
COMMODORE -AMIGA,
INCORPORATED

Amiga

Hardware Reference Manual

Commodore-Amiga, Incorporated

Amiga Technical Reference Series ..
~

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Parle, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

This manual covers the AlOOO, A500, and A2000 release machines.

This edition of the manual was edited and typeset on an Amiga 2500 running AMIX.

The text of the original version of this manual was written by Robert Peck, Susan Deyl, Jay Miner, and
Chris Raymond; other contributors included Bill Kolb, Dave Needle, Lee Ho, and Dale Luck.

This manual was revised by Joe Augenbraun, Dan Baker, Greg Berlin, Ken Farinsky, Glenn Keller, Bryce
Nesbitt, Nancy Rains, and Carolyn Scheppner.

Special thanks to Thomas Rokicki of Radical Eye Software and Jez San of Argonaut Software Ltd. for
their contributions.

This book is for all the "busy guys" who made Amiga and are Amiga.

Copyright © 1989 by Commodore-Amiga, Inc.

Many of the designatioos used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book and Addisoo-Wesley was aware of a trademark claim, the designations have been printed in initial
caps.
Amiga ill a registemd trademark of Commodore-Amiga, Incorporated and ill used herem with their pennission.
Amiga 500, Amiga 1000, Amiga 2000, AmigaDOS, AMIX, AUTOCONFIG, Amiga Workbench, Amiga Kickstart, the Boingl, and
rainbow Cleckmark logos are trademarks of Commodore-Amiga, Inc.
68000, 68020, 68030, 68040, and Motorola are trademarks of Motorola, Inc.
Apple IT ill a registemd trademark of Apple Computers, Inc.
MSJDOS ill a registemd trademark of Microsoft Corp.
PCIDOS and mM PC are registered trademarks of International Business Machines Corp.
CP/M is a registered trademark of Digital Research, Inc.
CBM, Commodore, and the Commodore logo are registered trademarks of Commodore Electronics Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by my
means, eIearonic, mechanical, photocopying, recording, or otherwise, without the prior written pennission of the cq>yright holder.

Printed in the United States of America from camera-ready mechanicals supplied by the authors. Published simultaneously in Canada.

CBM Product Number 327272-04

ISBN 0-201-18157-6

WARNING:

ABCDEFGH IJ-BA-89
First Printing, September 1989

The informatioo described in this manuaI may contain errors or bugs and may not function as described. All information is sub
ject to enhancement or upgrade for any reason including to fix bugs, add features or change performance. As with all upgrades,
full compatibility, although a goal, cannot be guaranteed and is in fact unlikely.

DISCLAIMER:

TInS INFORMATION IS PROVIDED TO YOU "AS IS" WTI1I OUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED. THE ENTIRE RISK AS TO THE USE OF THE INFORMATION IS ASSUMED BY YOU. COMMODORE
AMIGA, INC., ("COMMODORE") SPECIFICAllY DOES NOT MAKE ANY REPRESENTATIONS OR ENDORSE
MENTS, REGARDING THE USE OF, THE RESULTS OF, OR PERFORMANCE OF THE INFORMATION (INCLUDING
BUT NOT LIMITED TO ITS APPROPRIATENESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE.)
IN NO EVENT WilL COMMODORE BE LIABLE FOR DIRECT,INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT IN TInS INFORMATION EVEN IF IT HAS BEEN ADVISED OF THE
POSSmILITY OF SUCH DAMAGES. SOME LAWS DO NOT AlLOW THE EXCLUSION OR LIMITATION OF
IMPLIED WARRANTIES OR UABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY.

PREFACE

The Amiga® Technical Reference Series is the official guide to programming the Commodore
Amiga computers. This revised edition of the Amiga Hardware Reference Manual has been
updated for version 1.3 of the Amiga operating system and the new Amiga computer systems.
This manual provides infonnation about the Amiga graphics, audio hardware, and how the Amiga
talks to the outside world through peripheral devices. A portion of this manual is a tutorial on
writing assembly language programs to directly control the Amiga's graphics and hardware.

This book is intended for the following audiences:

• Assembly language programmers who need a more direct way of interacting with the
system than the routines described in the Amiga ROM Kernel Reference Manual:
Includes and Autodocs and Amiga ROM Kernel Reference Manual: Libraries and Dev
ices.

• Designers who want to interface with new peripherals to the Amiga.

• Anyone who wants to know how the Amiga hardware works.

Here is a brief overview of the contents:

Chapter 1, Introduction. An overview of the hardware and survey of the Amiga's graph
ics and audio features.

Chapter 2, Coprocessor Hardware. Using the Copper coprocessor to control the entire
graphics and audio system; directing mid-screen modifications in graphics displays and
directing register changes during the time between displays.

Chapter 3, Playfield Hardware. Creating, displaying and scrolling the playfields, one of
the basic display elements of the Amiga; how the Amiga produces multi-color, multi
graphical bit-mapped displays.

Chapter 4, Sprite Hardware. Using the eight sprite direct-memory access (DMA) chan
nels to make sprite movable objects; creating their data structures, displaying and mov
ing them, reusing the DMA channels.

- iii -

Chapter 5, Audio Hardware. OvelView of sampled sound; how to produce quality
sound, simple and complex sounds, and modulated sounds.

Chapter 6, Blitter Hardware. Using the blitter DMA channel to create animation effects
and draw lines into playfields.

Chapter 7, System Control Hardware. Using the control registers to define depth
arrangement of graphics objects, detect collisions between graphics objects, control
direct memory access, and control interrupts.

Chapter 8, Interface Hardware. How the Amiga talks to the outside world through con
troller ports, keyboard, audio jacks and video connectors, serial and parallel interfaces;
infonnation about the disk controller and RAM expansion slot.

Appendixes. Alphabetical and address-order listings of all the graphics and audio system
registers and the functions of their bits, system memory map, descriptions of internal and
external connectors, speCifications for the peripheral interface ports, and specifications
for the keyboard.

Glossary. After the appendixes, there is a glossary of important tenns.

We suggest that you use this book according to your level of familiarity with the Amiga system.
Here are some suggestions:

• If this is your initial exposure to the Amiga, read chapter 1, which gives a sUlVey of all
the hardware features and a brief rundown of graphics and audio effects created by
hardware interaction.

• If you are already familiar with the system and want to acquaint yourself with how the
various bits in the hardware registers govern the way the system functions, browse
through chapters 2 through 8. Examples are included in these chapters.

• For advanced users, the appendixes give a concise summary of the entire register set and
the uses of the individual bits. Once you are familiar with the effects of changes in the
various bits, you may wish to refer more often to the appendixes than to the explanatory
chapters.

The other manuals in this series are the Amiga ROM Kernel Reference Manual: Libraries and
Devices, with tutorial-style chapters on the use of each Amiga system library and device, and the
Amiga ROM Kernel Reference Manual: Includes and Autodocs, an alphabetically organized
reference of autodoc function summaries, Amiga system include files, and the IFF file fonnat
specifications.

Hardware designers should contact Commodore Amiga Technical Support for appropriate docu
ments.

- iv -

Commodore Amiga Technical Support (CATS)

Commodore maintains a technical support group dedicated to helping developers achieve their
goals with the Amiga. Available technical support programs are tailored both to the needs of
smaller independent developers and larger corporations. Subscription to the support publication
AmigaMaifM is available to anyone with an interest in the latest news, Commodore software and
hardware changes, and tips for developers.

To request an application for the Commodore Amiga Developer Programs, lists of CATS techni
cal publications, or information regarding electronic developer support, send a self-addressed,
stamped, 9" x 12" envelope to:

CATS-Information
1200 West Wilson Drive
West Chester, PA 19380-4231

Error Reports

In a complex technical manual, errors are often found after publication. When errors in this
manual are found, they will be corrected in the following printing. Updates will be published in
the AmigaMail technical support publication.

Bug reports can be sent to Commodore electronically or by mail. Submitted reports must be
clear, complete, and concise. Reports must include a telephone number and enough information
so that the bug can be quickly verified from your report. (I.e. please describe the bug and all the
steps needed to reproduce it.)

Amiga Software Engineering Group
ATTN: BUG REPORTS
Commodore Business Machines
1200 Wilson Drive
West Chester, PA 19380-4231
USA

BIX: afinkel
USENET: bugs@commodore.COM or uunet!cbmvax!bugs

or suggestions@commodore.COM

-v-

Table of Contents

Chapter I IN"TRODUCTION .. __ ___ _.. 1
Components of the Amiga ... 2

THE MC68000 AND THE AMIGA CUSTOM CHIPS.. 2
VCR AND DIRECT CAMERA IN1'ERFACE.. 5
PERIPlIERALS .. 5
SYSTEM EXPANDABll.ITY AND ADAPT ABll.ITY ... 6

About the Examples ... 7
Some Caveats to Hardware Level Programmers 9

Chapter 2 COPROCESSOR HARDWARE .. 13
Introduction ..•...

ABOUT THIS CHAPTER
What is a Copper Instruction?
The MOVE Instruction .•..
The WAIT Instruction•..

HORIZONTAL BEAM POSITION
VERTICAL BEAM POSITION•..
THE COMPARISON ENABLE BITS

Using the Copper Registers
LOCATION REGIS1'ERS
JUMP STROBE ADDRESS
CONTROL REGISTER

Putting Together a Copper Instruction List
COMPLE1'E SAMPLE COPPER LIST
LOOPS AND BRANCHES

Starting and Stopping the Copper
STARTING THE COPPER AFI'ER RESET
STOPPING THE COPPER

Advanced Topics
THE SKIP INS1'RUCTION
COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE
USING THE COPPER IN INTERLACED MODE
USING THE COPPER WITH THE BLITTER .. .
THE COPPER AND THE 68000

- vii-

13
14
14
15
17
18
18
19
20
20
21
21
22
24
25
25
25
26
27
27
28
30
31
31

Summary of Copper Instructions 32

Chapter 3 PLA YFIELD HARDW ARE.. 33
Introduction

ABOUT THIS CHAP'l'ER
PLA YFIELD FEATURES

Fonning a Basic Playfield
HEIGHT AND WIDTH OF THE PLA YFIELD .. .
BIT-PLANES AND COLOR
SELECTING HORIZONTAL AND VERTICAL RESOLUTION
ALLOCATING MEMORY FOR BIT-PLANES
CODING THE BIT-PLANES FOR CORRECT COLORING
DEFINING THE SIZE OF THE DISPLAY WINDOW .. .
TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA
DISPLAYING AND REDISPLA YING THE PLA YFIELD
ENABLING THE COLOR DISPLAy
BASIC PLA YFIELD SUMMARY .. .
EXAMPLES OF FORMING BASIC PLA YFIELDS .. .

Fonning a Dual-playfield Display
Bit-Plane Assignment in Dual-playfield Mode .. .

COLOR REGISTERS IN DUAL-PLA YFIELD MODE .. .
DUAL-PLA YFIELD PRIORITY AND CONTROL
ACTIVATING DUAL-PLA YFIELD MODE
DUAL PLAYFIELD SUMMARy

Bit-planes and Display Windows of All Sizes .. .
WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW

33
34
34
38
39
39
43
46
49
50
53
56
56
57
59
62
62
65
66
67
67
68
68

MAXIMUM DISPLAY WINDOW SIZE... 74
Moving (Scrolling) Playfields .. 75

VERTICAL SCROLLING .. 75
HORIZONTAL SCROLLING .. 77
SCROLLED PLAYFIELD SUMMARy.. 80

Advanced Topics
INTERACTIONS AMONG PLA YFIELDS AND OTHER OBJECTS
HOLD-AND-MODIFY MODE
FORMING A DISPLAY WITH SEVERAL DIFFERENT PLAYFIELDS
USING AN EXTERNAL VIDEO SOURCE
SUMMARY OF PLA YFIELD REGISTERS .. .

Summary of Color Selection ... ,
COLOR REGISTER CONTENTS .. .
SOME SAMPLE COLOR REGISTER CONTENTS .. .
COLOR SELECTION IN LOW-RESOLUTION MODE
COLOR SELECTION IN HOLD-AND-MODIFY MODE
COLOR SELECTION IN HIGH-RESOLUTION MODE

81
81
81
84
84
84
87
87
88
88
90
90

Chapter 4 SPRITE HARDWARE •...•.•••••••••••••••.•••••••••••••••••••••••.•••••..••••••••••........•••.••..•.•••.••• 93
Introduction............. 93

ABOUT THIS CHAP'l'ER 94
Fonning a Sprite 94

- viii -

SCREEN POSITION .. 94
SIZE OF SPRITES 97
SHAPE OF SPRITES 97
SPRITE COLOR............... 98
DESIGNING A SPRITE... 101
BUILDING THE DATA S1RUCfURE... 101

Displaying a Sprite... 106
SELECTING A DMA CHANNEL AND SETTING THE POINTERS 107
RESETTING THE ADDRESS POINTERS ... 107
SPRITE DISPLAY EXAMPLE.. 108

Moving a Sprite.. 110
Creating Additional Sprites 111

SPRITE PRIORITY 112
Reusing Sprite DMA Channels 113
Overlapped Sprites 115
Attached Sprites 117
Manual Mode 120
Sprite Hardware Details ... 121
Summary of Sprite Registers.. 124

POINTERS ... 124
CONTROL REGISTERS.. 124
DATA REGISTERS ... 126

Summary of Sprite Color Registers.............................. 126
INTERACTIONS AMONG SPRITES AND OTHER OBJECfS 128

Chapter 5 AUDIO HARDWARE •••••••••••••••••••••••••••••••••••......•••••••.....••.••••••••••••••••••••.••••••••.•.• 129
Introduction.. 129

INTRODUCING SOUND GENERATION .. 130
THE AMIGA SOUND HARDWARE.. 133

Fonning and Playing a Sound 134
DECIDING WHICH CHANNEL TO USE... 134
CREATING THE WAVEFORM DATA.. 134
TELLING THE SYSTEM ABOUT THE DATA ... 136
SELECfING THE VOLUME .. 136
SELECTING THE DATA OUTPUT RATE... 137
PLAYING THE WAVEFORM .. 140
STOPPING THE AUDIO DMA... 141
SUMMARY .. 142
EXAMPLE.. 142

Producing Complex Sounds ... 143
JOINING TONES ... 143
PLAYING MULTIPLE TONES AT THE SAME TIME.. 145
MODULATING SOUND ... 145

Producing High-quality Sound... 148
MAKING WAVEFORM 1RANSITIONS ... 148
SAMPLING RATE... 148
EFFICIENCY ... 149
NOISE REDUCTION 150

- ix-

ALIASING DISTORTION ... 150
LOW-PASS FIL1'ER .. 152

Using Direct (Non-DMA) Audio Output ... 153
The Equal-tempered Musical Scale.. 154
I>ecibel Values for Volume Ranges ... 159
The Audio State Machine... 160

Chapter 6 BLITTER HARDWARE... 163
Introduction.. 163
Memory Layout ... 164
DMA Channels .. 164
Function Generator... 168

DESIGNING THE LF CONTROL BYTE WITH MINTERMS 169
DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS 172

Shifts and Masks 173
I>escending Mode 176
Copying Arbitrary Regions 177
Area Fill Mode... 178
Blitter Done Flag... 180

MULTITASKING AND THE BLI1TER ... 181
Interrupt Flag 181
Zero Flag.. 182
Pipeline Register 182
Line Mode.. 184

REGIS1'ER SUMMARY FOR LINE MODE... 186
Blitter Speed .. 188
Blitter Operations and System DMA ... 189
Blitter Block Diagram.. 193
Blitter Key Points... 195

EXAMPLE: ClearMem.. 195
EXAMPLE: SimpleLine .. 197
EXAMPLE: RotateBits.. 199

Chapter 7 SYSTEM CONTROL HARDWARE ... 201
Introduction.. 201
Video Priorities 202

FIXED SPRI1'E PRIORITIES 202
HOW SPRI1'ES ARE GROUPED .. 203
UNDERSTANDING VIDEO PRIORITIES ... 203
SETTING THE PRIORITY CONTROL REGIS1'ER... 204

Collision I>etection 207
HOW COLLISIONS ARE DETERMINED.. 207
HOW TO IN1'ERPRET THE COLLISION DATA .. 208
HOW COLLISION DE1'ECTION IS CONTROLLED .. 209

Beam Position I>etection... 210
USING THE BEAM POSmON COUNTER... 210

Interrupts .. 211
NONMASKABLE IN1'ERRUPT ... 212

-x-

MASKABLE INTERRUPfS .. 212
USER INTERFACE TO THE INTERRUPf SYSTEM ... 212
INTERRUPf CONI'ROLREGISTERS ... 212
SETTIN"G AND CLEARIN"G BITS .. 213

DMA Control.............................. 217
Processor Access to Olip Memory.. 217
Reset and Early Startup Operation... 219

Chapter 8 INTERFACE HARDWARE ._ .. _........ 221
Introduction... 221
Controller Port Interface.. 222

REGISTERS USED WITH THE CONTROLLER PORT .. 223
Floppy Disk Controller 235

REGISTERS USED BY THE DISK SUBSYSTEM .. 236
DISK INTERRUPfS 244

1'he Keyboard... 245
HOW THE KEYBOARD DATA IS RECEIVED... 245
TYPE OF DATA RECEIVED .. 245
LIMITATIONS OF THE KEYBOARD ... 247

Parallel Input/Output Interface... 250
Serial Interface 250

INTRODUCTION TO SERIAL CIRCUITRy... 250
SETTIN"G THE BAUD RATE.. .. 250
SETTIN"G THE RECEIVE MODE 251
CONTENTS OF THE RECEIVE DATA REGISTER .. 251
HOW OUTPUT DATA IS TRANSMITTED ... 253
SPECIFYING THE REGISTER CONTENTS ... 254

Display Output Connections 255

Appendix A Register Summary-Alphabetical Order ... 257

Appendix B Register Summary-Address Order ... 281

Appendix C Custom Chip Pin Allocation List... 289

Appendix D System MeDlOry Map.. 293

Appendix E Interfaces __ .. __ .. 295

Appendix F Complex Interface Adapters... 317
8520 Complex Interface Adaptor (CIA) Chips... 317
Olip Register Map 319
Register Functional Description........... 320

I/O PORTS (pRA, PRB, DORA, DDRB)... 320
HANDSHAKING 320
INTERVAL TIMERS (TIMER A, TIMER B).. 320
INPUT MODES.. 322
BIT NAMES on READ-Register 322

- xi-

BIT NAMES on WRfI'E-Register .. 322
Tune of Day Oock... 323

BIT NAMES for WRITE TIME/ALARM or READ TIME.. 323
Serial Shift Register (SDR) 324

INPUT MODE 324
OUTPUT MODE .. 324
BIDIRECI10NAL FEATURE 325

Interrupt Control Register (lCR) 325
READ INTERRUPT CONTROL REGISTER ... 326
WRITE INTERRUPT CONTROL MASK ... 326

Control Registers 327
CON1'ROL REGISTER A........ 327
BIT MAP OF REGISTER CRA 328
BIT MAP OF REGISTER CRB 329

Port Signal Assignments 329
Hardware Connection Details.. 332

INTERFACE SIGNALS 332

Appendix G AUTOCONFlGTM ... 335
Debugging AUTOCONFIG Boards ... 336
Address Specification Table... 337

Appendix H Keyooard .. _ ... _... 343
Keyboard Communications 344
Keycodes.. 345
"CAPS LOCK" Key... 345
"Out-of-Sync" Condition.. 346
Power-Up Sequence... 346
Reset Waming.. 348
Hard Reset..... 348
Special Codes... 349
Matrix Table.. 350

Appendix I External Disk Connector Interface Specification... 353
General... 353
Summary Table 354
Signals When Driving a Disk... 355
Device lD. 357

Appendix J Hardware Example Include File •••••••.•••..•.•.•••.• _... 359

Glossa.ry ... 365

Index _... 373

- xii-

List of Figures

Figure 1-1 Block Diagram for the Amiga Computer Family.. 11
Figure 2-1 Interlaced Bit-Plane in RAM .. 30
Figure 3-1 How the Video Display Picture Is Produced... 34
Figure 3-2 What Is a Pixel? .. 35
Figure 3-3 How Bit-planes Select a Color.. 37
Figure 3-4 Significance of Bit-Plane Data in Selecting Colors... 38
Figure 3-5 Interlacing.................................. 44
Figure 3-6 Effect of Interlaced Mode on Edges of Objects............................... 44
Figure 3-7 Memory Organization for a Basic Bit-Plane ... 48
Figure 3-8 Combining Bit-planes... 50
Figure 3-9 Positioning the On-screen Display...................... 51
Figure 3-10 Data Fetched for the First Line When Modulo = 0........... 54
Figure 3-11 Data Fetched for the Second Line When Modulo = 0....... 55
Figure 3-12 A Dual-playfield Display .. 63
Figure 3-13 How Bit-Planes Are Assigned to Dual Playfields ... 64
Figure 3-14 Memory Picture Larger than the Display .. 69
Figure 3-15 Data Fetch for the First Line When Modulo = 40.................. 69
Figure 3-16 Data Fetch for the Second Line When Modulo = 40... 70
Figure 3-17 Data Layout for First Line-Right Half of Big Picture.. 70
Figure 3-18 Data Layout for Second Line-Right Half of Big Picture.................................... 70
Figure 3-19 Display Window Horizontal Starting Posi'lcm .. 72
Figure 3-20 Display Window Vertical Starting Position., ... 72
Figure 3-21 Display Window Horizontal Stopping Po~~tion.. 73
Figure 3-22 Display Window Vertical Stopping Position .. 74
Figure 3-23 Vertical Scrolling.. 76
Figure 3-24 Horizontal Scrolling 78
Figure 3-25 Memory Picture Larger Than the Display Window.. 79
Figure 3-26 Data for Line 1 - Horizontal Scrolling .. 79
Figure 3-27 Data for Line 2-Horizontal Scrolling ... 79
Figure 4-1 Defining Sprite On-screen Position... 95
Figure 4-2 Position of Sprites .. 96
Figure 4-3 Shape of Spaceship... 97
Figure 4-4 Sprite with Spaceship Shape Defined 98
Figure 4-5 Sprite Color Definition 99
Figure 4-6 Color Register Assignments ... 100

- xiii -

Figure 4-7 Data Structure Layout.... 103
Figure 4-8 Sprite Priority ... 112
Figure 4-9 Typical Example of Sprite Reuse.. 113
Figure 4-10 Typical Data Structure for Sprite Re-use 114
Figure 4-11 Overlapping Sprites (Not Attached).. 116
Figure 4-12 Placing Sprites Next to Each Other... 117
Figure 4-13 Sprite Control Circuitry .. 122
Figure 5-1 Sine Waveform... 131
Figure 5-2 Digitized Amplitude Values ... 133
Figure 5-3 Example Sine Wave.. 139
Figure 5-4 Waveform with Multiple Cycles... 149
Figure 5-5 Frequency Domain Plot of Low-Pass Filter.. 151
Figure 5-6 Noise-free Output (No Aliasing Distortion).. 151
Figure 5-7 Some Aliasing Distortion ... 152
Figure 5-8 Audio State Diagram... 162
Figure 6-1 How Images are Stored in Memory 165
Figure 6-2 BLTxJ7I'R and BLTxMOD calculations ... 167
Figure 6-3 Blitter Minterm Venn Diagram... 172
Figure 6-4 Extracting a Range of Columns .. 175
Figure 6-5 Use of the FCI Bit - Bit Is a 0... 179
Figure 6-6 Use of the FCI Bit - Bit Is a 1... 179
Figure 6-7 Single-Point Vertex Example 180
Figure 6-8 Octants for Line Drawing 184
Figure 6-9 DMA Time Slot Allocation 190
Figure 6-10 Normal 68000 Cycle... 191
Figure 6-11 Time Slots Used by a Six Bit Plane Display... 192
Figure 6-12 Time Slots Used by a High Resolution Display .. 192
Figure 6-13 Blitter Block Diagram... 194
Figure 7-1 Inter-Sprite Fixed Priorities 202
Figure 7-2 Analogy for Video Priority ... 203
Figure 7-3 Sprite/Playfield Priority .. 206
Figure 7-4 Interrupt Priorities... 216
Figure 8-1 Controller Plug and Computer Connector.... 222
Figure 8-2 Mouse Quadrature .. 224
Figure 8-3 Joystick to Counter Connections .. 227
Figure 8-4 Typical Paddle Wiring Diagram 229
Figure 8-5 Effects of Resistance on Charging Rate .. 230
Figure 8-6 Potentiometer Charging Circuit 231
Figure 8-7 Chinon Timing Diagram... 236
Figure 8-8 Chinon Timing Diagram (cont.) ... 237
Figure 8-9 The Amiga 1000 Keyboard, Showing Keycodes in Hexadecimal 249
Figure 8-10 The Amiga 500/2000 Keyboard, Showing Keycodes in Hexadecimal 249
Figure 8-11 Starting Appearance of SERDA T and Shift Register.. 254
Figure 8-12 Ending Appearance of Shift Register 254
Figure G-1 How to read the Address Specification Table .. 338

- xiv-

List of Tables

Table 2-1 Interrupting the 68000.................. 31
Table 2-2 Copper Instruction Summary ... 32
Table 3-1 Colors in a Single Playfield.. 39
Table 3-2 Portion of the Color Table ... 40
Table 3-3 Contents of the Color Registers 41
Table 3-4 Sample Color Register Contents 41
Table 3-5 Setting the Number of Bit-Planes... 42
Table 3-6 Lines in a Nonnal Playfield.. 43
Table 3-7 Playfield Memory Requirements, NTSC.. 46
Table 3-8 Playfield Memory Requirements, PAL 47
Table 3-9 DIWSTRT AND DIWSTOP Summary. .. 53
Table 3-10 Playfield 1 Color Registers - Low-resolution Mode .. 65
Table 3-11 Playfield 2 Color Registers - Low-resolution Mode.. 65
Table 3-12 Playfields 1 and 2 Color Registers - High-resolution Mode 66
Table 3-13 Maximum Allowable Vertical Screen Video.. 74
Table 3-14 Maximum Allowable Horizontal Screen Video ... 75
Table 3-15 Color Register Contents 87
Table 3-16 Some Register Values and Resulting Colors.. 88
Table 3-17 Low-resolution Color Selection ... 89
Table 3-18 Color Selection in Hold-and-modify Mode.. 90
Table 3-19 High-resolution Color Selection... 91
Table 4-1 Sprite Data Structure 102
Table 4-2 Sprite Color Registers 105
Table 4-3 Color Registers for Sprite Pairs.. 112
Table 4-4 Data Words for First Line of Spaceship Sprite... 118
Table 4-5 Color Registers in Attached Sprites ... 119
Table 4-6 Color Registers for Single Sprites 127
Table 4-7 Color Registers for Attached Sprites .. 128
Table 5-1 Sample Audio Data Set for Channel 0 ... 135
Table 5-2 Volume Values .. 137
Table 5-3 DMA and Audio Channel Enable Bits ... 141
Table 5-4 Data Interpretation in Attach Mode.. 146
Table 5-5 Channel Attachment for Modulation.. 147
Table 5-6 Sampling Rate and Frequency Relationship... 153
Table 5-7 Equal-tempered Octave for a 16 Byte Sample.. 154

- xv-

Table 5-8 Five Octave Even-tempered Scale.. 15
Table 5-9 l)ecibel Values and Volume Ranges .. 15
Table 6-1 Table of Common Mintenn V alues... 17
Table 6-2 Typical Blitter Cycle Sequence.. 18
Table 6-3 BLTCONI Code Bits for Octant Line Drawing... 18
Table 7-1 Bits in BPLCON2 .. 20
Table 7-2 Priority of Play fields Based on Values of Bits PFIP2-PFlPO 20
Table 7-3 CLXDAT Bits.. 20
Table 7-4 CLXCON Bits ... 20
Table 7-5 Contents of the Beam Position Counter ... 21
Table 7-6 Contents ofDMA Register ... 21
Table 8-1 Typical Controller Connections ... 22
Table 8-2 Determining the Direction of the Mouse.. 22
Table 8-3 Interpreting Data from JOYODAT and JOYIDAT... 22
Table 8-4 POTGO ($DFF034) and POTINP ($DFFOI6) Registers.. 23
Table 8-5 Disk Subsystem ... 23
Table 8-6 DSKLEN Register ($DFF024)... 24
Table 8-7 DSKBY1R Register... 24
Table 8-8 ADKCON and ADKCONR Register ... 24
Table 8-9 SERDATR I ADKCON Registers.. 25
Table G-l Address Specification Table.. 33

- xvi-

Chapter 1

INTRODUCTION

The Amiga family of computers consists of several models, each of which has been designed on
the same premise - to provide the user with a low cost computer that features high cost perfor
mance. The Amiga does this through the use of custom silicon hardware that yields advanced
graphics and sound features.

There are three distinct models that make up the Amiga computer family: the A500, AlOOO, and
A2000. Though the models differ in price and features, they have a common hardware nucleus
that makes them software compatible with one another. This chapter describes the Amiga's
hardware components and gives a brief overview of its graphics and sound features.

futroduction I

Components of the Amiga

These are the hardware components of the Amiga:

• Motorola MC68000 16/32 bit main processor. The Amiga also supports the 68010, 68020,
and 68030 processors as an option.

512K bytes of internal RAM, expandable to 1 MB on the ASOO and A2000.

• 256K bytes of ROM containing a real time, multitasking operating system with sound,
graphics, and animation support routines.

• Built-in 3.5 inch double sided disk drive.

Expansion disk port for connecting up to three additional disk drives, which may be either
3.5 inch or 5.25 inch, double sided.

Fully programmable RS-232-C serial port.

• Fully programmable parallel port.

Two button opto-mechanical mouse.

Two reconfigurable controller ports (for mice, joysticks, light pens, paddles, or custom con
trollers).

A professional keyboard with numeric keypad, 10 function keys, and cursor keys. A variety
of international keyboards are also supported.

• Ports for simultaneous composite video, and analog or digital RGB output.

Ports for left and right stereo audio from four special purpose audio channels.

Expansion options that allow you to add RAM, additional disk drives (floppy or hard), peri
pherals, or coprocessors.

THE MC68000 AND THE AMIGA CUSTOM CHIPS

The Motorola 68000 is a 16/32 bit microprocessor. The system clock speed for NTSC Amigas is
7.15909 megahertz (PAL 7.09379 MHz). These speeds may vary when using an external system
clock, such as from a genlock. The 68000 has an address space of 16 megabytes. In the Amiga,
the 68000 can address over 8 megabytes of contiguous random access memory (RAM).

2 Introduction

In addition to the 68000, the Amiga contains special purpose hardware known as the "custom
chips" that greatly enhance system perfonnance. The tenn "custom chips" refers to the 3
integrated circuits which were designed specifically for the Amiga computer. These three custom
chips (called Agnus, Paula, and Denise) each contain the logic to handle a specific set of tasks,
such as video, sound, direct memory access (DMA), or graphics.

Among other functions, the custom chips provide the following:

• Bitplane generated, high resolution graphics capable of supporting both PAL and NTSC
video standards.

On NTSC systems the Amiga typically produces a 320 by 200 non-interlaced or 320 by
400 interlaced display in 32 colors and a 640 by 200 non-interlaced or 640 by 400 inter
laced display in 16 colors.

On PAL systems, the Amiga typically produces a 320 by 256 non-interlaced or 320 by
512 interlaced display in 32 colors, and a 640 by 256 non-interlaced or 640 by 512 inter
laced display in 16 colors.

Additional video modes allow for the display of up to 4,096 colors on screen simultaneously
(hold-and-modify) or provide for larger, higher resolution displays (overscan).

• A custom display coprocessor that allows changes to most of the special purpose registers in
synchronization with the position of the video beam. This allows such special effects as
mid-screen changes to the color palette, splitting the screen into multiple horizontal slices
each having different video resolutions and color depths, beam synchronized interrupt gen
eration for the 68000 and more. The coprocessor can trigger many times per screen, in the
middle of lines, and at the beginning or during the blanking interval. The coprocessor itself
can directly affect most of the registers in the other custom chips, freeing the 68000 for gen
eral computing tasks.

• 32 system color registers, each of which contains a twelve bit number as four bits of RED,
four bits of GREEN, and four bits of BLUE intensity infonnation. This allows a system
color palette of 4,096 different choices of color for each register.

• Eight reusable 16 bit wide sprites with up to 15 color choices per sprite pixel (when sprites
are paired). A sprite is an easily movable graphics object whose display is entirely indepen
dent of the background (called a playfield); sprites can be displayed over or under this back
ground. A sprite is 16 low resolution pixels wide and an arbitrary number oflines tall. After
producing the last line of a sprite on the screen, a sprite DMA channel may be used to pro
duce yet another sprite image elsewhere on screen (with at least one horizontal line between
each reuse of a sprite processor). Thus, many small sprites can be produced by simply reus
ing the sprite processors appropriately.

• Dynamically controllable inter-object priority, with collision detection. This means that the
system can dynamically control the video priority between the sprite objects and the bitplane
backgrounds (playfields). You can control which object or objects appear over or under the
background at any time.

Introduction 3

Additionally, you can use system hardware to detect collisions between objects and have
your program react to such collisions.

• Custom bit blitter used for high speed data movement, adaptable to bitplane animation. The
blitter has been designed to efficiently retrieve data from up to three sources, combine the
data in one of 256 different possible ways, and optionally store the combined data in a desti
nation area. This is one of the situations where the 68000 gives up memory cycles to a DMA
channel that can do the job more efficiently (see below). The bit blitter, in a special mode,
draws patterned lines into rectangularly organized memory regions at a speed of about 1 mil
lion dots per second; and it can efficiently handle area fill.

• Audio consisting of four digital channels with independently programmable volume and
sampling rate. The audio channels retrieve their control and data via direct memory access.
Once started, each channel can automatically playa specified waveform without further pro
cessor interaction. Two channels are directed into each of the two stereo audio outputs. The
audio channels may be linked together to provide amplitude or frequency modulation or both
forms of modulation simultaneously.

• DMA controlled floppy disk read and write on a full track basis. This means that the built-in
disk can read over 5600 bytes of data in a single disk revolution (11 sectors of 512 bytes
each).

The internal memory shared by the custom chips and the 68000 CPU is also called "chip
memory". The original custom chips in the Amiga were designed to be able to physically access
up to 512K bytes of shared memory. The new version of the Agnus custom chip was created
which allows the graphics and audio hardware to access up to a full megabyte of memory.

The Amiga 500 and 2000 models were designed to be able to accept the new Agnus custom chip,
called "Fat Agnus," due to its square shape. Hence, the A500 and A2000 have allocated a chip
memory space of 1 MB. This entire 1 MB space is subject to the arbitration logic that controls
the CPU and custom chip accesses. On the Al000, only the first 512K bytes of memory space is
shared, chip memory.

These custom chips and the 68000 share memory on a fully interleaved basis. Since the 68000
only needs to access the memory bus during each alternate clock cycle in order to run full speed,
the rest of the time the memory bus is free for other activities. The custom chips use the memory
bus during these free cycles, effectively allowing the 68000 to run at full rated speed most of the
time. We say "most of the time" because there are some occasions when the special purpose
hardware steals memory cycles from the 68000, but with good reason. Specifically, the coproces
sor and the data moving DMA channel called the blitter can each steal time from the 68000 for
jobs they can do better than the 68000. Thus, the system DMA channels are designed with max
imum performance in mind. The job to be done is performed by the most efficient hardware ele
ment available. Even when such cycle stealing occurs, it only blocks the 68000's access to the
internal, shared memory. When using ROM or external memory, the 68000 always runs at full
speed.

4 Introduction

Another primary feature of the Amiga hardware is the ability to dynamically control which part of
the chip memory is used for the background display, audio, and sprites. The Amiga is not limited
to a small, specific area of RAM for a frame buffer. Instead, the system allows display bitplanes,
sprite processor control lists, coprocessor instruction lists, or audio channel control lists to be
located anywhere within chip memory.

This same region of memory can be accessed by the bit blitter. This means, for example, that the
user can store partial images at scattered areas of chip memory and use these images for anima
tion effects by rapidly replacing on screen material while saving and restoring background
images. In fact, the Amiga includes finnware support for display definition and control as well as
support for animated objects embedded within playfields.

VCR AND DIRECT CAMERA INTERFACE

In addition to the connectors for monochrome composite, and analog or digital RGB monitors,
the Amiga can be expanded to include a VCR or camera interface. This system is capable of syn
chronizing with an external video source and replacing the system background color with the
external image. This allows development of fully integrated video images with computer gen
erated graphics. Laser disk input is accepted in the same manner.

PERIPHERALS

Floppy disk storage is provided by a built in, 3.5 inch floppy disk drive. Disks are 80 track, dou
ble sided, and fonnatted as 11 sectors per track, 512 bytes per sector (over 900,000 bytes per
disk). The disk controller can read and write 320/360K IBM PCTM (MS-DOSTM) fonnatted 3.5 or
5.25 inch disks, and 640n20K IBM PC (MS-DOS) fonnatted 3.5 inch disks. Extema13.5 inch or
5.25 inch disk drives can be added to the system through the expansion connector.

Circuitry for some of the peripherals resides on Pallia. Other chips handle various signals not
specifically assigned to any of the custom chips, including modem controls, disk status sensing,
disk motor and stepping controls, ROM enable, parallel input/output interface, and keyboard
interface.

The Amiga includes a standard RS-232-C serial port for external serial input/output devices.

A keyboard with numeric keypad, cursor controls and 10 function keys is included in the base
system. For maximum flexibility, both key-down and key-up signals are sent The Amiga also
supports a variety of international keyboards. Many other types of controllers can be attached
through the two controller ports on the base unit You can use a mouse, joystick, keypad, track
ball, light pen, or steering wheel controller in either of the controller ports.

Introduction 5

SYSTEM EXPANDABILITY AND ADAPTABILITY

New peripheral devices may be easily added to all Amiga models. These devices are automati
cally recognized and used by system software through a well defined, well documented linking
procedure called AUTOCONFIGTM.

On the A500 and AlOOO models, peripheral devices can be added to the Amiga's 86 pin expan
sion connector, including additional external RAM. Extra disk units may be added from a con
nector at the rear of the unit.

The A2000 model provides the user with the same features as the A500 or AlOOO, but with the
added convenience of simple and extensive expandability. The 86 pin, external connector of the
AlOOO and A500 is not externally accessible on the A2000. Instead, the A2000 contains 7 inter
nal slots that allow many types of expansion boards to be quickly and easily added inside the
machine. These expansion boards may contain coprocessors, RAM expansion, hard disk controll
ers, video or I/O ports. There is also room to mount both floppy and hard disks internally. The
A2000 also supports the special Bridgeboard™ coprocessor card. This provides a complete IBM
PCTM on a card and allows the Amiga to run MS-DOSTM compatible software, while simultane
ously running native Amiga software.

6 Introduction

About the Examples

The examples in this book all demonstrate direct manipulation of the Amiga hardware. However,
as a general rule, it is not permissible to directly access the hardware in the Amiga unless your
software either has full control of the system, or has arbitrated via the OS for exclusive access to
the particular parts of the hardware you wish to control.

Almost all of the hardware discussed in this manual, most notably the BUtter, Copper, playfield,
sprite, CIA, trackdisk, and system control hardware, are in either exclusive or arbitrated use by
portions of the Amiga OS in any running Amiga system. Additional hardware, such as the audio,
parallel, and serial hardware, may be in use by applications which have allocated their use
through the system software.

Before attempting to directly manipulate any part of the hardware in the Amiga's multitasking
environment, your application must first be granted exclusive access to that hardware by the
operating system library, device, or resource which arbitrates its ownership. The operating sys
tem functions for requesting and receiving control of parts of the Amiga hardware are varied and
are not within the scope of this manual. Generally such functions, when available, will be found
in the library, device, or resource which manages that portion of the Amiga hardware in the multi
tasking environment. The following list will help you to find the appropriate operating system
functions or mechanisms which may exist for arbitrated access to the hardware discussed in this
manual.

Copper, Playfield, Sprite, Blitter - graphics.library
Audio - audio.device
Trackdisk - trackdisk.device, disk. resource
Serial - serial.device, misc. resource
Parallel - parallel.device, cia.resource, misc.resource
Gameport - input.device, gameport.device, potgo.resource
Keyboard - input.device, keyboard. device
System Control- graphics.library, exec.library (interrupts)

Most of the examples in this book use the hw 3xamplesj file (see Appendix J) to define the chip
register names. Hw_examplesj uses the system include file hardware/customj to define the chip
structures and relative addresses. The values defined in hardware/customj and hw 3xamplesj are
offsets from the base chip register address space. In general, this base value is defined as _custom
and is resolved during linking from amiga.lib. Cciaa and _ciab are also resolved in this way.)

Normally, the base address is loaded into an address register and the offsets given by
hardware/customj and hw _examples.i are then used to address the correct register.

Introduction 7

NOTE

The offset values of the registers are the addresses that the Copper must use to talk to
the registers.

For example, in assembler:

INCLUDE "exec/types.i"
INCLUDE "hardware/custom.i"

XREF custom

Start: lea _custom,aO
move.w #$7FFF,intena(aO)

External reference ...

Use aO as base register
Disable all interupts

In C, you would use the structure definitions in hardware/custom.h For example:

#include "exec/types.h"
#includ~ "hardware/custom.h"

extern struct Custom custom;

/* You may need to define the above external as
** extern struct Custom far custom;
** Check you compiler manual.
*/

main()
{
custom.intena Ox7FFF; /* Disable all interupts */

The Amiga hardware include files are generally supplied with your compiler or assembler. List
ings of the hardware include files may also be found in the Addison-Wesley Amiga ROM Kernel
Manual "Includes and Autodocs". Generally, the include file label names are very similar to the
equivalent hardware register list names with the following typical differences.

• Address registers which have low word and high word components are generally listed as
two word sized registers in the hardware register list, with each register name containing
either a suffix or embedded "L" or "H" for low and high. The include file label for the
same register will generally treat the whole register as a longword (32 bit) register, and there
fore will not contain the "L" or "H" distinction.

• Related sequential registers which are given individual names with number suffixes in the
hardware register list, are generally referenced from a single base register definition in the
include files. For example, the color registers in the hardware list (COLOROO, COLOROl,
etc.) would be referenced from the "color" label defined in "hardware/custom.i" (oolor+O,
color+2, etc.).

Examples of how to define the correct register offset can be found in the hw _examples.i file
listed in Appendix J.

8 Introduction

Some Caveats to Hardware Level Programmers

The Amiga is available in a variety of models and configurations, and is further diversified by a
wealth of add-on expansion peripherals and processor replacements. In addition, even standard
Amiga hardware such as the keyboard and floppy disks, are supplied by a number of different
manufacturers and may vary subtly in both their timing and in their ability to perform outside of
their specified capabilities.

The Amiga operating system is designed to operate the Amiga hardware within spec, adapt to
different hardware and RAM configurations, and generally provide upward compatibility with any
future hardware upgrades or "add ons" envisioned by the designers. For maximum upward com
patibility, it is strongly suggested that programmers deal with the hardware through the com
mands and functions provided by the Amiga operating system.

If you find it necessary to program the hardware directly, then it is your responsibility to write
code which will work properly on various models and configurations. Be sure to properly request
and gain control of the hardware you are manipulating, and be especially careful in the following
areas:

Do not jump into ROM. Beware of any example code that calls routines in the $F80000 to
$FFFFFF range. These are ROM addresses and the ROM routines WILL move with every OS
revision. The only supported interface to system ROM code is through the provided library, dev
ice, and resource calls.

Do not modify or depend on the format of any private system structures. This includes the pok
ing of copper lists, memory lists, and library bases.

Do not depend on any address containing any particular system structure or type of memory. The
system modules dynamically allocate their memory space when they are initialized. The
addresses of system structures and buffers differ with every OS, every model, and every
configuration, as does the amount of free memory and system stack usage. Remember that all
data for direct custom chip access must be in CHIP RAM. This includes bit images (bitplanes,
sprites, etc), sound samples, trackdisk buffers, and copper lists.

Do not write spurious data to, or interpret undefined data from currently unused bits or addresses
in the custom chip space. All undefined bits must be set to zero for writes, and ignored on reads.

Do not write data past the current end of custom chip space. Custom chips may be extended or
enhanced to provide additional registers, or to use currently undefined bits in existing registers.

All custom chip registers are read only OR write only. Do not read write only registers, and do
not write to read only registers.

Introduction 9

Do not read, write, or use any currently undefined address ranges. The current and future usage
of such areas is reserved by Commodore and is definitely subject to change~

If you are using the system libraries, devices, and resources, you must follow the defined inter
face. Assembler programmers (and compiler writers) must enter functions through the library
base jump tables, with arguments passed as longs and library base address in A6. Results
returned in DO must be tested, and the contents of DO-Dl/AO-Al must be assumed gone after a
system call.

NOTE

The assembler T AS instruction should not be used in any Amiga program. The TAS
instruction assumes an indivisible read-modify-write bqt this can be defeated by sys
tem DMA. Instead use BSET and BCLR. These instructions perform a test and set
operation which cannot be interrupted.

TAS is only needed for a multiple CPU system. On a single CPU system, the BSET
and BCLR instructions are identical to TAS, as the 68000 does not interrupt instruc
tions in the middle. BSET and BCLR first test, then set bits.

Do not use assembler instructions which are privileged on any 68000 family processor, most not
ably MOVE SR,<ea> which is privileged on the 68010/20/30. Use the Exec function GetCCO
instead of MOVE SR, or use the appropriate non-privileged instruction as shown below:

CPU

68000
68010/20/30

User Mode

MOVE SR,<ea>
MOVE CCR,<ea>

Super Mode

MOVE SR,<ea>
MOVE SR,<ea>

All addresses must be 32 bits. Do not use the upper 8 bits for other data, and do not use signed
variables or signed math for addresses. Do not execute code on your stack or use self-modifying
code since such code can be defeated by the caching capabilities of some 68xxx processors. And
never use processor or clock speed dependent software loops for timing delays. See Appendix F
for information on using an 8520 timer for delays.

NOTE

When strobing any register which responds to either a read or a write, (for example
copjmp2) be sure to use a MOVE.W #$00, not CLR.W. The CLR instruction causes a
read and a clear (two accesses) on a 68000, but only a single access on 68020 and
above. This will give different results on different processors.

If you are programming at the hardware level, you must follow hardware interfacing
specifications. All hardware is NOT the same. Do not assume that low level hacks for speed or
copy protection will work on all drives, or all keyboards, or all systems, or future systems. Test
your software on many different systems, with different processors, OS, hardware, and RAM
configurations.

10 Introduction

r J SYSTEM lEXPANS][ON I _ I

" EXPANSION CONNECfOR(S)

AMIGA
General Block Diagram

... _I CUSTOM cmJ? SECITON ~_

CPU f} __ -y ____ .,~~~~~~~--.JL.----.. fr=======~~~.,
(68000) l!I

CIA
#1

(8520)

CIA
#2

(8520)

KICKSTART
ROM

I

CHIP
RAM

'PSEUOO'
FAST

RAM'" I L'-----
• AddmssedA& CHIP RAMWilh I-Mog Agaus

------------_ ..

Figure 1-1: Block Diagram for the Amiga Computer Family

Introduction 11

Chapter 2

COPROCESSOR HARDWARE

Introduction

The Copper is a general purpose coprocessor that resides in one of the Amiga' s custom chips. It
retrieves its instructions via direct memory access (DMA). The Copper can control nearly the
entire graphics system, freeing the 68000 to execute program logic; it can also directly affect the
contents of most of the chip control registers. It is a very powerful tool for directing mid-screen
modifications in graphics displays and for directing the register changes that must occur during
the vertical blanking periods. Among other things, it can control register updates, reposition
sprites, change the color palette, update the audio channels, and control the bUtter.

Coprocessor Hardware 13

One of the features of the Copper is its ability to WAIT for a specific video beam position, then
MOVE data into a system register. During the WAIT period, the Copper examines the contents
of the video beam position counter directly. This means that while the Copper is waiting for the
beam to reach a specific position, it does not use the memory bus at all. Therefore, the bus is
freed for use by the other DMA channels or by the 68000.

When the WAIT condition has been satisfied, the Copper steals memory cycles from either the
blitter or the 68000 to move the specified data into the selected special-purpose register.

The Copper is a two-cycle processor that requests the bus only during odd-numbered memory
cycles. This prevents collision with audio, disk, refresh, sprites, and most low-resolution display
DMA access, all of which use only the even-numbered memory cycles. The Copper, therefore,
needs priority over only the 68000 and the blitter (the DMA channel that handles animation, line
drawing, and polygon filling).

As with all the other DMA channels in the Amiga system, the Copper can retrieve its instructions
only from the chip RAM area of system memory.

ABOUT TillS CHAPTER

In this chapter, you will learn how to use the special Copper instruction set to organize mid
screen register value modifications and pointer register set-up during the vertical blanking inter
val. The chapter shows how to organize Copper instructions into Copper lists, how to use Copper
lists in interlaced mode, and how to use the Copper with the blitter. The Copper is discussed in
this chapter in a general fashion. The chapters that deal with playfields, sprites, audio, and the
bUtter contain more specific suggestions for using the Copper.

What is a Copper Instruction?

As a coprocessor, the Copper adds its own instruction set to the instructions already provided by
the 68000. The Copper has only three instructions, but you can do a lot with them:

• WAIT for a specific screen position specified as x and y coordinates.

• MOVE an immediate data value into one of the special-purpose registers.

SKIP the next instruction if the video beam has already reached a specified screen posi
tion.

14 Coprocessor Hardware

All Copper instructions consist of two 16-bit words in sequential memory locations. Each time
the Copper fetches an instruction, it fetches both words. The MOVE and SKIP instructions
require two memory cycles and two instruction words. Because only the odd memory cycles are
requested by the Copper, four memory cycle times are required per instruction. The WAIT
instruction requires three memory cycles and six memory cycle times; it takes one extra memory
cycle to wake up.

Although the Copper can directly affect only machine registers, it can affect the memory by set
ting up a blitter operation. More information about how to use the Copper in controlling the
blitter can be found in the sections called "Control Register" and "Using the Copper with the
Blitter. "

The WAIT and MOVE instructions are described below. The SKIP instruction is described in the
" Advanced Topics" section.

The MOVE Instruction

The MOVE instruction transfers data from RAM to a register destination. The transferred data is
contained in the second word of the MOVE instruction; the first word contains the address of the
destination register. This procedure is shown in detail in the section called "Summary of Copper
Instructions. "

FIRST INSTRUCTION WORD (lR1)

Bit 0 Always set to O.

Bits S - 1 Register destination address (DAS-I).

Bits 15 - 9 Not used, but should be set to O.

SECOND INSTRUCTION WORD (IR2)

Bits 15 - 0 16 bits of data to be transferred (moved)
to the register destination.

Coprocessor Hardware 15

The Copper can store data into the following registers:

• Any register whose address is $20 or above. 1

Any register whose address is between $10 and $20 if the Copper danger bit is a 1. The
Copper danger bit is in the Copper's control register, COPCON, which is described in
the "Control Register" section.

• The Copper cannot write into any register whose address is lower than $10.

Appendix B contains all of the machine register addresses.

The following example MOVE instructions point bit-plane pointer I at $21000 and bit-plane
pointer 2 at $25000.2

DC.W
DC.W
DC.W
DC.W

$00EO,$0002
$00E2,$1000
$00E4,$0002
$00E6,$5000

:Move $0002 to register $OEO (BPL1PTH)
:Move $1000 to regs iter $OE2 (BPL1PTL)
:Move $0002 to register $OE4 (BPL2PTH)
:Move $5000 to register $OE6 (BPL2PTL)

Normally, the appropriate assembler".i" files are included so that names, rather than addresses,
may be used for referencing hardware registers. It is strongly recommended that you reference all
hardware addresses via their defined names in the system include files. This will allow you to
more easily adapt your software to take advantage of future hardware or enhancements. For
example:

INCLUDE "hardware/custom.i"

DC.W bplpt+$00,$0002 : Move $0002 into register $OEO (BPL1PTH)
DC.W bplpt+$02,$1000 ; Move $1000 into register $OE2 (BPL1PTL)
DC.W bplpt+$04,$0002 : Move $0002 into register $OE4 (BPL2PTH)
DC.W bplpt+$06,$5000 ; Move $5000 into register $OE6 (BPL2PTL)

For use in the hardware manual examples, we have made a special include file (see Appendix J)
that defines all of the hardware register names based off of the "hardware/custom.i" file. This
was done to make the examples easier to read from a hardware point of view. Most of the exam
ples in this manual are here to help explain the hardware and are, in most cases, not useful
without modification and a good deal of additional code.

1 Hexadecimal numbers are distinguished from decimal numbers by the $ prefix.

2 All sample code segments are in assembly language.

16 Coprocessor Hardware

The WAIT Instruction

The WAIT instruction causes the Copper to wait until the video beam counters are equal to (or
greater than) the coordinates specified in the instruction. While waiting, the Copper is off the bus
and not using memory cycles.

The first instruction word contains the vertical and horizontal coordinates of the beam position.
The second word contains enable bits that are used to form a "mask" that tells the system which
bits of the beam position to use in making the comparison.

BitO

Bits 15 - 8

Bits 7 - 1

FIRST INSTRUCTION WORD (IRl)

Always set to 1.

Vertical beam position (called VP).

Horizontal beam position (called HP).

SECOND INSTRUCTION WORD (IR2)

Bit 0 Always set to O.

Bit 15 The blitter-finished-disable bit.
Normally, this bit is a 1.
(See the "Advanced Topics" section below.)

Bits 14 - 8 Vertical position compare enable bits (called VB).

Bits 7 - 1 Horizontal position compare enable bits (called HE).

The following example WAIT instruction waits for scan line 150 ($96) with the horizontal posi
tion masked off.

DC.W $9601,$FFOO ;Wait for line 150,
ignore horizontal counters.

The following example WAIT instruction waits for scan line 255 and horizontal position 254.
This event will never occur, so the Copper stops until the next vertical blanking intelVal begins.

DC.W $FFFF,$FFFE ;Wait for line 255,
H = 254 (ends Copper list).

To understand why position VP=$FF HP=$FE will never occur, you must look at the comparison
operation of the Copper and the size restrictions of the position information. Line number 255 is
a valid line to wait for, in fact it is the maximum value that will fit into this field. Since 255 is the
maximum number, the next line will wrap to zero (line 256 will appear as a zero in the

Coprocessor Hardware 17'

comparison.) The line number will never be greater than $FF. The horizontal position has a
maximum value of $E2. This means that the largest number that will ever appear in the com
parison is $FFE2. When waiting for $FFFE, the line $FF will be reached, but the horizontal posi
tion $FE will never happen. Thus, the position will never reach $FFFE.

You may be tempted to wait for horizontal position $FE (since it will never happen), and put a
smaller number into the vertical position field. This will not lead to the desired result. The com
parison operation is waiting for the beam position to become greater than or equal to the entered
position. If the vertical position is not $FF, then as soon as the line number becomes higher than
the entered number, the comparison will evaluate to true and the wait will end.

The following notes on horizontal and vertical beam position apply to both the WAIT instruction
and to the SKIP instruction. The SKIP instruction is described below in the "Advanced Topics"
section.

HORIZONTAL BEAM POSITION

The horizontal beam position has a value of $0 to $E2. The least significant bit is not used in the
comparison, so there are 113 positions available for Copper operations. This corresponds to 4
pixels in low resolution and 8 pixels in high resolution. Horizontal blanking falls in the range of
$OF to $35. The standard screen (320 pixels wide) has an unused horizontal portion of $04 to $47
(during which only the background color is displayed).

All lines are not the same length in NTSC. Every other line is a long line (228 color clocks, 0-
$E3), with the others being 227 color clocks long. In PAL, they are all 227 long. The display
sees all these lines as 227 1(2 color clocks long, while the copper sees alternating long & short
lines.

VERTICAL BEAM POSITION

The vertical beam position can be resolved to one line, with a maximum value of 255. There are
actually 262 NTSC (312 PAL) possible vertical positions. Some minor complications can occur
if you want something to happen within these last six or seven scan lines. Because there are only
eight bits of resolution for vertical beam position (allowing 256 different positions), one of the
simplest ways to handle this is shown below.

18 Coprocessor Hardware

Instruction

[... other instructions ...]

WAIT for position (0,255)

WAIT for any horizontal position with
vertical position 0 through 5, covering
the last 6 lines of the scan before vertical
blanking occurs.

NOTE

Explanation

At this point, the vertical
counter appears to wrap to 0
because the comparison works
on the least significant bits oj
the vertical count.

Thus the total oj 256 + 6 = 262
lines oj video beam travel
during which Copper
instructions can be executed.

The vertical is like the horizontal-as there are alternating long and short lines, there
are also long and short fields (interlace only). In NTSC, the fields are 262, then 263
lines and in PAL, 312,313.

This alternation of lines & fields produces the standard NTSC 4 field repeating pattern:

short field ending on short line
long field ending on long line
short field ending on long line
long field ending on short line
& back to the beginning ...

1 horiz count takes 1 cycle of the system clock. (processor is twice this)

NTSC- 3,579,545 Hz
PAL- 3,546,895 Hz
genlocked- basic clock frequency plus or minus about 2%.

THE COMPARISON ENABLE BITS

Bits 14-1 are normally set to allIs. The use of the comparison enable bits is described later in the
•• Advanced Topics" section.

Coprocessor Hardware 19

Using the Copper Registers

There are several machine registers and strobe addresses dedicated to the Copper:

Location registers

Jump address strobes

Control register

LOCATION REGISTERS

The Copper has two sets of location registers:

COP1LCH High 3 bits of first Copper list address.

COP1LCL Low 16 bits of first Copper list address.

COP2LCH High 3 bits of second Copper list address.

COP2LCL Low 16 bits of second Copper list address.

In accessing the hardware directly, you often have to write to a pair of registers that contains the
address of some data. The register with the lower address always has a name ending in "H" and
contains the most significant data, or high 3 bits of the address. The register with the higher
address has a name ending in "L" and contains the least significant data, or low 15 bits of the
address. Therefore, you write the l8-bit address by moving one long word to the register whose
name ends in "H." This is because when you write long words with the 68000, the most
significant word goes in the lower addressed word.

In the case of the Copper location registers, you write the address to COPILCH. In the following
text, for simplicity, these addresses are referred to as COPILC or COP2LC.

The Copper location registers contain the two indirect jump addresses used by the Copper. The
Copper fetches its instructions by using its program counter and increments the program counter
after each fetch. When a jump address strobe is written, the corresponding location register is
loaded into the Copper program counter. This causes the Copper to jump to a new location, from
which its next instruction will be fetched. Instruction fetch continues sequentially until the
Copper is interrupted by another jump address strobe.

20 Coprocessor Hardware

NOTE

At the start of each vertical blanking intelVal, COPILC is automatically used to start
the program counter. That is, no matter what the Copper is doing, when the end of
vertical blanking occurs, the Copper is automatically forced to restart its operations at
the address contained in COPILC.

JUMP STROBE ADDRESS

When you write to a Copper strobe address, the Copper reloads its program counter from the
corresponding location register. The Copper can write its own location registers and strobe
addresses to perform programmed jumps. For instance, you might MOVE an indirect address
into the COP2LC location register. Then, any MOVE instruction that addresses COPJMP2
strobes this indirect address into the program counter.

There are two jump strobe addresses:

COPJMPI Restart Copper from address contained in COPILC.

COPJMP2 Restart Copper from address contained in COP2LC.

CONTROL REGISTER

The Copper can access some special-purpose registers all of the time, some registers only when a
special control bit is set to aI, some registers not at all. The registers that the Copper can always
affect are numbered $20 through $FF inclusive. Those it cannot affect at all are numbered $00 to
$OF inclusive. (See Appendix B for a list of registers in address order.) The Copper control
register is within this group ($00 to $OF). Thus it takes deliberate action on the part of the 68000
to allow the Copper to write into a specific range of the special-purpose registers.

The Copper control register, called COPCON, contains only one bit, bit #1. This bit, called
CDANG (for Copper Danger Bit) protects all registers numbered between $10 and $IF inclusive.
This range includes the blitter control registers. When CDANG is 0, these registers cannot be
written by the Copper. When CDANG is 1, these registers can be written by the Copper.
Preventing the Copper from accessing the blitter control registers prevents a "runaway" Copper
(caused by a poorly formed instruction list) from accidentally affecting system memory.

NOTE

The CDANG bit is cleared after a reset.

Coprocessor Hardware 21

Putting Together a Copper Instruction List

The Copper instruction list contains all the register resetting done during the vertical blanking
interval and the register modifications necessary for making mid-screen alterations. As you are
planning what will happen during each display field, you may find it easier to think: of each aspect
of the display as a separate subsystem, such as playfields, sprites, audio, interrupts, and so on.
Then you can build a separate list of things that must be done for each subsystem individually at
each video beam position.

When you have created all these intermediate lists of things to be done, you must merge them
together into a single instruction list to be executed by the Copper once for each display frame.
The alternative is to create tl;tis all-inclusive list directly, without the intermediate steps.

For example, the bit-plane pointers used in playfield displays and the sprite pointers must be
rewritten during the vertical blanking interval so the data will be properly retrieved when the
screen display starts again. This can be done with a Copper instruction list that does the follow
ing:

WAIT until first line of the display
MOVE data to bit-plane pointer 1
MOVE data to bit-plane pointer 2
MOVE data to sprite pointer I
and so on

As another example, the sprite DMA channels that create movable objects can be reused multiple
times during the same display field. You can change the size and shape of the reuses of a sprite;
however, every multiple reuse normally uses the same set of colors during a full display frame.
You can change sprite colors mid-screen with a Copper instruction list that waits until the last
line of the first use of the sprite processor and changes the colors before the first line of the next
use of the same sprite processor:

WAIT for first line of display
MOVE firstcolorl to COLOR17
MOVE firstcolor2 to COLOR18
MOVE firstcolor3 to COLOR19
WAIT for last line + 1 of sprite's first use
MOVE secondcolorl to COLOR17
MOVE secondcolor2 to COLOR18
MOVE secondcolor3 to COLOR19
and so on

22 Coprocessor Hardware

As you create Copper instruction lists, note that the final list must be in the same order as that in
which the video beam creates the display. The video beam traverses the screen from position
(0,0) in the upper left hand corner of the screen to the end of the display (226,262) NTSC (or
(226,312) PAL) in the lower right hand corner. The first ° in (0,0) represents the x position. The
second ° represents the y position. For example, an instruction that does something at position
(0,100) should come after an instruction that affects the display at position (0,60).

NOTE

Given the form of the WAIT instruction, you can sometimes get away with not sorting
the list in strict video beam order. The WAIT instruction causes the Copper to wait
until the value in the beam counter is equal to or greater than the value in the instruc
tion.

This means, for example, if you have instructions following each other like this:

WAIT for position (64,64)
MOVE data

WAIT for position (60,60)
MOVE data

the Copper will perform both moves, even though the instructions are out of sequence. The
"greater than" specification prevents the Copper from locking up if the beam has already passed
the specified position. A side effect is that the second MOVE below will be performed:

WAIT for position (60,60)
MOVE data

WAIT for position (60,60)
MOVE data

At the time of the second WAIT in this sequence, the beam counters will be greater than the posi
tion shown in the instructions. Therefore, the second MOVE will also be performed.

Note also that the above sequence of instructions could just as easily be

WAIT for position (60,60)
MOVE data
MOVE data

because multiple MOVEs can follow a single WAIT.

Coprocessor Hardware 23

COMPLETE SAMPLE COPPER LIST

The following example shows a complete Copper list. This list is for two bit-planes-one at
$21000 and one at $25000. At the top of the screen, the color registers are loaded with the fol
lowing values:

Register

COLOROO
COLOROI
COLOR02
COLOR03

Color

white
red
green
blue

At line 150 on the screen, the color registers are reloaded:

Register Color

COLORoo black
COLOROI yellow
COLOR02 cyan
COLOR03 magenta

The complete Copper list follows.

Notes:
1. Copper lists must be in CHIP ram.
2. Bitplane addresses used in the example are arbitrary.
3. Destination register addresses in copper move instructions

are offsets from the base address of the custom chips.
4. As always, hardware manual examples assume that your

application has taken full control of the hardware,
and is not conflicting with operating system use of
the same hardware.

5. Many of the examples just pick memory addresses to
be used. Normally you would need to allocate the
required type of memory from the system with AllocMem()

6. As stated earlier, the code examples are mainly to help
clarify the way the hardware works.

7. The following INCLUDEs are required by all example code
in this chapter.

INCLUDE "exec/types.i"
INCLUDE "hardware/custom.i"
INCLUDE "hardware/dmabits.i"
INCLUDE "hardware/hw_examples.i"

24 Coprocessor Hardware

COPPERLIST:

Set up pointers to two bit planes

DC.W BPL1PTH,$0002 ; Move $0002 into register $OEO (BPL1PTH)
DC.W BPL1PTL,$1000 ; Move $1000 into register $OE2 (BPL1PTL)
DC.W BPL2PTH,$0002 ; Move $0002 into register $OE4 (BPL2PTH)
DC.W BPL2PTL,$5000 ;Move $5000 into register $OE6 (BPL2PTL)

Load color registers

DC.W COLOROO,$OFFF ; Move white into register $180 (COLOROO)
DC.W COLOR01,$OFOO ; Move red into register $182 (COLOR01)
DC.W COLOR02,$00FO ; Move green into register $184 (COLOR02)
DC.W COLOR03,$000F ;Move blue into register $186 (COLOR03)

Specify 2 lo-res bitplanes

DC.W BPLCONO,$2200 ;2 lores planes, coloron

Wait for line 150

DC.W $9601,$FFOO ;Wait for line 150, ignore horiz. position

Change color registers mid-display

DC.W
DC.W
DC.W
DC.W

COLOROO,$OOOO
COLOR01,$OFFO
COLOR02,$00FF
COLOR03,$OFOF

;Move black into register $0180 (COLOROO)
;Move yellow into register $0182 (COLOR01)
;Move cyan into register $0184 (COLOR02)
;Move magenta into register $0186 (COLOR03)

End Copper list by waiting for the impossible

DC.W $FFFF,$FFFE ;Wait for line 255, H = 254 (never happens)

For more information about color registers, see Chapter 3, "Playfield Hardware."

LOOPS AND BRANCHES

Loops and branches in Copper lists are covered in the • 'Advanced Topics" section below.

Starting and Stopping the Copper

STARTING THE COPPER AFTER RESET

At power-on or reset time, you must initialize one of the Copper location registers (COPILC or
COP2LC) and write to its strobe address before Copper DMA is turned on. This ensures a known
start address and known state. Usually, COPILC is used because this particular register is reused
during each vertical blanking time. The following sequence of instructions shows how to

Coprocessor Hardware 25

initialize a location register. It is assumed that the user has already created the correct Copper
instruction list at location' 'mycoplist."

Install the copper list

LEA CUSTOM,al
LEA MYCOPLIST(pc),aO
MOVE.L aO,COPILC(al)
MOVE.W COPJMP1(al),dO

Then enable copper and raster dma

al = address of custom chips
Address of our copper list
Write whole longword address
Causes copper to load PC from COPILC

Now, if the contents of COP1LC are not changed, every time vertical blanking occurs the Copper
will restart at the same location for each subsequent video screen. This forms a repeatable loop
which, if the list is correctly formulated, will cause the displayed screen to be stable.

STOPPING THE COPPER

. No stop instruction is provided for the Copper. To ensure that it will stop and do nothing until
the screen display ends and the program counter starts again at the top of the instruction list, the
last instruction should be to WAIT for an event that cannot occur. A typical instruction is to
WAIT for VP = $FF and HP = $FE. An HP of greater than $E2 is not possible. When the screen
display ends and vertical blanking starts, the Copper will automatically be pointed to the top of its
instruction list, and this final WAIT instruction never finishes.

You can also stop the Copper by disabling its ability to use DMA for retrieving instructions or
placing data. The register called DMACON controls all of the DMA channels. Bit 7, COPEN,
enables Copper DMA when set to 1.

For information about controlling the DMA, see Chapter 7, ,. System Control Hardware. "

26 Coprocessor Hardware

Advanced Topics

THE SKIP INSTRUCTION

The SKIP instruction causes the Copper to skip the next instruction if the video beam counters are
equal to or greater than the value given in the instruction.

The contents of the SKIP instruction's words are shown below. They are identical to the WAIT
instruction, except that bit 0 of the second instruction word is a I to identify this as a SKIP
instruction.

FIRST INSTRUCTION WORD (IRl)

Bit 0 Always set to 1.

Bits 15 - 8 Vertical position (called VP).

Bits 7 - 1 Horizontal position (called HP).

Skip if the beam counter is equal to or
greater than these combined bits
(bits 15 through 1).

SECOND INSTRUCTION WORD (IR2)

Bit 0 Always set to 1.

Bit 15 The blitter-finished-disable bit.
(See "Using the Copper with the
BUtter" below.)

Bits 14 - 8 Vertical position compare enable bits (called VE).

Bits 7 - 1 Horizontal position compare enable bits (called HE).

The notes about horizontal and vertical beam position found in the discussion of the WAIT
instruction apply also to the SKIP instruction.

Coprocessor Hardware 27

The following example SKIP instruction skips the instruction following it if VP (vertical beam
position) is greater than or equal to 100 ($64).

DC.W $6401,$FF01 ; If VP >= 100,
skip next instruction (ignore HP)

COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE

You can change the value in the location registers at any time and use this value to construct
loops in the instruction list. Before the next vertical blanking time, however, the COPILC regis
ters must be repointed to the beginning of the appropriate Copper list. The value in the COPILC
location registers will be restored to the Copper's program counter at the start of the vertical
blanking period.

Bits 14-1 of instruction word 2 in the WAIT and SKIP instructions specify which bits of the hor
izontal and vertical position are to be used for the beam counter comparison. The position in
instruction word 1 and the compare enable bits in instruction word 2 are tested against the actual
beam counters before any further action is taken. A position bit in instruction word 1 is used in
comparing the positions with the actual beam counters if and only if the corresponding enable bit
in instruction word 2 is set to 1. If the corresponding enable bit is 0, the comparison is always
true. For instance, if you care only about the value in the last four bits of the vertical position,
you set only the last four compare enable bits, bits (11-8) in instruction word 2.

Not all of the bits in the beam counter may be masked. If you look at the description of the IR2
(second instruction word) you will notice that bit 15 is the blitter-finished-disable bit. This bit is
not part of the beam counter comparison mask, it has its own meaning in the Copper WAIT
instruction. Thus, you can not mask the most significant bit in WAIT or SKIP instructions. In
most situations this limitation does not come into play, however, the following example shows
how to deal with it.

This example will instruct the Copper to issue an interrupt every 16 scan lines. It might seem that
the way to do this would be to use a mask of $OF and then compare the result with $OF. This
should compare "true" for $IF, $2F, $3F, etc. Since the test is for greater than or equal to, this
would seem to allow checking for every 16th scan line. However, the highest order bit cannot be
masked, so it will always appear in the comparisons. When the Copper is waiting for $OF and the
vertical position is past 128 (hex $80), this test will always be true. In this case, the minimum
value in the comparison will be $80, which is always greater than $OF, and the interrupt will hap
pen on every scan line. Remember, the Copper only checks for greater than or equal to.

In the following example, the Copper lists have been made to loop. The COPILC and COP2LC
values are either set via the CPU or in the Copper list before this section of Copper code. Also, it
is assumed that you have correctly installed an interrupt selVer for the Copper interrupt that will
be generated every 16 lines. Note that these are non-interlaced scan lines.

28 Coprocessor Hardware

How it works:

Both loops are, for the most part, exactly the same. In each, the Copper waits until the vertical
position register has $?F (? is any hex digit) in it, at which point we issue a Copper interrupt to
the Amiga hardware. To make sure that the Copper does not loop back before the vertical posi
tion has changed and cause another interrupt on the same scan line, wait for the horizontal posi
tion to be $E2 after each interrupt. Position $E2 is horizontal position 113 for the Copper and the
last real horizontal position available. This will force the Copper to the next line before the next
WAIT. The loop is executed by writing to the COPJMP1 register. This causes the Copper to
jump to the address that was initialized in COPILC.

The masking problem described above makes this code fail after vertical position 127. A separate
loop must be executed when vertical position is greater than or equal 127. When the vertical
position becomes greater than or equal to 127, the the first loop instruction is skipped, dropping
the Copper into the second loop. The second loop is much the same as the first, except that it
waits for $?F with the high bit set (binary lxxx1111). This is true for both the vertical and the
horizontal WAIT instructions. To cause the second loop, write to the COPJMP2 register. The
list is put into an infinite wait when VP >= 255 so that it will end before the vertical blank. At
the end of the vertical blanking period COPILC is written to by the operating system, causing the
first loop to start up again.

NOTE

The COPILC register is written at the end of the vertical blanking period by a graph
ics interrupt handler which is in the vertical blank interrupt server chain. As long as
this server is intact, COP1LC will be correctly strobed at the end of each vertical
blank.

This is the data for the Copper list.

It is assumed that COPPERLl is loaded into COPILC and
that COPPERL2 is loaded into COP2LC by some other code.

COPPERL1:
DC.W
DC.W

DC.W

DC.W
DC.W

COPPERL2:
DC.W
DC.W

DC.W

DC.W

$OF01,$8FOO
INTREQ,$8010

$00E3,$80FE

$7F01,$7FOl
COPJMP1, $0

$8F01,$8FOO
INTREQ,$8010

$80E3,$80FE

$FF01,$FEOl

Wait for VP=Oxxxllll
Set the copper interrupt bit •..

Wait for Horizontal $E2
This is so the line gets finished before
we check if we are there (The wait above)

Skip if VP>=127
Force a jump to COPILC

Wait for VP=lxxxllll
Set the copper interrupt bit ...

Wait for Horizontal $E2
This is so the line gets finished before
we check if we are there (The wait above)

Skip if VP>=255

Coprocessor Hardware 29

DC.W COPJMP2, $0 ; Force a jump to COP2LC

Whatever cleanup copper code that might be needed here •••
Since there are 262 lines in NTSC, and we stopped at 255, there is a
bit of time available

DC.W $FFFF,$FFFE i End of Copper list

USING THE COPPER IN INTERLACED MODE

An interlaced bit-plane display has twice the nonnal number of vertical lines on the screen.
Whereas a nonnal NTSC display has 262 lines, an interlaced NTSC display has 524 lines. PAL
has 312 lines nonnally and 625 in interlaced mode. In interlaced mode, the video beam scans the
screen twice from top to bottom, displaying, in the case of NTSC, 262 lines at a time. During the
first scan, the odd-numbered lines are displayed. During the second scan, the even-numbered
lines are displayed and interlaced with the odd-numbered ones. The scanning circuitry thus treats
an interlaced display as two display fields, one containing the even-numbered lines and one con
taining the odd-numbered lines. Figure 2-1 shows how an interlaced display is stored in memory.

Odd field
(time t)

1

3

5

Even field
(time t + 16.6ms)

2

4

6

Figure 2-1: Interlaced Bit-Plane in RAM

Data in Memory

1

2

3

4

5

6

The system retrieves data for bit-plane displays by using pointers to the starting address of the
data in memory. As you can see, the starting address for the even-numbered fields is one line
greater than the starting address for the odd-numbered fields. Therefore, the bit-plane pointer
must contain a different value for alternate fields of the interlaced display.

Simply, the organization of the data in memory matches the apparent organization on the screen
(Le., odd and even lines are interlaced together). This is accomplished by having a separate
Copper instruction list for each field to manage displaying the data.

30 Coprocessor Hardware

To get the Copper to execute the correct list, you set an interrupt to the 68000 just after the first
line of the display. When the interrupt is executed, you change the contents of the COPILC loca
tion register to point to the second list. Then, during the vertical blanking interval, COPILC will
be automatically reset to point to the original list.

For more information about interlaced displays, see Chapter 3, "Playfield Hardware."

USING THE COPPER WITH THE BLITTER

If the Copper is used to start up a sequence of blitter operations, it must wait for the bUtter
finished interrupt before starting another blitter operation. Changing blitter registers while the
blitter is operating causes unpredictable results. For just this purpose, the WAIT instruction
includes an additional control bit, called BFD (for blitter finished disable). Normally, this bit is a
1 and only the beam counter comparisons control the WAIT.

When the BFD bit is a 0, the logic of the Copper WAIT instruction is modified. The Copper will
WAIT until the beam counter comparison is true and the bUtter has finished. The bUtter has
finished when the blitter-finished flag is set. This bit should be unset with caution. It could pos
sibly prevent some screen displays or prevent objects from being displayed correctly.

For more information about using the bUtter, see Chapter 6, "BUtter Hardware."

THE COPPER AND THE 68000

On those occasions when the Copper's instructions do not suffice, you can interrupt the 68000
and use its instruction set instead. The 68000 can poll for interrupt flags set in the INTREQ regis
ter by various devices. To interrupt the 68000, use the Copper MOVE instruction to store a 1 into
the following bits of INTREQ:

Table 2-1: Interrupting the 68000

Bit Number Name Function

15 SET/CLR Set/Oear control bit. Determines
if bits written with a 1 get set
or cleared.

4 COPEN Coprocessor interrupting 68000.

See Chapter 7, "System Control Hardware," for more information about interrupts.

Coprocessor Hardware 31

Summary of Copper Instructions

The table below shows a summary of the bit positions for each of the Copper instructions. See
Appendix A for a summary of all registers.

Table 2-2: Copper Instruction Summary

Move Wait
Bit# IRI IR2 IRI IR2

15 X RD15 VP7 BFD
14 X RD14 VP6 VE6
13 X RD13 VP5 VE5
12 X RD12 VP4 VE4
11 X RD11 VP3 VE3
10 X RDW VP2 VE2
09 X RD09 VP1 VEl
08 DA8 Roo8 VPO VEO
07 DA7 Roo7 HP8 HE8
06 DA6 RD06 HP7 HE7
05 DA5 RD05 HP6 HE6
04 DA4 RD04 HP5 HE5
03 DA3 Roo3 HP4 HE4
02 DA2 Roo2 HP3 HE3
01 DA1 ROO 1 HP2 HE2
00 0 RDOO 1 0

X = don't care, but should be a 0 for upward compatibility
IR 1 = first instruction word
IR2 = second instruction word
DA = destination address
RD = RAM data to be moved to destination register
VP = vertical beam position bit
HP = horizontal beam position bit
VE = enable comparison (mask bit)
HE = enable comparison (mask bit)
BFD = blitter-finished disable

32 Coprocessor Hardware

Skip
IRI IR2

VP7 BFD
VP6 VE6
VP5 VE5
VP4 VE4
VP3 VE3
VP2 VE2
VP1 VEl
VPO VEO
HP8 HE8
HP7 HE7
HP6 HE6
HP5 HE5
HP4 HE4
HP3 HE3
HP2 HE2

1 1

Chapter 3

PLAYFIELD HARDWARE

Introduction

The screen display of the Amiga consists of two basic parts-playfields, which are sometimes
called backgrounds, and sprites, which are easily movable graphics objects. This chapter
describes how to directly access hardware registers to form playfields.

Playfield Hardware 33

ABOUT THIS CHAPTER

This chapter begins with a brief overview of playfield features, including definitions of some fun
damental terms, and continues with the following major topics:

Forming a single "basic" playfield, which is a playfield the same size as the display
screen. This section includes concepts that are fundamental to forming any playfield.

Forming a dual-playfield display in which one playfield is superimposed upon another.
This procedure differs from that of forming a basic playfield in some details.

Forming playfields of various sizes and displaying only part of a larger playfield.

• . Moving playfields by scrolling them vertically and horizontally.

Advanced topics to help you use playfields in special situations.

For information about movable sprite objects, see Chapter 4, "Sprite Hardware." There are also
movable playfield objects, which are subsections of a playfield. To move portions of a playfield,
you use a technique called playfield animation, which is described in Chapter 6, "Blitter
Hardware. "

PLA YFIELD FEATURES

The Amiga produces its video displays with raster display techniques. The picture you see on the
screen is made up of a series of horizontal video lines displayed one after the other. Each hor
izontal video line is made up of a series of pixels. You create a graphic display by defining one
or more bit-planes in memory and filling them with "1 "s and "O"s The combination of the "1 "s
and "O"s will determine the colors in your display.

Video Picture

Each line represents one sweep of an electron beam
which is "painting" the picture as it goes along.

The video beam produces each line by sweeping
from left to right. It produces the full screen by
sweeping the beam from the top to the bottom,
one line at a time.

Figure 3-1: How the Video Display Picture Is Produced

34 Playfield Hardware

The video beam produces about 262 video lines from top to bottom, of which 200 nOlmally are
visible on the screen with an NTSC system. With a PAL system, the beam produces 312 lines, of
which 256 are normally visible. Each complete set of lines (262/NTSC or 312/PAL) is called a
display field. The field time, i.e. the time required for a complete display field to be produced, is
approximately 1/60th of a second for an NTSC system and approximately l/5Oth of a second for
PAL. Between display fields, the video beam traverses the lines that are not visible on the screen
and returns to the top of the screen to produce another display field.

The display area is defined as a grid of pixels. A pixel is a single picture element, the smallest
addressable part of a screen display. The drawings below show what a pixel is and how pixels
form displays.

...

DI..------+------The picture is formed from many elements.

•
320 Pixels

Each element is called a pixel.

GI..---+------ Pixels are used together to build larger
graphic objects .

... •
640 Pixels

In normal resolution mode,
320 pixels fill a horizontal line.

In high resolution mode,
640 pixels fill a horizontal line.

Figure 3-2: What Is a Pixel?

The Amiga offers a choice in both horizontal and vertical resolutions. Horizontal resolution can
be adjusted to operate in low resolution or high resolution mode. Vertical resolution can be
adjusted to operate in interlaced or non-interlaced mode.

Playfield Hardware 35

• In low-resolution mode, the normal playfield has a width of 320 pixels.

• High-resolution mode gives finer horizontal resolution - 640 pixels in the same physical
display area.

• In non-interlaced mode, the normal NTSC playfield has a height of 200 video lines. The nor
mal PAL screen has a height of 256 video lines.

• Interlaced mode gives finer vertical resolution - 400 lines in the same physical display area
in NTSC and 512 for PAL.

These modes can be combined, so you can have, for instance, an interlaced, high-resolution
display.

Note that the dimensions referred to as "normal" in the previous paragraph are nominal dimen
sions and represent the normal values you should expect to use. Actually, you can display larger
playfields; the maximum dimensions are given in the section called "Bit-Planes and Playfields of
All Sizes." Also, the dimensions of the playfield in memory are often larger than the playfield
displayed on the screen. You choose which part of this larger memory picture to display by
specifying a different size for the display window.

A playfield taller than the screen can be scrolled, or moved smoothly, up or down. A playfield
wider than the screen can be scrolled horizontally, from left to right or right to left. Scrolling is
described in the section called "Moving (Scrolling) Playfields. ' ,

In the Amiga graphics system, you can have up to thirty-two different colors in a single playfield,
using normal display methods. You can control the color of each individual pixel in the playfield
display by setting the bit or bits that control each pixel. A display formed in this way is called a
bit-mapped display.

For instance, in a two-color display, the color of each pixel is determined by whether a single bit
is on or off. If the bit is 0, the pixel is one user-defined color; if the bit is 1, the pixel is another
color. For a four-color display, you build two bit-planes in memory. When the playfield is
displayed, the two bit-planes are overlapped, which means that each pixel is now two bits deep.
You can combine up to five bit-planes in this way. Displays made up of three, four, or five bit
planes allow a choice of eight, sixteen, or thirty-two colors, respectively.

The color of a pixel is always determined by the binary combination of the bits that define it.
When the system combines bit-planes for display, the combination of bits formed for each pixel
corresponds to the number of a color register. This method of coloring pixels is called color
indirection. The Amiga has thirty-two color registers, each containing bits defining a user
selected color (from a total of 4,096 possible colors).

Figure 3-3 shows how the combination of up to five bit-planes forms a code that selects which
one of the thirty-two registers to use to display the color of a playfield pixel.

36 Playfield Hardware

One Pixel

Bit-Plane 5

Bit-Plane 4

Bit-Plane 3

Bit-Plane 2

Bit-Plane 1

Bits from
Planes
5,4,3,2, 1

00000
00001
00010
00011
00100

11000
11001
11010
11011
11100
11101
11110
11111

Figure 3-3: How Bit-planes Select a Color

Color Registers

Values in the highest numbered bit-plane have the highest significance in the binary number. As
shown in Figure 3-4, the value in each pixel in the highest-numbered bit-plane forms the leftmost
digit of the number. The value in the next highest-numbered bit-plane forms the next bit, and so
on.

Playfield Hardware 37

Sample Data for 4 Pixels

1
1
1
o
o

1
o
o
1
o

o
1
o
1

o Data in Bit-Plane 5 - Most Significant
o Data in Bit-Plane 4
1 Data in Bit-Plane 3
1 Data in Bit-Plane 2
o Data in Bit-Plane 1 - Least Significant

L V,'u' 6 - COLOR6
L--______ Value 11 - COLOR11

L--________ Value 18 - COLOR18

'------------- Value 28 - COLOR28

Figure 3-4: Significance of Bit-Plane Data in Selecting Colors

You also have the choice of defining two separate playfields, each formed from up to three bit
planes_ Each of the two playfields uses a separate set of eight different colors. This is called
dual-play field mode.

Forming a Basic Playfield

To get you started, this section describes how to directly access hardware registers to fOlm a sin
gle basic playfield that is the same size as the video screen. Here, "same size" means that the
playfield is the same size as the actual display window. This will leave a small border between
the playfield and the edge of the video screen. The playfield usually does not extend all the way
to the edge of the physical display.

To form a playfield, you need to define these characteristics:

• Height and width of the playfield and size of the display window (that is, how much of
the playfield actually appears on the screen).

• Color of each pixel in the playfield.

• Horizontal resolution.

38 Playfield Hardware

• Vertical resolution, or interlacing.

• Data fetch and modulo, which tell the system how much data to put on a horizontal line
and how to fetch data from memory to the screen.

In addition, you need to allocate memory to store the playfield, set pointers to tell the system
where to find the data in memory, and (optionally) write a Copper routine to handle redisplay of
the playfield.

HEIGHT AND WIDTH OF THE PLAYFIELD

To create a playfield that is the same size as the screen, you can use a width of either 320 pixels
or 640 pixels, depending upon the resolution you choose. The height is either 200 or 400 lines
for NTSC, 256 or 512 lines for PAL, depending upon whether or not you choose interlaced mode.

BIT-PLANES AND COLOR

You define play field color by:

1. Deciding how many colors you need and how you want to color each pixel.

2. Loading the colors into the color registers.

3. Allocating memory for the number of bit-planes you need and setting a pointer to each
bit-plane.

4. Writing instructions to place a value in each bit in the bit-planes to give you the correct
color.

Table 3-1 shows how many bit-planes to use for the color selection you need.

Table 3-1: Colors in a Single Playfield

Number of
Colors

1-2
3-4
5-8

9 - 16
17 - 32

Number of
Bit-Planes

1
2
3
4
5

Playfield Hardware 39

The Color Table

The color table contains 32 registers, and you may load a different color into each of the registers.
Here is a condensed view of the contents of the color table:

Table 3-2: Portion of the Color Table

Register Name Contents Meaning

COLOROO 12 bits User-defined color for the
background area and borders.

COLOROI 12 bits User-defined color number 1
(For example, the alternate color
selection for a two-color playfield).

COLOR02 12 bits User-defined color number 2.

COLOR31 12 bits User-defined color number 31.

COLOROO is always reserved for the background color. The background color shows in any area
on the display where there is no other object present and is also displayed outside the defined
display window, in the border area.

NOTE

If you are using the optional genlock board for video input from a camera, VCR, or
laser disk, the background color will be replaced by the incoming video display.

Twelve bits of color selection allow you to define, for each of the 32 registers, one of 4,096 possi
ble colors, as shown in Table 3-3.

40 Playfield Hardware

Table 3-3: Contents of the Color Registers

Bits

Bits 15 - 12
Bits 11- 8
Bits 7 - 4
Bits 3 - 0

Unused
Red
Green
Blue

Table 3-4 shows some sample color register bit assignments and the resulting colors. At the end
of the chapter is a more extensive list.

Table 3-4: Sample Color Register Contents

Contents of the
Color Register

$FFF
$6FE
$DB9
$000

Resulting
Color

White
Sky blue
Tan
Black

Some sample instructions for loading the color registers are shown below:

LEA CUSTOM,aO
MOVE.W #$FFF,COLOROO(aO)
MOVE.W #$6FE,COLOR01(aO)

Get base address of custom hardware .••
Load white into color register 0
Load sky blue into color register 1

NOTE

The color registers are write-only. Only by looking at the screen can you find out the
contents of each color register. As a standard practice, then, for these and certain other
write-only registers, you may wish to keep a "back-up" RAM copy. As you write to
the color register itself, you should update this RAM copy. If you do so, you will
always know the value each register contains.

Selecting the Number of Bit-Planes

After deciding how many colors you want and how many bit-planes are required to give you
those colors, you tell the system how many bit-planes to use.

Playfield Hardware 41

You select the number of bit-planes by writing the number into the register BPLCONO (for Bit
Plane Control Register 0) The relevant bits are bits 14, 13, and 12, named BPU2, BPU1, and
BPUO (for "Bit Planes Used"). Table 3-5 shows the values to write to these bits and how the
system assigns bit-plane numbers.

Table 3-5: Setting the Number of Bit-Planes

Value

000
001
010
011
100
101
110
111

Number of
Bit-Planes

None *
1
2
3
4
5
6

Name(s)of
Bit-Planes

PLANE 1
PLANES 1 and 2
PLANES 1- 3
PLANES 1-4
PLANES 1- 5
PLANES 1 - 6 **
Value not used.

* Shows only a background color; no playfield is visible.

** Sixth bit-plane is used only in dual-playfield mode and in hOld-and-modify
mode (described in the section called" Advanced Topics").

NOTE

The bits in the BPLCONO register cannot be set independently. To set anyone bit,
you must reload them all.

The following example shows how to tell the system to use two low-resolution bit-planes.

MOVE.W #$2200,BPLCONO+CUSTOM ; Write to it

Because register BPLCONO is used for setting other characteristics of the display and the bits are
not independently settable, the example above also sets other parameters (all of these parameters
are described later in the chapter).

• Hold-and-modify mode is turned off.

• Single-playfield mode is set.

• Composite video color is enabled. (Not applicable in all models.)

42 Playfield Hardware

Genlock audio is disabled.

Light pen is disabled.

Interlaced mode is disabled.

External resynchronization is disabled. (genlock)

SELECTING HORIZONTAL AND VERTICAL RESOLUTION

Standard home television screens are best suited for low-resolution displays. Low-resolution
mode provides 320 pixels for each horizontal line. High-resolution monochrome and RGB moni
tors can produce displays in high-resolution mode, which provides 640 pixels for each horizontal
line. If you define an object in low-resolution mode and then display it in high-resolution mode,
the object will be only half as wide.

To set horizontal resolution mode, you write to bit 15, HIRES, in register BPLCONO:

High-resolution mode - write 1 to bit 15.
Low-resolution mode - write 0 to bit 15.

Note that in high-resolution mode, you can have up to four bit-planes in the playfield and, there
fore, up to 16 colors.

Interlaced mode allows twice as much data to be displayed in the same vertical area as in non
interlaced mode. This is accomplished by doubling the number of lines appearing on the video
screen. The following table shows the number of lines required to fill a normal, non-overscan
screen.

Table 3-6: Lines in a Normal Playfield

Non-interlaced
Interlaced

NTSC PAL

200 256
400 512

In interlaced mode, the scanning circuitry vertically offsets the start of every other field by half a
scan line.

Playfield Hardware 43

Line 1

Line 1

Field 1

\ Lin,1

1~~~/~~~Line2
L..::::::::::.: Video Display

(400 lines)

Field 2
(Same physical space as used by
a 200 line non interlaced display.)

Figure 3-5: Interlacing

Even though interlaced mode requires a modest amount of extra work in setting registers (as you
will see later on in this section), it provides fine tuning that is needed for certain graphics effects.
Consider the diagonal line in Figure 3-6 as it appears in non-interlaced and interlaced modes.
Interlacing eliminates much of the jaggedness or "staircasing" in the edges of the line.

Non-I nterlaced Interlaced

Figure 3-6: Effect of Interlaced Mode on Edges of Objects

When you use the special bUtter DMA channel to draw lines or polygons onto an interlaced
playfield, the playfield is treated as one display, rather than as odd and even fields. Therefore,
you still get the smoother edges provided by interlacing.

44 Playfield Hardware

To set interlaced or non-interlaced mode, you write to bit 2, LACE, in register BPLCONO:

Interlaced mode - write I to bit 2.
Non-interlaced mode - write 0 to bit 2.

As explained above in "Setting the Number of Bit-Planes," bits in BPLCONO are not indepen
dent! y settable.

The following example shows how to specify high-resolution and interlaced modes.

MOVE.W #$A204,BPLCONO+CUSTOM ; Write to it

The example above also sets the following parameters that are also controlled through register
BPLCONO:

• High-resolution mode is enabled.

• Two bit-planes are used.

• Hold-and-modify mode is disabled.

• Single-play field mode is enabled.

• Composite video color is enabled.

• Genlock audio is disabled.

• Light pen is disabled.

Interlaced mode is enabled.

• External resynchronization is disabled.

The amount of memory you need to allocate for each bit-plane depends upon the resolution
modes you have selected, because high-resolution or interlaced playfields contain more data and
require larger bit-planes.

Play field Hardware 45

ALLOCATING MEMORY FOR BIT -PLANES

After you set the number of bit-planes and specify resolution modes, you are ready to allocate
memory. A bit-plane consists of an end-to-end sequence of words at consecutive memory loca
tions. When operating under the Amiga operating system, use a system call such as AllocMemO
to remove a block of memory from the free list and make it available to the program. If the
machine has been taken over, simply reserve an area of memory for the bit-planes. Next, set the
bit plane pointer registers (BPLxPTH/BPLxPTL) to point to the starting memory address of each
bit-plane you are using. The starting address is the memory word that contains the bits of the
upper left -hand comer of the bit-plane.

Table 3-6 shows how much memory is needed for basic playfields. You may need to balance
your color and resolution requirements against the amount of available memory you have.

Table 3-7: Playfield Memory Requirements, NTSC

Number of Bytes
Picture Size Modes per Bit-Plane

320 X 200 Low-resolution, 8,000
non-interlaced

320 X 400 Low-resolution, 16,000
interlaced

640 X 200 High-resolution, 16,000
non-interlaced

640 X 400 High-resolution, 32,000
interlaced

46 Playfield Hardware

Table 3-8: Playfield Memory Requirements, PAL

Number of Bytes
Picture Size Modes per Bit-Plane

320 X256 Low-resolution, 8,192
non-interlaced

320 X512 Low-resolution, 16,384
interlaced

640 X256 High-resolution, 16,384
non-interlaced

640 X 512 High-resolution, 32,768
interlaced

NTSC EXAMPLE OF BIT PLANE SIZE

For example, using a nOImal, NTSC, low-resolution, non-interlaced display with 320 pixels
across each display line and a total of 200 display lines, each line of the bit-plane requires 40
bytes (320 bits divided by 8 bits per byte = 40). Multiply the 200 lines times 40 bytes per line to
get 8,000 bytes per bit-plane as given above.

A low-resolution, non-interlaced playfield made up of two bit-planes requires 16,000 bytes of
memory area. The memory for each bit-plane must be continuous, so you need to have two
8,000-byte blocks of available memory. Figure 3-7 shows an 8,000-byte memory area organized
as 200 lines of 40 bytes each, providing 1 bit for each pixel position in the display plane.

Playfield Hardware 47

I I I I I I I I �------------------------------------~~I I I I II I I I
Mem. Location N Mem. Location N+38

I I I I I I III------------------------------~~ I I I I II I II
Mem. Location N+40 Mem. Location N+78

I I I II I I II------------------------------~~ II I I II I II
Mem. Location N+7960 Mem. Location N+7998

Figure 3-7: Memory Organization for a Basic Bit-Plane

Access to bit-planes in memory is provided by two address registers, BPLxPTH and BPLxPfL,
for each bit-plane (12 registers in all). The "x" position in the name holds the bit-plane number;
for example BPL1PTH and BPL1PTL hold the starting address of PLANE 1. Pairs of registers
with names ending in PTH and PTL contain 19-bit addresses. 68000 programmers may treat
these as one 32-bit address and write to them as one long word. You write to the high-order
word, which is the register whose name ends in "PI'H."

The example below shows how to set the bit-plane pointers. Assuming two bit-planes, one at
$21000 and the other at $25000, the processor sets BPL1PT to $21000 and BPL2PT to $25000.
Note that this is usually the Copper's task.

Since the bit plane pointer registers are mapped as full 680xO long-word
data, we can store the addresses with a 32-bit move •••

LEA CUSTOM,aO
MOVE.L $21000,BPLIPTH(aO}
MOVE.L $2S000,BPL2PTH(aO}

Get base address of custom hardware •••
Write bit-plane 1 pointer
Write bit-plane 2 pointer

Note that the memory requirements given here are for the playfield only. You may need to allo
cate additional memory for other parts of the display - sprites, audio, animation - and for your
application programs. Memory allocation for other parts of the display is discussed in the
chapters describing those topics.

48 Playfield Hardware

CODING THE BIT-PLANES FOR CORRECT COLORING

After you have specified the number of bit-planes and set the bit-plane pointers, you can actually
write the color register codes into the bit-planes.

A One- or Two-Color Playfield

For a one-color playfield, all you need do is write "O"s in all the bits of the single bit-plane as
shown in the example below. This code fills a low-resolution bit-plane with the background color
(COLOROO) by writing all "O"s into its memory area. The bit-plane starts at $21()()() and is
8,000 bytes long.

LEA $21000,aO
MOVE.W i2000,dO

LOOP: MOVE.L iO, (aO)+
DBRA dO, LOOP

Point at bit-plane
Write 2000 longwords ~ 8000 bytes
Write out a zero
Decrement counter and loop until done .••

For a two-color play field, you define a bit-plane that has "O"s where you want the background
color and "1" s where you want the color in register 1. The following example code is identical
to the last example, except the bit-plane is filled with $FFOOFFOO instead of all O's. This will
produce two colors.

LEA $21000,aO
MOVE.W i2000,dO

LOOP: MOVE.L i$FFOOFFOO, (aO)+
DBRA dO, LOOP

A Playfield of Three or More Colors

Point at bit-plane
Write 2000 longwords = 8000 bytes

; Write out $FFOOFFOO
Decrement counter and loop until done .•.

For three or more colors, you need more than one bit-plane. The task here is to define each bit
plane in such a way that when they are combined for display, each pixel contains the correct com
bination of bits. This is a little more complicated than a playfield of one bit-plane. The following
examples show a four-color play field, but the basic idea and procedures are the same for
playfields containing up to 32 colors.

Figure 3-8 shows two bit-planes forming a four-color play field:

Play field Hardware 49

Results in a display
Image in Image in similar to this:
Bit-Plane 2 Bit-Plane

0 0 o~o 0 0 0 0 0[TI0 0 0
0 0 000 0 0 0 0 0 o 1 1 0 0 0
0 0 000 0 0 0 0 0 o 1 1 0 0 0
1 1 0 0 1 1 0 0 1
1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1
0 0 ° [J]0 0 0 0 0 0[J]0 0 0
0 0 o 1 1 0 0 0 0 0 o 1 1 0 0 0
0 0 o 1 1 0 0 0 0 0 o 1 1 0 0 0

Color 00

/ (background)

Color 3

Figure 3-8: Combining Bit-planes

You place the correct" I "s and "O"s in both bit-planes to give each pixel in the picture above
the correct color.

In a single playfield you can combine up to five bit-planes in this way. Using five bit-planes
allows a choice of 32 different colors for any single pixel. The playfield color selection charts at
the end of this chapter summarize the bit combinations for playfields made from four and five
bit-planes.

DEFINING THE SIZE OF THE DISPLAY WINDOW

After you have completely defined the playfield, you need to define the size of the display win
dow, which is the actual size of the on-screen display. Adjustment of display window size affects
the entire display area, including the border and the sprites, not just the playfield. You cannot
display objects outside of the defined display window. Also, the size of the border around the
playfield depends on the size of the display window.

The basic playfield described in this section is the same size as the screen display area and also
the same size as the display window. This is not always the case; often the display window is
smaller than the actual "big picture" of the playfield as defined in memory (the raster). A
display window that is smaller than the playfield allows you to display some segment of a large

50 Playfield Hardware

playfield or scroll the playfield through the window. You can also define display windows larger
than the basic playfield. These larger playfields and different-sized display windows are
described in the section below called "Bit-Planes and Display Windows of All Sizes."

You define the size of the display windbw by specifying the vertical and horizontal positions at
which the window starts and stops and writing these positions to the display window registers.
The resolution of vertical start and stop is one scan line. The resolution of horizontal start and
stop is one low-resolution pixel. Each position on the screen defines the horizontal and vertical
position of some pixel, and this position is specified by the x and y coordinates of the pixel. This
document shows the x and y coordinates in this fonn: (x,y). Although the coordinates begin at
(0,0) in the upper left-hand comer of the screen, the first horizontal position nonnally used is $81
and the first vertical position is $2C. The horizontal and vertical starting positions are the same
both for NTSC and for PAL.

The hardware allows you to specify a starting position before ($81,$2C), but part of the display
may not be visible. The difference between the absolute starting position of (0,0) and the nonnal
starting position of ($81,$2C) is the result of the way many video display monitors are designed.
To overcome the distortion that can occur at the extreme edges of the screen, the scanning beam
sweeps over a larger area than the front face of the screen can display. A starting position of
($81,$2C) centers a nonnal size display, leaving a border of eight low-resolution pixels around
the display window. Figure 3-9 shows the relationship between the nonnal display window, the
visible screen area, and the area actually covered by the scanning beam.

(0,0)

7
/ ,.

~
\

($81 $2C) ;1

320

200

~. ~ display Window
Starting and stopping positions

,
~ Visible screen boundaries

~
/

Figure 3-9: Positioning the On-screen Display

Playfield Hardware 51

Setting the Display Window Starting Position

A horizontal starting position of approximately $81 and a vertical starting position of approxi
mately $2C centers the display on most standard television screens. If you select high-resolution
mode (640 pixels horizontally) or interlaced mode (400 lines NTSC, 512 PAL) the starting posi
tion does not change. The starting position is always interpreted in low-resolution, non-interlaced
mode. In other words, you select a starting position that represents the correct coordinates in
low-resolution, non-interlaced mode.

The register DIWSTRT (for "Display Window Start") controls the display window starting posi
tion. This register contains both the horizontal and vertical components of the display window
starting positions, known respectively as HST ART and VST ART. The following example sets
DIWSTRT for a basic playfield. You write $2C for VST ART and $81 for HST ART.

LEA CUSTOM,aO
MOVE.W #$2C81,DIWSTRT{aO)

; Get base address of custom hardware •••
; Display window start register ...

Setting the Display Window Stopping Position

You also need to set the display window stopping position, which is the lower right-hand comer
of the display window. If you select high-resolution or interlaced mode, the stopping position
does not change. Like the starting position, it is interpreted in low-resolution, non-interlaced
mode.

The register DIWSTOP (for Display Window Stop) controls the display window stopping posi
tion. This register contains both the horizontal and vertical components of the display window
stopping positions, known respectively as HSTOP and VSTOP. The instructions below show
how to set HSTOP and VSTOP for the basic playfield, assuming a starting position of ($81,$2C).
Note that the HSTOP value you write is the actual value minus 256 ($100). The HSTOP position
is restricted to the right-hand side of the screen. The normal HSTOP value is ($ICl) but is writ
ten as ($CI). HSTOP is the same both for NTSC and for PAL.

The VSTOP position is restricted to the lower half of the screen. This is accomplished in the
hardware by forcing the MSB of the stop position to be the complement of the next MSB. This
allows for a VSTOP position greater than 256 ($100) using only 8 bits. Normally, the VSTOP is
set to ($F4) for NTSC, ($2C) for PAL.

The normal NTSC DIWSTRT is ($2C81).
The normal NTSC DIWSTOP is ($F4Cl).

The normal PAL DIWSTRT is ($2C81).
The normal PAL DIWSTOP is ($2CC1).

52 Playfield Hardware

The following example sets DIWSTOP for a basic playfield to $F4 for the vertical position and
$Cl for the horizontal position.

LEA CUSTOM,aO
MOVE.W i$F4Cl,DIWSTOP(aO)

; Get base address of custom hardware •••
; Display window stop register •••

Table 3-9: DIWSTRT AND DIWSTOP Summary.

DIWSTRT:
VSTART
HSTART

DIWSTOP:
VSTOP
HSTOP

---Nominal Values--
NTSC PAL

$2C $2C
$81 $81

$F4 $2C (=$12C)
$Cl $Cl

---Possible Values---
MIN MAX

$00 $FF
$00 $FF

$80 $7F (=$I7F)
$00 (=$100) $FF (=$IFF)

TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA

After defining the size and position of the display window, you need to give the system the on
screen location for data fetched from memory. To do this, you describe the horizontal positions
where each line starts and stops and write these positions to the data-fetch registers. The data
fetch registers have a four-pixel resolution (unlike the display window registers, which have a
one-pixel resolution). Each position specified is four pixels from the last one. Pixel 0 is position
0; pixel 4 is position I, and so on.

The data-fetch start and display window starting positions interact with each other. It is recom
mended that data-fetch start values be restricted to a programming resolution of 16 pixels (8
clocks in low-resolution mode, 4 clocks in high-resolution mode). The hardware requires some
time after the first data fetch before it can actually display the data As a result, there is a
difference between the value of window start and data-fetch start of 4.5 color clocks.

The normal low-resolution DDFSTRT is ($0038).
The normal high-resolution DDFSTRT is ($003C).

Recall that the hardware resolution of display window start and stop is twice the hardware resolu
tion of data fetch:

$~1 _ 8.5 = $38

$~1 _ 4.5 = $3C

Play field Hardware 53

The relationship between data-fetch start and stop is

DDFSTRT=DDFSTOP-(8*(word count-l»for low resolution

DDFSTRT = DDFSTOP-(4* (word count - 2»for high resolution

The normal low-resolution DDFSTOP is ($0000). The normal high-resolution DDFSTOP is
($00D4).

The following example sets data-fetch start to $0038 and data-fetch stop to $0000 for a basic
play field.

LEA CUSTOM,aO
MOVE.W #$0038, DDFSTRT (aO)
MOVE.W #$OODO,DDFSTOP(aO)

Point to base hardware address
Write to DDFSTRT
Write to DDFSTOP

You also need to tell the system exactly which bytes in memory belong on each horizontal line of
the display. To do this, you specify the modulo value. Modulo refers to the number of bytes in
memory between the last word on one horizontal line and the beginning of the first word on the
next line. Thus, the modulo enables the system to convert bit-plane data stored in linear form
(each data byte at a sequentially increasing memory address) into rectangular form (one "line" of
sequential data followed by another line). For the basic playfield, where the playfield in memory
is the same size as the display window, the modulo is zero because the memory area contains
exactly the same number of bytes as you want to display on the screen. Figures 3-10 and 3-11
show the basic bit-plane layout in memory and how to make sure the correct data is retrieved.

The bit-plane address pointers (BPLxPTH and BPLxPTL) are used by the system to fetch the data
to the screen. These pointers are dynamic; once the data fetch begins, the pointers are continu
ously incremented to point to the next word to be fetched (data is fetched two bytes at a time).
When the end-of-line condition is reached (defined by the data-fetch register, DDFSTOP) the
modulo is added to the bit-plane pointers, adjusting the pointer to the first word to be fetched for
the next horizontal line.

Data for Line 1 :

Location: START

Leftmost
Display Word

START+2

Next Word

START+4

Next Word

START+38

Last Display

Screen data fetch stops (DDFSTOP) for Wo trd

each horizontal line after the last word
on the line has been fetched. ---------'

Figure 3-10: Data Fetched for the First Line When Modulo = 0

54 Playfield Hardware

After the first line is fetched, the bit-plane pointers BPLxPTH and BPLxPfL contain the value
START +40. The modulo (in this case, 0) is added to the current value of the pointer, so when the
pointer begins the data fetch for the next line, it fetches the data you want on that line. The data
for the next line begins at memory location START +40.

Data for Line 2:

Location: START+40

Leftmost
Display Word

START+42

Next Word

START+44

Next Word

START+78

Last Display
Word

Figure 3-11: Data Fetched for the Second Line When Modulo = 0

Note that the pointers always contain an even number, because data is fetched from the display a
word at a time.

There are two modulo registers-BPL1MOD for the odd-numbered bit-planes and BPL2MOD
for the even-numbered bit-planes. This allows for differing modulos for each playfield in dual
play field mode. For normal applications, both BPL1MOD and BPL2MOD will be the same.

The following example sets the modulo to 0 for a low-resolution playfield with one bit-plane.
The bit-plane is odd-numbered.

MOVE.W #O,BPLIMOD+CUSTOM Set modulo to 0

Data Fetch in High-resolution Mode

When you are using high-resolution mode to display the basic playfield, you need to fetch 80
bytes for each line, instead of 40.

Modulo in Interlaced Mode

For interlaced mode, you must redefine the modulo, because interlaced mode uses two separate
scannings of the video screen for a single display of the playfield. During the first scanning. the
odd-numbered lines are fetched to the screen; and during the second scanning, the even-numbered
lines are fetched.

Playfield Hardware 55

The bit-planes for a full-screen-sized, interlaced display are 400 NTSC (512 PAL), rather than
200 NTSC (256 PAL), lines long. Assuming that the play field in memory is the normal 320 pix
els wide, data for the interlaced picture begins at the following locations (these are all byte
addresses):

Line 1
Line 2
Line 3
Line 4

START
START+40
START+80
START+120

and so on. Therefore, you use a modulo of 40 to skip the lines in the other field. For odd fields,
the bit-plane pointers begin at START. For even fields, the bit-plane pointers begin at
START+40.

You can use the Copper to handle resetting of the bit -plane pointers for interlaced displays.

DISPLAYING AND REDISPLA YING THE PLA YFIELD

You start playfield display by making certain that the bit-plane pointers are set and bit-plane
DMA is turned on. You tum on bit-plane DMA by writing a I to bit BPLEN in the DMACON
(for DMA control) register. See Chapter 7, "System Control Hardware," for instructions on set
ting this register.

Each time the playfield is redisplayed, you have to reset the bit-plane pointers. Resetting is
necessary because the pointers have been incremented to point to each successive word in
memory and must be repointed to the first word for the next display. You write Copper instruc
tions to handle the redisplay or perform this operation as part of a vertical blanking task.

ENABLING THE COLOR DISPLAY

The stock A 1000 has a color composite output and requires bit 9 set in BPLCONO to create a
color composite display signal. Without the addition of specialized hardware, the A500 and
A2000 cannot generate color composite output.

NOTE

The color burst enable does not affect the RGB video signal. RGB video is correctly
generated regardless of the output of the composite video signal.

56 Play field Hardware

BASIC PLA YFIELD SUMMARY

The steps for defining a basic play field are summarized below:

1. Define Playfield Characteristics

a. Specify height in lines:

• ForNTSC:

* 200 for non-interlaced mode.

* 400 for interlaced mode.

• For PAL:

* 256 for non-interlaced mode.

* 512 for interlaced mode.

b. Specify width in pixels:

• 320 for low-resolution mode.

• 640 for high-resolution mode.

c. Specify color for each pixel:

• Load desired colors in color table registers.

• Define color of each pixel in terms of the binary value that points at the desired
color register.

• Build bit-planes.

• Set bit-plane registers:

*

*

Bits 12-14 in BPLCONO - number of bit-planes (BPU2 - BPUO).

BPLxPTH - pointer to bit-plane starting position in memory (written as a long
word).

Playfield Hardware 57

d. Specify resolution:

• Low resolution:

* 320 pixels in each horizontal line.

* Clear bit 15 in register BPLCONO (HIRES).

• High resolution:

* 640 pixels in each horizontal line.

* Set bit 15 in register BPLCONO (HIRES).

e. Specify interlaced or non-interlaced mode:

• Interlaced mode:

* 400 vertical lines for NTSC, 512 for PAL.

* Set bit 2 in register BPLCONO (LACE).

• Non-interlaced mode:

* 200 vertical lines for NTSC, 256 for PAL.

* Clear bit 2 in BPLCONO (LACE).

2. Allocate Memory. To calculate data-bytes in the total bit-planes, use the following fonnula:

Bytes per line * lines in play field * number of bit-planes

3. Define Size of Display Window.

• Write start position of display window in DIWSTRT:

* Horizontal position in bits 0 through 7 (low-order bits).

* Vertical position in bits 8 through 15 (high-order bits).

• Write stop position of display window in DIWSTOP:

*

*

Horizontal position in bits 0 through 7.

Vertical position in bits 8 through 15.

58 Playfield Hardware

4. Define Data Fetch. Set registers DDFSTRT and DDFSTOP:

• For DDFSTRT, use the horizontal position as shown in "Setting the Display Window
Starting Position. ' ,

• For DDFSTOP, use the horizontal position as shown in "Setting the Display Window
Stopping Position."

5. Define Modulo. Set registers BPLIMOD and BPL2MOD. Set modulo to 0 for non
interlaced, 40 for interlaced.

6. Write Copper Instructions To Handle Redisplay.

7. Enable Color Display. For the AlOOO: set bit 9 in BPLCONO to enable the color display on
a composite video monitor. ROB video is not affected. Only the AlOOO has color composite
video output, other machines cannot enable this feature using standard hardware.

EXAMPLES OF FORMING BASIC PLAYFIELDS

The following examples show how to set the registers and write the coprocessor lists for two
different play fields.

The first example sets up a 320 x 200 play field with one bit-plane, which is located at S21000.
Also, a Copper list is set up at $20000.

This example relies on the include file' 'hw _examples.i", which is found in Appendix J.

LEA CUSTOM,aO aO points at custom chips
MOVE.W #$1200, BPLCONO (aO) One bit-plane, enable composite color
MOVE.W #0, BPLCON1 (aO) Set horizontal scroll value to 0
MOVE.W #0, BPL1MOD (aO) Set modulo to 0 for all odd bit-planes
MOVE.W #$0038,DDFSTRT(aO} Set data-fetch start to $38
MOVE.W #$OODO,DDFSTOP(aO) Set data-fetch stop to $DO
MOVE.W #$2C81, DIWSTRT (aO) Set DIWSTRT to $2C81
MOVE.W #$F4C1,DIWSTOP(aO) Set DIWSTOP to $F4C1
MOVE.W #$OFOO,COLOROO(aO) Set background color to red
MOVE.W #$OFFO,COLOR01(aO) Set color register 1 to yellow

Fill bit-plane with $FFOOFFOO to produce stripes

LOOP:

MOVE.L #$21000,a1
MOVE.L #$FFOOFFOO,dO
MOVE.W #2000,d1

MOVE.L dO, (a1)+
DBRA d1,LOOP

Set up Copper list at $20000

MOVE.L #$20000,a1
LEA COPPERL(pc),a2

Point at beginning of bit-plane
We will write $FFOOFFOO long words
2000 long words = 8000 bytes

Write a long word
Decrement counter and loop until done •••

Point at Copper list destination
Point a2 at Copper list data

Playfield Hardware 59

CLOOP: MOVE.L
CMPI.L
BNE

(a2),(a1)+
t$FFFFFFFE, (a2)+
CLOOP

Move a word

Point Copper at Copper list

; Check for last longword of Copper list
Loop until entire copper list is moved

MOVE.L t$20000,COP1LCH(aO) ; Write to Copper location register
MOVE.W COPJMP1(aO),dO ; Force copper to $20000

Start DMA

MOVE.W t(DMAF SETCLR!DMAF COPPER!DMAF RASTER!DMAF MASTER),DMACON(aO)
- Enable bit-plane and-Copper DMA -

BRA ; Go do next task

; This is the data for the Copper list.

COPPERL:
DC.W
DC.W
DC.W

BPL1PTH,$0002
BPL1PTL,$1000
$FFFF,$FFFE

Move $0002 to address $OEO
Move $1000 to address $OE2
End of Copper list

(BPL1PTH)
(BPL1PTL)

The second example sets up a high-resolution, interlaced display with one bit-plane. This exam
ple also relies on the include file "hw _examplesJ" , which is found in Appendix J.

LEA CUSTOM,aO
MOVE.W t$9204,BPLCONO(aO)
MOVE.W to, BPLCON1 (aO)
MOVE.W t80,BPL1MOD (aO)
MOVE.W t80,BPL2MOD(aO)
MOVE.W t$003C,DDFSTRT(aO)
MOVE.W t$00D4,DDFSTOP(aO)
MOVE.W t$2C81, DIWSTRT (aO)
MOVE.W t$F4C1,DIWSTOP(aO)

Set up color registers

MOVE.W t$OOOF,COLOROO(aO)
MOVE.W t$OFFF,COLOR01(aO)

; Set up bit-plane at $20000

LEA $20000,a1
LEA CHARLIST(pc),a2 ;
MOVE.W *400, d1
MOVE.W nO,dO

L1:
MOVE.L (a2), (a1) +
DBRA dO,L1

MOVE.W t20,dO
ADDQ.L t4,a2
CMPI.L t$FFFFFFFF, (a2)
BNE L2
LEA CHARLIST(pc),a2

L2: DBRA d1,L1

Start DMA

60 Playfield Hardware

Address of custom chips
Hires, one bit-plane, interlaced

; Horizontal scroll value = 0
Modulo = 80 for odd bit-planes

; Ditto for even bit-planes
Set data-fetch start for hires
Set data-fetch stop

; Set display window start
Set display window stop

Background color = blue
Foreground color white

Point a1 at bit-plane
a2 points at character data
Write 400 lines of data
Write 20 long words per line

Write a long word
Decrement counter and loop until full •••

Reset long word counter
Point at next word in char list
End of char list?

Yes, reset a2 to beginning of list
Decrement line counter and loop until done •••

MOVE.W t(DMAF SETCLR!DMAF RASTER!DMAF MASTER),DMACON(aO)
- ; Enable bit-plane DMA only, no Copper

Because this example has no Copper list, it sits in a
loop waiting for the vertical blanking interval. When it
comes, you check the LOF (long frame) bit in VPOSR. If
LOF = 0, this is a short frame and the bit-plane pointers
are set to point to $20050. If LOF = 1, then this is a
long frame and the bit-plane pointers are set to point to
$20000. This keeps the long and short frames in the
right relationship to each other.

VLOOP:

VLl:

MOVE.W
AND.W
BEQ
MOVE.W
MOVE.W
BPL
MOVE.L
BRA

MOVE.L
BRA

INTREQR(aO),dO
t$0020,dO
VLOOP
#$0020,INTREQ(aO)
VPOSR(aO),dO
VLl
#$20000,BPLIPTH(aO)
VLOOP

#$20050,BPLIPTH(aO)
VLOOP

Read interrupt requests
Mask off all but vertical blank
Loop until vertical blank comes
Reset vertical interrupt
Read LOF bit into dO bit 15
If LOF = 0, jump
LOF = 1, point to $20000
Back to top

LOF = 0, point to $20050
Back to top

Character list

CHARLIST:
DC.L
DC.L
DC.L

$18FC3DFO,$3C6666D8,$3C66COCC,$667CCOCC
$7E66COCC,$C36666D8,$C3FC3DFO,$00000000
$FFFFFFFF

Playfield Hardware 61

Forming a Dual-playfield Display

For more flexibility in designing your background display, you can specify two playfields instead
of one. In dual-playfield mode, one playfield is displayed directly in front of the other. For
example, a computer game display might have some action going on in one playfield in the back
ground, while the other playfield is showing a control panel in the foreground. You can then
change either the foreground or the background without having to redesign the entire display.
You can also move the two playfields independently.

A dual-playfield display is similar to a single-playfield display, differing only in these aspects:

• Each play field in a dual display is formed from one, two or three bit-planes.

• The colors in each playfield (up to seven plus transparent) are taken from different sets
of color registers.

• You must set a bit to activate dual-playfield mode.

Figure 3-12 shows a dual-playfield display.

In Figure 3-12, one of the colors in each playfield is "transparent" (color 0 in playfield 1 and
color 8 in play field 2). You can use transparency to allow selected features of the background
playfield to show through.

In dual-playfield mode, each playfield is formed from up to three bit-planes. Color registers 0
through 7 are assigned to playfield 1, depending upon how many bit-planes you use. Color regis
ters 8 through 15 are assigned to playfield 2.

Bit-Plane Assignment in Dual-playfield Mode

The three odd-numbered bit-planes (1,3, and 5) are grouped together by the hardware and may be
used in playfield 1. Likewise, the three even-numbered bit-planes (2, 4, and 6) are grouped
together and may be used in playfield 2. The bit-planes are assigned alternately to each playfield,
as shown in Figure 3-13.

NOTE

In high-resolution mode, you can have up to two bit-planes in each playfield - bit
planes 1 and 3 in playfield 1 and bit-planes 2 and 4 in playfield 2.

62 Playfield Hardware

Playfield 1 (1, 2, or 3 bit-planes) Playfield 2 (1, 2, or 3 bit-planes)

G
SPEED

317 I
HEADING

52 0000

FUEL MISSILES OIL

Both playfields appear on-screen,

combined to form the complete

display.

~ 123 10
FUEL MISSILES OIL

Figure 3-12: A Dual-playfield Display

o

-

The background

color shows
through where

there are
transparent
sections of
both
playfields.

Playfield Hardware 63

Number of
Bit-Planes

"Turned on" Playfield 1 * Playfield 2*

0 None None

C)

2 [J e J

3 D 0
4 co 0
5

6

*NOTE: Either playfield may be placed "in front of" or "behind" the other using the
"swap=bit. "

Figure 3-13: How Bit-Planes Are Assigned to Dual Playfields

64 Playfield Hardware

COLOR REGISTERS IN DUAL-PLAYFIELD MODE

When you are using dual playfields, the hardware interprets color numbers for playfield 1 from
the bit combinations of bit-planes 1, 3, and 5. Bits from PLANE 5 have the highest significance
and form the most significant digit of the color register number. Bits from PLANE 0 have the
lowest significance. These bit combinations select the first eight color registers from the color
palette as shown in Table 3-10.

Table 3-10: Playfield 1 Color Registers - Low-resolution Mode

PLAYFIELD 1

Bit Color
Combination Selected

000 Transparent mode
001 COLOR 1
010 COLOR2
011 COLOR3
100 COLOR4
101 COLOR5
110 COLOR6
111 COLOR?

The hardware interprets color numbers for play field 2 from the bit combinations of bit-planes 2,
4, and 6. Bits from PLANE 6 have the highest significance. Bits from PLANE 2 have the lowest
significance. These bit combinations select the color registers from the second eight colors in the
color table as shown in Table 3-11.

Table 3-11: Playfield 2 Color Registers - Low-resolution Mode

PLAYFIELD2

Bit Color
Combination Selected

000 Transparent mode
001 COLOR9
010 COLOR 10
011 COLOR 11
100 COLOR12
101 COLOR 13
110 COLOR14
111 COLOR15

Playfield Hardware 65

Combination 000 selects transparent mode, to show the color of whatever object (the other
playfield, a sprite, or the background color) may be "behind" the playfield.

Table 3-12 shows the color registers for high-resolution, dual-playfield mode.

Table 3-12: Playfields 1 and 2 Color Registers - High-resolution Mode

PLAYFIELDI

Bit Color
Combination Selected

00 Transparent mode
01 COLOR 1
10 COLOR2
11 COLOR3

PLAYFIELD2

Bit Color
Combination Selected

00 Transparent mode
01 COLOR9
10 COLOR 10
11 COLOR 11

DUAL-PLA YFIELD PRIORITY AND CONTROL

Either playfield 1 or 2 may have priority; that is, either one may be displayed in front of the other.
Playfield 1 normally has priority. The bit known as PF2PRI (bit 6) in register BPLCON2 is used
to control priority. When PF2PRI = 1, playfield 2 has priority over playfield 1. When PF2PRI =
0, playfield 1 has priority.

You can also control the relative priority of playfields and sprites. Chapter 7, "System Control
Hardware," shows you how to control the priority of these objects.

You can control the two playfields separately as follows:

• They can have different-sized representations in memory, and different portions of each
one can be selected for display.

• They can be scrolled separately.

66 Playfield Hardware

NOTE

You must take special care when scrolling one playfield and holding the other station
ary. When you are scrolling low-resolution playfields, you must fetch one word more
than the width of the playfield you are trying to scroll (two words more in high
resolution mode) in order to provide some data to displ~J when the actual scrolling
takes place. Only one data-fetch start register and one data-fetch stop register are
available, and these are shared by both play fields. If you want to scroll one playfield
and hold the other, you must adjust the data-fetch start and data-fetch stop to handle
the play field being scrolled. Then, you must adjust the modulo and the bit-plane
pointers of the playfield that is not being scrolled to maintain its position on the
display. In low-resolution mode, you adjust the pointers by -2 and the modulo by -2.
In high-resolution mode, you adjust the pointers by -4 and the modulo by -4.

ACTIVATING DUAL-PLA YFIELD MODE

Writing a 1 to bit 10 (called DBLPF) of the bit-plane control register BPLCONO selects dual
playfield mode. Selecting dual-playfield mode changes both the way the hardware groups the
bit-planes for color interpretation-all odd-numbered bit-planes are grouped together and all
even-numbered bit-planes are grouped together, and the way hardware can move the bit-planes on
the screen.

DUAL PLAYFIELD SUMMARY

The steps for defining dual playfields are almost the same as those for defining the basic playfield.
Only in the following steps does the dual-play field creation process differ from that used for the
basic playfield:

• Loading colors into the registers. Keep in mind that color registers 0-7 are used by
play field 1 and registers 8 through 15 are used by playfield 2 (if there are three bit-planes
in each playfield).

• Building bit-planes. Recall that playfield 1 is fonned from PLANES I, 3, and 5 and
playfield 2 from PLANES 2, 4, and 6.

• Setting the modulo registers. Write the modulo to both BPLIMOD and BPL2MOD as
you will be using both odd- and even-numbered bit-planes.

These steps are added:

• Defining priority. If you want playfield 2 to have priority, set bit 6 (pF2PRI) in
BPLCON2 to 1.

• Activating dual-playfield mode. Set bit 10 (DBLPF) in BPLCONO to 1.

Playfield Hardware 67

Bit-planes and Display Windows of All Sizes

You have seen how to form single and dual playfields in which the playfield in memory is the
same size as the display window. This section shows you how to define and use a playfield
whose big picture in memory is larger than the display window, how to define display windows
that are larger or smaller than the normal play field size, and how to move the display window in
the big picture.

WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW

If you design a memory picture larger than the display window, you must choose which part of it
to display. Displaying a portion of a larger playfield differs in the following ways from display
ing the basic playfields described up to now:

• If the big picture in memory is larger than the display window, you must respecify the
modulos. The modulo must be some value other than O.

• You must allocate more memory for the larger memory picture.

Specifying the Modulo

For a memory picture wider than the display window, you need to respecify the modulo so that
the correct data words are fetched for each line of the display. As an example, assume the display
window is the standard 320 pixels wide, so 40 bytes are to be displayed on each line. The big
picture in memory, however, is exactly twice as wide as the display window, or 80 bytes wide.
Also, assume that you wish to display the left half of the big picture. Figure 3-14 shows the rela
tionship between the big picture and the picture to be displayed.

68 Playfield Hardware

START START+78

I
Width of the Bit-Plane Defined in RAM

Width of defined
screen on which
bit-plane data is
to appear

Figure 3-14: Memory Picture Larger than the Display

Because 40 bytes are to be fetched for each line, the data fetch for line 1 is as shown in Figure 3-
15.

Data for Line 1:

Location: START

Leftmost
Display Word

START+2

Next Word

START+4

Next Word

START+38

Last Display

Screen data fetch stops (DDFSTOP) for wotrd
each horizontal line after the last word
on the line has been fetched. _______J

Figure 3-15: Data Fetch for the First Line When Modulo = 40

At this point, BPLxPTH and BPLxPTL contain the value START +40. The modulo, which is 40,
is added to the current value of the pointer so that when it begins the data fetch for the next line, it
fetches the data that you intend for that line. The data fetch for line 2 is shown in Figure 3-16.

Playfield Hardware 69

Data for Line 2:

Location: START+80

Leftmost
Display Word

START+82

Next Word

START+84

Next Word

Figure 3-16: Data Fetch for the Second Line When Modulo = 40

START+118

Last Display
Word

To display the right half of the big picture, you set up a vertical blanking routine to start the bit
plane pointers at location START +40 rather than START with the modulo remaining at 40. The
data layout is shown in Figures 3-17 and 3-18.

Data for Line 1:

Location: START+40

Leftmost
Display Word

START+42

Next Word

START+44

Next Word

Figure 3-17: Data Layout for First Line-Right Half of Big Picture

START+78

Last Display
Word

Now, the bit-plane pointers contain the value START+80. The modulo (40) is added to the
pointers so that when they begin the data fetch for the second line, the correct data is fetched.

Data for Line 2:

Location: START+120

Leftmost
Display Word

START+122

Next Word

START+124

Next Word

Figure 3-18: Data Layout for Second Line-Right Half of Big Picture

START+158

Last Display
Word

Remember, in high-resolution mode, you need to fetch twice as many bytes as in low-resolution
mode. For a normal-sized display, you fetch 80 bytes for each horizonta1line instead of 40.

70 Playfield Hardware

Specifying the Data Fetch

The data-fetch registers specify the beginning and end positions for data placement on each hor
izontalline of the display. You specify data fetch in the same way as shown in the section called
"Forming a Basic Playfield."

Memory Allocation

For larger memory pictures, you need to allocate more memory. Here is a formula for calculating
memory requirements in general:

bytes per line * lines in playjield * # of bit-planes

Thus, if the wide playfield described in this section is formed from two bit-planes, it requires:

80 * 200 * 2 = 32,000 bytes of memory

Recall that this is the memory requirement for the play field alone. You need more memory for
any sprites, animation, audio, or application programs you are using.

Selecting the Display Window Starting Position

The display window starting position is the horizontal and vertical coordinates of the upper left
hand comer of the display window. One register, DIWSTRT, holds both the horizontal and verti
cal coordinates, known as HST ART and VST ART. The eight bits allocated to HST ART are
assigned to the first 256 positions, counting from the leftmost possible position. Thus, you can
start the display window at any pixel position within this range.

Playfield Hardware 71

FULL SCREEN AREA

o

HSTARTof DISPLAY
WINDOW occurs in
this region.

255

Figure 3-19: Display Window Horizontal Starting Position

361

The eight bits allocated to VSTART are assigned to the first 256 positions counting down from
the top of the display.

FULL SCREEN AREA

VST ART of DISPLAY WINDJW
occurs in this region.

o

---1..--1-- 255
(NTSC) -----+-- 262

Figure 3-20: Display Window Vertical Starting Position

Recall that you select the values for the starting position as if the display were in low-resolution,
non-interlaced mode. Keep in mind, though, that for interlaced mode the display window should
be an even number of lines in height to allow for equal-sized odd and even fields.

To set the display window starting position, write the value for HST ART into bits 0 through 7
and the value for VST ART into bits 8 through 15 of DIWSTRT.

72 Playfield Hardware

Selecting the Stopping Position

The stopping position for the display window is the horizontal and vertical coordinates of the
lower right-hand comer of the display window. One register, DIWSTOP, contains both coordi
nates, known as HSTOP and VSTOP.

See the notes in the "Fonning a Basic Playfield" section for instructions on setting these regis
ters.

FULL SCREEN AREA

o 255

HSTOP of DISPLAY
WINDOW occurs in
this region.

361

Figure 3-21: Display Window Horizontal Stopping Position

Select a value that represents the correct position in low-resolution, non-interlaced mode.

Playfield Hardware 73

FULL SCREEN AREA

r---_ 0

----------.---------------------r-128
VSTOP of DISPLAY
WINDOW occurs in
this region.

(NTSC) ------1~ 262

Figure 3-22: Display Window Vertical Stopping Position

To set the display window stopping position, write HSTOP into bits 0 through 7 and VSTOP into
bits 8 through 15 of DIWSTOP.

MAXIMUM DISPLAY WINDOW SIZE

The maximum size of a playfield display is determined by the maximum number of lines and the
maximum number of columns. Vertically, the restrictions are simple. No data can be displayed
in the vertical blanking area. The following table shows the allowable vertical display area.

Table 3-13: Maximum Allowable Vertical Screen Video

Vertical Blank NTSC PAL

Start 0 0
Stop $15 (21) $ID (29)

NTSC NTSC PAL PAL
Normal Interlaced Normal Interlaced

Displayable lines
of screen video 241 483 283 567

=525-(21 *2) =625-(29*2)

Horizontally, the situation is similar. Strictly speaking, the hardware sets a rightmost limit to
DDFSTOP of ($D8) and a leftmost limit to DDFSTRT of ($18). This gives a maximum of 25
words fetched in low-resolution mode. In high-resolution mode the maximum here is 49 words,

74 Playfield Hardware

because the rightmost limit remains ($D8) and only one word is fetched at this limit. However,
horizontal blanking actually limits the displayable video to 368 low-resolution pixels (23 words).
These numbers are the same both for NTSC and for PAL. In addition, it should be noted that
using a data-fetch start earlier than ($38) will disable some sprites.

Table 3-14: Maximum Allowable Horizontal Screen Video

LoRes HiRes

DDFSTRT (standard) $0038 $003C
DDFSTOP (standard) $0000 $00D4

DDFSTRT (hw limits) $0018 $0018
DDFSTOP (hw limits) $OOD8 $OOD8

max words fetched 25 49
max display pixels 368 (low res)

Moving (Scrolling) Playfields

If you want a background display that moves, you can design a play field larger than the display
window and scroll it. If you are using dual playfields, you can scroll them separately.

In vertical scrolling, the playfield appears to move smoothly up or down on the screen. All you
need do for vertical scrolling is progressively increase or decrease the starting address for the bit
plane pointers by the size of a horizontal line in the playfield. This has the effect of showing a
lower or higher part of the picture each field time.

In horizontal scrolling the play field appears to move from right-to-Ieft or left-to-right on the
screen. Horizontal scrolling works differently from vertical scrolling - you must arrange to
fetch one more word of data for each display line and delay the display of this data.

For either type of scrolling, resetting of pointers or data-fetch registers can be handled by the
Copper during the vertical blanking interval.

VERTICAL SCROLLING

You can scroll a play field upward or downward in the window. Each time you display the
playfield, the bit-plane pointers start at a progressively higher or lower place in the big picture in
memory. As the value of the pointer increases, more of the lower part of the picture is shown and
the picture appears to scroll upward. As the value of the pointer decreases, more of the upper part

Playfield Hardware 75

is shown and the picture scrolls downward. On an NTSC system, with a display that has 200
vertical lines, each step can be as little as 1/200th of the screen. In interlaced mode each step
could be l/400th of the screen if clever manipulation of the pointers is used, but it is recom
mended that scrolling be done two lines at a time to maintain the odd/even field relationship.
Using a PAL system with 256 lines on the display, the step can be 1/256th of a screen, or l/512th
of a screen in interlace.

Bit-Plane
Pointer
Start

Address

Figure 3'-23: Vertical Scrolling

As the value of the bit-plane
pointer increases, more of
the lower part of the
picture is shown_

As it decreases, more of
the upper part is shown_

To set up a playfield for vertical scrollinl; you need to form bit-planes tall enough to allow for the
amount of scrolling you want, write software to calculate the bit-plane pointers for the scrolling
you want, and allow for the Copper to use the resultant pointers.

Assume you wish to scroll a playfield upward one line at a time. To accomplish this, before each
field is displayed, the bit-plane pointers have to increase by enough to ensure that the pointers
begin one line lower each time. For a normal-sized, low-resolution display in which the modulo
is 0, the pointers would be incremented by 40 bytes each time.

76 Playfield Hardware

HORIZONTAL SCROLLING

You can scroll playfields horizontally from left to right or right to left on the screen. You control
the speed of scrolling by specifying the amount of delay in pixels. Delay means that an extra
word of data is fetched but not immediately displayed. The extra word is placed just to the left of
the window's leftmost edge and before normal data fetch. As the display shifts to the right, the
bits in this extra word appear on-screen at the left-hand side of the window as bits on the right
hand side disappear off-screen. For each pixel of delay, the on-screen data shifts one pixel to the
right each display field. The greater the delay, the greater the speed of scrolling. You can have
up to 15 pixels of delay. In high-resolution mode, scrolling is in increments of 2 pixels. Figure
3-24 shows how the delay and extra data fetch combine to cause the scrolling effect.

To set up a playfield for horizontal scrolling, you need to

• Define bit-planes wide enough to allow for the scrolling you need.

• Set the data-fetch registers to correctly place each horizontal line, including the extra
word, on the screen.

• Set the delay bits.

• Set the modulo so that the bit-plane pointers begin at the correct word for each line.

• Write Copper instructions to handle the changes during the vertical blanking inteIVal.

Specifying Data Fetch in Horizontal Scrolling

The normal data-fetch start for non-scrolled displays is ($38). If horizontal scrolling is desired,
then the data fetch must start one word sooner (DDFSTRT = $(030). Incidentally, this will dis
able sprite 7. DDFSTOP remains unchanged. Remember that the settings of the data-fetch regis
ters affect both playfields.

Specifying the Modulo in Horizontal Scrolling

As always, the modulo is two counts less than the difference between the address of the next word
you want to fetch and the address of the last word that was fetched. As an example for horizontal
scrolling, let us assume a 40-byte display in an 80-byte "big picture." Because horizontal scrol
ling requires a data fetch of two extra bytes, the data for each line will be 42 bytes long.

Playfield Hardware 77

Start

0-15 bits of
delay will cause
the system to

show the

Display
Window

Start

o

l1li

Background Color

I..----Data Fetch 21 Words --____ ~

16 Bits
(1 word)----I~

• ..----Display Window --_~I
~--320 Bits (20 words)----il~

o

-

Figure 3-24: Horizontal Scrolling

NOTE

Fetching an extra word for scrolling will disable some sprites.

78 Play field Hardware

Display position in example
is shown with O-bits of delay.

As delay is added,
on screen display

shifts this
direction.

This data is
displayed if
scroll = 0

This data is
displayed if
scroll = 15

START START+38 START+78

DISPLAY
WINDOW

Width

Memory Picture Width ..

Figure 3-25: Memory Picture Larger Than the Display Window

Data for Line 1 :

Location: START

Leftmost
Display Word

START+2

Next Word

START+4

Next Word

Figure 3-26: Data for Line 1 - Horizontal Scrolling

START+40

Last Display
Word

At this point, the bit-plane pointers contain the value START+42. Adding the modulo of 38
gives the correct starting point for the next line.

Data for Line 2:

Location: START+80

Leftmost
Display Word

START+82

Next Word

START+84

Next Word

Figure 3-27: Data for Line 2-Horizontal Scrolling

In the BPLxMOD registers you set the modulo for each bit-plane used.

START+120

Last Display
Word

Playfield Hardware 79

Specifying Amount of Delay

The amount of delay in horizontal scrolling is controlled by bits 7-0 in BPLCONl. You set the
delay separately for each playfield; bits 3-0 for play field 1 (bit-planes 1,3, and 5) and bits 7-4 for
play field 2 (bit-planes 2, 4, and 6).

NOTE

Always set all six bits, even if you have only one playfield. Set 3-0 and 7-4 to the
same value if you are using only one playfield.

The following example sets the horizontal scroll delay to 7 for both playfields.

MOVE.W #$77,BPLCON1+CUSTOM

SCROLLED PLAYFIELD SUMMARY

The steps for defining a scrolled play field are the same as those for defining the basic playfield,
except for the following steps:

• Defining the data fetch. Fetch one extra word per horizontal line and start it 16 pixels
before the normal (unscrolled) data-fetch start.

• Defining the modulo. The modulo is two counts less than when there is no scrolling.

These steps are added:

• For vertical scrolling, reset the bit-plane pointers for the amount of the scrolling
increment. Reset BPLxPTH and BPLxPTL during the vertical blanking interval.

• For horizontal scrolling, specify the delay. Set bits 7-0 in BPLCONI for 0 to 15 bits
of delay.

80 Playfield Hardware

Advanced Topics

This section describes features that are used less often or are optional.

INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS

Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows how
play fields can be given different video display priorities relative to the sprites and how playfields
can collide with (overlap) the sprites or each other.

HOLD-AND-MODIFY MODE

This is a special mode that allows you to produce up to 4,096 colors on the screen at the same
time. Normally, as each value formed by the combination of bit-planes is selected, the data con
tained in the selected color register is loaded into the color output circuit for the pixel being writ
ten on the screen. Therefore, each pixel is colored by the contents of the selected color register.

In hold-and-modify mode, however, the value in the color output circuitry is held, and one of the
three components of the color (red, green, or blue) is modified by bits coming from certain
preselected bit-planes. After modification, the pixel is written to the screen.

The hold-and-modify mode allows very fine gradients of color or shading to be produced on the
screen. For example, you might draw a set of 16 vases, each a different color, using all 16 colors
in the color palette. Then, for each vase, you use hold-and-modify to very finely shade or
highlight or add a completely different color to each of the vases. Note that a particular hold
and-modify pixel can only change one of the three color values at a time. Thus, the effect has a
limited control.

In hold and modify mode, you use all six bit-planes. Planes Sand 6 are used to modify the way
bits from planes 1 -4 are treated, as follows:

• If the 6-S bit combination from planes 6 and S for any given pixel is 00, normal color
selection procedure is followed. Thus, the bit combinations from planes 4 - 1, in that
order of significance, are used to choose one of 16 color registers (registers 0 - IS).

If only five bit-planes are used, the data from the sixth plane is automatically supplied
with the value as O.

• If the 6-S bit combination is 01, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are used to
replace the four "blue" bits in the corresponding color register.

Playfield Hardware 81

• If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are used to
replace the four" red" bits.

• Ifthe 6-5 bit combination is 11, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are used to
replace the four" green" bits.

Using hold-and-modify mode, it is possible to get by with defining only one color register, which
is COLORO, the color of the background. You treat the entire screen as a modification of that ori
ginal color, according to the scheme above.

Bit 11 of register BPLCONO selects hold-and-modify mode. The following bits in BPLCONO
must be set for hold-and-modify mode to be active:

Bit HOMOD, bit 11, is 1.

• Bit DBLPF, bit 10, is 0 (single-play field mode specified).

• Bit HIRES, bit 15, is 0 (low-resolution mode specified).

• Bits BPU2, BPUl, and BPUO - bits 14, 13, and 12, are 101 or 110 (five or six bit-planes
active).

The following example code generates a six-bit-plane display with hold-and-modify mode turned
on. All 32 color registers are loaded with black to prove that the colors are being generated by
hold-and-modify. The equates are the usual and are not repeated here.

;

First, set up the control registers.

LEA CUSTOM,aO
MOVE.W #$6AOO,BPLCONO(aO)
MOVE.W #0, BPLCONl (aO)
MOVE.W #0, BPLlMOD (aO)
MOVE.W #O,BPL2MOD(aO)
MOVE.W #$0038,DDFSTRT(aO)
MOVE.W #$OODO,DDFSTOP(aO)
MOVE.W #$2C8l, DIWSTRT (aO)
MOVE.W #$F4Cl,DIWSTOP(aO)

Point aO at custom chips
Six bit-planes, hold-and-modify mode
Horizontal scroll = 0
Modulo for odd bit-planes = 0
Ditto for even bit-planes
Set data-fetch start
Set data-fetch stop
Set display window start
Set display window stop

Set all color registers = black to prove that hold-and-modify mode is working.

MOVE.W B2,dO Initialize counter
LEA CUSTOM+COLOROO,al Point al at first color register

CREGLOOP:
MOVE.W #$0000, (al)+ Write black to a color register
DBRA dO,CREGLOOP ; Decrement counter and loop til done •••

Fill six bit-planes with an easily recognizable pattern.

NOTE: This is just for example use. Normally these bit planes would
need to be allocated from the system MEMF_CHIP memory pool.

82 Play field Hardware

MOVE.W #2000,dO 2000 longwords per bit-plane
MOVE.L #$2l000,al Point a1 at bit-plane 1
MOVE.L #$23000,a2 Point a2 at bit-plane 2
MOVE.L #$25000,a3 Point a3 at bit-plane 3
MOVE.L #$27000,a4 Point a4 at bit-plane 4
MOVE.L #$29000,a5 Point a5 at bit-plane 5
MOVE.L #$2BOOO,a6 Point a6 at bit-plane 6

FPLLOOP:
MOVE.L #$55555555, (a1) + Fill bit-plane 1 with $55555555
MOVE.L #$33333333, (a2) + Fill bit-plane 2 with $33333333
MOVE.L #$OFOFOFOF, (a3)+ Fill bit-plane 3 with $OFOFOFOF
MOVE.L #$OOFFOOFF, (a4)+ Fill bit-plane 4 with $OOFFOOFF
MOVE.L #$CF3CF3CF, (a5)+ Fill bit-plane 5 with $CF3CF3CF
MOVE.L #$3CF3CF3C, (a6)+ Fill bit-plane 6 with $3CF3CF3C
DBRA dO,FPLLOOP Decrement counter and loop til done •••

Set up a Copper list at $20000.

NOTE: As with the bit planes, the copper list location should be allocated
from the system MEMF CHIP memory pool.

MOVE.L
LEA

CLOOP: MOVE.L
CMPI.L
BNE

#$20000,a1
COPPERL(pc),a2
(a2), (a1) +
#$FFFFFFFE, (a2)+
CLOOP

Point a1 at Copper list destination
Point a2 at Copper list image
Move a long word .••
Check for end of Copper list
Loop until entire Copper list moved

Point Copper at Copper list.

MOVE.L #$20000,COP1LCH(aO)
MOVE.W COPJMP1(aO),dO

Load Copper jump register
Force load into Copper P.C.

Start DMA.

MOVE.W #$8380, DMACON (aO) ; Enable bit-plane and Copper DMA

BRA •.... next stuff to do ..•..

Copper list for six bit-planes. Bit-plane 1 is at $21000; 2 is at $23000;
3 is at $25000; 4 is at $27000; 5 is at $29000; 6 is at $2BOOO.

NOTE: These bit-plane addresses are for example purposes only.
See note above.

COPPERL:
DC.W BPL1PTH,$0002 Bit-plane 1 pointer $21000
DC.W BPLIPTL,$1000
DC.W BPL2PTH,$0002 Bit-plane 2 pointer $23000
DC.W BPL2PTL,$3000
DC.W BPL3PTH,$0002 Bit-plane 3 pointer = $25000
DC.W BPL3PTL,$5000
DC.W BPL4PTH,$0002 Bit-plane 4 pointer $27000
DC.W BPL4PTL,$7000
DC.W BPL5PTH,$0002 Bit-plane 5 pointer $29000
DC.W BPL5PTL,$9000
DC.W BPL6PTH,$0002 Bit-plane 6 pointer $2BOOO
DC.W BPL6PTL,$BOOO
DC.W $FFFF,$FFFE Wait for the impossible, i.e. , quit

Playfield Hardware 83

FORMING A DISPLAY WITH SEVERAL DIFFERENT PLA YFIELDS

The graphics library provides the ability to split the screen into several "ViewPorts", each with
its own colors and resolutions. See the Amiga ROM Kernel Manual for more infonnation.

USING AN EXTERNAL VIDEO SOURCE

An optional board that provides genlock is available for the Amiga. Genlock allows you to bring
in your graphics display from an external video source (such as a VCR, camera, or laser disk
player). When you use genlock, the background color is replaced by the display from this exter
nal video source. For more infonnation, see the instructions furnished with the optional board.

SUMMARY OF PLAYFIELD REGISTERS

This section summarizes the registers used in this chapter and the meaning of their bit settings.
The color registers are summarized in the next section. See Appendix A for a summary of all
registers.

BPLCONO - Bit Plane Control

NOTE

Bits in this register cannot be independently set

Bit 0 - unused

Bit 1 - ERSY (external synchronization enable)
1 = External synchronization enabled (allows genlock synchronization to occur)
o = External synchronization disabled

Bit 2 - LACE (interlace enable)
I = interlaced mode enabled
o = non-interlaced mode enabled

Bit 3 - LPEN (light pen enable)

Bits 4-7 not used (make 0)

84 Playfield Hardware

Bit 8 - GAUD (genlock audio enable)
I = Genlock audio enabled
o = Genlock audio disabled (in blanking periods, this bit goes out on the pixel switch
ZD)

Bit 9 - COLOR_ON (color enable)
1 = composite video color-burst enabled
o = composite video color-burst disabled

Bit 10 - DBLPF (double-play field enable)
1 = dual playfields enabled
o = single playfield enabled

Bit 11 - HaMaD (hold-and-modify enable)
1 = hold-and-modify enabled
0= hold-and-modify disabled

Bits 14, 13, 12 - BPU2, BPU1, BPUO
Number of bit-planes used.

000 = only a background color
001 = 1 bit-plane, PLANE 1
010 = 2 bit-planes, PLANES 1 and 2
011 = 3 bit-planes, PLANES 1 - 3
100 = 4 bit-planes, PLANES 1 - 4
101 = 5 bit-planes, PLANES 1 - 5
110 = 6 bit-planes, PLANES 1 - 6
111 not used

Bit 15 - HIRES (high-resolution enable)
1 = high-resolution mode
0= low-resolution mode

BPLCONI - Bit-plane Control

Bits 3-0 - PF1H(3-0)
Play field 1 delay

Bits 7-4 - PF2H(3-0)
Playfield 2 delay

Bits 15-8 not used

Playfield Hardware 85

BPLCON2 - Bit-plane Control

Bit 6 - PF2PRI

1 = Play field 2 has priority

o = Playfield 1 has priority

Bits 0-5 Playfield sprite priority

Bits 7-15 not used

DDFSTRT - Data-fetch Start
(Beginning position for data fetch)

Bits 15-8 - not used

Bits 7-2 - pixel position H8-H3
Bit H3 only respected in HiRes Mode.

Bits 1-0 - not used

DDFSTOP - Data-fetch Stop
(Ending position for data fetch)

Bits 15-8 - not used

Bits 7-2 - pixel position H8-H3
Bit H3 only respected in HiRes Mode.

Bits 1-0 - not used

BPLxPTH - Bit-plane Pointer
(Bit-plane pointer high word, where x is the bit-plane number)

BPLxPTL - Bit-plane Pointer
(Bit-plane pointer low word, where x is the bit-plane number)

DIWSTRT - Display Window Start
(Starting vertical and horizontal coordinates)

Bits 15-8 - VSTART (V7-VO)

Bits 7-0 - HSTART (H7-HO)

86 Playfield Hardware

DIWSTOP - Display Window Stop
(Ending vertical and horizontal coordinates)

Bits 15-8 - VSTOP (V7-VO)

Bits 7-0 - HSTOP (H7-HO)

BPLIMOD - Bit-plane Modulo
(Odd-numbered bit-planes, playfield 1)

BPL2MOD - Bit-plane Modulo
(Even-numbered bit-planes, playfield 2)

Summary of Color Selection

This section contains summaries of playfield color selection including color register contents,
example colors, and the differences in color selection in high-resolution and low-resolution
modes.

COLOR REGISTER CONTENTS

Table 3-15 shows the contents of each color register. All color registers are write-only.

Table 3-15: Color Register Contents

Bits Contents

15-12 (Unused - set to 0)

11-8 Red
7-4 Green
3-0 Blue

Playfield Hardware 87

SOME SAMPLE COLOR REGISTER CONTENTS

Table 3-16 shows a variety of colors and the hexadecimal values to load into the color registers
for these colors.

Table 3-16: Some Register Values and Resulting Colors

Value Color Value Color

$FFF White $lFB Light aqua
$DOO Brick red $6FE Sky blue
$FOO Red $6CE Light blue
$F80 Red-orange $OOF Blue
$F90 Orange $61F Bright blue
$FBO Golden orange $06D Dark blue
$FDO Cadmium yellow $91F Purple
$FFO Lemon yellow $C1F Violet
$BFO Lime green $F1F Magenta
$8EO Light green $FAC Pink
$OFO Green $DB9 Tan
$2CO Dark green $C80 Brown
$OBl Forest green $A87 Dark brown
$OBB Blue green $CCC Light grey
$ODB Aqua $999 Medium grey

$000 Black

COLOR SELECTION IN LOW-RESOLUTION MODE

Table 3-17 shows playfield color selection in low-resolution mode. If the bit-combinations from
the playfields are as shown, the color is taken from the color register number indicated.

88 Play field Hardware

Table 3-17: Low-resolution Color Selection

Single Playfield Dual Playfields
Normal Mode Hold-and-modify Mode Color Register

(Bit-planes 5,4,3,2,1) (Bit-planes 4,3,2,1) Number

Playfield 1
Bit-nlanes 5!3!1

00000 0000 000 0*
00001 0001 001 1
00010 0010 010 2
00011 0011 011 3
00100 0100 100 4
00101 0101 101 5
00110 0100 110 6
00111 0111 111 7

Playfield 2
Bit-nlanes 6!4!2

01000 1000 ()()() ** 8
01001 1001 001 9
01010 1010 010 10
01011 1011 011 11
01100 1100 100 12
01101 1101 101 13
01110 1110 110 14
01111 1111 111 15
10000 I I 16
10001 I I 17
10010 I I 18
10011 I I 19
10100 NOT NOT 20
10101 USED USED 21
10110 IN IN 22
10111 THIS TillS 23
11000 MODE MODE 24
11001 I I 25
11010 I I 26
11011 I I 27
11100 I I 28
11101 I I 29
11110 I I 30
11111 I I 31

* Color register 0 always defines the background color.
** Selects "transparent" mode instead of selecting color register 8.

Playfield Hardware 89

COLOR SELECTION IN HOLD-AND-MODIFY MODE

In hold-and-modify mode, the color register contents are changed as shown in Table 3-18. This
mode is in effect only if bit 10 of BPLCONO = 1.

Table 3-18: Color Selection in Hold-and-modify Mode

Bit-plane 6 Bit-plane 5

o
o
1
1

o
1
o
1

Normal operation
Hold green and red
Hold green and blue
Hold blue and red

Result

(use color register itself)
B = Bit-plane 4-1 contents
R = Bit-plane 4-1 contents
G = Bit-plane 4-1 contents

COLOR SELECTION IN HIGH-RESOLUTION MODE

Table 3-19 shows play field color selection in high-resolution mode. If the bit-combinations from
the playfields are as shown, the color is taken from the color register number indicated.

90 Playfield Hardware

Table 3-19: High-resolution Color Selection

Single Dual Color
Playfield Playfields Register

Bit-planes 4,3,2,1 Number
Playfield 1

Bit-planes 3,1

0000 00* 0**
0001 01 1
0010 10 2
0011 11 3

0100 I 4
0101 NOT USED 5
0110 IN THIS MODE 6
0111 I 7

Playfield 2
Bit-planes 4,2

1000 00 * 8
1001 01 9
1010 10 10
1011 11 11

1100 12
1101 NOT USED 13
1110 IN THIS MODE 14
1111 I 15

* Selects "transparent" mode.
** Color register 0 always defines the background color.

Playfield Hardware 91

Chapter 4

SPRITE HARDWARE

Introduction

Sprites are hardware objects that are created and moved independently of the playfield display
and independently of each other. Together with playfields, sprites fonn the graphics display of
the Amiga. You can create more complex animation effects by using the bUtter, which is
described in the chapter called "Blitter Hardware." Sprites are produced on-screen by eight
special-purpose sprite DMA channels. Basic sprites are 16 pixels wide and any number of lines
high. You can choose from three colors for a sprite's pixels, and a pixel may also be transparent,
showing any object behind the sprite. For larger or more complex objects, or for more color
choices, you can combine sprites.

Sprite Hardware 93

Sprite DMA channels can be reused several times within the same display field. Thus, you are
not limited to having only eight sprites on the screen at the same time.

ABOUT TillS CHAPTER

This chapter discusses the following topics:

• Defining the size, shape, color, and screen position of sprites.

• Displaying and moving sprites.

Combining sprites for more complex images, additional width, or additional colors.

• Reusing a sprite DMA channel multiple times within a display field to create more than
eight sprites on the screen at one time.

Forming a Sprite

To form a sprite, you must first define it and then create a formal data structure in memory. You
define a sprite by specifying its characteristics:

On-screen width of up to 16 pixels.

• Unlimited height.

• Any shape.

• A combination of three colors, plus transparent.

• Any position on the screen.

SCREEN POSITION

A sprite's screen position is defined as a set of X,Y coordinates. Position (0,0), where X = 0 and
Y = 0, is the upper left-hand comer of the display. You define a sprite's location by specifying
the coordinates of its upper left-hand pixel. Sprite position is always defined as though the
display modes were low-resolution and non-interlaced. The X,Y coordinate system and definition
of a sprite's position are graphically represented in Figure 4-1. Notice that because of display
overscan, position (0,0) (that is, X = 0, Y = 0) is not normally in a viewable region of the
screen.

94 Sprite Hardware

(O,O)~ r-------...,.J-
y

l---+----x-~ir--::ll.L""'"'I,
Visible Screen Area

Figure 4-1: Defining Sprite On-screen Position

The amount of viewable area is also affected by the size of the playfield display window (defined
by the values in DDFSTRT, DDFSTOP, DIWSTRT, DIWSTOP, etc.). See the "Playfield
Hardware" chapter for more information about overscan and display windows.

Horizontal Position

A sprite's horizontal position (X value) can be at any pixel on the screen from 0 to 447. To be
visible, however, an object must be within the boundaries of the playfield display window. In the
examples in this chapter, a window with horizontal positions from pixel 64 to pixel 383 is used
(that is, each line is 320 pixels long). Larger or smaller windows can be defined as required, but it
is recommended that you read the "Playfield Hardware" chapter before attempting to do so. A
larger area is actually scanned by the video beam but is not usually visible on the screen.

If you specify an X value for a sprite that takes it outside the display window, then part or all of
the sprite may not appear on the screen. This is sometimes desirable; such a sprite is said to be
•• clipped. "

To make a sprite appear in its correct on-screen horizontal position in the display window, simply
add its left offset to the desired X value. In the example given above, this would involve adding
64 to the X value. For example, to make the upper leftmost pixel of a sprite appear at a position
94 pixels from the left edge of the screen, you would perform this calculation:

Desired X position + horizontal-offset of display window = 94 + 64 = 158

Sprite Hardware 95

Thus, 158 becomes the X value, which will be written into the data structure.

NOTE

The X position represents the location of the very first (leftmost) pixel in the full 16-
bit-wide sprite. This is always the case, even if the leftmost pixels are specified as
transparent and do not appear on the screen.

If the sprite shown in Figure 4-2 were located at an X value of 158, the actual image would begin
on-screen four pixels later at 162. The first four pixels in this sprite are transparent and allow the
background to show through.

4

I '""'''~---16 PixeIS------i .. ~1

Figure 4-2: Position of Sprites

Vertical Position

You can select any position from line 0 to line 262 for the topmost edge of the sprite. In the
examples in this chapter, an NTSC window with vertical positions from line 44 to line 243 is
used. This allows the nonnal display height of 200 lines in non-interlaced mode. If you specify a
vertical position (Y value) of less than 44 (Le., above the top of the display window) the top edge
of the sprite may not appear on screen.

To make a sprite appear in its correct on-screen vertical position, add the Y value to the desired
position. Using the above numbers, add 44 to the desired Y position. For example, to make the
upper leftmost pixel appear 25 lines below the top edge of the screen, perfonn this calculation:

Desired Y position + vertical-offset o/the display window = 25 + 44 = 69

Thus, 69 is the Y value you will write into the data structure.

96 Sprite Hardware

Clipped Sprites

As noted above, sprites will be partially or totally clipped if they pass across or beyond the
boundaries of the display window. The values of 64 (horizontal) and 44 (vertical) are "normal"
for a centered display on a standard NTSC video monitor. See Chapter 3, "Playfield Hardware",
for more information on display offsets. Information on PAL displays will be found there. If you
choose other values to establish your display window, your sprites will be clipped accordingly.

SIZE OF SPRITES

Sprites are 16 pixels wide and can be almost any height you wish - as short as one line or taller
than the screen. You would probably move a very tall sprite vertically to display a portion of it at
a time.

Sprite size is based on a pixel that is 1/32Oth of a screen's width, 1!20Oth of a NTSC screen's
height, or 1/256 of a PAL screen's height. This pixel size corresponds to the low-resolution and
non-interlaced modes of the normal full-size playfield. Sprites, however, are independent of
play field modes of display, so changing the resolution or interlace mode of the playfield has no
effect on the size or resolution of a sprite.

SHAPE OF SPRITES

A sprite can have any shape that will fit within the 16-pixel width. You define a sprite's shape by
specifying which pixels actually appear in each of the sprite's locations. For example, Figures
4-3 and 4-4 show a spaceship whose shape is marked by Xs. The first figure shows only the
spaceship as you might sketch it out on graph paper. The second figure shows the spaceship
within the 16-pixel width. The Os around the spaceship mark the part of the sprite not covered by
the spaceship and transparent when displayed.

xx
XXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXX
XX

Figure 4-3: Shape of Spaceship

Sprite Hardware 97

o 0 0 0 X X o 0 0 0 0 0 0 0 0 0
o 0 x x x x x x o 0 0 0 0 0 0 0
X X X X X X X X X X 0 0 0 0 0 0
X X X X X X X X X X 0 0 0 0 0 0
o 0 x x x x x x 0 0 0 0 0 0 0 0
o 0 0 0 X X 000 0 0 0 0 0 0 0

Figure 4-4: Sprite with Spaceship Shape Defined

In this example, the widest part of the shape is ten pixels and the shape is shifted to the left of the
sprite. Whenever the shape is narrower than the sprite, you can control which part of the sprite is
used to define the shape. This particular shape could also start at any of the pixels from 2-7
instead of pixel 1.

SPRITE COLOR

When sprites are used individuaily (that is, not "attached" as described under "Attached
Sprites" later), each pixel can be one of three colors or transparent Colors are selected in much
the same manner as playfield colors. Figure 4-5 shows how the color of each pixel in a sprite is
determined.

98 Sprite Hardware

Transparent

High-order word of sprite data line

Low-order word of sprite data line

Forms a binary
code, used as

the color choice
from a group of
color registers.

Figure 4-5: Sprite Color Definition

The Os and Is in the two data words that define each line of a sprite in the data structure fonn a
binary number. This binary number points to one of the four color registers assigned to that par
ticular sprite DMA channel. The eight sprites use system color registers 16 - 31. For purposes of
color selection, the eight sprites are organized into pairs and each pair uses four of the color regis
ters as shown in Figure 4-6.

NOTE

The color value of the first register in each group of four registers is ignored by
sprites. When the sprite bits select this register, the "transparent" value is used.

Sprite Hardware 99

Codes 01, 10, or 11
select one of three
possible registers
from the normal
color register group,
from which the
actual color data
is taken.

Sprite 0 or 1

'{

OO
01
10
11

Sprite 2 or 3 '{ 00

01
10
11

Sprite 4 or 5 '{
00
01
10
11

Sprite 6 or 7 '{ 00

01
10
11

Color Register Set

Unused

Unused

Unused

Unused

Figure 4-6: Color Register Assignments

~
~YieldS
~ Transparent

V 28

31

If you require certain colors in a sprite, you will want to load the sprite's color registers with those colors. The' 'Playfield Hardware" chapter contains instructions on loading color registers.

The binary number 00 is special in this color scheme. A pixel whose value is 00 becomes transparent and shows the color of any other sprite or playfield that has lower video priority. An object with low priority appears "behind" an object with higher priority. Each sprite has a fixed video priority with respect to all the other sprites. You can vary the priority between sprites and playfields. (See Chapter 7, "System Control Hardware," for more information about sprite priority.)

100 Sprite Hardware

DESIGNING A SPRITE

For design purposes, it is convenient to layout the sprite on paper first. You can show the desired
colors as numbers from 0 to 3. For example, the spaceship shown above might look like this:

0000122332210000
0001223333221000
0012223333222100
0001223333221000
0000122332210000

The next step is to convert the numbers 0-3 into binary numbers, which will be used to build the
color descriptor words of the sprite data structure. The section below shows how to do this.

BUILDING THE DATA STRUCTURE

After defining the sprite, you need to build its data structure, which is a series of 16-bit words in a
contiguous memory area. Some of the words contain position and control information and some
contain color descriptions. To create a sprite's data structure, you need to:

• Write the horizontal and vertical position of the sprite into the first control word.

• Write the vertical stopping position into the second control word.

• Translate the decimal color numbers 0 - 3 in your sprite grid picture into binary color
numbers. Use the binary values to build color descriptor (data) words and write these
words into the data structure.

• Write the control words that indicate the end of the sprite data structure.

NOTE

Sprite data, like all other data accessed by the custom chips, must be loaded into Chip
RAM. Be sure all of your sprite data structures are word aligned in Chip Memory.

Table 4-1 shows a sprite data structure with the memory location and function of each word:

Sprite Hardware 101

Memory
Location

N
N+l
N+2
N+3
N+4
N+5

Table 4-1: Sprite Data Structure

16-bit Word

Sprite control word 1
Sprite control word 2
Color descriptor low word
Color descriptor high word
Color descriptor low word
Color descriptor high word

End-of-data words

Function

Vertical and horizontal start position
Vertical stop position
Color bits for line 1
Color bits for line 1
Color bits for line 2
Color bits for line 2

Two words indicating
the next usage of this sprite

All memory addresses for sprites are word addresses. You will need enough contiguous memory
to provide room for two words for the control information, two words for each horizontal line in
the sprite, and two end -of-data words.

Because this data structure must be accessible by the special-purpose chips, you must ensure that
this data is located within chip memory.

Figure 4-7 shows how the data structure relates to the sprite.

102 Sprite Hardware

Increasing
addresses

.... f------16 bits--------1~

VST ART, HST ART

VSTOP, control bits

Low word of data, line 1

High word of data, line 1

Data describing
central lines of

this sprite

Low word of data, last line

High word of data, last line

000 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Part
of a

screen
display

HSTART

VSTART

VSTOP

Figure 4-7: Data Structure Layout

Each group of words defines one
vertical usage of a sprite.
Contains starting location and
physical appearance of this
sprite image.

Pairs of words containing
color information for pixel
lines.

Last word pair contains a"
zeros if this sprite processor is
to be used only once vertically
in the display frame.

EACH WORD PAIR

Low word of pair

High word of pair

DESCRIBES ONE VIDEO
LINE OF THE SPRITE

Sprite Hardware 103

Sprite Control Word 1: SPRxPOS

This word contains the vertical (VST ART) and horizontal (HST ART) starting position for the
sprite. This is where the topmost line of the sprite will be positioned.

Bits 15-8 contain the low 8 bits of VST ART
Bits 7-0 contain the high 8 bits of HSTART

Sprite Control Word 2 : SPRxCTL

This word contains the vertical stopping position of the sprite on the screen (Le., the line AFfER
the last displayed row of the sprite). It also contains some data having to do with sprite attach
ment, which is described later on.

Bits 15-8
Bit 7
Bits 6-3
Bit 2
Bit 1
Bit 0

SPRxCfL

The low eight bits of VSTOP
(Used in attachment)
Unused (make zero)
The VST ART high bit
The VSTOP high bit
The HST ART low bit

The value (VSTOP - VST ART) defines how many scan lines high the sprite will be when it is
displayed.

Sprite Color Descriptor Words

It takes two color descriptor words to describe each horizontal line of a sprite; the high-order
word and the low-order word. To calculate how many color descriptor words you need, multiply
the height of the sprite in lines by 2. The bits in the high-order color descriptor word contribute
the leftmost digit of the binary color selector number for each pixel; the low-order word contri
butes the rightmost digit.

104 Sprite Hardware

To fonn the color descriptor words, you first need to fonn a picture of the sprite, showing the
color of each pixel as a number from 0 - 3. Each number represents one of the colors in the
sprite's color registers. For example, here is the spaceship sprite again:

0000122332210000
0001223333221000
0012223333222100
0001223333221000
0000122332210000

Next, you translate each of the numbers in this picture into a binary number. The first line in
binary is shown below. The binary numbers are represented vertically with the low digit in the
top line and the high digit right below it. This is how the two color descriptor words for each
sprite line are written in memory.

o 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 f- Low Sprite Word
000001 1 1 1 1 100000 f- High Sprite Word

The first line above becomes the color descriptor low word for line 1 of the sprite. The second
line becomes the color descriptor high word. In this fashion, you translate each line in the sprite
into binary Os and Is. See Figure 4-7.

Each of the binary numbers fonned by the combination of the two data words for each line refers
to a specific color register in that particular sprite channel's segment of the color table. Sprite
channel 0, for example, takes its colors from registers 17 - 19. The binary numbers corresponding
to the color registers for sprite DMA channel 0 are shown in Table 4-2.

Table 4-2: Sprite Color Registers

Binary Number Color Register Number

00 Transparent
01 17
10 18
11 19

Recall that binary 00 always means transparent and never refers to a color except background.

End-of-data Words

When the vertical position of the beam counter is equal to the VSTOP value in the sprite control
words, the next two words fetched from the sprite data structure are written into the sprite control
registers instead of being sent to the color registers. These two words are interpreted by the

Sprite Hardware 105

hardware in the same manner as the original words that were first loaded into the control registers.
If the VST ART value contained in these words is lower than the current beam position, this sprite
will not be reused in this display field. For consistency, the value 0 should be used for both
words when ending the usage of a sprite. Sprite reuse is discussed later.

The following data structure is for the spaceship sprite. It will be located at V = 65 and
H = 128 on the nonnally visible part of the screen.

SPRITE:
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

$6D60, $7200
$0990,$07EO
$13C8,$OFFO
$23C4,$lFF8
$13C8,$OFFO
$0990,$07EO
$0000,$0000

Displaying a Sprite

;VSTART, HSTART, VSTOP
;First pair of descriptor words

;End of sprite data

After building the data structure, you need to tell the system to display it. This section describes
the display of sprites in "automatic" mode. In this mode, once the sprite DMA channel begins to
retrieve and display the data, the display continues until the VSTOP position is reached. Manual
mode is described later on in this chapter.

The following steps are used in displaying the sprite:

1. Decide which of the eight sprite DMA channels to use (making certain that the chosen
channel is available).

2. Set the sprite pointers to tell the system where to find the sprite data.

3. Tum on sprite direct memory access if it is not already on.

4. For each subsequent display field. during the vertical blanking interval, rewrite the sprite
pointers.

CAUTION

If sprite DMA is turned off while a sprite is being displayed (that is, after VSTART
but before VSTOP), the system will continue to display the line of sprite data that was
most recently fetched. This causes a vertical bar to appear on the screen. It is recom
mended that sprite DMA be turned off only during vertical blanking or during some
portion of the display where you are sure that no sprite is being displayed.

106 Sprite Hardware

SELECTING A DMA CHANNEL AND SETTING THE POINTERS

In deciding which DMA channel to use, you should take into consideration the colors assigned to
the sprite and the sprite's video priority.

The sprite DMA channel uses two pointers to read in sprite data and control words. During the
vertical blanking interval before the first display of the sprite, you need to write the sprite's
memory address into these pointers. The pointers for each sprite are called SPRxPTH and
SPRxPTL, where "x" is the number of the sprite DMA channel. SPRxPTH contains the high
three bits of the memory address of the first word in the sprite and SPRxPTL contains the low
sixteen bits. The least significant bit of SPRxPTL is ignored, as sprite data must be word aligned.
Thus, only fifteen bits of SPRxPTL are used. As usual, you can write a long word into
SPRxPTH.

In the following example the processor initializes the data pointers for sprite O. Normally, this is
done by the Copper. The sprite is at address $20000.

MOVE.L #$20000,SPROPTH+CUSTOM ;Write $20000 to sprite 0 pointer •••

These pointers are dynamic; they are incremented by the sprite DMA channel to point first to the
control words, then to the data words, and finally to the end-of-data words. After reading in the
sprite control information and storing it in other registers, they proceed to read in the color
descriptor words. The color descriptor words are stored in sprite data registers, which are used by
the sprite DMA channel to display the data on screen. For more information about how the sprite
DMA channels handle the display, see the "Hardware Details" section below.

RESETTING THE ADDRESS POINTERS

For one single display field, the system will automatically read the data structure and produce the
sprite on-screen in the colors that are specified in the sprite's color registers. If you want the
sprite to be displayed in subsequent display fields, you must rewrite the contents of the sprite
pointers during each vertical blanking interval. This is necessary because during the display field,
the pointers are incremented to point to the data which is being fetched as the screen display
progresses.

The rewrite becomes part of the vertical blanking routine, which can be handled by instructions in
the Copper lists.

Sprite Hardware 107

SPRITE DISPLAY EXAMPLE

This example displays the spaceship sprite at location V = 65, H = 128. Remember to include
the file "hw_examplesJ", located in Appendix J.

First, we set up a single bit-plane.

LEA CUSTOM,aO
MOVE.W #$1200, BPLCONO (aO)
MOVE.W #$0000,BPL1MOD(aO)
MOVE.W #$0000,BPLCON1(aO)
MOVE.W #$0024,BPLCON2(aO)
MOVE.W #$0038,DDFSTRT(aO)
MOVE.W #$OODO,DDFSTOP(aO)

Display window definitions.

MOVE.W #$2C81,DIWSTRT(aO)

MOVE.W #$F4C1,DIWSTOP(aO)

Set up color registers.

MOVE.W #$0008,COLOROO(aO)
MOVE.W #$0000,COLOR01(aO)
MOVE.W #$OFFO,COLOR17 (aO)
MOVE.W #$00FF,COLOR18 (aO)
MOVE.W #$OFOF,COLOR19 (aO)

Move Copper list to $20000.

MOVE.L #$20000,a1
LEA COPPERL(pc),a2

CLOOP:
MOVE.L (a2), (a1) +
CMP.L #$FFFFFFFE, (a2)+
BNE CLOOP

Move sprite to $25000.

MOVE.L #$25000,a1
LEA SPRITE(pc),a2

SPRLOOP:
MOVE.L (a2), (a1) +
CMP.L #$00000000, (a2) +
BNE SPRLOOP

;Point aO at custom chips
:1 bit-plane color is on
;Modulo = 0
;Horizontal scroll value = 0
;Sprites have priority over playfields
;Set data-fetch start
;Set data-fetch stop

;Set display window start
;Vertical start in high byte.
;Horizontal start * 2 in low byte.
;Set display window stop
;Vertical stop in high byte.
;Horizontal stop * 2 in low byte.

;Background color = dark blue
;Foreground color = black
;Color 17 yellow
;Color 18 cyan
;Color 19 magenta

;Point Al at Copper list destination
:Point A2 at Copper list source

;Move a long word
;Check for end of list
;Loop until entire list is moved

;Point A1 at sprite destination
;Point A2 at sprite source

;Move a long word
;Check for end of sprite
;Loop until entire sprite is moved

Now we write a dummy sprite to $30000, since all eight sprites are activated
at the same time and we're only going to use one. The remaining sprites
will point to this dummy sprite data.

MOVE.L #$00000000,$30000 ;Write it

Point Copper at Copper list.

108 Sprite Hardware

MOVE.L #$20000,COPILC(aO)

Fill bit-plane with $FFFFFFFF.

MOVE.L lt$21000,al
MOVE.W U999,dO

FLOOP
MOVE.L #$FFFFFFFF, (al)+
DBF dO,FLOOP

Start DMA.

MOVE.W dO, COP JMP 1 (aO)

MOVE.W #$83AO, DMACON (aO)
RTS

;Point Al at bit-plane
;2000-1 (for dbf) long words - 8000 bytes

;Move a long word of $FFFFFFFF
; Decrement, repeat until false.

;Force load into Copper
program counter

; Bit-plane, Copper, and sprite DMA
; •• return to rest of program ••

This is a Copper list for one bit-plane, and 8 sprites.
The bit-plane lives at $21000.

; Sprite 0 lives at $25000; all others live at $30000 (the dummy sprite).
;
COPPERL:

Sprite

SPRITE:

DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

data

DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

BPLIPTH,$0002
BPLIPTL, $1000
SPROPTH,$0002
SPROPTL,$5000
SPRIPTH,$0003
SPRIPTL,$OOOO
SPR2PTH,$0003
SPR2PTL,$0000
SPR3PTH,$0003
SPR3PTL,$0000
SPR4PTH,$0003
SPR4PTL,$0000
SPR5PTH,$0003
SPR5PTL,$0000
SPR6PTH,$0003
SPR6PTL,$0000
SPR7PTH,$0003
SPR7PTL,$0000
$FFFF,$FFFE

for spaceship

$6D60,$7200
$0990,$07EO
$13C8,$OFFO
$23C4,$lFF8
$13C8,$OFFO
$0990,$07EO
$0000,$0000

sprite. It

;Bit plane 1 pointer = $21000

; Sprite 0 pointer $25000

; Sprite 1 pointer - $30000

; Sprite 2 pointer = $30000

; Sprite 3 pointer $30000

; Sprite 4 pointer - $30000

; Sprite 5 pointer = $30000

; Sprite 6 pointer $30000

; Sprite 7 pointer = $30000

;End of Copper list

appears on the screen at V-65 and H-128.

;VSTART, HSTART, VSTOP
;First pair of descriptor words

;End of sprite data

Sprite Hardware 109

Moving a Sprite

A sprite generated in automatic mode can be moved by specifying a different position in the data
structure. For each display field, the data is reread and the sprite redrawn. Therefore, if you
change the position data before the sprite is redrawn, it will appear in a new position and will
seem to be moving.

You must take care that you are not moving the sprite (that is, changing control word data) at the
same time that the system is using that data to find out where to display the object. If you do so,
the system might find the start position for one field and the stop position for the following field
as it retrieves data for display. This would cause a "glitch" and would mess up the screen.
Therefore, you should change the content of the control words only during a time when the sys
tem is not trying to read them. Usually, the vertical blanking period is a safe time, so moving the
sprites becomes part of the vertical blanking tasks and is handled by the Copper as shown in the
example below.

As sprites move about on the screen, they can collide with each other or with either of the two
play fields. You can use the hardware to detect these collisions and exploit this capability for spe
cial effects. In addition, you can use collision detection to keep a moving object within specified
on-screen boundaries. Collision Detection is described in Chapter 7, "System Control
Hardware. "

In this example of moving a sprite, the spaceship is bounced around on the screen, changing
direction whenever it reaches an edge.

The sprite position data, containing VSTART and HSTART, lives in memory at $25000.
VSTOP is located at $25002. You write to these locations to move the sprite. Once during each
frame, VSTART is incremented (or decremented) by I and HSTART by 2. Then a new VSTOP
is calculated, which will be the new VST ART + 6.

MOVE.B #151, dO
MOVE.B #194,d1
MOVE.B #64,d2
MOVE.B #44,d3
MOVE.B #1, d4
MOVE.B #1,d5

;Initialize horizontal count
;Initialize vertical count
;Initialize horizontal position
;Initialize vertical position
;Initialize horizontal increment value
;Initialize vertical increment value

;Here we wait for the start of the screen updating.
;This ensures a glitch-free display.

LEA CUSTOM,aO ;Set custom chip base pointer
VLOOP:

MOVE.B VHPOSR(aO),d6 ;Read Vertical beam position.
;Only insert the folllowing line if you are using a PAL machine.

CMP.B #$20,d6 ;Compare with end of PAL screen.
BNE.S VLOOP ;Loop if not end of screen.

;Alternatively you can use the following code:
;VLOOP:

110 Sprite Hardware

MOVE.W
AND.W
BEQ
MOVE.W

INTREQR(aO),d6
#$0020,d6
VLOOP
#$0020,INTREQ(aO)

;Read interrupt request word
;Mask off all but vertical blank bit
;Loop until bit is a 1
;Vertical bit is on, so reset it

;Please note that this will only work if you have turned OFF the Vertical
;blanking interupt enable (not recommended for long periods) •

ADD.B d4,d2 ;Increment horizontal value
SUBQ.B #1, dO ;Decrement horizontal counter
BNE L1
MOVE.B #151,dO ;Count exhausted, reset to 151
EOR.B #$FE,d4 ;Negate the increment value

L1: MOVE.B d2,$25001 ;Write new HSTART value to sprite
ADD.B d5,d3 ;Increment vertical value
SUBQ.B #1,d1 ;Decrement vertical counter
BNE L2
MOVE.B #194, d1 ;Count exhausted, reset to 194
EOR.B #$FE,d5 ;Negate the increment value

L2: MOVE.B d3,$25000 ;Write new VSTART value to sprite
MOVE.B d3,d6 ;Must now calculate new VSTOP
ADD.B #6,d6 ;VSTOP always VSTART+6 for spaceship
MOVE.B d6,$25002 ;Write new VSTOP to sprite
BRA VLOOP ;Loop forever

Creating Additional Sprites

To use additional sprites, you must create a data structure for each one and arrange the display as
shown in the previous section, naming the pointers SPRIPTH and SPRIPTL for sprite DMA
channell, SPR2PTH and SPR2PTL for sprite DMA channel 2, and so on.

NOTE

When you enable sprite DMA for one sprite, you enable DMA for all the sprites and
place them all in automatic mode. Thus, you do not need to repeat this step when
using additional sprite DMA channels.

Once the sprite DMA channels are enabled, all eight sprite pointers must be initialized to either a
real sprite or a safe null sprite. An uninitialized sprite could cause spurious sprite video to appear.

Remember that some sprites can become unusable when additional DMA cycles are allocated to
displaying the screen, for example when an extra wide display or horizontal scrolling is enabled
(see Figure 6-9: DMA Time Slot Allocation).

Also, recall that each pair of sprites takes its color from different color registers, as shown in
Table 4-3.

Sprite Hardware 111

Table 4-3: Color Registers for Sprite Pairs

Sprite Numbers

o and 1
2 and 3
4 and 5
6 and 7

Color Registers

17 - 19
21 - 23
25 - 27
29 - 31

NOTE

Some sprites become unusable when additional DMA cycles are allocated to display
ing the screen, e.g. when enabling an extra wide display or horizontal scrolling. (See
Figure 6-11: DMA Time Slot Allocation.)

SPRITE PRIORITY

When you have more than one sprite on the screen, you may need to take into consideration their
relative video priority, that is, which sprite appears in front of or behind another. Each sprite has
a fixed video priority with respect to all the others. The lowest numbered sprite has the highest
priority and appears in front of all other sprites; the highest numbered sprite has the lowest prior
ity. This is illustrated in Figure 4-8.

NOTE

See Chapter 7, •• System Control Hardware" , for more information on sprite priorities.

I 7
I 6

I 5 I--I 4 I--
I 3 f--

I 2 I--
I 1

~
0 I--

I--

Figure 4-8: Sprite Priority

112 Sprite Hardware

Reusing Sprite DMA Channels

Each of the eight sprite DMA channels can produce more than one independently controllable
image. There may be times when you want more than eight objects, or you may be left with
fewer than eight objects because you have attached some of the sprites to produce more colors or
larger objects or overlapped some to produce more complex images. You can reuse each sprite
DMA channel several times within the same display field, as shown in Figure 4-9.

Part
of. a

screen
display

Each image of this sprite
may be placed at any
desired spot, horizontally
or vertically. However,
at least one video line
must separate the bottom
of one usage of a sprite
from the starting point
of the next usage.

Figure 4-9: Typical Example of Sprite Reuse

In single-sprite usage, two all-zero words are placed at the end of the data structure to stop the
DMA channel from retrieving any more data for that particular sprite during that display field. To
reuse a DMA channel, you replace this pair of zero words with another complete sprite data struc
ture, which describes the reuse of the DMA channel at a position lower on the screen than the first
use. You place the two all-zero words at the end of the data structure that contains the informa
tion for all usages of the DMA channe1. For example, Figure 4-10 shows the data structure that
describes the picture above.

Sprite Hardware 113

Increasing
RAM

Memory
Addresses

SPRITE DISPLAY LIST

~Data describing the first vertical
/' usage of this sprite.

Data describing the second vertical
usage of this sprite. Contents of
vertical start word must be at least
one video line below actual end of
preceding usage.

End-of-data words ending the
usage of this sprite.

Figure 4-10: Typical Data Structure for Sprite Re-use

The only restrictions on the reuse of sprites during a single display field is that the bottom line of
one usage of a sprite' must be separated from the top line of the next usage by at least one horizon
tal scan line. This restriction is necessary because only two DMA cycles per horizontal scan line
are allotted to each of the eight channels. The sprite channel needs the time during the blank line
to fetch the control word describing the next usage of the sprite.

114 Sprite Hardware

The following example displays the spaceship sprite and then redisplays it as a different object.
Only the sprite data list is affected, so only the data list is shown here. However, the sprite looks
best with the color registers set as shown in the example.

SPRITE:

LEA CUSTOM,aO
MOVE.W t$OFOO,COLOR17 (aO)
MOVE.W t$OFFO,COLOR18 (aO)
MOVE.W t$OFFF,COLOR19 (aO)

DC.W $6D60, $7200
DC.W $0990,$07EO
DC.W $13C8,$OFFO
DC.W $23C4,$1FF8
DC.W $13C8,$OFFO
DC.W $0990,$07EO

;Color 17 - red
;Color 18 = yellow
;Color 19 = white

DC.W $8080,$8DOO ;VSTART, HSTART, VSTOP for new sprite
DC.W $1818,$0000
DC.W $7E7E,$0000
DC.W $7FFE,$0000
DC.W $FFFF,$2000
DC.W $FFFF,$2000
DC.W $FFFF,$3000
DC.W $FFFF,$3000
DC.W $7FFE,$1800
DC.W $7FFE,$OCOO
DC.W $3FFC,$0000
DC.W $OFFO,$OOOO
DC.W $03CO,$0000
DC.W $0180,$0000
DC.W $0000,$0000 ;End of sprite data

Overlapped Sprites

For more complex or larger moving objects, you can overlap sprites. Overlapping simply means
that the sprites have the same or relatively close screen positions. A relatively close screen posi
tion can result in an object that is wider than 16 pixels.

The built-in sprite video priority ensures that one sprite appears to be behind the other when
sprites are overlapped. The priority circuitry gives the lowest-numbered sprite the highest prior
ity and the highest numbered sprite the lowest priority. Therefore, when designing displays with
overlapped sprites, make sure the "foreground" sprite has a lower number than the "back
ground" sprite. In Figure 4-11, for example, the cage should be generated by a lower-numbered
sprite DMA channel than the monkey.

Sprite Hardware 115

Individual sprites
can be combined
by simple overlap,

..... t---"'7"-Built in sprite "Priority"
displays one sprite
behind the other
when overlapped,

Figure 4-11: Overlapping Sprites (Not Attached)

You can create a wider sprite display by placing two sprites next to each other. For instance, Fig
ure 4-12 shows the spaceship sprite and how it can be made twice as large by using two sprites
placed next to each other.

116 Sprite Hardware

(128.65)

1~1
(128.65) (144.65)

Sprite 0 Sprite 1

Figure 4-12: Placing Sprites Next to Each Other

Attached Sprites

You can create sprites that have fifteen possible color choices (plus transparent) instead of three
(Plus transparent), by "attaching" two sprites. To create attached sprites, you must:

• Use two channels per sprite, creating two sprites of the same size and located at the same
position.

• Set a bit called ATTACH in the second sprite control word.

The fifteen colors are selected from the full range of color registers available to sprites - regis
ters 17 through 31. The extra color choices are possible because each pixel contains four bits
instead of only two as in the nonnal, unattached sprite. Each sprite in the attached pair contri
butes two bits to the binary color selector number. For example, if you are using sprite DMA
channels 0 and 1, the high- and low-order color descriptor words for line 1 in both data structures
are combined into line 1 of the attached object.

Sprite Hardware 117

Sprites can be attached in the following combinations:

Sprite 1 to sprite 0
Sprite 3 to sprite 2
Sprite 5 to sprite 4
Sprite 7 to sprite 6

Any or all of these attachments can be active during the same display field. As an example,
assume that you wish to have more colors in the spaceship sprite and you are using sprite DMA
channels 0 and 1. There are five colors plus transparent in this sprite.

0000154444510000
0001564444651000
0015676446765100
0001564444651000
0000154444510000

The first line in this sprite requires the four data words shown in Table 4-4 to form the correct
binary color selector numbers.

Table 4-4: Data Words for First Line of Spaceship Sprite

Pixel Number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Line 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Line 2 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
Line 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Line 4 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

The highest numbered sprite (number 1, in this example) contributes the highest order bits (left
most) in the binary number. The high-order data word in each sprite contributes the leftmost
digit. Therefore, the lines above are written to the sprite data structures as follows:

Line 1
Line 2
Line 3
Line 4

Sprite 1 high-order word for sprite line 1
Sprite 1 low-order word for sprite line 1
Sprite 0 high-order word for sprite line 1
Sprite 0 low-order word for sprite line 1

See Figure 4-7 for the order these words are stored in memory. Remember that this data is con
tained in two sprite structures.

118 Sprite Hardware

The binary numbers 0 through 15 select registers 17 through 31 as shown in Table 4-5.

Table 4-5: Color Registers in Attached Sprites

Decimal
Number

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Binary
Number

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Color Register
Number

16 *
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

* Unused; yields transparent pixel.

Attachment is in effect only when the ATTACH bit, bit 7 in sprite control word 2, is set to 1 in
the data structure for the odd-numbered sprite. So, in this example, you set bit 7 in sprite control
word 2 in the data structure for sprite 1.

When the sprites are moved, the Copper list must keep them both at exactly the same position
relative to each other. If they are not kept together on the screen, their pixels will change color.
Each sprite will revert to three colors plus transparent, but the colors may be different than if they
were ordinary, unattached sprites. The color selection for the lower numbered sprite will be from
color registers 17-19. The color selection for the higher numbered sprite will be from color regis
ters 20, 24, and 28.

Sprite Hardware 119

The following data structure is for the six-color spaceship made with two attached sprites.

SPRITEO:
OC.W $6060,$7200
Oc.w $OC30,$0000
OC.W $1818,$0420
OC.W $342C,$OE70
OC.W $1818,$0420
OC.w $OC30,$0000
Oc.w $0000,$0000

SPRITE1:
OC.W $6060,$7280
OC.W $07EO,$0000
OC.w $OFFO,$OOOO
Oc.w $lFF8,$0000
Oc.w $OFFO,$OOOO
OC.w $07EO,$0000
Oc.w $0000,$0000

Manual Mode

;VSTART = 65, HSTART = 128
;First color descriptor word

;End of sprite 0

;Same as sprite 0 except attach bit on
;First descriptor word for sprite 1

;End of sprite 1

It is almost always best to load sprites using the automatic DMA channels. Sometimes, however,
it is useful to load these registers directly from one of the microprocessors. Sprites may be
activated "manually" whenever they are not being used by a DMA channel. The same sprite that
is showing a DMA-controlled icon near the top of the screen can also be reloaded manually to
show a vertical colored bar near the bottom of the screen. Sprites can be activated manually even
when the sprite DMA is turned off.

You display sprites manually by writing to the sprite data registers SPRxDATB and SPRxDATA,
in that order. You write to SPRxDATA last because that address "arms" the sprite to be output
at the next horizontal comparison. The data written will then be displayed on every line, at the
horizontal position given in the "H" portion of the position registers SPRxPOS and SPRxCfL.
If the data is unchanged, the result will be a vertical bar. If the data is reloaded for every line, a
complex sprite can be produced.

The sprite can be terminated ("disanned") by writing to the SPRxCfL register. If you write to
the SPRxPOS register, you can manually move the sprite horizontally at any time, even during
normal sprite usage.

120 Sprite Hardware

Sprite Hardware Details

Sprites are produced by the circuitry shown in Figure 4-13. This figure shows in block fonn how
a pair of data words becomes a set of pixels displayed on the screen.

The circuitry elements for sprite display are explained below.

• Sprite data registers. The registers SPRxDATA and SPRxDATB hold the bit patterns that
describe one horizontal line of a sprite for each of the eight sprites. A line is 16 pixels wide,
and each line is defined by two words to provide selection of three colors and transparent

• Parallel-to-serial converters. Each of the 16 bits of the sprite data bit pattern is individually
sent to the color select circuitry at the time that the pixel associated with that bit is being
displayed on-screen.

Immediately after the data is transferred from the sprite data registers, each parallel-to-serial
converter begins shifting the bits out of the converter, most significant (leftmost) bit first
The shift occurs once during each low-resolution pixel time and continues until all 16 bits
have been transferred to the display circuitry. The shifting and data output does not begin
again until the next time this converter is loaded from the data registers.

Because the video image is produced by an electron beam that is being swept from left to
right on the screen, the bit-image of the data corresponds exactly to the image that actually
appears on the screen (most significant data on the left).

• Sprite serial video data. Sprite data goes to the priority circuit to establish the priority
between sprites and playfields.

• Sprite position registers. These registers, called SPRxPOS, contain the horizontal position
value (X value) and vertical position value (Y value) for each of the eight sprites.

Sprite control registers. These registers, called SPRxCfL, contain the stopping position for
each of the eight sprites and whether or not a sprite is attached.

• Beam counter. The beam counter tells the system the current location of the video beam that
is producing the picture.

• Comparator. This device compares the value of the beam counter to the Y value in the posi
tion register SPRxPOS. If the beam has reached the position at which the leftmost upper
pixel of the sprite is to appear, the comparator issues a load signal to the serial-to-parallel
converter and the sprite display begins.

Sprite Hardware 121

Converter

Parallel to Serial

DATA BUS

Equal

SPRxPOS
Load Decode

(68000 or DMA)

"ARM" Sprite

SPRxDATA
Load Decode

(68000 or DMA)

,...------10 S

o R SPRxCTL
Load Decode

(68000 or DMA)

Sprite Serial
Video Data

------.~-+--------------~

Output to
Video Priority

Logic

SPRxDATB
Load Decode

(68000 or DMA)

Figure 4-13: Sprite Control Circuitry

Figure 4-13 shows the following:

• Writing to the sprite control registers disables the horizontal comparator circuitry. This
prevents the system from sending any output from the data registers to the serial converter or
to the screen.

122 Sprite Hardware

• Writing to the sprite A data register enables the horizontal comparator. This enables output
to the screen when the horizontal position of the video beam equals the horiwntal value in
the position register.

• If the comparator is enabled, the sprite data will be sent to the display, with the leftmost pixel
of the sprite data placed at the position defined in the horizontal part of SPRxPOS.

• As long as the comparator remains enabled, the current contents of the sprite data register
will be output at the selected horizontal position on a video line.

• The data in the sprite data registers does not change. It is either rewritten by the user or
modified under DMA control.

The components described above produce the automatic DMA display as follows: When the
sprites are in DMA mode, the IS-bit sprite pointer register (composed of SPRxPfH and
SPRxPTL) is used to read the first two words from the sprite data structure. These words contain
the starting and stopping position of the sprite. Next, the pointers write these words into
SPRxPOS and SPRxCTL. After this write, the value in the pointers points to the address of the
first data word (low word of data for line 1 of the sprite.)

Writing into the SPRxCTL register disabled the sprite. Now the sprite DMA channel will wait
until the· vertical beam counter value is the same as the data in the VSTART (Y value) part of
SPRxPOS. When these values match, the system enables the sprite data access.

The sprite DMA channel examines the contents of VSTOP (from SPRxCTL, which is the loca
tion of the line after the last line of the sprite) and VST ART (from SPRxPOS) to see how many
lines of sprite data are to be fetched. Two words are fetched per line of sprite height, and these
words are written into the sprite data registers. The first word is stored in SPRxDAT A and the
second word in SPRxDATB.

The fetch and store for each horiwntal scan line occurs during a horizontal blanking interval, far
to the left of the start of the screen display. This arms the sprite horizontal comparators and
allows them to start the output of the sprite data to the screen when the horizontal beam count
value matches the value stored in the HST ART (X value) part of SPRxPOS.

If the count of VSTOP - VST ART equals zero, no sprite output occurs. The next data word pair
will be fetched, but it will not be stored into the sprite data registers. It will instead become the
next pair of data words for SPRxPOS and SPRxCTL.

When a sprite is used only once within a single display field, the final pair of data words, which
follow the sprite color descriptor words, is loaded automatically as the next contents of the
SPRxPOS and SPRxCTL registers. To stop the sprite after that first data set, the pair of words
should contain all zeros.

Thus, if you have fonned a sprite pattern in memory, this same pattern will be produced as pixels
automatically under DMA control one line at a time.

Sprite Hardware 123

Summary of Sprite Registers

There are eight complete sets of registers used to describe the sprites. Each set consists of five
registers. Only the registers for sprite 0 are described here. All of the others are the same, except
for the name of the register, which includes the appropriate number.

POINTERS

Pointers are registers that are used by the system to point to the current data being used. During a
screen display, the registers are incremented to point to the data being used as the screen display
progresses. Therefore. pointer registers must be freshly written during the start of the vertical
blanking period.

SPROPTH and SPROPTL

This pair of registers contains the 32-bit word address of Sprite 0 DMA data.

Pointer register names for the other sprites are:

CONTROL REGISTERS

SPROPOS

SPR 1 PTH
SPR2PTH
SPR3PTH
SPR4PTH
SPRSPTH
SPR6PTH
SPR7PTH

SPRIPTL
SPR2PTL
SPR3PTL
SPR4PTL
SPRSPTL
SPR6PTL
SPR7PTL

This is the sprite 0 position register. The word written into this register controls the position on
the screen at which the upper left-hand comer of the sprite is to be placed. The most significant
bit of the first data word will be placed in this position on the screen.

124 Sprite Hardware

NOTE

The sprites have a placement resolution on a full screen of 320 by 200 NTSC (320 by
256 PAL). The sprite resolution is independent of the bit-plane resolution.

Bit positions:

• Bits 15-8 specify the vertical start position, bits V7 - YO.

• Bits 7-0 specify the horizontal start position, bits H8 - HI.

NOTE

This register is nonnally only written by the sprite DMA channel itself. See the
details above regarding the organization of the sprite data. This register is usually
updated directly by DMA.

SPROCTL

This register is nonnally used only by the sprite DMA channel. It contains control infonnation
that is used to control the sprite data-fetch process. Bit positions:

• Bits 15-8 specify vertical stop position for a sprite image, bits V7 - YO.

• Bit 7 is the attach bit. This bit is valid only for odd-numbered sprites. It indicates that
sprites 0, 1 (or 2,3 or 4,5 or 6,7) will, for color interpretation, be considered as paired,
and as such will be called four bits deep. The odd-numbered (higher number) sprite con
tains bits with the higher binary significance.

During attach mode, the attached sprites are nonnally moved horizontally and vertically
together under processor control. This allows a greater selection of colors within the
boundaries of the sprite itself. The sprites, although attached, remain capable of
independent motion, however, and they will assume this larger color set only when their
edges overlay one another.

• Bits 6-3 are reserved for future use (make zero).

• Bit 2 is bit V8 of vertical start.

• Bit 1 is bit V8 of vertical stop.

• Bit 0 is bit HO of horizontal start.

Sprite Hardware 125

Position and control registers for the other sprites are:

DATA REGISTERS

SPRIPOS
SPR2POS
SPR3POS
SPR4POS
SPRSPOS
SPR6POS
SPR7POS

SPRICfL
SPR2CfL
SPR3CfL
SPR4CfL
SPR5CfL
SPR6CfL
SPR7CfL

The following registers, although defined in the address space of the main processor, are nonnally
used only by the display processor. They are the holding registers for the data obtained by DMA
cycles.

SPRODATA, SPRODATB
SPRIDATA, SPRIDATB
SPR2DATA, SPR2DATB
SPR3DATA, SPR3DATB
SPR4DATA,SPR4DATB
SPRSDATA, SPR5DATB
SPR6DATA, SPR6DATB
SPR7DATA,SPR7DATB

data registers for Sprite 0
data registers for Sprite 1
data registers for Sprite 2
data registers for Sprite 3
data registers for Sprite 4
data registers for Sprite 5
data registers for Sprite 6
data registers for Sprite 7

Summary of Sprite Color Registers

Sprite data words are used to select the color of the sprite pixels from the system color register set
as indicated in the following tables.

If the bit combinations from single sprites are as shown in Table 4-6, then the colors will be taken
from the registers shown.

126 Sprite Hardware

Table 4-6: Color Registers for Single Sprites

Single Sprites Color
Sprite Value Register

o or 1 00 Not used *
01 17
10 18
11 19

2or3 00 Not used *
01 21
10 22
11 23

4or5 00 Not used •
01 25
10 26
11 27

6or7 00 Not used *
01 29
10 30
11 31

* Selects transparent mode.

If the bit combinations from attached sprites are as shown in Table 4-7, then the colors will be
taken from the registers shown.

Sprite Hardware 127

Table 4-7: Color Registers for Attached Sprites

Attached Sprites
Color

Value Register

0000 Selects transparent mode
0001 17
0010 18
0011 19
0100 20
0101 21
0110 22
0111 23
1000 24
1001 25
1010 26
1011 27
1100 28
1101 29
1110 30
1111 31

INTERACTIONS AMONG SPRITES AND OTHER OBJECTS

Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows how playfields can be given different video display priorities relative to the sprites and how playfields can collide with (overlap) the sprites or each other.

128 Sprite Hardware

Chapter 5

AUDIO HARDWARE

Introduction

This chapter shows you how to directly access the audio hardware to produce sounds. The major
topics in this chapter are:

• A brief oveIView of how a computer produces sound.

• How to produce simple steady and changing sounds and more complex ones.

Audio Hardware 129

• How to use the audio channels for special effects, wiring them for stereo sound if
desired, or using one channel to modulate another.

• How to produce quality sound within the system limitations.

A section at the end of the chapter gives you values to use for creating musical notes on the
equal-tempered musical scale.

This chapter is not a tutorial on computer sound synthesis; a thorough description of creating
sound on a computer would require a far longer document The purpose here is to point the way
and show you how to use the Amiga's features. Computer sound production is fun but complex,
and it usually requires a great deal of trial and error on the part of the user-you use the instruc
tions to create some sound and play it back, readjust the parameters and play it again, and so on.

The following works are recommended for more information on creating music with computers:

• Wayne A. Bateman, Introduction to Computer Music (New York: John Wiley and Sons,
1980).

• Hal Chamberlain, Musical Applications of Microprocessors (Rochelle Park, New Jersey:
Hayden, 1980).

INTRODUCING SOUND GENERA nON

Sound travels through air to your ear drums as a repeated cycle of air pressure variations, or
sound waves. Sounds can be represented as graphs that model how the air pressure varies over
time. The attributes of a sound, as you hear it, are related to the shape of the graph. If the
wavefonn is regular and repetitive, it will sound like a tone with steady pitch (highness or low
ness), such as a single musical note. Each repetition of a waveform is called a cycle of the sound.
If the wavefonn is irregular, the sound will have little or no pitch, like a loud clash or rushing
water. How often the waveform repeats (its frequency) has an effect upon its pitch; sounds with
higher frequencies are higher in pitch. Humans can hear sounds that have a frequency of between
20 and 20,000 cycles per second. The amplitude of the waveform (highest point on the graph), is
related to the perceived loudness of the sound. Finally, the general shape of the waveform deter
mines its tone quality, or timbre. Figure 5-1 shows a particular kind of waveform, called a sine
wave, that represents one cycle of a simple tone.

130 Audio Hardware

w
o
:::l

+

I- 0 J----+--+--+-~__I-_+_-+___+_
..J
c...
~ «

TIME (Msec)

Figure 5-1: Sine Waveform

In electronic sound recording and output devices, the attributes of sounds are represented by the
parameters of amplitude and frequency. Frequency is the number of cycles per second, and the
most common unit of frequency is the Hertz (Hz), which is 1 cycle per second. Large values, or
high frequencies, are measured in kilohertz (KHz) or megahertz (MHz).

Frequency is strongly related to the perceived pitch of a sound. When frequency increases, pitch
rises. This relationship is exponential. An increase from 100 Hz to 200 Hz results in a large rise
in pitch, but an increase from 1,000 Hz to 1,100 Hz is hardly noticeable. Musical pitch is
represented in octaves. A tone that is one octave higher than another has a frequency twice as
high as that of the first tone, and its perceived pitch is twice as high.

The second parameter that defines a waveform is its amplitude. In an electronic circuit, amplitude
relates to the voltage or current in the circuit. When a signal is going to a speaker, the amplitude
is expressed in watts. Perceived sound intensity is measured in decibels (db). Human hearing has
a range of about 120 db; 1 db is the faintest audible sound. Roughly every 10 db corresponds to a
doubling of sound, and 1 db is the smallest change in amplitude that is noticeable in a moderately
loud sound. Volume, which is the amplitude of the sound signal which is output, corresponds
logarithmically to decibel level.

The frequency and amplitude parameters of a sine wave are completely independent. When
sound is heard, however, there is interaction between loudness and pitch. Lower-frequency
sounds decrease in loudness much faster than high-frequency sounds.

Audio Hardware 131

The third attribute of a sound, timbre, depends on the presence or absence of overtones, or har
monics. Any complex waveform is actually a mixture of sine waves of different amplitudes, fre
quencies, and phases (the starting point of the waveform on the time axis). These component sine
waves are called harmonics. A square waveform, for example, has an infinite number of harmon
ics.

In summary, all steady sounds can be described by their frequency, overall amplitude, and rela
tive harmonic amplitudes. The audible equivalents of these parameters are pitch, loudness, and
timbre, respectively. Changing sound is a steady sound whose parameters change over time.

In electronic production of sound, an analog device, such as a tape recorder, records sound
waveforms and their cycle frequencies as a continuously variable representation of air pressure.
The tape recorder then plays back the sound by sending the waveforms to an amplifier where they
are changed into analog voltage waveforms. The amplifier sends the voltage waveforms to a
loudspeaker, which translates them into air pressure vibrations that the listener perceives as
sound.

A computer cannot store analog waveform information. In computer production of sound, a
waveform has to be represented as a finite string of numbers. This transformation is made by
dividing the time axis of the graph of a single waveform into equal segments, each of which
represents a short enough time so the waveform does not change a great deal. Each of the result
ing points is called a sample. These samples are stored in memory, and you can play them back
at a frequency that you determine. The computer feeds the samples to a digital-to-analog con
verter (DAC), which changes them into an analog voltage waveform. To produce the sound, the
analog waveforms are sent first to an amplifier, then to a loudspeaker.

Figure 5-2 shows an example of a sine wave, a square wave, and a triangle wave, along with a
table of samples for each.

NOTE

The illustrations are not to scale and there are fewer dots in the wave forms than there
are samples in the table. The amplitude axis values 127 and -128 represent the high
and low limits on relative amplitude.

132 Audio Hardware

Triangle Waveform Sine Waveform
127

Square Wave
127 127

-127 -127 -127

Samples taken over time -

TIME SINE SQUARE TRIANGLE

0 0 100 0
1 39 100 20
2 75 100 40
3 103 100 60
4 121 100 80
5 127 100 100
6 121 100 80
7 103 100 60
8 75 100 40
9 39 100 20

10 0 -100 0
11 -39 -100 -20
12 -75 -100 -40
13 -103 -100 -60
14 -121 -100 -80
15 -127 -100 -100
16 -121 -100 -80
17 -103 -100 -60
18 -75 -100 -40
19 -39 -100 -20

Figure 5-2: Digitized Amplitude Values

THE AMIGA SOUND HARDWARE

The Amiga has four hardware sound channels. You can independently program each of the chan
nels to produce complex sound effects. You can also attach channels so that one channel modu
lates the sound of another or combine two channels for stereo effects.

Audio Hardware 133

Each audio channel includes an eight-bit digital-to-analog converter driven by a direct memory
access (DMA) channel. The audio DMA can retrieve two data samples during each horizontal
video scan line. For simple, steady tones, the DMA can automatically playa waveform repeat
edly; you can also program all kinds of complex sound effects.

There are two methods of basic sound production on the Amiga - automatic (DMA) sound gen
eration and direct (non-DMA) sound generation. When you use automatic sound generation, the
system retrieves data automatically by direct memory access.

Forming and Playing a Sound

This section shows you how to create a simple, steady sound and play it. Many basic concepts
that apply to all sound generation on the Amiga are introduced in this section.

To produce a steady tone, follow these basic steps:

1. Decide which channel to use.

2. Define the waveform and create the sample table in memory.

3. Set registers telling the system where to find the data and the length of the data.

4. Select the volume at which the tone is to be played.

5. Select the sampling period, or output rate of the data.

6. Select an audio channel and start up the DMA.

DECIDING WHICH CHANNEL TO USE

The Amiga has four audio channels. Channels 0 and 3 are connected to the left-side stereo output
jack. Channels 1 and 2 are connected to the right-side output jack. Select a channel on the side
from which the output is to appear.

CREATING THE WAVEFORM DATA

The waveform used as an example in this section is a simple sine wave, which produces a pure
tone. To conserve memory, you normally define only one full cycle of a waveform in memory.
For a steady, unchanging sound, the values at the waveform's beginning and ending points and
the trend or slope of the data at the beginning and end should be closely related. This ensures that
a continuous repetition of the waveform sounds like a continuous stream of sound.

134 Audio Hardware

Sound data is organized as a set of eight-bit data items; each item is a sample from the wavefonIl.
Each data word retrieved for the audio channel consists of two samples. Sample values can range
from -128 to +127.

As an example, the data set shown below produces a close approximation to a sine wave.

NOTE

The data is stored in byte address order with the first digitized amplitude value at the
lowest byte address, the second at the next byte address, and so on. Also, note that the
first byte of data must start at a word-address boundary. This is because the audio
DMA retrieves one word (16 bits) at a time and uses the sample it reads as two bytes
of data.

To use audio channel 0, write the address of "audiodata" into AUDOLC, where the audio data is
organized as shown below. For simplicity, "AUDxLC" in the table below stands for the combi
nation of the two actual location registers (AUDxLCH and AUDxLCL). For the audio DMA
channels to be able to retrieve the data, the data address to which AUDOLC points must be some
where in chip RAM.

Notes

*

Table 5-1: Sample Audio Data Set for Channel 0

audiodata ---> AUDOLC *
AUDOLC+2 **
AUDOLC+4
AUDOLC+6
AUDOLC+ 8
AUDOLC+ 10
AUDOLC+ 12
AUDOLC+ 14
AUDOLC+ 16
AUDOLC+ 18
AUDOLC+20
AUDOLC+22
AUDOLC+24
AUDOLC+26
AUDOLC+28
AUDOLC+ 30

100 98
92 83
71 56
38 20
o -20

-38 -56
-71 -83
-92 -83

-100 -98
-92 -83
-71 -56
-38 -20

o 20
38 56
71 83
92 98

Audio data is located on a word-address boundary.

** AUDOLC stands for AUDOLCL and AUDOLCH.

Audio Hardware 135

TELLING THE SYSTEM ABOUT THE DATA

In order to retrieve the sound data for the audio channel, the system needs to know where the data
is located and how long (in words) the data is.

The location registers AUDxLCH and AUDxLCL contain the high three bits and the low fifteen
bits, respectively, of the starting address of the audio data. Since these two register addresses are
contiguous, writing a long word into AUDxLCH moves the audio data address into both loca
tions. The' 'x" in the register names stands for the number of the audio channel where the output
will occur. The channels are numbered 0, 1,2, and 3.

These registers are location registers, as distinguished from pointer registers. You need to
specify the contents of these registers only once; no resetting is necessary when you wish the
audio channel to keep on repeating the same waveform. Each time the system retrieves the last
audio word from the data area, it uses the contents of these location registers to again find the start
of the data. Assuming the first word of data starts at location "audiodata" and you are using
channel 0, here is how to set the location registers:

WHEREODATA:
LEA
LEA
MOVE.L

CUSTOM,aO
AUDIODATA,al
al,AUDOLCH(aO)

; Base chip address •••

;Put address (32 bits)
into location register.

The length of the data is the number of samples in your waveform divided by 2, or the number of
words in the data set. Using the sample data set above, the length of the data is 16 words. You
write this length into the audio data length register for this channel. The length register is called
AUDxLEN, where "x" refers to the channel number. You set the length register AUDOLEN to
16 as shown below.

SETAUDOLENGTH:
LEA CUSTOM,aO
MOVE.W #16,AUDOLEN(aO)

SELECTING THE VOLUME

Base chip address
Store the length •••

The volume you set here is the overall volume of all the sound coming from the audio channel.
The relative loudness of sounds, which will concern you when you combine notes, is determined
by the amplitude of the wave form. There is a six-bit volume register for each audio channel. To
control the volume of sound that will be output through the selected audio channel, you write the
desired value into the register AUDxVOL, where "x" is replaced by the channel number. You
can specify values from 64 to 0. These volume values correspond to decibel levels. At the end of
this chapter is a table showing the decibel value for each of the 65 volume levels.

136 Audio Hardware

For a typical output at volume 64, with maximum data values of -128 to 127, the voltage output
is between +.4 volts and -.4 volts. Some volume levels and the corresponding decibel values are
shown in Table 5-2.

Table 5-2: Volume Values

Volume Decibel Value

64
48
32
16

o
-2.5
-6.0

-12.0

(maximum volume)

(12 db down from the
volume at maximum level)

For any volume setting from 64 to 0, you write the value into bits 5-0 of AUDOVOL. For exam
ple:

SETAUDOVOLUME:
LEA CUSTOM,aO
MOVE.W #48,AUDOVOL(aO)

The decibels are shown as negative values from a maximum of 0 because this is the way a record
ing device, such as a tape recorder, shows the recording level. Usually, the recorder has a dial
showing 0 as the optimum recording level. Anything less than the optimum value is shown as a
minus quantity.

SELECTING THE DATA OUTPUT RATE

The pitch of the sound produced by the wavefonn depends upon its frequency. To tell the system
what frequency to use, you need to specify the sampling period. The sampling period specifies
the number of system clock ticks, or timing intervals, that should elapse between each sample
(byte of audio data) fed to the digital-to-analog converter in the audio channel. There is a period
register for each audio channel. The value of the period register is used for count-down purposes;
each time the register counts down to 0, another sample is retrieved from the wavefonn data set
for output. In units, the period value represents clock ticks per sample. The minimum period
value you should use is 124 ticks per sample NTSC (123 PAL) and the maximum is 65535.
These limits apply to both PAL and NTSC machines. For high-quality sound, there are other
constraints on the sampling period (see the section called "Producing High-quality Sound").

NOTE

A low period value corresponds to a higher frequency sound and a high period value
corresponds to a lower frequency sound.

Audio Hardware 137

Limitations on Selection of Sampling Period

The sampling period is limited by the number of DMA cycles allocated to an audio channel.
Each audio channel is allocated one DMA slot per horizontal scan line of the screen display. An
audio channel can retrieve two data samples during each horizontal scan line. The following cal
culation gives the maximum sampling rate in samples per second.

2 sampleslline * 262.5 lines/frame * 59.94 frames/second = 31,469 samples/second

The figure of 31,469 is a theoretical maximum. In order to save buffers, the hardware is designed
to handle 28,867 samples/second. The system timing interval is 279.365 nanoseconds, or
.279365 microseconds. The maximum sampling rate of 28,867 samples per second is 34.642
microseconds per sample (1128,867 = .000034642). The fonnula for calculating the sampling
period is:

P ·od I sample interval clock constant en va ue= =
clock interval samples per second

Thus, the minimum period value is derived by dividing 34.642 microseconds per sample by the
number of microseconds per interval:

M · . d 34.642 microseconds/sample 124·· . a1 I
mumumperw = 0279365. d· 1 = tlmmg mterv s/samp e . mlcrosecon s/mterva

or:

M · . d 3,579,545 ticks/second 124· ksf . I
mumum peno = 28 867 1 / d = tlC samp e , samp es secon

Therefore, a value of at least 124 must be written into the period register to assure that the audio
system DMA will be able to retrieve the next data sample. If the period value is below 124, by
the time the cycle count has reached 0, the audio DMA will not have had enough time to retrieve
the next data sample and the previous sample will be reused.

28,867 samples/second is also the maximum sampling rate for PAL systems. Thus, for PAL sys
tems, a value of at least 123 ticks/sample must be written into the period register.

Clock Values
NTSC PAL units

Clock Constant 3579545 3546895 ticks per second
Clock Interval 0.279365 0.281937 microseconds per interval

138 Audio Hardware

NOTE

The Clock Interval is derived from the clock constant, where:

clock interval = l k 1
c oc constant

then scale the result to microseconds. In all of these calculations "ticks" and "timing
intervals" refer to the same thing.

Specifying the Period Value

After you have selected the desired interval between data samples, you can calculate the value to
place in the period register by using the period fonnula:

P . d I desired interval clock constant erw va ue= =
clock interval samples per second

As an example, say you wanted to produce a I KHz sine wave, using a table of eight data samples
(four data words) (see Figure 5-3).

127

-127

Figure 5-3: Example Sine Wave

Audio Hardware 139

Sampled Values: 0
90

127
90
o

-90
-127
-90

To output the series of eight samples at 1 KHz (l,ooo cycles per second), each full cycle is output
in 1/1000th of a second. Therefore, each individual value must be retrieved in 118th of that time.
This translates to 1,000 microseconds per waveform or 125 microseconds per sample. To
correctly produce this waveform, the period value should be:

. 125 microseconds/sample '"
Perzod value = 0279365' nd' I = 447 tlmmg mtervals/sample . mlcroseco s/mterva

To set the period register, you must write the period value into the register AUDxPER, where
"x" is the number of the channel you are using. For example, the following instruction shows
how to write a period value of 447 into the period register for channel O.

SETAUDOPERIOD:
LEA CUSTOM,aO
MOVE.W #447,AUDOPER(aO)

To produce high-quality sound, avoiding aliasing distortion, you should observe the limitations
on period values that are discussed in the section below called' 'Producing Quality Sound."

For the relationship between period and musical pitch, see the section at the end of the chapter,
which contains a listing of the equal-tempered musical scale.

PLAYING THE WAVEFORM

After you have defined the audio data location, length, volume and period, you can play the
waveform by starting the DMA for that audio channe1. This starts the output of sound. Once
started, the DMA continues until you specifically stop it. Thus, the waveform is played over and
over again, producing the steady tone. The system uses the value in the location registers each
time it replays the waveform.

For any audio DMA to occur (or any other DMA, for that matter), the DMAEN bit in DMACON
must be set. When both DMAEN and AUDxEN are set, the DMA will start for channel x. All
these bits and their meanings are shown in table 5-3.

140 Audio Hardware

Table 5-3: DMA and Audio Channel Enable Bits

DMACON Register

Bit Name Function

15 SET/CLR When this bit is written as a 1, it
sets any bit in DMACONW for which
the corresponding bit position is
also aI, leaving all other bits alone.

9 DMAEN Only while this bit is a 1 can
any direct memory access occur.

3 AUD3EN Audio channel 3 enable.
2 AUD2EN Audio channel 2 enable.
1 AUD1EN Audio channel 1 enable.
0 AUDOEN Audio channel 0 enable.

For example, if you are using channel 0, then you write a 1 into bit 9 to enable DMA and a 1 into
bit 0 to enable the audio channel, as shown below.

BEGINCHANO:
LEA CUSTOM,aO
MOVE.W t(DMAF_SETCLR!DMAF_AUDO!DMAF_MASTER),DMACON(aO)

STOPPING THE AUDIO DMA

You can stop the channel by writing a 0 into the AUDxEN bit at any time. However, you cannot
resume the output at the same point in the waveform by just writing a 1 in the bit again. Enabling
an audio channel almost always starts the data output again from the top of the list of data pointed
to by the location registers for that channel. If the channel is disabled for a very short time (less
than two sampling periods) it may stay on and thus continue from where it left off.

The following example shows how to stop audio DMA for one channel.

STOPAUDCHANO:
LEA CUSTOM,aO
MOVE.W t(DMAF_AUDO),DMACON(aO)

Audio Hardware 141

SUMMARY

These are the steps necessary to produce a steady tone:

1. Define the wavefonn.

2. Create the data set containing the pairs of data samples (data words). Nonnally, a data
set contains the definition of one wavefonIl.

3. Set the location registers:

AUDxLCH (high three bits)

A UDxLCL (low fifteen bits)

4. Set the length register, AUDxLEN, to the number of data words to be retrieved before
starting at the address currently in AUDxLC.

5. Set the volume register, AUDxVOL.

6. Set the period register, AUDxPER

7. Start the audio DMA by writing a I into bit 9, DMAEN, along with a 1 in the SET/CLR
bit and a 1 in the position of the A UDxEN bit of the channel or channels you want to
start.

EXAMPLE

In this example, which gathers together all of the program segments from the preceding sections,
a sine wave is played through channel O. The example assumes exclusive access to the Audio
hardware, and will not work directly in a multitasking environment.

MAIN:
LEA CUSTOM,aO ; Custom chip base address
LEA SINEDATA(pc),al ;Address of data to

audio location register 0
WHEREODATA:

MOVE.L al,AUDOLCH(aO) ;The 68000 writes

SETAUDOLENGTH:

this as though it were
a 32-bit register at the
low-bits location
(common to all locations
and pointer registers
in the system).

MOVE.W t4,AUDOLEN(aO) ;Set length in words

142 Audio Hardware

SETAUDOVOLUME:
MOVE.W #64, AUDOVOL (aO) ;Use maximum volume

SETAUDOPERIOD:
MOVE.W #447,AUDOPER(aO)

BEGINCHANO:
MOVE.W #(DMAF_SETCLR!DMAF_AUDO!DMAF_MASTER),DMACON(aO)

RTS ; Return to main code ...

DS.W
SINEDATA:

o ;Be sure word-aligned

DC.B 0, 90, 127, 90, 0, -90, -127, -90

END

Producing Complex Sounds

In addition to simple tones, you can create more complex sounds, such as different musical notes
joined into a one-voice melody, different notes played at the same time, or modulated sounds.

JOINING TONES

Tones are joined by writing the location and length registers, starting the audio output, and rewrit
ing the registers in preparation for the next audio waveform that you wish to connect to the first
one. This is made easy by the timing of the audio interrupts and the existence of back-up regis
ters. The location and length registers are read by the DMA channel before audio output begins.
The DMA channel then stores the values in back-up registers. Once the original registers have
been read by the DMA channel, you can change their values without disturbing the operation you
started with the original register contents. Thus, you can write the contents of these registers,
start an audio output, and then rewrite the registers in preparation for the next waveform you want
to connect to this one.

Interrupts occur immediately after the audio DMA channel has read the location and length regis
ters and stored their values in the back-up registers. Once the interrupt has occurred, you can
rewrite the registers with the location and length for the next waveform segment This combina
tion of back-up registers and interrupt timing lets you keep one step ahead of the audio DMA
channel, allowing your sound output to be continuous and smooth.

If you do not rewrite the registers, the current waveform will be repeated. Each time the length
counter reaches zero, both the location and length registers are reloaded with the same values to
continue the audio output

Audio Hardware 143

Example

This example details the system audio DMA action in a step-by-step fashion.

Suppose you wanted to join together a sine and a triangle wavefonn. end-to-end. for a special
audio effect. alternating between them. The following sequence shows the action of your pro
gram as well as its interaction with the audio DMA system. The example assumes that the
period. volume, and length of the data set remains the same for the sine wave and the triangle
wave.

Interrupt Program

If (wave = triangle)
write A UDOLCL with address of sine wave data.

Else if (wave = sine)
write AUDOLCL with address of triangle wave data.

Main Program

1. Set up volume. period, and length.

2. Write AUDOLCL with address of sine wave data.

3. Start DMA.

4. Continue with something else.

144 Audio Hardware

System Response

As soon as DMA starts,

a. Copy to "back-up" length register from AUDOLEN.

b. Copy to "back-up" location register from AUDOLCL (will be used as a pointer showing
current data word to fetch).

c. Create an interrupt for the 68000 saying that it has completed retrieving working copies
of length and location registers.

d. Start retrieving audio data each allocated DMA time slot.

PLAYING MULTIPLE TONES AT THE SAME TIME

You can play multiple tones either by using several channels independently or by summing the
samples in several data sets, playing the summed data sets through a single channel.

Since all four audio channels are independently programmable, each channel has its own data set;
thus a different tone or musical note can be played on each channel.

MODULATING SOUND

To provide more complex audio effects, you can use one audio channel to modulate another. This
increases the range and type of effects that can be produced. You can modulate a channel's fre
quency or amplitude, or do both types of modulation on a channel at the same time.

Amplitude modulation affects the volume of the waveform. It is often used to produce vibrato or
tremolo effects. Frequency modulation affects the period of the waveform. Although the basic
waveform itself remains the same, the pitch is increased or decreased by frequency modulation.

The system uses one channel to modulate another when you attach two channels. The attach bits
in the ADKCON register control how the data from an audio channel is interpreted (see the table
below). Normally, each channel produces sound when it is enabled. If the "attach" bit for an
audio channel is set, that channel ceases to produce sound and its data is used to modulate the
sound of the next higher-numbered channel. When a channel is used as a modulator, the words in
its data set are no longer treated as two individual bytes. Instead, they are used as "modulator"
words. The data words from the modulator channel are written into the corresponding registers of
the modulated channel each time the period register of the modulator channel times out.

Audio Hardware 145

To modulate only the amplitude of the audio output, you must attach a channel as a volume
modulator. Define the modulator channel's data set as a series of words, each containing volume
information in the following format:

Bits Function

15 - 7 Not used

6 - 0 Volume information, V 6 - VO

To modulate only the frequency, you must attach a channel as a period modulator. Define the
modulator channel's data set as a series of words, each containing period information in the fol
lowing format:

Bits Function

15 - 0 Period information, PIS - PO

If you want to modulate both period and volume on the same channel, you need to attach the
channel as both a period and volume modulator. For instance, if channel 0 is used to modulate
both the period and frequency of channell, you set two attach bits - bit 0 to modulate the
volume and bit 4 to modulate the period. When period and volume are both modulated, words in
the modulator channel's data set are defined alternately as volume and period information.

The sample set of data in Table 5-4 shows the differences in interpretation of data when a channel
is used directly for audio, when it is attached as volume modulator, when it is attached as a period
modulator, and when it is attached as a modulator of both volume and period.

Table 5-4: Data Interpretation in Attach Mode

Independent Modulating
Data (not Both Modulating Modulating
Words Modulating) Period and Volume Period Only Volume Only

Word 1 I data I data I I volume for other channell I period I I volume I

Word 2 I data I data I I period for other channell I period I I volume I

Word 3 I data I data I I volume for other channell I period I I volume I

Word 4 I data I data I I period for other channell I period I I volume I

146 Audio Hardware

The lengths of the data sets of the modulator and the modulated channels are completely indepen
dent.

Channels are attached by the system in a predetennined order, as shown in Table 5-5. To attach a
channel as a modulator, you set its attach bit to 1. If you set either the volume or period attach
bits for a channel, that channel's audio output will be disabled; the channel will be attached to the
next higher channel, as shown in Table 5-5. Because an attached channel always modulates the
next higher numbered channel, you cannot attach channel 3. Writing a 1 into channel3's modu
late bits only disables its audio output.

Table 5-5: Channel Attachment for Modulation

ADKCON Register

Bit Name Function

7 ATPER3 Use audio channel 3 to modulate nothing
(disables audio output of channel 3)

6 ATPER2 Use audio channel 2 to modulate period
of channel 3

5 ATPERI Use audio channell to modulate period
of channel 2

4 ATPERO Use audio channel 0 to modulate period
of channel 1

3 ATVOL3 Use audio channel 3 to modulate nothing
(disables audio output of channel 3)

2 ATVOL2 Use audio channel 2 to modulate volume
of channel 3

1 ATVOLI Use audio channell to modulate volume
of channel 2

o ATVOLO Use audio channel 0 to modulate volume
of channel 1

Audio Hardware 147

Producing High -quality Sound

When trying to create high-quality sound, you need to consider the following factors:

• Waveform transitions.

• Sampling rate.

• Efficiency.

• Noise reduction.

• Avoidance of aliasing distortion.

• Limitations of the low pass filter.

MAKING WAVEFORM TRANSITIONS

To avoid unpleasant sounds when you change from one waveform to another, you need to make
the transitions smooth. You can avoid "clicks" by making sure the waveforms start and end at
approximately the same value. You can avoid "pops" by starting a waveform only at a zero
crossing point. You can avoid "thumps" by arranging the average amplitude of each wave to be
about the same value. The average amplitude is the sum of the bytes in the waveform divided by
the number of bytes in the waveform.

SAMPLING RATE

If you need high precision in your frequency output, you may find that the frequency you wish to
produce is somewhere between two available sampling rates, but not close enough to either rate
for your requirements. In those cases, you may have to adjust the length of the audio data table in
addition to altering the sampling rate.

For higher frequencies, you may also need to use audio data tables that contain more than one full
cycle of the audio waveform to reproduce the desired frequency more accurately, as illustrated in
Figure 5-4.

148 Audio Hardware

128

-127

Samples taken over time -

Always requires an even
number of samples -

Shows a case in which a high-frequency waveform may need more than one full cycle to accurately
reproduce the periodic waveform

Figure 5-4: Waveform with Multiple Cycles

EFFICIENCY

A certain amount of overhead is involved in the handling of audio DMA. If you are trying to pro
duce a smooth continuous audio synthesis, you should try to avoid as much of the system control
overhead as possible. Basically, the larger the audio buffer you provide to the system, the less
often it will need to interrupt to reset the pointers to the top of the next buffer and, coincidentally,
the lower the amount of system interaction that will be required. If there is only one waveform
buffer, the hardware automatically resets the pointers, so no software overhead is used for reset
tingthem.

The "Joining Tones" section illustrated how you could join "ends" of tones together by
responding to interrupts and changing the values of the location registers to splice tones together.
If your system is heavily loaded, it is possible that the response to the interrupt might not happen
in time to assure a smooth audio transition. Therefore, it is advisable to utilize the longest possi
ble audio table where a smooth output is required. This takes advantage of the audio DMA capa
bility as well as minimizing the number of interrupts to which the 68000 must respond.

Audio Hardware 149

NOISE REDUCTION

To reduce noise levels and produce an accurate sound, try to use the full range of -128 to 127
when you represent a waveform. This reduces how much noise (quantization error) will be added
to the signal by using more bits of precision. Quantization noise is caused by the introduction of
round-off error. If you are trying to reproduce a signal, such as a sine wave, you can represent the
amplitude of each sample with only so many digits of accuracy. The difference between the real
number and your approximation is round-off error, or noise.

By doubling the amplitude, you create half as much noise because the size of the steps of the
wave form stays the same and is therefore a smaller fraction of the amplitude.

In other words, if you try to represent a waveform using, for example, a range of only +3 to -3,
the size of the error in the output would be considerably larger than if you use a range of + 127 to
-128 to represent the same signal. Proportionally, the digital value used to represent the
waveform amplitude will have a lower error. As you increase the number of possible sample lev
els, you decrease the relative size of each step and, therefore, decrease the size of the error.

To produce quiet sounds, continue to define the waveform using the full range, but adjust the
volume. This maintains the same level of accuracy (signal-to-noise ratio) for quiet sounds as for
loud sounds.

ALIASING DISTORTION

When you use sampling to produce a waveform, a side effect is caused when the sampling rate
"beats" or combines with the frequency you wish to produce. This produces two additional fre
quencies, one at the sampling rate plus the desired frequency and the other at the sampling rate
minus the desired frequency. This phenomenon is called aliasing distortion.

Aliasing distortion is eliminated when the sampling rate exceeds the output frequency by at least
7 KHz. This puts the beat frequency outside the range of the low-pass filter, cutting off the
undesirable frequencies. Figure 5-5 shows a frequency domain plot of the anti-aliasing low-pass
filter used in the system.

150 Audio Hardware

Odbt--""""\

~t" '",pon,'

-30db I I I I I I
5 kHz 10 kHz 15kHz 20kHz 25kHz 30kHz

Filter passes all frequencies below about 5 kHz.

Figure 5-5: Frequency Domain Plot of Low-Pass Filter

Figure 5-6 shows that it is pennissible to use a 12 KHz sampling rate to produce a 4 KHz
wavefonn. Both of the beat frequencies are outside the range of the filter, as shown in these cal
culations:

Filter response

12+4= 16KHz

12-4=8KHz

o db 12 kHz sampling frequency

Diff. Sum

-30db

Figure 5-6: Noise-free Output (No Aliasing Distortion)

You can see in Figure 5-7 that is unacceptable to use a 10 KHz sampling rate to produce a 4 KHz
wavefonn. One of the beat frequencies (10 - 4) is within the range of the filter, allowing some of
that undesirable frequency to show up in the audio output.

Audio Hardware 151

Filter response
Odb

~iff
10 kHz sampling frequency

Sum

4 kHz 1\
-30 db LI I I I I

5kHz 10kHz 15kHz 20 kHz 25 kHz 30 kHz

Desired output frequency

Figure 5-7: Some Aliasing Distortion

All of this gives rise to the following equation, showing that the sampling frequency must exceed
the output frequency by at least 7 KHz, so that the beat frequency will be above the cutoff range
of the anti -aliasing filter:

Minimum sampling rate = highest frequency component + 7 KHz

The frequency component of the equation is stated as "highest frequency component" because
you may be producing a complex waveform with multiple frequency elements, rather than a pure
sine wave.

LOW-PASS FILTER

The system includes a low-pass filter that eliminates aliasing distortion as described above. This
filter becomes active around 4 KHz and gradually begins to attenuate (cut oft) the signal. Gen
erally, you cannot clearly hear frequencies higher than 7 KHz. Therefore, you get the most com
plete frequency response in the frequency range of 0 - 7 KHz. If you are making frequencies from
o to 7 KHz, you should select a sampling rate no less than 14 KHz, which corresponds to a sam
pling period in the range 124 to 256.

At a sampling period around 320, you begin to lose the higher frequency values between 0 KHz
and 7 KHz, as shown in Table 5-6.

152 Audio Hardware

Table 5-6: Sampling Rate and Frequency Relationship

Sampling Sampling Maximum Output
Period Rate (KHz) Frequency (KHz)

Maximum sampling rate 124 29 7

Minimum sampling rate 256 14 7
for 7 KHz output

Sampling rate too low 320 11 4
for 7 KHz output

In A2000s with 2 layer motherboards and later A500 models there is a control bit that allows the
audio output to bypass the low pass filter. This control bit is the same output bit of the 8520 CIA
that controls the brightness of the red "power" LED. Bypassing the filter allows for improved
sound in some applications, but an external filter with an appropriate cutoff frequency may be
required.

Using Direct (Non-DMA) Audio Output

It is possible to create sound by writing audio data one word at a time to the audio output
addresses, instead of setting up a list of audio data in memory. This method of controlling the
output is more processor-intensive and is therefore not recommended.

To use direct audio output, do not enable the DMA for the audio channel you wish to use; this
changes the timing of the interrupts. The normal interrupt occurs after a data address has been
read; in direct audio output, the interrupt occurs after one data word has been output.

Unlike in the DMA-controlled automatic data output, in direct audio output, if you do not write a
new set of data to the output addresses before two sampling intervals have elapsed, the audio out
put will cease changing. The last value remains as an output of the digital-to-analog converter.

The volume and period registers are set as usual.

Audio Hardware 153

The Equal-tempered Musical Scale

Table 5-7 gives a close approximation of the equal-tempered scale over one octave when the sam
ple size is 16 bytes. The "Period" column gives the period count you enter into the period regis
ter. The length register AUDxLEN should be set to 8 (16 bytes = 8 words). The sample should
represent one cycle of the waveform.

Table 5-7: Equal-tempered Octave for a 16 Byte Sample

NTSC PAL Ideal ActualNTSC Actual PAL
Period Period Note Frequency Frequency Frequency

254 252 A 880.0 880.8 879.7
240 238 A# 932.3 932.2 931.4
226 224 B 987.8 989.9 989.6
214 212 C 1046.5 1045.4 1045.7
202 200 c# 1108.7 1107.5 1108.4
190 189 D 1174.7 1177.5 1172.9
180 178 D# 1244.5 1242.9 1245.4
170 168 E 1318.5 1316.0 1319.5
160 159 F 1396.9 1398.3 1394.2
151 150 F# 1480.0 1481.6 1477.9
143 141 G 1568.0 1564.5 1572.2
135 133 G# 1661.2 1657.2 1666.8

The table above shows the period values to use with a 16 byte sample to make tones in the second
octave above middle C. To generate the tones in the lower octaves, there are two methods you
can use, doubling the period value or doubling the sample size.

When you double the period, the time between each sample is doubled so the sample takes twice
as long to play. This means the frequency of the tone generated is cut in half which gives you the
next lowest octave. Thus, if you playa C with a period value of 214, then playing the same
sample with a period value of 428 will playa C in the next lower octave.

Likewise, when you double the sample size, it will take twice as long to play back the whole sam
ple and the frequency of the tone generated will be in the next lowest octave. Thus, if you have
an 8 byte sample and a 16 byte sample of the same waveform played at the same speed, the 16
byte sample will be an octave lower.

154 Audio Hardware

A sample for an equal-tempered scale typically represents one full cycle of a note. To avoid
aliasing distortion with these samples you should use period values in the range 124-256 only.
Periods from 124-256 correspond to playback rates in the range l4-28K samples per second
which makes the most effective use of the Amiga's 7 kHz cut-off filter to prevent noise. To stay
within this range you will need a different sample for each octave.

If you cannot use a different sample for each octave, then you will have to adjust the period value
over its full range 124-65536. This is easier for the programmer but can produce undesirable
high-frequency noise in the resulting tone. Read the section called "Aliasing Distortion" for
more about this.

The values in Table 5-7 were generated using the formula shown below. To calculate the tone
generated with a given sample size and period use:

F Clock Constant 3579545 -_ 8808Hz requency= =
Sample Bytes*Period 16*Period .

The clock constant in an NTSC system is 3579545 ticks per second. In a PAL system, the clock
constant is 3546895 ticks per second. Sample bytes is the number of bytes in one cycle of the
waveform sample. (The clock constant is derived from dividing the system clock value by 2. The
value will vary when using an external system clock, such as a genlock.)

Using the formula above you can generate the values needed for the even-tempered scale for any
arbitrary sample. Table 5-8 gives a close approximation of a five octave even tempered-scale
using five samples. The values were derived using the formula above. Notice that in each octave
period values are the same but the sample size is halved. The samples listed represent a simple
triangular wave form.

Audio Hardware 155

Table 5-8: Five Octave Even-tempered Scale

NTSC PAL Ideal ActualNTSC Actual PAL
Period Period Note Frequency Frequency Frequency

254 252 A 55.00 55.05 54.98
240 238 A# 58.27 58.26 58.21
226 224 B 61.73 61.87 61.85
214 212 C 65.40 65.34 65.35
202 200 C# 69.29 69.22 69.27
190 189 D 73.41 73.59 73.30
180 178 D# 77.78 77.68 77.83
170 168 E 82.40 82.25 82.47
160 159 F 87.30 87.39 87.13
151 150 F# 92.49 92.60 92.36
143 141 G 98.00 97.78 98.26
135 133 G# 103.82 103.57 104.17

Sample size = 256 bytes, AUDxLEN = 128

254 252 A 110.00 110.10 109.96
240 238 A# 116.54 116.52 116.43
226 224 B 123.47 123.74 123.70
214 212 C 130.81 130.68 130.71
202 200 C#, 138.59 138.44 138.55
190 189 D 146.83 147.18 146.61
180 178 D# 155.56 155.36 155.67
170 168 E 164.81 164.50 164.94
160 159 F 174.61 174.78 174.27
151 150 F# 184.99 185.20 184.73
143 141 G 196.00 195.56 196.52
135 133 G# 207.65 207.15 208.35

Sample size = 128 bytes, AUDxLEN = 64

254 252 A 220.00 220.20 219.92
240 238 A# 233.08 233.04 232.86
226 224 B 246.94 247.48 247.41
214 212 C 261.63 261.36 261.42
202 200 C# 277.18 276.88 277.10
190 189 D 293.66 294.37 293.23
180 178 D# 311.13 310.72 311.35
170 168 E 329.63 329.00 329.88
160 159 F 349.23 349.56 348.55
151 150 F# 369.99 370.40 369.47
143 141 G 392.00 391.12 393.05
135 133 G# 415.30 414.30 416.70

Sample size = 64 bytes, AUDxLEN = 32

156 Audio Hardware

NTSC PAL Ideal ActualNTSC Actual PAL
Period Period Note Frequency Frequency Frequency

254 252 A 440.0 440.4 439.8
240 238 A# 466.16 466.09 465.72
226 224 B 493.88 494.96 494.82
214 212 C 523.25 522.71 522.83
202 200 C# 554.37 553.77 554.20
190 189 D 587.33 588.74 586.46
180 178 D# 622.25 621.45 622.70
170 168 E 659.26 658.00 659.76
160 159 F 698.46 699.13 697.11
151 150 F# 739.99 740.80 738.94
143 141 G 783.99 782.24 786.10
135 133 G# 830.61 828.60 833.39

Sample size = 32 bytes. AUDxLEN = 16

254 252 A 880.0 880.8 879.7
240 238 A# 932.3 932.2 931.4
226 224 B 987.8 989.9 989.6
214 212 C 1046.5 1045.4 1045.7
202 200 C# 1108.7 1107.5 1108.4
190 189 D 1174.7 1177.5 1172.9
180 178 D# 1244.5 1242.9 1245.4
170 168 E 1318.5 1316.0 1319.5
160 159 F 1396.9 1398.3 1394.2
151 150 F# 1480.0 1481.6 1477.9
143 141 G 1568.0 1564.5 1572.2
135 133 G# 661.2 1657.2 1666.8

Sample size = 16 bytes. AUDxLEN = 8

Audio Hardware 157

256 Byte Sample

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94
96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126

128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98
96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66
64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34
32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30

-32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62
-64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94
-96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126

-127 -126 -124 -122 -120 -118 -116 -114 -112 -110 -108 -106 -104 -102 -100 -98
-96 -94 -92 -90 -88 -86 -84 -82 -80 -78 -76 -74 -72 -70 -68 -66
-64 -62 -60 -58 -56 -54 -52 -50 -48 -46 -44 -42 -40 -38 -36 -34
-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2

128 Byte Sample

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

128 124 120 116 112 108 104 100 96 '7L 88 84 80 76 72 68
64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
-127 -124 -120 -116 -112 -108 -104 -100 -96 -92 -88 -84 -80 -76 -72 -68
-64 -60 -56 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4

64 Byte Sample

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120
128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8

0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120
-127 -120 -112 -104 -96 -88 -80 -72 -64 -56 -48 -40 -32 -24 -16 -8

32 Byte Sample

0 16 32 48 64 80 96 112 128 112 96 80 64 48 32 16
0 -16 -32 -48 -64 -80 -96 -112 -127 -112 -96 -80 -64 -48 -32 -16

16 Byte Sample

0 32 64 96 128 96 64 32 0 -32 -64 -96 -127 -96 -64 -32

158 Audio Hardware

Decibel Values for Volume Ranges

Table 5-9 provides the corresponding decibel values for the volume ranges of the Amiga system.

Table 5-9; Decibel Values and Volume Ranges

Volume Decibel Value Volume Decibel Value

64 0.0 32 -6.0
63 -0.1 31 -6.3
62 -0.3 30 -6.6
61 -0.4 29 -6.9
60 -0.6 28 -7.2
59 -0.7 27 -7.5
58 -0.9 26 -7.8
57 -1.0 25 -8.2
56 -1.2 24 -8.5
55 -1.3 23 -8.9
54 -1.5 22 -9.3
53 -1.6 21 -9.7
52 -1.8 20 -10.1
51 -2.0 19 -10.5
50 -2.1 18 -11.0
49 -2.3 17 -11.5
48 -2.5 16 -12.0
47 -2.7 15 -12.6
46 -2.9 14 -13.2
45 -3.1 13 -13.8
44 -3.3 12 -14.5
43 -3.5 11 -15.3
42 -3.7 10 -16.1
41 -3.9 9 -17.0
40 -4.1 8 -18.1
39 -4.3 7 -19.2
38 -4.5 6 -20.6
37 -4.8 5 -22.1
36 -5.0 4 -24.1
35 -5.2 3 -26.6
34 -5.5 2 -30.1
33 -5.8 1 -36.1

0 Minus infinity

Audio Hardware 159

The Audio State Machine

For an explanation of the various states, refer to Figure 5-8. There is one audio state machine for each channel. The machine has eight states and is clocked at the clock constant rate (3.58 MHz NTSC). Three of the states are basically unused and just transfer back to the idle (000) state. One of the paths out of the idle state is designed for interrupt-driven operation (processor provides the data), and the other path is designed for DMA-driven operation (the" Agnus" special chip provides the data).

In interrupt-driven operation, transfer to the main loop (states OlO and 011) occurs immediately after data is written by the processor. In the OlO state the upper byte is output, and in the 011 state the lower byte is output. Transitions such as OlO~Ol1~OlO occur whenever the period counter counts down to one. The period counter is reloaded at these transitions. As long as the interrupt is cleared by the processor in time, the machine remains in the main loop. Otherwise, it enters the idle state. Interrupts are generated on every word transition (011 ~OlO).

In DMA-driven operation, transition to the 001 state occurs and DMA requests are sent to Agnus as soon as DMA is turned on. Because of pipelining in Agnus, the first data word must be thrown away. State 101 is entered as soon as this word arrives; a request for the next data word has already gone out. When the data arrives, state OlO is entered and the main loop continues until the DMA is turned off. The length counter counts down once with each word that comes in. When it finishes, a DMA restart request goes to Agnus along with the regular DMA request. This tells Agnus to reset the pointer to the beginning of the table of data. Also, the length counter is reloaded and an interrupt request goes out soon after the length counter finishes (counts to one). The request goes out just as the last word of the waveform starts its output.

DMA requests and restart requests are transferred to Agnus once each horizontal line, and the data comes back about 14 clock cycles later (the duration of a clock cycle is 280 ns).

In attach mode, things run a little differently. In attach volume, requests occur as they do in normal operation (on the Ol1~OlO transition). In attach period, a set of requests occurs on the
010~011 transition. When both attach period and attach volume are high, requests occur on both transitions.

If the sampling rate is set much higher than the normal maximum sampling rate (approximately 29 KHz), the two samples in the buffer register will be repeated. If the filter on the Amiga is bypassed and the volume is set to the maximum ($40), this feature can be used to make modulated carriers up to 1.79 MHz. The modulation is placed in the memory map, with plus values in the even bytes and minus values in the odd bytes.

The symbols used in the state diagram are explained in the following list. Upper-case names indicate external signals; lower-case names indicate local signals.

160 Audio Hardware

AUDxON

AUDxIP

AUDxIR

intreql

intreq2

AUDxDAT

AUDxDR

AUDxDSR

dmasen

percntrld

percount

perfin

lencntrld

lencount

lenfin

volcntrld

pbufldl

pbufld2

AUDxAV

AUDxAP

penhi

DMA on "x" indicates channel number (signal from DMACON).

Audio interrupt pending (input to channel from interrupt circuitry).

Audio interrupt request (output from channel to interrupt circuitry)

Interrupt request that combines with intreq2 to form AUDxIR ..

Prepare for interrupt request. Request comes out after the next 011 ~01O
transition in normal operation.

Audio data load signal. Loads 16 bits of data to audio channel.

Audio DMA request to Agnus for one word of data.

Audio DMA request to Agnus to reset pointer to start of block.

Restart request enable.

Reload period counter from back-up latch typically written by processor
with AUDxPER (can also be written by attach mode).

Count period counter down one latch.

Period counter finished (value = 1).

Reload length counter from back-up latch.

Count length counter down one notch.

Length counter finished (value = 1).

Reload volume counter from back-up latch.

Load output buffer from holding latch written to by AUDxDAT.

Like pbufld1, but only during 010~011 with attach period.

Attach volume. Send data to volume latch of next channel instead of to
D~A converter.

Attach period. Send data to period latch of next channel instead of to the
D~A converter.

Enable the high 8 bits of data to go to the D~A converter.

Audio Hardware 161

SQ2

napnav

sq2,1,Q

SQ,

/AUDxAV * /AUDxAP + AUDxAV-no attach stuff or else attach
volume. Condition for normal DMA and interrupt requests.

The name of the state flip-flops, MSB to LSB.

E)(cept for this case, dmasen IS true }
only when LENFIN=1.
Also. AUDxOSR=AUOxDR • dmasen

Brackets [) indicate action on condition
Parentheses () mdlcate cause of state transition

Figure 5-8: Audio State Diagram

162 Audio Hardware

Chapter 6

BLITTER HARDWARE

Introduction

The blitter is one of the two coprocessors in the Amiga. Part of the Agnus chip, it is used to copy
rectangular blocks of memory around and to draw lines. When copying memory, it is approxi
mately twice as fast as the 68000, able to move almost four megabytes per second. It can draw
lines at almost a million pixels per second.

In block move mode, the blitter can perform any logical operation on up to three source areas, it
can shift up to two of the source areas by one to fifteen bits, it can fill outlined shapes, and it can
mask the first and last words of each raster row. In line mode, any pattern can be imposed on a
line, or the line can be drawn such that only one pixel per horizontal line is set.

Blitter Hardware 163

The bUtter can only access CHIP memory - that portion of memory accessible by the display
hardware. Attempting to use the bUtter to read or write FAST or other non-CHIP memory may
result in destruction of the contents of CHIP memory.

A "bUt" is a single operation of the bUtter - perhaps the drawing of a line or movement of a
block of memory. A bUt is perfonned by initializing the blitter registers with appropriate values
and then starting the bUtter by writing the BLTSIZE register. As the bUtter is an asynchronous
coprocessor, the 68000 continues to run as the blit is executing.

Memory Layout

The blitter is a word bUtter, not a bit blitter. All data fetched, modified, and written are in full
l6-bit words. Through careful programming, the blitter can do many "bit" type operations.

The blitter is particularly well suited to graphics operations. As an example, a 320 by 200 screen
set up to display 16 colors is organized as four bitplanes of 8,000 bytes each. Each bitplane con
sists of 200 rows of 40 bytes or 20 16-bit words. (From here on, a "word" will mean a 16-bit
word.)

DMA Channels

The bUtter has four DMA channels - three source channels, labeled A, B, and C, and one desti
nation channel, called D. Each of these channels has separate address pointer, modulo and data
registers and an enable bit. Two have shift registers, and one has a first and last word mask regis
ter. All four share a single bUt size register.

The address pointer registers are each composed of two words, named BLTxPTH and BL TxPI'L.
(Here and later, in referring to a register, any "x" in the name should be replaced by the channel
label, A, B, C, or D.) The two words of each register are adjacent in the 68000 address space,
with the high address word first, so they can both be written with one 32-bit write from the pro
cessor. The pointer registers should be written with an address in bytes. Because the bUtter
works only on words, the least significant bit of the address is ignored. Because only CHIP
memory is accessible, some of the most significant bits will be ignored as well. On machines
with 512 KB of CHIP memory, the most significant 13 bits are ignored. Future machines will
have more CHIP memory and fewer bits will be ignored. A valid, even, CHIP memory address
should always be written to these registers.

NOTE

Be sure to write zeros to all unused bits in the custom chip registers. These bits may
be used by later versions of the custom chips. Writing non-zero values to these bits
may cause unexpected results on future machines.

164 Blitter Hardware

Each of the DMA channels can be independently enabled or disabled. The enable bits are bits
SRCA, SRCB, SRCC, and DEST in control register zero (BLTCONO).

When disabled, no memory cycles will be executed for that channel and, for a source channel, the
constant value stored in the data register of that channel will be used for each blitter cycle. For
this purpose, each of the three source channels have preloadable data registers, called BLTxDAT.

Images in memory are usually stored in a linear fashion; each word of data on a line is located at
an address that is one greater than the word on its left. i.e. Each line is a "plus one" continua
tion of the previous line. (See Figure 6-1.)

20 21 22 23 24 24 26
27 28 29 30 31 32 33
34 35 36 37 38 39 40
41 42 43 44 45 46 47
48 49 50 51 52 53 54
55 56 57 58 59 60 61

Figure 6-1: How Images are Stored in Memory

The map in Figure 6-1 represents a single bit-plane (one bit of color) of an image at word
addresses 20 through 61. Each of these addresses accesses one word (16 pixels) of a single bit
plane. If this image required sixteen colors, four bit-planes like this would be required in
memory, and four copy (move) operations would be required to completely move the image.

The blitter is very efficient at copying such blocks because it needs to be told only the starting
address (20), the destination address, and the size of the block (height = 6, width = 7). It will then
automatically move the data, one word at a time, whenever the data bus is available. When the
transfer is complete, the bUtter will signal the processor with a flag and an interrupt.

NOTE

This copy (move) operation operates on memory and mayor may not change the
memory curr~ntly being used for display.

All data copy blits are performed as rectangles of words, with a given width and height All four
DMA channels use a single bUt size register, called BLTSIZE, used for both the width and height.
The width can take a value of from 1 to 64 words (16 to 1024 bits). The height can run from 1 to
1024 rows. The width is stored in the least significant six bits of the BLTSIZE register. If a
value of zero is stored, a width count of 64 words is used. This is the only parameter in the blitter

Blitter Hardware 165

that is given in words. The height is stored in the upper ten bits of the BLTSIZE register, with
zero representing a height of 1024 rows. Thus, the largest blit possible with the current Amiga
blitter is 1024 by 1024 pixels. However, shifting and masking operations may require an extra
word be fetched for each raster scan line, making the maximum practical horizontal width 1008
pixels.

NOTE

To emphasize the above paragraph: Blit width is in words with a zero representing 64
words. Blit height is in lines with a zero representing 1024 lines.

The blitter also has facilities, called modulos, for accessing images smaller than the entire bit
plane. Each of the four DMA channels has a 16-bit modulo register called BLTxMOD. As each
word is fetched (or written) for an enabled channel, the address pointer register is incremented by
two (bytes, or one word.) After each row of the blit is completed, the signed 16-bit modulo value
for that DMA channel is added to the address pointer. (A row is defined by the width stored in
BLTSIZE.)

NOTE

The modulo values are in bytes, not words. Since the blitter can only operate on
words, the least significant bit is ignored. The value is sign-extended to the full width
of the address pointer registers. Negative modulos can be useful in a variety of ways,
such as repeating a row by setting the modulo to the negative of the width of the bit
plane.

As an example, suppose we want to operate on a section of a full 320 by 200 pixel bitmap that
started at row 13, byte 12 (where both are numbered from zero) and the section is 10 bytes wide.
We would initialize the pointer register to the address of the bitplane plus 40 bytes per row times
13 rows, plus 12 bytes to get to the correct horizontal position. We would set the width to 5
words (10 bytes). At the end of each row, we would want to skip over 30 bytes to get to the
beginning of the next row, so we would use a modulo value of 30. In general, the width (in
words) times two plus the modulo value (in bytes) should equal the full width, in bytes, of the bit
plane containing the image.

166 Blitter Hardware

c:-='-~~
10

Byte (Colwnn) Number

20

o
1
2
3
4
5
6
7
8

Row 9
Number 10

11
12
13
14
15
16
17
18
19

po;

Skip Left - - 12 bytes """
><

BLTxP1R. = <Mem_AddP + (40 ... 13) + 12
= <Mem_AddP + 5:32

BLTxMOD = 12 + 18
= 30bytes.

30

Skip Right
18 bytes.

k.

/'oneByte.

Image to Manipulate 888888
Window Bitmap 1111111111111

Bytes in Bitmap 0

Figure 6-2: BLTxPTR and BLTxMOD calculations

NOTE

The blitter can be used to process linear rather than rectangular regions by setting the
horizontal or vertical count in BLTSlZE to 1.

39

Because each DMA channel has its own modulo register, data can be moved among bitplanes of
different widths. This is most useful when moving small images into larger screen bitplanes.

Blitter Hardware 167

Function Generator

The blitter can combine the data from the three source DMA channels in up to 256 different ways
to generate the values stored by the destination DMA channel. These sources might be one bit
plane from each of three separate graphics images. While each of these sources is a rectangular
region composed of many points, the same logic operation will be performed on each point
throughout the rectangular region. Thus, for purposes of defining the blitter logic operation it is
only necessary to consider what happens for all of the possible combinations of one bit from each
of the three sources.

There are eight possible combinations of values of the three bits, for each of which we need to
specify the corresponding destination bit as a zero or one. This can be visualized with a standard
truth table, as shown below. We have listed the three source channels, and the possible values for
a single bit from each one.

A B C D BL TCONO position Minterm

0 0 0 ? 0 ABC
0 0 1 ? 1 ABC
0 1 0 ? 2 ABC
0 1 1 ? 3 ABC
1 0 0 ? 4 ABC
1 0 1 ? 5 ABC
1 1 0 ? 6 ABC
1 1 1 ? 7 ABC

This information is collected in a standard format, the LF control byte in the BLTCONO register.
This byte programs the blitter to perform one of the 256 possible logic operations on three
sources for a given blit.

To calculate the LF control byte in BLTCONO, fill in the truth table with desired values for D,
and read the function value from the bottom of the table up.

For example, if we wanted to set all bits in the destination where the corresponding A source bit
is 1 or the corresponding B source bit is 1, we would fill in the last four entries of the truth table
with 1 (because the A bit is set) and the third, fourth, seven, and eight entries with 1 (because the
B bit is set), and all others (the first and second) with 0, because neither A nor B is set. Then, we
read the truth table from the bottom up, reading 11111100, or $FC.l

1 "$" indicates hex notation.

168 Blitter Hardware

For another example, an LF control byte of $80 (= 1000 0000 binary) turns on bits only for those
points of the D destination rectangle where the corresponding bits of A, B, and C sources were all
on (ABC = 1, bit 7 ofLF on). All other points in the rectangle, which correspond to other combi
nations for A, B, and C, will be O. This is because bits 6 through 0 of the LF control byte, which
specify the D output for these situations, are set to O.

DESIGNING THE LF CONTROL BYTE WITH MINTERMS

One approach to designing the LF control byte uses logic equations. Each of the rows in the truth
table corresponds to a "minterm", which is a particular~ent of values to the A, B, and C
bits. For instance, the first minterm is usually written ABC, or "not A and not B and not C".
The last is written as ABC.

NOTE

Two terms that are adjacent are and'ed, and two terms that are separated by "+" are
or' ed. "And" has a higher precedence, so AB + BC is equal to (AB) + (BC).

Any function can be written as a sum of minterms. If we wanted to calculate the function where
D 1.s one when the A bit is set and the C bit is clear, or when the B bit is set, we can write that as
AC+B, or "A and not C or B". Since" 1 and A" is "A":

D=AC+B

D = A(1)C + (1)B(1)

Since either A or A is true (1 = A + A), and similarly for B, and C; we can expand the above
equation further:

D = A(1)C + (1)B(l)

D = A(B + B)C + (A + A)B(C + C)

D = ABC + ABC + AB(C + C) + AB(C + C)

D = ABC + ABC + ABC + ABC + ABC + ABC

After eliminating duplicates, we end up with the five minterms:

AC+B = ABC + ABC + ABC + ABC + ABC

These correspond to BLTCONO bit positions of 6, 4, 7, 3, and 2, according to our truth table,
which we would then set, and clear the rest.

The wide range of logic operations allow some sophisticated graphics techniques. For instance,
you can move the image of a car across some pre-existing building images with a few blits. Pro
ducing this effect requires predrawn images of the car, the buildings (or background), and a car

Blitter Hardware 169

"mask" that contains bits set wherever the car image is not transparent. This mask can be visual
ized as the shadow of the car from a light source at the same position as the viewer.

NOTE

The mask for the car need only be a single bitplane regardless of the depth of the back
ground bitplane. This mask can be used in turn on each of the background bitplanes.

To animate the car, first save the background image where the car will be placed. Next copy the
car to its first location with another bUt. Your image is now ready for display. To create the next
image, restore the old background, save the next portion of the background where the car will be,
and redraw the car, using three separate blits. (This technique works best with beam
synchronized blits or double buffering.)

To temporarily save the background, copy a rectangle of the background (from the A channel, for
instance) to some backup buffer (using the D channel). In this case, the function we would use is
"A", the standard copy function. From Table 6-1, we note that the corresponding LF code has a
value of $FO.

To draw the car, we might use the A DMA channel to fetch the car mask, the B DMA channel to
fetch the actual car data, the C DMA channel to fetch the background, and the D DMA channel to
write out the new image.

NOTE

We must fetch the destination background before we write it, as only a portion of a
destination word might need to be modified, and there is no way to do a write to only
a portion of a word.

When blitting the car to the background we would want to use a function that, whenever the car
mask (fetched with DMA channel A) had a bit set, we would pass through the car data from B,
and whenever A did not have a bit set, we would pass through the original backgroun.,i1 from C.
The corresponding function, commonly referred to as the cookie-cut function, is AB+AC, which
works out to an LF code value of $CA.

To restore the background and prepare for the next frame, we would copy the infonnation saved
in the first step back, with the standard copy function ($FO).

If you shift the data and the mask to a new location and repeat the above three steps over and
over, the car will appear to move across the background (the buildings).

NOTE

This may not be the most effective method of animation, depending on the applica
tion, but the cookie-cut function will appear often.

Table 6-1 lists some of the most common functions and their values, for easy reference.

170 BUtter Hardware

Table 6-1: Table of Common Mintenn Values

Selected BLTCONO Selected BLTCONO
Equation LFCode Equation LFCode

D=A $FO D= AB $CO

- -
D=A $OF D= AB $30

-
D=B $CC D= AB $OC

-
D=B $33 D= AB $03

D=C $AA D= BC $88

- -
D=C $55 D= BC $44

-
D=AC $AO D= BC $22

-
D=AC $50 D= AC $11

- -
D=AC $OA D= A+B $F3

D=AC $05 D= A+B $3F

-
D=A+B $FC D= A+C $F5

-
D=A+B $CF D= A+C $5F

-
D=A+C $FA D= B+C $DD

-
D=A+C $AP D= B+C $77

-
D=B+C $EE D= AB+AC $CA

-
D=B+C $BB

Blitter Hardware 171

DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS

Another way to arrive at a particular function is through the use of Venn diagrams:

Blitter

Figure 6-3: Blitter Mintenn Venn Diagram

1. To select a function D=A (that is, destination = A source only), select only the mintenns that
are totally enclosed by the A-circle in the Figure above. This is the set ofmintenns 7,6,5,
and 4. When written as a set of Is for the selected mintenns and Os for those not selected,
the value becomes:

Mintenn Number
Selected Mintenns

76543210
11110000

F 0 equals $FO

2. To select a function that is a combination of two sources, look for the mintenns by both of
the circles (their intersection). For example, the combination AB (A "and" B) is represented
by the area common to both the A and B circles, or mintenns 7 and 6.

172 Blitter Hardware

Mintenn Numbers
Selected Mintenns

76543210
11000000

C 0 equals$CO

3. To use a function that is the inverse, or "not", of one of the sources, such as A, take all of
the mintenns not enclosed by the circle represented by A on the above Figure. In this case,
we have mintenns 0, 1,2, and 3.

Mintenn Numbers
Selected Mintenns

76543210
00001111

o F equals $OF

4. To combine mintenns, or "or" them, "or" the values together. For example, the equation
AB+BC becomes

Mintenn Numbers
AB
BC
AB+BC

Shifts and Masks

76543210
11000000
10001000
11001000

C 8 equals $C8

Up to now we have dealt with the bUtter only in moving words of memory around and combining
them with logic operations. This is sufficient for moving graphic images around, so long as the
images stay in the same position relative to the beginning of a word. If our car image has its left
most pixel on the second pixel from the left, we can easily draw it on the screen in any position
where the leftmost pixel also starts two pixels from the beginning of some word. But often we
want to draw that car shifted left or right by a few pixels. To this end, both the A and B DMA
channels have a barrel shifter that can shift an image between 0 and 15 bits.

This shifting operation is completely free; it requires no more time to execute a blit with shifts
than a bUt without shifts, as opposed to shifting with the 68000. The shift is nonnally towards
the right This shifter allows movement of images on pixel boundaries, even though the pixels
are addressed 16 at a time by each word address of the bit-plane image.

So if the incoming data is shifted to the right, what is shifted in from the left? For the first word
of the blit, zeros are shifted in; for each subsequent word of the same blit, the data shifted out
from the previous word is shifted in.

The shift value for the A channel is set with bits 15 through 12 of BLTCONO; the B shift value is
set with bits 15 through 12 of BLTCONI. For most operations, the same value will be used for
both shifts. For shifts of greater than fifteen bits, load the address register pointer of the destina
tion with a higher address; a shift of 100 bits would require the destination pointer to be advanced
100/16 or 6 words (12 bytes), and a right shift of the remaining 4 bits to be used.

As an example, let us say we are doing a bUt that is three words wide, two words high, and we are
using a shift of 4 bits. For simplicity, let us assume we are doing a straight copy from A to D.
The first word that will be written to D is the first word fetched from A, shifted right four bits

Blitter Hardware 173

with zeros shifted in from the left. The second word will be the second word fetched from the A,
shifted right, with the least significant (rightmost) four bits of the first word shifted in. Next, we
will write the first word of the second row fetched from A, shifted four bits, with the least
significant four bits of the last word from the first row shifted in. This would continue until the
blit is finished.

On shifted blits, therefore, we only get zeros shifted in for the first word of the first row. On all
other rows the blitter will shift in the bits that it shifted out of the previous row. For most graph
ics applications, this is undesirable. For this reason, the blitter has the ability to mask the first and
last word of each row coming through the A DMA channel. Thus, it is possible to extract rec
tangular data from a source whose right and left edges are between word boundaries. These two
registers are called BLT AFWM and BLT AL WM, for blitter A channel first and last word masks.
When not in use, both should be initialized to all ones ($FFFF).

NOTE

Text fonts on the Amiga are stored in a packed bit map. Individual characters from
the font are extracted using the blitter, masking out unwanted bits. The character may
then be positioned to any pixel alignment by shifting it the appropriate amount.

These masks are "anded" with the source data, before any shifts are applied. Only when there is
a 1 bit in the first-word mask will that bit of source A actually appear in the logic operation. The
first word of each row is anded with BLTAFWM, and the last word is "anded" with
BLTALWM. If the width of the row is a single word, both masks are applied simultaneously.

The masks are also useful for extracting a certain range of "columns" from some bitplane. Let
us say we have, for example, a predrawn rectangle containing text and graphics that is 23 pixels
wide. The leftmost edge is the leftmost bit in its bitmap, and the bitmap is two words wide. We
wish to render this rectangle starting at pixel position 5 into our 320 by 200 screen bitmap,
without disturbing anything that lies outside of the rectangle.

174 Blitter Hardware

Source
DMAB

Mask on
DMAA

Final
Destination
DMAD
(points to same
address as DMA C)

Destination
Before blit
DMAC
(to be overwritten)

2 word source bitmap

-- Extract A 23-bit Image

16 bit word
I

OOOOOOOO 00000000 00000000 00000000
11111111 11111111 11111111 11111111
10101010 01010101 10101010 01010101

1 ! .. 1 • . I.
Source IS passed through mask when It IS a one, otherwISe the destInatIon IS copIed.

~ ~ ~ ~
11111111 11111111 I

First word mask
I 1111111 0 00000000 I

Second word mask

! ! ! ! 1 1

00000000 00000000 00000001 11111111
11111111 11111111 11111111 11111111
10101010 01010101 10101011 11111111

T T T T T T T
11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111111

Figure 6-4: Extracting a Range of Columns

To do this, we point the B DMA channel at the bitmap containing the source image, and the D
DMA channel at the screen bitmap. We use a shift value of 5. We also point the C DMA channel
at the screen bitmap. We use a blit width of 2 words. What we need is a simple copy operation,
except we wish to leave the first five bits of the first word, and the last four bits (2 times 16, less
23, less 5) of the last word alone. The A DMA channel comes to the rescue. We preload the A
data register with $FFFF (all ones), and use a first word mask with the most significant five bits
set to zero ($07FF) and a last word mask with the least significant four bits set to zero ($FFFO).
We do not enable the A DMA channel, but only the B, C, and D channels, since we want to use
the A channel as a simple row mask. We then wish to pass the B (source) data along wherever
the A channel is 1 (for a minterm of AB) and p~s along the original destination data (from the C
channel) wherever A is 0 (for a minterm of AC), yielding our classic cookie-cut function of
AB+AC, or $CA.

NOTE

Even though the A channel is disabled, we use it in our logic function and preload the
data register. Disabling a channel simply turns off the memory fetches for that chan
nel; all other operations are still performed, only from a constant value stored in the
channel'S data register.

Blitter Hardware 175

An alternative but more subtle way of accomplishing the same thing is to use an A shift of five, a
first word mask of all ones, and a last word mask with the rightmost nine bits set to zero. All
other registers remain the same.

NOTE

Be sure to load the blitter immediate data registers only after setting the shift count in
BLTCONO/BLTCONI, as loading the data registers first will lead to unpredictable
results. For instance, if the last person left BSHIFT to be "4", and I load BDATA
with "1" and then change BSHIFT to "2", the resulting BDA TA that is used is
"1«4", not" 1«2". The act of loading one of the data registers "draws" the data
through the machine and shifts it.

Descending Mode

Our standard memory copy bUt works fine if the source does not overlap the destination. If we
want to move an image one row down (towards increasing addresses), however, we run into a
problem - we overwrite the second row before we get a chance to copy it! The blitter has a spe
cial mode of operation - descending mode - that solves this problem nicely.

Descending mode is turned on by setting bit one of BLTCON1 (defined as BLITREVERSE). If
you use descending mode the address pointers will be decremented by two (bytes) instead of
incremented by two for each word fetched. In addition, the modulo values will be subtracted
rather than added. Shifts are then towards the left, rather than the right, the first word mask
masks the last word in a row (which is still the first word fetched), and the last word mask masks
the first word in a row.

Thus, for a standard memory copy, the only difference in blitter setup (assuming no shifting or
masking) is to initialize the address pointer registers to point to the last word in a block, rather
than the first word. The modulo values, bUt size, and all other parameters should be set the same.

NOTE

This differs from predecrement versus postincrement in the 68000, where an address
register would be initialized to point to the word after the last, rather than the last
word.

Descending mode is also necessary for area filling, which will be covered in a later section.

176 Blitter Hardware

Copying Arbitrary Regions

One of the most common uses of the blitter is to move arbitrary rectangles of data from one bit
plane to another, or to different positions within a bitplane. These rectangles are usually on arbi
trary bit coordinates, so shifting and masking are necessary. There are further complications. It
may take several readings and some experimentation before everything in this section can be
understood.

A source image that spans only two words may, when copied with certain shifts, span three
words. Our 23 pixel wide rectangle above, for instance, when shifted 12 bits, will span three
words. Alternatively, an image spanning three words may fit in two for certain shifts. Under all
such circumstances, the blit size should be set to the larger of the two values, such that both
source and destination will fit within the blit size. Proper masking should be applied to mask out
unwanted data.

Some general guidelines for copying an arbitrary region are as follows.

1. Use the A DMA channel, disabled, preloaded with all ones and the appropriate mask and
shift values, to mask the cookie cut function. Use the B channel to fetch the source data, the
C channel to fetch the destination data, and the D channel to write the destination data. Use
the cookie-cut function $CA.

2. If shifting, always use ascending mode if bit shifting to the right, and use descending mode if
bit shifting to the left.

NOTE

These shifts are the shifts of the bit position of the leftmost edge within a word, rather
than absolute shifts, as explained previously.

3. If the source and destination overlap, use ascending mode if the destination has a lower
memory address (is higher on the display) and descending mode otherwise.

4. If the source spans more words than the destination, use the same shift value for the A chan
nel as for the source B channel and set the first and last word masks as if they were masking
the B source data.

5. If the destination spans more words than the source, use a shift value of zero for the A chan
nel and set the first and last word masks as if they were masking the destination D data.

Blitter Hardware 177

6. If the source and destination span the same number of words, use the A channel to mask
either the source, as in 4, or the destination, as in 5.

NOTE

Conditions 2 and 3 can be contradictory if, for instance, you are trying to move an
image one pixel down and to the right. In this case, we would want to use descending
mode so our destination does not overwrite our source before we use the source, but
we would want to use ascending mode for the right shift. In some situations, it is pos
sible to get around general guideline 2 above with clever masking. But occasionally
just masking the first or last word may not be sufficient; it may be necessary to mask
more than 16 bits on one or the other end. In such a case, a mask can be built in
memory for a single raster row, and the A DMA channel enabled to explicitly fetch
this mask. By setting the A modulo value to the negative of the width of the mask, the
mask will be repeatedly fetched for each row.

Area Fill Mode

In addition to copying data, the blitter can simultaneously perform a fill operation during the
copy. The fill operation has only one restriction - the area to fill must be defined first by draw
ing untextured lines with only one bit set per horizontal row. A special line draw mode is avail
able for this operation. Use a standard copy blit (or any other blit, as area fills take place after all
shifts, masks and logical combination of sources). Descending mode must be used. Set either the
inclusive-fill-enable bit (FILL_OR, or bit 3) or the exclusive-fill-enable bit (FILL_XOR, or bit 4)
in BLTCONl. The inclusive fill mode fills between lines, leaving the lines intact. The exclusive
fill mode fills between lines, leaving the lines bordering the right edge of filled regions but delet
ing the lines bordering the left edge. Exclusive fill yields filled shapes one pixel narrower than
the same pattern filled with inclusive fill.

For instance, the pattern:

00100100-00011000

filled with inclusive fill, yields:

00111100-00011000

with exclusive fill, the result would be

00011100-00001000

(Of course, fills are always done on full 16-bit words.)

178 Blitter Hardware

There is another bit (FILL_CARRYIN or bit 3 in BLTCONl) that forces the area "outside" the
lines be filled; for the above example, with inclusive fill, the output would be

11100111-11111111

with exclusive fill, the output would be

11100011-11110111

Before After

1 1 1 1 11111 11111
1 1 1 1 11111 11111

1 1 1 1 1111 1111
1 1 1 1 111 111

11 11 11 11
1 1 1 1 111 111

1 1 1 1 1111 1111
1 1 1 1 11111 11111

Figure 6-5: Use of the FCI Bit - Bit Is a 0

If the FCI bit is a 1 instead of a 0, the area outside the lines is filled with Is and the area inside the
lines is left with Os in between.

1
1

1

Before

1 1
1 1

1 1 1
1 1

11
1 1

1 1 1
1 1

1
1
1

1 1
11

1 1
1
1

After

111 111111 11
111 1111111 11
1111 11111111 11
11111 111111111 11
111111111111111111
11111 111111111 11
1111 11111111 11
111 1111111 11

Figure 6-6: Use of the FCI Bit - Bit Is a 1

If you wish to produce very sharp, single-point vertices, exclusive-fill enable must be used. Fig
ure 6-7 shows how a single-point vertex is produced using exclusive-fill enable.

Blitter Hardware 179

Before After Exclusive Fill

1 1 1 1 1111 1111
1 1 1 1 III 111

1 1 1 1 11 11
11 11 1 1

1 1 1 1 11 11
1 1 1 1 III III

1 1 1 1 1111 1111

Figure 6-7: Single-Point Vertex Example

The blitter uses the fill carry-in bit as the starting fill state beginning at the rightmost edge of each
line. For each "I" bit in the source area, the blitter flips the fill state, either filling or not filling
the space with ones. This continues for each line until the left edge of the blit is reached, at which
point the filling stops.

Blitter Done Flag

When the BL TSIZE register is written the blit is started. The processor does not stop while the
blitter is working, though; they can both work concurrently, and this provides much of the speed
evident in the Amiga. This does require some amount of care when using the blitter.

A blitter done flag, also called the blitter busy flag, is provided as DMAF _BLTDONE in
DMACONR. This flag is set when a bUt is in progress.

NOTE

If a blit has just been started but has been locked out of memory access because of, for
instance, display fetches, this bit may not yet be set. The processor, on the other hand,
may be running completely uninhibited out of FAST memory or its internal cache, so
it will continue to have memory cycles.

180 Blitter Hardware

The solution is to read a chip memory or hardware register address with the proceSsor before test
ing the bit. This can easily be done with the sequence:

btst.b #DMAB_BLTDONE-8,DMACONR(al)
btst.b #DMAB_BLTDONE-8,DMACONR(al)

where al has been preloaded with the address of the hardware registers. The first "test" of the
blitter done bit may not return the correct result, but the second will.

NOTE

Starting with the Fat Agnus the blitter busy bit has been "fixed" to be set as soon as
you write to BLTSlZE to start the bUt, rather than when the bUtter gets its first DMA
cycle. However, not all machines will use these newer chips, so it is best to rely on
the above method of testing.

MULTITASKING AND THE BLITTER

When a blit is in progress, none of the bUtter registers should be written. For details on arbitra
tion of blitter access in the system, please refer to the ROM Kernel Manual. In particular. read
the discussion about the OwnBlitterO and DisownBUtterO functions. Even after the blitter has
been "owned", a bUt may still be finishing up, so the bUtter done flag should be checked before
using it even the first time. Use of the ROM kernel function WaitBlitO is recommended.

You should also check the bUtter done flag before using results of a blit. The blit may not be
finished. so the data may not be ready yet. This can lead to difficult to find bugs, because a 68000
may be slow enough for a blit to finish without checking the done flag, while a 68020, perhaps
running out of its cache, may be able to get at the data before the blitter has finished writing it.

Let us say that we have a subroutine that displays a text box on top of other imagery temporarily.
This subroutine might allocate a chunk of memory to hold the original screen image while we are
displaying our text box, then draw the text box. On exit, the subroutine might blit the original
imagery back and then free the allocated memory. If the memory is freed before the blitter done
flag is checked, some other process might allocate that memory and store new data into it before
the bUt is finished, trashing the blitter source and, thus, the screen imagery being restored.

Interrupt Flag

The blitter also has an interrupt flag that is set whenever a blit finishes. This flag, INTF _BUT,
can generate a 68000 interrupt if enabled. For more information on interrupts, see Chapter 7
"System Control Hardware."

Blitter Hardware 181

Zero Flag

A blitter zero flag is provided that can be tested to detennine if the logic operation selected has
resulted in zero bits for all destination bits, even if those destination bits are not written due to the
D DMA channel being disabled. This feature is often useful for collision detection, by perfonn
ing a logical "and" on two source images to test for overlap. If the images do not overlap, the
zero flag will stay true.

The Zero flag is only valid after the blitter has completed its operation and can be read from bit
DMAF _BLTNZERO of the DMACONR register.

Pipeline Register

The blitter perfonns many operations in each cycle - shifting and masking source words, logical
combination of sources, and area fill and zero detect on the output. To enable so many things to
take place so quickly, the blitter is pipelined. This means that rather than perfonning all of the
above operations in one blitter cycle, the operations are spread over two blitter cycles. (Here
"cycle" is used very loosely for simplicity.) To clarify this, the blitter can be imagined as two
chips connected in series. Every cycle, a new set of source operations come in, and the first chip
perfonns its operations on the data. It then passes the half-processed data to the second chip to be
finished during the next cycle, when the first chip will be busy at work on the next set of data.
Each set of data takes two • 'cycles" to get through the two chips, overlapped so a set of data can
be pumped through each cycle.

What all this means is that the first two sets of sources are fetched before the first destination is
written. This allows you to shift a bitmap up to one word to the right using ascending mode, for
instance, even though nonnally parts of the destination would be overwritten before they were
fetched.

182 Blitter Hardware

Table 6-2: Typical BUtter Cycle Sequence

USE Code
in Active

BLTCONO Channels Cycle Sequence

F A B C D AO BO CO - Al BI CI DO A2 B2 C2 DI D2
E A B C AO BO CO Al BI CI A2 B2 C2
D A B D AO BO - Al BI DO A2 B2 DI - D2
C A B AO BO - Al BI - A2 B2
B A C D AO CO - Al CI DO A2 C2 DI - D2
A A C AO CO Al CI A2 C2
9 A D AO - Al DO A2 DI - D2
8 A AO - Al - A2
7 B C D BO CO - Bl Cl DO - B2 C2 Dl - D2
6 B C BO CO - Bl Cl - B2 C2
5 B D BO - Bl DO - B2 Dl - D2
4 B BO - Bl - B2
3 C D CO - Cl DO - C2 Dl - D2
2 C CO - Cl - C2
1 D DO - DI - D2
0 none

Notes for the above Table:

• No fill.

• No competing bus activity.

• Three-word blit.

• Typical operation involves fetching all sources twice before the first destination becomes
available. This is due to internal pipelining. Care must be taken with overlapping source and
destination regions.

NOTE

This Table is only meant to be an illustration of the typical order of bUtter cycles on
the bus. Bus cycles are dynamically allocated based on bUtter operating mode; com
peting bus activity from processor, bit-planes, and other DMA channels; and other fac
tors. Commodore Amiga does not guarantee the accuracy of or future adherence to
this chart. We reserve the right to make product improvements or design changes in
this area without notice.

BUtter Hardware 183

Line Mode

In addition to all of the functions described above, the blitter can draw patterned lines. The line
draw mode is selected by setting bit 0 (LINEMODE) of BLTCONl, which changes the meaning
of some other bits in BLTCONO and BLTCONl. In line draw mode, the blitter can draw lines up
to 1024 pixels long, it can draw them in a variety of modes, with a variety of textures, and can
even draw them in a special way for simple area fill.

Many of the blitter registers serve other purposes in line-drawing mode. Consult Appendix A for
more detailed descriptions of the use of these registers and control bits in line-drawing mode.

In line mode, the bUtter draws a line from one point to another, which can be viewed as a vector.
The direction of the vector can lie in any of the following eight octants. (In the following
diagram, the standard Amiga convention is used, with x increasing towards the right and y
increasing down.) The number in parenthesis is the octant numbering; the other number
represents the value that should be placed in bits 4 through 2 ofBLTCON1.

(2) (1)
3 1

(3)
7 6 (0)

5 4 (7)
(4)

2 0
(5) (6)

Figure 6-8: Octants for Line Drawing

Line drawing based on octants is a simplification that takes advantage of symmetries between x
and -x, y and -yo The following Table lists the octant number and corresponding values:

184 Blitter Hardware

Table 6-3: BLTCONI Code Bits for Octant Line Drawing

BL TCONI Code Bits
432

1 I 0
001
011
1 1 1
101
010
000
100

Octant #

o
1
2
3
4
5
6
7

We initialize BLTCONI bits 4 through 2 according to the above Table. Now, we introduce the
variables dx and dy, and set them to the absolute values of the difference between the x coordi
nates and the y coordinates of the endpoints of the line, respectively.

dx = abs(x2 - xl)
dy = abs(y2 - yl) ;

Now, we rearrange them if necessary so dx is greater than dy.

if (dx < dy)
{
temp = dx
dx = dy ;
dy = temp
}

Alternately, set dx and dy as follows:

dx = max(abs(x2 - xl), abs(y2 - yl»
dy = min(abs(x2 - xl), abs(y2 - yl»

These calculations have the effect of "normalizing" our line into octant 0; since we have already
informed the bUtter of the real octant to use, it has no difficulty drawing the line.

We initialize the A pointer register to 4 * dy - 2 * dx. If this value is negative, we set the sign bit
(SIGNFLAG in BLTCONI), otherwise we clear it. We set the A modulo registerto 4 * (dy - dx)
and the B modulo register to 4 * dy.

The A data register should be preloaded with $8000. Both word masks should be set to $FFFF.
The A shift value should be set to the x coordinate of the first point (xl) modulo 15.

The B data register should be initialized with the line texture pattern, if any, or $FFFF for a solid
line. The B shift value should be set to the bit number at which to start the line texture (zero
means the last significant bit.)

Blitter Hardware 185

The C and D pointer registers should be initialized to the word containing the first pixel of the
line; the C and D modulo registers should be set to the width of the bitplane in bytes.

The SRCA, SRCC, and DEST bits ofBLTCONO should be set to one, and the SRCB flag should
be set to zero. The OVFLAG should be cleared. If only a single bit per horizontal row is desired,
the ONEDOT bit of BLTCONI should be set; otherwise it should be cleared.

The logic function remains. The C DMA channel represents the original source, the A channel
the btt to set in the line, and the B channel the pattern to draw. Thus, to draw a line, the function
AB+AC is the most common. To draw th.e Line using exclusive-or mode, so it can be easily
erased by drawing it again, the function ABC+AC can be used.

We set the blit height to the length of the line, which is dx + 1. The width must be set to two for
all line drawing. (Of course, the BLTSIZE register should not be written until the very end, when
all other registers have been filled.)

REGISTER SUMMARY FOR LINE MODE

Preliminary setup:

The line goes from (xl,yl) to (x2,y2).

dx = max(abs(x2 - xl), abs(y2 - yl»
dy = min(abs(x2 - xl), abs(y2 - yl»

Register setup:

BLTADAT = $8000
BLTBDAT = line texture pattern ($FFFF for a solid line)

BLT AFWM = $FFFF
BLT AL WM = $FFFF

BLTAMOD = 4 * (dy - dx)
BLTBMOD=4 * dy
BLTCMOD = width of the bitplane in bytes
BLTDMOD = width of the bitplane in bytes

BLTAPT = (4 * dy) - (2 * dx)
BLTBPT = unused
BLTCPT = word containing the first pixel of the line
BLTDPT = word containing the first pixel of the line

186 Blitter Hardware

BLTCONO bits 15-12 = xl modulo 15
BLTCONO bits SRCA, SRCC, and SRCD = 1
BLTCONO bit SRCB = 0
if exclusive-or line mode:

then BLTCONO LF control byte = ABC ± AC
else BLTCONO LF control byte = AB + AC

BLTCONI bit LlNEMODE = 1
BLTCONI bit OVFLAG = 0
BLTCONI bits 4-2 = octant number from table
BLTCONI bits 15-12 = start bit for line texture (0 = last significant bit)
if (((4 * dy) - (2 * dx» < 0):

then BLTCONI bit SIGNFLAG = 1
else BLTCONI bit SIGNFLAG = 0

if one pixel/row:
then BLTCONI bit ONEDOT = 1
else BLTCONI bit ONEDOT = 0

BLTSIZE bits 15-6 = dx + 1
BLTSlZE bits 5-0 = 2

NOTE

You must set the BL TSlZE register last as it starts the blit.

Blitter Hardware 187

BUtter Speed

The speed of the blitter depends entirely on which DMA channels are enabled. You might be
using a DMA channel as a constant, but unless it is enabled, it does not count against you. The
minimum blitter cycle is four ticks; the maximum is eight ticks. Use of the A register is always
free. Use of the B register always adds two ticks to the bUtter cycle. Use of either C or D is free,
but use of both adds another two ticks. Thus, a copy cycle, using A and D, takes four clock ticks
per cycle; a copy cycle using B and D takes six ticks per cycle, and a generalized bit copy using
B, C, and D takes eight ticks per cycle. When in line mode, each pixel takes eight ticks.

The system clock speed for NTSC Amigas is 7.16 megahertz (pAL Amigas 7.00 megahertz).
The clock for the blitter is the system clock. To calculate the total time for the blit in
microseconds, excluding setup and DMA contention, you use the equation (for NTSC):

For PAL:

n*H*W
t= 7.16

n*H*W t = ~---""-----'-'-
7.09

where t is the time in microseconds, n is the number of clocks per cycle, and H and W are the
height and width (in words) of the blit, respectively.

For instance, to copy one bitplane of a 320 by 200 screen to another bitplane, we might choose to
use the A and D channels. This would require four ticks per blitter cycle, for a total of

4 * 200 * 20
7.16 = 2235 microseconds.

These timings do not take into account blitter setup time, which is the time required to calculate
and load the blitter registers and start the bUt. They also ignore DMA contention.

188 BUtter Hardware

BUtter Operations and System DMA

The operations of the blitter affect the perfonnance of the rest of the system. The following sec
tions explain how system perfonnance is affected by blitter direct memory access priority, DMA
time slot allocation, bus sharing between the 68000 and the display hardware, the operations of
the blitter and Copper, and different play field display sizes.

The bUtter perfonns its various data-fetch, modify, and store operations through DMA sequences,
and it shares memory access with other devices in the system. Each device that accesses memory
has a priority level assigned to it, which indicates its importance relative to other devices.

Disk DMA, audio DMA, display DMA, and sprite DMA all have the highest priority level.
Display DMA has priority over sprite DMA under certain circumstances. Each of these four dev
ices is allocated a group of time slots during each horizontal scan of the video beam. If a device
does not request one of its allocated time slots, the slot is open for other uses. These devices are
given first priority because missed DMA cycles can cause lost data, noise in the sound output, or
on-screen interruptions.

The Copper has the next priority because it has to perfonn its operations at the same time during
each display frame to remain synchronized with the display beam sweeping across the screen.

The lowest priorities are assigned to the bUtter and the 68000, in that order. The blitter is given
the higher priority because it perfonns data copying, modifying, and line drawing operations
operations much faster than the 68000.

During a horizontal scan line (about 63 microseconds), there are 227.5 "color clocks", or
memory access cycles. A memory cycle is approximately 280 ns in duration. The total of 227.5
cycles per horizontal line includes both display time and non-display time. Of this total time, 226
cycles are available to be allocated to the various devices that need memory access.

The time-slot allocation per horizontal line is

4 cycles for memory refresh
3 cycles for disk DMA
4 cycles for audio DMA (2 bytes per channel)
16 cycles for sprite DMA (2 words per channel)
80 cycles for bit-plane DMA (even- or odd-numbered slots

according to the display size used)

Figure 6-9 shows one complete horizontal scan line and how the clock cycles are allocated.

BUtter Hardware 189

DMA Time Slot Allocation/Horizontal line

Decimal numbers above the Illustrations represent low-resolution
cycles. Decimal numbers below the illustrations represent high
resolution cvcles. Negative numbers indicate the start of data
fetch for displays that are larger than normal.

Decimal numbers inside the illustrations represent the bit-plane
for which the data is being fetched.

$10 $18

Hardware stop installed here. Dala feeches which occur at
cycle $18 or sooner will wipe out aD the sprites (by defining
an extra wide display), bulleave the audio and disk OMA
untouched. However. if only SPRITEO i& desired to tinction,
then !he data fetches cannot begin any sooner than cycle $1C

520 S28 S30 S38

11111111111" L-----I (contlnup~

3 o 2 3 4 5

"~11--lI~"'DlSK DMA TIME"i""'~-,AUIDIO --__ f4~----------------------------------SPRITEDMATIME----------------------------------__ ~

Data fetch start can only be speCified at even
multiples of B clocks. ThiS IS the clock position
which should be speCified for the normal Width
display. (20 word fetch for 320 pixel, 40 word
fetch for 640 pixel width)

Five clocks must occur before the data fetched for a particular
position can appear on·screen. For example, if data fetch start
is $38. data will not be available for display until clock number
$45. It is available at $45 because display processing does not
begin until all of the bit· planes for a particular p'lxel have been
fetched.

*' These operations only take slots If the associated operatIOn IS being performed.
Note' Copper Data Move instructions require 4 slots

Copper Wait instructions require 6 SIOH.

ThiS cycle 0 appears to exclude one of the memory refresh cycles. ThiS IS not the case.

Actual system hardware demands certain speCifiC values for data fetch start and display start.
Therefore thiS timing chart has been "adjusted" to match those requirements.

$ Indicates a hel(number.

8·37 same
as cycte 7

D 320 mod, B"·P',,, DMA. by P""' j

• 640 mode Blt·Plane DMA, by plane -t-

D Slots available for Blltter, Copper and 68000 I

[ill Sprite DMA j (2 words/channell

Figure 6-9: DMA Time Slot Allocation

Some sprites are unusable Ii the display start~ early due to
an extra word(s) associated With a Wide display and or
horizontal scrolling. In thiS case, the hlt·plane DMA steals
the cycles normally allocated to the sprites, as illustrated
above

A hardware data· fetch stop has been Installed at count SOB
so as to prevent the bit-plane data fetch from overrunning
the time allotted for the memory refresh or disk DMA

lIIIll AudiO DMA I (2 bvtes'channell

~ Memory Refresh

End of
Horizontal
Line Data

Fetch Cycle

below)

The 68000 uses only the even-numbered memory access cycles. The 68000 spends about half of
a complete processor instruction time doing internal operations and the other half accessing
memory. Therefore, the allocation of alternate memory cycles to the 68000 makes it appear to the
68000 that it has the memory all of the time, and it will run at full speed.

Some 68000 instructions do not match perfectly with the allocation of even cycles and cause
cycles to be missed. If cycles are missed, the 68000 must wait until its next available memory
slot before continuing. However, most instructions do not cause cycles to be missed, so the
68000 runs at full speed most of the time if there is no blitter DMA interference.

Figure 6-10 illustrates the normal cycle of the 68000.

NOTE

The 68000 test-and-set instruction (TAS) should never be used in the Amiga; the indi
visible read-modify-write cycle that is used only in this instruction will not fit into a
DMA memory access slot.

average 68000 cycle

internal memory
operation access

portion portion

odd cycle, even cycle,
assigned to available to

other devices the 68000

Figure 6-10: Normal 68000 Cycle

If the display contains four or fewer low-resolution bit-planes, the 68000 can be granted alternate
memory cycles (if it is ready to ask for the cycle and is the highest priority item at the time).
However, if there are more than four bit-planes, bit-plane DMA will begin to steal cycles from the
68000 during the display.

During the display time for a six-bit-plane display (low resolution, 320 pixels wide), 160 time
slots will be taken by bit-plane DMA for each horizontal line. As you can see from Figure 6-11,
bit-plane DMA steals 50 percent of the open slots that the processor might have used if there were
only four bit-planes displayed.

Blitter Hardware 191

T

+ *
4 6

- timing cycle -

+

2 3

Figure 6-11: Time Slots Used by a Six Bit Plane Display

T+7

*
5

If you specify four high-resolution bit-planes (640 pixels wide), bit-plane DMA needs all of the
available memory time slots during the display time just to fetch the 40 data words for each line
of the four bit-planes (40 * 4 = 160 time slots). This effectively locks out the 68000 (as well as
the blitter or Copper) from any memory access during the display, except during horizontal and
vertical blanking.

T - timing cycle - T+7

4 2 3 I 4 2 3

Figure 6-12: Time Slots Used by a High Resolution Display

Each horizontal line in a normal, full-sized display contains 320 pixels in low-resolution mode or
640 pixels in high-resolution mode. Thus, either 20 or 40 words will be fetched during the hor
izontalline display time. If you want to scroll a playfield, one extra data word per line must be
fetched from the memory.

Display size is adjustable (see Chapter 3, "Playfield Hardware"), and bit-plane DMA takes pre
cedence over sprite DMA. As shown in Figure 6-9, larger displays may block out one or more of
the highest-numbered sprites, especially with scrolling.

192 Blitter Hardware

As mentioned above, the blitter normally has a higher priority than the processor for DMA cycles.
There are certain cases, however, when the blitter and the 68000 can share memory cycles. If
given the chance, the blitter would steal every available memory cycle. Display, disk, and audio
DMA take precedence over the blitter, sO it cannot block them from bus access. Depending on
the setting of the blitter DMA mode bit, commonly referred to as the "blitter-nasty" bit, the pro
cessor may be blocked from bus access. This bit is called DMAF _BLITHOG and is in register
DMACON.

If DMAF _BLITHOG is a 1, the blitter will keep the bus for every available memory cycle. This
could potentially be every cycle.

If DMAF _BLITHOG is a 0, the DMA manager will monitor the 68000 cycle requests. If the
68000 is unsatisfied for three consecutive memory cycles, the blitter will release the bus for one
cycle.

Blitter Block Diagram

• Figure 6-13 shows the basic building blocks for a single bit of a 16-bit wide operation of the
blitter. It does not cover the line-drawing hardware.

• The upper left comer shows how the first- and last- word masks are applied to the incom
ing A-source data. When the blit shrinks to one word wide, both masks are applied.

• The shifter (upper right and center left) drawing illustrates how 16 bits of data is taken from a
specified position within a 32-bit register, based on the A shift or B shift values shown in
BLTCONO and BLTCONI.

• The minterm generator (center right) illustrates how the minterm select bits either allow or
inhibit the use of a specific minterm.

• The drawing shows how the fill operation works on the data generated by the minterm com
binations. Fill operations can be performed simultaneously with other complex logic opera
tions.

• At the bottom, the drawing shows that data generated for the destination can be prevented
from being written to a destination by using one of the blitter control bits.

• Not shown on this diagram is the logic for zero detection, which looks at every bit generated
for the destination. If there are any I-bits generated, this logic indicates that the area of the
blit contained at least one I-bit (zero detect is false.)

Blitter Hardware 193

DATA BUS

first

16 BLOCKS

Multi-Minterm
Select Bits (8)

Fill Carry In t------r-.......

OATA BUS

first
word --",_-,
time

2nd"* _~_
word
time

last
word
time

16 16 16

Minterm Generator (all minterms produced)

ABC ABC JiBC ABC ABC ABC ABC

Fill
Carry
Out

(to next
block)

Figure 6-13: Blitter Block Diagram

194 Blitter Hardware

Fill
Carry
Out

{to next
word)

BUtter Key Points

This is a list of some key points that should be remembered when programming the blitter.

• Write BLTSIZE last; writing this register starts the blit.

• Modulos and pointers are in bytes; width is in words and height is in pixels. The least
significant bit of all pointers and modulos is ignored.

• The order of operations in the blitter is masking, shifting, logical combination of sources,
area fill, and zero flag setting.

• In ascending mode, the blitter increments the pointers, adds the modulos, and shifts to the
right.

• In descending mode, the blitter decrements the pointers, subtracts the modulos, and shifts to
the left.

• Area fill only works correctly in descending mode.

• Check BLTDONE before writing blitter registers or using the results of a blit.

• Shifts are done on immediate data as soon as it is loaded.

EXAMPLE: ClearMem

Blitter example---memory clear

include 'exec/types.i'
include 'hardware/custom.i'
include 'hardware/dmabits.i'
include 'hardware/blit.i'
include 'hardware/hw_examples.i"

xref custom

Wait for previous blit to complete.

waitblit:
btst.b #DMAB_BLTDONE-8,DMACONR(al)

waitblit2:
btst.b #DMAB BLTDONE-8,DMACONR(al)
bne waitblit2
rts

This routine uses a side effect in the blitter. When each

Blitter Hardware 195

of the blits is finished, the pointer in the blitter is pointing
to the next word to be blitted.

When this routine returns, the last blit is started and might
not be finished, so be sure to call waitblit above before
assuming the data is clear.

aO pointer to first word to clear
dO number of bytes to clear (must be even)

xdef clearmem
clearmem:

lea
bsr
move. 1
clr.w
asr.l
clr.w
move.w

custom,a1
waitblit
aO, BLTDPT (a1)
BLTDMOD (a1)
i1,dO
BLTCON1 (a1)
iDEST,BLTCONO(a1)

Get pointer to chip registers
Make sure previous blit is done
Set up the D pointer to the region to clear
Clear the D modulo (don't skip no bytes)
Get number of words from number of bytes
No special modes

only enable destination

First we deal with the smaller blits
;

moveq i$3f,d1 Mask out mod 64 words
and.w dO,d1
beq dorest none? good, do one blit
sUb.l d1,dO otherwise remove remainder
or.l i$40,d1 set the height to 1, width to n
move.w d1, BLTSIZE (a1) trigger the blit

Here we do the rest of the words, as chunks of 128k

dorest:
move.w i$ffcO,d1
and.w dO,d1
beq dorest2
sub.l d1,dO
bsr waitblit
move.w dO,BLTSIZE(a1)

dorest2:
swap dO
beq done
clr.w d1

keepon:
bsr waitblit
move.w d1, BLTSIZE (a1)
subq.w t1,dO
bne keepon

done:
rts
end

196 Blitter Hardware

look at some more upper bits
extract 10 more bits
any to do?
pull of the ones we're doing here
wait for prev blit to complete
do another blit

more?
nope.
do a 1024x64 word blit (128K)

finish up this blit
and again, blit
still more?
keep on going.

finished. Blit still in progress.

EXAMPLE: SimpleLine

This example uses the line draw mode of the blitter
to draw a line. The line is drawn with no pattern
and a simple 'or' blit into a single bitplane.

Input: dO=xl dl=yl d2=x2 d3=y2 d4=width aO=aptr

include 'exec/types.i'
include 'hardware/custom.i'
include 'hardware/blit.i'
include 'hardware/dmabits.i'

include 'hardware/hw_examples.i'

xref custom

xdef simpleline

Our entry point.

simpleline:
lea
sub.w
bmi
sub.w
bmi
cmp.w
bmi
moveq.l
bra

ygtx:
exg
moveq.l
bra

yneg:
neg.w
cmp.w
bmi
moveq.l
bra

ynygtx:
exg
moveq.l
bra

xneg:
neg.w
sub.w
bmi
cmp.w
bmi
moveq.l
bra

xnygtx:
exg
moveq.l
bra

_custom,al
dO,d2

snarf up the custom address register
calculate dx

xneg if negative, octant is one of [3,4,5,6]
dl,d3 calculate dy " is one of [1,2,7,8]
yneg if negative, octant is one of [7,8]
d3,d2 cmp Idxl, Idyl is one of [1,2]
ygtx if y>x, octant is 2
tOCTANT1+LINEMODE,d5 ; otherwise octant is 1
lineagain go to the common section

d2,d3 X must be greater than Y
tOCTANT2+LINEMODE,d5 ; we are in octant 2
lineagain and common again.

d3 calculate abs(dy)
d3,d2 cmp Idxl, Idyl, octant is [7,8]
ynygtx if y>x, octant is 7
tOCTANT8+LINEMODE,d5 ; otherwise octant is 8
lineagain

d2,d3 ; X must be greater than Y
tOCTANT7+LINEMODE,d5 ; we are in octant 7
lineagain

d2 dx was negative! octant is [3,4,5,6]
dl,d3 we calculate dy
xyneg if negative, octant is one of [5,6]
d3,d2 otherwise it's one of [3,4]
xnygtx if y>x, octant is 3
tOCTANT4+LINEMODE,d5 ; otherwise it's 4
lineagain

d2,d3 ; X must be greater than Y
tOCTANT3+LINEMODE,d5 ; we are in octant 3
lineagain

Blltter Hardware 197

xyneg:
neg.w d3 Y was negative, in one of [5,6]
cmp.w d3,d2 is y>x?
bmi xynygtx if so, octant is 6
moveq.l iOCTANT5+LINEMODE,d5 ; otherwise, octant is 5
bra lineagain

xynygtx:
exg
moveq.l

lineagain:
mulu.w
ror.l
add.w
add.l
add.w
swap
or.w
Isl.w
add.w
move.w
Isl.w
add.w
btst

waitblit:
btst
bne
move.w
sub.w
ext.l
move. 1
bpl
or.w

lineover:
move.w
move.w
move.w
move.w
sub.w
move.w
move.w
moveq.l
move. 1
move.l
move. 1
move.w
rts
end

d2,d3 ; X must be greater than Y
iOCTANT6+LINEMODE,d5 ; we are in octant 6

d4,dl Calculate yl * width
i4,dO move upper four bits into hi word
dO,dO mUltiply by 2
dl,aO ptr += (xl » 3)
dO,aO ptr += yl * width
dO get the four bits of xl
i$BFA,dO or with USEA, USEC, USED, F=A+C
i2,d3 Y = 4 * Y
d2, d2 X = 2 * X
d2,dl set up size word
i5,dl shift five left
i$42,dl and add 1 to height, 2 to width
iDMAB_BLTDONE-8, DMACONR (al) safety check

iDMAB BLTDONE-8,DMACONR(al)
waitblit

wait for blitter

d3,BLTBMOD(al) ; B mod = 4 * Y
d2,d3
d3
d3,BLTAPT(al)
lineover
iSIGNFLAG,d5

dO,BLTCONO(al)
d5,BLTCONl(al)
d4,BLTCMOD(al)
d4,BLTDMOD(al)
d2,d3

A ptr = 4 * Y - 2 * X
if negative,
set sign bit in conI

write control registers

C mod = bitplane width
D mod bitplane width

d3,BLTAMOD(al) A mod 4 * Y - 4 * X
i$8000,BLTADAT(al) A data = Ox8000
i-l,d5 Set masks to all ones
d5, BLTAFWM (al) we can hit both masks at once
aO,BLTCPT(al) Pointer to first pixel to set
aO, BLTDPT (al)
dl,BLTSIZE(al) Start blit

and return, blit still in progress.

198 BUtter Hardware

EXAMPLE: RotateBits

Here we rotate bits. This code takes a single raster row of a
bitplane, and 'rotates' it into an array of 16-bit words, setting
the specified bit of each word in the array according to the
corresponding bit in the raster row. We use the line mode in

; conjunction with patterns to do this magic.

Input: dO contains the number of words in the raster row. d1
contains the number of the bit to set (0 .. 15). aO contains a
pointer to the raster data, and a1 contains a pointer to the
array we are filling; the array must be at least (dO)*16 words
(or (dO)*32 bytes) long.

include 'exec/types.i'
include , hardware/custom. i'
include , hardware/blit. i'
include 'hardware/dmabits.i'

include 'hardware/hw_examples.i'

xref custom

xdef rotatebits

Our entry point.

rotatebits:

wait1:

lea
tst
beq
lea
moveq.l
btst

btst
bne
moveq.l
move.l
move.w
clr.w
move.w
move.w
ror.w
and.w
or.w
move.w
move.w
move.w
move.w
move.w
move.l
move.l
lea
lea
move.w
move.w

_custom,a2
dO

We need to access the custom registers
if no words, just return

gone
DMACONR(a2),a3 get the address of dmaconr
#DMAB_BLTDONE-8,d2 ; get the bit number BLTDONE
d2, (a3) check to see if we're done

check again.
not done? Keep waiting

d2, (a3)
wait1
#-30, d3 Line mode: aptr = 4Y-2X, Y=O; X-15
d3, BLTAPT (a2)
#-60, BLTAMOD (a2) ; amod - 4Y-4X
BLTBMOD(a2) bmod 4Y
#2,BLTCMOD(a2) cmod = width of bitmap (2)
#2,BLTDMOD(a2) ditto
#4,d1 grab the four bits of the bit number
#$fOOO,d1 mask them out
#$bca,d1 USEA, USEC, USED, F=AB+-AC
d1,BLTCONO(a2) stuff it
#$f049,BLTCON1(a2) BSH=15, SGN, LINE
#$8000,BLTADAT(a2) Initialize A dat for line
#$ffff, BLTAFWM (a2) Initialize masks
#$ffff,BLTALWM(a2)
a1, BLTCPT (a2)
al,BLTDPT(a2)
BLTBDAT(a2),a4
BLTSIZE(a2),a5
#$402,d1
(aO)+,d3

Initialize pointer

For quick access, we grab these two
addresses
Stuff bltsize; width=2, height=16
Get next word

Blitter Hardware 199

bra inloop Go into the loop
again:

move.w (aO)+,d3 Grab another word
btst d2, (a3) Check blit done

wait2:
btst d2, (a3) Check again
bne wait2 oops, not ready, loop around

inloop:
move.w d3, (a4) stuff new word to make vertical
move.w dl, (as) start the blit
subq.w #I,dO is that the last word?
bne again keep going if not

gone:
rts
end

200 Blitter Hardware

Chapter 7

SYSTEM CONTROL HARDWARE

Introduction

This chapter covers the control hardware of the Amiga system, including the following topics:

• How playfield priorities may be specified relative to the sprites

How collisions between objects are sensed

System Control Hardware 201

• How system direct memory access (DMA) is controlled

• How interrupts are controlled and sensed

• How reset and early powerup are controlled

Video Priorities

You can control the priorities of various objects on the screen to give the illusion of three dimen
sions. The section below shows how playfield priority may be changed relative to sprites.

FIXED SPRITE PRIORITIES

You cannot change the relative priorities of the sprites. They will always appear on the screen
with the lower-numbered sprites appearing in front of (having higher screen priority than) the
higher-numbered sprites. This is shown in Figure 7-1. Each box represents the image of the
sprite number shown in that box.

I 7
I 6

I 5 -I 4
~

I 3
~

I 2
~

I 1 --0
~

r-

Figure 7-1: Inter-Sprite Fixed Priorities

202 System Control Hardware

HOW SPRITES ARE GROUPED

For playfield priority and collision purposes only, sprites are treated as four groups of two sprites
each. The groups of sprites are:

Sprites 0 and 1
Sprites 2 and 3
Sprites 4 and 5
Sprites 6 and 7

UNDERSTANDING VIDEO PRIORITIES

The concept of video priorities is easy to understand if you imagine that four fingers of one of
your hands represent the four pairs of sprites and two fingers of your other hand represent the two
playfields. Just as you cannot change the sequence of the four fingers on the one hand, neither
can you change the relative priority of the sprites. However, just as you can intertwine the two
fingers of one hand in many different ways relative to the four fingers of the other hand, so can
you position the playfields in front of or behind the sprites. This is illustrated in Figure 7-2.

In Front (H igher Priority)

Playfields f

Behind

Figure 7-2: Analogy for Video Priority

System Control Hardware 203

Five possible positions can be chosen for each of the two "playfield fingers." For example, you
can place play field 1 on top of sprites 0 and 1 (0). between sprites 0 and 1 and sprites 2 and 3 (1),
between sprites 2 and 3 and sprites 4 and 5 (2), between sprites 4 and 5 and sprites 6 and 7 (3), or
beneath sprites 6 and 7 (4). You have the same possibilities forplayfield 2.

The numbers 0 through 4 shown in parentheses in the preceding paragraph are the actual values
you use to select the playfield priority positions. See" Setting the Priority Control Register"
below.

You can also control the priority of playfield 2 relative to playfield 1. This gives you additional
choices for the way you can design the screen priorities.

SETTING THE PRIORITY CONTROL REGISTER

This register lets you define how objects will pass in front of each other or hide behind each other.
Normally, playfield 1 appears in front of play field 2. The PF2PRI bit reverses this relationship,
making playfield 2 more important. You control the video priorities by using the bits in
BPLCON2 (for "bit-plane control register number 2") as shown in Table 7-1.

Table 7-1: Bits in BPLCON2

Bit
Number Name Function

15-7 Not used (keep at 0)

6 PF2PRI Playfield 2 priority

5-3 PF2P2 - PF2PO Play field 2 placement with
respect to the sprites

2-0 PFIP2 - PFIPO Play field 1 placement with
respect to the sprites

The binary values that you give to bits PFIP2-PF1PO determine where playfield 1 occurs in the
priority chain as shown in Table 7-2. This matches the description given in the previous section.

NOTE

PF2P2 - PF2PO, bits 5-3, are the priority bits for normal (non-dual) playfields.

204 System Control Hardware

Table 7-2: Priority of Play fields Based on Values of Bits PFIP2-PFlPO

Value Placement
(from most important to least important)

000 PFI SPOI SP23 SP45 SP67

001 SPOI PFI SP23 SP45 SP67

010 SPOI SP23 PFI SP45 SP67

011 SPOI SP23 SP45 PFI SP67

100 SPOI SP23 SP45 SP67 PFI

In this table, PFI stands for play field 1, and SPOI stands for the group of sprites numbered 0 and
1. SP23 stands for sprites 2 and 3 as a group; SP45 stands for sprites 4 and 5 as a group; and
SP67 stands for sprites 6 and 7 as a group.

Bits PF2P2-PF2PO let you position playfield 2 among the sprite priorities in exactly the same
way. However, it is the PF2PRI bit that detennines which of the two playfields appears in front
of the other on the screen. Here is a sample of possible BPLCON2 register contents that would
create something a little unusual:

BITS 15-7 PF2PRI PF2P2-0 PFIP2-0

VALUE Os 1 010 000

This will result in a sprite/playfield priority placement of:

PFI SPOI SP23 PF2 SP45 SP67

In other words, where objects pass across each other, playfield 1 is in front of sprite 0 or 1; and
sprites 0 through 3 are in front of playfield 2. However, playfield 2 is in front of playfield 1 in
any area where they overlap and where playfield 2 is not blocked by sprites 0 through 3.

Figure 7-3 shows one use of sprite/playfield priority. The single sprite object shown on the
diagram is sprite O. The sprite can "fly" across playfield 2, but when it crosses playfield 1 the
sprite disappears behind that playfield. The result is an unusual video effect that causes the object
to disappear when it crosses an invisible boundary on the screen.

System Control Hardware 205

Playfield 1

206 System Control Hardware

;;<..

Sprite 0

Playfield 2

When everything is displayed
together, sprite 0 is more important
than playfield 2 but less important
than playfield 1. So even thbugh
you can't see the boundary, the
sprite disappears "behind" the
invisible PFI boundary.

Figure 7-3: Sprite/Playfield Priority

Collision Detection

You can use the hardware to detect collisions between one sprite group and another sprite group,
any sprite group and either of the playfields, the two playfields, or any combination of these
items.

The first kind of collision is typically used in a game operation to determine if a missile has col
lided with a moving player. The second kind of collision is typically used to keep a moving
object within specified on-screen boundaries. The third kind of collision detection allows you to
define sections of playfield as individual objects, which you may move using the blitter. This is
called playfield animation. If one playfield is defined as the backdrop or playing area and the
other playfield is used to define objects (in addition to the sprites), you can sense collisions
between the playfield-objects and the sprites or between the playfield-objects and the other
playfield.

HOW COLLISIONS ARE DETERMINED

The video output is formed when the input data from all of the bit-planes and the sprites is com
bined into a common data stream for the display. For each of the pixel positions on the screen,
the color of the highest priority object is displayed. Collisions are detected when two or more
objects attempt to overlap in the same pixel position. This will set a bit in the collision data
register.

System Control Hardware 207

HOW TO INTERPRET THE COLLISION DATA

The collision data register, CLXDAT, is read-only, and its contents are automatically cleared to 0
after it is read. Its bits are as shown in Table 7-3.

Table 7-3: CLXDAT Bits

Bit
Number Collisions Registered

15 not used
14 Sprite 4 (or 5) to sprite 6 (or 7)
13 Sprite 2 (or 3) to sprite 6 (or 7)
12 Sprite 2 (or 3) to sprite 4 (or 5)
11 Sprite 0 (or 1) to sprite 6 (or 7)
10 Sprite 0 (or 1) to sprite 4 (or 5)
9 Sprite 0 (or 1) to sprite 2 (or 3)
8 Even bit-planes to sprite 6 (or 7)
7 Even bit-planes to sprite 4 (or 5)
6 Even bit-planes to sprite 2 (or 3)
5 Even bit-planes to sprite 0 (or 1)
4 Odd bit-planes to sprite 6 (or 7)
3 Odd bit-planes to sprite 4 (or 5)
2 Odd bit-planes to sprite 2 (or 3)
1 Odd bit-planes to sprite 0 (or 1)
o Even bit-planes to odd bit-planes

NOTE

The numbers in parentheses in Table 7-3 refer to collisions that will register only if
you want them to show up. The collision control register described below lets you
either ignore or include the odd-numbered sprites in the collision detection.

Notice that in this table, collision detection does not change when you select either single- or
dual-play field mode. Collision detection depends only on the actual bits present in the odd
numbered or even-numbered bit-planes. The collision control register specifies how to handle the
bit-planes during collision detect.

208 System Control Hardware

HOW COLLISION DETECTION IS CONTROLLED

The collision control register, CLXCON, contains the bits that define certain characteristics of
collision detection. Its bits are shown in Table 7-4.

Bit
Number Name

15 ENSP7
14 ENSP5
13 ENSP3
12 ENSPI
11 ENBP6
10 ENBP5
9 ENBP4
8 ENBP3
7 ENBP2
6 ENBPI
5 MVBP6
4 MVBP5
3 MVBP4
2 MVBP3
1 MVBP2
o MVBP1

Table 7-4: CLXCON Bits

Function

Enable sprite 7 (OR with sprite 6)
Enable sprite 5 (OR with sprite 4)
Enable sprite 3 (OR with sprite 2)
Enable sprite 1 (OR with sprite 0)
Enable bit-plane 6 (match required for collision)
Enable bit-plane 5 (match required for collision)
Enable bit-plane 4 (match required for collision)
Enable bit-plane 3 (match required for collision)
Enable bit-plane 2 (match required for collision)
Enable bit-plane 1 (match required for collision)
Match value for bit-plane 6 collision
Match value for bit-plane 5 collision
Match value for bit-plane 4 collision
Match value for bit-plane 3 collision
Match value for bit-plane 2 collision
Match value for bit-plane 1 collision

Bits 15-12 let you specify that collisions with a sprite pair are to include the odd-numbered sprite
of a pair of sprites. The even-numbered sprites always are included in the collision detection.
Bits 11-6 let you specify whether to include or exclude specific bit-planes from the collision
detection. Bits 5-0 let you specify the polarity (true-false condition) of bits that will cause a colli
sion. For example, you may wish to register collisions only when the object collides with
"something green" or "something blue." This feature, along with the collision enable bits,
allows you to specify the exact bits, and their polarity, for the collision to be registered.

NOTE

This register is write-only. If all bit-planes are excluded (disabled), then a bit-plane
collision will always be detected.

System Control Hardware 209

Beam Position Detection

Sometimes you might want to synchronize the 68000 processor to the video beam that is creating
the screen display. In some cases, you may also wish to update a part of the display memory
after the system has already accessed the data from the memory for the display area.

The address for accessing the beam counter is provided so that you can determine the value of the
video beam counter and perform certain operations based on the beam position.

NOTE

The Copper is already capable of watching the display position for you and doing cer
tain register-based operations automatically. Refer to "Copper Interrupts" below and
Chapter 2, "Coprocessor Hardware," for further information.

In addition, when you are using a light pen with this system, this same address is used to read the
light pen position rather than the beam position. This is described fully in Chapter 8, "Interface
Hardware."

USING THE BEAM POSITION COUNTER

There are four addresses that access the beam position counter. Their usage is described in Table
7-5.

210 System Control Hardware

Table 7-5: Contents of the Beam Position Counter

VPOSR Read-only Read the high bit of the vertical
position (V8) and the frame-type bit.

Bit 15 LOF (Long-frame bit). Used to
initialize interlaced displays.

Bits 14-1 Unused

Bit 0 High bit of the vertical position
(V8). Allows PAL line counts (313) to
appear in PAL versions of the Amiga.

VHPOSR Read-only Read vertical and horizontal
position of the counter that is
producing the beam on the screen
(also reads the light pen).

Bits 15-8 Low bits of the vertical
position, bits V7 -VO

Bits 7-0 The horizontal position, bits H8-Hl.
Horizontal resolution is l/16Oth
of the screen width.

VPOSW Write only Bits same as VPOSR above.

VHPOSW Write only Bits same as VHPOSR above.
Used for counter synchronization
with chip test patterns.

As usual, the address pairs VPOSR,VHPOSR and VPOSW,VHPOSW can be read from and writ
ten to as long words, with the most significant addresses being VPOSR and VPOSW.

Interrupts

This system supports the full range of 68000 processor interrupts. The various kinds of interrupts
generated by the hardware are brought into the peripherals chip and are translated into six of the
seven available interrupts of the 68000.

System Control Hardware 211

NONMASKABLEINTERRUPT

Interrupt level 7 is the nonmaskable interrupt and is not generated anywhere in the current system.
The raw interrupt lines of the 68000, IPL2 through IPLO, are brought out to the expansion con
nector and can be used to generate this level 7 interrupt for debugging purposes.

MASKABLE INTERRUPTS

Interrupt levels I through 6 are generated. Control registers within the peripherals chip allow you
to mask certain of these sources and prevent them from generating a 68000 interrupt.

USER INTERFACE TO THE INTERRUPT SYSTEM

The system software has been designed to correctly handle all system hardware interrupts at lev
els 1 through 6. A separate set of input lines, designated INT2* and INT6* 1 have been routed to
the expansion connector for use by external hardware for interrupts. These are known as the
external low- and external high-level interrupts.

These interrupt lines are connected to the peripherals chip and create interrupt levels 2 and 6,
respectively. It is recommended that you take advantage of the interrupt handlers built into the
operating system by using these external interrupt lines rather than generating interrupts directly
on the processor interrupt lines.

INTERRUPT CONTROL REGISTERS

There are two interrupt registers, interrupt enable (mask) and interrupt request (status). Each
register has both a read and a write address.

The names of the interrupt addresses are

INTENA
Interrupt enable (mask) - write only. Sets or clears specific bits of INTENA.

INTENAR
Interrupt enable (mask) read - read only. Reads contents of INTENA.

1 A * indicates an active low signal.

212 System Control Hardware

INTREQ
Interrupt request (status) - write only. Used by the processor to force a certain kind of
interrupt to be processed (software interrupt). Also used to clear interrupt request flags
once the interrupt process is completed.

INTREQR
Interrupt request (status) read - read only. Contains the bits that define which items are
requesting interrupt service.

The bit positions in the interrupt request register correspond directly to those same posi
tions in the interrupt enable register. The only difference between the read-only and the
write-only addresses shown above is that bit 15 has no meaning in the read-only
addresses.

SETTING AND CLEARING BITS

Below are the meanings of the bits in the interrupt control registers and how you use them.

Set and Clear

The interrupt registers, as well as the DMA control register, use a special way of selecting which
of the bits are to be set or cleared. Bit 15 of these registers is called the SET/CLR bit.

When you wish to set a bit (make it a 1), you must place a 1 in the position you want to set and a
1 into position 15.

When you wish to clear a bit (make it a 0), you must place a 1 in the position you wish to clear
and a 0 into position 15.

Positions 14-0 are bit-selectors. You write a 1 to anyone or more bits to select that bit. At the
same time you write a 1 or 0 to bit 15 to either set or clear the bits you have selected. Positions
14-0 that have 0 value will not be affected when you do the write. If you want to set some bits
and clear others, you will have to write this register twice (once for setting some bits, once for
clearing others).

System Control Hardware 213

Master Interrupt Enable

Bit 14 of the interrupt registers (INTEN) is for interrupt enable. This is the master interrupt
enable bit. If this bit is a 0, it disables all other interrupts. You may wish to clear this bit to
temporarily disable all interrupts to do some critical processing task.

NOTE

This bit is used for enable/disable only. It creates no interrupt request.

External Interrupts

Bits 13 and 3 of the interrupt registers are reserved for external interrupts.

Bit 13, EXTER, becomes a 1 when the system line called INT6* becomes a logic O. Bit 13 gen
erates a level 6 interrupt.

Bit 3, PORTS, becomes a 1 when the system line called INT2* becomes a logic O. Bit 3 causes a
level 2 interrupt.

Vertical Blanking Interrupt

Bit 5, VERTB, causes an interrupt at line 0 (start of vertical blank) of the video display frame.
The system is often required to perform many different tasks during the vertical blanking interval.
Among these tasks are the updating of various pointer registers, rewriting lists of Copper tasks
when necessary, and other system-control operations.

The minimum time of vertical blanking is 20 horizontal scan lines for an NTSC system and 25
horizontal scan lines for a PAL system. The range starts at line 0 and ends at line 20 for NTSC or
line 25 for PAL. After the minimum vertical blanking range, you can control where the display
actually starts by using the DIWSTRT (display window start) register to extend the effective vert
ical blanking time. See Chapter 3, "Playfield Hardware," for more information on DIWSTRT.

If you find that you still require additional time during vertical blanking, you can use the Copper
to create a level 3 interrupt. This Copper interrupt would be timed to occur just after the last line
of display on the screen (after the display window stop which you have defined by using the
DIWSTOP register).

214 System Control Hardware

Copper Interrupt

Bit 4, COPER, is used by the Copper to issue a level 3 interrupt. The Copper can change the con
tent of any of the bits of this register, as it can write any value into most of the machine registers.
However, this bit has been reserved for specifically identifying the Copper as the interrupt source.

Generally, you use this bit when you want to sense that the display beam has reached a specific
position on the screen, and you wish to change something in memory based on this occurrence.

Audio Interrupts

Bits 10 -7, AUD3 - 0, are assigned to the audio channels. They are called AUD3, AUD2, AUDl,
and AUDO and are assigned to channels 3, 2, 1, and 0, respectively.

This level 4 interrupt signals "audio block done." When the audio DMA is operating in
automatic mode, this interrupt occurs when the last word in an audio data stream has been
accessed. In manual mode, it occurs when the audio data register is ready to accept another word
of data.

See Chapter 5, "Audio Hardware,' , for more information about interrupt generation and timing.

Blitter Interrupt

Bit 6, BLIT, signals "blitter finished." If this bit is a 1, it indicates that the blitter has completed
the requested data transfer. The bUtter is now ready to accept another task. This bit generates a
level 3 interrupt.

Disk Interrupt

Bits 12 and 1 of the interrupt registers are assigned to disk interrupts.

Bit 12, DSKSYN, indicates that the sync register matches disk data. This bit generates a levelS
interrupt.

System Control Hardware 215

Bit 1, DSKBLK, indicates "disk block finished." It is used to indicate that the specified disk
DMA task that you have requested has been completed. This bit generates a level 1 interrupt

More information about disk data transfer and interrupts may be found in Chapter 8, "Interface
Hardware."

Serial Port Interrupts

The following serial interrupts are associated with the specified bits of the interrupt registers.

Bit 11, RBF (for receive buffer full), specifies that the input buffer of the DART has data that is
ready to read. This bit generates a level 5 interrupt.

Bit 0, TBE (for "transmit buffer empty"), specifies that the output buffer of the DART needs
more data and data can now be written into this buffer. This bit generates a level 1 interrupt.

Hardware Exec Software priority
priority Description

label

1 software interrupt SOFTINT

1 2 disk block complete DSKBLK

3 transmitter buffer empty TBE

2 4 externallNT2 & CIAA PORTS

5 graphics coprocessor COPER

3 6 vertical blank interval VERTB

7 blitter finished BLiT

8 audio channel 2 AUD2

9 audio channel 0 AUDO
4

10 audio channel 3 AUD3

1 1 audio channel 1 AUD1

12 receiver buffer full RBF
5

13 disk sync pattern found DSKSYNC

6
14 external INT6 & CIAB EXTER

15 special (master enable) INTEN
7 -- non-maskable interrupt NMI

Figure 7-4: Interrupt Priorities

216 System Control Hardware

DMAControl

Many different direct memory access (DMA) functions occur during system operation. There is a
read address as well as a write address to the DMA register so you can tell which DMA channels
are enabled.

The address names for the DMA register are as follows:

DMACONR - Direct Memory Access Control - read-only.

DMACON - Direct Memory Access Control- write-only.

The contents of this register are shown in Table 7-5 (bit on if enabled).

Processor Access to Chip Memory

The Amiga chips access chip memory directly, rather than utilizing traditional bus arbitration
mechanisms. Therefore, processor supplied features for multiprocessor support, such as the
68000 T AS (test and set) instruction, cannot serve their intended purpose and are not supported
by the Amiga architecture.

System Control Hardware 217

Table 7-6: Contents of DMA Register

Bit
Number Name Function

15 SET/CLR The set/reset control bit See description of bit
15 under "Inteffilpts" above.

14 BBUSY Blitter busy status - read-only

13 BZERO Blitter zero status - read-only. Remains 1
if, during a blitter operation, the blitter output
was always zero.

12, 11 Unassigned

10 BLTPRI Blitter priority. Also known as "blitter-nasty."
When this is aI, the blitter has full (instead of
partial) priority over the 68000.

9 DMAEN DMA enable. This is a master DMA enable bit. It
enables the DMA for all of the channels at bits 8-0.

8 BPLEN Bit-plane DMA enable

7 COPEN Coprocessor DMA enable

6 BLTEN Blitter DMA enable

5 SPREN Sprite DMA enable

4 DSKEN Disk DMA enable

3-0 AUDxEN Audio DMA enable for channels 3-0 (x = 3 - 0).

For more information on using the DMA, see the following chapters:

Copper Chapter 2 "Coprocessor Hardware"
Bit-planes Chapter 3 "Playfield Hardware"
Sprites Chapter 4 "Sprite Hardware"
Audio Chapter 5 "Audio Hardware"
Blitter Chapter 6 "Blitter Hardware"
Disk Chapter 8 "Interface Hardware"

218 System Control Hardware

Reset and Early Startup Operation

When the Amiga is turned on or externally reset, the memory map is in a special state. An addi
tional copy of the system ROM responds starting at memory location $00000000. The system
RAM that would normally be located at this address is not available. On some Amiga models,
portions of the RAM still respond. On other models, no RAM responds. Software must assume
that memory is not available. The OVL bit in one of the 8520 Chips disables the overlay (See
Appendix F for the bit location).

The Amiga System ROM contains an ID code as the first word. The value of the ID code may
change in the future. The second word of the ROM contains a JMP instruction ($4ef9). The next
two words are used as the initial program counter by the 68000 processor.

The 68000 "RESET" instruction works much like external reset or power on. All memory and
AUTOCONFIGTM cards disappear, and the ROM image appears at location $00000000. The
difference is that the CPU continues execution with the next instruction. Since RAM may not be
available, special care is needed to write reboot code that will reliably reboot all Amiga models.
Here is a source code listing of the only supported reboot code:

i------ The *only* supported reboot code
CNOP 0,4 ;IMPORTANT: Must be longword aligned

MagicResetCode:
lea.l 2,aO
RESET
jmp (aO)

;Point to JMP instruction at start of ROM
;all RAM goes away now!
;Rely on prefetch to execute this instruction

The RESET instruction must be executed when the CPU is at the Supervisor privilege level. If
running under Exec, the following code must be used:

ColdReboot:
move. 1 4,a6
lea.l MagicResetCode(pc),a5
jsr _LVOSupervisor(a6)

;Get a pointer to ExecBase
;Location of code to trap to
;start code (must use JSR)

System Control Hardware 219

Chapter 8

INTERFACE HARDWARE

Introduction

This chapter covers the interface hardware through which the Amiga talks to the outside world,
including the following features:

• Two multiple purpose mouse/joystick!light pen control ports

• Disk controller (for floppy disk drives & other MFM and GCR devices)

Interface Hardware 221

Keyboard

• Centronics compatible parallel I/O interface (for printers)

• RS232-C compatible serial interface (for external modems or other serial devices)

• Video output connectors (RGB, monochrome, NTSC, RF modulator, video slot)

Controller Port Interface

Each Amiga has two nine-pin connectors that can be used for input or output with many different
kinds of controllers. The figure shows one of the two connectors and the corresponding face-on
view of the typical controller plug.

Face View
Controller Plug

Face View
Computer Connector

Figure 8-1: Controller Plug and Computer Connector

222 Interface Hardware

Table 8-1: Typical Controller Connections

Mouse,
Trackball, Proportional X-V

Driving Controller Proportional
Pin Joystick Controller (Pair) Joystick Light Pen

I Forward V-pulse --- Button 3:j: ---

2 Back H-pulse --- --- ---
3 Left VQ-pulse Left button Button I ---
4 Right HQ-pulse Right button Button 2 ---
5t --- Middle button :j: Right POT POT X Pen pressed

to screen

6t Button I Left button --- --- Beam
trigger

7 --- +5V +5V +5V +5V

8 GND GND GND GND GND

9t Button 2:j: Right button LeftPOT POTY Button 2:j:

t These pins may also be configured as outputs
:j: These buttons are optional

REGISTERS USED WITH THE CONTROLLER PORT

JOYODAT
JOYIDAT
CIAAPRA
POTODAT
POT I DAT
POTGO
POTGOR
BPLCONO
VPOSR
VHPOSR

($DFFOOA)
($DFFOOC)
($BFEOOI)
($DFF012)
($DFFOI4)
($DFF034)
($DFFOI6)
($DFF I 00)
($DFFOO4)
($DFF006)

Counter for digital (mouse) input (port 1)
Counter for digital (mouse) input (port 2)
Input and output for pin 6 (port 1 and 2 fire buttons)
Counter for proportional input (port 1)
Counter for proportional input (port 2)
Write proportional pin values and start counters
Read proportional pin values
Bit 3 enables the light pen latch
Read light pen position (high order bits)
Read light pen position (low order bits)

Interface Hardware 223

READING MOUSE/TRACKBALL CONTROLLERS

Pulses entering the mouse inputs are converted to separate horizontal and vertical counts. The 8
bit wide horizontal and vertical counter registers can track mouse movement without processor
intervention.

The mouse uses quadrature inputs. For each direction, a mechanical wheel inside the mouse will
produce two pulse trains, one 90 degrees out of phase with the other (see Figure 8-2 for details).
The phase relationship determines direction.

The counters increment when the mouse is moved to the right or "down" (toward you).
The counters decrement when the mouse is moved to the left or "up" (away from you).

V va 01 DO
MOUSE QUADRATURE

0 0 1 0
0 1 0 1

0 1 1

Case 1: Count Up: 0 0

V -.J \ / \ / \ (

va / \ / \ / \
DO

01 \ / \ 0 / \
Case 2: Count Down:

V -.J \ I \ I \ I
va \ / \ / \ /
DO

01 / \ I \ I \
02 ~etc

Figure 8-2: Mouse Quadrature

224 Interface Hardware

Reading the Counters

The mouse/trackball counter contents can be accessed by reading register addresses named
JOYODAT and JOY1DAT. These contains counts for ports 1 and 2 respectively.

The contents of each of these 16-bit registers are as follows:

Bits 15-8
Bits 7-0

Mouse/trackball vertical count
Mouse/trackball horizontal count

Counter Limitations

These counters will "wrap around" in either the positive or negative direction. If you wish to
use the mouse to control something that is happening on the screen, you must read the counters at
least once each vertical blanking period and save the previous contents of the registers. Then you
can subtract from the previous readings to detennine direction of movement and speed.

The mouse produces about 200 count pulses per inch of movement in either a horizontal or verti
cal direction. Vertical blanking happens once each l/6Oth of a second. If you read the mouse
once each vertical blanking period, you will most likely find a count difference (from the previous
count) of less than 127. Only if a user moves the mouse at a speed of more than 38 inches per
second will the counter values wrap. Fast-action games may need to read the mouse register
twice per frame to prevent counter overrun.

If you subtract the current count from the previous count, the absolute value of the difference will
represent the speed. The sign of the difference (positive or negative) lets you detennine which
direction the mouse is traveling.

The easiest way to calculate mouse velocity is with 8-bit signed arithmetic. The new value of a
counter minus the previous value will represent the number of mouse counts since the last check.
The example shown in Table 8-2 presents an alternate method. It treats both counts as unsigned
values, ranging from 0 to 255. A count of 100 pulses is measured in each case.

Interface Hardware 225

Table 8-2: Detennining the Direction of the Mouse

Previous Current
Count Count Direction

200 100 Up (Left)
100 200 Down (Right)
200 45 Down *

45 200 Up**

Notes for Table 8-1:

* Because 200-45::;: 155, which is more than 127, the true count must be 255 - (200-45) ::;:
100; the direction is down.

** 45-200::;: -155. Because the absolute value of -155 exceeds 127, the true count must be
255 + (-155) ::;: 100; the direction is up.

Mouse Buttons

There are two buttons on the standard Amiga mouse. However, the control circuitry and software
support up to three buttons.

• The left button on the Amiga mouse is connected to, CIAAPRA ($BFEool). The button
for port 1 is connected to bit 6, port 2 is connected to bit 7. See the 8520 Appendix for
more infonnation. A logic state of 1 means "switch open." A logic state of 0 means
"switch closed."

Button 2 (right button on Amiga mouse) is connected to pin 9 of the controller ports, one
of the proportional pins. See "DIGITAL INPUT/OUTPUT ON THE CONTROLLER
PORT" for details.

Button 3, when used, is connected to pin 5, the other proportional controller input.

READING DIGITAL JOYSTICK CONTROLLERS

Digital joysticks contain four directional switches. Each switch can be individually activated by
the control stick. When the stick is pressed diagonally, two adjacent switches are activated. The
total number of possible directions from a digital joystick is 8. All digital joysticks have at least
one fire button.

226 Interface Hardware

Digital joystick switches are of the nonnally open type. When the switches are pressed, the input
line is shorted to ground. An open switch reads as "1", a closed switch as "0".

Reading the joystick input data logic states is not so simple, however, because the data registers
for the joysticks are the same as the counters that are used for the mouse or trackball controllers.
The joystick registers are named JOYODAT and JOYIDAT.

Table 8-2 shows how to interpret the data once you have read it from these registers. The true
logic state of the switch data in these registers is "I = switch closed."

PORT 1
(mouse)

>
UJ
(f)

~
0
~

6
0
IX
«
~
IX
0
u..

MOUSE 0
Y Counter

Vertical

MOUSE Counters

6
0

I
UJ
(f)

~
0
~

6
~
U «
a:l

2 3

7 8
0 0

a a
I

> UJ
UJ (f)

(f) ~
~ 0
0 ~
~

6
6
t-

t- I
u.. c.9
UJ
....J IX

4 5
0

9
0

MOUSEO
X Counter

Horizontal

PORT 2 1 2 3 4 5
0

6
0 0 0 0

7 8 9
0 0 0 0

JOY1DAT
DFFOOC
is wired similarly

JOYODAT
DFFOOA
Read Only

Interface Hardware 227

Table 8-3: Interpreting Data from JOYODAT and JOYIDAT

Data Bit Interpretation

1 True logic state of "right" switch.

9 True logic state of "left" switch.

1 (XOR) 0 You must calculate the exclusive-or of bits 1 and 0
to obtain the logic state of the "back" switch.

9 (XOR) 8 You must calculate the exclusive-or of bits 9 and 8
to obtain the logic state of the "forward" switch.

The fire buttons for ports 0 and 1 are connected to bits 6 and 7 of CIAAPRA ($BFEOOl). A 0
here indicates the switch is closed.

Some, but not all, joysticks have a second button. We encourage the use of this button if the
function the button controls is duplicated via the keyboard or another mechanism. This button
may be read in the same manner as the right mouse button.

READING PROPORTIONAL CONTROLLERS

Each of the game controller ports can handle two variable-resistance input devices, also known as
proportional input devices. This section describes how the positions of the proportional input
devices can be detennined. There are two common types of proportional controllers: the' 'pad
dle" controller pair and the X -Y proportional joystick. A paddle controller pair consists of two
individual enclosures, each containing a single resistor and fire-button and each connected to a
common controller port input connector. Typical connections are shown in Figure 8-3.

228 Interface Hardware

Left Paddle Right Paddle

Resistive Element Resistive Element

1+5 L
I 1+5 L

I
Pin 7 Pin 9 Pin 7 Pin 5

I· Fire Button ~ I· Fire Button ~
Pin 8 Pin 3 Pin 8 Pin 4

Figure 8-4: Typical Paddle Wiring Diagram

In an X-Y proportional joystick, the resistive elements are connected individually to the X and Y
axes of a single controller stick.

Reading Proportional Controller Buttons

For the paddle controllers, the left and right joystick direction lines serve as the fire buttons for
the left and right paddles.

Interpreting Proportional Controller Position

Interpreting the position of the proportional controller normally requires some preliminary work
during the vertical blanking interval.

During vertical blanking, you write a value into an address called POTGO. For a standard X-Y
joystick, this value is hex 0001. Writing to this register starts the operation of some special
hardware that reads the potentiometer values and sets the values contained in the POT registers
(described below) to zero.

The read circuitry stays in a reset state for the first seven or eight horizontal video scan lines. Fol
lowing the reset interval, the circuit allows a charge to begin building up on a timing capacitor
whose charge rate will be controlled by the position of the external controller resistance. For each
horizontal scan line thereafter, the circuit compares the charge on the timing capacitor to a preset
value. If the charge is below the preset, the POT counter is incremented. If the charge is above
the preset, the counter value will be held until the next POTGO is issued.

Interface Hardware 229

VOLTAGE

Charging Curve For Low Resistance

For Higher Resistance

L--- Each Pot Counter
Stops When Voltage
Reaches This Value

---------------1 Starts 8 Horizontal

Lines After POTGO
Is Written

----- TIME ------I ...

Figure 8-5: Effects of Resistance on Charging Rate

You nonnally issue POTGO at the beginning of a video screen, then read the values in the POT
registers during the next vertical blanking period, just before issuing POTGO again.

Nothing in the system prevents the counters from overflowing (wrapping past a count of 255).
However, the system is designed to insure that the counter cannot overflow within the span of a
single screen. This allows you to know for certain whether an overflow is indicated by the con
troller.

Proportional Controller Registers

The following registers are used for the proportional controllers:

POTODAT - port 1 data (vertical/horizontal)
POTIDAT - port 2 data (vertical/horizontal)

Bit positions:

Bits 15-8 POTOY value or POTI Y value
Bits 7-0 POTOX value or POTIX value

All counts are reset to zero when POTGO is written with bit zero high. Counts are nonnally read
one frame after the scan circuitry is enabled.

230 Interface Hardware

Potentiometer Specifications

The resistance of the potentiometers should be a linear taper. Based on the design of the integrat
ing analog-to-digital converter used, the maximum resistance should be no more than 528K
(470K +/- 10 percent is suggested) for either the X or Y pots. This is based on a charge capacitor
of O.047uf, +/- 10 percent, and a maximum time of 16.6 milliseconds for charge to full value, ie.
one video frame time.

All potentiometers exhibit a certain amount of "jitter". For acceptable results on a wide base of
configurations, several input readings will need to be averaged.

PORT 1 Connector

o 0 0

o 0

+5

Max = 470K ~
±100J6 f

OPEN

POT COUNTER

47nf

T
V

POT1Y POT1X POT1DAT
COUNTER COUNTER DFF014

'----~rr----I-----~ Read Only

>- >- X X >-a: a: a: a: -l
t- t- t- t- t-
::::> « ::::> « ::::>
O 0 0 0 0

BIT 15 • •
• •
• •

14

>- X X
-l -l -l
t- t- t-« ::::> «
0 0 0

• •
• •
• •

POTGO
DFF034
Write Only

t-
a:
«
t-xxx xxx x en

BITO

o

POTINP
DFF016
Read Only

Figure 8-6: Potentiometer Charging Circuit

Interface Hardware 231

READING A LIGHT PEN

A light pen can be connected to one of the controller ports. On the AlOOO, the light pen must be
connected to port 1. Changing ports requires a minor internal modification. On the A500 and
A2000 the default is port 2. An internal jumper can select port 1. Regardless of the port used, the
light pen design is the same.

The signal called "pen-pressed-to-screen" is typically actuated by a switch in the nose of the
light pen. Note that this switch is connected to one of the potentiometer inputs and must be read
as same as the right or middle button on a mouse.

The principles of light pen operation are as follows:

1. Just as the system exits vertical blank, the capture circuitry for the light pen is automati
cally enabled.

2. The video beam starts to create the picture, sweeping from left to right for each horizon
tal line as it paints the picture from the top of the screen to the bottom.

3. The sensors in the light pen see a pulse of light as the video beam passes by. The pen
converts this light pulse into an electrical pulse on the "Beam Trigger" line (pin 6).

4. This trigger signal tells the internal circuitry to capture and save the current contents of
the beam register, VPOSR. This allows you to determine where the pen was placed by
reading the exact horizontal and vertical value of the counter beam at the instant the
beam passed the light pen.

232 Interface Hardware

Reading the Light Pen Registers

The light pen register is at the same address as the beam counters. The bits are as follows:

VPOSR:

VHPOSR:

Bit 15
Bits 14-1
BitO

Bits 15-8
Bits 7-0

Long frame/short frame. O=short frame
Chip ID code. Do not depend on value!
V8 (most significant bit of vertical position)

V7-VO (vertical position)
H8-HI (horizontal position)

The software can refer to this register set as a long word whose address is VPOSR.

The positional resolution of these registers is as follows:

Vertical 1 scan line in non-interlaced mode
2 scan lines in interlaced mode (However, if you know which interlaced
frame is under display, you can detennine the correct position)

Horizontal 2 low-resolution pixels in either high- or low-resolution

The quality of the light pen will detennine the amount of short-term jitter. For most applications,
you should average several readings together.

To enable the light pen input, write a 1 into bit 3 of BPLCONO. Once the light pen input is
enabled and the light pen issues a trigger signal, the value in VPOSR is frozen. If no trigger is
seen, the counters latch at the end of the display field. It is impossible to read the current beam
location while the VPOSR register is latched. This freeze is released at the end of internal verti
cal blanking (vertical position 20). There is no single bit in the system that indicates a light pen
trigger. To detennine if a trigger has occurred, use one of these methods:

1. Read (long) VPOSR twice.

2. If both values are not the same, the light pen has not triggered since the last top-of
screen (V = 20).

3. If both values are the same, mask off the upper 15 bits of the 32-bit word and compare it
with the hex value of $10500 (V=261).

4. If the VPOSR value is greater than $10500, the light pen has not triggered since the last
top-of-screen. If the value is less, the light pen has triggered and the value read is the
screen position of the light pen.

Interface Hardware 233

A somewhat simplified method of determining the truth of the light pen value involves instructing
the system software to read the register only during the internal vertical blanking period of
0<V20:

1. Read (long) VPOSR once, during the period of 0< V20.

2. Mask off the upper 15 bits of the 32-bit word and compare it with the hex value of
$10500 (V=261).

3. If the VPOSR value is greater than $10500, the light pen has not triggered since the last
top-of-screen. If the value is less, the light pen has triggered and the value read is the
screen position of the light pen.

Note that when the light pen latch is enabled, the VPOSR register may be latched at any time, and
cannot be relied on as a counter. This behavior may cause problems with software that attempts
to derive timing based on VPOSR ticks.

DIGITAL INPUT/OUTPUT ON THE CONTROLLER PORT

The Amiga can read and interpret many different and nonstandard controllers. The control lines
built into the POTGO register (address $DFF034) can redefine the functions of some of the con
troller port pins.

Table 8-4 is the POTGO register bit description. POTGO ($DFF034) is the write-only address
for the pot control register. POTINP ($DFFOI6) is the read-only address for the pot control regis
ter. The pot-control register controls a four-bit bidirectionalI/O port that shares the same four
pins as the four pot inputs.

Table 8-4: POTGO ($DFF034) and POTINP ($DFFOI6) Registers

Bit
Number

15
14
13
12
11
10
09
08
07-01
00

234 Interface Hardware

Name

OUTRY
DATRY
OUTRX
DATRX
OUTLY
DATLY
OUTLX
DATLX
X
START

Function

Output enable for bit 14 (l=output)
data for port 2, pin 9
Output enable for bit 12
data for port 2, pin 5
Output enable for bit 10
data for port 1, pin 9 (right mouse button)
Output enable for bit 8
data for port 1, pin 5 (middle mouse button)
chip revision identification number
Start pots (dump capacitors, start counters)

Instead of using the pot pins as variable-resistive inputs, you can use these pins as a four-bit
input/output port. This provides you with two additional pins on each of the two controller ports
for general purpose I/O.

If you set the output enable for any pin to a I, the Amiga disconnects the potentiometer control
circuitry from the port, and configures the pin for output. The state of the data bit controls the
logic level on the output pin. This register must be written to at the POTGO address, and read
from the POTINP address. There are large capacitors on these lines, and it can take up to 300
microseconds for the line to change state.

To use the entire register as an input, sensing the current state of the pot pins, write all Os to
POTGO. Thereafter you can read the current state by using read-only address POTINP. Note
that bits set as inputs will be connected to the proportional counters (See the description of the
START bit in POTGO).

These lines can also be used for button inputs. A button is a normally open switch that shorts to
ground. The Amiga must provide a pull-up resistance on the sense pin. To do this, set the proper
pin to output, and drive the line high (set both OUT ... and DAT ... to 1). Reading POTINP will
produce a 0 if the button is pressed, a 1 if it is not.

The joystick fire buttons can also be configured as outputs. CIAADDRA ($BFE201) contains a
mask that corresponds one-to-one with the data read register, CIAAPRA ($BFE001). Setting a 1
in the direction position makes the corresponding bit an output. See the 8520 appendix for more
details.

Floppy Disk Controller

The built-in disk controller in the system can handle up to four MFM-type devices. Typically
these are double-sided, double-density, 3.5" (9Omm) or 5.25" disk drives. One 3.5" drive is
installed in the basic unit.

The controller is extremely flexible. It can DMA an entire track of raw MFM data into memory
in a single disk revolution. Special registers allow the CPU to synchronize with specific data, or
read input a byte at a time. The controller can read and write virtually any double-density MFM
encoded disk, including the Amiga V1.0 format, IBM PC (MS-DOS) 5.25", IBM PC (MS-DOS)
3.5" and most CPfMTM formatted disks. The controller has provisions for reading and writing
most disk using the Group Coded Recording (GCR) method, including Apple WM disks. With
motor speed tricks, the controller can read and write Commodore 1541/1571 format diskettes.

Interface Hardware 235

REGISTERS USED BY THE DISK SUBSYSTEM

The disk subsystem uses two ports on the system's 8520 CIA chips, and several registers in the
Paula chip:

CIAAPRA
CIABPRB
ADKCON
ADKCONR
DSKPTH
DSKLEN
DSKBYTR
DSKSYNC

MOTOR ON

DRIVE SELECT

STEP

WRITE GATE

SIDE SELECT

WRITE DATA

($BFEOOl)
($BFDIOO)
($DFF09E)
($DFFOIO)
($DFF020)
($DFF024)
($DFFOIA)
($DFF07E)

four input bits for disk sensing
eight output bits for disk selection, control and stepping
control bits (write only register)
control bits (read only register)
DMA pointer (32 bits)
length of DMA
Disk data byte and status read
Disk sync finder; holds a match word

-----1 -I
IL---~ ___ _

500ms min

IL----_I ___ ----.II
I

1.lmsmin I r ..
I

18ms min

l"smin

-'OOtr
8"s max I ----00+--+1_- 8"s max

-I I" - "I .-

I I I I I I
Figure 8-7: Chinon Timing Diagram

236 Interface Hardware

DRIVE SELECT

STEP

DIRECTION
SELECT

TRACK 00

DRIVE SELECT

STEP

WRITE GATE

SIDE SELECT

VALID
READ DATA

11---____ -----!1

I I
3ms min l8ms min I t - -I .• -I··

~----- ~------

22ms -iT-
,---J~---

t: 1tls min.

11--------h l J.1Smin

U
l8msmin

lJ1smin

100
J1:rinl .. l.lmsmin

1

J l8,msmax I I
lJ1smin

1.12m!r
aX 4 max

I I I I I I I I I I I I I I
Figure 8-8: Chinon Timing Diagram (cont.)

Interface Hardware 237

CIAAPRAICIABPRB - Disk selection, control and sensing

The following table lists how 8520 chip bits used by the disk subsystem. Bits labeled "PA" are
input bits in CIAAPRA ($BFEOOI). Bits labeled "PB" are output bits located in CIAAPRB
($BFDlOO). More information on how the 8520 chips operate can be found in Appendix F.

Table 8-5: Disk Subsystem

Bit Name Function

PA5 DSKRDY* Disk ready (active low). The drive will pull this line low when
the motor is known to be rotating at full speed. This signal
is only valid when the motor is ON, at other times configuration
information may obscure the meaning of this input

PA4 DSKTRACKO* Track zero detect. The drive will pull this line low
when the disk heads are positioned over track zero.
Software must not attempt to step outwards when this signal
is active. Some drives will refuse to step, others will
attempt the step, possibly causing alignment damage.
All new drives must refuse to step outward in this condition.

PA3 DSKPROT* Disk is write protected (active low).

PA2 DSKCHANGE* Disk has been removed from the drive. The signal goes
low whenever a disk is removed. It remains low until

PB? DSKMOTOR*

238 Interface Hardware

a disk is inserted AND a step pulse is received.

Disk motor control (active low). This signal is nonstandard
on the Amiga system. Each drive will latch the motor signal at
the time its select signal turns on. The disk drive motor
will stay in this state until the next time select turns on.
DSKMOTOR * also controls the activity light on the front
of the disk drive.

All software that selects drives must set up the motor signal
before selecting any drives. The drive will "remember"
the state of its motor when it is not selected. All drive
motors tum off after system reset.

PB6 DSKSEL3*

PBS DSKSEL2*

PB4 DSKSELl*

PB3 DSKSELO*

PB2 DSKSIDE

PBl DSKDIREC

PBO DSKSTEP*

FLAG DSKINDEX*

After turning on the motor, software must further wait for
one half second (500ms), or for the DSKRDY* line to go low.

Select drive 3 (active low).

Select drive 2 (active low).

Select drive 1 (active low).

Select drive 0 (internal drive) (active low).

Specify which disk head to use. Zero indicates the upper head.
DSKSIDE must be stable for 100 microseconds before writing.
After writing, at least 1.3 milliseconds must pass before
switching DSKSIDE.

Specify the direction to seek the heads. Zero implies
seek towards the center spindle. Track zero is at the outside
of the disk. This line must be set up before the actual step
pulse, with a separate write to the register.

Step the heads of the disk. This signal must always be
used as a quick pulse (high, momentarily low, then high).

The drives used for the Amiga are guaranteed to get to the next
track within 3 milliseconds. Some drives will support a much
faster rate, others will fail. Loops that decrement a counter
to provide delay are not acceptable. See Appendix F
for a better solution.

When reversing directions, a minimum of 18 milliseconds delay is
required from the last step pulse. Settle time for Amiga drives
is specified at 15 milliseconds.

Disk index pulse ($BFDDOO, bit 4). Can be used to
create a level 6 interrupt. See Appendix F for details.

Interface Hardware 239

Disk DMA Channel Control

Data is nonnally transferred to the disk by direct memory access (DMA). The disk DMA is con
trolled by four items:

Pointer to the area into which or from which the data is to be moved

Length of data to be moved by DMA

• Direction of data transfer (read/write)

• DMA enable

DSKPTH - Pointer to Data

You specify the 32-bit-wide address from which or to which the data is to be transferred. The
lowest bit of the address must be zero, and the buffer must be in CHIP memory. The value must
be written as a single long word to the DSKPfH register ($DFF020).

DSKLEN - Length, Direction, DMA Enable

All of the control bits relating to this topic are contained in a write-only register, called DSKLEN:

Table 8-6: DSKLEN Register ($DFF024)

Bit
Number

15
14
13-0

240 Interface Hardware

Name

DMAEN
WRITE
LENGTH

Usage

Secondary disk DMA enable
Disk write (RAM -7 disk if 1)
Number of words to transfer

The hardware requires a special sequence in order to start DMA to the disk. This sequence
prevents accidental writes to the disk. In short, the DMAEN bit in the DSKLEN register must be
turned on twice in order to actually enable the disk DMA hardware. Here is the sequence you
should follow:

1. Enable disk DMA in the DMACON register (See Chapter 7 for more infonnation)

2. Set DSKLEN to $4000, thereby forcing the DMA for the disk to be turned off.

3. Put the value you want into the DSKLEN register.

4. Write this value again into the DSKLEN register. This actually starts the DMA.

5. After the DMA is complete, set the DSKLEN register back to $4000, to prevent acciden
tal writes to the disk.

As each data word is transferred, the length value is decremented. After each transfer occurs, the
value of the pointer is incremented. The pointer points to the the next word of data to written or
read. When the length value counts down to 0, the transfer stops. •

The recommended method of reading from the disk is to read an entire track into a buffer and then
search for the sector(s) that you want. Using the DSKSYNC register (described below) will
guarantee word alignment of the data. With this process you need to read from the disk only once
for the entire track. In a high speed loader, the step to the next head can occur while the previous
track is processed and checksummed. With this method there are no time-critical sections in
reading data, other high-priority subsystems (such as graphics or audio) are be allowed to run.

If you have too little memory for track buffering (or for some other reason decide not to read a
whole track at once), the disk hardware supports a limited set of sector-searching facilities. There
is a register that may be polled to examine the disk input stream.

There is a hardware bug that causes the last three bits of data sent to the disk to be lost. Also, the
last word in a disk-read DMA operation may not come in (that is, one less word may be read than
you asked for).

Interface Hardware 241

DSKBYTR - Disk Data Byte and Status Read (read-only)

This register is the disk-microprocessor data buffer. In read mode, data from the disk is placed
into this register one byte at a time. As each byte is received into the register, the DSKBYT bit is
set true. DSKBYT is cleared when the DSKBYTR register is read.

DSKBYTR may be used to synchronize the processor to the disk rotation before issuing a read or
write under DMA control.

Bit
Number

15

14

13

12

11-8

7-0

Name

DSKBYT
•

DMAON

DISKWRITE

WORDEQUAL

DATA

Table 8-7: DSKBYTR Register

Function

When set, indicates that this register contains
a valid byte of data (reset by reading this register).

Indicates when DMA is actually enabled. All the various
DMA bits must be true. This means the DMAEN bit in
DKSLEN, and the DSKEN & DMAEN bits in DMACON.

The disk write bit (in DSKLEN) is enabled.

Indicates the DISKSYNC register equals the disk input
stream. This bit is true only while the input stream matches
the sync register (as little as two microseconds).

Currently unused; don't depend on read value.

Disk byte data.

ADKCON and ADKCONR - Audio and Disk Control Register

ADKCON is the write-only address and ADKCONR is the read-only address for this register.
Not all of the bits are dedicated to the disk. Bit 15 of this register allows independent setting or
clearing of any bit or bits. If bit 15 is a one on a write, any ones in positions 0-14 will set the
corresponding bit. If bit 15 is a zero, any ones will clear the corresponding bit

242 Interface Hardware

Table 8-8: ADKCON and ADKCONR Register

Bit
Number Name Function

15 SET/CLR Control bit that allows setting or clearing of individual
bits without affecting the rest of the register.

If bit 15 is a 1, the specified bits are set.
If bit 15 is a 0, the specified bits are cleared.

14 PRECOMPI MSB of Precompensation specifier
13 PRECOMPO LSB of Precompensation specifier

Value of 00 selects none.
Value of 01 selects 140 ns.
Value of 10 selects 280 ns.
Value of 11 selects 560 ns.

12 MFMPREC Value of 0 selects GCR Precompensation.
Value of 1 selects MFM Precompensation.

10 WORDSYNC Value of 1 enables synchronizing and starting
of DMA on disk read of a word. The word on which
to synchronize must be written into the DSKSYNC
address ($DFF07E). This capability is highly
useful.

9 MSBSYNC Value of I enables sync on most significant bit of the
input (usually used for GCR).

8 FAST Value of 1 selects two microseconds per bif cell
(usually MFM). Data must be valid raw MFM.
o selects four microseconds per bit (usually GCR).

Interface Hardware 243

The raw MFM data that must be presented to the disk controller will be twice as large as the
unencoded data. The following table shows the relationship:

1~01

o ~ 10 ;iffollowing a 0
o ~ 00 ;if following a 1

With clever manipulation, the blitter can be used to encode and decode the MFM.

In one common form of GCR recording, each data byte always has the most significant bit set to a
1. MSBSYNC, when a 1, tells the disk controller to look for this sync bit on every disk byte.
When reading a GCR formatted disk, the software must use a translate table called a nybble-izer
to assure that data written to the disk does not have too many consecutive I 's or O's.

DSKSYNC - Disk Input Synchronizer

The DSKSYNC register is used to synchronize the input stream. This is highly useful when read
ing disks. If the WORDSYNC bit is enabled in ADKCON, no data is transferred until a word is
found in the input stream that matches the word in the DSKSYNC register. On read, DMA will
start with the following word from the disk. During disk read DMA, the controller will resync
every time the word match is found. Typically the DSKSYNC will be set to the magic MFM
sync mark value, $4489.

In addition, the DSKSYNC bit in INTREQ is set when the input stream matches the DSKSYNC
register. The DSKSYNC bit in INTREQ is independent of the WORDSYNC enable.

DISK INTERRUPTS

The disk controller can issue three kinds of interrupts:

• DSKSYNC (levelS, INTREQ bit l2)-input stream matches the DSKSYNC register.

• DSKBLK (levell, INTREQ bit I)-disk DMA has completed.

• INDEX (level 6, 8520 Flag pin)-index sensor triggered.

Interrupts are explained further in the section "Length, Direction, DMA Enable". See Chapter 7,
"System Control Hardware," for more information about interrupts. See Appendix F for more
information on the 8520.

244 Interface Hardware

The Keyboard

The keyboard is interfaced to the system via the serial shift register on one of the 8520 CIA chips.
The keyboard data line is connected to the SP pin, the keyboard clock is connected to the CNT
pin. Appendix H contains a full description of the interface.

HOW THE KEYBOARD DATA IS RECEIVED

The CNT line is used as a clock for the keyboard. On each transition of this line, one bit of data
is clocked in from the keyboard. The keyboard sends this clock when each data bit is stable on
the SP line. The clock is an active low pulse. The rising edge of this pulse clocks in the data.

After a data byte has been received from the keyboard, an interrupt from the 8520 is issued to the
processor. The keyboard waits for a handshake signal from the system before transmitting any
more keystrokes. This handshake is issued by the processor pulsing the SP line low then high.
While some keyboards can detect a I microsecond handshake pulse, the pulse must be at least 85
microseconds for operation with all models of Amiga keyboards.

If another keystroke is received before the previous one has been accepted by the processor, the
keyboard microprocessor holds keys in a 10 keycode type-ahead buffer.

TYPE OF DATA RECEIVED

The keyboard data is not received in the form of ASCII characters. Instead, for maximum versa
tility, it is received in the form of keycodes. These codes include both the down and up transi
tions of the keys. This allows your software to use both sets of information to determine exactly
what is happening on the keyboard.

Here is a list of the hexadecimal values that are assigned to the keyboard. A downstroke of the
key transmits the value shown here. An upstroke of the key transmits this value plus $80. The
picture of the keyboard at the end of this section shows the positions that correspond to the
description in the paragraphs below.

Note that raw keycodes provide positional information only, the legend which is printed on top of
the keys changes from country to country.

Interface Hardware 245

RAW KEYCODES -7 00-3F hex

These are key codes assigned to specific positions on the main body of the keyboard. The letters
on the tops of these keys are different for each country; not all countries use the QWERTY key
layout. These keycodes are best described positionally as shown in Figure 8-9 and Figure 8-10 at
the end of the keyboard section. The international keyboards have two more keys that are "cut
out" of larger keys on the USA version. These are $30, cut out from the the left shift, and $2B,
cut out from the return key.

RAW KEY CODES -7 40-SF hex (Codes common to all keyboards)

40 Space
41 Backspace
42 Tab
43 Numeric Pad "ENTER"
44 Return
45 Escape
46 Delete
4C Cursor up
4D Cursor down
4E Cursor right
4F Cursor left
50-59 Function keys FI-FlO
5F Help

RAW KEYCODES -7 60-67 hex (Key codes for qualifier keys:)

60 Left shift
61 Right shift
62 Caps lock
63 Control
64 LeftALT
65 Right ALT
66 Left Amiga (or Commodore key)
67 Right Amiga

246 Interface Hardware

FO-FFhex

These key codes are used for keyboard to 68000 communication, and are not associated with a
keystroke. They have no key transition flag, and are therefore described completely by 8-bit
codes:

78 Reset warning. CfRL-AMIGA-AMIGA has been pressed. The keyboard
will wait a maximum of 10 seconds before resetting the machine.
(Not available on all keyboard models)

F9 Last key code bad, next key is same code retransmitted
FA Keyboard key buffer overflow
Fe Keyboard self-test fail. Also, the caps-lock LED will blink

to indicate the source of the error. Once for ROM failure,
twice for RAM failure and three times jf the watchdog timer
fails to function.

FD Initiate power-up key stream (for keys held or stuck at power on)
FE TeIminate power-up key stream.

These key codes will usually be filtered out by keyboard drivers.

LIMITATIONS OF THE KEYBOARD

The Amiga keyboard is a matrix of rows and columns with a key switch at each intersection (see
Appendix H for a diagram of the matrix). Because of this, the keyboard is subject to a
phenomenon called "phantom keystrokes." While this is generally not a problem for typing,
games may require several keys be independently held down at once. By examining the matrix,
you can deteImine which keys may interfere with each other, and which ones are always safe.

Phantom keystrokes occur when certain combinations of keys pressed are pressed simultaneously.
For example, hold the "A" and "S" keys down simultaneously. Notice that "A" and "S" are
transmitted. While still holding them down, press "Z". On the original Amiga 1000 keyboard,
both the "Z" and a ghost "X" would be generated. Starting with the Amiga 500, the controller
was upgraded to notice simple phantom situations like the one above; instead of generating a
ghost, the controller will hold off sending any character until the matrix has cleared (releasing
•• A" or •• S" would clear the matrix). Some high-end Amiga keyboards may implement true
"N-key rollover," where any combination of keys can be detected simultaneously.

Interface Hardware 247

All of the keyboards are designed so that phantoms will not happen during normal typing, only
when unusual key combinations like the one just described are pressed. Normally, the keyboard
will appear to have "N-key rollover," which means that you will run out of fingers before gen
erating a ghost character.

NOTE

Seven keys are not part of the matrix, and will never contribute to generating phan
toms. These keys are: CfRL, the two SHIFf keys, the two Amiga keys, and the two
ALTkeys.

248 Interface Hardware

ESC F1

45 46

00
TAB

CTRL

63
SHIFT

re.sr1
~

7 8 9

3D 3E 3F
HELP 4 5 6

20 2E 2F
1 2 3

10 1E 1 F
0

OF 3C
Af, AL T ENTER A

66 40 67 4A 43

Figure 8-9: The Amiga 1000 Keyboard, Showing Keycodes in Hexadecimal

() I

SA 58 5C 50
7 8 9

3D 3E 3F 4A
A 4 5 6 +

4C 20 2E 2F 5E
v 1 2 3 ENTER

40 4E 10 1E 1F 43
0

OF 3C

Figure 8-10: The Amiga 500/2000 Keyboard, Showing Keycodes in Hexadecimal

Interface Hardware 249

Parallel Input/Output Interface

The general-purpose bi-directional parallel interface is a 25-pin connector on the back panel of the
computer. This connector is generally used for a parallel printer.

For each data byte written to the parallel port register, the hardware automatically generates a
pulse on the data ready pin. The acknowledge pulse from the parallel device is hooked up to an
interrupt. For pin connections and timing, see Appendix E and F.

Serial Interface

A 25-pin connector on the back panel of the computer serves as the general purpose serial inter
face. This connector can drive a wide range of different peripherals, including an external modem
or a serial printer.

For pin connections, see Appendix E.

INTRODUCTION TO SERIAL CIRCUITRY

The Paula custom chip contains a Universal Asynchronous Receiverrrransmitter, or UART. This
UART is programmable for any rate from 110 to over 1,000,000 bits per second. It can receive or
send data with a programmable length of eight or nine bits.

The UART implementation provides a high degree of software control. The UART is capable of
detecting overrun errors, which occur when some other system sends in data faster than you
remove it from the data-receive register. There are also status bits and interrupts for the condi
tions of receive buffer full and transmit buffer empty. An additional status bit is provided that
indicates "all bits have been shifted out". All of these topics are discussed below.

SETTING THE BAUD RATE

The rate of transmission (the baud rate) is controlled by the contents of the register named
SERPER. Bits 14-0 of SERPER are the baud-rate divider bits.

250 Interface Hardware

All timing is done on the basis of a "color clock," which is 279.36ns long on NTSC machines
and 281.94ns on PAL machines. If the SERPER divisor is set to the number N, then N+l color
clocks occur between samples of the state of the input pin (for receive) or between transmissions
of output bits (for transmit). Thus SERPER=(3,579,545/baud)-1. On a PAL machine,
SERPER=(3,546,895/baud)-I. For example, the proper SERPER value for 9600 baud on an
NTSC machine is (3,579,545/9600)-1=371.

With a cable of a reasonable length, the maximum reliable rate is on the order of 150,000-250,000
bits per second. Maximum rates will vary between machines. At these high rate it is not possible
to handle the overhead of interrupts. The receiving end will need to be in a tight read loop.
Through the use of low speed control information and high-speed bursts, a very inexpensive com
munication network can be built.

SETTING THE RECEIVE MODE

The number of bits that are to be received before the system tells you that the receive register is
full may be defined either as eight or nine (this allows for 8 bit transmission with parity). In
either case, the receive circuitry expects to see one start bit, eight or nine data bits, and at least
one stop bit.

Receive mode is set by bit 15 of the write-only SERPER register. Bit 15 is a 1 if you chose nine
data bits for the receive-register full signal, and a 0 if you chose eight data bits. The normal state
of this bit for most receive applications is a O.

CONTENTS OF THE RECEIVE DATA REGISTER

The serial input data-receive register is 16 bits wide. It contains the 8 or 9 bit input data and
status bits.

The data is received, one bit at a time, into an internal serial-to-parallel shift register. When the
proper number of bit times have elapsed, the contents of this register are transferred to the serial
data read register (SERDATR) shown in Table 8-10, and you are signaled that there is data ready
for you.

Immediately after the transfer of data takes place, the receive shift register again becomes ready to
accept new data. After receiving the receiver-full interrupt, you will have up to one full
character-receive time (8 to 10 bit times) to accept the data and clear the interrupt. If the interrupt
is not cleared ill time, the OVERRUN bit is set.

Interface Hardware 251

Table 8-10 shows the definitions of the various bit positions within SERDATR.

Bit
Number

15

14

13

12

11

10

9

Name

OVRUN

RBF

TBE

TSRE

RXD

STP

252 Interface Hardware

Table 8-9: SERDA TR / ADKCON Registers

SERDATR

Function

OVERRUN bit
(Mirror-also appears in the interrupt request register.)
Indicates that another byte of data was received before the
previous byte was picked up by the processor. To prevent this
condition, it is necessary to reset INTF _RBF (bit 11,
receive-buffer-full) in INTREQ.

READ BUFFER FULL
(Mirror-also appears in the interrupt request register.)
When this bit is 1, there is data ready to be picked
up by the processor. After reading the contents of this data
register, you must reset the INTF _RBF bit in INTREQ to prevent
an overrun.

TRANSMIT BUFFER EMPTY
(Not a mirror-interrupt occurs when the buffer
becomes empty.) When bit 14 is a 1, the data in the output
data register (SERDA T) has been transferred to the serial
output shift register, so SERDAT is ready to accept another
output word. This is also true when the buffer is empty.

This bit is normally used for full-duplex operation.

TRANSMIT SHIFT REGISTER EMPTY
When this bit is a 1, the output shift register has completed
its task, all data has been transmitted, and the register is
now idle. If you stop writing data into the output register
(SERDAT). then this bit will become a 1 afierboth the word
currently in the shift register and the word placed
into SERDAT have been transmitted.

This bit is normally used for half-duplex operation.

Direct read of RXD pin on Paula Chip.

Not used at this time.

Stop bit if 9 data bits are specified for receive.

8 STP Stop bit if 8 data bits are specified for receive.
OR

DB8 9th data bit if 9 bits are specified for receive.

7-0 DB7-DBO Low 8 data bits of received data. Data is TRUE (data you
read is the same polarity as the data expected).

ADKCON

15 SET/CLR Allows setting or clearing individual bits.

If bit 15 is a 1 specified bits are set.
Ifbit 15 is a 0 specified bits are cleared.

11 UARTBRK Force the transmit pin to zero.

HOW OUTPUT DATA IS TRANSMITTED

You send data out on the transmit lines by writing into the serial data output register (SERDAT).
This register is write-only.

Data will be sent out at the same rate as you have established for the read. Immediately after you
write the data into this register, the system will begin the transmission at the baud rate you
selected.

At the start of the operation, this data is transferred from SERDAT into an internal serial shift
register. When the transfer to the serial shift register has been completed, SERDAT can accept
new data; the TBE interrupt signals this fact.

Data will be moved out of the shift register, one bit during each time interval, starting with the
least significant bit. The shifting continues until all 1 bits have been shifted out. Any number or
combination of data and stop bits may be specified this way.

SERDAT is a 16-bit register that allows you to control the format (appearance) of the transmitted
data. To form a typical data sequence, such as one start bit, eight data bits, and one stop bit, you
write into SERDAT the contents shown in Figures 8-11 and 8-12.

Interface Hardware 253

15 987 o

000 0 0 0 0 j.-- 8 bits data ---..1

Data gets shifted out this way.

Figure 8-11: Starting Appearance of SERDAT and Shift Register

15 987 o

o 0 0 0 0 0 0 000 0 0 0 0 0 0
one bit

All zeros from last shift -

Figure 8-12: Ending Appearance of Shift Register

The register stops shifting and signals "shift register empty" (TSRE) when there is a 1 bit
present in the bit-shifted-out position and the rest of the contents of the shift register are Os.
When new nonzero contents are loaded into this register, shifting begins again.

SPECIFYING THE REGISTER CONTENTS

The data to be transmitted is placed in the output register (SERDA n. Above the data bits, 1 bits
must be added as stop bits. Nonnally, either one or two stop bits are sent.

254 Interface Hardware

The transmission of the start bit is independent of the contents of this register. One start bit is
automatically generated before the first data bit (bit 0) is sent.

Writing this register starts the data transmission. If this register is written with all zeros, no data
transmission is initiated.

Display Output Connections

All Amigas provide a 23-pin connector on the back. This jack contains video outputs and inputs
for external genlock devices. Two separate type of RGB video are available on the connector:

• RGB Monitors (" analog RGB' '). Provides four outputs; Red (R), Green (G), Blue (B),
and Sync (S). They can generate up to 4,096 different colors on-screen simultaneously
using the circuitry presently available on the Amiga.

• Digital RGB Monitors. Provides four outputs, distinct from those shown above, named
Red (R), Green (G), Blue (B), Half-Intensity (1), and Sync (S). All output levels are
logic levels (0 or 1). On some monitors these outputs allow up to 15 possible color
combinations, where the values 0000 and 0001 map to the same output value (Half
intensity with no color present is the same as full intensity, no color). Some monitors
arbitrarily map the 16 combinations to 16 arbitrary colors.

Note that the sync signals from the Amiga are unbuffered. For use with any device that
presents a heavy load on the sync outputs, external buffers will be required.

The Amiga 500 and 2000 provide a full-bandwidth monochrome video jack for use with inexpen
sive monochrome monitors. The Amiga colors are combined into intensities based on the follow
ingtable:

Red
30%

Green
60%

Blue
10%

The Amiga 1000 provides an RF modulator jack. An adapter is available that allows the Amiga
to use a television set for display. Stereo sound is available on the jack, but will generally be
combined into monaural sound for the TV set.

The Amiga 1000 provides a color composite video jack. This is suitable for recording directly
with a VCR, but the output is not broadcast quaility. For use on a monochrome monitor, the
color information often has undesired effects; careful color selection or a modification to the inter
nal circuitry can improve the results. High quality composite adaptors for the A500, AlOOO, and
A2000 plug into the 23 pin RGB port.

The Amiga 2000 provides a special "video slot" that contains many more signals than are avail
able elsewhere: all the 23-pin RGB port signals, the unencoded digital video, light pen, power,
audio, colorburst, pixel switch, sync, clock signals, etc.

Interface Hardware 255

Appendix A

Register Summary-Alphabetical Order

This appendix contains the definitive summary, in alphabetical order, of the register set and the
usages of the individual bits.

Appendix A 257

The addresses shown here are used by the special chips (called "Agnus", "Denise", and
"Paula' ') for transferring data among themselves. Also, the Copper uses these addresses for writ
ing to the special chip registers. To write to these registers with the 68000, calculate the 68000
address using this fOl1Ilula:

68000 address = (chip address) + $DFFOOO

For example, for the 68000 to write to ADKCON (address = $09E) , the address would be
$DFF09E. No other access address is valid. Unused registers must not be accessed

All bits marked as "unused" must be written as zeros. The value of any unused read bit must not
be trusted. Registers are either read-only or write-only. Reading a write-only register will trash
the register. Writing a read-only register will cause unexpected results.

All of the "pointer" type registers are organized as 32 bits on a long word boundary. These regis
ters may be written with one MOVE.L instruction. The lowest bit of all pointers must be written
as zero. The custom chips can only access CHIP memory; using a non-CHIP address will fail
(See the AllocMemO documentation or your compiler manual for more infol1Ilation on CHIP
memory). Disk data, sprite data, bitplane data, audio data, copper lists and anything that will be
blitted or accessed by custom chip DMA must be located in chip memory.

When strobing any register which responds to either a read or a write, (for example copjmp2) be
sure to use a MOVE.W, not CLR.W. The CLR instruction causes a read and a clear (two
accesses) on a 68000, but only a single access on 68020 processors. This will give different
results on different processors.

258 Appendix A

Read/
Register Address Write

Agnus/
Denise/
Paula Function

ADKCON 09E
ADKCONR 010

W P
R P

BITt USE

Audio, disk, control write
Audio, disk, cont~vl read

15 SET/CLR Set/clear control bit. Determines if bits
written with a 1 get set or cleared. Bits
written with a zero are always unchanged.

14-13 PRECOMP 1-0

CODE PRECOMP VALUE

00 none
01 140 ns
10 280 ns
11 560 ns

12 MFMPREC (1=MFM precomp O-GCR precomp)
11 UARTBRK Forces a UART break (clears TXD) if true.
10

09

08

07
06
05
04

03
02
01
00

WORDSYNC Enables disk read synchronizing on a word
equal to DISK SYNC CODE, located in
address (3F) *2.

MSBSYNC Enables disk read synchronizing on the MSB
(most signif bit). Appl type GCR.

FAST Disk data clock rate control 1-fast(2us) 0-slow(4us).
(fast for MFJ;1, slow for MFM or GCR)

USE3PN Use audio channel 3 to modulate nothing.
USE2P3 Use audio channel 2 to modulate period of channel
USE1P2 Use audio channel 1 to modulate period of channel
USEOP1 Use audio channel 0 to modulate period of channel

USE3VN Use audio channel 3 to modulate nothing.
USE2V3 Use audio channel 2 to modulate volume of channel
USE1V2 Use audio channel 1 to modulate volume of channel
USEOV1 Use audio channel 0 to modulate volume of channel

NOTE: If both period and volume are modulated on the
same channel, the period and volume will be alternated.
First word xxxxxxxx V6-VO , Second word P1S-PO (etc)

3.
2.
1.

3.
2.
1.

AUDxDAT OAA W P Audio channel x data

This register is the audio channel x (x=O,1,2,3)
DMA data buffer. It contains 2 bytes of data that
are each 2's complement and are outputted
sequentially (with digital-to-analog conversion)
to the audio output pins. (LSB = 3 MV) The DMA
controller automatically transfers data to this
register from RAM. The processor can also write
directly to this register. When the DMA data is
finished (words outputted=length) and the data in
this register has been used, an audio channel
interrupt request is set.

Appendix A 259

AUDxLCH
AUDxLCL

AUDxLEN

AUDxPER

AUDxVOL

BLTAFWM
BLTALWM

OAO W
0A2 W

A
A

Audio channel x location (high 3 bits)
Audio channel x location (low 15 bits)

This pair of registers contains the 18 bit starting address
(location) of audio channel x (x=0,1,2,3) DMA data.
This is not a pointer register and therefore needs
to be reloaded only if a different memory location is to
be outputted.

OA4 W p Audio channel x length

This register contains the length (number of words) of
audio channel x DMA data.

OA6 W p Audio channel x Period

This register contains the period (rate) of
audio channel x DMA data transfer.
The minimum period is 124 color clocks. This means
that the smallest number that should be placed in
this register is 124 decimal. This corresponds to
a maximum sample frequency of 28.86 khz.

OAS W p Audio channel x volume

This register contains the volume setting for
audio channel x. Bits 6,5,4,3,2,1,0 specify 65
linear volume levels as shown below.

Bitt Use

044 W
046 W

15-07
06
05-00

A
A

Not used
Forces volume to max (64 ones, no zeros)
Sets one of 64 levels (OOOOOO=no output
(111111=63 1s, one 0)

Blitter first-word mask for source A
Blitter last-word mask for source A

The patterns in these two registers are ANDed with
the first and last words of each line of data from
source A into the b1itter. A zero in any bit
overrides data from source A. These registers
should be set to all 1s for fill mode or for
line-drawing mode.

260 Appendix A

BLTCONO
BLTCON1

040 W A
042 W A

Blitter control register 0
Blitter control register 1

These two control registers are used together to
control blitter operations. There are two basic
modes, area and line, which are selected by bit
o of BLTCON1, as shown below.

AREA MODE ("normal")

BITt BLTCONO BLTCON1

------- -------
15 ASH3 BSH3
14 ASH2 BSH2
13 ASH 1 BSH1
12 ASAO BSHO
11 usn x
10 USEB X
09 USEC X
08 USED X
07 LF7 X
06 LF6 X
05 LF5 X
04 LF4 EFE
03 LF3 IFE
02 LF2 FCI
01 LF1 DESC
00 LFO LINE (-0)

ASH3-0 Shift value of A source
BSH3-0 Shift value of B source
usn Mode control bit to use source A
USEB Mode control bit to use source B
USEC Mode control bit to use source C
USED Mode control bit to use destination D
LF7-0 Logic function minterm select lines
EFE Exclusive fill enable
IFE Inclusive fill enable
FCI Fill carry input
DESC Descending (decreasing address) control
LINE Line mode control bit (set to 0)

bit

Appendix A 261

BLTCONO (cont.)
BLTCONl (cont.)

262 Appendix A

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

LINE DRAW
LINE DRAW

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

LINE DRAW
LINE DRAW

LINE MODE (line draw)

BITt BLTCONO BLTCON1

15
14
13
12
11
10
09
08
07
06
05
04
03
02
01
00

S TART 3
START 2
START 1
START 0

1
o
1
1

LF7
LF6
LF5
LF4
LF3
LF2
LF1
LFO

TEXTURE 3
TEXTURE2
TEXTURE 1
TEXTURE 0

o
o
o
o
o

SIGN
o (Reserved)

SUD
SUL
AUL
SING
LINE (=1)

START3-0 Starting point of line
(0 thru 15 hex)

LF7-0 Logic function minterm
select lines should be preloaded
with 4A to select the equation
D=(AC+ABC). Since A contains a
single bit true (8000), most bits
will pass the C field unchanged
(not A and C), but one bit will
invert the C field and combine it
with texture (A and B and not C).
The A bit is automatically moved
across the word by the hardware.

LINE
SIGN
o
SING

SUD
SUL
AUL

Line mode control bit (set to 1)
Sign flag
Reserved for new mode
Single bit per horizontal line for
use with subsequent area fill
Sometimes up or down (=AUD*)
Sometimes up or left
Always up or left

The 3 bits above select the octant
for line drawing:

OCT

o
1
2
3
4
5
6
7

SUD SUL AUL

1 1 0
001
o 1 1
1 1 1
1 0 1
o 1 0
000
1 0 0

The "B" source is used for
texturing the drawn lines.

BLTDDAT

BLTSIZE

BLTxDAT

Blitter destination data register

This register holds the data resulting from each
word of·blitter operation until it is sent to a
RAM destination. This is a dummy address and
cannot be read by the micro. The transfer is
automatic during blitter operation.

058 W A Blitter start and size (window width,
height)

This register contains the width and height of
the blitter operation (in line mode, width must
- 2, height - line length). Writing to this
register will start the blitter, and should be
done last, after all pointers and control
registers have been initialized.

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

h9 h8 h7 h6 h5 h4 h3 h2 hI hO,w5 w4 w3 w2 wI wO

h-height-vertical lines (10 bits=1024 lines max)
w-width -horizontal pixels (6 bits=64 words=1024 pixels max)

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

074 W A

BLTSIZE controls the line length and starts
the line draw when written to. The h field
controls the line length (10 bits gives
lines up to 1024 dots long). The w field
must be set to 02 for all line drawing.

Blitter source x data register

This register holds source x (x=A,B,C) data for
use by the blitter. It is normally loaded by the
blitter DMA channel; however, it may also be
preloaded by the microprocessor.

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

BLTADAT is used as an index register
and must be preloaded with 8000.
BLTBDAT is used for texture; it must
be preloaded with FF if no texture
(solid line) is desired.

Appendix A 263

BLTxMOD

BLTxPTH
BLTxPTL

BPL1MOD
BPL2MOD

064 W A B1itter modulo x

This register contains the modulo for blitter
source (x-A,B,C) or destination (x=D). A modulo
is a number that is automatically added to the
address at the end of each line, to make the
address point to the start of the next line. Each
source or destination has its own modulo, allowing
each to be a different size, while an identical
area of each is used in the blitter operation.

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

050 W
052 W

A
A

BLTAMOD and BLTBMOD are used as slope
storage registers and must be preloaded
with the values (4Y-4X) and (4Y)
respectively. Y/X= line slope.
BLTCMOD and BLTDMOD must both be
preloaded with the width (in bytes)
of the image into which the line is
being drawn (normally two times the
screen width in words) •

Blitter pointer to x (high 3 bits)
Blitter pointer to x (low 15 bits)

This pair of registers contains the 18-bit address
of blitter source (x=A,B,C) or destination (x=D)
DMA data. This pointer must be preloaded with the
starting address of the data to be processed by
the blitter. After the blitter is finished, it
will contain the last data address (plus increment
and modulo) •

LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW
LINE DRAW

108 W
lOA W

A
A

BLTAPTL is used as an accumulator
register and must be pre loaded with
the starting value of (2Y-X) where
Y/X is the line slope. BLTCPT and
BLTDPT (both Hand L) must be
preloaded with the starting address
of the line.

Bit plane modulo (odd planes)
Bit Plane modulo (even planes)

These registers contain the modulos for the odd
and even bit planes. A modulo is a number that is
automatically added to the address at the end of
each line, so that the address then points to the
start of the next line.
Since they have separate modulos, the odd and even
bit planes may have sizes that are different from
each other, as well as different from the display
window size.

264 Appendix A

BPLCONO 100

BPLCON1 102

BPLCON2 104

W A D Bit plane control register (misc.
control bits)

W D Bit plane control register
(horizontal scroll control)

W D Bit Plane control register
(video priority control)

These registers control the operation of the
bit planes and various aspects of the display.

BITt BPLCONO BPLCON1 BPLCON2
-------- -------- --------

15 HIRES X X
14 BPU2 X X
13 BPU1 X X
12 BPUO X X
11 HOMOD X X
10 DBLPF X X
09 COLOR X X
08 GAUD X X
07 X PF2H3 X
06 X PF2H2 PF2PRI
05 X PF2H1 PF2P2
04 X PF2HO PF2P1
03 LPEN PF1H3 PF2PO
02 LACE PF1H2 PF1P2
01 ERSY PF1H1 PF1P1
00 X PF1HO PF1PO

HlRES-High-resolution (640) mode
BPU =Bit plane use code 000-110 (NONE through 6 inclusive)
HOMOD=Hold-and-modify mode
DBLPF-Double playfield (PF1=odd PF2=even bit planes)
COLOR-Composite video COLOR enable
GAUD=Genlock audio enable (muxed on BKGND pin

during vertical blanking
LPEN =Light pen enable (reset on power up)
LACE -Interlace enable (reset on power up)
ERSY -External resync (HSYNC, VSYNC pads become

inputs) (reset on power up)
PF2PRI-Playfield 2 (even planes) has priority over

(appears in front of) playfield 1
(odd planes) .

PF2P=Playfield 2 priority code (with respect
to sprites)

PF1P-Playfield 1 priority code (with respect
to sprites)

PF2H-Playfield 2 horizontal scroll code
PF1H-Playfield 1 horizontal scroll code

Appendix A 265

BPLxDAT

BPLxPTH
BPLxPTL

CLXCON

110 W D Bit plane x data (parallel-to-serial
convert)

These registers receive the DMA data fetched from
RAM by the bit plane address pointers described
above. They may also be written by either
microprocessor. They act as a six-word parallel
to-serial buffer for up to six memory bit planes
(x-1-6). The parallel-to-seria1 conversion is
triggered whenever bit plane 11 is written,
indicating the completion of all bit planes for
that word (16 pixels). The MSB is output first,
and is, therefore, always on the left.

OEO W
OE2 W

A
A

Bit plane x pointer (high 3 bits)
Bit plane x pointer (low 15 bits)

This pair of registers contains the 18-bit pointer to
the address of bit-plane x (x=1,2,3,4,5,6) DMA data.
This pointer must be reinitia1ized by the processor
or copper to point to the beginning of bit plane data
every vertical blank time.

098 W D Collision control

This register controls which bit-planes are
included (enabled) in collision detection and
their required state if included. It also controls
the individual inclusion of odd-numbered sprites
in the collision detection by logically OR-ing
them with their corresponding even-numbered sprite.

BITt FUNCTION DESCRIPTION

15
14
13
12
11

10

09

08

07

06

05
04
03
02
01
00

ENSP7
ENSP5
ENSP3
ENSP1
ENBP6

ENBP5

ENBP4

ENBP3

ENBP2

ENBP1

MVBP6
MVBP5
MVBP4
MVBP3
MVBP2
MVBP1

Enable sprite 7 (ORed with sprite 6)
Enable sprite 5 (ORed with sprite 4)
Enable sprite 3 (ORed with sprite 2)
Enable sprite 1 (ORed with sprite 0)
Enable bit plane 6 (match required
for collision)
Enable bit plane 5 (match required
for collision)
Enable bit plane 4 (match required
for collision)
Enable bit plane 3 (match required
for collision)
Enable bit plane 2 (match required
for collision)
Enable bit plane 1 (match required
for collision)
Match value for bit
Match value for bit
Match value for bit
Match value for bit
Match value for bit
Match value for bit

plane
plane
plane
plane
plane
plane

6 collision
5
4
3

collision
collision
collision

2 collision
1 collision

NOTE: Disabled bit planes cannot prevent
collisions. Therefore if all bit planes are
disabled, collisions will be continuous,
regardless of the match values.

266 Appendix A '

CLXDAT

COLORxx

COPILCH

COPILCL

COP2LCH

COP2LCL

OOE R D Collision data register (read and clear)

This address reads (and clears) the collision
detection register. The bit assignments are below.

NOTE: Playfield 1 is all odd-numbered enabled
bit planes. Playfield 2 is all even-numbered
enabled bit planes

BITt COLLISIONS REGISTERED

15 not used
14 Sprite 4 (or 5) to sprite 6 (or 7)
13 Sprite 2 (or 3) to sprite 6 (or 7)
12 Sprite 2 (or 3) to sprite 4 (or 5)
11 Sprite 0 (or 1) to sprite 6 (or 7)
10 Sprite 0 (or 1) to sprite 4 (or 5)
09 Sprite 0 (or 1) to sprite 2 (or 3)
08 Playfield 2 to sprite 6 (or 7)
07 Playfield 2 to sprite 4 (or 5)
06 Playfield 2 to sprite 2 (or 3)
05 Playfield 2 to sprite 0 (or 1)
04 Playfield 1 to sprite 6 (or 7)
03 Playfield 1 to sprite 4 (or 5)
02 Playfield 1 to sprite 2 (or 3)
01 Playfield 1 to sprite 0 (or 1)
00 Playfield 1 to playfield 2

180 W D Color table xx

There are 32 of these registers (xx=00-31) and they
are sometimes collectively called the "color
palette." They contain 12-bit codes representing
red, green, and blue colors for RGB systems.
One of these registers at a time is selected
(by the BPLxDAT serialized video code)
for presentation at the RGB video output pins.
The table below shows the color register bit usage.

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

RGB X X X X R3 R2 R1 RO G3 G2 G1 GO B3 B2 B1 BO

B=blue, G=green, R=red,

080 W A

082 W A

084 W A

086 W A

Copper first location register
(high 3 bits)
Copper first location register
(low 15 bits)
Copper second location register
(high 3 bits)
Copper second location register
(low 15 bits)

These registers contain the jump addresses
described above.

Appendix A 267

COP CON

COP INS

02E W A Copper control register

This is a 1-bit register that when set true, allows
the Copper to access the blitter hardware. This
bit is cleared by power-on reset, so that the
Copper cannot access the blitter hardware.

BITt

01

08C W A

NAME

CDANG

FUNCTION

Copper danger mode. Allows Copper
access to blitter if true.

Copper instruction fetch identify

This is a dummy address that is generated by the
Copper whenever it is loading instructions into
its own instruction register. This actually occurs
every Copper cycle except for the second (IR2)
cycle of the MOVE instruction. The three types
of instructions are shown below.

MOVE
WAIT

SKIP

Move immediate to destination.
Wait until beam counter is equal to, or
greater than. (keeps Copper off of bus
until beam position has been reached).
Skip if beam counter is equal to or greater
than (skips following MOVE instruction unless
beam position has been reached).

268 Appendix A

COP INS (cont.) MOVE WAIT UNTIL SKIP IF
-------- ----------- ------------

BITt IR1 IR2 IR1 IR2 IR1 IR2

15 X R015 VP7 BFD * VP7 BFD *
14 X R014 VP6 VE6
13 X R013 VP5 VE5
12 X R012 VP4 VE4
11 X ROll VP3 VE3
10 X R010 VP2 VE2
09 X R009 VP1 VEl
08 DA8 R008 VPO VEO
07 DA7 R007 HP8 HE8
06 DA6 R006 HP7 HE7
05 DA5 R005 HP6 HE6
04 DA4 R004 HP5 HE5
03 DA3 R003 HP4 HE4
02 DA2 R002 HP3 HE3
01 DA1 R001 HP2 HE2
00 0 ROOO 1 0

IR1-First instruction register
IR2-Second instruction register

VP6 VE6
VP5 VE5
VP4 VE4
VP3 VE3
VP2 VE2
VP1 VEl
VPO VEO
HP8 HE8
HP7 HE7
HP6 HE6
HP5 HE5
HP4 HE4
HP3 HE3
HP2 HE2

1 1

DA -Destination address for MOVE instruction. Fetched
during IR1 time, used during IR2 time on RGA bus.

RO -RAM data moved by MOVE instruction at IR2 time
directly from RAM to the address given by the
DA field.

VP -Vertical beam position comparison bit.
HP -Horizontal beam position comparison bit.
VE -Enable comparison (mask bit) •
HE -Enable comparison (mask bit) •

* NOTE BFD=Blitter finished disable. When this bit
is true, the Blitter Finished flag will
have no effect on the Copper. When this
bit is zero, the Blitter Finished flag
must be true (in addition to the rest of
the bit comparisons) before the Copper
can exit from its wait state or skip
over an instruction. Note that the V7
comparison cannot be masked.

The Copper is basically a two-cycle machine that
requests the bus only during odd memory cycles
(4 memory cycles per instruction). This prevents
collisions with display, audio, disk, refresh, and
sprites, all of which use only even cycles. It
therefore needs (and has) priority over only the
blitter and microprocessor.

There are only three types of instructions:
MOVE immediate, WAIT until, and SKIP if. All
instructions (except for WAIT) require two bus
cycles (and two instruction words). Since only
the odd bus cycles are requested, four memory
cycle times are required per instruction
(memory cycles are 280 ns.)

Appendix A 269

COP INS (cont.) There are two indirect jump registers, COPlLC and
COP2LC. These are l8-bit pointer registers whose
contents are used to modify the program counter for
initialization or jumps. They are transferred to
the program counter whenever strobe addresses
COPJMPl or COPJMP2 are written. In addition,
COPlLC is automatically used at the beginning of
each vertical blank time.

It is important that one of the jump registers be
initialized and its jump strobe address hit after
power-up but before Copper DMA is initialized.
This insures a determined startup address and state.

COPJMPl
COPJMP2

088 S
08A S

A
A

Copper restart at first location
Copper restart at second location

270 Appendix A

These addresses are strobe addresses. When written
to, they cause the Copper to jump indirect using
the address contained in the first or second
location registers described below. The Copper
itself can write to these addresses, causing its
own jump indirect.

DDFSTOP
DDFSTRT

DIWSTOP

DIWSTRT

094 W
092 W

A
A

Display data fetch stop (horiz. position)
Display data fetch start (horiz. position)

These registers control the horizontal timing of the
beginning and end of the bit plane DMA display data
fetch. The vertical bit plane DMA timing is identical
to the display windows described above.
The bit plane modulos are dependent on the bit plane
horizontal size and on this data-fetch window size.

Register bit assignment

BITt 15,14,13,12,11,10,09,OS,07,06,05,04,03,02,01,00

USE X X X X X X X X HS H7 H6 H5 H4 H3 X X

(X bits should always be driven with 0 to maintain
upward compatibility)

The tables below show the start and stop timing for
different register contents.

090 W

OSE W

DDFSTRT (left edge of display data fetch)

PURPOSE HS,H7,H6,H5,H4

----------------- --------------
Extra wide (max) * 0 0 1 0 1
Wide 0 0 1 1 0
Normal 0 0 1 1 1
Narrow 0 1 0 0 0

DDFSTOP (right edge of display data fetch)

PURPOSE HS,H7,H6,H5,H4
------------------ --------------
Narrow 1 1 0 0 1
Normal 1 1 0 1 0
Wide (max) 1 1 0 1 1

A

A

Display window stop (lower right
vertical-horizontal position)

Display window start (upper left
vertical-horizontal position)

These registers control display window size and
position by locating the upper left and lower right
corners.

BITt 15,14,13,12,11,10,09,OS,07,06,05,04,03,02,01,00

USE V7 V6 V5 V4 V3 V2 V1 VO H7 H6 H5 H4 H3 H2 H1 HO

DIWSTRT is vertically restricted to the upper 2/3
of the display (VS=O) and horizontally restricted to
the left 3/4 of the display (HS=O).

DIWSTOP is vertically restricted to the lower 1/2
of the display (VS=/-V7) and horizontally restricted
to the right 1/4 of the display (HS=1).

Appendix A 271

DMACON
DMACONR

DSKBYTR

096 W
002 R

AD P
A P

DMA control write (clear or set)
DMA control (and blitter status) read

This register controls all of the DMA channels and
contains blitter DMA status bits.

BITt FUNCTION

15

14
13

12
11
10

09
08
07
06
05
04
03
02
01
00

SET/CLR

BBUSY
BZERO

x
X
BLTPRI

DMAEN
BPLEN
COPEN
BLTEN
SPREN
DSKEN
AUD3EN
AUD2EN
AUD1EN
AUDOEN

DESCRIPTION

Set/clear control bit. Determines
if bits written with a 1 get set or
cleared. Bits written with a zero
are unchanged.
Blitter busy status bit (read only)
Blitter logic zero status bit
(read only) •

Blitter DMA priority
(over CPU micro) (also called
"blitter nasty") (disables /BLS
pin, preventing micro from
stealing any bus cycles while
blitter DMA is running).
Enable all DMA below
Bit plane DMA enable
Copper DMA enable
Blitter DMA enable
Sprite DMA enable
Disk DMA enable
Audio channel 3 DMA enable
Audio channel 2 DMA enable
Audio channel I DMA enable
Audio channel 0 DMA enable

01A R P Disk data byte and status read

This register is the disk-microprocessor data
buffer. Data from the disk (in read mode) is
loaded into this register one byte at a time, and
bit 15 (DSKBYT) is set true.

BITt

15 DSKBYT
14 DMAON

13 DISKWRITE
12 WORDEQUAL

11-08 X
07-00 DATA

Disk byte ready (reset on read)
Mirror of bit 15 (DMAEN) in DSKLEN,
ANDed with Bit09 (DMAEN) in DMACON
Mirror of bit 14 (WRITE) in DSKLEN
This bit true only while the
DSKSYNC register equals the data
from disk.
Not used
Disk byte data

272 Appendix A

DSKDAT
DSKDATR

DSKLEN

DSKPTH
DSKPTL

DSKSYNC

026 W
008 ER

p
p

Disk DMA data write
Disk DMA data read (early read dummy

address)

This register is the disk DMA data buffer. It
contains two bytes of data that are either sent
(written) to or received (read) from the disk.
The write mode is enabled by bit 14 of the LENGTH
register. The DMA controller automatically
transfers data to or from this register and RAM,
and when the DMA data is finished (length-O) it
causes a disk block interrupt. See interrupts below.

024 W p Disk length

020
022

This register contains the length (number of words)
of disk DMA data. It also contains two control
bits, a DMA enable bit, and a DMA direction
(read/write) bit.

BITt

15
14
13-0

W A
W A

FUNCTION DES~RIPTION

DMAEN
WRITE
LENGTH

Disk DMA enable
Disk write (RAM to disk) if 1
Length (t of words) of DMA data.

Disk pointer (high 3 bits)
Disk pointer (low 15 bits)

This pair of registers contains the 18-bit
address of disk DMA data. These address registers
must be initialized by the processor or Copper
before disk DMA is enabled.

07E W P Disk sync register

holds the match code for disk read synchronization.
See ADKCON bit 10.

Appendix A 273

INTENA
INTENAR

INTREQ
INTREQR

09A W
01C R

P
P

Interrupt enable bits (clear or set bits)
Interrupt enable bits (read)

This register contains interrupt enable bits. The bit
assignment for both the request and enable registers
is given below.

BITt FUNCT LEVEL DESCRIPTION

15

14

13
12

11
10
09
08
07
06
05
04
03
02

01
00

09C W
OlE R

SET/CLR

INTEN

EXTER 6
DSKSYN 5

RBF 5
AUD3 4
AUD2 4
AUD1 4
AUDO 4
BLIT 3
VERTB 3
COPER 3
PORTS 2
SOFT 1

DSKBLK 1
TBE 1

Set/clear control bit. Determines if
bits written with a 1 get set or
cleared. Bits written with a zero
are always unchanged.
Master interrupt (enable only,

no request)
External interrupt
Disk sync register (DSKSYNC)

matches disk data
Serial port receive buffer full
Audio channel 3 block finished
Audio channel 2 block finished
Audio channel 1 block finished
Audio channel 0 block finished
Blitter finished
Start of vertical blank
Copper
I/O ports and timers
Reserved for software-initiated

interrupt
Disk block finished
Serial port transmit buffer empty

P
P

Interrupt request bits (clear or set)
Interrupt request bits (read)

This register contains interrupt request bits (or
flags). These bits may be polled by the processor;
if enabled by the bits listed in the next register,
they may cause processor interrupts. Both a set and
clear operation are required to load arbitrary data
into this register. These status bits are not
automatically reset when the interrupt is serviced,
and must be reset when desired by writing to this
address. The bit assignments are identical to the
enable register below.

274 Appendix A

JOYODAT

JOYlDAT

OOA R o Joystick-mouse 0 data (left vertical,
horizontal)

OOC R o Joystick-mouse 1 data (right vertical,
horizontal)

These addresses each read a pair of 8-bit mouse
counters. O-left controller pair, l=right
controller pair (four counters total). The bit
usage for both left and right addresses is shown
below. Each counter is clocked by signals from
two controller pins. Bits 1 and 0 of each counter
may be read to determine the state of these two
clock pins. This allows these pins to double as
joystick switch inputs.

Mouse counter usage:
(pins 1,3-Yclock, pins 2,4=Xclock)

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00

ODAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO
1DAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

X7 X6 X5 X4 X3 X2 Xl XO
X7 X6 X5 X4 X3 X2 Xl XO

The following table shows the mouse/joystick
connector pin usage. The pins (and their functions)
are sampled (multiplexed) into the DENISE chip
during the clock times shown in the table.
This table is for reference only and should
not be needed by the programmer. (Note that the
joystick functions are all "active low" at the
connector pins.)

Sampled by DENISE
Conn Joystick Mouse -----------------
Pin Function Function Pin Name Clock

-------- --------
L1 FORW* Y 38 MOV at CCK
L3 LEFT* YQ 38 MOV at CCK*
L2 BACK * X 9 MOH at CCK
L4 RIGH* XQ 9 MOH at CCK*
R1 FORW* Y 39 M1V at CCK
R3 LEFT* YQ 39 M1V at CCK*
R2 BACK* X 8 M1H at CCK
R4 RIGH* XQ 8 M1H at CCK*

After being sampled, these connector pin signals
are used in quadrature to clock the mouse counters.
The LEFT and RIGHT joystick functions (active high)
are directly available on the Y1 and Xl bits of
each counter. In order to recreate the FORWARD
and BACK joystick functions, however, it is
necessary to logically combine (exclusive OR)
the lower two bits of each counter.
This is illustrated in the following table.

To detect Read these counter bits
-------- ----------------
Forward Yl xor YO (Bln09 xor Bln08)
Left Y1
Back Xl xor XO (Bln01 xor BlnOO)
Right Xl

Appendix A 275

JOYTEST

POTODAT
POT1DAT

POTGO

POTGOR

REFPTR

036 W D Write to all four joystick-mouse counters
at once.

Mouse counter write test data:

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00

ODAT
1DAT

012 R
014 R

Y7 Y6 Y5 Y4 Y3 Y2 xx xx
Y7 Y6 Y5 Y4 Y3 Y2 xx xx

X7 X6 X5 X4 X3 X2 xx xx
X7 X6 X5 X4 X3 X2 xx xx

P
P

Pot counter data left pair (vert,horiz)
Pot counter data right pair (vert,horiz)

These addresses each read a pair of 8-bit pot counters.
(Four counters total.) The bit assignment for both
addresses is shown below. The counters are stopped by
signals from two controller connectors (left-right)
with two pins each.

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00

RIGHT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO
LEFT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

X7 X6 X5 X4 X3 X2 Xl XO
X7 X6 X5 X4 X3 X2 Xl XO

034 W

016 R

CONNECTORS

Loc. Dir. Sym

RIGHT Y
RIGHT X
LEFT Y
LEFT X

RY
RX
LY
LX

Pin

9
5
9
5

Pint

36
35
33
32

PAULA

Pin Name

(POTlY)
(POT1X)
(POTOY)
(POTOX)

P Pot port data write and start.

P Pot port data read (formerly called POTINP).

This register controls a 4-bit bi-directional I/O port
that shares the same four pins as the four pot counters
above.

BITt FUNCT

15
14
13
12
11
10
09
08
07-01
00

028 W A

OUTRY
DATRY
OUTRX
DATRX
OUTLY
DATLY
OUTLX
DATLX

o
START

DESCRIPTION

Output enable for Paula pin 36
I/O data Paula pin 36
Output enable for Paula pin 35
I/O data Paula pin 35
Output enable for Paula pin 33
I/O data Paula pin 33
Output enable for Paula pin 32
I/O data Paula pin 32
Reserved for chip ID code (presently 0)
Start pots (dump capacitors, start

counters)

Refresh pointer

This register is used as a dynamic RAM refresh
address generator. It is writeable for test
purposes only, and should never be written by
the microprocessor.

276 Appendix A

SERDAT

SERDATR

030 W P Serial port data and stop bits write
(transmit data buffer)

This address writes data to a transmit data buffer.
Data from this buffer is moved into a serial shift
register for output transmission whenever it is
empty. This sets the interrupt request TBE
(transmit buffer empty). A stop bit must be
provided as part of the data word. The length of
the data word is set by the position of the stop
bit.

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

USE 0 0 0 0 0 0 S D8 D7 D6 D5 D4 D3 D2 D1 DO

Note: S

018 R P

stop bit = 1, D = data bits.

Serial port ~ta and status read
(receive data buffer)

This address reads data from a receive data buffer.
Data in this buffer is loaded from a receiving
shift register whenever it is full. Several
interrupt request bits are also read at this
address, along with the data, as shown below.

BITt SYM

15 OVRUN

14 RBF

13 TBE

i2 TSRE

11 RXD

10 0
09 STP
08 STP-DB8

07 DB7
06 DB6
05 DB5
04 DB4
03 DB3
02 DB2
01 DB1
00 DBO

FUNCTION

Serial port receiver overrun.
Reset by resetting bit 11 of
INTREQ.
Serial port receive buffer full
(mirror) .
Serial port transmit buffer
empty (mirror).
Serial port transmit shift
register empty.
Reset by loading into buffer.
RXD pin receives UART serial
data for direct bit test by
the microprocessor.
Not used
Stop bit
Stop bit if LONG, data bit if
not.
Data bit
Data bit
Data bit
Data bit
Data bit
Data bit
Data bit
Data bit

Appendix A 277

SERPER

SPRxCTL
SPRxPOS

SPRxDATA
SPRxDATB

SPRxPOS

032 W P Serial port period and control

This register contains the control bit LONG referred to
above, and a IS-bit number defining the serial port
baud rate. If this number is N, then the baud rate is
1 bit every (N+l)*.2794 microseconds.

BITt

15
14-00

SYM

LONG
RATE

FUNCTION

Defines serial receive as 9-bit word.
Defines baud rate=I/«N+l)*.2794 microsec.)

142 W
140 W

A D
A D

Sprite x vert stop position and control data
Sprite x vert-horiz start position data

144
146

These two registers work together as position, size and
feature sprite-control registers. They are usually loaded
by the sprite DMA channel during horizontal blank;
however, they may be loaded by either processor at any time.
SPRxPOS register:

BITt SYM FUNCTION

15-08 SV7-SVO Start vertical value. High bit (SV8) is
in SPRxCTL register below.

07-00 SH8-SHI Start horizontal value. Low bit (SHO) is
in SPRxCTL register below.

SPRxCTL register (writing this address disables sprite
horizontal comparator circuit) :

BITt SYM FUNCTION
-------- -----------------------------

15-08 EV7-EVO End (stop) vertical value low 8 bits
07 ATT Sprite attach control bit (odd sprites)
06-04 X Not used
02 SV8 Start vertical value high bit
01 EV8 End (stop) vertical value high bit
00 SHO Start horizontal value low bit

W D Sprite x image data register A
W D Sprite x image data register B

These registers buffer the sprite image data. They are
usually loaded by the sprite DMA channel but may be
loaded by either processor at any time. When a
horizontal comparison occurs, the buffers are dumped
into shift registers and serially outputted to the
display, MSB first on the left.

NOTE: Writing to the A buffer enables (arms) the sprite.
Writing to the SPRxCTL register disables the sprite.
If enabled, data in the A and B buffers will be outputted
whenever the beam counter equals the sprite horizontal
position value in the SPRxPOS register.

see SPRxCTL

278 Appendix A

SPRxPTH
SPRxPTL

STREQU

STRHOR
STRLONG

STRVBL

VHPOSR

VHPOSW

VPOSR

VPOSW

120 W
122 W

A
A

Sprite x pointer (high 3 bits)
Sprite x pointer (low 15 bits)

038

03C
03E

03A

006

02C

This pair of registers contains the 18-bit address
of sprite x (x=0,1,2,3,4,5,6,7) DMA data. These address
registers must be initialized by the processor or Copper
every vertical blank time.

S D Strobe for horizontal sync with VB
and EQU

S 0 P Strobe for horizontal sync
S 0 Strobe for identification of long

horizontal line

One of the first three strobe addresses above is
placed on the destination address bus during the
first refresh time slot. The fourth strobe shown
above is used during the second refresh time slot of
every other line to identify lines with long counts
(228). There are four refresh time slots, and any
not used for strobes will leave a null (FF) address
on the destination address bus.

S 0 Strobe for horizontal sync with VB
(vertical blank)

R A Read vertical and horizontal position of
beam or lightpen

W A Write vertical and horizontal position
of beam or lightpen

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

USE V7 V6 V5 V4 V3 V2 V1 VO,H8 H7 H6 H5 H4 H3 H2 H1

RESOLUTION = 1/160 of screen width (280 ns)

004 ~ A Read vertical most significant bit
(and frame flop)

02A W A Write vertical most significant bit
(and frame flop)

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

USE LOF-- -- -- -- -- -- --,-- -- -- -- -- -- -- V8

LOF-Long frame (auto toggle control bit in BPLCONO)

Appendix A 279

Appendix B

Register Summary-Address Order

This appendix contains infonnation about the register set in address order.

Appendix B 281

The following codes and abbreviations are used in this appendix:

& Register used by DMA channel only.

% Register used by DMA channel usually, processors sometimes.

+ Address register pair. Must be an even address pointing to chip memory.

... Address not writable by the Copper.

Address not writable by the Copper unless the "copper danger bit", COPCON is set true.

A,D,P
A=Agnus chip, D=Denise chip, P=Paula chip.

W,R
W=write-only; R=read-only,

ER Early read. This is a DMA data transfer to RAM, from either the disk or the blitter.
RAM timing requires data to be on the bus earlier than microprocessor read cycles.
These transfers are therefore initiated by Agnus timing, rather than a read address on the
destination address bus.

S Strobe (write address with no register bits). Writing the register causes the effect

PTL,PI'H
Chip memory pointer that addresses DMA data. Must be reloaded by a processor before
use (vertical blank for bit-plane and sprite pointers, and prior to starting the blitter for
blitter pointers).

LCL,LCH
Chip memory location (starting address) of DMA data. Used to automatically restart
pointers, such as the Copper program counter (during vertical blank) and the audio sam
ple counter (whenever the audio length count is finished).

MOD
IS-bit modulo. A number that is automatically added to the memory address at the end
of each line to generate the address for the beginning of the next line. This allows the
blitter (or the display window) to operate on (or display) a window of data that is smaller
than the actual picture in memory (memory map). Uses IS bits, plus sign extend.

282 Appendix B

NAME

BLTDDAT
DMACONR
VPOSR
VHPOSR
DSKDATR
JOYODAT
JOYlDAT
CLXDAT
ADKCONR
POTODAT
POT1DAT
POTGOR
SERDATR
DSKBYTR
INTENAR
INTREQR
DSKPTH
DSKPTL
DSKLEN
DSKDAT
REFPTR
VPOSW
VHPOSW
COP CON
SERDAT
SERPER
POTGO
JOYTEST
STREQU
STRVBL
STRHOR
STRLONG
BLTCONO
BLTCON1
BLTAFWM
BLTALWM
BLTCPTH
BLTCPTL
BLTBPTH
BLTBPTL
BLTAPTH
BLTAPTL
BLTDPTH
BLTDPTL
BLTSIZE

BLTCMOD
BLTBMOD
BLTAMOD
BLTDMOD

BLTCDAT
BLTBDAT
BLTADAT

ADD R/W CHIP

& *000 ER
*002 R
*004 R
*006 R

& *008 ER
*OOA R
*OOC R
*OOE R
*010 R
*012 R
*014 R
*016 R
*018 R
*01A R
*01C R
*01E R

+ *020 W
+ *022 W

*024 W
& *026 W
& *028 W

*02A W
*02C W
*02E W
*030 W
*032 W
*034 W
*036 W

& *038 S
& *03A S
& *03C S
& *03E S

-040 W
-042 W
-044 W
-046 W

+ -048 W
+ -04A W
+ -04C W
+ -04E W
+ -050 W
+ -052 W
+ -054 W
+ -056 W

-058 W
-05A
-05C
-05E
-060 W
-062 W
-064 W
-066 W
-068
-06A
-06C
-06E

% -070 W
% -072 W
% -074 W

A
A P
A
A

A
A

A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A

A
A
A

D
D
o

D
o
o

P

P
P
P
P
P
P
P
P

P
P

P
P
P

o P
D

FUNCTION

Blitter destination early read (dummy address)
DMA control (and blitter status) read
Read vert most signif. bit (and frame flop)
Read vert and horiz. position of beam
Disk data early read (dummy address)
Joystick-mouse 0 data (vert,horiz)
Joystick-mouse 1 data (vert,horiz)
Collision data register (read and clear)
Audio, disk control register read
Pot counter pair 0 data (vert,horiz)
Pot counter pair 1 data (vert,horiz)
Pot port data read (formerly POTINP)
Serial port data and status read
Disk data byte and status read
Interrupt enable bits read
Interrupt request bits read
Disk pointer (high 3 bits)
Disk pointer (low 15 bits)
Disk length
Disk DMA data write
Refresh pointer
Write vert most signif. bit (and frame flop)
Write vert and horiz position of beam
Coprocessor control register (CDANG)
Serial port data and stop bits write
Serial port period and control
Pot port data write and start
Write to all four joystick-mouse counters at once
Strobe for horiz sync with VB and EQU
Strobe for horiz sync with VB (vert. blank)
Strobe for horiz sync
Strobe for identification of long horiz. line.
Blitter control register 0
Blitter control register 1
Blitter first word mask for source A
Blitter last word mask for source A
Blitter pointer to source C (high 3 bits)
Blitter pointer to source C (low 15 bits)
Blitter pointer to source B (high 3 bits)
Blitter pointer to source B (low 15 bits)
Blitter pointer to source A (high 3 bits)
Blitter pointer to source A (low 15 bits)
Blitter pointer to destination D (high 3 bits)
Blitter pointer to destination D (low 15 bits)
Blitter start and size (window width, height)

Blitter modulo for source C
Blitter modulo for source B
Blitter modulo for source A
Blitter modulo for destination D

Blitter source C data register
Blitter source B data register
Blitter source A data register

Appendix B 283

-076
-078
-07A
-07C

DSKSYNC -07E W P Disk sync pattern register for disk
read

COPILCH + 080 W A Coprocessor first location register
(high 3 bits)

COPILCL + 082 W A Coprocessor first location register
(low 15 bits)

COP2LCH + 084 W A Coprocessor second location register
(high 3 bits)

COP2LCL + 086 W A Coprocessor second location register
(low 15 bits)

COP JMP 1 088 S A Coprocessor restart at first location
COP JMP 2 08A S A Coprocessor restart at second location
COP INS 08C W A Coprocessor instruction fetch identify
DIWSTRT 08E W A Display window start (upper left

vert-horiz position)
DIWSTOP 090 W A Display window stop (lower right

vert.-horiz. position)
DDFSTRT 092 W A Display bit plane data fetch start

(horiz. position)
DDFSTOP 094 W A Display bit plane data fetch stop

(horiz. position)
DMACON 096 W A D P DMA control write (clear or set)
CLXCON 098 W D Collision control
INTENA 09A W P Interrupt enable bits (clear or

set bits)
INTREQ 09C W P Interrupt request bits (clear or

set bits)
ADKCON 09E W P Audio, disk, UART control
AUDOLCH + OAO W A Audio channel 0 location (high 3 bits)
AUDOLCL + OA2 W A Audio channel 0 location (low 15 bits)
AUDOLEN OA4 W P Audio channel 0 length
AUDOPER OA6 W P Audio channel 0 period
AUDOVOL OA8 W P Audio channel 0 volume
AUDODAT & OAA W P Audio channel 0 data

OAC
OAE

AUDILCH + OBO W A Audio channel 1 location (high 3 bits)
AUDILCL + OB2 W A Audio channel 1 location (low 15 bits)
AUD 1 LEN OB4 W P Audio channel 1 length
AUDIPER OB6 W P Audio channel 1 period
AUDIVOL OB8 W P Audio channel 1 volume
AUD1 DAT & OBA W P Audio channel 1 data

OBC
OBE

AUD2LCH + OCO W A Audio channel 2 location (high 3 bits)
AUD2LCL + OC2 W A Audio channel 2 location (low 15 bits)
AUD2LEN OC4 W P Audio channel 2 length
AUD2PER OC6 W P Audio channel 2 period
AUD2VOL OC8 W P Audio channel 2 volume
AUD2DAT & OCA W P Audio channel 2 data

OCC
OCE

AUD3LCH + ODO W A Audio channel 3 location (high 3 bits)
AUD3LCL + OD2 W A Audio channel 3 location (low 15 bits)
AUD3LEN OD4 W P Audio channel 3 length
AUD3PER OD6 W P Audio channel 3 period
AUD3VOL OD8 W P Audio channel 3 volume
AUD3DAT & ODA W P Audio channel 3 data

284 Appendix B

ODC
ODE

BPL1PTH + OEO W A Bit plane 1 pointer (high 3 bits)
BPL1PTL + OE2 W A Bit plane 1 pointer (low 15 bits)
BPL2PTH + OE4 W A Bit plane 2 pointer (high 3 bits)
BPL2PTL + OE6 W A Bit plane 2 pointer (low 15 bits)
BPL3PTH + OE8 W A Bit plane 3 pointer (high 3 bits)
BPL3PTL + OEA W A Bit plane 3 pointer (low 15 bits)
BPL4PTH + OEC W A Bit plane 4 pointer (high 3 bits)
BPL4PTL + OEE W A Bit plane 4 pointer (low 15 bits)
BPL5PTH + OFO W A Bit plane 5 pointer (high 3 bits)
BPLSPTL + OF2 W A Bit plane 5 pointer (low 15 bits)
BPL6PTH + OF4 W A Bit plane 6 pointer (high 3 bits)
BPL6PTL + OF6 W A Bit plane 6 pointer (low 15 bits)

OF8
OFA
OFC
OFE

BPLCONO 100 W A D Bit plane control register (misc. control bits)
BPLCON1 102 W D Bit plane control reg. (scroll value PF1, PF2)
BPLCON2 104 W D Bit plane control reg. (priority control)

106
BPL1MOD 108 W A Bit plane modulo (odd planes)
BPL2MOD lOA W A Bit Plane modulo (even planes)

10C
10E

BPL1DAT & 110 W D Bit plane 1 data (parallel-to-serial convert)
BPL2DAT & 112 W D Bit plane 2 data (parallel-to-serial convert)
BPL3DAT & 114 W D Bit plane 3 data (parallel-to-serial convert)
BPL4DAT & 116 W D Bit plane 4 data (parallel-to-serial convert)
BPLSDAT & 118 W D Bit plane 5 data (parallel-to-serial convert)
BPL6DAT & 11A W D Bit plane 6 data (parallel-to-serial convert)

11C
11E

Appendix B 285

SPROPTH + 120 W A Sprite 0 pointer (high 3 bits)
SPROPTL + 122 W A Sprite 0 pointer (low 15 bits)
SPR1PTH + 124 W A Sprite 1 pointer (high 3 bits)
SPR1PTL + 126 W A Sprite 1 pointer (low 15 bits)
SPR2PTH + 128 W A Sprite 2 pointer (high 3 bits)
SPR2PTL + 12A W A Sprite 2 pointer (low 15 bits)
SPR3PTH + 12C W A Sprite 3 pointer (high 3 bits)
SPR3PTL + 12E W A Sprite 3 pointer (low 15 bits)
SPR4PTH + 130 W A Sprite 4 pointer (high 3 bits)
SPR4PTL + 132 W A Sprite 4 pointer (low 15 bits)
SPR5PTH + 134 W A Sprite 5 pointer (high 3 bits)
SPR5PTL + 136 W A Sprite 5 pointer (low 15 bits)
SPR6PTH + 138 W A Sprite 6 pointer (high 3 bits)
SPR6PTL + 13A W A Sprite 6 pointer (low 15 bits)
SPR7PTH + 13C W A Sprite 7 pointer (high 3 bits)
SPR7PTL + 13E W A Sprite 7 pointer (low 15 bits)
SPROPOS % 140 W A D Sprite 0 vert-horiz start position

data
SPROCTL % 142 W A D Sprite 0 vert stop position and

control data
SPRODATA % 144 W D Sprite 0 image data register A
SPRODATB % 146 W D Sprite 0 image data register B
SPR1POS % 148 W A D Sprite 1 vert-horiz start position

data
SPR1CTL % 14A W A D Sprite 1 vert stop position and

control data
SPR1DATA % 14C W D Sprite 1 image data register A
SPR1DATB % 14E W D Sprite 1 image data register B
SPR2POS % 150 W A D Sprite 2 vert-horiz start position

data
SPR2CTL % 152 W A D Sprite 2 vert stop position and

control data
SPR2DATA % 154 W D Sprite 2 image data register A
SPR2DATB % 156 W D Sprite 2 image data register B
SPR3POS % 158 W A D Sprite 3 vert-horiz start position

data
SPR3CTL % 15A W A D Sprite 3 vert stop position and

control data
SPR3DATA % 15C W D Sprite 3 image data register A
SPR3DATB % 15E W D Sprite 3 image data register B
SPR4POS % 160 W A D Sprite 4 vert-horiz start position

data
SPR4CTL % 162 W A D Sprite 4 vert stop position and

control data
SPR4DATA % 164 W D Sprite 4 image data register A
SPR4DATB % 166 W D Sprite 4 image data register B
SPR5POS % 168 W A D Sprite 5 vert-horiz start position

data
SPR5CTL % 16A W A D Sprite 5 vert stop position and

control data
SPR5DATA % 16C W D Sprite 5 image data register A
SPR5DATB % 16E W D Sprite 5 image data register B

286 Appendix B

SPR6POS % 170 W A D Sprite 6 vert-horiz start position
data

SPR6CTL % 172 W A D Sprite 6 vert stop position and
control data

SPR6DATA % 174 W D Sprite 6 image data register A
SPR6DATB % 176 W D Sprite 6 image data register B
SPR7POS % 178 W A D Sprite 7 vert-horiz start position

data
SPR7CTL % 17A W A D Sprite 7 vert stop position and

control data
SPR7DATA % 17C W D Sprite 7 image data register A
SPR7DATB % 17E W D Sprite 7 image data register B
COLOROO 180 W D Color table 00
COLOR01 182 W D Color table 01
COLOR02 184 W D Color table 02
COLOR03 186 W D Color table 03
COLOR04 188 W D Color table 04
COLOR05 18A W D Color table 05
COLOR06 18C W D Color table 06
COLOR07 18E W D Color table 07
COLOR08 190 W D Color table 08
COLOR09 192 W D Color table 09
COLOR10 194 W D Color table 10
COLOR11 196 W D Color table 11
COLOR12 198 W D Color table 12
COLOR13 19A W D Color table 13
COLOR14 19C W D Color table 14
COLOR15 19E W D Color table 15
COLOR16 lAO W D Color table 16
COLOR17 1A2 W D Color table 17
COLOR18 1A4 W D Color table 18
COLOR19 1A6 W D Color table 19
COLOR20 1A8 W D Color table 20
COLOR21 1AA W D Color table 21
COLOR22 lAC W D Color table 22
COLOR23 1AE W D Color table 23
COLOR24 1BO W D Color table 24
COLOR25 1B2 W D Color table 25
COLOR26 184 W D Color table 26
COLOR27 186 W D Color table 27
COLOR28 188 W D Color table 28
COLOR29 1BA W D Color table 29
COLOR30 1BC W D Color table 30
COLOR31 1BE W D Color table 31
RESERVED 1110X
RESERVED 11l1X
NO-OP (NULL) 1FE

Appendix B 287

Appendix C

Custom Chip Pin Allocation List

NOTE: ... Means an active low signal.

Appendix C 289

AGNUS PIN ASSIGNMENT

PIN t DESIGNATION FUNCTION DEFINITION
----------- ------------------ ----------

01-09 DB-DO Data bus lines 8 to 0 I/O
10 VCC +5 Volt I
11 RES* System reset I
12 INT3* Interrupt level 3 0
13 DMAL DMA request line I
14 BLS* Blitter slowdown I
15 DBR* Data bus request 0
16 ARW* Agnus RAM write 0
17-24 RGAB-RGA1 Register address bus B-1 I/O
25 CCK Color clock I
26 CCKQ Color clock delay I
27 VSS Ground I
2B-36 DRAO-DRAB DRAM address bus 0 to 8 0
37 LP* Light pen input I
38 VSy* Vertical sync I/O
39 CSY* Composite sync 0
40 HSY* Horizontal sync I/O
41 VSS Ground I
42-48 015-09 Data bus lines 15 to 9 I/O

DENISE PIN ASSIGNMENT

PIN t DESIGNATION FUNCTION DEFINITION
----------- ------------------ ----------

01-07 06-00 Data bus lines 6 to 0 I/O
08 M1H Mouse 1 horizontal I
09 MOH Mouse o horizontal I
10-17 RGA8-RGA1 Register address bus 8-1 I
18 BURST * Color burst 0
19 VCC +5 Volt I
20-23 RO-R3 Video red bits 0-3 0
24-27 BO-B3 Video blue bits 0-3 0
28-31 GO-G3 Video green bits 0-3 0
32 N/C Not connected N/C
33 ZD* Background indicator 0
34 N/C Not connected N/C
35 7M 7.15909 MHZ I
36 CCK Color clock I
37 VSS Ground I
38 MOV Mouse o vertical I
39 M1V Mouse 1 vertical I
40-48 015-07 Data bus lines 15 to 7 I/O

290 Appendix C

PIN t

01-07
08
09-10
11
12
13-15
16
17
18
19-26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42-48

DESIGNATION

D8-D2
VSS
D1-DO
RES*
DMAL
IPLO*-IPL2
INT2*
INT3*
INT6*
RGA8-RGA1
VCC
CCK
CCKQ
AUDB
AUDA
POTOX
POTOY
VSSANA
POT1X
POT1Y
DKRD*
DKWD*
DKWE
TXD
RXD
D15-D9

PAULA PIN ASSIGNMENT

FUNCTION

Data bus lines 8 to 2
Ground
Data bus lines 1 and 0
System reset
DMA request line
Interrupt lines 0-2
Interrupt level 2
Interrupt level 3
Interrupt level 6
Register address bus 8-1
+5 Volt
Color clock
Color clock delay
Right audio
Left audio
Pot OX
Pot OY
Analog ground
Pot 1X
Pot 1Y
Disk read data
Disk write data
Disk write enable
Serial transmit data
Serial receive data
Data bus lines 15 to 9

DEFINITION

I/O
I
I/O
I
o
o
I
I
I
I
I
I
I
o
o
I/O
I/O
I
I/O
I/O
I
o
o
o
I
I/O

Appendix C 291

PIN t

01-14
17
18
18
18
19
20
21
22
23
24
25
26-33
34
35
36
37
38
39
40
41
43-51
52
53
54
55
56
57
59-77
78
79
80
81
84

292 AppendixC

FAT AGNUS PIN ASSIGNMENT

DESIGNATION

RD15-RD2
INT3*
DMAL
RD1
RST*
BLS*
DBR*
RRW
PRW
RGEN*
AS*
RAMEN*
RGA8-RGA1
28MHZ
XCLK
XCLKEN*
CDAC*
7MHZ
CCKQ
CCK
TEST
MAO-MA8
LDS*
UDS*
CASL*
CASU*
RAS1*
RASO*
A19-A1
LP*
VSY*
CSY*
HSY*
RDO

FUNCTION DEFINITION

Register bus lines 15 to 2
Blitter ready interrupt
Request audio/disk DMA
Register bus line 1
Reset
Blitter slowdown
Data bus request
DRAM Write/Read
Processor Write/Read
RG Enable
Address Strobe
RAM Enable
Register address bus 8-1
Master clock
Alternate master clock
Master clock enable
Inverted shifted 7MHZ clk
28MHZ clk divided by four
Color clock delay
Color clock
Test - access registers
Output bus lines 0 to 8
Lower data strobe
Upper data strobe
Column addr strobe lower
Column addr strobe upper
Row address strobe one
Row address strobe zero
Address bus lines 19 to 1
Light pen
Vertical synch
Composite video synch
Horizontal synch
Register bus line 0

I/O
o
I
I/O
I
I
o
o
I
I
I
I
o
I
I
I
o
o
o
o
I
o
I
I
o
o
o
o
I
o
I/O
o
I/O
I/O

AppendixD

System Memory Map

Appendix D 293

A true software memory map, showing system utilization of the various sections
of RAM and free space is not provided, or possible with the Amiga. All memory
is dynamically allocated by the memory manager, and the actual locations may
change from release-to-release, machine-to-machine or boot-to-boot (see the
exec/AllocMem function for details). To find the locations of system structures
software must use the defined access procedures, starting by fetching the
address of the exec. library from location 4; the only absolute memory location
in the system. All software is written so that it can be loaded and relocated
anywhere in memory by the loader. What follows is the general layout of
memory areas withing the current generation of Amiga computers.

ADDRESS RANGE

000000-03FFFF

040000-07FFFF

080000-0FFFFF

lOOOOO-lFFFFF

200000-9FFFFF

AOOOOO-BEFFFF

BFDOOO-BFDFOO

BFEOOI-BFEF01

COOOOO-DFEFFF
I
I COOOOO-D7FFFF
I
I D80000-DBFFFF
I
I DCOOOO-DCFFFF
I
I DFFOOO-DFFFFF
+--

EOOOOO-E7FFFF

E80000-E8FFFF

E90000-EFFFFF

FOOOOO-FBFFFF

FCOOOO-FFFFFF

294 Appendix D

NOTES

256K Bytes of chip RAM

256K bytes of chip RAM (option card)

5l2K Extended chip RAM (to 1 MB).

Reserved. Do not use.

Primary 8 MB Auto-config space.

Reserved. Do not use.

8520-B (access at even-byte addresses only)

8520-A (access at odd-byte addresses only)

The underlined digit chooses which of the
16 internal registers of the 8520 is to be
accessed. See Appendix F.

Reserved. Do not use.

Internal expansion memory.

Reserved. Do not use.

Real time clock.

Chip registers. See Appendix A and Appendix B.

Reserved. Do not use.

Auto-config space. Boards appear here before
the system relocates them to their final address.

Secondary auto-config space (usually 64K I/O
boards) .

Reserved. Do not use.

256K System ROM.

Appendix E

Interfaces

This appendix consists of four distinct parts, related to the way in which the Amiga talks to the
outside world.

The first part specifies the pinouts of the externally accessible connectors and the power available
at each connector. It does not, however, provide timing or loading infonnation.

The second part briefly describes the functions of those pins whose purpose may not be evident.

The third part contains a list of the connections for certain internal connectors, notably the disk.

The fourth part specifies how various signals relate to the available ports of the 8520. This infor
mation enables the programmer to relate the port addresses to the outside-world items (or internal
control signals) that are to be affected.

Appendix E 295

The third and fourth parts are primarily for the use of the systems programmer and should gen
erally not be utilized by applications programmers.

Systems software normally is configured to handle the setting of particular signals, no matter how
the physical connections may change. In other words, if you have a version of the system
software that matches the revision level of the machine (normally a true condition), when you ask
that a particular bit be set, you don't care which port that bit is connected to. Thus, applications
programmers should rely on system documentation rather than going directly to the ports.

NOTE

In a multitasking operating system, many different tasks may be competing for the use
of the system resources. Applications programmers should follow the established
rules for resource access in order to assure compatibility of their software with the sys
tem.

************** PART 1 - OUTSIDE WORLD CONNECTORS ********************

This is a list of the connections to the outside world on the Amiga.

RS232 and MIDI Port

ASOO/ CBM
PIN RS232 A1000 A2000 PCs HAYES DESCRIPTION
--
1 GND GND GND GND GND FRAME GROUND
2 TXD TXD TXD TXD TXD TRANSMIT DATA
3 RXD RXD RXD RXD RXD RECEIVE DATA
4 RTS RTS RTS RTS REQUEST TO SEND
S CTS CTS CTS CTS CTS CLEAR TO SEND
6 DSR DSR DSR DSR DSR DATA SET READY
7 GND GND GND GND GND SYSTEM GROUND
8 CD CD CD DCD DCD CARRIER DETECT
9 +l2v +12v + 12 VOLT POWER
10 -12v -12v - 12 VOLT POWER
11 AUDO AUDIO OUTPUT
12 S.SD SI SPEED INDICATE
13 S.CTS -
14 S.TXD -SVdc - - S VOLT POWER
1S TXC AUDO AUDIO OUT OF AMIGA
16 S.RXD AUDI AUDIO IN TO AMIGA
17 RXC EB BUFFERED PORT CLOCK 716kHz
18 INT2* AUDI INTERRUPT LINE TO AMIGA
19 S.RTS -
20 DTR DTR DTR DTR DTR DATA TERMINAL READY
21 SQD +S + S VOLT POWER
22 RI RI RI RI RING INDICATOR
23 SS +12Vdc - +12 VOLT POWER
24 TXC1 C2* 3.S8 MHZ CLOCK
2S RESB* BUFFERED SYSTEM RESET

296 Appendix E

Parallel (Centronics) Port

PIN 1000 500/2000 Commodore PCs
-------- -------------

1 DRDY* STROBE * STROBE*
2 Data 0 Data 0 Data 0
3 Data 1 Data 1 Data 1
4 Data 2 Data 2 Data 2
5 Data 3 Data 3 Data 3
6 Data 4 Data 4 Data 4
7 Data 5 Data 5 Data 5
8 Data 6 Data 6 Data 6
9 Data 7 Data 7 Data 7
10 ACK* ACK* ACK*
11 BUSY (data) BUSY BUSY
12 POUT (clk) POUT POUT
13 SEL SEL SEL
14 GND +5v pullup AUTOFDXT
15 GND NC ERROR*
16 GND RESET * INIT*
17 GND GND SLCT IN*
18-22 GND GND GND
23 + 5 GND GND
24 NC GND GND
25 Reset* GND GND

KEYBOARD ... RJ11

A1000 A2000

1 +5 Volts KCLK
2 CLOCK KDAT
3 DATA NC
4 GND GND
5 +5 Volts

Not Applicable to the A500.

Video ... DB23 MALE

For A500, A1000, A2000 unless otherwise stated

1 XCLK* 13 GNDRTN (Return for XCLKEN*)
2 XCLKEN* 14 ZD*
3 RED 15 C1*
4 GREEN 16 GND
5 BLUE 17 GND
6 DI 18 GND
7 DB 19 GND
8 DG 20 GND
9 DR 21 A1000/2000 -5 VOLT POWER
10 CSYNC* A500 -12 VOLT POWER
11 HSYNC* 22 +12 VOLT POWER
12 VSYNC* 23 +5 VOLT POWER

Appendix E 297

RF Monitor ••. 8 PIN DIN (J2) A1000 only

1 N.C.
2 GND
3 AUDIO LEFT
4 COMP VIDEO
5 GND
6 N.C.
7 +12 VOLT POWER
8 AUDIO RIGHT

DISK EXTERNAL ••• DB23 FEMALE

For A500, A1000, and A2000 with A2000 differences noted.

1 RDY* 13 SIDEB*
2 DKRD* 14 WPRO*
3 GND 15 TKO*
4 GND 16 DKWEB*
5 GND 17 DKWDB*
6 GND 18 STEPB*
7 GND 19 DIRB
8 MTRXD* 20 SEL3B* A2000 not used (1)
9 SEL2B* A2000 SEL3B* (1) 21 SEL1B* A2000 SEL2B* (1)
10 DRESB* 22 INDEX*
11 CHNG* 23 +12
12 +5

(1) SEL1B* is not drive 1, but rather the first external drive. Not
all select lines may be implemented.

298 Appendix E

RAMEX •.. 60 PIN EDGE (.156) (PI) A1000 only

1 gnd A gnd
2 D15 B D14
3 +5 C +5
4 D12 D D13
5 gnd E gnd
6 D11 F D10
7 +5 H +5
8 D8 J D9
9 gnd K gnd
10 D7 L D6
11 +5 M +5
12 D4 N D5
13 gnd P gnd
14 D3 R D2
15 +5 S +5
16 DO T D1
17 gnd U gnd
18 DRA4 V ORA3
19 ORA5 W ORA2
20 ORA6 X ORAl
21 ORA7 Y ORAO
22 gnd Z gnd
23 RAS* AA RRW*
24 gnd BB gnd
25 gnd CC gnd
26 CASUO* DO CASU1*
27 gnd EE gnd
28 CASLO* FF CASL1*
29 +5 HH +5
30 +5 JJ +5

Appendix E 299

EXPANSION ••• 86 PIN EDGE (.1) (P2)

PIN A500 A1000 A2000 A2000b FUNCTION

------ --------
1 x x x x qround
2 x x x x qround
3 x x x x qround
4 x x x x qround
5 x x x x +SVDC
6 x x x x +SVDC
7 x x x x No Connect
8 x x x x -SVDC
9 x x No Connect

x x 28MHz Clock
10 x x x x +12VDC
11 x x x No Connect

x /COPCFG (Confiquration Out)
12 x x x x CONFIG IN, Grounded
13 x x x x Ground
14 x x x x /C3 Clock
15 x x x x CDAC Clock
16 x x x x /Cl Clock
17 x x x x /OVR
18 x x x x RDY
19 x x x x /INT2
20 x /PALOPE

x x No Connect
x /BOSS

21 x x x x AS
22 x x x x /INT6
23 x x x x A6
24 x x x x A4
25 x x x x qround
26 x x x x A3
27 x x x x A2
28 x x x x A7
29 x x x x A1
30 x x x x A8
31 x x x x FCO
32 x x x x A9
33 x x x x FCl
34 x x x x A10
35 x x x x FC2
36 x x x x All
37 x x x x Ground
38 x x x x A12
39 x x x x A13
40 x x x x !IPLO
41 x x x x A14
42 x x x x !IPL1
43 x x x x A1S
44 x x x x !IPL2
45 x x x x A16
46 x x x x BEER*
47 x x x x Al7
48 x x x x /VPA
49 x x x x Ground
SO x x x x E Clock

300 AppendixE

EXPANSION ••• 86 PIN EDGE (.1) (P2) (cont.)

--
PIN A500 A1000 A2000 A2000b FUNCTION

------ --------
51 x x x x /VMA
52 x x x x A18
53 x x x x RST
54 x x x x A19
55 x x x x /HLT
56 x x x x A20
57 x x x x A22
58 x x x x A21
59 x x x x A23
60 x x x /BR

x ICBR
61 x x x x Ground
62 x x x x /BGACK
63 x x x x D15
64 x x x /BG

x /CBG
65 x x x x D14
66 x x x x /DTACK
67 x x x x D13
68 x x x x RIW
69 x x x x D12
70 x x x x /LOS
71 x x x x Dll
72 x x x x IUDS
73 x x x x Ground
74 x x x x /AS
75 x x x x DO
76 x x x x D10
77 x x x x D1
78 x x x x D9
79 x x x x D2
80 x x x x D8
81 x x x x D3
82 x x x x D7
83 x x x x D4
84 x x x x D6
85 x x x x Ground
86 x x x x D5

JOY STICKS ..• DB9 male

USAGE JOYSTICK MOUSE

1 FORWARD* (MOUSE V)
2 BACK* (MOUSE H)
3 LEFT * (MOUSE VQ)
4 RIGHT * (MOUSE HQ)
5 POT X (or button 3 ... if used)
6 FIRE* (or button 1)
7 +5
8 GND
9 POT Y (or button 2)

Appendix E 301

************** PART 2 - MORE OUTSIDE WORLD ********************

PARALLEL INTERFACE CONNECTOR SPECIFICATION

The 25-pin D-type connector with pins (DB25P=male for the A1000,
female for A500/A2000 and IBM compatibles) at the rear of the
Amiga is nominally used to interface to parallel printers. In this
capacity, data flows from the Amiga to the printer. This interface
may also be used for input or bidirectional data transfers. The
implementation is similar to Centronics, but the pin assignment and
drive characteristics vary significantly from that specification
(see Pin Assignment). Signal names correspond to those used in the
other places in this appendix, when possible.

PARALLEL CONNECTOR PIN ASSIGNMENT (J8)

NAME OIR

DRDY* 0

00 I/O
01 I/O
02 I/O
03 I/O
04 I/O
05 I/O
06 I/O
07 I/O
ACK* I

BUSY I/O

POUT I/O

SEL I/O

RESET * 0

302 Appendix E

NOTES

Output-data-ready signal to parallel device in
output mode, used in conjunction with ACK* (pin 10)
for a two-line asynchronous handshake. Functions
as input data accepted from Amiga in input mode
(similar to ACK* in output mode). See timing
diagrams in the following section.
+
I
I
I 00-07 comprise an eight-bit bidirectional bus
I for communication with parallel devices,
I nominally, a printer.
I
+
Output-data-acknowledge from parallel device in
output mode, used in conjunction with DRDY* (pin 1)
for a two-line asynchronous handshake. Functions as
input-data-ready from parallel device in input mode
(similar to ORDY* in output mode) .
See timing diagrams. The 8520 can be programmed to
conditionally generate a level 2 interrupt to the
68000 whenever the ACK* input goes active.
This is a general purpose I/O pin also connected to a
serial data I/O pin (serial clock on pin 12).
Note: Nominally used to indicate printer buffer full.
This is a general purpose r/o pin to a
serial clock r/o pin (serial data on pin 11).
Note: Nominally used to indicate printer paper out.
This is a general purpose I/O pin.
Note: nominally a select output from the parallel
device to the Amiga. On the A500/A2000 also shared
with RS232 "ring indicator" signal.

Amiga system reset

PARALLEL CONNECTOR INTERFACE TIMING, OUTPUT CYCLE

PA<7:0>
PB<7:0> x. ____ ~----~--------------------------~X

1<-- Tl --->1 1
1 1<-------- T2 ------>1

_______________ V V ______________________ __

DRDY*
Output data ready

1 1
1<- T3 ->1
1<--- T4 --->1

_____________________ 1 <- T5 --> 1 _______ _

ACK* 1 1
Output data acknowledge

Microseconds
Min Typ Max

Tl: 4.3 -x-
T2: nsp -x-

5.3
upc

Output data setup to ready delay.
Output data hold time.

T3:
T4:
T5:

nsp 1.4 nsp
0 -x- upc

nsp -x- upc

nsp not specified

Output data ready width.
Ready to acknowledge delay.
Acknowledge width.

upc under program control

PARALLEL CONNECTOR INTERFACE TIMING, INPUT CYCLE

PA<7:0> __ _

PB<7 :0> X X
1<-- Tl --->1

1 T2 -->1<----->1
______________ V ___________ 1 ________ _

ACK* 1 __ - 1
Input data ready 1<- T3 ->1 1

1<-- T4 --->1
_________________________ 1<- T5 -->1 ________ _

DRDY* 1 1
Input data acknowledge

Tl:
T2:
T3:
T4:

Microseconds
Min Typ Max

0 -x- upc
nsp -x- upc
nsp -x- upc
upc -x- upc

Input data setup time.
Input data hold time.
Input data ready width.
Input data ready to data

acknowledge delay.
T5: nsp 1.4 nsp Input data acknowledge width.

nsp not specified
upc under program control

Appendix E 303

SERIAL INTERFACE CONNECTOR SPECIFICATION

This 25-pin O-type connector with sockets (DB25S=female) is used to
interface to RS-232-C standard signals. Signal names correspond to
those used. in other places in this appendix, when possible.

WARNING: Pins on the RS232 connector other than these standard ones
described below may be connected to power or other non-RS232 standard
signals. When making up RS232 cables, connect only those pins actually
used for a particular application. Avoid generic 25-connector "straight
thru" cables.

SERIAL INTERFACE CONNECTOR PIN ASSIGNMENT (J6)

NAME

FGNO
TXD
RXO
RTS
CTS
DSR
GND
CO
-5V
AUOO

AUDI

OTR
RI

RESB*

RS-232-C

OIR STD NOTES

o
I
o
I
I

I

o

I

o
I

o

y Frame ground -- do not tie to signal ground
y Transmit data
y Receive data
y Request to send
y Clear to send
y Data set ready
y Signal ground -- do not tie to frame ground
y Carrier detect
n* 50 ma maximum *** WARNING -5V ***
n* Audio output from left (channels 0, 3) port,

intended to send audio to the modem.
n* Audio input to right (channels 1, 2) port,

intended to receive audio from the modem; this
input is mixed with the analog output of the
right (channels 1, 2). It is not digitized or
used by the computer in any way.

y Data terminal ready.
y Ring Indicator (A500/A2000 only) shared with printer

"select" signal.
n* Amiga system reset.

NOTES:
n*: See warning above
See part 1 of this appendix for pin numbers.

SERIAL INTERFACE CONNECTOR TIMING

Maximum operating frequency is 19.2 KHz. Refer to EIA standard
RS-232-C for operating and installation specifications.
A rate of 31.25 KHz will be supported through the use of a MIDI adapter.

Modem control signals (CTS, RTS, DTR, DSR, CD) are completely under
software control. The modem control lines have no hardware affect
on and are completely asynchronous to TXD and RXD.

304 Appendix E

SERIAL INTERFACE CONNECTOR ELECTRICAL CHARACTERISTICS

OUTPUTS MIN TYP MAX

Vo(-): -13.2 -x- -2.5 V Negative output voltage range
Vo(+): 8.0 -x- 13.2 V Positive output voltage range
Io: -x- -x- 10.0 ma Output current

INPUTS MIN TYP MAX

Vi(+): 3.0 -x- 25.0 V Positive input voltage range
Vi(-): -25.0 -x- 0.5 V Negative input voltage range
Vbys: -x- 1.0 -x- V Input hysteresis voltage
Ii: 0.3 -x- 10.0 ma Input current

Unconnected inputs are interpreted the same as positive input voltages.

GAME CONTROLLER INTERFACE CONNECTOR SPECIFICATION

The two 9-pin D-type connectors with pins (male) are used to
interface to four types of devices:

1. Mouse or trackball, 3 buttons max.
2. Digital joystick, 2 buttons max.
3. Proportional (pot or proportional joystick), 2 buttons max.
4. Light pen, including pen-pressed-to-screen button.

The connector pin assignments are discussed in sections organized
by similar hardware and/or software operating requirements as shown
in the previous list. Signal names follow those used elsewhere
in this appendix, when possible.

J11 is the right controller port connector (JOYlDAT, POTlDAT).
J12 is the left controller port connector (JOYODAT, POTODAT).

NOTE: While most of the hardware discussed below is directly
accessible, hardware should be accessed through ROM kernel software.
This will keep future hardware changes transparent to the user.

Appendix E 305

GAME CONTROLLER INTERFACE TO MOUSE/TRACKBALL QUADRATURE INPUTS

A mouse or trackball is a device that translates planar motion into
pulse trains. Quadrature techniques are employed to preserve the
direction as well as magnitude of displacement. The registers JOYODAT
and JOY1DAT become counter registers, with y displacement in the high
byte and x in the low byte. Movement causes the following action:

Up:
Down:
Right:
Left:

y decrements
y increments
x increments
x decrements

To determine displacement, JOYxDAT is read twice with corresponding x
and y values subtracted (careful, modulo 128 arithmetic). Note that
if either count changes by more than 127, both distance and direction
become ambiguous. There is a relationship between the sampling
interval and the maximum speed (that is, change in distance) that
can be resolved as follows:

Velocity < Distance(max) / SampleTime

Velocity < SQRT(DeltaX**2 + DeltaY**2) / SampleTime

For an Amiga with a 200 count-per-inch mouse sampling during each
vertical blanking interval, the maximum velocity in either the X or Y
direction becomes:

Velocity < (128 Counts * 1 inch/200 Counts) / .017 sec 38 in/sec

which should be sufficient for most users.

NOTE: The Amiga software is designed to do mouse update cycles during
vertical blanking. The horizontal and vertical counters are always
valid and may be read at any time.

CONNECTOR PIN USAGE FOR MOUSE/TRACKBALL QUADRATURE INPUTS

PIN MNEMONIC

1 V
2 H
3 VQ
4 HQ
5 UBUT*
6 LBUT*
7 +5V
8 Ground
9 RBUT*

DESCRIPTION

Vertical pulses
Horizontal pulses
Vertical quadrature pulses
Horizontal quadrature pulses
Unused mouse button
Left mouse button
+5V, current limited

Right mouse button

HARDWARE REGISTER/NOTES

JOY[0/ljDAT<15:8>
JOY[0/ljDAT(7:0>
JOY[0/1]DAT<15:8>
JOY[0/1]DAT<7:0>
See Proportional Inputs.
See Fire Button.

See Proportional Inputs.

GAME PORT INTERFACE TO DIGITAL JOYSTICKS

A joystick is a device with four normally opened switches arranged 90
degrees apart. The JOY[O/l]DAT registers become encoded switch input
ports as follows:

Forward:
Left:
Back:
Right:

bitt9 xor biti8
bitt 9
bitU xor bitiO
bitU

Data is encoded to facilitate the mouse/trackball operating mode.

NOTE: The right and left direction inputs are also designed to be
right and left buttons, respectively, for use with proportional
inputs. In this case, the forward and back inputs are not used,
while right and left become button inputs rather than joystick inputs.

The JOY[O/l]DAT registers are always valid and may be read at any time.

CONNECTOR PIN USAGE FOR DIGITAL JOYSTICK INPUTS

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES
-------- ----------- -----------------------

1 FORWARD * .Forward joystick switch JOY[0/l]DAT<9 xor
2 BACK * Back joystick switch JOY[O/l]DAT(l xor
3 LEFT * Left joystick switch JOY [0/1] DAT<9>
4 RIGHT* Right joystick switch JOY[O/l]DAT<l>
5 Unused
6 FIRE* Left mouse button See Fire Button.
7 +SV 12Sma max, 200ma surge Total both ports.
8 Ground
9 Unused

GAME PORT INTERFACE TO FIRE BUTTONS

The fire buttons are normally opened switches routed to the 8520
adapter PRAO as follows:

PRAO bit 7
PRAO bit 6

Fire* left controller port
Fire* right controller port

Before reading this register, the corresponding bits of the data
direction register must be cleared to define input mode:

DDRAO<7:6> cleared as appropriate

8>
0>

NOTE: Do not disturb the settings of other bits in DDRAO (Use of ROM
kernel calls is recommended).

Fire buttons are always valid and may be read at any time.

Appendix E 307

CONNECTOR PIN USAGE FOR FIRE BUTTON INPUTS

PIN MNEMONIC DESCRIPTION

1 -x-
2 -x-
3 -x-
4 -x-
5 -x-
6 FIRE* Left mouse button/fire button
7 -x-
8 ground
9 -x-

GAME PORT INTERFACE TO PROPORTIONAL CONTROLLERS

Resistive (potentiometer) element linear taper proportional
controllers are supported up to 528k Ohms max (470k +/- 10%
recommended). The JOY[O/ljDAT registers contain digital
translation values for y in the high byte and x in the low byte.
A higher count value indicates a higher external resistance.
The Amiga performs an integrating analog-to-digital conversion
as follows:

1. For the first 7 (NTSC) or 8 (PAL) horizontal display lines,
the analog input capacitors are discharged and the positions
counters reflected in the POT[O/ljDAT registers are held reset.

For the remainder of the display field, the input capacitors are
allowed to recharge through the resistive element in the external
control device.

2. The gradually increasing voltage is continuously compared to
an internal reference level while counter keeps track of the
number of lines since the end of the reset interval.

3. When the input voltage finally exceeds the internal threshold
for a given input channel, the current counter value is latched
into the POT[O/ljDAT register corresponding to that channel.

4. During the vertical blanking interval, the software examines
the resulting POT[O/ljDAT register values and interprets the
counts in terms of joystick position.

NOTE: The POTY and POTX inputs are designated as "right mouse button" and
"unused mouse button" respectively. An opened switch corresponds to high
resistance, a closed switch to a low resistance. The buttons are also
available in POTGO and POTINP registers. It is recommended that
ROM kernel calls be used for future hardware compatibility.

It is important to realize that the proportional controller is more of a
"pointing" device than an absolute position input. It is up to the
software to provide the calibration, range limiting and averaging functions
needed to support the application's control requirements.

The POT[O/ljDAT registers are typically read during video blanking,
but MAY be available prior to that.

308 Appendix E

CONNECTOR PIN USAGE FOR PROPORTIONAL INPUTS

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES
-------- ----------- -----------------------

1 XBUT Extra Button
2 Unused
3 LBUT* Left button See Digital Joystick
4 RBUT* Right button See Digital Joystick
5 POTX X analog in POT[0/ljDAT<7:0>, POTGO, POTINP
6 Unused
7 +5V 125ma max, 200 ma surge
8 Ground
9 POTY Y analog in POT[0,ljDAT<15:8>, POTGO, POTINP

GAME PORT INTERFACE TO LIGHT PEN

A light pen is an optoelectronic device whose light-sensitive portion
is placed in proximity to a CRT. As the electron beam sweeps past the
light pen, a trigger pulse is generated which can be enabled to latch the
horizontal and vertical beam positions. There is no hardware bit to
indicate this trigger, but this can be determined in the two ways
as shown in chapter 8, "Interface Hardware."

Light pen position is usually read during blanking, but MAY be available
prior to that.

CONNECTOR PIN USAGE FOR LIGHT PEN INPUTS

PIN MNEMONIC

1 Unused
2 Unused
3 Unused
4 Unused
5 LPENPR*
6 LPENTG*
7 +5V
8 Ground
9 Unused

Note: depending

DESCRIPTION

Light pen pressed
Light pen trigger
125ma max, 200 ma surge

HARDWARE REGISTER/NOTES

See Proportional Inputs
VPOSR, VHPOSR
Both ports

on the maker, the light pen input may be either.

Appendix E 309

EXTERNAL DISK INTERFACE CONNECTOR SPECIFICATION

The 23-pin D-type connector with sockets (DB23S) at the rear of the
Amiga is nominally used to interface to MFM devices.

EXTERNAL DISK CONNECTOR PIN ASSIGNMENT (J7)

PIN NAME DIR

1 ROY* I/O

2 DKRD* I
3 GND
4 GND
5 GND
6 GND
7 GND
8 MTRXD* OC

9 SEL2B* OC
10 DRESB* OC

11 CHNG* I/O

12 +5V

13 SIDES* 0
14 WPRO* I/O
15 TKO* I/O

16 DKWEB* OC
17 DKWDB* OC
18 STEPB* OC

19 DIRB OC

20 SEL3B* OC
21 SEL1B* OC
22 INDEX* I/O

23 +12V

NOTES

If motor on, indicates disk installed and up to
speed. If motor not on, identification mode. See
below.
MFM input data to Amiga.

Motor on data, clocked into drive's motor-on
flip-flop by the active transition of SELxB*.
Guaranteed setup time is 1.4 usec.
Guaranteed hold time is 1.4 usec.
Select drive 2.*
Amiga system reset. Drives should reset their
motor-on flip-flops and set their write-protect
flip-flops.
Note: Nominally used as an open collector input.
Drive's change flop is set at power up or when no
disk is not installed. Flop is reset when drive is
selected and the head stepped, but only if a disk
is installed.
270 ma maximum; 410 ma surge
When below 3.75V, drives are required to reset their
motor-on flops, and set their write-protect flops.
Side 1 if active, side 0 if inactive
Asserted by selected, write-protected disk.
Asserted by selected drive when read/write head
is positioned over track O.
Write gate (enable) to drive.
MFM output data from Amiga.
Selected drive steps one cylinder in the direction
indicated by DIRB.
Direction to step the head. Inactive to step
towards center of disk (higher-numbered tracks) •
Select drive 3. *
Select drive 1. *
Index is a pulse generated once per disk revolution,
between the end and beginning of cylinders. The
8520 can be programmed to conditionally generate a
level 6 interrupt to the 68000 whenever the INDEX*
input goes active.
160 ma maximum; 540 rna surge.

* Note: the drive select lines are shifted as they pass through
a string of daisy chained devices. Thus the signal that appears
as drive 2 select at the first drive shows up as drive 1 select
at the second drive and so on ...

310 Appendix E

EXTERNAL DISK CONNECTOR IDENTIFICATION MODE

An identification mode is provided for reading a 32-bit serial
identification data stream from an external device. To initialize
this mode, the motor must be turned on, then off. See pin 8,
MTRXD* for a discussion of how to turn the motor on and off. The
transition from motor on to motor off reinitializes the serial
shift register.
After initialization, the SELxB* signal should be left in the
inactive state.
Now enter a loop where SELxB* is driven active, read serial input
data on RDY* (pin 1), and drive SELxB* inactive. Repeat this loop
a total of 32 times to read in 32 bits of data. The most significant
bit is received first.

EXTERNAL DISK CONNECTOR DEFINED IDENTIFICATIONS

$0000 0000
$FFFF FFFF
$5555 5555

no drive present.
Amiga standard 3.25 diskette.
48 TPI double-density, double-sided.

As with other peripheral ID's, users should contact Commodore-Amiga
for ID assignment.
The serial input data is active low and must therefore be inverted
to be consistent with the above table.

EXTERNAL DISK CONNECTOR LIMITATIONS

1. The total cable length, including daisy chaining, must not exceed
1 meter.

2. A maximum of 3 external devices may reside on this interface,
but specific implementations may support fewer external devices.

3. Each device must provide a 1000-Ohm pull-up resistor on those
outputs driven by an open-collector device on the Amiga
(pins 8-10, 16-21).

4. The system provides power for only the first external device in the
daisy chains.

Appendix E 311

************** PART 3 - INTERNAL CONNECTORS *******************

DISK INTERNAL ••• 34 PIN RIBBON (J10)

1 GND 18 DIRB
2 CHNG* 19 GND
3 GND 20 STEPB*
4 MTROD* (led) 21 GND
5 GND 22 DKWDB*
6 N.C. 23 GND
7 GND 24 DKWEB*
8 INDEX* 25 GND
9 GND 26 TKO*
10 SELOB* 27 GND
11 GND 28 WPRO*
12 N.C. 29 GND
13 GND 30 DKRD*
14 N.C. 31 GND
15 GND 32 SIDEB*
16 MTROD* 33 GND
17 GND 34 RDY*

DISK INTERNAL POWER .•• 4 PIN STRAIGHT (J13)

1 +12 (some drives are +5 only)
2 GND
3 GND
4 +5

312 Appendix E

********** PART 4 - PORT SIGNAL ASSIGNMENTS FOR 8520 ************

Address BFFROl data bits 7-0 (A12*) (int2)

PA7 •• game port
PA6 •• game port
PAS •• ROY*
PA4 •• TKO*
PA3 •• WPRO*

1, pin 6 (fire button*)
0, pin 6 (fire button*)
disk ready*
disk track 00*
write protect*
disk change* PA2 •• CHNG*

PAL .LED*
PAO •• OVL

led light (O-bright) / audio filter control (A500 & A2000)
ROM/RAM overlay bit

SP ••• KDAT
CNT •• KCLK
PB7 •• P7
PB6 •• P6
PBS •• PS
PB4 •• P4
PB3 .. P3
PB2 •• P2
PBl. .Pl
PBO •• PO data 0

PC •.. drdy*
F •••• ack*

keyboard
keyboard
data 7
data 6
data 5
data 4
data 3
data 2
data 1

data
clock

Centronics parallel interface
data

Centronics control

Address BFDRFE data bits 15-8 (A13*) (int6)

PA7 •• com line DTR*, driven output
PA6 •• com line RTS*, driven output
PAS •• com line carrier detect*
PA4 •• com line CTS*
PA3 •• com line DSR*
PA2 .• SEL Centronics control
PA1 •• POUT +--- p~per out ------------+
PAO •• BUSY I +--busy -------------+ I

I I I I
SP ••• BUSY I +- commodore serial bus + I
CNT •• POUT +----commodore serial bus --+

PB7 •• MTR*
PB6 •• SEL3*
PBS •• SEL2*
PB4 •• SELl *
PB3 •• SELO*
PB2 •• SIDE*
PB1 •• DIR
PBO •• STEP *

PC •.. not used
F •••• INDEX*

motor
select external 3rd drive
select external 2nd drive
select external 1st drive
select internal drive
side select*
direction
step*

disk index pulse*

Appendix E 313

PORTO

\ 5 }

9 /
J

PORT 1

\)
/

J

POT COUNTERS

314 Appendix E

POTOX

POTOY

+
POTOY
COUNTER

POT1X

POT1Y

• POT1Y
COUNTER
LATCH

POTOX
COUNTER

POTlX
COUNTER
LATCH

POTODAT
DFF012

POT1DAT
DFF014

II POTGO
L..... ________ -'-' DFF034

I POTINP
L..... ________ ---'. DFF016

PORT 1 I o~ 0 0 0 0 I
\ 000 J

FIREO\

7 J

FIRE1\ FIRED
I I

I

PORT 2 \ o 0 0 0 oj

\
FIRE1\

I I

) 0 0 0 J

0

I

PR A
E001 $BF

I
0

I
0

I I
g~irection

_ _ _ 0 0 0 0 1 . $BFE201

IN IN OUT OUT OUT OUT OUT OUT

Reading FIRE BUnONS

Appendix E 315

VPOSR Read Only
DFFOO4

1 L _______________ ----'1 ~~~~R Read Only

I I I BPLCONO Write Only

~-LI~~~~L_~~~~_L~I~I_~~I~" DFF104
15 3 0

LI ------- Light Pen Enable

I POTINP Read Only
I I _ DFF016 (Bit 8)

Ll-5L-~~~~-IL~11 ~~~~-PE~N--P~R-E~S~~=POTOX

PORT 0

Light Pen

LIGHT PEN
~ latches V & H positions

316 Appendix E

AppendixF

Complex Interface Adapters

This appendix contains information about the 8520 peripheral interface adapters.

8520 Complex Interface Adaptor (CIA) Chips

Each Amiga system contains two 8520 Complex Interface Adaptor (CIA) chips. Each chip has
16 general purpose input/output pins, plus a serial shift register, three timers, an output pulse pin
and an edge detection input. In the Amiga system various tasks are assigned to the chip's capabil
ities.

Appendix F 317

ClAA Address Map

Byte Register
Address Name

BFE001
BFE101
BFE201
BFE301
BFE401
BFE501
BFE601
BFE701
BFE801
BFE901
BFEA01
BFEB01
BFEC01
BFED01
BFEE01
BFEF01

pra
prb
ddra
ddrb
talo
tahi
tblo
tbhi
todlo
todmid
todhi

sdr
icr
cra
crb

7 6
Data bits

543 2 1 o

/FIR1 /FIRO /RDY /TKO /WPRO /CHNG /LED OVL
Parallel port
Direction for port A (BFE001);1=output (set to Ox03)
Direction for port B (BFE101);1=output (can be in or out)
ClAA timer A low byte (.715909 Mhz NTSC; .709379 Mhz PAL)
ClAA timer A high byte
ClAA timer B low byte (.715909 Mhz NTSC: .709379 Mhz PAL)
ClAA timer B high byte
50/60 Hz event counter bits 7-0 (VSync or line tick)
50/60 Hz event counter bits 15-8
50/60 Hz event counter bits 23-16
not used
ClAA serial data register (connected to keyboard)
ClAA interrupt control register
ClAA control register A
ClAA control register B

Note: ClAA can generate interrupt INT2.

CIAB Address Map

Byte
Address

BFDOOO
BFD100
BFD200
BFD300
BFD400
BFD500
BFD600
BFD700
BFD800
BFD900
BFDAOO
BFDBOO
BFDCOO
BFDDOO
BFDEOO
BFDFOO

Note:

Register
Name 7 6 5

Data bits
4 3 2 1

pra /DTR /RTS /CD ICTS /DSR SEL POUT
prb /MTR /SEL3 /SEL2 /SEL1 /SELO ISIDE DIR
ddra Direction for Port A (BFDOOO):l = output
ddrb Direction for Port B (BFD100):1 = output
talo CIAB timer A low byte (.715909 Mhz NTSC:
tahi CIAB timer A high byte
tblo CIAB timer B low byte (.715909 Mhz NTSC:
tbhi CIAB timer B high byte
todlo Horizontal sync event counter bits 7-0
todmid Horizontal sync event counter bits 15-8
todhi Horizontal sync event counter bits 23-16

not used
sdr CIAB serial data register (unused)
icr CIAB interrupt control register
cra CIAB Control register A
crb CIAB Control register B

CIAB can generate INT6.

318 Appendix F

o

BUSY
/STEP

(set to OxFF)
(set to OxFF)
.709379 Mhz PAL)

.709379 Mhz PAL)

Chip Register Map

Each 8520 has 16 registers that you may read or write. Here is the list of registers and the access
address of each within the memory space dedicated to the 8520:

Register
RS3 RS2 RSI RSO t(hex) NAME MEANING

o
o
o
o
o
o
o
o
1
1
1
1
1
1
1
1

o
o
o
o
1
1
1
1
o
o
o
o
1
1
1
1

o
o
1
1
o
o
1
1
o
o
1
1
o
o
1
1

SOFTWARE NOTE:

o
1
o
1
o
1
o
1
o
1
o
1
o
1
o
1

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

pra
prb
ddra
ddrb
talo
tahi
tblo
tbhi
todlow
todmid
todhi

sdr
icr
cra
crb

Peripheral data register A
Peripheral data register B
Data direction register A
Direction register B
Timer A low register
Timer A high register
Timer B low register
Timer B high register
Event LSB
Event 8-1S
Event MSB
No connect
Serial data register
Interrupt control register
Control register A
Control register B

The operating system kernel has already allocated the use of
several of the 8520 timers.

ClAA, timer A

ClAA, timer B

ClAA, TOD

CIAB, timer A
CIAB, timer B
CIAB, TOD

Keyboard (used continuously to handshake
keystrokes). NOT AVAILABLE.
Virtual timer device (used continuously
whenever system Exec is in control; used
for task switching, interrupts and timing).
SO/60 Hz timer used by timer. device. The
AIOOO uses power line tick. The ASOO uses
vertical sync. The A2000 has a jumper
selection.

not used
not used
graphics. library video beam follower. This
timer counts at the horizontal sync rate,
and is used to syncronize graphics events
to the video beam.

Note that previous editions of this chart were incorrect.

Appendix F 319

Register Functional Description

VO PORTS (PRA, PRB, DDRA, DDRB)

Ports A and B each consist of an 8-bit peripheral data register (PR) and an 8-bit data direction
register (DDR). If a bit in the DDR is set to a 1, the corresponding bit position in the PR
becomes an output. If a DDR bit is set to a 0, the corresponding PR bit is defined as an input.

When you READ a PR register, you read the actual current state of the I/O pins (P AO-PA 7, PBO
PB7, regardless of whether you have set them to be inputs or outputs.

Ports A and B have passive pull-up devices as well as active pull-ups, providing both CMOS and
1TL compatibility. Both ports have two 1TL load drive capability.

In addition to their nonnal I/O operations, ports PB6 and PB7 also provide timer output func
tions.

HANDSHAKING

Handshaking occurs on data transfers using the PC output pin and the FLAG input pin. PC will
go low on the third cycle after a port B access. This signal can be used to indicate "data ready"
at port B or "data accepted" from port B. Handshaking on 16-bit data transfers (using both ports
A and B) is possible by always reading or writing port A first. FLAG is a negative edge-sensitive
input that can be used for receiving the PC output from another 8520 or as a general- purpose
interrupt input Any negative transition on FLAG will set the FLAG interrupt bit

REG NAME 07 06 05 04 03 02 01 00
---- ---- ---- ---- ---- ---- ---- ----

0 PRA PA7 PA6 PAS PA4 PA3 PA2 PAl PAO
1 PRB PB7 PB6 PBS PB4 PB3 PB2 PBl PBO
2 OORA OPA7 OPA6 OPA5 OPA4 OPA3 OPA2 OPAl OPAO
3 OORB OPB7 OPB6 OPB5 OPB4 OPB3 OPB2 OPBl OPBO

INTERVAL TIMERS (TIMER A, TIMER B)

Each intelVal timer consists of a 16-bit read-only timer counter and a 16-bit write-only timer
latch. Data written to the timer is latched into the timer latch, while data read from the timer is
the present contents of the timer counter.

320 Appendix F

The latch is also called a prescalar in that it represents the countdown value which must be
counted before the timer reaches an underflow (no more counts) condition. This latch (prescalar)
value is a divider of the input clocking frequency. The timers can be used independently or linked
for extended operations. Various timer operating modes allow generation of long time delays,
variable width pulses, pulse trains, and variable frequency wavefonns. Utilizing the CNT input,
the timers can count external pulses or measure frequency, pulse width, and delay times of exter
nal signals.

Each timer has an associated control register, providing independent control over each of the fol
lowing functions:

Start/Stop

A control bit allows the timer to be started or stopped by the microprocessor at any time.

PB on/off

A control bit allows the timer output to appear on a port B output line (pB6 for timer A and PB7
for timer B). This function overrides the DDRB control bit and forces the appropriate PB line to
become an output.

Toggle/pulse

A control bit selects the output applied to port B while the PB on/off bit is ON. On every timer
underflow, the output can either toggle or generate a single positive pulse of one cycle duration.
The toggle output is set high whenever the timer is started, and set low by RES.

One-shot/continuous

A control bit selects either timer mode. In one-shot mode, the timer will count down from the
latched value to zero, generate an interrupt, reload the latched value, then stop. In continuous
mode, the timer will count down from the latched value to zero, generate an interrupt, reload the
latched value, and repeat the procedure continuously.

In one-shot mode, a write to timer-high (register 5 for timer A, register 7 for Timer B) will
transfer the timer latch to the counter and initiate counting regardless of the start bit.

Appendix F 321

Force load

A strobe bit allows the timer latch to be loaded into the timer counter at any time, whether the
timer is running or not.

INPUT MODES

Control bits allow selection of the clock used to decrement the timer. Timer A can count 02
clock pulses or external pulses applied to the CNT pin. Timer B can count 02 pulses, external
CNT pulses, timer A underflow pulses, or timer A underflow pulses while the CNT pin is held
high.

The timer latch is loaded into the timer on any timer underflow, on a force load, or following a
write to the high byte of the pre- scalar while the timer is stopped. If the timer is running, a write
to the high byte will load the timer latch but not the counter.

BIT NAMES on READ-Register

REG NAME 07 06 05 04 03 02 01 DO
---- ---- ---- ---- ---- ---- ----

4 TALO TAL 7 TAL6 TAL5 TAL4 TAL3 TAL2 TALI TALO
5 TAHI TAH7 TAH6 TAH5 TAH4 TAH3 TAH2 TAHI TAHO
6 TBLO TBL7 TBL6 TBL5 TBL4 TBL3 TBL2 TBLI TBLO
7 TBHI TBH7 TBH6 TBH5 TBH4 TBH3 TBH2 TBHl TBHO

BIT NAMES on WRITE-Register

REG NAME 07 06 05 04 03 02 01 DO

4
5
6
7

TALO
TAHI
TBLO
TBHI

322 Appendix F

PAL7 PAL6 PALS PAL4 PAL3 PAL2 PALl PALO
PAH7 PAH6 PAH5 PAH4 PAH3 PAH2 PAHI PAHO
PBL7 PBL6 PBL5 PBL4 PBL3 PBL2 PBLI PBLO
PBH7 PBH6 PBH5 PBH4 PBH3 PBH2 PBHl PBHO

Time of Day Clock

TOO consists of a 24-bit binary counter. Positive edge transitions on this pin cause the binary
counter to increment. The TOO pin has a passive pull-up on it.

A programmable alarm is provided for generating an interrupt at a desired time. The alarm regis
ters are located at the same addresses as the corresponding TOO registers. Access to the alarm is
governed by a control register bit. The alarm is write-only; any read of a TOO address will read
time regardless of the state of the ALARM access bit.

A specific sequence of events must be followed for proper setting and reading of TOO. TOO is
automatically stopped whenever a write to the register occurs. The clock will not start again until
after a write to the LSB event register. This assures that TOO will always start at the desired
time.

Since a carry from one stage to the next can occur at any time with respect to a read operation, a
latching function is included to keep all TOO information constant during a read sequence. All
TOO registers latch on a read of MSB event and remain latched until after a read of LSB event.
The TOO clock continues to count when the output registers are latched. If only one register is to
be read, there is no carry problem and the register can be read "on the fly" provided that any read
of MSB event is followed by a read of LSB Event to disable the latching.

BIT NAMES for WRITE TIMFl ALARM or READ TIME

REG NAME

8
9
A

LSB Event
Event 8-15
MSB Event

WRITE
CRa7 - 0
CRa 7 - 1 ALARM

E7 E6
E15 E14
E23 E22

E5 E4
E13 E12
E21 E20

E3
Ell
E19

E2 E1 EO
E10 E9 E8
E18 E17 E16

Appendix F 323

Serial Shift Register (SDR)

The serial port is a buffered, 8-bit synchronous shift register. A control bit selects input or output
mode. In the Amiga system one shift register is used for the keyboard, and the other is unas
signed. Note that the RS-232 compatible serial port is controlled by the Paula chip; see chapter 8
for details.

INPUT MODE

In input mode, data on the SP pin is shifted into the shift register on the rising edge of the signal
applied to the CNT pin. After eight CNT pulses, the data in the shift register is dumped into the
serial data register and an interrupt is generated.

OUTPUT MODE

In the output mode, Timer A is used as the baud rate generator. Data is shifted out on the SP pin
at 1(l the underflow rate of Timer A. The maximum baud rate possible is 02 divided by 4, but
the maximum usable baud rate will be determined by line loading and the speed at which the
receiver responds to input data.

To begin transmission, you must first set up Timer A in continuous mode, and start the timer.
Transmission will start following a write to the serial data register. The clock signal derived from
Timer A appears as an output on the CNT pin. The data in the serial data register will be loaded
into the shift register, then shifted out to the SP pin when a CNT pulse occurs. Data shifted out
becomes valid on the next falling edge of CNT and remains valid until the next falling edge.

After eight CNT pulses, an interrupt is generated to indicate that more data can be sent. If the
serial data register was reloaded with new information prior to this interrupt, the new data will
automatically be loaded into the shift register and transmission will continue.

If no further data is to be transmitted after the eighth CNT pulse, CNT will return high and SP
will remain at the level of the last data bit transmitted.

SDR data is shifted out MSB first Serial input data should appear in this same format.

324 Appendix F

BIDIRECTIONAL FEATURE

The bidirectional capability of the shift register and CNT clock allows many 8520s to be con
nected to a common serial communications bus on which one 8520 acts as a master, sourcing data
and shift clock, while all other 8520 chips act as slaves. Both eNT and SP outputs are open
drain to allow such a common bus. Protocol for master/slave selection can be transmitted over
the serial bus or via dedicated handshake lines.

REG NAME 07 06 05 04 03 02 01 DO

c SOR S7 S6 S5 S4 S3 S2 Sl SO

Interrupt Control Register (ICR)

There are five sources of interrupts on the 8520:

-Underflow from Timer A (timer counts down past 0)
-Underflow from Timer B
-TODalarm
-Serial port full/empty
-Flag

A single register provides masking and interrupt infonnation. The interrupt control register con
sists of a write-only MASK register and a read-only DATA register. Any interrupt will set the
corresponding bit in the DATA register. Any interrupt that is enabled by a I-bit in that position
in the MASK will set the IR bit (MSB) of the DATA register and bring the IRQ pin low. In a
multichip system, the IR bit can be polled to detect which chip has generated an interrupt request.

When you read the DATA register, its contents are cleared (set to 0), and the IRQ line returns to a
high state. Since it is cleared on a read, you must assure that your interrupt polling or interrupt
service code can preserve and respond to all bits which may have been set in the DATA register
at the time it was read. With proper preservation and response, it is easily possible to intennix
polled and direct interrupt service methods.

You can set or clear one or more bits of the MASK register without affecting the current state of
any of the other bits in the register. This is done by setting the appropriate state of the MSBit,
which is called the set/clear bit. In bits 6-0, you yourself fonn a mask that specifies which of the
bits you wish to affect. Then, using bit 7, you specify HOW the bits in corresponding positions in
the mask are to be affected.

Appendix F 325

• If bit 7 is a 1, then any bit 6-0 in your own mask byte which is set to a 1 sets the correspond
ing bit in the MASK register. Any bit that you have set to a 0 causes the MASK register bit
to remain in its current state.

• If bit 7 is a 0, then any bit 6-0 in your own mask byte which is set to a 1 clears the
corresponding bit in the MASK register. Again, any 0 bit in your own mask byte causes no
change in the contents of the corresponding MASK register bit.

If an interrupt is to occur based on a particular condition, then that corresponding MASK bit must
bea 1.

Example: Suppose you want to set the Timer A interrupt bit (enable the Timer A interrupt), but
want to be sure that all other interrupts are cleared. Here is the sequence you can use:

INCLUDE "hardware/cia.i"
XREF ciaa
lea :ciaa,aO
move.b t%01111110, ciaicr (aO)

From amiga.lib
Defined in amiga.lib

MSB is 0, means clear any bit whose value is 1 in the rest of the byte

INCLUDE "hardware/cia.i"
XREF ciaa
lea -ciaa,aO
move.b t%10000001, ciaicr (aO)

From amiga.lib
Defined in amiga.lib

MSB is 1, means set any bit whose value is 1 in the rest of the byte (do not change any values
wherein the written value bit is a zero)

READ INTERRUPT CONTROL REGISTER

REG NAME D7 D6 D5 D4 D3 D2 D1 DO

D ICR IR o o FLG SP ALRM TB TA

WRITE INTERRUPT CONTROL MASK

REG NAME D7 D6 D5 D4 D3 D2 D1 DO

D ICR SIC x x FLG SP ALRM TB TA

326 Appendix F

Control Registers

There are two control registers in the 8520, CRA and CRB. CRA is associated with Timer A and
CRB is associated with Timer B. The fonnat of the registers is as follows:

CONTROL REGISTER A

BIT NAME FUNCTION

o START 1 - start Timer A, 0 - stop Timer A.
This bit is automatically reset (- 0) when
underflow occurs during one-shot mode.

1 PBON 1 - Timer A output on PB6, 0 - PB6 is normal operation.

2 OUTMODE 1 - toggle, 0 - pulse.

3 RUNMODE 1 - one-shot mode, 0 - continuous mode.

4 LOAD 1 - force load (this is a strobe input, there is no
data storage; bit 4 will always read back a zero
and writing a 0 has no effect.)

5 INMODE 1 - Timer A counts positive CNT transitions,
o - Timer A counts 02 pulses.

6 SPMODE 1 - Serial port=output (CNT is the source of the shift
clock)

7 UNUSED

o - Serial port-input (external shift clock is
required)

Appendix F 327

BIT MAP OF REGISTER eRA

REGt NAME UNUSED SPMODE INMODE LOAD RUNMODE OUTMODE PBON START

E CRA unused O-input 0-02 l=force O=cont. O=pulse 0=PB60FF O-stop
unused I-output l-CNT load l-one- l=toggle 1=PB60N I-start

(strobe) shot

1<-------- Timer A Variables ----------------->1

All unused register bits are unaffected by a write and forced to 0 on a read.

CONTROL REGISTER B:

BIT NAME

o

1

2
3
4

START

PBON

OUTMODE
RUNMODE
LOAD

6,5 INMODE

7 ALARM

328 Appendix F

FUNCTION

1 - start Timer B, 0 = stop Timer B.
This bit is automatically reset (= 0) when
underflow occurs during one-shot mode.

1 Timer B output on PB7, 0 = PB7 is normal
operation.

1 toggle, 0 = pulse.
lone-shot mode, 0 = continuous mode.
1 force load (this is a strobe input, there is no

data storage; bit 4 will always read back a
zero and writing a 0 has no effect.)

Bits CRB6 and CRB5 select one of four possible
input modes for Timer B, as follows:

CRB6 CRB5 Mode Selected

0
0
1
1

1
o

0 Timer B counts 02 pulses
1 Timer B counts positive CNT transitions
0 Timer B counts Timer A underflow pulses
1 Timer B counts Timer A underflow pulses

while CNT pin is held high.

writing to TOO registers sets Alarm
writing to TOO registers sets TOO clock.
Reading TOO registers always reads TOO clock,
regardless of the state of the Alarm bit.

BIT MAP OF REGISTER eRB

REG
f NAME ALARM INMODE LOAD RUNMODE OUTMODE PBON START

F CRB O-TOD 00-02 l-force O=cont. O=pulse 0=PB70FF O=stop
l-Alarm Ol-CNT load l=one- l-toggle l=PB70N l=start

lO-Timer A (strobe) shot
ll-CNT+

Timer A

I<----------------Timer B Variables--------------->I

All unused register bits are unaffected by a write and forced to 0 on a read.

Port Signal Assignments

This part specifies how various signals relate to the available ports of the 8520. This infonnation
enables the programmer to relate the port addresses to the outside-world items (or internal control
signals) which are to be affected. This part is primarily for the use of the systems programmer
and should generally not be used by applications programmers. Systems software nonnally is
configured to handle the setting of particular signals, no matter how the physical connections may
change.

NOTE

In a multi-tasking operating system, many different tasks may be competing for the
use of the system resources. Applications programmers should follow the established
rules for resource access in order to assure compatibility of their software with the sys
tem.

Appendix F 329

Address BFEr01 data bits 7-0 (A12*) (INT2)

PA7 •• game port
PA6 •• game port
PAS •• ROY*
PA4 •• TKO*
PA3 •• WPRO*
PA2 •• CHNG*
PAL .LED*
PAO •• OVL
SP ••• KDAT
CNT •• KCLK
PB7 •• P7
PB6 •• P6
PBS •• PS
PB4 •• P4
PB3 •• P3 data 3
PB2 •• P2
PB1 •• P1
PBO •• PO
PC ••• drdy*
F •••• ack*

1, pin 6 (fire button*)
0, pin 6 (fire button*)
disk ready*
disk track 00*
write protect*
disk change*
led light (O-bright)
memory overlay bit
keyboard data

data 7
data 6
data S
data 4

data 2
data 1
data 0

Centronics parallel interface
data

centronics control

Address BFDrOO data bits 1S-8 (A13*) (INT6)

PA7 •• com line DTR*, driven output
PA6 •• com line RTS*, driven output
PAS •• com line carrier detect*
PA4 •• com line CTS*
PA3 •• com line DSR*
PA2 •• SEL centronics control
PA1 •• POUT paper out ---+
PAO •• BUSY busy ---+ I

SP ..• BUSY
CNT .. POUT

PB7 •• MTR*
PB6 •• SEL3*
PBS •• SEL2*
PB4 •• SEL1*
PB3 •• SELO*
PB2 •• SIDE*
PB1 •• DIR
PBO •• STEP *

PC .•• not used
F INDEX*

330 Appendix F

I I
commodore -+ I
commodore ---+

motor
select external 3rd drive
select external 2nd drive
select external 1st drive
select internal drive
side select*
direction
step* (3.0 milliseconds minimum)

disk index*

A complete 8520 timing example. This blinks the power light at (exactly)
3 milisecond intervals. It takes over the machine, so watch out!

The base Amiga crytal frequecies are:
NTSC 28.63636 MHz

; PAL 28.37516 MHz

The two 16 bit timers on the 8520 chips each count down at 1/10 the CPU
clock, or 0.715909 MHz. That works out to 1.3968255 microseconds per count.
Under PAL the countdown is slightly slower, 0.709379 MHz.

To wait 1/100 second would require waiting 10,000 microseconds.
The timer register would be set to (10,000 / 1.3968255 = 7159).

; To wait 3 miliseconds would require waiting 3000 microsecsonds.

;

The register would be set to (3000 / 1.3968255 = 2148).

INCLUDE "hardware/cia.i"
INCLUDE "hardware/custom.i"

XREF
XREF
XREF

ciaa
ciab

_custom

lea custom,a3 Base of custom chips
lea :ciaa,a4 Get base address if CIA-A

move.w t$7fff,dmacon(a3) Kill all chip interrupts

;----Setup, only do once
;----This sets all bits needed for timer A one-shot mode.

move.b ciacra(a4),dO
and.b t%11000000,dO
or.b t%00001000,dO
move.b dO,ciacra(a4)
move.b t%01111111,ciaicr(a4)

;
;----Set time (low byte THEN high byte)
;----And the low order with $ff
;----Shift the high order by 8

TIME equ
move.b
move.b

2148
t(TlME&$FF),ciatalo(a4)
t(TlME»8),ciatahi(a4)

;----Wait for the timer to count down
busy_wait:

btst.b
beq.s
bchg.b
bset.b
bra.s

END

to, ciaicr (a4)
busy wait
tCIAS LED,ciapra(a4)
to, ciacra (a4)
busy_wait

;Set control register A on ClAA
;Don't trash bits we are not
;using ••.

;Clear all 8520 interrupts

;Wait for timer expired flag

;Blink light
;Restart timer

Appendix F 331

Hardware Connection Details

The system hardware selects the CIAs when the upper three address bits are 101. Furthennore,
CIAA is selected when A12 is low, A13 high; CIAB is selected when A12 is high, A13 low.
CIAA communicates on data bits 7-0, ClAB communicates on data bits 15-8.

Address bits All, A10, A9, and A8 are used to specify which of the 16 internal registers you
want to access. This is indicated by "r" in the address. All other bits are don't cares. So, CIAA
is selected by the following binary address: t01x xxxx xxOl rrrr xxxx xxxO. CIAB address:
10lx xxxx xxtO rrrr xxxx xxx I

With future expansion in mind, we have decided on the following addresses: ClAA = BPEr01;
CIAB = BFDrOO. Software must use byte accesses to these address, and no other.

INTERFACE SIGNALS

Clock input

The 02 clock is a TIL compatible input used for internal device operation and as a timing refer
ence for communicating with the system data bus. On the Amiga, this is connected to the 68000
"E" clock. The "E" clock runs at 1/tO of the CPU clock. This works out to .715909 Mhz for
NTSC or .709379 Mhz for PAL.

CS - chip-select input

The CS input controls the activity of the 8520. A low level on CS while 02 is high causes the
device to respond to signals on the R/W and address (RS) lines. A high on CS prevents these
lines from controlling the 8520. The CS line is nonnally activated (low) at 02 by the appropriate
address combination.

RIW - read/write input

The R/W signal is IlOnnally supplied by the microprocessor and controls the direction of data
transfers of the 8520. A high on R/W indicates a read (data transfer out of the 8520), while a low
indicates a write (data transfer into the 8520).

332 AppendixF

RS3-RSO - address inputs

The address inputs select the internal registers as described by the register map.

DB7-DBO - data bus inputs/outputs

The eight data bus output pins transfer information between the 8520 and the system data bus.
These pins are high impedance inputs unless CS is low and RIW and 02 are high, to read the dev
ice. During this read, the data bus output buffers are enabled, driving the data from the selected
register onto the system data bus.

IRQ - interrupt request output

IRQ is an open drain output normally connected to the processor interrupt input. An external
pull-up resistor holds the signal high, allowing multiple IRQ outputs to be connected together.
The IRQ output is normally off (high impedance) and is activated low as indicated in the func
tional description.

RES - reset input

A low on the RES pin resets all internal registers. The port pins are set as inputs and port regis
ters to zero (although a read of the ports will return all highs because of passive pull-ups). The
timer control registers are set to zero and the timer latches to all ones. All other registers are reset
to zero.

Appendix F 333

AppendixG

AUTOCONFIGTM

The AUTOCONFIGTM protocol is designed to allow the dynamic assignment of available address
slots to expansion boards, eliminating the need for user configuration via jumpers. Upon reset,
each board appears in turn at $E80000, with readable identification information, most of which is
in one's complement format, stored in the high nibbles of the first $40 words ($80 bytes) of the
board. This identification information includes the size of the board, its address space prefer
ences, type of board (memory or other), and a unique Hardware Manufacturer Number assigned
by Commodore Amiga Technical Support, West Chester, Pennsylvania.

Each board contains configuration hardware including an address latch appearing in the nibble at
offset $0048 and the nibble at offset $OO4a. When A23 through A 16 of the assigned board base
address are written to this register, the board latches and appears at the assigned address, then
passes a signal called CONFIG-OUT that causes the next board to appear at $E80000. To make
certain types of boards less expensive, an expansion board's write registers may be organized as

Appendix G 335

either a byte-wide register or two nibble-wide registers. If the register is nibble-wide then it must
latch the low nibble of the assigned address (at $4A) until the high nibble (at $48) is written.
This allows the following algorithm to wolk with either type of board:

Write the low order address nibble to offset $4A
Write the entire address byte to offset $48

Alternatively, many boards can be asked to "shut-up" (pass CONFIG-OUT and stop responding)
by writing to offset $OO4c of the board. A bit in the nibble at offset $0008 flags whether a board
supports shut-up.

All commercial expansion slot boards for the Amiga must implement the AUTOCONFIG proto
col. More in-depth machine-specific information on the design and implementation of AUTO
CONFIG boards is available from Commodore Amiga Technical Support.

The Amiga operating system contains support for matching up disk-based drivers with AUTO
CONFIG boards. Since 1.3, the OS also supports initialization of onboard ROM driver software.
As a general rule, applications should not attempt to AUTOCONFIG expansion peripherals, but
rather should allow the Amiga system software to handle all automatic configuration. Many
boards contain registers which once activated could do irreparable damage, for example, data on a
user's hard disk could be lost if the board had been configured improperly.

However, certain types of low level stand-alone applications may need to configure hardware
such as RAM boards without using the Amiga operating system. Such applications should only
configure expansion RAM boards (boards which ask to be added to the free memory list) and
known dedicated boards designed for specific applications. All other boards should be shut-up if
the board supports shut-up, or configured and ignored if shut-up is not supported. (There are
many boards which do not support shut-up). Configuration of boards should only be attempted
by applications which take over the whole machine at reset. Presence of an AUTOCONFIG
board waiting for configuration is determined by comparing the nibbles appearing at the initial
AUTOCONFIG address with the valid values for such nibbles in the specifications.

The AUTOCONFIG spec requires that boards be configured on boundaries that match their space
requirements. For example, a 1 MB memory board should be configured on a 1 MB boundary.
There are two exceptions to this rule: boards with a 4 MB address space are capable of being
placed at $200000 and $600000 as well as being placed on 4 MB boundaries; 8 MB boards can be
placed at $200000. These exceptions are necessary because the 8 MB space reselVed for expan
sion in the current machine begins at $200000.

Debugging AUTOCONFIG Boards

If there is a defect in your configuration information, your board may be ignored, may shut-up or
may crash in a way that makes diagnosis difficult. There is a simple trick allows you to test the
configuration information. Cut the CONFIGIN* line to your board and wire a switch into the
line. Wire in the switch such that when it is set one way, the CONFIGIN* line will pass through

336 Appendix G

from the bus to the board. This allows the board to respond to the AUTOCONFIG process.
When the switch is set the other way, it should be wired such that the input to the board is forced
high. This will disable the AUTOCONFIG of the board.

Set the switch so that the CONFIGIN* line is forced high, then bring up the system. Your board
will be invisible to the system software. Activate a debugger, and flip the switch. Your board
should now respond at the normal $E8()()()() address. Your view of the board is id~ntical to what
the operating system sees when configuring your board. You can compare the bits with the
expected values.

NOTE

The board to be debugged must be the last board in the system (closest to the PC slots,
away from the power supply.) Boards downstream of the board to be debugged will
not be configured by the system.

Address Specification Table

The following table describes the board identification information and AUTOCONFIG regi&ters
which appear in the first $80 bytes of an AUTOCONFIG board at configuration time. I

NOTES

• Identification information is stored in the high nibbles of the even (word) addresses at $e
start of an AUTOCONFIG board. For example, the first two words of a board might contain
$Cxxx lxxx. The valid information in these first two words would be the $C (high nibble of
the word at offset $00), then the $1 (high nibble of the word at offset $02). Much of the
information is interpreted by combining several nibbles, with low to high address nibbles
containing high to low order parts of the resulting value.

• All nibbles of information, except for those at offsets $00/02 and $40/42, are stored in an
inverted (one's complement) form and must be exclusive OR'd with $F before interpreting
them according to the table below. Unused nibbles (the three other nibbles in each word)
may not be assumed to contain any particular value. All values written to the AUTOCON
FIG area, including the assigned address, are written uninverted.

• All addresses are shown here as offsets from the base address $E8oo00 where boards appear
at configuration time, so offset $02 is at $E80002, offset $04 at $E80004, etc.

Appendix G 337

Board Offset
($00/02) 7 6 5 4 3 2 1 0 Description of nibbles
R/W info \ / / --\/- \- --

\/
Nibble at $E80000 Nibble at $E80002

Figure 0-1: How to read the Address Specification Table

NOTE

The bit numbering (7 6 5 4 3 2 1 0) is for use when two nibbles are to be intetpreted
together as a byte. Physically, each nibble is the high nibble of the word at its address
(ie. bits 15 14 13 12).

OFFSET:

($00/02)
Read
Not Inverted

($04/06)
Read
Inverted

($08/0A)
Read
Inverted

338 Appendix 0

Table 0-1: Address Specification Table

Address 1 Address 2 Description

7 6 5 4 3 2 1 0 Board size
I I I I I _1_/-

000=8meg 100=512k
001=64k 101=1meg
010=128k 110=2meg
011=256k 111=4meg

I I I I I
I I I I I
I I I I ,---------- 1
I I I ,-------------- 1
I I ,----------------- 1

Next card is also on this board
= Optional ROM vector valid

Link into memory free list (RAM)
I '--------------\
,-----------------/--- Board type 00 = Reserved

01 Reserved
10 Reserved

7 6 5 4 3 2 1 0
\ /
-\/-

\ /
-V-

7
I
I
I
I
I

Hi nibble Lo nibble

6543210
I 1_1_1_1_1_1_
I
,--------------------

11 Current type

Manufacturer chosen product number

(Remember - these read inverted)
Reserved - Should be 0 currently

o this board can be shut-up
1 this board ignores shut-up

,----------------------- 0 any space OK
1 8 Meg area preferred

OFFSET: Address 1 Address 2 Description (cont.)
--------------------~--==~===

($OC/OE)
Read
Inverted

($10/12)
Read
Inverted

($14/16)
Read
Inverted

765 4 3 2 1 0
1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1_ Reserved - must be 0

7 6 5 4 3 2 1 0 High byte of unique hardware
\ --- / \ --- ---/ manufacturer number assigned

\f- \/ to manufacturer.
Hi nibble Lo nibble (Not developer number!)

7 6 5 4 3 2 1 0 Low byte of unique hardware
\ --- / \ --- ---/ manufacturer number assigned

\/- \/ to manufacturer.
Hi nibble Lo nibble (Not developer number!)

NOTE

Manufacturer number is assigned by Commodore Amiga Technical Support in West
Chester, Pennsylvania (CATS). Contact CATS for further infonnation.

($18/1A)
($lC/1E)
($20/22)
($24/26)
Read
Inverted

($28/2A)
Read
Inverted

($2C/2E)
Read
Inverted

($30/32)
R/W
Inverted

($34/36)
($38/3A)
($3C/3E)
Inverted

7 6 5 4
7 6 5 4
7 6 5 4
7 6 5 4

7 6 5 4
\ /
-\/-
Hi nibble

7 6 5 4
\ /
-\/-
Hi nibble

7 6 5 4

7 6 5 4
7 6 5 4
7 6 5 4

3 2 1 0
3 2 1 0
3 2 1 0
3 2 1 0

3 2 1 0
\ /
-\/-

Lo nibble

3 2 1 0
\ /
-\f-

Lo nibble

3 2 1 0

3 2 1 0
3 2 1 0
3 2 1 0

Optional
Optional
Optional
Optional

serial
serial
serial
serial

i,
i,
i,
i,

first byte (msb)
second byte
third byte
fourth byte (lsb)

High byte of optional ROM vector.

Low byte of optional ROM vector.
If the "ROM vector valid" bit
is set in nibble $00 at the start
of the board, then this optional
ROM vector is the offset from the
board base to ROM driver structures.

Read - Reserved, must be 00
Write - optional reset of
board base register to
pre-configuration address

Reserved, must be 00
Reserved, must be 00
Reserved, must be 00

Appendix G 339

OFFSET: Address 1 Address 2 Description (cont.)
-----------------------------====~=---======-=======-=---==================

($40/42) 7 6 5 4 3 2 1 0 Write Read
R/W I I I I I I I I

Not Inverted I I I I I I I ,- Interrupt enable Interrupt enable
I I I I I I ,---- User definable Undefined
I I I I I ,------- Local reset Must be 0
I I I I ,---------- User definable Undefined
I I I ,-------------- User definable INT2 pending
I I ,----------------- User definable INT6 pending
I ,-------------------- User definable INT7 pending

,----------------------- User definable Board pulling INT

NOTE

Use of the $40/42 registers is an optional feature which can be implemented by boards
which generate intenupts. They make it possible for board-specific interrupt servers
to detennine if the current intenupt is being generated by their board, or by some other
hardware using the same intenupt line.

($44/46)
R/W
Inverted

($48/4A)
Write Only
Not Inverted

($4C/4E)
Write Only

7 6 5 4

7 6 5 4
\ / -\f-

Hi nibble

7 6 5 4
\ /
-\f-

3 2 1 0

3 2 1 0
\ /
-\f-

Lo nibble

3 2 1 0

,------------------

($50 through $7E)
Inverted

Reserved, read must be 00
Write undefined

Base address register, write only.
These bits are compared with A23
through A16 (or fewer) to determine
the base address of the board.

Optional shut-up register.
Any write to $4C will cause
board to pass CONFIG-OUT and
and then never respond again
to any address, until RESET.
A bit in nibble $08 flags
whether the board can be shut-up.

Reserved, must be 00

Remember that all nibbles except $00/02 and $40/42 will actually appear inverted from the values
in the above table. For example, a "must be 0" nibble will appear as $F, and flags and hex
values will also be inverted (i.e. a value of $1 will read as $E, etc).

340 Appendix G

/*
* Examine all AUTOCONFIG(tm) boards in the system
*/

tinclude "exec/types.h"
tinclude "libraries/configvars.h"

struct Library *OpenLibrary();
struct ConfigDev *FindConfigDev();
struct Library *ExpansionBase;

void main ()
{
struct ConfigDev *myCD-O;

ExpansionBase=OpenLibrary("expansion.library",OL);

while(myCD-FindConfigDev(myCD,-lL,-lL» /* search for any ConfigDev */
{
printf("\n---ConfigDev structure found at location $%lx---\n",myCD);

/* These valuses are read directly from the board */
printf ("er Manufacturer =");

printf("%d,",myCD->cd Rom.er Manufacturer);
printf("$%x,",myCD->cd Rom.eX: Manufacturer);
printf (" (-$%4x) \n", -myCD->cdj~:om.er_Manufacturer);

printf ("er_Product =");
printf("%d,",myCD->cd Rom.er Product);
printf ("$%x," ,myCD->cd Rom.er Product);
printf("(-$%x)\n",-myCD->cd_Rom.er_Product);

printf ("er_Type =$%x\n",myCD->cd_Rom.er_Type);

printf ("er Flags =");
printi("$%x\n" , myCD->cd_Rom.er_Flags) ;

/* These values are generated when the AUTOCONFIG(tm) software
* relocates the board
*/

printf("cd BoardAddr =$%lx\n",myCD->cd_BoardAddr);
printf ("cd-BoardSize =$%lx (%lclK) \n",

myCD->cd_BoardSize, «ULONG)myCD->cd_BoardSize)/1024);

printf("cd Flags
} -

CloseLibrary(ExpansionBase);
}

=$%x\n",myCD->cd_Flags)i

Appendix G 341

AppendixH

Keyboard

This appendix contains the keyboard interface specification for A 1000, A500 and A2000.

The keyboard plugs into the Amiga computer via a cable with four primary connections. The
four wires provide 5-volt power, ground, and signals called KCLK (keyboard clock) and KDAT
(keyboard data). KCLK is unidirectional and always driven by the keyboard; KDA T is driven by
both the keyboard and the computer. Both signals are open-collector; there are pullup resistors in
both the keyboard (inside the keyboard microprocessor) and the computer.

Appendix H 343

Keyboard Communications

The keyboard transmits 8-bit data words serially to the main unit. Before the transmission starts,
both Ka..K and KDAT are high. The keyboard starts the transmission by putting out the tirst
data bit (on KDAT), followed by a pulse on Ka..K (low then high); then it puts out the second
data bit and pulses Ka..K until all eight data bits have been sent. After the end of the last Ka..K
pulse, the keyboard pulls KDAT high again.

When the computer has received the eighth bit, it must pulse KDAT low for at least 1 (one)
microsecond, as a handshake signal to the keyboard. The handshake detection on the keyboard
end will typically use a hardware latch. The keyboard must be able to detect pulses greater than
or equal to 1 microsecond. Software MUST pulse the line low for 85 microseconds to ensure
compatibility with all keyboard models.

All codes transmitted to the computer are rotated one bit before transmission. The transmitted
order is therefore 6-5-4-3-2-1-0-7. The reason for this is to transmit the up/down flag last, in
order to cause a key-up code to be transmitted in case the keyboard is forced to restore lost sync
(explained in more detail below).

The KDAT line is active low; that is, a high level (+5V) is interpreted as 0, and a low level (OV)
is interpreted as 1.

KCLK --'j-'j-'j-'j-'j-'j-'j-'j

KDAT , __ x __ x ____ x ___ x ____ x ___ x ___ x ___ 1
(6)

First
sent

(5) (4) (3) (2) (1) (0) (7)

Last
sent

The keyboard processor sets the KDAT line about 20 microseconds before it pulls KCLK low.
Ka..K stays low for about 20 microseconds, then goes high again. The processor waits another
20 microseconds before changing KDAT.

Therefore, the bit rate during transmission is about 60 microseconds per bit, or 17 kbits/sec.

344 Appendix H

Keycodes

Each key has a keycode associated with it (see accompanying table). Keycodes are always 7 bits
long. The eighth bit is a "key-up"/"key-down" flag; a 0 (high level) means that the key was
pushed down, and a I (low level) means the key was released (the CAPS LOCK key is different -
see below).

For example, here is a diagram of the "B" key being pushed down. The keycode for' 'B" is $35
= 00110101; due to the rotation of the byte, the bits transmitted are 01101010.

KCLK --'j-'j-'j \j-'j-'j-'j-'j

KDAT ' ____ 1--' __ 1--' __ 1
0110101 0

In the next example, the "B" key is released. The keycode is still $35, except that bit 7 is set to
indicate "key-up," resulting in a code of $B5 = 10110101. After rotating, the transmission will
be 01101011:

KCLK --\j-\j-'j-\j-\j-\j-\j-'j

KDAT , 1--' __ 1 \ I
o ·~l--l~ 0 1 0 ~l-~l~

"CAPS LOCK" Key

This key is different from all the others in that it generates a keycode only when it is pushed
down, never when it is released. However, the up/down bit is still used. When pushing the
CAPS LOCK key turns on the CAPS LOCK LED, the up/down bit will be 0; when pushing
CAPS LOCK shuts off the LED, the up/down bit will be 1.

Appendix H 345

"Out-or-Sync" Condition

Noise or other glitches may cause the keyboard to get out of sync with the computer. This means
that the keyboard is finished transmitting a code, but the computer is somewhere in the middle of
receiving it.

H this happens, the keyboard will not receive its handshake pulse at the end of its transmission. If
the handshake pulse does not arrive within 143 ms of the last clock of the transmission, the key
board will assume that the computer is still waiting for the rest of the transmission and is there
fore out of sync. The keyboard will then attempt to restore sync by going into "resync mode. "
In this mode, the keyboard clocks out a 1 and waits for a handshake pulse. If none arrives within
'43 ms, it clocks out another 1 and waits again. This process will continue until a handshake
pulse arrives.

Once sync is restored, the keyboard will have clocked a garbage character into the computer.
That is why the key-up/key-down flag is always transmitted last. Since the keyboard clocks out
1 's to restore sync, the garbage character thus transmitted will appear as a key release, which is
less dangerous than a key hit.

Whenever the keyboard detects that it has lost sync, it will assume that the computer failed to
receive the keycode that it had been trying to transmit. Since the computer is unable to detect lost
sync, it is the keyboard's responsibility to inform the computer of the disaster. It does this by
transmitting a "lost sync" code (value $F9 = 11111(01) to the computer. Then it retransmits the
code that had been garbled.

NOTE

The only reason to transmit the "lost sync" code to the computer is to alert the
software that something may be screwed up. The' 'lost sync" code does not help the
recovery process, because the garbage keycode can't be deleted, and the correct key
code could simply be retransmitted without telling the computer that there was an
error in the previous one.

Power-Up Sequence

There are two possible ways for the keyboard to be powered up under normal circumstances: <1>
the computer can be turned on with the keyboard plugged in, or <2> the keyboard can be plugged
into an already "on" computer. The keyboard and computer must handle either case without
causing any upset.

346 Appendix H

The first thing the keyboard does on power-up is to perform a self-test. This involves a ROM
checksum test, simple RAM test, and watchdog timer test. Whenever the keyboard is powered up
(or restarted -- see below), it must not transmit anything until it has achieved synchronization
with the computer. The way it does this is by slowly clocking out 1 bits, as described above, until
it receives a handshake pulse.

If the keyboard is plugged in before power-up, the keyboard may continue this process for several
minutes as the computer struggles to boot up and get running. The keyboard must continue
clocking out Is for however long is necessary, until it receives its handshake.

If the keyboard is plugged in after power-up, no more than eight clocks will be needed to achieve
sync. In this case, however, the computer may be in any state imaginable but must not be
adversely affected by the garbage character it will receive. Again, because it receives a key
release, the damage should be minimal. The keyboard driver must anticipate this happening and
handle it, as should any application that uses raw keycodes.

NOTE

The keyboard must not transmit a "lost sync" code after re-synchronizing due to a
power-up or restart; only after re-synchronizing due to a handshake time-out.

Once the keyboard and computer are in sync, the keyboard must inform the computer of the
results of the self-test. If the self-test failed for any reason, a "selftest failed" code (value $FC =
111111(0) is transmitted (the keyboard does not wait for a handshake pulse after sending the
"selftest failed" code). After this, the keyboard processor goes into a loop in which it blinks the
CAPS LOCK LED to inform the user of the failure. The blinks are coded as bursts of one, two,
three, or four blinks, approximately one burst per second:

One blink
Two blinks
Three blinks
Four blinks

ROM checksum failure.
RAM test failed.
Watchdog timer test failed.
A short exists between two row lines

or one of the seven special keys
(not implemented).

If the self-test succeeds, then the keyboard will proceed to transmit any keys that are currently
down. First, it sends an "initiate power-up key stream" code (value $FD = 11111101), followed
by the key codes of all depressed keys (with keyup/down set to "down" for each key). After all
keys are sent (usually there won't be any at all), a "terminate key stream" code (value $FE =
11111110) is sent. Finally, the CAPS LOCK LED is shut off. This marks the end of the start-up
sequence, and normal processing commences.

The usual sequence of events will therefore be: power-up; synchronize; transmit "initiate
power-up key stream" ($FD); transmit "terminate key stream" ($FE).

Appendix H 347

Reset Warning

NOTE

Available on some Al000 and A2000 keyboards. You cannot rely on this feature for
all Amigas.

The keyboard has the additional task of resetting the computer on the command of the user. The
user initiates Reset Warning by simultaneously pressing the CfRL key and the two "AMIGA"
keys.

The keyboard responds to this input by syncing up any pending transmit operations. The key
board then sends a "reset warning" to the Amiga. This action alerts the Amiga software to finish
up any pending operations (such as disk DMA) and prepare for reset.

A specific sequence of operations ensure that the Amiga is in a state where it can respond to the
reset warning. The keyboard sends two actual "reset warning" keycodes. The Amiga must
handshake to the first code like any nonnal keystroke, else the keyboard goes directly to Hard
Reset. On the second "reset warning" code the Amiga must drive KDAT low within 250 mil
liseconds, else the keyboard goes directly to Hard Reset. If the all the tests are passed, the Amiga
has 10 full seconds to do emergency processing. When the Amiga pulls KDAT high again, the
keyboard finally asserts hard reset.

If the Amiga fails to pull KDAT high within 10 seconds, Hard Reset is asserted anyway.

Hard Reset

NOTE

This happens after Reset Warning. Valid for all keyboards except the Amiga 500.

The keyboard Hard Resets the Amiga by pulling KCLK low and starting a 500 millisecond timer.
When one or more of the keys is released AND 500 milliseconds have passed, the keyboard will
release KCLK. 500 milliseconds is the minimum time KCLK must be held low. The maximum
KCLK time depends on how long the user holds the three keys down.

NOTE

Circuitry on the Amiga motherboard detects the 500 millisecond KCLK pulse.

348 Appendix H

After releasing Ka...K, the keyboard jumps to its start-up code (internal RESET). This will ini
tialize the keyboard in the same way as cold power-on.

NOTE

The keyboard must resend the "powerup key stream"!

Special Codes

The special codes that the keyboard uses to communicate with the main unit are summarized here.

NOTE

The special codes are 8-bit numbers; there is no up/down flag associated with them.
However, the transmission bit order is the same as previously described.

Code Name Meaning

78 Reset warning. CTRL-AMIGj" HGA has been hit -
computer will be reset in 10 seconds. (see text)

F9 Last key code bad, next code is the same code
retransmitted (used when keyboard and main unit
get out of sync).

FA Keyboard output buffer overflow
FB Unused (was controller failure)
FC Keyboard self test failed
FD Initiate power-up key stream (keys pressed at powerup)
FE Terminate power-up key stream
FF Unused (was interrupt)

Appendix H 349

Matrix Table

Row 5 Row 4 Row 3 Row 2 Row 1 Row 0
Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2)

+-------+-------+-------+-------+-------+-------+
15 I (spare) I (spare) I (spare) I (spare) I (spare) I (spare) I

(PO. 7) I I I I I I I
I (OE) I (lC) I (2C) I (47) I (48) I (49) I
+-------+-------+-------+-------+-------+-------+

14 I * I <SHIFT> I CAPS I TAB I I ESC I
(PO. 6) I note 1 I note 2 I LOCK I I I I

I (50) I (30) I (62) I (42) I (00) I (45) I
+-------+-------+-------+-------+-------+-------+

13 I + I Z I A I Q I I (I
(PO. 5) I note 1 I I I I 1 I note 1 I

I (5E) I (31) I (20) I (10) I (01) I (SA) I
+-------+-------+-------+-------+-------+-------+

12 I 9 I X I S I W I @ I F1 I
(PO. 4) I note 3 I I I I 2 I I

I (3F) I (32) I (21) I (11) I (02) I (50) I
+-------+-------+-------+-------+-------+-------+

11 I 6 I C I 0 I E I # I F2 I
(PO. 3) I note 3 I I I I 3 I I

I (2F) I (33) I (22) I (12) I (03) I (51) I
+-------+-------+-------+-------+-------+-------+

10 I 3 I V I FIR I $ I F3 I
(PO. 2) I note 3 I I I I 4 I I

I (IF) I (34) I (23) I (13) I (04) I (52) I
+-------+-------+-------+-------+-------+-------+

9 I I BIG I T I % I F4 I
(PO. 1) I note 3 I I I I 5 I I

I (3C) I (35) I (24) I (14) I (05) I (53) I
+-------+-------+-------+-------+-------+-------+

8 I 8 I NIH I Y I I F5 I
(PO. 0) I note 3 I I I I 6 I I

I (3E) I (36) I (25) I (15) I (06) I (54) I
+-------+-------+-------+-------+-------+-------+

715 I M I J I U I & I) I
(PC. 7) I note 3 I I I I 7 I note 1 I

I (2E) I (37) I (26) I (16) I (07) I (5B) I
+-------+-------+-------+-------+-------+-------+

6 I 2 I < I K I I I * I F6 I
(PC. 6) I note 3 I , I I I 8 I I

I (lE) I (38) I (27) I (17) I (08) I (55) I
+-------+-------+-------+-------+-------+-------+

5 I ENTER I > I L I 0 I (I / I
(PC. 5) I note 3 I I I I 9 I note 1 I

I (43) I (39) I (28) I (18) I (09) I (5C) I
+-------+-------+-------+-------+-------+-------+

350 Appendix H

Row 5 Row 4 Row 3 Row 2 Row 1 Row 0
Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2)

+-------+-------+-------+-------+-------+-------+
4 ,7 , ?, ,P,), F7 ,

(PC. 4) ,note 3, /, , ,0, ,
,(3D) ,(3A) ,(29) ,(19) ,(OA) ,(56) ,
+-------+-------+-------+-------+-------+-------+

3 ,4 , (spare) , " , {' ,F8,
(PC. 3) ,note 3 , I I [' , ,

,(2D) ,(3B) ,(2A) ,(lA) ,(OB) ,(57) ,
+-------+-------+-------+-------+-------+-------+

2 ,1 ,SPACE, <RET>, } I + , F9 ,
(PC.2) ,note 3, BAR ,note 2, l' , ,

, (lD) ,(40) ,(2B) , (lB) ,(OC) ,(58) ,
+-------+-------+-------+-------+-------+-------+

1 ,0 ,BACK, DEL ,RETURN, , ,FlO I
(PC.1) Inote 3 , SPACE, , ,\, ,

,(OF) ,(41) ,(46) ,(44) ,(OD) ,(59) ,
+-------+-------+-------+-------+-------+-------+

0, ,CURS, CURS ,CURS ,CURS ,HELP ,
(PC.O) ,note 3 ,DOWN ,RIGHT, LEFT , UP, ,

,(4A) ,(4D) ,(4E) , (4F) ,(4C) ,(SF) ,
+-------+-------+-------+-------+-------+-------+

note 1: A500 and A2000 keyboards only (numeric pad)
note 2: International keyboards only (these keys are cutouts of the

larger key on the US ASCII version.) The key that generates
$30 is cut out of the left shift key. Key $2B is cut out of
return. These keys are labeled with country-specific markings.

note 3: Numeric pad.

The following table shows which keys are independently readable. These keys never generate
ghosts or phantoms.

(Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) (Bit 1) (Bit 0)
+-------+-------+-------+-------+-------+-------+-------+
,LEFT ,LEFT ,LEFT ,CTRL ,RIGHT, RIGHT , RIGHT ,
, AMlGA ,ALT ,SHIFT, , AMIGA, ALT ,SHIFT,
,(66) ,(64) ,(60) ,(63) ,(67) ,(65) ,(61) ,
+-------+-------+-------+-------+-------+-------+-------+

Appendix H 351

Appendix I

External Disk Connector Interface Specification

General

The 23-pin female connector at the rear of the main computer unit is used to interface to and con
trol devices that generate and receive MFM data. This interface can be reached either as a
resource or under the control of a driver. The following pages describe the interface in both
cases.

Appendix I 353

Summary Table

Pin # Name Note

1 RDY- I/O ID and ready
2 DKRD- I MFMinput
3 GRND G
4 GRND G
5 GRND G
6 GRND G
7 GRND G
8 MTRXO- 0 Motor control.
9 SEL2B- 0* Select drive 2
10 DRESB- 0 Reset
11 CHNG- I/O Disk changed
12 +5v PWR 540 rnA average 870 rnA surge
13 SIDEB- 0 Side 1 iflow
14 WRPRO- I/O Write protect
15 TKO- I/O Track 0
16 DKWEB- 0 Write gate
17 DKWDB- 0 Write data
18 STEPB- 0 Step
19 DIRB 0 Direction (high is out)
20 SEL3B- 0* Select drive 3
21 SELIB- 0* Select drive 1
22 INDEX- I/O Index
23 +12v PWR 120 rnA average 370 rnA surge

Key to Class:

G ground, note connector shield grounded.

I input pulled up to 5v by IK ohm.

1/0 input in driver, but bidirectional input (lk pullup)

o output pulled though IK to 5v

0* output, separates resources.

PWR available for external use, but currently used up by external drive.

354 Appendix I

Signals When Driving a Disk

The following describes the interface under driver control.

SELIB-, SEL2B-, SEL3B-

Select lines for the three external disk drives active low.

TKO-

A selected drive pulls this signal low whenever its read-write head is on track 00.

RDY-

When a disk drive's motor is on, this line indicates the selected disk is installed and rotat
ing at speed. The driver ignores this signal. When the motor is off this is used as a ID data
line. See below.

WPRO- (Pin *14)

A selected drive pulls this signal low whenever it has a write-protected diskette installed.

INDEX- (Pin #22)

A selected drive pulses this signal low once for each revolution of its motor.

SIDEB- (Pin *13)

The system drives this signal to all disk drives-low for side 1, high for side O.

STEPB- (Pin *18)

Pulsed to step the selected drive's head.

DIRB (Pin *19)

The system drives this signal high or low to tell the selected drive which way to step when
the STEPB- pulse arrives. Low means step in (to higher-numbered track); high means step
out.

DKRD- (Pin #2)

A selected drive will put out read data on this line.

DKWDB- (Pin *17)

The system drives write data to all disks via this signal. The data is only written when
DKWEB- is active (low). Data is written only to selected drives.

Appendix I 355

DKWEB- (Pin #16)

This signal causes a selected drive to start writing data (provided by DKWDB-) onto the
disk.

CHNG- (Pin #11)

A selected drive will drive this signal low whenever its internal "disk change" latch is set
This latch is set when the drive is first powered on, or whenever there is no diskette in the
drive. To reset the latch, the system must select the drive, and step the head. Of course, the
latch will not reset if there is no diskette installed.

MTRXD- (Pin #8)

This is the motor control line for all four disk drives. When the system wants to tum on a
disk drive motor, it first deselects the drive (if selected), pulls MTRXD- low, and selects
the drive. To tum the motor off, the system deselects the drive, pulls MTRXD- high, and
selects the drive. The system will always set MTRXD- at least 1.4 microseconds before it
selects the drive, and will not change MTRXD- for at least 1.4 microseconds after selecting
the drive. All external drives must have logic equivalent to a D flip-flop, whose D input is
the MTRXD- signal, and whose clock input is activated by the off-to-on (high-to-Iow) tran
sition of its SELxB- signal. As noted above, both the setup and hold times of MTRXD
with respect to SELxB- will always be at least 1.4 microseconds. The output of this flip
flop controls the disk drive motor. Thus, the system can control all four motors using only
one signal on the cable (MTRXD-).

DRESB- (Pin #10)

This signal is a buffered version of the system reset signal. Three things can make it go
active (low):

• System power-up (DRESB- will go low for approximately one second);

• System CPU executes a RESET instruction (DRESB- will go low for approximately
17 microseconds);

• Hard reset from keyboard (lasts as long as keyboard reset is held down).

External disk drives should respond to DRESB- by shutting off their motor flip-flops and
write protecting themselves.

A level of 3.75v or below on the 5v+ requires external disks to write-protect and reset the motor
online.

356 Appendix I

Device I.D.

This interface supports a method of establishing the type of disk(s) attached. The I.D. sequence is
as follows.

1. Drive MTRXD-Iow.

2. Drive SELxB- low

3. Drive SELxB- high.

4. Drive MTRXD- high.

5. Drive SELxB-Iow

6. Drive SELxB- high.

7. Drive SELxB-Iow

8. Read and save state of ROY.

9. Drive SELxB- high.

Repeat steps 6 to 9, 15 times more.

Convert the 16 values ofRDY- into a 16-bit word. The most significant bit is the first value and
so on. This 16-bit quantity is the device I.D ..

The following I.D.s are defined:

0000 0000 0000 0000
1111 1111 1111 1111
1010 1010 1010 1010
0101 0101 0101 0101
1000 0000 0000 0000
0111 1111 1111 1111
0000 1111 xxxx xxxx
1111 0000 xxxx xxxx
xxxx 0000 0000 0000
xxxx 1111 1111 1111
0011 0011 0011 0011
1100 1100 1100 1100

Reserved
Amiga standard 3.25
Reserved
48 TPI double-density, double-sided
Reserved
Reserved
Available for users
Extension reserved
Reserved
Reserved
Reserved
Reserved

Appendix I 357

AppendixJ

Hardware Example Include File

This appendix contains an include file that maps the hardware register names, given in Appendix
A and Appendix B, to names that can be resolved by the standard include files. Use of these
names in code sections of this manual places the emphasis on what the code is doing, rather than
getting bogged down in include file names.

All code examples in this manual reference the names given in this file.

Appendix J 359

IFND
HARDWARE_HW_EXAMPLES_I SET

HARDWARE HW EXAMPLES I - - -
1

**
** Filename: hardware/hw examples.i
** $Release: 1.3 $ -
**
**
** (C) Copyright 1985,1986,1987,1988,1989 Commodore-Amiga, Inc.
** All Rights Reserved
**

IFND HARDWARE CUSTOM I
INCLUDE "hardware/custom.i"
ENDC

*
*
*
*
*

This include file is designed to be
manual examples. This file defines
hardware/custom.i definition file.
file.

used in conjunction with the hardware
the register names based on the
There is no C-Language version of this

*

* * This instruction for the copper will cause it to
* wait forever since the wait command described in it
* will never happen.

*
COPPER HALT equ $FFFFFFFE

*

* * This is the offset in the 680xO address space to the custom chip registers
* It is the same as _custom when linking with AMIGA.lib

*
CUSTOM equ $DFFOOO
*
* Various control registers
*
DMACONR equ dmaconr Just capitalization ••.
VPOSR equ vposr
VHPOSR equ vhposr
JOYODAT equ joyOdat "
JOY1DAT equ joy1dat "
CLXDAT equ clxdat "
ADKCONR equ adkconr "
POTODAT equ potOdat
POT1DAT equ pot1dat
POTINP equ potinp ;
SERDATR equ serdatr "
INTENAR equ intenar
INTREQR equ intreqr
REFPTR equ refptr
VPOSW equ vposw
VHPOSW equ vhposw
SERDAT equ serdat
SERPER equ serper "
POTGO equ potgo "
JOYTEST equ joy test "
STREQU equ strequ ;
STRVBL equ strvbl ;

360 Appendix J

STRHOR equ strhor
STRLONG equ strlong "
DIWSTRT equ diwstrt "
DIWSTOP equ diwstop "
DDFSTRT equ ddfstrt "
DDFSTOP equ ddfstop "
DMACON equ dmacon "
INTENA equ intena "
INTREQ equ intreq ; "
* * Disk control registers

*
DSKBYTR equ dskbytr Just capitalization .••
DSKPT equ dskpt "
DSKPTH equ dskpt
DSKPTL equ dskpt+$02
DSKLEN equ dsklen " "
DSKDAT equ dskdat ;
DSKSYNC equ dsksync ; " "
* * Blitter registers

*
BLTCONO equ bltconO ; Just capitalization •••
BLTCONl equ bltconl "
BLTAFWM equ bltafwm " "
BLTALWM equ bltalwm "
BLTCPT equ bIt cpt " "
BLTCPTH equ bIt cpt
BLTCPTL equ bltcpt+$02
BLTBPT equ bltbpt ; " "
BLTBPTH equ bltbpt
BLTBPTL equ bltbpt+$02
BLTAPT equ bltapt
BLTAPTH equ bltapt
BLTAPTL equ bltapt+$02
BLTDPT equ bltdpt
BLTDPTH equ bltdpt
BLTDPTL equ bltdpt+$02
BLTSIZE equ bltsize
BLTCMOD equ bltcmod
BLTBMOD equ bltbmod
BLTAMOD equ bltamod
BLTDMOD equ bltdmod
BLTCDAT equ bltcdat
BLTBDAT equ bltbdat
BLTADAT equ bltadat
BLTDDAT equ bltddat

* * Copper control registers

*
COP CON equ copcon Just capitalization .••
COPINS equ copins "
COP JMP 1 equ copjmpl "
COPJMP2 equ copjmp2 "
COPILC equ copllc "
COPILCH equ copllc
COPILCL equ copllc+$02
COP2LC equ cop21c " "
COP2LCH equ cop21c
COP2LCL equ cop21c+$02

* * Audio channels registers

Appendix J 361

*
ADKCON equ adkcon ; Just capitalization .•.

AUDOLC equ audO
AUDOLCH equ audO
AUDOLCL equ audO+$02
AUDOLEN equ audO+$04
AUDOPER equ audO+$06
AUDOVOL equ audO+$08
AUDODAT equ audO+$OA

AUDlLC equ audl
AUDlLCH equ audl
AUDlLCL equ audl+$02
AUD1LEN equ audl+$04
AUDIPER equ audl+$06
AUDIVOL equ audl+$08
AUDIDAT equ audl+$OA

AUD2LC equ aud2
AUD2LCH equ aud2
AUD2LCL equ aud2+$02
AUD2LEN equ aud2+$04
AUD2PER equ aud2+$06
AUD2VOL equ aud2+$08
AUD2DAT equ aud2+$OA

AUD3LC equ aud3
AUD3LCH equ aud3
AUD3LCL equ aud3+$02
AUD3LEN equ aud3+$04
AUD3PER equ aud3+$06
AUD3VOL equ aud3+$08
AUD3DAT equ aud3+$OA

*
* The bit plane registers

*
BPLIPT equ bplpt+$OO
BPLIPTH equ bplpt+$OO
BPLIPTL equ bplpt+$02
BPL2PT equ bplpt+$04
BPL2PTH equ bplpt+$04
BPL2PTL equ bplpt+$06
BPL3PT equ bplpt+$08
BPL3PTH equ bplpt+$08
BPL3PTL equ bplpt+$OA
BPL4PT equ bplpt+$OC
BPL4PTH equ bplpt+$OC
BPL4PTL equ bplpt+$OE
BPLSPT equ bplpt+$lO
BPLSPTH equ bplpt+$lO
BPLSPTL equ bplpt+$12
BPL6PT equ bplpt+$14
BPL6PTH equ bplpt+$14
BPL6PTL equ bplpt+$16

BPLCONO equ bplconO Just capitalization ..•
BPLCONl equ bplconl " "
BPLCON2 equ bplcon2 " "
BPLIMOD equ bpllmod " "
BPL2MOD equ bpl2mod ; " "

362 Appendix J

DPL1DATA equ bpldat+$OO
DPL2DATA equ bpldat+$02
DPL3DATA equ bpldat+$04
DPL4DATA equ bpldat+$06
DPL5DATA equ bpldat+$08
DPL6DATA equ bpldat+$OA

* * Sprite control registers

*
SPROPT equ sprpt+$OO
SPROPTH equ SPROPT+$OO
SPROPTL equ SPROPT+$02
SPR1PT equ sprpt+$04
SPR1PTH equ SPR1PT+$00
SPR1PTL equ SPR1PT+$02
SPR2PT equ sprpt+$08
SPR2PTH equ SPR2PT+$00
SPR2PTL equ SPR2PT+$02
SPR3PT equ sprpt+$OC
SPR3PTH equ SPR3PT+$00
SPR3PTL equ SPR3PT+$02
SPR4PT equ sprpt+$lO
SPR4PTH equ SPR4PT+$00
SPR4PTL equ SPR4PT+$02
SPR5PT equ sprpt+$14
SPR5PTH equ SPR5PT+$00
SPR5PTL equ SPR5PT+$02
SPR6PT equ sprpt+$18
SPR6PTH equ SPR6PT+$00
SPR6PTL equ SPR6PT+$02
SPR7PT equ sprpt+$lC
SPR7PTH equ SPR7PT+$00
SPR7PTL equ SPR7PT+$02

Note: SPRxDATB is defined as being +$06 from SPRxPOS.
sd datab should be defined as $06, however, in the 1.3 assembler
include file hardware/custom.i it is incorrectly defined as $08.

SPROPOS equ spr+$OO
SPROCTL equ SPROPOS+sd ctl
SPRODATA equ SPROPOS+sd dataa
SPRODATB equ SPROPOS+$06 should use sd_datab

SPR1POS equ spr+$08
SPR1CTL equ SPR1POS+sd ctl
SPR1DATA equ SPR1POS+sd dataa
SPR1DATB equ SPR1POS+$06 ; should use sd_datab

SPR2POS equ spr+$lO
SPR2CTL equ SPR2POS+sd ctl
SPR2DATA equ SPR2POS+sd dataa
SPR2DATB equ SPR2POS+$06 should use sd_datab

SPR3POS equ spr+$18
SPR3CTL equ SPR3POS+sd ctl
SPR3DATA equ SPR3POS+sd-dataa
SPR3DATB equ SPR3POS+$06 should use sd_datab

SPR4POS equ spr+$20
SPR4CTL equ SPR4POS+sd ctl
SPR4DATA equ SPR4POS+sd dataa
SPR4DATB equ SPR4POS+$06 should use sd_datab

Appendix J 363

SPR5POS equ
SPR5CTL equ
SPR5DATA equ
SPR5DATB equ

SPR6POS equ
SPR6CTL equ
SPR6DATA equ
SPR6DATB equ

SPR7POS equ
SPR7CTL equ
SPR7DATA equ
SPR7DATB equ
*
* Color registers ..•
*
COLOROO equ
COLOROl equ
COLOR02 equ
COLOR03 equ
COLOR04 equ
COLOR05 equ
COLOR06 equ
COLOR07 equ
COLOR08 equ
COLOR09 equ
COLORlO equ
COLORll equ
COLORl2 equ
COLORl3 equ
COLORl4 equ
COLORl5 equ
COLORl6 equ
COLORl7 equ
COLORl8 equ
COLORl9 equ
COLOR20 equ
COLOR2l equ
COLOR22 equ
COLOR23 equ
COLOR24 equ
COLOR25 equ
COLOR26 equ
COLOR27 equ
COLOR28 equ
COLOR29 equ
COLOR30 equ
COLOR3l equ

spr+$28
SPR5POS+sd_ctl
SPR5POS+sd dataa
SPR5POS+$06 should use sd_datab

spr+$30
SPR6POS+sd ctl
SPR6POS+sd-dataa
SPR6POS+$06 should use sd_datab

spr+$38
SPR7POS+sd ctl
SPR7POS+sd dataa
SPR7POS+$06 should use sd datab

color+$OO
color+$02
color+$04
color+$06
color+$08
color+$OA
color+$OC
color+$OE
color+$lO
color+$l2
color+$l4
color+$l6
color+$l8
color+$lA
color+$lC
color+$lE
color+$20
color+$22
color+$24
color+$26
color+$28
color+$2A
color+$2C
color+$2E
color+$30
color+$32
color+$34
color+$36
color+$38
color+$3A
color+$3C
color+$3E

**
**

ENDC

364 Appendix J

Agnus

Aliasing distortion

Altkeys

Amigakeys

AmigaDOS

Amplitude

Amplitude modulation

Attach mode

Automatic mode

Barrel shifter

Baud rate

Beam counters

Bit-map

Glossary

One of the three main Amiga custom chips. Contains the blitter,
copper, and DMA circuitry.

A side effect of sound sampling, where two additional frequencies
are produced, distorting the sound output

Two keys on the keyboard to the left and right of the Amiga keys.

Two keys on the keyboard to the left and right of the space bar.

The Amiga operating system.

The voltage or current output expressed as volume from a sound
speaker.

A means of increasing audio effects by using one audio channel to
alter the amplitude of another.

In sprites, a mode in which a sprite uses two DMA channels for
additional colors. In sound production, combining two audio
channels for frequency/amplitude modulation or for stereo sound.

In sprite display, the normal mode in which the sprite DMA chan
nel, once it starts up, automatically retrieves and displays all of the
data for a sprite. In audio, the normal mode in which the system
retrieves sound data automatically through DMA.

Blitter circuit that allows movement of images on pixel boun
daries.

Rate of data transmission through a serial port.

Registers that keep track of the position of the video beam.

The complete definition of a display in memory, consisting of one
or more bit-planes and information about how to organize the rec
tangular display.

Glossary 365

Bit-plane

Bit-plane animation

Blanking interval

Blitter

Chip Memory

Oear

CLI

Oipping

Collision

Color descriptor words

Color indirection

Color palette

Color register

Color table

Command line interface

Composite video

Controller

366 Glossary

A contiguous series of display memory words, treated as if it were
a rectangular shape.

A means of animating the display by moving around blocks of
playfield data with the blitter.

Time period when the video beam is outside the display area.

DMA channel used for data copying and line drawing.

Memory accessible to the Amiga custom chips. On the current
generation of machines, this section of memory starting at address
O. See Fast Memory .

•
Giving a bit the value of O.

See command line interface.

When a portion of a sprite is outside the display window and thus
is not visible.

A means of detecting when sprites, playfields, or playfield objects
attempt to overlap in the same pixel position or attempt to cross
some pre-defined boundary.

Pairs of words that define each line of a sprite.

The method used by Amiga for coloring individual pixels in
which the binary number fonned from all the bits that define a
given pixel refers to one of the 32 color registers.

See Color table.

One of 32 hardware registers containing colors that you can
define.

The set of 32 color registers.

The command line interface to system commands and utilities.

A video signal, transmitted over a single coaxial cable, which
includes both picture and sync infonnation.

Hardware device, such as mouse or light pen, used to move the
pointer or furnish some other input to the system.

Coordinates A pair of numbers shown in the fonn (x,y), where x is an offset
from the left side of the display or display window and y is an
offset from the top.

Copper Display-synchronized coprocessor that resides on one of the
Amiga custom chips and directs the graphics display.

Coprocessor Processor that adds its instruction set to that of the main processor.

Cursor keys Keys for moving something on the screen.

Data fetch The number of words fetched for each line of the display.

Delay In playfield horizontal scrolling, specifies how many pixels the
picture will shift for each display field. Delay controls the speed
of scrolling.

Denise One of the three main Amiga custom chips. Contains the circuitry
for the color pallete, sprites, and video output.

Depth Number of bit-planes in a display.

Digital-to-analog converter A device that converts a binary quantity to an analog level.

Direct memory access An arrangement whereby intelligent devices can read or write
memory directly, without having to interrupt the processor.

Display field One complete scanning of the video beam from top to bottom of
the video display screen.

Display mode One of the basic types of display; for example, high or low resolu
tion, interlaced or non-interlaced, single or dual playfield.

Display time The amount of time to produce one display field, approximately
l/6Oth of a second.

Display window The portion of the bit-map selected for display. Also, the actual
size of the on-screen display.

DMA See direct memory access.

Dual-playfield mode A display mode that allows you to manage two separate display
memories, giving you two separately controllable displays at the
same time.

Glossary 367

Equal-tempered scale

Exec

Fast Memory

Font

Frequency

Frequency modulation

Genlock

High resolution

Hold-and-modify

Interlaced mode

Joystick

Light pen

Low resolution

Manual mode

368 Glossary

A musical scale where each note is the 12th root of 2 above the
note below it.

Low-level primitives that support the AmigaDOS operating sys
tem.

Memory not accessable by the custom chips. Care must be taken
to present only chip memory address to the custom chips. See
Chip Memory.

A set of letters, numbers, and symbols sharing the same size and
design.

The number of times per second a wavefOlm repeats.

A means of changing sound quality by using one audio channel to
affect the period of the wavefonn produced by another channel.
Frequency modulation increases or decreases the pitch of the
sound.

An optional feature that allows you to bring in a graphics display
from an external video source.

A horizontal display mode in which 640 pixels are displayed
across a horizontal line in a nonnal-sized display.

A display mode that gives you extended color selection-up to
4,096 colors on the screen at one time.

A vertical display mode where 400 lines are displayed from top to
bottom of the video display in a nonnal-size display.

A controller device that freely rotates and swings from left to
right, pivoting from the bottom of the shaft; used to position
something on the screen.

A controller device consisting of a stylus and tablet used for draw
ing something on the screen.

A horizontal display mode in which 320 pixels are displayed
across a horizontal line in a nonnal-sized display.

Non-DMA output. In sprite display, a mode in which each line of
a sprite is written in a separate operation. In audio output, a mode
in which audio data words are written one at a time to the output.

MIDI

Microsecond (us)

Millisecond (ms)

Mintenn

Modulo

Mouse

Multitasking

Nanosecond (ns)

Non-interlaced mode

NTSC

Overscan

Paddle controller

PAL

Parallel port

Paula

A standardized musical instrument interface used by many musl
cal instruments.

One millionth of second (1/1,000,000).

One thousandth of second (1/1,000).

One of eight possible logical combinations of data bits from three
different data sources.

A number defining which data in memory belongs on each hor
izontal line of the display. Refers to the number of bytes in
memory between the last word on one horizontal line and the
beginning of the first word on the next line.

A controller device that can be rolled around to move something
on the screen; also has buttons to give other fonns of input:

A system in which many tasks can be operating at the same time,
with no task forced to be aware of any other task.

One billionth of a second (1/1,000,000,000).

A display mode in which 200 lines are displayed from top to bot
tom of the video display in a nonnal-sized display.

National Television Standards Committee specification for com
posite video. The base Amiga crystal frequency for NTSC is
28.63636 Mhz.

Area scanned by the video beam but not visible on the video
display screen.

A game controller that uses a potentiometer (variable resistor) to
position objects on the screen.

A European television standard similar to (but incompatible with)
NTSC. Stands for' 'Phase Alternate Line." The base Amiga crys
tal frequency for PAL is 28.37516 Mhz.

A connector on the back of the Amiga that is used to attach paral
lel printers and other parallel add-ons.

One of the three main Amiga custom chips. Contains audio, disk,
and interrupt circuitry.

GlossarY 369

Pitch

Pixel

Playfield

Playfield object

Playfield animation

Pointer register

Polarity

Potentiometer

Primitives

Quantization noise

RAM

Raster

Read-only

Resolution

ROM

Sample

Sampling rate

Sampling period

Scrolling

Serial port

370 Glossary

The quality of a sound expressed as its highness or lowness.

One of the small elements that makes up the video display. The
smallest addressable element in the video display.

One of the basic elements in Amiga graphics; the background for
all the other display elements.

Subsection of a playfield that is used in playfield animation.

See bit-plane animation.

Register that is continuously incremented to point to a series of
memory locations.

True or false state of a bit.

An electrical analog device used to adjust some variable value.

Amiga graphics, text, and animation library functions.

Audio noise introduced by round-off errors when you are trying to
reproduce a signal by approximation.

Random access (volatile) memory.

The area in memory that completely defines a bit-map display.

Describes a register or memory area that can be read but not writ
ten.

On a video display, the number of pixels that can be displayed in
the horizontal and vertical directions.

See read-only memory.

One of the segments of the time axis of a wavefonn.

The number of samples played per second.

The value that detennines how many clock cycles it takes to play
one data sample.

Moving a playfield smoothly in a vertical or horizontal direction.

A connector on the back of the Amiga used to attach modems and
other serial add-ons.

Set

Shared memory

Sprite

Strobe address

Task

Timbre

Trackball

Transparent

UART

Video priority

Video display

Write-only

Giving a bit the value of 1.

The RAM used in the Amiga for both display memory and execut
ing programs.

Easily movable graphics object that is produced by one of the
eight sprite DMA channels and is independent of the playfield
display.

An address you put out to the bus in order to cause some other
action to take place; the actual data written or read is ignored.

Operating system module or application program. Each task
appears to have full control over its own virtual 68000 machine.

Tone qUality of a sound.

A controller device that you spin with your hand to move some
thing on the screen; may have buttons for other forms of input.

A special color register definition that allows a background color
to show through. Used in dual-playfield mode.

The circuit that controls the serial link to peripheral devices, short
for Universal Asynchronous Receiver/fransmitter.

Defines which objects (playfields and sprites) are shown in the
foreground and which objects are shown in the background.
Higher-priority objects appear in front of lower-priority objects.

Everything that appears on the screen of a video monitor or televi
sion.

Describes a register that can be written to but cannot be read.

Glossary 371

INDEX

60 Pin Edge Connector, 299
68000,2,4,10,13-14,20,31,181,189,217

instead of Copper, 31
inrenupting,31,211
nonnal cycle, 191
Share Memory, 4
synchronizing with the video beam, 210
rest-and-set instruction, 191

68010,2
68010/20/30, 10
68020,2,181
68030,2
8520,10,153,219,236,238,245,317

alarm, 323
handshaldng,320
input modes, 322
interval timers, 320

continuous, 321
force load, 322
one-shot, 321
PB on/off, 321
start/stop, 321
Toggle/pulse, 321

I/O ports, 320
read bit names, 322
regisrer map, 319
signal assignments, 313
time-of-day clock, 323
wrire bit names, 322

86 Pin Edge Connector, 300
AO,10
AI, 10
A 1000, 1,4,6,56,59,232,255

expansion port, 299
A2000, 1-2,4,6,56, 153,232,255
ASOO, 1-2,4,6,56,153,232,255

A6,1O
Address Registers, 8
Addresses, 10
ADKCON, 236, 244, 252

disk control bits, 242
in audio, 145, 147

Agnus,3-4, 160-161, 163
fat agnus, 4, 181

Alann,323
Aliasing

audio. 150
AilocMemO, 46
AmigaOS,7
Amplitude Modulation, 4
Animated Objects, 5
Animation, 170
Apple II, 235
Area Fill, 4, 178
ATTACH, 117
Attachment

audio, 146
sprites, 117

Audio, 4, 7, 14
aliasing distortion, 150
amplitude modulation, 4
channels

attaching, 145, 160
choosing, 134

data, 134
data length registers, 136
data location registers, 135-136
data output rate, 137
decibel values, 137, 159
DMA, 135, 140, 143, 160
equal-rempered scale, 154
frequency modulation, 4

Index 373

intenupts, 143,215
joining tones, 143
low-pass filter, 151
modulation, 160

amplitude, 145
firequency, 145-146

noise reduction, 150
non-DMA output, 153
period, 137
period register, 140
playing multiple tones, 145
producing a steady tone, 142
sampling period, 138
sampling rate, 138, 148, 152, 160
state machine, 160
stopping, 141
system overhead, 149
volume, 136,159
volume registers, 136
wavefonn transitions, 148

Audio Channel, 13
AUDx, 215
AUDxEN, 140,218
AUDxLCH, 135
AUDxLCL, 135
AUDxLEN, 136
AUDxPER, 140
AUDxVOL, 136
AUTOCONFIG, 6, 219

base address, 337
CONFIGIN*, 337
CONFIG-OUT, 336, 340
debugging, 337
hardware manufacturer number, 335, 339
inverted data, 337
registers, 337
shut-up, 336-338, 340
write register, 336

Background color, 40
Barrel Shifter, 173
BBUSY, 218
BCLR,lO
Beam comparator, 121
Beam position

comparison enable bits, 19
detection of, 210
in Copper use, 27
registers, 211

374 Index

vertical, 18
Beam position counter, 210
Bitplanes, 9
Bit-planes

coloring, 49
DMA,56
in dual-playfield mode, 62
setting the number of, 42
setting the pointers, 48

Blitter, 4-5, 7, 13
address scanning, 167
addressing, 164
animation, 170
area fill, 4, 178
area filling

exclusive, 178
inclusive, 178

blit time, 188
blitter done flag, 180
blitter-finished disable bit (BFD), 31
bUtter-nasty bit, 193
block transfers, 165, 177
BLTSIZE, 181
bus sharing, 191
clock,188
cookie-cut, 170, 175, 177
copying, 163, 177
cycle time, 188
data fetch, 164
data overlap, 176
descending mode, 176-177
DisownBlitterO, 181
DMA enable, 175, 178, 182
DMA priority, 189
DMA time slots, 189
equation-to-mintenn conversion, 169
example, 195
FILL_CARRYIN bit, 179
height, 166
immediate data, 165, 176
interrupts, 181,215
LF control byte, 168
line drawing, 4

logic function, 186
octants, 184
registers, 184

line drawing mode, 184
line texture, 186

linear data, 167
logic equations, 169
logic operations, 168
mruddfig, 175, 177-178
mintenns, 169
modulo, 166
modulo registers, 166
octants, 184
OwnBlitter(),181
packed font, 174
pipelined, 182
pointer registers, 164
sequence of bus cycles, 182
shifting, 176-177
size of blit, 166
starting operation, 164
text, 174
truth-table, 168
Venn Diagrams, 172
WaitBlitO. 181
width,166
with the Copper, 31
zero detection, 182

Blitter Busy, 181
Blitter registers

in line-drawing mode, 184
Blitter shifting, 173
BLTAxWM, 174
BLTCONO, 176

DMA enable, 165
in line drawing, 184, 186
in logic operations, 168
in shift control, 173

BLTCON1, 176, 184
in area fill, 178
in blitter addressing, 176
in line drawing, 184-186
in shift control, 173

BLTEN,218
BLTPRI,218
BLTSIZE, 164, 166-167, 180-181, 186
BLTxDAT, 165
BLTxMOD, 166
BLTxPTH, 164
BLTxPTL, 164
BPL1MOD, 55, 59
BPL2MOD, 55, 59
BPLCONO, 82, 223

enabling color, 56
in dual-playfield mode, 67
in hold-and-modify mode, 82
in interlacing, 45
in resolution mode, 43
selecting bit-planes, 42
setting bits, 42
with light pen, 233

BPLCON1,80
setting scrolling delay, 80

BPLCON2, 67, 204
in dual-playfield priority, 66

BPLCONx,85
BPLEN,218
BPLxMOD,87
BPLxPf,86
BPLxP11I,46,48,54,69
BPLxPTL,46,48,54,69
BPUx, 42, 82, 85
Bridgeboard,6
BSET,lO
BZERO, 218
Cache, 181
CDANG,21
Chip Memory, 2, 4-5, 9, 14, 102, 135, 164,

181,217,240
CIA, 7, 10, 153,236,245,317
CIAA

address map, 318
CIAADDRA,235
CIAAPRA, 223, 226, 228, 235

disk, 238
CIAB

address map, 318
CIABPRB

disk,238
Clock, 255

8520,323
alarm, 323
audio, 137-139, 155, 160
bUtter, 188-189
color, 189,251
cycle, 4
keyboard, 245
speed, 10
system, 2, 188

Clock Constant, 138, 155
Clock Interval, 138

Index 375

CLR.W, 10
CLXCON,209
CLXDAT,208
CNT,245
Collision, 207

control register, 209
detection register, 207

Collision Detection, 3
Color

attached sprites, 119
background color, 40
color indirection, 36
color table, 40
enabling, 56
in dual-playfield mode, 65
in hold-and-modify mode, 81
sample register contents, 88
sprites, 98

Color Cock, 53,189,251
Color Palette, 3, 13
Color Registers, 3
Color registers

contents, 40
loading, 41
names of registers, 40
sprites, 126

Color selection
in high-resolution mode, 90
in hold-and-modify mode, 90
in low-resolution mode, 88

COLOROO, 40, 49
COLOR_ON,85
COLORx, 8, 22, 24, 40, 65-66, 82
Comparator, 121
Composite Video, 5
Control Register, 327

register A, 327
bit-map, 328

register B, 328
bit-map, 329

Controller Port
connection chart, 222
joystick, 226
mouse, 224
output to, 234
registers, 223
trackball,224

Controllers

376 Index

light pen, 232
potentiometers, 231
proportional

registers, 230
special, 234
types, 5

COPILC, 20-21, 26, 28, 31
COPILCH,20
COPILCL,20
COP2LC, 20-21, 29
C0P2LCH,20
C0P2LCL,20
COPCON,21
COPEN, 26, 31, 218
COPJMPl,21
COPJMP2,21
Copper, 7, 13, 39, 48, 56, 59, 75-77, 107,

119,189,192,210,214
affecting registers, 21
at reset, 26
bus cycles used, 15
comparison enable, 28
control register, 21
danger bit (CDANG), 21
DMA,26
features, 14
horizontal beam position, 18
in interlaced mode, 30
in memory operations, 15
in vertical blanking interrupts, 214
instruction fetch, 20
instruction lists, 22, 24
instructions

description, 14
ordering, 23
summary, 32

interrupt, 215
interrupting the 68000, 31
jump, 20
jump strobe addresses, 21
location registers, 20, 26, 28
loops and branches, 28
memory cycles, 17
MOVE instruction, 15
MOVE to registers, 16
registers, 20
resolution, 18
SKIP instruction, 27-28

starting, 21,26
stopping, 26
strobe address, 20
vertical beam position, 18
VVAITinstruction, 17,26,28
with sprites, 110
with the blitter, 21, 31

Copper List, 9
Coprocessor

(see Copper), 13
Copying data, 163
CP/M,235
CfRL-AMIGA-AMIGA,247
Custom Chips, 3, 164,250

control registers, 13
register, 9
register space, 9
Steal Cycles, 4

DO,lO
D1,1O
Data-fetch

high-resolution, 55
in basic playfield, 53
in horizontal scrolling, 77

Data-fetch start
nonnal,53

Data-fetch stop
nonnal,53

DBLPF, 82, 85
DDFSTOP, 53-54, 74, 77, 86,95
DDFSTRT, 53, 74, 77, 86, 95
Decibel values, 159
Denise, 3
Descending Mode

bUtter, 176
DEST,165
Devices, 10
Digital Joystick

connection, 307
fire buttons, 307

Disk, 10, 14
controller, 5, 235
DMA,240
DMA pointer registers, 240
drives, 5
external

identification, 311
interface, 310

limitations, 311
pins, 310

external connector, 353
device ID, 357
pins, 353
signals, 355

fioppy,4,9
input stream synchronization register

(DSKSYNC), 244
internal

pins, 312
power, 312

intenupts, 216, 244
MFM Encoding, 243
read data register, 242
write, 240

Disk Port, 298
Display

size of, 50
Display DMA, 14
Display field, 35
Display memory, 50
Display modes, 35
Display window

positioning, 51
size

maximum, 74
nonnal,52

starting position
horizontal, 52, 72
vertical, 52, 72

stopping position
horizontal, 52, 73
vertical, 52, 74

DIVVSTOP, 52-53, 73,87,95,214
DIVVSTRT, 52-53, 71, 86,95,214
DMA, 3-4, 10, 202

audio, 134-135, 138, 140-144, 149, 153,
160-161, 189,215

bit-planes, 56
bUtter, 44, 164-168, 170, 173-175, 177-

178, 181-183, 186, 188-189, 191-193
control, 217
control register, 213, 217
copper, 13-14,26
disk,4, 189,216,235,240-241,244
display, 14, 189
playfield,56

Index 377

sprites, 3, 22, 93-94, 99, 105-107, 112-
115, 117-118, 120, 123-125, 189

DMA Contention, 188
DMA Priority, 189
DMAB_BLTDONE, 181
DMACON, 217, 241

blitter done, 180
DMAF _BLITHOG bit, 193
in audio, 140
in playfields, 56
stopping the Copper, 26
zero detection, 182

DMACONR,217
DMAEN, 140,218,241
DMAF_BLITHOG,193
DMAF _BLTNZERO, 182
DSK,238
DSKBLK,216
DSKBYJnR,236,242
DSKCHANGE,238
DSKDIREC, 238
DSKEN,218
DSKINDEX, 238
DSKLEN, 236,240-241
DSKMOTOR,238
DSKPROT. 238
DSKPfH, 236, 240
DSKRDY, 238
DSKSELx, 238
DSKSIDE, 238
DSKSTEP, 238
DSKSYN,215
DSKSYNC, 236, 241, 244
DSKTRACKO, 238
Dual Playfield, 38

bit-plane assignment, 62
description, 62
enabling, 67
high-resolution colors, 66
in high-resolution mode, 66
low-resolution colors, 65
priority, 66
scrolling, 66

Examples, 7
Expansion Boards, 6
Expansion Connector, 6
External interrupts, 214
FAST,242

378 Index

Fat Agnus, 4, 181
Field time, 35
Hoppy Disk, 4
Hoppy: See DISK, 235
Frame Buffer, 5
Frequency Modulation, 4
Game Controller Port, 305
GAUD,85
GCR,244
Genlock, 2, 43, 45, 84-85, 155, 255

effect on background color, 40
in playfields, 84

GetCCO,1O
HAM,81
Hardware

speCifications, 9
Hardware Connection, 332

address inputs, 333
chip select, 332
clock input, 332
data bus 1/0,333
interrupt request, 333
read/write input, 332
reset input, 333

Hardware Manufacturer Number, 335
High resolution

color selection, 43, 90
memory requirements, 47
with dual playfields, 66

HIRES, 82
Hold-And-Modify, 3, 81
HOMOD, 82, 85
Horizontal blanking intelVal, 18
HSTART,53,86, 104, 110
HSTOP, 52-53, 73, 87
IBM PC, 5-6, 235
Include Files, 8, 16
INTENA,213
INTENAR,213
Interlaced mode

Copper in, 30
memory requirements, 47
modulo, 55
setting interlaced mode, 43

Interleaved Memory, 4
Internal Slots, 6
Interrupt, 22, 31, 202, 211

8520,245

audio. 143-144. 149, 153, 160-162,215
beam synchronized, 3
blitter, 31, 165, 181,215
control registers, 212
copper, 20, 28-29,210, 214
Copper, 215
diSk,216,239,244
external, 214
graphics, 29
interrupt enable bit, 214
interrupt lines, 212
maskable, 212
nonmaskable, 212
parallel, 250
priorities, 216
registers, 213
serial,250-253
serial port, 216
setting and clearing bits, 213
TAS, 10
vertical blanking, 214

Interrupt Control Register, 325
read,326
write, 326

Interrupts
during vertical blanking, 214

INTF_BLIT,181
INTREQ, 31, 213
INTREQR,213
Joy Stick Port, 301
JOYODAT/JOY1 DAT

with joystick, 227
with mouse/trackball, 225

Joystick
connections,222
reading, 226

JOYxDAT,223
Keyboard, 9-10, 245, 343

caps lock, 345
communications,344
errors, 347
ghosting, 247
hard reset, 348
keycodes,345

transmission, 345
matrix, 350
out-of-sync, 346
power up, 346

raw keycodes, 245
reading, 245
reset warning, 348
self test, 347
signals, 5, 343
special codes, 349
timing diagram, 344

Keyboard Port, 297
LACE,45
LED

caps-lock,247
Library Base, 9
Light Pen, 309

connections, 222
pins, 309
reading, 232
registers, 233

Line Drawing, 4, 184
length,186
logic function, 186
octants, 184
registers, 186

Low resolution
color selection, 89

LPEN,84
Manual mode

in sprites, 120
Memory

adding, 6
blitter access to, 164
type, 9

Memory allocation
audio, 135
fonnula for playfields, 71
playfields,47
sprite data, 102

Memory Cycle Time, 189
Memory List, 9
MFM Encoding, 235, 243-244
MFMPREC, 242
MIDI,296
Mintenns, 169
Modulation

amplitude, 146
frequency, 146

Modulo
blitter, 166
in basic playfield, 54

Index 379

in horizontal scrolling, 77
in interlaced mode, 55

Monitors - See Video, 255
Mouse

connections, 222
reading, 224

Mouse Port, 306
MOVE, 14-15
MOVE SR,<ea>, 10
MOVE.W,lO
MSBSYNC, 242, 244
MS-DOS, 5-6, 235
Multiprocessor, 217
Multitasking, 7
Noise

audio, 150
NTSC, 56,96

audio, 137-138, 154-155
blitter, 188
clock, 2
playfield, 43, 46, 51-52
serial baud rate, 251
sprites, 96
vertical blank, 214
video, 3, 18,23,30,35-36,39

Octants, 184
OVERRUN, 251
Overscan, 3, 51, 95
Packed Font, 174
Paddle Controller

connections, 222
reading, 228

PAL, 3,56
audio, 137-138, 154-155
beam position, 210
blitter, 188
clock, 2
playfield, 43, 46, 51-52
serial baud rate, 251
sprites, 96
vertical blank, 214
video, 3, 18,30,35-36,39

Parallel, 7
Parallel Port, 2, 5, 222, 250,297

pin assignment, 302
specification, 302
timing, 303

Paula, 3, 5,250

380 Index

Peripherals, 5-6
Pipeline, 182
Pixels

definition, 35
in sprites, 97

Playfield, 3, 5, 7
Playfields

allocating memory, 46
bit-plane pointers, 48
collision, 207
color of pixels, 36-38
color register contents, 87
color table, 40
coloring the bit-planes, 39, 49
colors in a single playfield, 39
defining a scrolled playfield, 80
defining display window, 50
defining dual playfields, 67
defining the basic playfield, 57
display window size

maximum, 74
normal, 52

displaying, 56
dual-playfield mode, 62
enabling DMA, 56
fetching data, 53, 55, 74
forming, 38
high-resolution, 36

color selection, 90
example, 60

hold-and-modify,90
hold-and-modify mode, 81
interlaced, 36 '
interlaced example, 60
low-resolution, 36

colors, 88
memory required, 46, 71
modulo registers, 55
multiple-playfield display, 84
non-interlaced, 36
normal,36
pointer registers, 60, 69
priority, 204
register summary, 84
scrolling

horizontal, 77
vertical,76

selecting bit-planes, 42

setting resolution mode, 43
specifying modulo, 54, 68
specifying the data fetch, 70
with external video source, 84
with genlock, 84
with larger display memory, 68

Playfield-sprite priority, 204
Pon Signal Assignments, 329
Ports

controller, 222
disk, 235
parallel, 250
serial, 250
video, 255

POTODAT,23O
POTIDAT,23O
POTGO,223
POTGO / POTINP

as digital I/O, 234
as proponional inputs, 229

POTGOR,223
name changed. See POTINP, 234

POTxDAT,223
Power up operation, 219
PRECOMPx, 242
Priority

dual playfields, 66
playfield-sprite, 204
priority control register, 204
sprites, 202

Proponional Controller, 308
pins, 309

Proponional Controllers
reading, 229

Proponional Joystick
connections, 222
reading, 228

RAM, 9, 15,41
address space, 2
at stanup, 219
chip, 5, 9, 14, 135
disk, 240
expansion, 2, 6
keyboard, 247
software testing, 10

RAMEX,299
Reboot, 219
Refresh, 14

Reset, 219
Resolution

setting, 43
Resources, 10
RF Modulator, 255
RF Monitor, 298
ROB

analog, 255
digital, 255

ROB Video, 5, 43, 56, 59
ROM, 2,4,9, 219, 247
RS-232, 5, 250
RS-232 and MIDI, 296
Sampling

period,138
rate, 148

Scrolling
data fetch, 77
delay, 80
horizontal, 77
in dual-playfield mode, 66
in high-resolution mode, 77
modulo, 77
vertical,76

Self-Modifying Code, 10
SERDAT,253-254
SERDATR,251
Serial, 7
Serial pon, 250

characteristics, 305
pin assignment, 304
specification, 304
timing, 304

Serial Shift Register, 324
bidirectional feature, 325
input mode, 324
output mode, 324

SERPER,250
SET/ClJR,31, 140, 142,213,218,242,253
Shifting

blitter, 176
SKIP,14
Sound generation, 130
Sound Samples, 9
SPREN,218
Sprite, 3, 7, 9, 13-14
Sprite Colors, 22
Sprite DMA, 22

Index 381

Sprites
address pointers, 107
arming and disanning, 120
attached

color registers, 128
colors, 119
control word, 117
copper list, 119
data words, 118, 120

clipped,96
collision, 110,207
color, 98
color registers used, 100
comparator, 121-122
control registers, 121-122, 124
control words, 104
data registers, 123, 126
data structure, 101
data words, 104
designing, 100
displaying

example, 108
steps in, 106

DMA, 107, 111
end-of-data words, 105
fonning,94
manual mode, 120
memory requirements, 102
moving, 110
overlapped, 115
parallel-to-serial converters, 121
pixels in sprites, 97
pointer registers, 124

initializing, 107
resetting, 107

position registers, 121, 123
priorities, 202
priority, 112, 115, 204
reuse, 111, 113
screen position

horizontal,94,l04
vertical, 96

shape, 97
size, 97
vertical position, 104
with copper, 110

SPFtxC1nL, 104, 120-121, 123, 125-126
SPFtxDATA, 120, 123, 126

382 Index

SPRxDATB, 120,123, 126
SPRxPOS, 104, 120-121, 123, 125-126
SPRxPT,111
SPRxPTH, 107, 123-124
SPRxPTL, 107, 123-124
SRCA,165
SRCB,165
SRCD,165
Stereo, 4
System Clock, 2
System Control Hardware, 7
System Libraries, 10
System Structures, 9
TAS, 10, 191,217
Timer, 10
Trackball, 306

connections, 222
reading, 224

Trackdisk, 7
Trackdisk Buffer, 9
TSRE,254
UART,250
UARTBRK, 253
VCR,40
Vertical Blanking, 26, 28
VHPOSR,223

with beam counter, 211
with light pen, 233

VHPOSW
with beam counter, 211

Video
analog RGB, 255
beam position, 3, 18
camera input, 5
composite, 255
digital RGB, 255
external sources, 84
interrupt, 3
laser disk input, 5
monitors, 5
monochrome, 255
output, 255
priority, 3
RF modulator, 255
RGB, 43, 56, 59
synchronization, 3
VCR input, 5
video slot, 255

Video Beam Position, 22
Video Input, 40
Video Port, 297
Volume, 136
VPOSR, 223

in playfields, 60
with beam counter, 211
with light pen, 233

VPOSW
with beam counter, 211

VSTART, 53, 86,104-105,110
VSTOP, 52-53, 73,87,104-105,110
WAIT,14
Wavefonn,4
Wavefonns

audio, 130
WOFUDS~C,242,244

Zero Detection, 182

Index 383

Amiga Programming > $24 . 95 FP T USA

Amiga® Technical Reference Series

AMIGA HARDWARE
REFERENCE MANUAL

REVISED & UPDATED

The Amiga computers are exciting high-performance microcomputers with superb graph
ics, sound, multiwindow and multitasking capabilities. Their technologically advanced
hardware is designed around the Motorola 68000 microprocessor family and sophisti
cated custom chips that control graphics, audio, peripherals, and input/output to other
equipment. The Amigas unique operating system software provides programmers with
unparalleled power, flexibility, and convenience in designing and creating programs.

Written by the technical experts at Commodore-Amiga, Inc., who design the Amiga
hardware and system software, the AMIGA HARDWARE REFERENCE MANUAL
is an in-depth description of the Amigas hardware and how it works. This revised and
updated volume features information on the Amiga 500, J 000, and 2000 machines,
including:

an introductory tutorial on writing safe, upwardly-compatible software to directly
control the Amigas graphics and hardware
descriptions of the Copper (coprocessor), Blitter, playfields, and sprites, as well as
the audio, system control, and interface hardware
appendices giving a concise summary of the register set and the uses of
individual bits
a glossary of key terms

The definitive source of information on the capabilities and features of the Amigas custom
chips and peripheral interfaces, the AMIGA HARDWARE REFERENCE MANUAL
is the essential reference tool for the serious programmer who wishes to directly control
allocated hardware resources.

The revised Amiga Technical Reference Series includes two other volumes of vital
information for Amiga programmers and developers: Amiga ROM Kernel Reference
Manual: Includes and Autodocs contains the Autodocs for Library, Device, and Resource
calls and the C and Assembly language Amiga Include Files. Amiga ROM Kernel Refer
ence Manual: Libraries and Devices, a new. all-inclusive-tutorial, covers all Amiga system
libraries and devices, including Exec and Intuilion.

Cover design by Mike Fender

• T"Y

Addison-Wesley Publishing Company, Inc. 9 780201 181579

52495 r

ISBN 0-201-18157-6

