disadvantage of the multiplexed bus is that the multiplexing can waste time. The
address access time is the same for multiplexed and non-multiplexed buses, but because of the
multiplexing time, Zorro III PICs must wait until data time to assert data, which places a fixed
limit on how soon data can be valid. The Zorro III Multiple Transfer Cycle is a special mode
designed to allow the bus to approach the speed of a non-multiplexed design. This mode is
especially effective for high speed transfers between memory and 1/0 cards.

As the name implies, the Multiple Transfer Cycle is an extension of the basic full cycle that
results in multiple 32-bit transfers. It starts with a normal full cycle address phase transaction,
where the bus master drives the 32-bit address and asserts the /FCS signal. A master capable of
supporting a Multiple Transfer Cycle will also assert /MTCR at the same time as /FCS. The slave
latches the address and responds by asserting its /SLA YEN line. If the slave is capable of
multiple transfers, it'll also assert /MTACK, indicating to the bus master that it's capable of this
extended cycle fonn. If either /MTCR or /MTACK is negated for a cycle, that cycle will be a
basic full cycle.

/FCS

AD3l..AD8

/MTCR

SA7 .. SA2
FC2 .. FCO

READ

DOE

/DS3 .. /DSO

/MTACK

/DTACK

Figure K-6: Multiple Transfer Cycles

Assuming the multiple transfer handshake goes through, the multiple cycle continues to look
similar to the basic cycle into the data phase. The bus master asserts DOE (possibly with write
data) and the appropriate /DSN, then the slave responds with /DT ACK (possibly with read data at
the same time), just as usual. Following t11is, however, the cycle's character changes. Instead of
tenninating the cycle by negating /FCS, /DSN, and DOE, the master negates /DSN and /MTCR,
but maintains /FCS and DOE. The slave continues to assert /SLAVEN, and the bus goes into
what's called a short cycle.

Zorro Expansion Bus 403

The short cycle begins with the bus master driving the low order address lines A1-A2; these are
the non-multiplexed addresses and can change without a new address phase being required (this
is essentially a page mode, fully random accesses on this 256-byte page). The READ line may
also change at this time. The master will then assert /MTCR to indicate to the slave that the short
cycle is starting. For reads, the appropriate /DSN arc asserted simultaneously with /MTCR, for
writes, data and /DSN are asserted slightly after /MTCR. The slave will supply data for reads,
then assert /DT ACK, and the bus will will terminate the short cycle and start into either another
short cycle or a full cycle, depending on the multiple cycle handshaking that has taken place.

The question of whether a subsequent cycle will be a full cycle or a short cycle is answered by
multiple cycle arbitration. If the master can't sustain another short cycle, it will negate /FCS and
DOE along with /MTCR at the end of the current short cycle, terminating the full cycle as well.
The master always samples the state of /MTACK on the falling edge of /MTCR. If a slave can't
support additional short cycles, it negates /MT ACK one short cycle ahead of time. On the
following short cycle, the bus master will see that no more short cycles can be handled by the
slave, and fully terminate the multiple transfer cycle once this last short cycle is done.

PICs aren't absolutely required to support Multiple Transfer Cycles, though it is a highly
recommended feature, especially for memory boards. And of course, all PICs must act
intelligently about such cycles on the bus; a card doesn't request or acknowledge any Multiple
Transfer Cycle it can't support.

QUICK BUS ARBITRATION

The Zorro II bus docs an adequate job of supporting multiple bus masters, and the Zorro III bus
extends this somewhat by introducing fair arbitration to Zorro II cards. However, some desirable
features cannot be added directly to tl1c Zarro II arbitration protocol. Specifically, Zorro III bus
arbitration is much faster than the Zorro II style, it prohibits bus hogging that's possible under the
Zorro II protocol, and it supports intelligent bus load balancing.

Load balancing requires a bit of explanation. A good analogy is to that of software multitasking;
there, an operating system attempts to slice up CPU time between all tasks that need such time;
here, a bus controller attempts to slice up bus time between all masters that need such time. With
preemptive multitasking such as in the Amiga and UNIX OSs, equal CPU time can be granted to
every task (possibly modified by priority levels), and such scheduling is completely under control
of the OS; no task can hog the CPU time at the expense of all others. An alternate multitasking
scheme is a popular add-on to some originally non-multitasking operating systems lately. In this
scheme, each task has the CPU until it decides to give up the CPU, basically making the
effectiveness of the CPU sharing at the mercy of each task. This is exactly the same situation
with masters on the Zarro II bus. The Zorro III arbitration mechanism attempts to make bus
scheduling under the control of the bus controller, with masters each being scheduled on a cycle­
by-cycle basis.

When a Zorro Ill PIC wants to master the bus, it registers with the bus controller. This tells the
bus controller to include that PIC in its scheduling of the expansion bus. There may be any
number of other PICs registered with the bus controller at any given time. The CPU is always

404 Amiga Hardware Reference Manual

scheduled expansion bus time, and other local bus devices, such as a hard disk controller, may be
registered from time to time.

Once registered, a PIC sits idle until it receives a grant from the bus controller. A grant is
permission from the bus controller that allows the PIC to master the Zorro III bus for one full
cycle. A PIC always gets one full cycle of bus time when given a grant, and assuming it stays
registered, it may receive additional full cycles. Within the full cycle, the PIC may run any
number of Multiple Transfer Cycles, assuming of course the responding slave supports such
cycles. For multiprocessor support, a PIC will be granted multiple atomic full cycles if it locks
the bus. This feature is only for support of hardware semaphores and other such multiprocessor
needs; it is not intended as a means of bus hogging!

7M

!BRn -- - -~l Register j \ ,--------~~--~

Unregister f

!BGn

/FCS

/OWN

!BGACK

Figure K-7: Zorro III Bus Arbitration

Figure K-7 shows the basics of Zorro III bus arbitration. While it uses some of the same signals
as the 680x0 inspired Zorro II bus arbitration mechanism, it has nothing to do with 680x0 bus
arbitration; the /BRN and /BGN signals should be thought of as completely new signals. In order
to register with the bus controller as a bus master, a PIC asserts its private /BRN strobe on the
rising edge of the 7M clock, and negates it on the next rising edge. The bus controller will
indicate mastership to a registered bus master by asserting its /BGN.

Once granted the bus, the PIC drives only the standard cycle signals: addresses, /FCS, /EDSN,
data, etc. in a full cycle. The bus controller manages the assertion of /OWN and /BGACK, which
are important only for bus management and Zarro II support. While a scheduling scheme isn't
part of this bus specification, the bus master will only be guaranteed one bus cycle at a time. The
/BGN line is negated shortly after the master asserts /FCS unless the bus controller is planning to
grant multiple full cycles to the master. A locked bus will force the controller to grant multiple
full cycles. Any master that works better with multiple cycles, such as devices with buffers to
empty into memory, should run a Multiple Transfer Cycle to transfer severallongwords during
the same full cycle. For this reason, slave cards arc encouraged to support Multiple Transfer
Cycles, even if they don't necessarily run any faster during them.

Zorro Expansion Bus 405

Once a registered bus master has no more work to do, it unregisters with the bus controller. This
works just like registering - the PIC asserts /BRN on the rise of 7M, then negates it on next rising
7M. This is best done during the last cycle the bus master requires on the bus. If a registered
master gets a grant before unregistering and has no work to do, it can unregister without asserting
/FCS, to give back the bus without runing a cycle. It's always far better to make sure that the
master unregisters as quickly as possible. Bus timeout causes an automatic unregistering of the
registered master that was granted that timed-out cycle; this guarantees that an inactive registered
master can't drag down the system. If a master sees a /BERR during a cycle, it should tenninate
that cycle immediately and re-try the same cycle. If the retried cycle results in a /BERR as well,
nothing more can be done in hardware; notification of the driver program is the usual recourse.

The bus controller may have to mix Zorro II style bus arbitration in with Zorro III arbitration, as
Zorro II and Zorro III cards can be freely mixed in a backplane. Because of this, Multiple
Transfer Cycles, and the self-timed nature of Zorro III cards, there's no way to guarantee the
latency between bus grants for a Zorro III card. The bus controller does, however, make sure that
all masters arc fairly scheduled so that no starvation occurs, if at all possible. Zorro III cards
must use Zorro III style bus arbitration; although current Zorro III backplanes can't differentiate
between Zorro II and Zorro III cards when they request (other than by the request mechanism), it
can't be assumed that a backplane will support Zorro III cycles with Zorro II mastering, or visa­
versa.

QUICK INTERRUPTS

While the Zorro II bus has always supported shared interrupts, the Zorro III bus supports a
mechanism wherein the interrupting PIC can supply its own vector. This has the potential to
make such vectored interrupts much faster than conventional Zorro II chained interrupts,
arbitrating the interrupting device in hardware instead of software.

A PIC supporting quick interrupts has on-board registers to store one or more vector numbers; the
numbers are obtained from the OS by the device driver for the PIC, and the PIC/driver
combination must be able to handle the situation in which no additional vectors are available.
During system operation, this PIC will interrupt the system in the nonnal manner, by asserting
one of the bus interrupt lines. This interrupt will cause an interrupt vector cycle to take place on
the bus. This cycle arbitrates in hardware between all PICs asserting that interrupt, and it's a
completely different type of Zorro III cycle, as illustrated in Figure 9-8.

The bus controller will start an interrupt vector cycle in response to an interrupt asserted by any
PIC. This cycle starts with /FCS and /MTCR asserted, a FC code of7 (CPU space), a CPU space
cycle type, given by address lines AI6-AI9, of 15, and the interrupt number, which is on AI-A3
(AI is on the /LOCK line, as in Zorro II cycles). The interrupt numbers 2 and 6 are currently
defined, corresponding to /INT2 and /INT6 respectively; all others are reserved for future use. At
this point, called the polling phase, any PIC that has asserted an interrupt and wants to supply a
vector will decode the FC lines, the cycle type, match its interrupt number against the one on the
bus, and assert /SLA YEN if a match occurs. Shortly thereafter, the /MTCR line is negated, and
the slaves all negate /SLA YEN. But the cycle doesn't end.

406 Amiga Hardware Reference Manual

The next step is called the vector phase. The bus controller asserts one /SLAVEN back to one of
the interrupting PICs, along with /MTCR and /DSo, but no addresses are supplied. That PIC will
then assert its 8 bit vector onto the logical Do-07 (physically ADis-ADs) of the 32-bit data bus
and /DTACK, as quickly as possible, thus terminating the cycle. The speed here is very critical;
an automatic autovector timeout will occur very quickly, as any actual waiting that's required for
the quick interrupt vector is potentially delaying the autovector response for Zorro II style
interrupts. A PIC stops driving its interrupt when it gets the response cycle; it must also be
possible for this interrupt to be cleared in software (e.g., the PIC must make choice of vectoring
vs. autovectoring a software issue).

/FCS

/MTCR

/SLAVE

AD19 .. AD16
SA3,SA2,/LOCK

DOE

!DSO

SD7 .. SDO

/DTACK

Poll Phase

Figure K-8: Interrupt Vector Cycle

COMPATIBILITY WITH ZORRO II DEVICES

Vector Phase

As detailed in the Zorro II Compatibility section, the Zorro III bus supports a bus cycle mode
very similar to the 68000-based Zorro II bus, and is expected to be compatible with all properly
designed Zorro II PICs. As shown in Figure 9-1, Zorro II and Zorro III expansion spaces are
geographically mapped on the Zorro III bus. The mapping logic resides on the bus, and operates
on the bus address presented for any cycle. Every cycle starts out assuming a Zorro III cycle, but
the mapping logic will inscribe a Zorro II cycle within the Zorro III cycle if the address range is
right. Figure K-9 details the bus action for this mode.

The cycle starts out with the usual address phase activity; the bus master asserts /FCS after
asserting the full 32-bit address onto the address bus. The bus decoder maps the bus address
asynchronously and quickly, so that by the time /FCS is asserted, the memory space is
determined. A Zorro II space access will cause As-A23 to remain asserted, rather than being tri­
statcd along with A24-A3I, as the Zorro III cycle normally does. The bus controller synchs the

Zorro Expansion Bus 407

--

asynchronous /FCS on the falling edge of CDAC, then drives /CCS (the /AS equivalent) out on
the rising edge of 7M, based on that synched /FCS. For a read cycle, /DS3 and/or !DS2 (the IUDS
and /LDS replacements, respectively) would be asserted along with /CCS; write cycles see those
lines asserted on the next rising edge of 7M, at S4 time. The DOE line is also asserted at the start
ofS4.

Read Cycle Write Cycle

!FCS

CDAC

7M

/CCS

AD31..AD24 ---<

AD23 .. AD8 --< >---< " SA7 .. SA2 ..___ ------------~- ..__ _____________ ____,r-

READ

/SLAVE

DOE

/DS3JDS2

/DTACK

Figure K-9: Zorro II Within Zorro III

The bus controller starts to sample /DT ACK on the falling edge of 7M between S4 and Ss, adding
wait states until /DT ACK is encountered. As per Zorro II specs, the PIC need not create a
/DTACK unless it needs that level of control; there are Zorro II signals to delay the controller­
generated /DTACK, or take it over when necessary. The controller will drive its automatic
/DT ACK at the start of S4, leaving plenty of time for the sampling to come at Ss. Once a
/DTACK is encountered, cycle termination begins. The controller latches data on the falling 7M
edge between S6 and S7, and also negates /CCS and the /DSN at this time. Shortly thereafter, the
controller negates /DT ACK (when controlling it), DOE, and tri-states the data bus, getting ready
for the next cycle.

408 Amiga Hardware Reference Manual

Signal Description

The signals detailed here are the Zorro III mode signals. While some of this information is the
same as in the Zorro II signal description in the Zorro II Compatibility section, many bus signals
that seem alike behave differently in Zorro III mode than Zorro II mode. These can be a very
important differences; thus the complete set of signals is detailed here.

POWER CONNECTIONS

The expansion bus provides several different voltages designed to supply expansion devices.
These are basically the same for the Zorro III bus as they were for the Zorro II bus, with the
exception of one pin, and that the specification has been clarified a bit. Note that all Zorro III
PICs must list their power consumption specifications.

Digital Ground (Ground)
This is the digital supply ground used by all expansion cards as the return path for all
expansion supplies.

Main Supply (+5VDC)
This is the main power supply for all expansion cards, and it is capable of sourcing large
currents; each PIC can draw up to 2.0 Amps @ +5VDC.

Negative Supply (-5VDC)
This is a negative version of the main supply, for small current loads only; each PIC can
draw up to 60 rnA @ -5VDC.

High Voltage Supply (+12VDC)
This is a higher voltage supply, useful for communications cards and other devices requiring
greater that digital voltage levels. This is intended for relatively small current loads only;
each PIC can draw up to 500mA@ + 12VDC.

Negative High Supply (-12VDC)
Negative version of the high voltage supply, also used in communications applications, and
similarly intended for small loads only; each PIC can draw up to 60 rnA@ -12VDC.

Zorro Expansion Bus 409

CLOCK SIGNALS

The expansion bus provides clock signals for expansion boards. The main use for these clocks on
Zorro III cards is bus arbitration clocking. There is no relationship between any of these clocks
and normal Zorro III bus activity. The relationship between these clocks is illustrated in Figure
9-3.

/Cl Clock
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the falling edge of
the 7M system clock.

/C3 Clock
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the rising edge of
the 7M system clock.

CDAC Clock
This is a 7.16 MHz system clock (7.09 MHz on PAL systems) which trails the 7M clock by
90° (approximately 35ns).

E Clock
This is the 68000 generated "E" clock, used for 6800 family peripherals driven by "E" and
6502 peripherals driven by <1>2. This clock is four 7M clocks high, six clocks low, as per the
68000 spec.

7M Clock
This is the 7.16 MHz system clock (7.09 MHz on PAL systems). This clock drives the bus
master registration mechanism for Zorro Ill bus masters.

SYSTEM CONTROL SIGNALS

The signals in this group are available for various types of system control; most of these have an
immediate or near immediate effect on expansion cards and/or the system CPU itself.

Hardware Bus Error/Interrupt (/BERR)
This is a general indicator of a bus fault or special condition of some kind. Any expansion
card capable of detecting a hardware error relating directly to that card can assert /BERR
when that bus error condition is detected, especially any sort of harmful hardware error
condition. This signal is the strongest possible indicator of a bad situation, as it causes all
PICs to get off the bus, and will usually generate a level 2 exception on the host CPU. For
any condition that can be handled in software and doesn't pose an immediate threat to
hardware, notification via a st<mdard processor interrupt is the better choice. The bus
controller will drive /BERR in the event of a detected bus collision or DMA error (an attempt
by a bus master to access local bus resources it doesn't have valid access permission for). All
cards must monitor /BERR and be prepared to tri-state all of their on-bus output buffers
whenever this signal is asserted. An expansion bus master will attempt to retry a cycle

410 Amiga Hardware Reference Manual

aborted by a single /BERR and notify system software in the case of two subsequent /BERR
results. Since any number of devices may assert /BERR, and all bus cards must monitor it,
any device that drives /BERR must drive with an open collector or similar device, and any
device that monitors /BERR should place a minimal load on it. This signal is pulled high by
a passive backplane resistor.

Note that, especially for the slave device being addressed, that /BERR alone is not always
necessaily an indication of a bus failure in the pure sense, but may indicate some other kind of
unusual condition. Therefore, a device should still respond to the bus address, if otherwise
appropriate, when a /BERR condition is indicated. It simply tri-states is bus buffers and other
outputs, and waits for a change in the bus state. If the /BERR signal is negated with the cycle
unterminated, the special condition has been resolved and the slave responds to the rest of the
cycle as it normally would have. If the cycle is terminated by the bus master, the resolution of the
special condition has indicated that the addressed slave is not needed, and so the cycle terminates
without the slave being used.

System Reset (/RESET, /IORST)
The bus supplies two versions of the system reset signal. The /RESET signal is bi­
directional and unbuffered, allowing an expansion card to hard reset the system. It should
only be used by boards that need this reset capability, and is driven only by an open collector
or similar device. The /IORST signal is a buffered output-only version of the reset signal
that should be used as the normal reset input to boards not concerned with resetting the
system on their own. All expansion devices are required to reset their autoconfiguration
logic when /IORST is asserted. These signals are pulled high by passive backplane resistors.

System Halt' (/HL T)
This signal is driven, along with /RESET, to assert a full-system reset. A full-system reset is
asserted on a powerup reset or a keyboard reset; any PIC that needs to differentiate between
full system and 1/0 reset should monitor /HLT and /IORST unless it also needs to drive a
reset condition. This is driven with an open-collector output, or the equivalent, and pulled up
by a backplane resistor.

System Interrupts
Two of the decoded, level-sensitive 680x0 interrupt inputs are available on the expansion
bus, and these are labeled as /INT2 and /INT6. Each of these interrupt lines is shared by wired
ORing, thus each line must be driven by an open-collector or equivalent output type. Zorro
III interrupts can be handled Zorro II style, via autovectors and daisy-chained polling, or they
can be vectored using the quick interrupt protocol described in the Bus Architecture section.
Zorro II and Zorro III systems originally provided /INTI, /INT4, liNTs, and /INT7 lines as
well, but as these were never properly supportable by system software, they have been
eliminated. Those lines are considered reserved for future use in a Zorro III system.

Zorro Expansion Bus 411

SLOT CONTROL SIGNALS

This group of signals is responsible for the control of operations between expansion slots.

Slave (ISLA VEN)
Each slot has its own /SLAVEN output, driven actively, all of which go into the collision
detect circuitry. The "N" refers to the expansion slot number of the particular /SLAVE
signal. Whenever a Zarro III PIC is responding to an address on the bus, it must assert its
/SLAVEN output very quickly. If more than one /SLAVEN output occurs for the same
address, or if a PIC asserts its /SLAVEN output for an address reserved by the local bus, a
collision is registered and the bus controller asserts /BERR. The bus controller will assert
/SLAVEN back to the interrupting device selected during a Quick Interrupt cycle, so any
device supporting Quick Interrupts must be capable of tri-stating its /SLAVEN; all others can
drive SLAVEN with a normal active output.

Configuration Chain (/CFGINN, /CFGOUTN)
The slot configuration mechanism uses the bus signals /CFGOUTN and /CFGINN, where
• 'N'' refers to the slot number. Each slot has its own version of both signals, which make up
the configuration chain between slots. Each subsequent /CFGINN is a result of all previous
/CFGOUTs, going from slot 0 to the last slot on the expansion bus. During the
autoconfiguration process, an unconfigured Zarro III PIC responds to the 64K address space
starting at either $00E80000 or $FFOOOOOO if its /CFGINN signal is asserted. All
unconfigured PICs start up with /CFGOUTN negated. When configured, or told to "shut up;'
a PIC will assert its /CFGOUTN, which results in the /CFGINN of the next slot being
asserted. Backplane logic automatically passes on the state of the previous /CFGOUTJ'\ to the
next /CFGINN for any slot not occupied by a PIC, so there's no need to sequentially populate
the expansion bus slots.

Backplane Type Sense (SenseZ3)
This line can be used by the PIC to determine the backplane type. It is grounded on a Zarro
II backplane, but floating on a Zarro III backplane. The Zarro III PIC connects this signal to
a lK pullup resistor to generate a real logic level for this line. ll's possible, though more
complicated, to build a Zarro III PIC that can actually run in Zarro II mode when in a Zarro
II backplane. It's hardly necessary or required to support this backward compatibility
mechanism, and in many cases it will be inpractical. The Zarro III specification does require
that this signal be used, at least, to shut the card down and pass /CFGIN to /CFGOUT when
in a Zarro II backplane.

DMA CONTROL SIGNALS

There are various signals on the expansion bus that coordinate the arbitration of bus masters.
Zarro II bus masters use some of the same logical signals, but their arbitration protocol is
considerably different.

412 Amiga Hardware Reference Manual

PIC is DMA Owner (/OWN)
This is asserted by the bus controller when a master is about to go on the bus and indicates
that some master owns the bus. Zorro II bus masters drive this, and some Zorro III slaves
may find a need to monitor it, or /BGACK, to determine who's the bus master. This is
ordinarily not important to Zorro III PICs, and they may not drive this line.

Slot Specific Bus Arbitration (JBRN, /BGN)
These are the slot-specific /BR.N and /BGN signals, where "N" refers to the expansion slot
number. The bus request from each board is taken in by the bus controller and ultimately
used to take over the system from the primary bus master, which is always the local master.
Zorro III PICs toggle /BR.N to register or unregister as a master with the bus controller. /BGN
is asserted to one registered PIC at a time, on a cycle by cycle basis, to indicate to the PIC
that it gets the bus for one full cycle.

Bus Grant Acknowledge (/BGACK)
Asserted by the bus controller when a master is about to go on the bus. As with /OWN, most
Zorro III PICs ignore this signal, and none may drive it.

Bus Want/Clear (/BCLR)
This signal is asserted by the bus controller to indicate that a PIC wants to master the bus;
Zorro III cards can use this to determine if any Zorro II bus requests are pending; Zorro III
bus requests don't affect /BCLR.

ADDRESS AND RELATED CONTROL SIGNALS

These signals are various items used for the addressing of devices in Zorro III mode by bus
masters either on the bus or from the local bus. The bus controller translates local bus signals
(68030 protocol on the A3000) into Zorro III signals; masters are responsible for creating the
appropriate signals via their own bus control logic.

Read Enable (READ)
Read enable for the bus; READ is asserted by the bus master during a bus cycle to indicate a
read cycle, READ is negated to indicate a write cycle. READ is asserted at address time,
prior to /FCS, for a full cycle, and prior to /MTCR for a short cycle. READ stays valid
throughout the cycle; no latching required.

Multiplexed Address Bus (As-A31)
These signals are driven by the bus master during address time, prior to the assertion of
/FCS. Any responding slave must latch as many of these lines as it needs on the falling edge
of /FCS, as they're tri-stated very shortly after /FCS goes low. These addresses always
include all configuration address bits for normal cycles, and the cycle type information for
Quick Interrupt cycles.

Short Address Bus (A2-A1)
These signals are driven by the bus master during address time, prior to the assertion of
/FCS, for full cycles, and prior to the assertion of /MTCR for short cycles. They stay valid
for the entire full or short cycle, and as such do not need to be latched by responding slaves.

Zorro Expansion Bus 413

Memory Space (FCo-FC2)
The memory space bits are an extension to the bus address, indicating which type of access is
taking place. Zorro III PICs must pay close attention to valid memory space types, as the
space type can change the type of the cycle driven by the current bus master. The encoding
is the same as the valid Motorola function codes for normal accesses. These are driven at
address time, and like the low short address, are valid for an entire short or full cycle.

FCo FC1 FC2 Address Space Type Z3 Response

0 0 0 Reserved None

0 0 1 User Data Space Memory

0 1 0 User Program Space Memory

0 1 1 Reserved None

1 0 0 Reserved None

1 0 1 Supervisor Data Space Memory

1 1 0 Supervisor Program Space Memory

1 1 1 CPU Space Interrupts

Table K-1: Memory Space Type Codes

Compatibility Cycle Strobe (/CCS)
This is equivalent to the Zorro II address strobe, /AS. A Zorro III PIC doesn't use this for
normal operation, but may use it during the autoconfiguration process if configuring at the
Zorro II address. AUTOCONFIG cycles at $00E8xxxx always look like Zorro II cycles,
though /FCS and the full Zorro III address is available, so a card can use either Zorro II or
Zorro III addressing to start the cycle. However, using the /CCS strobe can save the designer
the need to compare the upper 8 bits of the address. Data must be driven Zorro II style,
though if the /DSN lines are respected for reads, /CINH is asserted, and /MT ACK is negated,
the resulting Zorro III cycle will fit within the expected Zorro II cycle generated by the bus
controller. Yes, that should sound weird; it's based on the mapping of Zorro II vs. Zorro III
signals, and of course the fact that /FCS always starts any cycle. Also note that a bus cycle
with /CCS asserted and /FCS negated is always a Zorro II PIC-as-master cycle. Many Zorro
III cards will instead configure at the alternate $FFOOxxxx base address, fully in Zorro III
mode, and thus completely ignore this signal.

Full Cycle Strobe (!FCS)
This is the standard Zorro III full cycle strobe. This is asserted by the bus master shortly
after addresses are valid on the bus, and signals the start of any kind of Zorro III bus cycle.
Shortly after this line is asserted, all the multiplexed addresses will go invalid, so in general,
all slaves latch the bus address on the falling edge of /FCS. Also, /BGN line is negated for a
Zorro III mastered cycle shortly after /FCS is asserted by the master.

414 Amiga Hardware Reference Manual

DATA AND RELATED CONTROL SIGNALS

The data time signals here manage the actual transfer of data between master and slave for both
full and short cycle types. The burst mode signals are here too, as they're basically data phase
signals even through they don't only concern the transfer of data.

Data Output Enable (DOE)
This signal is used by an expansion card to enable the buffers on the data bus. The bus
master drives this line is to keep slave PICs from driving data on the bus until data time.

Data Bus (Do-D3I)
This is the Zorro III data bus, which is driven by either the master or the slave when DOE is
asserted by the master (based on READ). It's valid for reads when /DTACK is asserted by
the slave; on writes when at least one of /DSN is asserted by the master, for all cycle types.

Data Strobes (/DSN)
These strobes fall during data time; /DS3 strobes D24-D3I, while /DSo strobes Do-D7. For
write cycles, these lines signal data valid on the bus. At all times, they indicate which bytes
in the 32-bit data word the bus master is actually interested in. For cachable reads, all four
bytes must be returned, regardless of the value of the sizing strobes. For writes, only those
bytes corresponding to asserted /DSN arc written. Only contiguous byte cycles are
supported; e.g., /DS3-0 = 2, 4, 5, 6, or 10 is invalid.

Data Transfer Acknowledge (/DT ACK)
This signal is used to normally terminate a Zorro III cycle. The slave is always responsible
for driving this signal. For a read cycle, it asserts /DT ACK as soon as it has driven valid data
onto the data bus. For a write cycle, it asserts /DTACK as soon as it's done with the data.
Latching the data on writes may be a good idea; that can allow a slave to end the cycle before
it has actually finished writing the data to its local memory.

Cache Inhibit (/CINH)
This line is asserted at the same time as /SLA YEN to indicate to the bus master that the cycle
must not be cached. If a device doesn't support caching, it must assert /CINH and actually
obey the /DSN byte strobes for read cycles. Conversely, if the device supports caching,
/CINH is negated and the device returns all four bytes valid on reads, regardless of the actual
supplied /DSN strobes.

Multiple Cycle Transfers (!MTCR, /MT ACK)
These lines comprise the Multiple Transfer Cycle handshake signals. The bus master asserts
/MTCR at the start of data time if it's capable of supporting Multiple Transfer Cycles, and
the slave asserts /MTACK with /SLA YEN if it's capable of supporting Multiple Transfer
Cycles. If the handshake goes through, /MTCR strobes in the short address and write data as
long as the full cycle continues.

Zorro Expansion Bus 415

Timing

Some of this information is considered preliminary. Nothing is expected to get any more speed
critical, but as mentioned previously, the testing of Zorro III designs has just started at the time of
this writing, final bus controllers are not yet available, and only a few PIC designs have even been
conceived.

This section covers the various timing specifications in detail for different Zorro III operations.
It's important to realize that this timing information is a specification. Actual Zorro III systems
may offer much more relaxed timings. Today. The whole point of the specification is that as
long as all Zorro III PICs and all Zorro III backplanes base things on the timings given here,
they'll always work together nicely. Any design based on the actual characteristics of any
particular backplane will very likely wind up working only on that particular backplane.

The philosophy of timing on the Zorro III bus is to keep things as simple as possible without
compromising the performance goals of the bus. Zorro III PICs are expected to be based on F­
Series or ACT-series TTL logic, fast PALs, and possibly full custom chip designs. It's very
unlikely the designer will meet any of these specifications with the LS parts left over from old
Zorro II card designs.

STANDARD READ CYCLE TIMING

No. Name Symbol Min Max

1 Address setup to /FCS TAFS 15ns

2 Address hold from /FCS Tl!AF IOns

3 /FCS to /SLA YEN delay TSLV 25ns

4 /FCS to DOE delay TDOE 30ns

5 DOE to /DSN delay Tos IOns

6 Data setup to /DT ACK TRos Ons

7 /DT ACK to /FCS off TOFF IOns

8 Master signal hold from /FCS off THMC Ons 5ns

9 Slave signal hold from /FCS off THSC Ons 15ns

11 /FCS to /CCS delay Tees 35ns 175ns

12 /CCS off to /FCS off TOVL 40ns

416 Amiga Hardware Reference Manual

/FCS \ I
-I +----@ @-J 4-

A3I-A8 I \
\ I

Q)--J 4-

A1-A2 I \
\ I

READ

I \

~ cv---. 4-
-

/SLAVEN \ I
4

DOE

I \

~
/DSN \ I

D3I-Do I \
-

\ I

@--t ~
/DTACK \ 7

-

I
~ @--I 4-

/CCS \ I

Figure K-10: Read Cycle Timing

Zorro Expansion Bus 417

STANDARD WRITE CYCLE TIMING
No. Name Symbol Min Max

I Address setup to /FCS TAFS I5ns

2 Address hold from /FCS THAF IOns

3 /FCS to /SLAVEN delay TSLV 25ns

4 /FCS to DOE delay TDOE 30ns

5 DOE to /DSN delay Tos IOns

7 /DTACK to /FCS off TOFF IOns

8 Master signal hold from FCS off THMe Ons 5ns

9 Slave signal hold from /FCS off THse Ons I5ns

IO Write data setup to /DSN Twos 5ns

11 /FCS to /CCS delay Tees 35ns I75ns

12 /CCS off to /FCS off TOVL 40ns

418 Amiga Hardware Reference Manual

!FCS \ I
-} ~ ~ ~

A3t-As I 1\
\ v

Q)--t ~
A1-A2 I \

\ I

READ \ I
.-Q)---1 ®--t 4-

/SLAVEN \
-

I
4 --'

DOE

I \
~

/DSN

1\ I
-} ~

D3t-Do
I \
\ I

7
/DTACK \

1--

I

!CCS
~ ®---- 4--

\ I

Figure K-11: Write Cycle Timing

Zorro Expansion Bus 419

---- -- ---- -- -------------------------------------

MULTIPLE TRANSFER CYCLE TIMING
No. Name Symbol Min Max

I Address setup to /FCS TAFS I5ns

2 Address hold from /FCS THAF IOns

3 /FCS to /SLA YEN, /MTACK delay TSLV 25ns

4 /FCS to DOE delay TDOE 30ns

5 DOE to /DSN, /MTCR delay Tos IOns

6 Data setup to /DT ACK TRDS Ons

7 /DT ACK to /FCS, /MTCR off TOFF IOns

8 Master signal hold from /FCS off THMC Ons 5ns

9 Slave signal hold from /FCS off THSC Ons I5ns

10 Write data setup to /DSN Twos 5ns

13 Address, READ setup to /MTCR TAMS 5ns

I4 /MTCR off to /MTCR on TREF IOns

I5 Address, READ hold from /MTCR THAM Ons

I6 /MTACK off to /MTCR TBCD IOns

I7 Slave signal hold from /MTCR off THSM Ons 5ns

420 Amiga Hardware Reference Manual

/FCS \ I
~ ~ ~ I--

A31-As I 1\
\ v

CD--- ~ @-J ~
A1-A2 I X \

\ I

~ +--- ®---- ~
!MTCR \ r r\ n I

~ ~

READ \
~ ®-f ~

/SLAVEN \
r-

I
~ ~

/MTACK \ I

DOE
HD---

I \
CD-- f-

/DSN \ n I
~ ~-®

D31-Do I X \
\ I

@--J f- ~
/DTACK \ n

Figure K-12: Multiple Transfer Cycle Timing

Zorro Expansion Bus 421

QUICK INTERRUPT CYCLE TIMING
No. Name Symbol Min Max

1 Address setup to /FCS TAFS 15ns

2 Address hold from /FCS THAF IOns

3 IFCS to ISLA YEN delay TSLV 25ns

5 DOE to /DSN delay Tos IOns

6 Data setup to /DTACK TR.os Ons

7 /DTACK to /FCS off TOFF tOns

8 Master signal hold from /FCS off THMC Ons 5ns

9 Slave signal hold from /FCS off THSC Ons 15ns

14 /MTCR off to /MTCR on TREF tOns

17 Slave signal hold from /MTCR off THSM Ons 5ns

18 Poll Phase time TPOL 30ns lOOns

19 Vector Phase start to /DT ACK time TVEC lOOns

422 Amiga Hardware Reference Manual

/FCS \ I
--t t--@ @-i f-

A31-As I \
\ I

Q)-t ~
A1-A2 I \

\ I

18 14 @--J
/MTCR \ I \ I

~ @-I f- ~ ~
/SLAVEN \ 1\ I

I \ DOE

--t ~
/DS1 \ I

D7-Do I _
\ j

®-t ~
/DTACK \ ~

-

I

Figure K-13: Quick Interrupt Cycle Timing

Zorro Expansion Bus 423

Electrical Specifications

The Zorro III bus has a number of electrical specifications that are very important for
PICdesigners to consider, along with the timing parameters of course. It's extremely important to
base designs on the specification of the backplane, rather than the actual behavior of the
backplane. New backplanes for new machines are designed to conform to the specification, they
are not necessarily based on previous designs. This is especially important with the Zorro III bus,
since timing is far more critical than in the past, and the bus controller is designed from this
specification, rather than the reverse, as in the Amiga 2000.

EXPANSION BUS LOADING

The Zorro III bus loading is specified based on typical TIL family "F" series buffer devices,
though in reality, compatible CMOS devices are likely to be used in some bus controllers or
PICs. Thus, it's important to accept the TIL levels as a minimum voltage level, and make sure
that all inputs are the appropriate TIL levels, while outputs can be at TIL or CMOS voltage
levels as long as they provide the required source and sink.

While some A2000 designs used "LS" or "ALS" buffers instead of "F," the bus will generally
work with these older cards, at least with current backplane designs such as the A3000 backplane.
However, Zorro III designs must exactly obey these loading rules; it's very probable that some
future Zorro III machines will have a large number of slots. In such machines, PICs built on the
Zorro II specification will still work in a lightly loaded bus, but may not function in a fully loaded
bus. All Zorro III PICs built to spec will work in any Zorro III backplane, without any loading
problems, if all loading and timing rules are followed by the PIC designer. The bus signals are
divided up into the four groups shown in Table 9-2, based on the loading characteristics of the
particular signal. The signals in each group are given here. Standard Signals

424 Amiga Hardware Reference Manual

The majority of signals on the bus are in this group. These are bussed signals, driven actively on
the bus by F-series (or compatible) drivers such as 74F245, usually tri-stated when ownership of
the signal changed for master and slave, and generally terminated with a 220.Q/330Q thevenin
terminator. PICs can apply two standard loads to each of these signals when necessary.

/FCS
Az-A7
FCo-FC2
/MfCR

Clock Signals

!CCS
ADs-AD31
DOE
/MfACK

/DSo-/DS3
SDo-SD1
/IORST

/LOCK
READ

/BCLR

All clock signals on the bus are in this group. Many designs are very sensitive to clock delay,
skew, and rise/fall times, so loading on the clock lines must be kept to a minimum. These are
bussed signals, actively driven by the backplane, and source terminated with a low value series
resistor. PICs can apply one standard load to each of these signals when necessary. Zorro II cards
have the same clock rules, so there should never be clocking problems when using either card
type in a backplane.

/C3
EOock

CDAC

Open Collector Signals

/Cl 7M

Many of the bus signals are shared via open collector or open drain outputs rather than via tri­
stated signals; this is of course required for some asynchronous things like the shared interrupt
lines, and it works well for other types of signals as well. Of course, a backplane resistor pulls
these lines high, PICs only drive the line low.

/OWN
/DTACK
/HLT

Non-bussed Signals

/BGACK
/RESET

/CINH
/INT2

/BERR
/INT6

The non-bussed, or slot specific, signals are involved with only one slot on the bus (e.g., each slot
has its own copy). As a result, the drive requirements are much less for these signals. The
backplane provides pullups or pulldowns, as required by the specific signal.

/CFGINN
SenseZ3

/CFGOUTN
/SLAVEN

/BRN /BGN

Zorro Expansion Bus 425

SLOT POWER AVAILABILITY

The system power for the Zorro III bus is totally based on the slot configurations. A backplane is
always free to supply extra power, but it must meet the minimum requirements specified here.
All PICs must be designed with the minimum specifications in mind, especially the tolerances.

Pin

5,6
8
10
20

Supply

+5 VDC ± 5%@ 2 Amps
-5 VDC±5%@ 60mA
+ 12 VDC ± 5%@ 500mA
-12 VDC ± 5%@ 60mA

TEMPERATURE RANGE

The Zorro III bus is specified for operation over a temperature range of 0° C to 70° C.

426 Amiga Hardware Reference Manual

Mechanical Specifications

This section covers the various mechanical details of Zorro III cards.

Zorro Expansion Bus 427

BASIC ZORRO Ill PIC

This drawing shows the
basic Zorro III PIC. All of
the dimensions are in
millimeters.

1

~1

~l

T l
428 Amiga Hardware Reference Manual

I l

{~!
a l

~

r-:; '\1
! I

114.S

60 22 55

I I
L: ~

~ :g

.-'-----

~

~

-,.___,_=

I
I

!OO.S

----- ·-

PIC WITH ISA OPTION

This drawing shows the
basic Zorro III PIC, with
both Zorro III and the ISA
Bus fingers specified. All
of the dimensions are in
millimeters.

1
:

~r

:1
i

1 I ---· r ~
c
] 0

~

rr: h
I

IOO.S

I14.S

22 ss
I

I J
~ ~ ~

~

r--1-C

N :a ;e
~

:c~
~
~

-
..
~

:c -

~

~ ~
:!l
~

-..___.=

Zorro Expansion Bus 429

PIC WITH VIDEO OPTION

This drawing shows the
basic Zorro III PIC, with
both Zorro III and the
Amiga Video Slot fingers
specified. All of the
dimensions are in milli­
meters. Please consult the
A500!A2000 Technical
Reference Manual for the
form factor specification of
a video-only card that will
fit both Amiga 2000 and
Amiga 3000 computers.

1

~T

:1
T

430 Amiga Hardware Reference Manual

I

I

60

{~
~

r-;:; F\l
I

!OO.S

.. _lH_.s ____

22. ss

I I I
L2 ~ ~ ..

::i

.- 4111111~---;

"' 1:1

~
:e

;

:c:~

~ .. ~
;

-~.--=

----~ -

~

~

'-r-=

AUTOCONFIG™

THE AUTOCONFIG MECHANISM

The AUTOCONFIG mechanism used for the Z<mo III bus is an extension of the original Zarro II
configuration mechanism. The main reason for this is that the Zarro II mechanism works so well,
there was little need to change anything. The changes are simply support for new hardware
features on the Zarro III bus.

Amiga autoconfiguration is surprisingly simple. When an Amiga powers up or resets, every card
in the system goes to its unconfigured state. At this point, the most important signals in the
system are /CFGINN and /CFGOUTN. As long as a card's /CFGINN line is negated, that card sits
quietly and does nothing on the bus (though memory cards should continue to refresh even
through reset, and any local board activities that don't concern the bus may take place after
/RESET is negated). As part of the unconfigured state, /CFGOUTN is negated by the PIC
immediately on reset.

The configuration process begins when a card's /CFGINN line is asserted, either by the backplane,
if it's the first slot, or via the configuration chain, if it's a later card. The configuration chain
simply ensures that only one unconfigured card will see an asserted /CFGINN at one time. An
unconfigurcd card that sees its /CFGINN line asserted will respond to a block of memory called
configuration space. In this block, the PIC will assert a set of read-only registers, followed by a
set of write-only registers (the read-only registers are also known as AUTOCONFIG ROM).
Starting at the base of this block, the read registers describe the device's size, type, and other
requirements. The operating system reads these, and based on them, decides what should be
written to the board. Some write information is optional, but a board will always be assigned a
base address or be told to shut up. The act of writing the final bit of base address, or writing
anything to a shutup address, will cause the PIC to assert its /CFGOUTN, enabling the next board
in the configuration chain.

The Zarro II configuration space is the 64K memory block $00E8xxxx, which of course is driven
with 16-bit Zarro II cycles; all Zarro II cards configure there. The Zorro III configuration space is
the 64K memory block beginning at $FF00xxxx, which is always driven with 32-bit Zarro III
cycles (PICs need only decode A3t-A24 during configuration). A Zarro III PIC can configure in
Zarro II or Zorro III configuration space, at the designer's discretion, but not both at once. All
read registers physically return only the top 4 bits of data, on 03!-028 for either bus mode. Write
registers are written to support nybble, byte, and word registers for the same register, again based
on what works best in hardware. This design attempts to map into real hardware as simply as
possible. Every AUTOCONFIG register is logically considered to be 8 bits wide; the 8 bits
actually being nybblcs from two paired addresses.

Zorro Expansion Bus 431

The register mappings for the two different blocks are shown in Figure 9-10. All the bit patterns
mentioned in the following sections arc logical values. To avoid ambiguity, all registers are
referred to by the number of the first register in the pair, since the first pair member is the same
for both mapping schemes. In the actual implementation of these registers, all read registers
except for the 00 register are physically complemented; eg, the logical value of register 3C is
always 0, which means in hardware, the upper nybbles of locations $00E8003C and $00E8003E,
or $FF00003C and $FF00013C, both return all 1s.

$00E80000 $FFOOOOOO
!@] I I I a) Zorro II Style Mapping

................... , ___ _ WJill _J I I I I b) Zorro III Style Mapping
... ~ --

(OOI02) 17 !6lsl413I2III_91
------- -

~~--n\ ___ _
$00E80002

Figure K-14: Configuration Register Mapping

REGISTER BIT ASSIGNMENTS

The actual register assignments are below. Most of the registers are the same as for the Zarro II
bus, and are included here for completeness. The Amiga OS software names for these registers in
the ExpansionRom or Expansion Control structures are included.

Reg ZII ZIII Bit

00 02 100 7,6 These bits encode the PIC type:
(er_Type)

00 Reserved
01 Reserved
10 Zarro III
11 Zarro II

5 If this bit is set, the PIC's memory will be linked into the system free
pool. The Zarro III register 08 may modify the size of the linked memory.

432 Amiga Hardware Reference Manual

4 Setting this bit tells the OS to read an autoboot ROM.

3 This bit is set to indicate that the next board is related to this one; often
logically separate PICs are physically located on the same card.

2-0 These bits indicate the configuration size of the PIC. This size can be
modified for the Zarro III cards by the size extension bit, which is the new
meaning of bit 5 in register 08.

Bits
000
001
010
011
100
101
110
111

Unextended
8 megabytes
64 kilobytes
128 kilobytes
256 kilobytes
512 kilobytes
1 megabyte
2 megabytes
4 megabytes

Extended
16 megabytes
32 megabytes
64 megabytes
128 megabytes
256 megabytes
512 megabytes
1 gigabyte
RESERVED

04 06 104 7-0 The device's product number, which is completely up to the manufacturer.
(er_Product) This is generally unique between different products, to help in

identification of system cards, and it must be unique between devices using
the automatic driver binding features.

08 OA 108 7 This was originally an indicator to place the card in the 8 megabyte Zarro II
(er_Flags) space, when set, or anywhere it'll fit, if cleared. Under the Zarro III

spec, this is set to indicate that the board is basically a memory device,
cleared to indicate that the board is basically an 1/0 device.

6 This bit is set to indicate that the board can't be shut up by software,
cleared to indicate that the board can be shut up.

5 This is the size extension bit. If cleared, the size bits in register 00
mean the same as under Zorro II, if set, the size bits indicate a new size.
The most common new Zorro III sizes are the smaller ones; all new sized cards
get aligned on their natural boundaries.

4 Reserved, must be 1 for all Zorro III cards.

3-0 These bits indicate a board's sub-size; the amount of memory actually
required by a PIC. For memory boards that auto-link, this is the actual
amount of memory that will be linked into the system free memory pool. A
memory card, with memory starting at the base address, can be automatically
sized by the Operating System. This sub-size option is intended to support
cards with variable setups without requiring variable physical configuration
capability on such cards. It also may greatly simplify a Zorro III design,
since 16-megabyte cards and up can be designed with a single latch and

Zorro Expansion Bus 433

comparator for base address matching, while 8 megabyte and smaller PICs
require large latch/comparator circuits not available in standard TIL
packages.

Bits Encoding
0000 Logical size matches physical size
0001 Automatically sized by the Operating System
0010 64 kilobytes
0011 128 kilobytes
0100 256 kilobytes
0101 512 kilobytes
0110 1 megabyte
0111 2 megabytes
1000 4 megabytes
1001 6 megabytes
1010 8 megabytes
1011 10 megabytes
1100 12 megabytes
1101 14 megabytes
1110 Reserved
1111 Reserved

For boards that wish to be automatically sized by the operating system, a few
rules apply. The memory is sized in 512K increments, and grows from the base
address upward. Memory wraps are detected, but the design must insure that
its data bus doesn't float when the sizing routine addresses memory locations
that aren't physically present on the board; data bus pull ups or pulldowns
are recommended. This feature is designed to allow boards to be easily
upgraded with additional or increased density memoried without the need for
memory configuration jumpers.

OC OE 10C 7-0 Reserved, must be 0.
(er _ Reserved03)

10
14

18
lC
20
24

12 110 7-0
16 114 7-0
(er _Manufacturer)

1A 118 7-0
1E llC 7-0
22 120 7-0
26 124 7-0
(er_SeriaiNumber)

Manufacturer's number, high byte.
Manufacturer's number, low bytes. These are unique, and can only be assigned
by Commodore (CATS).

Optional serial number, byte 0 (msb)
Optional serial number, byte 1
Optional serial number, byte 2
Optional serial number, byte 3 (lsb)
This is for the manufacturer's use and can contain anything at all. The
main intent is to allow a manufacturer to uniquely identify individual
cards, but it can certainly be used for revision information or other data.

434 Amiga Hardware Reference Manual

28 2A 128 7-0 Optional ROM vector, high byte.

2C 2E 12C 7-0 Optional ROM vector, low byte.
(er_InitDiagVec) If the ROM address valid bit (bit 4 of register (00102)) is set, these two

registers provide the sixteen bit offset from the board's base at which the
start of the ROM code is located. If the ROM address valid bit is cleared,
these registers are ignored.

30 32 130 7-0 Reserved, must be 0. Unsupported base register reset register under Zorro
(er_ReservedOc) II~

34 36 134 7-0
(er _ ReservedOd)

38 3A 138 7-0
(er _ ReservedOe)

3C 3E 13C 7-0
(er _ ReservedOI)

40 42 140 7-0
(ec _Interrupt)

44 46 144 7-0
48 4A 148 7-0

(ec_Z3_HighByte)

(ec _ BaseAddress)

Reserved, must be 0.

Reserved, must be 0.

Reserved, must be 0.

Reserved, must be 0. Unsupported control state register under Zorro n?

High order base address register, write only.
Low order base address register, write only.
The high order register takes bits 31-24 of the board's configured address,
the low order register takes bits 23-16. For Zorro III boards configured in
the Zorro II space, the configuration address is written both nybble and
byte wide, with the ordering:

Reg Nybble Byte

46 A27-A24 N/A
44 A31-A2s A31-A24
4A AI9-Al6 N/A
48 A23-A2o A23-At6

6 The original Zmo specifications called for a few registers, like these, that remained active after configuration.
Support for this is impossible, since the configuration registers generally disappear when a board is configured, and
absolutely must move out of the $00E8xxxx space. So since these couldn't really be implemented in hardware, system
software has never supported them. They're included here for historical purposes.

7 IBID

Zorro Expansion Bus 435

Note that writing to register 48 actually configures the board for both
Zorro II and Zorro III boards in the Zorro II configuration block. For
Zorro III PICs in the Zorro III configuration block, the action is slightly
different. The software will actually write the configuration as byte and
word wide accesses:

Reg Byte Word

48 A23-AI6 N/A
44 A3t-A24 A3t-At6

The actual configuration takes place when register 44 is written, thus
supporting any physical size of configuration register.

4C 4E 14C 7-0 Shut up register, write only. Anything written to 4C will cause a board
(ec_Shutup) that supports shut-up to completely disappear until the next reset.

so 52 150 7-0 Reserved, must be 0.
54 56 154 7-0 Reserved, must be 0.
58 SA 158 7-0 Reserved, must be 0.
sc 5E 15C 7-0 Reserved, must be 0.
60 62 160 7-0 Reserved, must be 0.
64 66 164 7-0 Reserved, must be 0.
68 6A 168 7-0 Reserved, must be 0.
6C 6E 16C 7-0 Reserved, must be 0.
70 72 170 7-0 Reserved, must be 0.
74 76 174 7-0 Reserved, must be 0.
78 7A 178 7-0 Reserved, must be 0.
7C 7E 17C 7-0 Reserved, must be 0.

436 Amiga Hardware Reference Manual

Physical and Logical Signal Names

The Amiga 3000 Bus signals vary based on the particular bus mode in effect. This table lists each
physical pin by physical name, and then by the logical names for Zorro II mode, Zorro III mode,
address phase, and Zorro III data mode, data phase.

PIN Physical Zorro II Zorro III Zorro III
NO. Name Name Address Phase Data Phase

1 Ground Ground Ground Ground
2 Ground Ground Ground Ground
3 Ground Ground Ground Ground
4 Ground Ground Ground Ground
5 +5VDC +5VDC +5VDC +5VDC
6 +5VDC +5VDC +5VDC +5VDC
7 /OWN /OWN /OWN /OWN
8 -5VDC -5VDC -5VDC -5VDC
9 /SLAVEN /SLAVEN /SLAVEN /SLAVEN
10 +12VDC +12VDC +12VDC +12VDC
11 /CFGOUTN /CFGOUTN /CFGOUTN /CFGOUTN
12 /CFGINN /CFGINN /CFGINN /CFGINN
13 Ground Ground Ground Ground
14 /C3 /C3 Clock /C3 Clock /C3 Clock
15 CDAC CDACClock CDAC Clock CDAC Clock
16 /C1 /C1 Clock /C1 Clock /Cl Clock
17 /CINH /OVR /CINH /CINH
18 /MTCR XRDY /MTCR /MTCR
19 liNTz /INT2 /INT2 /INT2
20 -12VDC -12VDC -12VDC -12VDC
21 As As As As
22 /INT6 /INT6 /INT6 /INT6
23 A6 A6 A6 A6
24 A4 A4 A4 A4
25 Ground Ground Ground Ground
26 A3 A3 A3 A3
27 A2 A2 A2 A2
28 A1 A1 A1 A1
29 !LOCK AI /LOCK !LOCK
30 ADs As As Do
31 FCo FCo FCo FCo
32 AD9 A9 A9 D1
33 FC1 FC1 FC1 FC1
34 AD10 Aw Aw D2
35 FC2 FC2 FC2 FC2
36 AD11 A11 A11 03
37 Ground Ground Ground Ground

Zorro Expansion Bus 437

PIN Physical Zorro II Zorro III Zorro III

NO. Name Name Address Phase Data Phase

38 AD12 A12 A12 D4

39 ADI3 A13 A13 Ds

40 Reserved (/EINT7) Reserved Reserved

41 ADI4 AI4 At4 D6
42 Reserved (fEINTs) Reserved Reserved

43 ADIS Ats Ats D7
44 Reserved (!EINT4) Reserved Reserved

45 ADt6 At6 AI6 Ds

46 /BERR /BERR /BERR /BERR
47 ADI7 AI7 An D9
48 /MTACK (!YPA) /MTACK /MTACK
49 Ground Ground Ground Ground
50 EOock E Clock EOock EOock
51 /DSo (!YMA) /DSo /DSo
52 ADIS AI8 AI8 DIO

53 /RESET /RST /RESET /RESET
54 ADI9 AI9 AI9 D11

55 /HLT /HLT /HLT /HLT

56 AD2o A2o Azo D12
57 AD22 A22 A22 DI4

58 AD21 A2I A21 D13

59 AD23 A23 A23 DIS
60 /BRN /BRN /BRN /BRN
61 Ground Ground Ground Ground
62 /BGACK /BGACK /BGACK /BGACK
63 AD3I DIS A31 D3I
64 /BGN /BGN /BGN /BGN
65 AD3o DI4 A3o D30
66 /DTACK /DTACK /DTACK /DTACK
67 AD29 D13 A29 D29
68 READ READ READ READ
69 AD2s D12 A2s 028
70 /DS2 /LDS /DS2 /DS2
71 AD21 D11 A27 D21
72 /DS3 IUDS /DS3 /DS3
73 Ground Ground Ground Ground
74 !CCS /AS !CCS !CCS
75 SDo Do Reserved DI6
76 AD26 D10 A26 D26
77 SDI DI Reserved DI7
78 AD2s D9 Azs 02s
79 SD2 D2 Reserved DIS
80 AD24 Ds A24 D24
81 SD3 D3 Reserved DI9
82 SD7 D7 Reserved D23

438 Amiga Hardware Reference Manual

PIN Physical Zorro II Zorro III Zorroill
NO. Name Name Address Phase Data Phase

83 SD4 D4 Reserved D2o
84 SD6 D6 Reserved D22
85 Ground Ground Ground Ground
86 SDs Ds Reserved D21
87 Ground Ground Ground Ground
88 Ground Ground Ground Ground
89 Ground Ground Ground Ground
90 Ground Ground Ground Ground
91 SenseZ3 Ground SenseZ3 SenseZ3
92 1M E7M 7M 7M
93 DOE DOE DOE DOE
94 /IORST /BUSRST /IORST /IORST
95 /BCLR /GBG /BCLR /BCLR
96 Reserved (fEINT I) Reserved Reserved
97 /FCS No Connect /FCS /FCS
98 /DSI No Connect /DSI /DSI
99 Ground Ground Ground Ground
100 Ground Ground Ground Ground

Zorro Ill Implementations

Functionally, there are two possible implementation levels in existance for the Zorro III bus. All
of the features described in this chapter are required for a full compliance Zorro III bus.
However, the original Amiga 3000 computers were shipped with a bus controller that supported
only a subset of the Zorro III specification published here. This is, however, upgradable.

The A3000 implementation of the Zorro III bus is driven by a custom controller chip called Fat
Buster. The specification of this chip and the A3000 hardware are fully capable of supporting the
complete Zorro III bus, but the initial silicon on Fat Buster, called the Level 1 Fat Buster, omits
some features. Missing are: support of Multiple Transfer Cycles; support for Zorro III style bus
arbitration; support for Quick Interrupts.

The Level 2 version of Fat Buster has been in testing for some time at Commodore in West
Chester, P A. Any developers who immediately intend to design PICs supporting these features
are urged to contact Commodore Amiga Technical Support/Amiga Developer Support for more
information on obtaining samples of this part for use in A3000 systems. These parts are likely to
be introduced into production, and available as part of an A3000 upgrade, very soon. All Buster
chip revisions ''13G'' and earlier support the Level 1 features. Buster chip revisions '' 13H'' and
later support Level 2 features and improved Level 1 features as well.

Zorro Expansion Bus 439

GLOSSARY

address
A byte-numbered memory location. The Zorro II bus is based on a 24-bit address, the Zorro
III bus on a 32-bit address.

A gnus
One of the three main Amiga custom chips. Contains the blitter, copper, and DMA circuitry.

aliasing distortion
A side effect of sound sampling, where two additional frequencies are produced, distorting
the sound output.

Alt keys
Two keys on the keyboard to the left and right of the Amiga keys.

Amiga keys
Two keys on the keyboard to the left and right of the space bar.

AmigaDOS
The disk operating system (DOS) used by Amiga computers.

amplitude
In audio applications, the voltage or current output expressed as volume from a sound
speaker.

amplitude modulation
In audio applications, a means of producing complex audio effects by using one audio
channel to alter the amplitude of another.

arbitration
The unambiguous selection of one request out of a number of possible simultaneous requests
for a resource. There are two kinds of arbitration in a Zorro III system; bus arbitration and
quick interrupt arbitration.

asserted
The active state of a state, regardless of its logic sense.

Glossary 441

atomic cycle
A cycle or set of cycles that are uninterruptable, and thus treated as a unit; both Multiple
Transfer and LOCKed cycles are considered atomic under the Zorro III bus.

attach mode
1. With sprites, a mode in which a sprite uses two DMA channels for additional colors. 2. In
sound production, combining two audio channels for frequency/amplitude modulation or for
stereo sound.

AUTOCONFIGTM
>From "automatic configuration," the Zorro bus specification for how software and
hardware cooperate to permit PIC addresses to be set by software and PIC type information
to be determined by software.

automatic mode
1. With sprites, the normal mode in which the sprite DMA channel automatically retrieves
and displays all of the data for a sprite. 2. In audio applications, the normal mode in which
the audio DMA channels automatically retrieve sound data.

backplane
The cage or motherboard subsection into which PICs are inserted. The Amiga 2000 and
Amiga 3000 computers have integral backplanes, the Amiga 500 and Amiga 1000 computers
require add-on backplane cages for Zorro II compatibility.

barrel shifter
Blitter circuit that allows movement of images on pixel boundaries.

baud rate
Rate of data transmission through a serial port.

beam counters
Registers that keep track of the position of the video beam.

bitmap.
An image made up of pixels. A bitmap is a complete definition for a video display
consisting of one or more bitplanes stored in memory.

bitplane
A contiguous area of memory set aside for the video display and logically organized as if it
were a rectangular shape. All displays consist of one or more bitplanes; each additional
bitplane doubles the number of colors that can be displayed.

bitplane animation
A means of animating the display by moving around blocks of playfield data with the blitter.

blanking interval
Time period when the video beam is outside the display area.

442 Amiga Hardware Reference Manual

blitter
An Amiga coprocessor with its own DMA channel used for data copying and line drawing.

burst
A short name for Multiple Transfer Cycle mode. Essentially, within one full Zorro III cycle
there can be any number of Multiple Transfer Cycles. Each full cycle has a complete 32-bit
address supplied and a complete 32-bit datum transferred. Each burst cycle supplies only the
8-bit page address, but transfers a complete 32-bit datum faster than the standard full cycle
would allow.

bus cycle
One complete bus transaction, indicated by the assertion of at least one cycle strobe. For any
single bus cycle, there is one address, one data value, one data direction, and one cycle type
in effect.

bus hogging
When a bus master takes over the bus for an undue amount of time. The Zorro II bus leaves
it completely up to the individual PIC to avoid bus hogging; the Zorro III bus schedules PICs
with the bus controller to evenly distribute the bus load.

bus starvation
When a master can't get access to the bus, it is said to be starved. On the Zorro II bus, two
busy masters can completely starve a third master. Complete starvation is impossible on the
Zorro III bus, though a bus hogging Zorro II card can cause similar symptoms.

byte
A collection of eight signals into a logical group, and the smallest independently addressable
quantity on the Zorro bus.

Chip RAM
The area of memory accessible to the Amiga's custom chip set used for graphics and sound
data. The amount of Chip RAM varies from 512K to 2 megabytes depending on the Amiga
model. See Fast RAM.

clear

CLI

1. To change a bit or flag to 0, its off or disabled state. Opposite of set. 2. To erase a screen
or window display.

See Command Line Interface.

clipping
When a portion of a sprite is outside the display window and thus is not visible.

clock
A free running signal driven at a fixed frequency to the bus, used mainly for clocking state
machines on Zorro II cards.

Glossary 443

collision
A means of detecting when sprites, playfields, or playfield objects attempt to overlap in the
same pixel position or attempt to cross some pre-defined boundary.

color descriptor words
Pairs of words that define each line of a sprite.

color indirection
The method used by the Amiga for coloring individual pixels. For each pixel, a binary
number is formed from corresponding bits in each bitplane which refers to one of the 32
color registers.

color palette
See color table.

color register
One of 32 hardware registers containing colors that you can define. In general, each color
register can be set to one of 4,096 colors from the Amiga's palette.

color table
The set of 32 color registers.

Command Line Interface (Shell or CLI)
A means of communicating with a computer by typing commands at the keyboard. On the
Amiga, this is called the Shell and, along with Workbench and ARexx, is one of the three
built-~n user interfaces. Before the Shell was available, this interface was called the CLI.

composite video
A video signal, transmitted over a single coaxial cable, which includes both picture and sync
information.

controller
Hardware device, such as a mouse, joystick, or light pen, used to move the pointer or furnish
other input to the system.

coordinates
A pair of numbers shown in the form (x,y), where x is an offset from the left side of the
display or display window and y is an offset from the top.

copper
Display-synchronized coprocessor that resides on one of the Amiga custom chips and directs
the graphics display.

coprocessor
An extra processor that enhances system performance by doing a specialized task, such as
graphics or math, very quickly. This frees the main processor to do other work. Every
Amiga has at least three coprocessor chips named Paula, Agnus, and Denise to handle
graphics and audio.

444 Amiga Hardware Reference Manual

cursor keys
The four keys with directional arrows on them (found below the Del and Help keys on the
Amiga).

cycle strobe
A bus signal that defines the boundary of a bus cycle; the Zarro II and Zarro III modes on a
Zarro III bus each have their own cycle strobes. The current bus master always asserts the
cycle strobes.

data
The contents of a memory location. The main purpose of a bus cycle is to transfer data
between two locations. The Zarro II bus is based on a 16-bit data path, the Zarro III bus is
based on a 32-bit data path.

data fetch
The number of words fetched for each line of the display.

delay
In playfield horizontal scrolling, specifies how many pixels the picture will shift for each
display field. Delay controls the speed of scrolling.

Denise
One of the three main Amiga custom chips. Contains the circuitry for the color pallete,
sprites, and video output.

depth
Number of bitplanes in a display. Each additional bitplane doubles the number of colors that
can be displayed.

device
A PIC; e.g., a Zarro bus master or bus slave.

Digital-to-Analog Converter (DAC)
A device that converts a binary quantity to an analog level.

Direct Memory Access (DMA)
An arrangement that allows coprocessors or other system devices to read or write memory
directly, without having to interrupt the main processor. Devices that have direct access to
Zarro III slaves are said to have DMA capability. These devices are also called masters.

display field
One complete scanning of the video beam from top to bottom of the video display screen.

display mode
One of the basic types of display; for example, high or low resolution, interlaced or non­
interlaced, single or dual playfield.

Glossary 445

display time
The amount of time to produce one display field, approximately 1!60th of a second.

display window
The portion of the bitmap selected for display. Also, the actual size of the on-screen display.

DMA
See Direct Memory Access.

DMA latency
This is the time between a bus request and a bus grant as seen by a PIC wishing to become
bus master.

dual-playfield mode
A display mode that allows you to manage two separate display memories, giving you two
separately controllable displays at the same time.

Enhanced Chip Set (ECS)
The upgraded versions of the Amiga' s Agnus and Denise coprocessor chips. The ECS offers
new display modes and expands the Amiga's graphic capabilities. Many of the benefits of
the ECS are available only in conjunction with Release 2 of the operating system.

equal-tempered scale
A musical scale in which the frequency of each tone is the 12th root of 2 higher than the tone
below it. The equal-tempered scale is used in almost all musical styles.

Exec
The Amiga system module which manages memory and performs other important low-level
tasks.

Fast RAM
General-purpose memory used for programs and data; as opposed to Chip RAM.

font
A set of letters, numbers, and symbols sharing the same size and design.

frequency
In audio applications, the number of times per second a waveform repeats.

frequency modulation
In audio applications, a means of producing complex sounds by using one audio channel to
affect the period of the waveform produced by another channel.

genlock
An optional feature of the Amiga that allows you to combine an external video source with
Amiga's graphic display.

grant
The result of an arbitrated set of requests is a single grant; there are grants given for both the
bus and quick interrupts.

446 Amiga Hardware Reference Manual

HAM
See hold-and-modify.

hidden cycles
Cycles that occur on the local bus of a system, but can't be seen by devices on the expansion
bus.

high
A signal driven to a logical +5V state is said to be high.

high resolution (Hires)
A horizontal display mode in which 640 pixels are displayed across a horizontal line in a
normal-sized display. On the Amiga a high resolution display is often called Hires.

hold-and-modify (HAM)
A display mode that gives you extended color selection. Normally, the Amiga supports up to
32 different colors from a palette of 4,096. Hold-and-modify (HAM mode) allows all 4,096
colors on the screen at one time by placing some restrictions on which colors may be
displayed near each other.

interlace mode
A vertical display mode where 400 lines are displayed from top to bottom of the video
display in a normal-size display.

interrupt
An asynchronous line driven by a PIC to notify the CPU of some event, usually some
hardware event governed by that PIC.

joystick
A controller device with a handle that swings up, down, left, or right, used to position some­
thing on the screen.

light pen
A controller device consisting of a stylus and tablet used for drawing something on the
screen.

local bus
The main system bus of an Amiga computer is called the local bus. In general, the main
CPU, video chips, chip memory, and any other built-in resources are on the local bus. The
bus controller sits on both the local and expansion buses and manages the communications
between them.

longword
Based on the Motorola conventions, a longword is equal to 4 bytes.

low
A signal driven to a logical +OV state is said to be low.

Glossary 447

low resolution (Lores)
A horizontal display mode in which 320 pixels are displayed across a horiwntal line in a
nonnal-sized display. On the Amiga, a low resolution display is often called Lores.

manual mode
Non-DMA output. In sprites, a mode in which each line of a sprite is written in a separate
operation. In audio applications, a mode in which audio data words are written one at a time
to the output channel.

master
The device currently generating addresses for the expansion bus. There is only one master
on the bus at a time, this being insured by the bus arbitration logic. The master also drives
data on writes, the read, cycle, and data strobes, and several other signals.

MIDI
A communications standard which allows electronic music devices to share infonnation.
MIDI stands for Musical Instrument Digital Interface and is endorsed by the majority of
musical instrument manufacturers.

microsecond (us)
One millionth of second (1/1,000,000).

millisecond (ms)
One thousandth of second (l/1,000).

min term
One of eight possible logical combinations of data bits from three different data sources.

modulo
A number defining which data in memory belongs on each horizontal line of the display.
Refers to the number of bytes in memory between the last word on one horiwntal line and
the beginning of the first word on the next line.

motherboard
The main system circuit board for any Amiga computer. Resources on the local bus of a
machine are often called motherboard resources.

mouse
A controller device that can be rolled around to move something on the screen; also has but­
tons to give other fonns of input.

multitasking
The ability to perfonn more than one operation, or task, at a time.

nanosecond (ns)
One billionth of a second (1/1,000,000,000).

448 Amiga Hardware Reference Manual

negated
The inactive state of a signal, regardless of its logic sense.

non-interlaced mode
A display mode in which 200 lines are displayed from top to bottom of the video display in a
normal-sized display.

NTSC
Short for National Television Standards Committee specification for composite video.
NTSC is the standard used for video broadcasting in the US. Other video standards include
PAL, used widely in Europe, and SEC AM. When the Amiga is operating in an NTSC
environment, the base crytal frequency is 28.63636 MHz.

nybble
A collection of four bits; one half of a byte. AUTOCONFIGm ROMs are physically nybble­
wide.

overscan area
The normally unused area surrounding a standard-size computer display. The overscan area
is important in video applications.

paddle controller
A game controller that uses a potentiometer (variable resistor) to position objects on the
screen.

PAL
Short for Phase Alternate Line. PAL is the video broadcast standard widely used in Europe.
Although PAL is similar to the NTSC standard used in the US, the two systems are incompa­
tible. Under PAL, the base Amiga crystal frequency is 28.37516 Mhz.

parallel port
A connector on the back of the Amiga that allows extra equipment such as a printer to be
attached. The parallel port transfers data one complete byte (8 bits) at a time, in contrast to
the serial port which sends a single bit at a time.

Paula

PIC

One of the three main Amiga custom chips, Paula contains audio, disk, and interrupt circui­
try.

Plug-In Card. Any Amiga expansion card is called a PIC for short.

pitch
1. The quality of a sound expressed as its highness or lowness. 2. The number of characters
printed in a horizontal inch.

pixels
The dots of light that make up the Amiga screen display. A pixel is the smallest unit of of
display information for a given screen.

Glossary 449

playfield
The background for all the other display elements on the Amiga. Playfields provide the
hardware-level logic for creating the Amiga's display.

playfield object
Subsection of a playfield that is used in playfield animation.

playfield animation
See bitplane animation.

pointer register
Register that is continuously incremented to point to a series of memory locations.

polarity
True or false state of a bit.

potentiometer
An electrical analog device used to adjust some variable value.

quantization noise
In audio applications; noise introduced by round-off errors when you are trying to reproduce
a signal by approximation.

RAM
Short for random access memory. RAM is the part of the Amiga's memory which can be
used for data storage and is directly accessible by the CPU. RAM storage is volatile, mean­
ing that data in RAM is lost when the Amiga is rebooted or turned off; as opposed to ROM
memory which is permanent.

raster
The area in memory that completely defines a bitmap display.

read-only
Describes a register or memory area that can be read but not written.

request
Asking for the use of some resource; the Zorro III bus has two kinds of requests, bus requests
and quick interrupt requests.

resolution
The number of pixels associated with a particular display mode. For example, a normal
NTSC Hires screen has a resolution of 640 (horizontal) by 200 (vertical) pixels.

ROM
Short for read-only memory. ROM is the part of the Amiga's memory which is permanent,
or non-volatile. The Amiga's operating system is stored in ROM.

sample
In audio applications, a single discrete data item which represents a waveform amplitude at a
given instant. A group of samples taken over time is used to represent a waveform in the

450 Amiga Hardware Reference Manual

Amiga's memory.

sampling rate
The number of samples played per second. Also used to mean the rate at which the samples
were originally recorded.

sampling period
The value that determines how many clock cycles it takes to play one data sample.

scroll
To move a play field smoothly in a vertical or horizontal direction.

SCSI
Acronym for Small Computer System Interface. SCSI is a standard interface protocol for
connecting peripherals, especially hard disk drives and other mass storage devices, to
computers.

serial port

set

A connector on the back of the Amiga that allows extra equipment such as a printer to be
attached. The serial port transfers data one single bit at a time in contrast to the parallel port
which sends one complete byte (8 bits) at a time.

To change a bit or flag to 1, its on or enabled state.; as opposed to clear.

Shell
The command line interface used to send typed commands to the Amiga. One of the three
user interfaces built into the Amiga.

slave

slot

The device currently responding to the address on the expansion bus. There is only one slave
on the bus at a time; an error is signalled by the bus collision detect logic if multiple slaves
respond to the same address. The slave also drives data on reads, the transfer acknowledge
strobe, and several other signals.

A physical port on a Zorro backplane, which supplies independent /SLA YEN /BRN, and
/BGN lines, chained /CFGINN and /CFGOUTN lines, and is mechanically manifested as a
100 pin single-piece connector.

sprite
Easily movable graphics object that is produced by one of the eight sprite DMA channels and
is independent of the playfield display.

strobe address
An address you put out to the bus in order to cause some other action to take place; the actual
data written or read is ignored.

Glossary 451

task
A software function spawned by a process. Each task is an operating system module or
application program which is running and that has full control over its own virtual 68000
machine.

termination
Circuitry attached to a bus signal in order to minimize annoying analog things like ringing,
reflections, crosstalk, and possibly random logic conditions which can arise when a bus is
undriven.

timbre
The distinctive quality of a sound produced by its overtones.

timeout
A bus cycle terminated by the bus controller instead of by a responding slave device. If no
slave responds to a bus cycle within a reasonable time period, the bus controller will
terminate the cycle to prevent lockup of the system.

transparent
In graphics, a special color register definition that allows a background color to show
through. Used in dual-playfield mode.

tri-state
A signal driven to a high impcdcncc condition is said to be tri-stated.

UART
The circuit that controls the serial link to peripheral devices, short for Universal Asynchro­
nous Receivcr/fransmitter.

video priority
Defines which graphic objects (playfields and sprites) arc shown in the foreground and which
objects are shown in the background when they occupy the same area of the display.
Higher-priority objects appear in front oflower-priority objects.

video display
Everything that appears on the screen of a video monitor or television.

write-only
Describes a register that can be written to but cannot be read.

word
Based on the Motorola conventions, a word is equal to 2 bytes.

Zorro
The name given to the Amiga bus specification. "Zorro I" refers to the original design for
AIOOO backplane boxes, "Zorro II" refers to the modification to this specification used for
the A2000 and compatible backplanes, and ''Zarro III'' refers to the Zorro II compatible bus
specification first used in the Amiga 3000 computer.

452 Amiga Hardware Reference Manual

INDEX

$00C()()()()(), 5
60 Pin Edge Connector, 321
68000,2,5,187

nonnal cycle, 196
test-and-set instruction, 196

68010, 1
68020, 1, 187
68030, 1
680x0, 19,25,34,194,223

instead of Copper, 35
interrupting, 35, 217
shared memory, 4
synchronizing with the video beam, 216

8361,5
8370,5
8371,5
8372A, 5
8520,157,223,241,244,251,339

alann, 344
handshaking, 341
input modes, 343
interval timers, 341

continuous, 342
force load, 342
one-shot, 342
PB on/off, 342
start/stop, 342
Toggle/pulse, 342

1/0 ports, 341
read bit names, 343
register map, 340
signal assignments, 337
time-of-day clock, 344
write bit names, 343

86 Pin Edge Connector, 322
A1000, 1,5-7,63-64,238,260

expansion port, 321

A2000, 1,5-7,63,157,238,260
A3000, 1, 6-7, 260

expansion bus, 383
A500, 1,5-7,63,157,238,260
Address Registers, 10
ADKCON, 241,250,256

disk control bits, 249
in audio, 149-150

Agnus,2,5, 164-165,169
ECS fat Agnus, 295
fat agnus, 187

Alann, 344
Aliasing

audio, 154
AllocMem(), 52
AmigaOS, 9
Amplitude Modulation, 4
Animated Objects, 6
Animation, 176
Apple II, 241
Area Fill, 4, 184
ATTACH, 120
Attachment

audio, 150
sprites, 120

Audio, 4, 9, 20
aliasing distortion, 154
amplitude modulation, 4
channels

attaching, 149, 164
choosing, 137

data, 137
data length registers, 139
data location registers, 138-139
data output rate, 140
decibel values, 140, 163
DMA, 138, 144, 147, 164

Index 455

equal-tempered scale, 158
frequency modulation, 4
in ECS, 310
interrupts, 147, 220
joining tones, 147
low-pass filter, 155
modulation, 164

amplitude, 149
frequency, 149

noise reduction, 154
non-DMA output, 157
period, 140
period register, 143
playing multiple tones, 149
producing a steady tone, 145
sampling period, 141
sampling rate, 141, 152, 156, 164
state machine, 164
stopping, 145
system overhead, 153
volume, 139, 163
volume registers, 139
waveform transitions, 152

Audio Channel, 19
AUDx,220
AUDxEN, 144, 222
AUDxLCH, 138,298
AUDxLCL, 138
A UDxLEN, 139
AUDxPER, 143, 298
AUDxVOL, 139
AUTOCONFIG, 7, 223, 430
Background color, 46
Barrel Shifter, 179
BBUSY, 222
Beam comparator, 124
Beam position

comparison enable bits, 24
detection of, 216
in Copper use, 31
registers, 216
vertical, 23-24

Beam position counter, 216
BEAMCONO, 298, 305
Bitplanes

coloring, 55
DMA,62

456 Amiga Hardware Reference Manual

in dual-playfield mode, 68
setting the number of, 48
setting the pointers, 54

Blitter, 4, 6, 9, 19
address scanning, 173
addressing, 170
animation, 176
area fill, 4, 184
area filling

exclusive, 184
inclusive, 184

blit time, 193
blitter done flag, 186
blitter-finished disable bit (BFD), 35
blitter-nasty bit, 198
block transfers, 171, 183
BLTSIZE, 187
bus sharing, 196
clock, 193
cookie-cut, 176, 181, 183
copying, 169, 183
cycle time, 193
data fetch, 170
data overlap, 182
descending mode, 182-183
DisownBlitterQ, 187
DMA enable, 181, 184, 187
DMA priority, 194
DMA time slots, 194
equation-to-minterm conversion, 175
example, 200
FILL_CARRYIN bit, 185
height, 171
immediate data, 170, 182
inECS, 296
interrupts, 187, 220
LF control byte, 174
line drawing, 4

logic function, 191
octants, 190
registers, 189

line drawing mode, 189
line texture, 191
linear data, 173
logic equations, 175
logic operations, 174
masking, 181, 183-184

minterms, 175
modulo, 172
modulo registers, 172
octants, 189
OwnBlitter(), 187
packed font, 180
pipelined, 188
pointer registers, 170
sequence of bus cycles, 18 8
shifting, 182-183
size of blit, 171
starting operation, 169
text, 180
truth-table, 174
Venn Diagrams, 178
WaitBlit(), 187
width, 171
with the Copper, 35
zero detection, 187

Blitter Busy, 187
Blitter registers

in line-drawing mode, 189
Blitter shifting, 179
BLTAxWM, 180
BL TCONO, 182

DMA enable, 170
in line drawing, 189, 191
in logic operations, 174
in shift control, 179

BL TCONOL, 298
BLTCONl, 182, 189, 298

in area fill, 184
in blitter addressing, 182
in line drawing, 189-191
in shift control, 179

BLTEN, 222
BLTPRI, 222
BLTSIZE, 169, 171-173, 186-187, 191,308
BL TSIZH, 298
BL TSIZV, 298, 308
BLTxDAT, 170
BLTxMOD, 172
BLTxPTH, 170, 298
BLTxPTL, 170
BPLIMOD, 62, 64
BPL2MOD, 62, 64
BPLCONO, 87, 229, 298, 300

enabling color, 63
in dual-playfield mode, 72
in hold-and-modify mode, 87
in interlacing, 51
in resolution mode, 49
in the Enhanced Chip Set, 300
selecting bitplanes, 48
setting bits, 48
with light pen, 239

BPLCON1, 85
setting scrolling delay, 85

BPLCON2, 72, 210, 298
in dual-playfield priority, 71

BPLCON3, 298
BPLCONx, 90, 307
BPLEN, 222
BPLxMOD, 75, 91
BPLxPT, 91
BPLxPTH, 52, 54, 61, 74
BPLxPTL,52,54,61, 74
BPUx, 48, 87, 90
Bridgeboard, 7
BZERO, 222
Cache, 187, 388
CDANG,26
Chip Memory, 1, 5-6, 20, 105, 138, 169-170,

186,223,246
Chip memory, 296
CIA,9, 157,241,251,339
CIAA

address map, 339
CIAADDRA, 241
CIAAPRA, 229, 232-233, 241

disk, 244
CIAB

address map, 340
CIABPRB

disk, 244
Clock, 260

8520,344
alarm, 344
audio, 140-142, 159, 164
blitter, 193-194
color, 194, 255
keyboard, 251
system, 2, 193

Clock Constant, 141, 159

Index 457

Clock cycle, 4
Clock Interval, 141
CLXCON, 215
CLXDAT,214
CNT, 251
Collision, 213

control register, 215
detection register, 213

Collision Detection, 4
Color

attached sprites, 122
background color, 46
color indirection, 42
color table, 46
enabling,63
in dual-playfield mode, 70
in hold-and-modify mode, 86
in SuperHires mode, 301
in the Enhanced Chip Set, 301
sample register contents, 92
sprites, 102

Color Clock, 60, 194, 255, 304
Color Palette, 3, 19
Color Registers, 3
Color registers

contents, 46
loading, 47
names of registers, 46
sprites, 130

Color selection
in high resolution mode, 94
in hold-and-modify mode, 95
in low resolution mode, 93

COLOROO, 46, 55
COLOR_ON, 89
COLORx, 10,27-28,46, 70-71, 87
Comparator, 124
Composite Video, 7
Control Register, 348

register A, 348
bitmap, 349

register B, 349
bitmap, 350

Controller Port
connection chart, 228
joystick, 232
mouse, 229

458 Amiga Hardware Reference Manual

output to, 240
registers, 229
trackball, 229

Controllers
light pen, 238
potentiometers, 236
proportional

registers, 236
special, 240
types, 6

COP1LC, 25, 30, 32, 34
COP1LCH, 25, 298
COP1LCL, 25
COP2LC, 25-26, 33
COP2LCH, 25, 298
COP2LCL, 25
COPCON, 26, 298
COPEN, 30, 35, 222
COPJMP1, 26
COPJMP2, 26
Copper, 9, 19, 45, 54, 62-65, 80-82, 110,

122,194,197,216,219
affecting registers, 26
at reset, 30
bus cycles used, 20
comparison enable, 32
control register, 26
danger bit (CDANG), 26
DMA, 30
features, 20
horizontal beam position, 23
in interlaced mode, 34
in memory operations, 20
in vertical blanking interrupts, 219
instruction fetch, 25
instruction lists, 26, 28
instructions

description, 20
ordering, 27
summary, 36

interrupt, 219
interrupting the 680x0, 35
jump, 25
jump strobe addresses, 26
location registers, 25, 30, 32
loops and branches, 32
memory cycles, 22

MOVE instruction, 21
MOVE to registers, 21
registers, 25
resolution, 23-24
SKIP instruction, 31-32
starting, 26, 30
stopping, 30
strobe address, 25
vertical beam position, 24
WAIT instruction, 22, 30, 32
with sprites, 113
with the blitter, 26, 35

Coprocessor
(see Copper), 19

Copying data, 169
CP/M, 241
CTRL-AMIGA-AMIGA, 253
Custom Chips, 2, 170, 255

control registers, 19
register, 263
steal cycles, 4

Data-fetch
high resolution, 62
in basic playfield, 60
in horizontal scrolling, 82

Data-fetch start
normal, 60

Data-fetch stop
normal, 60

DBLPF, 87,90
DDFSTOP, 60-61, 79, 82, 91, 99
DDFSTRT, 60, 79, 82, 91,99
Decibel values, 163
Denise, 2, 297
DENISEID, 298
Descending Mode

blitter, 182
DEST, 170
Digital Joystick

connection, 329
fire buttons, 329

Disk, 20
controller, 6, 241
DMA,246
DMA pointer registers, 246
drives, 6
external

identification, 335
interface, 334
limitations, 335
pins, 334

external connector, 367
device ID, 370
pins, 367
signals, 368

ftoppy,4
input stream synchronization register

(DSKSYNC), 250
internal

pins, 336
power, 336

interrupts, 220, 250
MFM Encoding, 249
read data register, 248
write, 246

Disk Port, 320
Display

size of, 57
Display DMA, 20
Display field, 40
Display memory, 57
Display modes, 41
Display window

positioning, 57
size

maximum, 79, 306
normal, 58

starting position
horizontal, 58,77,306
vertical, 58, 77, 306

stopping position
horizontal, 59,78,306
vertical, 59, 79, 306

DIWHIGH, 298, 306
DIWSTOP, 59, 78, 91, 99,219, 306
DIWSTRT,58-59, 76,91,99,219,306
DMA,4,207

audio, 137-138, 141, 144-145, 147-148,
153,157,164-165,194,220

bitplanes, 62
blitter, 50, 170-174, 176, 179-181, 183-

184, 187, 189, 191, 193-194,
196-198

control, 222

Index 459

control register, 218, 222
copper, 19-20, 30
disk, 4, 194,220,241, 246-247,250
display, 20, 194, 300
playfield, 62
sprites, 4, 27, 97, 102, 108-110, 115-118,

120-121, 123, 126-128, 194
DMA Contention, 193
DMA Priority, 194
DMAB_BLTDONE, 187
DMACON, 222, 247

blitter done, 186
DMAF _BLITHOG bit, 198
in audio, 144
in playfields, 62
stopping the Copper, 30
zero detection, 187

DMACONR, 222
DMAEN, 144, 222, 247
DMAF_BLITHOG, 198
DMAF_BLTNZERO, 187
DSK, 244
DSKBLK, 220
DSKBYTR, 241, 248
DSKCHANGE, 244
DSKDIREC, 244
DSKEN, 222
DSKINDEX, 244
DSKLEN, 241, 246-247
DSKMOTOR, 244
DSKPROT, 244
DSKPTH, 241, 246, 298
DSKRDY, 244
DSKSELx, 244
DSKSIDE, 244
DSKSTEP, 244
DSKSYN, 220
DSKSYNC, 241,247,250
DSKTRACKO, 244
Dual Playfield, 44

bitplane assignment, 68
description, 67
enabling, 72
high resolution colors, 71
in high resolution mode, 71
low resolution colors, 70
priority, 71

460 Amiga Hardware Reference Manual

scrolling, 71
ECS

sprites, 302-303
ECS Registers

ECS Registers, 36
Enhanced Chip Set, 295

blitter, 296
ECS Registers, 131, 166, 169,205, 224
memory, 296

Enhanced Chip Set (ECS)
ECS Registers, 95

Examples, 9
Expansion Boards, 7
Expansion Bus, 383
Expansion Connector, 7
Expansion connector, 385
External interrupts, 219
FAST, 249
Fast Memory, 5
Fat Agnus, 5, 187
Field time, 40
Aoppy Disk, 4
Aoppy: See DISK, 241
Frame Buffer, 6
Frequency Modulation, 4
Game Controller Port, 327
GAUD, 89
GCR, 250
Genlock,2,49,51,89, 159,260

effect on background color, 46
in ECS, 296
in playfields, 89

HAM,86
Hardware Connection, 353

address inputs, 354
chip select, 353
clock input, 353
data bus 1/0, 354
interrupt request, 354
read/write input, 353
reset input, 354

HBSTOP, 298
HBSTRT, 298
HCENTER, 298
High resolution

color selection, 49, 94
memory requirements, 53

SuperHires, 300
with dual p1ayfields, 71
with ECS, 296

HIRES, 87
Hold-And-Modify, 3, 86
HOMOD, 87,90
Horizontal blanking interval, 23, 304
HSSTOP, 298
HSSTRT, 298
HSTART, 59, 91, 107, 113
HSTOP, 59, 78,91
HTOT AL, 298, 304
IBM PC, 6-7,241
Include Files, 10, 22
INTENA,218
INTENAR, 218
Interlaced mode

Copper in, 34
memory requirements, 53
modulo, 62
setting interlaced mode, 49

Interleaved Memory, 4
Internal Slots, 7
Interrupt, 26, 34-35, 207, 217

8520,251
audio, 147-148, 153, 157, 164-165, 220
beam synchronized, 3
blitter, 35, 171, 187,220
control registers, 217
copper, 25, 32, 216
Copper, 219
copper, 219
disk, 220, 245, 250
external, 219
graphics, 33
interrupt enable bit, 218
interrupt lines, 217
maskab1e, 217
nonmaskable, 217
parallel, 259
priorities, 220
registers, 218
serial, 255-256, 258
serial port, 220
setting and clearing bits, 218
vertical blanking, 219

Interrupt Control Register, 346

read, 347
write, 347

Interrupts
during vertical blanking, 219

INTF _BLIT, 187
INTREQ, 35, 218
INTREQR, 218
Joy Stick Port, 323
JOYODAT/JOY1DAT

with joystick, 232
with mouse/trackball, 230

Joystick
connections, 228
reading, 232

JOYxDAT, 229
Keyboard, 251, 357

Caps lock, 359
communications, 357
errors, 360
ghosting, 253
hard reset, 361
keycodcs,358

transmission, 358
matrix, 362
out-of-sync, 359
power up, 360
raw keycodes, 251
reading, 251
reset warning, 361
self test, 360
signals, 6, 357
special codes, 364
timing diagram, 358

Keyboard Port, 319
LACE, 51
LED

caps-lock, 253
Light Pen, 333

connections, 228
pins, 333
reading, 238
registers, 238

Line Drawing, 4, 189
length, 191
logic function, 191
octants, 189
registers, 191

Index 461

Low resolution
color selection, 93

LPEN, 89
Manual mode

in sprites, 123
Memory

adding, 7
blittcr access to, 169

Memory allocation
audio, 138
formula for playfields, 76
playfields, 53

Memory Allocation
playfields, 76

Memory allocation
sprite data, 105

Memory Cycle Time, 194
Memory map, 388
MFM Encoding, 241, 249-250
MFMPREC, 249
MIDI, 318
Minterms, 175
Modulation

amplitude, 149
frequency, 149

Modulo
blitter, 172
in basic playfield, 61
in horizontal scrolling, 82
in interlaced mode, 62
in larger playfield, 73

Monitors - See Video, 260
Mouse

connections, 228
reading, 229

Mouse Port, 328
MOVE, 19-21
MSBSYNC, 249-250
MS-DOS, 6-7,241
Multiprocessor, 223
Multitasking, 9
Noise

audio, 154
NTSC, 62, 100

audio, 140-141, 158-159
blitter, 193
clock, 2

462 Amiga Hardware Reference Manual

playfield, 49, 52, 57-58
serial baud rate, 255
sprites, 100
vertical blank, 219
video, 3, 24, 27, 34,40-41,45,304

Octants, 189
OVERRUN, 256
Overscan, 3, 57, 99
Packed Font, 180
Paddle Controller

connections, 228
reading, 234

PAL, 3, 62
audio, 140-141, 158-159
beam position, 216
blitter, 193
clock, 2
playfield, 49, 52, 57-58
serial baud rate, 255
sprites, 100
vertical blank, 219
video, 3,24,34,40-41,45, 304

Parallel, 9
Parallel Port, 227, 259, 319

pin assignment, 324
specification, 324
timing, 325

Paula, 2, 6, 255
Peripherals, 6-7
Pipeline, 188
Pixels

definition, 40
in sprites, 101

Playfield, 4, 6, 9
Playfields

allocating memory, 52
bitplane pointers, 54
collision, 213
color of pixels, 42-44
color register contents, 92
color table, 46
coloring the bitplanes, 45, 55
colors in a single playfield, 45
defining a scrolled playfield, 85
defining display window, 57
defining dual playfields, 72
defining the basic playfield, 63

display window size
maximum, 79
nonnal, 58

displaying, 62
dual-playfield mode, 67
enabling DMA, 62
fetching data, 60-61, 79
forming, 44
high resolution, 42

color selection, 94
example, 66

hold-and-modify, 95
hold-and-modify mode, 86
interlaced, 42
interlaced example, 66
low resolution, 42

colors, 93
memory required, 52, 76
modulo registers, 62
multiple-playfield display, 89
non-interlaced, 42
nonnal, 42
pointer registers, 66, 74
priority, 210
register summary, 89
scrolling

horizontal, 82
vertical, 81

selecting bitplanes, 48
setting resolution mode, 49
specifying modulo, 61, 73
specifying the data fetch, 75
with external video source, 89
with genlock, 89
with larger display memory, 73

Playfield-sprite priority, 209
Port Signal AssignmenL<>, 350
Ports

controller, 227
disk, 241
parallel, 259
serial, 255
video, 260

POTODAT, 236, 298
POTlDAT, 236,298
POTG0,229
POTGO I POTINP

as digital l/0, 240
as proportional inputs, 234

POTGOR, 229
name changed. See POTINP, 240

POTxDAT, 229
Power up operation, 223
PRECOMPx, 249
Priority

dual playficlds, 71
playfield-sprite, 209
priority control register, 210
sprites, 207

Productivity mode, 3
Proportional Controller, 331

pins, 332
Proportional Controllers

reading, 234
Proportional Joystick

connections, 228
reading, 234

RAM, 21,47
address space, 2
at startup, 223
chip, 6, 20, 138
disk, 246
expansion, 2, 7
keyboard, 253

RAMEX, 321
Reboot, 223-224
Refresh, 20
Reset, 223
Resolution

setting, 49
RF Modulator, 260
RF Monitor, 320
RGB

analog, 260
digital, 260

RGB Video, 7, 49, 63-64
ROM, 1, 6, 223,253
RS-232, 6, 255
RS-232 and MIDI, 318
Sampling

period, 141
rate, 152

Scrolling
data fetch, 82

Index 463

delay, 85
horizontal, 82
in dual-playfield mode, 71
in high resolution mode, 82
modulo, 82
vertical, 81

SCSI
Disk Port, 321

SCSI Disk
internal

pins, 336
SERDAT, 258-259
SERDATR, 256
Serial, 9
Serial Port, 255

characteristics, 327
pin assignment, 326
specification, 326
timing, 327

Serial Shift Register, 345
bidirectional feature, 346
input mode, 345
output mode, 345

SERPER, 255
SET/CLR, 35, 144-145, 218,222, 249,257
Shifting

blitter, 182
SKIP, 20
Slow Memory, 5
Sound generation, 134
SPREN, 222
Sprite, 4, 9, 19-20
Sprite Colors, 27
Sprite DMA, 27
Sprites

address pointers, 11 0
arming and disarming, 123
attached

color registers, 131
colors, 122
control word, 120
copper list, 122
data words, 121, 123

clipped, 100
collision, 113,213
color, 102, 302
color registers used, 103

464 Amiga Hardware Reference Manual

comparator, 124, 126
control registers, 124, 126-127
control words, 107
data registers, 126, 129
data structure, 104
data words, 107
designing, 103
displaying

example, 111
steps in, 109

DMA, 110, 114
end-of-data words, 108
Enhanced Chip Set, 302-303
forming, 98
manual mode, 123
memory requirements, 105
moving, 113
overlapped, 118
parallel-to-serial converters, 124
pixels in sprites, 101
pointer registers, 127

initializing, 110
resetting, 110

position registers, 124, 126
priorities, 207
priority, 115,118,210
reuse, 114, 116
screen position

horizontal, 98, 107
vertical, 100

shape, 101
size, 101
vertical position, 107
with copper, 113

SPRxCTL, 107, 123-124, 126, 128-129, 298,
303

SPRxDATA, 123, 126, 129
SPRxDATB, 123, 126, 129
SPRxPOS, 107, 123-124, 126, 128-129, 303
SPRxPT, 114
SPRxPTH, 110, 126-127
SPRxPTL, 110, 126-127
SRCA, 170
SRCB, 170
SRCD, 170
Stereo, 4
STRLONG, 298

System Clock, 2
System Control Hardware, 9
TAS, 196,223
Trackball, 328

connections, 228
reading, 229

Trackdisk, 9
TSRE, 259
UART, 255
UARTBRK, 257
VBSTOP, 298
VBSTRT, 298
VCR,46
Vertical Blanking, 30, 32, 304
VGA, 304
VHPOSR, 229

with beam counter, 216
with light pen, 238

VHPOSW
with beam counter, 216

Video
analog RGB, 260
beam position, 3, 23
camera input, 7
composite, 260
digital RGB, 260
external sources, 89
interrupt, 3
laser disk input, 7
monitors, 7
monochrome, 260
output, 260
priority, 4
RF modulator, 260
RGB, 49, 63-64
synchronization, 3
VCR input, 7
video slot, 260

Video Beam Position, 26
Video Input, 46
Video Port, 319
Volume, 139
VPOSR, 229, 298-299

in playfields, 66
with beam counter, 216
with light pen, 238-239

VPOSW

with beam counter, 216
VSSTOP, 298
VSSTRT, 298
VSTART, 59, 91, 107-108, 113
VSTOP, 59, 78, 91, 107-108, 113
VTOTAL, 298,304
WAIT, 19-20
Waveform, 4
Waveforms

audio, 134
WORDSYNC, 249-250
Zero Detection, 187
Zorro Expansion Bus, 383

A2000,384,387,391
A3000,384,387
autoconfiguration, 430
mechanical specifications, 427
memory mapping, 388
multiple transfer timing, 420
quick interrupt timing, 422
read timing, 416
write timing, 418
Zorro II signals, 391,437-439
Zorro III signals, 409, 437-439

Index 465

