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PREFACE 

The Amiga® Technical Reference Series is the official guide to programming the Commodore 
Amiga computers. This revised edition of the Amiga Hardware Reference Manual has been 
updated for version 1.3 of the Amiga operating system and the new Amiga computer systems. 
This manual provides infonnation about the Amiga graphics, audio hardware, and how the Amiga 
talks to the outside world through peripheral devices. A portion of this manual is a tutorial on 
writing assembly language programs to directly control the Amiga's graphics and hardware. 

This book is intended for the following audiences: 

• Assembly language programmers who need a more direct way of interacting with the 
system than the routines described in the Amiga ROM Kernel Reference Manual: 
Includes and Autodocs and Amiga ROM Kernel Reference Manual: Libraries and Dev
ices. 

• Designers who want to interface with new peripherals to the Amiga. 

• Anyone who wants to know how the Amiga hardware works. 

Here is a brief overview of the contents: 

Chapter 1, Introduction. An overview of the hardware and survey of the Amiga's graph
ics and audio features. 

Chapter 2, Coprocessor Hardware. Using the Copper coprocessor to control the entire 
graphics and audio system; directing mid-screen modifications in graphics displays and 
directing register changes during the time between displays. 

Chapter 3, Playfield Hardware. Creating, displaying and scrolling the playfields, one of 
the basic display elements of the Amiga; how the Amiga produces multi-color, multi
graphical bit-mapped displays. 

Chapter 4, Sprite Hardware. Using the eight sprite direct-memory access (DMA) chan
nels to make sprite movable objects; creating their data structures, displaying and mov
ing them, reusing the DMA channels. 
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Chapter 5, Audio Hardware. OvelView of sampled sound; how to produce quality 
sound, simple and complex sounds, and modulated sounds. 

Chapter 6, Blitter Hardware. Using the blitter DMA channel to create animation effects 
and draw lines into playfields. 

Chapter 7, System Control Hardware. Using the control registers to define depth 
arrangement of graphics objects, detect collisions between graphics objects, control 
direct memory access, and control interrupts. 

Chapter 8, Interface Hardware. How the Amiga talks to the outside world through con
troller ports, keyboard, audio jacks and video connectors, serial and parallel interfaces; 
infonnation about the disk controller and RAM expansion slot. 

Appendixes. Alphabetical and address-order listings of all the graphics and audio system 
registers and the functions of their bits, system memory map, descriptions of internal and 
external connectors, speCifications for the peripheral interface ports, and specifications 
for the keyboard. 

Glossary. After the appendixes, there is a glossary of important tenns. 

We suggest that you use this book according to your level of familiarity with the Amiga system. 
Here are some suggestions: 

• If this is your initial exposure to the Amiga, read chapter 1, which gives a sUlVey of all 
the hardware features and a brief rundown of graphics and audio effects created by 
hardware interaction. 

• If you are already familiar with the system and want to acquaint yourself with how the 
various bits in the hardware registers govern the way the system functions, browse 
through chapters 2 through 8. Examples are included in these chapters. 

• For advanced users, the appendixes give a concise summary of the entire register set and 
the uses of the individual bits. Once you are familiar with the effects of changes in the 
various bits, you may wish to refer more often to the appendixes than to the explanatory 
chapters. 

The other manuals in this series are the Amiga ROM Kernel Reference Manual: Libraries and 
Devices, with tutorial-style chapters on the use of each Amiga system library and device, and the 
Amiga ROM Kernel Reference Manual: Includes and Autodocs, an alphabetically organized 
reference of autodoc function summaries, Amiga system include files, and the IFF file fonnat 
specifications. 

Hardware designers should contact Commodore Amiga Technical Support for appropriate docu
ments. 
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Commodore Amiga Technical Support (CATS) 

Commodore maintains a technical support group dedicated to helping developers achieve their 
goals with the Amiga. Available technical support programs are tailored both to the needs of 
smaller independent developers and larger corporations. Subscription to the support publication 
AmigaMaifM is available to anyone with an interest in the latest news, Commodore software and 
hardware changes, and tips for developers. 

To request an application for the Commodore Amiga Developer Programs, lists of CATS techni
cal publications, or information regarding electronic developer support, send a self-addressed, 
stamped, 9" x 12" envelope to: 

CATS-Information 
1200 West Wilson Drive 
West Chester, PA 19380-4231 

Error Reports 

In a complex technical manual, errors are often found after publication. When errors in this 
manual are found, they will be corrected in the following printing. Updates will be published in 
the AmigaMail technical support publication. 

Bug reports can be sent to Commodore electronically or by mail. Submitted reports must be 
clear, complete, and concise. Reports must include a telephone number and enough information 
so that the bug can be quickly verified from your report. (I.e. please describe the bug and all the 
steps needed to reproduce it.) 

Amiga Software Engineering Group 
ATTN: BUG REPORTS 
Commodore Business Machines 
1200 Wilson Drive 
West Chester, PA 19380-4231 
USA 

BIX: afinkel 
USENET: bugs@commodore.COM or uunet!cbmvax!bugs 

or suggestions@commodore.COM 
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Chapter 1 

INTRODUCTION 

The Amiga family of computers consists of several models, each of which has been designed on 
the same premise - to provide the user with a low cost computer that features high cost perfor
mance. The Amiga does this through the use of custom silicon hardware that yields advanced 
graphics and sound features. 

There are three distinct models that make up the Amiga computer family: the A500, AlOOO, and 
A2000. Though the models differ in price and features, they have a common hardware nucleus 
that makes them software compatible with one another. This chapter describes the Amiga's 
hardware components and gives a brief overview of its graphics and sound features. 
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Components of the Amiga 

These are the hardware components of the Amiga: 

• Motorola MC68000 16/32 bit main processor. The Amiga also supports the 68010, 68020, 
and 68030 processors as an option. 

512K bytes of internal RAM, expandable to 1 MB on the ASOO and A2000. 

• 256K bytes of ROM containing a real time, multitasking operating system with sound, 
graphics, and animation support routines. 

• Built-in 3.5 inch double sided disk drive. 

Expansion disk port for connecting up to three additional disk drives, which may be either 
3.5 inch or 5.25 inch, double sided. 

Fully programmable RS-232-C serial port. 

• Fully programmable parallel port. 

Two button opto-mechanical mouse. 

Two reconfigurable controller ports (for mice, joysticks, light pens, paddles, or custom con
trollers). 

A professional keyboard with numeric keypad, 10 function keys, and cursor keys. A variety 
of international keyboards are also supported. 

• Ports for simultaneous composite video, and analog or digital RGB output. 

Ports for left and right stereo audio from four special purpose audio channels. 

Expansion options that allow you to add RAM, additional disk drives (floppy or hard), peri
pherals, or coprocessors. 

THE MC68000 AND THE AMIGA CUSTOM CHIPS 

The Motorola 68000 is a 16/32 bit microprocessor. The system clock speed for NTSC Amigas is 
7.15909 megahertz (PAL 7.09379 MHz). These speeds may vary when using an external system 
clock, such as from a genlock. The 68000 has an address space of 16 megabytes. In the Amiga, 
the 68000 can address over 8 megabytes of contiguous random access memory (RAM). 
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In addition to the 68000, the Amiga contains special purpose hardware known as the "custom 
chips" that greatly enhance system perfonnance. The tenn "custom chips" refers to the 3 
integrated circuits which were designed specifically for the Amiga computer. These three custom 
chips (called Agnus, Paula, and Denise) each contain the logic to handle a specific set of tasks, 
such as video, sound, direct memory access (DMA), or graphics. 

Among other functions, the custom chips provide the following: 

• Bitplane generated, high resolution graphics capable of supporting both PAL and NTSC 
video standards. 

On NTSC systems the Amiga typically produces a 320 by 200 non-interlaced or 320 by 
400 interlaced display in 32 colors and a 640 by 200 non-interlaced or 640 by 400 inter
laced display in 16 colors. 

On PAL systems, the Amiga typically produces a 320 by 256 non-interlaced or 320 by 
512 interlaced display in 32 colors, and a 640 by 256 non-interlaced or 640 by 512 inter
laced display in 16 colors. 

Additional video modes allow for the display of up to 4,096 colors on screen simultaneously 
(hold-and-modify) or provide for larger, higher resolution displays (overscan). 

• A custom display coprocessor that allows changes to most of the special purpose registers in 
synchronization with the position of the video beam. This allows such special effects as 
mid-screen changes to the color palette, splitting the screen into multiple horizontal slices 
each having different video resolutions and color depths, beam synchronized interrupt gen
eration for the 68000 and more. The coprocessor can trigger many times per screen, in the 
middle of lines, and at the beginning or during the blanking interval. The coprocessor itself 
can directly affect most of the registers in the other custom chips, freeing the 68000 for gen
eral computing tasks. 

• 32 system color registers, each of which contains a twelve bit number as four bits of RED, 
four bits of GREEN, and four bits of BLUE intensity infonnation. This allows a system 
color palette of 4,096 different choices of color for each register. 

• Eight reusable 16 bit wide sprites with up to 15 color choices per sprite pixel (when sprites 
are paired). A sprite is an easily movable graphics object whose display is entirely indepen
dent of the background (called a playfield); sprites can be displayed over or under this back
ground. A sprite is 16 low resolution pixels wide and an arbitrary number oflines tall. After 
producing the last line of a sprite on the screen, a sprite DMA channel may be used to pro
duce yet another sprite image elsewhere on screen (with at least one horizontal line between 
each reuse of a sprite processor). Thus, many small sprites can be produced by simply reus
ing the sprite processors appropriately. 

• Dynamically controllable inter-object priority, with collision detection. This means that the 
system can dynamically control the video priority between the sprite objects and the bitplane 
backgrounds (playfields). You can control which object or objects appear over or under the 
background at any time. 
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Additionally, you can use system hardware to detect collisions between objects and have 
your program react to such collisions. 

• Custom bit blitter used for high speed data movement, adaptable to bitplane animation. The 
blitter has been designed to efficiently retrieve data from up to three sources, combine the 
data in one of 256 different possible ways, and optionally store the combined data in a desti
nation area. This is one of the situations where the 68000 gives up memory cycles to a DMA 
channel that can do the job more efficiently (see below). The bit blitter, in a special mode, 
draws patterned lines into rectangularly organized memory regions at a speed of about 1 mil
lion dots per second; and it can efficiently handle area fill. 

• Audio consisting of four digital channels with independently programmable volume and 
sampling rate. The audio channels retrieve their control and data via direct memory access. 
Once started, each channel can automatically playa specified waveform without further pro
cessor interaction. Two channels are directed into each of the two stereo audio outputs. The 
audio channels may be linked together to provide amplitude or frequency modulation or both 
forms of modulation simultaneously. 

• DMA controlled floppy disk read and write on a full track basis. This means that the built-in 
disk can read over 5600 bytes of data in a single disk revolution (11 sectors of 512 bytes 
each). 

The internal memory shared by the custom chips and the 68000 CPU is also called "chip 
memory". The original custom chips in the Amiga were designed to be able to physically access 
up to 512K bytes of shared memory. The new version of the Agnus custom chip was created 
which allows the graphics and audio hardware to access up to a full megabyte of memory. 

The Amiga 500 and 2000 models were designed to be able to accept the new Agnus custom chip, 
called "Fat Agnus," due to its square shape. Hence, the A500 and A2000 have allocated a chip 
memory space of 1 MB. This entire 1 MB space is subject to the arbitration logic that controls 
the CPU and custom chip accesses. On the Al000, only the first 512K bytes of memory space is 
shared, chip memory. 

These custom chips and the 68000 share memory on a fully interleaved basis. Since the 68000 
only needs to access the memory bus during each alternate clock cycle in order to run full speed, 
the rest of the time the memory bus is free for other activities. The custom chips use the memory 
bus during these free cycles, effectively allowing the 68000 to run at full rated speed most of the 
time. We say "most of the time" because there are some occasions when the special purpose 
hardware steals memory cycles from the 68000, but with good reason. Specifically, the coproces
sor and the data moving DMA channel called the blitter can each steal time from the 68000 for 
jobs they can do better than the 68000. Thus, the system DMA channels are designed with max
imum performance in mind. The job to be done is performed by the most efficient hardware ele
ment available. Even when such cycle stealing occurs, it only blocks the 68000's access to the 
internal, shared memory. When using ROM or external memory, the 68000 always runs at full 
speed. 
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Another primary feature of the Amiga hardware is the ability to dynamically control which part of 
the chip memory is used for the background display, audio, and sprites. The Amiga is not limited 
to a small, specific area of RAM for a frame buffer. Instead, the system allows display bitplanes, 
sprite processor control lists, coprocessor instruction lists, or audio channel control lists to be 
located anywhere within chip memory. 

This same region of memory can be accessed by the bit blitter. This means, for example, that the 
user can store partial images at scattered areas of chip memory and use these images for anima
tion effects by rapidly replacing on screen material while saving and restoring background 
images. In fact, the Amiga includes finnware support for display definition and control as well as 
support for animated objects embedded within playfields. 

VCR AND DIRECT CAMERA INTERFACE 

In addition to the connectors for monochrome composite, and analog or digital RGB monitors, 
the Amiga can be expanded to include a VCR or camera interface. This system is capable of syn
chronizing with an external video source and replacing the system background color with the 
external image. This allows development of fully integrated video images with computer gen
erated graphics. Laser disk input is accepted in the same manner. 

PERIPHERALS 

Floppy disk storage is provided by a built in, 3.5 inch floppy disk drive. Disks are 80 track, dou
ble sided, and fonnatted as 11 sectors per track, 512 bytes per sector (over 900,000 bytes per 
disk). The disk controller can read and write 320/360K IBM PCTM (MS-DOSTM) fonnatted 3.5 or 
5.25 inch disks, and 640n20K IBM PC (MS-DOS) fonnatted 3.5 inch disks. Extema13.5 inch or 
5.25 inch disk drives can be added to the system through the expansion connector. 

Circuitry for some of the peripherals resides on Pallia. Other chips handle various signals not 
specifically assigned to any of the custom chips, including modem controls, disk status sensing, 
disk motor and stepping controls, ROM enable, parallel input/output interface, and keyboard 
interface. 

The Amiga includes a standard RS-232-C serial port for external serial input/output devices. 

A keyboard with numeric keypad, cursor controls and 10 function keys is included in the base 
system. For maximum flexibility, both key-down and key-up signals are sent The Amiga also 
supports a variety of international keyboards. Many other types of controllers can be attached 
through the two controller ports on the base unit You can use a mouse, joystick, keypad, track
ball, light pen, or steering wheel controller in either of the controller ports. 
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SYSTEM EXPANDABILITY AND ADAPTABILITY 

New peripheral devices may be easily added to all Amiga models. These devices are automati
cally recognized and used by system software through a well defined, well documented linking 
procedure called AUTOCONFIGTM. 

On the A500 and AlOOO models, peripheral devices can be added to the Amiga's 86 pin expan
sion connector, including additional external RAM. Extra disk units may be added from a con
nector at the rear of the unit. 

The A2000 model provides the user with the same features as the A500 or AlOOO, but with the 
added convenience of simple and extensive expandability. The 86 pin, external connector of the 
AlOOO and A500 is not externally accessible on the A2000. Instead, the A2000 contains 7 inter
nal slots that allow many types of expansion boards to be quickly and easily added inside the 
machine. These expansion boards may contain coprocessors, RAM expansion, hard disk controll
ers, video or I/O ports. There is also room to mount both floppy and hard disks internally. The 
A2000 also supports the special Bridgeboard™ coprocessor card. This provides a complete IBM 
PCTM on a card and allows the Amiga to run MS-DOSTM compatible software, while simultane
ously running native Amiga software. 
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About the Examples 

The examples in this book all demonstrate direct manipulation of the Amiga hardware. However, 
as a general rule, it is not permissible to directly access the hardware in the Amiga unless your 
software either has full control of the system, or has arbitrated via the OS for exclusive access to 
the particular parts of the hardware you wish to control. 

Almost all of the hardware discussed in this manual, most notably the BUtter, Copper, playfield, 
sprite, CIA, trackdisk, and system control hardware, are in either exclusive or arbitrated use by 
portions of the Amiga OS in any running Amiga system. Additional hardware, such as the audio, 
parallel, and serial hardware, may be in use by applications which have allocated their use 
through the system software. 

Before attempting to directly manipulate any part of the hardware in the Amiga's multitasking 
environment, your application must first be granted exclusive access to that hardware by the 
operating system library, device, or resource which arbitrates its ownership. The operating sys
tem functions for requesting and receiving control of parts of the Amiga hardware are varied and 
are not within the scope of this manual. Generally such functions, when available, will be found 
in the library, device, or resource which manages that portion of the Amiga hardware in the multi
tasking environment. The following list will help you to find the appropriate operating system 
functions or mechanisms which may exist for arbitrated access to the hardware discussed in this 
manual. 

Copper, Playfield, Sprite, Blitter - graphics.library 
Audio - audio.device 
Trackdisk - trackdisk.device, disk. resource 
Serial - serial.device, misc. resource 
Parallel - parallel.device, cia.resource, misc.resource 
Gameport - input.device, gameport.device, potgo.resource 
Keyboard - input.device, keyboard. device 
System Control- graphics.library, exec.library (interrupts) 

Most of the examples in this book use the hw 3xamplesj file (see Appendix J) to define the chip 
register names. Hw_examplesj uses the system include file hardware/customj to define the chip 
structures and relative addresses. The values defined in hardware/customj and hw 3xamplesj are 
offsets from the base chip register address space. In general, this base value is defined as _custom 
and is resolved during linking from amiga.lib. Cciaa and _ciab are also resolved in this way.) 

Normally, the base address is loaded into an address register and the offsets given by 
hardware/customj and hw _examples.i are then used to address the correct register. 
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NOTE 

The offset values of the registers are the addresses that the Copper must use to talk to 
the registers. 

For example, in assembler: 

INCLUDE "exec/types.i" 
INCLUDE "hardware/custom.i" 

XREF custom 

Start: lea _custom,aO 
move.w #$7FFF,intena(aO) 

External reference ... 

Use aO as base register 
Disable all interupts 

In C, you would use the structure definitions in hardware/custom.h For example: 

#include "exec/types.h" 
#includ~ "hardware/custom.h" 

extern struct Custom custom; 

/* You may need to define the above external as 
** extern struct Custom far custom; 
** Check you compiler manual. 
*/ 

main() 
{ 
custom.intena Ox7FFF; /* Disable all interupts */ 

The Amiga hardware include files are generally supplied with your compiler or assembler. List
ings of the hardware include files may also be found in the Addison-Wesley Amiga ROM Kernel 
Manual "Includes and Autodocs". Generally, the include file label names are very similar to the 
equivalent hardware register list names with the following typical differences. 

• Address registers which have low word and high word components are generally listed as 
two word sized registers in the hardware register list, with each register name containing 
either a suffix or embedded "L" or "H" for low and high. The include file label for the 
same register will generally treat the whole register as a longword (32 bit) register, and there
fore will not contain the "L" or "H" distinction. 

• Related sequential registers which are given individual names with number suffixes in the 
hardware register list, are generally referenced from a single base register definition in the 
include files. For example, the color registers in the hardware list (COLOROO, COLOROl, 
etc.) would be referenced from the "color" label defined in "hardware/custom.i" (oolor+O, 
color+2, etc.). 

Examples of how to define the correct register offset can be found in the hw _examples.i file 
listed in Appendix J. 
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Some Caveats to Hardware Level Programmers 

The Amiga is available in a variety of models and configurations, and is further diversified by a 
wealth of add-on expansion peripherals and processor replacements. In addition, even standard 
Amiga hardware such as the keyboard and floppy disks, are supplied by a number of different 
manufacturers and may vary subtly in both their timing and in their ability to perform outside of 
their specified capabilities. 

The Amiga operating system is designed to operate the Amiga hardware within spec, adapt to 
different hardware and RAM configurations, and generally provide upward compatibility with any 
future hardware upgrades or "add ons" envisioned by the designers. For maximum upward com
patibility, it is strongly suggested that programmers deal with the hardware through the com
mands and functions provided by the Amiga operating system. 

If you find it necessary to program the hardware directly, then it is your responsibility to write 
code which will work properly on various models and configurations. Be sure to properly request 
and gain control of the hardware you are manipulating, and be especially careful in the following 
areas: 

Do not jump into ROM. Beware of any example code that calls routines in the $F80000 to 
$FFFFFF range. These are ROM addresses and the ROM routines WILL move with every OS 
revision. The only supported interface to system ROM code is through the provided library, dev
ice, and resource calls. 

Do not modify or depend on the format of any private system structures. This includes the pok
ing of copper lists, memory lists, and library bases. 

Do not depend on any address containing any particular system structure or type of memory. The 
system modules dynamically allocate their memory space when they are initialized. The 
addresses of system structures and buffers differ with every OS, every model, and every 
configuration, as does the amount of free memory and system stack usage. Remember that all 
data for direct custom chip access must be in CHIP RAM. This includes bit images (bitplanes, 
sprites, etc), sound samples, trackdisk buffers, and copper lists. 

Do not write spurious data to, or interpret undefined data from currently unused bits or addresses 
in the custom chip space. All undefined bits must be set to zero for writes, and ignored on reads. 

Do not write data past the current end of custom chip space. Custom chips may be extended or 
enhanced to provide additional registers, or to use currently undefined bits in existing registers. 

All custom chip registers are read only OR write only. Do not read write only registers, and do 
not write to read only registers. 
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Do not read, write, or use any currently undefined address ranges. The current and future usage 
of such areas is reserved by Commodore and is definitely subject to change~ 

If you are using the system libraries, devices, and resources, you must follow the defined inter
face. Assembler programmers (and compiler writers) must enter functions through the library 
base jump tables, with arguments passed as longs and library base address in A6. Results 
returned in DO must be tested, and the contents of DO-Dl/AO-Al must be assumed gone after a 
system call. 

NOTE 

The assembler T AS instruction should not be used in any Amiga program. The TAS 
instruction assumes an indivisible read-modify-write bqt this can be defeated by sys
tem DMA. Instead use BSET and BCLR. These instructions perform a test and set 
operation which cannot be interrupted. 

TAS is only needed for a multiple CPU system. On a single CPU system, the BSET 
and BCLR instructions are identical to TAS, as the 68000 does not interrupt instruc
tions in the middle. BSET and BCLR first test, then set bits. 

Do not use assembler instructions which are privileged on any 68000 family processor, most not
ably MOVE SR,<ea> which is privileged on the 68010/20/30. Use the Exec function GetCCO 
instead of MOVE SR, or use the appropriate non-privileged instruction as shown below: 

CPU 

68000 
68010/20/30 

User Mode 

MOVE SR,<ea> 
MOVE CCR,<ea> 

Super Mode 

MOVE SR,<ea> 
MOVE SR,<ea> 

All addresses must be 32 bits. Do not use the upper 8 bits for other data, and do not use signed 
variables or signed math for addresses. Do not execute code on your stack or use self-modifying 
code since such code can be defeated by the caching capabilities of some 68xxx processors. And 
never use processor or clock speed dependent software loops for timing delays. See Appendix F 
for information on using an 8520 timer for delays. 

NOTE 

When strobing any register which responds to either a read or a write, (for example 
copjmp2) be sure to use a MOVE.W #$00, not CLR.W. The CLR instruction causes a 
read and a clear (two accesses) on a 68000, but only a single access on 68020 and 
above. This will give different results on different processors. 

If you are programming at the hardware level, you must follow hardware interfacing 
specifications. All hardware is NOT the same. Do not assume that low level hacks for speed or 
copy protection will work on all drives, or all keyboards, or all systems, or future systems. Test 
your software on many different systems, with different processors, OS, hardware, and RAM 
configurations. 
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Figure 1-1: Block Diagram for the Amiga Computer Family 

Introduction 11 



Chapter 2 

COPROCESSOR HARDWARE 

Introduction 

The Copper is a general purpose coprocessor that resides in one of the Amiga' s custom chips. It 
retrieves its instructions via direct memory access (DMA). The Copper can control nearly the 
entire graphics system, freeing the 68000 to execute program logic; it can also directly affect the 
contents of most of the chip control registers. It is a very powerful tool for directing mid-screen 
modifications in graphics displays and for directing the register changes that must occur during 
the vertical blanking periods. Among other things, it can control register updates, reposition 
sprites, change the color palette, update the audio channels, and control the bUtter. 
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One of the features of the Copper is its ability to WAIT for a specific video beam position, then 
MOVE data into a system register. During the WAIT period, the Copper examines the contents 
of the video beam position counter directly. This means that while the Copper is waiting for the 
beam to reach a specific position, it does not use the memory bus at all. Therefore, the bus is 
freed for use by the other DMA channels or by the 68000. 

When the WAIT condition has been satisfied, the Copper steals memory cycles from either the 
blitter or the 68000 to move the specified data into the selected special-purpose register. 

The Copper is a two-cycle processor that requests the bus only during odd-numbered memory 
cycles. This prevents collision with audio, disk, refresh, sprites, and most low-resolution display 
DMA access, all of which use only the even-numbered memory cycles. The Copper, therefore, 
needs priority over only the 68000 and the blitter (the DMA channel that handles animation, line 
drawing, and polygon filling). 

As with all the other DMA channels in the Amiga system, the Copper can retrieve its instructions 
only from the chip RAM area of system memory. 

ABOUT TillS CHAPTER 

In this chapter, you will learn how to use the special Copper instruction set to organize mid
screen register value modifications and pointer register set-up during the vertical blanking inter
val. The chapter shows how to organize Copper instructions into Copper lists, how to use Copper 
lists in interlaced mode, and how to use the Copper with the blitter. The Copper is discussed in 
this chapter in a general fashion. The chapters that deal with playfields, sprites, audio, and the 
bUtter contain more specific suggestions for using the Copper. 

What is a Copper Instruction? 

As a coprocessor, the Copper adds its own instruction set to the instructions already provided by 
the 68000. The Copper has only three instructions, but you can do a lot with them: 

• WAIT for a specific screen position specified as x and y coordinates. 

• MOVE an immediate data value into one of the special-purpose registers. 

SKIP the next instruction if the video beam has already reached a specified screen posi
tion. 
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All Copper instructions consist of two 16-bit words in sequential memory locations. Each time 
the Copper fetches an instruction, it fetches both words. The MOVE and SKIP instructions 
require two memory cycles and two instruction words. Because only the odd memory cycles are 
requested by the Copper, four memory cycle times are required per instruction. The WAIT 
instruction requires three memory cycles and six memory cycle times; it takes one extra memory 
cycle to wake up. 

Although the Copper can directly affect only machine registers, it can affect the memory by set
ting up a blitter operation. More information about how to use the Copper in controlling the 
blitter can be found in the sections called "Control Register" and "Using the Copper with the 
Blitter. " 

The WAIT and MOVE instructions are described below. The SKIP instruction is described in the 
" Advanced Topics" section. 

The MOVE Instruction 

The MOVE instruction transfers data from RAM to a register destination. The transferred data is 
contained in the second word of the MOVE instruction; the first word contains the address of the 
destination register. This procedure is shown in detail in the section called "Summary of Copper 
Instructions. " 

FIRST INSTRUCTION WORD (lR1) 

Bit 0 Always set to O. 

Bits S - 1 Register destination address (DAS-I). 

Bits 15 - 9 Not used, but should be set to O. 

SECOND INSTRUCTION WORD (IR2) 

Bits 15 - 0 16 bits of data to be transferred (moved) 
to the register destination. 
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The Copper can store data into the following registers: 

• Any register whose address is $20 or above. 1 

Any register whose address is between $10 and $20 if the Copper danger bit is a 1. The 
Copper danger bit is in the Copper's control register, COPCON, which is described in 
the "Control Register" section. 

• The Copper cannot write into any register whose address is lower than $10. 

Appendix B contains all of the machine register addresses. 

The following example MOVE instructions point bit-plane pointer I at $21000 and bit-plane 
pointer 2 at $25000.2 

DC.W 
DC.W 
DC.W 
DC.W 

$00EO,$0002 
$00E2,$1000 
$00E4,$0002 
$00E6,$5000 

:Move $0002 to register $OEO (BPL1PTH) 
:Move $1000 to regs iter $OE2 (BPL1PTL) 
:Move $0002 to register $OE4 (BPL2PTH) 
:Move $5000 to register $OE6 (BPL2PTL) 

Normally, the appropriate assembler".i" files are included so that names, rather than addresses, 
may be used for referencing hardware registers. It is strongly recommended that you reference all 
hardware addresses via their defined names in the system include files. This will allow you to 
more easily adapt your software to take advantage of future hardware or enhancements. For 
example: 

INCLUDE "hardware/custom.i" 

DC.W bplpt+$00,$0002 : Move $0002 into register $OEO (BPL1PTH) 
DC.W bplpt+$02,$1000 ; Move $1000 into register $OE2 (BPL1PTL) 
DC.W bplpt+$04,$0002 : Move $0002 into register $OE4 (BPL2PTH) 
DC.W bplpt+$06,$5000 ; Move $5000 into register $OE6 (BPL2PTL) 

For use in the hardware manual examples, we have made a special include file (see Appendix J) 
that defines all of the hardware register names based off of the "hardware/custom.i" file. This 
was done to make the examples easier to read from a hardware point of view. Most of the exam
ples in this manual are here to help explain the hardware and are, in most cases, not useful 
without modification and a good deal of additional code. 

1 Hexadecimal numbers are distinguished from decimal numbers by the $ prefix. 

2 All sample code segments are in assembly language. 
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The WAIT Instruction 

The WAIT instruction causes the Copper to wait until the video beam counters are equal to (or 
greater than) the coordinates specified in the instruction. While waiting, the Copper is off the bus 
and not using memory cycles. 

The first instruction word contains the vertical and horizontal coordinates of the beam position. 
The second word contains enable bits that are used to form a "mask" that tells the system which 
bits of the beam position to use in making the comparison. 

BitO 

Bits 15 - 8 

Bits 7 - 1 

FIRST INSTRUCTION WORD (IRl) 

Always set to 1. 

Vertical beam position (called VP). 

Horizontal beam position (called HP). 

SECOND INSTRUCTION WORD (IR2) 

Bit 0 Always set to O. 

Bit 15 The blitter-finished-disable bit. 
Normally, this bit is a 1. 
(See the "Advanced Topics" section below.) 

Bits 14 - 8 Vertical position compare enable bits (called VB). 

Bits 7 - 1 Horizontal position compare enable bits (called HE). 

The following example WAIT instruction waits for scan line 150 ($96) with the horizontal posi
tion masked off. 

DC.W $9601,$FFOO ;Wait for line 150, 
ignore horizontal counters. 

The following example WAIT instruction waits for scan line 255 and horizontal position 254. 
This event will never occur, so the Copper stops until the next vertical blanking intelVal begins. 

DC.W $FFFF,$FFFE ;Wait for line 255, 
H = 254 (ends Copper list). 

To understand why position VP=$FF HP=$FE will never occur, you must look at the comparison 
operation of the Copper and the size restrictions of the position information. Line number 255 is 
a valid line to wait for, in fact it is the maximum value that will fit into this field. Since 255 is the 
maximum number, the next line will wrap to zero (line 256 will appear as a zero in the 
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comparison.) The line number will never be greater than $FF. The horizontal position has a 
maximum value of $E2. This means that the largest number that will ever appear in the com
parison is $FFE2. When waiting for $FFFE, the line $FF will be reached, but the horizontal posi
tion $FE will never happen. Thus, the position will never reach $FFFE. 

You may be tempted to wait for horizontal position $FE (since it will never happen), and put a 
smaller number into the vertical position field. This will not lead to the desired result. The com
parison operation is waiting for the beam position to become greater than or equal to the entered 
position. If the vertical position is not $FF, then as soon as the line number becomes higher than 
the entered number, the comparison will evaluate to true and the wait will end. 

The following notes on horizontal and vertical beam position apply to both the WAIT instruction 
and to the SKIP instruction. The SKIP instruction is described below in the "Advanced Topics" 
section. 

HORIZONTAL BEAM POSITION 

The horizontal beam position has a value of $0 to $E2. The least significant bit is not used in the 
comparison, so there are 113 positions available for Copper operations. This corresponds to 4 
pixels in low resolution and 8 pixels in high resolution. Horizontal blanking falls in the range of 
$OF to $35. The standard screen (320 pixels wide) has an unused horizontal portion of $04 to $47 
(during which only the background color is displayed). 

All lines are not the same length in NTSC. Every other line is a long line (228 color clocks, 0-
$E3), with the others being 227 color clocks long. In PAL, they are all 227 long. The display 
sees all these lines as 227 1(2 color clocks long, while the copper sees alternating long & short 
lines. 

VERTICAL BEAM POSITION 

The vertical beam position can be resolved to one line, with a maximum value of 255. There are 
actually 262 NTSC (312 PAL) possible vertical positions. Some minor complications can occur 
if you want something to happen within these last six or seven scan lines. Because there are only 
eight bits of resolution for vertical beam position (allowing 256 different positions), one of the 
simplest ways to handle this is shown below. 
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Instruction 

[ ... other instructions ... ] 

WAIT for position (0,255) 

WAIT for any horizontal position with 
vertical position 0 through 5, covering 
the last 6 lines of the scan before vertical 
blanking occurs. 

NOTE 

Explanation 

At this point, the vertical 
counter appears to wrap to 0 
because the comparison works 
on the least significant bits oj 
the vertical count. 

Thus the total oj 256 + 6 = 262 
lines oj video beam travel 
during which Copper 
instructions can be executed. 

The vertical is like the horizontal-as there are alternating long and short lines, there 
are also long and short fields (interlace only). In NTSC, the fields are 262, then 263 
lines and in PAL, 312,313. 

This alternation of lines & fields produces the standard NTSC 4 field repeating pattern: 

short field ending on short line 
long field ending on long line 
short field ending on long line 
long field ending on short line 
& back to the beginning ... 

1 horiz count takes 1 cycle of the system clock. (processor is twice this) 

NTSC- 3,579,545 Hz 
PAL- 3,546,895 Hz 
genlocked- basic clock frequency plus or minus about 2%. 

THE COMPARISON ENABLE BITS 

Bits 14-1 are normally set to allIs. The use of the comparison enable bits is described later in the 
•• Advanced Topics" section. 
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Using the Copper Registers 

There are several machine registers and strobe addresses dedicated to the Copper: 

Location registers 

Jump address strobes 

Control register 

LOCATION REGISTERS 

The Copper has two sets of location registers: 

COP1LCH High 3 bits of first Copper list address. 

COP1LCL Low 16 bits of first Copper list address. 

COP2LCH High 3 bits of second Copper list address. 

COP2LCL Low 16 bits of second Copper list address. 

In accessing the hardware directly, you often have to write to a pair of registers that contains the 
address of some data. The register with the lower address always has a name ending in "H" and 
contains the most significant data, or high 3 bits of the address. The register with the higher 
address has a name ending in "L" and contains the least significant data, or low 15 bits of the 
address. Therefore, you write the l8-bit address by moving one long word to the register whose 
name ends in "H." This is because when you write long words with the 68000, the most 
significant word goes in the lower addressed word. 

In the case of the Copper location registers, you write the address to COPILCH. In the following 
text, for simplicity, these addresses are referred to as COPILC or COP2LC. 

The Copper location registers contain the two indirect jump addresses used by the Copper. The 
Copper fetches its instructions by using its program counter and increments the program counter 
after each fetch. When a jump address strobe is written, the corresponding location register is 
loaded into the Copper program counter. This causes the Copper to jump to a new location, from 
which its next instruction will be fetched. Instruction fetch continues sequentially until the 
Copper is interrupted by another jump address strobe. 
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NOTE 

At the start of each vertical blanking intelVal, COPILC is automatically used to start 
the program counter. That is, no matter what the Copper is doing, when the end of 
vertical blanking occurs, the Copper is automatically forced to restart its operations at 
the address contained in COPILC. 

JUMP STROBE ADDRESS 

When you write to a Copper strobe address, the Copper reloads its program counter from the 
corresponding location register. The Copper can write its own location registers and strobe 
addresses to perform programmed jumps. For instance, you might MOVE an indirect address 
into the COP2LC location register. Then, any MOVE instruction that addresses COPJMP2 
strobes this indirect address into the program counter. 

There are two jump strobe addresses: 

COPJMPI Restart Copper from address contained in COPILC. 

COPJMP2 Restart Copper from address contained in COP2LC. 

CONTROL REGISTER 

The Copper can access some special-purpose registers all of the time, some registers only when a 
special control bit is set to aI, some registers not at all. The registers that the Copper can always 
affect are numbered $20 through $FF inclusive. Those it cannot affect at all are numbered $00 to 
$OF inclusive. (See Appendix B for a list of registers in address order.) The Copper control 
register is within this group ($00 to $OF). Thus it takes deliberate action on the part of the 68000 
to allow the Copper to write into a specific range of the special-purpose registers. 

The Copper control register, called COPCON, contains only one bit, bit #1. This bit, called 
CDANG (for Copper Danger Bit) protects all registers numbered between $10 and $IF inclusive. 
This range includes the blitter control registers. When CDANG is 0, these registers cannot be 
written by the Copper. When CDANG is 1, these registers can be written by the Copper. 
Preventing the Copper from accessing the blitter control registers prevents a "runaway" Copper 
(caused by a poorly formed instruction list) from accidentally affecting system memory. 

NOTE 

The CDANG bit is cleared after a reset. 

Coprocessor Hardware 21 



Putting Together a Copper Instruction List 

The Copper instruction list contains all the register resetting done during the vertical blanking 
interval and the register modifications necessary for making mid-screen alterations. As you are 
planning what will happen during each display field, you may find it easier to think: of each aspect 
of the display as a separate subsystem, such as playfields, sprites, audio, interrupts, and so on. 
Then you can build a separate list of things that must be done for each subsystem individually at 
each video beam position. 

When you have created all these intermediate lists of things to be done, you must merge them 
together into a single instruction list to be executed by the Copper once for each display frame. 
The alternative is to create tl;tis all-inclusive list directly, without the intermediate steps. 

For example, the bit-plane pointers used in playfield displays and the sprite pointers must be 
rewritten during the vertical blanking interval so the data will be properly retrieved when the 
screen display starts again. This can be done with a Copper instruction list that does the follow
ing: 

WAIT until first line of the display 
MOVE data to bit-plane pointer 1 
MOVE data to bit-plane pointer 2 
MOVE data to sprite pointer I 
and so on 

As another example, the sprite DMA channels that create movable objects can be reused multiple 
times during the same display field. You can change the size and shape of the reuses of a sprite; 
however, every multiple reuse normally uses the same set of colors during a full display frame. 
You can change sprite colors mid-screen with a Copper instruction list that waits until the last 
line of the first use of the sprite processor and changes the colors before the first line of the next 
use of the same sprite processor: 

WAIT for first line of display 
MOVE firstcolorl to COLOR17 
MOVE firstcolor2 to COLOR18 
MOVE firstcolor3 to COLOR19 
WAIT for last line + 1 of sprite's first use 
MOVE secondcolorl to COLOR17 
MOVE secondcolor2 to COLOR18 
MOVE secondcolor3 to COLOR19 
and so on 
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As you create Copper instruction lists, note that the final list must be in the same order as that in 
which the video beam creates the display. The video beam traverses the screen from position 
(0,0) in the upper left hand corner of the screen to the end of the display (226,262) NTSC (or 
(226,312) PAL) in the lower right hand corner. The first ° in (0,0) represents the x position. The 
second ° represents the y position. For example, an instruction that does something at position 
(0,100) should come after an instruction that affects the display at position (0,60). 

NOTE 

Given the form of the WAIT instruction, you can sometimes get away with not sorting 
the list in strict video beam order. The WAIT instruction causes the Copper to wait 
until the value in the beam counter is equal to or greater than the value in the instruc
tion. 

This means, for example, if you have instructions following each other like this: 

WAIT for position (64,64) 
MOVE data 

WAIT for position (60,60) 
MOVE data 

the Copper will perform both moves, even though the instructions are out of sequence. The 
"greater than" specification prevents the Copper from locking up if the beam has already passed 
the specified position. A side effect is that the second MOVE below will be performed: 

WAIT for position (60,60) 
MOVE data 

WAIT for position (60,60) 
MOVE data 

At the time of the second WAIT in this sequence, the beam counters will be greater than the posi
tion shown in the instructions. Therefore, the second MOVE will also be performed. 

Note also that the above sequence of instructions could just as easily be 

WAIT for position (60,60) 
MOVE data 
MOVE data 

because multiple MOVEs can follow a single WAIT. 
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COMPLETE SAMPLE COPPER LIST 

The following example shows a complete Copper list. This list is for two bit-planes-one at 
$21000 and one at $25000. At the top of the screen, the color registers are loaded with the fol
lowing values: 

Register 

COLOROO 
COLOROI 
COLOR02 
COLOR03 

Color 

white 
red 
green 
blue 

At line 150 on the screen, the color registers are reloaded: 

Register Color 

COLORoo black 
COLOROI yellow 
COLOR02 cyan 
COLOR03 magenta 

The complete Copper list follows. 

Notes: 
1. Copper lists must be in CHIP ram. 
2. Bitplane addresses used in the example are arbitrary. 
3. Destination register addresses in copper move instructions 

are offsets from the base address of the custom chips. 
4. As always, hardware manual examples assume that your 

application has taken full control of the hardware, 
and is not conflicting with operating system use of 
the same hardware. 

5. Many of the examples just pick memory addresses to 
be used. Normally you would need to allocate the 
required type of memory from the system with AllocMem() 

6. As stated earlier, the code examples are mainly to help 
clarify the way the hardware works. 

7. The following INCLUDEs are required by all example code 
in this chapter. 

INCLUDE "exec/types.i" 
INCLUDE "hardware/custom.i" 
INCLUDE "hardware/dmabits.i" 
INCLUDE "hardware/hw_examples.i" 
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COPPERLIST: 

Set up pointers to two bit planes 

DC.W BPL1PTH,$0002 ; Move $0002 into register $OEO (BPL1PTH) 
DC.W BPL1PTL,$1000 ; Move $1000 into register $OE2 (BPL1PTL) 
DC.W BPL2PTH,$0002 ; Move $0002 into register $OE4 (BPL2PTH) 
DC.W BPL2PTL,$5000 ;Move $5000 into register $OE6 (BPL2PTL) 

Load color registers 

DC.W COLOROO,$OFFF ; Move white into register $180 (COLOROO) 
DC.W COLOR01,$OFOO ; Move red into register $182 (COLOR01) 
DC.W COLOR02,$00FO ; Move green into register $184 (COLOR02) 
DC.W COLOR03,$000F ;Move blue into register $186 (COLOR03) 

Specify 2 lo-res bitplanes 

DC.W BPLCONO,$2200 ;2 lores planes, coloron 

Wait for line 150 

DC.W $9601,$FFOO ;Wait for line 150, ignore horiz. position 

Change color registers mid-display 

DC.W 
DC.W 
DC.W 
DC.W 

COLOROO,$OOOO 
COLOR01,$OFFO 
COLOR02,$00FF 
COLOR03,$OFOF 

;Move black into register $0180 (COLOROO) 
;Move yellow into register $0182 (COLOR01) 
;Move cyan into register $0184 (COLOR02) 
;Move magenta into register $0186 (COLOR03) 

End Copper list by waiting for the impossible 

DC.W $FFFF,$FFFE ;Wait for line 255, H = 254 (never happens) 

For more information about color registers, see Chapter 3, "Playfield Hardware." 

LOOPS AND BRANCHES 

Loops and branches in Copper lists are covered in the • 'Advanced Topics" section below. 

Starting and Stopping the Copper 

STARTING THE COPPER AFTER RESET 

At power-on or reset time, you must initialize one of the Copper location registers (COPILC or 
COP2LC) and write to its strobe address before Copper DMA is turned on. This ensures a known 
start address and known state. Usually, COPILC is used because this particular register is reused 
during each vertical blanking time. The following sequence of instructions shows how to 
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initialize a location register. It is assumed that the user has already created the correct Copper 
instruction list at location' 'mycoplist." 

Install the copper list 

LEA CUSTOM,al 
LEA MYCOPLIST(pc),aO 
MOVE.L aO,COPILC(al) 
MOVE.W COPJMP1(al),dO 

Then enable copper and raster dma 

al = address of custom chips 
Address of our copper list 
Write whole longword address 
Causes copper to load PC from COPILC 

Now, if the contents of COP1LC are not changed, every time vertical blanking occurs the Copper 
will restart at the same location for each subsequent video screen. This forms a repeatable loop 
which, if the list is correctly formulated, will cause the displayed screen to be stable. 

STOPPING THE COPPER 

. No stop instruction is provided for the Copper. To ensure that it will stop and do nothing until 
the screen display ends and the program counter starts again at the top of the instruction list, the 
last instruction should be to WAIT for an event that cannot occur. A typical instruction is to 
WAIT for VP = $FF and HP = $FE. An HP of greater than $E2 is not possible. When the screen 
display ends and vertical blanking starts, the Copper will automatically be pointed to the top of its 
instruction list, and this final WAIT instruction never finishes. 

You can also stop the Copper by disabling its ability to use DMA for retrieving instructions or 
placing data. The register called DMACON controls all of the DMA channels. Bit 7, COPEN, 
enables Copper DMA when set to 1. 

For information about controlling the DMA, see Chapter 7, ,. System Control Hardware. " 
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Advanced Topics 

THE SKIP INSTRUCTION 

The SKIP instruction causes the Copper to skip the next instruction if the video beam counters are 
equal to or greater than the value given in the instruction. 

The contents of the SKIP instruction's words are shown below. They are identical to the WAIT 
instruction, except that bit 0 of the second instruction word is a I to identify this as a SKIP 
instruction. 

FIRST INSTRUCTION WORD (IRl) 

Bit 0 Always set to 1. 

Bits 15 - 8 Vertical position (called VP). 

Bits 7 - 1 Horizontal position (called HP). 

Skip if the beam counter is equal to or 
greater than these combined bits 
(bits 15 through 1). 

SECOND INSTRUCTION WORD (IR2) 

Bit 0 Always set to 1. 

Bit 15 The blitter-finished-disable bit. 
(See "Using the Copper with the 
BUtter" below.) 

Bits 14 - 8 Vertical position compare enable bits (called VE). 

Bits 7 - 1 Horizontal position compare enable bits (called HE). 

The notes about horizontal and vertical beam position found in the discussion of the WAIT 
instruction apply also to the SKIP instruction. 
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The following example SKIP instruction skips the instruction following it if VP (vertical beam 
position) is greater than or equal to 100 ($64). 

DC.W $6401,$FF01 ; If VP >= 100, 
skip next instruction (ignore HP) 

COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE 

You can change the value in the location registers at any time and use this value to construct 
loops in the instruction list. Before the next vertical blanking time, however, the COPILC regis
ters must be repointed to the beginning of the appropriate Copper list. The value in the COPILC 
location registers will be restored to the Copper's program counter at the start of the vertical 
blanking period. 

Bits 14-1 of instruction word 2 in the WAIT and SKIP instructions specify which bits of the hor
izontal and vertical position are to be used for the beam counter comparison. The position in 
instruction word 1 and the compare enable bits in instruction word 2 are tested against the actual 
beam counters before any further action is taken. A position bit in instruction word 1 is used in 
comparing the positions with the actual beam counters if and only if the corresponding enable bit 
in instruction word 2 is set to 1. If the corresponding enable bit is 0, the comparison is always 
true. For instance, if you care only about the value in the last four bits of the vertical position, 
you set only the last four compare enable bits, bits (11-8) in instruction word 2. 

Not all of the bits in the beam counter may be masked. If you look at the description of the IR2 
(second instruction word) you will notice that bit 15 is the blitter-finished-disable bit. This bit is 
not part of the beam counter comparison mask, it has its own meaning in the Copper WAIT 
instruction. Thus, you can not mask the most significant bit in WAIT or SKIP instructions. In 
most situations this limitation does not come into play, however, the following example shows 
how to deal with it. 

This example will instruct the Copper to issue an interrupt every 16 scan lines. It might seem that 
the way to do this would be to use a mask of $OF and then compare the result with $OF. This 
should compare "true" for $IF, $2F, $3F, etc. Since the test is for greater than or equal to, this 
would seem to allow checking for every 16th scan line. However, the highest order bit cannot be 
masked, so it will always appear in the comparisons. When the Copper is waiting for $OF and the 
vertical position is past 128 (hex $80), this test will always be true. In this case, the minimum 
value in the comparison will be $80, which is always greater than $OF, and the interrupt will hap
pen on every scan line. Remember, the Copper only checks for greater than or equal to. 

In the following example, the Copper lists have been made to loop. The COPILC and COP2LC 
values are either set via the CPU or in the Copper list before this section of Copper code. Also, it 
is assumed that you have correctly installed an interrupt selVer for the Copper interrupt that will 
be generated every 16 lines. Note that these are non-interlaced scan lines. 
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How it works: 

Both loops are, for the most part, exactly the same. In each, the Copper waits until the vertical 
position register has $?F (? is any hex digit) in it, at which point we issue a Copper interrupt to 
the Amiga hardware. To make sure that the Copper does not loop back before the vertical posi
tion has changed and cause another interrupt on the same scan line, wait for the horizontal posi
tion to be $E2 after each interrupt. Position $E2 is horizontal position 113 for the Copper and the 
last real horizontal position available. This will force the Copper to the next line before the next 
WAIT. The loop is executed by writing to the COPJMP1 register. This causes the Copper to 
jump to the address that was initialized in COPILC. 

The masking problem described above makes this code fail after vertical position 127. A separate 
loop must be executed when vertical position is greater than or equal 127. When the vertical 
position becomes greater than or equal to 127, the the first loop instruction is skipped, dropping 
the Copper into the second loop. The second loop is much the same as the first, except that it 
waits for $?F with the high bit set (binary lxxx1111). This is true for both the vertical and the 
horizontal WAIT instructions. To cause the second loop, write to the COPJMP2 register. The 
list is put into an infinite wait when VP >= 255 so that it will end before the vertical blank. At 
the end of the vertical blanking period COPILC is written to by the operating system, causing the 
first loop to start up again. 

NOTE 

The COPILC register is written at the end of the vertical blanking period by a graph
ics interrupt handler which is in the vertical blank interrupt server chain. As long as 
this server is intact, COP1LC will be correctly strobed at the end of each vertical 
blank. 

This is the data for the Copper list. 

It is assumed that COPPERLl is loaded into COPILC and 
that COPPERL2 is loaded into COP2LC by some other code. 

COPPERL1: 
DC.W 
DC.W 

DC.W 

DC.W 
DC.W 

COPPERL2: 
DC.W 
DC.W 

DC.W 

DC.W 

$OF01,$8FOO 
INTREQ,$8010 

$00E3,$80FE 

$7F01,$7FOl 
COPJMP1, $0 

$8F01,$8FOO 
INTREQ,$8010 

$80E3,$80FE 

$FF01,$FEOl 

Wait for VP=Oxxxllll 
Set the copper interrupt bit •.. 

Wait for Horizontal $E2 
This is so the line gets finished before 
we check if we are there (The wait above) 

Skip if VP>=127 
Force a jump to COPILC 

Wait for VP=lxxxllll 
Set the copper interrupt bit ... 

Wait for Horizontal $E2 
This is so the line gets finished before 
we check if we are there (The wait above) 

Skip if VP>=255 
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DC.W COPJMP2, $0 ; Force a jump to COP2LC 

Whatever cleanup copper code that might be needed here ••• 
Since there are 262 lines in NTSC, and we stopped at 255, there is a 
bit of time available 

DC.W $FFFF,$FFFE i End of Copper list 

USING THE COPPER IN INTERLACED MODE 

An interlaced bit-plane display has twice the nonnal number of vertical lines on the screen. 
Whereas a nonnal NTSC display has 262 lines, an interlaced NTSC display has 524 lines. PAL 
has 312 lines nonnally and 625 in interlaced mode. In interlaced mode, the video beam scans the 
screen twice from top to bottom, displaying, in the case of NTSC, 262 lines at a time. During the 
first scan, the odd-numbered lines are displayed. During the second scan, the even-numbered 
lines are displayed and interlaced with the odd-numbered ones. The scanning circuitry thus treats 
an interlaced display as two display fields, one containing the even-numbered lines and one con
taining the odd-numbered lines. Figure 2-1 shows how an interlaced display is stored in memory. 

Odd field 
(time t) 

1 

3 

5 

Even field 
(time t + 16.6ms) 

2 

4 

6 

Figure 2-1: Interlaced Bit-Plane in RAM 

Data in Memory 

1 

2 

3 

4 

5 

6 

The system retrieves data for bit-plane displays by using pointers to the starting address of the 
data in memory. As you can see, the starting address for the even-numbered fields is one line 
greater than the starting address for the odd-numbered fields. Therefore, the bit-plane pointer 
must contain a different value for alternate fields of the interlaced display. 

Simply, the organization of the data in memory matches the apparent organization on the screen 
(Le., odd and even lines are interlaced together). This is accomplished by having a separate 
Copper instruction list for each field to manage displaying the data. 
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To get the Copper to execute the correct list, you set an interrupt to the 68000 just after the first 
line of the display. When the interrupt is executed, you change the contents of the COPILC loca
tion register to point to the second list. Then, during the vertical blanking interval, COPILC will 
be automatically reset to point to the original list. 

For more information about interlaced displays, see Chapter 3, "Playfield Hardware." 

USING THE COPPER WITH THE BLITTER 

If the Copper is used to start up a sequence of blitter operations, it must wait for the bUtter
finished interrupt before starting another blitter operation. Changing blitter registers while the 
blitter is operating causes unpredictable results. For just this purpose, the WAIT instruction 
includes an additional control bit, called BFD (for blitter finished disable). Normally, this bit is a 
1 and only the beam counter comparisons control the WAIT. 

When the BFD bit is a 0, the logic of the Copper WAIT instruction is modified. The Copper will 
WAIT until the beam counter comparison is true and the bUtter has finished. The bUtter has 
finished when the blitter-finished flag is set. This bit should be unset with caution. It could pos
sibly prevent some screen displays or prevent objects from being displayed correctly. 

For more information about using the bUtter, see Chapter 6, "BUtter Hardware." 

THE COPPER AND THE 68000 

On those occasions when the Copper's instructions do not suffice, you can interrupt the 68000 
and use its instruction set instead. The 68000 can poll for interrupt flags set in the INTREQ regis
ter by various devices. To interrupt the 68000, use the Copper MOVE instruction to store a 1 into 
the following bits of INTREQ: 

Table 2-1: Interrupting the 68000 

Bit Number Name Function 

15 SET/CLR Set/Oear control bit. Determines 
if bits written with a 1 get set 
or cleared. 

4 COPEN Coprocessor interrupting 68000. 

See Chapter 7, "System Control Hardware," for more information about interrupts. 
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Summary of Copper Instructions 

The table below shows a summary of the bit positions for each of the Copper instructions. See 
Appendix A for a summary of all registers. 

Table 2-2: Copper Instruction Summary 

Move Wait 
Bit# IRI IR2 IRI IR2 

15 X RD15 VP7 BFD 
14 X RD14 VP6 VE6 
13 X RD13 VP5 VE5 
12 X RD12 VP4 VE4 
11 X RD11 VP3 VE3 
10 X RDW VP2 VE2 
09 X RD09 VP1 VEl 
08 DA8 Roo8 VPO VEO 
07 DA7 Roo7 HP8 HE8 
06 DA6 RD06 HP7 HE7 
05 DA5 RD05 HP6 HE6 
04 DA4 RD04 HP5 HE5 
03 DA3 Roo3 HP4 HE4 
02 DA2 Roo2 HP3 HE3 
01 DA1 ROO 1 HP2 HE2 
00 0 RDOO 1 0 

X = don't care, but should be a 0 for upward compatibility 
IR 1 = first instruction word 
IR2 = second instruction word 
DA = destination address 
RD = RAM data to be moved to destination register 
VP = vertical beam position bit 
HP = horizontal beam position bit 
VE = enable comparison (mask bit) 
HE = enable comparison (mask bit) 
BFD = blitter-finished disable 
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Skip 
IRI IR2 

VP7 BFD 
VP6 VE6 
VP5 VE5 
VP4 VE4 
VP3 VE3 
VP2 VE2 
VP1 VEl 
VPO VEO 
HP8 HE8 
HP7 HE7 
HP6 HE6 
HP5 HE5 
HP4 HE4 
HP3 HE3 
HP2 HE2 

1 1 



Chapter 3 

PLAYFIELD HARDWARE 

Introduction 

The screen display of the Amiga consists of two basic parts-playfields, which are sometimes 
called backgrounds, and sprites, which are easily movable graphics objects. This chapter 
describes how to directly access hardware registers to form playfields. 
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ABOUT THIS CHAPTER 

This chapter begins with a brief overview of playfield features, including definitions of some fun
damental terms, and continues with the following major topics: 

Forming a single "basic" playfield, which is a playfield the same size as the display 
screen. This section includes concepts that are fundamental to forming any playfield. 

Forming a dual-playfield display in which one playfield is superimposed upon another. 
This procedure differs from that of forming a basic playfield in some details. 

Forming playfields of various sizes and displaying only part of a larger playfield. 

• . Moving playfields by scrolling them vertically and horizontally. 

Advanced topics to help you use playfields in special situations. 

For information about movable sprite objects, see Chapter 4, "Sprite Hardware." There are also 
movable playfield objects, which are subsections of a playfield. To move portions of a playfield, 
you use a technique called playfield animation, which is described in Chapter 6, "Blitter 
Hardware. " 

PLA YFIELD FEATURES 

The Amiga produces its video displays with raster display techniques. The picture you see on the 
screen is made up of a series of horizontal video lines displayed one after the other. Each hor
izontal video line is made up of a series of pixels. You create a graphic display by defining one 
or more bit-planes in memory and filling them with "1 "s and "O"s The combination of the "1 "s 
and "O"s will determine the colors in your display. 

Video Picture 

Each line represents one sweep of an electron beam 
which is "painting" the picture as it goes along. 

The video beam produces each line by sweeping 
from left to right. It produces the full screen by 
sweeping the beam from the top to the bottom, 
one line at a time. 

Figure 3-1: How the Video Display Picture Is Produced 
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The video beam produces about 262 video lines from top to bottom, of which 200 nOlmally are 
visible on the screen with an NTSC system. With a PAL system, the beam produces 312 lines, of 
which 256 are normally visible. Each complete set of lines (262/NTSC or 312/PAL) is called a 
display field. The field time, i.e. the time required for a complete display field to be produced, is 
approximately 1/60th of a second for an NTSC system and approximately l/5Oth of a second for 
PAL. Between display fields, the video beam traverses the lines that are not visible on the screen 
and returns to the top of the screen to produce another display field. 

The display area is defined as a grid of pixels. A pixel is a single picture element, the smallest 
addressable part of a screen display. The drawings below show what a pixel is and how pixels 
form displays. 

... 

DI..------+------The picture is formed from many elements. 

• 
320 Pixels 

Each element is called a pixel. 

GI..---+------ Pixels are used together to build larger 
graphic objects . 

... • 
640 Pixels 

In normal resolution mode, 
320 pixels fill a horizontal line. 

In high resolution mode, 
640 pixels fill a horizontal line. 

Figure 3-2: What Is a Pixel? 

The Amiga offers a choice in both horizontal and vertical resolutions. Horizontal resolution can 
be adjusted to operate in low resolution or high resolution mode. Vertical resolution can be 
adjusted to operate in interlaced or non-interlaced mode. 
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• In low-resolution mode, the normal playfield has a width of 320 pixels. 

• High-resolution mode gives finer horizontal resolution - 640 pixels in the same physical 
display area. 

• In non-interlaced mode, the normal NTSC playfield has a height of 200 video lines. The nor
mal PAL screen has a height of 256 video lines. 

• Interlaced mode gives finer vertical resolution - 400 lines in the same physical display area 
in NTSC and 512 for PAL. 

These modes can be combined, so you can have, for instance, an interlaced, high-resolution 
display. 

Note that the dimensions referred to as "normal" in the previous paragraph are nominal dimen
sions and represent the normal values you should expect to use. Actually, you can display larger 
playfields; the maximum dimensions are given in the section called "Bit-Planes and Playfields of 
All Sizes." Also, the dimensions of the playfield in memory are often larger than the playfield 
displayed on the screen. You choose which part of this larger memory picture to display by 
specifying a different size for the display window. 

A playfield taller than the screen can be scrolled, or moved smoothly, up or down. A playfield 
wider than the screen can be scrolled horizontally, from left to right or right to left. Scrolling is 
described in the section called "Moving (Scrolling) Playfields. ' , 

In the Amiga graphics system, you can have up to thirty-two different colors in a single playfield, 
using normal display methods. You can control the color of each individual pixel in the playfield 
display by setting the bit or bits that control each pixel. A display formed in this way is called a 
bit-mapped display. 

For instance, in a two-color display, the color of each pixel is determined by whether a single bit 
is on or off. If the bit is 0, the pixel is one user-defined color; if the bit is 1, the pixel is another 
color. For a four-color display, you build two bit-planes in memory. When the playfield is 
displayed, the two bit-planes are overlapped, which means that each pixel is now two bits deep. 
You can combine up to five bit-planes in this way. Displays made up of three, four, or five bit
planes allow a choice of eight, sixteen, or thirty-two colors, respectively. 

The color of a pixel is always determined by the binary combination of the bits that define it. 
When the system combines bit-planes for display, the combination of bits formed for each pixel 
corresponds to the number of a color register. This method of coloring pixels is called color 
indirection. The Amiga has thirty-two color registers, each containing bits defining a user
selected color (from a total of 4,096 possible colors). 

Figure 3-3 shows how the combination of up to five bit-planes forms a code that selects which 
one of the thirty-two registers to use to display the color of a playfield pixel. 
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One Pixel 

Bit-Plane 5 

Bit-Plane 4 

Bit-Plane 3 

Bit-Plane 2 

Bit-Plane 1 

Bits from 
Planes 
5,4,3,2, 1 

00000 
00001 
00010 
00011 
00100 

11000 
11001 
11010 
11011 
11100 
11101 
11110 
11111 

Figure 3-3: How Bit-planes Select a Color 

Color Registers 

Values in the highest numbered bit-plane have the highest significance in the binary number. As 
shown in Figure 3-4, the value in each pixel in the highest-numbered bit-plane forms the leftmost 
digit of the number. The value in the next highest-numbered bit-plane forms the next bit, and so 
on. 
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Sample Data for 4 Pixels 

1 
1 
1 
o 
o 

1 
o 
o 
1 
o 

o 
1 
o 
1 

o Data in Bit-Plane 5 - Most Significant 
o Data in Bit-Plane 4 
1 Data in Bit-Plane 3 
1 Data in Bit-Plane 2 
o Data in Bit-Plane 1 - Least Significant 

L V,'u' 6 - COLOR6 
L--______ Value 11 - COLOR11 

L--________ Value 18 - COLOR18 

'------------- Value 28 - COLOR28 

Figure 3-4: Significance of Bit-Plane Data in Selecting Colors 

You also have the choice of defining two separate playfields, each formed from up to three bit
planes_ Each of the two playfields uses a separate set of eight different colors. This is called 
dual-play field mode. 

Forming a Basic Playfield 

To get you started, this section describes how to directly access hardware registers to fOlm a sin
gle basic playfield that is the same size as the video screen. Here, "same size" means that the 
playfield is the same size as the actual display window. This will leave a small border between 
the playfield and the edge of the video screen. The playfield usually does not extend all the way 
to the edge of the physical display. 

To form a playfield, you need to define these characteristics: 

• Height and width of the playfield and size of the display window (that is, how much of 
the playfield actually appears on the screen). 

• Color of each pixel in the playfield. 

• Horizontal resolution. 
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• Vertical resolution, or interlacing. 

• Data fetch and modulo, which tell the system how much data to put on a horizontal line 
and how to fetch data from memory to the screen. 

In addition, you need to allocate memory to store the playfield, set pointers to tell the system 
where to find the data in memory, and (optionally) write a Copper routine to handle redisplay of 
the playfield. 

HEIGHT AND WIDTH OF THE PLAYFIELD 

To create a playfield that is the same size as the screen, you can use a width of either 320 pixels 
or 640 pixels, depending upon the resolution you choose. The height is either 200 or 400 lines 
for NTSC, 256 or 512 lines for PAL, depending upon whether or not you choose interlaced mode. 

BIT-PLANES AND COLOR 

You define play field color by: 

1. Deciding how many colors you need and how you want to color each pixel. 

2. Loading the colors into the color registers. 

3. Allocating memory for the number of bit-planes you need and setting a pointer to each 
bit-plane. 

4. Writing instructions to place a value in each bit in the bit-planes to give you the correct 
color. 

Table 3-1 shows how many bit-planes to use for the color selection you need. 

Table 3-1: Colors in a Single Playfield 

Number of 
Colors 

1-2 
3-4 
5-8 

9 - 16 
17 - 32 

Number of 
Bit-Planes 

1 
2 
3 
4 
5 
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The Color Table 

The color table contains 32 registers, and you may load a different color into each of the registers. 
Here is a condensed view of the contents of the color table: 

Table 3-2: Portion of the Color Table 

Register Name Contents Meaning 

COLOROO 12 bits User-defined color for the 
background area and borders. 

COLOROI 12 bits User-defined color number 1 
(For example, the alternate color 
selection for a two-color playfield). 

COLOR02 12 bits User-defined color number 2. 

COLOR31 12 bits User-defined color number 31. 

COLOROO is always reserved for the background color. The background color shows in any area 
on the display where there is no other object present and is also displayed outside the defined 
display window, in the border area. 

NOTE 

If you are using the optional genlock board for video input from a camera, VCR, or 
laser disk, the background color will be replaced by the incoming video display. 

Twelve bits of color selection allow you to define, for each of the 32 registers, one of 4,096 possi
ble colors, as shown in Table 3-3. 
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Table 3-3: Contents of the Color Registers 

Bits 

Bits 15 - 12 
Bits 11- 8 
Bits 7 - 4 
Bits 3 - 0 

Unused 
Red 
Green 
Blue 

Table 3-4 shows some sample color register bit assignments and the resulting colors. At the end 
of the chapter is a more extensive list. 

Table 3-4: Sample Color Register Contents 

Contents of the 
Color Register 

$FFF 
$6FE 
$DB9 
$000 

Resulting 
Color 

White 
Sky blue 
Tan 
Black 

Some sample instructions for loading the color registers are shown below: 

LEA CUSTOM,aO 
MOVE.W #$FFF,COLOROO(aO) 
MOVE.W #$6FE,COLOR01(aO) 

Get base address of custom hardware .•• 
Load white into color register 0 
Load sky blue into color register 1 

NOTE 

The color registers are write-only. Only by looking at the screen can you find out the 
contents of each color register. As a standard practice, then, for these and certain other 
write-only registers, you may wish to keep a "back-up" RAM copy. As you write to 
the color register itself, you should update this RAM copy. If you do so, you will 
always know the value each register contains. 

Selecting the Number of Bit-Planes 

After deciding how many colors you want and how many bit-planes are required to give you 
those colors, you tell the system how many bit-planes to use. 
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You select the number of bit-planes by writing the number into the register BPLCONO (for Bit 
Plane Control Register 0) The relevant bits are bits 14, 13, and 12, named BPU2, BPU1, and 
BPUO (for "Bit Planes Used"). Table 3-5 shows the values to write to these bits and how the 
system assigns bit-plane numbers. 

Table 3-5: Setting the Number of Bit-Planes 

Value 

000 
001 
010 
011 
100 
101 
110 
111 

Number of 
Bit-Planes 

None * 
1 
2 
3 
4 
5 
6 

Name(s)of 
Bit-Planes 

PLANE 1 
PLANES 1 and 2 
PLANES 1- 3 
PLANES 1-4 
PLANES 1- 5 
PLANES 1 - 6 ** 
Value not used. 

* Shows only a background color; no playfield is visible. 

** Sixth bit-plane is used only in dual-playfield mode and in hOld-and-modify 
mode (described in the section called" Advanced Topics"). 

NOTE 

The bits in the BPLCONO register cannot be set independently. To set anyone bit, 
you must reload them all. 

The following example shows how to tell the system to use two low-resolution bit-planes. 

MOVE.W #$2200,BPLCONO+CUSTOM ; Write to it 

Because register BPLCONO is used for setting other characteristics of the display and the bits are 
not independently settable, the example above also sets other parameters (all of these parameters 
are described later in the chapter). 

• Hold-and-modify mode is turned off. 

• Single-playfield mode is set. 

• Composite video color is enabled. (Not applicable in all models.) 
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Genlock audio is disabled. 

Light pen is disabled. 

Interlaced mode is disabled. 

External resynchronization is disabled. (genlock) 

SELECTING HORIZONTAL AND VERTICAL RESOLUTION 

Standard home television screens are best suited for low-resolution displays. Low-resolution 
mode provides 320 pixels for each horizontal line. High-resolution monochrome and RGB moni
tors can produce displays in high-resolution mode, which provides 640 pixels for each horizontal 
line. If you define an object in low-resolution mode and then display it in high-resolution mode, 
the object will be only half as wide. 

To set horizontal resolution mode, you write to bit 15, HIRES, in register BPLCONO: 

High-resolution mode - write 1 to bit 15. 
Low-resolution mode - write 0 to bit 15. 

Note that in high-resolution mode, you can have up to four bit-planes in the playfield and, there
fore, up to 16 colors. 

Interlaced mode allows twice as much data to be displayed in the same vertical area as in non
interlaced mode. This is accomplished by doubling the number of lines appearing on the video 
screen. The following table shows the number of lines required to fill a normal, non-overscan 
screen. 

Table 3-6: Lines in a Normal Playfield 

Non-interlaced 
Interlaced 

NTSC PAL 

200 256 
400 512 

In interlaced mode, the scanning circuitry vertically offsets the start of every other field by half a 
scan line. 
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Line 1 

Line 1 

Field 1 

\ Lin,1 

1~~~/~~~Line2 
L..::::::::::.: Video Display 

(400 lines) 

Field 2 
(Same physical space as used by 
a 200 line non interlaced display.) 

Figure 3-5: Interlacing 

Even though interlaced mode requires a modest amount of extra work in setting registers (as you 
will see later on in this section), it provides fine tuning that is needed for certain graphics effects. 
Consider the diagonal line in Figure 3-6 as it appears in non-interlaced and interlaced modes. 
Interlacing eliminates much of the jaggedness or "staircasing" in the edges of the line. 

Non-I nterlaced Interlaced 

Figure 3-6: Effect of Interlaced Mode on Edges of Objects 

When you use the special bUtter DMA channel to draw lines or polygons onto an interlaced 
playfield, the playfield is treated as one display, rather than as odd and even fields. Therefore, 
you still get the smoother edges provided by interlacing. 
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To set interlaced or non-interlaced mode, you write to bit 2, LACE, in register BPLCONO: 

Interlaced mode - write I to bit 2. 
Non-interlaced mode - write 0 to bit 2. 

As explained above in "Setting the Number of Bit-Planes," bits in BPLCONO are not indepen
dent! y settable. 

The following example shows how to specify high-resolution and interlaced modes. 

MOVE.W #$A204,BPLCONO+CUSTOM ; Write to it 

The example above also sets the following parameters that are also controlled through register 
BPLCONO: 

• High-resolution mode is enabled. 

• Two bit-planes are used. 

• Hold-and-modify mode is disabled. 

• Single-play field mode is enabled. 

• Composite video color is enabled. 

• Genlock audio is disabled. 

• Light pen is disabled. 

Interlaced mode is enabled. 

• External resynchronization is disabled. 

The amount of memory you need to allocate for each bit-plane depends upon the resolution 
modes you have selected, because high-resolution or interlaced playfields contain more data and 
require larger bit-planes. 
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ALLOCATING MEMORY FOR BIT -PLANES 

After you set the number of bit-planes and specify resolution modes, you are ready to allocate 
memory. A bit-plane consists of an end-to-end sequence of words at consecutive memory loca
tions. When operating under the Amiga operating system, use a system call such as AllocMemO 
to remove a block of memory from the free list and make it available to the program. If the 
machine has been taken over, simply reserve an area of memory for the bit-planes. Next, set the 
bit plane pointer registers (BPLxPTH/BPLxPTL) to point to the starting memory address of each 
bit-plane you are using. The starting address is the memory word that contains the bits of the 
upper left -hand comer of the bit-plane. 

Table 3-6 shows how much memory is needed for basic playfields. You may need to balance 
your color and resolution requirements against the amount of available memory you have. 

Table 3-7: Playfield Memory Requirements, NTSC 

Number of Bytes 
Picture Size Modes per Bit-Plane 

320 X 200 Low-resolution, 8,000 
non-interlaced 

320 X 400 Low-resolution, 16,000 
interlaced 

640 X 200 High-resolution, 16,000 
non-interlaced 

640 X 400 High-resolution, 32,000 
interlaced 
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Table 3-8: Playfield Memory Requirements, PAL 

Number of Bytes 
Picture Size Modes per Bit-Plane 

320 X256 Low-resolution, 8,192 
non-interlaced 

320 X512 Low-resolution, 16,384 
interlaced 

640 X256 High-resolution, 16,384 
non-interlaced 

640 X 512 High-resolution, 32,768 
interlaced 

NTSC EXAMPLE OF BIT PLANE SIZE 

For example, using a nOImal, NTSC, low-resolution, non-interlaced display with 320 pixels 
across each display line and a total of 200 display lines, each line of the bit-plane requires 40 
bytes (320 bits divided by 8 bits per byte = 40). Multiply the 200 lines times 40 bytes per line to 
get 8,000 bytes per bit-plane as given above. 

A low-resolution, non-interlaced playfield made up of two bit-planes requires 16,000 bytes of 
memory area. The memory for each bit-plane must be continuous, so you need to have two 
8,000-byte blocks of available memory. Figure 3-7 shows an 8,000-byte memory area organized 
as 200 lines of 40 bytes each, providing 1 bit for each pixel position in the display plane. 

Playfield Hardware 47 



I I I I I I I I �------------------------------------~~I I I I II I I I 
Mem. Location N Mem. Location N+38 

I I I I I I III------------------------------~~ I I I I II I II 
Mem. Location N+40 Mem. Location N+78 

I I I II I I II------------------------------~~ II I I II I II 
Mem. Location N+7960 Mem. Location N+7998 

Figure 3-7: Memory Organization for a Basic Bit-Plane 

Access to bit-planes in memory is provided by two address registers, BPLxPTH and BPLxPfL, 
for each bit-plane (12 registers in all). The "x" position in the name holds the bit-plane number; 
for example BPL1PTH and BPL1PTL hold the starting address of PLANE 1. Pairs of registers 
with names ending in PTH and PTL contain 19-bit addresses. 68000 programmers may treat 
these as one 32-bit address and write to them as one long word. You write to the high-order 
word, which is the register whose name ends in "PI'H." 

The example below shows how to set the bit-plane pointers. Assuming two bit-planes, one at 
$21000 and the other at $25000, the processor sets BPL1PT to $21000 and BPL2PT to $25000. 
Note that this is usually the Copper's task. 

Since the bit plane pointer registers are mapped as full 680xO long-word 
data, we can store the addresses with a 32-bit move ••• 

LEA CUSTOM,aO 
MOVE.L $21000,BPLIPTH(aO} 
MOVE.L $2S000,BPL2PTH(aO} 

Get base address of custom hardware ••• 
Write bit-plane 1 pointer 
Write bit-plane 2 pointer 

Note that the memory requirements given here are for the playfield only. You may need to allo
cate additional memory for other parts of the display - sprites, audio, animation - and for your 
application programs. Memory allocation for other parts of the display is discussed in the 
chapters describing those topics. 
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CODING THE BIT-PLANES FOR CORRECT COLORING 

After you have specified the number of bit-planes and set the bit-plane pointers, you can actually 
write the color register codes into the bit-planes. 

A One- or Two-Color Playfield 

For a one-color playfield, all you need do is write "O"s in all the bits of the single bit-plane as 
shown in the example below. This code fills a low-resolution bit-plane with the background color 
(COLOROO) by writing all "O"s into its memory area. The bit-plane starts at $21()()() and is 
8,000 bytes long. 

LEA $21000,aO 
MOVE.W i2000,dO 

LOOP: MOVE.L iO, (aO)+ 
DBRA dO, LOOP 

Point at bit-plane 
Write 2000 longwords ~ 8000 bytes 
Write out a zero 
Decrement counter and loop until done .•• 

For a two-color play field, you define a bit-plane that has "O"s where you want the background 
color and "1" s where you want the color in register 1. The following example code is identical 
to the last example, except the bit-plane is filled with $FFOOFFOO instead of all O's. This will 
produce two colors. 

LEA $21000,aO 
MOVE.W i2000,dO 

LOOP: MOVE.L i$FFOOFFOO, (aO)+ 
DBRA dO, LOOP 

A Playfield of Three or More Colors 

Point at bit-plane 
Write 2000 longwords = 8000 bytes 

; Write out $FFOOFFOO 
Decrement counter and loop until done .•. 

For three or more colors, you need more than one bit-plane. The task here is to define each bit
plane in such a way that when they are combined for display, each pixel contains the correct com
bination of bits. This is a little more complicated than a playfield of one bit-plane. The following 
examples show a four-color play field, but the basic idea and procedures are the same for 
playfields containing up to 32 colors. 

Figure 3-8 shows two bit-planes forming a four-color play field: 

Play field Hardware 49 



Results in a display 
Image in Image in similar to this: 
Bit-Plane 2 Bit-Plane 

0 0 o~o 0 0 0 0 0[TI0 0 0 
0 0 000 0 0 0 0 0 o 1 1 0 0 0 
0 0 000 0 0 0 0 0 o 1 1 0 0 0 
1 1 0 0 1 1 0 0 1 
1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 
0 0 ° [J]0 0 0 0 0 0[J]0 0 0 
0 0 o 1 1 0 0 0 0 0 o 1 1 0 0 0 
0 0 o 1 1 0 0 0 0 0 o 1 1 0 0 0 

Color 00 

/ (background) 

Color 3 

Figure 3-8: Combining Bit-planes 

You place the correct" I "s and "O"s in both bit-planes to give each pixel in the picture above 
the correct color. 

In a single playfield you can combine up to five bit-planes in this way. Using five bit-planes 
allows a choice of 32 different colors for any single pixel. The playfield color selection charts at 
the end of this chapter summarize the bit combinations for playfields made from four and five 
bit-planes. 

DEFINING THE SIZE OF THE DISPLAY WINDOW 

After you have completely defined the playfield, you need to define the size of the display win
dow, which is the actual size of the on-screen display. Adjustment of display window size affects 
the entire display area, including the border and the sprites, not just the playfield. You cannot 
display objects outside of the defined display window. Also, the size of the border around the 
playfield depends on the size of the display window. 

The basic playfield described in this section is the same size as the screen display area and also 
the same size as the display window. This is not always the case; often the display window is 
smaller than the actual "big picture" of the playfield as defined in memory (the raster). A 
display window that is smaller than the playfield allows you to display some segment of a large 
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playfield or scroll the playfield through the window. You can also define display windows larger 
than the basic playfield. These larger playfields and different-sized display windows are 
described in the section below called "Bit-Planes and Display Windows of All Sizes." 

You define the size of the display windbw by specifying the vertical and horizontal positions at 
which the window starts and stops and writing these positions to the display window registers. 
The resolution of vertical start and stop is one scan line. The resolution of horizontal start and 
stop is one low-resolution pixel. Each position on the screen defines the horizontal and vertical 
position of some pixel, and this position is specified by the x and y coordinates of the pixel. This 
document shows the x and y coordinates in this fonn: (x,y). Although the coordinates begin at 
(0,0) in the upper left-hand comer of the screen, the first horizontal position nonnally used is $81 
and the first vertical position is $2C. The horizontal and vertical starting positions are the same 
both for NTSC and for PAL. 

The hardware allows you to specify a starting position before ($81,$2C), but part of the display 
may not be visible. The difference between the absolute starting position of (0,0) and the nonnal 
starting position of ($81,$2C) is the result of the way many video display monitors are designed. 
To overcome the distortion that can occur at the extreme edges of the screen, the scanning beam 
sweeps over a larger area than the front face of the screen can display. A starting position of 
($81,$2C) centers a nonnal size display, leaving a border of eight low-resolution pixels around 
the display window. Figure 3-9 shows the relationship between the nonnal display window, the 
visible screen area, and the area actually covered by the scanning beam. 

(0,0) 

7 
/ ,. 

~ 
\ 

($81 $2C) ;1 

320 

200 

~. ~ display Window 
Starting and stopping positions 

, 
~ Visible screen boundaries 

~ 
/ 

Figure 3-9: Positioning the On-screen Display 
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Setting the Display Window Starting Position 

A horizontal starting position of approximately $81 and a vertical starting position of approxi
mately $2C centers the display on most standard television screens. If you select high-resolution 
mode (640 pixels horizontally) or interlaced mode (400 lines NTSC, 512 PAL) the starting posi
tion does not change. The starting position is always interpreted in low-resolution, non-interlaced 
mode. In other words, you select a starting position that represents the correct coordinates in 
low-resolution, non-interlaced mode. 

The register DIWSTRT (for "Display Window Start") controls the display window starting posi
tion. This register contains both the horizontal and vertical components of the display window 
starting positions, known respectively as HST ART and VST ART. The following example sets 
DIWSTRT for a basic playfield. You write $2C for VST ART and $81 for HST ART. 

LEA CUSTOM,aO 
MOVE.W #$2C81,DIWSTRT{aO) 

; Get base address of custom hardware ••• 
; Display window start register ... 

Setting the Display Window Stopping Position 

You also need to set the display window stopping position, which is the lower right-hand comer 
of the display window. If you select high-resolution or interlaced mode, the stopping position 
does not change. Like the starting position, it is interpreted in low-resolution, non-interlaced 
mode. 

The register DIWSTOP (for Display Window Stop) controls the display window stopping posi
tion. This register contains both the horizontal and vertical components of the display window 
stopping positions, known respectively as HSTOP and VSTOP. The instructions below show 
how to set HSTOP and VSTOP for the basic playfield, assuming a starting position of ($81,$2C). 
Note that the HSTOP value you write is the actual value minus 256 ($100). The HSTOP position 
is restricted to the right-hand side of the screen. The normal HSTOP value is ($ICl) but is writ
ten as ($CI). HSTOP is the same both for NTSC and for PAL. 

The VSTOP position is restricted to the lower half of the screen. This is accomplished in the 
hardware by forcing the MSB of the stop position to be the complement of the next MSB. This 
allows for a VSTOP position greater than 256 ($100) using only 8 bits. Normally, the VSTOP is 
set to ($F4) for NTSC, ($2C) for PAL. 

The normal NTSC DIWSTRT is ($2C81). 
The normal NTSC DIWSTOP is ($F4Cl). 

The normal PAL DIWSTRT is ($2C81). 
The normal PAL DIWSTOP is ($2CC1). 
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The following example sets DIWSTOP for a basic playfield to $F4 for the vertical position and 
$Cl for the horizontal position. 

LEA CUSTOM,aO 
MOVE.W i$F4Cl,DIWSTOP(aO) 

; Get base address of custom hardware ••• 
; Display window stop register ••• 

Table 3-9: DIWSTRT AND DIWSTOP Summary. 

DIWSTRT: 
VSTART 
HSTART 

DIWSTOP: 
VSTOP 
HSTOP 

---Nominal Values--
NTSC PAL 

$2C $2C 
$81 $81 

$F4 $2C (=$12C) 
$Cl $Cl 

---Possible Values---
MIN MAX 

$00 $FF 
$00 $FF 

$80 $7F (=$I7F) 
$00 (=$100) $FF (=$IFF) 

TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA 

After defining the size and position of the display window, you need to give the system the on
screen location for data fetched from memory. To do this, you describe the horizontal positions 
where each line starts and stops and write these positions to the data-fetch registers. The data
fetch registers have a four-pixel resolution (unlike the display window registers, which have a 
one-pixel resolution). Each position specified is four pixels from the last one. Pixel 0 is position 
0; pixel 4 is position I, and so on. 

The data-fetch start and display window starting positions interact with each other. It is recom
mended that data-fetch start values be restricted to a programming resolution of 16 pixels (8 
clocks in low-resolution mode, 4 clocks in high-resolution mode). The hardware requires some 
time after the first data fetch before it can actually display the data As a result, there is a 
difference between the value of window start and data-fetch start of 4.5 color clocks. 

The normal low-resolution DDFSTRT is ($0038). 
The normal high-resolution DDFSTRT is ($003C). 

Recall that the hardware resolution of display window start and stop is twice the hardware resolu
tion of data fetch: 

$~1 _ 8.5 = $38 

$~1 _ 4.5 = $3C 
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The relationship between data-fetch start and stop is 

DDFSTRT=DDFSTOP-(8*(word count-l»for low resolution 

DDFSTRT = DDFSTOP-(4* (word count - 2»for high resolution 

The normal low-resolution DDFSTOP is ($0000). The normal high-resolution DDFSTOP is 
($00D4). 

The following example sets data-fetch start to $0038 and data-fetch stop to $0000 for a basic 
play field. 

LEA CUSTOM,aO 
MOVE.W #$0038, DDFSTRT (aO) 
MOVE.W #$OODO,DDFSTOP(aO) 

Point to base hardware address 
Write to DDFSTRT 
Write to DDFSTOP 

You also need to tell the system exactly which bytes in memory belong on each horizontal line of 
the display. To do this, you specify the modulo value. Modulo refers to the number of bytes in 
memory between the last word on one horizontal line and the beginning of the first word on the 
next line. Thus, the modulo enables the system to convert bit-plane data stored in linear form 
(each data byte at a sequentially increasing memory address) into rectangular form (one "line" of 
sequential data followed by another line). For the basic playfield, where the playfield in memory 
is the same size as the display window, the modulo is zero because the memory area contains 
exactly the same number of bytes as you want to display on the screen. Figures 3-10 and 3-11 
show the basic bit-plane layout in memory and how to make sure the correct data is retrieved. 

The bit-plane address pointers (BPLxPTH and BPLxPTL) are used by the system to fetch the data 
to the screen. These pointers are dynamic; once the data fetch begins, the pointers are continu
ously incremented to point to the next word to be fetched (data is fetched two bytes at a time). 
When the end-of-line condition is reached (defined by the data-fetch register, DDFSTOP) the 
modulo is added to the bit-plane pointers, adjusting the pointer to the first word to be fetched for 
the next horizontal line. 

Data for Line 1 : 

Location: START 

Leftmost 
Display Word 

START+2 

Next Word 

START+4 

Next Word 

START+38 

Last Display 

Screen data fetch stops (DDFSTOP) for Wo trd 

each horizontal line after the last word 
on the line has been fetched. ---------' 

Figure 3-10: Data Fetched for the First Line When Modulo = 0 
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After the first line is fetched, the bit-plane pointers BPLxPTH and BPLxPfL contain the value 
START +40. The modulo (in this case, 0) is added to the current value of the pointer, so when the 
pointer begins the data fetch for the next line, it fetches the data you want on that line. The data 
for the next line begins at memory location START +40. 

Data for Line 2: 

Location: START+40 

Leftmost 
Display Word 

START+42 

Next Word 

START+44 

Next Word 

START+78 

Last Display 
Word 

Figure 3-11: Data Fetched for the Second Line When Modulo = 0 

Note that the pointers always contain an even number, because data is fetched from the display a 
word at a time. 

There are two modulo registers-BPL1MOD for the odd-numbered bit-planes and BPL2MOD 
for the even-numbered bit-planes. This allows for differing modulos for each playfield in dual
play field mode. For normal applications, both BPL1MOD and BPL2MOD will be the same. 

The following example sets the modulo to 0 for a low-resolution playfield with one bit-plane. 
The bit-plane is odd-numbered. 

MOVE.W #O,BPLIMOD+CUSTOM Set modulo to 0 

Data Fetch in High-resolution Mode 

When you are using high-resolution mode to display the basic playfield, you need to fetch 80 
bytes for each line, instead of 40. 

Modulo in Interlaced Mode 

For interlaced mode, you must redefine the modulo, because interlaced mode uses two separate 
scannings of the video screen for a single display of the playfield. During the first scanning. the 
odd-numbered lines are fetched to the screen; and during the second scanning, the even-numbered 
lines are fetched. 
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The bit-planes for a full-screen-sized, interlaced display are 400 NTSC (512 PAL), rather than 
200 NTSC (256 PAL), lines long. Assuming that the play field in memory is the normal 320 pix
els wide, data for the interlaced picture begins at the following locations (these are all byte 
addresses): 

Line 1 
Line 2 
Line 3 
Line 4 

START 
START+40 
START+80 
START+120 

and so on. Therefore, you use a modulo of 40 to skip the lines in the other field. For odd fields, 
the bit-plane pointers begin at START. For even fields, the bit-plane pointers begin at 
START+40. 

You can use the Copper to handle resetting of the bit -plane pointers for interlaced displays. 

DISPLAYING AND REDISPLA YING THE PLA YFIELD 

You start playfield display by making certain that the bit-plane pointers are set and bit-plane 
DMA is turned on. You tum on bit-plane DMA by writing a I to bit BPLEN in the DMACON 
(for DMA control) register. See Chapter 7, "System Control Hardware," for instructions on set
ting this register. 

Each time the playfield is redisplayed, you have to reset the bit-plane pointers. Resetting is 
necessary because the pointers have been incremented to point to each successive word in 
memory and must be repointed to the first word for the next display. You write Copper instruc
tions to handle the redisplay or perform this operation as part of a vertical blanking task. 

ENABLING THE COLOR DISPLAY 

The stock A 1000 has a color composite output and requires bit 9 set in BPLCONO to create a 
color composite display signal. Without the addition of specialized hardware, the A500 and 
A2000 cannot generate color composite output. 

NOTE 

The color burst enable does not affect the RGB video signal. RGB video is correctly 
generated regardless of the output of the composite video signal. 
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BASIC PLA YFIELD SUMMARY 

The steps for defining a basic play field are summarized below: 

1. Define Playfield Characteristics 

a. Specify height in lines: 

• ForNTSC: 

* 200 for non-interlaced mode. 

* 400 for interlaced mode. 

• For PAL: 

* 256 for non-interlaced mode. 

* 512 for interlaced mode. 

b. Specify width in pixels: 

• 320 for low-resolution mode. 

• 640 for high-resolution mode. 

c. Specify color for each pixel: 

• Load desired colors in color table registers. 

• Define color of each pixel in terms of the binary value that points at the desired 
color register. 

• Build bit-planes. 

• Set bit-plane registers: 

* 

* 

Bits 12-14 in BPLCONO - number of bit-planes (BPU2 - BPUO). 

BPLxPTH - pointer to bit-plane starting position in memory (written as a long 
word). 
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d. Specify resolution: 

• Low resolution: 

* 320 pixels in each horizontal line. 

* Clear bit 15 in register BPLCONO (HIRES). 

• High resolution: 

* 640 pixels in each horizontal line. 

* Set bit 15 in register BPLCONO (HIRES). 

e. Specify interlaced or non-interlaced mode: 

• Interlaced mode: 

* 400 vertical lines for NTSC, 512 for PAL. 

* Set bit 2 in register BPLCONO (LACE). 

• Non-interlaced mode: 

* 200 vertical lines for NTSC, 256 for PAL. 

* Clear bit 2 in BPLCONO (LACE). 

2. Allocate Memory. To calculate data-bytes in the total bit-planes, use the following fonnula: 

Bytes per line * lines in play field * number of bit-planes 

3. Define Size of Display Window. 

• Write start position of display window in DIWSTRT: 

* Horizontal position in bits 0 through 7 (low-order bits). 

* Vertical position in bits 8 through 15 (high-order bits). 

• Write stop position of display window in DIWSTOP: 

* 

* 

Horizontal position in bits 0 through 7. 

Vertical position in bits 8 through 15. 
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4. Define Data Fetch. Set registers DDFSTRT and DDFSTOP: 

• For DDFSTRT, use the horizontal position as shown in "Setting the Display Window 
Starting Position. ' , 

• For DDFSTOP, use the horizontal position as shown in "Setting the Display Window 
Stopping Position." 

5. Define Modulo. Set registers BPLIMOD and BPL2MOD. Set modulo to 0 for non
interlaced, 40 for interlaced. 

6. Write Copper Instructions To Handle Redisplay. 

7. Enable Color Display. For the AlOOO: set bit 9 in BPLCONO to enable the color display on 
a composite video monitor. ROB video is not affected. Only the AlOOO has color composite 
video output, other machines cannot enable this feature using standard hardware. 

EXAMPLES OF FORMING BASIC PLAYFIELDS 

The following examples show how to set the registers and write the coprocessor lists for two 
different play fields. 

The first example sets up a 320 x 200 play field with one bit-plane, which is located at S21000. 
Also, a Copper list is set up at $20000. 

This example relies on the include file' 'hw _examples.i", which is found in Appendix J. 

LEA CUSTOM,aO aO points at custom chips 
MOVE.W #$1200, BPLCONO (aO) One bit-plane, enable composite color 
MOVE.W #0, BPLCON1 (aO) Set horizontal scroll value to 0 
MOVE.W #0, BPL1MOD (aO) Set modulo to 0 for all odd bit-planes 
MOVE.W #$0038,DDFSTRT(aO} Set data-fetch start to $38 
MOVE.W #$OODO,DDFSTOP(aO) Set data-fetch stop to $DO 
MOVE.W #$2C81, DIWSTRT (aO) Set DIWSTRT to $2C81 
MOVE.W #$F4C1,DIWSTOP(aO) Set DIWSTOP to $F4C1 
MOVE.W #$OFOO,COLOROO(aO) Set background color to red 
MOVE.W #$OFFO,COLOR01(aO) Set color register 1 to yellow 

Fill bit-plane with $FFOOFFOO to produce stripes 

LOOP: 

MOVE.L #$21000,a1 
MOVE.L #$FFOOFFOO,dO 
MOVE.W #2000,d1 

MOVE.L dO, (a1)+ 
DBRA d1,LOOP 

Set up Copper list at $20000 

MOVE.L #$20000,a1 
LEA COPPERL(pc),a2 

Point at beginning of bit-plane 
We will write $FFOOFFOO long words 
2000 long words = 8000 bytes 

Write a long word 
Decrement counter and loop until done ••• 

Point at Copper list destination 
Point a2 at Copper list data 
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CLOOP: MOVE.L 
CMPI.L 
BNE 

(a2),(a1)+ 
t$FFFFFFFE, (a2)+ 
CLOOP 

Move a word 

Point Copper at Copper list 

; Check for last longword of Copper list 
Loop until entire copper list is moved 

MOVE.L t$20000,COP1LCH(aO) ; Write to Copper location register 
MOVE.W COPJMP1(aO),dO ; Force copper to $20000 

Start DMA 

MOVE.W t(DMAF SETCLR!DMAF COPPER!DMAF RASTER!DMAF MASTER),DMACON(aO) 
- Enable bit-plane and-Copper DMA -

BRA ; Go do next task 

; This is the data for the Copper list. 

COPPERL: 
DC.W 
DC.W 
DC.W 

BPL1PTH,$0002 
BPL1PTL,$1000 
$FFFF,$FFFE 

Move $0002 to address $OEO 
Move $1000 to address $OE2 
End of Copper list 

(BPL1PTH) 
(BPL1PTL) 

The second example sets up a high-resolution, interlaced display with one bit-plane. This exam
ple also relies on the include file "hw _examplesJ" , which is found in Appendix J. 

LEA CUSTOM,aO 
MOVE.W t$9204,BPLCONO(aO) 
MOVE.W to, BPLCON1 (aO) 
MOVE.W t80,BPL1MOD (aO) 
MOVE.W t80,BPL2MOD(aO) 
MOVE.W t$003C,DDFSTRT(aO) 
MOVE.W t$00D4,DDFSTOP(aO) 
MOVE.W t$2C81, DIWSTRT (aO) 
MOVE.W t$F4C1,DIWSTOP(aO) 

Set up color registers 

MOVE.W t$OOOF,COLOROO(aO) 
MOVE.W t$OFFF,COLOR01(aO) 

; Set up bit-plane at $20000 

LEA $20000,a1 
LEA CHARLIST(pc),a2 ; 
MOVE.W *400, d1 
MOVE.W nO,dO 

L1: 
MOVE.L (a2), (a1) + 
DBRA dO,L1 

MOVE.W t20,dO 
ADDQ.L t4,a2 
CMPI.L t$FFFFFFFF, (a2) 
BNE L2 
LEA CHARLIST(pc),a2 

L2: DBRA d1,L1 

Start DMA 
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Address of custom chips 
Hires, one bit-plane, interlaced 

; Horizontal scroll value = 0 
Modulo = 80 for odd bit-planes 

; Ditto for even bit-planes 
Set data-fetch start for hires 
Set data-fetch stop 

; Set display window start 
Set display window stop 

Background color = blue 
Foreground color white 

Point a1 at bit-plane 
a2 points at character data 
Write 400 lines of data 
Write 20 long words per line 

Write a long word 
Decrement counter and loop until full ••• 

Reset long word counter 
Point at next word in char list 
End of char list? 

Yes, reset a2 to beginning of list 
Decrement line counter and loop until done ••• 



MOVE.W t(DMAF SETCLR!DMAF RASTER!DMAF MASTER),DMACON(aO) 
- ; Enable bit-plane DMA only, no Copper 

Because this example has no Copper list, it sits in a 
loop waiting for the vertical blanking interval. When it 
comes, you check the LOF ( long frame ) bit in VPOSR. If 
LOF = 0, this is a short frame and the bit-plane pointers 
are set to point to $20050. If LOF = 1, then this is a 
long frame and the bit-plane pointers are set to point to 
$20000. This keeps the long and short frames in the 
right relationship to each other. 

VLOOP: 

VLl: 

MOVE.W 
AND.W 
BEQ 
MOVE.W 
MOVE.W 
BPL 
MOVE.L 
BRA 

MOVE.L 
BRA 

INTREQR(aO),dO 
t$0020,dO 
VLOOP 
#$0020,INTREQ(aO) 
VPOSR(aO),dO 
VLl 
#$20000,BPLIPTH(aO) 
VLOOP 

#$20050,BPLIPTH(aO) 
VLOOP 

Read interrupt requests 
Mask off all but vertical blank 
Loop until vertical blank comes 
Reset vertical interrupt 
Read LOF bit into dO bit 15 
If LOF = 0, jump 
LOF = 1, point to $20000 
Back to top 

LOF = 0, point to $20050 
Back to top 

Character list 

CHARLIST: 
DC.L 
DC.L 
DC.L 

$18FC3DFO,$3C6666D8,$3C66COCC,$667CCOCC 
$7E66COCC,$C36666D8,$C3FC3DFO,$00000000 
$FFFFFFFF 
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Forming a Dual-playfield Display 

For more flexibility in designing your background display, you can specify two playfields instead 
of one. In dual-playfield mode, one playfield is displayed directly in front of the other. For 
example, a computer game display might have some action going on in one playfield in the back
ground, while the other playfield is showing a control panel in the foreground. You can then 
change either the foreground or the background without having to redesign the entire display. 
You can also move the two playfields independently. 

A dual-playfield display is similar to a single-playfield display, differing only in these aspects: 

• Each play field in a dual display is formed from one, two or three bit-planes. 

• The colors in each playfield (up to seven plus transparent) are taken from different sets 
of color registers. 

• You must set a bit to activate dual-playfield mode. 

Figure 3-12 shows a dual-playfield display. 

In Figure 3-12, one of the colors in each playfield is "transparent" (color 0 in playfield 1 and 
color 8 in play field 2). You can use transparency to allow selected features of the background 
playfield to show through. 

In dual-playfield mode, each playfield is formed from up to three bit-planes. Color registers 0 
through 7 are assigned to playfield 1, depending upon how many bit-planes you use. Color regis
ters 8 through 15 are assigned to playfield 2. 

Bit-Plane Assignment in Dual-playfield Mode 

The three odd-numbered bit-planes (1,3, and 5) are grouped together by the hardware and may be 
used in playfield 1. Likewise, the three even-numbered bit-planes (2, 4, and 6) are grouped 
together and may be used in playfield 2. The bit-planes are assigned alternately to each playfield, 
as shown in Figure 3-13. 

NOTE 

In high-resolution mode, you can have up to two bit-planes in each playfield - bit
planes 1 and 3 in playfield 1 and bit-planes 2 and 4 in playfield 2. 
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Playfield 1 (1, 2, or 3 bit-planes) Playfield 2 (1, 2, or 3 bit-planes) 

G 
SPEED 

317 I 
HEADING 

52 0000 

FUEL MISSILES OIL 

Both playfields appear on-screen, 

combined to form the complete 

display. 

~ 123 10 
FUEL MISSILES OIL 

Figure 3-12: A Dual-playfield Display 

o 

-

The background 

color shows 
through where 

there are 
transparent 
sections of 
both 
playfields. 
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Number of 
Bit-Planes 

"Turned on" Playfield 1 * Playfield 2* 

0 None None 

C ) 

2 [ J e J 

3 D 0 
4 co 0 
5 

6 

*NOTE: Either playfield may be placed "in front of" or "behind" the other using the 
"swap=bit. " 

Figure 3-13: How Bit-Planes Are Assigned to Dual Playfields 
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COLOR REGISTERS IN DUAL-PLAYFIELD MODE 

When you are using dual playfields, the hardware interprets color numbers for playfield 1 from 
the bit combinations of bit-planes 1, 3, and 5. Bits from PLANE 5 have the highest significance 
and form the most significant digit of the color register number. Bits from PLANE 0 have the 
lowest significance. These bit combinations select the first eight color registers from the color 
palette as shown in Table 3-10. 

Table 3-10: Playfield 1 Color Registers - Low-resolution Mode 

PLAYFIELD 1 

Bit Color 
Combination Selected 

000 Transparent mode 
001 COLOR 1 
010 COLOR2 
011 COLOR3 
100 COLOR4 
101 COLOR5 
110 COLOR6 
111 COLOR? 

The hardware interprets color numbers for play field 2 from the bit combinations of bit-planes 2, 
4, and 6. Bits from PLANE 6 have the highest significance. Bits from PLANE 2 have the lowest 
significance. These bit combinations select the color registers from the second eight colors in the 
color table as shown in Table 3-11. 

Table 3-11: Playfield 2 Color Registers - Low-resolution Mode 

PLAYFIELD2 

Bit Color 
Combination Selected 

000 Transparent mode 
001 COLOR9 
010 COLOR 10 
011 COLOR 11 
100 COLOR12 
101 COLOR 13 
110 COLOR14 
111 COLOR15 
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Combination 000 selects transparent mode, to show the color of whatever object (the other 
playfield, a sprite, or the background color) may be "behind" the playfield. 

Table 3-12 shows the color registers for high-resolution, dual-playfield mode. 

Table 3-12: Playfields 1 and 2 Color Registers - High-resolution Mode 

PLAYFIELDI 

Bit Color 
Combination Selected 

00 Transparent mode 
01 COLOR 1 
10 COLOR2 
11 COLOR3 

PLAYFIELD2 

Bit Color 
Combination Selected 

00 Transparent mode 
01 COLOR9 
10 COLOR 10 
11 COLOR 11 

DUAL-PLA YFIELD PRIORITY AND CONTROL 

Either playfield 1 or 2 may have priority; that is, either one may be displayed in front of the other. 
Playfield 1 normally has priority. The bit known as PF2PRI (bit 6) in register BPLCON2 is used 
to control priority. When PF2PRI = 1, playfield 2 has priority over playfield 1. When PF2PRI = 
0, playfield 1 has priority. 

You can also control the relative priority of playfields and sprites. Chapter 7, "System Control 
Hardware," shows you how to control the priority of these objects. 

You can control the two playfields separately as follows: 

• They can have different-sized representations in memory, and different portions of each 
one can be selected for display. 

• They can be scrolled separately. 
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NOTE 

You must take special care when scrolling one playfield and holding the other station
ary. When you are scrolling low-resolution playfields, you must fetch one word more 
than the width of the playfield you are trying to scroll (two words more in high
resolution mode) in order to provide some data to displ~J when the actual scrolling 
takes place. Only one data-fetch start register and one data-fetch stop register are 
available, and these are shared by both play fields. If you want to scroll one playfield 
and hold the other, you must adjust the data-fetch start and data-fetch stop to handle 
the play field being scrolled. Then, you must adjust the modulo and the bit-plane 
pointers of the playfield that is not being scrolled to maintain its position on the 
display. In low-resolution mode, you adjust the pointers by -2 and the modulo by -2. 
In high-resolution mode, you adjust the pointers by -4 and the modulo by -4. 

ACTIVATING DUAL-PLA YFIELD MODE 

Writing a 1 to bit 10 (called DBLPF) of the bit-plane control register BPLCONO selects dual
playfield mode. Selecting dual-playfield mode changes both the way the hardware groups the 
bit-planes for color interpretation-all odd-numbered bit-planes are grouped together and all 
even-numbered bit-planes are grouped together, and the way hardware can move the bit-planes on 
the screen. 

DUAL PLAYFIELD SUMMARY 

The steps for defining dual playfields are almost the same as those for defining the basic playfield. 
Only in the following steps does the dual-play field creation process differ from that used for the 
basic playfield: 

• Loading colors into the registers. Keep in mind that color registers 0-7 are used by 
play field 1 and registers 8 through 15 are used by playfield 2 (if there are three bit-planes 
in each playfield). 

• Building bit-planes. Recall that playfield 1 is fonned from PLANES I, 3, and 5 and 
playfield 2 from PLANES 2, 4, and 6. 

• Setting the modulo registers. Write the modulo to both BPLIMOD and BPL2MOD as 
you will be using both odd- and even-numbered bit-planes. 

These steps are added: 

• Defining priority. If you want playfield 2 to have priority, set bit 6 (pF2PRI) in 
BPLCON2 to 1. 

• Activating dual-playfield mode. Set bit 10 (DBLPF) in BPLCONO to 1. 
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Bit-planes and Display Windows of All Sizes 

You have seen how to form single and dual playfields in which the playfield in memory is the 
same size as the display window. This section shows you how to define and use a playfield 
whose big picture in memory is larger than the display window, how to define display windows 
that are larger or smaller than the normal play field size, and how to move the display window in 
the big picture. 

WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW 

If you design a memory picture larger than the display window, you must choose which part of it 
to display. Displaying a portion of a larger playfield differs in the following ways from display
ing the basic playfields described up to now: 

• If the big picture in memory is larger than the display window, you must respecify the 
modulos. The modulo must be some value other than O. 

• You must allocate more memory for the larger memory picture. 

Specifying the Modulo 

For a memory picture wider than the display window, you need to respecify the modulo so that 
the correct data words are fetched for each line of the display. As an example, assume the display 
window is the standard 320 pixels wide, so 40 bytes are to be displayed on each line. The big 
picture in memory, however, is exactly twice as wide as the display window, or 80 bytes wide. 
Also, assume that you wish to display the left half of the big picture. Figure 3-14 shows the rela
tionship between the big picture and the picture to be displayed. 
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START START+78 

I 
Width of the Bit-Plane Defined in RAM 

Width of defined 
screen on which 
bit-plane data is 
to appear 

Figure 3-14: Memory Picture Larger than the Display 

Because 40 bytes are to be fetched for each line, the data fetch for line 1 is as shown in Figure 3-
15. 

Data for Line 1: 

Location: START 

Leftmost 
Display Word 

START+2 

Next Word 

START+4 

Next Word 

START+38 

Last Display 

Screen data fetch stops (DDFSTOP) for wotrd 
each horizontal line after the last word 
on the line has been fetched. _______ .....J 

Figure 3-15: Data Fetch for the First Line When Modulo = 40 

At this point, BPLxPTH and BPLxPTL contain the value START +40. The modulo, which is 40, 
is added to the current value of the pointer so that when it begins the data fetch for the next line, it 
fetches the data that you intend for that line. The data fetch for line 2 is shown in Figure 3-16. 
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Data for Line 2: 

Location: START+80 

Leftmost 
Display Word 

START+82 

Next Word 

START+84 

Next Word 

Figure 3-16: Data Fetch for the Second Line When Modulo = 40 

START+118 

Last Display 
Word 

To display the right half of the big picture, you set up a vertical blanking routine to start the bit
plane pointers at location START +40 rather than START with the modulo remaining at 40. The 
data layout is shown in Figures 3-17 and 3-18. 

Data for Line 1: 

Location: START+40 

Leftmost 
Display Word 

START+42 

Next Word 

START+44 

Next Word 

Figure 3-17: Data Layout for First Line-Right Half of Big Picture 

START+78 

Last Display 
Word 

Now, the bit-plane pointers contain the value START+80. The modulo (40) is added to the 
pointers so that when they begin the data fetch for the second line, the correct data is fetched. 

Data for Line 2: 

Location: START+120 

Leftmost 
Display Word 

START+122 

Next Word 

START+124 

Next Word 

Figure 3-18: Data Layout for Second Line-Right Half of Big Picture 

START+158 

Last Display 
Word 

Remember, in high-resolution mode, you need to fetch twice as many bytes as in low-resolution 
mode. For a normal-sized display, you fetch 80 bytes for each horizonta1line instead of 40. 
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Specifying the Data Fetch 

The data-fetch registers specify the beginning and end positions for data placement on each hor
izontalline of the display. You specify data fetch in the same way as shown in the section called 
"Forming a Basic Playfield." 

Memory Allocation 

For larger memory pictures, you need to allocate more memory. Here is a formula for calculating 
memory requirements in general: 

bytes per line * lines in playjield * # of bit-planes 

Thus, if the wide playfield described in this section is formed from two bit-planes, it requires: 

80 * 200 * 2 = 32,000 bytes of memory 

Recall that this is the memory requirement for the play field alone. You need more memory for 
any sprites, animation, audio, or application programs you are using. 

Selecting the Display Window Starting Position 

The display window starting position is the horizontal and vertical coordinates of the upper left
hand comer of the display window. One register, DIWSTRT, holds both the horizontal and verti
cal coordinates, known as HST ART and VST ART. The eight bits allocated to HST ART are 
assigned to the first 256 positions, counting from the leftmost possible position. Thus, you can 
start the display window at any pixel position within this range. 
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FULL SCREEN AREA 

o 

HSTARTof DISPLAY 
WINDOW occurs in 
this region. 

255 

Figure 3-19: Display Window Horizontal Starting Position 

361 

The eight bits allocated to VSTART are assigned to the first 256 positions counting down from 
the top of the display. 

FULL SCREEN AREA 

VST ART of DISPLAY WINDJW 
occurs in this region. 

o 

---1..--1-- 255 
(NTSC) -----+-- 262 

Figure 3-20: Display Window Vertical Starting Position 

Recall that you select the values for the starting position as if the display were in low-resolution, 
non-interlaced mode. Keep in mind, though, that for interlaced mode the display window should 
be an even number of lines in height to allow for equal-sized odd and even fields. 

To set the display window starting position, write the value for HST ART into bits 0 through 7 
and the value for VST ART into bits 8 through 15 of DIWSTRT. 
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Selecting the Stopping Position 

The stopping position for the display window is the horizontal and vertical coordinates of the 
lower right-hand comer of the display window. One register, DIWSTOP, contains both coordi
nates, known as HSTOP and VSTOP. 

See the notes in the "Fonning a Basic Playfield" section for instructions on setting these regis
ters. 

FULL SCREEN AREA 

o 255 

HSTOP of DISPLAY 
WINDOW occurs in 
this region. 

361 

Figure 3-21: Display Window Horizontal Stopping Position 

Select a value that represents the correct position in low-resolution, non-interlaced mode. 
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FULL SCREEN AREA 

r-----------------------------------------_ 0 

----------.---------------------r-128 
VSTOP of DISPLAY 
WINDOW occurs in 
this region. 

(NTSC) ------1~ 262 

Figure 3-22: Display Window Vertical Stopping Position 

To set the display window stopping position, write HSTOP into bits 0 through 7 and VSTOP into 
bits 8 through 15 of DIWSTOP. 

MAXIMUM DISPLAY WINDOW SIZE 

The maximum size of a playfield display is determined by the maximum number of lines and the 
maximum number of columns. Vertically, the restrictions are simple. No data can be displayed 
in the vertical blanking area. The following table shows the allowable vertical display area. 

Table 3-13: Maximum Allowable Vertical Screen Video 

Vertical Blank NTSC PAL 

Start 0 0 
Stop $15 (21) $ID (29) 

NTSC NTSC PAL PAL 
Normal Interlaced Normal Interlaced 

Displayable lines 
of screen video 241 483 283 567 

=525-(21 *2) =625-(29*2) 

Horizontally, the situation is similar. Strictly speaking, the hardware sets a rightmost limit to 
DDFSTOP of ($D8) and a leftmost limit to DDFSTRT of ($18). This gives a maximum of 25 
words fetched in low-resolution mode. In high-resolution mode the maximum here is 49 words, 
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because the rightmost limit remains ($D8) and only one word is fetched at this limit. However, 
horizontal blanking actually limits the displayable video to 368 low-resolution pixels (23 words). 
These numbers are the same both for NTSC and for PAL. In addition, it should be noted that 
using a data-fetch start earlier than ($38) will disable some sprites. 

Table 3-14: Maximum Allowable Horizontal Screen Video 

LoRes HiRes 

DDFSTRT (standard) $0038 $003C 
DDFSTOP (standard) $0000 $00D4 

DDFSTRT (hw limits) $0018 $0018 
DDFSTOP (hw limits) $OOD8 $OOD8 

max words fetched 25 49 
max display pixels 368 (low res) 

Moving (Scrolling) Playfields 

If you want a background display that moves, you can design a play field larger than the display 
window and scroll it. If you are using dual playfields, you can scroll them separately. 

In vertical scrolling, the playfield appears to move smoothly up or down on the screen. All you 
need do for vertical scrolling is progressively increase or decrease the starting address for the bit
plane pointers by the size of a horizontal line in the playfield. This has the effect of showing a 
lower or higher part of the picture each field time. 

In horizontal scrolling the play field appears to move from right-to-Ieft or left-to-right on the 
screen. Horizontal scrolling works differently from vertical scrolling - you must arrange to 
fetch one more word of data for each display line and delay the display of this data. 

For either type of scrolling, resetting of pointers or data-fetch registers can be handled by the 
Copper during the vertical blanking interval. 

VERTICAL SCROLLING 

You can scroll a play field upward or downward in the window. Each time you display the 
playfield, the bit-plane pointers start at a progressively higher or lower place in the big picture in 
memory. As the value of the pointer increases, more of the lower part of the picture is shown and 
the picture appears to scroll upward. As the value of the pointer decreases, more of the upper part 
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is shown and the picture scrolls downward. On an NTSC system, with a display that has 200 
vertical lines, each step can be as little as 1/200th of the screen. In interlaced mode each step 
could be l/400th of the screen if clever manipulation of the pointers is used, but it is recom
mended that scrolling be done two lines at a time to maintain the odd/even field relationship. 
Using a PAL system with 256 lines on the display, the step can be 1/256th of a screen, or l/512th 
of a screen in interlace. 

Bit-Plane 
Pointer 
Start 

Address 

Figure 3'-23: Vertical Scrolling 

As the value of the bit-plane 
pointer increases, more of 
the lower part of the 
picture is shown_ 

As it decreases, more of 
the upper part is shown_ 

To set up a playfield for vertical scrollinl; you need to form bit-planes tall enough to allow for the 
amount of scrolling you want, write software to calculate the bit-plane pointers for the scrolling 
you want, and allow for the Copper to use the resultant pointers. 

Assume you wish to scroll a playfield upward one line at a time. To accomplish this, before each 
field is displayed, the bit-plane pointers have to increase by enough to ensure that the pointers 
begin one line lower each time. For a normal-sized, low-resolution display in which the modulo 
is 0, the pointers would be incremented by 40 bytes each time. 
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HORIZONTAL SCROLLING 

You can scroll playfields horizontally from left to right or right to left on the screen. You control 
the speed of scrolling by specifying the amount of delay in pixels. Delay means that an extra 
word of data is fetched but not immediately displayed. The extra word is placed just to the left of 
the window's leftmost edge and before normal data fetch. As the display shifts to the right, the 
bits in this extra word appear on-screen at the left-hand side of the window as bits on the right
hand side disappear off-screen. For each pixel of delay, the on-screen data shifts one pixel to the 
right each display field. The greater the delay, the greater the speed of scrolling. You can have 
up to 15 pixels of delay. In high-resolution mode, scrolling is in increments of 2 pixels. Figure 
3-24 shows how the delay and extra data fetch combine to cause the scrolling effect. 

To set up a playfield for horizontal scrolling, you need to 

• Define bit-planes wide enough to allow for the scrolling you need. 

• Set the data-fetch registers to correctly place each horizontal line, including the extra 
word, on the screen. 

• Set the delay bits. 

• Set the modulo so that the bit-plane pointers begin at the correct word for each line. 

• Write Copper instructions to handle the changes during the vertical blanking inteIVal. 

Specifying Data Fetch in Horizontal Scrolling 

The normal data-fetch start for non-scrolled displays is ($38). If horizontal scrolling is desired, 
then the data fetch must start one word sooner (DDFSTRT = $(030). Incidentally, this will dis
able sprite 7. DDFSTOP remains unchanged. Remember that the settings of the data-fetch regis
ters affect both playfields. 

Specifying the Modulo in Horizontal Scrolling 

As always, the modulo is two counts less than the difference between the address of the next word 
you want to fetch and the address of the last word that was fetched. As an example for horizontal 
scrolling, let us assume a 40-byte display in an 80-byte "big picture." Because horizontal scrol
ling requires a data fetch of two extra bytes, the data for each line will be 42 bytes long. 
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Start 

0-15 bits of 
delay will cause 
the system to 

show the 

Display 
Window 

Start 

o 

l1li 

Background Color 

I..----Data Fetch 21 Words --____ ~ 

16 Bits 
(1 word)----I~ 

• ..----Display Window --_~I 
~--320 Bits (20 words)----il~ 

o 

-

Figure 3-24: Horizontal Scrolling 

NOTE 

Fetching an extra word for scrolling will disable some sprites. 
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Display position in example 
is shown with O-bits of delay. 

As delay is added, 
on screen display 

shifts this 
direction. 

This data is 
displayed if 
scroll = 0 

This data is 
displayed if 
scroll = 15 



START START+38 START+78 

DISPLAY 
WINDOW 

Width 

Memory Picture Width .. 

Figure 3-25: Memory Picture Larger Than the Display Window 

Data for Line 1 : 

Location: START 

Leftmost 
Display Word 

START+2 

Next Word 

START+4 

Next Word 

Figure 3-26: Data for Line 1 - Horizontal Scrolling 

START+40 

Last Display 
Word 

At this point, the bit-plane pointers contain the value START+42. Adding the modulo of 38 
gives the correct starting point for the next line. 

Data for Line 2: 

Location: START+80 

Leftmost 
Display Word 

START+82 

Next Word 

START+84 

Next Word 

Figure 3-27: Data for Line 2-Horizontal Scrolling 

In the BPLxMOD registers you set the modulo for each bit-plane used. 

START+120 

Last Display 
Word 
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Specifying Amount of Delay 

The amount of delay in horizontal scrolling is controlled by bits 7-0 in BPLCONl. You set the 
delay separately for each playfield; bits 3-0 for play field 1 (bit-planes 1,3, and 5) and bits 7-4 for 
play field 2 (bit-planes 2, 4, and 6). 

NOTE 

Always set all six bits, even if you have only one playfield. Set 3-0 and 7-4 to the 
same value if you are using only one playfield. 

The following example sets the horizontal scroll delay to 7 for both playfields. 

MOVE.W #$77,BPLCON1+CUSTOM 

SCROLLED PLAYFIELD SUMMARY 

The steps for defining a scrolled play field are the same as those for defining the basic playfield, 
except for the following steps: 

• Defining the data fetch. Fetch one extra word per horizontal line and start it 16 pixels 
before the normal (unscrolled) data-fetch start. 

• Defining the modulo. The modulo is two counts less than when there is no scrolling. 

These steps are added: 

• For vertical scrolling, reset the bit-plane pointers for the amount of the scrolling 
increment. Reset BPLxPTH and BPLxPTL during the vertical blanking interval. 

• For horizontal scrolling, specify the delay. Set bits 7-0 in BPLCONI for 0 to 15 bits 
of delay. 
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Advanced Topics 

This section describes features that are used less often or are optional. 

INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS 

Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows how 
play fields can be given different video display priorities relative to the sprites and how playfields 
can collide with (overlap) the sprites or each other. 

HOLD-AND-MODIFY MODE 

This is a special mode that allows you to produce up to 4,096 colors on the screen at the same 
time. Normally, as each value formed by the combination of bit-planes is selected, the data con
tained in the selected color register is loaded into the color output circuit for the pixel being writ
ten on the screen. Therefore, each pixel is colored by the contents of the selected color register. 

In hold-and-modify mode, however, the value in the color output circuitry is held, and one of the 
three components of the color (red, green, or blue) is modified by bits coming from certain 
preselected bit-planes. After modification, the pixel is written to the screen. 

The hold-and-modify mode allows very fine gradients of color or shading to be produced on the 
screen. For example, you might draw a set of 16 vases, each a different color, using all 16 colors 
in the color palette. Then, for each vase, you use hold-and-modify to very finely shade or 
highlight or add a completely different color to each of the vases. Note that a particular hold
and-modify pixel can only change one of the three color values at a time. Thus, the effect has a 
limited control. 

In hold and modify mode, you use all six bit-planes. Planes Sand 6 are used to modify the way 
bits from planes 1 -4 are treated, as follows: 

• If the 6-S bit combination from planes 6 and S for any given pixel is 00, normal color 
selection procedure is followed. Thus, the bit combinations from planes 4 - 1, in that 
order of significance, are used to choose one of 16 color registers (registers 0 - IS). 

If only five bit-planes are used, the data from the sixth plane is automatically supplied 
with the value as O. 

• If the 6-S bit combination is 01, the color of the pixel immediately to the left of this 
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are used to 
replace the four "blue" bits in the corresponding color register. 
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• If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this 
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are used to 
replace the four" red" bits. 

• Ifthe 6-5 bit combination is 11, the color of the pixel immediately to the left of this 
pixel is duplicated and then modified. The bit-combinations from planes 4 - 1 are used to 
replace the four" green" bits. 

Using hold-and-modify mode, it is possible to get by with defining only one color register, which 
is COLORO, the color of the background. You treat the entire screen as a modification of that ori
ginal color, according to the scheme above. 

Bit 11 of register BPLCONO selects hold-and-modify mode. The following bits in BPLCONO 
must be set for hold-and-modify mode to be active: 

Bit HOMOD, bit 11, is 1. 

• Bit DBLPF, bit 10, is 0 (single-play field mode specified). 

• Bit HIRES, bit 15, is 0 (low-resolution mode specified). 

• Bits BPU2, BPUl, and BPUO - bits 14, 13, and 12, are 101 or 110 (five or six bit-planes 
active). 

The following example code generates a six-bit-plane display with hold-and-modify mode turned 
on. All 32 color registers are loaded with black to prove that the colors are being generated by 
hold-and-modify. The equates are the usual and are not repeated here. 

; 

First, set up the control registers. 

LEA CUSTOM,aO 
MOVE.W #$6AOO,BPLCONO(aO) 
MOVE.W #0, BPLCONl (aO) 
MOVE.W #0, BPLlMOD (aO) 
MOVE.W #O,BPL2MOD(aO) 
MOVE.W #$0038,DDFSTRT(aO) 
MOVE.W #$OODO,DDFSTOP(aO) 
MOVE.W #$2C8l, DIWSTRT (aO) 
MOVE.W #$F4Cl,DIWSTOP(aO) 

Point aO at custom chips 
Six bit-planes, hold-and-modify mode 
Horizontal scroll = 0 
Modulo for odd bit-planes = 0 
Ditto for even bit-planes 
Set data-fetch start 
Set data-fetch stop 
Set display window start 
Set display window stop 

Set all color registers = black to prove that hold-and-modify mode is working. 

MOVE.W B2,dO Initialize counter 
LEA CUSTOM+COLOROO,al Point al at first color register 

CREGLOOP: 
MOVE.W #$0000, (al)+ Write black to a color register 
DBRA dO,CREGLOOP ; Decrement counter and loop til done ••• 

Fill six bit-planes with an easily recognizable pattern. 

NOTE: This is just for example use. Normally these bit planes would 
need to be allocated from the system MEMF_CHIP memory pool. 
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MOVE.W #2000,dO 2000 longwords per bit-plane 
MOVE.L #$2l000,al Point a1 at bit-plane 1 
MOVE.L #$23000,a2 Point a2 at bit-plane 2 
MOVE.L #$25000,a3 Point a3 at bit-plane 3 
MOVE.L #$27000,a4 Point a4 at bit-plane 4 
MOVE.L #$29000,a5 Point a5 at bit-plane 5 
MOVE.L #$2BOOO,a6 Point a6 at bit-plane 6 

FPLLOOP: 
MOVE.L #$55555555, (a1) + Fill bit-plane 1 with $55555555 
MOVE.L #$33333333, (a2) + Fill bit-plane 2 with $33333333 
MOVE.L #$OFOFOFOF, (a3)+ Fill bit-plane 3 with $OFOFOFOF 
MOVE.L #$OOFFOOFF, (a4)+ Fill bit-plane 4 with $OOFFOOFF 
MOVE.L #$CF3CF3CF, (a5)+ Fill bit-plane 5 with $CF3CF3CF 
MOVE.L #$3CF3CF3C, (a6)+ Fill bit-plane 6 with $3CF3CF3C 
DBRA dO,FPLLOOP Decrement counter and loop til done ••• 

Set up a Copper list at $20000. 

NOTE: As with the bit planes, the copper list location should be allocated 
from the system MEMF CHIP memory pool. 

MOVE.L 
LEA 

CLOOP: MOVE.L 
CMPI.L 
BNE 

#$20000,a1 
COPPERL(pc),a2 
(a2), (a1) + 
#$FFFFFFFE, (a2)+ 
CLOOP 

Point a1 at Copper list destination 
Point a2 at Copper list image 
Move a long word .•• 
Check for end of Copper list 
Loop until entire Copper list moved 

Point Copper at Copper list. 

MOVE.L #$20000,COP1LCH(aO) 
MOVE.W COPJMP1(aO),dO 

Load Copper jump register 
Force load into Copper P.C. 

Start DMA. 

MOVE.W #$8380, DMACON (aO) ; Enable bit-plane and Copper DMA 

BRA •.... next stuff to do ..•.. 

Copper list for six bit-planes. Bit-plane 1 is at $21000; 2 is at $23000; 
3 is at $25000; 4 is at $27000; 5 is at $29000; 6 is at $2BOOO. 

NOTE: These bit-plane addresses are for example purposes only. 
See note above. 

COPPERL: 
DC.W BPL1PTH,$0002 Bit-plane 1 pointer $21000 
DC.W BPLIPTL,$1000 
DC.W BPL2PTH,$0002 Bit-plane 2 pointer $23000 
DC.W BPL2PTL,$3000 
DC.W BPL3PTH,$0002 Bit-plane 3 pointer = $25000 
DC.W BPL3PTL,$5000 
DC.W BPL4PTH,$0002 Bit-plane 4 pointer $27000 
DC.W BPL4PTL,$7000 
DC.W BPL5PTH,$0002 Bit-plane 5 pointer $29000 
DC.W BPL5PTL,$9000 
DC.W BPL6PTH,$0002 Bit-plane 6 pointer $2BOOO 
DC.W BPL6PTL,$BOOO 
DC.W $FFFF,$FFFE Wait for the impossible, i.e. , quit 

Playfield Hardware 83 



FORMING A DISPLAY WITH SEVERAL DIFFERENT PLA YFIELDS 

The graphics library provides the ability to split the screen into several "ViewPorts", each with 
its own colors and resolutions. See the Amiga ROM Kernel Manual for more infonnation. 

USING AN EXTERNAL VIDEO SOURCE 

An optional board that provides genlock is available for the Amiga. Genlock allows you to bring 
in your graphics display from an external video source (such as a VCR, camera, or laser disk 
player). When you use genlock, the background color is replaced by the display from this exter
nal video source. For more infonnation, see the instructions furnished with the optional board. 

SUMMARY OF PLAYFIELD REGISTERS 

This section summarizes the registers used in this chapter and the meaning of their bit settings. 
The color registers are summarized in the next section. See Appendix A for a summary of all 
registers. 

BPLCONO - Bit Plane Control 

NOTE 

Bits in this register cannot be independently set 

Bit 0 - unused 

Bit 1 - ERSY (external synchronization enable) 
1 = External synchronization enabled (allows genlock synchronization to occur) 
o = External synchronization disabled 

Bit 2 - LACE (interlace enable) 
I = interlaced mode enabled 
o = non-interlaced mode enabled 

Bit 3 - LPEN (light pen enable) 

Bits 4-7 not used (make 0) 
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Bit 8 - GAUD (genlock audio enable) 
I = Genlock audio enabled 
o = Genlock audio disabled (in blanking periods, this bit goes out on the pixel switch 
ZD) 

Bit 9 - COLOR_ON (color enable) 
1 = composite video color-burst enabled 
o = composite video color-burst disabled 

Bit 10 - DBLPF (double-play field enable) 
1 = dual playfields enabled 
o = single playfield enabled 

Bit 11 - HaMaD (hold-and-modify enable) 
1 = hold-and-modify enabled 
0= hold-and-modify disabled 

Bits 14, 13, 12 - BPU2, BPU1, BPUO 
Number of bit-planes used. 

000 = only a background color 
001 = 1 bit-plane, PLANE 1 
010 = 2 bit-planes, PLANES 1 and 2 
011 = 3 bit-planes, PLANES 1 - 3 
100 = 4 bit-planes, PLANES 1 - 4 
101 = 5 bit-planes, PLANES 1 - 5 
110 = 6 bit-planes, PLANES 1 - 6 
111 not used 

Bit 15 - HIRES (high-resolution enable) 
1 = high-resolution mode 
0= low-resolution mode 

BPLCONI - Bit-plane Control 

Bits 3-0 - PF1H(3-0) 
Play field 1 delay 

Bits 7-4 - PF2H(3-0) 
Playfield 2 delay 

Bits 15-8 not used 
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BPLCON2 - Bit-plane Control 

Bit 6 - PF2PRI 

1 = Play field 2 has priority 

o = Playfield 1 has priority 

Bits 0-5 Playfield sprite priority 

Bits 7-15 not used 

DDFSTRT - Data-fetch Start 
(Beginning position for data fetch) 

Bits 15-8 - not used 

Bits 7-2 - pixel position H8-H3 
Bit H3 only respected in HiRes Mode. 

Bits 1-0 - not used 

DDFSTOP - Data-fetch Stop 
(Ending position for data fetch) 

Bits 15-8 - not used 

Bits 7-2 - pixel position H8-H3 
Bit H3 only respected in HiRes Mode. 

Bits 1-0 - not used 

BPLxPTH - Bit-plane Pointer 
(Bit-plane pointer high word, where x is the bit-plane number) 

BPLxPTL - Bit-plane Pointer 
(Bit-plane pointer low word, where x is the bit-plane number) 

DIWSTRT - Display Window Start 
(Starting vertical and horizontal coordinates) 

Bits 15-8 - VSTART (V7-VO) 

Bits 7-0 - HSTART (H7-HO) 
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DIWSTOP - Display Window Stop 
(Ending vertical and horizontal coordinates) 

Bits 15-8 - VSTOP (V7-VO) 

Bits 7-0 - HSTOP (H7-HO) 

BPLIMOD - Bit-plane Modulo 
(Odd-numbered bit-planes, playfield 1) 

BPL2MOD - Bit-plane Modulo 
(Even-numbered bit-planes, playfield 2) 

Summary of Color Selection 

This section contains summaries of playfield color selection including color register contents, 
example colors, and the differences in color selection in high-resolution and low-resolution 
modes. 

COLOR REGISTER CONTENTS 

Table 3-15 shows the contents of each color register. All color registers are write-only. 

Table 3-15: Color Register Contents 

Bits Contents 

15-12 (Unused - set to 0) 

11-8 Red 
7-4 Green 
3-0 Blue 
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SOME SAMPLE COLOR REGISTER CONTENTS 

Table 3-16 shows a variety of colors and the hexadecimal values to load into the color registers 
for these colors. 

Table 3-16: Some Register Values and Resulting Colors 

Value Color Value Color 

$FFF White $lFB Light aqua 
$DOO Brick red $6FE Sky blue 
$FOO Red $6CE Light blue 
$F80 Red-orange $OOF Blue 
$F90 Orange $61F Bright blue 
$FBO Golden orange $06D Dark blue 
$FDO Cadmium yellow $91F Purple 
$FFO Lemon yellow $C1F Violet 
$BFO Lime green $F1F Magenta 
$8EO Light green $FAC Pink 
$OFO Green $DB9 Tan 
$2CO Dark green $C80 Brown 
$OBl Forest green $A87 Dark brown 
$OBB Blue green $CCC Light grey 
$ODB Aqua $999 Medium grey 

$000 Black 

COLOR SELECTION IN LOW-RESOLUTION MODE 

Table 3-17 shows playfield color selection in low-resolution mode. If the bit-combinations from 
the playfields are as shown, the color is taken from the color register number indicated. 
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Table 3-17: Low-resolution Color Selection 

Single Playfield Dual Playfields 
Normal Mode Hold-and-modify Mode Color Register 

(Bit-planes 5,4,3,2,1) (Bit-planes 4,3,2,1) Number 

Playfield 1 
Bit-nlanes 5!3!1 

00000 0000 000 0* 
00001 0001 001 1 
00010 0010 010 2 
00011 0011 011 3 
00100 0100 100 4 
00101 0101 101 5 
00110 0100 110 6 
00111 0111 111 7 

Playfield 2 
Bit-nlanes 6!4!2 

01000 1000 ()()() ** 8 
01001 1001 001 9 
01010 1010 010 10 
01011 1011 011 11 
01100 1100 100 12 
01101 1101 101 13 
01110 1110 110 14 
01111 1111 111 15 
10000 I I 16 
10001 I I 17 
10010 I I 18 
10011 I I 19 
10100 NOT NOT 20 
10101 USED USED 21 
10110 IN IN 22 
10111 THIS TillS 23 
11000 MODE MODE 24 
11001 I I 25 
11010 I I 26 
11011 I I 27 
11100 I I 28 
11101 I I 29 
11110 I I 30 
11111 I I 31 

* Color register 0 always defines the background color. 
** Selects "transparent" mode instead of selecting color register 8. 
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COLOR SELECTION IN HOLD-AND-MODIFY MODE 

In hold-and-modify mode, the color register contents are changed as shown in Table 3-18. This 
mode is in effect only if bit 10 of BPLCONO = 1. 

Table 3-18: Color Selection in Hold-and-modify Mode 

Bit-plane 6 Bit-plane 5 

o 
o 
1 
1 

o 
1 
o 
1 

Normal operation 
Hold green and red 
Hold green and blue 
Hold blue and red 

Result 

(use color register itself) 
B = Bit-plane 4-1 contents 
R = Bit-plane 4-1 contents 
G = Bit-plane 4-1 contents 

COLOR SELECTION IN HIGH-RESOLUTION MODE 

Table 3-19 shows play field color selection in high-resolution mode. If the bit-combinations from 
the playfields are as shown, the color is taken from the color register number indicated. 
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Table 3-19: High-resolution Color Selection 

Single Dual Color 
Playfield Playfields Register 

Bit-planes 4,3,2,1 Number 
Playfield 1 

Bit-planes 3,1 

0000 00* 0** 
0001 01 1 
0010 10 2 
0011 11 3 

0100 I 4 
0101 NOT USED 5 
0110 IN THIS MODE 6 
0111 I 7 

Playfield 2 
Bit-planes 4,2 

1000 00 * 8 
1001 01 9 
1010 10 10 
1011 11 11 

1100 12 
1101 NOT USED 13 
1110 IN THIS MODE 14 
1111 I 15 

* Selects "transparent" mode. 
** Color register 0 always defines the background color. 
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Chapter 4 

SPRITE HARDWARE 

Introduction 

Sprites are hardware objects that are created and moved independently of the playfield display 
and independently of each other. Together with playfields, sprites fonn the graphics display of 
the Amiga. You can create more complex animation effects by using the bUtter, which is 
described in the chapter called "Blitter Hardware." Sprites are produced on-screen by eight 
special-purpose sprite DMA channels. Basic sprites are 16 pixels wide and any number of lines 
high. You can choose from three colors for a sprite's pixels, and a pixel may also be transparent, 
showing any object behind the sprite. For larger or more complex objects, or for more color 
choices, you can combine sprites. 
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Sprite DMA channels can be reused several times within the same display field. Thus, you are 
not limited to having only eight sprites on the screen at the same time. 

ABOUT TillS CHAPTER 

This chapter discusses the following topics: 

• Defining the size, shape, color, and screen position of sprites. 

• Displaying and moving sprites. 

Combining sprites for more complex images, additional width, or additional colors. 

• Reusing a sprite DMA channel multiple times within a display field to create more than 
eight sprites on the screen at one time. 

Forming a Sprite 

To form a sprite, you must first define it and then create a formal data structure in memory. You 
define a sprite by specifying its characteristics: 

On-screen width of up to 16 pixels. 

• Unlimited height. 

• Any shape. 

• A combination of three colors, plus transparent. 

• Any position on the screen. 

SCREEN POSITION 

A sprite's screen position is defined as a set of X,Y coordinates. Position (0,0), where X = 0 and 
Y = 0, is the upper left-hand comer of the display. You define a sprite's location by specifying 
the coordinates of its upper left-hand pixel. Sprite position is always defined as though the 
display modes were low-resolution and non-interlaced. The X,Y coordinate system and definition 
of a sprite's position are graphically represented in Figure 4-1. Notice that because of display 
overscan, position (0,0) (that is, X = 0, Y = 0) is not normally in a viewable region of the 
screen. 
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Visible Screen Area 

Figure 4-1: Defining Sprite On-screen Position 

The amount of viewable area is also affected by the size of the playfield display window (defined 
by the values in DDFSTRT, DDFSTOP, DIWSTRT, DIWSTOP, etc.). See the "Playfield 
Hardware" chapter for more information about overscan and display windows. 

Horizontal Position 

A sprite's horizontal position (X value) can be at any pixel on the screen from 0 to 447. To be 
visible, however, an object must be within the boundaries of the playfield display window. In the 
examples in this chapter, a window with horizontal positions from pixel 64 to pixel 383 is used 
(that is, each line is 320 pixels long). Larger or smaller windows can be defined as required, but it 
is recommended that you read the "Playfield Hardware" chapter before attempting to do so. A 
larger area is actually scanned by the video beam but is not usually visible on the screen. 

If you specify an X value for a sprite that takes it outside the display window, then part or all of 
the sprite may not appear on the screen. This is sometimes desirable; such a sprite is said to be 
•• clipped. " 

To make a sprite appear in its correct on-screen horizontal position in the display window, simply 
add its left offset to the desired X value. In the example given above, this would involve adding 
64 to the X value. For example, to make the upper leftmost pixel of a sprite appear at a position 
94 pixels from the left edge of the screen, you would perform this calculation: 

Desired X position + horizontal-offset of display window = 94 + 64 = 158 
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Thus, 158 becomes the X value, which will be written into the data structure. 

NOTE 

The X position represents the location of the very first (leftmost) pixel in the full 16-
bit-wide sprite. This is always the case, even if the leftmost pixels are specified as 
transparent and do not appear on the screen. 

If the sprite shown in Figure 4-2 were located at an X value of 158, the actual image would begin 
on-screen four pixels later at 162. The first four pixels in this sprite are transparent and allow the 
background to show through. 

4 

I '""'''~---16 PixeIS------i .. ~1 

Figure 4-2: Position of Sprites 

Vertical Position 

You can select any position from line 0 to line 262 for the topmost edge of the sprite. In the 
examples in this chapter, an NTSC window with vertical positions from line 44 to line 243 is 
used. This allows the nonnal display height of 200 lines in non-interlaced mode. If you specify a 
vertical position (Y value) of less than 44 (Le., above the top of the display window) the top edge 
of the sprite may not appear on screen. 

To make a sprite appear in its correct on-screen vertical position, add the Y value to the desired 
position. Using the above numbers, add 44 to the desired Y position. For example, to make the 
upper leftmost pixel appear 25 lines below the top edge of the screen, perfonn this calculation: 

Desired Y position + vertical-offset o/the display window = 25 + 44 = 69 

Thus, 69 is the Y value you will write into the data structure. 
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Clipped Sprites 

As noted above, sprites will be partially or totally clipped if they pass across or beyond the 
boundaries of the display window. The values of 64 (horizontal) and 44 (vertical) are "normal" 
for a centered display on a standard NTSC video monitor. See Chapter 3, "Playfield Hardware", 
for more information on display offsets. Information on PAL displays will be found there. If you 
choose other values to establish your display window, your sprites will be clipped accordingly. 

SIZE OF SPRITES 

Sprites are 16 pixels wide and can be almost any height you wish - as short as one line or taller 
than the screen. You would probably move a very tall sprite vertically to display a portion of it at 
a time. 

Sprite size is based on a pixel that is 1/32Oth of a screen's width, 1!20Oth of a NTSC screen's 
height, or 1/256 of a PAL screen's height. This pixel size corresponds to the low-resolution and 
non-interlaced modes of the normal full-size playfield. Sprites, however, are independent of 
play field modes of display, so changing the resolution or interlace mode of the playfield has no 
effect on the size or resolution of a sprite. 

SHAPE OF SPRITES 

A sprite can have any shape that will fit within the 16-pixel width. You define a sprite's shape by 
specifying which pixels actually appear in each of the sprite's locations. For example, Figures 
4-3 and 4-4 show a spaceship whose shape is marked by Xs. The first figure shows only the 
spaceship as you might sketch it out on graph paper. The second figure shows the spaceship 
within the 16-pixel width. The Os around the spaceship mark the part of the sprite not covered by 
the spaceship and transparent when displayed. 

xx 
XXXXXX 

XXXXXXXXXX 
XXXXXXXXXX 

XXXXXX 
XX 

Figure 4-3: Shape of Spaceship 
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o 0 0 0 X X o 0 0 0 0 0 0 0 0 0 
o 0 x x x x x x o 0 0 0 0 0 0 0 
X X X X X X X X X X 0 0 0 0 0 0 
X X X X X X X X X X 0 0 0 0 0 0 
o 0 x x x x x x 0 0 0 0 0 0 0 0 
o 0 0 0 X X 000 0 0 0 0 0 0 0 

Figure 4-4: Sprite with Spaceship Shape Defined 

In this example, the widest part of the shape is ten pixels and the shape is shifted to the left of the 
sprite. Whenever the shape is narrower than the sprite, you can control which part of the sprite is 
used to define the shape. This particular shape could also start at any of the pixels from 2-7 
instead of pixel 1. 

SPRITE COLOR 

When sprites are used individuaily (that is, not "attached" as described under "Attached 
Sprites" later), each pixel can be one of three colors or transparent Colors are selected in much 
the same manner as playfield colors. Figure 4-5 shows how the color of each pixel in a sprite is 
determined. 
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Transparent 

High-order word of sprite data line 

Low-order word of sprite data line 

Forms a binary 
code, used as 

the color choice 
from a group of 
color registers. 

Figure 4-5: Sprite Color Definition 

The Os and Is in the two data words that define each line of a sprite in the data structure fonn a 
binary number. This binary number points to one of the four color registers assigned to that par
ticular sprite DMA channel. The eight sprites use system color registers 16 - 31. For purposes of 
color selection, the eight sprites are organized into pairs and each pair uses four of the color regis
ters as shown in Figure 4-6. 

NOTE 

The color value of the first register in each group of four registers is ignored by 
sprites. When the sprite bits select this register, the "transparent" value is used. 
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Codes 01, 10, or 11 
select one of three 
possible registers 
from the normal 
color register group, 
from which the 
actual color data 
is taken. 

Sprite 0 or 1 

'{

OO 
01 
10 
11 

Sprite 2 or 3 '{ 00 

01 
10 
11 

Sprite 4 or 5 '{ 
00 
01 
10 
11 

Sprite 6 or 7 '{ 00 

01 
10 
11 

Color Register Set 

Unused 

Unused 

Unused 

Unused 

Figure 4-6: Color Register Assignments 

~ 
~YieldS 
~ Transparent 

V 28 

31 

If you require certain colors in a sprite, you will want to load the sprite's color registers with those colors. The' 'Playfield Hardware" chapter contains instructions on loading color registers. 

The binary number 00 is special in this color scheme. A pixel whose value is 00 becomes transparent and shows the color of any other sprite or playfield that has lower video priority. An object with low priority appears "behind" an object with higher priority. Each sprite has a fixed video priority with respect to all the other sprites. You can vary the priority between sprites and playfields. (See Chapter 7, "System Control Hardware," for more information about sprite priority.) 
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DESIGNING A SPRITE 

For design purposes, it is convenient to layout the sprite on paper first. You can show the desired 
colors as numbers from 0 to 3. For example, the spaceship shown above might look like this: 

0000122332210000 
0001223333221000 
0012223333222100 
0001223333221000 
0000122332210000 

The next step is to convert the numbers 0-3 into binary numbers, which will be used to build the 
color descriptor words of the sprite data structure. The section below shows how to do this. 

BUILDING THE DATA STRUCTURE 

After defining the sprite, you need to build its data structure, which is a series of 16-bit words in a 
contiguous memory area. Some of the words contain position and control information and some 
contain color descriptions. To create a sprite's data structure, you need to: 

• Write the horizontal and vertical position of the sprite into the first control word. 

• Write the vertical stopping position into the second control word. 

• Translate the decimal color numbers 0 - 3 in your sprite grid picture into binary color 
numbers. Use the binary values to build color descriptor (data) words and write these 
words into the data structure. 

• Write the control words that indicate the end of the sprite data structure. 

NOTE 

Sprite data, like all other data accessed by the custom chips, must be loaded into Chip 
RAM. Be sure all of your sprite data structures are word aligned in Chip Memory. 

Table 4-1 shows a sprite data structure with the memory location and function of each word: 
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Memory 
Location 

N 
N+l 
N+2 
N+3 
N+4 
N+5 

Table 4-1: Sprite Data Structure 

16-bit Word 

Sprite control word 1 
Sprite control word 2 
Color descriptor low word 
Color descriptor high word 
Color descriptor low word 
Color descriptor high word 

End-of-data words 

Function 

Vertical and horizontal start position 
Vertical stop position 
Color bits for line 1 
Color bits for line 1 
Color bits for line 2 
Color bits for line 2 

Two words indicating 
the next usage of this sprite 

All memory addresses for sprites are word addresses. You will need enough contiguous memory 
to provide room for two words for the control information, two words for each horizontal line in 
the sprite, and two end -of-data words. 

Because this data structure must be accessible by the special-purpose chips, you must ensure that 
this data is located within chip memory. 

Figure 4-7 shows how the data structure relates to the sprite. 
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Increasing 
addresses 

.... f------16 bits--------1~ 

VST ART, HST ART 

VSTOP, control bits 

Low word of data, line 1 

High word of data, line 1 

Data describing 
central lines of 

this sprite 

Low word of data, last line 

High word of data, last line 

000 0 0 0 0 0 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Part 
of a 

screen 
display 

HSTART 

VSTART 

VSTOP 

Figure 4-7: Data Structure Layout 

Each group of words defines one 
vertical usage of a sprite. 
Contains starting location and 
physical appearance of this 
sprite image. 

Pairs of words containing 
color information for pixel 
lines. 

Last word pair contains a" 
zeros if this sprite processor is 
to be used only once vertically 
in the display frame. 

EACH WORD PAIR 

Low word of pair 

High word of pair 

DESCRIBES ONE VIDEO 
LINE OF THE SPRITE 
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Sprite Control Word 1: SPRxPOS 

This word contains the vertical (VST ART) and horizontal (HST ART) starting position for the 
sprite. This is where the topmost line of the sprite will be positioned. 

Bits 15-8 contain the low 8 bits of VST ART 
Bits 7-0 contain the high 8 bits of HSTART 

Sprite Control Word 2 : SPRxCTL 

This word contains the vertical stopping position of the sprite on the screen (Le., the line AFfER 
the last displayed row of the sprite). It also contains some data having to do with sprite attach
ment, which is described later on. 

Bits 15-8 
Bit 7 
Bits 6-3 
Bit 2 
Bit 1 
Bit 0 

SPRxCfL 

The low eight bits of VSTOP 
(Used in attachment) 
Unused (make zero) 
The VST ART high bit 
The VSTOP high bit 
The HST ART low bit 

The value (VSTOP - VST ART) defines how many scan lines high the sprite will be when it is 
displayed. 

Sprite Color Descriptor Words 

It takes two color descriptor words to describe each horizontal line of a sprite; the high-order 
word and the low-order word. To calculate how many color descriptor words you need, multiply 
the height of the sprite in lines by 2. The bits in the high-order color descriptor word contribute 
the leftmost digit of the binary color selector number for each pixel; the low-order word contri
butes the rightmost digit. 
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To fonn the color descriptor words, you first need to fonn a picture of the sprite, showing the 
color of each pixel as a number from 0 - 3. Each number represents one of the colors in the 
sprite's color registers. For example, here is the spaceship sprite again: 

0000122332210000 
0001223333221000 
0012223333222100 
0001223333221000 
0000122332210000 

Next, you translate each of the numbers in this picture into a binary number. The first line in 
binary is shown below. The binary numbers are represented vertically with the low digit in the 
top line and the high digit right below it. This is how the two color descriptor words for each 
sprite line are written in memory. 

o 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 f- Low Sprite Word 
000001 1 1 1 1 100000 f- High Sprite Word 

The first line above becomes the color descriptor low word for line 1 of the sprite. The second 
line becomes the color descriptor high word. In this fashion, you translate each line in the sprite 
into binary Os and Is. See Figure 4-7. 

Each of the binary numbers fonned by the combination of the two data words for each line refers 
to a specific color register in that particular sprite channel's segment of the color table. Sprite 
channel 0, for example, takes its colors from registers 17 - 19. The binary numbers corresponding 
to the color registers for sprite DMA channel 0 are shown in Table 4-2. 

Table 4-2: Sprite Color Registers 

Binary Number Color Register Number 

00 Transparent 
01 17 
10 18 
11 19 

Recall that binary 00 always means transparent and never refers to a color except background. 

End-of-data Words 

When the vertical position of the beam counter is equal to the VSTOP value in the sprite control 
words, the next two words fetched from the sprite data structure are written into the sprite control 
registers instead of being sent to the color registers. These two words are interpreted by the 
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hardware in the same manner as the original words that were first loaded into the control registers. 
If the VST ART value contained in these words is lower than the current beam position, this sprite 
will not be reused in this display field. For consistency, the value 0 should be used for both 
words when ending the usage of a sprite. Sprite reuse is discussed later. 

The following data structure is for the spaceship sprite. It will be located at V = 65 and 
H = 128 on the nonnally visible part of the screen. 

SPRITE: 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

$6D60, $7200 
$0990,$07EO 
$13C8,$OFFO 
$23C4,$lFF8 
$13C8,$OFFO 
$0990,$07EO 
$0000,$0000 

Displaying a Sprite 

;VSTART, HSTART, VSTOP 
;First pair of descriptor words 

;End of sprite data 

After building the data structure, you need to tell the system to display it. This section describes 
the display of sprites in "automatic" mode. In this mode, once the sprite DMA channel begins to 
retrieve and display the data, the display continues until the VSTOP position is reached. Manual 
mode is described later on in this chapter. 

The following steps are used in displaying the sprite: 

1. Decide which of the eight sprite DMA channels to use (making certain that the chosen 
channel is available). 

2. Set the sprite pointers to tell the system where to find the sprite data. 

3. Tum on sprite direct memory access if it is not already on. 

4. For each subsequent display field. during the vertical blanking interval, rewrite the sprite 
pointers. 

CAUTION 

If sprite DMA is turned off while a sprite is being displayed (that is, after VSTART 
but before VSTOP), the system will continue to display the line of sprite data that was 
most recently fetched. This causes a vertical bar to appear on the screen. It is recom
mended that sprite DMA be turned off only during vertical blanking or during some 
portion of the display where you are sure that no sprite is being displayed. 
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SELECTING A DMA CHANNEL AND SETTING THE POINTERS 

In deciding which DMA channel to use, you should take into consideration the colors assigned to 
the sprite and the sprite's video priority. 

The sprite DMA channel uses two pointers to read in sprite data and control words. During the 
vertical blanking interval before the first display of the sprite, you need to write the sprite's 
memory address into these pointers. The pointers for each sprite are called SPRxPTH and 
SPRxPTL, where "x" is the number of the sprite DMA channel. SPRxPTH contains the high 
three bits of the memory address of the first word in the sprite and SPRxPTL contains the low 
sixteen bits. The least significant bit of SPRxPTL is ignored, as sprite data must be word aligned. 
Thus, only fifteen bits of SPRxPTL are used. As usual, you can write a long word into 
SPRxPTH. 

In the following example the processor initializes the data pointers for sprite O. Normally, this is 
done by the Copper. The sprite is at address $20000. 

MOVE.L #$20000,SPROPTH+CUSTOM ;Write $20000 to sprite 0 pointer ••• 

These pointers are dynamic; they are incremented by the sprite DMA channel to point first to the 
control words, then to the data words, and finally to the end-of-data words. After reading in the 
sprite control information and storing it in other registers, they proceed to read in the color 
descriptor words. The color descriptor words are stored in sprite data registers, which are used by 
the sprite DMA channel to display the data on screen. For more information about how the sprite 
DMA channels handle the display, see the "Hardware Details" section below. 

RESETTING THE ADDRESS POINTERS 

For one single display field, the system will automatically read the data structure and produce the 
sprite on-screen in the colors that are specified in the sprite's color registers. If you want the 
sprite to be displayed in subsequent display fields, you must rewrite the contents of the sprite 
pointers during each vertical blanking interval. This is necessary because during the display field, 
the pointers are incremented to point to the data which is being fetched as the screen display 
progresses. 

The rewrite becomes part of the vertical blanking routine, which can be handled by instructions in 
the Copper lists. 
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SPRITE DISPLAY EXAMPLE 

This example displays the spaceship sprite at location V = 65, H = 128. Remember to include 
the file "hw_examplesJ", located in Appendix J. 

First, we set up a single bit-plane. 

LEA CUSTOM,aO 
MOVE.W #$1200, BPLCONO (aO) 
MOVE.W #$0000,BPL1MOD(aO) 
MOVE.W #$0000,BPLCON1(aO) 
MOVE.W #$0024,BPLCON2(aO) 
MOVE.W #$0038,DDFSTRT(aO) 
MOVE.W #$OODO,DDFSTOP(aO) 

Display window definitions. 

MOVE.W #$2C81,DIWSTRT(aO) 

MOVE.W #$F4C1,DIWSTOP(aO) 

Set up color registers. 

MOVE.W #$0008,COLOROO(aO) 
MOVE.W #$0000,COLOR01(aO) 
MOVE.W #$OFFO,COLOR17 (aO) 
MOVE.W #$00FF,COLOR18 (aO) 
MOVE.W #$OFOF,COLOR19 (aO) 

Move Copper list to $20000. 

MOVE.L #$20000,a1 
LEA COPPERL(pc),a2 

CLOOP: 
MOVE.L (a2), (a1) + 
CMP.L #$FFFFFFFE, (a2)+ 
BNE CLOOP 

Move sprite to $25000. 

MOVE.L #$25000,a1 
LEA SPRITE(pc),a2 

SPRLOOP: 
MOVE.L (a2), (a1) + 
CMP.L #$00000000, (a2) + 
BNE SPRLOOP 

;Point aO at custom chips 
:1 bit-plane color is on 
;Modulo = 0 
;Horizontal scroll value = 0 
;Sprites have priority over playfields 
;Set data-fetch start 
;Set data-fetch stop 

;Set display window start 
;Vertical start in high byte. 
;Horizontal start * 2 in low byte. 
;Set display window stop 
;Vertical stop in high byte. 
;Horizontal stop * 2 in low byte. 

;Background color = dark blue 
;Foreground color = black 
;Color 17 yellow 
;Color 18 cyan 
;Color 19 magenta 

;Point Al at Copper list destination 
:Point A2 at Copper list source 

;Move a long word 
;Check for end of list 
;Loop until entire list is moved 

;Point A1 at sprite destination 
;Point A2 at sprite source 

;Move a long word 
;Check for end of sprite 
;Loop until entire sprite is moved 

Now we write a dummy sprite to $30000, since all eight sprites are activated 
at the same time and we're only going to use one. The remaining sprites 
will point to this dummy sprite data. 

MOVE.L #$00000000,$30000 ;Write it 

Point Copper at Copper list. 
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MOVE.L #$20000,COPILC(aO) 

Fill bit-plane with $FFFFFFFF. 

MOVE.L lt$21000,al 
MOVE.W U999,dO 

FLOOP 
MOVE.L #$FFFFFFFF, (al)+ 
DBF dO,FLOOP 

Start DMA. 

MOVE.W dO, COP JMP 1 (aO) 

MOVE.W #$83AO, DMACON (aO) 
RTS 

;Point Al at bit-plane 
;2000-1 (for dbf) long words - 8000 bytes 

;Move a long word of $FFFFFFFF 
; Decrement, repeat until false. 

;Force load into Copper 
program counter 

; Bit-plane, Copper, and sprite DMA 
; •• return to rest of program •• 

This is a Copper list for one bit-plane, and 8 sprites. 
The bit-plane lives at $21000. 

; Sprite 0 lives at $25000; all others live at $30000 (the dummy sprite). 
; 
COPPERL: 

Sprite 

SPRITE: 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

data 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

BPLIPTH,$0002 
BPLIPTL, $1000 
SPROPTH,$0002 
SPROPTL,$5000 
SPRIPTH,$0003 
SPRIPTL,$OOOO 
SPR2PTH,$0003 
SPR2PTL,$0000 
SPR3PTH,$0003 
SPR3PTL,$0000 
SPR4PTH,$0003 
SPR4PTL,$0000 
SPR5PTH,$0003 
SPR5PTL,$0000 
SPR6PTH,$0003 
SPR6PTL,$0000 
SPR7PTH,$0003 
SPR7PTL,$0000 
$FFFF,$FFFE 

for spaceship 

$6D60,$7200 
$0990,$07EO 
$13C8,$OFFO 
$23C4,$lFF8 
$13C8,$OFFO 
$0990,$07EO 
$0000,$0000 

sprite. It 

;Bit plane 1 pointer = $21000 

; Sprite 0 pointer $25000 

; Sprite 1 pointer - $30000 

; Sprite 2 pointer = $30000 

; Sprite 3 pointer $30000 

; Sprite 4 pointer - $30000 

; Sprite 5 pointer = $30000 

; Sprite 6 pointer $30000 

; Sprite 7 pointer = $30000 

;End of Copper list 

appears on the screen at V-65 and H-128. 

;VSTART, HSTART, VSTOP 
;First pair of descriptor words 

;End of sprite data 
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Moving a Sprite 

A sprite generated in automatic mode can be moved by specifying a different position in the data 
structure. For each display field, the data is reread and the sprite redrawn. Therefore, if you 
change the position data before the sprite is redrawn, it will appear in a new position and will 
seem to be moving. 

You must take care that you are not moving the sprite (that is, changing control word data) at the 
same time that the system is using that data to find out where to display the object. If you do so, 
the system might find the start position for one field and the stop position for the following field 
as it retrieves data for display. This would cause a "glitch" and would mess up the screen. 
Therefore, you should change the content of the control words only during a time when the sys
tem is not trying to read them. Usually, the vertical blanking period is a safe time, so moving the 
sprites becomes part of the vertical blanking tasks and is handled by the Copper as shown in the 
example below. 

As sprites move about on the screen, they can collide with each other or with either of the two 
play fields. You can use the hardware to detect these collisions and exploit this capability for spe
cial effects. In addition, you can use collision detection to keep a moving object within specified 
on-screen boundaries. Collision Detection is described in Chapter 7, "System Control 
Hardware. " 

In this example of moving a sprite, the spaceship is bounced around on the screen, changing 
direction whenever it reaches an edge. 

The sprite position data, containing VSTART and HSTART, lives in memory at $25000. 
VSTOP is located at $25002. You write to these locations to move the sprite. Once during each 
frame, VSTART is incremented (or decremented) by I and HSTART by 2. Then a new VSTOP 
is calculated, which will be the new VST ART + 6. 

MOVE.B #151, dO 
MOVE.B #194,d1 
MOVE.B #64,d2 
MOVE.B #44,d3 
MOVE.B #1, d4 
MOVE.B #1,d5 

;Initialize horizontal count 
;Initialize vertical count 
;Initialize horizontal position 
;Initialize vertical position 
;Initialize horizontal increment value 
;Initialize vertical increment value 

;Here we wait for the start of the screen updating. 
;This ensures a glitch-free display. 

LEA CUSTOM,aO ;Set custom chip base pointer 
VLOOP: 

MOVE.B VHPOSR(aO),d6 ;Read Vertical beam position. 
;Only insert the folllowing line if you are using a PAL machine. 

CMP.B #$20,d6 ;Compare with end of PAL screen. 
BNE.S VLOOP ;Loop if not end of screen. 

;Alternatively you can use the following code: 
;VLOOP: 
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MOVE.W 
AND.W 
BEQ 
MOVE.W 

INTREQR(aO),d6 
#$0020,d6 
VLOOP 
#$0020,INTREQ(aO) 

;Read interrupt request word 
;Mask off all but vertical blank bit 
;Loop until bit is a 1 
;Vertical bit is on, so reset it 

;Please note that this will only work if you have turned OFF the Vertical 
;blanking interupt enable (not recommended for long periods) • 

ADD.B d4,d2 ;Increment horizontal value 
SUBQ.B #1, dO ;Decrement horizontal counter 
BNE L1 
MOVE.B #151,dO ;Count exhausted, reset to 151 
EOR.B #$FE,d4 ;Negate the increment value 

L1: MOVE.B d2,$25001 ;Write new HSTART value to sprite 
ADD.B d5,d3 ;Increment vertical value 
SUBQ.B #1,d1 ;Decrement vertical counter 
BNE L2 
MOVE.B #194, d1 ;Count exhausted, reset to 194 
EOR.B #$FE,d5 ;Negate the increment value 

L2: MOVE.B d3,$25000 ;Write new VSTART value to sprite 
MOVE.B d3,d6 ;Must now calculate new VSTOP 
ADD.B #6,d6 ;VSTOP always VSTART+6 for spaceship 
MOVE.B d6,$25002 ;Write new VSTOP to sprite 
BRA VLOOP ;Loop forever 

Creating Additional Sprites 

To use additional sprites, you must create a data structure for each one and arrange the display as 
shown in the previous section, naming the pointers SPRIPTH and SPRIPTL for sprite DMA 
channell, SPR2PTH and SPR2PTL for sprite DMA channel 2, and so on. 

NOTE 

When you enable sprite DMA for one sprite, you enable DMA for all the sprites and 
place them all in automatic mode. Thus, you do not need to repeat this step when 
using additional sprite DMA channels. 

Once the sprite DMA channels are enabled, all eight sprite pointers must be initialized to either a 
real sprite or a safe null sprite. An uninitialized sprite could cause spurious sprite video to appear. 

Remember that some sprites can become unusable when additional DMA cycles are allocated to 
displaying the screen, for example when an extra wide display or horizontal scrolling is enabled 
(see Figure 6-9: DMA Time Slot Allocation). 

Also, recall that each pair of sprites takes its color from different color registers, as shown in 
Table 4-3. 
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Table 4-3: Color Registers for Sprite Pairs 

Sprite Numbers 

o and 1 
2 and 3 
4 and 5 
6 and 7 

Color Registers 

17 - 19 
21 - 23 
25 - 27 
29 - 31 

NOTE 

Some sprites become unusable when additional DMA cycles are allocated to display
ing the screen, e.g. when enabling an extra wide display or horizontal scrolling. (See 
Figure 6-11: DMA Time Slot Allocation.) 

SPRITE PRIORITY 

When you have more than one sprite on the screen, you may need to take into consideration their 
relative video priority, that is, which sprite appears in front of or behind another. Each sprite has 
a fixed video priority with respect to all the others. The lowest numbered sprite has the highest 
priority and appears in front of all other sprites; the highest numbered sprite has the lowest prior
ity. This is illustrated in Figure 4-8. 

NOTE 

See Chapter 7, •• System Control Hardware" , for more information on sprite priorities. 

I 7 
I 6 

I 5 I--I 4 I--
I 3 f--

I 2 I--
I 1 

~ 
0 I--

I--

Figure 4-8: Sprite Priority 
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Reusing Sprite DMA Channels 

Each of the eight sprite DMA channels can produce more than one independently controllable 
image. There may be times when you want more than eight objects, or you may be left with 
fewer than eight objects because you have attached some of the sprites to produce more colors or 
larger objects or overlapped some to produce more complex images. You can reuse each sprite 
DMA channel several times within the same display field, as shown in Figure 4-9. 

Part 
of. a 

screen 
display 

Each image of this sprite 
may be placed at any 
desired spot, horizontally 
or vertically. However, 
at least one video line 
must separate the bottom 
of one usage of a sprite 
from the starting point 
of the next usage. 

Figure 4-9: Typical Example of Sprite Reuse 

In single-sprite usage, two all-zero words are placed at the end of the data structure to stop the 
DMA channel from retrieving any more data for that particular sprite during that display field. To 
reuse a DMA channel, you replace this pair of zero words with another complete sprite data struc
ture, which describes the reuse of the DMA channel at a position lower on the screen than the first 
use. You place the two all-zero words at the end of the data structure that contains the informa
tion for all usages of the DMA channe1. For example, Figure 4-10 shows the data structure that 
describes the picture above. 
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Increasing 
RAM 

Memory 
Addresses 

SPRITE DISPLAY LIST 

~Data describing the first vertical 
/' usage of this sprite. 

Data describing the second vertical 
usage of this sprite. Contents of 
vertical start word must be at least 
one video line below actual end of 
preceding usage. 

End-of-data words ending the 
usage of this sprite. 

Figure 4-10: Typical Data Structure for Sprite Re-use 

The only restrictions on the reuse of sprites during a single display field is that the bottom line of 
one usage of a sprite' must be separated from the top line of the next usage by at least one horizon
tal scan line. This restriction is necessary because only two DMA cycles per horizontal scan line 
are allotted to each of the eight channels. The sprite channel needs the time during the blank line 
to fetch the control word describing the next usage of the sprite. 
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The following example displays the spaceship sprite and then redisplays it as a different object. 
Only the sprite data list is affected, so only the data list is shown here. However, the sprite looks 
best with the color registers set as shown in the example. 

SPRITE: 

LEA CUSTOM,aO 
MOVE.W t$OFOO,COLOR17 (aO) 
MOVE.W t$OFFO,COLOR18 (aO) 
MOVE.W t$OFFF,COLOR19 (aO) 

DC.W $6D60, $7200 
DC.W $0990,$07EO 
DC.W $13C8,$OFFO 
DC.W $23C4,$1FF8 
DC.W $13C8,$OFFO 
DC.W $0990,$07EO 

;Color 17 - red 
;Color 18 = yellow 
;Color 19 = white 

DC.W $8080,$8DOO ;VSTART, HSTART, VSTOP for new sprite 
DC.W $1818,$0000 
DC.W $7E7E,$0000 
DC.W $7FFE,$0000 
DC.W $FFFF,$2000 
DC.W $FFFF,$2000 
DC.W $FFFF,$3000 
DC.W $FFFF,$3000 
DC.W $7FFE,$1800 
DC.W $7FFE,$OCOO 
DC.W $3FFC,$0000 
DC.W $OFFO,$OOOO 
DC.W $03CO,$0000 
DC.W $0180,$0000 
DC.W $0000,$0000 ;End of sprite data 

Overlapped Sprites 

For more complex or larger moving objects, you can overlap sprites. Overlapping simply means 
that the sprites have the same or relatively close screen positions. A relatively close screen posi
tion can result in an object that is wider than 16 pixels. 

The built-in sprite video priority ensures that one sprite appears to be behind the other when 
sprites are overlapped. The priority circuitry gives the lowest-numbered sprite the highest prior
ity and the highest numbered sprite the lowest priority. Therefore, when designing displays with 
overlapped sprites, make sure the "foreground" sprite has a lower number than the "back
ground" sprite. In Figure 4-11, for example, the cage should be generated by a lower-numbered 
sprite DMA channel than the monkey. 
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Individual sprites 
can be combined 
by simple overlap, 

..... t---"'7"-Built in sprite "Priority" 
displays one sprite 
behind the other 
when overlapped, 

Figure 4-11: Overlapping Sprites (Not Attached) 

You can create a wider sprite display by placing two sprites next to each other. For instance, Fig
ure 4-12 shows the spaceship sprite and how it can be made twice as large by using two sprites 
placed next to each other. 
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(128.65) 

1~1 
(128.65) (144.65) 

Sprite 0 Sprite 1 

Figure 4-12: Placing Sprites Next to Each Other 

Attached Sprites 

You can create sprites that have fifteen possible color choices (plus transparent) instead of three 
(Plus transparent), by "attaching" two sprites. To create attached sprites, you must: 

• Use two channels per sprite, creating two sprites of the same size and located at the same 
position. 

• Set a bit called ATTACH in the second sprite control word. 

The fifteen colors are selected from the full range of color registers available to sprites - regis
ters 17 through 31. The extra color choices are possible because each pixel contains four bits 
instead of only two as in the nonnal, unattached sprite. Each sprite in the attached pair contri
butes two bits to the binary color selector number. For example, if you are using sprite DMA 
channels 0 and 1, the high- and low-order color descriptor words for line 1 in both data structures 
are combined into line 1 of the attached object. 
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Sprites can be attached in the following combinations: 

Sprite 1 to sprite 0 
Sprite 3 to sprite 2 
Sprite 5 to sprite 4 
Sprite 7 to sprite 6 

Any or all of these attachments can be active during the same display field. As an example, 
assume that you wish to have more colors in the spaceship sprite and you are using sprite DMA 
channels 0 and 1. There are five colors plus transparent in this sprite. 

0000154444510000 
0001564444651000 
0015676446765100 
0001564444651000 
0000154444510000 

The first line in this sprite requires the four data words shown in Table 4-4 to form the correct 
binary color selector numbers. 

Table 4-4: Data Words for First Line of Spaceship Sprite 

Pixel Number 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Line 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Line 2 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 
Line 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Line 4 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 

The highest numbered sprite (number 1, in this example) contributes the highest order bits (left
most) in the binary number. The high-order data word in each sprite contributes the leftmost 
digit. Therefore, the lines above are written to the sprite data structures as follows: 

Line 1 
Line 2 
Line 3 
Line 4 

Sprite 1 high-order word for sprite line 1 
Sprite 1 low-order word for sprite line 1 
Sprite 0 high-order word for sprite line 1 
Sprite 0 low-order word for sprite line 1 

See Figure 4-7 for the order these words are stored in memory. Remember that this data is con
tained in two sprite structures. 
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The binary numbers 0 through 15 select registers 17 through 31 as shown in Table 4-5. 

Table 4-5: Color Registers in Attached Sprites 

Decimal 
Number 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Binary 
Number 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Color Register 
Number 

16 * 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

* Unused; yields transparent pixel. 

Attachment is in effect only when the ATTACH bit, bit 7 in sprite control word 2, is set to 1 in 
the data structure for the odd-numbered sprite. So, in this example, you set bit 7 in sprite control 
word 2 in the data structure for sprite 1. 

When the sprites are moved, the Copper list must keep them both at exactly the same position 
relative to each other. If they are not kept together on the screen, their pixels will change color. 
Each sprite will revert to three colors plus transparent, but the colors may be different than if they 
were ordinary, unattached sprites. The color selection for the lower numbered sprite will be from 
color registers 17-19. The color selection for the higher numbered sprite will be from color regis
ters 20, 24, and 28. 
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The following data structure is for the six-color spaceship made with two attached sprites. 

SPRITEO: 
OC.W $6060,$7200 
Oc.w $OC30,$0000 
OC.W $1818,$0420 
OC.W $342C,$OE70 
OC.W $1818,$0420 
OC.w $OC30,$0000 
Oc.w $0000,$0000 

SPRITE1: 
OC.W $6060,$7280 
OC.W $07EO,$0000 
OC.w $OFFO,$OOOO 
Oc.w $lFF8,$0000 
Oc.w $OFFO,$OOOO 
OC.w $07EO,$0000 
Oc.w $0000,$0000 

Manual Mode 

;VSTART = 65, HSTART = 128 
;First color descriptor word 

;End of sprite 0 

;Same as sprite 0 except attach bit on 
;First descriptor word for sprite 1 

;End of sprite 1 

It is almost always best to load sprites using the automatic DMA channels. Sometimes, however, 
it is useful to load these registers directly from one of the microprocessors. Sprites may be 
activated "manually" whenever they are not being used by a DMA channel. The same sprite that 
is showing a DMA-controlled icon near the top of the screen can also be reloaded manually to 
show a vertical colored bar near the bottom of the screen. Sprites can be activated manually even 
when the sprite DMA is turned off. 

You display sprites manually by writing to the sprite data registers SPRxDATB and SPRxDATA, 
in that order. You write to SPRxDATA last because that address "arms" the sprite to be output 
at the next horizontal comparison. The data written will then be displayed on every line, at the 
horizontal position given in the "H" portion of the position registers SPRxPOS and SPRxCfL. 
If the data is unchanged, the result will be a vertical bar. If the data is reloaded for every line, a 
complex sprite can be produced. 

The sprite can be terminated ("disanned") by writing to the SPRxCfL register. If you write to 
the SPRxPOS register, you can manually move the sprite horizontally at any time, even during 
normal sprite usage. 
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Sprite Hardware Details 

Sprites are produced by the circuitry shown in Figure 4-13. This figure shows in block fonn how 
a pair of data words becomes a set of pixels displayed on the screen. 

The circuitry elements for sprite display are explained below. 

• Sprite data registers. The registers SPRxDATA and SPRxDATB hold the bit patterns that 
describe one horizontal line of a sprite for each of the eight sprites. A line is 16 pixels wide, 
and each line is defined by two words to provide selection of three colors and transparent 

• Parallel-to-serial converters. Each of the 16 bits of the sprite data bit pattern is individually 
sent to the color select circuitry at the time that the pixel associated with that bit is being 
displayed on-screen. 

Immediately after the data is transferred from the sprite data registers, each parallel-to-serial 
converter begins shifting the bits out of the converter, most significant (leftmost) bit first 
The shift occurs once during each low-resolution pixel time and continues until all 16 bits 
have been transferred to the display circuitry. The shifting and data output does not begin 
again until the next time this converter is loaded from the data registers. 

Because the video image is produced by an electron beam that is being swept from left to 
right on the screen, the bit-image of the data corresponds exactly to the image that actually 
appears on the screen (most significant data on the left). 

• Sprite serial video data. Sprite data goes to the priority circuit to establish the priority 
between sprites and playfields. 

• Sprite position registers. These registers, called SPRxPOS, contain the horizontal position 
value (X value) and vertical position value (Y value) for each of the eight sprites. 

Sprite control registers. These registers, called SPRxCfL, contain the stopping position for 
each of the eight sprites and whether or not a sprite is attached. 

• Beam counter. The beam counter tells the system the current location of the video beam that 
is producing the picture. 

• Comparator. This device compares the value of the beam counter to the Y value in the posi
tion register SPRxPOS. If the beam has reached the position at which the leftmost upper 
pixel of the sprite is to appear, the comparator issues a load signal to the serial-to-parallel 
converter and the sprite display begins. 
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Converter 

Parallel to Serial 

DATA BUS 

Equal 

SPRxPOS 
Load Decode 

(68000 or DMA) 

"ARM" Sprite 

SPRxDATA 
Load Decode 

(68000 or DMA) 

,...------10 S 

o R SPRxCTL 
Load Decode 

(68000 or DMA) 

Sprite Serial 
Video Data 

------.~-+--------------~ 

Output to 
Video Priority 

Logic 

SPRxDATB 
Load Decode 

(68000 or DMA) 

Figure 4-13: Sprite Control Circuitry 

Figure 4-13 shows the following: 

• Writing to the sprite control registers disables the horizontal comparator circuitry. This 
prevents the system from sending any output from the data registers to the serial converter or 
to the screen. 
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• Writing to the sprite A data register enables the horizontal comparator. This enables output 
to the screen when the horizontal position of the video beam equals the horiwntal value in 
the position register. 

• If the comparator is enabled, the sprite data will be sent to the display, with the leftmost pixel 
of the sprite data placed at the position defined in the horizontal part of SPRxPOS. 

• As long as the comparator remains enabled, the current contents of the sprite data register 
will be output at the selected horizontal position on a video line. 

• The data in the sprite data registers does not change. It is either rewritten by the user or 
modified under DMA control. 

The components described above produce the automatic DMA display as follows: When the 
sprites are in DMA mode, the IS-bit sprite pointer register (composed of SPRxPfH and 
SPRxPTL) is used to read the first two words from the sprite data structure. These words contain 
the starting and stopping position of the sprite. Next, the pointers write these words into 
SPRxPOS and SPRxCTL. After this write, the value in the pointers points to the address of the 
first data word (low word of data for line 1 of the sprite.) 

Writing into the SPRxCTL register disabled the sprite. Now the sprite DMA channel will wait 
until the· vertical beam counter value is the same as the data in the VSTART (Y value) part of 
SPRxPOS. When these values match, the system enables the sprite data access. 

The sprite DMA channel examines the contents of VSTOP (from SPRxCTL, which is the loca
tion of the line after the last line of the sprite) and VST ART (from SPRxPOS) to see how many 
lines of sprite data are to be fetched. Two words are fetched per line of sprite height, and these 
words are written into the sprite data registers. The first word is stored in SPRxDAT A and the 
second word in SPRxDATB. 

The fetch and store for each horiwntal scan line occurs during a horizontal blanking interval, far 
to the left of the start of the screen display. This arms the sprite horizontal comparators and 
allows them to start the output of the sprite data to the screen when the horizontal beam count 
value matches the value stored in the HST ART (X value) part of SPRxPOS. 

If the count of VSTOP - VST ART equals zero, no sprite output occurs. The next data word pair 
will be fetched, but it will not be stored into the sprite data registers. It will instead become the 
next pair of data words for SPRxPOS and SPRxCTL. 

When a sprite is used only once within a single display field, the final pair of data words, which 
follow the sprite color descriptor words, is loaded automatically as the next contents of the 
SPRxPOS and SPRxCTL registers. To stop the sprite after that first data set, the pair of words 
should contain all zeros. 

Thus, if you have fonned a sprite pattern in memory, this same pattern will be produced as pixels 
automatically under DMA control one line at a time. 
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Summary of Sprite Registers 

There are eight complete sets of registers used to describe the sprites. Each set consists of five 
registers. Only the registers for sprite 0 are described here. All of the others are the same, except 
for the name of the register, which includes the appropriate number. 

POINTERS 

Pointers are registers that are used by the system to point to the current data being used. During a 
screen display, the registers are incremented to point to the data being used as the screen display 
progresses. Therefore. pointer registers must be freshly written during the start of the vertical 
blanking period. 

SPROPTH and SPROPTL 

This pair of registers contains the 32-bit word address of Sprite 0 DMA data. 

Pointer register names for the other sprites are: 

CONTROL REGISTERS 

SPROPOS 

SPR 1 PTH 
SPR2PTH 
SPR3PTH 
SPR4PTH 
SPRSPTH 
SPR6PTH 
SPR7PTH 

SPRIPTL 
SPR2PTL 
SPR3PTL 
SPR4PTL 
SPRSPTL 
SPR6PTL 
SPR7PTL 

This is the sprite 0 position register. The word written into this register controls the position on 
the screen at which the upper left-hand comer of the sprite is to be placed. The most significant 
bit of the first data word will be placed in this position on the screen. 
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NOTE 

The sprites have a placement resolution on a full screen of 320 by 200 NTSC (320 by 
256 PAL). The sprite resolution is independent of the bit-plane resolution. 

Bit positions: 

• Bits 15-8 specify the vertical start position, bits V7 - YO. 

• Bits 7-0 specify the horizontal start position, bits H8 - HI. 

NOTE 

This register is nonnally only written by the sprite DMA channel itself. See the 
details above regarding the organization of the sprite data. This register is usually 
updated directly by DMA. 

SPROCTL 

This register is nonnally used only by the sprite DMA channel. It contains control infonnation 
that is used to control the sprite data-fetch process. Bit positions: 

• Bits 15-8 specify vertical stop position for a sprite image, bits V7 - YO. 

• Bit 7 is the attach bit. This bit is valid only for odd-numbered sprites. It indicates that 
sprites 0, 1 (or 2,3 or 4,5 or 6,7) will, for color interpretation, be considered as paired, 
and as such will be called four bits deep. The odd-numbered (higher number) sprite con
tains bits with the higher binary significance. 

During attach mode, the attached sprites are nonnally moved horizontally and vertically 
together under processor control. This allows a greater selection of colors within the 
boundaries of the sprite itself. The sprites, although attached, remain capable of 
independent motion, however, and they will assume this larger color set only when their 
edges overlay one another. 

• Bits 6-3 are reserved for future use (make zero). 

• Bit 2 is bit V8 of vertical start. 

• Bit 1 is bit V8 of vertical stop. 

• Bit 0 is bit HO of horizontal start. 

Sprite Hardware 125 



Position and control registers for the other sprites are: 

DATA REGISTERS 

SPRIPOS 
SPR2POS 
SPR3POS 
SPR4POS 
SPRSPOS 
SPR6POS 
SPR7POS 

SPRICfL 
SPR2CfL 
SPR3CfL 
SPR4CfL 
SPR5CfL 
SPR6CfL 
SPR7CfL 

The following registers, although defined in the address space of the main processor, are nonnally 
used only by the display processor. They are the holding registers for the data obtained by DMA 
cycles. 

SPRODATA, SPRODATB 
SPRIDATA, SPRIDATB 
SPR2DATA, SPR2DATB 
SPR3DATA, SPR3DATB 
SPR4DATA,SPR4DATB 
SPRSDATA, SPR5DATB 
SPR6DATA, SPR6DATB 
SPR7DATA,SPR7DATB 

data registers for Sprite 0 
data registers for Sprite 1 
data registers for Sprite 2 
data registers for Sprite 3 
data registers for Sprite 4 
data registers for Sprite 5 
data registers for Sprite 6 
data registers for Sprite 7 

Summary of Sprite Color Registers 

Sprite data words are used to select the color of the sprite pixels from the system color register set 
as indicated in the following tables. 

If the bit combinations from single sprites are as shown in Table 4-6, then the colors will be taken 
from the registers shown. 
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Table 4-6: Color Registers for Single Sprites 

Single Sprites Color 
Sprite Value Register 

o or 1 00 Not used * 
01 17 
10 18 
11 19 

2or3 00 Not used * 
01 21 
10 22 
11 23 

4or5 00 Not used • 
01 25 
10 26 
11 27 

6or7 00 Not used * 
01 29 
10 30 
11 31 

* Selects transparent mode. 

If the bit combinations from attached sprites are as shown in Table 4-7, then the colors will be 
taken from the registers shown. 
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Table 4-7: Color Registers for Attached Sprites 

Attached Sprites 
Color 

Value Register 

0000 Selects transparent mode 
0001 17 
0010 18 
0011 19 
0100 20 
0101 21 
0110 22 
0111 23 
1000 24 
1001 25 
1010 26 
1011 27 
1100 28 
1101 29 
1110 30 
1111 31 

INTERACTIONS AMONG SPRITES AND OTHER OBJECTS 

Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows how playfields can be given different video display priorities relative to the sprites and how playfields can collide with (overlap) the sprites or each other. 
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Chapter 5 

AUDIO HARDWARE 

Introduction 

This chapter shows you how to directly access the audio hardware to produce sounds. The major 
topics in this chapter are: 

• A brief oveIView of how a computer produces sound. 

• How to produce simple steady and changing sounds and more complex ones. 
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• How to use the audio channels for special effects, wiring them for stereo sound if 
desired, or using one channel to modulate another. 

• How to produce quality sound within the system limitations. 

A section at the end of the chapter gives you values to use for creating musical notes on the 
equal-tempered musical scale. 

This chapter is not a tutorial on computer sound synthesis; a thorough description of creating 
sound on a computer would require a far longer document The purpose here is to point the way 
and show you how to use the Amiga's features. Computer sound production is fun but complex, 
and it usually requires a great deal of trial and error on the part of the user-you use the instruc
tions to create some sound and play it back, readjust the parameters and play it again, and so on. 

The following works are recommended for more information on creating music with computers: 

• Wayne A. Bateman, Introduction to Computer Music (New York: John Wiley and Sons, 
1980). 

• Hal Chamberlain, Musical Applications of Microprocessors (Rochelle Park, New Jersey: 
Hayden, 1980). 

INTRODUCING SOUND GENERA nON 

Sound travels through air to your ear drums as a repeated cycle of air pressure variations, or 
sound waves. Sounds can be represented as graphs that model how the air pressure varies over 
time. The attributes of a sound, as you hear it, are related to the shape of the graph. If the 
wavefonn is regular and repetitive, it will sound like a tone with steady pitch (highness or low
ness), such as a single musical note. Each repetition of a waveform is called a cycle of the sound. 
If the wavefonn is irregular, the sound will have little or no pitch, like a loud clash or rushing 
water. How often the waveform repeats (its frequency) has an effect upon its pitch; sounds with 
higher frequencies are higher in pitch. Humans can hear sounds that have a frequency of between 
20 and 20,000 cycles per second. The amplitude of the waveform (highest point on the graph), is 
related to the perceived loudness of the sound. Finally, the general shape of the waveform deter
mines its tone quality, or timbre. Figure 5-1 shows a particular kind of waveform, called a sine 
wave, that represents one cycle of a simple tone. 
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Figure 5-1: Sine Waveform 

In electronic sound recording and output devices, the attributes of sounds are represented by the 
parameters of amplitude and frequency. Frequency is the number of cycles per second, and the 
most common unit of frequency is the Hertz (Hz), which is 1 cycle per second. Large values, or 
high frequencies, are measured in kilohertz (KHz) or megahertz (MHz). 

Frequency is strongly related to the perceived pitch of a sound. When frequency increases, pitch 
rises. This relationship is exponential. An increase from 100 Hz to 200 Hz results in a large rise 
in pitch, but an increase from 1,000 Hz to 1,100 Hz is hardly noticeable. Musical pitch is 
represented in octaves. A tone that is one octave higher than another has a frequency twice as 
high as that of the first tone, and its perceived pitch is twice as high. 

The second parameter that defines a waveform is its amplitude. In an electronic circuit, amplitude 
relates to the voltage or current in the circuit. When a signal is going to a speaker, the amplitude 
is expressed in watts. Perceived sound intensity is measured in decibels (db). Human hearing has 
a range of about 120 db; 1 db is the faintest audible sound. Roughly every 10 db corresponds to a 
doubling of sound, and 1 db is the smallest change in amplitude that is noticeable in a moderately 
loud sound. Volume, which is the amplitude of the sound signal which is output, corresponds 
logarithmically to decibel level. 

The frequency and amplitude parameters of a sine wave are completely independent. When 
sound is heard, however, there is interaction between loudness and pitch. Lower-frequency 
sounds decrease in loudness much faster than high-frequency sounds. 
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The third attribute of a sound, timbre, depends on the presence or absence of overtones, or har
monics. Any complex waveform is actually a mixture of sine waves of different amplitudes, fre
quencies, and phases (the starting point of the waveform on the time axis). These component sine 
waves are called harmonics. A square waveform, for example, has an infinite number of harmon
ics. 

In summary, all steady sounds can be described by their frequency, overall amplitude, and rela
tive harmonic amplitudes. The audible equivalents of these parameters are pitch, loudness, and 
timbre, respectively. Changing sound is a steady sound whose parameters change over time. 

In electronic production of sound, an analog device, such as a tape recorder, records sound 
waveforms and their cycle frequencies as a continuously variable representation of air pressure. 
The tape recorder then plays back the sound by sending the waveforms to an amplifier where they 
are changed into analog voltage waveforms. The amplifier sends the voltage waveforms to a 
loudspeaker, which translates them into air pressure vibrations that the listener perceives as 
sound. 

A computer cannot store analog waveform information. In computer production of sound, a 
waveform has to be represented as a finite string of numbers. This transformation is made by 
dividing the time axis of the graph of a single waveform into equal segments, each of which 
represents a short enough time so the waveform does not change a great deal. Each of the result
ing points is called a sample. These samples are stored in memory, and you can play them back 
at a frequency that you determine. The computer feeds the samples to a digital-to-analog con
verter (DAC), which changes them into an analog voltage waveform. To produce the sound, the 
analog waveforms are sent first to an amplifier, then to a loudspeaker. 

Figure 5-2 shows an example of a sine wave, a square wave, and a triangle wave, along with a 
table of samples for each. 

NOTE 

The illustrations are not to scale and there are fewer dots in the wave forms than there 
are samples in the table. The amplitude axis values 127 and -128 represent the high 
and low limits on relative amplitude. 
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Triangle Waveform Sine Waveform 
127 

Square Wave 
127 127 

-127 -127 -127 

Samples taken over time -

TIME SINE SQUARE TRIANGLE 

0 0 100 0 
1 39 100 20 
2 75 100 40 
3 103 100 60 
4 121 100 80 
5 127 100 100 
6 121 100 80 
7 103 100 60 
8 75 100 40 
9 39 100 20 

10 0 -100 0 
11 -39 -100 -20 
12 -75 -100 -40 
13 -103 -100 -60 
14 -121 -100 -80 
15 -127 -100 -100 
16 -121 -100 -80 
17 -103 -100 -60 
18 -75 -100 -40 
19 -39 -100 -20 

Figure 5-2: Digitized Amplitude Values 

THE AMIGA SOUND HARDWARE 

The Amiga has four hardware sound channels. You can independently program each of the chan
nels to produce complex sound effects. You can also attach channels so that one channel modu
lates the sound of another or combine two channels for stereo effects. 
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Each audio channel includes an eight-bit digital-to-analog converter driven by a direct memory 
access (DMA) channel. The audio DMA can retrieve two data samples during each horizontal 
video scan line. For simple, steady tones, the DMA can automatically playa waveform repeat
edly; you can also program all kinds of complex sound effects. 

There are two methods of basic sound production on the Amiga - automatic (DMA) sound gen
eration and direct (non-DMA) sound generation. When you use automatic sound generation, the 
system retrieves data automatically by direct memory access. 

Forming and Playing a Sound 

This section shows you how to create a simple, steady sound and play it. Many basic concepts 
that apply to all sound generation on the Amiga are introduced in this section. 

To produce a steady tone, follow these basic steps: 

1. Decide which channel to use. 

2. Define the waveform and create the sample table in memory. 

3. Set registers telling the system where to find the data and the length of the data. 

4. Select the volume at which the tone is to be played. 

5. Select the sampling period, or output rate of the data. 

6. Select an audio channel and start up the DMA. 

DECIDING WHICH CHANNEL TO USE 

The Amiga has four audio channels. Channels 0 and 3 are connected to the left-side stereo output 
jack. Channels 1 and 2 are connected to the right-side output jack. Select a channel on the side 
from which the output is to appear. 

CREATING THE WAVEFORM DATA 

The waveform used as an example in this section is a simple sine wave, which produces a pure 
tone. To conserve memory, you normally define only one full cycle of a waveform in memory. 
For a steady, unchanging sound, the values at the waveform's beginning and ending points and 
the trend or slope of the data at the beginning and end should be closely related. This ensures that 
a continuous repetition of the waveform sounds like a continuous stream of sound. 
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Sound data is organized as a set of eight-bit data items; each item is a sample from the wavefonIl. 
Each data word retrieved for the audio channel consists of two samples. Sample values can range 
from -128 to +127. 

As an example, the data set shown below produces a close approximation to a sine wave. 

NOTE 

The data is stored in byte address order with the first digitized amplitude value at the 
lowest byte address, the second at the next byte address, and so on. Also, note that the 
first byte of data must start at a word-address boundary. This is because the audio 
DMA retrieves one word (16 bits) at a time and uses the sample it reads as two bytes 
of data. 

To use audio channel 0, write the address of "audiodata" into AUDOLC, where the audio data is 
organized as shown below. For simplicity, "AUDxLC" in the table below stands for the combi
nation of the two actual location registers (AUDxLCH and AUDxLCL). For the audio DMA 
channels to be able to retrieve the data, the data address to which AUDOLC points must be some
where in chip RAM. 

Notes 

* 

Table 5-1: Sample Audio Data Set for Channel 0 

audiodata ---> AUDOLC * 
AUDOLC+2 ** 
AUDOLC+4 
AUDOLC+6 
AUDOLC+ 8 
AUDOLC+ 10 
AUDOLC+ 12 
AUDOLC+ 14 
AUDOLC+ 16 
AUDOLC+ 18 
AUDOLC+20 
AUDOLC+22 
AUDOLC+24 
AUDOLC+26 
AUDOLC+28 
AUDOLC+ 30 

100 98 
92 83 
71 56 
38 20 
o -20 

-38 -56 
-71 -83 
-92 -83 

-100 -98 
-92 -83 
-71 -56 
-38 -20 

o 20 
38 56 
71 83 
92 98 

Audio data is located on a word-address boundary. 

** AUDOLC stands for AUDOLCL and AUDOLCH. 
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TELLING THE SYSTEM ABOUT THE DATA 

In order to retrieve the sound data for the audio channel, the system needs to know where the data 
is located and how long (in words) the data is. 

The location registers AUDxLCH and AUDxLCL contain the high three bits and the low fifteen 
bits, respectively, of the starting address of the audio data. Since these two register addresses are 
contiguous, writing a long word into AUDxLCH moves the audio data address into both loca
tions. The' 'x" in the register names stands for the number of the audio channel where the output 
will occur. The channels are numbered 0, 1,2, and 3. 

These registers are location registers, as distinguished from pointer registers. You need to 
specify the contents of these registers only once; no resetting is necessary when you wish the 
audio channel to keep on repeating the same waveform. Each time the system retrieves the last 
audio word from the data area, it uses the contents of these location registers to again find the start 
of the data. Assuming the first word of data starts at location "audiodata" and you are using 
channel 0, here is how to set the location registers: 

WHEREODATA: 
LEA 
LEA 
MOVE.L 

CUSTOM,aO 
AUDIODATA,al 
al,AUDOLCH(aO) 

; Base chip address ••• 

;Put address (32 bits) 
into location register. 

The length of the data is the number of samples in your waveform divided by 2, or the number of 
words in the data set. Using the sample data set above, the length of the data is 16 words. You 
write this length into the audio data length register for this channel. The length register is called 
AUDxLEN, where "x" refers to the channel number. You set the length register AUDOLEN to 
16 as shown below. 

SETAUDOLENGTH: 
LEA CUSTOM,aO 
MOVE.W #16,AUDOLEN(aO) 

SELECTING THE VOLUME 

Base chip address 
Store the length ••• 

The volume you set here is the overall volume of all the sound coming from the audio channel. 
The relative loudness of sounds, which will concern you when you combine notes, is determined 
by the amplitude of the wave form. There is a six-bit volume register for each audio channel. To 
control the volume of sound that will be output through the selected audio channel, you write the 
desired value into the register AUDxVOL, where "x" is replaced by the channel number. You 
can specify values from 64 to 0. These volume values correspond to decibel levels. At the end of 
this chapter is a table showing the decibel value for each of the 65 volume levels. 
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For a typical output at volume 64, with maximum data values of -128 to 127, the voltage output 
is between +.4 volts and -.4 volts. Some volume levels and the corresponding decibel values are 
shown in Table 5-2. 

Table 5-2: Volume Values 

Volume Decibel Value 

64 
48 
32 
16 

o 
-2.5 
-6.0 

-12.0 

(maximum volume) 

(12 db down from the 
volume at maximum level) 

For any volume setting from 64 to 0, you write the value into bits 5-0 of AUDOVOL. For exam
ple: 

SETAUDOVOLUME: 
LEA CUSTOM,aO 
MOVE.W #48,AUDOVOL(aO) 

The decibels are shown as negative values from a maximum of 0 because this is the way a record
ing device, such as a tape recorder, shows the recording level. Usually, the recorder has a dial 
showing 0 as the optimum recording level. Anything less than the optimum value is shown as a 
minus quantity. 

SELECTING THE DATA OUTPUT RATE 

The pitch of the sound produced by the wavefonn depends upon its frequency. To tell the system 
what frequency to use, you need to specify the sampling period. The sampling period specifies 
the number of system clock ticks, or timing intervals, that should elapse between each sample 
(byte of audio data) fed to the digital-to-analog converter in the audio channel. There is a period 
register for each audio channel. The value of the period register is used for count-down purposes; 
each time the register counts down to 0, another sample is retrieved from the wavefonn data set 
for output. In units, the period value represents clock ticks per sample. The minimum period 
value you should use is 124 ticks per sample NTSC (123 PAL) and the maximum is 65535. 
These limits apply to both PAL and NTSC machines. For high-quality sound, there are other 
constraints on the sampling period (see the section called "Producing High-quality Sound"). 

NOTE 

A low period value corresponds to a higher frequency sound and a high period value 
corresponds to a lower frequency sound. 
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Limitations on Selection of Sampling Period 

The sampling period is limited by the number of DMA cycles allocated to an audio channel. 
Each audio channel is allocated one DMA slot per horizontal scan line of the screen display. An 
audio channel can retrieve two data samples during each horizontal scan line. The following cal
culation gives the maximum sampling rate in samples per second. 

2 sampleslline * 262.5 lines/frame * 59.94 frames/second = 31,469 samples/second 

The figure of 31,469 is a theoretical maximum. In order to save buffers, the hardware is designed 
to handle 28,867 samples/second. The system timing interval is 279.365 nanoseconds, or 
.279365 microseconds. The maximum sampling rate of 28,867 samples per second is 34.642 
microseconds per sample (1128,867 = .000034642). The fonnula for calculating the sampling 
period is: 

P ·od I sample interval clock constant en va ue= = 
clock interval samples per second 

Thus, the minimum period value is derived by dividing 34.642 microseconds per sample by the 
number of microseconds per interval: 

M · . d 34.642 microseconds/sample 124·· . a1 I 
mumumperw = 0279365. d· 1 = tlmmg mterv s/samp e . mlcrosecon s/mterva 

or: 

M · . d 3,579,545 ticks/second 124· ksf . I 
mumum peno = 28 867 1 / d = tlC samp e , samp es secon 

Therefore, a value of at least 124 must be written into the period register to assure that the audio 
system DMA will be able to retrieve the next data sample. If the period value is below 124, by 
the time the cycle count has reached 0, the audio DMA will not have had enough time to retrieve 
the next data sample and the previous sample will be reused. 

28,867 samples/second is also the maximum sampling rate for PAL systems. Thus, for PAL sys
tems, a value of at least 123 ticks/sample must be written into the period register. 

Clock Values 
NTSC PAL units 

Clock Constant 3579545 3546895 ticks per second 
Clock Interval 0.279365 0.281937 microseconds per interval 
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NOTE 

The Clock Interval is derived from the clock constant, where: 

clock interval = l k 1 
c oc constant 

then scale the result to microseconds. In all of these calculations "ticks" and "timing 
intervals" refer to the same thing. 

Specifying the Period Value 

After you have selected the desired interval between data samples, you can calculate the value to 
place in the period register by using the period fonnula: 

P . d I desired interval clock constant erw va ue= = 
clock interval samples per second 

As an example, say you wanted to produce a I KHz sine wave, using a table of eight data samples 
(four data words) (see Figure 5-3). 

127 

-127 

Figure 5-3: Example Sine Wave 
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Sampled Values: 0 
90 

127 
90 
o 

-90 
-127 
-90 

To output the series of eight samples at 1 KHz (l,ooo cycles per second), each full cycle is output 
in 1/1000th of a second. Therefore, each individual value must be retrieved in 118th of that time. 
This translates to 1,000 microseconds per waveform or 125 microseconds per sample. To 
correctly produce this waveform, the period value should be: 

. 125 microseconds/sample '" 
Perzod value = 0279365' nd' I = 447 tlmmg mtervals/sample . mlcroseco s/mterva 

To set the period register, you must write the period value into the register AUDxPER, where 
"x" is the number of the channel you are using. For example, the following instruction shows 
how to write a period value of 447 into the period register for channel O. 

SETAUDOPERIOD: 
LEA CUSTOM,aO 
MOVE.W #447,AUDOPER(aO) 

To produce high-quality sound, avoiding aliasing distortion, you should observe the limitations 
on period values that are discussed in the section below called' 'Producing Quality Sound." 

For the relationship between period and musical pitch, see the section at the end of the chapter, 
which contains a listing of the equal-tempered musical scale. 

PLAYING THE WAVEFORM 

After you have defined the audio data location, length, volume and period, you can play the 
waveform by starting the DMA for that audio channe1. This starts the output of sound. Once 
started, the DMA continues until you specifically stop it. Thus, the waveform is played over and 
over again, producing the steady tone. The system uses the value in the location registers each 
time it replays the waveform. 

For any audio DMA to occur (or any other DMA, for that matter), the DMAEN bit in DMACON 
must be set. When both DMAEN and AUDxEN are set, the DMA will start for channel x. All 
these bits and their meanings are shown in table 5-3. 
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Table 5-3: DMA and Audio Channel Enable Bits 

DMACON Register 

Bit Name Function 

15 SET/CLR When this bit is written as a 1, it 
sets any bit in DMACONW for which 
the corresponding bit position is 
also aI, leaving all other bits alone. 

9 DMAEN Only while this bit is a 1 can 
any direct memory access occur. 

3 AUD3EN Audio channel 3 enable. 
2 AUD2EN Audio channel 2 enable. 
1 AUD1EN Audio channel 1 enable. 
0 AUDOEN Audio channel 0 enable. 

For example, if you are using channel 0, then you write a 1 into bit 9 to enable DMA and a 1 into 
bit 0 to enable the audio channel, as shown below. 

BEGINCHANO: 
LEA CUSTOM,aO 
MOVE.W t(DMAF_SETCLR!DMAF_AUDO!DMAF_MASTER),DMACON(aO) 

STOPPING THE AUDIO DMA 

You can stop the channel by writing a 0 into the AUDxEN bit at any time. However, you cannot 
resume the output at the same point in the waveform by just writing a 1 in the bit again. Enabling 
an audio channel almost always starts the data output again from the top of the list of data pointed 
to by the location registers for that channel. If the channel is disabled for a very short time (less 
than two sampling periods) it may stay on and thus continue from where it left off. 

The following example shows how to stop audio DMA for one channel. 

STOPAUDCHANO: 
LEA CUSTOM,aO 
MOVE.W t(DMAF_AUDO),DMACON(aO) 
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SUMMARY 

These are the steps necessary to produce a steady tone: 

1. Define the wavefonn. 

2. Create the data set containing the pairs of data samples (data words). Nonnally, a data 
set contains the definition of one wavefonIl. 

3. Set the location registers: 

AUDxLCH (high three bits) 

A UDxLCL (low fifteen bits) 

4. Set the length register, AUDxLEN, to the number of data words to be retrieved before 
starting at the address currently in AUDxLC. 

5. Set the volume register, AUDxVOL. 

6. Set the period register, AUDxPER 

7. Start the audio DMA by writing a I into bit 9, DMAEN, along with a 1 in the SET/CLR 
bit and a 1 in the position of the A UDxEN bit of the channel or channels you want to 
start. 

EXAMPLE 

In this example, which gathers together all of the program segments from the preceding sections, 
a sine wave is played through channel O. The example assumes exclusive access to the Audio 
hardware, and will not work directly in a multitasking environment. 

MAIN: 
LEA CUSTOM,aO ; Custom chip base address 
LEA SINEDATA(pc),al ;Address of data to 

audio location register 0 
WHEREODATA: 

MOVE.L al,AUDOLCH(aO) ;The 68000 writes 

SETAUDOLENGTH: 

this as though it were 
a 32-bit register at the 
low-bits location 
(common to all locations 
and pointer registers 
in the system). 

MOVE.W t4,AUDOLEN(aO) ;Set length in words 
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SETAUDOVOLUME: 
MOVE.W #64, AUDOVOL (aO) ;Use maximum volume 

SETAUDOPERIOD: 
MOVE.W #447,AUDOPER(aO) 

BEGINCHANO: 
MOVE.W #(DMAF_SETCLR!DMAF_AUDO!DMAF_MASTER),DMACON(aO) 

RTS ; Return to main code ... 

DS.W 
SINEDATA: 

o ;Be sure word-aligned 

DC.B 0, 90, 127, 90, 0, -90, -127, -90 

END 

Producing Complex Sounds 

In addition to simple tones, you can create more complex sounds, such as different musical notes 
joined into a one-voice melody, different notes played at the same time, or modulated sounds. 

JOINING TONES 

Tones are joined by writing the location and length registers, starting the audio output, and rewrit
ing the registers in preparation for the next audio waveform that you wish to connect to the first 
one. This is made easy by the timing of the audio interrupts and the existence of back-up regis
ters. The location and length registers are read by the DMA channel before audio output begins. 
The DMA channel then stores the values in back-up registers. Once the original registers have 
been read by the DMA channel, you can change their values without disturbing the operation you 
started with the original register contents. Thus, you can write the contents of these registers, 
start an audio output, and then rewrite the registers in preparation for the next waveform you want 
to connect to this one. 

Interrupts occur immediately after the audio DMA channel has read the location and length regis
ters and stored their values in the back-up registers. Once the interrupt has occurred, you can 
rewrite the registers with the location and length for the next waveform segment This combina
tion of back-up registers and interrupt timing lets you keep one step ahead of the audio DMA 
channel, allowing your sound output to be continuous and smooth. 

If you do not rewrite the registers, the current waveform will be repeated. Each time the length 
counter reaches zero, both the location and length registers are reloaded with the same values to 
continue the audio output 
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Example 

This example details the system audio DMA action in a step-by-step fashion. 

Suppose you wanted to join together a sine and a triangle wavefonn. end-to-end. for a special 
audio effect. alternating between them. The following sequence shows the action of your pro
gram as well as its interaction with the audio DMA system. The example assumes that the 
period. volume, and length of the data set remains the same for the sine wave and the triangle 
wave. 

Interrupt Program 

If (wave = triangle) 
write A UDOLCL with address of sine wave data. 

Else if (wave = sine) 
write AUDOLCL with address of triangle wave data. 

Main Program 

1. Set up volume. period, and length. 

2. Write AUDOLCL with address of sine wave data. 

3. Start DMA. 

4. Continue with something else. 
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System Response 

As soon as DMA starts, 

a. Copy to "back-up" length register from AUDOLEN. 

b. Copy to "back-up" location register from AUDOLCL (will be used as a pointer showing 
current data word to fetch). 

c. Create an interrupt for the 68000 saying that it has completed retrieving working copies 
of length and location registers. 

d. Start retrieving audio data each allocated DMA time slot. 

PLAYING MULTIPLE TONES AT THE SAME TIME 

You can play multiple tones either by using several channels independently or by summing the 
samples in several data sets, playing the summed data sets through a single channel. 

Since all four audio channels are independently programmable, each channel has its own data set; 
thus a different tone or musical note can be played on each channel. 

MODULATING SOUND 

To provide more complex audio effects, you can use one audio channel to modulate another. This 
increases the range and type of effects that can be produced. You can modulate a channel's fre
quency or amplitude, or do both types of modulation on a channel at the same time. 

Amplitude modulation affects the volume of the waveform. It is often used to produce vibrato or 
tremolo effects. Frequency modulation affects the period of the waveform. Although the basic 
waveform itself remains the same, the pitch is increased or decreased by frequency modulation. 

The system uses one channel to modulate another when you attach two channels. The attach bits 
in the ADKCON register control how the data from an audio channel is interpreted (see the table 
below). Normally, each channel produces sound when it is enabled. If the "attach" bit for an 
audio channel is set, that channel ceases to produce sound and its data is used to modulate the 
sound of the next higher-numbered channel. When a channel is used as a modulator, the words in 
its data set are no longer treated as two individual bytes. Instead, they are used as "modulator" 
words. The data words from the modulator channel are written into the corresponding registers of 
the modulated channel each time the period register of the modulator channel times out. 
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To modulate only the amplitude of the audio output, you must attach a channel as a volume 
modulator. Define the modulator channel's data set as a series of words, each containing volume 
information in the following format: 

Bits Function 

15 - 7 Not used 

6 - 0 Volume information, V 6 - VO 

To modulate only the frequency, you must attach a channel as a period modulator. Define the 
modulator channel's data set as a series of words, each containing period information in the fol
lowing format: 

Bits Function 

15 - 0 Period information, PIS - PO 

If you want to modulate both period and volume on the same channel, you need to attach the 
channel as both a period and volume modulator. For instance, if channel 0 is used to modulate 
both the period and frequency of channell, you set two attach bits - bit 0 to modulate the 
volume and bit 4 to modulate the period. When period and volume are both modulated, words in 
the modulator channel's data set are defined alternately as volume and period information. 

The sample set of data in Table 5-4 shows the differences in interpretation of data when a channel 
is used directly for audio, when it is attached as volume modulator, when it is attached as a period 
modulator, and when it is attached as a modulator of both volume and period. 

Table 5-4: Data Interpretation in Attach Mode 

Independent Modulating 
Data (not Both Modulating Modulating 
Words Modulating) Period and Volume Period Only Volume Only 

Word 1 I data I data I I volume for other channell I period I I volume I 

Word 2 I data I data I I period for other channell I period I I volume I 

Word 3 I data I data I I volume for other channell I period I I volume I 

Word 4 I data I data I I period for other channell I period I I volume I 
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The lengths of the data sets of the modulator and the modulated channels are completely indepen
dent. 

Channels are attached by the system in a predetennined order, as shown in Table 5-5. To attach a 
channel as a modulator, you set its attach bit to 1. If you set either the volume or period attach 
bits for a channel, that channel's audio output will be disabled; the channel will be attached to the 
next higher channel, as shown in Table 5-5. Because an attached channel always modulates the 
next higher numbered channel, you cannot attach channel 3. Writing a 1 into channel3's modu
late bits only disables its audio output. 

Table 5-5: Channel Attachment for Modulation 

ADKCON Register 

Bit Name Function 

7 ATPER3 Use audio channel 3 to modulate nothing 
(disables audio output of channel 3) 

6 ATPER2 Use audio channel 2 to modulate period 
of channel 3 

5 ATPERI Use audio channell to modulate period 
of channel 2 

4 ATPERO Use audio channel 0 to modulate period 
of channel 1 

3 ATVOL3 Use audio channel 3 to modulate nothing 
(disables audio output of channel 3) 

2 ATVOL2 Use audio channel 2 to modulate volume 
of channel 3 

1 ATVOLI Use audio channell to modulate volume 
of channel 2 

o ATVOLO Use audio channel 0 to modulate volume 
of channel 1 
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Producing High -quality Sound 

When trying to create high-quality sound, you need to consider the following factors: 

• Waveform transitions. 

• Sampling rate. 

• Efficiency. 

• Noise reduction. 

• Avoidance of aliasing distortion. 

• Limitations of the low pass filter. 

MAKING WAVEFORM TRANSITIONS 

To avoid unpleasant sounds when you change from one waveform to another, you need to make 
the transitions smooth. You can avoid "clicks" by making sure the waveforms start and end at 
approximately the same value. You can avoid "pops" by starting a waveform only at a zero
crossing point. You can avoid "thumps" by arranging the average amplitude of each wave to be 
about the same value. The average amplitude is the sum of the bytes in the waveform divided by 
the number of bytes in the waveform. 

SAMPLING RATE 

If you need high precision in your frequency output, you may find that the frequency you wish to 
produce is somewhere between two available sampling rates, but not close enough to either rate 
for your requirements. In those cases, you may have to adjust the length of the audio data table in 
addition to altering the sampling rate. 

For higher frequencies, you may also need to use audio data tables that contain more than one full 
cycle of the audio waveform to reproduce the desired frequency more accurately, as illustrated in 
Figure 5-4. 
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128 

-127 

Samples taken over time -

Always requires an even 
number of samples -

Shows a case in which a high-frequency waveform may need more than one full cycle to accurately 
reproduce the periodic waveform 

Figure 5-4: Waveform with Multiple Cycles 

EFFICIENCY 

A certain amount of overhead is involved in the handling of audio DMA. If you are trying to pro
duce a smooth continuous audio synthesis, you should try to avoid as much of the system control 
overhead as possible. Basically, the larger the audio buffer you provide to the system, the less 
often it will need to interrupt to reset the pointers to the top of the next buffer and, coincidentally, 
the lower the amount of system interaction that will be required. If there is only one waveform 
buffer, the hardware automatically resets the pointers, so no software overhead is used for reset
tingthem. 

The "Joining Tones" section illustrated how you could join "ends" of tones together by 
responding to interrupts and changing the values of the location registers to splice tones together. 
If your system is heavily loaded, it is possible that the response to the interrupt might not happen 
in time to assure a smooth audio transition. Therefore, it is advisable to utilize the longest possi
ble audio table where a smooth output is required. This takes advantage of the audio DMA capa
bility as well as minimizing the number of interrupts to which the 68000 must respond. 
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NOISE REDUCTION 

To reduce noise levels and produce an accurate sound, try to use the full range of -128 to 127 
when you represent a waveform. This reduces how much noise (quantization error) will be added 
to the signal by using more bits of precision. Quantization noise is caused by the introduction of 
round-off error. If you are trying to reproduce a signal, such as a sine wave, you can represent the 
amplitude of each sample with only so many digits of accuracy. The difference between the real 
number and your approximation is round-off error, or noise. 

By doubling the amplitude, you create half as much noise because the size of the steps of the 
wave form stays the same and is therefore a smaller fraction of the amplitude. 

In other words, if you try to represent a waveform using, for example, a range of only +3 to -3, 
the size of the error in the output would be considerably larger than if you use a range of + 127 to 
-128 to represent the same signal. Proportionally, the digital value used to represent the 
waveform amplitude will have a lower error. As you increase the number of possible sample lev
els, you decrease the relative size of each step and, therefore, decrease the size of the error. 

To produce quiet sounds, continue to define the waveform using the full range, but adjust the 
volume. This maintains the same level of accuracy (signal-to-noise ratio) for quiet sounds as for 
loud sounds. 

ALIASING DISTORTION 

When you use sampling to produce a waveform, a side effect is caused when the sampling rate 
"beats" or combines with the frequency you wish to produce. This produces two additional fre
quencies, one at the sampling rate plus the desired frequency and the other at the sampling rate 
minus the desired frequency. This phenomenon is called aliasing distortion. 

Aliasing distortion is eliminated when the sampling rate exceeds the output frequency by at least 
7 KHz. This puts the beat frequency outside the range of the low-pass filter, cutting off the 
undesirable frequencies. Figure 5-5 shows a frequency domain plot of the anti-aliasing low-pass 
filter used in the system. 
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Filter passes all frequencies below about 5 kHz. 

Figure 5-5: Frequency Domain Plot of Low-Pass Filter 

Figure 5-6 shows that it is pennissible to use a 12 KHz sampling rate to produce a 4 KHz 
wavefonn. Both of the beat frequencies are outside the range of the filter, as shown in these cal
culations: 

Filter response 

12+4= 16KHz 

12-4=8KHz 

o db 12 kHz sampling frequency 

Diff. Sum 

-30db 

Figure 5-6: Noise-free Output (No Aliasing Distortion) 

You can see in Figure 5-7 that is unacceptable to use a 10 KHz sampling rate to produce a 4 KHz 
wavefonn. One of the beat frequencies (10 - 4) is within the range of the filter, allowing some of 
that undesirable frequency to show up in the audio output. 
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Filter response 
Odb 

~iff 
10 kHz sampling frequency 

Sum 

4 kHz 1\ 
-30 db LI I I I I 

5kHz 10kHz 15kHz 20 kHz 25 kHz 30 kHz 

Desired output frequency 

Figure 5-7: Some Aliasing Distortion 

All of this gives rise to the following equation, showing that the sampling frequency must exceed 
the output frequency by at least 7 KHz, so that the beat frequency will be above the cutoff range 
of the anti -aliasing filter: 

Minimum sampling rate = highest frequency component + 7 KHz 

The frequency component of the equation is stated as "highest frequency component" because 
you may be producing a complex waveform with multiple frequency elements, rather than a pure 
sine wave. 

LOW-PASS FILTER 

The system includes a low-pass filter that eliminates aliasing distortion as described above. This 
filter becomes active around 4 KHz and gradually begins to attenuate (cut oft) the signal. Gen
erally, you cannot clearly hear frequencies higher than 7 KHz. Therefore, you get the most com
plete frequency response in the frequency range of 0 - 7 KHz. If you are making frequencies from 
o to 7 KHz, you should select a sampling rate no less than 14 KHz, which corresponds to a sam
pling period in the range 124 to 256. 

At a sampling period around 320, you begin to lose the higher frequency values between 0 KHz 
and 7 KHz, as shown in Table 5-6. 
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Table 5-6: Sampling Rate and Frequency Relationship 

Sampling Sampling Maximum Output 
Period Rate (KHz) Frequency (KHz) 

Maximum sampling rate 124 29 7 

Minimum sampling rate 256 14 7 
for 7 KHz output 

Sampling rate too low 320 11 4 
for 7 KHz output 

In A2000s with 2 layer motherboards and later A500 models there is a control bit that allows the 
audio output to bypass the low pass filter. This control bit is the same output bit of the 8520 CIA 
that controls the brightness of the red "power" LED. Bypassing the filter allows for improved 
sound in some applications, but an external filter with an appropriate cutoff frequency may be 
required. 

Using Direct (Non-DMA) Audio Output 

It is possible to create sound by writing audio data one word at a time to the audio output 
addresses, instead of setting up a list of audio data in memory. This method of controlling the 
output is more processor-intensive and is therefore not recommended. 

To use direct audio output, do not enable the DMA for the audio channel you wish to use; this 
changes the timing of the interrupts. The normal interrupt occurs after a data address has been 
read; in direct audio output, the interrupt occurs after one data word has been output. 

Unlike in the DMA-controlled automatic data output, in direct audio output, if you do not write a 
new set of data to the output addresses before two sampling intervals have elapsed, the audio out
put will cease changing. The last value remains as an output of the digital-to-analog converter. 

The volume and period registers are set as usual. 
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The Equal-tempered Musical Scale 

Table 5-7 gives a close approximation of the equal-tempered scale over one octave when the sam
ple size is 16 bytes. The "Period" column gives the period count you enter into the period regis
ter. The length register AUDxLEN should be set to 8 (16 bytes = 8 words). The sample should 
represent one cycle of the waveform. 

Table 5-7: Equal-tempered Octave for a 16 Byte Sample 

NTSC PAL Ideal ActualNTSC Actual PAL 
Period Period Note Frequency Frequency Frequency 

254 252 A 880.0 880.8 879.7 
240 238 A# 932.3 932.2 931.4 
226 224 B 987.8 989.9 989.6 
214 212 C 1046.5 1045.4 1045.7 
202 200 c# 1108.7 1107.5 1108.4 
190 189 D 1174.7 1177.5 1172.9 
180 178 D# 1244.5 1242.9 1245.4 
170 168 E 1318.5 1316.0 1319.5 
160 159 F 1396.9 1398.3 1394.2 
151 150 F# 1480.0 1481.6 1477.9 
143 141 G 1568.0 1564.5 1572.2 
135 133 G# 1661.2 1657.2 1666.8 

The table above shows the period values to use with a 16 byte sample to make tones in the second 
octave above middle C. To generate the tones in the lower octaves, there are two methods you 
can use, doubling the period value or doubling the sample size. 

When you double the period, the time between each sample is doubled so the sample takes twice 
as long to play. This means the frequency of the tone generated is cut in half which gives you the 
next lowest octave. Thus, if you playa C with a period value of 214, then playing the same 
sample with a period value of 428 will playa C in the next lower octave. 

Likewise, when you double the sample size, it will take twice as long to play back the whole sam
ple and the frequency of the tone generated will be in the next lowest octave. Thus, if you have 
an 8 byte sample and a 16 byte sample of the same waveform played at the same speed, the 16 
byte sample will be an octave lower. 
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A sample for an equal-tempered scale typically represents one full cycle of a note. To avoid 
aliasing distortion with these samples you should use period values in the range 124-256 only. 
Periods from 124-256 correspond to playback rates in the range l4-28K samples per second 
which makes the most effective use of the Amiga's 7 kHz cut-off filter to prevent noise. To stay 
within this range you will need a different sample for each octave. 

If you cannot use a different sample for each octave, then you will have to adjust the period value 
over its full range 124-65536. This is easier for the programmer but can produce undesirable 
high-frequency noise in the resulting tone. Read the section called "Aliasing Distortion" for 
more about this. 

The values in Table 5-7 were generated using the formula shown below. To calculate the tone 
generated with a given sample size and period use: 

F Clock Constant 3579545 -_ 8808Hz requency= = 
Sample Bytes*Period 16*Period . 

The clock constant in an NTSC system is 3579545 ticks per second. In a PAL system, the clock 
constant is 3546895 ticks per second. Sample bytes is the number of bytes in one cycle of the 
waveform sample. (The clock constant is derived from dividing the system clock value by 2. The 
value will vary when using an external system clock, such as a genlock.) 

Using the formula above you can generate the values needed for the even-tempered scale for any 
arbitrary sample. Table 5-8 gives a close approximation of a five octave even tempered-scale 
using five samples. The values were derived using the formula above. Notice that in each octave 
period values are the same but the sample size is halved. The samples listed represent a simple 
triangular wave form. 
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Table 5-8: Five Octave Even-tempered Scale 

NTSC PAL Ideal ActualNTSC Actual PAL 
Period Period Note Frequency Frequency Frequency 

254 252 A 55.00 55.05 54.98 
240 238 A# 58.27 58.26 58.21 
226 224 B 61.73 61.87 61.85 
214 212 C 65.40 65.34 65.35 
202 200 C# 69.29 69.22 69.27 
190 189 D 73.41 73.59 73.30 
180 178 D# 77.78 77.68 77.83 
170 168 E 82.40 82.25 82.47 
160 159 F 87.30 87.39 87.13 
151 150 F# 92.49 92.60 92.36 
143 141 G 98.00 97.78 98.26 
135 133 G# 103.82 103.57 104.17 

Sample size = 256 bytes, AUDxLEN = 128 

254 252 A 110.00 110.10 109.96 
240 238 A# 116.54 116.52 116.43 
226 224 B 123.47 123.74 123.70 
214 212 C 130.81 130.68 130.71 
202 200 C#, 138.59 138.44 138.55 
190 189 D 146.83 147.18 146.61 
180 178 D# 155.56 155.36 155.67 
170 168 E 164.81 164.50 164.94 
160 159 F 174.61 174.78 174.27 
151 150 F# 184.99 185.20 184.73 
143 141 G 196.00 195.56 196.52 
135 133 G# 207.65 207.15 208.35 

Sample size = 128 bytes, AUDxLEN = 64 

254 252 A 220.00 220.20 219.92 
240 238 A# 233.08 233.04 232.86 
226 224 B 246.94 247.48 247.41 
214 212 C 261.63 261.36 261.42 
202 200 C# 277.18 276.88 277.10 
190 189 D 293.66 294.37 293.23 
180 178 D# 311.13 310.72 311.35 
170 168 E 329.63 329.00 329.88 
160 159 F 349.23 349.56 348.55 
151 150 F# 369.99 370.40 369.47 
143 141 G 392.00 391.12 393.05 
135 133 G# 415.30 414.30 416.70 

Sample size = 64 bytes, AUDxLEN = 32 

156 Audio Hardware 



NTSC PAL Ideal ActualNTSC Actual PAL 
Period Period Note Frequency Frequency Frequency 

254 252 A 440.0 440.4 439.8 
240 238 A# 466.16 466.09 465.72 
226 224 B 493.88 494.96 494.82 
214 212 C 523.25 522.71 522.83 
202 200 C# 554.37 553.77 554.20 
190 189 D 587.33 588.74 586.46 
180 178 D# 622.25 621.45 622.70 
170 168 E 659.26 658.00 659.76 
160 159 F 698.46 699.13 697.11 
151 150 F# 739.99 740.80 738.94 
143 141 G 783.99 782.24 786.10 
135 133 G# 830.61 828.60 833.39 

Sample size = 32 bytes. AUDxLEN = 16 

254 252 A 880.0 880.8 879.7 
240 238 A# 932.3 932.2 931.4 
226 224 B 987.8 989.9 989.6 
214 212 C 1046.5 1045.4 1045.7 
202 200 C# 1108.7 1107.5 1108.4 
190 189 D 1174.7 1177.5 1172.9 
180 178 D# 1244.5 1242.9 1245.4 
170 168 E 1318.5 1316.0 1319.5 
160 159 F 1396.9 1398.3 1394.2 
151 150 F# 1480.0 1481.6 1477.9 
143 141 G 1568.0 1564.5 1572.2 
135 133 G# 661.2 1657.2 1666.8 

Sample size = 16 bytes. AUDxLEN = 8 
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256 Byte Sample 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 
32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 
64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 
96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 

128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 
96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 
64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 
32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 
0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 

-32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62 
-64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 
-96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 

-127 -126 -124 -122 -120 -118 -116 -114 -112 -110 -108 -106 -104 -102 -100 -98 
-96 -94 -92 -90 -88 -86 -84 -82 -80 -78 -76 -74 -72 -70 -68 -66 
-64 -62 -60 -58 -56 -54 -52 -50 -48 -46 -44 -42 -40 -38 -36 -34 
-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 

128 Byte Sample 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 

128 124 120 116 112 108 104 100 96 '7L 88 84 80 76 72 68 
64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 
-127 -124 -120 -116 -112 -108 -104 -100 -96 -92 -88 -84 -80 -76 -72 -68 
-64 -60 -56 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 

64 Byte Sample 

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 
128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 

0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 
-127 -120 -112 -104 -96 -88 -80 -72 -64 -56 -48 -40 -32 -24 -16 -8 

32 Byte Sample 

0 16 32 48 64 80 96 112 128 112 96 80 64 48 32 16 
0 -16 -32 -48 -64 -80 -96 -112 -127 -112 -96 -80 -64 -48 -32 -16 

16 Byte Sample 

0 32 64 96 128 96 64 32 0 -32 -64 -96 -127 -96 -64 -32 
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Decibel Values for Volume Ranges 

Table 5-9 provides the corresponding decibel values for the volume ranges of the Amiga system. 

Table 5-9; Decibel Values and Volume Ranges 

Volume Decibel Value Volume Decibel Value 

64 0.0 32 -6.0 
63 -0.1 31 -6.3 
62 -0.3 30 -6.6 
61 -0.4 29 -6.9 
60 -0.6 28 -7.2 
59 -0.7 27 -7.5 
58 -0.9 26 -7.8 
57 -1.0 25 -8.2 
56 -1.2 24 -8.5 
55 -1.3 23 -8.9 
54 -1.5 22 -9.3 
53 -1.6 21 -9.7 
52 -1.8 20 -10.1 
51 -2.0 19 -10.5 
50 -2.1 18 -11.0 
49 -2.3 17 -11.5 
48 -2.5 16 -12.0 
47 -2.7 15 -12.6 
46 -2.9 14 -13.2 
45 -3.1 13 -13.8 
44 -3.3 12 -14.5 
43 -3.5 11 -15.3 
42 -3.7 10 -16.1 
41 -3.9 9 -17.0 
40 -4.1 8 -18.1 
39 -4.3 7 -19.2 
38 -4.5 6 -20.6 
37 -4.8 5 -22.1 
36 -5.0 4 -24.1 
35 -5.2 3 -26.6 
34 -5.5 2 -30.1 
33 -5.8 1 -36.1 

0 Minus infinity 
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The Audio State Machine 

For an explanation of the various states, refer to Figure 5-8. There is one audio state machine for each channel. The machine has eight states and is clocked at the clock constant rate (3.58 MHz NTSC). Three of the states are basically unused and just transfer back to the idle (000) state. One of the paths out of the idle state is designed for interrupt-driven operation (processor provides the data), and the other path is designed for DMA-driven operation (the" Agnus" special chip provides the data). 

In interrupt-driven operation, transfer to the main loop (states OlO and 011) occurs immediately after data is written by the processor. In the OlO state the upper byte is output, and in the 011 state the lower byte is output. Transitions such as OlO~Ol1~OlO occur whenever the period counter counts down to one. The period counter is reloaded at these transitions. As long as the interrupt is cleared by the processor in time, the machine remains in the main loop. Otherwise, it enters the idle state. Interrupts are generated on every word transition (011 ~OlO). 

In DMA-driven operation, transition to the 001 state occurs and DMA requests are sent to Agnus as soon as DMA is turned on. Because of pipelining in Agnus, the first data word must be thrown away. State 101 is entered as soon as this word arrives; a request for the next data word has already gone out. When the data arrives, state OlO is entered and the main loop continues until the DMA is turned off. The length counter counts down once with each word that comes in. When it finishes, a DMA restart request goes to Agnus along with the regular DMA request. This tells Agnus to reset the pointer to the beginning of the table of data. Also, the length counter is reloaded and an interrupt request goes out soon after the length counter finishes (counts to one). The request goes out just as the last word of the waveform starts its output. 

DMA requests and restart requests are transferred to Agnus once each horizontal line, and the data comes back about 14 clock cycles later (the duration of a clock cycle is 280 ns). 

In attach mode, things run a little differently. In attach volume, requests occur as they do in normal operation (on the Ol1~OlO transition). In attach period, a set of requests occurs on the 
010~011 transition. When both attach period and attach volume are high, requests occur on both transitions. 

If the sampling rate is set much higher than the normal maximum sampling rate (approximately 29 KHz), the two samples in the buffer register will be repeated. If the filter on the Amiga is bypassed and the volume is set to the maximum ($40), this feature can be used to make modulated carriers up to 1.79 MHz. The modulation is placed in the memory map, with plus values in the even bytes and minus values in the odd bytes. 

The symbols used in the state diagram are explained in the following list. Upper-case names indicate external signals; lower-case names indicate local signals. 
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AUDxON 

AUDxIP 

AUDxIR 

intreql 

intreq2 

AUDxDAT 

AUDxDR 

AUDxDSR 

dmasen 

percntrld 

percount 

perfin 

lencntrld 

lencount 

lenfin 

volcntrld 

pbufldl 

pbufld2 

AUDxAV 

AUDxAP 

penhi 

DMA on "x" indicates channel number (signal from DMACON). 

Audio interrupt pending (input to channel from interrupt circuitry). 

Audio interrupt request (output from channel to interrupt circuitry) 

Interrupt request that combines with intreq2 to form AUDxIR .. 

Prepare for interrupt request. Request comes out after the next 011 ~01O 
transition in normal operation. 

Audio data load signal. Loads 16 bits of data to audio channel. 

Audio DMA request to Agnus for one word of data. 

Audio DMA request to Agnus to reset pointer to start of block. 

Restart request enable. 

Reload period counter from back-up latch typically written by processor 
with AUDxPER (can also be written by attach mode). 

Count period counter down one latch. 

Period counter finished (value = 1). 

Reload length counter from back-up latch. 

Count length counter down one notch. 

Length counter finished (value = 1). 

Reload volume counter from back-up latch. 

Load output buffer from holding latch written to by AUDxDAT. 

Like pbufld1, but only during 010~011 with attach period. 

Attach volume. Send data to volume latch of next channel instead of to 
D~A converter. 

Attach period. Send data to period latch of next channel instead of to the 
D~A converter. 

Enable the high 8 bits of data to go to the D~A converter. 
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SQ2 

napnav 

sq2,1,Q 

SQ, 

/AUDxAV * /AUDxAP + AUDxAV-no attach stuff or else attach 
volume. Condition for normal DMA and interrupt requests. 

The name of the state flip-flops, MSB to LSB. 

E)(cept for this case, dmasen IS true } 
only when LENFIN=1. 
Also. AUDxOSR=AUOxDR • dmasen 

Brackets [ ) indicate action on condition 
Parentheses ( ) mdlcate cause of state transition 

Figure 5-8: Audio State Diagram 
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Chapter 6 

BLITTER HARDWARE 

Introduction 

The blitter is one of the two coprocessors in the Amiga. Part of the Agnus chip, it is used to copy 
rectangular blocks of memory around and to draw lines. When copying memory, it is approxi
mately twice as fast as the 68000, able to move almost four megabytes per second. It can draw 
lines at almost a million pixels per second. 

In block move mode, the blitter can perform any logical operation on up to three source areas, it 
can shift up to two of the source areas by one to fifteen bits, it can fill outlined shapes, and it can 
mask the first and last words of each raster row. In line mode, any pattern can be imposed on a 
line, or the line can be drawn such that only one pixel per horizontal line is set. 
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The bUtter can only access CHIP memory - that portion of memory accessible by the display 
hardware. Attempting to use the bUtter to read or write FAST or other non-CHIP memory may 
result in destruction of the contents of CHIP memory. 

A "bUt" is a single operation of the bUtter - perhaps the drawing of a line or movement of a 
block of memory. A bUt is perfonned by initializing the blitter registers with appropriate values 
and then starting the bUtter by writing the BLTSIZE register. As the bUtter is an asynchronous 
coprocessor, the 68000 continues to run as the blit is executing. 

Memory Layout 

The blitter is a word bUtter, not a bit blitter. All data fetched, modified, and written are in full 
l6-bit words. Through careful programming, the blitter can do many "bit" type operations. 

The blitter is particularly well suited to graphics operations. As an example, a 320 by 200 screen 
set up to display 16 colors is organized as four bitplanes of 8,000 bytes each. Each bitplane con
sists of 200 rows of 40 bytes or 20 16-bit words. (From here on, a "word" will mean a 16-bit 
word.) 

DMA Channels 

The bUtter has four DMA channels - three source channels, labeled A, B, and C, and one desti
nation channel, called D. Each of these channels has separate address pointer, modulo and data 
registers and an enable bit. Two have shift registers, and one has a first and last word mask regis
ter. All four share a single bUt size register. 

The address pointer registers are each composed of two words, named BLTxPTH and BL TxPI'L. 
(Here and later, in referring to a register, any "x" in the name should be replaced by the channel 
label, A, B, C, or D.) The two words of each register are adjacent in the 68000 address space, 
with the high address word first, so they can both be written with one 32-bit write from the pro
cessor. The pointer registers should be written with an address in bytes. Because the bUtter 
works only on words, the least significant bit of the address is ignored. Because only CHIP 
memory is accessible, some of the most significant bits will be ignored as well. On machines 
with 512 KB of CHIP memory, the most significant 13 bits are ignored. Future machines will 
have more CHIP memory and fewer bits will be ignored. A valid, even, CHIP memory address 
should always be written to these registers. 

NOTE 

Be sure to write zeros to all unused bits in the custom chip registers. These bits may 
be used by later versions of the custom chips. Writing non-zero values to these bits 
may cause unexpected results on future machines. 
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Each of the DMA channels can be independently enabled or disabled. The enable bits are bits 
SRCA, SRCB, SRCC, and DEST in control register zero (BLTCONO). 

When disabled, no memory cycles will be executed for that channel and, for a source channel, the 
constant value stored in the data register of that channel will be used for each blitter cycle. For 
this purpose, each of the three source channels have preloadable data registers, called BLTxDAT. 

Images in memory are usually stored in a linear fashion; each word of data on a line is located at 
an address that is one greater than the word on its left. i.e. Each line is a "plus one" continua
tion of the previous line. (See Figure 6-1.) 

20 21 22 23 24 24 26 
27 28 29 30 31 32 33 
34 35 36 37 38 39 40 
41 42 43 44 45 46 47 
48 49 50 51 52 53 54 
55 56 57 58 59 60 61 

Figure 6-1: How Images are Stored in Memory 

The map in Figure 6-1 represents a single bit-plane (one bit of color) of an image at word 
addresses 20 through 61. Each of these addresses accesses one word (16 pixels) of a single bit
plane. If this image required sixteen colors, four bit-planes like this would be required in 
memory, and four copy (move) operations would be required to completely move the image. 

The blitter is very efficient at copying such blocks because it needs to be told only the starting 
address (20), the destination address, and the size of the block (height = 6, width = 7). It will then 
automatically move the data, one word at a time, whenever the data bus is available. When the 
transfer is complete, the bUtter will signal the processor with a flag and an interrupt. 

NOTE 

This copy (move) operation operates on memory and mayor may not change the 
memory curr~ntly being used for display. 

All data copy blits are performed as rectangles of words, with a given width and height All four 
DMA channels use a single bUt size register, called BLTSIZE, used for both the width and height. 
The width can take a value of from 1 to 64 words (16 to 1024 bits). The height can run from 1 to 
1024 rows. The width is stored in the least significant six bits of the BLTSIZE register. If a 
value of zero is stored, a width count of 64 words is used. This is the only parameter in the blitter 
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that is given in words. The height is stored in the upper ten bits of the BLTSIZE register, with 
zero representing a height of 1024 rows. Thus, the largest blit possible with the current Amiga 
blitter is 1024 by 1024 pixels. However, shifting and masking operations may require an extra 
word be fetched for each raster scan line, making the maximum practical horizontal width 1008 
pixels. 

NOTE 

To emphasize the above paragraph: Blit width is in words with a zero representing 64 
words. Blit height is in lines with a zero representing 1024 lines. 

The blitter also has facilities, called modulos, for accessing images smaller than the entire bit
plane. Each of the four DMA channels has a 16-bit modulo register called BLTxMOD. As each 
word is fetched (or written) for an enabled channel, the address pointer register is incremented by 
two (bytes, or one word.) After each row of the blit is completed, the signed 16-bit modulo value 
for that DMA channel is added to the address pointer. (A row is defined by the width stored in 
BLTSIZE.) 

NOTE 

The modulo values are in bytes, not words. Since the blitter can only operate on 
words, the least significant bit is ignored. The value is sign-extended to the full width 
of the address pointer registers. Negative modulos can be useful in a variety of ways, 
such as repeating a row by setting the modulo to the negative of the width of the bit
plane. 

As an example, suppose we want to operate on a section of a full 320 by 200 pixel bitmap that 
started at row 13, byte 12 (where both are numbered from zero) and the section is 10 bytes wide. 
We would initialize the pointer register to the address of the bitplane plus 40 bytes per row times 
13 rows, plus 12 bytes to get to the correct horizontal position. We would set the width to 5 
words (10 bytes). At the end of each row, we would want to skip over 30 bytes to get to the 
beginning of the next row, so we would use a modulo value of 30. In general, the width (in 
words) times two plus the modulo value (in bytes) should equal the full width, in bytes, of the bit
plane containing the image. 
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30 
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/'oneByte. 

Image to Manipulate 888888 
Window Bitmap 1111111111111 

Bytes in Bitmap 0 

Figure 6-2: BLTxPTR and BLTxMOD calculations 

NOTE 

The blitter can be used to process linear rather than rectangular regions by setting the 
horizontal or vertical count in BLTSlZE to 1. 

39 

Because each DMA channel has its own modulo register, data can be moved among bitplanes of 
different widths. This is most useful when moving small images into larger screen bitplanes. 
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Function Generator 

The blitter can combine the data from the three source DMA channels in up to 256 different ways 
to generate the values stored by the destination DMA channel. These sources might be one bit
plane from each of three separate graphics images. While each of these sources is a rectangular 
region composed of many points, the same logic operation will be performed on each point 
throughout the rectangular region. Thus, for purposes of defining the blitter logic operation it is 
only necessary to consider what happens for all of the possible combinations of one bit from each 
of the three sources. 

There are eight possible combinations of values of the three bits, for each of which we need to 
specify the corresponding destination bit as a zero or one. This can be visualized with a standard 
truth table, as shown below. We have listed the three source channels, and the possible values for 
a single bit from each one. 

A B C D BL TCONO position Minterm 

0 0 0 ? 0 ABC 
0 0 1 ? 1 ABC 
0 1 0 ? 2 ABC 
0 1 1 ? 3 ABC 
1 0 0 ? 4 ABC 
1 0 1 ? 5 ABC 
1 1 0 ? 6 ABC 
1 1 1 ? 7 ABC 

This information is collected in a standard format, the LF control byte in the BLTCONO register. 
This byte programs the blitter to perform one of the 256 possible logic operations on three 
sources for a given blit. 

To calculate the LF control byte in BLTCONO, fill in the truth table with desired values for D, 
and read the function value from the bottom of the table up. 

For example, if we wanted to set all bits in the destination where the corresponding A source bit 
is 1 or the corresponding B source bit is 1, we would fill in the last four entries of the truth table 
with 1 (because the A bit is set) and the third, fourth, seven, and eight entries with 1 (because the 
B bit is set), and all others (the first and second) with 0, because neither A nor B is set. Then, we 
read the truth table from the bottom up, reading 11111100, or $FC.l 

1 "$" indicates hex notation. 
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For another example, an LF control byte of $80 ( = 1000 0000 binary) turns on bits only for those 
points of the D destination rectangle where the corresponding bits of A, B, and C sources were all 
on (ABC = 1, bit 7 ofLF on). All other points in the rectangle, which correspond to other combi
nations for A, B, and C, will be O. This is because bits 6 through 0 of the LF control byte, which 
specify the D output for these situations, are set to O. 

DESIGNING THE LF CONTROL BYTE WITH MINTERMS 

One approach to designing the LF control byte uses logic equations. Each of the rows in the truth 
table corresponds to a "minterm", which is a particular~ent of values to the A, B, and C 
bits. For instance, the first minterm is usually written ABC, or "not A and not B and not C". 
The last is written as ABC. 

NOTE 

Two terms that are adjacent are and'ed, and two terms that are separated by "+" are 
or' ed. "And" has a higher precedence, so AB + BC is equal to (AB) + (BC). 

Any function can be written as a sum of minterms. If we wanted to calculate the function where 
D 1.s one when the A bit is set and the C bit is clear, or when the B bit is set, we can write that as 
AC+B, or "A and not C or B". Since" 1 and A" is "A": 

D=AC+B 

D = A(1)C + (1)B(1) 

Since either A or A is true (1 = A + A), and similarly for B, and C; we can expand the above 
equation further: 

D = A(1)C + (1)B(l) 

D = A(B + B)C + (A + A)B(C + C) 

D = ABC + ABC + AB(C + C) + AB(C + C) 

D = ABC + ABC + ABC + ABC + ABC + ABC 

After eliminating duplicates, we end up with the five minterms: 

AC+B = ABC + ABC + ABC + ABC + ABC 

These correspond to BLTCONO bit positions of 6, 4, 7, 3, and 2, according to our truth table, 
which we would then set, and clear the rest. 

The wide range of logic operations allow some sophisticated graphics techniques. For instance, 
you can move the image of a car across some pre-existing building images with a few blits. Pro
ducing this effect requires predrawn images of the car, the buildings (or background), and a car 
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"mask" that contains bits set wherever the car image is not transparent. This mask can be visual
ized as the shadow of the car from a light source at the same position as the viewer. 

NOTE 

The mask for the car need only be a single bitplane regardless of the depth of the back
ground bitplane. This mask can be used in turn on each of the background bitplanes. 

To animate the car, first save the background image where the car will be placed. Next copy the 
car to its first location with another bUt. Your image is now ready for display. To create the next 
image, restore the old background, save the next portion of the background where the car will be, 
and redraw the car, using three separate blits. (This technique works best with beam
synchronized blits or double buffering.) 

To temporarily save the background, copy a rectangle of the background (from the A channel, for 
instance) to some backup buffer (using the D channel). In this case, the function we would use is 
"A", the standard copy function. From Table 6-1, we note that the corresponding LF code has a 
value of $FO. 

To draw the car, we might use the A DMA channel to fetch the car mask, the B DMA channel to 
fetch the actual car data, the C DMA channel to fetch the background, and the D DMA channel to 
write out the new image. 

NOTE 

We must fetch the destination background before we write it, as only a portion of a 
destination word might need to be modified, and there is no way to do a write to only 
a portion of a word. 

When blitting the car to the background we would want to use a function that, whenever the car 
mask (fetched with DMA channel A) had a bit set, we would pass through the car data from B, 
and whenever A did not have a bit set, we would pass through the original backgroun.,i1 from C. 
The corresponding function, commonly referred to as the cookie-cut function, is AB+AC, which 
works out to an LF code value of $CA. 

To restore the background and prepare for the next frame, we would copy the infonnation saved 
in the first step back, with the standard copy function ($FO). 

If you shift the data and the mask to a new location and repeat the above three steps over and 
over, the car will appear to move across the background (the buildings). 

NOTE 

This may not be the most effective method of animation, depending on the applica
tion, but the cookie-cut function will appear often. 

Table 6-1 lists some of the most common functions and their values, for easy reference. 
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Table 6-1: Table of Common Mintenn Values 

Selected BLTCONO Selected BLTCONO 
Equation LFCode Equation LFCode 

D=A $FO D= AB $CO 

- -
D=A $OF D= AB $30 

-
D=B $CC D= AB $OC 

-
D=B $33 D= AB $03 

D=C $AA D= BC $88 

- -
D=C $55 D= BC $44 

-
D=AC $AO D= BC $22 

-
D=AC $50 D= AC $11 

- -
D=AC $OA D= A+B $F3 

D=AC $05 D= A+B $3F 

-
D=A+B $FC D= A+C $F5 

-
D=A+B $CF D= A+C $5F 

-
D=A+C $FA D= B+C $DD 

-
D=A+C $AP D= B+C $77 

-
D=B+C $EE D= AB+AC $CA 

-
D=B+C $BB 
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DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS 

Another way to arrive at a particular function is through the use of Venn diagrams: 

Blitter 

Figure 6-3: Blitter Mintenn Venn Diagram 

1. To select a function D=A (that is, destination = A source only), select only the mintenns that 
are totally enclosed by the A-circle in the Figure above. This is the set ofmintenns 7,6,5, 
and 4. When written as a set of Is for the selected mintenns and Os for those not selected, 
the value becomes: 

Mintenn Number 
Selected Mintenns 

76543210 
11110000 

F 0 equals $FO 

2. To select a function that is a combination of two sources, look for the mintenns by both of 
the circles (their intersection). For example, the combination AB (A "and" B) is represented 
by the area common to both the A and B circles, or mintenns 7 and 6. 
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Mintenn Numbers 
Selected Mintenns 

76543210 
11000000 

C 0 equals$CO 



3. To use a function that is the inverse, or "not", of one of the sources, such as A, take all of 
the mintenns not enclosed by the circle represented by A on the above Figure. In this case, 
we have mintenns 0, 1,2, and 3. 

Mintenn Numbers 
Selected Mintenns 

76543210 
00001111 

o F equals $OF 

4. To combine mintenns, or "or" them, "or" the values together. For example, the equation 
AB+BC becomes 

Mintenn Numbers 
AB 
BC 
AB+BC 

Shifts and Masks 

76543210 
11000000 
10001000 
11001000 

C 8 equals $C8 

Up to now we have dealt with the bUtter only in moving words of memory around and combining 
them with logic operations. This is sufficient for moving graphic images around, so long as the 
images stay in the same position relative to the beginning of a word. If our car image has its left
most pixel on the second pixel from the left, we can easily draw it on the screen in any position 
where the leftmost pixel also starts two pixels from the beginning of some word. But often we 
want to draw that car shifted left or right by a few pixels. To this end, both the A and B DMA 
channels have a barrel shifter that can shift an image between 0 and 15 bits. 

This shifting operation is completely free; it requires no more time to execute a blit with shifts 
than a bUt without shifts, as opposed to shifting with the 68000. The shift is nonnally towards 
the right This shifter allows movement of images on pixel boundaries, even though the pixels 
are addressed 16 at a time by each word address of the bit-plane image. 

So if the incoming data is shifted to the right, what is shifted in from the left? For the first word 
of the blit, zeros are shifted in; for each subsequent word of the same blit, the data shifted out 
from the previous word is shifted in. 

The shift value for the A channel is set with bits 15 through 12 of BLTCONO; the B shift value is 
set with bits 15 through 12 of BLTCONI. For most operations, the same value will be used for 
both shifts. For shifts of greater than fifteen bits, load the address register pointer of the destina
tion with a higher address; a shift of 100 bits would require the destination pointer to be advanced 
100/16 or 6 words (12 bytes), and a right shift of the remaining 4 bits to be used. 

As an example, let us say we are doing a bUt that is three words wide, two words high, and we are 
using a shift of 4 bits. For simplicity, let us assume we are doing a straight copy from A to D. 
The first word that will be written to D is the first word fetched from A, shifted right four bits 
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with zeros shifted in from the left. The second word will be the second word fetched from the A, 
shifted right, with the least significant (rightmost) four bits of the first word shifted in. Next, we 
will write the first word of the second row fetched from A, shifted four bits, with the least 
significant four bits of the last word from the first row shifted in. This would continue until the 
blit is finished. 

On shifted blits, therefore, we only get zeros shifted in for the first word of the first row. On all 
other rows the blitter will shift in the bits that it shifted out of the previous row. For most graph
ics applications, this is undesirable. For this reason, the blitter has the ability to mask the first and 
last word of each row coming through the A DMA channel. Thus, it is possible to extract rec
tangular data from a source whose right and left edges are between word boundaries. These two 
registers are called BLT AFWM and BLT AL WM, for blitter A channel first and last word masks. 
When not in use, both should be initialized to all ones ($FFFF). 

NOTE 

Text fonts on the Amiga are stored in a packed bit map. Individual characters from 
the font are extracted using the blitter, masking out unwanted bits. The character may 
then be positioned to any pixel alignment by shifting it the appropriate amount. 

These masks are "anded" with the source data, before any shifts are applied. Only when there is 
a 1 bit in the first-word mask will that bit of source A actually appear in the logic operation. The 
first word of each row is anded with BLTAFWM, and the last word is "anded" with 
BLTALWM. If the width of the row is a single word, both masks are applied simultaneously. 

The masks are also useful for extracting a certain range of "columns" from some bitplane. Let 
us say we have, for example, a predrawn rectangle containing text and graphics that is 23 pixels 
wide. The leftmost edge is the leftmost bit in its bitmap, and the bitmap is two words wide. We 
wish to render this rectangle starting at pixel position 5 into our 320 by 200 screen bitmap, 
without disturbing anything that lies outside of the rectangle. 
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Source 
DMAB 

Mask on 
DMAA 

Final 
Destination 
DMAD 
(points to same 
address as DMA C) 

Destination 
Before blit 
DMAC 
(to be overwritten) 

2 word source bitmap 

-- Extract A 23-bit Image 

16 bit word 
I 

OOOOOOOO 00000000 00000000 00000000 
11111111 11111111 11111111 11111111 
10101010 01010101 10101010 01010101 

1 ! .. 1 • . I. 
Source IS passed through mask when It IS a one, otherwISe the destInatIon IS copIed. 

~ ~ ~ ~ 
11111111 11111111 I 

First word mask 
I 1111111 0 00000000 I 

Second word mask 

! ! ! ! 1 1 

00000000 00000000 00000001 11111111 
11111111 11111111 11111111 11111111 
10101010 01010101 10101011 11111111 

T T T T T T T 
11111111 11111111 11111111 11111111 
11111111 11111111 11111111 11111111 
11111111 11111111 11111111 11111111 

Figure 6-4: Extracting a Range of Columns 

To do this, we point the B DMA channel at the bitmap containing the source image, and the D 
DMA channel at the screen bitmap. We use a shift value of 5. We also point the C DMA channel 
at the screen bitmap. We use a blit width of 2 words. What we need is a simple copy operation, 
except we wish to leave the first five bits of the first word, and the last four bits (2 times 16, less 
23, less 5) of the last word alone. The A DMA channel comes to the rescue. We preload the A 
data register with $FFFF (all ones), and use a first word mask with the most significant five bits 
set to zero ($07FF) and a last word mask with the least significant four bits set to zero ($FFFO). 
We do not enable the A DMA channel, but only the B, C, and D channels, since we want to use 
the A channel as a simple row mask. We then wish to pass the B (source) data along wherever 
the A channel is 1 (for a minterm of AB) and p~s along the original destination data (from the C 
channel) wherever A is 0 (for a minterm of AC), yielding our classic cookie-cut function of 
AB+AC, or $CA. 

NOTE 

Even though the A channel is disabled, we use it in our logic function and preload the 
data register. Disabling a channel simply turns off the memory fetches for that chan
nel; all other operations are still performed, only from a constant value stored in the 
channel'S data register. 
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An alternative but more subtle way of accomplishing the same thing is to use an A shift of five, a 
first word mask of all ones, and a last word mask with the rightmost nine bits set to zero. All 
other registers remain the same. 

NOTE 

Be sure to load the blitter immediate data registers only after setting the shift count in 
BLTCONO/BLTCONI, as loading the data registers first will lead to unpredictable 
results. For instance, if the last person left BSHIFT to be "4", and I load BDATA 
with "1" and then change BSHIFT to "2", the resulting BDA TA that is used is 
"1«4", not" 1«2". The act of loading one of the data registers "draws" the data 
through the machine and shifts it. 

Descending Mode 

Our standard memory copy bUt works fine if the source does not overlap the destination. If we 
want to move an image one row down (towards increasing addresses), however, we run into a 
problem - we overwrite the second row before we get a chance to copy it! The blitter has a spe
cial mode of operation - descending mode - that solves this problem nicely. 

Descending mode is turned on by setting bit one of BLTCON1 (defined as BLITREVERSE). If 
you use descending mode the address pointers will be decremented by two (bytes) instead of 
incremented by two for each word fetched. In addition, the modulo values will be subtracted 
rather than added. Shifts are then towards the left, rather than the right, the first word mask 
masks the last word in a row (which is still the first word fetched), and the last word mask masks 
the first word in a row. 

Thus, for a standard memory copy, the only difference in blitter setup (assuming no shifting or 
masking) is to initialize the address pointer registers to point to the last word in a block, rather 
than the first word. The modulo values, bUt size, and all other parameters should be set the same. 

NOTE 

This differs from predecrement versus postincrement in the 68000, where an address 
register would be initialized to point to the word after the last, rather than the last 
word. 

Descending mode is also necessary for area filling, which will be covered in a later section. 
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Copying Arbitrary Regions 

One of the most common uses of the blitter is to move arbitrary rectangles of data from one bit
plane to another, or to different positions within a bitplane. These rectangles are usually on arbi
trary bit coordinates, so shifting and masking are necessary. There are further complications. It 
may take several readings and some experimentation before everything in this section can be 
understood. 

A source image that spans only two words may, when copied with certain shifts, span three 
words. Our 23 pixel wide rectangle above, for instance, when shifted 12 bits, will span three 
words. Alternatively, an image spanning three words may fit in two for certain shifts. Under all 
such circumstances, the blit size should be set to the larger of the two values, such that both 
source and destination will fit within the blit size. Proper masking should be applied to mask out 
unwanted data. 

Some general guidelines for copying an arbitrary region are as follows. 

1. Use the A DMA channel, disabled, preloaded with all ones and the appropriate mask and 
shift values, to mask the cookie cut function. Use the B channel to fetch the source data, the 
C channel to fetch the destination data, and the D channel to write the destination data. Use 
the cookie-cut function $CA. 

2. If shifting, always use ascending mode if bit shifting to the right, and use descending mode if 
bit shifting to the left. 

NOTE 

These shifts are the shifts of the bit position of the leftmost edge within a word, rather 
than absolute shifts, as explained previously. 

3. If the source and destination overlap, use ascending mode if the destination has a lower 
memory address (is higher on the display) and descending mode otherwise. 

4. If the source spans more words than the destination, use the same shift value for the A chan
nel as for the source B channel and set the first and last word masks as if they were masking 
the B source data. 

5. If the destination spans more words than the source, use a shift value of zero for the A chan
nel and set the first and last word masks as if they were masking the destination D data. 
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6. If the source and destination span the same number of words, use the A channel to mask 
either the source, as in 4, or the destination, as in 5. 

NOTE 

Conditions 2 and 3 can be contradictory if, for instance, you are trying to move an 
image one pixel down and to the right. In this case, we would want to use descending 
mode so our destination does not overwrite our source before we use the source, but 
we would want to use ascending mode for the right shift. In some situations, it is pos
sible to get around general guideline 2 above with clever masking. But occasionally 
just masking the first or last word may not be sufficient; it may be necessary to mask 
more than 16 bits on one or the other end. In such a case, a mask can be built in 
memory for a single raster row, and the A DMA channel enabled to explicitly fetch 
this mask. By setting the A modulo value to the negative of the width of the mask, the 
mask will be repeatedly fetched for each row. 

Area Fill Mode 

In addition to copying data, the blitter can simultaneously perform a fill operation during the 
copy. The fill operation has only one restriction - the area to fill must be defined first by draw
ing untextured lines with only one bit set per horizontal row. A special line draw mode is avail
able for this operation. Use a standard copy blit (or any other blit, as area fills take place after all 
shifts, masks and logical combination of sources). Descending mode must be used. Set either the 
inclusive-fill-enable bit (FILL_OR, or bit 3) or the exclusive-fill-enable bit (FILL_XOR, or bit 4) 
in BLTCONl. The inclusive fill mode fills between lines, leaving the lines intact. The exclusive 
fill mode fills between lines, leaving the lines bordering the right edge of filled regions but delet
ing the lines bordering the left edge. Exclusive fill yields filled shapes one pixel narrower than 
the same pattern filled with inclusive fill. 

For instance, the pattern: 

00100100-00011000 

filled with inclusive fill, yields: 

00111100-00011000 

with exclusive fill, the result would be 

00011100-00001000 

(Of course, fills are always done on full 16-bit words.) 
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There is another bit (FILL_CARRYIN or bit 3 in BLTCONl) that forces the area "outside" the 
lines be filled; for the above example, with inclusive fill, the output would be 

11100111-11111111 

with exclusive fill, the output would be 

11100011-11110111 

Before After 

1 1 1 1 11111 11111 
1 1 1 1 11111 11111 

1 1 1 1 1111 1111 
1 1 1 1 111 111 

11 11 11 11 
1 1 1 1 111 111 

1 1 1 1 1111 1111 
1 1 1 1 11111 11111 

Figure 6-5: Use of the FCI Bit - Bit Is a 0 

If the FCI bit is a 1 instead of a 0, the area outside the lines is filled with Is and the area inside the 
lines is left with Os in between. 

1 
1 

1 

Before 

1 1 
1 1 

1 1 1 
1 1 

11 
1 1 

1 1 1 
1 1 

1 
1 
1 

1 1 
11 

1 1 
1 
1 

After 

111 111111 11 
111 1111111 11 
1111 11111111 11 
11111 111111111 11 
111111111111111111 
11111 111111111 11 
1111 11111111 11 
111 1111111 11 

Figure 6-6: Use of the FCI Bit - Bit Is a 1 

If you wish to produce very sharp, single-point vertices, exclusive-fill enable must be used. Fig
ure 6-7 shows how a single-point vertex is produced using exclusive-fill enable. 
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Before After Exclusive Fill 

1 1 1 1 1111 1111 
1 1 1 1 III 111 

1 1 1 1 11 11 
11 11 1 1 

1 1 1 1 11 11 
1 1 1 1 III III 

1 1 1 1 1111 1111 

Figure 6-7: Single-Point Vertex Example 

The blitter uses the fill carry-in bit as the starting fill state beginning at the rightmost edge of each 
line. For each "I" bit in the source area, the blitter flips the fill state, either filling or not filling 
the space with ones. This continues for each line until the left edge of the blit is reached, at which 
point the filling stops. 

Blitter Done Flag 

When the BL TSIZE register is written the blit is started. The processor does not stop while the 
blitter is working, though; they can both work concurrently, and this provides much of the speed 
evident in the Amiga. This does require some amount of care when using the blitter. 

A blitter done flag, also called the blitter busy flag, is provided as DMAF _BLTDONE in 
DMACONR. This flag is set when a bUt is in progress. 

NOTE 

If a blit has just been started but has been locked out of memory access because of, for 
instance, display fetches, this bit may not yet be set. The processor, on the other hand, 
may be running completely uninhibited out of FAST memory or its internal cache, so 
it will continue to have memory cycles. 

180 Blitter Hardware 



The solution is to read a chip memory or hardware register address with the proceSsor before test
ing the bit. This can easily be done with the sequence: 

btst.b #DMAB_BLTDONE-8,DMACONR(al) 
btst.b #DMAB_BLTDONE-8,DMACONR(al) 

where al has been preloaded with the address of the hardware registers. The first "test" of the 
blitter done bit may not return the correct result, but the second will. 

NOTE 

Starting with the Fat Agnus the blitter busy bit has been "fixed" to be set as soon as 
you write to BLTSlZE to start the bUt, rather than when the bUtter gets its first DMA 
cycle. However, not all machines will use these newer chips, so it is best to rely on 
the above method of testing. 

MULTITASKING AND THE BLITTER 

When a blit is in progress, none of the bUtter registers should be written. For details on arbitra
tion of blitter access in the system, please refer to the ROM Kernel Manual. In particular. read 
the discussion about the OwnBlitterO and DisownBUtterO functions. Even after the blitter has 
been "owned", a bUt may still be finishing up, so the bUtter done flag should be checked before 
using it even the first time. Use of the ROM kernel function WaitBlitO is recommended. 

You should also check the bUtter done flag before using results of a blit. The blit may not be 
finished. so the data may not be ready yet. This can lead to difficult to find bugs, because a 68000 
may be slow enough for a blit to finish without checking the done flag, while a 68020, perhaps 
running out of its cache, may be able to get at the data before the blitter has finished writing it. 

Let us say that we have a subroutine that displays a text box on top of other imagery temporarily. 
This subroutine might allocate a chunk of memory to hold the original screen image while we are 
displaying our text box, then draw the text box. On exit, the subroutine might blit the original 
imagery back and then free the allocated memory. If the memory is freed before the blitter done 
flag is checked, some other process might allocate that memory and store new data into it before 
the bUt is finished, trashing the blitter source and, thus, the screen imagery being restored. 

Interrupt Flag 

The blitter also has an interrupt flag that is set whenever a blit finishes. This flag, INTF _BUT, 
can generate a 68000 interrupt if enabled. For more information on interrupts, see Chapter 7 
"System Control Hardware." 
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Zero Flag 

A blitter zero flag is provided that can be tested to detennine if the logic operation selected has 
resulted in zero bits for all destination bits, even if those destination bits are not written due to the 
D DMA channel being disabled. This feature is often useful for collision detection, by perfonn
ing a logical "and" on two source images to test for overlap. If the images do not overlap, the 
zero flag will stay true. 

The Zero flag is only valid after the blitter has completed its operation and can be read from bit 
DMAF _BLTNZERO of the DMACONR register. 

Pipeline Register 

The blitter perfonns many operations in each cycle - shifting and masking source words, logical 
combination of sources, and area fill and zero detect on the output. To enable so many things to 
take place so quickly, the blitter is pipelined. This means that rather than perfonning all of the 
above operations in one blitter cycle, the operations are spread over two blitter cycles. (Here 
"cycle" is used very loosely for simplicity.) To clarify this, the blitter can be imagined as two 
chips connected in series. Every cycle, a new set of source operations come in, and the first chip 
perfonns its operations on the data. It then passes the half-processed data to the second chip to be 
finished during the next cycle, when the first chip will be busy at work on the next set of data. 
Each set of data takes two • 'cycles" to get through the two chips, overlapped so a set of data can 
be pumped through each cycle. 

What all this means is that the first two sets of sources are fetched before the first destination is 
written. This allows you to shift a bitmap up to one word to the right using ascending mode, for 
instance, even though nonnally parts of the destination would be overwritten before they were 
fetched. 
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Table 6-2: Typical BUtter Cycle Sequence 

USE Code 
in Active 

BLTCONO Channels Cycle Sequence 

F A B C D AO BO CO - Al BI CI DO A2 B2 C2 DI D2 
E A B C AO BO CO Al BI CI A2 B2 C2 
D A B D AO BO - Al BI DO A2 B2 DI - D2 
C A B AO BO - Al BI - A2 B2 
B A C D AO CO - Al CI DO A2 C2 DI - D2 
A A C AO CO Al CI A2 C2 
9 A D AO - Al DO A2 DI - D2 
8 A AO - Al - A2 
7 B C D BO CO - Bl Cl DO - B2 C2 Dl - D2 
6 B C BO CO - Bl Cl - B2 C2 
5 B D BO - Bl DO - B2 Dl - D2 
4 B BO - Bl - B2 
3 C D CO - Cl DO - C2 Dl - D2 
2 C CO - Cl - C2 
1 D DO - DI - D2 
0 none 

Notes for the above Table: 

• No fill. 

• No competing bus activity. 

• Three-word blit. 

• Typical operation involves fetching all sources twice before the first destination becomes 
available. This is due to internal pipelining. Care must be taken with overlapping source and 
destination regions. 

NOTE 

This Table is only meant to be an illustration of the typical order of bUtter cycles on 
the bus. Bus cycles are dynamically allocated based on bUtter operating mode; com
peting bus activity from processor, bit-planes, and other DMA channels; and other fac
tors. Commodore Amiga does not guarantee the accuracy of or future adherence to 
this chart. We reserve the right to make product improvements or design changes in 
this area without notice. 

BUtter Hardware 183 



Line Mode 

In addition to all of the functions described above, the blitter can draw patterned lines. The line 
draw mode is selected by setting bit 0 (LINEMODE) of BLTCONl, which changes the meaning 
of some other bits in BLTCONO and BLTCONl. In line draw mode, the blitter can draw lines up 
to 1024 pixels long, it can draw them in a variety of modes, with a variety of textures, and can 
even draw them in a special way for simple area fill. 

Many of the blitter registers serve other purposes in line-drawing mode. Consult Appendix A for 
more detailed descriptions of the use of these registers and control bits in line-drawing mode. 

In line mode, the bUtter draws a line from one point to another, which can be viewed as a vector. 
The direction of the vector can lie in any of the following eight octants. (In the following 
diagram, the standard Amiga convention is used, with x increasing towards the right and y 
increasing down.) The number in parenthesis is the octant numbering; the other number 
represents the value that should be placed in bits 4 through 2 ofBLTCON1. 

(2) (1) 
3 1 

(3) 
7 6 (0) 

5 4 (7) 
(4) 

2 0 
(5) (6) 

Figure 6-8: Octants for Line Drawing 

Line drawing based on octants is a simplification that takes advantage of symmetries between x 
and -x, y and -yo The following Table lists the octant number and corresponding values: 
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Table 6-3: BLTCONI Code Bits for Octant Line Drawing 

BL TCONI Code Bits 
432 

1 I 0 
001 
011 
1 1 1 
101 
010 
000 
100 

Octant # 

o 
1 
2 
3 
4 
5 
6 
7 

We initialize BLTCONI bits 4 through 2 according to the above Table. Now, we introduce the 
variables dx and dy, and set them to the absolute values of the difference between the x coordi
nates and the y coordinates of the endpoints of the line, respectively. 

dx = abs(x2 - xl) 
dy = abs(y2 - yl) ; 

Now, we rearrange them if necessary so dx is greater than dy. 

if (dx < dy) 
{ 
temp = dx 
dx = dy ; 
dy = temp 
} 

Alternately, set dx and dy as follows: 

dx = max(abs(x2 - xl), abs(y2 - yl» 
dy = min(abs(x2 - xl), abs(y2 - yl» 

These calculations have the effect of "normalizing" our line into octant 0; since we have already 
informed the bUtter of the real octant to use, it has no difficulty drawing the line. 

We initialize the A pointer register to 4 * dy - 2 * dx. If this value is negative, we set the sign bit 
(SIGNFLAG in BLTCONI), otherwise we clear it. We set the A modulo registerto 4 * (dy - dx) 
and the B modulo register to 4 * dy. 

The A data register should be preloaded with $8000. Both word masks should be set to $FFFF. 
The A shift value should be set to the x coordinate of the first point (xl) modulo 15. 

The B data register should be initialized with the line texture pattern, if any, or $FFFF for a solid 
line. The B shift value should be set to the bit number at which to start the line texture (zero 
means the last significant bit.) 

Blitter Hardware 185 



The C and D pointer registers should be initialized to the word containing the first pixel of the 
line; the C and D modulo registers should be set to the width of the bitplane in bytes. 

The SRCA, SRCC, and DEST bits ofBLTCONO should be set to one, and the SRCB flag should 
be set to zero. The OVFLAG should be cleared. If only a single bit per horizontal row is desired, 
the ONEDOT bit of BLTCONI should be set; otherwise it should be cleared. 

The logic function remains. The C DMA channel represents the original source, the A channel 
the btt to set in the line, and the B channel the pattern to draw. Thus, to draw a line, the function 
AB+AC is the most common. To draw th.e Line using exclusive-or mode, so it can be easily 
erased by drawing it again, the function ABC+AC can be used. 

We set the blit height to the length of the line, which is dx + 1. The width must be set to two for 
all line drawing. (Of course, the BLTSIZE register should not be written until the very end, when 
all other registers have been filled.) 

REGISTER SUMMARY FOR LINE MODE 

Preliminary setup: 

The line goes from (xl,yl) to (x2,y2). 

dx = max(abs(x2 - xl), abs(y2 - yl» 
dy = min(abs(x2 - xl), abs(y2 - yl» 

Register setup: 

BLTADAT = $8000 
BLTBDAT = line texture pattern ($FFFF for a solid line) 

BLT AFWM = $FFFF 
BLT AL WM = $FFFF 

BLTAMOD = 4 * (dy - dx) 
BLTBMOD=4 * dy 
BLTCMOD = width of the bitplane in bytes 
BLTDMOD = width of the bitplane in bytes 

BLTAPT = (4 * dy) - (2 * dx) 
BLTBPT = unused 
BLTCPT = word containing the first pixel of the line 
BLTDPT = word containing the first pixel of the line 
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BLTCONO bits 15-12 = xl modulo 15 
BLTCONO bits SRCA, SRCC, and SRCD = 1 
BLTCONO bit SRCB = 0 
if exclusive-or line mode: 

then BLTCONO LF control byte = ABC ± AC 
else BLTCONO LF control byte = AB + AC 

BLTCONI bit LlNEMODE = 1 
BLTCONI bit OVFLAG = 0 
BLTCONI bits 4-2 = octant number from table 
BLTCONI bits 15-12 = start bit for line texture (0 = last significant bit) 
if (((4 * dy) - (2 * dx» < 0): 

then BLTCONI bit SIGNFLAG = 1 
else BLTCONI bit SIGNFLAG = 0 

if one pixel/row: 
then BLTCONI bit ONEDOT = 1 
else BLTCONI bit ONEDOT = 0 

BLTSIZE bits 15-6 = dx + 1 
BLTSlZE bits 5-0 = 2 

NOTE 

You must set the BL TSlZE register last as it starts the blit. 

Blitter Hardware 187 



BUtter Speed 

The speed of the blitter depends entirely on which DMA channels are enabled. You might be 
using a DMA channel as a constant, but unless it is enabled, it does not count against you. The 
minimum blitter cycle is four ticks; the maximum is eight ticks. Use of the A register is always 
free. Use of the B register always adds two ticks to the bUtter cycle. Use of either C or D is free, 
but use of both adds another two ticks. Thus, a copy cycle, using A and D, takes four clock ticks 
per cycle; a copy cycle using B and D takes six ticks per cycle, and a generalized bit copy using 
B, C, and D takes eight ticks per cycle. When in line mode, each pixel takes eight ticks. 

The system clock speed for NTSC Amigas is 7.16 megahertz (pAL Amigas 7.00 megahertz). 
The clock for the blitter is the system clock. To calculate the total time for the blit in 
microseconds, excluding setup and DMA contention, you use the equation (for NTSC): 

For PAL: 

n*H*W 
t= 7.16 

n*H*W t = ~---""-----'-'-
7.09 

where t is the time in microseconds, n is the number of clocks per cycle, and H and W are the 
height and width (in words) of the blit, respectively. 

For instance, to copy one bitplane of a 320 by 200 screen to another bitplane, we might choose to 
use the A and D channels. This would require four ticks per blitter cycle, for a total of 

4 * 200 * 20 
7.16 = 2235 microseconds. 

These timings do not take into account blitter setup time, which is the time required to calculate 
and load the blitter registers and start the bUt. They also ignore DMA contention. 
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BUtter Operations and System DMA 

The operations of the blitter affect the perfonnance of the rest of the system. The following sec
tions explain how system perfonnance is affected by blitter direct memory access priority, DMA 
time slot allocation, bus sharing between the 68000 and the display hardware, the operations of 
the blitter and Copper, and different play field display sizes. 

The bUtter perfonns its various data-fetch, modify, and store operations through DMA sequences, 
and it shares memory access with other devices in the system. Each device that accesses memory 
has a priority level assigned to it, which indicates its importance relative to other devices. 

Disk DMA, audio DMA, display DMA, and sprite DMA all have the highest priority level. 
Display DMA has priority over sprite DMA under certain circumstances. Each of these four dev
ices is allocated a group of time slots during each horizontal scan of the video beam. If a device 
does not request one of its allocated time slots, the slot is open for other uses. These devices are 
given first priority because missed DMA cycles can cause lost data, noise in the sound output, or 
on-screen interruptions. 

The Copper has the next priority because it has to perfonn its operations at the same time during 
each display frame to remain synchronized with the display beam sweeping across the screen. 

The lowest priorities are assigned to the bUtter and the 68000, in that order. The blitter is given 
the higher priority because it perfonns data copying, modifying, and line drawing operations 
operations much faster than the 68000. 

During a horizontal scan line (about 63 microseconds), there are 227.5 "color clocks", or 
memory access cycles. A memory cycle is approximately 280 ns in duration. The total of 227.5 
cycles per horizontal line includes both display time and non-display time. Of this total time, 226 
cycles are available to be allocated to the various devices that need memory access. 

The time-slot allocation per horizontal line is 

4 cycles for memory refresh 
3 cycles for disk DMA 
4 cycles for audio DMA (2 bytes per channel) 
16 cycles for sprite DMA (2 words per channel) 
80 cycles for bit-plane DMA (even- or odd-numbered slots 

according to the display size used) 

Figure 6-9 shows one complete horizontal scan line and how the clock cycles are allocated. 
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DMA Time Slot Allocation/Horizontal line 

Decimal numbers above the Illustrations represent low-resolution 
cycles. Decimal numbers below the illustrations represent high
resolution cvcles. Negative numbers indicate the start of data 
fetch for displays that are larger than normal. 

Decimal numbers inside the illustrations represent the bit-plane 
for which the data is being fetched. 

$10 $18 

Hardware stop installed here. Dala feeches which occur at 
cycle $18 or sooner will wipe out aD the sprites (by defining 
an extra wide display), bulleave the audio and disk OMA 
untouched. However. if only SPRITEO i& desired to tinction, 
then !he data fetches cannot begin any sooner than cycle $1C 

520 S28 S30 S38 

11111111111" L-----I (contlnup~ 

3 o 2 3 4 5 

"~11--lI~"'DlSK DMA TIME"i""'~-,AUIDIO --__ f4~----------------------------------SPRITEDMATIME----------------------------------__ ~ 

Data fetch start can only be speCified at even 
multiples of B clocks. ThiS IS the clock position 
which should be speCified for the normal Width 
display. (20 word fetch for 320 pixel, 40 word 
fetch for 640 pixel width) 

Five clocks must occur before the data fetched for a particular 
position can appear on·screen. For example, if data fetch start 
is $38. data will not be available for display until clock number 
$45. It is available at $45 because display processing does not 
begin until all of the bit· planes for a particular p'lxel have been 
fetched. 

*' These operations only take slots If the associated operatIOn IS being performed. 
Note' Copper Data Move instructions require 4 slots 

Copper Wait instructions require 6 SIOH. 

# ThiS cycle 0 appears to exclude one of the memory refresh cycles. ThiS IS not the case. 

Actual system hardware demands certain speCifiC values for data fetch start and display start. 
Therefore thiS timing chart has been "adjusted" to match those requirements. 

$ Indicates a hel( number. 

8·37 same 
as cycte 7 

D 320 mod, B"·P',,, DMA. by P""' j 

• 640 mode Blt·Plane DMA, by plane -t-

D Slots available for Blltter, Copper and 68000 I 

[ill Sprite DMA j (2 words/channell 

Figure 6-9: DMA Time Slot Allocation 

Some sprites are unusable Ii the display start~ early due to 
an extra word(s) associated With a Wide display and or 
horizontal scrolling. In thiS case, the hlt·plane DMA steals 
the cycles normally allocated to the sprites, as illustrated 
above 

A hardware data· fetch stop has been Installed at count SOB 
so as to prevent the bit-plane data fetch from overrunning 
the time allotted for the memory refresh or disk DMA 

lIIIll AudiO DMA I (2 bvtes'channell 

~ Memory Refresh 

End of 
Horizontal 
Line Data 

Fetch Cycle 

below) 



The 68000 uses only the even-numbered memory access cycles. The 68000 spends about half of 
a complete processor instruction time doing internal operations and the other half accessing 
memory. Therefore, the allocation of alternate memory cycles to the 68000 makes it appear to the 
68000 that it has the memory all of the time, and it will run at full speed. 

Some 68000 instructions do not match perfectly with the allocation of even cycles and cause 
cycles to be missed. If cycles are missed, the 68000 must wait until its next available memory 
slot before continuing. However, most instructions do not cause cycles to be missed, so the 
68000 runs at full speed most of the time if there is no blitter DMA interference. 

Figure 6-10 illustrates the normal cycle of the 68000. 

NOTE 

The 68000 test-and-set instruction (TAS) should never be used in the Amiga; the indi
visible read-modify-write cycle that is used only in this instruction will not fit into a 
DMA memory access slot. 

average 68000 cycle 

internal memory 
operation access 

portion portion 

odd cycle, even cycle, 
assigned to available to 

other devices the 68000 

Figure 6-10: Normal 68000 Cycle 

If the display contains four or fewer low-resolution bit-planes, the 68000 can be granted alternate 
memory cycles (if it is ready to ask for the cycle and is the highest priority item at the time). 
However, if there are more than four bit-planes, bit-plane DMA will begin to steal cycles from the 
68000 during the display. 

During the display time for a six-bit-plane display (low resolution, 320 pixels wide), 160 time 
slots will be taken by bit-plane DMA for each horizontal line. As you can see from Figure 6-11, 
bit-plane DMA steals 50 percent of the open slots that the processor might have used if there were 
only four bit-planes displayed. 

Blitter Hardware 191 



T 

+ * 
4 6 

- timing cycle -

+ 

2 3 

Figure 6-11: Time Slots Used by a Six Bit Plane Display 

T+7 

* 
5 

If you specify four high-resolution bit-planes (640 pixels wide), bit-plane DMA needs all of the 
available memory time slots during the display time just to fetch the 40 data words for each line 
of the four bit-planes (40 * 4 = 160 time slots). This effectively locks out the 68000 (as well as 
the blitter or Copper) from any memory access during the display, except during horizontal and 
vertical blanking. 

T - timing cycle - T+7 

4 2 3 I 4 2 3 

Figure 6-12: Time Slots Used by a High Resolution Display 

Each horizontal line in a normal, full-sized display contains 320 pixels in low-resolution mode or 
640 pixels in high-resolution mode. Thus, either 20 or 40 words will be fetched during the hor
izontalline display time. If you want to scroll a playfield, one extra data word per line must be 
fetched from the memory. 

Display size is adjustable (see Chapter 3, "Playfield Hardware"), and bit-plane DMA takes pre
cedence over sprite DMA. As shown in Figure 6-9, larger displays may block out one or more of 
the highest-numbered sprites, especially with scrolling. 
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As mentioned above, the blitter normally has a higher priority than the processor for DMA cycles. 
There are certain cases, however, when the blitter and the 68000 can share memory cycles. If 
given the chance, the blitter would steal every available memory cycle. Display, disk, and audio 
DMA take precedence over the blitter, sO it cannot block them from bus access. Depending on 
the setting of the blitter DMA mode bit, commonly referred to as the "blitter-nasty" bit, the pro
cessor may be blocked from bus access. This bit is called DMAF _BLITHOG and is in register 
DMACON. 

If DMAF _BLITHOG is a 1, the blitter will keep the bus for every available memory cycle. This 
could potentially be every cycle. 

If DMAF _BLITHOG is a 0, the DMA manager will monitor the 68000 cycle requests. If the 
68000 is unsatisfied for three consecutive memory cycles, the blitter will release the bus for one 
cycle. 

Blitter Block Diagram 

• Figure 6-13 shows the basic building blocks for a single bit of a 16-bit wide operation of the 
blitter. It does not cover the line-drawing hardware. 

• The upper left comer shows how the first- and last- word masks are applied to the incom
ing A-source data. When the blit shrinks to one word wide, both masks are applied. 

• The shifter (upper right and center left) drawing illustrates how 16 bits of data is taken from a 
specified position within a 32-bit register, based on the A shift or B shift values shown in 
BLTCONO and BLTCONI. 

• The minterm generator (center right) illustrates how the minterm select bits either allow or 
inhibit the use of a specific minterm. 

• The drawing shows how the fill operation works on the data generated by the minterm com
binations. Fill operations can be performed simultaneously with other complex logic opera
tions. 

• At the bottom, the drawing shows that data generated for the destination can be prevented 
from being written to a destination by using one of the blitter control bits. 

• Not shown on this diagram is the logic for zero detection, which looks at every bit generated 
for the destination. If there are any I-bits generated, this logic indicates that the area of the 
blit contained at least one I-bit (zero detect is false.) 
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Figure 6-13: Blitter Block Diagram 
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BUtter Key Points 

This is a list of some key points that should be remembered when programming the blitter. 

• Write BLTSIZE last; writing this register starts the blit. 

• Modulos and pointers are in bytes; width is in words and height is in pixels. The least 
significant bit of all pointers and modulos is ignored. 

• The order of operations in the blitter is masking, shifting, logical combination of sources, 
area fill, and zero flag setting. 

• In ascending mode, the blitter increments the pointers, adds the modulos, and shifts to the 
right. 

• In descending mode, the blitter decrements the pointers, subtracts the modulos, and shifts to 
the left. 

• Area fill only works correctly in descending mode. 

• Check BLTDONE before writing blitter registers or using the results of a blit. 

• Shifts are done on immediate data as soon as it is loaded. 

EXAMPLE: ClearMem 

Blitter example---memory clear 

include 'exec/types.i' 
include 'hardware/custom.i' 
include 'hardware/dmabits.i' 
include 'hardware/blit.i' 
include 'hardware/hw_examples.i" 

xref custom 

Wait for previous blit to complete. 

waitblit: 
btst.b #DMAB_BLTDONE-8,DMACONR(al) 

waitblit2: 
btst.b #DMAB BLTDONE-8,DMACONR(al) 
bne waitblit2 
rts 

This routine uses a side effect in the blitter. When each 
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of the blits is finished, the pointer in the blitter is pointing 
to the next word to be blitted. 

When this routine returns, the last blit is started and might 
not be finished, so be sure to call waitblit above before 
assuming the data is clear. 

aO pointer to first word to clear 
dO number of bytes to clear (must be even) 

xdef clearmem 
clearmem: 

lea 
bsr 
move. 1 
clr.w 
asr.l 
clr.w 
move.w 

custom,a1 
waitblit 
aO, BLTDPT (a1) 
BLTDMOD (a1) 
i1,dO 
BLTCON1 (a1) 
iDEST,BLTCONO(a1) 

Get pointer to chip registers 
Make sure previous blit is done 
Set up the D pointer to the region to clear 
Clear the D modulo (don't skip no bytes) 
Get number of words from number of bytes 
No special modes 

only enable destination 

First we deal with the smaller blits 
; 

moveq i$3f,d1 Mask out mod 64 words 
and.w dO,d1 
beq dorest none? good, do one blit 
sUb.l d1,dO otherwise remove remainder 
or.l i$40,d1 set the height to 1, width to n 
move.w d1, BLTSIZE (a1) trigger the blit 

Here we do the rest of the words, as chunks of 128k 

dorest: 
move.w i$ffcO,d1 
and.w dO,d1 
beq dorest2 
sub.l d1,dO 
bsr waitblit 
move.w dO,BLTSIZE(a1) 

dorest2: 
swap dO 
beq done 
clr.w d1 

keepon: 
bsr waitblit 
move.w d1, BLTSIZE (a1) 
subq.w t1,dO 
bne keepon 

done: 
rts 
end 
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extract 10 more bits 
any to do? 
pull of the ones we're doing here 
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finish up this blit 
and again, blit 
still more? 
keep on going. 

finished. Blit still in progress. 



EXAMPLE: SimpleLine 

This example uses the line draw mode of the blitter 
to draw a line. The line is drawn with no pattern 
and a simple 'or' blit into a single bitplane. 

Input: dO=xl dl=yl d2=x2 d3=y2 d4=width aO=aptr 

include 'exec/types.i' 
include 'hardware/custom.i' 
include 'hardware/blit.i' 
include 'hardware/dmabits.i' 

include 'hardware/hw_examples.i' 

xref custom 

xdef simpleline 

Our entry point. 

simpleline: 
lea 
sub.w 
bmi 
sub.w 
bmi 
cmp.w 
bmi 
moveq.l 
bra 

ygtx: 
exg 
moveq.l 
bra 

yneg: 
neg.w 
cmp.w 
bmi 
moveq.l 
bra 

ynygtx: 
exg 
moveq.l 
bra 

xneg: 
neg.w 
sub.w 
bmi 
cmp.w 
bmi 
moveq.l 
bra 

xnygtx: 
exg 
moveq.l 
bra 

_custom,al 
dO,d2 

snarf up the custom address register 
calculate dx 

xneg if negative, octant is one of [3,4,5,6] 
dl,d3 calculate dy " is one of [1,2,7,8] 
yneg if negative, octant is one of [7,8] 
d3,d2 cmp Idxl, Idyl is one of [1,2] 
ygtx if y>x, octant is 2 
tOCTANT1+LINEMODE,d5 ; otherwise octant is 1 
lineagain go to the common section 

d2,d3 X must be greater than Y 
tOCTANT2+LINEMODE,d5 ; we are in octant 2 
lineagain and common again. 

d3 calculate abs(dy) 
d3,d2 cmp Idxl, Idyl, octant is [7,8] 
ynygtx if y>x, octant is 7 
tOCTANT8+LINEMODE,d5 ; otherwise octant is 8 
lineagain 

d2,d3 ; X must be greater than Y 
tOCTANT7+LINEMODE,d5 ; we are in octant 7 
lineagain 

d2 dx was negative! octant is [3,4,5,6] 
dl,d3 we calculate dy 
xyneg if negative, octant is one of [5,6] 
d3,d2 otherwise it's one of [3,4] 
xnygtx if y>x, octant is 3 
tOCTANT4+LINEMODE,d5 ; otherwise it's 4 
lineagain 

d2,d3 ; X must be greater than Y 
tOCTANT3+LINEMODE,d5 ; we are in octant 3 
lineagain 
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xyneg: 
neg.w d3 Y was negative, in one of [5,6] 
cmp.w d3,d2 is y>x? 
bmi xynygtx if so, octant is 6 
moveq.l iOCTANT5+LINEMODE,d5 ; otherwise, octant is 5 
bra lineagain 

xynygtx: 
exg 
moveq.l 

lineagain: 
mulu.w 
ror.l 
add.w 
add.l 
add.w 
swap 
or.w 
Isl.w 
add.w 
move.w 
Isl.w 
add.w 
btst 

waitblit: 
btst 
bne 
move.w 
sub.w 
ext.l 
move. 1 
bpl 
or.w 

lineover: 
move.w 
move.w 
move.w 
move.w 
sub.w 
move.w 
move.w 
moveq.l 
move. 1 
move.l 
move. 1 
move.w 
rts 
end 

d2,d3 ; X must be greater than Y 
iOCTANT6+LINEMODE,d5 ; we are in octant 6 

d4,dl Calculate yl * width 
i4,dO move upper four bits into hi word 
dO,dO mUltiply by 2 
dl,aO ptr += (xl » 3) 
dO,aO ptr += yl * width 
dO get the four bits of xl 
i$BFA,dO or with USEA, USEC, USED, F=A+C 
i2,d3 Y = 4 * Y 
d2, d2 X = 2 * X 
d2,dl set up size word 
i5,dl shift five left 
i$42,dl and add 1 to height, 2 to width 
iDMAB_BLTDONE-8, DMACONR (al) safety check 

iDMAB BLTDONE-8,DMACONR(al) 
waitblit 

wait for blitter 

d3,BLTBMOD(al) ; B mod = 4 * Y 
d2,d3 
d3 
d3,BLTAPT(al) 
lineover 
iSIGNFLAG,d5 

dO,BLTCONO(al) 
d5,BLTCONl(al) 
d4,BLTCMOD(al) 
d4,BLTDMOD(al) 
d2,d3 

A ptr = 4 * Y - 2 * X 
if negative, 
set sign bit in conI 

write control registers 

C mod = bitplane width 
D mod bitplane width 

d3,BLTAMOD(al) A mod 4 * Y - 4 * X 
i$8000,BLTADAT(al) A data = Ox8000 
i-l,d5 Set masks to all ones 
d5, BLTAFWM (al) we can hit both masks at once 
aO,BLTCPT(al) Pointer to first pixel to set 
aO, BLTDPT (al) 
dl,BLTSIZE(al) Start blit 

and return, blit still in progress. 
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EXAMPLE: RotateBits 

Here we rotate bits. This code takes a single raster row of a 
bitplane, and 'rotates' it into an array of 16-bit words, setting 
the specified bit of each word in the array according to the 
corresponding bit in the raster row. We use the line mode in 

; conjunction with patterns to do this magic. 

Input: dO contains the number of words in the raster row. d1 
contains the number of the bit to set (0 .. 15). aO contains a 
pointer to the raster data, and a1 contains a pointer to the 
array we are filling; the array must be at least (dO)*16 words 
(or (dO)*32 bytes) long. 

include 'exec/types.i' 
include , hardware/custom. i' 
include , hardware/blit. i' 
include 'hardware/dmabits.i' 

include 'hardware/hw_examples.i' 

xref custom 

xdef rotatebits 

Our entry point. 

rotatebits: 

wait1: 

lea 
tst 
beq 
lea 
moveq.l 
btst 

btst 
bne 
moveq.l 
move.l 
move.w 
clr.w 
move.w 
move.w 
ror.w 
and.w 
or.w 
move.w 
move.w 
move.w 
move.w 
move.w 
move.l 
move.l 
lea 
lea 
move.w 
move.w 

_custom,a2 
dO 

We need to access the custom registers 
if no words, just return 

gone 
DMACONR(a2),a3 get the address of dmaconr 
#DMAB_BLTDONE-8,d2 ; get the bit number BLTDONE 
d2, (a3) check to see if we're done 

check again. 
not done? Keep waiting 

d2, (a3) 
wait1 
#-30, d3 Line mode: aptr = 4Y-2X, Y=O; X-15 
d3, BLTAPT (a2) 
#-60, BLTAMOD (a2) ; amod - 4Y-4X 
BLTBMOD(a2) bmod 4Y 
#2,BLTCMOD(a2) cmod = width of bitmap (2) 
#2,BLTDMOD(a2) ditto 
#4,d1 grab the four bits of the bit number 
#$fOOO,d1 mask them out 
#$bca,d1 USEA, USEC, USED, F=AB+-AC 
d1,BLTCONO(a2) stuff it 
#$f049,BLTCON1(a2) BSH=15, SGN, LINE 
#$8000,BLTADAT(a2) Initialize A dat for line 
#$ffff, BLTAFWM (a2) Initialize masks 
#$ffff,BLTALWM(a2) 
a1, BLTCPT (a2) 
al,BLTDPT(a2) 
BLTBDAT(a2),a4 
BLTSIZE(a2),a5 
#$402,d1 
(aO)+,d3 

Initialize pointer 

For quick access, we grab these two 
addresses 
Stuff bltsize; width=2, height=16 
Get next word 
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bra inloop Go into the loop 
again: 

move.w (aO)+,d3 Grab another word 
btst d2, (a3) Check blit done 

wait2: 
btst d2, (a3) Check again 
bne wait2 oops, not ready, loop around 

inloop: 
move.w d3, (a4) stuff new word to make vertical 
move.w dl, (as) start the blit 
subq.w #I,dO is that the last word? 
bne again keep going if not 

gone: 
rts 
end 
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Chapter 7 

SYSTEM CONTROL HARDWARE 

Introduction 

This chapter covers the control hardware of the Amiga system, including the following topics: 

• How playfield priorities may be specified relative to the sprites 

How collisions between objects are sensed 
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• How system direct memory access (DMA) is controlled 

• How interrupts are controlled and sensed 

• How reset and early powerup are controlled 

Video Priorities 

You can control the priorities of various objects on the screen to give the illusion of three dimen
sions. The section below shows how playfield priority may be changed relative to sprites. 

FIXED SPRITE PRIORITIES 

You cannot change the relative priorities of the sprites. They will always appear on the screen 
with the lower-numbered sprites appearing in front of (having higher screen priority than) the 
higher-numbered sprites. This is shown in Figure 7-1. Each box represents the image of the 
sprite number shown in that box. 

I 7 
I 6 

I 5 -I 4 
~ 

I 3 
~ 

I 2 
~ 

I 1 --0 
~ 

r-

Figure 7-1: Inter-Sprite Fixed Priorities 

202 System Control Hardware 



HOW SPRITES ARE GROUPED 

For playfield priority and collision purposes only, sprites are treated as four groups of two sprites 
each. The groups of sprites are: 

Sprites 0 and 1 
Sprites 2 and 3 
Sprites 4 and 5 
Sprites 6 and 7 

UNDERSTANDING VIDEO PRIORITIES 

The concept of video priorities is easy to understand if you imagine that four fingers of one of 
your hands represent the four pairs of sprites and two fingers of your other hand represent the two 
playfields. Just as you cannot change the sequence of the four fingers on the one hand, neither 
can you change the relative priority of the sprites. However, just as you can intertwine the two 
fingers of one hand in many different ways relative to the four fingers of the other hand, so can 
you position the playfields in front of or behind the sprites. This is illustrated in Figure 7-2. 

In Front (H igher Priority) 

Playfields f 

Behind 

Figure 7-2: Analogy for Video Priority 
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Five possible positions can be chosen for each of the two "playfield fingers." For example, you 
can place play field 1 on top of sprites 0 and 1 (0). between sprites 0 and 1 and sprites 2 and 3 (1), 
between sprites 2 and 3 and sprites 4 and 5 (2), between sprites 4 and 5 and sprites 6 and 7 (3), or 
beneath sprites 6 and 7 (4). You have the same possibilities forplayfield 2. 

The numbers 0 through 4 shown in parentheses in the preceding paragraph are the actual values 
you use to select the playfield priority positions. See" Setting the Priority Control Register" 
below. 

You can also control the priority of playfield 2 relative to playfield 1. This gives you additional 
choices for the way you can design the screen priorities. 

SETTING THE PRIORITY CONTROL REGISTER 

This register lets you define how objects will pass in front of each other or hide behind each other. 
Normally, playfield 1 appears in front of play field 2. The PF2PRI bit reverses this relationship, 
making playfield 2 more important. You control the video priorities by using the bits in 
BPLCON2 (for "bit-plane control register number 2") as shown in Table 7-1. 

Table 7-1: Bits in BPLCON2 

Bit 
Number Name Function 

15-7 Not used (keep at 0) 

6 PF2PRI Playfield 2 priority 

5-3 PF2P2 - PF2PO Play field 2 placement with 
respect to the sprites 

2-0 PFIP2 - PFIPO Play field 1 placement with 
respect to the sprites 

The binary values that you give to bits PFIP2-PF1PO determine where playfield 1 occurs in the 
priority chain as shown in Table 7-2. This matches the description given in the previous section. 

NOTE 

PF2P2 - PF2PO, bits 5-3, are the priority bits for normal (non-dual) playfields. 
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Table 7-2: Priority of Play fields Based on Values of Bits PFIP2-PFlPO 

Value Placement 
(from most important to least important) 

000 PFI SPOI SP23 SP45 SP67 

001 SPOI PFI SP23 SP45 SP67 

010 SPOI SP23 PFI SP45 SP67 

011 SPOI SP23 SP45 PFI SP67 

100 SPOI SP23 SP45 SP67 PFI 

In this table, PFI stands for play field 1, and SPOI stands for the group of sprites numbered 0 and 
1. SP23 stands for sprites 2 and 3 as a group; SP45 stands for sprites 4 and 5 as a group; and 
SP67 stands for sprites 6 and 7 as a group. 

Bits PF2P2-PF2PO let you position playfield 2 among the sprite priorities in exactly the same 
way. However, it is the PF2PRI bit that detennines which of the two playfields appears in front 
of the other on the screen. Here is a sample of possible BPLCON2 register contents that would 
create something a little unusual: 

BITS 15-7 PF2PRI PF2P2-0 PFIP2-0 

VALUE Os 1 010 000 

This will result in a sprite/playfield priority placement of: 

PFI SPOI SP23 PF2 SP45 SP67 

In other words, where objects pass across each other, playfield 1 is in front of sprite 0 or 1; and 
sprites 0 through 3 are in front of playfield 2. However, playfield 2 is in front of playfield 1 in 
any area where they overlap and where playfield 2 is not blocked by sprites 0 through 3. 

Figure 7-3 shows one use of sprite/playfield priority. The single sprite object shown on the 
diagram is sprite O. The sprite can "fly" across playfield 2, but when it crosses playfield 1 the 
sprite disappears behind that playfield. The result is an unusual video effect that causes the object 
to disappear when it crosses an invisible boundary on the screen. 
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Playfield 1 
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Sprite 0 

Playfield 2 

When everything is displayed 
together, sprite 0 is more important 
than playfield 2 but less important 
than playfield 1. So even thbugh 
you can't see the boundary, the 
sprite disappears "behind" the 
invisible PFI boundary. 

Figure 7-3: Sprite/Playfield Priority 



Collision Detection 

You can use the hardware to detect collisions between one sprite group and another sprite group, 
any sprite group and either of the playfields, the two playfields, or any combination of these 
items. 

The first kind of collision is typically used in a game operation to determine if a missile has col
lided with a moving player. The second kind of collision is typically used to keep a moving 
object within specified on-screen boundaries. The third kind of collision detection allows you to 
define sections of playfield as individual objects, which you may move using the blitter. This is 
called playfield animation. If one playfield is defined as the backdrop or playing area and the 
other playfield is used to define objects (in addition to the sprites), you can sense collisions 
between the playfield-objects and the sprites or between the playfield-objects and the other 
playfield. 

HOW COLLISIONS ARE DETERMINED 

The video output is formed when the input data from all of the bit-planes and the sprites is com
bined into a common data stream for the display. For each of the pixel positions on the screen, 
the color of the highest priority object is displayed. Collisions are detected when two or more 
objects attempt to overlap in the same pixel position. This will set a bit in the collision data 
register. 
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HOW TO INTERPRET THE COLLISION DATA 

The collision data register, CLXDAT, is read-only, and its contents are automatically cleared to 0 
after it is read. Its bits are as shown in Table 7-3. 

Table 7-3: CLXDAT Bits 

Bit 
Number Collisions Registered 

15 not used 
14 Sprite 4 (or 5) to sprite 6 (or 7) 
13 Sprite 2 (or 3) to sprite 6 (or 7) 
12 Sprite 2 (or 3) to sprite 4 (or 5) 
11 Sprite 0 (or 1) to sprite 6 (or 7) 
10 Sprite 0 (or 1) to sprite 4 (or 5) 
9 Sprite 0 (or 1) to sprite 2 (or 3) 
8 Even bit-planes to sprite 6 (or 7) 
7 Even bit-planes to sprite 4 (or 5) 
6 Even bit-planes to sprite 2 (or 3) 
5 Even bit-planes to sprite 0 (or 1) 
4 Odd bit-planes to sprite 6 (or 7) 
3 Odd bit-planes to sprite 4 (or 5) 
2 Odd bit-planes to sprite 2 (or 3) 
1 Odd bit-planes to sprite 0 (or 1) 
o Even bit-planes to odd bit-planes 

NOTE 

The numbers in parentheses in Table 7-3 refer to collisions that will register only if 
you want them to show up. The collision control register described below lets you 
either ignore or include the odd-numbered sprites in the collision detection. 

Notice that in this table, collision detection does not change when you select either single- or 
dual-play field mode. Collision detection depends only on the actual bits present in the odd
numbered or even-numbered bit-planes. The collision control register specifies how to handle the 
bit-planes during collision detect. 
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HOW COLLISION DETECTION IS CONTROLLED 

The collision control register, CLXCON, contains the bits that define certain characteristics of 
collision detection. Its bits are shown in Table 7-4. 

Bit 
Number Name 

15 ENSP7 
14 ENSP5 
13 ENSP3 
12 ENSPI 
11 ENBP6 
10 ENBP5 
9 ENBP4 
8 ENBP3 
7 ENBP2 
6 ENBPI 
5 MVBP6 
4 MVBP5 
3 MVBP4 
2 MVBP3 
1 MVBP2 
o MVBP1 

Table 7-4: CLXCON Bits 

Function 

Enable sprite 7 (OR with sprite 6) 
Enable sprite 5 (OR with sprite 4) 
Enable sprite 3 (OR with sprite 2) 
Enable sprite 1 (OR with sprite 0) 
Enable bit-plane 6 (match required for collision) 
Enable bit-plane 5 (match required for collision) 
Enable bit-plane 4 (match required for collision) 
Enable bit-plane 3 (match required for collision) 
Enable bit-plane 2 (match required for collision) 
Enable bit-plane 1 (match required for collision) 
Match value for bit-plane 6 collision 
Match value for bit-plane 5 collision 
Match value for bit-plane 4 collision 
Match value for bit-plane 3 collision 
Match value for bit-plane 2 collision 
Match value for bit-plane 1 collision 

Bits 15-12 let you specify that collisions with a sprite pair are to include the odd-numbered sprite 
of a pair of sprites. The even-numbered sprites always are included in the collision detection. 
Bits 11-6 let you specify whether to include or exclude specific bit-planes from the collision 
detection. Bits 5-0 let you specify the polarity (true-false condition) of bits that will cause a colli
sion. For example, you may wish to register collisions only when the object collides with 
"something green" or "something blue." This feature, along with the collision enable bits, 
allows you to specify the exact bits, and their polarity, for the collision to be registered. 

NOTE 

This register is write-only. If all bit-planes are excluded (disabled), then a bit-plane 
collision will always be detected. 
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Beam Position Detection 

Sometimes you might want to synchronize the 68000 processor to the video beam that is creating 
the screen display. In some cases, you may also wish to update a part of the display memory 
after the system has already accessed the data from the memory for the display area. 

The address for accessing the beam counter is provided so that you can determine the value of the 
video beam counter and perform certain operations based on the beam position. 

NOTE 

The Copper is already capable of watching the display position for you and doing cer
tain register-based operations automatically. Refer to "Copper Interrupts" below and 
Chapter 2, "Coprocessor Hardware," for further information. 

In addition, when you are using a light pen with this system, this same address is used to read the 
light pen position rather than the beam position. This is described fully in Chapter 8, "Interface 
Hardware." 

USING THE BEAM POSITION COUNTER 

There are four addresses that access the beam position counter. Their usage is described in Table 
7-5. 
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Table 7-5: Contents of the Beam Position Counter 

VPOSR Read-only Read the high bit of the vertical 
position (V8) and the frame-type bit. 

Bit 15 LOF (Long-frame bit). Used to 
initialize interlaced displays. 

Bits 14-1 Unused 

Bit 0 High bit of the vertical position 
(V8). Allows PAL line counts (313) to 
appear in PAL versions of the Amiga. 

VHPOSR Read-only Read vertical and horizontal 
position of the counter that is 
producing the beam on the screen 
(also reads the light pen). 

Bits 15-8 Low bits of the vertical 
position, bits V7 -VO 

Bits 7-0 The horizontal position, bits H8-Hl. 
Horizontal resolution is l/16Oth 
of the screen width. 

VPOSW Write only Bits same as VPOSR above. 

VHPOSW Write only Bits same as VHPOSR above. 
Used for counter synchronization 
with chip test patterns. 

As usual, the address pairs VPOSR,VHPOSR and VPOSW,VHPOSW can be read from and writ
ten to as long words, with the most significant addresses being VPOSR and VPOSW. 

Interrupts 

This system supports the full range of 68000 processor interrupts. The various kinds of interrupts 
generated by the hardware are brought into the peripherals chip and are translated into six of the 
seven available interrupts of the 68000. 
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NONMASKABLEINTERRUPT 

Interrupt level 7 is the nonmaskable interrupt and is not generated anywhere in the current system. 
The raw interrupt lines of the 68000, IPL2 through IPLO, are brought out to the expansion con
nector and can be used to generate this level 7 interrupt for debugging purposes. 

MASKABLE INTERRUPTS 

Interrupt levels I through 6 are generated. Control registers within the peripherals chip allow you 
to mask certain of these sources and prevent them from generating a 68000 interrupt. 

USER INTERFACE TO THE INTERRUPT SYSTEM 

The system software has been designed to correctly handle all system hardware interrupts at lev
els 1 through 6. A separate set of input lines, designated INT2* and INT6* 1 have been routed to 
the expansion connector for use by external hardware for interrupts. These are known as the 
external low- and external high-level interrupts. 

These interrupt lines are connected to the peripherals chip and create interrupt levels 2 and 6, 
respectively. It is recommended that you take advantage of the interrupt handlers built into the 
operating system by using these external interrupt lines rather than generating interrupts directly 
on the processor interrupt lines. 

INTERRUPT CONTROL REGISTERS 

There are two interrupt registers, interrupt enable (mask) and interrupt request (status). Each 
register has both a read and a write address. 

The names of the interrupt addresses are 

INTENA 
Interrupt enable (mask) - write only. Sets or clears specific bits of INTENA. 

INTENAR 
Interrupt enable (mask) read - read only. Reads contents of INTENA. 

1 A * indicates an active low signal. 

212 System Control Hardware 



INTREQ 
Interrupt request (status) - write only. Used by the processor to force a certain kind of 
interrupt to be processed (software interrupt). Also used to clear interrupt request flags 
once the interrupt process is completed. 

INTREQR 
Interrupt request (status) read - read only. Contains the bits that define which items are 
requesting interrupt service. 

The bit positions in the interrupt request register correspond directly to those same posi
tions in the interrupt enable register. The only difference between the read-only and the 
write-only addresses shown above is that bit 15 has no meaning in the read-only 
addresses. 

SETTING AND CLEARING BITS 

Below are the meanings of the bits in the interrupt control registers and how you use them. 

Set and Clear 

The interrupt registers, as well as the DMA control register, use a special way of selecting which 
of the bits are to be set or cleared. Bit 15 of these registers is called the SET/CLR bit. 

When you wish to set a bit (make it a 1), you must place a 1 in the position you want to set and a 
1 into position 15. 

When you wish to clear a bit (make it a 0), you must place a 1 in the position you wish to clear 
and a 0 into position 15. 

Positions 14-0 are bit-selectors. You write a 1 to anyone or more bits to select that bit. At the 
same time you write a 1 or 0 to bit 15 to either set or clear the bits you have selected. Positions 
14-0 that have 0 value will not be affected when you do the write. If you want to set some bits 
and clear others, you will have to write this register twice (once for setting some bits, once for 
clearing others). 
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Master Interrupt Enable 

Bit 14 of the interrupt registers (INTEN) is for interrupt enable. This is the master interrupt 
enable bit. If this bit is a 0, it disables all other interrupts. You may wish to clear this bit to 
temporarily disable all interrupts to do some critical processing task. 

NOTE 

This bit is used for enable/disable only. It creates no interrupt request. 

External Interrupts 

Bits 13 and 3 of the interrupt registers are reserved for external interrupts. 

Bit 13, EXTER, becomes a 1 when the system line called INT6* becomes a logic O. Bit 13 gen
erates a level 6 interrupt. 

Bit 3, PORTS, becomes a 1 when the system line called INT2* becomes a logic O. Bit 3 causes a 
level 2 interrupt. 

Vertical Blanking Interrupt 

Bit 5, VERTB, causes an interrupt at line 0 (start of vertical blank) of the video display frame. 
The system is often required to perform many different tasks during the vertical blanking interval. 
Among these tasks are the updating of various pointer registers, rewriting lists of Copper tasks 
when necessary, and other system-control operations. 

The minimum time of vertical blanking is 20 horizontal scan lines for an NTSC system and 25 
horizontal scan lines for a PAL system. The range starts at line 0 and ends at line 20 for NTSC or 
line 25 for PAL. After the minimum vertical blanking range, you can control where the display 
actually starts by using the DIWSTRT (display window start) register to extend the effective vert
ical blanking time. See Chapter 3, "Playfield Hardware," for more information on DIWSTRT. 

If you find that you still require additional time during vertical blanking, you can use the Copper 
to create a level 3 interrupt. This Copper interrupt would be timed to occur just after the last line 
of display on the screen (after the display window stop which you have defined by using the 
DIWSTOP register). 
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Copper Interrupt 

Bit 4, COPER, is used by the Copper to issue a level 3 interrupt. The Copper can change the con
tent of any of the bits of this register, as it can write any value into most of the machine registers. 
However, this bit has been reserved for specifically identifying the Copper as the interrupt source. 

Generally, you use this bit when you want to sense that the display beam has reached a specific 
position on the screen, and you wish to change something in memory based on this occurrence. 

Audio Interrupts 

Bits 10 -7, AUD3 - 0, are assigned to the audio channels. They are called AUD3, AUD2, AUDl, 
and AUDO and are assigned to channels 3, 2, 1, and 0, respectively. 

This level 4 interrupt signals "audio block done." When the audio DMA is operating in 
automatic mode, this interrupt occurs when the last word in an audio data stream has been 
accessed. In manual mode, it occurs when the audio data register is ready to accept another word 
of data. 

See Chapter 5, "Audio Hardware,' , for more information about interrupt generation and timing. 

Blitter Interrupt 

Bit 6, BLIT, signals "blitter finished." If this bit is a 1, it indicates that the blitter has completed 
the requested data transfer. The bUtter is now ready to accept another task. This bit generates a 
level 3 interrupt. 

Disk Interrupt 

Bits 12 and 1 of the interrupt registers are assigned to disk interrupts. 

Bit 12, DSKSYN, indicates that the sync register matches disk data. This bit generates a levelS 
interrupt. 
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Bit 1, DSKBLK, indicates "disk block finished." It is used to indicate that the specified disk 
DMA task that you have requested has been completed. This bit generates a level 1 interrupt 

More information about disk data transfer and interrupts may be found in Chapter 8, "Interface 
Hardware." 

Serial Port Interrupts 

The following serial interrupts are associated with the specified bits of the interrupt registers. 

Bit 11, RBF (for receive buffer full), specifies that the input buffer of the DART has data that is 
ready to read. This bit generates a level 5 interrupt. 

Bit 0, TBE (for "transmit buffer empty"), specifies that the output buffer of the DART needs 
more data and data can now be written into this buffer. This bit generates a level 1 interrupt. 

Hardware Exec Software priority 
priority Description 

label 

1 software interrupt SOFTINT 

1 2 disk block complete DSKBLK 

3 transmitter buffer empty TBE 

2 4 externallNT2 & CIAA PORTS 

5 graphics coprocessor COPER 

3 6 vertical blank interval VERTB 

7 blitter finished BLiT 

8 audio channel 2 AUD2 

9 audio channel 0 AUDO 
4 

10 audio channel 3 AUD3 

1 1 audio channel 1 AUD1 

12 receiver buffer full RBF 
5 

13 disk sync pattern found DSKSYNC 

6 
14 external INT6 & CIAB EXTER 

15 special (master enable) INTEN 
7 -- non-maskable interrupt NMI 

Figure 7-4: Interrupt Priorities 
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DMAControl 

Many different direct memory access (DMA) functions occur during system operation. There is a 
read address as well as a write address to the DMA register so you can tell which DMA channels 
are enabled. 

The address names for the DMA register are as follows: 

DMACONR - Direct Memory Access Control - read-only. 

DMACON - Direct Memory Access Control- write-only. 

The contents of this register are shown in Table 7-5 (bit on if enabled). 

Processor Access to Chip Memory 

The Amiga chips access chip memory directly, rather than utilizing traditional bus arbitration 
mechanisms. Therefore, processor supplied features for multiprocessor support, such as the 
68000 T AS (test and set) instruction, cannot serve their intended purpose and are not supported 
by the Amiga architecture. 
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Table 7-6: Contents of DMA Register 

Bit 
Number Name Function 

15 SET/CLR The set/reset control bit See description of bit 
15 under "Inteffilpts" above. 

14 BBUSY Blitter busy status - read-only 

13 BZERO Blitter zero status - read-only. Remains 1 
if, during a blitter operation, the blitter output 
was always zero. 

12, 11 Unassigned 

10 BLTPRI Blitter priority. Also known as "blitter-nasty." 
When this is aI, the blitter has full (instead of 
partial) priority over the 68000. 

9 DMAEN DMA enable. This is a master DMA enable bit. It 
enables the DMA for all of the channels at bits 8-0. 

8 BPLEN Bit-plane DMA enable 

7 COPEN Coprocessor DMA enable 

6 BLTEN Blitter DMA enable 

5 SPREN Sprite DMA enable 

4 DSKEN Disk DMA enable 

3-0 AUDxEN Audio DMA enable for channels 3-0 (x = 3 - 0). 

For more information on using the DMA, see the following chapters: 

Copper Chapter 2 "Coprocessor Hardware" 
Bit-planes Chapter 3 "Playfield Hardware" 
Sprites Chapter 4 "Sprite Hardware" 
Audio Chapter 5 "Audio Hardware" 
Blitter Chapter 6 "Blitter Hardware" 
Disk Chapter 8 "Interface Hardware" 
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Reset and Early Startup Operation 

When the Amiga is turned on or externally reset, the memory map is in a special state. An addi
tional copy of the system ROM responds starting at memory location $00000000. The system 
RAM that would normally be located at this address is not available. On some Amiga models, 
portions of the RAM still respond. On other models, no RAM responds. Software must assume 
that memory is not available. The OVL bit in one of the 8520 Chips disables the overlay (See 
Appendix F for the bit location). 

The Amiga System ROM contains an ID code as the first word. The value of the ID code may 
change in the future. The second word of the ROM contains a JMP instruction ($4ef9). The next 
two words are used as the initial program counter by the 68000 processor. 

The 68000 "RESET" instruction works much like external reset or power on. All memory and 
AUTOCONFIGTM cards disappear, and the ROM image appears at location $00000000. The 
difference is that the CPU continues execution with the next instruction. Since RAM may not be 
available, special care is needed to write reboot code that will reliably reboot all Amiga models. 
Here is a source code listing of the only supported reboot code: 

i------ The *only* supported reboot code 
CNOP 0,4 ;IMPORTANT: Must be longword aligned 

MagicResetCode: 
lea.l 2,aO 
RESET 
jmp (aO) 

;Point to JMP instruction at start of ROM 
;all RAM goes away now! 
;Rely on prefetch to execute this instruction 

The RESET instruction must be executed when the CPU is at the Supervisor privilege level. If 
running under Exec, the following code must be used: 

ColdReboot: 
move. 1 4,a6 
lea.l MagicResetCode(pc),a5 
jsr _LVOSupervisor(a6) 

;Get a pointer to ExecBase 
;Location of code to trap to 
;start code (must use JSR) 

System Control Hardware 219 



Chapter 8 

INTERFACE HARDWARE 

Introduction 

This chapter covers the interface hardware through which the Amiga talks to the outside world, 
including the following features: 

• Two multiple purpose mouse/joystick!light pen control ports 

• Disk controller (for floppy disk drives & other MFM and GCR devices) 
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Keyboard 

• Centronics compatible parallel I/O interface (for printers) 

• RS232-C compatible serial interface (for external modems or other serial devices) 

• Video output connectors (RGB, monochrome, NTSC, RF modulator, video slot) 

Controller Port Interface 

Each Amiga has two nine-pin connectors that can be used for input or output with many different 
kinds of controllers. The figure shows one of the two connectors and the corresponding face-on 
view of the typical controller plug. 

Face View
Controller Plug 

Face View
Computer Connector 

Figure 8-1: Controller Plug and Computer Connector 
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Table 8-1: Typical Controller Connections 

Mouse, 
Trackball, Proportional X-V 

Driving Controller Proportional 
Pin Joystick Controller (Pair) Joystick Light Pen 

I Forward V-pulse --- Button 3:j: ---

2 Back H-pulse --- --- ---
3 Left VQ-pulse Left button Button I ---
4 Right HQ-pulse Right button Button 2 ---
5t --- Middle button :j: Right POT POT X Pen pressed 

to screen 

6t Button I Left button --- --- Beam 
trigger 

7 --- +5V +5V +5V +5V 

8 GND GND GND GND GND 

9t Button 2:j: Right button LeftPOT POTY Button 2:j: 

t These pins may also be configured as outputs 
:j: These buttons are optional 

REGISTERS USED WITH THE CONTROLLER PORT 

JOYODAT 
JOYIDAT 
CIAAPRA 
POTODAT 
POT I DAT 
POTGO 
POTGOR 
BPLCONO 
VPOSR 
VHPOSR 

($DFFOOA) 
($DFFOOC) 
($BFEOOI) 
($DFF012) 
($DFFOI4) 
($DFF034) 
($DFFOI6) 
($DFF I 00) 
($DFFOO4) 
($DFF006) 

Counter for digital (mouse) input (port 1) 
Counter for digital (mouse) input (port 2) 
Input and output for pin 6 (port 1 and 2 fire buttons) 
Counter for proportional input (port 1) 
Counter for proportional input (port 2) 
Write proportional pin values and start counters 
Read proportional pin values 
Bit 3 enables the light pen latch 
Read light pen position (high order bits) 
Read light pen position (low order bits) 
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READING MOUSE/TRACKBALL CONTROLLERS 

Pulses entering the mouse inputs are converted to separate horizontal and vertical counts. The 8 
bit wide horizontal and vertical counter registers can track mouse movement without processor 
intervention. 

The mouse uses quadrature inputs. For each direction, a mechanical wheel inside the mouse will 
produce two pulse trains, one 90 degrees out of phase with the other (see Figure 8-2 for details). 
The phase relationship determines direction. 

The counters increment when the mouse is moved to the right or "down" (toward you). 
The counters decrement when the mouse is moved to the left or "up" (away from you). 

V va 01 DO 
MOUSE QUADRATURE 

0 0 1 0 
0 1 0 1 

0 1 1 

Case 1: Count Up: 0 0 

V -.J \ / \ / \ ( 

va / \ / \ / \ 
DO 

01 \ / \ 0 / \ 
Case 2: Count Down: 

V -.J \ I \ I \ I 
va \ / \ / \ / 
DO 

01 / \ I \ I \ 
02 ~etc 

Figure 8-2: Mouse Quadrature 
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Reading the Counters 

The mouse/trackball counter contents can be accessed by reading register addresses named 
JOYODAT and JOY1DAT. These contains counts for ports 1 and 2 respectively. 

The contents of each of these 16-bit registers are as follows: 

Bits 15-8 
Bits 7-0 

Mouse/trackball vertical count 
Mouse/trackball horizontal count 

Counter Limitations 

These counters will "wrap around" in either the positive or negative direction. If you wish to 
use the mouse to control something that is happening on the screen, you must read the counters at 
least once each vertical blanking period and save the previous contents of the registers. Then you 
can subtract from the previous readings to detennine direction of movement and speed. 

The mouse produces about 200 count pulses per inch of movement in either a horizontal or verti
cal direction. Vertical blanking happens once each l/6Oth of a second. If you read the mouse 
once each vertical blanking period, you will most likely find a count difference (from the previous 
count) of less than 127. Only if a user moves the mouse at a speed of more than 38 inches per 
second will the counter values wrap. Fast-action games may need to read the mouse register 
twice per frame to prevent counter overrun. 

If you subtract the current count from the previous count, the absolute value of the difference will 
represent the speed. The sign of the difference (positive or negative) lets you detennine which 
direction the mouse is traveling. 

The easiest way to calculate mouse velocity is with 8-bit signed arithmetic. The new value of a 
counter minus the previous value will represent the number of mouse counts since the last check. 
The example shown in Table 8-2 presents an alternate method. It treats both counts as unsigned 
values, ranging from 0 to 255. A count of 100 pulses is measured in each case. 

Interface Hardware 225 



Table 8-2: Detennining the Direction of the Mouse 

Previous Current 
Count Count Direction 

200 100 Up (Left) 
100 200 Down (Right) 
200 45 Down * 

45 200 Up** 

Notes for Table 8-1: 

* Because 200-45::;: 155, which is more than 127, the true count must be 255 - (200-45) ::;: 
100; the direction is down. 

** 45-200::;: -155. Because the absolute value of -155 exceeds 127, the true count must be 
255 + (-155) ::;: 100; the direction is up. 

Mouse Buttons 

There are two buttons on the standard Amiga mouse. However, the control circuitry and software 
support up to three buttons. 

• The left button on the Amiga mouse is connected to, CIAAPRA ($BFEool). The button 
for port 1 is connected to bit 6, port 2 is connected to bit 7. See the 8520 Appendix for 
more infonnation. A logic state of 1 means "switch open." A logic state of 0 means 
"switch closed." 

Button 2 (right button on Amiga mouse) is connected to pin 9 of the controller ports, one 
of the proportional pins. See "DIGITAL INPUT/OUTPUT ON THE CONTROLLER 
PORT" for details. 

Button 3, when used, is connected to pin 5, the other proportional controller input. 

READING DIGITAL JOYSTICK CONTROLLERS 

Digital joysticks contain four directional switches. Each switch can be individually activated by 
the control stick. When the stick is pressed diagonally, two adjacent switches are activated. The 
total number of possible directions from a digital joystick is 8. All digital joysticks have at least 
one fire button. 
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Digital joystick switches are of the nonnally open type. When the switches are pressed, the input 
line is shorted to ground. An open switch reads as "1", a closed switch as "0". 

Reading the joystick input data logic states is not so simple, however, because the data registers 
for the joysticks are the same as the counters that are used for the mouse or trackball controllers. 
The joystick registers are named JOYODAT and JOYIDAT. 

Table 8-2 shows how to interpret the data once you have read it from these registers. The true 
logic state of the switch data in these registers is "I = switch closed." 

PORT 1 
(mouse) 

> 
UJ 
(f) 

~ 
0 
~ 

6 
0 
IX 
« 
~ 
IX 
0 
u.. 

MOUSE 0 
Y Counter 

Vertical 

MOUSE Counters 

6 
0 

I 
UJ 
(f) 

~ 
0 
~ 

6 
~ 
U « 
a:l 

2 3 

7 8 
0 0 

a a 
I 

> UJ 
UJ (f) 

(f) ~ 
~ 0 
0 ~ 
~ 

6 
6 
t-

t- I 
u.. c.9 
UJ 
....J IX 

4 5 
0 

9 
0 

MOUSEO 
X Counter 

Horizontal 

PORT 2 1 2 3 4 5 
0

6
0 0 0 0 

7 8 9 
0 0 0 0 

JOY1DAT 
DFFOOC 
is wired similarly 

JOYODAT 
DFFOOA 
Read Only 
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Table 8-3: Interpreting Data from JOYODAT and JOYIDAT 

Data Bit Interpretation 

1 True logic state of "right" switch. 

9 True logic state of "left" switch. 

1 (XOR) 0 You must calculate the exclusive-or of bits 1 and 0 
to obtain the logic state of the "back" switch. 

9 (XOR) 8 You must calculate the exclusive-or of bits 9 and 8 
to obtain the logic state of the "forward" switch. 

The fire buttons for ports 0 and 1 are connected to bits 6 and 7 of CIAAPRA ($BFEOOl). A 0 
here indicates the switch is closed. 

Some, but not all, joysticks have a second button. We encourage the use of this button if the 
function the button controls is duplicated via the keyboard or another mechanism. This button 
may be read in the same manner as the right mouse button. 

READING PROPORTIONAL CONTROLLERS 

Each of the game controller ports can handle two variable-resistance input devices, also known as 
proportional input devices. This section describes how the positions of the proportional input 
devices can be detennined. There are two common types of proportional controllers: the' 'pad
dle" controller pair and the X -Y proportional joystick. A paddle controller pair consists of two 
individual enclosures, each containing a single resistor and fire-button and each connected to a 
common controller port input connector. Typical connections are shown in Figure 8-3. 
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Left Paddle Right Paddle 

Resistive Element Resistive Element 

1+5 L 
I 1+5 L 

I 
Pin 7 Pin 9 Pin 7 Pin 5 

I· Fire Button ~ I· Fire Button ~ 
Pin 8 Pin 3 Pin 8 Pin 4 

Figure 8-4: Typical Paddle Wiring Diagram 

In an X-Y proportional joystick, the resistive elements are connected individually to the X and Y 
axes of a single controller stick. 

Reading Proportional Controller Buttons 

For the paddle controllers, the left and right joystick direction lines serve as the fire buttons for 
the left and right paddles. 

Interpreting Proportional Controller Position 

Interpreting the position of the proportional controller normally requires some preliminary work 
during the vertical blanking interval. 

During vertical blanking, you write a value into an address called POTGO. For a standard X-Y 
joystick, this value is hex 0001. Writing to this register starts the operation of some special 
hardware that reads the potentiometer values and sets the values contained in the POT registers 
(described below) to zero. 

The read circuitry stays in a reset state for the first seven or eight horizontal video scan lines. Fol
lowing the reset interval, the circuit allows a charge to begin building up on a timing capacitor 
whose charge rate will be controlled by the position of the external controller resistance. For each 
horizontal scan line thereafter, the circuit compares the charge on the timing capacitor to a preset 
value. If the charge is below the preset, the POT counter is incremented. If the charge is above 
the preset, the counter value will be held until the next POTGO is issued. 
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VOLTAGE 

Charging Curve For Low Resistance 

For Higher Resistance 

L--- Each Pot Counter 
Stops When Voltage 
Reaches This Value 

---------------1 Starts 8 Horizontal 

Lines After POTGO 
Is Written 

----- TIME ------I ... 

Figure 8-5: Effects of Resistance on Charging Rate 

You nonnally issue POTGO at the beginning of a video screen, then read the values in the POT 
registers during the next vertical blanking period, just before issuing POTGO again. 

Nothing in the system prevents the counters from overflowing (wrapping past a count of 255). 
However, the system is designed to insure that the counter cannot overflow within the span of a 
single screen. This allows you to know for certain whether an overflow is indicated by the con
troller. 

Proportional Controller Registers 

The following registers are used for the proportional controllers: 

POTODAT - port 1 data (vertical/horizontal) 
POTIDAT - port 2 data (vertical/horizontal) 

Bit positions: 

Bits 15-8 POTOY value or POTI Y value 
Bits 7-0 POTOX value or POTIX value 

All counts are reset to zero when POTGO is written with bit zero high. Counts are nonnally read 
one frame after the scan circuitry is enabled. 
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Potentiometer Specifications 

The resistance of the potentiometers should be a linear taper. Based on the design of the integrat
ing analog-to-digital converter used, the maximum resistance should be no more than 528K 
(470K +/- 10 percent is suggested) for either the X or Y pots. This is based on a charge capacitor 
of O.047uf, +/- 10 percent, and a maximum time of 16.6 milliseconds for charge to full value, ie. 
one video frame time. 

All potentiometers exhibit a certain amount of "jitter". For acceptable results on a wide base of 
configurations, several input readings will need to be averaged. 

PORT 1 Connector 

o 0 0 

o 0 

+5 

Max = 470K ~ 
±100J6 f 

OPEN 

POT COUNTER 

47nf

T 
V 

POT1Y POT1X POT1DAT 
COUNTER COUNTER DFF014 

'----~rr----I-----~ Read Only 

>- >- X X >-a: a: a: a: -l 
t- t- t- t- t-
::::> « ::::> « ::::> 
O 0 0 0 0 

BIT 15 • • 
• • 
• • 

14 

>- X X 
-l -l -l 
t- t- t-« ::::> « 
0 0 0 

• • 
• • 
• • 

POTGO 
DFF034 
Write Only 

t-
a: 
« 
t-xxx xxx x en 

BITO 

o 

POTINP 
DFF016 
Read Only 

Figure 8-6: Potentiometer Charging Circuit 
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READING A LIGHT PEN 

A light pen can be connected to one of the controller ports. On the AlOOO, the light pen must be 
connected to port 1. Changing ports requires a minor internal modification. On the A500 and 
A2000 the default is port 2. An internal jumper can select port 1. Regardless of the port used, the 
light pen design is the same. 

The signal called "pen-pressed-to-screen" is typically actuated by a switch in the nose of the 
light pen. Note that this switch is connected to one of the potentiometer inputs and must be read 
as same as the right or middle button on a mouse. 

The principles of light pen operation are as follows: 

1. Just as the system exits vertical blank, the capture circuitry for the light pen is automati
cally enabled. 

2. The video beam starts to create the picture, sweeping from left to right for each horizon
tal line as it paints the picture from the top of the screen to the bottom. 

3. The sensors in the light pen see a pulse of light as the video beam passes by. The pen 
converts this light pulse into an electrical pulse on the "Beam Trigger" line (pin 6). 

4. This trigger signal tells the internal circuitry to capture and save the current contents of 
the beam register, VPOSR. This allows you to determine where the pen was placed by 
reading the exact horizontal and vertical value of the counter beam at the instant the 
beam passed the light pen. 
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Reading the Light Pen Registers 

The light pen register is at the same address as the beam counters. The bits are as follows: 

VPOSR: 

VHPOSR: 

Bit 15 
Bits 14-1 
BitO 

Bits 15-8 
Bits 7-0 

Long frame/short frame. O=short frame 
Chip ID code. Do not depend on value! 
V8 (most significant bit of vertical position) 

V7-VO (vertical position) 
H8-HI (horizontal position) 

The software can refer to this register set as a long word whose address is VPOSR. 

The positional resolution of these registers is as follows: 

Vertical 1 scan line in non-interlaced mode 
2 scan lines in interlaced mode (However, if you know which interlaced 
frame is under display, you can detennine the correct position) 

Horizontal 2 low-resolution pixels in either high- or low-resolution 

The quality of the light pen will detennine the amount of short-term jitter. For most applications, 
you should average several readings together. 

To enable the light pen input, write a 1 into bit 3 of BPLCONO. Once the light pen input is 
enabled and the light pen issues a trigger signal, the value in VPOSR is frozen. If no trigger is 
seen, the counters latch at the end of the display field. It is impossible to read the current beam 
location while the VPOSR register is latched. This freeze is released at the end of internal verti
cal blanking (vertical position 20). There is no single bit in the system that indicates a light pen 
trigger. To detennine if a trigger has occurred, use one of these methods: 

1. Read (long) VPOSR twice. 

2. If both values are not the same, the light pen has not triggered since the last top-of
screen (V = 20). 

3. If both values are the same, mask off the upper 15 bits of the 32-bit word and compare it 
with the hex value of $10500 (V=261). 

4. If the VPOSR value is greater than $10500, the light pen has not triggered since the last 
top-of-screen. If the value is less, the light pen has triggered and the value read is the 
screen position of the light pen. 
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A somewhat simplified method of determining the truth of the light pen value involves instructing 
the system software to read the register only during the internal vertical blanking period of 
0<V20: 

1. Read (long) VPOSR once, during the period of 0< V20. 

2. Mask off the upper 15 bits of the 32-bit word and compare it with the hex value of 
$10500 (V=261). 

3. If the VPOSR value is greater than $10500, the light pen has not triggered since the last 
top-of-screen. If the value is less, the light pen has triggered and the value read is the 
screen position of the light pen. 

Note that when the light pen latch is enabled, the VPOSR register may be latched at any time, and 
cannot be relied on as a counter. This behavior may cause problems with software that attempts 
to derive timing based on VPOSR ticks. 

DIGITAL INPUT/OUTPUT ON THE CONTROLLER PORT 

The Amiga can read and interpret many different and nonstandard controllers. The control lines 
built into the POTGO register (address $DFF034) can redefine the functions of some of the con
troller port pins. 

Table 8-4 is the POTGO register bit description. POTGO ($DFF034) is the write-only address 
for the pot control register. POTINP ($DFFOI6) is the read-only address for the pot control regis
ter. The pot-control register controls a four-bit bidirectionalI/O port that shares the same four 
pins as the four pot inputs. 

Table 8-4: POTGO ($DFF034) and POTINP ($DFFOI6) Registers 

Bit 
Number 

15 
14 
13 
12 
11 
10 
09 
08 
07-01 
00 
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Name 

OUTRY 
DATRY 
OUTRX 
DATRX 
OUTLY 
DATLY 
OUTLX 
DATLX 
X 
START 

Function 

Output enable for bit 14 (l=output) 
data for port 2, pin 9 
Output enable for bit 12 
data for port 2, pin 5 
Output enable for bit 10 
data for port 1, pin 9 (right mouse button) 
Output enable for bit 8 
data for port 1, pin 5 (middle mouse button) 
chip revision identification number 
Start pots (dump capacitors, start counters) 



Instead of using the pot pins as variable-resistive inputs, you can use these pins as a four-bit 
input/output port. This provides you with two additional pins on each of the two controller ports 
for general purpose I/O. 

If you set the output enable for any pin to a I, the Amiga disconnects the potentiometer control 
circuitry from the port, and configures the pin for output. The state of the data bit controls the 
logic level on the output pin. This register must be written to at the POTGO address, and read 
from the POTINP address. There are large capacitors on these lines, and it can take up to 300 
microseconds for the line to change state. 

To use the entire register as an input, sensing the current state of the pot pins, write all Os to 
POTGO. Thereafter you can read the current state by using read-only address POTINP. Note 
that bits set as inputs will be connected to the proportional counters (See the description of the 
START bit in POTGO). 

These lines can also be used for button inputs. A button is a normally open switch that shorts to 
ground. The Amiga must provide a pull-up resistance on the sense pin. To do this, set the proper 
pin to output, and drive the line high (set both OUT ... and DAT ... to 1). Reading POTINP will 
produce a 0 if the button is pressed, a 1 if it is not. 

The joystick fire buttons can also be configured as outputs. CIAADDRA ($BFE201) contains a 
mask that corresponds one-to-one with the data read register, CIAAPRA ($BFE001). Setting a 1 
in the direction position makes the corresponding bit an output. See the 8520 appendix for more 
details. 

Floppy Disk Controller 

The built-in disk controller in the system can handle up to four MFM-type devices. Typically 
these are double-sided, double-density, 3.5" (9Omm) or 5.25" disk drives. One 3.5" drive is 
installed in the basic unit. 

The controller is extremely flexible. It can DMA an entire track of raw MFM data into memory 
in a single disk revolution. Special registers allow the CPU to synchronize with specific data, or 
read input a byte at a time. The controller can read and write virtually any double-density MFM 
encoded disk, including the Amiga V1.0 format, IBM PC (MS-DOS) 5.25", IBM PC (MS-DOS) 
3.5" and most CPfMTM formatted disks. The controller has provisions for reading and writing 
most disk using the Group Coded Recording (GCR) method, including Apple WM disks. With 
motor speed tricks, the controller can read and write Commodore 1541/1571 format diskettes. 
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REGISTERS USED BY THE DISK SUBSYSTEM 

The disk subsystem uses two ports on the system's 8520 CIA chips, and several registers in the 
Paula chip: 

CIAAPRA 
CIABPRB 
ADKCON 
ADKCONR 
DSKPTH 
DSKLEN 
DSKBYTR 
DSKSYNC 

MOTOR ON 

DRIVE SELECT 

STEP 

WRITE GATE 

SIDE SELECT 

WRITE DATA 

($BFEOOl) 
($BFDIOO) 
($DFF09E) 
($DFFOIO) 
($DFF020) 
($DFF024) 
($DFFOIA) 
($DFF07E) 

four input bits for disk sensing 
eight output bits for disk selection, control and stepping 
control bits (write only register) 
control bits (read only register) 
DMA pointer (32 bits) 
length of DMA 
Disk data byte and status read 
Disk sync finder; holds a match word 

-----1 -I 
IL---~ ___ _ 

500ms min 

IL----_I ___ ----.II 
I 

1.lmsmin I r .. 
I 

18ms min 

l"smin 

-'OOtr 
8"s max I ----00+--+1_- 8"s max 

-I I" - "I .-

I I I I I I 
Figure 8-7: Chinon Timing Diagram 
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DRIVE SELECT 

STEP 

DIRECTION 
SELECT 

TRACK 00 

DRIVE SELECT 

STEP 

WRITE GATE 

SIDE SELECT 

VALID 
READ DATA 

11---____ -----!1 

I I 
3ms min l8ms min I t - -I .• -I·· 

~----- ~------

22ms -iT-
,---J~---

t: 1tls min. 

11--------h l J.1Smin 

U 
l8msmin 

lJ1smin 

100
J1:rinl .. l.lmsmin 

1 

J l8,msmax I I 
lJ1smin 

1.12m!r
aX 4 max 

I I I I I I I I I I I I I I 
Figure 8-8: Chinon Timing Diagram (cont.) 
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CIAAPRAICIABPRB - Disk selection, control and sensing 

The following table lists how 8520 chip bits used by the disk subsystem. Bits labeled "PA" are 
input bits in CIAAPRA ($BFEOOI). Bits labeled "PB" are output bits located in CIAAPRB 
($BFDlOO). More information on how the 8520 chips operate can be found in Appendix F. 

Table 8-5: Disk Subsystem 

Bit Name Function 

PA5 DSKRDY* Disk ready (active low). The drive will pull this line low when 
the motor is known to be rotating at full speed. This signal 
is only valid when the motor is ON, at other times configuration 
information may obscure the meaning of this input 

PA4 DSKTRACKO* Track zero detect. The drive will pull this line low 
when the disk heads are positioned over track zero. 
Software must not attempt to step outwards when this signal 
is active. Some drives will refuse to step, others will 
attempt the step, possibly causing alignment damage. 
All new drives must refuse to step outward in this condition. 

PA3 DSKPROT* Disk is write protected (active low). 

PA2 DSKCHANGE* Disk has been removed from the drive. The signal goes 
low whenever a disk is removed. It remains low until 

PB? DSKMOTOR* 
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a disk is inserted AND a step pulse is received. 

Disk motor control (active low). This signal is nonstandard 
on the Amiga system. Each drive will latch the motor signal at 
the time its select signal turns on. The disk drive motor 
will stay in this state until the next time select turns on. 
DSKMOTOR * also controls the activity light on the front 
of the disk drive. 

All software that selects drives must set up the motor signal 
before selecting any drives. The drive will "remember" 
the state of its motor when it is not selected. All drive 
motors tum off after system reset. 



PB6 DSKSEL3* 

PBS DSKSEL2* 

PB4 DSKSELl* 

PB3 DSKSELO* 

PB2 DSKSIDE 

PBl DSKDIREC 

PBO DSKSTEP* 

FLAG DSKINDEX* 

After turning on the motor, software must further wait for 
one half second (500ms), or for the DSKRDY* line to go low. 

Select drive 3 (active low). 

Select drive 2 (active low). 

Select drive 1 (active low). 

Select drive 0 (internal drive) (active low). 

Specify which disk head to use. Zero indicates the upper head. 
DSKSIDE must be stable for 100 microseconds before writing. 
After writing, at least 1.3 milliseconds must pass before 
switching DSKSIDE. 

Specify the direction to seek the heads. Zero implies 
seek towards the center spindle. Track zero is at the outside 
of the disk. This line must be set up before the actual step 
pulse, with a separate write to the register. 

Step the heads of the disk. This signal must always be 
used as a quick pulse (high, momentarily low, then high). 

The drives used for the Amiga are guaranteed to get to the next 
track within 3 milliseconds. Some drives will support a much 
faster rate, others will fail. Loops that decrement a counter 
to provide delay are not acceptable. See Appendix F 
for a better solution. 

When reversing directions, a minimum of 18 milliseconds delay is 
required from the last step pulse. Settle time for Amiga drives 
is specified at 15 milliseconds. 

Disk index pulse ($BFDDOO, bit 4). Can be used to 
create a level 6 interrupt. See Appendix F for details. 
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Disk DMA Channel Control 

Data is nonnally transferred to the disk by direct memory access (DMA). The disk DMA is con
trolled by four items: 

Pointer to the area into which or from which the data is to be moved 

Length of data to be moved by DMA 

• Direction of data transfer (read/write) 

• DMA enable 

DSKPTH - Pointer to Data 

You specify the 32-bit-wide address from which or to which the data is to be transferred. The 
lowest bit of the address must be zero, and the buffer must be in CHIP memory. The value must 
be written as a single long word to the DSKPfH register ($DFF020). 

DSKLEN - Length, Direction, DMA Enable 

All of the control bits relating to this topic are contained in a write-only register, called DSKLEN: 

Table 8-6: DSKLEN Register ($DFF024) 

Bit 
Number 

15 
14 
13-0 
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Name 

DMAEN 
WRITE 
LENGTH 

Usage 

Secondary disk DMA enable 
Disk write (RAM -7 disk if 1) 
Number of words to transfer 



The hardware requires a special sequence in order to start DMA to the disk. This sequence 
prevents accidental writes to the disk. In short, the DMAEN bit in the DSKLEN register must be 
turned on twice in order to actually enable the disk DMA hardware. Here is the sequence you 
should follow: 

1. Enable disk DMA in the DMACON register (See Chapter 7 for more infonnation) 

2. Set DSKLEN to $4000, thereby forcing the DMA for the disk to be turned off. 

3. Put the value you want into the DSKLEN register. 

4. Write this value again into the DSKLEN register. This actually starts the DMA. 

5. After the DMA is complete, set the DSKLEN register back to $4000, to prevent acciden
tal writes to the disk. 

As each data word is transferred, the length value is decremented. After each transfer occurs, the 
value of the pointer is incremented. The pointer points to the the next word of data to written or 
read. When the length value counts down to 0, the transfer stops. • 

The recommended method of reading from the disk is to read an entire track into a buffer and then 
search for the sector(s) that you want. Using the DSKSYNC register (described below) will 
guarantee word alignment of the data. With this process you need to read from the disk only once 
for the entire track. In a high speed loader, the step to the next head can occur while the previous 
track is processed and checksummed. With this method there are no time-critical sections in 
reading data, other high-priority subsystems (such as graphics or audio) are be allowed to run. 

If you have too little memory for track buffering (or for some other reason decide not to read a 
whole track at once), the disk hardware supports a limited set of sector-searching facilities. There 
is a register that may be polled to examine the disk input stream. 

There is a hardware bug that causes the last three bits of data sent to the disk to be lost. Also, the 
last word in a disk-read DMA operation may not come in (that is, one less word may be read than 
you asked for). 
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DSKBYTR - Disk Data Byte and Status Read (read-only) 

This register is the disk-microprocessor data buffer. In read mode, data from the disk is placed 
into this register one byte at a time. As each byte is received into the register, the DSKBYT bit is 
set true. DSKBYT is cleared when the DSKBYTR register is read. 

DSKBYTR may be used to synchronize the processor to the disk rotation before issuing a read or 
write under DMA control. 

Bit 
Number 

15 

14 

13 

12 

11-8 

7-0 

Name 

DSKBYT 
• 

DMAON 

DISKWRITE 

WORDEQUAL 

DATA 

Table 8-7: DSKBYTR Register 

Function 

When set, indicates that this register contains 
a valid byte of data (reset by reading this register). 

Indicates when DMA is actually enabled. All the various 
DMA bits must be true. This means the DMAEN bit in 
DKSLEN, and the DSKEN & DMAEN bits in DMACON. 

The disk write bit (in DSKLEN) is enabled. 

Indicates the DISKSYNC register equals the disk input 
stream. This bit is true only while the input stream matches 
the sync register (as little as two microseconds). 

Currently unused; don't depend on read value. 

Disk byte data. 

ADKCON and ADKCONR - Audio and Disk Control Register 

ADKCON is the write-only address and ADKCONR is the read-only address for this register. 
Not all of the bits are dedicated to the disk. Bit 15 of this register allows independent setting or 
clearing of any bit or bits. If bit 15 is a one on a write, any ones in positions 0-14 will set the 
corresponding bit. If bit 15 is a zero, any ones will clear the corresponding bit 
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Table 8-8: ADKCON and ADKCONR Register 

Bit 
Number Name Function 

15 SET/CLR Control bit that allows setting or clearing of individual 
bits without affecting the rest of the register. 

If bit 15 is a 1, the specified bits are set. 
If bit 15 is a 0, the specified bits are cleared. 

14 PRECOMPI MSB of Precompensation specifier 
13 PRECOMPO LSB of Precompensation specifier 

Value of 00 selects none. 
Value of 01 selects 140 ns. 
Value of 10 selects 280 ns. 
Value of 11 selects 560 ns. 

12 MFMPREC Value of 0 selects GCR Precompensation. 
Value of 1 selects MFM Precompensation. 

10 WORDSYNC Value of 1 enables synchronizing and starting 
of DMA on disk read of a word. The word on which 
to synchronize must be written into the DSKSYNC 
address ($DFF07E). This capability is highly 
useful. 

9 MSBSYNC Value of I enables sync on most significant bit of the 
input (usually used for GCR). 

8 FAST Value of 1 selects two microseconds per bif cell 
(usually MFM). Data must be valid raw MFM. 
o selects four microseconds per bit (usually GCR). 
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The raw MFM data that must be presented to the disk controller will be twice as large as the 
unencoded data. The following table shows the relationship: 

1~01 

o ~ 10 ;iffollowing a 0 
o ~ 00 ;if following a 1 

With clever manipulation, the blitter can be used to encode and decode the MFM. 

In one common form of GCR recording, each data byte always has the most significant bit set to a 
1. MSBSYNC, when a 1, tells the disk controller to look for this sync bit on every disk byte. 
When reading a GCR formatted disk, the software must use a translate table called a nybble-izer 
to assure that data written to the disk does not have too many consecutive I 's or O's. 

DSKSYNC - Disk Input Synchronizer 

The DSKSYNC register is used to synchronize the input stream. This is highly useful when read
ing disks. If the WORDSYNC bit is enabled in ADKCON, no data is transferred until a word is 
found in the input stream that matches the word in the DSKSYNC register. On read, DMA will 
start with the following word from the disk. During disk read DMA, the controller will resync 
every time the word match is found. Typically the DSKSYNC will be set to the magic MFM 
sync mark value, $4489. 

In addition, the DSKSYNC bit in INTREQ is set when the input stream matches the DSKSYNC 
register. The DSKSYNC bit in INTREQ is independent of the WORDSYNC enable. 

DISK INTERRUPTS 

The disk controller can issue three kinds of interrupts: 

• DSKSYNC (levelS, INTREQ bit l2)-input stream matches the DSKSYNC register. 

• DSKBLK (levell, INTREQ bit I)-disk DMA has completed. 

• INDEX (level 6, 8520 Flag pin)-index sensor triggered. 

Interrupts are explained further in the section "Length, Direction, DMA Enable". See Chapter 7, 
"System Control Hardware," for more information about interrupts. See Appendix F for more 
information on the 8520. 
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The Keyboard 

The keyboard is interfaced to the system via the serial shift register on one of the 8520 CIA chips. 
The keyboard data line is connected to the SP pin, the keyboard clock is connected to the CNT 
pin. Appendix H contains a full description of the interface. 

HOW THE KEYBOARD DATA IS RECEIVED 

The CNT line is used as a clock for the keyboard. On each transition of this line, one bit of data 
is clocked in from the keyboard. The keyboard sends this clock when each data bit is stable on 
the SP line. The clock is an active low pulse. The rising edge of this pulse clocks in the data. 

After a data byte has been received from the keyboard, an interrupt from the 8520 is issued to the 
processor. The keyboard waits for a handshake signal from the system before transmitting any 
more keystrokes. This handshake is issued by the processor pulsing the SP line low then high. 
While some keyboards can detect a I microsecond handshake pulse, the pulse must be at least 85 
microseconds for operation with all models of Amiga keyboards. 

If another keystroke is received before the previous one has been accepted by the processor, the 
keyboard microprocessor holds keys in a 10 keycode type-ahead buffer. 

TYPE OF DATA RECEIVED 

The keyboard data is not received in the form of ASCII characters. Instead, for maximum versa
tility, it is received in the form of keycodes. These codes include both the down and up transi
tions of the keys. This allows your software to use both sets of information to determine exactly 
what is happening on the keyboard. 

Here is a list of the hexadecimal values that are assigned to the keyboard. A downstroke of the 
key transmits the value shown here. An upstroke of the key transmits this value plus $80. The 
picture of the keyboard at the end of this section shows the positions that correspond to the 
description in the paragraphs below. 

Note that raw keycodes provide positional information only, the legend which is printed on top of 
the keys changes from country to country. 
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RAW KEYCODES -7 00-3F hex 

These are key codes assigned to specific positions on the main body of the keyboard. The letters 
on the tops of these keys are different for each country; not all countries use the QWERTY key 
layout. These keycodes are best described positionally as shown in Figure 8-9 and Figure 8-10 at 
the end of the keyboard section. The international keyboards have two more keys that are "cut 
out" of larger keys on the USA version. These are $30, cut out from the the left shift, and $2B, 
cut out from the return key. 

RAW KEY CODES -7 40-SF hex (Codes common to all keyboards) 

40 Space 
41 Backspace 
42 Tab 
43 Numeric Pad "ENTER" 
44 Return 
45 Escape 
46 Delete 
4C Cursor up 
4D Cursor down 
4E Cursor right 
4F Cursor left 
50-59 Function keys FI-FlO 
5F Help 

RAW KEYCODES -7 60-67 hex (Key codes for qualifier keys:) 

60 Left shift 
61 Right shift 
62 Caps lock 
63 Control 
64 LeftALT 
65 Right ALT 
66 Left Amiga (or Commodore key) 
67 Right Amiga 

246 Interface Hardware 



FO-FFhex 

These key codes are used for keyboard to 68000 communication, and are not associated with a 
keystroke. They have no key transition flag, and are therefore described completely by 8-bit 
codes: 

78 Reset warning. CfRL-AMIGA-AMIGA has been pressed. The keyboard 
will wait a maximum of 10 seconds before resetting the machine. 
(Not available on all keyboard models) 

F9 Last key code bad, next key is same code retransmitted 
FA Keyboard key buffer overflow 
Fe Keyboard self-test fail. Also, the caps-lock LED will blink 

to indicate the source of the error. Once for ROM failure, 
twice for RAM failure and three times jf the watchdog timer 
fails to function. 

FD Initiate power-up key stream (for keys held or stuck at power on) 
FE TeIminate power-up key stream. 

These key codes will usually be filtered out by keyboard drivers. 

LIMITATIONS OF THE KEYBOARD 

The Amiga keyboard is a matrix of rows and columns with a key switch at each intersection (see 
Appendix H for a diagram of the matrix). Because of this, the keyboard is subject to a 
phenomenon called "phantom keystrokes." While this is generally not a problem for typing, 
games may require several keys be independently held down at once. By examining the matrix, 
you can deteImine which keys may interfere with each other, and which ones are always safe. 

Phantom keystrokes occur when certain combinations of keys pressed are pressed simultaneously. 
For example, hold the "A" and "S" keys down simultaneously. Notice that "A" and "S" are 
transmitted. While still holding them down, press "Z". On the original Amiga 1000 keyboard, 
both the "Z" and a ghost "X" would be generated. Starting with the Amiga 500, the controller 
was upgraded to notice simple phantom situations like the one above; instead of generating a 
ghost, the controller will hold off sending any character until the matrix has cleared (releasing 
•• A" or •• S" would clear the matrix). Some high-end Amiga keyboards may implement true 
"N-key rollover," where any combination of keys can be detected simultaneously. 
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All of the keyboards are designed so that phantoms will not happen during normal typing, only 
when unusual key combinations like the one just described are pressed. Normally, the keyboard 
will appear to have "N-key rollover," which means that you will run out of fingers before gen
erating a ghost character. 

NOTE 

Seven keys are not part of the matrix, and will never contribute to generating phan
toms. These keys are: CfRL, the two SHIFf keys, the two Amiga keys, and the two 
ALTkeys. 
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ESC F1 

45 46 

00 
TAB 

CTRL 

63 
SHIFT 

re.sr1 
~ 

7 8 9 

3D 3E 3F 
HELP 4 5 6 

20 2E 2F 
1 2 3 

10 1E 1 F 
0 

OF 3C 
Af, AL T ENTER A 

66 40 67 4A 43 

Figure 8-9: The Amiga 1000 Keyboard, Showing Keycodes in Hexadecimal 
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3D 3E 3F 4A 
A 4 5 6 + 

4C 20 2E 2F 5E 
v 1 2 3 ENTER 

40 4E 10 1E 1F 43 
0 

OF 3C 

Figure 8-10: The Amiga 500/2000 Keyboard, Showing Keycodes in Hexadecimal 
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Parallel Input/Output Interface 

The general-purpose bi-directional parallel interface is a 25-pin connector on the back panel of the 
computer. This connector is generally used for a parallel printer. 

For each data byte written to the parallel port register, the hardware automatically generates a 
pulse on the data ready pin. The acknowledge pulse from the parallel device is hooked up to an 
interrupt. For pin connections and timing, see Appendix E and F. 

Serial Interface 

A 25-pin connector on the back panel of the computer serves as the general purpose serial inter
face. This connector can drive a wide range of different peripherals, including an external modem 
or a serial printer. 

For pin connections, see Appendix E. 

INTRODUCTION TO SERIAL CIRCUITRY 

The Paula custom chip contains a Universal Asynchronous Receiverrrransmitter, or UART. This 
UART is programmable for any rate from 110 to over 1,000,000 bits per second. It can receive or 
send data with a programmable length of eight or nine bits. 

The UART implementation provides a high degree of software control. The UART is capable of 
detecting overrun errors, which occur when some other system sends in data faster than you 
remove it from the data-receive register. There are also status bits and interrupts for the condi
tions of receive buffer full and transmit buffer empty. An additional status bit is provided that 
indicates "all bits have been shifted out". All of these topics are discussed below. 

SETTING THE BAUD RATE 

The rate of transmission (the baud rate) is controlled by the contents of the register named 
SERPER. Bits 14-0 of SERPER are the baud-rate divider bits. 
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All timing is done on the basis of a "color clock," which is 279.36ns long on NTSC machines 
and 281.94ns on PAL machines. If the SERPER divisor is set to the number N, then N+l color 
clocks occur between samples of the state of the input pin (for receive) or between transmissions 
of output bits (for transmit). Thus SERPER=(3,579,545/baud)-1. On a PAL machine, 
SERPER=(3,546,895/baud)-I. For example, the proper SERPER value for 9600 baud on an 
NTSC machine is (3,579,545/9600)-1=371. 

With a cable of a reasonable length, the maximum reliable rate is on the order of 150,000-250,000 
bits per second. Maximum rates will vary between machines. At these high rate it is not possible 
to handle the overhead of interrupts. The receiving end will need to be in a tight read loop. 
Through the use of low speed control information and high-speed bursts, a very inexpensive com
munication network can be built. 

SETTING THE RECEIVE MODE 

The number of bits that are to be received before the system tells you that the receive register is 
full may be defined either as eight or nine (this allows for 8 bit transmission with parity). In 
either case, the receive circuitry expects to see one start bit, eight or nine data bits, and at least 
one stop bit. 

Receive mode is set by bit 15 of the write-only SERPER register. Bit 15 is a 1 if you chose nine 
data bits for the receive-register full signal, and a 0 if you chose eight data bits. The normal state 
of this bit for most receive applications is a O. 

CONTENTS OF THE RECEIVE DATA REGISTER 

The serial input data-receive register is 16 bits wide. It contains the 8 or 9 bit input data and 
status bits. 

The data is received, one bit at a time, into an internal serial-to-parallel shift register. When the 
proper number of bit times have elapsed, the contents of this register are transferred to the serial 
data read register (SERDATR) shown in Table 8-10, and you are signaled that there is data ready 
for you. 

Immediately after the transfer of data takes place, the receive shift register again becomes ready to 
accept new data. After receiving the receiver-full interrupt, you will have up to one full 
character-receive time (8 to 10 bit times) to accept the data and clear the interrupt. If the interrupt 
is not cleared ill time, the OVERRUN bit is set. 
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Table 8-10 shows the definitions of the various bit positions within SERDATR. 

Bit 
Number 

15 

14 

13 

12 

11 

10 

9 

Name 

OVRUN 

RBF 

TBE 

TSRE 

RXD 

STP 
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Table 8-9: SERDA TR / ADKCON Registers 

SERDATR 

Function 

OVERRUN bit 
(Mirror-also appears in the interrupt request register.) 
Indicates that another byte of data was received before the 
previous byte was picked up by the processor. To prevent this 
condition, it is necessary to reset INTF _RBF (bit 11, 
receive-buffer-full) in INTREQ. 

READ BUFFER FULL 
(Mirror-also appears in the interrupt request register.) 
When this bit is 1, there is data ready to be picked 
up by the processor. After reading the contents of this data 
register, you must reset the INTF _RBF bit in INTREQ to prevent 
an overrun. 

TRANSMIT BUFFER EMPTY 
(Not a mirror-interrupt occurs when the buffer 
becomes empty.) When bit 14 is a 1, the data in the output 
data register (SERDA T) has been transferred to the serial 
output shift register, so SERDAT is ready to accept another 
output word. This is also true when the buffer is empty. 

This bit is normally used for full-duplex operation. 

TRANSMIT SHIFT REGISTER EMPTY 
When this bit is a 1, the output shift register has completed 
its task, all data has been transmitted, and the register is 
now idle. If you stop writing data into the output register 
(SERDAT). then this bit will become a 1 afierboth the word 
currently in the shift register and the word placed 
into SERDAT have been transmitted. 

This bit is normally used for half-duplex operation. 

Direct read of RXD pin on Paula Chip. 

Not used at this time. 

Stop bit if 9 data bits are specified for receive. 



8 STP Stop bit if 8 data bits are specified for receive. 
OR 

DB8 9th data bit if 9 bits are specified for receive. 

7-0 DB7-DBO Low 8 data bits of received data. Data is TRUE (data you 
read is the same polarity as the data expected). 

ADKCON 

15 SET/CLR Allows setting or clearing individual bits. 

If bit 15 is a 1 specified bits are set. 
Ifbit 15 is a 0 specified bits are cleared. 

11 UARTBRK Force the transmit pin to zero. 

HOW OUTPUT DATA IS TRANSMITTED 

You send data out on the transmit lines by writing into the serial data output register (SERDAT). 
This register is write-only. 

Data will be sent out at the same rate as you have established for the read. Immediately after you 
write the data into this register, the system will begin the transmission at the baud rate you 
selected. 

At the start of the operation, this data is transferred from SERDAT into an internal serial shift 
register. When the transfer to the serial shift register has been completed, SERDAT can accept 
new data; the TBE interrupt signals this fact. 

Data will be moved out of the shift register, one bit during each time interval, starting with the 
least significant bit. The shifting continues until all 1 bits have been shifted out. Any number or 
combination of data and stop bits may be specified this way. 

SERDAT is a 16-bit register that allows you to control the format (appearance) of the transmitted 
data. To form a typical data sequence, such as one start bit, eight data bits, and one stop bit, you 
write into SERDAT the contents shown in Figures 8-11 and 8-12. 
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15 987 o 

000 0 0 0 0 j.-- 8 bits data ---..1 

Data gets shifted out this way. 

Figure 8-11: Starting Appearance of SERDAT and Shift Register 

15 987 o 

o 0 0 0 0 0 0 000 0 0 0 0 0 0 
one bit 

All zeros from last shift -

Figure 8-12: Ending Appearance of Shift Register 

The register stops shifting and signals "shift register empty" (TSRE) when there is a 1 bit 
present in the bit-shifted-out position and the rest of the contents of the shift register are Os. 
When new nonzero contents are loaded into this register, shifting begins again. 

SPECIFYING THE REGISTER CONTENTS 

The data to be transmitted is placed in the output register (SERDA n. Above the data bits, 1 bits 
must be added as stop bits. Nonnally, either one or two stop bits are sent. 
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The transmission of the start bit is independent of the contents of this register. One start bit is 
automatically generated before the first data bit (bit 0) is sent. 

Writing this register starts the data transmission. If this register is written with all zeros, no data 
transmission is initiated. 

Display Output Connections 

All Amigas provide a 23-pin connector on the back. This jack contains video outputs and inputs 
for external genlock devices. Two separate type of RGB video are available on the connector: 

• RGB Monitors (" analog RGB' '). Provides four outputs; Red (R), Green (G), Blue (B), 
and Sync (S). They can generate up to 4,096 different colors on-screen simultaneously 
using the circuitry presently available on the Amiga. 

• Digital RGB Monitors. Provides four outputs, distinct from those shown above, named 
Red (R), Green (G), Blue (B), Half-Intensity (1), and Sync (S). All output levels are 
logic levels (0 or 1). On some monitors these outputs allow up to 15 possible color 
combinations, where the values 0000 and 0001 map to the same output value (Half 
intensity with no color present is the same as full intensity, no color). Some monitors 
arbitrarily map the 16 combinations to 16 arbitrary colors. 

Note that the sync signals from the Amiga are unbuffered. For use with any device that 
presents a heavy load on the sync outputs, external buffers will be required. 

The Amiga 500 and 2000 provide a full-bandwidth monochrome video jack for use with inexpen
sive monochrome monitors. The Amiga colors are combined into intensities based on the follow
ingtable: 

Red 
30% 

Green 
60% 

Blue 
10% 

The Amiga 1000 provides an RF modulator jack. An adapter is available that allows the Amiga 
to use a television set for display. Stereo sound is available on the jack, but will generally be 
combined into monaural sound for the TV set. 

The Amiga 1000 provides a color composite video jack. This is suitable for recording directly 
with a VCR, but the output is not broadcast quaility. For use on a monochrome monitor, the 
color information often has undesired effects; careful color selection or a modification to the inter
nal circuitry can improve the results. High quality composite adaptors for the A500, AlOOO, and 
A2000 plug into the 23 pin RGB port. 

The Amiga 2000 provides a special "video slot" that contains many more signals than are avail
able elsewhere: all the 23-pin RGB port signals, the unencoded digital video, light pen, power, 
audio, colorburst, pixel switch, sync, clock signals, etc. 
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Appendix A 

Register Summary-Alphabetical Order 

This appendix contains the definitive summary, in alphabetical order, of the register set and the 
usages of the individual bits. 
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The addresses shown here are used by the special chips (called "Agnus", "Denise", and 
"Paula' ') for transferring data among themselves. Also, the Copper uses these addresses for writ
ing to the special chip registers. To write to these registers with the 68000, calculate the 68000 
address using this fOl1Ilula: 

68000 address = (chip address) + $DFFOOO 

For example, for the 68000 to write to ADKCON (address = $09E) , the address would be 
$DFF09E. No other access address is valid. Unused registers must not be accessed 

All bits marked as "unused" must be written as zeros. The value of any unused read bit must not 
be trusted. Registers are either read-only or write-only. Reading a write-only register will trash 
the register. Writing a read-only register will cause unexpected results. 

All of the "pointer" type registers are organized as 32 bits on a long word boundary. These regis
ters may be written with one MOVE.L instruction. The lowest bit of all pointers must be written 
as zero. The custom chips can only access CHIP memory; using a non-CHIP address will fail 
(See the AllocMemO documentation or your compiler manual for more infol1Ilation on CHIP 
memory). Disk data, sprite data, bitplane data, audio data, copper lists and anything that will be 
blitted or accessed by custom chip DMA must be located in chip memory. 

When strobing any register which responds to either a read or a write, (for example copjmp2) be 
sure to use a MOVE.W, not CLR.W. The CLR instruction causes a read and a clear (two 
accesses) on a 68000, but only a single access on 68020 processors. This will give different 
results on different processors. 
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Read/ 
Register Address Write 

Agnus/ 
Denise/ 
Paula Function 

ADKCON 09E 
ADKCONR 010 

W P 
R P 

BITt USE 

Audio, disk, control write 
Audio, disk, cont~vl read 

15 SET/CLR Set/clear control bit. Determines if bits 
written with a 1 get set or cleared. Bits 
written with a zero are always unchanged. 

14-13 PRECOMP 1-0 

CODE PRECOMP VALUE 
-------------

00 none 
01 140 ns 
10 280 ns 
11 560 ns 

12 MFMPREC ( 1=MFM precomp O-GCR precomp) 
11 UARTBRK Forces a UART break (clears TXD) if true. 
10 

09 

08 

07 
06 
05 
04 

03 
02 
01 
00 

WORDSYNC Enables disk read synchronizing on a word 
equal to DISK SYNC CODE, located in 
address (3F) *2. 

MSBSYNC Enables disk read synchronizing on the MSB 
(most signif bit). Appl type GCR. 

FAST Disk data clock rate control 1-fast(2us) 0-slow(4us). 
(fast for MFJ;1, slow for MFM or GCR) 

USE3PN Use audio channel 3 to modulate nothing. 
USE2P3 Use audio channel 2 to modulate period of channel 
USE1P2 Use audio channel 1 to modulate period of channel 
USEOP1 Use audio channel 0 to modulate period of channel 

USE3VN Use audio channel 3 to modulate nothing. 
USE2V3 Use audio channel 2 to modulate volume of channel 
USE1V2 Use audio channel 1 to modulate volume of channel 
USEOV1 Use audio channel 0 to modulate volume of channel 

NOTE: If both period and volume are modulated on the 
same channel, the period and volume will be alternated. 
First word xxxxxxxx V6-VO , Second word P1S-PO (etc) 

3. 
2. 
1. 

3. 
2. 
1. 

AUDxDAT OAA W P Audio channel x data 

This register is the audio channel x (x=O,1,2,3) 
DMA data buffer. It contains 2 bytes of data that 
are each 2's complement and are outputted 
sequentially (with digital-to-analog conversion) 
to the audio output pins. (LSB = 3 MV) The DMA 
controller automatically transfers data to this 
register from RAM. The processor can also write 
directly to this register. When the DMA data is 
finished (words outputted=length) and the data in 
this register has been used, an audio channel 
interrupt request is set. 
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AUDxLCH 
AUDxLCL 

AUDxLEN 

AUDxPER 

AUDxVOL 

BLTAFWM 
BLTALWM 

OAO W 
0A2 W 

A 
A 

Audio channel x location (high 3 bits) 
Audio channel x location (low 15 bits) 

This pair of registers contains the 18 bit starting address 
(location) of audio channel x (x=0,1,2,3) DMA data. 
This is not a pointer register and therefore needs 
to be reloaded only if a different memory location is to 
be outputted. 

OA4 W p Audio channel x length 

This register contains the length (number of words) of 
audio channel x DMA data. 

OA6 W p Audio channel x Period 

This register contains the period (rate) of 
audio channel x DMA data transfer. 
The minimum period is 124 color clocks. This means 
that the smallest number that should be placed in 
this register is 124 decimal. This corresponds to 
a maximum sample frequency of 28.86 khz. 

OAS W p Audio channel x volume 

This register contains the volume setting for 
audio channel x. Bits 6,5,4,3,2,1,0 specify 65 
linear volume levels as shown below. 

Bitt Use 

044 W 
046 W 

15-07 
06 
05-00 

A 
A 

Not used 
Forces volume to max (64 ones, no zeros) 
Sets one of 64 levels (OOOOOO=no output 
(111111=63 1s, one 0) 

Blitter first-word mask for source A 
Blitter last-word mask for source A 

The patterns in these two registers are ANDed with 
the first and last words of each line of data from 
source A into the b1itter. A zero in any bit 
overrides data from source A. These registers 
should be set to all 1s for fill mode or for 
line-drawing mode. 
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BLTCONO 
BLTCON1 

040 W A 
042 W A 

Blitter control register 0 
Blitter control register 1 

These two control registers are used together to 
control blitter operations. There are two basic 
modes, area and line, which are selected by bit 
o of BLTCON1, as shown below. 

AREA MODE ("normal") 
-------------------------
BITt BLTCONO BLTCON1 

------- -------
15 ASH3 BSH3 
14 ASH2 BSH2 
13 ASH 1 BSH1 
12 ASAO BSHO 
11 usn x 
10 USEB X 
09 USEC X 
08 USED X 
07 LF7 X 
06 LF6 X 
05 LF5 X 
04 LF4 EFE 
03 LF3 IFE 
02 LF2 FCI 
01 LF1 DESC 
00 LFO LINE (-0) 

ASH3-0 Shift value of A source 
BSH3-0 Shift value of B source 
usn Mode control bit to use source A 
USEB Mode control bit to use source B 
USEC Mode control bit to use source C 
USED Mode control bit to use destination D 
LF7-0 Logic function minterm select lines 
EFE Exclusive fill enable 
IFE Inclusive fill enable 
FCI Fill carry input 
DESC Descending (decreasing address) control 
LINE Line mode control bit (set to 0) 

bit 
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BLTCONO (cont.) 
BLTCONl (cont.) 
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LINE DRAW 
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LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

LINE DRAW 
LINE DRAW 

LINE MODE (line draw) 

BITt BLTCONO BLTCON1 

15 
14 
13 
12 
11 
10 
09 
08 
07 
06 
05 
04 
03 
02 
01 
00 

S TART 3 
START 2 
START 1 
START 0 

1 
o 
1 
1 

LF7 
LF6 
LF5 
LF4 
LF3 
LF2 
LF1 
LFO 

TEXTURE 3 
TEXTURE2 
TEXTURE 1 
TEXTURE 0 

o 
o 
o 
o 
o 

SIGN 
o (Reserved) 

SUD 
SUL 
AUL 
SING 
LINE (=1) 

START3-0 Starting point of line 
(0 thru 15 hex) 

LF7-0 Logic function minterm 
select lines should be preloaded 
with 4A to select the equation 
D=(AC+ABC). Since A contains a 
single bit true (8000), most bits 
will pass the C field unchanged 
(not A and C), but one bit will 
invert the C field and combine it 
with texture (A and B and not C). 
The A bit is automatically moved 
across the word by the hardware. 

LINE 
SIGN 
o 
SING 

SUD 
SUL 
AUL 

Line mode control bit (set to 1) 
Sign flag 
Reserved for new mode 
Single bit per horizontal line for 
use with subsequent area fill 
Sometimes up or down (=AUD*) 
Sometimes up or left 
Always up or left 

The 3 bits above select the octant 
for line drawing: 

OCT 

o 
1 
2 
3 
4 
5 
6 
7 

SUD SUL AUL 

1 1 0 
001 
o 1 1 
1 1 1 
1 0 1 
o 1 0 
000 
1 0 0 

The "B" source is used for 
texturing the drawn lines. 



BLTDDAT 

BLTSIZE 

BLTxDAT 

Blitter destination data register 

This register holds the data resulting from each 
word of·blitter operation until it is sent to a 
RAM destination. This is a dummy address and 
cannot be read by the micro. The transfer is 
automatic during blitter operation. 

058 W A Blitter start and size (window width, 
height) 

This register contains the width and height of 
the blitter operation (in line mode, width must 
- 2, height - line length). Writing to this 
register will start the blitter, and should be 
done last, after all pointers and control 
registers have been initialized. 

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

h9 h8 h7 h6 h5 h4 h3 h2 hI hO,w5 w4 w3 w2 wI wO 

h-height-vertical lines (10 bits=1024 lines max) 
w-width -horizontal pixels (6 bits=64 words=1024 pixels max) 

LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

074 W A 

BLTSIZE controls the line length and starts 
the line draw when written to. The h field 
controls the line length (10 bits gives 
lines up to 1024 dots long). The w field 
must be set to 02 for all line drawing. 

Blitter source x data register 

This register holds source x (x=A,B,C) data for 
use by the blitter. It is normally loaded by the 
blitter DMA channel; however, it may also be 
preloaded by the microprocessor. 

LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

BLTADAT is used as an index register 
and must be preloaded with 8000. 
BLTBDAT is used for texture; it must 
be preloaded with FF if no texture 
(solid line) is desired. 
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BLTxMOD 

BLTxPTH 
BLTxPTL 

BPL1MOD 
BPL2MOD 

064 W A B1itter modulo x 

This register contains the modulo for blitter 
source (x-A,B,C) or destination (x=D). A modulo 
is a number that is automatically added to the 
address at the end of each line, to make the 
address point to the start of the next line. Each 
source or destination has its own modulo, allowing 
each to be a different size, while an identical 
area of each is used in the blitter operation. 

LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

050 W 
052 W 

A 
A 

BLTAMOD and BLTBMOD are used as slope 
storage registers and must be preloaded 
with the values (4Y-4X) and (4Y) 
respectively. Y/X= line slope. 
BLTCMOD and BLTDMOD must both be 
preloaded with the width (in bytes) 
of the image into which the line is 
being drawn (normally two times the 
screen width in words) • 

Blitter pointer to x (high 3 bits) 
Blitter pointer to x (low 15 bits) 

This pair of registers contains the 18-bit address 
of blitter source (x=A,B,C) or destination (x=D) 
DMA data. This pointer must be preloaded with the 
starting address of the data to be processed by 
the blitter. After the blitter is finished, it 
will contain the last data address (plus increment 
and modulo) • 

LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 
LINE DRAW 

108 W 
lOA W 

A 
A 

BLTAPTL is used as an accumulator 
register and must be pre loaded with 
the starting value of (2Y-X) where 
Y/X is the line slope. BLTCPT and 
BLTDPT (both Hand L) must be 
preloaded with the starting address 
of the line. 

Bit plane modulo (odd planes) 
Bit Plane modulo (even planes) 

These registers contain the modulos for the odd 
and even bit planes. A modulo is a number that is 
automatically added to the address at the end of 
each line, so that the address then points to the 
start of the next line. 
Since they have separate modulos, the odd and even 
bit planes may have sizes that are different from 
each other, as well as different from the display 
window size. 
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BPLCONO 100 

BPLCON1 102 

BPLCON2 104 

W A D Bit plane control register (misc. 
control bits) 

W D Bit plane control register 
(horizontal scroll control) 

W D Bit Plane control register 
(video priority control) 

These registers control the operation of the 
bit planes and various aspects of the display. 

BITt BPLCONO BPLCON1 BPLCON2 
-------- -------- --------

15 HIRES X X 
14 BPU2 X X 
13 BPU1 X X 
12 BPUO X X 
11 HOMOD X X 
10 DBLPF X X 
09 COLOR X X 
08 GAUD X X 
07 X PF2H3 X 
06 X PF2H2 PF2PRI 
05 X PF2H1 PF2P2 
04 X PF2HO PF2P1 
03 LPEN PF1H3 PF2PO 
02 LACE PF1H2 PF1P2 
01 ERSY PF1H1 PF1P1 
00 X PF1HO PF1PO 

HlRES-High-resolution (640) mode 
BPU =Bit plane use code 000-110 (NONE through 6 inclusive) 
HOMOD=Hold-and-modify mode 
DBLPF-Double playfield (PF1=odd PF2=even bit planes) 
COLOR-Composite video COLOR enable 
GAUD=Genlock audio enable (muxed on BKGND pin 

during vertical blanking 
LPEN =Light pen enable (reset on power up) 
LACE -Interlace enable (reset on power up) 
ERSY -External resync (HSYNC, VSYNC pads become 

inputs) (reset on power up) 
PF2PRI-Playfield 2 (even planes) has priority over 

(appears in front of) playfield 1 
(odd planes) . 

PF2P=Playfield 2 priority code (with respect 
to sprites) 

PF1P-Playfield 1 priority code (with respect 
to sprites) 

PF2H-Playfield 2 horizontal scroll code 
PF1H-Playfield 1 horizontal scroll code 
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BPLxDAT 

BPLxPTH 
BPLxPTL 

CLXCON 

110 W D Bit plane x data (parallel-to-serial 
convert) 

These registers receive the DMA data fetched from 
RAM by the bit plane address pointers described 
above. They may also be written by either 
microprocessor. They act as a six-word parallel
to-serial buffer for up to six memory bit planes 
(x-1-6). The parallel-to-seria1 conversion is 
triggered whenever bit plane 11 is written, 
indicating the completion of all bit planes for 
that word (16 pixels). The MSB is output first, 
and is, therefore, always on the left. 

OEO W 
OE2 W 

A 
A 

Bit plane x pointer (high 3 bits) 
Bit plane x pointer (low 15 bits) 

This pair of registers contains the 18-bit pointer to 
the address of bit-plane x (x=1,2,3,4,5,6) DMA data. 
This pointer must be reinitia1ized by the processor 
or copper to point to the beginning of bit plane data 
every vertical blank time. 

098 W D Collision control 

This register controls which bit-planes are 
included (enabled) in collision detection and 
their required state if included. It also controls 
the individual inclusion of odd-numbered sprites 
in the collision detection by logically OR-ing 
them with their corresponding even-numbered sprite. 

BITt FUNCTION DESCRIPTION 

15 
14 
13 
12 
11 

10 

09 

08 

07 

06 

05 
04 
03 
02 
01 
00 

ENSP7 
ENSP5 
ENSP3 
ENSP1 
ENBP6 

ENBP5 

ENBP4 

ENBP3 

ENBP2 

ENBP1 

MVBP6 
MVBP5 
MVBP4 
MVBP3 
MVBP2 
MVBP1 

Enable sprite 7 (ORed with sprite 6) 
Enable sprite 5 (ORed with sprite 4) 
Enable sprite 3 (ORed with sprite 2) 
Enable sprite 1 (ORed with sprite 0) 
Enable bit plane 6 (match required 
for collision) 
Enable bit plane 5 (match required 
for collision) 
Enable bit plane 4 (match required 
for collision) 
Enable bit plane 3 (match required 
for collision) 
Enable bit plane 2 (match required 
for collision) 
Enable bit plane 1 (match required 
for collision) 
Match value for bit 
Match value for bit 
Match value for bit 
Match value for bit 
Match value for bit 
Match value for bit 

plane 
plane 
plane 
plane 
plane 
plane 

6 collision 
5 
4 
3 

collision 
collision 
collision 

2 collision 
1 collision 

NOTE: Disabled bit planes cannot prevent 
collisions. Therefore if all bit planes are 
disabled, collisions will be continuous, 
regardless of the match values. 
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CLXDAT 

COLORxx 

COPILCH 

COPILCL 

COP2LCH 

COP2LCL 

OOE R D Collision data register (read and clear) 

This address reads (and clears) the collision 
detection register. The bit assignments are below. 

NOTE: Playfield 1 is all odd-numbered enabled 
bit planes. Playfield 2 is all even-numbered 
enabled bit planes 

BITt COLLISIONS REGISTERED 

15 not used 
14 Sprite 4 (or 5) to sprite 6 (or 7) 
13 Sprite 2 (or 3) to sprite 6 (or 7) 
12 Sprite 2 (or 3) to sprite 4 (or 5) 
11 Sprite 0 (or 1) to sprite 6 (or 7) 
10 Sprite 0 (or 1) to sprite 4 (or 5) 
09 Sprite 0 (or 1) to sprite 2 (or 3) 
08 Playfield 2 to sprite 6 (or 7) 
07 Playfield 2 to sprite 4 (or 5) 
06 Playfield 2 to sprite 2 (or 3) 
05 Playfield 2 to sprite 0 (or 1) 
04 Playfield 1 to sprite 6 (or 7) 
03 Playfield 1 to sprite 4 (or 5) 
02 Playfield 1 to sprite 2 (or 3) 
01 Playfield 1 to sprite 0 (or 1) 
00 Playfield 1 to playfield 2 

180 W D Color table xx 

There are 32 of these registers (xx=00-31) and they 
are sometimes collectively called the "color 
palette." They contain 12-bit codes representing 
red, green, and blue colors for RGB systems. 
One of these registers at a time is selected 
(by the BPLxDAT serialized video code) 
for presentation at the RGB video output pins. 
The table below shows the color register bit usage. 

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

RGB X X X X R3 R2 R1 RO G3 G2 G1 GO B3 B2 B1 BO 

B=blue, G=green, R=red, 

080 W A 

082 W A 

084 W A 

086 W A 

Copper first location register 
(high 3 bits) 
Copper first location register 
(low 15 bits) 
Copper second location register 
(high 3 bits) 
Copper second location register 
(low 15 bits) 

These registers contain the jump addresses 
described above. 
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COP CON 

COP INS 

02E W A Copper control register 

This is a 1-bit register that when set true, allows 
the Copper to access the blitter hardware. This 
bit is cleared by power-on reset, so that the 
Copper cannot access the blitter hardware. 

BITt 

01 

08C W A 

NAME 

CDANG 

FUNCTION 

Copper danger mode. Allows Copper 
access to blitter if true. 

Copper instruction fetch identify 

This is a dummy address that is generated by the 
Copper whenever it is loading instructions into 
its own instruction register. This actually occurs 
every Copper cycle except for the second (IR2) 
cycle of the MOVE instruction. The three types 
of instructions are shown below. 

MOVE 
WAIT 

SKIP 

Move immediate to destination. 
Wait until beam counter is equal to, or 
greater than. (keeps Copper off of bus 
until beam position has been reached). 
Skip if beam counter is equal to or greater 
than (skips following MOVE instruction unless 
beam position has been reached). 
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COP INS (cont. ) MOVE WAIT UNTIL SKIP IF 
-------- ----------- ------------

BITt IR1 IR2 IR1 IR2 IR1 IR2 

15 X R015 VP7 BFD * VP7 BFD * 
14 X R014 VP6 VE6 
13 X R013 VP5 VE5 
12 X R012 VP4 VE4 
11 X ROll VP3 VE3 
10 X R010 VP2 VE2 
09 X R009 VP1 VEl 
08 DA8 R008 VPO VEO 
07 DA7 R007 HP8 HE8 
06 DA6 R006 HP7 HE7 
05 DA5 R005 HP6 HE6 
04 DA4 R004 HP5 HE5 
03 DA3 R003 HP4 HE4 
02 DA2 R002 HP3 HE3 
01 DA1 R001 HP2 HE2 
00 0 ROOO 1 0 

IR1-First instruction register 
IR2-Second instruction register 

VP6 VE6 
VP5 VE5 
VP4 VE4 
VP3 VE3 
VP2 VE2 
VP1 VEl 
VPO VEO 
HP8 HE8 
HP7 HE7 
HP6 HE6 
HP5 HE5 
HP4 HE4 
HP3 HE3 
HP2 HE2 

1 1 

DA -Destination address for MOVE instruction. Fetched 
during IR1 time, used during IR2 time on RGA bus. 

RO -RAM data moved by MOVE instruction at IR2 time 
directly from RAM to the address given by the 
DA field. 

VP -Vertical beam position comparison bit. 
HP -Horizontal beam position comparison bit. 
VE -Enable comparison (mask bit) • 
HE -Enable comparison (mask bit) • 

* NOTE BFD=Blitter finished disable. When this bit 
is true, the Blitter Finished flag will 
have no effect on the Copper. When this 
bit is zero, the Blitter Finished flag 
must be true (in addition to the rest of 
the bit comparisons) before the Copper 
can exit from its wait state or skip 
over an instruction. Note that the V7 
comparison cannot be masked. 

The Copper is basically a two-cycle machine that 
requests the bus only during odd memory cycles 
(4 memory cycles per instruction). This prevents 
collisions with display, audio, disk, refresh, and 
sprites, all of which use only even cycles. It 
therefore needs (and has) priority over only the 
blitter and microprocessor. 

There are only three types of instructions: 
MOVE immediate, WAIT until, and SKIP if. All 
instructions (except for WAIT) require two bus 
cycles (and two instruction words). Since only 
the odd bus cycles are requested, four memory 
cycle times are required per instruction 
(memory cycles are 280 ns.) 

Appendix A 269 



COP INS (cont.) There are two indirect jump registers, COPlLC and 
COP2LC. These are l8-bit pointer registers whose 
contents are used to modify the program counter for 
initialization or jumps. They are transferred to 
the program counter whenever strobe addresses 
COPJMPl or COPJMP2 are written. In addition, 
COPlLC is automatically used at the beginning of 
each vertical blank time. 

It is important that one of the jump registers be 
initialized and its jump strobe address hit after 
power-up but before Copper DMA is initialized. 
This insures a determined startup address and state. 

COPJMPl 
COPJMP2 

088 S 
08A S 

A 
A 

Copper restart at first location 
Copper restart at second location 
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These addresses are strobe addresses. When written 
to, they cause the Copper to jump indirect using 
the address contained in the first or second 
location registers described below. The Copper 
itself can write to these addresses, causing its 
own jump indirect. 



DDFSTOP 
DDFSTRT 

DIWSTOP 

DIWSTRT 

094 W 
092 W 

A 
A 

Display data fetch stop (horiz. position) 
Display data fetch start (horiz. position) 

These registers control the horizontal timing of the 
beginning and end of the bit plane DMA display data 
fetch. The vertical bit plane DMA timing is identical 
to the display windows described above. 
The bit plane modulos are dependent on the bit plane 
horizontal size and on this data-fetch window size. 

Register bit assignment 

BITt 15,14,13,12,11,10,09,OS,07,06,05,04,03,02,01,00 

USE X X X X X X X X HS H7 H6 H5 H4 H3 X X 

(X bits should always be driven with 0 to maintain 
upward compatibility) 

The tables below show the start and stop timing for 
different register contents. 

090 W 

OSE W 

DDFSTRT (left edge of display data fetch) 

PURPOSE HS,H7,H6,H5,H4 

----------------- --------------
Extra wide (max) * 0 0 1 0 1 
Wide 0 0 1 1 0 
Normal 0 0 1 1 1 
Narrow 0 1 0 0 0 

DDFSTOP (right edge of display data fetch) 

PURPOSE HS,H7,H6,H5,H4 
------------------ --------------
Narrow 1 1 0 0 1 
Normal 1 1 0 1 0 
Wide (max) 1 1 0 1 1 

A 

A 

Display window stop (lower right 
vertical-horizontal position) 

Display window start (upper left 
vertical-horizontal position) 

These registers control display window size and 
position by locating the upper left and lower right 
corners. 

BITt 15,14,13,12,11,10,09,OS,07,06,05,04,03,02,01,00 

USE V7 V6 V5 V4 V3 V2 V1 VO H7 H6 H5 H4 H3 H2 H1 HO 

DIWSTRT is vertically restricted to the upper 2/3 
of the display (VS=O) and horizontally restricted to 
the left 3/4 of the display (HS=O). 

DIWSTOP is vertically restricted to the lower 1/2 
of the display (VS=/-V7) and horizontally restricted 
to the right 1/4 of the display (HS=1). 
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DMACON 
DMACONR 

DSKBYTR 

096 W 
002 R 

AD P 
A P 

DMA control write (clear or set) 
DMA control (and blitter status) read 

This register controls all of the DMA channels and 
contains blitter DMA status bits. 

BITt FUNCTION 

15 

14 
13 

12 
11 
10 

09 
08 
07 
06 
05 
04 
03 
02 
01 
00 

SET/CLR 

BBUSY 
BZERO 

x 
X 
BLTPRI 

DMAEN 
BPLEN 
COPEN 
BLTEN 
SPREN 
DSKEN 
AUD3EN 
AUD2EN 
AUD1EN 
AUDOEN 

DESCRIPTION 

Set/clear control bit. Determines 
if bits written with a 1 get set or 
cleared. Bits written with a zero 
are unchanged. 
Blitter busy status bit (read only) 
Blitter logic zero status bit 
(read only) • 

Blitter DMA priority 
(over CPU micro) (also called 
"blitter nasty") (disables /BLS 
pin, preventing micro from 
stealing any bus cycles while 
blitter DMA is running). 
Enable all DMA below 
Bit plane DMA enable 
Copper DMA enable 
Blitter DMA enable 
Sprite DMA enable 
Disk DMA enable 
Audio channel 3 DMA enable 
Audio channel 2 DMA enable 
Audio channel I DMA enable 
Audio channel 0 DMA enable 

01A R P Disk data byte and status read 

This register is the disk-microprocessor data 
buffer. Data from the disk (in read mode) is 
loaded into this register one byte at a time, and 
bit 15 (DSKBYT) is set true. 

BITt 
---------

15 DSKBYT 
14 DMAON 

13 DISKWRITE 
12 WORDEQUAL 

11-08 X 
07-00 DATA 

Disk byte ready (reset on read) 
Mirror of bit 15 (DMAEN) in DSKLEN, 
ANDed with Bit09 (DMAEN) in DMACON 
Mirror of bit 14 (WRITE) in DSKLEN 
This bit true only while the 
DSKSYNC register equals the data 
from disk. 
Not used 
Disk byte data 
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DSKDAT 
DSKDATR 

DSKLEN 

DSKPTH 
DSKPTL 

DSKSYNC 

026 W 
008 ER 

p 
p 

Disk DMA data write 
Disk DMA data read (early read dummy 

address) 

This register is the disk DMA data buffer. It 
contains two bytes of data that are either sent 
(written) to or received (read) from the disk. 
The write mode is enabled by bit 14 of the LENGTH 
register. The DMA controller automatically 
transfers data to or from this register and RAM, 
and when the DMA data is finished (length-O) it 
causes a disk block interrupt. See interrupts below. 

024 W p Disk length 

020 
022 

This register contains the length (number of words) 
of disk DMA data. It also contains two control 
bits, a DMA enable bit, and a DMA direction 
(read/write) bit. 

BITt 

15 
14 
13-0 

W A 
W A 

FUNCTION DES~RIPTION 

DMAEN 
WRITE 
LENGTH 

Disk DMA enable 
Disk write (RAM to disk) if 1 
Length (t of words) of DMA data. 

Disk pointer (high 3 bits) 
Disk pointer (low 15 bits) 

This pair of registers contains the 18-bit 
address of disk DMA data. These address registers 
must be initialized by the processor or Copper 
before disk DMA is enabled. 

07E W P Disk sync register 

holds the match code for disk read synchronization. 
See ADKCON bit 10. 
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INTENA 
INTENAR 

INTREQ 
INTREQR 

09A W 
01C R 

P 
P 

Interrupt enable bits (clear or set bits) 
Interrupt enable bits (read) 

This register contains interrupt enable bits. The bit 
assignment for both the request and enable registers 
is given below. 

BITt FUNCT LEVEL DESCRIPTION 

15 

14 

13 
12 

11 
10 
09 
08 
07 
06 
05 
04 
03 
02 

01 
00 

09C W 
OlE R 

SET/CLR 

INTEN 

EXTER 6 
DSKSYN 5 

RBF 5 
AUD3 4 
AUD2 4 
AUD1 4 
AUDO 4 
BLIT 3 
VERTB 3 
COPER 3 
PORTS 2 
SOFT 1 

DSKBLK 1 
TBE 1 

Set/clear control bit. Determines if 
bits written with a 1 get set or 
cleared. Bits written with a zero 
are always unchanged. 
Master interrupt (enable only, 

no request) 
External interrupt 
Disk sync register (DSKSYNC) 

matches disk data 
Serial port receive buffer full 
Audio channel 3 block finished 
Audio channel 2 block finished 
Audio channel 1 block finished 
Audio channel 0 block finished 
Blitter finished 
Start of vertical blank 
Copper 
I/O ports and timers 
Reserved for software-initiated 

interrupt 
Disk block finished 
Serial port transmit buffer empty 

P 
P 

Interrupt request bits (clear or set) 
Interrupt request bits (read) 

This register contains interrupt request bits (or 
flags). These bits may be polled by the processor; 
if enabled by the bits listed in the next register, 
they may cause processor interrupts. Both a set and 
clear operation are required to load arbitrary data 
into this register. These status bits are not 
automatically reset when the interrupt is serviced, 
and must be reset when desired by writing to this 
address. The bit assignments are identical to the 
enable register below. 
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JOYODAT 

JOYlDAT 

OOA R o Joystick-mouse 0 data (left vertical, 
horizontal) 

OOC R o Joystick-mouse 1 data (right vertical, 
horizontal) 

These addresses each read a pair of 8-bit mouse 
counters. O-left controller pair, l=right 
controller pair (four counters total). The bit 
usage for both left and right addresses is shown 
below. Each counter is clocked by signals from 
two controller pins. Bits 1 and 0 of each counter 
may be read to determine the state of these two 
clock pins. This allows these pins to double as 
joystick switch inputs. 

Mouse counter usage: 
(pins 1,3-Yclock, pins 2,4=Xclock) 

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 

ODAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO 
1DAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO 

X7 X6 X5 X4 X3 X2 Xl XO 
X7 X6 X5 X4 X3 X2 Xl XO 

The following table shows the mouse/joystick 
connector pin usage. The pins (and their functions) 
are sampled (multiplexed) into the DENISE chip 
during the clock times shown in the table. 
This table is for reference only and should 
not be needed by the programmer. (Note that the 
joystick functions are all "active low" at the 
connector pins.) 

Sampled by DENISE 
Conn Joystick Mouse -----------------
Pin Function Function Pin Name Clock 

-------- --------
L1 FORW* Y 38 MOV at CCK 
L3 LEFT* YQ 38 MOV at CCK* 
L2 BACK * X 9 MOH at CCK 
L4 RIGH* XQ 9 MOH at CCK* 
R1 FORW* Y 39 M1V at CCK 
R3 LEFT* YQ 39 M1V at CCK* 
R2 BACK* X 8 M1H at CCK 
R4 RIGH* XQ 8 M1H at CCK* 

After being sampled, these connector pin signals 
are used in quadrature to clock the mouse counters. 
The LEFT and RIGHT joystick functions (active high) 
are directly available on the Y1 and Xl bits of 
each counter. In order to recreate the FORWARD 
and BACK joystick functions, however, it is 
necessary to logically combine (exclusive OR) 
the lower two bits of each counter. 
This is illustrated in the following table. 

To detect Read these counter bits 
-------- ----------------
Forward Yl xor YO (Bln09 xor Bln08) 
Left Y1 
Back Xl xor XO (Bln01 xor BlnOO) 
Right Xl 
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JOYTEST 

POTODAT 
POT1DAT 

POTGO 

POTGOR 

REFPTR 

036 W D Write to all four joystick-mouse counters 
at once. 

Mouse counter write test data: 

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 

ODAT 
1DAT 

012 R 
014 R 

Y7 Y6 Y5 Y4 Y3 Y2 xx xx 
Y7 Y6 Y5 Y4 Y3 Y2 xx xx 

X7 X6 X5 X4 X3 X2 xx xx 
X7 X6 X5 X4 X3 X2 xx xx 

P 
P 

Pot counter data left pair (vert,horiz) 
Pot counter data right pair (vert,horiz) 

These addresses each read a pair of 8-bit pot counters. 
(Four counters total.) The bit assignment for both 
addresses is shown below. The counters are stopped by 
signals from two controller connectors (left-right) 
with two pins each. 

BITt 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 

RIGHT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO 
LEFT Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO 

X7 X6 X5 X4 X3 X2 Xl XO 
X7 X6 X5 X4 X3 X2 Xl XO 

034 W 

016 R 

CONNECTORS 

Loc. Dir. Sym 

RIGHT Y 
RIGHT X 
LEFT Y 
LEFT X 

RY 
RX 
LY 
LX 

Pin 

9 
5 
9 
5 

Pint 

36 
35 
33 
32 

PAULA 

Pin Name 

(POTlY) 
(POT1X) 
(POTOY) 
(POTOX) 

P Pot port data write and start. 

P Pot port data read (formerly called POTINP). 

This register controls a 4-bit bi-directional I/O port 
that shares the same four pins as the four pot counters 
above. 

BITt FUNCT 

15 
14 
13 
12 
11 
10 
09 
08 
07-01 
00 

028 W A 

OUTRY 
DATRY 
OUTRX 
DATRX 
OUTLY 
DATLY 
OUTLX 
DATLX 

o 
START 

DESCRIPTION 

Output enable for Paula pin 36 
I/O data Paula pin 36 
Output enable for Paula pin 35 
I/O data Paula pin 35 
Output enable for Paula pin 33 
I/O data Paula pin 33 
Output enable for Paula pin 32 
I/O data Paula pin 32 
Reserved for chip ID code (presently 0) 
Start pots (dump capacitors, start 

counters) 

Refresh pointer 

This register is used as a dynamic RAM refresh 
address generator. It is writeable for test 
purposes only, and should never be written by 
the microprocessor. 
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SERDAT 

SERDATR 

030 W P Serial port data and stop bits write 
(transmit data buffer) 

This address writes data to a transmit data buffer. 
Data from this buffer is moved into a serial shift 
register for output transmission whenever it is 
empty. This sets the interrupt request TBE 
(transmit buffer empty). A stop bit must be 
provided as part of the data word. The length of 
the data word is set by the position of the stop 
bit. 

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

USE 0 0 0 0 0 0 S D8 D7 D6 D5 D4 D3 D2 D1 DO 

Note: S 

018 R P 

stop bit = 1, D = data bits. 

Serial port ~ta and status read 
(receive data buffer) 

This address reads data from a receive data buffer. 
Data in this buffer is loaded from a receiving 
shift register whenever it is full. Several 
interrupt request bits are also read at this 
address, along with the data, as shown below. 

BITt SYM 

15 OVRUN 

14 RBF 

13 TBE 

i2 TSRE 

11 RXD 

10 0 
09 STP 
08 STP-DB8 

07 DB7 
06 DB6 
05 DB5 
04 DB4 
03 DB3 
02 DB2 
01 DB1 
00 DBO 

FUNCTION 

Serial port receiver overrun. 
Reset by resetting bit 11 of 
INTREQ. 
Serial port receive buffer full 
(mirror) . 
Serial port transmit buffer 
empty (mirror). 
Serial port transmit shift 
register empty. 
Reset by loading into buffer. 
RXD pin receives UART serial 
data for direct bit test by 
the microprocessor. 
Not used 
Stop bit 
Stop bit if LONG, data bit if 
not. 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
Data bit 
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SERPER 

SPRxCTL 
SPRxPOS 

SPRxDATA 
SPRxDATB 

SPRxPOS 

032 W P Serial port period and control 

This register contains the control bit LONG referred to 
above, and a IS-bit number defining the serial port 
baud rate. If this number is N, then the baud rate is 
1 bit every (N+l)*.2794 microseconds. 

BITt 

15 
14-00 

SYM 

LONG 
RATE 

FUNCTION 

Defines serial receive as 9-bit word. 
Defines baud rate=I/«N+l)*.2794 microsec.) 

142 W 
140 W 

A D 
A D 

Sprite x vert stop position and control data 
Sprite x vert-horiz start position data 

144 
146 

These two registers work together as position, size and 
feature sprite-control registers. They are usually loaded 
by the sprite DMA channel during horizontal blank; 
however, they may be loaded by either processor at any time. 
SPRxPOS register: 

BITt SYM FUNCTION 

15-08 SV7-SVO Start vertical value. High bit (SV8) is 
in SPRxCTL register below. 

07-00 SH8-SHI Start horizontal value. Low bit (SHO) is 
in SPRxCTL register below. 

SPRxCTL register (writing this address disables sprite 
horizontal comparator circuit) : 

BITt SYM FUNCTION 
-------- -----------------------------

15-08 EV7-EVO End (stop) vertical value low 8 bits 
07 ATT Sprite attach control bit (odd sprites) 
06-04 X Not used 
02 SV8 Start vertical value high bit 
01 EV8 End (stop) vertical value high bit 
00 SHO Start horizontal value low bit 

W D Sprite x image data register A 
W D Sprite x image data register B 

These registers buffer the sprite image data. They are 
usually loaded by the sprite DMA channel but may be 
loaded by either processor at any time. When a 
horizontal comparison occurs, the buffers are dumped 
into shift registers and serially outputted to the 
display, MSB first on the left. 

NOTE: Writing to the A buffer enables (arms) the sprite. 
Writing to the SPRxCTL register disables the sprite. 
If enabled, data in the A and B buffers will be outputted 
whenever the beam counter equals the sprite horizontal 
position value in the SPRxPOS register. 

see SPRxCTL 
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SPRxPTH 
SPRxPTL 

STREQU 

STRHOR 
STRLONG 

STRVBL 

VHPOSR 

VHPOSW 

VPOSR 

VPOSW 

120 W 
122 W 

A 
A 

Sprite x pointer (high 3 bits) 
Sprite x pointer (low 15 bits) 

038 

03C 
03E 

03A 

006 

02C 

This pair of registers contains the 18-bit address 
of sprite x (x=0,1,2,3,4,5,6,7) DMA data. These address 
registers must be initialized by the processor or Copper 
every vertical blank time. 

S D Strobe for horizontal sync with VB 
and EQU 

S 0 P Strobe for horizontal sync 
S 0 Strobe for identification of long 

horizontal line 

One of the first three strobe addresses above is 
placed on the destination address bus during the 
first refresh time slot. The fourth strobe shown 
above is used during the second refresh time slot of 
every other line to identify lines with long counts 
(228). There are four refresh time slots, and any 
not used for strobes will leave a null (FF) address 
on the destination address bus. 

S 0 Strobe for horizontal sync with VB 
(vertical blank) 

R A Read vertical and horizontal position of 
beam or lightpen 

W A Write vertical and horizontal position 
of beam or lightpen 

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

USE V7 V6 V5 V4 V3 V2 V1 VO,H8 H7 H6 H5 H4 H3 H2 H1 

RESOLUTION = 1/160 of screen width (280 ns) 

004 ~ A Read vertical most significant bit 
(and frame flop) 

02A W A Write vertical most significant bit 
(and frame flop) 

BITt 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

USE LOF-- -- -- -- -- -- --,-- -- -- -- -- -- -- V8 

LOF-Long frame (auto toggle control bit in BPLCONO) 

Appendix A 279 



Appendix B 

Register Summary-Address Order 

This appendix contains infonnation about the register set in address order. 
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The following codes and abbreviations are used in this appendix: 

& Register used by DMA channel only. 

% Register used by DMA channel usually, processors sometimes. 

+ Address register pair. Must be an even address pointing to chip memory. 

... Address not writable by the Copper. 

Address not writable by the Copper unless the "copper danger bit", COPCON is set true. 

A,D,P 
A=Agnus chip, D=Denise chip, P=Paula chip. 

W,R 
W=write-only; R=read-only, 

ER Early read. This is a DMA data transfer to RAM, from either the disk or the blitter. 
RAM timing requires data to be on the bus earlier than microprocessor read cycles. 
These transfers are therefore initiated by Agnus timing, rather than a read address on the 
destination address bus. 

S Strobe (write address with no register bits). Writing the register causes the effect 

PTL,PI'H 
Chip memory pointer that addresses DMA data. Must be reloaded by a processor before 
use (vertical blank for bit-plane and sprite pointers, and prior to starting the blitter for 
blitter pointers). 

LCL,LCH 
Chip memory location (starting address) of DMA data. Used to automatically restart 
pointers, such as the Copper program counter (during vertical blank) and the audio sam
ple counter (whenever the audio length count is finished). 

MOD 
IS-bit modulo. A number that is automatically added to the memory address at the end 
of each line to generate the address for the beginning of the next line. This allows the 
blitter (or the display window) to operate on (or display) a window of data that is smaller 
than the actual picture in memory (memory map). Uses IS bits, plus sign extend. 
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NAME 

BLTDDAT 
DMACONR 
VPOSR 
VHPOSR 
DSKDATR 
JOYODAT 
JOYlDAT 
CLXDAT 
ADKCONR 
POTODAT 
POT1DAT 
POTGOR 
SERDATR 
DSKBYTR 
INTENAR 
INTREQR 
DSKPTH 
DSKPTL 
DSKLEN 
DSKDAT 
REFPTR 
VPOSW 
VHPOSW 
COP CON 
SERDAT 
SERPER 
POTGO 
JOYTEST 
STREQU 
STRVBL 
STRHOR 
STRLONG 
BLTCONO 
BLTCON1 
BLTAFWM 
BLTALWM 
BLTCPTH 
BLTCPTL 
BLTBPTH 
BLTBPTL 
BLTAPTH 
BLTAPTL 
BLTDPTH 
BLTDPTL 
BLTSIZE 

BLTCMOD 
BLTBMOD 
BLTAMOD 
BLTDMOD 

BLTCDAT 
BLTBDAT 
BLTADAT 

ADD R/W CHIP 

& *000 ER 
*002 R 
*004 R 
*006 R 

& *008 ER 
*OOA R 
*OOC R 
*OOE R 
*010 R 
*012 R 
*014 R 
*016 R 
*018 R 
*01A R 
*01C R 
*01E R 

+ *020 W 
+ *022 W 

*024 W 
& *026 W 
& *028 W 

*02A W 
*02C W 
*02E W 
*030 W 
*032 W 
*034 W 
*036 W 

& *038 S 
& *03A S 
& *03C S 
& *03E S 

-040 W 
-042 W 
-044 W 
-046 W 

+ -048 W 
+ -04A W 
+ -04C W 
+ -04E W 
+ -050 W 
+ -052 W 
+ -054 W 
+ -056 W 

-058 W 
-05A 
-05C 
-05E 
-060 W 
-062 W 
-064 W 
-066 W 
-068 
-06A 
-06C 
-06E 

% -070 W 
% -072 W 
% -074 W 

A 
A P 
A 
A 

A 
A 

A 
A 
A 
A 

A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 

A 
A 
A 
A 

A 
A 
A 

D 
D 
o 

D 
o 
o 

P 

P 
P 
P 
P 
P 
P 
P 
P 

P 
P 

P 
P 
P 

o P 
D 

FUNCTION 

Blitter destination early read (dummy address) 
DMA control (and blitter status) read 
Read vert most signif. bit (and frame flop) 
Read vert and horiz. position of beam 
Disk data early read (dummy address) 
Joystick-mouse 0 data (vert,horiz) 
Joystick-mouse 1 data (vert,horiz) 
Collision data register (read and clear) 
Audio, disk control register read 
Pot counter pair 0 data (vert,horiz) 
Pot counter pair 1 data (vert,horiz) 
Pot port data read (formerly POTINP) 
Serial port data and status read 
Disk data byte and status read 
Interrupt enable bits read 
Interrupt request bits read 
Disk pointer (high 3 bits) 
Disk pointer (low 15 bits) 
Disk length 
Disk DMA data write 
Refresh pointer 
Write vert most signif. bit (and frame flop) 
Write vert and horiz position of beam 
Coprocessor control register (CDANG) 
Serial port data and stop bits write 
Serial port period and control 
Pot port data write and start 
Write to all four joystick-mouse counters at once 
Strobe for horiz sync with VB and EQU 
Strobe for horiz sync with VB (vert. blank) 
Strobe for horiz sync 
Strobe for identification of long horiz. line. 
Blitter control register 0 
Blitter control register 1 
Blitter first word mask for source A 
Blitter last word mask for source A 
Blitter pointer to source C (high 3 bits) 
Blitter pointer to source C (low 15 bits) 
Blitter pointer to source B (high 3 bits) 
Blitter pointer to source B (low 15 bits) 
Blitter pointer to source A (high 3 bits) 
Blitter pointer to source A (low 15 bits) 
Blitter pointer to destination D (high 3 bits) 
Blitter pointer to destination D (low 15 bits) 
Blitter start and size (window width, height) 

Blitter modulo for source C 
Blitter modulo for source B 
Blitter modulo for source A 
Blitter modulo for destination D 

Blitter source C data register 
Blitter source B data register 
Blitter source A data register 
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-076 
-078 
-07A 
-07C 

DSKSYNC -07E W P Disk sync pattern register for disk 
read 

COPILCH + 080 W A Coprocessor first location register 
(high 3 bits) 

COPILCL + 082 W A Coprocessor first location register 
(low 15 bits) 

COP2LCH + 084 W A Coprocessor second location register 
(high 3 bits) 

COP2LCL + 086 W A Coprocessor second location register 
(low 15 bits) 

COP JMP 1 088 S A Coprocessor restart at first location 
COP JMP 2 08A S A Coprocessor restart at second location 
COP INS 08C W A Coprocessor instruction fetch identify 
DIWSTRT 08E W A Display window start (upper left 

vert-horiz position) 
DIWSTOP 090 W A Display window stop (lower right 

vert.-horiz. position) 
DDFSTRT 092 W A Display bit plane data fetch start 

(horiz. position) 
DDFSTOP 094 W A Display bit plane data fetch stop 

(horiz. position) 
DMACON 096 W A D P DMA control write (clear or set) 
CLXCON 098 W D Collision control 
INTENA 09A W P Interrupt enable bits (clear or 

set bits) 
INTREQ 09C W P Interrupt request bits (clear or 

set bits) 
ADKCON 09E W P Audio, disk, UART control 
AUDOLCH + OAO W A Audio channel 0 location (high 3 bits) 
AUDOLCL + OA2 W A Audio channel 0 location (low 15 bits) 
AUDOLEN OA4 W P Audio channel 0 length 
AUDOPER OA6 W P Audio channel 0 period 
AUDOVOL OA8 W P Audio channel 0 volume 
AUDODAT & OAA W P Audio channel 0 data 

OAC 
OAE 

AUDILCH + OBO W A Audio channel 1 location (high 3 bits) 
AUDILCL + OB2 W A Audio channel 1 location (low 15 bits) 
AUD 1 LEN OB4 W P Audio channel 1 length 
AUDIPER OB6 W P Audio channel 1 period 
AUDIVOL OB8 W P Audio channel 1 volume 
AUD1 DAT & OBA W P Audio channel 1 data 

OBC 
OBE 

AUD2LCH + OCO W A Audio channel 2 location (high 3 bits) 
AUD2LCL + OC2 W A Audio channel 2 location (low 15 bits) 
AUD2LEN OC4 W P Audio channel 2 length 
AUD2PER OC6 W P Audio channel 2 period 
AUD2VOL OC8 W P Audio channel 2 volume 
AUD2DAT & OCA W P Audio channel 2 data 

OCC 
OCE 

AUD3LCH + ODO W A Audio channel 3 location (high 3 bits) 
AUD3LCL + OD2 W A Audio channel 3 location (low 15 bits) 
AUD3LEN OD4 W P Audio channel 3 length 
AUD3PER OD6 W P Audio channel 3 period 
AUD3VOL OD8 W P Audio channel 3 volume 
AUD3DAT & ODA W P Audio channel 3 data 
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ODC 
ODE 

BPL1PTH + OEO W A Bit plane 1 pointer (high 3 bits) 
BPL1PTL + OE2 W A Bit plane 1 pointer (low 15 bits) 
BPL2PTH + OE4 W A Bit plane 2 pointer (high 3 bits) 
BPL2PTL + OE6 W A Bit plane 2 pointer (low 15 bits) 
BPL3PTH + OE8 W A Bit plane 3 pointer (high 3 bits) 
BPL3PTL + OEA W A Bit plane 3 pointer (low 15 bits) 
BPL4PTH + OEC W A Bit plane 4 pointer (high 3 bits) 
BPL4PTL + OEE W A Bit plane 4 pointer (low 15 bits) 
BPL5PTH + OFO W A Bit plane 5 pointer (high 3 bits) 
BPLSPTL + OF2 W A Bit plane 5 pointer (low 15 bits) 
BPL6PTH + OF4 W A Bit plane 6 pointer (high 3 bits) 
BPL6PTL + OF6 W A Bit plane 6 pointer (low 15 bits) 

OF8 
OFA 
OFC 
OFE 

BPLCONO 100 W A D Bit plane control register (misc. control bits) 
BPLCON1 102 W D Bit plane control reg. (scroll value PF1, PF2) 
BPLCON2 104 W D Bit plane control reg. (priority control) 

106 
BPL1MOD 108 W A Bit plane modulo (odd planes) 
BPL2MOD lOA W A Bit Plane modulo (even planes) 

10C 
10E 

BPL1DAT & 110 W D Bit plane 1 data (parallel-to-serial convert) 
BPL2DAT & 112 W D Bit plane 2 data (parallel-to-serial convert) 
BPL3DAT & 114 W D Bit plane 3 data (parallel-to-serial convert) 
BPL4DAT & 116 W D Bit plane 4 data (parallel-to-serial convert) 
BPLSDAT & 118 W D Bit plane 5 data (parallel-to-serial convert) 
BPL6DAT & 11A W D Bit plane 6 data (parallel-to-serial convert) 

11C 
11E 
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SPROPTH + 120 W A Sprite 0 pointer (high 3 bits) 
SPROPTL + 122 W A Sprite 0 pointer (low 15 bits) 
SPR1PTH + 124 W A Sprite 1 pointer (high 3 bits) 
SPR1PTL + 126 W A Sprite 1 pointer (low 15 bits) 
SPR2PTH + 128 W A Sprite 2 pointer (high 3 bits) 
SPR2PTL + 12A W A Sprite 2 pointer (low 15 bits) 
SPR3PTH + 12C W A Sprite 3 pointer (high 3 bits) 
SPR3PTL + 12E W A Sprite 3 pointer (low 15 bits) 
SPR4PTH + 130 W A Sprite 4 pointer (high 3 bits) 
SPR4PTL + 132 W A Sprite 4 pointer (low 15 bits) 
SPR5PTH + 134 W A Sprite 5 pointer (high 3 bits) 
SPR5PTL + 136 W A Sprite 5 pointer (low 15 bits) 
SPR6PTH + 138 W A Sprite 6 pointer (high 3 bits) 
SPR6PTL + 13A W A Sprite 6 pointer (low 15 bits) 
SPR7PTH + 13C W A Sprite 7 pointer (high 3 bits) 
SPR7PTL + 13E W A Sprite 7 pointer (low 15 bits) 
SPROPOS % 140 W A D Sprite 0 vert-horiz start position 

data 
SPROCTL % 142 W A D Sprite 0 vert stop position and 

control data 
SPRODATA % 144 W D Sprite 0 image data register A 
SPRODATB % 146 W D Sprite 0 image data register B 
SPR1POS % 148 W A D Sprite 1 vert-horiz start position 

data 
SPR1CTL % 14A W A D Sprite 1 vert stop position and 

control data 
SPR1DATA % 14C W D Sprite 1 image data register A 
SPR1DATB % 14E W D Sprite 1 image data register B 
SPR2POS % 150 W A D Sprite 2 vert-horiz start position 

data 
SPR2CTL % 152 W A D Sprite 2 vert stop position and 

control data 
SPR2DATA % 154 W D Sprite 2 image data register A 
SPR2DATB % 156 W D Sprite 2 image data register B 
SPR3POS % 158 W A D Sprite 3 vert-horiz start position 

data 
SPR3CTL % 15A W A D Sprite 3 vert stop position and 

control data 
SPR3DATA % 15C W D Sprite 3 image data register A 
SPR3DATB % 15E W D Sprite 3 image data register B 
SPR4POS % 160 W A D Sprite 4 vert-horiz start position 

data 
SPR4CTL % 162 W A D Sprite 4 vert stop position and 

control data 
SPR4DATA % 164 W D Sprite 4 image data register A 
SPR4DATB % 166 W D Sprite 4 image data register B 
SPR5POS % 168 W A D Sprite 5 vert-horiz start position 

data 
SPR5CTL % 16A W A D Sprite 5 vert stop position and 

control data 
SPR5DATA % 16C W D Sprite 5 image data register A 
SPR5DATB % 16E W D Sprite 5 image data register B 
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SPR6POS % 170 W A D Sprite 6 vert-horiz start position 
data 

SPR6CTL % 172 W A D Sprite 6 vert stop position and 
control data 

SPR6DATA % 174 W D Sprite 6 image data register A 
SPR6DATB % 176 W D Sprite 6 image data register B 
SPR7POS % 178 W A D Sprite 7 vert-horiz start position 

data 
SPR7CTL % 17A W A D Sprite 7 vert stop position and 

control data 
SPR7DATA % 17C W D Sprite 7 image data register A 
SPR7DATB % 17E W D Sprite 7 image data register B 
COLOROO 180 W D Color table 00 
COLOR01 182 W D Color table 01 
COLOR02 184 W D Color table 02 
COLOR03 186 W D Color table 03 
COLOR04 188 W D Color table 04 
COLOR05 18A W D Color table 05 
COLOR06 18C W D Color table 06 
COLOR07 18E W D Color table 07 
COLOR08 190 W D Color table 08 
COLOR09 192 W D Color table 09 
COLOR10 194 W D Color table 10 
COLOR11 196 W D Color table 11 
COLOR12 198 W D Color table 12 
COLOR13 19A W D Color table 13 
COLOR14 19C W D Color table 14 
COLOR15 19E W D Color table 15 
COLOR16 lAO W D Color table 16 
COLOR17 1A2 W D Color table 17 
COLOR18 1A4 W D Color table 18 
COLOR19 1A6 W D Color table 19 
COLOR20 1A8 W D Color table 20 
COLOR21 1AA W D Color table 21 
COLOR22 lAC W D Color table 22 
COLOR23 1AE W D Color table 23 
COLOR24 1BO W D Color table 24 
COLOR25 1B2 W D Color table 25 
COLOR26 184 W D Color table 26 
COLOR27 186 W D Color table 27 
COLOR28 188 W D Color table 28 
COLOR29 1BA W D Color table 29 
COLOR30 1BC W D Color table 30 
COLOR31 1BE W D Color table 31 
RESERVED 1110X 
RESERVED 11l1X 
NO-OP (NULL) 1FE 
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Custom Chip Pin Allocation List 

NOTE: ... Means an active low signal. 
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AGNUS PIN ASSIGNMENT 
--------------------

PIN t DESIGNATION FUNCTION DEFINITION 
----------- ------------------ ----------

01-09 DB-DO Data bus lines 8 to 0 I/O 
10 VCC +5 Volt I 
11 RES* System reset I 
12 INT3* Interrupt level 3 0 
13 DMAL DMA request line I 
14 BLS* Blitter slowdown I 
15 DBR* Data bus request 0 
16 ARW* Agnus RAM write 0 
17-24 RGAB-RGA1 Register address bus B-1 I/O 
25 CCK Color clock I 
26 CCKQ Color clock delay I 
27 VSS Ground I 
2B-36 DRAO-DRAB DRAM address bus 0 to 8 0 
37 LP* Light pen input I 
38 VSy* Vertical sync I/O 
39 CSY* Composite sync 0 
40 HSY* Horizontal sync I/O 
41 VSS Ground I 
42-48 015-09 Data bus lines 15 to 9 I/O 

DENISE PIN ASSIGNMENT 
--------------------

PIN t DESIGNATION FUNCTION DEFINITION 
----------- ------------------ ----------

01-07 06-00 Data bus lines 6 to 0 I/O 
08 M1H Mouse 1 horizontal I 
09 MOH Mouse o horizontal I 
10-17 RGA8-RGA1 Register address bus 8-1 I 
18 BURST * Color burst 0 
19 VCC +5 Volt I 
20-23 RO-R3 Video red bits 0-3 0 
24-27 BO-B3 Video blue bits 0-3 0 
28-31 GO-G3 Video green bits 0-3 0 
32 N/C Not connected N/C 
33 ZD* Background indicator 0 
34 N/C Not connected N/C 
35 7M 7.15909 MHZ I 
36 CCK Color clock I 
37 VSS Ground I 
38 MOV Mouse o vertical I 
39 M1V Mouse 1 vertical I 
40-48 015-07 Data bus lines 15 to 7 I/O 
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PIN t 

01-07 
08 
09-10 
11 
12 
13-15 
16 
17 
18 
19-26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42-48 

DESIGNATION 

D8-D2 
VSS 
D1-DO 
RES* 
DMAL 
IPLO*-IPL2 
INT2* 
INT3* 
INT6* 
RGA8-RGA1 
VCC 
CCK 
CCKQ 
AUDB 
AUDA 
POTOX 
POTOY 
VSSANA 
POT1X 
POT1Y 
DKRD* 
DKWD* 
DKWE 
TXD 
RXD 
D15-D9 

PAULA PIN ASSIGNMENT 

FUNCTION 

Data bus lines 8 to 2 
Ground 
Data bus lines 1 and 0 
System reset 
DMA request line 
Interrupt lines 0-2 
Interrupt level 2 
Interrupt level 3 
Interrupt level 6 
Register address bus 8-1 
+5 Volt 
Color clock 
Color clock delay 
Right audio 
Left audio 
Pot OX 
Pot OY 
Analog ground 
Pot 1X 
Pot 1Y 
Disk read data 
Disk write data 
Disk write enable 
Serial transmit data 
Serial receive data 
Data bus lines 15 to 9 

DEFINITION 

I/O 
I 
I/O 
I 
o 
o 
I 
I 
I 
I 
I 
I 
I 
o 
o 
I/O 
I/O 
I 
I/O 
I/O 
I 
o 
o 
o 
I 
I/O 
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PIN t 

01-14 
17 
18 
18 
18 
19 
20 
21 
22 
23 
24 
25 
26-33 
34 
35 
36 
37 
38 
39 
40 
41 
43-51 
52 
53 
54 
55 
56 
57 
59-77 
78 
79 
80 
81 
84 
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FAT AGNUS PIN ASSIGNMENT 

DESIGNATION 

RD15-RD2 
INT3* 
DMAL 
RD1 
RST* 
BLS* 
DBR* 
RRW 
PRW 
RGEN* 
AS* 
RAMEN* 
RGA8-RGA1 
28MHZ 
XCLK 
XCLKEN* 
CDAC* 
7MHZ 
CCKQ 
CCK 
TEST 
MAO-MA8 
LDS* 
UDS* 
CASL* 
CASU* 
RAS1* 
RASO* 
A19-A1 
LP* 
VSY* 
CSY* 
HSY* 
RDO 

FUNCTION DEFINITION 

Register bus lines 15 to 2 
Blitter ready interrupt 
Request audio/disk DMA 
Register bus line 1 
Reset 
Blitter slowdown 
Data bus request 
DRAM Write/Read 
Processor Write/Read 
RG Enable 
Address Strobe 
RAM Enable 
Register address bus 8-1 
Master clock 
Alternate master clock 
Master clock enable 
Inverted shifted 7MHZ clk 
28MHZ clk divided by four 
Color clock delay 
Color clock 
Test - access registers 
Output bus lines 0 to 8 
Lower data strobe 
Upper data strobe 
Column addr strobe lower 
Column addr strobe upper 
Row address strobe one 
Row address strobe zero 
Address bus lines 19 to 1 
Light pen 
Vertical synch 
Composite video synch 
Horizontal synch 
Register bus line 0 

I/O 
o 
I 
I/O 
I 
I 
o 
o 
I 
I 
I 
I 
o 
I 
I 
I 
o 
o 
o 
o 
I 
o 
I 
I 
o 
o 
o 
o 
I 
o 
I/O 
o 
I/O 
I/O 
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System Memory Map 
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A true software memory map, showing system utilization of the various sections 
of RAM and free space is not provided, or possible with the Amiga. All memory 
is dynamically allocated by the memory manager, and the actual locations may 
change from release-to-release, machine-to-machine or boot-to-boot (see the 
exec/AllocMem function for details). To find the locations of system structures 
software must use the defined access procedures, starting by fetching the 
address of the exec. library from location 4; the only absolute memory location 
in the system. All software is written so that it can be loaded and relocated 
anywhere in memory by the loader. What follows is the general layout of 
memory areas withing the current generation of Amiga computers. 

ADDRESS RANGE 

000000-03FFFF 

040000-07FFFF 

080000-0FFFFF 

lOOOOO-lFFFFF 

200000-9FFFFF 

AOOOOO-BEFFFF 

BFDOOO-BFDFOO 

BFEOOI-BFEF01 

COOOOO-DFEFFF 
I 
I COOOOO-D7FFFF 
I 
I D80000-DBFFFF 
I 
I DCOOOO-DCFFFF 
I 
I DFFOOO-DFFFFF 
+--

EOOOOO-E7FFFF 

E80000-E8FFFF 

E90000-EFFFFF 

FOOOOO-FBFFFF 

FCOOOO-FFFFFF 
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NOTES 

256K Bytes of chip RAM 

256K bytes of chip RAM (option card) 

5l2K Extended chip RAM (to 1 MB). 

Reserved. Do not use. 

Primary 8 MB Auto-config space. 

Reserved. Do not use. 

8520-B (access at even-byte addresses only) 

8520-A (access at odd-byte addresses only) 

The underlined digit chooses which of the 
16 internal registers of the 8520 is to be 
accessed. See Appendix F. 

Reserved. Do not use. 

Internal expansion memory. 

Reserved. Do not use. 

Real time clock. 

Chip registers. See Appendix A and Appendix B. 

Reserved. Do not use. 

Auto-config space. Boards appear here before 
the system relocates them to their final address. 

Secondary auto-config space (usually 64K I/O 
boards) . 

Reserved. Do not use. 

256K System ROM. 



Appendix E 

Interfaces 

This appendix consists of four distinct parts, related to the way in which the Amiga talks to the 
outside world. 

The first part specifies the pinouts of the externally accessible connectors and the power available 
at each connector. It does not, however, provide timing or loading infonnation. 

The second part briefly describes the functions of those pins whose purpose may not be evident. 

The third part contains a list of the connections for certain internal connectors, notably the disk. 

The fourth part specifies how various signals relate to the available ports of the 8520. This infor
mation enables the programmer to relate the port addresses to the outside-world items (or internal 
control signals) that are to be affected. 
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The third and fourth parts are primarily for the use of the systems programmer and should gen
erally not be utilized by applications programmers. 

Systems software normally is configured to handle the setting of particular signals, no matter how 
the physical connections may change. In other words, if you have a version of the system 
software that matches the revision level of the machine (normally a true condition), when you ask 
that a particular bit be set, you don't care which port that bit is connected to. Thus, applications 
programmers should rely on system documentation rather than going directly to the ports. 

NOTE 

In a multitasking operating system, many different tasks may be competing for the use 
of the system resources. Applications programmers should follow the established 
rules for resource access in order to assure compatibility of their software with the sys
tem. 

************** PART 1 - OUTSIDE WORLD CONNECTORS ******************** 

This is a list of the connections to the outside world on the Amiga. 

RS232 and MIDI Port 
-------------------

ASOO/ CBM 
PIN RS232 A1000 A2000 PCs HAYES DESCRIPTION 
----------------------------------------
1 GND GND GND GND GND FRAME GROUND 
2 TXD TXD TXD TXD TXD TRANSMIT DATA 
3 RXD RXD RXD RXD RXD RECEIVE DATA 
4 RTS RTS RTS RTS REQUEST TO SEND 
S CTS CTS CTS CTS CTS CLEAR TO SEND 
6 DSR DSR DSR DSR DSR DATA SET READY 
7 GND GND GND GND GND SYSTEM GROUND 
8 CD CD CD DCD DCD CARRIER DETECT 
9 +l2v +12v + 12 VOLT POWER 
10 -12v -12v - 12 VOLT POWER 
11 AUDO AUDIO OUTPUT 
12 S.SD SI SPEED INDICATE 
13 S.CTS -
14 S.TXD -SVdc - - S VOLT POWER 
1S TXC AUDO AUDIO OUT OF AMIGA 
16 S.RXD AUDI AUDIO IN TO AMIGA 
17 RXC EB BUFFERED PORT CLOCK 716kHz 
18 INT2* AUDI INTERRUPT LINE TO AMIGA 
19 S.RTS -
20 DTR DTR DTR DTR DTR DATA TERMINAL READY 
21 SQD +S + S VOLT POWER 
22 RI RI RI RI RING INDICATOR 
23 SS +12Vdc - +12 VOLT POWER 
24 TXC1 C2* 3.S8 MHZ CLOCK 
2S RESB* BUFFERED SYSTEM RESET 
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Parallel (Centronics) Port 
--------------------------

PIN 1000 500/2000 Commodore PCs 
-------- -------------

1 DRDY* STROBE * STROBE* 
2 Data 0 Data 0 Data 0 
3 Data 1 Data 1 Data 1 
4 Data 2 Data 2 Data 2 
5 Data 3 Data 3 Data 3 
6 Data 4 Data 4 Data 4 
7 Data 5 Data 5 Data 5 
8 Data 6 Data 6 Data 6 
9 Data 7 Data 7 Data 7 
10 ACK* ACK* ACK* 
11 BUSY (data) BUSY BUSY 
12 POUT (clk) POUT POUT 
13 SEL SEL SEL 
14 GND +5v pullup AUTOFDXT 
15 GND NC ERROR* 
16 GND RESET * INIT* 
17 GND GND SLCT IN* 
18-22 GND GND GND 
23 + 5 GND GND 
24 NC GND GND 
25 Reset* GND GND 

KEYBOARD ... RJ11 

A1000 A2000 

1 +5 Volts KCLK 
2 CLOCK KDAT 
3 DATA NC 
4 GND GND 
5 +5 Volts 

Not Applicable to the A500. 

Video ... DB23 MALE 

For A500, A1000, A2000 unless otherwise stated 

1 XCLK* 13 GNDRTN (Return for XCLKEN*) 
2 XCLKEN* 14 ZD* 
3 RED 15 C1* 
4 GREEN 16 GND 
5 BLUE 17 GND 
6 DI 18 GND 
7 DB 19 GND 
8 DG 20 GND 
9 DR 21 A1000/2000 -5 VOLT POWER 
10 CSYNC* A500 -12 VOLT POWER 
11 HSYNC* 22 +12 VOLT POWER 
12 VSYNC* 23 +5 VOLT POWER 
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RF Monitor ••. 8 PIN DIN (J2) A1000 only 

1 N.C. 
2 GND 
3 AUDIO LEFT 
4 COMP VIDEO 
5 GND 
6 N.C. 
7 +12 VOLT POWER 
8 AUDIO RIGHT 

DISK EXTERNAL ••• DB23 FEMALE 

For A500, A1000, and A2000 with A2000 differences noted. 

1 RDY* 13 SIDEB* 
2 DKRD* 14 WPRO* 
3 GND 15 TKO* 
4 GND 16 DKWEB* 
5 GND 17 DKWDB* 
6 GND 18 STEPB* 
7 GND 19 DIRB 
8 MTRXD* 20 SEL3B* A2000 not used (1) 
9 SEL2B* A2000 SEL3B* (1) 21 SEL1B* A2000 SEL2B* (1) 
10 DRESB* 22 INDEX* 
11 CHNG* 23 +12 
12 +5 

(1) SEL1B* is not drive 1, but rather the first external drive. Not 
all select lines may be implemented. 
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RAMEX •.. 60 PIN EDGE ( .156) (PI) A1000 only 
---------------------------------------------

1 gnd A gnd 
2 D15 B D14 
3 +5 C +5 
4 D12 D D13 
5 gnd E gnd 
6 D11 F D10 
7 +5 H +5 
8 D8 J D9 
9 gnd K gnd 
10 D7 L D6 
11 +5 M +5 
12 D4 N D5 
13 gnd P gnd 
14 D3 R D2 
15 +5 S +5 
16 DO T D1 
17 gnd U gnd 
18 DRA4 V ORA3 
19 ORA5 W ORA2 
20 ORA6 X ORAl 
21 ORA7 Y ORAO 
22 gnd Z gnd 
23 RAS* AA RRW* 
24 gnd BB gnd 
25 gnd CC gnd 
26 CASUO* DO CASU1* 
27 gnd EE gnd 
28 CASLO* FF CASL1* 
29 +5 HH +5 
30 +5 JJ +5 
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EXPANSION ••• 86 PIN EDGE ( .1) (P2) 
----------------------------------
PIN A500 A1000 A2000 A2000b FUNCTION 

------ --------
1 x x x x qround 
2 x x x x qround 
3 x x x x qround 
4 x x x x qround 
5 x x x x +SVDC 
6 x x x x +SVDC 
7 x x x x No Connect 
8 x x x x -SVDC 
9 x x No Connect 

x x 28MHz Clock 
10 x x x x +12VDC 
11 x x x No Connect 

x /COPCFG (Confiquration Out) 
12 x x x x CONFIG IN, Grounded 
13 x x x x Ground 
14 x x x x /C3 Clock 
15 x x x x CDAC Clock 
16 x x x x /Cl Clock 
17 x x x x /OVR 
18 x x x x RDY 
19 x x x x /INT2 
20 x /PALOPE 

x x No Connect 
x /BOSS 

21 x x x x AS 
22 x x x x /INT6 
23 x x x x A6 
24 x x x x A4 
25 x x x x qround 
26 x x x x A3 
27 x x x x A2 
28 x x x x A7 
29 x x x x A1 
30 x x x x A8 
31 x x x x FCO 
32 x x x x A9 
33 x x x x FCl 
34 x x x x A10 
35 x x x x FC2 
36 x x x x All 
37 x x x x Ground 
38 x x x x A12 
39 x x x x A13 
40 x x x x !IPLO 
41 x x x x A14 
42 x x x x !IPL1 
43 x x x x A1S 
44 x x x x !IPL2 
45 x x x x A16 
46 x x x x BEER* 
47 x x x x Al7 
48 x x x x /VPA 
49 x x x x Ground 
SO x x x x E Clock 
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EXPANSION ••• 86 PIN EDGE ( .1) (P2) (cont. ) 

--------------------------------------------------
PIN A500 A1000 A2000 A2000b FUNCTION 

------ --------
51 x x x x /VMA 
52 x x x x A18 
53 x x x x RST 
54 x x x x A19 
55 x x x x /HLT 
56 x x x x A20 
57 x x x x A22 
58 x x x x A21 
59 x x x x A23 
60 x x x /BR 

x ICBR 
61 x x x x Ground 
62 x x x x /BGACK 
63 x x x x D15 
64 x x x /BG 

x /CBG 
65 x x x x D14 
66 x x x x /DTACK 
67 x x x x D13 
68 x x x x RIW 
69 x x x x D12 
70 x x x x /LOS 
71 x x x x Dll 
72 x x x x IUDS 
73 x x x x Ground 
74 x x x x /AS 
75 x x x x DO 
76 x x x x D10 
77 x x x x D1 
78 x x x x D9 
79 x x x x D2 
80 x x x x D8 
81 x x x x D3 
82 x x x x D7 
83 x x x x D4 
84 x x x x D6 
85 x x x x Ground 
86 x x x x D5 

JOY STICKS ..• DB9 male 
----------------------
USAGE JOYSTICK MOUSE 

--------
1 FORWARD* (MOUSE V) 
2 BACK* (MOUSE H) 
3 LEFT * (MOUSE VQ) 
4 RIGHT * (MOUSE HQ) 
5 POT X (or button 3 ... if used ) 
6 FIRE* (or button 1) 
7 +5 
8 GND 
9 POT Y (or button 2 ) 
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************** PART 2 - MORE OUTSIDE WORLD ******************** 

PARALLEL INTERFACE CONNECTOR SPECIFICATION 

The 25-pin D-type connector with pins (DB25P=male for the A1000, 
female for A500/A2000 and IBM compatibles) at the rear of the 
Amiga is nominally used to interface to parallel printers. In this 
capacity, data flows from the Amiga to the printer. This interface 
may also be used for input or bidirectional data transfers. The 
implementation is similar to Centronics, but the pin assignment and 
drive characteristics vary significantly from that specification 
(see Pin Assignment). Signal names correspond to those used in the 
other places in this appendix, when possible. 

PARALLEL CONNECTOR PIN ASSIGNMENT (J8) 

NAME OIR 

DRDY* 0 

00 I/O 
01 I/O 
02 I/O 
03 I/O 
04 I/O 
05 I/O 
06 I/O 
07 I/O 
ACK* I 

BUSY I/O 

POUT I/O 

SEL I/O 

RESET * 0 
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NOTES 

Output-data-ready signal to parallel device in 
output mode, used in conjunction with ACK* (pin 10) 
for a two-line asynchronous handshake. Functions 
as input data accepted from Amiga in input mode 
(similar to ACK* in output mode). See timing 
diagrams in the following section. 
+ 
I 
I 
I 00-07 comprise an eight-bit bidirectional bus 
I for communication with parallel devices, 
I nominally, a printer. 
I 
+ 
Output-data-acknowledge from parallel device in 
output mode, used in conjunction with DRDY* (pin 1) 
for a two-line asynchronous handshake. Functions as 
input-data-ready from parallel device in input mode 
(similar to ORDY* in output mode) . 
See timing diagrams. The 8520 can be programmed to 
conditionally generate a level 2 interrupt to the 
68000 whenever the ACK* input goes active. 
This is a general purpose I/O pin also connected to a 
serial data I/O pin (serial clock on pin 12). 
Note: Nominally used to indicate printer buffer full. 
This is a general purpose r/o pin to a 
serial clock r/o pin (serial data on pin 11). 
Note: Nominally used to indicate printer paper out. 
This is a general purpose I/O pin. 
Note: nominally a select output from the parallel 
device to the Amiga. On the A500/A2000 also shared 
with RS232 "ring indicator" signal. 

Amiga system reset 



PARALLEL CONNECTOR INTERFACE TIMING, OUTPUT CYCLE 

PA<7:0> 
PB<7:0> x. ____ ~----~--------------------------~X 

1<-- Tl --->1 1 
1 1<-------- T2 ------>1 

_______________ V V ______________________ __ 

DRDY* 
Output data ready 

1 1 
1<- T3 ->1 
1<--- T4 --->1 

_____________________ 1 <- T5 --> 1 _______ _ 

ACK* 1 1 
Output data acknowledge 

Microseconds 
Min Typ Max 

Tl: 4.3 -x-
T2: nsp -x-

5.3 
upc 

Output data setup to ready delay. 
Output data hold time. 

T3: 
T4: 
T5: 

nsp 1.4 nsp 
0 -x- upc 

nsp -x- upc 

nsp not specified 

Output data ready width. 
Ready to acknowledge delay. 
Acknowledge width. 

upc under program control 

PARALLEL CONNECTOR INTERFACE TIMING, INPUT CYCLE 

PA<7:0> __________________________________________ _ 

PB<7 :0> X X 
1<-- Tl --->1 

1 T2 -->1<----->1 
______________ V ___________ 1 ________ _ 

ACK* 1 __ - 1 
Input data ready 1<- T3 ->1 1 

1<-- T4 --->1 
_________________________ 1<- T5 -->1 ________ _ 

DRDY* 1 1 
Input data acknowledge 

Tl: 
T2: 
T3: 
T4: 

Microseconds 
Min Typ Max 

0 -x- upc 
nsp -x- upc 
nsp -x- upc 
upc -x- upc 

Input data setup time. 
Input data hold time. 
Input data ready width. 
Input data ready to data 

acknowledge delay. 
T5: nsp 1.4 nsp Input data acknowledge width. 

nsp not specified 
upc under program control 
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SERIAL INTERFACE CONNECTOR SPECIFICATION 

This 25-pin O-type connector with sockets (DB25S=female) is used to 
interface to RS-232-C standard signals. Signal names correspond to 
those used. in other places in this appendix, when possible. 

WARNING: Pins on the RS232 connector other than these standard ones 
described below may be connected to power or other non-RS232 standard 
signals. When making up RS232 cables, connect only those pins actually 
used for a particular application. Avoid generic 25-connector "straight
thru" cables. 

SERIAL INTERFACE CONNECTOR PIN ASSIGNMENT (J6) 

NAME 

FGNO 
TXD 
RXO 
RTS 
CTS 
DSR 
GND 
CO 
-5V 
AUOO 

AUDI 

OTR 
RI 

RESB* 

RS-232-C 

OIR STD NOTES 

o 
I 
o 
I 
I 

I 

o 

I 

o 
I 

o 

y Frame ground -- do not tie to signal ground 
y Transmit data 
y Receive data 
y Request to send 
y Clear to send 
y Data set ready 
y Signal ground -- do not tie to frame ground 
y Carrier detect 
n* 50 ma maximum *** WARNING -5V *** 
n* Audio output from left (channels 0, 3) port, 

intended to send audio to the modem. 
n* Audio input to right (channels 1, 2) port, 

intended to receive audio from the modem; this 
input is mixed with the analog output of the 
right (channels 1, 2). It is not digitized or 
used by the computer in any way. 

y Data terminal ready. 
y Ring Indicator (A500/A2000 only) shared with printer 

"select" signal. 
n* Amiga system reset. 

NOTES: 
n*: See warning above 
See part 1 of this appendix for pin numbers. 

SERIAL INTERFACE CONNECTOR TIMING 

Maximum operating frequency is 19.2 KHz. Refer to EIA standard 
RS-232-C for operating and installation specifications. 
A rate of 31.25 KHz will be supported through the use of a MIDI adapter. 

Modem control signals (CTS, RTS, DTR, DSR, CD) are completely under 
software control. The modem control lines have no hardware affect 
on and are completely asynchronous to TXD and RXD. 
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SERIAL INTERFACE CONNECTOR ELECTRICAL CHARACTERISTICS 

OUTPUTS MIN TYP MAX 
-------
Vo(-): -13.2 -x- -2.5 V Negative output voltage range 
Vo(+): 8.0 -x- 13.2 V Positive output voltage range 
Io: -x- -x- 10.0 ma Output current 

INPUTS MIN TYP MAX 
-------
Vi(+): 3.0 -x- 25.0 V Positive input voltage range 
Vi(-): -25.0 -x- 0.5 V Negative input voltage range 
Vbys: -x- 1.0 -x- V Input hysteresis voltage 
Ii: 0.3 -x- 10.0 ma Input current 

Unconnected inputs are interpreted the same as positive input voltages. 

GAME CONTROLLER INTERFACE CONNECTOR SPECIFICATION 

The two 9-pin D-type connectors with pins (male) are used to 
interface to four types of devices: 

1. Mouse or trackball, 3 buttons max. 
2. Digital joystick, 2 buttons max. 
3. Proportional (pot or proportional joystick), 2 buttons max. 
4. Light pen, including pen-pressed-to-screen button. 

The connector pin assignments are discussed in sections organized 
by similar hardware and/or software operating requirements as shown 
in the previous list. Signal names follow those used elsewhere 
in this appendix, when possible. 

J11 is the right controller port connector (JOYlDAT, POTlDAT). 
J12 is the left controller port connector (JOYODAT, POTODAT). 

NOTE: While most of the hardware discussed below is directly 
accessible, hardware should be accessed through ROM kernel software. 
This will keep future hardware changes transparent to the user. 
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GAME CONTROLLER INTERFACE TO MOUSE/TRACKBALL QUADRATURE INPUTS 

A mouse or trackball is a device that translates planar motion into 
pulse trains. Quadrature techniques are employed to preserve the 
direction as well as magnitude of displacement. The registers JOYODAT 
and JOY1DAT become counter registers, with y displacement in the high 
byte and x in the low byte. Movement causes the following action: 

Up: 
Down: 
Right: 
Left: 

y decrements 
y increments 
x increments 
x decrements 

To determine displacement, JOYxDAT is read twice with corresponding x 
and y values subtracted (careful, modulo 128 arithmetic). Note that 
if either count changes by more than 127, both distance and direction 
become ambiguous. There is a relationship between the sampling 
interval and the maximum speed (that is, change in distance) that 
can be resolved as follows: 

Velocity < Distance(max) / SampleTime 

Velocity < SQRT(DeltaX**2 + DeltaY**2) / SampleTime 

For an Amiga with a 200 count-per-inch mouse sampling during each 
vertical blanking interval, the maximum velocity in either the X or Y 
direction becomes: 

Velocity < (128 Counts * 1 inch/200 Counts) / .017 sec 38 in/sec 

which should be sufficient for most users. 

NOTE: The Amiga software is designed to do mouse update cycles during 
vertical blanking. The horizontal and vertical counters are always 
valid and may be read at any time. 

CONNECTOR PIN USAGE FOR MOUSE/TRACKBALL QUADRATURE INPUTS 

PIN MNEMONIC 
--------

1 V 
2 H 
3 VQ 
4 HQ 
5 UBUT* 
6 LBUT* 
7 +5V 
8 Ground 
9 RBUT* 

DESCRIPTION 
-----------
Vertical pulses 
Horizontal pulses 
Vertical quadrature pulses 
Horizontal quadrature pulses 
Unused mouse button 
Left mouse button 
+5V, current limited 

Right mouse button 

HARDWARE REGISTER/NOTES 

JOY[0/ljDAT<15:8> 
JOY[0/ljDAT(7:0> 
JOY[0/1]DAT<15:8> 
JOY[0/1]DAT<7:0> 
See Proportional Inputs. 
See Fire Button. 

See Proportional Inputs. 



GAME PORT INTERFACE TO DIGITAL JOYSTICKS 

A joystick is a device with four normally opened switches arranged 90 
degrees apart. The JOY[O/l]DAT registers become encoded switch input 
ports as follows: 

Forward: 
Left: 
Back: 
Right: 

bitt9 xor biti8 
bitt 9 
bitU xor bitiO 
bitU 

Data is encoded to facilitate the mouse/trackball operating mode. 

NOTE: The right and left direction inputs are also designed to be 
right and left buttons, respectively, for use with proportional 
inputs. In this case, the forward and back inputs are not used, 
while right and left become button inputs rather than joystick inputs. 

The JOY[O/l]DAT registers are always valid and may be read at any time. 

CONNECTOR PIN USAGE FOR DIGITAL JOYSTICK INPUTS 

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES 
-------- ----------- -----------------------

1 FORWARD * .Forward joystick switch JOY[0/l]DAT<9 xor 
2 BACK * Back joystick switch JOY[O/l]DAT(l xor 
3 LEFT * Left joystick switch JOY [0/1] DAT<9> 
4 RIGHT* Right joystick switch JOY[O/l]DAT<l> 
5 Unused 
6 FIRE* Left mouse button See Fire Button. 
7 +SV 12Sma max, 200ma surge Total both ports. 
8 Ground 
9 Unused 

GAME PORT INTERFACE TO FIRE BUTTONS 

The fire buttons are normally opened switches routed to the 8520 
adapter PRAO as follows: 

PRAO bit 7 
PRAO bit 6 

Fire* left controller port 
Fire* right controller port 

Before reading this register, the corresponding bits of the data 
direction register must be cleared to define input mode: 

DDRAO<7:6> cleared as appropriate 

8> 
0> 

NOTE: Do not disturb the settings of other bits in DDRAO (Use of ROM 
kernel calls is recommended). 

Fire buttons are always valid and may be read at any time. 
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CONNECTOR PIN USAGE FOR FIRE BUTTON INPUTS 

PIN MNEMONIC DESCRIPTION 
--------

1 -x-
2 -x-
3 -x-
4 -x-
5 -x-
6 FIRE* Left mouse button/fire button 
7 -x-
8 ground 
9 -x-

GAME PORT INTERFACE TO PROPORTIONAL CONTROLLERS 

Resistive (potentiometer) element linear taper proportional 
controllers are supported up to 528k Ohms max (470k +/- 10% 
recommended). The JOY[O/ljDAT registers contain digital 
translation values for y in the high byte and x in the low byte. 
A higher count value indicates a higher external resistance. 
The Amiga performs an integrating analog-to-digital conversion 
as follows: 

1. For the first 7 (NTSC) or 8 (PAL) horizontal display lines, 
the analog input capacitors are discharged and the positions 
counters reflected in the POT[O/ljDAT registers are held reset. 

For the remainder of the display field, the input capacitors are 
allowed to recharge through the resistive element in the external 
control device. 

2. The gradually increasing voltage is continuously compared to 
an internal reference level while counter keeps track of the 
number of lines since the end of the reset interval. 

3. When the input voltage finally exceeds the internal threshold 
for a given input channel, the current counter value is latched 
into the POT[O/ljDAT register corresponding to that channel. 

4. During the vertical blanking interval, the software examines 
the resulting POT[O/ljDAT register values and interprets the 
counts in terms of joystick position. 

NOTE: The POTY and POTX inputs are designated as "right mouse button" and 
"unused mouse button" respectively. An opened switch corresponds to high 
resistance, a closed switch to a low resistance. The buttons are also 
available in POTGO and POTINP registers. It is recommended that 
ROM kernel calls be used for future hardware compatibility. 

It is important to realize that the proportional controller is more of a 
"pointing" device than an absolute position input. It is up to the 
software to provide the calibration, range limiting and averaging functions 
needed to support the application's control requirements. 

The POT[O/ljDAT registers are typically read during video blanking, 
but MAY be available prior to that. 
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CONNECTOR PIN USAGE FOR PROPORTIONAL INPUTS 

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES 
-------- ----------- -----------------------

1 XBUT Extra Button 
2 Unused 
3 LBUT* Left button See Digital Joystick 
4 RBUT* Right button See Digital Joystick 
5 POTX X analog in POT[0/ljDAT<7:0>, POTGO, POTINP 
6 Unused 
7 +5V 125ma max, 200 ma surge 
8 Ground 
9 POTY Y analog in POT[0,ljDAT<15:8>, POTGO, POTINP 

GAME PORT INTERFACE TO LIGHT PEN 

A light pen is an optoelectronic device whose light-sensitive portion 
is placed in proximity to a CRT. As the electron beam sweeps past the 
light pen, a trigger pulse is generated which can be enabled to latch the 
horizontal and vertical beam positions. There is no hardware bit to 
indicate this trigger, but this can be determined in the two ways 
as shown in chapter 8, "Interface Hardware." 

Light pen position is usually read during blanking, but MAY be available 
prior to that. 

CONNECTOR PIN USAGE FOR LIGHT PEN INPUTS 

PIN MNEMONIC 
--------

1 Unused 
2 Unused 
3 Unused 
4 Unused 
5 LPENPR* 
6 LPENTG* 
7 +5V 
8 Ground 
9 Unused 

Note: depending 

DESCRIPTION 

Light pen pressed 
Light pen trigger 
125ma max, 200 ma surge 

HARDWARE REGISTER/NOTES 

See Proportional Inputs 
VPOSR, VHPOSR 
Both ports 

on the maker, the light pen input may be either. 
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EXTERNAL DISK INTERFACE CONNECTOR SPECIFICATION 

The 23-pin D-type connector with sockets (DB23S) at the rear of the 
Amiga is nominally used to interface to MFM devices. 

EXTERNAL DISK CONNECTOR PIN ASSIGNMENT (J7) 

PIN NAME DIR 

1 ROY* I/O 

2 DKRD* I 
3 GND 
4 GND 
5 GND 
6 GND 
7 GND 
8 MTRXD* OC 

9 SEL2B* OC 
10 DRESB* OC 

11 CHNG* I/O 

12 +5V 

13 SIDES* 0 
14 WPRO* I/O 
15 TKO* I/O 

16 DKWEB* OC 
17 DKWDB* OC 
18 STEPB* OC 

19 DIRB OC 

20 SEL3B* OC 
21 SEL1B* OC 
22 INDEX* I/O 

23 +12V 

NOTES 

If motor on, indicates disk installed and up to 
speed. If motor not on, identification mode. See 
below. 
MFM input data to Amiga. 

Motor on data, clocked into drive's motor-on 
flip-flop by the active transition of SELxB*. 
Guaranteed setup time is 1.4 usec. 
Guaranteed hold time is 1.4 usec. 
Select drive 2.* 
Amiga system reset. Drives should reset their 
motor-on flip-flops and set their write-protect 
flip-flops. 
Note: Nominally used as an open collector input. 
Drive's change flop is set at power up or when no 
disk is not installed. Flop is reset when drive is 
selected and the head stepped, but only if a disk 
is installed. 
270 ma maximum; 410 ma surge 
When below 3.75V, drives are required to reset their 
motor-on flops, and set their write-protect flops. 
Side 1 if active, side 0 if inactive 
Asserted by selected, write-protected disk. 
Asserted by selected drive when read/write head 
is positioned over track O. 
Write gate (enable) to drive. 
MFM output data from Amiga. 
Selected drive steps one cylinder in the direction 
indicated by DIRB. 
Direction to step the head. Inactive to step 
towards center of disk (higher-numbered tracks) • 
Select drive 3. * 
Select drive 1. * 
Index is a pulse generated once per disk revolution, 
between the end and beginning of cylinders. The 
8520 can be programmed to conditionally generate a 
level 6 interrupt to the 68000 whenever the INDEX* 
input goes active. 
160 ma maximum; 540 rna surge. 

* Note: the drive select lines are shifted as they pass through 
a string of daisy chained devices. Thus the signal that appears 
as drive 2 select at the first drive shows up as drive 1 select 
at the second drive and so on ... 
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EXTERNAL DISK CONNECTOR IDENTIFICATION MODE 

An identification mode is provided for reading a 32-bit serial 
identification data stream from an external device. To initialize 
this mode, the motor must be turned on, then off. See pin 8, 
MTRXD* for a discussion of how to turn the motor on and off. The 
transition from motor on to motor off reinitializes the serial 
shift register. 
After initialization, the SELxB* signal should be left in the 
inactive state. 
Now enter a loop where SELxB* is driven active, read serial input 
data on RDY* (pin 1), and drive SELxB* inactive. Repeat this loop 
a total of 32 times to read in 32 bits of data. The most significant 
bit is received first. 

EXTERNAL DISK CONNECTOR DEFINED IDENTIFICATIONS 

$0000 0000 
$FFFF FFFF 
$5555 5555 

no drive present. 
Amiga standard 3.25 diskette. 
48 TPI double-density, double-sided. 

As with other peripheral ID's, users should contact Commodore-Amiga 
for ID assignment. 
The serial input data is active low and must therefore be inverted 
to be consistent with the above table. 

EXTERNAL DISK CONNECTOR LIMITATIONS 

1. The total cable length, including daisy chaining, must not exceed 
1 meter. 

2. A maximum of 3 external devices may reside on this interface, 
but specific implementations may support fewer external devices. 

3. Each device must provide a 1000-Ohm pull-up resistor on those 
outputs driven by an open-collector device on the Amiga 
(pins 8-10, 16-21). 

4. The system provides power for only the first external device in the 
daisy chains. 
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************** PART 3 - INTERNAL CONNECTORS ******************* 

DISK INTERNAL ••• 34 PIN RIBBON (J10) 
-------------------------------------
1 GND 18 DIRB 
2 CHNG* 19 GND 
3 GND 20 STEPB* 
4 MTROD* (led) 21 GND 
5 GND 22 DKWDB* 
6 N.C. 23 GND 
7 GND 24 DKWEB* 
8 INDEX* 25 GND 
9 GND 26 TKO* 
10 SELOB* 27 GND 
11 GND 28 WPRO* 
12 N.C. 29 GND 
13 GND 30 DKRD* 
14 N.C. 31 GND 
15 GND 32 SIDEB* 
16 MTROD* 33 GND 
17 GND 34 RDY* 

DISK INTERNAL POWER .•• 4 PIN STRAIGHT (J13) 

1 +12 (some drives are +5 only) 
2 GND 
3 GND 
4 +5 
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********** PART 4 - PORT SIGNAL ASSIGNMENTS FOR 8520 ************ 

Address BFFROl data bits 7-0 (A12*) (int2) 

PA7 •• game port 
PA6 •• game port 
PAS •• ROY* 
PA4 •• TKO* 
PA3 •• WPRO* 

1, pin 6 (fire button*) 
0, pin 6 (fire button*) 
disk ready* 
disk track 00* 
write protect* 
disk change* PA2 •• CHNG* 

PAL .LED* 
PAO •• OVL 

led light (O-bright) / audio filter control (A500 & A2000) 
ROM/RAM overlay bit 

SP ••• KDAT 
CNT •• KCLK 
PB7 •• P7 
PB6 •• P6 
PBS •• PS 
PB4 •• P4 
PB3 .. P3 
PB2 •• P2 
PBl. .Pl 
PBO •• PO data 0 

PC •.. drdy* 
F •••• ack* 

keyboard 
keyboard 
data 7 
data 6 
data 5 
data 4 
data 3 
data 2 
data 1 

data 
clock 

Centronics parallel interface 
data 

Centronics control 

Address BFDRFE data bits 15-8 (A13*) (int6) 

PA7 •• com line DTR*, driven output 
PA6 •• com line RTS*, driven output 
PAS •• com line carrier detect* 
PA4 •• com line CTS* 
PA3 •• com line DSR* 
PA2 .• SEL Centronics control 
PA1 •• POUT +--- p~per out ------------+ 
PAO •• BUSY I +--busy -------------+ I 

I I I I 
SP ••• BUSY I +- commodore serial bus + I 
CNT •• POUT +----commodore serial bus --+ 

PB7 •• MTR* 
PB6 •• SEL3* 
PBS •• SEL2* 
PB4 •• SELl * 
PB3 •• SELO* 
PB2 •• SIDE* 
PB1 •• DIR 
PBO •• STEP * 

PC •.. not used 
F •••• INDEX* 

motor 
select external 3rd drive 
select external 2nd drive 
select external 1st drive 
select internal drive 
side select* 
direction 
step* 

disk index pulse* 
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PORTO 

\ 5 } 

9 / 
J 

PORT 1 

\ ) 
/ 

J 

POT COUNTERS 
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POTOX 

POTOY 

+ 
POTOY 
COUNTER 

POT1X 

POT1Y 

• POT1Y 
COUNTER 
LATCH 

POTOX 
COUNTER 

POTlX 
COUNTER 
LATCH 

POTODAT 
DFF012 

POT1DAT 
DFF014 

II POTGO 
L..... ________ -'-' DFF034 

I POTINP 
L..... ________ ---'. DFF016 



PORT 1 I o~ 0 0 0 0 I 
\ 000 J 

FIREO\ 

7 J 

FIRE1\ FIRED 
I I 

I 

PORT 2 \ o 0 0 0 oj 

\ 
FIRE1\ 

I I 

) 0 0 0 J 

0 

I 

PR A 
E001 $BF 

I 
0 

I 
0 

I I
g~irection 

_ _ _ 0 0 0 0 1 . $BFE201 

IN IN OUT OUT OUT OUT OUT OUT 

Reading FIRE BUnONS 
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VPOSR Read Only 
DFFOO4 

1 L _______________ ----'1 ~~~~R Read Only 

I I I BPLCONO Write Only 

~-LI~~~~L_~~~~_L~I~I_~~I~" DFF104 
15 3 0 

LI ------- Light Pen Enable 

I POTINP Read Only 
I I _ DFF016 (Bit 8) 

Ll-5L-~~~~-IL~11 ~~~~-PE~N--P~R-E~S~~=POTOX 

PORT 0 

Light Pen 

LIGHT PEN 
~ latches V & H positions 
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AppendixF 

Complex Interface Adapters 

This appendix contains information about the 8520 peripheral interface adapters. 

8520 Complex Interface Adaptor (CIA) Chips 

Each Amiga system contains two 8520 Complex Interface Adaptor (CIA) chips. Each chip has 
16 general purpose input/output pins, plus a serial shift register, three timers, an output pulse pin 
and an edge detection input. In the Amiga system various tasks are assigned to the chip's capabil
ities. 
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ClAA Address Map 

Byte Register 
Address Name 

BFE001 
BFE101 
BFE201 
BFE301 
BFE401 
BFE501 
BFE601 
BFE701 
BFE801 
BFE901 
BFEA01 
BFEB01 
BFEC01 
BFED01 
BFEE01 
BFEF01 

pra 
prb 
ddra 
ddrb 
talo 
tahi 
tblo 
tbhi 
todlo 
todmid 
todhi 

sdr 
icr 
cra 
crb 

7 6 
Data bits 

543 2 1 o 

/FIR1 /FIRO /RDY /TKO /WPRO /CHNG /LED OVL 
Parallel port 
Direction for port A (BFE001);1=output (set to Ox03) 
Direction for port B (BFE101);1=output (can be in or out) 
ClAA timer A low byte (.715909 Mhz NTSC; .709379 Mhz PAL) 
ClAA timer A high byte 
ClAA timer B low byte (.715909 Mhz NTSC: .709379 Mhz PAL) 
ClAA timer B high byte 
50/60 Hz event counter bits 7-0 (VSync or line tick) 
50/60 Hz event counter bits 15-8 
50/60 Hz event counter bits 23-16 
not used 
ClAA serial data register (connected to keyboard) 
ClAA interrupt control register 
ClAA control register A 
ClAA control register B 

Note: ClAA can generate interrupt INT2. 

CIAB Address Map 

Byte 
Address 

BFDOOO 
BFD100 
BFD200 
BFD300 
BFD400 
BFD500 
BFD600 
BFD700 
BFD800 
BFD900 
BFDAOO 
BFDBOO 
BFDCOO 
BFDDOO 
BFDEOO 
BFDFOO 

Note: 

Register 
Name 7 6 5 

Data bits 
4 3 2 1 

pra /DTR /RTS /CD ICTS /DSR SEL POUT 
prb /MTR /SEL3 /SEL2 /SEL1 /SELO ISIDE DIR 
ddra Direction for Port A (BFDOOO):l = output 
ddrb Direction for Port B (BFD100):1 = output 
talo CIAB timer A low byte (.715909 Mhz NTSC: 
tahi CIAB timer A high byte 
tblo CIAB timer B low byte (.715909 Mhz NTSC: 
tbhi CIAB timer B high byte 
todlo Horizontal sync event counter bits 7-0 
todmid Horizontal sync event counter bits 15-8 
todhi Horizontal sync event counter bits 23-16 

not used 
sdr CIAB serial data register (unused) 
icr CIAB interrupt control register 
cra CIAB Control register A 
crb CIAB Control register B 

CIAB can generate INT6. 

318 Appendix F 

o 

BUSY 
/STEP 

(set to OxFF) 
(set to OxFF) 
.709379 Mhz PAL) 

.709379 Mhz PAL) 



Chip Register Map 

Each 8520 has 16 registers that you may read or write. Here is the list of registers and the access 
address of each within the memory space dedicated to the 8520: 

Register 
RS3 RS2 RSI RSO t(hex) NAME MEANING 

o 
o 
o 
o 
o 
o 
o 
o 
1 
1 
1 
1 
1 
1 
1 
1 

o 
o 
o 
o 
1 
1 
1 
1 
o 
o 
o 
o 
1 
1 
1 
1 

o 
o 
1 
1 
o 
o 
1 
1 
o 
o 
1 
1 
o 
o 
1 
1 

SOFTWARE NOTE: 

o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

pra 
prb 
ddra 
ddrb 
talo 
tahi 
tblo 
tbhi 
todlow 
todmid 
todhi 

sdr 
icr 
cra 
crb 

Peripheral data register A 
Peripheral data register B 
Data direction register A 
Direction register B 
Timer A low register 
Timer A high register 
Timer B low register 
Timer B high register 
Event LSB 
Event 8-1S 
Event MSB 
No connect 
Serial data register 
Interrupt control register 
Control register A 
Control register B 

The operating system kernel has already allocated the use of 
several of the 8520 timers. 

ClAA, timer A 

ClAA, timer B 

ClAA, TOD 

CIAB, timer A 
CIAB, timer B 
CIAB, TOD 

Keyboard (used continuously to handshake 
keystrokes). NOT AVAILABLE. 
Virtual timer device (used continuously 
whenever system Exec is in control; used 
for task switching, interrupts and timing). 
SO/60 Hz timer used by timer. device. The 
AIOOO uses power line tick. The ASOO uses 
vertical sync. The A2000 has a jumper 
selection. 

not used 
not used 
graphics. library video beam follower. This 
timer counts at the horizontal sync rate, 
and is used to syncronize graphics events 
to the video beam. 

Note that previous editions of this chart were incorrect. 
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Register Functional Description 

VO PORTS (PRA, PRB, DDRA, DDRB) 

Ports A and B each consist of an 8-bit peripheral data register (PR) and an 8-bit data direction 
register (DDR). If a bit in the DDR is set to a 1, the corresponding bit position in the PR 
becomes an output. If a DDR bit is set to a 0, the corresponding PR bit is defined as an input. 

When you READ a PR register, you read the actual current state of the I/O pins (P AO-PA 7, PBO
PB7, regardless of whether you have set them to be inputs or outputs. 

Ports A and B have passive pull-up devices as well as active pull-ups, providing both CMOS and 
1TL compatibility. Both ports have two 1TL load drive capability. 

In addition to their nonnal I/O operations, ports PB6 and PB7 also provide timer output func
tions. 

HANDSHAKING 

Handshaking occurs on data transfers using the PC output pin and the FLAG input pin. PC will 
go low on the third cycle after a port B access. This signal can be used to indicate "data ready" 
at port B or "data accepted" from port B. Handshaking on 16-bit data transfers (using both ports 
A and B) is possible by always reading or writing port A first. FLAG is a negative edge-sensitive 
input that can be used for receiving the PC output from another 8520 or as a general- purpose 
interrupt input Any negative transition on FLAG will set the FLAG interrupt bit 

REG NAME 07 06 05 04 03 02 01 00 
---- ---- ---- ---- ---- ---- ---- ----

0 PRA PA7 PA6 PAS PA4 PA3 PA2 PAl PAO 
1 PRB PB7 PB6 PBS PB4 PB3 PB2 PBl PBO 
2 OORA OPA7 OPA6 OPA5 OPA4 OPA3 OPA2 OPAl OPAO 
3 OORB OPB7 OPB6 OPB5 OPB4 OPB3 OPB2 OPBl OPBO 

INTERVAL TIMERS (TIMER A, TIMER B) 

Each intelVal timer consists of a 16-bit read-only timer counter and a 16-bit write-only timer 
latch. Data written to the timer is latched into the timer latch, while data read from the timer is 
the present contents of the timer counter. 
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The latch is also called a prescalar in that it represents the countdown value which must be 
counted before the timer reaches an underflow (no more counts) condition. This latch (prescalar) 
value is a divider of the input clocking frequency. The timers can be used independently or linked 
for extended operations. Various timer operating modes allow generation of long time delays, 
variable width pulses, pulse trains, and variable frequency wavefonns. Utilizing the CNT input, 
the timers can count external pulses or measure frequency, pulse width, and delay times of exter
nal signals. 

Each timer has an associated control register, providing independent control over each of the fol
lowing functions: 

Start/Stop 

A control bit allows the timer to be started or stopped by the microprocessor at any time. 

PB on/off 

A control bit allows the timer output to appear on a port B output line (pB6 for timer A and PB7 
for timer B). This function overrides the DDRB control bit and forces the appropriate PB line to 
become an output. 

Toggle/pulse 

A control bit selects the output applied to port B while the PB on/off bit is ON. On every timer 
underflow, the output can either toggle or generate a single positive pulse of one cycle duration. 
The toggle output is set high whenever the timer is started, and set low by RES. 

One-shot/continuous 

A control bit selects either timer mode. In one-shot mode, the timer will count down from the 
latched value to zero, generate an interrupt, reload the latched value, then stop. In continuous 
mode, the timer will count down from the latched value to zero, generate an interrupt, reload the 
latched value, and repeat the procedure continuously. 

In one-shot mode, a write to timer-high (register 5 for timer A, register 7 for Timer B) will 
transfer the timer latch to the counter and initiate counting regardless of the start bit. 
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Force load 

A strobe bit allows the timer latch to be loaded into the timer counter at any time, whether the 
timer is running or not. 

INPUT MODES 

Control bits allow selection of the clock used to decrement the timer. Timer A can count 02 
clock pulses or external pulses applied to the CNT pin. Timer B can count 02 pulses, external 
CNT pulses, timer A underflow pulses, or timer A underflow pulses while the CNT pin is held 
high. 

The timer latch is loaded into the timer on any timer underflow, on a force load, or following a 
write to the high byte of the pre- scalar while the timer is stopped. If the timer is running, a write 
to the high byte will load the timer latch but not the counter. 

BIT NAMES on READ-Register 

REG NAME 07 06 05 04 03 02 01 DO 
---- ---- ---- ---- ---- ---- ----

4 TALO TAL 7 TAL6 TAL5 TAL4 TAL3 TAL2 TALI TALO 
5 TAHI TAH7 TAH6 TAH5 TAH4 TAH3 TAH2 TAHI TAHO 
6 TBLO TBL7 TBL6 TBL5 TBL4 TBL3 TBL2 TBLI TBLO 
7 TBHI TBH7 TBH6 TBH5 TBH4 TBH3 TBH2 TBHl TBHO 

BIT NAMES on WRITE-Register 

REG NAME 07 06 05 04 03 02 01 DO 

4 
5 
6 
7 

TALO 
TAHI 
TBLO 
TBHI 
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PAH7 PAH6 PAH5 PAH4 PAH3 PAH2 PAHI PAHO 
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PBH7 PBH6 PBH5 PBH4 PBH3 PBH2 PBHl PBHO 



Time of Day Clock 

TOO consists of a 24-bit binary counter. Positive edge transitions on this pin cause the binary 
counter to increment. The TOO pin has a passive pull-up on it. 

A programmable alarm is provided for generating an interrupt at a desired time. The alarm regis
ters are located at the same addresses as the corresponding TOO registers. Access to the alarm is 
governed by a control register bit. The alarm is write-only; any read of a TOO address will read 
time regardless of the state of the ALARM access bit. 

A specific sequence of events must be followed for proper setting and reading of TOO. TOO is 
automatically stopped whenever a write to the register occurs. The clock will not start again until 
after a write to the LSB event register. This assures that TOO will always start at the desired 
time. 

Since a carry from one stage to the next can occur at any time with respect to a read operation, a 
latching function is included to keep all TOO information constant during a read sequence. All 
TOO registers latch on a read of MSB event and remain latched until after a read of LSB event. 
The TOO clock continues to count when the output registers are latched. If only one register is to 
be read, there is no carry problem and the register can be read "on the fly" provided that any read 
of MSB event is followed by a read of LSB Event to disable the latching. 

BIT NAMES for WRITE TIMFl ALARM or READ TIME 

REG NAME 

8 
9 
A 

LSB Event 
Event 8-15 
MSB Event 

WRITE 
CRa7 - 0 
CRa 7 - 1 ALARM 

E7 E6 
E15 E14 
E23 E22 

E5 E4 
E13 E12 
E21 E20 

E3 
Ell 
E19 

E2 E1 EO 
E10 E9 E8 
E18 E17 E16 
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Serial Shift Register (SDR) 

The serial port is a buffered, 8-bit synchronous shift register. A control bit selects input or output 
mode. In the Amiga system one shift register is used for the keyboard, and the other is unas
signed. Note that the RS-232 compatible serial port is controlled by the Paula chip; see chapter 8 
for details. 

INPUT MODE 

In input mode, data on the SP pin is shifted into the shift register on the rising edge of the signal 
applied to the CNT pin. After eight CNT pulses, the data in the shift register is dumped into the 
serial data register and an interrupt is generated. 

OUTPUT MODE 

In the output mode, Timer A is used as the baud rate generator. Data is shifted out on the SP pin 
at 1(l the underflow rate of Timer A. The maximum baud rate possible is 02 divided by 4, but 
the maximum usable baud rate will be determined by line loading and the speed at which the 
receiver responds to input data. 

To begin transmission, you must first set up Timer A in continuous mode, and start the timer. 
Transmission will start following a write to the serial data register. The clock signal derived from 
Timer A appears as an output on the CNT pin. The data in the serial data register will be loaded 
into the shift register, then shifted out to the SP pin when a CNT pulse occurs. Data shifted out 
becomes valid on the next falling edge of CNT and remains valid until the next falling edge. 

After eight CNT pulses, an interrupt is generated to indicate that more data can be sent. If the 
serial data register was reloaded with new information prior to this interrupt, the new data will 
automatically be loaded into the shift register and transmission will continue. 

If no further data is to be transmitted after the eighth CNT pulse, CNT will return high and SP 
will remain at the level of the last data bit transmitted. 

SDR data is shifted out MSB first Serial input data should appear in this same format. 
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BIDIRECTIONAL FEATURE 

The bidirectional capability of the shift register and CNT clock allows many 8520s to be con
nected to a common serial communications bus on which one 8520 acts as a master, sourcing data 
and shift clock, while all other 8520 chips act as slaves. Both eNT and SP outputs are open 
drain to allow such a common bus. Protocol for master/slave selection can be transmitted over 
the serial bus or via dedicated handshake lines. 

REG NAME 07 06 05 04 03 02 01 DO 

c SOR S7 S6 S5 S4 S3 S2 Sl SO 

Interrupt Control Register (ICR) 

There are five sources of interrupts on the 8520: 

-Underflow from Timer A (timer counts down past 0) 
-Underflow from Timer B 
-TODalarm 
-Serial port full/empty 
-Flag 

A single register provides masking and interrupt infonnation. The interrupt control register con
sists of a write-only MASK register and a read-only DATA register. Any interrupt will set the 
corresponding bit in the DATA register. Any interrupt that is enabled by a I-bit in that position 
in the MASK will set the IR bit (MSB) of the DATA register and bring the IRQ pin low. In a 
multichip system, the IR bit can be polled to detect which chip has generated an interrupt request. 

When you read the DATA register, its contents are cleared (set to 0), and the IRQ line returns to a 
high state. Since it is cleared on a read, you must assure that your interrupt polling or interrupt 
service code can preserve and respond to all bits which may have been set in the DATA register 
at the time it was read. With proper preservation and response, it is easily possible to intennix 
polled and direct interrupt service methods. 

You can set or clear one or more bits of the MASK register without affecting the current state of 
any of the other bits in the register. This is done by setting the appropriate state of the MSBit, 
which is called the set/clear bit. In bits 6-0, you yourself fonn a mask that specifies which of the 
bits you wish to affect. Then, using bit 7, you specify HOW the bits in corresponding positions in 
the mask are to be affected. 
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• If bit 7 is a 1, then any bit 6-0 in your own mask byte which is set to a 1 sets the correspond
ing bit in the MASK register. Any bit that you have set to a 0 causes the MASK register bit 
to remain in its current state. 

• If bit 7 is a 0, then any bit 6-0 in your own mask byte which is set to a 1 clears the 
corresponding bit in the MASK register. Again, any 0 bit in your own mask byte causes no 
change in the contents of the corresponding MASK register bit. 

If an interrupt is to occur based on a particular condition, then that corresponding MASK bit must 
bea 1. 

Example: Suppose you want to set the Timer A interrupt bit (enable the Timer A interrupt), but 
want to be sure that all other interrupts are cleared. Here is the sequence you can use: 

INCLUDE "hardware/cia.i" 
XREF ciaa 
lea :ciaa,aO 
move.b t%01111110, ciaicr (aO) 

From amiga.lib 
Defined in amiga.lib 

MSB is 0, means clear any bit whose value is 1 in the rest of the byte 

INCLUDE "hardware/cia.i" 
XREF ciaa 
lea -ciaa,aO 
move.b t%10000001, ciaicr (aO) 

From amiga.lib 
Defined in amiga.lib 

MSB is 1, means set any bit whose value is 1 in the rest of the byte (do not change any values 
wherein the written value bit is a zero) 

READ INTERRUPT CONTROL REGISTER 

REG NAME D7 D6 D5 D4 D3 D2 D1 DO 

D ICR IR o o FLG SP ALRM TB TA 

WRITE INTERRUPT CONTROL MASK 

REG NAME D7 D6 D5 D4 D3 D2 D1 DO 

D ICR SIC x x FLG SP ALRM TB TA 
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Control Registers 

There are two control registers in the 8520, CRA and CRB. CRA is associated with Timer A and 
CRB is associated with Timer B. The fonnat of the registers is as follows: 

CONTROL REGISTER A 

BIT NAME FUNCTION 

o START 1 - start Timer A, 0 - stop Timer A. 
This bit is automatically reset (- 0) when 
underflow occurs during one-shot mode. 

1 PBON 1 - Timer A output on PB6, 0 - PB6 is normal operation. 

2 OUTMODE 1 - toggle, 0 - pulse. 

3 RUNMODE 1 - one-shot mode, 0 - continuous mode. 

4 LOAD 1 - force load (this is a strobe input, there is no 
data storage; bit 4 will always read back a zero 
and writing a 0 has no effect.) 

5 INMODE 1 - Timer A counts positive CNT transitions, 
o - Timer A counts 02 pulses. 

6 SPMODE 1 - Serial port=output (CNT is the source of the shift 
clock) 

7 UNUSED 

o - Serial port-input (external shift clock is 
required) 
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BIT MAP OF REGISTER eRA 

REGt NAME UNUSED SPMODE INMODE LOAD RUNMODE OUTMODE PBON START 

E CRA unused O-input 0-02 l=force O=cont. O=pulse 0=PB60FF O-stop 
unused I-output l-CNT load l-one- l=toggle 1=PB60N I-start 

(strobe) shot 

1<-------- Timer A Variables ----------------->1 

All unused register bits are unaffected by a write and forced to 0 on a read. 

CONTROL REGISTER B: 

BIT NAME 

o 

1 

2 
3 
4 

START 

PBON 

OUTMODE 
RUNMODE 
LOAD 

6,5 INMODE 

7 ALARM 
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FUNCTION 

1 - start Timer B, 0 = stop Timer B. 
This bit is automatically reset (= 0) when 
underflow occurs during one-shot mode. 

1 Timer B output on PB7, 0 = PB7 is normal 
operation. 

1 toggle, 0 = pulse. 
lone-shot mode, 0 = continuous mode. 
1 force load (this is a strobe input, there is no 

data storage; bit 4 will always read back a 
zero and writing a 0 has no effect.) 

Bits CRB6 and CRB5 select one of four possible 
input modes for Timer B, as follows: 

CRB6 CRB5 Mode Selected 

0 
0 
1 
1 

1 
o 

0 Timer B counts 02 pulses 
1 Timer B counts positive CNT transitions 
0 Timer B counts Timer A underflow pulses 
1 Timer B counts Timer A underflow pulses 

while CNT pin is held high. 

writing to TOO registers sets Alarm 
writing to TOO registers sets TOO clock. 
Reading TOO registers always reads TOO clock, 
regardless of the state of the Alarm bit. 



BIT MAP OF REGISTER eRB 

REG 
f NAME ALARM INMODE LOAD RUNMODE OUTMODE PBON START 

F CRB O-TOD 00-02 l-force O=cont. O=pulse 0=PB70FF O=stop 
l-Alarm Ol-CNT load l=one- l-toggle l=PB70N l=start 

lO-Timer A (strobe) shot 
ll-CNT+ 

Timer A 

I<----------------Timer B Variables--------------->I 

All unused register bits are unaffected by a write and forced to 0 on a read. 

Port Signal Assignments 

This part specifies how various signals relate to the available ports of the 8520. This infonnation 
enables the programmer to relate the port addresses to the outside-world items (or internal control 
signals) which are to be affected. This part is primarily for the use of the systems programmer 
and should generally not be used by applications programmers. Systems software nonnally is 
configured to handle the setting of particular signals, no matter how the physical connections may 
change. 

NOTE 

In a multi-tasking operating system, many different tasks may be competing for the 
use of the system resources. Applications programmers should follow the established 
rules for resource access in order to assure compatibility of their software with the sys
tem. 
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Address BFEr01 data bits 7-0 (A12*) (INT2) 

PA7 •• game port 
PA6 •• game port 
PAS •• ROY* 
PA4 •• TKO* 
PA3 •• WPRO* 
PA2 •• CHNG* 
PAL .LED* 
PAO •• OVL 
SP ••• KDAT 
CNT •• KCLK 
PB7 •• P7 
PB6 •• P6 
PBS •• PS 
PB4 •• P4 
PB3 •• P3 data 3 
PB2 •• P2 
PB1 •• P1 
PBO •• PO 
PC ••• drdy* 
F •••• ack* 

1, pin 6 (fire button*) 
0, pin 6 (fire button*) 
disk ready* 
disk track 00* 
write protect* 
disk change* 
led light (O-bright) 
memory overlay bit 
keyboard data 

data 7 
data 6 
data S 
data 4 

data 2 
data 1 
data 0 

Centronics parallel interface 
data 

centronics control 

Address BFDrOO data bits 1S-8 (A13*) (INT6) 

PA7 •• com line DTR*, driven output 
PA6 •• com line RTS*, driven output 
PAS •• com line carrier detect* 
PA4 •• com line CTS* 
PA3 •• com line DSR* 
PA2 •• SEL centronics control 
PA1 •• POUT paper out ---+ 
PAO •• BUSY busy ---+ I 

SP ..• BUSY 
CNT .. POUT 

PB7 •• MTR* 
PB6 •• SEL3* 
PBS •• SEL2* 
PB4 •• SEL1* 
PB3 •• SELO* 
PB2 •• SIDE* 
PB1 •• DIR 
PBO •• STEP * 

PC .•• not used 
F .... INDEX* 
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I I 
commodore -+ I 
commodore ---+ 

motor 
select external 3rd drive 
select external 2nd drive 
select external 1st drive 
select internal drive 
side select* 
direction 
step* (3.0 milliseconds minimum) 

disk index* 



A complete 8520 timing example. This blinks the power light at (exactly) 
3 milisecond intervals. It takes over the machine, so watch out! 

The base Amiga crytal frequecies are: 
NTSC 28.63636 MHz 

; PAL 28.37516 MHz 

The two 16 bit timers on the 8520 chips each count down at 1/10 the CPU 
clock, or 0.715909 MHz. That works out to 1.3968255 microseconds per count. 
Under PAL the countdown is slightly slower, 0.709379 MHz. 

To wait 1/100 second would require waiting 10,000 microseconds. 
The timer register would be set to (10,000 / 1.3968255 = 7159). 

; To wait 3 miliseconds would require waiting 3000 microsecsonds. 

; 

The register would be set to (3000 / 1.3968255 = 2148). 

INCLUDE "hardware/cia.i" 
INCLUDE "hardware/custom.i" 

XREF 
XREF 
XREF 

ciaa 
ciab 

_custom 

lea custom,a3 Base of custom chips 
lea :ciaa,a4 Get base address if CIA-A 

move.w t$7fff,dmacon(a3) Kill all chip interrupts 

;----Setup, only do once 
;----This sets all bits needed for timer A one-shot mode. 

move.b ciacra(a4),dO 
and.b t%11000000,dO 
or.b t%00001000,dO 
move.b dO,ciacra(a4) 
move.b t%01111111,ciaicr(a4) 

; 
;----Set time (low byte THEN high byte) 
;----And the low order with $ff 
;----Shift the high order by 8 

TIME equ 
move.b 
move.b 

2148 
t(TlME&$FF),ciatalo(a4) 
t(TlME»8),ciatahi(a4) 

;----Wait for the timer to count down 
busy_wait: 

btst.b 
beq.s 
bchg.b 
bset.b 
bra.s 

END 

to, ciaicr (a4) 
busy wait 
tCIAS LED,ciapra(a4) 
to, ciacra (a4) 
busy_wait 

;Set control register A on ClAA 
;Don't trash bits we are not 
;using ••. 

;Clear all 8520 interrupts 

;Wait for timer expired flag 

;Blink light 
;Restart timer 
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Hardware Connection Details 

The system hardware selects the CIAs when the upper three address bits are 101. Furthennore, 
CIAA is selected when A12 is low, A13 high; CIAB is selected when A12 is high, A13 low. 
CIAA communicates on data bits 7-0, ClAB communicates on data bits 15-8. 

Address bits All, A10, A9, and A8 are used to specify which of the 16 internal registers you 
want to access. This is indicated by "r" in the address. All other bits are don't cares. So, CIAA 
is selected by the following binary address: t01x xxxx xxOl rrrr xxxx xxxO. CIAB address: 
10lx xxxx xxtO rrrr xxxx xxx I 

With future expansion in mind, we have decided on the following addresses: ClAA = BPEr01; 
CIAB = BFDrOO. Software must use byte accesses to these address, and no other. 

INTERFACE SIGNALS 

Clock input 

The 02 clock is a TIL compatible input used for internal device operation and as a timing refer
ence for communicating with the system data bus. On the Amiga, this is connected to the 68000 
"E" clock. The "E" clock runs at 1/tO of the CPU clock. This works out to .715909 Mhz for 
NTSC or .709379 Mhz for PAL. 

CS - chip-select input 

The CS input controls the activity of the 8520. A low level on CS while 02 is high causes the 
device to respond to signals on the R/W and address (RS) lines. A high on CS prevents these 
lines from controlling the 8520. The CS line is nonnally activated (low) at 02 by the appropriate 
address combination. 

RIW - read/write input 

The R/W signal is IlOnnally supplied by the microprocessor and controls the direction of data 
transfers of the 8520. A high on R/W indicates a read (data transfer out of the 8520), while a low 
indicates a write (data transfer into the 8520). 
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RS3-RSO - address inputs 

The address inputs select the internal registers as described by the register map. 

DB7-DBO - data bus inputs/outputs 

The eight data bus output pins transfer information between the 8520 and the system data bus. 
These pins are high impedance inputs unless CS is low and RIW and 02 are high, to read the dev
ice. During this read, the data bus output buffers are enabled, driving the data from the selected 
register onto the system data bus. 

IRQ - interrupt request output 

IRQ is an open drain output normally connected to the processor interrupt input. An external 
pull-up resistor holds the signal high, allowing multiple IRQ outputs to be connected together. 
The IRQ output is normally off (high impedance) and is activated low as indicated in the func
tional description. 

RES - reset input 

A low on the RES pin resets all internal registers. The port pins are set as inputs and port regis
ters to zero (although a read of the ports will return all highs because of passive pull-ups). The 
timer control registers are set to zero and the timer latches to all ones. All other registers are reset 
to zero. 
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AppendixG 

AUTOCONFIGTM 

The AUTOCONFIGTM protocol is designed to allow the dynamic assignment of available address 
slots to expansion boards, eliminating the need for user configuration via jumpers. Upon reset, 
each board appears in turn at $E80000, with readable identification information, most of which is 
in one's complement format, stored in the high nibbles of the first $40 words ($80 bytes) of the 
board. This identification information includes the size of the board, its address space prefer
ences, type of board (memory or other), and a unique Hardware Manufacturer Number assigned 
by Commodore Amiga Technical Support, West Chester, Pennsylvania. 

Each board contains configuration hardware including an address latch appearing in the nibble at 
offset $0048 and the nibble at offset $OO4a. When A23 through A 16 of the assigned board base 
address are written to this register, the board latches and appears at the assigned address, then 
passes a signal called CONFIG-OUT that causes the next board to appear at $E80000. To make 
certain types of boards less expensive, an expansion board's write registers may be organized as 
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either a byte-wide register or two nibble-wide registers. If the register is nibble-wide then it must 
latch the low nibble of the assigned address (at $4A) until the high nibble (at $48) is written. 
This allows the following algorithm to wolk with either type of board: 

Write the low order address nibble to offset $4A 
Write the entire address byte to offset $48 

Alternatively, many boards can be asked to "shut-up" (pass CONFIG-OUT and stop responding) 
by writing to offset $OO4c of the board. A bit in the nibble at offset $0008 flags whether a board 
supports shut-up. 

All commercial expansion slot boards for the Amiga must implement the AUTOCONFIG proto
col. More in-depth machine-specific information on the design and implementation of AUTO
CONFIG boards is available from Commodore Amiga Technical Support. 

The Amiga operating system contains support for matching up disk-based drivers with AUTO
CONFIG boards. Since 1.3, the OS also supports initialization of onboard ROM driver software. 
As a general rule, applications should not attempt to AUTOCONFIG expansion peripherals, but 
rather should allow the Amiga system software to handle all automatic configuration. Many 
boards contain registers which once activated could do irreparable damage, for example, data on a 
user's hard disk could be lost if the board had been configured improperly. 

However, certain types of low level stand-alone applications may need to configure hardware 
such as RAM boards without using the Amiga operating system. Such applications should only 
configure expansion RAM boards (boards which ask to be added to the free memory list) and 
known dedicated boards designed for specific applications. All other boards should be shut-up if 
the board supports shut-up, or configured and ignored if shut-up is not supported. (There are 
many boards which do not support shut-up). Configuration of boards should only be attempted 
by applications which take over the whole machine at reset. Presence of an AUTOCONFIG 
board waiting for configuration is determined by comparing the nibbles appearing at the initial 
AUTOCONFIG address with the valid values for such nibbles in the specifications. 

The AUTOCONFIG spec requires that boards be configured on boundaries that match their space 
requirements. For example, a 1 MB memory board should be configured on a 1 MB boundary. 
There are two exceptions to this rule: boards with a 4 MB address space are capable of being 
placed at $200000 and $600000 as well as being placed on 4 MB boundaries; 8 MB boards can be 
placed at $200000. These exceptions are necessary because the 8 MB space reselVed for expan
sion in the current machine begins at $200000. 

Debugging AUTOCONFIG Boards 

If there is a defect in your configuration information, your board may be ignored, may shut-up or 
may crash in a way that makes diagnosis difficult. There is a simple trick allows you to test the 
configuration information. Cut the CONFIGIN* line to your board and wire a switch into the 
line. Wire in the switch such that when it is set one way, the CONFIGIN* line will pass through 

336 Appendix G 



from the bus to the board. This allows the board to respond to the AUTOCONFIG process. 
When the switch is set the other way, it should be wired such that the input to the board is forced 
high. This will disable the AUTOCONFIG of the board. 

Set the switch so that the CONFIGIN* line is forced high, then bring up the system. Your board 
will be invisible to the system software. Activate a debugger, and flip the switch. Your board 
should now respond at the normal $E8()()()() address. Your view of the board is id~ntical to what 
the operating system sees when configuring your board. You can compare the bits with the 
expected values. 

NOTE 

The board to be debugged must be the last board in the system (closest to the PC slots, 
away from the power supply.) Boards downstream of the board to be debugged will 
not be configured by the system. 

Address Specification Table 

The following table describes the board identification information and AUTOCONFIG regi&ters 
which appear in the first $80 bytes of an AUTOCONFIG board at configuration time. I 

NOTES 

• Identification information is stored in the high nibbles of the even (word) addresses at $e 
start of an AUTOCONFIG board. For example, the first two words of a board might contain 
$Cxxx lxxx. The valid information in these first two words would be the $C (high nibble of 
the word at offset $00), then the $1 (high nibble of the word at offset $02). Much of the 
information is interpreted by combining several nibbles, with low to high address nibbles 
containing high to low order parts of the resulting value. 

• All nibbles of information, except for those at offsets $00/02 and $40/42, are stored in an 
inverted (one's complement) form and must be exclusive OR'd with $F before interpreting 
them according to the table below. Unused nibbles (the three other nibbles in each word) 
may not be assumed to contain any particular value. All values written to the AUTOCON
FIG area, including the assigned address, are written uninverted. 

• All addresses are shown here as offsets from the base address $E8oo00 where boards appear 
at configuration time, so offset $02 is at $E80002, offset $04 at $E80004, etc. 
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Board Offset 
($00/02) 7 6 5 4 3 2 1 0 Description of nibbles 
R/W info \ / / --\/- \- --

\/ 
Nibble at $E80000 Nibble at $E80002 

Figure 0-1: How to read the Address Specification Table 

NOTE 

The bit numbering ( 7 6 5 4 3 2 1 0 ) is for use when two nibbles are to be intetpreted 
together as a byte. Physically, each nibble is the high nibble of the word at its address 
(ie. bits 15 14 13 12). 

OFFSET: 

($00/02) 
Read 
Not Inverted 

($04/06) 
Read 
Inverted 

($08/0A) 
Read 
Inverted 
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Table 0-1: Address Specification Table 

Address 1 Address 2 Description 

7 6 5 4 3 2 1 0 Board size 
I I I I I \_1_/-

000=8meg 100=512k 
001=64k 101=1meg 
010=128k 110=2meg 
011=256k 111=4meg 

I I I I I 
I I I I I 
I I I I ,---------- 1 
I I I ,-------------- 1 
I I ,----------------- 1 

Next card is also on this board 
= Optional ROM vector valid 

Link into memory free list (RAM) 
I '--------------\ 
,-----------------/--- Board type 00 = Reserved 

01 Reserved 
10 Reserved 

7 6 5 4 3 2 1 0 
\ / 
-\/-

\ / 
-V-

7 
I 
I 
I 
I 
I 

Hi nibble Lo nibble 

6543210 
I 1_1_1_1_1_1_ 
I 
,--------------------

11 Current type 

Manufacturer chosen product number 

(Remember - these read inverted) 
Reserved - Should be 0 currently 

o this board can be shut-up 
1 this board ignores shut-up 

,----------------------- 0 any space OK 
1 8 Meg area preferred 



OFFSET: Address 1 Address 2 Description (cont. ) 
--------------------~--==~================================================= 

($OC/OE) 
Read 
Inverted 

($10/12) 
Read 
Inverted 

($14/16) 
Read 
Inverted 

765 4 3 2 1 0 
1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1_ Reserved - must be 0 

7 6 5 4 3 2 1 0 High byte of unique hardware 
\ --- / \ --- ---/ manufacturer number assigned 

\f- \/ to manufacturer. 
Hi nibble Lo nibble (Not developer number!) 

7 6 5 4 3 2 1 0 Low byte of unique hardware 
\ --- / \ --- ---/ manufacturer number assigned 

\/- \/ to manufacturer. 
Hi nibble Lo nibble (Not developer number!) 

NOTE 

Manufacturer number is assigned by Commodore Amiga Technical Support in West 
Chester, Pennsylvania (CATS). Contact CATS for further infonnation. 

($18/1A) 
($lC/1E) 
($20/22) 
($24/26) 
Read 
Inverted 

($28/2A) 
Read 
Inverted 

($2C/2E) 
Read 
Inverted 

($30/32) 
R/W 
Inverted 

($34/36) 
($38/3A) 
($3C/3E) 
Inverted 

7 6 5 4 
7 6 5 4 
7 6 5 4 
7 6 5 4 

7 6 5 4 
\ / 
-\/-
Hi nibble 

7 6 5 4 
\ / 
-\/-
Hi nibble 

7 6 5 4 

7 6 5 4 
7 6 5 4 
7 6 5 4 

3 2 1 0 
3 2 1 0 
3 2 1 0 
3 2 1 0 

3 2 1 0 
\ / 
-\/-

Lo nibble 

3 2 1 0 
\ / 
-\f-

Lo nibble 

3 2 1 0 

3 2 1 0 
3 2 1 0 
3 2 1 0 

Optional 
Optional 
Optional 
Optional 

serial 
serial 
serial 
serial 

i, 
i, 
i, 
i, 

first byte (msb) 
second byte 
third byte 
fourth byte (lsb) 

High byte of optional ROM vector. 

Low byte of optional ROM vector. 
If the "ROM vector valid" bit 
is set in nibble $00 at the start 
of the board, then this optional 
ROM vector is the offset from the 
board base to ROM driver structures. 

Read - Reserved, must be 00 
Write - optional reset of 
board base register to 
pre-configuration address 

Reserved, must be 00 
Reserved, must be 00 
Reserved, must be 00 
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OFFSET: Address 1 Address 2 Description (cont. ) 
-----------------------------====~=---======-=======-=---================== 

($40/42) 7 6 5 4 3 2 1 0 Write Read 
R/W I I I I I I I I 

Not Inverted I I I I I I I ,- Interrupt enable Interrupt enable 
I I I I I I ,---- User definable Undefined 
I I I I I ,------- Local reset Must be 0 
I I I I ,---------- User definable Undefined 
I I I ,-------------- User definable INT2 pending 
I I ,----------------- User definable INT6 pending 
I ,-------------------- User definable INT7 pending 

,----------------------- User definable Board pulling INT 

NOTE 

Use of the $40/42 registers is an optional feature which can be implemented by boards 
which generate intenupts. They make it possible for board-specific interrupt servers 
to detennine if the current intenupt is being generated by their board, or by some other 
hardware using the same intenupt line. 

($44/46) 
R/W 
Inverted 

($48/4A) 
Write Only 
Not Inverted 

($4C/4E) 
Write Only 

7 6 5 4 

7 6 5 4 
\ / -\f-

Hi nibble 

7 6 5 4 
\ / 
-\f-

3 2 1 0 

3 2 1 0 
\ / 
-\f-

Lo nibble 

3 2 1 0 

,------------------

($50 through $7E) 
Inverted 

Reserved, read must be 00 
Write undefined 

Base address register, write only. 
These bits are compared with A23 
through A16 (or fewer) to determine 
the base address of the board. 

Optional shut-up register. 
Any write to $4C will cause 
board to pass CONFIG-OUT and 
and then never respond again 
to any address, until RESET. 
A bit in nibble $08 flags 
whether the board can be shut-up. 

Reserved, must be 00 

Remember that all nibbles except $00/02 and $40/42 will actually appear inverted from the values 
in the above table. For example, a "must be 0" nibble will appear as $F, and flags and hex 
values will also be inverted (i.e. a value of $1 will read as $E, etc). 
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/* 
* Examine all AUTOCONFIG(tm) boards in the system 
*/ 

tinclude "exec/types.h" 
tinclude "libraries/configvars.h" 

struct Library *OpenLibrary(); 
struct ConfigDev *FindConfigDev(); 
struct Library *ExpansionBase; 

void main () 
{ 
struct ConfigDev *myCD-O; 

ExpansionBase=OpenLibrary("expansion.library",OL); 

while(myCD-FindConfigDev(myCD,-lL,-lL» /* search for any ConfigDev */ 
{ 
printf("\n---ConfigDev structure found at location $%lx---\n",myCD); 

/* These valuses are read directly from the board */ 
printf ("er Manufacturer ="); 

printf("%d,",myCD->cd Rom.er Manufacturer); 
printf("$%x,",myCD->cd Rom.eX: Manufacturer); 
printf (" (-$%4x) \n", -myCD->cdj~:om.er_Manufacturer); 

printf ("er_Product ="); 
printf("%d,",myCD->cd Rom.er Product); 
printf ("$%x," ,myCD->cd Rom.er Product); 
printf("(-$%x)\n",-myCD->cd_Rom.er_Product); 

printf ("er_Type =$%x\n",myCD->cd_Rom.er_Type); 

printf ("er Flags ="); 
printi("$%x\n" , myCD->cd_Rom.er_Flags) ; 

/* These values are generated when the AUTOCONFIG(tm) software 
* relocates the board 
*/ 

printf("cd BoardAddr =$%lx\n",myCD->cd_BoardAddr); 
printf ("cd-BoardSize =$%lx (%lclK) \n", 

myCD->cd_BoardSize, «ULONG)myCD->cd_BoardSize)/1024); 

printf("cd Flags 
} -

CloseLibrary(ExpansionBase); 
} 

=$%x\n",myCD->cd_Flags)i 
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AppendixH 

Keyboard 

This appendix contains the keyboard interface specification for A 1000, A500 and A2000. 

The keyboard plugs into the Amiga computer via a cable with four primary connections. The 
four wires provide 5-volt power, ground, and signals called KCLK (keyboard clock) and KDAT 
(keyboard data). KCLK is unidirectional and always driven by the keyboard; KDA T is driven by 
both the keyboard and the computer. Both signals are open-collector; there are pullup resistors in 
both the keyboard (inside the keyboard microprocessor) and the computer. 
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Keyboard Communications 

The keyboard transmits 8-bit data words serially to the main unit. Before the transmission starts, 
both Ka..K and KDAT are high. The keyboard starts the transmission by putting out the tirst 
data bit (on KDAT), followed by a pulse on Ka..K (low then high); then it puts out the second 
data bit and pulses Ka..K until all eight data bits have been sent. After the end of the last Ka..K 
pulse, the keyboard pulls KDAT high again. 

When the computer has received the eighth bit, it must pulse KDAT low for at least 1 (one) 
microsecond, as a handshake signal to the keyboard. The handshake detection on the keyboard 
end will typically use a hardware latch. The keyboard must be able to detect pulses greater than 
or equal to 1 microsecond. Software MUST pulse the line low for 85 microseconds to ensure 
compatibility with all keyboard models. 

All codes transmitted to the computer are rotated one bit before transmission. The transmitted 
order is therefore 6-5-4-3-2-1-0-7. The reason for this is to transmit the up/down flag last, in 
order to cause a key-up code to be transmitted in case the keyboard is forced to restore lost sync 
(explained in more detail below). 

The KDAT line is active low; that is, a high level (+5V) is interpreted as 0, and a low level (OV) 
is interpreted as 1. 

KCLK --'j-'j-'j-'j-'j-'j-'j-'j 

KDAT , __ x __ x ____ x ___ x ____ x ___ x ___ x ___ 1 
(6) 

First 
sent 

(5) (4) (3) (2) (1) (0) (7) 

Last 
sent 

The keyboard processor sets the KDAT line about 20 microseconds before it pulls KCLK low. 
Ka..K stays low for about 20 microseconds, then goes high again. The processor waits another 
20 microseconds before changing KDAT. 

Therefore, the bit rate during transmission is about 60 microseconds per bit, or 17 kbits/sec. 
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Keycodes 

Each key has a keycode associated with it (see accompanying table). Keycodes are always 7 bits 
long. The eighth bit is a "key-up"/"key-down" flag; a 0 (high level) means that the key was 
pushed down, and a I (low level) means the key was released (the CAPS LOCK key is different -
see below). 

For example, here is a diagram of the "B" key being pushed down. The keycode for' 'B" is $35 
= 00110101; due to the rotation of the byte, the bits transmitted are 01101010. 

KCLK --'j-'j-'j \j-'j-'j-'j-'j 

KDAT ' ____ 1--' __ 1--' __ 1 
0110101 0 

In the next example, the "B" key is released. The keycode is still $35, except that bit 7 is set to 
indicate "key-up," resulting in a code of $B5 = 10110101. After rotating, the transmission will 
be 01101011: 

KCLK --\j-\j-'j-\j-\j-\j-\j-'j 

KDAT , 1--' __ 1 \ I 
o ·~l--l~ 0 1 0 ~l-~l~ 

"CAPS LOCK" Key 

This key is different from all the others in that it generates a keycode only when it is pushed 
down, never when it is released. However, the up/down bit is still used. When pushing the 
CAPS LOCK key turns on the CAPS LOCK LED, the up/down bit will be 0; when pushing 
CAPS LOCK shuts off the LED, the up/down bit will be 1. 
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"Out-or-Sync" Condition 

Noise or other glitches may cause the keyboard to get out of sync with the computer. This means 
that the keyboard is finished transmitting a code, but the computer is somewhere in the middle of 
receiving it. 

H this happens, the keyboard will not receive its handshake pulse at the end of its transmission. If 
the handshake pulse does not arrive within 143 ms of the last clock of the transmission, the key
board will assume that the computer is still waiting for the rest of the transmission and is there
fore out of sync. The keyboard will then attempt to restore sync by going into "resync mode. " 
In this mode, the keyboard clocks out a 1 and waits for a handshake pulse. If none arrives within 
'43 ms, it clocks out another 1 and waits again. This process will continue until a handshake 
pulse arrives. 

Once sync is restored, the keyboard will have clocked a garbage character into the computer. 
That is why the key-up/key-down flag is always transmitted last. Since the keyboard clocks out 
1 's to restore sync, the garbage character thus transmitted will appear as a key release, which is 
less dangerous than a key hit. 

Whenever the keyboard detects that it has lost sync, it will assume that the computer failed to 
receive the keycode that it had been trying to transmit. Since the computer is unable to detect lost 
sync, it is the keyboard's responsibility to inform the computer of the disaster. It does this by 
transmitting a "lost sync" code (value $F9 = 11111(01) to the computer. Then it retransmits the 
code that had been garbled. 

NOTE 

The only reason to transmit the "lost sync" code to the computer is to alert the 
software that something may be screwed up. The' 'lost sync" code does not help the 
recovery process, because the garbage keycode can't be deleted, and the correct key 
code could simply be retransmitted without telling the computer that there was an 
error in the previous one. 

Power-Up Sequence 

There are two possible ways for the keyboard to be powered up under normal circumstances: <1> 
the computer can be turned on with the keyboard plugged in, or <2> the keyboard can be plugged 
into an already "on" computer. The keyboard and computer must handle either case without 
causing any upset. 
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The first thing the keyboard does on power-up is to perform a self-test. This involves a ROM 
checksum test, simple RAM test, and watchdog timer test. Whenever the keyboard is powered up 
(or restarted -- see below), it must not transmit anything until it has achieved synchronization 
with the computer. The way it does this is by slowly clocking out 1 bits, as described above, until 
it receives a handshake pulse. 

If the keyboard is plugged in before power-up, the keyboard may continue this process for several 
minutes as the computer struggles to boot up and get running. The keyboard must continue 
clocking out Is for however long is necessary, until it receives its handshake. 

If the keyboard is plugged in after power-up, no more than eight clocks will be needed to achieve 
sync. In this case, however, the computer may be in any state imaginable but must not be 
adversely affected by the garbage character it will receive. Again, because it receives a key 
release, the damage should be minimal. The keyboard driver must anticipate this happening and 
handle it, as should any application that uses raw keycodes. 

NOTE 

The keyboard must not transmit a "lost sync" code after re-synchronizing due to a 
power-up or restart; only after re-synchronizing due to a handshake time-out. 

Once the keyboard and computer are in sync, the keyboard must inform the computer of the 
results of the self-test. If the self-test failed for any reason, a "selftest failed" code (value $FC = 
111111(0) is transmitted (the keyboard does not wait for a handshake pulse after sending the 
"selftest failed" code). After this, the keyboard processor goes into a loop in which it blinks the 
CAPS LOCK LED to inform the user of the failure. The blinks are coded as bursts of one, two, 
three, or four blinks, approximately one burst per second: 

One blink 
Two blinks 
Three blinks 
Four blinks 

ROM checksum failure. 
RAM test failed. 
Watchdog timer test failed. 
A short exists between two row lines 

or one of the seven special keys 
(not implemented). 

If the self-test succeeds, then the keyboard will proceed to transmit any keys that are currently 
down. First, it sends an "initiate power-up key stream" code (value $FD = 11111101), followed 
by the key codes of all depressed keys (with keyup/down set to "down" for each key). After all 
keys are sent (usually there won't be any at all), a "terminate key stream" code (value $FE = 
11111110) is sent. Finally, the CAPS LOCK LED is shut off. This marks the end of the start-up 
sequence, and normal processing commences. 

The usual sequence of events will therefore be: power-up; synchronize; transmit "initiate 
power-up key stream" ($FD); transmit "terminate key stream" ($FE). 
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Reset Warning 

NOTE 

Available on some Al000 and A2000 keyboards. You cannot rely on this feature for 
all Amigas. 

The keyboard has the additional task of resetting the computer on the command of the user. The 
user initiates Reset Warning by simultaneously pressing the CfRL key and the two "AMIGA" 
keys. 

The keyboard responds to this input by syncing up any pending transmit operations. The key
board then sends a "reset warning" to the Amiga. This action alerts the Amiga software to finish 
up any pending operations (such as disk DMA) and prepare for reset. 

A specific sequence of operations ensure that the Amiga is in a state where it can respond to the 
reset warning. The keyboard sends two actual "reset warning" keycodes. The Amiga must 
handshake to the first code like any nonnal keystroke, else the keyboard goes directly to Hard 
Reset. On the second "reset warning" code the Amiga must drive KDAT low within 250 mil
liseconds, else the keyboard goes directly to Hard Reset. If the all the tests are passed, the Amiga 
has 10 full seconds to do emergency processing. When the Amiga pulls KDAT high again, the 
keyboard finally asserts hard reset. 

If the Amiga fails to pull KDAT high within 10 seconds, Hard Reset is asserted anyway. 

Hard Reset 

NOTE 

This happens after Reset Warning. Valid for all keyboards except the Amiga 500. 

The keyboard Hard Resets the Amiga by pulling KCLK low and starting a 500 millisecond timer. 
When one or more of the keys is released AND 500 milliseconds have passed, the keyboard will 
release KCLK. 500 milliseconds is the minimum time KCLK must be held low. The maximum 
KCLK time depends on how long the user holds the three keys down. 

NOTE 

Circuitry on the Amiga motherboard detects the 500 millisecond KCLK pulse. 
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After releasing Ka...K, the keyboard jumps to its start-up code (internal RESET). This will ini
tialize the keyboard in the same way as cold power-on. 

NOTE 

The keyboard must resend the "powerup key stream"! 

Special Codes 

The special codes that the keyboard uses to communicate with the main unit are summarized here. 

NOTE 

The special codes are 8-bit numbers; there is no up/down flag associated with them. 
However, the transmission bit order is the same as previously described. 

Code Name Meaning 

78 Reset warning. CTRL-AMIGj" HGA has been hit -
computer will be reset in 10 seconds. (see text) 

F9 Last key code bad, next code is the same code 
retransmitted (used when keyboard and main unit 
get out of sync). 

FA Keyboard output buffer overflow 
FB Unused (was controller failure) 
FC Keyboard self test failed 
FD Initiate power-up key stream (keys pressed at powerup) 
FE Terminate power-up key stream 
FF Unused (was interrupt) 

Appendix H 349 



Matrix Table 

Row 5 Row 4 Row 3 Row 2 Row 1 Row 0 
Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) 

+-------+-------+-------+-------+-------+-------+ 
15 I (spare) I (spare) I (spare) I (spare) I (spare) I (spare) I 

(PO. 7) I I I I I I I 
I (OE) I (lC) I (2C) I (47) I (48) I (49) I 
+-------+-------+-------+-------+-------+-------+ 

14 I * I <SHIFT> I CAPS I TAB I I ESC I 
(PO. 6) I note 1 I note 2 I LOCK I I I I 

I (50) I (30) I (62) I (42) I (00) I (45) I 
+-------+-------+-------+-------+-------+-------+ 

13 I + I Z I A I Q I I ( I 
(PO. 5) I note 1 I I I I 1 I note 1 I 

I (5E) I (31) I (20) I (10) I (01) I (SA) I 
+-------+-------+-------+-------+-------+-------+ 

12 I 9 I X I S I W I @ I F1 I 
(PO. 4) I note 3 I I I I 2 I I 

I (3F) I (32) I (21) I (11) I (02) I (50) I 
+-------+-------+-------+-------+-------+-------+ 

11 I 6 I C I 0 I E I # I F2 I 
(PO. 3) I note 3 I I I I 3 I I 

I (2F) I (33) I (22) I (12) I (03) I (51) I 
+-------+-------+-------+-------+-------+-------+ 

10 I 3 I V I FIR I $ I F3 I 
(PO. 2) I note 3 I I I I 4 I I 

I (IF) I (34) I (23) I (13) I (04) I (52) I 
+-------+-------+-------+-------+-------+-------+ 

9 I I BIG I T I % I F4 I 
(PO. 1) I note 3 I I I I 5 I I 

I (3C) I (35) I (24) I (14) I (05) I (53) I 
+-------+-------+-------+-------+-------+-------+ 

8 I 8 I NIH I Y I I F5 I 
(PO. 0) I note 3 I I I I 6 I I 

I (3E) I (36) I (25) I (15) I (06) I (54) I 
+-------+-------+-------+-------+-------+-------+ 

715 I M I J I U I & I) I 
(PC. 7) I note 3 I I I I 7 I note 1 I 

I (2E) I (37) I (26) I (16) I (07) I (5B) I 
+-------+-------+-------+-------+-------+-------+ 

6 I 2 I < I K I I I * I F6 I 
(PC. 6) I note 3 I , I I I 8 I I 

I (lE) I (38) I (27) I (17) I (08) I (55) I 
+-------+-------+-------+-------+-------+-------+ 

5 I ENTER I > I L I 0 I ( I / I 
(PC. 5) I note 3 I I I I 9 I note 1 I 

I (43) I (39) I (28) I (18) I (09) I (5C) I 
+-------+-------+-------+-------+-------+-------+ 
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Row 5 Row 4 Row 3 Row 2 Row 1 Row 0 
Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) 

+-------+-------+-------+-------+-------+-------+ 
4 ,7 , ?, ,P,), F7 , 

(PC. 4) ,note 3, /, , ,0, , 
,(3D) ,(3A) ,(29) ,(19) ,(OA) ,(56) , 
+-------+-------+-------+-------+-------+-------+ 

3 ,4 , (spare) , " , {' ,F8, 
(PC. 3) ,note 3 , I I [' , , 

,(2D) ,(3B) ,(2A) ,(lA) ,(OB) ,(57) , 
+-------+-------+-------+-------+-------+-------+ 

2 ,1 ,SPACE, <RET>, } I + , F9 , 
(PC.2) ,note 3, BAR ,note 2, l' , , 

, (lD) ,(40) ,(2B) , (lB) ,(OC) ,(58) , 
+-------+-------+-------+-------+-------+-------+ 

1 ,0 ,BACK, DEL ,RETURN, , ,FlO I 
(PC.1) Inote 3 , SPACE, , ,\, , 

,(OF) ,(41) ,(46) ,(44) ,(OD) ,(59) , 
+-------+-------+-------+-------+-------+-------+ 

0, ,CURS, CURS ,CURS ,CURS ,HELP , 
(PC.O) ,note 3 ,DOWN ,RIGHT, LEFT , UP, , 

,(4A) ,(4D) ,(4E) , (4F) ,(4C) ,(SF) , 
+-------+-------+-------+-------+-------+-------+ 

note 1: A500 and A2000 keyboards only (numeric pad) 
note 2: International keyboards only (these keys are cutouts of the 

larger key on the US ASCII version.) The key that generates 
$30 is cut out of the left shift key. Key $2B is cut out of 
return. These keys are labeled with country-specific markings. 

note 3: Numeric pad. 

The following table shows which keys are independently readable. These keys never generate 
ghosts or phantoms. 

(Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) (Bit 1) (Bit 0) 
+-------+-------+-------+-------+-------+-------+-------+ 
,LEFT ,LEFT ,LEFT ,CTRL ,RIGHT, RIGHT , RIGHT , 
, AMlGA ,ALT ,SHIFT, , AMIGA, ALT ,SHIFT, 
,(66) ,(64) ,(60) ,(63) ,(67) ,(65) ,(61) , 
+-------+-------+-------+-------+-------+-------+-------+ 
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Appendix I 

External Disk Connector Interface Specification 

General 

The 23-pin female connector at the rear of the main computer unit is used to interface to and con
trol devices that generate and receive MFM data. This interface can be reached either as a 
resource or under the control of a driver. The following pages describe the interface in both 
cases. 
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Summary Table 

Pin # Name Note 

1 RDY- I/O ID and ready 
2 DKRD- I MFMinput 
3 GRND G 
4 GRND G 
5 GRND G 
6 GRND G 
7 GRND G 
8 MTRXO- 0 Motor control. 
9 SEL2B- 0* Select drive 2 
10 DRESB- 0 Reset 
11 CHNG- I/O Disk changed 
12 +5v PWR 540 rnA average 870 rnA surge 
13 SIDEB- 0 Side 1 iflow 
14 WRPRO- I/O Write protect 
15 TKO- I/O Track 0 
16 DKWEB- 0 Write gate 
17 DKWDB- 0 Write data 
18 STEPB- 0 Step 
19 DIRB 0 Direction (high is out) 
20 SEL3B- 0* Select drive 3 
21 SELIB- 0* Select drive 1 
22 INDEX- I/O Index 
23 +12v PWR 120 rnA average 370 rnA surge 

Key to Class: 

G ground, note connector shield grounded. 

I input pulled up to 5v by IK ohm. 

1/0 input in driver, but bidirectional input (lk pullup) 

o output pulled though IK to 5v 

0* output, separates resources. 

PWR available for external use, but currently used up by external drive. 
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Signals When Driving a Disk 

The following describes the interface under driver control. 

SELIB-, SEL2B-, SEL3B-

Select lines for the three external disk drives active low. 

TKO-

A selected drive pulls this signal low whenever its read-write head is on track 00. 

RDY-

When a disk drive's motor is on, this line indicates the selected disk is installed and rotat
ing at speed. The driver ignores this signal. When the motor is off this is used as a ID data 
line. See below. 

WPRO- (Pin *14) 

A selected drive pulls this signal low whenever it has a write-protected diskette installed. 

INDEX- (Pin #22) 

A selected drive pulses this signal low once for each revolution of its motor. 

SIDEB- (Pin *13) 

The system drives this signal to all disk drives-low for side 1, high for side O. 

STEPB- (Pin *18) 

Pulsed to step the selected drive's head. 

DIRB (Pin *19) 

The system drives this signal high or low to tell the selected drive which way to step when 
the STEPB- pulse arrives. Low means step in (to higher-numbered track); high means step 
out. 

DKRD- (Pin #2) 

A selected drive will put out read data on this line. 

DKWDB- (Pin *17) 

The system drives write data to all disks via this signal. The data is only written when 
DKWEB- is active (low). Data is written only to selected drives. 
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DKWEB- (Pin #16) 

This signal causes a selected drive to start writing data (provided by DKWDB-) onto the 
disk. 

CHNG- (Pin #11) 

A selected drive will drive this signal low whenever its internal "disk change" latch is set 
This latch is set when the drive is first powered on, or whenever there is no diskette in the 
drive. To reset the latch, the system must select the drive, and step the head. Of course, the 
latch will not reset if there is no diskette installed. 

MTRXD- (Pin #8) 

This is the motor control line for all four disk drives. When the system wants to tum on a 
disk drive motor, it first deselects the drive (if selected), pulls MTRXD- low, and selects 
the drive. To tum the motor off, the system deselects the drive, pulls MTRXD- high, and 
selects the drive. The system will always set MTRXD- at least 1.4 microseconds before it 
selects the drive, and will not change MTRXD- for at least 1.4 microseconds after selecting 
the drive. All external drives must have logic equivalent to a D flip-flop, whose D input is 
the MTRXD- signal, and whose clock input is activated by the off-to-on (high-to-Iow) tran
sition of its SELxB- signal. As noted above, both the setup and hold times of MTRXD
with respect to SELxB- will always be at least 1.4 microseconds. The output of this flip
flop controls the disk drive motor. Thus, the system can control all four motors using only 
one signal on the cable (MTRXD-). 

DRESB- (Pin #10) 

This signal is a buffered version of the system reset signal. Three things can make it go 
active (low): 

• System power-up (DRESB- will go low for approximately one second); 

• System CPU executes a RESET instruction (DRESB- will go low for approximately 
17 microseconds); 

• Hard reset from keyboard (lasts as long as keyboard reset is held down). 

External disk drives should respond to DRESB- by shutting off their motor flip-flops and 
write protecting themselves. 

A level of 3.75v or below on the 5v+ requires external disks to write-protect and reset the motor 
online. 
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Device I.D. 

This interface supports a method of establishing the type of disk(s) attached. The I.D. sequence is 
as follows. 

1. Drive MTRXD-Iow. 

2. Drive SELxB- low 

3. Drive SELxB- high. 

4. Drive MTRXD- high. 

5. Drive SELxB-Iow 

6. Drive SELxB- high. 

7. Drive SELxB-Iow 

8. Read and save state of ROY. 

9. Drive SELxB- high. 

Repeat steps 6 to 9, 15 times more. 

Convert the 16 values ofRDY- into a 16-bit word. The most significant bit is the first value and 
so on. This 16-bit quantity is the device I.D .. 

The following I.D.s are defined: 

0000 0000 0000 0000 
1111 1111 1111 1111 
1010 1010 1010 1010 
0101 0101 0101 0101 
1000 0000 0000 0000 
0111 1111 1111 1111 
0000 1111 xxxx xxxx 
1111 0000 xxxx xxxx 
xxxx 0000 0000 0000 
xxxx 1111 1111 1111 
0011 0011 0011 0011 
1100 1100 1100 1100 

Reserved 
Amiga standard 3.25 
Reserved 
48 TPI double-density, double-sided 
Reserved 
Reserved 
Available for users 
Extension reserved 
Reserved 
Reserved 
Reserved 
Reserved 
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AppendixJ 

Hardware Example Include File 

This appendix contains an include file that maps the hardware register names, given in Appendix 
A and Appendix B, to names that can be resolved by the standard include files. Use of these 
names in code sections of this manual places the emphasis on what the code is doing, rather than 
getting bogged down in include file names. 

All code examples in this manual reference the names given in this file. 
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IFND 
HARDWARE_HW_EXAMPLES_I SET 

HARDWARE HW EXAMPLES I - - -
1 

** 
** Filename: hardware/hw examples.i 
** $Release: 1.3 $ -
** 
** 
** (C) Copyright 1985,1986,1987,1988,1989 Commodore-Amiga, Inc. 
** All Rights Reserved 
** 
******************************************************************************* 

IFND HARDWARE CUSTOM I 
INCLUDE "hardware/custom.i" 
ENDC 

******************************************************************************* 
* 
* 
* 
* 
* 

This include file is designed to be 
manual examples. This file defines 
hardware/custom.i definition file. 
file. 

used in conjunction with the hardware 
the register names based on the 
There is no C-Language version of this 

* 
******************************************************************************* 
* * This instruction for the copper will cause it to 
* wait forever since the wait command described in it 
* will never happen. 

* 
COPPER HALT equ $FFFFFFFE 

* 
******************************************************************************* 
* * This is the offset in the 680xO address space to the custom chip registers 
* It is the same as _custom when linking with AMIGA.lib 

* 
CUSTOM equ $DFFOOO 
* 
* Various control registers 
* 
DMACONR equ dmaconr Just capitalization ••. 
VPOSR equ vposr 
VHPOSR equ vhposr 
JOYODAT equ joyOdat " 
JOY1DAT equ joy1dat " 
CLXDAT equ clxdat " 
ADKCONR equ adkconr " 
POTODAT equ potOdat 
POT1DAT equ pot1dat 
POTINP equ potinp ; 
SERDATR equ serdatr " 
INTENAR equ intenar 
INTREQR equ intreqr 
REFPTR equ refptr 
VPOSW equ vposw 
VHPOSW equ vhposw 
SERDAT equ serdat 
SERPER equ serper " 
POTGO equ potgo " 
JOYTEST equ joy test " 
STREQU equ strequ ; 
STRVBL equ strvbl ; 
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STRHOR equ strhor 
STRLONG equ strlong " 
DIWSTRT equ diwstrt " 
DIWSTOP equ diwstop " 
DDFSTRT equ ddfstrt " 
DDFSTOP equ ddfstop " 
DMACON equ dmacon " 
INTENA equ intena " 
INTREQ equ intreq ; " 
* * Disk control registers 

* 
DSKBYTR equ dskbytr Just capitalization .•• 
DSKPT equ dskpt " 
DSKPTH equ dskpt 
DSKPTL equ dskpt+$02 
DSKLEN equ dsklen " " 
DSKDAT equ dskdat ; 
DSKSYNC equ dsksync ; " " 
* * Blitter registers 

* 
BLTCONO equ bltconO ; Just capitalization ••• 
BLTCONl equ bltconl " 
BLTAFWM equ bltafwm " " 
BLTALWM equ bltalwm " 
BLTCPT equ bIt cpt " " 
BLTCPTH equ bIt cpt 
BLTCPTL equ bltcpt+$02 
BLTBPT equ bltbpt ; " " 
BLTBPTH equ bltbpt 
BLTBPTL equ bltbpt+$02 
BLTAPT equ bltapt 
BLTAPTH equ bltapt 
BLTAPTL equ bltapt+$02 
BLTDPT equ bltdpt 
BLTDPTH equ bltdpt 
BLTDPTL equ bltdpt+$02 
BLTSIZE equ bltsize 
BLTCMOD equ bltcmod 
BLTBMOD equ bltbmod 
BLTAMOD equ bltamod 
BLTDMOD equ bltdmod 
BLTCDAT equ bltcdat 
BLTBDAT equ bltbdat 
BLTADAT equ bltadat 
BLTDDAT equ bltddat 

* * Copper control registers 

* 
COP CON equ copcon Just capitalization .•• 
COPINS equ copins " 
COP JMP 1 equ copjmpl " 
COPJMP2 equ copjmp2 " 
COPILC equ copllc " 
COPILCH equ copllc 
COPILCL equ copllc+$02 
COP2LC equ cop21c " " 
COP2LCH equ cop21c 
COP2LCL equ cop21c+$02 

* * Audio channels registers 
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* 
ADKCON equ adkcon ; Just capitalization .•. 

AUDOLC equ audO 
AUDOLCH equ audO 
AUDOLCL equ audO+$02 
AUDOLEN equ audO+$04 
AUDOPER equ audO+$06 
AUDOVOL equ audO+$08 
AUDODAT equ audO+$OA 

AUDlLC equ audl 
AUDlLCH equ audl 
AUDlLCL equ audl+$02 
AUD1LEN equ audl+$04 
AUDIPER equ audl+$06 
AUDIVOL equ audl+$08 
AUDIDAT equ audl+$OA 

AUD2LC equ aud2 
AUD2LCH equ aud2 
AUD2LCL equ aud2+$02 
AUD2LEN equ aud2+$04 
AUD2PER equ aud2+$06 
AUD2VOL equ aud2+$08 
AUD2DAT equ aud2+$OA 

AUD3LC equ aud3 
AUD3LCH equ aud3 
AUD3LCL equ aud3+$02 
AUD3LEN equ aud3+$04 
AUD3PER equ aud3+$06 
AUD3VOL equ aud3+$08 
AUD3DAT equ aud3+$OA 

* 
* The bit plane registers 

* 
BPLIPT equ bplpt+$OO 
BPLIPTH equ bplpt+$OO 
BPLIPTL equ bplpt+$02 
BPL2PT equ bplpt+$04 
BPL2PTH equ bplpt+$04 
BPL2PTL equ bplpt+$06 
BPL3PT equ bplpt+$08 
BPL3PTH equ bplpt+$08 
BPL3PTL equ bplpt+$OA 
BPL4PT equ bplpt+$OC 
BPL4PTH equ bplpt+$OC 
BPL4PTL equ bplpt+$OE 
BPLSPT equ bplpt+$lO 
BPLSPTH equ bplpt+$lO 
BPLSPTL equ bplpt+$12 
BPL6PT equ bplpt+$14 
BPL6PTH equ bplpt+$14 
BPL6PTL equ bplpt+$16 

BPLCONO equ bplconO Just capitalization ..• 
BPLCONl equ bplconl " " 
BPLCON2 equ bplcon2 " " 
BPLIMOD equ bpllmod " " 
BPL2MOD equ bpl2mod ; " " 
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DPL1DATA equ bpldat+$OO 
DPL2DATA equ bpldat+$02 
DPL3DATA equ bpldat+$04 
DPL4DATA equ bpldat+$06 
DPL5DATA equ bpldat+$08 
DPL6DATA equ bpldat+$OA 

* * Sprite control registers 

* 
SPROPT equ sprpt+$OO 
SPROPTH equ SPROPT+$OO 
SPROPTL equ SPROPT+$02 
SPR1PT equ sprpt+$04 
SPR1PTH equ SPR1PT+$00 
SPR1PTL equ SPR1PT+$02 
SPR2PT equ sprpt+$08 
SPR2PTH equ SPR2PT+$00 
SPR2PTL equ SPR2PT+$02 
SPR3PT equ sprpt+$OC 
SPR3PTH equ SPR3PT+$00 
SPR3PTL equ SPR3PT+$02 
SPR4PT equ sprpt+$lO 
SPR4PTH equ SPR4PT+$00 
SPR4PTL equ SPR4PT+$02 
SPR5PT equ sprpt+$14 
SPR5PTH equ SPR5PT+$00 
SPR5PTL equ SPR5PT+$02 
SPR6PT equ sprpt+$18 
SPR6PTH equ SPR6PT+$00 
SPR6PTL equ SPR6PT+$02 
SPR7PT equ sprpt+$lC 
SPR7PTH equ SPR7PT+$00 
SPR7PTL equ SPR7PT+$02 

Note: SPRxDATB is defined as being +$06 from SPRxPOS. 
sd datab should be defined as $06, however, in the 1.3 assembler 
include file hardware/custom.i it is incorrectly defined as $08. 

SPROPOS equ spr+$OO 
SPROCTL equ SPROPOS+sd ctl 
SPRODATA equ SPROPOS+sd dataa 
SPRODATB equ SPROPOS+$06 should use sd_datab 

SPR1POS equ spr+$08 
SPR1CTL equ SPR1POS+sd ctl 
SPR1DATA equ SPR1POS+sd dataa 
SPR1DATB equ SPR1POS+$06 ; should use sd_datab 

SPR2POS equ spr+$lO 
SPR2CTL equ SPR2POS+sd ctl 
SPR2DATA equ SPR2POS+sd dataa 
SPR2DATB equ SPR2POS+$06 should use sd_datab 

SPR3POS equ spr+$18 
SPR3CTL equ SPR3POS+sd ctl 
SPR3DATA equ SPR3POS+sd-dataa 
SPR3DATB equ SPR3POS+$06 should use sd_datab 

SPR4POS equ spr+$20 
SPR4CTL equ SPR4POS+sd ctl 
SPR4DATA equ SPR4POS+sd dataa 
SPR4DATB equ SPR4POS+$06 should use sd_datab 
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SPR5POS equ 
SPR5CTL equ 
SPR5DATA equ 
SPR5DATB equ 

SPR6POS equ 
SPR6CTL equ 
SPR6DATA equ 
SPR6DATB equ 

SPR7POS equ 
SPR7CTL equ 
SPR7DATA equ 
SPR7DATB equ 
* 
* Color registers ..• 
* 
COLOROO equ 
COLOROl equ 
COLOR02 equ 
COLOR03 equ 
COLOR04 equ 
COLOR05 equ 
COLOR06 equ 
COLOR07 equ 
COLOR08 equ 
COLOR09 equ 
COLORlO equ 
COLORll equ 
COLORl2 equ 
COLORl3 equ 
COLORl4 equ 
COLORl5 equ 
COLORl6 equ 
COLORl7 equ 
COLORl8 equ 
COLORl9 equ 
COLOR20 equ 
COLOR2l equ 
COLOR22 equ 
COLOR23 equ 
COLOR24 equ 
COLOR25 equ 
COLOR26 equ 
COLOR27 equ 
COLOR28 equ 
COLOR29 equ 
COLOR30 equ 
COLOR3l equ 

spr+$28 
SPR5POS+sd_ctl 
SPR5POS+sd dataa 
SPR5POS+$06 should use sd_datab 

spr+$30 
SPR6POS+sd ctl 
SPR6POS+sd-dataa 
SPR6POS+$06 should use sd_datab 

spr+$38 
SPR7POS+sd ctl 
SPR7POS+sd dataa 
SPR7POS+$06 should use sd datab 

color+$OO 
color+$02 
color+$04 
color+$06 
color+$08 
color+$OA 
color+$OC 
color+$OE 
color+$lO 
color+$l2 
color+$l4 
color+$l6 
color+$l8 
color+$lA 
color+$lC 
color+$lE 
color+$20 
color+$22 
color+$24 
color+$26 
color+$28 
color+$2A 
color+$2C 
color+$2E 
color+$30 
color+$32 
color+$34 
color+$36 
color+$38 
color+$3A 
color+$3C 
color+$3E 

******************************************************************************* 
** 
** 

ENDC 
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Agnus 

Aliasing distortion 

Altkeys 

Amigakeys 

AmigaDOS 

Amplitude 

Amplitude modulation 

Attach mode 

Automatic mode 

Barrel shifter 

Baud rate 

Beam counters 

Bit-map 

Glossary 

One of the three main Amiga custom chips. Contains the blitter, 
copper, and DMA circuitry. 

A side effect of sound sampling, where two additional frequencies 
are produced, distorting the sound output 

Two keys on the keyboard to the left and right of the Amiga keys. 

Two keys on the keyboard to the left and right of the space bar. 

The Amiga operating system. 

The voltage or current output expressed as volume from a sound 
speaker. 

A means of increasing audio effects by using one audio channel to 
alter the amplitude of another. 

In sprites, a mode in which a sprite uses two DMA channels for 
additional colors. In sound production, combining two audio 
channels for frequency/amplitude modulation or for stereo sound. 

In sprite display, the normal mode in which the sprite DMA chan
nel, once it starts up, automatically retrieves and displays all of the 
data for a sprite. In audio, the normal mode in which the system 
retrieves sound data automatically through DMA. 

Blitter circuit that allows movement of images on pixel boun
daries. 

Rate of data transmission through a serial port. 

Registers that keep track of the position of the video beam. 

The complete definition of a display in memory, consisting of one 
or more bit-planes and information about how to organize the rec
tangular display. 
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Bit-plane 

Bit-plane animation 

Blanking interval 

Blitter 

Chip Memory 

Oear 

CLI 

Oipping 

Collision 

Color descriptor words 

Color indirection 

Color palette 

Color register 

Color table 

Command line interface 

Composite video 

Controller 

366 Glossary 

A contiguous series of display memory words, treated as if it were 
a rectangular shape. 

A means of animating the display by moving around blocks of 
playfield data with the blitter. 

Time period when the video beam is outside the display area. 

DMA channel used for data copying and line drawing. 

Memory accessible to the Amiga custom chips. On the current 
generation of machines, this section of memory starting at address 
O. See Fast Memory . 

• 
Giving a bit the value of O. 

See command line interface. 

When a portion of a sprite is outside the display window and thus 
is not visible. 

A means of detecting when sprites, playfields, or playfield objects 
attempt to overlap in the same pixel position or attempt to cross 
some pre-defined boundary. 

Pairs of words that define each line of a sprite. 

The method used by Amiga for coloring individual pixels in 
which the binary number fonned from all the bits that define a 
given pixel refers to one of the 32 color registers. 

See Color table. 

One of 32 hardware registers containing colors that you can 
define. 

The set of 32 color registers. 

The command line interface to system commands and utilities. 

A video signal, transmitted over a single coaxial cable, which 
includes both picture and sync infonnation. 

Hardware device, such as mouse or light pen, used to move the 
pointer or furnish some other input to the system. 



Coordinates A pair of numbers shown in the fonn (x,y), where x is an offset 
from the left side of the display or display window and y is an 
offset from the top. 

Copper Display-synchronized coprocessor that resides on one of the 
Amiga custom chips and directs the graphics display. 

Coprocessor Processor that adds its instruction set to that of the main processor. 

Cursor keys Keys for moving something on the screen. 

Data fetch The number of words fetched for each line of the display. 

Delay In playfield horizontal scrolling, specifies how many pixels the 
picture will shift for each display field. Delay controls the speed 
of scrolling. 

Denise One of the three main Amiga custom chips. Contains the circuitry 
for the color pallete, sprites, and video output. 

Depth Number of bit-planes in a display. 

Digital-to-analog converter A device that converts a binary quantity to an analog level. 

Direct memory access An arrangement whereby intelligent devices can read or write 
memory directly, without having to interrupt the processor. 

Display field One complete scanning of the video beam from top to bottom of 
the video display screen. 

Display mode One of the basic types of display; for example, high or low resolu
tion, interlaced or non-interlaced, single or dual playfield. 

Display time The amount of time to produce one display field, approximately 
l/6Oth of a second. 

Display window The portion of the bit-map selected for display. Also, the actual 
size of the on-screen display. 

DMA See direct memory access. 

Dual-playfield mode A display mode that allows you to manage two separate display 
memories, giving you two separately controllable displays at the 
same time. 

Glossary 367 



Equal-tempered scale 

Exec 

Fast Memory 

Font 

Frequency 

Frequency modulation 

Genlock 

High resolution 

Hold-and-modify 

Interlaced mode 

Joystick 

Light pen 

Low resolution 

Manual mode 

368 Glossary 

A musical scale where each note is the 12th root of 2 above the 
note below it. 

Low-level primitives that support the AmigaDOS operating sys
tem. 

Memory not accessable by the custom chips. Care must be taken 
to present only chip memory address to the custom chips. See 
Chip Memory. 

A set of letters, numbers, and symbols sharing the same size and 
design. 

The number of times per second a wavefOlm repeats. 

A means of changing sound quality by using one audio channel to 
affect the period of the wavefonn produced by another channel. 
Frequency modulation increases or decreases the pitch of the 
sound. 

An optional feature that allows you to bring in a graphics display 
from an external video source. 

A horizontal display mode in which 640 pixels are displayed 
across a horizontal line in a nonnal-sized display. 

A display mode that gives you extended color selection-up to 
4,096 colors on the screen at one time. 

A vertical display mode where 400 lines are displayed from top to 
bottom of the video display in a nonnal-size display. 

A controller device that freely rotates and swings from left to 
right, pivoting from the bottom of the shaft; used to position 
something on the screen. 

A controller device consisting of a stylus and tablet used for draw
ing something on the screen. 

A horizontal display mode in which 320 pixels are displayed 
across a horizontal line in a nonnal-sized display. 

Non-DMA output. In sprite display, a mode in which each line of 
a sprite is written in a separate operation. In audio output, a mode 
in which audio data words are written one at a time to the output. 



MIDI 

Microsecond (us) 

Millisecond (ms) 

Mintenn 

Modulo 

Mouse 

Multitasking 

Nanosecond (ns) 

Non-interlaced mode 

NTSC 

Overscan 

Paddle controller 

PAL 

Parallel port 

Paula 

A standardized musical instrument interface used by many musl
cal instruments. 

One millionth of second (1/1,000,000). 

One thousandth of second (1/1,000). 

One of eight possible logical combinations of data bits from three 
different data sources. 

A number defining which data in memory belongs on each hor
izontal line of the display. Refers to the number of bytes in 
memory between the last word on one horizontal line and the 
beginning of the first word on the next line. 

A controller device that can be rolled around to move something 
on the screen; also has buttons to give other fonns of input: 

A system in which many tasks can be operating at the same time, 
with no task forced to be aware of any other task. 

One billionth of a second (1/1,000,000,000). 

A display mode in which 200 lines are displayed from top to bot
tom of the video display in a nonnal-sized display. 

National Television Standards Committee specification for com
posite video. The base Amiga crystal frequency for NTSC is 
28.63636 Mhz. 

Area scanned by the video beam but not visible on the video 
display screen. 

A game controller that uses a potentiometer (variable resistor) to 
position objects on the screen. 

A European television standard similar to (but incompatible with) 
NTSC. Stands for' 'Phase Alternate Line." The base Amiga crys
tal frequency for PAL is 28.37516 Mhz. 

A connector on the back of the Amiga that is used to attach paral
lel printers and other parallel add-ons. 

One of the three main Amiga custom chips. Contains audio, disk, 
and interrupt circuitry. 
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Pitch 

Pixel 

Playfield 

Playfield object 

Playfield animation 

Pointer register 

Polarity 

Potentiometer 

Primitives 

Quantization noise 

RAM 

Raster 

Read-only 

Resolution 

ROM 

Sample 

Sampling rate 

Sampling period 

Scrolling 

Serial port 

370 Glossary 

The quality of a sound expressed as its highness or lowness. 

One of the small elements that makes up the video display. The 
smallest addressable element in the video display. 

One of the basic elements in Amiga graphics; the background for 
all the other display elements. 

Subsection of a playfield that is used in playfield animation. 

See bit-plane animation. 

Register that is continuously incremented to point to a series of 
memory locations. 

True or false state of a bit. 

An electrical analog device used to adjust some variable value. 

Amiga graphics, text, and animation library functions. 

Audio noise introduced by round-off errors when you are trying to 
reproduce a signal by approximation. 

Random access (volatile) memory. 

The area in memory that completely defines a bit-map display. 

Describes a register or memory area that can be read but not writ
ten. 

On a video display, the number of pixels that can be displayed in 
the horizontal and vertical directions. 

See read-only memory. 

One of the segments of the time axis of a wavefonn. 

The number of samples played per second. 

The value that detennines how many clock cycles it takes to play 
one data sample. 

Moving a playfield smoothly in a vertical or horizontal direction. 

A connector on the back of the Amiga used to attach modems and 
other serial add-ons. 



Set 

Shared memory 

Sprite 

Strobe address 

Task 

Timbre 

Trackball 

Transparent 

UART 

Video priority 

Video display 

Write-only 

Giving a bit the value of 1. 

The RAM used in the Amiga for both display memory and execut
ing programs. 

Easily movable graphics object that is produced by one of the 
eight sprite DMA channels and is independent of the playfield 
display. 

An address you put out to the bus in order to cause some other 
action to take place; the actual data written or read is ignored. 

Operating system module or application program. Each task 
appears to have full control over its own virtual 68000 machine. 

Tone qUality of a sound. 

A controller device that you spin with your hand to move some
thing on the screen; may have buttons for other forms of input. 

A special color register definition that allows a background color 
to show through. Used in dual-playfield mode. 

The circuit that controls the serial link to peripheral devices, short 
for Universal Asynchronous Receiver/fransmitter. 

Defines which objects (playfields and sprites) are shown in the 
foreground and which objects are shown in the background. 
Higher-priority objects appear in front of lower-priority objects. 

Everything that appears on the screen of a video monitor or televi
sion. 

Describes a register that can be written to but cannot be read. 
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INDEX 

60 Pin Edge Connector, 299 
68000,2,4,10,13-14,20,31,181,189,217 

instead of Copper, 31 
inrenupting,31,211 
nonnal cycle, 191 
Share Memory, 4 
synchronizing with the video beam, 210 
rest-and-set instruction, 191 

68010,2 
68010/20/30, 10 
68020,2,181 
68030,2 
8520,10,153,219,236,238,245,317 

alarm, 323 
handshaldng,320 
input modes, 322 
interval timers, 320 

continuous, 321 
force load, 322 
one-shot, 321 
PB on/off, 321 
start/stop, 321 
Toggle/pulse, 321 

I/O ports, 320 
read bit names, 322 
regisrer map, 319 
signal assignments, 313 
time-of-day clock, 323 
wrire bit names, 322 

86 Pin Edge Connector, 300 
AO,10 
AI, 10 
A 1000, 1,4,6,56,59,232,255 

expansion port, 299 
A2000, 1-2,4,6,56, 153,232,255 
ASOO, 1-2,4,6,56,153,232,255 

A6,1O 
Address Registers, 8 
Addresses, 10 
ADKCON, 236, 244, 252 

disk control bits, 242 
in audio, 145, 147 

Agnus,3-4, 160-161, 163 
fat agnus, 4, 181 

Alann,323 
Aliasing 

audio. 150 
AilocMemO, 46 
AmigaOS,7 
Amplitude Modulation, 4 
Animated Objects, 5 
Animation, 170 
Apple II, 235 
Area Fill, 4, 178 
ATTACH, 117 
Attachment 

audio, 146 
sprites, 117 

Audio, 4, 7, 14 
aliasing distortion, 150 
amplitude modulation, 4 
channels 

attaching, 145, 160 
choosing, 134 

data, 134 
data length registers, 136 
data location registers, 135-136 
data output rate, 137 
decibel values, 137, 159 
DMA, 135, 140, 143, 160 
equal-rempered scale, 154 
frequency modulation, 4 
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intenupts, 143,215 
joining tones, 143 
low-pass filter, 151 
modulation, 160 

amplitude, 145 
firequency, 145-146 

noise reduction, 150 
non-DMA output, 153 
period, 137 
period register, 140 
playing multiple tones, 145 
producing a steady tone, 142 
sampling period, 138 
sampling rate, 138, 148, 152, 160 
state machine, 160 
stopping, 141 
system overhead, 149 
volume, 136,159 
volume registers, 136 
wavefonn transitions, 148 

Audio Channel, 13 
AUDx, 215 
AUDxEN, 140,218 
AUDxLCH, 135 
AUDxLCL, 135 
AUDxLEN, 136 
AUDxPER, 140 
AUDxVOL, 136 
AUTOCONFIG, 6, 219 

base address, 337 
CONFIGIN*, 337 
CONFIG-OUT, 336, 340 
debugging, 337 
hardware manufacturer number, 335, 339 
inverted data, 337 
registers, 337 
shut-up, 336-338, 340 
write register, 336 

Background color, 40 
Barrel Shifter, 173 
BBUSY, 218 
BCLR,lO 
Beam comparator, 121 
Beam position 

comparison enable bits, 19 
detection of, 210 
in Copper use, 27 
registers, 211 
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vertical, 18 
Beam position counter, 210 
Bitplanes, 9 
Bit-planes 

coloring, 49 
DMA,56 
in dual-playfield mode, 62 
setting the number of, 42 
setting the pointers, 48 

Blitter, 4-5, 7, 13 
address scanning, 167 
addressing, 164 
animation, 170 
area fill, 4, 178 
area filling 

exclusive, 178 
inclusive, 178 

blit time, 188 
blitter done flag, 180 
blitter-finished disable bit (BFD), 31 
bUtter-nasty bit, 193 
block transfers, 165, 177 
BLTSIZE, 181 
bus sharing, 191 
clock,188 
cookie-cut, 170, 175, 177 
copying, 163, 177 
cycle time, 188 
data fetch, 164 
data overlap, 176 
descending mode, 176-177 
DisownBlitterO, 181 
DMA enable, 175, 178, 182 
DMA priority, 189 
DMA time slots, 189 
equation-to-mintenn conversion, 169 
example, 195 
FILL_CARRYIN bit, 179 
height, 166 
immediate data, 165, 176 
interrupts, 181,215 
LF control byte, 168 
line drawing, 4 

logic function, 186 
octants, 184 
registers, 184 

line drawing mode, 184 
line texture, 186 



linear data, 167 
logic equations, 169 
logic operations, 168 
mruddfig, 175, 177-178 
mintenns, 169 
modulo, 166 
modulo registers, 166 
octants, 184 
OwnBlitter(),181 
packed font, 174 
pipelined, 182 
pointer registers, 164 
sequence of bus cycles, 182 
shifting, 176-177 
size of blit, 166 
starting operation, 164 
text, 174 
truth-table, 168 
Venn Diagrams, 172 
WaitBlitO. 181 
width,166 
with the Copper, 31 
zero detection, 182 

Blitter Busy, 181 
Blitter registers 

in line-drawing mode, 184 
Blitter shifting, 173 
BLTAxWM, 174 
BLTCONO, 176 

DMA enable, 165 
in line drawing, 184, 186 
in logic operations, 168 
in shift control, 173 

BLTCON1, 176, 184 
in area fill, 178 
in blitter addressing, 176 
in line drawing, 184-186 
in shift control, 173 

BLTEN,218 
BLTPRI,218 
BLTSIZE, 164, 166-167, 180-181, 186 
BLTxDAT, 165 
BLTxMOD, 166 
BLTxPTH, 164 
BLTxPTL, 164 
BPL1MOD, 55, 59 
BPL2MOD, 55, 59 
BPLCONO, 82, 223 

enabling color, 56 
in dual-playfield mode, 67 
in hold-and-modify mode, 82 
in interlacing, 45 
in resolution mode, 43 
selecting bit-planes, 42 
setting bits, 42 
with light pen, 233 

BPLCON1,80 
setting scrolling delay, 80 

BPLCON2, 67, 204 
in dual-playfield priority, 66 

BPLCONx,85 
BPLEN,218 
BPLxMOD,87 
BPLxPf,86 
BPLxP11I,46,48,54,69 
BPLxPTL,46,48,54,69 
BPUx, 42, 82, 85 
Bridgeboard,6 
BSET,lO 
BZERO, 218 
Cache, 181 
CDANG,21 
Chip Memory, 2, 4-5, 9, 14, 102, 135, 164, 

181,217,240 
CIA, 7, 10, 153,236,245,317 
CIAA 

address map, 318 
CIAADDRA,235 
CIAAPRA, 223, 226, 228, 235 

disk, 238 
CIAB 

address map, 318 
CIABPRB 

disk,238 
Clock, 255 

8520,323 
alarm, 323 
audio, 137-139, 155, 160 
bUtter, 188-189 
color, 189,251 
cycle, 4 
keyboard, 245 
speed, 10 
system, 2, 188 

Clock Constant, 138, 155 
Clock Interval, 138 
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CLR.W, 10 
CLXCON,209 
CLXDAT,208 
CNT,245 
Collision, 207 

control register, 209 
detection register, 207 

Collision Detection, 3 
Color 

attached sprites, 119 
background color, 40 
color indirection, 36 
color table, 40 
enabling, 56 
in dual-playfield mode, 65 
in hold-and-modify mode, 81 
sample register contents, 88 
sprites, 98 

Color Cock, 53,189,251 
Color Palette, 3, 13 
Color Registers, 3 
Color registers 

contents, 40 
loading, 41 
names of registers, 40 
sprites, 126 

Color selection 
in high-resolution mode, 90 
in hold-and-modify mode, 90 
in low-resolution mode, 88 

COLOROO, 40, 49 
COLOR_ON,85 
COLORx, 8, 22, 24, 40, 65-66, 82 
Comparator, 121 
Composite Video, 5 
Control Register, 327 

register A, 327 
bit-map, 328 

register B, 328 
bit-map, 329 

Controller Port 
connection chart, 222 
joystick, 226 
mouse, 224 
output to, 234 
registers, 223 
trackball,224 

Controllers 

376 Index 

light pen, 232 
potentiometers, 231 
proportional 

registers, 230 
special, 234 
types, 5 

COPILC, 20-21, 26, 28, 31 
COPILCH,20 
COPILCL,20 
COP2LC, 20-21, 29 
C0P2LCH,20 
C0P2LCL,20 
COPCON,21 
COPEN, 26, 31, 218 
COPJMPl,21 
COPJMP2,21 
Copper, 7, 13, 39, 48, 56, 59, 75-77, 107, 

119,189,192,210,214 
affecting registers, 21 
at reset, 26 
bus cycles used, 15 
comparison enable, 28 
control register, 21 
danger bit (CDANG), 21 
DMA,26 
features, 14 
horizontal beam position, 18 
in interlaced mode, 30 
in memory operations, 15 
in vertical blanking interrupts, 214 
instruction fetch, 20 
instruction lists, 22, 24 
instructions 

description, 14 
ordering, 23 
summary, 32 

interrupt, 215 
interrupting the 68000, 31 
jump, 20 
jump strobe addresses, 21 
location registers, 20, 26, 28 
loops and branches, 28 
memory cycles, 17 
MOVE instruction, 15 
MOVE to registers, 16 
registers, 20 
resolution, 18 
SKIP instruction, 27-28 



starting, 21,26 
stopping, 26 
strobe address, 20 
vertical beam position, 18 
VVAITinstruction, 17,26,28 
with sprites, 110 
with the blitter, 21, 31 

Copper List, 9 
Coprocessor 

(see Copper), 13 
Copying data, 163 
CP/M,235 
CfRL-AMIGA-AMIGA,247 
Custom Chips, 3, 164,250 

control registers, 13 
register, 9 
register space, 9 
Steal Cycles, 4 

DO,lO 
D1,1O 
Data-fetch 

high-resolution, 55 
in basic playfield, 53 
in horizontal scrolling, 77 

Data-fetch start 
nonnal,53 

Data-fetch stop 
nonnal,53 

DBLPF, 82, 85 
DDFSTOP, 53-54, 74, 77, 86,95 
DDFSTRT, 53, 74, 77, 86, 95 
Decibel values, 159 
Denise, 3 
Descending Mode 

bUtter, 176 
DEST,165 
Devices, 10 
Digital Joystick 

connection, 307 
fire buttons, 307 

Disk, 10, 14 
controller, 5, 235 
DMA,240 
DMA pointer registers, 240 
drives, 5 
external 

identification, 311 
interface, 310 

limitations, 311 
pins, 310 

external connector, 353 
device ID, 357 
pins, 353 
signals, 355 

fioppy,4,9 
input stream synchronization register 

(DSKSYNC), 244 
internal 

pins, 312 
power, 312 

intenupts, 216, 244 
MFM Encoding, 243 
read data register, 242 
write, 240 

Disk Port, 298 
Display 

size of, 50 
Display DMA, 14 
Display field, 35 
Display memory, 50 
Display modes, 35 
Display window 

positioning, 51 
size 

maximum, 74 
nonnal,52 

starting position 
horizontal, 52, 72 
vertical, 52, 72 

stopping position 
horizontal, 52, 73 
vertical, 52, 74 

DIVVSTOP, 52-53, 73,87,95,214 
DIVVSTRT, 52-53, 71, 86,95,214 
DMA, 3-4, 10, 202 

audio, 134-135, 138, 140-144, 149, 153, 
160-161, 189,215 

bit-planes, 56 
bUtter, 44, 164-168, 170, 173-175, 177-

178, 181-183, 186, 188-189, 191-193 
control, 217 
control register, 213, 217 
copper, 13-14,26 
disk,4, 189,216,235,240-241,244 
display, 14, 189 
playfield,56 
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sprites, 3, 22, 93-94, 99, 105-107, 112-
115, 117-118, 120, 123-125, 189 

DMA Contention, 188 
DMA Priority, 189 
DMAB_BLTDONE, 181 
DMACON, 217, 241 

blitter done, 180 
DMAF _BLITHOG bit, 193 
in audio, 140 
in playfields, 56 
stopping the Copper, 26 
zero detection, 182 

DMACONR,217 
DMAEN, 140,218,241 
DMAF_BLITHOG,193 
DMAF _BLTNZERO, 182 
DSK,238 
DSKBLK,216 
DSKBYJnR,236,242 
DSKCHANGE,238 
DSKDIREC, 238 
DSKEN,218 
DSKINDEX, 238 
DSKLEN, 236,240-241 
DSKMOTOR,238 
DSKPROT. 238 
DSKPfH, 236, 240 
DSKRDY, 238 
DSKSELx, 238 
DSKSIDE, 238 
DSKSTEP, 238 
DSKSYN,215 
DSKSYNC, 236, 241, 244 
DSKTRACKO, 238 
Dual Playfield, 38 

bit-plane assignment, 62 
description, 62 
enabling, 67 
high-resolution colors, 66 
in high-resolution mode, 66 
low-resolution colors, 65 
priority, 66 
scrolling, 66 

Examples, 7 
Expansion Boards, 6 
Expansion Connector, 6 
External interrupts, 214 
FAST,242 
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Fat Agnus, 4, 181 
Field time, 35 
Hoppy Disk, 4 
Hoppy: See DISK, 235 
Frame Buffer, 5 
Frequency Modulation, 4 
Game Controller Port, 305 
GAUD,85 
GCR,244 
Genlock, 2, 43, 45, 84-85, 155, 255 

effect on background color, 40 
in playfields, 84 

GetCCO,1O 
HAM,81 
Hardware 

speCifications, 9 
Hardware Connection, 332 

address inputs, 333 
chip select, 332 
clock input, 332 
data bus 1/0,333 
interrupt request, 333 
read/write input, 332 
reset input, 333 

Hardware Manufacturer Number, 335 
High resolution 

color selection, 43, 90 
memory requirements, 47 
with dual playfields, 66 

HIRES, 82 
Hold-And-Modify, 3, 81 
HOMOD, 82, 85 
Horizontal blanking intelVal, 18 
HSTART,53,86, 104, 110 
HSTOP, 52-53, 73, 87 
IBM PC, 5-6, 235 
Include Files, 8, 16 
INTENA,213 
INTENAR,213 
Interlaced mode 

Copper in, 30 
memory requirements, 47 
modulo, 55 
setting interlaced mode, 43 

Interleaved Memory, 4 
Internal Slots, 6 
Interrupt, 22, 31, 202, 211 

8520,245 



audio. 143-144. 149, 153, 160-162,215 
beam synchronized, 3 
blitter, 31, 165, 181,215 
control registers, 212 
copper, 20, 28-29,210, 214 
Copper, 215 
diSk,216,239,244 
external, 214 
graphics, 29 
interrupt enable bit, 214 
interrupt lines, 212 
maskable, 212 
nonmaskable, 212 
parallel, 250 
priorities, 216 
registers, 213 
serial,250-253 
serial port, 216 
setting and clearing bits, 213 
TAS, 10 
vertical blanking, 214 

Interrupt Control Register, 325 
read,326 
write, 326 

Interrupts 
during vertical blanking, 214 

INTF_BLIT,181 
INTREQ, 31, 213 
INTREQR,213 
Joy Stick Port, 301 
JOYODAT/JOY1 DAT 

with joystick, 227 
with mouse/trackball, 225 

Joystick 
connections,222 
reading, 226 

JOYxDAT,223 
Keyboard, 9-10, 245, 343 

caps lock, 345 
communications,344 
errors, 347 
ghosting, 247 
hard reset, 348 
keycodes,345 

transmission, 345 
matrix, 350 
out-of-sync, 346 
power up, 346 

raw keycodes, 245 
reading, 245 
reset warning, 348 
self test, 347 
signals, 5, 343 
special codes, 349 
timing diagram, 344 

Keyboard Port, 297 
LACE,45 
LED 

caps-lock,247 
Library Base, 9 
Light Pen, 309 

connections, 222 
pins, 309 
reading, 232 
registers, 233 

Line Drawing, 4, 184 
length,186 
logic function, 186 
octants, 184 
registers, 186 

Low resolution 
color selection, 89 

LPEN,84 
Manual mode 

in sprites, 120 
Memory 

adding, 6 
blitter access to, 164 
type, 9 

Memory allocation 
audio, 135 
fonnula for playfields, 71 
playfields,47 
sprite data, 102 

Memory Cycle Time, 189 
Memory List, 9 
MFM Encoding, 235, 243-244 
MFMPREC, 242 
MIDI,296 
Mintenns, 169 
Modulation 

amplitude, 146 
frequency, 146 

Modulo 
blitter, 166 
in basic playfield, 54 
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in horizontal scrolling, 77 
in interlaced mode, 55 

Monitors - See Video, 255 
Mouse 

connections, 222 
reading, 224 

Mouse Port, 306 
MOVE, 14-15 
MOVE SR,<ea>, 10 
MOVE.W,lO 
MSBSYNC, 242, 244 
MS-DOS, 5-6, 235 
Multiprocessor, 217 
Multitasking, 7 
Noise 

audio, 150 
NTSC, 56,96 

audio, 137-138, 154-155 
blitter, 188 
clock, 2 
playfield, 43, 46, 51-52 
serial baud rate, 251 
sprites, 96 
vertical blank, 214 
video, 3, 18,23,30,35-36,39 

Octants, 184 
OVERRUN, 251 
Overscan, 3, 51, 95 
Packed Font, 174 
Paddle Controller 

connections, 222 
reading, 228 

PAL, 3,56 
audio, 137-138, 154-155 
beam position, 210 
blitter, 188 
clock, 2 
playfield, 43, 46, 51-52 
serial baud rate, 251 
sprites, 96 
vertical blank, 214 
video, 3, 18,30,35-36,39 

Parallel, 7 
Parallel Port, 2, 5, 222, 250,297 

pin assignment, 302 
specification, 302 
timing, 303 

Paula, 3, 5,250 
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Peripherals, 5-6 
Pipeline, 182 
Pixels 

definition, 35 
in sprites, 97 

Playfield, 3, 5, 7 
Playfields 

allocating memory, 46 
bit-plane pointers, 48 
collision, 207 
color of pixels, 36-38 
color register contents, 87 
color table, 40 
coloring the bit-planes, 39, 49 
colors in a single playfield, 39 
defining a scrolled playfield, 80 
defining display window, 50 
defining dual playfields, 67 
defining the basic playfield, 57 
display window size 

maximum, 74 
normal, 52 

displaying, 56 
dual-playfield mode, 62 
enabling DMA, 56 
fetching data, 53, 55, 74 
forming, 38 
high-resolution, 36 

color selection, 90 
example, 60 

hold-and-modify,90 
hold-and-modify mode, 81 
interlaced, 36 ' 
interlaced example, 60 
low-resolution, 36 

colors, 88 
memory required, 46, 71 
modulo registers, 55 
multiple-playfield display, 84 
non-interlaced, 36 
normal,36 
pointer registers, 60, 69 
priority, 204 
register summary, 84 
scrolling 

horizontal, 77 
vertical,76 

selecting bit-planes, 42 



setting resolution mode, 43 
specifying modulo, 54, 68 
specifying the data fetch, 70 
with external video source, 84 
with genlock, 84 
with larger display memory, 68 

Playfield-sprite priority, 204 
Pon Signal Assignments, 329 
Ports 

controller, 222 
disk, 235 
parallel, 250 
serial, 250 
video, 255 

POTODAT,23O 
POTIDAT,23O 
POTGO,223 
POTGO / POTINP 

as digital I/O, 234 
as proponional inputs, 229 

POTGOR,223 
name changed. See POTINP, 234 

POTxDAT,223 
Power up operation, 219 
PRECOMPx, 242 
Priority 

dual playfields, 66 
playfield-sprite, 204 
priority control register, 204 
sprites, 202 

Proponional Controller, 308 
pins, 309 

Proponional Controllers 
reading, 229 

Proponional Joystick 
connections, 222 
reading, 228 

RAM, 9, 15,41 
address space, 2 
at stanup, 219 
chip, 5, 9, 14, 135 
disk, 240 
expansion, 2, 6 
keyboard, 247 
software testing, 10 

RAMEX,299 
Reboot, 219 
Refresh, 14 

Reset, 219 
Resolution 

setting, 43 
Resources, 10 
RF Modulator, 255 
RF Monitor, 298 
ROB 

analog, 255 
digital, 255 

ROB Video, 5, 43, 56, 59 
ROM, 2,4,9, 219, 247 
RS-232, 5, 250 
RS-232 and MIDI, 296 
Sampling 

period,138 
rate, 148 

Scrolling 
data fetch, 77 
delay, 80 
horizontal, 77 
in dual-playfield mode, 66 
in high-resolution mode, 77 
modulo, 77 
vertical,76 

Self-Modifying Code, 10 
SERDAT,253-254 
SERDATR,251 
Serial, 7 
Serial pon, 250 

characteristics, 305 
pin assignment, 304 
specification, 304 
timing, 304 

Serial Shift Register, 324 
bidirectional feature, 325 
input mode, 324 
output mode, 324 

SERPER,250 
SET/ClJR,31, 140, 142,213,218,242,253 
Shifting 

blitter, 176 
SKIP,14 
Sound generation, 130 
Sound Samples, 9 
SPREN,218 
Sprite, 3, 7, 9, 13-14 
Sprite Colors, 22 
Sprite DMA, 22 
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Sprites 
address pointers, 107 
arming and disanning, 120 
attached 

color registers, 128 
colors, 119 
control word, 117 
copper list, 119 
data words, 118, 120 

clipped,96 
collision, 110,207 
color, 98 
color registers used, 100 
comparator, 121-122 
control registers, 121-122, 124 
control words, 104 
data registers, 123, 126 
data structure, 101 
data words, 104 
designing, 100 
displaying 

example, 108 
steps in, 106 

DMA, 107, 111 
end-of-data words, 105 
fonning,94 
manual mode, 120 
memory requirements, 102 
moving, 110 
overlapped, 115 
parallel-to-serial converters, 121 
pixels in sprites, 97 
pointer registers, 124 

initializing, 107 
resetting, 107 

position registers, 121, 123 
priorities, 202 
priority, 112, 115, 204 
reuse, 111, 113 
screen position 

horizontal,94,l04 
vertical, 96 

shape, 97 
size, 97 
vertical position, 104 
with copper, 110 

SPFtxC1nL, 104, 120-121, 123, 125-126 
SPFtxDATA, 120, 123, 126 
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SPRxDATB, 120,123, 126 
SPRxPOS, 104, 120-121, 123, 125-126 
SPRxPT,111 
SPRxPTH, 107, 123-124 
SPRxPTL, 107, 123-124 
SRCA,165 
SRCB,165 
SRCD,165 
Stereo, 4 
System Clock, 2 
System Control Hardware, 7 
System Libraries, 10 
System Structures, 9 
TAS, 10, 191,217 
Timer, 10 
Trackball, 306 

connections, 222 
reading, 224 

Trackdisk, 7 
Trackdisk Buffer, 9 
TSRE,254 
UART,250 
UARTBRK, 253 
VCR,40 
Vertical Blanking, 26, 28 
VHPOSR,223 

with beam counter, 211 
with light pen, 233 

VHPOSW 
with beam counter, 211 

Video 
analog RGB, 255 
beam position, 3, 18 
camera input, 5 
composite, 255 
digital RGB, 255 
external sources, 84 
interrupt, 3 
laser disk input, 5 
monitors, 5 
monochrome, 255 
output, 255 
priority, 3 
RF modulator, 255 
RGB, 43, 56, 59 
synchronization, 3 
VCR input, 5 
video slot, 255 



Video Beam Position, 22 
Video Input, 40 
Video Port, 297 
Volume, 136 
VPOSR, 223 

in playfields, 60 
with beam counter, 211 
with light pen, 233 

VPOSW 
with beam counter, 211 

VSTART, 53, 86,104-105,110 
VSTOP, 52-53, 73,87,104-105,110 
WAIT,14 
Wavefonn,4 
Wavefonns 

audio, 130 
WOFUDS~C,242,244 

Zero Detection, 182 
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